
HAL Id: tel-04739443
https://theses.hal.science/tel-04739443v1

Submitted on 16 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Formal Modeling and Analysis of Time-Resource Aware
Systems-of-Systems.

Charaf Dridi

To cite this version:
Charaf Dridi. Formal Modeling and Analysis of Time-Resource Aware Systems-of-Systems.. Compu-
tation and Language [cs.CL]. Université de Pau et des Pays de l’Adour; Université Abdelhamid Mehri
- Constantine 2 (Constantine, Algérie), 2024. English. �NNT : 2024PAUU3071�. �tel-04739443�

https://theses.hal.science/tel-04739443v1
https://hal.archives-ouvertes.fr

University of Constantine 2 Abdelhamid Mehri - Faculty of New Technologies of
Computing and Communication - Department of Software Technologies and

Information Systems

University of Pau and Adour Countries - Doctoral School of Exact Sciences and their
Applications (ED SEA 211)

Formal Modeling and Analysis of Time-Resource
Aware Systems-of-Systems

THESIS

submitted in fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Prepared within a joint supervision between

University of Pau and Adour Countries, France
and

University of Constantine 2 Abdelhamid Mehri, Algeria

Presented by

Charaf Eddine DRIDI

Defended on July 3, 2024, 02:00 p.m. at UC2 in front of the jury

President: Pr. Mahmoud BOUFAIDA University of Constantine 2 Abdelhamid Mehri, Algeria
Reviewers: Pr. Ahmed HADJ KACEM University of Sfax, Tunis

Pr. Khalil DRIRA University of Toulouse, France
Examiner: Dr. Sofia KOUAH University of Larbi Ben M’Hidi, Algeria
Supervisors: Dr. Nabil HAMEURLAIN University of Pau and Adour Countries, France

Pr. Faiza BELALA University of Constantine 2 Abdelhamid Mehri, Algeria

Thesis prepared at Laboratoire Informatique de l’Université de Pau et des Pays de l’Adour
(LIUPPA) and Laboratoire d’Informatique REpartie (LIRE)

https://www.theses.fr/s342286

Acknowledgements

I want to express my deepest gratitude to my supervisors at two distinguished universities. I
thank my supervisor at University Constantine2, Mrs. Faiza Belala, for proposing that I work on
such an interesting research topic. Our meetings were always fruitful and beneficial, contributing
significantly to my understanding and progress. I would also like to thank her for her guidance,
for encouraging me to try new scientific alternatives, and for her professionalism and exemplary
behavior throughout my thesis.

Additionally, I am deeply grateful to my supervisor at UPPA, Mr. Nabil Hameurlain for his
guidance. His valuable advice and the relevance of his remarks, as well as his human qualities and
scientific knowledge, have greatly helped me to progress in my research work. I would also like to
thank him for introducing me to his professional network of contacts and for putting me in touch
with specialists in the field covering the broad research/academic areas, and for facilitating my in-
tegration into the LIUPPA laboratory.

I would like to thank Mr. Ahmed Hadj Kacem, professor at the University of Sfax, and Mr.
Khalil DRIRA, professor at the University of Toulouse, for the honor they gave me by agreeing to
be reviewers of this thesis, and for the time they dedicated to my work.

I would like to thank Mr. Mahmoud Boufaida, professor at the University of Constantine 2 for
agreeing to preside over my thesis jury, as well as Mrs. Sofia Kouah, associate professor at the
University of Oum Bouaghi for agreeing to be on my thesis jury as examiner. I thank them for the
honor they give me, for their scientific participation, and for the time they have dedicated to my
research.

I thank Mr. Eric Cariou, Mr. Abderrahim Aitwakrime, Mr. Chihab Hanachi and, and Mr.
Ahmed Hadj Kacem for their participation and availability during the various thesis follow-up com-
mittees. They took the time to listen to me and discuss with me. Their comments allowed me to
advance my project and to consider my work from another angle.

A big thank you to the members of the Computer Science Department at the STEE College at
UPPA, the members of LIUPPA at the Pau site, as well as the staff of the Doctoral School SEA
(ED 211) at UPPA, for their warm welcome and support throughout the completion of my work. I
would particularly like to thank those who shared my daily life during these years of thesis. I think
of the friendships woven and all those people who were there in all circumstances.

My final thanks go to my family, and particularly to my parents, who did everything to help me,
who supported and endured me in everything I undertook.

i

Abstract
Systems of Systems (SoSs) are predominantly large-scale, complex, and sometimes critical soft-

ware. An SoS is the result of integrating a set of autonomous, heterogeneous, and evolving Con-
stituent Systems (CSs) that interact with each other to fulfill their operational purpose (mission)
and to offer new functionalities that exceed those of the individual CSs.

Currently, the modeling, simulation, and analysis of SoS present a significant challenge from a
software engineering perspective, due to the complexity associated with the specific characteristics
of such systems: temporal constraints linked to missions, the production and consumption of re-
sources by each mission, and finally the emergence of desired or undesired behavior within a CS or
the SoS. The work of this thesis aims to propose a generic, model-based approach to describe the
architecture of an SoS (and its CSs), the functional behavior of each mission, and the validation
through simulation of the global behavior of an SoS. We propose a modular and intuitive multi-view
architectural framework based on the ISO/IEC/IEEE 42010 standard. This framework is associated
with a set of SoS engineering processes and a UML profile dedicated to SoSs, this framework facili-
tates and improves the design of SoS architectures. Regarding the behavioral aspect of the SoS, our
approach relies on the Maude language as a rewriting logic-based language, to describe, analyze,
and validate through modeling the functional behavior of an SoS, integrating the resources produced
and consumed by each mission, as well as the temporal constraints of each mission within a CS.

In this thesis, we propose a set of generic and reusable meta-models to describe the various entities
involved in resource allocation and mission execution. We use the Maude language to define the
operational semantics of various concepts, entities, and properties presented in the meta-models. We
adopt a centralized control for the management and allocation of resources and their coordination,
specifying missions, roles, and resources, as well as their quantitative properties. Finally, we define
a set of strategies for managing the execution of missions. These strategies aim to improve the
operational functioning of the SoS by avoiding undesirable behaviors and promoting desirable and
optimal mission paths taking into account temporal constraints related to resources and missions,
resource availability, etc. In this thesis, we utilize the RT-Maude (Real Time Maude) and Maude
Strategy extensions of the Maude language, to describe these strategies and validate the behavior of
the SoS using the model-checking verification techniques offered by the Maude language. All these
contributions have been validated through a comprehensive case study approach focusing on crisis
management SoS.

Keywords: SoS, CS, Missions, Centralized Control, Management Strategies, MAPE-K Loop Con-
trol, Runtime, Meta-Modeling, MDA, Formal Modeling and Verification.

ii

Résumé
Les Systèmes de Systèmes (SdS) sont des logiciels prépondérants de grande échelle, complexes

et parfois même critiques. Un SdS est le résultat de l’intégration d’un ensemble de Systèmes Con-
stituants (SCs) autonomes, hétérogènes et évolutifs, qui interagissent les uns avec les autres, pour
remplir leur propre but (mission) opérationnel et de faire émerger de nouvelles fonctionnalités qui
dépassent celles des SCs individuels.

Actuellement, la modélisation, la simulation et l’analyse des SdS posent désormais un grand défi
du point de vue génie logiciel, en raison de la complexité liée aux caractéristiques spécifiques de
tels systèmes : contraintes temporelles liées aux missions, la production et la consommation des
ressources par chaque mission, et enfin l’émergence d’un comportement désiré ou non désiré au sein
d’un SC ou du SdS. Les travaux de cette thèse visent à proposer une approche générique, à base de
modèles, pour décrire l’architecture d’un SdS (et ses CSs), le comportement fonctionnel de chaque
mission ainsi que la validation par simulation du comportement global d’un SdS. Nous proposons
un cadre architectural multi-vues modulaire et intuitif qui s’appuie sur la norme ISO/IEC/IEEE
42010. Ce cadre est associé à un ensemble de processus d’ingénierie de SdS et à un profil UML dédié
aux SdS, afin de faciliter et d’améliorer la conception des architectures de SdS. Concernant l’aspect
comportemental des SdS, notre approche s’appuie sur le langage Maude, un langage à base de la
logique de réécriture, pour décrire, analyser et valider par modèle le comportement fonctionnel d’un
SdS, intégrant les ressources, produites et consommées par chaque mission, ainsi que les contraintes
temporelles de chaque mission au sein d’un CS.

Dans cette thèse, nous proposons un ensemble de méta-modèles génériques et réutilisables pour
décrire les différentes entités impliquées dans l’allocation des ressources et l’exécution des missions.
Nous utilisons le langage Maude pour définir la sémantique opérationnelle de divers concepts, entités
et propriétés présentés dans les méta-modèles. Nous adoptons un contrôle centralisé pour la gestion
et l’allocation des ressources et leur coordination, en spécifiant les missions, les rôles et les ressources,
ainsi que leurs propriétés quantitatives. Enfin, nous définissons un ensemble de stratégies de gestion
de l’exécution des missions. Ces stratégies visent à améliorer le fonctionnement opérationnel du
SdS en évitant les comportements indésirables et en favorisant les chemins de mission désirables et
optimaux vis à vis des contraintes temporelles liées aux ressources et aux missions, la disponibilité des
ressources, etc. Dans cette thèse, nous exploitons les extensions RT-Maude (Real Time Maude) et
Maude Strategy du langage Maude, pour décrire ces différentes stratégies et valider le comportement
des SdS en utilisant les techniques de vérification par model-checking offertes par le langage Maude.
Toutes ces contributions ont été validées par une approche d’étude de cas complète axée sur les SdS
de gestion de crise.

Mots clés: SdS, SCs, Missions, Contrôle Centralisé, Stratégies de gestion, Boucle de contrôle
MAPE-K, Runtime, Meta-Modélisation, MDA, Modélisation et vérification formelles.

iii

Contents

I Preamble 3
I.1 Introduction . 3

I.1.1 Problem Statement . 4
I.1.2 Research Objectives and Contributions . 5

I.2 Thesis Chapters . 7
I.3 Publications . 8

II Basics and Prerequisites 10
II.1 Introduction . 10
II.2 Model-Driven Engineering . 11

II.2.1 Model-Driven Architecture . 11
II.2.2 IEEE-ISO 42010 Standard . 15

II.3 Rewriting Logic and Maude Language . 16
II.3.1 Rewriting theories . 17
II.3.2 Maude Language: modules and extensions 21
II.3.3 Formal Analysis and Execution . 26

II.4 Conclusion . 29

III Key Concepts, Definitions and State of the Art 31
III.1 Introduction . 31
III.2 Systems-of-Systems . 32

III.2.1 Definitions . 32
III.2.2 Dimensions . 34
III.2.3 Categories . 35
III.2.4 Application domains . 39

III.3 Current research on SoSs modeling . 42
III.3.1 Semi-formal methods . 42
III.3.2 Formal methods . 49
III.3.3 Synthesis . 54

III.4 Conclusion . 56

IV Methodology and General Principle 57
IV.1 Introduction . 57

iv

Contents

IV.2 A process for SoS Engineering . 58
IV.2.1 Domain Engineering . 60
IV.2.2 Application Engineering . 62

IV.3 Solution principle . 64
IV.3.1 Basic elements description . 64
IV.3.2 MDA-based SoS Framework design . 65
IV.3.3 Formal semantics of centralized control . 65
IV.3.4 Formal specification of management strategies 66
IV.3.5 Autonomic execution and verification . 67

IV.4 Conclusion . 68

V Model-Based SoS Framework Domain 69
V.1 Introduction . 69
V.2 SoSs Commonalities . 70

V.2.1 Abstract assets: Application and Framework Domains 71
V.2.2 A Unified Architecture Framework: Overview 77
V.2.3 Case study: Aircraft Emergency Response SoS 79

V.3 A Multi Viewpoints-based Architecture Framework 81
V.3.1 Architectural concepts . 82
V.3.2 Associations . 86

V.4 UML Extensions for Modeling the unified architecture 88
V.4.1 SoS_Knowledge_Package . 89
V.4.2 CSs_Selection_Package . 91
V.4.3 Conceptual_Design_Package . 93
V.4.4 Architectural_Design_Package . 94
V.4.5 Interaction_Package . 95
V.4.6 Integration_Deployment_Package . 97

V.5 Conclusion . 99

VI Formalization of Centralized Control in SoSs 101
VI.1 Introduction . 101
VI.2 Time-Resource Aware SoSs . 102

VI.2.1 Temporal constraints of Missions . 102
VI.2.2 Understanding resource categorization . 104
VI.2.3 Abstract assets: Variability Domain . 106
VI.2.4 Rewriting-based approach for resources allocation control 107

VI.3 Formal semantics of structural entities . 108
VI.3.1 Missions and temporal constraints . 109
VI.3.2 Resources categorization . 110
VI.3.3 Roles encoding . 112

v

Contents

VI.3.4 Resource Allocation Controller: RAC . 113
VI.4 Formal semantics of dynamic aspects . 113

VI.4.1 Missions’ lifecycle . 114
VI.4.2 Resource’ lifecycle . 117
VI.4.3 Roles’ lifecycle . 119
VI.4.4 Resources Allocation Control lifecycle . 122

VI.5 Conclusion . 126

VII Control-based Formalization of Management Strategies 127
VII.1 Introduction . 127
VII.2 Abstract assets: Variability Domain for Management 128
VII.3 Strategic Management of Behavior . 129

VII.3.1 Managing Workflows in SoSs . 131
VII.3.2 Mission execution and resource management 133
VII.3.3 Management Strategies . 142

VII.4 Real-Time regulating mechanism using MAPE-K loop 146
VII.4.1 Knowledge: Data Foundation . 148
VII.4.2 Monitor: Processing . 148
VII.4.3 Analysis: Workflow . 149
VII.4.4 Plan: Strategic Control and Management . 149
VII.4.5 Execution: Rewriting Management System 150

VII.5 Conclusion . 153

VIIISimulation and Formal Verification 154
VIII.1 Introduction . 154
VIII.2 Case study . 155
VIII.3 Managing FESoS through a MAPE-K loop . 156

VIII.3.1Knowledge: Foundation . 158
VIII.3.2Monitor: Processing . 158
VIII.3.3Analysis: Workflow Analysis . 159
VIII.3.4Plan: Strategic Control and Management . 159
VIII.3.5Execution: Rewriting Management System 160

VIII.4 Design time: workflow and initial configuration . 160
VIII.5 Simulation and execution . 163

VIII.5.1Resource Allocation Control . 165
VIII.5.2Managing FESoS Workflow with strategies 167
VIII.5.3Executing Functional Chains . 169

VIII.6 Formal verification . 171
VIII.6.1Maude-based verification for management strategies 172
VIII.6.2Model-checking SoSs proprieties . 174

vi

Contents

VIII.7 Conclusion . 176

IX General Conclusion 177
IX.1 Conclusion . 177
IX.2 Perspectives . 180

vii

Contents

viii

List of Figures

II.1 Principle of the MDA approach. 12
II.2 The four meta-layers of MDA architecture. 13
II.3 ISO/IEC/IEEE 42010:2011 Conceptual Model [38]. 16
II.4 Inference Rules of a Rewrite Theory. 20

III.1 SoS and CSs Relationships in a Directed SoS. 36
III.2 SoS and CSs Relationships in an Acknowledged SoS. 37
III.3 SoS and CSs Relationships in a Collaborative SoS. 38
III.4 SoS and CSs Relationships in a Virtual SoS. 39
III.5 SoSSec MetaModel Block Diagram. [27]. 43
III.6 Mission conceptual model [8]. 44
III.7 SoSE core elements [47]. 46
III.8 Simplified version of M2SoS [5]. 47
III.9 Description of the design process [43]. 49
III.10ArchSoS definition process[79]. 50
III.11Missions and CSs in FMSoS. [80] . 51
III.12Meta-rules for adding publish/subscribe components[30]. 52
III.13BiGMTE architecture [29]. 53

IV.1 Evolutionary process for dynamic SoSE. 59
IV.2 General overview of the approach. 60

V.1 Four-layer Meta-Modelling infrastructure of OMG. 71
V.2 General overview of MeMSoS. 72
V.3 An extended conceptual model of the SoS-AF. 74
V.4 Overview of the updated MeMSoS. 75
V.5 Multi-level approach-based UML Profile. 77
V.6 Multi-Viewpoints Framework for SoSs’ Architectures. 78
V.7 Aircraft Emergency Response(AERSoS). 79
V.8 SoS development processes. 84
V.9 SoS-UML Profile’s diagrams. 86
V.10 Overview of SoS-AF. 87
V.11 SoS-UML profile packages. 89

1

LIST OF FIGURES

V.12 The structure of the SoS_Knowledge_Package. 90
V.13 Requirements diagram for AERSoS. 91
V.14 The structure of the CSs_Selection_Package. 91
V.15 Goals Diagram for AERSoS. 92
V.16 Capabilities diagram for AERSoS. 93
V.17 The structure of the Conceptual_Design_Package. 93
V.18 Domain Model for the PowerUnitsSoS. 95
V.19 The structure of the Architectural_Design_Package. 95
V.20 Constituent diagram for EvacuationCS. 96
V.21 The structure of the Interaction_Package. 97
V.22 Roles Interactions diagram for SafeLandingCS’ Roles. 97
V.23 The structure of the Integration and deployment package. 98
V.24 Roles Interfaces diagram of PowerUnitsSoS. 99

VI.1 Resource Allocation Controller Meta-Model, RAC-MM. 106
VI.2 SoSs resource management modeling. 108
VI.3 Mission’s transition system. 116
VI.4 Resource’s transition system. 119
VI.5 Role’s transition system. 121
VI.6 RAC’s transition system. 124

VII.1Management Strategies Meta-Model, MS-MM. 129
VII.2MS-MM operational semantics in Maude Strategy Langage. 131
VII.3The MAPE-K architecture. 147
VII.4Overall structure of the modules. 147

VIII.1The MAPE-K architecture for SoS Control and Management. 157
VIII.2Overview of the Logical Architecture model of FESoS. 162
VIII.3Overview of the Logical Architecture model of FESoS. 164
VIII.4FESoS initial configuration. 165
VIII.5Time-lapse during design of the three missions. 170
VIII.6Time-lapse during Runtime of the three missions. 170
VIII.7Runtime execution and control of the three missions. 171
VIII.8Search results of Transporting mission. 176

2

Chapter I

Preamble

Contents
I.1 Introduction . 3

I.1.1 Problem Statement . 4

I.1.2 Research Objectives and Contributions 5

I.2 Thesis Chapters . 7

I.3 Publications . 8

I.1 Introduction

System Engineering (SE) always accompanied by its methods and techniques allows the design
of innovative systems that meet the public expectations and the various Stakeholders’ needs. This
continuous cycle justifies the increasing complexity of current systems and is evident across multiple
domains. In this context, Systems-of-Systems (SoSs) have experienced significant attention from the
computer science community due to their evolutionary progress and ability to integrate multiple Con-
stituent Systems (CSs) from diverse domains, including Healthcare, Military Defense, Smart City,
Smart Energy Grids, Emergency Management and Response. SoSs distinguish themselves by assem-
bling various CSs from different subfields, presenting a robust and cohesive approach to constructing
large-scale systems. The latter are characterized by their new functionalities that individual CSs
cannot provide but emerge from their combination and interaction. Unlike monolithic systems, SoSs
transcend their composite nature, dynamic control mechanisms, evolving environments, extensive
networks of CSs, and various stakeholders. Given that CSs are inherently designed to operate inde-
pendently, often utilizing heterogeneous technologies and catering to different platforms, SoSs do not
follow a conventional top-down design approach. Instead, they are complex configurations of col-
laborating CSs, aiming to achieve common goals while maintaining their operational independence

3

Chapter I. Preamble

and geographical dispersion.

Furthermore, the inherent properties of SoSs can be classified into two main categories: (1)
component characteristics, such as operational and managerial independence, geographical distribu-
tion, autonomy, heterogeneity, and CS ownership, and (2) global characteristics, including emergent
behavior, evolutionary development, and diversity of functionalities. These systems also navigate
complexities related to heterogeneous technologies tailored for various platforms, dynamic control
and reconfiguration, and continuous evolution. This means that the joint dynamics of SoSs and CSs
should be studied together in an organizational and technical environment to realize the specified
common goal. The latter is composed of several missions or sub-goals that are executed together,
to offer one global mission for the SoS. These missions may need resources for execution such as
humans, machines, services, etc.

These are the main reason that make the SoS Engineering (SoSE) process quite different from
that of traditional SE, in which software systems can only be implemented from scratch. SoSE not
only requires focus on system specification and verification but also requires additional consideration
for the overall SoS mission, individual characteristics of components, issues solving and integration
process. Therefore, the term SoSE will refer to the application of engineering principles to SoS
development, and will consists of activities for managing the creation of SoS, including identifying
and executing CSs missions based on stakeholder requirements analysis, specifying and designing
conceptual architectures, integrating and assembling the selected CSs, and controlling the SoS as
CSs execute various missions over time.

I.1.1 Problem Statement

The field of SoSs comes up against constraints during the SoSE process. The difficulty of modeling
SoSs lies in the complexity resulting from the interaction, cooperation and collaboration of their
heterogeneous CSs, which each have specific missions to accomplish, different roles to play, and they
are not easily interoperable. Independent evolution and dynamic changes can cause these CSs to
behave differently. These changes can affect their interactions and communications within the SoS
and consequently, it can derail the overall mission of the SoS. Analyzing and specifying SoSs help
to understand how they work, as well as to master its complexity well before its implementation.
This offers considerable advantages to the designers of such systems. As well, SoS modeling can
be seen as the separation of different functional and non-functional needs which are related to SoSs
characteristics, SoSs quality/quantity attributes, management and control, SoSs architecture, design
and Implementation.

In this new perspective, SoSs development does not follow the normal system development pro-
cess. As SoSs’ capabilities are based on the contributions of the individual CSs, their interdepen-
dences make a document-centric development impractical as an exorbitant effort. The development
process refers to activities that can guide an SoS’ lifecycles from the system requirements level down
to the software implementation level, and naturally, by coordinating the various processes for the de-
velopment of a project. From a SoSEE perspective, design decisions made at the architectural level

4

I.1. Introduction

have a direct impact on the fulfillment of functional and requirements of SoSs development. At this
stage, the SoS’ Stakeholders identify functional and non-functional characteristics through the use of
their own theoretical backgrounds, notations and environments. In addition, the SoSs’ architectures
are still created without the support of a systematic process and traditional design approaches do
not adequately support the creation of these types of systems due to composed nature, large-scale,
decentralized control mechanism, evolving environments, and large number of stakeholders. To get
a handle on this complexity, it is necessary to maintain consistency and coherence between the
different viewpoints of different stakeholders as well as the ability to reconcile and include all their
viewpoints before proceeding to the various process in the SoSE lifecycle.

On the other hand, SoSs can take four different types, Directed (with a central managed purpose
and central ownership of all CSs), Virtual (lack of central purpose and central alignment), Col-
laborative (with voluntary interactions of CSs to achieve a goal), and Acknowledged (independent
ownership of the CSs). Subsequently, the definition of SoSs is introduced based on the key consid-
eration that SoSs are more than simply a set of connected CSs sharing data and offering missions,
but, it defines the logical structure and behavior of qualitative/quantitative features involved in
SoSs, whose CSs can have their operational/managerial independence but their emergent behavior
is aligned with specific missions’ execution.

In complex SoSs, two foundational elements dictate the efficacy and success of missions: tem-
poral constraints and priorities, and resource management. The first element necessitates that the
emergent behavior of SoSs not only aligns with mission objectives but also adheres to specific time
frames and order of execution priorities. And the second one highlights the importance of optimally
utilizing and coordinating the resources distributed among the different CSs.

Nowadays’ SoSs, especially in critical and emergency applications, require the missions of various
CSs to be accomplished in real-time and within specific amounts of time. This property significantly
influences the launch, execution and completion of missions, where a violated constraint can result in
a disaster. Therefore, the challenge here is that the time constraints applied on missions, and various
time-related factors like duration and deadlines significantly impact the planning and execution of
missions and can also be explicitly affected by the environmental features of different CSs.

At the same time, these features are strongly related to resource features. The resources that
SoS requires at run-time, are sometimes limited, unlimited, renewable or not renewable. Therefore,
resource management is another key element for execution, performance, and success. Resources can
range widely, from computational power, physical units, data storage, and specialized hardware to
human operators and communication channels. Therefore, understanding of these resources is vital
for achieving functional missions, maintaining situational awareness, and ensuring system success.

I.1.2 Research Objectives and Contributions

The literature review shows various methods that have been modified from conventional systems
development to better fit the needs of SoS design. However, each of these methods favors some
aspects of SoS over others. More specifically, diverse approaches based on semi-formal methods have

5

Chapter I. Preamble

been proposed to overcome some of major issue using suitable modeling languages like UML and
SysML which provide intuitive and flexible frameworks for capturing the architectural design and
facilitating communication among stakeholder. In contrast, formal methods such as ADL and BRS
offer rigorous semantics, making it unsuitable for formal verification and analysis of system design.
As proposed solution, we aim to combine the strength of both formalism’s and tools to create robust,
controllable, and executable models that can aid in the design, simulation, and verification of these
complex SoSs.

For this end, four principal research objects (RO) are identified as follows:

- RO1: Overcome the lack of standards for the basic elements to describe the structure and
behaviors of SoSs.

- RO2: Define a multi-viewpoints-based Architecture Framework to support SoSs’ development.

- RO3: Define behaviors related to quantitative aspects such as time and resources of SoSs and
their Control.

- RO4: Ensure strategic management of the execution of these different missions in SoSs.

- RO5: Ensure the autonomous executability of the desired behaviors within SoSs and verify
their correctness.

In other words, the general objective of this thesis tends to propose a solution with semi-formal
and formal foundations to (1) to develop a systematic architecture framework for SoSs and (2) to
formally describe, analyze, and verify SoSs behavior effectively. This manuscript presents three parts
of contributions as follows:

- MDA-Based Approach:

High abstract Assets: to provide Meta-Models providing the foundational basis necessary for
specifying structural, behavioral, and functional aspects of SoSs. We focus on defining the
logical structure and behavior of quantitative features involved in the SoS’ definition and
characteristics, which allows for describing all the SoS features at the same high level of ab-
straction. Hence, to create these generic models, we have to consider a set of concepts, aspects,
and features, i.e. hierarchical composition of CSs, missions’ organization, stakeholders, con-
cerns, temporal variations, resource allocation, etc. These Meta-Models enable the designers
to easily understand the SoSs’ architectures, including reasoning about their features their
structures and instantiating them by proposing a semantics mapping between their concepts
and other formal constructs to deduce various executable models.

A multi-viewpoint Architecture Framework: called SoS-AF which is understandable and easily
manipulated by different stakeholders. This framework aims to offer the SoSs’ Stakeholders the
tools to facilitate the task of developing a multi-viewpoint architecture that is managed by sys-
tematic SoSE processes and documented through the SoS-UML profile’s models. Besides, this
approach conforms to a widespread standard in the software architectures community “IEEE

6

I.2. Thesis Chapters

42010” which was designed to standardize the definition of Systems and Software Architec-
ture description. Specifically, SoS-AF inherits the definitions of the main elements from the
MeMSoS Meta-Model which is a part of this standard, and extends them by the two elements
“SoSE process” and “SoS-UML Profile”. It is based around the construction of multi-viewpoint
SoSs’ architectures, through the definition of several viewpoints for a given SoS architecture.

- Formal approach to defining operational semantics of:

Resource Control: the approach addresses the challenges of resource consumption and produc-
tion in SoSs. It consists of designing concepts like mission, role, and resource, specifying their
properties, etc. Due to its expressivity, RT-Maude language can execute and validate all the
relevant concepts defined in a specific Meta-Model designed to propose a centralized control of
resources without losing information and features. Its executable semantics support designing
the lifecycle of each entity, and offer more accurate modeling of SoSs whose dynamic behavior
depends on missions’ quantitative priorities, resource allocation, and their data types.

Management Strategies the approach employs Maude Strategy Language to introduce self-
management in SoSs, emphasizing the integration of dynamic strategies to manage both de-
sired and undesired behaviors. More specifically, we address the complexities of workflow
and functional chain management, mission execution, and conflict resolution. The proposed
method aims to improve system functionality and resource efficiency in complex SoS environ-
ments by avoiding undesired behaviors and selecting optimal mission paths based on criteria
such as arrival time, duration, and resource availability.

- Runtime, autonomic execution, and formal verification:

We specifically illustrate how the various modules can be organized into an autonomic opera-
tional framework through the application of the MAPE-K loop phases—Monitoring, Analysis,
Planning, and Execution—, this loop adopts a systematic iteration between the design phase
and the runtime execution, allowing for continuous refinement and enhancement of both the
design and functional aspects of SoS. Moreover, the loop demonstrates the formal executable
semantics of Maude to ensure that the behaviors adhere to the specifications, with verification
mechanisms in place to validate the correctness of the operational logic.

I.2 Thesis Chapters

The chapters of the thesis are outlined as follows:

- Chapter II. introduces the essential prerequisites for analyzing, modeling, and implementing
software systems, focusing on techniques from MDE, rewriting logic and the Maude language,
detailing their theoretical foundations and practical uses.

- Chapter III. explores SoSs, their characteristics, their applications, and their challenges, etc.
It also examines the state of research in SoS Engineering by evaluating semi-formal and formal

7

Chapter I. Preamble

methodologies, focusing on the dynamic/behavioral challenges and the necessity for robust
modeling techniques.

- Chapter IV. presents an overview of the proposed approach that integrates domain and
application engineering within an MDA framework. The approach uses comprehensive meta-
models and formal semantics through the Maude language to address SoSs’ dynamic and
behavioral complexities.

- Chapter V. introduces the SoS Architecture Framework (SoS-AF) which supports SoSs com-
monalities. The framework outlines stakeholder engagement, SoS concerns, and detailed SoSE
processes, while also exploring SoS architecture viewpoints and model types through a devel-
oped UML profile.

- Chapter VI. explores the process of modeling and analyzing the variabilites of Time-Resource
Aware SoSs using Maude language. Specifically, the chapter introduces the implementation
of the Resource Allocation Controller (RAC) which provides an autonomous coordination for
resource allocation and management.

- Chapter VII. introduces an approach for managing both desired and unwanted behaviors
in missioned SoSs taking into account the temporal constraints and resources. The method
involves specifying self-management strategies, encoding behaviors, and applying rewriting
rules to effectively govern mission execution and resource utilization.

- Chapter VIII. discusses the execution, simulation and verification of SoSs, using the French
Emergency SoS (FESoS) as a case study. The aim is to describe the proposed contributions
and validate the behavior of the SoS using the model-checking verification techniques offered
by the Maude language.

I.3 Publications

Peer-reviewed scientific journal

- Charaf Eddine Dridi, Zakaria Benzadri, Faiza Belala. (2023). A Unified Architecture Frame-
work Supporting SoS’s Development: Case of the Aircraft Emergency Response System-of-
Systems. International Journal of Organizational and Collective Intelligence (IJOCI), 13(1),
1-30.

Peer-reviewed international workshop

- Charaf Eddine Dridi, Nabil Hameurlain, Faiza Belala. (2022). A Maude-Based Rewriting
Approach to Model and Control System-of-Systems’ Resources Allocation. In International
Conference on Model and Data Engineering (pp. 207-221). Cham: Springer Nature Switzer-
land.

8

I.3. Publications

Peer-reviewed international Conferences

- Charaf Eddine Dridi, Nabil Hameurlain, Faiza Belala. (2023). A Maude-Based Formal Ap-
proach to Control and Analyze Time-Resource Aware Missioned Systems-of-Systems. In 2023
IEEE International Conference on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE) (pp. 1-6). IEEE.

- Charaf Eddine Dridi, Zakaria Benzadri, Faiza Belala. (2022). Towards a Multi-Viewpoints
Approach for the SoS Engineering. In 2022 International Conference on Advanced Aspects of
Software Engineering (ICAASE) (pp. 1-6). IEEE.

- Charaf Eddine Dridi, Zakaria Benzadri, Faiza Belala. (2020). System of Systems Modelling:
Recent work Review and a Path Forward. In 2020 International Conference on Advanced
Aspects of Software Engineering (ICAASE) (pp. 1-8). IEEE.

- Charaf Eddine Dridi, Zakaria Benzadri, Faiza Belala. (2020). System of Systems Engineering:
Meta-Modelling Perspective. In 2020 IEEE 15th International Conference of System of Systems
Engineering (SoSE) (pp. 000135-000144). IEEE.

9

Chapter II

Basics and Prerequisites

Contents
II.1 Introduction . 10

II.2 Model-Driven Engineering . 11

II.2.1 Model-Driven Architecture . 11

II.2.2 IEEE-ISO 42010 Standard . 15

II.3 Rewriting Logic and Maude Language . 16

II.3.1 Rewriting theories . 17

II.3.2 Maude Language: modules and extensions 21

II.3.3 Formal Analysis and Execution . 26

II.4 Conclusion . 29

II.1 Introduction

Computer systems have automatically increased in complexity with the evolution of systems and
information technologies. Their engineering, design, and analysis have become increasingly difficult
to master and costly to ensure. To reduce this complexity, and to offer a high abstraction that makes
it possible to describe, represent, and unambiguously analyze these systems, one solution is to use
Modeling and analysis to design complex systems. The former allows describing the system, while
the second makes it possible to evaluate the system properties. Moreover, the field of Software and/or
Systems Engineering have treated modeling and analysis techniques as two distinct areas. Model-
Driven Engineering (MDE) for instance uses domain-specific models as primary assets to develop
a system. Conversely, formal methods are mathematically rigorous techniques for the specification,
development, analysis, and verification of diverse properties of these software/systems. i.e. MDE
principles often described by a Model-Driven Architecture (MDA). However, in order to have the

10

II.2. Model-Driven Engineering

power of expressiveness which gives it the possibility of describing complex systems, it must be
reinforced by mathematical foundations that allow better modeling and analysis of systems.

In this chapter, we introduce the semiformal and formal tools adopted in this manuscript, they
provide fundamental concepts to readers who are not familiar with these models, and facilitate the
understanding of the contents and contributions of this thesis. These models allow for a precise de-
scription of properties related to the operation of the designed systems. Formal methods particularly
provide a means to verify and guarantee the satisfaction of these properties systematically.

II.2 Model-Driven Engineering

MDE is increasingly recognized as a vital approach in complex software projects across diverse
fields such as embedded systems, automatic and telecommunications. This approach places a strong
emphasis on modeling as a core concept, offering a means to abstract and simplify system design and
comprehension. Moreover, MDE is not just about employing Unified Modeling Language (UML)
models [28], [76] in the initial stages of software development, but rather it extends to leveraging
these models beyond simple initial specifications, integrating them throughout the analysis and
implementation phases.

II.2.1 Model-Driven Architecture

In MDE, a model serves as an abstraction of some aspect of a system, potentially one that does
not yet exist, and is crafted to fulfill specific purposes, such as providing a human-understandable
description or enabling comprehensible analysis [49], [81]. The effectiveness of these models depends
heavily on the expressiveness of the languages used to create and interpret them. Therefore, we dis-
tinguish between General-Purpose Languages (GPLs), which offer broad expressiveness for modeling
various system aspects, and Domain-Specific Modeling Languages (DSMLs), which provide tailored
abstractions for specific areas of expertise [49], [78]. DSMLs are characterized by both syntax and
semantics. The syntax includes both an abstract syntax, defining the concepts and their relation-
ships, and a concrete syntax, offering a human-readable format for these concepts. The semantics,
on the other hand, comprise a semantic domain and a mapping from the abstract syntax concepts
to this domain.

In this section, we explore the key principles of MDA and the various aspects relevant to the
definition and application of Models, particularly in the context of software development and design.

II.2.1.1 MDA Different models

Launched by the OMG in 2000 [70], [81], MDA is a key aspect of MDE, and utilizes abstract
UML models to streamline software development. It primarily involves three model types as shown
in Figure II.1 [7]:

- Computation Independent Models (CIMs): These models outline the application’s re-
quirements at a high level, focusing on what the application should do without specifying how

11

Chapter II. Basics and Prerequisites

Figure II.1: Principle of the MDA approach.

it should be done.

- Platform Independent Models (PIMs): PIMs are abstract, they focus on the design and
analysis of the application, remaining abstract to specific technologies and act as intermedi-
aries, translating CIMs’ requirements into detailed designs.

- Platform Specific Models (PSMs): Tied closely to specific technologies, PSMs provide
detailed implementation guidelines, adapting PIMs to specific platforms like .NET or Java
EE. For example, an Entreprise JavaBeans (EJB) PSM would include specific constructs such
as entity beans and session beans.

MDA places these models, particularly the PSMs, as significant means of facilitating efficient code
generation, treating application code as a structured set of instructions derived from these models.

II.2.1.2 Four-layers architecture

The concept of Meta-Modeling in MDE is structured into a four-layer architecture, as detailed
in [7], [45], [70] and further elaborated by the OMG [81]. This structure, known as the "Four-layers
Meta-Modeling pyramid", arranges the concepts of models, Meta-Models, and meta-metamodels
across distinct levels, with each level building upon the one below it as illustrated in Figure II.2.
The layers are as follows:

- M3 Layer: This is the topmost layer containing meta-metamodels. These are described in
terms of themselves due to their reflective property. It represents the language used for defining
Meta-Models.

12

II.2. Model-Driven Engineering

- M2 Layer: This layer contains the Meta-models to define the models like UML elements,
or definitions of Domain-specific Languages or Generic-purpose Languages. they define the
different structures and semantics of the models in M1 of the next layer.

- M1 Layer: it contains the models. i.e. this level includes, for example, a UML class diagram.
they represent abstractions of systems and conform to the Meta-Models defined in M2.

- M0 Layer: The lowest level consists of real-world instances or objects, such as a specific
instance of a sensor in an application.

It’s possible to have multiple Meta-Models for a domain, but a model typically adheres to one
Meta-Model. The four-layer architecture is significant, especially in the context of model transfor-
mations, as it clearly defines the hierarchical relationship between different modeling concepts.

Figure II.2: The four meta-layers of MDA architecture.

II.2.1.3 Modeling languages

Modeling languages are broadly categorized into Domain-Specific Modeling Languages (DSMLs)
and General-Purpose Modeling Languages (GPMLs), such as UML. While DSMLs are tailored to
the specific requirements of a particular domain, GPMLs like UML offer flexibility across various
domains and design challenges.

- Using UML in development process

Using UML in the development process often results in a longer timeframe compared to DSMLs,
due to its foundation on more abstract, less domain-specific models. However, UML models
tend to be more universally accessible, unlike DSMLs which typically require in-depth domain
expertise. UML is a versatile language for software systems modeling, which supports the
depiction of diverse system views, drawing from object-oriented language concepts. Its broad
applicability allows for extensions to suit specific domains. These extensions are realized
through UML’s Meta-Model mechanisms, resulting in the creation of UML profiles [56], [82].
The latter is an assembly of extensions that includes specific terminology, notation, and syntax
tailored for domain-specific elements. The OMG outlines two primary approaches for creating
domain-specific languages:

13

Chapter II. Basics and Prerequisites

1. Creating a new language: This approach involves developing an entirely new language,
for which OMG advocates the use of the Meta-Object Facility (MOF) language. MOF
has been pivotal in shaping the syntax and semantics of UML for the creation of new
object-oriented languages. This method ensures a direct alignment between the language
and the application domain concepts but may encounter compatibility challenges with
existing object-oriented languages and tools that predominantly rely on UML.

2. Extending UML notation: The alternative approach involves augmenting UML with new
elements that specialize its pre-existing components, such as Class, Association, and Pack-
age. The extension mechanisms employed include stereotypes, primitive values, and con-
straints, grouped into a domain-specific UML Profile. This approach benefits from UML’s
established modeling elements to represent basic objects and concepts, with stereotypes
detailing domain-specific aspects of the system. Constraints within the profile provide a
means to express and validate specific semantics in the application domain models.

Compared to creating a new language, the utilization of UML profiles tends to be more facilita-
tive, aligning seamlessly with standard UML and integrating easily into existing object-oriented
development frameworks.

- Using UML profiles for Domain-Specific Customization

UML Profiles play a pivotal role in MDA by enabling the specialization of Meta-Models for
specific application domains. These profiles adapt the standard UML Meta-Model to accom-
modate different platforms (like J2EE or .NET) or domains (such as real-time or business
process modeling), as per the OMG MOF standards [56], [82]. Therefore, a UML profile con-
tains various elements that extend the standard UML Meta-Model without altering its core
structure, often referred to as ’Lightweight extensions’. These include:

1. Marked Values, Stereotypes, and Constraints: These elements adapt the semantics of
the UML Meta-Model. Stereotypes, for instance, are defined as extensions of a UML
metaclass and can have specific properties or operations. Marked values act as attributes
of a metaclass, allowing the arbitrary attachment of information to an instance.

2. Scope and Structure: A profile is essentially a stereotyped package that may import
external sources. It is a collection of stereotypes specific to a domain, thereby specializing
in one or more standard Meta-Models, referred to as reference Meta-Models for that
domain.

3. Technical Aspects: Technically, a profile can include additional standard elements, a
subset of existing Meta-Model elements, specific semantic concepts in natural language,
and custom graphical notations.

4. Constraints and Rules: Constraints can be defined at the level of a specific metaclass or
stereotype, further specializing the semantics of reference Meta-Model elements used in
the profile. These constraints are usually expressed in the Object Constraint Language

14

II.2. Model-Driven Engineering

(OCL) but can also be informally specified in natural language. They apply to modeling
elements to specify the use of their instances and are often associated with stereotypes.

The primary function of a UML profile is to define the semantics of usage rules and constraints
of the UML Meta-Model. For example, a profile for EJB modeling can be depicted as a class
diagram showing stereotypes and marked value definitions related to EJB and their connection
to UML Meta-Model elements. This form of specialization allows the profile to be dedicated
to a specific domain within the reference Meta-Models. Furthermore, UML profiles can define
transformation rules to express how a model can be transformed for specific modeling or
implementation goals, validation rules to ensure the model possesses the correct properties of
the profile’s domain, and presentation rules to determine which modeling elements appear in
specific diagram types.

II.2.2 IEEE-ISO 42010 Standard

The ISO/IEC/IEEE 42010 standard provides a structured approach to software architecture
description, recognizing the complexity of systems and the need for a comprehensive framework to
address this. The standard’s conceptual model defines the relationships between various architecture
description elements, highlighting the importance of understanding how systems interact with their
environment and stakeholders’ concerns [38]. The recent revision of the ISO/IEC/IEEE 42010
standard brings clear definitions to enhance the reuse and interoperability of technical architectures
through three key mechanisms[32], [77]:

- Architecture Reflections: Common methods for expressing and resolving a set of known
architectural concerns, which can be reused across projects.

- Architecture Description Languages (ADLs): Specialized languages designed to articulate
specific system concerns through one or more modeling resources.

- Architecture Frameworks: a prefabricated structure that stakeholders can use to organize
an architectural description into complementary views.

These architectural viewpoints not only organize the structure and the architecture description by
specifying different views of the total architecture, each of them is created using specific conventions,
notations, and modeling tools, but also by representing a form of reusable architectural knowledge,
utilized to address architecture description challenges.

Key components of this model include:

- Stakeholders and Concerns: The standard highlights the identification of stakeholders and
their concerns, ensuring that the architecture adequately addresses various interests.

- Architecture Viewpoints and Views: This entity highlights the use of architecture View-
points VPs to frame the different specific stakeholder concerns and establish conventions for
creating views. Moreover, Views represent the system’s architecture from the perspective of

15

Chapter II. Basics and Prerequisites

Figure II.3: ISO/IEC/IEEE 42010:2011 Conceptual Model [38].

these stakeholder’s concerns, employing various modeling languages, notations, and design
rules specified by the VPs.

- Model Kinds in Viewpoints: Different viewpoints may include various model kinds, each
architecture view comprises multiple models which adhere to the conventions defined by their
respective model kinds, aiding in the construction and interpretation of the architectural frame-
work.

- Correspondences and Rules: The architecture description includes correspondence rules.
These elements define and enforce relationships between architecture description elements,
ensuring consistency across models, views, and other components of the architecture.

The standard ISO/IEC/IEEE 42010 is designed for reusability with various system and software
engineering standards, enhancing their capabilities in architectural aspects. the standard is not
only applicable across the entire life cycle of systems, providing comprehensive guidance for the
specification, documentation, and ongoing maintenance of architecture descriptions, but it is also
adaptable for the incorporation of additional elements as much as needed.

II.3 Rewriting Logic and Maude Language

Rewriting logic is a versatile paradigm that was introduced by José Meseguer [13], [57] as a
result of his extensive work on general logic, specifically to describe concurrent systems. This
computational logic serves as an expressive semantic framework for various computational tasks
involving concurrency, parallelism, communication, and interaction. In this logic, rewriting a term
means replacing it with an equivalent term, adhering to the laws of term algebra [12], [58]. This allows
for the calculation of a rewritability relationship between algebraic terms. The logic permits syntactic
transformations and offers a framework for logical inferences, making the rewriting semantics highly
adaptable and fruitful [57]. By examining the basic concepts, semantics, and multiple dimensions
of rewriting logic, alongside the practical utility of languages like Maude, this section aims to offer

16

II.3. Rewriting Logic and Maude Language

a well-rounded understanding of this formal method and its tools, starting with the basic concepts
of rewriting logic, followed by introductions to the Maude system, Maude Strategy Language and
RT-Maude. For more details, see [53] and [11].

II.3.1 Rewriting theories

The utility of rewriting logic has been widely substantiated, especially in its capability to provide
robust reasoning about the behavior of concurrent systems.

II.3.1.1 Rewriting logic

Rewriting logic finds its application in multiple computational logic. For example, in equational
logic, calculations are interpreted as equations between terms, whereas, in constraint satisfaction
logic, a rewriting rule can be seen either as a syntactic transformation or as a logical inference of a
new formula [12], [44]. In the context of practical applications, Maude represents a formal language
that is particularly effective in the verification of concurrent systems. Developed as an algebraic
specification and declarative programming language, Maude is simple, yet expressive and efficient.

- Theories of Rewriting Logic

In rewriting logic, we find equational theories dedicated to specifying the static aspects of
systems, rewriting theories that describe the possible evolutions of the states of a concurrent
system, and also real-time rewriting theories for systems with temporal constraints. Adding a
set of rewriting rules extends equational theories that specify the possible transitions between
states in concurrent and distributed systems. Using them enables the study of the dynamics
of these systems and allow for the formal specification and analysis of system behavior, the
rewriting rules are employed as rewriting axioms, taking the form t → t′, where t and t′ are
algebraic terms. Two interpretations can be associated with rewriting rules [53], [57]:

1. Computational: In this view, the rewriting rule t → t′ is interpreted as a local transition
in the system. That is, t and t′ model parts of the system’s distributed state, and the
rule describes a change from a part of the global state instantiated according to t to the
state corresponding to the model t′.

2. Logical: In this perspective, the rewriting rule t → t′ is seen as an inference rule. That
is, a formula of the form t′ can be inferred from a formula of the form t.

According to different points of view for understanding and applying rewriting theory, these
interpretations could be interpreted as a computer model or as a logical framework. In the
following subsections, we present the different formal notions necessary for understanding the
logic of rewriting

Definition II.1 (Rewriting Theory). Formally, a rewriting theory is defined by a quadruplet
ℜ = (Σ, E, ϕ,R)

17

Chapter II. Basics and Prerequisites

[64], where :

- (Σ, E) is the membership equational theory modulo which the rewriting is operated;

- ϕ is a function that assigns to each function symbol X =
{
f : x1 : k1, ..., xn : k1

}
of Σ a

set ϕ(f) ⊆
{
1, ..., n

}
of frozen arguments;

- R is a set (universally quantified) of rewriting rules of the form (∀X)t → t′, with X ={
x1 : k1, ..., xn : kn

}
a set of typed variables and t, t′ ∈ TΣ(X)K .

Given a rewriting theory, the set of formulas implied by this theory is defined by the deduction
rules of rewriting logic. These rules formalize the notion of rewriting terms by defining how
theorem proofs are formed. The static structure of a system is described by the algebraic
specification (Σ, E) while the dynamic structure is described by the rewriting rules R.

- Deduction in Rewriting Logic

Computation in a concurrent system is a sequence of transitions (rewriting rules) executed from
a given initial state. It corresponds to a proof or deduction in rewriting logic. This deduction
is inherently concurrent and allows for accurate reasoning about the system’s evolution from
one state to another [12], [57].

