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Abstract

The experimental realization of twisted bilayer graphene (TBG) in 2018 marked the begin-
ning of an active research field in physics known as “twistronics”. This field explores the
remarkable tunability of electronic structures in 2D van derWaals heterostructures through
relative rotations between single layers. The mismatch in periodicity between the stacked
layers gives rise to a moiré pattern, and the moiré potential coupling the layers underlies
the rich physics in twistronics. It has been theoretically and experimentally shown that the
Dirac dispersion of graphene can completely disappear at specific rotation angles, known
as "magic angles." At these angles, electrons near the graphene Fermi level experience sig-
nificantly reduced mobility, leading to the emergence of exotic phases. It is fascinating to
witness a single material exhibiting such a wealth of phases.

TBG has been found to exhibit superconducting phases, correlated insulating phases,
strange metal phases, and more. Efforts are ongoing to fully understand the underlying
mechanisms behind the rich and intricate phase diagram of this twisted 2D material.

While TBG investigations continue, attention has also turned to other similar 2D mate-
rials. Among these, twisted trilayer graphene (TTG) has emerged as a promising platform
for exploring electronic structure tunability and diverse phases. With an additional layer
of graphene, the complexity of TTG is significantly increased compared to TBG. The main
challenge lies in the incommensurability between the two TBG patterns encoded in TTG.
The mismatched TBG patterns create a secondary moiré pattern, referred to as the "super-
moiré," atop them. Prior theoretical works on TTG either employed mirror-symmetrical
configurations or made approximations to circumvent the supermoiré challenge. These
approaches successfully elucidated the moiré band structures and topologies, identifying
magic angles and the associated flat bands in TTG.

However, apart from the mirror-symmetrical TTG model, the approximate moiré TTG
models assume collinear moiré vectors and rational ratios between twist angles. The in-
commensurability of TTG arises precisely from the deviation from collinearity and the ir-
rationality of twist angle ratios.

This thesis is inspired by the quest to solve the incommensurate supermoiré problem.
While finding a complete and general solution to the quasicrystal problem posed by incom-
mensurability remains challenging, we aim to push the boundaries beyond the approximate
periodic regime. We have developed a sophisticated theoretical framework that views the
incommensurate supermoiré problem as a perturbed periodicity problem under certain con-
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Abstract

ditions. Specifically, our methodology examines scenarios where the ratio between twist
angles is close to a rational number. In such cases, we perform a geometrical decomposition
of the two sets of moiré vectors, yielding two distinct length scales: one comparable to the
moiré scale and the other spanning an even longer scale, known as the supermoiré scale.
We utilize the intuition that the exact solution of the TTG model should locally resemble
the approximate moiré solutions, and we design an ansatz wave function for the exact solu-
tion. The ansatz wave functions can be seen as an extension of the classical k-dot-p method,
involving a linear combination of local wave functions decorated by a modulation function.
The modulation functions are intentionally slowly varying, nearly constant within a moiré
unit cell. Consequently, the ansatz functions are locally orthonormal within eachmoiré unit
cell. This allows us to integrate the moiré functions locally within each unit cell, resulting
in an effective Schrödinger’s equation that solely involves the modulation functions.

By numerically diagonalizing the effectiveHamiltonian, we obtain the supermoiré states
and band structure. Comparing our results to those obtained by directly averaging the local
solutions, we confirm that the effective model better respects the symmetries of the original
model and reveals a pseudo-magnetic field effect that cannot be captured by incoherently
averaging local states.

Keywords: twistronics, twisted bilayer graphene, twisted trilayer graphene, k·pmethod,
quasicrystal, incommensurability
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Résumé en français

La réalisation expérimentale du graphène torsadé à double couche (TBG) en 2018 a marqué
le début d’un domaine de recherche actif en physique connu sous le nom de “twistronics”
(twistronique). Ce domaine explore la remarquable capacité d’ajustement des structures
électroniques dans les hétérostructures de van der Waals en 2D grâce aux rotations rela-
tives entre les couches individuelles. La différence de périodicité entre les couches empilées
donne naissance à un motif moiré, et le potentiel moiré qui lie les couches est à la base
de la physique riche de la twistronique. Il a été démontré à la fois théoriquement et ex-
périmentalement que la dispersion de Dirac du graphène peut complètement disparaître à
certains angles de rotation spécifiques, appelés “angles magiques”. À ces angles, les élec-
trons proches du niveau de Fermi du graphène connaissent une mobilité considérablement
réduite, ce qui entraîne l’émergence de phases exotiques. Il est fascinant de constater qu’un
seul matériau présente une telle variété de phases.

On a découvert que le TBG présente des phases supraconductrices, des phases isolantes
corrélées, des phases métalliques étranges, etc. Des efforts sont en cours pour comprendre
pleinement les mécanismes sous-jacents du diagramme de phase riche et complexe de ce
matériau 2D torsadé.

Alors que les recherches sur le TBG se poursuivent, l’attention s’est également portée
sur d’autres matériaux 2D similaires. Parmi ceux-ci, le graphène torsadé à triple couche
(TTG) émerge comme une plateforme prometteuse pour explorer l’ajustabilité des struc-
tures électroniques et les différentes phases. Avec une couche supplémentaire de graphène,
la complexité du TTG est considérablement accrue par rapport au TBG. Le principal défi ré-
side dans l’incommensurabilité entre les deux motifs TBG encodés dans le TTG. Les motifs
TBG non appariés créent un motif moiré secondaire, appelé “supermoiré”, au-dessus d’eux.
Les travaux théoriques antérieurs sur le TTG utilisaient soit des configurations symétriques
par rapport à un plan miroir, soit des approximations pour contourner le défi du super-
moiré. Ces approches ont permis d’élucider avec succès les structures de bande moiré et les
topologies, en identifiant les angles magiques et les bandes plates associées dans le TTG.

Cependant, à l’exception du modèle symétrique par rapport à un plan miroir du TTG,
les modèles moirés approximatifs du TTG supposent des vecteurs moirés colinéaires et
des rapports de torsion rationnels. L’incommensurabilité du TTG provient précisément
de l’écart par rapport à la colinéarité des vecteurs moirés et de l’irrationalité des rapports
d’angle de torsion.
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Résumé en français

Cette thèse s’inspire de la quête visant à résoudre le problème du supermoiré incom-
mensurable. Bien que trouver une solution complète et générale au problème du quasi-
cristal posé par l’incommensurabilité reste un défi, notre objectif est de repousser les limites
au-delà du régime périodique approximatif. Nous avons développé un cadre théorique so-
phistiqué qui considère le problème du supermoiré incommensurable comme un problème
de périodicité perturbée dans certaines conditions. Plus précisément, notre méthodolo-
gie examine les scénarios où le rapport entre les angles de torsion est proche d’un nom-
bre rationnel. Dans de tels cas, nous effectuons une décomposition géométrique des deux
ensembles de vecteurs moirés, donnant ainsi deux échelles de longueur distinctes : l’une
comparable à l’échelle moiré et l’autre s’étendant sur une échelle encore plus longue, ap-
pelée échelle du supermoiré. Nous utilisons l’intuition selon laquelle la solution exacte
du modèle TTG devrait ressembler localement aux solutions moirées approximatives, et
nous concevons une fonction d’onde ansatz pour la solution exacte. Les fonctions d’onde
ansatz peuvent être considérées comme une extension de la méthode classique k-point-p,
impliquant une combinaison linéaire de fonctions d’onde locales décorées par une fonc-
tion de modulation. Les fonctions de modulation varient lentement intentionnellement et
sont presque constantes dans une cellule unitaire moirée. Par conséquent, les fonctions
ansatz sont localement orthonormales dans chaque cellule unitaire moirée. Cela nous per-
met d’intégrer les fonctions moirées localement dans chaque cellule unitaire, ce qui donne
une équation de Schrödinger efficace ne faisant intervenir que les fonctions de modulation.

En diagonalisant numériquement l’hamiltonien effectif, nous obtenons les états super-
moirés et la structure de bande. En comparant nos résultats à ceux obtenus en moyennant
directement les solutions locales, nous confirmons que le modèle effectif respecte mieux les
symétries du modèle d’origine et révèle un effet de champ pseudo-magnétique qui ne peut
être capturé par la moyenne incohérente des états locaux.

Mots clés: twistronique, graphènes bicouche torsadé, graphène tricouche torsadé, méth-
ode k · p, quasi-cristal, incommensurabilité
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Introduction

The successful isolation of single-layer graphene marked the beginning of a fruitful era
in the exploration of two-dimensional materials [1]. Graphene, with its unique proper-
ties, has captured significant attention in research. It exhibits high electron mobility across
a wide temperature range [2–4], and demonstrates excellent electrical and thermal con-
ductivity comparable to metallic materials at room temperature [5, 6]. The remarkable
characteristics of graphene can be primarily attributed to its Fermi-level behavior, which
features two massless Dirac cones at the K and K′ points of the Brillouin zone. These
cones, which are time-reversed counterparts of each other, exhibit a high dispersion ve-
locity of approximately 106 m/s. Additionally, graphene displays the quantum Hall effect
when subjected to a perpendicular magnetic field, resulting in quantized Hall conductiv-
ity given by σxy = ±4(N + 1

2
) e

2

h
, where N represents the index of the Landau levels, e

is the charge of a single electron, h is the Planck constant, and B denotes the strength of
the magnetic field. The Landau levels of a relativistic massless fermion can be described
by the expression EN = sgn(N)ℏvF

lB

√
2|N |, where lB is the magnetic length defined by

lB =
√

ℏ
eB
.

Despite the highmobility of charge carriers in graphene, achieving superconductivity in
single-layer graphene is challenging. This difficulty primarily arises from the depleted den-
sity of states at the charge neutral point, resulting from the linear dispersion near the Fermi
level. To overcome this limitation, researchers have explored alternative two-dimensional
lattices [7]. One notable example is the Kagome lattice, which is known to possess com-
pletely flat bands and bands with Dirac dispersion simultaneously [8]. However, the real-
ization of such materials in experiments and the observation of superconductivity in them
have remained rare [9–12].

One natural approach to explore enhanced properties is by stacking multiple layers
of graphene together. The interlayer hopping potential can potentially modify the Fermi
surface and lead to interesting phenomena. In graphene stacking, two common arrange-
ments are AA-stacking and AB-stacking (also known as Bernal stacking), depending on the
relative positioning of the A- and B-sublattices of the graphene layers. Experimental obser-
vation of superconductivity in Bernal stacked graphene bilayer was recently reported [13].
It is found that the Cooper pair in this superconducting phase is the unconventional spin-
triplet. Superconductivity in non-twisted trilayer graphene is also reported [14].

It was soon realized that stacked graphene layers with a twist, known as twisted bilayer
graphene (TBG), exhibit a unique interlayer hopping potential due to the relative rotation
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between the layers. This twist-induced effect can significantly modify the band structure
of the Fermi level in a distinct way compared to direct AA or AB stackings without a twist.
The non-trivial topology of the Fermi-level bands in TBG was already observed prior to the
discovery of the flat bands. [15]. Subsequently, it was demonstrated that the band structure
near the charge neutral point in TBG retains the Dirac dispersion, but the velocity can vary
dramatically with the twist angle and even vanish at specific angles known as magic angles,
leading to the emergence of the famous flat bands [16–19]. The theoretical prediction of
these flat bands and the identification of magic angles in TBG sparked widespread interest
in the exploration of van der Waals heterostructures based on twisted graphene layers.

The experimental discovery of superconductivity [20] and correlated insulator phases [21]
in 2018 marked the beginning of a new era in the field of “twistronics”. Since then, intensive
investigations have been conducted to explore the exotic phases and electronic properties
of van der Waals heterostructures with similar characteristics. These studies have revealed
a wealth of remarkably rich physics.

The tunability of twisted bilayer graphene (TBG) is not solely dependent on the twist
angle. It has been observed that hydrostatic pressure can increase the strength of interlayer
coupling, leading to superconductivity at larger angles [22]. By tuning the flat-band filling
factor, various phases can be frequently observed, including correlated insulator, supercon-
ducting, and ferromagnetic phases [23]. Figure 1 shows the experimentally measured phase
diagram of magic angle TBG, as demonstrated by Lu et al. [23].

Figure 1: The phase diagram of magic-angle TBG, reproduced from Ref. [23]. The color plot
show the longitudinal resistivity of TBG as a function of the filling factor and temperature.
Various phases, such asmetal, band insulator (BI), correlated states (CS) and superconductor
(SC) are revealed.

The coexistence of correlated and superconducting phases in twisted bilayer graphene
(TBG) is particularly intriguing, as it suggests intricate interplays between these phases. Ex-
perimental observations have indicated that the appearance of the superconducting phase
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can be triggered upon quenching the insulating phase, indicating a competition between
the two phases [24].

While fully elucidating the nature of superconductivity in magic angle TBG (MATBG)
remains challenging, valuable insights have been obtained by tuning the interaction strength
in MATBG and studying the behavior of the superconducting phase. It has been found that
weakening the electron-electron interaction enhances superconductivity in MATBG, sug-
gesting that electron-phonon coupling plays a stabilizing role by competing against the
Coulomb interaction [25].

Experiments conducted by Arora et al. [26] have shed light on the impact of the van
der Waals environment on superconductivity in TBG. The proximity effect between TBG
and the substrate has been shown to be crucial in determining the phase diagram of TBG.
Their measurements suggest that TBG superconductivity is consistent with a Cooper pair-
ingmechanism that resonates with the spin-orbit interaction induced by an additionalWSe2
layer on a hexagonal boron nitride (hBN) substrate.

Similar to other unconventional superconductors, the superconducting phase in TBG
exhibits nematic behavior, breaking rotational symmetry [27] and displaying anisotropic
responses to in-plane magnetic fields that depend on the field direction [28].

Besides nematicity, other indications of the unconventional nature of superconductivity
in twisted bilayer graphene (TBG) have been uncovered. Experimental observations have
revealed that the transition temperature of TBG superconductivity deviates from the pre-
diction of conventional s-wave superconductors. Experiments by Oh et al [29] suggested
that MATBG can be a nodal superconductor with an anisotropic pairing mechanism. They
found the tunneling gap ∆T greatly exceeds the mean-field BCS ratio (2∆T/kBT ∼ 25).
Interestingly, the tunneling gap persists even when superconductivity is suppressed, sug-
gesting its origin from a pseudogap phase [29].

The presence of flat bands in MATBG indicates strong electron-electron correlation ef-
fects. Xie et al. provided direct experimental evidence of strong correlation in MATBG [30].
Their results also demonstrated the failure of the mean-field approach in modeling the
electron-electron interaction in MATBG.

The ferromagnetism observed inMATBG is another consequence of the electron-electron
interaction. At approximately 3/4 filling of the conduction band, ferromagnetic states in
MATBG have been observed, accompanied by a giant anomalous Hall effect [31] (but not
quantum) up to 10.4 kΩ. When MATBG is placed in a finite magnetic field, a cascade of
Chern insulators has also been observed [32]. The quantum anomalous Hall effect was soon
confirmed in TBG by Serlin et al [33]. Depositing MATBG on a WSe2 layer leads to a ferro-
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magnetism driven by spin-orbit coupling [34]. Orbital ferromagnetism was also observed
in MATBG deposited on hexagonal boron nitride (hBN) substrate [35].

Measurements of the van Hove singularity (VHS) in MATBG have suggested that cor-
related states in TBG are highly relevant to doping through a single VHS. The insulating
gap appears at half-filling of TBG rather than at the peak of the VHS, indicating a Mott
insulator picture of the correlated states.

The observed cascade of phase transitions in MATBG [36, 37] further supports the no-
tion that the correlated insulating states and superconducting states in MATBG are ground
states emerging from high-temperature parent phases characterized by broken electronic
flavor symmetry and a revived Dirac-like character.

The existence of a flat electronic band in MATBG provides a unique platform for ex-
ploring strongly correlated topological phases. The discovery of the quantum anomalous
Hall effect (QAH) in TBG aligned with an hBN substrate adds even more excitement to this
fascinating field [33]. Interactions polarize electrons into moiré minibands with a Chern
number C = 1, resolved in terms of spin and valley. Experimental measurements confirm-
ing the QAH effect are illustrated in Fig. 2.

Experimental investigations have detected additional topological insulating phases in
MATBG in the presence finite magnetic field, showing Chern numbers C = ±1,±2, and
±3 at filling factors ν = ±3,±2, and ±1 per moiré unit cell, respectively [38]. A later
experimental work was able to observe a series of correlated Chern insulator phase with
flavor-symmetry breaking down to zero magnetic field [39]. There are also experimental
implications that fractional Chern insulator phase may also exist at zero magnetic field in
MATBG [40].

When subjected to a non-zero magnetic field, MATBG exhibits distinct features com-
pared to conventional quantumHall ferromagnets, primarily due to the dominant Coulomb
interaction that spontaneously breaks time reversal symmetry [32, 41, 42]. The Chern insu-
lating phases possess non-trivial topological subbands and exhibit characteristics reminis-
cent of the Hofstadter butterfly.These new phases are accounted for in the Stoner picture.

The discovery of strange-metal behavior adds another puzzle to the already rich phys-
ical properties of TBG. This behavior is characterized by a linear dependence of resistivity
ρ on temperature [43, 44], spanning a wide temperature range of over three orders of mag-
nitude. It remains stable across various fillings leading to correlated insulators [45]. Fur-
ther experimental measurements indicate that the metallic ground state is dominated by
quantum fluctuations. A transition to a strange metal state is observed when the supercon-
ducting order is suppressed, shedding light on the intrinsic connection between quantum
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Figure 2: Figure reproduced from Ref. [33] showing the Quantum anomalous Hall effect of
TBG aligned to hBN, measured at 1.6 K. (A) The longitudinal resistance Rxx and the Hall
resistance Rxy measured as functions of the density of carriers, measured with a magnetic
field 150 mT. (B) The measurement of Rxx and Rxy as functions of the magnetic field at a
fixed density of carriers n = 2.37× 1012 cm−2. (C) Rxy as a function of the magnetic filed
and the carrier density. The hysteresis loops are shown. When ferromagnetism emerges,
Rxy is non-zero when the magnetic field is turned off, signaling quantum anomalous Hall
effect. (D) Schematic illustrations of the Chern bands with filling factors ν = 3 and ν = 4
(full filling of a moiré unit cell).

fluctuations and superconductivity in MATBG [46].

Another intriguing phenomenon observed in TBG is the spontaneous spin/valley "fla-
vor" polarization resulting from the breaking of flavor symmetry due to interactions [47–
49].

With all these exotic and exciting physical properties listed above, twisted bilayer graphene
has proven to be a versatile platform for exploring various physical phenomena, including
unconventional superconductivity, correlated insulators, topological phases, and strange
metals.

Significant theoretical efforts have also been devoted to understanding TBG in recent
years. The Bistritzer-MacDonald model has been particularly successful in capturing the
flat bands and magic angles of TBG [50]. A series of comprehensive investigations on TBG
models have been presented [51–56], providing comprehensive insights into important
facets of the TBG system, including electronic structures, symmetries, topologies, inter-
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actions, many-body states, and correlated insulator phases, among others. Recently, the
theory of topological heavy fermion models for MATBG has successfully unified differ-
ent experimental observations by incorporating the Kondo effect mechanism [57, 58]. The
topological nature of the flat bands and magic angles has also been emphasized [59].

TBG serves as a representative physical system for studying various two-dimensional
van der Waals heterostructures with moiré structures, attracting extensive experimental
and theoretical investigations. In addition to twisting two layers with the same periodicity,
another approach to generate moiré structures is by overlapping and aligning two layers
with slightly different periodicities. TheWSe2/WS2 superlattice is a typical example of such
a system. By tuning the filling, a transition from an antiferromagnetic Mott insulator phase
to weak ferromagnetic states has been observed [60].

Inspired by TBG, other moiré structures such as twisted double bilayer graphene [61–
65] and twistedmonolayer-bilayer graphene [66, 67] have also been investigated. In Ref. [68],
the experimental realization of twisted 4-layer and 5-layer of graphene also is reported.
These systems exhibit correlated phases that can be tuned by an electric field.

A close “cousin” of TBG, twisted trilayer graphene (TTG), has recently garnered atten-
tion from the scientific community due to its structural similarities to TBGwhile exhibiting
distinct features. Two typical configurations of TTG have been extensively studied based
on the relative twist directions of the top and bottom layers: (1) mirror symmetrical TTG
(mTTG), where the top and bottom layers are rotated in the same direction by the same
angle relative to the middle layer, and (2) staircase TTG (sTTG), where the top and bottom
layers are rotated in opposite directions.

With an additional graphene layer on top of the bilayer, TTGprovides additional "knobs"
to manipulate the system’s physical properties. In addition to the twist angle, the layer
shifting and displacement field have been identified as channels for altering the physical
properties of TTG [69, 70]. Among the experimental investigations, the mTTG configura-
tion with vertical mirror symmetry has been the most widely studied. In this configuration,
the top and bottom layers are perfectly aligned and twisted relative to the middle layer, re-
sulting in a moiré pattern that shares the periodicity of TBG with the same twist angle.
The magic-angle mTTG (MA-mTTG) with a magic angle of

√
2 times that of TBG has been

experimentally demonstrated to exhibit strong-coupling superconductivity, which cannot
be explained by the weak-coupling BCS theory [71].

The superconducting phase in MA-mTTG is characterized by flavor-polarized moiré
bands [72] and persists in in-plane magnetic fields up to 10 T, violating the Pauli limit for
conventional superconductors [73]. Spin locking in TTG superconductivity has been ob-
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served, where the electrons forming a Cooper pair must belong to opposite valleys [74]. The
Bardeen-Cooper-Schrieffer theory for superconductivity in the weak coupling limit sug-
gests that VHS promotes superconductivity by increasing the density of states. In contrast,
the superconductivity in MA-mTTG is found to be weakened when approaching VHS [69].
The VHS in MA-mTTG can also be tuned by the displacement field [69, 75–77]. Similar su-
perconductivity phases have been experimentally observed in graphene systems with more
layers stacked alternately [68]. Local spectroscopic techniques have provided evidence sug-
gesting that the superconductivity in MA-mTTG is unconventional, exhibiting signatures
similar to the superconducting phase of MATBG [78].

The relaxation of layers in MA-mTTG has been found to impact the local structure and
arrangement of the system [79]. Spectroscopic observations have revealed strongmoiré lat-
tice reconstruction, with layers locked in a way that local domains exhibit structures near
the magic angle of mTTG, comparable in size to the superconducting coherence length.
The continuum model of mTTG indicates the coexistence of flat bands and highly disper-
sive Dirac cones near the magic angle of approximately 1.5◦. Carr et al. further pointed
out that the stability of the flat bands relies on lattice relaxation [80]. Notably, the exper-
imental investigation of MA-mTTG has been challenging due to the mixture of flat bands
and Dirac dispersion. The fully connected band structure without a gap, resulting from
the C2zT symmetry, limits the detection of correlated insulating phases. Recent advance-
ments in experimental techniques have successfully disentangled the intertwined bands by
adding a small magnetic field and breaking the C2zT symmetry, facilitating the detection
of correlated states in mTTG [81, 82].

In parallel with ongoing experimental research, theoretical investigations on TTG sys-
tems have been equally active. Theoretical studies on mTTG have confirmed the existence
of correlated insulator, semi-metallic, and superconducting phases [83–86]. A schematic
phase diagram of mTTG is shown in Fig. 3.

In addition to the mirror symmetrical arrangement, the staircase configuration of TTG
has garnered considerable interest, primarily due to the presence of a supermoiré pattern,
also called the “moiré of moiré” pattern. This pattern is formed by the interference between
the two incommensurate TBG patterns within TTG. The staircase configuration is achieved
by rotating the top and bottom layers in opposite directions relative to the middle layer. Ex-
perimental measurements have indicated the existence of superconducting and correlated
insulating phases in staircase TTG (sTTG) with remarkably low carrier density [87].

Theoretical advancements in sTTGhave also beenmade in recent years. Initially, the so-
lution for sTTG was obtained by employing appropriate approximations to neglect the sec-
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Figure 3: Schematic phase diagram of mTTG reproduced from Ref. [83]. The phase diagram
is shown as a function of the displacement field D0 and the filling factor ν. Due to the
presence of particle hole symmetry in the mirror-symmetrical TTG, the phase diagram
depends in fact on D0 and |ν|. At charge neutrality point (ν = 0), the intervalley coherent
(IVC) semimetal phase and sublattice polarized insulator phase are identified. The IVC and
SPL phases coexist with spin polarization (SP) at the doping of ν = 2. Three types of
superconducting phases noted SC I-III are marked in the diagram. Their spin structures are
also labeled in black color. The intervalley Hund’s coupling JH are shown in gray if it has
opposite sign to the spin structure.

ondary supermoiré effects [88]. The results obtained in a periodic regime, similar to TBG,
exhibited distinct characteristics compared to mirror symmetrical TTG. More recently, the
magic angles of sTTG, which yield completely flat bands in the theoretical chiral limit, have
been identified [89]. The presence of non-trivial topological bands in such models has also
captured the attention of researchers [90].

The theoretical work by Zhu et al. [91] demonstrated that the supermoiré variations
have significant impacts on the electronic properties of sTTG. However, a complete under-
standing of the supermoiré effects necessitates a comprehensive solution considering the
quasicrystal structure of sTTG, which remains a major challenge in both physics and math-
ematics [76]. A recent experimental investigation addressed the quasi-crystal feature of
TTG, and reported observations of superconductivity and interactions in the quasi-periodic
regime [92].

Therefore, the main motivation of this thesis is to explore the physics of supermoiré in
sTTG. Rather than attempting to tackle the complete incommensurability problem, the aim
is to establish a theoretical framework that captures the supermoiré features under specific
limiting conditions. Specifically, we will focus on regimes where sTTG can be treated as a
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system with perturbed periodicity [93, 94]. This approach shares a similar philosophy with
the so-called envelop wave function approach developed three decades ago in the semi-
conductor theory [95–97], and we take it further by addressing the gauge-fixing problem.

The thesis is structured as follows. Chapter 1 starts by constructing the continuum
Bistrizer-MacDonaled model for TBG from fundamental principles, elucidating its band
structure, magic angles, flat-band topologies, and important symmetries. Understanding
TBG serves as a foundation for comprehending the TTG models. In Chapter 2, we inves-
tigate an approximate TTG model that allows for the solution on the moiré lattice. The
moiré models of TTG discussed in this chapter form the basis for constructing the super-
moiré effective theory presented in Chapter 3. Chapter 3 provides a detailed account of the
development of the supermoiré effective theory, including discussions on symmetries and
gauge invariance within the effective model. In Chapter 4, we outline the procedures for
numerically solving the effective model and present the results. We showcase the super-
moiré features extracted from the effective theory and compare them with results obtained
through direct averaging of local models. This comparison convincingly demonstrates that
the supermoiré characteristics cannot be captured by a simple incoherent average of local
quantities.
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Chapter 1

Twisted Bilayer Graphene: Flat Bands,
Magic Angles and Symmetries

Understanding the Bistrizer-MacDonald model (BMmodel) of twisted bilayer graphene is a
crucial aspect in comprehending the trilayer graphene model. This chapter provides a com-
prehensive overview of the development of the TBG BM model, beginning with the Fermi-
level description of single-layer graphene. We delve into the study of the flat bands that
arise in TBG and examine the corresponding magic angles at which these bands emerge.
Additionally, we explore the topological properties of the flat bands and the diverse sym-
metries exhibited by TBG.

1.1 Bistrizer-MacDonald continuum model for TBG

Webegin the construction of the TBG continuummodel by examining single-layer graphene
(SLG), depicted in Fig.1.1. At the charge neutrality point, the Fermi level of SLG consists
of two Dirac points located at the K and K ′ points, often referred to as the two "val-
leys" of the graphene band structure, within the first Brillouin zone. The lowest-energy
bands in SLG exhibit a linear dispersion forming isotropic cones. These two Dirac cones
are time-reversed partners of each other. Consequently, the Fermi-level band structure of
SLG effectively describes a spinless fermion, with its flavor determined by a combination
of sublattice and valley indices:

h0,η = (ηk̂x −Kη
x)σx + η(k̂y −Kη

y )σy, (1.1)
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Figure 1.1: The real space structure of a single-layer graphene (SLG). The A- and B-
sublattices are shown in blue and orange colors, respectively.

Here, η = ±1 represents the valley index forK andK ′ points, respectively. σx and σy are
the Pauli matrices defined based on the sublattice indices, as depicted in Fig.1.1. We also
used k̂x = −i∂x and k̂y = −i∂y.

The Bistrizer-MacDonald (BM) model incorporates the near-Fermi level structure of
each individual graphene layer. In the momentum space, the band structure landscape of
a single-layer graphene consists of the two Dirac cones as well as their replicas resulting
from translations over reciprocal lattice vectors. To construct the BM model, we focus on
the cone located at theK valley of a single-layer graphene (SLG), as the cones at the two
valleys are decoupled near the Fermi level. The low-energy continuum Hamiltonian for
SLG is given by the Dirac Hamiltonian ĥ0 = (k̂ −K) · σ, where k̂ = −i∇ represents the
momentum operator.

Next, we will proceed with the construction of the TBG Hamiltonian. Usually, the
derivation of the TBG Hamiltonian begins with the tight-binding model of two graphene
layers. However, in this discussion, wewill take an alternative approach by directly starting
with the continuum Dirac Hamiltonian of each single layer.

To begin, let’s write down the TBG Hamiltonian without interlayer hopping, which can
be expressed as follows:

16
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Figure 1.2: Real space arrangement of twisted bilayer graphene. The top and the bottom
layers are rendered in orange and blue colors, respectively. Here the center is chosen to
be the AA-stacking point. The recurrence of the AA points in the real space makes appear
the periodicity of the moiré pattern. The AB- and BA-stacking points around a AA point
defines the vertices of the Wigner-Seitz cell of the moiré lattice in real space. The top and
bottom layers are rotated in the anticlockwise and the clockwise direction by an angle of
θ/2, respectively.

H0(r) =

(
ℏvF (k̂ − R̂θ/2K) · σ

ℏvF (k̂ − R̂−θ/2K) · σ

)
, (1.2)

In this expression, R̂α represents the operator that rotates a vector by an angle α. The
two graphene layers are rotated in opposite directions by an angle of θ/2. Throughout this
chapter, we will adopt the convention that the top layer is rotated anticlockwise, while the
bottom layer is rotated clockwise. In reciprocal space, theK point of both layers in Eq. (1.2)
is rotated with respect to the Γ point by ±θ/2, respectively.

The layer index introduces an additional degree of freedom for the spinless fermions.
To complete the model, we need to specify the interlayer hopping potential V (r). This
potential should be a 2×2matrix that describes the hopping between sublattices belonging
to different layers. The general form of the continuum TBG Hamiltonian is given by
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HTBG(r) =

(
ℏvF (k̂ − R̂θ/2K) · σ V (r)

V †(r) ℏvF (k̂ − R̂−θ/2K) · σ

)
. (1.3)

In the following, we demonstrate that with the principles of momentum conservation
during hopping, the graphene periodicity of each layer, and the inherent symmetries of the
stacked graphene lattices, the expression for V (r) can be determined.

We use QG and Q′
G to denote the reciprocal lattices of the top and bottom layers, re-

spectively. The first constraint on V (r) arises from the conservation of momentum before
and after interlayer hopping. Taking into account the periodicity of each graphene layer,
momentum conservation requires that:

V α,β
k,k′ = ⟨k, α, l = 1|V̂ |k′, β, l = 0⟩ =

∑
QG,Q′

G

ναβk,k′(QG,Q
′
G)δk+QG,k′+Q′

G
, (1.4)

where α, β ∈ {A,B} are the sublattice indices, and l = 0, 1 refers to the top and the bottom
layers, respectively. The real-space representation of V αβ(r) is given by

V αβ(r) =

∫
dk2dk′2

2π
eik·rV α,β

k,k′e
−ik′·r =

∑
QG,Q′

G

∫
dk2

2π
e−i(QG−Q′

G)·rναβk,k+QG−Q′
G
(QG,Q

′
G).

