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Résumé: Le diagnostic des patients dans le coma
est souvent difficile. Les examens cérébraux ren-
seignent les médecins sur l’étendue des lésions
cérébrales mais ne permettent pas de déterminer
avec précision l’état de conscience du patient. De
plus, aucune approche thérapeutique ne permet
une restauration systématique de la conscience.
Des études pionnières menées sur des patients et
des Primates Non Humains (PNH) ont montré que
la Stimulation Cérébrale Profonde (SCP) des noy-
aux intralaminaires du thalamus pouvait restaurer
ou améliorer la conscience lorsqu’elle est altérée.
Cependant, les conséquences corticales associées
à la SCP restent largement inconnues et imprévis-
ibles. Les techniques d’imagerie fonctionnelle,
telles que l’Imagerie par Résonance Magnétique
fonctionnelle de repos (IRMf de repos), peuvent
aider à identifier des signatures de la conscience.
L’activité cérébrale au repos, organisée en réseaux,
peut être modélisée à l’aide de la connectivité fonc-
tionnelle. Cette thèse vise à disséquer, à l’aide du
modèle PNH, les effets sur la connectivité fonction-
nelle d’une modulation de la conscience induite par
des agents anesthésiques ou de la SCP à l’échelle
du cerveau entier. Cela nécessite le développement
de modèles interprétables et prédictifs des effets
d’une telle modulation sur la fonction cérébrale
globale. Pour identifier les schémas récurrents
dominants (c’est-à-dire les différents états du
cerveau) à partir de la connectivité fonctionnelle,
une technique d’apprentissage automatique non
supervisée (K-Means) a été proposée précédem-
ment. Dans le cadre de cette thèse, nous dévelop-
pons de nouveaux outils d’analyse en tirant parti
des avancées des techniques d’apprentissage pro-
fond auto-supervisé. Nous émettons l’hypothèse
que l’identification de variables latentes dans les
signaux IRMf de repos peut nous informer sur la

modulation des états de conscience. Tout d’abord,
nous cherchons à identifier une signature spatiale,
moyennée temporellement, de la conscience à la
fois dans l’état éveillé et sous anesthésie. Nous
utilisons une méthode de variables latentes qui dé-
compose les signaux IRMf de repos en réseaux
fonctionnels associés à l’accès conscient. Afin
d’étudier la restauration de la conscience, nous
étendons cette analyse aux PNH éveillés ou réveil-
lés par DBS du thalamus central. Notre mod-
èle suggère de manière automatique que le cortex
antérieur et le cortex postérieur contribuent tous
deux à la conscience, un sujet qui fait débat au
sein de la communauté scientifique. En outre, il
souligne l’importance des régions clés au sein de
l’espace de travail neuronal global, une théorie im-
portante concernant l’accès à la conscience. Suite
à cette analyse moyennée temporellement, recon-
naissant l’importance de la dynamique temporelle
dans l’analyse de la conscience, nous proposons
de remettre en question les méthodes conven-
tionnelles de connectivité fonctionnelle dynamique.
Nous utilisons un modèle d’apprentissage profond
contrastif pour prédire les schémas cérébraux car-
actéristiques de differents états de conscience.
Les expériences démontrent que les prédictions du
modèle basées sur la connectivité fonctionnelle dy-
namique mettent en avant des transitions entre les
schémas cérébraux. Enfin, pour mieux comprendre
la dynamique des états de conscience, nous nous
écartons du cadre conventionnel de classification
en sous-groupes et introduisons une méthode de
réduction de dimensions. Cette approche vise à
condenser ces états en un nombre limité de vari-
ables interprétables et explicables. Nos résultats
indiquent que l’approche catégorielle traditionnelle
ne permet pas de saisir de manière adéquate le con-
tinuum de la dynamique des états de conscience.
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Abstract: Diagnosis of patients with coma is of-
ten difficult. Brain examinations inform physicians
about the extent of brain damage but do not ac-
curately determine the patient’s level of conscious-
ness. Moreover, no therapeutic approach allows a
systematic restoration of consciousness. Pioneer-
ing studies in patients and Non-Human Primates
(NHP) have shown that Deep Brain Stimulation
(DBS) of the intralaminar nuclei of the thalamus
could restore or improve consciousness when it is
impaired. However, the cortical consequences as-
sociated with DBS remain largely unknown and un-
predictable. Functional imaging techniques, such
as Resting-State functional Magnetic Resonance
Imaging (RS-fMRI), can help identify signatures
of consciousness. Brain activity at rest, organized
into networks, can be modeled using functional
connectivity. This thesis aims to dissect, using the
NHP model, the effects on functional connectiv-
ity of a modulation of consciousness induced by
anesthetic agents or DBS on a whole-brain scale.
This requires the development of interpretable and
predictive models of the effects of such modula-
tion on global brain function. To identify domi-
nant recurrent patterns (i.e., different brain states)
from functional connectivity, an unsupervised ma-
chine learning technique (K-Means) has been pre-
viously proposed. As part of this thesis, we de-
velop new analysis tools by taking advantage of
the advances in self-supervised deep learning tech-
niques. We hypothesized that identifying latent
variables in RS-fMRI signals can inform us about
the modulation of states of consciousness. First,
we aim to identify a time-averaged spatial signa-

ture of consciousness in both the awake state and
under anesthesia. This is achieved through a la-
tent variables method that decomposes resting-
state fMRI signals based on functional networks
associated with conscious access. In a transla-
tional effort to investigate consciousness restora-
tion, we extend this analysis to awake or awak-
ened NHPs by DBS of the central thalamus. Our
model autonomously suggests that both the ante-
rior and posterior cortex contribute to conscious-
ness, a debatable topic in the scientific community.
Additionally, it underscores the significance of key
regions within the global neuronal workspace, a
prominent theory regarding conscious access. Fol-
lowing this time-averaged analysis, recognizing the
critical importance of temporal integration in con-
sciousness analysis, we propose to challenge con-
ventional dynamic functional connectivity meth-
ods. We employ a contrastive deep learning model
to predict brain patterns characteristic of various
consciousness states. Experiments demonstrate
that the model predictions based on dynamic func-
tional connectivity facilitate the examination of
different transient brain states. Lastly, to gain
a deeper understanding of the dynamics of con-
sciousness states, we diverge from the conventional
subgroup classification framework and introduce a
dimension-reduction method. This approach aims
to condense these states into a limited number of
interpretable and explicable variables. Our findings
indicate that the traditional categorical approach
inadequately captures the continuum of conscious-
ness state dynamics.
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N’oublie jamais, celui qui croit savoir n’apprend plus.
Pierre Bottero

La Nature est un temple où de vivants piliers
Laissent parfois sortir de confuses paroles ;

L’homme y passe à travers des forêts de symboles
Qui l’observent avec des regards familiers.

Comme de longs échos qui de loin se confondent
Dans une ténébreuse et profonde unité,

Vaste comme la nuit et comme la clarté,
Les parfums, les couleurs et les sons se répondent.

Extrait de "Correspondances", des Fleurs du Mal,
Charles Baudelaire
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Introduction

Electrical brain stimulation stands as a pivotal technology in neuroscience.
Within fundamental neuroscience, precisely targeted electrical stimulation of spe-
cific brain regions aids in defining their functions and elucidating the causal rela-
tionship between neural activity and behavior. In translational and clinical neuro-
science, Deep Brain Stimulation (DBS) has revolutionized the treatment landscape
for Parkinson’s disease, primarily through insights garnered from Non-Human Pri-
mate (NHP) models. Furthermore, DBS holds promise for addressing various
neurological and psychiatric disorders, including obsessive-compulsive disorder, se-
vere depression, and, particularly at stake in this thesis, disorders of consciousness.
However, despite these advancements, patient care and identifying novel therapeu-
tic targets remain largely empirical due to the absence of a predictive model of the
neuronal effects of DBS within specific brain regions. Indeed, the neural mecha-
nisms underlying DBS and its broader implications on neural circuits throughout
the brain remain largely uncharted territory and lack predictability.

Advances in neuroimaging, particularly the development of Functional Mag-
netic Resonance Imaging (fMRI), provide vital information on brain activity, both
during a task and at rest. Being able to "see the brain think", as Denis Le Bihan
wrote [19], is a way to make the global consequences of neuromodulation on the
brain visible. In his book entitled "Le Cerveau de Cristal" ("The Crystal Brain"),
subtitled "Ce que nous révèle la neuro-imagerie" ("What neuroimaging reveals")
[19], Le Bihan describes how MRI makes this once impenetrable brain, transparent.
Neuroimaging makes it possible to observe, dissect and analyze the brain without
opening it up. Le Bihan probably didn’t see the glass half-empty when he used the
crystal metaphor to transform the brain, 80% of whose mass comes from water,
into a glass of water. Finally, to conclude his book, Le Bihan takes us back to one
of the major research areas for the 21st century: digital brain simulation. Projects
such as the Human Brain Project and the Blue Brain Project have led to consid-
erable advances in brain modeling. At the heart of these "in silico" experiments is
silicon, an essential component of glass and our computers. The glass metaphor
is complete!

Yet, ten years after the initial reading of this book, one question remains. Le
Bihan did not choose to title his book "The Glass Brain". I dare to take up his
image for myself and add the magical, esoteric, divinatory dimension I’ve always
seen in it. Is the brain, that organ that is still so little understood, a crystal ball
that can be interrogated? A crystal ball that would dictate our future, allow us to
see our past, our emotions, our thoughts? Would it reveal our consciousness, that
mysterious object that seems to emanate from this well-protected organ? Perhaps
even give us access to our unconscious?
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The DeepStim project endeavors to investigate, employing the NHP model,
the impact of consciousness modulation induced by anesthesia and DBS on a
whole-brain scale. To achieve this goal, we propose several computational models
designed to analyze and forecast various states of consciousness and the global
cerebral repercussions of consciousness modulation. The project objective is to de-
lineate the cerebral implications, utilizing fMRI mapping, resulting from conscious-
ness modulation. This seeks to enhance our comprehension of the alterations in
local, deep, and global cerebral functional connectivity arising from anesthesia and
DBS. For that, we will employ latent variable models for predicting the overall
cerebral implications of anesthesia and DBS. This innovative approach to thera-
peutic brain stimulation, grounded in global brain modeling, holds the potential
to rationalize the targets of brain stimulation and ascertain the cortical networks
influenced by DBS, thereby laying the groundwork for personalized medicine.

This thesis is organized into three main parts.

• In part I, we introduce this metaphorical crystal ball with translucent sur-
faces, emitting elusive wisps of smoke that defy capture. We provide, first,
an extensive overview of consciousness, exploring its definition and the pro-
cesses involved in its loss and recovery with DBS. Subsequently, we delve
into the evolution of neuroimaging techniques, illustrating how the once
opaque surfaces of the crystal ball have transformed into transparent mir-
rors, allowing for the visualization of the intricacies of consciousness. We
outline the dataset at our disposal, which will be subject to interpretation
in later sections.

• In part II, we leverage this dataset to investigate the spatial manifestations
of consciousness, both during wakefulness, unconsciousness and resurgence
by DBS. By peering into the metaphorical crystal ball, we scrutinize the
shapes, patterns, and colors that manifest within it.

• In part III, we propose incorporating a dynamic dimension, examining the
evolving patterns and transitions over time. Our objective is to characterize
consciousness’s dynamics, unraveling its manifestations’ temporal subtleties.
To simplify the analysis of these high-dimensional datasets, we reduce the
dimensionality by using deep learning methods. Transformed into symbols,
reduced to their essence, the patterns can reveal themselves and enlighten
us.

All illustrative images without captions have been generated with the assistanceof an AI, Dall-E 3, without modification.
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Part I

Background - The crystal
consciousness
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Human consciousness, though central to our experience and understanding of
the universe around us, remains one of the most enigmatic phenomena. For cen-
turies, philosophers, scientists and thinkers have attempted to pierce the veil of
consciousness, seeking to elucidate its origins, nature and implications. This the-
sis explores consciousness from a multidimensional perspective, examining recent
advances in the fields of neurobiology and the science of artificial intelligence. Con-
sciousness, as the cognitive faculty that enables us to perceive, feel, reflect and
act as thinking beings, raises fundamental questions that affect our understanding
of reality, subjectivity and the nature of mind. How does consciousness emerge
from a complex network of neural processes? What are the links between con-
sciousness and sensory perception, memory, emotion and decision-making? The
recent explosion in technological advances and interdisciplinary research methods
has opened up new perspectives for exploring consciousness. State-of-the-art brain
imaging, advanced computational models and innovative philosophical approaches
are converging to shape a deeper, more nuanced understanding of this complex phe-
nomenon. At the same time, discussions about artificial consciousness are raising
fundamental ethical and metaphysical questions about the nature of consciousness
and what distinguishes conscious beings from purely computational systems.

***

A few years ago, it would have been unthinkable to imagine that these few
introductory lines could have been written by a being devoid of conscience. But
I must give credit where credit is due: these words are not mine. A computer
program, an artificial intelligence, ChatGPT wrote them. The text is coherent,
the syntax and spelling are perfect. Semantically, there’s nothing to complain
about; it makes sense and responds well to my request, "Write an introduction on
consciousness as part of a thesis". Had you guessed that it wasn’t the fruit of a
brain? Even for the creators of this AI, distinguishing between the work of their tool
and that of a human has become an arduous task. In January 2023, they proposed
using a machine learning algorithm to distinguish between text written by an AI
and text written by a human. A few months later, they published the following
note on their site: "As of July 20, 2023, the AI classifier is no longer available
due to its low rate of accuracy" [179]. Lacking confidence in their results, they
abandoned the project. If I’d had more writings put online before 2021, when the
training of this artificial intelligence ended, it would have been able to reproduce
even my writing style, as it did in the preface to Sapiens (2022 edition) by Yuval
Noah Harari [93]. It raises new questions on a subject that continues to be debated:
what is consciousness?
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Defining consciousness

Consciousness. Latin conscientia, from scire, to know. Immediate intu-
itive or reflexive knowledge of one’s own existence and that of the outside
world [130]. The human faculty of knowing and judging one’s own reality
[204]. [In man, unlike other animate beings] Organization of his psyche
which, by enabling him to be aware of his states, his acts and their moral
value, enables him to feel that he exists, to be present to himself [43].

These three definitions, taken from leading French dictionaries and translated,
illustrate how polysemous the term conscience is. While some characteristics over-
lap in the various definitions I have come across, it is also easy to find a definition
that matches what you want to say about conscience. So there’s no need to start
a debate on consciousness with your friends and hope to find an answer in the dic-
tionary that will make everyone agree. You’ll find as many definitions as there are
opinions on the subject. As many as there are languages, too, since the nuances
of the translation of this term are not precisely the same from one language to
another. Scientific studies on consciousness are often criticized for failing to define
precisely what consciousness is [78]. Part of the problem is that consciousness is a
term that comes from everyday, non-scientific language. It covers different realities
and is used to designate different concepts.

The polysemy of consciousness in scientific literature: a bibliometric
analysis

This plurality of definitions is pretty self-explanatory. ChatGPT placed conscious-
ness at the interface of several domains, and it is not wrong. A bibliometric analysis
of "consciousness" in the literature quickly confirms this. The visualization pro-
posed by "Web Of Science" places consciousness at the frontier of neuroscience,
philosophy, clinical neurology, psychology and the social sciences (see Fig. 1.1).
With so many different disciplines taking consciousness as their object, it is under-
standable that the term does not cover the same reality from one field to another.
To understand these different nuances, a visualization of co-occurrences is pro-
posed, via the VOSviewer software (v1.6.19) [247]. The terms present in the titles
and abstracts of the 10,000 most relevant articles on the "Web of Science" site
and containing the term "consciousness" are used. The results of this lexical land-
scape reveal three clusters (see Fig. 1.2). The first, in red, highlights the terms
"theory", "experience", "mind" and "philosophy". We also find "phenomenal con-
sciousness" and "content". All these words are widely associated with theories of
consciousness and cut across the fields of philosophy and psychology. The second
large cluster, in green, highlights the word "patient". Around it, three sub-clusters
gravitate: the field of Disorder of Consciousness (DoC): "recovery", "brain injury",
"DoC"; that of the connectivity of conscious networks: "network", "connectivity",
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Figure 1.1: The visualization proposed by "Web Of Science" places consciousness at the
frontier of neuroscience, philosophy, clinical neurology, psychology and the social sci-
ences.

"consious state", "neuroimaging"; a final, more methodological cluster: "group",
"measure", "scale", which is also close to the third cluster. This last blurrier
cluster, in blue, highlights the words "participant", "questionnaire" and "society".
It seems to combine an experimental science aspect, where the presence of par-
ticipants for experiments, in cognitive science, for example, is essential, with a
societal aspect that’s harder to pin down. Looking at the "historical" evolution of
these terms (Fig. 1.3), we see that before 2015, consciousness literature revolved
a great deal around the various theories. Then, there is a gradual shift towards
clinical neuroscience and neurology, where studies focus on the patient.

The components of consciousness

Starting from a definition of consciousness based on common language, using
definitions for the general public, we then studied the meanings of this word in
scientific and technical literature. This led to the emergence of sub-groups, and
within these sub-groups, different concepts linked to the word "consciousness".
These components of consciousness are further described in the literature review
proposed by Dehaene and Changeux (2011) [58]. Indeed, it is reported that the
word "conscious" is ambiguous. Used intransitively, as in the sentence "he was still
conscious when the firemen arrived", it refers to the state or level of consciousness,
also called vigilance, wakefulness or arousal. Used intransitively, as in the sentence
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Figure 1.2: Co-occurrence map (VOSviewer (v1.6.19) [247]) based on the titles and ab-
stracts of the 10,000 most relevant articles containing the term "consciousness", on the
"Web of Science" site. The results of this lexical landscape highlight three clusters: the
first, in red, is mostly associated with theories of consciousness; the second, in green, is
centered around the clinic; the third, in blue, remains difficult to define (societal aspect,
cognitive sciences).

"I was not aware of the danger", it refers to conscious access to specific information,
the conscious content, also known as awareness. Consciousness can be understood
as a continuum, with varying levels of wakefulness and awareness [231]. These two
perspectives help us to define more clearly what we mean when we use the word
consciousness. They are also essential in the clinical field, enabling us to situate
the various states and pathologies linked to disorders of consciousness (Fig 1.4).

Our subject of research has just been dissected in an attempt to understand
it better. But we still don’t know how to study it. What forms does the study of
consciousness take, and how is it investigated?

1.1.2 . ... how to study it ?

Our bibliometric analysis of the literature has been telling us about conscious-
ness over the last fifty years. However, its evocation goes back much further. To
better understand what consciousness means today, it’s worth delving into its past.
This will give us a deeper understanding of what it has become.

Consciousness history

Descartes
The first systematic approach to consciousness is attributed to René Descartes
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Figure 1.3: Same co-occurrence map as Fig.reffig:2-1:b, colored according to the tempo-
ral evolution of these terms. Before 2015, the consciousness literature focused on theories.
Gradually, the patient becomes central, and consciousness moves into the domain of clin-
ical neuroscience and neurology.

(1596-1650) [78]. He is known for his dualism: the distinction he makes between
the physical body and the mental, the soul. For Descartes, the brain, while playing
an important role in sensory input and motor output, is not the basis of the mind.
According to him, the brain plays a linking role between matter and mind, in
particular, the pineal gland (Fig 1.5) [78]. We now know that the pineal gland is
not the seat of the soul, and most scientists reject the idea of dualism, believing that
the mind emerges from the physical properties of the brain. However, the concept
of a mind/body distinction remains, which means that consciousness today is still
a complex problem.

Pineal gland (or epiphysis).

Small endocrine gland in the epithalamus of the vertebrate brain. It plays a central role in
regulating biological rhythms (sleep/wake and seasonal) by secreting melatonin. In the human
species, the pineal gland is shaped like a pine nut (hence the adjective pineal). Its role was poorly
understood for a long time, giving rise to several speculations, such as its supposedly central
role in thought. Descartes, in particular, based his theory on the fact that the pineal gland was
the only head organ not to be conjugated, i.e., not to appear as a pair of symmetrical organs
located on either side of the sagittal plane. Moreover, its central position and the fact that it lies
just above the aqueduct of Sylvius, which Descartes believed guided what he called the "animal
spirits" that were supposed to give rise to sensations in the soul by striking the pineal gland,
contributed to the confusion. Today, thanks to histological studies, we know that the pineal
gland is indeed a conjugated organ, but the two hemispheres that make it up are almost fused.

After Descartes
Several philosophers and scientists took up the question after Descartes and tried to
unite body and mind (Baruch Spinoza (1632-77), Gottfried Leibniz (1646-1716)).
John Locke (1632-1704) differentiates between the outer sense, the thought expe-
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Figure 1.4: Level (wakefulness) and contents (awareness) of consciousness. Conscious-
ness can be understood as a continuum, with varying levels of wakefulness and awareness
[231].

rience, and the inner sense, the reflective capacity around the thought experience.
His ideas, and those of other empiricist philosophers after him, helped to found a
science of psychology. For Immanuel Kant (1724-1804), on the other hand, such
a science is not possible, since it uses neither mathematics nor experimentation to
study the mind. For a long time, the idea persisted that psychology could not be a
scientific object, especially when studying subjective experience. In the 19th cen-
tury, the belief that mental phenomena cannot be scientific objects was countered
by psychophysical methods, and experimental psychology developed. In particular,
Gustav Fechner (1801-87) showed that the relationship between stimulus intensity
and subjective sensation is logarithmic (the Weber-Fechner law). He thus showed
that what is mental can be measured and has a strong link with the physical body
[78].

At the same time, significant progress is made in understanding the nervous
system. The myograph was developed by Hermann von Helmholtz (1821-94), en-
abling the speed of nerve impulses to be measured. Contrary to the beliefs of the
mainly vitalist biologists of the time, life no longer depended on a vital force that
could not be calculated. By the end of the 19th century, much progress had been
made on the brain. Ramon y Cajal proposed the idea that the basic unit of the
nervous system is the neuron [113], motor and sensory regions were identified by
Ferrier, a pioneer in animal electrical stimulation studies [71] and Brodmann began
to identify various areas that still bear his name today [26]. At the same time, psy-
chology became a scientific discipline in its own right, and an essential technique
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Figure 1.5: Diagram of the pineal gland as seen by Descartes in his treatise L’Homme
(published in the 1664 edition) [63].

for measuring the duration of mental events was proposed by Donders (1818-89):
reaction time. Thanks to this measurement, cognitive-process correlates could be
isolated for the first time. The dominant figure in late 19th-century psychology
was William James [109]. He equated the flow of thoughts with consciousness and
recognized the importance of attention and unconscious processes. In 1913, John
Watson proposed that scientific psychology should be based on observable events
(stimuli and responses) rather than on hypotheses about mental states [251]. The
behaviorist movement was born of this idea, and for the first half of the 20th
century, experimental psychology excluded the possibility of studying subjective
experiences [135].

The early 20th century is often considered a desert in the field of conscious-
ness. However, additional building blocks were laid, particularly in the study of
visual illusions, in which subjective experience is decoupled from physical stimuli.
Although these illusions had already been described, they are now being brought
to the fore to understand the mechanisms of perception. In addition, the introduc-
tion of information theory by Hartley (1928) [94] and Shannon and Weaver (1949)
[222] marked the first step towards a mathematical approach to cognition. The
brain can now be seen as a communication system that processes and transmits
information, rather than movement or energy. The neuron is no longer merely the
anatomical central unit, but the information-processing unit. The medical sciences
were not to be outdone, particularly by Penfield’s research on humans. In epileptic
patients, in preparation for operations to remove epileptic areas, he applied electri-
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cal stimulation to the brain to locate the regions involved in language and thoughts,
to avoid damaging them [190]. This enabled him to obtain verbal reports from
patients about their subjective experience following stimulation, demonstrating the
importance of the cerebral cortex in conscious experience [70].

The last fifty years
The most significant advance in the last fifty years has been, paradoxically, the
study of the absence of consciousness. Demonstrating the unconscious of auto-
matic psychological processes in perception, memory and action, are indeed major
advances. Neuropsychology in animals, particularly in monkeys, made it possible
to study the behavioral response to a cerebral modification [120, 121]. Other works
highlight the role of specific regions of the Pre-Frontal Cortex (PFC) in tasks in-
volving short-term memory [164]. In current theories of consciousness, short-term
memory (also working memory) and the PFC are always central [135]. In hu-
mans, subliminal perception is being studied: this modifies a subject’s behavior
even though the stimulus has not been consciously perceived [125]. The study
of brain-damaged patients provides an even better understanding of unconscious
psychological processes. Some, for example, can guess the properties of a visual
stimulus they can’t see [252]. Others with severe amnesia, however, can retain
information about a stimulus they have no memory of having seen before [250].
But studies of the unconscious raise a new problem: how can we verify that a sub-
ject who claims not to have seen a stimulus has not, despite everything, processed
it? Conversely, if he correctly detects or discriminates a stimulus, this does not
mean that he was aware of it. Underlying unconscious processes may be behind
the choice. The development of brain exploration methods, including neuroimag-
ing, is helping to accumulate additional markers of these unconscious processes.
It offers the possibility of associating specific patterns of activity with unconscious
processes.

In the 21st century, while we now know that life does not depend on a vital
essence, consciousness remains a mystery. Science and philosophy continue to
intertwine when it comes to consciousness. Consciousness does not pass from a
philosophical past to a scientific present. Throughout history, it has been and
continues to be, studied by philosophers and scientists. Neither discipline has been
neglected as the understanding of phenomena has improved. The two are virtually
indissociable, since the questions one poses, raise new ones in the other. Where
does consciousness emerge from? What is its role? If, as Descartes thought, it is
no longer necessary for rational thought and decision-making, what is it good for?
How is the presence of consciousness determined? Are there biological markers
of consciousness? Over the years, we have seen many different pairs of glasses
put on to try and see things more clearly. Consciousness is multi-faceted, and like
the visual illusions we use to study it, it’s almost as simple as blinking an eye to
observe it differently.

17



Access consciousness and phenomenal consciousness

Consciousness is, therefore, a polysemous object, and its study has evolved consid-
erably over time. In modern literature, two facets of consciousness are often devel-
oped. We present here a summary, based on Kriegel’s (2007) chapter [127], which
explains this duality. Philosopher Ned Block, in particular, distinguishes between
access consciousness and phenomenal consciousness [21]. The former concerns
what enables us to act, i.e., information that is accessible to the cognitive system
to speak, reason and control high-level actions. The latter relates to subjective
experience and the feelings associated with that experience. These two aspects of
consciousness may not be present simultaneously. For Block, these two concepts
show different properties of consciousness. For him, phenomenal consciousness
is the most difficult to study and understand, but its research is overshadowed
by mainstream work on conscious access. Some thinkers and scientists disagree
with this view and consider phenomenal consciousness and access consciousness
to be linked (see [62, 42, 127]). Lionel Naccache goes even further, arguing that
conscious access alone is sufficient to explain consciousness, and demonstrating
some of the limitations of Block’s definition, particularly on the theme of subjec-
tive report [174]. He proposes a definition in which phenomenal consciousness is
subsumed within conscious access [174]. These distinct visions of consciousness
consequently promote associated theories that are sometimes difficult to reconcile.

Major modern theories

The last thirty years have seen the flowering of theories of consciousness. This ex-
plosion of attempts to explain the phenomenon stems from the need to understand
its biological and physical foundations and to make the causal link between neural
mechanisms and consciousness. The resulting landscape is dense and heteroge-
neous, with over twenty theories proposed [219]. Bringing the theories together
and putting them to the test of experience still remains a challenge. Seth and
Bayne (2022) [219] propose a review of the four most important theories. We are
going to look at two of them, which are also the subject of an opposing collabo-
ration, to try to decide between them [47]: Global Workspace Theory (GWT) and
the Integrated Information Theory (IIT).

Global Workspace Theory (GWT)
The cognitive theory of GWT, developed by Baars [9], has its roots in the theory
of "blackboard systems" in Artificial Intelligence (AI), where the blackboard is a
central resource that receives and transmits information from specialized proces-
sors. In the GWT of consciousness, so-called "conscious" mental states are those
that can interact with a number of other automatic, non-conscious processes, such
as memory, attention and reporting. These mental states are said to be "globally
accessible" (Fig. 1.6).
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Figure 1.6: As per Baars, conscious access occurs when information gains entry to a
global workspace, which subsequently disseminates it to various other processing units.
From [58].

This accessibility of information is reflected in the neural theory of conscious-
ness, the Global Neuronal Workspace (GNW) theory, later developed by Stanis-
las Dehaene. Sensory information becomes conscious when disseminated to an
anatomically localized workspace, particularly at the fronto-cingulo-parietal level.
Dehaene and Changeux’s proposal [58] is that a subset of cortical pyramidal cells
with excitatory long-range axons that are particularly dense in the prefrontal, cin-
gulate and parietal regions, together with precise thalamocortical loops form the
neuronal workspace (Fig. 1.7) [58, 158].

First, a stimulus is perceived unconsciously; then, in a second step, at around
250-300 ms, this representation accesses the global neuronal workspace. One crit-
icism of this theory is that it fails to consider the phenomenal difference between
different types of experience. This theory is more concerned with what makes a
representation conscious (the why) than the experience of the phenomenon itself.
For example, in the binocular rivalry task (Fig 1.8), this theory seeks to understand
why, at a given moment in time, it is the house that becomes conscious in our
mind rather than the face. It is not concerned with the experience of seeing a
house or a face. Its focus is on conscious access: why some representations are
accessible to the workspace while others are not. This theory argues that different
states of consciousness can be observed when the workspace is functionally altered.
For example, among the signatures of consciousness identified, altered functional
connectivity is visible in fronto-parietal regions (core regions in the theory) during
a loss of consciousness. Moreover, functional connectivity patterns become very
similar to structural connectivity, as if constrained by it [14, 245].
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(A) (B)
Figure 1.7: GWT (A) The GNW hypothesis suggests that various associative functions, in-
cluding perception, motor control, attention, memory, and value assessment areas, inter-
connect to create a higher-level unified space where information is widely shared and re-
layed back to lower-level processing units. The defining feature of the GNW is its extensive
connectivity, facilitated by layers comprising large pyramidal cells that send long-distance
cortico-cortical axons, particularly concentrated in the PFC. From [58]. (B) GWTs of con-
sciousness posit that mental states achieve consciousness by being broadcasted within a
global workspace, with fronto-parietal networks serving as a central hub. During ignition,
activity in specific local processors, such as sensory regions, is temporarily integrated into
the workspace. From [219].

Integrated Information Theory (IIT)
IIT posits that consciousness can be delineated by a system’s inherent structural
capacity to generate irreducible, integrated information. This concept is quantified
by a singular and measurable parameter known as "ϕ" [239, 240, 76]. From an
anatomical perspective, the theory associates consciousness with posterior corti-
cal areas, often referred to as the "posterior hot zone," which includes parietal,
temporal, and occipital regions. Within these regions, neuroanatomical properties
are finely arranged to generate high levels of integrated information ϕ [219]. The
manifestation of consciousness hinges upon physical and functional information
summation within the interconnected neuronal circuits [238]. Subjective conscious

20



Figure 1.8: Binocular rivalry. Visual occurrence that arises when dissimilar monocular
stimuli are presented to corresponding retinal locations in each eye. Instead of perceiv-
ing a steady, unified amalgamation of the two stimuli, individuals undergo fluctuations
in perceptual awareness over time as the competing stimuli vie for dominance. This phe-
nomenon serves as a fascinating illustration of multistable perception that have been ef-
fectively employed to investigate visual processing beyond conscious awareness. From
[258].

experiences are underpinned by three neural processing domains: (i) perceiving
sensory input from external and internal stimuli, (ii) making decisions and prepar-
ing for actions, and (iii) intentionally controlling emotions, thoughts, and actions.
Consequently, these neural domains encode various aspects of an experience that
necessitate integration to form a unified and cohesive conscious representation of
our surroundings [141]. One of the limitations of this theory is that it says little
about its link with other aspects of thinking, such as memory, attention or learning.
It is also difficult to test empirically. A proxy measure of ϕ is the Perturbational
Complexity Index (PCI), which measures the complexity of brain responses to Tran-
scranial Magnetic Stimulation (TMS). This index has been used to diagnose and
predict the level of consciousness in patients with disorders of consciousness [36].
However, these measures are not incompatible with other theories of consciousness
either. Since the condition for a system’s consciousness is that it generates inte-
grated information independently of the substrate, this theory suggests that there
can be consciousness in any material system. This, coupled with the fact that
the theory is only partially empirically proven, led several researchers in September
2023 to publish an article reminding us of the dangers of taking an experimentally
unvalidated theory at face value. In particular, they warned of the ethical conse-
quences this could have on the status of organoids and the embryo [72].

The time for a unified theory of consciousness does not seem to be just around
the corner, given the divergent nature of the various theories. Consciousness al-
ways shows many faces, which complicates the task of painting a clear picture.
Although the mechanisms underlying the concepts of GWT and IIT appear dis-
tinct, they converge on a common notion: the necessity for various domains of
neural information to interact in facilitating coherent conscious processing. These
theories aim to elucidate consciousness through neural activity within the brain, es-
sentially focusing on the Neural Correlates of Consciousness (NCC). Consequently,
concepts of consciousness based on NCC agree that conscious processing is both
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Figure 1.9: Integrated Information Theory (IIT). IIT asserts that consciousness is fun-
damentally tied to the cause-effect structure of a physical system, particularly one that
delineates the maximum irreducible integrated information. The content of conscious-
ness is intricately linked to the form of this cause-effect structure, while the degree of con-
sciousness is determined by its irreducibility, measured quantitatively by the parameter ϕ.
Anatomically, IIT is linked to a posterior cortical ’hot zone.’ However, validating this core
claim empirically poses challenges, mainly due to the difficulty of measuring ϕ, especially
in complex systems, limiting assessments primarily to simple model systems. From [219].

unifying and integrative [141]. The many theories help us to apprehend its various
aspects, and, little by little, consciousness reveals itself. What remains to be un-
derstood is where it comes from: what is its substrate? What is the neuroanatomy
of consciousness? And what are its neurophysiological bases?

Consciousness and its interaction with other high-level functions

Consciousness is a fully-fledged brain function, separable from other brain functions
such as attention, language, reflection, ... [133]. For example, as regards the link
between consciousness and sensory stimuli, dreaming and locked-in syndrome show
that there is no need for interaction with the environment or motor action to be
conscious. It would seem that relying on the subject’s physical state to conclude
about the presence or absence of consciousness is not appropriate. Instead, it all
depends on what the brain is doing, and how and where the information is pro-
cessed. In the case of dreaming, for example, Electroencephalography (EEG) and
neuroimaging studies show that the cortico-thalamic system continues to function
in a similar way to the waking brain [133]. Similarly, numerous studies teach us
that consciousness needs neither language to exist - patients suffering from a neu-
rological symptom such as aphasia, a communication disorder that can manifest
itself in oral or written expression and/or comprehension, are conscious even if their
consciousness is altered - nor introspection - patients suffering from a neurological
symptom such as aphasia, a communication disorder that can manifest itself in
oral or written expression and/or comprehension, are conscious even if their con-
sciousness is altered, nor introspection - we don’t need to be aware that we’re
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conscious to be conscious, nor memory - patients with lesions in the PFC whose
working memory is severely damaged, or those with impaired episodic memory, are
also conscious. On the other hand, when amnesia is very severe, consciousness is
impaired (confusion, loss of reference points). Attention is more controversial: for
some, attention is an indispensable prerequisite for consciousness, while for others
it is possible to be aware of something without paying attention to it. Neuroimag-
ing studies seem to suggest that the neural correlates of consciousness with and
without attention are different (PFC mainly, with some interactions with posterior
cortex vs. rather only interactions in posterior cortex) [133].

Locked-in syndrome

Rare disorder of the nervous system characterized by paralysis, except the muscles controlling eye
movement. Individuals with locked-in syndrome remain conscious (aware). They still have the
ability to think and reason, yet are unable to move or speak. However, communication may be
possible through eye movements, such as blinking [176].

