
HAL Id: tel-04740855
https://theses.hal.science/tel-04740855v1

Submitted on 17 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

On Quantum Programming Languages
Benoît Valiron

To cite this version:
Benoît Valiron. On Quantum Programming Languages. Computer Science [cs]. Université Paris
Saclay, 2024. �tel-04740855�

https://theses.hal.science/tel-04740855v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Th
ès

e
de

 d
oc

to
ra

t

On Quantum Programming Languages

Habilitation à diriger des recherches
de l’Université Paris-Saclay

présentée et soutenue à Gif-sur-Yvette,
le 24 Septembre 2024, par

Benoît Valiron

Composition du jury

Pascale Le Gall Présidente
Professeure des Universités, CentraleSupélec
Luís Soares Barbosa Rapporteur
Full Professor, Universidade do Minho
Chris Heunen Rapporteur
Professor, University of Edinburgh
Emmanuel Jeandel Rapporteur
Professeur des Universités, Université de Lorraine
Cyril Branciard Examinateur
Chargé de Recherche CNRS, Institut Neel de Grenoble
Delia Kesner Examinatrice
Professeure des Universités, Université Paris Cité
Sophie Laplante Examinatrice
Professeure des Universités, Université Paris Cité

Parrain

Pablo Arrighi
Directeur de Recherche, Inria

Titre : De l’étude des langages de programmations quantiques

Résumé : Cette thèse présente mes contributions à la re-
cherche depuis la soutenance de mon doctorat en 2008. J’ai
eu la chance de participer au développement des langages
de programmation quantique depuis le début : le document
a pour but de présenter mon point de vue sur l’évolution du
sujet, mes contributions, et les tendances actuelles dans la
communauté. Le document est destiné à un doctorant spé-
cialisé dans les méthodes formelles.

Depuis 2008, la programmation quantique a énormé-
ment évolué. Alors que le matériel est passé d’expériences
en laboratoire à des coprocesseurs quantiques prêts à
l’emploi, les langages quantique sont passés de principes
mathématiques abstraits à des environnements de déve-
loppement complet. Leur conception doit désormais tenir
compte du matériel ainsi que des cas d’usage. En outre, de
nouveaux paradigmes de calcul non standard émergent, ba-
sés sur la possibilité de considérer la superposition des exé-
cutions en plus de la superposition des données. Tout cela
soulève des défis passionnants pour l’avenir.

La présentation commence par discuter l’état du do-
maine en 2008, avec une discussion sur les différentes ap-
proches telle que le lambda-calcul quantique—l’une de mes

contributions avant 2008. Le manuscrit se penche ensuite
sur trois sujets pour lesquels j’ai été activement impliqué.

La thèse se concentre d’abord sur l’avènement de lan-
gages de programmation quantique évolutifs. Dans ce
contexte, j’ai participé au développement de Quipper, un lan-
gage de description de circuits inscrit dans Haskell, et de
Qbricks, un outil de vérification déductive de programmes
quantiques. Le deuxième thème principal de la thèse est
la sémantique des lambda-calculs quantique : mes contri-
butions concernent la description de sémantiques inspirées
par des modèles de logique linéaire. La troisième partie
de la thèse analyse la superposition d’exécutions de pro-
grammes : mes contributions sont le SWITCH quantique,
montrant comment ce modèle ne peut pas être réduit à des
circuits quantiques, et la conception de langages pour des
programmes en superposition.

La thèse se termine par quelques tendances actuelles de
la recherche : l’essor des langages graphiques, l’unification
des contrôles quantiques et classiques, le développement
de chaînes d’outils de compilation quantique, et l’analyse sta-
tique pour les programmes quantiques.

Title: On Quantum Programming Languages

Abstract: This thesis —Habilitation à diriger des recherches—
presents some of my research contributions since my Ph.D
defense in 2008. I have had the chance to participate in
the development of quantum programming languages since
their early developments: the presentation aims to present
my point of view on the evolution of the subject, my contribu-
tions, and the current research trends in the community. The
target audience is a graduate student interested in pointers
to the field of quantum programming languages

Since 2008, the state of quantum programming has
evolved tremendously. As quantum hardware moved from
physical artifacts in bench labs to ready-to-use quantum
coprocessors, quantum programming languages evolved
from abstract mathematical principles to scalable proposals.
Language designs now need to consider constraints coming
from both hardware and use cases. Furthermore, novel, non-
standard computational paradigms are emerging based on
the possibility of considering the superposition of execu-
tions on top of the superposition of data. All of this raises
exciting challenges for the years to come.

