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Considerate la vostra semenza:

fatti non foste a viver come bruti ma per seguir virtute e canoscenza.

— Dante Alighieri,
Inferno, Canto XXVI, vv.118-120



Abstract

Full-Field cosmological inference with weak lensing:
from automatic differentiation to neural density

estimation

The upcoming stage-IV Dark Energy surveys, such as Euclid and LSST, will ob-
serve the Universe with unprecedented accuracy, allowing us to investigate fundamental
problems in cosmology. These surveys will use weak gravitational lensing as one of the
main probes to investigate the origin of the accelerated expansion of the Universe and
the properties of its dark matter component. However, traditional cosmological infer-
ence for weak gravitational lensing has two important limitations: First, the two-point
statistics do not fully extract the non-Gaussian information from cosmological data.
Second, even for the two-point statistics, writing down an accurate model for the like-
lihood function can be very arduous (small-scale uncertainties, non-Gaussian signals,
etc.). In recent years, it has been shown that statistics of order higher than a sec-
ond can help to access non-Gaussian information, nevertheless, these approaches are
characterized by the absence of analytical models to describe the observed signal and
require calibrating the cosmology inference from weak lensing simulations. One possi-
ble way to circumvent an explicit likelihood consists in using Likelihood-free inference
methods. These methods estimate posterior distributions through forward modeling of
simulated data. Alternatively, Bayesian forward-modeling methods can be used, which
integrate observations into a forward model, enabling the exact reconstruction of the
likelihood.

All the methodologies and developments in this thesis work towards two major
goals: making fast approximated simulations suitable for the data analysis pipeline
of upcoming cosmological surveys and investigating forward modeling techniques to
exploit the potential of next-generation weak lensing data.
In this context, we have developed and validated the Differentiable Lensing Lightcone
(DLL) package within the LSST framework. DLL is a fully automatically differentiable
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physical model designed for fast inference, aiming to achieve high accuracy with low
computational costs. The DLL tool is designed to be used as a forward model in
Bayesian inference algorithms requiring access to the derivatives of the likelihood of
the model. We have also developed a new correction scheme to enhance the accuracy
of quasi-N-body simulations, aiming to replicate the precision of high-resolution N-
body simulations. Finally, we investigate the performance of different procedures to
optimally extract informative summaries obtained from mock weak lensing mass maps
compressed using Convolution Neural Networks.

Keywords: Weak gravitational lensing; cosmology; higher order statistics; cosmolog-
ical simulations; Dark energy; automatic differentiation;



Résumé de la thèse en français

Inférence cosmologique plein champ avec lentillage
faible: de la différenciation automatique à

l’estimation neuronale de la densité

Les prochaines études sur l’énergie noire de phase IV, telles que Euclid et LSST, ob-
serveront l’Univers avec une précision sans précédent, ce qui nous permettra d’étudier
des questions non résolues dans la cosmologie actuelle. Ces études utiliseront l’effet de
lentille gravitationnelle faible comme l’une des principales sondes pour étudier l’origine
de l’expansion accélérée de l’Univers et les propriétés de sa composante de matière
noire. Cependant, l’inférence cosmologique traditionnelle pour l’effet de lentille grav-
itationnelle faible présente deux limites importantes : Premièrement, les statistiques
en deux points ne permettent pas d’extraire pleinement les informations non gaussi-
ennes des données cosmologiques. Deuxièmement, même pour les statistiques en deux
points, l’élaboration d’un modèle précis pour la fonction de vraisemblance peut être
très ardue (incertitudes à petite échelle, signaux non gaussiens, etc.). Ces dernières
années, il a été démontré que les statistiques d’ordre supérieur à deux peuvent aider à
accéder à l’information non gaussienne. Néanmoins, ces approches sont caractérisées
par l’absence de modèles analytiques pour décrire le signal observé et nécessitent de
calibrer l’inférence cosmologique à partir de simulations de lentillage faible. Une façon
de contourner une vraisemblance explicite consiste à utiliser des méthodes d’inférence
sans vraisemblance. Ces méthodes estiment les distributions postérieures par le biais
d’une modélisation à partir des données simulées. Il est également possible d’utiliser des
méthodes bayésiennes de modélisation, qui intègrent les observations dans un modèle,
permettant la reconstruction exacte de la vraisemblance.

Toutes les méthodologies et les développements de cette thèse visent deux objectifs
principaux : faire des simulations rapides et approximatives adaptées au chaîne de
traitement et d’analyse des données des prochaines études cosmologiques et étudier les
techniques de modélisation pour exploiter le potentiel des données de lentillage faible
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de la prochaine génération.
Dans ce contexte, nous avons développé et validé le paquet Differentiable Lensing Light-
cone (DLL) dans le cadre du LSST. DLL est un modèle physique différentiable entière-
ment automatique conçu pour de l’inférence rapide, visant à atteindre une grande préci-
sion avec de faibles coûts de calcul. L’outil DLL est conçu pour être utilisé comme mod-
èle direct dans les algorithmes d’inférence bayésienne nécessitant l’accès aux dérivées
de la vraisemblance du modèle. Nous avons également développé un nouveau schéma
de correction pour améliorer la précision des simulations d’un quasi-système à N corps,
visant à reproduire la précision des simulations d’un système à N corps à haute résolu-
tion. Enfin, nous étudions les performances de différentes procédures pour extraire de
manière optimale les résumés informatifs obtenus à partir de cartes de masse de faibles
lentilles fictives comprimées à l’aide de réseaux neuronaux de convolution.

Mots clés: Lentillage gravitationnel faible; Statistiques d’ordre supérieur; Paramètres
cosmologiques; Grandes structures de l’Univers; Simulations cosmologiques; Énergie
noire; Différenciation automatique;



Introduction

The typical description of the Universe’s evolution encompasses its transformation from
a homogeneous state following the Big Bang to the currently observed hierarchical
structure, including galaxies, galaxy clusters, and superclusters. This description is
typically based on our current understanding of the initial condition of the Universe and
the nature of gravity, as well as on the assumption of the existence of two components:
dark energy and dark matter. According to current cosmology, dark energy represents
68% of the energy density of the Universe and is the cause of the accelerating expansion
of the Universe, while dark matter constitutes 27% of the energy density. However, to
date, there are no incontrovertible theoretical explanations or undeniable evidence for
the nature of dark energy and dark matter.

In the absence of a trusted theoretical guide, observational exploration becomes the
primary tool to understand the composition of the Universe. The upcoming Stage-IV
galaxy experiments, such as the Legacy Survey of Space and Time (LSST) at the Vera
C. Rubin Observatory, the Euclid mission by the European Space Agency, and the
Roman Space Telescope, will try to answer some of these questions, primarily focusing
on observing and studying the effects of dark energy and dark matter. Among the key
probes used in these future galaxy surveys is weak gravitational lensing. Gravitational
lensing refers to the phenomenon where massive objects located between an observer
and background sources cause a curvature in space-time, resulting in a deviation of
light coming from these background sources. These deviations subsequently distort the
original image of the source, providing a powerful means to investigate the distribution
of total matter responsible for the distortion. When these deformations are very small,
it is referred to as the weak lensing regime.

We need to develop a statistical strategy to extract cosmological information from
weak lensing observations. This is typically done by selecting specific summary statis-
tics and comparing them with the predictions of a given model. Traditional weak
lensing summary statistics rely on two-point statistics, namely the two-point corre-
lation function of the data or its Fourier transform, known as the power spectrum.
Although widely used in past analyses, we are aware of their limitations. Indeed, it
is known that second-order statistics fail to fully extract the non-Gaussian informa-
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tion from cosmological data. This has led to the introduction of several higher-order
statistics, such as the weak lensing one-point PDF, lensing peak counts, Minkowski
functionals, moments of mass maps, wavelet and scattering transforms, and 3-point
statistics. Recently, machine learning-based methods and Bayesian forward-modeling
frameworks have also been introduced to attempt to fully account for the non-Gaussian
content in the weak lensing signal.
We will discuss some of these statistics in more detail in the following chapters, but we
might already be wondering, which of these options is the best, enabling us to maximize
the amount of information extracted from this data. Next-generation surveys will pro-
vide measurements of billions of galaxy shapes with unprecedented accuracy, accessing
highly non-linear scales and generating vast amounts of data. In general, the process of
extracting cosmological information from input data can be seen as comprising several
tasks, each with its associated challenges. Specifically, throughout this thesis, we will
ask: Which statistics most effectively constrain our cosmological parameters? What is
the optimal inference strategy? How can we compress our input data without losing
sensitive information? How can we address the fundamental limits of computation?

The primary goal of this thesis is to attempt to answer some of these questions and
to develop a physical inference framework suitable for a stage-IV dark energy survey,
with the aim of fully exploiting the potential of next-generation data.
The content of this thesis is structured as follows: in the first part, composed of chap-
ter 1, chapter 2, and chapter 3, I provide the theoretical tools required to understand
the rest of the thesis. Specifically, in chapter 1, I introduce the standard model of cos-
mology, the homogeneous Universe, the inhomogeneous cosmic web, the consequences
of expansion, and the principles of formation and growth of structures. chapter 2 out-
lines the formalism of numerical simulations, starting by describing in more detail the
growth of structures from initial conditions to the observed matter distribution that we
observe today and concluding by presenting the state of the art of current cosmological
simulations. chapter 3 delves into the weak lensing formalism, second-order summary
statistics, examples of statistics beyond the second order, and various systematic effects
related to weak lensing observables. In chapter 4, I introduce some useful Bayesian
statistical tools necessary for chapter 7.

In chapter 5 and chapter 6 I describe the contributions of my PhD work. Specif-
ically, in chapter 5, I present the results of a work in which we developed a new
correction scheme for quasi-N-body simulations aimed at mimicking the precision of
high-resolution N-body simulations. Indeed, despite being fast and having low compu-
tational costs, quasi-N-body schemes lack force resolution on small scales and provide
halo profiles that are less sharp than their full N-body counterparts. To overcome this
issue, we developed a new Hybrid Physical-Neural approach (HPN) that introduces an
additional force to the PM gravitational potential, parameterized by a Fourier Neural
Network. We presented a proof of concept of this method in Lanzieri et al. (2022) at the
machine learning for astrophysics workshop during the 39th International Conference
on Machine Learning (ICML 2022).
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In chapter 6, I presented the Differentiable Lensing Lightcone (DLL) package, a
differentiable weak lensing simulator designed to efficiently compute gradients for the
development of new inference algorithms in weak lensing surveys. To achieve this, we
extended the framework of the FlowPM package (Modi et al., 2021) by implementing
the Born approximation and simulating lensing lightcones using the TensorFlow frame-
work. The weak lensing package enables the inclusion of systematics, such as intrinsic
alignment, and allows for the computation of nonlinear lensing convergence maps at
different source redshifts. This work was presented in the paper: Lanzieri et al. (2023).

In chapter 7 illustrates my current work. Specifically, in chapter 7, I present a
comparison of the performance of various neural network-based compression schemes
within the Likelihood-Free Inference (LFI) framework. These methods differ in terms
of the loss functions used to train the neural network, but they share the same inference
strategy based on neural density estimation. To address the need for result validation
in the LFI context, we employ a Bayesian forward modeling approach that enables
inference on the joint posterior of the cosmological parameters and the convergence
field.

In chapter 8, I summarize our results and conclusions.
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Résumé étendu en français

Nous avons l’habitude de décrire l’évolution de l’univers depuis un état homogène après
le Big Bang qui va ensuite former des structures hiérarchiques et créer les objets que
l’on observe aujourd’hui, avec notament les galaxies, les amas de galaxies et les su-
peramas. Cette description est typiquement basée sur notre compréhension actuelle
de l’état initial de l’univers et de la nature de la gravité, ainsi que sur l’hypothèse de
l’existence de deux composantes: l’énergie noire et la matière noire. Selon le modèle
standard actuel de la cosmologie (ΛCDM), l’énergie noire représente 68% de la den-
sité d’énergie de l’Univers et est la cause de l’expansion de l’Univers, tandis que la
matière noire constitue 27% de la densité d’énergie. Cependant, à ce jour, il n’existe
pas d’explications théoriques incontestables ni de preuves indéniables de la nature de
l’énergie noire et de la matière noire.

En l’absence d’un guide théorique fiable, l’exploration observationnelle devient
l’outil principal pour comprendre la composition de l’Univers. Les prochaines ex-
périences sur les galaxies de la phase IV, telles que le Legacy Survey of Space and
Time (LSST) à l’Observatoire Vera C. Rubin, la mission Euclid de l’Agence spatiale
européenne et le télescope spatial Roman, tenteront de répondre à certaines de ces
questions, en se concentrant principalement sur l’observation et l’étude des effets de
l’énergie noire et de la matière noire. Parmi les sondes clés utilisées dans ces futurs
relevés de galaxies figure l’effet de lentille gravitationnelle faible. L’effet de lentille
gravitationnelle désigne le phénomène par lequel des objets massifs situés entre un ob-
servateur et des sources d’arrière-plan provoquent une courbure de l’espace-temps, ce
qui entraîne une déviation de la lumière provenant de ces sources d’arrière-plan. Ces
déviations déforment ensuite l’image originale de la source, ce qui constitue un moyen
puissant d’étudier la distribution de la matière totale responsable de la déformation.
Lorsque ces déformations sont très faibles, on parle du régime de lentille faible.

Une fois que nous disposons des observations, nous devons développer une stratégie
statistique pour en extraire des informations cosmologiques. Cela se fait généralement
en sélectionnant des statistiques spécifiques et en les comparant aux prédictions d’un
modèle donné. Les statistiques traditionnelles de lentille gravitationelle reposent sur
des fonctions de corrélations à deux points ou sa transformée de Fourier, connue sous
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le nom de spectre de puissance. Cependant, les statistiques à deux points ne sont op-
timales que pour les champs de densité gaussiens et ne rendent pas pleinement compte
de l’information non gausienne du signal de lentille graviationelle faible aux échelles
auxquelles les futures études pourront accéder (par exemple, l’information encodée
dans les pics et dans les filaments de la distribution de la matière). Cela a conduit
à l’introduction d’un certain nombre de statistiques d’ordre supérieur pour accéder à
l’information non gaussienne des données de lentille gravitationnelle faible: fonction de
distribution de probabilité (PDF en anglais) en un point de l’effet de lentille gravita-
tionnelle faible, le nombre de pics dans les cartes de convergence, les fonctionnelles de
Minkowski, les moments des cartes de masse, les transformations et diffusions en on-
delettes et les fonctions de corrélations à trois points. Récemment, des cadres de mod-
élisation bayésiens et méthodes basés sur l’apprentissage automatique ont également
été introduits pour tenter de prendre pleinement en compte le contenu non gaussien du
signal de lentille gravitationelle faible. Contrairement aux méthodes décrites ci-dessus,
ces approches sont conçues pour accéder à l’ensemble du contenu informatif compris
dans le champ de densité. Même si ces techniques sont théoriquement asymptotique-
ment optimales en termes de récupération de l’information, elles souffrent encore de
limitations significatives.

Nous discuterons de certaines de ces statistiques plus en détail tout au long de cette
thèse, mais nous pouvons déjà nous demander laquelle de ces options est la meilleure,
c’est à dire celle nous permettant de maximiser la quantité d’informations extraites
de ces donnée? Les grands relevés de stage IV fourniront des mesures de milliards de
formes de galaxies avec une précision sans précédent, générant d’énormes quantités de
données et permettant d’inclure des échelles hautement non linéaires dans l’analyse.
En général, le processus d’extraction d’informations cosmologiques à partir d’images
du ciel peut être considéré comme comprenant plusieurs tâches, chacune avec ses défis
associés. Plus précisément, tout au long de cette thèse, nous nous poserons les ques-
tions suivantes: Quelles statistiques contraignent le plus efficacement nos paramètres
cosmologiques? Quelle est la stratégie d’inférence optimale? Comment pouvons-nous
comprimer nos données d’entrée sans perdre d’informations essentielles? Comment
pouvons-nous aborder les limites de ressources compuationelles?

L’objectif principal de cette thèse est de tenter de répondre à certaines de ces ques-
tions et de développer un cadre d’inférence physique adapté à une étude de l’énergie
noire de phase IV, dans le but d’exploiter pleinement le potentiel des données de la
prochaine génération de grands relevés.
Le contenu de cette thèse est structuré comme suit: dans la première partie, composée
de chapitre 1, chapitre 2, chapitre 3, je fournirai les outils théoriques nécessaires à la
compréhension de la thèse. Plus précisément, dans le chapitre 1, je présenterai le modèle
standard de la cosmologie, l’Univers homogène, la toile cosmique inhomogène, les con-
séquences de l’expansion et les principes de formation et de croissance des structures.
Le chapitre 2 expose les formalismes des simulations numériques, en commençant par
décrire plus en détail la croissance des structures depuis les conditions initiales jusqu’à
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la distribution de matière que nous observons aujourd’hui, et en concluant par une
présentation des méthodes de référence des simulations cosmologiques actuelles. Le
chapitre 3 approfondit le formalisme de lentille graviationelle faible, les statistiques
de second ordre, des exemples de statistiques au-delà du second ordre, et divers effets
systématiques liés aux observations de lentille gravitationelle faible.

Dans le chapitre 5 et dans le chapitre 6 je décris les contributions de mon travail
de doctorat. En particulier, dans le chapitre 5, je présente les résultats d’un travail
dans lequel nous avons développé un nouveau schéma de correction pour les simu-
lations à approximatives à N corps visant à imiter la précision des simulations à N
corps à haute résolution. Malgré leur rapidité et leur faible coût de calcul, les schémas
d’approximation ài N-corps manquent de résolution aux petites échelles et fournissent
des profils de halo moins nets que leurs équivalents N-corps complets. Pour résoudre
ce problème, nous avons développé une nouvelle approche Hybride Physique-Neurale
(HPN) qui introduit une force supplémentaire au potentiel gravitationnel, paramétrée
par un réseau neuronal de Fourier. Cette approche combine la description physique de
la formation des structures avec un réseau neuronal plus simple pour corriger les ap-
proximations faites dans les algorithmes pseudo-N-corps. Notre méthode présente des
similitudes avec les travaux de Dai et al. (2018), qui a démontré comment améliorer
la modélisation de la distribution de la matière dans les halos dans les simulations
quasi-N-corps à l’aide d’un schéma basé sur le gradient. L’un des avantages de ces
méthodes par rapport aux techniques d’apprentissage automatique complètes est la
plus faible dimensionnalité de l’espace des paramètres à optimiser. Pour illustrer les
mérites de notre approche, nous avons comparé les résultats des simulations pseudo-N-
corps corrigées avec les simulations CAMELS à haute résolution. Nous avons comparé
notre modèle au schéma PGD (Dai et al., 2018)), montrant que, pour la cosmologie
de référence, les deux méthodes produisent des améliorations similaires dans le spec-
tre de puissance à petite échelle, mais diffèrent de manière significative en termes de
coefficients de corrélation. Nous avons également présenté les résultats d’expériences
impliquant des changements de résolution et de paramètres cosmologiques. Ces expéri-
ences ont démontré que notre méthode est plus performante que le schéma PGD en
termes de spectre de puissance et de coefficients de corrélation croisée, et qu’elle est
moins sensible aux paramètres des simulations utilisées pour l’entraînemen du réseau
de neurone. Nous avons présenté une preuve de concept de cette méthode dans Lanzieri
et al. (2022) à l’atelier sur l’apprentissage automatique pour l’astrophysique pendant
la 39e International Conference on Machine Learning (ICML 2022).

Dans le chapitre 6, je présente le modèle Differentiable Lensing Lightcone (DLL), un
simulateur rapide de cône lumineux de lentille gravitationnelle faible donnant accès au
gradient. Nous avons intégré au simulateur à N-corps publique FlowPM l’approximation
de Born dans le cadre de Tensorflow pour créer des cartes de convergence non gaussi-
ennes de l’effet de lentille gravitationnelle faible. Pour permettre à DLL de fonctionner
à basse résolution sans affecter de manière significative la précision, nous complétons le
code à N-corps FlowPM avec le schéma Neural Hybride-Physique. Nous validons notre
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outil en comparant les statistiques de Cℓ et du nombre de pics avec les prédictions
des simulations κTNG-Dark. Pour ce faire, nous effectuons des simulations suivant
l’évolution des particules 1283 et nous produisons des cartes de convergence de lentille
gravitationnelle faible pour plusieurs des sources à différents redshift. Nous montrons
que, même avec un faible coût de calcul, nous obtenons des résultats comparables pour
des redshifts égaux ou supérieurs à z = 0.91. Pour démontrer le potentiel de notre outil,
dans un premier cas d’utilisation, nous exploitons la différentiabilité automatique des
simulations pour faire des prévisions de Fisher. Grâce à la rétro-propagation, l’accès
à la dérivée à travers les simulations en ce qui concerne les paramètres cosmologiques
et le paramètre AIA est possible sans coût de calcul supplémentaire. Dans un cadre
similaire à celui de LSST, nous simulons des cartes de convergence de lentille gravita-
tionnelle faible pour une source unique à redshift z = 0.91 et d’extension angulaire de
5◦, dans une boîte périodique de volume comobile égal à 205 h−1Mpc. Nous calculons
les contraintes sur les cartes de convergence résultantes avec les pics de comptage des
étoiles et utilisons un spectre de puissance de lentille filtré par ondelettes comme point
de repère pour la comparaison. Dans les limites des choix d’analyse faits dans cette
étude, nous obtenons les résultats suivants:

• confirmons que les statistiques de comptage de pics surpassent les statistiques
à deux points telles que cela a été montré dans Ajani et al. (2020), même dans
un espace de paramètres cosmologiques de haute dimension avec de nombreux
paramètres de nuisance.

• trouvons que les comptages de pics fournissent les contraintes les plus strictes sur
l’amplitude de l’alignement intrinsèque des galaxies AIA.

Le cadre décrit ici peut offrir de nombreux avantages dans le contexte de l’inférence des
paramètres cosmologiques: c’est la première étape dans le développement d’algorithmes
d’inférence entièrement différentiables pour l’effet de lentille gravitationnelle faible,
c’est un outil rapide pour explorer davantage l’impact des erreurs systématiques sur les
statistiques d’ordre supérieur. Ce travail a été présenté dans l’article: Lanzieri et al.
(2023).

Dans le chapitre 7 je illustre mon travail actuel. Plus précisément, dans le chapitre
7, j’ai présenté des travaux en cours visant à comparer deux stratégies différentes
basées sur des cartes de convergence pour déduire les paramètres cosmologiques: la
stratégie explicite de champ complet, également connue sous le nom d’inférence hiérar-
chique bayésienne, basée sur un échantillonneur Hamiltonien Monte-Carlo (HMC), et la
stratégie d’inférence implicite, également connue sous le nom d’inférence sans vraisem-
blance, basée sur un estimateur de densité neuronale.
Nous commençons par un constat: Les approches d’apprentissage profond pour l’inférence
implicite comportent généralement deux étapes. La première étape est l’apprentissage
automatique d’une statistique optimale à petite dimension, et la deuxième étape est
l’utilisation d’un estimateur de densité neuronal en basse dimension pour construire
une estimation Pφ de la fonction de vraisemblance p(x|θ) (estimation neuronale de la
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vraisemblance) ou de construire une estimation Pφ de la distribution de probabilité à
posteriori p(θ|x) (estimation postérieure neuronale).
On peut maintenant comprendre que ces deux étapes peuvent potentiellement avoir un
impact sur les contraintes finales des paramètres d’intérêt.
Cela dit, la principale motivation de ce travail est d’évaluer l’impact d’une stratégie
de compression données sur la distribution postérieure finale et, par conséquent, de
déterminer s’il existe une stratégie de compression optimale. En outre, l’objectif est
de démontrer qu’en utilisant cette stratégie, les méthodes implicites et explicites obti-
ennent la même distribution distribution de probabilité à posteriori.
Nous construisonsle modèle pour l’inférence explicite et simuler les données fictives
nécessaires pour entraîner le modèle implicite, nous avons développé SbiLens, un sim-
ulateur de lentille gravitationnelle faible basé sur Jax et optimisé pour les applications
d’inférence qui ont besoin d’accéder aux dérivés du modèle. Notre analyse est basée
sur des données synthétiques de lentille gravitationnelle faible avec cinq bins tomo-
graphiques, imitant une étude de type LSST-Y10. Après avoir donné un aperçu des
différentes stratégies de compression adoptées dans la littérature pour l’inférence sans
vraisemblance et les stratégies d’inférence basées sur la vraisemblance, nous avons
comparé l’impact de certaines d’entre elles sur les contraintes finales des paramètres
cosmologiques pour un modèle ΛCDM. Nous avons obtenu les résultats préliminaires
suivants :

1. Le Mean Square Error (MSE) et le Maximum Absolute Error (MAE) conduisent
à des résultats en très bon accord, tandis que le Variational Mutual Information
Maximization (VMIM) conduit à des contours sensiblement différents, en parti-
culier pour le paramètre w0. Nous avons quantifié ces résultats en examinant la
figure de mérite et les statistiques marginalisées et avons constaté que:

2. nous utilisons le VMIM pour comprimer les données originales à haute dimension,
nous comparons les distributions de probabilité à posteriori obtenus dans le cadre
de l’inférence implicite avec ceux obtenus à partir de la modélisation hiérarchique
bayésienne et du spectre de puissance. Nous démontrons que les deux approches
fondées sur les cartes conduisent à une amélioration significative de la contrainte
de Ωc, w0, σ8 par rapport aux statistiques à 2 points. Cependant, h, ns,Ωb ne sont
contraints par aucune des deux approches et sont dominés par la distribution de
probabilité à priori.

3. Lorsque l’on utilise le VMIM pour comprimer les données originales à haute
dimension, dans le cadre de notre application, les deux méthodes, c’est-à-dire
l’inférence hiérarchique bayésienne et l’inférence sans vraisemblance, conduisent
aux mêmes distributions de probabilité à posteriori.

Dans le chapitre 8, je résume nos résultats et nos conclusions.

https://github.com/DifferentiableUniverseInitiative/sbi_lens
SbiLens
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The aim of this first chapter is to introduce the general cosmological context and
provide the theoretical background necessary to understand chapter 2 and chapter 3.
In particular, I will introduce the standard cosmological model and the equations of
Friedmann-Lemaître, along with the main consequences of the Friedmann Expansion
and a brief introduction to structure formation. Finally, I will conclude by briefly
describing the primary goals of the present and future cosmological survey aimed to
address the mystery of dark energy.
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1.1 Standard cosmological model

In this section, I introduce in brief the standard model of the Universe. Depending
on their proprieties and the values of the cosmological parameters, different cosmo-
logical models can be assumed. All the studies presented in this thesis are based on
the ΛCDM model, often referred to as the standard cosmological model. The ΛCDM
paradigm assumes that on scales larger than ∼ 100Mpc, the Universe is isotropic and
homogeneous. It starts from a hot and dense initial state, known as the Big Bang
about 13.7 billion years ago. This event was followed by a phase of cosmic inflation
of about 10−33 seconds. Shortly after the Big Bang, the Universe was extremely hot
and dense, fully ionized, with a plasma of coupled photons and baryons, and opaque
to radiation. Only about 370,000 years later, the temperature reached 3000 K, creat-
ing the condition for charged electrons and protons to become bound to form neutral
hydrogen atoms. During this epoch, known as recombination, photons decoupled from
matter, becoming free to travel through the space without interacting with matter and
giving rise to the Cosmic Microwave Background (CMB). According to this model,
the Universe is consisting mostly of three components. First, there is the cosmological
constant Λ, associated with the finite vacuum energy density and accounting for ∼ 68%
of the total energy density. Second, there is the Cold Dark Matter (CDM), consisting
of ∼ 27% of the total energy density. Third, there is baryonic matter, accounting for
less than 5%, mostly composed of hydrogen and helium gas. Moreover, we observe
electromagnetic radiation, due to CMB photons and cosmological neutrinos.

The "cold" nature of the Dark matter is suggested by the observations. Indeed, in
order to clump efficiently, the dark matter must not be hot, meaning it should have
low velocities. If the dark matter particles were dominated by high velocities, what
we observe today would not be consistent with the large-scale structure (Dodelson and
Schmidt, 2020). Dark matter, by its very definition, does not interact (significantly)
with other ordinary forms of matter, except through gravitational forces. Table 1.1
summarizes the 68% confidence limits of the cosmological parameters for the ΛCDM
model. Our knowledge about the history of the Universe is summarised in Figure 1.1.

1.2 Homogeneous Isotropic Universe

To a first approximation, the Universe can be described as homogeneous and isotropic
with respect to our position. This assumption may seem to contradict observations
since the world around us is highly inhomogeneous and structured. However, while
homogeneity is not valid on small scales, observations of the distribution of galaxies
and the isotropy of the CMB confirm that the universe is isotropic when averaged over
large spatial scales. Therefore, if we assume that our position in the universe is not
peculiar, the isotropy we observe around us implies isotropy around every location,
leading to the homogeneity of the universe as an immediate consequence of isotropy
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Description Parameter Value
Hubble parameter H0 (67.66± 0.42) km s−1Mpc−1

Total matter density Ωm 0.3111± 0.0056
Dark matter density Ωch

2 0.11933± 0.00091
Baryon density Ωbh

2 0.02242± 0.00014
Dark energy density ΩΛ 0.6889± 0.0056

Power spectrum normalisation σ8 0.8102± 0.0060
Spectral index ns 0.9665± 0.0038

Reionisation optical depth τ 0.0561± 0.0071
Sum of neutrino masses Mν < 0.12 eV

Table 1.1: Summary of current best estimates of the main cosmological parameters of
the ΛCDM model. Values derived from Planck Collaboration et al. (2020).

everywhere. This assumption is known as the cosmological principle.
As we will see in the next section, a homogeneous and isotropic universe is described
by the so-called Friedmann-Lemaître-Robertson-Walker model.

1.2.1 Friedmann-Lemaître-Robertson-Walker model

Before introducing the Friedmann-Lemaître-Robertson-Walker (FLRW) model, we can
introduce the basic concepts of General Relativity and the definition of the metric.
According to Special and General Relativity theories, space and time are reference-
frame dependent and paired through the metric. The metric allows us to compute the
line element ds2, which defines the distance between two points, as:

ds2 =
3∑

µ,ν=0

gµνdx
µdxν , (1.1)

with µ, ν ∈ [0, 3], being 0 the time by convention and 1, 2, 3 the spatial Cartesian
coordinates. The metric tensor gµν describes the time evolution of the metric. For
example, according to General Relativity, the Universe can be dynamic. If we consider
a flat Universe expanding with time, after introducing the scale factor a(t), describing
how the distance between two objects changes with the contraction and expansion of
the Universe (Hubble, 1929), the metric tensor becomes:

gµν =


−1 0 0 0
0 a2(t) 0 0
0 0 a2(t) 0
0 0 0 a2(t)

 . (1.2)

This expression defines the Friedmann-Lemaître-Robertson-Walker (FLRW) metric. In
particular, for the FLRW model, assuming that the speed of light in the vacuum c = 1,
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Figure 1.1: The universe’s expansion over time. Credit: NASA/WMAP Science Team.

we can write Equation 1.1 as:

ds2 = dt2 − a2(t)

[
dr

1−Kr2
+ r2dθ2 + r2sin2θdϕ2

]
(1.3)

= dt2 − a2(t)
[
dχ2 + fK(χ)

2
(
dθ2 + sin2θdϕ2

)]
, (1.4)

where we introduced the spherical coordinate (r, θ, ϕ), the comoving radial distance χ,
the transverse distance fk(χ)1 and curvature parameter K. The Friedmann-Lemaître-
Robertson-Walker (FLRW) metric is derived using invariants to satisfy the homogeneity
and isotropy condition required by cosmological principle criteria. The choice to work
in a comoving reference frame with spherical coordinates is well motivated by the
cosmological principle and the isotropy properties. The parameter K is interpreted
as the curvature parameter of the Universe today. To be more precise, we should say
that the homogeneous and isotropic space at t = t0 is characterized by a curvature K.
According to its sign or value, we can distinguish the following cases:

K =


1 Closed shape (S3)

0 Flat shape (R3)

−1 Open shape (H3)

(1.5)

1defined in Equation 1.31 and Equation 1.33.
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namely, for any fixed time t, if K = 0 the three-dimensional space is Euclidean, i.e. flat
(R3), if K = 1 the space is spherical, with the quantity 1/

√
K defining the curvature

radius of the spherical 3-dimensional space (S3), if K = −1 the space is hyperbolic
(H3).

1.2.2 Geodesic equation and Energy-Momentum tensor

General Relativity (GR) is an essential tool to derive some of the fundamental findings
that we have about Cosmology. In the context of GR, instead of describing gravity
as an external force, we can incorporate it in the metric, this allows us to describe
particles as moving in curved space-time, whose geometry is entirely described by the
metric tensor gµν introduced in Equation 1.1.

In generic space-time, the notion of a straight line of a particle is generalized with
the concept of geodesic, which represents the path of a particle when no external forces
are applied (Weinberg, 1972):

d2xµ

dλ2
= Γµ

αβ

dxα

dλ

dxβ

dλ
, (1.6)

where λ indicates the affine parameter, the scalar which parameterizes the particle
along its trajectory, and Γµ

αβ is the Christoffel symbol, obtained from the metric as:

Γµ
αβ =

gµν

2

[
∂gαν
∂xβ

+
∂gβν
∂xα

− ∂gαβ
∂xν

]
. (1.7)

The Equation 1.6 is particularly relevant since we will use it to describe the propagation
of light bundles in the presence of massive bodies and to introduce the fundamental
equations of gravitational lensing. One fundamental result of General Relativity is
how it relates the metric to the matter and the energy of the universe. Specifically,
the Einstein field equations relate the geometry of space-time with the distribution of
matter within it:

Rµν −
1

2
gµνR = 8πGTµν , (1.8)

where Rµν is the Ricci curvature tensor; R = RµνR
µν is the Ricci scalar curvature;

gµν is the metric tensor; G is Newton’s gravitational constant; Tµν is the stress–energy
tensor. Equation 1.8 can be easily interpreted in this way: on the left, we can find all
the physical descriptors of the geometry and the curvature of the Universe, whereas on
the right, we can find all the information about the source of the curvature, described by
the energy-stress tensor. This expression is crucially important to obtain information
about the evolution of the Universe and its content. For example, another consequence
of the cosmological principle is that if we assume a comoving inertial frame, we can
consider the energy-stress tensor a perfect fluid and describe it by its rest-frame energy
density ρ and the momentum p such that:
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T µ
ν = T µαgαν =


ρ 0 0 0
0 p 0 0
0 0 p 0
0 0 0 p

 . (1.9)

Alternately, it can be described in a non-comoving reference frame by (Hobson et al.,
2006):

T µν = (ρ+ p)UµUν − pgµν . (1.10)

1.3 The dynamics of the universe

After introducing the metric and the energy-momentum tensor, thanks to simplification
made possible by the cosmological principle, the dynamical evolution of the Universe
can be derived. Indeed, the latter can be described by the cosmological equations, which
in turn can be derived from the Friedmann-Robertson-Walker metric, after computing
Ricci’s and Einstein’s tensors, and the Christoffel symbols from the Euler–Lagrange
equations. The derivation of these equations goes beyond the purposes of this work,
however, in view of their importance, their role and consequences are presented in the
following sections.