(1.5)
The Fourier coefficient ναβk,k′(QG,Q

′
G) a priori depends on both k and k′. However, we ob-

serve that themomenta involved in the TBGHamiltonian are restricted to the vicinity of the
K points of both graphene layers, i.e., k ≃ R̂θ/2K and k′ ≃ R̂−θ/2K . As a result, the co-
efficient ναβk,k′(QG,Q

′
G) can be approximated as ναβ

R̂θ/2K,R̂−θ/2K
(QG,Q

′
G) ≡ ναβ(QG,Q

′
G),

where the dependence on k and k′ is removed. This allows us to simplify the expression of
V αβ(r) as follows:

V αβ(r) =
∑

QG,Q′
G

ναβQG,Q′
G
e−i(QG−Q′

G)·r. (1.6)

This is in general not a periodic function unlessQG andQ′
G are commensurate lattices.

To obtain the BM model, we need to continue the simplification of the interlayer cou-
pling potential. We assume that V αβ(r) is primarily determined by ναβQG,Q′

G
, that gives the

minimum distance between R̂θ/2K+QG and R̂−θ/2K+Q′
G. The admissible combinations

ofQG andQ′
G are:

1. QG = Q′
G = 0, which yields R̂θ/2K − R̂−θ/2K = q1,

2. QG = R̂θ/2bG,2 andQ′
G = R̂−θ/2bG,2, resulting in (R̂θ/2K+QG)−(R̂−θ/2K+Q′

G) =

q2 ,
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3. QG = −R̂θ/2bG,1 and Q′
G = −R̂−θ/2bG,1, leading to (R̂θ/2K +QG) − (R̂−θ/2K +

Q′
G) = q3 .

Here, bG,1/2 represents the base vectors of the graphene reciprocal lattice, defined as:

bG,1 =
4π

3d

(√
3/2

1/2

)
(1.7)

and
bG,2 =

4π

3d

(
−
√
3/2

1/2

)
(1.8)

where d is the length of the C-C bond in the graphene layer. The vectors q2 and q3 can be
generated by C3z rotations of q1, as illustrated in Fig. 1.3.

Now we can apply a unitary transform to absorb the momenta R̂θ/2K and R̂−θ/2K on
the diagonal blocks of the TBG Hamiltonian in Eq. (1.3):

HBM = U †HTBGU =

(
ℏvF k̂ · σ Ṽ (r)

Ṽ †(r) ℏvF k̂ · σ

)
, (1.9)

where

U =

(
eiR̂θ/2K·r

eiR̂−θ/2K·r

)
, (1.10)

As a result, the matrix elements of the interlayer potential writes

Ṽ αβ(r) = e−iR̂θ/2K·rV αβ(r)eiR̂−θ/2K·r =
∑

QG,Q′
G

V αβ
QG,Q′

G
e−i[(R̂θ/2K+QG)−(R̂−θ/2K+Q′

G)]·r.

(1.11)

As explained previously, we keep only the values ofQG andQ′
G thatminimizes (R̂θ/2K+

QG)− (R̂−θ/2K +Q′
G) to one of the vectors among q1, q2 and q3. Finally, we can rewrite

Ṽ αβ(r) as

Ṽ αβ(r) =
3∑

j=1

V αβ
j e−iqj ·r. (1.12)

We have three matrices Vj with j = 1, 2, 3 associated to each vector qj . The BM Hamilto-
nian of TBG is readily at hand.

To incorporate the C3z symmetry, we consider the origin of the coordinates to be at
the AA stacking point. In this case, a 120◦ rotation around an axis perpendicular to the
graphene planes restores the conformation of both the top and bottom layers, preserving
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q1
R̂θ/2K

R̂−θ/2K

q2

q3

Top
Bottom

Two layers of graphene   
in reciprocal space

G1G2

TBG moiré reciprocal lattice

Γ K

K′￼

Figure 1.3: Left panel: The two graphene layers represented in the reciprocal space with
the first Brillouin zone of each layer. The smallest possible vectors connecting theK points
of each layer are q1, q2 and q3. Right panel: the moiré reciprocal lattice of TBG generated
by q1, q2 and q3, whereG1 andG2 are the bases vectors of the moiré reciprocal lattice.

the symmetry of the TBG system.

For the TBG Hamiltonian to respect the C3z symmetry, it must satisfy the following
condition before and after the C3z rotation, to maintain the same physical properties:

C3zHTBG(r)C
†
3z = HTBG(R̂2π/3r), (1.13)

Under rotation of r by 120◦, the diagonal blocks k̂ · σ transforms as e2iπ/sigmaz/3k̂ ·
σe−2iπ/sigmaz/3, which suggests

C3z = e2iπσz/3. (1.14)

The specific form of the Vj matrices will be determined to satisfy this symmetry condition.
The constraint of Eq. (1.13) imposes the following relation between Vj matrices:

Vj+1 = e2iπσz/3Vje
−2iπσz/3 (1.15)

for Eq. (1.13) to hold.

Another symmetry to take into account is to rotate the system by 180◦ around the x-
axis, notedC2x. Flipping the twisted bilayer graphene around the x-axis by 180◦ exchanges
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the layers and restores the original configuration of the TBG. Under the C2x symmetry, the
coordinates r = (x, y) are transformed to r = (x,−y). In the matrix form of HBM(x,−y),
the diagonal blocks become ℏvF k̂ · σ∗, where σ∗ is the complex conjugate of the Pauli
matrices σ. The interlayer hopping potential becomes:

Ṽ (x,−y) = V1e
iq1·r + V2e

iq3·r + V3e
iq2·r.

This form of the interlayer hopping potential ensures that the TBG Hamiltonian retains its
symmetry under C2x rotation.

To establish a unitary transformation connecting HBM(x,−y) with HBM(r) and satisfy
the C2x symmetry, the required unitary operation is given by:

C2x = τx ⊗ σx, (1.16)

where τx is a Pauli matrix defined on the layer indices, while σx is a Pauli matrix defined
on the sublattice indices. This unitary transformation ensures that the TBG Hamiltonian
exhibits the desired symmetry under C2x rotation.

For C2x to be valid, it is then necessary that σxV1σx = V1, while σxV2σx = V3 and
σxV3σx = V2. Combining the above constraints on Vj matrices imposed by C3z and C2x

symmetries, we must have them written in the following forms:

V1 =

(
w0 w1

w1 w0

)
= w1

(
r 1

1 r

)

V2 =

(
w0 ω∗w1

ωw1 w0

)
= w1

(
r ω∗

ω r

)

V3 =

(
w0 ωw1

ω∗w1 w0

)
= w1

(
r ω

ω∗ r

), (1.17)

where ω = exp(2iπ/3). w0 and w1 designate the intra-sublattice and inter-sublattice hop-
ping energy between layers.

In typical cases, a common choice for the interlayer coupling potential isw1 = 110meV,
where w1 represents the strength of interlayer hopping. It is also common to consider w0

to be less than or equal to w1, denoted as w0 ⩽ w1. The ratio r = w0/w1 is referred to as
the corrugation factor of graphene.

In particular, the case ofw0 = 0 is known as the chiral limit, which holds special interest
as it allows for analytical solutions of the flat bands. On the other hand, when w0 = w1, it
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corresponds to the isotropic limit. In practical scenarios, the value of r is often around 0.8,
indicating a proximity to the isotropic limit.

It is also convenient to use the Tj matrices in the following

Tj =

(
r ω−j−1

ωj−1 r

)
= rσ0 + cos(2(j − 1)π/3)σx + sin(2(j − 1)π/3)σy, (1.18)

where σ0 is the identity matrix defined on the sublattice indices. We will also use Ṽ (r) =

w1T (r) with

T (r) =
3∑

j=1

Tje
−iqj ·r. (1.19)

The Hamiltonian of BM TBG model finally writes

HBM =

(
ℏvF k̂ · σ w1T (r)

w1T (−r) ℏvF k̂ · σ

)
. (1.20)

A little more massage of the BM TBG Hamiltonian gives:

HBM = ℏvF |q|

(
k̂
|q| · σ

w1

ℏvF |q|T (r)
w1

ℏvF |q|T (−r)
k̂
|q| · σ

)
, (1.21)

where |q| = |qj|, j = 1, 2, 3. Therefore, |q| = θ|K|. Then do the substitution

k̂← k̂/|q| (1.22)

and we now work with dimensionless wave vectors. The ratio

a =
w1

ℏvF |q|
=

w1

ℏvF |K|
1

θ
(1.23)

is the coupling constant. This is the unique parameter in the TBG model that controls
the whole low-energy physics. It is beneficial to concentrate only on the dimensionless
Hamiltonian to understand more generally the TBG physics:

HBM ← HBM/(ℏvF |q|) =

(
k̂ · σ aT (r)

aT (−r) k̂ · σ

)
. (1.24)

Nowwewill examine some specific coordinateswhereT (r) locally has some interesting
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forms. First let us look at r = 0. Obviously,

T (r = 0) =

(
3r 0

0 3r

)
, (1.25)

which means at r = 0, there is only AA or BB interlayer hopping. Therefore, the Hamilto-
nian expressed in Eq. (1.24) has chosen the AA-stacking point as the origin of coordinates.

The second special coordinate is r = (a1 − a2)/3. A simple calculation gives

T (
a1 − a2

3
) =

(
0 3r

0 0

)
, (1.26)

implying there exists only hopping between the A-sublattice of the top layer and the B-
sublattice of the bottom layer at this location. Clearly, this is the AB-stacking point.

Finally one can explore another coordinate r = (−a1 + a2)/3 which gives

T (
−a1 + a2

3
) =

(
0 0

3r 0

)
. (1.27)

The hopping is between top B-sublattice and bottom A-sublattice. This is therefore a BA-
stacking point of TBG.

We will see later these special coordinates are the locations of C3z axes of TBG.

1.2 TBG band structure, flat bands and magic angles

The advantage of the TBG Hamiltonian given by Eq. (1.24) is that it allows us to treat non-
commensurate graphene lattices at arbitrary twist angles within the periodic regime. This
is made possible by considering the lowest-order terms in the interlayer coupling potential
V (r). The periodicity of Eq. (1.24) can be manifested by:

H̃BM(r) =

(
eiq1·r

1

)
HBM(r)

(
e−iq1·r

1

)
=

(
(k̂ − q1) · σ T̃ (r)

T̃ (−r) k̂ · σ

)
. (1.28)

H̃BM(r) satisfies the periodicity

H̃BM(r + a1/2) = H̃BM(r).
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Figure 1.4: Variation of the TBG band structure with different twist angles. The two
bands closest to the zero-energy level are labeled with red color. θ = 1.09◦ is the fa-
mous “magic angle” of TBG. The band structures are computed with the corrugation factor
r = ωAA/ωAB = 0.8.

K(k = 0)

K
K′￼

Γ M

Figure 1.5: The route in the Brillouin zone along which the band structures are computed
is chosen to be Γ→ K→ K′ →M→ Γ.

with
ai ·Gj = 2πδij.

HereG1 = q1 − q2 andG2 = q1 − q3. We have defined the potential T̃ (r) as

T̃ (r) = eiq1·rT (r) = T1 + T2e
iG1·r + T3e

iG2·r. (1.29)
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According to Bloch’s theorem, the eigenfunctions of H̃BM can be written in the form

Ψ̃nk(r) = eik·r
(
ũnk(r)

ṽnk(r)

)
, (1.30)

where ũnk(r) and ṽnk(r) are spinor Bloch functions that are periodic on the lattice defined
by a1/2. Here, n is the band index and k is now a vector within the moiré Brillouin zone
(mBZ).

From Eq. (1.28), the eigenfunction of HBM given in Eq. (1.24) writes

Ψnk(r) =

(
e−iq1·r

1

)
Ψ̃nk = eik·r

(
e−iq1·rũnk(r)

ṽnk(r)

)
= eik·r

(
unk(r)

vnk(r)

)
, (1.31)

where unk(r) = e−iq1·rũnk(r) and vnk(r) = ṽnk(r). The Schrödinger’s equation

HBM(r)Ψnk(r) = EnkΨnk(r)

leads to the eigenvalue equation concerning only the Bloch wave function:(
(k − i∇) · σ aT (r)

aT (−r) (k − i∇) · σ

)(
unk(r)

vnk(r)

)
= Enk

(
unk(r)

vnk(r)

)
, (1.32)

This equation can be solved numerically by applying Bloch’s theorem and going to Fourier
space. We can rewrite the Hamiltonian as a matrix defined on discrete reciprocal lattice,
parameterized by a wave vector k inside the mBZ. The Hamiltonian matrix elements are
given by:

HBM
αβ
Q,Q′(k) = (k−Q)·σαβδQ,Q′+

3∑
j=1

Tαβ
j (δQ,Q′+qj+δQ,Q′−qj), |Q|, |Q′| < Qmax, (1.33)

where we useQ to denote the reciprocal lattice sites. The values ofQ are given by

Q(n1, n2, l) = n1G1 + n2G2 + lq1, n1, n2 ∈ Z. (1.34)

where l = 0, 1 is the layer index for bottom and top layers, respectively. We also use
α, β ∈ {A,B} to denote the sublattice degree of freedom. The parameter Qmax represents
the cutoff of the reciprocal lattice vectors included in the computation. By setting an up-
per limit for Qmax, one restricts the range of reciprocal lattice vectors that are considered
in the calculation of the Bloch functions. Reference [51] provides further details and anal-
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ysis regarding the numerical convergence and the choice of Qmax in the context of TBG
calculations.

In Fig. 1.4, the band structures of twisted bilayer graphene (TBG) at various twist angles
are presented. It is observed that regardless of the twist angle, there are two Dirac cones
located at theK andK ′ points of the moiré Brillouin zone. These Dirac cones correspond
to the low-energy excitations in the system and are reminiscent of the Dirac cones in pris-
tine graphene. However, in TBG, the dispersion velocity of these cones is renormalized
compared to graphene due to the interlayer coupling.

As the twist angle decreases (or the interlayer coupling constant increases), the renor-
malized velocity of the Dirac cones decreases. At themagic angle, the renormalized velocity
vanishes completely, leading to the emergence of flat bands. The magic angle is a special
twist angle where the interplay between lattice moiré pattern and the electronic structure
results in the formation of a narrow energy band with suppressed dispersion. It is interest-
ing to note that as the twist angle continues to decrease from the magic angle, the velocity
of the Dirac cones revives and disappears repeatedly.

In the mBZ of TBG, it is mentioned that the origin of the k-space coordinates k = 0 is
set at theK point rather than the Γ point. This choice is made to fix the symmetry center
at the Γ point, which simplifies the analysis of the system’s symmetries and facilitates the
description of its electronic properties.

Further explanations and analysis regarding the band structures and the mBZ of TBG
are likely provided in the corresponding figures and accompanying text.

0 1 2 3
a

0.0

0.2

0.4

0.6

0.8

1.0

v/v
F

Figure 1.6: Revival of the Fermi velocity as a function of the dimensionless coupling con-
stant (a ∝ 1/θ). The velocities are calculated using k · p method near the K point. The
angles where the Fermi velocity vanishes are the magic angles.
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Fig. 1.6 displays the renormalized Fermi velocity of twisted bilayer graphene (TBG) as
a function of the dimensionless coupling constant, which is proportional to 1/θ, where θ is
the twist angle. The renormalized Fermi velocity provides insight into the behavior of the
electronic bands and can offer a simplified understanding of the emergence of flat bands in
TBG.

The renormalized Fermi velocity is computed using the k · p method, which enables a
degenerate perturbative calculation near the TBGK point. By analyzing the behavior of the
Fermi velocity, important information about the electronic properties and the emergence
of flat bands can be obtained.

The plot in Fig. 1.6 demonstrates that as the dimensionless coupling constant (related
to 1/θ) increases, the renormalized Fermi velocity decreases until the first magic angle met.
This behavior is in line with the observation that the dispersion velocity of the Dirac cones
in TBG is renormalized compared to pristine graphene. As the Fermi velocity decreases, it
approaches zero at the magic angle, where the flat bands emerge.

It is important to note that the plot provides an incomplete understanding of the flat
bands and should be complemented with a more comprehensive analysis of the electronic
structure and band dispersions. However, this simplified approach can serve as a useful
starting point to gain insight into the emergence of flat bands in TBG.

The flat bands in twisted bilayer graphene (TBG) exhibit a non-trivial topology known
as fragile topology. This characterization was first established in a study by Song et al. [59].
Although the total Chern number of the two detached middle bands is zero, an interesting
phenomenon occurs at the chiral limit.

In the chiral limit, the two flat bands can be isolated based on sublattice polarization.
Each of these chiral bands possesses an individual Chern number equal to±1. This implies
that each chiral band exhibits a non-zero Chern number, indicating a non-trivial topological
nature. However, when these two bands are considered together, their topological proper-
ties combine, resulting in a cancellation of their Chern numbers. As a result, the total Chern
number for the combined bands becomes zero, signifying a trivial overall topology.

This delicate interplay between individual non-trivial Chern numbers and their can-
cellation when combined leads to the concept of fragile topology in TBG. It highlights the
sensitivity of the topological properties to band crossings and the intricate nature of the
electronic structure in this system. The fragile topology of TBG adds to its rich and fasci-
nating physics, making it a subject of significant research interest.

We have carried out a Wilson Loop calculation for the two middle bands away from the
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chiral limit, as shown in Fig. 1.7. A two band Wilson loop is a 2× 2 matrix given by

W (k2) = Ψ†
0,k2

N−1∏
n=0

P n
N
,k2Ψ0,k2 , (1.35)

where 0 ⩽ k1/2 ⩽ 1 and Ψk1,0 = [|ψ1,k1G1⟩ , |ψ2,k1G1⟩] is a two-column matrix with∣∣ψ1/2,k2G2

〉
being the two states of the middle bands computed at k = k1G1. Pk1,k2 is a

projector
Pk1,k2 =

∑
m=1,2

|ψm,k1G1+k2G2⟩⟨ψm,k1G1+k2G2| . (1.36)

The two eigenvalues of theWilson loop accumulates±2π when theWilson loop swipes
over the moire reciprocal unit cell, giving a total Chern number equal to 0.
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Figure 1.7: Wilson Loop computation of the middle bands. Each of the two eigenvalues
accumulates ±2π. The total accumulated phase is however 0, giving a total Chern number
C = 0.

1.3 Analyses on typical symmetries in TBG

The BM TBG model incorporates various symmetries that play a crucial role in determin-
ing the system’s topology. Understanding these symmetries and their effect on the wave
functions is essential for characterizing the properties of TBG.

Translational symmetry. As has been discussed in Eq. (1.28), the invariance of transla-
tion is the prerequisite for the application of the Bloch’s theorem. Another way to show it
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is to start directly from Eq. (1.24) and show that HBM(r + a1/2) and HBM(r) can be related
by a unitary transform on the other degrees of freedom other than r. Indeed, one has

HBM(r + a1/2) = Ta1/2
HBM(r)T †

a1/2
, (1.37)

with

Ta1/2
=

(
ω 0

0 ω∗

)
layer

⊗ σ0, (1.38)

with ω = exp(2iπ/3).

Invariance of phase factors. If we parameterize the interlayer hopping potential by
three phase factors, i.e.

T[ϕ1,ϕ2,ϕ3](r) = T1e
−iq1·r+ϕ1 + T2e

−iq2·r+ϕ2 + T3e
−iq3·r+ϕ3 , (1.39)

A Hamiltonian equipped with T[ϕ1,ϕ2,ϕ3](r) is noted HBM[ϕ1,ϕ2,ϕ3](r). It is always possible
to restored it to the form of Eq. (1.24) up to a gauge change without any phase factors. This
is done by a simple shift of the origin of the coordinates. To be precise, we have(

e−iϕ1/2

eiϕ1/2

)
HBM[ϕ1,ϕ2,ϕ3](r + r0)

(
eiϕ1/2

e−iϕ1/2

)
= HBM[0,0,0](r) (1.40)

where r0 satisfiesG1 · r0 = ϕ2 − ϕ1 andG2 · r0 = ϕ3 − ϕ1, or more explicitly

r0 =
ϕ2 − ϕ1

2π
a1 +

ϕ3 − ϕ1

2π
a2. (1.41)

The consequence of the invariance of phases is that all TBGs with the same twist angles
are identical up to a translation, irrespective of the rotation center of the twist.

Particle-Hole symmetry. The particle-hole symmetry (PHS) in the BM model of TBG
originates from theDiracHamiltonian inherited from the low-energy band structure of each
graphene single layer. It would be broken if the precise band structure of graphene is taken
into consideration. Strictly speaking, the unitary transform of the particle-hole symmetry,
P , is not a “symmetry”, as it does anticommutes with the Hamiltonian. Commutation is
only possible when limited to the zero-energy subspace. The PHS is manifested by

PHBM(r)P† = −HBM(−r). (1.42)
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It is not hard to find a unitary transform satisfying the above condition is

P = τy, (1.43)

with τy being a Pauli matrix acting on the layer indices. This choice of P is obviously a
unitary Hermitian matrix and squares to 1. Often in literature a different choice P = iτy

may be adopted [52], which is an anti-Hermitian operator and squares to −1.

K
(k = 0)

K′￼

Γ ×k

×−k

× −k + q1×
Pk = 2Γ − k

Figure 1.8: The particle hole symmetry sends an arbitrary wave vector within the TBG
Brillouin zone to its counterpart symmetrical to it with respect to the Γ point. The dotted
arrow show the Ukmlapp process to send −k + q1 back inside the Brillouin zone centered
at Γ.

One thing particular about the PHS of TBG is that it sends a momentum k to −k + q1

instead of −k. This can be understood from Eq. (1.31):

PΨnk(−r) = e−ik·r
(
−iṽnk(−r)

ieiq1·rũnk(−r)

)
= ei(−k+q1)·r

(
e−iq1·rũ′(r)

ṽ′(r)

)
= Ψn̄,(−k+q1)(r),

(1.44)
where ũ(r), ṽ(r), ũ′(r) and ṽ′(r) are all periodic functions over the moiré Bravais lattice. n̄
indicates the index of the PHS counterpart of the band n. In fact, the wave vector −k+ q1

can be shifted back inside the Brillouin zone by a vectorQ belonging to the TBG reciprocal
lattice. One of the choices is Q = G2 −G1, so that the two wave vectors related by PHS
are symmetrical with respect to the point (q1 + G2 − G1)/2 = −G1/3 + 2G2/3. If we
choose this symmetry center to be the center of the Brillouin zone, i.e. the Γ point, then
we will find the two Dirac cones are located at the vertices of the hexagon, similar to the
case of graphene. All states within the TBG Brillouin zone are particle-hole symmetrical
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with respect to Γ point. A graphical representation of how a wave vector is transformed is
shown in Fig. 1.8.

C3z symmetry. In development of the continuum TBG model, we have utilized the C3z

symmetry as a rotation around r = 0. Herewe explore further if there exist otherC3z center
within a moiré unit cell. If such a coordinate exists, we can shift the origin of coordinates
to this symmetry point by a translation. The shifted Hamiltonian now has phase factors as
shown in Eq. (1.45). The search of new rotation centers becomes the investigation of the
phase factors in the shifted Hamiltonian to see if they satisfy the C3z symmetry.

K
(k = 0)

K′￼

Γ ×k

×R̂− 2π
3 k

−120∘

×
−120∘

Figure 1.9: Transform of states under C3z operation. An arbitrary wave vector k, is sent to
R̂−2π/3 under C3z rotation around k = 0 (blue color). The Ukmlapp process (dotted arrow)
shifts the resulted wave vector back inside the Brillouin zone. The result is equivalent to
directly rotating k around Γ point.

One notices first that

T[ϕ1,ϕ2,ϕ3](R̂2π/3r) = T2e
−iq1·reiϕ2 + T3e

−iq2·reiϕ3 + T1e
−iq3·reiϕ1

= e
2iπσz

3 T[ϕ2,ϕ3,ϕ1](r)e
−2iπσz

3 .
(1.45)

The unitary transform is coherent with−i∇R̂2π/3r
·σ = e

2iπσz
3 − i∇ ·σe−2iπσz

3 . To validate
the C3z symmetry, the only extra requirement is to impose

ϕ3 − ϕ2 = ϕ2 − ϕ1 + 2Nπ;

ϕ1 − ϕ3 = ϕ3 − ϕ2 + 2Mπ,
(1.46)
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with N,M ∈ Z. The above condition tells that ϕ1, ϕ2 and ϕ3 are equidistantly distributed
along a unit sphere. Therefore we have three cases that verifies C3z symmetry:

• ϕ1 = ϕ2 = ϕ3 ;

• ϕ2 = ϕ1 + 2π/3, ϕ3 = ϕ2 + 2π/3;

• ϕ2 = ϕ1 − 2π/3, ϕ3 = ϕ2 − 2π/3.

Since ϕ1 can always be gauged out so that ϕ1 = 0, it suffices to say we have three C3z axes
located differently:

• ϕ1 = ϕ2 = ϕ3 = 0 is the AA-stacking point;

• ϕj = 2(j − 1)π/3, j = 1, 2, 3 is the AB-stacking point;

• ϕj = −2(j − 1)π/3, j = 1, 2, 3 is the BA-stacking point.

As a summary, the C3z operator writes

C3z = e2iπσz/3 ⊗

(
e−iϕ2

1

)
layer

, (1.47)

under which the Hamiltonian transforms as

C3zHBM(r)C
†
3z = HBM(R̂2π/3r) (1.48)

Now we examine how the wave functions are related by C3z operation. Without loss of
generality, one needs only to look at the case where ϕ1 = ϕ2 = ϕ3 = 0. First we write

HBM(R̂2π/3r)Ψnk(R̂2π/3r) = C3zHBM(r)C
†
3zΨnk(R̂2π/3r) = EnkΨnk(R̂2π/3r), (1.49)

and therefore we have

HBM(r)C
†
3zΨnk(R̂2π/3r) = EnkC†

3zΨnk(R̂2π/3r). (1.50)

It is clear that under C3z a wave function Ψnk(r) is sent to C†
3zΨnk(R̂2π/3r). With

C†
3zΨnk(R̂2π/3r) = eiR̂

−1
2π/3

k·r
(
e−iq3·rũ′(r)ω∗

ṽ′(r)ω

)
= eiR̂

−1
2π/3

k·r
(
e−iq1·reiG2·rũ′(r)ω∗

ṽ′(r)ω

)
≡ Ψn,R̂−1

2π/3
k(r),

(1.51)

32



Twisted Bilayer Graphene: Flat Bands, Magic Angles and Symmetries

where ũ′(r) = ũ(R̂2π/3r) and ṽ′(r) = ṽ(R̂2π/3r). Since ũ(r) and ṽ(r) are periodic func-
tions on a triangular lattice, rotating r by 120◦ also gives periodic functions on the same
lattice. We confirm that C†

3zΨnk(R̂2π/3r) is a state whose wave vector is R̂−1
2π/3k.

However, direct computation of R̂−1
2π/3k is a clockwise rotation of k around K point.

Therefore R̂−1
2π/3k is out of the Brillouin zone centered at Γ. It should be mapped to a wave

vector inside the Brillouin zone via the Ukmlapp process:

C†
3zΨnk(R̂2π/3r) = ei(R̂

−1
2π/3

k+G2−G1)·r
(
e−iq1·reiG1·rũ′(r)ω∗

ṽ′(r)ω

)
= Ψn,R̂−1

2π/3
k+G2−G1

(r) ≡ Ψn,R̂−1
2π/3

(k−Γ)+Γ(r).

(1.52)

Sending k to R̂−1
2π/3(k − Γ) + Γ is a clockwise rotation around Γ point, the center of the

Brillouin zone. The transform of wave vectors underC3z can be understood easily from the
graphical representation in Fig. 1.9.

C2x symmetry. In the matrix of HBM[ϕ1,ϕ2,ϕ3](x,−y), the diagonal blocks writes k̂xσx −
k̂yσy = σxk̂ · rσx. The transform of T[ϕ1,ϕ2,ϕ3](r) goes as

T[ϕ1,ϕ2,ϕ3](x,−y) = T1e
iϕ1eiq1·r+T3e

iϕ3eiq2·r+T2e
iϕ2eiq3·r = σxT

†
[−ϕ1,−ϕ3,−ϕ2]

(r)σx (1.53)

K(k = 0)

K′￼

Γ M
×

×

k = (kx, ky)

M̂xk = (kx, − ky)

Ĉ2xk = (kx, |q1 | − ky) ×

Figure 1.10: An arbitrary wave vector in the TBG Brillouin zone transformed under C2x

operation.

To make the C2x of Eq. (1.16) hold, one needs only ϕ2 = −ϕ3, while ϕ1 can be set to 0
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by a gauge change. Such a condition implies an axis parallel to the x-axis going through
any point r0 = ξa1 − ξa2, ξ ∈ R is a valid C2x axis. Not surprisingly, it is not hard to see
such a r0 is any point on the x-axis.

Since C2x does not commute with C3z , two other two-fold rotation operations can be
generated by C3zC2xC

−1
3z and C−1

3z C2xC3z .

A wave function transforms under C2x as

τx ⊗ σxΨnk(M̂xr) = eM̂xk·r
(

σxṽ(r)

eiq1·rσxσxũ(r)

)
= e(M̂xk+q1)·r

(
e−iq1·rσxṽ(r)

σxũ(r)

)
≡ Ψn,M̂xk+q1

(r) = ΨĈ2xk
(r)

(1.54)

One notices that the wave vectors k and Ĉ2xk + q1 are symmetrical to each other with
respect to the Γ–M line, i.e. the horizontal line ky = |q1|/2, as illustrated in Fig. 1.10.

C2zT symmetry. C2zT is an important symmetry of TBG in terms of its profound re-
lation to the topology in this system. This is a space-time inversion operation sending
r → −r and i→ −i. Therefore, any momentum is kept unchanged. The diagonal block of
H∗

BM[ϕ1,ϕ2,ϕ3]
(−r) writes k̂ · σ∗ = σxk̂ · σσx. And

T ∗
[ϕ1,ϕ2,ϕ3]

(−r) = T1e
−iϕ1e−iq1·r + T3e

−iϕ2e−iq2·r + T2e
−iϕ3e−iq3·r = σxT[−ϕ1,−ϕ2,−ϕ3](r)σx

(1.55)
As ϕ1 can be gauged out, for the relation H∗

BM[ϕ1,ϕ2,ϕ3]
(−r) = σxHBM[ϕ1,ϕ2,ϕ3](r)σx to be

valid, it is necessary that ϕ2 = ϕ3 = 0. It is clear that the C2zT axis only goes through the
AA-stacking point. The C2zT symmetry operator is expressed as

C2zT = σxK, (1.56)

where K is the complex conjugation operator. C2zT symmetry in TBG is manifested by

σxH
∗(r)σx = H(−r). (1.57)

The wave function transformed under C2zT is then

σxΨ
∗
nk(−r) = eik·r

(
e−iq1·rσxũ

∗(−r)
σxṽ∗(−r)

)
≡ Ψnk(r) (1.58)

Protection of two Dirac cones atK andK′. Here we show an important consequence
of the symmetries of TBG is that the existence of zero-energy states is always true regardless
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Γ1 Γ2 Γ3 M1 M2 K1 K2K3

E 1 1 2 E 1 1 E 1 2
2C3 1 1 -1 C ′

2 1 -1 C3 1 -1
3C ′

2 1 -1 0 C−1
3 1 -1

Table 1.1: Character table of irreducible representations at high-symmetry points of TBG
Brillouin zone, reproduced from Ref [59].

of the twist angle. And the they must be atK andK′ points separately.