The neural substrate of consciousness

According to Laureys and Tononi (2009) [133], we still don’t know exactly what
the basic unit of consciousness is: are we talking about groupings of neurons, in-
dividual neurons, neurons located in particular layers or of a certain type? More
generally, it’s not clear what set of brain regions is considered minimally neces-
sary and sufficient for the emergence of consciousness. On the other hand, it is
known that inactivations or lesions of the corticothalamic system result in loss
of consciousness, whereas lesions in other regions have no influence, such as the
spinal cord or cerebellum [133]. If we know that a brainstem lesion has a very
high probability of putting a subject into a coma, the study of minimally conscious
patients shows that if the brainstem is functioning but the corticothalamic system
is not, then the patient may be awake but lacks the conscious part of experi-
ence. Other regions, such as the claustrum, a thin layer of gray matter located
between the insula and the putamen, and the basal ganglia, seem to be involved
in consciousness, but it is not clear whether they are necessary for the emergence
of consciousness. As for the thalamus, while its crucial role in consciousness is
generally accepted, for some, it has a central role in consciousness, particularly
the intralaminar nucleus, while for others, it has an indirect role, as a kind of
antenna facilitating cortico-cortical interactions. At the same time, some data
suggest links between the cortex and consciousness without necessarily involving
the thalamus [133]. After arguing that cortex and consciousness are undeniably
linked, the authors of "The Neurology of consciousness" (2009) [133] ask where
consciousness is located: at the front or back of the cortex? On the sides or in
the middle? In the right or left hemisphere? To answer these questions, the most
convincing results come from the consequences of lesions in patients. Studies of
patients with lesions in the PFC show they do not lose consciousness. However,
patients with lesions in both hemispheres are rare, as are lesions in specific regions
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of the PFC, making it impossible to study the role of some regions. In comparison,
studies of patients with lesions in the posterior cortex appear to lose awareness
while remaining awake. The authors support the view that awareness is more likely
to reside in the posterior cortex but concede that this does not detract from the
fact that the PFC also plays a direct role. As for the involvement of the lateral vs.
medial regions, both patient observations and neuroimaging studies suggest that
both regions are involved in conscious experience and form a highly interconnected
network. Finally, the study of split-brain patients, or patients who have undergone
a right hemispherectomy, is rich in information as to whether consciousness resides
in the right or left hemisphere. These studies show that the left hemisphere alone
can support self-awareness similarly to a whole brain. The right hemisphere, on
the other hand, is limited in most people when it comes to language and reasoning
functions and is largely dominated by the left hemisphere. However, rarer cases of
left hemispherectomy indicate that consciousness and self can also exist in the right
hemisphere. The authors hypothesize that "right" consciousness is comparable to
that of certain primates, conscious but deprived of language.

Split-brain

A disconnection syndrome that arises
when there is a partial cut of the corpus
callosum, the structure linking the two
brain hemispheres.

Hemispherectomy

Surgical operation in which one cere-
bral hemisphere is removed or discon-
nected from the other.

The neural correlates of consciousness

The work summarized in "The Neurology of consciousness" (2009) [133] shows
that changes in neural activity and conscious experience are not necessarily cor-
related. We also know that while the cortex is active during sleep Non Rapid
Eye Movements (NREM) and anesthesia, subjects are not necessarily conscious.
These few elements suggest that cortical activity is not enough to generate con-
sciousness. This activity must possess certain characteristics, particularly dynamic
ones, for conscious experience to be present. In particular, the authors question
the need for activity to be prolonged, or per phase, reentrant or feed-forward, and
synchronous or oscillatory. One of the most likely ideas is that neural activity par-
ticipates in consciousness if, and only if, it is maintained for a certain length of
time, around a few hundred milliseconds. Experiments using the attentional blink
(Fig. 1.10), show that around 200-400 ms, target detection is impaired, which is
less the case directly after the first target. This experiment, and others following it,
indicate that consciousness seems to require neural activity in the appropriate brain
structures that lasts for a minimum time, perhaps the time required for interaction
between several areas. Other data suggest that it does not require continuous
cortical activity, but rather neuronal activity in phases: neuronal discharges would
not cause consciousness directly, but would activate areas that directly support
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consciousness. Another hypothesis takes a closer look at how the neural wave
propagates. Here, it’s not so much a question of whether it’s a continuous or
discrete stimulus that triggers awareness, but rather whether there’s a "returning"
wave of activity (also known as recursive, recurrent or reverberating) from high-
level to lower-level areas.

Sleep (Non Rapid Eye Movements (NREM)/Rapid Eye Movements
(REM)). There are two types of sleep: NREM sleep and REM sleep.
NREM sleep is further categorized into stages 1, 2, and 3, representing
a spectrum of increasing depth. The identification of sleep cycles and
stages has been made possible through EEG, which captures the electrical
patterns of brain activity. Each of the three stages of NREM sleep is
characterized by distinct brain activity and physiological features. REM
sleep is characterized by desynchronized brain wave activity (low-voltage,
mixed-frequency), muscle atonia (loss of muscle tone), and intermittent
REM. Dreaming is predominantly associated with REM sleep. The loss of
muscle tone and reflexes during this phase is thought to serve a crucial
function by preventing individuals from physically acting out their dreams
or nightmares while asleep [45, 216].

1.1.3 . ... why studying it ?
As we saw earlier, consciousness has fascinated, intrigued and questioned us

for generations. It raises philosophical and scientific questions, is also an object
of study from the point of view of pure knowledge. The more we seem to want
to lock it into a box, confine it to a single definition, explain it with a theory, the
more it eludes them. But it’s not just a mystery, a puzzle to be solved. Behind
the understanding of consciousness, as the co-occurrence map clearly showed, lies
a darker reality, that of patients suffering from DoCs. A better understanding of
how consciousness works could lead to major clinical advances in this area.

Indeed, diagnosis is not straightforward and requires extensive testing to assess
levels of wakefulness and awareness. The proposed treatments aim to support the
patient (feeding and drinking, movement, hygiene, auditory or visual stimulation)
but can’t ensure recovery from impaired consciousness. Predicting the chances of
improvement of someone in a state of impaired consciousness [218] is impossible.
In the remainder of this introductory section on consciousness, we will look at
disorders of consciousness and the proxy used to study them.
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Figure 1.10: Attentional blink. A phenomenon where the second of two targets be-
comes difficult to detect or identify when it closely follows the first [223]. The experimen-
tal paradigm generally employed involves rapid serial visual presentation, where stimuli
such as letters, digits, or pictures are presented sequentially at a single location at rates
ranging from 6 to 20 items per second. The methodology introduced by [201] involves par-
ticipants identifying the only white letter (first target; T1) in a rapid stream of black letters
(non-targets or distractors) presented at a rate of 10 items per second. Following this, par-
ticipants are tasked with reporting whether the letter ‘X’ (second target; T2) appears in the
subsequent letter stream. T2 is presented in only 50% of the trials, and when presented,
it occurs with an interval between the two targets ranging from 100 to 800 milliseconds.
Participants are required to report both targets after the stimulus stream concludes. The
attentional blink is said to occur when T1 is reported correctly, but the report of T2 is inac-
curate at short T1/T2 intervals, typically ranging between ≈ 100 to 500 milliseconds and
accuracy in reporting T2 recovers to the baseline level at longer intervals. From [223]
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1.2 . Losing consciousness

1.2.1 . Disorders of consciousness (DoCs)
Coma and other DoCs remain one of medicine’s most important challenges.

They are characterized as a state of prolonged altered consciousness, which can
be categorized into coma, Unresponsive Wakefulness Syndrome (UWS) (previously
Vegetative State (VS)) or Minimally Conscious State (MCS) based on neurobehav-
ioral function [18, 180, 236]. It is difficult to know exactly the level of consciousness
in these patients and study their states of consciousness because of very reduced
or inexisting movements. Misdiagnosis, in particular, is one of the most serious
problems as it impacts medical decision-making, and patients’ well-being [68].

Main clinical entities of DoC and causes

Among the DoCs, three main clinical entities are defined according to the patients’
level of arousal and awareness following a behavioral examination (cf. Fig 1.4).

Coma
Coma arises from severe brain injury, characterized by an absence of arousal (e.g.,
eyes remain closed even when stimulated) and an absence of self-awareness or
awareness of the environment. This state is typically transient, lasting less than
two to four weeks, after which patients may progress to brain death or exhibit
partial or full recovery [236]. Typically, coma results from the suppression of corti-
cothalamic function due to drugs, toxins, or internal metabolic imbalances. Other
contributors to coma include traumatic brain injuries like severe head trauma, non-
traumatic brain injuries such as strokes, or hypoxia resulting from heart failure, all
of which lead to widespread disruption of corticothalamic circuits (Figure 1.11).
Gradual onset of coma can also occur in conditions like Alzheimer’s disease, char-
acterized by progressive brain deterioration. Additionally, smaller lesions affecting
the reticular activating system can induce unconsciousness by indirectly deactivat-
ing the corticothalamic system [133].

UWS
Patients with UWS demonstrate no signs of awareness but may display reflexive
movements like teeth grinding, yawning, or groaning. This condition can be tran-
sient, prolonged, or permanent [236]. Postmortem analysis of patients with UWS
reveals that the brainstem, hypothalamus, and specifically the reticular activating
system remain largely intact, which accounts for why patients appear awake de-
spite their unresponsive state (Figure 1.11). Typically, UWS results from extensive
lesions in the gray matter of the neocortex and thalamus, widespread damage to
white matter and diffuse axonal injury, or bilateral thalamic lesions, particularly af-
fecting the paramedian thalamic nuclei. Thalamic injury may arise as a secondary
effect of diffuse cortical damage through retrograde degeneration. However, iso-
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lated damage to the paramedian thalamus can lead to persistent unconsciousness
[133].

MCS
MCS patients show intermittent but reproducible signs of consciousness. Similar
to UWS, the MCS can be temporary or permanent [236]. The function of the
cerebral cortex, diencephalon, and upper brainstem is variably impaired (Figure
1.11) [133].

Assessing level of consciousness: from bedside to neuroimaging

Extensive testing is required to evaluate levels of wakefulness and awareness before
confirming a DoC. This assessment often includes cerebral exploration (brain scans
and EEG), but the gold standard for diagnosing these states of consciousness is
behavioral examination using a specialized scale.

Behavioral examination
Physicians utilize mainly the GCS and The Coma Recovery Scale-Revised (CRS-R)
to assess an individual’s level of consciousness.

• The GCS evaluates three aspects:

– Eye opening: A score of 1 indicates no eye opening, while 4 signifies
spontaneous eye opening.

– Verbal response to commands: A score of 1 implies no response, while
5 indicates alertness and verbal interaction.

– Voluntary movements in response to commands: A score of 1 denotes
no response, while 6 signifies the ability to follow instructions.

A lower GCS score suggests more severe impairment of consciousness, po-
tentially indicating a coma. This score is regularly monitored for any changes
in the individual’s condition [235].

• The Coma Recovery Scale-Revised (CRS-R)

More specialized scoring systems, such as the JFK CRS-R, provide detailed
assessments of an individual’s behavior [114]. This scale consists of 23 items
divided into six subscales (auditory function, visual function, motor function,
oromotor/verbal function, communication, arousal), each meticulously eval-
uated to gauge "perceptual awareness of the environment" [218].

These behavioral evaluations are deemed essential for diagnosing conscious-
ness. Despite the availability of various electrophysiological and neuroimaging
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Figure 1.11: Schematic illustration of brain dysfunction in major states of impaired con-
sciousness. (A) Brain Death: all cortical, subcortical, and brainstem functions are irre-
versibly lost. While spinal cord function may remain intact, eliciting responses from the
patient is not possible except for spinal cord reflexes. (B) Coma: severe impairment of
cortical function and dysfunction of the diencephalic/upper brainstem activating systems.
Patients remain unarousable with closed eyes and lack purposeful responses, although
brainstem reflex activity persists. (C) UWS: cortical function is significantly impaired, but
some preserved function of the diencephalic/upper brainstem activating systems remains.
Patients in this state are unconscious at all times, lacking purposeful responses, yet they
may spontaneously open their eyes or do so in response to stimulation. They may also ex-
hibit primitive orienting responses and sleep-wake cycles. (D) MCS or better: In this state,
the degree of impairment in cerebral cortex and diencephalic/upper brainstem activating
systems varies. Patients may display some purposeful responses along with deficits, with
the severity of brain dysfunction determining the extent of impairment. From Chapter 2
of [133]

tools and the extensive research utilizing them, the behavioral examination in-
volving direct interaction between the patient and the examiner remains the gold
standard. Yet, fMRI research [181, 167, 175] and scalp EEG studies [41] have
revealed that approximately 15–20% of patients diagnosed with DoC who exhibit
no apparent behavioral responsiveness may, nonetheless, possess covert conscious-
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ness [150]. This highlights the critical need for diagnostic tools that rely on brain
activity. The use of brain scans, for example, have prompted revisions in certain
categories of DoCs [218]. To clarify the prognosis of patients recovering slowly, sev-
eral research teams are currently attempting to identify more effective prognostic
markers, notably through functional explorations probing residual brain function. Is
the dream of neuroimaging researchers to be able to decode levels of consciousness
from recorded cortical activity, by studying how global changes in brain activity are
linked to different levels of consciousness, becoming a reality?

Functional exploration
Until recently, the predominant neuroimaging techniques employed in DoC

involved Positron emission tomography (PET) or Single Photon Emission Com-
puted Tomography (SPECT) to evaluate resting cerebral blood flow and glucose
metabolism. However, methodologies like fMRI offer the capability to associate
particular cognitive processes with distinct physiological responses (changes in re-
gional cerebral hemodynamics), even in the absence of any overt response (e.g.,
motor actions or verbal responses) from the patient [180].

Activation studies offer a means to evaluate cognitive functions in altered
states of consciousness without requiring any overt response from the patient.
For example, this approach has been utilized to identify residual brain functions
in patients who meet all standard clinical criteria for UWS but retain cognitive
abilities that elude detection using standard clinical methods. Even if they show
no evidence of awareness at the bedside, the diagnostic label of MCS* has been
suggested for them, as their neuroimaging data show atypical brain patterns using
active paradigm (eg, brain activity in motor area during a motor imagery task) or
metabolic resting state (eg, preservation of the fronto-parietal network) [180].

Similarly, in some patients diagnosed as MCS, functional neuroimaging has
been used to demonstrate residual cognitive capabilities even when no clear and
consistent external behavioral evidence supports this conclusion. These investiga-
tions have prompted several prominent research groups in this field to propose that
integrating emerging functional neuroimaging techniques with established clinical
and behavioral assessment methods will be crucial for enhancing our capacity to
minimize diagnostic errors among these interconnected conditions [132, 211].

Studying alterations of consciousness: challenges

Unfortunately, studies in patients with DoCs are difficult to perform for several
reasons and proxy should be used to study altered consciousness.

Ethical and technical challenges for studying DoCs
Several logistic challenges associated with scanning critically ill patients in the

high magnetic field remained unresolved [180]. First, the patients encountered are
extremely fragile. Subjecting them to repeated experiments is impractical due to
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their rapid fatigue. Moreover, the clinical setting is constrained by time and budget
limitations, and transporting patients to various facilities is not feasible. Ethical
considerations also pose a significant debate. Disagreements among the patient’s
family members may arise, complicating further research endeavors that require
unanimous consent [232].

Clinical relevance of anesthesia research to DoCs
As previously mentioned, there is a growing body of evidence indicating that

misdiagnosis is common in DoCs, with up to 43% of patients considered as UWS
showing at least minimal awareness [155]. However, inferring consciousness solely
from paradigms involving stimulus presentation to non-responsive patients, followed
by observation of brain response using neuroimaging, can be problematic.

In this context, studies examining the effects of anesthetic sedation in healthy
human subjects have been particularly informative. Based on the findings discussed
here, these studies suggest that intact fMRI responses to simple sensory stimuli,
such as speech perception, in patients diagnosed as UWS cannot necessarily be
interpreted as evidence of preserved awareness, especially when passive cognitive
tasks are employed. Conversely, complex sensory processing, as evidenced by cor-
tical reactivity in association cortices during active cognitive tasks, may indicate
undetected consciousness in non-responsive patients [155].

Relevance of anesthesia in preclinical research to DoCs
However, studies involving anesthesia in healthy human subjects in France are

not always easy to justify. Anesthesia, although generally considered safe, presents
certain risks, as do all medical procedures. This is why some teams are opting
for alternatives, such as studying loss of consciousness in NHP. The literature
shows that this is a sensible choice, since very similar fMRI signatures of loss of
consciousness have been found between comatose patients and NHPs under anes-
thesia in terms of brain activity patterns. In particular, it has been shown that
the brain activity of anesthetized NHP and coma patients resided most frequently
in a pattern of low connectivity resembling the anatomy, which was sustained for
longer periods of time in comparison to more complex patterns [60, 14]. To study
problems of consciousness, anesthesia-induced loss of consciousness is therefore a
relevant proxy.

Animal models of traumatic brain injury
Another concept that could have emerged involves the development of an an-

imal model for coma, similar to those established for other conditions such as
Alzheimer’s disease, Parkinson’s disease, and multiple sclerosis. The creation of
animal coma models could serve as valuable experimental frameworks for investi-
gating the neural mechanisms underlying significant changes in brain states. This
approach holds promise for elucidating the neural foundations contributing to the
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reemergence of consciousness [182].
The exploration of the neuroanatomical underpinnings of consciousness has

traditionally involved a lesional approach, wherein animal brains are investigated
under various surgical conditions. Interestingly, in rats, cats, and dogs, the removal
of both cerebral hemispheres does not result in coma; instead, these animals are
capable of self-righting, feeding, and grooming. These findings underscore the
difficulty in developing an animal model for coma induction and highlighting the
crucial role of subcortical brain lesions in this process [182]. Presently, the NHPs,
particularly rhesus macaques, serve as robust animal models for consciousness re-
search. Their psychophysical performances bear many resemblances to those of
humans, and both the anatomical and functional organization of their brains share
significant similarities with humans brains [22]. However, the lesional approach is
now being phased out due to evident ethical concerns, with preference given to
studies on altered states of consciousness, such as those induced during general
anesthesia or sleep.

1.2.2 . Anesthesia-induced loss of consciousness

General anesthesia stands out as the most prevalent method among external
interventions to alter the level of consciousness. General anesthesia is a valuable
tool for understanding the LOC, as it is a relatively safe practice widely used
for surgical procedures. Sedation can be seen as a reversible state of drug-induced
LOC, and pharmacological modulation offers the advantage of providing adjustable
and reversible sedation [232].

Principal anesthetics

The level of consciousness induced by anesthesia depends on the dosage and the
specific agent used, resulting in effects that vary from complete to partial uncon-
sciousness [232]. Anesthetics are categorized into two primary classes: intravenous
agents, like propofol and ketamine, typically employed for induction and often
administered alongside sedatives such as midazolam and dexmedetomidine; and
inhaled agents such as isoflurane, sevoflurane, and desflurane, as well as gases like
xenon and nitrous oxide [133].

Effect at the cellular level of anesthetics

At the cellular level, numerous anesthetics have a combination of effects, ulti-
mately leading to a reduction in neuronal excitability through either the augmen-
tation of inhibition or the reduction of excitation. Primarily, anesthetics function
by bolstering Gamma-Amino-Butyric-Acid (GABA) inhibition or inducing cell hy-
perpolarization via the augmentation of potassium leak currents. Additionally, they
can impede glutamatergic transmission and counteract acetylcholine at nicotinic
receptors [133].
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What are the key neural pathways responsible for the loss of consciousness
induced by anesthetics?

Effect of anesthetics on circuits

Sites of action: cortex, thalamus, other specific areas ?
A common target for several anesthetics is the posterior cingulate cortex, medial
parietal cortical areas, and lateral parietal areas. However, it remains unclear
whether anesthetics induce unconsciousness by affecting specific areas or by causing
widespread deactivation of corticothalamic circuits. One of the most consistent
effects of most anesthetics at LOC is a decrease in thalamic metabolism and blood
flow, indicating that the thalamus may play a role of "consciousness switch" [133].

Regardless of the primary target of anesthetics, achieving LOC may not always
involve the outright inactivation of neurons in these regions. Rather, subtle alter-
ations in dynamic neural activity may suffice. Similar to the effects observed during
sleep, there is evidence suggesting that anesthetic agents disrupt cortical integra-
tion, potentially contributing to impaired consciousness. Alternatively, anesthetics
might induce a state of bistable, stereotyped cortical responses characterized by
reduced information processing, leading to a loss of consciousness [133].

Thalamic consciousness switch hypothesis: the suppression of tha-
lamocortical system activity by anesthesia may result from numerous
anesthesia-induced interactions at different brain sites. These interactions
collectively lead to the hyperpolarization of neurons within the thalamocor-
tical system.

Disruption of large-scale integration
Anesthetics are recognized for their ability to decelerate neural responses, which

can disrupt synchronization among different brain regions. This disruption is evi-
denced in the reduction of coherence in the gamma frequency range (typically 20
to 80 Hz) between various cortical areas, such as the right and left frontal cortices,
and between frontal and occipital regions, as consciousness wanes [112]. Animal
studies further support this observation, showing that anesthetics suppress gamma
coherence between the frontal and occipital regions, both during visual stimula-
tion and in the resting state. This effect is gradual and more pronounced for
long-range coherence compared to local coherence [133]. A study by Uhrig et al.
(2018) [245] investigated the corticocortical effects of ketamine, sevoflurane, and
propofol anesthesia, revealing that all three anesthetics maintained long-range sta-
tionary connections but led to a reduction in both positive and negative correlations
compared to the awake state. These findings support the notion that a disruption
of long-distance corticocortical networks may explain the anesthesia-induced loss
of consciousness.

The disruption of interactions between anterior and posterior regions of the
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cortex may be of particular importance. At anesthetic concentrations inducing
unresponsiveness in rats, there is a decrease in transfer entropy, a measure of
directional information flow, in the front-to-back direction – from frontal to parietal
and from frontal or parietal to occipital cortex – even when feedforward transfer
entropy remains high [133]. This suggests that consciousness relies on feedback
mechanisms.

Anesthetic agents may be especially effective at disrupting integration because
the corticothalamic system seems organized like a small-world network with mostly
local connectivity augmented by comparatively few long-range connections. Thus,
anesthetics need only disrupt a few long-range connections to produce a set of
disconnected components [133].

The pronounced effect on disrupting integration induced by anesthetic agents
might be due to the organization of the corticothalamic system, which resembles a
small-world network characterized by predominantly local connections with a few
long-range connections. Consequently, anesthetics may only need to disrupt a
limited number of long-range connections to induce a state of disconnected com-
ponents [133].

Reduced repertoire of activity patterns
Another explanation for the loss of consciousness is linked to the decline in the
quality of cortical responses, hence the notion of information. As the diversity of
activity patterns generated by the corticothalamic system diminishes, neural activity
becomes less informative, despite potential global integration [133]. Several general
anesthetics induce a characteristic burst-suppression pattern characterized by a
nearly flat EEG interrupted intermittently by brief, quasi-periodic bursts of global
activation that are remarkably stereotypical. This stereotypical burst-suppression
pattern, whether evoked or spontaneous, indicates that during deep anesthesia-
induced unconsciousness, the corticothalamic system can still be active – indeed
hyperexcitable – and can generate global, integrated responses. However, the range
of responses has contracted to a stereotypical burst-suppression pattern, leading
to a corresponding loss of information. The study by Uhrig et al. (2018) [245]
supports the concept of diminished information. Under ketamine, sevoflurane, and
propofol anesthesia, they demonstrate that the repertoire of brain states traversed
by the anesthetized brain is reduced compared to the awake state.
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1.3 . Restoring consciousness: from science fiction to science

Let’s not sing a requiem too soon: lost consciousness could soon be restored,
thanks to the advent of the latest neuromodulation techniques. Electrical stimu-
lation of the brain to restore consciousness! A science fiction story? Some kind of
gloomy dystopia? It’s not a story about the future, though. Neuromodulation is
well and truly in use in our hospitals. It’s not a tool of torture, but on the con-
trary, a clinical technique used since 1987 to combat certain symptoms in patients
suffering from Parkinson’s disease. Results have shown a marked improvement in
quality of life and motor skills in these patients. Electroceuticals, this novel class
of therapeutic agents which target the neural circuits through electromagnetic
stimulations, could also lead to improvements in consciousness disorders, with the
ultimate aim of restoring consciousness to comatose patients.

1.3.1 . Pharmacological treatments
Obviously, implanting electrodes in the brain of a comatose individual was not

the first idea of clinicians. But to date, few therapeutic options exist, and few
studies have investigated the treatment of patients with DoCs. Based on the
review by Thibaut et al (2019) [236], we first discuss pharmacological options for
these patients with prolonged DoCs (i.e., more than 28 days).

Amantadine and zolpidem have been mostly used to improve consciousness
and functional recovery in patients with DoCs [236].
Amantadine (dopamine agonist and NMDA receptor antagonist) enabled a group
of patient with Traumatic Brain Injury (TBI) to recover faster than the placebo
group as measured by the Disability Rating Scale [200] (a scale developed and
tested with individuals with moderate and severe TBI derived from the Glasgow
Coma Scale and reflecting impairment ratings). For patients experiencing DoCs
due to causes other than TBI, the evidence is less clear, as there have been relatively
few studies conducted on this population.
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NMDA receptor

The NMDA (N − methyl − D −
aspartate) receptor, is a glutamate re-
ceptor and ion channel found in neu-
rons, essential to memory and synaptic
plasticity.

Dopamine

Dopamine (contraction of 3, 4 −
dihydroxyphenethylamine) serves as
a crucial neuromodulatory agent with
multifaceted functions within cells.
Within the brain, dopamine acts as
a neurotransmitter, facilitating com-
munication between neurons by trans-
mitting signals from one nerve cell to
another. While neurotransmitters are
synthesized in distinct brain regions,
their effects extend systemically across
numerous brain areas.

Zolpidem (non-benzodiazepine GABA agonist) is classified as a hypnotic med-
ication. It has been observed to enhance consciousness and facilitate functional
recovery in approximately 5% of patients with DoCs. It is essential to characterize
the behavioral and physiological attributes of individuals who respond positively
to zolpidem to enhance the identification of patients who may benefit from this
treatment [236].

GABA

GABA (γ − Aminobutyric acid) is
the primary inhibitory neurotransmitter
within the mature mammalian central
nervous system. Its primary function
involves diminishing neuronal excitabil-
ity across various nervous system re-
gions.

Studies on other molecules seem very anecdotal, given the few uncontrolled
studies and case reports. More randomized controlled trials are needed [236].
Strangely enough, despite the absence of more studies on the subject, the use of
pharmaceutical means is not really up for debate. Yet these molecules can have
undesirable effects, and cannot target precisely the areas of the brain specifically
linked to the disorders they treat.

1.3.2 . Neurostimulation to restore consciousness

In order to improve consciousness and functional recovery in patients with
DoCs, non-pharmacological interventions have also been explored. These include
non-invasive brain stimulations (e.g., transcranial Direct Current Stimulation (tDCS),
repeated TMS, transcutaneous auricular vagal nerve stimulation, and low intensity
focused ultrasound pulse), invasive brain stimulation (e.g., DBS or vagal nerve
stimulation), and sensory stimulation programs (Fig. 1.12) [236].

In this thesis, we focus solely on DBS, but other neuromodulation techniques
are not neglected in our team, which is also studying the effects of tDCS (G.
Hoffner) and focused ultrasound (A. Bongioanni).
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Figure 1.12: Illustration of various forms of stimulation utilized in DoC patients, including
both invasive and non-invasive methods. The main targets and stimulation parameters
are listed (intensities, voltages, frequencies, and number of sessions) used in clinical stud-
ies. From [24].

What is DBS ?

DBS involves the surgical implantation of electrodes into deep brain regions to ad-
minister electrical currents aimed at modulating neural activity. These electrodes
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are implanted using stereotactic techniques, a neurosurgical method utilized to tar-
get specific brain areas. Stereotaxy relies on a 3D coordinate system to precisely
locate structures within the brain using medical imaging tools. The electrodes
are connected to an Implantable Pulse Generator (IPG), typically positioned sub-
dermally beneath the clavicle (Fig. 1.13 (A)). A recent IPG comprises a battery
and electronic components responsible for delivering electrical stimulation, and it
can be externally controlled by patients or clinicians. Adjustments to stimulation
parameters such as frequency, pulse width, and voltage are necessary to optimize
efficacy [197].

The electrode serves as the intermediary component between the neuromodula-
tion hardware and the specific nervous tissue being targeted. Electrical stimulation
is achieved by establishing a connection between two poles of a stimulus source
and the tissue. Typically, conventional current flows from the positive pole of the
stimulus source to the negative pole, while electrons (negative charges) move in
the opposite direction [126]. Its primary role is to deliver adequate current to
selectively activate or deactivate the target neural tissue with which it interfaces.

Various metals, such as gold, stainless steel, platinum, platinum–iridium, among
others, have been utilized for neurostimulation electrodes. The selection of the elec-
trode’s metal composition depends on factors like biocompatibility, the amount of
charge injection required, and constraints related to surface area. The physical de-
sign of the electrode is tailored to fit the target anatomy appropriately and achieve
the desired spatial activation and selectivity. This may involve shaping the elec-
trode or configuring it with multiple contacts to enable multipolar stimulation. In
the case of DBS, the electrode typically takes the form of a cylindrical shaft, as
depicted in Figure 1.13 (B) [126].

Why using DBS ?

The narrative review of Bourdillon et al. (2019) [24] gives us more insights into the
history of DBS for consciousness disorders. At first, performing lesions on deep,
small brain structures with extensive projections to large cortical areas presented
promising prospects in both psychiatric and neurological fields and significantly re-
duced the morbidity associated with surgical procedures. These lesional techniques
were recommended for pathologies characterized by positive signs, such as tremors
or dystonia, but were ineffective for conditions where negative signs predominated,
such as DoCs. In this context, the application of electrical stimulation to human pa-
tients using stereotactically positioned intracranial deep electrodes emerged. DoC,
which was viewed as a deficiency in cortical activation resulting from a disruption
of projections from the Ascending Reticular Activating System (ARAS) through
the diencephalon to the cortex, was among the first conditions for which DBS was
employed [160, 95]. Even if promising effects were observed in the initial reports
of brain stimulation on the arousal of vegetative patients, no further studies were
conducted until the late 1980s when DBS gained popularity, particularly through
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(A) (B)

Figure 1.13: (A) Illustration of an implanted DBS system. From [197]. (B) Medtronic 3389
lead DBS model. From [148].

its application in Parkinson’s disease [17]. In parallel, as seen previously, several
theories of consciousness have been developed. While some authors postulate
than consciousness stem from a brain-scale cortico-cortical communication (global
workspace theory [58]), others claim that consciousness arises from the coordinated
activity within thalamo-cortical as well as non-thalamic ARAS pathways [65, 110],
or from fronto-pallido-thalamo-cortical loops (meso-circuit hypothesis, [213]). Ac-
cording to all of these theories, the common feature in DoC pathophysiology would
be the disruption of a complex and organized high-order activity among large-scale
neural networks [24]. Regardless of its cause, DoC is characterized by a widespread
cessation of excitatory synaptic activity throughout the entire cerebral cortex [32].
Recovery from coma relies on cellular and circuit mechanisms that restore excita-
tory neurotransmission through connections between the cortex, thalamocortical
system, and thalamus. DBS can be used as a surgical tool to provide adjustable
stimulation to restore dysfunctional circuits while compensating for lost arousal
regulation typically controlled by intact frontal lobes.

How DBS acts ?

Central thalamus: a target for consciousness restoration The un-
derlying mechanisms of DBS are not yet fully understood. Despite the apparent
diversity in the targets of DBS, all published studies have consistently observed
modulation of the same pathway, simplifying the interpretation of overall results
[24]. The primary target is the Central Thalamus (CT), to elicit excitation of the
thalamo-cortical projection. The CT encompasses various intra- and paralaminar
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thalamic nuclei situated between the brainstem/basal forebrain arousal systems
and the cortex (Fig. 1.14). Neurons within the central thalamus play a crucial
role in regulating arousal through their anatomical connections with large-scale
cortical networks [212]. Typically, electrodes are implanted in the intralaminar nu-
clei due to their apparent association with recovery in patients with DoCs and the
pathophysiological mechanisms linked to brain injury and cellular loss in the central
thalamus [214, 236, 140, 32]. In some studies, stimulation is applied unilaterally,
while in others, it is bilateral [236, 24, 32].

Figure 1.14: Overview of the primate thalamus. From [88].

Parameters of stimulation Most studies predominantly employed low-frequency
stimulation (up to 50 Hz), although some investigations also explored high-frequency
stimulations (up to 100 Hz). However, the influence of stimulation parameters on
clinical outcomes remains uncertain [24].

Encouragingbut variable responses across theDoCpopulation Based
on the comprehensive review by Bourdillon et al. (2019) [24], a positive response
was observed in 30 out of 67 patients diagnosed with UWS and in 6 out of 11
patients diagnosed with MCS. However, the definition of "response" varies sig-
nificantly across studies, reflecting the evolution of outcome measures since the
1970s. Nonetheless, the clinical descriptions provided in older studies consistently
align with improvements on the Coma Recovery Scale-Revised (CRS-R) [24]. De-
tailed results from the studies cited in the review are summarized in Table 1.15.
The etiologies of DoC included TBI (27 patients), anoxic causes (12 patients),
and vascular causes (13 patients). However, it remains unclear from the literature
whether etiology serves as a predictive factor for outcomes.
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In addition to the existing review, recent findings from Chudy et al. (2023) [40]
contribute valuable insights. In their study, 32 patients were implanted (27 with
UWS and 5 with MCS). The stimulation target was the centromedian-parafascicular
complex in the left hemisphere for patients with hypoxic brain lesions or the better-
preserved hemisphere for those with TBI. Consciousness levels improved in 7 pa-
tients, with 3 out of 5 MCS patients transitioning to full awareness, demonstrating
the ability to interact and communicate. Two of them can live largely indepen-
dently. Among the 27 UWS patients, 4 showed improvement in consciousness,
with 2 emerging to full awareness and the other 2 progressing to MCS. Notably,
spontaneous recovery is rare in patients with DoC lasting longer than 12 months
following TBI or 6 months following anoxic-ischemic brain lesions.

Promising responses in animals Alkire et al. [6, 5, 143], using rodent
models, initially showcased that anesthesia-induced loss of consciousness could be
reversed through direct manipulation of the central medial thalamus. In NHP,
electrical stimulation of CT neurons was observed to heighten arousal and improve
cognitive responses to visuomotor tasks [10], ultimately reversing the effects of
anesthesia [15]. Redinbaugh et al. [202] conducted electrical stimulation of the
central lateral thalamus in anesthetized macaques, successfully modulating vigi-
lance by regulating cortical interactions in specific layers. They showed that tha-
lamic stimulation reinstated coherence between frontoparietal regions in both the
feedforward and feedback pathways. Recently,Tasserie et al. [234] demonstrated
that DBS targeting the CT restored both arousal and conscious access, following
loss of consciousness, thereby laying the groundwork for its therapeutic translation
in patients with DoC.

1.3.3 . Challenges

Implementation complexity Conducting studies involving comatose pa-
tients is inherently complex, as evidenced by a case of patient selection in a well-
designed prospective open-label study spanning seven years. Out of 40 patients
considered, only five (13%) met the inclusion criteria, which included parameters
such as EEG desynchronized activity being less than 5% of the recorded time, as
well as the presence of somatosensory and auditory evoked potentials on at least
one side. However, out of the five eligible patients, two were unable to undergo
surgery due to issues with legal representation [156, 236].

Side effects Severe adverse effects have been documented in DBS, as outlined
in Table 1.15 [24]. An inherent drawback of current DBS methods is the require-
ment to insert an electrode through the scalp, skull, and brain, which carries various
risks [197].
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Figure 1.15: DBS studies in DoCpatients. From [24].

No sham-controlled trial No sham-controlled trial investigating DBS in
patients with DoCs has been published. There remains a necessity to establish
a treatment protocol that evaluates the generalizable effects of DBS using stan-
dardized criteria. Moreover, numerous clinical and ethical concerns, such as the
risk of infection and resulting clinical deterioration, still require attention [236].
Animal studies can offer a promising alternative for addressing this challenge, as
demonstrated by the recent study in NHP [234], which allows for control over both
the stimulated region and the stimulation parameters.
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Could DBS be truly attributed as the catalyst for recovery? One
of the most significant critiques of the published studies concerns the timeframe.
Spontaneous recovery from non-anoxic UWS lasting longer than 1 month occurs in
30% of patients at 6 months and in 43% at 12 months. This observation extends
beyond UWS, as 83% of patients emerged from MCS after 6 months. However,
most studies report DBS performed within the year following the brain injury, so
in the 29 out of the 41 patients who improved after DBS, spontaneous recovery
cannot be excluded [24].