Definition II.2 (Deduction Principle). Given a rewriting theory ℜ = (Σ, E, ϕ,R), we say
that the sequence [t] → [t′], is provable in ℜ and we write ℜ : [T] 7→ [T ′] if and only if [t] → [t′]

is obtained by a finite application of the following deduction rules:

- Reflexivity: For each term [T] ∈ TΣ,E(X),

[T] 7→ [T ′]

where TΣ,E(X) is the set of Σ-terms with variables built on the signature Σ and the
equations E;

- Congruence: for each function f ∈ Σn, n ∈ N,

[t1] → [t′1]...[tn] → [t′n]

[f(t1, ..., tn)] → [f ′(t′1, ..., t
′
n)]

- The congruence: for each rule [t(x1, ..., xn)] → [t′(x1, ..., xn)] in R :

[w1] → [w′
1]...[wn] → [w′

n]

[t(w̄/x̄)] → [t′(w̄′/x̄′)]

Knowing that t(w̄/x̄) describes how to perform a substitution operation; Essentially, it
means that you replace each variable xi in the term t with a corresponding value wi ,
where x̄ is the vector x1, ...xn of variables;

18

II.3. Rewriting Logic and Maude Language

- Transitivity:

[t1] → [t2][t2] → [t3]

[t1] → [t3]

Generally, deduction in rewrite logic is an iteration of the following steps:

1. The replacement rule identifies all rewrite rules whose left-hand side matches a sub-term
of the current global state. Since rewriting logic is a logic of change, the reflexivity rule,
when applied to unidentified sub-terms, transforms them into themselves.

2. The rewrite rules, identified by the replacement rule along with the reflexivity rule, are
executed concurrently and independently of each other. The congruence rule combines
the effects, or right-hand members, of these rules to construct the new global term.

3. Steps 1. and 2. are repeated until no more rules are applicable.

4. Finally, the transitivity rule constructs the sequence of rewrites made from the initial term
to the final term. The sequence thus constructed corresponds to a possible computation
in the concurrent system.

The rewrite sequences for a system describe all the concurrent transitions of the system as
axiomatized by ℜ. Logically, they describe all the possible deductions of one formula from
another formula, also axiomatized by ℜ. The previously given inference rules can be schema-
tized as shown in Figure II.4. In this context, the rewrite sequences serve as a comprehensive
guide to understanding how the system evolves over time, capturing all possible state changes
logically. This provides a powerful way to analyze and understand the behavior of concurrent
systems formally.

II.3.1.2 Real-time Rewriting Theory

The Real-time Rewriting Theory is a formal framework for modeling and analyzing real-time and
hybrid systems. In this context, special rewriting rules called tick rules are used to represent the
passage of time or the duration of an event in the system. These tick rules work in parallel with tra-
ditional rewriting rules that describe the instantaneous state changes in the system. The equational
theory underlying such a rewriting theory must also include a representation or axiomatization of
the concept of time. Additionally, a specific operator is often defined to encapsulate the global state
of the system. The purpose of this operator is to ensure a uniform flow of time across all components
of the system, in accordance with the execution of the tick rules[10]. In this framework, one can
accurately model how time and the states of the system evolve, which is crucial for understanding
and verifying the properties of real-time and hybrid systems:

l :
{
t
}

τl−→
{
t′
}
ifCond

19

Chapter II. Basics and Prerequisites

Figure II.4: Inference Rules of a Rewrite Theory.

Where, l refers to the label of the rewriting rule, and the term τl, of the sort Time, represents
the duration of the rewriting step. This labeling and timing information allows for a precise under-
standing of the time-related aspects of system behavior, adding another layer of detail to the model.
Therefore, Real-time rewrite theories serve as a natural model for the behavior of real-time systems.
The expressiveness of these theories provides the models of these systems with formal semantics, as
well as advanced forms of communication and data types [62]–[64].

Definition II.3 (Real-Time Rewrite Theory). : A real-time rewrite theory is a quadruplet ℜ =

(Σ, E ∪A, ϕ,R), where:

1. (Σ, E ∪ A) is the underlying equational theory that describes the states of the system: Σ is
its signature, E is the set of equations, and A is the set of equational attributes. The theory
(Σ, E ∪ A) includes another underlying equational theory (ΣT ime, ET ime) that formalizes the
concept of "time".

2. ϕ is a function that associates to each operation the "frozen arguments" (arguments that
cannot be rewritten).

3. R is a set of rewrite rules, composed of two types of rules: instantaneous rules IR of the form
l : t → t′ifCond , and time advancement rules TR which are of the form l : t

τ→ t′ifCond (τ

20

II.3. Rewriting Logic and Maude Language

is the duration of time advancement).

II.3.2 Maude Language: modules and extensions

Maude is a high-performance, declarative language that faithfully implements all theoretical con-
cepts of rewriting logic. Developed by Jose Meseguar and his team at SRI International’s computer
science lab, it excels in both executable specification and declarative programming for a wide range
of applications, including equational and rewriting logic[11]. In Maude, a program essentially rep-
resents a rewriting theory consisting of a signature and a set of rewriting rules. Computations in
this language are essentially deductions in rewriting logic based on the axioms specified in these
theories or programs. The language is not only expressive but also efficient, capable of millions
of rewrites per second, making it competitive with high-level languages in terms of efficiency. It
also supports network programming through the use of sockets. In terms of data types, they are
algebraically defined by equations, while the dynamic behavior of the system is defined by rewriting
rules. Maude also supports object-oriented programming, including features like multiple inheritance
and asynchronous message passing.

II.3.2.1 Maude Languages modules

To specify a system, Maude employs three types of modules: functional modules for implement-
ing equational theories, system modules for implementing rewriting theories that define a system’s
dynamic behavior, and object-oriented modules for implementing object-oriented rewriting theories.
These object-oriented modules can essentially be reduced to system modules. Overall, Maude system
provides a robust, efficient platform for algebraic specification and modeling of concurrent systems,
making it one of the leading languages in its domain.

1. Functional modules

In Maude, a functional module is specified using the keywords:

fmod MODULNAME is

<Module Body>

endfm

Where the module body defines a theory (Σ, E ∪ A, ϕ) in membership equational logic, the
signature Σ includes sorts (indicated by the keyword sort), subsorts (specified by the keyword
subsort), and operators (introduced with the keyword op). Operator syntax is user-defined,
indicating the position of arguments with the symbol (_). Certain arguments can be marked as
frozen using the keyword frozen(PositionArgument).

The E is a set of equations and membership tests and A is a set of equational axioms introduced as
attributes of some operators in σ, as illustrated in Table. II.1 they include associativity (keyword

21

Chapter II. Basics and Prerequisites

assoc), commutativity (keyword comm), and identity (keyword id). Equations are expressed with
the keyword eq or ceq for conditional equations, and membership tests are introduced with the
keywords mb or cmb for conditional tests. Variables can be declared in the modules using the
keywords var or vars, or directly introduced in the equations and membership tests in the form
of an expression var: sort.

Table II.1: Description of Sets E and A and Their Associated Keywords.

Symbol Description
E Set of equations and membership tests (conditional included)
eq Specifies an equation
ceq Specifies a conditional equation
mb Specifies a membership test
cmb Specifies a conditional membership test
A Set of equational axioms as operator attributes
assoc Specifies associativity of operators
comm Specifies commutativity of operators
id Specifies identity element for operators
var Declares a single variable
vars Declares multiple variables
var: sort Introduces a variable in the form of an expression

In summary, functional modules in Maude define a theory in membership equational logic, spec-
ifying data types, operations, variables, equations, and axioms. The module body consists of
declarations such as sorts, operators, variables, and comments. These modules form the basis
for simplification rules, enabling the evaluation and reduction of each expression to its canonical
form, which is unique and independent of the equation application order.

2. System modules

In Maude, system modules are used to define the dynamic behavior of concurrent systems by
extending functional modules with a set of rewrite rules. These modules are introduced using the
keywords:

mod MODULNAME is

<Module Body>

endm

The module body outlines a rewrite theory ℜ = (Σ, E ∪ A, ϕ,R), where (Σ, E ∪ A, ϕ) is the
underlying equational theory. Rewrite rules R are introduced with the keywords rl or crl. They

22

II.3. Rewriting Logic and Maude Language

are specified in Maude with the syntax crl [l] : t => t’ if cond. If the rule is unconditional,
the keyword crl is replaced with rl, and the if cond clause is omitted.

This system module specifies a rewrite theory that includes sorts, operations, variables, equations,
membership axioms (both conditional and unconditional), as well as conditional and uncondi-
tional rewrite rules. A rewrite rule is activated when its left-hand side matches a portion of the
system’s global state and any specified conditions are met.

In summary, system modules in Maude extend functional modules to include rewrite rules for
expressing concurrency in systems. These rewrite rules are specified using the keywords rl

for unconditional rules and crl for conditional rules. They become active based on matching
conditions in the system’s global state.

3. Object-oriented modules

Full Maude extends Core Maude to provide powerful and extensible algebraic modules that sup-
port object-oriented programming. Object-oriented modules are introduced with the keywords:

(omod MODULNAME is

<Module Body>

Endom)

These modules encompass a rewrite theory ℜ = (Σ, E ∪ A, ϕ,R) and support the specification
and manipulation of objects, messages, classes, and inheritance.

In this object-oriented system, a concurrent OO-system is modeled as a multiset of juxtaposed
objects and messages. Interactions between objects are governed by rewrite rules. An object is
represented as < O : C | a1 : v1, ..., an : vn >, where O is the name of the object, an
instance of class C, and ai are the names of the object’s attribute identifiers, and the vi’s
are the corresponding values, for i = 1...n.

Class declarations follow the syntax class < C | a1 : s1, ..., an : sn, where C is the class
name and si are sorts for attribute ai. Subclasses can also be declared, making use of inheritance.
Messages are declared using the keyword msg.

In Full Maude, the general form of a rewrite rule in object-oriented syntax is:

crl [r] : M1 ... Mn < O1 : F1 | a1 > ... < Om : Fm | am >

=>

< Oi1 : F’i1 | a’i1 > ... < Oik : F’ik | a’ik > M1’ ... Mp’

if Cond .

Here r is the rule label, Ms, s ∈ 1..n nad Mu′ , u ∈ 1..p are messages, Oi, i ∈ 1..m and Oil, l ∈ 1..k

are objects, and Cond is the condition for the rule. If the rule is unconditional, crl is replaced
by rl, and the if Cond clause is omitted.

23

Chapter II. Basics and Prerequisites

Full Maude enhances Core Maude by offering rich support for OO programming, i.e. it enables
the representation and manipulation of objects, messages, and classes and the use of inheritance.
It also provides a more user-friendly syntax for defining rewrite rules in this context.

Moreover, Full Maude provides a predefined module named CONFIGURATION that declares
sorts representing essential concepts like objects, classes, messages, and configurations. It can
also use system and functional modules. Rewrite rules for objects utilize the associative and
commutative nature of multisets, making the configuration more flexible, and allowing objects
and messages to interact in a concurrent transaction.

4. Predefined modules

The predefined modules in Maude are stored in a specific library and can be imported by other
user-defined modules. These modules are introduced in Maude’s source files prelude.maude

and model-checker.maude. For example, the modules BOOL, STRING, and NAT are predefined.
They declare sorts and operations for manipulating boolean values, strings, and natural num-
bers, respectively. The file model-checker.maude contains predefined modules that interpret the
necessary tools for using Maude’s LTL (Linear Temporal Logic) Model Checker. This tool allows
for model-checking tasks, where one can verify the properties of a system modeled in Maude
against temporal logic formulas.

II.3.2.2 Maude Language extensions

Maude comes equipped with other notations and extensions that allow for different expressions
of the structure and dynamics of specified systems. It mainly relies on the object-oriented paradigm
[64], [74] to define the two following extensions:

1. Maude Strategy Language

This language defines an extension dedicated to strategies [9] [55] [54] aimed at the modular
separation between rewriting rules and their controls (execution) using strategies. In the
context of our work, we use this Maude extension to define the behaviors of complex and
distributed systems; this language allows for a mechanism to guide the rewriting of their
behaviors.

The behavior of a system in Maude depends solely on its rewrite rules and their applications.
However, in Maude’s strategy language, this is no longer the case. Thanks to the separation
provided by this language, we can have multiple strategy modules for the same Maude system
module, where each module offers a definition of a different execution path, thus offering more
flexibility in various executed scenarios. A behavior will depend on the strategies that control
the rewrite rules. We define it below:

Definition II.4 (Maude Strategy Module). : A strategy module declared by the Maude strategy
language can be in the form: ℜ = (Σ, E ∪A,S(R,SM)), where:

where:

24

II.3. Rewriting Logic and Maude Language

Table II.2: Key Elements in a Strategy Module

Instruction Description
smod Declaration of a Maude strategy module
Module1 The module whose rewrites we want to control

ModuleStrategieX (Optional) Importing another Maude strategy module to use its strategies in
this module

strat Declare a new strategy
S1 The name (identifier) of the strategy
@ MX The declared strategy will be applied to terms of a kind MX

sd Definition of a strategy (sd: strategy definition) followed by the
identifier and expression of this strategy

Expression A term to describe the strategy

- Σ, E, and A represent the equational theory of the evolving system;

- S is a semantics describing the behavior of a system, built from a module R containing
rewrite rules, and a set of strategies SM that will guide the rewriting of these rules using
strategies.

The syntax of the strategy modules is as follows:

smod <module name> is

<declarations and expressions>

endsd

Where smod and endsd are the keywords indicating the beginning and end of the strategy mod-
ule, while the declarations and expressions represent variables, imports from other modules,
and strategy declarations [75]. Generally, a Maude strategy module has the generic syntax
presented in Table II.2.

To execute a strategy in Maude’s strategy language, the srew command is used with the
following syntax: srew Term using Expression, where Term is the initial state (or the state
at a given moment) of the system, Expression is the strategy to apply to this term.

2. Real-Time Maude

The Real Time Maude system (RT-Maude) [62], [63] is a language and a tool allowing the
formal specification and analysis of time-sensitive and hybrid systems. Its specification for-
malism, based on rewrite logic, is particularly suitable for describing real-time object-oriented
systems. The tool is implemented in Maude as an extension of Full Maude. The RT-Maude
specification language allows modeling real-time systems in terms of real-time rewrite theo-
ries. It allows implementing these rewrite theories via timed modules or timed object-oriented

25

Chapter II. Basics and Prerequisites

modules whose body is encapsulated between the keywords tmod and endtm (specifying the
beginning and the end of a timed module):

tmod <module name> is

<declarations and expressions>

endtm

Note that each timed module must essentially include:

- An abstraction of the time domain (of sort Time). The time domain managed by timed
modules can be discrete or dense. For example, to handle discrete time in a timed
module, the user must import the predefined NAT-TIME-DOMAIN-WITH-INF module from
RT-Maude, which defines the time domain as natural numbers by adding the constant
INF of supersort TimeInf.

- The GlobalSystem sort and a free constructor _, encompassing the entire state of the
modeled system.

- Ordinary rewrite rules modeling instantaneous changes in a system. These rules have the
same syntax as those of the system modules in Maude.

- Tick rules to model the passage of time in a system, these rules have the following syntax:

crl [label] : {t} => {t\’} in time D if cond .

Where t and t′ are terms of sort System denoting the state of the system, cond is the
condition of the rule, and D is a term, which can contain variables, of sort Time indicating
the duration of the rule.

An initial state of a system modeled in RT-Maude must be a term reducible to terms of
the form t by the application of equations in the specification. The form of the tick rules
thus ensures a uniform passage of time throughout all parts of the system. In this case,
it is necessary to determine the time advancement strategy to guide the application of
tick rules. The choice of such a strategy is made by the following RT-Maude command:
(set tick def r.) where r is a term of sort Time, indicating the step of advancement
in time defined by the user and attempted by RT-Maude with each application of a tick

rule.

II.3.3 Formal Analysis and Execution

In Maude, a rewriting theory is specified as a system module, offering an executable mathematical
model. This allows Maude specifications to simulate various behaviors of systems or perform different

26

II.3. Rewriting Logic and Maude Language

types of formal analyses. When appropriate conditions are met, these mathematical models can be
verified to ensure they meet defined properties or provide counterexamples that show a violation of
a given property. Maude is equipped with numerous formal analysis techniques and tools, such as
invariant verification, theorem proving, LTL model checking, termination analysis, and consistency
analysis. This section focuses on semantic execution, formal analysis and invariant verification, as
they are relevant to the thesis at hand. For further details, the reader can consult references [9].

II.3.3.1 Semantic execution under Maude

In a module written in Maude, rewriting rules are the foundational unit of execution, interpreting
the local actions of the modeled system. These rules can be executed in constant time and con-
currently. Maude enables simulation of such rewrites, either through rewriting rules or equational
rewrites, in a module M through two main commands: reduce and rewrite[9], [11].

By following the syntax: reduce {in module:} term ., and the syntax: rewrite {in module:} term .,
we use a set of commands to facilitate the rewriting of an initial term using rules, equations, and
membership axioms in the specified module. The command (reduce: red) allows an initial term to
be reduced by applying equations and membership axioms in a given module, and both commands
(rewrite : rew) and (fair rewriting : frew) execute a single rewrite sequence from a given initial term,
respectively.

Complementing this, RT-Maude expands on these functionalities with a set of commands for sim-
ulation, formal analysis, and verification of LTL properties through model checking. The execution
and analysis of a timed module in RT-Maude are contingent upon the chosen strategy for applying
’tick’ rules of the module. Notably, RT-Maude’s time advancement techniques involve sampling the
state space of a timed system. Rather than covering the entire time domain, only selected moments
are considered, enabling the verification of a system’s behavior in a subset of states accessible at
specific times. This approach is particularly effective provided the system does not display Zeno
behavior, where an infinite number of timed steps occur in a bounded duration.

To simulate the possible behavior of a system, RT-Maude has two modes of timed rewriting, imple-
mented respectively by the standard timed rewrite command (or trew) and the timed fair rewrite

command (or tfrew). Each of these commands simulates a possible behavior of the system, according
to its own strategy, up to a given duration of time.

II.3.3.2 Invariant Verification

Formal verification of models on systems specified in Maude is carried out using tools available
around the Maude system, among which the search command plays a pivotal role. This command
is not only used for accessibility analysis but also for invariant verification, a straightforward yet
highly useful technique. Invariant verification is commonly employed for verifying safety properties in
diverse computer systems, and can also be utilized for liveness properties. Given a transition system
t and an initial state s0, an invariant I is a predicate that defines a subset of states containing s0

and all states accessible from s0 through a finite number of transitions[9], [10].

27

Chapter II. Basics and Prerequisites

In this context, safety is confirmed if the invariant holds, signifying that no undesirable events
occur. Similarly, liveness properties are verified by considering the opposite scenario, i.e. desirable or
target states. The search command in Maude is instrumental in this process, with its syntax being:
search [n, m] in <module-name>: <Term-1> <search-arrow> <Term-2> <Condition>. Here, n
and m are optional arguments setting the limits on the number of solutions and the maximum
depth of the search, respectively. The <module-name> specifies the module where the search occurs,
<Term-1> and <Term-2> represent the initial and target patterns, respectively, and <search-arrow>

dictates the type of rewriting proof.
For accessibility analysis in Real-Time systems, RT-Maude also offers a timed search command

(tsearch) to verify whether a state t in a system is accessible from an initial state within a given time
limit. This command defaults to a breadth-first search strategy in the computation tree (accessibility
tree).

Furthermore, the model checking verification of properties expressed in linear temporal logic
(LTL) is another critical aspect of system analysis in Maude. This involves an exhaustive exploration
of all states accessible from an initial state, using a Kripke structure K and a temporal logic property
Φ|, to determine if K |= Φ. This method is particularly valuable as it can return an execution trace
of the system violating the property when it is deemed invalid [9].

II.3.3.3 Example: River Crossing Problem in Maude

The example involves a classic problem known as the "River Crossing Puzzle" [86]. In the Maude
implementation, the scenario involves a shepherd who needs to transport a wolf, a goat, and a
cabbage across a river. The challenge is that the boat can only carry the shepherd and one other
item at a time, and if left unattended, the wolf would eat the goat, and the goat would eat the
cabbage.

1 mod RIVER-CROSSING is
2 --- Define sides of the river
3 sort Side . ops left right : -> Side .
4 op change : Side -> Side .
5 eq change(left) = right .
6 eq change(right) = left .
7

8 --- Define items that can be taken across the river
9 sort Item . ops wolf goat cabbage none : -> Item .

10

11 --- Define the state of the system
12 sort State . op <_,_,_,_> : Side Item Item Item -> State .
13

14 --- Variables for sides and items
15 vars S W G C : Side .
16

17 --- Rules for crossing the river with or without items
18 rl [crossWolf] : < S, wolf, G, C > => < change(S), none, G, C > .
19 rl [crossGoat] : < S, W, goat, C > => < change(S), W, none, C > .
20 rl [crossCabbage] : < S, W, G, cabbage > => < change(S), W, G, none > .
21 rl [crossAlone] : < S, W, G, C > => < change(S), W, G, C > .
22

28

II.4. Conclusion

23 --- Rules for handling unwanted interactions
24 crl [wolfEatsGoat] : < S, wolf, G, C > => < S, none, G, C > if S = G /\ S =/= change(C) .
25 crl [goatEatsCabbage] : < S, W, G, cabbage > => < S, W, G, none > if S = G /\ S =/= change(W) .
26 endm

The RIVER-CROSSING module defines the fundamental logic of the problem, including state defi-
nitions and rules for changing states based on actions taken.

- Sorts and Operations: Define entities like Side, Item, and State to represent the sides of
the river, the items (wolf, goat, cabbage), and the current state of the game, respectively.

- Change Function: Switches the side from left to right and vice versa.

- Crossing Rules: Define how each entity can cross the river, either with the shepherd or
alone.

- Conflict Rules: Prevent scenarios where the goat can be eaten by the wolf or the cabbage
by the goat when the shepherd is not present.

In this example, we use Maude Strategy Language to specify which actions (crossing actions)
should be prioritized and under what conditions. This is crucial for such problems, where not all
actions are viable due to the constraints (the wolf eating the goat, etc.). The strategy is integrated
with the existing River Crossing model RIVER-CROSSING by including its module. This integra-
tion allows the strategy to directly govern and guide the application of rewrite rules defined in the
original module.

1 mod RIVER-CROSSING-STRATEGY is
2 --- Import the core River Crossing module
3 including RIVER-CROSSING .
4

5 --- Define the strategy for action execution
6 op strategy : -> Strategy .
7 eq strategy = (crossWolf < crossGoat < crossCabbage < crossAlone) ; not(wolfEatsGoat);

not(goatEatsCabbage); repeat .
8 endm

In this module, "strategy" pecifies the order of operations using a priority-based strategy (cross-
Wolf < crossGoat < crossCabbage < crossAlone), and avoids the conflict states (wolfEatsGoat and
goatEatsCabbage) attempting to apply these rules in a specific sequence and repeating this sequence
to explore possible solutions.

II.4 Conclusion

In this chapter, we introduced the foundations adopted in our work. Initially, we presented
MDE principles, we have described MDE method, MDA’s principles, and the three-layer model to
guide development from abstract requirements to specific implementations. Subsequently, we have
explained how these models and Meta-Models can be categorized by general-purpose languages like

29

Chapter II. Basics and Prerequisites

UML and domain-specific languages for tailored designs. Moreover, we have presented the IEEE-
ISO 42010 standard to support structured software architecture, promoting clear understanding and
stakeholder communication throughout a system’s lifecycle. We also introduced various concepts
related to the Maude language and its different extensions. More specifically, we introduced the
syntax and notations of the Maude (including Real-Time and Maude Strategy) Languages and
formal analysis techniques in the Maude system.

30

Chapter III

Key Concepts, Definitions and State of the Art

Contents
III.1 Introduction . 31

III.2 Systems-of-Systems . 32

III.2.1 Definitions . 32

III.2.2 Dimensions . 34

III.2.3 Categories . 35

III.2.4 Application domains . 39

III.3 Current research on SoSs modeling . 42

III.3.1 Semi-formal methods . 42

III.3.2 Formal methods . 49

III.3.3 Synthesis . 54

III.4 Conclusion . 56

III.1 Introduction

Systems-of-Systems (SoSs) exist in many sectors such as Health, Emergency, Aerospace, and
Military sectors. They often appear as a collaboration of Constituents systems (CSs) designed to
perform specific goals and missions that none of the CSs can accomplish. This collaborative nature
makes the design and development of such systems differ from that of traditional software applica-
tions because they have characteristics and needs that particularly distinguish them from traditional
systems. Moreover, SoSs are subject to strict technical constraints, functional performance, tem-
poral proprieties, resource consumption, and emergent behavior. These constraints imposed by the
system’s needs must be considered from the early phases of the development cycle.

31

Chapter III. Key Concepts, Definitions and State of the Art

In this chapter, we firstly present a state-of-the-art on SoSs, containing several definitions, char-
acteristics and dimensions, as well as the different types of SoS and their application domains.
Secondly, we focus on the design approaches for SoS which we can position our research work. The
approaches considered in our review of the existing aim at designing SoSs in an abstract and modular
way to reduce its complexity.

III.2 Systems-of-Systems

In an era characterized by technological complexity and systemic interdependence, distributed
systems frequently operate as constituents of more complex meta-systems, commonly designated as
SoS. The conceptual understanding of SoS is imperative for the effective design, analytical evaluation,
and operational management of complex assemblies across a broad array of disciplines, including
but not limited to engineering and healthcare. This section is structured to explore the complicated
nature of SoSs, aiming to provide a rigorous examination of its constituent definitions, operative
dimensions, and typological categorizations.

III.2.1 Definitions

The understanding of the term "System of Systems" lacks a widely accepted definitionThe un-
derstanding of the term "System of Systems" lacks a widely accepted definition, despite its frequent
usage. The use of a separate term implies a taxonomic grouping, suggesting the existence of distinct
classes within systems. According to IEEE 1471[52], [72], a system is defined as:

Definition III.1 (System). a collection of components organized to accomplish a specific function
or set of functions.

Under this definition, a personal computer can be considered a system, and its components
such as the disk drive, video monitor, processor, and others can be regarded as individual systems
within it. However, the term SoS may not have distinctive power in a formal sense. Nevertheless,
the widespread use of the term indicates the value researchers have found in distinguishing highly
complex and distributed systems from less complex and compact ones. The common understanding
suggests the integration of significantly complex components into a larger system.

According to [23], [51], various discussions by researchers and experts from different viewpoints
reflect the complex nature of SoS, they also argue that although until now there is no consensus on
a specific definition of SoS [39], [51], [61], but there is some convergence in the literature on their
main definitions and characteristics, this includes these examples:

- The author [46] has defined an SoS as large-scale, concurrent, distributed systems composed of
complex subsystems. These SoS are represented by “communicating structures”, which focus
on the systematic modeling of the SoS, emphasizing aspects such as communication, data
traffic and data placement. In these structures, components of subsystems are represented as
nodes connected by edges in networks. Nodes have a memory that can hold items, and those

32

III.2. Systems-of-Systems

items can move from one node to another along connecting links. Nodes and networks can
have a hierarchical organization.

- INCOSE [34] defines a SoS as an assembly of independent CSs that come together to form
a more extensive system, providing capabilities that are beyond what any individual system
could achieve alone. These independent systems collaborate to generate collective behaviors
that they could not produce independently.

- The authors of [41] consider a SoS as an advanced form of composite systems, with a particular
focus on the challenges of integrating autonomous and independent systems within large-scale
projects. Moreover, SoSs are characterized as complex multi-systems that establish a global
objective and comprise interdependent CSs that work together to achieve that objective.

- In [51], the authors define the term SoS as a taxonomic grouping, indicating the presence of
distinct classes within systems. This classification can be beneficial in engineering when it
reflects specific demands in design, development, or operation. Generally, a SoS is understood
as a collection of components that collectively produce behavior or functionality beyond what
any individual component can achieve.

- Other definitions refer to a SoS as assemblies of useful, independent sub-systems that col-
laborate to form a large-scale system. This collaboration enables capabilities that individual
CSs could not achieve on their own. The definition and focus of SoSs are generally influenced
by their specific application domains. Often, the term SoS is used to denote a package of
interoperable systems integrated to function as a single entity for achieving a specific mission
capability [6], [15], [18]

In the context of this thesis, we define a System-of-Systems (SoS) as a collection of distributed and
complex CSs that interact within a network structure. These CSs, which are physically and func-
tionally heterogeneous, collaborate to achieve a unified capability or system function that surpasses
the capabilities of any individual CS. The SoS is driven by specific missions, which give purpose and
direction to the coordinated efforts of the CSs. These missions are aimed at achieving objectives or
goals that single CSs could not accomplish independently. Within this context, the missions lead
to the emergence of new properties and behaviors through the interaction of CSs, underscoring the
transformative and dynamic nature of SoS. The missions emphasize the complexity and interdepen-
dence among CSs, involving multiple heterogeneous systems working in unison to achieve a global
mission. To support these missions, the SoS relies on the allocation and employment of necessary
elements such as Resources, Control Mechanisms and Capabilities.

The coordination and integration of these missions and necessary elements enable the SoS to
achieve its desired outcomes with enhanced efficiency, effectiveness, and scalability. The interactions,
interdependencies, and effective management of missions and these elements are fundamental for the
successful functioning and performance of the SoS.

33

Chapter III. Key Concepts, Definitions and State of the Art

III.2.2 Dimensions

Based on the various definitions presented in the previous section, it’s evident that there is
no singular, formal definition of what constitutes a SoS. Nevertheless, numerous researchers have
attempted to define and characterize SoS through their publications. These academic efforts share
common characteristics that describe the domain of SoS in multi-dimensional terms, drawing from
shared concepts and aspects. In this section, we aim to provide an overview of these dimensions,
presenting the commonly shared characteristics across different works. This serves to highlight the
range of perspectives while also emphasizing the converging understanding of what constitutes an
SoS [15], [23], [51], [61]:

- Autonomy of CSs: Autonomy in SoSs refers to the degree to which CSs operate based
on their own rules rather than external governance. This concept is linked to individual
ownership and managerial independence, allowing systems to fulfill their own objectives while
also contributing to the SoS. The notion of autonomy is pivotal in SoS engineering and implies
that constituents should have the capacity for purposeful behavior and goal-setting.

- Independence: Independence in SoS signifies the capability of individual systems to operate
autonomously when disconnected from the larger structure. This trait is foundational in both
the design and operation of SoS, allowing CSs to display varied behaviors, some of which may
be opaque to SoS engineers. This highlights the need for model-based techniques that can
manage hidden information and dependencies.

- Distribution: Distribution in SoS encompasses the spatial or network-based dispersal of CSs
that are connected for communication or information sharing. This can refer to geographical
distribution across wide areas or to a network-based distribution involving concurrent pro-
cesses. In such frameworks, it’s critical to accurately model the allocation of system processes
to computational infrastructures and manage communication mechanisms, including potential
failures.

- Evolution: Evolution is a defining characteristic, manifesting in changes to functionality,
quality, and the composition of CSs. This evolution can be deliberate, often occurring through
adaptive or preservative interventions like system upgrades or responses to a changing en-
vironment. Such long-lasting, evolving systems do not have a permanent state. Given this
dynamic nature, model-based approaches for SoS engineering must provide mechanisms for
verifying the ongoing conformance of CSs’ interfaces during evolutionary steps. This ensures
that specified properties are preserved as the system evolves, requiring periodic re-verification
for compliance.

- Dynamic Reconfiguration: Dynamic reconfiguration refers to the ability of an SoS to au-
tonomously change its structure and composition, typically in real-time and without planned
intervention. This functionality is vital to the resilience of an SoS, allowing it to adapt to

34

III.2. Systems-of-Systems

fails and faults. Unlike evolution, which involves planned, small-scale changes, dynamic re-
configuration concerns the technical ability of the system to change its composition during its
operation. In order to support such dynamic capabilities, SoS models must offer abstractions
to dynamically change architectures and interfaces and must provide the means to reason
about these changing structures.

- Emergence of Behavior: Emergence in the context of SoS refers to the novel behaviors that
manifest from the collaborative interactions of CSs. These emergent behaviors provide a level of
functionality that individual systems could not achieve independently. Emphasis on emergence
places specific requirements on modeling and analytical methods for SoS. Specifically, these
methods must be able to capture and verify global properties at the SoS level, as emergent
behaviors often cannot be fully understood or articulated at the level of individual CSs. Tools
for modeling and analysis should allow the specification and verification of emergent properties,
as well as the identification of undesired emergent behaviors, such as feature interactions.

- Interdependence: Interdependence in SoS denotes the mutual reliance among CSs to achieve
a common overarching goal. Even though CSs maintain a degree of operational independence,
their integration into the SoS often necessitates a level of interdependence, potentially requiring
trade-offs in individual behaviors to meet the collective objectives. This concept encompasses
various related terms such as interrelationships, interdependencies, and belonging. Impor-
tantly, the coexistence of "Independence" and "Interdependence" in an SoS does not present a
contradiction; rather, it highlights the need for a delicate balance between the two, facilitating
both autonomous functionality and collaborative synergy. To effectively model and analyze an
SoS, methods should facilitate the explicit mapping of interdependence, enable the tracking
of mutual dependencies, and provide the means to evaluate the ramifications of changes in
individual CSs on the larger system configuration.

- Interoperability: Interoperability in SoS involves the integration of various CSs with different
interfaces, protocols and standards. This facilitates seamless interaction between existing and
new systems, ensuring consistent functionality. We address this aspect through various terms
such as simultaneous operation, capability integration and heterogeneity.

The Table. III.1 identifies a set of key dimensions that are crucial for understanding and exploring
the SoS domain [51], [61].

III.2.3 Categories

In SoS Engineering, recognizing and classifying the unique traits of CS is paramount for their
effective management and evolution. Unrecognized SoS often miss out on the advantages that come
with rigorous Systems Engineering (SE) practices. Understanding the key characteristics such as
objectives, authority, and interrelationships between the CS within the SoS can bridge this gap.
The U.S. Department of Defense and academic research provide a categorization that divides SoS

35

Chapter III. Key Concepts, Definitions and State of the Art

Table III.1: Key Dimensions in the SoS Domain.

Dimension Description
Evolution Reflects the ability of the SoS to adapt and evolve over time, high-

lighting the dynamic nature of systems interactions and the long-term
development of SoS capabilities.

Emergence of Behavior Describes new or unexpected behaviors that emerge from the interac-
tion of SoS components, not predictable from the properties of indi-
vidual components.

Dynamic Reconfigura-
tion

Addresses the SoS’s ability to change its configuration or functionality
in response to changing requirements or environments.

Distributed Systems Focuses on the challenges and characteristics of systems that are geo-
graphically distributed, emphasizing the importance of communication
and coordination among components.

into four primary types i.e. Directed, Acknowledged, Collaborative, and Virtual. These categories
hinge on elements like managerial control, adaptability, and common goals, as well as the degree of
independence among CSs. While this framework offers a useful guideline, it’s essential to remember
that it’s not strictly exclusive; a single SoS can display attributes from multiple categories. This
flexibility enriches the framework’s utility, allowing it to describe various types of SoS based on
their varying objectives and levels of authority among CSs, thereby providing a more comprehensive
understanding of SoS and their dynamics [17], [23], [61]:

Figure III.1: SoS and CSs Relationships in a Directed SoS.
In a Directed SoS: operators O2 and O3 accept direction from O1 in terms of the specification and
operation of the systems they own (O2 owns systems S2 and S3; O3 owns S4) This type of SoS is

highly controlled by the central managing entity (O1).

- Directed SoS: These systems are built for specific purposes and display a form of planned
emergence. CSs (CS) can operate independently but are centrally managed to meet specific
objectives. For example, healthcare systems or military command and control structures would
fall under this category. This type involves strong specification of a central decision-making

36

III.2. Systems-of-Systems

authority. Examples include: Health Care SoSs[3], [87], Mars Science Laboratory (MSL),
Military Command and Control [17], NexGen – US Air Traffic Management, Army’s Future
Combat systems in the US DoD, etc. This type has a central decision-making authority that
strongly specifies the objectives and operations. As the Figure III.1 shows.

Figure III.2: SoS and CSs Relationships in an Acknowledged SoS.
In an Acknowledged SoS: O1 directs the choice of systems and operation; O2 and O3 have a

contractual relationship (e.g. Service Level Agreement) with O1. In this case, the central managing
entity (O1) has less control over the systems owned by O2 and O3 (S2, S3, S4) and must rely more

on influence.

- Acknowledged SoS: Recognized by the DoD and also in academic literature, this category
acknowledges a shared purpose among the CS while retaining their independent management.
They focus on collaborative management at the SoS level but maintain technical independence
at the CS level. Examples include Smart Cities[3], NATO Alliance. Autonomy and ownership
are sustained, and changes are decided collaboratively based on common objectives. Examples
include: Smart Cities, NATO Alliance, SESAR-Single European Sky (EU), etc. Here, auton-
omy and ownership are sustained, and decisions are made collaboratively based on shared
objectives. Figure III.2 shows the relationships between the SoS and constituent systems in
the Acknowledged SoS.

37

Chapter III. Key Concepts, Definitions and State of the Art

Figure III.3: SoS and CSs Relationships in a Collaborative SoS.
In a Collaborative SoS: there is mutual agreement to collaborate; usually covered by agreements of
some form, but there is no overall managing entity; systems owners (O1, O2, O3) operate their

systems and collaborate with others to realize some shared benefit.

- Collaborative SoS: In this setup, the CS voluntarily collaborate for mutual benefits without
the compulsion of a centralized management. It often has limited or no power to enforce
decisions. Domains like regional crisis response and public transport employ such systems.
The concept of centralized management exists, but it has limited or no enforceable powers.
Examples include: Regional Area Crisis Response System [85], Public Transport Information
[3], [19], [40], Global Financial System Intelligent Transport Systems, Internet Engineering
Task Force. While a concept of centralized management exists, it has limited or no enforceable
powers. Figure III.3 shows the relationships between the systems and the SoS in Collaborative
SoS.

- Virtual SoS: Lacking any managerial control or common purpose, these systems are highly
emergent, making it challenging to discern their exact functionality. Examples include the
Internet and automated high-speed trading systems. Because they lack managerial control,
their behavior and fulfilled objectives are highly emergent. Examples include: Internet, Au-
tomated High-Speed Algorithmic Trading Systems, National Economies, etc. Due to the lack
of managerial oversight, their behavior and objectives are often unpredictable. Figure III.4
shows the relationships between systems and the SoS in Virtual SoS.

The core characteristics of CSs, namely objectives, authority, and inter-relationships—are what
principally differentiate SoS from other types of systems. Any system lacking these key traits
cannot be accurately classified as an SoS. Within this framework, it’s crucial to recognize that
SoS categorization is neither mutually exclusive nor comprehensive. Specifically, it’s common to
find a single SoS composed of local subsystems that belong to different categories. These mixed
categorizations arise because of variations in control and ownership levels among the CSs. Given this
complexity, stakeholders may hold conflicting views regarding the appropriate levels of control within
the SoS. This presents a challenge in developing models that accurately reflect these multi-faceted

38

III.2. Systems-of-Systems

Figure III.4: SoS and CSs Relationships in a Virtual SoS.
In a Virtual SoS: Owners (O1, O2, O3) access other systems through their own systems in order to
realize individually sought benefits, though high level emergent behaviour may still occur. There is
no overall goal, no central management and interoperation is achieved by recognized protocols, or

standards, not through individual agreements between pairs of systems.

control dynamics. The issue is particularly acute for SoS types that are Directed and Collaborative,
where different degrees of managerial control and autonomy come into play. Although the four types
of SoS —Directed, Acknowledged, Collaborative, and Virtual— are not the only ways to categorize
SoS, they provide a practical framework. The utility of this classification system lies in its ability
to describe a broad range of SoS configurations based on their objectives, authority levels, and the
nature of inter-relationships among the CSs.

III.2.4 Application domains

Today’s SoSs are ubiquitous and their applications span across an increasingly diverse array of
domains. Both scholarly research and practical studies have delved deeply into these domains. In
this section, we provide a synthesis of existing research efforts and literature on SoS to illustrate the
wide-ranging applications that define the SoS landscape. From healthcare to military systems, and
from intelligent transportation to global financial systems, SoS has a transformative impact across
sectors, underlining the importance of understanding its complexity and adaptability.

- Transportation: the transportation of goods and passengers is an essential activity for daily
lives. People use railways, traffic and road networks, vehicles, airplanes, ships, trains, sensors,
airports, road-side infrastructures, traffic management centers, satellites, and other transporta-
tion system components by adopting different variations of wireless communication technolo-
gies and standards. Each one of these components relies upon multiple modes of transportation
(air, water, and land transport, pipelines, cable transport, and space transport) and has its
own complexity that makes building a modern intelligent transport SoS largely trying to by-
pass problems related to sensor technology, distributed control communications, accounts, and

39

Chapter III. Key Concepts, Definitions and State of the Art

control mechanisms to improve safety, coordination, and services in traffic management while
sharing information in real time.

The authors of [19], have relied on the distinguishing characteristics of SoS and other related
traits (Networks, Heterogeneity and Trans-domain) to explain how the National Transporta-
tion System (NTS) can be viewed as a SoS. Likewise, despite transportation varies, commu-
nities’ needs, structures changes, and various complexities, the world today places before us
many realistic and well-known transportation SoS such as Intelligent Transport Systems (ITS),
Air Transport System (ATS) and National Airspace System (NAS), National Transportation
System (NTS), Air Traffic Management SoS (ATM), Maritime Transport SoS (MTSoS), Next
Generation Air Transport (often What is referred to as NexGen) and unmanned aerial vehicle
(UAV) [33], [40], [61].

- Healthcare: A HSoS can be defined as an arrangement of independent large scale complex,
dispersed CSs. HSoSs also exhibit several key characteristics of a general SoS. First, they ex-
hibit operational and managerial independence. For example, hospitals and organizations such
as HMOs, though they work together, work independently of each other. Similarly, government
funding agencies such as Medicare/Medicated and physicians, hospitals work independently
of each other. Second, they are geographically dispersed with no central management. Third,
healthcare systems exhibit evolutionary development in the sense that they change continu-
ously in response to government regulation needs and new threats [87].

In fact, the integration of different computational services and medical devices of MSoS’ CSs
can perform various operations in real-time, and the different medical devices operate on/or
near the human body. Since these applications are critical and impact patients’ life, there is
a strong need to ensure efficiency, safety, reliability, and correctness. It is also important to
maintain the right timing of the behavior of such components [33].

- Military Defense: Most military missions depend on sets of Government defence organi-
zations to work together effectively as a SoS to provide the needed user capability whether
those missions are implemented by a single nation or by a coalition. National defence is one of
the leading SoSs application domains because of various domains where SoS occur in military
applications like missions, platforms and information technology. Example of the type of mis-
sion systems includes command and control, communications, and IT-based SoS.i.e. systems
interoperate in this environment as missions exchange critical operations to support different
objectives in a constantly changing, sometimes adversarial, environment. Most military mis-
sions depend on sets of systems to work together effectively as a SoS to provide the needed
user capability whether those missions are implemented by a single nation or by a coalition
[17], [48].

- Smart Houses: “Smart home” technology for autonomous service delivery requires a constant
focus on the needs and interests of inhabitants. SHSoS has become a widely accepted term
to describe internal and external surveillance and supervision systems in houses. The nature

40

III.2. Systems-of-Systems

of these systems is inherently complex due to the different independent and interoperated
complex CSs that interact with each other within the SHSoS. Besides, the interests of key
inhabitants and their customs and manners are translated into a myriad of needs that lead
to heterogeneity in the delivery and management of SHSoS services. The major components
involved in the SHSoS are security protocols, detection sensors, energy usage and control
information exchange[33].

- Smart Energy Grids: The smart grid is a well-known SoS application and it is considered
one of the most complex systems ever. It has made it possible to improve living standards
for humans as all aspects of life are directly related to central/industrial power plants, energy
storage and transmission facilities, renewable energy resources [33]. A smart grid can be
considered as SoS based on the characteristics that define what constitutes the SoSs [1]:

- A single component can operate effectively even if it is isolated from the overall network.

- All elements in the smart grid operate independently, although they together influence
the result of the whole network.

- Components can be isolated, added, integrated or retired at any time without causing an
impact to other parts of the electrical system.

- The integration of different CSs with various capabilities to serve stochastic energy loads
leads to emergent properties that fulfill the major purpose of the smart grid.

- The components of the smart grid are geographically dispersed. They are linked only
through information exchange channels.

- Emergency Management and Response: EMRSoS are varied and expensive. In these
type of systems, various operationally independent CSs intent to deliver the desired emer-
gent phenomenon of improving the efficiency and the reliability of fast response to handle
the threats, and manage emergencies by means of information technologies, social media, col-
laboration among professionals, local and national authorities and the community. Not all
disasters require the equivalent CSs assets to manage and resolve them. Therefore, various
components and technologies (e.g. unmanned aerial, ground vehicles, sensors, etc.) can be
integrated and deployed into the infrastructures to provide efficient search and rescue efforts
to manage emergency response and disaster recovery in the future [33].

- E-commerce: E-commerce serves as a real-world example of a SoS. It involves various inde-
pendent systems—like virtual marketplaces, payment handling, inventory management, and
shipping—that must interact seamlessly to achieve the common goal of facilitating online sales
and deliveries. Companies like Amazon employ decentralized architectures that integrate hun-
dreds of systems to support millions of customers. While e-commerce companies often own
many of these systems, giving them more control and flexibility, they also rely on systems
owned by external stakeholders, like payment processors or shipping services. This blend

41

Chapter III. Key Concepts, Definitions and State of the Art

of ownership creates challenges in development strategies and necessitates effective commu-
nication between system owners, making e-commerce a complex but illustrative example of
SoS[61].

III.3 Current research on SoSs modeling

The complexity of the dynamic nature of components in an SoS presents a significant challenge for
modeling and analysis. Addressing this challenge requires robust approaches and formalisms, ranging
from semi-formal to formal, each with its strengths and limitations[36], [88]. Semi-formal methods
like UML and SysML provide intuitive and flexible frameworks for capturing the architectural design
and facilitating communication among stakeholders. In contrast, formal methods such as ADL and
BRS offer rigorous, mathematically grounded tools for ensuring the correctness and reliability of
SoS, particularly in safety-critical domains. This means that the use of both of them will leverage
the strength of both formalisms and tools to create robust, adaptable, and executable models that
can aid in the design, simulation, and verification of complex SoS architectures. In this section,
we examine recent developments in SoS modeling methodologies, structured into two sub-sections:
Semi-Formal and Formal methods.

III.3.1 Semi-formal methods

The papers in this category focus on using SysML, UML profiles and other modeling languages
for the architectural design and analysis of SoS. These approaches, while structured, offer a degree
of flexibility and are tailored to facilitate understanding, communication, and practical application
in complex system environments[36], [88].

The authors in [59] have focused on the modeling of SoS using a SysML profile. The paper is a
part of the AMADEOS project and delves into the complexities of SoS, and it lies in developing a
conceptual model for SoS, providing a robust vocabulary to capture the complex interrelationships
within these systems. The model not only aids in understanding SoS but also serves as the foun-
dation for the SysML profile designed specifically for SoS modeling. The study demonstrates the
practical application of this SysML profile through a Smart Grid scenario. This application high-
lights the profile’s utility in modeling the high-level design of SoS architectures, supporting various
types of analyses, and its integration into an MDE tool. This integration facilitates rapid modeling,
validation, code generation, and simulation of SoS. The research adopts a viewpoint-based approach
to SoS modeling, considering diverse aspects like structure, dynamicity, evolution, dependability, se-
curity, time, multicriticality, and emergence. Each viewpoint is tailored to address specific challenges
and requirements in the design and operation of SoS, ensuring a comprehensive analysis and man-
agement of these complex systems. Additionally, the paper discusses enhancements to the SysML
profile, including the addition of new viewpoints and improvements in user-friendliness for easier tool
integration. These enhancements are crucial in simplifying the design, validation, and simulation
processes, making it more accessible for SoS engineers. The study significantly contributes to the
field by addressing the cognitive complexities involved in SoSE. It offers a structured methodology

42

III.3. Current research on SoSs modeling

to model, analyze, and manage the dynamic and often complex interactions within an SoS, thus
facilitating a deeper understanding and effective management of these systems. The research, par-
ticularly illustrated through the Smart Grid scenario, stands as a significant advancement in SoS
modeling, providing a detailed conceptual framework and practical tools for designing and analyzing
complex systems across various domains.

Figure III.5: SoSSec MetaModel Block Diagram. [27].

In a similar approach, a novel approach to addressing security challenges in SoS architectures
has been presented in [27]. The research focuses on the problem of cascading attacks within SoS,
where vulnerabilities in CSs can combine to produce significant security breaches. To tackle this,
the authors propose a DSML called SoSSec, which extends the SysML to incorporate security as-
pects specific to SoS. The paper highlights the complexity of modeling SoS security due to their
inherent characteristics such as operational independence, absence of central authority, and emer-
gent behavior. The authors emphasize the need for a modeling language that can represent SoS
security architecture effectively. The proposed SoSSec DSML is designed to enable the discovery,
analysis, and resolution of cascading attacks in the architecture phase, thereby preventing costly and
time-consuming revisions in later stages of development. An integral part of the research is the de-
velopment of a graphical editor for the DSML, which facilitates modeling SoS security architectures.
The authors illustrate the utility of SoSSec through a Smart Campus case study, demonstrating how
it can model and identify potential cascading security threats in an SoS environment. By employing
MDE principles as shown in Figure III.5, SoSSec provides a comprehensive approach to capture the

43

Chapter III. Key Concepts, Definitions and State of the Art

security architecture of SoS, ensuring early detection of vulnerabilities that could lead to cascading
attacks.