First we notice another operator that anticommutes with the TBG Hamiltonian:

My = τz ⊗ σx. (1.59)

It is a mirror operator, with the mirror along the y-direction and perpendicular to the
graphene plane. UnderMy, the TBG Hamiltonian is transformed as

MyH(x, y)My = −H(−x, y). (1.60)

A state with wave vector k = (kx, ky) is send to another state with k = (−kx, ky) of
opposite energy level.

Due to the presence of C3z symmetry, the mirror rotated by ±120◦ around the z-axis
is also a valid mirror symmetry. As a result, there are 3 mirrors going through the z-axis.
All of the three mirrors transformed by C2x will create 3 new symmetry mirrors passing
through the axis locate at k = q1 and perpendicular to the graphene plane. In short, all of
the 6 mirror symmetry operators can be obtained from:

My,(n,m) = Cm
2xC

n
3zMyC

−n
3z C

−m
2x , (1.61)

where n andm are integers, with n = 0, 1, 2 andm = 0, 1.

Then let us turn off the interlayer coupling by setting a = 0. The band structure now
consists of the intersection of all the replicas of the Dirac cones atK andK′ with the mBZ.
Under C3z operation, all momenta are send to different positions except for momenta at
three high-symmetry points: Γ,K andK′. All states not located at these points contribute
0 to the total trace of C3z .

Then, we compute the contribution of the states at Γ, K, and K′ points to the trace of
C3z . At every point of the band structure at Γ, there is a 6-fold degeneracy, which can be
divided into 2 triplets: three states originating from the replica of theK Dirac cone and the
other three from the replica of the K′ Dirac cone. The C3z operation permutes the states

35



Chapter 1

within each triplet, resulting in a matrix without diagonal entries when projected onto the
bases of each triplet. Consequently, the matrix is zero-traced.

Now let’s examine theK point. All non-zero-energy states are either 3-fold degenerate
or 6-fold degenerate. The 3-fold degeneracy arises from the 3 Dirac cones originating from
the 3 replicas of the K′ point on the reciprocal lattice around the K point. The 6-fold
degeneracy comes from the replica of the Dirac cone at the K point. The C3z operation
permutes the states within each degeneracy point, resulting in a zero contribution to the
trace for these non-zero states at theK point. The only non-zero contribution comes from
the double degenerate zero-energy states. The contribution to the trace of these two zero-
energy states is given by:∑

α=A,B

⟨K, l = 0, α|e2iπσz/3|K, l = 0, α⟩ = −1.

The same computation is performed for the states at theK′ point. Only the double degen-
erate zero-energy states at K′ contribute −1 to the total trace of C3z . This result can also
be directly obtained from the fact that the states at K′ are K-states transformed by C2x.
Thus, we have:

Tr[C3z] = −2. (1.62)

The only non-zero contributions to Tr[C3z] are from the K and K′ points, each contribut-
ing −1. Turning on the interlayer hopping in TBG Hamiltonian does not break the C3z

symmetry. As this is a continuous process from a = 0 to a ̸= 0, Tr[C3z] can only acquire
−1 from states atK andK′ points.

This is a direct consequence of the irreducible representations of the states at K or K′

point, as shown in Table 1.1. Tr[C3z] evaluated at the K states gives −1, indicating that a
2-fold degeneracy, i.e. the Dirac point, is protected.

Due to the mirror-like particle hole symmetry, My, the two states of the Dirac point
must be at zero-energy level. If not, there must be another 2 states at opposite energy level
and Tr[C3z] over theK states would become −2.

States at K′ are the C2x-transformed K states. As a consequence, a Dirac point is also
protected at zero-energy level atK′ point.
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1.4 Pseudo-Landau levels

To understand the nature of the flat bands is not an easy task. In this section, we expand
the interlayer hopping potential to lowest order in r near r = 0 (AA-stacking point) at the
chiral limit. This will give an potential that acts as a pseudo-magnetic field.

The expansion of T (r) to lowest order in r near r = 0 gives:

T (r) = −i

(
3

2
q1 · rσx −

√
3

2
(q3 − q2) · rσy

)
. (1.63)

Given that q1 = ey and q3 − q2 =
√
3ex where ex/y is the unit vector along the x/y

direction. Therefore
T (r) ≡ T (x, y) = −i3

2
(yσx − xσy). (1.64)

The TBG Hamiltonian now writes

HBM = k̂ · σ ⊗ τ0 +A · σ ⊗ τy (1.65)

whereA is an effective vector potential

A =
3a

2

(
y

−x

)
. (1.66)

The unitary transform Y acting only on the layer indices diagonalizes τy

Y =
1√
2

(
1 −i
i 1

)
layer

. (1.67)

The transformed Hamiltonian Y HBMY is block-diagonal:

Y HBMY =

(
H+

H−

)
, (1.68)

where
H± = (k̂ ±A) · σ. (1.69)

It is then obvious thatH± each describes a free Fermion in a uniformmagnetic field perpen-
dicular to the graphene plane described by a vector potential equipped with symmetrical
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gauge. The strength of the magnetic field is given by

B =
3w1

2|e|vF
(1.70)

where e is the charge of an electron, and accordingly the “magnetic” length is

lB =

√
ℏ
|e|B

. (1.71)

Following the textbook steps, the pseudo-Landau levels can be solved as in the regime of
a Dirac Fermion in uniform magnetic field. The energy levels in both H± are given by the
following formula,

Eλ,n = λ
ℏvF
lB

√
2n, (1.72)

where λ = ±1, designating the branch in each diagonal block.

Mapping the TBG model to the Landau level problem explains, at least partially, why
we can obtain the flat bands in TBG. The Landau levels have non-zero Chern numbers,
signaling the quantum anomalous Hall effect in TBG as nomagnetic field is actually applied.

The chiral limit allows us to obtain the analytical solutions of the flat bands polarized
on the sublattices [98]. This is also important in the many-body physics context, as the
sublattice polarized states maximize the exchange energy. In the presence of short-range
interaction, the overlap integral between wave functions from difference sublattices is zero.
Therefore, to maximize the interaction, it is favorable that electrons maximize the total
pseudo-spin.

1.5 Summary

In this chapter, we have developed the continuum BM model of TBG, taking into account
the essential symmetries inherited from graphene. This model allows us to treat TBG in
the periodic regime for arbitrary twist angles, providing a powerful framework for under-
standing its properties.

We have shown the emergence of the famous flat bands in TBG and their connection
to the magic angles. The numerical solutions of the model reveal the existence of these flat
bands and their dependence on the twist angle. This provides important insights into the
unique electronic structure of TBG.

Furthermore, we have investigated the symmetries of the TBG model and analyzed the
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transformation of the eigenstates under symmetry operators. This detailed analysis helps
us understand the symmetries and their role in shaping the electronic properties of TBG.

In addition, we briefly reviewed the pseudo-Landau levels in TBG by expanding the
model around the AA-stacking point. This expansion allows us to study the low-energy
physics and reveals the presence of the quantum anomalous Hall effect in TBG. It also
provides a partial explanation for the emergence of the flat bands in the system.

Overall, the continuum BM model and the analytical and numerical tools developed in
this chapter provide a solid foundation for further research on twisted trilayer graphene in
the subsequent chapters.
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Twisted trilayer graphene: model and
moiré solution

The twisted trilayer graphene (TTG) exhibits distinct characteristics compared to TBG, in-
cluding differences in band structures, symmetries, and topology. In this chapter, we con-
struct a continuummodel for TTG based on the BM description of TBG.We begin by briefly
discussing the simplest TTGwithmirror symmetry before delving into the analysis of stair-
case TTG.

A notable feature of staircase TTG is the emergence of a supermoiré pattern, also known
as the second moiré or moiré-of-moiré pattern. This pattern arises from the interference
between two TBG moiré patterns. In this chapter, we will analyze the physics at the moiré
scale, employing appropriate approximations to gain insights into the system.

2.1 Continuum model for twisted trilayer graphene

The continuummodel for twisted trilayer graphene can be obtained straightforwardly from
the TBG model. To define the model, we arrange the three layers such that the middle
layer remains fixed, while only the top and bottom layers are rotated. This configuration
allows us to define two sets of moiré vectors for each TBG moiré pattern. We denote the
difference between the grapheneK points in reciprocal space as ql1l2j =K l1−K l2 , where
l1 and l2 ∈ 1, 2, 3 represent the layer indices. It is important to note that ql1l2j = −ql2l1j by
definition.
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Therefore, the continuum model for TTG can be expressed as follows:

HTTG(r) =

 ℏvF k̂ · σ aT12(r;ϕ
12) ∅

aT †
12(r;ϕ

12) ℏvF k̂ · σ aT23(r;ϕ
23)

∅ aT †
23(r;ϕ

23) ℏvF k̂ · σ

 . (2.1)

where a represents the interlayer hopping amplitude, k̂ is the momentum operator, σ de-
notes the Pauli matrices, and T12(r;ϕ12) and T23(r;ϕ23) are the moiré potential terms that
depend on the relative rotation angles ϕ12 and ϕ23, respectively.

The interlayer hopping potentials in the form of phase factors are given by:

Tl1l2(r;ϕ) =
3∑

j=1

eiϕ
l1l2
j Tje

−iq
l1l2
j ·r. (2.2)

whereϕ represents the set of phase factors, and ql1l2j is the difference between the graphene
K points of two neighboring layers.

As discussed in the TBG model, the phase factors eiϕ
l1l2
j describe the stacking of two

adjacent layers at the origin of coordinates. In general, it is not possible to choose a gauge
that eliminates all the phases simultaneously in T12(r;ϕ12) and T23(r;ϕ23). Therefore, the
band structure and symmetries of TTG are dependent on the phase factors. Different phase
factors lead to distinct TTG Hamiltonian matrices, which cannot be connected by unitary
operators in general.

Before delving into the treatment of the TTG model, it is essential to clarify two dis-
tinctive features of TTG in comparison to TBG: incommensurability and stacking configu-
rations.

The approach used to restore periodicity in the TBG model, as demonstrated in the pre-
vious chapter, does not apply to the TTG Hamiltonian. Thus, it becomes crucial to address
how to treat the TTGmodel as a periodic system through appropriate approximations. The
interference between two TBG moiré patterns gives rise to two length scales of periodicity:
the moiré periodicity, comparable to that of TBG, and an additional supermoiré periodic-
ity that significantly exceeds the TBG moiré scale. This supermoiré scale physics will be
explored in the subsequent chapter, while this chapter focuses on the moiré-scale TTG.

The stacking of the trilayer under BM description can always be represented by "AXA,"
which is distinct from the untwisted trilayer model that typically exhibits AAA, ABA, ABC
stacking configurations, among others. Here, "C" refers to the center of the hexagonal
lattice. In twisted trilayer graphene, we can envision a moiré potential between the top and
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bottom layers, and the origin of coordinates can always be chosen as the AA-stacking point
of the top-bottom moiré pattern, as explained in TBG. By fixing the stacking between the
top and middle layers as "AX" at the origin, the stacking between the middle and bottom
layers is constrained to be "XA." The phase factors in T12(r) and T23(r) are derived from
the TBG "AX" stacking and "XA" stacking, respectively.

In other words, ϕ12
j and ϕ23

j are not entirely independent of each other. Once ϕ12
j deter-

mines the "AX" stacking between the top and middle layers, ϕ23
j is immediately determined

with respect to the "XA" stacking between the middle and bottom layers, and vice versa. Af-
ter careful consideration, one realizes that the phase factors in T12(r;ϕ12) and T †

23(r,ϕ
23)

must be the same to satisfy the "AXA" stacking condition. Hence, it is necessary that

ϕ12 = −ϕ23 ≡ ϕ.

A TTG model is thus characterized by a single phase triplet ϕ = (ϕ1, ϕ2, ϕ3). Similarly
to TBG, it is possible to gauge out ϕ1, leading to the consideration of only ϕ = (0, ϕ2, ϕ3).
The TTG Hamiltonian can be expressed as follows:

HTTG(r;ϕ) =

 ℏvF k̂ · σ aT12(r;ϕ) ∅
aT12(−r;−ϕ) ℏvF k̂ · σ aT23(r;−ϕ)

∅ aT23(−r;ϕ) ℏvF k̂ · σ

 , (2.3)

It is evident that T †
l1l2

(r;ϕ) = Tl1l2(−r;−ϕ).

2.2 Mirror-symmetrical twisted trilayer graphene

Aparticularly simple case of the TTGmodel ariseswhen the top and bottom layers perfectly
overlap and are rotated in the same direction relative to the middle layer by the same angle.
This configuration exhibits symmetry with respect to the mirror plane passing through the
middle layer.

In this case, it is evident that theK points of the top and bottom graphene layers per-
fectly coincide in reciprocal space. Consequently, we have q12j = −q23j = qj . To simplify
notation, we can align q1 along the vertical y-direction, and its rotation by C3z gener-
ates q2 and q3 vectors. The relation between interlayer hopping potentials in the mirror-
symmetrical TTG (mTTG) model can be expressed as:

T23(±r;±ϕ) = T12(∓r;±ϕ). (2.4)
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The Hamiltonian of the mTTG model takes the following form:

HmTTG(r) =

 ℏvF k̂ · σ w1T (r;ϕ) ∅
w1T (−r;−ϕ) ℏvF k̂ · σ w1T (−r;−ϕ)

∅ w1T (r;ϕ) ℏvF k̂ · σ

 . (2.5)

Interestingly, the mTTG model allows for the complete elimination of all phase factors in
ϕ through a shift of origin, similar to TBG. Therefore, when discussing the mTTG model,
we can disregard the phase factors and express it as:

HmTTG(r) =

ℏvF k̂ · σ w1T (r) ∅
w1T (−r) ℏvF k̂ · σ w1T (−r)

∅ w1T (r) ℏvF k̂ · σ

 , (2.6)

where we define T (r) ≡ T (r;0).

The mirror symmetry operation in the mirror-symmetrical TTG (mTTG) model is a
simple exchange of the top and bottom layers given by:

M̂ =

 1

1

1


layer

. (2.7)

To work with eigenstates of the mirror symmetry, it is convenient to transform the mTTG
Hamiltonian as follows:

U †
MHmTTG(r)UM =

 ℏvF k̂ · σ
√
2w1T (r) ∅√

2w1T (−r) ℏvF k̂ · σ ∅
∅ ∅ ℏvF k̂ · σ

 , (2.8)

with

UM =

1/
√
2 0 1/

√
2

0 1 0

1/
√
2 0 −1/

√
2

 . (2.9)

The mirror symmetry isolates two subspaces with eigenvalues of M̂ being +1 and -1, re-
spectively, and the Hamiltonian in these subspaces decouples. Equation (2.8) describes a
structure HTBG ⊕ ℏvF k̂ · σ. Solving the TBG part is exactly the same as in the previous
chapter. It is worth noting that the effective TBG Hamiltonian in the mTTG model has the
interlayer hopping amplitude exaggerated by

√
2, resulting in the magic angles being

√
2

times those of real TBG, i.e. 1.54◦ for the mirror symmetrical TTG compared to 1.09◦ of
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TBG.

A notable characteristic of mirror-symmetrical TTG is its C2zT symmetry, which im-
poses a fully connected spectrum [88, 99]. The full connectivity in mTTG is trivially true
due to the presence of the bare Dirac cone.

2.3 Moiré staircase TTG with equal twist angles

2.3.1 Hamiltonian and wave functions

q121

q231

q122
q232

q123
q233

q12
1 q23

1

≃
q12

1 q23
1

Figure 2.1: The approximation of moiré vectors.

In general, when there are relative rotations between the top and bottom layers, the
TTG model does not exhibit two sets of colinear moiré vectors. However, due to the small
deviation from colinearity (on the order of θ21/2), it is tempting to approximate the TTG
model by neglecting the non-colinearity. Under this assumption, the two moiré lattices
become commensurate again when the ratio θ1/θ2 is a rational number. The colinearity
assumption can lead to a reciprocal lattice with the same periodicity as TBG, as illustrated
in Fig. 2.1.

In this section, we investigate staircase twisted trilayer graphene, where the top and
bottom layers are twisted in opposite directions with respect to the middle layer, both by
the same angle θ. The Hamiltonian matrix for this system is given by:

HM(r;ϕ) =

 ℏvF k̂ · σ w1T (r;ϕ) ∅
w1T (−r;−ϕ) ℏvF k̂ · σ w1T (r;−ϕ)

∅ w1T (−r;ϕ) ℏvF k̂ · σ

 . (2.10)

Despite its similarities tomirror-symmetrical TTG, the staircase TTG exhibits two profound
differences:
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1. The phase factors cannot be completely eliminated by a gauge transformation;

2. The Hamiltonian no longer commutes with the mirror symmetry operator.

These differences distinguish the staircase TTG from the mirror-symmetrical TTG.

To simplify the analysis, we can work with the dimensionless Hamiltonian by dividing
Eq. (2.10) by ℏvF q, where q = |qj|. We also introduce the dimensionless wave vector
operator k̂ := −i 1

|q|∇. This yields the following form for the Hamiltonian:

HM(r;ϕ) =

 k · σ aT (r;ϕ) ∅
aT (−r;−ϕ) k̂ · σ aT (r;−ϕ)

∅ aT (−r;ϕ) k̂ · σ

 , (2.11)

where the interlayer hopping amplitude is given by:

a =
w1

ℏvF q
=

w1

ℏvF |KG|
1

θ
.

The periodicity of the Hamiltonian expressed in Eq. (2.11) is not affected by the phase
factors. The reciprocal lattice structure is generated by two base vectors defined as G1 =

q1 − q2 and G2 = q1 − q3. The corresponding real-space Bravais lattice is generated by
A1 andA2, satisfyingAi ·Gj = 2πδij .

Following the procedures outlined in the previous chapter on TBG, we find that Bloch’s
theorem limits the eigenfunctions of Eq. (2.11) to the form:

Ψnk(r) = eik·runk(r), (2.12)

where n denotes the band index and k is a wave vector within the first moiré Brillouin
zone. The function unk(r) can be expressed as:

unk(r) =

e
−iq1·r

1

eiq1·r


layer

ũnk(r). (2.13)

where ũnk(r) = [· · · , ũlαnk(r), · · · ]T , l = 1, 2, 3, and α ∈ A,B is a completely periodic Bloch
function with respect to translations by A1/2 vectors, i.e., ũnk(r + A1/2) = ũnk(r). It is
a 6-component “spinor” wavefunction, with its “flavor” determined by the combination of
layer and sublattice indices.

The components of unk can be expanded like a Fourier series:
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ulαnk(r) =
∑
Ql

ulαnk,Qe
−iQl·r, (2.14)

where
Q(x, y, l) = xG1 + yG2 + lq1, x, y ∈ Z and l = 0,±1. (2.15)

It is evident that the Hamiltonian couples three different sets of reciprocal lattices from the
three graphene layers, forming a hexagonal lattice, as shown in Fig. 2.1. The Hamiltonian,
in second-quantized form, can be written as:

ĤM =
∑
ll′

∑
αβ

∑
Q,Q′

(k −Q) · σαβδQ,Q′c†Q,α,lcQ′,β,l′

+
∑
l=±1

∑
αβ

∑
Q,Q′

3∑
j=0

[Tαβ
j eiϕjδQ,Q′+qjc

†
Q,α,lcQ′,β,0 + h.c.].

(2.16)

In the following sections, we will demonstrate that the band structure of the system
varies significantly with different phase factors. The phase factors have a significant impact
on the symmetries of the system.

2.3.2 Band structures

The staircase TTG model with ϕ = (0, 0, 0) exhibits rich symmetries, the most notable of
which is the space-time inversion symmetry C2zT . This symmetry ensures that the single-
particle band structure remains gapless and fully connected. In Figure 2.2, we present the
band structures for different twist angles. Despite the significant variations in the band
structures as the twist angles decrease, the full connectivity of the bands is always preserved
due to theC2zT symmetry. A detailed discussion of the full connectivity protected byC2zT

will be provided in Chapter 2.3.5.

None zero phase factors will bring in significant modifications to the band structures. In
Fig. 2.3, the twist angle is fixed to be 1.8◦ and the spectra resulted from different combina-
tions of phase factors are presented. The variation of the band structure is remarkable with
different phase factors, as the symmetries present in the model is profoundly altered. In
Fig. 2.3(b) and (d), the full connectivity of the spectrum is gone as an expected consequence
of breaking C2zT symmetry. While in Fig. 2.3(c), the band is again connected albeit with
broken C2zT . More profound reasons will be discussed later.
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Figure 2.2: Band structures of the zero-phase TTG with equal twist angles calculated for
different twist angles. The 12 bands closest to the zero energy levels are shown. Corrugation
ratio is set to r = 0.8. The two middle bands closest to the zero energy level are colored in
red.

2.3.3 Flat bands at chiral limit

The presence of exactly flat bands is a special feature that occurs only in certain cases.
Specifically, it occurs in the chiral limit where the interlayer hopping parameter wAA is
set to zero, and in the case of AAA- or ABA-stacked TTG configurations. In Figure 2.4, it
is illustrated that the middle bands can indeed become completely flat for AAA and ABA
stacked TTG structures.

The appearance of completely flat bands requires the velocities of all three Dirac cones
at Γ, K , and K ′ to simultaneously vanish. However, since the cones at K and K ′ are
particle-hole symmetric (PHS) counterparts of each other, it is sufficient to examine the
dispersion velocities at Γ andK . Such conditions can be satisfied in the chiral limit.

The computation of the velocity is based on degenerate perturbation theory at the Dirac
point. Suppose |n⟩ and |m⟩ are the two degenerate zero-energy states at Γ or K . The
velocity is obtained by diagonalizing the perturbation Hamiltonian:

δW nm(δk) = ⟨n|δk · σ|m⟩ . (2.17)

where δk represents a small perturbation in the wave vector. For an isotropic cone, the
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Figure 2.3: Band structures with non-zero phases. Corrugation ratio is set to r = 0.8.
The twist angle is 1.8◦. The computation of the band structures are performed with (a) zero
phases; (b) phase factors restoringC3z symmetry; (c) phase factors restoringC2x symmetry
and (d) arbitrary phase factors breaking all of C2zT , C3z and C2x symmetries. The particle-
hole symmetry is always valid for equal twist angles despite different phase factors as will
be explained later.

dispersion takes the form:
δE(δk) = v∗|δk| (2.18)

where v∗ is the renormalized velocity, given by v∗ = v/vF . The vanishing of the velocities
at the Γ and K points is a condition for the appearance of completely flat bands in the
chiral limit of AAA and ABA-stacked TTG.

In Fig. 2.5, we compute the velocities of each Dirac cone at the Γ andK points for AAA
(ϕ = [0, 0, 0]T ) and ABA (ϕ = [0, 2π/3,−2π/3]) TTGs, respectively. The magic angle is
expected to occur when both velocities vanish simultaneously.

However, when deviating from the chiral limit, it is not always possible to find an ideal
angle where both velocities vanish simultaneously. This is demonstrated in Fig. 2.6.
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Figure 2.4: In the left panel of the figure, the completely flat bands of AAA-stacked TTG
are shown. These flat bands emerge when the interlayer hopping parameter wAA is set to
zero, resulting in a chiral limit. The first magic angle for the AAA-stacked configuration
is given by a = 0.830 (∼ 0.77◦). In the right panel of the figure, the completely flat bands
of ABA-stacked TTG are depicted. Similarly, these flat bands arise in the chiral limit with
wAA = 0. The first magic angle for the ABA-stacked configuration is given by a = 0.377
(∼ 1.68◦). These flat bands at the chiral limit and specific twist angles are a fascinating
feature of AAA and ABA-stacked TTG structures.
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Figure 2.5: Renormalized velocity of Γ and K Dirac cones computed for AAA (left panel)
and ABA (right panel) stackings, at the chiral limit with wAA = 0.
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Figure 2.6: Renormalized velocity of Γ and K Dirac cones computed for AAA (left panel)
and ABA (right panel) stackings, with wAA/wAB = 0.8.

2.3.4 Dirac cone anisotropy

When the stacking is neither AAAnorABA/BAB, theDirac cones in twisted trilayer graphene
(TTG) become anisotropic. In this section, we aim to characterize this anisotropy and un-
derstand why achieving flat bands with anisotropic cones is more challenging compared to
isotropic cones.

We can rewrite the k · p Hamiltonian near a Dirac point, as given in Eq. (2.17), in the
following form:

δWnm = δkx ⟨n|σx|m⟩+ δky ⟨n|σy|m⟩ = δkxΓ
nm
x + δkyΓ

nm
y , (2.19)

with the 2× 2 Hermitian matrices Γnm
x/y = ⟨n|σx/y|m⟩. These matrices can be decomposed

into linear combinations of Pauli matrices defined on the band indices, denoted as τi, where
i = x, y, z, as follows:

Γi =
∑
j

γijτj, i, j = x, y, z. (2.20)

Using the tensor γ, we can rewrite δW as:

δW =
∑

i,j∈{x,y,z}

δkiγijΓj. (2.21)

Since γ is a 2× 3 real matrix, it can be decomposed using the singular value decomposition
(SVD) as:

γ = UTSV (2.22)

where U and V are orthogonal matrices, and S is a 2 × 3 diagonal matrix with positive
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diagonal entries denoted as sx and sy. We define:

δk′i =
∑
j

Uijδkj, (2.23)

and
τ ′i =

∑
j

Vijτj. (2.24)

The new matrices τ ′i also satisfy the relation:

τ ′iτ
′
j = δij1 + iεijkτ

′
k, (2.25)

due to the orthogonality of the matrix V . Here, εijk represents the completely antisym-
metric tensor. Notably, the matrices τ ′j form a distinct set of generators for SU(2) that are
different from the Pauli matrices.

Proof of Eq. (2.24): The original Pauli matrices satisfy the relation τiτj = δij1 +∑
jk iεijkτk, where i, j, k ∈ x, y, z. Using this relation, we can compute the product of

the new Pauli matrices as follows:

τ ′iτ
′
j = VilVjmτlτk = VilVjm(iεlmpτp + δlm1)

= iεlmpVilVjmτp + VilVjmδlm1

= iεijkVkpτp + δij1

= iεijkτ
′
k + δij1

. (2.26)

Now, the expression for δW becomes:

δW =
∑
l

∑
ij

δkiU
T
il slVljτj =

∑
l

slk
′
lτ

′
l . (2.27)

The dispersion relation is then given by δE(k′) = ±
√

(sxk′x)
2 + (syk′y)

2. Only when sx =

sy = s, the Dirac cone is isotropic and the renormalized velocity is equal to the singular
value.

We define the anisotropy function as:

A(ϕ2, ϕ3) = 1−min(sx, sy)/max(sx, sy). (2.28)

The value ofA is maximum at 1 when one of the velocity components vanishes, and mini-
mum at 0 when the Dirac cone is isotropic. In Fig. 2.7, we show the anisotropy of the Dirac
cones at Γ andK as a function of (ϕ2, ϕ3). The isotropy of both Dirac cones is restored at
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the C3z symmetrical phases, specifically at (ϕ2, ϕ3) = (0, 0) and (±π/3,∓π/3).

Figure 2.7: Anisotroy A(ϕ2, ϕ3) of the Dirac cones at Γ (left panel) and K (right panel).
Data colleted with wAA/wAB = 0.8 at 1.8◦.

For a TTG model with anisotropic cones to have completely flat bands, it would require
all four singular values to vanish simultaneously, which is much more difficult to achieve
compared to isotropic cones. The latter only requires the suppression of two singular val-
ues.

2.3.5 Symmetries in staircase TTG

It is crucial to examine the symmetries present in the staircase TTG, as they have impor-
tant impacts on the band structures and more profoundly on the topology. Since the phases
cannot be gauged out as was in TBG, different phases have important impacts on the sym-
metries. Or otherwise said, for certain symmetries to be valid, there must be constraints on
the phase factors. In the following, we explore the conditions on phase factors imposed by
desired symmetries and the consequences of symmetries on the states.

Periodicity of phase factors

It is evident that when one of the phase factors is changed by 2π, the model remains in-
variant. However, this does not represent the smallest periodicity in phase factors. To
determine the minimum period in phase, denoted as φ = (0, φ2, φ3), we need to find a
specific vector r0 that satisfies the following condition:

HM(r;ϕ+φ0) = UHM(r + r0;ϕ)U
†, (2.29)
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where the change in phase factors can be entirely compensated by shifting the origin of
coordinates.

The unitary matrix U is given by:

U =

1

e−iq1·r0

1


layer

. (2.30)

where U eliminates the additional phase in front of the T1 matrix.

Let’s explicitly write the right-hand side of Eq.(2.29) as follows:

UHM(r + r0;ϕ)U
†

=

k̂ · r T (r;ϕ+ (0, b1 · r0, b2 · r0)) ∅
h.c. k̂ · r T (r;−ϕ+ (0, b1 · r0, b2 · r0))
∅ h.c. k̂ · r

 .
(2.31)

The validity of Eq. (2.29) is verified only when the following conditions are satisfied simul-
taneously:

φ0 = (0, b1 · r0, b2 · r0)
φ0 = (0,−b1 · r0 + 2Nπ,−b2 · r0 + 2Mπ)

, N,M ∈ Z. (2.32)

The smallest vector r0 is either a1/2 or a2/2, shifting ϕ2 or ϕ3 by π, respectively.

Therefore, the period in phase factors is π instead of the trivial value 2π.

Particle-Hole symmetry and the protection of Dirac cone at Γ

A strong implication arising from the band structures is the presence of particle-hole sym-
metry. The band structures exhibit symmetry with respect to the zero-energy level at the
Γ point of the moiré Brillouin zone. To capture this symmetry, we seek an operator P that
anticommutes with the Hamiltonian. In other words, if there exists a state |ψ⟩ satisfying
Ĥ |ψ⟩ = E |ψ⟩, then ĤP |ψ⟩ = −EP |ψ⟩.

We can observe the following relation:

−HM(−r;ϕ) =

 k̂ · σ −aT (−r,ϕ) ∅
−aT (r,−ϕ) k̂ · σ −aT (−r,−ϕ)

∅ −aT (r,ϕ) k̂ · σ

 = PHM(r;ϕ)P ,

(2.33)
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where

P =

 1

−1
1


layer

. (2.34)

If we have a wave function Ψnk(r) satisfying HM(r)Ψnk(r) = EnkΨnk(r), then we also
have

H(r)PΨnk(−r) = −EnkPΨnk(−r). (2.35)

The state PΨnk(−r) corresponds to an eigenstate with energy −Enk. Using the notation

PΨnk(−r) = e−ik·r

u
1(−r)
u2(−r)
u3(−r)

 ≡ Ψn̄,−k(r), (2.36)

where ul(r) is a shorthand for the spinor wave function belonging to layer l, written as
ul(r) =

(
ulα(r)
ulβ(r)

)
, we can confirm that P maps the state |Ψn,k⟩ to |Ψn̄,−k⟩. Particle-hole

symmetry connects two momenta in the Brillouin zone that are symmetric with respect to
Γ = 0. The symmetry center of TTG is regular, unlike TBG.

Protection of the Dirac cone at Γ point. In the limit a → 0 of Eq.(2.11), the spectrum
consists of three bare Dirac cones located at the Γ,K , andK ′ points. There are only two
states invariant under the operator P , which are |0, α, l = 0⟩, and they transform as

P |0, α, l = 0⟩ = − |0, α/β, l = 0⟩ . (2.37)

For the other states, the transformation is given by

P |k, α, l⟩ = ηl
∣∣−k, α, l̄〉 , (2.38)

where

η =

{
1 if l = ±1
−1 if l = 0

, (2.39)

and

l̄ =


−1 if l = 1

0 if l = 0

1 if l = −1
. (2.40)

The total trace of P is given by

TrP =
∑
k

∑
α∈{A,B}

∑
l=0,±1

⟨k, α, l|P|k, α, l⟩ = −2. (2.41)
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Since the trace of an operator is invariant under changes of basis, it is also true that when
computed in the eigenbasis of the Hamiltonian with the interlayer hopping turned on,

TrP =
∑
k∈BZ

∑
n

⟨k, n|P|k, n⟩ = −2, (2.42)

where n runs over the band indices. Given that P |k, n⟩ = |−k, n̄⟩, only two states at
k = 0 and at zero energy can contribute a nonzero value to the trace.

