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Résumé

Les avancées en intelligence artificielle ont permis le développement de modèles de plus en plus
complexes permettant de résoudre de nombreuses tâches. Dans des domaine d’applications
critiques tels que l’industrie ou la médecine, il s’avère nécessaire de proposer des modèles dit
interpretables établissant clairement le mécanisme de décisions favorisant ainsi la compréhension
de ces modèles et de leurs décisions par les utilisateurs, et par conséquent leur acceptation.
Ces objectifs relèvent du domaine de l’Intelligence Artificielle eXplicable (XAI), qui connaît un
intérêt croissant depuis quelques années.
Les données de séries temporelles, qui mesurent l’évolution de variables au fil du temps,
comme les relevés de capteurs, fournissent des informations précieuses sur le comportement
des systèmes. En identifiant des structures dans ces données, nous pouvons comprendre les
interactions entre les variables, améliorer la précision des prévisions et concevoir de meilleures
stratégies d’intervention. Cette thèse étudie l’analyse de données de séries temporelles à
haute dimension en se concentrant sur l’explication des déviations de systèmes par rapport à
leur fonctionnement normal et sur la modélisation de la dynamique sous-jacente de systèmes
permettant de prédire leur évolution.
Ce travail a deux objectifs principaux. Le premier objectif est de développer un algorithme
interprétable qui identifie les causes racines des comportements normaux et anormaux dans
les données de séries temporelles. Diverses techniques sont utilisées pour identifier les causes
racines, mais elles présentent des limites quant à leur capacité à traiter de grandes dimensions
et à distinguer la causalité des corrélations. Une approche basée sur le concept de causalité
de Granger [Granger 1988], qui extrait des relations interprétables et causales sous la forme
de règles, a été développée pour remédier à ces limitations. L’algorithme qui en résulte est
conçu pour traiter différents types de données (numériques, catégorielles), pour fournir aux
utilisateurs des explications interprétables du problème et pour développer des règles prédictives
permettant de désamorcer les phénomènes anormaux à l’avance.
Le deuxième objectif vise à développer un modèle de prévision qui non seulement prédit
les valeurs futures, mais extrait également la dynamique sous-jacente des séries temporelles
influençant ces prédictions. Ce domaine appelé régression symbolique favorise la transparence
pour les utilisateurs en expliquant le raisonnement du modèle. Les modèles de régression
avec pénalisation parcimonieuse sont largement utilisés dans ce domaine pour leur capacité
à apprendre des dynamiques complexes dans des scénarios de grande dimension. Néanmoins,
leurs performances en matière de prévision peuvent être limitées, en particulier pour des
données complexes et non linéaires. Pour y remédier, nous proposons une nouvelle approche
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qui combine la régression pénalisée et la correction des erreurs dans un cadre de prévision des
séries temporelles afin d’améliorer l’apprentissage des dynamiques sous-jacentes. En outre, le
modèle est conçu pour traiter des données de séries temporelles complexes et non linéaires.
En atteignant ces objectifs, cette recherche a le potentiel d’améliorer de manière significative
notre capacité à analyser et à comprendre les données de séries temporelles. Il en résultera de
meilleures prévisions, une meilleure compréhension du système et le développement de stratégies
d’intervention plus efficaces.
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Abstract

Advances in artificial intelligence have led to the development of increasingly complex models
for solving a wide range of tasks. In critical applications such as industry and medicine, it has
become necessary to propose "interpretable" models that clearly establish the decision-making
process, thus promoting understanding of these models and their decisions and, consequently,
their user acceptance. These objectives fall within the field of eXplainable Artificial Intelligence
(XAI), which has been attracting growing interest in recent years.
Time-series data, which measure the evolution of variables over time, such as sensor readings
or data monitoring, provide valuable information on the system’s behavior. By identifying
patterns in these data, we can understand the interactions between variables, improve forecasting
accuracy, and design better intervention strategies. This thesis studies the analysis of high-
dimensional time-series data, focusing on explaining local system deviations from normal
operation and, on the global scale, modeling the underlying dynamics of the system to predict
its evolution.
This work has two main objectives. The first objective is to develop an interpretable algorithm
that identifies the root causes of both normal and abnormal behavior in time series data. Various
techniques are used to identify root causes, but they suffer from limitations in their ability
to handle high dimensions and to distinguish causality from correlations. To overcome these
limitations, an approach based on the concept of Granger causality [Granger 1988], which
extracts interpretable and causal relationships in the form of rules, has been developed. The
resulting algorithm is designed to handle different data types (numerical, categorical), provide
users with interpretable explanations of the problem, and develop predictive rules to defuse the
event in advance.
The second objective aims at developping a forecasting model that not only predicts future
values but also reveals the underlying dynamic of the time series influencing those predictions.
This field, called symbolic regression, fosters transparency for users by explaining the model’s
reasoning. Regression models with parsimonious penalization are widely used in this field
for their ability to learn complex dynamics in high-dimensional settings. Nevertheless, their
forecasting performances can be limited, especially for complex, non-linear data. To address
this, we propose a novel approach that combines penalized regression with forecasting error
correction within a time series forecasting framework for improved learning of underlying
dynamics.
By achieving these goals, this research has the potential to significantly improve our ability
to analyze and understand time series data. This will result in better forecasts, a better
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understanding of the system, and the development of more effective intervention strategies.
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1.1. Context

1.1 Context
The early 1960s witnessed the emergence of Artificial Intelligence (AI) as a distinct field.
Pioneering researchers, Allen Newell and Herbert Simon, aimed to replicate human problem-
solving capabilities through the development of the "Logic Theorist" program based on logic
(Russell & Norvig, 2010). The early models, based on logic operators, symbolic reasoning, tree
structure, and rule-based systems, led to the development of computer programs like logic
rules, expert systems, and decision trees. These models were relatively simple, allowing for
easy comprehension of decision-making processes. While these models have proved promising
in specific domains, their limitations became apparent when confronted with more complex
challenges. Concurrently, efforts were made to develop more complex approaches, including
early neural networks like the perceptron. However, these attempts were limited by various
technical constraints, ultimately hindering their success.
Since the late 20th century, significant computer hardware advancements have driven significant
increases in their computational power. This, coupled with the simultaneous development of
data storage capacity, has enabled the collection and storage of large amounts of data. These
technical developments, combined with rapid progress in algorithms and mathematical research,
have laid the groundwork for the popularization of artificial intelligence.
Since the turning point of AI was in ImageNet Competition in 2012, with the success of deep
learning in computer visions tasks (Krizhevsky et al., 2012), machine learning has undergone
significant progress, yielding increasingly efficient models in diverse tasks, from decision-making
and prediction to forecasting. Its reach extends beyond powering conversational AI through
natural language processing, computer vision for image and video recognition and generation,
speech analysis, and recommender systems. As a result, machine learning applications have
permeated every sector, including healthcare, finance, industry, automotive, and marketing.
Indeed, adopting AI has become strategically imperative for businesses to remain competitive
and efficient.
While advancements have allowed machine learning models to have impressive accuracy
and efficiency, they have also yielded increasingly complex systems. Often referred to as
"black boxes" or "opaque" models -models with complex/unknown internal workings where
only inputs/outputs are observed - as opposed to transparent models, their designs hinder
understanding and justifications of their decisions when applied in a real-world environment.
The opacity of AI models amplifies ethical considerations around bias in algorithms during
learning and accountability for decisions, particularly in critical domains like healthcare (Morley
et al., 2020), autonomous vehicles (Martinho et al., 2021), recruitment (Hofeditz et al., 2022),
and chatbots (Wiltz, 2017). This lack of transparency hinders our understanding of how the
model arrives at its decisions, making it difficult to identify and address potential biases or
weaknesses that might lead to errors and discriminatory outcomes. Consequently, opaque
models raise ethical and legal concerns for businesses and society.
The widespread adoption of AI, particularly in sensitive areas impacting humans, society, and
finances, highly depends on trust and acceptance. This translates to a clear need from different
stakeholders (Preece et al., 2018) with three main motivations and demands: transparency,
human interaction and trustworthy models (Vilone & Longo, 2021).
The need for understanding AI systems gave rise to Explainable Artificial Intelligence (XAI).
This field focuses on developing and analyzing both new and existing machine learning models,
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Figure 1.1: Google Trends Index (Max value is 100) of the term “Explainable AI” over the last
years (2015–2023).

with the goal of (Barredo Arrieta et al., 2020):

❖ uncovering and addressing biases

❖ enhancing model robustness

❖ providing causal reasoning behind their decisions

1.2 Why do we need explanation
Machine Learning offers a powerful means to enhance the predictive capabilities of systems,
enabling them to make informed decisions based on data-driven insights. This is achieved by
utilizing various algorithms, each providing a degree of explanation, such as uncertainty, that
can serve as an indicator of algorithmic confidence. However, in contexts where the consequences
of errors can be severe, such as in critical domains like healthcare or autonomous vehicles, the
inherent lack of transparency and the challenge of understanding the decision-making process
become a major concern.
The trustworthiness of a machine learning model is intimately tied to the ability to explain
its decisions. In these high-stakes scenarios, it is imperative to have models that are not only
predictive and accurate but also interpretable. It will allow stakeholders to understand how
and why a particular decision has been taken, providing transparency and accountability. In
these settings, interpretability becomes an ethical and practical necessity.
In such applications, one will need guarantees not only on the model’s performance but also on
its reliability. It is essential to develop methods for rigorously evaluating the performance and
robustness under various data conditions and scenarios and the model’s inner workings and
decision-making processes to build this trust in machine learning models. Quantitative metrics
are typically used for evaluation, but qualitative assessments might be included depending on
the problem and objectives.
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1.3 Objective of my research
An important aspect of this research involves understanding the changes over time and what
causes a system to deviate from normal operating conditions or uncovering the hidden dynamics
in time series data. In fact, time series data essentially tracks how variables change over time,
such as stock prices, weather data, brain monitoring, or heart rate monitoring. By uncovering
patterns in data, we gain insights into how variables interact, leading to improved forecasting,
a deeper understanding of system stability, and the development of effective intervention
strategies.
Objective 1: Develop an algorithm that finds the root causes of normal/abnormal behaviors
in a time series

❖ This objective aims to develop an algorithm that provides insights and explanations for
deviations from normal behavior.

❖ The algorithm should be able to handle various types of time series data, including
numerical, categorical, and multivariate data.

❖ The explanations should reveal the causes and be understood by humans.

Another key aspect of this research lies in addressing crucial knowledge gaps within time series
data analysis. Firstly, we lack a comprehensive understanding of abnormal behaviors’ underlying
causes and timing. This limitation hinders our ability to anticipate and mitigate potential risks.
Secondly, we struggle to explain systems’ dynamic behavior and identify the variables driving
their evolution. This lack of explanatory power restricts our ability to understand systems and
optimize performance.
Objective 2: Develop a forecasting model that uncovers the underlying dynamic of a time
series and that predicts future evolution

❖ This objective seeks to develop a forecasting model that can not only predict future values
in a time series but also explain its predictions.

❖ The model should be transparent, allowing users to understand the factors influencing
the forecast and gain insights into the underlying trends and patterns.

❖ The model should be able to handle complex time series with non-linearities.

1.4 Thesis outline
Chapter 2: Understanding ML models This chapter lays the foundation for our research by
establishing a shared understanding of Explainable AI (XAI). We explore this field’s challenges,
definitions, methods, and evaluations, providing context for the methodologies employed
throughout the thesis.

Chapter 3: Analyzing Time Series: Uncovering Patterns and Influencing Factors This
chapter delves into root cause analysis, highlighting the main methods and their limitations. It
allows us to introduce our proposed solution in Chapter 4.
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Chapter 4: Causal and Interpretable Rules for Time Series Analysis This chapter presents
our first contribution to root cause analysis. We introduce a novel approach that incorporates
both causality and interpretability, addressing the issues identified in Chapter 3.

Chapter 5: Multi-step Ahead Forecasting and Dynamic System Discovery This chapter
introduces the domain of forecasting and dynamic system discovery, with the existing methods
and their limitations. By outlining these challenges, we create the groundwork for presenting
our proposed solution in Chapter 6.

Chapter 6: Coherent and Interpretable Forecasting Model This chapter details our second
contribution, focusing on multi-step ahead forecasting and dynamic system discovery. We
propose a novel framework that offers both accuracy and interpretability, overcoming the
limitations of previous approaches.

Chapter 7: Conclusion and discussion This concluding chapter summarizes the thesis’s
key findings and contributions. We will also discuss potential limitations and future directions
for research in this field.

1.5 Contributions

• KDD article: Causal and interpretable rules for time series analysis (Dhaou et al., 2021)

• Patent: procédé de contrôle d’un système et produit programme d’ordinateur associé.
Amin Dhaou, Antoine Bertoncello, Sébastien Gourvénec, Josselin Garnier, Erwan Le
Pennec. TotalEnergies OneTech, Centre National de la Recherche Scientifique, Ecole
Polytechnique. France, N° de brevet: FR3124868B1, N° d’enregistrement national: 21
07171, 2023 〈hal-04455926〉.

• Code: https://github.com/amindh/CAPP

• Article: Learning from mistakes: an Interpretable and Coherent Multi-step Ahead Time
Series Forecasting Framework

• Code: https://github.com/amindh/multi_step

5

https://github.com/amindh/CAPP
https://github.com/amindh/multi_step


CHAPTER 2

Understanding ML models

Contents
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 A brief overview of the history of Explainable AI . . . . . . . . . 7
2.1.2 The Challenge of Explainable AI . . . . . . . . . . . . . . . . . . 8
2.1.3 Epistemological Definitions . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Explainability, Interpretability in ML . . . . . . . . . . . . . . . . . . . . 12
2.2.1 Challenges in defining the concepts . . . . . . . . . . . . . . . . . 13
2.2.2 Definitions in the literature . . . . . . . . . . . . . . . . . . . . . . 13
2.2.3 Definitions in this thesis . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3.1 Data or Model focused Explanation . . . . . . . . . . . . . . . . 14
2.3.2 Intrinsic or Post Hoc . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.3 Model Specific or Model Agnostic . . . . . . . . . . . . . . . . . . 16
2.3.4 Local or Global explanation . . . . . . . . . . . . . . . . . . . . . 16

2.4 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.1 Explainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.4.2 Interpretability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4.3 Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4.4 Conclusion on the state of the art . . . . . . . . . . . . . . . . . . 39

2.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
2.5.1 Levels of evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 41
2.5.2 Evaluating Interpretability and Causality . . . . . . . . . . . . . . 42
2.5.3 Quantitative evaluation in the literature . . . . . . . . . . . . . . 42
2.5.4 Evaluation in practice . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6 Challenges & conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

6



2.1. Introduction

This chapter presents an overview of eXplainable AI (XAI). Section 2.1 reviews the
historical background and definition related to XAI. Section 2.2 establishes key definitions
for interpretability, explainability, and causality in AI. Section 2.3 explores the established
taxonomy within the literature. A concise review of the current state-of-the-art for XAI
techniques is provided in Section 2.4. Section 2.5 focuses on the evaluation processes and
methodologies used to assess interpretability and causality. Finally, Section 2.6 concludes the
chapter by summarizing the main insights and highlighting the remaining challenges in the
field.

2.1 Introduction

2.1.1 A brief overview of the history of Explainable AI
While early works related to model’s explanation date back to the 1980s, when researchers
showed interest in the explanation of expert systems (Moore & Swartout, 1988; Shortliffe
& Buchanan, 1975), rule-based explanation on neural networks (Andrews et al., 1995) and
recommendation systems (Herlocker et al., 2000), the formalization of this field with the term
eXplainable Artificial Intelligence (XAI) was introduced by Van Lent et al. (2004). This
concept aimed to "present the user with an easily understood chain of reasoning from the user’s
order" in a simulation gaming application for military objectives.
In recent years, AI research focused on developing highly accurate and efficient models, especially
since the breakthrough of neural networks in 2012. While these models offer impressive efficiency
and benefits across various sectors, concerns have arisen due to their opaque and complex
nature, along with incidents of negative impacts (Telford, 2019; Yee et al., 2021; Završnik, 2020).
This resulted in a shift within the field, urging researchers and developers to move beyond a
single focus on performance and consider aspects like understanding, responsibility, and ethics.
Indeed, the focus on XAI was renewed (Gunning, 2017), aiming to produce more explainable
models while maintaining a high level of learning performance and enabling human users to
understand, trust, and appropriately manage the model. It has been further developed and
discussed to the present day, with different topics such as Interpretability, Explainability, and
Causality.
Interestingly, Rudin (2019) (Rudin et al., 2022) argue that the perceived trade-off between XAI
and model accuracy may not be as marked as it seems (i.e., "there is no scientific evidence")
and suggest that efforts to understand better how systems arrive at their decisions can lead to
improved performance and reliability, fostering trust and acceptance in these powerful tools.
This ongoing discourse highlights the need for a nuanced approach that balances the advantages
of AI with explanations. All these concerns have led to the emergence of research on new topics
and algorithms since 2014 (Gunning, 2017), such as explaining black box models (Zeiler &
Fergus, 2014) or models’ decision (Ribeiro et al., 2016) and developing more transparent models
(Letham et al., 2015).
Although there is no unanimous consent over the true objective and definition of XAI, several
questions, both general and subjective, have been raised (Gunning, 2017; Lipton, 2017),
including:

❖ Why did the model do that? Why not something else?
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❖ When does the model succeed? When does it fail?

❖ What are the conditions to trust a model?

❖ Will it work once deployed?

❖ What else can it tell about the world?

Regulations, such as the General Data Protection Regulation (GDPR) (Radley-Gardner et al.,
2016), underscore the importance of explanation in automated decision-making affecting
individuals. Indeed, it is a considerable effort that strengthens data subject rights by introducing
the right to an explanation of algorithmic decision and the right to be informed (article 22,
13), conditioning the organization using automated decision-making to clarify their underlying
system to be challenged if needed. Programs have been developed in multiple countries in order
to produce understandable models to attain objectives such as accountability, trust, and fairness
({France AI Strategy Report}, 2018; Gunning & Aha, 2019; {Royal Society}, 2017). Some
researchers and companies tried to raise awareness and strike a balance between technological
progress and ethical responsibility, and a thousand of AI Giants even asked for a pause or to
slow down in advancement {Future of Life Institute}. For over three years, intense discussions
have been taking place to establish a European law on AI, the AI Act ({European Commission},
2021). On December 9, 2023, a political agreement was reached to regulate and legislate on the
trustworthiness of AI {European Parliament} (2023). This achievement marks a significant
step forward in ensuring that AI is developed and used responsibly and ethically.
Despite the growing importance of XAI, there is a lack of consensus on the precise definitions
and objectives. Researchers from different fields of study proposed various definitions and
taxonomies, leading to multiple approaches and methodologies shaped by individual perspectives
and goals. Without a unified framework, accurately assessing and comparing models becomes a
complex task, potentially hindering progress in XAI development (Nguyen & Martínez, 2020).
The diverse perspectives on XAI necessitate a clear presentation of the challenges, the current
state of the field, and the definitions to clarify the scope of our work. After briefly introducing
the epistemological definitions of causation, explanation, and interpretation, we describe the
definitions of causality, explainability, and interpretability used in Machine Learning. Then,
we present the taxonomy used in the state of the art and delve deeper into the techniques
employed, focusing on interpretable and causal models. Finally, we describe how to evaluate
XAI models.

2.1.2 The Challenge of Explainable AI
The rise of Explainable AI has attracted much interest as a means to enhance understanding
of complex Machine Learning models. While pursuing XAI is commendable, it is crucial to
recognize this domain’s inherent complexities and multifaceted nature.
First, due to the complexity of real-world problems with large amounts of multivariate data
with non-linear patterns, many complex and "opaque" ML models have been developed to
capture these dynamics. They exhibit limitations in their design with the inherent algorithmic
complexity that makes them called "black box" or on the technical aspect with inaccurate
decisions, outlier predictions, and a lack of generalization beyond the training data. Such
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limitations may necessitate a deeper understanding of the model’s inner mechanisms to identify
potential sources of error and refine the decision-making process.

XAI Goals There are many reasons behind the search for an explanation that needs to be
investigated in order to respond in the best possible way. Indeed, XAI aims to build models
that are trustworthy, informative, fair, and ethical. This ensures that they are reliable, safe,
robust, and respect privacy while also providing insight into their decision-making process,
offering confidence to the user (Barredo Arrieta et al., 2020; Carvalho et al., 2019; Doshi-Velez
& Kim, 2017; Guidotti et al., 2019; Lipton, 2017). In this regard, the question of how to achieve
these desiderata is a central tenet of XAI and is a challenge as they are subjective and depend
on many factors, making them difficult to define and measure. For instance, trust is frequently
cited as a key objective in XAI. However, its definition remains subjective. While some link
trust to the model’s confidence, understood as a model’s ability to produce accurate predictions
on the training data, Lipton (2017); Rudin et al. (2022) argue for a more nuanced understanding.
Lipton (2017) asserts that trust arises not solely from "how often a model is right," but also from
discerning "for which examples it is right". This distinction emphasizes that a model exhibiting
high confidence during training may fail in deployment due to inherent biases, robustness
limitations, or ethical concerns. Besides, Rudin et al. (2022) further emphasizes that XAI does
not guarantee trust, but rather empowers users with the information necessary to assess the
model’s trustworthiness based on their own criteria.

User-dependent The inherent subjectivity of XAI can be attributed, in part, to the diverse
range of stakeholders targeted by its various techniques. The level of understanding and nature
of the explanation required will depend on the specific goals, background knowledge, and
expertise of each stakeholder group. Existing literature identifies several distinct categories
(Barredo Arrieta et al., 2020; Bhatt et al., 2020; Liao & Varshney, 2022; Preece et al., 2018):

• Model developers/ Data Scientist: This group primarily seeks to enhance the model’s
efficiency.

• Business leaders (managers, executive board members): Their primary concerns
lie in assessing compliance with regulations and comprehending the model’s utility in
achieving their business objectives.

• Domain experts/ Model Users: This group requires trust in the model’s decision-
making process and necessitates informed insights to guide their subsequent actions.

• Impacted Users: This group seeks to understand the rationale behind the model’s
decisions and assess their fairness and legitimacy.

• Regulatory entities: Their primary function is to audit and certify the model’s
compliance to legal and ethical standards regarding, for instance, privacy and safety
concerns.

Domain-dependent Another contribution of the subjective nature of XAI is due to the
domain of application in which it is implemented, raising specific challenges and considerations.
Indeed, expectations and requirements for XAI vary significantly across domains. In high-risk
applications like healthcare (Chaddad et al., 2023), aviation (Degas et al., 2022), military
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(Griffin et al., 2022), and nuclear energy (Ayodeji et al., 2022), where human safety and
lives are at stake, XAI is crucial. These domains demand a thorough understanding of the
model’s decisions to ensure they align with ethical considerations, mitigate biases, and maintain
robustness in real-world scenarios. In these sensitive domains, the benchmark for comparison
often resides in human experts’ decision-making capabilities or traditional methods in the field.

The pursuit of XAI is a complex and multifaceted endeavor, encompassing diverse perspectives
and methodologies. To fully grasp the nuances of XAI, it is essential to first delve into the
epistemological underpinnings of causation, explanation, and interpretation. These concepts
provide a foundation for understanding the nature of knowledge and how it informs our
comprehension of ML models. In the next section, we delve into these concepts.

2.1.3 Epistemological Definitions
This section deals with the notion of "understanding", which is the mental process of grasping
and making sense of information, a concept or a phenomenon. We explore how this intricate
process is articulated and expressed through causation, explanation, and interpretation.

2.1.3.1 Causality

Definition 2.1.1 (Causality (Cambridge Dictionary)). The principle that there is a cause for
everything that happens.

Causation refers to the relationship between cause and effect, where an event or phenomenon
(cause) initiates or contributes to the occurrence of another event or phenomenon (effect). The
study of causality has been a subject of intense philosophical debate for centuries, with various
perspectives on the nature and identification of causal relationships.
The objective is not to make a survey on causality, but to give some main theories that have
been developed. Many theories in causality can be related to counterfactuals, aiming to answer
the question: "What would have happened if" (Miller, 2018). Among them, we can cite:

• Regularity theories: Aristotle’s Regularity Theory suggests that events are linked
as a regular sequence of causes and effects. He argues that there must be a necessary
and sufficient condition for an event to occur (Falcon, 2023). Hume (1894) argues that
causation is a regularity with empirical and repeated observation of a pattern. Hence,
causality can be inferred only based on repeated observations of regularities, such as the
occurrence of one event after another. Indeed, "if the first object had not been, the second
never had existed" (Hume, 1894).

• Possible worlds: Lewis (1973) argues that causation is determined by comparing actual
events to hypothetical "possible worlds" where things would have happened differently.
The most similar world, where a minimal change leads to a different outcome, represents
the true cause. However, this approach relies on subjective judgments of "similarity",
leading to a "miracle" scenario (Pearl, 2013) and raising concerns about subjectivity and
reliability.

• Process theories: These theories assume the existence of a physical or metaphysical
process driving causation. The emphasis lies on identifying the mechanism – such as
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energy transfer – that connects cause and effect, providing a deeper understanding of
their interaction. Indeed, Salmon (1994)’s theory suggests causation happens through
continuous processes instead of discrete events.

• Interventionist theories: Pearl & Halpern (2005) suggest that if intervening on a
potential cause results in a change in the expected effect, then causality can be established.
This theory often connects to probabilistic frameworks, defining causality as the ability
to increase the probability of an effect through cause’s manipulation.

Although numerous theories address causality, Pearl & Mackenzie (2018) proposed a unifying
framework with three distinct levels of causality: 1) the association level focuses on identifying
correlations and patterns between variables, 2) the intervention level actively manipulates
a potential cause and observes the effect’s response, 3) the counterfactual level involves
imagining alternative realities where the cause is absent and analyzing hypothetical effects.
Multiple challenges exist in this domain, including identifying causality when there are
unobserved variables, multiple necessary causes (set of events all necessary to cause an event), or
multiple sufficient causes (multiple possible ways to cause the event where only one is required.

2.1.3.2 Explanation and Interpretation

In philosophy and science, both explanation and interpretation seek to justify findings, but also
to deepen understanding and even persuade others of their validity.

Definition 2.1.2 (Explanation (Cambridge Dictionary)). The details or other information that
someone gives to make something clear or easy to understand.

Definition 2.1.3 (Explain (Merriam-Webster)). To make plain or understandable; to give the
reason for or cause of; to show the logical development or relationships of.

Definition 2.1.4 (Interpretation (Cambridge Dictionary)). An explanation or opinion of what
something means.

Definition 2.1.5 (Interpret (Merriam-Webster)). To explain or tell the meaning of; present in
understandable terms.

In the literature, explanation and interpretation are often used interchangeably. Both seek
understanding, but with different angles: explanation delves into the "why" through logic or
cause-and-effect, while interpretation focuses on the "what" by uncovering meaning and context.
Though "interpretation" has a more subjective connotation, its goal aligns with explanation: to
uncover the truth behind phenomena or events. In this discussion, we consider them both as
explanations for simplification.
Explanation is a central concept in understanding phenomena in different domains, aiming to
provide answers to questions such as why, what, or how. Throughout history, scholars have
offered diverse theories attempting to capture the essence of explanation. We describe some
key concepts in the literature (Mayes, 2001; Miller, 2018; Srinivasan & Chander, 2021):

• Deductive-Nomological model: One of the classical types of explanation were proposed
by Hempel & Oppenheim (1948) in the form of logical proofs. Starting from assumptions
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with general laws and initial conditions, deductive arguments lead to the phenomenon to
be explained.

• Causal Patterns: Several prominent theories emphasize the importance of causality
in explanation. (Glennan, 1996) defines uncovering the causal mechanisms governing a
phenomenon as the ultimate explanatory goal. This aligns with Halpern & Pearl (2005)’s
view that an explanation is essentially a potential cause for the observed phenomenon,
regardless of initial uncertainty. Lewis (1986) argues that an explanation provides the
event’s causal history, while Josephson & Josephson (1996) defines explanation as assigning
causal responsibility.

• Mental models: Bridging traditional AI and neuroscience, mental models (Holland,
1986) are internal maps built from rules connecting situations and actions. They act as
simplified internal representations of the world, built from interconnected "if-then" rules.
If the initial understanding fails, then the brain searches deeper levels of this map to
understand why. In this theory, explaining involves adjusting these rule-based maps until
they fit what we experience.

Other approaches explain through different perspectives (Srinivasan & Chander, 2021), such as
mechanical explanations with physical objects and interactions, illustrations with examples,
comparisons, analogies and counterfactuals and finally intentional explanation which concern
beliefs and desires.
Halpern & Pearl (2005) argued that our "epistemic state", or state of knowledge, fundamentally
shapes what we accept as an explanation. Indeed, what constitutes a satisfactory explanation
depends on what we already know. Even "good" explanations, if accurate, may not always be
easily grasped. The multifaceted nature of explanation can be explored through various lenses
(Angelopoulou et al., 2022):

• Social attribution: understanding how people explain behavior by analyzing intentionality,
beliefs, desires, and intentions.

• Cognitive processes: delving into the cognitive biases, norms, and changing nature of
explanations and how we evaluate them, including counterfactual reasoning.

• Social explanation: exploring how explanations are communicated through spoken or
signed language, dialogues, and even non-linguistic means.

2.2 Explainability, Interpretability in ML
In the area of AI and Machine Learning, eXplainable AI (XAI) is a concept that encompasses
all types of explanations, from the analysis of the relationships in the data to the core structure
and decision-making process of a machine learning model. The aim of this development is
to make all the models understood, to some extent, by giving the ability to understand the
internal mechanisms, underlying theory, and decision-making process that lead to an outcome.
It also focuses on communicating the decision in an understandable way, with meaningful and
justified explanations. This area rose in parallel with the growing number of "black box" models
and aims to cope with their complexity. The development of this domain has shown to be
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necessary due to the advent of regulations and to ensure trust to users. Indeed, one of the goals
of XAI is to be persuasive and informative from the model’s conception to its use.

2.2.1 Challenges in defining the concepts
Researchers in the XAI domain use terms including causality, interpretability, and explainability
and aim to describe the ML models and algorithms. While the concept of causality carries
the same meaning within both XAI and traditional philosophy seen in part 2.1.3.1, we do not
delve into its specific definition here. However, we found in the literature that the concepts of
interpretability and explainability are often used interchangeably without any difference (Du
et al., 2019; Guidotti et al., 2019; Lipton, 2017; Miller, 2018; Mittelstadt et al., 2019; Molnar,
2020; Murdoch et al., 2019) and from articles that differentiate them (Doshi-Velez & Kim,
2017; Montavon et al., 2018), we can find opposite definitions. A difference with philosophical
definitions stands in ML as it takes a more pragmatic role by trying to understand the model
or the decision-making process of an algorithm.
Despite significant efforts to establish a unified definition allowing to better design and evaluate
AI systems (Zhong & Negre, 2021), achieving this goal remains challenging due to the inherent
subjectivity and diverse research objectives (Marcinkevičs & Vogt, 2023; Miller, 2018). Rudin
(2019) highlights another layer of complexity by arguing that a single, all-encompassing definition
might be impractical and unnecessary, given the domain-specific nature of AI and the potential
drawbacks of such a rigid approach (Rudin et al., 2022).

2.2.2 Definitions in the literature
The terms "interpretability" and "explainability" are often used interchangeably but with some
differences. Authors like Kim et al. (2016) define interpretability based on the user’s ability
to predict the model’s results, Caruana et al. (2015) define it based on the intelligibility
independent of the user background, while Ribeiro et al. (2016) focuses on understanding the
relationship between inputs and outputs. However, most authors delve deeper and explore
various notions: Lipton (2017) differentiates between "transparent models," where humans
can understand the decision-making process, and "post-hoc explanations," which explain the
model’s reasoning after the inference. Similarly, Gilpin et al. (2018) distinguishes between
comprehending and describing the model’s internal mechanism and the ability to describe
and provide the causes of a neural network’s decision. They highlight a trade-off between
interpretability and completeness (accuracy of the explanation). Miller (2018), while not
differentiating the terms themselves, defines interpretability (based on Biran & Cotton (2017)
definition) as the degree to which the user understands the cause of a decision. He distinguishes
this from "justification," which explains why a decision is good without delving into the process.
Barredo Arrieta et al. (2020); Doshi-Velez & Kim (2017); Guidotti et al. (2019) aligns with
this distinction, differentiating between explaining the model itself and explaining individual
decisions without the full decision-making process.
A review of the literature reveals that two key concepts consistently emerge. The first centers
around the ability to articulate a model’s decision-making process in terms understandable
to a user. The level of required "understandability" inherently constrains the choice of model,
necessitating a trade-off between model complexity and understanding. The second concept
focuses on the ability to provide accurate explanations of a model’s decisions without delving
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into the entire decision-making process. This approach aims to provide insightful justifications
for the model’s output without overwhelming the user with technical details. This entails
offering explanations that are adapted to the user’s level of understanding, ensuring effective
communication of the model’s reasoning.

2.2.3 Definitions in this thesis
Throughout this thesis, to ensure clarity and consistency, "interpretability" and "explainability"
will be understood according to the following two established definitions:

Definition 2.2.1 (Interpretability). Interpretability is the ability to describe a model’s decision-
making process to a user. We call these models interpretable.

Definition 2.2.2 (Explainability). Explainability is the ability to provide an explanation of the
reason behind a decision of a model to a user. We call these models explainable.

The effectiveness of XAI methods depends heavily on the application context. The domain,
user’s goals, and specific tasks all play a crucial role in determining the most suitable approach.
In the next section, we present a taxonomy of XAI concepts based on (Carvalho et al., 2019;
Molnar, 2020) work, aiming to guide the model’s selection based on these different factors.

2.3 Taxonomy
XAI models can be explained at different levels of granularity, from explaining the data and
the overall model’s behavior to a single instance. The different levels provide insight into the
data, how the model works, and how it makes decisions. In the following, we delve into the
proposed taxonomy and describe the various levels existing in the literature.

2.3.1 Data or Model focused Explanation
Data-focused methods aim to provide insights into the data used to train the model. They can
identify potential biases or limitations in the data that may affect the model’s performance, such
as selection bias and the presence of outliers. It aims, for instance, to reveal the relationships
between features, extract patterns, and identify causal relationships as shown in section 2.4.3.
This type of explanation can be crucial for ensuring data quality and preventing the model from
making biased decisions. In the literature, this field is commonly referred to as "exploratory
data analysis" or "data analysis" (Tukey, 1977). A multitude of methods is employed to unravel
the complexities of data sets: statistical methods such as the mean, median or standard
deviation provide valuable insights into data distribution and may facilitate missing value
analysis. Correlation analysis, employing measures like Pearson or Spearman correlation,
quantifies the strength of a relationship between variables. Additionally, statistical techniques
like the IQR method and Z-score, along with model-based approaches such as Isolation Forest
(Liu et al., 2008), Local Outlier Factor (Breunig et al., 2000), or visualization techniques like
box plots, aims to identify and isolate outliers in data. Dimensionality reduction methods
like Principal Component Analysis (Pearson, 1901) or t-SNE (Hinton & Roweis, 2002), aim to
reduce the number of features while preserving essential information. Other areas, such as data
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visualization tools, clustering, and time series analysis, are described in (Mukhiya & Ahmed,
2020; Wickham, 2016).
These methods encompass descriptive techniques that not only visualize but also summarize,
transform, and analyze data.

Model-focused methods are designed in order to explain the model’s inner workings and/or
how it makes decisions and predictions. These models are usually divided into two categories:

• Intrinsic: Models that are interpretable or explainable by design.

• Post-hoc: Explanation methods that are applied after the model training (often black
box model).

More nuanced aspects of these notions are examined in the following section.

2.3.2 Intrinsic or Post Hoc
2.3.2.1 Intrinsic methods

Intrinsic methods encompass two main categories:

• Transparent models: these models are designed or trained to be inherently transparent,
such as linear regression or decision trees. Lipton (2017) introduce three types of
transparency:

– Simulatability: defines the ability of a human to mentally grasp a model’s entire
decision-making process, from input data and parameters to prediction in a reasonable
time. While simple models like decision trees are generally simulatable, they can
become complex as they grow larger and handle more complex data. Ultimately,
what constitutes "reasonable" depends on the limitations of human cognition.

– Decomposability: defines the ability to explain different parts of the model such
as inputs, parameters, and calculation. For example, each node of the decision
tree is explained by a simple rule or the parameters of linear regression represent
association strength.

– Algorithmic transparency: defines the ability to understand the learning
algorithm. Algorithms such as linear regression are simulatable and decomposable
but may be biased due to imbalance or extreme values data set, for example. This
definition can be linked to fairness.

• Intrinsic explainable models: these models are designed to incorporate parts that
explain the reasoning of the model. For instance, attention models involve attention
weights that reveal the model’s focus on input elements for its predictions, as shown in
Lim (2018) article.
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2.3.2.2 Post-Hoc methods

Post-hoc explanation methods are designed to explain a model after its training process. They
generally do not provide a global understanding of decision-making processes. They can be
applied to black-box models, and because they are not part of the model, they do not reduce
predictive performance. A popular post-hoc explanation method is SHAP (SHapley Additive
exPlanations) (Lundberg & Lee, 2017) which explains how much each feature contributes to the
prediction by assigning them importance scores. A major drawback of these methods is that
they may lead to discrepancies between the given explanation and what the models actually do.

The required level of understanding dictates the choice of model type. Transparent models are
adapted for a precise understanding of the model’s decision-making process, facilitating, for
instance, the identification of performance limitations in the model’s architecture or parameters
and even helps to mitigate algorithmic bias. Conversely, for delving into specific predictions,
post-hoc methods provide valuable insights. Ultimately, methods that comprehensively integrate
data and model understanding may offer the most robust and reliable explanation.

2.3.3 Model Specific or Model Agnostic
Model Specific explainable methods deal with the unique characteristics and structure of a
particular machine learning model or family of models. This approach focuses on the properties
of the model to extract insights and explanations. For instance, feature importance analyzes
the influence of individual features on the predictions of decision trees and ensemble methods
like random forests (Breiman, 2001).

Model Agnostic methods can be applied to any type of architecture, independently of the
internal structure of a specific machine learning model. It focuses on explaining the output
without knowing the mechanism that produced it. For instance, SHAP estimation is solely
based on model outputs. Another advantage of this approach lies in its ability to facilitate
the comparison of performance across different models, establishing a common benchmark for
evaluation.

2.3.4 Local or Global explanation
Explanations of ML models can be provided at different levels of granularity, ranging from
local to global explanations.

Local explanation models aim to extract the reasons or decision-making process of a particular
prediction made by a model. The local explanation would answer questions such as

• Why did the model make this specific prediction?

• Which feature contributed most to this instance?

• How confident is the model on this specific prediction?

For instance, SHAP provides a local explanation as it estimates the contributions of each
feature for a specific instance or prediction.
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Global explanation seeks to provide general and global insight of the model over the features
and the whole data set. The global model would answer different questions such as

• How does the model behave on average?

• What are the most important features contributing to the overall model?

• What is the model decision boundary?

For instance, the decision tree’s feature importance offers global explanations by aggregating
the impact of features across all observations.

The difference in granularity or type of explanation model is important as it is often required by
the different stakeholders that have different needs. The following section explores key methods
and concepts in interpretability and causality, reviewing prevalent approaches. It also briefly
introduces explainability concepts and some of the main approaches in this field.

2.4 State of the art

2.4.1 Explainability
In the context of an increasing number of complex models, explainability plays a role by
clarifying and articulating the reasoning behind the model’s decision. Doran et al. (2017)
describe these models as comprehensible with a capacity to provide insight to the users on
how a conclusion is reached. For instance, Lipton (2017) describes human decision-makers as
explainable as they convey useful information from the brain, which is a black-box model that
operates through a mechanism of thinking by gathering and processing data in order to extract
a decision. In the realm of ML and real-world applications, it allows adding reasons, evidence
for decisions, and prediction by showcasing the factors that influenced the outcome.
Various methods have been proposed in the literature to address this challenge. In the literature,
the methods are on different levels: 1) Intrinsic explainable models such as attention models
(Lim et al., 2021) 2) Post-hoc models that are either a) model specific such as random forest
feature importance (Breiman et al., 1984) or b) model agnostic such as SHAP. In addition, the
methods can be local, describing a specific instance, or global.
To gain a comprehensive understanding of the major explainability models, we shall employ
Barredo Arrieta et al. (2020) categorization to describe some of the prominent methods, while
directing the reader to comprehensive surveys for a more in-depth exploration of this field
(Barredo Arrieta et al., 2020; Chaddad et al., 2023; Guidotti et al., 2019; Linardatos et al., 2021;
Marcinkevičs & Vogt, 2023). In each level of granularity, methods can be of different types:

• Explanation by simplification comprise methods that provide local explanations such
as LIME (Local Interpretable Model-Agnostic Explanations) (Ribeiro et al., 2016), which
explains individual predictions by locally approximating the model around the data point,
and distillation methods that trains an interpretable model (e.g., linear models (Tan et al.,
2018), rule-based, decision tree (He et al., 2020)) to mimic the complex model’s behavior.
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• Feature relevance explanation methods identify and rank features based on their
contributions to the model’s prediction such as sensitivity analysis with SHAP or random
forest feature importance.