In the same context, the authors of [8] have presented a comprehensive approach to SoSE, fo-
cusing on the critical transition from mission definition to architecture description. The main point
of the paper is to address the challenges in SoS development, particularly the lack of coherent and
structured methodologies that can effectively bridge the gap between mission definition and archi-
tectural realization. The authors have proposed a model-based process that strengthens the link
between the SoS analysis stage and the architecture stage in the SoS lifecycle. This process is cen-
tered around the concept that the mission and role definitions for SoS should be abstract enough
to accommodate environmental variability. These definitions are then translated into an abstract
architecture that guides system architects during the design and evolution stages as shown in Figure
III.6. The paper makes use of SysML for the proposed process, adapting it to meet the specific
needs of SoSE. A key feature of the approach is its emphasis on mission-oriented analysis, which is
considered vital for effective SoS design. The process is designed to be sufficiently formal to guide
and control the system architect’s decisions during the design and evolution stages. A case study on
crowd management SoS is included to illustrate the practical application of the proposed process.
This case study demonstrates how the approach can be used to model and identify potential security
and operational challenges in an SoS environment, highlighting the relevance and applicability of
the model-based process in real-world scenarios.

Figure III.6: Mission conceptual model [8].

Another interesting contribution of [71] has presented a detailed approach to modeling and simu-
lating net-centric SoS. The research focus on the challenges involved in designing and comprehending
large networked systems, such as the Global Earth Observation System of Systems (GEOSS). This
paper demonstrates how SysML and Colored Petri-nets (CP-nets) can be effectively combined to
model and simulate complex SoS. The authors highlight the importance of understanding the in-
terfaces and interactions among the various systems, subsystems, and components within an SoS.
SysML is used to model these aspects, demonstrating an object-oriented approach to model devel-
opment. The paper also discusses the issues related to architecture description, development, pre-
sentation, and integration for the chosen domain of GEOSS, an evolving complex network-centric

44

III.3. Current research on SoSs modeling

system. They have used Colored Petri-nets to synthesize an executable model from the static views
developed using SysML. This executable model is used to validate the architecture against the static
model. The authors define a methodology to model and simulate complex network-centric SoS, aim-
ing to understand and simulate their behavior using a scenario-based approach. This approach
involves a step-by-step process of transforming SysML diagrams into an executable model, followed
by simulation and validation. The paper also highlights some of the key differences between SysML,
used to model a wide range of systems, and UML, which is primarily used to model information
systems. The integration of SysML and CP-nets offers a comprehensive approach to capture both
the structural and dynamic aspects of SoS. This integration allows for the exploration of various
scenarios, contributing to a deeper understanding of the behavior and interactions within the SoS.

A three-tier framework has also been introduced to analyze requirements and architecture design
for SoS [89]. The framework focuses on the complexities of large-scale complex SoS, where tradi-
tional design principles are challenged by rapidly growing complexity and continuously changing
requirements. The authors have proposed a service-oriented modeling method for SoS requirements
analysis. This method is based on a three-tier framework with multi-ontologies, aiming to provide
a reusable and flexible solution for SoS requirements modeling. The approach enables the high-
layer requirements description of SoS to be directly mapped to a service-oriented system design
architecture. The authors emphasize that service-oriented computing offers a flexible integration
architecture to meet the dynamic requirements of SoS, making it a suitable approach for analyzing
large-scale complex systems. To this end, they have introduced a method that can map strategic
level requirements down to IT implementation by considering service as the basic granularity. It
also provides rigorous modeling semantics through defining multiple ontologies, which is essential for
domain knowledge reuse. Moreover, a case study is provided to demonstrate the applicability of the
method. This practical example underlines the potential of the proposed service-oriented modeling
method in practical scenarios.

To address the dynamic requirements and high complexity of SoSs, the authors [35] have offered
a comprehensive MDA approach for architecting, modeling, and simulating SoS to integrate various
modeling languages and simulation techniques, it is based on the Service Oriented Architecture Mod-
eling Language (SoaML), used in conjunction with Model Driven Service Engineering (MDSE). This
combination enables a flexible integration approach, combining complex system analysis methods
with service-oriented methodologies. The authors have used SysML to manage the complexity of
SoS requirements and SoaML to improve IT implementation, and DEVS simulation to validate the
architecture design. One of the key aspects of this approach is its multi-level modeling capability. It
allows for transformations between different levels of models and generates service implementation
artifacts. This facilitates aligning complex business requirements with IT systems, addressing a com-
mon challenge in SoSE. The paper also has presented an example covering some of the development
phases of SoSE.

From safety-critical contexts, the authors [31] have focused on enhancing the modeling and man-
agement of SoSs to adapt SoS during runtime while ensuring safe operation. The paper proposed
an MDA that defines interactions and goals as fundamental elements of design. This approach em-

45

Chapter III. Key Concepts, Definitions and State of the Art

phasizes the adaptability of SoS to changes, including context changes, while maintaining safety.
The authors have introduced a well-defined modeling approach based on components as structural
elements, the contract paradigm for designing interactions, and graph transformations to address the
adaptiveness of SoS. They enrich the component model with explicit goals that support evaluation
functions to determine the level of target achievement. This method allows for the analysis of inter-
action protocols, role definitions, and the transformation rules that guide the adaptation process in
response to changing contexts. A key aspect of this work is its focus on self-adaptiveness, a major
characteristic of SoS, which encompasses the reconfiguration of the SoS in response to changes within
its context. The paper provides detailed explanations and examples to illustrate these concepts, us-
ing scenarios like a classical firefighting setting to demonstrate timing analysis and the application
of their approach.

Figure III.7: SoSE core elements [47].

Another contribution of SysML, where the authors of [47] have explored the application of SysML
in understanding and evolving SoS. The research is grounded in the context of the Department of
Defense (DoD) systems engineering guide, which highlights the evolution of traditional systems
engineering activities to support SoS engineering (Figure III.7). The paper outlines the challenges
in managing SoS, particularly in the context of software-intensive systems, and proposes the use of
SysML as a tool to model and simulate SoS for better decision-making and evolution. The authors
emphasize the importance of modeling in understanding the relationships and interactions within
SoS, a crucial aspect given the complex and emergent behaviors of these systems. A significant part
of the paper is dedicated to detailing how SysML can be employed to characterize SoS architectures
and capabilities. The authors have provided a thorough explanation of SysML’s application in
various aspects of SoS, including translating capability objectives, understanding systems and their
relationships, developing and evolving SoS architecture, and addressing requirements and solution
options. The paper also includes practical examples and illustrations to demonstrate the utility of

46

III.3. Current research on SoSs modeling

Figure III.8: Simplified version of M2SoS [5].

SysML in real-world scenarios. The authors describe a hypothetical Regional Area Crisis Response
SoS (RACRS) to illustrate how SysML models can be used to model the “as-is” state of an SoS and
explore alternatives for new capabilities and performance enhancements.

The authors of [5] have explored the development of a conceptual meta-model, called M2SoS
(Meta-model for SoSs), for representing SoS ontologies (see Figure III.8). This research addresses
the critical need for a holistic understanding of SoS, especially for various stakeholders and engineers
involved in SoSE. The focus is on systematically integrating independent CSs to achieve higher-level
common goals of an SoS. The paper begins by emphasizing the complexity and independence of
CSs within an SoS and the challenges in their integration for achieving overarching objectives.
The authors propose the development of a meta-model that provides a common knowledge base
to facilitate a comprehensive understanding of the SoS as a whole. This model is developed by
investigating several documents related to Mass Casualty Incident (MCI) response systems. The
investigation led to the identification of essential objects and features required for SoS descriptions,
which were then generalized into SoS entities. A key contribution of the paper is the design of
the M2SoS meta-model, which borrows organizational concepts from meta-models for multi-agent
systems. The entities and relationships in M2SoS are redefined to specify SoS concepts, providing a
structured way to represent high-level ontologies for SoS. The meta-model is analyzed with respect to
SoS characteristics, evaluating its ability to represent ontologies for two distinct SoS case scenarios.
The paper outlines the development process of M2SoS, starting with the selection of an MCI response
system as a case study. The authors analyzed documents related to this system to identify objects
comprising the SoS and generalized these objects into SoS-oriented entities. The development process
also involved defining requirements for the SoS meta-model based on the investigation.

47

Chapter III. Key Concepts, Definitions and State of the Art

Employing an Industry 4.0 domain, the paper [4] offers a comprehensive exploration into the
application of I4.0 principles in the context of SoSs, particularly focusing on the construction do-
main. The research is significant in understanding how the concepts of I4.0, primarily developed
for manufacturing, can be adapted and applied to other domains, notably in construction SoS. The
paper begins by outlining the challenges inherent in integrating constituent systems (CS) into an
SoS, especially those preexisting systems that require adaptation to fit within the SoS context. The
authors delve into the nuances of applying I4.0 standards to enhance the flexibility and adaptability
of CS, evaluating the potential of these standards beyond manufacturing. The study is grounded
in a case from the construction domain, where the authors develop a generic SoS architecture and
suggest several extensions and adaptations of I4.0 standards. A notable aspect of the paper is its
focus on the continuous interplay between the design decisions at the SoS level and those at the level
of its CSs. This approach acknowledges the operational and managerial independence of CSs and
the need to adapt existing systems to fit within a future SoS context. The case study in the con-
struction domain serves as a practical demonstration of the paper’s concepts. It illustrates how I4.0
standards can be applied to make CSs more flexible and adaptive. The study explores the challenges
of applying these standards in a domain characterized by less repetitive work than manufacturing
and with looser managerial control.

The authors of [43] have offered an innovative solution to the complexities involved in modeling
SoSs architectures. This research is particularly relevant in the complicated nature of software ar-
chitectures often posing significant challenges in design, verification, and validation. Central to this
paper is the development of a multi-scale description for software architectures. The authors intro-
duce an iterative modeling approach that transitions from a coarse-grain to a fine-grain description.
This method allows for the validation of software architectures at various levels of detail, effectively
managing the complexity inherent in SoS architectures. To facilitate this process, the approach
integrates visual notations that extend the graphical UML. These notations are used to represent
both the structural and behavioral features of software architectures, ensuring a comprehensive and
coherent modeling process. A key aspect of the methodology is its focus on iterative refinement.
Starting with an abstract architecture, the model is progressively detailed, allowing for validation
at each step. This step-wise refinement is crucial in managing the complexity of SoS architectures,
ensuring that each layer of detail contributes to a more accurate and functional model. The use of
UML diagrams in this process is particularly notable. UML, a widely recognized and used language
in software engineering, facilitates the presentation of both structural and behavioral properties of
the architectures. By integrating UML notations, the approach aligns with established software
architecture practices, making it more accessible and applicable in various engineering contexts.
The practical applicability of this approach is demonstrated through a case study focusing on the
Emergency Response and Crisis Management System (ERCMS). This case study underscores the
effectiveness of the proposed multi-scale modeling approach in a real-world SoS. It highlights how
the approach can handle the complexities and dynamic nature of software architectures in practical
scenarios.

48

III.3. Current research on SoSs modeling

Figure III.9: Description of the design process [43].

III.3.2 Formal methods

The research in this category employs formal languages and methodologies like ArchSoS, mKAOS,
and Bigraphical Reactive Systems (BRS). These approaches are more rigorous and rely on formal
logic and operational semantics, providing a precise framework for modeling, verifying, and analyzing
SoS architectures especially in behavioral and dynamic contexts [26], [69].

From a modeling and verification perspective, the paper [79] has introduced a formal approach
for modeling and verifying SoS architectures. This research aims to provide a structured and for-
malized way to design and analyze SoS, particularly addressing the challenges of the dynamic nature
and hierarchical structures inherent in SoS. The paper’s central contribution is the development of
ArchSoS, a formal ADL, which integrates concepts from BRS and Maude language (Figure. VII.2).
ArchSoS is designed to model the hierarchical structures of SoS and their dynamic reconfigurations.
It also enables managing potential cooperation between CSs, offering a graphical and formal syntax
to facilitate understanding and analysis. The paper details the operational semantics associated
with ArchSoS, using rewrite theories to define an SoS semantic. This includes implementing Arch-
SoS specifications in the Maude language, which provides capabilities for executing and simulating
these specifications and analyzing their properties. A case study, the Crisis Response System of
System (CRSoS), is used to illustrate the application of ArchSoS. This example demonstrates how
the language can model and identify potential challenges in an SoS environment, specifically focusing
on missions like the Fire-Distinguish Mission. Maude’s rewriting engine and LTL model-checking
enables the verification of SoS behaviors and the consistency of SoS missions through qualitative
analysis.

49

Chapter III. Key Concepts, Definitions and State of the Art

Figure III.10: ArchSoS definition process[79].

In the same context, the authors of [80] have proposed a methodology for formally verifying
mission-related properties in architectural models of SoSs, with a particular emphasis on address-
ing emergent behaviors and mission accomplishment. Leveraging mKAOS and DynBLTL language,
they formally described properties, missions, and emergent behaviors. They pursued verification of
properties across three distinct levels, which are automatically derived from the mKAOS model rep-
resenting the SoS. Verification is executed through statistical model checking. The proposed tool is
constructed to be extensible, enabling compatibility with various languages by the verification engine
through a universal interface for language simulation. Moreover, the tool manages communication
with the statistical model checker, PlasmaLab, while also extracting pertinent properties from an
mKAOS model and managing the connection between an architectural model simulator and Plas-
maLab. Furthermore, the tool is capable of conducting a post-evaluation process, using PlasmaLab
outputs to generate detailed reports of the verification process, with indicators of whether a con-
straint was violated and identifying when and where the violation occurred. Their solution is not tied
to a specific modeling language, allowing stakeholders to check conformance with a mKAOS mission
model across various model types.A critical part of this study is the application of this methodology
in a real-world scenario, demonstrated through a case study of a Flood Monitoring SoS. This ex-
ample is instrumental in showcasing the practicality and effectiveness of the proposed method. The
Flood Monitoring SoS, with its dynamic environment and mission-critical requirements, serves as
an ideal testbed for the verification approach.

50

III.3. Current research on SoSs modeling

Figure III.11: Missions and CSs in FMSoS. [80]

The collective outcomes of studies by the authors of [65]–[67] have presented a SosADL, an ADL
based on pi-Calculus with Concurrent Constraints, articulating its capabilities and adaptations.
The original version of SosADL, presented in [67], offers a specialized framework for describing
SoS architectures, by embodying pertinent architectural concepts while concurrently providing a
formal language that supports automated analysis. This foundational work establishes a methodical
approach to capturing the complexity and nature of SoS architectures, contributing significantly to
practical models around SoS design and analysis. Building upon this, [66] introduces an extended
version, which enriches the approach by enabling the description of evolutionary architectures that
sustain emergent behaviours and support dynamic reconfigurations for ongoing SoS missions. The
work defines SosADL from a behavioural viewpoint, facilitating the specification of independent
CSs, mediators among them, coalitions of mediated CSs, and the architectural conditions that
necessitate the emergence of specific SoS behaviours. Meanwhile, [65] shifts the focus towards
supporting automated verification and establish correctness properties of SoS architectures, thereby
ensuring that the structured and analytical approach to SoS architecture is not only descriptive but
also verifiable. In another research focus, [60] delves deep into the functionalities of the ArchWare
ADL, emphasizing its role in active architectures. The paper underscores the challenges of a cohesive
system wherein model specification and enactment coalesce as integral facets of a singular, dynamic
execution state. The authors maintain that the model specification, at any given moment, renders
an accurate description of the model execution, thus reinforcing the precision and reliability of active
architecture specifications within the ArchWare.

51

Chapter III. Key Concepts, Definitions and State of the Art

Using bigraphical reactive systems, the authors of [30] have presented a novel multi-scale model-
ing methodology for SoS using bigraphical reactive systems. This methodology, named B3MS, offers
a "correct by design" approach, ensuring the correctness of SoS architectures through a refinement
process. The paper emphasizes the need for rigorous modeling methods in SoS due to their complex-
ity and dynamic nature, highlighting the challenges in ensuring the correctness of their architectures.
B3MS methodology is rooted in the formal technique of BRS, combined with an approach inspired
by multi-scale modeling. This approach begins with a coarse-grained scale defined by the designer,
which is then automatically refined by adding lower scale details. This refinement process respects
the system constraints to ensure the correctness of the obtained scale architectures. Additionally,
the paper addresses the dynamic aspect of SoS by providing model-based rules for reconfiguration
actions, essential for managing changes in SoS. A key feature of this methodology is its ability to
handle both the static and dynamic aspects of SoS architectures. The static aspect is modeled
through a multi-scale approach, where each scale represents different levels of detail within the SoS.
The dynamic aspect, on the other hand, is managed by defining reconfiguration meta-rules, which
guide the evolution of the SoS over time. To demonstrate the applicability and effectiveness of the
B3MS methodology, the authors present a case study on smart buildings. This case study show-
cases how the methodology can be used to model and manage the complexities of smart building
systems, illustrating its potential in practical scenarios. The case study effectively demonstrates the
methodology’s capability in handling both the static architecture and dynamic reconfiguration of
SoS.

Figure III.12: Meta-rules for adding publish/subscribe components[30].

In another formal approach, the authors of [83] have presented a unique perspective on enhancing
interoperability and emergent behavior in SoSs through the use of bigraphs. The focus of the paper
is on addressing the challenges inherent in designing highly interactive distributed systems, such
as e-learning environments, where dynamic adaptation to user needs and operational conditions is
crucial. The authors have proposed the concept of bigraphs as a means to represent and manage
the dynamic interactions within SoS. Bigraphs offer a way to capture both the physical (space)
and logical (link) relationships within systems. This dual representation is particularly useful in
managing the complexity of SoS, where multiple, independent CSs interact in a federated manner
to achieve overarching objectives. The use of bigraphs allows for a detailed representation of these
interactions and supports the re-specification of systems through behavior adaptations, a key aspect
in achieving emergent behavior in SoS. The paper explores the challenges of achieving interoperability

52

III.3. Current research on SoSs modeling

in SoS, which is essential for the CSs to work together seamlessly and adapt dynamically to changing
environments. The authors highlight the importance of preserving interoperability among systems
from both structural and behavioral perspectives, which is where bigraphs play a crucial role. This
approach ensures that systems within an SoS can maintain their operational independence while still
being able to interact and cooperate effectively. To demonstrate the practical application of their
approach, the authors use learning environments as a case study. They show how bigraphs can be
effectively employed to orchestrate two independent and distributed CSs, enabling them to respond
directly to changes in the federated system’s context. This case study illustrates how the bigraph
approach can lead to the emergence of new functionalities and behaviors in an SoS that are more
than the sum of its individual parts.

In the context, the authors of [29] have introduced BiGMTE, a tool designed for bigraph matching
and transformation. This tool is significant in the field of SoSs for its ability to model and simulate
SoS architectures, addressing the challenges of their dynamic nature and complex interactions. The
core of this paper revolves around the application of BRS and graph transformation techniques
to SoS. The authors propose a method that encodes bigraphs into graphs and reaction rules into
graph rules, allowing for the simulation of BRS using a Graph Transformation System (GTS). This
approach leverages existing research and tools in graph transformations, applying them innovatively
to the context of SoS. BiGMTE, the tool presented in the paper, is based on this methodology and
incorporates the Big Red graphical editor for creating and editing bigraphs and reaction rules, and
the GMTE tool for graph matching and transformation. The process outlined in the paper involves
five steps: creating BRS using Big Red, encoding the BRS into graphs, graph matching, graph
encoding, and displaying the resulting bigraphs. To demonstrate the applicability and effectiveness
of BiGMTE, the authors present an example of modeling an SoS using the tool. This example
underlines the potential of BiGMTE in practical scenarios, showcasing its ability to model and
manage the complexities of SoS through a formal and graphical approach.

Figure III.13: BiGMTE architecture [29].

53

Chapter III. Key Concepts, Definitions and State of the Art

III.3.3 Synthesis

The collection of studies offers a variety of solutions for designing and analyzing SoS architectures,
yet none fully encapsulate the entire SoSE process or the critical conceptual analysis phase. This
phase is essential for comprehending high-level SoS requirements, understanding the relationships
and interdependencies among CSs, and ensuring effective mission capability. More specifically, the
research ranges from detailing the SoS as a whole, focusing on structural and organizational dynamics
[59] [79], to tackling specific complexities such as security, safety, interactions, and adaptability [27]
[31]. Other studies also address interoperability and emergent behaviors within SoS [83] and consider
the evolution within software-intensive CSs [47].

Some papers explore the challenges of integrating various heterogeneous systems and their in-
dependent operations within an SoS [71] [5] [4], while others focus on expressing SoS at different
abstraction levels to cover a range of SoS aspects [8] [43]. Additional techniques spotlight the behav-
ior of adaptation and evolutionary architectures [67] [66] [65] and the dynamic execution of systems
[60]. Some research is directed at mission-critical properties with an emphasis on simulation and
verification through statistical model checking [80] [35]. Moreover, approaches like multiscale mod-
eling ensure the correctness of SoS architectures [29], and frameworks with multi-ontologies offer
flexible integration architectures [89] [35].

Table III.2: CHARACTERISTIC TABLE OF THE STUDIED APPROACHES.

Semi-Formal Formal
UML SySML DSML ADL BRS π − Calculus Maude
[43][31] [59][47][71][8][35] [27][89] [5][4] [60][66][65] [30][83][29] [67][80] [79]

Framework Processes +/- +/- +/- - - - -
Models/diag + + + + + +/- +
Viewpoints - + - - - - -
Stakeholder - +/- - - - - -
Standard - +/- - - - - -

Composition Expressivity + + + +/- +/- +/- +
Organization +/- +/- +/- +/- +/- +/- +

Qtt prop Time - - - - - - -
Resources - - - - - - -

Behavior RT-Control - - - - - - -
Desired/Undesired - - - - - - -
Design +/- + + +/- +/- +/- +/-
Runtime - +/- - +/- + - +/-

Techniques Executability - - - +/- + + +
Simulation +/- +/- +/- +/- +/- +/- +/-
Verification - - - +/- + +/- +

+: aspect taken into account; +/- : relatively considered aspect; - : aspect not taken into account;

To synthesize and discuss the contributions and shortcomings of the various cited works, we iden-
tify several criteria and characteristics that served as a basis for the critical study of attempts to
address the issue of specification and design of SoSs. These include the formalism (semiformal formal
and hybrid) adopted, the modeling of the structural framework of SoSs (development process, Mod-
els, Viewpoints of stakeholders, standards, etc.) used, the expressed entities (CS, Roles, Missions,

54

III.3. Current research on SoSs modeling

Capabilities, Links), the organizational composition, the methods of RT-Control and management
provided, and the consideration of resources allocation mechanisms and temporal constraints during
Design/Runtime. From the perspective of simulation, verification, and validating the introduced
approaches, we focus on the formal verification technique used, as well as the approach followed for
quantitative execution and validation. Table III.2 summarizes the analysis of these criteria in the
context of the studied works.

Semiformal approaches:

From an architecture framework and composition perspective, we note that the examined method-
ologies present diverse yet complementary solutions. For the comprehensive frameworks in SoSs and
their architectural viewpoints, the papers by [59] and [4] address SoS architecture, covering ar-
chitecture, evolution, viewpoints, and processes. Other studies like [8], [31] adopt an MDA-based
approach, presenting their solutions at varying levels of abstraction. However, there’s less emphasis
on specific standards that could ensure a systematic, reusable approach. These standards provide
stakeholders with frameworks for managing viewpoints and lifecycle processes of systems, includ-
ing detailed guidelines for all stages of a system’s lifecycle, encompassing planning, execution, and
monitoring. Concerning the static structural aspects, the papers by [5] [8] [31] describe entities
like CSs, roles, missions, and goals in a detailed and expressive manner, focusing on organizational
composition. These are typically demonstrated through interactions, interfaces, or ports to enable
hierarchical entity composition. Nevertheless, no paper provides a unified specification aligning with
a framework for the lifecycle processes of systems, which includes aspects like conception, design,
development, production, operation, maintenance, and disposal. From simulation and validation
perspective, the reviewed semiformal papers lack comprehensive executable support and verification
tools to bring their theoretical abstract models to practical application. Moreover, there’s no clear
tool for monitoring the operational flow of the executing CSs, missions or tasks in an SoS. Neither to
simulate their dynamic behavior. These works’ shortfall extends to the control of execution, where
there’s no clear strategy for verifying the correctness of the proprieties.

Formal approaches:

Formal methodologies offer rigorous and mathematical solutions for addressing the complexity
inherent in SoS architectures and behaviors. Notably, papers employing ArchSoS, mKAOS, Bi-
graphical Reactive Systems (BRS), pi-Calculus, and Maude introduce considerable precision and
analytical studies, facilitating the modeling, verification, and analysis of SoS with an emphasis on
safety-critical and dynamic aspects. These methodologies distinguish themselves by their capacity
to formalize and verify complex interactions and emergent behaviors within SoS, offering a struc-
tured approach to understanding and managing these systems. For instance, approaches like [79]
and mKAOS [80] provide frameworks for capturing the hierarchical and dynamic nature of SoS, in-
cluding the ability to model and verify architectural integrity and mission compliance across various
system configurations. The use of formal languages and operational semantics enables the explicit
representation of system behaviors and interactions [29], [59], [83], ensuring a robust foundation for
analyzing system properties and behaviors. This is particularly evident in the application of [65]–
[67], which emphasize executable models and formal verification, supporting the analysis of system

55

Chapter III. Key Concepts, Definitions and State of the Art

dynamics and the validation of system designs against specified requirements.
However, despite their strengths, formal approaches also exhibit limitations in fully addressing

the practical aspects of SoS engineering. Similar to the semiformal approaches, there is a relative
consideration of executability, simulation, and verification. While formal methods provide theoretical
foundations for system specification and property verification, the integration of these methods into
practical engineering workflows, including runtime monitoring and adaptive control and mangment
mechanisms, remains a challenge. Furthermore, the aspects of time resources, real-time control, and
differentiation between desired and undesired behaviors during runtime are not comprehensively
covered.

The analysis underscores a gap in the current state of formal methodologies regarding the holistic
management of SoS across their lifecycle, from design and development through to operation and
evolution. There is a need for advancing formal approaches to incorporate more practical tools
and techniques for simulation, runtime adaptability, and the management of temporal and resource
constraints. Bridging these gaps would enhance the ability of formal methodologies to not only
model and verify SoS architectures and behaviors rigorously but also to support the dynamic and
evolving nature of SoS operations in real-world contexts.

III.4 Conclusion

In the first part of this chapter, we have presented the context in which the manuscript topic
is inscribed. Firstly, we have presented the SoSs and the major definitions, dimensions, categories,
application domans, etc. Then, we have presented various works related to the engineering and
the modeling in SoSs found in the literature. Initially, we studied some semiformal models mainly
designed for static and structural aspects of SoSs. Next, we examined some formal approaches and
models that have proposed solutions for the specification and verification of behavioral aspects in
the SoSs. We analyzed all the presented models and approaches based on a set of criteria and
priorities that we deemed relevant, and we have highlighted their contributions and shortcomings
and to prepare the reader to properly contextualize our contributions.

56

Chapter IV

Methodology and General Principle

Contents
IV.1 Introduction . 57

IV.2 A process for SoS Engineering . 58

IV.2.1 Domain Engineering . 60

IV.2.2 Application Engineering . 62

IV.3 Solution principle . 64

IV.3.1 Basic elements description . 64

IV.3.2 MDA-based SoS Framework design . 65

IV.3.3 Formal semantics of centralized control 65

IV.3.4 Formal specification of management strategies 66

IV.3.5 Autonomic execution and verification . 67

IV.4 Conclusion . 68

IV.1 Introduction

In SoSE, the necessity for methodologies and frameworks that can dynamically tailor their struc-
tural and behavioral aspects is essential. This need arises from the inherent complexity and changing
nature of SoS environments, where execution, environmental changes, and dynamic mission priorities
continually redefine various requirements. Therefore, the complexity of these aspects makes design-
ing SoSs particularly challenging. From the perspective of specification, verification, and validation,
we consider four research objectives:

- RO1: Overcome the lack of standards for the basic elements to describe the structure and
behaviors of SoSs.

57

Chapter IV. Methodology and General Principle

- RO2: Define a multi-viewpoints-based Architecture Framework to support SoSs’ development.

- RO3: Define behaviors related to quantitative aspects such as time and resources of SoSs and
their Control.

- RO4: Ensure strategic management of the execution of these different missions in SoSs.

- RO5: Ensure the autonomous executability of the desired behaviors within SoSs and verify
their correctness.

In this chapter, we explore how SoSE principles can be applied to Domain Engineering and
Application Engineering (DE and AE, respectively) to overcome the defined challenges. On the one
hand, the DE focuses on specifying and creating reusable, controllable and manageable assets tailored
for SoSs. We define these assets by SoSs commonalities and variabilities to form the structural core
of the SoS architecture and allow for dynamic control and management at various development
processes. consequently, AE deals with the practical initiation and customization of the concrete
assets into specific SoS configurations. This process involves the strategic use of the assets developed
in the DE phase to create SoSs that are not only fit for their initial purpose but also capable of
evolving in response to changing functional needs, conditions and requirements.

Moreover, adopting a complementary set of assets into SoSE effectively addresses several critical
challenges, facilitating the development, control and management of SoSs at both design time and
runtime. The proposed approach ensures that SoSs are not only built with design time requirements
but are also capable of in-situ control, reflecting the dynamic nature of their operational environ-
ments. Thus, by combining the strategic reuse and variability management inherent in various SoSs
categories with the complexity and controllability demands of SoS.

IV.2 A process for SoS Engineering

The bellow Figure. IV.1 illustrates the proposed approach in SoSE that inspires from the Software
Product Line principles to enhance the development lifecycle of SoS architectures. The approach
starts with identifying various SoS requirements, which then transition into the phase of Dynamic
SoS Engineering. The latter is employed to develop a consistent set of SoS assets that will serve as
a basis for both the initial design and the runtime management of the SoS [14], [68], [84].

- Dynamic SoS Engineering: This process identifies the requirements based on the both
DE and AE principles of reuse, variability, and commonalities, it ensures that the engineering
process.

- Creation of SoS Assets: From the previous step, we develop SoS assets which assets repre-
sent the tangible output from applying DE and AE principles.

- Application Requirements: These requirements are taken into consideration within SoSs.
This is where the SoS assets are tailored to meet the particular needs of a given application
and inform the Design and Runtime Control phase to result in a functional SoS.

58

IV.2. A process for SoS Engineering

Dynamic SoS
Engineering

Figure IV.1: Evolutionary process for dynamic SoSE.

- Refinement Loop: This represents SoSs Design and Runtime Control phases as a cyclical
progression where the functional SoS is continually refined based on performance quantitative
features, evolving requirements, and stakeholder feedback.

- Functional SoS: The result would be a functional SoS managed and controlled based on DE
and AE principles and application-specific features. This process allows for dynamic evolution
as it encounters new requirements and any unpredictable/undesired behavior.

As shown in Figure. IV.1, the approach is supported by an iterative process that combines design-
time decisions with runtime execution. This iterative nature allows for continuous refinement and
enhancement of both the design and functional aspects of SoS. Feedback from runtime experiences
is fed back into the design process, enabling stakeholders to make informed adjustments that are
aligned with concrete models and real-world conditions

In the rest of this section, we present a general overview of the approach’s architecture and prac-
tical implementation, tackling the inherent challenges of SoSE. Figure. IV.2 structures the approach
according to the two domains DE and AE. On the one hand, the DE dimension forms the founda-
tional layer, focusing on the development of generic abstract assets which are composed of various
Meta-Models and their models that interact through different extensions and inheritances. The
Meta-Models define standardized assets across four domains: Framework, Variability and Platform
to encapsulate different commonalities and variabilities within the core, aspects, and features of an
SoS.

The AE dimension on the other hand leverages the iterative nature of the approach between
the Design and Runtime phases, i.e. the Design Time phase focuses on setting up the initial SoS
configuration, tailored to specific characteristics and stakeholder viewpoints, and building initial
configurations for functional integration. The Runtime phase defines the dynamic behavior of the
SoS for effective self-management and control during operation. It includes runtime behavioral

59

Chapter IV. Methodology and General Principle

modeling, capturing system responses under various conditions. This phase is supported by an
autonomic MAPE-K loop control, enabling continuous refinement and improvement of both design
and runtime execution.

Meta-Model

SoS-UML Profile

Meta-Model

SM-MM

Meta-Model

RAC-MM

D
o

m
ai

n
 E

n
gi

n
e

e
ri

n
g

A
p

p
lic

at
io

n
 E

n
gi

n
e

e
ri

n
g

Meta-Model

MAPE-K-MM
Meta-Model

Maude Strategy

Meta-Model

RT-Maude

Meta-Model

MaudeMeta-Model

ISO – 42010

Aspects
Model

Feature Model

Manual
Configuration

Quantitative
Constraints

Quantitative
Analysis

Runtime
Configuration

Runtime
Self-Control

Runtime
Reconfiguration

Framework Variability Platform

Design Runtime

Meta-Model

MeMSoS

Core Model

Application

Formal
Specification

A
B

ST
R

A
C

T
A

SS
ET

S
C

O
N

C
R

ET
E

A
SS

ET
S

Stakeholders
Assets

SoSE
Processes

Viewpoints

M
A

P
E-

K

Figure IV.2: General overview of the approach.

IV.2.1 Domain Engineering

Adopting an MDA framework, the upper part of Figure IV.2 outlines the DE process for SoS
products, focusing on the creation of assets that are essential in building SoS. The DE process
involves generating two types of assets: abstract and concrete. The abstract assets, primarily
comprising Meta-Models, provide the foundational basis necessary for developing concrete assets.
The latter includes elements such as the architecture framework, control and management models,
stakeholders’ viewpoints, and processes. This relationship among these assets plays a crucial role in
the SoS instantiation phase, where concrete assets are applied in the construction of SoS products.

60

IV.2. A process for SoS Engineering

Following the proposed approach, we define four different categories of domains, which are:

- SoS Application domain: The abstract assets in this domain present the core architec-
ture which is defined by a Meta-Model called as Met-Model for SoSs (MeMSoS), it incor-
porates the commonalities that are fundamental to the design of the four multifaceted SoS
categories (knowledge, directed, virtual, and collaborative). These commonalities ensure con-
sistent characteristics across all CSs within SoSs, forming the standardized base from which
the architecture is developed. Moreover, MeMSoS provides an architecture that helps stake-
holders understand SoS challenges, offering a framework for potential solutions with a highly
abstract architectural design. It is specifically adequate at outlining the interactions between
different architectural entities, capturing the complexity inherent in such a system. Further-
more, the core domain leverages MDA to facilitate the enhancement and recognition of new
entities within its structure, such as those in the Framework and Variabilities domains i.e. it
contributes to the extension and refinement of the core for other purposes and objectives.

- Framework domain: The SoS framework domain is modeled by integrating an extended
version of both MeMSoS and ISO-42010 Meta-Models to establish a comprehensive architec-
ture framework. The latter is managed using a UML profile specifically designed to address
the common aspects of the four types of SoS—knowledge, directed, virtual, and collabora-
tive—without delving into their specific variabilities. It encompasses the essential aspects of
MeMSoS to facilitate the identification and design of various architectural viewpoints that res-
onate with the diverse concerns of stakeholders. Utilizing well-defined software development
processes, the concrete assets effectively manage diagrams from a developed SoS-UML pro-
file to ensure the coherence of the architecture. Moreover, the framework establishes a set of
Model Kinds within to support the modeling of SoS entities, covering both static, dynamic and
requirement aspects. These are specifically tailored to address particular concerns of different
stakeholders, reflecting the common characteristics shared across the SoS types.

- Variability domain: This domain focuses on the variabilities of a specific type of SoSs
which are Real-Time SoSs (RT-SoSs). The latter is particularly crucial in Directed SoSs where
centralized control and management are key. This is specified in the Resources Allocation
Control Meta-Model RAC-MM and its specializations Meta-Model Management Strategies
Meta-Model (MS-MM). More specifically, these Meta-Models are designed by feature assets,
outlining the main concepts that capture the essential aspects addressing the quantitative
features-oriented control and management. This is vital for ensuring optimal system perfor-
mance in dynamic and evolving environments. Moreover, The strength of the Features in the
variabilities domain lies in its ability to seamlessly integrate into the systematic architectural
framework for SoSs at Design time/Runtime.

Additionally, it maintains a clear separation between the SoS Application and Framework
domains. This distinction, particularly between the architectural Model Kind and the logic of
when and how to control, allows for the reuse of the control techniques in a straightforward

61

Chapter IV. Methodology and General Principle

manner. This integration on managing quantitative aspects directly addresses the variabilities
inherent in Direct SoSs, demonstrating the Meta-Model’s adaptability to different RT-SoS
while considering the main commonalities of the other multifaced SoSs.

- Platform domain: We chose the Maude language and its extensions as our formal tool
environment due to its expressiveness, flexibility, and suitability for our requirements. Maude’s
foundation ensures that Application, Framework, and variability Meta-Models can be mapped
into executable specifications without information loss. This allows us to leverage the graphical
benefits of MDA and Maude’s high-performance tool set, especially its conditional rewriting
rules, strategies and model-checker engine.

We use Maude Language as the target platform. The latter alongside its extensions (RT-
Maude and Maude Strategy Language) propose a formal framework to define an operational
semantic for the high abstract Meta-Models, and focusing at the same time on SoSs control
and management with a focus on different quantitative proprieties and constraints. It high-
lights how the different Meta-Models semantics are implemented using the Maude language to
simulate and analyze SoSs behaviors.

The motivation behind this choice relates to the capabilities of the platform to match the
dynamic processes between DE and AE, this integration outlines a framework for representing
Maude specifications within MDA. The latter includes constraints and operations that align
with the Maude language, providing a structured approach to formalize models and Meta-
Models. The constraints ensure adherence to the language specifics (seen in Chapter II), such
as no rewrite conditions for membership axioms, equations, and functional modules without
rules [73].

As seen in the Maude Meta-Models, they facilitate the definition of the operational semantics
of the Application, Frameworks and Variability Meta-Models by implementing and formaliz-
ing the infrastructure necessary to integrate all of them into a dynamic Domain Engineering
approach. For a detailed examination of the Maude Meta-Models, its constraints, etc. readers
are referred to [11], [57], [73].

For a complete understanding of the architectural model and the languages used to define core
models, section II.3 explores the specifics of these abstract and concrete assets, explaining their roles
and functionalities in SoS architecture. This section also offers elaborate insights into the MeMSoS,
its extensions, ISO-42010 Meta-Model, RAC-MM, and platforms Meta-Models, all of which are
essential for defining applications and establishing a harmonized architecture.

IV.2.2 Application Engineering

Concrete assets act as a vital link between the two domains, encompassing models and instantia-
tions that leverage Meta-Models to encapsulate the commonalities and variabilities of SoSs products.
This includes the Framework Aspects Model, which details different SoSs’ Aspects, and the Appli-
cation Model, which outlines the commonalities and the core of SoSs products. When combined

62

IV.2. A process for SoS Engineering

with the Stakeholder framework, SoS Engineering Processes, and Viewpoints, concrete assets sup-
port a holistic and layered approach to SoS Engineering. On the other hand, the Directed RT-SoS
Meta-Models are articulated through the variability model, which are specified using Maude, and
the Framework and Application Meta-Models are realized as concrete assets through graphical tools
and result from model instantiating applied to application models and the SoS’s unified architectural
profile.

IV.2.2.1 Design Phase

As we transition to the AE phase, the abstract assets are instantiated to create initial config-
urations. The latter turn concrete models into specific, detailed models that capture the precise
operational parameters, performance metrics, and behavioral attributes of the SoS. Stakeholders are
thus equipped to convert abstract specifications into functional, operational models that fulfill the
SoS’s intended design and functionality. These instantiated models from the architecture framework
and the features models represent the concrete assets and serve as the design time model of the SoS
prepared for the configuration phase.

Here, the initial architecture and system parameters are established, based on a sequence of
critical steps:

- Model Instantiating In the first step, concrete assets provided by the architecture framework
are transformed using the SoS-UML profile into detailed models. These models are then
initialized with the specific operational parameters and quantitative values that will define the
SoS’s architecture, setting the stage for the next phase of execution.

- Collaborative Configuration This step involves stakeholders’ collaboration to align the in-
stantiated models with the strategic objectives of the SoS. This teamwork ensures the system’s
configuration not only holds the commonalities across different four types of SoSs, but also
meets unique application-specific requirements.

- Validation and Refinement The final step confirms that the configured models meet all
system requirements. Through iterative refinement, informed by stakeholder feedback and
testing, the SoS architecture is fine-tuned for deployment. The UML profile and the feature
models thus act as a crucial intermediary between the concrete assets and the design phase.
It ensures a smooth progression from DE to AE, culminating in a detailed and functional SoS
architecture.

IV.2.2.2 Runtime Phase

Using the feature Meta-Models, this phase introduces a structured approach that encapsulates
the variability domain in the approach. To execute missions consuming resources, simulate their be-
havior, and model-check their logical properties, we employ the Maude language to offer a framework
for modeling and analyzing SoSs configuration and execution which has three main objectives:

63

Chapter IV. Methodology and General Principle

- Firstly, we explore a detailed approach of modeling and analyzing local and global resources
within the SoSs. It explores the formal semantics of the RAC-MM Meta-Modela to emphasize
the integration of quantitative priorities and operational semantics to enhance centralized
management and efficiency in real-time Directed SoS.

- Secondly, we focus on proposing a strategic management approach, addressing both desired
and undesired behaviors in Directed SoS. It introduces a comprehensive management frame-
work that encompasses workflow descriptions and functional chain execution. The approach
manages mission execution and resource allocation through strategic planning, highlighting
the importance of the defined auxiliary and main strategies.

- Thirdly, we show the application of RT-Self-Regulating mechanisms via a MAPE-K loop, em-
phasizing the significance of knowledge phases, monitoring, analysis, and strategic management
in a running SoS.

IV.3 Solution principle

SoSs evolve in a particularly dynamic and variable environment. This distinguishes them from
other computing models due to a significant complexity in understanding and controlling their
structures and behaviors. More specifically, the variability characteristics of a SoSs, in terms of
centralized control, strategic management, and execution depend on the combination of many factors
such as the amount of available resources, temporal constraints, the logic governing the desired
behavior of the real-time SoSs, as well as various high-level policies and properties to be satisfied.

Our work aims to provide a combined use of semi-formal and formal modeling approaches to design
and analysis SoSs commonalities and their variabilities, covering all development process phases,
from specification to the verification of behaviors. In the current section, we offer an overview of our
proposed solution to overcome the different research questions defined earlier, presenting its main
phases, objectives, and contributions. This discussion aligns with the structure of the manuscript,
which systematically distributes contributions across the chapters that follow.

IV.3.1 Basic elements description

It is worth to mentioning that the comprehensive set of Meta-Models developed in this approach
directly addresses the gaps in standardized definitions for the foundational elements of SoSs. By
defining the structure and behaviors of SoSs, these Meta-Models provide a unified framework that
not only designs the architectural and operational structures of SoSs but also standardizes the repre-
sentation of their complex interactions and functionalities. This attempt facilitates a clearer under-
standing and management of SoS complexities and lays the groundwork for establishing consensus-
driven solutions for management and control. The Meta-Models defined in the following chapters
address the absence of standardized frameworks for SoSs, and this directly targets the first research
objective in this manuscript (RO1).

64

IV.3. Solution principle

IV.3.2 MDA-based SoS Framework design

This phase aims to get a handle on the complexity of consistency and coherence between the
different proprieties of SoSs commonalities i.e. viewpoints of different stakeholders, as well as the
ability to reconcile and include all their viewpoints before proceeding to the various processes in the
SoSE lifecycle. In this context, the phase leverages the Framework Domain assets to introduce a
Multi-viewpoints-based Architecture Framework, that is associated with a set of SoSE development
processes and a UML profile dedicated to the SoSs that can facilitate and improve the design of
SoSs’ architectures. The purpose of this phase is to present an Arichetctural Framework (AF) that
intends to foster the systematic development of SoSs’ architectures. This is achieved in three main
steps as follows:

- The proposal of an AF: based on the concepts proposed by the standard “ISO/IEC/IEEE
42010:2011 Systems and Software Engineering-Architecture description”, we specialize and
extend it according to SoSs commonalities. This is achieved by specifying a set of SoSE
processes, concerns and viewpoints necessary to have a semantic consistency between the
different parts of the SoS’ architecture specified in the different viewpoints.

- Improving the AF with systematic processes: this consists of integrating systematic processes
of development SoSs’ architectures which can have a positive impact on the overall quality of
the framework. The design of these processes is based on a consolidated Model-Based SoSE in
which the involved processes can be seen as a sequence of connected and dependent activities.

- Defining an SoS-UML Profile: this phase consists of providing a large number of models to
separately capture, describe and organize each of the processes of different viewpoints. The
proposed profile is a package of new stereotypes’ notations that are defined in the Meta-Model
MeMSoS. These new notations will complete the list of UML notations by modeling explicitly
and appropriately all structural and behavioral aspects of SoSs.

By establishing these steps, we create a multi-viewpoint Architecture Framework that is both
comprehensible and easily manipulated by different stakeholders. This approach is designed to
support the SoS stakeholders with the necessary tools to simplify the development of a multi-
viewpoint, governed by innovative SoSE processes and documented via models in the SoS-UML
profile. Consequently, this phase is directly aiming at achieving the second research objective (RO2).

IV.3.3 Formal semantics of centralized control

The phase aims at providing a formal description of a centralized control which encompasses
the variabilities and abstract assets within the proposed methodology, particularly focusing on the
Resource Allocation Controller (RAC) Meta-Model formalization. The primary aim is to address
and formalize the complexities associated with directed SoSs resources through a structured and
formal approach using the Maude language. This is achieved through three main steps:

65

Chapter IV. Methodology and General Principle

- RAC variabilities’ abstract assets: This step highlights a comprehensive structure with classes
like State, Resource, and Role, each contributing to the dynamic behavior and management of
resources within the SoS. The RAC is depicted as key to managing these variabilities, ensuring
resources are allocated efficiently and missions are executed within their specific conditions.

- Formal semantics of static entities: This step defines the formal semantics and mappings
between the RAC Meta-Model’s static concepts and Maude constructs. It describes the fun-
damental static structures of Missions, Resources, Roles, etc. along with their quantitative
properties. The focus is on defining these entities’ structural aspects and integrating them
within the Maude language to facilitate dynamic and autonomous control of resources.

- Entities lifecycle dynamics: This step defines the operational semantics of the dynamic behav-
iors and lifecycle of missions, resources, roles, etc. within the SoS. It describes how each entity
transitions through various states, governed by predicates and actions encoded in Maude.
The lifecycle analysis covers the stages from creation, activation, execution, to completion or
renewal, outlining the formal specifications for managing these transitions effectively.

- RAC’s lifecycle: The step defines the operational semantics of RAC’s lifecycle, illustrating
its pivotal role in coordinating the states of missions, roles, and resources. It presents a
sequence of states that the RAC transitions through, from initial trigger to processing requests
and managing consumption or production. The RAC operates as an intermediary manager,
employing predicates and actions to ensure efficient resource allocation and system balance.

By leveraging the Maude language which offers a robust framework for centralized control, ad-
dressing the challenges of resource allocation, mission execution, and dynamic behavior management
in SoSs, this phase specifically targets the third research objective (RO3).

IV.3.4 Formal specification of management strategies

Another objective of the variability Domain in the proposed methodology is to introduce a com-
prehensive formal approach for enhancing management and planification of the executing missions
in Directed RT-SoS. The approach highlights the integration of dynamic strategies to manage both
desired and undesired behaviors utilizing the Maude Strategy language to define operational se-
mantics across functional system and strategy modules. This method addresses the complexities
of workflow management, mission execution, resource allocation, and conflict resolution, aiming to
improve system functionality and resource efficiency in complex SoS environments. For this end, the
approach is accomplished via three principal stages:

- Management strategies Meta-Model (MS-MM) design: Based on the previous RAC specifica-
tion, this phase creates the new MS-MM for strategies. It structures the complex interactions
between various CS, focusing on managing workflows within SoSs and designing behavior rules
that describe different desired and unwanted behaviors within the system.