C3z Symmetry

The relation

HM(R̂2π/3r; [ϕ1, ϕ2, ϕ3]) = e2iπσz/3HM(r, [ϕ2, ϕ3, ϕ1])e
−2iπσz/3, (2.43)

implies that the phase factors satisfyingC3z symmetrymust either be the same or uniformly
distributed on a unit circle, corresponding to three different stacking configurations. By a
gauge transformation, we can always choose ϕ1 to be zero. Therefore, the configuration
ϕ = (0, 0, 0) corresponds to AAA stacking at the origin, ϕ = (0, ω, ω∗) corresponds to
ABA stacking, andϕ = (0, ω∗, ω) corresponds to BAB stacking. The ABA and BAB stacked
models are related by the C2x operation and therefore have the same band structure.

With the convention that ϕ1 ≡ 0, the C3z operator is expressed as

C3z = ei
2π
3
σz ⊗

1

eiϕ2

1


layer

, (2.44)

so that the Hamiltonian satisfying C3z symmetry obeys

C3zHM(r;ϕ)C†
3z = HM(R̂2π/3r;ϕ). (2.45)

For an arbitrary eigenstate satisfyingH(r)Ψnk(r) = EnkΨnk(r), C3zΨnk(R̂−2π/3r) is also
an eigenstate. Using eik·R̂−2π/3r = ei(R̂−2π/3k)·r, it is clear that

C3zΨnk(R̂−2π/3r) ≡ ΨnR̂2π/3k
(r), (2.46)

i.e.,C3z maps a state with momentum k to R̂2π/3k, which corresponds to a rotation by 2π/3
around the Γ point.
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C3z center displaced from origin. Previous discussions have revealed that the model
remains invariant under phase shifts of ±π. Consequently, we can always confine the
phase factors to the interval [−π/2, π/2[. Without loss of generality, let’s consider the ABA
stacking configuration with phase factors ϕ = (0, 2π/3,−2π/3) as an example, which can
be expressed asϕ = (0,−π/3, π/3). Initially, thewrapped phase factorsmay not satisfy the
C3z symmetry requirement. This implies that the model describes a configuration where
the rotation center of C3z is not located at the origin of the r coordinates. However, by
shifting r to r − r0 with r0 = −a1/2 + a2/2, we can restore the C3z center to the origin
of the coordinates. Consequently, the phase factors revert back to (0, 2π/3,−2π/3).

C2x symmetry

Similar to TBG, we can identify the C2x symmetry in this TTG model by examining the
following relation:

HM(x,−y; [0, ϕ2, ϕ3]) = σx ⊗

 1

1

1


layer

HM(x, y, [0, ϕ3, ϕ2])

 1

1

1


layer

⊗ σx.

(2.47)
For the C2x symmetry to hold, it is necessary that ϕ2 = ϕ3.

Furthermore, we can explore additional candidate symmetries by considering the rota-
tion of theC2x axis by±120◦ and the combinationsC3zC2xC

−1
3z andC−1

3z C2xC3z as potential
symmetries. These symmetries require ϕ3 = 0 and ϕ2 = 0, respectively (while ϕ1 is always
taken as zero by convention).

C2zT and full connectivity

The C2zT symmetry in TTG can be examined by analyzing H∗(−r,ϕ). When we send
r → −r and take the complex conjugate, k̂ ·σ is transformed into k̂ ·σ∗ = σxk̂ ·σσx. The
interlayer potential undergoes the transformation:

T ∗(−r; [0, ϕ2, ϕ3]) = T1e
−iq1·r+e−iϕ2T3e

−iq2·r+e−iϕ3T2e
−iq3·r ≡ σxT (r; [0,−ϕ2,−ϕ3])σx.

Therefore, we find that
H∗

M(−r;ϕ) = σxHM(r;−ϕ)σx. (2.48)

For this relation to hold, it is necessary that ϕ = −ϕ = 0. Thus, a unitary transformation,
σx, can relate H∗

M(−r) and HM(r), validating the C2zT symmetry.
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In conclusion, theC2zT symmetry is only valid for the AAA-stacked TTG configuration.

The significance of the C2zT symmetry is evident in the full connectivity of the band
structure, which has a topological origin related to an odd number of Dirac cones coupled
by a potential. Here is a detailed explanation:

Firstly, C2zT symmetry includes a time-reversal operation and leads to zero Berry cur-
vature everywhere in each band. When the interlayer potential is introduced, the Dirac
cones must either merge or appear in pairs. Consequently, the total number of Dirac cones
in the band structure must always be an odd number.

A Wilson Loop traversing from one side to the other of the Brillouin zone must accu-
mulate a phase that is a multiple of 2π. Since the Berry curvature is zero everywhere, this
phase can only be acquired by crossing Dirac points. As each Dirac point contributes ±π,
every band must have an even number of Dirac crossings with neighboring bands.

Suppose there is a gap in the band structure. The first band has an even number of Dirac
crossings with the second band. The second band has an even number of Dirac crossings
with the third band. By induction, the number of Dirac crossings between the i-th and
(i + 1)-th bands is always an even number. This implies that the total number of Dirac
cones is even, contradicting the requirement of an odd number of Dirac cones.

Therefore, by contradiction, we can conclude that the band structure must be fully con-
nected to satisfy the C2zT symmetry.

2.3.6 Band topology and Chern mosaic pattern

By breaking both the C2x and C3z symmetries simultaneously, the two middle bands be-
come detached from the others. This provides an opportunity to study the topology of these
bands through the calculation of Wilson loops. In this section, we demonstrate that the two
middle bands exhibit non-trivial topology, which is characterized by a non-zero total Chern
number C = ±1.

In Fig.2.8, we compute the total Chern number of the two middle bands as a function of
(ϕ2, ϕ3) in the phase space. When crossing the domain wall defined by the C2x symmetry
lines, a topological phase transition occurs, resulting in the closure of the spectral gap. This
explains the observation of fully connected spectra in Fig.2.3 (bottom left panel) whereC2zT

is broken but C2x is preserved. The Chern numbers in each section remain stable as they
represent continuous variations from the ABA/BAB points until they reach theC2x domain
wall.
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Figure 2.8: The chern mosaic pattern computed in the phase space within a unit cell. The
periodic boundary is highlighted in gray color. The C = ±1 sections are colored in blue
and orange colors respectively. The C3z restoring points corresponding to AAA (ϕ2 =
0, ϕ3 = 0), ABA (ϕ2 = −pi/3, ϕ3 = π/3) and BAB (ϕ2 = pi/3, ϕ3 = −π/3) stackings are
marked with red dots. The purple lines mark the C2x-restoring phases. Data collected with
corrugation factor wAA/wAB = 0.8 and equal twist angles of 1.8◦.

The presence of two middle bands with a non-zero total Chern number is a notable
distinction between TTG and TBG. As shown in the previous chapter, TBG has middle
bands with a total Chern number of zero.

To further investigate the Chern number of the middle bands, we can examine the chiral
limit where analytical solutions are available for the flat bands at the magic angle. The
zero-energy model in the chiral limit corresponds to sublattice-polarized states, allowing
us to compute the Chern number for each flat band. For ABA-stacked TTG, the explicit
computation yields CABAA = −2 for the A-polarized band and CABAB = 1 for the B-polarized
band. Therefore, the total Chern number for the ABA middle bands is −1. Introducing
corrugation is a continuation from the chiral limit and does not change the total Chern
number. However, with finite corrugation, the twomiddle bands can no longer be separated
by sublattice polarization, and only the total Chern number can be considered.

Similarly, for BAB-stacked TTG in the chiral limit, the Chern number of the A-polarized
band is CBABA = −1, while CBABB = 2 for the B-polarized band. Consequently, the BABmiddle
bands have a total Chern number of 1. For a more detailed discussion on the analytical
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solutions, please refer to Ref. [90].

2.4 Moire staircase TTG with unequal twist angles

The colinear approximation of moiré vectors enables us to study the periodic regime of
equal-twist angle TTG. Following the same approach, we can also investigate other TTG
models where the ratio of twist angles is a rational number. In this section, we focus on
the TTG model with θ1/θ2 = 1/2 and compare its symmetries with those of the equally
twisted TTG. For consistency, we adopt the convention where the top layer is rotated coun-
terclockwise by an angle θ, and the bottom layer is rotated clockwise by 2θ.

2.4.1 Hamiltonian and band structures

middle layertop layer bottom layer

q1

−2q1

moiré Brillouin zone

ΓM

KM

K′￼Mq1
ΓM

KM

K′￼M

θ1 = θ2 θ1/θ2 = 1/2

(a) (b)

Figure 2.9: Comparison of the reciprocal moiré lattices of (a) equal twist angle TTG and (b)
the double angle TTG. In the double twist TTG, the initial Dirac cones of of the top and
bottom layer overlaps in the reciprocal space.

Assuming that the top-middle moiré vectors q12j = qj are colinear with the middle-
bottom moiré vectors q23j = 2qj , the interlayer hopping potentials can be expressed as
follows:

T12(r;ϕ) =
3∑

j=1

Tje
iϕje−iqj ·r, (2.49)

and

T23(r;−ϕ) =
3∑

j=1

Tje
−iϕje−2iqj ·r. (2.50)

60



Twisted trilayer graphene: model and moiré solution

K K1.5

0.5

0.5

1.5
E/

(
v F

|K
|)

(a) 2.2

K K

(b) 1.8

K K

(c) 1.4

Figure 2.10: Band structures of AAA stacking double-angle TTG with θ12 being (a) 2.2◦, (b)
1.8◦ and (c) 1.4◦. Corrugation is also set to wAA/wAB = 0.8.
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Figure 2.11: Band structures of double-angle TTG with different stackings: (a) AAA with
ϕ = (0, 0, 0), (b) ABA with ϕ = (0, 2π/3,−2π/3) and (c) arbitrary stacking with ϕ =
(0, 0.4π,−0.1π). Corrugation is also set to wAA/wAB = 0.8. Twist angles are fixed at
(2◦, 4◦). The variation of the band structures is not as dramatic as in the equally twisted
TTG. But tiny changes in the spectra are still visible due to different symmetries associated
to different phases.

It is important to note that the middle-bottom moiré vectors have twice the length of
the top-middle moiré vectors, which fundamentally changes the structure of the reciprocal
lattice and the symmetries, as explained in Figure 2.9. Consequently, the band structure is
distinct from that of the equal twist angles case.

Figure 2.10 illustrates the band structures for different twist angles in the AAA-stacked
double-angle TTG. The appearance of four low-energy states near the zero-energy level
at the K point is a direct consequence of the overlapping Dirac cones from the top and
bottom layers at theK point.

In Figure 2.11, we display different spectra with varying phase factors. The impact of
the phase factors on the band structures is not as drastic as in the equally twisted TTG case.
However, the symmetries in the model are still modified by the phase factors, leading to
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slight but noticeable modifications in the band structures when different phase factors are
applied.

2.4.2 Symmetries

Based on the same reasoning as before, we can verify the presence of symmetries with
different phases.

Phase period. In the double-angle TTG, the phase factors have a period of 2π/3 instead
of π. This can be observed in the equation:

HM(r;ϕ+ ϕT ) = UHM(r − r0;ϕ)U †, (2.51)

where ϕT = (0, 2π/3, 0) or (0, 0, 2π/3), and correspondingly r0 = a1/3 or a2/3 respec-
tively. The unitary matrix U compensates for the extra phase in ϕ1 resulting from the shift
of the origin:

U =

e
2iπ/9

1

e4iπ/9

 . (2.52)

C2zT symmetry. C2zT symmetry is valid when all phase factors are zero, and is mani-
fested by the same expression as Eq. (2.48).

C2x symmetry. C2x does not exist any more, regardless of the phases. Different twist
angles makes it impossible to restore the original trilayer by flipping the system around the
x-axis.

C3z symmetry. The analysis of the C3z symmetry in the double-angle TTG model fol-
lows a similar approach as in the equally twisted TTG. We find that the phase factors that
restore the C3z symmetry are ϕ = (0, 0, 0) and ϕ = (0,±2π/3,∓2π/3). Shifting ϕ2 or
ϕ3 by 2π/3 also leads to phases that restore the C3z symmetry. An interesting observation
is that the AAA, ABA (ϕ = (0, 2π/3,−2π/3)), and BAB (ϕ = (0,−2π/3, 2π/3)) stacked
double-angle TTG models are exactly the same because the phase differences are multiples
of 2π/3.

In contrast, the AAA, ABA, and BAB stacked equally twisted TTG models are different.
The ABA and BAB models in the equal-angle TTG have the same band structures, as they
are related by a C2x transformation, but they have opposite Chern numbers for the middle
band.
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Particle-hole symmetry. The double-angle TTG model exhibits a distinct particle-hole
symmetry compared to the equal-angle TTG. In this case, particle-hole symmetry acts as
a mirror operator perpendicular to the graphene plane, passing through the y-axis. The
manifestation of particle-hole symmetry is given by the equation:

−HM(−x, y) = PMHM(x, y)PM , (2.53)

where

PM = σx ⊗

1

−1
1


layer

. (2.54)

It is evident that PM exchanges the two phases ϕ2 and ϕ3, therefore requiring ϕ2 = ϕ3 for
particle-hole symmetry to be valid. This is in stark contrast to the case with θ1 = θ2, where
particle-hole symmetry is always valid regardless of the phases.

By employing similar reasoning as in the equal-angle case, it can be shown that particle-
hole symmetry gives rise to two zero-energy states in the mirror plane. To localize these
states at the Γ point, C3z symmetry is required to generate two additional mirror planes
along the y-axis and its C3z-rotated counterparts. The zero-energy states must exist in all
three mirrors simultaneously and are thus pinned at k = 0, corresponding to the Γ point.

2.5 Summary

This chapter explores the solution of the moiré TTG models with twist angle ratios of
θ1/θ2 = 1 and 1/2. The band structures of these models can undergo dramatic variations
with changes in the twist angles, and flat bands occurs when the velocities of all three Dirac
cones simultaneously vanish.

The trilayer system exhibits high tunability, not only in terms of the twist angles but also
in the phase factors that describe the horizontal displacement of the middle layer relative
to the top and bottom layers. The phase factors provide an additional avenue for tuning the
electronic properties of TTG, setting it apart from TBG, which is invariant under changes
in the phases. In both TTG models, with and without equal twist angles, the phase factors
play a crucial role in defining the symmetries and modifying the band structures, including
their topology.

Moreover, the phase factors exhibit a periodicity that restores the Hamiltonian to its
original form up to a gauge change. This periodicity is closely related to the rational ratio

63



Chapter 2

of the twist angles, which has significant implications for the subsequent chapter.

By assuming colinearity of the two sets of moiré vectors, we are able to solve the TTG
model within the moiré periodic regime, similar to TBG. However, finding a general solu-
tion for arbitrary pairs of twist angles remains a challenging task. The next chapter aims
to extend the analysis beyond colinear moiré vectors and rational twist angle ratios.
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Supermoiré effective theory: formalism,
gauge, and symmetries

In this chapter, we aim to develop an analytical framework for treating the quasicrystalline
structure of the exact TTG model described by Eq. (2.3). Unlike the TBG model, the TTG
model incorporates twomoiré periodicities that are generally incommensurate, resulting in
an overall quasi-crystalline structure. This poses challenges in applying the conventional
Bloch’s theorem directly.

Previous approximate treatments of the TTG model assumed colinearity between the
two sets of moiré vectors and employed rational ratios between the twist angles, allowing
for solutions in the periodic regime similar to TBG. However, these treatments completely
ignored the secondary moiré pattern that arises from the mismatched TBG periodicities.

Our approach in this chapter aims to develop an analytical framework that considers the
non-colinearity of the moiré vectors and takes into account small deviations from rational
ratios between the twist angles. We leverage the moiré TTG solutions discussed in the pre-
vious chapter, which serve as “local” wave functions that vary slowly over the supermoiré
length scale. Based on these local solutions, we construct a supermoiré effective model. It
is important to note that our objective is not to provide a comprehensive solution to the
entire quasicrystal problem, but rather to access the low-energy features of the supermoiré
pattern.

In this chapter, we begin by examining the symmetries in the exact TTG model de-
scribed by Eq. (2.3). Subsequently, we demonstrate the development of the effective theory.
The construction of the effective theory starts with a geometrical decomposition that sep-
arates the moiré and supermoiré scales. This decomposition allows us to leverage the ap-
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proximate solutions obtained in the previous chapter as local solutions within the effective
model. By applying the ansatz wave function to the Schrödinger’s equation of the exact
Hamiltonian, we derive the supermoiré effective model by integrating out the fast-varying
moiré details. We thoroughly examine the gauge invariance and symmetries of the effec-
tive Hamiltonian. Additionally, we discuss the principles and practical algorithms of gauge
fixing in detail.

3.1 Symmetries of AAA-stacked exact model

Before delving into the development of the effective theory for the TTG model, it is im-
portant to conduct a symmetry analysis of the full TTG model. This analysis will help us
understand the symmetries present in the original model and guide us in ensuring that the
effective model we construct captures these symmetries to some extent.

Perodicity. The TTG Hamiltonian defined in Eq. (2.3) is in general not periodic, due
to the incommensurability of the two moiré patterns between top and middle layers and
between middle and bottom layers. This lack of periodicity poses a challenge in applying
traditional Bloch’s theorem and treating the system within a periodic framework. As a
result, alternative approaches are required to effectively analyze and understand the prop-
erties of the TTG model.

Particle-Hole symmetry. In the TTG model, the non-colinearity between the two
sets of TBGmoiré vectors leads to the permanent breaking of particle-hole symmetry (PHS),
even when the twist angles between the layers are strictly equal. In the presence of non-
colinear moiré vectors, the system lacks the necessary symmetry operations to preserve
PHS. This non-colinearity introduces additional complexity to the TTG model and requires
alternative methods to study its properties and phenomena.

C2zT symmetry. The exact model with AAA stacking still preserves C2zT symmetry
and also acts on the Hamiltonian as

C2zT = σxK,

where K is the complex conjugation operator.

C3z symmetry. C3z is still preserved and is still manifested by

C3z = e2iπσz/3.
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C2x symmetry. C2x is only valid when the two twist angles are strictly equal. It acts
on the Hamiltonian as

C2x = σx

 1

1

1


layer

.

3.2 Separation of moiré and supermoiré scales via geo-

metrical decomposition

For a pair of twist angles θ12/θ23 ≃ p/q, where p and q are coprime positive integers, the
moiré vectors of the top-middle and the middle-bottom TBG patterns are generated by the
C3z rotated partners of the moiré vectors

q121 = R̂θ12K −K, (3.1)

and
q231 =K − R̂−θ23K, (3.2)

respectively, with the convention that the middle layer remains unrotated. The other moiré
vectors are generated by ql,l+1

j = R̂2(j−1)π/3q
l,l+1
1 , with l = 1, 2 and j = 1, 2, 3.

Although the lengths of these moiré vectors satisfy |q12j | ≃ θ12|K| and |q23j | ≃ θ23|K|,
making the ratio |q12j |/|q23j | approximately equal to θ12/θ23 ≃ p/q, the non-colinearity
between the moiré vectors makes the two TBGmoiré patterns incommensurate. Therefore,
it is natural to seek sets of colinear moiré vectors that are as close as possible to the original
vectors while still respecting the rational ratio.

To achieve this, we solve the linear equations:

q12j = pqj + δqj/(p+ q),

q23j = qqj − δqj/(p+ q).
(3.3)

The solutions for qj and δqj define two sets of vectors with distinct length scales. The
vector qj ,

qj =
q12j + q232
p+ q

(3.4)

is of the same order of magnitude as the original moiré vectors. On the other hand, the
vector δqj ,

δqj = qq12j − pq23j (3.5)
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is much smaller compared to q12j , q23j or qj , i.e. |δqj| ≪ |qj|. The triplet {qj, j = 1, 2, 3}
defines a moiré periodic structure. The smaller triplet {δqj, j = 1, 2, 3} corresponds to a
supermoiré modulation, which defines the periodicity over the supermoiré length scale.

q121

q231

q122
q232

q123
q233

q12
1 q23

1

q1

δq1

Figure 3.1: Illustration of the geometrical decomposition of TBG moiré vectors into moiré
vectors and supermoiré vectors for a pair of nearly equal twist angles.

An intuitive example is the case with p = q = 1, which corresponds to nearly equal
twist angles, as illustrated in Fig. 3.1. It is important to note that strict equality between the
twist angles is not necessary. With nearly equal angles, the new moiré vectors are given
by qj = (q12j + q23j )/2, which are simply the average of the two sets of TBG moiré vectors.
The supermoiré vectors are obtained by taking the difference between the TBG vectors,
δqj = q

12
j − q23j .

The geometrical decomposition discussed above allows us to express the exact TTG
Hamiltonian in a rewritten form:

H(r) =

 k̂ · r aT12(r,−ϕ(r)) ∅
aT12(−r,ϕ(r)) k̂ · r aT23(r,ϕ(r))

∅ aT23(−r,−ϕ(r)) k̂ · r

 (3.6)

with
T12(r,ϕ(r)) =

∑
j

Tje
−ipqj ·reiδqj ·r/(p+q) ≡

∑
j

Tje
−ipqj ·reiϕj(r), (3.7)

and
T23(r,ϕ(r)) =

∑
j

Tje
−iqqj ·reiδqj ·r/(p+q) ≡

∑
j

Tje
−iqqj ·reiϕj(r), (3.8)

where
ϕ(r) = [ϕ1(r), ϕ2(r), ϕ3(r)]

T , (3.9)

and
ϕj(r) =

δqj · r
p+ q

. (3.10)

Indeed, Eq.(3.6) represents the exact model of TTG without any approximation. How-
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ever, it can also be interpreted as an approximatemoiré TTGmodelwith a phasemodulation
that spans the supermoiré length scale. Locally, Eq.(3.6) describes differently stacked moiré
TTG models.

The models discussed in Chapter 2 can be understood as different local solutions of the
exact AAA-stacking models. Due to the small magnitude of δqj compared to qj , the phases
ϕj(r) vary slowly in space compared to qj · r. Consequently, it is reasonable to assume
that ϕ(r) remains nearly constant within the length scale of a moiré unit cell. In this case,
Eq. (3.6) locally approximates moiré TTGmodels with constant phase factors, which can be
solved straightforwardly. To reflect this, we introduce the supermoiré coordinates denoted
asR, and parameterize the phase factors of the local moiré models as ϕ(R).

3.3 Effective theory

In this section, we will develop the effective theory for the TTG model based on the ge-
ometric decomposition of the TBG moiré vectors, which allows us to separate the system
into two distinct length scales. We will begin by reviewing the conventional k · p method,
which provides us with the intuition necessary to construct an ansatz for the full TTG
model. Subsequently, we will build the effective Hamiltonian by solving the Schrödinger’s
equation for the ansatz wave functions.

3.3.1 Reviewing the k · pmethod

Let us consider a periodic Hamiltonian in a simplified way as H(r) = k̂ · σ + V (r) with
V (r + a1/2) = UV (r)U †. U is a unitary matrix acting on the other degrees of freedom
than r.

According to Bloch’s theorem, the eigenfunctions of the periodic Hamiltonian at any
pointκ inside the first Brillouin zone can be written asΨnκ(r) = eiκ·runκ(r)where unκ(r)
is the Bloch function defined on the reciprocal lattice and satisfies the eigenvalue equation:

[κ · σ − i∇ · σ + V (r)]unκ(r) = Enκunκ(r). (3.11)

The area of the Bravais unit cell in real space is denoted by S. The periodicity of the Bloch
functions is expressed as:

unκ(r + a1/2) = Uunκ(r). (3.12)

The Bloch functions satisfy the orthonormal condition:
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∫
S

dr2 u∗nκ(r)un′κ(r) = δnn′ . (3.13)

Introducing a new set of states |n,k⟩ defined as ⟨r|n,k⟩ = eik·runκ(r), we have a
complete set of orthonormal bases satisfying:

⟨n,k|n′,k′⟩ =
∫
S

dr2 e−i(k−k′)·ru∗nκ(r)un′κ(r) = δ(k − k′)δnn′ . (3.14)

Without loss of generality, we can chooseκ to be theΓ point who are the eigenfunctions
of the equation:

[−i∇ · σ + V (r)]unΓ(r) = EnΓunΓ(r). (3.15)

In the subsequent analysis, we will omit the subscript Γ for simplicity. The k ·pmethod
is essentially a procedure to solve theHamiltonian in the new basis |n,k⟩ at a different point
in the Brillouin zone.

As a consequence of Bloch’s theorem, an eigenstate can be expressed as:

Ψ(r) = eik·r
∑
n

fnun(r). (3.16)

Substituting this expression into the Schrödinger’s equation, we obtain:

[k · σ − i∇+ V (r)]
∑
n′

fn′un′(r) = E
∑
n′

fn′un′(r). (3.17)

Since un(r) are eigenstates of−i∇+V (r)with eigenvalue En, the equation simplifies
to:

∑
n′

(k · σ + En′)fn′un′(r) = E
∑
n′

fn′un′(r). (3.18)

Multiplying both sides by u∗n(r) and integrating over the Bravais unit cell, we obtain:∫
S

dr2 u∗n(r)
∑
n′

(k · σ + En′)fn′un′(r) =

∫
S

dr2 u∗n(r)E
∑
n′

fn′un′(r). (3.19)
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Using the orthonormal condition in Eq. (3.13), we can rewrite the equation as an eigen-
value equation for a matrix:

∑
n′

(Enδnn′ + Γnn′ · k)fn′ = Efn, (3.20)

where

Γnn′ =

∫
S

dr2 u∗n(r)σun′(r). (3.21)

Solving Eq. (3.20) gives the complete spectrum of the system without any approxima-
tion. In particular, if we want to focus on states at a specific energy level, the coefficients fn
will be dominated by contributions from wavefunctions at the Γ point whose energy levels
are closest to E .

From Eq. (3.20) we can write the equation for the coefficient fn as:

fn =
1

E − En

∑
n′

k · Γnn′fn′ , (3.22)

This equation indicates that the coefficient fn is proportional to 1
E−En

. Therefore, if we are
interested in states at a specific energy level E , the dominant contribution to the resulting
eigenstate(s) will come from the wavefunctions at the Γ point whose energy levels En are
closest to E . This observation allows us to focus on the wavefunctions and energy levels
near the Γ point when studying specific energy levels in the system.

Fall back to the degenerate perturbation theory. If we are interested in the energy
levels E near the zero-energy level at a specific k point, the dominant contribution will
come from the two degenerate states at the Γ Dirac point. In this case, we can restrict the
indices n and n′ in Eq.(3.20) to the two zero-energy states at the Γ Dirac point. As a result,
the matrix Γnn′ becomes a 2× 2matrix, and Eq.(3.20) reduces to the first-order degenerate
perturbation theory for two states. This allows us to analyze the effects of perturbations
and obtain an effective Hamiltonian for the low-energy states near the zero-energy level.

Higher order expansion. By separating the subspace into two parts, one with energy
levels close to E and the other with energy levels far away, we can obtain higher-order
corrections to the low-energy states.

In the subspace with energy close to E , the coefficients fα can be expressed in terms
of the matrix elements Γαβ and Γαm as given in Eq. (3.23). Here, α and β are Greek in-
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dices representing states in the subspace with energy close to E , while m is a Latin index
representing states in the subspace with energy far away from E .

fα =
1

E − Eα

(
∑
β

k · Γαβfβ +
∑
m

k · Γαmfm) (3.23)

On the other hand, for the subspace with energy levels far away from E , we can ap-
proximate 1

E−Em
as − 1

Em
(1 +O( E

E2
m
)). This allows us to write the coefficients fm in terms

of the matrix elements Γmβ and Γml, as shown in Eq. (3.24).

fm = − 1

Em

(
∑
β

k · Γmβ +
∑
l

k · Γmlfl). (3.24)

By substituting Eq.(3.24) into Eq.(3.23) iteratively, we can generate an expansion in or-
ders of k. The expansion includes terms involving multiple matrix elements and allows us
to obtain higher-order corrections to the coefficients fα:

fα =
1

E − Eα

×{∑
β

k · Γαβfβ

−
∑
m,β

k · Γαm
1

Em

k · Γmβfβ

+
∑
m,l,β

k · Γαm
1

Em

k · Γml
1

El

k · Γlβfβ

+ · · ·

}

(3.25)

3.3.2 Ansatz wave function of the exact TTG model

The k · p method demonstrated above applies to any model with well defined periodicity,
which requires solving the model at one specific point first. The exact model of the twisted
trilayer graphene, however, does not offer such a facility due to its quasi-crystal nature. To
circumvent this difficulty, we will find a way to construct the wave functions based on the
“local” solutions from Chapter 2. Our intuition of the technique originates from the notion
that the exact wave functions should share certain similarities with the local solutions. If
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the local solutions are given by

Hlocal(r;ϕ(R))unk(r;ϕ(R)) = Enk(ϕ(R))unk(r;ϕ(R)), (3.26)

then we propose the ansatz wave functions for the exact solution as

φ(r) =
∑
n

fn(r)unκ(r;ϕ(r)), (3.27)

where κ belongs to the local moiré Brillouin zone. It should be emphasized that in Eq. (3.26)
r andR are decoupled coordinates andR is parameter controlling the phases. In the ansatz
given in Eq. (3.27) ϕ(r) also varies with r. The modulation functions fn(r) are assumed
to be slowly varying over the supermoiré length scale, such that fn(r), similar to ϕ(r),
is almost invariant within a moiré unit cell. The validity of Eq. (3.27) also requires ϕ(r)
to be a smooth and continuous function of r. Consequently, gauge-fixing is implied for
unκ(r;ϕ(r)) to vary smoothly and continuously. For clarity, the formalism of the TTG
effective theorywill be established first, while the discussion of the gauge-fixing procedures
will be addressed subsequently.

Let us write down the Schrödinger’s equation for the exact TTGmodel using the ansatz
wave function. To simplify the notation, we useH(r) = −i∇ ·σ+V (r,ϕ(r)) to represent
the exact TTGHamiltonian. Since [−i∇·σ+V (r,ϕ(R))]unκ(r;ϕ(R)) = Enκ(R)unκ(r;ϕ(R)),
the action of the exact Hamiltonian on the ansatz wave function yields:∑

n′

{fn′(r)(−iσ ·∇rϕ∇ϕun′κ(r;ϕ(r))

+ un′κ(r;ϕ(r))(−iσ ·∇fn′(r)

+ Enκ(ϕ(r))fn′(r)un′κ(r;ϕ(r))} = E
∑
n′

fn′(r)un′κ(r;ϕ(r)).

(3.28)

So far, no further approximations have been made except for the form of the ansatz.

We then proceed by multiplying u∗nκ(r,ϕ(r)) on both sides and integrating over the
moiré unit cell (MUC). Since fn(r) is a slowly varying function that is almost constant
within amoiré unit cell, we can take it out of the integral. The right-hand side then becomes:

RHS ≃ E
∑
n′

fn′(r)

∫
MUC

dr2 u∗nκ(r;ϕ(r))un′κ(r;ϕ(r)) = E
∑
n′

fn′(r)δnn′ = Efn(r).

(3.29)
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Applying the same orthonormal relation to the left-hand side gives:

LHS ≃
∑
n′

{
∫
MUC

dr2 u∗nκ(r;ϕ(r))(−iσ ·∇r)ϕ∇ϕun′κ(r;ϕ(r))

+

∫
MUC

dr2 u∗nκ(r;ϕ(r)σun′κ(r;ϕ(r))(−i∇)

+ Enn′(r)}fn′(r)

(3.30)

Note that Enn′ is not necessarily a diagonal matrix since the gauge-fixing procedures mix
the eigenstates of local models. Within the moiré unit cell, we can treat ϕ(r) as constant,
allowing us to compute the integrals using local states. By integrating out the variations
within the moiré scale, we obtain a new equation that describes the physics on the super-
moiré scale. To emphasize the difference in length scales between the effective equation
and the original model, we change the notation from r to R to represent the supermoiré
coordinates.