In the review by Thibaut et al. (2019)[236], the same observation is made:
untangling the impacts of DBS from spontaneous recovery is a difficulty due to
the enrollment of patients 2–11 months after injury.

For this challenge, the proxy through LOC via anesthesia ensures that it is not
a spontaneous recovery of consciousness.

Physio-pathological heterogeneity Another constraint lies in patient se-
lection based on clinical criteria [24]. Diverse lesions in the central nervous system
can yield identical clinical manifestations. For instance, UWS can arise from dif-
fuse cortical lesions or from a highly focal lesion in the brainstem of the ARAS. In
the former scenario, DBS will modulate a damaged cortex with compromised long-
distance synchronization capacity, whereas in the latter, thalamic modulation will
affect an intact cortex [24]. Recent studies tend to address this issue by excluding
anoxic causes or attempting to identify the potential connectivity that DBS may
restore. However, most studies amalgamate patients with similar clinical presenta-
tions but with potentially significant physio-pathological heterogeneity. Studying
connectivity following consciousness restoration is an intriguing avenue to identify
the exact connectivity that DBS can restore, thereby customizing treatments [24].
Additionally, the proxy of LOC induced by anesthesia is also valuable in studying
cases of consciousness restoration as it helps overcoming lesion heterogeneity.

43



Consciousness, like happiness according to Balzac, is a soap bubble that changes
color as the iris and that breaks when touched. Consciousness can be had, lost or
covered up. Anesthesia serves as a potent method for simulating altered conscious-
ness in NHP. Electrical neuromodulation through DBS represents a robust approach
for inducing large-scale cortical reconfiguration. Thalamic DBS not only reinstates
vigilance but also enhances cortical responses in the fronto-parieto-cingulate net-
work for higher-order processing. DBS holds promise for restoring wakefulness and
awareness in patients with DoCs. The optimal target for DBS may vary among
individuals, and in some cases, stimulating multiple targets could be considered
for improved outcomes. Despite its therapeutic potential, the cortical effects of
DBS remain largely unknown, and target selection is currently based on empirical
evidence. Future research should strive to unravel the underlying mechanisms and
functional connectivity associated with each target. Moreover, progress in neu-
roimaging techniques like fMRI and EEG holds potential for identifying patient-
specific biomarkers, that could help in treatment planning and target selection
[236, 32].
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2 - fMRI: the brain’s cloak of visibility
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As we have seen, brain exploration using neuroimaging tools has enabled us
to highlight the neural correlates of consciousness. But how exactly do we make
the brain talk? How does neuroimaging work, and why does it allow us to read
through the cranium as if through a crystal ball?

2.1 . Theory

Functional Magnetic Resonance Imaging (fMRI) has a relatively recent history.
It was developed barely 30 years ago, but has grown rapidly. According to [195],
by 1996 it was possible to have read all the fMRI literature in a week, whereas
at the time the authors were writing, it was barely possible to read all the papers
published the week before. A little over 10 years later, fMRI has not been shelved,
as one might have thought would happen with a trendy new object that is only
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considered for a short while. It continues to be the talk of the town, at a steady
rate of 6,200 papers a year for the past 5 years (Fig. 2.1).
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Figure 2.1: Number of citations in theWebOfScience databasematching the query [“fMRI”
OR “functional MRI” OR “functional magnetic resonance imaging”] for every year since
1992.

2.1.1 . Magnetic Resonance Imaging : from magnet to image
The concept of fMRI relies on the technology of MRI scanning and the under-

standing of the properties of oxygen-rich blood.
MRI brain scans utilize a robust, permanent, static magnetic field to align nuclei
in the specific brain region under examination. The primary magnet generates
the static magnetic field responsible for the observable macroscopic magnetiza-
tion. Predominantly utilized, superconducting electromagnets constitute the most
common type of magnets. These electromagnets involve a coil rendered super-
conducting through liquid helium cooling. Gradient fields are additional magnetic
fields applied along the main magnetic field’s x, y, and z axes. These gradient
fields help to spatially encode the signals emitted by the protons in the patient’s
body. These gradient fields, in combination with the main magnetic field and RF
pulses, allow MRI scanners to precisely localize the signals emitted by the protons
within the patient’s body. This enables the creation of detailed 3D images [104].
Different tissues in the body have varying relaxation times, and these differences
contribute to the contrast observed in the final image.

Technically, during an MRI scan, complex data is acquired in the frequency
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domain (and stored in the so-called k-space matrix). The Fourier transform allows
this frequency-encoded spatial information to be converted into an interpretable
image [229]. Other reconstruction algorithms can be applied to the k-space matrix
to generate the final image [229]. Finally, MRI is a non-invasive technique that
provides an in-vivo structural view of the brain with excellent spatial resolution and
soft tissue contrast [104].

2.1.2 . Functional MRI (fMRI)
The primary motivation behind fMRI was to expand MRI capabilities to cap-

ture functional changes in the brain triggered by neuronal activity. It is thus a
specialized MRI technique. fMRI enables the visualization of brain areas activated
during the execution of a task (involving motor, sensory, or cognitive functions) or
during rest. Although it does not directly measure neuronal activity, it highlights
changes in blood flow associated with this activity [116]. Its principle is based on
the Blood Oxygenation Level Dependent (BOLD) method, which represents vari-
ations in Cerebral Blood Volume (CBV). When cerebral activation occurs, there
is a significant local increase in cerebral blood flow and an increased oxygen con-
sumption, although proportionally less (neurovascular coupling). This results in an
excess of oxyhemoglobin (Hb02) (oxygenated form of hemoglobin) in the venous
capillaries of the activated area, leading to a relative decrease in deoxyhemoglobin
(Hb) concentration (cf. Fig. 2.2). Deoxyhemoglobin exhibits paramagnetic prop-
erties, possessing a higher magnetic susceptibility compared to the diamagnetic
oxyhemoglobin. This paramagnetic nature typically leads to a signal decrease due
to magnetic susceptibility effects.

Figure 2.2: Principle of the BOLD effect. Adapted from [116]

Consequently, the reduction in deoxyhemoglobin concentration induces a mod-
est signal increase in the activated region in T2*-weighted sequences, attributable
to the prolonged T2* in blood vessels. As illustrated in Fig. 2.3, the BOLD signal
(depicted in blue) doesn’t exhibit an instantaneous increase and doesn’t promptly
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return to the baseline once the stimulus concludes (depicted in red). Due to the
relatively gradual changes in blood flow evolving over several seconds, the BOLD
signal provides a blurred and delayed representation of the original neural signal.
The Hemodynamic Response Function (HRF) can be conceptualized as the ideal,
noiseless reaction to an infinitesimally brief stimulus. The HRF is a critical com-
ponent of fMRI data analysis because it represents the relationship between neural
activity and the resulting hemodynamic response. The shape and timing of the
HRF can vary between brain regions and individuals and can be influenced by fac-
tors such as age, health and cognitive state. However, for a given analysis, the
HRF is often fixed. It extends over a period of 10 to 15 seconds, gradually rising,
peaking at 4 to 6 seconds, and subsequently declining.

Neurovascular coupling (NVC)

Process by which the supply of oxygen and nutrients is adjusted to neuronal activity through the
regulation of blood flow.

Paramagnetism

Type of magnetism of a material medium which is not magnetized in the absence of a magnetic
field, but which acquires, under the effect of such a field, a magnetization oriented in the same
direction as the field.

Diamagnetism

Behavior of materials which, when subjected to a magnetic field, creates a very weak magne-
tization opposite to the external field, and therefore generates a magnetic field opposite to the
external field.

The signal enhancement observed in activated areas is minimal (around 2 to
5%), necessitating many measurements. The "BOLD contrast" amplifies with
the B0 magnetic field’s intensity, as well as the SNR, spatial resolution, scanning
efficiency and susceptibility artifacts. The most widely used sequence is Echo
Planar Imaging (EPI). EPI allows for whole-brain coverage with relatively short
acquisition times, making it well-suited for studying dynamic brain processes such
as task-evoked activations and resting-state networks.

2.1.3 . fMRI parameters

An MRI sequence is a set of excitation pulses whose parameters (TE, TR)
are adjusted to obtain images with a given contrast (T1, T2, T2*). For fMRI,
the slight transient increase in BOLD signal can be detected in T2* weighting. A
description of all fMRI parameters is beyond the scope of this thesis, but a quick
overview of the main parameters used is given here.

The fundamental parameter for time resolution, known as the sampling time,
is denoted as Repetition Time (TR). TR determines how frequently a specific brain
slice is stimulated and permitted to lose its magnetization. TRs can range from
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Figure 2.3: Visualization of time series data in BOLD fMRI for an active voxel and rep-
resentation of a signal used for modeling the response. The BOLD signal from an active
voxel is depicted in blue, alongside the stimulus time series in red. From [195]

very short intervals (e.g., 500 ms) to much longer durations (up to 3 s). Changes in
the blood-flow and vascular systems integrate responses to neuronal activity over
time. Since this response represents a smooth continuous function, employing
ever-faster TRs doesn’t provide additional benefits; it merely yields more points
on the response curve, which can be obtained through simple linear interpolation
anyway.

The Echo Time (TE) is the time interval between excitation and the occurrence
of the MRI signal.

T2 relaxation is associated with the presence of "molecular" origin field inhomo-
geneities (small local magnetic fields that overlap with B0, causing the dephasing
of protons or spins), responsible for the "irreversible" decay of transverse magne-
tization of the Nuclear Magnetic Resonance (NMR) signal (Free Induction Decay
(FID)). If the magnetic field B0 of the magnet were perfectly homogeneous, we
would observe a signal decay according to a decreasing exponential in T2. In real-
ity, on a macroscopic scale, the magnetic field B0 of the magnet can be considered
fairly homogeneous, but on a microscopic scale, it is not: these inhomogeneities
in the B0 field of "instrumental" or "inherent" origin are constant and lead to
further dephasing of spins. Thus, the observed FID signal is linked both to the
inhomogeneities of the B0 field of "molecular" origin (T2), to which the inherent
(constant) inhomogeneities of the external magnetic field B0 are added; the sym-
bol T2* is used to represent the combination of these two effects (cf. Fig 2.4).
Therefore, the FID signal decreases more rapidly than expected according to an
exponential in T2* (and not in T2) [116].

Free Induction Decay (FID)

Observable NMR signal generated by non-equilibrium nuclear spin magnetization precessing about
the magnetic field (conventionally along z).

2.1.4 . Contrast agents in fMRI
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Figure 2.4: T2* principle. Adapted from [116]

Exogenous contrast agents are artificial substances administered, usually in-
travenously, to modify the contrast of vessels and organs. MRI contrast agents
are not directly visible. The shortening of their T1 and/or T2 relaxation times on
nearby hydrogen nuclei is responsible for the contrast modification [100]. We can
distinguish two main classes of contrast agents: if the contrast agent shortens the
T1 time (paramagnetic contrast agents), a T1-weighted hypersignal is observed.
If it shortens T2 (super-paramagnetic contrast agents), on the other hand, we’ll
see a reduction in T2 and T2*-weighted signal. For the fMRI signal, if contrast
agents are used then these are the ones. These are superparamagnetic ferrite par-
ticles (Superparamagnetic Iron Oxide (SPIO) and Ultrasmall Superparamagnetic
Iron Oxide (USPIO)) [100].

These nanoparticles are accepted for punctual diagnostic use, the toxicity of
the iron they contain being considered negligible as it is eliminated via the normal
endogenous iron cycle. They are mainly used in humans as contrast agents to
image vascular lesions, tumors and lymph nodes [241].

Monocrystalline Iron Oxide Nanoparticles (MION) are a subset of USPIO
(10–30 nm diameter). In addition to their use in humans for specific images,
MION have been utilized in anesthetized rodents to amplify fMRI sensitivity and
investigate the CBV physiology in connection with the BOLD signal following neu-
ronal activation. Leite et al. [137] showed the benefits of employing an exogenous
agent for repetitive neuroimaging in awake, nonhuman primates using a clinical
3 Tesla scanner. A MION solution was administered in two macaque monkeys.
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Figure 2.5: Alterations in relaxation rates for BOLD (depicted in black) andMION (depicted
in red) contrasts, alongwith their respective linearmodel fits, are illustrated over two cycles
of 60 seconds of stimulus (indicated by gray shaded intervals) followed by 60 seconds of
baseline. From [137]

No adverse behavioral effects attributable to the contrast agent were observed in
either monkey. In comparison to BOLD imaging at 3 Tesla, MION enhanced func-
tional sensitivity by an average factor of 3 across the entire brain for a stimulus of
prolonged duration (cf. Fig. 2.5). Overall, the contrast agent yielded a significant
enhancement in functional brain imaging outcomes in awake, behaving primates at
this field strength.

2.1.5 . Resting-state fMRI

The inception of Resting-State fMRI (RS-fMRI) can be traced back to the
research conducted by Biswal et al. [20], where they showcased highly correlated
low-frequency (<0.1 Hz) variations in BOLD signal between sensorimotor and sup-
plementary motor cortices on both sides in individuals at rest. They also observed
synchronous fluctuations in the auditory and visual systems, identifying these pat-
terns as manifestations of the brain’s functional connectivity. RS-fMRI resembles
conventional task-fMRI but doesn’t necessitate subjects to engage in a task or
respond to stimuli. Subjects simply recline in the scanner for 5-10 minutes, either
with their eyes closed or fixed on a point, while comprehensive whole-brain BOLD
data is collected. The task-free nature of RS-fMRI allows it to be applied to di-
verse subjects, including infants, children, individuals with neurological disorders,
patients under anesthesia, and even animals.

RS-fMRI has led to the identification of at least 20 distinct patterns of brain
connections known as Resting State Network (RSN)s. Among the most notable
are the default mode network (most active at rest, associated with introspection
and mind wandering), networks for visual and auditory processing, executive con-
trol, dorsal attention, and salience (identification of unusual/remarkable events)
(cf. Fig. 2.6). These networks have yielded valuable insights into the cognitive
organization of the brain in both health and disease.
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Figure 2.6: Example of resting-state networks in healthy controls (N = 10) during the typ-
ical wakeful resting state, utilizing Independent Component Analysis. To illustrate, group-
level spatial maps (z values) are superimposed on a structural T1 magnetic resonance
template, where x, y, and z values denote the Montreal Neurological Institute coordinates
of the depicted sections. From [96]

2.1.6 . Relation with neuronal activity
The BOLD signal often corresponds relatively closely to the Local Field Po-

tential (LFP), the electrical field potential surrounding a group of cells. In many
cases, neuronal discharges, the local potential and the BOLD signal are closely
correlated [147, 178].

2.1.7 . Benefits, drawbacks and comparison
MRI has the advantage of being non-invasive and painless. It has a relatively

high spatial resolution (the typical fMRI voxel size is 1.5-4 mm or even less with
higher field magnets) [83]. On the other hand, the acquisition time is somewhat
long (between 20 and 40 minutes) and unpleasant due to the repetitive noise in-
side the device and the cramped conditions. Any ferromagnetic object in the body
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is also potentially dangerous (prosthetic devices, pacemakers, metal splinters, es-
pecially intraocular ones, projectiles (bullets, shell fragments), so there are a few
contraindications. The "missile" effect of extracorporeal metal objects attracted
at high speed into the magnet is also potentially very dangerous. A significant
limitation of fMRI lies in its modest temporal resolution. The temporal resolution
of fMRI is constrained by the hemodynamic response time, which is considerably
slower than the underlying neural processes, resulting in substantial blurring of
temporal information [83]. Furthermore, fMRI is dependent on neurovascular cou-
pling, and therefore provides indirect information on neuronal activity, which can
sometimes complicate the interpretation of results obtained in the case of patholo-
gies [87]. Finally, its primary drawbacks both for preclinical and clinical imaging
are its portability, machine costs, maintenance and accessibility [57].

Is the grass greener elsewhere?

Figure 2.7: Main brain functional imaging technique resolutions. From [57]

Positron emission tomography (PET) stands as an additional functional imag-
ing method employing injected radioactive and biologically active tracers. This
approach allows the visualization of brain molecular processes, providing insight
into the consumption of glucose associated with brain metabolism. PET calculates
a 3D reconstruction of the concentration of positron-emitting radionuclides from
the pairs of indirectly emitted gamma rays [57]. EEG and Magentoencephalogra-
phy (MEG) are two other non-invasive electromagnetic techniques that measure
electric potential and magnetic field respectively [260] with unrivalled temporal
resolution.

PET scans provide relatively similar information to fMRI in terms of brain map-
ping, but at the cost of more pronounced irradiation and invasiveness. Spatial and
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temporal resolution are also reduce (cf. Fig. 2.7). MEG and EEG have difficulty
highlighting sources of activity located deep in the brain. Spatial resolution is also
poor (cf. Fig. 2.7).

Combining these hemodynamic and electromagnetic measurements therefore
represents a solution for studying brain activations with high spatial and temporal
resolution.

2.2 . Datasets

This study uses two previously acquired RS-fMRI datasets: the anesthesia
dataset [14, 245] and the DBS dataset [234]. The data were acquired for a previous
project with the goal of discovering a new signature of anesthesia-induced loss of
consciousness and consciousness restoration. In the following work, we propose a
retrospective analysis of these data. In this study, we strive to use the same data
without additional experiments, to maximize their use, and to shed new light on
them, while being aware of the ethical issues associated with the data acquisition
in animals, and even more so in NHP.
All procedures were conducted in accordance with the European convention for
animal care (86-406) and the National Institutes of Health’s Guide for the Care
and Use of Laboratory Animals. Animal studies were approved by the Institutional
Ethical Committee (CETEA protocols #10-003 #12-086 #12-086 and #16-040)
(for details of the anesthesia protocol, see [245, 234]).

2.2.1 . Anesthesia dataset
RS-fMRI data were collected from rhesus macaques either in the awake state

or under anesthesia (deep ketamine, moderate/deep propofol, or moderate/deep
sevoflurane). Two different levels of anesthesia were considered, either moderate
sedation or deep sedation equivalent to general anesthesia. Three monkeys were
scanned for each arousal state. 156 RS-fMRI runs of 500 volumes each were
acquired on a 3T scanner with a repetition time of 2400 ms. Study design is
summarized in Figure 2.8.

Figure 2.8: Experimental design anesthesia dataset.
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Animals

Acquisitions involved five rhesus macaques (Macaca mulatta), comprising one male
(designated as monkey J) and four females (monkeys A, K, Ki, and R). The mon-
keys, weighing between 5 to 8 kg and aged 8 to 12 years, were distributed across
three arousal states: awake (monkeys A, K, and J), propofol anesthesia (monkeys
K, R, and J), ketamine anesthesia (monkeys K, R, and Ki), and sevoflurane anes-
thesia (monkeys Ki, R, and J) [245]. It is important to note that NHP studies
often involve a limited number of animals.

Awake protocol

For the awake condition, monkeys were implanted with a magnetic resonance–compatible
headpost and trained to sit in the sphinx position in a primate chair [243]. Mon-
keys sat in the dark inside the MRI scanner without any task [14, 245]. The eye
position was monitored.

Anesthesia protocol

Monkeys underwent scans in an awake resting state and under various levels and
types of sedation, including ketamine [244], propofol [14, 244], or sevoflurane anes-
thesia [245]. Anesthesia levels were determined using the monkey sedation scale,
considering spontaneous movements, responses to external stimuli, and continuous
EEG monitoring [244] at the beginning and the end of the scanning session and
continuous EEG monitoring [244] (cf. Appendix 1). Monkeys in an awake state
responded positively to all stimuli. Under ketamine, deep propofol anesthesia, and
deep sevoflurane anesthesia, monkeys ceased responding to stimuli, reaching a
general anesthesia state.

Monkeys (K, R, and Ki) undergoing deep ketamine anesthesia [244] were ad-
ministered an intramuscular ketamine injection (20 mg/kg) for anesthesia induc-
tion. This was followed by a continuous intravenous infusion of ketamine (15 to 16
mg · kg–1 · h–1) to maintain anesthesia. Atropine (0.02 mg/kg intramuscularly)
was administered 10 minutes before induction to reduce salivary and bronchial se-
cretions. For propofol anesthesia, monkeys (K, R, and J) were scanned during both
moderate propofol sedation and deep propofol anesthesia (equivalent to general
anesthesia) [14]. Monkeys were trained to receive an intravenous propofol bolus (5
to 7.5 mg/kg) for anesthesia induction. Induction was followed by target-controlled
infusion of propofol (moderate propofol sedation, 3.7 to 4.0 µg/ml; deep propofol
anesthesia, 5.6 to 7.2 µg/ml). For sevoflurane anesthesia, monkeys (Ki, R, and J)
underwent scans during both moderate and deep sevoflurane anesthesia. Monkeys
received an intramuscular ketamine injection (20 mg/kg) for anesthesia induction,
followed by sevoflurane anesthesia (moderate sevoflurane anesthesia, deep sevoflu-
rane anesthesia, sevoflurane inspiratory/expiratory, 4.4/4.0 volume percent). At
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least 80 minutes were waited before initiating sevoflurane anesthesia scanning ses-
sions to allow for a washout of the initial ketamine injection [245].

To mitigate potential motion-related artifacts during magnetic resonance imag-
ing, a muscle-blocking agent (cisatracurium, 0.15 mg/kg bolus intravenously, fol-
lowed by continuous intravenous infusion at a rate of 0.18 mg · kg–1 · h–1) was
coadministered during the ketamine and moderate propofol sedation sessions. In
all anesthesia experiments (ketamine, moderate and deep sevoflurane, moderate
and deep propofol anesthesia), monkeys were intubated and ventilated with spec-
ified parameters [14]. Physiological monitoring encompassed heart rate, nonin-
vasive blood pressure, oxygen saturation (SpO2), respiratory rate, end-tidal CO2
(EtCO2), and cutaneous temperature. Intravenous hydration comprised a mixture
of normal saline (0.9%) and 5% glucose (250 mL of normal saline with 100 mL
of 5% glucose) at a rate of 10 mL/kg/h. After each fMRI session, anesthesia was
stopped, and the animal was carefully monitored during recovery, eventually placed
in individual housing and observed until fully recovered from anesthesia. Animals
were positioned in a sphinx position, mechanically ventilated, and their physiologic
parameters were monitored.

fMRI data acquisition

The data were gathered between July 2011 and August 2016 [14, 245]. Monkeys
were scanned using a 3-Tesla horizontal scanner (Siemens Tim Trio, Germany)
with a single transmit-receiver surface coil customized for monkeys. Each func-
tional scan comprised gradient-echo planar whole-brain images (repetition time =
2,400 ms; echo time = 20 ms; 1.5-mm3 voxel size; 500 brain volumes per run).
Before each scanning session, a contrast agent, MION (Feraheme; 10 mg/kg,
intravenous), was injected into the monkey’s saphenous vein [14].

In total, 156 runs were acquired: 31 awake runs (monkey A, 4 runs; monkey
J, 18 runs; monkey K, 9 runs), 25 ketamine anesthesia runs (monkey K, 8 runs;
monkey Ki, 7 runs; monkey R, 10 runs), 25 moderate sevoflurane sedation runs
(monkey J, 5 runs; monkey Ki, 10 runs; monkey R, 10 runs), 20 deep sevoflurane
anesthesia runs (monkey J, 2 runs; monkey Ki, 8 runs; monkey R, 11 runs), 25
moderate propofol sedation runs (monkey J, 2 runs; monkey K, 10 runs; monkey
R, 12 runs), and 30 deep propofol anesthesia runs (monkey J, 8 runs; monkey K,
10 runs; monkey R, 12 runs) [245] (for summary cf. Table 2.1).

monkey awake moderate propofol deep propofol moderate sevoflurane deep sevoflurane ketamine

J 18 2 8 5 2 - 35
A 4 - - - - - 4
K 9 11 10 - - 8 38
Ki - - - 10 8 7 25
R - 12 12 10 10 10 54

31 25 30 25 20 25 156
Table 2.1: Description of the acquisition conditions across NHP.
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fMRI preprocessing

Functional images underwent reorientation, realignment, and rigid coregistration to
the anatomical template of the monkey Montreal Neurologic Institute (MNI) space
using the NeuroSpin Monkey (NSM) preprocessing [233, 243, 245]. Regression
was applied to eliminate the global signal from the images -addressing potential
confounding effects related to physiological changes (e.g., respiratory or cardiac
changes)- and movement parameters -resulting from rigid body correction for head
motion [73]. Voxel time series underwent filtering with lowpass (0.05-Hz cutoff)
and high-pass (0.0025-Hz cutoff) filters, along with a zero-phase fast-Fourier notch
filter (0.03 Hz) to eliminate an artifactual pure frequency present in all the data
[14, 245].

Global signal

Mean time course computed over all voxels within the brain [255]. Global signal regression (GSR)
is often used in RS-fMRI. The utilization of GSR has been identified as significantly enhancing
the functional specificity of resting-state correlation maps, mitigating the impact of motion on
functional connectivity estimates and being effective in eliminating global artifacts arising from
motion, cardiac activity, and respiratory activity [145].

2.2.2 . DBS dataset
RS-fMRI data were collected from rhesus macaques either in the awake state

or under anesthesia with a DBS electrode implanted. Three subjects were included
for the awake (non-DBS) experiments and two for the DBS experiments. Two
different levels of DBS (low 3V or high 5V) were applied during the entire run on
either the Central Thalamus (CT) or VentroLateral (VL) thalamic nucleus. We
aimed at stimulating the CT as a main DBS target and the VL as a control target
(cf. Figure 2.9). 199 resting-state runs of 500 brain volumes each were acquired
on a 3T scanner, with a TR of 1250 ms [234]. Study design is summarized in
Figure 2.9.

Animals

Five male rhesus macaques (Macaca mulatta), aged 9 to 17 years and weighing 7.5
to 9.1 kg, were involved in the study. Three monkeys (B, J, and Y) were included
for the awake (non-DBS) experiments, while two monkeys (N and T) were included
for the DBS experiments.

Awake protocol

In the awake experiments, monkeys B, J, and Y were implanted with an MR-
compatible headpost [14, 243]. Animals were conditioned to maintain a sphinx
position in a primate chair, securing their heads without engaging in any specific
task. Eye movements were tracked. [14, 243, 245, 234]. To protect against noise,
protective ear caps were inserted into the monkeys’ external auditory canals, and
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Figure 2.9: Experimental design DBS dataset.

a reward pump was introduced into the mouth for positive reinforcement. The
experimental setup involved alternating between periods with no fixation task and
a fixation task, where the monkeys were required to focus continuously on a red
square (0.35 x 0.35°) within a 2 x 2° window on a black screen. Fluid reward was
linked to fixation performance and regularly delivered during passive acquisitions.
This strategy maintained the monkeys’ motivation at a high level, but only runs
without a task were included in the analysis to avoid potential visual activations.
Experiments were concluded at the first sign of frustration or a decrease in per-
formance, and the monkeys were returned to their housing cages with additional
positive reinforcement in the form of fruits and vegetables.

Anesthesia protocol

Anesthesia initiation involved an intramuscular injection of ketamine (10 mg/kg)
and dexmedetomidine (20 µg/kg). Maintenance was achieved through a target-
controlled infusion (TCI) of propofol (monkey T: TCI, 4.6 to 4.8 µg/ml; monkey
N: TCI, 4.0 to 4.2 µg/ml) (80). A waiting period of at least 80 minutes after
the initial ketamine induction was observed to allow for the washout period before
acquiring images under pure propofol sedation.

Monkeys underwent intubation and mechanical ventilation. Physiological pa-
rameters, including heart rate, noninvasive blood pressure, oxygen saturation, res-
piratory rate, end-tidal carbon dioxide, and cutaneous temperature, were contin-
uously monitored. To prevent artifacts, a muscle-blocking agent (cisatracurium,
0.15 mg/kg, bolus i.v., followed by continuous intravenous infusion at a rate of
0.18 mg/kg per hour) was administered during all anesthesia fMRI sessions.

The level of sedation was determined through a combination of clinical scoring
and continuous EEG, utilizing an MR-compatible EEG system that included a
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custom-built 13-channel EEG cap (EasyCap), an amplifier, and the Vision Recorder
software. Our target was a deep sedation level (general anesthesia), characterized
by the complete absence of movements and responses to various stimuli, diffuse
delta waves, waves of low amplitude, and anterior alpha waves [234].

Surgical procedures and electrode location

DBS electrode implantation Monkeys N and T underwent implantation with
a clinical MRI-compatible DBS electrode [234]. The DBS lead featured four ac-
tive contacts for electrical stimulation (1.5-mm contact length, 0.5-mm spacing,
and 1.27-mm diameter). Stereotaxic surgery targeting the right Centro-Median
(CM) thalamus was conducted, guided by rhesus macaque atlases [185, 207] and
preoperative and intraoperative anatomical MRI (Magnetization Prepared-Rapid
Gradient Echo (MPRAGE), T1-weighted, TR = 2200 ms, Inversion Time (TI) =
900 ms, 0.80-mm isotropic voxel size, sagittal orientation). The trajectory was vir-
tually simulated using the neuronavigation module (BrainSight, Rogue, Canada) to
anticipate implantation and visualize blood vessels or sensitive cerebral structures
to avoid. In macaque monkeys, the CM thalamus is a diamond-shaped structure
of around 9 x 6 x 5 millimeters (about half the size of a human). The extracranial
part of the DBS lead was accommodated using a homemade three-dimensional
(3D) printed MRI-compatible chamber. A waiting period of at least 20 days after
implantation was observed before commencing the DBS-fMRI experiments [234].
Anatomical localization of the DBS lead Two methods were employed to en-
sure the anatomical localization of the DBS lead and the DBS contacts [234].
Firstly, a reconstruction method based on in vivo brain imaging was utilized. Sec-
ondly, a postmortem brain histology study was conducted in one of the implanted
monkeys. The volume of activated tissue for all DBS conditions was simulated
using the modeling module available in the Lead-DBS toolbox, and the activated
thalamic nuclei (minimum 40% of the whole size) for each DBS condition were
reported. All approaches led to a consistent localization of the four distinct stim-
ulating DBS lead contacts (referenced as contacts 0, 1, 2, and 3). For monkey N,
contact 0 was in the subthalamic nucleus, contact 1 in the zona incerta, contact 2
in the CM nucleus, and contact 3 in the VL. For monkey T, contact 0 was in the
ventral posterior nucleus of the thalamus, contact 1 in the CM, contact 2 in the
centrolateral nucleus of the thalamus, and contact 3 in the VL. During the DBS
sessions, we stimulated the CT (contact 2 in monkey N and contact 1 in monkey
T) or the VL (contact 3 in both monkeys) (cf. Figure 2.10).

Electrical stimulation protocol for the DBS experiments

For the DBS experiments, monkeys were anesthetized as detailed previously. Elec-
trical stimulation was independently administered to each of the four leads (0, 1,
2, and 3) of the clinical DBS electrode. The DBS electrode was connected to an
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Figure 2.10: Anatomical localization of the DBS lead and active contacts. Coronal section
of an anatomical MRI. Zoomed-in view of the thalamic nuclei as segmented with the CIVM
atlas [30]. DBS was delivered to either the CT (star label) or the ventral lateral thalamus
(VL) (square label). 1, mediodorsal nucleus, central part; 2, mediodorsal nucleus, lateral
part; 3, ventral lateral nucleus, lateral part; 4, ventral posterolateral nucleus; 5, lateral
dorsal nucleus, superficial part; 6, ventral anterior nucleus, lateral part; 7, intermediodor-
sal nucleus; 8, mediodorsal nucleus, medial part; 9, ventral posteromedial nucleus; 10,
CM nucleus, lateral part; 11, CM nucleus, medial part; 12, ventral lateral nucleus, medial
part; 13, centrolateral nucleus; 14, mediodorsal nucleus, dorsal part. Adapted from [234].

external stimulator, and all parameters were adjusted to fixed values of frequency
(f = 130.208 Hz, T = 7.68 ms), waveform (monopolar signal), and pulse width
(monkey N, w = 320 µs; monkey T, w = 140 µs). The absolute voltage amplitude
was set to 3 V ("low" DBS) or 5 V ("high" DBS).

Behavioral assessment

A clinical arousal scale, adapted from [244], was employed to characterize monkey
behavior in the awake state, under anesthesia, and during DBS (low CT-DBS, high
CT-DBS, low VL-DBS, and high VL-DBS). This scale is based on the exploration
of the surrounding world (0, absence; 1, small search for external clues; 2, total
investigation of the environment, like head orientation to a sound), spontaneous
movements (0, absence; 1, small torso and/or limb movement; 2, large torso
and/or limb movement), shaking/prodding (0, nothing; 1, small body movement;
2, large body movement), toe pinch (0, nothing; 1, body movement or eye blinking
or cardiac rate change; 2, body movement and eye blinking or eye opening and
cardiac rate change), eye opening (0, nothing; 1, small blinks or eye movements; 2,
full eye opening), and corneal reflex (0, absent; 1, present). Behavioral assessment
was conducted outside the scanner in the awake state, under anesthesia, and under
each DBS condition when the animal was not paralyzed [234]. Notably, only the
stimulation of the CT could modulate arousal in the two anesthetized monkeys
(Figure 2.11).
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Figure 2.11: Clinical arousal scale in anesthetized monkeys, as a function of the electrode
location and the level of stimulation (low-voltage versus high-voltage DBS). Adapted from
[234].

fMRI data acquisition

The rhesus macaques underwent imaging on a 3-Tesla horizontal scanner (Siemens
Prisma Fit, Erlanger, Germany) using a specialized eight-channel phased-array sur-
face coil (KU Leuven, Belgium). The MRI sequence parameters for resting-state
experiments were as follows: EPI, TR = 1250 ms, echo time (TE) = 14.20 ms,
and a voxel size of 1.25 mm isotropic, with 500 brain volumes per run. No contrast
agent was used.

The RS-fMRI experiments were conducted in either the awake condition or
under anesthesia, with or without low or high DBS throughout the entire run
targeting either the CT or VL thalamic nuclei. DBS initiation occurred a few
seconds prior to the commencement of the fMRI sequence and ceased immediately
after the conclusion of the MRI sequence. In total, 199 runs were acquired: 47
awake runs (monkey B, 18 runs; monkey J, 13 runs; monkey K, 16 runs), 20 DBS-
3V-control runs (monkey T only), 20 DBS-5V-control runs (monkey T only), 38
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anesthesia (monkey N, 16 runs; monkey T, 22 runs), 36 DBS-3V-CT (monkey N,
18 runs; monkey T, 18 runs), 38 DBS-5V-CT (monkey N, 17 runs; monkey T, 21
runs) [234] (for summary cf. Table 2.2).

monkey awake DBS-3V-control DBS-5V-control anesthesia DBS-3V-CT DBS-5V-CT

J 13 - - - - - 13
B 18 - - - - - 18
K 16 - - - - - 16
T - 20 20 22 18 21 101
N - - - 16 18 17 51

47 20 20 38 36 38 199
Table 2.2: Description of the acquisition conditions across NHP.

fMRI preprocessing

The preprocessing of images was carried out using Pypreclin [233]. Functional
images were corrected for slice timing and B0 inhomogeneities, reoriented, realigned
to T1 of the session, resampled (1.0 mm isotropic), masked, and smoothed (3.0-
mm Gaussian kernel). Anatomical images were corrected for B1 inhomogeneities,
normalized to the anatomical MNI macaque brain template, and masked. As
previous dataset, the voxel time series underwent filtering with lowpass (0.05-Hz
cutoff) and high-pass (0.0025-Hz cutoff) filters, along with a zero-phase fast-
Fourier notch filter (0.03 Hz) to eliminate an artifactual pure frequency present in
all the data.

2.2.3 . External resources: ROI template & reference anatomical
connectivity

ROI template were sourced from the CoCoMac2.0 [11] database, derived from
the F99 macaque standard cortical surface template co-registered to the MNI space
[14]. This parcellation consists of 82 cortical ROIs (41 per hemisphere; Appendix
2), including interhemispheric connections, with mirror-symmetrical representation
across hemispheres.