• Visual explanation methods use visualizations to explain the model’s behavior, such as
Grad-CAM (Gradient-weighted Class Activation Mapping) (Selvaraju et al., 2017) which
uses gradients to highlight image regions crucial for a deep learning model’s prediction.

• Explanation by example methods aim to provide similar data instances to explain the
reasons behind a specific prediction. It can be in the form of example-based explanation,
such as in (Kim et al., 2016), which captures both good examples that are "well classified"
(prototypes) and challenging instances that are "misclassified" (criticisms) from the data
and counterfactual explanations that simulate what-if scenarios to provide similar output
by perturbing specific input features (Mothilal et al., 2020).

• Text explanation methods generate natural language descriptions to explain model
predictions, such as image’s caption generation (Xu et al., 2015).

While not explicitly addressed here, it is important to note that some techniques are specifically
designed for deep learning models due to their inherent complexity. The literature offers
diverse explainable methods, which implies that the proposed categorization is neither mutually
exclusive nor definitive, as some methods may exhibit characteristics that place them in multiple
categories.

2.4.2 Interpretability
While explainability focuses on providing explanations for model decisions, interpretability
explores in greater depth the transparency and understanding of the model’s inner workings.
It emphasizes the degree to which a human can comprehend the decision-making process
employed by the model (Doshi-Velez & Kim, 2017; Molnar, 2020). In this context, the goal
extends beyond simply explaining outcomes by establishing the relationships between inputs
and outputs. This is usually achieved using simpler models where such relationships can be
readily identified. This simplicity enables us to trace the causal pathways of the algorithm
and identify the interaction of features that contribute to the model’s decisions. However,
this simplicity often comes at the price of a concession to accuracy, presenting a challenge for
real-world applications that demand both interpretability and predictive power (Caruana et al.,
2015; Wang et al., 2015; Wang, 2019).
Interpretability can be viewed on multiple levels, ranging from comprehending the overall model
architecture and its constituent components to understanding the specific decision-making
process for individual predictions. This deeper understanding allows one to identify potential
biases, assess the model’s robustness, and make informed decisions about its deployment and
use.
A multitude of methodological approaches have been proposed in the literature to address
this challenge. We delve into a selection of these methods in the subsequent section while
directing readers to comprehensive reviews for a more in-depth exploration of this domain
(Barredo Arrieta et al., 2020; Burkart & Huber, 2021; Marcinkevičs & Vogt, 2023; Rudin et al.,
2022).
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Figure 2.1: This figure represents the main categories of the interpretability, explicability and
causality domain (adapted from (Marcinkevičs & Vogt, 2023)). Examples of models are shown
in italics.

To effectively describe the various methods, it is essential to establish the notation. Let
us introduce a random vector X = (X(1), . . . , X(p)) of dimension p ∈ N where for each
k ∈ {1, . . . , p}, X(k) takes its values in R and a random variable Y taking its values in a domain
Y ⊆ R, which can be a finite or a continuous set for classification and regression problems
respectively. The training data set is represented as DN = {(xi, yi)|i = 1, . . . , N}, where each
(xi, yi) pair is drawn from the joint distribution of X and Y and where xi = (x(1)

i , . . . , x
(p)
i ).

Additionally, let X = (x⊺
1, . . . , x⊺

N ) ∈ RN×p be the design matrix and y = (y1, . . . , yN ) ∈ YN be
the target vector. In the following, for simplicity, we refer to (x, y) for a single instance where
x = (x(1), . . . , x(p)).

2.4.2.1 Regression

Linear regression assumes a linear dependency between predictor variables (inputs) and
continuous target variables (outputs), it is expressed as a linear equation of the form:

Y = β0 + β1X(1) + β2X(2) + . . . + βpX(p) + ϵ (2.1)

where β0 ∈ R is the intercept, βk ∈ R the coefficient for k ∈ {1, . . . , p} and ϵ ∼ N (0, σ2) is
the error term with constant variance σ2. A common approach to estimate the parameters
β = (β0, . . . , βp) involves minimizing the sum of squared errors, also known as the least squares
objective function. The objective function is expressed as follows:

β̂ = argmin
β
∥y− Xβ∥22 (2.2)

where ∥ · ∥2 is the ℓ2 norm. Linear regression is interpretable by design as the target in the
model is linearly related to each of the variable X(k) by a parameter βk that gives a measure of
its influence. Its validity relies on certain assumptions, such as the linearity of the underlying
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relation, the absence of multicollinearity (interdependent predictors), Gaussian noise (normally
distributed residuals), and homoscedasticity (constant variance of residuals). However, linear
regression suffers from drawbacks such as the sensitivity to outliers, lack of sparsity and lack of
flexibility as it cannot capture non-linear relationships.

Penalized Regression Penalized/Regularized regression methods are particularly useful to
address these limitations. The objective function is defined as :

β̂ = argmin
β

1
N
∥y− Xβ∥22 + λR(β) (2.3)

where R(β) is the regularization function and λ ≥ 0 is the regularization strength. The main
regularization functions include:

• R(β) = ∥β∥0, named ℓ0 regularization, penalizes the number of non-zero coefficients,
promoting sparsity. This penalty exhibits limitations in practice due to its non-convexity
and combinatorial nature.

• R(β) = ∥β∥1, named ℓ1 regularization, penalizes the absolute value of the coefficients
(penalize large coefficient), promoting sparsity.

• R(β) = ∥β∥22, named ℓ2 regularization, penalizes the square values of the coefficients,
controlling the magnitude of the coefficient.

These regularization methods can be combined to form more sophisticated regularization
techniques. One popular example is Elastic Net (Hastie & Zou, 2005), which combines both ℓ1
and ℓ2 regularizations. This approach offers the benefits of both types of regularization and is
defined as:

R(β) = α ∥β∥1 + (1− α) ∥β∥22 (2.4)

where α ∈ [0, 1].
Other methods exist, including Partial Least Square (PLS) regression (Wold et al., 2001), which
identifies the most relevant variables in a data set by summarizing the relationships between
variables through latent variables and Group Lasso regularization (Yuan & Lin, 2006) which
encourages sparsity within groups of variables, leveraging domain knowledge to define these
groups.

Logistic regression focuses on predicting the probability of a binary target variable
π = P (Y = 1|X = x) based on input features. The main assumption of the model is
that we can approximate this probability through the sigmoid (logistic) function g : R→ [0, 1]
defined as :

g(z) = 1
1 + exp(−z) . (2.5)

and which can be expressed with the logit function

g−1(π) = logit(π) = ln π

1− π
.
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The relation between the predictor variables and the probability of the outcome is then expressed
as:

P (Y = 1|X = x) = g(β0 + β1x(1) + β2x(2) + . . . + βpx(p))

The estimation of the coefficients β is done by maximizing the likelihood function, which is
equivalent to minimizing the cross-entropy loss function.

Generalized linear models (GLMs) (Nelder & Wedderburn, 1972) are an extension of
linear regression model allowing for various response distributions beyond the Gaussian noise
assumption. GLM consists of three components: 1) a distribution for modeling Y |X = x, 2) a
relation between the parameter and the predictor xβ 3) A link function g that connects these
two components. The link function can be chosen based on the characteristics of the target
variable. The relation is expressed as:

E(Y |X = x) = g(β0 + β1x(1) + β2x(2) + · · ·+ βpx(p)) (2.6)

In logistic regression, the link function g is the sigmoid function, mapping the weighted sum
of features to probabilities between 0 and 1. Similarly, the estimation is done by maximum
likelihood.

Due to linear models’ limitations in capturing non-linear relationships, other techniques have
been introduced to improve the flexibility of the models.

Non-linear models

- Feature transformation extends the applicability of linear models by applying non-linear
functions to the input features, expanding the model’s ability to capture more complex
patterns. One common approach is polynomial expansion, which generates additional
variables based on polynomials and higher-order interactions between the original features.

- Generalized additive models (GAMs) extend linear models and particularly GLMs by
capturing non-linear relationships between the input and the target variable. It models the
response as a sum of smooth, non-parametric functions fj for j ∈ {1, . . . , p} for each feature
as follows:

E(Y |X = x) = g
(
β0 + f1(x(1)) + f2(x(2)) + · · ·+ fp(x(p))

)
(2.7)

While less inherently interpretable than linear models, GAMs excel at uncovering complex
patterns in diverse data scenarios.

2.4.2.2 Rule-based models

Rule-based models are one of the most popular models in machine learning and are known for
their high interpretability. These models learn explicit sets of rules that capture patterns in
the data and describe the decision-making process in a clear and understandable way. In this
part, we describe two main approaches: decision rules and decision trees. We also explore some
hybrid methods that combine these methods with other machine learning algorithms.
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Decision Rules
Decision rules aim to uncover interpretable patterns within complex data. The rules built on
specific feature values follow a general structure: IF the conditions are met, THEN make a
certain prediction. Prediction can be made using a single or multiple rules. Association Rule
Mining (ARM) is a data mining framework that extracts rules from a database. It has the
advantage of being highly interpretable and easy to understand. This part explores the origin
of ARM in the retail domain and describes its utility in uncovering relationships.

Motivation Frequent Itemset Mining (FIM) has been developed by Agrawal et al. (1993)
in order to discover interesting patterns, relationships, and associations in large data sets.
One of the earliest and well known applications is in market basket analysis. Commercial
enterprises accumulate a significant amount of data on a daily basis holding the key to
understanding consumer behavior and driving effective business strategies. In this setting,
FIM involves a database Db comprising transactions T , where each transaction represents
a set of items I purchased by a customer from a set I. For instance, as presented in table
2.1, T = {T1, T2, T3, T4, T5} and I = {milk, bread, butter, cheese, diapers}. Note that items,
represented as categorical variables, act as the input features for the association rule mining
algorithm. FIM aims to discover subsets of I that are frequently purchased together.

Transaction ID items
T1 milk, bread
T2 butter
T3 cheese, diapers
T4 milk, bread, butter
T5 bread

Table 2.1: Example of a database containing
five transactions, each associated with a set of items

The analysis of this type of data aims to uncover associations or relationships that would be
challenging to identify manually, particularly for data sets containing the purchasing behaviors
of millions of consumers. These relationships can be effectively represented in the form of
association rules, such as the rule {milk, bread} =⇒ {butter} extracted from Table 2.1.
Association rules are typically generated in two steps (Agrawal et al., 1993):

1. discovering frequent subsets of items in the database

2. generating rules using the frequent subsets

In the following, we outline the fundamental concepts and algorithms underpinning FIM. We
begin by defining essential terminology and describing the primary algorithms used in FIM.
Subsequently, we delve into the Apriori algorithm (Agrawal et al., 1993), the first FIM technique,
and illustrate its application in a practical scenario.

Frequent Itemset Mining Framework The exponential growth of candidate rules as the
database size increases poses a computational challenge. Considering a database containing N
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items, the total number of item combinations grows as the sum ∑N
k=1

N !
(N−k)! . This factorial

complexity renders the problem computationally intractable for large databases. Therefore,
techniques to filter and prioritize relevant rules are crucial for extracting meaningful insights.
We begin by defining the key concepts before describing the algorithm.

Definition 2.4.1 (Itemset and k-itemset). An itemset is a set of items and a k-itemset is a set
of k items for k ∈ N.
An itemset I ′ is a subset of an itemset I if I ′ ⊂ I.
An itemset I ′ is a superset of an itemset I if I ⊂ I ′.

For example, {milk, bread} in table 2.1 is a 2-itemset. In the following, let I be an itemset of I
from the database Db.

Definition 2.4.2 (Support). The support of an itemset I ⊆ I is defined as

support(I) = |{T ∈ T |I ⊆ T}|
|T |

(2.8)

Remark 2.4.3. The support, also called relative support, ranges within [0, 1] and is the frequency of
apparition of I within the transactions of the database Db. Some authors define it without normalization
(Fournier-Viger et al., 2017).

Definition 2.4.4 (Frequent Itemset and Minimum Support Count). An itemset I ⊆ I is a
frequent itemset if, and only if, support(I) ≥ c where c ∈ [0, 1] is the minimum support count.

In other words, c is a threshold that determines at which frequency an itemset is considered
frequent in the database. For clarity reasons, we denote "supcount" for the support count c in
the following.

Frequent Itemset Mining Algorithm Numerous algorithms have been developed for extracting
frequent patterns from databases. In the following discussion, we focus on the most prominent
algorithms within specific categories (given in Fournier-Viger et al. (2017), providing a concise
overview of their principles and applications. There are two main categories:

• Breath-first search algorithms: The algorithms such as Apriori involve exploring frequent
itemsets of increasing size. They start by identifying individual items that appear
frequently, i.e., frequent 1-itemset. Then, they build on these frequent 1-itemset to
discover pairs of items that appear together frequently, i.e., 2-itemsets. This process
continues, iteratively searching for larger groups of itemsets that frequently co-occur in
the data.

• Depth-first search algorithms: Algorithms such as Eclat (Zaki, 2000), FP-Growth (Han
et al., 2004), H-mine (Pei et al., 2001) and LCM (Uno et al., 2004) typically involve
recursively growing itemsets by adding one item at a time (depth) and exploring the
database to find frequent itemsets.

Apriori Algorithm This part introduces the Apriori algorithm (Agrawal et al., 1993), a widely
adopted technique for mining frequent subsets, which we employ in chapter 4. To gain a deeper
understanding of the Apriori algorithm’s inner workings, we present a practical example and
demonstrate its application.
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The Apriori algorithm solves the computational issue and is based on two main principles also
called anti-monotonicity:

1. Any non-empty subset of a frequent itemset is frequent i.e for a minimum support
s ∈ N, ∀I, I ′ ⊆ I such that I ′ ⊆ I and I ′ ̸= ∅, support(I) ≥ s =⇒ support(I ′) ≥ s.

2. Any superset of a non-frequent itemset is non-frequent i.e for a minimum support
s ∈ N, ∀I, I ′ ⊆ I such that I ⊂ I ′, support(I) < s =⇒ support(I ′) < s.

These principles allow the algorithm to efficiently identify frequent itemsets by pruning the
search space.
We present a practical example to demonstrate the application of the Apriori algorithm. Consider
a data set consisting of 8 transactions involving 5 items and apply the Apriori algorithm. Note
that the transactions represent itemsets found within the customer database.

T ID items
T1 i1, i2, i5
T2 i1, i4
T3 i1, i2
T4 i1, i2, i3
T5 i2, i3
T6 i2, i3
T7 i2, i3, i5
T8 i1, i2, i5

The first step is to compute the support count of each item in the data set, which will be
named C1: the candidate set. We filter this candidate set with a minimum support count
supcount = 2 which yields the itemset L1 in table 2.2.

Candidate set C1 supcount itemset L1
i1 5 ✓

i2 6 ✓

i3 4 ✓

i4 1 ✗

i5 3 ✓

Table 2.2: Candidate set C1 and generated itemset L1

The second step generates the candidate set C2 from L1. The itemset L1 is joined with itself.
For instance, considering the first item i1, joining the table 2.2 with itself will create the
itemsets {i1, i2}, {i1, i3}, {i1, i5}. All combinations between frequent items of L1 follow the
same principle to generate C2.
Similarly to step 1, the candidates C2 are then sorted based on the minimum support count in
order to keep the frequent itemsets. This yields:
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Candidate set C2 supcount itemset L2
{i1, i2} 4 ✓

{i1, i3} 1 ✗

{i1, i5} 2 ✓

{i2, i3} 4 ✓

{i2, i5} 3 ✓

{i3, i5} 1 ✗

Table 2.3: Candidate set C2 and generate itemset L2

More generally, joining Lk with itself will create itemsets of size k + 1 by combining two
itemset of Lk where k− 1 items called "keys" are equals. For example, in table 2.3, the self-join
will create the itemset {i1, i2, i5} from the first two itemsets {11, 12} {11, 15} where i1 is the
"key".
This process outputs associations like {i1, i2}. In order to uncover associations with more than
two explanatory items, we repeat the same process and compute recursively the candidates and
the itemsets.

Association rule mining offers a valuable tool for uncovering relationships within large data sets.
It efficiently computes and presents relationships as simple and interpretable rules, making
them accessible to diverse audiences. However, it is important to acknowledge that as the
dimensionality increases, the number of potential associations grows significantly, potentially
leading to the identification of spurious associations. Therefore, careful selection and evaluation
of the extracted rules are crucial.
In the next part, we explore decision trees, another decision rule approach that leverages a
sequence of rules to build a predictive model.
Decision Trees Decision trees, like decision rules, uncover interpretable patterns within
complex data and can be used for prediction for both classification and regression. Decision
trees not only make predictions but also offer a visual representation of the decision-making
process and a clear understanding of how each feature contributes to the final outcome.

Main concepts Decision trees employ a tree structure in order to make decisions by learning
from input data using a set of if-else conditions. Starting from the root, each branch leads to a
node where a splitting criterion is used on the input variable until a terminal node, called leaf
representing the prediction, is reached. Other parameters characterize the tree, such as its size,
corresponding to the number of nodes; the node depth, corresponding to the distance to the
root; and the tree height, which is the depth of the lowest leaf.
Let us consider a supervised learning problem where each training sample vector xi, for
i ∈ {1, . . . , N}, is associated with a target yi. For regression problem, yi ∈ R, while in
classification problems yi ∈ {1, . . . , K} where K ∈ N represents the number of classes. In each
node V of the decision tree, a test is done on one of the features at a specific value t

(k)
V for

k ∈ {1, . . . , p}. If the variable is categorical, branches will be created for each value taken by the
feature. Otherwise, if the variable is continuous, the split will be done on a specific threshold
value t

(k)
V , and two branches will be created for values greater or smaller than this value.
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Figure 2.2: This figure illustrates a 2D representation of a decision tree structure. On the
right-hand side, the decision-making process is depicted as a tree structure, where each node
represents a splitting criterion. On the left-hand side, the tree is represented in a 2D square,
showcasing the distinct regions corresponding to the decision boundaries of the leaf nodes.

CART Algorithm The best-known algorithm for decision trees is CART (classification and
regression tree) proposed by Breiman et al. (1984). It is an iterative algorithm that constructs
a tree-like structure by recursively partitioning of the training data x into smaller subsets
based on a splitting criterion. This iterative process aims to create homogeneous subsets,
maximizing the separation between distinct categories. Each leaf node in the resulting decision
tree represents a region in the feature space that is associated with a specific class. Figure
2.2 illustrates two common representations of decision trees in the 2D case: the classic tree
structure on the right and the 2D partitioning diagram on the left. In general, by supposing
that we have a partition of the input space RP into M regions R1, . . . , RM where Ri ∩Rj = ∅
for i ̸= j, each associated with a class value cm ∈ {1, . . . , K}, the regression model is expressed
as (Tibshirani et al., 2021) :

T (x) =
M∑

m=1
cm1(x ∈ Rm) (2.9)

where 1 is the indicator function. Let Dm be the training samples that belong to the leaf node
associated to region Rm and |Dm| be the number of samples. In classification, cm can be chosen
as the most frequent class cm = argmax

c∈{1,...,K}

∑
i,yi∈Dm

1(yi = c). In regression, minimizing the sum

of squares yields cm = 1
|Dm|

∑
i,yi∈Dm

yi.

In the algorithm, the root node at the top of the tree encompasses the entire data set. At each
subsequent node V , a splitting decision is made based on the most informative feature X(k)

with a threshold t
(k)
V , resulting in the separation of data into two child nodes. Hence, each node

V contains a subset of the training vectors, where their number is denoted as |V |. This process
continues recursively using these two steps:

• the left subset Vl which contains all values x(k) ≤ t
(k)
V where the proportion is pl = |Vl|/|V |
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• the right subset Vr which contains all values x(k) > t
(k)
V where the proportion is

pg = |Vg|/|V |

To effectively partition the data and identify optimal splitting points, decision trees employ
impurity measures. They quantify the homogeneity within a subset allowing the algorithm to
choose the split that leads to the most homogeneous subsets. For each variable and each split
point, CART selects the one that minimizes the impurity, thereby promoting homogeneous
subsets. The optimization problem is defined as the minimization of the expectation of the
impurity measure:

argmin
k∈{1,...,p};t(k)

V ∈R
E[I(V )] (2.10)

where E[I(V )] = plI(Vl) + prI(Vr).
The algorithm works by recursively splitting for each node and for each subset Vl and Vr until a
stopping criterion is met, such as reaching the maximum depth of the tree, a minimum number
of samples, or a threshold on impurity measure.

Impurity measure Let us take a classification problem and consider a node V , represented
by a subset of the data set DV containing |V | observations. Let us define the proportion of
class c ∈ {1, . . . , K} observed in the node V :

pVk
= 1
|V |

∑
i,xi∈DV

1(yi = c) (2.11)

The CART algorithm uses two main impurity measures:

• Gini impurity quantifies the probability of misclassifying a randomly selected instance
from the subset based on the distribution of labels within the subset. A higher Gini Index
indicates greater heterogeneity or impurity, suggesting that the subset can be further
partitioned to enhance homogeneity. It is expressed as:

I(DV ) = 1−
K∑

k=1
p2

Vk
(2.12)

This method is not tailored for continuous features or discrete variables with multiple
values.

• Information Gain measures the reduction in entropy achieved by splitting the data
based on a particular feature. A higher information gain indicates a more informative split,
as it indicates that the split is able to effectively separate the data into more homogeneous
subsets. The Information Gain is expressed as:

IG(DV ) = H(DV )−
∑
V ′

pV ′H (DV ′) (2.13)

where the entropy is defined as

H(DV ) = −
K∑

k=1
pVk

log (pV k) (2.14)
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and DV representing the training data at node V . Other metrics could be used, including
entropy measure and classification error. Note that for regression tasks, CART uses mean
squared error as a metric.
CART analysis involves four main steps (Lewis, 2000):

1. Tree Building

2. Stopping Criterion

3. Pruning: Candidate tree generation by pruning and nodes removing to avoid overfitting

4. Optimal Tree Selection: Selection from pruned trees the one that best matches training
data

Variants of CART There are different variants of the CART algorithm that have distinct
characteristics, particularly in terms of data handling capabilities, stopping criteria, pruning
strategies, impurity measures, and optimal tree selection. Notable examples of these variants
include:

• ID3 (Iterative Dichotomiser 3) developed by Quinlan (1986), is the pioneering decision
tree algorithm designed specifically for categorical variables and classification tasks. It
employs a multiway tree structure, where nodes can branch into more than two child
nodes. ID3 utilizes information gain or entropy to identify the most informative split at
each node, to build the tree.

• C4.5 (Quinlan, 1993) extends the applicability of ID3 to continuous data by discretizing
numerical attributes into a set of intervals. Additionally, C4.5 employs a more refined
pruning strategy, evaluating the accuracy of the branches of the tree and eliminating them
if they do not improve accuracy. C5.0 is an improvement of C4.5 in terms of algorithm
efficiency and accuracy.

Decision trees offer the advantage of being interpretable with simple rules that are easy to
understand and visualize. They can tackle both continuous and categorical data variables.
However, the simplicity of these models can hinder their effectiveness when dealing with complex
and non-linear relationships. Moreover, as the number of variables increases, understanding
the logic behind a large decision tree becomes challenging. Sensitivity to small data changes is
a major drawback of decision trees. These changes can lead to significant alterations in the
tree’s structure, impacting its understanding.
Hybrid methods
Beyond the basic structures, various approaches build upon decision rules and trees. Methods
such as SIRUS (Bénard et al., 2021) aim to take advantage of the accuracy of the Random
Forest algorithm (Breiman, 2001) and extract interpretable rules. Rule fit (Friedman & Popescu,
2008), for example, merges their interpretability with linear models, learning a rule combination
from trees as features. Bayesian rule lists (Letham et al., 2015) combine rules with probabilistic
frameworks, offering uncertainty quantification. Fuzzy logic (Chen et al., 2018; Zadeh, 1965),
another rule framework presented in section 3.3.4, aiming to mimic human language and handle
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uncertainty, extends both trees and rules. These advancements showcase the versatility and
adaptability of these foundational methods.

Following the description of decision rule methods, we now describe Bayesian networks, a
technique that provides a more flexible framework for representing variables and which deals
with uncertainty through probabilistic reasoning.

2.4.2.3 Bayesian Networks

Probabilistic graphical models are powerful tools for representing and reasoning about complex
relationships and uncertainty in data. They offer a different interpretation than tree structure,
where the nodes represent the variables, and edges connecting these nodes denote conditional
dependencies, capturing the influence variables have on each other. Bayesian Networks (BNs)
developed by Pearl (1985, 1988), are probabilistic graphical models that represent a set of
random variables and their probabilistic relationship using graph theory. Judea Pearl, who
introduced BNs, referred to them as "belief networks" because he viewed the probabilities in
the networks as degrees of belief. They are defined as follows:
Definitions
Definition 2.4.5 (Bayesian Networks). A Bayesian Network is defined by:

• a Directed Acyclic Graph (DAG) G = (V, E), where V = {X(1), . . . , X(p)} is the set
of nodes representing the random variables and E is the set of edges.

• a set of local conditional probability distribution where each node X(i) is associated
with its parents in the graph through the edge by a set of conditional probabilities
P (X(i)|Parents(X(i))).

Hence, the joint distribution of a Bayesian Network factorizes according to the graph structure:

P (X(1), X(2), . . . , X(p)) =
p∏

k=1
P (X(k)|Parents(X(k))) (2.15)

Remark 2.4.6. Acyclic means that there is no directed cycle in the graph, meaning that there is no path
from a variable back to itself. The absence of cycles also makes it possible to identify causal relations in
the graph more easily, as the direction of influence from one variable to another can be determined.

D-separation
From the graphical perspective, d-separation (Pearl, 1988) is a criterion for deciding, from
any DAG G, whether a set of vertices X of variables is independent of another disjoint set Y ,
given a third disjoint set Z.

Definition 2.4.7 (d-separation (Pearl, 1988)). If X, Y and Z are three disjoint subsets of nodes
in a DAG G, X and Y are d-separated given Z in G if and only if there is no undirected path
between X and Y along which the following two conditions holds:

1. every node in the path with a converging arrow is either in Z or has a descendent in Z

2. every other node on the path is not in Z
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The path between X and Y is said to be blocked.

This concept is based on the idea of blocking or making inactive a certain path in a graph, also
existing in graph theory (Bishop, 2006). Indeed, d-separation aims to identify the configuration
of nodes called collider (A node X with two incoming edges X → Z ← Y ). When conditioning
on a collider, the path is active, and when conditioning on a non-collider, the path becomes
blocked.

Markov Condition
The Markov condition is a property that describes the relationship between a node and its
parents in a Bayesian Network. A Bayesian network must satisfy the Markov condition, which
is a fundamental principle that facilitates the representation and computation of the joint
probability distribution in BN.

Definition 2.4.8 (Markov Condition). Consider a joint probability distribution P of the random
variables in a set V . The Markov condition for a Bayesian network with respect to G = (V, E)
is expressed as :

X(i) ⊥⊥ NonDescendants(X(i))|Parents(X(i)) (2.16)

for all X(i) ∈ V where ⊥⊥ represent independence. In other words, given the parents of X(i),
the variable X(i) becomes conditionally independent of all non-descendant variables.

If the Markov condition is satisfied, we say that G and P satisfy the Markov condition with
each other. Equivalently, if a Bayesian Network satisfies the Markov condition, then every
d-separation identified in the DAG implies a conditional independence in the probability
distribution.

Faithfulness
An important property in Bayesian networks is faithfulness. This concept describes the
relationship between the network’s structure and the probability distribution it represents.

Definition 2.4.9 (Faithfulness (Neapolitan, 2004; Spirtes et al., 2001)). Consider a joint
probability distribution P of the random variables in a DAG G = (V, E). P and G are said to
be faithful to one another if the two conditions hold:

• (G, P ) satisfies the Markov condition (G entail only conditional dependencies in P )

• All conditional independences in P are entailed in G, using Markov condition.

In simpler terms, faithfulness ensures that the network’s structure accurately reflects the
conditional independence relationships present in the distribution, and d-separation is the tool
for identifying these relationships in the DAG.
Markov Equivalent Class
Usually, there is not a unique way to represent the conditional independence relationship in the
form of a graph. In fact, two Bayesian Networks may have different graphical structures but
present the same set of conditional independence relationships. In this case, we say that they
belong to the same Markov Equivalent Class.
Graph Construction
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Learning a Bayesian network with a DAG G and parameters Θ from a data set D involves two
mains steps:

• Parameter learning: estimation of the values of the parameters (i.e. conditional
probabilities distributions) in the network from data.

• Structure learning: construction of the graphical structure

which are expressed as follows (Scutari et al., 2018):

P (G, Θ|D)︸ ︷︷ ︸
learning

= P (G|D)︸ ︷︷ ︸
structure learning

· P (Θ|G,D)︸ ︷︷ ︸
parameter learning

(2.17)

The following provides a description of the methodologies used in the two primary phases of
Bayesian networks learning.

Parameters learning in Bayesian networks involves estimating the parameters that
characterize the conditional probability distributions of each node variable given the values of
its parents.
There are two main approaches:

• Maximum likelihood estimation (MLE): The MLE estimates the parameters by maximizing
the likelihood function, which is the probability of observing the data given the network
structure and parameter values. Given a data set D, the likelihood is expressed as :

L(Θ|D) = P (D|Θ) (2.18)

where L(Θ|D) is the likelihood function. The maximization is done using numerical
optimization techniques such as gradient descent.

• Bayesian Estimation: it uses Bayes theorem to infer the posterior distribution of the
parameter Θ given the data D and the prior knowledge about the network. The posterior
distribution is expressed as:

P (Θ|D) ∝ P (D|Θ)P (Θ) (2.19)

The parameter can then be sampled from the posterior distribution using, for example, Markov
Chain Monte Carlo (MCMC) methods.
In the following, we give a non-exhaustive overview of the structure learning methods in the
literature. For more information, we recommend the reader to consult a detailed review in
Kitson et al. (2023); Scutari et al. (2018).

Structure learning Learning the structure of a Bayesian network (BN) is a computationally
challenging task, often classified as an NP-hard problem (Chickering, 1996). This is primarily
due to the exponential growth in the number of possible network structures as the number
of variables increases. Experts can manually construct BNs, which can be laborious and
time-consuming, especially when dealing with large data sets or data sets with errors. Moreover,
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the availability of experts with the necessary expertise and time commitment can be a limiting
factor.
There are three main approaches in the literature (Kitson et al., 2023) to learn Bayesian
networks structure from data:

• Constraint Based Methods: These methods typically involve two main steps. The
first step is about statistical testing to establish the conditional dependencies between the
variables and thus obtain the skeleton of the graph, i.e. the undirected graph structure.
The second step then constrains the types of existing relationships and orients the edges
of the graph. These relationships are assessed using various statistical tests such as the
χ2 test and mutual information. The assumption of causal sufficiency is often made,
implying that all relevant causal factors have been measured and included in the data set,
ensuring that the identified relationships reflect true causal dependencies in the system.
These methods usually return the set of DAG from the Markov equivalent class.
Kitson et al. (2023) divide the methods into three types:

– Global discovery algorithms: The goal is to learn the whole graph structure.
Algorithms like PC algorithm (Spirtes & Glymour, 1991), which starts with a
fully connected graph and removes edges, and the SGS algorithm (Spirtes et al.,
2001), which on the opposite starts from scratch and constructs the graph. Several
improvements and different versions of these algorithms were made.

– Local discovery algorithm: These methods learn the skeleton related to each variable
separately, which means that they consider the dependence on the neighbor node.
They are then merged to create the overall graph. For example, the Grow-Shrink
algorithm (Margaritis & Thrun, 1999) consists of two phases, one attempting to add
edges (grow) and one attempting to remove edges (shrink) from the graph.

– Latent Variables Algorithm: These methods do not assume causal sufficiency and
deal with latent variables. The methods developed introduce new types of graphs
that allow us to take into account these latent variables without making the problem
intractable. The most popular method is the FCI algorithm developed by Spirtes
et al. (1993, 2001).

• Score-base methods: These methods aim to find the best structure in a DAG space
based on scoring. Score-based models aim to solve the following problem :

G∗ = argmax
G∈G

Score(G, Θ|D) (2.20)

where G represents the set of all possible graph structures and Ttheta the parameters of
the graph. According to Kitson et al. (2023), the method consists of two elements:

1. a search strategy: The search strategy used by score-based methods operates by
defining the search space, which encompasses the set of possible network structures
to be explored. This could involve considering all possible DAGs or focusing on
a subset representing the Markov equivalence class of the true network structure.
Once the search space is defined, a heuristic search algorithm is used to navigate
through the possible structures, aiming to identify the one with the highest score.
Various heuristic search algorithms exist, including greedy search, hill climbing, and
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evolutionary algorithms. These algorithms can be broadly categorized into two types:
approximate and exact algorithms. Approximation algorithms such as K2 (Cooper
& Herskovits, 1992) or HC algorithm (Heckerman et al., 1995) aim to find a high-
scoring structure within a reasonable amount of time, but they may not guarantee
the optimal score. Exact algorithms such as CPBayes (Van Beek & Hoffmann, 2015)
or GOBNILP-DEV (Liao et al., 2019), on the other hand, guarantee the identification
of the structure with the highest score, but they may be computationally more
expensive and less scalable.

2. a score function: There are two types of functions in the literature.
– Bayesian scores provide a measure of the relative likelihood of a given network

structure, considering both the data and the prior beliefs about the network’s
structure and the relationships between variables in scores such as K2 (Cooper
& Herskovits, 1992) and BDeu (Buntine, 1991; Heckerman et al., 1995).

– Information-theoric score provides a measure that assesses how well the structure
fits the data while avoiding overfitting with a penalty term preventing complex
models. Common metrics include metrics such as Bayesian Information Criterion
(BIC) (Schwarz, 1978), Minimum Description Length (MDL) (Suzuki, 1999),
Akaike Information Criterion (AIC) (Akaike, 1974) and quotient Normalised
Maximum Likelihood (dNML) (Silander et al., 2018).

• Hybrid methods: These methods combine aspects of constraint-based and score-based
approaches to achieve the best of both worlds. They aim to harness the strengths of
constraint-based methods, such as the ability to deal with high-dimensional data sets, by
restricting the search space and guiding the learning process while also benefiting from the
goodness-of-fit maximization capabilities of score-based methods. This combination allows
hybrid methods to overcome the limitations of individual approaches. Several algorithms
were developed in this sense, such as the Sparse Candidate algorithm (Friedman et al.,
2013) and Max-Min Hill Climbing algorithm (Tsamardinos et al., 2006).

As we conclude our discussion on Bayesian networks, the next part introduces symbolic regression,
another approach that seeks to uncover the underlying relationships between variables in a
data set.

2.4.2.4 Symbolic Regression

Symbolic regression (SR) (Koza, 1994; Schmidt & Lipson, 2009) is a machine learning
approach that aims to uncover the underlying mechanism by discovering symbolic mathematical
expressions that best describe relationships within data. They are particularly useful for
extracting an interpretable predictive model and uncover relationships for scientific discovery
and modeling.
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Figure 2.3: Figure from Jeschke et al. (2023)

The objective in SR is to find a function f̂ over a class of function F that minimizes a loss
function L. The key distinction between SR and classical regression methods lies in the form
of the function class F (Makke & Chawla, 2024). In fact, SR seeks to discover functions by
combining a predefined set of discrete operators and functions, such as arithmetic operations
(+, −, ×, ÷) and mathematical functions (e.g., log, sin, cos). The set of all possible functions
that can be built from all the combinations defines the function space F .
The minimization problem is expressed as follows:

f̂ = argmin
f∈F

N∑
i=1
L(f(xi), yi) + λC(f) (2.21)

where the loss function L can take various forms, such as the mean squared error.
While various symbolic regression methodologies exist, we focus on two main approaches
(Camps-Valls et al., 2023; Makke & Chawla, 2024).

• Discrete Search Methods: Leveraging evolutionary principles, genetic programming
iteratively evolves a population of candidate equations to discover the symbolic expression
best fitting the data often represented as an expression tree. Through "breeding",
high-performing individuals and introducing combinations and random variations (e.g.
crossover, mutation), the algorithm efficiently explores the search space. Schmidt &
Lipson (2009) developed this approach to discover physical laws from data, demonstrating
its potential for scientific discovery.

• Sparse Linear regression: Traditional regression methods can be adapted to build
symbolic regression approaches. One prominent example is Sparse Identification of
Nonlinear Dynamics (SINDy), developed by Brunton et al. (2016). This approach
expands the search space by transforming input variables using a library of base functions
and interaction terms. By applying sparse regression, SINDy effectively selects the most
relevant functions that accurately capture the system’s dynamics.
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Beyond these approaches, diverse approaches like AI Feynman (Udrescu & Tegmark, 2020)
(inspired by physical principles like symmetry and separability) and reinforcement learning,
along with neural networks, have emerged to tackle symbolic regression. For further exploration
of these methods, we recommend the following resources: (Camps-Valls et al., 2023; La Cava
et al., 2021; Makke & Chawla, 2024).
The true strength of symbolic regression lies in its ability to extract interpretable relationships,
making it a valuable tool for scientific discovery and system identification. By providing
equations that are readily understandable, it grants deeper insights into the underlying processes
governing the data.

2.4.2.5 Local Interpretable methods

Naive Bayes is a popular classification algorithm based on Bayes’ theorem. The "naive"
assumption implies that the variables are conditionally independent given the class label y. In
the discrete case, where the features take on a finite set of values, this is expressed as :

P (X|Y ) = P
(
X(1), X(2), . . . , X(p) | Y

)
=

p∏
k=1

P
(
X(k) | Y

)
(2.22)

Naive Bayes computes the posterior probability of the class y given an instance x, P (Y =
y|X = x), using Bayes’ theorem. In the discrete case, where the features take on a finite set of
values, the posterior probability is formulated as follows:

P (Y = y|X = x) = P (Y = y) · P (X = x | Y = y)
P (X = x)

ind= P (Y = y) ∏p
k=1 P (X(k) = x(k) | Y = y)

P (X = x)
(2.23)

This equation highlights the interpretability of the model: the contribution of each feature x(k)

to the class prediction is directly visible through its individual conditional probability term
P (X(k) = x(k)|Y = y). The class label is then predicted by choosing the class label from the
set of classes Y that is the most likely given the data:

ŷ = argmax
c∈Y

P (Y = c)
p∏

k=1
P

(
X(k) = x(k) | Y = c

)
(2.24)

Naive Bayes offers inherent interpretability due to its simplicity and reliance on straightforward
probability calculations. The model’s output can be easily explained by presenting the
conditional and prior probabilities involved. Analyzing these individual terms at the feature
level provides insights into how specific features contribute to predictions. Moreover, it operates
efficiently in high-dimensional scenarios.
However, the underlying assumption of feature independence is often unrealistic in real-
world scenarios, leading to inaccurate probability estimations (Rish, 2001). Moreover, its
expressiveness is limited, as it can only represent dependence through conditional probabilities,
neglecting more complex relationships between features.

k-Nearest Neighbors (kNN) On the local level, the k-nearest neighbors algorithm offers a non-
parametric approach for both classification and regression tasks. Notably, kNN is characterized
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as a "lazy learner" due to its lack of training or fitting process. Instead, it focuses solely on
storing the provided training data. When presented with a new instance x, the kNN algorithm
proceeds as follows:

1. Compute distance: compute the distance between x and every other sample in the training
data set. Euclidean distance is a common choice for this metric.

2. k Nearest neighbors: select the k data points that have the smallest distance to x, denoted
as a set Sk(x).

3. Prediction:

- Classification: predict the majority class among the labels of the k nearest neighbors
ŷ = argmax

c∈Y

∑
xj∈Sk(x) I(yj = c), where I(·) is the indicator function.

- Regression: predict the average of the target value of the k nearest neighbors
ŷ = 1

k

∑
xj∈Sk(x) yj

KNN poses two primary challenges for accurate predictions: selecting the optimal distance
metric and determining the best value for the number of neighbors k. Regarding the former,
various metrics exist, including Euclidean, Mahalanobis, and Minkowski distances, with their
variants. Crucially, different applications necessitate different distance measurements for optimal
performance. Secondly, finding the ideal k often requires cross-validation techniques (Zhang
et al., 2017).

Figure 2.4: Figure from kdnuggets illustrating the classification of a new sample by the kNN
algorithm

kNN is interpretable due to its reliance on distances to closest neighbors, promoting easy
understanding. It offers simplicity and adaptability as its implementation is straightforward,
requiring no training phase or parameter tuning. However, kNN suffers from the curse of
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dimensionality. While visualizations like in Figure 2.4 provide insights in specific cases,
understanding predictions based on averaged neighbors or majority class can become challenging,
especially in high dimensions (Tibshirani et al., 2021). In such scenarios, the individual feature
impact is lost with the collective neighbor’s influence.

2.4.2.6 Discussion on interpretable models

The importance of interpretability in machine learning models depends on the analysis goals
(Burkart & Huber, 2021). Some models are inherently interpretable due to their simple structure.
Hence, these models, such as decision trees only focus on achieving the best possible accuracy
and performance. On the other hand, some models are interpretable by design, meaning that
they are trained with specific constraints to add interpretability, such as penalized regression.
Further, some models offer both local and global interpretability. Regression models, for
instance, reveal individual feature contributions (local) and overall trends (global). Conversely,
local interpretability might be the only option for models like Naive Bayes or kNN, where
understanding individual predictions is easier than grasping the entire model’s behavior.
Choosing the right interpretability approach depends on your needs. If understanding each
prediction is crucial, local interpreters like Naive Bayes or Bayesian networks might suffice. But
for broader insights into model behavior, globally interpretable models like regression could be
the better choice. It is important to remember that there’s no one-size-fits-all solution – the
best model depends on the specific objective.