66

IV.3. Solution principle

- Strategies formalization: This phase defines the formalization of self-management strategies
using Maude, dividing the framework into functional modules, system modules, and strategy
modules. These modules formalize the semantics of MS-MMSoS, including the specification of
mathematical logic, rewriting rules for system behavior evolution, and strategies for guiding
the application of these rules. The integration of these modules introduces five complemen-
tary modules that collectively cover the semantics of MS-MMSoS, focusing on workflow and
functional chains, time-based and resource-based execution, and strategic management. Prac-
tically, the phase explores managing workflows in SoSs, and highlights the complexity for
advanced coordination and resource management. It describes compositional nature of func-
tional chains, the strategic mission execution, and resource management required to navigate
SoS complexities. For this end, a set of auxiliary strategies are integrated into a set of main
strategies to manage system operations, ensuring timely mission completion with efficient re-
source utilization.

- Real-Time regulating mechanism: Using the MAPE-K Loop control, this step aims at introduc-
ing an integrated approach that employs a MAPE-K control loop for the effective management
of temporal aspects and optimization of system behavior. It describes the knowledge phase,
monitoring, analysis, workflow analysis, and planning and execution phases, focusing on the
real-time adjustment and synchronization of missions based on dependencies and operational
semantics.

Integrating these steps, the formal methodology facilitates the management of both desired and
undesired behaviors in Directed SoSs, highlighting the importance of dynamic strategies and the
MAPE-K loop in securing the efficient and effective functioning of complex SoS environments. Con-
sequently, this phase is explicitly designed to address the challenges associated with the fourth
research objective (RO4).

IV.3.5 Autonomic execution and verification

The purpose of this phase is demonstrating the practical application and validation of the pro-
posed formal approaches through runtime simulation, analysis, and verification. It defines the spec-
ified behaviors of the components, the RAC, Management strategies and Real-Time Self-Regulating
mechanism. This means verifying that autonomously executed behaviors and actions are well-
defined, correct, and describe a desirable behavior at design time and runtime stages. This involves
defining a number of quantitative properties that the system must satisfy and guarantee throughout
its runtime.

Specifically, the behavior of the RAC controller must allow: (1) the dynamic allocation of re-
sources in real-time to meet the changing demands of the CSs and their missions, and (2) managing
the life cycle of each resource, and ensuring optimal utilization to avoid bottlenecks and resource
conflicts. On the other hand, the management strategies must :(1) prioritize resource allocation
based on the criticality of missions, availability of resources, and predefined temporal constraints,

67

Chapter IV. Methodology and General Principle

(2) govern the desired behavior and outcomes of CSs during mission execution, and (3) avoid any
any unwanted behavior related to time and resource constraints of the SoS.

To this end, the phase addresses the formal verification of SoSs’ behavior using Maude’s model-
checking capabilities. It verifies that the system meets its strategic objectives and operates as
expected under various emergency scenarios. This involves checking invariants and using the search
command in Maude to explore possible system behaviors and ensure compliance with defined proper-
ties. Therefore, by validating the effectiveness of the proposed system design, strategic planning, and
control mechanisms in optimizing emergency response operations, this phase addresses the fourth
research objective (OR5).

IV.4 Conclusion

In this chapter, we have briefly introduced our combined methodology which is based on two main
assets of domain and application engineering leading to a robust model for SoSE, and improving
the life cycle of SoS architectures. The methodology firstly is based on the adoption of an MDA
framework that introduces a suite of comprehensive Meta-Models that are essential to the design,
control, and management of SoSs. Secondly, the proposed methodology encompasses formal seman-
tics for these Meta-Models using the Maude language and its extensions, which allows for a formal
specification and verification of behaviors, ensuring that the system can dynamically evolve and
adapt to new requirements and unpredictable behaviors. As we move forward in this manuscript,
the different steps of the methodology are introduced in the next chapters, which will explore the
specifics of the approach’s architecture and practical implementation.

68

Chapter V

Model-Based SoS Framework Domain

Contents
V.1 Introduction . 69

V.2 SoSs Commonalities . 70

V.2.1 Abstract assets: Application and Framework Domains 71

V.2.2 A Unified Architecture Framework: Overview 77

V.2.3 Case study: Aircraft Emergency Response SoS 79

V.3 A Multi Viewpoints-based Architecture Framework 81

V.3.1 Architectural concepts . 82

V.3.2 Associations . 86

V.4 UML Extensions for Modeling the unified architecture 88

V.4.1 SoS_Knowledge_Package . 89

V.4.2 CSs_Selection_Package . 91

V.4.3 Conceptual_Design_Package . 93

V.4.4 Architectural_Design_Package . 94

V.4.5 Interaction_Package . 95

V.4.6 Integration_Deployment_Package . 97

V.5 Conclusion . 99

V.1 Introduction

The early-stage design decisions in SoSE, underlined by the necessity of Domain Engineering for
defining reusable assets, seamlessly align with the challenges addressed by the Domain Engineering
Framework Domain. By employing Architectural Frameworks (AF) that prioritize Architectural
Viewpoints, we provide a comprehensive yet modular approach to SoS design. This strategy, essential

69

Chapter V. Model-Based SoS Framework Domain

for managing complex interrelations in SoS, mirrors our aim to address SoS development challenges
through a structured, systematic framework. The proposed AF not only simplifies the development
process but also ensures a holistic understanding of SoS, effectively managing its inherent complexity
and diverse stakeholder needs.

V.2 SoSs Commonalities

As seen in Chapter IV, DE focuses on the specification and realization of reusable assets, which
include architectures, requirements, etc. By employing Framework Domain techniques, we can
specify the commonalities across the SoSs domain, thereby easing the development process of these
complex SoSs. Moreover, AFs are an emerging discipline in Software Engineering (SE) that regards
Architectural Viewpoints as first-class entities. These viewpoints have opened new avenues for
system representation, offering a comprehensive yet modular way to design complex systems like
SoSs. In the context of SoSs, we argue that leveraging the Framework Domain provided by DE
and AE approach will not only simplify the development process but also yield a system of higher
understanding. It’s worth noting that a single comprehensive viewpoint of an SoS’s architecture is
often too complicated to be fully understood or communicated, encapsulating numerous relationships
between various business, structural, and behavioral aspects. Therefore, we aim to represent SoS
architectures through multiple architectural viewpoints, which collectively form a unified AF tailored
for SoS, informed and enriched by Domain Engineering practices.

This leads us to a focused examination of how the AF specifically addresses the following main
key points:

- Understanding and Mastering Complexity: The Framework Domain aids in compre-
hending and managing the complexity of SoS architecture. This understanding is vital for
architects to master SoS complexity, offering significant advantages in the design phase.

- Static and behavioral Aspects: The Framework Domain effectively distinguishes and ad-
dresses various static/structural and dynamic/behavioral aspects within SoS. This is crucial
for managing SoS characteristics, quality attributes, and overseeing the architecture, design,
and implementation.

- Development Process Adaptation: The AF adapts to the unique development process of
SoS, which differs from standard systems due to the interdependencies of CSs. This adaptation
guides the SoS lifecycle from requirements to software implementation, coordinating various
development processes.

- Architectural Design Decisions: Architectural decisions significantly impact the fulfillment
of SoS functional and quality requirements. The Framework Domain guides these decisions,
helping stakeholders to identify and address specific functional and non-functional character-
istics.

70

V.2. SoSs Commonalities

V.2.1 Abstract assets: Application and Framework Domains

The domain explores the primary Meta-Models that contribute to the establishment of a unified
architecture framework for SoSs. It begins with the extension of IEEE ISO-42010 Meta-Model,
which offers a standardized description framework for SoSs architecture. Building on this standard,
the section then introduces another extended version of the MeMSoS(introduced in Chapter IV),
which incorporates specific adaptations for the different aspects of SoS. This extended model allows
for a more refined approach to SoSE. Together, these models highlight the commonalities of the
SoSE approach, emphasizing reusable and adaptable design paradigms essential for SoSE.

In SoSE, MDA is critical in facilitating the creation of a robust framework for SoS development.
MDA methods guide DE to construct a layered hierarchy of models, streamlining stakeholder con-
cerns within the SoS architecture. These MDA principles, standardized by the Object Management
Group (OMG), outline four universal abstraction layers applicable to domain applications [21]:

Figure V.1: Four-layer Meta-Modelling infrastructure of OMG.

- M3 Layer (Meta-Meta-Model Layer): This layer houses the MOF, providing the founda-
tional language for Meta-Meta-Modeling that defines the structure for all subsequent layers.

- M2 Layer (Meta-Model Layer): Here, we introduce a Meta-Model that aligns with MOF
standards, specifically tailored for SoS framework.

- M1 Layer (Model Layer): The Model conforms to the proposed Meta-Model and represents
this various SoS model, i.e. this model articulates the SoS’s architecture and serves as an
instance for SoS design.

- M0 Layer (Implementation Layer): The operational layer represents the lower level where
the modeled SoS is executed, transforming high-level abstractions into practical and executable
code.

The MeMSoS, as described in the UML diagram below FIGURE V.2, serves as a comprehensive
framework for the architectural characterization and design of diverse SoS, including knowledge,
directed, virtual, and collaborative types. MeMSoS is designed to encapsulate the shared character-
istics across all CSs, ensuring a standardized, evolutionary approach to SoS development. Central

71

Chapter V. Model-Based SoS Framework Domain

to this approach is the hierarchical composition of SoS, where each CS, equipped with distinct mis-
sions, capabilities, and roles, collaborates to fulfill both local and overarching SoS goals, facilitated
by effective communication channels [21].

Figure V.2: General overview of MeMSoS.

Definition V.1 (SoS). : Defined within the scope of MDA, an SoS is formalized as a tuple SoS =

(CS,G,R,M,C, I, S, L), where:

- CS = {cs1, cs2, ..., csn}: A finite set of CSs, each an autonomous system characterized by
specific missions, capabilities, and roles, capable of operating as an independent SoS or as an
atomic unit within a larger SoS.

- G = {g1, g2, ..., gk}: A finite set of goals representing the local objectives of individual CSs and
the collective aims of the SoS.

- R = {r1, r2, ..., rp}: A finite set of roles defining the expected behaviors of CSs, each role
aggregating necessary capabilities to achieve the SoS’s global goals.

- M = {m1,m2, ...,mo}: The missions assigned to each CS or the SoS, comprising specific tasks
or objectives to be accomplished.

- C = {c1, c2, ..., ci}: A finite set of capabilities representing the functions each CS can perform
within their designated role.

- I : a finite set of interfaces facilitating communication, including both Message Interfaces and
Physical Interfaces (RUMI and RUPI, respectively) associated with each role.

72

V.2. SoSs Commonalities

- S = {s1, s2, ..., sq}: A finite set of interdisciplinary stakeholders, individuals or groups with
interests in the CS’s capabilities.

- L = {l1, l2, ..., lu}: one or more dynamic links representing the potential interactions among
different CSs, roles, goals, and capabilities, etc.

We highlight in this model the importance of different entities that we can find in an SoS such
as roles, capabilities, and goals, structured to enable efficient sharing and reuse of system elements.
This would reduce the effort and enhance adaptability to achieve collective SoS goals. The UML
diagram illustrates these relationships and establishes a visual grammar that represents the system’s
hierarchical organization, goals, roles’ interactions, and interoperability, ensuring system coherence
and functional adequacy.

Moreover, MeMSoS recognizes new elements within the SoS structure, particularly in the Frame-
work and Variabilities domains, allowing for the continuous extension and refinement of SoS archi-
tecture. Adhering to the M1 and M2 levels of the OMG Meta-Modelling infrastructure, MeMSoS
offers a high-level abstraction for SoS features, positioning itself as a strategic plan for SoS engineer-
ing. This facilitates the mapping and transformation processes essential for a model derivation that
respects the nuanced Meta-Model definition. The result is a flexible yet systematic framework that
guides stakeholders from abstract SoS concepts to tangible system implementations, embodying a
harmonious and mission-oriented architecture.

The subsequent sections will explore the Meta-Model layers, exploring their respective roles in
the DE process. This exploration will include a detailed look at how Meta-Models such as IEEE
ISO-42010, RAC-MM, and MS-MM capture the commonalities and variability of SoS architectures
and the formal specification of these assets across various platforms, with a specific focus on Maude.

V.2.1.1 IEEE ISO-42010 Meta-Model adaptation

In the Framework Domain, we extend the Meta-Model of IEEE ISO-42010 introduced in Chapter
II, Section II.2.2 to suit the specific needs of SoSE. This extension is a critical evolution of the
standard, allowing for a more systematic approach to SoSE processes and models. Moreover, it
enhances the Architecture Frameworks (AF) with the versatility to address the complexities of
architecting large-scale, interoperable systems.

Therefore, AFs, serving as foundational mechanisms, adopt a uniform approach to the creation,
interpretation, analysis, and application of architecture descriptions within a particular domain. The
extensions to the Framework Domain facilitate this by ensuring coherence and traceability across
diverse architectural viewpoints and the various concerns they encompass. Such frameworks are
crucial not only for generating architecture descriptions but also for formulating modeling tools,
methods, and processes that enhance communication and cooperation across multiple projects and
organizations.

More specifically, the enhanced standard is structured around two pivotal classes—’SoSE Process’
and ’SoS-UML Profile’—as indicated in red on the diagram. The ’SoSE Process’ class is crucial

73

Chapter V. Model-Based SoS Framework Domain

for capturing the diverse concerns identified by stakeholders and is defined by the ’Model Kind’
it employs. This class orchestrates the various SoSE activities, ensuring systems are robust and
adaptable. The ’SoS-UML Profile’ class extends the standard UML profile to fit the SoS domain,
providing stereotypes and notation rules essential for accurately modeling SoS architectures. This
profile aligns architectural viewpoints with SoSE best practices, as dictated by the ’Model Kind’
[20], [22].

Figure V.3: An extended conceptual model of the SoS-AF.

As shown in Figure V.3, the extensions to the Framework Domain, particularly through the ad-
dition of tailored SoSE Processes and a specialized SoS-UML Profile, reinforce the prefabricated
structure of knowledge inherent in architecture frameworks. This allows stakeholders to effec-
tively organize architecture descriptions into a suite of complementary views, as advocated by the
"ISO/IEC/IEEE 42010:2011, Systems and software engineering-Architecture Description" standard.
This standard outlines a conceptual model that underpins the terms and concepts related to systems
and architecture descriptions, thereby providing a scaffold for our expanded architecture framework
within the SoSE landscape.

In Chapter V, we define an AF description for the SoSs called SoS-AF, which conforms to this
international standard ISO/IEC/IEEE 42010:2011. The SoS-AF description is motivated by con-
cerns commonly shared by SoSs’ stakeholders across various development processes. Therefore, to
form a collection of architecture VPs that constitutes the body of our SoS-AF description, we pro-
vide a comprehensive UML profile-based modeling basis for the notion of SoSs that can guide the
development of SoSE processes pertained to shared concerns of each involved Stakeholder.

74

V.2. SoSs Commonalities

V.2.1.2 MeMSoS extension

Building on the initial MeMSoS model, we’ve developed an enhanced Meta-Model tailored for
the complex AFs of SoS. The extended MeMSoS strengthens the Framework Domain by providing
a more refined structure for SoSE, enabling the capture of diverse Viewpoints and Stakeholder
Concerns. It enriches the domain with new constructs, assembly rules, and a detailed semantic
mapping to automatically generate a comprehensive UML profile. This profile, within the SoS-
UML Profile class, aids in managing cross-cutting concerns derived from stakeholders’ viewpoints.
The extended version of MeMSoS explores the hierarchical structure of CSs and highlights the
pivotal roles of its characteristics, such as Roles, Capabilities, Goals, and Relationships, in the
overarching SoS architecture. To tailor the UML for the SoS framework domain, we expanded
MeMSoS, introducing new constructs and assembly rules specifically adapted for SoS complexities.
This evolution of MeMSoS not only defines the syntax of the SoSML modeling language but also
specifies the elemental building blocks and their potential configurations.

Figure V.4: Overview of the updated MeMSoS.

The enhanced version of MeMSoS aims to support for diverse Viewpoint modeling, encapsulate
a wider range of Stakeholders and their Concerns, and integrate novel features. It provides compre-
hensive mapping details necessary to automatically generate a UML profile, which embodies the full
semantic depth and precision required for SoS modeling. Leveraging these advanced abstract and
concrete syntaxes within the SoS-UML Profile, we achieve a high-level specification of aspects and

75

Chapter V. Model-Based SoS Framework Domain

effectively manage cross-cutting concerns derived from Stakeholders’ Viewpoints [20].

As depicted in the Figure V.4, MeMSoS conceptualizes an SoS as a network of Sub-Systems,
classified into two types: SoSs and CSs. These Sub-Systems engage in specific Capabilities and
adopt necessary Roles to fulfill the SoS’s Goals. At the heart of MeMSoS, the SoS class repre-
sents the system as an ensemble of Sub-Systems, each contributing to the collective mission. In
the refined MeMSoS, we distinguish two sets of Capabilities, Goals, and Roles pertinent to each
system—both CSs and SoSs. We identify distinct Capabilities for CSs (CS_Capabilities) and SoSs
(SoS_Capabilities), with SoS_Capabilities comprising various CS_Capabilities. These are executed
by CS Roles, which gather essential Capabilities allowing CSs to perform their roles toward realizing
the SoS’s overarching Goal.

Further, the Sub-System is a generalization that encompasses both SoS and CS, each associated
with three aggregations that express their respective Capabilities, Roles, and Goals. The CS_Role
and SoS_Role entities reference the ’gather’ and ’accomplish’ functions connecting them to corre-
sponding Capabilities and Goals and are linked to the Relation class. This class introduces a novel
attribute encapsulating the Interfaces through which CS_Roles and SoS-Roles interact, each Inter-
face characterized by its Relied Upon Interface (RUI) type, which includes both Message (RUMI)
and Physical (RUPI) Interfaces. Moreover, MeMSoS distinguishes two types of stakeholders for each
system—one for CSs (CS_SH) and another for SoSs (SoS_SH)—with the latter further defined by
associations with managerial and operational entities reflective of an SoS’s independent properties.

In this updated MeMSoS iteration, we have enriched the Meta-Model by specializing and general-
izing new classes that extend the Meta-Model’s existing entities. These specialized classes fulfill the
extension requirements for UML, aligning with the needs derived from the requirements Meta-Model
and facilitating the prediction of significant requirements. To develop an AF in the Framework Do-
main, we have utilized the extended MeMSoS and the expanded ISO 42010 standard, along with
UML Profile techniques. This domain leverages modeling to abstract SoS architectures, distilling
commonalities that are independent of specific implementation technologies and execution platforms.
An AF for SoSs is thus essential for automating SoS development and enabling abstract modeling
that can later be transformed into a PSM and then into a specific platform implementation.

The proposed SoS-AF is grounded on the MeMSoS, which facilitates the PIM design level and
allows modelers to refine the PIM concerning SoS aspects progressively. SoS-AF constitutes a set
of UML Profiles for different viewpoints. The UML profile mechanism is advantageous as it is a
lightweight method that does not alter the underlying MeMSoS. As illustrated in Figure V.5, we
adopt an incremental, MOF-based, multi-level approach guided by the MDA. The topmost layer,
M3, defines a language and framework for specifying, constructing, and managing Meta-Models,
which underpin the definition of MeMSoS, the ISO standard, and our SoS-UML profile. The M2
layer employs the extended MeMSoS, defined using MOF as a Meta-Model, to establish mappings
to the SoS-UML profile. This layer is crucial for specifying SoS commonalities, delineating various
aspects among their CSs, and tailoring these to SoS modeling requirements. It also integrates the
framework provided by the IEEE ISO 42010 standard. Additionally, the SoS-UML profile introduces
new SoS modeling concepts by extending fundamental UML concepts with stereotypes.

76

V.2. SoSs Commonalities

Figure V.5: Multi-level approach-based UML Profile.

The concrete assets for our domain, defined within the SoS-UML profile, are introduced at the
M1 layer. The final M0 layer represents the operational SoS implementations, such as executed
code. The M2 layer is particularly significant in our framework as it defines the concepts of the
MeMSoS Meta-Model, serving as a descriptive tool for the AF and specifying the vocabulary that
will be mapped to the SoS-UML profile, which will be presented in the subsequent section.

V.2.2 A Unified Architecture Framework: Overview

The approach described in Figure V.6 addresses the complexities of SoS architectures by intro-
ducing an SoS-AF within the Framework Domain. This framework integrates the multi-viewpoint
approach of ISO/IEC/IEEE 42010:2011 with specialized SoSE processes for effective complexity
management. The SoS-AF, essential to our systematic framework, incorporates various SoSE pro-
cesses into a sequence of interconnected activities, thereby enhancing the framework’s quality and
aiding stakeholders in managing SoS architecture complexities.

A key component of the SoS-AF is the SoS-UML Profile, which introduces new stereotypes and
notations derived from UML2.0 elements. This profile enables precise modeling of all structural and
behavioral aspects of SoSs, facilitating the representation and organization of processes from diverse
viewpoints. Addressing the lack of unified SoSE processes and consolidated Architecture Frameworks
for SoSs identified in the literature, our approach utilizes a Model-Based SoSE methodology. The
SoS-AF, a product of this methodology, supports SoS development and resolves common SoSE
challenges. It presents a comprehensive structure encompassing four main phases, each vital to
the development and application of the SoS-AF in various SoS contexts. This AF supports the
development of SoSs and addresses common SoSE issues by providing a comprehensive framework

77

Chapter V. Model-Based SoS Framework Domain

Figure V.6: Multi-Viewpoints Framework for SoSs’ Architectures.

depicted in three distinct phases:

- Abstract assets: describes the initiation methods and the architectural principles required
to create the framework domain; namely, ISO Standard 42010, MDA, UML profile and SoSE
process model. This combination covers and explores the importance of commonalities across
all CSs within the four types of SoSs in a high abstraction level framework. As well as it
contains both the tools and the methods for constructing and managing SoSs architectures.

- Concrete assets: permits to leverage the MDA-based techniques to develop deduce the con-
crete assets of the framework domain. In particular, it proposes a UML Profile-based modeling
tool for SoSs called SoS-UML Profile. The latter provides a generic extension mechanism for
building UML models in SoSs domain, and offer a way that reflects and refines the specifica-
tions of the new framework.

- Design time: permits obtaining global SoS-AF by incorporating the first two phases. On
the one hand, it is essentially based on the adaptation of “ISO/IEC/IEEE42010 standard:
Systems and Software Engineering-Architecture Description” to make it suitable to a Model-
Based SoS Engineering context. And on the other hand, it highlights the adoption of SoSE
processes and demonstrates how SoS-UML Profile can be leveraged to lead the production of

78

V.2. SoSs Commonalities

SoSs architectures and to govern the involved stakeholders. Moreover, it can involve a set of
examples to validate the framework and its related properties. It demonstrates that it can
offer a consistent AF for any SoS case studies (e.g. AERSoS in Section V.2.3).

The proposed SoS-AF will enable various stakeholders to design each process from different view-
points separately. i.e. it gives a generic methodology to ensure that the resulting SoSs architecture
models will also yield the desired expectations. Moreover, we argue that this methodology and
the SoS-UML profile-based model kind it provides, will offer a map to guide stakeholders toward
achieving a unified SoS’ AF.

V.2.3 Case study: Aircraft Emergency Response SoS

SoSs are an emerging vision for the next-generation systems that are built by interconnecting
existing legacy systems. The field of SoSs comes up against constraints during the engineering
process. SoS can take four different types. These types are primarily based on the governance,
management complexity and the relationships among the CSs in the SoS. Air traffic has become
widespread since the 1970s and it continues to grow; the International Air Transport Association
(IATA) predicts 8.2 billion air travelers in 2037 [21]. Aviation accidents involve not only passengers
and flight crews, but also a vast territory, around the airport with a large number of residents who,
in some cases, have paid a heavy price in terms of their lives.

Figure V.7: Aircraft Emergency Response(AERSoS).

From an IT point of view, frequent problems causing aviation accidents are mainly due to a
misunderstanding of the interaction and communication between aviation CSs. Stakeholders must

79

Chapter V. Model-Based SoS Framework Domain

pay particular attention to the idea that aviation is a SoS [20] and the impact of such an approach
at the conceptual design stage [27]; since the aviation system is bound by a set of distinct CSs
provided by different companies (aircraftSubsystems, air traffic management/control subsystems,
etc.), each of these CSs has managerial and operational independence. On this basis, we employ
in this section an Aircraft Emergency SoS to illustrate through this case study the global mission
of “maximizing the aircraft safety by minimizing critical situations”; this is done by providing the
required emergency response and reacting to the aircraft critical problems. The AERSoS interacts
with many independent CSs that are deployed in the aircraft or even those that are dispersed.
AERSoS CSs are composed through communication links as described in Figure V.7.

At the aircraft level, hundreds of sensors are installed on all parts of the aircraft CSs (turbines, oil,
lubricant, etc.) that communicate with each other and collect data on the aircraft’s performance and
flight conditions. These CSs on the one hand are responsible for collecting data on high and unusual
temperatures in turbines, oil, lubricant, etc., and on the other hand, they detect the gases emitted
by potential fires. Moreover, warning SoS signals a problem that may occur with the aircraft at a
given position. This system is constituted of a set of CSs that interact directly with the installed
sensors; In the case that these sensors detect something wrong (fire, flame, gases...etc.), another
autonomous CS takes on the mission of verifying the validity of the indications and evaluating the
risks have:

- Signals a state of danger on the plane and informs the flight crew.

- Provokes the initial response systems which perform functions that are intended to mitigate
the emergency:

1. CSs designed to isolate damaged engines and suppress fires;

2. CSs that generate secondary power(ex: hydraulic and electrical power, liquid oxygen,
etc.);

3. Passenger rescue CSs (provide O2, lifejackets, etc.).

- Interacts with the control tower to try to clear the runway and airway for an emergency landing
at the nearest airport using GPS, as well as airport firefighters to ensure first aid.

- Interacts with the Air Force Analysis System (AFAS) for the analysis of the technical report
containing the details of the missing parts to be sent to maintenance for quick repair upon
landing. As we explained, this SoS like others requires special attention to describe its complex
behaviour through the arrangement of its subcomponents, from several points of view.

In this chapter, the AERSoS case study will be considered to clarify and concretize the basic
elements and the contributions made by SoS-AF. We will adopt it in the next Section V.4 to encap-
sulate all the necessary notions in the SoS-AF. To achieve the global goal, AERSoS must be designed
in such a way that the CSs can interact and perform a unique capability that cannot be provided

80

V.3. A Multi Viewpoints-based Architecture Framework

by any of the CSs. Examples of the AERSoS’ CSs include an AircraftEmergenciesSoS, Emergen-
cyResponseSoS, WarningSoS, EvacuationCS, TowerControlCS, EnginesProtectionCS, LandingCS,
etc. see Figure V.7.

Each CS of the AERSoS is a system that is specified by a set of entities, which are divided
into three types. The first set represents the Roles describing the ideal behavior of CSs through the
gathering of the required Capabilities to accomplish the AERSoS global-Goals, the second represents
the Capabilities describing the functions provided by each CS in specific Roles to the wider needs
of the AERSoS, and finally, the Goals, describing instances of the AERSoS’ Roles, that represents
sub-Goals of each CS and Global-Goal of AERSoS.

V.3 A Multi Viewpoints-based Architecture Framework

Architecting an SoS helps to understand how it works, as well as to master its complexity before
its implementation. This offers considerable advantages to the designers of such systems. Besides,
it can be seen as the separation of different static and dynamic aspects as well as the functional and
non-functional needs which are related to SoSs characteristics, SoSs quality attributes, management
and oversight, SoSs architecture, design and Implementation.

In this new perspective, SoSs development does not follow the normal system development pro-
cess. As SoSs’ capabilities are based on the contributions of the individual CSs, their interdepen-
dencies make a document-centric development impractical as an exorbitant effort. The development
processes refer to activities that can guide an SoS’ lifecycles from the system requirements level
down to the software implementation level, and naturally, by coordinating the various processes for
the development of a new system [20], [22].

From a SE perspective, design decisions made at the architectural level have a direct impact on
the fulfillment of functional and quality requirements of SoSs development. At this stage, the SoS’
Stakeholders identify functional and non-functional characteristics through the use of their theoret-
ical backgrounds, notations and environments. In addition, the SoSs’ architectures are still created
without the support of systematic processes and traditional design approaches do not adequately
support the creation of these types of systems due to their composed nature, their large scale, their
decentralized control mechanism, their evolving environments, and their stakeholders [20], [22].

To get a handle on this complexity, it is necessary to maintain consistency and coherence between
the different viewpoints of different stakeholders, as well as the ability to reconcile and include all
their viewpoints before proceeding to the various processes in the SoSE lifecycle. In an SoSs Engi-
neering, the next section introduces an SoS-AF based on a Framework Domain, that can facilitate
and improve the design of SoSs’ architectures.

Architecture frameworks are mechanisms widely used in architecture. They establish a common
practice for creating, interpreting, analyzing and using architecture descriptions within a particular
domain of application or stakeholder community. As a result, their uses include, but are not limited
to [20]:

- Creating architecture descriptions.

81

Chapter V. Model-Based SoS Framework Domain

- Developing architecture modeling tools and architecting methods.

- Establishing processes to facilitate communication, commitments, and interoperation across
multiple projects and/or organizations.

The idea is that an AF is a knowledge-prefabricated structure that stakeholders can use to organize
an architecture description into complementary views, [22]. The specification of an AF is one area
of standardization in ISO/IEC/IEEE42010:2011. This standard proposes a conceptual model to
describe the terms and concepts of systems and architecture description. This standard specifies an
AF as a composition of multiple Viewpoints (VPs), each VP can be used to address specific concerns
of different Stakeholders [37].

Our proposal in this section is to refine and tailor our SoS-AF to meet these architectural require-
ments more effectively. The SoS-AF proposes a multi-viewpoint approach to suit the specific dynam-
ics of SoSE, simplifying its complexity and enhancing its practicality. This adoption of ISO42010
standard and its adaptation into our context ensure a more coherent integration of various archi-
tectural components and viewpoints, making the standard more user-friendly and relevant for SoS
design.

Additionally, the framework advances by integrating systematic and model-based SoSE processes.
This integration fills a critical gap in the existing literature, offering much-needed support for the
design of SoSE processes in alignment with the IEEE 42010 standard. Moreover, the development
of an SoS-UML Profile introduces a comprehensive range of models to accurately represent SoS
architectures. With new stereotypes and notations extending from UML2.0, it enables a precise
depiction of both structural and behavioral aspects of SoSs, facilitating a deeper understanding and
more effective architectural modeling.

V.3.1 Architectural concepts

As seen in Section V.2.1.1, SoS-AF aligns with the IEEE 42010:2011 standard, it is designed to
reflect the concerns prevalent among SoS stakeholders throughout different development processes.
This framework integrates a collection of architecture VPs, each formed through the aggregation
of specific SoSE processes and governed by distinct Model Kinds defined by the SoS UML Profile.
These Model Kinds are pivotal in shaping the SoSE processes, outlining their relationships and
dependencies. The subsequent sections will explore the SoS-AF in detail, focusing on its structure,
the integration of Stakeholders’ concerns, and the interaction between SoSE Processes and VPs.

V.3.1.1 SoS Stakeholders

In SoS-AF, we identify the various stakeholders of SoSs categorizing them based on their roles and
responsibilities. This identification is detailed in Table V.2, where we introduce the diverse functions
and tasks of each stakeholder. The SoS-AF leverages SE principles, enabling every stakeholder to
contribute effectively to maintaining the SoS, whether their tasks are technical, functional, etc.

82

V.3. A Multi Viewpoints-based Architecture Framework

Table V.1: DIFFERENT ROLES OF STAKEHOLDERS.

Stakeholders Analysts Users Owners Developers Maintainers
SoS Experts X X X
Architects and Designers X X X
Collaboration Specialists X X X
Interactions Engineers X X

Stakeholders are inherently heterogeneous due to multiple users, their VPs, engineering processes,
platforms, environments. . . etc. they could be individuals, groups, or organizations holding Concerns
for an SoS. They use SoS-AF Description to understand, analyze and compare SoS’ architectures.
Each SoSs’ concern could be managed by one or more stakeholders; four main stakeholders have
been identified in this framework:

- SoS Experts: a group of persons responsible for the Business VP establishment, with strong
theoretical knowledge in an SoS application domain and they have the ability to understand
the practical implications of the existing CSs that can participate in SoS and can translate
SoS Capability Objectives into High-Level SoS Requirements.

- Architects and Designers: their role is vital to the success of both Analysis and Design VPS,
they translate the requirements into a demand for CSs Capabilities. i.e. they look at business
plans and requirements provided by SoS Experts, analyze the Goals and the Capabilities of
the selected CSs, and propose recommendations on the right selection of CSs to achieve the
SoS’ Global Goal.

- Collaboration Specialists: they are also Analysis and Design experts; they are responsible
for understanding CSs and their Capabilities’ collaboration. They also look at integrations
with existing CSs, interfaces with people and other systems.

- Interactions Engineers: persons responsible for the Deployment VP and they are responsi-
ble for specifying communication and interactions between different Roles. They oversee the
CSs’ Capabilities and their Roles’ interactions to facilitate the interaction modeling within an
SoS application.

V.3.1.2 SoS Concerns

Concerns in SoSs emerge across all stages of development, from knowledge acquisition about CSs
to design and implementation. These concerns can manifest in various forms, including stakeholder
relationships, global missions of SoSs, capabilities, requirements, modeling constraints, interdepen-
dencies among CSs, quality attributes, and design decisions. Our work in [21]–[23] has enabled us
to identify these concerns by thoroughly examining different aspects of SoSE. These concerns are
organized according to five key SoSE processes, and to effectively address them, a series of critical
modeling and implementation questions have been developed, as outlined in Table. V.2.

83

Chapter V. Model-Based SoS Framework Domain

Table V.2: ARCHITECTURE FRAMEWORK-RELATED CONCERNS.

Concerns Description
C.1 What requirements should the SoS meet?
C.2 How does the SoS ensure knowledge?
C.3 What are the design decisions related to any influences on the SoS in its environment?
C.4 How does the SoS support the stakeholder relationships?
C.5 What are the modeling constraints and CSs’ interdependencies that the SoS should have?
C.6 What are the local and global goals of the SoSs?
C.7 How does the SoS achieve sustainability, flexibility, and interoperability?
C.8 How does the SoS carry out the self-organization and adaption requirements?
C.9 How does the SoS respect a good representation of the requirements?
C.10 How does SoS aim to reduce execution time and optimize resource consumption?
C.11 How does the SoS dynamically reconfigure the heterogenous set of CSs?
C.12 How do the SoS’ constituents interact with each other at runtime?
C.13 Can new CSs be integrated into the SoS at any time?
C.14 How do CSs adapt to each other and the environment?
C.15 What are the new capabilities that can be added after the integration of the different CS?

V.3.1.3 SoSE processes

SoSE processes have a major stake in the SoS-AF and a strong influence on its implementation.
Our contribution consists of inspiration from the SoSE processes provided by [2] to guide the SoSs
lifecycle processes from CSs knowledge, to design and implementation. We propose to take inspira-
tion from this work by modifying some elements to adapt it to our previous works. SoSE processes
express the activities engaged under SoSE from the perspective of one or more Stakeholders to
frame specific Concerns, using the conventions established by its models. Each SoSE process will be
identified by one or more governing Model Kind that adhere to the conventions of SoS UML Profile.

Figure V.8: SoS development processes.

As shown in Figure V.8 the main SoS development processes involved in our SoS-AF are:

84

V.3. A Multi Viewpoints-based Architecture Framework

- SoS Knowledge: addresses high-Level SoS requirements and investigates existing CSs that
can participate in the SoS.

- CSs Selection: this process consists of choosing a set of CSs and distinguishing their relevant
Capabilities and Goals.

- Conceptual Design: the design involves creating a global vision of an SoS, defining the essential
relationships and identifying mission capability assessment.

- Architectural Design: represents a global architecture for the SoS’ constituents and their
possible Roles. It could be developed in parallel with the CSs Selection process.

- Interaction: the different CSs involved in an SoS usually have different Capabilities. There-
fore, a large part of the software engineering effort in the SoSE is to design interactions so that
the CSs can interoperate.

- Integration & deployment: this process implies that the different CSs involved in the SoS
work together and interact through the assigned Roles. Deployment of the system consists of
setting up the CSs interactions in the organizations concerned and making it operational.

V.3.1.4 SoS Architecture Viewpoints

A viewpoint in SoS-AF is a selection of relevant aspects of the SoSE processes (and their Stake-
holders’ concerns); and the representation of that part of an architecture that is expressed in different
Model Kind. It is claimed that the SoSE processes form a necessary and sufficient set to meet the
needs of SoS-AF. Four main VPs are identified in our proposed SoS-AF:

- Business Viewpoint: This stage focuses on acquiring knowledge and identifying the re-
quirements of Constituent Systems (CSs). The SoS experts draft initial SoS requirements,
pinpointing potential capabilities derived from existing CSs in the application domain. Key
challenges addressed include architecture challenges C.1 and C.2. The process is guided by the
Knowledge process.

- Analysis Viewpoint: Led by architects, designers, and collaboration specialists, this view-
point involves the selection of appropriate CSs to provide necessary SoS capabilities. It also
encompasses building a conceptual design model to understand the relationships and interde-
pendencies of CSs within the SoS. Challenges C.6, C.9, C.7, C.10, and C.11 are addressed in
this process.

- Design Viewpoint: This viewpoint assists architects and designers in the SoS design process,
from initial sketches to detailed design. It deals with the core processes of SoS development and
the architecture of CSs, roles, and collaborations. It comprises two processes: Architectural
and Interaction, focusing on detailed modeling for design decisions (C.3, C.4, C.8, C.15) and
managing fundamental interdependencies among CSs, roles, and their collaborations.

85

Chapter V. Model-Based SoS Framework Domain

Figure V.9: SoS-UML Profile’s diagrams.

Table V.3: ASSOCIATIONS OF STAKEHOLDERS, PROCESSES AND CONCERNS.

Stakeholder Process SoS Experts Architects Designers Collaboration Inter. Engineers
SoS Knowledge C.1 C.2
CSs Selection C.6 C.9
Conceptual Design C.7 C.10 C.11
Architectural Design C.3 C.4 C.15 C.8
Interaction C.5 C.14
Integ. & deployment C.12 C.13

- Deployment Viewpoint: Focused on the integration and deployment of CSs, this viewpoint
is managed by collaboration and interaction experts. It involves merging diverse roles to define,
control, and monitor complex interactions (C.12 and C.13) across SoS and CS boundaries.

V.3.1.5 Model kinds and UML-Profile

The SoS SoS-AF is designed to facilitate modeling all concepts and relationships within SoS
entities, capturing both their static and dynamic aspects. To achieve this, we introduce the “SoS-
UML Profile”, which provides graphical constructs for various diagrams associated with each VP, as
summarized in Figure 6. This profile enables the representation of requirements diagrams and their
integration with other Static and Behavior diagrams. Static diagrams encompass Goals, Domain
model, and CSs diagrams, while Behavior diagrams include Capabilities, Roles Interaction, Capa-
bilities Collaboration, and Roles Interfaces diagrams. This SoS-UML profile, its diagrams and all
their associated concepts will be detailed in the next Section V.4.

V.3.2 Associations

Table V.3 illustrates the relationships between concerns, stakeholders, and SoSE processes. It
categorizes concerns by stakeholder groups (columns) and aligns them with relevant SoSE processes
(rows). This structured approach offers clarity on the roles and responsibilities of stakeholders for
specific concerns and ensures effective management and execution across the SoSE lifecycle.

86

V.3. A Multi Viewpoints-based Architecture Framework

Table V.4 below maps out which development processes are associated with each viewpoint in
SoS development. The ’X’ marks indicate the involvement of a specific process within a particular
viewpoint. For example, the SoS Knowledge process is associated with the Business viewpoint,
while CS selection and Conceptual Design are part of the Analysis viewpoint, and so on. This
format delineates the roles and responsibilities across different stages of SoS development.

Table V.4: ASSOCIATION OF VIEWPOINTS AND SoS DEVELOPMENT PROCESSES.

Viewpoint Process Business Analysis Design Deployment
SoS Knowledge X
CSs Selection X
Conceptual Design X
Architectural Design X
Interaction X
Integratio & deployment X

In other words, Figure V.10 below illustrates the AF that describes the proposed methodology.
It can depict four different and complementary parts:

Figure V.10: Overview of SoS-AF.

- SoS-UML Profile, the proposed tool takes advantage of the MeMSoS model to frame the
concepts, the characteristics and the structural and dynamic aspects of an SoS. The idea is
that we consider the MeMSoS as our reference of concepts to map them to the UML Profile
for SoSs, and implement the AF to introduce a set of model kind.

- To facilitate the task of designing and managing these diagrams, we used a customized set of
SoSE development processes to support the specific parts of the architecture. the objective is
to separately capture, describe and organize each diagram.

87

Chapter V. Model-Based SoS Framework Domain

- The framework take advantage again of the customized SoSE processes model to enable the
stakeholders to explicitly manage their concerns that they want and express them using an
SoS-UML profile’s diagram.

- The deliverable of this AF processes is a set of SoSs specifications that provide a set of guidelines
for structuring the specifications expressed as models corresponding to different VPs. The
design of these VP is based on a consolidated Model-Based SoSE in which the AF can be seen
as a sequence of connected and dependent VP. i.e. each VP is created through an aggregation
of one or more SoSE process. Each one of these latter is governed by a set of diagrams that
are appropriate to specific concerns.

V.4 UML Extensions for Modeling the unified architecture

SoS-AF is our proposed architecture framework to support the entire development of SoSs’ life-
cycles, including its various processes from the requirements’ specification process, design, to the
implementation process. Hence, the need for a tool allowing the definition of the overall architecture
of SoSs, and also the definition of specific models for each involved process (such as UML models)
is essential. For this reason, we present a UML2.0 extension tool, denoted SoS-UML profile, for the
management of SoS’ architectures following the approach proposed in SoS-AF.

A key engineering challenge then is to construct an Architecture Framework of SoSs based on the
proposed SoS-AF, and this requires to:

- Create different VPs matching the VPs of SoS-AF at high-level abstraction considering differ-
ent stakeholders’ concerns,

- Take advantage of SoSE processes that can be used to manage the AERSoS,

- Use the SoS-UML Profile to abstract their analysis and design from implementation technolo-
gies, increase the automation of the development of AERSoS and allow VPs modeling.

To be able to specialize the UML for the SoSs domain, we needed to extend the MeMSoS to inte-
grate new entities and constructions adapted to treat SoSs. Consequently, MeMSoS’ will represent
the definition of SoS-UML Profile below and defines the available building elements and how they
can be assembled.

The new version of MeMSoS offers better support for different VPs modeling, frames Stakeholders’
concerns, and introduces new features. This new version provides all the mapping information
required to automatically generate the SoS-UML profile with all the semantic expressiveness and
precision. With the new extended abstract and corresponding concrete syntaxes of SoS-UML Profile,
we can successfully reach high-level specifications of aspects and address the cross-cutting concerns
that depend on the Stakeholders’ VPs.

The proposed SoS-UML profile is a Meta-Model extension mechanism that allows stakeholders to
add new elements of the MeMSoS Meta-Model, better suited to model particular systems as SoSs.

88

V.4. UML Extensions for Modeling the unified architecture

Every existing element will be specialized by a stereotype and semantically equivalent to a new class
of the MeMSoS which will bear the same name as the stereotype. In the following, we introduce
new elements enriching UML 2.0 diagrams. These elements will make it possible to frame the main
processes, and aspects characterizing the notion of SoSs. As well as we give a brief representation
of the abstract syntax for the proposed profile.

The main purpose of this section is to present some UML extensions that define the Meta-
Modeling aspects of our SoS-UML Profile. We have used the “IBM Rational Software Architect 9.0”
tool for the realization of this profile. As well as, we work on an instance of Eclipse which loads the
plugins that we generated previously, to be able to design a set of examples of our models. This
section presents the abstract/concrete syntaxes of the SoS-UML profile, which is structured into
packages labeled by the SoSE development processes’ names to make groupings of different aspects,
and thus better manage the complexity of each process. Figure V.11.(a). shows a screenshot of the
different packages in IBM RSA tool that make up the Profile’s Meta-Model, it involves six packages
namely: SoS_Knowledge_Package, CS_Selection_Package, Conceptual_Design_Package, Archi-
tectural_Design_Package, Interaction_Package and Integration_Deployment_Package. Addition-
ally, Figure V.11.(b). shows their relevant inter-dependencies as mentioned in the SoSE processes
model. In the following, we will demonstrate how we use each package of them as a model kind to
design the main concepts of each process in the SoSE development.

To sum up, Figure V.11 below illustrates the AF that describes the proposed methodology. It
can depict four different and complementary parts:

Figure V.11: SoS-UML profile packages.

V.4.1 SoS_Knowledge_Package

The SoS_Knowledge_Package describes the basic elements needed to describe the SoS Knowl-
edge. The deliverable contained in this package will guide the description of the SoS’ Goals and
support the identification of its Capabilities during the next process. Particularly, the two stereo-
types Requirement and System are the central concepts in this model, and they represent a unit SoS
Knowledge process. The latter starts with understanding the desired Requirement and suggesting
a set of Systems as various options for achieving that Requirement. It is used for the representation

89

Chapter V. Model-Based SoS Framework Domain

of the Requirement Diagram’s Model. The package contents are shown in the next Figure V.12.

Figure V.12: The structure of the SoS_Knowledge_Package.

The Requirements Model represents the functionalities or the conditions that an SoS must fulfill
based on the contributions of the collaborative CSs. As shown in the package figure, it contains
different stereotypes for describing the knowledge and requirement of an SoS, and how they can be
related to the necessary entities to gather, organize, analyze and decompose the different existing
systems that can participate in an SoS. A part of this diagram, describing the most important
stereotypes and the extended meta-classes is shown in Table V.5.

Table V.5: Stereotypes of the SoS_Knowledge_Package.

Process Model Kind UML
Diagram Stereotypes Description Meta-class

SoS
knowledge

Requirement
Diagram

Class
Diagram Requirement Capability or Goal that must

(or should) be performed Class

System Systems, SoS, CS. . . etc

Refine Clarifies the requirement’s
meaning or context ElementImport

Depend A requirement uses or
depends on other ones

Derive Impose additional sub-
requirements

Need Express required systems
for a requirement Message

Verify Relate a requirement with
a system that verifies it

Satisfy Relate a requirement with
a system that satisfies it

Take the AERSoS case study, requirements can be organized as an ordered tree hierarchical
structure. A typical structure may include a top-level requirement for all sub-requirements. By using
different relationships, each requirement within the top-level one may be associated with different
systems (SoSs or CS, component, etc.) to describe its scope; for example (see Figure V.13), the
«Requirement»HandleAbnormalSituation wich is derived from «Requirement» EnsureAircraftSafety

90

V.4. UML Extensions for Modeling the unified architecture

can be satisfied by «CS»AircraftEmergencySystem using the two relatioships «Derive» and «Satisfy»
respetively.

Figure V.13: Requirements diagram for AERSoS.

V.4.2 CSs_Selection_Package

The Selection of CSs requires the characterization of the Capabilities in which the CSs will perform
to fulfill their Goal, and thus, the SoS’ global Goal. Therefore, the main Systems that can participate
in the SoS must be defined, described, and documented using the CSs_Selection_Package. As shown
in the structure of this package that is depicted in Figure V.14, the extensions proposed here comprise
stereotypes that reflect the entities that constitute the basis for the specification of Systems’ Goals
(CS_Goal and SoS_Goal) and the identification of their relevant Capabilities (CS_Capability and
SoS_Capability).

Figure V.14: The structure of the CSs_Selection_Package.

The CS_Selection_Package uses the output artifacts of the SoS Knowledge process (Require-
ments) to describe the SoS in terms of Goals and Capabilities. Thus, the notions of CS_Goal and

91

Chapter V. Model-Based SoS Framework Domain

SoS_Goal are the central concepts in the Goals Model, representing a unit of the local goals of CSs
as well as the SoS global goal in which high-level Goals may be realized through the combination of
lower-level Goals. As well as, the Capabilities Model contains the concepts enabling the description
of Capabilities which the selected CSs should perform to achieve the predefined Goals. The concepts
in this package are divided into two diagrams, Goals Diagram and Capabilities Diagram (listed in
Table V.6).

Table V.6: Stereotypes of the CS_Selection_Package.

Process Model Kind UML
Diagram Stereotypes Description Meta-class

CSs Selection Goals
Diagram

Class
Diagram Goal Represents objectives of

a system Class

CS_Goal Represents objectives of a CS
SoS_Goal Represents objectives of an SoS
Include Split a goal into several sub ones ElementImport

Contain Expresses the capability of
having sub-goals

Capabilities
Diagram

Use Case
Diagram System Could be any type of System

providing a Capability Package

SoS SoS providing the Capability Class
CS CS providing the Capability

Capability Refers to functions provided
by any system Use Case

CS_ Capability Refers to functions provided
by any system

SoS_ Capability Refers to functions provided
by an SoS

The first diagram in this package is Goals Diagram where different Goals can be organized as a
tree structure in which a high level Goal that represents «SoS_Goal» may be realized through the
combination of lower level Goals «CS_Goal» of CSs. In addition, relations between them denote
sharing of the same common Goals; for example, Figure V.15, the «SoS_Goal»Aircraft Safety has
three sub-goals, «CS_Goal» Safe Landing, «CS_Goal»Safe Flight and «CS_Goal» Accident Report.