The reference anatomical connectivity matrix is a matrix displaying these 82
cortical regions of interest on the x-axis and y-axis. Each matrix cell signifies the
strength of the anatomical connection between any pair of cortical areas. If infor-
mation about the connectivity between two regions was unavailable in CoCoMac,
the connection strength was set to 0 [224]. The reference CoCoMac connectivity
matrix categorizes the strength of anatomical connections as weak, moderate, or
strong, denoted as 1, 2, and 3, respectively.

2.2.4 . Functional connectivity (FC)
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Figure 2.12: Static and dynamic FC. A) By correlating all pairs of ROIs over the entire
timeseries we get time-averaged (static) FC. The resulting FC can be illustrated as (ROI x
ROI) FC matrix or as FC map in the brain. B) With sliding window approaches, we can
estimate FC separately on portions (windows) of the timeseries. Adapted from [4].

Static FC

Let p be the fixed number of ROIs defined by the atlas (in our case p = 82 as
defined in the CoCoMac atlas). The feature matrix Cr, where r represents the run,
contains the averaged time series computed across all voxels within each ROI. From
each feature matrix Cr, a static Functional Connectivity (FC) matrix reflecting the
data empirical covariance structure is derived and will be analyzed afterwards (Fig.
2.12-A) [11].

Dynamic FC (dFC)

Empirical estimations of Dynamic Functional Connectivity (dFC) enable researchers
to investigate how the degree of interregional coupling changes over time. These
estimations serve as the foundation for empirical investigations into dFC. In their
simplest manifestation, such as time-resolved correlations, they offer insights into
the pathways through which static ("time-averaged") functional connectivity (FC)
manifests. Time-resolved estimations also facilitate detailed assessments of the
connection between FC and ongoing cognitive processes, as well as how aggregate
measures (e.g., FC variability) may correlate with phenotypic characteristics in both
health and disease [153].

Detailed methodology of the analysis of the dynamic RS-fMRI was previously
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described in the literature [7, 14, 245]. dFCs were derived from the sliding window
covariance matrix Cr,w, where r represents the run, and w the time window ranging
from 1 to W [7, 14]. Covariance matrices were computed from segmented time
series using a Hamming window with a width of 35 TR, sliding with 1 TR steps,
resulting in W = 464 windows per session [14]. The variance of each time series
was normalized, resulting in covariance matrices that corresponded to correlation
matrices [7]. To address potential information insufficiency in short time segments,
regularization was applied. A penalty on the L1 norm of the regularized matrix,
promoting sparsity (with a regularization parameter λ set to 0.1), was employed
following the graphical LASSO method by Friedman et al. (2008) [77].

This process yielded a 3D matrix Cr,w of size 82 × 82 × 464 for each run r,
which was Fisher transformed (Zr,w) before further analysis (Fig. 2.12-B).

Quality control (QC)

Anesthesia dataset Only a visual control quality was previously applied: no
spiking, ghosting or artifacts... For reasons of reproducibility, we have retained all
the data analyzed previously.

DBS dataset
Cleaning procedure
To ensure the data quality, we apply a manual cleaning procedure adapted from
[226]. For each run, this procedure consists of a visual inspection of the averaged
time series of each ROI, the z-scored FC matrix, and the dynamical FC matrix.
We keep runs with no row signal artifacts and FC matrices coherent with the av-
erage FCs across the population (Figure 2.13). Finally, on the 199 available runs,
186 runs pass the checks. They form 6 conditions: 41 awake, 32 DBS-off (stim-
off), 36 DBS-5V-CT (stim-on-5V), 35 DBS-3V-CT (stim-on-3V), 20 DBS-5V-VL
(stim-cont-on-5V), and 20 DBS-3V-VL (stim-cont-on-3V).

Detection electrode artifact
We also perform a semi-automatic detection of the cortical voxels affected by the
electrode artifact. We proceed with the anatomical MRI and the functional MRI
volumes. Since the voxels affected by the artifact are of relatively low intensity, we
apply intensity thresholding followed by a connected component analysis. We also
use the position of the electrode as prior information to generate a rough bounding
box composed of the superior-right part of the image. Finally, we intersect the
found artifactual voxels with the CoCoMac atlas [11].

The electrode artifact impacts few voxels. The electrode detection with the
proposed semi-automatic method (Fig. 2.14-A) highlights that 9 of the 41 cortical
ROIs of the right hemisphere are corrupted by electrode-related artifacts. Concern-
ing the ratio of voxels involved in each corrupted ROI across all runs, only one ROI
has a ratio greater than 10% (the ROI corresponding to the primary somatosensory
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(A) (B)
Figure 2.13: The control board of two runs is shown: run (A) shows no indices of ab-
normality so is kept after the post-processing step; run (B) shows abnormal time course,
z-scored FC matrix, and dynamical FC matrix and is eliminated.

cortex S1), the others having a ratio under 5% (Fig. 2.14-B). As proposed in [234],
we neglect this artifact in the rest of this study.

(A) (B)

Figure 2.14: A) Visualization of the detected electrode on the T1w image of one run, and B)
ratio of voxels across runs affected by the artifact for each ROI concerned by this artifact.

Coupling fMRI with EEG

Anesthesia dataset To assess the depth of anesthesia during ketamine, propo-
fol, and sevoflurane sessions, we employed scalp EEG with a magnetic resonance
imaging–compatible system and custom-built caps (EasyCap, 13 channels) [14].
The parameters were set as follows: sampling rate at 5,000 per channel, impedance
below 20 MΩ, and a band-pass filter of 0.01 Hz < f < 500 Hz during data collec-
tion. EEG gel (One Step EEG gel; Germany) was applied to ensure low impedances.
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EEG scalp recordings to verify the anesthesia level were obtained 10 minutes before
commencing MRI acquisition, performed outside the scanner room.

An online analysis through visual assessment of EEG traces was performed
[245]. The EEG traces were visually interpreted to establish anesthesia levels for
clinical sedation during ketamine, propofol, and sevoflurane anesthesia. For ke-
tamine, sedation levels were defined as follows [244, 245]: level 1, awake state,
characterized by posterior α waves (eyes closed) and anterior β waves; level 2, light
ketamine sedation, marked by the loss of α rhythm with a decrease in amplitude;
level 3, moderate ketamine sedation, featuring persistent rhythmic θ activity (4 to
6 Hz) with increasing amplitude and fast β activity (14 to 20 Hz) of low amplitude;
level 4, deep ketamine anesthesia, displaying intermittent polymorphic δ activity
(0.5 to 2 Hz) of large amplitude, superimposed by a β activity (14 to 20 Hz) of
low amplitude, an increase in γ power (30 to 100 Hz). For propofol, sedation
levels were defined as follows [14, 244, 245]: level 1, awake state, characterized
by posterior α waves (eyes closed) and anterior β waves; level 2, light propofol
sedation, marked by an increase in the amplitude of α waves and anterior diffu-
sion of α waves; level 3, moderate propofol sedation, featuring diffuse and wide α

waves, and anterior θ waves; level 4, deep propofol anesthesia (general anesthe-
sia), displaying diffuse delta waves, waves of low amplitude, and anterior α waves
(10 Hz); level 5, very deep sedation (deeper than the level of general anesthesia),
characterized by burst suppression. For sevoflurane, sedation levels were defined as
follows [245]: level 1, awake state, characterized by posterior α waves (eyes closed)
and anterior β waves; level 2, light sevoflurane sedation, marked by an increase in
frontal and central β waves (no fMRI data collected at this sedation level); level 3,
moderate sevoflurane sedation, featuring increased frontal delta, α, and β waves;
level 4, deep sevoflurane anesthesia (general anesthesia), displaying diffuse delta
waves and anterior α waves; level 5, very deep sedation (deeper than the level of
general anesthesia), characterized by burst suppression (no fMRI data collected at
this sedation level).

DBS dataset Scalp EEG data were obtained using an MR-compatible system
and custom-built caps (EasyCap, 13 channels). This EEG acquisition not only
facilitated the assessment of the sedation level but also served as an additional
means to control the delivery of electrical stimulation. EEG recordings spanned
the entire duration of the experiments, from the loss of animal consciousness to
the initiation of vigilance recovery, both outside and inside the MRI environment.

Key parameters were set as follows: a sampling rate of 5000 per channel, a
common reference electrode, impedance maintained at <20 megohms, and band-
pass filtering in the range of 0.01 Hz < f < 500 Hz during data collection. To
achieve low impedances, EEG gel (One Step EEG gel, Germany) was applied [14,
244, 245].

The correction of scanner artifacts was executed, employing a two-step process.
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Initially, EEG epochs affected by the MR scanner were averaged, and this average
template was then subtracted. For artifact detection, the gradient method and
automatic detection of scanner episodes were utilized. All available channels with
a signal were considered in the detection process (Fp1, Fp2, F3, F4, T3, T4, P3,
P4, O1, Oz, and O2). The artifact type was specified as continuous, indicating
detection on artifacts occurring consecutively without interruption, with a TR value
of 1250 ms (offset set to 10 ms). The gradient trigger was set to 200 µV/ms.
Baseline correction was computed over the entire artifact duration (0 to 200 ms).
Sliding average calculation was activated with 21 intervals used for the correction
template calculation. The correction was applied to the same channels mentioned
above.

Subsequent to the MR artifact cleaning, the signal underwent filtering between
1 Hz (IIR Butterworth high-pass zero-phase two-pass forward and reverse noncausal
filter, order 12—effective, after forward-backward) and 25 Hz (IIR Butterworth
lowpass zero-phase noncausal filter, order 16—effective, after forward-backward)
and was downsampled to a 250-Hz sampling rate. The data were then trimmed
from 15 s after the start of the stimulation until 15 s before the end of the scanning.
The remaining time series was divided into epochs of 0.8 s, with a random jitter
ranging from 0.55 to 0.85 s. For the cleaning of artifacted epochs or channels,
the Python package Autoreject [111] was employed with the number of channel
interpolations set to 1, 2, 4, or 8. An average EEG reference projection was
applied. All post-MR artifact removal preprocessing was conducted in Python
using the MNE-Python [111] and Autoreject packages.

To examine distinctions among the five conditions in this study (anesthesia
and 3 or 5 V of DBS in both CT and VL), we computed EEG markers that have
been previously identified for distinguishing between individuals with and without
disorders of consciousness [228, 66]. We focused on markers falling under the
category of spectral measures. These markers encompass the normalized spectral
power of delta (1 to 4 Hz), θ (4 to 8 Hz), and alpha (8 to 13 Hz) oscillatory
bands; the Signal Entropy (SE), a measure of signal predictability; and the Median
Power Frequency (MSF), representing the frequency dividing the power spectrum
into two equal areas. The computation of these markers was performed using the
NICE-tools package [66].

2.3 . Limits and associated challenges

The table 2.3 summarizes the different parameters of the data we use in the
rest of the manuscript. Due to their major differences in acquisition, pooling these
two datasets together is almost impossible. For this reason, the studies we have
carried out have focused on either dataset, taken separately.

2.3.1 . The limits of acquisition
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Name Data type Dataset Signal N TR (s) Preprocessing QC

static anesthesia static FC anesthesia MION 156 runs 2.4 NSM No
dynamic anesthesia dynamic FC anesthesia MION 72384 win 2.4 NSM No

static DBS static FC DBS BOLD 186 runs 1.25 pypreclin Yes
dynamic DBS dynamic FC DBS BOLD 86304 win 1.25 pypreclin Yes

Table 2.3: Summary of the datasets used in this work.

Contrast agent

One of the fundamental differences is whether or not the MION contrast agent is
used. In the first study, the signal enhancement provided by the contrast agent
was favored to reduce the number of sessions. Indeed, the use of MION improves
SNR. Nevertheless, this approach comes with several drawbacks [253]:

• the signal reflects alterations in blood volume [137] instead of the usual
BOLD response, making its translation to conventional human studies more
complex,

• the HRF is slightly slower [137, 189]

• it can accumulate in the brain leading to potential long-term health risks
[173]

In the second dataset (DBS), the choice was made not to use a contrast agent, in
order to approximate as closely as possible the experimental conditions in humans.
A larger dataset was acquired, yet this approach is costly and impractical, and it
poses unavoidable risks to subjects if general anesthetics are employed [253].

Small number of subjects

Both datasets were collected from five rhesus macaques, which is a small sample.
Despite the repeated number of sessions and the even greater number of data sets
obtained using the sliding windows method, the small number of individuals remains
a major limitation. This is a common limitation of NHP studies. We shall see that
these datasets remain highly sensitive to overfitting despite the precautions taken
for the analysis methods we propose. This raises concerns about the generalizability
of the results, particularly regarding the risk of overfitting.

Generative methods modeling brain dynamics can simulate new data to address
the data scarcity issue. Computational models provide a solution by generating
realistic data for augmentation during training. The approach we employed for
investigating dFC directly focuses on the observed BOLD signal without explic-
itly modeling the underlying neural activity. It is a data-driven method. Another
approach exists that aims to model the underlying neural fluctuations and inter-
actions giving rise to BOLD dFC. This perspective suggests that observed BOLD
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time series are generated by underlying nonlinear brain dynamics, which are then
corrupted by measurement noise. According to this view, activity in large-scale neu-
ral systems is inherently dynamic and exhibits complex phenomena such as partial
synchronization, multistable attractor landscapes, and edge-of-chaos behavior in-
dicative of criticality [44, 97, 55, 205, 254] (for review, see [153]). These dynamics
produce physiological time series with a highly nonlinear structure and can be for-
mally modeled by biophysically derived differential equations. By integrating these
equations with models of the observation process (e.g., neurovascular coupling),
it is feasible to simulate how these underlying dynamics would manifest in the
BOLD signal (i.e., after adding measurement noise). Exploratory computational
efforts involve refining the model structure and adjusting parameters to generate
synthetic BOLD data that mimics the dependency structure and dynamics seen in
empirical observations [54, 115, 61, 249]. Modern physical models, like the Hopf
model, can simulate fMRI activity across the entire brain by reproducing dynamics
resulting from mutual interactions among brain regions when coupled by structural
connectivity [128, 56]. These models effectively capture aspects of brain dynamics
observed in electrophysiology [74, 75], MEG [52], and fMRI [128, 56]. However,
model-based approaches must rely on strong assumptions about the processes un-
derlying observed BOLD data [55].

Sparsity of conditions

Moreover, the data are heterogeneous: not all conditions are represented for all
individuals (cf. tables 2.1 & 2.2). For instance, two subjects did not have an
fMRI scan in the awake state, and one had scans only in the awake state, not
under anesthesia, for the Anesthesia dataset. For the DBS dataset, due to the
implant constraint, monkeys scanned awake are not those scanned anesthetized
with or without DBS. Only one monkey has both control DBS and effective DBS
conditions.

To mitigate the risk of overfitting, we take great care when selecting data:
we use a train set and an independent test set with leave-one-subject-out for the
Anesthesia dataset. This forces us to work with one subject only. For the DBS
dataset, the heterogeneity of the conditions does not allow us to make this choice.
Each awake subject is then used once as a test while the k - 1 remaining awake
subjects form the training set.

2.3.2 . The limits of preprocessing

Confounding effects

What does the change in fMRI reflect? Rs-fMRI likely mirrors a spectrum of
conscious and unconscious cognitive processes, alongside inherent noncognitive
processes [153, 129]. However, distinguishing between the neural and physiologi-
cal factors associated with arousal and their resultant effects, such as alterations
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in head motion, heart rate, and respiration, is not straightforward. Hence, it is
important to exercise caution in considering them as artifacts.

Neuromodulators Neuromodulators can also affect neurovascular coupling
[153, 27, 134]. Consequently, it is crucial to ensure that the effects observed
in fMRI studies involving pharmacological manipulation are genuinely associated
with alterations in neural activity, rather than solely resulting from hemodynamic
changes [153].

Temperature Body temperature, particularly cortical temperature, influences
neurovascular coupling and consequently the BOLD signal in fMRI [23]. Induction
of anesthesia typically does not result in significant drops in body temperature in
older children and adults. However babies and young children experience significant
decreases in body temperature during this brief period. The size of the subjects
influences this; similarly, macaques also experience a drop in temperature during
anesthesia. To prevent heat loss in these subjects, it is essential to establish a
thermoneutral environment by increasing the temperature of the operating room,
positioning a heating lamp above the operating table, activating a heating mattress
(40°C) before bringing the subject into the operating room and before inducing
anesthesia [39]. Despite these precautions, temperature differences between the
awake and anesthetized states may persist.

Headmotion Head motion is considered one of the most influential confound-
ing factors affecting the estimation of BOLD functional connectivity [196, 246].
Several studies have shown that even minor head movements can lead to biased
estimates of static FC. Further research in this area is required to develop a more
comprehensive understanding of how various aspects of BOLD dFC are affected by
head motion and to devise effective preprocessing techniques [153].

Global signal

In terms of preprocessing, certain choices had been made prior to our study, which
we haven’t gone back on. However, these may have an influence on the results.
In particular, the global signal is regressed, which remains controversial in the
literature [145, 172, 248].

Electrode artefact

A semi-automatic artifact detection method was proposed, as described in section
2.2.4. We would certainly need to refine this electrode segmentation. Furthermore,
although we found that relatively few voxels were affected and decided to continue
with the original data, it would seem advisable not to average over the voxels
concerned when using this data in the future.
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Non-standardized NHP preprocessing

There isn’t a standardized approach for analyzing monkey fMRI data, particularly
in terms of preprocessing. The preprocessing of monkey fMRI data faces various
technical and experimental challenges specific to primate research, such as artifacts
caused by body movements or intracranial leads [233]. Preprocessing methods have
differed between the Anesthesia and DBS datasets due to issues with the previous
standard preprocessing method NSM, which failed to register BOLD images from
a monkey implanted with a DBS lead. The pypreclin pipeline [233] successfully
addressed this challenging task.

In particular, there are several differences between the two preprocessing meth-
ods (see [233] for a complete list). Pypreclin can reorient images regardless of the
monkey’s positioning during fMRI acquisition. Regarding normalization and B1
inhomogeneities correction, NSM preprocessing doesn’t utilize the monkey’s own
anatomical image but rather directly registers a selected template image (e.g.,
macaque MNI template) with the functional images. Automation and QC re-
porting also differ: NSM preprocessing is fully automated without the option for
manual initialization and lacks a quality check report, whereas pypreclin offers these
features [233].

To overcome both the lack of data and the heterogeneity of pre-processing,
initiatives have been launched to share primate MRI data. One example is the
Primate neuroimaging Data-Exchange (Prime-DE) open access platform, which
has been recently introduced to develop open resources for non-human primate
imaging [162].

2.3.3 . The limits of connectivity computation
Computing dynamic functional connectivity

Metric Functional brain connectivity, as detected through distant correlations in
fMRI signals, holds promise as a source of biomarkers for brain pathologies. How-
ever, there are several methods for calculating this connectivity, and the resulting
outcomes are not always consistent. The study by Dadi et al (2019) [49] compares
different types of functional connectivity between regions of interest: correlation,
partial correlation, and tangent space embedding. These connectivity coefficients
can distinguish between children and adults. Generally, tangent space embedding
outperforms standard correlations [49], although it was not the previous choice
made by the team, and this decision has not been revisited.

Sliding windows limitations Many variations in the approach are used to
estimate the pairwise correlations within a sliding window. For the different options,
the review by [153] lists most of the options available, including the type of window
used (square, tapered, or exponentially decaying), the flexibility of the window
(fixed or adaptive), as well as the length of the window.
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If a small window size is selected, the correlation coefficient will be calcu-
lated based on a limited number of data points, leading to increased sampling
variability. Consequently, shorter window lengths may produce signals indicating
dynamic changes in correlation across time, even if the FC remains static. This
issue becomes less pronounced as the window length increases, but longer windows
sacrifice sensitivity to transient correlation changes. Moreover, overlapping win-
dows can induce autocorrelation in the estimated dFC values, potentially resulting
in artificially smoothed changes in FC. However, recent research suggests that the
optimal window length to mitigate these concerns may be shorter than the rec-
ommended minimum of approximately 60 seconds. Hence, the choice of window
size can be viewed as a tunable filter that can be optimized based on the specific
research question of interest [153].

Another problem associated with sliding windows is overlapping. By construc-
tion, dFCs are highly correlated with each other, which can lead to a bias in the
analysis. Alternative methods for avoiding the overlapping induced by the sliding
windows method are proposed as the phase synchronization [82] to which we will
return in Chapter 4.1.2.

Computing structural connectivity

The structural connectivity matrix used is not derived from a tractography directly
performed on our data, but uses a previously defined parcellation, an average
parcellation. Moreover, it has weaknesses in the discrete way it quantifies the
strength of anatomical connections. It may not be perfectly reliable. An existing
continuous matrix could be used for more detailed work on the relationship between
brain structure and function. Luppi et al. [151], for example, use the recent
macaque connectome of [225], which combines diffusion MRI tractrography with
axonal tract-tracing studies.

In addition, the CoCoMac atlas comprises 82 uniquely cortical regions. They
are also functionally defined, which can be inconvenient for interpretation from
an anatomical point of view [232]. Including more regions and in particular deep
structures such as core areas of the ARAS (for instance, reticular formation, basal
forebrain, thalamus, striatum), seems important for the study of vigilance. Atlas,
such as the CIVM atlas [30], that was revised [234, 232] could be interesting.
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Motivations and aims of the thesis

We have described the brain as a mystical crystal ball, whose interior, from
which consciousness emerges, is obscure, wisps of smoke that escape us, slip
through our fingers. We have explored this consciousness, which we gain, lose
and recover. Once unreachable because of the jewel box that guarded it so well,
we have seen that neuroimaging makes the box less black, almost transparent. We
can now touch the object of our desire with our fingertips and see the brain in
action. Neuroimaging holds up a magic mirror, where we can observe the brain at
work, both at rest and in action.

Because it’s not always easy to read a crystal ball, we propose a number of
reading keys in the rest of this thesis. We seek to model states of consciousness
and their modulation. Simulation tools and the rise of machine learning (including
deep learning) are enabling us to vitrify consciousness, to model it in order to
understand it better. We aim to identify signatures of anesthesia-induced loss of
consciousness, as well as those of restoration of consciousness induced by DBS,
from fMRI signals. To do this, we are starting from the experimental data at our
disposal and working towards computational models of consciousness. In this way,
we hope to make sense of the signals sent back to us by this mysterious object,
and that this modeling will be the key to interpretation. The contributions of this
thesis can be seen as tools of interpretability.

Illustration adapted from Magritte’s La trahison des images. From PhD Days 2018 : de
l’autre côté du miroir, au delà de notre réalité ?

Understanding a story from the observation of a crystal ball is no easy task.
Before you start believing that I think I’m a witch, a crazy doctoral student turned
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Madame Irma, this idea is not confined to sorcery. Images don’t tell us everything;
they tell only partially, revealing sparingly. In 1929, Magritte painted a famous
picture of a pipe, accompanied by the caption "Ceci n’est pas une pipe" ("This
is not a pipe"). The title of this work, "La Trahison des images" (The betrayal
of images), leaves no room for doubt as to the painter’s intentions: an image,
however realistic, is only a representation and will never be identical to the object
itself.

However, unlike a pipe, which is easier to understand how it works by holding
it in our hands than by seeing it painted, when we study the brain, and more
specifically the brain in action, using neuroimaging techniques gives us many clues
as to how the brain works. Although the signals we acquire only partially represent
what the brain is and what it does, they remain informative but high-dimensional,
noisy and tangled, making them complex to interpret.

Illustration of Plato’s Allegory of the Cave. Author unknown.

Magritte, who made no secret of his interest in mystery, said: "Each thing
we see conceals something else. There is an interest in what is hidden and what
the visible does not show us". It’s also an idea described by Plato, years before
Magritte, in the cave allegory: men are chained and imprisoned in a cave. Blocked
in front of a wall, they can’t see the real sources of the shadows dancing on it.
Since these shadows are their only knowledge of the world, they believe they are
seeing reality when in fact, they are only seeing a distorted and partial projection
of it. To understand the real image of the world, we need access to the latent
variables that are inaccessible to the observer’s eyes. Seeking out this hidden in-
formation is essential to understanding how much of the data is informative about
brain function, and how much is not.

Can we identify and interpret latent variables in fMRI signals? To what ex-
tent does identifying these variables inform us about the modulation of states of
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consciousness? These questions lead to new ones: what characterizes a state of
consciousness? Is it a substrate that defines it, a set of regions or networks? Is it
a sequence of events, a spatio-temporal dynamic? Is it both?

We made several hypotheses:

• (i) Latent variables models can inform in an unsupervised way about cortical
networks specifically related to conscious information processing.

• (ii) Latent variables encode information about dynamics and transitions be-
tween states.

• (iii) The traditional categorical approach does not account for the continuum
of the dynamics of states of consciousness.

• (iv) The reduction of the observation space to a very low-dimension is suf-
ficient to separate the levels of consciousness.

This work has led to several contributions, which we present in the following three
chapters.

In Chapter 3, on the basis of hypothesis (i), we propose the identification of an
interpretable spatial signature of consciousness in the awake state or under anes-
thesia, using a method that highlights particular networks involved in conscious
access. In a translational approach, in order to study the restoration of conscious-
ness, we have replicated this analysis in NHPs awake or awakened by CT-DBS.
Our model puts forward, in an unsupervised manner, that both the anterior and
posterior cortex contribute to consciousness, which is still under debate, today, in
the community. It also highlights key regions of the global neuronal workspace, a
major theory of conscious access.

Because we believe that integrating the temporal aspect into these analyses is
crucial (hypothesis (ii)), in Chapter 4, we next propose to challenge the dFC meth-
ods traditionally employed. We apply a contrastive deep learning model to predict
brain patterns characteristic of states of consciousness. A preliminary experiment
shows that network predictions based on dFC enable the analysis of different tran-
sient brain states, with potential clinical implications for anesthesia monitoring and
diagnosing disorders of consciousness.

Finally, in Chapter 5, in order to test hypothesis (iii) and gain a better un-
derstanding of the characteristics of the dynamics of states of consciousness, we
depart from the traditional framework of subgroup classification of dynamic brain
states and propose a dimension-reduction method to capture the whole continuum.
We choose to reduce them to a small number of variables that can be interpreted
and explained. A virtual connection ablation experiment is used to test hypothesis
(iv).
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Part II

Seeing patterns, deciphering
messages: the spatial

signatures of consciousness
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3.1 . Introduction

"Tell me who your friends are, and I’ll tell you who you are". So, to define
consciousness at last, do we need to find its friends? Or rather, can we define
consciousness by identifying the network that characterizes it? Isn’t that what this
proverb is all about? We’re just a knot in the middle of the fabric formed by our
acquaintances, our family, our colleagues, our friends, hooked up to them by a
whole host of connections. And what if consciousness, too, could be defined in
this way, by the brain tissue that makes it up, by the links that are created between
different regions of interest, sometimes far apart? Theories clash and, as we saw
earlier, we can’t decide which is the network of consciousness.

RS-fMRI is a neuroimaging technique with undeniable advantages for non-
invasively studying fluctuations in brain activity. Although we are working here
in a pre-clinical setting, we feel it is important to emphasize the transposability
for clinical studies. Indeed, the resting state paradigm holds significant appeal
as it eliminates the necessity for a sophisticated experimental setup to adminis-
ter external stimuli and obviates the requirement for active patient participation.
Consequently, resting state protocols prove to be a suitable approach for study-
ing clinical populations where direct communication at the bedside is challenging,
such as individuals with disorders of consciousness [96]. Numerous studies utilizing
RS-fMRI have uncovered consistent patterns of long-distance interactions, termed
Resting State Network (RSN)s, across participants during rest. While the specific
origin and function of RSNs continue to be debated, their spatial patterns disclose
functionally relevant brain subsystems [67].

These cerebral networks have been compared in humans in normal and patho-
logical conditions but also in different species of NHP [80]. Homologies of several
networks have been found as the executive or the Default Mode Network (DMN)
[80]. The majority of studies have focused on network differences during anesthesia-
induced loss of consciousness [107, 105, 80, 101] or in patients with disorders of
consciousness [96]. A few studies have also looked at the effect of Subthalamic
Nucleus DBS (STN-DBS) neuromodulation in terms of networks in Parkinson’s
disease [102, 67] or the intrinsic reconfiguration of brain activity networks after
active tDCS. With regard to the effects of CT-DBS, some studies have suggested
that cortical and subcortical networks are affected, but their analysis is based on
seed-based correlations only [140, 234]. To the best of our knowledge, no study
to date has focused on how CT-DBS affects brain activity at the level of RSNs in
the context of restoring consciousness. This could help identify possible mecha-
nisms of action and permit novel therapeutic strategies targeted at specific network
patterns [67]. To help bridge this gap, we ask if we can identify a dimension of
consciousness that is reflected in different RSN patterns. Is this reproducible on
a dataset with neuromodulation? Can we identify potential targets for DBS and
sites where DBS is not effective? We make the following assumptions:
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1. Networks activities can predict the state of consciousness

2. Neuromodulation reconfigures networks between the unconscious and
awake states.

3. Some networks inform us about the cortical impact of neuromodulation

To answer these questions, in this part II, we’ll first look at the literature
on methods for identifying stationary brain networks. Then, we will present the
method and results of our two conference papers "Interpretable Signature of Con-
sciousness in Resting-State Functional Network Brain Activity" (MICCAI 2022)
[89] an extension of which is available as a preprint ("Revisiting the standard for
modeling functional brain network activity: application to consciousness" [90]) and
"Exploration of the Neural Correlates of Consciousness Using Linear Latent Model"
(ISBI 2023) [84]. In these studies, we utilize the previously collected RS-fMRI data
in NHP to reveal new insights on interpretable, spatial signatures of conscious-
ness. We propose a computational framework to find resting-state functional brain
networks from FC, using the Modular Hierarchical Analysis (MHA) method, a lin-
ear latent variable model. In particular, we focus on how these networks break
down according to the conditions of acquisition and how they can be interpreted,
specifically in the context of the theoretical framework of consciousness, GNW.
The method we propose here approaches networks in a static way, i.e. we don’t
consider the dynamic variations that occur during an acquisition. The aim is to
get a global view of the underlying networks in our data and to study whether this
organization informs us about the modulation of consciousness. The interest of
comparing the results of the two retrospective datasets considered is to reveal a
global signature of the modulation of consciousness, from loss to recovery, and in
particular, to compare the networks that stand out and are involved in separating
the levels of consciousness.

3.2 . Related works to identify stationary networks

Analyzing RS-fMRI data can give insights into the function of specific brain re-
gions or the functional connectivity between different regions. Analytic approaches
in this domain generally fall into two categories: functional segregation and func-
tional integration. Functional segregation emphasizes the local function of specific
brain regions and is commonly utilized for brain mapping purposes. On the other
hand, functional integration focuses on the functional relationships or connectivity
between different brain areas, treating the brain as an integrated network. While
functional segregation techniques analyze RS-fMRI activity, functional integration
methods primarily explore RS-fMRI connectivity [154].

However, the trend in neuroscience has shifted toward considering the brain
as an integrated network rather than isolated regions. Consequently, enthusiasm
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for standalone functional segregation methods has gradually diminished in favor of
functional integration methods [154].

Functional integration, specifically, delves into the functional connectivity be-
tween distinct brain regions, measuring correlations in activity between spatially
remote areas. It assesses the degree of synchrony in the BOLD time series across
different brain regions. It’s important to note that functional connectivity does
not always indicate a direct causal influence between regions; it could result from
direct anatomical connections, indirect paths via mediating regions, or may lack a
known anatomical correlation. The interpretation of functional connectivity anal-
yses should be cautiously approached due to the potential influence of common
sources of input signals [195].

Common computational methods employed for assessing functional integration
features include ROI-based functional connectivity analysis, Independent Compo-
nent Analysis (ICA), Dictionary Learning (DL), and graph analysis [154]. The
first method, a seed correlation analysis, aims to identify the correlates of spe-
cific regions at rest. However, as our focus is on gaining a global perspective
of the detectable networks involved in consciousness, the subsequent sections will
concentrate on the latter three methods.

3.2.1 . Multivariate decomposition

There are a number of ways to decompose a matrix into separate components,
which can be used to identify coherently active networks from fMRI data. In the
matrix algebra language, these are known as matrix factorization methods. Each of
these methods assumes that the data are composed of some underlying components
mixed together to form the observed data. The main differences between methods
center on how the underlying components are related to one another and how they
are estimated from the data [195].

Independent component analysis (ICA)

Method ICA was developed to address the challenge of detecting unknown sig-
nals in a dataset, commonly referred to as the blind source separation problem.
This problem is often illustrated using the analogy of a cocktail party [108]. Con-
sider a scenario with microphones positioned throughout a room where numerous
people are engaged in conversation. The blind source separation problem involves
isolating the speech stream of each individual solely based on the recordings from
these microphones. The concept assumes that the recording from each microphone
reflects a mixture of all speakers (weighted by factors like their distance from the
microphone and head direction). The goal is to separate the sources from the
recordings, assuming that both the speakers and microphones remain stationary
during the recording, making the mixing process consistent throughout.

Formally, the ICA model is defined as x = As, where x is the signal under
decomposition, s represents a set of unknown sources or components, and A is
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the unknown mixing matrix combining the components to produce the observed
signal. Since both A and s are unknown, certain assumptions must be made to find
a unique solution. Generally, assumptions about the relationship between different
components in s are necessary. If we assume these components are orthogonal and
Gaussian, Principal Component Analysis (PCA) can be used to solve the problem.
However, in cases where the signals from different sources are neither orthogonal
nor Gaussian, PCA may fail to identify them. Formally, ICA constitutes a linear
latent variable model; however, unlike PCA, it does not assume that the latent
variables follow a Gaussian distribution [169]. ICA relies on the assumption that
the components in s are statistically independent. In situations where the signal
components are generated by independent processes (such as independent speakers
at a cocktail party or independent neural processes in fMRI) ICA may outperform
PCA in correctly identifying the component sources due to their likely non-Gaussian
nature [195].

Independence is a concept related to, but distinct from, orthogonality (or un-
correlatedness). It is possible for two variables to be statistically dependent even if
they are orthogonal, a situation that arises when the data deviate from a Gaussian
distribution. In the context of ICA, the independent components are estimated by
identifying non-Gaussian signals in the data. Given that ICA seeks non-Gaussian
signals, many ICA algorithms initially whiten the data using PCA to eliminate any
Gaussian signals present [195].

When applying ICA to fMRI timecourses data, a crucial decision is whether
the algorithm should search for components that are spatially independent or tem-
porally independent. Most methods assume spatially independent components,
yielding a set of spatial components along with a mixing matrix that indicates the
contribution of each spatial pattern to the observed signal at each time point. The
assumption of spatial independence is justified by the notion that the brain harbors
numerous potentially independent networks, each with similar timecourses during
task performance. This approach facilitates the detection of spatially distinct ef-
fects, such as differentiating task activation from task-correlated head motion, even
if their timecourses are correlated [195].

In summary, ICA employs multivariate decomposition to segregate the BOLD
signal into distinct independent functional networks represented by spatial maps
that exhibit temporal correlation. Each functional network, or component, encap-
sulates an independent set of ROIs with synchronized BOLD activity [154].

Results Various resting-state networks commonly arise from ICA analyses in
RS-fMRI studies. These networks include, but are not limited to, the default mode
network, auditory network, salience network, executive control network, medial vi-
sual network, lateral visual network, sensorimotor cortex, dorsal visual stream (fron-
toparietal attention network), basal ganglia network, limbic network, and precuneus
network (cf. section 2.1.5). These networks exhibit resting-state connectivities,
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with some showing up- or down-regulation during specific cognitive tasks [154].
The number of networks identified by ICA and group-ICA ranges from 8 to 30

networks in macaque [199, 105, 253]. The number of networks depends on the
number of components chosen, the atlas and, above all, the initial image resolution.

Challenges ICA can be conducted without incorporating any a priori assump-
tions, except for the need to specify the number of independent components to
identify. The process of dimensionality reduction and model selection are some-
what arbitrary, as one must determine the number of components to estimate, and
there is no consensus on the ideal dimensionality for understanding the neurophys-
iology of multiple distributed systems [253]. Depending on the specified number
of independent components, a single network may be fragmented into subnetworks
[154].

