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Abstract

This thesis deals with birational geometry, which is a subfield of algebraic geome-
try. In particular, we study Mori dream spaces, which are varieties that are strictly
related to the theory of Mori’s minimal model program. Mori dream spaces were
introduced by Y. Hu and S. Keel in the beginning of the 21th century. Roughly
speaking, a Mori dream space is a projective variety, whose cone of effective divi-
sors admits a well-behaved decomposition into convex sets, called Mori chambers.
These chambers are the nef cones of the birational models of X. Several geometric
objects are of fundamental importance if we want to proceed in the study of the
birational geometry of a normal projective variety. In particular its cones of curves
and of divisors. Another notion of great importance to establish whether a variety
is a Mori dream space or not is the property of being weak or log Fano. Weak Fano
varieties are log Fano and log Fano varieties are Mori dream spaces. In 2021, T.
Grange, E. Postinghel and A. Prendergast-Smith focussed on blow-ups of P1 × P2

and of P1 × P3 in sets of up to six points in very general position. Their main
result is the explicit descriptions of the cones of effective divisors on these varieties
and the description of the geometry of the generating classes. More explicitly, they
proved that the blow-up of P1×P2 is weak Fano if and only if the number of blown
up points is less or equal than six and that if the number of blown up points is
less or equal than six, the variety P1 × P3 blown-up in those points is log Fano.
Hence, these varieties are also Mori dream spaces.

In chapter 2 of this thesis we give an overview on the theory of Cox rings, Mori
dream spaces and log Fano varieties. In the first sections we give the definitions of
the various cones inside N1(X) and inside N1(X) and their inclusion relations. We
then give a description of the Cox ring of a variety equipped with an algebraic torus
action. We conclude the chapter with the result that permits to find generators
for the moving cone of a variety from the generators of its Cox ring. It will follow
an explanation on the main results concerning Mori dream spaces and log Fano
varieties, and many examples. Finally, we introduce the main object of study of
this thesis: the variety X1,n

r , which is the blow-up of P1×Pn in r points in general
position. In particular, we focus on X1,n

n+1, X1,n
n+2 and on X1,n

n+3 when n ≤ 4. In
chapter 3 we compute the cone of effective curves of X1,n

r for r = n + 1, n + 2



and r = n + 3 when n ≤ 4. We then prove that X1,n
r is log Fano for r ≤ n + 1.

In chapter 4, we compute generators and relations of the Cox ring of X1,n
n+1. We

then use these generators to compute generators of the moving cone of X1,n
n+1. In

order to do the computation, we wrote some scripts on Maple and Magma, some
of which are provided in chapter 6. At the end if chapter 4 we compute the nef
cones of X1,n

r for r = n+ 1, n+ 2 and for r = n+ 3 when n ≤ 4. Then, in chapter
5 we also give a Mori chamber decomposition of X1,n

n+1 in Magma and we display
the case n = 2.



Résumé

Cette thèse traite de la géométrie birationnelle, qui est un sous-domaine de la
géométrie algébrique. En particulier, nous étudions les Mori dream spaces, qui
sont des variétés strictement liées à la théorie du programme de modèle minimal
de Mori. Les Mori dream spaces ont été introduits par Y. Hu et S. Keel au début
du 21 ème siècle. En gros, un Mori dream space est une variété projective dont
le cône des diviseurs effectifs admet une décomposition bien conçue en ensembles
convexes, appelés chambres de Mori. Ces chambres sont les cônes de nef des
modèles birationnels de X. Plusieurs objets géométriques sont d’une importance
fondamentale si l’on veut poursuivre l’étude de la géométrie birationnelle d’une
variété projective normale. En particulier ses cônes de courbes et de diviseurs. Une
autre notion de grande importance pour établir si une variété est un Mori dream
space ou non est la propriété d’être weak ou log Fano. Les variétés weak Fano sont
log Fano et les variétés log Fano sont Mori dream spaces. En 2021, T. Grange,
E. Postinghel et A. Prendergast-Smith se sont concentrés sur les éclatements de
P1 × P2 et de P1 × P3 dans des ensembles allant jusqu’à six points dans une
position très générale. Leur résultat principal est la description explicite des cônes
de diviseurs effectifs sur ces variétés et la description de la géométrie des classes
génératrices. Plus explicitement, ils ont prouvé que l’éclatement de P1 × P2 est
weak Fano si et seulement si le nombre de points éclatés est inférieur ou égal à six
et que si le nombre de points éclatés est inférieur ou égal à six, l’éclatement de la
variété P1 × P3 en ces points est log Fano. Par conséquent, ces variétés sont aussi
des Mori dream spaces.

Dans le chapitre 2 de cette thèse, nous donnons un aperçu de la théorie des an-
neaux de Cox, des Mori dream spaces et des variétés log Fano. Dans les premières
sections, nous donnons les définitions des différents cônes à l’intérieur de N1(X) et
à l’intérieur de N1(X) et leurs relations d’inclusion. Nous donnons ensuite une de-
scription de l’anneau de Cox d’une variété équipée d’une action de tore algébrique.
Nous concluons le chapitre avec le résultat qui permet de trouver des générateurs
pour le cône des diviseurs mouvables d’une variété à partir des générateurs de son
anneau de Cox. Il s’ensuivra une explication des principaux résultats concernant
les Mori dream spaces et les variétés log Fano, ainsi que de nombreux exemples.



Enfin, nous introduisons l’objet d’étude principal de cette thèse : la variété X1,n
r ,

qui est l’éclatement de P1 × Pn en r points en position générale. En particulier,
nous nous concentrons sur X1,n

n+1, X1,n
n+2 et sur X1,n

n+3 lorsque n ≤ 4. Dans le chapitre
3, nous calculons le cône des courbes effectives de X1,n

r pour r = n + 1, n + 2 et
r = n + 3 lorsque n ≤ 4. Nous prouvons ensuite que X1,n

r est log Fano pour
r ≤ n + 1. Dans le chapitre 4, nous calculons les générateurs et les relations de
l’anneau de Cox de X1,n

n+1. Nous utilisons ensuite ces générateurs pour calculer les
générateurs du cône des diviseurs mouvables de X1,n

n+1. Pour effectuer ces calculs,
nous avons écrit des scripts sur Maple et Magma, dont certains sont fournis dans
le chapitre 6. A la fin du chapitre 4, nous calculons les cônes nef de X1,n

r pour
r = n + 1, n + 2 et pour r = n + 3 lorsque n ≤ 4. Ensuite, dans le chapitre 5,
nous donnons aussi une décomposition en chambre de Mori de X1,n

n+1 dans Magma
et nous montrons le cas n = 2.



Riassunto

Questa tesi si occupa di geometria birazionale, che è un sottocampo della geometria
algebrica. In particolare, studia i Mori dream spaces, che sono varietà strettamente
correlate alla teoria del programma del modello minimale di Mori. I Mori dream
spaces sono stati introdotti da Y. Hu e S. Keel all’inizio del XXI secolo. In parole
povere, un Mori dream space è una varietà proiettiva il cui cono di divisori effettivi
ammette una decomposizione in insiemi convessi, chiamati camere di Mori. Queste
camere sono i coni nef dei modelli birazionali di X. Diversi oggetti geometrici sono
di fondamentale importanza se si vuole procedere nello studio della geometria
birazionale di una varietà proiettiva normale. In particolare i coni delle curve e
dei divisori. Un’altra nozione di grande importanza per stabilire se una varietà è
un Mori dream space o meno è la proprietà di essere weak o log Fano. Le varietà
weak Fano sono log Fano e le varietà log Fano sono Mori dream spaces. Nel 2021,
T. Grange, E. Postinghel e A. Prendergast-Smith si sono concentrati sui blow-
up di P1 × P2 e di P1 × P3 in insiemi di massimo sei punti in posizione molto
generale. Il loro risultato principale è la descrizione esplicita dei coni di divisori
effettivi su queste varietà e la descrizione della geometria delle classi generatrici.
Più esplicitamente, hanno dimostrato che il blow-up di P1 × P2 è weak Fano se e
solo se il numero di punti scoppiati è minore o uguale a sei e che se il numero di
punti scoppiati è minore o uguale a sei, la varietà ottenuta scoppiando P1 × P3 in
quei punti è log Fano. Quindi, queste varietà sono anche Mori dream spaces.

Nel capitolo 2 di questa tesi forniamo una panoramica sulla teoria degli anelli di
Cox, dei Mori dream spaces e delle varietà log Fano. Nelle prime sezioni diamo le
definizioni dei vari coni interni a N1(X) e a N1(X) e le loro relazioni di inclusione.
Diamo poi una descrizione dell’anello di Cox di una varietà dotata di un’azione
torica algebrica. Concludiamo il capitolo con il risultato che permette di trovare
i generatori del cono dei divisori mobili di una varietà a partire dai generatori
del suo anello di Cox. Seguirà una spiegazione dei principali risultati relativi ai
Mori dream spaces e alle varietà log Fano, e molti esempi. Infine, introduciamo
il principale oggetto di studio di questa tesi: la varietà X1,n

r , che è il blow-up di
P1 × Pn in r punti in posizione generale. In particolare, ci concentriamo su X1,n

n+1,
X1,n
n+2 e su X1,n

n+3 quando n ≤ 4. Nel capitolo 3 calcoliamo il cono delle curve



effettive di X1,n
r per r = n + 1, n + 2 e r = n + 3 quando n ≤ 4. Dimostriamo

poi che X1,n
r è log Fano per r ≤ n+ 1. Nel capitolo 4, calcoliamo i generatori e le

relazioni dell’anello di Cox di X1,n
n+1. Utilizziamo poi questi generatori per calcolare

i generatori del cono dei divisori mobili di X1,n
n+1. Per eseguire i calcoli, abbiamo

scritto alcuni script su Maple e Magma, alcuni dei quali sono riportati nel capitolo
6. Alla fine del capitolo 4 calcoliamo i coni nef di X1,n

r per r = n + 1, n + 2 e per
r = n+3 quando n ≤ 4. Poi, nel capitolo 5 diamo anche una decomposizione della
camera di Mori di X1,n

n+1 in Magma e mostriamo il caso n = 2.
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Chapter 1

Introduction

This thesis deals with birational geometry, which is a subfield of algebraic geome-
try. The goal of birational geometry is to determine when two algebraic varieties
are isomorphic outside lower-dimensional subsets. To be more precise, let us give
the following definition:

Definition 1.0.1. Let X and Y be two algebraic varieties. A birational map from
X to Y is a rational map f : X 99K Y such that there is a rational map Y 99K X
inverse to f .

The existence of a birational map between two varieties X and Y is equivalent
to the existence of an isomorphism between two open subsets of X and Y .

A natural question that arises after this definition is to classify algebraic va-
rieties up to birational equivalence. This process takes origin at the end of the
19th century, and still entails open questions. Huge advances were done in the
second half of the 20th century, thanks to the works of W.L. Chow (1911-1995),
that essentially state that, in order to accomplish this classification, one can focus
on particular types of algebraic viariety:

Lemma 1.0.2. (Chow’s lemma). If X is a complete, irreducible variety, then
there exists a projective variety X ′ that is birational to X.

For a proof we refer to [Sha13].
In 1964 Hironaka, proved that it was possible to resolve singularities of vari-

eties over fields of characteristic zero by repeatedly blowing up along non-singular
subvarieties, using a very complicated argument by induction on the dimension.
As a consequence, he proved that every variety over a field of characteristic zero is
birational to a smooth projective variety. For further details, we refer to [Hir64].
Hence, to study algebraic varieties up to birational equivalence, it is enough to
study smooth projective varieties.

i
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Let us give an insight into the birational classification of algebraic varieties
depending on their dimension.

The classification of curves is classical and was done in the 19th century:

Theorem 1.0.3. Every curve is birationally equivalent to a unique nonsingular
projective curve. Algebraic curves are classified by their genus g and there are three
classes: rational curves (g = 0), elliptic curves (g = 1) and curves of general type
(g ≥ 2).

Moerover, two smooth curves are birational if and only if they are isomorphic,
hence the two types of equivalence, for this low dimension, coincide.

The situation with surfaces is already more complicated. Obviously, there is no
more equivalence between birationality and isomorphism, and a key example for
this fact is given by the blow-up construction: if we blow-up the projective plane
P2 infinitely many times, we obtain infinitely many non-isomorphic but birational
smooth varieties. In this case, every blow-up leads to the formation of a rigid (−1)
curve.

The study of the birational geometry of surfaces started around Rome with the
Italian school of algebraic geometry, a group of leading mathematicians who made
major contributions in birational geometry, especially towards the classification of
algebraic surface, roughly from 1885 to 1935. The leadership mainly belonged to G.
Castelnuovo (1865-1952) , F. Enriques (1871-1946) and to F. Severi (1879-1961),
who gave great contributions to the theory of algebraic surfaces.

The existence of infinitely many birational surfaces led to the need to look for
a special surface in each equivalence class. So it was natural to ask if, in each
birational class, we could identify a simplest model, called the minimal model, and
if we could provide an algorithm or a procedure to find it.

The Italian school came up with the following classical definition and proved
the theorems below, which are, for example, stated in [Bea83] and [Mat02].

Definition 1.0.4. A smooth surface S is minimal if any birational morphism
ψ : S → T to another smooth surface T is an isomorphism.

Theorem 1.0.5. Any smooth surface S has a minimal model.

We denote by κ(X) the Kodaira dimension of a variety X. The following
theorem gives a description of the minimal models for surfaces.

Theorem 1.0.6. Let S be a smooth surface:

1. If κ(S) ≥ 0, then the minimal model of S is unique.

2. If κ(S) < 0, the minimal model is not unique. In this case S is birationally
equivalent to P1 × C, for some smooth curve C, and we say that S is bira-
tionally ruled.
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The building block of classical birational geometry of surfaces is the following
criterion, due to Castelnuovo which essentially describes the process of constructing
a minimal model of any surface.

Theorem 1.0.7. Let S1 be a smooth surface and E a smooth rational curve on
S1 with E2 = −1. Then there exists a birational morphism φ : S1 → S2, where S2
is a smooth surface and φ is the blow up of S2 with exceptional divisor E.

It is worth pointing out some useful remarks:

Remark 1. Let us denote by Smin the minimal model of S. The canonical bundle
of Smin has a very interesting property: its intersection with curves is positive. In
geometry, this is equivalent to the following property: the canonical divisor of the
minimal surface, KSmin, is nef.

One of the major obstacles to the generalization of Castelnuovo’s criterion to
higher dimensions was the lack of a "good" analogue to the notion of minimal
model; the classical definition 1.0.4 does not make sense even in dimension three
(and, moreover, there is no notion of (−1) curve on a three-fold)!

So, it was not clear which curves one needed to contract in order to follow
Castelnuovo’s procedure.

It took many decades to understand how to attach the problem for varieties
of dimension three or higher. It was by the middle 1980’s, that a group of fa-
mous mathematicians, such as Kawamata, Kollar, Miyaoka, Mori, Reid, Shokurov,
Viehweg and many others proposed a generalization of the minimal model program
to higher dimensions. See for details [KM98]. The minimal model program was
successfully completed by Mori, in [Mor88], for three-folds.

One of the ingenious insights of Mori was to find the right definition for a
variety X to be a minimal model.

Definition 1.0.8. A variety X is minimal if its canonical divisor KX is nef.

The key idea of Mori’s algorithm in all dimensions is to contract all curves C
that have negative intersection with KX . These curves span an extremal ray of
the Mori cone, which will be introduced soon. For the purpose of generalizing the
minimal model program, Mori introduced new definitions concerning the birational
geometry of X.

One of his fundamental results is the Mori cone theorem, which describes the
cone of effective curves on a smooth projective variety. The cone of effective curves
is denoted by NE(X) and it is also called Mori cone.

Theorem 1.0.9. Let X be a smooth projective variety. Then there exist countably
many extremal rays Ri of the cone NE(X) such that KX ·Ri < 0 and

NE(X) = NE(X)KX≥0 +
∑

Ri.
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In particular, for every ample Q-divisor H on X, there exist finitely many such
rays R′i with

NE(X) = NE(X)KX+H≥0 +
∑

R′i.

Moreover, the rays Ri are discrete in the half-space NE(X)KX
< 0.

For further details, see [Laz04a]. For a complete proof of Theorem 1.0.9 see
[KM98] and [Mor82].

Hence, Mori proved that in the closed half-space where KX is nonnegative, we
know nothing, but in the complementary half-space, the cone is spanned by some
countable collection of curves which are quite special: they are rational, and their
’degree’ is bounded very tightly by the dimension of X.

One of the main problem that appears when we contract extremal rays is that
we may run into non smooth varieties. In order to fix this problem, Mori introduced
the concept of terminal singularity and, in his minimal model program, allowed
also varieties with this mild type of singularities.

The process of the minimal model program encounters difficulties. These issues
motivates the introduction of the notion of flip, which can be described as a special
codimension-2 surgery, when the dimension is three.

In 1988, Mori’s result on existence of flips explained in [Mor88], completed the
algorithm for constructing minimal models for threefolds.

In 2010 there was a great breakthrough in the minimal model theory when C.
Birkar, P. Cascini, C. Hacon and J. McKernan. In [BCHM08] they proved the
existence of minimal models for a large class of varieties, called of general type.

There still remains tons of open problems in the theory of minimal model
program: for example, extending the minimal models for many varieties of special
type, or proving the termination of flips in dimension higher than four.

Strictly related to the theory of Mori’s minimal model program is the notion
of Mori dream space.

Mori dream spaces were introduced in [HK00] by Y. Hu and S. Keel. They are
so called, since they behave very well from the point of view of Mori’s minimal
model program.

Roughly speaking, a Mori dream space is a projective variety X, whose cone
of effective divisors Eff(X) is rational and polyhedral and admits a well-behaved
decomposition into convex sets, called Mori chambers. These chambers are the
nef cones of the birational models of X.

From an algebraically point of view, Mori dream spaces can be characterized
as varieties whose total coordinate ring, called Cox ring, is finitely generated. For
this reason, they can be also seen as a natural Mori theoretic generalization of
toric varieties. The motivation for introducing the Cox ring of a variety is the
following.
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The coordinate ring of a variety is a fundamental object in algebraic geometry.
But, given a projective variety X, there is no canonical candidate for its coordinate
ring, since it depends on the embedding of the variety into a projective space. More
precisely, it depends on a choice of a very ample line bundle and a generating set
of sections. An attempt to fix this issue was done by Hu and Keel in [HK00],
who introduced the Cox ring, or total coordinate ring of a variety, which is a
generalization of Cox’s previous construction of a coordinate ring for toric varieties,
explained in [Cox95].

We recall the definition of the Cox ring.

Definition 1.0.10. Let X be a normal Q-factorial variety, with free and finitely
generated divisor class group Cl(X). Fix a subgroupG of the group of Weil divisors
on X such that the canonical map G → Cl(X), mapping a divisor D ∈ G to its
class [D], is an isomorphism. The Cox ring of X is defined as

Cox(X) =
⊕

[D]∈Cl(X)
H0(X,OX(D))

where D ∈ G represents [D] ∈ Cl(X), and the multiplication in Cox(X) is defined
by the standard multiplication of homogeneous sections in the field of rational
functions on X.

We remark that this ring need not be finitely generated in general. However,
for a variety X, having finite generated Cox ring has important consequences on
its birational geometry.

As an example of varieties with non-finitely generated Cox ring, or, equiva-
lently, which are not Mori dream spaces, we mention the following result of Mukai
[Muk04]:

Theorem 1.0.11. Let X be the blow-up of the projective space Pr−1 in n points
in general position. Then Cox(X) is not finitely generated if

1
2 + 1

r
+ 1
n− r

≤ 1.

Examples of Mori dream spaces include flag varieties, projective toric varieties,
spherical varieties and smooth Fano varieties.

In addition to this algebraic characterization there are several algebraic vari-
eties characterized by some positivity property of the anti-canonical divisor, such
as weak Fano and log Fano varieties. We recall briefly their definitions.

Definition 1.0.12. Let X be a normal variety and D = ∑
j djDj be a Q-divisor.

Assume that KX +D is Q-Cartier. Let f : Y → X be a log resolution of the pair
(X,D) and write

KY = f ∗(KX + ∆) +
∑
i

aiEi − D̃
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The pair (X,D) is Kawamata log terminal (klt) if ai > −1 and dj < 1 for any i, j.

Definition 1.0.13. Let X be a smooth projective Q-factorial variety. We say that
X is weak Fano if −KX is nef and big and X is log Fano if there exists an effective
divisor D such that −(KX +D) is ample and the pair (X,D) is klt.

The following proposition explain how these varieties are related to Mori dream
spaces.

Proposition 1.0.14. [BCHM08, Corollary 1.3.2] Let X be a smooth projective
variety. If X is log Fano then X is a Mori dream space .

If we want to proceed in the study of the birational geometry of a normal
projective variety X, it is very useful to learn something about its cones of curves
and of divisors. These cones are defined for Cartier divisors and for 1− cycles up
to an equivalence relation. See [Laz04a] for details.

Definition 1.0.15. We denote by N1(X) the vector space of Cartier divisors,
with real coefficients, up to numerical equivalence. Dually, we denote by N1(X)
the vector space of 1−cycles, again with real coefficients and up to numerical
equivalence.

The vector space N1(X) contains three important cones. The effective cone
is the convex cone spanned by effective divisors, denoted Eff(X). It is not in
general closed. The nef cone Nef(X) is the cone of classes of divisors in N1(X)
having nonnegative intersection with all curves in X. This is closed by definition,
but it is not in general rational or polyhedral. Finally, the movable cone is the
convex cone in N1(X), spanned by the classes of movable divisors. The Mori cone
NE(X), already introduced for Theorem 1.0.9, lies inside N1(X). Understanding
the structure of these cones is therefore a basic problem in algebraic geometry.
Especially, one of the goal of birational geometry is to determine when a variety
has closed or polyhedral cones.