To simplify the notation, we introduce the quantities:

A(R) = ⟨unκ(R)|−i∇R · σ|un′κ(R)⟩

=
∑
αα′

∑
l

∫
MUC

dr2 uαl∗nκ (r;ϕ(R))(−iσ ·∇R)u
α′l
n′κ(r;ϕ(R)),

(3.31)

which will later prove to be a non-Abelian gauge field acting as a pseudo-magnetic field,
and

Γnn′(R) = ⟨unκ(R)|σ|un′κ(R)⟩ =
∑
αα′

∑
l

∫
MUC

dr2 uαl∗nκ (r;ϕ(R)σuα
′l

n′κ(r;ϕ(R)).

(3.32)
Enn′(R) is simply given by

Enn′(R) = ⟨unκ(R)|H(ϕ(R))|un′κ(R)⟩ . (3.33)

3.3.3 Effective model

Combining the results in Chapter 3.3.2,we obtain a new effective HamiltonianHeff(R) that
only concerns the modulation functions:

Heff(R) = −iΓ(R) ·∇R ◦+A(R) + E(R), (3.34)
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where the matrices, Γ(R), A(R), and E(R) are given by Eqs. (3.32), (3.31), and (3.33),
respectively. Here, we use ∇R◦ to indicate that the gradient operator acts only on the
modulation functions to avoid confusion in later discussions. The Schrödinger’s equation
for the effective Hamiltonian can be written as:∑

m

Heff,nm(R)fm(R) = Efn(R). (3.35)

where Heff,nm(R) are the matrix elements of the effective Hamiltonian.

Before attempting to solve the effective mode, we will first analyze the hermiticity of
the effective Hamiltonian given in Eq. (3.34). To facilitate the subsequent computations, it
is convenient to expand the local wave functions as follows:

uα,lnk(r;ϕ(R)) =
∑
Q

uα,lnk(Q;ϕ(R))e−iQ·r. (3.36)

where the expansion is possible due to the fact that gauge-fixed states are linear combina-
tions of the eigenstates of the local Hamiltonian with the same periodicity. Therefore, the
resulting gauge-fixed local wave functions share the periodicity of the eigenstates of the
local Hamiltonians.

To check the hermiticity of Enn′(R), we need to evaluate its explicit form:

Enn′(R) =
∑
αα′

∑
ll′

∫
MUC

dr2uαl∗nk (r;ϕ(R))(−i∇r · σαα′
δll′ + V αα′

ll′ (r))uα
′l′

n′k(r;ϕ(R))

(3.37)
We can compute this expression in two parts:

Enn′(R) =
∑
αα′

∑
ll′

∫
MUC

dr2uαl∗nk (r;ϕ(R))(−i∇r · σαα′
δll′u

α′l′

n′k(r;ϕ(R))

+
∑
αα′

∑
ll′

∫
MUC

dr2uαl∗nk (r;ϕ(R))V αα′

ll′ (r)uα
′l′

n′k(r;ϕ(R))

. (3.38)

The hermiticity of the first term is not immediately apparent if we want to apply the in-
tegration by parts. However, it becomes more convenient to use the expression given in
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Eq. (3.36):

∑
αα′

∑
ll′

∫
MUC

dr2uαl∗nk (r;ϕ(R))(−i∇r · σαα′
δll′u

α′l′

n′k(r;ϕ(R))

=
∑
αα′

∑
ll′

∑
Q,Q′

1

S

∫
MUC

dr2uαl∗nk (Q;ϕ(R))eiQ·r(−i∇r · σαα′
δll′u

α′l′

n′k(Q
′;ϕ(R))e−iQ′·r

=
∑
αα′

∑
ll′

∑
Q

uαl∗nk (Q;ϕ(R))(−Q · σαα′
)uα

′l′

n′k(Q;ϕ(R))

(3.39)

Now let’s evaluate the matrix element of the Hermitian conjugate of Enn′(R):

(E(R))†nn′ = E∗
n′n(R) =

∑
αα′

∑
ll′

∑
Q

uαln′k(Q;ϕ(R))(−Q · σ∗,αα′
)uα

′l′,∗
nk (Q;ϕ(R))

+
∑
αα′

∑
ll′

∫
MUC

dr2 uαln′k(r;ϕ(R))V ∗αα′

ll′ (r;ϕ(R))uα
′l′,∗

nk (r;ϕ(R))

=
∑
αα′

∑
ll′

∑
Q

uα
′l′,∗

nk (Q;ϕ(R))(−Q · σα′α)uαln′k

+
∑
αα′

∑
ll′

∫
MUC

dr2 uα
′l′

nk (r;ϕ(R))V α′α
l′l (r;ϕ(R))uαln′k(r;ϕ(R))

= Enn′(R).

(3.40)

Therefore the matrix E(R) is explicitly confirmed to be Hermitian.

Although the velocity term Γ(R) is Hermitian, verifying

Γ∗
n′n(R) =

∑
αα′

∑
ll′

∫
MUC

dr2 uαln′k(r;ϕ(R))σαα′∗uα
′l′

nk (r;ϕ(R))

=
∑
αα′

∑
ll′

∫
MUC

dr2 uα
′l′

nk (r;ϕ(R))σα′αuαln′k(r;ϕ(R))

= Γnn′(R),

(3.41)

the entire kinetic energy term −iΓ(R) ·∇ is not Hermitian because of

(−iΓ(R) ·∇R◦)† = i∇−R · Γ(R) + i∇−R◦

= −i∇R · Γ(R)− iΓ(R) ·∇R◦ ≠ −iΓ(R) ·∇R◦,
(3.42)

with the inequality caused by the extra term −i(∇R · Γ(R)) which is generally non-zero.
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The Hermitian conjugate of the gauge field term A(R) is given by

A∗
n′n(R) =

∑
αα′

∑
l

∫
MUC

dr2 uαln′k(r;ϕ(R))(iσαα′∗ ·∇R)u
α′l∗
nk (r;ϕ(R))

=
∑
αα′

∑
l

∫
MUC

dr2 [∇Ru
α′l∗
nk (r;ϕ(R))] · iσα′αuαln′k(r;ϕ(R))

= i∇R ·
∑
αα′

∑
l

∫
MUC

dr2 uα
′l∗

nk (r;ϕ(R))σα′αuαln′k(r;ϕ(R))

+
∑
αα′

∑
l

∫
MUC

dr2 uα
′l∗

nk (r;ϕ(R))(−iσα′α)uαln′k(r;ϕ(R))

= i(∇R · Γnn′(R)) + Ann′(R) ̸= Ann′(R).

(3.43)

In general there is no constraint to impose that the term i(∇R ·Γnn′(R)) is zero. Therefore
the gauge field term A(R) is not Hermitian either.

Upon closer examination, it becomes evident that in the sum −iΓ(R) ·∇R ◦ +A(R),
the additional terms in the Hermitian conjugates of −iΓ(R) ·∇R◦ and A(R) will cancel
out, resulting in the hermiticity of the entire equation.

Although the non-symmetrized operators preserve the hermiticity of the equation, it is
advantageous to symmetrize each part to facilitate numerical solutions. The symmetriza-
tion process allows for a more straightforward implementation and computational effi-
ciency in practical calculations. To symmetrize the operators, we apply the following trans-
formations. For −iΓ(R) ·∇R◦, we symmetrize it as follows:

−iΓ(R) ·∇R◦ →
1

2
[−iΓ(R) ·∇R ◦+(−iΓ(R) ·∇R◦)†]

= −iΓ(R) ·∇R ◦ −
i

2
∇R · Γ(R),

(3.44)

Similarly, A(R) is symmetrized as follows:

A(R)→ 1

2
{A(R) + A†(R)}. (3.45)

It is important to note that although we use the symmetrized operators in the treatment of
the effective model, for clarity, we maintain the non-symmetrized notations in Eq. (3.34).
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3.4 Gauge Fixing and gauge invariance

3.4.1 General principle of fixing gauges

As mentioned earlier, the ansatz for the wave function relies on selecting a set of "local"
states that exhibit smooth and continuous variations with respect to the supermoiré coor-
dinateR. Achieving this requires fixing two key aspects:

• Continuous evolution of states: The chosen ensemble of local states should evolve
continuously as a function of R. This means that as R changes, the local states
smoothly transition from one configuration to another, maintaining a coherent and
gradual evolution throughout the supermoiré lattice.

• Continuous evolution of the global phases: In addition to the continuous evolution of
states, it is crucial to ensure the continuous evolution of the global phases associated
with the local wave functions. The global phase refers to the overall phase factor
of the wave function, which can vary as a function of R. To achieve a smooth and
continuous variation, the global phase of the local wave functions must be properly
accounted for and preserved throughout the supermoiré lattice.

By addressing both the continuous evolution of states and the continuous evolution of
global phases, the gauge-fixing algorithm ensures that the ensemble of local states exhibits
the desired smooth and continuous variation with respect to the supermoiré coordinateR.
This enables a consistent and accurate description of the system within the framework of
the ansatz for the wave function.

Assuming that a set ofN states {|ψn(R)⟩ , n = 1, 2, · · · , N}, has been obtained through
numerical diagonalization of the local Hamiltonian Ĥ(R) at each coordinateR, these states
can be referred to as “wild-gauge” states since they inherently carry an implicit random
gauge. In the process of gauge-fixing, it is important to ensure that none of the states are
projected out of the subspace spanned by the wild-gauge states. Consequently, gauge fixing
can be understood as a rotation within the same subspace. In general, the gauge-fixed states
can be expressed as:

|φn(R)⟩ =
∑
m

|ψm(R)⟩χmn(R), n,m = 1, 2, · · · , N (3.46)

where |φn(R)⟩ represents the gauge-fixed states, and χ(R) is a unitary matrix. The uni-
tarity of χ(R) guarantees that the gauge-fixed states remain within the same subspace
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spanned by the wild-gauge states. By applying this gauge-fixing transformation, the wild-
gauge states are rotated to yield the gauge-fixed states, resulting in a consistent and con-
trolled gauge choice for the ensemble of local wave functions.

The first requirement for gauge-fixing is achieved by selecting states that satisfy the
same constraint at all positions R. For instance, one can choose the states |φn⟩ in such
a way that the expectation value ⟨φn|Ô|φm⟩ is proportional to the Kronecker delta δnm,
where Ô is typically a Hermitian operator.

To address the global phase fixing, a set of “reference” states |gn⟩ is chosen, which are
independent of R. These reference states are selected in a manner such that ⟨gn|φn(R)⟩
always lies in the positive real domain.

Therefore, the objective of gauge fixing is to determine a unitary matrix χ(R) at each
positionR, such that the overlap matrix between the reference states and the gauge-fixed
states has only positive diagonal elements. In other words, the gauge-fixing process seeks to
establish a consistent phase convention by appropriately adjusting the phases of the states
within the chosen subspace.

3.4.2 Practical Procedures

In principle, there are infinite possibilities for choosing the unitary matrix χ(R) at each
point R. The gauge of the states needs to be fixed at every point in R, and for clarity, we
will denote the unitarymatrix as simply χ. To simplify the discussion, we can employ linear
algebra notations. The wild-gauge states can be arranged in a matrixΨ = [|ψ1⟩ , · · · , |ψN⟩],
where each column represents a state vector. Similarly, the reference states can be col-
lected in a matrix G = [|g1⟩ , · · · , |gN⟩]. The resulting gauge-fixed states are stored in
Φ = [|φ1⟩ , · · · , |φN⟩]. The goal is to devise an algorithm that generates the desired unitary
matrix χ, which gives the gauge-fixed states

Φ = Ψχ. (3.47)

Gauge fixing with an operator specified. In many cases, it is desirable for the gauge-
fixed states to be maximally aligned with the eigenstates of a Hermitian operator Ô, as this
facilitates the physical interpretation of the model using the gauge-fixed states. To achieve
this, we first project the operator Ô onto the subspace spanned by the wild-gauge states by
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computing Ψ†OΨ. It can be diagonalized using

U †Ψ†OΨU = D, (3.48)

where U is a unitary matrix whose columns represent the eigenvectors of the projected
operator, and D is a diagonal matrix whose diagonal entries are the eigenvalues. At this
step ΨU gives the new states that are maximally aligned with the true eigenstates of Ô. It
remains to fix the global gauge using

Φ = ΨUV, (3.49)

where V is a diagonal unitary matrix whose diagonal entries fix the global phase of the
gauge-fixed states. The diagonal entries of V are given by

Vnn =
(G†ΨU)∗nn
|G†ΨU |

. (3.50)

As a result, the gauge-fixing matrix χ is given by

χ = UV. (3.51)

This last step ensures that ⟨gn|φn⟩ is real and positive.

Gauge-fixing based on a specific Hermitian operator is intuitive and straightforward.
It works efficiently for a small number of wild-gauge states. However, when dealing with
a large number of states, finding N reference states that have non-zero overlap with the
gauge-fixed states is not always easy.

Fast gauge-fixing algorithm. The gauge-fixing algorithm based on the singular value
decomposition (SVD) provides a fast and efficient way to accomplish gauge fixing, simul-
taneously addressing both the alignment of states and the fixing of global phases [100]. We
start by testing the matrix χ = Ψ†G, which ensures that the diagonal matrix elements of
G†Ψχ = G†ΨΨ†G are real and positive due to the product of a matrix with its adjoint.
However, Ψ†G is not unitary because |gn⟩ and |ψn⟩ do not live in completely overlapping
subspaces. The size of the |ψn⟩ vectors shrinks when multiplied byΨ†U . To restore unitar-
ity, we apply the correction:

χ = Ψ†G(G†ΨΨ†G)−
1
2 . (3.52)
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To demonstrate the unitarity of χ, we perform the SVD of Ψ†G:

Ψ†G = ZSW (3.53)

where Z and W are unitary matrices, and S is a real and diagonal matrix with positive
diagonal entries called singular values. We solve Eq. (3.53) to determine the matrices Z and
W . Later we will realize that the gauge-fixing states is directly given by

Φ = ΨZW, (3.54)

which means the gauge-fixing matrix χ is simply

χ = ZW. (3.55)

To prove this , we compute first

(G†ΨΨ†G)−
1
2 = (W †SZ†ZSW )

1
2 = W †S−1W. (3.56)

As a result, Eq. (3.52) is rewritten as

χ = ZSWW †S−1W = ZW, (3.57)

which is unitary as it is a product of two unitary matrices. The gauge fixing is accom-
plished through a single step of SVD. There is no need to explicitly diagonalize the projector∑

n |gn⟩⟨gn| ≡ GG† within the subspace of {|ψn⟩}, as it is implicitly fulfilled by the SVD.

Now let’s explicitly demonstrate that Z fixes the states, andW fixes the global phases.
The matrix form of GG† projected into the subspace spanned by |ψn⟩ is given by

Ψ†GG†Ψ = ZSWW †SZ† = ZS2Z†. (3.58)

which implies that
Z†Ψ†GG†ΨZ = S2, (3.59)

yielding a diagonal matrix. The unitary matrix Z registers all the eigenvectors of the pro-
jected operator as its column vectors.

The global phases are given by the diagonal elements of the following matrix:

G†Ψχ = W †SZ†ZW = W †SW. (3.60)
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Since S is a diagonal matrix with positive values, the product W †SW must have positive
diagonal entries. Hence, the global phases are fixed by the W matrix. In fact, the overlap
between the n-th reference state and the n-th gauge-fixed state is given by

⟨gn|φn⟩ = (W †SW )nn =
∑
l

W ∗
lnslWln =

∑
l

sl|Wln|2 > 0, (3.61)

where sl denotes the l-th singular value.

The fast gauge-fixing algorithm leverages the singular value decomposition to simulta-
neously accomplish both aspects of gauge fixing. Since the Hermitian operator is inherently
chosen as the projector onto the reference states, the non-zero overlap of the eigenstates
of the operator with the reference states is trivially guaranteed. In practical applications, it
suffices to check that the overlap matrix of the reference states and the wild-gauge states
has a rank equal to the dimension of the subspace of the reference states, and the gauge
fixing will succeed.

3.4.3 Gauge-invariance of effective model

The formalism of the effective Hamiltonian depends on the choice of gauge. As a valid
physical theory should give gauge-independent measurement, we expect the effective the-
ory to have gauge-invariant spectra. In other words, it is expected that the effective models
produced in two different gauges should be able to be connected by a unitary transform.
This section demonstrates explicitly the unitary transform upon a change of gauge.

The passage from one set of gauge-fixed states to another can be described as a unitary
rotation within the same subspace. The gauge change of local states is expressed as:

|φ′
n(R)⟩ =

∑
m

|φm(R)⟩ ξmn(R), (3.62)

where ξ(R) is a unitary matrix that performs the rotation of states. This unitary matrix is a
smooth and continuous function ofR because the gauge-fixed states |φ′

n(R)⟩ and |φm(R)⟩
are continuous functions ofR.

In fact, under a gauge change, the effective Hamiltonian undergoes the following uni-
tary transformation:

H ′
nm(R) =

∑
n′m′

ξ†nn′(R)Hn′m′(R)ξm′m(R), (3.63)
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where H ′(R) represents the effective Hamiltonian obtained using the gauge-transformed
local states |φ′

n(R)⟩.

The detailed computations, which demonstrate the gauge invariance, are provided in
Appendix B.

3.5 Symmetries of effective model

This section explores the symmetries of the effective model, which are closely related to
the transformation of local states under symmetry operations. Let’s consider a symmetry
operator S that transforms a local Hamiltonian at a supermoiré coordinate R, denoted as
Ĥlocal(R), to another local Hamiltonian at a different supermoiré coordinate Ĥlocal(s(R)):

SĤlocal(R)S† = Ĥlocal(s(R)), (3.64)

This transformation implies that Ĥlocal(R) and ĥloc(s(R)) share the same spectrum. In
otherwords, if Ĥlocal(R) |ψ(R)⟩ = E(R) |ψ(R)⟩, then Ĥlocal(s(R))S |ψ(R)⟩ = E(R)S |ψ(R)⟩.
However, it is important to note that Eq. (3.64) is not a symmetry of the local Hamiltonian
becauseR is a parameter rather than the moiré coordinate of the local model. The gauge-
fixed eigenfunctions atR and at s(R) are related by the equation:

|ψn(s(R))⟩ =
∑
m

S |ψm(R)⟩ ζmn(R), (3.65)

where ζ(R) is a unitary matrix that remedies the gauge-fixing conditions potentially bro-
ken by the direct application of S and may depend on R. Once the choice of gauge is
determined, ζ(R) is also fixed.

For a symmetry to be present in the effective model, it is required that

S†(∇s(R))) · σS = S†σS ·∇s(R) = σ ·∇R. (3.66)

The symmetry is then manifested by:

Heff(s(R)) = ζ†(R)Heff(R)ζ(R). (3.67)

The detailed computation proving the symmetries in the effective model is provided in
Appendix. C.1.
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Diagonal condition of ζ . Ideally, one would expect that the action of the symmetry
operator S on the state |ψn(R)⟩ is equivalent, up to a global phase, to the gauge-fixed state
|ψn(s(R))⟩. This can be expressed as:

⟨ψn(s(R))|S|ψm(R)⟩ = eiϕnδnm. (3.68)

If this condition holds, the matrix ζ becomes diagonal with elements given by ζnm =

eiϕnδnm. Since the gauge-fixed states satisfy ⟨ψn(R)|Ô|ψm(R)⟩ ∝ δnm for allR, where Ô
is a Hermitian operator, it follows directly from Eq. (3.68) that:

⟨ψn(R)|S†ÔS|ψm(R)⟩ ∝ δnm. (3.69)

A situation that naturally satisfies Eq. (3.69) is when the operators S and Ô commute with
each other:

[S, Ô] = 0, (3.70)

which implies that

⟨ψn(R)|S†ÔS|ψm(R)⟩ = ⟨ψn(R)|Ô|ψm(R)⟩ ∝ δnm.

3.5.1 Periodicity of supermoiré Hamiltonian

The effective theory offers the advantage of solving the TTG model in a periodic regime
once again. In order to demonstrate the supermoiré periodicity of the effective model, it is
necessary to first examine the periodic recurrence of the local models on the supermoiré
coordinates.

As demonstrated in Chapter 2, the phase factors in the moiré TTG models have a pe-
riod of π for equal twist angles and 2π/3 for θ1/θ2 = 1/2 or 2. The periodicity of phase
factors reflects a corresponding periodicity on the supermoiré coordinates. Here, we gen-
eralize the discussion of the phase period and deduce the size of the supermoiré periodic
unit cell. The periodicity of the phase factors can be generalized for any ratio between twist
angles θ1/θ2 = p/q, where p and q are coprime integers. As demonstrated in the compu-
tations presented in Appendix C.2, the phase in the local moiré model exhibits a period
of 2π/(p + q). In the local model, increasing ϕ2 (ϕ3) by 2π/(p + q) corresponds to shift-
ing the supermoiré coordinates by aMM

1 (aMM
2 ), where aMM

1/2 are the generating vectors of
the supermoiré Bravais lattice satisfying aMM

i · bMM
j = 2πδij , with bMM

1/2 being the base
vectors of the supermoiré reciprocal lattice. The periodicity of the effective Hamiltonian is
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manifested by
Heff(R+ amm

1/2 )) = ζ†THeff(R)ζT , (3.71)

where ζT is a unitary matrix that ensures the translational symmetry of the effective model.

This property allows for the application of Bloch’s theorem to the effectivemodel. How-
ever, in order to write down the Bloch function, the explicit form of ζT is required. In Ap-
pendix C.2, we provide the detailed steps to obtain a simple and diagonal form of ζT by
carefully choosing reference states during gauge fixing.

3.5.2 Other important symmetries

Unlike the discussions on translational symmetry, wewill not look for the explicit form ζ for
the other symmetries discussed below. Confirming the presence of ζ is sufficient to validate
the symmetry. In the previous chapter, it was demonstrated that the local symmetries may
differ for θ1/θ2 ≃ 1 or 1/2. The verification of potential symmetries in the effective model
will be addressed separately for both cases. To confirm the symmetries in the effective
model, as explained earlier, we examine the validity of Eqs. (3.64) and (3.66) for the local
Hamiltonian. The following symmetries will be discussed: particle-hole symmetry (PHS),
C3z , C2x, and C2zT .

Particle-hole symmetry is absent. The exact TTG model described by Eq. (3.6) has
been shown to lack particle-hole symmetry (PHS) for any ratio between the twist angles.
In Chapter 2.3.5, it was explained that local models with θ1/θ2 ≃ 1 exhibit PHS for any
combination of phase factors, while local models with θ1/θ2 ≃ 1/2 can restore PHS only
for specific phase factors, i.e. particular supermoiré coordinates. However, in both cases,
the criterion outlined in Eq. (3.64) cannot be satisfied by the PHS operator. Therefore, PHS
does not exist in the effective model.

It is noteworthy that the equal-twist TTG model possesses local PHS "everywhere" but
globally breaks PHS.

C3z symmetry. We find that C3z can be locally broken, but is globally restored in
the effective model. The C3z symmetry of the effective model is verified by satisfying the
criterion of Eq. (3.66). More precisely, the C3z acts on the local Hamiltonian as e2iπσz/3, and
satisfies:

e2iπσz/3∇R̂2π/3R
· σe−2iπσz/3 = σ ·∇R. (3.72)

The detailed computations are presented in Appendix C.3.

C2x symmetry. C2x symmetry, as shown in the previous chapter, is only present in
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local models for θ1 ≃ θ2. After careful analyses, we find that for C2x to be present in the
effective model, the strict equality between the twist angles is required.

C2x acts on the local Hamiltonian as

C2x = σx ⊗

 1

1

1


layer

,

and it satisfies the criterion of Eq. (3.66) only if the two twist angles are exactly equal, so
that

C2xσ ·∇M̂yR
◦ ·C2x = σxσσx · M̂−1

y ∇R◦ = σ ·∇R◦.

Therefore C2x exists in the effective model only when we exactly have θ1 = θ2. We present
the detailed computation of C2x symmetry in Appendix C.4.

C2zT symmetry. Interestingly, C2zT symmetry is locally broken every where except
for R = 0, but is globally restored in the effective model. It acts on the local models as
C2zT = σxK where K is the complex conjugation. The C2zT symmetry in the effective
model is valid by satisfying the criterion of Eq. (3.66), i.e.

σxKσ ·∇−R ◦Kσx = σ ·∇R ◦ . (3.73)

We demonstrated the detailed computation of C2zT symmetry for the effective model
in Appendix C.5.

3.6 Computation of |∇Rψ(R)⟩ with gauge

In order to numerically solve effective model, all matrix elements must be computed with
gauge-fixed local states. The calculation of the kinetic energy term −iΓ(R) ·∇R and the
onsite potential E(R) are direct with gauge-fixed states. It then remains to derive the
gauge-fixed local states with respect toR to calculate the non-Abelian gauge field A(R).

3.6.1 Gauge independent contribution from perturbation theory

First we review the text-book computation of |∇Rψ(R)⟩ from the perturbation theory.
We can always suppose that we are working under a specific gauge so that all gauge-fixed
states are the eigenstates of the local Hamiltonians. The passage to other desired gauge
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choice can be achieved by an additional unitary transform on the effective model, as has
been discussed in the gauge-invariance of the effective model. Throughout this section, we
will implicitly adopt such a gauge choice to facilitate the demonstration. To simplify the
analysis, we can initially ignore the degeneracy without loss of generality.

Let’s suppose we have a local state described by the equation:

Ĥlocal(R) |ψn(R)⟩ = En(R) |ψn(R)⟩ ,

where n represents the state index. Applying∇R to both sides of the equation yields:

∇RĤlocal(R) |ψn(R)⟩+Ĥlocal(R) |∇Rψn(R)⟩ = ∇REn(R) |ψn(R)⟩+En(R) |∇Rψn(R)⟩ .
(3.74)

Taking the inner product with ⟨ψm(R)|, wherem ̸= n, on both sides of the equation above,
we obtain:

⟨ψm(R)|∇RĤlocal(R)|ψn(R)⟩+Em(R) ⟨ψm(R)|∇Rψn(R)⟩ = En(R) ⟨ψm(R)|∇Rψn(R)⟩ .
(3.75)

Simplifying further, we find:

⟨ψm(R)|∇Rψn(R)⟩ = |ψm(R)⟩⟨ψm(R)|∇RĤlocal(R) |ψn(R)⟩
En(R)− Em(R)

. (3.76)

According to perturbation theory, we consider only the contributions to |∇Rψn(R)⟩
that are orthogonal to |ψn(R)⟩, and we can write:

|∇Rψn(R)⟩ =
∑
m ̸=n

|ψm(R)⟩⟨ψm(R)|∇RĤlocal(R) |ψn(R)⟩
En(R)− Em(R)

. (3.77)

This formula leads to ⟨ψn(R)|∇Rψn(R)⟩ = 0.

It is important to note that the operator:

∑
m ̸=n

|ψm(R)⟩⟨ψm(R)|∇RĤlocal(R)

En(R)− Em(R)

in Eq. (3.77) is gauge-invariant. Therefore, the contribution to |∇Rψn(R)⟩ for an arbitrary
state |ψn(R)⟩ calculated using Eq.(3.77) is independent of the gauge choice for the states
|ψm(R)⟩.

Consequently, the value of ⟨gn|∇Rψn(R)⟩, where |gn⟩ is the reference state used for
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gauge-fixing, is predetermined once |gn⟩ and |ψn(R)⟩ are chosen. The value is a priori a
complex number and not necessarily real and positive. This leads to contradiction with
⟨gn|ψn(R)⟩ ∈ R+, which imposes

∇R ⟨gn|ψn(R)⟩ = ⟨gn|∇Rψn(R)⟩ ∈ R+. (3.78)

To obtain a derivative of states respecting the gauge-fixing conditions, a missing puzzle
must be added back to the calculation of |∇Rψn(R)⟩.

3.6.2 Gauge-dependent contribution

To obtain the derivative of states respecting the gauge-fixing conditions, we need to con-
sider the missing puzzle, which is the contribution along |ψn(R)⟩ that was initially ignored
in the perturbation theory formalism. We start by writing the expression for |∇Rψn(R)⟩
as follows:

|∇Rψn(R)⟩ = 1 |∇Rψn(R)⟩

=
∑
m̸=n

|ψm(R)⟩⟨ψm(R)|∇Rψn(R)⟩+ |ψn(R)⟩⟨ψn(R)|∇Rψn(R)⟩

= |ψn(R)⟩ ⟨ψn(R)|∇Rψn(R)⟩+
∑
m ̸=n

|ψm(R)⟩⟨ψm(R)|∇RĤlocal(R) |ψn(R)⟩
En(R)− Em(R)

.

(3.79)

To determine the value of the Berry connection ⟨ψn(R)|∇Rψn(R)⟩, we attempt to
apply ⟨ψn(R)| to both sides of Eq. (3.74). However, in this case, the Berry connection term
cancels out, and we are left with:

∇REn(R) = ⟨ψn(R)|∇RĤlocal(R)|ψn(R)⟩ . (3.80)

This implies the Berry connection is purely a gauge-dependent term, which needs to be de-
duced from the gauge-fixing condition. By considering the gauge-fixing condition ⟨gn|∇Rψn(R)⟩ ∈
R+, we find that

⟨gn|∇Rψn(R)⟩

= ⟨gn|ψn(R)⟩ ⟨ψn(R)|∇Rψn(R)⟩+
∑
m ̸=n

⟨gn |ψm(R)⟩⟨ψm(R)|∇RĤlocal(R) |ψn(R)⟩
En(R)− Em(R)

∈ R+.

(3.81)
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For ⟨gn|∇Rψn(R)⟩ to be real and positive, its imaginary part must be zero. Given that the
Berry connection term, ⟨ψn(R)|∇Rψn(R)⟩, is purely imaginary, while ⟨gn|∇Rψn(R)⟩ is
a positive real number guaranteed by gague fixing, we have

Im {⟨gn|∇Rψn(R)⟩}

= −i ⟨gn|ψn(R)⟩ ⟨ψn(R)|∇Rψn(R)⟩+ Im
{∑

m̸=n

⟨gn |ψm(R)⟩⟨ψm(R)|∇RĤlocal(R) |ψn(R)⟩
En(R)− Em(R)

}
= 0

(3.82)

⟨ψn(R)|∇Rψn(R)⟩ = − i

⟨gn|ψn(R)⟩
Im
{∑

m ̸=n

⟨gn |ψm(R)⟩⟨ψm(R)|∇RĤlocal(R) |ψn(R)⟩
En(R)− Em(R)

}
,

(3.83)
which allows for the computation of Berry connections everywherewith gauge-fixed states.
Let us denote the Berry connection An(R) = ⟨ψn(R)|∇Rψn(R)⟩, then the derivative of
a state that respects the gauge-fixing condition is given by

|∇Rψn(R)⟩ = An(R) |ψn(R)⟩+
∑
m ̸=n

⟨ψm(R)|∇RĤlocal(R)|ψn(R)⟩
En(R)− Em(R)

|ψm(R)⟩ . (3.84)

3.7 Effective model on the reciprocal lattice

Having obtained all the matrix elements of the effective Hamiltonian, we can now proceed
with solving the effective model. In Chapter 3.5.1, the form of the Bloch functions for the
effective Hamiltonian was established. However, it is important to note that although the
effective Hamiltonian possesses a gauge-invariant spectrum, different gauge choices can
introduce different challenges in obtaining solutions.

By carefully selecting the gauge-fixing operator and the reference states, it is possible
to simplify the expression of the wave function. This can be achieved by ensuring that the
transformation operator T (R) becomes a diagonal matrix with straightforward diagonal
entries that can be easily determined.