2.4.3 Causality
Causality can be considered the ultimate goal in the field of XAI (Bhatt et al., 2020), as it
aims to discover the true cause-effect relationships between the variables in a system and the
mechanisms that link them. It allows us to fully understand the underlying relation that drives
the observed phenomena, hence making informed and justified explanations and improving
accuracy and reliance on ML models. Causality typically involves representing a causal graph
which is either a Causal Bayesian Network (Pearl, 2000) (see section 3.3.6.1) representing
the causal link or a Structural Causal Model (SCM) (Pearl, 2009b; Peters et al., 2017) (see
section 3.3.6.2) representing the causal model of the data-generating process, as illustrated in
figure 2.5. They differ from Bayesian Networks (seen in part 2.4.2.3) as arrows in BN indicate
dependence, which can be due to causation but also correlation. While CBN represents only
causal links, SCM represents the causal structure of the data-generating process, modeling
the links between variables and accounts for noise introduced by unmodeled variables through
functions known as causal mechanisms. When analyzing causal relationships, Directed Acyclic
Graphs (DAGs) serve as the primary tool, visualizing the causal links and directions between
variables.
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fX : X := 2UXY ,

fY : Y := X + UXY ,
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UXY ∼ N (0, 1),

UZ ∼ N (0, 1)

(b)

Figure 2.1: The causal graph G (a) of the related SCM M (b). In (a) X is a
direct cause of Y and an indirect cause of Z, while Y is an effect, a direct effect,
of X. An example of associated SCM is reported in (b), where the functional
set F follows the causal edge assumption.

2.3 The Causal Discovery Problem

The causal discovery problem [100] consists in selecting a causal graph as a
possible explanation for a given data set.

Formally, let G be the set of graphs defined over the variables V of a data
set D and G∗ ∈ G be the true but unknown graph from which D has been
generated.

Definition 2.11 (Causal Discovery Problem). The causal discovery problem
[99] consists in recovering the true graph G∗ from the given data set D.

A causal discovery algorithm is said to solve the causal discovery problem if
and only if it converges to the true graph G∗ in the limit of the sample size.

Definition 2.12 (Soundness and Completeness). A causal discovery algorithm
is sound if it is able to solve the causal discovery problem, while it is complete
if it outputs the most informative causal graph G that can be recovered from
the input data set D, without making further assumptions.

Definition 2.13 (Consistency of a Causal Graph). A causal discovery algo-
rithm is consistent [27, 99] if it outputs a graph G that induces a probability
distribution consistent with the input data set D.

Definition 2.14 (Identifiability of a Causal Graph). A causal discovery algo-
rithm is said to identify [28] a graph G if it is able to determine the direction
of any edge in G.

In the following pages we will see that some algorithms are able to identify
the causal graph up-to its equivalence class, meaning that setting the direction

6

Figure 2.5: Figure from Zanga & Stella (2023) representing the causal graph on the left
associated with a structural causal model (SCM) on the right where V and U are respectively
the set of endogenous and exogenous variables, F is a set of functions and P is a joint probability
distribution over the exogenous variables.

In the following, we describe the main concepts of causality alongside their main methods.

Causal Discovery The study of causality requires, first and foremost, the identification and
modeling of cause-effect relationships between variables in a data set. In this regard, Causal
Discovery aims to provide tools and algorithms in order to learn and differentiate between
correlation and causal links, find patterns, and discover the latent influence of a variable that is
not present in the data set. The discovery methods can be divided into different categories
(Camps-Valls et al., 2023; Glymour et al., 2019; Peters et al., 2017):

• Independence-base (or Constraint-based) methods use marginal and conditional
independencies between variables to infer the underlying causal structure. They do
not assume any causal mechanism within the SCM, focusing only on the patterns of
independence revealed by the data. Algorithms like PC (Spirtes et al., 2001) or FCI (Spirtes
& Glymour, 1991) can identify causal structures from data under specific assumptions
about the data. However, as seen in part 2.4.2.3, BN does not provide exact causal
information as it outputs the Markov equivalent class, i.e., a set of structures satisfying
the same conditional independence.

• Functional-based methods explore causal relationships by assuming a specific form for
the underlying process in the SCM. These methods, such as LiNGAM (Shimizu et al.,
2006), represent causal relationships through a parametric form where each variable is
modeled as a function of its direct cause and where noise follows a specific distribution.
These approaches allow taking advantage of the asymmetric nature of these functions to
uncover the true causal direction, unlike dependence-based methods, by identifying the
causal structure in the same equivalent class (Glymour et al., 2019).

• Score-based methods assign a scoring function to evaluate a causal structure based on
how well it fits the data. They then employ search algorithms, like the popular Greedy
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Equivalent Search (GES) (Chickering, 1996), to iteratively explore different structures
and identify the one with the highest score, best fitting the data.

Causal Inference aims to estimate the causal effects of one variable on another, either
by estimating the impact of interventions or by analyzing observational data under causal
assumptions. The interventions are changes that are made in order to observe the effects that
should be done in an experimental setting. Usually, causal inference aims to estimate accurately
even in the presence of confounding factors and sources of bias in the data set. The estimation
can be carried out using experimental design such as Randomized Control Design (RCT). When
it is not possible, two main frameworks can be used:

• The Potential Outcome Framework developed by Neyman et al. (1990); Rubin (1974)
formalize causal relationships by considering potential outcomes of variables under various
treatment conditions. To accurately estimate causal effects in observational studies,
methods like propensity score matching are used to create comparable groups with similar
distributions of covariates between treated and control groups.

• Do-Calculus, developed by Pearl (2009b), is a framework for reasoning about causal
relationships in observation data. It allows manipulating a causal graph, simulating
interventions, and answering counterfactual questions, such as "What would have happened
if?" to understand the true causal effects of one variable on another. This framework
enables the extraction of true causal relationships when controlled experiments cannot be
done.

For deeper insights into these concepts, which fall outside the scope of our study, we direct
readers to the following resources (Acharki et al., 2023; Imbens & Rubin, 2015; Pearl, 2009a;
Yao et al., 2021).

2.4.4 Conclusion on the state of the art
Causality can improve both explainability and interpretability. Understanding causal
relationships in the data allows for a better understanding of the model’s behavior and,
hence, interpretation of its decision-making process in light of the true underlying mechanism.
Similarly, causality can improve explainability by bringing a causal and logical explanation
from the input to the model’s decision, which is more intuitive and convincing. Conversely,
interpretability and explainability can play a role in shaping the model that aims to extract
causal relationships in a data set.
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Interpretability Explainability Causality
Definition Degree of model under-

standability
Ability to provide in-
sights into decisions

Identifying cause-effect
relationships

Goal Transparency Decision clarity Reveal true variable re-
lationships

Challenges Accuracy vs. simplicity Complex model explan-
ation

Confounding variables,
data limitations

Table 2.4: Comparison of XAI approaches: Interpretability, Explainability, and Causality

XAI is an important field that aims to be present in every field of Machine Learning in order
to ensure that the models are interpretable, explainable, or causal, allowing them to act in a
reasoned and justified manner. It answers multiple questions such as:

• Why this prediction?
• What factors influenced the outcome?
• How does the model work internally?

• How can I improve the outcome?
• What would happen if I changed this input?
• What else could happen?

Once the XAI models have answered these questions, it becomes necessary to assess and
evaluate their effectiveness and whether these answers correspond to reality and expectations.
In the following, we focus only on interpretability and causality as they will be the main focus
throughout this thesis.

2.5 Evaluation
The literature highlights several reasons for evaluating XAI methods (Markus et al., 2021; Zhou
et al., 2021). One key benefit is that it allows for the comparison of different XAI models,
enabling researchers to choose the best one for a specific task. This evaluation process involves
assessing how well each model satisfies the properties of interpretability, explainability, or
causality. Additionally, evaluation helps to determine if an XAI model achieves its intended
objective in a real-world setting.
Indeed, the establishment of an interpretable or causal model inevitably raises fundamental
questions: Is the explanation provided satisfactory? Is it comprehensive enough? How faithfully
does the explanation represent the underlying system and reality? And how do we assess the
validity of the proposed explanation? Given the interdisciplinary nature of XAI methods, a
large body of research has been devoted to addressing these questions.
One of the foundations for answering these questions lies in the understanding of human
psychology and what constitutes a good explanation for a person. In this regard, the fields
of philosophy, psychology, and cognitive science sought to explain how humans generate,
evaluate, accept, and rely on explanation (Lopes et al., 2022; Miller, 2018). These studies are
necessary to establish explanations that are adapted and useful to the user. For instance, Miller
(2018) analyzed the literature in science and identified that probability, simplicity, generality,
and coherence with prior belief are the most important criteria that people use to evaluate
explanations.
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In this section, we first present the different levels of evaluation, then the real limitations that
are faced when evaluating interpretable and causal models, and, finally, we explore the different
evaluation processes and objective criteria used in the literature.

2.5.1 Levels of evaluation
The objective of the evaluation is mainly determined by the stakeholders involved and the
domain of application. From the XAI literature, the answer to give to previous questions
depends on many factors. Researchers commonly use Doshi-Velez & Kim (2017) taxonomy
which categorizes human subjects categorization rather than models:
The Doshi-Velez & Kim (2017) taxonomy, commonly used in the literature, provides different
levels for evaluating XAI models:

• Application-grounded evaluation: involves human experts evaluating the explanations
in the context of a specific application. The baseline is typically a human’s explanation
for the same task. This method is the most specific but also the most expensive and
time-consuming.

• Human-grounded evaluation: involves human experiments that are usually layman
person. The focus is on the quality of the explanation, regardless of the model’s accuracy
in the target domain. This method is less specific than the first, but still relatively
expensive.

• Functionally-grounded evaluation: does not involve human experiments and evaluates
the model’s inherent characteristics like transparency or simplicity. This method is the
least specific and cheapest, but it may not capture how humans actually understand the
model.

Note that the specificity and cost of each approach increase as we use human and particularly
domain experts. Similarly, Lopes et al. (2022); Zhou et al. (2021) regroup the first and
second categories into human-centered evaluation and call the third category computer-centered
evaluation.
The first aspect of evaluating explanations lies in a human-centered objective. The selection
of a group of humans for experimental tasks allows for the evaluation of the explanation
provided by the XAI model. In fact, qualitative metrics are evaluated such as user’s trust,
explanation usefulness or satisfaction, understandability or performance that is provided by the
explanation through interviews or questionnaires (Lopes et al., 2022; Zhou et al., 2021). In
addition, quantitative metrics are evaluated, such as the impact of a number of features and
transparency of the model on the user’s acceptance of explanation (Poursabzi-Sangdeh et al.,
2021) or response time of the user’s decision, where fast and accurate decision indicates a good
understanding (Schmidt & Biessmann, 2019). The advantage of these approaches is that they
provide direct and strong evidence for success (Doshi-Velez & Kim, 2017) but suffer from the
subjective nature of the experiment. In addition, the process is time-consuming and expensive.
On the contrary, functionally-grounded (computer-centered) evaluation does not require human
experiments and can provide objective quantitative metrics.
In the following, we focus on the Functionally-grounded evaluation.
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2.5.2 Evaluating Interpretability and Causality
While interpretability and causality share common goals, they also address specific questions.
Table 2.5 illustrates the difference between these two areas by giving examples of questions
they tackle.

Interpretability Causality
Transparency Can the decision-making

process be understood?
Does the model represent the
underlying system?

Feature Interactions How do features influence
each other?

Can causal relationships
between features be identified?

Instance-Level
Explanation

Why does the model pre-
dict a specific outcome?

What is the causal impact of
specific features on the out-
come?

Accuracy How does an interpretable
model’s accuracy compare
to complex models?

How accurate is the causal
model in capturing real-world
relationships?

Table 2.5: Example of questions for interpretability and causality research in XAI

Evaluating interpretable and causal models necessitates a comprehensive approach that considers
both the specific questions being asked and the context of the application. In the next sections,
we describe general quantitative evaluation existing in the literature.

2.5.3 Quantitative evaluation in the literature
Quantitative evaluation of XAI models is a challenge in the literature as there is a lack of
standardized approaches with a large range of models and various metrics (Lopes et al., 2022).
Nevertheless, several authors propose a taxonomy based on the properties of the XAI model
in order to do the evaluation, they are composed of two main categories (Lopes et al., 2022;
Markus et al., 2021; Zhou et al., 2021). First, the explanation should be understandable to
humans and be evaluated based on the following characteristics :

• clarity: the explanation should be unambiguous and similar for several instances. For
example, Lakkaraju et al. (2017) quantifies it with a metric that calculates the number of
feature instances that can have multiple targets in a rule.

• broadness: the explanation should be generally applicable. Nguyen & Martínez (2020)
uses the feature mutual information to measure this dimension.

• simplicity/parsimony: explanation should be presented in simple and compact form. A
large body of work evaluates this aspect using metrics such as model size (Lakkaraju
et al., 2017), tree depth (Ribeiro et al., 2016), and runtime operating count (Slack et al.,
2019).

Secondly, the explanation should have fidelity, meaning that it should accurately describe the
model behavior in the entire feature space with two main properties:
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• Completeness: the explanation should describe the entire dynamic of the model, i.e., how
many input features that are used in the decision-making process are captured in the
explanation.

• Soundness: the explanation should be correct and truthful to the model’s task.

Note that by essence, interpretable models have the fidelity property with both completeness
and soundness.
Nauta et al. (2023) propose a deeper taxonomy with an extensive review of the methods that
fall into each of the categories. Other metrics are evaluated, such as the coherence metric,
which includes the alignment with domain knowledge when the ground truth is available, and
the continuity metric that assesses the stability of the model to slight perturbation.
We invite the reader to consult the following surveys for an in-depth study of the metrics used
in the literature (Lopes et al., 2022; Nauta et al., 2023; Zhou et al., 2021).

2.5.4 Evaluation in practice
Since no single evaluation criteria or metric applies to all XAI methods, the performance of
interpretable and causal models is usually evaluated based on the specific tasks they were
designed for, such as forecasting accuracy, classification precision, and prediction error. While
the focus is on evaluating their ability to capture the underlying mechanisms and relationships
within the data, interpretability, and causality, introduce valuable constraints, promoting
simpler models that foster understanding. By carefully validating interpretable and causal
models with domain-specific metrics and tasks, researchers aim to ensure their models produce
meaningful insights that align with established knowledge within the field, ultimately enhancing
their usefulness in various applications.

2.6 Challenges & conclusion
Explainable AI has become an urgent need for integrating machine learning models into
real-world applications. Despite its undeniable ambition and potential, XAI currently lacks
agreement on its definition. This chapter addressed this ongoing debate, ultimately establishing
the definition that will be used throughout the remainder of this thesis. Furthermore, we
delved into various XAI models, particularly interpretable and causal ones, using taxonomies
to understand their multifaceted nature. While promising approaches exist for various tasks,
there is no "one-size-fits-all" solution due, for instance, to diverse objectives and data modalities.
Consequently, no standardized procedure exists for measuring and comparing XAI models. Our
exploration of evaluation methods showed the importance of assessing XAI models from different
angles, beyond just accuracy metrics, which currently dominate the literature’s evaluations.
We emphasized the importance of understanding stakeholder needs and the intended purpose
of explanations when developing XAI models. In this objective, Bhatt et al. (2020) identified
and offered valuable recommendations to select the model: 1) identify relevant stakeholders, 2)
understand their needs, and 3) clarify the purpose of the explanations.
Recognizing the need to advance the XAI field, this thesis tackles key challenges identified
in the literature, including uncovering causal relationships within complex data, enhancing
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the overall performance of XAI models, and expanding XAI’s approaches with interpretable
models (Bhatt et al., 2020). Following Rudin (2019) objectives, the core focus of the following
chapters lies in proposing interpretable models that are reliable and accurate, ultimately aiming
to extract causal insights directly from the proposed models.
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3.1. Introduction to Root Cause Analysis

3.1 Introduction to Root Cause Analysis
In order to improve their productivity and remain competitive in the market, companies in
various sectors are developing increasingly sophisticated and expensive tools. In general, safety,
reliability, and performance constraints are high, and the appearance of abnormal situations
must be dealt with quickly, especially in critical sectors such as automotive, industry, or
aeronautics, to avoid major damage or material and financial losses.
Root cause analysis (RCA), also known as fault diagnosis or fault identification, uses various
terminology in the literature to precisely identify the underlying reasons behind system
malfunctions. In the following sections, we present the terminology defined by Solé et al.
(2017):

- Events: Exceptional conditions, which are occurrences that deviate from normal operating
conditions of the system.

- Fault/Problem/Root cause: Events that can trigger subsequent events but are not
themselves caused by other events.

- Errors: Events caused by the fault.
- Failures: Errors that can be observed externally from the system, often detected using

anomaly detectors.

Upon identifying system failures, root cause analysis aims to determine the root causes of these
anomalies from data collected from monitoring. Various methodologies have been developed
for this purpose (Solé et al., 2017). The first, which is the most costly in terms of time and
human resources, involves calling on a group of experts in the field to develop a model to
determine the causes based on historical data. While these models can be highly accurate
thanks to their expertise and understanding of the phenomena involved, in a highly complex
system where physics models cannot explain all the variations, this approach becomes limited.
Numerous traditional methods are used to find them, such as Pareto analysis, Ishikawa &
Ishikawa (1982)’s cause-and-effect diagram or the Five Whys (Ohno, 2019), but they are limited
by their strong dependencies on human skills, making the process time consuming, and by their
subjectivity and bias. In addition, they cannot determine complex causes, where, for example,
numerous variables influence the problem in non-linear ways.
The second type of approach, which contains most RCA methods in the industrial literature
(Sayed & Lohse, 2013; Solé et al., 2017), consists of taking advantage of the presence of manually
specified models that describe sub-parts of the system. They are usually developed using the
first approach by the experts. With the help of domain knowledge, an RCA model is built by
assembling the models of the sub-parts.
Finally, in the absence of domain knowledge, particularly in new or complex systems, an RCA
model is constructed using available data. This approach is particularly useful as it does
not require human intervention. The algorithms in this data-driven approach aim to extract
patterns and relationships from the data, allowing for the discovery of the root cause.
With the increasing storage capacity and the growing amount of available data, artificial
intelligence has become a powerful tool for RCA. This integration empowers RCA models to
leverage massive data sets and use automated and sophisticated techniques to extract valuable
insights and improve root cause identification.
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In the following, we only focus on the last category, i.e. machine learning methods for root
cause analysis when there is no prior domain knowledge about the system.

3.2 Challenges and problem statement

3.2.1 Objective and challenges
In the field of root cause analysis, the depth and scope of the analysis are contingent upon the
types of questions posed. These questions shape the collection, selection, and analysis of data.
The desired level of detail, i.e., granularity, significantly impacts the nature of the data needed.
In the following, we describe the different characterizations of the root cause that are treated
in the literature. Oliveira et al. (2022) research identifies three key questions that root cause
analysis (RCA) aims to address:

1. Localization of the root cause: Where is the root cause? The objective is
to identify the specific location and timestamp of the occurrence of the root cause by
providing answers such as "The problem occurred in component k at time T ". However,
this type of analysis does not uncover the underlying root cause variable.

2. Local identification of root cause: What caused the failure? The aim is to
identify a tangible effect of the true underlying cause and to provide a comprehensive
explanation that elucidates how the root cause triggered the problem, such as "The issue
occurred because the variable X(k) surpassed the threshold η.".

3. Global identification of the root cause: Why did the root cause happen? The
aim is to go beyond identifying the root cause by delving into the underlying reasons for
its occurrence and, if multiple causes exist, determine the relationships between them.
This involves uncovering the factors that led to the root cause’s deviation from its normal
state, ultimately causing the failure, such as "The root cause X(k) exceeded the threshold
η because the operator has not performed the update.".

Each question targets a specific aspect of the problem and offers varying levels of explanation.
In addition, Oliveira et al. (2022) introduces three distinct types of data: location-time data,
typically presented in tabular form (Component, Time), physical variables data, primarily
comprising numerical values but potentially incorporating categorical variables, and log action
data, consisting of recorded user actions.
Root cause analysis can be a challenging task due to several factors (Papageorgiou et al., 2022;
Solé et al., 2017):

• Scale and complexity of data: RCA often involves analyzing vast amounts of data,
which may include a wide range of features and a large number of observations. It can,
therefore, be difficult to identify patterns and relationships that might reveal root causes.

• Data Quality: Identifying the root cause necessitates a comprehensive and reliable data
set. However, several factors can impede the effectiveness of RCA, including data scarcity,
missing values, excessive noise, and inconsistent sampling rates.
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• Rare fault occurrences: Faults may be rare and sporadic in the training data, which
can make it difficult to develop effective RCA models. This may require the use of
techniques such as anomaly detection or outlier analysis to first label failures and then
identify potential root causes.

• Real-time requirements: In some contexts, RCA needs to be carried out in real-time,
imposing additional constraints on the analysis process. This may require the use of
models capable of processing large data sets quickly and efficiently.

• Limited universality of workflow: There is no single, universally applicable workflow
for RCA. The specific approach will vary depending on the type of incident, the available
data, the business context, and the required domain and system knowledge.

In addition, Papageorgiou et al. (2022) highlights the challenge of developing XAI models that
enable users to understand the decision-making process and the underlying reasoning behind
the decision. This would reinforce trust and confidence in the model, as users would be able to
understand the rationale behind the conclusions drawn.
In what follows, we focus exclusively on methods for dealing with data sets encompassing
numerical data and, potentially, categorical variables. This study specifically addresses the
scenario where we have labeled failures in a data set and aim to identify their underlying root
causes.

3.2.2 Problem definition
In order to comprehensively explore the literature on root cause analysis and understand the
diverse approaches, we first formulate the problem. This structured framework serves as a
foundation for analyzing the literature and identifying the fundamental concepts, methodologies,
and techniques used.
To ensure consistency throughout the thesis, we adopt the same notation introduced in Chapter
2. This allows each chapter to be read independently while maintaining a unified framework.
Consider N observations of p variables from monitoring systems, such as sensor data. Let
X = (X(1), . . . , X(p)) be a random vector of dimension p ∈ N where for each k ∈ {1, . . . , p}, X(k)

takes its values in R and let Y denote the random variable representing the failure occurrence.
Y takes its values in a domain Y ⊆ R, which can be a finite or a continuous set for
classification and regression problems respectively. The training data-set is represented as
DN = {(xi, yi)|i = 1, . . . , N}, where each (xi, yi) pair is drawn from the joint distribution of
X and Y and where xi = (x(1)

i , . . . , x
(p)
i ). Additionally, let X = (x⊺

1, . . . , x⊺
N ) ∈ RN×p be the

design matrix and y = (y1, . . . , yN ) ∈ YN be the target vector. In the following, for simplicity,
we refer to (x, y) for a single instance where x = (x(1), . . . , x(p)).
Consider that the following equation defines the real-world phenomenon that we analyze:

Y = f(X, ϵ)

where f : Rp → Y represents the underlying relationship between the input features and the
target variables related to the failure, ϵ is the error term accounting for unobserved factors,
measurements errors in the system or other sources of variability. In the literature, Y can be a
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continuous measure associated with the problem, taking values in R or a binary variable taking
value in {0, 1}, such as an alarm signaling the problem’s occurrence.
The original data set often takes the form of time series data, which is preprocessed and
transformed to incorporate temporal dependencies by introducing lagged variables. We will delve
into various objectives commonly encountered in the literature to gain a deeper understanding
of the mathematical formulation.

3.2.2.1 Root Cause Identification

In this analysis, the aim is to identify the root cause of a failure from numerical and categorical
data obtained during data collection. In this setting, the target variable Y represents the
occurrence of the failure. The goal of this root cause analysis is to learn a function f̂ : Rp → Y
which is interpretable and associates the input observations with the identified failure. The
resulting explanations provide insights into the model’s understanding of the data and highlight
the underlying relationship between the input features and the root cause.

3.2.2.2 Learning Process

The learning process can be broadly categorized into two main categories (Papageorgiou et al.,
2022; Solé et al., 2017):

• Deterministic: it involves minimizing a loss function L, such as the mean squared error,
by adjusting the model parameters. The goal is to find a function f̂ that minimizes the
difference between the predicted failure occurrence f̂(xi) and the actual failure yi for all
observation i in the data-set.

• Probabilistic: the task typically involves estimating the conditional probability
P (Y = 1|X = x), which represents the probability of observing failure Y = 1 given
the observed feature vector x. This can be achieved using methods like maximum
likelihood estimation (MLE), which involves finding the parameter values that maximize
the likelihood of the observed data.

In the following, we focus on the root cause identification problem using interpretable methods
and examine the literature in this field. This analysis will provide us with a clear understanding
of the current state of the art, allowing us to evaluate the strengths and limitations of existing
methodologies.

3.3 State of the art
This section delves into a range of interpretable methods frequently used in root cause analysis
(RCA). The methods we explore include regression analysis 3.3.1, association rules 3.3.2, decision
trees 3.3.3, fuzzy rules 3.3.4, Bayesian methods 3.3.5, and causal methods 3.3.6. Each subsection
provides a concise overview of the key aspects of these methods without delving into exhaustive
detail to offer a comprehensive understanding of their approaches. The ultimate goal is to
provide practical insights into how these methods work, how they are applied to RCA and their
limitations.
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3.3.1 Regression Models
Having explored various regression models in section 2.4.2.1, this part details its application in
RCA for inference. We also present additional specific models.

3.3.1.1 Inference in Logistic regression

The primary objective of logistic regression is to determine the vector of coefficients β that best
fits the training data. This process can be carried out using Maximum Likelihood Estimation
(MLE), which aims to identify the parameter values that maximize the likelihood function.
This allows us to compute the odds ratio, which is a key metric for interpreting the relative
importance of each feature in predicting the binary outcome, i.e., the failure.

Definition 3.3.1 (Odds and Odds Ratio). Let X(1), . . . , X(p) be the explanatory variables and
Y the binary outcome. The Odds represents the probability of occurrence of the event relative
to the probability of its non-occurrence. For the event, Y = 1 the odds are defined as:

Odds(Y = 1) = P (Y = 1)
P (Y = 0) (3.1)

The Odds Ratio (OR) is a measure of association between an explanatory variable X(k) and
the odds of the occurrence of an event Y . It quantifies the strength of the relationship between
X(k) and Y by comparing the odds of Y occurring when the variable X(k) takes on a particular
value x(k) to the odds of Y occurring when X(k) takes on a different value x̃(k).

OR = Odds(Y = 1|X = x̃)
Odds(Y = 1|X = x) (3.2)

where x̃ =
(
x(1), . . . , x(k−1), x(k) + 1, x(k+1), . . . , x(p)

)
.

Remark 3.3.2. The logistic regression can be interpreted as a linear modeling of the "log odds" as the
ratio π

1−π , where π = P (Y = 1|X = x), is the odds of the outcome.

Consequently, we write the odds of X = x as

Odds(Y = 1|X = x) = P (Y = 1|X = x)
P (Y = 0|X = x) = exp(βT x) (3.3)

and the Odds Ratio, as defined in equation 3.2,

OR = Odd(Y = 1|X = x̃)
Odd(Y = 1|X = x) = exp(βT (x̃− x)) = exp(βk) (3.4)

Hence, exp(βk) is an estimate of the Odds Ratio which gives a measure of the association
between the variable X(k) and the event.

3.3.1.2 Time Series approaches

The temporal aspect in RCA is often critical in identifying the underlying causes of failures.
Regression methods tailored for analyzing data over time enable us to examine how variables
change over time and assess their influence on the system. In the following, we describe two
specific regression models: conditional logistic regression models and distributed lag models.
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Conditional Logistic Regression (CLR) (Breslow & Day, 1980; Kuo et al., 2018) is a
statistical modeling technique that builds upon logistic regression to analyze data structured as
matched sets. These matched sets are frequently encountered in case-control studies. Discussed
in the next chapter, they are observational studies comparing cases (individuals with the
outcome of interest, e.g., a disease) and controls (individuals without the outcome) who share
similar characteristics.
In fact, it uses the following elements:

• Stratification: Technique used to control confounding (factors that affect the analysis and
prevent uncovering the true relationship, typically when exogenous variables influence
both the dependent and target variables ) by examining the association between exposure
and outcome within different strata.

• Matching: Selection of unexposed subjects (controls) that have similar characteristics as
the exposed subjects (cases) to address confounding and biases.

In the case-crossover design (Maclure, 1991), the strata represent time periods chosen from our
data, and the matching is done on the same subject (self-matching).
This model is typically used to estimate an odds ratio and will model the odds of an
outcome based on individual characteristics. The following study draws upon the methodology
presented in Zhang et al. (1997) and has been applied to a case-crossover study. Let
xi,t = (x(1)

i,t , . . . , x
(p)
i,t ) ∈ Rp be the explanatory variable i.e the exposure for person i at a

time step t ∈ {1, . . . , T} and let yi,t ∈ {0, 1} be a categorical variable indicating whether subject
i ∈ {1, . . . , N} has the outcome. Given that odds are ratios, the actual model used is the
logarithm of the odds, expressed as:

log
(

πit

1− πit

)
= λi + β⊺xi,t (3.5)

Where πit indicates the probability of an event at time t, λi is the intercept and a constant of
frailty associated to subject i, β ∈ Rp is the regression vector. Hence, the conditional probability
of failure for subject i at time t is written as

πit = exp(λi + β⊺xi,t)
1 + exp(λi + β⊺xi,t)

(3.6)

In the case-crossover approach, the exposures of cases denoted Xi1 indexed by 1 are compared
to the exposure of a reference control period denoted Xi0 indexed by 0. For example, if the
event occurs at 8 p.m., the control period could be at 8 a.m., a reference period taken far from
the outcome and where there is no exposition. Note that the study can be done with multiple
control periods instead of a single one. Note that the design allows for multiple control periods,
but we assume that for each subject i, there is only one event.
Similarly to the logistic regression model, we developed how to write the likelihood function
in appendix A. Consider xi,1 ∈ Rp the vector of exposure for the case, xi,0 ∈ Rp the exposure
vector for the control and yi,k ∈ {0, 1} be the associated outcome result for k ∈ {0, 1}. Assuming
that subjects i ∈ {1, . . . , N} are independent, the likelihood function is written :

L(β) =
N∏

i=1

[
1

1 + exp (β⊤(xi,0 − xi,1))

]
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Inference By applying the maximum likelihood estimation method, we can estimate the
parameters β using optimization techniques like Newton-Raphson. With the estimated
parameters β, we can then calculate the Odds Ratio using an equation similar to equation 3.2
for the variable X(j):

Odds Ratio = exp(βj) (3.7)

3.3.1.3 Distributed Lag Models

Principle Alongside autoregressive models, distributed lag models (Gasparrini & Leone, 2014;
Judge et al., 1991; Schwartz, 2000) represent a class of dynamic models that incorporate
the temporal dimension in order to explain a target variable. Autoregressive models are
characterized by the dependence of the random variable to be explained, Yt, on its past values.
Distributed lag models, on the other hand, take a different perspective by asserting that
observed variables are influenced by past values -lags- of explanatory variables represented by
the random vector Xt = (X(1)

t , . . . , X
(p)
t ), implying a response time between the occurrence of

external factors and its impact on the system.
In real life, the effect of an exposure may be spread over time or delayed, and may not be a
simple direct cause-and-effect relationship. We must, therefore, define a model involving the
previous occurrences of an exposure variable, i.e., lags with the future outcomes of the study.
For each multivariate time series, for (τ1, τ2) ∈ {1, . . . , T}2 such that τ1 < τ2, we denote
xτ2:τ1 = (xt)τ2

t=τ1 . Hence, for τ ∈ {1, . . . , T}, xτ−1:1 contains the past values of xτ and xt:t−l+1
contains the l lags of xt+1 (for l ≥ 1). The formulation is expressed as follows:

Yt = f(Xt:t−l+1, . . . , Yt:t−l, ϵt)

where Xt:t−l+1 = {Xt, . . . , Xt−l+1}, l < t and ϵt is a Gaussian noise.

Definition 3.3.3. A Distributed Linear Lag Model (DLM) describes a relation between an
outcome Yt and the explanatory variables Xt

Yt = λ +
l∑

k=0
βkXt−k + ϵt (3.8)

where βk = (β(1)
k , . . . , β

(p)
k ) ∈ Rp for k ∈ {1, . . . , l} is a vector parameter of the model and ϵt is a

centered white noise of variance σ2 and such that ∀t ∈ N, ϵt is independent from (Xt, Xt−1, . . .).

The coefficients βk are called lag weights. They define the pattern of how Xt−k affects Yt over
time.
Equation 3.8 can be estimated by Ordinary Least Squares (OLS) when the error term is a
white noise. One challenge with these models is collinearity, which can be mitigated by using
non-linear lag models like polynomial lag models (Gasparrini et al., 2010).

A distributed lag model can be used in combination with Conditional logistic regression to
analyze data where the effects of independent variables occur over time. The coefficients βk

would take into account a temporal aspect. Using the notations defined for equation 3.5 and
considering l ∈ N to represent the number of lags, we can rewrite the equation as follows:

log
(

πit

1− πit

)
=

p∑
j=1

l∑
k=0

β
(j)
k x

(j)
i,t−k (3.9)
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where x
(j)
i,t−k represents the jth component of xi,t−l, which is the jth explanatory variable.

For instance, the overall effect of the variables on a single day is the impact on that day in
addition to the impact on previous days. Estimating the coefficients β = (β1, . . . , βl) ∈ Rpl

becomes computationally challenging when the number of features p and the number of lag l
are large. To address this, dimension reduction may be done by representing the coefficients in
β as β

(j)
k = λjwk(θj) using a specific pre-defined weight distribution wk. Then, training process

allows learning the lower-dimensional parameters θ = (θ1, . . . , θp) and λ = (λ1, . . . , λp) in Rp.

3.3.2 Association Rule Mining
Building on the introduction of association rule mining in section 2.4.2.2, this section details how
rules are generated by incorporating additional constraints and explore the inference process.

3.3.2.1 Rule Generation

While support serves as a valuable indicator of item co-occurrence, it falls short of providing
a comprehensive understanding of item relationships. To overcome this limitation, multiple
metrics have been proposed in the literature that capture more information about the direction
and strength of the association. In the following, we define a rule as an implication, X → Y
where X and Y are itemsets from a set I drawn from a database Db. The rule is interpreted as
"the antecedent X implies the consequent Y ". Subsequently, we define some metrics used to
generate such implication rules. For a more extensive review of metrics, we direct the reader to
the following articles (Azevedo & Jorge, 2007; Lenca et al., 2007).

Definition 3.3.4 (Support of a rule). The support of a rule X → Y is the support (defined in
2.4.2) of the co-occurrence of itemset X and Y defined as :

support(X → Y ) = support(X ∪ Y )

where ∪ refers to the union of the sets.

Definition 3.3.5 (Confidence). The confidence of a rule X → Y where X, Y ⊆ I is defined as

conf(X → Y ) = support(X ∪ Y )
support(X) (3.10)

Remark 3.3.6. The confidence ranging within [0, 1], is the percentage of transactions containing X
that also contain Y . It is an estimate of the probability of observing Y given X, P (Y |X), and is an
indication of how often the rule has been found to be true. Consequently, confidence is a directed measure
meaning that the confidence of the rules X → Y and Y → X can be different.

While confidence measures the strength of an association rule, it does not distinguish between
real and spurious associations that may arise by chance. The lift metric provides additional
insights into a rule’s significance.

Definition 3.3.7 (Lift). The lift of a rule X → Y where X, Y ⊆ I is defined as

lift(X → Y ) = support(X ∪ Y )
support(X)× support(Y ) (3.11)
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Remark 3.3.8. The lift value, ranging from 0 to infinity, measures the strength of an association rule by
comparing the observed support to the expected support if items X and Y were independent. A lift value
close to 1 indicates that the items are independent, while a lift value significantly greater than 1 suggests
a strong association and not a mere coincidence. However, lift is a symmetric measure and does not
capture the direction of the association.

The conviction metric complements confidence and lift by providing insights into the notion of
implication in the rule.

Definition 3.3.9 (Conviction). The conviction of a rule X → Y where X, Y ⊆ I is defined as

conv(X → Y ) = 1− support(Y )
support(X ∪ Y ) (3.12)

Remark 3.3.10. Conviction value, ranging from 0 to infinity, measures the degree to which the presence
of an item in the consequent implies the presence of the item in the antecedent. Similar to lift, a high
conviction value indicates a strong association.

The following details the pseudocode that outlines the steps involved in the Apriori algorithm.

Pseudo Code (Agrawal & Srikant, 1994; Agrawal et al., 1993)

• Apriori’s Candidate Generation
The Generation function generates a candidate itemset using two steps: the candidate
generation and the pruning step. The idea is to extend each frequent itemset of size k by
adding other frequent itemsets. This process is fast and allows us to find every frequent
itemset of size k + 1. The pruning step is then necessary to avoid redundancy during the
generation process.

Algorithm 1 Apriori_gen(Lk)

Require: Frequent itemset Lk of size k
Ensure: Candidate itemset Ck+1 of size k + 1

1: C1 = all itemsets of size 1;
2: for (k=1; Lk! = ∅; k + +) {
3: Ck+1= join Lk with itself; // Join step
4: If both {a1, . . . , ak−1, ak} & {a1, . . . , ak−1, ak+1} are in Lk {
5: add {a1, . . . , ak−1, ak, ak+1} to Ck+1;

items are sorted
6: }
7: Remove k-itemsets in Ck+1 that are not frequent; // Prune step
8: return Ck+1;

• The Apriori Algorithm: Pseudo Code
As described in the example above, the Apriori algorithm, using the frequent itemsets of
size k, generates candidates Ck+1 of size k + 1. Then, it scans the database and calculates
the support of each item. Finally, the algorithm selects all itemsets whose support satisfies
the minimum support requirement and adds them to Lk+1.
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Algorithm 2 Apriori

Require: transaction database Db, minimum support threshold Min_sup
Ensure: frequent itemsets

1: L1= {{a}, a frequent item of size 1};
2: C1= L1;
3: for (k=1; Lk! = ∅; k + +) {
4: Ck+1= Apriori_gen(Lk);
5: for each transaction T in database D do {
6: increment the count of all candidates in Ck+1 that are included in T ;
7: Lk+1 = candidates in Ck+1 with Min_sup
8: }
9: return L = ⋃

k Lk;

Complexity The complexity of the apriori algorithm depends on several parameters, such as
hyperparameters of the algorithm and data-dependent factors. This includes :

• Number of Items: The number of items in our data set directly affects the space complexity
as the more items we have, the more space will be needed. We then need to store the
support count of each item, a larger frequent set, and hence a larger number of candidate
items.

• Support threshold: The number of frequent items is dependent on the support threshold.
In fact, the more important this number, the more frequent itemset there will be.

• Number of transactions: Number of samples in the data set. This is directly increasing
the complexity of the algorithm, as it is a recursive algorithm with several passes.

• Number of items in the rule: Depending on how complex we want the rule, we can choose
the length of the output. If we choose a length n ∈ N then the algorithm will do n passes,
increasing the complexity.

Time complexity can be calculated by separating different parts of the apriori algorithm:

• Generation of frequent itemset of size 1: This first step requires computing the support
count of each item present in the transaction. Noting m the maximum length of the
transactions, the operation requires O(Nm) where N is the number of transactions.

• Candidate generation: This step requires O(∑m
k=2 k(k−2)|Ck|+|Lk−1|2) for the generation

and pruning.

• Support counting: The support count is done at each pass. Hence, the complexity is
O(N ∑m

k=2
(m

k

)
αk) where m is the maximum length of the transactions and αk is the cost

for updating the support count.

More details on the calculations can be found in Tan et al. (2014).
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3.3.2.2 Inference

Association rule mining algorithms use a variety of techniques to uncover hidden patterns and
relationships within large data sets. The process typically involves three key steps:

1. Data Pre-processing: Raw data is transformed and organized to ensure compatibility
with the association rule mining algorithm. For instance, continuous data, such as time
series data, must be discretized using symbolic representation algorithms like Symbolic
Aggregate approXimation (SAX) (Lin et al., 2007; Park & Jung, 2020) and other dimension
reduction approaches presented in (Wang et al., 2010).

2. Rule Generation: Setting the parameters such as minimum support count and confidence
levels and application of the algorithm to generate rules with a constraint on the
consequence of the rule to be the "failure".

3. Rule Evaluation: Generated rules are sorted and evaluated using additional metrics
such as confidence, lift, and conviction.

3.3.3 Decision Trees
Decision Trees, as described in section 2.4.2.2, are a popular choice in Root Cause Analysis
for their strengths in interpretability and simple visualization.

3.3.3.1 Inference

To classify new data points, often drawn from a separate testing set, the decision tree algorithm
traverses the tree structure based on the values of the input features. This process of navigating
the tree stops at a leaf node, which represents a specific region in the feature space associated
with a particular class label. The class label assigned to the new data point is the dominant
class label among the data points reaching that leaf node.
Decision trees offer valuable insights for root cause analysis using classification or regression
approaches. In classification, the goal is to predict the occurrence of a failure, and the objective
is to construct a tree that effectively distinguishes between normal operation conditions and
failure outcomes. The process typically involves two main steps:

1. Decision tree learning: Learn the tree structure from data using an algorithm such as
CART.

2. Analysis and Interpretation: Analyze the decision tree to identify the root cause. The
features that are near the top of the tree contribute most significantly to the outcome
and can be potential root causes. In addition, features that are close to the leaves highly
influence the outcome with specific decisions, which provides another level of granularity
in root cause analysis.