Figure V.15: Goals Diagram for AERSoS.

92

V.4. UML Extensions for Modeling the unified architecture

For the second diagram (Capabilities Diagram), it can be viewed as a mechanism to capture the
SoS Capabilities in terms of the Capabilities of the pre-selected CSs which specify the expected
behavior (what), and not the exact method of making it behave (how) of an SoS and thus, it
represents a black-box view of the SoS; it is therefore well suited to serve later in Interactions and
Architectural Design Diagrams. Figure V.16. represents the AERSoS capabilities, where a set
of sub-capabilities (e.g.«CS_Capability»GeneratingPower, «SoS_Capability»InsultingReactors) for
different CSs are required to perform the global-Capibility «SoS_Capability» ControllingSituation.

Figure V.16: Capabilities diagram for AERSoS.

V.4.3 Conceptual_Design_Package

This package captures the main blocks for designing the Conceptual Design process, the design
allows creating a global vision of an SoS, defining the essential relationships and identifying mission
capabilities. The main concepts in this model are Systems, Roles, Capabilities and different rela-
tionships types that can offer a global understanding of CSs, their Roles and their interdependencies
as part of an SoS. A general structure of the package is depicted in Figure V.17.

Figure V.17: The structure of the Conceptual_Design_Package.

93

Chapter V. Model-Based SoS Framework Domain

Table V.7: Stereotypes of the Conceptual_Design_Package.

Process
Model
Kind

UML
Diagram

Stereotypes Description Meta-class

Conceptual
Design

Domain
Model

Class
Diagram

System
Represents the involved
System

Class

SoS Represents the involved SoS
CS Represents the involved CS

Role
Ideal behavior of any
type of System

CS_Role Ideal behavior of a CS
SoS_Role Ideal behavior of an SoS

Capability
Represents Capabilities
of a System in specific Role

Operation

CS_ Capability
Represents Capabilities of a
CS in specific Role

SoS_ Capability
Represents Capabilities of
an SoS in specific Role

Own
Expresses authority of one
system to another

Usage

Lead
Expresses control or guidance
of one system to another

Play
Associates systems with
the required Roles

The stereotyped concepts in this model can be used to provide a global structure of an SoS
to enhance the interaction of its CSs. Consequently, they can be used to describe the CSs, the
Capabilities they have to accomplish Goals and the Roles they play within an SoS. In Addition, the
Conceptual_Design_Package defines to which a Sub-System has access to and which Role it can
play to solve missions. The concepts of this package introduce one single diagram called Domain
Model, as showed in Table V.7.

At this stage, the Domain Model Diagram is used by stakeholders to design the SoS’ character-
istics in terms of its structural CSs, behavioral Roles, the internal Capabilities and relationships
between the CSs. An example of PowerUnitsSoS as it is depicted in Figure V.18, the stakehold-
ers can display various kinds of CSs and SoSs that constitute the top-level entities, e.g. «SoS»
PowerUnitsSoS, «CS»ReactorsProtectionCS, etc. their corresponding Roles, e.g. «SoS_Role» Pow-
erGenerator «CS_Role»OxiginProvider, etc. and relationships among them «Play» «Lead», etc.

V.4.4 Architectural_Design_Package

This package which is depicted in Figure V.19 presents the concepts to support the Architectural
Design decision in every CS’ architectures. This is required to propagate the CS’ architectural

94

V.4. UML Extensions for Modeling the unified architecture

Figure V.18: Domain Model for the PowerUnitsSoS.

characteristics in the next processes in the lifecycle of an SoS. They manifest the structure of every
CS by characterizing which Roles are part and which functions are used by the different stakeholders.

Figure V.19: The structure of the Architectural_Design_Package.

The Constituent Model has the ability to describe the internal structure of every autonomous
entity cooperating within the SoS and how the operational and managerial independence can be de-
fined. Additionally, the Architectural_Design_Package defines which CSs’ stakeholders have access
to and which functions they can perform. Detailed stereotypes are summarized in the Table V.8.

Figure V.20 shows an example of a Constituent Diagram used to model the decomposition of
the EvacuationCS and its internal entities such as functions (e.g. «Function» extinguish, «Func-
tion» manage) which are associated to one of the main independence classes: the management
class with the stereotype «I_Management» CSManagement and the operation class with stereotype
«I_Operation» CSOperation, as well as, each function involves the corresponding stakeholders as
attribute, e.g. «Stakeholder» Manager and «Stakeholder» FireFighter, respectively.

V.4.5 Interaction_Package

The Interaction_Package contains the concepts to describe how flexible collaboration and coop-
eration take place between different CSs in an SoS. This package’s model supports the Interactions

95

Chapter V. Model-Based SoS Framework Domain

Table V.8: Stereotypes of the Architectural_Design_Package.

Process Model
Kind

UML
Diagram Stereotypes Description Meta-class

Architectural
Design

Constituent
Diagram

Component
Diagram System Refers to system’s class Class

CS Refers to a CS’ class
SoS Refers to an SoS’ class
I_Operation Independent operations
I_Management Independent management
Function Represents a service
Role Roles of a system Component
CS_Role Roles of a CS
SoS_Role Roles of an SoS
Stakeholder Intervening persons Property

Figure V.20: Constituent diagram for EvacuationCS.

process by focusing on the quality of the interaction architecture and, as a consequence. We define
two major Models: The Capabilities Collaboration Model and the Roles Interactions Model. Both
determining the types of Collaborations among Collaborative Capabilities and the interactive Roles.
The package’s stereotyped concepts are represented in Figure V.21.

In the Capabilities Collaboration diagram, we define the stereotypes to describe the internal
behavior of different CSs used for fulfilling predefined Goals. The global-Goals of an SoS can be
achieved in terms of combining simple Capabilities of its participating CSs. Additionally, the Roles
Interactions diagram covers the abstract representations of the collaborative Capabilities of different
CSs within an SoS. Moreover, the Role package provides the different relationships that can be used
to connect CSs among each other. The identified stereotypes are summarized in Table V.9.

The Figure ?? shows an example of Capabilities Collaboration diagram which describes “Assessin-
gRisks” Capability of «SoS»WarningSoS collaborating with other CSs’ Capabilities («CS_Capability»CO_sensing
and «CS_Capability»IR_radiation of «CS»FireDetectionCS) and («CS_Capability»Transducer_probe
of «CS»IceDetectionCS). This diagram particularly offers a good method to express the flow of ca-
pabilities of the «SoS»WarningSoS and how its CSs can collaborate.

96

V.4. UML Extensions for Modeling the unified architecture

Figure V.21: The structure of the Interaction_Package.

We can use the Roles Interactions diagram Figure ??, to show how the different Roles interact
within the «SoS»AERSoS when fulfilling the global goal «SoS_Goal»SafeLanding in case of critical
situations in the aircraft. This diagram depicts a collection of interactions between external Roles
of different CSs «SoS_Role»LandingManager, «CS_Role»EmergencyLandingController, etc. In this
case, the Roles represent the specification of a sequence of Capabilities («CS_Capability»first_aid,
«SoS_Capability»landing . . . etc.), that an SoS (or CS) can perform. In addition, the roles repre-
sent a path or flows of a sequence of interactions (e.g. «Change_role»Unplanned_Landing, «Cre-
ate_role»pilot . . . etc.) that occurs during the execution to accomplish the SafeLanding goal.

Figure V.22: Roles Interactions diagram for SafeLandingCS’ Roles.

V.4.6 Integration_Deployment_Package

The Integration_Deployment_Package (Figure V.23) contains the concepts to describe the pro-
cess of Deployment, including instances of Roles and the corresponding Interfaces. This model
contains the stereotypes of CS’ interfaces defined by their Roles and the necessary provided or/and

97

Chapter V. Model-Based SoS Framework Domain

Process Model Kind UML
Diagram Stereotypes Description Meta-class

Interactions Capabilities
Collaboration

Activity
Diagram System System performing Capabilities ActivityPartition

CS CS performing Capabilities
SoS SoS performing Capabilities
Capability functions provided by a System ActivityNode
CS_ Capability functions provided by a CS
SoS_ Capability functions provided by an SoS

Roles
Interactions

Sequence
Diagram Role Interactive Role of a System Lifeline

CS_Role Interactive Role of a CS
SoS_Role Interactive Role of an SoS
Capability Refers to a Capability of a System Activation
CS_ Capability Refers to a Capability of a CS
SoS_ Capability Refers to a Capability of an SoS
Create_role Initiating a new Role Message
Destroy_role Finishing a Role
Activate_role Starting a Role
Deactivate_role Interrupting a Role
Cancel_role Omitting a Role
Change_role Replacing a Role
Commit_role Performing a Role

Table V.9: Stereotypes of the Interaction_Package.

required Interfaces (RUIs for Relied Upon Interfaces).

Figure V.23: The structure of the Integration and deployment package.

The different stereotypes in Table V.10 included in this diagram describe the aspect of Integration
of an SoS itself. In this case, the Integration and deployment diagram describes the physical deploy-
ment of different interfaces required or provided by CSs. The interfaces extend the meta-class port
to specify the interaction points among CSs supporting the integration of behavior and structure.

The Figure V.24 shows an example of this diagram of PowerUnitsSoS. the stakeholders assemble
a set of Relied Upon Message or/ and Physical Interfaces (e.g. «RUMI»I_OP and «RUPI»I_RP1)
and their associations (e.g. «Role_Provider» control_Engines and «Role_Consumer»provide_O2)
that constitute the basic elements to define how the CSs of one SoS can collaborate among each
other to realize the integration of structure and/or behavior of the SoS.

98

V.5. Conclusion

Process Model
Kind

UML
Diagram Stereotypes Description Meta-class

Integration
and
Deployment

Roles
Interfaces

Component
Diagram System Integrated System Component

CS Integrated CS
SoS Integrated SoS
RUI Relied Upon Interface Port
RUMI Relied Upon Message Interface
RUPI Relied Upon Physical Interface
Role_Provider Role providing a RUI ElementImport
Role_Consumer Role consuming a RUI Dependency

Table V.10: Stereotypes of the Integration_Deployment_Package.

Figure V.24: Roles Interfaces diagram of PowerUnitsSoS.

V.5 Conclusion

In this chapter, we have presented a multi-viewpoint Architecture Framework called SoS-AF
which is understandable and easily manipulated by different stakeholders. This methodology aims
to offer the audience of SoSs’ Stakeholders the tools to facilitate the task of developing a multi-
viewpoint architecture that is managed by a new SoSE process and documented through the SoS-
UML profile’s models. Besides, this approach conforms to a very widespread standard in the software
architectures community “IEEE 42010” which was designed to standardize the definition of Systems
and Software Engineering-Architecture description. Specifically, SoS-AF inherits the definitions of
the main elements which are part of this standard, and extends them by the two elements “SoSE
process” and “SoS-UML Profile”. We have mainly focused on the construction of multi-viewpoint
SoSs’ architectures, through the definition of several viewpoints for a given SoS architecture, which
is in our example we used an Aircraft Emergency Response System-of-Systems (AERSoS) as a case
study.

The first extension of the standard is to integrate the notions contained in the SoSE process.
This adoption allows the SoS-AF to pass through several processes. At the end of each process, each
one of the involved stakeholders must raise the level of concretization of his architecture by creating

99

Chapter V. Model-Based SoS Framework Domain

a set of models that better meet his essential concerns. The stakeholders can benefit from the SoS-
UML Profile to support the design of all the concepts and relationships of an SoS’ CSs. This tool
defines structural diagrams: Goals diagram, Domain model diagram and Constituents diagrams. In
addition, to behavioral diagrams which aim to represent the dynamic aspects of an SoS: Capabilities
diagrams, Roles Interaction diagrams, Capabilities Collaboration diagrams and Roles Interfaces
diagrams. The visual syntax allows using diagrams to manage the SoSE development processes by
its audience of stakeholders within the SoS-AF’s Viewpoints.

100

Chapter VI

Formalization of Centralized Control in SoSs

Contents
VI.1 Introduction . 101

VI.2 Time-Resource Aware SoSs . 102

VI.2.1 Temporal constraints of Missions . 102

VI.2.2 Understanding resource categorization . 104

VI.2.3 Abstract assets: Variability Domain . 106

VI.2.4 Rewriting-based approach for resources allocation control 107

VI.3 Formal semantics of structural entities . 108

VI.3.1 Missions and temporal constraints . 109

VI.3.2 Resources categorization . 110

VI.3.3 Roles encoding . 112

VI.3.4 Resource Allocation Controller: RAC . 113

VI.4 Formal semantics of dynamic aspects . 113

VI.4.1 Missions’ lifecycle . 114

VI.4.2 Resource’ lifecycle . 117

VI.4.3 Roles’ lifecycle . 119

VI.4.4 Resources Allocation Control lifecycle . 122

VI.5 Conclusion . 126

VI.1 Introduction

Designing well-tuned SoS to deal with a variety of control issues such as resources management
and temporal constraints violations while providing high-level assurance about their specified behav-
ior is very challenging. This chapter proposes a Time-Resource aware model for SoSs to address this

101

Chapter VI. Formalization of Centralized Control in SoSs

complexity. Therefore, we adopt a formal approach to model and verify a centralized controller to
manage the specific characteristics of such systems’ entities i.e. temporal constraints linked to mis-
sions and the production/consumption of resources by each mission using a rewriting-based method.
Firstly, we provide a comprehensive description of Time-Resource aware model for SoSs essential
for quantifying entities and components with local and global aspects’ considerations. Secondly, in
order to describe the variability domain of SoSs, we propose a generic Meta-Model named Resource
Allocation Centralized Controller (RAC-MM) to design the Time-Resource aware SoSs. The RAC-
MM is key in describing the interactions and control mechanisms across various system components
such as missions, roles, and resources. Finally, we utilize the Maude language to establish the formal
definitions and semantics of RAC-MM’s structural and dynamic elements, i.e. by using the Maude
language, we integrate their quantitative priorities with their operational semantics, offering a de-
tailed description of their states from the perspective of centralized management, and analyze their
configurations through monitoring predicates to enhance the controllability and responsiveness of
the SoS.

VI.2 Time-Resource Aware SoSs

In directed SoSs, three key aspects can dictate the efficacy and success of missions: temporal
constraints, resource allocation, and centralized control [24], [25]. The first aspect treats the com-
plexities of time management, exploring how various time-related properties(e.g. mission duration,
deadlines, etc.) affect the planning and execution of missions. The second aspect highlights the
management, allocation, and control of both global and local resources. And the third aspect exam-
ines how management and/or control serve to coordinate all these elements. This section introduces
a Time-Resource aware model for missions in SoSs, aimed at addressing these frequent temporal
challenges. The model acts as an analytical tool, exploring the expressiveness of mission modeling
approaches and providing actionable insights to navigate temporal concerns in mission management,
thus aspiring to bridge the identified gaps in systematic temporal specification and management in
Time-Resource Control Aware SoSs.

VI.2.1 Temporal constraints of Missions

Current methodologies for managing temporal aspects in SoS modeling, reveal critical gaps in
addressing mission-critical and time-aware missions. Whereas domains like Cyber-Physical Systems
(CPS) and Cloud computing utilize advanced planning tools to manage time constraints proficiently
across varied tasks, SoS modeling conspicuously lacks equivalent operational support [25]. In sce-
narios where SoS manages large-scale emergency responses, like natural disasters, mission success
hinges not merely on completion but on rigorous adherence to predefined temporal constraints. For
example, even a minor delay in missions, such as deploying search and rescue teams or delivering
vital supplies, can yield severe repercussions, obstructing relief efforts and jeopardizing the entire
emergency response mechanism of the SoS. In the context of SoS missions, temporal proprieties

102

VI.2. Time-Resource Aware SoSs

dictate a wide array of time-related attributes that are essential for mission planning and execution
(Table VI.1).

Table VI.1: Temporal Attributes in SoS Missions.

Temporal Constraint Description
Clock The universal time reference used for synchronizing mission execution.
Duration The expected time window within which a mission is intended to be completed.
Arrival Time Indicates when a mission becomes active or is slated to commence.
Deadline The last acceptable moment for the completion of a mission.
Delay The extent to which a mission can tolerate delays without adverse effects.
WCET Worst-Case Execution Time; the maximum time a mission might take under the worst-case scenario.
Quit Time The actual time at which a mission or task is completed.

The management of SoS requires a rigorous understanding of various temporal properties that
govern individual missions, as well as their interrelationships. This is crucial for the effective and
efficient orchestration of complex missions that often involve multiple CSs with varying degrees of
autonomy, control, and interdependence. The temporal properties can be broadly categorized into
those related to individual missions, inter-mission relationships, and intra-mission activities.

1. Individual missions Temporal constraints

- Must Start At (MSA): This property requires a mission to initiate at a precisely defined
timestamp. Example: A surveillance operation must start exactly at midnight to ensure
maximum secrecy.

- Must Finish At (MFA): The MFA property dictates that a mission should conclude at
a specified timestamp. Example: A network vulnerability scan must finish by 2 a.m. to
minimize disruption to users.

- Must Start In (MSI): Unlike MSA, the MSI property provides a time window during which
a mission must begin. Example: These missions must begin within a defined period before
the rainy season starts to ensure that responders are well-prepared to manage potential
flood events.

- Must Finish In (MFI): This indicates a bounded time interval within which the mission
must conclude. Example: Medical evacuation mission has a strict four-hour window to
evacuate injured soldiers from the battlefield to a hospital for urgent medical care.

- Duration: Represents the time span an activity within a mission is expected to take.
Example: The refueling of an autonomous underwater vehicle must not exceed 20 minutes.

- Recurrent Missions: These are missions that must take place periodically or sporadically.
Example: Weather data collection missions can be recurring and take place every six
hours.

2. Inter-Mission Temporal constraints

103

Chapter VI. Formalization of Centralized Control in SoSs

- Cycle: This property denotes the recurring sequence of a set of missions, constrained by
time intervals or maximum iterations. Example: Routine system health checks may occur
in cycles every 24 hours.

- Temporal Dependency: Represents the time-bound relationship between the start, finish,
or intermediate milestones of different missions. Example: The success of a subsequent
data analysis mission depends on the timely completion of a data collection mission.

3. Intra-Mission Temporal constraints

- Start-to-Start: Two missions must start simultaneously. Example: Two sensor arrays
must begin data collection at the same time.

- Start-to-Finish: The start of one mission signals the end of another one, for example, the
start of data analysis should cause the end of data collection.

- Finish-to-Finish: Both missions must conclude at the same time. Example: Calibration
and testing must both finish before final checks can commence.

- Finish-to-Start: One mission must finish before another can start.Example: Battery
charging must complete before a drone can commence its flight.

VI.2.2 Understanding resource categorization

Efficient resource management lies at the heart of any high-performing and reliable SoS. The na-
ture of an SoS—comprising diverse, interconnected, and often independent systems—makes the task
of resource management especially challenging and critical. This section not only underscores the
importance of a well-categorized resource management system but also elaborates on the definitions
and classifications that constitute the ecosystem of resources within an SoS. In the complex context
of SoS, resource management is a key element for performance, reliability, and success. Resources
can range widely, from computational power, data storage, and specialized hardware to human oper-
ators and communication channels. Effective understanding of these resources is vital for achieving
operational missions, maintaining situational awareness, and ensuring system adaptability. This
section emphasizes the importance of resource categorization in an SoS environment and discusses
their main characteristics.

Global resources are shared among CSs and present challenges due to their limited capabilities.
Mismanagement of these resources can lead to serious consequences, including missions failures
that compromise the overall missions of the SoS. On the other hand, local resources are specific to
individual systems and are crucial for their local missions. Any inefficiency or mismanagement in
this level can create bottlenecks that negatively impact the entire SoS. Consequently, the challenges
raise from the interaction between both global and local resources. These complications could result
to mission delays or even complete failures. To address these challenges, a well-defined categorization
system is crucial to facilitate predictive analytics, proactive conflict resolution, and real-time control
management.

104

VI.2. Time-Resource Aware SoSs

The categorization of resources acts as the cornerstone for effective management in SoS. Given the
complex interplay between global and local resources, a well-defined classification system is essential
for optimizing performance, reliability, and success[50]:

VI.2.2.1 global Resources

Global resources are shared across all constituent systems in the SoS, and their effective manage-
ment is crucial for achieving collective objectives. Failure to properly manage these resources has
ramifications that extend throughout the SoS.

- Limited (L): resources whose availability is limited and which, once exhausted, must be re-
plenished or replaced. For example, satellite time could be a limited resource shared between
different navigation and communications CSs.

- Limited but Renewable (LR): resources that can reach their limits but can be regenerated or
replenished over time. For example, solar energy systems could be a renewable resource used
in multiple CSs.

- Unlimited but Shareable (US): resources that have no inherent limits, but nevertheless require
coordination for optimal use. One example could be a cloud-based data storage system that
multiple constituent systems can access.

VI.2.2.2 Local Resources

On the flip side, local resources are confined to individual systems. While they are not shared
among systems, poor management of local resources can create bottlenecks that affect the entire
SoS.

- Limited (L): resources in the context of a single system and, once depleted, must be replenished.
For example, medical supplies in an emergency vehicle could be a limited local resource.

- Limited but Renewable (LR): These are resources within a single system that can be regener-
ated or recycled. An example might be a team of first responds who can attend to multiple
emergencies but need periods of rest.

- Unlimited but Shareable (US): abundant resources within single CSs units that still require
effective management. For example, a database of patient medical records may be unlimited
but requires proper management for optimal system performance.

The challenge in this chapter lies in balancing global and local resources to avoid conflicts and
ensure availability, and taking into account the temporal constraints of each mission to prevent
systemic failure. Therefore, understanding these categories allows for robust predictive analytics,
proactive conflict resolution strategies, and adaptive real-time management.

105

Chapter VI. Formalization of Centralized Control in SoSs

VI.2.3 Abstract assets: Variability Domain

As seen in Chapter IV, DE focuses on the specification and realization of reusable assets, which
include architectures, requirements, etc. By employing Variability Domain techniques, we can specify
the features and specific characteristics of directed SoSs with central control and ownership of CSs,
thereby easing the specification and design of these Time-Resource Models of SoSs throught the
description provided by the RAC-MM Meta-Models.

Figure VI.1: Resource Allocation Controller Meta-Model, RAC-MM.

The RAC-MM Meta-Model depicted in Figure VI.1 serves as a comprehensive framework for
the architectural characterization and design of diverse temporal missions and entities, including
Time constraints, Resource categories, and centralized control mechanisms. As mentioned in the
approach section, RAC-MM is designed to encapsulate the variabilities of this specific type of SoSs,
where centralizedcontrol and management are key. This is specified in the RAC-MM. The latter
represents a comprehensive structure of RT-missions’ entities, consisting of interconnected states
and transitions of these elements. At the core, it outlines a State class, which includes various
conditions and serves as a parent to more specialized states such as ResourceState, which tracks the
availability and conditions of resources. Resources themselves are characterized by their limitations

106

VI.2. Time-Resource Aware SoSs

and the possibility of renewal, with distinctions made between local resources, which may or may
not be shareable, and global resources, which are inherently shareable across the system [25].

On the one hand, the CSs are associated with both local and global resources, indicating a
layered structure of resource allocation and usage. Each CS can play multiple roles within the
SoS, as depicted by the Role class, which is in a created state by default. These roles are then
executed within Missions, encapsulating the functional aspect of the SoS where missions have specific
temporal conditions. On the other hand, the SoS itself encompasses global resources. Relationships
between different entities are managed by the Relation class, which includes operations to activate
or deactivate these relationships, thereby providing a dynamic aspect to the interconnections within
the SoS.

The system’s dynamic behavior is further detailed by various states like MissionStates, RoleStates,
and SystemStates, each encompassing different stages such as idle, executing, and created, respec-
tively. These stages are pivotal for tracking the progress and flow of operations within the SoS. The
AllocationCtrl class oversees the resource allocation process, guided by pre- and post-conditions to
ensure a smooth transition between states and the efficient use of resources. i.e. the AllocationC-
trl serves as a mechanism for managing and controlling the allocation of resources within the SoS
and its CSs. It defines the logic and conditions under which resources are assigned and utilized by
various components of the system, such as missions or roles. The AllocationCtrl contains attributes
for new allocation states and is responsible for triggering state changes. It operates based on prede-
fined conditions (PreCond and PostCond), which ensure that resources are allocated correctly and
efficiently. The AllocCtrlStates further specifies the various states of the allocation control process,
ranging from the initial request for resources (ConsReqAccepted) to the renewal and production
requests (RenewReq, ProdReqAccepted). This suggests a dynamic and responsive allocation system
that adapts to the operational demands of the system, ensuring that resources are allocated based
on current needs and availability.

VI.2.4 Rewriting-based approach for resources allocation control

The proposed methodology for resource management employs Maude’s rewriting logic to dynam-
ically and autonomously control resources. It is supported by Variability Domain that extends its
Application Domain integrating static structures with dynamic behaviors expressed with the dif-
ferent quantitative proprieties, thus enabling an adaptable and autonomous SoS. This Meta-Model
allows for the representation of specific Directed SoS architectures and facilitates the simulation and
verification of system behaviors within Maude. The approach progresses from defining static entities
such as Missions, Resources, and Roles to modeling their behaviors and interactions Figure.VI.2,
encompassing a systematic method for managing the behaviors of resources.

107

Chapter VI. Formalization of Centralized Control in SoSs

Figure VI.2: SoSs resource management modeling.

- Static Structures: describe the fundamental entities within the SoS—Missions, Resources,
Roles, and the RAC itself—each with specific quantitative properties. This static configuration
forms the key concepts upon which the dynamic behaviors are contextualized and managed.
It is where the missions and their lifecycle, resource types with associated properties, and roles
with their functional capacities are defined.

- Dynamic Behavior: this is the stage where operational semantics are applied, encoding
the behaviors into Maude’s syntax through the use of predicates and actions that facilitate
the transitions among states of each entity. The resource allocation process is thus executed,
reflecting a centralized management system that is autonomously governed by the encoded
rewrite rules.

- Autonomous execution and verification: the final step of this approach is the autonomous
execution of behaviors within the Maude framework, enabling the SoS to self-control and adapt
to changes dynamically. The formal executable semantics of Maude ensure that the behaviors
adhere to the specifications, with verification mechanisms in place to validate the correctness
of the operational logic.

VI.3 Formal semantics of structural entities

RAC-MM is a generic Meta-Model to address the challenges of resource consumption and pro-
duction in modeling SoSs. It consists of concepts (mission, role, resource, etc. that provide straight-
forward modeling of SoSs applications. In this section, we propose a semantics mapping between
RAC-MM static concepts and Maude constructs to describe all RAC-MM components and their
structural aspects.

In this section, the RAC Meta-Model static semantics are translated into a set of Object-Oriented

108

VI.3. Formal semantics of structural entities

classes. The latter encompass objects with attributes, typing semantics (sorts), subsort relations,
and algebraic operations used to define the syntactic structure of various elements in SoSs like
Mission, Roles, Resources, and their proprieties.

VI.3.1 Missions and temporal constraints

Missions present the applications executed in different environments in SoSs. We consider mis-
sions as the central entities in our modeling, they represent the entry point of roles, and they need
access to different resources types that are deployed in different environments. In Maude specifica-
tion, the Missions are specified as objects having sets of attributes that describe the states and their
transitions.

The specification of each mission includes the necessary information to describe the mission’s
structure, checking predicates, temporal constraints, and their violation signals, all of which are
specified in the RT-Maude object-oriented module SoS_CLASSES_MOD. The latter contains all
the necessary declarations defining the class Mission, which is characterized by its timeline and
operational parameters. This class is defined by several attributes that describe the mission’s state
and progress, alongside its temporal constraints and resource requirements. This class is defined by
the following Maude declaration:

1 class Mission |
2 localClock : Time, --- Tracks the mission local timeline.
3 duration : Time, --- Total allocated time for the mission.
4 arrivalTime : Time, --- Scheduled start time of the mission.
5 quitTime : Time, --- end time of the mission.
6 delay : Time, --- Incurred delays.
7 deadline : Time, --- Ultimate completion deadline.
8 missionState : MissionState,--- Current state of the mission.
9 resType : ResType, --- Type of required resources.

10 RAUT : Time, --- Remaining Available Use Time.
11 sg : Sig, --- Signals for temporal constraints.
12 rs : Rs . --- Specification of required resources.

The localClock attributes in this class serves as a real-time chronometer, essential for tracking the
mission’s progress and ensuring adherence to schedules. The duration outlines the total operational
timeframe, while arrivalTime and quitTime mark the starting and ending, framing the mission’s
execution state. Any deviations from this timeline are captured by the delay attribute, providing
a realistic view of the mission’s execution against planned schedules. The deadline enforces a strict
time limit for mission completion, ensuring time discipline. The missionState dynamically reflects
the mission’s current phase. Resource management, a pivotal aspect, is detailed through resType
and RAUT (Remaining Available Use Time), indicating resource types and usage efficiency. The rs
specifies the exact resources required for the mission’s success. Together, these attributes create a
robust structure for effective mission management, encompassing time, resources, and operational
status.

109

Chapter VI. Formalization of Centralized Control in SoSs

VI.3.2 Resources categorization

Resources in SoSs are fundamental, serving as key support elements for missions and CSs. In
Maude’s specifications, these resources are represented as objects with detailed attributes. These
attributes define their states, transitions, availability, capacity, and interactions with missions. More-
over, resources are categorized based on properties such as being limited, unlimited, renewable, or
non-renewable, which is crucial for a dependencies-based approach in system execution. This ap-
proach aids in managing interactions, resolving resource conflicts, and recommending corrective
actions. The specification of these resources is critical for both local and global missions since they
ensure alignment with the system’s functional requirements at both global and local CSs.

In the Maude specification, Resources are defined as objects with attribute sets that describe their
status for use by CSs, distinguishing between Local Non-Shareable and Global Shareable Resources.
These resources undergo various states and transitions, comprising the resource consumption cycle.
The OO_module SoS_CLASSES_MOD encapsulates all necessary declarations for the Resource
class, detailing attributes related to structure, transitions, and properties. This class includes at-
tributes that track time and specify the resource’s type and state. Resource types are divided into
local or global categories, each with distinct states indicating characteristics like capacity, shareabil-
ity, and renewability.

1 class Resource |
2 localClock : Time, --- Time relevant to the resource s usage.
3 res : ResourceType,--- Specifies whether the resource is local/ global.
4 resP : ResProp, --- Properties of the resource.
5 resSt : ResState, --- Current state of the resource.
6 resCapacity : Time . --- Total time capacity of the resource.

The Resource class in Maude is defined with several attributes, each serving a specific purpose:

- localClock: This attribute is responsible for keeping track of the time that is relevant to the
resource, primarily used for monitoring its usage or availability over time.

- res (ResourceType)|: This attribute categorizes the resource as either local or global. A local
resource is confined to individual CSs, while a global resource is accessible across the entire
SoS.

- resP (ResProp): Encompasses the properties of the resource, such as its limitations, share-
ability, and renewability.

- resSt (ResState): This attribute reflects the current state of the resource, indicating whether
it is in use, available, or in some other state.

- resCapacity: It denotes the total available time capacity of the resource, crucial for un-
derstanding how long the resource can be utilized before it needs replenishment or becomes
unavailable.

Moreover, using sort ResourceType, the class categorizes resources as either local localRes or
global globalRes.

110

VI.3. Formal semantics of structural entities

1 sort localRes globalRes ResourceType .
2 subsort localRes globalRes < ResourceType .
3 ops localRes globalRes : -> ResourceType [ctor] .

- localRes: Represents resources that are specific and confined to individual systems. These
resources are not shared across the SoS and are typically used for local operations within a
single CS.

- globalRes: Refers to resources that are shared and accessible across the entire SoS. These
resources are available for use by multiple constituent systems and play a crucial role in col-
laborative operations within the SoS.

Each type of the previous resources has specific properties localResProp or globalResProp as-
sociated with them, i.e. ResProp may include attributes such as limited, nonShareable, limited-
ButRenewable for local resources, and unlimited, shareable, renewable for global resources, each
influencing how resources are allocated and managed within missions.

1 sort ResProp ResState .
2 subsor localResProp globalResProp < ResProp .
3 ops localResProp globalResProp : -> ResProp [ctor] .
4 ops limited nonShareable limitedButRenewable: -> localResProp [ctor] .
5 ops unlimited shareable renewable: -> gloabalResProp [ctor] .

The operations limited, nonShareable, and limitedButRenewable are constructors (ctor) for the
localResProp sort in the Maude specification. These operations define the specific properties that a
local resource can have:

- limited: Indicates that the resource has a fixed capacity or availability that cannot be ex-
ceeded.

- nonShareable: Specifies that the resource cannot be used by multiple missions or entities
concurrently.

- limitedButRenewable: Denotes that the resource, while having a limited capacity, can be
replenished or its availability extended.

Similarly, the operations unlimited, shareable, and renewable are constructors for the globalRe-
sProp sort. These are used to define the properties of global resources:

- unlimited: This indicates that the resource does not have a fixed capacity and can be used
extensively without depletion.

- shareable: Specifies that the resource can be used by multiple missions or entities at the same
time.

- renewable: Indicates that the resource can be renewed or replenished after consumption or
after its initial allocation period has ended.

111

Chapter VI. Formalization of Centralized Control in SoSs

These properties are essential for the modeling of resources as they control how resources can be
allocated, consumed, and managed within the system. They form the basis for the rules and logic
that manage the resource lifecycle in the Maude specification, influencing how the system responds
to various resource-related events and conditions.

VI.3.3 Roles encoding

Roles within SoSs encapsulate the missions performed by various CSs, directly influencing the
execution of missions by producing the necessary resources. Moreover, Roles are dynamic, they not
only respond to activation or deactivation requests but also adapt to the environment by transitioning
between various states.

In the Maude specification, roles are depicted as objects with attributes that outline their states
and transitions. The specification details the role’s structure, activation conditions, resource pro-
duction capabilities, and process analysis. Role specification is encoded in the Maude OO-module
SoS_CLASSES_MOD, which includes necessary declarations for the class Role. Each role in this
class is characterized by its state and operational parameters, with attributes defining these aspects.

1

2 class Role |
3 localClock : Time, --- Monitors the role s relevant timeline.
4 roleStt : RoleStt, --- Current state of the role.
5 resType : ResType, --- Type of resources the role is capable of producing.
6 roleSg : RoleSig, --- Signals for role state changes.
7 prodCap : Capacity . --- Capacity for resource production.

- localClock: Functions as a timekeeper, vital for managing the timeline of the role’s activities.

- roleStt(Role State): Indicates the current operational state of the role.

- resType: Identifies the type of resources that the role is designed to produce.

- roleSg: Emits signals that correspond to state changes or events within the role’s lifecycle.

- prodCap: Defines the production capacity of the role, determining the volume of resources it
can generate.

The actions within the Role class are designed to depict the interactions or processes that a role
can engage in:

1 sort Role .
2 subsort actReq actRep < RoleAction .
3 ops actReq actRep : Role Role -> RoleAction [ctor] .

- actReq (Activation Request): This action symbolizes a request to initiate the role’s functions
or missions within the system.

- actRep (Activation Response): It represents a response to an activation request, signaling the
start of the role’s active participation in the system.

112

VI.4. Formal semantics of dynamic aspects

VI.3.4 Resource Allocation Controller: RAC

The RAC in a Directed SoS effectively balances the dual aspects of consumption and production.
Its primary function is to synchronize the states of Missions and Roles with available Resources.
This synchronization includes managing consumption requests from Missions and overseeing the
production contributions from Roles. To this end, the RAC acts as a comprehensive controller to
ensure a strict operation by maintaining a state-based correspondence between Missions, Roles, and
Resources. It employs a series of their predicates and actions that guide decisions on whether to
continue with or modify the current states of these entities, thereby facilitating efficient resource
allocation and utilization.

The RAC extends the three previous classes Mission, Resource, and Role to capture and ex-
ecute the decision-making logic required for efficient resource management. Specified within the
SoS_CLASS_MOD module, the RAC embodies allocation and control semantics, effectively inte-
grating and executing resource management strategies within the system as follows:

1 class ResourceAllocationManager |
2 mission : Oid, --- Identifier for the Mission entity.
3 role : Oid, --- Identifier for the Role entity involved in production.
4 resource : Oid, --- Identifier for the Resource entity being managed.
5 racState : RacState, --- The current state of the RAC in the allocation cycle.

- mission: This attribute stores the identifier of the Mission that is requesting resources or is
currently utilizing them.

- role: This attribute holds the identifier of the Role that is involved in producing or replenishing
resources.

- resource: This attribute identifies the specific Resource that is the subject of allocation or
production.

- racState: Reflects the dynamic state of the RAC, which determines the subsequent actions
in the resource management process.

- resMangA: Represents a set of allocation actions that the RAC can execute based on the
evaluated predicates.

VI.4 Formal semantics of dynamic aspects

In this section, we present a key aspect of our approach, we introduce a full description of the
states of the previous static entities and concepts from the perspective of centralized control in SoSs.
We analyze their configurations through monitoring predicates and outline an approach to the formal
specification of autonomous execution of dynamic behavior modeling using Maude’s rewriting logic.

113

Chapter VI. Formalization of Centralized Control in SoSs

VI.4.1 Missions’ lifecycle

This section initially defines the mission attributes. Subsequently, it provides various actions and
predicates to capture their states, followed by modeling their dynamic behavior.

VI.4.1.1 States, predicates, and actions encoding

From a state perspective (i.e. missionState attribute in class Mission), each mission instance
during its lifetime goes through different states. After its Idle state and if its TCs are respected, it
moves to waitConsResp and waits for an answer from the RAC controller after sending an allocation
message. At this moment, a resource may be allocated to this mission instance, and it moves to the
state executing, then to succeed after finishing the execution. In case of unavailability of resources
(or absence), the Mission will receive a reject message from the controller and return to the Idle
state. If the Mission encounters any unexpected problem, it can ask the controller to extend the
availability time of the resource by sending the message isAskRenewing to ask for a renewal of the
allocation of resources. And then, the controller can reply by sending a renewAskOk message, If the
renewal request is accepted, or by sending isFailed message if the request is denied and the mission
reaches the Idle state, and at the end, the mission instance will send an exit message to the controller
and it will move to Idle state.

In order to specify the different missions’ states and the possible transitions among each other,
The MissionState sort defines possible states that a mission can be in throughout its lifecycle:

1 sort MissionState .
2 ops idle: --- The mission is not yet active.
3 failed: --- The mission has ended unsuccessfully.
4 waitConsResp: --- Awaiting a response for resource consumption.
5 executing: --- The mission is currently in execution.
6 succeeded: --- The mission has been completed successfully.
7 rnwAsk: --- A request to renew resource consumption has been made.
8 : -> MissionState [ctor] .
9

10 ops isConsReqSent isConsReqAccepted isConsReqRejected : M R -> Bool .

Since each state is critical as it determines the next steps in the mission’s execution, we identify
a set of predicates that enable or disable the different transitions in a given mission instance, as
shown in Table VI.2.

114

VI.4. Formal semantics of dynamic aspects

Table VI.2: Mission Predicates in Maude.

Maude encoding Description
(a)PMis isConsReqSent(M,R) Verifies if a resource consumption request has been sent for M and R.
(b)PMis isTCR(M) Checks if M is adhering to its defined temporal constraints.
(c)PMis isConsReqAccepted(M,R) Confirms the approval of a resource consumption request for M and R.
(d)PMis isConsReqrejected(M,R) Indicates the denial of a resource consumption request for M and R.
(e)PMis isFailed Used to indicate that a mission has not achieved its objectives or has encountered significant problems.
(f)PMis isMnV(M) Triggers if the M’s duration is shorter than the specified minimum.
(g)PMis isMxV(M) Signals if M exceeds its maximum allowed duration.
(h)PMis isAskRenewing(M,R) Indicates a request for extending or renewing R for M.
(i)PMis isFinished(M) Confirms the completion of M.
(g)PMis isRenewOk(M) Signifies the approval of a renewal request for M.
(k)PMis isRenewRejected(M) Indicates the rejection of a renewal request for M.

Moreover, a set of specific allocation actions is employed which are instrumental in transitioning
missions through different states based on the previous predicates and conditions. Below is a Table
VI.3 introducing these actions, providing a clear understanding of their roles:

Table VI.3: Mission Actions in Maude.

Maude encoding Description
(1)AMis sendConsReq(M,R) Initiates a resource consumption request for M and R, marking the start of the allocation process.
(2)AMis returnIdle(M) Resets M back to the Idle state, used for restarting or temporarily stopping the mission.
(3)AMis execute(M) Transitions M into an active state, starting its operational activities.
(4)AMis Exit(M) Marks the completion of M, concluding its current operational cycle.
(5)AMis renew(M) Extends the duration of resources for M, facilitating the continuation of its activities.
(6)AMis cancel(M) Aborts or halts M, used in situations where the mission needs to be stopped immediately.

Lastly, we use the Sig sort to represent the signal events associated with a mission’s temporal
constraints.

1 sort Sig .
2 ops isTCR
3 isMnV
4 isMxV : -> Sig [ctor] .

- These signals are used to indicate whether a mission is adhering to its time-based requirements
or if any violations have occurred:

- isTCR: Indicates that the mission’s temporal constraints are respected.

- isMnV: Signifies that the mission’s minimum duration constraint has been violated.

- isMxV: Shows that the mission’s maximum duration constraint has been violated.

VI.4.1.2 Mission Behavior modeling

To effectively manage and respond to various operational scenarios in a Maude system. The
latter combines a set of monitoring predicates which provides insights into the current state of a
mission instance. the Figure VI.3 is a visual representation that maps out the possible states of a

115

Chapter VI. Formalization of Centralized Control in SoSs

mission and the transitions between them, based on the evaluation of predicates and the execution
of actions. It provides a blueprint for the mission’s behavior in response to various predicates and
conditions.

Figure VI.3: Mission’s transition system.

In the Maude system, the behavior of mission instances is orchestrated through a structured set
of predicates and actions illustrated in both Table VI.2 and VI.3, respectively. These are encoded as
PMis() for predicates and AMis() for actions 1. Predicates act as the necessary conditions or ’guards’
that need to be satisfied for state transitions to occur. They are intricately designed to monitor the
mission’s adherence to its temporal constraints and resource usage.

The RAC manager relies on these predicates to make decisions on whether to enable or disable
certain actions for a mission instance. For example, a predicate might check if a mission is currently in
a state where it should be waiting for resource allocation (waitConsResp), and if so, the corresponding
action to send a resource request (sendConsReq(M,R)) is enabled.

Maude’s powerful feature of conditioned rewrite rules comes into play to dynamically manage the
state transitions of the missions. These rules are conditionally applied based on the evaluation of
the PMis() predicates. A typical rewrite rule in Maude has the following syntax:

1 crl [rule-name] : < Mid : Mission | state : S, other-attributes... > => < Mid : Mission | state : S,
other-attributes... > if PMis() .

Here, [rule-name] is a unique identifier for the rule, S and S’ represent the current and next states of
the mission, respectively, and PMis() is the predicate that must be true for the transition from state
S to state S’ to take place. These rewrite rules are inherently reactive—they automatically respond
to changes in the system’s state and adjust the mission’s state accordingly. Through the interplay of
these predicates and actions, encapsulated in the rewrite rules, Maude effectively simulates the
complex behavior of missions in response to a variety of scenarios, ensuring that each mission
progresses through its lifecycle as intended, with its state transitions and resource consumption.

1For convenience and simplicity, note that in this figure and the upcoming statecharts, all transitions have a set
of Predicates that are denoted by letters before the “/”, and Actions that are denoted by numbers after it.

116

VI.4. Formal semantics of dynamic aspects

VI.4.2 Resource’ lifecycle

Similarly to the previous section, this one initially defines the Resource attributes. Subsequently,
it provides various actions and predicates to capture their states, followed by modeling their dynamic
behavior.

VI.4.2.1 States, proprieties, predicates and actions encoding

Similar to Missions, Resources within SoSs transition through a variety of states as they are
produced, allocated, consumed, and eventually released. The lifecycle of a resource is governed
by the ResState sort, which defines the possible states that a resource can inhabit throughout its
existence. The ResState sort is declared with the following operations, which act as constructors
(ctor) for the states:

1 ops madeAvailable notConsumed locked consumed done produced waitingProd unlocked : -> ResState [ctor] .

- Produced: The resource has been created and is ready to be made available.

- WaitingProd: The resource is pending production before it can be made available.

- MadeAvailable: The resource is now available for allocation and use.

- Locked: The resource has been allocated to a mission and is currently not available to others.

- Consumed: The resource is actively being used by a mission.

- Unlocked: The resource has been released from its locked state and is again available.

- Done: The resource has served its purpose and is now inactive.

- NotConsumed: The resource was available but not used before moving to the Done state.

For each state, unique predicates and actions are identified to facilitate transitions (See TableVI.4
and TableVI.5). These elements are vital for guiding the next states in both a resource’s lifecycle and
missions.. Based on the provided structure and descriptions, below are the two tables representing
them within the Maude system.

117

Chapter VI. Formalization of Centralized Control in SoSs

Table VI.4: Resource’s Predicates in Maude.

Maude encoding Description
(a)PRes isAvailable(R) Checks if R is currently available for allocation.
(b)PRes isConsApproved(R) Confirms the approval of a consumption request for R.
(c)PRes isGlobalRes(R) Indicates if R is a global resource.
(d)PRes isLocalRes(R) Determines if R is a local resource.
(e)PRes isConFinished(R) Verifies if the consumption process of R is complete.
(f)PRes isUnbounded(R) Denotes that R has an unlimited capacity.
(g)PRes isNotAvailable(R) Signifies that R is not available for consumption.
(h)PRes isLimited(R) Indicates that R has a limited capacity.
(i)PRes isUnlimited(R) Specifies that R has unlimited capacity.
(j)PRes isRenewable(R) Signifies that R’s availability can be renewed.
(k)PRes isStopped(R) Denotes that R is no longer active.
(l)PRes isLogical(R) Classifies R as a logical resource.
(m)PRes isPhysical(R) Classifies R as a physical resource.
(n)PRes isProductionApplied(R) Indicates R is in the production phase.
(o)PRes isProductionFinished(R) Confirms that the production phase for R is complete.
(p)PRes isNotRenewable(R) Specifies that R cannot have its duration extended.

Table VI.5: Resource’s Actions in Maude

Maude encoding Description
(1)ARes prepareCons(R) Prepares R for the consumption process.
(2)ARes consume(R) Initiates the consumption process for R.
(3)AMis lock(R) Locks R, preventing it from being consumed or allocated.
(4)ARes unlock(R) Unlocks R, making it available for consumption.
(5)ARes update(R) Updates the status or properties of R.
(6)ARes withdraw(R) Withdraws R from availability.
(7)ARes waitProdReq(R) Puts R on hold while awaiting a production request.
(8)ARes produceF(R) Initiates the production process for R.
(9)ARes makeAvailable(R) Marks R as available for allocation and consumption.

VI.4.2.2 Resource Behavior Modeling Using Rewrite Rules

In a Maude system, resources are managed and monitored through the above set of predicates and
actions. These elements provide insights into the current state of a resource instance and guide the
transitions between various states. The provided figure (FigureVI.4) serves as a visual representation
that outlines the possible states of a resource and the pathways between them. This mapping is based
on the evaluation of predicates and the execution of corresponding actions, providing a blueprint for
the system’s response to different events and operational scenarios.

118

VI.4. Formal semantics of dynamic aspects

Figure VI.4: Resource’s transition system.

In the formal Maude specification, the behavior of resources is directed by a well-defined set
of predicates PRes() and actions asARes(). These predicates function as necessary conditions or
’guards’ that must be met for state transitions to take place. They are employed to monitor the
resource’s compliance with its designated properties and constraints.

The Resource Controller utilizes these predicates to inform decisions about enabling or disabling
certain actions for a resource instance. For instance, a predicate could assess whether a resource is in
a state to be made available (madeAvailable), and if so, the corresponding action to lock the resource
for use (lock(R)) could be triggered. For this end, Maude leverages its feature of conditioned rewrite
rules to dynamically manage the transitions of resource states. These rewrite rules are applied
conditionally, contingent upon the evaluation of PRes() predicates. A typical resource rewrite rule
in Maude is expressed with the following syntax:

1 crl [rule-name] : < Rid : Resource | state : S, other-attributes... > => < Rid : Resource | state : S,
other-attributes... > if PRes() .

In this structure, rule-name is a unique identifier for the rule. S and S’ denote the current and
subsequent states of the resource. PRes() signifies the predicate condition that must be validated
for the state transition from S to S’ to be executed. These rules are adaptive and automatically
responding to changes in the system’s state, thus updating the resource’s status as necessary. This
ensures that each resource undergoes its lifecycle as planned, with transitions, consumption, and
production.