For example, Fano varieties are algebraic varieties with anticanonical divisor
−KX is ample. Then, by Theorem 1.0.9 they have rational polyhedral nef cones.
They also have rational polyhedral effective cones by [BCHM08].

For Mori dream space, the situation is ideal: Nef(X) and NE(X) are rational
polyhedral cones. In particular, NE(X) is closed. Also Mov(X) and Eff(X) are
rational polyhedral cones.

In general, to determine whether a variety is a Mori dream space or not, and in
case to study in detail its Mori chamber decomposition is a hard problem. This has
been done for instance when X is obtained by blowing-up points in a projective
space [Muk04], [CT06], [AM16], [AC17], [BM21], [LP17].
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In [CT06, Theorem 1.3], A. M. Castravet and J. Tevelev proved that the blow-
up of (Pn)s in r general points is a Mori dream space if and only if

1
r + 1 + 1

s− n− 1 + 1
n+ 1 > 1.

Indeed, when the above inequality is not satisfied the effective cones of these
blow-ups are not finitely generated and the proof of this last fact relies on the
symmetries of their Picard groups which carry a natural Weyl group action. For
products of projective spaces with unbalanced dimensions this is not the case. In
this thesis we push a little further the investigation of the birational geometry of
these varieties initiated by T. Grange, E. Postinghel and A. Prendergast-Smith in
[GPPS22].

In particular, T. Grange, E. Postinghel and A. Prendergast-Smith focussed on
blow-ups of P1×P2 and of P1×P3 in sets of up to six points in very general position.
Their main result in [GPPS22, Sections 3 − 5] is the explicit descriptions of the
cones of effective divisors on these varieties and the description of the geometry
of the generating classes. Since these varieties lack of simmetry, they introduced
techniques such as induction, restriction and base loci lemmas.

Since being log Fano implies being a Mori dream space, it was natural for the
authors to ask whether varieties of the above kind are log Fano. We recall that
for blowups of P2, being log Fano is equivalent to being a Mori dream space and
for these cases the Cox rings were described by Batyrev–Popov in [BP04]. More
recently, Araujo–Massarenti [AM16] and Lesieutre–Park [LP17] proved that the
same holds in higher dimension, namely that blow-ups of Pn or of products of the
form (Pn)m in points in very general position are log Fano if and only if they are
Mori dream spaces.

It is therefore natural to ask which of the mixed products

Xm,n
s =: Bls(Pm × Pn)

are weak Fano or log Fano.
T. Grange, E. Postinghel and A. Prendergast-Smith show that

Theorem 1.0.16. [GPPS22, Theorem 6.3] The variety X1,2
s is weak Fano if and

only if s ≤ 6.

and

Theorem 1.0.17. [GPPS22, Corollary 6.7] For s ≤ 6, the variety X1,3
s is log

Fano.

Since weak Fano varieties are log Fano, by Corollary 1.0.14, the varieties X1,2
s

and X1,3
s are Mori dream spaces for s ≤ 6.
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In chapter 2 of this thesis we give an overview on the theory of Cox rings, Mori
dream spaces and log Fano varieties. In the first sections we give the definitions
of the various cones inside N1(X) and N1(X) and their inclusion relations. We
then give a description of the Cox ring of a variety equipped with an algebraic
torus action, following the treatment in [HS10]. We conclude the chapter with the
result that permits to find generators for the moving cone of a variety from the
generators of its Cox ring, following [ADHL15, Proposition 3.3.2.3]. It will follow
an explanation on the main results concerning Mori dream spaces and log Fano
varieties, and many examples. Finally, we introduce the main object of study of
this thesis: the variety X1,n

r , for r = n+ 1, n+ 2 and for n+ 3 if n ≤ 4.
In chapter 3 we compute the cone of effective curves of X1,n

r , for r = n+1, n+2
and for r = n+ 3 if n ≤ 4. We then prove that X1,n

r is log Fano for r ≤ n+ 1.
In chapter 4, we compute generators and relations of the Cox ring of X1,n

n+1. We
then use these generators to compute generators of the moving cone of X1,n

n+1. In
order to do the computation, we wrote some scripts on Maple and Magma, some
of which are provided in chapter 6. At the end if chapter 4 we compute the nef
cones of X1,n

r for r = n+ 1, n+ 2 and for r = n+ 3 when n ≤ 4. Then, in chapter
5 we also give a Mori chamber decomposition of X1,n

n+1 in Magma and we display
the case n = 2.



Chapter 2

Cox rings, Mori dream spaces and
log Fano varieties

In this chapter we introduce the necessary preliminaries for the rest of the treat-
ment. In the first section we give definitions of the various cones lying inside
N1(X) and N1(X). In the second section we introduce the notion of Cox ring of
a variety and its characterization when X is equipped with a torus action. Then
we give an important result about the relation between generators of the Cox ring
and generators of the moving cone of X.

In the third and in the fourth section we introduce Mori dream spaces, weak
Fano varieties and log Fano varieties, as well as the theorems that relates the three
properties.

Finally, in the last section, we introduce the varieties which are the main object
of this thesis.

2.1 Cones of divisors and of curves
Let X be a normal projective Q-factorial variety. Denote by Div(X) the group
of Cartier divisors on X. We refer to [Laz04a] for a comprehensive treatment of
the topics that will be introduced hereafter. Of the various natural equivalence
relations defined on Div(X), we will deal with the weakest:

Definition 2.1.1. Two Cartier divisors

D1, D2 ∈ Div(X)

are numerically equivalent, written

D1 ≡num D2

1
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if
(D1 · C) = (D2 · C),

for every irreducible curve C ⊂ X or, equivalently, if (D1 · γ) = (D2 · γ) for all
one-cycles γ on X.

The multiplication is the intersection number between the curve C and the
divisor D.

A divisor is numerically trivial if it is numerically equivalent to zero, and

Num(X) ⊂ Div(X)

is the subgroup consisting of all numerically trivial divisors.

Definition 2.1.2. The Néron-Severi group of X is the quotient group

N1(X) = Div(X)/Num(X),

of numerical equivalence classes of divisors on X.

This group is finitely generated by the Néron–Severi theorem, which was proved
by Severi over the complex numbers and by Néron over more general fields:

Proposition 2.1.3. The Néron-Severi group N1(X) is a free abelian group of finite
rank. The rank of N1(X) is called the Picard number of X and is written ρ(X).

We want to give an overview of the classical theory of ample divisors. We begin
with the following definition:

Definition 2.1.4. Let X be a projective variety and L a line bundle on X.

1. L is very ample if there exists a closed embedding X ⊂ P of X into some
projective space P := PN such that

L = OX(1) =: OPN (1)|X .

2. L is ample if L⊗m is very ample for some m > 0.

A Cartier divisor D on X is ample or very ample if the corresponding line bundle
OX(D) is so, and a numerical equivalence class in N1(X) is ample if it is the class
of an ample divisor.

Definition 2.1.5. A divisor D ⊂ X is numerically effective (nef) if

(D · C) ≥ 0,

for all irreducible curves C ⊂ X.
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This definition only depends on the numerical equivalence class of D, so one
has a notion of nef classes in N1(X).

As a matter of terminology, if V is a finite dimensional real vector space, a cone
in V is a set K ⊆ V stable under multiplication by positive scalars. We denote
with Eff(X) the convex cone in N1(X) spanned by classes of effective divisors; Its
closure Eff(X) is the convex cone of pseudoeffective divisors.

In general, Eff(X) needs not to be open or closed, but for the varieties treated
in chapter 3 it will be rational polyhedral, in particular closed.

We start by defining cones and their relations in N1(X).

Definition 2.1.6. The ample cone

Amp(X) ⊂ N1(X)

of X is the convex cone of classes of ample divisors on X. The nef cone

Nef(X) ⊂ N1(X),

is the convex cone of classes of nef divisors on X.

Remark 2. As soon as dim(N1(X)) ≥ 3, the structure of these cones can become
quite complicated. For example, they may or may not be polyhedral.

We view N1(X) as a finite dimensional vector space with its standard Euclidean
topology. This allows us in particular to discuss closures and interiors of sets of
numerical equivalence classes of divisors.

Theorem 2.1.7. ([Laz04a, Theorem 1.4.23]) Let X be any projective variety.
Then:

1. The nef cone is the closure of the ample cone:

Nef(X) = Amp(X).

2. The ample cone is the interior of the nef cone:

Amp(X) = Int(Nef(X)).

´

Now we introduce the notion on movable divisor on X and of moving cone of
X.
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Definition 2.1.8. Let D ⊆ X be a divisor. The stable base locus B(D) of the
divisor D is the set-theoretic intersection of the base loci of the complete linear
systems |sD| for all positive integers s such that sD is integral

B(D) =
⋂
s>0

B(sD).

Definition 2.1.9. A divisor D ⊂ X is movable if its stable base locus has codi-
mension at least two in X.

The moving cone of X is the convex cone Mov(X) ⊂ N1(X) generated by
classes of movable divisors.

We have inclusions

Nef(X) ⊂ Mov(X) ⊂ Eff(X).

Dually to the vector space N1(X), we introduce N1(X), the group of 1-cycles on
X modulo numerical equivalence, tensored with R. First, we define the numerical
equivalence classes of curves.

Definition 2.1.10. We denote by Z1(X) the R-vector space of real one-cycles on
X, consisting of all finite R-linear combinations of irreducible curves on X. An
element γ ∈ Z1(X) is a formal sum

γ =
∑
i

ai · Ci,

where ai ∈ R and Ci ⊆ X is an irreducible curve. Two one-cycles

γ1, γ2 ∈ Z1(X)

are numerically equivalent if

(D · γ1) = (D · γ2),

for every D ∈ Div(X). The corresponding vector space of numerical equivalence
classes of one-cycles is written N1(X). Thus by construction one has a perfect
pairing

N1(X)× N1(X)→ R

(δ, γ) 7→ (δ · γ) ∈ R.

In particular, N1(X) is a finite dimensional real-vector space on which we put the
standard Euclidean topology.

The relevant cones in N1(X) are those spanned by effective curves:
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Definition 2.1.11. The cone of curves (or Mori cone) of X,

NE(X) ⊆ N1(X)

is the cone spanned by the classes of all effective one-cycles on X. Concretely,

NE(X) = {
∑
i

ai[Ci] | Ci ⊂ X an irreducible curve, ai ≥ 0}.

Its closure NE(X) ⊂ N1(X) is the closed cone of pseudo-effective curves on X.

We recall the definition of dual cone.

Definition 2.1.12. Suppose that K ⊂ V is a closed convex cone in a finite
dimensional real vector space. The dual of K is defined to be the cone in V ∗ given
by

K∗ = {φ ∈ V ∗ | φ(x) ≥ 0 ∀x ∈ K}.

An important fact is that the cone of pseudoeffective curves NE(X) and the
nef cone Nef(X) are dual. This is the content of the following proposition:

Proposition 2.1.13. [Laz04a, Proposition 1.4.28] The Mori cone NE(X) is the
closed cone dual to Nef(X), i.e.

NE(X) = {γ ∈ N1(X) | (γ · δ) ≥ 0, ∀δ ∈ Nef(X)}.

Proof. The duality theorem for cones states that under the natural identification
of V ∗∗ with V , one has K∗∗ = K. In the situation at hand, take V = N1(X) and
K = NE(X). Then Nef(X) = NE(X)∗ by definition. Consequently NE(X) =
Nef(X)∗, which concludes the proof.

The notion of extremality will often appear throughout the thesis:

Definition 2.1.14. Let K ⊂ V be a closed convex cone in a finite dimensional
real vector space. An extremal ray r ⊆ K is a one-dimensional subcone having the
property that if

v + w ∈ r,
for some vectors v, w ∈ K, then necessarily v, w ∈ r.

An extremal ray is contained in the boundary of K.

Amplitude of divisors on X can be also characterized by the cone of effective
curves on X, in a similar way as the notion of nef divisor.

Consider the following set:

D>0 = {γ ∈ N1(X) | (D · γ) > 0},

which determines an open halfspace in N1(X).
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Theorem 2.1.15. [Laz04a, Theorem 1.4.29] Let X be a projective variety, and let
D be an divisor on X. Then D is ample if and only if

NE(X) \ {0} ⊆ D>0.

For a proof we refer to [Laz04a].
Now we give some examples, taken from the lecture notes [Deb11], of varieties

and of their cones of effective curves.

Example 2.1.16. There is an isomorphism

N1(Pn)→ R

given by the assignement ∑
i

λi[Ci] 7−→
∑
i

λi deg(Ci).

So
NE(Pn) ∼= R+.

Example 2.1.17. If X is a smooth quadric in P3, and C1 and C2 are lines in X
which meet, the relations (C1 · C2) = 1 and (C1 · C1) = (C2 · C2) = 0 imply that
the classes [C1] and [C2] are independent in N1(X). In fact,

N1(X) = R[C1]⊕ R[C2]

and
NE(X) = R+[C1]⊕ R+[C2].

For further details we also refer to [Deb01].
Although the cone NE(X) is closed in each of the examples above, this is not

always the case as we will see in example 2.2.7.

2.2 Cox rings
Cox rings are significant global invariants of algebraic varieties, naturally general-
izing homogeneous coordinate rings of projective spaces.

They were first introduced by D. A. Cox for toric varieties [Cox95], and then
his construction was generalized to projective varieties in [HK00].

We recall the definition of the Cox ring of an algebraic variety X.
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Definition 2.2.1. Let X be a normal Q-factorial variety, with free and finitely
generated divisor class group Cl(X). Fix a subgroupG of the group of Weil divisors
on X such that the canonical map G → Cl(X), mapping a divisor D ∈ G to its
class [D], is an isomorphism. The Cox ring of X is defined as

Cox(X) =
⊕

[D]∈Cl(X)
H0(X,OX(D))

where D ∈ G represents [D] ∈ Cl(X), and the multiplication in Cox(X) is defined
by the standard multiplication of homogeneous sections in the field of rational
functions on X.

We remark that this ring need not be finitely generated in general. However, we
will see later that for a variety X, having finitely generated Cox ring has important
consequences on its birational geometry.

For example, the Cox ring being finitely generated means that the effective and
the nef cone are both polyhedral (and hence finitely generated), see [HK00]. In
general the contrary is not true.

As an example of varieties with non-finitely generated Cox ring, we show the
following result of Mukai [Muk04]:
Theorem 2.2.2. Let X be the blow-up of the projective space Pr−1 in n points in
general position. Then Cox(X) is not finitely generated if and only if

1
2 + 1

r
+ 1
n− r

≤ 1.

From this theorem we can deduce that we need to blow-up n ≥ 9 general points
in P2 and n ≥ 8 general points in P3 to find an infinite Cox ring. We will return
later on blow-ups of P2 in general points.

One of the main concerns about the theory of Cox rings is to determine, in
the case of finitely generated Cox(X), explicit generators and relations. More
precisely, in this setting we would like to display Cox(X) as a quotient

Cox(X) = k[x1, . . . , xn]/IX .

Here we consider the natural Pic(X)-grading on k[x1, . . . , xn] and IX given by
letting deg(xi) = Di, so that Cox(X) is in fact a multigraded ring.

An important example is the calculation of the Cox ring of Del Pezzo surfaces,
which is the content of the Batyrev-Popov conjecture [BP04]. It is shown that
describing the behaviour of the Cox ring under blow-ups is a highly nontrivial
problem. The ideals of relations quickly become very complicated, and computer
calculations are infeasible.

Examples of varieties for which the Cox ring is simple are toric varieties, since
their Cox ring is a polynomial ring.

A stronger claim is true:
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Proposition 2.2.3. [HK00, Corollary 2.10] Let X be a smooth projective variety
with Pic(X)Q = N1(X). Then X is a toric variety if and only if it has a Cox ring
that is a polynomial ring.

After toric varieties, the next step is to study varieties whose Cox rings have
a unique defining relation. Some examples of such spaces are given in [BH04] and
[Der13]. Other than this, few actual computations of Cox rings have been carried
out.

Another example of varieties with non finitely generated Cox ring is given by
the following lemma:

Lemma 2.2.4. Let X be a surface containing an infinite number of curves of
negative self-intersection. Then Cox(X) is not finitely generated.

Proof. Since for surfaces, the effective cone Eff(X) coincides with NE(X) and since
having finitely generated effective cone is a necessary condition for the Cox ring
to be finitely generated, it suffices show that NE(X) is not finitely generated.

Suppose that the classes of the curves C1, . . . , CN generate NE(X). Let E be
a curve on X with negative self-intersection. Then

E ∼
∑
i

miCi,

for mi ≥ 0, since E is effective. Note that

E2 =
∑
i

mi(Ci · E).

The right-hand side can only be negative if some Ci ·E < 0, so E is a component
of Ci.

Since each of the Ci can only have finitely many fixed components, and since
there is a finite number of Ci, this contradicts the assumption that X had infinitely
such E.

A particular type of curve with negative self-intersection is given by:

Definition 2.2.5. A curve E on X is called an exceptional curve (of the first
kind) if it is smooth and rational and E2 = −1.

The following is a result concerning the position of exceptional curves in the
closure of the Mori cone of a smooth projective surface.

Proposition 2.2.6. Let X be a smooth projective surface. We have that:

1. The class of an irreducible curve C with (C2) ≤ 0 is in ∂ NE(X).
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2. The class of an irreducible curve C with (C2) < 0 spans an extremal ray of
NE(X).

Proof. Assume (C2) = 0; then [C] has non-negative intersection with the class of
any effective divisor, hence with any element of NE(X). Let H be an ample divisor
on X. If [C] is in the interior of NE(X), so is [C] + t[H] for all t small enough;
this implies

0 ≤ (C · (C + tH)) = t(C ·H),
for all t small enough, which is absurd since (C ·H) > 0. Assume now (C2) < 0 and
[C] = z1 + z2, where zi is the limit of a sequence of classes of effective Q-divisors
Di,m. Write

Di,m = ai,mC +D
′

i,m

with ai,m ≥ 0 and D′i,m effective with (C ·D′i,m) ≥ 0. Taking intersections with H,
we see that the upper limit of the sequence (ai,m)m is at most 1, so we may assume
that it has a limit ai. In that case, ([D′i,m])m also has a limit z′i = zi − ai[C] in
NE(X) which satisfies C · z′i ≥ 0. We have then [C] = (a1 + a2)[C] + z′1 + z′2, and
by taking intersections with C, we get a1 + a2 ≥ 1. But

0 = (a1 + a2 − 1)[C] + z′1 + z′2

and since X is projective, this implies z′1 = z′2 = 0 and proves 1. and 2..

We present a classical example due to Nagata [Nag60] of varieties with infinitely
many exceptional curves.

Example 2.2.7. Let p1, . . . , p9 be points in P2 which are the nine base-points of
a general pencil of cubics.

Let
π : X → P2

be the blow-up of the plane in these points, and let E1, . . . , E9 be the exceptional
divisors.

The anti-canonical system

| −KX | = |3L− E1 − · · · − E9|,

is base-point free, hence it defines a morphism

φ : X → P1.

The morphism φ is an elliptic fibration, hence its smooth fibers are elliptic curves.
Among this sections, there are the nine exceptional curves

E1, . . . , E9.
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If we choose E1 as the origin, the smooth fibers of φ become abelian groups.
Translations by elements Ei then generate a subgroup G of Aut(X) which can be
shown to be isomorphic to Z8.

For each σ ∈ G, the curve Eσ = σ(E0) is rational with self-intersection −1
and (KX · Eσ) = −1. It follows from Proposition 2.2.6 that NE(X) has infinitely
many extremal rays contained in the open half-space N1(X)KX<0, which are not
locally finite in a neighborhood of K⊥X , because (KX · Eσ) = −1, but (Eσ)σ∈G
is unbounded since the set of classes of irreducible curves is discrete in N1(X).
So there are infinitely many exceptional curves and by 2.2.4, Cox(X) cannot be
finitely generated. Suppose now that the points are in general position. Also
here we get infinitely many exceptional curves. We give a proof of this based on
the Cremona transformation, following an exercise in Hartshorne [Har77, V.4.15].
Suppose there are only finitely many exceptional curves. In particular there exists
a divisor D with divisor class

aL− b1E1 − · · · − b9E9,

with b1 ≤ b2 ≤ · · · ≤ b9 and maximal a > 0. With maximal we mean the curve of
maximal degree among the finitely many exceptional ones. Consider the divisor
class

D̃ = (2a− b1 − b2 − b3)L− (a− b2 − b3)E1 − (a− b1 − b3)E2

−(a− b1 − b2)E3 − b4E4 − · · · − b9E9.

This divisor class corresponds to the image of D after performing a Cremona
transformation based at p1, p2, p3 and in particular, D̃ is the class of an exceptional
curve. We claim that 2a − b1 − b2 − b3 > a, so that D̃ has higher coefficient
of L than D, contradicting the maximality of a. Suppose to the contrary that
a− b1 − b2 − b3 ≤ 0. Then

−K · D̃ = 3a− b1 − · · · − b9

≤ (a− b1 − b2 − b3) + (a− b1 − b2 − b3) + (a− b1 − b2 − b3) ≤ 0.
This contradicts the genus formula since −K · D̃ = 1. Hence, 2a− b1− b2− b3 > a
and we are done.

In conclusion, the blow-up of P2 in nine point in general positionX = Bl9 P2 has
non finitely generated Cox ring by Lemma 2.2.4 and the infinitely many exceptional
curves spans infinitely many extremal rays of the effective cone by Proposition2.2.6.