Having established the effectiveness of decision rules in classifying root causes with ARM
and decision trees, we now explore fuzzy logic to handle inherent uncertainties and vague
descriptions of a failure by operators often present in RCA.
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3.3.4 Fuzzy logic
Fuzzy logic developed by Zadeh (1965), allows taking into account a notion of uncertainty,
imprecision and vagueness in a real-world scenario by extending the classical set theory (Crisp
sets). It offers a framework for representing vague terms such as "low", "medium," or "high"
using a rule-based system. In the following, we describe how fuzzy logic allows extracting
imprecise relationships for RCA.

Definition 3.3.11 (Fuzzy Set and Membership function). Let S be a space. A fuzzy set F of
S is characterized by a membership function µF : S → [0, 1].

Fuzzy sets differ from traditional sets in the fact that each element has a partial membership
in a set which is measured through a membership function µ taking values in [0, 1]. The
membership function could have different forms such as triangular, trapezoidal, and logistic
functions (see figure 3.1 for an example). Note that for a crisp set, µ takes values in {0, 1}.
The membership function allows fuzzy systems to be defined in natural language using linguistic
variables.

Definition 3.3.12 (Linguistic Variable). A linguistic variable corresponds to the triplet
(V, RV , FV ) where

• V is a variable

• SV is the domain on which V is defined

• FV is a finite or infinite collection of fuzzy sets

temperature

hotwarmcold

Figure 3.1: This figure represents the membership function of the fuzzy sets "cold","warm" and
"hot" of the linguistic variable ("Temperature", [-10;100],("cold","warm","hot")).

As shown in Figure 3.1, if the variable V represents the temperature, RV represent the
temperatures values that V can take and FV could include terms such as "cold", "warm" and
"hot".
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3.3.4.1 Fuzzy Operators

Fuzzy logic relies on a set of operators, such as AND, OR, and NOT, to manipulate imprecise
information. In this part, we define these fuzzy logic operators, which differ from classical
operators.

Definition 3.3.13 (Union (OR)). For any element x ∈ S and, the membership function of the
union of fuzzy sets A and B is

µA∪B(x) = max(µA(x), µB(x)) (3.13)

The membership of the union captures the overall inclusiveness by taking the maximum.

Definition 3.3.14 (Intersection (AND)). For any element x ∈ S and, the membership function
of the intersection of fuzzy sets A and B is

µA∩B(x) = min(µA(x), µB(x)) (3.14)

The membership of the intersection focuses on shared membership by taking the minimum.

Definition 3.3.15 (Complement (NOT)). For any element x ∈ S, the membership function of
the complement of fuzzy set A is

µ¬A(x) = 1− µA(x) (3.15)

3.3.4.2 Fuzzy Rules

While traditional rules rely on binary values, fuzzy rules provide a more flexible approach by
incorporating uncertainty and ambiguity. This adaptability makes fuzzy rules particularly
well-suited for real-world problems that involve imprecise or qualitative data by enabling the
encoding of human knowledge and expertise. They are expressed as follows:

Definition 3.3.16 (Fuzzy Rule). Let A and B be fuzzy sets. For x ∈ S, a fuzzy rule is in the
form

If x is A Then x is B (3.16)
Remark 3.3.17. In the case of a rule "If x is A AND y is B Then z is C", the fire strength µ =
min(µA(x), µB(y)) indicates the degree to which the rule matches the inputs.

The fire strength quantifies the strength of the relationship between the IF and THEN of
the rule. Each rule has an associated strength given by membership functions, indicating the
degree of confidence in the rule.
Other types of rules exist such as certainty rules ("the more x is A, the more certain y lies
in B"), gradual rules ("the more x is A, the more y is B" and m "the more x is A, the more
possible B is a range for y". For additional details, see (Dubois & Prade, 1996).

3.3.4.3 Inference

Fuzzy inference systems use various inference mechanisms to process input data and generate
output decisions. The process usually lies in the three following steps (Sabri, 2013):

1. Fuzzification: Convert the input value into a membership value of the fuzzy set.
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2. Fuzzy Inference: Compute rules based on fuzzified inputs and evaluate them with fire
strength.

3. Defuzzification: Transform the fuzzy output into a crisp.

The most widely used method is the Mamdani inference mechanism (Mamdani & Assilian,
1975), which ultimately converts the fuzzy output sets into crisp numerical values. The Sugeno
method (Sugeno, 1985) differs from Mamdani by representing the output as a linear equation
or constant value, simplifying the defuzzification process. Conversely, the Tsukamoto method
(Saepullah & Wahono, 2015) incorporates a weighted average to combine the firing strengths
of activated rules, offering a balance between the flexibility of Mamdani and the simplicity of
Sugeno.
In the literature, a combination of fuzzy logic with association rules mining (Lin et al., 2010;
Papadimitriou & Mavroudi, 2005) and decision trees (Yuan & Shaw, 1995; Zio et al., 2008) are
used to extract meaningful rules from data.

Another alternative for reasoning under uncertainty is through Bayesian networks as introduced
in section 2.4.2.3. These models capture the probabilistic relationships between variables. In
the following, we detail the inference steps within this framework used in RCA.

3.3.5 Bayesian Networks
Bayesian Networks are commonly used in root cause analysis due to their ability to model
and analyze probabilistic relationships between variables and their capacity to provide a visual
representation of these relationships.

3.3.5.1 Inference

Root Cause Identification using BN After constructing a Bayesian network from data, the
root cause of a failure can be inferred by analyzing the network structure and conditional
probability distributions. The network structure reveals nodes connected to the problem
variable, potentially indicating the root cause. The conditional probability distributions assess
the relative importance of each potential cause in contributing to the problem.

Queries and Inference techniques The Bayesian network can be used to compute probability
queries of interest, such as the dependence between a set of evidence variables corresponding to
the failure Y , and the potential root cause X, expressed as PG(X|Y ). Two main families of
inference methods are used to solve these queries (Lokrantz et al., 2018):

• Exact inference algorithms, such as Most Probable explanation (MPE) and marginal
probabilities compute the posterior probabilities without approximations. However, exact
inference becomes intractable for large and complex networks (Chan & Darwiche, 2012).

• Approximate inference algorithms, such as belief propagation and Monte-Carlo
methods, provide a computationally efficient way to approximate the posterior probabil-
ities. They make simplifying assumptions about the network structure and probability
distributions to reduce the computational burden.
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3.3.6 Causal discovery Methods
3.3.6.1 Causal Bayesian Networks

Although directed acyclic graphs (DAGs) can represent independence assumptions, they don’t
necessarily imply causation. In fact, they can represent any set of conditional independence
relationships, regardless of the arrangement of the variables. The construction of a causal
network allows for a more reliable and justified representation and also enables us to act and
intervene appropriately rather than on the basis of spurious correlations.
A Causal Bayesian Network (CBN) (Pearl, 2000) is a Bayesian Network where directed edges
between nodes represent causal relationships. Similarly to BN, it satisfies the causal Markov
condition and hence can be factorized as in Equation 2.15. CBN’s ability to address intervention
queries, along with probabilistic queries, is one of its key strengths. In fact, this is the second
level of causality according to Pearl & Mackenzie (2018), and makes it possible to respond
to counterfactual answers. An intervention, denoted as do(X = x), forces the value of X to
be fixed at x, effectively altering the causal chain and allowing us to examine the impact of
this artificial intervention. An intervention query takes the form of P (Y |do(X = x)), where Y
represents the outcome variable and X represents the intervened variable. This query asks us
to predict the probability of Y occurring if X is forced to take on the value x.
To define a CBN, let first define P (V ) as a probability distribution on a set V = {X(1), . . . , X(p)}
of random variables with a possible realization v = {x(1), . . . , x(p)}. Additionally, let
P (V = v|do(X = x)) denote the interventional distribution, resulting from an intervention on
a subset X ⊂ V (including P (V ) with X = ∅ meaning that there is no intervention).

Definition 3.3.18 (Causal Bayesian Networks (Pearl, 2000)). A DAG G is said to be a
Causal Bayesian Network compatible with the set of all interventional distributions
P (V = v|do(X = x)) , with X ⊆ V , if, and only if:

• P (V = v|do(X = x)) is Markov relative to G for all v

• P (x(k)|do(X = x)) = 1 with X(k) ⊂ X whenever x(k) is consistent with X = x i.e the
relation in the network is unchanged.

• P (X(k)|Parents(X(k)), do(X = x)) = P (X(k)|Parents(X(k))) for all X(k) ̸⊂ X i.e
Parents(X(k)) is consistent with X = x.

This definition enables us to compute the distribution resulting from any intervention do(X = x)
using a simpler structure, known as a truncated factorization.

P (V |do(X = x)) =
∏

k|X(k) ̸⊂X

P (X(k)|Parents(X(k))) (3.17)

Practically, intervening or applying the do operator in a variable X in the graph involves
"mutilating" the network (Mahmood, 2021; Pearl, 2000) by removing incoming arrows to X.
This modification facilitates the estimation of causal effects by analyzing the impact and
focusing only on the fixed value of X and ignoring the usual dependencies.
In addition, causal Bayesian networks are typically learned using constraint-based algorithms.
These algorithms rely on certain assumptions, which we discuss below.

60



3.3. State of the art

Constraint-based algorithms To discover causal relationships from mere correlations,
constraint-based algorithms rely on different assumptions, such as :

• i.i.d assumption: Some methods assume that the methods should take as input independent
and identically distributed samples.

• Causal Sufficiency: the model assumes that the available variables are sufficient to uncover
the causal relationship from the data. The model may assume that there are or are no
unobserved (hidden) variables that influence the observed variables.

• Causal Markov condition: This condition states that the Markov condition holds for a
causal graph. In other words, the statistical dependencies observed in the data can be
explained by a causal graph, where the variables are conditionally independent of their
non-descendants given their parents.

• Causal Faithfulness: this condition assumes that the observed statistical dependencies
correspond to the true underlying causal relationship.

• Sample size: Some methods assume the availability of large samples to converge to the
true causal graph.

Several causal discovery algorithms, including PC (Glymour et al., 2019; Spirtes et al., 2001)
and GES (Spirtes et al., 2001), share similar assumptions: they require i.i.d. data, a large
sample size, a causal Markov condition, and causal faithfulness. Under these conditions, both
PC and GES are guaranteed to converge to the true Markov Equivalent Class. The FCI
algorithm (Spirtes et al., 1993), while keeping a similar assumption, relaxes the constraint of
causal sufficiency by allowing for the presence of hidden variables.

3.3.6.2 Structural Causal Models (SCM)

A Structural Causal Model (SCM) represents the causal relationships between cause and effect
using functions. In a multivariate setting, each variable X(i) is expressed as:

X(k) = fk(Parents(X(k)), ϵk) for k = 1, . . . , p (3.18)

where fk is called the causal mechanism and is a deterministic function and ϵk is the noise
independent of the set of parents Parents(X(k)). The aim is to find this equation that best
matches the underlying data generation mechanism, hence allowing us to perform interventions.
The objective is to learn the causal dependencies through the function fk and take advantage
of the asymmetry in the data or in the noise terms to determine the causal direction. In the
following, we give an overview of the main methods developed:

• Linear Non-Gaussian models aim to identify causal relationships in linear models
under the assumption of non-Gaussian noise. The main method is the Linear Non-Gaussian
Acyclic Model (LINGAM) (Shimizu et al., 2006) which verifies three properties:

1. The observed variables X(k) can be arranged in a causal order for k ∈ {1, . . . , p}
noted σk, such that variable X(σ(k+1)) cannot cause X(σ(k)).
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2. There is a linear relationship between a variable and the earlier variables in the
causal order expressed as:

X(k) = ck +
∑

j,σ(j)<σ(k)
βkjX(j) + ϵk (3.19)

where ϵk is a noise term associated with X(k) and ck is a constant term.
3. The noise terms ϵk are continuous real-valued random variables with non-Gaussian

distributions of non-zero variances. The ϵk are independent of each other i.e. the
probability density function is of the form P (ϵ1, . . . , ϵp) = ∏

k P (ϵk)

• Non-Linear Methods: These methods aim to model the non-linear relationships in the
data-generating process.

– Non-Linear additive noise model (Hoyer et al., 2008) assumes that a set of
nonlinear functions can represent the causal relationships between variables and
that the observed data is generated by adding noise to these functions. They are
expressed as :

X(k) = fk(Parents(X(k))) + ϵk for k = 1, . . . , p (3.20)

where the noise terms ϵk are jointly independent and may have arbitrary probability
densities.

– Post Non-Linear (PNL) (Zhang & Hyvarinen, 2012; Zhang & Hyvärinen, 2010):
These models take into account the possible sensor distortions in the observed
variables through a non-linear function of the underlying mechanism. It is expressed
as:

X(k) = fk,2(fk,1(Parents(X(k))) + ϵk) (3.21)

where fk,1 is a non-linear function denoting the non-linear effect of the causes,
fk,2 denotes a post-non-linear distortion in variable X(k) and ϵk is a noise term
independent of Parents(X(k)).

Note that the non-linear additive noise model is a special case of the PNL model where there is
no distortion.
Traditionally, causal discovery methods have primarily focused on analyzing non-temporal data.
Researchers then developed adaptations for these methods to handle time series data. We
describe some of these adaptations in the next part.

3.3.6.3 Causal Discovery for Time Series

Existing causal discovery methods are primarily designed for independent and identically
distributed data. Time series data, however, exhibits inherent dependencies between consecutive
samples. These dependencies can be complex and non-stationary, making it challenging to
apply traditional causal discovery methods directly. To address this issue, researchers have
developed specialized definitions and methods tailored for time series data, which can effectively
handle temporal dependencies and assess causal relationships in this dynamic context. The
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addition of the temporal dimension has the effect of adding an assumption on the precedence
associated to each node of the graph. Indeed, future elements cannot be the causes of past
elements. In the following, we showcase a brief overview of the methods; for a complete survey,
we direct the reader to (Assaad et al., 2022).

Granger Causality (Granger, 1969) is one of the earliest approaches to uncover causality
from data. Particularly used in econometrics and time series analysis, the aim is to analyze
regularities in the data and discover causal influence by determining whether a time series can
predict another time series. We define Granger causality more formally as follows.

Definition 3.3.19 (Granger Causality (Granger, 1969)). A time series, at time t, Xt Granger-
causes Yt if past values of Xt provide statistically significant information about future values of
Yt compared to using only past values of Yt.

Practically , considering two time series represented by Xt and Yt, for t ∈ {1, . . . , T}, a first
approach to assess if Xt Granger causes Yt is to consider the following auto-regressive models:

Yt = β0 +
l∑

k=1
βkYt−k + ϵt (3.22)

and with the past values of the second time series:

Yt = β0 +
l∑

k=1
βkYt−k +

l∑
k=1

αkXt−k + ϵ̃t. (3.23)

where ϵt and ϵ̃t are Gaussian noise.
The statistical tests are defined as

• Null Hypothesis (H0): The past values of Xt do no provide significant information to
predict Yt.

• Alternate Hypothesis: The past values of Xt do provide significant information to predict
Yt.

To assess the validity of the null hypothesis, statistical tests are performed on the residuals.
Common choices include the F-test based on the sum of squared residuals (SSR) or the Pearson
chi-square test. The optimal lag length l can be estimated using information criteria such as
AIC or BIC.
Granger causality methods utilize predictive information in time series to establish causal
relationships, but this approach can produce misleading results as Granger causality does
not necessarily imply causation. It primarily identifies correlations and requires additional
assumptions to be considered for the relation to be causal, such as causal sufficiency and a
sufficient sample size. Moreover, Granger causality was primarily developed in the bivariate
and linear case.
To address some limitations, several extensions and improvements of the original Granger
causality methods have been developed, including multivariate versions (Chen et al., 2004;
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Geweke, 1982) and nonlinear variants like the nonlinear auto-regressive exogenous (NARX)
model (Faes et al., 2008) and kernel-based methods (Marinazzo D., 2008).
Additionally, adaptations of the previously discussed models have been applied to time series
data, including:

• Graph based methods: The methods discussed in section 2.4.2.3 and 3.3.5 have been
adapted to handle temporal data. For example, the PC algorithm has been extended to
time series data with the PCMCI algorithm (Runge et al., 2017), which uses a Momentary
Conditional Independence (MCI) test to address autocorrelations in time series data.
Additionally, to account for hidden variables, a time series version of the FCI algorithm,
known as tsFCI (Entner & Hoyer, 2010), was developed by transforming the time series
into a sample of random vectors with a sliding window. These approaches allow for the
identification of conditional independence relationships between variables while effectively
handling the temporal dependencies in the data.

• Structural Causal models: SCM have been extended to incorporate temporal
dependencies, leading to approaches such as VAR (vector autoregression), VarLiNGAM
(Hyvärinen et al., 2010), and Timino (Peters et al., 2013). These methods utilize noise-
based models to infer causal relationships between variables while accounting for the
temporal structure of the data.

• Score-based: Score-based algorithms have been developed specifically for time series
data. One notable example is DYNOTEARS (Pamfil et al., 2020), which learns a dynamic
Bayesian network to identify causal relationships in time-dependent systems of arbitrary
order.

3.4 How our work fits in the litterature
The following chapter introduces a novel approach combining the case-crossover design, an
epidemiological approach used to investigate acute disease triggers, and the Apriori algorithm.
The resulting time series causal algorithm extracts rules of interest from a non-linear time
series data set. In addition, a predictive rule-based algorithm demonstrates the potential of the
proposed method.
The literature on interpretable models for root cause analysis encompasses a diverse range
of techniques, including Bayesian Networks, regression models, decision trees, association
rules mining, and fuzzy logic models. Decision rule-based models, such as decision trees and
association rules, offer a valuable trade-off between interpretability and predictive accuracy.
However, decision trees can be prone to overfitting and instability, while association rules may
fail to capture causal relationships.
Random forests, introduced by Breiman (2001), have emerged as a popular alternative to
decision trees, combining the strengths of multiple trees to reduce overfitting and improve
predictive accuracy. However, the complexity of random forests, arising from the large number
of trees and bagging technique, can hinder interpretability. More recent approaches, such
as SIRUS (Bénard et al., 2021), have addressed the interpretability challenge by extracting
interpretable rules from random forests. SIRUS identifies frequent patterns in the trees, enabling

64



3.4. How our work fits in the litterature

the extraction of interpretable rules while maintaining the high accuracy and stability of random
forests.
In contrast current interpretable association rule mining models for root cause analysis exhibit
several limitations: they often fail to capture causal relationships, can be susceptible to
instability and low accuracy, and may require significant adaptation to handle time series data
effectively.
To address these limitations, the next chapter introduces a novel ARM approach that
incorporates causality into a new framework. This method effectively addresses the shortcomings
of traditional ARM models by extracting causal rules from time series data, providing more
reliable and insightful root cause analysis.
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4.1. Introduction

4.1 Introduction

4.1.1 General introduction
Monitoring has enabled, with the help of increased storage capacity, to collect a large amount
of data. The data analysis plays a crucial role in understanding the underlying mechanisms
and the occurrence of incidents. In the industrial context, this consists of placing sensors and
collecting temporal data like temperature, flow rates, chemical characteristics, or wind power to
capture the evolution and dynamics of the system. Exploiting these large amounts of temporal
data is a real challenge facing many companies. Indeed, they contain enormous amounts of
information that could help improve efficiency or optimize certain processes.
Driven by easy access to machine learning environments and the recent success of deep learning
techniques, many models have been developed to predict the occurrence of these events, but they
do not only work on their causes but also on the correlated variables. This makes these models
less robust, as they could miss the incident by trusting a correlated variable. In areas where
decisions and actions can have serious consequences, for example, on humans in medicine or on
the profitability in the industry, it is necessary to understand the model’s decisions and to carry
out a causal study to act in a justified way. Hence, the objective of causality in an industrial
context is to better understand the decisions made by artificial intelligence algorithms, find the
causes of unexplained events, and develop maintenance policies that anticipate breakdowns.
Therefore, a theoretical approach should be developed to provide a general framework that
could work in an industrial environment. In particular, the approach should help the operators
understand what are the mechanisms behind every decision that is taken and allow them to
prevent the apparition of an incident by defusing its arrival.
The interest in causality is growing, and these studies are becoming essential in industry and
in many other fields of applications. For instance, it is common for distillation units to have
a recurrent problem, called flooding, occurring during petroleum refining. The causal study
allows a better understanding of the origins of these problems and to develop a general approach
that can be used on many systems such as wind turbines.

4.1.2 Outline
Our methodology, based on Granger causality analysis, employs a case-crossover design (Maclure,
1991) (developed in section 4.2) to investigate causal relationships in industrial data. It is an
approach used in epidemiology in order to understand the origins of a phenomenon appearing
suddenly (heart attack, accidents, injuries (Estberg et al., 1998; Maclure & Mittleman, 1997;
Mittleman et al., 1993, 1995)). Establishing a causal relationship between an exposure and an
event necessitates demonstrating that the occurrence of the exposure indeed causes the event.
Identifying the causes of acute events is a complex challenge in epidemiology, and the rigorous
analysis of data collected from patient cohorts plays a pivotal role in these investigations.
This design is combined with the association rule mining algorithm Apriori (Agrawal & Srikant,
1994) which aims at discovering relationships of interest between two or more variables stored
in data sets. The advantage of this method is that it has a high interpretability (Toti et al.,
2016), hence easier to understand for operators that could then be able to act and defuse the
problem.
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In the following sections, we introduce a comprehensive framework designed to discover the
underlying causes of acute phenomena, i.e., that occur briefly over time. To showcase its
effectiveness, we employ this framework to analyze a case study involving flooding events.
We propose the Case-crossover APriori (CAP) algorithm, which provides association and
causal rules explaining the occurrences of failures, and the Case-crossover APriori Predictive
algorithms (CAPP1 and CAPP2) that predict them. The purpose of this work is to answer
the following research questions: What are the causes of the flooding event, and what are the
variables involved in this phenomenon? This chapter is organized as follows. Section 4.2 is
the presentation of the case-crossover design. Section 4.3 contains a depiction of the original
methodology developed in this study. Section 4.4 is dedicated to the description of the flooding
problem, the presentation of the data, and the results obtained from applying our approach.
Section 4.5 contains the conclusive remarks and approaches for future work.

4.2 Case-crossover design
Finding the causes of acute events has always been a challenge for epidemiologists, and the way
the data collected from a batch of patients is analyzed plays an important and crucial role in
the study. A relation between a factor and an event is said to be causal if the occurrence of
the factor causes the event.
To determine the root cause of a disease that manifests briefly among a population, it would be
ideal to compare a healthy group of individuals to the identical group had they been exposed
to some factors. However, this is not feasible in reality since we can only observe one of the
groups, and the other group is a hypothetical situation called the counterfactual.
In practice, a widely employed approach involves comparing two distinct subgroups: one
comprising individuals exposed to the event of interest and another consisting of those not
exposed. To draw causal conclusions, we make an assumption that the outcome of the exposed
individual represents the outcome that would have occurred had exposure not been present,
they are exchangeable. This assumption is known as exchangeability (Greenland & Robins,
1986; Mittleman & Mostofsky, 2014).
This design called the case-control design, must fulfill some conditions in order to eliminate
biases from the study. Specifically, it is crucial to control for confounding, which arises from
inherent differences between the two groups. To minimize confounding, subjects in the different
groups should share similar characteristics, such as age and gender. These biases can lead
to spurious associations or mask genuine ones, and the case-control design is not specifically
designed to prevent or control them.

4.2.1 Principle
The Case Crossover Design, proposed by Maclure (1991), is used in epidemiology to study
the onset of acute events across a population and is widely used to find the causes of diseases.
It is an alternative to the Case-Control design and allows for avoiding confusion and biases.
This design has been widely employed in various research domains, including investigating the
impact of air pollution on health (Jaakkola, 2003) and, more recently, exploring the potential
causes of COVID-19 and colder temperatures in the increased mortality (Runkle et al., 2020).
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The case-control design, as we have discussed, carries certain limitations stemming from the
comparison of individuals with different characteristics. Without pre-processing our data and
ensuring that similar subjects are matched, confounding factors may arise.
The case-crossover design addresses the limitations of the standard case-control approach by
focusing exclusively on individuals who have experienced the event of interest. This design
hinges on the comparison of two distinct periods: the control period and the case period. The
control period is selected in a "normal" operating phase, often spanning a significant duration
before the occurrence of the event of interest. The case period, on the other hand, is selected
during the hazard period, a time frame preceding the event’s onset. By comparing these two
periods, we can identify the changes that occurred between them and determine which changes
are consistently observed across the population and are likely to have played a role in triggering
the event or disease. Moreover, this design eliminates the need for a separate control group,
requiring only data from the individuals who experienced the event.

Figure 4.1: Description of the difference between case-control and case-crossover with a car
accident example from Maclure & Mittleman (2000) article. The case-control design compares
the impact of factors (e.g., driving while drung) of individuals who have experienced a car
accident to a control group who did not experience it. The case-crossover design focuses on
individuals who have experienced a car accident and analyzes the impact of factors during
specific time periods, including the case period leading up to the accident and a control period
prior to the accident.

Example 4.2.1 ((Maclure & Mittleman, 2000)). To illustrate the relevance of this design,
consider the case of car accidents in Figure 4.1. To determine the root causes of accidents in a
specific region, the case-control design involves identifying two groups of individuals: one that
has experienced a car accident in the area – the case group – and another that has not – the
control group. By comparing the behaviors of these two groups, we can identify any factors
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that are more prevalent among individuals in the "case group" than in the "control group". For
instance, we might discover that individuals in the control group are more likely to engage in
behaviors such as eating or using their phones while driving, suggesting that these behaviors
could be contributing factors to car accidents in the area.

Typically, this method involves monitoring several individuals on the same day of the week
and at the same time over an extended period. Statistical analysis is then performed on the
aggregated data to identify any significant associations between factors and the event.
In epidemiology, we note for each subject i, xi,t ∈ Rp the multidimensional vector of exposure
covariates at time t where t ∈ {1, . . . , T} is the time at which the event can occur and the
outcome of the subject i at a time t is noted yi,t ∈ {0, 1} where

yi,t =
{

1 if the failure occurs
0 otherwise. (4.1)

In this study, the subject i is a time series where the flooding i happens for each i ∈ {1, . . . , N}
where N ∈ N, xi,t is the multidimensional vector of factors/covariates measured over time in
the distillation unit and the event described by yi,t = 1 is the flooding event happening at time
t.
In the following, we outline some fundamental assumptions that the case-crossover design must
satisfy to establish causal relationships. These assumptions ensure that the design effectively
controls for confounding factors and provides reliable evidence.

4.2.2 Hypotheses
4.2.2.1 Acute event

An important assumption of the case-crossover design is that the causal factors leading to the
event should be acute/transient. In other words, the event should be triggered by a brief but
significant change in a variable during the hazard period, rather than a prolonged or cumulative
effect. This assumption is crucial for eliminating bias and drawing causal conclusions. Indeed,
if the exposure has a long-lasting effect, the case-crossover design will not be able to capture
the temporal relationship between exposure and the event. For instance, if a driver had been
drinking for an extended period before the accident, the case-crossover design would not be
able to effectively distinguish the impact of alcohol consumption during the hazard period from
its overall influence on the driver’s behavior. In such cases, a case-control study would be more
appropriate.

4.2.2.2 Exchangeability

In the case-crossover design, we aim to assess the influence of exposure, such as a factor variable
exceeding a predefined threshold, on the occurrence of an event. In order to set a case-crossover
design, we should verify the validity of the hypotheses of exchangeability between case and
control periods. In their article, Mittleman & Mostofsky (2014) suppose the control of the
following:

70



4.2. Case-crossover design

• Confounding variables: factors that influence both the exposure and the outcome. Their
presence can distort the relationship between exposure and outcome, either by creating a
spurious association between them or by hiding an existing one.

• Selection Bias: happens when the individuals and times in a study do not represent the
entire population and time that should have been included. This can lead to distorted
results, as the relationship between exposure and event may be different for the selected
group than for the entire population. This concerns particularly control time selection
biases that include:

– Dependence with exposure: The selection of the control period is crucial, as it
should represent a time when there is no exposition to the factor under investigation.
Taking the example of the car accident, if the control period is too close to the event,
the individual could have been using their phone, making it difficult to discern any
difference between the control and case periods.

– Multiple exposures: Exposures that occur once or repeatedly can create bias if only
the first or last exposure is considered, and other exposure periods are ignored. This
is because sampling from times when exposure is more or less likely can skew the
estimate of the effect of the exposure on the outcome.

• Auto-correlation: occurs when the exposure in one time period is correlated with exposure
levels in other time periods. They are of different types, including:

– Auto-correlation between case and control: When the duration of the effect of an
exposition is greater than the duration of the control period, this will lead to a bias.
The previous example of the drunk subject, where the effects are present in both
periods, shows the limitation of Auto-correlation.

– Auto-correlation between outcomes: If the exposition weakens the subject, it will
have an impact on the next observations. For example, if a runner has a knee injury,
he will be more prone to get injured in the same area as he will be weakened.

To assure exchangeability between the time periods under comparison, it is crucial to
address potential confounding variables, selection bias, and auto-correlation. If there is no
exchangeability, the variable being studied may not be associated with the event or causal.

4.2.2.3 Existing applications

Case Crossover design have been created by M. Maclure to answer the specific question: Was
this event triggered by something unusual that happened just before? The objective is to
determine how we quantify the "before" and the "unusual" behavior.
The case-crossover design was initially employed in epidemiological studies, particularly for
investigating the onset of Myocardial Infarction (MI). The approach aims to identify the factors
contributing to MI by comparing the behavior of individuals during the onset period to their
behavior during earlier healthy periods. This approach involved using the same individual as
their own control by asking them about their activities during the previous days for comparison
purposes. This allowed to reduce bias and to find and quantify many triggers of MI, such as
physical exertion (Maclure, 1993), anger (Maclure, 1995), sexual activity (Muller et al., 1996),
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cocaine use (Mittleman et al., 1999), bereavement (Mittleman et al., 1996) and respiratory
infections (Meier et al., 1998).
Epidemiologists have also used the case-crossover design to investigate the factors that lead
to injuries and examine the relationships between drug consumption and various phenomena.
According to Maclure & Mittleman (2000), the case-crossover design has become known since
the publication of the article (Maclure & Mittleman, 1997) in 1997, stating the association
between mobile phone use while driving and car accidents. Since then, they have been used in
several domains and for different studies with air pollution, such as its association with daily
mortality (Lee & Schwartz, 1999) or injuries in racehorses (Estberg et al., 1998).
More generally, the Case Crossover design could be applied to multiple fields such as environment
epidemiology (Laurent et al., 2007), pharma-epidemiology (Hebert et al., 2007), occupational
health (Vegso et al., 2007) and economic health (Stevens et al., 2006). Although this design
has a theoretical potential for non-epidemiological fields such as industrial environments, there
have been very limited studies conducted in industrial settings using this approach.

4.3 Rule-based algorithm
Association Rule Mining (ARM) is a data mining framework that allows the extraction
of frequent associations of variables in a database. It has the advantage of being highly
interpretative and easy to understand. In this section, we describe how ARM has been used in
retail and how we adapt it to more varied fields of application, particularly for time series, by
introducing the CAP, CAPP1, and CAPP2 algorithms.

4.3.1 Motivation
ARM has been developed by Agrawal & Srikant (1994) for commercial purposes. Indeed,
commercial enterprises accumulate a significant amount of data on a daily basis. In the case
of supermarkets, consumer purchases that can be retrieved from checkout receipts are a huge
source of information. Their analysis helps to better understand consumers’ behavior and thus
establish appropriate marketing campaigns, better manage inventories, or improve customer
relations.
The general setting for ARM is composed of a database containing transactions, and each
transaction is an item-set, i.e., a set of items. Let I be the set of items and D be the set of
transactions, which is a set of item-sets of I, and let a be an item-set and b an item. Rules
extracted are of the form a→ b. Several challenges can arise when employing association rules.
The number of generated rules can become overwhelming, especially for large data sets, making
it impractical to examine all possible associations. In fact, in a database with n items, the
number of rules of the form a→ b for all possible item-sets a and items b that are not present in
a is n2n−1, hence the complexity would be exponential and the problem intractable. In addition,
we may find rules with random patterns that do not actually reflect any real connection or
cause-and-effect relationship between the items.
ARM algorithms allow finding relationships between items from the database in the form of
association rules which are rules (implications) of the form a→ b where a is an item-set and
b is an item-set that is not present in a. In our case, we consider that b is only one item. In
this section, we use the Apriori algorithm to extract causal rules from a database. Given our
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objective of identifying causal relationships, we deem Apriori’s capabilities as sufficient for our
purpose. Alternative algorithms, such as FP-Growth, could be explored in future endeavors.

4.3.2 Notations
In the following, we focus on the supervised binary classification framework using the case-
crossover design. In the section 4.4, we show that an appropriate preprocessing of the data
set allows the selection of control and case periods on the same time series ("individual"). For
each multivariate time series (xt)T

t=1 = (x⊺
1, . . . , x⊺

T )⊺ ∈ Rp×T and for each (τ1, τ2) ∈ {1, . . . , T}2
such that τ1 < τ2, we denote xτ1:τ2 = (xt)τ2

t=τ1 . Hence, for τ ∈ {1, . . . , T}, xτ−1:1 contains the
past values of xτ and xt:t−l+1 contains the l lags of xt+1 (for l ≥ 1).
Suppose, that we have a sample composed of N pairs DN = {(xi,T :1, yi), i = 1, . . . , N} where
the N pairs are i.i.d of the same law as (xT :1, y). Each time series xi,T :1 is generated by the
same stationary process, and y ∈ {0, 1} is the binary outcome. For a time series (xt)T

t=1, the
goal is to predict the binary output y. Hence, the objective is to find an interpretable and
causal predictive model of the event y = 1 given (xt)T

t=1.
In this section, we propose an original method inspired by the case-control and the case-crossover
designs which can process continuous or categorical temporal data. The method aims at finding
an interpretable and causal predictive model of the event y = 1 given (x[1,δ], x[T −δ+1,T ]) where δ
is the duration of a period and ∆ = T − 2δ + 1 is the gap between the two periods, as shown in
Figures 4.3 and 4.4. First, using prior and domain knowledge, we select the periods that allow
us to characterize the event. Secondly, we need to transform the periods into a categorical data
set. Since the association rule mining algorithm only works with categorical data, we should
indeed apply a transformation to convert continuous variables into categorical data without
losing relevant information. This allows to extract simple rules explaining the dynamics of the
phenomenon.

4.3.3 Methodology
We decided to apply the case-crossover design on a data set using association rule mining
by creating an algorithm called Case-crossover APriori (CAP). The first step is to set up an
environment in which we are able to compute rules. We need to define what our "transactions"
are and the type of "items" that will be included in our rules. As rules are computed between
periods of the time series, we need to set a metric that creates the items.

4.3.3.1 Case-crossover Design

Basic design Firstly, the case-crossover design needs to be adapted to a time series data
set designed for classification. It is done by constructing a parametric model that could be
optimized, allowing the user to select the control and case periods and fine-tune the model by
selecting the best parameters.
In time series data, case samples are instances where the target variable indicates a failure
(yi = 1), while control samples represent instances where the target variable indicates no failure
(yi = 0). This approach allows us to use a machine learning framework for binary classification,
whether we want to compute interpretable rules or make predictions.
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The primary goal is to identify appropriate control periods. Due to the limited number of
failures in the data set, preprocessing is crucial for employing the Apriori algorithm. The
case-crossover design suggests comparing a control period with a case period. This approach is
illustrated in the Figure 4.2.

Y
Event: Y

Has this ever happened before?

Figure 4.2: Basic case-crossover design with a single control and case period.

However, this strategy presents a limitation for our study as it only considers pairs of data
where the case period precedes a failure, essentially a pair leading to a failure. To effectively
conduct association rule mining and machine learning in general, we need to investigate every
outcome, including cases that do not lead to failures. This necessitates identifying control
periods for events that do not result in failures.

Adapting Case-crossover design To adapt the case crossover design to our binary
classification framework, we require samples with both failure and non-failure labels for
association rule mining, we introduced an additional period, as depicted in Figure 4.3 and 4.4.

Y

Figure 4.3: Proposed design applied for a
time series without the failure: control

Event: Y

Figure 4.4: Proposed design applied for a
time series with the failure: case

In this design, the algorithm compares period1 and period2 that have the same duration δ
(which is a hyper-parameter) and that are separated by an interval of duration ∆ = T − 2δ.
Hence, for each time series (xt)T

t=1 taken in DN , we can extract the first period xperiod1 = (xt)δ
t=1

and the second period xperiod2 = (xt)T
t=T −δ+1.

This approach allows us to compute rules or to make predictions by using a machine learning
framework for binary classification.
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4.3.3.2 From continuous data to items

We experimented with various methods for mapping the data for each period and each input
variable into a single value (discretization) while preserving the system’s dynamics. We identified
three approaches:

• Autoregressive Model The objective is to detect a loss of stationarity as it could be
a cause of failure using autoregressive models. An autoregressive model is a statistical
model that predicts the current value of a time series based on a linear combination of
its past values. Let (z1, . . . , zt) be a time series, an autoregressive model of order p ∈ N,
AR(p) can be written as:

zt = β1zt−1 + β2zt−2 + . . . + +βpzt−p + ϵt

where βi ∈ R and ϵt is the realization of a white noise process of variance σ2. Two
autoregressive models will be fitted on a period of data taken one hour before the given
period, one for the control and the other for the case period. Then, using the estimated
parameters of the model, we will predict the evolution of the hour following respectively
the control and the case period. Finally, the residual error for each given period will be
computed.

• Standard deviation For each selected period, we calculate the standard deviation for
each variable.

• Mean For each selected period, we computed the mean for each variable.

Ultimately, we found that computing the mean of each selected period for each variable provided
the most convenient and relevant approach. This transformation is easy to understand and
interpret, and it allows us to construct counterfactual scenarios.

Absolute values of a period In the basic version of the case-crossover design as shown in
Figure 4.2 and in the adapted version in Figure 4.4 and 4.3, a first approach deals with the
most recent period only i.e. x̄period2 = (x̄(j)

period2
)p
j=1 summing up the dynamics (absolute value)

of the system of the case and control period.
If we take the example of Figure 4.4, we select the period on the right (the most recent) and
compute the mean of the period. In Figure 4.4, we observe a significantly higher mean value
before the event compared to the mean value observed in Figure 4.3 which can indicate an
influence of the variable.

Change between pairs: How can we compare a pair of periods? In the adapted
version of the case-crossover design as shown in Figure 4.4 and 4.3, once we have the values
x̄period1 = (x̄(j)

period1
)p
j=1 and x̄period2 = (x̄(j)

period2
)p
j=1 summing up the dynamics of the system

during the first and second periods, we need to compare them. The metric chosen is the
percentage change:

(
x̄

(j)
period1

, x̄
(j)
period2

)
:→

∣∣∣∣∣∣
Max(x̄(j)

period1
, x̄

(j)
period2

)−Min(x̄(j)
period1

, x̄
(j)
period2

)

Max(x̄(j)
period1

, x̄
(j)
period2

)

∣∣∣∣∣∣ (4.2)
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If we take the example of Figure 4.4, we first select the two periods shown in red in the figure.
Then, we compute the mean of each period. Finally, we compute the percentage change of
the means. In Figure 4.4, there is a large increase in the mean value between the two periods,
hence a large value of the percentage change, while in Figure 4.3 there is no meaningful change
between the two periods.

Let us denote by fabs the function taking as input one period xperiod2 and computing its
mean and fpairs the function taking as input the first and the second period xperiod1 and
xperiod2 , computing the mean of each period x̄period1 and x̄period2 and additionally compute the
percentage change using the metric (4.2). Finally, the problem is formulated as follows: the
objective is to find a predictive model of the event

y = 1 given fabs(xperiod2) and fpairs(xperiod1 , xperiod2)

Categorization step Association rule mining algorithms, like the Apriori algorithm, take
as input categorical variables. Hence, we need to do a "categorization step" because when we
have either absolute values, or we compare the pair x̄

(j)
period1

and x̄
(j)
period2

using the percentage
change metric (4.2). Note that values from the percentage metric lie between 0 and 1 if we
consider that all variables take positive values (this hypothesis is not restrictive for continuous
real-valued random variables as it is always possible to transform them into random variables
with uniform distribution over [0,1]). Then, we categorize these values into two categories for
absolute values DOWN and UP and three for percentage changes LOW, MEDIUM, and
HIGH. This was decided for clarity reasons to explain the method, but it can be extended to
an arbitrary number of categories.

Let us note for each j ∈ {1, . . . , p}, x(j)
{down} the boolean variable which is True if the mean is

below the median value and x(j)
{up} if above. Moreover, let us note for each j ∈ {1, . . . , p} x(j)

{α,β}

the boolean variable which is True if the percentage change of x(j) = (x(j)
T :1) falls in the interval

defined by the quantiles of order α and β. We first estimate two empirical quantiles from the
data set, the quantiles of order 0.33 and 0.66. Thus, for each j ∈ {1, . . . , p}, we have three
boolean variables to indicate the range in which the percentage change is: x(j)

{0,0.33}, x(j)
{0.33,0.66}

and x(j)
{0.66,1}.