1.3.1 Friedmann–Lemaître Expansion Equations

Before the discovery of the expansion of the Universe, static cosmological models were
proposed. Einstein modified the equations of fields 1.8, by introducing a cosmological
constant Λ:

Rµν − Λgµν −
1

2
gµνR = 8πGTµν . (1.11)

with the purpose of obtaining a static solution for the resulting expansion equations.
The zeroth-order component of Equation 1.11 yields to the equations of motion, or first
Friedmann equation (Friedmann, 1922):(

ȧ

a

)2

+
K

a2
− Λ

3
=

8πGρ

3
, (1.12)

with ȧ indicates the derivatives with respect to time t. From the ijth components of
the Equation 1.11 we obtain the second Friedmann equation:

ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
, (1.13)

describing whether the expansion is accelerating or decelerating. To get the entire
set of equations describing the dynamics of the equation we still need to compute
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the equation expressing the conservation of energy. Specifically, by combining the
Friedmann equations we obtain the following relation describing the evolution of ρ:

∂(a3ρ)

∂t
+ p

∂

∂t
a3 = 0. (1.14)

The set of Equation 1.12, 1.13, 1.14 constitutes the set of cosmological equations we
were looking for. The solution of this system consists in computing the evolution of
the scale factor a(t) as a function of the cosmological time, and the evolution of p and
ρ. This dynamic is fully determined by imposing an equation of state for the matter
that establishes a relationship between the pressure p and the energy density ρ.

Before deriving the equation of state, it is interesting to say a couple of words about
the Λ term. As mentioned in the introduction of this section, it was introduced to find
a static solution for the expansion equations. However, there was no physical inter-
pretation for this constant, and after the discovery of the expansion of the Universe
Einstein discarded this term again. Today, observations seem to suggest a cosmolog-
ical constant Λ ̸= 0, although the physical interpretation is profoundly different. In
quantum mechanics, the vacuum, defined as a totally empty space, is characterized by
a finite amount of energy, namely the vacuum energy density. For physical measure-
ments involving gravity, this energy becomes important, since E = mc2 corresponds to
a mass. The new interpretation of GR equations consists of a cosmological constant
equivalent to a finite vacuum energy density.

1.3.2 Equation of state

A solution of Equation 1.14 requires specifying the properties of each energy compo-
nent in the form of an equation of state, p = p(ρ); we specify this relation through a
parameter w:

w ≡ p

ρ
. (1.15)

The Equation 1.15 may depend on the redshift; however, in the case it is time-
independent and is inserted into Equation 1.14, it leads to the following expression
(Blanchard et al., 2020):

ρ̇ = −3(1 + w)
ȧ

a
. (1.16)

Thus the equation of state, solution of Equation 1.16:

ρi(a) ∝ a−3(1+wi), (1.17)

characterizes each i component of the matter.
Once the relations ρi(a) are known, those can be used in Equation 1.12 to find a solution
for a(t). For example, the matter-energy density at late times is mainly in the form of
baryons and cold dark matter particles, which are described by wb = wc = 0, whereas
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the photon radiation density is characterized by wγ = 1/3. For these two quantities
the Equation 1.17 becomes:

ργ(a) = ργ,0a
−4 ; ρb,c(a) = ρb,c,0a

−3. (1.18)

As proved from Equation 1.13 the acceleration of the Universe requires a fluid,
dubbed Dark Energy (DE), whose equation of state is wDE < −1/3. The ΛCDM
model, as mentioned in the previous section, assumes that this cosmic acceleration is
due to the presence of a constant term, usually referred to as Λ, characterized by the
equation of state wΛ = −1 which, looking at Equation 1.16, corresponds to an energy
density ρΛ independent from time.

A more generalized scenario postulates that the Dark Energy is dynamic, with a
time−dependent equation of state parameter wΛ(a). The most commonly used param-
eterization for time dependence is (Linder and Jenkins, 2003):

wΛ(a) = w0 + wa(1− a) (1.19)

where w0 is the present (t = t0) value of the equation of state and wa is a measure
of its time variation. In this scenario, the DE density evolution obeys the following
expression:

ρΛ(a) = ρ0,Λa
−3(1+w0+wa) exp [−3wa(1− a)]. (1.20)

We can express the total density energy ρ(a) as:

ρ(a) = ρm(a) + ργ(a) + ρΛ(a). (1.21)

As one can see from Equation 1.12, there is a value of the density ρ, dubbed critical
density, which leads to a spatially flat geometry with K = 0. This is defined as:

ρcrit(a) =
3H2(a)

8πG
, (1.22)

where we introduce the Hubble parameter H2(t):

H2(t) ≡
[
ȧ(t)

a(t)

]2
= −Kc

2

a2
+

8πGρ

3
. (1.23)

Commonly, for a generic matter component i, the dimensionless density parameter is
introduced:

Ωi(a) ≡
ρi(a)

ρcrit(a)
, (1.24)

which combined with Equation 1.21 leads to:

Ω(a) = Ωma
−3 + Ωra

−4 + ΩΛa
f(a), (1.25)
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where we summarize in f(a) all the scale-factor dependent terms of Equation 1.20. We
can now define an effective curvature density parameter

Ωk(z) =
−Kc2

[a2(z)H2(z)]
(1.26)

such that :
N∑
i=0

Ωi(z) + Ωk(z) = 1, (1.27)

with the sum running over all the matter species N in the model. Combining the
Equation 1.23 and Equation 1.27 we obtain:

H2(a) = H2
0

[
Ωma

−3 + Ωra
−4 + Ωka

−2 + Ωdea
f(a)
]
, (1.28)

where H0 ≡ H(t = t0) represents the Hubble parameter today, which is commonly
written as

H0 = 100 h km s−1Mpc−1, (1.29)

where h is the dimensionless Hubble parameter.

1.4 Consequences of the Friedmann Expansion

1.4.1 Proper and Comoving distance

One can consider two observers with no peculiar velocity, only moving apart because
of the expansion of space. Their comoving distance is defined as:

χ =
r(t)

a(t)
, (1.30)

with r(t) the proper distance. As a result, the scale factor a(t) can be interpreted as
the measurement of how large the Universe is at a given time t. It is often normalized
such that a(t0) = 1, where t0 is the time today.

In particular, we refer to the line-of-sight comoving distance as the distance traveled
by the light emitted by an observed source. Since the physical distance covered in time
dt is dr = cdt, the equivalent comoving distance is dχ = −dt/a. The total distance
traveled by the light since it was emitted at time tS is:

χs =

∫ χs

0

dχ =

∫ t0

ts

dt

a(t)
. (1.31)

Finally, we can define the peculiar velocity in terms of the rate of change of proper
distance r(t), such that:

vr ≡
dr

dt
=
d(a(t)χ)

dt
= ȧχ =

ȧ

a
r ≡ Hr, (1.32)
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with dots denoting the derivatives w.r.t. time. This result, known as Hubble’s law
(Hubble, 1929), asserts that, if H is constant, the peculiar velocity is proportional
to the distance. This result implies that all galaxies are moving apart due to the
expansion of the Universe. More generally, as we have seen in Equation 1.23, the
Hubble parameter is a function of time, the value of which is constant only today. The
Hubble law is therefore valid only for nearby objects, where H ∼ H0.

1.4.2 Comoving transverse distance

To compute distances in the Friedmann–Lemaître framework, we need to define the
function fK(χ):

fK(χ) =


1√
K
sin (

√
Kχ) forK > 0

χ forK = 0
1√
−K

sinh (
√
−Kχ) forK < 0.

(1.33)

known as comoving transverse distance, which depends only on the curvature K of the
space and on the comoving distance χ.

1.4.3 The cosmological redshift

Consider the incoming light from a source at fixed radial comoving distance χ, such
that:

χ =

∫ χ

0

dχ′ = −
∫ t1

t2

dt

a(t)
=

∫ t2

t1

dt

a(t)
(1.34)

where t1 and t2 are the time at which a wave crest is emitted and received, respectively.
If a new wave crest is emitted at time t1 + δt1 with δt1 = 1/ν1, it will be observed at
time t2 + δt2. If we consider the radial comoving distance fixed, it has to be

χ =

∫ t2+δt2

t1+δt1

dt

a(t)
=

∫ t2

t1

dt

a(t)
, (1.35)

which implies:
δt2
a(t2)

− δt1
a(t1)

= 0 ⇒ ν1
ν2

=
δt2
δt1

=
a(t2)

a(t1)
. (1.36)

Hence, one of the consequences of the expanding universe is that the frequency of
radiation that propagates through the Universe is shifted by an amount that can be
quantified as:

λ2
λ1

=
a(t2)

a(t1)
. (1.37)

If a(t2) = a(t1), i.e., if there is no expansion, the frequency of the photons is not
changed as they travel the Universe. However, the Universe expands, the scale factor
a(t2) > a(t1), hence the λ2 > λ1. This implies that the frequency of the radiation is
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shifted towards a lower frequency. The shift is usually quantified by introducing the
cosmological redshift z, such that:

1 + z ≡ λ2
λ1

=
ν1
ν2

=
a(t2)

a(t1)
. (1.38)

The relation between the scale factor and the redshift is crucial. Considering that
a(t0) = 1, we obtain:

a =
1

1 + z
. (1.39)

The redshift is the only available information about the distance we have for most
astronomical sources. Indeed, in our Universe, the scale factor a is a monotonic function
of time, hence, z is a monotonic function of time as well. This implies that a, t, and z
can be adopted as measures of the distance of a source.

1.4.4 Angular diameter distance and Luminosity distances

Since the light from a source we observe today was emitted at an earlier time, its
comoving and proper distance χ and a(t)χ, can not be observed directly. However,
two other distances can be computed: the angular diameter and luminosity distance.
Consider r the proper distance of an object of physical size D and luminosity L,
observed with the angular size θ and with the flux F . We can define the angular-
diameter distance dA and the luminosity distance dL as:

dA(a) =
D

θ
, (1.40)

and
d2L(a) =

L

4πF
. (1.41)

In the absence of expansion, dA = dL = r. However, when the distances are consid-
ered in the expanding Universe, dA, dL, and r may be different from each other. In
particular, Equation 1.40 and Equation 1.41 can be expressed in terms of transverse
comoving distance fK(χ):

dA = a(t)fK(χ) (1.42)

and
dL =

1

a
fK(χ) =

1

a2
dA = (1 + z)2dA(z). (1.43)

1.5 Linear growth of large scale structure

Observations suggest that the Universe around us is isotropic only on large scales. On
smaller scales, the universe contains a great deal of structure (consider for example
galaxies, superclusters of galaxies, and voids). To describe this "lumpiness", we should
look at the history of structure formation.
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1.5.1 Primordial perturbation

The large-scale structure observable today origins from the gravitational collapse of
inhomogeneities in the early Universe. Inflation (Guth, 1981; Baumann, 2012), is the
most widely-supported theory today regarding the physics of the nascent Universe.
According to this model, quantum fluctuations in the very early Universe grow during
a period of exceptionally fast expansion until reaching the macroscopic scales of the
large-scale structures we observe today. The growth of these initial perturbations is
described by the primordial power spectrum Pζ(k):

Pζ(k) = As

(
k

kp

)ns−1

, (1.44)

parametrized as a power law, of which As is the amplitude and kp is the pivot scale.
The term ns is known as the spectral index. The current observations indicate that ns =
0.9603± 0.0073. This percent-level deviation from the value ns = 1 (corresponding to
a scale-invariant power spectrum) is the direct measurement of time dependence in the
inflationary dynamics (Baumann, 2012). Moreover, it is the convention to characterize
the amplitude of the primordial power spectrum in terms of the RMS (Root Mean
Square) variance of the spheres of radius R =8 h−1Mpc, known as σ8.

1.5.2 Linear growth

The primordial density perturbations produced during inflation can be considered the
seeds of the structure growth. The fluctuations of the density around the background
mean density are described by the matter density contrast :

δ(r, t) =
δρm(r, t)

ρ̄m(t)
=
ρm(r, t)− ρ̄m(t)

ρ̄m(t)
. (1.45)

In the regime of small density fluctuations (δ ≪ 1), the density contrast evolution can
be described by the linear perturbation theory. This condition occurs at early times
and on large scales. In the chapter 2 we will derive in detail the evolution of the density
contrast under the assumption of pressure-less fluid. For completeness of this chapter, I
will outline the principal outcomes of this derivation here. It will be demonstrated that,
in the linear regime, this evolution is described by an ordinary second-order differential
equation (Dodelson and Schmidt, 2020):

δ̈ + 2Hδ̇ = 4πGρ̄mδ, (1.46)

admitting the general solution (Peebles, 1980; Peacock, 1999):

δ(t, r) = D+(t)δ+(r) +D−(t)δ−(r), (1.47)

with D+(t) and D−(t) growing and decaying mode. Since D−(t) vanishes as time goes
on and so does not impact the formation of structures, the density contrast evolution
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can then be described only by the growing mode, which is expressed in terms of scale
factor as:

D+(a) =
5ΩmH(a)

2H0

∫ a

0

da′

a′3

(
H0

H(a′)

)3

. (1.48)

The growing mode can be then normalized such that D+(a) = a when the universe is
dominated by matter. It is conventional to normalize this factor, usually referred to as
growth factor, as:

D(a) =
D+(a)

D+(a = 1)
, (1.49)

in order to have D+(a = 1) = D+(z = 0) = 1, and then express the density contrast in
the linear regime as:

δ(r, z) = D(z)δ(r). (1.50)

1.5.3 Matter power spectrum

In order to compare the theory of structure formation with the observation, we need to
perform statistical measurements of the density field. The initial density fluctuations
of the field were random but correlated, this means that according to their separation
r, the fluctuations in two points in the space are statistically related to each other. We
can introduce the two-point correlation function (2PCF), defined as:

⟨δ(r′)δ(r + r′)⟩r′ =

∫
R3

δ(r + r′)δ(r′)dr′, (1.51)

or express the two-point correlation function of the Fourier transform of the perturba-
tion density δ̃(k) as:

⟨δ̃(k)δ̃⋆(k′)⟩ = (2π)3Pδ(k)δ
(3)
D (k − k′), (1.52)

with δ̃⋆(k) complex conjugate, δ(3)D Dirac delta and Pδ(k) matter power spectrum.
When the universe is dominated by radiation, perturbation with comoving scale

smaller than the horizon grows as δ ∝ a2, after the ‘horizon entry’ and before matter
starts to dominate δ = constant, when the universe is matter dominated δ ∝ a. Since
different scales cross the horizon at different times, the different Fourier modes of the
density contrast will evolve differently. This means that the matter power spectrum
Pδ(k) today differs from the simple power law of the primordial power spectrum we
introduced in the previous section. This difference is quantified by the linear Transfer
function, expressed in the Fourier space as:

T (k) =
δ̃(k, a = 1)δ̃(k = 0, a = 0)

δ̃(k, a = 0)δ̃(k = 0, a = 1)
. (1.53)

To compute the transfer function Boltzmann solvers such as CAMB (Lewis et al.,
2000) or CLASS (Blas et al., 2011) are required. However, in several applications is

https://camb.info/
CAMB
https://lesgourg.github.io/class_public/class.html
CLASS
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possible to use fitting formulae or approximation methods to derive analytical expres-
sions for the transfer function. For example, Eisenstein and Hu (1998)2 developed a
well-motivated fitting formula for CDM-cosmology accounting for baryon effects in the
matter transfer function. This formula allows us to express the relation between the
power spectrum today and the primordial power spectrum as:

Pδ(k) = T 2(k)Pζ(k). (1.54)

However, this linear transfer function is only valid in the linear regime. At small
scales and late times, when δ ∼ 1, perturbation theory is no longer valid, and N-body
simulations are required. In particular, N-body simulations can be used to derive fitting
formulae for the nonlinear matter power spectrum. Within this context, Takahashi
et al. (2012)3 revisited the halofit model from Smith et al. (2003) to derive a more
accurate fitting formula for the non-linear gravitational clustering. They run high-
resolution N-body simulations for 16 different cosmological models, including models
with a dark energy constant equation of state. The results were used to re-calibrate the
parameters of the halofit model in order to better reproduce small-scale power spectra
from the N-body simulations while preserving the precision at larger scales.

In particular, in the halofit model, the power spectrum is described by two terms:

PNL(k) = PQ(k) + PH(k) (1.55)

where the first term PQ(k) is the quasi-linear term, encoding for the power generated
by the large-scale placement of haloes, whereas the second term PH(k) represents the
power due to the self-correlation of haloes. This revisited fitting formulae reproduce
with accuracy the predictions of the nonlinear matter power spectrum in the range of
0 ≤ z ≤ 10 and k ≤ 30h Mpc−1 (up to 5% of accuracy for k ≤ 1h Mpc−1).

1.6 Dark Energy science

Observations suggest that Dark energy, causing the acceleration of the Universe’s ex-
pansion, is the dominant component of the Universe. Understanding the origin of dark
energy is currently one of the most compelling challenges in physical science, how-
ever, to date, we do not have a convincing theoretical explanation for its existence.
Without theoretical guidance, focusing on observational explorations is the only way
to understand what the Universe is composed of. Toward this goal ambitious observa-
tional programs have to be implemented. In particular, according to the Dark Energy
Task Force (DETF, Albrecht et al. (2006)) these scientific surveys should address the
following tasks:

2The Eisenstein and Hu (1998) formula will be used to compute the initial condition of the simu-
lations described in chapter 6.

3The Halofit model will be used several times throughout this thesis, for example, to validate
the simulations described in chapter 5 and chapter 6, or to compute the theoretical predictions in
chapter 7.
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• Assess whether the accelerating expansion is due to a cosmological constant.

• If the cosmic acceleration is not consistent with being due to a cosmological
constant, measure the time evolution of the dark energy equation of state w(a)

• Compare the effect of dark energy on cosmic expansion and on the growth of
galaxies and galaxy clusters in order to search for the potential failure of General
Relativity (GR).

In order to attain the objectives set by dark energy observational programs, we should
gauge both the expansion history of the Universe and the rate of structure growth.
These measurements of dark energy proprieties can then be expressed in terms of w0,
the value of the dark energy today, and its evolution wa. If a failure of GR causes
accelerating expansion, this can be revealed from discrepancies between the values of
w(a) constrained from these two types of data. The DETF (Albrecht et al., 2006),
developed a quantitative "figure of merit"4 to evaluate dark energy studies in the
areas of Baryon Acoustic Oscillations, Galaxy Clusters, Supernovas, and Weak Lensing.
They concluded that there is no single observational technique able to answer questions
about dark energy or to produce a satisfying FoM. On the contrary, a combination of
different cosmological probes is necessary. In this regard, The Legacy Survey of Space
and Time (LSST) has predicted the constraining power on the dark energy parameters
with the 10-year LSST data set, as reported in the LSST DESC Science Requirements
Document (Mandelbaum et al., 2018). The contours, presented in Figure 1.2, show the
constraints from all five probes individually and the joint forecast from the combined
analysis.

1.6.1 Cosmological probes

Several astrophysical observations store the history of cosmic expansion. Different cos-
mological probes have different strengths and systematics, being sensitive in different
ways to the properties of dark energy and to different cosmological parameters. For
example, the DETF (Albrecht et al., 2006) and the LSST Dark Energy Science Col-
laboration (Mandelbaum et al., 2018) identified the following cosmological probes as
the most promising in constraining dark energy parameters:

• Weak Lensing (WL): The measurements focus on the distortions of the images
of background galaxies due to the deflection of light caused by the presence
of foreground matter between the source and the observer. The WL probe is
sensitive to dark energy through the structure growth rate and through the effect
of dark energy on the relation redshift vs. angular-diameter distance.

4This is defined as the inverse of the area of the error ellipse which contains the 95% confidence
limit in the w0 − wa plane. A larger FOM is indicative of greater accuracy.
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• Large Scale Structure (LSS): The measurements focus on the galaxy positions
(galaxy clustering only). The Baryonic Acoustic Oscillations (BAO) information
is implicitly included in Large scale structure probes. The LSS probe is sensi-
tive to dark energy through structure growth and the expansion history of the
Universe.

• Galaxy Clusters (GL): The measurements focus on the spatial distribution, den-
sity, and masses of galaxy clusters. Similar to WL, the GL probe is sensitive to
dark energy due to its effect on the growth rate of structure and the relationship
between angular-diameter distance and redshift. Additionally, it is sensitive to
dark energy through its impact on the time evolution of the expansion rate.

• Type Ia supernova (SN): The measurements focus on the relationship between
the redshift and the distance derived from light curves analysis from Type Ia
supernovae. This cosmological probe is sensitive to dark energy because of its
impact on this relation.

• Strong Lensing: The measurements focus on the distortions, time delay, and
displacement and multiple observations of the images of the background galaxies
due to the deflection of light caused by the presence of massive foreground objects
between the source and the observer.
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Figure 1.2: Forecast dark energy constraints for the Year 10 (Y10) LSST survey. The
contours show the 68% confidence constraints and are computed for each of the five
cosmological probes described in subsection 1.6.1 individually and combined. Specif-
ically are shown: galaxy clusters (Clusters), strong lensing (SL), expected precision
from Stage III surveys, Type Ia supernova (SN), weak lensing and large-scale structure
(3×2 pt) and the joint analysis forecast, which includes Stage III priors. The quantities
∆w0 and ∆wa refer to the deviation of w0 and wa from their fiducial values of -1 and
0.
Figure from The LSST Dark Energy Science Collaboration (Mandelbaum et al., 2018).
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This chapter delves into the formalism of numerical simulations for studying the
large-scale structure of the Universe. I will begin by introducing the equations solved
by these simulations, along with a brief introduction to the Eulerian and Lagrangian
Perturbation theory. Subsequently, I will present the most common techniques found
in the literature for the main steps of the numerical simulations: the implementation
of the initial condition, the calculation of gravitational forces and the solution of the
Poisson equation, and the time integration. Finally, I will provide an overview of the
role of machine learning within the context of numerical simulations.
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2.1 Gravitational instability

The following provides a summary of the key findings regarding the dynamics of grav-
itational instability that are relevant to the theory of N-body numerical simulations.
All calculations are carried out within the framework of Newtonian gravity. Indeed,
since Cold Dark Matter consists of non-relativistic particles, at scales smaller than the
Hubble radius, the equations of motion simplify to the Newtonian gravity equation
(Bernardeau et al., 2002).
These results are based on the work of Bernardeau et al. (2002); Jenkins (2010); Angulo
and Hahn (2022).

2.1.1 The Vlasov Equation

The first step to describe the evolution of an ensemble of particles under their mutual
gravitational interactions is considering their equation of motion:

dv
dt

= Gm
∑
i

ri − r
|ri − r|3

, (2.1)

here m indicates the mass of the particle; v is the velocity; r is the position; G is
the Newton’s gravitational constant. In the context of gravitational instabilities, the
number of particles is large enough to rewrite the equation in terms of a smooth
gravitational potential ϕ:

dv
dt

= −∂ϕ
∂r

(2.2)

induced by the local mass density ρ(r), such that:

ϕ(r) = G
∫

ρ(r′ − r)
|(r′ − r)|

d3r′. (2.3)

The equation of motion becomes:

dv
dt

= −∇rϕ = G
∫
ρ(r′ − r)(r′ − r)

|(r′ − r)|3
d3r′. (2.4)

In the scenario of an expanding universe, the description of equations of motion in
terms of comoving distance and conformal time is preferred. We indicate with x, the
comoving distance such that r = ax, with a the cosmological scale factor, and τ the
conformal time such that dt = a(τ)dτ . Remembering the definition of density contrast
δ(x,t):

δ(x, t) =
ρ(x, t)− ρ̄(t)

ρ̄(t)
, (2.5)
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and that ρ̄(t) ∝ 1/a3 (Equation 1.17 with w = 0), we can rewrite Equation 2.4 as:

dv
dt

= G
∫
ρ(x′ − x)a(x′ − x)

a3|(x′ − x)|3
a3d3x′ (2.6)

= Gaρ̄
∫

(x′ − x)
|(x′ − x)|3

d3x′ + Gaρ̄
∫
δ(x′ − x)

(x′ − x)
|(x′ − x)|3

d3x′.

The velocity v can be expressed as:

v =
dr
dt

= ȧx + a
dx
dt
, (2.7)

from which follows:
dv
dt

= äx + ȧ
dx
dt

+
du
dt

(2.8)

= äx +
ȧ

a
u +

du
dt
,

where we indicated with u the peculiar velocities of the particles such that u ≡ adx
dt

.
Using the transformation ∇r = ∇x/a, we can now express the potential in Equa-
tion 2.4 as the sum of the cosmological Gravitational potential Φ and the background
Gravitational potential ϕ, such that:

ϕ ≡ ϕ+Φ, (2.9)

and write:
äx ≡ −1

a
∇xϕ, (2.10)

and
ȧ

a
u +

du
dt

≡ −1

a
∇xΦ. (2.11)

We aim to find the equations of motion valid in a homogeneous and isotropic back-
ground evolving according to the Friedmann equations. Combining the second of the
Friedmann equation:

ä = −4πG
3
aρ̄, (2.12)

with Gauss’s theorem:
4π

3
x = −

∫
(x′ − x)
|x′ − x|3

d3x′, (2.13)

we can write:
äx = Gaρ̄

∫
(x′ − x)
|x′ − x|3

d3x′. (2.14)

By substituting Equation 2.14 in Equation 2.8, we obtain the following equation of
motion for the peculiar velocities:

ȧ

a
u +

du
dt

=
dv
dt

+ äu = Gaρ̄
∫
δ(x′ − x)

(x′ − x)
|x′ − x|3

d3x′. (2.15)
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By integrating w.r.t. x the Equation 2.10 and combining it with the Equation 2.12,
we obtain the following expression for the gravitational potential ϕ:

ϕ(x) =
4πG
3
a2ρ̄

(
1

2
|x|2
)

= −∂H
∂τ

(
1

2
|x|2
)

(2.16)

with H = dlna/dτ = Ha. By applying the Laplacian to the Equation 2.9 and remem-
bering that:

∇2
rϕ =

∇2
xϕ

a2
= 4πGρ̄(1 + δ) (2.17)

we obtain the Poisson equation for the cosmological gravitational potential:

∇2
xΦ = 4πGa2ρ̄δ =

3

2
Ωm(τ)H2(τ)δ. (2.18)

Given the Equation 2.15, we can express the momentum of a single particle of mass
m as:

p = mau, (2.19)

and then from the equation of motion, we get:

dp
dτ

= −ma∇xΦ. (2.20)

By defining the particle number density in the phase space as f(x,p, τ), from Liouville’s
theorem and phase-space conservation, we get the Vlasov equation:

df
dτ

=
∂f

∂τ
+

p
ma

· ∇f −ma∇Φ · ∂f
∂p

= 0. (2.21)

2.1.2 Eulerian Dynamics

Let us consider the zeroth order moment of the distribution functions:∫
f(x,p,τ)d3p ≡ ρ(x, τ), (2.22)

as we can see, this equation links the phase space density f(x,p,τ)d3p to the local
mass density field ρ(x, τ). The consequence is nonlinearity induced in Equation 2.21
since the potential ∇Φ depends on ρ(x, τ). Due to the nonlinearity and the presence
of multiple variables in this partial differential equation, it is very difficult to solve.
Fortunately, we only aim to solve the evolution of the spatial distribution, which can
be achieved by considering successive moments of the distribution function. From the
first and second order moment, we can define the peculiar velocity flow u(x, τ) and the
stress tensor σij(x, τ): ∫

p
ma

f(x,p,τ)d3p ≡ ρ(x, τ)u(x, τ), (2.23)
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∫ pipj

m2a2
f(x,p,τ)d3p ≡ ρ(x, τ)ui(x, τ)uj(x, τ) + σij(x, τ). (2.24)

We can compute the equation for u(x, τ) and σij(x, τ) from the successive moments
of the Vlasov equations. Specifically, we obtain the continuity equation by taking the
zeroth moment:

∂δ(x, τ)
τ

+∇ · {[1 + δ(x, τ)]u(x, τ)} = 0, (2.25)

and the Euler equation by subtracting ρ̄u(x, τ) multiplied by the continuity equation
from the first momentum equation:

∂ui(x, τ)
∂τ

+H(τ)ui(x, τ) + uj(x, τ) · ∇jui(x, τ) = (2.26)

−∇iΦ(x, τ)−
1

ρ(x, τ)
∇j(σij(x, τ)).

The equations Equation 2.25 and Equation 2.26 describe the conservation of mass and
momentum, respectively. Once the phase-space information has been integrated out,
several phenomenological models allow us to close the system by assuming an ansatz for
the stress tensor σij. The ansatz for the stress tensor represents the equation of state
for the cosmological fluid and assumes that the formation of matter structures involves
matter with negligible pressure and velocity dispersion (single-stream approximation).
The physical interpretation of the stress tensor is the deviation of the particles’ motion
from a single coherent flow (Bernardeau et al., 2002). Therefore, during the first stage
of structure formation, when they are not yet collapsed and virialized, we can assume
that σij ∼ 0. This approximation will no longer be valid at progressively larger scales,
and the breakdown of σij ∼ 0, known as shell crossing, depicts the generation of velocity
dispersion caused by several streams.

2.1.3 Eulerian perturbation theory

At very large scales and at the initial stages of gravitational structure formation, we
expect the matter distribution in the Universe to be smooth. In other words, we can
assume that:

|δ(x, τ)| ≪ 1, (2.27)
|∇jxi(x, τ)| ≪ H(τ) (2.28)

Hence, it is possible to linearize the set of equations 2.23, 2.25, 2.26 and obtain the
Ordinary Differential Equation (ODE) describing the motion in the linear regime:

∂δ(x, τ)
∂τ

+ θ(x, τ) = 0, (2.29)

∂ui(x, τ)
∂τ

+H(τ)ui(x, τ) = −∇iΦ(x, τ). (2.30)



36 2. Gravity and dynamics of matter

Here, we indicate θ(x, τ) ≡ ∇ · u(x, τ) as the divergence of the velocity field, whose
motion is described by:

∂θ(x, τ)
∂τ

+H(τ)θ(x, τ) + 4πGa2(τ)ρ̄(τ)δ(x, τ). (2.31)

Similarly, we can introduce the curl of the velocity field w(x, τ) ≡ ∇× u(x, τ), whose
equation is:

∂w(x, τ)
∂τ

+H(τ)w(x, τ) = 0. (2.32)

Note that these equations follow directly by applying the divergence and the curl to
Equation 2.29 and Equation 2.30.

By replacing the time derivative of Equation 2.31 in Equation 2.29, we can write
the ODE describing the linear instability of density fluctuations as:

∂2δ(x, τ)
∂τ 2

+H(τ)
∂δ(x, τ)
∂τ

= +4πGa2(τ)ρ̄(τ)δ(x, τ) =
3

2
Ωm(τ)H2(τ)δ(x, τ), (2.33)

that yields exactly to Equation 1.47. This equation can be written in terms of the
linear growth factor D(τ) such that: δ(x, τ) = D(τ)δ(x, 0) and Equation 2.33 becomes:

d2D(τ)

dτ 2
+H(τ)

dD(τ)

dτ
=

3

2
Ωm(τ)H2(τ)D(τ)′. (2.34)

The two independent solutions of this second-order differential equation can be written
as : δ(x, τ) = D+(τ)δ+(x) + D−(τ)δ−(x), referred to as the fastest-growing mode and
the slowest-growing mode, respectively. Equivalently, we can write Equation 2.34 in
terms of the scale factor as:

a2
d2D
da2

+

(
ΩΛ(a)−

Ωm(a)

2
+ 2

)
a
dD
da

=
3

2
Ωm(a)D. (2.35)

While analytic solutions exist for some cosmological models (see Chernin et al. (2003);
Demianski et al. (2005)), in general, this equation needs to be solved numerically.
Going beyond the linear order in Equation 2.26, a recursion relation to all orders in
perturbation theory can be obtained (Goroff et al., 1986) establishing the framework
for standard Eulerian cosmological perturbation theory (SPT). For further details, refer
to Bernardeau et al. (2002).

2.1.4 Lagrangian perturbation theory

Alternatively, it is possible to describe the dynamic in the Lagrangian framework. In
this case, we are interested to consider the displacement field Ψ(q) mapping the initial
Lagrangian coordinate q to the Eulerian particles trajectories x:

x(τ) ≡ q +Ψ(q, τ ). (2.36)
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In this context, the distribution function introduced in subsection 2.1.2, becomes:

f(x,p, τ) = δD(x − q −Ψ(q, τ))δD(p −maΨ′(q, t)). (2.37)

From mass conservation follows that the density

ρ̄(1 + δ(x))d3x = ρ̄d3q (2.38)

can be obtained from the jacobian of the transformation between Eulerian and La-
grangian space J := detJij := det∂xi/∂qj as:

1 + δ(x) =
1

Det(δij +Ψi,j)
≡ 1

J(q, τ)
. (2.39)

The equation of motion in conformal time reads then:

d2x

dτ 2
+H(τ)

dx
dτ

= −∇xΦ(x), (2.40)

and applying the divergence to this equation we obtain:

J(q, τ)∇ ·
[
d2Ψ

d2τ
+Hτ dΨ

dτ

]
=

3

2
ΩmH(J − 1). (2.41)

This last equation can be expressed as an equation including only derivative with
respect to the Lagrangian coordinates, considering that ∇i = (δi,j +Ψi,j)

−1∂/∂q:

J(δij +Ψi,j)
−1(Ψ′′

i,j +HΨ′
i,j) =

3

2
ΩmH(J − 1), (2.42)

This expression is then solved perturbatively truncating in time the Taylor expansion
of the form Ψ(q, τ) =

∑∞
n=1D(τ)nΨ(n)(q) (Buchert, 1989, 1994; Bouchet et al., 1994;

Catelan, 1995).
Particularly important is the first order of this expression leading to the Zel’dovich

approximation (Zel’Dovich, 1970)

x(q, τ) = q +D+(τ)∇q∇−2
q δ+(q) (2.43)

with δ+(q) the growing mode spatial fluctuation part of the standard Eulerian per-
turbation Theory (SPT). The Lagrangian Perturbation Theory (LPT) solutions are of
particular interest even considering that they can be used to define the initial condition
in the simulations.
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2.2 Numerical simulations

We have seen in the previous sections that the current understanding of large-scale
structure formation relies on the assumption that the gravitational amplification of
small perturbations gives rise to these structures. Numerical simulations are the only
available tool for investigating the formation and the evolution of these structures in
the non-linear regime, when analytical methods for calculating relevant quantities are
missing. Furthermore, cosmological simulations are essential for a variety of other
purposes. For example, they provide a good way to test theories and hypotheses
by comparing mock data with observations. Additionally, in the context of data-
driven approaches and emulators, they are extremely important for creating input
training data. They also help us to generate synthetic data from next-generation
surveys and forecast results from those, allowing us to test different statistical inference
techniques and quantify systematic and statistical errors, among other things. However,
developing N-body cosmological codes is not a straightforward task, and it is crucial
to keep in mind that, since we are dealing with real physical processes, there are
certain physical requirements that need to be satisfied. As an example, we know that
the Universe consists of a significantly larger amount of matter than we could ever
simulate in our N-body code and the average density over progressively larger scales
approaches constant values. This suggests that the simulation volume V can not be
considered isolated with respect to the regions outside it, and these regions must be
filled appropriately. This is why periodic boundary conditions are necessary. Without
them, most of the matter in the box would collapse towards the center of the box (Bagla
and Padmanabhan, 1997). Moreover, it is essential to ensure that specific boundary
conditions do not affect the evolution of perturbations and that the average density
inside and outside the box is the same. Lastly, the interaction of the N-body particles
must be purely collisionless.

In the following section, we will see that the main steps characterizing an N-body
simulation are: setting the initial conditions; evaluating the gravitational force; the
time integration. These results are based on the work of Bernardeau et al. (2002);
Bagla and Padmanabhan (1997); Bagla (2002); Bagla and Ray (2003); Springel (2005);
Dolag et al. (2008); Angulo and Hahn (2022).