Furthermore, the perceived synchrony within functional networks, as identified
by ICA, might stem from non-neural factors such as breathing, pulsation, motion,
scanner artifacts, and noise. This inherent characteristic of ICA complicates result
interpretation [154]. In most studies, components derived from ICA are manu-
ally examined and labeled based on anatomical and functional criteria, with some
components being discarded due to displaying noisy, nonspecific, low correlation
activation patterns, or corresponding to large veins [253].

Several considerations need to be taken into account when utilizing ICA. ICA
presents brain networks individually and does not illustrate connections between
modules or communications among different brain networks. The solutions pro-
duced by ICA are not unique, requiring additional constraints to identify an optimal
solution. Due to its sensitivity to non-Gaussian structure, ICA can be influenced by
outliers in the data, which can be advantageous for identifying potential artifacts
but should be carefully addressed to ensure that results are not driven by outliers
[195]. The presence of negative values in the loading matrix adds complexity to
the interpretation of such matrices [169]. ICA has faced criticism for assuming in-
dependence among underlying sources, as adjacent neurons are typically correlated
in their responses, potentially impacting the assumption of independence [50].

Dictionary Learning

Recent studies have demonstrated that favorable outcomes could be obtained when
imposing sparsity, rather than independence, in spatial decomposition through the
use of a dictionary learning formulation [161]. Techniques based on dictionary
learning outperform ICA in terms of stability. In neuroimaging, dictionary learning
aims to extract a small set of representative temporal elements, accompanied by
their sparse spatial loadings, resulting in well-defined extracted maps [161].

Method Dictionary learning serves as a sparsity-based decomposition technique
designed for extracting spatial maps. The maps it extracts are inherently sparse
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and typically exhibit greater clarity compared to those obtained through ICA [161].
This method generates probability maps by concatenating individual records from
groups of subjects [80].

Results In the study by Garin et al. (2021) [80], sparse components-based DL
was applied to mouse lemurs and humans, aiming to emphasize large networks and
facilitate their comparison. In lemurs, six sparse components were utilized, while
humans employed eight, determined by the number of modules identified through
graph theory analysis. The resulting maps, revealing voxels belonging to distinct
networks, were generated without relying on any atlas [80]. However, to identify
brain regions associated with large-scale networks, 3D atlases were employed, as-
signing names to regions within each network based on arbitrary criteria [80]. We
briefly present the networks obtained by this group as it represents one of the most
recent pieces of literature on the topic, offering high-resolution insights into NHP
(mouse lemur) brain networks using high field 11.7T MRI.

In mouse lemurs, the following prominent networks were identified (Figure 3.1)
[80]:

1) The somato-motor network encompassed the frontal anterior lateral area,
all parietal regions, anterior cingulate cortex/supplementary motor area/frontal
superior region, and medium cingulate/paracentral lobule.

2) The occipito-parietal network involved all occipital regions, along with
areas in the parietal posterior, temporal middle/inferior, and cingulum poste-
rior/precuneus cortices. The presence of occipital and parietal regions suggests
similarity to the visual network observed in humans.

3) The fronto-parietal network included the frontal anterior lateral cortex
and the dorsal part of the frontal superior medial (dlFC regions), parietal posterior
cortex, medial and posterior cingulate cortices, as well as retrosplenial regions. It
also incorporated the temporal middle/inferior cortex, hippocampus, and occipital
regions.

4) The fronto-temporal network comprised the frontal anterior medial and
lateral regions, precentral cortex, all temporal regions, parietal posterior cortex,
anterior and medial cingulum cortices, and the insular cortex.

5) The sensory-limbic network involved limbic structures (basal forebrain,
septal nuclei, midbrain, hippocampus, hypothalamus) and numerous regions asso-
ciated with vision (occipital cortex, superior colliculi) or audition (inferior colliculi).
Additionally, it encompassed the cingulum posterior/precuneus and subcortical re-
gions (thalamus, caudate nucleus, and the globus pallidus).

6) The evaluative-limbic network embedded limbic structures (basal fore-
brain, septal nuclei, amygdala, hippocampus), the insula, and subcortical structures
(striatum including the caudate nucleus, putamen, and the accumbens nucleus of
the ventral striatum, as well as the globus pallidus).
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Figure 3.1: Cerebral networks in mouse lemurs. From [80]

Challenges Maps obtained through Dictionary Learning are often more straight-
forward to interpret due to their increased contrast compared to ICA maps, with
more clearly defined blobs. However, similar to ICA, the dictionary method em-
ployed to characterize networks necessitates a priori selection of the number of
components the observer intends to extract. Given the gradual nature of inter-
actions among different brain regions, there are no distinct boundaries between
large-scale networks, and various methods have been proposed to partition a net-
work into communities [80]. Therefore, the selection of the number of networks in
a resting-state study can be perceived as "arbitrary." In the study presented above,
the number of networks identified in lemurs was determined using the "stability of
a network partition" method derived from graph theory. Increasing the number of
networks could have resulted in the subdivision of some networks into subnetworks
[80].

3.2.2 . Graph

An alternative method for modeling connectivity in fMRI data originates from
an unexpected source: the examination of social networks. Sociologists have his-
torically explored the "six degrees of separation" concept, suggesting that almost
everyone can establish a path of friends to anyone else in the world within six or
fewer steps. In the 1990s, a cohort of physicists delved into the analysis of complex
networks, including the World Wide Web and the brain, leading to the formulation
of new models for comprehending the structure of diverse complex networks [195].
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Method Graph theory offers a theoretical framework for analyzing the topology
of brain networks, examining both local and global organization. In this framework,
functional brain networks are defined as a graph (G), characterized by nodes (V)
and functional connections (E), represented as G = f(V,E). Nodes (V) typically
represent voxels or ROIs [154]. To optimize computational efficiency, signal extrac-
tion often focuses on a limited number of regions of interest, as analyses involving
more than a few thousand nodes become computationally intensive [195].

Functional connectivity (E) is quantified using measures that assess the strength
of the relationship between signals at each node. The Pearson correlation coef-
ficient (r) is a common measure of adjacency. The resulting adjacency matrix is
usually thresholded at a relatively liberal value (e.g., r > 0.1) to exclude noise-
related edges. Post-thresholding, the adjacency matrix becomes a binary V × V
matrix indicating the presence or absence of links between nodes [195].

Following network estimation from adjacency measures, various aspects of the
network can be characterized using key graph analysis parameters [154]:

• "Clustering coefficient" signifies the degree of local neighborhood clustering,
reflecting local connectedness.

• "Characteristic path length" represents the average number of connections
between all pairs of nodes, indicating global connectivity and network effi-
ciency.

• "Node degree" indicates the number of connections for each node, identi-
fying highly connected nodes.

• "Centrality" represents the number of short-range connections for each node,
with nodes of higher centrality contributing more to overall network effi-
ciency.

• "Modularity" gauges the extent to which groups of nodes connect with mem-
bers of their own group, revealing subnetworks within the overall network.

Results In functional brain connectivity networks, the organization of nodes
has been shown to be crucial, for example, in distinguishing different states of
consciousness [33, 2]. Graph analyses can help answer questions about critical
elements of brain network organization, for brain functions such as consciousness
[2].

Graph theoretical methods were employed to investigate the topology of brain
networks using RS-fMRI data collected from 17 patients with severe conscious-
ness impairment and 20 healthy individuals [2]. The study revealed that many
global network characteristics remained unchanged in comatose patients. Specifi-
cally, there were no significant abnormalities in global efficiency, clustering, small-
worldness, modularity, or degree distribution within the patient cohort. However,
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each patient exhibited evidence of a significant reorganization of nodes with high
degree or high efficiency, known as "hub" nodes. Regions of the cortex that served
as hubs in healthy brain networks tended to lose their hub status in comatose brain
networks, and vice versa. These findings suggest that while the overall topological
properties of complex brain networks in comatose patients did not differ quanti-
tatively from those of the normal control group, consciousness likely relies on the
specific anatomical localization of hub nodes in human brain networks [2].

A recent study delves into the Connectome Harmonic Decomposition (CHD),
a method within the domain of Graph Signal Processing, which examines how a
property of nodes in a graph (in this case, brain activation) treated as a signal corre-
lates with the organization of the graph itself (in this case, structural connectivity).
Due to its nonlinear nature, this graph-based approach offers a more comprehen-
sive characterization compared to linear methods such as ICA and PCA [152]. The
central premise of this research is that examining brain activity through the lens
of connectome harmonics will yield insights about consciousness that complement
the spatially-localized perspective prevalent in current neuroimaging studies. The
findings reveal heightened structure-function coupling across various scales dur-
ing states of unconsciousness induced by anesthesia or brain injury. This coupling
can discern between behaviorally similar subcategories of brain-injured patients and
track the presence of covert consciousness [152].

Challenges Graph analysis of RS-fMRI reveals a highly efficient organization
of the brain network optimized toward a high level of local and global efficiency.
Graph analysis can be automatically performed, with little a priori assumptions and
with minimal bias. However, the results are often not intuitive and may be difficult
to interpret [154].

They still rely on a choice of an atlas and are also prone to noise, which may
result due to head motion, cardiac and respiratory effects as well as signals from
white matter and cerebro-spinal fluid, and hence require many temporal data points
for better estimation [51].

3.3 . Material and Method

3.3.1 . Datasets and atlas choice

Here, we work with "Static Anesthesia" and "Static DBS" data (see Table
2.3). In order to unify the results of both studies, the results presented here focus
solely on those obtained from the CoCoMac atlas [11]. Comparison work with
other atlases has been carried out on the "Static Anesthesia" dataset, but will not
be presented here [89, 90].

3.3.2 . The Modular Hierarchical Analysis (MHA)
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Figure 3.2: Graphical abstract

A latent variable model constitutes a statistical framework linking high-dimensional
observed variables to low-dimensional latent variables, enabling the representation
of intricate brain properties challenging to directly quantify. Utilizing empirical
ROI-based covariance structures or FC matrices, the model deduces a distinct set
of brain networks common to all experimental runs and their associated Brain Net-
work Activities (BNA). This reinforces the identification of recurring patterns of
brain activity during diverse anesthesia states [245].

In this model, the latent variables represent the BNAs specific to each run
i. Within a regime of a small number of networks, the MHA linear latent vari-
able model demonstrates enhanced reproducibility and interpretability compared to
other methods like PCA or ICA [169]. The MHA approach aligns with the prob-
abilistic PCA formulation [237]. Briefly, rs-fMRI observations X(i) stem from a
linear projection of low-dimensional latent variables Z(i) ∈ Rk. Both observations
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and latent variables are taken to follow a multivariate Gaussian distribution. This
yields the generative model for observed data [169] :

Z(i) ∼ N (0, G(i))

X(i)|Z(i) = z(i) ∼ N (Wz(i), v(i)I)
(3.1)

where G(i) ∈ Rk×k is the covariance of latent variables, k denotes the number of
disjoint brain networks, and v(i) ∈ R+ is the measurement noise. By capturing
the low-rank covariance structure via the shared across-runs loading matrix W , the
MHA model can reconstruct the covariance matrix in Σ(i):

Σ(i) = WG(i)W T + v(i)I (3.2)
W ∈ Rp×k describes brain networks that are reproducible across the entire pop-
ulation. Each column j of W encodes the jth brain network. For each run i,
the matrix G(i) contains the latent variables of run i. More specifically, the jth

diagonal element of G(i) estimates the so-called BNA associated with the jth brain
network for run i. To compute the model parameters, the optimization maximizes
the model log-likelihood L between Σ(i) and the empirical covariance structure
K(i) = X(i)X(i)′ ∈ Rp×p across all runs as follows:

L =
N∑
i=1

p log(2π) + log det Σ(i) + tr(Σ(i)−1
K(i))

Ŵ = argmax
W :WTW=I; W≥0

L
(3.3)

In comparison to PCA, the MHA model introduces a non-negativity constraint
in addition to the orthonormal constraint. This incorporation empowers MHA to
unveil distinct brain networks in matrix W and their corresponding run-specific BNA
in G(i). Matrix W exhibits a block structure and is uniquely defined and identifiable.
It can be conceptualized as a shared basis representing k non-overlapping brain
networks across all runs.
As demonstrated in the work of Monti and colleagues [169], determining the op-
timal number of disjoint networks k in the model is treated as a hyperparameter
tuning process. A leave-one-subject-out split is executed to create training and
test sets. The MHA model is trained on the former, maximizing the log-likelihood
L over the unseen test set. The use of unseen data is crucial for evaluating model
performance and generalization, guarding against overfitting. However, caution is
exercised in maximizing log likelihood over unseen data for hyperparameter selec-
tion, given the potential for overfitting in our dataset where multiple anesthetic
states were administered to the same monkey. To mitigate this risk, we include all
of a monkey’s data in the test set.
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3.3.3 . Decoding Brain Network Activities (BNAs)

The proposed analysis considers only the k-diagonal elements in G(i). Let
S(i) = (s1

G(i) , ..., s
k
G(i)) denote the associated individual activities across the k dis-

covered BNs. For all runs i ∈ [1, N ], let G ∈ RN×k be the concatenation of these
individual activities S(i). Our focus is on comparing the different BNAs contained
in each column of G: BNAj = (sj

G(1) , ..., s
j

G(N)), where j ∈ [1, k]. Therefore,
we interpret the BNAs as a metric of the activity within the corresponding brain
networks. In essence, the BNAs reflect the amount of variability carried by each
brain network. Our hypothesis posits that the off-diagonal entries of the latent
variable covariances may not be the most discriminative features for the clinical
question at hand. Non-zero off-diagonal values suggest redundancy in the data or
some level of correlation between variables.

BNA-based statistical inference

Group-level analysis is conducted on BNAs using an atlas basis to emphasize the
primary distinctions among anesthetic conditions. Examination with the Shapiro-
Wilk test indicates that the BNAs deviate from normal assumptions. Consequently,
pairwise nonparametric Wilcoxon signed-rank tests are employed to compare paired
grouped BNAs. The null hypothesis (H0) posits the absence of a significant differ-
ence between two awake/anesthetized conditions. To account for multiple compar-
isons, p-values undergo adjustment using the Benjamini/Yekutieli False Discovery
Rate (FDR) correction.

BNA-based multivariate analysis

Consider the previously mentioned matrix G ∈ RN×k representing decomposed
BNAs, and let y ∈ ZN

+ denote labels encoding anesthetic conditions (awake state
or moderate/deep ketamine, propofol, or sevoflurane anesthesia). Supervised ma-
chine learning is applied to predict outcomes y based on input features G. The
proposed classification relies on Support Vector Machines (SVM) with a Radial
Basis Function (RBF) kernel, implemented using scikit-learn [186]. The gamma
hyperparameter is automatically determined, while the C hyperparameter is set
to 1. To mitigate overfitting in our small-sized dataset during training, bagging
is introduced. This technique aggregates multiple models trained from the base
SVM-RBF estimator by randomly selecting training subsets, contributing to the
creation of a more robust predictor. As described earlier, the model is trained us-
ing a leave-one-subject-out splitting to generate both a training set and a test set.
Model fitting incorporates five-fold cross-validation on the training set. It’s im-
portant to note that the aforementioned classifier treats each class as non-ordinal,
potentially miss the intrinsic relationships among the categories. To address this,
we also evaluate the advantages of using another base classification estimator em-
ploying an Ordinal Logistic model with l2 regularization [203], as implemented in
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Figure 3.3: Illustrating how to select the best number of brain networks: A) the CoCoMac
atlas, and B) associated 0-1 normalized log-likelihood L0−1 on the unseen validation set
for k ∈ [2, 10]. The optimal number of networks is represented by a vertical dashed line:
k=4 brain networks for the CoCoMac atlas.

mord [188]. The regularization parameter is set to 1. In both cases, the specified
hyperparameters are not assessed in an internal cross-validation process.

Brain network importance

Ultimately, a pertinent question arises: which brain networks contribute to the
different predictions? Employing a model-agnostic permutation importance tech-
nique, as implemented in scikit-learn [186], enables the assessment of feature im-
portance. This method involves randomly permuting the values of a feature and
assessing its impact on the model’s performance. By comparing the model’s per-
formance with permuted features to its original performance, one can discern which
features influence most the predictions. Features exhibiting a significant perfor-
mance drop post-permutation are deemed more critical. This technique aids in
pinpointing the features or BNAs and their associated brain networks that exert
the most substantial influence on the model’s performance. It provides valuable
insights into the relationships between BNAs and anesthetic conditions.

3.4 . Results on Anesthesia Dataset

3.4.1 . Consciousness connectivity can be decomposed into few
consistent brain networks

The selection of an atlas determines the quantity of input regions, denoted
as p supplied to the model. Maximizing L results in the identification of four
optimal brain networks (k = 4) for the CoCoMac atlas (Figure 3.3). While the
likelihoods for k = 3 and k = 4 are close for the CoCoMac atlas, we opt for
k = 4 to maximize the coverage of the ROIs (see Appendix 4 for a detailed listing
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Figure 3.4: Inferred Brain Networks (BNs) from the CoCoMac (k=4) atlas, and associated
pairwise statistical analysis of BNA. p-value annotation legend: **: 1.00e − 03 < p ≤
1.00e− 02,***: 1.00e− 04 < p ≤ 1.00e− 03,****: p ≤ 1.00e− 04

of coverage for k = 3). Recall that the MHA constraints drive this coverage by
conditioning the loading matrix W to have at most one non-zero entry per row,
imposing sparsity with non-negativity.

3.4.2 . Brain network 1 intersects the Global Neuronal Workspace
(GNW)

Pairwise statistics (Figure 3.4), bring attention to the most substantial dif-
ferences in terms of BNAs between conditions, i.e., states of consciousness. In
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name hemi location
CCp posterior cingulate cortex left, right cingulate cortex
CCa anterior cingulate cortex left, right cingulate cortex
S1 primary somatosensory cortex left, right parietal cortex
PCi inferior parietal cortex left, right parietal cortex
PCm medial parietal cortex left, right parietal cortex
PCip intraparietal cortex left, right parietal cortex
PCs superior parietal cortex left, right parietal cortex
M1 primary motor cortex left, right frontal cortex
FEF frontal eye field left, right frontal cortex
PMCm medial premotor cortex left, right frontal cortex
PMCdl dorsolateral premotor cortex left, right frontal cortex

(A)

name hemi location
TCpol temporal polar left, right temporal cortex
PFCoi orbitoinferior prefrontal cortex left, right frontal cortex
PFCom orbitomedial prefrontal cortex left, right frontal cortex
PFCol orbitolateral prefrontal cortex left, right frontal cortex
PFCpol prefrontal polar cortex left, right frontal cortex
PFCvl ventrolateral prefrontal cortex left, right frontal cortex
PFCm medial prefrontal cortex left, right frontal cortex
PFCcl centrolateral prefrontal cortex left, right frontal cortex
PFCdm dorsomedial prefrontal cortex left, right frontal cortex
PFCdl dorsolateral prefrontal cortex left, right frontal cortex
CCs subgenual cingulate cortex left, right cingulate cortex

(B)

name hemi location
TCs superior temporal cortex left, right temporal cortex
A1 primary auditory cortex left, right temporal cortex
A2 secondary auditory cortex left, right temporal cortex
G gustatory cortex left, right gustatory cortex
PMCvl ventrolateral premotor cortex left, right frontal cortex
Ip posterior insula left, right insular cortex
Ia anterior insula left, right insular cortex
S2 secondary somatosensory cortex left, right parietal cortex

(C)

name hemi location
Amyg amygdala left, right temporal cortex
TCc central temporal cortex left, right temporal cortex
TCi inferior temporal left, right temporal cortex
PHC parahippocampal cortex left, right temporal cortex
HC hippocampus left, right temporal cortex
TCv ventral temporal cortex left, right temporal cortex
VACv anterior visual area (ventral) left, right occipital cortex
V2 visual area 2 left, right occipital cortex
VACd anterior visual area (dorsal) left, right occipital cortex
V1 visual area 1 left, right occipital cortex
CCr retrosplenial cingulate cortex left, right cingulate cortex

(D)

Table 3.1: Listing of Brain Networks (BNs) inferred from the CoCoMac atlas: A) the BN1
highlighting the difference between the awake state and anesthesia (the BN1 indicated by
a star in Figure 3.4-A), B) BN2, mainly prefrontal and B) BN3 mainly temporal, including
auditory cortex, D) the inferred BN4 that is driven by the visual pathway. The detected
GNW areas are depicted in blue, and the associated sensory areas in green.

contrast to the sliding window synchronization patterns [92], our statistical ap-
proach highlights a larger number of significant differences, notably emphasizing
distinctions between the awake state and all anesthetic conditions. This outcome
underscores the significance of Brain Network 1 (BN1), marked with a star in
Figure 3.4. Intriguingly, a focused examination of this network (BN1 in Figure
3.4) reveals that the ROIs underlying this difference exhibit perfect symmetry and
closely align with the macaque GNW nodes [243]. These are the posterior cin-
gulate cortex (CCp), anterior cingulate cortex (CCa), intraparietal cortex (PCip),
Frontal Eye Field (FEF), dorsolateral prefrontal cortex (PFCdl), prefrontal polar
cortex (PFCpol), and dorsolateral premotor cortex (PMCdl), encompassing sensory
regions like the primary motor cortex (M1), primary somatosensory cortex (S1),
primary visual cortex (V1), and primary auditory cortex (A1) (Table 3.1-A). Al-
though obtained through unsupervised constraints, BN1 notably aligns closely with
the GNW theory, covering 7 out of 11 nodes.

3.4.3 . Which network best predicts the depth of anesthesia from
BNAs?

Utilizing the BNA distributions, we can distinctly differentiate the wakefulness
state from the anesthesia state, irrespective of the administered anesthetics sup-
pressing consciousness (Figure 3.4). Noteworthy variations persist among different
anesthetics. Consequently, we conduct a multivariate analysis of the BNAs, incor-
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CoCoMac

SVM RBF All DeepModerate Anesthesia

train 0.76± 0.06 0.84± 0.02 1.0± 0.0validation 0.58± 0.09 0.78± 0.14 0.99± 0.012test 0.24± 0.05 0.84± 0.05 0.97± 0.03

Ordinal Logistic All DeepModerate Anesthesia

train 0.7± 0.02 1.0± 0.0validation 0.73± 0.08 0.99± 0.02test 0.79± 0.09 0.98± 0.01

Table 3.2: Brain activity based prediction of acquisition conditions using the CoCoMac
atlas. The Balanced Accuracy (BAcc) metric is used to evaluate model performances. Three
settings are considered: the awake state and all anesthetics are considered separately (All),
the anesthetics are grouped by dosage (DeepModerate), or all anesthetics are encoded in
the same group (Anesthesia). Twomodels are evaluated: the SVM-RBF and Ordinal Logistic
models.

porating the downstream task of anesthetic state classification. To delve deeper
into BNAs, SVM-RBF and Ordinal Logistic models are employed to address three
classification tasks, each corresponding to distinct sets of target labels: 1) treating
the awake state and each anesthetic individually (label set: All), 2) categorizing
anesthetics based on sedation level (label set: DeepModerate), or 3) grouping all
anesthetics into a single category (label set: Anesthesia). BNA-driven predictions
are listed in Table 3.2. The best performance, unsurprisingly, is the separation
between levels of vigilance (unconscious/conscious - label set : Anesthesia). For
the different levels of sedation (label set : DeepModerate), performance is good,
well above chance (which is ∼ 0.33), demonstrating its relevance in characterizing
the depth of anesthesia. On the other hand, for the different conditions taken
separately (label set : All), performance drops drastically.

In the subsequent experiments, the SVM-RBF has superior performance and
is retained for the rest of the study. Our current objective is to offer a deeper
understanding of the identified brain networks. An analysis of brain network im-
portance highlights two significant networks (Figure 3.5-A). Firstly, BN4 (Table
3.1-B), primarily located in the temporo-occipital region, encompasses the visual
pathway. This may correspond to the observation that awake monkeys typically
have open eyes, potentially experiencing visual stimulation. Secondly, BN1, largely
parieto-cingular and detailed in the preceding paragraph, contains the majority of
GNW nodes. In contrast, networks 2 and 3 are of relative minor importance in
distinguishing the different conditions. BN2 (cf. Table 3.1-C) is predominantly
prefrontal, while BN3 (cf. Table 3.1-D) is predominantly temporal, encompassing
in particular the auditory cortex.

3.4.4 . Influence of time window size on predictions: sensitivity
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Figure 3.5: Illustration of the results of the study on network influence and the impact of
time window size in the prediction of different acquisition conditions. A) Brain networks
(BNs) exerting the most substantial influence on prediction, as determined by the feature
importance analysis. Three scenarios are examined: individual consideration of the awake
state and each anesthetic (All), grouping of anesthetics based on dosage (DeepModerate),
and encoding all anesthetics in a single group (Anesthesia). The x-axis values represent
the extent to which model performance decreases with random shuffling, using balanced
accuracy as the performance metric. The level of randomness is gauged through repeated
iterations of the process. Positive values indicate significant features, while negative val-
ues suggest predictions more accurate than actual data. This can occur when a feature is
unimportant, but randomness coincidentally improves predictions—an observed behav-
ior with small datasets more susceptible to random errors. B) Learning curves concerning
acquisition time. The Balanced Accuracy (BAcc) metric is employed to assess the perfor-
mance of the SVM-RBF model. To achieve satisfactory performance, a minimum of 200 TR
is required.

study

Decoding the level of consciousness from neural activity holds significant po-
tential for clinical applications, specifically in the development of innovative tools
for objectively monitoring the depth of anesthesia. To assess the method’s adapt-
ability, we examine its learning curve in relation to acquisition duration. This
experiment employs the three labeling settings outlined in the previous paragraph:
All, DeepModerate, and Anesthesia (Figure 3.5-B). The duration of the truncated
time series varies from 10 to 500 TR in increments of 10 TR. Despite the limited
dataset size, the plots suggest that a run length of 200 TR yields accurate perfor-
mances (∼ 0.8 balanced accuracy for the Anesthesia setting). Thus, the proposed
solution requires a 200 TR duration to make reliable predictions. This learning
curve analysis for a given time series duration represents the practical method for
establishing a steady state for the model. While additional data would be necessary
for confirmation, this result provides an estimate of the minimum buffer size for
such an approach.

3.4.5 . Conclusion

Consistent with the GNW theory of consciousness, the brain network involv-
ing the frontal, parietal, and cingulate cortices emerges as crucial in discerning
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consciousness levels. This pioneering approach enables the development of an in-
terpretable brain decoding model, offering a distinctive signature of consciousness
and anesthesia-induced loss of consciousness. The model does not rely on any
biological assumption about anesthetics, and provides results that are relatively
insensitive to different anesthetics. Thus, one might assume that we are getting a
general signature of consciousness, disentangled from potential markers related to
a particular anesthetic effect.

3.5 . Results on DBS dataset

3.5.1 . Consciousness connectivity can be decomposed into few
consistent brain networks

Consistently with the MHA literature, we find that the optimal number of
networks in the decomposition is low (k = 2 or k = 3). We perform a leave-one-
subject-out cross-validation, repeated three times, with a different individual left
out between trials. The highest log-likelihood is obtained for k = 3 on two over
the three trials. We also clearly see a drop in the log-likelihood at k = 4. Thus,
we choose to work with k = 3 in the rest of this study (Figure 3.6).

Figure 3.6: CoCoMac atlas and associated 0-1 normalized log-likelihood on three differ-
ent unseen test sets for k ∈ [2, 10].

3.5.2 . Identified networks
BN1 is almost symmetrical: the network consists of 36 ROIs, and only 4 do

not appear together in the opposite hemisphere. This network emphasizes the
back of the brain. It is mainly parieto-temporal (12 ROIs in the parietal cortex,
9 in the temporal cortex). The occipital cortex is also represented (8 ROIs), with
the presence of all visual areas (V1, V2, VACd, and VACv) as well as the cingular
cortex (Table 3.3). It is also interesting to note that it contains 7/8 sensory ROIs,
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and 2 nodes (CCp and PCip) involved in the monkey’s Global Neuronal Workspace
(GNW) theory (respectively highlighted in green and yellow in Table 3.3-a).

BN2 has 20 ROIs distributed symmetrically in both hemispheres and 8 re-
gions present only in the left hemisphere. Among the symmetrical regions, a large
number of monkey GNW nodes appear (5/11) (Figure 3.3-b). This network is
predominantly prefrontal (16 ROIs) and cingulate.

Finally, BN3 is almost entirely asymmetric with ROIs in the right hemisphere.
Note that the electrode was implanted in the right hemisphere. It is mainly
prefronto-temporal.

3.5.3 . Reconciling the front and back of the brain in the processing
of conscious information

BN1 and BN2 are posterior and anterior, respectively. They highlight a signifi-
cant difference in BNAs between the awake and the anesthetized states (stim-off).
Such a trend is not captured in BN3 (Figure 3.7). It highlights the importance
of the first two networks when processing conscious information. It also shows
that the third network mainly captured signal variations related to the DBS direct
stimulation in the right hemisphere without any link with the neuronal correlate of
consciousness. In particular, it is interesting to note that BN3 does not contain
any of the regions impacted by the electrode artifact (identified in section 2.2.4),
which suggests an effect related to the repercussions of the stimulation on the
whole cortex rather than a local effect.

3.5.4 . Networks capture differences induced by the effective DBS
condition

We can notice a BNA increase in the stim-on-5v acquisition condition (effective
DBS) compared to the stim-off in the three networks. Such a BNA increase is
not observed in the control state at 5V (stim-cont-on-5V). Finally, no significant
difference is observed between the BNA in the awake state and under stim-on-5v.

3.5.5 . Conclusion

To conclude, the MHA model highlights two relevant networks whose BNAs
support that conscious information is processed in anterior (prefronto-cingular) -
posterior (parieto-cingular) networks and confirms the positive impact of the stim-
on-5v DBS stimulation on the consciousness signatures restoration. The model also
highlights a network capturing the stimulation effects. The MHA model disentan-
gles the different sources of signal variability. This model could thus be helpful to
evaluate the cortical impact of a cerebral stimulation and thus identify the regions
at risk of collateral damage. Moreover, in future work, we would like to address
one issue. We would like to remove the artifactual voxels before averaging the time
series. By doing so, we will eliminate one known source of variability, which will
improve the identification of the other sources of variability.
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(A) (B)

(C)

Table 3.3: Listing of Brain Networks (BNs) inferred from the CoCoMac atlas: A) the BN1
emphasizes the back of the brain, B) the inferred BN2 that is predominantly prefrontal
and cingulate, C) BN3, asymetric, right-hand side. The detected GNW areas are depicted
in yellow, and the associated sensory areas in green.

3.6 . Discussion

In this study, we introduced an innovative approach for analyzing RS-fMRI
data acquired during distinct states of consciousness in non-human primates. Our
method successfully identified anatomically relevant cortical brain networks as-
sociated with different consciousness states. The uniqueness of our framework
stems from the application of a constrained linear latent variable model, yielding
BNA across identifiable and non-overlapping brain functional networks. Within the
recorded brain activity, specific properties (the BNAs) are highlighted, showcasing
predictable distinctions between conscious and unconscious states. These prop-
erties could serve as reliable indicators for accurately and objectively classifying
individuals based on their state of consciousness. These findings reinforce the im-
portance of quantitative biomarkers of RSN for assessing the widespread effects of
brain stimulation techniques that transcend the stimulated network. Understand-
ing how CT-DBS modulates brain activity at the level of RSNs can be essential to
advance in the design of more effective and personalized therapeutic strategies.

99



Figure 3.7: Networks inferred by the MHA model from the time series and associated
statistical analysis on BNAs and sample distributions. p-value annotation legend: **:
1.00e− 03 < p ≤ 1.00e− 02,***: 1.00e− 04 < p ≤ 1.00e− 03,****: p ≤ 1.00e− 04

Parcellation and number of networks

Parcellation Generally, in neuroimaging studies, specific templates that define
anatomical regions of the brain are used. The atlas serves as a common spatial
landmark for analysis and interpretation of the data. In our case, it allows us to
map and compare brain activity across individuals or groups.

When studying functional connectivity, the choice of brain atlas is usually a
trade-off between the characterization of brain structure and signal averaging for
data and noise reduction. Fine-grained brain areas can capture brain activity de-
scriptions with more functionally-specific regions at the expense of signal-to-noise
ratio loss. Fine-grained brain areas also generate high-dimensional input features
that are challenging to learn in generic predictive models, a problem known as the
curse of dimensionality.

To test the robustness of the results obtained, a second functional atlas is
used (CIVMR; containing 222 ROIs), on the anesthesia dataset. As this atlas
contains more ROIs, we unsurprisingly also find more BNs (Appendix 3). Some
networks strongly resemble those found on the CoCoMac cortical atlas, others are
the decomposition of some of them, and finally, new, sub-cortical ones make their
appearance. The networks are always symmetrical.

It could also be interesting to test a data-driven approach at the voxel level
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without relying on an atlas-based framework.

Number of networks There’s substantial research on resting-state networks
in humans, often involving 7-17 networks. In macaque, the number of networks
ranges from 8 to 30 networks [199, 105, 253]. In this study, the number of optimal
brain networks varies across three atlases from 4 to 7. Does a k=4 adequately
capture this organization?

When using classical ICA, there are presently no firmly established criteria to
assist in determining the optimal number of ICs for a given dataset [105]. Methods
using ICA select between 20 and 30 components, then decide to eliminate some
of them after processing, as they may represent noise (correlation with things
other than grey matter, for example). For methods using dictionary learning, a
criterion based on network modularity is generally used. For example, in the mouse
lemur primate, 6 RSNs have been identified, two of which include subcortical
regions [80]. However, the CoCoMac is cortical, so finding only 4 networks, in
our work, is not aberrant. The method proposed here dispenses with a priori
selection and automatically selects a number of components. The optimal number
of brain networks depends on the input atlas, but a clear decision can be made by
monitoring the log-likelihood. Our model scales to any dataset and the associated
hyperparameters are tuned numerically from maximum likelihood estimation. The
discovered brain networks are tailored, spatially consistent, and symmetric.

Cerebral networks identified and associated activities

In the present work, we highlight differences directly related to interacting cortical
regions by calculating statistics on BNAs grouped by level of consciousness. In the
anesthesia dataset, we found two main brain networks that effectively differentiate
between the awake and all anesthetic states, underscoring their significance as a
robust finding. One of them, previously described in the literature, supports the
above hypothesized GNW theory, and the other emphasizes the visual network.
These networks 1 and 4 are actually quite similar to networks 1 and 4 found in the
small monkey (see 3.2.1), highlighting the fronto-parietal and occipital cortices.
These findings are also intriguing when juxtaposed with the global disconnection
syndrome observed in UWS patients, characterized by a disconnect between higher-
order association cortices and primary cortical areas. In contrast, MCS patients
exhibit preserved large-scale cortical networks associated with language and visual
processing [2, 210, 81].

Low-level cortical networks
The BN4 network is primarily associated with the visual pathway, and we won-
der if it could be an artifact of our experimental setting, considering that awake
non-human primates (NHPs) had their eyes open, potentially exposing them to
visual stimulation. However, previous studies using RS-fMRI in both humans and
NHPs have consistently identified visual networks even under anesthesia [16, 80].
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Additionally, it is expected that functional connectivity remains intact in low-level
sensory cortices across different sedation stages, including auditory and visual net-
works [25].

Network 3, which involves the auditory cortex, is associated with BNAs that
do not significantly contribute to the differentiation between anesthetic and awake
states. Conversely, in the case of the visual network, BNAs are lower in the awake
state compared to the anesthetized state. This unexpected outcome may indicate
reduced integration of a more complex network present during wakefulness under
anesthesia. Consequently, this over-presence of the visual network in anesthetized
NHPs might stem from fewer cross-network interactions in the unconscious state.

For additional clarity and as a potentially significant control measure, we could
exclude saccade windows from the awake data and rerun the model. Saccades
might also introduce slight motion artifacts specifically in the awake state, or
artificially induce neural coherence in the awake condition, potentially affecting the
modeling outcomes. In particular, the FEF, responsible for saccadic eye movements
for the purpose of visual field perception and awareness, as well as for voluntary
eye movement, appears as a hub of BN1.