2.2.1 Cox rings and torus actions
As we have seen in the previous section, a basic problem is to present Cox(X) in
terms of generators and relations. The knowledge of generators and relations opens
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a combinatorial approach to geometric properties of X. We follow the treatment
explained in [HS10], where J. Hausen and H. Süß investigate the Cox ring of a
normal complete variety X, equipped with an algebraic torus action.

Let T be an algebraic torus and consider an effective algebraic torus action

T ×X → X.

For a point x ∈ X, denote by Tx ⊂ T its isotropy group

Tx := {t ∈ T | t · x = x},

and consider the non-empty T -invariant open subset

X0 := {x ∈ X | dim(Tx) = 0} ⊂ X

of points of X with zero-dimensional isotropy group.
There is a geometric quotient

q : X0 → X0/T

with an irreducible normal but possibly non-separated orbit space X0/T , and also
for X0/T one can define a Cox ring.

Denote by
E1, . . . , Em ⊆ X

the T -invariant prime divisors supported in X \X0 and by D1, . . . , Dn ⊆ X those
T -invariant prime divisors who have a finite generic isotropy group of order lj > 1.
Moreover, let 1Ek

and 1Dj
denote the canonical sections of the divisors Ek and Dj

respectively, and let 1q(Dj) ∈ Cox(X0 \ T ) be the canonical section of q(Dj).

Theorem 2.2.8. [HS10, Theorem 1.1] There is a graded injection

q∗ : Cox(X0/T )→ Cox(X)

of Cox rings and the assignments

Sk 7→ 1Ek

and
Tj 7→ 1Dj

induce an isomorphism of Cl(X)-graded rings

Cox(X) ∼= Cox(X0/T )[S1, . . . , Sm, T1, . . . , Tn]/〈T ljj − 1q(Dj); 1 ≤ j ≤ n〉,

where the Cl(X)-grading on the right hand side is defined by associating to Sk the
class of Ek and to Tj the class of Dj. In particular, Cox(X) is finitely generated
if and only if Cox(X0/T ) is so.
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The complexity of a T -action on X is the codimension of a generic T -orbit in
X. Suppose that the T -action on X is of complexity one. Then, the orbit space
X0/T is of dimension one and has a separation to P1, that is a rational map:

π : X0/T 99K P1,

which is a local isomorphism in codimension one.
Choose r ≥ 1 and a0, . . . , ar ∈ P1, such that π is an isomorphism over P1 \

{a0, . . . , ar} and all the divisors Dj occur among the

Di,j := q−1(yi,j),

where π−1(ai) = {yi,1, . . . , yi,ni
}. Let lij ∈ Z≥1 denote the order of the generic

isotropy group of Di,j.
For every 0 ≤ i ≤ r, define a monomial

fi := T
li,1
i,1 · · ·T

li,ni
i,ni
∈ C[Ti,j; 0 ≤ i ≤ r, 1 ≤ j ≤ ni].

Moreover, write ai = [bi, ci] with bi, ci ∈ C and for every 0 ≤ i ≤ r − 2, set
k = j + 1 = i+ 2 and define a trinomial

gi := (ckbj − cjbk)fi + (cibk − ckbi)fj + (cjbi − cibj)fk.

In this case the Cox ring is finitely generated and the following theorem gives
the generators and the relations:

Theorem 2.2.9. [HS10, Theorem 1.3] Let T × X → X be an algebraic torus
action of complexity one. Then, in terms of the data defined above, the Cox ring
of X is given as

Cox(X) = C[S1, . . . , Sm, Ti,j; 0 ≤ i ≤ r, 1 ≤ j ≤ ni]/〈gi; 0 ≤ i ≤ r − 2〉,

where 1Ek
corresponds to Sk, and 1Di,j

to Ti,j, and the Cl(X)-grading on the right
hand side is defined by associating to Sk the class of Ek and to Ti,j the class of
Di,j. In particular, Cox(X) is finitely generated.

Theorem 2.2.9 will be crucial in the study of the Cox ring of X1,n
n+1.

2.2.2 Cox rings and moving cones
In this section we present the following result, which permits to find generators
for the moving cone of X from generators of its Cox ring. We refer to [ADHL15]
for further details regarding the Cox ring of a variety and their cones of effective,
semiample and ample divisors.
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Proposition 2.2.10. [ADHL15, Proposition 3.3.2.3] Let X be an irreducible, nor-
mal, complete variety with finitely generated divisor class Cl(X). Let {fi}i∈I be
any system of pairwise non-associated Cl(X)-prime generators for Cox(X). Then,
the moving cone is given as:

Mov(X) =
⋂
i∈I

cone(deg(fj), j ∈ I \ {i}).

Note that for non toric varieties, whose Cox ring is not polynomial, this propo-
sition tells us that relations among the generators for Cox(X) are not necessary
to compute Mov(X).

In order to prove Proposition 2.2.10, we need the following lemma. We denote
with Cox(X)w the localization of the Cox ring at one of its elements.

Lemma 2.2.11. [ADHL15, Lemma 3.3.2.4] Let X be an irreducible, normal com-
plete variety with Cl(X) finitely generated and let w ∈ Cl(X) be effective. Then
the following two statements are equivalent.

1. The stable base locus of the class w ∈ Cl(X) contains a divisor.

2. There exist an w0 ∈ Cl(X) with dim Γ(X,Cox(X)nw0) = 1 for any n ∈
Z≥0 and an f0 ∈ Γ(X,Cox(X)w0) such that for any m ∈ Z≥1 and f ∈
Γ(X,Cox(X)mw) one has f = f ′f0 with some f ′ ∈ Γ(X,Cox(X)mw−w0).

Proof. The implication (2) =⇒ (1) is obvious.
So, assume that 1 holds. The class w ∈ Cl(X) is represented by some nonneg-

ative divisor D. Let D0 be a prime component of D that occurs in the base locus
of any positive multiple of D, and let w0 ∈ Cl(X) be the class of D0. Then the
canonical section of D0 defines an element f0 ∈ Γ(X,Cox(X)w0) that by [ADHL15,
Proposition 1.5.3.5] divides any f ∈ Γ(X,Cox(X)mw), where m ∈ Z≥1. Note
that Γ(X,Cox(X)nw0) is of dimension one for every n ∈ Z≥1, because otherwise
Γ(X,Cox(X)na0w0) where a0 > 0 is the multiplicity of D0 in D, would provide
enough sections in Γ(X,Cox(X)nw) to move na0D0.

Now we can give the proof of Proposition 2.2.10.

Proof. Set wi := deg(fi).
Denote by I0 ⊆ I the set of indices with dim Γ(X,Cox(X)nw0) ≤ 1 for all

n ∈ N. Let w ∈ Mov(X). Then, lemma 2.2.11 tells us that for any i ∈ I0, there
must be a monomial of the form ∏

j 6=i f
nj

j in some Γ(X,Cox(X)nw). Consequently,
w lies in the cone of the right-hand side. Conversely, consider an elementw of the
cone of the right-hand side. Then, for every i ∈ I0, a product ∏j 6=i f

nj

j belongs
to some Γ(X,Cox(X)nw). Hence none of the fi, i ∈ I0 divides all elements of
Γ(X,Cox(X)nw). Again by lemma 2.2.11, we conclude w ∈ Mov(X).
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We are now able to apply Proposition 2.2.10 to some easy varieties.
First of all, a very naive example, which does not require any help from Maple:

Example 2.2.12. Let us consider the n-dimensional projective space Pn. Then,

Cox(Pn) = C[x1, . . . , xn+1].

Moreover, we know that
Mov(Pn) = 〈H〉,

where H is the class of an hyperplane. We see that in the setting of Proposition
2.2.10, a system {fi}i ∈ I of pairwise non-associated Cl(X)-prime generators for
Cox(X) is given by {xi} of deg(xi) = H for each i = 1, . . . , n + 1. Hence, we
obtain the right generating set for Mov(X).

In the following examples, we will denote by H the pull-back of a line in P2

and by Ei is the class of the exceptional curve over the point pi.

Example 2.2.13. In this example we want to compute the moving cone of the
blow-up of the plane P2 at a point. It is known that Blp P2 is a toric variety and
hence its Cox ring coincides with the usual homogeneous coordinate ring

Cox(Blp(P2)) = C[x, s1, s2, e],

where deg(x) = H, deg(si) = H −E and deg(e) = E. We will use a script written
in Maple in order to use formula of Proposition 2.2.10. First, we construct the
following matrix:

H E

A :=


1 0
1 −1
0 1
1 −1

 ,
where coefficients of the first column correspond to H and those of the second
column to E. Now, we just need to put the transpose of A into the script shown
at page 74.

It is found that:
Mov(Blp(P2)) = 〈H,H − E〉.

In fact, we can notice that since H − E is base-point free, it is a nef divisor and
hence movable.

In the following examples, we want to compute the moving cone of X =
Bl2(Pn), for low numbers of n, starting from the generators of Cox(Bl2(Pn)). Even
if the generators for Mov(X), when n > 2, will be shown in example 2.3.7, here we
give a different point of view, using the Cox ring and adding also the case n = 2.
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Example 2.2.14. Let X = Bl2(P2). It is known that X is a toric variety and
hence its Cox ring coincides with the usual homogeneous coordinate ring

Cox(Bl2(P2)) = C[x, s1, s2, e1, e2],

where deg(x) = H−E1−E2, deg(si) = H−Ei and deg(ei) = Ei. So we construct
the following matrix:

H E1 E2

A :=


1 −1 −1
1 −1 0
1 0 −1
0 1 0
0 0 1

 ,

where coefficients of the first column correspond to H, those of the second
column to E1 and those of the third column to E2. Now, we just need to put the
transpose of A into the script shown at page 75, and we find:

Mov(Bl2(P2)) = 〈H − E1, H − E2, H〉.

Example 2.2.15. Let X = Bl2(P3). It is known that X is a toric variety and
hence its Cox ring coincides with the usual homogeneous coordinate ring

Cox(Bl2(P3)) = C[x, y, s1, s2, e1, e2],

where deg(x) = deg(y) = H − E1 − E2, deg(si) = H − Ei and deg(ei) = Ei. So
we construct the following matrix:

H E1 E2

A :=



1 −1 −1
1 −1 −1
1 0 −1
1 −1 0
0 1 0
0 0 1


,

where coefficients of the first column correspond to H, those of the second
column to E1 and those of the third column to E2. Now, we just need to put the
transpose of A into the script shown at page 76, and we find:

Mov(Bl2(P2)) = 〈H − E1 − E2, H − E1, H − E2, H〉.
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Example 2.2.16. Let X = Bl2(P4). It is known that X is a toric variety and
hence its Cox ring coincides with the usual homogeneous coordinate ring

Cox(Bl2(P4)) = C[x, y, z, s1, s2, e1, e2],

where deg(x) = deg(y) = deg(z) = H−E1−E2, deg(si) = H−Ei and deg(ei) = Ei.
So we construct the following matrix:

H E1 E2

A :=



1 −1 −1
1 −1 −1
1 −1 −1
1 0 −1
1 −1 0
0 1 0
0 0 1


,

where coefficients of the first column correspond to H, those of the second
column to E1 and those of the third column to E2. Now, we just need to put the
transpose of A into the script shown at page 77, and we find:

Mov(Bl2(P4)) = 〈H − E1 − E2, H − E1, H − E2, H〉.

Blow-ups of P3 in r ≤ 4 points in general position are toric varieties. The
following example concerns the non toric variety X = Bl5(P3). The generators
and relations have been computed by J. C. Ottem in his master thesis [Ott09]. We
present some of his results and we then compute the moving cone using Maple.

Example 2.2.17. Let X = X3
5 be the blow-up of P3 in points p1, . . . , p5 in general

position. Let x1, . . . , x5 be the generators for the cohomology groups

H0(X,E1), . . . , H0(X,E5)

and let hijk denote a generator for H0(H−Ei−Ej −Ej). Geometrically the zero-
sections of x1, . . . , x5 correspond to the exceptional planes and hijk corresponds to
pullbacks of planes through pi, pj, pk in P3. Then we have the following:

Theorem 2.2.18. [Ott09, Theorem 4.5] Cox(X3
5 ) is generated by the sections xi,

hijk from the respective divisor classes E1, . . . , E5 and H − Ei − Ej − Ek, for
1 ≤ i, j, k ≤ 5 distinct.

For a proof we refer to [Ott09]. Relations among these generators are also
found in this reference, but it is not necessary to write them down in order to
apply Proposition 2.2.10.
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Now, with the script shown at page 78, we find 51 generators for the moving
cone of X3

5 .

Mov(X3
5 ) = 〈2H−Ei1−Ei2−Ei3−2Ei4−Ei5 , 3H−Ei1−2Ei2−2Ei3−2Ei4−2Ei5 ,

H − Ei − Ej, 2H − Ei1 − Ei2 − Ei3 − 2Ei4 , H − Ei,
3H − 2Ei1 − 2Ei2 − 2Ei3 − 2Ei4 , H〉,

for i1, . . . , i5 ∈ {1, . . . , 5}.

2.3 Mori dream spaces
The notion of Mori dream space was introduced by Y. Hu and S. Keel in [HK00].
This denomination is motivated by the fact that these spaces behave in the best
possible way from the point of view of Mori’s minimal model program. In this
section, we recall the definition of Mori dream space, and their main properties in
relation to Fano and log Fano varieties.

Definition 2.3.1. [HK00, Definition 1.1] Let f : X 99K Y be a dominant rational
map, where Y is normal and projective. We say that f is contracting, or a rational
contraction, if there exists a resolution of f

X ′

X Y

µ
f ′

f

where X ′ is smooth and projective, µ is birational, and for every µ-exceptional
effective divisor E on X ′ we have

f ′∗(OX′(E)) = OY .

Remark 3. Let f : X 99K Y be a birational map, with Y normal and projective.
Then, f is contracting if and only if there are open subsets U ⊆ X and V ⊆ Y
such that f is an isomorphism between U and V , and codim(Y \ V ) ≥ 2.

Example 2.3.2. The inverse of a blow-up is not a contracting rational map.

Definition 2.3.3. [HK00, Definition 1.8] A small Q-factorial modification (SQM)
of X is a birational map

g : X 99K X ′,

where X ′ is again normal, projective, and Q-factorial, and g is an isomorphism in
codimension 1.
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Remark 4. By remark 3, we see that both g and g−1 are contracting. The basic
example of a SQM is a flip. Furthermore, it is easy to check that g induces an
isomorphism

g∗ : N1(X ′)→ N1(X)
(in particular X and X ′ have the same Picard number), and that g∗ preserves the
effective and the movable cones:

g∗(Eff(X ′)) ⊆ Eff(X),

and
g∗(Mov(X ′)) ⊆ Mov(X).

In particular, we have
g∗(Nef(X ′)) ⊂ Mov(X).

The definition of Mori dream space is the following:

Definition 2.3.4. [HK00, Definition 1.10] Let X be a normal, projective, Q-
factorial variety X. We say that X is a Mori dream space (MDS) if the following
conditions hold:

1. Pic(X) is finitely generated, or equivalently h1(X,OX) = 0 (so Pic(X) ∼=
N1(X)),

2. Nef(X) is generated by the classes of finitely many semiample divisors,

3. there is a finite collection of small Q-factorial modifications fi : X 99K Xi,
such that each Xi satisfies the second condition above and

Mov(X) =
⋃
i

f ∗i (Nef(Xi))

.

The collection of all faces of all cones f ∗i (Nef(Xi)) above forms a fan which
is supported on Mov(X). If two maximal cones of this fan, say f ∗i (Nef(Xi)) and
f ∗j (Nef(Xj)), meet along a facet, then there exists a normal projective variety Y , a
small modification φ : Xi 99K Xj, and hi : Xi → Y , hj : Xj → Y small birational
morphisms of relative Picard number one such that hj ◦ φ = hi.

The fan structure on Mov(X) can be extended to a fan supported on Eff(X)
as follows.

Definition 2.3.5. Let X be a Mori dream space. We describe a fan structure
on the effective cone Eff(X), called the Mori chamber decomposition. There are
finitely many birational contractions from X to Mori dream spaces, denoted by
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gi : X 99K Yi. The set Exc(gi) of exceptional prime divisors of gi has cardinality
ρ(X/Yi) = ρ(X)−ρ(Yi). The maximal cones C of the Mori chamber decomposition
of Eff(X) are of the form

Ci =
〈
g∗i
(

Nef(Yi)
)
,Exc(gi)

〉
.

We call Ci or its interior C◦i a maximal chamber of Eff(X). We refer to [HK00,
Proposition 1.11] and [Oka16, Section 2.2] for details.

Proposition 2.3.6. [HK00, Proposition 2.9] Let X be a normal projective Q-
factorial variety such that Pic(X) = N1(X). X is a Mori dream space if and only
if Cox(X) is finitely generated as an algebra over the base field.

Example 2.3.7. Let us work out explicitly the cone of effective divisors and the
Mori cone of curves of X := Xn

2 , the blow-up of Pn at two points p, q ∈ Pn, with
n > 1.

Let H,Hp, Hq, Hp,q be the strict transforms respectively of a hyperplane, a
hyperplane passing through p, through q, and through both p and q. Moreover,
let Ep, Eq be the exceptional divisors over p and q respectively. Note that Hp =
H − Ep, Hq = H − Eq and Hp,q = H − Ep − Eq. Then N1(X) ∼= Z[H,Ep, Eq].

We will denote by h the strict transform of a general line in Pn, and by ep, eq
classes of lines in Ep and Eq respectively. The intersection pairing is given by
H · h = 1, H · ep = H · eq = 0, Ep · eq = Eq · ep = 0, Ep · ep = Eq · eq = −1. The last
two intersections numbers might be not obvious from a geometrical point of view.
To compute them one may reason as follows: the divisor H − Ep represents the
strict transform of a general hyperplane through p, and h−ep represents the strict
transform of a general line through p. In the blow-up X these strict transforms do
not intersect anymore, so 0 = (H −Ep) · (h− ep) = H · h−H · ep−Ep · h+Ep · ep
and hence Ep · ep = −H · h = −1.

Now, let C ⊂ X be an irreducible curve. Then either C is contained in an
exceptional divisor and then it is numerically equivalent to a positive multiple of
ep or eq, or it is mapped by the blow-down map to an irreducible curve Γ ⊂ Pn.
Suppose that C it is not contained in an exceptional divisor. Let d,mp,mq be
respectively the degree of Γ and the multiplicities of Γ at p and q. Then C ≡
dh−mpep −mqeq. We may write C ≡ d(h− ep − eq) + (d−mp)ep + (d−mq)eq.
Furthermore, d −mp > 0 otherwise by Bézout’s theorem Γ would contain a line
through p as a component, and similarly d−mq > 0. Hence NE(X) is closed and
generated by the classes ep, eq and h − ep − eq. Note that the latter is the strict
transform of the line in Pn through p, q. Similarly, it can be shown that Eff(X) is
closed and generated by the classes of Ep, Eq and Hp,q.

Let us work out the nef cone of X when n > 2. This is the cone of divisors
intersecting non negatively all the irreducible curves inX. Since any curve inX can
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be written as a linear combination with non-negative coefficients of the generators
of NE(X), it is enough to check when a divisor intersects non-negatively these
generators. Let us write D ≡ aH + bEp + cEq. Then D · (h− ep − eq) = a+ b+ c,
D · ep = −b and D · ep = −c, and Nef(X) is defined in N1(X)R ∼= R3 by the
inequalities a+ b+ c ≥ 0, b ≤ 0, c ≤ 0. Hence Nef(X) is generated by 〈H,Hp, Hq〉.

Finally, we determine the movable cone of X. The divisor Hp,q represents the
hyperplanes of Pn passing through p, q. Hence the stable base locus of Hp,q consists
of the strict transform of the line through p, q. The stable base locus of all divisors
in the cone generated by 〈Hp, Hq, Hp,q〉 is contained in such a strict transform as
Hp, Hq have no base loci. Hence all the divisors in this cone are movable when
n > 2. On the other hand, all divisors in the interior of the cone 〈H,Hp, Eq〉
contain Eq, all divisors in the interior of the cone 〈H,Hq, Ep〉 contain Ep, and all
divisors in the interior of the cone 〈H,Ep, Eq〉 contain Ep∪Eq. Therefore, Mov(X)
is the cone generated by 〈H,Hp, Hq, Hp,q〉.

The following picture is a two dimensional cross-section of Eff(X) displaying
its Mori chamber decomposition:

Ep Hp,q

Eq

H

Hp

Hq

The divisors H,Hp, Hq, Hp,q generate Mov(X), and H,Hp, Hq generate Nef(X).
The chamber delimited byH,Hq, Ep corresponds to the contraction of Ep, similarly
the chamber delimited by H,Hp, Eq corresponds to the contraction of Eq, and
chamber delimited by H,Ep, Eq corresponds to the contraction of both Ep and Eq.

In the case n ≥ 3, X admits only one small Q-factorial modification X ′ cor-
responding to the chamber delimited by Hp, Hq, Hp,q. In what follows in this
example, we will investigate the geometry of X ′.

Consider a divisor lying on the wall delimited by Hp and Hq, for instance
D = Hp + Hq = 2H − Ep − Eq, and let L be the strict transform of the line
through p and q. Then D · L = 0 and the linear system of quadrics in Pn through
p and q induces a morphism hD : X → Y contracting L to a point.

On the other hand, a divisor in the maximal chamber delimited by Hp, Hq, Hp,q

must be ample on X ′. We can write such a divisor as aHp + bHq + cHp,q with
a, b, c > 0 and observe that (aHp + bHq + cHp,q) · L = −c < 0.
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Note that the curve L prevents divisors on X in the chamber 〈Hp, Hq, Hp,q〉
from being ample.