For each of the time series (xi,T :1) taken in DN , we select period1 and period2, compute their
means and compare them using the percentage change metric defined in (4.2). After completing
the process for all the samples in the database DN , we set up the Table 4.1.
In the "Event ID" column, for i ∈ {1, . . . , N} yi is the outcome of the time step T + 1. If the
event happens, then yi = 1, otherwise yi = 0. Hence, the comparison between the case and
control allows for identifying variations characteristic of the event and separating them from
independent variations. The "Items" column gathers, for each of the "Event ID", the interval in
which the absolute value and the percentage change of each variable is.
Then, we perform one-hot encoding (Pedregosa et al., 2011) to transform categorical variables
into numerical representations, as shown in table 4.2. Additionally, we create a boolean "Event"
column by converting the "Event ID" column into a binary indicator of the occurrence of the
event. Finally, we apply the Apriori algorithm to identify rules that predict the occurrence of
an event.
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Event ID Items
y1 (x(1)

1 ){0,0.33} = False,(x(1)
1 ){0.33,0.66} = False,

(x(1)
1 ){0.66,1} = True,(x(2)

1 ){0,0.33} = True,
(x(2)

1 ){0.33,0.66} = False,(x(2)
1 ){up} = False,. . .

y2 . . . ,(x(3)
2 ){0.33,0.66} = True,. . . ,

(x(5)
2 ){0,0.33} = True,(x(5)

2 ){0.33,0.66} = False, . . .
y3 (x(1)

3 ){0,0.33} = False, (x(1)
3 )[0.33,66] = False,

(x(1)
3 ){0.66,1} = True,. . .

. . . . . . , . . .
yn−2 . . . ,(x(2)

n−2){0,0.33} = True,. . . , (x(4)
n−2){down} = True,. . .

yn−1 . . . ,(x(2)
n−1){0,0.33} = True,. . . ,(x(4)

n−1){0.33,0.66} = True

yn . . . ,(x(1)
n ){0.33,0.66} = False,(x(1)

n ){0.66,1} = True,
. . . ,(x(3)

n ){up} = True,. . .

Table 4.1: Table constructed from the comparisons of the selected periods

Event ID (x(1)){0,0.33} (x(1)){0.33,0.66} (x(1)){0.66,1} (x(2)){0,0.33} (x(2)){0.33,0.66} . . .
y1 0 0 1 1 0 . . .
y2 0 1 0 0 0 . . .
y3 0 0 1 0 0 . . .
y4 1 0 0 0 1 . . .
y5 0 1 0 1 0 . . .
...

...
...

...
...

...
...

Table 4.2: One-hot encoding

4.3.3.3 Apriori algorithm

We used the Apriori algorithm from the package MLxtend (Raschka, 2018). The library
provides parameters to customize the search for rules. The minimum support threshold
min_support dictates the minimum number of occurrences for an itemset to be considered as
a frequent item-sets 2.4.4. Additionally, the user can fine-tune the thresholds for metrics like
confidence 3.3.5, lift 3.3.7, and conviction 3.3.9 to further discriminate between rules. The
maximum length max_len parameter controls the maximum number of items and associations
in the extracted rules. Finally, by adding a constraint to have only rules which have a target
"Event=True" i.e. y = 1, and a max_len of 1, the CAP algorithm could find rules like: Finally,
we impose a constraint to restrict the extracted rules to those with a target value "Event=True,"
effectively capturing patterns associated with failures i.e. y = 1, and with a max_len of 1, the
CAP algorithm could find rules like:

{x(1)
{0,0.33} = True } =⇒ {Failure=True}
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4.3.4 Predictive Algorithm
Beyond the evaluation of the rules found by the Apriori algorithm which is made by experts,
we want to test predictive properties by creating a first predictive algorithm that we call
Case-crossover APriori Predictive 1 (CAPP1). The goal is to predict the binary output y
based on simple and understandable rules. We selected the first 10 rules by order of confidence
and lift to do the prediction on a test time series X of length T .

Event: Y

Shift

Figure 4.5: The gray pair of periods indicates a period to be evaluated, and it is shifted over
time to identify potential failures when the rules are triggered.

In Figure 4.5, we compute the antecedent of an aggregation of rules that have been found. If at
least one rule is True, CAPP1 predicts a "failure" and triggers the alarm. We have experimented
several other approaches to perform rule-based prediction, among them, we can cite the simple
aggregation technique which consists of voting on the found rules similar to what the SIRUS
algorithm does (Bénard et al., 2021). The aggregation could be improved by using an ensemble
learning method such as stacking (Hastie et al., 2009) by learning the decision combining these
rules. The perfect predictive algorithm would predict a "failure" for Figure 4.4 but not for
Figure 4.3.

Example To better understand the process, let us take the example using the first rule of
Table 4.3.

{x(1)
{0,0.33} = True, x(2)

{0.33,0.66} = False} =⇒ {Failure = True} (4.3)

We consider a test time series (xt)T
t=0 and select the first and second variables X(1) and X(2)

and compute their percentage changes between period1 and period2. If the percentage change
of the variable X(1) is less than the quantile 0.33 and that of the variable X(2) is not between
the quantiles 0.33 and 0.66, the algorithm predicts an event.
In order to estimate the error of our predictive model, we need to classify the predictions into
four outcomes: the True Positive (TP), the True Negative (TN), the False Positive (FP), and
the False Negative (FN). Then, we use the following metrics:

• True Positive Rate (TPR) or Recall summarizes the fraction of examples assigned to the
positive class that belongs to the positive class

TPR = TP

TP + FN
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Y Event: Y

Figure 4.6: This figure shows how, from one time series of duration 20 hours (1200 minutes),
we make a cutout to obtain the control sample in green and the case sample in red.

• Similarly, True Negative Rate (TNR) summarizes how well the negative class is predicted

TNR = TN

TN + FP

• F2-score is a weighted F-score and is used when it is much worse to miss a True Positive
than to give a False Positive

F2 = (1 + 22)× precision× recall

(22 × precision) + recall

These metrics can be used on the training database, on a test set, and in cross-validation.

Case-crossover APriori Predictive 2 (CAPP2) A complementary approach called Case-
crossover APriori Predictive 2 (CAPP2) has been studied in order to improve the quality of
prediction. Indeed, in addition to looking for the rules leading to an event of the form

{x(1)
{0,0.33} = True, x(2)

{0.66,1} = True} =⇒ {Event = True}

we have also looked for the contraposed, which are the rules that do not lead to an event
(leading to "Event = False") of the form:

{x(4)
{0.33,0.66} = True, x(3)

{0.33,0.66} = True } =⇒ {Event = False}

Let us call "Event=True rules" the first rules and "Event=False rules" the second ones. There are
different ways to combine these two approaches to compute a more robust predictive model. We
could adjust the number of rules proving to be True for each of the two approaches, give more
weight to the "Event=True rules" for the prediction, or give more weight to the "Event=False
rules." Cross-validation allows testing, observing, and studying the behavior of each of these
experiments. The decision could be improved by learning the decision combining the two types
of rules.
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4.4 Application
This section provides a comprehensive overview of our algorithm’s application. We begin by
introducing the real-world problem that we aim to address, followed by a detailed description
of the data employed for the analysis. Finally, we present the obtained results, showcasing the
effectiveness of our algorithm.

4.4.1 Flooding
Petroleum refining is a complex process that transforms crude oil into various usable products,
including gasoline, diesel, and feedstocks for petrochemicals. The first step in this process is
distillation as shown in figure 4.7 and 4.8, a method that separates different liquid substances
based on their boiling points. In the context of petroleum refining, distillation is crucial for
separating the hydrocarbon fractions present in crude oil.
Regularly, an event called flooding (KISTER, 1990; Ludwig et al., 2009; Oeing et al., 2021;
Peiravan et al., 2020) occurs and requires the process to be stopped for a considerable amount
of time. This happens when the steam flow is too high and blocks the flow of liquid in the
column in figure 4.8. They are usually detected by sharp increases in differential pressure and a
decrease in production performance. This is a frequent problem and the exact cause can vary:
excessive vapor flow, too much heating, etc. Flooding results in a loss of performance and a
decrease in the quality of separation. Conventional methods based on theoretical equations
and/or temperature and differential pressure analysis have been used to develop predictors.
These attempts have so far been unsatisfactory; either the number of false positives was too
high, or a large number of flooding was missed.
Flooding is a common problem in distillation columns that can disrupt the separation process
and lead to significant production losses (Oeing et al., 2021; Peiravan et al., 2020). It occurs
when the vapor flow exceeds the capacity of the column, causing the liquid to back up and
accumulate on the trays. This can be detected by sudden increases in differential pressure
and a decline in the column’s separation efficiency. Several factors can contribute to flooding,
including excessive vapor flow, excessive heating, or improper column design. Flooding results
in reduced separation efficiency and, as a result, a decrease in product quality and financial
losses.
Conventional methods for predicting flooding, such as those based on theoretical equations or
temperature and differential pressure analysis, have proven unsatisfactory due to high false
positive rates or missed flooding events.
Flooding events are complex, and their causes are not fully understood, but we know that
there are different types of flooding with varying origins. Currently, a predictive model has
been developed to anticipate the occurrence of flooding events. The Random Forest algorithm
(Breiman, 2001) enables one-hour advance warnings. While the model has high accuracy, it
still generates false positives and fails to detect some events. These shortcomings can lead to
wasted time and financial losses.
One significant drawback of this approach is that the Random Forest algorithm is a black-box
model, which means that even though it can forecast flooding occurrences, the underlying
causes of the prediction of these events remain opaque. Indeed, Random Forest is an ensemble
of decision trees, where each tree makes a prediction based on a different subset of data, and the
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Figure 4.7: Distillation unit (Montanus, 2016)

final prediction is determined by aggregating the votes among the trees. In addition, Random
Forest is not a causal model, which means it cannot establish direct relationships between
variables, potentially compromising the reliability of its predictions After implementing the
predictive model on-site for real-time flooding detection, operators raised several questions:
How does the algorithm make its predictions? Why should they trust a model that they do not
understand and cannot be explained? What actions should be taken to prevent flooding when
the alarm is triggered? These questions have remained unanswered, and we believe it is crucial
to address them.
A causal study is thus necessary to develop an interpretable model that extracts the relationship
between the variables and the onset of the flooding. Based on expert insights, we assume
exchangeability, including that each flooding is an acute event and that they are isolated
incident and independent from other occurrences. Hence, the case period will be selected just
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Figure 4.8: This figure shows the movement of liquid components downward while vapor rises
inside the distillation column (Lichtarowicz, 2016).

before the event and the control period should be far enough from the case and in normal
operating conditions of the distillation column.

4.4.2 Data
Numerous sensors were placed at various points in the distillation unit to collect data and
monitor the evolution of the system. More than 800 variables were measured, providing
information such as the type of input crude, pressures, temperatures, flow rates, valve openings,
and chemical measurements. The variables are categorical or continuous and take positive
values. These measurements were carried out every minute for 4 months, and the identification
of flooding events is calculated using a formula involving variables from the outputs of the
distillation column and is presented in the data in the form of an additional binary column
where a 0 represents a normal operation condition system and 1 represents the flooding event.
Each column represents a measured variable, and each line describes the system at a specific
minute.
In our study, we consider that flooding events are independent of each other. For this reason,
we only take into account events that occur at least 20 hours apart from each other. Thus,
we identify a total of N = 38 long time series (of duration 20 hours=1200 minutes) to be
studied. We have, therefore, cut the data into 38 long time series, the last moments of which
correspond to the appearance of the flooding event. In order to build the database DN using the
case-crossover design, we must have pairs (xT :1, y). Therefore, we need to define the duration
T of the time series and get samples such that we have couples with labels y = 1 and y = 0
coming from the same long time series. The label y = 1 is simple to obtain because we just
have to select the last moments of each of the 38 time series, which, by definition, all end with a
flooding event. For the label y = 0, we had to sample and select a part of the 38 series. Since we
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rules support confidence lift

{x(1)
{0,0.33} = True, x(2)

{0.33,0.66} = False} =⇒ {Event=True} 0.2315789 0.9777778 1.955556
{x(1)

{0,0.33} = True, x(3)
{0.33,0.66} = False} =⇒ {Event=True} 0.2236842 0.9770115 1.954023

{x(1)
{0,0.33} = True, x(4)

{0,0.33} = False} =⇒ {Event=True} 0.2210526 0.9767442 1.953488
{x(5)

{0,0.33} = True, x(2)
{0.33,0.66} = False} =⇒ {Event=True} 0.3118421 0.9753086 1.950617

{x(1)
{0,0.33} = True, x(6)

{0.33,0.66} = False} =⇒ {Event=True} 0.2052632 0.9750000 1.950000

{x(5)
{0,0.33} = True, x(2)

{0.66,1} = False} =⇒ {Event=True} 0.2552632 0.9748744 1.949749
{x(1)

{0,0.33} = True, x(7)
{0.33,0.66} = False} =⇒ {Event=True} 0.2013158 0.9745223 1.949045

{x(5)
{0,0.33} = True, x(3)

{0,0.33} = False} =⇒ {Event=True} 0.2355263 0.9728261 1.945652
{x(1)

{0,0.33} = True, x(2)
{0,0.33} = False} =⇒ {Event=True} 0.2315789 0.9723757 1.944751

{x(1)
{0,0.33} = True, x(8)

{0.33,0.66} = False} =⇒ {Event=True} 0.2315789 0.9723757 1.944751

Table 4.3: This table displays the rules found by the algorithm, sorted by confidence and lift.
The support is also shown here.

assume that the samples are independent, we have to select this period so that it is far enough
from the flooding event and under normal operating conditions. With the advice of experts, we
decided to select samples at a time distance of 10 hours=600 minutes from the flooding event.
This step of selection of periods requires preliminary knowledge of the phenomenon in order to
select the periods of "normal" and "abnormal" functioning. In our case, we know that the event
is acute and occurs in the hour before the event.
Figure 4.6 summarizes the principle of the case-crossover design and highlights the data cutout
to obtain the control and case of Figure 4.3 and Figure 4.4.
Therefore, to learn rules, we have a training database DN = {((xi,T :1), yi), i = 1, . . . , n} where
n = 76. 38 samples of DN have a label yi = 1 and 38 samples have a label yi = 0. The sampling
is done every minute, and we have 4 hours of measurements for each sample, hence T = 240.

4.4.3 Interpretable Rules found by CAP
In this subsection, we use expert knowledge of the characteristic times of important phenomena
to determine certain time parameters, such as δ. For the rest of the parameters, we did not
want to optimize them too much to avoid overfitting, optimizing the thresholds is an idea to
keep in mind if the learning base is large enough.
After preprocessing the data, we computed the Apriori algorithm with the described design
with a period duration of δ = 60, 1 hour sampled every minute, and a gap ∆ = 120 of 2
hours between period1 and period2. We set min_support ≥ 0.2 and min_len = 2 and sort the
results by confidence and lift. The rules that have been found are shown in Table 4.3.
Among the rules, we can see the presence of X(1) which is a variable computed from a physical
model and used to be, before the random forest model, the variable allowing to determine the
appearances of flooding events. Moreover, X(2) is a re-circulation flow variable and has been
selected by experts as being very likely to explain the flooding appearance.
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4.4.4 CAPP1 Prediction Results
To prevent overfitting and evaluate well the CAPP1 method performance, we decided to do
a Leave-Two-Out (LTO). For j ∈ {1, ..., n/2}, we take the (2j − 1)th and (2j)th element of
the database DN for testing, such that we have a couple computed from one of the 38 long
time series with one element having a label y = 0 and the other y = 1, and we take the n− 2
other elements of DN as a training set. The training set provides data to the Apriori algorithm
in order to learn rules using the different metrics we defined. The rules are then sorted by
confidence and lift and are ready to be tested. For the testing, as described in subsection 4.3.4,
we predict the two elements in the test set. Finally, we evaluate the prediction by computing
the True Positive Rate, the True Negative Rate, and the F2 score and compute the mean of
these scores over the 38 tests we have done with our LTO. Thus, in the following, all calculated
scores are obtained by cross-validation.
As mentioned in section 4.3.4, we select the 10 rules with the highest confidence and lift and
with two or fewer explanatory variables, then we calculate the quality of the prediction using the
defined metrics. We evaluate the predictive performance of the CAPP1 method by a comparison
with the one of a random forest (RF) algorithm. The RF is trained with the data set Dn and
takes as input the averages of the input variables over [T − δ + 1, T ], [T − 2δ, T − δ + 1], . . . , [1, δ]
and predicts the binary label "there is a flooding at time T + 1 minute". The results are shown
in Table 4.4.
We could always increase the True Positive Rate by choosing a higher threshold for the minimum
support and increasing the number of rules, but this will directly affect the True Negative Rate
as there is a trade-off between True Positives and False Positives. If our model is more sensitive
and often rings an alarm, it will make more errors and then more False Positives.
The results are satisfactory as the True Positive Rate is relatively high and far better than a
random prediction without even optimizing our algorithm but is insufficient compared to the
random forest algorithm.

4.4.5 CAPP2 Prediction Results
After several tests, we opted for the following combination: we set min_support ≥ 0.01 and
sorted the results by confidence with a minimum threshold of 0.5. If at least one out of the
first 100 "Event=True rules" and less than one out of the first 100 "Event=False rules" is True,
we predict that the tested pair leads to a flooding event i.e. y = 1. Otherwise, we predict that
the pair does not lead to a flooding event, i.e., y = 0. Since a minimum threshold of confidence
has been set, the number of rules can be smaller but limited to 100. Note that the choice of
100 rules here is empirical and depends on the choice of the minimum support threshold.
CAPP2 has allowed us to improve our prediction results and obtain the scores presented in
Table 4.4.
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Algorithm F2 score TNR TPR/recall
Random Forest 0.8127 0.8368 0.8684
CAPP1 0.6991 0.6644 0.8684
CAPP2 0.9139 0.9210 0.8947

Table 4.4: Prediction scores.

These results are promising as the CAPP2 method achieves better scores than RF without
optimizing our model with a relatively small data set and especially with a model that proposes
a causal analysis.

4.5 Conclusion And future works
We have developed a data-driven model based on the case-crossover design and association rule
mining for determining the causes of an incident from time series. This approach overcomes two
main issues: the lack of interpretability and prediction based on correlations. The understanding
of incidents is essential because it would allow predicting in advance their appearance using a
causal prediction algorithm and be able to justify the reliability and confidence contrarily to a
black-box algorithm.
The application and study of this approach to our data set provide conclusive results, confirming
that the method is promising. This work gives insight to operators working in the refinery with
the distillation unit and allows them to understand the mechanisms that trigger the event. The
method finds interesting rules and describes associations between variables leading to an event.
Among the top rules sorted by confidence, we find the variables that have been suspected to be
causal by the experts. The associations make it possible to strengthen them and to add missing
information necessary to the understanding of the phenomenon of flooding. In addition, our
predictive study has shown that we could build a strong predictive model that could outperform
the one actually in production. Indeed, the results of the four-month data set have confirmed
these expectations, and there is still a lot of room for improvement.
This method selects certain parameters using expert knowledge. In the absence of such
information, methods to determine these characteristic times must be considered, and more
failure case data may be needed for this.
Several approaches have been identified for future work. Among them, we could cite the
following ideas: instead of choosing two arbitrary quantiles as we did in this work, we could
optimize them and adapt their number. We could also deepen the contraposed approach
CAPP2, improve our predictive model by aggregating the results over multiple analyses with
different parameters ∆ and δ, and optimize the event detection system.

85



CHAPTER 5

Dynamic Modeling in Multivariate Time Series
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5.1. Introduction

This chapter explores dynamic modeling and begins by introducing the challenge of modeling
systems that evolve over time in section 5.1. This naturally connects to the field of time
series forecasting, for which an overview is given in section 5.2. Section 5.3 formally defines
the problem of dynamic modeling, formulating the process of uncovering underlying models
using forecasting techniques. Then, section 5.4 provides a review of the current state-of-the-
art interpretable methods within dynamic models. Finally, section 5.5 outlines the specific
challenges we address and presents our research question.
Throughout this chapter, let N, H, and p ∈ N denote respectively the number of time series of
the training data set, the prediction horizon, and the dimension, i.e., the number of variables.
For each multivariate time series (xt)T

t=1 ∈ Rp×T , (τ1, τ2) ∈ {1, . . . , T}2 such that τ1 < τ2, we
denote xτ2:τ1 = (xt)τ2

t=τ1 . Hence, for τ ∈ {1, . . . , T}, xτ−1:1 contains the past values of xτ and
xt:t−l+1 contains the l lags of xt+1 (for l ≥ 1).

5.1 Introduction
Dynamic modeling aims to describe how systems change over time by identifying the
mathematical equations that govern their behavior (Džeroski & Todorovski, 1993; Koza,
1994). These equations reveal the relationships between the system’s variables, allowing us
to understand the underlying dynamics of sequential data and predict future evolution. This
approach is applied in various domains to gain deeper insights into the mechanisms at play,
including physics, finance, biology, and climate science. There are two main types of dynamic
models (Both, 2021):

• Differential Equations describe how variables change continuously over time through:

– Ordinary Differential Equations (ODEs): describe the evolution of one or
several variables e.g dxt

dt = f(xt, t) where xt ∈ Rp represents the state variable at
time t.

– Partial Differential Equations (PDEs): describe the evolution of a spatially-
dependent process e.g ∂yt

∂t = F(yt,∇yt, t) where ∇ is the spatial gradient and yt is
the spatially dependent process at time t. They can handle highly complex systems
but require significant computational resources to find solutions.

• Discrete-Time Models describe the evolution of variables at discrete time intervals in
two ways (Camps-Valls et al., 2023):

– Explicit: describe the state of the system at the next step from current or previous
steps with dependent variables e.g xt+1 = f(xt, . . . , x1) with the particular case
where xt+1 = f(xt) and with a specific number of lags l, xt+1 = f(xt, . . . , xt−l+1).

– Implicit: describe the process of describing the system xt+1 = f(xt, zt+1) through
hidden structure zt+1 = g(zt) within data. Techniques such as dimensionality
reduction (e.g., PCA) and transfer operator (e.g., mode analysis) are used.

The following section deals with explicit discrete-time models. Our goal is to learn the underlying
dynamics directly from observational time series data without any prior knowledge of the system.
This presents several challenges, including the need to capture the system’s behavior with
interpretable models to deal with non-linear dynamics and noisy data.

87



5.2. A quick overview on time series forecasting

We first present a quick introduction to time series forecasting to establish the foundation.
Then, we explore interpretable methods used for dynamic modeling in the literature. Due to
the inherent complexities of time series modeling, the following analysis assumes a stationary
data-generating process.

5.2 A quick overview on time series forecasting
The field of time series forecasting offers a rich variety of methods, with three main techniques
dominating the landscape: linear regression models, tree-based models, and deep learning
models. Since interpretability is the focus of our thesis, this section considers some of the
common regression models and key strategies used in time series forecasting.

5.2.1 Introduction
The task of multivariate time series forecasting aims to predict future values of one or multiple
target variables of interest by identifying patterns in historical values of inter-related time series
variables. The forecast can be in the form of a point forecast, a prediction interval, a percentile,
or a distribution (Petropoulos et al., 2022). In this chapter, we focus on point forecasts.
Multivariate forecasting models learn relationships between the variables from a data set by
extracting patterns and implicitly uncovering underlying dynamics under some constraints.
Despite a lack of consensus and classification of forecasting models (Januschowski et al., 2022;
Petropoulos et al., 2022), forecasting models are often categorized into two categories: "statistical
models" and "machine learning models". Barker (2020) distinguishes machine learning models,
which are unstructured -making no assumptions about the data’s underlying process - like
decision trees and Deep Neural Networks, from statistical models, which are structured with
well-defined assumptions such as autoregressive models. In addition, several other categories
of analysis levels exist, as described by Januschowski et al. (2022), such as data-driven or
model-driven and interpretable or predictive models.
Furthermore, beyond the type of model, the size of the horizon is another important aspect
of time series forecasting (Bontempi et al., 2013). While forecasting at one-step ahead is
challenging, multi-step forecasting introduces further complexities like reduced accuracy due to
factors such as error propagation and increased uncertainty.
The next sections explore forecasting models, with a particular focus on regression analysis. We
then cover the key time series forecasting strategies for both one-step and multi-step predictions.

5.2.2 Time Series Regression models
This section explores regression models used in time series forecasting, assuming a linear
relationship between the target variable and the explanatory variables. In this setting, the
explanatory variable is also called the regressors, independent or explanatory variables, while the
target variable is also referred to as the regressand, dependent or forecast variable (Hyndman
& Athanasopoulos, 2018).

Consider N multivariate time series (xi,T :1) = (x(1)
i,T :1, . . . , x

(p)
i,T :1), i ∈ {1, . . . , N}, generated by

the same stationary process and where explanatory variables at time t are represented by the
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5.2. A quick overview on time series forecasting

random vector Xt = (X(1)
t , . . . , X

(p)
t ). The time series can be written in vector form RpT as :

xT :1 =


xT

xT −1
...

x2
x1

 . (5.1)

In each time series, we extract pairs of sequences zi,t = ((xi,t:t−l+1), (xi,t+H:t+1)) for
t ∈ {l, . . . , T −H}. All the zi,t have the same distribution D and we denote by DN =
{zi,t : i = {1, . . . , N}, t = {l, . . . , T −H}} the set of samples identically distributed with this
law.

5.2.2.1 Autoregressive models

Autoregressive models, also called AR process (Hyndman & Athanasopoulos, 2018), are a class
of linear models used for time series analysis and forecasting. These models, represented by a
function f , use past observation of a single variable of interest to predict its future value at a
given time. The AR process is written using a one-dimensional time series:

X
(1)
t = f(X(1)

t−1, X
(1)
t−2, . . . , X

(1)
t−l) + U

(1)
t (5.2)

where X
(1)
t is the one-dimensional variable to forecast, l is the lag order and X

(1)
t−j is the predictor

variable for j ∈ {1, . . . , l}. U
(1)
t is the error term, which captures the unexplained variance in

the model that can arise from measurement error, unobserved variables, or limitations inherent
to the model structure. A more general form of equation 5.2 includes additional lagged values
of the explanatory variables.
Consider the linear autoregressive process for illustration, given as follows:

X
(1)
t = β0 + β1X

(1)
t−1 + β2X

(1)
t−2 + . . . + βlX

(1)
t−l + U

(1)
t (5.3)

They are useful as they are interpretable and provide a clear understanding of the relationships.
Their primary strength lies in their interpretability, offering a clear understanding of the
relationships between past and future observations within a time series.

5.2.2.2 Vector Autoregressive models

Vector Autoregressive models (VAR) extend the univariate autoregressive model to handle
multivariate time series. VAR is widely used in time series forecasting (Lütkepohl, 2013; Zivot
& Wang, 2006), as they capture the interdependencies between multiple variables, considering
the past values of all variables in the system to predict the future values of each variable
simultaneously. When dealing with l lags, the VAR(l) model is expressed as:

Xt = c0 + C1Xt−1 + . . . + ClXt−l + Ut (5.4)

where c0 ∈ Rp is a vector of intercept, Ck ∈ Rp×p is a coefficient matrix for k ∈ {1, . . . , l} and
Ut is a p-dimensional zero-mean white noise process with positive definite covariance matrix
E[UtU⊺

t ] = ΣU .
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The VAR(l) model shown in equation 5.4 can be rewritten compactly as a VAR(1) model as
follows:

Xt:t−l+1 = CXt−1:t−l + Ut:t−l+1 (5.5)

where Xt:t−l+1 and Ut:t−l+1 are random vectors taking values in Rpl+1, and C ∈ R(pl+1)×(pl+1)

is known as the companion form of the VAR(l). They are defined as:

Xt:t−l+1 =



1
Xt

Xt−1
Xt−2

...
Xt−l+1


, C =



1 0 . . . 0 0
C1 C2 . . . Cl−1 Cl

Ip 0 . . . 0 0
0 Ip . . . 0 0
...

... . . . ...
...

0 0 . . . Ip 0


, Ut:t−l+1 =



1
Ut

0
0
...
0


(5.6)

where Ip ∈ Rp×p is the identity matrix of size p× p.
In the following, we denote xt:t−l+1 and ut:t−l+1 the vector realizations for the random vectors
Xt:t−l+1 and Ut:t−l+1 respectively.

Example 5.2.1. To illustrate, consider the specific case where p = l = 2, a realization of
equation 5.4 is written:

xt = c0 + C1xt−1 + C2xt−2 + ut (5.7)
which is expressed as:

[
x

(1)
t

x
(2)
t

]
=

[
c01
c02

]
+

[
c

(1)
11 c

(1)
12

c
(1)
21 c

(1)
22

] [
x

(1)
t−1

x
(2)
t−1

]
+

[
c

(2)
11 c

(2)
12

c
(2)
21 c

(2)
22

] [
x

(1)
t−2

x
(2)
t−2

]
+

[
ϵ1t

ϵ2t

]
.

This can be expressed as a realization of a VAR(1), as shown in equation 5.5, of the form :

Xt:t−1 = CXt−1:t−2 + Ut:t−1 (5.8)

where the realization is written:

 1
xt

xt−1


︸ ︷︷ ︸
xt:t−1

=

 1 0 0
c0 C1 C2
0 I 0


︸ ︷︷ ︸

C

 1
xt−1
xt−2


︸ ︷︷ ︸
xt−1:t−2

+

 0
ut

0


︸ ︷︷ ︸
ut:t−1

. (5.9)

and can be further developed as:



1
x

(1)
t

x
(2)
t

x
(1)
t−1

x
(2)
t−1


=



1 0 0 0 0
c01 a

(1)
11 c

(1)
12 c

(2)
11 c

(2)
12

c02 a
(1)
21 c

(1)
22 c

(2)
21 c

(2)
22

0 1 0 0 0
0 0 1 0 0





1
x

(1)
t−1

x
(2)
t−1

x
(1)
t−2

x
(2)
t−2


+



0
ϵ1t

ϵ2t

0
0


. (5.10)
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5.2.2.3 NonLinear VAR (NVAR)

A more general formulation of the VAR process is given by the NonLinear VAR as follows:

Xt = F (Xt−1:t−l) + Ut (5.11)

where the function F : R(pl+1) → Rp represents an NVAR model and can be rewritten as:

Xt:t−l+1 = F(Xt−1:t−l) + Ut:t−l+1 (5.12)

where:

F =

 e⊺1
F

Sp(l−1)

 =

 [1, 0, . . . , 0]
F[

0 Ip(l−1)
]
 (5.13)

with e1 = [1, 0, . . . , 0] ∈ Rpl+1 and Sp(l−1) is the upper shift matrix of size Rp(l−1)×(pl+1), and
the 1’s are located on the first upper diagonal.
This formulation allows for non-linear relationships between the variables (Morioka et al., 2021).
Remark 5.2.2. The VAR process is a specific type of NVAR process where F (Xt−1:t−l) = CXt−1:t−l.

VAR models are parameterized by two key parameters: the number of variables p to include in
the system and the lag order l. Their choice influences both computational complexity and
forecasting errors due to the number of estimated coefficients (Hyndman & Athanasopoulos,
2018).
These models have the ability to capture complex inter-dependencies between variables with
flexible modeling of the relationships without requiring prior assumptions on the underlying
time series structure. Additionally, VAR formulation allows for simultaneous estimation of all
variables’ relationships and facilitates Granger causality testing.
However, challenges arise in high-dimensional data sets where estimation complexity increases
significantly. In addition, the large number of relationships captured by their coefficients can
hinder interpretability, limiting our ability to understand the underlying relationships. For
a more detailed discussion on the evolution of VAR models, their strengths, and limitations,
please refer to (De Gooijer & Hyndman, 2006).

The next part explores different strategies employed in time series forecasting to predict future
observations across multiple future time steps. This extends the scope of forecasting beyond
the immediate next value in a time series.

5.2.3 Time Series Forecasting Strategies
Learning an effective forecasting model from temporal data plays an important role in a variety
of fields, as it enables the prediction of future trends and aids decision-making. The structure
of this model is determined by the specific objective and time horizon chosen. In the following,
we describe two primary strategies used in the literature for both univariate and multivariate
time series forecasting (Ben Taieb et al., 2012; De Stefani, 2022).
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5.2. A quick overview on time series forecasting

The objective is to learn a function F̂ that predicts the future (xt+H:t+1) given the past
(xt:t−l+1).

5.2.3.1 Single-step estimation

In single-step forecasting, the goal is to estimate a function F̂ : Rpl+1 → Rpl+1 that predicts the
next observation at time t + 1 of the time series, given the past l observation up to the current
time t, where l is an estimate of the true lag order l. The prediction at time t + 1, denoted as
x̂t+1:t−l+2 ∈ Rpl+1, represents the predicted future values given information up to time t, i.e
xt:t+1−l. The single-step prediction is formulated as follows:

x̂t+1:t−l+2 = F̂(xt:t+1−l) (5.14)

In this setting, the risk is expressed as :

ED

[∥∥∥xl+1:2 − F̂(xl:1)
∥∥∥2

]

5.2.3.2 Multi-step estimation

Multi-step forecasting aims to predict multiple future values, going beyond a single step. It
seeks to forecast future values up to time t + H, where H ∈ N is the forecast horizon, based
on l observations up to the current time step t. This problem is obviously more difficult than
the one-step problem. In fact, predicting the long-term horizon increases uncertainty. In the
following, we present the main strategies (Ben Taieb et al., 2012) that have been developed for
this objective.

• Recursive approach (or iterative approach) tackles multi-step forecasting by estimating
a single one-step forecasting model F̂ : Rpl+1 → Rpl+1 and by iteratively performing
one-step predictions for each future time step, up to a specified horizon H. At each step,
the previously predicted value is fed back into the function as input to predict the next
value in the sequence. Using time series data, the recursive multi-step prediction can be
written as follows:

x̂t+h:t+h−d+1 = F̂h(xt:t−l+1)

where F̂h is the composition of the function F̂.
The risk can be expressed as :

H∑
h=1

ED

[∥∥∥xl+h:h+1 − F̂h(xl:1)
∥∥∥2

]

The advantage of this approach is that it ensures that the fitted model is close to the true
function F generating the data if it exists. However, there is no necessary guarantee of the
minimization of the multi-step forecast error (discrepancy between the true future values
and the multi-step forecasts). This is partly due to errors introduced at each prediction
step, which can accumulate and propagate over longer horizons.
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• Direct approach tackles multi-step forecasting by independently estimating different
models F̂h : Rpl+1 → Rpl+1 for each forecast horizon t + h, for h ∈ {1, . . . , H}. Each
model directly predicts the future value at horizon h, using only past observations. Using
time series data, the direct multi-step prediction can be written for each forecast horizon
h ∈ {1, . . . , H}, as follows:

x̂t+h:t+h−l+1 = F̂h(xt:t−l+1) (5.15)

In this setting, the risk is expressed as :

H∑
h=1

ED

[∥∥∥xl+h:h+1 − F̂h(xl:1)
∥∥∥2

]

This strategy suggests that individual models might require different parameter sets to
capture the specific relationships for each horizon. Additionally, the optimal lag order for
each model might differ. Instead of aiming to match the potential underlying DGP F,
the direct strategy prioritizes achieving accurate forecasts using separate models for each
horizon. This comes at the cost of increased computational complexity due to the need
to train and evaluate multiple models (Ben Taieb, 2014).

Remark 5.2.3. A more general approach is to express risk as a weighted sum over the forecast horizon
as:

H∑
h=1

ED

[
wh

∥∥∥xl+h:h+1 − F̂h(xl:1)
∥∥∥2

]
Indeed, a smaller weight could be attributed to a larger horizon as the uncertainty increases.

Additional approaches have been developed (Bontempi et al., 2013), including the MIMO
(multi-input multi-output) approach (Bontempi, 2008), which forecasts all future steps (i.e., H
steps) simultaneously.
Following Ben Taieb’s work (Ben Taieb et al., 2012; Petropoulos et al., 2022), there is no general
rule about whether the direct or recursive approach is better, as this choice is a tradeoff between
forecast bias and variance. Consequently, the question of the optimal approach remains open
and often requires empirical evaluation to determine the best method for a specific situation.

5.3 From forecasting to dynamic discovery
While accuracy remains the primary objective in forecasting, complementary objectives such
as understanding the underlying mechanisms and modeling the relationships between features
within the time series have also gained attention. In dynamic modeling, and particularly in
discrete-time methods, the goal is to characterize the evolution of a system over discrete time
intervals. One approach is to leverage interpretable models to uncover the underlying dynamics
and gain insights into the relationships between the involved variables while performing accurate
forecasts.
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5.3.1 Problem Definition
Building on the concepts introduced in Section 2.4.2.4, this section formalizes the dynamic
modeling problem as follows. The objective is to identify an interpretable forecasting model,
denoted by F̂, from a class of functions F that minimizes the empirical error (e.g., mean squared
error) using the available time series data xT :1. The class F may encompass various statistical
and ML models for time series forecasting, such as VAR, ARIMA, and exponential smoothing.
In this setting, we aim to find a function, denoted as F̂, that solves the following minimization
problem:

F̂ =argmin
F̃∈F

ED

[∥∥∥xl+1:2 − F̃(xl:1)
∥∥∥2

]
where F is a class of functions mapping from Rpl+1 to Rpl+1. The most straightforward approach
is to minimize its empirical counterpart

F̂ = argmin
F̃∈F

{
T −1∑
t=d

N∑
i=1
∥xi,t+1:t−l+2 − F̃(xi,t:t−l+1)∥2

}
. (5.16)

It is, however, well known that this approach may suffer from overfitting: the minimizer may
perform well on the observed samples but fail to generalize to the underlying dynamic we try to
model. To cope with this issue, some regularization is required. The most classical formulation
is the regularized minimization problem

F̂ = argmin
F̃∈F

{
T −1∑
t=d

N∑
i=1
∥xi,t+1:t−l+2 − F̃(xi,t:t−l+1)∥2 + λC(F̃)

}
, (5.17)

where C(F̃) is a measure of complexity of F̃ and λ is a parameter to be tuned that balances a
trade-off between minimizing the loss and controlling the complexity of the function to avoid
overfitting. Other formulations are possible: one may explicitly restrict F̃ to have complexity
C(F̃) smaller than a threshold η or constrain this complexity through algorithmic design.

5.3.2 Challenges
Estimating the underlying dynamic presents several challenges. Firstly, the lack of prior
knowledge necessitates choosing a flexible function class capable of handling both linear and
non-linear relationships within the data. However, this flexibility also carries the risk of model
misspecification, where the chosen model does not accurately capture the true governing function
F if it exists. Secondly, the estimation method must deal with high-dimensional multivariate
time series data, increasing the complexity and the effect of multicollinearity where multiple
features are highly correlated. Although multicollinearity may not affect the model’s predictive
ability, it can hinder its capacity to identify the correct coefficients of interest (Shmueli, 2010).
Additionally, incorporating lagged variables becomes essential for large temporal dimensions
(T ≫ 1). However, selecting the optimal number of lagged variables plays a key role in achieving
this effectively, as inappropriately chosen lags can lead to sub-optimal performance. Finally, the
methods should be computationally efficient as a significant amount of data is often required
for accurate estimation.
In the following section, we present a state-of-the-art overview of XAI forecasting approaches,
with a focus on interpretable models.
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5.4 State of the art in dynamic modeling
In this section, we analyze function classes F that can be categorized into sparse regression-
based or symbolic regression-based approaches and describe the methods in the single-step
forecasts setting.

5.4.1 Sparse Regression
Dynamic modeling generally assumes that a small number of relevant variables, taken from a
high-dimensional space, govern the underlying system (e.g., physical systems). Techniques have
been built upon this idea, leveraging sparse regression and compressed sensing techniques to
extract simplified equations that capture the system’s underlying dynamics (Brunton et al.,
2016; Donoho, 2006). In the following, we detail the preprocessing steps required for this
analysis, followed by an exploration of the main approaches for learning these sparse equations
from data.

5.4.1.1 Data Preprocessing

Library of function

While linear models offer a basic framework for time series forecasting, they often fail
to capture the data’s complex relationships and non-linear dynamics. To address these
limitations, a popular approach is incorporating various non-linear features into the model. Let
Φ : Rpl+1 → RpΦ denote a function that transforms the original input features of length p into
a new set of pΦ features, where pΦ > pl + 1. Hence, the input features xt:t+1−l are transformed
as follows:

Φ(xt:t−l+1) =
[

1 Φ1(xt:t−l+1) Φ2(xt:t−l+1) . . . ΦpΦ(xt:t−l+1)
]⊺

(5.18)

The types of libraries include polynomial functions like powers and cross-products, as well as
trigonometric functions (e.g., cosine, sine), exponential functions, and even frequency-domain
representations like the Fourier transform.

Example 5.4.1. For p = d = 2 with xt:t−1 = [1, x
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(5.19)

Features scaling

Depending on the choice of the model, scaling the input features may be a necessary preprocessing
step before fitting. Methods such as penalized regression require scaling, as the objective function
depends on the scale of the variables. This step ensures that each variable is treated equivalently.
Various types of scaling can be applied to the input features. One common approach is
normalization, which centers each column by subtracting its mean and then dividing by its
standard deviation, ensuring that each variable has a mean of zero and a standard deviation of
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one. Another scaling approach is dividing each feature vector by its l2 norm, ensuring that all
features contribute equally, as each vector has a norm of one. In the following, we assume that
the features are scaled.