High level cortical networks
Networks 1 and 2 involve regions associated with high-level cortical networks (in-
cluding GNW regions). However, associating them specifically with known human
high-level cortical networks, linked to high-level information processing, remains
complex. In the BN1, the majority of constituent nodes were cortical areas that
match GNW nodes from a previous publication [243]. As DMN activity is known to
be consistently suppressed by different anesthetics and a correlation was observed
between the level of connectivity within the DMN and the severity of clinical con-
sciousness impairment [2], we sought to link one of the brain networks to a DMN
in monkeys. Certain regions of networks 1 and 2 are hubs of the default-mode-like
network (DMN-like) of marmosets or macaques, e.g. the CCp and PFCdl [80].
While the former is in network 1, the latter is in network 2 (predominantly pre-
frontal). Moreover, network 1 also overlaps with the Dorsal Attentional Network
(DAN) of the macaque (PCip, FEF) [208]. Overall, it is known that propofol-
induced decrease in consciousness linearly correlates with decreased corticocortical
connectivity in frontoparietal networks [25], which is consistent with the decrease in
BNA in networks 1 and 2 for both datasets. BN3 is difficult to classify specifically
as a primary or higher-order network. In fact, it contains the auditory cortex and
the second somatosensory network, which tends to classify it as a primary network,
but also a specific region, the insula. The insula is a functionally heterogeneous
brain area that participates in a wide variety of behaviors involving interoceptive
awareness and the mediation of emotion, functions that have placed this structure
at the center of the Salience Network (SN) which also contains anterior cingulate
cortex (CCa) as a hub [16]. This network, and the insula in particular, has been
proposed to serve as a sentinel, detecting salience from a vast array of constant
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streams of stimuli, and, perhaps, serving as a signal to initiate engagement of var-
ious cognitive control networks, with concomitant disengagement of the DMN. In
our case, the cinguloinsular SN network is not apparent: CCa and insula appear in
BN1 and BN3 networks respectively. Although Hutchison et al. [105] also found a
cinguloinsular component in anesthetized macaques, as well as Belcher et al. [16]
in marmoset data, Mantini et al. (2013) [157] identified a salience-like network
in humans (a "cinguloinsular" component) that had no correspondence in their
monkey results. The authors suggest that the absence of a salience-like network
in rhesus monkeys could be related to the conditions under which the resting-state
experiments were conducted: the monkeys received liquid reinforcement when they
paid attention to the stimuli on a screen in front of them. Because of this im-
portant methodological difference between their human and monkey acquisition
paradigms, it is perhaps not surprising that they reported differences in network
patterns within and between the species. We should point out that the same effect
could be present in our data, with awake macaques also receiving a reward, while
anesthetized monkeys did not, which could explain why SN does not emerge clearly
in our data.

On the DBS dataset, networks 1 and 2 are the ones used to differentiate states
of consciousness. They are more difficult to compare with known networks, as they
each contain more ROIs, but clearly show a front vs. back of the brain separation.
For this dataset, it would seem appropriate to repeat the analysis without averaging
over the voxels impacted by the electrode. This would free us from this source of
variability and potentially allow us to obtain more networks. However, the study
of DBS data is limited by the data acquisition scheme (only one NHP has all the
conditions (effective and control) for DBS stimulation). We could also repeat this
analysis only on the half of the brain without the electrode. Given the symmetry
of the networks on the anesthesia dataset, it would be interesting to see how the
electrode affects the networks.

Sensitivity analyses

Recognizing the limitation that data might be sparse, it could be useful to provide
analyses showing that if the model is re-run on a few individual NHPs, qualitatively
similar results in each one, emerge. This remains complicated to achieve because
of the sparsity of the conditions, but an experiment in which one subject is removed
shows similar results and reinforces the method’s stability.

Limitations

Nonoverlappingnetworks With the MHA model, the joint participation of
ROIs in several networks is not possible, so the discovered networks are necessarily
non-overlapping, as imposed by the optimization constraints. Overall, the MHA
approach yields few tailored brain networks and associated BNAs, which promotes
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interpretability.

Correlation inter-networks Our network-based analysis is not informative
about inter-network correlation. It might be interesting to extend the analysis by
studying inter-network correlation according to acquisition conditions, for example,
by calculating the correlation between the BNs’ FC. This analysis could be per-
formed on sFC or dFC to assess network dynamics. This would make it possible
to assess the temporal evolution of interaction between BNs.

Limiting overfitting Given the typically small number of subjects in fMRI
acquisition for non-human primates, the risk of overfitting is acknowledged. Over-
fitting arises when a model becomes overly complex, fitting noise or random fluc-
tuations in training data rather than the underlying patterns or relationships of
interest. In datasets with a limited number of individuals, overfitting can be espe-
cially problematic due to insufficient examples to capture the true data distribution.
This small sample size may constrain the statistical power, complicating the de-
tection of true effects and increasing the risk of false negatives.

To address this limitation and enhance the dataset size without additional
acquisition, in the future, we could explore the benefits of incorporating simulated
data [128, 56] (cf. section 2.3.1).

There are also alternatives, such as Prime-DE (cf. section 2.3.2), which provide
free access to an increasing number of fMRI recordings.

Potential clinical applications of the proposed framework

The brain is a highly interconnected system consisting of multiple regions that
communicate and interact with each other. The proposed framework tests a new
method that is added to the state-of-the-art data-driven strategies. It decomposes
the FC into brain networks. This provides valuable information about the func-
tional organization of the brain and allows the study of individual differences in brain
activity. In fact, each individual has a unique pattern of brain connectivity. Charac-
terizing these individual differences can provide insights into variations in cognitive
abilities, behavior, and susceptibility to brain disorders. In addition, understand-
ing individual differences in network connectivity may facilitate the development of
personalized treatment approaches, where interventions can be tailored to target
specific network dysfunctions in a given individual. The study of network-level
properties offers the potential to identify specific biomarkers that can be used for
diagnostic purposes, disease monitoring, or prediction of treatment outcomes. In-
deed, many neurological and psychiatric disorders are characterized by alterations
in brain connectivity. By comparing network properties between healthy individu-
als and patients, it is possible to identify aberrant connectivity patterns associated
with specific disorders. This approach can lead to a better understanding of the
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underlying mechanisms of the disorders and potentially help to develop diagnostic
or therapeutic strategies.
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Teenagers are told, warned and "unfiltered" movements have even sprung up.
What we see on networks is not reality. The MHA is certainly not a social network.
But like social networks, it shows a fixed reality. Even if, unlike them, MHA is not
based on an image taken at a given moment t, chosen and most of the time a biased
reflection of reality, the fact remains that the data is averaged, and stripped of its
temporal component. Reality is, therefore, distorted, partial, and incomplete. In
the next chapter, we propose to integrate the temporal dimension with the spatial
dimension, by working on dFC matrices. We move slightly away from networks in
an attempt to model transitions between different functional connectivity patterns.
We’re looking to see how the different connectivity patterns fit together, how they
move from one to another. These patterns have already been shown to be markers
of consciousness, and the importance of exploiting them no longer needs to be
proven. Considering them as a group, as a cluster, may initially seem to facilitate
analysis, but it doesn’t seem to be the most relevant way of characterizing these
cerebral patterns that come and go.

The image on the next page is a reproduction of René Magritte, La condition hu-
maine, 1933
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Part III

Seeing beyond reflection:
latent variable models for

studying states of
consciousness
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4 - From networks to dynamic functional con-
nectivity analysis
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In the previous study, it was assumed that the functional connectome remains
constant (i.e., temporally stationary) during the recording period in RS-fMRI, but
functional connectome between regions are actually linked to dynamic brain activity
over time [106, 7, 14, 99, 245]. According to the pioneering study by Allen et
al. (2014) [7], the hypothesis of temporal stationarity is indeed practical but
represents an oversimplification of whole-brain connectivity analysis. This study,
which inspired the method used by our team in previous works, proposes to explore
resting-state functional dynamics with a data-driven approach, without a priori
assumptions. This allows for the unveiling of stable connectivity patterns and
changes directly from the data.

4.1 . Introduction

Dynamic network analysis using RS-fMRI offers valuable insights into the in-
herently dynamic characteristics of the brain, thus providing an effective approach
for automated biomarker identification. Specifically, studies in humans and non-
human primates, both within our team and elsewhere [14, 245, 60, 234], have
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explored dynamic RS-fMRI analysis to discover markers of consciousness. First,
we will describe the methodology employed in previous research conducted by our
team to explore the dynamic connectome, followed by its application in the context
of consciousness modulation.

4.1.1 . Material and Method

The following straightforward data-driven method for assessing dFC relied on
established techniques such as sliding time-window correlation and K-means clus-
tering of windowed correlation matrices [7].

The observed dFC states exhibit high replicability and partially deviate from
stationary connectivity patterns, challenging existing descriptions of interactions
among large-scale networks. Moreover, the differential occurrence of specific FC
states over time inspires theories regarding their functional roles and relationships
with various conditions and states of consciousness [7].

Dataset

Here, the "Dynamic Anesthesia" dataset is used (see Table 2.3 and 2.2.4 for
associated methodology).

Unsupervised clustering to find brain patterns

Then, K-means clustering was employed to detect recurrent patterns of FC over
time and across subjects [146]. These clusters are conceptualized as "brain states"
or "Brain Patterns" (BPs) akin to EEG microstates, which denote brief periods
characterized by quasi-stable scalp topography [136, 184, 7].
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The L1 distance function (Manhattan distance) was utilized, as implemented in
MATLAB (MathWorks), based on evidence suggesting its effectiveness as a similar-
ity measure for high-dimensional data compared to the L2 (Euclidean) distance [7].
Covariance values between all ROIs were considered, resulting in [82×(82−1)]/2 =

3, 321 features per matrix (keeping only the upper triangular matrix, because the
matrix is symmetric). Before clustering, the Fisher transformed Zr,w matrices were
subsampled along the time dimension w, similarly to EEG microstate analysis, to
reduce redundancy between windows and computational demands [184, 7]. Sub-
sampling involved selecting connectivity matrices (Zexamplesr) corresponding to
windows exhibiting local maxima in functional connectivity variance, where the
absolute normalized variance exceeded 0.5 Standard Deviation. The clustering
algorithm was applied to Zexamplesr and repeated 500 times with random ini-
tialization of centroid positions to increase the likelihood of avoiding local minima.

The resulting centroids or median clusters (termed Brain Pattern (BP) (BPn),
where n ∈ [1–7]; each sized 82 × 82) were then used to initialize clustering of all
data (i.e., not just examples but entire Zr,w matrices) across different experimental
conditions, yielding a brain pattern matrix Br,w. For a given run r, this matrix
comprises a vector of length 464 with values ranging from 1 to 7 (predefined
number of clusters), as each matrix in Zr,w is assigned a BPn. The number of
brain patterns was predetermined as seven, following previous studies [7], with
additional exploratory analyses confirming consistent and robust results over a
range of k values [14, 245, 234]. In the end, we obtain a repertoire of brain
patterns whose richness can be evaluated by condition, as well as their similarity
to anatomy.

Similarity with anatomical connectivity

The BPn matrices obtained were compared to the anatomical connectivity ma-
trix derived from the CoCoMac atlas. This matrix expresses the strength of the
anatomical connection between any pair of cortical areas (cf. section 2.2.3 for
detailed methodology). To investigate the relationship between brain dynamics
and arousal levels, a metric of similarity between anatomical connectivity and FC
was established to categorize all brain patterns along this dimension. This sim-
ilarity measure was computed by calculating the correlation coefficient between
the vectorized structural matrix (with dimensions 3,321 × 1) and each vectorized
brain pattern or centroid derived from the clustering analysis. Utilizing this sim-
ilarity score, all brain patterns were arranged in ascending order based on their
resemblance to the structural connectivity [14, 245, 234].

4.1.2 . Application to consciousness : state-of-the-art

The methodology developed above provides representatives of brain dynamics.
These are a valuable means of discovering biomarkers linked to the state of alert-
ness. Several signatures of consciousness have been obtained through numerous
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studies, in humans and NHP, summarized below [7, 14, 245, 60, 234, 37] (cf. Fig
4.1):

• wakefulness is associated with a rich repertoire of states, where flexibility
between states is high. Anatomy-function similarity is low, i.e. the states
most represented in wakefulness are not particularly close to the anatomical
matrix.

• loss of consciousness is associated with a poor repertoire of states and re-
duced flexibility. Anatomy-function similarity is high, and the most-visited
state is systematically the one closest to anatomy.

Figure 4.1: Representation of the dFC analysis framework and its main results concerning
consciousness. Adapted from [245]

Transitioning from wakefulness to anesthesia, the underlying anatomical con-
nections between brain regions emerge as the principal guide of the repertoire of
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functional states. Subjects under anesthesia lose the capacity to produce adaptable
functional brain patterns that transcend brain anatomy [245].

Allen et al (2014) [7] are the first to propose this approach in awake humans.
They note that one brain pattern is systematically more visited at the end of acqui-
sition. They hypothesized that this was linked to the participants’ level of arousal:
participants dozed off or even fell asleep during acquisition. This hypothesis links
the dynamics of cerebral states to the condition of vigilance.

This is borne out by studies carried out in the awake state and with loss and
recovery of consciousness, both in the NHP and in humans.

Barttfeld et al. (2015) [14] by proposing this approach in awake and anes-
thetized NHPs show that BPs are indeed consciousness markers. In the awake
state, brain patterns exhibited similar probabilities of occurrence, independently of
the resemblance of functional networks to structural connectivity. However, un-
der sedation, the probability distribution of brain patterns underwent significant
reshaping: those resembling structural connectivity became more probable. Se-
dation altered the composition of brain patterns, with some, particularly states 1
and 2, having such low occurrence probabilities that they rarely manifested during
sedation. Conversely, brain pattern 7, bearing the closest resemblance to anatom-
ical structure, emerged as the dominant state, its occurrence probability strongly
influenced by the level of vigilance. Additionally, the average duration of each brain
pattern, indicative of dynamical connectivity stability, was analyzed. Sedation led
to an increase in the average duration of brain patterns, even after accounting for
the increased presence of specific states. This phenomenon was primarily driven
by the prolonged duration of brain pattern 7, which prevails during deep sedation.
Likewise, as anesthesia deepens, brain activity in rats explores fewer distinct states
and undergoes fewer transitions [103].

Uhrig et al (2018) [245] add acquisitions with other anesthetics to the above
study. Their results confirm that the state repertoire-related signatures of con-
sciousness previously observed are not due to a specific anesthetic agent but
to anesthesia-induced loss of consciousness globally. Regardless of the molec-
ular mechanism involved, anesthesia triggered a profound reorganization of the
repertoire of functional brain patterns, primarily influenced by brain anatomy (high
function-structure similarity).

Demertzi et al (2019) [60] propose to replicate this method in patients with
DoCs. Their results confirm that this pattern is not only related to anesthesia-
induced loss of consciousness, but more generally to loss of consciousness.

During effective stimulation by CT-DBS (i.e. stimulation that induced arousal
in an on/off manner) in anesthetized NHPs, the state repertoire reorganizes in a
manner similar to the awake state, with a broad dynamic repertoire of spontaneous
resting-state activity, previously described as a signature of consciousness [234].

Finally, this signature was also observed in humans under anesthesia (propofol)
and during deep sleep in a recent study [37], confirming a signature robust to the
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type of loss of consciousness.
It would also be interesting to propose such a study in REM sleep, where

vigilance is absent but awareness is not, to determine whether this is a signature
of arousal, awareness or both.

Interestingly, all these studies do not employ exactly the methodology initially
proposed by Allen et al. (2014) [7].

In particular, Phase Synchronization [82] (also named Phase Coherence Con-
nectivity [29] or Dynamic Functional Coordination Analysis [60]) is also used to
avoid the overlapping induced by the sliding-windows method. Indeed, in the
original study, functional connectivity was computed over a sliding time window.
Various window widths were tested, but reducing the temporal window below a
critical sample size compromised the reliability of the correlation values; shorter
windows (i.e., with too few samples) led to biased estimates. On the other hand,
longer time windows improved reliability but at the cost of temporal resolution
[82]. To address this trade-off between temporal resolution and reliability, phase
synchronization can be utilized as an instantaneous measure of dFC. The explana-
tion of this method goes beyond the scope of this thesis, but details can be found
in [29, 60, 37].

In the end, the two methods produced similar results, confirming that the loss-
of-consciousness signature associated with the brain patterns repertoire is robust
to a change in computation method.

4.1.3 . Overcoming the limitations of K-means clustering

The dFC analysis method, and in particular the use of the K-means algorithm
in this context, has a number of limitations.

Optimal number of the brain patterns

The first drawback of this machine learning algorithm is that the number of clusters
has to be chosen beforehand by the user. In previous papers, several numbers of
k clusters were tested. The frequency of occurrence of each state was calculated
to check that the overall trend was preserved whatever the number of states.
However, from a mathematical point of view, in order to estimate the optimal
number of brain patterns, several metrics can be employed. Most of them are
based on the basic idea behind K-means, which consists in defining k clusters such
that the within-cluster variations are minimum. We propose to define the number
of clusters more objectively on the "Dynamic anesthesia" dataset, to overcome the
lack of use of mathematical methods for this question [91]. Among these methods,
we have retained the Elbow [123], the Silhouette [123, 206], and the Calinski and
Harabasz [31] scores. The Elbow value is defined as the Within-Cluster Sum of
Squared (WCSS) error for different values of k. The optimal k corresponds to the
point of inflection on the WCSS versus k curve. Note that the Elbow score is more
a decision rule than a metric. The Silhouette value measures how similar a sample
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is to its cluster compared to others and is bounded between [-1, 1]. -1 corresponds
to incorrect clustering and +1 to highly dense clustering. Scores around zero
indicate overlapping clusters. The Calinski and Harabasz value is defined as the
ratio between the within-cluster and the between-cluster dispersions. The last two
scores are higher when clusters are dense and well separated.

From the proposed experiment, we found no clear rule to select the optimal
number of brain patterns for the K-means clustering (Fig. 4.2). The Silhouette
and the Calinski and Harabasz indicators would tend to select the smallest k value.
This is not in line with previous studies, which generally choose a k between 4 and
7 [7, 14]. But the most important conclusion to be drawn from these experiments
is that the boundary between the clusters is not clearly defined. It is likely that
they form a continuum and overlap. It would be wise to explore further a latent
representation of our lower-dimensional dataset to check the relevance of using
K-means.

Figure 4.2: Determining the optimal number of brain patterns for the K-means clustering
using the Elbow, the Silhouette, and the Calinski and Harabasz scores.

Quickly predict new states

The methodology of computing brain patterns {BP}k described above (cf. 4.1.1)
includes the entire dataset for the extraction and annotation of {BP}k. Although
the set of {BP}k is robust and stays stable when a new RS-fMRI sequence is
added to the database, the analysis process resumes the whole clustering, with
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potentially an appropriate initialization. It would be desirable to have a faster
process that does not require recomputing the {BP}k set to classify the {BP}k,
especially in the case of a real-time approach, which is particularly interesting
for use in neurofeedback. Although the K-means algorithm offers the possibility
of predicting a label on new data, clustering algorithms are descriptive analytics
as opposed to predictive analytics. By itself, clustering is not really intended to
forecast. For that, it is better to use a classifier algorithm.

Fighting the curse of dimensionality

Finally, in very high-dimensional spaces, euclidean and manhattan distances tend
to become inflated (this is an instance of the so-called “curse of dimensionality”). It
is more reasonable to consider some compact and representative features instead
of the whole feature space. Running a dimensionality reduction algorithm such
as PCA prior to K-means clustering can alleviate this problem and speed up the
computations [187]. But PCA is linear and doesn’t capture non-linear manifolds.
To overcome this problem, an emerging branch of the literature proposes to learn
a latent representation of the data using deep learning.

Deep representation learning
Deep representation learning (also known as self-supervised learning) allows us

to move away from feature space. By using representation learning, you don’t need
the label to learn a representation of the data. The network learns like in super-
vised learning but the labels are got without human intervention, in an automatic
way. It is not the same than unsupervised learning, such as K-means algorithm,
because in self-supervised learning, the labels are learned and then used like in
supervised manner. In unsupervised learning there is no label, nor correct output.
This means that learning is not constrained. In our case, our labels come from
a machine learning algorithm, so they have no neuroscientific, nor clinic reality.
We’d like the representation we learn to be influenced as little as possible by these
labels. We therefore try to learn an unbiased representation, to which we add a
label-based classification task. The label-dFC association is no longer based solely
on the original feature space, but on its latent representation. To learn a repre-
sentation without label, most of self-supervised framework need a pretext task. It
is a task that will allow to learn some features and representations to be used in
the principal task. For example, predicting rotations is a famous pretext task : the
network need to predict what sort of rotation was applied to the image (4 class
classification). Why it works ? To predict well the rotation, the model needs to
learn the representation of the image.

Deep contrastive learning
Within this branch of literature, contrastive methods are in vogue [35, 38, 256].

In SwAV [35], prototypes/clusters are discovered while enforcing consistency be-

116



tween cluster assignments of contrasted samples. Generic contrastive methods can
also tackle the downstream clustering problem by applying a linear classifier on top
of the fixed learned representation. For example, in SimCLR [38], input-distortion
invariance is used as a pretext task to learn an appropriate representation of the
data. Specifically, it encourages two augmented samples to be close in the repre-
sentation space. An alternative option, computationally efficient and stable, has
been proposed in Barlow Twins [256]. The learned representation is discovered by
estimating the empirical cross-correlation matrix from contrasted samples. From a
classification point of view, no constraint on class collision is enforced, thus allow-
ing several samples sharing similar semantic content to be pulled apart. However,
in practice, this problem is limited, and Barlow Twins produces clustering results
as good or better than SwAV and SimCLR on ImageNet, Places-205, VOC07, and
iNat18 [256].

The rest of this chapter presents the method and results of the preprint "Pre-
dicting Cortical Signatures of Consciousness using Dynamic Functional Connec-
tivity Graph-Convolutional Neural Networks" (bioRxiv 2022) [91]. We propose to
use a self-supervised contrastive machine learning method based on artificial neural
networks to predict functional brain patterns across levels of consciousness from
RS-fMRI.

First, we propose to use a non-linear contrastive model adapted to connectivity
matrices. Indeed, the circularity between the targets composed of pseudo-labels
derived from the K-means and the predicted probabilities issue is problematic, and
without particular care, the weights of the model may more reflect the clustering
algorithm than the variability of the data. For this purpose, recent contrastive
learning techniques are implemented, more specifically, the Barlow Twins strategy
[256]. We then classify the resulting representations and compare the results with
those of a simple linear classifier. To check the robustness of these results to a
different number of brain patterns, we train these networks for different values of
k.

We will initially validate the utility of {BP}k as descriptors for characterizing
the sequence of states occurring within a specific arousal condition. Our approach
involves training a classifier capable of predicting individual brain patterns from
short RS-fMRI temporal windows in entirely new samples/runs [124]. Specifically,
we will employ a graph-Convolutional Neural Network (gCNN) classifier known as
BrainNetCNN [117].

Secondly, we will challenge the data and learning process with capturing the
dynamic transitions between different brain patterns.

Finally, we will utilize the inherent automatic differentiation capabilities of the
deep learning framework to identify the connections that contribute to the classifi-
cation of brain patterns. These connection maps, which complement the {BP}k,
offer insights into both brain patterns and the cortical correlates of conscious-
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ness. They can be viewed, to some extent, as proxies for cortical signatures of
consciousness.

4.2 . Material and Method

4.2.1 . Dataset and data partitioning

Here, we work with "Dynamic Anesthesia" only (see Table 2.3). Our approach
involves reserving one monkey as the test set (35 runs) and using the remaining
four monkeys as the training set (121 runs). Additionally, we ensured that both
the training and test sets maintain consistent proportions of arousal conditions
and brain pattern labels. The test set was kept separate and not utilized during
the training phase. Furthermore, the training set was divided into validation and
training folds through a 3-folds stratified cross-validation method.

4.2.2 . Model architecture

Traditional CNNs lack the capability to capture the spatial relationships among
the ROIs used in constructing the FC matrices. BrainNetCNN incorporates spe-
cialized convolutional filters for edge-to-edge, edge-to-node, and node-to-graph
connections, ensuring a more accurate representation of the topological proximity
among the ROIs.
The BrainNetCNN [117] works specifically with network data and will enforce the
FC patterns. The model architecture is composed of convolutional layers followed
by fully connected layers. Among the proposed configurations, we selected the
E2Enet-sml, which consists in removing one edge-to-edge layer and two of the
fully connected layers (Fig. 4.3). This configuration has shown excellent perfor-
mances with a restricted number of parameters. Precisely, E2Enet-sml has an
edge-to-edge layer composed of 32 1× 82 and 32 82× 1 filters producing feature
maps of size 32× 82× 82, followed by an edge-to-node layer with 64 1× 82× 32

filters yielding feature maps of size 64× 82× 1, a node-to-graph layer with feature
maps of size 1 × 1 × 30, and a fully connected layer with an output of size k.
Increasing the number of feature maps with each layer is a common strategy for
CNNs to compensate for the reductions along the other dimensions. Every layer
uses very leaky rectified linear units as an activation function with a negative slope
of 1/3.

We implement the Barlow Twins approach [256], wherein the fully connected layer
of BrainNetCNN is substituted with a projection head comprising two hidden layers,
resulting in an embedding space of dimensionality 120. The objective of the model
is to minimize the discrepancy between the empirical cross-correlation matrix, de-
rived from twin embeddings (i.e., outputs of the network fed with augmented or
distorted versions of a sample), and the identity matrix (Fig. 4.3). To induce
distortion in the FC matrices, a random connection erasing scheme is employed,
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Figure 4.3: Schematic representation of the proposed training. The BrainNetCNN E2Enet-
sml layers are represented in blue. In the first row the Barlow Twin contrastive approach
is described. The fully connected layer of the BrainNetCNN is replaced by a projection
head (in orange), and empirical cross-correlation matrix (in green) is computed from aug-
mented/distorted samples (in yellow). In the second row the connected layer of the Brain-
NetCNN is trained using the K-means pseudo-labels by fixing the other weights.
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wherein the proportion of zeros is randomly selected within the interval [0.3, 0.7].
Pseudo-labels obtained from K-means clustering are solely utilized for training a
linear classifier on the fixed representations learned by the Barlow Twins. All other
parameters are frozen to mitigate circularity between the targets and the predicted
probabilities.

For training, we employed a dropout of 0.5 before the node-to-graph layer as shown
in Fig. 4.3, and we followed the optimization protocol described in [256]. We use
a LARS optimizer, a mini-batch of size 1024, a weight decay of 1e-6, a learning
rate of 0.2 for the weights and 0.0048 for the biases and batch normalization
parameters, and train the model for 1000 epochs. We employ a learning rate warm-
up period spanning 10 epochs, following which the learning rate is decreased by a
factor of 1000 using a cosine decay schedule. The biases and batch normalization
parameters are excluded from LARS adaptation and weight decay. The linear
classifier is trained based on the fixed representation, optimizing the cross-entropy
loss over 100 epochs with an SGD optimizer, a weight decay of 1e-6, a learning
rate set to 0.01, and a cosine annealing schedule.

4.2.3 . Maps of Predictive Connections

Saliency maps serve as a popular visualization tool for understanding the ra-
tionale behind decisions made by deep learning models, such as images or FC
matrices classification [227, 230]. Through a single backpropagation, gradients
of the target class concerning the input FC matrix are computed from the initial
convolution layer. These gradients are then utilized to generate an FC-specific
class saliency map. FC matrices that are poorly predicted are disregarded, and the
resulting saliency maps are averaged on a brain-states-wise basis. These markers
of consciousness are depicted using a circular graph layout. The 41 cortical regions
within each hemisphere are grouped, and the top p = 15% largest positive and
negative connections are showcased. This threshold is calculated at the brain-state
level or across all brain patterns.

4.3 . Results on Anesthesia dataset

4.3.1 . Performance of the classifier

Given that no optimal number of brain patterns is readily apparent, we opted
to evaluate the prediction accuracy of BrainNetCNN across various values of k
(or targeted brain patterns {BP}k), as illustrated in Fig. 4.4. In a k-classes
classification scenario, the theoretical chance level is 1/k. This threshold is true
for an infinite number of samples, and the smaller the sample size, the more likely
it is for chance performance to deviate from this theoretical chance level [46]. In
our context, with a large sample size (56,144 samples), we assume that the chance
level closely approximates its theoretical value. Across all k values, we observed

120



Figure 4.4: Determining the optimal number of brain patterns for the BrainNetCNN pre-
diction using the accuracy as a reference metric: the mean and standard deviation com-
puted across the training folds are displayed. A linear SVC prediction, as well as the theo-
retical chance levels are displayed as baselines. Note that results are always much higher
than random chance.

that the accuracy significantly exceeded the theoretical chance level. The overall
predictions fall within the range of [0.655, 0.759], which is deemed satisfactory. To
contextualize these findings, we compared them against those obtained by training
a linear Support Vector Classifier (SVC) directly on the input upper triangular
FC data (Fig. 4.4). Both methods yielded similar results, albeit with a lower
variability observed in the deep learning prediction as k increased. While this
outcome may initially seem disappointing, it sheds light on the simplicity of the
downstream classification task at hand. Specifically, the annotations are derived
from K-means clustering, which inherently involves linear decision boundaries. In
contrast, although the proposed network employs a cascade of nonlinear processing
units for feature extraction, the performance of the linear clustering task is likely
constrained by the empirical nature of these annotations.

To delve deeper into the analysis, we employed a Uniform Manifold Approxi-
mation and Projection (UMAP) to visualize the feature spaces derived from both
machine learning and deep learning approaches [159]. These spaces have dimen-
sions of 3403 (representing the upper triangular elements of the FC matrices) and
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Figure 4.5: UMAP 2-d and 3-d projections of themachine learning (left) and deep learning
(right) feature spaces: the upper triangular elements of the FCmatrices (3403) vs the latent
space dimension of the BrainNetCNN (30). The samples are colored using the k=7 brain
pattern labels.

Figure 4.6: Evaluation of the BrainNetCNN classifier outputs quality using ROC curves for
k = 7.
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Figure 4.7: The BrainNetCNN predicted transitions with the associated probabilities for
a test set run acquired in the awake condition for k = 7.

30 (representing the latent space dimension of the BrainNetCNN), respectively.
We posit that the low-dimensional features learned by the BrainNetCNN encapsu-
late all pertinent information, facilitating interpretation, as depicted in Fig. 4.5.

For the rest of this chapter, we maintained the same number of brain patterns
as in the previous works done in our team [14, 245], namely k=7. We opted for
accuracy as the primary metric to determine the best model. Then, we assessed
the quality of the BrainNetCNN classifier output using the Receiver Operating
Characteristic (ROC) metric. ROC curves plot the true positive rate on the y-axis
against the false positive rate on the x-axis. An Area Under the Curve (AUC) value
of 1 signifies an ideal scenario where the false positive rate is zero, and the true
positive rate is one.

In the context of multi-label classification, the predicted brain pattern outputs
need to be binarized. Initially, a separate ROC curve is generated for each la-
bel, followed by micro and macro-averaging. Through this approach, we illustrate
that the BrainNetCNN consistently predicts brain patterns with high reproducibility
(AUC > 0.92), as depicted in Fig. 4.6.

4.3.2 . Towards modeling the brain patterns dynamic

Dwell time, i.e. the time spent continuously in a state, is an important feature
when studying brain patterns. Here, as the classification labels are the same as
those used in previous studies, it’s not really relevant to recalculate it. However,
unlike K-means clustering, which forces the association of a dFC with a pseudo-
label (hard clustering), the classifier gives a probability of belonging or not to the
class in question. However, the dFCs for transitions between two states reflect both
states at the same time. We hypothesize that if this transition is well encoded in
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Figure 4.8: Resulting mean saliency maps for each brain pattern.

latent space, classification should be worse at transitions than in the rest of the
run.

By replaying the dynamic FC matrices movie for each run, we can directly ac-
cess the transition probabilities between different states as the output of the trained
network. Fig. 4.7 showcases both the predicted and true labels, along with the
network-estimated probabilities for a specific run obtained under the awake condi-
tion. Notably, the network’s decisions vary at state transitions. These chronograms
provide insight into the monitored brain configurations and, prospectively, model
the brain’s dynamic oscillations from one state to another.

4.3.3 . Maps of predictive connections

We use saliency maps to uncover the connections learned by the BrainNetCNN
to be predictive of consciousness. They are giving some intuition on connections
within the input that contribute the most and least to the corresponding prediction.
In our application, they are helpful to extract proxies of the cortical signature of
consciousness.

Proxies of the cortical signatures of consciousness are computed as described in
section 4.2.3. The resulting mean saliency maps for each brain pattern are dis-
played in Fig. 4.8. The top p = 15% positive and negative connections using a
specific or global threshold across brain patterns are presented in Fig. 4.9. The Co-
CoMac regions are grouped into seven locations comprising the cingulate, frontal,
gustatory, insular, occipital, temporal, and parietal cortex.

4.4 . Conclusion
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The BrainNetCNN gCNN model demonstrates excellent reproducibility and ac-
curacy in predicting brain patterns. Its performance closely matches that of a linear
SVC when applied to the input dynamical FC data, highlighting the simplicity or
constraint imposed by the downstream classification task driven by the K-means
pseudo-labels. However, the learned latent space has the capability to handle more
intricate tasks by acquiring complex representations. Employing a self-supervised
contrastive learning strategy helps mitigate circularity associated with the pseudo-
labels. Interestingly, the predictions made by BrainNetCNN diverge from those of
K-means during brain pattern transitions. Beyond serving as a mere prediction
tool, the proposed network has the ability to model the dynamic oscillations of the
brain as it transitions between states, generating state signatures represented by
sets of predominant connections. By mapping out the most influential connections
in predicting a specific brain pattern, it becomes possible to discern which con-
nections are crucial for discriminating between different levels of wakefulness, thus
providing valuable insights into brain patterns. These maps are expected to aid in
understanding the signature of consciousness within different brain patterns.

4.5 . Discussion

Caution about fluctuations driving by arousal

This study, along with previous research (see section 4.1.2), suggests that
fluctuations in arousal could account for a significant portion of the variability
in dFC. This could present challenges when comparing individuals or groups with
varying levels of drowsiness (e.g., Parkinson’s disease; [122]), underscoring the
importance of integrating sleep assessments and measures of arousal in studies
examining both static FC and dFC [153].

Augmentation data strategies

The framework might encounter limitations due to its coarse augmentation
strategy. Alternative methods utilizing data-based generative models such as GANs
have been proposed [139, 13], along with approaches based on dynamical systems
[192] (see Section 2.3.1 for details).

Modeling states and transitions

The classifier provides finer distinctions regarding transitions between states,
thanks to the prediction probabilities. It remains to be determined whether what
the classifier perceives is due to actual transition states in the data or to our method
of calculating dFC (redundancy induced by sliding windows). It would be interesting
to replicate this classification using dFC calculated with Phase Synchronization, for
example.
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Limitations of K-means labeling and perspectives
Numerous empirical studies of dFC also aim to assess transient "brain pat-

terns" and their transitions. In this framework, each state characterizes a distinct
pattern of whole-brain activity or functional connectivity. However, determining
the "ground truth" of the fluctuating neural interactions that underlie dFC is often
challenging, if not impossible (and maybe even undefined) [153].

Hard clustering Different models impose varying constraints on the estimated
states, such as whether they occur in isolation (one state per time point) or in com-
bination (a mixture of states at each time point). With the K-means algorithm,
our states definition is "hard," meaning we consider that each time point exhibits
a single state. Alternatively, we could adopt a "soft" configuration by using over-
lapping clustering, such as fuzzy K-means, where each sample belongs to two
or more clusters with different degrees of membership, or probabilistic clustering,
such as mixtures of Gaussians, where each cluster is represented by a parametric
distribution [91, 138, 163].

Distance metric Formal model selection and comparison, such as utilizing
information-theoretic criteria, enables the assessment of which models offer the
most accurate description of the observed data [153]. The choice of distance
functions (such as correlation, Euclidean, and cosine) appears to have little impact
on the results [7]. However, preliminary work by Aurélien Stumpf Mascles during
a 6-month internship at Neurospin suggested that the choice of distance could
influence the results. When clustering similar connectivity matrices, it is more
interesting to examine the similarity of the networks. This emphasizes our focus
on the patterns within the matrices rather than their actual connectivity values,
which may be noisy. Consequently, the Euclidean distance is not the optimal metric
choice, as it fails to distinguish between a lightened connectivity network (with the
same pattern but lighter weights) and random noise added to this network. The
correlation metric proves to be a much better choice as it captures the common
patterns between matrices.