To proceedwith the solution of the effectivemodel, we utilize Bloch’s theorem by substi-
tuting the wave function given in Eq. (C.33) into the Schrödinger’s equation of the effective
Hamiltonian. This yields the equation:

[Γ(R) · (k − i∇R) + A(R) + E(R)]T (R)fk(R) = EkT (R)fk(R), (3.85)
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where k represents a wave vector within the supermoiré Brillouin zone. Here, we omit
the band index of the effective spectrum for clarity of notation. Since T (R) is a unitary
operator, applying T †(R) from the left on both sides of the equation gives:

H̃eff
k (R)fk(R) = Ekfk(R), (3.86)

where
H̃eff

k (R) = T †(R)[Γ(R) · (k − i∇R) + A(R) + E(R)]T (R). (3.87)

H̃eff
k (R) is a perfectly periodic Hamiltonian satisfying H̃eff

k (R + aMM
1/2 ) = H̃eff

k (R) for ar-
bitrary choice of gauge. In practice, numerical solutions are typically obtained by working
with the Fourier-transformed Hamiltonian, whose matrix elements are given by:

H̃eff
k (Q,Q′) =

∫
dR2

S
eiQ·RH̃eff

k (R)e−iQ′·R. (3.88)

where the Fourier transform must be computed for each term in

• T †(R)Γ(R)T (R),

• T †(R)(−i∇RT (R)),

• T †(R)A(R)T (R) ;

• T †(R)E(R)T (R).

Now, let’s consider the situation where the gauge is appropriately chosen so that T (R) be-
comes a diagonal matrix, as shown in Eq. (C.39). This choice of gauge significantly reduces
the computational cost of obtaining the matrix elements of H̃eff

k (R). It is important to recall
that the indices n andm denotes the band indices of the local solutions at the Γ,K orK ′

point of the local moiré Brillouin zone.

[T †(R)(−i∇RT (R))]nm = pnδnm − i∇R. (3.89)

For the other terms, we have

Γ̃nm(R) =
∑
n′m′

T †
nn′(R)Γn′m′(R)Tm′m(R) = e−i(pn−pm)·RΓnm(R), (3.90)

Ãnm(R) =
∑
n′m′

T †
nn′(R)An′m′(R)Tm′m(R) = e−i(pn−pm)·RAnm(R), (3.91)
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and
Ẽnm(R) =

∑
n′m′

T †
nn′(R)En′m′(R)Tm′m(R) = e−i(pn−pm)·REnm(R). (3.92)

The effective Schrödinger’s equation is now written as:∑
m

H̃eff
k,nm(R)fm(R) = Efn(R). (3.93)

The matrix elements of the transformed effective Hamiltonian are given by

H̃eff
k,nm(R) = Γ̃nm(R) · (k + pnδnm − i∇R) + Ãnm(R) + Ẽnm(R). (3.94)

where every term in the Hamiltonian is periodic on the supermoiré lattice. Therefore, they
can be expanded in Fourier series:

Γ̃nm(R) =
∑

Q∈SRL

Γ̃nm(Q)eiQ·R, (3.95)

Ãnm(R) =
∑

Q∈SRL

Ãnm(Q)eiQ·R, (3.96)

and
Ẽnm(R) =

∑
Q∈SRL

Ẽnm(Q)eiQ·R. (3.97)

The periodic effective Hamiltonian defined on the supermoiré reciprocal lattice (SRL) is
given by:

H̃eff
k,nm(Q1,Q2)

=
∑

Q∈SRL

δQ1+Q,Q2

(
Γ̃nm (Q) · (k + pnδnm −Q2) + Ãnm (Q) + Ẽnm (Q)

)
.

(3.98)

To numerically solve Eq. (3.98), we need to specify two cutoffs. First, we require a cut-
off for Q1 and Q2 to limit the total number of Fourier components of the wave function
and thereby restrict the dimension of the Hamiltonian matrix. Since the effective model is
periodic, the fast convergence can be achieved this cutoff increases.

The second cutoff is applied to Q to limit the number of Fourier components in the
Hamiltonian itself. This cutoff determines the maximum distance between two momenta
whose coupling is considered in the calculation. Aswill be shown in the subsequent chapter,
a small radius for the second cutoff is enough to achieve convergence.
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3.8 Effectivemodel at low energy in the supermoiré scale

The indices n andm in Eq. (3.98) go through all the bands of the local models. Now we con-
sider to limit the number of local bands taken into consideration because we are interested
in finding the band structure corresponding to the supermoiré energy scale.

We can first obtain an intuition of the different orders of magnitude of the energy levels
in the moiré and the supermoiré scale. The typical moiré energy is expressed as Emoiré ∼
ℏvF |q|, compared to the typical supermoiré energy Esupermoiré ∼ ℏvF |δq|. We can make a
rough estimation with the twist angles θ1 = θ2 = θ = 2◦ ≡ 0.035 Rad. Since |q| = |KG|θ
and |δq| = |K|θ2 where KG is the wave vector at the K point of the graphene Billouin
zone, it is evident that

Esupermoiré

Emoiré
= θ = 0.035. (3.99)

Taking ℏvF |KG| = 9.905 eV as a reference, we find that the typical energy scale associated
with the supermoiré scale is an order of magnitude smaller than that of the moiré energy:

Emoiré ∼ ℏvF |KG|θ ∼ 102 meV, (3.100)

and
Esupermoiré ∼ ℏvF |KG|θ2 ∼ 10 meV. (3.101)

This indicates that the energy separation between bands within the moiré Brillouin zone
is much larger than the energy separation between bands within the supermoiré Brillouin
zone.

Therefore, if we are primarily interested in the band structure associated with the su-
permoiré energy scale, we can limit the number of local bands taken into consideration.
This can simplify the calculation and reduce the computational cost, as we only need to
focus on a subset of bands relevant to the supermoiré physics. The specific number of
bands to include will depend on the specific system and the desired level of accuracy in the
calculation.

The band structures of the local Hamiltonians presented in Chapter 2 reveal that the
majority of local eigenstates reside at energy levels that are significantly different from the
typical supermoiré energy, with the exception of states near the zero energy level. These
low-energy local states are predominantly concentrated around the Γ, K , and K ′ points
of the local moiré Brillouin zone. The main contribution to the effective model arises from
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these low-energy local states. This can be observed by reformulating Eq. (3.35) as follows:

fn(R) =
1

E − En(R)

∑
m

(−iΓnm (R) ·∇Rfm(R) + Anm (R) fm((R)) (3.102)

The wave function of the effective model is predominantly composed of components asso-
ciated with the local states whose energies are closest to E .

This enables us to significantly reduce the number of local bands involved in the effec-
tive model. In the case where θ1/θ2 ∼ 1, two zero-energy states remain pinned at the Γ
point. The Dirac point at the K (or K ′) point is only slightly gapped out when the C3z

symmetry is broken. Therefore, we can construct an effective model by considering the
two lowest-energy states at either the local Γ orK point, resulting in a two-band effective
model for each pair of local states.

The situation is slightly different when θ1/θ2 ∼ 1/2. At the local Γ point, the Dirac
point can be slightly gapped out due to the absence of particle-hole symmetry (PHS) for
any R. At the local K point, all four lowest-energy states need to be considered in the
effective model. On the other hand, at theK ′ point, a large gap separates the two lowest-
energy bands when the twist angles are not extremely small. Therefore, for the case of
θ1/θ2 ∼ 1/2, we can establish a two-band model based on the local Γ states, but we need
to work with a four-band effective model based on the localK states.

The numerical solutions will be presented in the following chapter.

3.9 Summary

In this chapter, we have developed a theoretical framework for studying staircase twisted
trilayer graphene (TTG) with twist angle ratios that are close to rational numbers. By
decomposing the two sets of moiré vectors, we can separate the “fast” variation occurring at
the moiré scale, comparable to the periodicity of TBG, from the “slow” variation occurring
at the supermoiré scale, which spans even longer distances than the size of a moiré unit
cell. This allows us to view the exact TTG model as a moiré TTG model modulated by a
slowly varying phase factor. Consequently, the approximate TTG models we solved in the
previous chapter can now be regarded as “local” models, under the assumption that the slow
phase factor remains almost constant within the moiré unit cell. The results obtained in
Chapter 2, with different phase factors, are equivalent to local solutions of the exact model.
However, these local solutions have been obtained independently from each other. The
motivation behind developing the effective theory is to address the following questions:
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Can we characterize the global physical properties of TTG by taking the direct sum or
average of the local solutions? If not, what changes if we find a solution at the supermoiré
scale that not only locally resembles the local solutions but also reveals new features across
the supermoiré length scale?

To tackle these questions, we revisited the formalism of the k · p method and were in-
spired to propose a carefully designed ansatz as the eigenfunction of the exact TTG model.
The ansatz functions involve a linear combination of local functions decorated by a mod-
ulation function. The modulation function is intentionally chosen to be slowly varying at
the supermoiré scale and nearly constant within the moiré scale. By substituting the ansatz
wave function into the Schrödinger’s equation of the exact Hamiltonian and integrating
over the moiré unit cell, we obtained a new eigenvalue equation that only involves the
modulation functions.

In order to handle the effective model, the gauge-fixing procedure is an essential pre-
requisite. This step is crucial for obtaining smooth and continuous matrix elements of the
effective Hamiltonian as functions of the supermoiré coordinatesR. It should be noted that
the expressions of the effective model will depend on the choice of gauge. However, the
physical properties computed from the effective model are gauge invariant, as they should
be. Using gauge-fixed states makes the calculation of∇R |ψn(R)⟩ more complicated com-
pared to using perturbation theory directly. We have also developed the theory for com-
puting ∇R |ψn(R)⟩ for gauge-fixed states, which also provides a method for calculating
the Berry connection using these gauge-fixed states.

Additionally, we have demonstrated various symmetries encoded in the effective model,
which are closely related to the transformations of the local states under symmetry opera-
tions. We have confirmed that the effective model exhibits symmetries that are fully con-
sistent with the exact model. The locally broken symmetries, namely C2zT and C3z , are
globally restored in the effective model. The particle-hole symmetry, which is absent in the
exact model, appears as an auxiliary symmetry in the local models but is again broken in
the effective model. Even when particle-hole symmetry is present in the local models ev-
erywhere for θ1 ∼ θ2, it is still broken in the effective model. The presence of C2x requires
the twist angles to be strictly equal, which holds true both in the exact model and in the
effective model.

Finally, we have shown that the effective model can be further simplified by considering
only the local states near the zero energy level, as they make the major contribution to the
effective model when focusing on the typical supermoiré energy scale.

Thus, we have conducted a thorough analysis of the effective model and established a
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comprehensive toolbox for solving it. In the following chapter, we will present the numer-
ical results obtained from the effective model.
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Numerical solutions of low-energy su-
permoiré effective models

In this chapter, we focus on numerically solving the effective model, primarily considering
twist angle ratios close to 1 and 1/2. We start by computing the matrix elements of the
effective model on a discretized real-space grid within a supermoiré unit cell (SMUC). The
grid points are defined as

R→ Ri,j =
i

N1

aMM
1 +

j

N2

aMM
2 , (4.1)

where i and j range from 0 toN−1. Here, aMM
1 and aMM

2 are the generating vectors of the
supermoiré Bravais lattice, and N1 and N2 represent the number of discrete points within
a SMUC along aMM

1 and aMM
2 , respectively. In practice, we usually choose N1 = N2 = N .

For any periodic function defined on the supermoiré lattice, expressed as g(Ri,j) =∑
Q G(Q)eiQ·Ri,j , we compute its Fourier coefficients G(Q) using discrete Fourier trans-

form. The calculation is given by:

G(Q) =
1

N2

N∑
i=1

N∑
j=1

g(Ri,j)e
−iQ·Ri,j , (4.2)

whereQ represents a vector on the reciprocal supermoiré lattice with n1 and n2 as integers,
given by Q = n1G

MM
1 + n2G

MM
2 . Here, GMM

1/2 denotes the generating vectors of the
reciprocal supermoiré lattice, satisfying the conditionGMM

i aMM
j = 2πδij .

Convention of notations. To maintain clarity in the notations, we will introduce a
convention for distinguishing between points in the local moiré Brillouin zone and in the
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supermoiré Brillouin zone. As previously mentioned, we consider low-energy supermoiré
models associated with the local Γ states andK(K ′) states near the zero-energy level.

To avoid confusion, we will use subscript “M” for the Brillouin zone points in the local
moiré models. Specifically, we will denote them as ΓM , KM , and K ′

M , while the points
within the supermoiré Brillouin zone will be denoted without subscript as Γ,K , andK ′.
Consequently, we will refer to the effective model based on the ΓM/KM states as the
ΓM/KM effective model.

Utilization of symmetrized operators. To solve the effective model numerically,
we will utilize symmetrized operators, even though the Hermiticity of the effective Hamil-
tonian has already been established. The use of symmetrized Hermitian operators offers
significant advantages, especially in the two-band effective model, where the Hermitian
matrices can be decomposed into linear combinations of Pauli matrices with real coeffi-
cients. These coefficients not only facilitate the implementation of computational codes
but also enhance the physical interpretation of the results.

Throughout this chapter, the notation −iΓ(R) ·∇R◦ refers to

1

2

(
−iΓ (R) ·∇R◦+ (−iΓ (R) ·∇R◦)†

)
,

and A(R) refers to
1

2

(
A (R) + A† (R)

)
.

In the two band effective models developed in this chapter, any 2 × 2 hermitian matrix,
MH , can be expanded as :

MH(R) = d0(R)σ0 + dx(R)σx + dy(R)σy + dz(R)σz ≡ d0(R)σ0 + d(R) · σ, (4.3)

where d(R) = [dx(R), dy(R), dz(R)]T and σ = [σx, σy, σz]
T . The Fourier components of

each coefficient, denoted as F [di](Q), can be computed using Eq. (4.2).

4.1 Nearly equal twist angles

In this section, we present the numerical solutions for the effective models with equal twist
angles of 2.2◦. The construction of the effective model will be based on the ΓM and KM

states separately. The model solved here has equal twist angles. For the case where the
angles are nearly equal, the procedures are exactly identical.
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4.1.1 ΓM effective model

TheΓM effective model is developed from the two constantly degenerate states at the Dirac
point ΓM . Consequently, it is a two-band model. Due to the inherent particle-hole sym-
metry, which holds irrespective of the supermoiré coordinates, the two local ΓM states are
always pinned at zero energy. As a result, the E(R)matrix in the effective model becomes
zero.

To fix the gauge, we select the gauge-fixing operator as σz , which is the Pauli matrix
defined solely on the sublattice degrees of freedom. Initially, we project σz onto the 2-
dimensional subspace and determine the two eigenstates, denoted as |ψA(R)⟩ and |ψB(R)⟩,
associated with the projected σz operator. These eigenstates exhibit sublattice polarization.

To fix the global phase, we choose two reference kets: |Q = 0, A, l = 0⟩ and |Q = 0, B, l = 0⟩.
We impose the conditions that both ⟨Q = 0, A, l = 0|ψA(R)⟩ and ⟨Q = 0, B, l = 0|ψB(R)⟩
are real and positive.

With the chosen gauge, we observe that the effective Hamiltonian exhibits exact pe-
riodicity: Heff(R + aMM

1/2 ) = Heff(R). Recalling the relationship between the gauge-fixed
states computed atR andR+aMM

1/2 , given by
∣∣∣ψn(R+ aMM

1/2 )
〉
= S

∑
m=A,B |ψn(R)⟩ ζmn,

where n ∈ {A,B}, S is described by Eq. (C.25), and it acts solely on the moiré coordinates
and the layer indices. Notably, S commutes with σz . As a consequence, ζ becomes a di-
agonal matrix, since S |ψn(R)⟩ is directly an eigenstate of the σz operator projected into
the zero-energy space of the local model atR+aMM

1/2 . Thus, ζ merely compensates for the
phase difference between S |ψA/B(R)⟩ and

∣∣∣ψA/B(R+ aMM
1/2 )

〉
. By selecting the afore-

mentioned reference kets, the global phases are automatically fixed due to the condition:

〈
Q = 0, A/B, l = 0

∣∣Ueik̂·r0∣∣ψA/B(R)
〉
=
〈
Q = 0, A/B, l = 0

∣∣ψA/B(R)
〉
∈ R+. (4.4)

No compensating phase is required in the diagonal entries of ζ , resulting in

Heff(R+ aMM
1/2 ) = ζ†Heff(R)ζ = Heff(R). (4.5)

In Figure 4.1, we present the matrix elements of the effective Hamiltonian evaluated
within a supermoiré unit cell, considering both twist angles to be 2.2◦. The data confirms
that Heff(R) is a smooth and continuous function of R. Furthermore, the periodicity of
the effective Hamiltonian is verified. To facilitate comparison, the data in Figure 4.1 are
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Figure 4.1: The matrix elements of the ΓM effective model computed within a supermoiré
unit cell for Γx(R) (first row), Γy(R) (second row) and A(R) (third row), with the coeffi-
cients d0, dx, dy and dz arranged in the first, second, third and fourth columns, respectively.
The variation of matrix elements is confirmed to be smooth and continuous. All matrix
elements return to their original value after going over a supermoiré period. Data collected
with θ1 = θ2 = 2.2◦. To show more clearly the continuity and periodicity of each set of
data within a supermoiré unit cell, the data in each subplot are normalized to the interval
[0, 1] using Eq. (4.6) so that the same color scale is employed for all color plots.

normalized using the transformation:

dj(R)→ dj(R)−min(dj)

max(dj)−min(dj)
, j = 0, x, y, z, (4.6)

ensuring that the values in each panel range between 0 and 1.

Figure 4.2 displays the Fourier coefficients of the data shown in Figure 4.1. It is clear
from the plot that the dominant Fourier amplitudes are concentrated around the Q = 0
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Figure 4.2: The absolute values of the Fourier coefficients of the data shown in Fig. 4.1.
The arrangement of data in the panels corresponds to Fig. 4.1. The same normalization
technique of data as in Fig. 4.1 is also performed on every set of data shwon in each subplot.

Supermoiré Brillouin zone

−K Γ Kδq1
δq2

δq3

(K′ )

Figure 4.3: The supermoiré Brillouin zone. Band structure is calculated along the horizontal
line −K − Γ−K . The supermoiré vectors δqj, j = 1, 2, 3 are also shown.

component. As a result, we can safely choose a cutoff that is not excessively large forQ in
Eq. (3.98). In practice, the cutoff for the Fourier components of the Hamiltonian was chosen
as 3
√
3|δq|. This choice ensures that significant contributions from higher-order reciprocal

lattice vectors are included while maintaining computational efficiency.
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Once all the necessary data is prepared, the Hamiltonian matrix described in Eq. (3.98)
can be constructed. The numerical diagonalization of this Hamiltonian matrix for each
wave vector k within the supermoiré Brillouin zone enables the construction of the super-
moiré band structure. In order to illustrate the band structure along a high symmetry line,
we select the path −K − Γ −K , as depicted in Fig. 4.3. This choice of path allows us to
capture the key features of the band structure and identify any band crossings or gaps that
may arise along this trajectory.
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 (eV 1nm 2)
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effective model
moiré average

-K K

Figure 4.4: In the left panel, we observe the low-energy density of states of the ΓM effective
model. The black line represents the density of states computed from the effective model,
while the red line corresponds to the profile of the average density of states of the local
models. It is important to note that the average local density of states has been manually
shifted to align the Dirac point with that of the effective model. This comparison allows
us to assess the agreement between the low-energy states of the effective model and the
average behavior of the local models. In the right panel, we present the band structure
computed along the path −K − Γ −K , which traverses the supermoiré Brillouin zone.
This path provides insights into the energy dispersion and the formation of bands within
the effective model. By analyzing the band structure, we can identify important features
such as band crossings, band gaps, and the overall behavior of the energy levels along the
selected trajectory.

Fig. 4.4 presents the band structure and the profiles of the density of states for the ΓM

effective model. The left panel displays the density of states (DOS) for both the effective
model and the local models. The right panel shows the band structure along the−K−Γ−
K route in the supermoiré Brillouin zone. The density of states, ρ(ε), quantifies the number
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Figure 4.5: The vector field of a(R) on the x− y plane. Red line depicts a supermoiré unit
cell centered at R = 0. The supermoiré coordinates restoring C3z symmetry in the local
models are also highlighted. The AAA stacked local model is marked with orange color,
while the ABA/BAB stacked local models are shown in green.

of states per unit energy and per unit area at a given energy ε. In both the supermoiré
models and the local models, the density of states is computed by summing over the bands
and integrating over the wave vectors in the first Brillouin zone:

ρ(ε) =
∑
n

∫
BZ

dk2

(2π)2
δ(ε− Enk), (4.7)

where n goes over the band indices and k denotes the wave vectors within the first Brillouin
zone.

By comparing the density of states profiles between the effective model and the local
models, we can observe the differences and the supermoiré features that arise from the
spatial variations in the moiré system. The effective model takes into account the long-
range spatial variations, capturing the emergence of new energy bands and the formation
of van Hove singularities, which are not present in the averaged density of states obtained
from the local models.

This comparison highlights the importance of the effectivemodel in capturing the global
electronic properties and supermoiré effects that arise from the intricate interplay of the
twist angles and the moiré pattern.
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In the numerical evaluation of the density of states, the integral over the Brillouin zone
is replaced by a discrete sum over the grid points in the Brillouin zone:∫

BZ
dk2 −→

∑
i

δk2,

where δk2 is the area of the discrete grid within the Brillouin zone. The Dirac delta function
is approximated by the Kronecker delta symbol to match the discrete values of energy.

δ(ε− Enk) −→
δε,Enk

δε
,

where δε is the bin size of discrete values of ε. The numerical computation of the density
of states is achieved by evaluating the following formula:

ρ(ε) =
∑
n

∑
i

δk2

(2π)2
δε,Enki

δε
. (4.8)

The summation
∑

n

∑
i δε,Enki

is in fact a histogram ϑ(ε). As a result, we have

ρ(ε) =
δk2

(2π)2δε
ϑ(ε). (4.9)

The above formula can also be used for the computation of the density of states from
local models. It suffices to perform the calculation for every supermoiré coordinate R to
obtain the local density ρloc(ε,R). The average local density of states is given by

ρ̄loc(ε) =

∫
SMUC

dR2

Ω
ρloc(ε,R), (4.10)

where Ω is the area of the supermoiré unit cell.

Each local model exhibits a bare Dirac cone at the ΓM point, which is pinned at E = 0

due to particle-hole symmetry. As a result, the average density of states shows a linear
dependence on energy, with zero density at the Dirac point. In Fig. 4.4, we have manually
adjusted the position of the average density profile (red line) to align its Dirac point with
that of the effective model. The disparity between the two profiles is significant.

Firstly, it is worth noting that the breaking of particle-hole symmetry cannot be cap-
tured by local averaging. The effective model exhibits a broken particle-hole symmetry,
evident from the shifted Dirac point away from zero energy and the asymmetric density
profile around the Dirac point. The analytical proofs presented in the previous chapter also
confirm this broken symmetry.
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Secondly, the spectral weight of states in the effective model is clearly redistributed
across different energy levels compared to the local average. Notably, the effective model
exhibits distinct mini-band features. Although the presence of C2zT symmetry enforces a
fully connected band structure, the depletion of density near the band touching point gives
rise to an almost isolated band.

These observations emphasize the importance of considering the effective model, as
it captures essential features that cannot be captured by local averaging alone. The bro-
ken symmetries and the redistribution of spectral weight are significant aspects that are
elucidated by the effective model.

To gain insight into the redistribution of spectral weight and the emergence of mini-
bands, we analyze the gauge field A(R). By expanding the 2 × 2 matrix A(R) as a linear
combination of Pauli matrices, we obtain

A(R) = a0(R)τ0 + ax(R)τx + ay(R)τy + az(R)τz = a0(R)τ0 + a · τ , (4.11)

where τi with i = x, y, z, 0 represent the Pauli matrices defined on the band indices to
avoid confusion with the σi matrices defined on the sublattice degrees of freedom. The
vector a(R) = [ax(R), ay(R), az(R)]T corresponds to an effective vector potential. Con-
sequently, we recognize the presence of a pseudo-magnetic field in the effective model.
This pseudo-Landau level effect redistributes the states across different energy levels and
enhances the flatness of the bands, giving rise to the mini-band structure observed in the
density of states.

In Fig. 4.5, we visualize the vector field encoded in A(R) on the x-y plane. Notably,
the vector field exhibits non-zero curl patterns as the vectors swirl around the ABA/BAB
points, effectively restoring the C3z symmetry observed in the local models.

4.1.2 KM effective model

TheKM effective model has a non-zero E(R) matrix that vanishes constantly in the ΓM

model.To solve theKM effective model with equal twist angles of 2.2◦, we incorporate the
E(R) term, which was previously neglected in the ΓM model. We employ the same gauge-
fixing conditions as in the ΓM model. Specifically, we select the two lowest-energy states
at KM to be the eigenstates of σz projected into their respective subspaces. We further
impose that their scalar product with |Q = 0, A/B, l = 0⟩ is real and positive.

In Figs.4.6 and 4.7, we present the computed matrix elements and their Fourier coeffi-
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Figure 4.6: The matrix elements of theKM effective model computed within a supermoiré
unit cell for Γx(R) (first row), Γy(R) (second row), A(R) (third row) and E(R) (fourth
row), with the coefficients d0, dx, dy and dz arranged in the first, second, third and fourth
columns, respectively. The variation of matrix elements is confirmed to be smooth and
continuous. All matrix elements return to their original value after going over a supermoiré
period. Data collected with θ1 = θ2 = 2.2◦. To show more clearly the continuity and
periodicity of each set of data within a supermoiré unit cell, the data in each subplot are
normalized to the interval [0, 1] so that the same color scale is employed for all color plots.

cients, respectively. The data are normalized for better visibility. Fig.4.8 displays the low-
energy band structure and density of states of theKM effective model. Similar to the ΓM

effectivemodel, the gauge field serves as a pseudo-magnetic field, leading to a redistribution
of spectral weight among the states. This redistribution results in the observed mini-band
characteristics in the density profile. It is important to note once again that this feature
cannot be captured by a direct averaging of the moiré models.
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Figure 4.7: The absolute values of the Fourier coefficients of the data shown in Fig. 4.6. The
arrangement of data in the panels corresponds to Fig. 4.6. All data are also normalized to
[0, 1] for better visibility.
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Figure 4.8: In the left panel, we shown The low-energy density of states of theKM effective
model. Black line show the density of states computed from the effective model. The red
line show profile of the average density of local models. The average local density of states
is shifted by hand to make the Dirac point coincide with that of the effective model. In
the right panel, we present the band structure computed along the route −K − Γ −K
transversing the supermoiré Brillouin zone.
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Figure 4.9: The vector field ofa(R) on the x−y plane computed for theKM model. Red line
depicts a supermoiré unit cell centered at R = 0. The supermoiré coordinates restoring
C3z symmetry in the local models are also highlighted. The AAA stacked local model is
marked with orange color, while the ABA/BAB stacked local models are shown in green.

4.1.3 Evolution with different twist angles

In Fig. 4.10, we present the evolution of the low-energy density of states profile with dif-
ferent twist angles. The profiles are obtained by applying the same procedures used in
the previous sections for constructing and diagonalizing the effective models. As the twist
angles vary, the density of states exhibits notable changes. The emergence of mini-bands
and the redistribution of spectral weight are prominent features observed in the density
profiles. These results demonstrate the strong dependence of the electronic properties on
the twist angle in moiré systems.

The analysis of the low-energy density of states in twisted trilayer graphene with vary-
ing twist angles provides valuable insights into the electronic properties of the system.
As the twist angles decrease, two main factors contribute to the enhancement of the low-
energy density of states.

Firstly, at smaller twist angles, the interlayer hopping between the layers becomes
stronger, leading to a suppression of the dispersion velocity near the Fermi level. This
suppression of dispersion velocity results in an increased density of states, as observed in
both the effective model and the local moiré models.
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Figure 4.10: Black curves show the density of states of the ΓM (left) and the KM (right)
effective models computed for different values of equal twist angles. The transparent red
lines show the average density of states computedwith local moirémodels. They are shifted
by hand to superpose their Dirac points with those of the effective models. The range of
twist angles are chosen to be between 2.2◦ and 3◦.

Secondly, the presence of the gauge field in the effective model introduces a pseudo-
magnetic field that further flattens the low-energy bands. This flattening effect gives rise
to the appearance of high-density peaks in the density of states profiles, which are unique
features of the effective model and cannot be captured by averaging over local models.

However, it should be noted that as the twist angles continue to decrease, a zero-velocity
singularity emerges, indicating the breakdown of the effective theory. This singularity sig-
nifies the presence of fast variations in the effective wave function at the moiré scale, which
violates the assumptions underlying the decoupling of physics at different scales.

Further discussions and analyses of this zero-velocity singularity will be presented at
the end of this chapter, providing a comprehensive understanding of the limitations and
challenges in describing twisted trilayer graphene systems with extremely small twist an-
gles.

4.2 Effective model with θ1/θ2 ≃ 1/2

In this section, we investigate the numerical solutions to the effective model with a twist
angle ratio of approximately 1/2. As in the case of the equal-angle model, we construct the
ΓM effective model using the two lowest-energy states from each local solution. However,
for theKM effective model, we need to employ a four-band effective Hamiltonian. This is
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because we have four low-energy states near the zero energy level atKM point of the local
model, as illustrated in Fig. 2.10.

4.2.1 ΓM effective model

The procedure for constructing the ΓM effective model with unequal twist angles is similar
to that of the equal-angle case. We select the two lowest-energy states from each local
model and fix their gauge using the gauge-fixing operator σz . The reference states chosen
for gauge fixing are |Q = 0, A/B, l = 0⟩.

By decomposing the local Hamiltonian matrix as linear combinations of Pauli matrices
defined on the band indices, we obtain the coefficients in real space, which are shown in
Fig. 4.11. Additionally, we calculate their Fourier coefficients on the reciprocal lattice and
present their amplitudes in Fig. 4.12. The data in both figures are normalized to the range
[0, 1] to improve visibility and facilitate comparison.

The computed band structure and density of states for the ΓM model with unequal
twist angles (θ1 = 1.8◦ and θ2 = 3.6◦) are displayed in Fig. 4.13. It is observed that the low-
energy dispersion in this case is almost identical to the moiré average, indicating that the
effect of the pseudo-magnetic field is substantially weaker compared to the case of equal
twist angles. This observation is further supported by the vector fields encoded in the gauge
field, as shown in Fig. 4.14. The lengths of the vectors, which represent the strength of the
gauge field, are significantly smaller compared to the equal twist model. This indicates that
the magnitude of the pseudo-magnetic field in the effective model is substantially weaker
in the case of unequal twist angles. The vector field visualization helps us understand the
spatial distribution and strength of the gauge field, providing insights into the underlying
physics of the system.

4.2.2 KM effective model

To develop the KM effective model with unequal twist angles, we consider a four-band
effective Hamiltonian due to the presence of four low-energy states near the KM point
of the local model. The gauge fixing procedure is updated accordingly by employing the
fast-gauge fixing algorithm discussed in Chapter. 4.14. In this algorithm, we choose four
reference states: |Q = 0, A/B, l = 0⟩ and |Q = q1, A/B, l = 1⟩. These reference states are
polarized on the sublattices, resulting in sublattice-polarized gauge-fixed states.