5.4.1.2 Feature selection

Dynamic modeling typically relies on the assumption of a limited number of informative
variables. Therefore, when working with high-dimensional data with multicollinearity, especially
after incorporating non-linear features using a function library Φ, the objective is to select
a sparse subset of relevant variables. The techniques used should favor estimators that are
consistent 1. There are two types of consistency (Bach, 2008):

• Parameter consistency: This ensures that the estimated coefficient values are close to
the true ones as the data size increases.

• Model Consistency: This ensures that non-zero true coefficients are estimated as
non-zeros.

To address this challenge, feature selection methods aim to select a subset of input features that
maximize the performance of the model (Bontempi, 2021). There are three main approaches:

• Filter methods rank features according to a metric or relevance score S, which is a
real-valued function, and then select the top k ∈ {1, . . . , p} features. It is expressed as:

argmax
|s|=k,s⊂{1,...,p}

T −1∑
t=d

S(x(s)
t:t−l+1, xt+1:t−l+2). (5.20)

where x(s)
t:t−l+1 ∈ Rsl+1 is the vector containing the features of xt:t−l+1 indexed by elements

in the subset s. The relevance score can be based on different statistical measures, such as
mutual information or cross-correlation. Alternatively, some filter methods select features
based on a percentile of the highest scores, avoiding the need to pre-specify the exact
number of features k to be selected.

• Wrapper methods use a search algorithm to find the subset of features that maximizes
the model’s performance. The optimization problem can be expressed as:

argmin
|s|≤k

T −1∑
t=l

N∑
i=1
∥xi,t+1:t−l+2 − F̃(x(s)

i,t:t−l+1)∥2,

where ∥.∥ represents the objective function, which quantifies the model’s performance using
various metrics such as Root Mean Squared Error (RMSE). Search methods employed to
find the optimal solution that minimizes this quantity can be broadly categorized into
three types: exhaustive, greedy, and randomized.

• Embedded Methods integrate feature selection directly into the model’s learning
process. In the next part, we explore specific examples of embedded methods, including
regularized methods.

1A statistical estimator is consistent if F̂ → F as T → ∞ converge to the true function/value as the data
size increases.

96



5.4. State of the art in dynamic modeling

Sparse regression is a popular technique in dynamic modeling that reduces model complexity
by selecting only the most influential variables. The representation of time series data using
the VAR framework allows using the penalized methods, described in section 2.4.2.1, to achieve
sparsity. This section dives deeper by exploring the implementation details of the penalization
techniques, discussing alternative approaches, and analyzing their practical applications and
limitations.

5.4.1.3 Penalized Regression

Penalized regression techniques address variable selection and model fitting simultaneously.
These methods achieve this by incorporating a penalty term into the objective function, which
penalizes the magnitude of the estimated regression coefficients. The problem can be defined
as:

Ĉ = argmin
C

{
1

T − l + 1

T∑
t=d

∥xt:t−l+1 − Cxt−1:t−l∥
2
2 + λR(C)

}
, (5.21)

where ∥ · ∥2 is the ℓ2 norm, C ∈ R(pl+1)×(pl+1) is a coefficient matrix as defined in equation
5.5, R is a regularization function and λ the regularization parameter. By tuning the penalty
parameter, we can control the trade-off between model complexity (e.g., number of variables)
and goodness-of-fit.
The objective is to reduce the complexity and simplify the model represented by the coefficient
matrix C. Since each coefficient in C accounts for the influence of a variable in xt−1:t−l on the
target, reducing the number of non-zero elements in C, making the matrix sparse, effectively
reduces the number of parameters considered by the model.

l0 penalty

The main approach to achieve sparsity is formulated using the l0 penalty with R(C) = ∥C∥0,
which accounts for the number of non-zero components. As seen in section 2.4.2.1, due to
the discontinuity and non-convexity of the penalty, it is a combinatorial problem that is NP-
hard. Consequently, there is no efficient algorithm that guarantees the finding of optimal
solutions, especially in high dimensions. However, several approaches have been developed to
find approximate solutions (Huang et al., 2018).

l1 penalty

One common approach is to relax this non-convex problem to a convex one by replacing the
penalty with an lp norm where p ∈ (0, 1]. In this context, the most popular is the Lasso
regression using l1 norm (Tibshirani, 1996) where R(C) = ∥C∥1. Several algorithms have been
developed to solve this problem, including Least Angle Regression (LARS) (Osborne et al.,
2000), coordinate descent (Wu & Lange, 2008) and proximal gradient descent(Agarwal et al.,
2010).
However, the Lasso is not a consistent estimator, implying that it does not converge to the
true coefficient of the underlying system. Additionally, multicollinearity can further challenge
its ability to produce consistent estimates. Several authors have established conditions under
which the Lasso can identify the true underlying system (Hastie et al., 2009) (p. 91) (model
consistency) and (Zhao & Yu, 2006) stated the irrepresentable condition which provides a
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necessary and sufficient condition on the design matrix for the Lasso to exhibit model consistency.
Multicollinearity remains a big difficulty for lasso to be consistent. We invite the reader to read
(Hastie et al., 2009; Huang et al., 2018) for further details.

Heuristic

Another common approach is to take advantage of a greedy algorithm that seeks sequentially for
local optimum with the objective of reaching a global optimum. There are two main methods
described in the literature for achieving this goal. Both methods begin by estimating a matrix
Ĉ, which is the solution to equation 5.21. Then, each approach is defined, and its steps are
outlined as follows:

• Thresholding approach: This technique involves setting a threshold to the learned
coefficient to induce sparsity. After estimating Ĉ, the algorithm applies a threshold to
enforce sparsity. Using notation in equation 5.6, coefficients are represented in the matrices
Ck from the estimated matrix Ĉ with k ∈ {1, . . . , d}. For each estimated coefficient c in
Ck, the hard thresholding is written:

c∗ =
{

0, if c < η

c, otherwise
(5.22)

where η ∈ R denotes a threshold. It can be either pre-defined as a hyperparameter or
learned during the training process along with other model parameters. The remaining
non-zero coefficients of the matrix Ĉ after thresholding define a new matrix Ĉ∗, which
allows selecting the relevant variables in the model.

• Iterative/Sequential Learning approach: This technique iteratively refines a sparse
model. At each step, it focuses only on the coefficients identified as non-zero by the
previous sparse model and refits them. This process iteratively increases the sparsity of
the model, simplifying it by relying on smaller subsets of coefficients.
We define the support of Ĉ, denoted as supp(Ĉ), as the set of indices of non-zeros elements
of Ĉ: supp(Ĉ) = {(j, k) ∈ {1, . . . , pl + 1}2|Ĉj,k ̸= 0}, where Ĉj,k is the element of Ĉ in the
j-th line and k-th column. Let M(Ĉ) be the space of matrices with the same sparsity
pattern as Ĉ, i.e., the set of all matrices that have the same support as Ĉ. It is defined as:

M(Ĉ) = {M ∈ R(pl+1)×(pl+1)| supp(M) = supp(Ĉ)} (5.23)

We then fit a simplified model on the space M(Ĉ):

Ĉ∗ = argmin
C∈M(Ĉ)

{
1

T − l + 1

T∑
t=l

∥xt:t−l+1 − Cxt−1:t−l∥
2
2 + λR(C)

}
(5.24)

Several algorithms leverage these approaches to address limitations in Lasso regression,
particularly the bias in coefficient estimation (Hastie et al., 2009)(p. 91). These techniques
include:
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• Two-step approaches that first perform variable selection in the first step using Lasso.
Subsequently, the selected variables are used in a second step to fit a model, typically
Ordinary Least Squares (OLS), for obtaining unbiased coefficient estimates (e.g., (Wipf
& Nagarajan, 2010)).

• Refined Lasso such as the relaxed Lasso (Meinshausen, 2007). It first uses Lasso for initial
variable selection, followed by a reapplication of Lasso on the selected subset of variables.
This allows for increased sparsity and potentially increased performance.

Several other methods are also widely used. Among them, the Forward (backward) step-wise
selection is an algorithm that starts with the intercept (with the full model) and sequentially
adds (removes) to the model variables that improve the fit (Hastie et al., 2009). Additionally,
Iterative Hard Thresholding (Blumensath & Davies, 2009) is an iterative method that alternates
between gradient descent steps and hard thresholding steps that set all estimated values below
a threshold to zero.

Sequential thresholded Least-squares algorithm Among sparse regression and state-of-
the-art methods for dynamic discovery, SINDy (Sparse Identification of Nonlinear Dynamics)
developed by Brunton et al. (2016) stands out for its ability to capitalize on the previously
described approaches. This technique facilitates the identification of the equations governing
complex systems. By assuming sparsity in nonlinear differential equations, Brunton et al.
(2016) take advantage of sparse regression techniques to identify the equations from data.
To overcome the limitation of Lasso, which is computationally expensive for very large data
sets, the Threshold Least Square algorithm was developed, which is also a relaxation of the l0
minimization problem. It involves applying recursively two steps:

1. Least square: The first step of the algorithm estimate the coefficient matrix Ĉ that
solves the least square problem.

2. Thresholding: In the second step, the algorithm applies a threshold to enforce sparsity.
The remaining non-zero coefficients of the matrix Ĉ allow selecting the variables to keep
for the next iterations.

The recursion continues until convergence, i.e., the identification of the non-zero coefficients.
The threshold is either a parameter of the model to learn or a hyperparameter to estimate by
cross-validation, for example.
Note that the sequential thresholded least squares algorithm can be viewed as a particular
instance of the sparse relaxed regularized regression (SR3) problem (Champion et al., 2020;
Zheng et al., 2018).

5.4.1.4 Related approaches

Imitation Learning In imitation learning, the objective is to train an agent through expert
demonstration. The objective is for the agent to learn the underlying policy, which represents
the decision-making process used by the expert. By analyzing the demonstrations, which
consist of a data set, the agent learns to imitate the expert’s behavior. Several algorithms
have been proposed for imitation learning, including DAgger (data-set Aggregation) and
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SMILe (Stochastic Mixing Iterative Learning) (Ross & Bagnell, 2010; Ross et al., 2011)). The
field of imitation learning can be a valuable tool for time series dynamic discovery. Indeed,
Venkatraman et al. (2015) pioneered this approach in the context of multi-step prediction, with
the algorithm Data As Demonstrator that builds on DAgger. In this framework, the training
data is seen as the expert demonstrating the system’s dynamics, which the algorithm tries to
learn. Venkatraman et al. (2014) demonstrate this approach in practice and also combine it
with Subspace Identification (Van Overschee & De Moor, 2012) to extract the dynamics of
several systems.
Besides, probabilistic machine learning offers alternative approaches, especially Gaussian
processes, to discover equations from data (Duncker et al., 2019; Raissi et al., 2017).

5.4.2 Discrete Search space: Symbolic Regression
Symbolic regression 2 is a powerful technique used to search in a discrete space of mathematical
expressions to find an equation that best fits the data set.

5.4.2.1 Representation

Symbolic regression usually represents the discovered mathematical equation as a binary
expression tree or syntax tree. It is a type of data structure specifically designed for this
objective. The nodes in the tree are of two types:

• Internal nodes represent algebraric operators such as addition, multiplication, division
and substraction (+,×,−, /) and analytical function like exponential or cosine functions.

• Leaf nodes represent the operands, i.e., the variable to use in the equation. These nodes
do not have children

The tree structure is formed by edges that connect internal nodes to their descendants (including
internal and leaf nodes), establishing the order of operations. An example of an expression tree
is presented in Figure 5.1.

5.4.2.2 Evolutionary Algorithms

Evolutionary Algorithms are a class of search-based optimization algorithms. Among them,
genetic programming (Ferreira, 2006; Koza, 1994) explores a search space of equations and
selects the most suitable given the data without prior structure knowledge. Indeed, from a
library of operators and functions, the genetic or evolutionary algorithms mimic the process
of natural selection to evolve individuals, i.e., equations/trees, through successive generations.
The algorithm initializes with a population of randomly generated equations and evaluates
their data fit based on a fitness function. In the context of dynamic discovery, the fitness
function can be based on how well the equations capture the underlying dynamic with a loss
such as the RMSE. Then, genetic algorithms typically iterate until convergence over several
steps, such as:

2There are broader definitions of "symbolic regression" that encompass any equation discovery. Here, we
restrict our definition to methods that explore a discrete space of mathematical expression to retrieve equations.
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Figure 5.1: Symbolic regression model in mathematical notation and in expression tree
representation

• Selection: Select the individuals, i.e., equations from the population, to serve as parents
for the population of the next generation (i.e., iteration). This is typically done by
selecting individuals with the highest fitness score.

• Crossover: This step involves combining two or more individuals to create new "offspring".
Indeed, it creates new equations by combining the parts of two or more equations from
the populations.

• Mutation: Mutation introduces random changes in selected individuals from the
population in order to promote diversity and prevent premature convergence. Typically,
components of the selected equations are modified and generate a new individual for the
next generation.

These steps are repeated until a stopping criterion is met. The resulting equation represents
the discovered relationships between variables from the data.
Genetic programming is the most popular algorithm used in symbolic regression with pioneering
work of Schmidt & Lipson (2009) with the aim to discover physical equations from data. A
large body of work have been explored to this day in this domain, for a more comprehensive
study refer to (La Cava et al., 2021; Makke & Chawla, 2024). The limitation of GP-based
methods is that they do not scale in high dimensional settings and are highly sensitive to
hyperparameters (Makke & Chawla, 2024; Petersen, 2019).

5.4.2.3 Other approaches

Researchers are also tackling symbolic regression with other approaches. This includes deep
learning methods such as the AI-Feynman algorithm (Udrescu & Tegmark, 2020), which
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leverages physics-inspired concepts like symmetry and dimensional analysis, reinforcement
learning techniques such as Deep Symbolic Regression (Petersen, 2019), game playing techniques
such as Monte-Carlo tree search (Sun et al., 2023) and Bayesian methods (Guimerà et al., 2020).
More details and additional approaches can be found in (Camps-Valls et al., 2023; Makke &
Chawla, 2024).

5.4.3 Conclusion
The field of dynamic discovery is active and presents many challenges on both theoretical and
practical levels. On the theoretical level, the identifiability of the underlying dynamics and the
adoption of modeling criteria such as parsimony or the choice of evaluation criteria are open
problems (Camps-Valls et al., 2023). Moreover, studies often rely on two strong assumptions
that are not always verified: causal sufficiency, i.e., the presence of all variables in the dataset,
and representativeness, i.e., that the dataset represents the true dynamics. On the practical
side, high dimensionality, multicollinearity, system non-linearity, and the risk of overfitting are
all problems encountered in dynamic modeling.

5.5 How our work fits in the literature
Following identified challenges in the field of dynamic modeling (Camps-Valls et al., 2023), we
leverage interpretable models with the dual advantage of revealing the underlying dynamics of
the system, as well as having predictive capabilities. Our work focuses on improving sparse
regression methods like SINDy (Brunton et al., 2016) by addressing errors that arise during
the training process. While sharing a common goal with Taieb & Hyndman (2012)’s work
of correcting forecasting errors, our approach focuses on building a single forecasting model
through a recursive approach to uncover the underlying dynamic of the system. In the following
chapter, we propose an interpretable and coherent multi-step forecasting method for multivariate
time series by composing a single one-step linear predictor as an NVAR model. Inspired by the
Data as Demonstrator (Venkatraman et al., 2015), an extension of DAgger (Ross & Bagnell,
2010), we propose a solution using an original iterative algorithm involving simple least squares
problems and augmented training data sets.
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6.1 Introduction
Many real-life phenomena that one seeks to predict are governed by equations involving several
variables and depend on time trends. For example, the weather depends on temperature,
atmospheric humidity, and wind, which in turn depend on variations in atmospheric pressure,
altitude, and relief. In these systems, the prediction must be not only accurate but also
simultaneous and coherent between all variables. From multivariate time series, one of today’s
challenges is to determine the underlying dynamics, which may, for example, be a physical
equation governing evolutions. Thus, the objective is to learn the invariant properties and
characteristics from the data.
Furthermore, in domains such as climate (Bouche et al., 2022; Liu et al., 2019), energy (Hadri
et al., 2021), healthcare (Lim, 2018) or finance (Capistrán et al., 2010), it is necessary to build
a model with the ability to predict in the short, medium and long term. Hence, we want a
model that can make multi-step predictions while learning the system’s dynamics. To perform
multi-step ahead prediction, there are two main strategies: first, the direct approach builds for
each prediction horizon an independent model, whereas the second, the recursive approach,
learns a one-step predictor and iterates using the previous predictions as input. The direct
method has limitations since it cannot learn the statistical dependencies between the different
prediction horizons. Hence, the recursive method seems more natural as it predicts from one
instant to another by composing the same model keeping a coherence and the existing statistical
dependencies from one instant to another. Consequently, in the example of a physical system,
the objective would be to obtain a predictor by learning the parameters of the equation of
motion from the data.
Traditionally, time series modeling uses linear models from statistics or econometrics, such
as autoregressive models (Hamilton, 1994; Sims, 1980). These models have been widely used
because they are practical and have mathematical guarantees. However, these models suffer
from difficulties in predicting the long term in the case of nonlinear data. Indeed, as soon as a
prediction error is made, given that this approach is recursive, the model will take this error as
input in order to predict the next time generating an error propagation. Many machine learning
models have been developed to overcome these limitations, such as Recurrent Neural Networks
(Dabrowski et al., 2020; Lim et al., 2021; Salinas et al., 2020). Despite their prediction capacity,
they have a major drawback: the lack of interpretability. Although there are meta-models of
decision explanations (Lundberg & Lee, 2017; Ribeiro et al., 2016), they remain insufficient for
our objectives. Besides, models such as transformers (Choi et al., 2016; Li et al., 2019; Lim
et al., 2021) with properties inherent to their architectures can explain certain characteristics
of the time series, such as point changes or trends, but do not allow for finding the system
dynamics.
To our knowledge, the closest work to ours is that of Venkatraman et al. (2015) on the Data as
Demonstrator (DaD) algorithm. This paper builds on DAgger (Ross et al., 2011), an imitation
learning algorithm, by proposing a meta-model to improve multi-step performance. Using a
one-step predictor, the algorithm iteratively increases the data set with the help of the prediction
errors during the training phase. Our work is, therefore, an extension and a consolidation of
this approach. It allows not only to improve the performances of multi-step predictions but
also to learn the dynamics of multivariate time series by adding an interpretability constraint.
Moreover, we develop the theoretical guarantees in a thorough way.
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Figure 6.1: The figure illustrates the algorithm’s ability to learn and iteratively correct
trajectories. The aim is to uncover the true underlying dynamic represented by the unknown
distribution D based on the observed time series in green. Initially, the algorithm learns a
recursive model, CΦ,0, that propagates errors. In the subsequent iterations, the algorithm uses
previous trajectories to augment training data to progressively improve the model’s learning of
the true dynamic. Here, the figure depicts the learning process up to the third iteration, where
the final model is denoted as CΦ,3.

The main contributions in this chapter are the following.

∗ We propose an interpretable and coherent multi-step forecasting method for multivariate
time series. It is obtained using an iterative algorithm inspired by DAgger, an extension
of DaD.

∗ We support the use of our method with theoretical guarantees obtained by interpreting it
as a Follow-The-Leader algorithm, an online learning algorithm that iteratively learn a
model by minimizing the cumulative loss from all previous iterations. The name reflects
the strategy of "following" the best-performing model from previous iterations.

∗ We apply our method to discrete dynamical systems, showing an improvement in multi-
step forecasting compared to sparse models trained at one step. We get interpretability
by learning a sparse model.

∗ We apply our method to systems of ordinary differential equations (ODEs) observed at
discrete times, showing an improvement in short and long-term predictions.

6.2 Multi-step Forecasting
Our study aims to learn a coherent and interpretable multi-step ahead prediction model. From
past information, we want to predict the future evolution up to a given horizon at a given time.

6.2.1 Notations
Let N, H, and p ∈ N denote respectively the number of time series of the training data set, the
prediction horizon, and the dimension (i.e., the number of variables). For each multivariate
time series (xt)T

t=1 ∈ Rp×T , (τ1, τ2) ∈ {1, . . . , T}2 such that τ1 < τ2, we denote xτ2:τ1 = (xt)τ2
t=τ1 .
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Hence, for τ ∈ {1, . . . , T}, xτ−1:1 contains the past values of xτ and xt:t−l+1 contains the l lags
of xt+1 (for l ≥ 1).

Consider N multivariate time series (xi,T :1) = (x(1)
i,T :1, . . . , x

(p)
i,T :1), i ∈ {1, . . . , N}, generated by

the same stationary process. First, let us define xt:t−l+1, the vector containing the past l values
and a term 1 allowing to encode the intercept as described in equation 5.6. In each time series,
we extract pairs of sequences zi,t = ((xi,t:t−l+1), (xi,t+H:t+1)) for t ∈ {l, . . . , T −H}. All the zi,t

have the same distribution D and we denote by DN = {zi,t : i = {1, . . . , N}, t = {l, . . . , T −H}}
the set of samples identically distributed with this law. The objective of this study is to retrieve
the dynamics of the system by predicting the future (xt+H:t+1) given the past (xt:t−l+1).

6.2.2 Data as Demonstrator
We decide in the following to focus on the recursive approach by using a single model that evolves
over time by composition. The recursive approach brings the simplicity of implementation
contrary to the multi-output approach, which could describe a non-interpretable complex model.
We want to develop a model that takes advantage of this long-term prediction. We want a
coherent and predictive model that is faithful to the underlying data-generating process. For
this, an intuitive approach consists of solving the optimization problem as follows:
Given the nonlinear relationships and complex interactions between the input features, we
introduce the expansion Φ(xt:t−l+1) of xt:t−l+1 where Φ : Rpl+1 → RpΦ and pΦ ≥ pl + 1 is the
number of variables after expansion. This function allows us to capture nonlinear relationships
within the data. Various expansions can be considered including polynomial, sinusoidal, and
other nonlinear transformations, but we impose that the first row of Φ is 1 encoding the
intercept and the last pl rows contain the identity:

Φ(i−1)p+j+1(xt:t−l+1) = x
(j)
t−i+1

for i ∈ {1, . . . , l} and j ∈ {1, . . . , p}.
Let us define the (pl + 1)× pΦ matrix C such that, for a given t,

x̂t+1:t−l+2 = CΦ(xt:t−l+1)

computes the one-step prediction. The matrix is the companion form as defined in equation
5.6. The first row of C is imposed as there C1,1 = 1 and C1,j = 0 for j > 1. In addition, the last
p(l − 1) rows of C are also imposed: all entries are zero except Cip+j,ip+j = 1 for j ∈ {1, . . . , p}
and i ∈ {1, . . . , l− 1}. This ensures that the vector xt:t+2−l is predicted without any error. The
row 2 to p + 1 of the matrix C contain the coefficients of the predictive equations

x̂
(j)
t+1 =

pΦ∑
i=1
Cj,iΦi(xt:t−l+1)

for j ∈ {1, . . . , p}. For the sake of simplicity of notation, we denote by M the set of such
matrices with pΦp free entries.
Intuitively, a multi-step ahead predictor could be obtained by solving the following minimization
problem:

ĈΦ =argmin
CΦ∈M

H∑
δ=1

ED
[
∥xl+δ:δ+1 − (CΦΦ)δ(xl:1)∥2

]
,
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or more exactly, its empirical version defined in terms of the training data set DN as

ĈΦ = argmin
CΦ∈M

H∑
δ=1

T −δ∑
t=l

N∑
i=1
∥xi,t+δ:t+1+δ−l − (CΦΦ)δ(xi,t:t−l+1)∥2, (6.1)

where xi,t:t−l+1 is a function of zi,t ∈ DN . Thus, the matrix ĈΦ would contain the coefficients
of the learned model estimating the underlying system generating the data and would be not
only interpretable but coherent across future predictions. The issue here is that this problem
is non-convex, so the determination of the global minimum is highly non-trivial and requires
complex computation or approximations. As said before, the direct approach allows us to
overcome this difficulty by estimating a matrix for each prediction horizon δ ∈ {1, . . . , H}:

Ĉ(δ)
Φ = argmin

CΦ∈Mδ

T −δ∑
t=l

N∑
i=1
∥xi,t+δ:t+1+δ−l − CΦΦ(xi,t:t−l+1)∥2, (6.2)

where M δ is the set of pl × pΦ matrices whose last p(l − δ)+ rows are imposed: all entries are
zero except

Cip+j,(i+δ−1)p+j = 1

for j ∈ {1, . . . , p} and i ∈ {1, . . . , (l − δ)+}. This approach is limited because we neglect the
statistical dependence and the coherence that exist in the underlying process.
The intuition that we want to exploit here is to use a recursive framework that allows us to
compute an approximation of the model Ĉ(δ)

Φ in Eq. (6.2).
We would start by learning the one-step forecasting matrix

Ĉ(1)
Φ = argmin

CΦ∈M

T −1∑
t=l

N∑
i=1
∥xi,t+1:t−l+2 − CΦΦ(xi,t:t−l+1)∥2

and then use this matrix to learn a two-step forecasting model

Ĉ(2)
Φ = Ĉ(2,1)

Φ ΦĈ(1)
Φ

in an iterative way with

Ĉ(2,1)
Φ = argmin

CΦ∈M

T −2∑
t=l

N∑
i=1
∥xi,t+2:t−l+3 − CΦΦ(Ĉ(1)Φ(xi,t:t−l+1))∥2

and so on. The drawback here is that we still have a direct approach with different models,
even though there is some recursion as we use previous models.
To overcome this limitation, we take advantage of the Data as Demonstrator (DaD)
algorithm, an iterative algorithm allowing to use of the following recursive strategy:
the first step of the DaD consists of learning a one-step model Ĉ(1)

Φ as previously and
predicting the future trajectory up to a horizon H by composing the learned model,
{x̂t+1:t−l+2, x̂t+2:t−l+3, . . . , x̂t+H:t−l+H−1} = {Ĉ(1)

Φ Φ(xt:t−l+1), (Ĉ(1)
Φ Φ)2(xt:t−l+1), . . . , (Ĉ(1)

Φ Φ)H(xt:t−l+1)}.

The main idea behind this algorithm is to reuse the predictions to artificially add training data
and improve the H-step ahead prediction. As described in Figure 6.1, the intuition is to correct
the predicted trajectory at each step by creating training pairs composed of the prediction and
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the real labels. The model will learn a model that corrects its mistakes by returning to the true
trajectory. Thus, at each iteration k, we have an augmented optimization problem containing
the real data and also the previously predicted trajectories. For the sake of simplicity, we write
the optimization problem up to step T −H instead of T − δ. We write the problem as follows:
for k ≥ 0,

ĈΦ,k =argmin
CΦ∈M

k∑
j=0

ℓj(CΦ), (6.3)

where

ℓ0(CΦ) = 1
T−H−l+1

T −H∑
t=l

1
N

N∑
i=1
∥xi,t+1:t−l+2 − CΦΦ(xi,t:t−l+1)∥2 (6.4)

is the one-step loss using the real data, and for j ≥ 1,

ℓj(CΦ) = 1
L− l

L∑
t=l+1

1
N

N∑
i=1

1
Mt

Mt∑
m=1
∥xi,t+1:t−l+2 − CΦΦ(x̂(j,m)

i,t:t−l+1)∥2 (6.5)

is the one-step loss evaluated on predictions generated by ĈΦ,j−1. Indeed, at iteration j, for
each trajectory i and time step t = l + 1, . . . , L, we add Mt predictors x̂(j,m)

i,t:t−l+1 of xi,t:t−l+1,
m = 1, . . . , Mt. In the original approach developed by Venkatraman et al. (2015), the enrichment
of the data is done in the following way: L = H, Mt = 1, x̂(j,1)

i,t:t−l+1 = (ĈΦ,j−1Φ)t−lxi,l:1 for
t = l + 1, . . . , L (assuming H > l; we have l = 1 in (Venkatraman et al., 2015)). In section 6.3,
we introduce new enrichment procedures.
Note that Eq. (6.3) is a simple least-squares problem that can be regularized using ℓ2 or ℓ1
penalty. Because we want to retrieve the underlying properties of the dynamical system, we use
the ℓ1 penalty to promote sparsity, as only a few variables at specific time lags have an influence.
This constraint simplifies the model by focusing on the most critical variables, making it easier
to interpret.
Once we have reached the number of iterations K set beforehand, we obtain several candidates
to find the coefficients governing the dynamics of the time series. The selection is made through
a validation data set on which we choose the optimal one. Finally, we use a test data set to
judge the accuracy of the multi-step ahead prediction.

6.2.3 Guarantees and limitations
DaD is inspired by the DAgger algorithm, an interactive imitation learning algorithm. The
paper of Venkatraman et al. (2015) states guarantees in the form of two theorems that are
extensions of Ross et al. (2011) work. A first theorem guarantees the model’s ability to be good
on its own trajectory, and a second one links the multi-step loss to the number of iterations.
However, we can see in our simulations that the multi-step loss of the model, defined as

H∑
δ=1

T −δ∑
t=l

N∑
i=1
∥xi,t+δ:t+1+δ−l − (CΦΦ)δ(xi,t:t−l+1)∥2, (6.6)

deviates a lot during the first iterations of the described approach. These deviations increase
with the length of the horizon to predict. Indeed, we can see in Figure 6.2 that the DaD model
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Figure 6.2: This figure illustrates the losses of the original DaD algorithm on the Cartpole
dataset with respect to the DAgger iteration. The parameters H and T are set at 30 and 50,
respectively.

suffers during the first iterations of a poor ability to predict in the long run when adding
corrections. We note that the DaD’s deviation is significant enough to prevent it from making
adequate corrections to achieve a low loss.
In addition, the algorithm does not allow the exploitation of the data in the best way because
the training data set is only increased from a single point of the initial trajectory. Moreover,
large-horizon forecasts inherently involve higher uncertainty due to the potential influence of
various unforeseen factors. These factors can cause the predictions to diverge from the actual
values, leading to poor performance.
To overcome these limitations, we have developed several methods described in the following
section.

6.3 Methodology
Motivation This work aims to infer the dynamic model that drives the data generation from
available samples. We focus on learning a long-term coherent model, meaning that for a
stationary system, the model should accurately predict its future state at any given number of
steps from any point in time. To achieve this, we investigate and extend the recursive approach
to have a coherent model, particularly the DaD algorithm, to enhance long-term prediction
abilities. Indeed, using an interpretable and coherent model in the long term allows us to obtain
higher reliability for the prediction. In this section, we propose an original method inspired by
DaD, which can process continuous or categorical temporal multidimensional time series data.
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data-set augmentation We study different novel approaches to improve the approach
developed in DaD and better use the training data. These methods are similar in that
they aim to be coherent in long-term prediction and to take advantage of the whole data set. In
the following, we explain the details of these methods. Our framework differs on the predictive
part of the trajectory, allowing us to increase the data set to do better H-step ahead forecasting.

Figure 6.3: From top to bottom: DaD method, DaD_R, i.e., the optimized method with several
restarts, DaD_sub (subsampling), and DaD_agg (aggregation). This figure illustrates four
methods of data augmentation used during the training process (for l = 1). The first diagram
illustrates the addition of a single predicted trajectory of length H, starting from the initial
time step. The second diagram illustrates the addition of trajectories predicted for each time
step in the sequence. The last two diagrams illustrate techniques for reducing the number of
additional samples by applying aggregation and sub-sampling approaches, respectively.

DaD_R The objective of this new setting is to learn a one-step model similar to the DaD
algorithm. Then, the data-set augmentation will be done using not one but multiple trajectories.
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In fact, we will predict several h-step ahead trajectories where h ≤ H. We will use the
learned matrix and predict trajectories starting at each time step t < T and up to the horizon
min{T − t, H}. The idea is to augment the data set with all possible predictions using the
learned model.
Thus, at each time step, we can have several forecasts. For each t, we predict x̂t:t−l+1 with
CΦΦ(xt−1:t−l) up to (CΦΦ)H(xt−H:t−H−l+1) for t > H. More exactly, at each iteration j ≥ 1,
for t ≥ l + 1, we have the following Mt predictions:

x̂(j,m)
i,t:t−l+1 = (ĈΦ,j−1Φ)m(x̂i,t−m:t−l−m+1), for m ∈ {1, . . . , Mt}.

In this setting schematized in the second position of figure 6.3, we have L = T − H and
Mt = min{t− l, H}.
Although this approach allows the best use of the data set and to learn the matrix, it has
practical limitations. Indeed, at each DAgger iteration, we add T − 2 trajectories with sizes
between 1 and H. This requires a large amount of memory usage, especially if T , H, and p are
large. The approach must, therefore, be adapted and simplified.
For this purpose, we add two ingredients that allow us to make the best use of these different
trajectories: sub-sampling and increasing horizons. First, sub-sampling the trajectories will
reduce the computational burden while still learning a coherent and faithful underlying generative
model. Second, we have observed that increasing slowly the horizon of predictions yields better
predictive results. The corresponding ablation study is available in section 6.4.4.2.

DaD_agg For the first method, we decide to aggregate the predictions by averaging the
available predictors. We impose each estimator to be good on several time steps. As shown
in Figure 6.3, the method aggregates the different predictions in the red rectangle for specific
time steps. Thus, at each iteration j ≥ 1, for t ≥ l + 1, we have the following prediction:

x̂(j,1)
i,t:t−l+1 = 1

min(t− l, H)

min(t−l,H)∑
m=1

(ĈΦ,j−1Φ)m(xi,t−m:t−l−m+1). (6.7)

In this setting, we have L = T −H and Mt = 1.

DaD_sub For the first ingredient, sub-sampling, we predict from a starting point and compose
the learned matrix until the predefined maximal horizon H restarts at one step, and then we
compose again after reaching it. Here, we use a multi-step ahead forecast, and we decided to
subsample so that we have multiple trajectories that do not overlap, as shown in figure 4.6.
Hence, at each iteration j ≥ 1, for t ≥ l + 1, we have the following prediction:

x̂(j,1)
i,t:t−l+1 = (ĈΦ,j−1Φ)t−H(t)(xi,H(t):H(t)+1−l),

where H(t) = max(l, H⌊ t−1
H ⌋). In this subsampling method, L = T−H and Mt = 1.

DaD_sub+ and DaD_agg+ For the second ingredient, we develop an approach that
emphasizes the progressive nature of learning. Indeed, the model first learns to predict
in the short term at a prediction horizon h1. Once the learning is completed, i.e., when no
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improvement can be detected during the DAgger iterations, we increase the prediction horizon
until the final horizon H is reached. Thus, this approach allows the model to avoid learning a
task that is too difficult, i.e., learning in the short term and at the same time in the long term
with a very large horizon.
More exactly, at each DAgger iteration, we test whether the score improves, and we set a
threshold β. Suppose the score does not improve after a number of iterations ks. In that
case, we update the prediction horizon by a fixed number of steps S and reuse the previously
augmented data set (before the ks iterations). We write D(k) the augmented training data set
used at the iteration k. The problem is as follows: if

1
hk(T−H− l+ 1)N

hk∑
δ=1

T −H∑
t=l

N∑
i=1

[
∥xi,t+δ:t−l+δ+1 − (CΦ,k−1Φ)δ(xi,t:t−l+1)∥2

− ∥xi,t+δ:t−l+δ+1 − (CΦ,kΦ)δ(xi,t:t−l+1)∥2
]
≤ β,

(6.8)

then hk+1 = min(hk + S, H) and D(k+1) = D(k+1−ks).

Validation After reaching the number of DAgger iterations previously fixed, we obtain a set
of candidate matrices for each method. To determine which matrix is the most reliable and
coherent, we use a validation set Dv of Nv trajectories and denote by xv

i,t:t−l+1 the elements of
the data-set. The selected model is the learned model with the lowest validation loss:

ĈΦ = argmin
C∈{Ĉ1,...,ĈK}

H∑
δ=1

T −H∑
t=l

Nv∑
i=1
∥xv

i,t+δ:t−l+δ+1 − (CΦ)δ(xv
i,t:t−l+1)∥2.

Computation These methods differ in time and space complexity. In fact, at each iteration
and for each trajectory: 1) DaD needs to store an additional trajectory of length H, hence
H samples; 2) the method DaD_R constructs T − 1 trajectories, with T −H trajectories of
length H and the remaining trajectories of length T −H to 1, which makes (T −H)H + (H−1)H

2
samples; 3) the method DaD_sub store T − 1 samples.

6.3.0.1 Theoretical analysis

DaD is an iterative algorithm that learns a matrix ĈΦ from the training data to perform
multi-step prediction. The learned matrix is used to simulate trajectories, allowing us to judge
the quality of the learning and correct it. The matrix at the following iterations is learned from
the previous data: on the one hand, the real trajectory with the pairs allowing to learn the
one-step prediction, and on the other hand, the pairs formed from the values of the simulated
trajectories associated with the values given by the real trajectory. Thus, the matrix ĈΦ, in
addition to learning on the real trajectory, has to make ’corrections’ that allow us to learn the
underlying model.
This approach can be interpreted as an interactive imitation learning approach and, more
particularly, as the DAgger algorithm developed by Ross et al. (2011). Indeed, as described
by Venkatraman et al. (2015), we can rewrite our problem in this framework and thus take
advantage of the theoretical guarantees we will develop further.
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More precisely, note that at iteration k, the algorithm learns a model

ĈΦ,k = argminCΦ

k∑
j=0

ℓj(CΦ)

from D(k). We would be interested in controlling the loss of the coherent model ℓj(ĈΦ,j−1), i.e.,
the loss of a model where the same matrix ĈΦ,j−1 is used to build the trajectories and to make
the one-step prediction.
Thanks to the Follow-The-Leader principle of our algorithm, control of the coherent loss by
the loss truly minimized is possible. Indeed, using the fact that our losses ℓj are σj strongly
convex, we can prove the following theorem using Shalev-Shwartz & Kakade (2008) analysis.

Theorem 6.3.1. For any K ≥ 1,

min
1≤j≤K

ℓj(ĈΦ,j−1) ≤ min
C

1
K

K∑
j=0

ℓj(C) + log(K + 1)
2K

supj≤K ∥∂ℓj(ĈΦj−1)∥2

minj≤K σj
,

where ∂ℓj is a subgradient of ℓj.

Proof. The proof lies in the fact that our framework, written for k ≥ 0,

ĈΦ,k = argmin
C∈M

k∑
j=0

ℓj(C)

is a Follow-The-Leader (FTL) algorithm. Indeed, following Shalev-Shwartz & Kakade (2008)
analysis, we have the following upper-bound:

K∑
j=0

ℓj(ĈΦ,j−1)− min
C∈M

K∑
j=0

ℓj(C) ≤ 1
2

K∑
j=0

∥∂ℓj(ĈΦ,j−1)∥2∑j
i=1 σi

.

Without loss of generality, let ĈΦ,−1 = 0. Then,

min
1≤j≤K

ℓj(ĈΦ,j−1) ≤ min
C∈M

1
K

K∑
j=0

ℓj(C)− 1
K

ℓ0(0) + 1
2K

K∑
j=0

∥∂ℓj(ĈΦ,j−1)∥2∑j
i=1 σi

(Definition of minimum)

≤ min
C∈M

1
K

K∑
j=0

ℓj(C) + 1
2K

K∑
j=0

∥∂ℓj(ĈΦ,j−1)∥2∑j
i=1 σi

(Non-negativity of loss)

≤ min
C∈M

1
K

K∑
j=0

ℓj(C) + log(K + 1)
2K

supj≤K ∥∂ℓj(ĈΦ,j−1)∥2

minj≤K σj
(Upper-bound)

■

Remark 6.3.2. We still remain under this theorem by adding an L1 penalty since the total loss is
σj-strongly convex.

Provided the gradient is upper bounded, and the σj are lower bounded, as we have observed in
practice, this means that a small trained loss implies a good coherent model.
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6.4 Application
In this section, we evaluate the capacity of our model to learn the system dynamics by studying
its ability to predict at several steps up to a fixed horizon H and to capture the structure by
analyzing the estimated coefficients. We compare it to multiple algorithms on synthetic and
real-world data sets.

6.4.1 Evaluation metrics
The models are evaluated along two dimensions. The first dimension assesses their predictive
capability, which refers to their accuracy in generating forecasts. The second analyzes the
model’s ability to capture the underlying mechanisms or relationships within the data.

6.4.1.1 Predictive analysis

To evaluate the predictive ability of our approach, we have trained the DaD, DaD_R iteratively,
DaD_sub and DaD_sub+, until we obtain the convergence of the loss on the validation set. For
the incremental models, we set h1 = 1, β = 0.01, S = 1 and ks = 10. To compare the advantages
of the methods using data enrichment, we also trained a one-step Linear Regression (method
LR). Besides, we learned a model using the direct approach also with a Linear Regression
determined by Eq. (6.2) (Direct method). Indeed, comparing the direct approach with the
developed methods is useful for providing an upper bound on what might be achievable by any
recursive model.
All models have multivariate outputs and predict at multiple steps. To evaluate them, we use
the normalized root mean squared error (NRMSE):√∑

t ∥x̂t − xt∥22√∑
t ∥xt∥22

. (6.9)

This metric allows us to obtain a performance measure of a multi-step forecasting model.
Indeed, for each horizon h < H, we measure the difference between the predictions at h steps
and the true values. We normalize to constrain the model to predict well for all variables.