2.2.1 Initial condition

A key ingredient in every numerical simulation is the use of correct and justified initial
conditions. The initial stages of the universe are described by physical processes that
are more complex than just the collisionless interaction between dark matter particles.
In the early universe, radiation and hot plasma were tightly coupled and linked to
neutrinos and dark matter particles via gravity. The large-scale structures we observe
today are the result of the gravitational evolution of these species from initial tiny per-
turbations, and this evolution is described by coupled non-linear Einstein-Boltzmann
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equations. These equations have been solved using Einstein-Boltzmann solvers, which
solve the equations not in full non-linearity, but by using approximated methods from
cosmological perturbation theory (Fidler et al., 2017). Examples of the most well-
known Boltzmann codes are Camb (Lewis et al., 2000) and Class (Blas et al., 2011),
which are used to solve the coupled multi-physics systems to the first order. Although
Boltzmann codes are able to solve the set of equations with high accuracy, they are
limited to cases where the perturbation of matter and radiation is very small, i.e. they
can only be used in the early phases of gravitational evolution. After that, matter per-
turbations become larger and larger, leading to the non-linear gravitational collapse
of matter. At this stage, cosmological (N-body) simulations are required to solve the
fully non-linear problem.

However, we need to consider that N-body simulations are performed using the
Newtonian approximation and by considering only collisionless matter. This approxi-
mation is only valid at late times and on small scales, where we can neglect the effect
of radiation. Matching relativistic solutions that involve radiation and matter in the
early universe with Newtonian physics at a later time presents a significant challenge.

To create the initial conditions for N-body simulations, we can use the output
of the Einstein-Boltzmann solvers. One possible approach adopted to do this is the
forwards approach, which involves computing the matter density at a high redshift
using the Boltzmann code and then computing the initial particle displacements and
velocities that will be used as the starting point of the N-body simulation. However,
at early times, there is a residual component of thermal radiation from the CMB and
cosmic neutrino background, and the N-body simulations cannot describe the effect
of inhomogeneous radiation, which leads to the suppression of the growth structure
(Fidler et al., 2017).

One possible alternative for setting up the initial conditions is using the Backscaling
method. This method involves generating the linear matter power spectrum at redshift
z = 0 (today) using the Boltzmann codes. Then, the amplitude of the matter power
spectrum is rescaled back using the linear growth function D+ to create an initial den-
sity field at the time when the N-body simulation is initialized. In other words, the
rescaling procedure provides an artificial universe at the time the N-body simulation
is initialized with today’s radiation content. The simulations initialized with this ap-
proach will have, by construction, the correct matter power spectrum on the largest
scales, where the linear growth function is reproduced by the N-body simulations.

The first step in computing the initial condition is to obtain the initial gravitational
potential. We should note that the density contrast is connected to the gravitational
potential through the Poisson equation. Therefore, the gravitational potential can be
derived from the matter density contrast using the following formula:

ϕ =
∇−2δ

a
. (2.44)

Using the linear Boltzmann solvers and considering that for the rescaling procedure, a
pure growing mode is assumed (Fidler et al., 2017), we can obtain the density contrast
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δBC as:
δBC(x, a) = C+(x)D+(a) (2.45)

with C+(x) spatial constant fixed by the boundary conditions and D+(a) the growth
function. If we compute the Equation 2.44 at a → 0 and express the matter density
via Equation 2.45, we obtain:

lim
a→0

ϕ = ∇−2C+ lim
a→0

D+(a)

a
≡ ϕini. (2.46)

Since D+(a) is analytical around a = 0 and for a ΛCDM universe D+(a) ∝ a+O(a4),
by expressing C+ in term of the matter density at time a0, we can write:

ϕini =
∇−2δcode(x, a0)

D+(a0)
lim
a→0

D+(a)

a
. (2.47)

After obtaining the initial gravitational field, the next step is to establish the initial
conditions for fully non-linear cosmological simulations. One way to compute the initial
displacement and velocities of the particles is through Lagrangian perturbation theory.
An example of this is applying the Zel’dovich approximation to determine the initial
positions:

x = q −D+(z)ϕini(q) (2.48)

and velocities:
v = Ḋ+(z)∇ϕini(q). (2.49)

Similarly, higher-order perturbation theory beyond the Zel’dovich approximation can
be used to compute the nLPT displacement from ϕini. A more detailed description can
be found in e.g. Angulo and Hahn (2022); Fidler et al. (2017).

2.2.2 Calculating Force

Direct Summation

The most direct method for computing the gravitational force is the particle-particle
(PP) method (Aarseth et al., 1979). This involves summing the contributions of all
the individual particles to the gravitational potential:

Φ(r) = −G
∑
j

mj√
|r − rj|2 + ϵ2

, (2.50)

where mj and rj indicate the mass and position of the jth particle, respectively. The
gravitational softening parameter ϵ is used to smooth the force between two particles
and to minimize the two-body relaxation effect. This effect occurs when the number
of particles is small enough to break the collisionless fluid assumption (Dolag et al.,
2008). Indeed the number of dark particles we can simulate is always limited compared
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to the number of dark matter particles characterizing real physical systems. Although
the PP is very robust, it can only be implemented with a small number of particles,
due to its high computation cost. Specifically, the computing time is ∝ N2, where N
is the total number of particles.

The Tree Algorithm

As mentioned above, the limitation of the PP method lies in its computational cost,
mainly arising from the direct pairwise summation over all particles. The most natural
extension of the PP algorithm is represented by the tree code algorithm.
The key idea is that the contribution from distant particles to each particle can be
evaluated by a multipole expansion of groups of particles that, if selected correctly,
allows truncating the expansion at a low order (Bernardeau et al., 2002). In other
words, we can approximate the contribution from distant particles as the force coming
from a single particle lying at the center of mass of the group of particles. Therefore,
the interaction of each particle is reduced compared to the PM method and is of the
order of ∼logN , changing the number of calculations to N logN (Bagla, 2005). Most
commonly, the practical implementation of the multipole expansion consists of the
recursive division of particles into groups using a tree structure. The entire volume
of the simulation V is considered a cube. It is hierarchically partitioned into smaller
cubes, with a volume v − 1/8V , until one particle (or a few) is left in the smallest
cells. In contrast, the set of particles in the larger cell is used for fast rapid calculation.
A key role in the algorithm is the cell acceptance criterion, which is the determining
factor for classifying a group of particles as either close or far apart (Barnes and Hut,
1986; Bagla, 2005).
Although the final result of the algorithm is an approximate version of the real force,
the error can be reduced by adapting the cell acceptance criterion, and finding a balance
between the computational resource invested and the correct force.
Despite several advantages, such as the fact that the degree system clustering does not
impact the CPU time for each step, its high level of parallelizability, and the ability
to look at the detail of specific regions of interest, such as voids, clusters, or galaxy
halos, due to the use of individual masses for the particle, one of the most challenging
aspects of the tree code is the computation of periodic boundary conditions, which
demands a lot of memory (Bagla, 2005; Bernardeau et al., 2002). Nevertheless, tree
codes have been efficiently used for several cosmological N-Body simulations, including
PKDGRAV (Potter et al., 2017), GADGET (Springel et al., 2001), and CHANGA.

The PM Algorithm

The Particle-Mesh (PM) codes are ideal for cosmological N-Body simulations that aim
to study the large-scale structure of the universe. The key feature of these methods
is that, instead of attempting to directly solve the N-body problem, they approximate
gravitational forces by estimating the densities of the dark matter particles on a grid.

https://github.com/N-BodyShop/changa/


42 2. Gravity and dynamics of matter

The PM algorithm can be described as follows: First, the density at the mesh points
is computed from the particle positions. Then, the density field is transformed into
Fourier space to obtain the gravitational potential using Green’s function and Poisson’s
equation. Finally, the force on each particle is determined by interpolating the poten-
tial’s derivative back to the particle’s position. In many cases, the number of particles
used in the simulation corresponds to the number of cells in the implemented mesh
(Dolag et al., 2008). In other words, in this scheme, the gravitational force is treated
as a field quantity evaluated on a grid. The power of the PM algorithm lies in the
fact that Poisson’s equation in Fourier space is a simple algebraic equation, which can
be solved using Fast Fourier Transform (FFT) (Bagla, 2005). The calculation of the
Fourier transform via FFT is extremely fast, requiring only order NglogNg operations,
where Ng is the number of cells in the grid (Dolag et al., 2008). However, although
the use of mesh introduces a natural way to soften the force at small scales, it also
implies that the structure at scales smaller than the mesh size, can not be accurately
resolved. This softening parameter is ∼ L/Ng with L box size of the simulation. To
have a resolution similar to the one of a tree code, high values of Ng have to be used,
leading to high memory and CPU cost (Bernardeau et al., 2002). Nevertheless, PM
codes are generally cheap in terms of CPU and memory, scaling as O(N,N3

g logNg).
Other noteworthy advantages are that the Fourier method allows easy computation
of the periodic boundary and the implementation of this kind of code is thus rather
simple and parallelizable.

Hybrid Methods

Several Hybrid methods have been developed to increase the resolution of the PM
scheme, specifically adding a correction to the short-range force computed using the
PM method. A widely used Hybrid code is the P3M, computing the force between
close neighbors using the PP method. Although the implementation of this code has
enabled the generation of very large and accurate cosmological N-body simulations, it
has several disadvantages. For example, the correction for the force assumes isotropy,
but the force computed at a large scale has anisotropies due to the mesh structure’s
anisotropic nature. The correction is applied up to only ∼ 1.5− 2 grid lengths, which
is far below the actual distance where the force is underestimated by the PM method
(Bagla, 2005). Finally, as the system evolves and dark matter structures become highly
clustered, short-range interactions become more predominant compared to long-range
forces. Consequently, the amount of time required to compute the PP interactions
becomes progressively more significant.

Another method that employs a hybrid approach is the TreePM code (Bagla, 2002;
Xu, 1994; Bode et al., 2000; Bagla and Ray, 2003), which partitions the gravitational
potential into a long-range and a short-range component in Fourier space as follows:
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Φlong
k = Φk exp(−k2r2s) (2.51)

Φshort
k (x) = −G

∑
i

mi

ri
erfc

(
ri
2rs

)
. (2.52)

Here, ri is the distance vector between the ith particle and the point x, rs describes
the spatial scale of the force-split, and erfc is the complementary error function (Bagla,
2002). While the long-range potential is calculated using the mesh-based method, the
short-range potential is computed using the tree algorithm and is modified by a long-
range cut-off factor. This method has several advantages. If rs is appropriately chosen
(i.e., slightly larger than the mesh scale), it helps to reduce the force anisotropies char-
acterizing the PM methods. Moreover, it allows for preserving several advantages of
the classical tree algorithm, such as the control of the softening scale and the unlimited
dynamical range (Bagla, 2002).

2.2.3 Time integration

After computing the gravitational forces for each particle, we must integrate the equa-
tions of motion over time. The accuracy of the final simulations depends on the in-
tegrator scheme we use. To solve the ordinary differential equations (ODEs) in the
form of ẏ = f(y) with appropriate initial conditions, we can use implicit or explicit
methods to evolve the system from state n to state n+ 1. Although implicit methods
have better proprieties, they require resolving the system iteratively, which involves
inverting a sparsely sampled matrix with the dimension of the total number of data
points.

Euler’s method is the simplest way to integrate ODEs. It requires multiplying the
derivatives with the time step:

yn+1 = yn + f(yn)∆t, (2.53)

and assumes that the derivatives are constant during the time step.
Another possibility is to use the so-called Runge-Kutta method (RK). This method

can be as accurate as the Taylor series approach, without the need for higher-order
derivatives. As an example, the most widely used Runge–Kutta formula is the four-
order RK scheme (or RK4), which can be written as:

k1 = f(yn, tn) (2.54)

k2 = f(yn + k1∆t/2, tn +∆t/2) (2.55)

k3 = f(yn + k2∆t/2, tn +∆t/2) (2.56)

k4 = f(yn + k3∆t/2, tn +∆t/2) (2.57)
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yn+1 = yn +

(
k1

6
+

k2

3
+

k3

3
+

k4

6

)
∆t. (2.58)

As we can see, this method implies that the interval ∆t is subdivided into subsets,
providing the points where the derivatives have to be calculated. Runge-Kutta scheme
of any order can be constructed, although the derivation of an order higher than four
become progressively complicated.

One of the most commonly employed integrators is the so-called Leap-frog method,
where velocities and position are shifted in time by half a time step. One can distinguish
a kick-drift-kick (KDK) and drift-kick-drift (DKD) method for evolving the system
from step n to step n + 1. The DKD version of the Leap-frog method can be written
as:

xn+1/2 = xn + vn∆t/2 (2.59)

vn+1 = vn + f(xn+1/2)∆t (2.60)

xn+1 = xn+1/2 + vn+1∆t/2, (2.61)

whereas the KDK version is written as:

vn+1/2 = vn + f(xn)∆t/2 (2.62)

xn+1 = xn + vn+1/2∆t (2.63)

vn+1 = vn+1/2 + f(xn+1)∆t/2. (2.64)

As we can note, the two versions differ on whether one begins by shifting the velocities
by half a time step using the forces at the current time step (Kick), and then updating
positions for the full-time step(drift), and recomputing forces with new positions before
shifting velocities for the full step (Kick), or viceversa. The biggest advantage of the
leap-frog scheme lies in its symplectic properties, i.e. they preserve the Hamiltonian
structure of the dynamical system. Indeed, all Hamiltonian systems are not structurally
stable against non-Hamiltonian perturbations. When an ordinary numerical integrator
such as Runge–Kutta is adopted, it can introduce non-Hamiltonian perturbations, and
consequently, introduce significant changes in the long-term behavior of the system. To
prevent this and preserve the Hamiltonian structure of the system during the time of
integration, a symplectic integration scheme must be used, i.e. each step of integration
has to be formulated as a canonical transformation. A more detailed description can
be found in e.g. Springel (2005).

2.2.4 Resolution

Both the number of particles used and the size of the simulated box affect the prop-
erties of the non-linear structures formed. The appropriate setup of the box size and
the number of particles is the key to achieving one percent agreement in the power
spectrum. Low resolution prevents the capturing of the very non-linear scales, while
small simulated volumes lead to the leakage of large modes.
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If we assume that L is the side length of the simulation box, only the Fourier
modes above the fundamental k > k0 = 2π/L are non-zero. This implies that the
structures are formed in regions that are biased representations of a real finite volume
in the universe. Power and Knebe (2006) investigated the effect of finite simulation
volume of cosmological simulations on the internal properties of cold dark matter halos
and their kinematics. They found that the missing large modes lead to a suppression
of the strength of clustering and a decrease in the number of most massive haloes.
However, they showed that the suppression of long wavelengths does not affect the
internal structures of halos. The reduction in the number of most massive haloes also
impacts the non-linear power spectrum, whose amplitude is reduced at quasi-linear
scales. For example, Schneider et al. (2016) quantified the potential errors due to box
size using a suite of simulations performed with the Pkdgrav3 code, demonstrating
that the simulation box size should be larger than L = 0.5h−1Gpc to avoid systematic
non-linear finite-volume effects. Moreover, they showed that a box size larger than
L = 2.5h−1Gpc is needed to reduce the Gaussian sample variance at the percent level
for k > 0.1hMpc−1.
On the other hand, the mass resolution of the simulation determines the minimum size
of a halo that can be resolved in a given box. This means that if the haloes that make
the relevant contribution to the non-linear power spectrum are not accurately resolved,
the power spectrum will feature a drop in power. Schneider et al. (2016) computed the
minimal mass resolution necessary to achieve percent convergence in the matter power
spectrum. Specifically, they found that a mass resolution of Mp = 109M⊙ provides a
percent-converged power spectrum up to k = 10h Mpc−1 at redshift zero. However, a
mass resolution of Mp = 108M⊙ can already guarantee a percent-level convergence at
k ∼ 1h Mpc−1.

2.3 Machine learning methods

Cosmological simulations play a crucial role in understanding and interpreting observed
data. However, a large number of simulations are required for this purpose. As we
know, simulating the growth and formation of large-scale structures in the Universe
is not an easy task. It involves evolving billions of particles over billions of years and
across a vast volume. This can be significantly challenging.

In the last few decades, machine learning techniques have had a considerable impact
on cosmology. In particular, within the context of cosmological simulations, there are
two important applications we want to focus on: the use of machine learning to generate
mock data, and the use of machine learning to enhance and accelerate cosmological
simulations. In the first case, using a set of cosmological simulations as a training
set, deep learning algorithms can be used to create mock realizations of the universe
that are consistent with observed data. As an example, in their study, He et al.
(2019) proposed D3M, a deep neural network that learns the nonlinear mapping from
first-order perturbation theory linear displacements (Zel’dovich approximation) to the
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displacement field of FastPM simulations. They demonstrated that D3M can more
accurately reproduce the cosmic structure in the non-linear regime than Second-order
LPT. Furthermore, they demonstrated that the model can be generalized and applied
to simulations with cosmological parameters Ωm and As that differ from those used
to create the training set. Recently, Li et al. (2021) demonstrated that a generative
model can be trained to super-resolve the particle displacement field, allowing for the
enhancement of the resolution of a low-cost approximate N-body simulation. Their
approach uses high-resolution (HR) image data as the training set and simulates super-
resolution (SR) versions of low-resolution (LR) images. They showed that the model
was able to simulate SR simulations with a matter power spectrum matching the HR
results up to k ∼ 16h−1 Mpc at all redshifts to the percent level by using only 14 pairs
of small-volume LR-HR simulations. Additionally, the model was able to reproduce
the HR halo mass function within 10% down to 1011M⊙.

Machine learning algorithms can also be used to improve the results of numerical
simulations. For example, Giusarma et al. (2019) employed U-net architectures to
generate cosmological simulations mimicking the presence of massive neutrino starting
from standard ΛCDM simulations. They demonstrated that the method was able to
reproduce the 3-D matter power spectrum down to non-linear scales k < 0.7hMpc
at redshift z = 0. Additionally, the model enables the creation of massive neutrino
simulations five orders of magnitude faster than standard methods.

These methods can also be applied to recreate the distribution of baryons in sim-
ulations that include only dark matter. In this regard, Tröster et al. (2019) presented
an example of using deep generative models and variational auto-encoders trained on
full hydrodynamical simulations, to generate the gas pressure distribution in only-dark
simulations. They showed the effectiveness of the model in reproducing the power and
cross-power spectra from BAHAMAS, a set of full hydrodynamical simulations. Addi-
tionally, they demonstrated that once the model is trained, it enables the generation of
maps of the tSZ effect much faster compared to standard hydrodynamical simulations.
One drawback of these approaches is their use of deep learning as a black box. Con-
sequently, there is no guarantee that the models will perform well outside the training
regime or accurately capture the dependence on cosmology.

Another class of examples includes data-driven methods that have been developed
to enhance the results of existing numerical simulations. For example, Dai et al. (2018)
introduces the Potential Gradient Descent scheme (PGD), a gradient-based method to
correct the PM approximation in FastPM and improve the modeling of the matter
distribution within halos. PGD models the effect of short-range interactions as an
additional particle displacement term, moving the particles towards a minimum of the
gravitational potential after band-pass filtering:

S =
4πGρ̄αPM

H2
0

∇Ôl(k)Ôs(k)∇−2δ, (2.65)

where Ôl(k) = exp (−k2

k4l
) and Ôs(k) = exp (−k4

k4s
) are the low and high pass filter
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introduced to remove the long-range force and to reduce the numerical effects induced
by the mesh resolution. PGD introduces 3 nuisance parameters fitted on training
simulations: αPM , defining the amplitude of the filter and the long and the short-
range scale parameters kl and ks. Following the PGD model, Dai and Seljak (2021)
proposed the Lagrangian Deep Learning (LDL) model as a novel approach to learning
the physics controlling baryons in hydrodynamic simulations. Using both Quasi-N-
body simulations (FastPM) and full N-body simulations, they demonstrated that the
LDL model can generate maps of tSZ, X-ray, stellar mass, and kSZ at several redshifts
from the linear density fields. The primary motivation behind the LDL model is to
provide an effective description of the underlying physics. The authors argued that
such a description should obey symmetries such as rotation and translation invariance,
which, when implemented, enable the learning of the effective description of the physical
laws instead of the data distribution.
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This chapter aims to introduce in detail the weak gravitational lensing formalism.
After deriving the main lensing equation from light deflection, I will introduce the
convergence and shear observables, explain the connection between these observables
and cosmology, and discuss some of the systematic effects in weak lensing analysis.
Finally, I will present an overview of the techniques used in weak lensing that are
related to this thesis and are used to constrain cosmological parameters.

49
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3.1 Principles of Weak Gravitational Lensing

This section summarizes the weak lensing effects and equations most relevant to the
purpose of this thesis. The derivation of these quantities can be found in Seitz et al.
(1994); Bartelmann (2010); Kilbinger (2015).

3.1.1 Gravitational Light Deflection

To derive the lens equation, which describes the propagation of light bundles in the
presence of massive bodies, we will make three relevant assumptions: we will work
within the framework of General Relativity (GR), we will consider the weak field case,
assuming that the Newtonian gravitational potential is small (Φ ≪ c2), and we will
assume that the massive bodies, which act as sources of the potential, have peculiar
velocities smaller than the speed of light.

We may remember that in Equation 1.6 of subsection 1.2.2, we have introduced the
deflection of light from the geodesic equation as:

d2xµ

dλ2
= −Γµ

αβ

dxα

dλ

dxβ

dλ
, (3.1)

where we indicated with −Γµ
αβ the Christoffel symbols for a given metric and with λ

the affine parameter, the monotonically increasing parametrization of the path. As
Seitz et al. (1994), let us consider γµ0 (λ) an arbitrary fiducial light ray propagating
along a null geodesic at the center of an infinitesimally thin light beam. Consider now
γµ(λ,θ), the light ray separated from the fiducial ray by an angle θ = (θ1, θ2), such that
we can express the separation vector as ξµ(λ,θ) = γµ(λ,θ) − γµ0 (λ). Specifically, we
are interested in the transverse components of this separation which can be evaluated
by introducing a two-dimensional screen in the 3-dimensional space of the observer
perpendicular to the light ray. The four-dimensional vector ξµ(λ,θ) can be projected
on this screen by introducing its component ξ1 and ξ2 on an orthogonal basis of the
screen. With this formalism, the physical separation ξµ(λ,θ) evolves through the
following geodesic deviation equation:

d2ξµ(λ,θ)

dλ2
= T (λ)ξµ(λ, θ), (3.2)

where we introduce the optical tidal matrix T (λ), accounting for the effect of the
curvature of the local space-time on the light ray trajectory. To express the tidal matrix
T in terms of the matter content of the Universe in the case of a weakly inhomogeneous
Universe, we assume a slightly perturbed metric of the Universe, defined as (Schneider,
2006):

ds2 = a2(η)

(
−
(
1 +

2Φ

c2

)
dη2 +

(
1− 2Φ

c2

)
(dr2 + f 2

K(r)dΩ
2)

)
. (3.3)



3.1. Principles of Weak Gravitational Lensing 51

This metric is defined as the combination of an FLRW metric, describing a homoge-
neous and isotropic Universe, and a Newtonian potential produced by local density
fluctuations of scales much smaller than the Hubble length. Under this assumption,
the tidal matrix T can be described as sum of two contributions:

T = Tbg + Tcl, (3.4)

with a background contribution Tbg describing the lensing effect due to the smooth
homogeneous Universe, and a clump contribute Tcl, encoding the tidal effect caused by
the inhomogeneities of the density distribution. Seitz et al. (1994) derived the explicit
expression for these two terms:

(Tbg)ij =
4πG

c2
ρ0
a5
δij, (3.5)

(Tcl)ij =− 1

c2a2

(
2

∂2

∂ξi∂ξj
+ δij

∂

∂ξ3

)
Φ, (3.6)

with i, j ∈ [1, 2]. If we assume that the source of inhomogeneities is geometrically thin
and the variation along ξ can be neglected (also known as thin-lens approximation),
by injecting the explicit expression of the tidal matrix in the Equation 3.2, we obtain:

d2x

dχ2
+Kx = − 2

c2
(∇⊥Φ(x, χ)−∇⊥Φ(0, χ)), (3.7)

which describes how the comoving separation vector x = 1
a
ξ evolves w.r.t the comoving

distance. In Equation 3.7 we indicate with K the spatial curvature of the Universe,
with χ the radial comoving distance, and with ∇⊥ = ( ∂

∂x1
, ∂
∂x2

) the comoving gradient
in the 2-dimensional screen perpendicular to the light ray. With the following boundary
condition:

x(χ = 0); dx
dr
(0) = θ (3.8)

the solution of Equation 3.7 for the radial comoving distance is given by:

x(χ) = fk(χ)θ − 2

c2

∫ χ

0

dχ′fk(χ− χ′)[∇⊥Φ(x, χ′)−∇⊥Φ
(0)(χ′)], (3.9)

with fk(χ) the angular comoving distance and Φ the Newtonian potential integrated
along the perturbed light path x(χ′). Note that in Equation 3.9, in the absence of
lensing, i.e. in the absence of density fluctuations, the second term vanishes and the
observer sees the distance x under an angle θ = β = x(χ)/fk(χ). In the presence of
lensing, we can introduce the angular deflection α, defined as:

α =
2

c2

∫ χ

0

dχ′fk(χ− χ′)

fk(χ)
[∇⊥Φ(x, χ′)−∇⊥Φ

(0)(χ′)], (3.10)

so that, the difference between the apparent angle θ and the source position β defines
the lens equation:

α(θ) = θ − β. (3.11)
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The Born approximation The expression in Equation 3.9 can be simplified by in-
tegrating the potential gradient along the unperturbed ray, assuming a small deviation
between the potential evaluated on the perturbed light path and the one on the un-
perturbed line of sight. In this assumption, known as Born approximation (Schneider,
2006), we can consider a series expansion in powers of Φ. Since we have assumed that
Φ is small, we can focus on the first-order approximation. This can be obtained by
substituting the zeroth-order solution x0(χ) = fK(χ)θ into the comoving separation
x(χ). Thus, the gravitational potential can be expressed as:

Φ(fk(χ
′)θ, χ′). (3.12)

Equation 3.10 becomes:

α(θ, χ) = θ−β(θ, χ) =
2

c2

∫ χ

0

dχ′fk(χ− χ′)

fk(χ)
[∇⊥Φ(fk(χ

′)θ, χ′)−∇⊥Φ
(0)(χ′)], (3.13)

representing the lens equation under the Born approximation.

3.1.2 Shear and Convergence

Formally, the effect of the lens mapping is described by the Jacobian matrix:

A(θ, χ) =
∂β

∂θ
=

1

fk(χ)

∂x
∂θ
, (3.14)

describing the linear mapping from the lensed image to the unlensed source: Under
the Born approximation assumption, the Jacobian matrix can be written as:

Aij(θ, χ) = δij −
2

c2

∫ χ

0

dχ′fk(χ− χ′)fk(χ
′)

fk(χ)
∂i∂jΦ(fk(χ

′)θ, χ′). (3.15)

If we define the 2D potential, the lensing potential as:

ψ(θ, χ) ≡ − 2

c2

∫ χ

0

dχ′ fk(χ− χ′)

fk(χ)fk(χ′)
Φ(fk(χ

′)θ, χ′), (3.16)

the Jacobian matrix can be written as:

Aij = δij − ∂i∂jψ(θ, χ). (3.17)

From the parametrization of the symmetrical matrix A, we can define the spin-two
shear field γ = (γ1, γ2) and the scalar convergence field, κ:

A =

(
1− κ− γ1 −γ2

−γ2 1− κ+ γ1

)
; (3.18)
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hence, the convergence and the shear are defined as the second derivatives of the
potential:

κ =
1

2
(∂1∂1 + ∂2∂2)ψ;

γ1 =
1

2
(∂1∂1 − ∂2∂2)ψ; (3.19)

γ2 =∂1∂2ψ.

The two fields γ and κ represent the distortion in the image shape, and the change
in the angular size, respectively. The last equations explain the meaning of both
convergence and shear. The distortion induced by the convergence is isotropic, so
the images are only rescaled by a constant factor in all directions. Setting only κ
to be nonzero in the distortion tensor leads to a dilated image, made larger by the
convergence, and so magnified. On the other hand, the shear stretches the intrinsic
shape of the source along one privileged direction.

3.2 Gravitational lensing by the large scale structure

The previous section introduced the formalism of gravitational lensing by a generic
matter distribution. In this thesis, we will focus on cosmological application related
to the so-called cosmic shear. Light bundles propagating through the Universe are
continuously deflected and distorted by the gravitational field of the in-homogeneous
mass distribution, the large-scale structures (LSS). The cosmic shear is defined as the
coherent distortion of images of distant galaxies due to the tidal field of these struc-
tures.
From the study of this quantity, we can infer information about the evolution of struc-
tures and the geometry of the Universe. To understand the source of this cosmological
information, in this section, I will explore the relationship between the weak lensing
convergence and the projected matter distribution, how the weak lensing convergence
is connected to the shear, and how the shear is connected to the galaxy ellipticities.
Finally, I will describe how systematic effects can affect cosmic shear studies and ob-
servations.

3.2.1 Relation between convergence and projected overdensity

The convergence κ will be the pivotal quantity for the purposes of this thesis. It can be
seen as the source term of a 2D Poisson equation, hence directly related to the lensing
potential ψ:

κ =∇21

2
ψ (3.20)

=
1

c2

∫ χ

0

dχ′ fk(χ− χ′)

fk(χ)fk(χ′)
∇2Φ(fk(χ

′)θ, χ′). (3.21)
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and be interpreted as a projected surface density. We can add an additional second-
order term along the comoving coordinate, ∂2x/∂2χ2, in order to turn the original
2-dimensional Laplacian into a 3-dimensional Laplacian. This additional term is ex-
pected to vanish, considering that positive and negative contributions cancel out when
integrating along the line-of-sight under homogeneity arguments. Substituting in Equa-
tion 3.20 the 3-D Poisson equation:

∇2Φ = 4πGa2ρ̄δ (3.22)

we obtain the convergence κ in terms of the 3D density contrast δ:

κ(θ, χ) =
3H2

0Ωm

2c2

∫ χ

0

dχ′fk(χ− χ′)fk(χ
′)

fk(χ)

δ(fk(χ
′)θ, χ′)

a(χ′)
(3.23)

with the usual definitions of δ = (ρ − ρ̄)/ρ̄, and ρ̄ ∝ a−3. This expression can be
interpreted as the weighted projection of the density along comoving coordinates, where
the weights are the quantities characterizing the weak lensing optical system, i.e. the
source, the deflector, and the observer. If we consider a population of source galaxies
with redshift distribution n(χ), the mean convergence can be computed as:

κ(θ) =

∫ χs

0

n(χ)κ(θ, χ)dχ, (3.24)

with χs the limiting comoving distance of the population. By combining Equation 3.23
and Equation 3.24, we obtain:

κborn(θ) =
3H2

0Ωm

2c2

∫ χs

0

dχ

a(χ)
g(χ)fk(χ)δ(fk(χ)θ, χ), (3.25)

where we define the lensing efficiency :

g(χ) ≡
∫ χs

χ

dχ′n(χ′)
fk(χ

′ − χ)

fk(χ′)
. (3.26)

Thus, the Born–approximated convergence can be interpreted as the integrated total
matter density along the line of sight, weighted by the distance ratios and the normal-
ized source galaxy distribution n(χ)dχ = n(z)dz.

3.2.2 From galaxy ellipticities to cosmic shear

When we use cosmic shear as a cosmological probe, the quantity that is actually mea-
sured from observation is the galaxy ellipticities. Subsequently, the shear is measured
from the observed ellipticities and the convergence is estimated by using the theoretical
relations encoded in Equation 3.19.

In the context of cosmic shear, the distortion due to the inhomogeneities is very
weak, hence the images are very weakly distorted and the values of γ and κ are of
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the order of a few percent. In this regime, the lens maps the original source onto one
unique image, we can not observe multiple images, and the matrix A is invertible.
At this point, we can introduce a new quantity, namely the reduced shear, defined as:

g =
γ

1− κ
, (3.27)

with the same spin-two transformation properties defined for the shear. The reduced
shear is the only quantity based on the measurement of galaxy shapes and therefore
observable. Indeed, if we define ϵint the intrinsic complex ellipticity of a source galaxy,
the reduced shear g is related to the observed galaxy ellipticity ϵobs via (Seitz and
Schneider, 1997):

ϵobs =
ϵint + g

1 + g∗ϵint
, (3.28)

with |g| ≤ 1 and g∗ complex-conjugate of g = g1 + ig2. In the regime of weak lensing
(|κ| ≪ 1), we can approximate this relation to ϵobs ≈ ϵint + γ and, taking into account
the fact the intrinsic ellipticity of galaxy has no preferred orientation1, the expectation
values of this quantity vanishes ⟨ϵint⟩ = 0. It follows that the expected value of the
observed ellipticity of a galaxy becomes:

⟨ϵobs⟩ ≈ γ ≈ g. (3.29)

As a result, the averaged observed ellipticity can be considered an unbiased estimator
of the reduced shear. The variance of the observed ellipticity is given by σ2(ϵobs) ≈
σ2(ϵint)+σ2(γ), where the variance of the source, referred as shape noise, is dominant.
In the weak-lensing regime, to reduce the shape noise and detect the lensing signal, the
latter cannot be measured from one single galaxy.

3.2.3 From cosmic shear to convergence maps

We have observed in preceding sections that there exists a relationship between the
estimated shear γ and convergence κ as shown in Equation 3.19. These expressions
can be rephrased in the Fourier domain as follows:

γ̂1 =
(k21 − k22)

2
ψ̂; γ̂2 = k1k2ψ̂ κ̂ =

(k21 + k22)

2
ψ̂; (3.30)

from the combinations of these equations, Kaiser and Squires (1993) arrived to the
following expression of the reconstructed convergence κ:

κ̂γ =
(k21 − k22)

k2
γ̂1 +

2k1k2
k2

γ̂2; (3.31)

1We will see that this assumption is not entirely accurate due to a phenomenon known as intrinsic
galaxy alignments (see subsubsection 3.2.4)
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with k2 = k21 + k22. It is important to note that the formula lacks definition when
k1 = k2 = 0. As a result, the convergence can only be obtained up to a constant term,
leading to what is known as the mass-sheet degeneracy phenomenon. The expression
in Equation 3.31 can be alternatively expressed in the direct domain as:

κ(θ) =
1

π

∫
D(θ − θ′)γ(θ′)dθ′ + κ0. (3.32)

Here the kernel D is the Fourier transform of the kernel in Equation 3.31 and κ0 is the
constant offset due to the mass sheet degeneracy. It is evident from this equation that
a linear relationship exists between the shear and the convergence and that the latter
can be derived through convolution from the shear field. Additionally, this linearity
enables us to compute the noise on the convergence by considering the noise on the
shear. Under the assumption of uncorrelated shear components, each having a variance
of σϵ, the variance of κ can be expressed as:〈

ˆ̃κ∗ ˆ̃κ
〉
=

(k21 − k22)
2

k2
σ2
ϵ +

4k21k
2
2

k4
σ2
ϵ = σ2

ϵ . (3.33)

This implies that the estimated κ obtained through the Kaiser-Squires method shares
the same noise variance as the input shear. However, there are several limitations to
the Kaiser-Squires inversion method. For instance, the estimator is defined in terms of
the shear γ, whereas the cosmological observable is the reduced shear g = 1/(1 + κ).
Although the method can map the large-scale matter distribution effectively since the
lensing signal on large scales is well within the weak regime, the convergence may
become significant on small scales up to the point that the reduced shear can no longer
serve as a direct estimator of the shear. This non-linearity implies that the inversion
problem cannot be solved through simple convolution.