Let g : W → X be the blow-up of X along L with exceptional divisor EL ⊂ W .
Observe that EL is a Pn−2-bundle over L.

There is a morphism g′ : W → X ′ contracting EL, in the direction of L, onto a
subvariety Z ⊂ X ′ such that Z ∼= Pn−2. Consider the divisorD′ ≡ Hp+Hq+Hp,q ≡
3H − 2Ep − 2Eq. The linear system of D′ induces a rational map φD′ : X 99K X ′,
and we have the following commutative diagram

W

X X ′

Y
hD h

φD′

g g′

where h : X ′ → Y is a small modification contracting Z ⊂ X ′ to hD(L). The
rational map φD′ : X 99K X ′ is an isomorphism between X \ L and X ′ \ Z and
replaces L with the variety Z which is covered by curves having non-negative
intersection with all divisors in the chamber 〈Hp, Hq, Hp,q〉. Concretely, in the case
n = 3 for instance, we can fix homogeneous coordinates [x : y : z : w] on P3,
assume that p = [1 : 0 : 0 : 0], q = [0 : 0 : 0 : 1], and consider the rational maps

α : P3 99K P7

defined by α([x : y : z : w]) = [xy : xz : xw : y2 : yz : yw : z2 : zw], that is induced
by the quadrics of P3 passing through p and q, and

β : P3 99K P11

defined by β([x : y : z : w]) = [xy2 : xz2 : xyz : xyw : xzw : y3 : y2z : y2w : yz2 :
yzw : z3 : z2w], that is induced by the cubics of P3 having at least double points
at p and q. Then Y is the closure of the image of α and X ′ is the closure of the
image of β.

Let us give a geometric description of X ′. Let Π ⊂ X be the strict transform
of a 2-plane through the line pq. The plane Π is contracted to a point by the
map πHp,q : X 99K Pn−2 induced by Hp,q. Indeed, πHp,q is induced by the linear
projection Pn 99K Pn−2 with center pq. Observe that a divisor in the linear system
of D′ has a base component when restricted to Π, namely the curve L.

Therefore, φD′|Π is the rational map induced by the linear system of conics
through p and q, hence its image is a smooth quadric surface QΠ ∼= P1 × P1. The
quadric QΠ intersects Z at a point. The morphism π̃Hp,q : X ′ 99K Pn−2, induced by
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the strict transform of Hp,q on X ′, contracts QΠ to the point πHp,q(Π) and maps
Z isomorphically onto Pn−2. We have the following commutative diagram

X X ′

Pn−2
πHp,q π̃Hp,q

φD′

and X ′ has a structure of (P1×P1)-bundle over Pn−2. Summing up, the birational
model of X corresponding to the chamber 〈Hp, Hq, Hp,q〉 is a quadric bundle over
Pn−2 and, as we already noticed, the other chambers 〈H,Hp, Eq〉, 〈H,Hq, Ep〉 and
〈H,Ep, Eq〉 corresponds respectively to Pn blown-up at q, Pn blown-up at p and
Pn. The chamber 〈H,Hp, Hq〉 corresponds to X itself.

2.4 Weak and log Fano varieties
In this section we introduce log Fano and weak Fano varieties. First, we define
singularities of pairs and log resolutions. We denote by KX (resp. (−KX)) the
canonical (resp. anticanonical) divisor of the variety X.

Let us consider a Q-divisor D = ∑
i diDi on a normal variety X.

We assume that the Di’s are distinct. We want to give a reasonable notion of
singularities of the pair (X,D). We require that KX +D is Q-Cartier.

Then, for a resolution f : Y → X we have the formula

KY = f ∗(KX +D) +
∑
i

aiEi − D̃,

where D̃ is the strict transform.
Even when X is smooth, D could be very singular.

Definition 2.4.1. A divisor D = ∑
i diDi on a smooth variety X is simple normal

crossing ifD is reduced, any componentDi ofD is smooth, andD is locally defined
in a neighborhood of any point by an equation in local analytic coordinates of the
type

z1 · · · · · zk = 0,
with k ≤ dim(X).

Roughly speaking the singularities of D should locally look no worse that those
of a union of coordinate hyperplanes.

Example 2.4.2. Let D = ∑
iDi where the Di’s are hyperplanes in Pn and let

pi ∈ Pn∗ be the point corresponding to Di. Then D is simple normal crossing if
and only if the pi’s are in linear general position.
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The following is a consequence of Hironaka’s theorem on resolution of singu-
larities, see [Hir64].

Theorem 2.4.3. Let X be an irreducible algebraic variety over C, and let D ⊂ X
be an effective Cartier divisor on X. Then, there exists a projective birational
morphism

f : Y → X,

where X is smooth and f−1(D) ∪ Exc(f) is simple normal crossing.
Moreover, the smooth variety Y can be constructed as a sequence of blow-ups

along smooth centers supported in the singular loci of D and X. In particular, f
is an isomorphism over X \ (Sing(X) ∪ Sing(D)).

The morphism mentioned in Theorem 2.4.3 has a special name:

Definition 2.4.4. The morphism f is called a log resolution of the pair (X,D).

By [Hir64], a log resolution always exists.
Now we can give the following definition, which will be useful in particular for

the notion of klt pair.

Definition 2.4.5. Let X be a normal variety and D = ∑
j djDj be a Q-divisor.

Assume that KX +D is Q-Cartier. Let f : Y → X be a log resolution of the pair
(X,D) and write

KY = f ∗(KX + ∆) +
∑
i

aiEi − D̃.

The pair (X,D) is:

1. terminal if ai > 0 for any i,

2. canonical if ai ≥ 0 for any i,

3. klt if ai > −1 and dj < 1 for any i, j,

4. plt if ai > −1 for any i,

5. lc if ai ≥ −1 for any i.

Here klt, plt, lc stands for Kawamata log terminal, purely log terminal, and log
canonical respectively.

Example 2.4.6. Assume that D is a simple normal crossing divisor, and that X
is smooth. Then IdX is a log resolution.
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Example 2.4.7. If 0 < ε < 1 is a rational number then we have

KX = Id∗X(KX + εD)− εD.

The pair (X, εD) is Kawamata log terminal. Let D ⊂ P2 be an irreducible curve
with one node, and let f : Y → P2 be the blow-up of the node. Then f−1D ∪E is
simple normal crossing. Furthermore KY = f ∗KP2 +E and f ∗D = D̃+ 2E where
D̃ is the strict transform of D, yield

KY = f ∗(KP2 +D)− D̃ − E.

Therefore, the pair (P2, D) is log canonical.

Now, we can introduce the notion of log Fano and of weak Fano varieties:

Definition 2.4.8. Let X be a smooth projective Q-factorial variety. We say that
X is:

1. weak Fano if −KX is nef and big,

2. log Fano if there exists an effective divisor D such that −(KX +D) is ample
and the pair (X,D) is Kawamata log terminal.

3. weak log Fano if there exists an effective divisor D such that −(KX +D) is
nef and big, and the pair (X,D) is Kawamata log terminal.

It follows trivially from Definition 2.4.8 that a smooth weak Fano variety is log
Fano. The following Lemma extends the properties to varieties with klt singulari-
ties.

Lemma 2.4.9. [AM16, Lemma 2.5] Let X be a normal Q-factorial projective
variety with at worst klt singularities. Suppose that −KX is nef and big (X is
weak Fano). Then X is log Fano.

The bridge between Mori dream spaces and log Fano varieties is the content of
the following proposition:

Proposition 2.4.10. [BCHM08, Corollary 1.3.2] Let X be a smooth projective
variety. If X is log Fano then X is a Mori dream space .

Example 2.4.11. In [AM16] and in [LP17] it is proven that blowups of Pn or of
products of the form (Pn)m in points in very general position are log Fano if and
only if they are Mori dream spaces.

Example 2.4.12. Let write Xn
k for the blow up of Pn at k points in general

position. Results of [Muk04] and [CT06] show that:
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1. For n = 4, Xn
k is a Mori dream space if and only if k ≤ 8.

2. For n > 4, Xn
k is a Mori dream space if and only if k ≤ n+ 3.

Moreover, for n = 2 and k ≤ 8, −KXn
k
is ample and and for k ≥ 9, the situation

changes drastically. The anti-canonical class of Xn
k is no longer big, and it contains

infinitely many (−1)-curves. For n ≥ 3, Xn
1 is a Fano manifold (that is, −KXn

1
is ample), but as soon as k ≥ 2, Xn

k is no longer Fano. However For n = 3 and
k ≤ 7, Xn

k is log Fano, then Xn
k is a Mori dream space also in these cases.

2.5 The varieties X1,n
r

In this section we introduce the main objects of interest in this thesis: blow-ups
of the product P1 × Pn in a collection of points in very general position.

Recall that a collection of points is in very general position in P1 × Pn if the
corresponding element in the Hilbert scheme of s points of P1 × Pn lies in the
complement of a countable union of Zariski closed subsets.

We denote by X1,n
r the blow-up of P1×Pn in r points p1, . . . , pr in very general

position:
X1,n
r := Blr(P1 × Pn).

We will denote by π : X1,n
r → P1 × Pn the blow-down morphism and by

π1 : P1 × Pn → P1, π2 : P1 × Pn → Pn the projections onto the factors. Moreover,
let us denote by π̃1, π̃2 the morphisms from X1,n

r to P1 and Pn induced by the
projections. We summarize the situation in the following diagram:

X1,n
r

P1 × Pn

P1 Pn

π
π̃1 π̃2

π1 π2

The product P1 × Pn is depicted in the following picture:

P1

Pn
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Let Pic(X1,n
r ) denote the Picard group of X1,n

r . Throughout the thesis we will
denote by:

- H1 the pull-back of a point of P1 via π̃1;

- H2 the pull-back of a hyperplane in Pn via π̃2;

- Ei the exceptional divisor over pi for i = 1, . . . , r;

and by

- h1 the class of a line contained in a general fiber of π̃2;

- h2 the class of a line contained in a general fiber of π̃1;

- ei the class of a line in the exceptional divisor Ei for i = 1, . . . , r.

We have that
Pic(X1,n

r ) = Z[H1, H2, E1, . . . , Er].

Remark 5. In the notation previously introduced, we have that h1−ei is the class
of a general fiber of π̃2 passing through the point pi. Analogously, the class h2 − ei
the class of a general fiber of π̃1 passing through the point pi.

The following proposition provides informations about generators for N1(X1,n
r )

and N1(X1,n
r ) and the rules of intersection between these generators.

All statements are straightforward consequences of general results about inter-
section theory of blow-ups; a reference is [EH16, Proposition 13.12]. We follow
[GPPS22].

Proposition 2.5.1. Let X1,n
r as above. Then

1. The vector spaces N1(X1,n
r ) and N1(X1,n

r ) have the following bases:

N1(X1,n
r ) = 〈H1, H2, E1, . . . , Er〉,

N1(X1,n
r ) = 〈h1, h2, e1, . . . , er〉.

2. We have the following intersection numbers among divisors:

H1 ·Hn
2 = 1,

Hp
1 ·H

1+n−p
2 = 0 for p 6= 1,

Hp
1 · E

1+n−p
i = Hp

2 · E
1+n−p
i = 0 for all p > 0, i = 1, . . . , s,

E1+n
i = (−1)n.
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3. We have the following intersection numbers between divisors and curves:

Hi · hj = δij,
Hi · ej = 0 for i = 1, 2 and j = 1, . . . , s,
Ei · ej = −δij.

In particular, Proposition 2.5.1 allows us to determine the numerical classes of
curves on X1,n

r as follows.

Corollary 2.5.2. Let C be the proper transform on X1,n
r of a curve of bidegree

(d1, d2) in P1 × Pn with multiplicity mi at the point pi. Then, the class of C in
N1(X1,n

r ) is

C ∼ d1h1 + d2h2 −
r∑
i=1

miei.

Proof. We have the intersection numbers

C ·Hi = di, fori = 1, 2.
C · Ej = mj for j = 1, . . . , r.

Since the intersection pairing on X1,n
r is perfect, the given formula then follows

from Proposition 2.5.1.

In particular, we deduce the following formula:
For any divisor D on X1,n

r , the class of D can be written in the form

d1H1 + d2H2 −
r∑
i=1

miEi,

for some integers d1, d2,m1, . . . ,mr.
In the rest of the thesis we will focus on X1,n

r for r ≤ n + 2 and for r = n + 3
if n ≤ 4. However, it is interesting to mention some results on certain asymmetric
varieties of blow-up type, which do not fall in the previous cases.
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Chapter 3

Mori cones

This chapter consists of five sections. In the first Section, we introduce Del Pezzo
surfaces and we write down the generators of their Mori cones. In Sections 2, 3
and 4 we compute the cone of effective curves of X1,n

r , for r ≤ n + 2, and for
r = n + 3 when n ≤ 4. Finally, in section 5 we prove that the varieties X1,n

r are
log Fano for r ≤ n+ 1.

3.1 Mori cones of Del Pezzo surfaces
In this section we record the effective cones of various Del Pezzo surfaces. These
cones are described in standard references such as [Man74].

We briefly recall the notion of Fano varieties and of Del Pezzo surfaces.

Definition 3.1.1. A smooth projective variety X is Fano if the anticanonical
divisor −KX is ample.

Example 3.1.2. Let X ⊂ Pr be a smooth hypersurface of degree d. By adjunction

KX = (KPr +X)|X = (d− r − 1)H,

where H is the class of a hyperplane. Thus X is Fano if and only if d ≤ r.

Claim 3.1.3. The product of Fano varieties is Fano. If C is a smooth projective
curve then C is Fano if and only if C ∼= P1.

Proof. For a proof see [BP04].

Definition 3.1.4. A Del Pezzo surface S is a Fano variety of dimension two. The
degree of S is the self intersection number (KS, KS) of its canonical class KS.

The following theorem gives a complete characterization of Del Pezzo surfaces.

29
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Theorem 3.1.5. Let S be a Del Pezzo surface. Then,

1. S is isomorphic to P1 × P1, or

2. S is isomorphic to P2 blown up in r ≤ 8 points in general position.

Del Pezzo proved that a Del Pezzo surface has degree at most 9.
Let Sr be the blow-up of P2 at p1, . . . , pr ∈ P2 general points. By Theorem

3.1.5, the surface Sr is Del Pezzo if and only if 0 ≤ r ≤ 8. The degree of Sr is
9− r. In the next subsections, we recall the structure of the Mori cone NE(Sr) for
r ≤ 8.

We will denote by h the pull-back of a line in P2 and by ei the exceptional
divisor over the point pi, for i = 1, . . . , r. The vector space of one-cycles is given
by:

N1(Sr) = 〈h, e1, . . . , er〉.
The only Del Pezzo surface of degree 9 is P2 and the computation of its Mori

cone is straightforward.

3.1.1 Del Pezzo of degree 8
There are two isomorphism types. One is a Hirzebruch surface, given by the blow
up of the projective plane at one point, which will be denoted S1. The other is the
product of two projective lines

P1 × P1,

which is the only Del Pezzo surface that cannot be obtained as a blow up of the
projective plane.

The Mori cone of S1 is generated by the following classes

Divisor class Number of extremal rays
ei 1
h− ei 1

for a total of 2 extremal rays.

3.1.2 Del Pezzo of degree 7
The Mori cone of S2 is generated by the following classes

Divisor class Number of extremal rays
ei 2
h− ei − ej 1

for a total of 3 extremal rays.



3.1. Mori cones of Del Pezzo surfaces 31

3.1.3 Del Pezzo of degree 6
The Mori cone of S3 is generated by the following classes

Divisor class Number of extremal rays
ei 3
h− ei − ej 3

for a total of 6 extremal rays.

3.1.4 Del Pezzo of degree 5
The Mori cone of S4 is generated by the following classes

Divisor class Number of extremal rays
ei 4
h− ei − ej 6

for a total of 10 extremal rays.

3.1.5 Del Pezzo of degree 4
The Mori cone of S5 is generated by the following classes

Divisor class Number of extremal rays
ei 5
h− ei − ej 10
2h− e1 − · · · − e5 1

for a total of 16 extremal rays.

3.1.6 Del Pezzo of degree 3
The Mori cone of S6 is generated by the following classes

Divisor class Number of extremal rays
ei 6
h− ei − ej 15
2h− ei1 − · · · − ei5 6

for a total of 27 extremal rays. These surfaces are cubic surfaces in P3.
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3.1.7 Del Pezzo of degree 2
The Mori cone of S7 is generated by the following classes

Divisor class Number of extremal rays
ei 7
h− ei − ej 21
2h− ei1 − · · · − ei5 21
3h− 2ei − ej1 − · · · − ej6 7

for a total of 56 extremal rays.

3.1.8 Del Pezzo of degree 1
The Mori cone of S8 is generated by the following classes

Divisor class Number of extremal rays
ei 8
h− ei − ej 28
2h− ei1 − · · · − ei5 56
3h− 2ei − ej1 − · · · − ej6 56
4h− 2ei1 − · · · − 2ei3 − ej1 − · · · − ej5 56
5h− 2ei1 − · · · − 2ei6 − ej1 − ej2 28
6h− 3ei − 2ei1 − · · · − 2ej7 8

for a total of 240 extremal rays.

3.2 The Mori cone of X1,n
n+1

In this section we compute de Mori cone of X1,n
n+1.

Proposition 3.2.1. The Mori cone of X1,n
r is given by:

NE(X1,n
r ) = 〈h1 − ei, h2 − ei, ei〉

for all r ≤ n+ 1.

Proof. It is enough to prove the claim for r = n + 1. Indeed, if the claim is true
for n+ 1, it remains true for r ≤ n+ 1, after setting some of the coefficients of the
ei’s to zero.

The proof is done by induction on n.
If n = 1, then

X1,1
2 = Bl2(P1 × P1).
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From Proposition 2.5.1 we have

N1(X1,1
2 ) = R[e1, e2, h1, h2].

The well-known isomorphism
S3 ∼= X1,1

2

implies isomorphisms at the level of one-cycles

N1(S3) ∼= N1(X1,1
2 )

and
NE(S3) ∼= NE(X1,1

2 )
between Mori cones. The first isomorpshim

N1(X1,1
2 )→ N1(S3)

is defined on generators in the following way:
h1 7−→ h− e2

h2 7−→ h− e1

e1 7−→ h− e1 − e2

e2 7−→ e3

Whereas the inverse map is defined as:
e1 7−→ h1 − e1

e2 7−→ h2 − e1

e3 7−→ e2

h 7−→ h1 + h2 − e1

The table in 3.1.3 and the isomorphisms above give the following generators
for NE(X1,1

2 ):
NE(X1,1

2 ) = 〈h2 − ei, h1 − ei, ei〉,

which conclude this case. We prove the induction step.
Suppose that the claim is proved for X1,n−1

n and let C ⊂ X1,n
n+1 be an irreducible

curve.
If C is contracted by π, then C ⊂ Ei for some i = 1, . . . , n + 1, hence C is

a multiple of ei. Otherwise, π(C) is a curve in P1 × Pn of bidegree (d1, d2) and
multiplicity mi at the point pi. By corollary 2.5.2, it can be written as

C ∼ d1h1 + d2h2 −m1e1 − · · · −mn+1en+1.



34 Chapter 3. Mori cones

Relations in 2.5.1 give:

C · (H1 − Ei) = d1 −mi.

If d1 −mi < 0, for some i, the curve C is contained in H1 − Ei. The divisor
class H1−Ei is the class of the strict transform of the fiber of π1 passing through
pi. Such fiber is isomorphic to Blpi

Pn. Hence, since

NE(Blpi
Pn) = 〈ei, h2 − ei〉,

C can be written as a linear combination with non negative coefficients of ei and
h2 − ei.

Assume that d1 −mi ≥ 0 for i = 1, . . . , n+ 1.
Consider the projection π̃2(C) to the second factor Pn. If π̃2(C) is a point, then

C s a linear combination with non negative coefficients of h1 − ei and ei, for some
i = 1, . . . n + 1. Otherwise, π̃2(C) is a curve in Pn of degree d2, passing through
the projected points, with multiplicity

multπ2(pi) π̃2(C) = mi,

for i = 1, . . . n+ 1.
Let Π1,...,n ⊂ Pn be the hyperplane passing through n of the blown-up points.
By Bézout’s theorem we have that either

m1 + · · ·+mn ≤ deg(Π1,...,n · π̃2(C)) = deg(Π1,...,n) deg(π̃2(C)) = 1 · d2 = d2

or
m1 + · · ·+mn > d2

and π̃2(C) is contained in Π1,...,n:

π̃2(C) ⊂ Π1,...,n.

Then π(C) ⊂ P1 × Π1,...,n and hence C is contained in the strict transform of
P1 × Pn−1, which is isomorphic to X1,n−1

n .
By induction, we can conclude that C is a linear combination with nonnegative

coefficients of h2 − ei, h1 − ei and ei.
On the other hand, if

m1 + · · ·+mn ≤ d2,

C can be written as:

C ∼
n∑
i=1

mi(h2 − ei) +mn+1(h1 − en+1) + (d1 −mn+1)h1 + (d2 −m1 − · · · −mn)h2,
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with non negative coefficients. Since

h1 = (h1 − ei) + ei,

and
h2 = (h2 − ei) + ei,

the claim is proved.

Proposition 3.2.2. If r > n + 1, the Mori cone of X1,n
r is not generated by

ei, h1 − ei, h2 − ei:
〈ei, h1 − ei, h2 − ei〉 $ NE(X1,n

r ).