VI.4.3 Roles’ lifecycle

Similarly to the previous section, this one initially defines the Roles attributes. Subsequently, it
provides various actions and predicates to capture their states, followed by modeling their dynamic
behavior.

119

Chapter VI. Formalization of Centralized Control in SoSs

VI.4.3.1 States, Predicates, and Actions Encoding for Roles

For roles in the Maude system, as in Missions and Resources, their lifecycle is characterized by
various states and transitions to fulfillment of their roles. The states encapsulate the role’s activation
from being created, awaiting activation, becoming active, and eventually producing resources or
changing state based on the system’s needs. The encoding of roles within the SoS_CLASSES_MOD
module in Maude defines the states and transitions, facilitated by a set of predicates and actions
that determine the progression of roles through their lifecycle. The RoleStt sort defines these states,
and operations within this sort serve as constructors for the states:

1 sort RoleStt .
2 ops created waitingActivation activated changed waitProdResp producing : -> RoleStt [ctor] .

Each state corresponds to a stage in the lifecycle of a role:

- created: The role has been instantiated but is not yet activated.

- waitingActivation: The role is ready and waiting for a signal to activate.

- activated: The role is currently active, performing its designated tasks.

- changed: The role has experienced a change, possibly requiring a reassessment of its activities
or status.

- waitProdResp: The role is in a standby state, awaiting a response to a production-related
request.

- producing: The role is engaged in the production of resources.

To manage the transitions between these states, a set of predicates (Table VI.6) evaluate specific
conditions of a role, and actions (Table VI.7) are taken to move the role to the next appropriate
state.

Table VI.6: Role’s Predicates in Maude.

Predicate ID Maude encoding Description
(a)PRol isActivationReqSent(RL) Checks if an activation request for role RL has been issued.
(b)PRol isActivationReqRejected(RL) Indicates that RL’s activation request has been rejected.
(c)PRol isActivationReqAccepted(RL) Confirms that RL’s activation request has been accepted.
(d)PRol isProductionReqSent(RL) Checks if a production request has been sent for RL.
(e)PRol isProductionReqRejected(RL) Indicates rejection of a production request for RL.
(f)PRol isProductionReqOk(RL) Confirms that the production request for RL is approved.
(g)PRol isRoleChanged(RL) Indicates that RL has undergone a change.
(h)PRol isInactive(RL) Checks if RL is currently inactive.
(i)PRol isProductionFinished(RL) Verifies if RL has completed its production.

120

VI.4. Formal semantics of dynamic aspects

Table VI.7: Role’s Actions in Maude.

Action ID Maude encoding Description
(1)ARol waitActivation(RL) Puts RL in a waiting state for activation to be processed.
(2)ARol rejectActivation(RL) Handles the rejection of RL’s activation.
(3)ARol active(RL) Transitions RL to an active state for performing its functions.
(4)ARol waitProdReq(RL) Puts RL in a waiting state for a production request to be processed.
(5)ARol produce(RL) Initiates the production process by RL.
(6)ARol changeR(RL) Reflects a change in RL’s state, possibly requiring different actions.
(7)ARol create(RL) Creates a new instance of RL in the system.
(8)ARol exit(RL) Handles the RL’s exit from the active system following production completion.

These predicates and actions are designed to correspond directly with the states outlined in the
RoleStt sort. When a predicate is evaluated to be true, it triggers an action that results in a state
transition for the role.

VI.4.3.2 Role Behavior Modeling Using Rewrite Rules

To manage and respond effectively to different operational scenarios within a Maude system,
it is essential to have a structured approach to monitoring and controlling the state transitions
of roles. Similar to missions, roles are subjected to various states reflecting their activities and
responsibilities within the SoS. The state chart for roles, as illustrated in the provided Figure VI.5,
offers a visual mapping of the potential states and transitions based on the evaluation of predicates
and the execution of actions. This chart is pivotal as it outlines a blueprint for the system’s behavior
in reaction to a variety of events and conditions.

Figure VI.5: Role’s transition system.

In the Maude formal system, the behavior of roles is governed by a set of predicates and ac-
tions. These are encoded as PRol() for predicates and ARol() for actions. Predicates function as
the necessary conditions or ’guards’ that facilitate state transitions, ensuring that roles progress
according to the system’s operational demands and constraints.The RAC, which oversees role ac-
tivities, uses these predicates to determine whether to enable or disable specific actions for a role
instance. For instance, a predicate might assess if a role is in a state where it should be activated
(waitingActivation), and if so, the corresponding action to initiate activation (active(RL)) would be
permitted.

121

Chapter VI. Formalization of Centralized Control in SoSs

Conditioned rewrite rules within Maude play a crucial role in dynamically managing the state
transitions of roles. These rules are conditionally applied based on the predicates’ evaluation. The
syntax for a rewrite rule in Maude is as follows:

1 crl [rule-name] : < RId : Role | state : S, other-attributes... > => < RId : Role | state : S,
other-attributes... > if PRol() .

In this syntax, [rule-name] is a unique identifier for the rule. S and S’ represent the current and
subsequent states of the role, while PRol() is the predicate that must be satisfied for the transition
to occur. The rewrite rules are reactive by nature, automatically responding to system state changes
and adjusting the role’s state as required. Through the interplay of predicates and actions within
these rewrite rules, Maude simulates the complex behavior of roles, ensuring each role fulfills its
lifecycle as planned.

VI.4.4 Resources Allocation Control lifecycle

Incorporating the dual aspects of consumption and production, the RAC serves as an interme-
diate manager within an SoS. It is designed to synchronize the states of Missions and Roles with
the available Resources, effectively managing both the consumption requests by Missions and the
production contributions by Roles.

VI.4.4.1 RAC States, Predicates, and Actions Encoding

From a state perspective, each instance of the RAC during its operation goes through a sequence
of states. Starting from the trigger state, the RAC may transition to analyseConsReq when it
begins to process a resource consumption request. Once the conditions for resource allocation are
met, it may move to waitConsAccp to await confirmation of the request. Upon acceptance, the RAC
transitions to consReqAccepted, and it may then proceed to prodReqAccepted when a production
request is confirmed. The RAC can transition to renewReq and upon acceptance, to renewAccepted.
In the event of encountering issues or upon the completion of the allocation cycle, the RAC may
return to the trigger state, ready to process new requests. The RacState sort in Maude reflects these
possible states:

1 sort RacState .
2 ops trigger analyseConsReq waitConsAccp consReqAccepted renewReq renewAccepted prodReqAccepted

analyseProdReq : -> RacState [ctor] .

To guide the decision-making process in resource management, the operational logic of the RAC
in Maude is centered around a transition system controlled by predicates (PRC) and actions (ARC).
The RAC’s functionality is driven by rewrite rules, which are conditionally activated based on these
predicates. These predicates and actions are derived from the existing series of Missions, Roles, and
Resources. They play a critical role in determining whether to maintain or modify the current states
of these entities. Here’s a Table VI.6 that outlines the predicates used to determine the transitions
of the RAC:

122

VI.4. Formal semantics of dynamic aspects

Table VI.8: RAC Predicates in Maude.

Maude encoding Description Based on Mission, Role, and Resource Predicates
(a)PRAC Verifies if a resource consumption request is sent (a)PMis

(b)PRAC Checks if temporal constraints are respected (a)PMis, (b)PMis, (a)PRes, (b)PRes, (c)PRes

(c)PRAC Confirms consumption request approval (a)PMis, (b)PMis, (a)PRes, (d)PRes

(d)PRAC Indicates denial of a consumption request (a)PMis, (b)PMis, (b)PRes, (d)PRes

(e)PRAC Indicates a problem or failure in processing (h)PMis

(f)PRAC Indicates a renewal request is sent (h)PMis, (j)PRes

(g)PRAC Indicates a production request is sent (p)PRes

(h)PRAC Indicates a role-related condition (d)PRol

(i)PRAC Indicates a complex condition involving roles (f)PRol, (n)PRol

The RAC employs a specific set of allocation actions (Table VI.7) that are instrumental in tran-
sitioning through its different states:

Table VI.9: RAC Actions in Maude.

Maude encoding Description Based on Mission, Role, and Resource Actions
(1)ARAC Initiates a resource consumption request (1)AMis

(2)ARAC Processes a resource allocation (3)AMis, (2)ARes

(3)ARAC Updates resource status (2)ARes

(4)ARAC Accepts a resource consumption request (3)AMis, (2)ARes

(5)ARAC Processes internal RAC activity (3)AMis

(6)ARAC Processes a resource renewal request (3)AMis, (9)ARes

(7)ARAC Updates resource status based on renewal (6)ARes

(8)ARAC Processes a role’s production request (4)ARol, (7)ARes

(9)ARAC Executes a production-related role action (8)ARol

These predicates and actions are encoded within the Maude system as part of the RAC’s class
to facilitate the dynamic management of resource allocation and consumption. They ensure that
the RAC can handle various scenarios effectively, from normal operation to exception handling and
recovery.

VI.4.4.2 RAC behavior modeling Using Rewrite Rules

In the Maude system, the RAC is pivotal for managing interactions among missions, roles, and
resources. It handles resource requests from missions and orchestrates resource production by roles,
ensuring efficient allocation. The behavior of the RAC is encoded in Maude’s language, using
objects, classes, and rewrite rules. These rules, governed by specific conditions or predicates, direct
state transitions, enabling the RAC to dynamically manage resource allocation and maintain system
balance.

The RAC operates by transitioning through various states, the predicates (PRC) and actions
(ARC) described are specific to the RAC and are based on the predicates and actions related to
missions (PMis, AMis), roles (PRol, ARol), and resources (PRes, ARes). The RAC’s behavior is

123

Chapter VI. Formalization of Centralized Control in SoSs

visualized through statecharts in Figure VI.6, showing potential states and their transitions, which
are controlled by these predicates and actions. These elements are formalized as conditional rewrite
rules in Maude, allowing the RAC to adaptively respond to system changes and effectively manage
resources. The RAC’s role encompasses:

- State Management: Monitoring and adjusting its state and those of missions, roles, and
resources.

- Predicate Evaluation: Assessing situations, like resource requests or compliance with tem-
poral constraints.

- Action Execution: Implementing actions based on predicate outcomes to transition the
system’s state.

- Resource Management: Balancing resource needs of missions with roles’ production capac-
ities for efficient allocation.

- Rewrite Rules: Implementing rules in Maude for real-time adaptation and resource man-
agement.

Figure VI.6: RAC’s transition system.

In the provided context, the Resource Allocation Manager (RAC) in Maude leverages a set of
rewrite rules governed by predicates (PRC) and actions (ARC). These rules integrate the funda-
mental predicates and actions associated with Missions (PMis, AMis), Roles (PRol, ARol), and
Resources (PRes, ARes). Each rule is structured to evaluate conditions and execute actions that
influence the system’s state transitions and resource management processes. The predicates and
actions specific to the RAC (PRC, ARC) are directly linked to the core elements of missions, roles,
and resources, ensuring a cohesive and adaptive resource management strategy. This setup enables

124

VI.4. Formal semantics of dynamic aspects

the RAC to effectively handle the dynamic requirements of missions, roles, and resources within the
Maude system. The conditional rewrite rules in this case will be as follow:

Rewrite rule for allocating a local non-shareable resource: The RAC checks that the global
resource Rid is available PRes(isAvailable(Rid)), is a global resource PRes(isGlobal(Rid)), and is
marked as shareable PRes(isShareable(Rid)).

1 crl [allocate-global-shareable-resource] :
2 < RCid : ResourceAllocationManager | mission : Mid, resource : Rid, racState : trigger >
3 < Rid : Resource | resSt : Available, resP : globalResProp(shareable) >
4 < Mid : Mission | state : waitConsResp >
5 =>
6 < RCid : ResourceAllocationManager | mission : Mid, resource : Rid, racState : consReqAccepted >
7 < Rid : Resource | resSt : Shared >
8 < Mid : Mission | state : Executing >
9 if PRes(isAvailable(Rid)) and PRes(isGlobal(Rid)) and PRes(isShareable(Rid)) .

In this rule:

- If the resource is available and shareable, its state transitions to Shared, allowing multiple
missions from different CSs in the SoS to access it concurrently.

- The mission Mid can now execute as it has access to the required resource.

Local Non-Shareable Resource Allocation: for allocating a local non-shareable resource, the RAC
must ensure the resource is not already allocated before locking it for a mission.

1 crl [allocate-local-nonshareable-resource] :
2 < RCid : ResourceAllocationManager | mission : Mid, resource : Rid, racState : trigger >
3 < Mid : Mission | missionState : waitConsResp, resType : localRes >
4 < Rid : Resource | resState : available, resP : localResProp(limitedButRenewable), resType : localRes >
5 =>
6 < RCid : ResourceAllocationManager | mission : Mid, resource : Rid, racState : consReqAccepted >
7 < Mid : Mission | missionState : executing >
8 < Rid : Resource | resState : locked >
9 if PRes(isAvailable(Rid)) and PRes(isNonShareable(Rid)) and not PRes(isLocked(Rid)) .

In this example: the rule checks if the local resource is available, non-shareable, and not currently
locked. If all conditions are met, it allocates the resource by changing its state to locked and the
missions state to executing.

Resource production: Example of rewrite rule for the RAC managing resource production
1 crl [produce-resource] :
2 < RCid : ResourceAllocationManager | role : Rlid, resource : Rid, racState : prodReqAccepted >
3 < Rlid : Role | roleStt : waitingActivation >
4 < Rid : Resource | resSt : NotConsumed >
5 =>
6 < RCid : ResourceAllocationManager | role : Rlid, resource : Rid, racState : renewAccepted >
7 < Rlid : Role | roleStt : activated >
8 < Rid : Resource | resSt : Produced >
9 if PRol(isActivationReqAccepted(Rlid)) and PRes(’isNotRenewable(Rid)) .

These rewrite rules are based on the predicates PRes which are functions that check the state of
resources resState, properties resP, and the type resType to determine the availability and share-
ability as per the conditions given in the RAC operation.

125

Chapter VI. Formalization of Centralized Control in SoSs

VI.5 Conclusion

In this chapter, we have presented the formalization of centralized control in SoSs, we have seen
how the Meta-Model RAC-MM provides a comprehensive framework for addressing the complicated
dynamics of resource management in real-time SoS environments, integrating at the same time the
temporal constraints, resource categorization, and centralized management mechanisms, which are
essential for the effective allocation in SoSs. More specifically, we have explained the importance of
state management, dynamic behavior modeling, and the coordination of RAC. The formal semantics
defined by the Maude language enable precise specification and verification of behaviors, offering
a systematic approach to face the challenges posed by resources’ complexities. In the following
chapter, we explore the implementation and practicalities of the RAC within SoSs. We will explore
how the theoretical and formal models presented here can be translated into strategic management
to govern different executions in SoSs’ workflows.

126

Chapter VII

Control-based Formalization of Management
Strategies

Contents
VII.1 Introduction . 127

VII.2 Abstract assets: Variability Domain for Management 128

VII.3 Strategic Management of Behavior . 129

VII.3.1 Managing Workflows in SoSs . 131

VII.3.2 Mission execution and resource management 133

VII.3.3 Management Strategies . 142

VII.4 Real-Time regulating mechanism using MAPE-K loop 146

VII.4.1 Knowledge: Data Foundation . 148

VII.4.2 Monitor: Processing . 148

VII.4.3 Analysis: Workflow . 149

VII.4.4 Plan: Strategic Control and Management 149

VII.4.5 Execution: Rewriting Management System 150

VII.5 Conclusion . 153

VII.1 Introduction

Desired behaviors refer to the intended actions and missions that align with the system’s ob-
jectives, facilitating effective operation and achievement of goals. Conversely, unwanted behaviors
represent actions or outcomes that deviate from planned intentions, potentially leading to ineffi-
ciencies or conflicts within the SoS. In this chapter, we introduce a strategic management approach

127

Chapter VII. Control-based Formalization of Management Strategies

to handle the desired and unwanted behaviors within SoS through strategic planning. The chapter
starts with an examination of the workflow and functional chains in SoSs, which are crucial for the
systematic execution of missions. Workflows describe the sequence and organization of intercon-
nected tasks aimed at completing specific missions, while functional chains represent a more specific
sequence of missions that ensure that these workflows are executed. We use these two elements
to maintain the coherence and efficiency of SoS operations, providing a strategical framework for
mission execution.

Moreover, we incorporate the MAPE-K (Monitoring, Analysis, Planning, and Execution and
Knowledge) autonomic loop to facilitate the real-time management of SoS, enabling the system
to self-monitor, analyze ongoing operations, plan strategically in response to changes, and execute
necessary adjustments, all while continuously updating its knowledge base to reflect current system
states and external conditions.

We employ the Maude language to offer a formal method to define operational semantics across
functional, system, and strategy modules. It addresses the complexities of workflow management,
mission execution, resource allocation, and conflict resolution. The proposed method aims to im-
prove system functionality and resource efficiency in complex SoS environments, showcasing its
applicability through detailed examples and theoretical foundations.

VII.2 Abstract assets: Variability Domain for Management

Building on the fundamental Meta-Model presented in the previous chapter, we have refined and
enriched the RAC-MM to handle the different features related to the variabilities of directed SoSs.
This enhancement supports the robustness of the variability domain, offering a more comprehensive
structure for SoSE. The new version of the Meta-Model is illustrated in Figure VII.1 and it mainly
serves as a structured reference for workflow management within a SoS. It is designed to orchestrate
complex interactions between various CSs. At the core of the Meta-Model is the SoS class, which
oversees the execution of workflows. The latter is designed and governed by a series of behavior
rules that describe the different desired and unwanted behaviors within the system.

These Behaviors are classified into two main types: desired and unwanted, each associated with
specific rules that are time-based or resource-based. These rules are encapsulated within their
respective enumerations and are leveraged by strategies to enforce or prevent certain behaviors. The
Strategy class forms the foundation for two derived classes: MainStrat and AuxiliaryStrat. The
MainStrat class represents the primary strategies that are essential for workflow execution, while
AuxiliaryStrat provides additional support to govern and respond to dynamic functional conditions.

The main strategies within the MainStrat class, such as mission-based and resource-based func-
tional chain strategies, determine the execution path of the workflow, guiding it toward completing
its goals. These strategies are robust and incorporate the auxiliary rules to enhance the system’s
management and control and ensure that the workflow remains resilient in the face of changing
internal and external conditions.

128

VII.3. Strategic Management of Behavior

Figure VII.1: Management Strategies Meta-Model, MS-MM.

VII.3 Strategic Management of Behavior

In this section, we summarize the specification of the proposed self-management approach, giving
the operational semantics of different elements introduced MS-MM using Maude. In its basic form,
the latter is equipped with two types of modules: functional modules and system modules. By using
the extension of Strategy Language for Maude [57], we add the strategies’ module to formalize the
semantics of MS-MM, the three types of modules are summarized below:

- Functional Modules (ΣMS−MM , EMS−MM
⋃
AMS−MM): They specify Maude equational the-

ory, which is based on mathematical logic of belonging, where ΣMS−MM is the signature that
specifies the typed structure of each element of a system (sorts, subtypes, operators, etc.),
EMS−MM is the collection of equations (possibly conditional) declared acting on the struc-
ture, AMS−MM is the collection of equational attributes declared for different operators, like
the attribute of commutativity or associativity between elements.

- System Modules (ΣMS−MM , EMS−MM
⋃
, AMS−MM), RMS−MM): Describe a Maude rewrit-

ing theory where (ΣMS−MM , EMS−MM
⋃
, AMS−MM) represents the equational theory of a

129

Chapter VII. Control-based Formalization of Management Strategies

system, RMS−MM is the set of rewriting rules (possibly conditional) that are applied to change
the behavior of a system, and thus evolve its equational structure.

- Strategy Modules (ΣMS−MM , EMS−MM
⋃

AMS−MM , SMS−MM

(RMS−MM , SMMS−MM)): They define a set of strategies that control and guide the applica-
tion of rewriting rules in Maude. (ΣMS−MM , EMS−MM

⋃
AMS−MM) represent the equational

theory of the system that is supposed to evolve. SMS−MM is a semantics describing the be-
havior of a system, it is constructed from a set RMS−MM containing rewriting rules, and a
strategy module SMS−MM that will guide the rewriting and use of these rules using strategies.

In this chapter, we accomplish two main objectives. Firstly, we formalize self-management strate-
gies and their associated rewriting rules, aimed at autonomously managing the various structural
and behavioral elements outlined in the MS-MM meta-model (Figure. VII.1). Secondly, we ensure
that these strategies adhere to the operational semantics relevant to the different architectural enti-
ties discussed in Chapter IV. Therefore, the self-management strategies of MS-MM are encoded and
seamlessly integrated within Maude’s established functional and system modules. This integration
results in the introduction of five complementary modules that collectively englobe the semantics of
MS-MM, summarized below:

- Functional Module WORKFLOW-DATA: its role is to define the structural syntax of the
WF of Directed SoSs by implementing the functional chain elements (i.e. different executing
missions) in the form of sorts and operations. This structure allows for the construction of
a complete structured process that begins with individual missions and finishes with one or
more global missions, resulting in a structured missions workflow enabled by the systematic
organization of temporal dependencies and resources.

- The System Modules, TIME-BASED-EXEC and RESOURCE-BASED-EXEC: both of them
include the WORKFLOW-DATA module to implement a set of rules and conditions for the MS-
MM, this enables the execution of missions and the utilization of resources. The former, TIME-
BASED-EXEC, is primarily focused on planning and executing missions based on temporal
attributes and conditions, while the latter, RESOURCE-BASED-EXEC, is tailored to optimize
resource allocation and utilization. These modules encapsulate the semantics provided by a
suite of rewriting rules, facilitating the execution of a suitable functional chain by selecting
of the optimal choices. For this, conditional rewrite logic (CRL) in Maude is incorporated,
enabling them to dynamically adapt to the execution of missions and the allocation of resources
based on evolving conditions and needs.

- The FUNC-CHAIN-STRAT module integrates TIME-BASED-EXEC and RESOURCE-BASED-
EXEC modules to formulate strategies that direct and plan SoS execution. Its primary function
is to enforce specific CRLs to self-regulate behaviors, ensuring missions align with objectives
and resources. It effectively avoids undesired behaviors and selects optimal mission paths
based on criteria such as arrival time, duration, and resource availability.

130

VII.3. Strategic Management of Behavior

Figure VII.2: MS-MM operational semantics in Maude Strategy Langage.

- System VERIF-ANALYSIS Module: it describes a set of LTL properties, introduced to ver-
ify the desired/unwanted behavior related to time and resource constraints of the SoS. These
properties are analyzed using the Maude model-checker tool and more precisely search com-
mands, which will perform a verification of a property on a simulation from an initial state of
a SoS to a final state, applying the set of CRLs.

Implementing specifications in Maude language using rewrite logic provides significant flexibility,
extensibility, and reuse. This is achieved through a modular approach, in which Maude-based
modules can be integrated with others, allowing easy extension or independent editing of their
specifications. More specifically, by leveraging conditional rewrite logic, the system maintains the
operational flexibility and resilience essential to managing the complexities of large-scale integrated
systems.

VII.3.1 Managing Workflows in SoSs

Within the SoS Workflow (WF), missions are not limited to a single CS for execution. Instead,
multiple CSs, each with unique capabilities and resources, can participate in different ways for the
same mission. This approach introduces a rich model of parallelism, where similar missions are
executed concurrently but under varying constraints and resource conditions. This diversity in

131

Chapter VII. Control-based Formalization of Management Strategies

resource availability and operational constraints among the CSs adds layers of complexity to the
Workflow, necessitating advanced coordination and resource management.

VII.3.1.1 Workflow and Functional Chains description

In SoSs’ context, we define the concept of WF as a comprehensive model that structures a set
of FCs of missions to accomplish specific goals. The WF model includes FCs which are specific
sequences or combinations of missions designed to execute a part of the overall WF. These elements
are characterized by their:

- Dynamics: unlike traditional linear task sequences, FCs are flexible and diverse, they allow for
various execution modes such as exclusive, concurrent, or sequential.

- Collaborative CSs: FCs depend largely on the collaborative efforts of the CSs which are working
collaboratively execute and manage the chains.

- Strategic Mission and Resource Management: the ability of CSs to adapt to changing scenarios
(e.g., resource constraints, shifting priorities, or external environmental changes) ensures that
the WF remains resilient and aligned with global SoS goals.

The WORKFLOW-DATA module is designed to establish structured WFs and their associated
FCs. This module is primarily centered around (1) linking various FCs and integrating them into
the overarching WF structure, and (2) classifying these chains into two distinct categories: primary
and alternative, allowing for defining the operational behavior and managing missions’ priorities
within the WF. We use WORKFLOW-DATA module to:

- Construct FCs and prepare them for execution.

- Classify missions as ’Primary’ or ’Alternative’.

- Identify and address desired behavior and avoid or correct unwanted one.

- Integrate and enable the two system modules TIME-BASED-EXEC and RESOURCE-BASED-
EXEC to develop strategies for executing a series of missions.

To this end, the WORKFLOW-DATA module introduces a systematic classification of elements
and types that are fundamental to manage SoS’ WFs and their FCs. This classification is accom-
plished through the definition of sorts such as Mission, SecOrPri, FuncChain, and Workflow, etc.
which form the structure of these elements (Listing below). Each sort serves a distinct purpose:
Mission encapsulates individual missions or operations, while SecOrPri represents a secondary or
primary categorization of these missions. The FuncChain sort particularly acts as a generic structure
under which both missions and their classifications (secondary or primary) are nested.

1 fmod WORKFLOW-DATA is
2 sorts Mission SecOrPri FuncChain Workflow .
3 subsorts Mission SecOrPri < FuncChain .

132

VII.3. Strategic Management of Behavior

4

5 var M1 : Mission .
6 op DelayViolated DeadlineViolated isWCETViolated isArrivalTimeViolated: Time Time -> Bool .
7 op isResourceUnavailable isGlobalResourcePreferred isResourceNonShareable isResourceLimited : Resource ->

Bool .
8 op isTCViolated : Mission -> Bool .
9

10

11 ops AlternativeM PrimaryM : -> SecOrPri [ctor] .
12 op __ : FuncChain FuncChain -> FuncChain [ctor assoc comm] .
13 op _|_ : FuncChain FuncChain -> Workflow [ctor comm prec] .
14

15 vars FC1 FC2 : FuncChain .
16 op initial : -> Workflow .
17 eq initial = AlternativeM M1 | PrimaryM .
18

19 --- Temporal and Resource Constraints
20 ceq DelayViolated(Clock, ExpectedDelay) = true if Clock > ExpectedDelay .
21

22 ...
23 endfm

Depending on scenarios where resource constraints and time-sensitive missions are involved, the
classification of missions into primary (PrimaryM) and alternative (AlternativeM) allows for the
prioritization of certain flows of execution over others:

- PrimaryM: represents a subset/subsequence of missions that are given priority in terms of short
duration and/or resource constraints during the runtime to achieve the final global Mission.

- AlternativeM: represents a subset/subsequence of missions that are not given priority for the
current execution, these missions could still exist in the system and could be relevant in future
executions.

Moreover, in order to enable real-time responses to changes in WF, the module employs a set
of conditional equations to analyze the complexities (e.g. time and resource management). It
defines equations such as DeadlineViolated, isResourceUnavailable, and DelayViolated, which work
on monitoring the system’s compliance with its operational parameters. These conditions act as
triggers for rewriting rules in other system modules, allowing the SoS to adapt its behavior in
response to environmental changes. The table VII.1 introduces the different conditional equations
for applying constraints and managing the WF in an SoS. These equations are used to evaluate and
respond to various scenarios, and to ensure that missions meet defined time constraints and resource
availability.

VII.3.2 Mission execution and resource management

The two system modules TIME-BASED-EXEC and RESOURCE-BASED-EXEC, collaboratively
prioritize missions to execute the optimal FC, aligning with desired behavior, preferences, functional
objectives and unpredictable scenarios. The former module determines ’what’ missions to execute

133

Chapter VII. Control-based Formalization of Management Strategies

Table VII.1: Function Descriptions and Maude’s Code

Function Name Description Maude’s code
isWCETViolated Checks if the Worst Case

Execution Time (WCET)
constraint is violated.

ceq isWCETViolated(Clock,
WCET)= true if Clock >

WCET
isArrivalTimeViolated Determines whether the

arrival time constraint of a
mission is violated.

ceq isArrivalTimeViolated
(Clock,
ExpectedArrivalTime)=
true if Clock <
ExpectedArrivalTime

isResourceUnavailable Evaluates if a specified
resource is currently
unavailable.

ceq isResourceUnavailable
(R)= true if R’s state
indicates unavailability

isGlobalResourcePreferred Checks if a global resource is
preferred for a given mission
based on certain conditions.

ceq
isGlobalResourcePreferred
(Mid)= true if /*
condition to check global
resource preference for

mission Mid */
isResourceNonShareable Determines if a specified

resource is non-shareable.
ceq
isResourceNonShareable(
Rid)= true if /*condition
to check if resource Rid
is non-shareable */

isResourceLimited Checks whether a resource is
limited in terms of its
availability or capacity.

ceq isResourceLimited(Rid
)= true if /*condition to
check if resource Rid is
limited */

isDeadlineViolated Assesses if a mission has
exceeded its deadline.

ceq isDeadlineViolated(
Clock, Deadline)= true if
Clock > Deadline

isDelayViolated Checks if there’s a delay
beyond the expected duration
for a mission.

ceq isDelayViolated(Delay
, ExpectedDuration)= true
if Delay >

ExpectedDuration
isQuitTimeViolated Evaluates if a mission has

exceeded its quit time.
ceq isQuitTimeViolated(
Clock, QuitTime)= true if
Clock > QuitTime

isMissionUnscheduled Determines if a mission is
executing without being
scheduled properly.

ceq isMissionUnscheduled(
M)= true if < M : Mission

isResourceImproperlyAllocated Checks if a mission’s required
resource has been allocated
improperly (e.g, the resource
is unavailable).

ceq
isResourceImproperlyAllocated
(M)= true if < M :
Mission

134

VII.3. Strategic Management of Behavior

and ’when’, focusing on sequencing and timing to optimize mission execution. The second module
complements this by managing ’how’ these missions are resourced and ’with what’, ensuring efficient
resource allocation. Together, they facilitate the execution of the most advantageous functional chain
or the most adapted to the specific needs and priorities of WF.

VII.3.2.1 Temporal condition-based prioritization of Missions: TIME-BASED-EXEC
module

Including the WORKFLOW-DATA functional module, the TIME-BASED-EXEC system module
prioritizes and manages missions according to their time constraints, guaranteeing efficient and rapid
execution. It manages the sequential and simultaneous processing of missions, meeting the dynamic
requirements of the system. It incorporates rules to address violations of time constraints and
resource limitations representing undesirable behavior, therefore, it also demonstrates its ability
to simulate and manage missions in an environment where time is a critical and unpredictable
factor. Integrating the functionalities of the TIME-BASED-EXEC module with those of conditional
equations defined in the WORKFLOW-DATA module creates a dynamic system within Maude.
This integration facilitates a more responsive approach to scheduling, prioritizing, and managing
missions based on their temporal constraints of operational parameters. This includes:

- The system prioritizes missions based on urgency and potential impact, and aligns them with
strategic goals.

- The system sets criteria for mission completion, duration, delays etc, triggering appropriate
subsequent actions, thus contributing to the SoS’s progression and evolution.

- Rules manage sequential and simultaneous mission executions.

- Using conditional equations from WORKFLOW-DATA, the rules are also used to manage
situations where missions deviate from set temporal constraints or when operational conditions
change unexpectedly.

- The conditional equations in WORKFLOW-DATA can adapt and reconfigure its operations
to maintain efficiency and continuity.

To fully understand this module, it is essential to recognize how it classifies missions as primary
and alternative. The module’s rules are designed to build a functional chain, focusing on behaviors
such as shortest and earliest execution etc, while dynamically adjusting mission status between
primary and alternate as needed. These rules allow the system to manage missions efficiently,
adhering to predefined conditions, as follows:

- Ordered Mission Sequencing

The rule sequentialMissionOrdering is used for scenarios where missions are in sequence order,
it ensures that each mission follows one another in a predetermined order. This is especially

135

Chapter VII. Control-based Formalization of Management Strategies

important for missions that depend on the completion of a previous mission or when a certain
sequence is necessary for successful execution.

1 rl [sequentialMissionOrdering] : M1 M2 AlternativeM | PrimaryM =>

AlternativeM | PrimaryM M1 M2 .

In this rule, missions M1 and M2 are arranged in a sequential order, both M1 and M2 need
to be classified or added as primary missions. The rule ensures that if they are currently in a
mixed arrangement with AlternativeM or PrimaryM, they will be reordered to maintain this
sequential execution, respecting the primary status.

- Parallel Mission Execution

The concurrent mission execution rule concurrentMissionExecution, allows parallel execution
of missions. It is employed when missions are independent of each other and can be executed
simultaneously. This rule is beneficial for optimizing the use of time, as it allows multiple
operations to take place simultaneously without any impact on each other.

1 rl [concurrentMissionExecution] : M2 M3 AlternativeM | PrimaryM M1 =>

AlternativeM | PrimaryM M1 M2 M3 .

This rule facilitates the concurrent execution of M2 and M3 after finishing M1, by moving
them to PrimaryM FC for concurrent execution.

- Start Time Prioritization

The rule for prioritizeEarliestStart ensures that missions with earlier start times are given
precedence over others. This prioritization is critical in environments where timing is of the
essence, and starting earlier can lead to more efficient overall mission management.

1 crl [prioritizeEarliestStart] :

2 M2 M3 AlternativeM | PrimaryM M1 => if (getArrivalTime(M2) <

getArrivalTime(M3)) then AlternativeM M3 | PrimaryM M2 M1

3 else AlternativeM M2 | PrimaryM M3 M1

4 fi .

This conditional rule evaluates the arrival times of M2 and M3. The mission with the earlier
start time is prioritized as a primary mission, while the other is reclassified as alternative, thus
restructuring the functional chain’s construction and execution order.

- Completion Time Prioritization The priorEarliestCompletion rule classifies missions based
on their expected completion times, it ensures that missions scheduled to end earlier are
prioritized in the execution schedule. This rule is particularly useful when it is important to
complete shorter or urgent missions first.

1 crl [prioritizeEarliestCompletion] : M2 M3 AlternativeM | PrimaryM M1 =>

if (getQuitTime(M2) <= getQuitTime(M3)) then AlternativeM M3 |

136

VII.3. Strategic Management of Behavior

PrimaryM M2 M1

2 else AlternativeM M2 | PrimaryM M3 M1

3 fi .

This rule focuses on quit times, rearranging M2 and M3 based on which mission is expected
to be completed earlier. The mission with the earlier completion time is set as primary, and
the other as alternative.

- Mission Duration Prioritization The priorShortestMission rule is employed to prioritize
missions of shorter duration, it is advantageous in scenarios where quickly executing smaller
missions is beneficial allowing the system to achieve certain goals faster.

1 crl [prioritizeShortestMission] : M2 M3 AlternativeM | PrimaryM M1 => if

(getDuration(M2) <= getDuration(M3)) then AlternativeM M3 |

PrimaryM M2 M1

2 else AlternativeM M2 | PrimaryM M3 M1

3 fi .

This rule compares the durations of M2 and M3. The shorter mission is classified as primary
for earlier execution, while the longer one is set as alternative.

- Mission Delay Minimization The minimizeMissionDelays rule is used to reduce delays in
mission execution and to minimize overall system delay, ensuring that missions are completed
on time.

1 crl [minimizeMissionDelays] : M2 M3 AlternativeM | PrimaryM M1 => if (

getDelay(M2) <= getDelay(M3)) then AlternativeM M3 | PrimaryM M2 M1

2 else AlternativeM M2 | PrimaryM M3 M1

3 fi .

This rule assesses the delays of M2 and M3. The mission with lesser delay is prioritized as
primary, while the other is reclassified as alternative, it compares the delays and gives priority
to those with the least delay.

VII.3.2.2 Resource allocation and Optimization: RESOURCE-BASED-EXEC module

Similar to the previous module, the RESOURCE-BASED-EXEC system module includes the
functional module WORKFLOW-DATA to structure the execution of missions within complex WFs,
with a particular emphasis on resource-sensitive missions. i.e. this module prioritizes and manages
missions based on their resource requirements and constraints. It handles the allocation and uti-
lization of global and local resources for missions, catering to the dynamic needs of the system. By
incorporating rules that address both resource constraints and the optimization of resource usage,
the rewriting-based rules handle and manage missions in environments where resource allocation is a

137

Chapter VII. Control-based Formalization of Management Strategies

challenging factor. The core functionality of the module is based on its rules-based rewrite approach
to resource allocation, prioritization, and management for missions. This achieved by:

- Prioritizing of missions based on their resource availability, resource type, importance, etc.

- Managing both the allocation of resources to local missions and the sharing of resources among
global missions.

- Handling situations where resource allocation may deviate from the desired behavior or when
operational conditions require a re-evaluation.

- Allowing the system to select and reconfigure its missions for efficient and continuous resource
management.

- Adjusting resource allocations in response to changes in resource availability or mission re-
quirements.

Similar to the previous module, this one also classifies missions as primary and alternative, it
provides rules designed to build a functional chain, focusing on behaviors such as resource types,
sharing, and limitation. These rules govern the system in the efficient management of resources, as
follows:

- Resource Allocation Efficiency

The rule handleUnavailableResources manages the execution of missions based on the avail-
ability of required resources, i.e. it classifies missions to an alternative status if their required
resources are unavailable, while missions with available resources are given a primary status.
This action ensures that the system does not attempt to execute missions without the necessary
resources.

1 crl [handleUnavailableResources] :

2 < M2id : Mission | resType : Res2, ... >

3 < M3id : Mission | resType : Res3, ... >

4 AlternativeM | PrimaryM M1 =>

5 if (isResourceUnavailable(Res2))

6 then AlternativeM M2id | PrimaryM M3id M1

7 else if (isResourceUnavailable(Res3))

8 then AlternativeM M3id | PrimaryM M2id M1

9 else PrimaryM M2id M1 | AlternativeM M3id

10 fi

11 fi .

- Resource Efficiency Maximization

The rule resourceEfficiencyMaximization prioritizes missions based on their resource utilization
time (RAUT), it promotes the most efficient use of resources, especially in environments where

138

VII.3. Strategic Management of Behavior

resources are scarce or must be conserved. Particularly, it favors missions with a lower or equal
RAUT in the “PrimaryM”.

1 crl [resourceEfficiencyMaximization] :

2 < M1id : Mission | RAUT : RAUT1, missionState : waiting, ... >

3 < M2id : Mission | RAUT : RAUT2, missionState : waiting, ... >

4 AlternativeM | PrimaryM =>

5 if RAUT1 <= RAUT2

6 then PrimaryM M1id | AlternativeM M2id

7 else PrimaryM M2id | AlternativeM M1id

8 fi .

- Unlimited Resource Preference

The rule unlimitedResourcePreference ensures that missions with access to unlimited resources
take priority over those that rely on limited resources, which is essential to maintaining a
balanced distribution of resources between different missions.

1 crl [unlimitedResourcePreference] :

2 < M1id : Mission | resType : R1, ... >

3 < M2id : Mission | resType : R2, ... >

4 AlternativeM | PrimaryM =>

5 if (isLimited(R1) and not isLimited(R2))

6 then PrimaryM M2id | AlternativeM M1id

7 else if (not isLimited(R1) and isLimited(R2))

8 then PrimaryM M1id | AlternativeM M2id

9 else PrimaryM M1id M2id | AlternativeM

10 fi

11 fi .

The rule evaluates whether R1 and R2, the resources for M1id and M2id, are limited or
unlimited. It prioritizes missions utilizing unlimited resources, like R2 in the ’PrimaryM’
category (first case), to ensure continued execution of missions without resource scarcity.

- Global Resource First

The rule globalResourceFirstStrategy is designed to optimize the distribution and utilization
of resources by prioritizing missions that use global resources over those dependent on local
resources. It helps in achieving a more balanced resource distribution at the global level of the
entire SoS.

1

2 crl [globalResourceFirstStrategy] :

3 < M1id : Mission | resType : R1, ... >

4 < M2id : Mission | resType : R2, ... >

139

Chapter VII. Control-based Formalization of Management Strategies

5 AlternativeM | PrimaryM =>

6 if (isLocal(R1) and isGlobal(R2))

7 then PrimaryM M2id | AlternativeM M1id

8 else if (isGlobal(R1) and isLocal(R2))

9 then PrimaryM M1id | AlternativeM M2id

10 else PrimaryM M1id M2id | AlternativeM

11 fi

12 fi .

When assessing the type of resources (R1 and R2) used by M1id and M2id, it assess the type
of resources (global or local) used in missions and prioritizes those using global resources.

- Renewable Resource Prioritization

The rule renewableResourcePrioritization ensures that missions using renewable resources re-
ceive higher priority, particularly, it supports the use of resources that can be renewable.

1 crl [renewableResourcePrioritization] :

2 < M1id : Mission | resType : R1, ... >

3 < M2id : Mission | resType : R2, ... >

4 AlternativeM | PrimaryM =>

5 if (isRenewable(R1) and not isRenewable(R2))

6 then PrimaryM M1id | AlternativeM M2id

7 else if (not isRenewable(R1) and isRenewable(R2))

8 then PrimaryM M2id | AlternativeM M1id

9 else PrimaryM M1id M2id | AlternativeM

10 fi

11 fi .

This rule evaluates the type of resources (R1 and R2) for M1id and M2id missions and priori-
tizes Missions that rely on renewable resources (R1 or R2).

VII.3.2.3 Avoiding unwanted behavior and conflict resolution

Since SoSs often encounter obstacles and challenges due to the complexity of their CSs’ inter-
actions (e.g. the unpredictability of environmental conditions, or human error), the application of
the previous rules does not always guarantee compliance or the desired results. Therefore, thid
challenge can have a significant impact on the effectiveness of rule implementation in dynamic and
critical emergency scenarios. One example could be a set of CSs within an SoS that is respon-
sible for coordinating the rescue efforts of multiple agencies during a major earthquake. Due to
a communication error by an operator, important information regarding the location of the most
affected locations is not being received correctly. This error may cause a significant delay in the
deployment of emergency teams and resources to areas in need. Environmental unpredictability is

140

VII.3. Strategic Management of Behavior

another factor that can disrupt rule adherence in CSs. During a large-scale natural disaster, an
SoS responsible for coordinating emergency medical responses faces a critical challenge. i.e. the
unavailability of transportation resources due to damaged infrastructure unexpectedly prevents the
distribution of medical supplies. Despite the urgency, the system struggles to reallocate resources
effectively, leading to delays in delivering essential healthcare to affected areas.

Both modules TIME-BASED-EXEC and RESOURCE-BASED-EXEC modules address unwanted
and unpredictable behaviors. These behaviors are handled also through a set of rules, whose con-
ditions are predefined in the WORKFLOW-DATA functional module. This section explores the
nature of these rules and their operational importance within the SoS’ WF. These rules allow the
system to avoid and respond to various issues, ensuring missions continue to align with the strategic
missions of the SoS. The rules consider the following concerns:

- Deadline Exceedance

The rule deadlineViolation checks if a mission exceeds its deadline. i.e. if the current time
(Clock) is greater than the mission’s deadline (Deadline), and the mission is not already marked
as failed, the rule identifies it as a mission that cannot be completed within their assigned time
frame and changes its state to failed.

1 crl [deadlineViolation] :

2 < Mid : Mission | deadline : Deadline, localClock : Clock, missionState

: State, ... > =>

3 < Mid : Mission | missionState : failed, ... >

4 if isDeadlineViolated(Clock, Deadline) and State =/= failed .

- Delay violation

The rule delayViolation starts when the delay of a mission exceeds the expected duration.
i.e. if the delay (Delay) is greater than the expected duration (ExpectedDuration), and the
mission’s state is not already failed, the mission state is updated to failed. It’s vital for
monitoring missions that are taking longer than planned.

1 crl [delayViolation] :

2 < Mid : Mission | delay : Delay, expectedDuration : ExpectedDuration,

missionState : State, ... > =>

3 < Mid : Mission | missionState : failed, ... >

4 if isDelayViolated(Delay, ExpectedDuration) and State =/= failed .

- Arrival Time Violation

In order to ensure that missions do not start too early, the rule arrivalTimeViolation concerns
situations in which a mission begins earlier than expected, i.e. if the clock time is less than
ExpectedArrivalTime and the mission status is not already failed, the mission status is updated
to failed.

141

Chapter VII. Control-based Formalization of Management Strategies

1 crl [arrivalTimeViolation] :

2 < Mid : Mission | arrivalTime : ExpectedArrivalTime, localClock : Clock,

missionState : State, ... > =>

3 < Mid : Mission | missionState : failed, ... >

4 if isArrivalTimeViolated(Clock, ExpectedArrivalTime) and State =/=

failed .

- Quit Time Violation

The rule quitTimeViolation checks if a mission exceeds its quit time. If the current time
(Clock) surpasses the mission’s quit time (QuitTime), and the mission’s state is not already
failed, the mission state is updated to failed. The rule ensures missions do not overrun their
allocated execution window, impacting other operations.

1 crl [quitTimeViolation] :

2 < Mid : Mission | quitTime : QuitTime, localClock : Clock, missionState

: State, ... > =>

3 < Mid : Mission | missionState : failed, ... >

4 if isQuitTimeViolated(Clock, QuitTime) and State =/= failed .

- Resource Misallocation

In a case where missions rely on various resources, the ResourceMisallocation rule expresses
the cases where missions don’t have the proper necessary resources. If a mission is executed
with a resource that turns out to be improperly allocated or unavailable, this rule intervenes
to update the state of the mission accordingly.

1 crl [ResourceMisallocation] : < M : Mission | missionState : executing,

resType : Res, ... > < R : Resource | resType : Res, resSt :

unavailable, ... > => < M : Mission | missionState : failed, ... > if

isResourceImproperlyAllocated(M) .

VII.3.3 Management Strategies

The rules introduced in Section VII.3.2.1 and Section VII.3.2.2 (modules TIME-BASED-EXEC
and RESOURCE-BASED-EXEC, respectively) express the desired behavior of CSs during mission
execution, they prioritize missions to execute the optimal FC and align them with desired behavior
and functional objectives. Moreover, the rules introduced in Section VII.3.2.3, express how the
unwanted behavior can occur and how missions can be violated, delayed, failed or overruns, etc. To
guide and govern desired behaviors while preventing the execution of unwanted behaviors, we propose
a series of strategies designed to avoid states characterized by violations, conflicts, and undesired
actions. These strategies function by avoiding the execution of rules that lead to unwanted behaviors,
i.e. this approach necessitates the preemptive application of these strategies before the re-execution

142

VII.3. Strategic Management of Behavior

of any operational rules, ensuring that only desired behaviors (rules) are encouraged and maintained.
The strategies help at:

- Autonomous decision-making for desired/unwanted behavior: This involves dynamically de-
termining the execution of missions and allocation of resources provided by CSs within the
SoS.

- Execution of the optimal FC: Tailoring the execution path to achieve the SoS’s final goal, con-
sidering factors such as urgency and resource efficiency. Each strategy operates independently
to provide focused optimization.

- Time-Critical Mission strategies: Prioritize missions with urgent or time-sensitive require-
ments. They schedules missions according to their time-criticality, addressing scenarios where
timing is a crucial factor.

- Resource-Critical Mission strategies: Focuse on reducing waste and ensuring an adequate
supply of resources. These strategies is vital in scenarios where resource conservation and
efficient utilization are key.

VII.3.3.1 Auxiliary Strategies

In this subsection, we define a set of auxiliary strategies based on time and resource con-
straints in the module FUNC-CHAIN-STRAT, the latter includes both MISSION-BASED-EXEC
and RESOURCE-BASED-EXEC to provide seven auxiliary strategies as follows:

- Order Based-Execution

The strategy timeCriticalMissionStr switches between concurrent and sequential mission exe-
cution. It first attempts concurrent execution, governing parallel missions, and then goes back
to sequential ordering if concurrent execution is not feasible.

1 sd orderBasedExecStr := SequentialMissionOrdering or-else

ConcurrentMissionExecution .

- Time Critical Mission

The strategy timeCriticalMissionStr focuses on time-sensitive missions. It first prioritizes
missions based on their start times and then shifts focus to completion times, ensuring that
the most urgent missions are addressed promptly.

1 sd timeCriticalMissionStr := PrioritizeEarliestStart or-else

PrioritizeEarliestCompletion .

- Quick Completion

The strategy quickCompletionStr emphasizes quick mission completion. It aims to prioritize
missions with shorter durations and minimize delays in mission execution.

143

Chapter VII. Control-based Formalization of Management Strategies

1 sd quickCompletionStr := PrioritizeShortestMission or-else

MinimizeMissionDelays .