This has led to the introduction of alternative mass-mapping techniques. Examples
of these approaches include the Seitz and Schneider (1995) inversion methods, which
attempt to solve the inversion problem using local differential relations between the
convergence and the derivatives of the shear; the method proposed by Pires et al.
(2009), which aims to mitigate the impact of the mask using sparse inpainting; the
method proposed by Bacon et al. (2006), which uses a minimum variance filter to
estimate the convergence from the gradient of the convergence; and methods such as
GLIMPSE (Lanusse et al., 2016), where the mass mapping problem, addressed as an
ill-posed inverse problem, relies on a robust sparsity-based regularization scheme. In
recent years, with the rise of deep learning, deep neural network approaches have also
been developed for the mass-mapping problem. For example, the DeepMass method
(Jeffrey et al., 2020) estimates the mean posterior of the convergence map by training
a Convolutional Neural Network (U-net architecture) on a set of synthetic simulations
characterized by non-Gaussian shape noise with cosmological parameters drawn from a
broad prior. Additionally, Shirasaki et al. (2021) proposed a new model to denoise weak
lensing mass maps based on a Generative Adversarial Network (GAN), and Remy et al.
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(2022) proposed an approach that combines elements of deep learning and Bayesian
inference to provide a tractable way to sample from the full high-dimensional posterior
distribution of convergence maps.

3.2.4 Modelling of systematic effects in weak lensing

Several systematic effects can affect cosmic shear studies, potentially mimicking the
shear signal and leading to biased constraints on cosmological parameters. Moreover,
modeling of systematic effect is a key ingredient of numerical simulations for weak
lensing. For this reason, in this section, I provide a short overview of the most significant
systematic effects, including galaxy intrinsic alignment, baryonic feedback, photometric
redshift uncertainty, and multiplicative shear bias.

Intrinsic alignment of galaxies

In subsection 3.2.2, we depicted the expectation value of the observed ellipticity as the
unbiased estimator of the reduced shear. This outcome arises directly from ⟨ϵint⟩ = 0.
In reality, galaxies undergo interactions with the surrounding matter distribution dur-
ing their formation and evolution, leading to a coherent alignment of their intrinsic
shapes. As a result, the intrinsic ellipticity of the source ϵint can be broken down into
two components: the Intrinsic Alignment term ϵIA and the random component ϵran.
Dealing with Intrinsic Alignment (IA) is extremely complicated, as its effect cannot be
simply removed or predicted, and its nature is strongly connected with the formation
of galaxies. The first studies on the intrinsic alignment relied on analytical calculations
(Crittenden et al., 2001; Catelan et al., 2001b; Mackey et al., 2002), on dark matter
simulations to predict IA from halos (Croft and Metzler, 2000; Heavens et al., 2000a),
or on semi-analytic models to describe shape correlations of galaxies and populate halos
with them (Heavens et al., 2000a). However, all these methods led to different predic-
tions. Recently, thanks to advancements and increased resolution in hydrodynamical
simulations, it has been possible to make progress toward the understanding of this
phenomenon. As of now, as highlighted by Kilbinger (2015), we believe that the two
most likely mechanisms contributing to the correlation of the intrinsic shape of galaxies
are: Stretching of halo shapes of galaxies due to the tidal field; Tidal torquing, which
occurs during the galaxy formation process when the axes of galaxies become aligned.
This effect is explained by the exertion of the torquing moment caused by the tidal
field.
However, even today, different theoretical models exist to describe the physics of in-
trinsic alignments. Among them, for example, we have the Non-Linear tidal Alignment
model (NLA) (e.g. in Bridle and King (2007)), the tidal torquing model (Hirata and
Seljak, 2004; Catelan et al., 2001a), or the combination of both the Tidal Alignment
and Tidal Torquing model (TATT) (Blazek et al., 2019). As the work presented in
chapter 6 is primarily centered on the NLA model, I will provide a brief overview of
this model.
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Following Harnois-Déraps et al. (2021), the IA effect can be modelled by a linear re-
lationship between the intrinsic shapes of galaxies and the non-linear projected tidal
field sij:

ϵIA1 = −AIAC̄1ρ̄(z = 0)

D(z)
(sxx − syy), ϵIA2 = −2AIAC̄1ρ̄(z = 0)

D(z)
sxy, (3.34)

from which the observed ellipticities are computed as:

ϵobs =
ϵint + g
1 + ϵ∗intg

, with ϵint =
ϵIA + ϵran

1 + ϵ∗,IAϵran
. (3.35)

The AIA term in Equation 3.34 defines the strength of the tidal coupling, C̄1 is a con-
stant calibrated in Brown et al. (2002), D(z) is the linear growth function introduced
in chapter 2 and ρ̄ is the average matter density. The IA signal adds an excess corre-
lation to the two-point shear correlation function (also known as cosmic shear GG or
shear-shear correlation) with two terms: 1) the intrinsic-intrinsic (II) term, tracing the
correlation of the intrinsic shape of two galaxies and 2) and the intrinsic-shear coupling
(GI) term, describing the correlation between the intrinsic ellipticity of one galaxy with
the shear of another galaxy (Kilbinger, 2015).

PII(k, z) =

(
AIAC̄1ρ̄(z)

D̄(z)

)2

a4(z)Pδ(k, z), (3.36)

PGI(k, z) =
AIAC̄1ρ̄(z)

D̄(z)
a2(z)Pδ(k, z),

where D̄(z) ≡ D(1+ z) (Harnois-Déraps et al., 2021). Note that the non-linear nature
of this model arises from the power spectra in Equation 3.36. Indeed, the NLA model
is a modification of the Linear Alignment (LA) (Catelan et al., 2001b), involving the
replacement of the linear power spectrum with the non-linear one. Under the Limber
approximation, the projected angular power spectra for the IA terms become:

CII =

∫ χlim

0

dχ
n2(χ)

a2(χ)
PII(k, χ), (3.37)

CGI =
3ΩmH

2
0

2c2

∫ χlim

0

dχ
g(χ)n(χ)

a(χ)
PGI(k, χ). (3.38)

Photometric redshift uncertainty

More stringent constraints on the dark energy parameters are obtained when a tomo-
graphic analysis of the weak lensing signal is performed, i.e. when the source galaxies
are binned according to their redshift. This means that the cosmic shear signal relies
on the redshift of all galaxies used in the analysis, and errors in redshift estimation
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can impact the final constraints on the cosmological parameters. However, spectro-
scopic determination of the redshift is not feasible for such a large quantity of images.
Consequently, photometric redshift measurements (also known as "photo-z") are used
instead. This means that, among the various sources of error contributing to the dark
energy error, we have also to consider errors that arise from using an approximate
redshift. This uncertainty typically affects both the central value and the width of the
redshift distribution of each tomographic bin. For instance, Hildebrandt et al. (2016)
demonstrated that a 1σ uncertainty in the measured mean redshift of each tomographic
bin could lead to a reduction of approximately 25% in the precision of the cosmological
parameter estimates.

Nevertheless, it is possible to mitigate the impact of statistical errors in photometric
redshifts on the overall error budget through accurate calibration and error analysis
of the distribution of photometric redshifts (Hildebrandt et al., 2016). The specific
accuracy requirements usually depend on the survey.

Multiplicative shear bias

The observed galaxy ellipticities can be affected by processes different from gravita-
tional lensing, such as blurring due to the atmosphere or instrument response, effects
from telescope optics, and inaccuracies in the noise model. For example, pixels can
suffer from Poisson noise coming from galaxy photons and other noise contributions,
such as sky background. All these systematics can impact our statistics and propagate
to cosmological parameter estimates. Hence, it is essential to understand the nature
of these biases and reduce their impacts.

Some of the most studied sources of bias are: the noise bias, which is commonly
described as a consequence of the nonlinear relationship between the image pixel and
the true shape of the galaxy (Bridle et al., 2009, 2010; Refregier et al., 2012; Melchior
and Viola, 2012; Kacprzak et al., 2014); the model bias, referring to the result of utilizing
an inadequate model to depict the morphologies of the observed galaxy (Refregier et al.,
2012; Kacprzak et al., 2014); the PSF bias, if the Point Spread Function is not modeled
properly (Jarvis et al., 2016; Liaudat, 2022); the selection bias pertaining to the effect
that the various systematics have on different sets of galaxies, resulting in uneven
impacts across galaxy samples (Kacprzak et al., 2012, 2014). (See Pujol et al. (2020)
for a full description of different sources of shear bias.)

The shear bias is usually modeled as a multiplicative m and an additive bias c:

⟨e⟩ = (1 +m) ⟨g⟩+ c (3.39)

where g and e are the averaged shear and ellipticity. Usually, c is interpreted as an
incomplete correction for the point-spread function, introducing a preferred direction
in the plane of the image. On the contrary, m encodes in part the propriety of the
unobserved galaxies. Hence, if the former can be removed with sufficient knowledge of
the experiment, the latter is impossible to know a priori (Huff and Mandelbaum, 2017).
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Moreover, the algorithms used to measure the ellipticity e can introduce a nonlinear
response that leads to multiplicative and additive biases interacting with the unknown
true ensemble galaxy properties (Massey et al., 2007; Zhang and Komatsu, 2011). One
possible way to handle the shear estimation biases consists of using simulations. The
shear error can be calibrated by applying a given pipeline for real data to simulation
with known input shear. However, this kind of approach requires simulations whose
proprieties have to match with the ones of the given real data. An alternative approach
has been proposed by Huff and Mandelbaum (2017), dubbed metacalibration, which
implemented the first method for self-calibration of shear measurements not relying on
simulation or deeper calibration fields.

Baryonic effects

Weak lensing observations in current and future cosmological surveys are strongly af-
fected by baryonic feedback. During galaxy formation, processes such as star forma-
tion, supernova feedback, radiative cooling, and feedback from black hole accretion,
can alter the gravitational potential of a given halo by redistributing the gas inside it.
These astrophysical processes can mock signals similar to those expected from varying
the cosmological parameters leading to systematic errors in the theoretical predictions
(Osato et al., 2021; Rudd et al., 2008; Semboloni et al., 2011a; Zentner et al., 2013;
Mohammed et al., 2014; Osato et al., 2015; Harnois-Déraps et al., 2015). Numerical
simulations of only dark matter particles provide accurate predictions for the matter
power spectrum, achieving a precision of 5 percent over the full relevant range in phys-
ical scales and redshift (Schneider et al., 2019). Nonetheless, van Daalen et al. (2011)
demonstrated that the assumption implicit in these simulations, that baryons do not
influence the large-scale structure, is incorrect. For instance, past studies have shown
that the energy injection of active galactic nuclei can heat up or push out large amounts
of gas, affecting the matter clustering signal at cosmological scales (Schneider et al.,
2019). In theory, complete hydrodynamical simulations are the appropriate method for
forecasting the weak lensing signal. However, these simulations are computationally
demanding and involve complex physical models that are often approximated using
semi-analytical methods, which can produce discrepant results from other hydrody-
namical simulations (Schneider et al., 2019). For example, in terms of the matter
power spectrum, some hydrodynamical simulations show no effect until k ∼ 1 h/Mpc
(Hellwing et al., 2016; Springel et al., 2018; Chisari et al., 2018), while others predict
very strong effects starting at k ∼ 0.1 h/Mpc (van Daalen et al., 2011; Semboloni
et al., 2011a; Huang et al., 2019; Parimbelli et al., 2019; Harnois-Déraps et al., 2015).
The angular power spectrum is significantly altered at the angular scale of ℓ ≤ 1000
or ℓ ≤ 3000 according to the assumed statistical uncertainty (Kilbinger, 2015). That
is why a significant effort has been devoted to quantifying the impact of baryons on
the weak-lensing signal using analytical and semi-analytical methods. For instance,
some work (Cooray and Sheth, 2002; Yang et al., 2013; Mead et al., 2015) include
baryonic effects by introducing physically motivated free parameters and adjusting
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the halo mass-concentration relation based on the halo-model formalism, while others
(Schneider et al., 2019; Aricò et al., 2020) consider the impact of the gas, stellar, and
dark matter density components individually. Additionally, Eifler et al. (2015); Huang
et al. (2019) quantify the changes in the full power spectrum due to baryonic feedback
as PCAs, and Dai et al. (2018) introduce a gradient-based method to improve the
modeling of matter distribution within halos in only dark matter N-body simulations.
All these methods can be calibrated against hydrodynamic simulations or real data. In
the past and present, some cosmological results have been achieved by excluding small,
highly non-linear scales. Nonetheless, it is evident that for the upcoming weak lensing
surveys, accounting for the baryonic effect in calculations is crucial to fully utilize their
potential.

3.3 Extracting cosmological information from data

In the previous section, we explored the connections between galaxy ellipticities, shear,
convergence, and cosmology. In the following section, I will describe several methods
to constrain cosmological parameters from cosmic shear observables.

3.3.1 Second-order statistics

The shear correlation function

Second-order statistics, both in the form of shear 2-point correlation function ξ±(θ), or
its counterpart in Fourier space, the angular power spectrum Cℓ, have been widely used
to extract the cosmological information from weak lensing surveys. For example, the
real space shear 2-point correlation function (2PCF) can be computed as the averaged
multiplication of the ellipticity of galaxy pairs, therefore can be considered the most
basic weak lensing statistic. By convention, the two components of the shear are
decomposed into tangential-component γt, and a cross-component γx. Given ϕ the
polar angle of a given direction θ, the two shear components become:

γt = R(γe−2iϕ); γx = I(γe−2iϕ). (3.40)

From these quantities, we can form three different two-point correlators, ⟨γtγt⟩, ⟨γxγx⟩,
⟨γtγx⟩. If we assume the Universe to be invariant under parity transformation, the
⟨γtγx⟩ term vanishes, while γt remains unchanged and the sign of γx is changed. We
can combine the remaining correlators to form the two components of the shear 2PCF
:

ξ+ = ⟨γγ∗⟩ (θ) = ⟨γtγt⟩ (θ) + ⟨γxγx⟩ (θ); (3.41)
ξ− = R[⟨γγ⟩ (θ)e−4iϕ] = ⟨γtγt⟩ (θ)− ⟨γxγx⟩ (θ). (3.42)
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Using the insight from Equation 3.29, which states that in the absence of intrinsic
galaxy alignment, the observed ellipticity is an unbiased estimator of the shear, we can
write an estimator of the 2PCF as found in Schneider et al. (2002):

ξ̂±(θ) =

∑
ij wiwj(ϵt,iϵt,j ± ϵx,iϵx,j)∑

ij wiwj

, (3.43)

with ϵx and ϵt the cross and the tangential component of the observed shear (the
subscript obs has been omitted for easy reading). To each galaxy, a weight w has
been attributed to encode the measurement uncertainty of the ellipticity. The sum
in Equation 3.43 is computed considering every combination of galaxies (i, j), at the
position on the sky θi and θj , whose separation |θi−θj| falls within a specific angular
range centered around θ.

Convergence power spectrum

Analogously to the shear 2PCF, if we assume that the density field δ is invariant under
translation and rotation, the convergence 2PCF becomes a function of the modulus of
the separation vector θ. Its expression in Fourier space, known as convergence power
spectrum Pκ, has been widely used to extract cosmological information from weak
lensing surveys:

⟨κ̃(ℓ)κ̃∗(ℓ′)⟩ = (2π)2δD(ℓ− ℓ′)Cκ(ℓ). (3.44)

with δD Dirac delta function and κ̃ the Fourier transform of κ:

κ̃(ℓ) =

∫
d2θκ(θ)eiℓ·θ (3.45)

function of the 2D wave vector ℓ, Fourier-conjugate of θ. By computing the square of
the Fourier transform of the expression for the convergence κ defined in Equation 3.25,
we obtain the quantity Cκ(ℓ). Inserting this expression in Equation 3.44, the angular
power spectrum of the convergence field can be computed as:

Cκ(ℓ) =
9Ω2

mH
4
0

4c4

∫ χlim

0

dχ
g2(χ)

a2(χ)
Pδ

(
k =

ℓ

fK(χ)
, χ

)
, (3.46)

where Pδ defines the matter power spectrum of the density contrast.
However, note that the Equation 3.46 has limited applicability as it is based on a num-
ber of approximations that are only accurate under certain conditions. For example,
the computation of the full power spectrum consists of a triple integral for each ℓ. This
computation is simplified in the Limber approximation (Limber, 1953; Kaiser, 1992;
Simon, 2007), i.e. considering only the mode lying in the plane of the sky and disre-
garding the correlation in the direction of the observer’s line of sight. Furthermore, in
the flat-sky limit, spherical harmonics are replaced by Fourier transforms. Finally, the
small-angle approximation is applied by utilizing only the first order of the expansion
of the trigonometric function.
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3.3.2 Non-Gaussian information from weak lensing data

Traditional cosmological analyses rely on measurements of the two-point statistics,
either the shear two-point correlation functions or its Fourier transform, the lensing
power spectrum. However, the two-point statistics are only optimal for Gaussian fields
and do not fully capture the non-Gaussian information imprinted in the lensing signal
at the scales that future surveys will be able to access (e.g. information encoded in
the peaks and in the filamentary features of the matter distribution). This has led
to the introduction of a number of higher-order statistics to access the non-Gaussian
information from weak lensing data: the weak lensing one point PDF (Liu and Mad-
havacheril, 2019; Uhlemann et al., 2020; Boyle et al., 2021), lensing peak counts (Liu
et al., 2015a,b; Lin and Kilbinger, 2015; Kacprzak et al., 2016b; Peel et al., 2017b;
Shan et al., 2018; Martinet et al., 2018; Ajani et al., 2020; Harnois-Déraps et al., 2021;
Zürcher et al., 2022), Minkowski functionals (Kratochvil et al., 2012; Petri et al., 2013),
moments of mass maps (Gatti et al., 2021), wavelet and scattering transform (Ajani
et al., 2021; Cheng and Ménard, 2021), and 3 point statistics (Takada and Jain, 2004;
Semboloni et al., 2011b; Rizzato et al., 2019; Halder et al., 2021).

Recently, machine learning-based methods (Fluri et al., 2019; Kacprzak and Fluri,
2022; Fluri et al., 2021; Jeffrey et al., 2021; Fluri et al., 2022), and Bayesian forward-
modeling frameworks (Alsing et al., 2016, 2017; Porqueres et al., 2021; Boruah et al.,
2022b) have also been introduced to attempt to fully account for the non-Gaussian con-
tent in the weak lensing signal. Unlike the methods described above, these approaches
are designed to access the full field-level information content.

In this section, I will give an overview of some of the most promising methodologies
capable of extracting the cosmological information encrypted in the non-Gaussian part
of the weak lensing field. Specifically, I will focus on the methodologies related to the
work presented in this thesis.

Lensing peak counts

One of the most widely used higher-order statistics for weak lensing is undoubtedly the
peak-count statistics. In its simplest application, it can be computed by identifying the
local maxima in the shear or convergence maps, specifically by considering the pixels
with values higher than their eight neighbors. While obtaining the peak count statistic
from a data-processing perspective is relatively straightforward, predicting it for a
specific parameter set or cosmological model is highly challenging. Like many other
higher-order statistics, the issue with peak counts is that they cannot be directly linked
to an analytical expression through a straightforward formula. Accurately modeling
peak counts remains an unresolved question in current cosmology. Thus far, three
distinct methods have been investigated: analytical approaches, modeling approaches
based on N-body simulations, and stochastic forward approaches.

Examples of analytical models for peak counts include those proposed by Maturi
et al. (2010, 2011) and Fan et al. (2010). These approaches are based on the peak
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theory of the Gaussian random field, which involves considering the galaxy-shape noise
as a Gaussian random field and the weak lensing signal as a foreground field. According
to random field theory, the probability of finding a local maximum is a function of the
noise level and the foreground, allowing for the construction of a peak function defined
as a density function of signal-to-noise ratio. However, there are several challenges
associated with the analytic approach. For instance, when accounting for realistic
effects such as masked regions in the data, bias from photometric redshifts, and errors
in shape measurements, the performance of these models significantly deteriorates.
Additionally, incorporating additional cosmological effects, such as intrinsic alignment,
poses an extremely challenging task.

Another approach involves utilizing N-body simulations. The methodology for mod-
els based on N-body simulations is as follows. First, the structure formation of the uni-
verse is simulated in a densely sampled cosmological parameter space. Subsequently,
weak lensing maps are generated from the output of these N-body simulations using
either a full ray-tracing algorithm or the Born approximation. The peak count statistic
is then computed for the sampled cosmological parameters and subsequently interpo-
lated to other points within the cosmological parameter space. A vast number of papers
can be found in the literature that employs this strategy (Dietrich and Hartlap, 2010;
Liu J. et al., 2015; Kacprzak et al., 2016a; Li et al., 2019; Ajani et al., 2020). These
works differ in terms of the varied cosmological parameters, the number of sampled
points in the cosmological parameter space, and the adopted interpolation strategy
(such as bilinear smoothing splines, multidimensional Radial Basis Function, Gaussian
Processes, etc). It is important to note that these approaches, which depend on N-
body simulations, have the significant drawback of being computationally expensive
and time-consuming. However, unlike analytical methods, they have the advantage of
easily incorporating the exact survey mask and shape noise when performing analyses
on real data.

Finally, an example of stochastic forward approaches was presented by Lin, Chieh-
An and Kilbinger, Martin (2015) with their algorithm CAMELUS. This approach can be
viewed as a hybrid between an analytical and a simulation-based approach. It employs a
probabilistic approach to model peak counts by generating fast simulations, that require
much less computational effort than standard N-body simulations. It is implemented as
follows: halos are sampled from a given mass function, density profiles are assigned to
the halos, and the halos are randomly distributed within the field of view. Subsequently,
convergence maps are created through ray-tracing, and the analysis of peak counts
is performed. Despite being less computationally expensive compared to simulation-
based approaches and being flexible (in the sense that is straightforward to include
effects such as masking, photo-z errors, IA, and baryonic feedback), this method does
have limitations. In a study by Peel et al. (2017a), it was employed to investigate the
constraining power of peak counts on cosmological parameters (Ωm, σ8, w0) in a Euclid -
like scenario. Their findings revealed that while the method produced tight contours,
they were also significantly biased in the (Ωm, σ8) plane.

 http://github.com/Linc-tw/camelus/
CAMELUS
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Despite the challenges associated with them, several studies have shown that the
weak-lensing peak counts provide a way to capture information from non-linear struc-
tures that is complementary to the information extracted by the power spectrum.
Following I report some important results on real data constraints.

The first peak counts analysis on observations corresponds to two independent analyses
performed by Liu X. et al. (2015) and Liu et al. (2015a).
Liu X. et al. (2015) presented constraints from a peak-counts analysis, as measured
from the Canada-France-Hawaii Telescope Stripe 82 Survey (CS82). They showed that
for a flat ΛCDM model, the cosmological constraints on (Ωm, σ8) are consistent with
those derived from the cosmic shear correlation analysis, while the degeneracy direc-
tion of the two parameters is flatter compared to the one from the correlation studies.
Additionally, they proved that their results from peak analyses were fully consistent
with those from both WMAP9 and Planck.
Liu et al. (2015a) conducted a study to assess the constraining power of weak lensing
peak counts on cosmological parameters (Ωm, σ8, w) using CFHTLenS data covering
an area of approximately ∼ 154 deg2. They employed a set of ray-tracing N-body
simulations for a grid of 91 cosmological models, reproducing the CFHTLenS obser-
vations in terms of galaxy sky positions, redshifts, and shape noise. Their findings
revealed that the results obtained from peak counts were comparable to those derived
from the power spectrum. However, when combined, the contour areas of the (Ωm, σ8)
constraints were reduced by a factor of ∼ 2. However, both statistics were unable to
constrain the parameter w without the use of external data.

Another study by Kacprzak et al. (2016a) performed a peak counts analysis on
the Dark Energy Survey Science Verification data set using aperture mass maps from
the set of N-body simulations generated by Dietrich and Hartlap (2010) spanning the
(Ωm, σ8) plane. They only considered peaks in bins of low and medium S/N, since
the correction of systematic effects was more uncertain for high S/N peaks. They also
investigate the impact of uncertainties on shear multiplicative bias and the mean of the
redshift distribution, finding that those could affect the observed peak up to ∼ 10%
and ∼ 16%, respectively. However, their finding showed that the overall impact on the
cosmological constraints was comparable to the 2-pt statistics.

In another study by Harnois-Déraps et al. (2021) cosmological parameters were con-
strained through a joint analysis of tomographic two-point shear correlation functions
and peak counts on Dark Energy Survey (DES-Y1) data. To model the peak counts
dependence from cosmological parameters, they adopted the set of cosmo-SLICS sim-
ulations spanning the (Ωm, σ8, h, w0) parameter space. Additionally, they assessed the
impact of baryons, intrinsic alignment, and source-lens clustering. Their finding showed
an improvement of ∼ 20% on the S8 constraints in the joint analysis compared to the
correlation function analysis.

Considering the above studies, we can conclude that, despite the difficulties and the lim-
itation related to the absence of an analytical model capable of predicting the observed
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signals, peak counts statistics have proven to be a powerful method to extract non-
Gaussian cosmological information from weak lensing data. Nevertheless, it is evident
that further development in the modeling of baryonic feedback and intrinsic alignment
is necessary for future analyses. Harnois-Déraps et al. (2021) argued that an improve-
ment of ∼ 20% in the constraint on S8 can be achieved by modeling and marginalizing
over the impact of baryons, as demonstrated in previous studies on the DES-Y1 3× 2
points. This improvement was made possible by including additional small-scale ele-
ments in the ξ± vector. A similar improvement could be achieved with peak statistics
by increasing the signal-to-noise upper limit, but this would only be feasible with ac-
curate modeling of baryons at the smallest scales. Furthermore, Harnois-Déraps et al.
(2021) identified intrinsic alignment as the primary limiting factor in their analysis.
Their findings indicated that it can impact cosmological constraints at a level similar
to baryons and potentially up to the 1σ level.

Machine learning methods for cosmological inference

Over the past few years, machine learning approaches have enhanced our ability to in-
terpret and take the most from cosmological data. In this section, I will focus on how
machine learning techniques allow us to infer cosmological parameters, density fields,
or simply discern between different cosmological models from weak gravitational lens-
ing maps. The first application of machine learning within the weak lensing scenario
can be traced back to the work of Schmelzle et al. (2017). In their paper, the au-
thors demonstrated that a classification model based on a Deep Convolutional Neural
Network (DCNN) can be used to discriminate between different cosmological models.
Specifically, the DCNN was trained to learn the relation between five distinct cosmo-
logical models in the σ8 − Ωm plane and the convergence maps they generate. By
comparing the results with higher-order statistics such as skewness and kurtosis, they
showed that the network outperforms these statistics in terms of mean discrimination
efficiency (85% vs 70%). Peel et al. (2019) addressed a similar classification problem
by using a CNN model to discriminate between the standard ΛCDM model and Mod-
ified Gravity models (MG), that exhibit the same Gaussian weak-lensing statistics but
include massive neutrinos. By including the full redshift information, the CNN success-
fully distinguished between the ΛCDM model and the MG models with an accuracy
of 80% percent on noise-free data, outperforming peak count statistics even though its
correct classification rate decreased on noisy data.

Another example is the work by Merten et al. (2019), which investigated the ca-
pacity of three different machine learning techniques in discriminating nine different
cosmological models, which include the effect of massive neutrinos and modified grav-
ity. The study revealed that the CNN provided the most discriminatory representa-
tion compared to summary statistics such as the power spectrum, peak counts, and
Minkowski functionals when employed on noise-free maps.

A different class of example consists of Machine learning approaches used to infer
the cosmological parameters. Within this class, we can make a further distinction:
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The methods aimed to find a low-dimensional summary statistic and those trained
to directly provide unbiased estimates of the cosmological parameters. In the former
scenario, the output of the neural network is employed in a standard inference pipeline,
in a procedure similar to other higher-order statistics.

An example falling into this category is the work by Gupta et al. (2018), which
demonstrated that a 2D CNN could generate confidence contours in the σ8−Ωm plane
∼ 5× tighter than the power spectrum and ∼ 4× tighter than the lensing peak counts.
The CNN was trained on simulated noiseless convergence maps covering 96 different
cosmological models.

A step further was taken by Ribli et al. (2018) who proposed an improved CNN
capable of providing more accurate estimates of σ8 and Ωm. Following the approach
and using the same simulations of Gupta et al. (2018), they employed modifications
to the CNN such as additional activations, an expanded number of filters, and a block
structure. The final results proved that the CNN was capable to estimate with no bias
both σ8 and Ωm with ∼ 2× smaller errors than peak counts.

In a study conducted by Matilla et al. (2020), the Neural Network developed in
Ribli et al. (2018), was used to constrain the cosmological pair σ8 and Ωm. The
results were compared to those obtained from the power spectrum, peak counts, and
Minkowski functionals, single and combined. The network improved the results by
∼ 20% compared to this combination, even in the presence of noise. Additionally,
several saliency methods were employed to identify the most relevant features of the
convergence maps for inferring the cosmological parameters. The results showed that
the most relevant pixels were those with extreme values. Specifically, in the noise-free
setting the most relevant regions corresponded to negative convergence values, while in
the presence of realistic noisy maps, the regions containing positive convergence values
held the majority of the features relevant to the inference task.

Finally, a study by Fluri et al. (2018a) investigated the performance of the CNN for
different levels of shape noise and smoothing scales. The results indicated an improve-
ment in the estimation of σ8 and Ωm compared to the standard power spectrum, but
also a comparatively smaller enhancement with increasing noise level and smoothing
scale.

The first example of a Machine learning approach applied to real observations dates
back to the work of Fluri et al. (2019). They presented the results obtained with a
CNN from the KiDS-450 tomographic dataset, aiming to constrain Ωm, σ8, and the
intrinsic alignment amplitude AIA. A 30% improvement was observed compared to the
power spectrum analysis. This work was further extended in Fluri et al. (2022), where
a full wCDM analysis of the KiDS-1000 weak lensing maps was performed using a
Graph-Convolutional Neural Network (GCNN). In this study, a different approach was
adopted for the inference procedure, employing a likelihood-free inference method, the
Gaussian Process Approximate Bayesian computation (GPABC), to constrain the cos-
mological parameters. The GCNN analysis yielded a 16% improvement in constraining
the degeneracy parameterS8 ≡ σ8

√
Ωm/0.3 compared to the power spectrum analysis.
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An example of a machine learning approach that directly provides unbiased esti-
mates of cosmological parameters is presented in the work by Jeffrey et al. (2021).
Although this is another example of Likelihood free inference analysis on observed
weak lensing data, it differs significantly from the work by Fluri et al. (2022). Jeffrey
et al. (2021) compared the posterior distribution for different compressed summary
statistics, including the power spectrum, peak counts, the combination of these two
statistics, and a summary statistic obtained by compressing the convergence maps di-
rectly using a Deep Convolutional Neural Network. These compressed statistics were
then compared to the (compressed) DES Science Verification data and used to esti-
mate the posterior distribution through a Neural Likelihood Estimator, specifically the
PyDelfi package (Alsing et al., 2019). The results indicated that this approach was
consistent and achieved slightly tighter constraints compared to the power spectrum.

In conclusion, machine learning methods have immense potential to extract addi-
tional information beyond second-order statistics. However, despite their potential,
several questions still need to be addressed. For example, understanding how the
introduction of systematic effects such as baryonic feedback can impact the final con-
straining power, how to control and check systematic errors during the training phase
when applying these methods to real data, and finally, how to interpret the learned
features from a physical perspective since they are no longer directly associated with
physical properties.

Bayesian hierarchical modeling of weak lensing

A different way to extract information encoded at non-linear scales is to adopt the
Bayesian hierarchical inference approach. A significant difference between this ap-
proach and other higher-order statistics is that the former does not rely on summary
statistics. Instead, it aims to capture the full information content of the data through
a full-field approach.

The Bayesian forward modeling approach involves using a given model to predict
observations and then comparing these predictions with real observations to infer the
parameters of the model. The hierarchical nature of this methodology comes from the
fact that a complex inference task, such as the weak lensing inference task, can be
broken down into several hierarchies of elements, which can be understood and from
which we can sample from (Heavens et al., 2018). Indeed, inferring cosmological pa-
rameters from weak lensing observations is not an easy task. We have seen that key
aspects of weak lensing measurements are the measurement of the galaxy shapes and
the measurement of their redshift. However, to obtain those from pixelized images or
photometric measurements, we need to properly model point spread functions, con-
sidering seeing effects, pixel noise, and other instrumental factors that can affect the
measurements. Then, once we have measurements of the observed shape galaxies, we
require a model that relates cosmic shear to cosmology in order to infer the cosmolog-
ical parameters. Constructing a global hierarchical model would, in principle, allow us
to account for all the statistical dependencies between the model components. This

https://pydelfi.readthedocs.io/en/latest/intro.html
PyDelfi
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approach has the advantage of easily incorporating systematic effects such as intrinsic
alignments, baryon feedback, and uncertain redshift distributions or easily combining
multiple cosmological probes by joint simulations. Furthermore, it is advantageous
to directly extract information from the raw pixel data without relying on summary
statistics, as it preserves all the available information.

Although this procedure offers advantages, such as the ease of analyzing sub-
elements, it complicates the propagation of uncertainties through the pipeline and
the accounting of the model inter-dependencies. Therefore, it requires the correction
of potential biases introduced by these factors (see Schneider et al. (2015); Alsing et al.
(2016) for a more detailed discussion).

Although several forward modeling approaches for cosmic shear can be found in
the literature (Schneider et al., 2015; Alsing et al., 2016, 2017; Böhm et al., 2017;
Porqueres et al., 2021, 2022, 2023), the first application of this approach to observed
data dates back to the work of Alsing et al. (2017). In their paper, the authors ap-
plied two different Bayesian hierarchical inference procedures to infer shear power spec-
tra, shear maps and cosmological parameters from Canada–France–Hawaii Telescope
(CFHTLenS). They found cosmological parameter constraints consistent with previous
CFHTLenS results, as well as constraints on (σ8,Ωm) that showed a 2σ tension with
the Plank 2015 study, consistent with previous analysis. Additionally, they extended
the ΛCDM model to include massive neutrinos and showed that they were capable of
inferring the total neutrino mass to

∑
mν < 4.6eV from the CFHTLenS data alone.

They also constrained the parameters p1 = −0.25+0.53
−0.60 and p2 = −0.15+0.17

−0.15 when con-
sidering the linear redshift-dependent photo-z bias ∆z = p2(z − p1). Moreover, they
investigated the computational cost of the Bayesian inference schemes and argued that
for future stage IV surveys, the computational cost would be comparable to that of
standard estimator-likelihood sampling methods. However, it is worth noting that the
methods implemented assumed a Gaussian lensing field, which, while appropriate at
large scales, is sub-optimal at smaller scales.

This limitation was addressed by Porqueres et al. (2021) who presented a Bayesian
hierarchical scheme complemented with a gravity model capable of inferring the matter
density field, the lensing, and the matter power spectra from cosmic shear data. Specif-
ically, the model is an extension of the Bayesian Origin Reconstruction from Galaxies
(BORG, Jasche and Wandelt (2013); Jasche and Wandelt (2013)) framework incorpo-
rating weak lensing. BORG includes a physical description of the dynamics of dark
matter, enabling a more accurate and realistic representation of the data and thus the
ability to exploit information beyond second-order statistics. The model was further
developed in Porqueres et al. (2022) and Porqueres et al. (2023).