Proof. It is enough to prove it for r = n+ 2. The curve

C ∼ h1 + nh2 − e1 − · · · − en+2

is of bidegree (1, n) and passes through the n+ 2 blown-up points. It is effective,
since π̃2(C) ⊂ Pn is the class of a rational normal curve of degree n passing through
the n + 2 projected points. If we try to write it as a linear combination of the
generators written above, we would have

C ∼
∑
i

ai(h1 − ei) +
∑
i

bi(h2 − ei) +
∑
i

ciei,

for some coefficients ai, bi, ci ≥ 0. Then

C ∼ (h1 − e1) + (nh2 − e2 − · · · en+2) ∼

∼ (h1 − e1) + (h2 − e2) + · · ·+ (h2 − en+1)︸ ︷︷ ︸
n

−en+2.

So a1 = 1, aj = 0 for j 6= 1, bi = 1 for i = 2, . . . n + 1 and cn+2 = −1. In no way
we can make cn+2 a positive coefficient or tie en+2 to one of the hi. The claim is
proved.

3.3 The Mori cone of X1,n
n+2

In this section we compute the Mori cone of X1,n
n+2.

Consider the Segre embedding

σ1,n : P1 × Pn −→ P2n+1

([u0, u1], [v0, . . . , vn]) 7→ [u0v0, u0v1, . . . , u1vn]

and set Σ1,n := σ1,n(P1 × Pn). Σ1,n is called the Segre variety and it is a smooth
n+ 1-fold in P2n+1. Recall that deg(Σ1,n) = n+ 1.
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Proposition 3.3.1. The Mori cone of X1,n
n+2 is given by:

NE(X1,n
n+2) = 〈h1 + nh2 − e1 − · · · − en+2, h1 − ei, h2 − ei, ei〉

Proof. The proof is done by induction on n.
If n = 1, then

X1,1
3 = Bl3(P1 × P1).

From Proposition 2.5.1, we have

N1(X1,1
3 ) = R[e1, e2, e3, h1, h2].

The well-known isomorphism

S4 ∼= X1,1
3 ,

implies isomorphisms at the level of one-cycles

N1(S4) ∼= N1(X1,1
3 )

and
NE(S4) ∼= NE(X1,1

3 )
between Mori cones. The first isomorphism

N1(X1,1
3 )→ N1(S4)

is defined on generators in the following way:

h1 7−→ h− e2

h2 7−→ h− e1

e1 7−→ h− e1 − e2

e2 7−→ e3

e3 7−→ e4

whose inverse is 

e1 7−→ h1 − e1

e2 7−→ h2 − e1

e3 7−→ e2

e4 7−→ e3

h 7−→ h1 + h2 − e1

The table in 3.1.4 and the isomorphisms above give the following generators
for NE(X1,1

3 ):
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NE(X1,1
3 ) = 〈h1 + h2 − e1 − e2 − e3, h1 − ei, h2 − ei, ei〉,

which conclude this case.
The proof is by induction.
Suppose that the claim is proved for X1,n−1

n+1 and let C ⊂ X1,n
n+2 be an irreducible

curve. If C is contracted by π, then C ⊂ Ei for some i = 1, . . . , n+ 2. Otherwise,
π(C) is a curve in P1 × Pn of bidegree (d1, d2) and multiplicity mi at the point pi.
By corollary 2.5.2, it can be written as

C ∼ d1h1 + d2h2 −m1e1 − · · · −mn+2en+2.

If
d1 + d2 ≥ m1 + · · ·+mn+2,

then there are more terms of the form hi than terms of the form ei. So, we can
couple each of the ei with one class between h1 and h2, to form classes of the form
hi − ej. If there are some hi to spare, the curve C can be written as a linear
combination of

hi − ej, hi.
Since

hi = (hi − ej) + ej,

C is a linear combination with non negative coefficients of h1 − ei, h2 − ei, ei.
Otherwise, we use the Segre embedding. The curve σ1,n(π(C)) is a curve of

degree d1 + d2 in P2n+1, passing through the n + 2 points σ1,n(p1), . . . , σ1,n(pn+2),
with multiplicities mi.

Let us denote the (n+ 1)-dimensional linear space Π1,...,n+2
spanned by σ1,n(p1), . . . , σ1,n(pn+2). If

d1 + d2 < m1 + · · ·+mn+2,

the curve σ1,n(π(C)) is contained in this linear space:

σ1,n(π(C)) ⊂ Π1,...,n+2.

Since the Segre variety Σ1,n has degree n + 1 in P2n+1, and since the points
σ1,n(p1), . . . , σ1,n(pn+2) are in general position, the intersection

Π1,...,n+2 ∩ Σ1,n = C ′,

is a rational normal curve C ′ of degree n+1, passing through σ1,n(p1), . . . , σ1,n(pn+2).
In X1,n

n+2, C ′ has class

h1 + nh2 − e1 − · · · − en+2.
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Then, C ′ is a component of σ1,n(π(C)). By irreducibility of C, they must coincide.
Then

C ∼ α(h1 + nh2 − e1 − · · · − en+2),

for some positive coefficient α. This concludes the proof.

3.4 The Mori cone of X1,n
n+3 for n ≤ 4.

In this section we compute the generators for the Mori cone of X1,n
n+3, when n ≤ 4.

In order to do this, we need to introduce rational normal scrolls. A reference for
the theory of scrolls is [GH14].

Let a, b be positive integers with a ≤ b, and n = a+b+1, and let Λa,Λb ⊂ Pa+b+1

be complementary linear subspaces of dimension a and b in Pn (that is, Λa and Λb

are disjoint and span Pn). Choose rational normal curves Ca ⊂ Λa and Cb ⊂ Λb,
and an isomorphism φ : Ca → Cb.

Definition 3.4.1. The surface

S(a,b) =
⋃
x∈Ca

〈x, φ(x)〉 ⊂ Pn,

where 〈x, φ(x)〉 denotes the line through x, φ(x), is a rational normal scroll of type
(a, b). This is a smooth rational surface of degree deg(S(a,b)) = a+ b.

Lemma 3.4.2. Let H ⊂ P2n+1 be a general (n + 2)-plane. Then the intersection
H ∩ Σ1,n is a rational normal scroll S(a,b) with

(a, b) =
{

(n+1
2 , n+1

2 ) if n is odd;
(n2 ,

n+2
2 ) if n is even.

Proof. The Segre variety Σ1,n is the projectivization over P1 of the rank n + 1
vector bundle OP1(−1)n+1. A codimension n− 1 linear section corresponds to the
projectivization of the kernel of a morphism

OP1(−1)n+1 → On−1
P1

which is a rank two vector bundle OP1(−a) ⊕ OP1(−b). To conclude it is enough
to note that for H general the splitting type is (−a,−b) is the one given in the
statement.

Lemma 3.4.3. Let f : X → Y be a morphism of projective varieties, and NE(f)
the cone of curves contracted by f . Then NE(f) is extremal in NE(X).
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Proof. Let Γ be the class of an irreducible curve in NE(f), and assume that Γ =
Γ1 + Γ2 for Γ1,Γ2 ∈ NE(X). Applying f∗ we get f∗Γ1 + f∗Γ2 = f∗Γ = 0 since Γ is
contracted by f . Therefore, f∗Γ1 = f∗Γ2 = 0 and hence Γ1,Γ2 ∈ NE(f).

Proposition 3.4.4. Fix p1, . . . , pn+3 ∈ Σ1,n general points. Set H = 〈p1, . . . , pn+3〉.
Let S̃a,b be the blow-ups of Sa,b = H ∩ Σ1,n at the pi. Then

NE(X1,n
n+3) =

〈
NE(S̃a,b), h1 − e1, . . . , h1 − en+3

〉
.

Proof. Let C ∼ ah1+bh2−
∑n+3
i=1 miei be an irreducible curve inX1,n

n+3, and Γ ⊂ Σ1,n

its image in P2n+1. Then deg(Γ) = a+ b and multpi
Γ = mi for i = 1, . . . , n+ 3.

If a+ b <
∑n+3
i=1 mi then Γ is contained in all the hyperplanes containing H and

hence Γ ⊂ H ∩ Σ1,n. By Lemma 3.4.2 Sa,b = H ∩ Σ1,n is a scroll.
If a + b ≥ ∑n+3

i=1 mi we can pair each ei with one among h1 and h2, and write
C as a linear combination with non negative coefficients of h1 − ei, h2 − ej, ek.

The curves of class h2− ei are numerically equivalent to the strict transform of
the line through pi in the ruling of Sa,b. The curves of class h1 − ei are contracted
by π̃2 and the curves of class h2− ej are contracted by π̃1. Hence, by Lemma 3.4.3
h1 − ei and h2 − ej generate extremal rays of NE(X1,n

n+3).
Summing-up, we have showed that an irreducible curve C ⊂ X1,n

n+3 can be
written as a linear combination with non negative coefficients of a curve Γ ⊂ S̃a,b
and of the h1 − ei.

With these tools we are now able to prove that

Proposition 3.4.5. If n ≤ 4, the Mori cone of X1,n
n+3 is given by:

NE(X1,n
n+3) = 〈h1 + nh2 − ei1 − · · · − ein+2 , h1 − ei, h2 − ei, ei〉,

for i, i1, . . . , in+2 ∈ {1, . . . , n+ 3}.

Proof. If n = 1, then
X1,1

4 = Bl4(P1 × P1).
Proposition 2.5.1 tells that:

N1(X1,1
4 ) = R[e1, . . . , e4, h1, h2].

The well-known isomorphism

S5 ∼= X1,1
4 ,

implies that
N1(S5) ∼= N1(X1,1

4 )
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and
NE(S5) ∼= NE(X1,1

4 ).

The first isomorphism
N1(X1,1

4 )→ N1(S5)

is defined on generators in the following way:

h1 7−→ h− e2

h2 7−→ h− e1

e1 7−→ h− e1 − e2

e2 7−→ e3

e3 7−→ e4

e4 7−→ e5

whose inverse is 

e1 7−→ h1 − e1

e2 7−→ h2 − e1

e3 7−→ e2

e4 7−→ e3

e5 7−→ e4

h 7−→ h1 + h2 − e1

The table in 3.1.5 and the isomorphisms above give the following generators
for NE(X1,1

4 ):

NE(X1,1
4 ) ∼= 〈h1 + h2 − ei1 − ei2 − ei3 , h1 − ei, h2 − ei, ei〉

for i, i1, . . . , i3 ∈ {1, . . . , 4}, and this concludes this case.
From now on we consider n > 1.
Let C ⊂ X1,n

n+3 be an irreducible curve. If C is contracted by π, then C ⊂ Ei for
some i = 1, . . . , n+ 3, and hence C is a multiple of ei. Otherwise, π(C) is a curve
in P1 × Pn of bidegree (d1, d2) and multiplicity mi at the point pi. By corollary
2.5.2, it can be written as

C ∼ d1h1 + d2h2 −m1e1 − · · · −mn+3en+3.

If
d1 + d2 ≥ m1 + · · ·+mn+3,

then there are more terms of the form hi than terms of the form ei. So, we can
couple each of the ei with one class between h1 and h2, to form classes of the form
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hi − ej. If there are some hi to spare, the curve C can be written as a linear
combination of

h1 − ej, h2 − ei, hi.
Since

hi = (hi − ej) + ej,

C is a linear combination with non negative coefficients of h1 − ei, h2 − ei, ei.
Note that the curve σ1,n(π(C)) is a curve of degree d1+d2 in Pn, passing through

the points σ1,n(p1), . . . , σ1,n(pn+3) with multiplicities mi. Let Π1,...,n+3 ⊂ P2n+1 be
the (n+ 2)-plane generated by σ1,n(p1), . . . , σ1,n(pn+3). If

d1 + d2 < m1 + · · ·+mn+3,

then σ1,n(π(C)) ⊂ Π1,...,n+3. By lemma 3.4.2 the intersection X = Π1,...,n+3 ∩ Σ1,n

is a degree n + 1 scroll in P2n+1. By Proposition 3.4.4, the Mori cone of X1,n
n+3 is

generated by the Mori cone of X and by h1 − ei for i = 1, . . . , n+ 3. Since

σ1,n(π(C)) ⊂ X,

in order to find generators for the Mori cone of X1,n
n+3, we need to compute gener-

ators for NE(X). We will do this by considering separately the cases n = 2, 3, 4.
If n = 2, X is a cubic scroll in the four dimensional linear space Π1,...,5. If we

look at this surface in the Segre variety of the product P1 × P2, we see that

X = σ1,2(Bl1(P2)),

and that the projection π2 : X → P2 is the blow-down of the exceptional divisor.
Hence, by blowing up we get that

C ⊂ Bl5(X)
(1)∼= S6,

which is a Del Pezzo surface of degree three, that we denoted by S6. The Mori
cone of S6 is described in table 3.1.6. The isomorphism (1) induces a map

N1(S6)→ N1(X1,2
5 ),

which is defined on the basis of N1(S6) as follows :
e1 7−→ h1

h− e1 7−→ h2

ei 7−→ ei−1

,

for i = 2, . . . , 5. To find the Mori cone of Bl5(X) we write down the images of the
generators of NE(S6) through the isomorphism above.
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First, note that ei = ei−1 for i = 2, . . . , 6, and e1 = h1 = (h1 − ei) + ei.
Furthermore

h− ei − ej = (h1 − ei−1) + (h2 − ej−1) for i, j = 2, . . . , 6;
h− e1 − ej = h2 − ej−1 for j = 2, . . . , 6;
2h− e2 − · · · − e6 = (h1 + 2h2 − e2 − · · · − e6) + (h1 − e6)
2h− e1 − ej1 − · · · − ej4 = h1 + 2h2 − ej1−1 − · · · − ej4−1.

This computation concludes this case.
If n = 3, X is a quartic scroll in P5. Since the quartic scroll is obtained by

intersecting the Segre variety with two general hyperplanes, the corresponding
surface in P1× P3 is the intersection between two hypersurfaces of bidegree (1, 1):

S ⊆ P1 × P3 σ1,3−→ X ⊆ Σ1,3 ⊆ P7

Ω σ1,37−→ X,

with

Ω =

x0f1(y0, . . . , y3) + x1f2(y0, . . . , y3) = 0
x0g1(y0, . . . , y3) + x1g2(y0, . . . , y3) = 0

,

where
fi, gi ∈ k[y0, . . . , y3]1.

The image of the projection S → P3 is the quadric surface {f1g2−f2g1 = 0} ⊂ P3.
Note that under the generality condition, f1, f2, g1, g2 do not vanish simultaneously
at a point, hence such projection is an isomorphism. Since any quadric surface in
P3 is isomorphic to P1 × P1, we can conclude that

Ω ∼= P1 × P1.

Hence,
C ⊂ Bl6(Ω) ∼= Bl6(P1 × P1) ∼= S7.

The isomorphism
S7 ∼= Bl6(P1 × P1)

gives a map
φ : N1(S7) −→ N1(Bl6(P1 × P1)),

given by the following assignement:
h 7−→ h̃1 + h̃2 − ẽ1

e1 7−→ h̃1 − ẽ1

e2 7−→ h̃2 − ẽ1

ei 7−→ ẽi−1

,
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for i = 3, . . . , 7.
We need to understand how Ω is contained in P1 × P3. We can write

Ω ∼= P1 × P1 i
↪→ P1 × P3

((x0, x1), (µ0, µ1)) 7−→ ((x0, x1), (x1µ0, x0µ0, x1µ1, x0µ1)),
and notice that for any fixed point (x̄0, x̄1) ∈ P1, we have

i((x̄0, x̄1)× P1) = ((x̄0, x̄1), (x̄1µ0, x̄0µ0, x̄1µ1, x̄0µ1)),

which is a curve in P1 × P3 with class h2. Now if we fix a point (µ̄0, µ̄1) in the
second factor, we have:

i((x0, x1), (µ̄0, µ̄1)) = ((x0, x1), (x1µ̄0, x0µ̄0, x1µ̄1, x0µ̄1)),

which is a curve of class h1 + h2. This inclusion i gives a map

i1 : N1(Bl6(P1 × P1))→ N1(X1,3
6 )

given by:

Ω =


h̃1 7−→ h2

h̃2 7−→ h1 + h2

ẽi 7−→ ei

,

for i = 1, . . . , 6.
Hence, composing the two maps i1 and φ we get a map

i1 ◦ φ : N1(S7)→ N1(X1,3
6 ),

which is defined as

Ω =


h 7−→ h1 + 2h2 − e1

e1 7−→ h2 − e1

e2 7→ h1 + h2 − e1

ei 7→ ei−1

,

for i = 3, . . . , 7. Now, consider the table introduced in 3.1.7 with the generators
for the Mori cone of S7. The map i1 ◦ φ induces an isomorphism

NE(S7)
∼=−→ NE(X1,3

6 ).

In order to find the generators of NE(X1,3
6 ), we need to take the generators of

NE(S7) and look at their images via the map i1 ◦ φ.
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Let us start with the curves ei, for i = 1, . . . , 7. We see that e1 and e2 are
sent respectively to h2 − e1 and to h1 + (h2 − e1). Since h1 = (h1 − ei) + ei, these
two curves are linear combination of h1 − ei, h2 − ei and ei. The same is true for
the image of ei when i = 3, . . . 7: these curves are sent to ei−1. Now we consider
the other generators appearing in 3.1.7. The following table must be read in this
way: on the left, we have written the generators for NE(S7). Since the images of
ei depends upon the value of i, we have separated the case for which i = 1,i = 2 or
i = 3, . . . 7. The ” = ” must be intended as "it is sent via i1 ◦ φ to". On the right,
we have the images of the generators written in a form that permits to write them
as a linear combination of h1 − ei, h2 − ei, ei and h1 + 3h2 − ei1 − · · · − ei5 .

h− e1 − e2 = e1;
h− e1 − ei = (h1 − e1) + (h2 − ei−1) + e1;
h− e2 − ei = h2 − ei−1;
h− ei − ej = (h1 − e1) + (h2 − ei−1) + (h2 − ej−1);
2h− e1 − e2 − ei1 − ei2 − ei3 = (h1 − ei1−1) + (h2 − ei2−1) + (h2 − ei3−1);
2h− e1 − ei1 − ei2 − ei3 − ei4+ = (h1 − e1) + (h1 − ei1−1) + (h2 − ei2−1)

(h2 − ei3−1) + (h2 − ei4−1);
2h− e2 − ei1 − ei2 − ei3 − ei4 = h1 + 3h2 − e1 − ei1−1 − ei2−1 − ei3−1 − ei4−1;
3h− 2e1 − e2 − ei1 − · · · − ei5 = h1 + (h1 + 3h2 − ei1−1 − · · · − ei5−1);
3h− e1 − 2e2 − ei1 − · · · − ei5 = h1 + 3h2 − ei1−1 − · · · − ei5−1;
3h− e1 − e2 − 2ei1 − · · · − ei5 = (h1 − e1) + (h2 − ei1−1)+

(h1 + 3h2 − ei1−1 − · · · − ei5−1);

and this concludes the proof, since we see that we can write each class of curve on
the right as a linear combination with non negative coefficients of h1−ei, h2−ei, ei
and h1 + 3h2 − ei1 − · · · − ei5 .

If n = 4, X is a quintic scroll in P6. Since X is the intersection between three
general hyperplanes and Σ1,4, the corresponding surface in P1 × P4 is a complete
intersection of three hypersurfaces of bidegree (1, 1), described by equations:

X =


x0f1(y0, . . . , y4) + x1f2(y0, . . . , y4) = 0
x0g1(y0, . . . , y4) + x1g2(y0, . . . , y4) = 0
x0h1(y0, . . . , y4) + x1h2(y0, . . . , y4) = 0

,

where
fi, gi ∈ k[y0, . . . , y4]1.

Consider the following diagram:
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S ⊂ P1 × P4

P1 P4

π1 π2

We have that
π1|S

: S → P1

is a fibration over P1 whose fibers are lines in P4 and S of class h2, and that
π2(S) ⊆ P4 is a cubic 3-fold. The linear system of conics in P2 through p = [1 : 0 :
0] ∈ P2 gives a rational map

P2 99K P4

[x, y, z] 7→ ([xy, xz, y2, yz, z2])
Hence, blowing up the singularity gives:

Blp(P2)

P2 S ⊆ P1 × P4

τ̃
π

τ

where
τ : P2 99K P1 × P4

is the rational map given by

τ [x, y, z] = ([y, z], [xy, xz, y2, yz, z2]),

π and τ̃ its resolution.
Since τ̃ is an isomorphism onto its image,

S ∼= Blp P2,

hence C ⊂ Bl7(S) ∼= Bl8(P2), which is a Del Pezzo surface of degree one, whose
generators of the Mori cone are listed in 3.1.8.

The class h, represented by the line of equation {x = 0} in Blp P2, is sent
through the lift of τ to:

([y, z], [0, 0, y2, yz, z2]) ⊆ P1 × P4,

with class h1 + 2h2 in N1(P1×P4). Analogously, a line in Blp(P2) passing through
the point p, of class h − e, represented by the line of equation {y = 0}, is sent
through the lift of τ to:

([0, 1], [0, x, 0, 0, z]) ⊆ P1 × P4,
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with class h2. The calculations above translate into a map ψ : N1(S8)→ N1(X1,4
7 ),

defined by


h 7−→ h1 + 2h2

e1 7−→ h1 + h2

ei 7−→ ei−1

,

for i = 2, . . . , 8. The map ψ induces an isomorphism

NE(S8)
∼=−→ NE(X1,4

7 ).

In order to find the generators of NE(X1,4
7 ), we need to take the generators of

NE(S8) and look at their images via the map ψ.