6.4.1.2 Interpretability analysis

When the data comes from a discrete dynamical system, we are interested in assessing the
extent to which a model can identify true relationships between variables and the effect of
multicollinearity. Since we study known systems in this section, we evaluate the model’s
performance by comparing the variables found with the true coefficients. More precisely, we
define the sets T and P of the true variables and the predicted variables, respectively. To
take into account the collinearity in the data, we define the correlation matrix corr where the
element corr[i, j] represents the correlation between x

(i)
T :1 and x

(j)
T :1 for all i, j ∈ {1, . . . , n}. We

introduce two other sets
T+ = {i|j ∈ T, |corr[i, j]| ≥ α}

and
P+ = {i|j ∈ P, |corr[i, j]| ≥ α}
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which are, respectively, the variables correlated more than a threshold α ∈ [0, 1] with the true
variables and the predicted variables. In the following, we show the results for α = 0.9 (an
in-depth analysis of the effect of this parameter is given in the appendix B).
To measure interpretability, we first introduce metrics derived from the confusion matrix metrics
in table 6.1 where |E| represents the cardinal of the set E and E is the complementary set of E.

Metric Definition
True Positives (TP) |P ∩ T+|
False Positives (FP) |P ∩ T+|
True Negatives (TN) |T ∩ P+|
False Negatives (FN) |T ∩ P+|

Table 6.1: Confusion Matrix Metrics

These metrics, including numbers of True Positives (TP), False Positives (FP), True Negatives
(TN), and False Negatives(FN), allow us to define various metrics providing insight into the
model’s interpretability performance, such as the F2-score, Sparsity score, Recall and Precision
presented in table 6.2.

Metric Definition

F2 Score (1+22)·T P
(1+22)·T P +22·F N+F P

Sparsity |P|
|T|

Recall |T∩P+|
|T|

Precision |P∩T+|
|P|

Table 6.2: Evaluation Metrics: F2-score, sparsity, recall, and precision

The appendix B evaluates additional metrics further. Other factors, such as noise magnitude,
horizon H, and data-set size, can influence the model’s ability to recover the true causal
coefficients, so they are considered in the analysis.
In this study, we compare our approach with a discrete SINDy (Brunton et al., 2016), k-Best,
Recursive Feature Elimination and SelectFI (Pedregosa et al., 2011).

6.4.2 Benchmark Methods
This paragraph outlines the comparative methodologies used in our study:

• SINDy (Sparse Identification of Nonlinear Dynamics) with Lasso: This method is a
multivariate feature selection algorithm. It operates by selecting the most relevant
features based on Lasso regularization after a nonlinear expansion of the variables. In
our study, the SINDy algorithm with Lasso identifies the sparsest set of variables that
can accurately represent the system’s dynamics. In our study, we determine the optimal
regularization parameters by cross-validation.
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• kBest with f-regression: This method is a univariate feature selection algorithm. It selects
the k best features based on univariate statistical tests. It can be seen as a preprocessing
step to an estimator. In this case, we use the f-regression function as the score function,
which is used for regression tasks. The f-regression function computes the correlation
between each regressor and the target and converts it into an F score, then to a p-value.
In our study, we identify the optimal parameter k by cross-validation.

• SelectFromModel with Random Forest: SelectFromModel is a meta-transformer that can
be used along with any estimator that assigns importance to features, either through
a coef_ attribute or through a feature_importances_ attribute. In this case, we use
a Random Forest Regressor as an estimator. The features are selected based on their
importance weights, with the less important ones removed. Different criteria were used,
such as the mean and the median.

• Recursive Feature Elimination (RFE) with Gradient Boosting: RFE is a feature selec-
tion method that fits a model and removes the weakest features until the specified number
of features is reached. Features are ranked by the model’s coef_ or feature_importances_
attributes, and by recursively eliminating a small number of features per loop, RFE
attempts to eliminate dependencies and collinearity that may exist in the model. In this
case, we use a Gradient Boosting Regressor as an estimator. In our study, we identify the
optimal number of features to remove by cross-validation.

These last three approaches are all implemented within the scikit-learn library (Pedregosa et al.,
2011).

6.4.3 Data-sets
To assess our method, we rely on synthetic data sets with known ground truth. This controlled
setting enables a rigorous evaluation of the method’s performance under well-defined conditions.
Subsequently, the method’s performance is further validated using a real-world data set. Details
on the data sets are given below.

6.4.3.1 Synthetic data-sets

We test our methods in two different synthetic settings:

• The Ordinary Differential Equations (ODEs) data was derived by implementing the
fourth-order Runge-Kutta numerical method to solve the differential equations. This
generated a time series from which a subsample was extracted to constitute our final data
set. It is important to mention that noise is incorporated during the data generation
process. Specifically, while the ODE is being solved using the Runge-Kutta method, a
noise component is added to the system at each iteration.
The Cartpole, the Pendulum, the Double Pendulum, the Spring Pendulum, and the System
Mass Spring Pendulum are generated in this way. The following are the parameters used
for data generation: N = 90 trajectories have been generated, which are time series with
different initial conditions of length T = 200. Among these trajectories, 30 are used for
training, 20 for validation, and 40 for testing. The prediction horizon is H = 70.
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• The data for the Discrete Dynamical Systems was obtained by applying a first-order
discretization to an Ordinary Differential Equation for both the Lotka-Volterra and SIR
models. The following parameters are used for data generation: N = 80 trajectories
have been generated, which are time series with different initial conditions. Among these
trajectories, 30 are used for training, 20 for validation, and 20 for testing. The prediction
horizon is H = 10.

In the first one, we observe discrete dynamical systems associated with delayed Lotka-Volterra
and SIR equations. In this setting, we use a polynomial expansion of degree three as Φ, and the
true dynamical systems can be exactly expanded onto Φ. In the second one, we observe discrete
time samples of solutions of non-linear ODEs (Cartpole, single pendulum, mass pendulum
combined with a string, mass attached to a pendulum). As mentioned above, a true linear
discrete system exists in expanded variables only in the first setting. The section B.1 of the
appendix gives more details on the data generation process.

6.4.3.2 Real-world data-set

The data set presented in this study includes real-world wind turbine energy production data
collected over a two-year period from five wind farms operated by the private company Zéphyr
ENR (Bouche et al., 2022; Dupré et al., 2020b) and forecasts data set from the European
Centre for Medium-Range Weather Forecast (2024) (ECMWF). The five wind farms considered
are located in France in Parc de Bonneval, Moulin de Pierre, Parc de Beaumont, Parc de la
Renardière, and Parc de la Vènerie.
The data set provided by Zéphyr ENR contains sensor measurements from the wind turbines.
These measurements, known as in-situ variables, include variables such as wind speed and
Power output. The variables are described in table 6.3.

Variable Unit
Wind speed ms−1

Power output kW
Wind direction Degrees
Temperature Celcius degree

Table 6.3: In-situ variables

The ECMWF provides a data set of global forecasts generated by numerical weather prediction
(NWP) models. Following (Dupré et al., 2020a) description, this data set includes forecasts for
the next day, containing 47 atmospheric variables extracted twice daily detailed in table 6.4.
These variables variables describe the boundary layer, winds, and temperature in the lower
troposphere. Additionally, ECMWF forecasts have a spatial resolution of approximately 16
kilometers. To account for specific farm locations, missing data points are interpolated linearly
from the four nearest grid points.
The central focus of this study is to model the time series wind turbine power output based on
other measurements and forecasts. We use N = 30 time series of length T = 28, of lag l = 2,
and a horizon H = 15. Among these trajectories, 10 are used for training, 10 for validation,
and 10 for testing.
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Variable type Altitude or pressure level Variable Unit
Surface 10m/100m Zonal wind speed ms−1

Meridional wind speed ms−1

2m Temperature K
Dew point temperature K
Skin temperature K
Mean sea level pressure Pa
Surface pressure Pa
Surface latent heat flux Jm−2

Surface sensible heat flux Jm−2

Boundary layer dissipation Jm−2

Boundary layer height m
Altitude 1000/925/850/700/500 Zonal wind speed ms−1

Meridional wind speed ms−1

Geopotential height m2s−2

Divergence s−1

Vorticity s−1

Temperature K
Computed 10m/100m Norm of wind speed ms−1

10m to 925 hPa Wind shear ms−1

Temperature gradient K

Table 6.4: ECMWF variables

6.4.4 Results
The results section first presents an ablation study to identify the optimal strategy among
those developed in section 6.3. Subsequently, the results for discrete dynamical systems, ODE
time series, and real-world data sets are detailed. All results are obtained in this section by
averaging 50 runs over data generated with different initial conditions.

6.4.4.1 Training deviation

We observe, in the figure 6.4, that both DaD_sub and DaD_agg approaches also experience the
deviation during the first iterations of the algorithm as seen in figure 6.2, but to a lesser degree.
These methodologies allow us to make rapid adjustments and quickly reach good performance
levels.

6.4.4.2 Ablation Study

An ablation study was carried out to compare the different methodologies developed in section
6.3 such as DaD, DaD_R, DaD_sub and DaD_sub+. We conducted an analysis of the
prediction loss in relation to varying noise levels and data-set sizes.
Our examination of noise levels, shown in Table 6.5, revealed that DaD_sub+ and DaD_sub
exhibit similar performance, significantly surpassing DaD and DaD_R. However, it was
observed that DaD_sub outperforms the others in highly noisy settings at a level of 0.1, while
DaD_sub+’s performance deteriorates under these conditions. Upon further investigation, we
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Figure 6.4: This figure illustrates the losses of the original DaD algorithm and the variant
that we have developed on the Cartpole dataset with respect to the DAgger iteration. The
parameters H and T are set at 30 and 50, respectively.

have seen that DaD_sub+ performs poorly at a high noise level of 0.1 and a small data-set size
of 2, contributing to the large standard deviation noted in Table 6.5.

Noise DaD DaD_R DaD_sub DaD_sub+

0.01 0.00338±0.00182 0.51237±0.07712 0.0004±3e-05 0.00037±3e-05
0.03 0.04379±0.01166 0.54354±0.05304 0.00345±0.00011 0.00248±0.00018
0.07 0.12409±0.02027 0.49423±0.08779 0.01654±0.00156 0.01292±0.00128
0.1 0.15574±0.03546 0.42311±0.13289 0.03586±0.00495 0.2272±0.29191

Table 6.5: Ablation Study on Lotka-Volterra Data-set: Comparison of the prediction metric,
NRMSE, for the approaches developed in this article and for different noise levels. The mean
and standard deviation are computed over 50 runs.

Furthermore, the analysis of data-set size, as presented in Table 6.6, indicates that DaD_sub+

consistently surpasses all other methods, irrespective of the data-set size.

Data-set size DaD DaD_R DaD_sub DaD_sub+

2 0.08±0.085 0.505±0.045 0.011±0.019 0.009±0.278
5 0.091±0.076 0.522±0.047 0.01±0.016 0.007±0.012
15 0.08±0.053 0.497±0.158 0.009±0.014 0.007±0.045

Table 6.6: Ablation Study on Lotka-Volterra Data-set: Comparison of the prediction metric,
NRMSE, for the approaches developed in this article and for different data-set sizes. The mean
and standard deviation are computed over 50 runs.
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This suggests that sub-sampling enhances the model’s learning capability, and the incremental
process helps improve predictions in every scenario except when dealing with strong noise and
limited data availability. Therefore, DaD_sub+ is the best performing method and will be the
only one for which we will show results in the following experiments.

6.4.4.3 Discrete dynamical system

Table 6.7 and 6.8 summarize our results, obtained by averaging 50 runs over data generated
with different initial conditions.
Regarding interpretability, which is well-defined here as there is an underlying linear dynamical
system in expanded variables, we obtain strong performances across the diverse interpretability
metrics described above. While it may not always attain the top position on all metrics, it is
always ranked among the top two performers with performance close to the winner.

METRICS METHODS
DaD_sub+ SINDy kBest RFE SelectFI

F2 0.891 0.880 0.823 0.815 0.667
Precision 0.683 0.637 0.622 0.598 0.759

Recall 0.976 0.986 0.880 0.893 0.507
FP 2.224 2.704 9.200 4.910 1.420

Sparsity 1.993 2.252 6.367 3.677 1.460
NRMSE 0.869 1.009 / 0.997 0.989

Table 6.7: Evaluation on discrete Lotka-Volterra data-set with σ = 0.07, N = 5 and H = 12
and where X denotes the mean value of the metric X over 50 runs.

Additionally, our approach demonstrates the strongest predictive ability with the lowest NRMSE
loss, showing effectiveness in making multi-step prediction. Similar results are obtained with
the SIR (details are given in section B.2 of the appendix).
In this setting, we have observed that the best solution is consistently obtained when the
algorithm considers a horizon of order 2 and that increasing the horizon does not yield much
better results. This observation is consistent across different data-set sizes and noise levels. We
think this is due to the same optimal solution, whatever the horizon.

6.4.4.4 ODE time series

In Table 6.9, we present a comparison of our forecasting approaches alongside alternative methods
using the NRMSE metric. The results are obtained by performing multi-step forecasting on
the test data set and by averaging all NRMSEs for each time step and variable.

120



6.4. Application

Data-set Size Metric DaD_sub+ SINDy kBest RFE SelectFI

5

F2-score 0.965±0.007 0.959±0.005 0.587±0.004 0.543±0.006 0.585±0.001
Precision 0.884±0.017 0.871±0.013 0.437±0.007 0.446±0.01 0.639±0.005

Recall 1.0±0.0 0.999±0.001 0.663±0.002 0.529±0.016 0.429±0.003
FP 1.507±0.562 2.116±0.328 12.567±1.185 2.58±0.207 0.335±0.077

Sparsity 2.671±0.315 3.059±0.134 12.71±0.717 3.121±0.132 2.135±0.038
NRMSE / 5.048±0.779 0.036±0.068 0.578±0.004 0.794±0.01

10

F2-score 0.962±0.012 0.949±0.004 0.584±0.002 0.527±0.006 0.565±0.002
Precision 0.962±0.012 0.949±0.004 0.584±0.002 0.527±0.006 0.565±0.002

Recall 1.0±0.0 1.0±0.0 0.667±0.0 0.596±0.008 0.408±0.006
FP 1.83±1.02 2.995±0.377 13.548±1.063 4.697±0.324 0.188±0.049

Sparsity 2.86±0.582 3.533±0.192 13.322±0.638 4.339±0.122 1.676±0.021
NRMSE 0.937±0.107 / 5.067±0.82 0.565±0.001 0.785±0.001

15

F2-score 0.96±0.014 0.948±0.005 0.58±0.003 0.518±0.007 0.556±0.001
Precision 0.873±0.033 0.842±0.011 0.415±0.009 0.332±0.004 0.648±0.006

Recall 1.0±0.0 1.0±0.0 0.667±0.0 0.608±0.014 0.391±0.003
FP 2.027±1.104 3.185±0.38 15.062±1.781 5.075±0.078 0.143±0.044

Sparsity 2.973±0.592 3.639±0.176 14.326±1.231 4.417±0.073 1.457±0.014
NRMSE 0.001±0.001 0.001±0.002 4.911±0.824 0.564±0.001 0.78±0.003

Table 6.8: SIR Data-set: Comparison of the models over data-set sizes on interpretability
metrics, F2-score, Precision, Recall, FP, Sparsity and prediction metric, NRMSE. The mean
and standard deviation are computed over 50 runs. The winning method is shown in bold and
the second is underlined.

Table 6.9: RNMSE for the different methods on ODE data sets

data-setS METHODS
DaD DaD_R DaD_sub DaD_sub+ LR Direct

Cartpole 0.338 0.338 0.338 0.321 0.338 0.306
Pendulum 0.274 0.273 0.278 0.265 0.274 0.136

Double Pendulum 0.626 0.565 0.624 0.541 0.615 0.503
Mass + Spring 0.291 0.283 0.291 0.278 0.291 0.241

Spring Pendulum 0.403 0.392 0.403 0.390 0.403 0.332

Using the ODE data set, we observe that DaD_sub+ outperforms all iterative approaches on
all the data sets considered and is close to the best one (direct approach). Indeed, the direct
approach performs better than all other methods and gives us a measure of comparison for
methods with a specific objective, i.e., to predict at a fixed step. Figure 6.5 displays multi-step
losses of the best DaD_sub+ model trained at different horizon hk. The heatmap shows the
benefit of using incremental learning. In fact, using corrections improves the model’s ability to
learn at long-term horizons.
Regarding interpretability, when the data is generated by an ODE and observed at discrete
times, the definition of the set of true coefficients T is challenging. We nevertheless provide
results and discussion of this point in the appendix.
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Figure 6.5: Evolution of the best prediction loss for models trained for a horizon hk through
DaD_sub+ iterations against horizon H (averaged over 50 runs).

6.4.4.5 Real world data-set

The visualization of the prediction loss evolution in Figure 6.6 provides a compelling illustration
of the effectiveness of our approach and reinforces the credibility of our findings. Here, the
interpretability and analysis of the coefficients are limited as we do not know the true coefficient
set T, or even if it exists. Nevertheless, our framework shows that DaD_sub+ is the sparsest
model and that the variables are consistent with domain knowledge.

6.4.4.6 Limitations of our approach

The interpretability analysis of time series data can be challenging due to the absence of a
unique solution and the ability to make long-term accurate forecasts with coefficients that differ
from the true ones. In such cases, the sparsity criterion gives a practical measure for model
interpretability. Moreover, including extended non-linear expansion in the model increases
computational complexity and multicollinearity, which is another limitation to consider.
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Figure 6.6: Prediction loss comparison against horizon for wind power forecasting

6.5 Conclusion and future works
In this work, we address the problem of multi-step ahead prediction of multivariate time
series by learning an interpretable and coherent model. We develop a framework to improve
a linear predictor by efficiently using training data using the DAgger approach. We present
methodological, theoretical, and experimental contributions.
Future works should adapt this approach to a broader range of models, allowing the direct
method to be challenged without compromising interpretability. Moreover, further analyses
will be made to evaluate this framework’s ability to identify the parameters of the underlying
dynamics in the presence of multicollinearity.
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7.1. Conclusion

7.1 Conclusion
In this thesis, we aimed to develop algorithms and methods for analyzing time series in a
simple and comprehensible way. After describing the field of XAI and clarifying the definition
of interpretability, we focused on developing these models to improve existing transparent
approaches by increasing their performance or building new interpretable methods.
From data measured over time, such as sensors on a machine or the monitoring of variables, the
aim is to extract patterns and knowledge to make effective decisions. Given business constraints,
the models developed must be not only efficient but also transparent in order to reveal the
decision-making process clearly by describing the mechanisms relating the input variables to
the output decision. This increases acceptance and management of these tools.
Two main problems were addressed in this thesis, leading to two contributions.

Root Cause analysis

Many complex models allow a labeled data set to learn and predict the occurrence of events,
such as failures from a time series data set containing a large number of variables. Even though
high accuracy can be achieved, some errors and missed events can potentially lead to huge
losses due to the lack of decision-making and model understanding. The first works tackled
this challenge by proposing an interpretable approach to uncover the root cause of failures.
Our approach aims to build simple rules using an association rule mining framework. The
first step involves transforming and discretizing the data set to create a new database for
the inference. The second step involves incorporating causality as association rules mining,
as its name indicates, only deals with associations. This is done by taking advantage of
an epidemiological approach called the case-crossover design. The combination of these two
approaches provides causal and interpretable rules for understanding the causes of the failure.
Then, two predictive algorithms were constructed based on the causal rules, allowing forecasting
of the occurrence of the failures. The first algorithms select rules based on several criteria and
then aggregate the rule’s decisions to make a global prediction. The second algorithm takes
advantage of the first and improves it by adding anti-rules, which are the rules that predict a
normal situation. The aggregation for both rules allows for a powerful predictive algorithm.
This approach was tested on a real-world data set where a phenomenon called flooding happens
briefly in time and induces a failure. The objective was to identify the causes of the problem and
provide operators with simple and interpretable information. The approach and the predictive
algorithms were applied to this data set and showed strong performance, which experts in the
domain validated.

Dynamic modeling

After providing the tools for analyzing the causes of specific phenomena from potentially
high-dimensional multivariate time series data, we approached the problem from a global
perspective, learning the underlying dynamics generating the time series. The aim was to
extract an equation from the observations, enabling us to determine the relationships between
the explanatory variables and an output variable. This equation yields an interpretable model
that allows a better understanding of the phenomenon at play and the underlying systems.
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We have developed an approach for learning these dynamics from interpretable methods such
as vector autoregressive models. The input dimensions were increased by introducing non-
linearities in the input variables to account for the real data’s non-linear nature. Two main
problems associated with this approach arose: the high-dimensional nature of the study and
the lack of performance of regression methods, particularly in a multi-step learning setting
where error propagation occurs.
To address the first problem, applying penalized regression methods that encourage sparsity
enables the selection of a restricted set of variables, considerably reducing the number of
variables and selecting only the most significant ones. To overcome the second problem, we
have combined these penalized regression methods with imitative learning methods to correct
error propagation. The proposed iterative algorithm learns a set of candidate models, learning
the dynamics and successively correcting the trajectories. After learning the dynamics, the
model selection is then made by cross-validation.
This approach was tested on synthetic time series data from ODEs to recover the equations of
this discretized ODE. Once validated using forecasting performance metrics and interpretability
analyses, we applied our model to a wind data set.

7.2 Perspectives
This thesis lays the groundwork for further research. We discuss the challenges and opportunities
for further progress raised by the two approaches developed.

Causal rules algorithm
Improving time series discretization and labelization An implicit assumption of the
developed approach is that the discretized items contain the causal information and potentially
match the causal scale (Gong et al., 2015; Shojaie & Fox, 2022). Consequently, one area
for improvement in the association rule algorithm lies in discretization. This necessary step,
involving a symbolic representation of the time series, creates a loss of information. This can be
reduced using algorithms such as SAX (Symbolic Aggregate Approximation) (Lin et al., 2007),
which involves two main steps: first, it automatically reduces the dimensionality of time series by
aggregating data points. Secondly, it converts the reduced data into a symbolic representation
using predefined symbols. In addition, further evaluations on synthetic datasets where the
ground truth is known are essential to determining precisely how effective the algorithm is in
mitigating information loss.
Another limitation is related to data labeling. As the root cause of the failures is unknown,
labels were assigned based on information that could come from different places in the causal
chain. This introduces uncertainty in the identification of the exact cause. In addition, the
labeling process involved differentiating between normal and abnormal operating conditions,
including their durations. While expert knowledge facilitated this labeling, further research
could explore the potential for automating this process.

Granger causality and Interventions Granger’s causal analysis relies on specific statistical
assumptions such as causal sufficiency and stationarity. Spurious correlations may be identified
instead of true causal relationships if these assumptions are not verified. Several methodologies
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have been proposed to address these limitations in the context of vector autoregressive (VAR)
models (Shojaie & Fox, 2022). Future research efforts should focus on critically evaluating our
association rule algorithm’s assumptions related to Granger causality and the case-crossover
design to ensure accurate identification of causal effects. However, it is important to recognize
that assumptions such as causal sufficiency cannot be tested and, therefore, necessitate the
expertise of a domain expert.
On the other hand, an open question is how to prevent the occurrence of failure and what
should be done to avoid future occurrences. To achieve this, we need to identify the variables
that can be manipulated in the causal graph and intervene to defuse potential failures. The
causality graph enables us to make deductions and develop targeted interventions to identify the
root cause and the variables that prevent such incidents. Under certain assumptions (Assaad
et al., 2023; Pearl, 2000), we can assess changes in the causal mechanism by intervening on the
causal graph. The information obtained can then be used to develop actionable intervention
strategies.

Allowing for non-observed variables Numerous sensors can be placed on a system to
capture its evolution, but additional unobserved variables can act on the system. Adding these
variables to the analysis could provide additional information for the overall understanding of
the system (Strobl & Lasko, 2023).

Dynamic discovery
Theoretical limitation Some important aspects still need to be addressed (Camps-Valls et al.,
2023). First, we need to determine whether the system of equations is identifiable, i.e., whether
the structure and the parameters can be recovered from the data. Second, current selection
methods, which often favor models with fewer parameters (sparsity), may not be sufficient. A
more comprehensive evaluation approach is necessary to identify the best model. Additionally,
our current analysis assumes all variables are observed. However, future studies could explore
the potential influence of latent variables (unobserved factors) on the system.

In-depth study on the multicollinearity problem An important limitation to discovering
underlying dynamical systems is the presence of multiple variables and, consequently,
multicollinearity in the dataset. This can prevent accurate parameter estimation and
identification of the true dynamics of the system. Regularization techniques like Lasso allow for
reducing the number of variables, but these methods choose variables at random from a set of
correlated groups. To ensure the identification of the true system, consistency conditions such
as the irrepresentable conditions (Zhao & Yu, 2006) should be integrated into our approach.
Additionally, alternative feature selection approaches require careful consideration to avoid
discarding important variables.

Alternative to Lasso Our current approach uses the Lasso algorithm, which can be quite
slow when dealing with high-dimensional data. This presents a challenge for the iterative
nature of our dynamic discovery algorithm. Therefore, exploring alternative approaches for
faster computation is an area of research that we need to focus on in the future. One possible
solution could be using the sparse relaxed regularized regression (SR3) problem, which has

127



7.2. Perspectives

been proposed in recent studies (Champion et al., 2020; Rudy et al., 2017; Zheng et al., 2018).
Researching and experimenting with this approach could benefit our algorithm.
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APPENDIX A

Appendix for chapter 3

Conditional logistic regression
Let i ∈ {1, . . . , N} be the subject that is studied, xi,1 a realization of X1 the random vector of
exposure for the case, xi,0 of X0 the exposure vector for the control, and Yk ∈ {0, 1} be the
associated outcome variable for k ∈ {0, 1}. Both X1 and X0 take discrete values in Rp. Let us
prove that the conditional likelihood is written:

l(β) =
N∏

i=1

exp(βT xi,1)
exp(βT xi,0) + exp(βT xi,1) =

N∏
i=1

1
1 + exp(βT (xi,0 − xi,1)) (A.1)

Let xi,0, xi,1 ∈ Rp , the logistic function is defined as

P (Y1 = 1|X1 = xi,1) = exp(λi + βT xi,1)
1 + exp(λi + βT xi,1) (A.2)

P (Y0 = 0|X0 = xi,0) = 1− P (Y0 = 1|X = xi,0) = 1
1 + exp(λi + βT xi,0) (A.3)

where β ∈ Rp is the regression vector and λi is the intercept.
Let us consider (X0, X1, Y0, Y1) and assuming that (X0, Y0) and (X1, Y1) are conditionally
independent, we compute the probability of the event (X0 = xi,0, X1 = xi,1) conditioned on
(Y0 = 0, Y1 = 1) using Bayes formula:

l(β) = P (X0 = xi,0, X1 = xi,1|Y0 = 0, Y1 = 1)

= P (X0 = xi,0, X1 = xi,1, Y0 = 0, Y1 = 1)
P (Y0 = 0, Y1 = 1)

= P (Y0 = 0, Y1 = 1|X0 = xi,0, X1 = xi,1) P (X0 = xi,0, X1 = xi,1)
P (Y0 = 0, Y1 = 1)

(A.4)

By independence, we could rewrite it

l(β) = P (Y0 = 0|X0 = xi,0) P (Y1 = 1|X1 = xi,1) P (X0 = xi,0) P (X1 = xi,1)
P (Y0 = 0) P (Y1 = 1) (A.5)

130



To estimate β, we need to develop equation A.5 to do Maximum Likelihood Estimation
(MLE). In this equation, only P (Xk = xi,k) and P (Yk = k) for k ∈ {0, 1} are unknown.
P (X0 = xi,0) P (X1 = xi,1) can be considered as a constant as it does not depend on β. Let us
expand P (Yk = k) using the law of total probability:

P (Yk = k) =
∑
x′

P
(
Yk = k|Xk = x′) P

(
Xk = x′) (A.6)

Here, we see the limits of the logistic regression model because we need to know the distribution
of Xk to be able to know the probability (A.6) and apply MLE.
In conditional logistic regression, an alternative is proposed when the distribution of Xk

is unknown. Instead of calculating the probability as in equation A.5, we calculate the
probability of the event (X0 = xi,0, X1 = xi,1) among S = {(xi,0, xi,1) , (xi,1, xi,0)} conditioned
on (Y0 = 0, Y1 = 1). This can written as:

l(β) = P (X1 = xi,1, X0 = xi,0|Y0 = 0, Y1 = 1)
P (X1 = xi,1, X0 = xi,0|Y0 = 0, Y1 = 1) + P (X1 = xi,0, X0 = xi,1|Y0 = 0, Y1 = 1)

=
P (Y0=0,Y1=1|X0=xi,0,X1=xi,1)P (X0=xi,0)P (X1=xi,1)

P (Y0=0,Y1=1)
P (Y0=0,Y1=1|X0=xi,0,X1=xi,1)P (X0=xi,0)P (X1=xi,1)

P (Y0=0,Y1=1) + P (Y0=0,Y1=1|X1=xi,0,X0=xi,1)P (X0=xi,1)P (X1=xi,0)
P (Y0=0,Y1=1)

= P (Y1 = 1|X1 = xi,1) · P (Y0 = 0 | X0 = xi,0)
P (Y1 = 1|X1 = xi,1) · P (Y0 = 0 | X0 = xi,0) + P (Y0 = 0|X1 = xi,0) · P (Y1 = 1 | X0 = xi,1)

(A.7)
Using equation A.2 and A.3, we can write the conditional likelihood function

l(β) = P (Y1 = 1|X1 = xi,1) · P (Y0 = 0 | X0 = xi,0)
P (Y1 = 1|X1 = xi,1) · P (Y0 = 0 | X0 = xi,0) + P (Y0 = 0|X1 = xi,0) · P (Y1 = 1 | X0 = xi,1)

=
exp(λi+βT xi,1)

1+exp(λi+βT xi,1) ·
1

1+exp(λi+βT xi,0)
exp(λi+βT xi,1)

1+exp(λi+βT xi,1) ·
1

1+exp(λi+βT xi,0) + 1
1+exp(λi+βT xi,1) ·

exp(λi+βT xi,0)
1+exp(λi+βT xi,0)

=
exp

(
λi + β⊤xi,1

)
exp (λi + β⊤xi,1) + exp (λi + β⊤xi,0)

By dividing by the numerator, this leads to

l(β) = 1
1 + exp (β⊤(xi,0 − xi,1)) (A.8)

This is the logistic regression for subject i. The case crossover is done here with N observations
with i ∈ {1, . . . , N}. Hence, the conditional likelihood function is written

L(β) =
N∏

i=1

1
1 + exp (β⊤(xi,0 − xi,1))

(A.9)
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APPENDIX B

Appendix for chapter 6

This appendix is organized as follows. Section B.1 presents additional information on the
data-sets, and Section B.2 gives additional results from the experiments.

B.1 Data-set Details
In this section, we describe the non-linear equations used to generate the data-sets used in
Section 5, and we plot multivariate time series for each of them. All physical quantities are
expressed in standard units (and g = 9.81m.s−2 is the gravitational acceleration constant).

B.1.1 Cartpole

Figure S1: Cartpole
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Figure S2: Variables: x, ẋ, θ, θ̇

The first system that we study is the cartpole. Let l = 1 and mp = mc = 1 be respectively the
length and the masses. The data-sets are generated using the following equations:

θ̈ =
g sin θ + cos θ

(
−F −mplθ̇2 sin θ

mc+mp

)
l
(

4
3 −

mp cos2 θ
mc+mp

)
ẍ =

F + mpl
(
θ̇2 sin θ − θ̈ cos θ

)
mc + mp

.
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B.1. Data-set Details

B.1.2 Pendulum

Figure S3: Pendulum
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Figure S4: Variables: θ, θ̇

The second system is a single pendulum. Let l = 1, m = 1, and c = 0.005 be, respectively,
the pendulum’s length, mass, and dampening factor. The data-sets are generated using the
following equations:

θ̈ = c

m
θ̇ − g

l
sin(θ).

B.1.3 Double Pendulum

Figure S5: Double Pendulum
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Figure S6: Variables: θ1, θ̇1, θ2, θ̇2

Here, we describe the equations of a double pendulum. Let m1 = m2 = 1, l1 = l2 = 1, c = 0.005
and ∆θ = θ1 − θ2. We have the following equations:

θ̈1 = m2l1θ̇2
1 sin(2∆θ) + 2m2l2θ̇2

2 sin ∆θ + 2gm2 cos θ2 sin ∆θ + 2gm1 sin θ1
−2l1

(
m1 + m2 sin2 ∆θ

) ,

θ̈2 = m2l2θ̇2
2 sin(2∆θ) + 2 (m1 + m2) l1θ̇2

1 sin ∆θ + 2g (m1 + m2) cos θ1 sin ∆θ

2l2
(
m1 + m2 sin2 ∆θ

) .
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B.1. Data-set Details

B.1.4 Spring Pendulum

Figure S7: Spring Pendulum
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Figure S8: Variables: l, l̇, θ, θ̇

The system we study here is a spring pendulum. Let l = 2, k = 40 and m = 3. The data-sets
are generated using the following equations:

θ̈ + 1
l

(
g sin θ + 2θ̇l̇

)
= 0

l̈ + 1
m

(
k(l − l0)−mlθ̇2 + mg cos θ

)
= 0

B.1.5 System Mass Spring Pendulum

Figure S9: Mass Spring Pendulum
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Figure S10: Variables: x, ẋ, θ, θ̇

This system comprises a mass, a spring, and a pendulum. Let µ = m
m+M = 0.4 and ε = 0.3 .

The data-sets are generated using the following equations:

θ̈ + 1
1− µ cos2 θ

(
sin θ + µθ̇2 cos θ sin θ − 1

ε
x cos θ

)
= 0

ẍ + 1
1− µ cos2 θ

( 1
ε2 x− µ

ε

(
θ̇2 sin θ + cos θ sin θ

))
= 0
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B.1. Data-set Details

B.1.6 Discrete Lotka-Volterra
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Figure S11: Lotka-Volterra

This system models the interaction between two species: a predator and its prey. Let δ = 1
and ε ∼ N (0, 1) . The data-sets are generated using the following equations:

x
(1)
t+1 = (1 + δ)x(1)

t − δ(x(1)
t )2 − δx

(1)
t x

(2)
t + ε1

t

x
(2)
t+1 = (1− 0.5δ)x(2)

t − 0.1δ(x(2)
t )2 + 2.1δx

(1)
t−1x

(2)
t−1 + ε2

t

B.1.7 Discrete SIR
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Figure S12: SIR
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The SIR model is a set of differential equations that describe the dynamics of an infectious
disease in a population. The population is divided into three compartments: Susceptible (S),
Infected (I), and Recovered (R). Let δ = 1, r = 0.1, µ = 0.1, α = 0, γ = 0.1 and ε ∼ N (0, 1).
The data-sets are generated using the following equations:

St+1 = St + δrSt − rδS2
t − δStIt−1/(1 + αSt) + ε1

t

It+1 = It − (µ + γ)δIt + δStIt−1/(1 + αIt) + ε2
t

Rt+1 = Rt − µδRt + δγIt + ε3
t

B.2 Additional Experimental Results
This section presents a detailed presentation of additional experimental results. First, we
conduct an analysis of the influence of the threshold α on the interpretability loss. Finally,
we provide additional findings pertaining to the impact of data-set size and noise level on our
discrete time series experiments.

B.2.1 Choice of the correlation threshold α

To take into account the collinearity in the data, we define in section 5.1 of the main article the
sets T+ = {i|j ∈ T, |corr[i, j]| ≥ α} and P+ = {i|j ∈ P, |corr[i, j]| ≥ α} which are, respectively,
the variables correlated more than a threshold α ∈ [0, 1] with the true variables and the
predicted variables. In the following, we show the effect of this parameter α on interpretability
metrics against noise level and data-set sizes. We add two metrics |T+|

pΦ
and |P+|

pΦ
that measure

the ratio of variables that are considered to be correlated with the true and predicted ones,
respectively.
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B.2. Additional Experimental Results

Noise Metric α = 0.8 α = 0.9 α = 0.95 α = 0.98

0.01

F2-score 0.972±0.0 0.931±0.001 0.874±0.006 0.729±0.002
Precision 0.886±0.001 0.739±0.002 0.591±0.015 0.464±0.005

Recall 1.0±0.0 1.0±0.0 1.0±0.0 0.833±0.0
FP 1.0±0.0 2.034±0.012 2.929±0.081 4.017±0.039
|T+|
pΦ

0.603±0.0 0.427±0.0 0.338±0.0 0.179±0.001
|P+|
pΦ

0.866±0.002 0.773±0.006 0.573±0.001 0.383±0.003

0.03

F2-score 0.973±0.001 0.896±0.008 0.868±0.01 0.646±0.017
Precision 0.888±0.003 0.653±0.026 0.587±0.031 0.404±0.029

Recall 1.0±0.0 1.0±0.0 1.0±0.0 0.793±0.047
FP 0.986±0.016 2.636±0.258 3.02±0.314 4.398±0.378
|T+|
pΦ

0.603±0.0 0.426±0.0 0.337±0.001 0.169±0.001
|P+|
pΦ

0.867±0.004 0.735±0.009 0.551±0.007 0.384±0.029

0.07

F2-score 0.976±0.001 0.894±0.014 0.835±0.016 0.604±0.041
Precision 0.9±0.002 0.698±0.014 0.546±0.008 0.424±0.01

Recall 1.0±0.0 0.975±0.021 0.972±0.024 0.72±0.068
FP 0.81±0.052 2.15±0.139 2.769±0.118 3.711±0.193
|T+|
pΦ

0.592±0.003 0.424±0.001 0.304±0.001 0.135±0.002
|P+|
pΦ

0.817±0.009 0.681±0.021 0.479±0.021 0.282±0.024

0.1

F2-score 0.976±0.003 0.89±0.022 0.807±0.024 0.619±0.042
Precision 0.9±0.009 0.719±0.03 0.531±0.022 0.454±0.029

Recall 1.0±0.0 0.961±0.017 0.931±0.012 0.722±0.055
FP 0.776±0.031 2.034±0.085 2.827±0.091 3.398±0.11
|T+|
pΦ

0.592±0.0 0.409±0.001 0.246±0.003 0.119±0.001
|P+|
pΦ

0.79±0.012 0.632±0.011 0.39±0.009 0.235±0.005

Table B.1: Study of the correlation parameter α against noise levels: Comparison of different
values of α over noise levels on interpretability metrics, F2-score, Precision, Recall, FP, and the
ratio of the correlated variable with true and predicted ones. The mean of metric X, denoted
as X, and standard deviation are computed over 50 runs.
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B.2. Additional Experimental Results

Data-set Size Metric α = 0.8 α = 0.9 α = 0.95 α = 0.98

2

F2-score 0.973±0.002 0.894±0.026 0.839±0.046 0.624±0.074
Precision 0.89±0.006 0.699±0.032 0.567±0.047 0.437±0.023

Recall 1.0±0.0 0.975±0.029 0.967±0.04 0.723±0.084
FP 0.885±0.117 2.143±0.203 2.781±0.115 3.747±0.298
|T+|
pΦ

0.598±0.005 0.421±0.009 0.306±0.042 0.151±0.028
|P+|
pΦ

0.834±0.034 0.7±0.06 0.493±0.082 0.306±0.074

5

F2-score 0.975±0.002 0.903±0.02 0.847±0.033 0.652±0.056
Precision 0.896±0.009 0.703±0.031 0.566±0.038 0.435±0.026

Recall 1.0±0.0 0.983±0.02 0.975±0.032 0.771±0.056
FP 0.883±0.131 2.214±0.231 2.901±0.057 3.921±0.41
|T+|
pΦ

0.597±0.007 0.422±0.008 0.306±0.043 0.15±0.028
|P+|
pΦ

0.836±0.036 0.706±0.058 0.5±0.08 0.324±0.075

15

F2-score 0.975±0.003 0.91±0.018 0.852±0.017 0.674±0.039
Precision 0.895±0.01 0.705±0.058 0.559±0.012 0.438±0.049

Recall 1.0±0.0 0.994±0.01 0.985±0.028 0.807±0.031
FP 0.911±0.11 2.283±0.449 2.977±0.282 3.974±0.618
|T+|
pΦ

0.596±0.008 0.422±0.008 0.306±0.045 0.15±0.029
|P+|
pΦ

0.834±0.045 0.709±0.069 0.502±0.088 0.334±0.078

Table B.2: Study of the correlation parameter α against data-set sizes: Comparison of different
values of α over data-set sizes on interpretability metrics, F2-score, Precision, Recall, FP and
ratio of correlated variable with true and predicted ones. The mean of metric X, denoted as X,
and standard deviation are computed over 50 runs.

For a comprehensive evaluation of interpretability, selecting an α parameter that identifies a
reasonable quantity of variables is essential. Selecting all variables would result in optimal
scores for the F2-score, Precision, Recall, Sparseness, and FP metrics. However, this approach
may not provide a fair assessment. Upon examination of Tables B.1 and B.2, we have chosen
an α value of 0.9. This value appears to achieve a trade-off between the number of variables
correlated with the true variables and those correlated with the predictions.