Another example is the work of Boruah et al. (2022b), who extended the KaRMMa
algorithm to infer cosmological parameters through a map-based approach. KaRMMa
was capable of generating convergence maps that accurately reproduced the 1-point
and 2-point statistics of the convergence field, as well as the peak and void statistics,
by forward-modeling the convergence maps as a log-normal field conditioned on cosmic
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shear data. In particular, Boruah et al. (2022b) addressed several limitations of the
original KaRMMa implementation, including computational and memory issues. They
also improved upon the algorithm by considering correlations between different tomo-
graphic bins and allowing for sampling of the cosmological parameters of the log-normal
prior. In an LSST-Y10 scenario, the authors provided a forecast on the constraints in
the σ8 − Ω8 plane, demonstrating an improvement of ∼ 30% compared to traditional
cosmic shear analysis.

Despite their enormous potential, this class of approaches has a significant limi-
tation: they often lead to high-dimensional problems and therefore require advanced
statistical sampling techniques.
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The purpose of this chapter is to provide an introduction to several Bayesian sta-
tistical tools directly or indirectly related to chapter 7. Specifically, after a brief in-
troduction to Bayesian statistics, I will discuss tools such as the Markov Chain Monte
Carlo (MCMC) and the Hamiltonian Monte Carlo (HMC). Additionally, I will provide
a concise overview of the main Likelihood Free Inference methods along with the pri-
mary linear dimension reduction methods proposed for cosmological applications. The
following results are based on Verde (2010); Heavens (2009); Neal et al. (2011)

71



72 4. Statistical inference techniques for cosmology

4.1 Bayesian inference

Let us consider a dataset d and assume a cosmological paradigm, such as the ΛCDM, as
our hypothesis or model, characterized by the cosmological parameters θ = {θ1, θ2, ..., θN}.
From the definition of joint P(x1, x2) and condition probability P(x2|x1), it can be
demonstrated the following identity:

P(x1, x2) = P(x1)P(x2|x1) = P(x2)P(x1|x2). (4.1)

This identity can be written in terms of the conditional probability of the cosmological
parameters, given the data d:

P(θ|d,M) =
P(θ|M)P(d|θ,M)

P(d|M)
. (4.2)

This last expression is known as Bayes theorem and represents the basis of
Bayesian statistical inference. The quantity P(θ|d,M) is the posterior probability
distribution, P(θ|M) the prior, P(d|θ,M) the likelihood, and P(d|M) the evidence.

Prior In the Bayesian approach, we aim to find the probability distribution for the
cosmological parameters associated with our model given the dataset, i.e. the quantity
P(θ|d). A standard inference approach, consists in defining the evidence, assuming
a given functional form for the likelihood, and defining a prior. The prior describes
what we already know about the parameters and can come from the posterior of a
previous experiment or theoretical knowledge (for example, we know that the total
matter density Ωm has to be positive). In other cases, when no information is available,
the principle of indifference can be adopted. The easiest way to represent the state of
ignorance is to assume that the prior is constant. This choice is usually referred to as
flat prior and implies that all parameter values have an equal probability. However,
when we assign a uniform prior and then perform a re-parametrization, it may happen
that this re-parameterization leads to a non-uniform distribution and hence results in
a not uninformative prior. To handle this problem, Jeffreys (1946) proposed a prior
consistent under re-parametrization. Jeffreys prior is equivalent to a flat prior after a
variance-stabilizing transformation and is defined as follows:

p(θ) ∝
√

detF (θ) (4.3)

with F (θ) Fisher information matrix.
Moreover, other different choices from the uninformative prior are possible (Jaynes,
1968; Bernardo, 2005).
In particular, if the prior arises from theoretical consideration, it is important to de-
termine if the results depend on the prior assumptions. If there is a significant depen-
dence, it indicates that the data does not have sufficient statistical power to constrain
the parameters.
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Evidence The evidence P(d) plays a crucial role when we consider multiple theo-
retical models and need to choose the most probable one. However, if we are only
interested in estimating cosmological parameters, the Equation 4.2 can be rewritten
as:

P(θ|d) = P(θ)P(d|θ)
P(d)

. (4.4)

Here, the evidence P(d) is used only to normalize the probability:

P(d) =

∫
dθP(d|θ)P(θ), (4.5)

and since the probabilities of the parameters being inferred do not depend on the
evidence, it is often ignored.

Likelihood If the prior is assumed to be flat, estimating the cosmological parameter
becomes a matter of computing the posterior P(θ|d) from the likelihood P(d|θ) (often
indicated as L(d|θ) or simply as L(θ)), as shown in Equation 4.4, which becomes:

P(θ|d) ∝ L(d|θ). (4.6)

By maximizing the likelihood, we can determine the peak of the posterior distribution
for the parameters. However, if a non-flat prior is selected, the maximum likelihood
estimate may not correspond to the peak in the posterior distribution.

It is worth noting that the likelihood function is the only place where the data
appear. Thus, given a model, the likelihood L(d|θ) contains all the information about
the cosmological parameters θ that are contained in the data d. In some cases, the
likelihood is known and can be expressed as an analytical function. For example, if
the data follow a Gaussian distribution, and the covariance matrix C, which describes
the covariance between the data, is independent of the parameter θ, the likelihood
function can be written as a multivariate Gaussian function. Let L denote the negative
logarithm of the likelihood; we can write:

L(d|θ) = 1

2
[(d− µ(θ))T C−1 (d− µ(θ))] , (4.7)

where µ(θ) represents the theoretical predictions as functions of the parameter θ.
The Gaussian likelihood assumption is highly prevalent in cosmological analysis and
is often justified by the principle of maximum entropy or the central limit theorem
(Verde, 2010). As a simple example, consider situations where the data do not follow
a Gaussian distribution but are still drawn from a distribution with finite variance. In
such cases, the data can be binned, so that the resulting error distribution for each
bin can be approximated by a Multivariate Gaussian for the central limit theorem.
As I will describe in section 4.2, in other cases the likelihood can be estimated using
density estimation approaches, within the context of Likelihood-free Inference methods.
Alternatively, as described in subsubsection 3.3.2, Bayesian forward-modeling methods
can be used, allowing the integration of observations into a forward model and the
exact reconstruction of the likelihood.
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4.1.1 Parameter inference

Once the likelihood is defined, we need to explore the parameter space to derive the
posterior distribution defined in Equation 4.2. In principle, we could locate the peak
of the likelihood by evaluating it on a sufficiently fine grid. However, when the number
of parameters grows, this procedure easily becomes impossible because the number of
grid points grows exponentially with the dimensionality of the parameter space. In
general, this approach is suboptimal anyway because most of the parameter space is
uninteresting, being characterized by a small likelihood. Several alternative approaches
to sample the likelihood surface exist. Below, I will briefly introduce two of the most
commonly used algorithms in cosmology: the Markov Chain Monte Carlo and the
Hamiltonian Monte Carlo.

4.1.2 Markov Chain Monte Carlo (MCMC)

Let p(θ) be a generic probability distribution (e.g. the likelihood or the posterior),
which we refer to as the target distribution. Starting from an initial point θ0, the
Markov Chain Monte Carlo (MCMC) algorithm samples the parameter space through
a random walk. In practice, its goal is to generate a set of points whose distribution is
an approximation of the target distribution. The target distribution can be expressed
as:

p(θ) ≃ 1

N

N∑
i=1

δ(θ − θi), (4.8)

where δ is a delta function, N refers to the number of iterations or samples, and θ refers
to the set of n values of parameters of the n−dimensional parameter space. From this
approximated target density, quantities of interest, such as the mean and variance, can
be estimated.

One of the most popular MCMC algorithms is the Metropolis-Hastings (MH) algo-
rithm, which works by sampling a new point θi+1 in the parameter space based on a
proposal probability distribution function q(θ̃i+1|θi).

The MH algorithm evaluates the likelihood of the proposed sample by calculating
the ratio of the posterior probabilities at the current sample and the proposed sample:

a = min

(
1, r ≡ p(θ̃i+1)q(θi|θ̃i+1)

p(θi)q(θ̃i+1|θi)

)
, (4.9)

then the step to the proposed value θ̃i+1 is accepted with probability equal to a if the
acceptance ratio parameter r < 1, hence θi+1 = θ̃i+1. Otherwise, if r > 1 the step
to the proposed value is rejected, and θi+1 = θi. The process is repeated until the
density of the point {θi}i=1,..N is proportional to the target distribution for N → ∞.
Regarding the proposal distribution, it must be finely tuned to explore the parameter
space efficiently. It is important to note that if the proposal distribution is too small,
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the distance between two points is also small, and the chain takes a long time to explore
the entire parameter space, resulting in almost all proposed steps being accepted. On
the other hand, if the proposal distribution is too large, the proposed sample can be
far away from the current sample, leading to a low acceptance rate. As a result, the
algorithm may get stuck in regions of low probability, failing to explore the parameter
space effectively.

4.1.3 Hamiltonian Monte Carlo (HMC)

The MCMC algorithm is doomed to fail in high-dimensional and correlated spaces
where a large number of steps are required to effectively explore the space. The Hamil-
tonian Monte Carlo (or Hybrid Monte Carlo, HMC) algorithm improves the sampling
process by using a physical analogy to guide the sampling process. In practice, a
new point is proposed by simulating the particle dynamics inside a potential energy
framework induced by the target distribution. This dynamic is described using the
Hamiltonian formulation. In Hamiltonian Dynamics (HD), the state of a physical sys-
tem is described by a pair of d-dimensional vectors (q, p). The variable q defines the
position vector, while p defines the momentum vector. The system’s dynamics are
expressed by the Hamiltonian equations :

dqi
dt

=
∂H

∂pi
(4.10)

dpi
dt

= −∂H
∂qi

, (4.11)

here H(q, p, t) is the Hamiltonian of the system, which represents the total energy of
the system, i.e. the sum of the potential energy U(q) and kinetic energy K(p). The
Hamiltonian is time-independent due to the conservation of energy.
The HD formulation has three important properties that are advantageous for the
HMC algorithm: reversibility, i.e. mapping the state (q(t), p(t)) at time t to the state
at t + s is a reversible process; volume preservation, i.e. the mapping preserves the
volume in the (q, p) space; Hamiltonian conservation, i.e. H(q, p) is time-independent
with dH/dt = 0.

The first step in applying the HD to sample from the target distribution p(θ), is
to derive appropriate energy functions. In statistical mechanics, an important result
links the probability density fS(s) for a particle to be observed in a state s with the
energy E(s) of that state, via:

fS(s) = exp(−E(s)). (4.12)

By inverting this relation and returning to our notation, we can obtain the energy for
the target distribution p(θ) as:

U(θ) = − log p(θ), (4.13)
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which means that the potential energy favors motion towards the negative log-likelihood
(NLL) of the target distribution.

In the HD formulation, the state of the system consists of the original variables
of interest θ, plus extended momentum variables u, forming a 2d-dimensional space
(θ,u). Considering the addictive nature of the Hamiltonian H(θ,u) = U(θ) +K(u),
the joint canonical distribution becomes:

p(θ,u) ∝ exp (−H(θ,u)) (4.14)
∝ p(θ) · exp (−K(u)). (4.15)

One degree of freedom in the HMC method is represented by the choice of the
canonical momentum distribution used to generate the momentum, or equivalently,
the choice of kinetic energy. One possible choice, comes from the request of having a
canonical momentum distribution with a mean of zero, to preserve the dynamic and
not make the computation of the acceptance probability unnecessarily complicated.
Describing the kinetic energy in the quadratic form as in classical physics, we have:

K(u) =
1

2
uTM−1u, (4.16)

where M is a positive definite mass matrix. The canonical momentum distribution
will be a multivariate Gaussian distribution with mean zero and covariance matrix M .
Therefore, Equation 4.14 becomes:

p(θ,u) ∝ p(θ)N (u). (4.17)

Finally, if we marginalize over the variable u, the resulting marginal distribution will
sample the target distribution p(θ) we are looking for.

The HMC algorithm can be broken down into two main steps. The first step
changes the momentum, which is randomly drawn from a Gaussian distribution while
keeping the position unchanged. The second step changes both the position and the
momentum, using the Metropolis-Hastings algorithm. Starting from the current state,
the Hamiltonian dynamics are simulated for L steps of size ϵ using a reversible and
volume-preserving integrator (for example, the Leapfrog method). At the end of the
simulation, the momentum variables are negated, resulting in a proposed new state
(θ∗,u∗). This proposed state is then evaluated to determine whether it is a good
candidate to become the next state of the system. Specifically, it will be accepted with
probability:

a = min (1, exp [−H(θ∗,u∗) +H(θ,u)]) . (4.18)

If the proposed state is rejected, the next state will be equal to the current one. The
acceptance step is necessary because the numerical integrators cannot conserve the
Hamiltonian exactly. Consequently, the probability a may differ from 1, necessitating
an acceptance step. However, symplectic integrators, such as the leapfrog method,
ensure that the numerical error remains bounded, thus keeping the rejection rate small.
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4.2 Likelihood free inference

Although standard cosmological analyses rely on the Gaussian likelihood assumption, it
has been shown that Non-Gaussianities exist within underlying Gaussian fields, such as
the lensing field, and neglecting them can introduce biases in the parameter constraints
(Sellentin and Heavens, 2017). To address the challenges that occur when the likelihood
is unknown or intractable, alternative ways have been developed to perform inference.
Sometimes referred to as Likelihood Free Inference (LFI) or Simulation-Based Infer-
ence (SBI) or Implicit Likelihood Inference (ILI) methods, those are characterized by
the absence of an analytical model to describe the observed signal and instead rely on
learning a likelihood from simulations. The first step in the LFI pipeline is to have a
robust simulator to generate the data from which to learn the likelihood or the pos-
terior distribution. Within this context, following ?, a simulator can be defined as a
computer program that, taken as input the parameter θ, samples some latent variables
z ∼ p(z|θ), and generates the output x ∼ p(x|θ, z). Such programs, characterized by
random sampling and interpreted as statistical models, are usually referred to as proba-
bilistic programs. Let us try to depict this formulation in the cosmological application.
θ are the cosmological parameters describing the mechanistic process, e.g. a cosmo-
logical simulation. The latent variables z arise during the data generation and can
correspond to the physical state of the system in a direct or indirect way. Finally, the
output x represents the observations. Both the parameters θ and the latent variables
z can be inferred.

However, if we want to only infer the cosmological parameters θ, the likelihood
functions p(x|θ) is typically intractable since it corresponds to an integral over all the
possible values of the latent variables:

p(x|θ) =
∫
dzp(x, z|θ), (4.19)

and for real simulations where the latent space is very large, it is impossible to solve
this integral explicitly.

4.2.1 Brief mention of traditional LFI methods

Approximate Bayesian Computation (ABC) One of the most well-known tra-
ditional algorithms used to bypass the evaluation of the likelihood is the Approximate
Bayesian computation (ABC) (Pritchard et al., 1999; Marin et al., 2012; Ishida et al.,
2015; Akeret et al., 2015; Lintusaari et al., 2017; Jennings and Madigan, 2017; Prangle,
2017; Leclercq, 2018). ABC-based methods consist of approximating the likelihood
by comparing the outcome of simulations with observed data using rejection criteria,
which define the level of discrepancy between them using a distance measure (based
on a given metric). In the most basic form of their application, a set of parameters θ
is drawn from the prior distribution p(θ). Assuming a statistical model determined by
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θ, the dataset dsim is simulated. Finally, the mock data dsim are compared with real
data. If their distances are higher than a given threshold, the sampled parameters are
discarded. Otherwise, the parameters are accepted with a tolerance ϵ. In essence, the
probability that ∥dobs − dsim∥ ≤ ϵ, is an approximation of the likelihood:

p(dsim = dobs|θ) ≈ p(∥dobs − dsim∥ ≤ ϵ|θ). (4.20)

Then, the outcome of the ABC algorithm is a set of sampled parameters, the distribu-
tions of which are approximately in accordance with the desired posterior.
Although this class of algorithms is mathematically well-founded, they are based on
assumptions and approximations whose impact has to be evaluated (Sunnåker et al.,
2013). Specifically, the inferred distribution becomes exact as ϵ → 0. However, very
small values of ϵ require an excessively high number of simulations. On the contrary,
if ϵ is too large, it degrades the quality of the inference. Moreover, since the data are
involved in the rejection process, if new observations need to be evaluated, the selection
of simulations satisfying Equation 4.20 must be repeated.

DELFI The Density Estimation Likelihood Free Inference (DELFI) represents an-
other class of likelihood-free inference methods. Within these methods, the inference
task is approached as a density estimation problem using a set of mock parameter-data
pairs {θ,x} or {θ, t}, where t represents some compressed data summaries.

Quoting the definition proposed by Papamakarios et al. (2019), a conditional neu-
ral density estimator can be described as a parametric model, denoted as qφ (e.g.,
a neural network), defined by a set of parameters φ. This model outputs a condi-
tional probability density qφ(u|v) for a given pair of points {u,v}. Suppose we have
a set of independent training data {un,vn}1:N characterized by the joint probabil-
ity density p(u,v). In that case, qφ can be trained to maximize the log-probability∑

n log qφ(un|vn) w.r.t φ. With a sufficient amount of data and a suitably flexible
model, qφ(u|v), can learn to approximate p(u|v).

We can classify the algorithms into two primary classes, which aim to directly
estimate either the likelihood or the posterior probability.

The Synthetic Likelihood, typically implemented as the inner part of an MCMC
sampler, aims to estimate the intractable likelihood. The first versions of these methods
were mainly based on some Gaussian approximations, while more recent variants use
neural networks to approximate the density p(x|θ). For example, Papamakarios et al.
(2019) presented the Sequential Neural Likelihood (SNL) algorithm, characterized by
a sequential training procedure able to guide the simulation and reduce the number of
necessary mock data. The method uses an autoregressive flow to learn the likelihood
function in the region of high posterior density.

Other methods, such as the one on which is based the analysis presented in the next
chapter, rely on using the estimator qφ(θ|x) to directly model the posterior function.
First, a set of samples {θn,xn}1:N is obtained from the joint distribution p(θ,x) by
drawing θn from p(θ) and xn from p(x|θ). Then, this set of samples is used to train
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qφ to obtain an approximation of the density posterior p(θ|x). Finally, p(θ|x0) is com-
puted from qφ(θ|x0). Unfortunately, this strategy requires a large number of simula-
tions. For this reason, several enhancements have been proposed to reduce the number
of synthetic data required to train the conditional neural density estimator. Within
this class methods, we can find for example the Sequential Neural Posterior Estima-
tion (Papamakarios and Murray, 2016; Lueckmann et al., 2017a). Very schematically,
instead of using the prior p(θ), the parameters θn are sampled from a proposal distri-
bution p̃(θ), which makes the data xn more likely closer to the observed point x0. The
algorithms find a good proposal adopting a sequential procedure, i.e. the training of qφ
is made in several rounds, in each of which the proposal is the approximate posterior
obtained in the previous round.
One of the disadvantages of the SNPE is that the proposal introduces a bias in the ap-
proximation procedure. Indeed the neural density estimator approximate p(x0|θ)p̃(θ)
instead of p(x0|θ)p(θ), hence some adjustments have to be made.
The LFI algorithms employing neural posterior estimators differ in the way they deal
with this issue. For example, Papamakarios and Murray (2016) account for this ef-
fect multiplying the learned posterior qφ(θ|x0) by p̃(θ) and dividing it by p(θ). This
method is usually referred to as SNPE-A in literature. Lueckmann et al. (2017b), on
the other hand, assigned a weight wn = p(θ)/p̃(θ) to adjust the parameters sample
θn, and trained the NDE using the weighted log-likelihood

∑
nwn log qφ(θn|xn). This

method is usually referred to as SNPE-B in literature. Unfortunately, both meth-
ods have issues. SNPE-A restricts the proposal to be Gaussian, and in cases where
the variance of the proposal is smaller than the variance of any of the components of
qφ(x0|θ), the division returns a Gaussian with negative variance and the algorithm is
interrupted. SNPE-B can have high variance weights and lead to instabilities during
training.
An alternative solution has been proposed by Greenberg et al. (2019a) with the Auto-
matic Posterior Transformation (APT), which combines the advantages of the poste-
rior estimators, such as targeting directly the posterior, with the ones from likelihood
estimation, such as flexible proposal and absence of weights or post-hoc corrections. In
this approach, the network is trained to learn the map from the data to the true pos-
terior p(θ|x) by maximizing the probability of the parameters of the simulation under
the proposal posterior p̃(θ|x). Specifically, a proposal loss L̃(φ) = −

∑
n log q̃x,φ(θn)

is minimized, with:

q̃x,φ(θ) = qF (x,φ)(θ)
p̃(θ)

p(θ)

1

Z(x,φ)
, (4.21)

where Z(x,φ) =
∫
θ
qF (x,φ)(θ)

p̃(θ)
p(θ)

is a normalization constant and φ are the weights
of a neural network F . APT can use arbitrary and dynamically updated proposals
and is compatible with a wide range of density estimators, including mixture-density
networks and normalizing flows.
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4.3 The need for data compression

I conclude this chapter by introducing a concept that will play a crucial role in chap-
ter 7: the need for data compression.
In weak lensing analyses, we have seen that the data are usually compressed into sum-
mary statistics, such as the 2-point correlation functions or the higher-order statistics.
This typically represents the first compression step to reduce large cosmological data
sets and to make the subsequent inference task tractable. However, there are situations
where the space of summaries is still too large for inference, and further compressed
statistics are required. In certain circumstances, it may be necessary to reduce the
original N data points to a subset of N ′ points before conducting classical analysis
based on likelihood.

Moreover, we have seen that, for some of these summary statistics, the likelihood
function is unknown, necessitating assumptions or approximations that are not always
valid. In the previous sections, we have discussed the LFI methods, that offer the
advantage of facilitating the Bayesian analysis using only forward simulations, without
requiring any assumptions about the likelihood. However, these methods are often sub-
ject to the curse of dimensionality, making it necessary to utilize compression methods
to reduce the dimensionality of the data space and extract summary statistics.
This has motivated the introduction of several dimensionality reduction techniques
aimed at reducing the representation of the data while preserving as much information
from the original dataset as possible. Within these methods, we can make a dis-
tinction between linear compression techniques and neural network-based compression
techniques.
The following section introduces some useful theorems needed to understand the next
chapter. Additionally, it provides a brief overview of two widely used dimension re-
duction methods proposed in the literature for weak lensing applications. While in
chapter 7, our focus will be exclusively on neural compression methods, for the sake of
completeness on this topic, I will outline two other important compression strategies
here: the Moped algorithm and the Generalized massive optimal data compression al-
gorithm.

The Fisher information matrix

The accuracy with which we can constrain model parameters from a dataset was dis-
cussed for the first time in Fisher (1935). We can summarize the results as follows. We
denote the true vector of the model parameters as θ0 and the estimated vector from
the data as θ. Since x is a random variable and θ is a function of x, it is also a random
variable. For θ to be a good estimate of θ0, it must satisfy the following criteria:

⟨θ⟩ = θ0, (4.22)
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and it should represent the Best Unbiased Estimator (BUE), meaning that it minimizes
the standard deviations:

∆θα ≡ (
〈
θ2α
〉
− ⟨θα⟩2)1/2.. (4.23)

We can now define the maximum likelihood estimator as the vector of model parameters
θML maximizing the likelihood function p(x|θ), and remembering the definition of the
Fisher matrix:

Fαβ ≡
〈

∂2L
∂θα∂θβ

〉
, 1 (4.24)

we can report the useful set of theorems2:

• Being ∆θα any unbiased estimator, ∆θα ≥ 1/
√

Fαα. In other words, there is
a lower limit on the error bars we can get from our estimates, no matter what
methods we use. If other parameters are also computed from the data, the ex-
pression becomes ∆θα ≥ 1/(F−1)

1/2
αα . This result is known as the Cramér-Rao

inequality.

• If a BUE θ exists, then it is the Maximum Likelihood (ML) estimator.

• In the limit of a very large data set the ML-estimator is asymptotically the BUE.

As highlighted by Heavens et al. (2000b), if the full data set is used, the Fisher
matrix is the best that can possibly be done via likelihood methods with the data, i.e
considering the theorems described above, it is the minimum error in the constraints
of the cosmological parameters.
In practice, some of the data could be poorly informative due to noise or their low
sensitivity to the parameters. Consequently, we can potentially discard them keeping
the amount of information partially unchanged.

MOPED Heavens et al. (2000b) presented a method for linear compression that
is valid when the noise in the data is independent of the model parameters. They
showed that it is possible to create M linear combinations of the data containing the
same amount of information as the full data set. They demonstrated that the method
is lossless by proving that the final Fisher information matrices are identical. The
method involves creating several linear combinations of the data and discarding the
less informative ones. The data vector x is represented as the sum of a signal µ and a
zero-mean noise n. First, a single linear combination of the data is considered:

y ≡ btx, (4.25)

where b is a weight vector and bt its transpose; The goal is to find the weight vector
b that encodes as much information about a particular parameter θα.

1with the usual notation L ≡ -lnL
2for a more detailed description see (Kenney and Keeping (1951); Kendall and Stuart (1969))



82 4. Statistical inference techniques for cosmology

The compression of the dataset can potentially increase the error bars of the pa-
rameters we want to estimate. As discussed in the previous section, the error of our
estimates is related to the Fisher matrix, which, in the case where a single parameter
is estimated by the data, can be expressed as (Tegmark et al., 1997):

Fα,β =
1

2

(
btC,αb

btCb

)(
btC,βb

btCb

)
+

(btµ,α)(b
tµ,β)

btCb
. (4.26)

In the most general case, both µ and the covariance matrix C are dependent on the
parameters. Unfortunately, the resulting maximization leads to a non-linear eigenvalue
problem in b. To address this, Heavens et al. (2000b) focused on the scenario where
C is known.
Specifically, they demonstrated that for estimating M parameters, there exist M or-
thogonal vectors bm (with m = 1, ...,M) such that the summaries ym encode as much
information about parameter θm as possible, excluding what is already contained in yq
with q < m. The orthogonal vector bm takes the following form:

bm =
C−1µ,m −

∑m−1
q=1 (µ

t
,mbq)bq√

µ,mC−1µ,m −
∑m−1

q=1 (µ
t
,mbq)2

. (4.27)

Moreover, they demonstrated the potential of the method in the generalized case where
the noise is dependent on parameters. Specifically, they considered an application
example in which parameters characterizing the galaxy star formation history needed
to be constrained from a set of mock galaxy spectra. Their findings revealed that
the compression was still almost lossless, resulting in an increase in the error on the
parameters by a factor of ∼

√
1 + 1/(2s), with s representing the mean number of

photons in each channel of the spectrum.

Generalized massive optimal data compression Alsing and Wandelt (2018) pro-
vided a generalization of the results of Tegmark et al. (1997) and Heavens et al.
(2000b), describing a more general procedure for optimal compression suitable for
generic functions in a framework that is not restricted to linear statistics and Gaussian
data. They also extended the work of Heavens et al. (2000b) to derive explicit com-
pressed statistics for cases with Gaussian likelihoods where the mean and covariance
are parameter-dependent. The compression proceeds as follows: by Taylor expanding
the log-likelihood to the second order around some fiducial point θ∗, we obtain the
expression:

L = L∗ + δθT∇L∗ +
1

2
δθT (∇∇TL)δθ. (4.28)

In this expression, the derivative of the log-likelihood is commonly known as the score
function. To the linear order in the model parameters, these parameters only couple
to the data through the score function, which is a vector of length n, and a function of
the data. This means that computing only the n combinations of the data appearing
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in the score function, this latter provides an immediate data compression from N data
down to n compressed numbers. Hence, we can write:

t = ∇L∗. (4.29)

In particular, they compute the explicit compressed statistic in the case where a Gaus-
sian likelihood is assumed and both the mean and covariance depending on the param-
eters:

t = ∇µT
∗ C−1

∗ (x − µ∗) +
1

2
(x − µ∗)

TC−1
∗ ∇C∗C−1

∗ (x − µ∗). (4.30)

As we have already mentioned there are several situations where the likelihood
is unknown or non-Gaussian. However, in this specific application, the assumed ap-
proximate Gaussian likelihood function is used only for the purpose of performing the
data compression. Once the compressed summaries are obtained, the subsequent in-
ference is performed without this assumption, i.e. defining a non-Gaussian model for
the likelihood-based inferences or with a likelihood-free procedure. In the worst-case
scenario, the compression will be sub-optimal in the sense that the approximate likeli-
hood function for the compression will be lossy, but the approximations made in the
compression step will not bias the subsequent inference (Alsing and Wandelt, 2018;
Alsing et al., 2018). Nevertheless, it is worth noting that the score function of a given
likelihood is considered to be optimal because it retains as much Fisher information
as possible from the data. If the likelihood is a highly non-Gaussian or a multimodal
function of the parameters, the Fisher information may not accurately reflect the in-
formation in the data and other compression schemes may be more useful.
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Chapter 5
Hybrid Physical-Neural ODEs for Fast
N-body Simulations

The results presented in this chapter were presented at the 2022 Workshop on
Machine Learning for Astrophysics at the International Conference on Machine
Learning (ICML). My contributions included method development, implemen-
tation and testing, leading the analysis, and writing the paper. This work was
conducted in collaboration with François Lanusse and Jean-Luc Starck.

5.1 Hybrid Physical-Neural ODE . . . . . . . . . . . . . . . . . . 87
5.2 Simulation data . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3.1 Backpropagation of ODE solutions . . . . . . . . . . . 88
5.3.2 Train and validation loss . . . . . . . . . . . . . . . . . 89

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.5 Conclusion and discussion . . . . . . . . . . . . . . . . . . . . 94

In chapter 2, we discussed the computational challenges associated with solving
the full N-body problem, which requires significant computational resources and time.
To address these challenges, Quasi-N-body numerical schemes such as FastPM (Feng
et al., 2016) and COLA (Tassev et al., 2013) have been proposed. These schemes aim
to accelerate the computational time and generate cost-effective realizations of large-
scale structures. However, the Particle-Mesh (PM) scheme used in these simulations
has a limitation. It approximates the interactions between particles at short distances,
making it unable to resolve structures with scales smaller than the mesh resolution.
As a result, simulations using PM schemes often lack power on small scales, and the
sharpness of halo profiles is reduced compared to full N-body simulations.

In this chapter, we propose a method to improve the accuracy of PM simulations.

85
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We augment the physical differential equations of a PM N-body with a minimally-
parametric neural network component that models a residual effective force. This
component compensates for the approximations made in the PM scheme.

It is important to remember that the ultimate goal of cosmological simulation is to
replicate the observed data, in order to gain a better understanding of the underlying
physical processes. True data is generated from physical processes, which preserve
certain symmetries and involve specific physical constraints. When generating mock
data, it is crucial to incorporate these considerations. For instance, since there is no
preferred position or direction in the Universe, we strive to preserve rotational and
translational symmetries. Moreover, we aim to satisfy conservation laws, such as the
conservation of dark and baryonic matter.

In our approach, we achieve rotational and translational invariance by implementing
a neural correction in the form of a learned isotropic Fourier filter. This filter exclu-
sively depends on the amplitude of the wave vector. Meanwhile, mass conservation is
guaranteed as we only modify the forces acting on the particles.

To train the neural network through the simulator, we follow the scheme proposed
by Chen et al. (2018), i.e. we treat the Ordinary Differential Equations (ODEs) solver
running the simulation as a black box and compute gradients using the adjoint sensi-
tivity method (Pontriagin, 1964). We train and compare the model to the CAMELS
simulations (Villaescusa-Navarro et al., 2021) and test it against several changes in the
simulation setting (resolution, volume, cosmological parameters). We also compare our
method to the Potential Gradient Descent scheme (PGD, Dai et al. (2018)).
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5.1 Hybrid Physical-Neural ODE

Cosmological simulations implement the integration of gravitational evolution starting
from the Gaussian initial conditions of the Universe to the observed large-scale struc-
tures. We choose to compute the time integration starting from a system of Ordinary
Differential Equations and treat the ODE solver as a black box:

dx
da

= 1
a3E(a)

v
dv
da

= 1
a2E(a)

Fθ(x, a)

F (x, a) = 3Ωm

2
∇ [ϕPM(x)] .

(5.1)

Here x and v define the position and the velocity of the particle, a is the cosmolog-
ical scale factor, E(a) the ratio between the Hubble expansion rate and the Hubble
parameter, F the gravitational force experienced by the dark matter particles in the
mesh, and ϕPM is the gravitational potential estimated by using the cloud-in-cell (CiC)
interpolation scheme (Hockney and Eastwood, 2021). We can use this parametrization
to complement the physical ODE with a neural network:

Fθ(x, a) =
3Ωm

2
∇
[
ϕPM(x) ∗ F−1(1 + fθ(a, |k|))

]
, (5.2)

where F−1 is the inverse Fourier transform and fθ(a, |k|) is the learned neural filter,
aimed to model the residual effective force compensating for the PM approximations.
We choose to define fθ(a, |k|) as a B-spline function, whose coefficients (knot points)
are the output of a neural network of parameters θ.

B-spline functions are piecewise-defined polynomials that can be easily adapted to
construct smooth curves and surfaces. If employed in neural networks, they can provide
a flexible framework for modeling functions. Indeed, the control points of the splines
can be adjusted to modify the shape and the behavior of the function, enabling a wide
range of representations. Specifically, we choose a B-spline of order 3, defined over 16
knot points.

5.2 Simulation data

In this work, we rely on the CAMELS dataset (Villaescusa-Navarro et al., 2021), in
particular, we use the suite of dark-matter-only N-body simulations implementing the
N-body tree-particle-mesh approach of IllustrisTNG (Nelson et al., 2019). We have 34
snapshots, generated following the evolution of 2563 dark matter particles in a periodic
box of comoving volume equal to 253 (h−1 Mpc)3, with initial conditions generated
at z=127 using second-order Lagrangian perturbation theory (2LPT). The following
cosmological parameters are kept fixed in all simulations: h = 0.6711, ns = 0.9624,
Mν = 0.0 eV, w = −1, Ωk = 0., while the values of Ωm and σ8 are varied across
simulations. We further downsample the CAMELS particle data, down to 643 particles,
to make the problem more manageable on a single GPU.
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5.3 Training

5.3.1 Backpropagation of ODE solutions

To train our hybrid physical-neural ODE model and back-propagate through the ODE
solver, we compute the gradient adopting the adjoint sensitivity method (Chen et al.,
2018; Pontryagin et al., 1962), consisting in solving a second ODE backwards in time,
and treat the ODE solver as a black box.

Consider an ODE solver that depends on the parameters z(t0), f, t0, t1, θ, where
z(t) is the state variable, f the function modeling the dynamics of the system, t0 the
start time, t1 the stop time and θ the dynamic parameter. The function L which takes
the results of this ODE solver as input

L(z(t1)) = L(ODESolve(z(t0), f, t0, t1, θ)) (5.3)

can be differentiated with respect to the parameter θ. First, we need to compute the
adjoint :

a(t) =
∂L
∂z(t)

, (5.4)

i.e. the gradient of L respect to the hidden state z(t). Then, we can determine the
dynamics of the adjoint through:

da(t)
dt

= −a(t)T
∂f(z(t), t, θ)

∂z
. (5.5)

Finally, we compute the gradients with respect to the parameter θ evaluating a third
integral:

dL
dθ

=

∫ t0

t1

a(t)T
∂f(z(t), t, θ)

∂θ
dt. (5.6)

In a framework like Jax (Bradbury et al., 2018) or TensorFlow (Abadi et al., 2015),
where automatic differentiation is guaranteed, the products between the vector and
the Jacobian a(t)T ∂f

∂z , and a(t)T ∂f
∂θ

can be computed at the exact computational cost
of evaluating f . Moreover, in a single call to the ODE solver, the original state, the
adjoint, and the derivatives are concatenated into a single vector, and the integrals for
z, a, and ∂L

∂θ
are solved.