Let us start with the curves ei, for i = 1, . . . , 8. We see that e1 is sent to
h1 + h2. Since h1 = (h1 − ei) + ei and h2 = (h2 − ei) + ei, this curve is a linear
combination of h1− ei, h2− ei and ei. The same it’s true for the image of ei when
i = 2, . . . 8: these curves are sent to ei−1. Now we consider the other generators
appearing in 3.1.8. The following table must be read in this way: on the left, we
have written the generators for NE(S8). Since the images of ei depends upon the
value of i, we have separated the case for which i = 1 or i = 2, . . . 8. The ” = ”
must be intended as "it is sent via ψ to". On the right, we have the images of the
generators written in a form that permits to write them as a linear combination
of h1 − ei, h2 − ei, ei and h1 + 4h2 − ei1 − · · · − ei6 .
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h− e1 − ej = h2 − ej−1;
h− ei − ej = (h1 − e1) + (h2 − ei−1)

+(h2 − ej−1) + e1;
2h− e1 − ei1 − · · · − ei4 = (h1 − ei1−1) + (h2 − ei2−1)+

(h2 − ei3−1) + (h2 − ei4−1);
2h− ei1 − · · · − ei5 = ∑2

k=1(h1 − eik−1)+∑5
t=3(h2 − eit−1) + (h2 − e1) + e1;

3h− 2ei − ej1 − · · · − ej6 = 2(h1 − ei−1) + (h1 − ej1−1)+∑6
k=1(h2 − ejk−1) + ej1−1;

3h− 2e1 − ej1 − · · · − ej6 = h1 + 4h2 − ej1−1 − · · · − ej6−1;
3h− 2ei − e1 − ej1 − · · · − ej5 = 2(h1 − ei−1)+

(h2 − ej1−1) + · · ·+ (h2 − ej5−1);
4h− 2e1 − 2ei1 − 2ei2 − ej1 − · · · − ej5 = 2(h2 − ei1−1) + (h1 − ei2−1)+

(h1 + 4h2 − ei2−1 −
∑5
k=1 ejk−1);

4h− 2ei1 − · · · − 2ei3 − e1 − ej1 − · · · − ej4 = ∑3
k=1 2(h2 − eik) + (h2 − ej1−1)+∑4

t=2(h1 − ejt−1);
5h− 2e1 − 2ei1 − · · · − 2ei5 − ej1 − ej2 = (h1 + 4h2 − 2∑3

k=1 eik−1)
+2∑2

t=1(ht − eit+3−1)
+∑2

k=1(h2 − ejk−1);
5h− 2ei1 − · · · − 2ei6 − e1 − ej = ∑4

k=1 2(h2 − eik−1)+∑6
t=5 2(h1 − eit−1) + (h2 − ej−1);

6h− 2e1 − 3e2 − 2e3 − · · · − 2e8 = 2(h1 + 4h2 − e3 − · · · − e8)+
(h1 − e2) + 2(h2 − e2);

6h− 3e1 − 2e2 − · · · − 2e8 = 2(h1 + 4h2 − e2 − · · · − e7)+
(h1 − e8) + (h2 − e8);

and this concludes the proof, since we see that we can write each class of curve on
the right as a linear combination with non negative coefficients of h1−ei, h2−ei, ei
and h1 + 4h2 − ei1 − · · · − ei6 .

3.5 The variety X1,n
r is log Fano for r ≤ n + 1

As a consequence of Proposition 3.2.1 we want to prove the following proposition:
Proposition 3.5.1. The variety X1,n

r is log Fano for r ≤ n+ 1.
Consider the case r = n + 1. The result for r < n + 1 will then follow from

[PS07, Theorem 2.9]. Recall that the anti-canonical divisor on X1,n
n+1 is

−KX1,n
n+1

= 2H1 + (n+ 1)H2 − nE1 − · · · − nEn+1.
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According to definition 2.4.8, we need to find an effective Q-divisor ∆ on X1,n
n+1

such that −KX1,n
n+1
−∆ is ample and the pair (X1,n

n+1,∆) is Kawamata log terminal
(see Definition 1.0.12 for the introduction of the notion of klt). Consider the divisor

D = (n+ 1)H2 − nE1 − · · · − nEn+1.

The divisor D is effective by construction, since it is the pull-back of the effective
divisor consisting in the union of the hyperplanes in Pn passing through n among
the n + 1 projections of the blown-up points. Note that there are exactly n + 1
hyperplanes in this union and that any projected point is contained in exactly n
different hyperplanes.

Set ∆ε = εD, with ε ∈ Q>0.
We need to establish for which ε the divisor

−KX1,n
n+1
−∆ε = 2H1 + ((n+ 1)− ε(n+ 1))H2 + (nε− n)

n+1∑
i=1

Ei

is ample.
By Proposition 3.2.1, the Mori cone of X1,n

n+1 is

NE(X1,n
n+1) = 〈h1 − ei, h2 − ei, ei〉.

Since

(−KX1,n
n+1
−∆ε) · ei = n− εn > 0 if and only if ε < 1;

(−KX1,n
n+1
−∆ε) · (h1 − ei) = 2− n+ εn > 0 if and only if ε > (n− 2)/n;

(−KX1,n
n+1
−∆ε) · (h2 − ei) = n+ 1− ε(n+ 1)− n+ εn > 0 if and only if ε < 1;

Hence −KX1,n
n+1
−∆ε is ample if and only if (n− 2)/n < ε < 1.

Now we show that the pair (X1,n
n+1,∆ε) is Kawamata log terminal.

In order to do this we find the singular locus of the divisor. It suffices to show
that ∆ε is simple normal crossing, that is a divisor that can be written as a sum
D = ∑

Di, where Di are smooth and they intersect transversely. Consider the
images qi = π2(pi) of the blown-up points via the second projection. There exist
n+1 hyperplanes in Pn through each subset of n points among the qi, and through
each qi there pass n of them. Denote by H̃i ⊂ X1,n

n+1 the strict transforms of the
inverse image via the second projection of these hyperplanes. The inverse image of
n of these hyperplanes intersect in P1 × Pn along the curve π−1

2 (qi). Hence, for all
i = 1, . . . , n+ 1, the divisor D, which is the strict transform of the union of these
hyperplanes, has multiplicity n along the strict transforms of the curves π−1

2 (qi).
Since the strict transform of the curve has codimension n in X1,n

n+1, any n among
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the divisors H̃i intersect transversally along one of the strict transforms of these
curves, and this is true for all i = 1, . . . , n+ 1.

Now, we can generalize this argument for other varieties in the singular locus.
Fix a set of m points among the qi, with 1 ≤ m ≤ (n − 1), and denote by Λm

their linear span. Denote by Λ̃m the strict transform of π−1
2 (Λm). Any (n−m+ 1)

among the H̃i intersect along Λ̃m, so this linear span is in the singular locus of D
and D has multiplicity n+ 1−m along Λ̃m. Since Λ̃ has codimension (n−m+ 1),
the H̃i intersect transverally along the subvarieties Λ̃m.

Then, ∆ε is a simple normal crossing effective divisor for all ε > 0.
We conclude that for (n− 2)/n < ε < 1, the divisor −KX1,n

n+1
−∆ε is ample and

the pair (X1,n
n+1,∆ε) is Kawamata log terminal, concluding the proof.
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Chapter 4

The Cox ring of X1,n
n+1 and its

moving cone

This chapter consists of two sections. In the first section we give a complete
description of the Cox ring of X1,n

n+1. Since X1,n
n+1 is equipped with a torus action,

we can use the procedure developed in [HS10] and explained in the second section
of Chapter 2. In the second section we compute the generators for the moving
cone of X1,n

n+1, following Proposition 2.2.10.

4.1 The Cox ring of X1,n
n+1

The aim of this section is to compute generators for the Cox ring of X1,n
n+1. For

this purpose, we need to equip X1,n
n+1 with a torus action.

The n-dimensional complex torus T = (C∗)n acts on (P1 × Pn) as follows:

T × (P1 × Pn) −→ P1 × Pn
((t1, . . . , tn), ([x0, x1], [y0, . . . , yn])) 7−→ ([x0, x1], [y0, t1y1, t2y2, . . . , tnyn]).

(4.1)
We can suppose that the n + 1 general blown-up points in P1 × Pn are the

following points:
p1 = ([0, 1], [1, 0, . . . , 0]);
p2 = ([1, 0], [0, 1, 0, . . . , 0]);
p3 = ([1, 1], [0, 0, 1, 0, . . . , 0]);
p4 = ([α4, β4], [0, 0, 0, 1, 0, . . . , 0]);
...
pn+1 = ([αn+1, βn+1], [0, . . . , 0, 1]);
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where
[αi, βi] /∈ {[0, 1], [1, 0], [1, 1]},

for i = 4, . . . , n+ 1 and
[αi, βi] 6= [αj, βj],

for i 6= j.
Since the blown-up points are fixed by the algebraic torus T , i.e.

T (pi) = pi,

the action 4.1 lifts to an action of T on X1,n
n+1. Note that the lifted action fixes

every exceptional divisor Ei.
Now that X1,n

n+1 is equipped with an algebraic torus action, we can apply the
construction developed in [HS10] and explained in Proposition 2.2.9. First, we need
to construct the open subset of points in X1,n

n+1 having zero-dimensional isotropy
group

X0 := {x ∈ X1,n
n+1 | dim(Tx) = 0} ⊆ X1,n

n+1.

Let us examine the action of T on a point p which is not a blown up point. We
can assume that the point p has coordinate

([α, β], [y0, y1, . . . , yn]).

The lift of the action sends p to

([α, β], [y0, t1y1, . . . , tnyn]).

If π2(p) has some zero coordinate, its isotropy group has dimension greater or equal
than one. Indeed, suppose that there exists i ∈ {0, . . . , n} such that yi = 0.

If i = 0, we have

([α, β], [0, y1, . . . , yn]) 7→ ([α, β], [0, t1y1, . . . , tnyn]),

and the isotropy group
Tx = {(t, . . . , t)} ⊆ T

has dimension one.
If i > 0, we have

([α, β], [y0, y1, y2, . . . , 0, . . . , yn]) 7→ ([α, β], [y0, ty1, t2y2, . . . , 0, . . . , tnyn]),

and the isotropy group

Tx = {(1, . . . , ti, . . . , 1)} ⊆ T



4.1. The Cox ring of X1,n
n+1 53

has dimension one.
Viceversa, if all the coordinates of π2(p) are nonzero, the isotropy group Tp is

the trivial subgroup of T .
Hence, consider the hyperplanes in Pn of equation

{yi = 0},

for i = 1, . . . , n+ 1, and denote by H̃i the strict transform of π−1
2 ({yi = 0}).

We have proved that
X1,n
n+1 \X0 ⊇

n⋃
i=0

H̃i

and it follows that
X0 ⊆ X1,n

n+1 \ (
n⋃
i=0

H̃i).

Since any exceptional divisor Ei is isomorphic to Pn, the lift of the action acts
on it in such a way that a general point of Ei has trivial isotropy group. Denote
by Ri ⊂ Ei the union of the T -invariant divisors of the lift of the action restricted
to Ei. Then

X0 = X1,n
n+1 \

 n⋃
i=0

H̃i ∪
n+1⋃
j=1

Rj

 ⊂ X1,n
n+1.

Since the biggest T -orbits of the lift of the action are the fibers Pn, the action
of T on X1,n

n+1 is of complexity one. Hence, the orbit space X0/T is of dimension
one and has a separation to P1, namely a rational map

X0/T 99K P1,

which is a local isomorphism in codimension one.
Since the general points of each exceptional divisor Ei has trivial isotropy

group, the only T -invariant prime divisors supported in X1,n
n+1 \X0 are the H̃i.

We need to find the T -invariant prime divisors with finite generic isotropy
group of order lj > 1, denoted by Di.

Let D be a T -invariant divisor in X1,n
n+1. Then D is either an exceptional divisor

or it is a divisor in P1 × Pn.
Since the general point of Ei has trivial isotropy group, its order lj is not strictly

greater than one.
If D is a T -invariant divisor in P1 × Pn, either D is a fiber Pn, whose general

point has trivial isotropy group, or D intersects a fiber Pn in a divisor of Pn.
In the last case, since the lift of the action 4.1 is transitive on each fiber, the

intersection between D and the fiber is fixed. Hence it is one of the π−1
2 ({yi = 0}).

But these divisors have non finite isotropy group. We conclude that there are
no divisors of type Di.
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Since the lift of the action is of complexity one, the orbit space X0/T has a
separation to P1, namely a rational map

X0/T 99K P1,

which gives an isomorphism

X0/T
∼=→ P1 \ {π1(p1), . . . , π1(pn+1)},

where π1(p1), . . . , π1(pn+1) are the blown-up points.
Infact, by the definition of the action, we can construct the following diagram

which shows the composition of two projections: the map q is the projection to
the quotient and π is the morphsim given by the separation to P1.

X0

X0/T

P1

q

π

We see that the composition q ◦ π is a separation too. Let us find the preimage of
the points {π1(pi)} via the maps π and q: we have that

π−1(π1(pi)) = {yi1 , yi2},

where yi1 , yi2 are the two classes in the quotient X0/T representing the two follow-
ing classes in X0:

Di1 := q−1(yi1) and Di2 := q−1(yi2).
Di1 is isomorphic to Pn blown-up in a point with exceptional divisor Ei

∼= Pn−1,
and Di2 is isomorphic to Ei. Note that

Di1 ∩Di2 = Ei.

The isotropy group of a general point of Di1 and Di2 is trivial, hence of order
one.

Now, associate to the H̃i variables Si, to the Di1 variables Ti,1 and to the Di2

variables Ti,2. For 1 ≤ i ≤ n− 1, set k = j + 1 = i+ 2 and define the trinomial

gi = (βkαj − βjαk)Ti,1Ti,2 + (βiαk − βkαi)Tj,1Tj,2 + (βjαi − βiαj)Tk,1Tk,2.

For example, the first one of these trinomials is

g1 = −T1,1T1,2 − T2,1T2,2 + T3,1T3,2.

Then we have the following result:
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Theorem 4.1.1. For the Cox ring of X1,n
n+1 we have the following explicit presen-

tation
Cox(X1,n

n+1) ∼=
C[S0, . . . , Sn, T1,1, T1,2, . . . , Tn+1,1, Tn+1,2]

〈g1, . . . , gn−1〉

where Si is the section associated to H2−E1− · · · −Ei−1−Ei+1− · · · −En+1, Ti,1
is the section associated to H1 − Ei and Ti,2 is the section associated to Ei.

Proof. In the previous set up it is enough to apply Theorem 2.2.9.

Proposition 4.1.2. [BP04, Remark 1.4] If a variety X has a finitely generated
Cox ring, we have the following formula: dim(Cox(X)) = dim(X) + rk(Pic(X)).

We verifiy this formula in our setting. Since

Pic(X1,n
n+1) = 〈H1, H2, E1, . . . , En+1〉,

We have that
dim(X1,n

n+1) = n+ 1,

and that
rk(Pic(X1,n

n+1)) = n+ 3.

We can compute the dimension of Cox(X1,n
n+1) from Theorem 4.1.1. There are

(n + 1) generators of the form Si, (n + 1) generators of the form Ti,1 and (n + 1)
generators of the form Ti,2. There are (n−1) relations gi and each relation removes
one dimension from the space spanned by the generators. Hence we have:

dim(Cox(X1,n
n+1)) = (3n+ 3)− (n− 1) = 2n+ 4. (4.2)

Instead, using formula 4.1.2 we get that:

dim(Cox(X1,n
n+1)) = dim(X1,n

n+1) + rk(Pic(X1,n
n+1)) = (n+ 1) + (n+ 3) = 2n+ 4,

which agrees with the previous computation.

4.2 The moving cone of X1,n
n+1

In order to compute the moving cone of X1,n
n+1 we first compute it for n ≤ 4 using

Maple and then we generalize this construction to all n.
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4.2.1 Mov(X1,n
n+1) for n ≤ 4

As a consequence of Theorem 4.1.1, we can apply Theorem 2.2.10 to find the
moving cone of X1,n

n+1. The procedure will be the following:
We compute the generators of Mov(X1,n

n+1) for low values of n, with Maple.
Later, we will find the generators of Mov(X1,n

n+1) for all values of n.
The script written in Maple takes in input a matrix A, where each line corre-

sponds to a generator of N1(X1,n
n+1) and each column correspond to a generator of

Cox(X1,n
n+1). Hence A is a matrix of size (n+ 3)× (2n+ 4).

Example 4.2.1. Let us set n = 1.
Then, Theorem 4.1.1 gives

Cox(X1,1
2 ) ∼= C[H2 − E1, H2 − E2, H1 − E1, H1 − E2, E1, E2].

Then, the Maple script at page 83 gives:

Mov(X1,1
2 ) = 〈H1, H2, H1 +H2 − E1 − E2, H1 +H2 − E1, H1 +H2 − E2〉.

Example 4.2.2. For n = 2, Theorem 4.1.1 gives

Cox(X1,2
3 ) ∼= C[H2 − E1 − E2, H2 − E2 − E3, H2 − E1 − E3,

E1, E2, E3, H1 − E1, H1 − E2, H1 − E3].

The Maple script at page 84 gives the following generators for the movable cone:

Mov(X1,2
3 ) = 〈H1, H2, H2 − E1, H2 − E2, H2 − E3, H1 +H2 − E1 − E2 − E3,

H1 +H2 − E2 − E3, H1 +H2 − E1 − E3,

H1 +H2 − E1 − E2, 2H2 − E1 − E2 − E3〉.

Example 4.2.3. For n = 3, Theorem 4.1.1 gives

Cox(X1,3
4 ) ∼= C[H2−Ei1−Ei2−Ei3 , E1, E2, E3, E4, H1−E1, H1−E2, H1−E3, H1−E4],

where i ∈ {1, 2, 3, 4}. The Maple script at page 86 gives the following generators
for the movable cone:

Mov(X1,3
4 ) = 〈H1, H2, H2 − Ei, H2 − Ei − Ej, H1 +H2 − Ei1 − Ei2 − Ei3 ,

H1+H2−E1−E2−E3−E4, 2H2−2Ei1−Ei2−Ei3−Ei4 , 3H2−2E1−2E2−2E3−2E4〉,

where i ∈ {1, 2, 3, 4}.
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Example 4.2.4. For n = 4, Theorem 4.1.1 gives

Cox(X1,4
5 ) ∼= C[H2 − Ei1 − Ei2 − Ei3 − Ei4 , E1, E2, E3, E4, E5, H1 − E1,

H1 − E2, H1 − E3, H1 − E4, H1 − E5],
where i ∈ {1, 2, 3, 4, 5}. The Maple script at page 88 gives the following generators
for the movable cone:

Mov(X1,4
5 ) = 〈H1, H2, H2−Ei, H2−Ei−Ej, H2−Ei1−Ei2−Ei3 , H1+H2−Ei1−Ei2−Ei3−Ei4 ,

H1 +H2 − E1 − E2 − E3 − E4 − E5, 2H2 − 2Ei1 − 2Ei2 − Ei3 − Ei4 − Ei5 ,
3H2 − 3Ei1 − 2Ei2 − 2Ei3 − 2Ei4 − 2Ei5 , 4H2 − 3E1 − 3E2 − 3E3 − 3E4 − 3E5〉,
where i, j, k ∈ {1, . . . , 5}.

4.2.2 Mov(X1,n
n+1) for all n

Recall that, given a finitely generated cone

C = 〈ai : i = 1, . . . , |C|〉 ⊂ V,

where i = 1, . . . , |C|, its dual is the cone defined as

C∗ = {u ∈ V | < u, v > ≥ 0 ∀v ∈ C}.

Then, we can find the equations for the rays of C∗, by considering the equations

〈u, ai〉 = 0,

for i = 1, . . . , |C|.
By analyzing the previous cases, we can recognize a pattern among the gener-

ators of Mov(X1,n
n+1). Consider the following divisor classes on X1,n

n+1:

D1 = H1;
Dh = H2 − Ei1 − · · · − Eih ;
Di1,...,in = H1 +H2 − Ei1 − · · · − Ein ;
D1,...,n+1 = H1 +H2 − E1 − · · · − En+1;
Dk = kH2 − kEi1 − · · · − kEi(n−k) − (k − 1)Ei(n−k+1) − · · · − (k − 1)Ein+1 ;
Dn = nH2 − (n− 1)E1 − · · · − (n− 1)E(n+1).

,

for 2 ≤ k ≤ n− 1, 0 ≤ h ≤ n− 1 and {i1, . . . , in} ⊂ {1, . . . , n+ 1}.
Set

C := 〈D1, Dh, Di1,...,in , D1,...,n+1, Dk, Dn〉.
Furthermore, for an algebraic variety X of dimension n, we recall the notion

of k−moving curves, for 1 ≤ k ≤ n− 1. For further details about these topics see
[Pay05].
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Definition 4.2.5. An irreducible curve C ⊂ X is k−moving if it belongs to an
algebraic family of curves, whose irreducible elements cover a Zariski open subset
of an effective cycle of dimension at least n−k.We define Movk(X) to be the cone
generated by the classes of k−moving curves in N1(X).

Proposition 4.2.6. Let X be a Q-factorial projective variety. We have that

Mov1(X) ⊆ Mov(X)∗.

In general, the inclusion is strict, but there are examples of varieties for which the
equality holds.

Proof. Let C be a 1− moving curve in X. Suppose that C is not in the dual of
Mov(X). Then, there exists a divisor D ∈ Mov(X) such that

D · C < 0.

Hence, the divisor covered by the algebraic family of C is a fixed component of
the base locus of D. But this is not possible, since the divisor D is movable and
its stable base locus has codimension at least two.

Let Mov1(X1,n
n+1) be the cone of moving curves covering a divisor in X1,n

n+1. We
can prove the following proposition:

Now, given the extremal rays of the cone

C := 〈D1, Dh, Di1,...,in , D1,...,n+1, Dk, Dn〉,

we want to compute the extremal rays of its dual C∗.
Recall that the basis of the ambient space of C is:

{H1, H2, E1, . . . , En+1}.