- Violated Constraints

The strategy violatedConstraintsStr handles missions that risk violating time constraints. It
dynamically applies rules to manage and rectify such situations, preventing potential disrup-
tions in mission execution.

1 sd violatedConstraintsStr := DeadlineViolation | DelayViolation |

ArrivalTimeViolation | QuitTimeViolation .

- Local Resource Optimization

The strategy localResourceOptStr optimizes local resource allocation by handling unavailable
resources by preferring missions that can utilize unlimited resources.

1 sd localResourceOptStr := HandleUnavailableResources or-else

ResourceEfficiencyMaximization or-else UnlimitedResourcePreference .

- Shared Resource Sustainability

The strategy sharedResourceSusStr manages shared resources by prioritizing renewable and
then global resources, promoting sustainable and strategic resource utilization across the SoS.

1 sd sharedResourceSusStr := GlobalResourceFirstStrategy or-else

RenewableResourcePrioritization .

- Unwanted Resource Behavior

The strategy unwantedResourceBeh addresses unwanted behaviors related to resource alloca-
tion and mission scheduling, correcting issues like unscheduled mission execution and resource
misallocation to prevent inefficiencies.

1 sd unwantedResourceBeh := UnscheduledMissionExecution |

ResourceMisallocation .

In these strategies, the operators (or-else, |, and ;) play pivotal roles in strategizing mission
execution and resource allocation within a SoS:

- The or-else operator is crucial for providing fallback options, ensuring that if one strategy is not
applicable, an alternative can be immediately employed. This mechanism is illustrated in the
timeCriticalMisStr strategy, where the system initially tries to apply the prioritizeEarliestStart
strategy. If this execution is not possible, the system then switches to prioritizeEarliestCom-
pletion as a backup plan.

144

VII.3. Strategic Management of Behavior

- The | operator introduces a layer of non-determinism, it allows the system to choose any ap-
plicable strategy without a fixed order, as seen in the violatedConstraintsStr strategy, where
the system can select any one of the violation handling rules like deadlineViolation or delayVi-
olation, etc.

- The ; operator, on the other hand, ensures a controlled, sequential execution of strategies.

Collectively, these operators ensure that rules are executed in a specific sequence to guarantee
a structured and orderly approach. Therefore, by leveraging the flexibility of or-else, the non-
determinism of |, and the controlled execution of ;, the system will align with the dynamic and
unpredictable nature of SoS environments, ensuring efficient and effective system operations.

VII.3.3.2 Main Strategies

The module also defines two main strategies missionBasedFCStrategy and resourceBasedFC-
Strategy which incorporate these auxiliary strategies:

- Mission-Based FC Strategy

The first strategy missionBasedFCStrat where auxiliary strategies like orderBasedExecStr,
timeCriticalMissionStrategy, and quickCompletionStr are executed in a specific sequence. This
sequential execution guarantees a structured and orderly approach to handling missions. Col-
lectively, these strategies enable the system to adaptively manage various temporal scenarios
in an SoS, prioritizing mission execution utilization while avoiding conflicts and undesirable
states. The latter is reached by leveraging the flexibility of not(violatedConstraintsStr) which
aligns with the dynamic and the unpredictable nature violated constraints in an SoS environ-
ments.

1 strat missionBasedFCStrat .

2 sd missionBasedFCStrat := (match AlternativeM | G) ? idle : (

orderBasedExecStr; timeCriticalMissionStr;

3 quickCompletionStr; not(violatedConstraintsStr);

selectedFuncCh) .

- Resource-Based FC Strategy

Similarly, the strategy resourceBasedFCStrat executes the two auxiliaries ones, i.e. local-
ResourceOptStr, sharedResourceSusStr. This sequential execution ensures a structured and
strategic approach to handling resources. Together, these strategies enable the system to au-
tonomously manage various cases in an SoS, i.e. optimizing resources allocation while avoiding
conflicts and undesirable states by executing the strategy not(unwantedResourceBeh) which
aligns with the dynamic and the unpredictable nature consumed resources in an SoS environ-
ments.

1 strat resourceBasedFC .

145

Chapter VII. Control-based Formalization of Management Strategies

2 sd resourceBasedFCStrat := (match AlternativeM | G) ? idle : (

localResourceOptStr; sharedResourceSusStr; not(unwantedResourceBeh);

selectedFuncCh) .

Both strategies missionBasedFCStrategy and resourceBasedFCStrategy are recursive strategies that
repeat these steps forever or until the final mission is reached. They are restrictive and avoid exe-
cuting conflicts or any unwanted states by discarding all missions where violatedConstraints and/or
missionBasedFCStrategy are possible with not(α) ≡ α ? fail : idle. i.e. Executing violatedCon-
straints and/or missionBasedFCStrategy still requires visiting the conflicts and unwanted states
defined in the module WORKFLOW-DATA and specified int the two execution modules as rules,
but this execution path is discarded as if the state were never visited.

Central to these strategies are the operational semantics defined in WORKFLOW-DATA, includ-
ing various ops and ceq conditions that determine the states of missions and resources. For instance,
conditions like DelayViolated, DeadlineViolated, isWCETViolated, and isArrivalTimeViolated iden-
tify risky states based on time and resource constraints. These, along with the unscheduledMis-
sionExecution and resourceMisallocation rules in TIME-BASED-EXEC and RESOURCE-BASED-
EXEC, help identify and manage undesirable states.

By synchronizing these strategies and rules, the module effectively prevents management conflicts
and contradictory decisions. It ensures that each mission is executed with the necessary resources
while maintaining the overall balance within the SoS. The strategies are designed to be distinct
yet complementary, enabling the system to autonomously decide the best course of action based on
urgency, resource efficiency, and other critical factors.

VII.4 Real-Time regulating mechanism using MAPE-K loop

The MAPE-K loop which is fundamental to the concept of autonomic computing, consists of five
key components: Monitor, Analyze, Plan, Execute, and Knowledge. Each of these components plays
a crucial role in enabling a system to self-manage by autonomously monitoring its own operations,
making decisions based on real-time data, and executing necessary adjustments. Here’s a detailed
explanation of each phase [42] [16], see Figure. VII.3 .

146

VII.4. Real-Time regulating mechanism using MAPE-K loop

Figure VII.3: The MAPE-K architecture.

In this section, we specifically illustrate how the modules defined in this chapter and the previous
one can be organized into an autonomic operational framework. Through the application of the
MAPE-K loop phases, we demonstrate their integration and functionality within the context of the
SoS. Moreover, the approach not only showcases the systematic organization of the specified modules
but also introduces enhancements via new modules tailored with new modules designed to handle
runtime regulating mechanisms and adjustments (see Figure VII.4).

Figure VII.4: Overall structure of the modules.

These modules form the main components of our formal method. They work together to provide
an executable approach for the specification, analysis, planning, and execution of the MAPE-K
control loop within the SoS. In this context, we identify four types of temporal dependencies between
various missions:

- Start-to-Start (S2S): This relationship signifies that the start of one Mission B is dependent
on the start of another Mission A, i.e. Mission B cannot start until Mission A has begun.

147

Chapter VII. Control-based Formalization of Management Strategies

- Start-to-Finish (S2F): This relation means that the completion of Mission B is dependent on
the start of Mission A. It indicates that Mission B cannot finish until Mission A has started.

- Finish-to-Start (F2S): This relation implies that Mission B cannot start until Mission A has
finished. i.e. the completion of one Mission triggers the beginning of another.

- Finish-to-Finish (F2F): In this relation, the finish of Mission B is dependent on the finish of
Mission A. Mission B can only conclude once Mission A has been completed. Both Missions
can run concurrently.

VII.4.1 Knowledge: Data Foundation

In the previous Chapter.VI, we have treated the CSs of a SoS as ’Black Boxes’, the focus was
primarily on the missions associated with each CS, rather than exploring the internal architecture,
composition or specific details of the CSs themselves. In this Chapter, we enrich the approach with
the temporal OO module DATA-TYPES which provides the operational semantic of the necessary
data types such as CSs and SoSs. The CSIdSet data type represents a list of Oid’s (Object Identifiers)
that store the missions associated with each CS. It allows to effectively capture and organize mission-
related data within the CS. The "none" operation creates an empty CSIdSet, while the ";" operation
enables the concatenation of two CSIdSets, facilitating the management of multiple missions.

1 (tomod DATA-TYPES is

2 sort CSIdSet .

3 subsort Oid < CSIdSet .

4 op none : -> CSIdSet [ctor] .

5 op _;_ : CSIdSet CSIdSet -> CSIdSet [ctor assoc

6 ---

7 sorts Capacity ResourcePool . subsort Resource < ResourcePool

8 op resType:_resState:_quantity:_ : ResType State Time -> Resource [ctor] .

9 op emptyPool : -> ResourcePool [ctor] .

10 op __ : ResourcePool ResourcePool -> ResourcePool [ctor assoc id: emptPoo] .

11 sort Pool . subsort Pool < Configuration .

12 op [Pool: _] : ResourcePool -> ResPool [ctor] .

13 ...

VII.4.2 Monitor: Processing

For this step, we adopt the two modules SoS-CLASSES-MOD presented in Chapter.VI and
DATA-TYPES for the initiation of the SoS configuration and providing valuable insights to running
CSs, helping the designers make informed decisions based on real-time data by utilizing the equations
provided by these two modules, the monitoring process evaluates the state of missions, their temporal
constraints, and the associated resources of the initial running mission instances. This module in

148

VII.4. Real-Time regulating mechanism using MAPE-K loop

dynamically initiating missions, resources, and CSs by instigating the OO-temporal classes as soon
as events/changes are detected, thus ensuring that all components are promptly aligned with the
latest operational requirements.

VII.4.3 Analysis: Workflow

This module analyzes the execution of missions within the SoS, considering resource availability
and time constraints by employing the same operational semantic of WORKFLOW-DATA into the
temporal OO module AnalysesModule, and enrich it with the necessary equation time information to
assess the accessibility of required resources within the specified constraints. The module considers
the current environmental context, including changes in mission or resource states, to determine if
any runtime control is necessary for the subsequent Plan phase. The AnalysisModule relies on two
sources of information. Firstly, it receives runtime states of ongoing missions and their consumed re-
sources from the SoS-CLASSES-MOD, DATA-TYPES and WORKFLOW-DATA. This information
help evaluate the progress and resource utilization of missions, and provide contextual data about
the SoS initial configuration, enabling informed runtime decisions and accurate analyses.

1 (tomod AnalysisModule is

2 ops arrived accomplished pending failed : -> MissionState

3 eq calcState(DD, ED, DT) = if (DD > ED plus DT) then accomplished else pending fi

. eq calcQuitTime(ED, DT) = ED plus DT .

4 eq calcQuitTime(ED, DT, ST) = ED plus DT plus ST .

5 eq calcArrivalTime(ST, D) = ST plus D .

6 eq calcRemainedResource(ST, D) = ST plus D .

7 eq calcLocalResource(ST, D) = ST plus D .

8

VII.4.4 Plan: Strategic Control and Management

In this phase, we define a new OO module PlanModule that leverages FUNC-CHAIN-STRAT
module, the latter plans and selects missions to execute based on the analysis performed in the
AnalyseModule and WORKFLOW-DATA modules. It interacts closely with the data types defined
in the Knowledge Modules to retrieve relevant information, and update the knowledge accordingly.
The primary objective of the PlanModule is to strategically plan and manage mission execution
as seen in Chapter.VII. In this step, the system generates an execution strategy based on the
FC-STRATEGY-MOD that selects the series of missions that would execute according to the SoS
requirements and the current situation, considering factors such as WCET, delays, and precedence.
The PlanModule proposes that we leverage RT-messages and operations to implement the MAPE-K
control.

1 (tomod PlanModule is

2 including DATA-TYPES .

149

Chapter VII. Control-based Formalization of Management Strategies

3 protecting NAT-TIME-DOMAIN . --- needed for the value 0

4 msg findRtt : Oid -> Msg .

5 msg initSoS : Oid -> Msg .

6 msg startAt : Oid Time -> Msg .

7 msg finishAt : Oid Time -> Msg .

8 --- ASAP: AS soon as possible, NLT: No Later than,

9 msg findRtt : Oid -> Msg .

10 msg start2Start : Oid -> Msg .

11 msg start2Finish : Oid Time -> Msg .

12 msg finish2Start : Oid Time -> Msg .

13 msg finish2Finish : Oid Time -> Msg .

14 msg ASAP : Oid Time -> Msg .

15 msg NLT : Oid Time -> Msg .

16

VII.4.5 Execution: Rewriting Management System

Upon receiving strategies which plans the execution of the functional chain with corresponding
mission information from the planning module, the executor in the EXECUTEModule attempts
to resolve temporal issues using corrective actions such as start-2-start, start-2-finish, etc. It self-
regulates the selected rewriting rules behavior that address these temporal constraints to perform
the corrective actions in response to changing conditions.

Table VII.3: Temporal control mechanisms for SoS Missions.

Control
Mechanism

Conditions Corrective Action

Early Arrival Mission M1 arrives earlier
than expected at time T
(T < T’)

Start-to-Start (S2S)
adjustment for M2, M2
starts at time T

Early Arrival Mission M1 arrives earlier
than expected at time T
(T < T’)

Start-to-Finish (S2F)
adjustment for M2, M2
finishes at time T

Late Completion Mission M1 takes longer
to complete than initially
anticipated

Finish-to-Start (F2S)
adjustment for M2, M2
starts at time T

Late Completion Mission M1 takes longer
to complete than initially
anticipated

Finish-to-Finish (F2F)
adjustment for M2, M2
finishes at time T

No Control
Needed

No deviations or issues No corrective action
required

150

VII.4. Real-Time regulating mechanism using MAPE-K loop

Table.VII.3. explores the temporal control mechanisms in RT-Maude, highlighting their relevance
in addressing early arrival and late completion.

In the case of Early Arrival:

- Start-to-Start (S2S): This mechanism is utilized in scenarios where there is an early arrival
of a mission, specifically when Mission M1 arrives earlier than its scheduled time. Under S2S
control, if M1 arrives earlier than expected, the start time of Mission M2 is adjusted to coincide
with the new start time of M1. This synchronization ensures that both missions commence
simultaneously, aligning their execution times. For example, consider Missions M1 and M2,
where M1 is scheduled to start at time T’, but it arrives and is ready to start at an earlier time
T (where T < T’). In response to this early arrival, the system applies the S2S mechanism.
Consequently, the start time of Mission M2, which might have been scheduled to commence
after T’, is now revised to start at time T, aligning with the new start time of M1.

- Start-to-Finish (S2F): This mechanism is utilized when there is an early arrival of Mission M1.
If M1 arrives sooner than expected (at a time T which is earlier than the scheduled time T’),
the finishing time of Mission M2 is adjusted to align with the starting time of M1. This means
that M2 will complete its tasks right as M1 begins, ensuring a seamless transition or overlap
in mission execution. For example, if M1 was scheduled to start at time T’ but arrives at time
T (where T < T’), and M2 was initially scheduled to finish after T’, M2’s finish time is now
revised to T. This adjustment ensures that M2’s operations are wrapped up by the time M1
commences.

In the case of Late Completion:

- Finish-to-Start (F2S): This adjustment is employed when Mission M1 finishes later than
planned. If M1’s completion time extends beyond its scheduled finish time, the start time
of Mission M2 is revised to begin only after M1 has finished. This ensures that M2 does not
start until M1 has fully completed its objectives. In this scenario, the delay in M1’s comple-
tion directly influences the commencement of M2. For instance, if M1 was supposed to finish
at time T but extends to time T’ (where T’ > T), M2, which was initially planned to start
post-time T, now starts at time T’.

- Finish-to-Finish (F2F): This mechanism comes into play similarly to F2S, where Mission M1
finishes later than anticipated. However, in this case, instead of changing the start time of
M2, the finish time of M2 is adjusted to match the delayed finish time of M1. For example,
if M1 was expected to finish at time T but overruns to T’ (T’ > T), and M2 was initially set
to finish at or around time T, the finish time of M2 is now altered to T’. This synchronization
ensures that both M1 and M2 conclude their respective missions simultaneously, maintaining
alignment in their operational timelines.

The table’s entries illustrate the corrective actions for each control mechanism, specifying the
adjustments made to the starting and finishing times of the respective missions. These control

151

Chapter VII. Control-based Formalization of Management Strategies

mechanisms are related to the RT-Maude rules. i.g. the Start-to-Start control mechanism can be
represented as:

crl[Start-to-Start]: M1 starts at time T => M2 starts at time T in time u if (T <
T’)".

This rule signifies that if Mission M1 starts at time T and meets the condition of an early arrival
(T < T’), then Mission M2 should also start at time T. The ExecutionModule is responsible for
executing the control and orchestration strategies defined in the runtime Plan, which is generated
by the PlanModule. During the Execute phase of the MAPE-K control loop, the ExecutionModule
applies the tick rewriting rules to execute the Plan in the real-world.

Bellow is an example of Start-to-Start (S2S) rule:

1 crl [start2start] : start2start(M1, M2, ST)

2 < O : CS | missionSet : OS, clock : R >

3 < RES : Resource | resClock : R, resDuration : RD >

4 < M1 : Mission | loClock : D, duration : ED, arrivalTime : AT, quitTime : QT,

delay : DT, deadline : DD, missionState : arrived, raut : RA >

5 < M2 : Mission | loClock : D’, duration : ED’, arrivalTime : AT’, quitTime : QT’,

delay : DT’, deadline : DD’, missionState : idle, raut : RA’ >

6 =>

7 < RES : Resource | resClock : R, resDuration : RD >

8 < M1 : Mission | loClock : ST, duration : ED, arrivalTime : ST, quitTime :

calcQuitTime(ED, DT, ST), delay : DT, deadline : DD, missionState : executing

, raut : RA >

9 < M2 : Mission | loClock : ST, duration : ED’, arrivalTime : ST, quitTime :

calcQuitTime(ED’, DT’, ST), delay : DT’, deadline : DD’, missionState :

executing, raut : RA’ > .

In this rule, both M1 and M2 start at the same time (ST) if M1 arrives early.

After receiving the generated plans and strategies from the Plan, the ExecutionModule uses
the analysisMonitor to select each mission based on specific states and data. These criteria may
include temporal constraints, resource availability, and the impact of MAPE-K loop on other running
missions within the SoS environment. To handle the passage of time, we define the tick rule. This
rule advances the system’s configuration by a fixed time interval (1 in this case), as long as the elapsed
time is within the system’s maximum time limit (mte). The delta operation models the effect of time
elapse on a mission’s configuration. It updates the loClock attribute of the mission with the elapsed
time. The mte operation determines the maximum time limit of the system based on the individual
missions and timers. Additionally, the Monitor converts the Plan into a corresponding sequence of
rewriting terms. This conversion facilitates the execution of the rules of both TIME-BASED-EXEC
and RESOURCE-BASED-EXEC in the SoS environment. The rewriting rules define the actions to
be performed based on the state of its CSs.

1 crl [tick] : {C:Configuration} => {delta(C:Configuration, R)} in time R if R <=

152

VII.5. Conclusion

mte(C:Configuration) [nonexec] .

2 op delta : Configuration Time -> Configuration [frozen (1)] .

3 eq delta(none, R) = none .

4 eq delta(NeC:NEConfiguration NeC’:NEConfiguration, R) =

5 delta(NeC:NEConfiguration, R) delta(NeC’:NEConfiguration, R).

6 op mte : Configuration -> TimeInf [frozen (1)] .

7 eq mte(none) = INF .

8 eq mte(NeC:NEConfiguration NeC’:NEConfiguration) =

9

VII.5 Conclusion

In this chapter, we have described how the SoS can autonomously decide on the execution path
of workflows and the allocation of resources, considering both temporal and resource constraints.
This ensures that missions are executed in alignment with strategic goals, even in the face of un-
predictability and changing operational conditions. To this end, we have presented a comprehensive
approach for formalizing management strategies within SoSs, we have emphasized the management
of emergent behaviors, mission execution, resource management, etc. Formally, we have used the
Maude Strategy Language to define operational semantics that enable the strategic management of
SoS workflows. This is done by exploring the functional chains of SoSs, where both desired and
undesired behaviors emerge due to the dynamic interactions between CSs. On the other hand, we
have adopted the MAPE-K loop to introduce a real-time regulating mechanism that continually
monitors, analyzes, plans, and executes management strategies, maintaining the SoS’s adaptability
and resilience. The MAPE-K components are integrated into the operational framework, facilitat-
ing the self-management of SoSs by autonomously responding to real-time constraints and executing
necessary adjustments.

153

Chapter VIII

Simulation and Formal Verification

Contents
VIII.1 Introduction . 154

VIII.2 Case study . 155

VIII.3 Managing FESoS through a MAPE-K loop . 156

VIII.3.1 Knowledge: Foundation . 158

VIII.3.2 Monitor: Processing . 158

VIII.3.3 Analysis: Workflow Analysis . 159

VIII.3.4 Plan: Strategic Control and Management 159

VIII.3.5 Execution: Rewriting Management System 160

VIII.4 Design time: workflow and initial configuration 160

VIII.5 Simulation and execution . 163

VIII.5.1 Resource Allocation Control . 165

VIII.5.2 Managing FESoS Workflow with strategies 167

VIII.5.3 Executing Functional Chains . 169

VIII.6 Formal verification . 171

VIII.6.1 Maude-based verification for management strategies 172

VIII.6.2 Model-checking SoSs proprieties . 174

VIII.7 Conclusion . 176

VIII.1 Introduction

In this chapter, we cover the practical application of the proposed approaches through runtime
simulation, analysis, and verification. We show the execution results through the implementation of

154

VIII.2. Case study

autonomic control and management within the French Emergency System of Systems (FESoS). We
start by examining the case study that demonstrates the application of a MAPE-K loop—consisting
of Monitoring, Analysis, Planning, Execution, and Knowledge phases—for managing emergency sce-
narios effectively. i.e. we explore the design time, where workflows and initial configurations are
mapped out to support the system’s design phase. This is crucial for establishing an initial state from
which the system’s performance can be evaluated. Next, we introduce various simulation scenar-
ios and analyses to simulate the system’s centralized control behaviors and management strategies,
ensuring they align with operational requirements, and make sure that the executed behaviors and
actions are well-defined, promote the desirable behavior, and avoid the unwanted one at runtime
stage. Finally, we use the formal verification techniques provided by Maude’s model-checking ca-
pabilities to verify that the system meets its strategic objectives and operates as expected under
various emergency scenarios, this involves checking invariants and using the search command in
Maude to explore possible system behaviors and ensure compliance with defined properties.

VIII.2 Case study

The case study explores a French Emergency System of Systems (FESoS) aims at protecting
people and property. The FESoS consists of several interconnected CSs, and Missions. The Moni-
toringSoS, SAMU1, Hospital CS, Civil Security, SDIS352, Search and Rescue Teams (SRT), and Fire
and Rescue Services (FRS) are all part of the FESoS. In a possible situation, a major fire breaks out
in a densely populated area, posing a significant threat to the safety of people and property. The
FESoS is activated to respond to this emergency. The MonitoringSoS deploys Unmanned Aerial
Vehicles (UAVs) for Aerial Surveillance to gather RT-information about the fire’s spread, intensity,
and potential hazards. The Wireless Sensor Net CS (WSNCS) conducts Environmental Monitor-
ing using a network of sensors to assess air quality, temperature, and other environmental factors.
The CODIS3 controller oversees operations, analyzes data, coordinates resources, and prioritizes the
protection of people and property. The SAMU is tasked with two missions: Patient Evacuation
and Patient Transportation. They rapidly evacuate injured individuals from the affected area and
provide immediate medical attention while transporting them to appropriate medical facilities. The
HospitalCS activates its Emergency Reception and Triage to receive and assess the incoming pa-
tients, categorizing them based on the severity of their injuries. The Medical Treatment provides
necessary medical interventions, and Continuous Patient Monitoring ensures ongoing observation
and care. Civil Security takes charge of Emergency Response Coordination, managing communica-
tion and coordination between all involved entities. They ensure smooth information flow, resource
sharing, and cooperation among different units and organizations. SDIS35 and SDIS56, the fire-
fighting and emergency response organizations, implement their respective missions to contain and
extinguish the fire. They deploy fire trucks, equipment, and skilled firefighters to battle the flames

1Service d’Aide Médicale Urgente
2Service Départemental d’Incendie et de Secours
3Centre Opérationnel Départemental d’Incendie et de Secours

155

Chapter VIII. Simulation and Formal Verification

and mitigate risks. SRT conduct Rapid Assessment and Search Operations to locate and rescue
individuals trapped or stranded due to the fire. They prioritize extraction and evacuation of sur-
vivors and provide initial medical triage and treatment on-site. FRS engage in Fire Suppression and
Control, ensuring the fire does not spread further. They also handle Hazardous Material Handling
and Containment and Structural Assessment and Collapse Rescue if needed.

The effective coordination of response efforts within the FESoS is a significant challenge that
necessitates the presence of centralized controller and strategic workflow management. The RAC in
Chapter.VI is vital for dynamically allocating resources like personnel and equipment, using real-
time data to adaptively respond to evolving situations, this controller must possess a centralized
management purpose and exercise ownership over all resources. ChapterVII’s emphasis on the
strategic functional chain further enhances this coordination by ensuring that missions such as
civilian evacuation, fire suppression, and medical response are prioritized and sequenced efficiently,
maximizing their collective impact. The integration of resource allocation control with strategic
mission sequencing allows FESoS to address the complexities of coordinating multiple CSs and
units.

This comprehensive approach is key to successfully managing the multifaceted demands of emer-
gency situations, ensuring that FESoS operates as a cohesive, efficient, and effective unit in protect-
ing lives and property during crises. In this context, we propose the implementation of a MAPE-K
controller, which assumes the responsibility of controlling resources and prioritizing missions within
the FESoS. Functioning as the centralized authority. Furthermore, in the event of a major fire
outbreak, where time assumes critical importance in mitigating risks to both individuals and assets,
the RT-management assumes a vital role in overseeing the temporal aspects of missions. Through
the coordination and execution of missions within designated timeframes, the it ensures effective
emergency response, minimizes potential delays, and maximizes the utilization of pooled resources.

VIII.3 Managing FESoS through a MAPE-K loop

In this section, we show how the FESoS architecture can be defined by a collection of MAPE-K
control loops, specified using the modules specified previously in the preceding chapters. This method
employs a MAPE-K feedback loop, combining the Resource Allocation Controller (RAC)/Management
Strategies, along with Maude’s formal analysis and verification capabilities. The MAPE-K loop fol-
lows a systematic iteration between the design phase and the runtime execution. This iterative
process focuses primarily on the effective management of temporal aspects and the optimization of
the FESoS behavior.

At the design stage, two pathways are offered:

- Concrete instantiating of the UML profile from Chapter.V, tailored to the specificities being
addressed. This involves detailing the FESoS architecture, interactions, and constraints.

- Direct application of the Meta-Models introduced in previous chapters.IV, which form the
conceptual foundation and support the FESoS’ key traits. The concrete model then becomes

156

VIII.3. Managing FESoS through a MAPE-K loop

Figure VIII.1: The MAPE-K architecture for SoS Control and Management.

an instance of the system in practice. Designers can employ any capable modeling tool to
implement these meta-models e.g. Capella/Arcadia, SysML, or BPMN, ensuring the tool can
adequately encompass the depth of the meta-models and their conceptual framework.

The FESoS runtime phase is captured and handled using the different modules of Maude, the
latter are managed using the phases of the MAPE-K loop in order to define a loop for each reg-
ulating concern. All together, they also provide a rich set of formal analysis methods and tools
for reasoning about the specifications of the adopted Meta-Models. These methods include model
checking, theorem proving, and reachability analysis. By applying these techniques, we can verify
additional properties of the FESoS, detect potential issues, voids undesired behaviors and selects
optimal mission paths, and ensure the correctness and effectiveness of our model representations.

Figure.VIII.1 summarizes the main components of our formal modules for the specification and
execution of the FESoS. These modules work together to provide an executable approach for the
specification, analysis, planning, and execution of the MAPE-K control loop within the FESoS. They
enable the modeling of initial configurations, monitoring of changes, analysis of resource availability
and mission execution times, planning of operational functions, and the execution of control actions.

On the other hand, the MAPE-K loop execution structure typically involves:

- Concurrent Mission Management: This includes the ability to initiate, run, and monitor mul-
tiple missions of FEsoS’ different CSs at the same time.

157

Chapter VIII. Simulation and Formal Verification

- Synchronization Mechanisms: These are crucial for ensuring missions that are dependent on
each other’s outputs are coordinated effectively. This could involve S2S, S2F, F2S and F2F,
as previously mentioned.

- Real-Time Monitoring and Analysis: Continuous monitoring of all parallel missions is essential
for ensuring everything is running as expected and for making real-time adjustments as needed.

- Knowledge-Based Decision-Making: The Knowledge component of MAPE-K is critical in par-
allel execution, as it provides the necessary information and insights for effective decision-
making regarding task coordination, resource management, and adaptation strategies.

VIII.3.1 Knowledge: Foundation

In the context of FESoS, the Knowledge phase employs the temporal OO module DATA-TYPES,
which is pivotal for modeling the essential data types that represent the system’s operational state,
capabilities, and ongoing activities. This includes the CSIdSet data type, which is a list of Object
Identifiers (Oid) for storing missions associated with each CS. This data type keeps track of mission
assignments and statuses across the different CSs within FESoS.

Furthermore, the Knowledge phase introduces the Capacity and ResourcePool data types, repre-
senting the available resources within FESoS. These data types detail the resources’ types, states,
quantities, and other attributes, allowing for the aggregation and management of resources criti-
cal for adaptive response to the crisis. In the emergency scenario of a major fire outbreak, this
phase serves several essential functions, i.e it supports the dynamic allocation and management of
resources, such as personnel, UAVs for aerial surveillance, and firefighting equipment, ensuring ef-
ficient deployment where most needed. By utilizing the CSIdSet, the system can track all ongoing
missions and their associated CSs, and this is what will allow prioritizing missions, coordinate efforts
between CSs like SAMU, Hospital CS, and SDIS35, and adjust strategies as the situation evolves.

The temporal attributes captured within the Knowledge base, including mission duration, start
and end times, and delays, are critical for executing missions within designated timeframes, especially
for time-sensitive operations like patient evacuation and emergency triage at hospitals. This phase
also consolidates data on the fire’s intensity, spread, and environmental conditions from CSs like
MonitoringSoS and WSNCS, enabling FESoS to adapt its strategies in real-time, including re-
prioritizing missions, reallocating resources, and deploying additional support where necessary.

VIII.3.2 Monitor: Processing

This phase continuously observes and detects changes within the FESoS environment, a major
fire outbreak, for instance. It assesses the intensity and spread of the fire, the availability and state
of resources, and the progress of ongoing missions. This phase of the MAPE-K loop leverages opera-
tional semantics defined in the SoS-CLASSES-MOD and DATA-TYPES modules. More specifically,
it utilizes the equations provided by these two modules to evaluate, asses, and initiate the state of
missions, their temporal constraints, and associated resources for initial configuration.

158

VIII.3. Managing FESoS through a MAPE-K loop

As changes are detected, whether in the form of evolving fire dynamics, resource availability,
or mission requirements, the Monitoring phase promptly triggers adjustments across the FESoS
components and CSs. This ensures that the UAVs for aerial surveillance are deployed efficiently,
the Environmental Monitoring by WSNCS is accurate and timely, and the coordination among CSs
like SAMU, Hospital CS, and SDIS35 is seamless and effective. This phase is also responsible for
the initiation of FESoS and the provision of its initial configuration, setting the stage for a response
strategy that aligns with the current situation and requirements.

VIII.3.3 Analysis: Workflow Analysis

This phase leverages the operational semantics introduced by the WORKFLOW-DATA module,
integrating them within the temporal OO module and AnalysesModule. This enhancement with
necessary equations and time information allows for a detailed assessment of resource accessibility
against the backdrop of specified constraints. At the same time, it relies on two sources of infor-
mation : the runtime states of ongoing missions, including resource consumption details sourced
from SoS-CLASSES-MOD, DATA-TYPES, and WORKFLOW-DATA modules. AnalysesModule
utilizes states like arrived, accomplished, pending, and failed to specify mission states, coupled with
equations that compute mission state based on deadlines, execution duration, and delays. These
computational tools (calcState, calcQuitTime, calcArrivalTime, calcRemainedResource, and cal-
cLocalResource) are vital for navigating the temporal and resource-related complexities of mission
execution within FESoS. They ensure that every mission is analyzed within its environmental con-
text, including any shifts in mission requirements, to reply to the needs of runtime adjustments
ahead of the Plan phase.

VIII.3.4 Plan: Strategic Control and Management

By leveraging the PlanModule, which incorporates strategies from the FUNC-CHAIN-STRAT
module, FESoS is equipped to strategically select and prioritize missions based on the detailed
analysis provided by the AnalyseModule and insights from the WORKFLOW-DATA modules.

The process begins as the PlanModule assesses the current situation, utilizing the dynamic in-
formation retrieved from the Knowledge phase to understand the evolving emergency. The exe-
cution strategy generated by the PlanModule, guided by the FC-STRATEGY-MOD, meticulously
sequences the series of missions to be executed. This sequencing takes into account the SoS require-
ments and the unique demands of the current situation, factoring in the Worst Case Execution Time
(WCET), potential delays, and mission precedence. For instance, it may prioritize UAV deployment
for aerial surveillance to provide real-time data on the fire’s spread, coordinate the evacuation of in-
jured individuals by SAMU, and ensure the efficient distribution of medical and firefighting resources.
Moreover, using RT-messages and operations, the phase dynamically adjusts mission parameters and
resource allocations in real-time. This includes initiating missions like Environmental Monitoring by
WSNCS for accurate and timely assessment of air quality and other environmental factors affecting
the emergency response. It also ensures seamless coordination among CSs like SAMU, Hospital CS,

159

Chapter VIII. Simulation and Formal Verification

and SDIS35, adapting their roles and responsibilities as the situation evolves.

VIII.3.5 Execution: Rewriting Management System

Upon receiving execution strategies from the PlanModule, which are devised based on the base of
FUNC-CHAIN-STRAT, AnalyseModule, and WORKFLOW-DATA, the EXECUTEModule trans-
forms the strategic plans into real-world actions. Therefore, it addresses temporal issues and or-
chestrates the execution of the functional chain, applying corrective actions such as start-2-start
and start-2-finish among others, to ensure temporal alignment of missions according to the evolving
conditions of the emergency. For instance, in scenarios where a mission arrives earlier than antic-
ipated, the EXECUTEModule utilizes the start-2-start mechanism to adjust subsequent missions,
ensuring they commence with the early-starting mission. This coordination is crucial for optimizing
the deployment and effectiveness of resources and missions, such as the swift deployment of UAVs
for aerial surveillance or the timely initiation of SAMU’s patient evacuation missions. Similarly, the
module employs start-2-finish and finish-2-finish rules to ensure seamless transition and completion
of missions, aligning their execution with the real-time emergency situation demands. This involves
adjusting the start or finish times of missions in response to early arrivals or delays, ensuring that
all actions are synchronized to address the emergency efficiently. The EXECUTEModule’s strategic
application of rewriting rules, informed by RT-Maude’s temporal control mechanisms, demonstrates
FESoS’s capability to adapt dynamically to the challenges presented by the emergency. By leverag-
ing the detailed planning and analysis phases.

VIII.4 Design time: workflow and initial configuration

The proposed approach follows a systematic iteration between the design phase and the runtime
execution (Fig. VIII.1), emphasizing the collaboration with stakeholders to incorporate their needs
and feedback into the design process, and leveraging the power of the MAPE-K control loop and
the formal analysis and verification methods of Maude. This iterative process ensures the effective
management of temporal aspects and the optimization of desired behavior in SoSs environments.
During the design phase, the focus is on employing the Meta-Model and instantiating it into a
concrete model that represents the specific SoS under consideration. This phase involves defining
the structure, relationships, and constraints of the SoS, etc. representing the concrete model or the
initial system configuration.

To show the reusability of the proposed Meta-Models, we adopt other Methodology/tool ARCA-
DIA/Capella to create a visual representation of the initial concrete model of FESoS, showcasing
interactions and dependencies among the CSs, Missions, and the MAPE-K Controller. The de-
sign phase, provide a comprehensive approach to analyze CSs requirements, operational needs, and
stakeholder expectations. The concrete model establishes a Functional Architecture that captures
the structure, behavior, and interactions of the FESoS’ CSs. We ensure that the logical architecture
design aligns with emergency response systems’ standards, best practices, and regulatory require-

160

VIII.4. Design time: workflow and initial configuration

ments, considering the capabilities and limitations of missions, their resources, and the coordination
mechanisms required for effective collaboration.

To design the different entities and units in FESoS, we employ the Logical Architecture model
as a graphical model to present collections of interlinked missions that produce specific missions
or capabilities. Moreover, this model focuses on the core features of the FESoS, particularly the
constructs of WFs and their functional chains. The model provides graphical representations for
CSs, missions, exchanges, and ports, all of which are interconnected through functional chains. Each
mission in the model represents an atomic function, with incoming and outgoing flows denoting its
dependencies and outputs. Events in the system are represented by function exchanging among
different missions, which also capture the execution order between two missions, enforcing temporal
constraints and sequencing within the model (Figure.VIII.2).

On the other hand, functional chains play a crucial role in the logical architecture model of the
proposed FESoS. They provide a structured and systematic process to represent the sequence of
missions and interactions necessary to accomplish the global of FESoS. They enhance the clarity
and the decomposition ensuring that the system adequately supports the desired functionalities. In
addition, functional chains with parallel paths allow for the representation of multiple alternative
paths or simultaneous missions within the FESoS. For example, during an emergency response,
parallel paths can be used to illustrate different response strategies or the execution of concurrent
tasks. This flexibility enables the system to adapt to dynamic situations and optimize resource uti-
lization. Furthermore, they provide parallel paths helping to identify the interdependencies between
CSs, facilitating a better understanding of how different CSs rely on each other. By specifying the
sequence and timing of operations, functional chains enable the coordination and synchronization of
actions, ensuring that the FESoS functions as a cohesive system. The inclusion of parallel paths in
functional chains also supports simultaneous execution of critical missions within. This enables effi-
cient coordination and response during emergency situations, as multiple missions can be performed
concurrently. In the event of disruptions or failures in one path, alternative paths can be activated
to maintain the continuity of critical operations. This redundancy enhances the system’s ability to
withstand unexpected events and minimize disruptions in emergency response efforts.

To further strengthen functional chains within the Logical Architecture model of the FESoS, we
propose the inclusion of control nodes (OR, AND, IT) which can represent the different sequences
of missions and temporal dependency links establishing the order of execution between the func-
tions, along with the addition of parameters to nodes and links. By introducing parameters to the
nodes and links, the functional chain description becomes more detailed and quantitative, captur-
ing important information such as durations, starting times, deadlines, WCET, resource types, and
time usage amounts. The parameters represent the quantitative information associated with each
mission, enabling a precise analysis of resource utilization, time constraints, and dependencies. For
example, a parameter can represent the duration of a specific mission, indicating how long it takes
to complete. Another parameter may denote the starting time or deadline for a mission, defining
when it should begin or be completed. Resource parameters identify the types of resources required
by a mission, such as personnel, equipment, or supplies, while the associated time usage amount

161

Chapter VIII. Simulation and Formal Verification

F
igu

re
V

III.2:
O

verview
of

the
LogicalA

rchitecture
m

odelof
F
E
SoS.

162

VIII.5. Simulation and execution

parameter indicates the quantity or duration of resource utilization.
By incorporating these parameter values into the functional chains, the logical architecture model

gains a higher level of precision and specificity. Designers can now explore and evaluate different
design alternatives by varying the parameter values and adjusting the temporal dependency links.
This allows for a thorough analysis of the system’s behavior and performance, considering factors
such as resource allocation, time constraints, and dependencies. To overcome the space limitations of
this paper, we have carefully selected a subset of key representative Figure.VIII.3 from the Functional
Chain Description P1 with parameter values. Although not all parameters values can be included
due to the page limit, the figure illustrates the overall concepts and functionality of the Functional
Chain Description while effectively showcasing the impact of the parameter values on the CSs and
their Roles, missions and quantitative attributes.

Despite the fact of that this design offers a thorough analysis that enables the different design
alternatives through different alternative functional chains, there remains a gap in their full adop-
tion during the runtime phase where the quantitative priorities of the SoS need to be explored
analyzed and assessed, and this what will ensure the selected design option meets resource and time
constraints. This design stand short of helping in a further step to identify issues and unwanted
behavior from overlapping or conflicting mission plans and ensures coordinated and strategic exe-
cution. Moreover, even the integration of temporal interdependencies into the logical architecture
model enhances the understanding of the SoSs’ quantitative behavior, would not allow for the design
of an effective emergency response SoS that optimizes resource allocation, meets time constraints,
and ensures the smooth execution of missions within the FESoS.

VIII.5 Simulation and execution

Once the design phase is completed, the runtime phase begins. The latter is guided by the MAPE-
K control loop, specified using Maude and its extensions Maude Strategy and RT-Maude modules.
At this stage, the Monitor observes the SoS’s state, while the Analyze component analyzes the data
collected. Execution and Simulation in Maude system can be provided due to its high-performance
rewrite engine. Maude provides a range of commands for system modules enabling exploration of the
specified behavior from an initial configuration of the system, such as the rewrite, and frewrite, etc.
For simplicity, the next section is dedicated to particularly simulating the design of the proposed
behavior of the RAC and Strategic Manager using a MAPE-K loop.

In the context of the FESoS, we exhibit the operational capabilities of the RAC by applying
a sequence of rewriting rules within the different modules introduced in previous chapters. The
initial configuration state, initState, is referenced in Figure. VIII.4, encapsulates a suite of missions
that have been identified during the Design stage. These missions, depicted as ’on-site evaluation’,
’medical support’, ’technical support’, ’reception’, and ’triage’, are systematically aligned with their
respective CSs such as ’SAMU’, ’SRT’, and ’CivilSecurity’. Corresponding resources such as ’Ambu-
lance’, ’MedicalEquipment’, ’HealthcareFacilities’, and ’TechnicalPersonnel’ are also incorporated.
This ensemble is anchored by the FESoSResPool, representing the accessible resources within the

163

Chapter VIII. Simulation and Formal Verification

F
igu

re
V

III.3:
O

verview
of

the
LogicalA

rchitecture
m

odelof
F
E
SoS.

164

VIII.5. Simulation and execution

FESoS infrastructure. This defined initial state serves as the foundation from which the FESoS can
dynamically orchestrate resource management and execute missions, thereby enabling the activation
of the Monitoring phase within the MAPE-K feedback loop.

Figure VIII.4: FESoS initial configuration.

VIII.5.1 Resource Allocation Control

In this section, we explore a series of scenarios to demonstrate the RAC applicability as a central-
ized controller addressing resource allocation. These simulations, ranging from UAV deployments
for aerial surveillance to allocations of ambulances and fire engines, showcase the system’s capacity
to handle diverse and challenging emergency response situations effectively.

- Scenario 1: Deployment of UAVs for Aerial Surveillance:

In this scenario, the FESoS aims to deploy UAVs for real-time surveillance of a significant
urban fire. The UAVs are global shareable resources, initially in an ’Available’ state, ready
for deployment. The Aerial_Surveillance mission awaits resource allocation, indicated by its
’waitConsResp’ state. Upon executing the [allocate-global-shareable-resource] Maude rule, the
UAVs transition to a ’InUse’ state, actively participating in the mission. Consequently, the
Aerial_Surveillance mission moves to an ’Executing’ state, commencing comprehensive aerial
monitoring.

1

2 crl [allocate-global-shareable-resource] :

3 < RAC : ResourceAllocationManager | mission : Aerial_Surveillance, resource

: UAVs, racState : trigger >

4 < UAVs : Resource | resSt : Available, resP : globalResProp(shareable) >

5 < Aerial_Surveillance : Mission | state : waitConsResp >

6 =>

165

Chapter VIII. Simulation and Formal Verification

7 < RAC : ResourceAllocationManager | mission : Aerial_Surveillance, resource

: UAVs, racState : consReqAccepted >

8 < UAVs : Resource | resSt : InUse>

9 < Aerial_Surveillance : Mission | state : executing >

10 if PRes(isAvailable(UAVs)) and PRes(isGlobal(UAVs)) and PRes(isShareable(

UAVs)).

- Scenario 2: Allocating Ambulances for Medical Evacuation

The FESoS faces the urgent need to allocate ambulances for medical evacuation amid the
urban fire. Ambulances, as local non-shareable resources, are in an ’available’ state initially.
The Medical_Evac mission is in a ’waitConsResp’ state, signaling the need for resource allo-
cation. The application of the [allocate-local-nonshareable-resource] Maude rule allows for the
ambulance’s state to transition to ’locked’, indicating its commitment to the Medical_Evac
mission. Simultaneously, the mission’s state changes to ’executing’, reflecting the initiation of
medical evacuation operations.

1 crl [allocate-local-nonshareable-resource] :

2 < RAC : ResourceAllocationManager | mission : Medical_Evac, resource :

Ambulance, racState : trigger >

3 < Medical_Evac : Mission | missionState : waitConsResp, resType : localRes >

4 < Ambulance : Resource | resState : available, resP : localResProp(

limitedButRenewable), resType : localRes >

5 =>

6 < RAC : ResourceAllocationManager | mission : Medical_Evac, resource :

Ambulance, racState : consReqAccepted >

7 < Medical_Evac : Mission | missionState : executing >

8 < Ambulance : Resource | resState : locked >

9 if PRes(isAvailable(Ambulance)) and PRes(isNonShareable(Ambulance)) and not

PRes(isLocked(Ambulance)).

- Scenario 3: Locking a Limited Local Resource in FESoS for Firefighting

In this scenario, the FESoS faces the mission of locking a limited local resource, essential for
combating an urban fire. This resource, for instance, a specialized fire engine, is initially in an
’available’ state, indicating it is ready for deployment. The Fire_Suppression mission, reliant
on this resource, is in a ’waitConsResp’ state, waiting for resource allocation. The implemen-
tation of a Maude rule [lock-limited-local-resource] is required to transition the resource’s state
to ’locked’, signifying its exclusive allocation to the Fire_Suppression mission. Concurrently,
the mission’s state changes to ’executing’, indicating the commencement of active fire suppres-
sion efforts. This scenario highlights FESoS’s ability to promptly allocate and lock vital local
resources, ensuring their dedicated use in critical firefighting operations.

166

VIII.5. Simulation and execution

1 crl [lock-limited-local-resource] :

2 < RAC : ResourceAllocationManager | mission : Fire_Suppression, resource :

FireEngine, racState : trigger >

3 < FireEngine : Resource | resState : available, resP : localResProp(limited)

, resType : localRes >

4 < Fire_Suppression : Mission | missionState : waitConsResp >

5 =>

6 < RAC : ResourceAllocationManager | mission : Fire_Suppression, resource :

FireEngine, racState : consReqAccepted >

7 < FireEngine : Resource | resState : locked >

8 < Fire_Suppression : Mission | missionState : executing >

9 if PRes(isAvailable(FireEngine)) and PRes(isLimited(FireEngine)) and not

PRes(isLocked(FireEngine)).

- Scenario 4: Request for Locked FireEngine by Urban_Rescue Mission in FESoS

In the scenario where the Urban_Rescue mission requests the FireEngine, which is currently
engaged in the Fire_Suppression mission, the system faces a resource contention issue. Upon
the Urban_Rescue mission’s request, the FESoS handles this by changing the mission’s state to
’rnwAsk’, indicating a request for renewed allocation of the FireEngine. The RAC now has the
task of addressing this renewed request. It can choose to wait until the FireEngine completes
its current task with the Fire_Suppression mission before reallocating it to Urban_Rescue, or
it can seek an alternative resource to fulfill the Urban_Rescue mission’s requirements.

1 crl [request-locked-resource] :

2 < RAC : ResourceAllocationManager | mission : Urban_Rescue, resource :

FireEngine, racState : trigger >

3 < FireEngine : Resource | resState : locked >

4 < Urban_Rescue : Mission | missionState : waitConsResp >

5 =>

6 < RAC : ResourceAllocationManager | mission : Urban_Rescue, resource :

FireEngine, racState : resourceWait >

7 < Urban_Rescue : Mission | missionState : rnwAsk >

8 if PRes(isLocked(FireEngine)) and PRes(currentMission(FireEngine) !=

Urban_Rescue).

VIII.5.2 Managing FESoS Workflow with strategies

As depicted in Figure. VIII.2, two functional chains are presented, demonstrating their potential
in achieving global mission objectives. These missions within the functional chains are designated
as M1, M2, M3,...,Mn for simplicity and easy reference. They serve as key elements within these
chains. The Maude Strategy Language is employed to execute these mission specifications, providing

167

Chapter VIII. Simulation and Formal Verification

a practical simulation and evaluation framework.