Backpropagation through the ODE solver has the significant advantage of not re-
quiring the storage of all intermediate steps from the forward simulations. This allows
for lower memory costs during both the forward and backward passes of the simulation.
Additionally, by defining a tolerance for the ODE solver, we can adjust the trade-off
between accuracy and speed based on our specific requirements.
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5.3.2 Train and validation loss

HPN To train the neural network in the Hybrid Physical-Neural (HPN) scheme, we
adopt the following loss function, which penalizes both the particle positions and the
overall matter power spectrum at different snapshot times s, compared to a reference
full N-body simulation:

L =
∑
s

||xNbody
s − xs||22 + λ|| Ps(k)

PNbody
s (k)

− 1||22 . (5.7)

In this equation, Ps(k) denotes the power spectrum of the PM-simulation, and PNbody
s (k)

represents the power spectrum of the corresponding full N-body simulation. Addi-
tionally, xs and xNbody

s are the position vectors of the particles, and λ is left as a
hyper-parameter balancing the contributions of the two terms.

In contrast to He et al. (2019) who train the model minimizing the mean square
error on particle displacements, we have empirically found that penalizing the overall
matter power spectrum yields better improvement for the small-scale power spectrum,
compared to penalizing the particle positions only. One possible reason for this differ-
ent result may be the reduced number of degrees of freedom in our model compared to
the one used by He et al. (2019). In our training process, the neural network is con-
strained by physical limitations and our simple parameterization, and therefore cannot
approximate arbitrary non-linear functions.

However, it is worth noting that different displacement fields can produce identical
density fields and, consequently, identical power spectra. If we were to penalize only
the power spectrum term, we might increase the overall power spectrum on small scales
without however accurately recovering the correct particle positions. For this reason,
our final loss function includes both terms from Equation 5.7. We have empirically
found that λ = 0.1 provides the optimal balance in terms of overall correction and
overfit. The model is trained by gradient descent with the Adam optimizer (Kingma
and Ba, 2014) and learning rates of 0.01. The code is implemented in the Python
package jax (Bradbury et al., 2018) using the jax-based Dormand-Prince ODE solver.

PGD Following the same strategy adopted by Dai et al. (2018), we fit the PGD
parameters only for the final snapshot (a=1) by penalizing the following loss function:

L =

∥∥∥∥σ(k)( P (k)

PNbody(k)
− 1

)∥∥∥∥2
2

. (5.8)

Here σ(k) is a weight added to the loss function to downweight small scales in compar-
ison to the large scales. It is defined as:

σ(k) =

1− k

π(Ms
Vb

)∑
k

(
1− k

π(Ms
Vb

)

) , (5.9)
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Figure 5.1: Learned neural filter fθ(a, |k|) as a function of normalized mesh frequency
(f = 1 corresponds to the Nyquist frequency of the mesh), for different scale factor a.

Where Ms refers to the mesh size of the PM simulations, and Vb refers to the comov-
ing volume of the periodic box in the PM simulations. This weight choice leads to a
significant improvement in the correction provided by PGD for the small-scale power
spectrum, as opposed to only considering the power spectrum. However, we have ob-
served that this weight choice does not result in significant enhancements or variations
in the performance of PGD when applied to simulations with different cosmologies or
resolutions.

5.4 Results

In this section, we train and evaluate our hybrid neural ODE on CAMELS data and
compare it to results obtained using the PGD approach by Dai et al. (2018). We train
the neural ODE using the loss function described in Equation 5.7, while the PGD pa-
rameters are fitted only for the final snapshot (a = 1) by penalizing the weighted power
spectrum ratio between the corrected and reference simulations (i.e. Equation 5.8).

For both approaches, we use a single CAMELS N-body simulation with the fiducial
cosmology values of Ωm = 0.3 and σ8 = 0.8 to fit the parameters of the models.

Figure 5.2 shows the matter overdensity fields obtained using the two different
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Figure 5.2: Top panel from left to right: Projections of final density field for CAMELS
and PM only. Bottom panel from left to right: PM corrected by the HPN scheme
and PM corrected by PGD. Although the PGD model improves the sharpness of the
halos, it fails to fully recreate the dark matter structures, producing a smoother density
profile compared to the HPN model, which appears closer to CAMELS.
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correction schemes in comparison to the CAMELS simulation and the standalone PM
(i.e. pure PM simulation). As we will quantify later, it is evident that the pure PM
simulation (top panel on the right) appears smoother than the reference CAMELS
simulation (top panel on the left). On the other hand, the neural correction (second
panel on the left) successfully recovers most of the missing information. In comparison,
the PGD correction (second panel on the right) does sharpen somewhat some structures
in the field in order to increase the overall power spectrum on small scales, but is less
effective in restoring the actual shape of the dark matter structures.

Learned Neural Filter We present the trained Fourier-space filter fθ(a, |k|) as a
function of normalized mesh frequency in Figure 5.1. As expected, the correction only
affects small scales, having no effect on the large-scale modes of the simulations, where
the PM solver provides accurate results. An interesting feature to note is that the
correction is scale-factor dependent. This suggests that the model does not simply
apply a sharpening filter akin to a CiC compensation filter, but rather adapts the
correction based on the density field properties at different cosmological times. How-
ever, one drawback of this observation is that if the neural correction relies on the
specific dynamics of the dark matter density field, it may be sensitive to the cosmology
employed.

Power spectrum comparison at fiducial cosmology In Figure 5.3, we compare
the power spectrum ratio and the cross-correlation between CAMELS and PM simula-
tions to illustrate the differences between the two correction schemes. As can be seen,
both schemes successfully recover most of the missing power on small scales. However,
the improvement in cross-correlation coefficients is significantly larger when utilizing
our scheme.

Robustness to changes in resolution and cosmological parameters To eval-
uate the robustness of our correction scheme, we compute the following tests:

1. We investigate the effects of varying the cosmological parameters. We per-
form PM simulations at Ωm = 0.10 (instead of Ωm = 0.3 used during the training)
and compare them to a set of CAMELS simulations generated with the same cos-
mology and initial conditions. The top panel of Figure 5.4 displays the results for
the matter power spectrum in this test. Comparing the HPN and PGD correc-
tion schemes, we observe only a slight deviation in the HPN correction compared
to the results obtained at the fiducial cosmology (shown in Figure 5.3). In con-
trast, PGD appears to be highly sensitive to Ωm and no longer provides the
desired correction. In the bottom panel of Figure 5.4, we present the results for
the cross-correlation coefficients between CAMELS and the PM field. We note
that while the HPN correction leads to an improvement in the cross-correlation
coefficients, the improvement is less evident with the PGD correction.
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Figure 5.3: Top panel: Fractional matter power spectrum of PM simulations before
and after using the correction models and CAMELS simulations. Bottom panel: cross-
correlation coefficients with the reference simulation before and after the two different
correction schemes. The shaded regions represent the standard deviation from the same
realization corrected with 10 different parameters fitted from different initial conditions.
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2. We investigate the effects of increasing the simulation resolution. We gen-
erate a PM simulation with 1283 particles for the same 25 h−1 Mpc box size.
The top panel of Figure 5.5 shows the results for the matter power spectrum.
We observe that the HPN correction outperforms the PGD method up to k ∼ 7,
after which the method tends to overemphasize the small-scale power. The bot-
tom panel of Figure 5.5 presents the results for the cross-correlation coefficients
between the CAMELS and the PM field when the simulation resolution is in-
creased.
We highlight that the improvement achieved with our correction scheme is supe-
rior to the PGD method, although a significant portion of the correlation between
the two fields is not recovered at small scales.

3. Finally, we evaluate the two schemes at a lower resolution by increasing both
the volume of the simulation to 200 (h−1Mpc)3 and the number of particles to
1283. Since the CAMELS simulations are generated in a box of 25 (h−1Mpc)3,
we use the halofit power spectrum P (k)/P (k)halofit as the reference in this test.
From Figure 5.6, we observe that even in this extreme case, the performance of
the HPN correction remains very good, while the PGD method no longer provides
the desired correction.

5.5 Conclusion and discussion

In section 2.3, we discussed various machine learning techniques available for emu-
lating high-cost N-body simulations, including the approaches proposed by He et al.
(2019) and Li et al. (2021). These methods use particle displacements as inputs and
outputs for their models, relying on large Deep Convolutional Networks to learn an
effective mapping that generates the desired outputs. In contrast, we have presented
a correction scheme for quasi-N-body PM solvers, based on a Neural Network imple-
mented as a Fourier-space filter. This approach combines the physical description of
structure formation with a simpler neural network to correct the approximations made
in pseudo-N-body solvers. Our method shares similarities with the work of Dai et al.
(2018), who demonstrated how to enhance the modeling of matter distribution within
halos in quasi-N-body simulations using a gradient-based scheme. One advantage of
these methods compared to full ML techniques is the lower dimensionality of the pa-
rameter space that needs to be optimized. To illustrate the merits of our approach, we
compared the results of corrected PM simulations with the high-resolution CAMELS
simulations. We benchmarked our model against the PGD scheme, showing that, at
the fiducial cosmology, both methods yield similar improvements in the small-scale
power spectrum but significantly differ in terms of the correlation coefficients. We also
presented the results of our experiments involving changes in resolution and cosmolog-
ical parameters. These experiments demonstrated that our method outperforms the
PGD scheme in terms of both the power spectrum and cross-correlation coefficients,
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Figure 5.4: Benchmarks on the matter power spectrum and cross-correlation coeffi-
cients varying the cosmological parameters Ωm employed in the simulation. Top panel:
Fractional matter power spectrum of PM simulations before and after using the cor-
rection models and CAMELS simulations. Bottom panel: cross-correlation coefficients
with the reference simulation before and after the two different correction schemes. The
shaded regions represent the standard deviation from the same realization corrected
with 10 different parameters fitted from different initial conditions.
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Figure 5.5: Benchmarks on the matter power spectrum and cross-correlation coeffi-
cients when the number of particles employed in the simulation is increased (to 1283).
Top panel: Fractional matter power spectrum of PM simulations before and after us-
ing the correction models and CAMELS simulations. Bottom panel: cross-correlation
coefficients with the reference simulation before and after the two different correction
schemes. The shaded regions represent the standard deviation from the same realiza-
tion corrected with 10 different parameters fitted from different initial conditions.
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and it is less sensitive to the settings of the simulations used for training. However, we
observed that our scheme slightly overemphasizes the small-scale power for k ∼ 7 and
does not substantially improve the results for the cross-correlation coefficients when
tested on simulations with higher resolutions.



Chapter 6

Forecasting the power of Higher Order
Weak Lensing Statistics with automatically
differentiable simulations

The results presented in this chapter have been published in Astronomy & Astro-
physics in Lanzieri et al. (2023). My contributions consisted of the development,
implementation, and testing of the simulation code, the generation and analysis
of mock data, and the writing of the paper. The research project was done in
collaboration with Francois Lanusse, Chirag Modi, Benjamin Horowitz, Joachim
Harnois-Déraps, Jean-Luc Starck, and The LSST Dark Energy Science Collabo-
ration (LSST DESC).
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We present the Differentiable Lensing Lightcone (DLL), a fully differentiable physi-
cal model designed for being used as a forward model in Bayesian inference algorithms
requiring access to derivatives of lensing observables with respect to cosmological pa-
rameters. We extend the public FlowPM N-body code, a particle-mesh N-body solver,
simulating lensing lightcones and implementing the Born approximation in the Tensor-
flow framework. We validate our simulations in an LSST setting against high-resolution
κTNG-Dark simulations by comparing both the lensing angular power spectrum and
multiscale peak counts. As a first use case, we use this tool to investigate the rela-
tive constraining power of the angular power spectrum and peak counts statistic in an
LSST setting. Such comparisons are typically very costly as they require a large num-
ber of simulations, and do not scale well with the increasing number of cosmological
parameters. As opposed to forecasts based on finite differences, these statistics can be
analytically differentiated with respect to cosmology, or any systematics included in
the simulations at the same computational cost as the forward simulation.

This chapter is structured as follows: in section 6.1 we introduce the numerical
simulations illustrating the numerical methods used to generate mock WL maps. In
section 6.2 we validate the simulations by comparing the statistics from our simulations
and κTNG-Dark ones. The Fisher forecast formalism and the survey and noise setting
are shown in section 6.3. We finally discuss our results and present our conclusions
afterward, in section 6.4 and section 6.5.
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6.1 Fast and Differentiable Lensing Simulations

Analytical models with which to predict the observed signals do not exist for most
higher-order summary statistics. To circumvent this issue, one approach is to rely on
generating a suite of numerical simulations. In the following two sections, we introduce
our procedure for simulating weak lensing maps, which includes a description of the
N-body simulator and the construction of lightcones. As mentioned in the introduc-
tion, our goal is to efficiently compute gradients of the simulations, as this will benefit
the development of new inference algorithms for weak lensing surveys. To achieve this,
we extend the framework of the FlowPM package Modi et al. (2021) by implementing
differentiability of the cosmological functions with respect to the cosmological param-
eters1, which were not included in the original FlowPM code. Additionally, we imple-
ment the Born approximation and simulate lensing lightcones in the Tensorflow frame-
work. TensorFlow is a tensor library that includes the ability to perform automatic
differentiation. Automatic differentiation enables us to compute gradients exactly, as
opposed to finite differences, which only provide approximate gradients. Specifically,
TensorFlow implements the backpropagation algorithm to compute gradients, i.e. first
it creates a graph (e.g. data structures representing units of computation), then it
works backward through the graph by applying the chain rule at each node.

6.1.1 Differentiable Particle-Mesh N-body simulations

We adjust the FlowPM approach (Modi et al., 2021) by performing the time integration
through a system of Ordinary Differential Equations, as depicted in Equation 5.1.
As introduced in chapter 5, these ODEs describe the gravitational evolution of the
particles in the simulation using a black-box ODE integrator. This is in contrast
to the leapfrog integration method used in FlowPM. One reason for this change is
that adaptive ODE solvers can automatically adjust the time step of the simulation
based on the desired accuracy for the result. Another reason is that modern automatic
differentiation frameworks like TensorFlow provide automatically differentiable solvers,
which significantly reduce the memory footprint of the simulation when computing the
gradients, as described below. Indeed, the decision to extend the FlowPM code with
the ODE implementation is motivated by the fact that to compute the gradient of
the forward model, the original algorithm needs to store all the intermediate steps
of the simulations. This induces a memory overhead that scales with the number of
time steps in the simulation. In the adjoint ODE approach, this is instead replaced by
solving another ODE backward in time when evaluating the gradient. We illustrate
the potential of differentiating through ODE solvers, highlighting the fact that the
simulations and the gradients presented in this chapter are computing using one single
GPU for 1283 particles. Additionally, we have discussed that although quasi-N-body

1For example, implementing the cosmological functions introduced in subsection 1.3.1, subsec-
tion 1.3.2, section 1.4
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Table 6.1: Approximate execution times of different parts of the simulations. The
values represent the mean and the standard deviation of 7 runs, 1 loop each.

Model Time
LPT 744 ms ±10.7 ms
N-Body (1283) 16.5 s ±7.89 ms
N-Body ODE (1283) 13 s ±120 ms
N-Body ODE+HPN (1283) 1 min 24 s ± 573 ms
N-Body (2563) 1 min 14 s ± 14.1 ms
N-Body ODE (2563) 1 min 39 s ± 181 ms
Raytracing (Born Approximation) 320 ms ± 16.9 ms

schemes help bypass the computational effort in terms of time and CPU/GPU power
required in fully N-body simulations, they lack resolution on small scales and are unable
to resolve structures with scales smaller than the mesh resolution.

Therefore, we integrate the Hybrid Physical-Neural approach presented in chapter 5
into FlowPM code to address this limitation. The computational cost of the various
steps of the simulations is listed in Table 6.1.
It should be noted that when computing the gradient, some instability may arise from
the ODE solver due to numerical errors in discretizing the continuous dynamics. This
can result in the adaptive solvers taking too many time steps and slowing down the
gradient evaluation. However, this can be mitigated simply by limiting the number of
time steps in adaptive ODE solvers. Another way to control these numerical errors is
by using Leapfrog ODE solvers where one can exploit the reversibility of the Leapfrog
dynamics in evaluating the gradients with adjoint methods, as done in Li et al. (2022).

6.1.2 Differentiable Lensing Simulations

To extract the lens planes and construct the lightcone, we export 11 intermediate
states from the N-body simulation of a fixed interval of 205 h−1 Mpc in a redshift
range between z = 0.03 − 0.91. To recover the redshift range of the lightcone, one
unit box is replicated using periodic boundary conditions. First, we generate rotation
matrices along the three axes, hence, each snapshot is rotated around each of the three
axes, finally, all the particles are randomly shifted along the axes. To obtain the final
density field, each snapshot is projected in a 2D plane by estimating its density with a
cloud-in-cell (CiC) interpolation scheme (Hockney and Eastwood, 1988). After creating
a Cartesian grid of coordinates, each slice is interpolated onto sky coordinates. This
procedure differs from the one implemented in the MADLens package (Böhm et al.,
2021). In MADLens the lightcone is built by translating the redshift of the particles
into distances, then the particles are projected onto the convergence map at the proper
evolution step corresponding to that distance.
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Implementation of Born lensing

We generate the convergence map by integrating the lensing density along the un-
perturbed line of sight, i.e. applying the Born approximation (Schneider, 2006). In
particular we discretize the Equation 3.23 such that it becomes:

κborn =
3H2

0Ωm

2c2

∑
i

δ̄i

(
1− χi

χs

)(
χi

ai

)
∆χ (6.1)

where the i index runs over the different lens planes, the δ̄i indicates the matter over-
density projected into the lightcone, χs defines the comoving distance of the source
and ∆χ is the width of the lens plane.

Implementation of IA with NLA

We model the effect of IA on the convergence map level following the model proposed
by Fluri et al. (2019). This allows us to create pure IA convergence maps to combine
with shear convergence maps in order to generate a contaminated signal. Following
Harnois-Déraps et al. (2021), the Fourier transform of the intrinsic ellipticities can be
phrased as:

ϵ̃IA1 (k⊥) ∝
(
k2x − k2y
k2

)
δ̃2D(k⊥)G2D(σg) (6.2)

ϵ̃IA2 (k⊥) ∝
(
kxky
k2

)
δ̃2D(k⊥)G2D(σg),

where σg defines the smoothing scale of a two-dimensional smoothing kernel G2D, the
tilde symbols ∼ refers to the Fourier transformed quantities, k⊥ denotes the two Fourier
wave-vector components perpendicular to the line of sight. Combining Equation 3.34
and Equation 6.2 we can calculate the intrinsic alignment as part of the convergence
map:

κIAi
= −AIAC̄1ρcΩm

∫ zmax

zmin

ni(z)δsi
dz

D(z)
(6.3)

where the index i refers to the i -th redshift bins.

Differentiable Wavelet peak counts

We conduct a multi-scale peak counts analysis by applying a starlet wavelet filter
to the original noisy simulated convergence maps. In this section, we introduce the
fundamentals of wavelet theory, our definition of a peak, and our approach to ensure
the peak counts statistics are differentiable.
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Wavelet Transform The wavelet transform has been widely used in analysing as-
tronomical images due to its ability to decompose astronomical data into components
at different scales. This multiscale approach is well-suited for the study of astronomical
data since their complex hierarchical structure. A wavelet function ψ(x) is a function
that satisfies the admissibility condition:∫

R+

|ψ̂(k)|2dk
k
<∞, (6.4)

where we indicate with ψ̂(k) the Fourier transform of ψ(x), with
∫
ψ(x)dx = 0 in order

to satisfy the admissibility condition. A given signal is decomposed in a family of scaled
and translated functions:

ψa,b(x) =
1√
a
ψ

(
x− b

a

)
, (6.5)

where ψa,b are the so-called daughter wavelets, scaled and translated version of the
mother wavelet, with a and b scaling and translation parameters. The continuous
wavelets transform is defined from the projections of a function f ∈ L2(R) onto the
family of daughter wavelets. The coefficients of this projection represent the wavelet
coefficient, obtained by :

Wf (a, b) =

∫
R
f(x)ψ∗

a,b(x)dx =
1√
a

∫
R
f(x)ψ∗

(
x− b

a

)
dx, (6.6)

with ψ∗ the complex conjugate of ψ, and ∀a ∈ R+, b ∈ R. In this work, we filter the
original convergence maps with the starlet transform, an isotropic and undecimated
(i.e. not down-sampled) wavelet transform, suited for astronomical applications where
objects are mostly more or less isotropic (Starck et al., 2007).

It decomposes an image c0 as the sum of all the wavelet scales and the coarse
resolution image cJ :

c0(x, y) = cJ(x, y) +
Jmax∑
j=1

wj(x, y) (6.7)

where Jmax is the maximum number of scales and wj is the wavelet images showing
the details of the original image at dyadic scales with a spatial size of 2j pixels and
j = Jmax + 1.

The starlet wavelet function is a specific translational invariant wavelet transform:

1

4
Ψ
(x1
2
,
x2
2

)
= ϕ(x1, x2)−

1

4
ϕ
(x1
2
,
x2
2

)
(6.8)

specified by an isotropic scaling function ϕ, that, for astronomical application, can be
defined as a B-spline of order 3:

ϕ1D(x) =
1

12
(|x− 2|3 − 4|x− 1|3 + 6|x|3 − 4|x+ 1|3 + |x+ 2|3). (6.9)
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The N-dimensional scaling functions can be built starting from the separable prod-
uct of N ϕ1D: ϕ(x1, x2) = ϕ1D(x1)ϕ1D(x2). Each set of wavelet coefficients wj is
obtained as the convolution of the input map with the corresponding wavelet kernel.
For a full description of the starlet transform function, see Starck et al. (2007) and
Starck et al. (2010).

Differentiable Peak Counts The peaks identify regions of weak lensing map where
the density value is higher, in this way they are particularly sensitive to massive struc-
tures. There are two different ways to record weak lensing peaks: as 1) local maxima
of the signal-to-noise field or 2) local maxima of the convergence field. In both cases,
they are defined as pixels of larger value than their eight neighbors in the image.

One of the difficulties in estimating derivatives of traditional peak count statistics
is that it relies on building a histogram of peak intensities and, therefore, due to the
discrete nature of the bins, histograms are not differentiable. However, the underlying
idea of peak counting is just meant to build an estimate of the density distribution of
the number of peaks as a function of their intensity. Histograms are one way to build
such an estimate, and have been historically preferred, but for no particular reason.
To circumvent the non-differentiability of histograms, here we prefer to estimate this
density using an alternative method, namely, the Kernel Density Estimation (KDE).
As a continuous equivalent to a histogram, KDEs are differentiable and can just as well
be used to define the peak counts statistic. We defined the KDE for the peak counts
as:

KDE =
1

bw
√
2π

exp

(
−(X − x)2

2b2w

)
(6.10)

where bw is the smoothing bandwidth parameter, X is the number of peaks in a given
bin, and x is the center of each bin.

This procedure yields a peak count statistic that is smoothly differentiable with
respect to the input map and thus can be used for applications such as Fisher forecasting
as discussed later in this work.

6.2 Validating simulations for LSST

In this section, we compare the results from our simulation to other works, including the
analytic models for the matter power spectrum Halofit (Smith et al., 2003; Takahashi
et al., 2012) and the cosmological N-body simulations, κTNG (Osato et al., 2021).

The κTNG-Dark simulations is a suite of publicly available weak lensing mock maps
based on the cosmological hydrodynamical simulations IllustrisTNG, generated with
the moving mesh code AREPO (Springel, 2010). In particular, we use the κTNG-
Dark suit of maps based on the corresponding dark matter-only TNG simulations.
The simulations have a side length of the box equal to 205 Mpc/h and 25003 CDM
particles. To model the propagation of light rays and simulate the weak lensing maps, a
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multiple-lens plane approximation is employed. The simulation configuration consists
of a map size of 5× 5 deg2, 1024× 1024 pixels, and a resolution of 0.29 arcmin/pixel.
For a complete description of the implementation see Osato et al. (2021).

To produce our simulations, we follow the evolution of 1283 dark matter particles
in a periodic box of comoving volume equal to 2053 (h−1 Mpc)3, with initial conditions
generated at z=6 using the linear matter power spectrum as implemented by Eisenstein
and Hu (1998). In particular, we implement the Eisenstein-Hu transfer function in the
Tensorflow framework, in order to compute its gradients automatically.
We assume the following cosmological parameters: h = 0.6774, ns = 0.9667, Mν = 0.0
eV, w = −1, Ωk = 0., Ωm = 0.3075, σ8 = 0.8159, such that they match the results of
Planck 2015 (Ade et al., 2016). We reproduce the same configuration of κTNG-Dark,
i.e. each map is on a regular grid of 10242 pixels and 5× 5 deg2.
The actual choice of bins to include in the forecasting is made following the DESC data
requirement for the angular power spectra (Mandelbaum et al., 2018), i.e. adopting
ℓmax,shear = 3000 and ℓmin,shear = 300.

6.2.1 HPN validation

To compensate for the small-scale approximations resulting from PM, we applied the
HPN approach presented in chapter 5. We show on Figure 6.1 the power spectrum and
the fractional power spectrum of PM simulations before and after the HPN correction
compared to analytic Halofit predictions (Smith et al., 2003; Takahashi et al., 2012)
for redshift z = 0.03 and z = 0.91. We observe a bias between our measured power
spectrum and the theoretical prediction at low k. This reduced power is explained
by the small box size of our simulation and the associated reduced number of large-
scale modes. At redshift z = 0.91 most of the missing power is recovered by the HPN
correction up to k ∼ 1, after which the method overemphasizes the small-scale power.
In this work however, we can assume that this effect does not impact the results of the
cosmological parameters forecast, since it concerns scales that are beyond the range
of frequencies that are taken into account for the analysis. At redshift z = 0.03, the
correction model does not improve significantly the results.

In Figure 6.2 we show an example of our convergence map at z = 0.91, from pure
PM simulation (first panel) and the HPN corrected simulation (second panel). The
HPN model sharpens structures in the lensing field without introducing any artifacts.

In the upper panel of Figure 6.3, we present the angular power spectrum computed
from our Differentiable Lensing Lightcone (DLL hereafter) complemented by the HPN
scheme and a conventional DLL simulation with the same resolution. Both the outputs
are compared to the κTNG-Dark prediction. In the lower panel of Figure 6.3 the
fractional differences between the convergence power spectra from the two maps and
the κTNG-Dark are shown. Both the power spectra and ratios are averaged over
N = 100 realisations. We can see that the HPN model reduces the relative deviations
of the angular power spectra to within 30%. We also observe a perfect match at large
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Figure 6.1: Matter power spectrum and fractional matter power spectrum of PM sim-
ulations before and after using the Hybrid Physical-Neural (HPN) correction model
and the theoretical halofit model for redshift z=0.03 (upper panel) and redshift z=0.91
(lower panel). The power spectra and ratios are means over 100 independent map re-
alizations. The shaded regions represent the standard deviation from 100 independent
DLL realizations.
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Figure 6.2: Left panel: Convergence map at source redshift z = 0.91 from DLL, PM
only. Right panel: Same convergence map when the HPN correction is applied.

scales, since the κTNG-Dark and the DLL simulations have the same box size of 205
Mpc/h3.

6.2.2 IA validation

In the upper panel of Figure 6.4, we present the CII
ℓ and CGG

ℓ contributes from our
DLL simulations compared to theoretical Halofit predictions (Smith et al., 2003). In
the lower panel of the same figure, we show the fractional differences between the
mentioned contributions. To validate the IA infusion, only for this experiment, we run
simulations keeping the term AIA = 1. As we can see, the fractional difference for
the CII

ℓ term features uncertainty consistent with CGG
ℓ term, validating our infusion

process. The signal is computed for the source redshift zs = 0.91 and is averaged
over 100 realizations. The theoretical predictions are computed using the public Core
Cosmological Library (CCL, Chisari et al. (2019)).

6.2.3 Lensing Cℓ

To quantify the accuracy of the simulations we aim to reproduce the summary statistics
from the Dark Matter Only κTNG simulations. We compare the results from the
angular power spectrum for different source redshift, just investigating how well we
can recover the power spectrum for a given source plane. The results of the angular
power spectrum from the sources redshift z=[0.25,0.46,0.65,0.91,1.30] are shown in the
upper panel of Figure 6.5, as well as the fractional differences between the κTNG-Dark
and DLL maps in the lower panel. We observe that the differences for zs = 0.91 and
zs = 1.30 curves are within 10% of accuracy for scales larger than ℓ = 1000, within 25%
for scales 1000 < ℓ < 2000 and within 25% and 45% for scales 2000 < ℓ < 3000. For
lower source redshifts the deficit of power in our simulations becomes worse. This can

https://ccl.readthedocs.io/en/latest/
https://ccl.readthedocs.io/en/latest/
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Figure 6.3: Upper panel: Angular power spectra of PM simulations before and after
using the Hybrid Physical-Neural (HPN) correction model compared to the κTNG-
Dark prediction. Lower panel: fractional angular power spectrum of PM simulations
before and after using the Hybrid Physical-Neural (HPN) correction model and the
κTNG-Dark prediction. The power spectra and ratios are means over 100 independent
map realisations and the shaded regions represent the standard deviation from 100
DLL realisations. The spectra are computed for the source redshift zs = 0.91.
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ℓ

and CGG
ℓ contributes. We can see that we measure a reduced power spectrum at low

ℓ compared to the theoretical predictions. This can be explained by the small volume
of our simulation and the related low number of large-scale modes. The power spectra
and ratios are means over 100 independent map realisations and the shaded regions
represent the standard deviation from 100 realisations.
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be explained considering that a given value of ℓ at lower redshift corresponds to smaller
scales, some of those below the resolution of our simulations. We conclude that, if for
z=0.91 and z=1.30 we have a general agreement with κTNG-Dark, with this specific
setting of the model, we can not model correctly cases with sources redshift lower than
z=0.91.

We want to highlight that the results shown are produced keeping the resolution
of the simulations extremely low, and we do not expect to get the same precision as
κTNG-Dark. The purpose of these tests, and the overall goal of this study, is to present
a proof of concept of the DLL package and its potential. In practice, we will not work
at this resolution.

Nevertheless, note that the simulations presented here already achieve a similar
resolution to the MassiveNus simulations (Liu et al., 2018), despite being generated
using one single GPU.

6.2.4 Peak counts

We compute the starlet peak counts as wavelet coefficients with values higher than
their eight neighbors. We define Jmax = 7 in Equation 6.7, this starlet filter applied to
our map with a pixel size of 0.29 arcmin, corresponds to a decomposition in 7 maps of
resolution [0.59, 1.17, 2.34, 4.68, 9.33, 18.79, 37.38] arcmin and a coarse map. To satisfy
the survey requirement and keep the analysis centered in the range ℓ = [300, 3000], we
consider only the scales corresponding to [9.33, 18.79, 37.38] arcmin. The peaks are
counted for 8 linearly spaced bins within the range (κ ∗W) = [−0.1, 1.].

As with the power spectrum, we compare the peak counts statistic from our map
to the one from the κTNG-Dark for different redshift bins. We present the results
in Figure 6.6. These results are shown in terms of S/N, where the signal to noise is
defined as the ratio between the amplitude of wavelet coefficients over the standard
deviation of the noise expected for our survey choice in each wavelet band. At wavelet
scale θ = 9.33 arcmin the differences for the zs = 0.91 curves are within the 20% up
to S/N = 3, for S/N > 3 the accuracy is between the 20% and the 50%. At larger
scale, θ = 18.79 arcmin the accuracy is within the 20%. Finally, at θ = 37.38 arcmin
the accuracy is within the 15%, except S/N < 1 where the accuracy decreases up to
28%. The results slightly improve for z=1.30, showing an accuracy within the 35% for
scale θ = 9.33 arcmin, within the 10% for θ = 18.79 arcmin and 25% for θ = 37.38
arcmin. As for the power spectrum case, we observe higher discrepancies at lower
redshift, hence we can conclude that, with the current setting of our simulation, we
can not model correctly such redshift.

6.2.5 Validation with higher resolution simulations

In section 6.2, we presented a validation of our simulations by comparing the statistics
from DLL and κTNG-Dark. In particular, we have seen a discrepancy on small scales
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Figure 6.6: Fractional number of peaks of DLL simulations and κTNG-Dark simula-
tions for different sources redshift. The peak counts distributions are shown for each
starlet scales resolutions used: 9.34 (upper panel), 18.17 (center panel), 37.38 arcmins
(lower panel). The results mean over 100 independent map realisations and the shaded
regions represent the standard deviation from 100 independent DLL realisations.
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for both the Cℓ and the peak counts. We have attributed this bias to the low resolution
of the simulations. Therefore, to justify this assumption, we simulate convergence
maps of higher resolution, i.e., we raise the number of particles but keep the same
box of 2053(h−1Mpc)3 in the simulation. In the left panel of Figure 6.11, we present
the angular power spectrum computed from our DLL with the original number count
of particles (1283) and the power spectrum computed from higher resolutions DLL
simulations (2123). The two outputs are compared to the κTNG-Dark predictions.
In the right panel of Figure 6.11 the fractional differences between the convergence
power spectra from the two maps and the κTNG-Dark are shown. We can see that, by
increasing the number of particles, we can improve the accuracy of the lensing Cℓ up to
20%. As for the power spectrum, we compare the peak counts statistic from our map
to the one from the κTNG-Dark for different resolutions. In Figure 6.12, we compare
the peak counts statistic from our map to the one from the κTNG-Dark for different
resolutions. We use the same wavelet decomposition presented in subsection 6.2.4. As
for the power spectrum, we note the same tendency to recover better accuracy when
the resolution is increased.

6.3 Application: Fisher forecast

As an example of application of differentiable simulations, we aim to investigate the
degeneracy between the cosmological parameters in high dimensional space and when
systematics, such as the intrinsic alignment, are included in the analysis. Thanks to
automatic differentiation, taking the derivative through the simulation with respect to
the initial cosmological and nuisance parameters is now possible, thus allowing, among
other things, for Fisher forecasts. In this section, we briefly introduce the Fisher
forecast formalism. We also describe in detail the specific choices for the analysis we
use throughout.

6.3.1 Forecast formalism

Fisher forecast is a widely used tool in cosmology for different purposes, e.g. investigate
the impact of systematic sources or forecast the expected constraining power of the
analysis (Tegmark et al., 1997). It can be thought as a tool to forecast error from
a given experimental setup and quantify how much information we can extract from
it. The Fisher matrix is the expectation value of the Hessian matrix of the negative
log-likelihood L(C(ℓ); θ):

Fαβ =

〈
∂2L

∂θα∂θβ

〉
, (6.11)

where we indicate with θ the cosmological parameters or any systematics included
in the simulation. If we assume a Gaussian likelihood and a Covariance matrix Cij
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independent from the parameters θ, the Fisher matrix can be computed as:

Fαβ =
∑
ij

∂µ

∂θα
C−1

ij

∂µ

∂θβ
(6.12)

were we indicate as ∂µ
∂θα

the derivatives of the summary statistics w.r.t the cosmological
or nuisance parameters evaluated at the fiducial values. So, under the assumption
of Gaussian likelihood, the Fisher information matrix provides a lower bound on the
expected errors on cosmological parameters.