Then, the dual basis is
{h1, h2,−e1, . . . ,−en+1}.

Since for n ≤ 4 we already proved that Mov(X1,n
n+1) = C, we can compute with

Maple the dual cone Mov(X1,n
n+1)∗ = C∗.

Example 4.2.7. For n = 1, we have that X1,1
2 = Bl2(P1 × P1).

The Maple script at page 83 gives:

Mov(X1,1
2 )∗ = 〈h1 − e1, h1 − e2, e1, e2, h2 − e1, h2 − e2〉.

Example 4.2.8. For n = 2, we have that X1,2
3 = Bl3(P1 × P2). The Maple script

at page 84 gives:

Mov(X1,2
3 )∗ = 〈h1, h2−e1, h2−e2, h2−e3, h1+h2−e1−e2, h1+h2−e1−e3, h1+h2−e2−e3, e1, e2, e3〉.
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Example 4.2.9. For n = 3, we have that X1,3
4 = Bl4(P1 × P3). The Maple script

at page 86 gives:

Mov(X1,3
4 )∗ = 〈h1, h2 − e1, h2 − e2, h2 − e3, h2 − e4,

h1 + 2h2 − e1 − e2 − e3, h1 + 2h2 − e1 − e2 − e4, h1 + 2h2 − e2 − e3 − e4,

h1 + 2h2 − e1 − e3 − e4, e1, e2, e3, e4〉.

Example 4.2.10. For n = 4, we have that X1,4
5 = Bl5(P1×P4). The Maple script

at page 88 gives:

Mov(X1,4
5 )∗ = 〈h1, h2−e1, h2−e2, h2−e3, h2−e4, h2−e5, h1 +3h2−e1−e2−e3−e4,

h1 + 3h2− e1− e2− e4− e5, h1 + 3h2− e2− e3− e4− e5, h1 + 3h2− e1− e3− e4− e5,

h1 + 3h2 − e1 − e2 − e3 − e5, e1, e2, e3, e4, e5〉.
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A straightforward computation shows that

C∗ = 〈h1, h2 − ei, h1 + (n− 1)h2 − ei1 − · · · − ein , ei〉

for 1 ≤ i ≤ n+1, {i1, . . . , in} ⊂ {1, . . . , n+1}. The following proposition is crucial
for the proof of Proposition 4.2.12. Indeed, it proves that every extremal ray in
C∗ corresponds to a curve that covers a divisor in X1,n

n+1, which was the one of the
last assumptions of the proof of Proposition 4.2.12.

Proposition 4.2.11. Every extremal ray of the dual cone C∗ corresponds to a
curve that covers a divisor in X1,n

n+1, that is:

C∗ ⊆ Mov1(X1,n
n+1).

Proof. Since h1 is the class of a general fiber of π̃2, it covers the whole variety X1,n
n+1

and (hence) a divisor. h2 − ei is the class of a general fiber of π̃1 and it covers
the fiber Pn over the blown-up point pi. The class ei corresponds to the class of
a line in the exceptional divisor Ei, so it covers this exceptional divisor. Finally,
consider the class

h1 + (n− 1)h2 − ei1 − · · · − ein .
First, we analyze the case n = 2. Consider the class h1 + h2 − ei − ej in X1,2

3 .
We prove that this curve covers a divisor in X1,2

3 .
First, we consider the projected curve π̃2(h1 +h2−ei−ej) in P2. The projected

curve is a line li,j passing through the points π2(pi) and π2(pj) with class h2−ei−ej.
Consider the Segre variety Σ1,2 ⊂ P5, and consider the subvariety P1 × li,j ⊂

P1×P2. Denote by X ′ := σ1,2(P1× li,j) its image in the Segre variety. Notice that
X ′ is contained in a P3.

For each point q ∈ P1 × li,j, consider the plane Πq passing through q and
containing the line li,j. Then

X ′ ∩ Πq = σ1,2(h1 + h2 − ei − ej).

Hence, π(h1 + h2 − ei − ej) covers the divisor

P1 × li,j ∼= P1 × P1 ⊂ P1 × P2

and h1 + h2 − ei − ej covers the divisor

X1,1
2 ⊂ X1,2

3 ,

where X1,1
2 is the strict transform of P1 × li,j in X1,2

3 .
We can generalize this proof to the general case. Consider the class

h1 + (n− 1)h2 − ei1 − · · · − ein
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in X1,n
n+1 of a degree n curve passing through n among the blown-up points. Con-

sider the projected curve π̃2(h1 + (n− 1)h2 − ei1 − · · · − ein) in Pn. It is a degree
n−1 curve in Pn, passing through the projection of n points among p1, . . . , pn. Its
class is:

(n− 1)h2 − ei1 − · · · − ein .

Denote by H ⊂ Pn the hyperplane spanned by the n projected points. Consider
the Segre variety Σ1,n ⊂ P2n+1 and consider the subvariety P1 × H ⊂ P1 × Pn.
Denote by

X ′ := σ1,n(P1 ×H)

its image in the Segre variety. Note that X ′ is contained in a P2n−1.
For each point q ∈ P1 × H, consider the linear n-dimensional subspace Πq

passing through q and through the n projection of points pi1 , . . . , pin . Then,

X ′ ∩ Πq = σ1,n(h1 + (n− 1)h2 − ei1 − · · · − ein).

Hence, π(h1 + (n− 1)h2 − ei1 − · · · − ein) covers the divisor

P1 ×H ∼= P1 × Pn−1 ⊂ P1 × Pn

and h1 + (n− 1)h2 − ei1 − · · · − ein covers the divisor

X1,n−1
n ⊂ X1,n

n+1,

where X1,n−1
n is the strict transform of P1 ×H in X1,n

n+1.

To conclude we need the following Proposition:

Proposition 4.2.12. The movable cone of X1,n
n+1 is given by

Mov(X1,n
n+1) = 〈D1, Dh, Di1,...,in , D1,...,n+1, Dk, Dn〉

for 2 ≤ k ≤ n− 1, 0 ≤ h ≤ n− 1 and {i1, . . . , in} ⊂ {1, . . . , n+ 1}.

Proof. Consider the cone C := 〈D1, Dh, Di1,...,in , D1,...,n+1, Dk, Dn〉.
Since every divisor appearing in C is a movable divisor, we have the inclusion

C ⊆ Mov(X1,n
n+1).

Then, taking the dual cones, we get

Mov(X1,n
n+1)∗ ⊆ C∗.
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Proposition 4.2.6 gives the following chain of inclusions:

Mov1(X1,n
n+1) ⊆ Mov(X1,n

n+1)∗ ⊆ C∗.

If we prove that every extremal ray in C∗ corresponds to a curve that covers a
divisor in X1,n

n+1, then we would have:

Mov1(X1,n
n+1) = Mov(X1,n

n+1)∗ = C∗

and hence
Mov(X1,n

n+1) = C,

concluding the proof.



Chapter 5

Nef cones and Mori chamber
decomposition of X1,n

n+1

In this chapter we compute the Nef cones of X1,n
n+1, X

1,n
n+2 and of X1,n

n+3 for n ≤ 4.
Moreover, we also give a script that computes the Mori chamber decomposition
of X1,n

n+1 and a concrete execution of the script for X1,2
3 . We developed in Magma

[BCP97] all the scripts.
The Magma library containing the scripts can be downloaded at the following

link:

https://github.com/msslxa/Cox-rings-of-blow-ups-of-multiprojective-spaces

5.1 The computation of Nef(X1,n
n+1)

As we have seen in Proposition 2.1.13, the nef cone of a variety X is the dual cone
of the Mori cone of curves. In this section, we want to compute the generators of
the nef cones of X1,n

n+1. Proposition 3.2.1 tells us that

NE(X1,n
n+1) = 〈ei, h1 − ei, h2 − ei〉 ,

for i = 1, . . . , n+ 1.

Proposition 5.1.1. The nef cone of X1,n
n+1 is generated by:

Nef(X1,n
n+1) = 〈H1, H2, H1 +H2 − Ei1 − · · · − Eir〉,

with r = 1, . . . n+ 1.
It has 2n+1 + 1 rays.
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Proof. To compute generators of Nef(X) it is enough to compute the dual cone of
NE(X). We show a script, reported at page 80, that computes the dual cone of
NE(X1,n

n+1) for a fixed value of n and gives its generators. This gives us a pattern
for the general case. But in order to prove it rigorously one needs to compute
the dual cone of the Mori cone given in 3.2.1. To obtain the number of rays, it is
enough to notice that there are

n+1∑
r=1

(
n+ 1
r

)

rays of type
H1 +H2 − Ei1 − · · · − Eir .

Then, the total number of extremal rays is obtained by adding the two rays H1
and H2:

]Rays(Nef(X1,n
n+1)) = 2 +

n+1∑
r=1

(
n+ 1
r

)
= 2 + 2n+1 − 1 = 2n+1 + 1.

The last equality follows from:

2n+1 =
n+1∑
r=1

(
n+ 1
r

)
+ 1.

5.2 The computation of Nef(X1,n
n+2)

In this section we compute the nef cone of X1,n
n+2. Proposition 3.3.1 tells us that

NE(X1,n
n+2) = 〈ei, h1 − ei, h2 − ei, h1 + nh2 − e1 − · · · − en+2〉 ,

for i = 1, . . . , n+ 2.

Proposition 5.2.1. The nef cone of X1,n
n+2 is generated by:

Nef(X1,n
n+2) = 〈H1, H2, H1 +H2 − Ei1 − · · · − Eir , 2H1 +H2 − E1 − · · · − En+2,

nH1 + (n+ 1)H2 − n
n+2∑
i=1

Ei〉,

with r = 1, . . . n+ 1.
It has 2n+2 + 2 rays.
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Proof. The script at page 81 computes the dual cone of NE(X1,n
n+2) and gives its

generators, for a fixed value of n. This gives us a pattern for the general case. But
in order to prove it rigorously one needs to compute the dual cone of the Mori
cone given in ??. We compute the number of extremal rays. There are four rays

H1, H2, 2H1 +H2 − E1 − · · · − En+2, nH1 + (n+ 1)H2 − n
n+2∑
i=1

Ei.

The rays
H1 +H2 − Ei1 − · · · − Eir ,

for r = 1, . . . n+ 1, add up to
n+1∑
r=1

(
n+ 2
r

)
.

Since
2n+2 =

n+2∑
r=0

(
n+ 2
r

)
= 2 +

n+1∑
r=1

(
n+ 2
r

)
,

we have that
n+1∑
r=1

(
n+ 2
r

)
= 2n+2 − 2

and the total number of rays is:

]Rays(Nef((X1,n
n+2))) = 2n+2 + 2− 2 + 1 + 1 = 2n+2 + 2.

5.3 The computation of Nef(X1,n
n+3) for n ≤ 4.

In this section we compute the nef cone of X1,n
n+3 for n ≤ 4. Since we don’t know if

NE(X1,n
n+1) is finitely generated when n > 4, we cannot give any result on the nef

cone when n > 4.
By Proposition 3.4.5,

NE(X1,n
n+3) = 〈ei, h1 − ei, h2 − ei, h1 + nh2 − ei1 − · · · − ein+2〉,

for i1, . . . , in+2, i ∈ {1, . . . , n+ 3}.
Consider the following divisor classes:

D1 = H1;
D2 = H2;
Di1,...,it = H1 +H2 − Ei1 − · · · − Eit ;
Di1,...,ir = 2H1 +H2 − Ei1 − · · · − Eir ;
Di1,...,ih = nH1 + (n+ 1)H2 − nEi1 − · · · − nEih ;
Di1,...,is = kH1 + kH2 − kEi1 − · · · − kEis − (k − 1)Ei(s+1) − · · · − (k − 1)Ein+3 ;

,
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Proposition 5.3.1. If n ≤ 4, the nef cone of X1,n
n+3 is generated by:

Nef(X1,n
n+3) = 〈D1, D2, Di1,...,it , Di1,...,ir , Di1,...,ih , Di1,...,is〉,

with t = 1, . . . n+ 1, r, h = n+ 2, n+ 3, k = 2, . . . , n+ 1 and s = n+ 3− (k + 1).

Proof. The script at page 82 gives the generators of Nef(X1,n
n+3).

Proposition 5.3.2. The Nef cone of X has 2n+4 − 1/2(n + 3)(n + 2) rays for
n ≤ 4.

Proof. We count the different rays appearing in the list of Proposition 5.3.1. There
are two rays H1 and H2. The rays of type

H1 +H2 − Ei1 − · · · − Eit

for t = 1, . . . , n+ 1 add up to
n+1∑
t=1

(
n+ 3
t

)
.

The rays
2H1 +H2 − Ei1 − · · · − Eir

and
nH1 + (n+ 1)H2 − nEi1 − · · · − nEih

for r, h = n+ 2, n+ 3, are respectively(
n+ 3
n+ 2

)
= (n+ 3)

and (
n+ 3
n+ 3

)
= 1.

Then, the last kind of rays,

kH1 + kH2 − kEi1 − · · · − kEis − (k − 1)Eis+1 − · · · − (k − 1)Ein+3 ,

for k = 2, . . . , n+ 1 and s = (n+ 3)− k − 1 adds up to
n∑
k=1

(
n+ 3
k

)
.

The total number of rays is then

2 + 2
n∑
k=1

(
n+ 3
k

)
+
(
n+ 3
n+ 1

)
+ 2 + 2(n+ 3).
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Since
2n+3 =

n+3∑
k=0

(
n+ 3
k

)
,

we have that
n∑
k=1

(
n+ 3
k

)
= 2n+3 −

(
n+ 3

0

)
−
(
n+ 3
n+ 1

)
−
(
n+ 3
n+ 2

)
−
(
n+ 3
n+ 3

)
=

= 2n+3 − 2−
(
n+ 3
n+ 1

)
−
(
n+ 3
n+ 2

)
.

Thus

2
n∑
k=1

(
n+ 3
k

)
+
(
n+ 3
n+ 1

)
= 2(2n+3 − 2−

(
n+ 3
n+ 1

)
−
(
n+ 3
n+ 2

)
) +

(
n+ 3
n+ 1

)
=

= 2n+4 − 4− 2
(
n+ 3
n+ 1

)
− 2

(
n+ 3
n+ 2

)
+
(
n+ 3
n+ 1

)
=

= 2n+4 − 4−
(
n+ 3
n+ 1

)
− 2

(
n+ 3
n+ 2

)
=

= 2n+4 − 4− 1
2(n+ 3)(n+ 2)− 2(n+ 3).

In conclusion we have:

]Rays(Nef(X1,n
n+3)) = 2 + 2n+4 − 4− 1

2(n+ 3)(n+ 2)− 2(n+ 3) + 2(n+ 3) + 2 =

= 2n+4 − 1
2(n+ 3)(n+ 2).

5.4 Mori chamber decomposition of X1,n
n+1

We managed to compute the Mori chamber decomposition of X1,n
n+1 for n = 2, 3, 4,

and we got 92, 550 and 6307 chambers respectively. Finally, we would like to
mention that the Mori chamber decomposition of X1,2

6 has been fully computed
by T. Grange in [Gra22, Chapter 3].

Example 5.4.1. We show the script of Magma written to compute the Mori
chamber decomposition of X1,2

3 . It displays the 92 chambers of the Mori chamber
decomposition of X1,2

3 . Among them, there is one chamber with nine generators
which corresponds to the Nef cone of X1,2

3 :



68 Chapter 5. Nef cones and Mori chamber decomposition of X1,n
n+1

(0, 1, 0, 0, 0),
(1, 0, 0, 0, 0),
(1, 1, -1, -1, -1),
(1, 1, -1, -1, 0),
(1, 1, -1, 0, -1),
(1, 1, -1, 0, 0),
(1, 1, 0, -1, -1),
(1, 1, 0, -1, 0),
(1, 1, 0, 0, -1),

The first column corresponds to the coeffcients of H1, the second to the coeffi-
cients of H2 and the other columns to the coefficients of Ei, for i = 1, 2, 3. Hence,
the Nef cone of X1,2

3 is given by:

Nef(X1,2
3 ) = 〈H1, H2, H1 +H2−E1−E2−E3, H1 +H2−Ei, H1 +H2−Ei1 −Ei2〉,

for i, i1, i2 ∈ {1, 2, 3}.
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The following is the entire script that computes the Mori chamber decomposi-
tion of X1,n

n+1:

// Input: an ideal I or an integer
// Output: the F-faces indices of I.
//
// If I is an integer it returns
// all the non-empty subsets of {1,..,I}.
// (uses Remark 3.1.1.11)

Ffaces := function(I)
if Type(I) eq RngIntElt then
return Subsets({1..I}) diff {{}};
end if;
B := Basis(I);
R := Parent(I.1);
n := Rank(R);
faces := {};
for S in Subsets({1..n}) diff {{}} do
BS := [Evaluate(g,[(i in S) select R.i else
0 : i in [1..n]]) : g in B];
if &*[R.i : i in S] notin Radical(Ideal(BS)) then
Include(~faces,S);
end if;
end for;
return faces;
end function;

// Input: grading matrix
// Output: effective cone

Eff := function(Q)
n := Ncols(Q);
K := ToricLattice(Nrows(Q));
return Cone([K!Eltseq(r) : r in Rows(Transpose(Q))]);
end function;
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// Input: grading matrix
// Output: moving cone

Mov := function(Q)
n := Ncols(Q);
K := ToricLattice(Nrows(Q));
L := [K!Eltseq(r) : r in Rows(Transpose(Q))];
return &meet([Cone([L[j] : j in Remove([1..#L],i)])
: i in [1..#L]]);
end function;

// Input: (F-faces,grading matrix)
// Output: orbit cones
OrbitCones := function(F,Q)
n := Ncols(Q);
K := ToricLattice(Nrows(Q));
w := [K!Eltseq(r) : r in Rows(Transpose(Q))];
if #F eq 0 then F := Subsets({1..n}) diff {{}}; end if;
return {Cone([w[i] : i in S]) : S in F};
end function;

// Input: (orbit cones, a class)
// Output: GIT chamber

GitChamber := function(orb,w)
K := Ambient(Random(orb));
w := K!Eltseq(w);
return &meet{C : C in orb | w in C};
end function;

// Input: (orbit cones, a class)
// Output: bunch of cones
BunchCones := function(orb,w)
return {C : C in orb | w in C};
end function;
// Input: (bunch, class, class)
// Output: boolean
//
// It returns true if the two classes
// have the same stable base locus
SameSbl := function(bun,w1,w2)
K := Ambient(Random(bun));
w1 := K!Eltseq(w1);
w2 := K!Eltseq(w2);
return {C : C in bun | w1 in C} eq {C : C in bun | w2 in C};
end function;
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// Input: orbit cones
// Output: GIT fan

GitFan := function(orb)
Eff := Cone(&cat[Rays(C) : C in orb]);
SH := {SupportingHyperplane(Eff,C) : C in Facets(Eff)};
repeat
W := Random(orb);
K := Ambient(W);
w := &+Rays(W);
la := &meet{C : C in orb | w in C};
until Dimension(la) eq Dimension(K);
L := {la};
F := {C : C in Facets(la) | SupportingHyperplane(la,C) notin SH};
repeat
ff := Random(F);
la := Random([C : C in L | IsFace(C,ff)]);
H := K!SupportingHyperplane(la,ff);
w := &+Rays(ff);
if Dimension(Cone([w,w+H]) meet la) eq 0
then e := 1;
else e := -1;
end if;
n := 1;
repeat
u := w + e/10^n*H;
n := n+1;
until u in Eff;
repeat
lb := &meet{C : C in orb | u in C};
u := w + e/10^n*H;
n := n + 1;
until Dimension(lb) eq Dimension(K) and lb meet la eq ff;
L := L join {lb};
Fb :={C : C in Facets(lb) | SupportingHyperplane(lb,C) notin SH};
F := (F join Fb) diff (F meet Fb);
until IsEmpty(F);
return L;
end function;

// Input: (grading matrix, orbit cones, git fan)
// Output: list of triples
// (git chamber, git chamber, git chamber)
//
// In each triple the first is the ample
// chamber and the remaining two are two
// git chambers which lie in the same sbl
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FindTriples := function(Q,orb,gfan)
K := Ambient(Random(gfan));
mov := Cone([K!w : w in RGenerators(Mov(Q))]);
triples := [];
L := Setseq(gfan);
M := [C : C in L | &and[w in mov : w in Rays(C)]];
for C in M do
bun := BunchCones(orb,&+Rays(C));
ll := [[C,L[i],L[j]] : i,j in [1..#L] |
i lt j and L[i] ne C and L[j] ne C
and SameSbl(bun,&+Rays(L[i]),&+Rays(L[j]))];
if #ll ne 0 then
Append(~triples,ll);
end if;
end for;
return triples;
end function;

FF := Rationals();
A<T1,T2,T3,T4,T5,T6,T7,T8,T9> := AffineSpace(Rationals(),9);
I := Ideal(T1*T7-T3*T9+T2*T8);

Q := Matrix(5,9,[0, 0, 0, 1, 1, 1, 0, 0, 0,1, 1, 1,
0, 0, 0, 0, 0, 0,-1,
0, 0, -1, -1, 0, 1, 0, 0,0,
-1, 0, -1, 0, -1, 0, 1, 0,0, 0, -1, 0, -1,
-1, 0, 0, 1]);
F := Ffaces(I);
orb := OrbitCones(F,Q);
gfan := GitFan(orb);
gfan;
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The following script allows to compute the moving cone of Blp(P2) on Maple:

// Input: matrix with generators of Cox(Bl_{p}(\mathbb{P}^{2}))
// Output: generators of Mov(Bl_{p}(\mathbb{P}^{2})
A := Matrix([[1, 1, 0, 1], [0, -1, 1, -1]]);

C := ColumnDimension(A);
C := 4

R := RowDimension(A);
R := 2

st := time[real]();
for i to C do
Deg[i] := [seq(A[j, i], j = 1 .. R)];
end do;
Degaux := [seq(Deg[j], j = 1 .. C)];
for l to C do
Coneaux[l] := poshull(op(subsop(l = NULL, Degaux)));
end do;
for l to C do
rays(Coneaux[l]);
end do;
MovCone := intersection(seq(Coneaux[i], i = 1 .. C));
rays(MovCone);
time[real]() - st;
MovCone := CONE(2, 2, 0, 2, 2)

[[1, -1], [1, 0]]

0.075
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The following script allows to compute the moving cone of Bl2(P2) on Maple:

A := Matrix([[1, 1, 1, 0, 0], [-1, -1, 0, 1, 0],
[-1, 0, -1, 0, 1]]);
C := ColumnDimension(A);
C := 5

R := RowDimension(A);
R := 3

st := time[real]();
for i to C do
Deg[i] := [seq(A[j, i], j = 1 .. R)];
end do;
Degaux := [seq(Deg[j], j = 1 .. C)];
for l to C do
Coneaux[l] := poshull(op(subsop(l = NULL, Degaux)));
end do;
for l to C do
rays(Coneaux[l]);
end do;
MovCone := intersection(seq(Coneaux[i], i = 1 .. C));
rays(MovCone);
time[real]() - st;
MovCone := CONE(3, 3, 0, 3, 3)

[[1, -1, 0], [1, 0, -1], [1, 0, 0]]

0.024
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The following script allows to compute the moving cone of Bl2(P3) on Maple:

A := Matrix([[1, 1, 1, 1, 0, 0], [-1, -1, 0, -1, 1, 0],
[-1, -1, -1, 0, 0, 1]]);
C := ColumnDimension(A);
C := 6

R := RowDimension(A);
R := 3

st := time[real]();
for i to C do
Deg[i] := [seq(A[j, i], j = 1 .. R)];
end do;
Degaux := [seq(Deg[j], j = 1 .. C)];
for l to C do
Coneaux[l] := poshull(op(subsop(l = NULL, Degaux)));
end do;
for l to C do
rays(Coneaux[l]);
end do;
MovCone := intersection(seq(Coneaux[i], i = 1 .. C));
rays(MovCone);
time[real]() - st;
MovCone := CONE(3, 3, 0, 4, 4)

[[1, -1, -1], [1, 0, -1], [1, -1, 0], [1, 0, 0]]



77

The following script allows to compute the moving cone of Bl2(P4) on Maple:

A := Matrix([[1, 1, 1, 1, 1, 0, 0], [-1, -1, -1, -1, 0, 1, 0],
[-1, -1, -1, 0, -1, 0, 1]]);
A := [[1, 1, 1, 1, 1, 0, 0],

C := ColumnDimension(A);
C := 7

R := RowDimension(A);
R := 3

st := time[real]();
for i to C do
Deg[i] := [seq(A[j, i], j = 1 .. R)];
end do;
Degaux := [seq(Deg[j], j = 1 .. C)];
for l to C do
Coneaux[l] := poshull(op(subsop(l = NULL, Degaux)));
end do;
for l to C do
rays(Coneaux[l]);
end do;
MovCone := intersection(seq(Coneaux[i], i = 1 .. C));
rays(MovCone);
time[real]() - st;
MovCone := CONE(3, 3, 0, 4, 4)

[[1, -1, -1], [1, 0, -1], [1, -1, 0], [1, 0, 0]]
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The following script allows to compute the moving cone of Bl5(P3) on Maple:

A := Matrix([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0],
[-1, -1, -1, 0, 0, 0, 0, -1, -1, -1, 1, 0, 0, 0, 0],
[-1, -1, -1, -1, -1, -1, 0, 0, 0, 0, 0, 1, 0, 0, 0],
[-1, 0, 0, -1, -1, 0, -1, -1, -1, 0, 0, 0, 1, 0, 0],
[0, -1, 0, -1, 0, -1, -1, -1, 0, -1, 0, 0, 0, 1, 0],
[0, 0, -1, 0, -1, -1, -1, 0, -1, -1, 0, 0, 0, 0, 1]]);

C := ColumnDimension(A);
C := 15

R := RowDimension(A);
R := 6

st := time[real]();
for i to C do
Deg[i] := [seq(A[j, i], j = 1 .. R)];
end do;
Degaux := [seq(Deg[j], j = 1 .. C)];
for l to C do
Coneaux[l] := poshull(op(subsop(l = NULL, Degaux)));
end do;
for l to C do
rays(Coneaux[l]);
end do;
MovCone := intersection(seq(Coneaux[i], i = 1 .. C));
rays(MovCone);
time[real]() - st;
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MovCone := CONE(6, 6, 0, 51, 21)
[[2, -1, -1, -1, -2, -1], [2, -1, -1, -2, -1, -1],
[2, -2, -1, -1, -1, -1], [2, -1, -2, -1, -1, -1],
[2, -1, -1, -1, -1, -2], [3, -1, -2, -2, -2, -2],
[3, -2, -2, -2, -2, -1], [3, -2, -2, -2, -1, -2],
[3, -2, -1, -2, -2, -2], [3, -2, -2, -1, -2, -2],
[1, 0, 0, -1, -1, 0], [1, -1, 0, 0, -1, 0],
[1, 0, -1, 0, -1, 0], [1, 0, 0, 0, -1, -1],
[2, 0, -1, -1, -2, -1], [2, -1, 0, -1, -2, -1],
[2, -1, -1, 0, -2, -1], [1, 0, 0, 0, -1, 0],
[2, -1, -1, -1, -2, 0], [1, -1, 0, -1, 0, 0],
[1, 0, -1, -1, 0, 0], [1, 0, 0, -1, 0, -1],
[2, 0, -1, -2, -1, -1], [2, -1, 0, -2, -1, -1],
[2, -1, -1, -2, 0, -1], [1, 0, 0, -1, 0, 0],
[2, -1, -1, -2, -1, 0], [1, -1, -1, 0, 0, 0],
[1, -1, 0, 0, 0, -1], [2, -2, 0, -1, -1, -1],
[2, -2, -1, 0, -1, -1], [2, -2, -1, -1, 0, -1],
[1, -1, 0, 0, 0, 0], [2, -2, -1, -1, -1, 0],
[1, 0, -1, 0, 0, -1], [2, 0, -2, -1, -1, -1],
[2, -1, -2, 0, -1, -1], [2, -1, -2, -1, 0, -1],
[1, 0, -1, 0, 0, 0], [2, -1, -2, -1, -1, 0],
[2, 0, -1, -1, -1, -2], [2, -1, 0, -1, -1, -2],
[2, -1, -1, 0, -1, -2], [1, 0, 0, 0, 0, -1],
[2, -1, -1, -1, 0, -2], [3, 0, -2, -2, -2, -2],
[3, -2, 0, -2, -2, -2], [3, -2, -2, 0, -2, -2],
[3, -2, -2, -2, 0, -2], [1, 0, 0, 0, 0, 0],
[3, -2, -2, -2, -2, 0]]
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The following script allows to compute the Mori cone and the Nef cone of X1,n
n+1

on Magma:

// Input: an integer n >= 1;
// Output: the Nef cone of P1xPn blown-up at n+1 general points
in the basis H_1, H_2, -E_1,...,-E_{n+1}.

Nef := function(n)
h1 := [1,0];
h2 := [0,1];
e := [];
for i in [1..n+1] do
e[i] := [0 : j in [1..i+1]] cat [1] cat [0 : j in [i+3..n+3]];
end for;
nege := [];
for i in [1..n+1] do
nege[i] :=[0 : j in [3..i+1]] cat [-1] cat [0 : j in [i+3..n+3]];
end for;
v := [];
for i in [1..n+1] do
v[i] := h1 cat nege[i];
end for;
w := [];
for i in [1..n+1] do
w[i] := h2 cat nege[i];
end for;
NE := Cone(v cat w cat e);
Nef := Dual(NE);
return Nef;
end function;

// Example
Nef(2);
Rays(Nef(2));
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The following script allows to compute the Mori cone and the Nef cone of X1,n
n+2

on Magma:

// Input: an integer n >= 1;
// Output: the Nef cone of P1xPn blown-up at n+2 general points
in the basis H_1, H_2, -E_1,...,-E_{n+2}.

Nef := function(n)
h1 := [1,0];
h2 := [0,1];
e := [];
for i in [1..n+2] do
e[i] :=[0 : j in [1..i+1]] cat [1] cat [0 : j in [i+3..n+4]];
end for;
nege := [];
for i in [1..n+2] do
nege[i] :=[0 : j in [3..i+1]] cat [-1] cat [0 : j in [i+3..n+4]];
end for;
v := [];
for i in [1..n+2] do
v[i] := h1 cat nege[i];
end for;
w := [];
for i in [1..n+2] do
w[i] := h2 cat nege[i];
end for;
c := [[1,n] cat [-1 : i in [1..n+2]]];
NE := Cone(v cat w cat e cat c);
Nef := Dual(NE);
return Nef;
end function;

// Examples
Rays(Nef(2));
Rays(Nef(3));
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The following script allows to compute the Mori cone and the Nef cone of X1,n
n+3,

for n ≤ 4, on Magma:

// Input: an integer n >= 1;
// Output: the Nef cone of P1xPn blown-up at n+3 general points
in the basis H_1, H_2, -E_1,...,-E_{n+3}.

Nef := function(n)
h1 := [1,0];
h2 := [0,1];
e := [];
for i in [1..n+3] do
e[i] :=[0 : j in [1..i+1]] cat [1] cat [0 : j in [i+3..n+5]];
end for;
nege := [];
for i in [1..n+3] do
nege[i] :=[0 : j in [3..i+1]] cat [-1] cat [0 : j in [i+3..n+5]];
end for;
v := [];
for i in [1..n+3] do
v[i] := h1 cat nege[i];
end for;
w := [];
for i in [1..n+3] do
w[i] := h2 cat nege[i];
end for;
c := [];
for i in [1..n+3] do
cu := [1,n] cat [-1 : j in [1..i-1]] cat [0]

cat [-1 : j in[i+1..n+3]];
c := Append(c,cu);
end for;
NE := Cone(v cat w cat e cat c);
Nef := Dual(NE);
return Nef;
end function;

// Examples
Rays(Nef(2));
Rays(Nef(3));
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This script allows to find generators for the movable cone of X1,1
2 and its dual,

using Maple.

restart;
with(combinat);
with(convex);
with(MDSpackage);
with(ListTools);
with(LinearAlgebra);
A := Matrix([[0, 0, 0, 0, 1, 1], [1, 1, 0, 0, 0, 0],
[-1, 0, 1, 0, -1, 0], [0, -1, 0, 1, 0, -1]]);
C := ColumnDimension(A);
R := RowDimension(A);
st := time[real]();
for i to C do
Deg[i] := [seq(A[j, i], j = 1 .. R)];
end do;
Degaux := [seq(Deg[j], j = 1 .. C)];
for l to C do
Coneaux[l] := poshull(op(subsop(l = NULL, Degaux)));
end do;
for l to C do
rays(Coneaux[l]);
end do;
MovCone := intersection(seq(Coneaux[i], i = 1 .. C));
rays(MovCone);
time[real]() - st;
MovCone := CONE(4, 4, 0, 5, 6)
[[0, 1, 0, 0], [1, 0, 0, 0], [1, 1, -1, -1], [1, 1, -1, 0],
[1, 1, 0, -1]]
0.030
DM := dual(MovCone);
DM := CONE(4, 4, 0, 6, 5)
rays(DM);
[[1, 0, 1, 0], [1, 0, 0, 1], [0, 0, -1, 0], [0, 0, 0, -1],
[0, 1, 1, 0], [0, 1, 0, 1]]
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This script allows to find generators for the movable cone of X1,2
3 and its dual,

using Maple.

restart;
with(combinat);
with(convex);
with(MDSpackage);
with(ListTools);
with(LinearAlgebra);
A := Matrix([[0, 0, 0, 0, 0, 0, 1, 1, 1],
[1, 1, 1, 0, 0, 0, 0, 0, 0],
[-1, 0, -1, 1, 0, 0, -1, 0, 0],
[-1, -1, 0, 0, 1, 0, 0, -1, 0], [0, -1, -1, 0, 0, 1, 0, 0, -1]])
C := ColumnDimension(A);
C := 9
R := RowDimension(A);
R := 5
st := time[real]();
for i to C do
Deg[i] := [seq(A[j, i], j = 1 .. R)];
end do;
Degaux := [seq(Deg[j], j = 1 .. C)];
for l to C do
Coneaux[l] := poshull(op(subsop(l = NULL, Degaux)));
end do;
for l to C do
rays(Coneaux[l]);
end do;
MovCone := intersection(seq(Coneaux[i], i = 1 .. C));
rays(MovCone);
time[real]() - st;
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MovCone := CONE(5, 5, 0, 10, 10)
[[0, 1, 0, -1, 0], [0, 1, -1, 0, 0], [0, 1, 0, 0, -1],
[0, 2, -1, -1, -1], [0, 1, 0, 0, 0], [1, 0, 0, 0, 0],
[1, 1, -1, -1, -1], [1, 1, -1, -1, 0], [1, 1, -1, 0, -1],
[1, 1, 0, -1, -1]]
0.042
DM := dual(MovCone);
DM := CONE(5, 5, 0, 10, 10)
rays(DM);
[[1, 1, 1, 1, 0], [1, 0, 0, 0, 0], [1, 1, 0, 1, 1],
[1, 1, 1, 0, 1], [0, 0, -1, 0, 0], [0, 0, 0, -1, 0],
[0, 0, 0, 0, -1], [0, 1, 1, 0, 0], [0, 1, 0, 1, 0],
[0, 1, 0, 0, 1]]
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This script allows to find generators for the movable cone of X1,3
4 and its dual,

using Maple.

restart;
with(combinat);
with(convex);
with(MDSpackage);
with(ListTools);
with(LinearAlgebra);
A := Matrix([[0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1],
[1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
[-1, -1, 0, -1, 1, 0, 0, 0, -1, 0, 0, 0],
[-1, -1, -1, 0, 0, 1, 0, 0, 0, -1, 0, 0],
[-1, 0, -1, -1, 0, 0, 1, 0, 0, 0, -1, 0],
[0, -1, -1, -1, 0, 0, 0, 1, 0, 0, 0, -1]])
C := ColumnDimension(A);
C := 12
R := RowDimension(A);
R := 6
st := time[real]();

for i to C do
Deg[i] := [seq(A[j, i], j = 1 .. R)];
end do;
Degaux := [seq(Deg[j], j = 1 .. C)];
for l to C do
Coneaux[l] := poshull(op(subsop(l = NULL, Degaux)));
end do;
for l to C do
rays(Coneaux[l]);
end do;
MovCone := intersection(seq(Coneaux[i], i = 1 .. C));
rays(MovCone);
time[real]() - st;
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MovCone := CONE(6, 6, 0, 22, 13)
[[0, 1, 0, -1, -1, 0], [0, 1, -1, 0, -1, 0],
[0, 1, 0, 0, -1, -1], [0, 2, -1, -1, -2, -1],
[0, 1, 0, 0, -1, 0], [0, 1, -1, -1, 0, 0],
[0, 1, 0, -1, 0, -1], [0, 2, -1, -2, -1, -1],
[0, 1, 0, -1, 0, 0], [0, 1, -1, 0, 0, -1],
[0, 2, -2, -1, -1, -1], [0, 1, -1, 0, 0, 0],
[0, 2, -1, -1, -1, -2], [0, 1, 0, 0, 0, -1],
[0, 3, -2, -2, -2, -2], [0, 1, 0, 0, 0, 0], [1, 0, 0, 0, 0, 0],
[1, 1, -1, -1, -1, -1], [1, 1, -1, -1, -1, 0],
[1, 1, -1, -1, 0, -1], [1, 1, 0, -1, -1, -1],
[1, 1, -1, 0, -1, -1]]
0.069
DM := dual(MovCone);
DM := CONE(6, 6, 0, 13, 22)
rays(DM);
[[1, 0, 0, 0, 0, 0], [0, 1, 1, 0, 0, 0], [0, 1, 0, 1, 0, 0],
[0, 1, 0, 0, 1, 0], [0, 1, 0, 0, 0, 1], [1, 2, 1, 1, 1, 0],
[1, 2, 1, 1, 0, 1], [1, 2, 0, 1, 1, 1], [1, 2, 1, 0, 1, 1],
[0, 0, -1, 0, 0, 0], [0, 0, 0, -1, 0, 0], [0, 0, 0, 0, -1, 0],
[0, 0, 0, 0, 0, -1]]
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This script allows to find generators for the movable cone of X1,4
5 and its dual,

using Maple.

restart;
with(combinat);
with(convex);
with(MDSpackage);
with(ListTools);
with(LinearAlgebra);
A := Matrix([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1],
[1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],

[-1, -1, -1, -1, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0, 0],
[-1, -1, -1, 0, -1, 0, 1, 0, 0, 0, 0, -1, 0, 0, 0],

[-1, -1, 0, -1, -1, 0, 0, 1, 0, 0, 0, 0, -1, 0, 0],
[-1, 0, -1, -1, -1, 0, 0, 0, 1, 0, 0, 0, 0, -1, 0],
[0, -1, -1, -1, -1, 0, 0, 0, 0, 1, 0, 0, 0, 0, -1]])

C := ColumnDimension(A);
C := 15
R := RowDimension(A);
R := 7
st := time[real]();
for i to C do
Deg[i] := [seq(A[j, i], j = 1 .. R)];
end do;
Degaux := [seq(Deg[j], j = 1 .. C)];
for l to C do
Coneaux[l] := poshull(op(subsop(l = NULL, Degaux)));
end do;
for l to C do
rays(Coneaux[l]);
end do;
MovCone := intersection(seq(Coneaux[i], i = 1 .. C));
rays(MovCone);
time[real]() - st;
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MovCone := CONE(7, 7, 0, 49, 16)
[[0, 1, 0, -1, -1, -1, 0], [0, 1, -1, 0, -1, -1, 0],
[0, 1, 0, 0, -1, -1, -1], [0, 2, -1, -1, -2, -2, -1],
[0, 1, 0, 0, -1, -1, 0], [0, 1, -1, -1, 0, -1, 0],
[0, 1, 0, -1, 0, -1, -1], [0, 2, -1, -2, -1, -2, -1],
[0, 1, 0, -1, 0, -1, 0], [0, 1, -1, 0, 0, -1, -1],
[0, 2, -2, -1, -1, -2, -1], [0, 1, -1, 0, 0, -1, 0],
[0, 2, -1, -1, -1, -2, -2], [0, 1, 0, 0, 0, -1, -1],
[0, 3, -2, -2, -2, -3, -2], [0, 1, 0, 0, 0, -1, 0],
[0, 1, -1, -1, -1, 0, 0], [0, 1, 0, -1, -1, 0, -1],
[0, 2, -1, -2, -2, -1, -1], [0, 1, 0, -1, -1, 0, 0],
[0, 1, -1, 0, -1, 0, -1], [0, 2, -2, -1, -2, -1, -1],
[0, 1, -1, 0, -1, 0, 0], [0, 2, -1, -1, -2, -1, -2],
[0, 1, 0, 0, -1, 0, -1], [0, 3, -2, -2, -3, -2, -2],
[0, 1, 0, 0, -1, 0, 0], [0, 1, -1, -1, 0, 0, -1],
[0, 2, -2, -2, -1, -1, -1], [0, 1, -1, -1, 0, 0, 0],
[0, 2, -1, -2, -1, -1, -2], [0, 1, 0, -1, 0, 0, -1],
[0, 3, -2, -3, -2, -2, -2], [0, 1, 0, -1, 0, 0, 0],
[0, 2, -2, -1, -1, -1, -2], [0, 1, -1, 0, 0, 0, -1],
[0, 3, -3, -2, -2, -2, -2], [0, 1, -1, 0, 0, 0, 0],
[0, 3, -2, -2, -2, -2, -3], [0, 1, 0, 0, 0, 0, -1],
[0, 4, -3, -3, -3, -3, -3], [0, 1, 0, 0, 0, 0, 0],
[1, 0, 0, 0, 0, 0, 0], [1, 1, -1, -1, -1, -1, -1],
[1, 1, -1, -1, -1, -1, 0], [1, 1, -1, -1, -1, 0, -1],
[1, 1, 0, -1, -1, -1, -1], [1, 1, -1, 0, -1, -1, -1],
[1, 1, -1, -1, 0, -1, -1]]
0.153
NULL;
DM := dual(MovCone);
DM := CONE(7, 7, 0, 16, 49)
rays(DM);
[[1, 0, 0, 0, 0, 0, 0], [0, 1, 1, 0, 0, 0, 0],
[0, 1, 0, 1, 0, 0, 0], [0, 1, 0, 0, 1, 0, 0],
[0, 1, 0, 0, 0, 1, 0], [0, 1, 0, 0, 0, 0, 1],
[1, 3, 1, 1, 1, 1, 0], [1, 3, 1, 1, 1, 0, 1],
[1, 3, 1, 1, 0, 1, 1], [1, 3, 1, 0, 1, 1, 1],
[1, 3, 0, 1, 1, 1, 1], [0, 0, -1, 0, 0, 0, 0],
[0, 0, 0, -1, 0, 0, 0], [0, 0, 0, 0, -1, 0, 0],
[0, 0, 0, 0, 0, -1, 0], [0, 0, 0, 0, 0, 0, -1]]
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