To visualize the matrix elements of the four-band Hamiltonian on the supermoiré co-

110



Numerical solutions of low-energy supermoiré effective models

3

2

1

0

1

2

3

y|
q|

x, d0 x, dx x, dy x, dz

3

2

1

0

1

2

3

y|
q|

y, d0 y, dx y, dy y, dz

3

2

1

0

1

2

3

y|
q|

A, d0 A, dx A, dy A, dz

0 2 4
x| q|

3

2

1

0

1

2

3

y|
q|

E, d0

0 2 4
x| q|

E, dx

0 2 4
x| q|

E, dy

0 2 4
x| q|

E, dz
0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.11: The matrix elements of the ΓM effective model computed within a supermoiré
unit cell, for Γx(R) (first row), Γy(R) (second row), A(R) (third row) and E(R) (fourth
row), with the coefficients d0, dx, dy and dz arranged in the first, second, third and fourth
columns, respectively, computed for twist angles θ1 = 1.8◦ and θ2 = 3.6◦. Data are nor-
malized to [0, 1] for better visibility. We confirm the smooth and continuous variation of all
data with the supermoiré coordinatesR as well as their periodicity.

ordinates, we refer you to the Appendix (Chapter D), where all 16 subplots for each 4 × 4

matrix are provided for clarity.

Finally, the band structure obtained from theKM effectivemodel is displayed in Fig. 4.15,
providing insights into the low-energy dispersion characteristics of the system.

Once again, we observe the presence of mini-band features in Fig. 4.15, indicating the
existence of a substantial pseudo-magnetic field arising from the gauge field. However, in
the case of theKM effective model with unequal twist angles, it is not possible to express
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Figure 4.12: The Fourier amplitudes of all the data shown in Fig. 4.11. Every data set is
normalized to [0, 1].
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Figure 4.13: The band structure (right panel) and density of states (left panel) computed
from the ΓM effective model with θ1 = 1.8◦ and θ2 = 3.6◦.

the 4 × 4 Hamiltonian matrix as a scalar product between a vector a(R) and a vector of
matrices. Consequently, the visual representation of the effective vector potential contained
in A(R) remains unclear.
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Figure 4.14: The ax and ay components of the gauge field extracted from the ΓM effective
model with θ1 = 1.8◦ and θ2 = 3.6◦.
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Figure 4.15: Low energy density of states (left panel) and band structure (right panel) given
by the 4-bandKM effective model. Data collected for twist angles θ1 = 1.8◦ and θ2 = 3.6◦.

4.2.3 Evolution with different angles

In the previous sections, we provided detailed solutions of the effective model based on
local states at ΓM and KM with twist angles of 1.8◦ and 3.6◦ respectively. By following
the same procedures, we can compute the density of states and band structures for other
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combinations of angles.

In the following analysis, we maintain a fixed ratio of 1/2 between the angles and vary
θ1 from 1.6◦ to 2.1◦. The density of states obtained from the corresponding effective models
is presented in Fig. 4.16.
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Figure 4.16: The black curves show the profiles of density of states of the effective models
with θ1 = θ2

2
ranging from 1.6◦ to 2.1◦. The data of the ΓM andKM effective models are

displayed in the left and right panels, respectively. Transparent red lines are the average
density of states over local moiré models within a supermoiré unit cell, and are shifted by
hand to align their Dirac points with those of the effective models.

4.3 Zero-velocity singularity

In both the effective models with equal and unequal twist angles, we have encountered
a phenomenon known as the zero-velocity singularity when exploring small twist angles.
These singularities occur when one of the components (characterized by the two singular
values in Eq. (2.22)) vanishes at certain supermoiré coordinates. It is important to note that
complete suppression of velocity is not necessary for the occurrence of the singularity.

The presence of the singularity manifests as difficulties in convergence and unstable
low-energy band structures. In the left panel of Fig. 4.17, we present example density of
states profiles for the effective models incorporating the zero-velocity singularity. These
profiles were computed for both the ΓM and KM models with θ1 = θ2 = 1.8◦. Despite
the challenges in obtaining stable density of states and band structures with increasing
momentum cutoff during the numerical solution, the profiles qualitatively demonstrate a
significant enhancement of low-energy states.
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In the right panel of Fig. 4.17, we plot the minimum velocity components within a su-
permoiré unit cell for different angles in the ΓM andKM models. It can be observed that
the local minimum velocity generally decreases as the twist angle diminishes. When the
angle falls below 2◦, the zero-velocity singularity emerges. However, it is interesting to
note that at certain angles smaller than 2◦, theKM velocity reemerges while the minimum
ΓM velocity remains zero.
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Figure 4.17: Left: The low-energy density of states with equal twist angles of 1.8◦, computed
from ΓM (blue curve) andKM (orange curve) effective models. The great enhancement of
density of states at low-energy is qualitatively manifested. Right: The smallest velocity
found within a supermoiré cell computed at different equal twist angles, for the ΓM (blue
curve) andKM (orange curve) models.

In Fig. 4.18, we present the minimum velocity component of the Dirac cones at the
KM point for different values of θ1 = 1

2
θ2. These profiles correspond to density of states

computations at certain angles where theKM models are not affected by the singularity.
It is evident that the high density of states coincides with small dispersion velocities. This
observation supports the idea that the enhancement of density of states in twisted trilayer
graphene arises from the suppression of dispersion velocity near the Fermi level.

In Fig. 4.19, we present the velocity components calculated locally using the singular-
value decomposition for the Dirac cones at the ΓM point of local models. It is evident that
at small angles, the smaller velocity component, represented by the smaller singular value,
can locally reach zero, leading to the singularity and the breakdown of the effective model’s
solution.

Furthermore, Fig. 4.19 also demonstrates that the two velocity components become
equal at supermoiré coordinates where C3z symmetry is restored. This implies that the
local models exhibit isotropic Dirac cones at these specific supermoiré coordinates.

Now that we understand that reducing the velocity leads to an enhanced density of
states, we can expect a significant increase in the density of states by further suppressing
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Figure 4.18: Left: the minimum velocity components at ΓM (blue) andKM (orange) for dif-
ferent values of θ1 = 1

2
θ2. Right: The density of states of theKM effective model computed

at several angles where the velocity of KM does not touch zero. Comparing the plots of
both sides, the remarkably high density of states emerges with small velocities.
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Figure 4.19: Velocity components of the Dirac cone in the local models across the super-
moiré coordinates. Data collected for the ΓM models with equal twist angles 1.7◦ (blue
wired surface) and 2.2◦ (orange wired surface). The plane of zero value is shown in gray
color.

the velocity until it locally vanishes.

4.3.1 1D Dirac model with space-dependent velocity

In the following, we will utilize an analytically solvable 1D Dirac model with a space-
dependent velocity to illustrate the consequences of locally vanishing velocity. Let us con-
sider the following 1D Hamiltonian:

ĥ(x) =
√
v(x)− i d

dx

√
v(x), (4.12)
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where v(x) is an arbitrary real function describing the space-dependent velocity. The
Schrödinger’s equation of the 1D Dirac Hamiltonian is given by:

ĥ(x)φε(x) = εφε(x). (4.13)

where ε denotes the eigenenergy. To solve Eq. (4.13), it is convenient to express the eigen-
function as:

φε(x) =
N√
v(x)

eiϕε(x), (4.14)

where N is a normalizing constant, and ϕε(x) is a priori a complex function. Substituting
this expression into the Schrödinger’s equation yields a new equation involving ϕε(x):

d

dx
ϕε(x) =

ε

v(x)
. (4.15)

Integrating this equation gives:

ϕε(x) = ε

∫ x

dx′
1

v(x)
. (4.16)

The wave function for states with eigenenergy ε is then given by:

φε(x) =
N√
v(x)

eiε
∫ x dx′ 1

v(x) . (4.17)

From Eq. (4.17), we can extract two important messages when the velocity becomes ex-
tremely small near a certain location x0:

1. The amplitude of the wave function becomes highly concentrated near the small-
velocity site because |φε(x)| ∝ 1/

√
v(x). This results in a highly localized wave

function. When the velocity vanishes at x0, the wave function collapses to a point-
like function located at x0. From the perspective of the supermoiré length scale, the
localization on a supermoiré coordinate indicates that the state is governed by the
moiré scale details. This breaks down the assumption of the effective model that
decouples the moiré and supermoiré length scales.

2. The phase factor in the wave function becomes rapidly oscillating near x0. This fast
oscillation encodes high and even infinite momenta, even if the eigenenergy is small.
This explains why the convergence of the effective model becomes challenging in the
presence of zero-velocity singularities, regardless of the increased cutoff in momen-
tum space. It would require an infinitely large cutoff to achieve convergence.
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4.3.2 Explorable angles

The zero-velocity singularity problem highlights an implicit condition for the applicability
of the supermoiré approach proposed in this thesis.

As we have previously learned, successful decoupling of moiré and supermoiré behav-
iors requires that |δqj| ≪ |qj|, for j = 1, 2, 3. The geometrical decomposition described in
Eq. (3.3) indicates that as the twist angles become smaller, the length differences between
|δqj| and |qj| become larger.

However, the zero-velocity singularity poses a limit on the validity of the length scale
separation as we approach smaller angles. When the twist angles become sufficiently small,
the velocity component may locally vanish, leading to the importance of moiré-scale details
in determining a supermoiré state. This imposes an implicit limitation on the application
of the supermoiré approach.

Therefore, the application of our supermoiré approach is best suited for twist angles
within certain ranges, avoiding both excessively large and excessively small angles.

In Fig. 4.20, we manually set the decoupling criterion to be |δq|/|q| ⩽ 0.2 and display
the maximum density of states between −30 and 30 meV for twist angles with ratios close
to 1, 1/2, and 2. Data points are not shown if the criterion is not satisfied or if the zero-
velocity singularity is present.

4.4 Summary

In this chapter, we have provided a detailed description of the protocols for numerically
solving the effective model. The process begins with the geometrical decomposition of the
original TBG moiré vectors, which allows us to decouple the moiré and supermoiré coor-
dinates. Next, we solve the local moiré Hamiltonian at each supermoiré coordinate R to
obtain the local states. To ensure the continuity and smoothness of these local states as
functions of R, we employ the gauge fixing procedures discussed in Chapter 3.4.2. Both
gauge-fixing algorithms are used for the two-band effective models and the four-band ef-
fective model ofKM states.

By Fourier transforming the real-space matrix elements, we transfer the effective model
to the reciprocal lattice. To facilitate the diagonalization of the effective Hamiltonianmatrix
and access the low-energy supermoiré states, we impose a cutoff on the size of the reciprocal
lattice.
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Figure 4.20: The maximum density of states computed for explorable angles with θ1/θ2 near
1, 1/2 and 2, and for energy levels between −30 and 30 meV. Angles are limited between
1◦ and 5◦. Computation were performed for angles satisfying |δq|/|q| ⩽ 0.2.

However, we encountered convergence difficulties in the numerical solution when the
twist angles became sufficiently small, mainly due to the emergence of zero-velocity singu-
larities. To gain insights into the nature of these singularities, we performed an analytical
study of a 1D Dirac model with space-dependent velocity. This analysis revealed that the
zero-velocity singularity leads to wave function localization and rapidly changing phases.
The former indicates the importance of moiré-scale details for the supermoiré state, while
the latter explains the difficulty in achieving convergence in the numerical solution, as it
would require an infinitely large momentum cutoff.

It should be noted that the exploration of the relationship between moiré details and
supermoiré states goes beyond the scope of this research.

In summary, this chapter has presented a comprehensive numerical toolbox for solving
the effective model, encompassing the retrieval of local states, gauge fixing, establishment,
and diagonalization of the effective Hamiltonian.
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Conclusion

In most cases, twisted trilayer graphene (TTG) lacks the advantage of the mirror symmetry,
which restores the periodic regime identical to TBG. As a result, TTG is generally consid-
ered a quasicrystal due to the incommensurability of the two TBGmoiré patterns. Finding a
general solution for the quasicrystal system remains challenging. To address this difficulty,
we first demonstrate that by neglecting the non-colinearity between the moiré vectors of
the two TBG moiré patterns, the TTG Hamiltonian can regain periodicity when the ratio
between the twist angles is a rational number. This approximate model exhibits a peri-
odicity comparable to that of the TBG moiré pattern and reveals the band structure and
non-trivial topological properties in TTG. The moiré description is valid for a moderate
distance, over which the supermoiré variation is not significant.

Next, we employ a geometrical decomposition of the exactmoiré vectors to separate two
distinct length scales: one comparable to the TBG moiré pattern and the other spanning a
much longer range, known as the supermoiré period. This decomposition allows us to
view the previous approximate TTG model as "local" models of the exact model located at
different supermoiré coordinates. The exact model is then considered as the local models
modulated by a phase factor that spans the supermoiré length scale.

The distinct length scales indicate that the supermoiré modulation varies much slower
compared to the moiré potential, suggesting that the exact wave function of TTG should
resemble the moiré states locally. Based on this intuition, we propose an ansatz for the
exact wave function, which is written as a linear combination of local states decorated by
a modulation function that varies slowly in the supermoiré scale.

By applying the ansatz, we can leverage the local solutions and integrate out the de-
tails within a moiré unit cell, resulting in a new effective Hamiltonian that only involves
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the modulation functions. Solving the effective Hamiltonian yields the supermoiré states.
However, solving the effective model requires necessary gauge-fixing procedures, which
we discuss in detail. We explain the principles of gauge-fixing to obtain local states that
vary smoothly and continuously as functions of the supermoiré coordinates, andwe present
two commonly used gauge-fixing methods.

The analysis of the translational symmetry of the effective model indicates that a proper
choice of gauge greatly facilitates the solution of the effective model. To focus on the typical
supermoiré energy scale, we consider only the local states closest to the zero energy level,
which are located at the localΓM andKM/K

′
M points. Based on their location in the moiré

Brillouin zone, we construct the ΓM andKM effective models.

The numerical solutions of the effective model reveal distinct features compared to the
direct averaging of the local models. The spectral weight of the states is redistributed over
the energy levels in the effective model, which we confirm is due to the pseudo-magnetic
field encoded in the gauge field term.

The theoretical approach proposed in this thesis offers a universal framework for ad-
dressing certain incommensurability problems that can be viewed as perturbed periodici-
ties. In this work, the small deviations from the commensurable periodic lattice are caused
by the non-colinearity between the two sets of moiré vectors and the slight difference in
the ratio between angles from a rational number. The incommensurability gives rise to the
supermoiré pattern treated within this framework, which is broadly applicable.

In experimental realizations of twisted multilayer graphene assemblies, the top and bot-
tom graphene layers are typically deposited on hexagonal boron nitride (hBN) substrates.
Even if the chemical bonds in graphene and hBN are perfectly aligned, their lengths differ:
the B-N bond length in hBN is 1.44 Å, while the C-C bond length in a graphene single layer
is 1.45 Å. The hBN lattice is neither commensurate with graphene nor with twisted bilayer
graphene. In this context, the hBN substrate may potentially affect certain physical proper-
ties of the multilayer graphene systems under measurement, as it leads to band folding due
to the supermoiré effects. However, the effect of the substrates has not been fully elucidated
thus far, and the supermoiré effect of hBN on multilayer graphene, whether twisted or not,
has mostly been ignored.

In a theoretical work by Grover et al. [101], the computation of local properties of TBG
deposited on hBN is reported. These local properties are computed independently without
coherence between each other. Our approach can provide additional information in this
context. If a state spans the long supermoiré scale, we will be able to explore the global
quantity as compared to incoherently summing up all the local quantities.

122



Conclusion

It is worth noting that the approach developed in this thesis is not limited to 2D multi-
layer graphene. We anticipate its usefulness in other scenarios where our theoretical and
numerical toolbox can be applied. In general, it can be employed for Hamiltonians with fast
and slow varying contributions denoted asH(r, ϖ(r)), whereϖ(r) represents the slowly
varying contributions. The periods of the two variations are not required to be commen-
surate. By assuming locally constantϖ(r), we can obtain the local solutions and construct
a similar ansatz wave function by leveraging the local states, as demonstrated in the case
of TTG. Injecting the ansatz wave function into the full model and integrating over the
smaller unit cell leads to an effective Hamiltonian concerning the modulation functions of
each local solution.

In relation to experiments, the results obtained from the effective model suggest that
the supermoiré states exhibit physical properties that cannot be captured by averaging over
local measurements. Experimentalists can measure the low-energy density of states over
the supermoiré cell to observe how the spectral weight is redistributed by the pseudo-
magnetic field.

In summary, our approach provides a universal theoretical framework for addressing
similar physical problems. The results obtained from the effective model shed new light on
the experimentally detectable supermoiré properties.
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Résumé substantiel en français

A.1 Introduction

Le succès de l’isolation du graphène monocouche a marqué le début d’une nouvelle ère de
recherche sur la matière bidimensionnelle. Le graphène a attiré une attention considérable
ces dernières années en raison de ses propriétés uniques. Les électrons dans une mono-
couche de graphène montrent une mobilité élevée sur une large gamme de températures.
De plus, le graphène possède des conductivités électrique et thermique comparables à celles
des métaux.

Cependant, la découverte expérimentale du graphène bicouche torsadé (TBG) en 2018
a ouvert un nouveau domaine de recherche scientifique sur les matériaux bidimensionnels,
appelé "twistronique", qui fait l’objet d’une intense investigation jusqu’à ce jour. Le TBG
est un système représentatif des hétérostructures de type van der Waals, où l’empilement
de couches présentant des périodicités différentes donne lieu à ce célèbre motif moiré. Le
potentiel moiré résultant de l’interaction entre les couches modifie significativement la sur-
face de Fermi, ce qui entraîne une réduction significative de la mobilité des électrons dans
le TBG. À certains angles "magiques", la vitesse de Fermi devient presque nulle et les ban-
des d’énergie autour du niveau de Fermi sont extrêmement aplaties. Les électrons qui se
trouvent dans ces bandes plates du TBG aux angles magiques (MATBG) ont des implica-
tions importantes en termes de corrélation et de comportement collectif. Les expériences
ont révélé l’existence de phases supraconductrices, de phases isolantes corrélées, de phases
métalliques étranges, ainsi que d’autres phases exotiques.

Alors que la communauté scientifique continue à investir des efforts pour compren-
dre les mécanismes sous-jacents de ce riche mais complexe diagramme de phase, d’autres
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hétérostructures bidimensionnelles sont également étudiées. Parmi tous les systèmes ex-
plorés jusqu’à présent, le graphène tricouche torsadé (TTG) émerge comme une plateforme
prometteuse en raison de sa grande adaptabilité en termes de structure électronique et de di-
agramme de phase. Les expériences ont également confirmé la présence de phases exotiques
similaires à celles du TBG dans le TTG. Avec une couche de graphène supplémentaire, la
complexité du TTG est considérablement accrue par rapport au TBG. Dans le TTG, les deux
motifs moirés non appariés du TBG créent un motif moiré secondaire, appelé supermoiré,
au-dessus d’eux.

La majorité des travaux théoriques et expérimentaux antérieurs ont utilisé une config-
uration spéciale du TTG qui est symétrique par rapport à un plan passant par la couche
médiane. Cette configuration permet d’obtenir une périodicité identique à celle du TBG
avec le même angle de torsion. En effet, l’Hamiltonien du TTG avec une symétrie de miroir
(mTTG) peut être transformé en un TBG effectif et en un cône de Dirac découplé. L’angle
magique du mTTG correspond à celui où les deux bandes proches de l’énergie nulle rede-
viennent plates. Les expériences menées sur les mTTG ont également révélé l’existence de
phases exotiques telles que les phases supraconductrices et les phases isolantes corrélées.
Cependant, la configuration du TTG peut être plus complexe lorsque les couches supérieure
et inférieure ne sont plus parfaitement alignées. Cela pose un problème complètement nou-
veau dans le TTG par rapport au TBG, à savoir la présence d’un motif moiré secondaire, ou
supermoiré, en raison du décalage entre les deux motifs moirés.

Le motif supermoiré est difficile à étudier en raison de sa nature quasi-cristalline résul-
tant de l’incommensurabilité des deux motifs moirés. Par conséquent, une périodicité est
généralement absente dans un TTG avec deux angles de torsion arbitraires. Pour étudier
cet effet de supermoiré, l’attention se porte sur la configuration hélicoïdale (sTTG, stair-
case TTG en anglais), où les couches supérieure et inférieure sont tournées dans des sens
opposés.

Les premières tentatives pour résoudre le sTTG ont adopté une approximation impor-
tante en ignorant la non-colinéarité entre les deux ensembles de vecteurs moirés. Dans ce
cas, lorsque le rapport des angles de torsion est un nombre rationnel, le système retrouve
une périodicité moirée comparable à celle du TBG. Bien que de nombreuses propriétés du
sTTG aient été révélées dans ce modèle moiré, l’impact du motif supermoiré a été entière-
ment ignoré en raison des approximations effectuées.

Inspiré par les résultats obtenus dans ce modèle approximatif, l’objectif est d’établir un
cadre théorique permettant d’étudier l’effet supermoiré dans certaines conditions.

Cette thèse est donc structurée de la manière suivante. Le chapitre 1 commence par la
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construction du modèle continu de Bistrizer-MacDonald pour le TBG, qui sert de base pour
établir l’Hamiltonien continu du TTG. Dans le chapitre 2, le modèle continu du TTG est
établi et la solution numérique de l’échelle moiré est présentée en appliquant les approxima-
tions nécessaires et en adoptant un rapport rationnel entre les angles. Le chapitre 3 présente
l’établissement du cadre théorique permettant de créer le modèle effectif de l’échelle super-
moiré. Enfin, dans le chapitre 4, les solutions numériques du modèle effectif limité à basse
énergie sont présentées en détail.

A.2 Travail de thèse

A.2.1 Chapitre 1 – Graphène bicouche torsadé : bandes plates, an-
gles magiques et symétries

Ce chapitre est dédié à la démonstration de la théorie du graphène bicouche torsadé (TBG),
initialement proposée par Bistrizer et A. H.MacDonald (appeléemodèle BMpar la suite). Ce
modèle prend en compte les niveaux d’énergie proches de la surface de Fermi dans chaque
monocouche de graphène (c’est-à-dire les deux cônes de Dirac) couplés par un potentiel
moiré.

Dans les travaux actuels, la démonstration du modèle BM commence généralement par
un modèle de liaisons fortes décrivant l’aspect atomistique, puis le simplifie jusqu’à obtenir
un modèle continu de BM. Contrairement à ces pratiques, nous construisons le modèle BM
demanière différente et beaucoup plus simplifiée. Nous partons directement des deux cônes
de Dirac initialement découplés. En prenant en compte les contraintes liées aux différentes
symétries, nous montrons que la forme analytique du potentiel moiré qui couple les deux
couches est déjà fixée et correspond à celle du modèle BM.

Les procédures de construction du modèle BM présentées dans ce chapitre partage la
philosophie de la théorie des orbitales frontières de la chimie quantique proposée par Fukui
Ken’ichi. Selon notre connaissance, la construction du modèle BM dans ce chapitre est la
plus simple et la plus directe à ce jour.

Le modèle BM révèle que la physique à basse énergie du TBG peut toujours être décrite
dans un régime périodique, quel que soit l’angle de torsion. Grâce à cette périodicité moiré,
l’application du théorème de Bloch redevient possible. Les solutions numériques du modèle
BM sont ainsi obtenues dans le réseau réciproque.

Dans la suite du chapitre, les structures de bande sont calculées pour différents angles.
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En particulier, nous montrons l’existence de bandes entièrement plates autour du niveau
de Fermi lorsque l’angle atteint certaines valeurs spécifiques, appelées angles magiques.

Les symétries importantes du TBG sont ensuite analysées en détail. Nous montrons la
transformation des états sous les opérations de symétrie et expliquons la définition inhab-
ituelle du point Γ dans la zone de Brillouin moiré, qui diffère du point k = 0 car il est le
centre des symétries.

Enfin, à la fin du chapitre, nous présentons l’effet des pseudo-niveaux de Landau dans
le TBG en développant le modèle autour du point r = 0. Cet effet d’un champ pseudo-
magnétique explique partiellement l’origine des bandes entièrement plates.

A.2.2 Chapitre 2 – Graphène tricouche torsadé : modèle et solution
à l’échelle moiré

Dans ce chapitre, nous démontrons la solution moiré du graphène tricouche torsadé (TTG)
en adoptant l’approximation de la colinéarité entre les vecteurs moirés et un rapport ra-
tionnel des angles de torsion. Cette approximation permet de ramener le modèle du TTG à
nouveau dans le régime périodique, ce qui facilite les résolutions numériques.

Nous commençons par la construction simple de l’hamiltonien du TTG en adoptant
les potentiels moirés du TBG pour coupler les couches adjacentes. Nous mettons parti-
culièrement l’accent sur certaines conséquences importantes liées à l’ajout d’une couche
supplémentaire par rapport au TBG, notamment le fait que le TTG n’est plus indépendant
des facteurs de phase. Cela rend le TTG plus ajustable dans le sens où les facteurs de phase
peuvent également modifier les structures de bande et la symétrie du système.

Dans un premier temps, nous présentons brièvement le TTG avec la symétrie de miroir
(mTTG). En transformant explicitement l’hamiltonien initial en un hamiltonien effectif du
TBG, dont l’amplitude du couplage intercouche est amplifiée par un facteur

√
2, et un cône

de Dirac découplé, en reportant l’hamiltonien sur les bases des états propres de la symétrie
de miroir. Les solutions numériques pour les mTTGs ne sont pas démontrées car ses procé-
dures sont essentiellement identiques à celles du TBG.

Nous abordons ensuite le traitement du TTG hélicoïdal (sTTG). Nous montrons la non-
colinéarité entre les vecteurs moirés dans ce modèle original. En ignorant légèrement la
déviation par rapport à la colinéarité parfaite, nous obtenons à nouveau un hamiltonien
périodique dont la périodicité est comparable à celle du TBG.

Nous présentons ensuite les solutions numériques pour deux cas typiques où les angles
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sont égaux et où le rapport des angles vaut 1/2. Les résultats montrent que les structures
de bande dépendent des deux angles. L’analyse des symétries montre que les symétries
peuvent être distinctes dans ces deux cas.

Nous avons également recherché, dans la limite chirale avec des angles égaux, les bandes
entièrement plates, ainsi que la topologie non triviale qui leur est associée.

A.2.3 Chapitre 3 – Théorie effective supermoiré : formalisme, jauge
et symétries

Ce chapitre démontre les travaux théoriques du cœur dans cette thèse. Nous montrons en
détail la construction de la théorie effective du sTTG.

Nous commençons par vérifier les symétries du modèle original sans aucune approxi-
mation, et trouvons que les symétries présentes sont C2zT et C3z . Contrairement au mod-
èle approximatif, la symétrie particule-trou est constamment brisée. Nous attendons que le
modèle effectif développé possède des symétries cohérentes avec le modèle initial.

Pour établir la théorie effective, on commence par une décomposition géométrique des
vecteurs moirés du modèle initial. Cela permet d’obtenir deux ensembles de vecteurs ap-
partenant aux échelles distinctes, l’échelle moiré et celle supermoiré. L’Hamiltonien du
sTTG est réécrit en explicitant un potentiel moiré modulé par une variation de phase lente
à travers de l’échelle supermoiré. Puisque la modulation est lente, elle peut être consid-
érée comme étant constante dans une cellule moirée. Si on traite le sTTG localement en
adoptant les facteurs de phase constants, on revient aux solutions des modèles moirés du
chapitre précédent.

Inspiré par l’intuition que les états du modèle exactes doivent localement ressembler
les états obtenus par les modèles locaux, on propose alors une forme ansatz des fonctions
d’onde du modèles exact, figurant une combinaison linéaire des fonctions d’onde locales
habillées des fonctions de modulation qui varient lentement à l’échelle supermoirée. On
injecte ensuite les fonctions d’onde ansatz dans l’équation de Schrödinger de l’Hamiltonien
exacte, et intègre sur une cellule moirée. Nous obtenons ainsi une nouvelle équation qui
concerne uniquement les fonctions de modulation. C’est un Hamiltonien effectif défini sur
les bases des fonctions de modulation.

La forme des fonctions d’onde exacte nécessite de fixer la jauge des états locaux afin que
les variations des fonctions de modulation, des fonctions d’onde locaux et de l’Hamiltonien
effectif soient lisse and continue. On montre dans ce chapitre les principes pour fixer la
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jauge et propose deux protocoles que nous avons utilisés dans notre pratique.

L’hamiltonien effectif décrit un fermion relativiste ayant une vitesse dépendante de
l’espace. Il est couplé à un champ de jauge qui provient d’une connexion de Berry non
abélienne. Dans le chapitre suivant, nous démontrons que ce champ de jauge joue le rôle
d’un pseudo-champ magnétique. Cela entraîne l’apparition de l’effet Hall anormal dans les
sTTGs.

La forme de l’Hamiltonien effectif dépend évidemment du choix de jauge. Alors que les
propriétés physiques doivent être indépendantes de jauge. On vérifie que le changement
de jauge conduit à une transformation unitaire de l’Hamiltonien effectif. Cela signifie que
les propriétés physiques du modèle effectif sont en effet invariantes du choix de jauge.

Pour étudier les symétries du modèle effectif, on révèle un critère des états locaux per-
mettant de vérifier la présence ou l’absence des symétries dans l’Hamiltonien effectif, sans
se soucier de l’expression explicite des symétries du modèle effectif qui dépend aussi du
choix de jauge.

La symétrie de translation est un cas particulier, car nous avons besoin de son expres-
sion exacte pour obtenir la forme explicite des fonctions de Bloch. Nous avons étudié les
conditions sous lesquelles l’opérateur de translation par une période moiré s’exprime en
une forme diagonale et simple.

A la fin du chapitre, on justifie qu’un état du niveau d’énergie typique supermoiré est
dominé par les états locaux provenant des bandes les plus proches de l’énergie nulle. On
réduit ainsi la dimension de l’Hamiltonien effectif à 2 ou 4.

Tous les travaux théoriques de ce chapitre établissent un cadre complet pour traiter le
modèle de TTG dans le contexte d’une périodicité perturbée. Cela nous permet de procéder
à la solution numérique du modèle effectif.

A.2.4 Chapitre 4 – Solution numérique du modèle supermoiré ef-
fectif à basse énergie

Ce chapitre se consacre à présenter en détail les données obtenues à chaque étape pour
établir le modèle effectif et résoudre le problème. Les résultats obtenus sont également
présentés. Deux types de TTGont été résolus : avec un rapport d’angles de torsion d’environ
1 et 1/2.

Tout d’abord, nous résolvons le sTTG avec θ1/θ2 ≈ 1. En fonction de la localisation
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des états locaux dans la zone de Brillouin du modèle local, soit au point ΓM soit au point
KM , nous établissons deux modèles effectifs. Les états locaux sont obtenus en résolvant
numériquement les modèles locaux définis sur des coordonnées supermoirées discrétisées.
Pour chaque solution, nous fixons la jauge des états en effectuant une rotation dans le
sous-espace des états choisis, de manière à obtenir deux nouveaux états qui diagonalisent
l’opérateur σz projeté dans ce sous-espace. Pour fixer la phase globale des états locaux, nous
choisissons deux états de référence et imposons que les éléments diagonaux de la matrice
de recouvrement entre les états de référence et les états locaux soient réels et positifs. Une
fois la jauge des états locaux fixée, nous pouvons calculer les éléments de la matrice de
l’Hamiltonien effectif sur les coordonnées supermoirées. Pour résoudre le problème, une
transformation de Fourier est nécessaire, ce qui ramène le modèle au réseau réciproque
supermoiré. En diagonalisant l’Hamiltonien effectif transformé sur le réseau réciproque
supermoiré, nous obtenons les états supermoirés et calculons la densité d’états.

Pour le sTTG avec θ1/θ2 ≈ 1/2, les procédures sont identiques à celles décrites précédem-
ment pour le modèle effectif basé sur les états locaux au point ΓM . Cependant, pour établir
le modèle effectif basé sur les états locaux provenant du point KM , nous devons prendre
en compte 4 états car ils sont tous les états les plus proches de l’énergie nulle. Cela modifie
légèrement les procédures de fixation de la jauge. Nous avons alors utilisé un algorithme
rapide pour fixer la jauge en utilisant 4 états de référence. La décomposition en valeurs
singulières nous permet d’obtenir rapidement les états locaux avec les jauges fixées.