6.3.2 Analysis choices

To perform our study we use a single source redshift at z=0.91. Specifically, we generate
5000 independent map realisations to which we add Gaussian noise with mean zero and
variance:

σ2
n =

σ2
e

Apixngal

, (6.13)

where we set the shape noise σe = 0.26, the pixel area Apix = 0.086 arcmin2 and
the galaxy number density ngal = 20 arcmin−2. We assume a parameter-independent
covariance matrix computed as:

Cij =
N∑
r=1

(xri − µi)(x
r
j − µj)

N − 1
(6.14)

where N is the number of independent realizations, xri is the value of the summary
statistics in the ith bin for a given realization r, and µ is the mean of the summary
statistics over all the realization in a given bin. In addition, we adopt the estimator
introduced by Hartlap et al. (2007) to take into account the loss of information caused
by the finite numbers of bins and realizations, i.e. we compute the inverse of the
covariance matrix as :

C−1 =
N − nbins − 2

N − 1
C−1

∗ , (6.15)

where C∗ is the covariance matrix defined in Equation 6.14. As mentioned before,
we want to focus on a fair comparison between the power spectrum and the peak
counts method. To be sure we are considering the same scales for both statistics,
we apply a wavelet pass-band filter to the maps to isolate particular scales before
measuring the power spectrum. We use the same scales used for the Peak counts, i.e.
we decompose the noisy convergence map in seven images, we sum back only the three
maps corresponding to [9.33, 18.79, 37.38] arcmin and compute the angular Cℓ on the
resulting image. An example of the Cℓ computed for each individual starlet scale image
and for the summed image is depicted in Figure 6.7.
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Figure 6.7: Example of the filtered Cℓ used for the analysis. The colored lines show
the Cℓ computed on maps with a different resolution of the starlet decomposition.
Specifically: the blue line (multiscale map) corresponds to Cℓ computed on the summed
image, the black dashed line (Original map) corresponds to the standard Cℓ computed
from a non-filtered map.
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For each map, we compute the angular power spectrum and the peak counts by
using our own differentiable code implemented in the TensorFlow framework. 2

The derivatives with respect to all parameters are evaluated at the fiducial cosmol-
ogy as the mean of 1500 and 2600 independent measurements for the peak counts and
the Cℓ respectively. Indeed, while the peak counts reach the convergence with ∼ 1500
simulations, the Cℓ proves to be more sensitive to noise and thus, requires more realiza-
tions to convergence. In Figure 6.10 in appendix B we test the stability of the Fisher
contours by changing the number of simulated maps used to compute the Jacobian.

The priors used in the forecast process, are listed in Table 7.1 following Zhang et al.
(2022). To take into account the partial coverage of the sky, we scale the Fisher matrix
by the ratio fmap/fsurvey, where fmap is the angular extend of our κmap fmap = 25 deg2
and fsurvey corresponds to the size of the convergence maps for Stage IV-like survey
fsurvey = 15000 deg2.

6.3.3 Results

We now compare the relative constraining power of the lensing angular power spectrum
and multiscale peak counts using the Fisher matrix formalism. As mentioned before,
our interest is to investigate the sensitivity of the two weak-lensing statistics when
systematic, such as the intrinsic alignment, and more cosmological parameters are
included in the forecast. The results presented here are obtained from one single source
redshift at z=0.91, assuming the fiducial cosmology and survey requirement presented
in section 6.2 and subsection 6.3.2. The fiducial and priors ranges of the parameters
are listed in Table 7.1.

Figure 6.8 shows the 2σ contours on the full ΛCDM parameter space and intrinsic
alignment term considered for the two analyses. The contours obtained by the angular
Cℓ analysis are plotted in grey, and the ones for the peak counts in yellow. We find
that in constraining Ωc, σ8 and AIA peak counts outperform the power spectrum, while
h, ns and Ωb parameters, within the limit of our setting, are not constrained by either
and are prior dominated.

This is an interesting result, confirming the higher constraining power of weak-
lensing peak counts as found in Ajani et al. (2020), especially considering that the two
studies differ in multiple aspects. The most important difference between these two
analyses is the parameters they include. Whereas Ajani et al. (2020) derive constraints
on the sum of neutrino masses Mν , the total matter density Ωm, and the primordial
power spectrum normalization As, we include the five cosmological parameters of the
ΛCDM model and intrinsic alignment amplitude. The constraining power of the peak
count statistic keeps being higher even in high dimensional cosmological parameter
space and when the intrinsic alignment is included.

The chosen angular scales differ as well. Ajani et al. (2020) consider angular scales

2Code publicly available at:
https://github.com/LSSTDESC/DifferentiableHOS/statistics

https://github.com/LSSTDESC/DifferentiableHOS/tree/main/DifferentiableHOS/statistics
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Table 6.2: Prior and fiducial values used for the forecasting.

Parameter Prior Fiducial value
Ωc N (0.2589,0.2) 0.2589
Ωb N (0.0486,0.006) 0.0486
σ8 N (0.8159,0.14) 0.8159
h N (0.6774,0.063) 0.6774
ns N (0.9667,0.08) 0.9667
AIA N (0,3) 0.0

in the range l = [300, 5000], while we focus, for both multiscale peak counts and Cℓ,
on scale approximately corresponding to the range l = [300, 3000]. Despite we are
neglecting scales ℓ > 3000, containing a larger amounts of non-Gaussian information,
we find that for mildly non-linear scales we are considering, the peak counts statistic
still constrains the cosmological parameters the most.

Finally, we find that the contours on the galaxy intrinsic alignment are significantly
better constrained by the peak counts.

Validation against a theory prediction

We show the 2σ constraints obtained from our Fisher analysis of standard Cℓ (orange
contours) and the theoretical prediction from halofit (blue contours) in Figure 6.9.
The dashed black contours define the prior used for the forecasting. The analysis is
performed for one single source redshift at z=0.91 and the survey setup presented in
section 6.2.

The constraints from the theoretical predictions are compatible with the ones ob-
tained from the mock DLL maps for all cosmological parameters, except ns. Indeed,
despite sharing the same direction of degeneracy, the theoretical contours for ns are
narrower compared to the ones obtained in our analysis. In general, this translates
into an increased uncertainty in constraining ns, most likely due to the deficit in power
observed for the Cℓ at small scales.

The theoretical predictions are computed using the public library jax-cosmo (Cam-
pagne et al., 2023). We want to highlight that both the theoretical Fisher matrices
and the ones from our analysis are obtained by automatic differentiation.

Validate the stability of the Fisher contours

To ensure that the shape of the ellipses and the direction of the degeneracies are not
the results of stochasticity, we prove the stability of the Fisher analysis results by
testing the convergence of the jacobians. In Figure 6.10 we present the results for
Fisher constraints obtained when varying the number of independent simulations used
to compute the jacobians. As we can see, the convergence seems to be reached for the

https://github.com/DifferentiableUniverseInitiative/jax_cosmo
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Figure 6.8: 2σ contours derived for one single source redshift at z=0.91 and the survey
setup presented in section 6.2. The constraints are obtained by applying the starlet
Peak counts (yellow contours) computed on noisy maps filtered using a starlet kernel of
[9.33, 18.70, 37.38] arcmin together and the wavelet pass-band filter for the Cℓ statistics
(grey contours) as described in section 6.2. The dashed black lines are located at the
fiducial parameter values.



120
6. Forecasting the power of Higher Order Weak Lensing Statistics with

automatically differentiable simulations
 

Prior
Theoretical C
C

0.5
0

0.7
5

1.0
0

1.2
5

8 

0.0
3

0.0
4

0.0
5

0.0
6

0.0
7

b 

0.7
5

0.9
0

1.0
5

1.2
0

n s
 

0.5
0.6
0.7
0.8
0.9

h 

0.3 0.0 0.3 0.6 0.9

c 

10

5

0

5
10

A I
A
 

0.5
0

0.7
5

1.0
0

1.2
5

8 
0.0

3
0.0

4
0.0

5
0.0

6
0.0

7

b 
0.7

5
0.9

0
1.0

5
1.2

0

ns 
0.5 0.6 0.7 0.8 0.9

h 
10 5 0 5 10

AIA 

Figure 6.9: 2σ contours derived for one single source redshift at z=0.91 and the survey
setup presented in section 6.2. We compare the Fisher matrix constraints on cosmolog-
ical parameters and AIA amplitude obtained with the Cℓ from our mock maps (orange)
and the theoretical Cℓ (blue) obtained from the public library jax-cosmo (Campagne
et al., 2023). In both cases, the constraints are obtained by applying the wavelet pass-
band filter for the Cℓ as described in section 6.2. The dashed black contours are the
prior used for the forecasting.

https://github.com/DifferentiableUniverseInitiative/jax_cosmo


6.4. Discussion 121

peak counts with, at least, 1500 realizations. On the other hand, the angular Cℓ proves
to be more sensitive to noise and thus requires at least 2600 realizations.

Validation with higher resolutions simulations

Finally, we reproduce the results of the Fisher analysis for the intrinsic alignment
parameter AIA with higher-resolution simulations. We adopt the same Forecast criteria
presented in section 6.3. However, for this specific test, we compute the derivatives
numerically using finite differences. The step sizes used for these variations are ∆xIA =
0.15 for the Cℓ and ∆xIA = 1.2 for the peak counts. In order to check the reliability
of the numerical derivatives, we investigate the stability of the Fisher forecast against
different step sizes used to compute them. The derivatives are computed as the mean
of 3000 independent realizations for both Cℓ and peak counts.

We confirm the peak counts provide the most stringent constraints on the galaxy
intrinsic alignment amplitude AIA. As for the full analysis, we tested the stability
of the Fisher forecast by varying the number of simulated maps used to compute the
derivatives. In Figure 6.13 we present the 1σ error on AIA when varying the number
of independent realizations used to compute the derivatives. It is interesting to note,
that, even in this case, the derivatives of the Cℓ can not be considered fully converged.
However, as can be noted from the stability plots of Figure 6.13, the noise in the
derivatives leads to tighter constraints in the Fisher forecast. Hence, the fully converged
derivatives of the Cℓ would result in even broader constraints, without changing the
results we found.

6.4 Discussion

In this section, we discuss the limitations of the methodology and results obtained
in the presented study highlighting in particular strategies for future extensions and
applications.

In this work, we only used a single source plane in our Fisher forecast analysis,
which does not allow us to evaluate the full impact that IA would have in a tomo-
graphic analysis. In particular, we do not have a contribution from the GI term. Many
studies have demonstrated that the tomographic analysis can significantly improve
constraints on cosmological and IA parameters. (King and Schneider, 2003; Heymans
et al., 2004; Troxel and Ishak, 2015). Although it is straightforward to generalize all
the results shown in this work to the tomographic case, this will require increasing the
resolution of the simulation at lower redshifts (as illustrated by Figure 6.5) in order
to model correctly low redshift bins. Since the maximum number of particles we can
adopt in a simulation is closely limited to the GPU memory, we are building a dis-
tributed implementation of DLL, which will allow us to increase the resolutions of the
simulations to the point of modeling correctly even the smaller scales at the lower red-
shifts. Indeed, current GPU-based simulations are capable of simulating 2563 particles
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Figure 6.10: 1σ Fisher contours derived for one single source redshift at z=0.91 and
the survey setup presented in section 6.2 for the Cℓ (upper panel) and the Peak counts
(lower panel). The different colors refer to the number of independent realizations used
to mean the Jacobian in the Equation 6.12. The dashed black lines are located at the
fiducial parameter values.
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Figure 6.11: Left panel: Angular power spectra of PM simulations with original
resolution (number count 1283, blue line) and higher resolution (number count 2123,
red line) compared to the κTNG-Dark prediction. Right panel: fractional angular
power spectrum of PM simulations with original and higher resolution and the κTNG-
Dark prediction. The power spectra and ratios are means over 100 independent map
realisations and the shaded regions represent the error on the mean. The spectra are
computed for the source redshift zs = 0.91.
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Figure 6.12: Fractional number of peaks of DLL simulations and κTNG-Dark simula-
tions. The results are shown for the number counts 1283 (blue lines) and 2123 (orange
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mean. The statistics are computed for the source redshift zs = 0.91.
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on most available GPUs, and even 5123 particles on the latest h-100 NVIDIA GPUs,
which come with 80 GB of memory. This capability already allows us to run realistic
simulations for developing pipelines for cosmological analysis. To surpass these limita-
tions, we are actively developing distributed implementations. It is worth noting that
this has already been achieved for previous generations of simulations, like FlowPM,
which can run 20483 particles across 256 NVIDIA V100 GPUs. Additionally, we should
mention that these simulations can also run on CPUs, which are less constrained by
memory but lack GPU-based accelerations. A time-scaling comparison of GPU and
CPU-based simulations is presented in Modi et al. (2021) and Li et al. (2022). The
results clearly demonstrate the advantages of GPU-based simulations, even when not
considering additional benefits such as automatic differentiation capabilities.

Another direction for further development is the ray tracing methodology. In our
method, we construct the weak lensing maps assuming the Born approximation. How-
ever, Petri et al. (2017) shows that for an LSST-like survey, while the Born approxima-
tion leads to negligible parameter bias for the power spectrum, it can lead to significant
parameter bias for higher-order statistics. Hence, the natural next step will be to im-
plement a ray-tracing algorithm beyond the Born approximation in our pipeline. We
aim to adopt the multiple-lens-plane approximation (Blandford and Narayan, 1986;
Seitz et al., 1994; Jain et al., 2000; Vale and White, 2003; Hilbert, S. et al., 2009),
i.e. by introducing lens planes perpendicular to the line-of-sight, the deflection ex-
perienced by the light rays due to the matter inhomogeneities will be approximated
through multiple deflections at the lens planes. More specifically, we will implement
the memory-efficient ray-tracing scheme proposed by Hilbert, S. et al. (2009) in the
Tensorflow framework.

On the theoretical modeling side, we studied the impact of the intrinsic alignment
of galaxies assuming a linear coupling between the intrinsic galaxy shapes and the non-
linear projected tidal fields, i.e. adopting the NLA model. This physical description
for the IA is only an approximation since it does not take into account the tidal torque
field. In future work, we aim to extend the NLA model by implementing the extended
δNLA model, described by Harnois-Déraps et al. (2021).

Finally, we presented a tool based on only Dark matter simulations. We note that
this would force us to perform conservative scale cuts in the inference analysis to not
include scales affected by baryonic effects. A future prospect is to include baryonic
effects in the analysis. One possible way applicable to our methodology could be to
extend the Hybrid Physical Neural ODE approach and apply more sophisticated models
to learn the physics that controls the hydrodynamics simulations.

We expect that the methods illustrated in this study will be extended to different
relevant use-cases. A particularly suitable example is related to the application of
algorithms such as the Variational Inference and the Hamiltonian Monte Carlo that
are widely used in the Bayesian inference context and were until now excluded due to
the lack of derivatives. A further example is provided by Zeghal et al. (2022), which
demonstrates that having access to the gradients of the forward model is beneficial to
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constrain the posterior density estimates.

6.5 Conclusions

In this chapter, we have presented the Differentiable Lensing Lightcone (DLL) model,
a fast lensing lightcone simulator providing access to the gradient. We extended the
public FlowPM N-body code, implementing the Born approximation in the Tensorflow
framework to create non-Gaussian convergence maps of weak gravitational lensing. To
allow DLL to run at low resolution without affecting significantly the accuracy, we
complement the FlowPM N-body code with the Hybrid-Physical Neural scheme, a new
correction scheme for quasi N-body PM solver, based on Neural Network implemented
as a Fourier-space filter. We validate our tool by comparing the Cℓ and peak counts
statistics against predictions from κTNG-Dark simulations. To do this, we run simula-
tions following the evolution of 1283 particles and we produce weak lensing convergence
maps for several redshift sources. We show that, despite being generated at low com-
putation costs, we recover a good match for redshift equal to or higher than z = 0.91.
To demonstrate the potential of our tool, as a first use case, we exploit the automatic
differentiability of the simulations to do Fisher forecast. Thanks to back-propagation,
accessing the derivative through the simulations w.r.t. the cosmological parameters
and AIA parameter is possible at the same computational cost as the forward simula-
tion. Assuming an LSST-like setting, we simulate weak lensing convergence maps for
a single source redshift z = 0.91 and angular extend of 5◦, based on a periodic box of
comoving volume equal to 205 h−1Mpc. We compute the constraints on the resulting
convergence maps with the starlet peak counts and use a wavelet-filtered lensing power
spectrum as a benchmark for the comparison. Within the limits of the analysis choices
made in this study, we obtain the following results:

• We confirm that the peak count statistics outperform the two-point statistics as
found in Ajani et al. (2020), even in high dimensional cosmological and nuisance
parameter space.

• We find the peak counts to provide the most stringent constraints on the galaxy
intrinsic alignment amplitude AIA.

To conclude, the framework outlined here can provide many advantages in the
context of cosmological parameter inference: it is the first step in the development of
fully differentiable inference pipelines for weak lensing, and it is a fast tool to further
explore the sensitivity of higher-order statistics to systematics.
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This chapter presents some preliminary results of an ongoing work. My contri-
butions included building the physical model for the simulator, conducting the
analysis, and preparing the material for publication. The research project is
done in collaboration with Justine Zeghal, T. Lucas Makinen, Alexandre Bou-
caud, François Lanusse, and Jean-Luc Starck.
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As mentioned several times throughout this thesis, in many cosmological applica-
tions the likelihood function is either unknown or intractable, limiting the use of tradi-
tional inference methods. Likelihood-Free Inference (LFI) approaches offer a promising
solution by using forward-simulated synthetic data to approximate the posterior (or the
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likelihood) distribution instead of evaluating an explicit likelihood function. However,
these methods suffer from the curse of dimensionality, necessitating the development
of compression schemes to reduce high-dimensional data into lower-dimensional sum-
mary statistics. The goal of this chapter is to investigate the performance of several
neural-compression strategies for full field Likelihood free inference by density esti-
mation. Moreover, we aim to demonstrate that, by using an optimal compression
strategy, the posterior distribution is comparable to those derived from a Bayesian for-
ward modeling approach. We present a comparative analysis of different loss functions
employed during the training of the neural network. We evaluate their performance
by measuring their impact on the constraints on the ΛCDM parameters expected from
LSST-Y10. For both forward-modeling the convergence field and generating observed
mock data, we develop the SBILens package. SBILens is a Jax-based differentiable
physical model used to generate convergence maps as lognormal random fields. It is
specifically designed for Likelihood Free Inference and Bayesian inference algorithms
that require access to likelihood derivatives. Albeit with preliminary results, our ex-
periments validate the effectiveness of LFI methods, as we demonstrate comparable
posterior distributions between LFI and Bayesian forward modeling approaches.

https://github.com/DifferentiableUniverseInitiative/sbi_lens
SBILens
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7.1 Motivation

With the increased statistical power of stage IV surveys, our cosmological analysis
should not rely on the measurement of sub-optimal summary statistics, which may not
fully capture the non-Gaussian information present in the lensing field at the scales ac-
cessible to future surveys. In this chapter, we introduce a forward model that directly
extracts information from the convergence maps, rather than relying on the analyt-
ical evaluation of summary statistics. By doing so, we aim to preserve all available
information and facilitate the incorporation of systematic effects and the combination
of multiple cosmological probes through joint simulations. To ensure a smooth read-
ing, we will now re-establish the definition of the simulator as previously introduced
in section 4.2. In a forward model context, the simulator of the observables serves
as our physical model, where each component is tractable. These models, often re-
ferred to as probabilistic programs, as illustrated by ?, can be described as follows: The
models take as input a vector parameter θ, which describes the underlying determin-
istic model. Then, they sample internal states z, dubbed latent variables, from the
distribution p(z|θ). These states can be directly or indirectly related to a physically
meaningful state of the system. Finally, the models generate the output x from the
distribution p(x|θ, z), where x represents the observations.

The ultimate goal of Bayesian inference in cosmology is to compute the posterior
distribution:

p(θ|x) = p(x|θ)p(θ)∫
dθ′p(x|θ′)p(θ′)

, (7.1)

however, a problems arises because the marginal likelihood p(x|θ) is typically in-
tractable:

p(x|θ) =
∫
p(x, z|θ)dz =

∫
p(x|z,θ)p(z|θ)dz, (7.2)

since it involves integrating over all potential paths through the latent space. To over-
come this limitation while still capturing the full information content of the data, two
different approaches have been proposed in the literature. Although these approaches
are often referred to by different names, hereinafter we will make the following distinc-
tion:

Explicit inference referring to all Likelihood-based inference approaches. This ap-
proach involves treating the simulator as a probabilistic model and performing inference
over the joint posterior:

p(θ, z|x) ∝ p(x|z,θ)p(z|θ)p(θ). (7.3)

In the context of the forward model and full field analysis, Bayesian Hierarchical Mod-
els (BHMs) fall into this category, as discussed in subsubsection 3.3.2. As a reminder,
a Bayesian forward approach involves using a given physical model to predict observa-
tions and then comparing these predictions with observations to infer the parameters
of the model.
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Implicit inference referring to all the approaches that try to infer the marginal
likelihood from simulations. This second class of approaches involves treating the
simulator as a black box with only the ability to sample from the joint distribution:

(x,θ) ∼ p(x,θ). (7.4)

Within this class of methods, as discussed in chapter 7, we can differentiate between
more traditional methods such as Approximate Bayesian Computation (ABC) and
Density Estimation Likelihood-Free Inference (DELFI) methods. In this work, our
focus will be on DELFI methods, which approach the inference task as a density
estimation problem.
In particular, the standard deep learning approach for Likelihood-Free Inference can
be described as separated into two distinct steps:

1. Automatically learning an optimal low-dimensional summary statistic.

2. Using Neural Density Estimation in low dimensions to infer the target distribu-
tions.

In the first step, we introduce a parametric function Fφ such that:

t = Fφ(θ), (7.5)

which aims to reduce the dimensionality of the data while preserving information.
Typically, the compressed statistics t is assumed to have the same dimension of θ.
In the second step, Neural Density Estimation can target either building an estimate
pφ of the likelihood function p(x|θ) (referred to as the Neural Likelihood Estimation
(NLE) task), or targeting the posterior distribution p(θ|x), (known as Neural Posterior
Estimation (NPE) task).

The main motivation for this work is to evaluate the impact of a given compres-
sion strategy on the final posterior distribution and determine whether an optimal
compression strategy exists. Indeed, it is important to consider that different neural
compression techniques may not be equivalent. We summarize the various neural com-
pression strategies found in the literature in Table 7.3. Many of these papers have used
neural compression techniques that rely on optimizing the Mean Square Error or the
Mean Absolute Error.
As we will demonstrate in the following sections, this corresponds to training the model
to estimate the mean and the median of the posterior distribution. Other papers rely
on assuming proxy Gaussian likelihoods and estimate the mean and covariance of these
likelihoods from simulations. Such compression of summaries could be sub-optimal in
certain applications, resulting in a loss of information and hence larger contours.

Therefore, our primary focus will be to investigate the effectiveness and validity of
these compression techniques in the context of weak lensing applications (within the
limits of our setting).
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Ultimately, we should keep in mind that, for a given simulation model, if an optimal
compression statistic is used, the two approaches should converge to the same posterior.
Therefore, the goals of this work will be:

1. Find a near-optimal compression strategy.

2. Demonstrate that by using this near-optimal compression strategy, both the im-
plicit and explicit methods yield comparable results.

7.2 The SBILens framework

To investigate the questions above, we have developed the Python package SBILens,
a weak lensing differentiable simulator based on a log-normal model. SBILens enables
the sampling of convergence maps in a tomographic setting while considering the cross-
correlation between different redshift bins.

7.2.1 Lognormal Modeling

For various cosmological applications, the non-Gaussian field can be modeled as a Log-
normal field (Coles and Jones, 1991; Böhm et al., 2017). This model offers the advan-
tage of generating the matter or convergence field rapidly while allowing the extraction
of information beyond the two-point statistics. Although studies demonstrated that
this model fails in describing the 3D field (Klypin et al., 2018), it properly describes the
2D convergence field (Clerkin et al., 2017; Xavier et al., 2016). Assuming a simulated
Gaussian convergence map κg, whose statistical properties are fully described by its
power spectrum Cℓ we know that this model is not a suitable representation of late-
time and more evolved structures. One potential solution is to find a transformation
f(κg) of this map that captures the non-Gaussian features in the convergence field. In
doing so, it is crucial to ensure that the transformed map maintains the correct mean
and variance, effectively recovering the correct two-point statistics. Denoting µ and
σ2
g the mean and covariance matrix of κg respectively, we can define the transformed

convergence κln as a shifted lognormal random field:

κln = eκg − λ, (7.6)

where λ is a free parameter that determines the shift of the lognormal distribution.
The convergence κ in a given redshift bin is fully determined by the shift parameter λ,
the mean µ of the associated Gaussian field κg, and its variance σ2

g . The correlation of
the lognormal field, denoted as ξln, is also a function of these variables and is related
to ξijg through the following equations:

ξijln(θ) ≡ λiλj(e
ξijg (θ) − 1)

ξijg (θ) = log

[
ξijln(θ)

λiλj
+ 1

]
. (7.7)

https://github.com/DifferentiableUniverseInitiative/sbi_lens
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Here i and j define a pair of redshift bins. The parameter λ, also known as minimum
convergence parameter, defines the lowest values for all possible values of κ. The
modeling of the shift parameter can be approached in various ways. For example, it
can be determined by matching moments of the distribution (Xavier et al., 2016) or by
treating it as a free parameter (Hilbert et al., 2011). In general, the value of λ depends
on the redshift, cosmology, and the scale of the field at which smoothing is applied.

While it is straightforward to simulate a single map, if we want to constrain the
convergence map in different redshift bins, an additional condition must be met. The
covariance of the map should recover the correct angular power spectrum:〈

κ̃
(i)
ln (ℓ)κ̃

∗(j)
ln (ℓ′)

〉
= Cij

ln(ℓ)δ
K(ℓ− ℓ′) (7.8)

where Cij
ln(ℓ) is the power spectrum of κln in Fourier space, defined as:

Cij
ln(ℓ) = 2π

∫ π

0

dθ sin θPℓ(cos θ)ξ
ij
ln(θ) (7.9)

and Pℓ is the Legendre polynomial of order ℓ. Using the lognormal model, we can si-
multaneously constrain the convergence field in different redshift bins while considering
the correlation between the bins, as described by Equation 7.7.

In the SBILens framework, the sampling of the convergence maps can be described
as follows. First, we define the survey in terms of galaxy number density, redshifts,
and shape noise. Then, we compute the theoretical auto-angular power spectrum Cii(ℓ)
and cross-angular power spectrum Cij(ℓ) for each tomographic bin. These theoretical
predictions are calculated using the public library jax-cosmo. Next, we project the
one-dimensional C(ℓ) onto two-dimensional grids with the desired final convergence
map size. Afterwards, we compute the Gaussian correlation functions ξijg (θ) using
Equation 7.7. To sample the convergence field in a specific redshift bin while considering
the correlation with other bins, we use Equation 7.8. We construct the covariance
matrix Σ of the random field κ, where κ represents the vector of convergence maps at
different redshifts, as follows:

Σ =


C11

ℓ C12
ℓ · · · C1n

ℓ

C21
ℓ C22

ℓ · · · C2n
ℓ

...
... . . . ...

Cn1
ℓ Cn2

ℓ · · · Cnn
ℓ

 . (7.10)

To sample more efficiently, we perform an eigenvalue decomposition of Σ to obtain a
new matrix Σ̃:

Σ̃ = QΛ1/2QT , (7.11)

where Q and Λ are the eigenvectors and eigenvalues of Σ, respectively. Next, we
sample the Gaussian random maps κg using the equation:

κg = Ẑ · Σ̃ (7.12)

https://github.com/DifferentiableUniverseInitiative/jax_cosmo


7.2. The SBILens framework 135

where Ẑ represents the Fourier transform of the latent variables of the simulator. Fi-
nally, we transform the Gaussian map κg into a LogNormal map κln using Equation 7.6.
To ensure that we recover the correct auto- and cross-power spectra, we compare the
results from our simulations to theoretical predictions for different tomographic bin
combinations. We show the results in Figure 7.3.

7.2.2 Data generation

Our analysis is based on a standard flat ΛCDM cosmological model, which includes
the following parameters: the baryonic density fraction Ωb, the total matter density
fraction Ωm, the Hubble parameter h0, the spectral index ns, the amplitude of the
primordial power spectrum σ8 and the dark energy parameter w0. The priors used in
the simulations and in the inference process are listed in Table 7.1, following Zhang
et al. (2022). To simulate our data, we develop the SBILens package, which employs
a Lognormal model to represent the convergence maps, as explained in the previous
section. Specifically, the package uses the public library jax-cosmo (Campagne et al.,
2023) to compute the theoretical power- and cross-spectra. The computation of the
lognormal shift parameter is performed using the Cosmomentum code (Friedrich et al.,
2018, 2020), which utilizes perturbation theory to compute the cosmology-dependent
shift parameters. In Cosmomentum the calculation of the shift parameters assumes a
cylindrical window function, while our pixels are rectangular. Following Boruah et al.
(2022a), we compute the shift parameters at a characteristic scale, R = ∆L/π, where
∆L represents the pixel resolution.
For each redshift bin, we tested the dependency of the shift parameter λ on various
cosmological parameters. Specifically, we investigated how the value of λ changed when
varying a specific cosmological parameter while keeping the others fixed. Our findings
revealed that the parameters Ωb, h0, and ns had almost no significant impact on λ. As a
result, we computed the shift parameters for each redshift using the fiducial cosmology
values of Ωb, h0, and ns. To account for the cosmology dependence of λ on Ωc, σ8, and
w0, we calculated the shift for various points in the cosmological parameter space and
then interpolated the shift values for other points in the parameter space. Each map
is reproduced on a regular grid with dimensions of 256× 256 pixels and covers an area
of 10 × 10 deg2. An example of a tomographic convergence map simulated using the
SBILens package is shown in Figure 7.2.

7.2.3 Noise and survey setting

We conduct a tomographic study to reproduce the redshift distribution and the ex-
pected noise for the LSST-Y10 data release. Following Zhang et al. (2022), we model
the underlying redshift distribution using the parametrized Smail distribution (Smail
et al., 1995):

n(z) =∝ z2 exp−(z/z0)
α, (7.13)

https://github.com/DifferentiableUniverseInitiative/jax_cosmo
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Parameter Prior Fiducial value
Ωc NT (0.2664, 0.2) 0.2664
Ωb N (0.0492, 0.006) 0.0492
σ8 N (0.831, 0.14) 0.831
h N (0.6727, 0.063) 0.6727
ns N (0.9645, 0.08) 0.9645
w0 NT (-1.0, 0.9) -1.0

Table 7.1: Prior and fiducial values used for the analyses. The symbol NT represents a
Truncated Normal distribution. The lower bound of the support for the Ωc distribution
is set to zero, while the lower and upper bounds for the w0 distribution are set to -2.0
and -0.3, respectively.

Redshift binning 5 bins
Redshift distribution (z0, α) (0.11, 0.68)
Number density ns 27/arcmin2

Shape noise σe 0.26
Redshift error σz 0.05(1+z)

Table 7.2: LSST Y10 source galaxy specifications in our analysis. All values are based
on the LSST DESC SRD.

with z0 = 0.11 and α = 0.68. We also assume a photometric redshift error σz =
0.05(1 + z) as defined in the LSST DESC Science Requirements Document (SRD,
Mandelbaum et al. (2018)). The galaxy sources are divided into 5 tomographic bins,
each containing an equal number of galaxies. For each redshift bin, we assume Gaussian
noise with mean zero and variance given by:

σ2
n =

σ2
e

Apixngal

, (7.14)

where we set the shape noise σe = 0.26 and the galaxy number density ngal = 27
arcmin−2. Both the shape noise and galaxy number density values are obtained from
SRD. The pixel area is given by Apix ≈ 5.49 arcmin2. Figure 7.1 illustrates the re-
sulting source redshift distribution, and Table 7.2 provides a summary of the survey
specifications.

7.3 Experiment

In the following section, we illustrate the inference strategy for the two approaches un-
der investigation: the Bayesian forward modeling and the map-based inference based
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Figure 7.1: Source sample redshift distributions for each tomographic bin for LSST
Y10. The number density on the y-axis is shown in arcmin2.
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Figure 7.2: Example of convergence map simulated using the SBILens package.
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Figure 7.3: Convergence power spectra for different tomographic bin combinations.
The solid yellow line shows the measurement from 20 simulated maps using the sur-
vey setting described in section 7.2, while the black dashed line shows the theoretical
predictions computed using jax-cosmo. In this figure, the shaded regions represent the
standard deviation from 20 independent map realizations.
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on the LFI. Additionally, we conduct a power spectrum study. Indeed, as discussed in
subsection 7.2.1, log-normal fields offer the advantage of rapidly generating convergent
fields while accounting for non-Gaussianities. To emphasize this claim further, along
with the full-field analysis, we include a power spectrum analysis. This analysis demon-
strates that there is indeed a gain of information when adopting a full-field approach.
Finally, we provide a detailed overview of various neural compression strategies that
differ in terms of the loss functions used to train the neural network.

7.3.1 Explicit Inference

Full field with BHMs

To construct the explicit map-based inference strategy in the Hierarchical Bayesian
framework, we built a likelihood based on the data model described in subsection 7.2.1.
As mentioned before, this means that the simulator serves as the physical model capable
of generating the non-linear representation of the convergence map.

However, in practical terms, the measurement of convergence for each pixel and bin
will differ from real observations due to noise. This is taken into consideration in the
likelihood. Specifically, for LSST Y10, the number of galaxies for each pixel should
be sufficiently high so that, according to the central limit theorem, we can assume the
observation is characterized by Gaussian noise, with σ2

n = σ2
e/Ns, where Ns represents

the total number of source galaxies per bin and pixel. Given σ2
n the variance of this

Gaussian likelihood, its negative log-form can be expressed as:

L(θ) =
Npix∑
i

Nbins∑
j

logP (κobsi,j |κi,j,θ) = −
Npix∑
i

Nbins∑
j

[κi,j − κobsi,j ]
2

2σ2
n

, (7.15)

where κobs refers to the values of convergence from noise maps.
Since the full-field approach does not rely on any summary statistics, it typically leads
to a high-dimensional problem, requiring more sophisticated statistical techniques. To
sample the posterior distribution for θ, we use a Hamiltonian Monte Carlo (HMC)
algorithm. Specifically, we employ the NUTS algorithm, an adaptive variant of HMC
implemented in NumPyro (Phan et al., 2019; Bingham et al., 2019), which uses the No
U-Turn Sampler (NUTS, Hoffman et al. (2014)).
As discussed in subsection 4.1.3, the HMC algorithm is particularly helpful in high-
dimensional spaces where a large number of steps are required to effectively explore
the space. It improves the sampling process by leveraging the information contained
in the gradients to guide the sampling process. As the code is implemented in Jax, the
gradients are accessible via automatic differentiation.

Power spectrum

To obtain the probability distribution of the cosmological parameters using a summary-
statistics-methods, we focus on the 2-point statistics, specifically, on the angular power

https://github.com/pyro-ppl/numpyro
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spectra Cℓ. We assume a Gaussian likelihood with a cosmology-independent covariance
matrix:

L(θ) = −1

2
[d− µ(θ)]TC−1[d− µ(θ)]. (7.16)

To compute the expected theoretical predictions µ(θ) we use the public library jax-cosmo
(Campagne et al., 2023). The Covariance matrix C of the observables is computed
at the fiducial cosmology, presented in Table 7.1, using the same theoretical library.
Specifically, in jax-cosmo, the Gaussian covariance matrix is defined as:

Cov(Cℓ, Cℓ′) =
1

fsky(2ℓ+ 1)

(
Cℓ +

σ2
ϵ

2ns

)
δK(ℓ− ℓ′) (7.17)

where fsky is the fraction of sky observed by the survey, and ns is the number density
of galaxies. To obtain the data vector d, containing the auto- and the cross-power
spectra for each tomographic bin, we use the LensTools package (Petri, 2016) on a
single noisy simulated map (our fiducial). To constrain the cosmological parameters,
we sample from the posterior distribution using an HMC algorithm with adaptive step
size, implemented in the TensorFlow Probability MCMC python package.