B.2.2 Effect of Noise on Interpretability and Prediction
In this section, we study the effect of added noise in the system on interpretability and
prediction in the Lotka-Volterra and SIR data-sets. The data presented in Tables B.3 and B.4
provide a comparative analysis of the performance of various methods under different noise
levels. The tables demonstrate that when compared to other methods, DaD_sub+ consistently
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B.2. Additional Experimental Results

exhibits superior performance across all noise levels. In fact, DaD_sub+ consistently secures a
position within the top two ranks in all scenarios. This consistent high-ranking performance of
DaD_sub+, irrespective of the noise level, underscores its robustness and effectiveness.
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B.2. Additional Experimental Results

Lotka-Volterra

Noise Metric SINDy DaD_sub+ kBest RFE SelectFI

0.01

F2-score 0.931±0.003 0.931±0.001 0.837±0.018 0.794±0.022 0.703±0.061
Precision 0.74±0.008 0.739±0.003 0.629±0.015 0.657±0.047 0.75±0.0

Recall 1.0±0.0 1.0±0.0 0.928±0.04 0.839±0.056 0.57±0.116
FP 2.262±0.042 2.034±0.012 10.13±0.544 3.063±0.656 1.503±0.006

Sparsity 2.721±0.089 2.441±0.026 6.92±0.439 2.691±0.371 1.539±0.064
NRMSE 3.6e-04±6e-05 3.7e-04±3e-05 / 0.431±0.001 0.431±0.001

0.03

F2-score 0.882±0.008 0.894±0.007 0.83±0.009 0.816±0.021 0.711±0.07
Precision 0.61±0.024 0.653±±0.026 0.632±0.012 0.581±0.091 0.75±0.001

Recall 1.0±0.0 1.0±0.0 0.894±0.025 0.917±0.025 0.584±0.129
FP 3.054±0.352 2.636±0.258 9.147±0.346 5.023±1.59 1.5±0.017

Sparsity 2.533±0.217 2.323±0.162 6.351±0.207 3.7±0.605 1.559±0.096
NRMSE 0.0027±0.0003 0.0025±0.0002 / 0.4311±0.00182 0.4312±0.0029

0.07

F2-score 0.894±0.014 0.895±0.012 0.828±0.011 0.797±0.025 0.684±0.056
Precision 0.634±0.068 0.698±0.014 0.629±0.011 0.592±0.033 0.754±0.009

Recall 0.985±0.015 0.975±0.021 0.893±0.035 0.867±0.028 0.543±0.069
FP 2.759±0.573 2.15±0.139 9.253±0.642 4.82±0.383 1.483±0.11

Sparsity 2.232±0.295 1.957±0.13 6.39±0.396 3.566±0.112 1.524±0.123
NRMSE 0.015±0.003 0.013±0.001 / 0.433±0.002 0.43±0.004

0.1

F2-score 0.89±0.022 0.889±0.023 0.825±0.007 0.784±0.019 0.668±0.064
Precision 0.646±0.049 0.719±0.03 0.606±0.009 0.604±0.023 0.76±0.013

Recall 0.967±0.026 0.961±0.017 0.91±0.021 0.832±0.016 0.526±0.038
FP 2.724±0.557 2.034±0.085 9.723±0.448 4.633±0.273 1.467±0.185

Sparsity 2.202±0.313 1.859±0.026 6.536±0.286 3.364±0.025 1.491±0.133
NRMSE / 0.227±0.292 / 0.437±0.001 0.436±0.002

Table B.3: Lotka-Volterra Data-set: Comparison of the models over noise levels on
interpretability metrics, F2-score, Precision, Recall, FP, Sparsity and prediction metric, NRMSE.
The mean of metric X, denoted as X, and standard deviation are computed over 50 runs.
The winning method is shown in bold, and the second is underlined. The overflow values are
replaced with "/".
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SIR

Noise Metric SINDy DaD_sub+ kBest RFE SelectFI

0.001

F2-score 0.948±0.007 0.949±0.007 0.58±0.003 0.536±0.011 0.57±0.014
Precision 0.843±0.015 0.846±0.017 0.42±0.011 0.391±0.061 0.649±0.005

Recall 1.0±0.0 1.0±0.0 0.665±0.003 0.585±0.04 0.41±0.017
FP 3.052±0.615 2.95±0.642 15.407±1.687 3.958±1.267 0.171±0.086

Sparsity 3.529±0.341 3.466±0.354 14.495±1.14 3.941±0.679 1.736±0.333
NRMSE 0.0013±0.0017 0.0001±0.0001 4.2456±0.2029 0.5743±0.0134 0.7902±0.0159

0.003

F2-score 0.948±0.006 0.958±0.003 0.583±0.004 0.529±0.014 0.569±0.016
Precision 0.843±0.014 0.868±0.008 0.425±0.013 0.373±0.057 0.648±0.004

Recall 1.0±0.0 1.0±0.0 0.666±0.001 0.581±0.043 0.409±0.02
FP 3.05±0.566 1.995±0.352 14.058±1.322 4.247±1.213 0.182±0.087

Sparsity 3.532±0.309 2.955±0.244 13.666±0.918 4.024±0.645 1.745±0.348
NRMSE 0.004±0.0055 0.0003±0.0002 4.4057±0.0118 0.5699±0.0078 0.7911±0.0161

0.007

F2-score 0.954±0.005 0.97±0.002 0.585±0.004 0.53±0.014 0.567±0.015
Precision 0.859±0.018 0.897±0.005 0.428±0.013 0.376±0.064 0.642±0.004

Recall 0.999±0.001 1.0±0.0 0.666±0.001 0.582±0.042 0.406±0.021
FP 2.658±0.577 1.145±0.124 13.151±1.188 4.138±1.539 0.242±0.103

Sparsity 3.401±0.321 2.487±0.085 13.196±0.778 3.975±0.846 1.753±0.34
NRMSE 0.127±0.178 0.069±0.097 5.321±0.142 0.571±0.01 0.788±0.006

0.01

F2-score 0.957±0.007 0.973±0.003 0.587±0.003 0.522±0.012 0.567±0.015
Precision 0.865±0.017 0.905±0.008 0.434±0.01 0.37±0.059 0.637±0.005

Recall 1.0±0.0 1.0±0.0 0.665±0.003 0.563±0.049 0.413±0.018
FP 2.302±0.526 0.925±0.018 12.287±0.933 4.127±1.398 0.293±0.125

Sparsity 3.18±0.268 2.338±0.011 12.454±0.519 3.896±0.753 1.79±0.363
NRMSE / 0.003±0.002 5.945±0.031 0.569±0.01 0.779±0.002

Table B.4: SIR Data-set: Comparison of the models over noise levels on interpretability metrics,
F2-score, Precision, Recall, FP, Sparsity and prediction metric, NRMSE. The mean of metric
X, denoted as X, and standard deviation are computed over 50 runs. The winning method is
shown in bold, and the second is underlined.

B.2.3 Effect of Data-set size on Interpretability
The data presented in Tables B.5 and B.6 provide a comparative analysis of the performance
of various methods under different data-set sizes. The tables demonstrate that, compared to
other methods, DaD_sub+ consistently exhibits superior performance across all data-set sizes.
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In fact, DaD_sub+ consistently secures a position within the top two ranks in all scenarios.
This consistent high-ranking performance of DaD_sub+, irrespective of the data-set sizes,
underscores its robustness and effectiveness.
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Lotka-Volterra

Data-set Size Metric SINDy DaD_sub+ kBest RFE SelectFI

2

F2-score 0.892±0.027 0.894±0.027 0.822±0.003 0.807±0.017 0.762±0.025
Precision 0.689±0.040 0.692±0.035 0.616±0.006 0.636±0.021 0.758±0.011

Recall 0.977±0.029 0.979±0.026 0.885±0.019 0.864±0.020 0.657±0.075
FP 2.321±0.235 2.222±0.193 9.142±0.479 3.932±0.507 1.422±0.101

Sparsity 2.185±0.351 2.094±0.272 6.272±0.248 3.194±0.303 1.647±0.027
NRMSE 0.011±0.018 0.009±0.278 / 0.43±0.004 0.429±0.004

5

F2-score 0.892±0.026 0.904±0.019 0.826±0.006 0.801±0.024 0.668±0.008
Precision 0.659±0.057 0.701±0.034 0.621±0.017 0.626±0.057 0.755±0.005

Recall 0.990±0.013 0.985±0.019 0.894±0.012 0.858±0.063 0.509±0.007
FP 2.699±0.346 2.242±0.251 9.445±0.413 4.162±1.239 1.470±0.036

Sparsity 2.442±0.248 2.184±0.284 6.462±0.200 3.230±0.644 1.482±0.025
NRMSE / 0.007±0.012 / 0.433±0.003 0.433±0.003

15

F2-score 0.885±0.034 0.909±0.018 0.842±0.011 0.786±0.024 0.645±0.027
Precision 0.624±0.084 0.703±0.060 0.635±0.014 0.565±0.062 0.747±0.003

Recall 0.997±0.005 0.994±0.010 0.940±0.023 0.869±0.056 0.501±0.002
FP 3.079±0.523 2.301±0.466 10.102±0.509 5.060±1.336 1.572±0.068

Sparsity 2.639±0.151 2.223±0.298 6.913±0.357 3.567±0.572 1.457±0.059
NRMSE / 0.007±0.045 / 0.433±0.002 0.433±0.002

Table B.5: Lotka-Volterra Data-set: Comparison of the models over data-set sizes on
interpretability metrics, F2-score, Precision, Recall, FP, Sparsity and prediction metric, NRMSE.
The mean of metric X, denoted as X, and standard deviation are computed over 50 runs.
The winning method is shown in bold, and the second is underlined. The overflow values are
replaced with "/".

SIR
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Data-set Size Metric SINDy DaD_sub+ kBest RFE SelectFI

5

F2-score 0.959±0.005 0.965±0.007 0.587±0.004 0.543±0.006 0.585±0.001
Precision 0.871±0.013 0.884±0.017 0.437±0.007 0.446±0.01 0.639±0.005

Recall 0.999±0.001 1.0±0.0 0.663±0.002 0.529±0.016 0.429±0.003
FP 2.116±0.328 1.507±0.562 12.567±1.185 2.58±0.207 0.335±0.077

Sparsity 3.059±0.134 2.671±0.315 12.71±0.717 3.121±0.132 2.135±0.038
NRMSE / 0.036±0.068 5.048±0.779 0.578±0.004 0.794±0.01

10

F2-score 0.949±0.004 0.962±0.012 0.584±0.002 0.527±0.006 0.565±0.002
Precision 0.949±0.004 0.962±0.012 0.584±0.002 0.527±0.006 0.565±0.002

Recall 1.0±0.0 1.0±0.0 0.667±0.0 0.596±0.008 0.408±0.006
FP 2.995±0.377 1.83±1.02 13.548±1.063 4.697±0.324 0.188±0.049

Sparsity 3.533±0.192 2.86±0.582 13.322±0.638 4.339±0.122 1.676±0.021
NRMSE / 0.937±0.107 5.067±0.82 0.565±0.001 0.785±0.001

15

F2-score 0.948±0.005 0.96±0.014 0.58±0.003 0.518±0.007 0.556±0.001
Precision 0.842±0.011 0.873±0.033 0.415±0.009 0.332±0.004 0.648±0.006

Recall 1.0±0.0 1.0±0.0 0.667±0.0 0.608±0.014 0.391±0.003
FP 3.185±0.38 2.027±1.104 15.062±1.781 5.075±0.078 0.143±0.044

Sparsity 3.639±0.176 2.973±0.592 14.326±1.231 4.417±0.073 1.457±0.014
NRMSE 0.001±0.002 0.001±0.001 4.911±0.824 0.564±0.001 0.78±0.003

Table B.6: SIR Data-set: Comparison of the models over data-set sizes on interpretability
metrics, F2-score, Precision, Recall, FP, Sparsity and prediction metric, NRMSE. The mean
of metric X, denoted as X, and standard deviation are computed over 50 runs. The winning
method is shown in bold, and the second is underlined.
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APPENDIX C

Introduction en Francais

C.1 Contexte
Les années 1960 ont vu l’émergence de l’intelligence artificielle (IA) en tant que domaine distinct.
Les chercheurs pionniers Allen Newell et Herbert Simon visaient à reproduire les capacités de
résolution de problèmes humains à travers le développement du programme "Logic Theorist"
basé sur la logique (Russell & Norvig, 2010).
Les premiers modèles, fondés sur des opérateurs logiques, le raisonnement symbolique, des
structures arborescentes et des systèmes basés sur des règles, ont conduit au développement
de programmes informatiques tels que les règles logiques, les systèmes experts et les arbres
de décision. Ces modèles étaient relativement simples, ce qui facilitait la compréhension des
processus de prise de décision.
Bien que ces modèles se soient révélés prometteurs dans des domaines spécifiques, leurs limites
sont devenues évidentes face à des défis plus complexes. Parallèlement, des efforts ont été faits
pour développer des approches plus sophistiquées, y compris les premiers réseaux neuronaux
comme le perceptron. Cependant, ces tentatives ont été limitées par diverses contraintes
techniques, entravant finalement leur succès.
Depuis la fin du 20e siècle, des avancées significatives en matière de matériel informatique ont
considérablement augmenté la puissance de calcul. Cela, associé au développement simultané
de la capacité de stockage des données, a permis la collecte et le stockage de grandes quantités
de données. Ces progrès techniques, combinés aux avancées rapides des algorithmes et de la
recherche mathématique, ont posé les bases de la popularisation de l’intelligence artificielle.
Le tournant de l’IA a eu lieu lors de la compétition ImageNet en 2012, avec le succès de
l’apprentissage profond dans les tâches de vision par ordinateur (Krizhevsky et al., 2012).
Depuis, l’apprentissage automatique a fait des progrès significatifs, produisant des modèles de
plus en plus efficaces dans diverses tâches, allant de la prise de décision et de la prédiction
à la prévision. Son influence s’étend au-delà des IA conversationnelles via le traitement du
langage naturel, de la vision par ordinateur pour la reconnaissance et la génération d’images
et de vidéos, de l’analyse vocale et des systèmes de recommandation. En conséquence, les
applications de l’apprentissage automatique ont pénétré tous les secteurs, y compris la santé,
la finance, l’industrie, l’automobile et le marketing. En effet, l’adoption de l’IA est devenue
stratégiquement impérative pour les entreprises afin de rester compétitives et efficaces.
Bien que les avancées aient permis aux modèles d’apprentissage automatique d’atteindre une
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Figure S1: Indice Google Trends (valeur maximale de 100) du terme "Explainable AI" au cours
des dernières années (2015–2023).

précision et une efficacité impressionnantes, elles ont également produit des systèmes de plus en
plus complexes. Souvent qualifiés de "boîtes noires" ou de modèles "opaques" - des modèles aux
fonctionnements internes complexes ou inconnus où seuls les entrées et sorties sont observées -
par opposition aux modèles transparents, leurs conceptions entravent la compréhension et la
justification de leurs décisions lorsqu’ils sont appliqués dans un environnement réel.
L’opacité des modèles d’IA amplifie les considérations éthiques concernant les biais dans les
algorithmes pendant l’apprentissage et la responsabilité des décisions, en particulier dans des
domaines critiques comme la santé (Morley et al., 2020), les véhicules autonomes (Martinho
et al., 2021), le recrutement (Hofeditz et al., 2022) et les chatbots (Wiltz, 2017). Ce manque de
transparence entrave notre compréhension de la manière dont le modèle arrive à ses décisions,
rendant difficile l’identification et la correction des biais ou des faiblesses qui pourraient conduire
à des erreurs et des résultats discriminatoires. Par conséquent, les modèles opaques soulèvent
des préoccupations éthiques et juridiques pour les entreprises et la société.
L’adoption généralisée de l’IA, en particulier dans les domaines sensibles impactant les humains,
la société et les finances, dépend fortement de la confiance et de l’acceptation. Cela se traduit
par un besoin clair de la part des différents acteurs (Preece et al., 2018), motivés par trois
exigences principales : la transparence, l’interaction humaine et des modèles dignes de confiance
(Vilone & Longo, 2021).
La nécessité de comprendre les systèmes d’IA a conduit à l’émergence de l’Intelligence Artificielle
Explicable (XAI). Ce domaine se concentre sur le développement et l’analyse de modèles
d’apprentissage automatique, nouveaux et existants, avec les objectifs suivants (Barredo Arrieta
et al., 2020) :

❖ Identifier et corriger les biais

❖ Améliorer la robustesse des modèles

❖ Fournir une explication causale des décisions prises par les modèles
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C.2 Pourquoi avons-nous besoin d’explications
L’apprentissage automatique offre un moyen puissant d’améliorer les capacités prédictives des
systèmes, leur permettant de prendre des décisions éclairées basées sur des informations issues
des données. Cela est réalisé en utilisant divers algorithmes, chacun fournissant un certain degré
d’explication, tel que l’incertitude, qui peut servir d’indicateur de la confiance algorithmique.
Cependant, dans des contextes où les conséquences des erreurs peuvent être graves, comme
dans des domaines critiques tels que la santé ou les véhicules autonomes, le manque inhérent
de transparence et la difficulté à comprendre le processus de prise de décision deviennent une
préoccupation majeure.
La fiabilité d’un modèle d’apprentissage automatique est intimement liée à sa capacité à
expliquer ses décisions. Dans ces scénarios à enjeux élevés, il est impératif de disposer de
modèles qui soient non seulement prédictifs et précis, mais aussi interprétables. Cela permettra
aux parties prenantes de comprendre comment et pourquoi une décision particulière a été prise,
offrant ainsi transparence et responsabilité. Dans ces contextes, l’interprétabilité devient une
nécessité éthique et pratique.
Dans de telles applications, il est nécessaire d’avoir des garanties non seulement sur les
performances du modèle, mais aussi sur sa fiabilité. Il est essentiel de développer des méthodes
pour évaluer rigoureusement les performances et la robustesse sous diverses conditions de
données et scénarios, ainsi que les mécanismes internes et les processus de prise de décision
du modèle, afin de construire cette confiance dans les modèles d’apprentissage automatique.
Des métriques quantitatives sont généralement utilisées pour l’évaluation, mais des évaluations
qualitatives peuvent également être incluses en fonction du problème et des objectifs.

C.3 Définitions utilisée dans cette thèse
L’efficacité des méthodes de XAI dépend fortement du contexte d’application. Le domaine, les
objectifs de l’utilisateur, ainsi que les tâches spécifiques influencent de manière déterminante le
choix de l’approche la plus appropriée.
L’intelligence artificielle explicable est un concept qui regroupe l’ensemble des approches visant
à rendre les modèles compréhensibles, de l’analyse des relations entre les données à la structure
fondamentale et au processus de prise de décision d’un modèle d’apprentissage automatique.
L’objectif est de permettre une compréhension des mécanismes internes, de la théorie sous-jacente
et du processus de prise de décision qui conduisent à un résultat, tout en communiquant ces
informations de manière claire et justifiée. Ce domaine a émergé parallèlement à l’augmentation
du nombre de modèles dits "boîtes noires" et vise à répondre à leur complexité croissante. Le
développement de la XAI est devenu indispensable en raison des nouvelles régulations et de la
nécessité de renforcer la confiance des utilisateurs dans les systèmes d’intelligence artificielle.
Malgré l’importance croissante de l’intelligence artificielle explicable (XAI), il n’existe pas
encore de consensus sur les définitions et les objectifs précis de ce domaine. Les chercheurs de
diverses disciplines ont proposé des définitions et des taxonomies variées, ce qui a conduit à
une multiplicité d’approches et de méthodologies, chacune étant influencée par des perspectives
et des finalités spécifiques. En l’absence d’un cadre théorique unifié, évaluer et comparer les
modèles devient une tâche complexe, risquant ainsi de freiner les progrès dans ce domaine
(Nguyen & Martínez, 2020).
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Face à cette diversité de perspectives, il est essentiel de clarifier les défis, l’état actuel du
domaine, ainsi que les définitions retenues dans ce travail pour en délimiter le cadre. Dans cette
thèse, afin de garantir la clarté et la cohérence, les termes "interprétabilité" et "explicabilité"
seront compris selon les définitions suivantes :

Definition C.3.1 (Interprétabilité). L’interprétabilité est définie comme la capacité d’un
modèle à décrire son processus de prise de décision de manière compréhensible pour un utilisateur.
Les modèles possédant cette caractéristique sont qualifiés d’interprétables.

Definition C.3.2 (Explicabilité). L’explicabilité est définie comme la capacité à fournir une
explication des raisons sous-jacentes à une décision d’un modèle, de manière intelligible pour
un utilisateur. Les modèles répondant à ce critère sont qualifiés d’explicables (Barredo Arrieta
et al., 2020).

C.4 Objectif de mes recherches
L’un des aspects clés de cette recherche consiste à comprendre les variations temporelles et à
identifier les causes des déviations par rapport aux conditions normales de fonctionnement ou à
mettre en évidence les dynamiques cachées dans les données de séries temporelles. En effet, les
données de séries temporelles suivent essentiellement l’évolution de variables au cours du temps,
comme les prix des actions, les données météorologiques, la surveillance cérébrale ou le suivi du
rythme cardiaque. En identifiant les motifs dans ces données, nous pouvons mieux comprendre
l’interaction des variables, améliorer les prévisions, approfondir notre compréhension de la
stabilité des systèmes et développer des stratégies d’intervention efficaces.

Objectif 1 : Développer un algorithme permettant d’identifier les causes des comportements
normaux et anormaux dans une série temporelle.

❖ Cet objectif vise à développer un algorithme capable de fournir des informations et des
explications sur les déviations par rapport au comportement normal.

❖ L’algorithme doit être en mesure de traiter divers types de séries temporelles, y compris
les données numériques, catégorielles et multivariées.

❖ Les explications fournies par l’algorithme doivent être compréhensibles par les humains et
révéler les causes sous-jacentes.

Un autre aspect clé de cette recherche réside dans la résolution des lacunes importantes dans
l’analyse des données de séries temporelles. Premièrement, nous manquons de compréhension
approfondie des causes et du moment des comportements anormaux, ce qui limite notre capacité
à anticiper et à atténuer les risques potentiels. Deuxièmement, nous avons des difficultés à
expliquer le comportement dynamique des systèmes et à identifier les variables qui influencent
leur évolution. Ce manque de pouvoir explicatif restreint notre capacité à comprendre les
systèmes et à optimiser leurs performances.

Objectif 2 : Développer un modèle de prévision qui révèle la dynamique sous-jacente d’une
série temporelle et prédit son évolution future.
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❖ Cet objectif vise à développer un modèle de prévision capable non seulement de prédire
les valeurs futures d’une série temporelle, mais aussi d’expliquer ses prédictions.

❖ Le modèle doit être transparent, permettant aux utilisateurs de comprendre les facteurs
influençant la prévision et de tirer des enseignements sur les tendances et motifs sous-
jacents.

❖ Le modèle doit pouvoir gérer des séries temporelles complexes comportant des non-
linéarités.

C.5 Plan de la Thèse
Cette section présente la structure de la thèse, détaillant chaque chapitre et ses contributions
spécifiques.

Chapitre 2 : Comprendre les Modèles de Machine Learning Ce chapitre établit les bases
de la recherche en définissant et contextualisant l’Intelligence Artificielle Explicable (XAI).
Nous explorons les défis, les définitions, les méthodes et les évaluations de ce domaine. Une
revue de la littérature détaillée couvre divers modèles, incluant les modèles de régression, les
modèles basés sur des règles, les réseaux bayésiens, la régression symbolique et les méthodes
interprétables locales. Les sections 2.1 à 2.2 présentent de manière générale le domaine de
l’IA explicable, en incluant un historique détaillé de la thématique, les impacts récents dans
la législation (RGPD et AI Act) et les principales questions adressées dans ce domaine :
compréhension du modèle et de ses limites, et ce qu’il peut nous apprendre en termes de
modélisation. Une taxonomie des approches XAI est présentée en section 2.3 pour structurer
les différentes méthodes selon des critères tels que leur portée globale ou locale, leur caractère
post hoc ou intégré, ainsi que leur indépendance par rapport aux modèles. Cette classification
permet de mieux situer chaque approche dans son contexte d’application spécifique. La section
2.4 se concentre sur les différentes méthodes développées autour de trois questions centrales:
explicabilité, interprétabilité et causalité, avec une présentation pédagogique de chaque approche.
Enfin, la section 2.5 aborde la question cruciale de l’évaluation de l’explicabilité, en considérant
des dimensions telles que la clarté, la simplicité et le caractère général.

Chapitre 3 : Analyse des Séries Temporelles : Modélisation et Identification des Facteurs
d’Influence Ce chapitre se concentre sur l’analyse des séries temporelles, en particulier à
l’analyse des causes premières (Root Cause Analysis) et aux limites des méthodes actuelles.
La section 3.1 presente une introduction détaillée à l’analyse des causes premières, en précisant
la terminologie, les familles d’approches, ainsi que les types d’anomalies identifiés dans ce
contexte. La section 3.2 expose les défis spécifiques à ce domaine, en formulant les questions
clés auxquelles les chercheurs doivent répondre, tout en identifiant les principales limitations
des méthodes existantes. Cette section propose ensuite une définition du problème étudié.
La section 3.3 présente un état de l’art des approches disponibles dans ce domaine, couvrant
les méthodes statistiques, l’extraction de règles, le machine learning, ainsi que les méthodes
causales. Cette revue est accompagnée d’exemples et de la presentations de certaines limitations
de ces approaches ces approches. Enfin, la section 3.4 situe notre travail dans le contexte de ces
recherches, en détaillant nos contributions spécifiques et en justifiant la nécessité de développer
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des modèles d’analyse causale des règles d’association plus fiables et transparents pour les séries
temporelles.

Chapitre 4 : Règles Causales et Interprétables pour l’Analyse des Séries Temporelles
Ce chapitre présente notre première contribution à l’analyse des causes premières. De nombreux
modèles complexes permettent d’apprendre à partir de données labelisées et de prédire la
survenue d’événements, tels que des défaillances, à partir d’un ensemble de données de séries
temporelles contenant un grand nombre de variables. Bien qu’une grande précision puisse être
atteinte, certaines erreurs et événements manqués peuvent potentiellement entraîner des pertes
importantes en raison du manque de prise de décision et de compréhension du modèle. Nos
premiers travaux ont relevé ce défi en proposant une approche interprétable pour découvrir la
cause première des défaillances.

Y
Event: Y

Has this ever happened before?

Figure S2: Schéma de base du design de crossover de cas avec une seule période de contrôle et
une seule période de cas.

Notre approche vise à construire des règles simples en utilisant un cadre de fouille de règles
d’association. La première étape consiste à transformer et discrétiser l’ensemble de données
pour créer une nouvelle base de données destinée à l’inférence. La deuxième étape implique
l’incorporation de la causalité, car la fouille de règles d’association ne traite que des associations.
Pour cela, nous utilisons une approche épidémiologique appelée le case-crossover design. Cette
méthode, largement utilisée en épidémiologie pour comprendre les origines de phénomènes
apparaissant soudainement (comme les crises cardiaques, les accidents ou les blessures (Estberg
et al., 1998; Maclure & Mittleman, 1997; Mittleman et al., 1993, 1995)), permet d’établir
une relation causale entre une exposition et un événement en démontrant que la survenue de
l’exposition provoque effectivement l’événement. La combinaison de ces deux approches fournit
ainsi des règles causales et interprétables pour comprendre les causes des défaillances.
Ensuite, deux algorithmes prédictifs ont été construits sur la base des règles causales, permettant
de prévoir la survenue des défaillances. Le premier algorithme sélectionne des règles en fonction
de plusieurs critères et agrège les décisions des règles pour faire une prédiction globale. Le
second algorithme améliore le premier en ajoutant des anti-règles, qui sont des règles prédisant
une situation normale. L’agrégation des deux types de règles permet d’obtenir un algorithme
prédictif puissant.
Cette approche a été testée sur un ensemble de données réel où un phénomène appelé
engorgement se produit brièvement dans le temps et induit une défaillance. L’objectif était
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d’identifier les causes du problème et de fournir aux opérateurs des informations simples et
interprétables. L’approche et les algorithmes prédictifs ont été appliqués à cet ensemble de
données et ont montré de bonnes performances, validées par des experts du domaine.

Chapitre 5 : Prévision Multi-horizon et Découverte de Systèmes Dynamiques Ce
chapitre explore le domaine de la prévision multi-horizon et de la découverte de systèmes
dynamiques.
La section 5.1 introduit le domaine de la modélisation dynamique, en définissant les concepts
clés et en présentant les différents types de modèles dynamiques. La section 5.2 offre une
vue d’ensemble des méthodologies de prévision des séries temporelles, en se concentrant
particulièrement sur les modèles paramétriques appliqués aux séries temporelles multivariées et
leur utilisation pour la prévision.
La section 5.3 développe l’idée d’utiliser la prévision des séries temporelles comme un outil pour
la découverte dynamique, en tenant compte des contraintes d’interprétabilité et de la gestion
d’un grand nombre de composantes. Nous y abordons les défis associés à la modélisation des
processus dynamiques sous-jacents aux séries temporelles complexes, et mettons en lumière
l’efficacité des approches de régression pénalisée pour surmonter ces difficultés.
La section 5.4 présente un état de l’art des méthodes utilisées en modélisation dynamique,
en détaillant les approches existantes et leurs limitations. Enfin, la section 5.5 discute
de l’intégration de notre travail dans le cadre des recherches actuelles, en soulignant nos
contributions spécifiques et la manière dont elles enrichissent le domaine de la modélisation
dynamique et de la prévision multi-horizon.

Chapitre 6 : Modèle de Prévision Cohérent et Interprétable Après avoir fourni les outils
pour analyser les causes de phénomènes spécifiques à partir de données de séries temporelles
multivariées potentiellement de haute dimension, nous avons abordé le problème sous une
perspective globale, en cherchant à comprendre les dynamiques sous-jacentes qui génèrent ces
séries temporelles. L’objectif principal était d’extraire une équation à partir des observations,
permettant de déterminer les relations entre les variables explicatives et une variable de sortie.
Cette équation generée à partir d’un modèle interprétable, offre une meilleure compréhension
des phénomènes en jeu et des systèmes sous-jacents.
Dans ce cadre, nous avons développé une approche qui tire parti des méthodes interprétables,
telles que les modèles vectoriels autorégressifs, pour apprendre les dynamiques sous-jacentes.
Pour capturer la nature non linéaire des données réelles, les dimensions d’entrée ont été
augmentées en introduisant des non-linéarités dans les variables d’entrée. Deux principaux défis
ont été identifiés : la haute dimensionnalité des données et la propagation d’erreurs dans un
cadre de prévision multi-horizon.
Pour traiter le problème de la dimensionnalité élevée, nous avons appliqué des méthodes de
régression pénalisée favorisant la parcimonie, ce qui permet de sélectionner un ensemble restreint
de variables significatives, réduisant ainsi la complexité du modèle. Pour surmonter le problème
de la propagation des erreurs, nous avons intégré une approche inspirée de l’algorithme DAgger
(Dataset Aggregation), qui améliore l’efficacité du modèle en utilisant de manière optimale
les données d’entraînement. L’algorithme itératif proposé apprend un ensemble de modèles
candidats, corrigeant successivement les trajectoires pour mieux capturer les dynamiques
sous-jacentes.
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Figure S3: La figure illustre la capacité de l’algorithme à apprendre et à corriger itérativement
les trajectoires. L’objectif est de découvrir la dynamique sous-jacente réelle représentée par
la distribution inconnue D à partir des séries temporelles observées en vert. Initialement,
l’algorithme apprend un modèle récursif, CΦ, 0, qui propage les erreurs. Lors des itérations
suivantes, l’algorithme utilise les trajectoires précédentes pour augmenter les données
d’entraînement afin d’améliorer progressivement l’apprentissage de la dynamique réelle par le
modèle. Ici, la figure représente le processus d’apprentissage jusqu’à la troisième itération, où
le modèle final est désigné par CΦ, 3.

Cette méthodologie présente à la fois des contributions méthodologiques, théoriques et
expérimentales. Elle a été testée sur des séries temporelles synthétiques dérivées d’équations
différentielles ordinaires (ODE) pour retrouver les équations de l’ODE discrétisée. Après
validation à l’aide de métriques de performance de prévision et d’analyses d’interprétabilité,
nous avons appliqué notre modèle à un ensemble de données éoliennes.

C.6 Perspectives
Cette thèse pose les bases pour des recherches futures. Nous discutons des défis et des
opportunités pour progresser davantage grâce aux deux approches développées.

Algorithme de règles causales

• Amélioration de la discrétisation et de la labellisation des séries temporelles
L’amélioration de la discrétisation des séries temporelles et de la labellisation des données
est cruciale. L’utilisation d’algorithmes comme SAX peut réduire la perte d’information.
De plus, des évaluations supplémentaires sur des ensembles de données synthétiques sont
nécessaires pour déterminer l’efficacité de l’algorithme.

• Causalité de Granger et Interventions L’analyse causale de Granger repose sur
des hypothèses spécifiques qui peuvent introduire des corrélations fallacieuses. Une
évaluation critique des hypothèses de notre algorithme est nécessaire pour garantir
l’identification précise des effets causaux. De plus, identifier les variables manipulables
dans le graphe causal permettrait de développer des stratégies d’intervention pour prévenir
les défaillances.
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• Prise en compte des variables non observées Ajouter des variables non observées
à l’analyse pourrait fournir des informations supplémentaires pour une compréhension
globale du système.

Découverte de systèmes dynamiques

• Limitation théorique Il est nécessaire de déterminer si le système d’équations est
identifiable et de considérer l’influence potentielle des variables latentes.

• Étude approfondie du problème de multicolinéarité La présence de multicolinéarité
dans les ensembles de données peut empêcher une estimation précise des paramètres. Les
techniques de régularisation comme Lasso doivent être utilisées avec précaution pour
garantir l’identification du vrai système.

• Alternative au Lasso Explorer des alternatives à l’algorithme Lasso, telles que la
régression régulière détendue et éparse (SR3), pourrait améliorer l’efficacité des calculs
dans notre algorithme de découverte dynamique.

Conclusion et Discussion
Cette thèse fourni des outils pour analyser les causes de phénomènes spécifiques à partir
de données de séries temporelles multivariées et pour apprendre les dynamiques sous-
jacentes générant les séries temporelles. Les perspectives futures incluent l’amélioration de
la discrétisation et de la labellisation des séries temporelles, la prise en compte des variables
non observées, la résolution du problème de multicolinéarité et l’exploration de méthodes de
régression pénalisée alternatives. Développer des méthodes de détection des anomalies en temps
réel et renforcer l’interaction entre les modèles explicables et les utilisateurs pour améliorer la
prise de décision sont également des axes de recherche importants.

C.7 Contributions
Cette thèse apporte des contributions dans le domaine de l’intelligence artificielle explicable
(XAI) appliquée aux séries temporelles multivariées. Les principales contributions sont les
suivantes :

Article KDD : Règles causales et interprétables pour l’analyse des séries temporelles
L’une des contributions majeures de cette thèse est le développement d’un algorithme pour
l’analyse des causes premières dans les séries temporelles, combinant le design de crossover de
cas avec l’algorithme Apriori de fouille de règles d’association. Cette méthode innovante permet
d’identifier les causes des anomalies en temps réel et de fournir des explications interprétables.
Les résultats de cette recherche ont été publiés dans l’article de la conférence KDD intitulé
"Causal and interpretable rules for time series analysis".

Brevet : procédé de contrôle d’un système et produit programme d’ordinateur associé
La thèse a conduit au dépôt d’un brevet intitulé "Procédé de contrôle d’un système et produit
programme d’ordinateur associé", en collaboration avec TotalEnergies OneTech, le Centre
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National de la Recherche Scientifique et l’École Polytechnique. Ce brevet, numéro FR3124868B1,
décrit une méthode innovante pour le contrôle de systèmes basés sur l’analyse des séries
temporelles, démontrant l’application pratique et industrielle des travaux de recherche. Les
détails du brevet sont disponibles sous le numéro d’enregistrement national 21 07171, 2023
〈hal-04455926〉.

Code : Algorithmes CAPP L’étude causale a mené à l’élaboration de deux algorithmes CAPP
(Case-crossover APriori) 1 et 2. Le code source de ces algorithmes ont été rendu public pour
permettre la reproduction des résultats et encourager d’autres chercheurs à utiliser et améliorer
cet outil. Le code est accessible à l’adresse suivante : https://github.com/amindh/CAPP.

Article : Framework de prévision multi-horizon interprétable et cohérent Une autre
contribution majeure réside dans le développement d’un algorithme de prévision multi-horizon
qui allie précision et interprétabilité. Inspiré par l’algorithme DAgger, cet algorithme propose
des améliorations pour la prédiction à long terme et la découverte des dynamiques sous-jacentes
des systèmes. Cette contribution a donné lieu à un article intitulé "Learning from mistakes: an
Interpretable and Coherent Multi-step Ahead Time Series Forecasting Framework".

Code : Framework de prévision multi-horizon L’étude de prévision multi-horizon menée
dans cette thèse a également abouti au développement d’un algorithme, dont le code source est
accessible à l’adresse suivante : https://github.com/amindh/multi_step.
Ces contributions montrent l’impact des travaux de cette thèse sur la recherche académique et
les applications industrielles, en proposant des solutions innovantes et pratiques pour l’analyse
des séries temporelles et la prévision.
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Titre : Analyse Interprétable et Causale pour des Séries Temporelles Multivariées

Mots clés : Interprétabilité ; Causalité ; Séries temporelles; Apprentissage statistique

Résumé :
Les données de séries temporelles, qui mesurent
l’évolution de variables au fil du temps, comme
les relevés de capteurs, fournissent des informa-
tions précieuses sur le comportement des systèmes.
En identifiant des structures dans ces données,
nous pouvons comprendre les interactions entre
les variables, améliorer la précision des prévisions
et concevoir de meilleures stratégies d’intervention.
Cette thèse étudie l’analyse de données de séries
temporelles à haute dimension en se concentrant sur
l’explication des déviations de systèmes par rapport
à leur fonctionnement normal et sur la modélisation
de la dynamique sous-jacente de systèmes permet-
tant de prédire leur évolution. Le premier objectif est
de développer un algorithme interprétable qui identi-
fie les causes racines des comportements normaux
et anormaux dans les données de séries temporelles.
Diverses techniques sont utilisées pour identifier les
causes racines, mais elles présentent des limites
quant à leur capacité à traiter de grandes dimensions
et à distinguer la causalité des corrélations. Une ap-
proche basée sur le concept de causalité de Granger
[Granger 1988], qui extrait des relations interprétables
et causales sous la forme de règles, a été développée

pour remédier à ces limitations. L’algorithme qui
en résulte est conçu pour traiter différents types
de données (numériques, catégorielles), pour four-
nir aux utilisateurs des explications interprétables du
problème et pour développer des règles prédictives
permettant de désamorcer les phénomènes anor-
maux à l’avance.
Le deuxième objectif vise à développer un modèle
de prévision qui non seulement prédit les va-
leurs futures, mais extrait également la dynamique
sous-jacente des séries temporelles influençant ces
prédictions. Ce domaine appelé régression symbo-
lique favorise la transparence pour les utilisateurs en
expliquant le raisonnement du modèle. Les modèles
de régression avec pénalisation parcimonieuse sont
largement utilisés dans ce domaine pour leur capacité
à apprendre des dynamiques complexes dans des
scénarios de grande dimension. Néanmoins, leurs
performances en matière de prévision peuvent être
limitées, en particulier pour des données complexes
et non linéaires. Pour y remédier, nous proposons
une nouvelle approche qui combine la régression
pénalisée et la correction des erreurs dans un cadre
de prévision des séries temporelles afin d’améliorer
l’apprentissage des dynamiques sous-jacentes.

Title : Interpretable and Causal Analysis for Multivariate Time Series

Keywords : Interpretability; Causality; Time Series; Statistical learning

Abstract : Time-series data, which measure the evo-
lution of variables over time, such as sensor readings,
provide valuable information on the system’s beha-
vior. By identifying patterns in these data, we can un-
derstand the interactions between variables, improve
forecasting accuracy, and design better intervention
strategies. This thesis studies the analysis of high-
dimensional time-series data, focusing on explaining
local system deviations from normal operation and,
on the global scale, modeling the underlying dyna-
mics of the system to predict its evolution. The first
objective is to develop an interpretable algorithm that
identifies the root causes of both normal and abnor-
mal behavior in time series data. Various techniques
are used to identify root causes, but they suffer from li-
mitations in their ability to handle high dimensions and
to distinguish causality from correlations. To overcome
these limitations, an approach based on the concept
of Granger causality [Granger 1988], which extracts
interpretable and causal relationships in the form of

rules, has been developed. The resulting algorithm
is designed to handle different data types (numerical,
categorical), provide users with interpretable explana-
tions of the problem, and develop predictive rules to
defuse the event in advance.
The second objective aims at developping a fore-
casting model that not only predicts future values but
also reveals the underlying dynamic of the time se-
ries influencing those predictions. This field, called
symbolic regression, fosters transparency for users
by explaining the model’s reasoning. Regression mo-
dels with sparse penalization are widely used in this
field for their ability to learn complex dynamics in high-
dimensional settings. Nevertheless, their forecasting
performances can be limited, especially for complex
and non-linear data. To address this, we propose a
novel approach that combines penalized regression
with forecasting error correction within a time series
forecasting framework for improved learning of under-
lying dynamics.
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