In another preliminary study conducted with Olivier Cornelis, a 3-month intern
at Neurospin, we conducted a benchmark of clustering methods for dFC analysis
using synthetic and anesthesia datasets. We assessed the sensitivity of clustering
methods to noise and geometric space. Specifically, we aimed to evaluate meth-
ods where the algorithm considers outliers (such as DBSCAN and OPTICS) and
hierarchical clustering based on the fusion of nearest clusters starting from clusters
containing only one sample.

Temporal orderingmisregarded The dFC analysis pipeline utilized in our
study incorporates stages that alternatively consider and disregard temporal order-
ing. Initially, we estimate sliding-window correlations, calculated using time series
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with time points ordered as observed. Subsequently, we apply K-means clustering
to the resulting dFC matrices, where K-means ignores the temporal ordering of the
windows. Finally, we evaluate state properties such as dwell times and transition
probabilities, which again take into account the temporal order of time points.
This is a common issue found in several studies [7, 14, 245].

Deep self-supervised clustering Recent studies propose leveraging self-
supervised deep learning techniques to unveil semantically relevant groups of sam-
ples [34, 257]. Notably, Deep Cluster [34] employs a process that alternates be-
tween a clustering phase and a back-propagation through a classification encoder
driven by pseudo-labels. Specifically, during each epoch, previous clustering assign-
ments generated by K-means on the embeddings are utilized as pseudo-labels for
minimizing the cross-entropy. These self-supervised methods have demonstrated
the ability to generate semantically valid clusters without the need for manual anno-
tation. However, training such models presents challenges. The transition between
pseudo-label generation and network training introduces clustering degeneracy and
inconsistency. While degeneracy issues are often addressed with heuristics, such
as reassigning out-of-bounds samples/clusters, inconsistency significantly disrupts
training. For example, in Deep Cluster [34], the clustering head is re-initialized
at each epoch due to the label shuffling inherent in K-means. This training ap-
proach is also prone to local minima due to its circular entanglement with the
pseudo-labels [91].
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5.1 . Introduction

"The stream of our consciousness, [. . . ] like a bird’s life, seems to be made of
an alternation of flights and perchings", said the philosopher William James [109].
A fundamental observation, that still puzzles many scientists. Like the seasons that
transform our landscapes, we have seen that the spontaneous fluctuations of the
brain reveal very different brain configurations. Brain activity at rest is commonly
characterized by the spontaneous fluctuations of regional brain fMRI signals and
can be studied with dFCs. As discussed earlier, temporal analysis of the dFCs shows
that wakefulness and loss of consciousness exhibit a reorganizing repertoire of brain
patterns. The conscious brain is the site of rapidly changing dynamics, within a
rich repertoire of brain patterns. Conversely, during anesthesia and disorders of
consciousness, brain activity is expressed according to a more rigid and poorer
repertoire of brain patterns (i.e., transitions between brain patterns are rare, and
some brain patterns are almost never visited). In this case, the brain dynamic
connectivity is reduced to the underlying anatomical connectivity [14, 60, 245].

The representation and interpretation of brain patterns is still an area of ongo-
ing research. Previous dynamic studies have examined the frequency of occurrences
or stability of each brain pattern [7, 14] and have proposed to project fMRI data
into two- or three-dimensional space [191]. However, they either do not take
into account the spatiotemporal nature of the data or focus on task fMRI rather
than rs-fMRI [165, 79]. Consequently, it may be interesting to explore such a
low-dimensional space to model a fine-grained representation of brain patterns.

Some works in the literature support the choice of a low-dimensional model to
study brain dynamics. For example, dFCs have been shown to reflect the interplay
of a small number of latent processes using clustering or PCA-based reduction
techniques [7, 168] and latent linear models can also be used to estimate these un-
derlying processes [48]. However, linear models may be inadequate if the mapping
is nonlinear or, equivalently, if the learned manifold is curved.

The emergence of deep learning-based generative models has spread to many
disciplines, including medicine and neurosciences [118, 144, 198, 217]. By learning
and capturing the underlying probability distribution of the training data, gener-
ative models are able to generate novel samples with inherent variability. Three
prominent families of generative models can be identified, namely generative ad-
versarial networks, Variational Auto Encoders (VAEs) [119], and diffusion models.
In line with the literature [191, 118, 259], we will focus on VAEs in this work. The
probabilistic nature of such generative models holds great promise for exploring the
data structure. Unlike discriminative models, VAEs are unsupervised models that
do not require a labeled dataset.

In the proposed work, the choice of architecture is supported by the seminal
work of Perl and colleagues [191]. They showed that when a VAE (which param-
eterized both the encoder and decoder using a Multi-Layer Perceptron (MLP)) is
trained with simulated whole-brain data from awake and asleep healthy volunteers,
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the learned representations showed faded states of wakefulness. The choice of the
optimal latent space dimension remained an open question in their work. Over-
all, this choice is a trade-off between compressing only essential information and
preserving data reconstruction.

The rest of this chapter presents the method and results of the preprint "Deep
learning models reveal the link between dynamic brain connectivity patterns and
states of consciousness" [86]. We proposed a new interpretability framework, called
VAE for Visualizing and Interpreting the ENcoded Trajectories (VAE-VIENT) be-
tween states of consciousness (Figure 5.1). We took advantage of a previously ac-
quired resting-state fMRI dataset in which non-human primates were scanned under
different experimental conditions: awake state and anesthesia-induced loss of con-
sciousness using different anesthetics (propofol, sevoflurane, ketamine) [14, 245].
After presenting the considered low-dimensional generative model, we showed that
a 2D VAE has a balanced performance in reconstructing dFCs and classifying brain
patterns. We then proposed a discrete and continuous characterization of the latent
space. Finally, we showed that this model can translate some virtual modifications
or inactivations of inter-areal brain connections into a transition of consciousness.

5.2 . Material and method

5.2.1 . Dataset
Here, we work with the "Dynamic Anesthesia" dataset only (see Table 2.3).

5.2.2 . Low-dimensional generative models
The Gaussian VAE VAE training involves learning both an encoder to trans-
form data as a distribution over the latent space and a decoder to reconstruct the
original data (Fig.5.1). The training minimizes the mean squared error reconstruc-
tion term, making the encoding/decoding scheme as effective as possible. Latent
space regularity is enforced during the training to avoid overfitting and to ensure
continuity (two nearby points in the latent space give similar content once decoded)
and completeness (a code sample from the latent space should provide relevant
content once decoded). These properties are at the core of the generative process.
In practice, a regularization term constrains the encoding distributions to be close
to a standard normal distribution using the Kulback-Leibler (KL) divergence.

Let’s consider a dataset D = {X(1), ..., X(n)} with n = 72, 384 dFC samples,
where each sample X(i) = [x

(i)
1 , ..., x

(i)
d ] is a vector of d = 3321 dimensions (the

dFC upper triangular elements). An autoencoder learns an identity function in an
unsupervised way as follows:

X̃(i) ≈ fθ(gϕ(X
(i))) (5.1)

where gϕ(.) denotes the encoder, fθ(.) the decoder, and X̃(i) is the network
reconstruction of X(i). The reconstruction loss, expressed as a Mean Squared
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Figure 5.1: Illustration of the proposed VAE-VIENT framework. A VAE learns 2D latent rep-
resentations z = (z1i, z2i) from dFC matrices, leading to 1) evaluation of the proposed
model against other generative models implementing different latent dimensions, 2) ex-
ploration of latent space with the ability to view discrete or continuous representations
(here we observe how brain patterns are organized in latent space), and 3) two simula-
tion paradigms, including a receptive field analysis that generates tensor representations
to study the effect of perturbing input dFCs, and an ablation study of Global Neuronal
Workspace (GNW) connections to study the transition from wakefulness to unconscious-
ness.

Error (MSE), can be written as:

LMSE(θ, ϕ) =
1

n

n∑
i=1

(X(i) − X̃(i)) =
1

n

n∑
i=1

(
X(i) − fθ(gϕ(X

(i)))
) (5.2)

In this work, the VAE relationship between the input dFC data X(i) and the
latent encoding vector z(i) is defined with a prior pθ(z

(i)) ∼ N (z(i); 0, 1), the
likelihood pθ(X

(i)|z(i)), and the posterior pθ(z
(i)|X(i)). Unlike (finite) Gaussian

mixture models, the posterior pθ(z
(i)|X(i)) is intractable. Therefore, we use a

posterior approximation qϕ(z
(i)|X(i)) that outputs what is a likely code given an

input X(i). It plays a similar role as gϕ(z
(i)|X(i)). In our case of Gaussian VAE,

qϕ(z
(i)|X(i)) = N (z(i);mϕ(X

(i)), sϕ(X
(i))), where mϕ and sϕ are expressive pa-

rameterizations of the conditional mean and variance of qϕ(z(i)|X(i)). The distri-
butions returned by the encoder are further constrained to follow a standard normal
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distribution as follows:

LKL(θ, ϕ) = DKL(qϕ(z
(i)|X(i))||pθ(z(i))) (5.3)

where DKL is the KL divergence. To learn disentangled representations and
increase interpretability, a regularization parameter β is further introduced [98, 28].
The idea is to keep the distance between the real and the estimated posterior
distribution small while maximizing the probability of generating real data. A high
β value emphasizes statistical independence over reconstruction. The final VAE
loss is expressed as follows:

LV AE(θ, ϕ) = LMSE(θ, ϕ)− βLKL(θ, ϕ) (5.4)
The considered generativemodels In this work, we consider a VAE with
a one (VAE1), two (VAE2) or three (VAE3) dimensional latent space, adapting
the architecture proposed in [191]. The input is the upper triangular dFCs (as
each dFC is symmetric). Then, the encoder part uses two hidden fully connected
layers (512 and 256 units, respectively) with ReLU activation functions, and the
decoder part is implemented with the same structure. The dimension of the latent
space corresponds to common neurobiological assumptions made when studying
disorders of consciousness [194, 131, 59]. Furthermore, we compared our models
with the sparse VAE (sVAE) [8], initialized with thirty-two latent dimensions. The
sVAE implements a variational dropout to enforce parsimony and interpretability in
the latent representations. A threshold on the dropout rates is used to select the
optimal number of latent dimensions. We also apply a baseline machine learning
model, the Probabilistic PCA (PPCA) [237], and compare the results to those
obtained with VAE/sVAE. In fact, PPCA can be considered as a latent variable
model. Its assumptions are Gaussian distributions and linear decomposition. The
purpose of adding this model is to assess the interest in non-linear models such as
VAE or sVAE when working with small datasets.

Model training We train the VAE and sVAE using an Adam optimizer, with
a learning rate starting at 0.001 and a 10% decay every 30 epochs. To limit over-
fitting during the training, we include early stopping. The model is trained on
the training set until its error on the validation set increases, at which point the
optimization stops. As a performance measure to monitor the stopping of training,
we consider the sliding median using a 10 epoch interval. In addition, the patience
argument allows training to continue for up to 15 epochs after convergence. This
gives the training process a chance to get over flat areas or find additional im-
provements. Using cross-validation, we study the effect of the β regularization
parameter for the VAE by performing a grid search to determine the better choice
for β ∈ [0.5, 20] with the following user-defined steps [0.5, 1, 4, 7, 10, 20]. With the
intention of building an interpretable model, we keep 8 models: PPCA1, PPCA2,
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PPCA3, VAE1, VAE2, VAE3 with 1, 2, and 3 latent dimensions respectively, sVAE,
and PPCA with the same number of latent variables selected by the sVAE. We
perform a leave-one-subject-out to create an independent test set, and a training
set with an internal 5-fold cross-validation. In the cross-validation, the stratifica-
tion of the arousal conditions further strengthens the distribution of the classes in
each training split. In the end, only the weights associated with the best validation
fold are evaluated on the independent test set.

The labels and pseudo-labels used are the arousal conditions (awake and the
different anesthetics) and the brain patterns (BPs) ranked in ascending order of
similarity to the structural connectivity (numbered 1 to 7), respectively. Briefly, the
use of seven brain patterns has been shown to be effective in representing the differ-
ent configurations of the brain [14, 245]. Note that choosing the optimal number
of brain patterns is challenging. It results from balancing biological assumptions
and computational evaluations. These labels are known to be unevenly distributed
across experimental conditions. They are also known to be good descriptors of
spontaneous fluctuations in brain activity.

5.2.3 . Model evaluation

Choosing an appropriate model is a trade-off between compressing only essen-
tial information and preserving data reconstruction. Thus, we evaluate the models
using two distinct metrics. The first metric is a measure of the reconstruction
quality. The second one is the relative entropy of the latent space, measured
by considering a classification task. Both use as labels the seven brain patterns
previously described [14, 245].

Reconstruction quality From the retained trained generative models, we
computed the decoded dFC matrices X̃(i) associated with the test set. Instead of
using the MSE training loss, we evaluated the Structural SIMilarity (SSIM) between
the averaged decoded dFCs and true decoded dFCs associated with each label. The
MSE calculation focuses on pixel values, while the SSIM measurement focuses
on and analyzes the structural differences between two dFCs. Unlike the SSIM,
the MSE can be very high just because some connection values have changed.
Therefore, we prefer the SSIM because we want to study global dFC patterns.
This metric ranges from 0 to 1, where 1 is a perfect match.

Classification accuracy From the retained trained models, we also compute
the latent representations associated with the test set. In addition to the BP labels
available from the dataset, we also match each test dFC latent space location to
its nearest location in the train set and retained the corresponding matched label.
Balanced accuracy (BAcc) is then used to compare the dataset and matched BP
labels.
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Consensus metric We propose a consensus metric M, which is an average
between SSIM and BAcc. The goal is to enforce a trade-off that imposes spatial
coherence in the latent space without significantly degrading the reconstruction
quality.

5.2.4 . Latent space exploration

Discrete and continuous descriptors All the information we can transfer
in latent space is associated with encoder-generated representations and is discrete
by nature. To build a comprehensive whole-brain computational model, seman-
tically continuous representations are required. Fortunately, with the generative
capabilities of the VAE (or generative models in general), it is possible to decode
the entire latent space. Without losing generality, let us give the formula in 2D.
Let’s consider a discrete grid G ∈ R2 with g× g latent samples and the associated
decoded dFCs X̃lm, with l ∈ [1, g] and m ∈ [1, g]. Using the previously known
information on the brain patterns, we can label each X̃lm. To this end, and as
suggested by Perl and colleagues [191], we compute the similarity between each
X̃lm and each brain pattern. To assess the strength of these associations, we use
Pearson’s correlation. At the end, the label assigned to X̃lm is the number of
the most correlated brain pattern. The obtained continuous labeling reflects the
functional reconfiguration of the brain.

Confidence level of continuous descriptors In addition, by quantifying
the best association strength, we propose to derive confidence and reliability maps
associated with the continuous descriptor generation process. First, the confidence
map CM is derived at each latent space location by taking the average of the
difference between the two largest associations and the correlation between the
two closest brain patterns as follows:

CMlm =
1

2

(
(R(X̃lm, ¯BP1)−R(X̃lm, ¯BP2)) +R( ¯BP1, ¯BP2)

) (5.5)
where R is the Pearson correlation, and ¯BP1 and ¯BP2 are the brain patterns

with the first and second highest correlation, respectively. This metric takes into
account both the reluctance to label and the objective nature of that reluctance.
The model is reasonably confident when CMlm ≈ 0.5, and overconfident when
CMlm ≈ 1.0. Second, the reliability map RM is expressed at each latent space
location by decoding the dFC and targeting the brain pattern with the highest
Pearson correlation:

RMlm = max
k=1;k≤7

R(X̃lm, BPk) = R(X̃lm, ¯BP1) (5.6)
The higher RMlm, the more reliable the model is.
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Figure 5.2: Illustration of the two steps involved in the receptive field analysis. A) From
a dFC matrix X(i), or equivalently its upper terms x(i), two perturbations are performed
on connections b (blue) and r (red) by swapping one connection with the following three
correlations [−1, 0, 1] (p = 3). B) Corresponding z(i)b and z

(i)
r latent representations (N =

2) follow lines and are summarized by their inclination angles with the x-axis θb and θr ,
respectively.

5.2.5 . Connection-wise simulations

The receptive field analysis If we consider brain dynamics as a physical
process characterized by gradual changes in the FC space, then the dFCs used so
far are samples of these changes. Physicists tried to model these processes in a
principled way by analytically identifying prior knowledge about the underlying pro-
cesses, e.g. by using differential equations [56]. Instead of incorporating physical
knowledge into a deep neural network, we propose a Receptive Field (RF) simula-
tion paradigm to generate a tensor model of latent space and thus gain insight into
its dynamics. Such a characterization of latent space is essential for building an
interpretable model. Indeed, it can help to understand encoded latent trajectories
between states of consciousness. Specifically, we propose to capture the latent
space RF at the connection level. In this way, the proposed RF analysis could
identify the connections that need to be disrupted in order to move from one state
of consciousness to another. In the long run, such an analysis may be a tool to
simulate the recovery of consciousness at the individual level.

In more detail, the RF analysis focuses on the trained VAE (or another gener-
ative model) encoder. A perturbation is simulated at each connection j ∈ [1, d]

of an input dFC matrix X(i) (Fig. 5.2-A). The effect of this perturbation on the
encoded latent representations is tracked (Fig. 5.2-B) [144]. In particular, the
simulation modifies a single connection value x

(i)
j p times, by swapping its value

with a correlation drawn uniformly in an interval [−1, 1], while keeping the other
connections fixed. In two dimensions, the latter simulation yields p latent encoded
vectors z

(i)
j = {z(i)j1 ,. . . , z

(i)
jk } ∈ Rp×2. The generated latent samples z

(i)
j are

distributed around a line of varying length. This specific behavior allows an in-
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teresting parameterization of each perturbation, using polar (in 2 dimensions) or
spherical (in 3 dimensions) coordinates, through the inclinations θ(i)j (Fig. 5.2-B).
The perturbation of all connections return a cloud of points describing the RF.
The resulting cloud has an ellipsoidal shape E , estimated with a confidence inter-
val of 0.01. E can be parameterized by its sorted eigenvalues λi and associated
eigenvectors e⃗i, i ∈ [1, N ], where N is the latent dimension. Finally, since each
connection can be related to a direction by the inclination angle θ

(i)
j , it is possi-

ble to select the connections with high potential for action (i.e., generating the
highest brain transitions when perturbed) by identifying the directions aligned with
the first eigenvector e⃗1 of the ellipsoid E . The procedure described above can be
applied to any dFC. That is, any dFC can be projected onto a point in latent space
around which an ellipsoid representing the effect of all possible unit perturbations
is computed.

The ablation analysis Based on known networks involved in consciousness,
we also test the ability of the trained VAE to efficiently predict state transitions.
For this purpose, we simulate specific ablations of functional connections between
brain areas as a virtual experiment. The resulting dFC representations are then
used to predict the state of consciousness. From the Global Neuronal Workspace
(GNW) theory of consciousness, we previously identified key brain areas (referred
to as "macaque GNW nodes") that account for the cortical signature of conscious-
ness realizing a fronto-parieto-cingular network [243, 244]. The key brain regions
identified whose associated connections are zeroed in this study are the posterior
cingulate cortex (CCp), the anterior cingulate cortex (CCa), the intraparietal cor-
tex (PCip), the frontal eye field (FEF), the dorsolateral prefrontal cortex (PFCdl),
the prefrontal polar cortex (PFCpol) and the dorsolateral premotor cortex (PMCdl)
of the left and right hemispheres [244, 245]. Thus, we propose a connection-wise
ablation study, equivalent to a lesion perturbation, that removes the contribution
of connections linked to these fourteen GNW regions. It’s important to note that
removing a GNW region actually removes all connections associated with that
region. By zeroing these connections, which are known to have a strong influ-
ence on consciousness, we expect to shift dFCs acquired in the awake state to an
anesthetized state.

In practice, to predict the awake and anesthetized states, we train an SVM
classifier on the learned latent representations. We then evaluate the performance
of the classifier in predicting the awake state using the balance accuracy (BAcc).
To focus on the effect of the proposed ablation and to eliminate any unrelated
source of variability, the analysis is performed on the training set only. As in-
put to the trained SVM, we take only the raw or perturbed awake dFCs (i.e.,
awake dFC undergoing the ablation process) encoded with the VAE. We denote
the corresponding prediction scores as BAcc and ˜BAcc, respectively. To assess
the specificity of zeroing these nodes, we test the null hypothesis that removing
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Figure 5.3: Brain pattern (BP) classification/reconstruction using VAE, PPCA and sVAE
models: A) the SSIM of BP-wise averaged dFCs with respect to the model parameters, B)
the balanced accuracy (BAcc) between the ground truth and the matched predicted label,
C) the proposed consensus metricM, and D) the SSIM recorded for each BP. In plots A, B
and C, the selected VAE2 is highlighted by a red bounding box. The dashed lines represent
the trends obtained for each latent space dimension across the considered models.

random connections does not result in a significant loss of prediction compared
to targeted GNW-associated connections. Let G = 14 be the number of GNW-
associated connections. Our goal is to modify G connections that are not part
of the GNW-related connections. The cardinality of the corresponding universe Ω

of all possible combinations is large. Therefore, we draw a subset of M = 1000

samples from Ω without replacement. Finally, we evaluate the associated awake
prediction performances ¯BAcc

i, i ∈ [1,M ]. Using this null distribution statistic,
we compute a one-tailed empirical p-value for ˜BAcc by looking at the proportion of
values less than or equal to the observed value when all GNW-related connections
are removed [177].

5.3 . Results on Anesthesia dataset

5.3.1 . Model evaluation

In our experiments, the final number of epochs varies in the interval [159, 1359]
when the early stopping criterion is applied. Note also that the variational dropout
in the sVAE selects 15 of the 32 latent dimensions (see Appendix 5). To evaluate
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Figure 5.4: The reconstructed brain patterns (BPs) from the k-means clustering and the
low-dimensional (2D or 3D) models maximizing the consensusmetricM: VAE2 and PPCA3.

whether a low-dimensional VAE can achieve reasonable assumptions, we compare
several generative models with different parameters (PPCA1, PPCA2, PPCA3,
PPCA15, VAE1, VAE2, VAE3, and sVAE15/32). This allows quantification of how
the latent representations stratify the brain patterns and how a model can recon-
struct the input dFCs from the low-dimensional representations.

Balancing reconstruction quality and regularization By looking at
the SSIM for all models (Fig. 5.3-A), we observe that i) the chosen β has little
effect on the VAE reconstructions, but ii) decreasing the latent space dimension
degrades the reconstruction, and iii) nonlinear low-dimensional models have higher
reconstruction quality. Higher dimensional models are expected to perform better
because they capture more variability, resulting in a better reconstruction. We
further quantify the decrease in reconstruction quality by comparing the VAE2

with the sVAE15/32. The cost of a low-dimensional, more interpretable model is
approximately a 10% decrease in SSIM. It also appears that a nonlinear model
can reconstruct better with fewer latent dimensions. Monitoring the SSIM brain
pattern-wise also shows that not all brain patterns are reconstructed similarly with
a SSIM in the [0.3, 0.9] range (Fig.5.3-D). Interestingly, the reconstruction quality
increases with the number associated to each brain pattern. Thus, the models
reconstruct more accurately the brain patterns closer to the structural connectivity
with a simpler topology.

Balancing classification accuracy and regularization Monitoring the
classification accuracy (Fig. 5.3-B), we observe that the BAcc i) increases as β

increases, ii) decreases as the latent space dimension decreases, except in high
dimensions (i.e., for the sVAE15/32), and that iii) the linear PPCA baseline out-
performs other models in high dimensions (PPCA15). Overall, the classification
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scores are relatively high for a seven-class classification problem. For all considered
models, the BAcc scores range from 0.45 to 0.75 (to be compared to the theoret-
ical chance level of 0.14). The classification accuracy metric favors the use of the
highest regularization parameter (β = 20), which promotes coherence in the latent
space. Furthermore, better performance (an increase of 6%) and lower interfold
variance are observed for the 3D VAE (VAE3) models. Notably, the sVAE15/32

performs poorly, suggesting that a few latent dimensions are preferable to encode
the brain pattern information.

Balancing reconstruction and classification We have previously shown
that as the number of latent dimensions increases, the model captures more vari-
ability (possibly noise). Furthermore, limiting the number of latent dimensions
improves the brain pattern detection task. This trend confirms that dFCs reflect
the interplay of a small number of latent processes [7, 168]. Looking at the con-
sensus metric (Fig. 5.3-C), we specify the following model for the rest of the
paper: a 2D VAE (VAE2) with a β = 20 regularization parameter. Using these
parameters, we enforce a trade-off that imposes spatial coherence in the latent
space without significantly degrading the reconstruction quality. Finally, we show
that the reconstructed brain patterns (as the reconstructed dFCs averaged over the
different brain patterns) recover the dominant structures obtained with a k-means
clustering of the dFCs (Fig. 5.4). The same model evaluation can be performed
using arousal conditions as labels (see Appendix 6). To clarify the notation, the
selected β20-VAE2 will be referred to as VAE in the following.

5.3.2 . Latent space exploration

To investigate the potential of latent representations to decode states of con-
sciousness, we consider two types of descriptors: discrete and, by exploiting the
generative properties of VAEs, continuous latent representations. Again, we focus
on the stratification of latent representations according to brain patterns. We also
consider the reliability of the generated continuous descriptors.

Stratificationof brain patterns From the VAE encoder, we obtain discrete
latent representations. Again, the ground truth labels are the brain patterns ranked
in ascending order of similarity to the structural connectivity (numbered from 1 to
7). We examine the discrete composition of the latent space using the brain pattern
labels (Fig.5.5-A) and the calculated lifetime (Fig.5.5-B). The lifetime is defined as
the time spent continuously in a brain pattern (i.e. when no transition is observed).
Therefore, all dFCs on this time axis have the same lifetime. Our focus is on three
main properties of latent space. First, the resulting discrete representations form
a cloud of points rather than a set of clearly separable clusters. Second, the
generated latent representations are remarkably well stratified when looking at the
brain pattern labels (Fig. 5.5-A). Each brain pattern is isolated while no constraint
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Figure 5.5: Discrete stratification of the latent space of the selected VAE into a base of
A) Brain Patterns (BPs) - the centroids from a seven-class k-means clustering on the dFCs
and B) lifetimes - the time spent continuously in the corresponding brain pattern. For the
lifetimes, we discretize the values into three categories: the 25% longest (in red), the 25%
shortest (in blue), and all others medium (in pink).

is enforced during training. To quantify the overlap between brain patterns, we
choose the Dice similarity coefficient. The Dice metric yields values between 0
(no spatial overlap) and 1 (complete overlap) [64]. Overall, the average Dice
metric remains relatively low (< 0.37±0.19), confirming that the spatial overlap
between brain patterns is small (see Appendix 7 for details). Interestingly, brain
pattern 7 (the one closest to the brain structure) occupies a central position in
the representation space, and has the highest Dice coefficient. Third, the central
locations, aligned with brain pattern 7, have longer lifetimes (Fig. 5.5-B). Note
that we verify the absence of subject bias prior to analysis, and also illustrate the
stratification of the learned latent space with respect to the acquisition conditions
(see Appendix 8). We also verify that the proposed VAE reliably encodes the dFC
time courses while no constraint is enforced during training (see Appendix 9).

Toward a whole-brain computational model By exploiting the gener-
ative capabilities of VAE, we obtain semantically continuous representations in the
latent space, which promotes versatility. The generated continuous brain pattern
labels cover the entire latent space. They also show a pooled organization of the
brain patterns (i.e., each brain pattern is mostly composed of a single connected
component) (Fig. 3.3-A). The accuracy of the brain pattern matching process is
measured by the confidence CM and the reliability RM maps. Interestingly, the
most strinking trend is that brain pattern boundaries are less reliable than cen-
tral locations (Fig. 3.3-C and D). With these maps, we gain confidence in using
continuous descriptors in the latent space. Finally, decoding dFCs on a 19 × 19
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Figure 5.6: Continuous stratification of the latent space of the selected VAE and corre-
sponding confidence and reliability maps: A) continuous representation of the Brain Pat-
terns (BPs), B) decoded dFCs from a regularly sampled 19× 19 grid in the latent space, C)
estimated confidence map CM, and D) estimated reliability mapRM.

regularly sampled grid in the latent space highlights the learned manifold struc-
ture. It noteworthy exhibits brain patterns gradient toward the origin (Fig. 3.3-B).
Overall, the generated low-dimensional representations capture dynamic signatures
of fluctuating wakefulness.

5.3.3 . Connection-wise simulations

We use external perturbations to further annotate the representation of differ-
ent states of consciousness. To this end, we first study the shift in latent space
induced by modifying a single connection of a dFC matrix. Using receptive field
analysis, we can identify preferred directions for moving from one state to another.
Second, we propose an ablation analysis to ensure that dimension reduction pre-
serves critical information about consciousness. For the latter, specific connections
related to the regions highlighted by one of the major theories of consciousness
(the GNW) are zeroed, and the induced displacement in latent space is examined.
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Figure 5.7: Results of RF analysis of the seven brain patterns and associated connections
with a high potential for action. Using the proposed connection-wise RF analysis, a lo-
cal perturbation model computed as an ellipse is derived at each encoded latent space
location. Note that to improve readability, each ellipse is scaled. The associated MD is
calculated. For each ellipse, the twenty connections that cause the most displacement in
the latent space are displayed using a circular layout.

Perturbation of connections to study transitions Using connection-
wise RF analysis, a tensor E is estimated at each latent space location. We propose
to focus on seven specific latent space locations that are obtained when encoding
the seven brain patterns with the VAE (see central plot in Fig. 5.7). From each
obtained tensor, we can characterize the overall potential for action (i.e., the chance
of generating a brain pattern transition) by the Mean Diffusivity (MD) (obtained by
averaging the tensor eigenvalues). We find that this potential for action is always
present but is small, lying in the interval [0.0068, 0.023]. Nevertheless, all tensors
obtained are anisotropic. Thus, it is possible to select the connections with the
highest probability of generating a brain pattern transition. In this study, we keep
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Figure 5.8: Ablation study performed from the GNW nodes. We evaluate the performance
of a trained SVM classifier in predicting the awake state using the balance accuracy (BAcc).
As input, we take only the raw or perturbed awake dFCs. We denote the corresponding pre-
diction scores asBAcc (vertical red dot line) and ˜BAcc (vertical blue dot line), respectively.
We also display the histogram of ¯BAcc

i when random connections are removed.

twenty connections (see circular plots in Fig. 5.7). It is also interesting to note
that the MD for BP7 is minimal, making it a "stable" pattern (i.e., a perturbation
of this pattern is unlikely to cause a shift in consciousness).

Ablation of connections for virtual experiments A connection-wise
ablation study shows an apparent decrease in BAcc in wakefulness prediction when
the GNW-associated connections are removed ( ˜BAcc << BAcc in Fig. 5.8).
Recall that the zeroed connections involve regions that are considered hubs in
GNW theory and thus central to the processing of conscious information. We verify
the significance of this decrease compared to random connection-wise ablations
(pval = 0.008). Thus, we show that a realistic state transition can be obtained
by modulating a network involved in consciousness. The connection-wise ablation
study highlights the relevance of the information captured in latent representations
and supports the ability of the trained VAE to be an attractive computational
model. To support this claim, we perform additional virtual ablation experiments
(see Appendix 10).

5.4 . Discussion

We propose the VAE-VIENT framework as a tool for finding consciousness-
related brain patterns, visualizing their organization, and their transitions. A VAE
generative model has already been used to capture the different states of con-
sciousness in a low-dimensional latent space. Here, we show that such a model
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with tailored low-dimensional representations can be used to characterize brain
dynamics over the dFCs. With low 2D-dimensional representations, the obtained
performances are better than other linear (here, the PPCA) and nonlinear (here,
the sVAE) generative models. However, this trend is not confirmed in higher di-
mensions (especially in 15D). It is generally accepted in neuroscience that simple
models of neural mechanisms can be remarkably effective. In conclusion, we show
that a 2D VAE model can i) generate a latent feature space stratified into a base of
brain patterns, and ii) reconstruct new brain patterns coherently and stably despite
the limited dataset size by exploiting the generative part of the model. Finally,
we argue that the VAE-VIENT framework provides a simulation-based whole-brain
computational model. Indeed, we show that the tensor fields generated from the RF
analysis can model brain pattern transitions and that the proposed ablation analysis
provides a unique way to non-invasively select target connections/regions. These
findings pave the way for medical applications such as depth of anesthesia moni-
toring, coma characterization, and accurate diagnosis of disorders of consciousness
in patients.

Dataset and preprocessing limitations This study has two major limi-
tations. First, our dataset is relatively small, which increases the risk of overfitting.
It will be necessary to perform tests with larger cohorts to validate our observa-
tions. One possibility is to use other studies of sleep and disorders of consciousness
in humans [7, 60, 193]. Note that these datasets are also limited. However, they
can be useful for validating the model with the ultimate goal of clinical translation.
Second, we are working with sliding windows-based dFCs and not directly with
time series. The former introduces hyperparameters that are not always easy to
optimize [221, 209, 166]. Nevertheless, from a methodological point of view, we
believe that working with sliding windows acts as a natural augmentation scheme
that helps during the deep learning training on our limited dataset (5 monkeys -
156 runs - 72384 dFCs). Moreover, from a neuroscientific point of view, we aim to
adhere to the dynamic representations of the brain originally described with dFCs
[245, 14]. Note that identical conclusions have been reached in humans, using a
phase-based dynamic functional coordination analysis, suggesting only a small bias
(if any) induced by sliding windows [60].

Repertoire of brain patterns and arousal levels This work highlights
that a 2D VAE preserves information related to brain patterns. Comparison of
brain patterns using Pearson correlation similarity shows that similar brain patterns
in the input space have closer latent representations (see Appendix 7, and Fig.
3.3-A). Looking at the last row of the correlation matrix between brain patterns,
we see that BP7 is highly correlated with BP3, BP4, BP5, and BP6. These patterns
are also direct neighbors in latent space. Conversely, the less correlated BP1, and
BP2 are not direct neighbors of BP7 in latent space. Thus, the global structure
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of brain patterns can be revealed by the discovered latent space. Moreover, the
performance of brain pattern classification is better than that of arousal level clas-
sification (awake vs. anesthetized) (see Appendix 6). We observe a 5% increase
in classification performance. Given the difficulty of the task (i.e., a 7-class classi-
fication problem vs. a binary classification problem), the model seems to focus on
the dynamic information shared between arousal levels. Similar conclusions were
reached in [14, 245], where the brain pattern repertoire was described as a set of
brain configurations that are unevenly distributed across arousal levels. In other
words, compared to arousal levels, brain patterns provide a more detailed descrip-
tion of states of consciousness. On the one hand, this property may be inherited
from the nature of the input data. Indeed, dFCs can be directly associated with
changes in consciousness over time [7, 245]. On the other hand, the difference
between levels of sedation (deep and moderate) in the present dataset is small
(i.e., only a difference of one level on the monkey behavioral scale) [245]. Such
a difference results in changes in reflexes (toe pinch, corneal reflex, shaking) but
not in voluntary behavior (response to juice presentation). Therefore, establishing
a direct relationship between a subject’s level of sedation and his or her level of
consciousness may be a more difficult task than characterizing overall brain dy-
namics. In addition, previous studies on the same dataset have shown that all
three anesthetics (propofol, sevoflurane, ketamine), despite different pharmacolog-
ical molecular mechanisms, imply the same dynamics of cortical activity measured
with dFCs [245]. Thus, it remains to be seen whether we are unable to separate the
different levels of consciousness because our data do not contain this information
or because our modeling is inadequate.