7.3.2 Implicit Inference

Benchmark compression scheme

To ensure the scalability of density estimation LFI in cases where forward simulations
are computationally expensive, it becomes necessary to employ compression techniques
that reduce the dimensionality of the data space and extract summary statistics. Specif-
ically, we try to find a function t = F (x), where t represents low-dimensional summaries
of the original data vector x. The objective is to achieve a compression function F (x)
that maximizes the information while minimizing dimensionality. Previous studies
(Heavens et al., 2000b) have demonstrated that a compression scheme can be achieved
where the dimension of the summaries dim(t) is equal to the dimension of the unknown
parameters dim(θ) without any loss of information at the Fisher level. Multiple ap-
proaches exist in an attempt to satisfy this condition. This section aims to provide an
overview of the various neural compression-based methods employed in previous works.

Mean Square Error (MSE) One of the commonly used techniques for training
a Neural Network is by minimizing the L2 norm or Mean Square Error (MSE). This
methods has been widely adopted in various previous studies (Ribli et al., 2018; Lu
et al., 2022, 2023), where the loss function is typically formulated as follows:

LMSE =
1

Nθ

Nθ∑
i=1

(ti − θi)
2. (7.18)

https://github.com/DifferentiableUniverseInitiative/jax_cosmo
https://lenstools.readthedocs.io/en/latest/lenstool
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Here Nθ represents the number of cosmological parameters, t denotes the summary
statistics, and θ corresponds to the cosmological parameters. However, it is important
to note that this approach does not guarantee the recovery of maximally informative
summary statistics. Indeed, minimizing the L2 norm is equivalent to training the model
to estimate the mean of the posterior distribution. Namely:

⟨θ⟩p(θ|x) = argmin
F (x)

Ep(θ|x)[∥θ − F (x)∥22], (7.19)

where the posterior mean ⟨θ⟩p(θ|x), is calculated as follows:

⟨θ⟩p(θ|x) = Ep(θ|x)[θ]. (7.20)

To demonstrate this statement, we need to minimize the expected value of the L2 norm
with respect to F (x). Let us consider its derivative:

∂

∂F (x)
Ep(θ|x))[(θ − F (x))2] = (7.21)

∂

∂F (x)
Ep(θ|x)[θ

2 + F (x)2 − 2θF (x)] =

∂

∂F (x)
[Ep(θ|x)[θ

2] + F (x)2 − 2F (x)Ep(θ|x)[θ]] =

2F (x)− 2Ep(θ|x)[θ].

Setting it equal to zero, we obtain the critical value:

F (x) = Ep(θ|x)[θ]. (7.22)

Considering the second-order derivative:

∂2

∂2F (x)
Ep(θ|x)[(θ − F (x))2] = 2 > 0, (7.23)

we can assert that this critical value is also a minimum.
From Equation 7.22 and Equation 7.20, we obtain Equation 7.19.

Mean Absolute Error (MAE) Another commonly used approach involves mini-
mizing the L1 norm or Mean Absolute Error (MAE). In this approach, the loss function
is defined as:

LMAE =
1

Nθ

Nθ∑
i=1

|ti − θi|. (7.24)

where Nθ represents the number of cosmological parameters, t denotes the summary
statistics, and θ corresponds to the cosmological parameters. We can demonstrate that
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minimizing this loss function is equivalent to training the model to estimate the median
of the posterior distribution θM

p(θ|x). Namely:

θM
p(θ|x) = argmin

F (x)

Ep(θ|x)[|θ − F (x)|]. (7.25)

By definition, the median of a one-dimensional1 probability density function p(x) is a
real number m that satisfies:∫ m

∞
p(x)dx =

∫ ∞

m

p(x)dx =
1

2
. (7.26)

The expectation value of the mean absolute error is defined as:

Ep(x)[|x−m|] =
∫ ∞

∞
p(x)|x−m|dx (7.27)

which can be decomposed as∫ m

∞
p(x)|x−m|dx+

∫ ∞

m

p(x)|x−m|dx. (7.28)

To minimize this function with respect to m, we need to compute its derivative:

dE[|x−m|]
dm

=
d

dm

∫ m

∞
p(x)|x−m|dx+ d

dm

∫ ∞

m

p(x)|x−m|dx. (7.29)

Considering that |x−m| = (x−m) for m ≤ x and |x−m| = (m− x) m ≥ x, we can
write Equation 7.29 as:

dE[|x−m|]
dm

=
d

dm

∫ m

∞
p(x)(m− x)dx+

d

dm

∫ ∞

m

p(x)(x−m)dx. (7.30)

Using the Leibniz integral rule, we get:

dE[|x−m|]
dm

= (7.31)

p(x)(m−m)
dm

dm
+

∫ m

∞

∂

∂m
[p(x)(m− x)]dx+

− p(x)(m−m)
dm

dm
+

∫ ∞

m

∂

∂m
[p(x)(m− x)]dx.

Setting the derivative to zero, we obtain:

dE[|x−m|]
dm

=

∫ m

∞
p(x)dx−

∫ ∞

m

p(x)dx = 0. (7.32)

1For notational simplicity, we demonstrate this statement in one dimension; the generalization to
N-dimensions is straightforward.
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Thus, ∫ m

∞
p(x)dx =

∫ ∞

m

p(x)dx. (7.33)

Considering that ∫ m

∞
p(x)dx+

∫ ∞

m

p(x)dx = 1, (7.34)

we obtain Equation 7.26.
While extensively employed in various previous studies (Gupta et al., 2018; Fluri

et al., 2018b; Ribli et al., 2019), similar to the previous consideration for the MSE, it
is important to note that the effectiveness of this loss function in extracting sufficient
statistics needs to be demonstrated.

Variational Mutual Information Maximization (VMIM) The Variational Mu-
tual Information Maximization (VMIM) technique was first introduced for cosmological
inference problems by Jeffrey et al. (2021). This approach aims to maximize the mutual
information I(t,θ) between the cosmological parameters θ and the summary statistics
t. In the VMIM approach, the loss function is defined as:

LVMIM = − log q(θ|Fφ(x);φ
′). (7.35)

Here, q(θ|Fφ(x);φ
′) represents a variational conditional distribution, where θ corre-

sponds to the data vector of the cosmological parameters, and φ′ to the parameters
characterizing the variational conditional distribution itself. Fφ denotes the compres-
sion network of parameter φ, used to extract the summary statistics t from the original
high-dimensional data vector x, such that t = Fφ(x). In order to understand the sig-
nificance of this loss function, it is necessary to start by considering the mathematical
definition of mutual information I(t,θ):

I(t,θ) = DKL(p(t,θ)||p(t)p(θ)) (7.36)

=

∫
dθdtp(t,θ) log

(
p(t,θ)

p(t)p(θ)

)
=

∫
dθdtp(t,θ) log

(
p(θ|t)
p(θ)

)
=

∫
dθdtp(t,θ) log p(θ|t)−

∫
dθdtp(t,θ) log p(θ)

=

∫
dθdtp(t,θ) log p(θ|t)−

∫
dθp(θ) log p(θ)

= Ep(t,θ)[log p(θ|t)]− Ep(θ)[log p(θ)]

= Ep(t,θ)[log p(θ|t)]−H(θ);

in the above equation, DKL is the Kullback-Leibler divergence (Kullback and Leibler,
1951), p(t,θ) is the joint probability distribution of summary statistics and cosmolog-
ical parameters, and H(θ) represents the entropy of the distribution of cosmological
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parameters. Essentially, mutual information measures the amount of information con-
tained in the summary statistics t about the cosmological parameters θ. The goal is to
find the parameters of the network φ that maximize the mutual information between
the summary and cosmological parameters:

φ∗ = argmax
φ

I(Fφ(x),θ). (7.37)

However, the mutual information expressed in Equation 7.36 is not tractable. To
overcome this limitation, various approaches have been developed that rely on tractable
bounds, enabling the training of deep neural networks to optimize mutual information.
In this study, we adopt the same strategy used by Jeffrey et al. (2021), which involves
using the variational lower bound (Barber and Agakov, 2003):

I(t,θ) ≥ Ep(t,θ)[log q(θ|t;φ′)]−H(θ). (7.38)

Here, the variational conditional distribution log q(θ|t;φ′) is introduced to approximate
the true posterior distribution p(θ|t). As the entropy of the cosmological parameters
remains constant for a fixed training set, the optimization problem based on the lower
bound in Equation 7.38 can be formulated as:

argmax
φ,φ′

Ep(x,θ)[log q(θ|Fφ(x);φ
′)], (7.39)

yielding Equation 7.35.

Gaussian Negative Log-Likelihood (GNLL) Recognizing that the uncertainty
on different cosmological parameters will vary, a third class of inverse variance weighted
MSE was proposed in Fluri et al. (2018b) with the idea of ensuring that each parameter
contributes fairly to the overall loss by taking into account its uncertainty. The loss
function typically takes the following form:

LGNLL =
1

2
log(|Σ|) + 1

2
(t− θ)⊤Σ−1(t− θ) (7.40)

where t is the summary statistics and Σ is the covariance matrix representing the
uncertainty on the cosmological parameters θ. Both t and Σ can be outputs of the
compression network, i.e. fφ(x) = (t,Σ).

One recognizes here the expression of a Gaussian probability function, and this
expression can thus be straightforwardly related to the VMIM case by simply assuming
a Gaussian distribution as the variational approximation for the posterior q(θ|x) =
N (θ; t,Σ).

This means that for this loss function:

• The summary t extracted by the neural network is, similarly to the MSE case,
only an estimate of the mean of the posterior distribution, which is not guaranteed
to be sufficient.
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• Because of the Gaussian variational assumption, the variational posterior can
potentially be biased with respect to the true posterior, and thus the mean of
this Gaussian approximation may be biased with respect to the true posterior
mean.

Information Maximizing Neural Networks A different approach has been pro-
posed by Charnock et al. (2018) and further explored in Makinen et al. (2021, 2022).
They implemented the Information Maximizing Neural Networks (IMNN), a neural net-
work trained on forward simulations designed to learn optimal compression schemes,
even in circumstances where the likelihood function is intractable or unknown. Specifi-
cally, they proposed a new scheme to find optimal non-linear data summaries by using
the Fisher information to train a neural network. Inspired by the MOPED algorithm
(introduced in paragraph 4.3), they aimed to find a transformation f that maps the
data to compressed summaries: f : x → t while conserving the Fisher information.
The loss function takes the following form:

LIMNN = −|det(F)|+ rΣ, (7.41)

where F is the Fisher matrix, and rΣ is a regularization term typically dependent on
the covariance matrix, introduced to control the magnitude of the summaries. Since
computing the Fisher matrix requires a large number of simulations, they proceed as
follows: a large number of simulations with the same fiducial cosmology but different
initial random conditions are fed forwards through identical networks. The summaries
from these simulations are combined to compute the covariance matrix. Additionally,
the summaries from simulations created with different fixed cosmologies are used to
calculate the derivative of the mean of the summary with respect to the parameter.2
Finally, the covariance and the mean derivatives are combined to obtain the Fisher
matrix.

An application of this method in the context of weak lensing can be traced back to
the work of Fluri et al. (2021, 2022). Following Charnock et al. (2018), they presented a
compression approach that relies on the optimization of the Cramér-Rao bound. How-
ever, their approach does not assume that the summary follows a Gaussian likelihood.
The loss function takes the form:

LIMNN = log det(Σθ(t))− 2 log

∣∣∣∣det
(
∂Ψθ(t)

∂θ

)∣∣∣∣, (7.42)

where Σ is the covariance matrix, and Ψθ(t) = Ep(x|θ)[t]. This loss function is equiva-
lent to the log-determinant of the inverse Fisher matrix used in Equation 7.41.

2The method of finite differences is necessary when the framework in which the code is implemented
does not support automatic differentiation.
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Compression strategy

The different compression strategies differ in the loss function employed during the
training phase. For all of them, we use the same convolutional neural network archi-
tecture to build the compressor, specifically the ResNet-18, an 18-layer ResNet archi-
tecture (He et al., 2016). The ResNet-18 is implemented using Haiku (Hennigan et al.,
2020), a Python deep learning library built on top of Jax.

While the different compression strategies share the same architecture, the training
strategies for VMIM differ significantly. To train the Neural compressor under VMIM,
we jointly optimize the weights φ of the Neural Network Fφ (the compressor) and the
parameters φ′ of the variational distribution q(θ|t;φ′) in Equation 7.35. The varia-
tional distribution is modeled using a Normalizing Flow. The Normalizing Flow used
for the inference strategy is also adopted for the variational distribution required in the
compression procedure. After training, we export the results of the neural compression
Fφ but discard the results from the density estimator. Indeed, as mentioned before,
we perform the Likelihood-Free Inference (LFI) as a two-step procedure. This choice
is motivated by the fact that it is difficult to train a very precise conditional density
estimator when the compressor can still change from iteration to iteration. Hence, the
choice to split the problem into two steps: first, the dimensionality reduction, where
the density estimation part does not need to be perfect; second, the density estimation
itself, which needs to be done very carefully now, but it is much easier because we are
in low dimension.

Inference strategy

By comparing the posteriors p(θ|t) obtained with different compression strategies, we
can assess the sensitivity of the results to the choice of the compression method. In
particular, the more informative the summary statistics, the closer the posterior p(θ|t)
is to the true posterior p(θ|x).
As we have mentioned before, in the LFI context, the simulator is a black box that
defines the likelihood distribution p(x|θ) as an implicit distribution. We can sample
from it, but we cannot directly evaluate it. The idea of Neural density Estimation is to
introduce a parametric distribution model Pφ′ to approximate the implicit distribution
P .
In particular, we focus on Neural Posterior Estimation (Papamakarios and Murray,
2018; Lueckmann et al., 2017b; Greenberg et al., 2019b), i.e., we aim to directly ap-
proximate the posterior distribution. Specifically, we use a conditional Normalizing
Flows (Rezende and Mohamed, 2016; Papamakarios et al., 2021) to model the para-
metric conditional distribution qφ′(θ|t), and we optimize the parameters φ′ according
to the following negative log-likelihood (NLL) loss function:

L = − log qφ′(θ|t). (7.43)
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Reference Loss function Inference strategy
Gupta et al. (2018) MAE Likelihood-based analysis
Fluri et al. (2018b) GNLL Likelihood-based analysis
Fluri et al. (2019) GNLL Likelihood-based analysis
Ribli et al. (2019) MAE Likelihood-based analysis
Matilla et al. (2020) MAE Likelihood-based analysis

Jeffrey et al. (2021) MSE
VMIM

Likelihood Free Inference
(Py-Delfi)

Fluri et al. (2021) IMNN Likelihood Free Inference
(GPABC)

Fluri et al. (2022) IMNN Likelihood Free Inference
(GPABC)

Lu et al. (2022) MSE Likelihood-based analysis
Kacprzak and Fluri (2022) GNLL Likelihood-based analysis

Lu et al. (2023) MSE Likelihood-based analysis

Table 7.3: Table summarizing the different neural compression schemes used for weak
lensing applications. The table includes all studies conducted within the context of
implicit analysis (Likelihood-free) and standard Likelihood-based analysis.
Abbreviations used in the Table: MSE-Mean Square Error; MAE-Mean Absolute Error;
GNLL- Gaussian Negative Log Likelihood; VMIM- Variational Mutual Information
Maximization; IMNN- Information Maximizing Neural Networks; GPABC-Gaussian
Processes Approximate Bayesian Computation.

In the limit of a large number of samples and sufficient flexibility, we obtain:

qφ′∗(θ|t) ≈ p(θ|t) (7.44)

where we indicate with φ′∗ the values of φ′ minimizing Equation 7.43.
Finally, the target posterior p(θ|t = t0) is approximated by qφ′∗(θ|t = t0), where
t0 = Fφ(x0), i.e., the compressed statistics from the fiducial convergence map x0 for
a given compression strategy.

For each summary statistic, we approximate the posterior distribution using the
same NF architecture, namely a RealNVP (Dinh et al., 2017) with 4 coupling layers.
The shift and the scale parameters are learned using a neural network with 2 layers of
128 neurons with Sigmoid-weighted Linear Units (SiLU) activation functions (Elfwing
et al., 2017).
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7.4 First results and discussion

We present the preliminary results of the constraints on the full ΛCDM parameter
space expected for a survey like LSST-Y10. The results are obtained using the simula-
tion procedure outlined in section 7.2 and the parameter inference strategy described
in subsubsection 7.3.2. We begin by analyzing the impact of the different compres-
sion strategies on the final cosmological constraints. Subsequently, we compare the
outcomes of three different inference procedures: the 2-point statistics, the explicit
full-field statistics, and the implicit full-field statistics using CNN summaries.

7.4.1 Power spectrum and full-field statistics

We now compare the constraining power of the three different approaches described
in section 7.3: the standard-two point statistics and two map-based approaches, the
explicit inference and the implicit inference strategy. As outlined before, our interest
is to prove that the two map-based approaches lead to very comparable posterior
distributions. We present the 68.3% and 95.5% confident regions from one fiducial
map for the full ΛCDM parameters in Figure 7.4. The contours obtained by the
angular Cℓ analysis are plotted in violet, the ones for the explicit inference (HMC) in
orange, and those for the implicit inference (Normalizing Flow) in blue. We can see
from the figure that the contours from the HMC-based inference and the Normalizing
flow-based inference are remarkably similar. We quantify the results by computing the
Figure of Merit defined as follows:

FoMαβ =

√
det(F̃αβ). (7.45)

Here, α and β represent a pair of cosmological parameters, and F̃αβ refers to the
marginalized Fisher matrix. We calculate F̃αβ as the inverse of the parameter space
covariance matrix Cαβ, which is estimated from the Normalizing flow sampling. Under
the assumption of a Gaussian covariance, the FoM defined in Equation 7.45 is propor-
tional to the inverse of the 2−σ contours in the 2-dimensional marginalized parameter
space of the α and β pair. The results are presented in Table 7.4. The remarkably
strong agreement between the two posteriors confirms that the two map-based cosmol-
ogy inference methods yield the same results. The ratio of their FoM, corresponding
to 1.00, 1.04, 1.03, in the (Ωc − σ8); (Ωc −w0); (σ8 −w0) plane, establishes the validity
of the implicit inference strategy.
Confirming previous work, we note that h, Ωb, and ns result prior dominated and hence
are constrained by none of the three approaches. Additionally, for the full-field strate-
gies we find that the size of the contours is significantly smaller than the size for the
prior distributions adopted, suggesting that the posterior on these parameters are not
affected by the specific choice of prior. Moreover, we find that the two-point statistic is
suboptimal in constraining Ωc, σ8, and w0, while the two map-based approaches yield
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much tighter constraints on these parameters. We find that the map-based explicit and
implicit strategies lead to an improvement in the figure of merit of 2.06×, 1.98×, 2.28×
and 2.06×, 1.90×, 2.22×, respectively, in the (Ωc − σ8); (Ωc − w0); (σ8 − w0) plane.

7.4.2 Optimal compression strategy

Figure 7.5 shows our 68.3% and 95.5% constraints from one fiducial map using differ-
ent compressed summaries. We compare the constraints obtained from MSE (black
contours), MAE (magenta contours), and VMIM (blue contours). We note that the
results obtained using different summaries are generally in agreement with each other,
and there are no tensions present for any of the cosmological parameters. We report
the marginalized summary constraints in Table 7.5. The results concern the cosmo-
logical parameters that are better constrained from weak lensing: Ωc, σ8, w0. We note
that the VMIM compressed summary statistics prefer values of Ωc, σ8, and w0 that are
closer to our fiducial cosmology than those inferred by MSE and MAE.
To further quantify these outcomes, we consider the Figure of Merit described in Equa-
tion 7.45. The results are presented in Table 7.4. We can see that VMIM yields more
precise measurements than MSE and MAE for all considered parameters. In particu-
lar, the FoM of (Ωc, σ8) is improved by 1.24× and 1.1× compared to MSE and MAE,
respectively; the FoM of (Ωc, w0) is improved by 1.25× and 1.17× from the MSE and
MAE; the FoM of (σ8, w0) is improved by 1.23× and 1.15× from the MSE and MAE.

7.5 Summary, ongoing work and future prospects

In this chapter, I presented ongoing work focused on comparing two different map-
based strategies for inferring cosmological parameters: the explicit full-field strategy,
also known as Bayesian Hierarchical inference, based on an HMC sampler, and the
implicit inference strategy, also known as Likelihood-Free Inference, based on a neural
density estimator.

We start with a consideration: Deep learning approaches for implicit inference
typically involve two steps. The first step is the automatic learning of an optimal
low-dimensional summary statistic, and the second step is the use of a Neural Density
Estimator in low dimensions to either build an estimate Pφ of the likelihood function
p(x|θ) (Neural Likelihood Estimation) or build an estimate Pφ of the posterior distri-
bution p(θ|x) (Neural Posterior Estimation).
Now, one can understand that both of these steps may potentially impact the final
constraints on the parameters of interest.
Having said that, the main motivation for this work is to evaluate the impact of a given
compression strategy on the final posterior distribution and, consequently, determine
whether an optimal compression strategy exists. Furthermore, the aim is to demon-
strate that by using this strategy, both implicit and explicit methods yield the same
posterior.
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To construct the forward model for explicit inference and simulate the mock data re-
quired to train the implicit model, we developed SBILens, a Jax-based weak lensing
simulator optimized for inference applications that need access to the model’s deriva-
tives. Our analysis is based on synthetic weak lensing data with five tomographic bins,
mimicking a survey like LSST-Y10.

After providing an overview of the different compression strategies adopted in the
literature for both Likelihood-Free Inference and likelihood-based inference strategies,
we compared the impact of some of those on the final constraints on the cosmological
parameters for a ΛCDM model. We found the following results:

1. The marginalized summary statistics indicate that VMIM produces better results
for Ωc, w0, and σ8 in terms of agreement with the fiducial value. However, it is
important to note that the results from MSE and MAE are not in tension with
the fiducial parameters. Furthermore, we quantified the outcomes by examining
the figure of merit and found that VMIM provides more precise measurements
compared to MSE and MAE.

2. When using the VMIM to compress the original high-dimensional data, we com-
pared the posterior obtained in the implicit inference framework with those ob-
tained from Bayesian hierarchical modeling and the power spectrum. We demon-
strate that both map-based approaches lead to a significant improvement in con-
straining Ωc, w0, σ8 compared to the 2-point statistics. However, h, ns,Ωb are not
constrained by either and are prior-dominated.

3. When using the VMIM to compress the original high-dimensional data the two
methods, i.e., Bayesian hierarchical inference and Likelihood-free inference, lead
to the same posterior distributions.

The results shown in this section are very preliminary, especially those related
to the impact of different compression schemes. In practice, the next steps of this
project involve evaluating the impact of two other loss functions: the Gaussian neg-
ative log-likelihood, as defined in paragraph 7.3.2, and the Information Maximizing
Neural Networks (IMNN), discussed in paragraph 7.3.2.

I think it is interesting even at this preliminary stage to consider the potential
limitations of the current implementation and highlight particular strategies for future
extensions and applications of this project. In this work, we employed a physical model
based on a lognormal prior, which is notably faster than simulation-based methods.
Although we have shown that this description accounts for additional non-Gaussian
information, as evidenced by the fact that we obtain different posteriors from the
full-field and power spectrum methods, it is important to note that this is a good
approximation for the convergence at intermediate scales but may not be appropriate
for analyzing small scales.

https://github.com/DifferentiableUniverseInitiative/sbi_lens
SBILens
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FoM Cℓ Full Field (HMC) VMIM MSE MAE
Ωc − σ8 1222 2520 2526 2043 2316
Ωc − w0 100 198 190 152 162
σ8 − w0 77 176 171 139 149

Table 7.4: Figure of Merit (FoM) for different inference strategies: the convergence
power spectrum Cℓ, the HMC, the CNN map compressed statistics with the MSE, the
VMIM, and the MAE loss functions. The values of the figure of merit are inversely
proportional to the area of the contours; the larger the FoM, the higher the constraining
power.

Furthermore, the lognormal shift parameters are computed using the Cosmomentum
code (Friedrich et al., 2018, 2020), which employs perturbation theory. However, as
mentioned by Boruah et al. (2022a), the perturbation theory-based approach may not
provide accurate results at small scales.3

Additionally, we did not include any systemic in the current application, although
previous studies demonstrated that the map-based approaches help to dramatically
improve the constraints on systematic and cosmological parameters in the presence
of these last. The main reason for this absence is mainly related to the difficulty
of modeling systematic effects, like for example intrinsic alignment, in the lognormal
description.
Hence, the natural next step will be to implement an N-body model as the physical
model for the SBILens package. Specifically, we aim to work with the differentiable
simulation we have presented in this thesis. As mentioned in section 6.4 of chapter 5, the
simulations can be improved and further developed by including additional systematics
such as redshift uncertainties, baryonic feedback, and a more complicated intrinsic
alignment model. With these improvements, our model will be better suited to handle
real cosmic shear data, allowing us to fully maximize the information gained from
next-generation surveys.

3However, as the main objective of this project is to compare the different inference strategies, we
are not very concerned with the potential implications of this approximation at this stage.
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Figure 7.4: Constraints on the ΛCDM parameter space as found in the LSST Y10
survey setup. The constraints are obtained by applying the Cℓ (violet contours), the full
field explicit inference (orange contours), and the full field implicit inference strategy
(blue dashed contours), described in section 7.3. The contours show the 68% and the
95% confidence regions. The dashed white lines define the true parameter values.
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Figure 7.5: Constraints on the ΛCDM parameter space as found in the LSST Y10
survey setup. The constraints are obtained from three CNN map compressed statistics:
the MSE (black dashed contours), the MAE (magenta dashed contours), and VMIM
(blue contours), described in section 7.3. The contours show the 68% and the 95%
confidence regions. The dashed white lines define the true parameter values.
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VMIM MSE MAE
Ωc 0.274+0.026

−0.025 0.283+0.031
−0.029 0.279+0.030

−0.028

Ωb

(
49.9+6.0

−6.4

)
× 10−3 (49.2± 6.1)× 10−3

(
50.1+5.9

−6.1

)
× 10−3

σ8 0.819+0.031
−0.029 0.808+0.034

−0.032 0.808+0.032
−0.030

w0 −1.00+0.20
−0.22 −1.13+0.23

−0.22 −1.16± 0.22
h0 0.666+0.061

−0.057 0.662+0.056
−0.057 0.664+0.056

−0.058

ns 0.963+0.041
−0.038 0.956± 0.041 0.955+0.039

−0.041

Table 7.5: Summary of the marginalized parameter distributions.
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Chapter 8
Conclusion and Perspectives

During my Ph.D., I initiated a highly successful collaboration to build the next genera-
tion of cosmological inference and simulation tools based on automatic differentiation.
Numerical simulations play a key role in investigating and testing our cosmological
model. Many current cosmic shear analyses use methods (e.g., Hamiltonian Monte-
Carlo, Variational Inference, dimensionality reduction by Fisher-Information Maxi-
mization) that require fast, accurate, and differentiable forward simulations to per-
form efficient inference in a large number of dimensions. Moreover, fast and differ-
entiable simulations can significantly enhance performance compared to conventional
techniques. For instance, preliminary results presented by Zeghal et al. (2022); Zeghal
et al. (in prep.) have demonstrated that having access to the gradients of the forward
model is beneficial for constraining the posterior density estimates.

In this final chapter, I will describe the contributions of this thesis and conclude
with its perspectives.

8.1 Summary and Contributions

In the first part of this manuscript, I focused on my initial work, whose goal was
to develop differentiable weak lensing simulations capable of including an innovative
gravity-solving scheme, a GPU framework, a small-scale correction approach, and sys-
tematics such as intrinsic alignment.

Specifically, I extended and contributed to the development of the N-body simulator
FlowPM (Modi et al., 2021). First, I implemented the cosmological functions necessary
for the N-Body solver in the TensorFlow framework. Then, I extended the PM-code
by adding an alternative integration scheme based on a system of Ordinary Differential
Equations. In addition, I worked on the Hybrid Physical-Neural (HPN) scheme, a
correction scheme aimed at calibrating the PM simulations to mimic the accuracy of
high-resolution N-body simulations. The scheme was based on a minimally-parametric
neural network component, modeling a residual effective force compensating for the PM
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approximations. I showed that the HPN scheme, incorporated as part of the FlowPM
code, yielded good results for the matter power spectrum and the cross-correlation
coefficient. I benchmarked the model against the Potential Gradient Descent (PGD)
scheme (Dai et al., 2018), demonstrating that, if the two methods were comparable
in terms of improving the small-scale power spectrum, the HPN approach showed
larger improvements in terms of cross-correlation coefficients. Moreover, unlike the
PGD method, the HPN approach proved to be less sensitive to the settings of the
simulations used for training.

Meanwhile, I implemented the Differentiable Lensing Lightcone (DLL), a simulator
for Weak Lensing maps based on the cosmological N-body simulations realized with
FlowPM. The weak lensing package allows the inclusion of systematics, such as intrinsic
alignment, and enables computing the nonlinear lensing convergence maps at different
source redshifts.
I validated our simulations against the weak lensing simulations κTNG-Dark (Osato
et al., 2021) by comparing both the lensing angular power spectrum and multiscale peak
counts. As a first application, I demonstrated how the differentiability of numerical
simulations can be exploited to evaluate the Fisher Matrix. Indeed, I compared the
constraining power of two weak lensing statistics: the lensing power spectrum and peak
counts, and investigated the degeneracy in high-dimensional cosmological and nuisance
parameter space through Fisher forecasts. This work was part of a project I led in the
LSST Dark Energy Science Collaboration (DESC), presented in Lanzieri et al. (2023).
As mentioned several times in this thesis, this novel framework has been thought of
as a powerful tool for cosmological analysis, mainly to exploit the advantages of map-
based forward modeling approaches for cosmological inference with upcoming stage-IV
survey data.

This has motivated the second part of this thesis, I finally made use of our results
for weak lensing analysis within the Likelihood-Free Inference (LFI) and Bayesian Hi-
erarchical Method (BHM). In particular, starting from the consideration that LFI
approaches are more efficient, the lower the dimensionality of the summary statistics,
I am currently working on benchmarking different procedures to optimally extract in-
formative summaries of the weak lensing mass map, i.e., finding the compressed data
vector as informative as possible while being as low-dimensional as possible. Specifi-
cally, I am comparing the posterior probability distributions obtained from mock weak
lensing mass maps compressed using Convolutional Neural Networks (CNNs) trained
with different loss functions. The preliminary results presented in this thesis show
results from neural networks trained using the Mean Square Error, the Mean Absolute
Error, and the Variational Mutual Information Maximization procedure (Jeffrey et al.,
2021). However, we are currently working to obtain posterior distributions using the
Gaussian Negative Log-likelihood and the Information Maximizing Neural Network.
In order to validate the results in the LFI context, we also perform a Bayesian forward
modeling analysis. To forward model the convergence maps and create the simula-
tions required to train the LFI models, I contributed to the development of SBILens, a

https://github.com/DifferentiableUniverseInitiative/sbi_lens
SBILens
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Python package designed for weak lensing inference with a differentiable simulator im-
plemented in Jax. SBILens allows the sampling of convergence maps in a tomographic
setting, accounting for the cross-correlation between different redshift bins. Although
the results obtained so far are very preliminary, and the entire benchmark between
different compression schemes is not yet completed, we can draw an important conclu-
sion. Within the context of our setting and considering the current progress, we can
start to validate the results obtained with the LFI to those obtained with a Bayesian
hierarchical strategy. As expected, we find the LFI analysis to lead to the same pos-
terior distributions as the BHM, and both are much more powerful than a standard
analysis based on the 2-point function.

8.2 Perspectives

The results presented in this work represent only the first step towards constructing a
physical inference framework suitable for a stage-IV dark energy survey. In addition to
the potential developments and improvements we have already discussed throughout
this thesis at several points, there are a few specific additional aspects that I would
like to delve into.

Graph Networks with ODE Integrators for modeling baryons To exploit the
full potential of next-generation weak lensing surveys, we must increase our knowl-
edge of baryonic physics, that, if not taken into account, may cause biases in our
cosmological parameter inference. Although different methods to incorporate baryonic
feedback in post-processing steps, based on semi-analytical or data-driven models, have
already been proposed, a straightforward improvement of our simulator involves ex-
tending the Hybrid Physical-Neural ODEs I have developed in Lanzieri et al. (2022).
Specifically, one could explore the integration of PM-codes with graph neural networks
that model short-range particle-particle interactions, learned from high-resolution full
hydrodynamical simulations. Inspired by Sanchez-Gonzalez et al. (2019), the idea is
to combine graph networks with differentiable ordinary differential equations (ODEs),
which define the evolution of the system, as a mechanism for predicting future states.
In other words, training the neural network to learn the ODEs. The result would
be a hybrid physical-data-driven approach that, due to the nature of its architecture,
should be more suitable for density fields with different features than the ones used for
training.

Differentiable particle-mesh simulations with massive neutrinos Massive neu-
trinos have a significant impact on the background evolution of the Universe, suppress-
ing the growth of cosmic structure on small scales. Modeling this effect and inferring
the sum of the three neutrino masses pose crucial challenges in modern cosmology.
Upcoming cosmological surveys, such as LSST and Euclid, are expected to provide
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precise measurements of neutrino mass.
In this context, the Differentiable lensing lightcone package I have developed could

be extended to include a model beyond standard ΛCDM, capable of generating simula-
tions with massive neutrinos for stage-IV-like surveys. The neutrino particles could be
incorporated into the FlowPM scheme following the methodology presented by Bayer
et al. (2021), i.e., by including neutrinos as an extra set of particles in the simula-
tion. This approach would allow us to preserve the full physical description of the
simulations.

On the contrary, approaches relying on using deep learning as a black-box to learn
neutrino effects would not guarantee to work outside the training regime and might
not capture cosmology dependence correctly.

3x2pt analyses with Simulation-Based Inference The last decade has shown a
notable improvement in both the precision and the multitude of cosmological probes,
allowing us to test the ΛCDM paradigm with unprecedented accuracy. However, recent
works have revealed possible tensions between cosmological parameters as measured
by different cosmological probes. These tensions lead us to believe that a multi-probe
analysis is necessary to enhance control over systematics and uncertainties, as well as to
investigate models beyond the ΛCDM. Unfortunately, multi-probe analyses require the
ability to compute joint covariance matrices that properly describe the cross-correlation
of different observables. In this context, evaluating the accurate likelihood becomes
even more challenging.

This may motivate a new approach to explore the combinations of various neural
compressed summaries (e.g., weak lensing power spectrum, galaxy clustering power
spectrum, weak lensing peaks, galaxy clustering peaks) to infer the cosmological pa-
rameters of the ΛCDM model in a likelihood-free analysis. A first natural step would
be extending the simulations I have developed, with a view to reproducing a 3x2 point
analysis for stage IV surveys. After that, with the results from our studies on LFI
approaches, the summary statistics will be compressed down to low-dimensional sum-
maries, and the posterior distributions on the parameters of interest will be obtained
using a density estimator.

The result of combining the likelihood-free inference approach and the multi-probe
analysis will be a new cosmological inference pipeline, capable of breaking degeneracies
and controlling systematics.
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