Dans ce chapitre, nous avons également présenté en détail les données pourmontrer que
la variation du modèle effectif sur les coordonnées supermoirées est lisse et continue. Les
structures de bandes et les profils de densité d’états sont également présentés. L’évolution
de la densité d’états en fonction des angles de torsion est également examinée.

Nos résultats mettent en évidence une redistribution significative des états dans les
niveaux d’énergie en raison de la présence du champ de jauge. Ce champ de jauge en-
gendre un effet similaire à celui d’un pseudo-champ magnétique. En comparant les profils
de densité d’états obtenus à partir de la moyenne des modèles locaux, nous démontrons
que les caractéristiques supermoirées ne peuvent être capturées par une simple moyenne
incohérente des modèles locaux.

Un défi inattendu apparaît lorsque nous explorons le modèle effectif dans le régime
des petits angles de torsion. Lorsque les angles de torsion deviennent petits, la vitesse du
modèle effectif peut localement disparaître. Cela entraîne une singularité qui empêche la
convergence de la solution numérique. Nous avons étudié cette singularité en utilisant
un modèle 1D résoluble analytiquement. Les fonctions d’onde analytiques montrent une
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divergence au point où la vitesse s’annule. La singularité de la vitesse localement nulle
signifie que la physique d’un état supermoiré contient également d’importantes variations
à l’échelle moiré. Malgré leurs longueurs distinctes, l’échelle moiré et l’échelle supermoiré
sont à nouveau couplées aux petits angles de torsion, ce qui remet en question la validité
de notre approche effective qui suppose une séparation des deux échelles.

A.2.5 Chapitre 5 – Conclusion

Dans le dernier chapitre, nous présentons un résumé des travaux effectués dans cette thèse.
Nous commençons par dériver demanière simple et concise lemodèle de Bistrizer-MacDonald
pour le TBG. Ensuite, nous développons le modèle continu du TTG basé sur la description
du modèle BM pour le couplage entre les couches adjacentes.

Dans un premier temps, nous résolvons le TTGhélicoïdal (sTTG) en utilisant l’approximation
de la colinéarité entre les vecteurs moirés et un rapport rationnel des angles de torsion. Ce
modèle sTTG approximatif peut être résolu dans le régime périodiquemoiré. Toutefois, afin
d’étudier les cas où le rapport des angles présente une légère déviation par rapport à une
valeur propre et où la non-colinéarité entre les vecteurs moirés intervient, nous dévelop-
pons un cadre théorique pour traiter le sTTG en le considérant comme un problème de
périodicité perturbée. Nos résultats révèlent des caractéristiques supermoirées qui ne peu-
vent pas être capturées par la simple moyenne des modèles locaux.

Dans ce chapitre, nous discutons également des perspectives de recherche future. Cette
approche n’est pas limitée aux seuls systèmes de graphène multicouche torsadé. D’autres
systèmes physiques présentant deux périodicités légèrement décalées peuvent être étudiés
dans ce cadre.

En relation avec les expériences, notre théorie permettra de mieux comprendre les ef-
fets du substrat en nitrure de bore hexagonal sur lequel les échantillons de graphène mul-
ticouche sont déposés.
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Gauge invariance of effective model

In this appendix, we present a detailed demonstration of the gauge invariance of the effec-
tive model. The computation is performed term by term, ensuring a thorough analysis of
each component.

We can examine how the effective Hamiltonian is transformed term by term. The trans-
formed local energy matrix E ′

nm(R) is given by:

E ′
nm(R) = ⟨φ′

n(R)|H(R)|φm(R)⟩ =
∑
n′m′

ξ†nn′(R) ⟨φn′(R)|H(R)|φm′(R)⟩ ξm′n(R)

=
∑
n′m′

ξ†nn′(R)En′m′(R)ξm′m(R).

(B.1)

Similarly, the transformed velocity matrix Γ′
nm(R) is given by:

Γ′
nm(R) = ⟨φ′

n(R)|σ|φ′
m(R)⟩ =

∑
n′m′

ξ†nn′(R) ⟨φn′(R)|σ|φm′⟩ ξm′m(R). (B.2)

The transformation of the gauge potential A(R) is given by:

A′(R)nm(R) = ⟨φ′
n(R)|−i∇R · σ|φ′

m(R)⟩

=
∑
n′m′

ξ†nn′(R) ⟨φn′(R)|−iσ ·∇R|φm′(R)⟩ ξm′m(R)

− iξ†nn′(R) ⟨φn′(R)|σ|φm′(R)⟩ · (∇Rξm′m(R))

=
∑
n′m′

ξ†nn′(R)An′m′(R)ξm′m − i
∑
n′m′

ξ†nn′(R)Γnm · (∇Rξm′m(R))

(B.3)
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At first sight, it seems that the unitary transformation only applies to the velocity term
Γ(R) and not to the full kinetic term −iΓ(R) ·∇R. However, upon closer inspection, we
find that the extra terms in the transformation of the velocity term and the gauge potential
have opposite signs and cancel out when added together. Given that∑

n′m′

ξ†nn′(R)[−iΓ′
nm ·∇R◦]ξm′m(R)

= −i{
∑
n′m′

ξ†nn′(R)Γnmφm′(R)ξm′m(R)} ·∇R ◦ −i
∑
n′m′

ξ†nn′(R)Γnm · (∇Rξm′m(R))

= −iΓ′
nm(R) ·∇R ◦ −i

∑
n′m′

ξ†nn′(R)Γnm · (∇Rξm′m(R)),

(B.4)

we have

− iΓ′
nm ·∇R◦

=
∑
n′m′

ξ†nn′(R)[−iΓnm ·∇R]ξm′m(R) + i
∑
n′m′

ξ†nn′(R)Γnm · (∇Rξm′m(R)).
(B.5)

As a result, we obtain

−iΓ′(R) ·∇R ◦+A′(R) = ξ†(R){−iΓ(R) ·∇R ◦+A(R)}ξ(R). (B.6)
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Symmetries of effective model

C.1 General principle

Now, let’s examine the effective Hamiltonian at the coordinate s(R). We find:

Γnm(s(R)) = ⟨ψn(s(R))|σ|ψm(s(R))⟩

=
∑
n′m′

ζ†nn′(R) ⟨ψn′(R)|S†σS|ψm′(R)⟩ ζm′m(R),
(C.1)

and

Anm(s(R)) = −i ⟨ψn(s(R))|∇s(R) · σ|ψm(s(R))⟩

=
∑
n′m′

−iζ†nn′(R)
〈
ψn′(R)

∣∣S†σ · S
∣∣∇s(R)ψm′(R)

〉
ζm′m(R)

− i
∑
n′m′

ζ†nn′(R) ⟨ψn′(R)|S†σS|ψm′(R)⟩ · (∇s(R)ζm′m(R)).

(C.2)

The onsite energy term E(s(R)) can be expressed as:

Enm(s(R)) = ⟨ψn(s(R))|Ĥlocal(s(R))|ψm(s(R))⟩

=
∑
n′m′

ζ†nn′(R) ⟨ψn′(R)|S†Ĥlocal(s(R))S|ψm′(R)⟩ ζm′m(R)

=
∑
n′m′

ζ†nn′(R) ⟨ψn′(R)|Ĥlocal(R)|ψm′(R)⟩ ζm′m(R)

=
∑
n′m′

ζ†nn′(R)En′m′(R)ζm′m(R)

(C.3)
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The transformation of E(R) in Eq. (C.3) indicates that the only possible unitary transfor-
mation on the effective Hamiltonian is ζ(R). Therefore, for a symmetry to be valid, it is
required that:

S†(∇s(R))) · σS = S†σS ·∇s(R) = σ ·∇R. (C.4)

Once Eq. (3.66) is satisfied, Eq. (C.1) immediately leads to

− iΓnm(s(R)) ·∇s(R)◦

= −i
∑
n′m′

ζ†nn′(R) ⟨ψn′(R)|S†σS|ψm′(R)⟩ ·∇s(R) ◦ ζm′m(R)

+ i
∑
n′m′

ζ†nn′(R) ⟨ψn′(R)|S†σS|ψm′(R)⟩ · (∇s(R)ζm′m(R))

= −i
∑
n′m′

ζ†nn′(R) ⟨ψn′(R)|σ|ψm′(R)⟩ ·∇R ◦ ζm′m(R)

+ i
∑
n′m′

ζ†nn′(R) ⟨ψn′(R)|σ|ψm′(R)⟩ · (∇Rζm′m(R))

=
∑
n′m′

ζ†nn′(R)− iΓn′m′(R) ·∇R ◦ ζm′m(R)

+ i
∑
n′m′

ζ†nn′(R) ⟨ψn′(R)|σ|ψm′(R)⟩ · (∇Rζm′m(R)).

(C.5)

and

Anm(s(R)) =
∑
n′m′

ζ†nn′(R)An′m′(R)ζm′m(R)

− i
∑
n′m′

ζ†nn′(R) ⟨ψn′(R)|σ|ψm′(R)⟩ · (∇Rζm′m(R)).
(C.6)

Again, the extra term cancels out in the sum of −iΓ(s(R)) ·∇s(R) and A(s(R)).

With Eqs. (3.64) and (3.66) being valid simultaneously, the effective Hamiltonian verifies

Heff(s(R)) = ζ†(R)Heff(R)ζ(R). (C.7)

This is a symmetry of the effective model because R is now the real space coordinates of
the wave functions instead of a parameter.

It is now clear that the symmetry of the effective model is closely related to the trans-
form of the local Hamiltonian under symmetry operators. The exact unitary transform of
the effective Hamiltonian under a valid symmetry operation, ζ(R), depends on the sym-
metry and also the choice of gauge for local states.

In addition, the gauge invariance can be regarded as a special case of symmetry where
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S = 1 and s(R) = R.

C.2 Translational symmetry

As demonstrated in Chapter 2, the phase factors have a period of π for equal twist angles
and 2π/3 for θ1/θ2 = 1/2 or 2. The periodicity of phase factors reflects a corresponding
periodicity on the supermoiré coordinates. Here, we generalize the discussion of the phase
period and deduce the size of the supermoiré periodic unit cell.

For the local models it is ways possible to gauge out the first phase factor so that
ϕ1(R) = 0. Let us massage the forms of T12(r,−ϕ) and T23(r,ϕ):

T12(r,−ϕ) = e−iϕ1e−ipq1·r(T1 + T2e
ipb1·re−i(ϕ2−ϕ1) + T3e

ipb2·re−i(ϕ3−ϕ1));

T23(r,ϕ) = eiϕ1e−iqq1·r(T1 + T2e
iqb1·rei(ϕ2−ϕ1) + T3e

iqb2·rei(ϕ3−ϕ1)),
(C.8)

where b1 and b2 are the base vectors generating the moiré reciprocal lattice, given by

b1 = q1 − q2;

b2 = q1 − q3.
(C.9)

Correspondingly, the Bravais lattice generator vectors are a1 and a2 satisfying ai · bj =

2πδij .

To find the period ϕT in the phase factors, we expect that ϕT can be canceled simulta-
neously in T12(r,−ϕ) and T23(r,ϕ) by shifting the origin of the r coordinates to r0.

If ϕ2 is shifted by to ϕ2 + ϕT with the convention ϕT > 0, then the phase period needs
to satisfy 

pb1 · r0 = ϕT + 2Nπ

pb2 · r0 = 0

qb1 · r0 = −ϕT + 2Mπ

qb2 · r0 = 0

, (C.10)

where N,M ∈ Z. It is immediate that

ϕT = 2π
pM − qN
p+ q

. (C.11)

The period in phase is defined by the smallest non-zero ϕT . Consequently we gave

b1 · r0 = 2π
M +N

p+ q
, (C.12)
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leading to
r0 =

M +N

p+ q
a1. (C.13)

Then to explore the phase period along ϕ3, we need to solve the equations:
pb1 · r0 = 0

pb2 · r0 = ϕT + 2Nπ

qb1 · r0 = 0

qb2 · r0 = −ϕT + 2Mπ

. (C.14)

The value of ϕT in Eq. (C.11) also satisfies the above equations. But r0 now satisfies

b2 · r0 = 2π
M +N

p+ q
, (C.15)

which leads to
r0 =

M +N

p+ q
a2. (C.16)

In summary, the phase period is given by the smallest non-zero value of Eq. (C.11), i.e.

ϕT (p, q) = 2π
+

min(
pM − qN
p+ q

). (C.17)

In fact, since p and q cannot be even numbers at the same time as they are coprime numbers,
the smallest positive value of pM − qN has to be 1. Finally we have

ϕT (p, q) =
2π

p+ q
. (C.18)

The results can be verified by comparing them with the findings in the previous chapter.
In the case where the angles are equal, specifically when p = q = 1, the minimum positive
value of the period is ϕT (1, 1) = π. Furthermore, when the ratio of θ1 to θ2 is 1/2 and we
have p = 1 and q = 2, it leads to ϕT (1, 2) = 2π/3. Both of these results align coherently
with the conclusions presented here.

We can express the phase differences in Eq. (C.8) in terms of the supermoiré coordinates
as follows:

ϕ2 − ϕ1 = (δq2 − δq1) ·R = bMM
1 ·R

ϕ3 − ϕ1 = (δq3 − δq1) ·R = bMM
2 ·R

, (C.19)

Here, we introduce the notation bMM
1 = δq2 − δq1 and bMM

2 = δq3 − δq1 to represent the
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generating vectors of the supermoiré reciprocal lattice. These vectors define the supermoiré
Bravais lattice base vectors aMM

i , where i = 1, 2, and satisfy the relation aMM
i · bMM

j =

2πδij.

A phase shift along ϕ2 by 2π/(p + q) corresponds to a displacement of R by aMM
1 ,

which generates a phase shift of bMM
1 ·aMM

1 /(p+ q) = 2π/(p+ q). This explains why the
vectors δqj in Eq. (3.3) are divided by p + q. Otherwise, the resulting supermoiré period
would be (p+ q) times larger than the smallest value.

Similarly, shifting the phase along ϕ3 is equivalent to displacingR by aMM
2 . Therefore,

aMM
1 and aMM

2 represent the supermoiré periods over which the spectrum of the local
model is restored to its original form. The supermoiré lattice in real space is, therefore, a
triangular lattice defined by aMM

1 and aMM
2 .

In general, the supermoiré periodicity of the local Hamiltonian can be expressed as:

Hlocal(r − r0;ϕ(R+ aMM
1/2 )) = UHlocal(r;ϕ(R))U †. (C.20)

It remains to fix the form of the unitary matrix U that compensates for the extra global
phase factor alongwith inT12(r;ϕ(R)) andT23(r;ϕ(R)) caused by the shift of coordinates
both in r andR. Given that

T12(r − r0,−ϕ(R+ aMM
1/2 )) = eiφ12T12(r;−ϕ(R))

and
T23(−(r − r0),−ϕ(R+ aMM

1/2 )) = eiφ23T23(−r;−ϕ(R))

with

φ12 = q1 · r0 −
δq1 · aMM

1/2

p+ q
=

2π

3(p+ q)
(1− p (N +M)) , (C.21)

and

φ23 = −q1 · r0 −
δq1 · aMM

1/2

p+ q
=

2π

3(p+ q)
(1 + q (N +M)) . (C.22)

They lead to

U =

e
−iφ12

1

e−iφ23


layer

=


. . .

eiϕl

. . .


layer

(C.23)
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with

ϕl =


−φ12 if l = 1

1 if l = 1

−φ23 if l = −1
(C.24)

U cancels out the extra global phase in front of the interlayer hopping potentials due to the
shift of both moiré and supermoiré coordinates. With the shift of the moiré coordinates
taken into account, the translational symmetry operator is expressed as

S = Ueik̂r ·r0 , (C.25)

where k̂r = −i∇r acts on the moiré coordinates only. Then the validity of Eq. (3.66)
in terms of the translational symmetry is obvious. Because U acts on the layer degree of
freedom and eik̂r ·r0 operates only on the r degree of freedom, Ueik̂r ·r0 trivially commutes
with σ, giving

U †e−ik̂r ·r0σ ·∇Re
ik̂r ·r0U = σ ·∇R. (C.26)

The effective Hamiltonian is periodic in the sense that

Heff(R+ amm
1/2 )) = ζ†THeff(R)ζT , (C.27)

where ζT is the unitary matrix relating two gauge-fixed local states whose supermoiré
coordinates differ by a supermoiré period aMM

1 or aMM
2 :

∣∣ψn(R+ amm
1/2 )

〉
= eik̂r ·r0U

∑
m

|ψm(R)⟩ ζT mn. (C.28)

Eq. (C.27) directly enables the application of the Bloch’s theorem. The eigenfunctions of
Heff(R), noted Fk(R), has translational symmetry on the supermoiré coordinates mani-
fested by

Fk(R+ aMM
1/2 ) = eik·a

MM
1/2 ζ†T fk(R), (C.29)

where k is a wave vector inside the supermoiré Brillouin zone, and the Bloch function de-
fined by

fk(R) = [f1(R), · · · , fN(R)]T (C.30)

is a completely periodic functions by a translation of supermoiré lattice vector:

fk(R+ aMM
1/2 ) = fk(R). (C.31)

fk(R) can therefore be expanded on the discrete Fourier bases on the supermoiré reciprocal
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lattice (SRL):
fk(R) =

∑
Q∈SRL

fk(Q)e−iQ·R. (C.32)

The final form of the wave function of the effective model is

Fk(R) = eik·RT (R)fk(R), (C.33)

where T (R) is a unitary matrix satisfying

T (R+ aMM
1/2 ) = ζ†T T (R). (C.34)

Knowing the exact form of T (R) is therefore crucial for the implementation of the solu-
tion of the effective model. To express T (R), it is then imperative to find out the exact
expression of ζT .

Note that when the gauge-fixing operator Ô is chosen to act fully on the sublattice
degrees of freedom, such as σz , the diagonal condition in Eq.(3.70) is immediately satisfied
for ζt. Hence, we have ζT nm = eiϕnδnm. With this, Eq.(C.28) can be written as:

∣∣ψn(R+ aMM
1/2 )

〉
= eik̂r ·r0U |ψn(R)⟩ eiϕn . (C.35)

To determine ζT nm, i.e., eiϕn , we can utilize the second gauge-fixing condition that ⟨gn|ψn(R)⟩ ∈
R+ and

〈
gn

∣∣∣ψn(R+ aMM
1/2 )

〉
∈ R+ must both be true simultaneously.

In general a reference state can be expanded on the natural bases {|Q, α, l⟩} that define
the local TTG model:

|gn⟩ =
∑
Q,α,l

gQ,α,l
n |Q, α, l⟩ (C.36)

where Q, α and l represent the momentum, sublattice and layer degrees of freedom, re-
spectively. It leads to〈

gn
∣∣ψn(R+ aMM

1/2 )
〉
= ⟨gn|eikr ·r0U |ψn(R)⟩ eiϕn

= eiϕn
∑
Q,α,l

gQ,α,l∗
n eiQ·r0eiϕluQ,α,l

n (R) ∈ R+, (C.37)

where we have also used the expansion |ψn(R)⟩ =
∑

Q,α,l u
Q,α,l
n (R) |Q, α, l⟩. The phase

ϕn can be determined as:

ϕn = − arg(
∑
Q,α,l

gQ,α,l∗
n eiQ·r0eiϕluQ,α,l

n (R)). (C.38)
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Then the matrix T (R) can be written as a diagonal matrix:

T (R) =


. . .

eiτn(R)

. . .

 , (C.39)

where T (R) is carefully designed so that:

τn(R+ aMM
1/2 ) = ϕn(R). (C.40)

The ϕn calculated above depends on the local wave function atR and is therefore a function
ofR, which complicates the computation of T (R).

Now we demonstrate that by making specific choices of reference states |gn⟩, we can
greatly simplify the computation by ensuring that ϕn does not depend onR. This will allow
us to obtain a simple expression for T (R).

Once again, we observe that eik̂r ·r0U affects only the r and layer degrees of freedom,
while k̂r measures the moiré momentum. Consequently, if we choose |gn⟩ to be a pure
state in terms of momentum and layer degrees of freedom, for instance:

|gn⟩ = gn(A) |Q, A, l⟩+ gn(B) |Q, B, l⟩ , (C.41)

with |gn(A)|2 + |gn(B)|2 = 1, we immediately obtain:

〈
gn
∣∣ψn(R+ aMM

1/2 )
〉
= eiϕneiQ·r0eiϕl ⟨gn|ψn(R)⟩ . (C.42)

Since ⟨gn|ψn(R)⟩ is real and positive due to gauge fixing, ϕn only needs to compensate for
Q · r0 + ϕl, i.e.:

ϕn = −Q · r0 − ϕl. (C.43)

With this choice, ϕn becomes a constant once the gauge of local states is fixed. Conse-
quently, the diagonal entries of T (R) are given by:

τn(R) = eipn·R, (C.44)

where bMM
1 = δq2−δq1 and bMM

2 = δq3−δq1 are the generating vectors of the supermoiré
reciprocal lattice. Here, we have introduced:

pn =
ϕn

2π
(bMM

1 + bMM
2 ). (C.45)
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C.3 C3z symmetry

For a local HamiltonianHlocal(r;ϕ(R)) that does not necessarily has C3z symmetry, when
transformed by C3z = e2iπσz/3, its moiré coordinate is sent to r → R̂2π/3r. We can confirm
that its supermoiré coordinate is similarly sent to R → R̂2π/3R. This can be observed by
examining the interlayer hopping potential, such as T12(r;−ϕ(R)):

e2iπσz/3T12(r;−ϕ(R))e−2iπσz/3

= e2iπσz/3(T1e
−iq1·re−iδq1·R/(p+q) + T2e

−iq2·re−iδq2·R/(p+q) + T3e
−iq3·re−iδq3·R/(p+q))e−2iπσz/3

= T2e
−iq1·re−iδq1·R/(p+q) + T3e

−iq2·re−iδq2·R/(p+q) + T1e
−iq3·re−iδq3·R/(p+q)

= T12(R̂2π/3r;−ϕ(R̂2π/3R)).

(C.46)

Similarly, it can be found that

e2iπσz/3T23(r;ϕ(R))e−2iπσz/3 = T23(R̂2π/3r;ϕ(R̂2π/3R)).

The transformed T12(r;−ϕ(R)) and T23(r;ϕ(R)) are independent of the ratio of the twist
angles. The hint from their transformation is that the sC3z(R) for C3z symmetry is given
by:

sC3z(R) = R̂2π/3R. (C.47)

Now we verify Eq. (3.66). To compute e2iπσz/3σe−2iπσz/3, it is convenient to use the expres-
sions:

eiθ/2σxe
−iθ/2 = cos(θ)σx − sin(θ)σy, (C.48)

and
eiθ/2σye

−iθ/2 = sin(θ)σx + cos(θ)σy. (C.49)

Then lead to
e2iπσz/3σxe

−2iπσz/3 = cos(2π/3)σx + sin(2π/3)σy, (C.50)

and
e2iπσz/3σye

−2iπσz/3 = − sin(2π/3)σx + cos(2π/3)σy. (C.51)

where
∇R̂θR

◦ = R̂−1
θ ∇R ◦ . (C.52)
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Therefore, we obtain

e2iπσz/3σe−2iπσz/3 ·∇R̂2π/3R
◦

=
[
σx σy

] [cos(2π/3) − sin(2π/3)

sin(2π/3) cos(2π/3)

][
cos(2π/3) sin(2π/3)

− sin(2π/3) cos(2π/3)

][
∂x◦
∂y◦

]
= σ ·∇R◦,

(C.53)

where ∂x/y◦ acts also only on the modulation functions of the ansatz wave functions and
we have used

R̂−1
2π/3 =

[
cos(2π/3) sin(2π/3)

− sin(2π/3) cos(2π/3)

]
. (C.54)

As a result, both the symmetry criteria are satisfied and C3z symmetry is hence verified in
the effective model, transforming the effective Hamiltonian in such a way that

ζ†C3z
(R)Heff(R)ζC3z(R) = Heff(R̂2π/3R). (C.55)

The exact form of ζC3z(R) depends on the gauge choice and does not have a universal
expression.

C.4 C2x symmetry.

If the ratio θ1/θ2 in the local models is significantly different from 1, it is not possible
to find two local Hamiltonians at different supermoiré coordinates connected by the C2x

operation. Therefore, the existence of C2x symmetry is limited to the effective model with
(almost) equal twist angles. We will show later that strict equality of angles is necessary
for C2x to hold in the effective model. Recalling that

C2x = σx ⊗

 1

1

1


layer

.

we can explicitly calculate C2xH(r;ϕ(R))C†
2x to find that T12(r;ϕ(R)) is transformed to

T12(r;−ϕ(R))

= T1e
iq1·re−iδq1·R/(p+q) + T3e

iq2·re−iδq2·R/(p+q) + T2e
iq3·re−iδq3·R/(p+q)

≡ T12(M̂xr;ϕ(M̂δq1R))

(C.56)
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where M̂x reflects a coordinate to its mirror image with respect to a mirror plane perpendic-
ular to the xy-plane and passing through the x-axis. M̂δq1 is a mirror plane passing through
the origin of coordinates, parallel to the vector δq1. The transformation of T23(r;ϕ(R))

under C2x is the same: T23(r;ϕ(R)) → T23(M̂xr;ϕ(M̂δq1R)). This establishes that, for
θ1 ≈ θ2, the local Hamiltonians transform under C2x as

C2xHlocal(r;ϕ(R))C†
2x = Hlocal(M̂xr;ϕ(M̂δq1R)). (C.57)

When C2x acts on σ ·∇R◦, we have

σxσσx · M̂−1
δq1

∇R◦ = [σx,−σy] · M̂−1
δq1

∇R◦ (C.58)

which, in general, is not equal to σ ·∇R◦. The equality holds only if M̂δq1 = M̂x, which
implies that M̂−1

x ∇R◦ = ex∂x − ey∂y. Then we have

σxσσx · M̂−1
y ∇R◦ = σ ·∇R◦.

In other words, the validity ofC2x in the effective model requires δq1 to be along the x-axis.
According to the geometric decomposition described in Eq. (3.3), the only δq1 that satisfies
this requirement is when θ1 and θ2 are exactly equal. For a ratio θ1/θ2 that is close but not
exactly equal to 1, the local Hamiltonians and local states do not differ from those with
θ1/θ2 = 1. However, the orientation of δq1 in the two cases is not identical, resulting in a
valid C2x symmetry only for θ1/θ2 = 1 and not for θ1/θ2 ≈ 1 with θ1/θ2 ̸= 1.

C.5 C2zT symmetry

The discussion onC2zT symmetry in local models reveals that the local models only restore
C2zT symmetry when they are the periodic counterparts of the zero-phase Hamiltonian. To
globally restore C2zT in the effective model, it is crucial that two local models at different
supermoiré coordinates are connected by C2zT . Under C2zT transformation, a local model
Hlocal(r;ϕ(R)) transforms as follows:

σxHlocal
∗(r;ϕ(R))σx = Hlocal(−r,ϕ(−R)). (C.59)

This implies that the local Hamiltonian has identical spectra atR and −R. Specifically, if

Hlocal(r;ϕ(R))Ψnk(r;R) = Enk(R)Ψnk(r;R),
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then we have:

Hlocal(r;ϕ(−R))σxΨ
∗
nk(−r;R) = E(R)σxΨ

∗
nk(−r;R).

By working with gauge-fixed states, we find that

Ψnk(r;−R) =
∑
m

σxΨ
∗
mk(−r;R)ζ∗mn(R), (C.60)

or equivalently, by taking the complex conjugate on both sides,

Ψ∗
nk(r;−R) =

∑
m

σxΨmk(−r;R)ζmn(R). (C.61)

Since the complex conjugation is explicitly involved in C2zT symmetry, it is more conve-
nient to perform the calculation explicitly on the C2zT transform of the effective model.

For the velocity term, we have:

Γ∗
nm(−R) =

∑
αβ

∑
l

∫
MUC

dr2 ψα,l
n (r;−R)σαβ∗ψβ,l∗

m (r;−R)

=
∑
n′m′

∑
αβ

∑
α′β′

∑
l

∫
MUC

dr2 ζ∗n′n(R)ψα,l∗
n′ (−r;−R)σαα′

x σα′β′∗σβ′β
x ψβ,l∗

m′ (r;−R)ζm′m(R)

=
∑
n′m′

ζ†nn′(R)
∑
αβ

∑
l

ψα,l∗
n′ (−r;−R)σαβψβ,l∗

m′ (r;−R)ζm′m(R)

≡
∑
n′m′

ζ†nn′(R)Γn′m′ζm′m(R).

(C.62)

The transform of the gauge field term is given by:

A∗(−R)nm =
∑
αβ

∑
l

∫
MUC

dr2 ψα,l
n (r;−R)(−i)σαβ∗ · (∇Rψ

β,l∗
m (r;−R))

=
∑
n′m′

∑
αβ

∑
α′β′

∫
MUC

dr2 ζ†nn′(R)ψα,l∗
n′ (−r;−R)σx(−i)σαβ∗ ·∇Rψ

β,l∗
m′ (r;−R)ζm′m(R)

=
∑
n′m′

∑
αβ

∑
l

∫
MUC

dr2 ζ†nn′(R)ψα,l∗
n′ (−r;−R)(−i)σαβ · (∇Rψ

β,l∗
m′ (r;−R))ζm′m(R)

+
∑
n′m′

∑
αβ

∑
l

∫
MUC

dr2 ζ†nn(R)ψα,l∗
n′ (−r;−R)(−i)σαβψβ,l∗

m′ (r;−R)) · (∇Rζm′m(R))

=
∑
n′m′

ζ†nn′(R)An′m′(R)ζm′m(R) + ζ†nn′(R)Γn′m′(R) ·∇Rζm′m(R)

(C.63)
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The extra term ζ†(R)Γ(R) ·∇Rζ(R) disappears when we calculate the sum (−iΓ∗(−R) ·
∇−R + A(−R))∗.

The onsite energy term obviously satisfies

E∗
nm(−R) =

∑
n′m′

ζ†nn′(R)En′m′ζm′m(R). (C.64)

Now we can conclude that the effective Hamiltonian also possesses C2zT symmetry as
it verifies

Heff
∗(−R) = ζ†(R)Heff(R)ζ(R). (C.65)

We remark that C2zT is locally broken almost everywhere except at the origin of the su-
permoiré coordinates but globally restored in the TTG model.
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Matrix elements of the 4-bandKM model

In this appendix, we provide an enumeration of the matrix elements for each 4× 4 matrix
of theKM effective model at every supermoiré coordinate, along with their Fourier trans-
formations. Since the matrix elements are complex numbers, we display their amplitudes
as functions of R. Additionally, we present the amplitudes of the Fourier coefficients on
the supermoiré reciprocal lattice.

All the data presented in this appendix are computed using twist angles of 1.8◦ and 3.6◦.
To enhance visibility, each dataset is normalized to the range [0, 1], as explained earlier.
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FigureD.1: The normalized data ofmatrix elements |Γx i,j(R)| from theKM effectivemodel
with twist angles being 1.8◦ and 3.6◦.
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from theKM effective model with twist angles being 1.8◦ and 3.6◦.
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Figure D.5: The normalized data of matrix elements |Ai,j(R)| from theKM effective model
with twist angles being 1.8◦ and 3.6◦.
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Figure D.6: The normalized Fourier coefficients of Ai,j on the supermoiré reciprocal lattice
from theKM effective model with twist angles being 1.8◦ and 3.6◦.
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Figure D.7: The normalized data of matrix elements |Ei,j(R)| from theKM effective model
with twist angles being 1.8◦ and 3.6◦.
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Figure D.8: The normalized Fourier coefficients of Ei,j on the supermoiré reciprocal lattice
from theKM effective model with twist angles being 1.8◦ and 3.6◦.
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