Considering the time course A drawback of the current model is its in-
ability to explicitly model the time course. We work with dynamic FC matrices,
but do not consider their order in each run. However, inspired by [242], we inves-
tigate how temporal information is encoded by a 2D VAE model (see Appendix 9).
Remarkably, the VAE-encoded latent variables have a coherent temporal structure
that exhibits transitions characteristic of consciousness, even though no constraint
is imposed during training. Other important features are the time spent consec-
utively in each pattern (previously called lifetime), the frequency of these steady
states, and the associated transitions. Interestingly, and as described in the lit-
erature [14], the brain pattern closest to the structure (BP7) is the most stable
pattern with the longest lifetime. The latter also occupies a central place in the
latent space around which other states are organized. The average lifetime is
also significantly higher in the awake state than in all other anesthetized states.
Similarly, the number of transitions is higher in the awake state than in all other
anesthetized states. Furthermore, there is almost no difference in the number of
transitions between different levels of anesthesia or between different anesthetics.
In order to interpret such results with more confidence, a time-dependent model
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seems essential. In the literature, some works have proposed modeling a time se-
ries with a VAE, where the encoder and decoder consist of LSTMs [142]. Other
works abandon the generative property and the decoder. For example, CEBRA is a
contrastive learning technique that allows label-informed time series analysis [215].
CEBRA jointly uses auxiliary variables and neural data in a hypothesis-driven man-
ner to generate consistent, time-aware latent representations. In all cases, the goal
remains the same: to obtain a consistent picture of the latent space that drives
activity and behavior. In future work, we plan to directly consider the time course
in the learning phase.

Performing virtual experiments An interesting finding is the ability of the
VAE model to simulate transitions induced by selective ablation of connectivity be-
tween pairs of brain areas, or even ablation of connectivity within a larger network.
Historically, ablation techniques have been used in animal models to directly test
the function of brain areas. For example, ablation techniques have directly linked
vision to the occipital lobe and auditory function to the temporal lobe [183, 171].
However, physical ablation/deactivation techniques are either irreversible or inva-
sive and lack spatial resolution and specificity, highlighting the need for virtual
ablation capabilities through the development of brain simulators [69]. Very few
studies have been able to simulate the deactivation of global brain networks with
the goal of suppressing consciousness. Here we present a model capable of simu-
lating a virtual experiment in which deactivation of the "macaque GNW network"
leads to suppression of consciousness. We believe that this simulation strengthens
the capabilities of the model and opens up further virtual experiments that can,
for example, test the specific effects of brain stimulation on consciousness [53].

Towardsnewbiomarkers of consciousness The 2D VAE model demon-
strates its ability to retain information about regions involved in conscious process-
ing, showing that disruption of the "GNW nodes" causes a switch from a conscious
to an unconscious state. It should be noted that only virtual inactivation of the
entire "GNW network" (and not inactivation of individual node-related connec-
tions, see Appendix 10) causes a consciousness transition. We focus on the GNW
theory of consciousness in this study because it has been translated from humans
to monkeys [243]. In future work, we plan to explore other frameworks of con-
sciousness, such as the Integrated Information Theory (IIT) [238, 12]. We can also
imagine testing other networks simply by trial-and-error simulations. Setting all
links connected to GNW nodes to zero is one of the limitations of the proposed
ablation simulation. In reality, it is not realistic to set all connections to zero, and
perhaps certain connections should be privileged (using a weighted modulation of
true connection values). Conversely, it would be of great interest to show the op-
posite effect, i.e., to find the regions that should be stimulated to switch from an
unconscious to a conscious state. As suggested by [193], this goal is challenging
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and probably requires simulation. Further analysis of connection-wise RF latent
space structure modeling will certainly be valuable in this context. In fact, the
RF analysis relates the different patterns that reflect the dynamics of the brain
(biological markers). The ellipsoids obtained in our work describe the most plausi-
ble connections to perturb in order to redirect trajectories and potentially restore
wakefulness. Studying the sequences of different trajectories in latent space paves
the way to a whole-brain computational model of conscious access. In other words,
RF analysis provides the unique ability to identify the pairs of nodes involved in
consciousness directly from the data. Changing one connection at a time is one of
the limitations of the proposed RF simulation. In reality, changing multiple connec-
tions at the same time may have a more significant effect. Finally, we believe that
the clinical and scientific applications are numerous. First, this approach allows
the description of new biomarkers of consciousness and anesthesia-induced loss of
consciousness. In addition, it is a unique tool to simulate the consequences of
targeted modulation of specific brain regions for the recovery of patients suffering
from disorders of consciousness. In this context, we hypothesize that the latent
space structure will be essential for dissecting the exact mechanisms of DBS. It
could help to build a general predictive model of the global brain effects of DBS.
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Conclusions and Perspectives

To conclude this thesis, I return to the hypotheses formulated in the chapter
about motivations (see 2.3.3), review a few limitations and propose a promising
perspective.

In Chapter 3, we presented the results of 3 contributions.
In the papers, Grigis, Gomez et al., Interpretable Signature of Consciousness in

Resting-State Functional Network Brain Activity (MICCAI 2022) [89] and Grigis,
Gomez, et al., Revisiting the standard for modeling functional brain network ac-
tivity: application to consciousness (preprint, 2024) [90], we were interested in
applying a latent variable model to the "Anesthesia" dataset to identify spatial
signatures linked to consciousness. Aligned with the GNW theory of conscious-
ness, the brain network comprising the frontal, parietal, and cingulate cortices
emerges as pivotal in distinguishing levels of consciousness. The MHA model fa-
cilitates the creation of an understandable brain decoding framework, presenting a
hallmark of consciousness and anesthesia-induced loss of consciousness. The model
yields outcomes that remain fairly unaffected by variations in different anesthetic
agents. Hence, it could be inferred that we are deriving a universal signature of con-
sciousness, distinct from potential indicators associated with a specific anesthetic
impact.

In the paper Gomez, et al. Exploration of the Neural Correlates of Conscious-
ness Using Linear Latent Model (ISBI 2023) [84], we replicated this analysis on the
"DBS" dataset. This analysis underscored the significance of two pertinent net-
works in the processing of conscious information in anterior (prefronto-cingular) -
posterior (parieto-cingular) networks, while affirming the beneficial influence of the
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CT-DBS stimulation on the restoration of consciousness signatures. Additionally,
the model identifies a network that captures the effects of stimulation. The model
effectively disentangles the various sources of signal variability, offering valuable
insights into evaluating the cortical impact of cerebral stimulation and identifying
regions susceptible to collateral damage.

These three contributions allow us to assert that latent variables models can
inform in an unsupervised way about cortical networks specifically related to con-
scious information processing, that was the first hypothesis.

In Chapter 4, we presented the results of one contribution.
In the paper Grigis, Gomez et al, Predicting Cortical Signatures of Conscious-

ness using Dynamic Functional Connectivity Graph-Convolutional Neural Networks
(preprint, 2022) [91], we employ a self-supervised contrastive learning strategy to
predict brain patterns. The BrainNetCNN gCNN model showcases good repro-
ducibility and accuracy in predicting BP. Its performance closely aligns with that
of a linear SVC when applied to the input dynamical FC data, underscoring the sim-
plicity or constraints imposed by the downstream classification task driven by the
K-means pseudo-labels. However, the acquired latent space demonstrates capabil-
ity to handle more complex tasks by acquiring intricate representations. Integration
of a self-supervised contrastive learning strategy helps alleviate the circularity as-
sociated with the pseudo-labels. Notably, BrainNetCNN’s predictions diverge from
those of K-means during transitions between brain patterns. Beyond its role as
a predictive tool, the proposed network exhibits the capacity to model dynamic
brain oscillations as the brain transitions between states, thereby generating state
signatures represented by sets of prominent connections. By delineating the most
influential connections in predicting specific brain patterns, it becomes feasible to
discern which connections are pivotal for discriminating between various levels of
wakefulness, thereby offering valuable insights into brain patterns. These maps
are anticipated to facilitate comprehension of the consciousness signature within
different brain patterns.

This contribution confirms the second hypothesis that latent variables encode
information about dynamics and transitions between states.

In the last chapter, Chapter 5, we presented the results of two contributions.
In papers Gomez et al., Characterization of Brain Activity Patterns Across

States of Consciousness Based on Variational Auto-Encoders. (MICCAI 2022)
[85] and Gomez et al. Deep learning models reveal the link between dynamic
brain connectivity patterns and states of consciousness. (Preprint 2024) [86],
we propose a VAE for finding consciousness-related dynamic brain patterns, vi-
sualizing their organization, and their transitions. A VAE generative model has
previously been utilized to capture various static states of consciousness within a
low-dimensional latent space. Here, we demonstrate that such a model, equipped
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with customized low-dimensional representations, can effectively characterize brain
dynamics across dFCs, surpassing the traditional categorical approach. Notably,
with low 2D-dimensional representations, the achieved performance exceeds that
of other linear (e.g., PPCA) and nonlinear (e.g., sVAE) generative models. How-
ever, this trend is not consistently observed in higher dimensions (e.g., 15D). In
summary, we illustrate that a 2D VAE model can delineate a latent feature space
stratified into a spectrum of brain patterns, and coherently and consistently recon-
struct new brain patterns despite the constraints of limited dataset size, leveraging
the generative aspect of the model. Furthermore, we contend that the VAE-VIENT
framework furnishes a simulation-based computational model of the entire brain.
Specifically, we demonstrate that tensor fields generated from the RF analysis can
effectively model brain pattern transitions, and the proposed ablation analysis offers
a non-invasive method for selecting target connections/regions.

These contributions validate the third hypothesis that the traditional categor-
ical approach does not account for the continuum of the dynamics of states of
consciousness. Although current studies in a therapeutic setting mainly aim at
characterizing static states, this continuum of dynamic states may be important
to consider. For exemple, consider the analogy of depicting a map of the world.
Typically, geographical proximity dictates the spatial arrangement: neighboring
countries are depicted close together on the map. This approach provides a use-
ful initial approximation when examining cultural aspects. However, when delving
into language distribution, this representation falls short in explaining phenomena
like why English is spoken in Gibraltar while Spanish is prevalent in some South
American countries and Portuguese in others. To elucidate such intricacies, one
must delve into historical trajectories – in essence, analyzing temporal dynam-
ics. Conversely, if our world map is based solely on the languages spoken in each
country as of 2024, it ceases to represent geographical features accurately. Conse-
quently, characterizing continents, or analogously, levels of consciousness, becomes
challenging.

As for the fourth hypothesis, that reducing the observation space to a very
low-dimension is sufficient to separate the levels of consciousness, while the ab-
lation experiment partly validates it, it requires further experiments to show its
generalizability to an external data set.

These contributions present original work, cross-referencing findings associated
with theories of consciousness in an unsupervised way. However, the data used are
limited, and the preliminary results found will need to be replicated on larger cohorts
for more far-reaching conclusions. Deep learning methods were exploited as part
of a computational approach to brain modeling, but we ultimately favored simpler
approaches in order to better answer certain questions and not over-dimension our
models. Black boxes undoubtedly have the potential to make brain function more
transparent, but they require an increased amount of data to elucidate conscious-
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ness.

In particular, an interesting perspective to this work comes from a method
belonging to the VAEs family, the Contrastive Analysis Variational Auto-encoders
(CA-VAEs). They are designed to distinguish between shared factors of variation
present in both a background dataset (BG) (i.e. representing healthy subjects)
and a target dataset (TG) (i.e. representing patients) and those unique to the
target dataset. These methods partition the latent space into distinctive features
specific to the target dataset (salient features) and those common to both datasets.
These methods, first applied to natural images [220, 1], have also been used on
medical images, in the context of autism [3], pneumonia radiographs [149] and
schizophrenic patients [149].

To understand better the interest of these methods, let me quote the intro-
ductory example of Louiset et al. [149]. Let’s consider two distinct datasets: 1)
a collection of neuro-anatomical MRIs from healthy individuals (BG=background
dataset), and 2) MRIs from patients diagnosed with Alzheimer’s disease (TG=target
dataset). Neuroscientists are often interested in discerning shared factors of varia-
tion, such as those related to aging, education, or gender, from specific markers of
Alzheimer’s disease, such as temporal lobe atrophy or an increase in beta-amyloid
plaques. Until recently, disentangling the complex interplay of latent mechanisms
underlying neuro-anatomical variability in neurodegenerative disorders was deemed
challenging. This complexity arises from the overlapping effects of natural ag-
ing and the progression of neurodegenerative diseases. The intertwined nature
of these processes has made it difficult to interpret potential discoveries of new
biomarkers. The aim of developing a Contrastive Analysis method is to facilitate
the separation of these processes. In the shared features space, patterns associated
with aging should correlate with typical cognitive decline observed in healthy indi-
viduals, while salient features (i.e., Alzheimer’s-specific patterns) should correlate
with pathological cognitive decline characteristic of Alzheimer’s disease. SepVAE
[149], in particular, introduces two critical regularization losses: one that disentan-
gles common and salient representations and another that classifies background
and target samples within the salient space. It demonstrates superior performance
compared to previous CA-VAEs methods.

In the case of studies of functional connectivity, such methods, transposed to
the context of disorders of consciousness, also have their place. While our model
highlighted major network differences between awake and anesthetized, stimulated
and unstimulated brains, and confirmed the role of DBS in conscious arousal, we
did not finely model the different sources of variability present in our data. How-
ever, we know that certain networks detected by the method are artifactual, notably
the visual network during the study of consciousness on the "Anesthesia" dataset,
or the network associated with stimulation, which is localized around the electrode
used on the "DBS" dataset. As these networks are likely not involved in conscious-
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ness, we would like the learned representations to ignore them, and better still, for
the model to categorize this information as a bias automatically. In order to model
this, we would like to apply contrastive analysis to our data. The general idea is to
separate the latent space into two, with a first block of latent variables modeling
the specific variability linked to awareness and another block capturing the general
variability linked to acquisition conditions. This would enable us to focus on the
mechanisms induced by the variations in consciousness generated by a DBS, while
remaining invariant to the acquisition conditions. This method would help refine
our first model by denoising our data, enabling highly accurate detection of vari-
ations caused directly by DBS or other factors. This would help refine the use of
DBS for patients with disorders of consciousness, improving therapeutic targets.

Finally, and because we know that one of our project’s main limitations is the
lack of data, we wanted to emphasize that this thesis is part of a FAIR (Findable,
Accessible, Interoperable, Reusable) research project. No new data has been ac-
quired. We are re-using data, for an activity other than the one initially planned
at the time of collection, which generates a certain number of challenges (lack of
data, sparsity of conditions, challenges of preprocessing reproducibility, constraints
of choices made beforehand). But reuse also saves time and money: the cost of
creating, collecting and processing data can be very high. Reusing existing data
rather than recreating it makes the time spent on acquisition more profitable. In
the context of research using animal data, which is increasingly criticized, reusing
data to extract the maximum amount of information before repeating experiments
also seems fundamental to us. It also enables reproducibility to be tested and inter-
disciplinarity to be added: having larger databases, linked to several experiments,
enables data to be searched, cross-referenced and visualized. Data management
and sharing facilitate new research and the cross-fertilization of data from different
disciplines, as here at the intersection of machine learning and neuroscience.
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Appendix 1

Arousal scale based on the monkey sedation scale (behav-
ior) and EEG

Arousal scale based on the monkey sedation scale (behavior) and EEG for propo-
fol, respectively ketamine anesthesia Note: Response to juice presentation: the
experimenter presents a syringe with juice/water. (+) if the monkey drinks, (-) if the
monkey fails to drink. Spontaneous movements: (+) if the monkey exhibits spon-
taneous movements, (-) if spontaneous movements are absent. Shaking/prodding:
(+) if the monkey exhibits a response (body movement, eye blinking, eye opening,
cardiac rate change) on Shaking/prodding, (-) if there is no response. Toe pinch:
(+) if the monkey exhibits a response (body movement, eye blinking, eye opening,
cardiac rate change) to toe pinch, (-) if there is no response. Corneal reflex: (+) if
the corneal reflex is present, (-) if the corneal reflex is absent. From [244]
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Appendix 2

Number and name of the 82 ROIs of the CoCoMac atlas

Supplementary Table 7: Number and name of the 82 ROIs 
 Region Number Region Name 

Left Hemisphere 1 Templar polar cortex 
  2 Superior temporal cortex 
  3 Amygdala  
  4 Orbito-inferior prefrontal cortex 
  5 Anterior insula  
  6 Orbito-medial prefrontal cortex 
  7 Central temporal cortex 
  8 Orbitol-ateral prefrontal cortex 
  9 Inferior temporal  
  10 Parahippocampal cortex 
  11 Gustatory cortex 
  12 Ventro-lateral premotor cortex 
  13 Anterior visual area (ventral) 

  14 Posterior insula  
  15 Prefrontal polar cortex 
  16 Hippocampus  
  17 Subgenual cingulate cortex 
  18 Ventrolateral prefrontal cortex 
  19 Visual area 2  
  20 Medial prefrontal cortex 
  21 Ventral temporal cortex 
  22 Anterior visual area (dorsal) 
  23 Visual area 1  
  24 Centrolateral prefrontal cortex 
  25 Secondary auditory cortex 
  26 Retrosplenial cingulate cortex 
  27 Posterior cingulate cortex 
  28 Anterior cingulate cortex 
  29 Secondary somatosensory cortex 
  30 Primary somatosensory cortex 
  31 Primary auditory cortex 
  32 Primary motor cortex 
  33 Inferior parietal cortex 
  34 Medial parietal cortex 
  35 Dorsomedial prefrontal cortex 
  36 Intraparietal cortex 
  37 Superior parietal cortex 
  38 Frontal eye fields  
  39 Dorso-lateral prefrontal cortex 
  40 Medial premotor cortex 
  41 Dorso-lateral premotor cortex 

Right Hemisphere 42 Templar polar  
  43 Superior temporal cortex 
  44 Amygdala  
  45 Orbito-inferior prefrontal cortex 
  46 Anterior insula  
  47 Orbito-medial prefrontal cortex 
  48 Central temporal cortex 
  49 Orbito-lateral prefrontal cortex 
  50 Inferior temporal  
  51 Parahippocampal cortex 
  52 Gustatory cortex 
  53 Ventro-lateral premotor cortex 
  54 Anterior visual area (ventral) 

  55 Posterior insula  
  56 Prefrontal polar cortex 
  57 Hippocampus  
  58 Subgenual cingulate cortex 
  59 Ventro-lateral prefrontal cortex 
  60 Visual area 2  
  61 Medial prefrontal cortex 
  62 Ventral temporal cortex 
  63 Anterior visual area (dorsal) 
  64 Visual area 1  
  65 Centrolateral prefrontal cortex 
  66 Secondary auditory cortex 
  67 Retrosplenial cingulate cortex 
  68 Posterior cingulate cortex 
  69 Anterior cingulate cortex 
  70 Secondary somatosensory cortex 
  71 Primary somatosensory cortex 
  72 Primary auditory cortex 
  73 Primary motor cortex 
  74 Inferior parietal cortex 
  75 Medial parietal cortex 
  76 Dorsomedial prefrontal cortex 
  77 Intraparietal cortex 
  78 Superior parietal cortex 
  79 Frontal eye fields  
  80 Dorso-lateral prefrontal cortex 
  81 Medial premotor cortex 
  82 Dorso-lateral premotor cortex 

From [245]
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Appendix 3

Brain networks derived from different atlas

The derived BNs consist of sets of unique ROIs represented by their centroids for
the CoCoMac (k=4) and CIVMR (k=7) atlases.
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Appendix 4

Listing of the networks inferred from the CoCoMac atlas
with k=3

name hemi location
CCp posterior cingulate cortex left, right cingulate cortex
CCa anterior cingulate cortex left, right cingulate cortex
S1 primary somatosensory cortex left, right parietal cortex
PCi inferior parietal cortex left, right parietal cortex
PCm medial parietal cortex left, right parietal cortex
PCip intraparietal cortex left, right parietal cortex
PCs superior parietal cortex left, right parietal cortex
M1 primary motor cortex left, right frontal cortex
FEF frontal eye field left, right frontal cortex
PMCm medial premotor cortex left, right frontal cortex
PMCdl dorsolateral premotor cortex left, right frontal cortex
PMCvl ventrolateral premotor cortex left, right frontal cortex
PFCdm dorsomedial prefrontal cortex left, right frontal cortex
G gustatory cortex left, right gustatory cortex

Listing of the network 1. The detected GNW areas are depicted in blue, and the
associated sensory areas in green.

name hemi location
TCpol temporal polar left, right temporal cortex
Amyg amygdala right temporal cortex
PFCoi orbitoinferior prefrontal cortex left, right frontal cortex
PFCom orbitomedial prefrontal cortex left, right frontal cortex
PFCol orbitolateral prefrontal cortex left, right frontal cortex
PFCpol prefrontal polar cortex left, right frontal cortex
PFCvl ventrolateral prefrontal cortex left, right frontal cortex
PFCm medial prefrontal cortex left, right frontal cortex
PFCcl centrolateral prefrontal cortex left, right frontal cortex
PFCdl dorsolateral prefrontal cortex left, right frontal cortex
CCs subgenual cingulate cortex left, right cingulate cortex

Listing of the network 2. The detected GNW areas are depicted in blue, and the
associated sensory areas in green.

157



name hemi location
TCs superior temporal cortex left, right temporal cortex
Ia anterior insula left, right insular cortex
Ip posterior insula left, right insular cortex
A2 secondary auditory cortex left, right temporal cortex
S2 secondary somatosensory cortex left, right parietal cortex
A1 primary auditory cortex left, right temporal cortex
TCc central temporal cortex left, right temporal cortex
CCr retrosplenial cingulate cortex right cingulate cortex
TCi inferior temporal left temporal cortex

Listing of the network 3. The detected GNW areas are depicted in blue, and the
associated sensory areas in green.
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Appendix 5

Dropout regularization in sVAE training

During sVAE training, parsimonious and interpretable representations
are enforced by variational dropout. Model selection in latent space can then
be achieved using this technique. Here, the dropout rate after convergence
is shown when the initial latent dimensions are set to 32 (Fig. 1). Note
that the learned dropout rate is highly contrasted. For this reason, model
selection can be done by keeping the latent dimensions that meet a suitable
dropout rate threshold. We can see that it is possible to safely select the
best model with a threshold p < 0.2 (as proposed in the original paper [8]).

Appendix 5—figure 1: sVAE estimated dropout rate.
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Appendix 6

Model evaluation using arousal conditions

The proposed model evaluation relies on the brain pattern labels. In-
deed, it has been shown that these labels can effectively represent the dif-
ferent configurations of the brain [14, 245]. Here, we re-evaluate the re-
construction quality, classification accuracy, and consensus metric using a
different set of labels composed of the arousal conditions. In particular, we
address a binary classification problem between the awake and the anes-
thetized data (where all the associated acquisition conditions are grouped
together). First, the dFCs are well reconstructed for all models when looking
at the reconstruction quality (using the structural similarity (SSIM) metric)
(Fig. 1). We note that i) for the VAEs, the chosen β has little effect on
the reconstruction, ii) for the PPCA baseline, increasing the latent space
improves the reconstruction, but this is not the case for the nonlinear mod-
els, and iii) the sVAE with the chosen fifteen dimensions performs best.
Second, it does not seem trivial to classify a dFC matrix as belonging to the
conscious or unconscious category. This is consistent with previous findings
showing that dFC matrices of one condition can be associated with different
brain patterns [245]. Finally, looking at the consensus metric, the least con-
strained VAE models (β = 0.5 and β = 1) perform best in low dimensions
(Fig. 3). Beyond three dimensions, the PPCA stands out. This may be due
to the "relative" simplicity of our task.

Appendix 6—figure 1: VAE, PPCA, sVAE reconstruction quality: SSIM of label-wise
averaged dFCs with respect to the β regularization parameters.

160



Appendix 6—figure 2: VAE, PPCA, sVAE classification accuracy: BAcc between the
ground truth and the matched predicted labels.

Appendix 6—figure 3: The proposed consensus metricM.
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Appendix 7

Additional brain pattern analyses

The 2D latent representations obtained with a VAE2 can be stratified
using the brain pattern (BP) labels. To quantify the overlap between brain
pattern locations in latent space, we use the Dice similarity coefficient (Tab.
1). The Dice metric yields values between 0 (no spatial overlap) and 1 (com-
plete overlap) [64]. Unfortunately, the Dice metric can only be applied to
array-like data. Therefore, we choose to perform a brain pattern-wise re-
gridding (using a 60 x 60 grid) of the obtained latent representations, which
produces a binary array-like support per brain pattern (numbered 1 to 7).
The Pearson correlation matrix between the brain patterns further describes
the studied brain repertoire (Fig. 1). Overall, these two experiments allow
us to better characterize the learned latent space in terms of brain patterns.

BP 1 2 3 4 5 6 7
Dice 0.24±0.17 0.07±0.11 0.24±0.15 0.32±0.20 0.24±0.16 0.28±0.08 0.37±0.19

Appendix 7—table 1: Averaged across folds Dice coefficients and associated
standard deviations for each BP embedding.

Appendix 7—figure 1: Correlation matrix between brain patterns.
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Appendix 8

Explore learned latent representations with different labels

The present study focuses on brain pattern labels. Indeed, it has been
shown that these labels can effectively represent the different configurations
of the brain [14, 245]. Two different sets of labels are considered below.
First, the subjects to investigate whether the VAE2 has incorrectly learned
subject-specific information (i.e., there is some overfitting during training
in our small dataset) (Fig. 1). Second, the acquisition conditions to verify
that no anesthetic effect (known to have different vascular effects) can be
observed in the latent representations (Fig. 2).

Appendix 8—figure 1: Stratification of VAE2 latent representations by subject.
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Appendix 8—figure 2: Stratification of VAE2 latent representations by acquisition
conditions.
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Appendix 9

Temporal structure encoded in latent space

Following the idea of [242] to study meta-transitions between brain con-
figurations, we examine the encoding of temporal information using the se-
lected VAE2. While no modeling of the acquisition time course is enforced
during training, the encoded latent variables have a coherent temporal struc-
ture (Fig. 1). This is a sign of successful modeling. It is then possible to
examine the temporal transitions within the same run by calculating the Eu-
clidean distance between each successive encoded time point (i.e., replaying
the dFC movie) (Fig. 2). Stable periods have a Euclidean distance close to
zero, and a transition occurs when a jump in the metric is observed (indi-
cated by blue crosses). Transitions between brain configurations have stable
periods, which we call meta-stable states. The average lifetime of a meta-
stable state, i.e. the time spent continuously in this state, is significantly
higher in the awake state than in all other anesthetized states (Fig. 3). Sim-
ilarly, the number of transitions is higher in the awake state than in all other
anesthetized states (Fig. 3). Interestingly, there is almost no difference
between different levels of anesthesia or between different anesthetics.

Appendix 9—figure 1: Latent representations of six runs, one per arousal con-
dition.
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Appendix 9—figure 2: The Euclidean distance between two consecutive time
points for each run previously selected. Blue crosses mark transitions.

Appendix 9—figure 3: Meta-stable state lifetime and transition occurrence dis-
tributions across acquisition conditions.
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Appendix 10

Additional virtual ablation experiments

The proposed ablation analysis provides a unique way to non-invasively
select target connections/regions. First, the GNW key regions are expanded
to include primary sensory regions, primary somatosensory cortex S1, pri-
mary auditory cortex A1, and visual area V1. When the awake state is
altered, the addition of these target regions in the ablation study further
increases the statistical significance of the results (Fig. 1). However, per-
haps only a few important regions drive the prediction performance. Thus,
in the proposed analysis, instead of removing all GNW-related connections,
only one GNW-related connection is removed. By using all combinations,
the histogram of prediction performance is computed (Fig. 2). In con-
clusion, removing one GNW-related connection is insufficient to produce a
significant shift in awareness.

Appendix 10—figure 1: Ablation study considering GNW and sensory related
connections.

Appendix 10—figure 2: Ablation study considering GNW-related connections
one by one. The resulting histogram of prediction performance is shown in red.
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Appendix 11

Résumé en français

Le diagnostic des patients dans le coma est souvent difficile. Les exam-
ens cérébraux renseignent les médecins sur l’étendue des lésions cérébrales
mais ne permettent pas de déterminer avec précision l’état de conscience
du patient. De plus, aucune approche thérapeutique ne permet une restau-
ration systématique de la conscience. Des études pionnières menées sur des
patients et des Primates Non Humains (PNH) ont montré que la Stimulation
Cérébrale Profonde (SCP) des noyaux intralaminaires du thalamus pouvait
restaurer ou améliorer la conscience lorsqu’elle est altérée. Cependant, les
conséquences corticales associées à la SCP restent largement inconnues et
imprévisibles. Les techniques d’imagerie fonctionnelle, telles que l’Imagerie
par Résonance Magnétique fonctionnelle de repos (IRMf de repos), peuvent
aider à identifier des signatures de la conscience. L’activité cérébrale au
repos, organisée en réseaux, peut être modélisée à l’aide de la connectivité
fonctionnelle. Cette thèse vise à disséquer, à l’aide du modèle PNH, les
effets sur la connectivité fonctionnelle d’une modulation de la conscience
induite par des agents anesthésiques ou de la SCP à l’échelle du cerveau
entier. Cela nécessite le développement de modèles interprétables et prédic-
tifs des effets d’une telle modulation sur la fonction cérébrale globale. Nous
travaillons principalement sur deux jeux de données précédemment acquis :

• jeu de données ANESTHÉSIE : IRMf acquise chez des PNHs dans
des conditions d’éveil et d’anesthésie avec différents anesthésiants
[14, 245].

• jeu de données SCP : IRMf acquise chez des PNHs dans des conditions
d’éveil et d’anesthésie avec différents anesthésiants, avec ou sans SCP
[234].

Nous émettons l’hypothèse que l’identification de variables latentes dans
les signaux IRMf de repos peut nous informer sur la modulation des états
de conscience.

Dans le Chapitre 3, tout d’abord, nous cherchons à identifier une sig-
nature spatiale, moyennée temporellement, de la conscience à la fois dans
l’état éveillé et sous anesthésie. Nous y présentons les résultats de trois
contributions. Nous utilisons une méthode à variables latentes (le MHA)
qui décompose les signaux IRMf de repos en réseaux fonctionnels associés
à l’accès conscient. Dans les articles Grigis, Gomez et al (MICCAI 2022)
[89] et Grigis, Gomez, et al, (preprint, 2024) [90], nous appliquons ce mod-
èle sur le jeu de données ANESTHESIE. Le réseau cérébral comprenant les
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cortex fronto-parieto-cingulaire apparaît comme central dans la distinction
des niveaux de conscience. Le modèle fait donc ressortir de manière au-
tomatique, un résultat en accord avec une grande théorie de la conscience,
la théorie du Global Neuronal Workspace (GNW). Le modèle MHA permet
d’aider au décodage cérébral, mettant en valeur une signature de la con-
science et de la perte de conscience induite par l’anesthésie. Les résultats
ne sont pas affectés par les variations entre différents agents anesthésiques.
Nous pouvons donc en déduire que nous obtenons une signature globale
de la conscience, distincte des effets potentiels associés à un anesthésiant
spécifique. Afin d’étudier la restauration de la conscience, nous étendons
cette analyse aux PNH éveillés ou réveillés par DBS du thalamus central.
Pour cela, dans l’article Gomez, et al. (ISBI 2023) [84], nous appliquons le
MHA sur le jeu de données SCP. Le modèle suggère de manière automa-
tique que le cortex antérieur (préfronto-cingulaire) et le cortex postérieur
(pariéto-cingulaire) sont tous deux impliqués dans la conscience, un sujet
qui fait débat au sein de la communauté scientifique. L’analyse confirme
également l’influence positive de la SCP du thalamus central sur la restaura-
tion des signatures de la conscience. En outre, le modèle identifie un réseau
qui capture les effets de la stimulation. Le modèle démêle efficacement
les différentes sources de variabilité du signal, offrant des indications pré-
cieuses pour l’évaluation de l’impact cortical de la stimulation cérébrale et
l’identification des régions susceptibles de subir des dommages collatéraux.
Ces trois contributions nous permettent d’affirmer que les modèles de vari-
ables latentes peuvent informer de manière non supervisée sur les réseaux
corticaux spécifiquement liés au traitement de l’information consciente.

Suite à cette analyse moyennée temporellement, reconnaissant l’importance
de la dynamique temporelle dans l’analyse de la conscience, nous pro-
posons de remettre en question les méthodes conventionnelles de connec-
tivité fonctionnelle dynamique. Pour identifier les schémas récurrents domi-
nants (c’est-à-dire les différents états du cerveau) à partir de la connectivité
fonctionnelle, une technique d’apprentissage automatique non supervisée
(K-Means) a été proposée précédemment. Dans le cadre de cette thèse,
nous développons de nouveaux outils d’analyse en tirant parti des avancées
des techniques d’apprentissage profond auto-supervisé.

Dans le Chapitre 4, nous utilisons un modèle d’apprentissage profond
auto-supervisé contrastif pour prédire les schémas cérébraux caractéristiques
de différents états de conscience (Grigis, Gomez et al (preprint, 2022) [91]).
Ses performances s’alignent étroitement sur celles d’un modèle linéaire SVC
soulignant la simplicité de la tâche de classification en aval, guidée par les
résultats du K-means. Toutefois, l’espace latent acquis démontre la capacité
du modèle à traiter des tâches plus difficiles en acquérant des représentations
complexes. L’intégration d’une stratégie d’apprentissage contrastif auto-
supervisé permet d’atténuer la circularité associée aux pseudo-étiquettes du
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K-means. Notamment, les prédictions du modèle divergent de celles du K-
means lors des transitions entre les schémas cérébraux. Au-delà de son rôle
d’outil prédictif, le réseau proposé présente la capacité de modéliser les oscil-
lations dynamiques du cerveau lorsque celui-ci passe d’un état à l’autre. Il est
alors possible de générer une carte des connexions prédominantes impliquées
dans les changements d’états. En délimitant les connexions les plus influ-
entes dans la prédiction de schémas cérébraux spécifiques, il devient possible
de discerner les connexions qui sont essentielles à la discrimination entre les
différents niveaux d’éveil, offrant ainsi des informations précieuses sur les
schémas cérébraux. Cette contribution confirme que les variables latentes
encodent des informations sur la dynamique et les transitions entre les états.

Enfin, pour mieux comprendre la dynamique des états de conscience,
dans le Chapitre 5, nous nous écartons du cadre conventionnel de classifica-
tion en sous-groupes et introduisons une méthode de réduction de dimen-
sions. Cette approche vise à condenser les états de conscience en un nom-
bre limité de variables interprétables et explicables. Dans les contributions
Gomez et al. (MICCAI 2022) [85] et Gomez et al. (Preprint 2024) [86],
nous proposons un Auto-Encoder Variationel (VAE) pour trouver une or-
ganisation dynamique d’états cérébraux, visualiser leur organisation et leurs
transitions. Un modèle génératif de VAE a déjà été utilisé pour capturer
divers états statiques de la conscience dans un espace latent de faible di-
mension (différentes phases du sommeil par exemple). Nous démontrons ici
qu’un tel modèle, à deux variables latentes, peut caractériser efficacement la
dynamique cérébrale à travers les matrices de connectivité fonctionnelle dy-
namique, surpassant l’approche catégorielle traditionnelle du K-means. En
deux dimensions, les performances du VAE dépassent celles d’autres mod-
èles génératifs linéaires (par exemple, la PCA probabiliste) et non linéaires
(par exemple, le VAE sparse). Toutefois, cette tendance n’est plus ob-
servée dans des dimensions plus élevées (par exemple, en 15 dimensions).
En résumé, nous montrons qu’un modèle VAE 2D fait apparaître un espace
de caractéristiques stratifié suivant les schémas cérébraux, et qu’il permet
de reconstruire de manière cohérente de nouveaux schémas cérébraux, en
tirant parti de l’aspect génératif du modèle. De plus, les simulations réal-
isées (étude du champs récepteur et étude d’ablation) offrent une première
approche pour modéliser des transitions entre schémas cérébraux. Elles
peuvent aussi servir de méthodes non invasives pour sélectionner les con-
nexions/régions cibles impliquées dans le passage vers l’éveil conscient.

Ces contributions présentent un travail original, recoupant des résultats
associés à des théories de la conscience de manière non supervisée. Toute-
fois, les données utilisées sont limitées et les résultats préliminaires obtenus
devront être reproduits sur des cohortes plus importantes pour obtenir des
conclusions plus ambitieuses. Les méthodes d’apprentissage profond ont été
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exploitées dans le cadre d’une approche computationnelle de la modélisation
du cerveau, mais nous avons finalement privilégié des approches plus simples
afin de mieux répondre à certaines questions et de ne pas surdimensionner
nos modèles. Les boîtes noires ont sans aucun doute le potentiel de rendre
le fonctionnement du cerveau plus transparent, mais elles nécessiteront une
quantité accrue de données pour élucider le mystère de la conscience.
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