The strategy missionBasedFCStrat is central to this simulation. It is specifically designed to
assess the viability of accomplishing a critical global mission, identified as M34, starting from the
predefined initial state, i.e. all the missions in the configuration module. This strategic assessment
utilizes a combination of rules and conditions from the MISSION-BASED-EXE module. These
encompass strategies like SequentialMissionOrdering and ConcurrentMissionExecution, as well as
prioritization tactics such as PrioritizeEarliestStart and PrioritizeEarliestCompletion.

The strategy’s core functionality revolves around effectively categorizing missions into two distinct
groups: ’PrimaryM’ and ’AlternativeM’ focusing on temporal factors, which distinguishes it from
strategies that prioritize resource allocation. This temporal emphasis is crucial in scenarios where
the timing of mission execution is critical. This is done by using the srew command, which allows
for a systematic exploration of different state transitions under the strategy.

Maude> srew initial using missionBasedFCStrat.

Solution 1

rewrites: 124

result missionBasedFCStrat: AlternativeM M4 M5 M11 M13...M29 |

PrimaryM M0 M1 M2 M3 M6 M7 M8.....M30 M33 M34

No more solutions.

rewrites: 124

- PrimaryM Missions: These missions are selected to form the main functional chain, crucial
for accomplishing the global mission M34. They are prioritized based on various factors like
urgency, their start, their completion times and their critical role in achieving the global
objective. The missions M0 through M30, M33, and M34, by being in ’PrimaryM’, are given
precedence in execution, signifying their importance in the successful completion of the global
mission.

- AlternativeM Missions: Missions categorized under ’AlternativeM’, such as M4, M5, M11,
and M13 through M29, serve a supportive role. They are auxiliary to the primary missions,
providing necessary support and resources to ensure the seamless execution of the primary
functional chain.

The srewrite command in the Maude system, applied to this scenario, simulates the strategic
allocation and execution of missions, executing 124 rewrite steps. The result of this simulation
offers an insightful glimpse into the effective planning and management of missions, underscoring
the strategic prowess of the missionBasedFCStrat in prioritizing complex operational missions.

168

VIII.5. Simulation and execution

VIII.5.3 Executing Functional Chains

Simulation and analysis in RT-Maude system can be provided due to its high-performance rewrite
engine. Maude provides a range of commands for system modules enabling exploration of the
specified behavior from an initial configuration of the system such as the rewrite, and tfrewrite,
etc. In this section, we present the results of simulation experiments conducted to evaluate the
performance of the MAPE-K loop within the FESoS and assess the impact of integrating such a
centralized controller into the FESoS. These experiments were performed using the developed RT-
Maude modules, which provides an executable specification of the FESoS. The objective of the
evaluation is to gain insights into the effectiveness and efficiency of the controller in managing the
behavior and to investigate the benefits of incorporating the centralized control architecture. By
conducting these experiments, we aim to assess the system’s performance under various scenarios
and analyze the impact of different control strategies on mission execution, resource utilization, and
overall system behavior.

This section discusses the evaluation of corrective actions and self-regulating Mechanisms in
FESoS case study. The aim is to understand the runtime evolution and verify if the execution
meets properties identified during the design stage of the FESoS. Therefore, A possible scenario
showcases the execution of three interlinked missions in the FESoS, specifically focusing on the
missions of on-siteTreatment, transporting and medicalSupport (see Figure. VIII.3). These missions
are interdependent and involve sequential and parallel execution, with certain delays, dependencies
and specific resources (e.g. Ambulance, MedicalEquipments, and MedicalPersonnel, respectively).
The on-siteTreatment mission is designed to finish before the transporting and medicalSupport
missions, with the latter two missions beginning simultaneously. During the design time phase,
the designers carefully define the initial values for the parameters of each mission in the functional
chain description, these parameters are represented by the red rectangles. For instance, mission
on-siteTreatment, has the following parameter values: duration: 90, arrivalTime: 50, delay: 20, and
raut (resource usage time): 10.

The designers’ inputs, while based on the available information and assumptions, do not fully
capture the dynamic nature of the FESoS and the potential runtime changes that can occur. e.g. even
though the on-siteTreatment mission was accomplished on time, without any delays, the subsequent
missions (transporting and medicalSupport) still have to wait for the predefined delay 20 units see
Figure. VIII.5 and Figure. VIII.4 . This means that these two missions will essentially waste 20
units of time and start executing at (160) which can ultimately impact their ability to be completed
within the expected time frame (300 time unit for instance). This situation highlights a limitation
in the design phase, where the initial expectations and assumptions do not fully account for the
dynamic nature of the system and the potential runtime changes that may occur.

169

Chapter VIII. Simulation and Formal Verification

Figure VIII.5: Time-lapse during design of the three missions.

The gap between desired behavior and real-time environmental changes highlights a design flaw
that requires a dynamic mechanism for any runtime shifts is vital. Using the MAPE-K loop to
implement corrective actions to consistently Monitor unforeseen delays, Analyzing system operations
and Planning strategies. This allows for parameter and resource reallocations in future Execution
addressing issues identified during the design/runtime stage. These corrections ensure that the three
missions can be successfully accomplished within the specified time frame 290 units, Figure. VIII.6
and Figure VIII.7 runtime.

Figure VIII.6: Time-lapse during Runtime of the three missions.

We define an initial state initState in Figure. VIII.4, which consists of three mentioned missions
and requisite resources. Additionally, the FESoS also integrates a resource pool FESoSResPool,
which represents the available resources in the FESoS. In the runtime phase, the FESoS system can
make several corrections to the scenario. One such modification is if the on-siteTreatment mission
finishes without any delays, the system adjusts its delay from 20 units to 0 units. This adjustment
allows the mission to complete its execution earlier than expected. As a result of these changes,

170

VIII.6. Formal verification

the system manages to self-regulate its behavior. i.e. the on-siteTreatment mission finishes at 140,
consequently, both missions transporting and medicalSupport will start earlier than expected at 140
instead of 160. As a result, the former mission will finishe at 240 instead of 260, and the latter at
290 instead of 310.

The resource pool reflects the transfer of spare resources, reaching a capacity of 430 units. On
the other hand, the required resources for each mission were allocated accordingly: 10 units for on-
siteTreatment, 30 units for transporting, and 60 units for medicalSupport. This guarantees adequate
resource provision for each mission (see Figure. VIII.7). The remaining resources from the executed
missions are transferred to the resource pool. Specifically, 10 units from the transporting mission
and 30 units from the medicalSupport mission are added to the resource pool. This transfer of spare
resources increases the capacity of the resource pool to 460 units.

Figure VIII.7: Runtime execution and control of the three missions.

This successful execution demonstrates how the control enables a centralized control in the system,
ensuring that the missions are accomplished within the specified time constraints. By dynamically
adjusting parameters, allocating resources, and utilizing the resource pool, the system controls the
changes and optimizes mission execution.

VIII.6 Formal verification

Simulation, analysis and verification in Maude system can be provided due to its high-performance
rewrite engine. Maude provides a range of commands for system modules enabling exploration of
the specified behavior from an initial configuration of the system such as the rewrite, and tfrewrite,
search, tsearch etc. The rewrite and frewrite commands each explore just one possible behavior
(sequence of rewrites) of a system described by a set of rewrite rules tracing a single execution path
from an initial state. The search command in Maude is a versatile tool for exploring (following

171

Chapter VIII. Simulation and Formal Verification

a breadth-first strategy) the reachable state space in different ways of systems defined by rewrite
rules. This command is particularly powerful for systems where multiple outcomes or states can
result from a given initial condition, and it’s essential for analyzing systems with complex behaviors
or verifying properties across potentially vast numbers of states.

Unlike the other commands, search enables the examination of multiple pathways, thereby pro-
viding a more extensive analysis of possible system behaviors or verifying specific properties across
a broad set of states. This exploration can be finely tuned through optional arguments that limit
the number of solutions or the depth of the search, making it adaptable to the analysis of both finite
and infinite-state systems.

search [n, m] in <ModId> : <Term-1> <SearchArrow> <Term-2>

such that <Condition>.

At its core, the search command’s syntax incorporates several key components: an optional bound
on the number of desired solutions (n), an optional maximum depth for the search (m), the module
where the search is to be conducted (though this can be omitted if clear from the context), the
initial term or state from which the search begins, the target pattern or condition that the resultant
states must match, and the type of search indicated by a specific arrow notation. This notation
includes arrows for exactly one step (=>1), one or more steps (=>+), none or more steps (=>*),
and exclusively final states (=>!). Additionally, an optional condition can be specified, which must
be satisfied by the reached states, akin to conditions used in conditional rewrite rules.

In this section, we present the results of simulation and verification experiments conducted to eval-
uate the performance of the controller and the strategies executed within the FESoS. The objective
of the evaluation is to gain insights into the effectiveness and efficiency of managing the behavior.
This verification process allows for effective analysis of the SoS’ behavior and adherence to the
defined proprieties. The search command becomes particularly valuable when verifying complex
queries about the system’s behavior, such as whether a priority state is reachable under predefined
conditions or how various initial conditions can converge to identical or divergent outcomes. We
focus on Maude’s model-checking, especially checking invariants with the search command i.e. this
command undertakes a breadth-first search of system states, verifying important SoSs properties. If
certain outcomes, the inverse of the invariant, are unattainable and the invariant is deemed true. If
"search init =>* C:Configuration such that not I(C:Configuration)" yields no result, the invariant
is valid.

VIII.6.1 Maude-based verification for management strategies

In the context of the FESoS case study, the search command could be used to simulate different
scenarios of emergency responses and resource allocations, ensuring that the strategic objectives
are met and that the system behaves as expected in various potential emergency situations. In
Figure.VIII.2, FESoS case study illustrates two functional chains that have the potential to achieve
global mission objectives. These missions within the functional chains are designated as M1, M2,

172

VIII.6. Formal verification

M3,...,Mn for simplicity and easy reference. Using Maude Strategy Language, these specifications
can be immediately executed. The ’search’ command in Maude is particularly helpful, enabling
exploration of all potential functional chain rules and identifying terms that correspond with a set
target.

Maude> search initial =>* AlternativeM | PrimaryM M0 M1 M2 M3 M4 M5 M6 M7

M8..... M33 M34 .

Solution 1 (state 74)

states: 75 rewrites: 123

empty substitution

no more solutions.

states 80

The Maude search command is used to find out whether an initial system state can transition
into an expected configuration PrimaryM chain of missions are correctly represents the final goal.
The search process involved 123 rewrite steps across 75 possible states and confirmed a single valid
state that matches the expected mission sequence, with no variable substitutions required. For this,
The search process involved hundreds of rewrite steps across tens of possible states and confirmed a
valid path that match the expected mission sequence.

Despite the fact that the desired state can be reached, but there’s conflicts regarding whether it
adheres to the module’s rules. Therefore, the path the search command followed to arrive at the
goal position involves navigating through unwanted behavior states. This can be further validated
by employing the ’show path’ command and referencing the state number.

Maude> show path 40 .

states 0, WF: PrimaryM | AlternativeM M0 M1 M2 M3 M4 M5 M6 M7 M8..... M33 M34

===[rl ...[sequentialMissionOrdering] .] ===>

state 1, WF: PrimaryM M0 | AlternativeM M1 M2 M3 M4 M5 M6 M7 M8..... M33 M34

===[rl ...[sequentialMissionOrdering] .] ===>

state 2, WF: PrimaryM M0 M1 | AlternativeM M2 M3 M4 M5 M6 M7 M8..... M33 M34

===[rl ...[sequentialMissionOrdering] .] ===>

state 3, WF: PrimaryM M0 M1 M2 | AlternativeM M3 M4 M5 M6 M7 M8..... M33 M34

===[rl ...[sequentialMissionOrdering] .] ===>

state 4, WF: PrimaryM M0 M1 M2 M3 | AlternativeM M4 M5 M6 M7 M8..... M33 M34

===[rl ...[prioritizeEarliestStart] .] ===>

state 5, WF: PrimaryM M0 M1 M2 M3 M6 | AlternativeM M4 M5 M6 M7 M8..... M33 M34

....

173

Chapter VIII. Simulation and Formal Verification

===[rl ...[arrivalTimeViolation] .] ===>

state 40, WF: PrimaryM M0 M1 M2 M3 M6 M7 M8.....M30 | AlternativeM M4 M5 M6 M7

M8..... M33 M34

The provided result showing a sequence of states and transitions in a workflow (denoted as WF).
This workflow is structured around managing a set of missions (M0, M1, M2, etc.) using two
categories: PrimaryM and AlternativeM:

- Initial State (state 0): All missions (M0 through M34) are under AlternativeM. This represents
a starting point where all missions are initially in an alternative or secondary queue, awaiting
prioritization or scheduling.

- Transitions Using [sequentialMissionOrdering]: The sequence of transitions from state 1 to
state 4 appears to follow a rule labeled [sequentialMissionOrdering]. This suggests a process
where missions are moved one by one from AlternativeM to PrimaryM. For example, in state
1, M0 is moved to PrimaryM, and in state 2, M1 is also moved, and so on.

- Transition Using [prioritizeEarliestStart]: At state 4, the transition rule changes to [priori-
tizeEarliestStart], indicating a shift in the strategy for ordering missions. This means that
instead of simply moving missions sequentially, the next mission to be moved to PrimaryM
is selected based on the criterion of earliest start time. This is evident as M6 is moved to
PrimaryM in state 5, skipping M4 and M5.

- Final State (state 40): By state 40, a set of missions (M0, M1, M2, M3, M6, M7, M8, ..., M30)
are in PrimaryM, and the remaining ones (M4, M5, M31, M32, M33, M34) are in AlternativeM.
The transition to this state is marked by [arrivalTimeViolation], suggesting that this transition
might be due to a violation of expected arrival times of missions, impacting the scheduling or
prioritization.

VIII.6.2 Model-checking SoSs proprieties

In this subsection, we utilize the runtime changing conditions presented in Table.VII.1 to represent
temporal constraints and properties that characterize the requirements of Missions and Resources in
the SoS. These constraints and properties are verified using RT-Maude’s model-checking invariants
tool. We formalize these properties specifically for SoSs as state properties expressed through logical
formulas that combine the changing conditions with basic boolean operators. To verify these logical
properties, we utilize RT-Maude’s tsearch command, which operates on an initial state of the SoS.
After each SoS reconfiguration carried out by a self-control action using RT-Maude’s rewrite engine,
the tsearch command verifies the logical properties. The properties are expected to be satisfied, and
if an invariant property matches the current SoS configuration model, it is considered either true or
false based on the context. These properties can define various temporal constraints such as arrival
time, quit time, and worst-case execution time (WCET) on resource consumption, interactions

174

VIII.6. Formal verification

between CSs, availability of spare resources in the Resource Pool (ResPool), and more. In the
following, we provide examples of such properties that express specific application proprieties:

- Missions’ DeadlineViolation? Is a crucial for ensuring the timely execution of missions which
encompass various aspects, including the time interval between mission arrival and completion,
as well as specific requirements for mission start times. Consider a Transporting Mission in
our FESoS’ scenario, where the designer may require missions to start at specific times to
align with operational schedules, resource availability, or other external factors. Additionally,
the designer specifies that the mission should be completed within a duration that includes
the expected mission duration (duration) plus the WCET. This constraint ensures that the
mission is accomplished within a reasonable time frame, accounting for potential delays or
unforeseen circumstances. To further refine this constraint, the designer may establish an
upper limit on the total time allowed for the mission, known as the deadline. The deadline
can be expressed as (duration + delay WCET) < (duration + delay + WCET + deadline),
ensuring that the mission is completed within the specified timeframe. By incorporating these
constraints, missions begin precisely when desired, enabling coordination with other activities
or systems. This constraint provides control and synchronization within the FESoS, ensuring
that missions are executed according to the overall operational plan.

- Ressources’ MutualExcluion? SoS designer may impose constraints that govern the produc-
tion/consumption of spare resources associated. One essential constraint focuses on main-
taining confidentiality and preventing the co-consumption of the same resource by multiple
missions. For example, consider two Transporting missions executed by two distinct CSs
within the SoS. To enforce mutual exclusion for confidentiality, a number of conditions can be
defined to formalize the constraint. It ensures that these missions do not co-consume the same
resource i.e. specifically an ambulance. These conditions that allow missions to add Excess
Resources to the Resource Pool at any time. However, accessing these resources would be
subject to certain rules i.e. a mission can only gain access to a resource if it is not being used
by any other mission or CS. This ensures exclusive utilization of the resource and prevents
conflicts or data breaches. By enforcing this mutual exclusion constraint, the SoS designer
ensures that the confidentiality of resources, such as the ambulance, is preserved. Each Trans-
porting mission can operate independently, without interfering with the resource allocation of
other missions executing in different CSs.

These properties representing SoSs designers’ requirements are formalized in our RT-Maude us-
ing several invariants declared within the system module SoS Invariants. The different RT-Maude
commands used to run the model-checking of invariants using the FESoS model as an initial config-
uration are given bellow. This model is formally analyzed and verified with respect to the various
properties expressing the introduced formal requirements specific to SoSs architecture. For instance,
the timed tsearch command shows that no state isDeadlineViolated (transporting) with 240 <=t<
260 can be reached, yielding No solution Figure. VIII.8 meaning that the specified property “is-

175

Chapter VIII. Simulation and Formal Verification

DeadlineViolated” is not satisfied, the self-control is managing runtime delays, and the mission can
be executed within the defined deadline (without violations) as it was specified in the design phase.

(tsearch [1] {isDeadlineViolated(transporting)}

=>* {isDeadlineViolated(transporting)}

in time-interval between >= 240 and < 260 .)

(tsearch [1] {mutualExclusion(transportingSAMU, transportingCS, ambulance)}

=>* {mutualExclusion(transportingSAMU, transportingCS, ambulance)}

in time-interval between >= 240 and < 260 .)

Figure VIII.8: Search results of Transporting mission.

VIII.7 Conclusion

In this final chapter, we have conducted a comprehensive evaluation of the Resource Allocation
Centralized Controller within the French Emergency SoS. We begin by detailing a series of sim-
ulations to assess the RAC’s impact on mission execution and resource allocation during critical
scenarios. We then confirm the effectiveness of management strategies enabled by the RAC, demon-
strating their capability to regulate SoS behavior in line with the centralized control architecture.
We also analyze the integration of the MAPE-K loop, highlighting its role in adapting to dynamic
changes and emergencies. Finally, we discuss the application of formal verification methods through
the Maude system, which validate that the SoS meets its design and functional specifications, thereby
ensuring the reliability of the RAC’s strategies in emergency management contexts.

176

Chapter IX

General Conclusion

Contents
IX.1 Conclusion . 177

IX.2 Perspectives . 180

IX.1 Conclusion

Nowadays, Systems of Systems (SoSs) represent a new paradigm promising substantial scientific
value for industry and academia. They are characterized by their ability to offer new functionalities
that individual CSs cannot provide, resulting from their combination. CSs are operationally inde-
pendent, geographically distributed, developed with different technologies, and intended for different
platforms. Moreover, they are increasingly present in numerous applications (healthcare, transporta-
tion, military, avionics, etc.). However, the complexity of the dynamic nature of a SoS’s components
presents a significant challenge for modeling and analysis. This complexity means that the SoS de-
velopment process must follow a rigorous approach to meet the often critical requirements of these
systems. All existing design methods and formalisms, such as semi-formal methods like UML and
SysML, and formal methods like ADL and BRS, are specific to particular system examples and do
not suggest generic and effective solutions.

Moreover, the design of SoSs requires a significant level of reliability, which can only be achieved
through the use and combination of both methods, i.e., semi-formal methods provide an intuitive
and flexible framework for capturing architectural design and facilitating communication among
stakeholders, and formal methods offer rigorous and mathematically founded tools to ensure the
accuracy and reliability of the SoS, especially in critical areas. Consequently, to leverage both,
the manuscript aims to combine the strength of both formalisms to create robust, reusable, and
executable models to facilitate the design, simulation, and verification of complex SoS. Moreover, it

177

Chapter IX. General Conclusion

is necessary to evaluate design choices and reason about the runtime behaviors of these systems very
early during the development phases. This context is where our work is situated. Its main goal is
to contribute to the development of a new approach for the architectural design and formal analysis
of real-time SoSs, based on revised rewriting logic.

In the context of this work, the focus has been on proposing a methodology for SoS engineering,
which provides a comprehensive model for the design and analysis of SoS. This model facilitates
the development of a systematic multi-view architectural framework, addressing the complexity of
SoS and allowing the integration of heterogeneous CS. The formal method ensures the consistency
of quantitative properties and allows the description and modeling of the SoS’s structure and be-
haviors. Moreover, the methodology proposes mechanisms to guarantee the autonomous excitability
of behaviors and provides means to verify their accuracy. The integration of appropriate formal
methods to support the dynamic and concurrent aspects of these systems as well as their temporal
analysis proves very useful. It motivates the use of rewriting logic through its extended versions. In
the following sections, we outline our main contributions and some future perspectives that could
constitute the possible follow-ups for this work.

1. Classification of SoS modeling approaches: A state-of-the-art review concerning SoS
engineering and modeling was established to motivate the need to adopt a new integrated approach
based on MDA and formal method.

2. Definition of AF-SoS: We have introduced a Multi-viewpoints approach-based Architecture
Framework, that is associated with a set of SoSE development processes and a UML profile dedicated
to the SoSs that can facilitate and improve the design of SoSs’ architectures. The purpose of this
work is to present an AF that intends to foster the systematic development of SoSs’ architectures.
The key elements of this paper are:

- The proposal of an AF that encompasses the concepts proposed by “ISO/IEC/IEEE 42010:2011
Systems and Software Engineering-Architecture description” to manage the complexity of SoSs’
architectures following a multi-viewpoint approach.

- Improving the potential of the AF by integrating systematic processes of developing SoSs’
architectures which can have a positive impact on the overall quality of the framework. It
should be noted that to our knowledge, there is no available SoSE process in the literature to
support the design of IEEE 42010 standard.

- Defining an SoS-UML Profile to model a set of SoSs’ processes. The advantage of this profile
is to provide a large number of models to separately capture, describe and organize each of
the processes of different viewpoints.

- Demonstration of the work by designing an SoSs’ architecture of an “Aircraft Emergency
Response System-of-Systems” (AERSoS). It is therefore the aim of the paper to show that a
unified AF for SoSs’ architectures abstractions are needed.

3. Centralized Control-based formal approach: We have proposed a formal description of
a centralized Control which encompasses the variabilities and abstract assets within the proposed

178

IX.1. Conclusion

methodology, particularly focusing on the Resource Allocation Controller (RAC). The latter is de-
picted as central mean to managing the different variabilities of directed SoSs, ensuring resources
are allocated efficiently and missions are executed within their specific conditions. This is achieved
through the definition of the: (1) Static structures to describe the fundamental entities within the
SoS—Missions, Resources, Roles, and the RAC itself—each with specific quantitative properties.
And (2) Dynamic behavior where operational semantics are applied, encoding the behaviors into
Maude’s syntax through the use of predicates and actions that facilitate the transitions among states
of each entity.

4. Formalization of Management Strategies: We have proposed an approach for enhanc-
ing self-management in SoSs, emphasizing the integration of dynamic strategies to manage both
desired and undesired behaviors using Maude Strategy Language to offer a formal method to define
operational semantics. Here, He have addressed the complexities of workflow management, mis-
sion execution taking into consideration resource allocation and conflict resolution. The proposed
method aims to improve system functionality and resource efficiency in complex SoS environments,
showcasing its applicability through detailed cases and theoretical foundations.

5. MAPE-K loop feedback for adjustments: Leveraging the power of the MAPE-K control
loop and the formal analysis and verification methods of Maude, we have proposed an approach
which follows a systematic iteration between the design phase and the runtime execution. We have
illustrated how the modules specifying the various contributions can be organized into an autonomic
operational framework. Through the application of the MAPE-K loop phases, we have demonstrated
their integration and functionality within the context of the SoS. This approach not only showcases
the systematic organization of the specified modules but also allows for refinement and continuous
improvement of the design and runtime execution. Feedback from the runtime phase informs the
design phase, leading to adjustments in the concrete model.

6. Real-Time regulating mechanisms: In order to enrich the MAPE-K loop control, we have
proposed a set of real-time corrective actions to enable the dynamic adjustment of missions behavior
based on changing runtime conditions and requirements. The approach captures the essential struc-
tural, behavioral, and quantitative aspects related to the SoS’s functionalities, and enables timely
adjustments to ensure that mission objectives are met within the specified time frames. i.e. based
on the analysis of mission execution scenarios, the system formulates appropriate corrective actions
to address the identified issues. For scenarios where no control is needed, the system continues ex-
ecuting missions according to their planned sequence and timing. For early arrival control, control
mechanisms are employed to synchronize subsequent missions and optimize system efficiency. For
late completion control, the system adjusts the sequencing of sequel missions and accommodates
delays.

7. Execution and formal verification:

Through a case study, we have demonstrated the practical application of the proposed approaches
through runtime simulation, analysis, and verification. We have defined the specified behaviors of
the components, the RAC, Management strategies and Real-Time Self-Regulating mechanism. This
means verifying that autonomously executed behaviors and actions are well-defined, correct, and

179

Chapter IX. General Conclusion

describe a desirable behavior at design time and runtime stages. This involves defining several
quantitative properties that the system must satisfy and guarantee throughout its runtime. To this
end, we have used the formal verification techniques of SoSs’ behavior using Maude’s model-checking
capabilities. It verifies that the system meets its strategic objectives and operates as expected under
various emergency scenarios. This involves checking invariants and using the search command in
Maude to explore possible system behaviors and ensure compliance with defined properties. There-
fore, by validating the effectiveness of the proposed system design, strategic planning, and control
mechanisms in optimizing emergency response operations, this phase addresses the fourth research
objective.

IX.2 Perspectives

Here we identify two main perspectives in the short and long term to continue the scientific
work presented in this manuscript. From a practical standpoint, the first perspective relates to
the development of a fully assisted tool for designing and analyzing SoSs and their components.
From a theoretical viewpoint, the second perspective involves studying the control and management
strategies for more expansion and enhancement.

1. Development of an assisted tool for the specification, verification, and evaluation
of SoSs and their CSs

Development of an assisted tool for the specification, verification, and evaluation of elasticity. In
the short term, it would be interesting to develop a completely automated and assisted tool from the
modeling phase to the analysis of the results obtained from the proprieties verification. Ideally, the
tool should provide an intuitive graphical interface that allows a designer to easily model their SoSs
and CSs using the proposed Meta-Models. From this modeling, the idea is to create a translator that
would enable the generation of Maude specifications and configuration from the designed models.
Finally, another component would allow for the execution and analysis of the described control and
management behaviors to proceed with their quantitative verification according to criteria defined
by the designers. Ultimately, this tool would also incorporate simulation and monitoring capabilities
for the modeled SoSs and CSs to facilitate their execution.

2. Expanding the strategies
In the middle term, we aim to expand upon our initial exploration of centralized control and

management strategies for SoSs. This involves advancing the experimental study and quantitative
validation processes. Future efforts will focus on the formalization, the verification and the quantita-
tive analysis of the main self-* properties (such as self-adaptation, self-awareness, self-stabilization,
etc.) to support a wider range of behaviors, including both predictable and unpredictable workflows
in SoSs. Additionally, we plan to refine our evaluation approach to better predict resource needs
and missions performance pre-deployment, thereby offering SoSs a more robust tool for planning and
optimizing their infrastructure. This direction will allow us to explore richer behaviors and their
impact on high-level policies like performance, cost efficiency, and resource optimization.

180

Bibliography

[1] T. M. Aljohani, “Analysis of the smart grid as a system of systems,” arXiv preprint arXiv:1810.11453,
2018.

[2] M. E. Arass, K. Ouazzani-Touhami, and N. Souissi, “The system of systems paradigm to
reduce the complexity of data lifecycle management. case of the security information and
event management,” International Journal of System of Systems Engineering, vol. 9, no. 4,
pp. 331–361, 2019.

[3] M. A. Assaad, R. Talj, and A. Charara, “A view on systems of systems (sos),” in 20th World
Congress of the International Federation of Automatic Control (IFAC WC 2017)-special ses-
sion, 2016.

[4] J. Axelsson, J. Fröberg, and P. Eriksson, “Architecting systems-of-systems and their con-
stituents: A case study applying industry 4.0 in the construction domain,” Systems Engineer-
ing, vol. 22, no. 6, pp. 455–470, 2019.

[5] Y.-M. Baek, J. Song, Y.-J. Shin, S. Park, and D.-H. Bae, “A meta-model for representing
system-of-systems ontologies,” in Proceedings of the 6th International Workshop on Software
Engineering for Systems-of-Systems, 2018, pp. 1–7.

[6] J. A. Bossard, C. P. Scarborough, Q. Wu, et al., “Mitigating field enhancement in metasurfaces
and metamaterials for high-power microwave applications,” IEEE Transactions on Antennas
and Propagation, vol. 64, no. 12, pp. 5309–5319, 2016.

[7] A. W. Brown, “Model driven architecture: Principles and practice,” Software and systems
modeling, vol. 3, pp. 314–327, 2004.

[8] I. Cherfa, N. Belloir, S. Sadou, R. Fleurquin, and D. Bennouar, “Systems of systems: From
mission definition to architecture description,” Systems Engineering, vol. 22, no. 6, pp. 437–
454, 2019.

[9] M. Clavel, F. Durán, S. Eker, et al., All about maude-a high-performance logical framework:
how to specify, program, and verify systems in rewriting logic. Springer, 2007, vol. 4350.

181

Bibliography

[10] M. Clavel, F. Durán, S. Eker, et al., “Maude manual (version 3.1),” SRI International Univer-
sity of Illinois at Urbana-Champaign http://maude. lcc. uma. es/maude31-manual-html/maude-
manual. html, 2020.

[11] M. Clavel, F. Durán, S. Eker, et al., “Maude: Specification and programming in rewriting
logic,” Theoretical Computer Science, vol. 285, no. 2, pp. 187–243, 2002.

[12] M. Clavel, F. Durán, S. Eker, et al., “The maude 2.0 system,” in International Conference on
Rewriting Techniques and Applications, Springer, 2003, pp. 76–87.

[13] M. Clavel, S. Eker, P. Lincoln, and J. Meseguer, “Principles of maude,” Electronic Notes in
Theoretical Computer Science, vol. 4, pp. 65–89, 1996.

[14] P. Clements and L. Northrop, Software product lines. Addison-Wesley Boston, 2002.

[15] D. Cocks, “How should we use the term “system of systems” and why should we care?” In
INCOSE International Symposium, Wiley Online Library, vol. 16, 2006, pp. 427–438.

[16] A. Computing et al., “An architectural blueprint for autonomic computing,” IBM White Paper,
vol. 31, no. 2006, pp. 1–6, 2006.

[17] J. S. Dahmann, “Systems of systems characterization and types,” Systems of Systems Engi-
neering for NATO Defence Applications (STO-EN-SCI-276), pp. 1–14, 2015.

[18] F. DAU, “Defense acquisition guidebook,” Defense Acquisition University, VA, 2004.

[19] D. DeLaurentis, “Understanding transportation as a system-of-systems design problem,” in
43rd AIAA aerospace sciences meeting and exhibit, 2005, p. 123.

[20] C. E. Dridi, Z. Benzadri, and F. Belala, “A unified architecture framework supporting sos’s de-
velopment: Case of the aircraft emergency response system-of-systems,” International Journal
of Organizational and Collective Intelligence (IJOCI), vol. 13, no. 1, pp. 1–30, 2023.

[21] C. E. Dridi, Z. Benzadri, and F. Belala, “System of systems engineering: Meta-modelling
perspective,” in 2020 IEEE 15th International Conference of System of Systems Engineering
(SoSE), IEEE, 2020, pp. 000 135–000 144.

[22] C. E. Dridi, Z. Benzadri, and F. Belala, “Towards a multi-viewpoints approach for the sos
engineering,” in 2022 International Conference on Advanced Aspects of Software Engineering
(ICAASE), IEEE, 2022, pp. 1–6.

[23] C. E. Dridi, Z. Benzadri, and F. Belala, “System of systems modelling: Recent work review
and a path forward,” in 2020 International Conference on Advanced Aspects of Software En-
gineering (ICAASE), IEEE, 2020, pp. 1–8.

[24] C. E. Dridi, N. Hameurlain, and F. Belala, “A maude-based formal approach to control and
analyze time-resource aware missioned systemsof-systems,” in 31th IEEE International Confer-
ence on Enabling Technologies: Infrastructure for Collaborative Enterprises (WETICE-2023),
IEEE, 2023, 6.p.

182

Bibliography

[25] C. E. Dridi, N. Hameurlain, and F. Belala, “A maude-based rewriting approach to model and
control system-of-systems’ resources allocation,” in International Conference on Model and
Data Engineering, Springer, 2022, pp. 207–221.

[26] A. Egyed and N. Medvidovic, “A formal approach to heterogeneous software modeling,” in
International Conference on Fundamental Approaches to Software Engineering, Springer, 2000,
pp. 178–192.

[27] J. El Hachem, Z. Y. Pang, V. Chiprianov, A. Babar, and P. Aniorte, “Model driven software
security architecture of systems-of-systems,” in 2016 23rd Asia-Pacific Software Engineering
Conference (APSEC), IEEE, 2016, pp. 89–96.

[28] H.-E. Eriksson, M. Penker, B. Lyons, and D. Fado, UML 2 toolkit. John Wiley & Sons, 2003.

[29] A. Gassara, I. Bouassida, and M. Jmaiel, “A tool for modeling sos architectures using bigraphs,”
in Proceedings of the Symposium on Applied Computing, 2017, pp. 1787–1792.

[30] A. Gassara, I. B. Rodriguez, M. Jmaiel, and K. Drira, “A bigraphical multi-scale modeling
methodology for system of systems,” Computers & Electrical Engineering, vol. 58, pp. 113–
125, 2017.

[31] T. Gezgin, C. Etzien, S. Henkler, and A. Rettberg, “Towards a rigorous modeling formalism for
systems of systems,” in 2012 IEEE 15th International Symposium on Object/Component/Service-
Oriented Real-Time Distributed Computing Workshops, IEEE, 2012, pp. 204–211.

[32] M. B. Gonçalves, E. Cavalcante, T. Batista, F. Oquendo, and E. Y. Nakagawa, “Towards a
conceptual model for software-intensive system-of-systems,” in 2014 IEEE International Con-
ference on Systems, Man, and Cybernetics (SMC), IEEE, 2014, pp. 1605–1610.

[33] V. Gunes, S. Peter, T. Givargis, and F. Vahid, “A survey on concepts, applications, and
challenges in cyber-physical systems.,” KSII Trans. Internet Inf. Syst., vol. 8, no. 12, pp. 4242–
4268, 2014.

[34] M. C. Hause, “Sos for sos: A new paradigm for system of systems modeling,” in 2014 IEEE
Aerospace Conference, IEEE, 2014, pp. 1–12.

[35] J. Hu, L. Huang, X. Chang, and B. Cao, “A model driven service engineering approach to
system of systems,” in 2014 IEEE International Systems Conference Proceedings, IEEE, 2014,
pp. 136–145.

[36] W. C. In and M. H. LinLee, “Informal, semi-formal, and formal approaches to the specification
of software requirements,” Ph.D. dissertation, University of British Columbia, 1994.

[37] I. ISO, “Ieee: Systems and software engineering—architecture description,” International Or-
ganization for Standardization ISO/IEC/IEEE, vol. 42010, 2011.

[38] ISO/IEC/IEEE, “Systems and software engineering – architecture description,” ISO/IEC/IEEE
42010:2011(E) (Revision of ISO/IEC 42010:2007 and IEEE Std 1471-2000), pp. 1–46, Jan.
2011. doi: 10.1109/IEEESTD.2011.6129467.

183

https://doi.org/10.1109/IEEESTD.2011.6129467

Bibliography

[39] Iso/iec/ieee international standard - systems and software engineering. doi: 10.1109/IEEESTD.
2015.7106435. [Online]. Available: https://ieeexplore.ieee.org/document/7106435.

[40] M. Jamshidi, “System of systems engineering-new challenges for the 21st century,” IEEE
Aerospace and Electronic Systems Magazine, vol. 23, no. 5, pp. 4–19, 2008.

[41] N. Karcanias and A. G. Hessami, “Complexity and the notion of system of systems: Part (ii):
Defining the notion of system of systems,” in 2010 World Automation Congress, IEEE, 2010,
pp. 1–7.

[42] J. O. Kephart and D. M. Chess, “The vision of autonomic computing,” Computer, vol. 36,
no. 1, pp. 41–50, 2003.

[43] I. Khlif, M. H. Kacem, C. Eichler, and A. H. Kacem, “A multi-scale modeling approach for
systems of systems architectures,” ACM SIGAPP Applied Computing Review, vol. 17, no. 3,
pp. 17–26, 2017.

[44] C. Kirchner, H. Kirchner, and M. Vittek, “Designing constraint logic programming languages
using computational systems,” Principles and Practice of Constraint Programming. The New-
port Papers, pp. 131–158, 1995.

[45] A. G. Kleppe, J. B. Warmer, and W. Bast, MDA explained: the model driven architecture:
practice and promise. Addison-Wesley Professional, 2003.

[46] V. Kotov, Systems of systems as communicating structures. Hewlett Packard Laboratories,
1997, vol. 119.

[47] J. A. Lane and T. Bohn, “Using sysml modeling to understand and evolve systems of systems,”
Systems Engineering, vol. 16, no. 1, pp. 87–98, 2013.

[48] J. A. Lane and D. Epstein, “What is a system of systems and why should i care?” University
of Southern California, 2013.

[49] J. Lönngren and K. Van Poeck, “Wicked problems: A mapping review of the literature,”
International Journal of Sustainable Development & World Ecology, vol. 28, no. 6, pp. 481–
502, 2021.

[50] Z. Maamar, N. Faci, S. Sakr, M. Boukhebouze, and A. Barnawi, “Network-based social coor-
dination of business processes,” Information Systems, vol. 58, pp. 56–74, 2016.

[51] M. W. Maier, “Architecting principles for systems-of-systems,” Systems Engineering: The Jour-
nal of the International Council on Systems Engineering, vol. 1, no. 4, pp. 267–284, 1998.

[52] M. W. Maier, D. Emery, and R. Hilliard, “Ansi/ieee 1471 and systems engineering,” Systems
engineering, vol. 7, no. 3, pp. 257–270, 2004.

[53] N. Martí-Oliet and J. Meseguer, “Rewriting logic as a logical and semantic framework,” Elec-
tronic Notes in Theoretical Computer Science, vol. 4, pp. 190–225, 1996.

[54] N. Martí-Oliet, J. Meseguer, and A. Verdejo, “A rewriting semantics for maude strategies,”
Electronic Notes in Theoretical Computer Science, vol. 238, no. 3, pp. 227–247, 2009.

184

https://doi.org/10.1109/IEEESTD.2015.7106435
https://doi.org/10.1109/IEEESTD.2015.7106435
https://ieeexplore.ieee.org/document/7106435

Bibliography

[55] N. Martí-Oliet, J. Meseguer, and A. Verdejo, “Towards a strategy language for maude,” Elec-
tronic Notes in Theoretical Computer Science, vol. 117, pp. 417–441, 2005.

[56] S. J. Mellor, MDA distilled: principles of model-driven architecture. Addison-Wesley Profes-
sional, 2004.

[57] J. Meseguer, “Conditional rewriting logic as a unified model of concurrency,” Theoretical com-
puter science, vol. 96, no. 1, pp. 73–155, 1992.

[58] J. Meseguer and G. Roşu, “Rewriting logic semantics: From language specifications to formal
analysis tools,” in International Joint Conference on Automated Reasoning, Springer, 2004,
pp. 1–44.

[59] M. Mori, A. Ceccarelli, P. Lollini, B. Frömel, F. Brancati, and A. Bondavalli, “Systems-of-
systems modeling using a comprehensive viewpoint-based sysml profile,” Journal of Software:
Evolution and Process, vol. 30, no. 3, e1878, 2018.

[60] R. Morrison, G. Kirby, D. Balasubramaniam, et al., “Support for evolving software architec-
tures in the archware adl,” in Proceedings. Fourth Working IEEE/IFIP Conference on Software
Architecture (WICSA 2004), IEEE, 2004, pp. 69–78.

[61] C. B. Nielsen, P. G. Larsen, J. Fitzgerald, J. Woodcock, and J. Peleska, “Systems of systems en-
gineering: Basic concepts, model-based techniques, and research directions,” ACM Computing
Surveys (CSUR), vol. 48, no. 2, pp. 1–41, 2015.

[62] P. C. Ölveczky and J. Meseguer, “Abstraction and completeness for real-time maude,” Elec-
tronic Notes in Theoretical Computer Science, vol. 176, no. 4, pp. 5–27, 2007.

[63] P. C. Ölveczky and J. Meseguer, “Recent advances in real-time maude,” Electronic Notes in
Theoretical Computer Science, vol. 174, no. 1, pp. 65–81, 2007.

[64] P. C. Ölveczky and J. Meseguer, “Semantics and pragmatics of real-time maude,” Higher-order
and symbolic computation, vol. 20, pp. 161–196, 2007.

[65] F. Oquendo, “π-calculus for sos: A foundation for formally describing software-intensive systems-
of-systems,” in 2016 11th System of Systems Engineering Conference (SoSE), IEEE, 2016,
pp. 1–6.

[66] F. Oquendo, “Formally describing the architectural behavior of software-intensive systems-
of-systems with sosadl,” in 2016 21st International Conference on Engineering of Complex
Computer Systems (ICECCS), IEEE, 2016, pp. 13–22.

[67] F. Oquendo, “Formally describing the software architecture of systems-of-systems with sosadl,”
in 2016 11th system of systems engineering conference (SoSE), IEEE, 2016, pp. 1–6.

[68] D. L. Parnas, “On the design and development of program families,” IEEE Transactions on
software engineering, no. 1, pp. 1–9, 1976.

[69] H. A. Partsch, Specification and transformation of programs: a formal approach to software
development. Springer Science & Business Media, 2012.

185

Bibliography

[70] J. D. Poole, “Model-driven architecture: Vision, standards and emerging technologies,” in
Workshop on Metamodeling and Adaptive Object Models, ECOOP, vol. 50, 2001.

[71] M. Rao, S. Ramakrishnan, and C. Dagli, “Modeling and simulation of net centric system of
systems using systems modeling language and colored petri-nets: A demonstration using the
global earth observation system of systems,” Systems Engineering, vol. 11, no. 3, pp. 203–220,
2008.

[72] A. Reichwein and C. Paredis, “Overview of architecture frameworks and modeling languages
for model-based systems engineering,” in Proc. ASME, vol. 1275, 2011.

[73] J. E. Rivera, F. Durán, and A. Vallecillo, “A metamodel for maude,” Technical report, 2008.

[74] R. Rubio, N. Martí-Oliet, I. Pita, and A. Verdejo, “Parameterized strategies specification in
maude,” in Recent Trends in Algebraic Development Techniques: 24th IFIP WG 1.3 Inter-
national Workshop, WADT 2018, Egham, UK, July 2–5, 2018, Revised Selected Papers 24,
Springer, 2019, pp. 27–44.

[75] R. R. Rubio Cuéllar, N. Martí Oliet, I. Pita Andreu, and J. A. Verdejo López, “The semantics
of the maude strategy language,” 2021.

[76] J. Rumbaugh, The unified modeling language reference manual. Pearson Education India, 2005.

[77] V. M. Santos, S. Misra, and M. S. Soares, “Architecture conceptualization for health informa-
tion systems using iso/iec/ieee 42020,” in International Conference on Computational Science
and Its Applications, Springer, 2020, pp. 398–411.

[78] D. C. Schmidt et al., “Model-driven engineering,” Computer-IEEE Computer Society-, vol. 39,
no. 2, p. 25, 2006.

[79] A. Seghiri, F. Belala, and N. Hameurlain, “A formal language for modelling and verify-
ing systems-of-systems software architectures,” International journal of systems and service-
oriented engineering (IJSSOE), vol. 12, no. 1, pp. 1–17, 2022.

[80] E. Silva, T. Batista, and F. Oquendo, “On the verification of mission-related properties in
software-intensive systems-of-systems architectural design,” Science of Computer Program-
ming, vol. 192, p. 102 425, 2020.

[81] R. Soley et al., “Model driven architecture,” OMG white paper, vol. 308, no. 308, p. 5, 2000.

[82] O. A. Specification, “Omg unified modeling language (omg uml), superstructure, v2. 1.2,”
Object Management Group, vol. 70, 2007.

[83] C. Stary and D. Wachholder, “System-of-systems support—a bigraph approach to interoper-
ability and emergent behavior,” Data & Knowledge Engineering, vol. 105, pp. 155–172, 2016.

[84] T. Thüm, S. Apel, C. Kästner, I. Schaefer, and G. Saake, “A classification and survey of
analysis strategies for software product lines,” ACM Computing Surveys (CSUR), vol. 47,
no. 1, pp. 1–45, 2014.

[85] N. S. W. C. D. D. VA, “Leading edge. volume 7, issue number 4, 2012,” 2012.

186

Bibliography

[86] A. Verdejo and N. Martí-Oliet, “Basic completion strategies as another application of the
maude strategy language,” arXiv preprint arXiv:1204.5542, 2012.

[87] N. Wickramasinghe, S. Chalasani, R. V. Boppana, and A. M. Madni, “Healthcare system of
systems,” in 2007 IEEE International Conference on System of Systems Engineering, IEEE,
2007, pp. 1–6.

[88] R. Wleringa and E. Dubois, “Integrating semi-formal and formal software specification tech-
niques,” Information Systems, vol. 23, no. 3-4, pp. 159–178, 1998.

[89] Y. Zhang, X. Liu, Z. Wang, and L. Chen, “A service-oriented method for system-of-systems
requirements analysis and architecture design.,” J. Softw., vol. 7, no. 2, pp. 358–365, 2012.

187

	Preamble
	Introduction
	Problem Statement
	Research Objectives and Contributions

	Thesis Chapters
	Publications

	Basics and Prerequisites
	Introduction
	Model-Driven Engineering
	Model-Driven Architecture
	IEEE-ISO 42010 Standard

	Rewriting Logic and Maude Language
	Rewriting theories
	Maude Language: modules and extensions
	Formal Analysis and Execution

	Conclusion

	Key Concepts, Definitions and State of the Art
	Introduction
	Systems-of-Systems
	Definitions
	Dimensions
	Categories
	Application domains

	Current research on SoSs modeling
	Semi-formal methods
	Formal methods
	Synthesis

	Conclusion

	Methodology and General Principle
	Introduction
	A process for SoS Engineering
	Domain Engineering
	Application Engineering

	Solution principle
	Basic elements description
	MDA-based SoS Framework design
	Formal semantics of centralized control
	Formal specification of management strategies
	Autonomic execution and verification

	Conclusion

	Model-Based SoS Framework Domain
	Introduction
	SoSs Commonalities
	Abstract assets: Application and Framework Domains
	A Unified Architecture Framework: Overview
	Case study: Aircraft Emergency Response SoS

	A Multi Viewpoints-based Architecture Framework
	Architectural concepts
	Associations

	UML Extensions for Modeling the unified architecture
	SoS_Knowledge_Package
	CSs`Selection`Package
	Conceptual_Design_Package
	Architectural_Design_Package
	Interaction_Package
	Integration_Deployment_Package

	Conclusion

	Formalization of Centralized Control in SoSs
	Introduction
	Time-Resource Aware SoSs
	Temporal constraints of Missions
	Understanding resource categorization
	Abstract assets: Variability Domain
	Rewriting-based approach for resources allocation control

	Formal semantics of structural entities
	Missions and temporal constraints
	Resources categorization
	Roles encoding
	Resource Allocation Controller: RAC

	Formal semantics of dynamic aspects
	Missions’ lifecycle
	Resource’ lifecycle
	Roles’ lifecycle
	Resources Allocation Control lifecycle

	Conclusion

	Control-based Formalization of Management Strategies
	Introduction
	Abstract assets: Variability Domain for Management
	Strategic Management of Behavior
	Managing Workflows in SoSs
	Mission execution and resource management
	Management Strategies

	Real-Time regulating mechanism using MAPE-K loop
	Knowledge: Data Foundation
	Monitor: Processing
	Analysis: Workflow
	Plan: Strategic Control and Management
	Execution: Rewriting Management System

	Conclusion

	Simulation and Formal Verification
	Introduction
	Case study
	Managing FESoS through a MAPE-K loop
	Knowledge: Foundation
	Monitor: Processing
	Analysis: Workflow Analysis
	Plan: Strategic Control and Management
	Execution: Rewriting Management System

	Design time: workflow and initial configuration
	Simulation and execution
	Resource Allocation Control
	Managing FESoS Workflow with strategies
	Executing Functional Chains

	Formal verification
	Maude-based verification for management strategies
	Model-checking SoSs proprieties

	Conclusion

	General Conclusion
	Conclusion
	Perspectives