The presentation starts with a discussion of the state of
the field of quantum programming language in 2008, with a

discussion on the attempts at toy languages, and in particu-
lar, the quantum lambda calculus—one of my contributions
before 2008. The manuscript then dives into three main sub-
jects I have been actively involved in.

The thesis first focuses on the advent of scalable quan-
tum programming languages. In this context, I have par-
ticipated in developing Quipper, a domain-specific, circuit-
description language embedded in Haskell, and Qbricks, a
tool for deductive verification of quantum programs. The
second main topic of the thesis consists of the seman-
tics of quantum lambda-calculi: My contributions concern
the description of semantics inspired by models of linear
logic. The third part of the thesis analyses the superposi-
tion of program executions: my contributions are the quan-
tum SWITCH, showing how this model cannot be reduced to
quantum circuits, and the design of languages for programs
in superposition.

The thesis concludes with a few current research trends:
the rise of graphical languages, the reconciliation of quan-
tum and classical control, the development of quantum com-
pilation toolchains, and static analysis for quantum pro-
grams.

Remerciements

Je tiens tout d’abord à remercier chaleureusement Luis Soares Barbosa, Chris Heunen et Em-
manuel Jeandel d’avoir accepté de rapporter ce manuscrit, ainsi que Cyril Branciard, Delia
Kesner, Sophie Laplante et Pascale Le Gall pour leur présence sur le jury. Je remercie finale-
ment Pablo Arrighi pour son role de parrain qui fut décisif dans la finalisation de ce manuscrit.

Cette habilitation est une histoire qui a commencée en 2018, quand Frédéric Boulanger
a accepté de donner sa casquette HDR pour l’encadrement de 이동호 (Dongho Lee). Il était
entendu que je passerais mon HDR d’ici à la soutenance. Cela n’a pas vraiment été le cas, et
j’ai eu recours de nombreuses fois à Frédéric, mais aussi Marc Baboulin, Gilles Dowek et Pablo
Arrighi pour servir de co-encadrants. Je tiens à les remercier ici pour leur aide.

Grâce à leur soutien, j’ai eu l’honneur d’accompagner jusqu’à leur soutenance Timothée
Goubault de Brugière,이동호 (Dongho Lee), Kostia Chardonnet, Agustin Borgna et Louis Le-
monnier. À l’heure où j’écris ces lignes, Jérome Ricciardi, Nicolas Heurtel et Julien Lamiroy
sont toujours en thèse. J’espère pouvoir assister à leur soutenance en ayant finalement ter-
miner cette habilitation qui est devenue au fil du temps l’arlésienne de l’équipe. Je remercie
tous mes étudiants, qu’ils aient fini ou non: l’interaction avec eux forment le cœur de mon
attachement au travail de recherche.

Je remercie aussi les collègues de l’équipe QuaCS qui a vu le jour pendant la (longue)
gestation de cette habilitation. L’arlésienne qu’est devenue cette habilitation a généré un fond
de blagues qui ont maintenu une pression salutaire.

En dernier lieu, je remercie ma famille pour leur compréhension et leur soutien, pendant
tous ces soirs et week-ends durant lesquels j’ai été particulièrement peu disponible.

5

Pour Caroline, sans qui la vie serait moins belle.

Contents

A Introduction 11

B Quantum Programming back in 2008 15
B.1 Primer onQuantum Computation . 15

B.1.1 Quantum Memory . 15
B.1.2 Quantum Operations . 17
B.1.3 Mixed States . 18
B.1.4 Quantum Coprocessor Model . 19
B.1.5 ZX calculus . 20

B.2 Quantum Programming Paradigms . 20
B.3 Quantum Lambda Calculus . 22

B.3.1 Lambda Calculus . 22
B.3.2 Quantum Extension to the Lambda Calculus 23
B.3.3 Linear Type System . 24
B.3.4 Towards a Denotational Semantics . 24

C Quantum Languages and Compilation Toolchain 27
C.1 Quipper: a Circuit-Description Language . 28

C.1.1 Discussion: Quantum Programming Language Design 29
C.1.2 Our Proposal: Quipper . 32
C.1.3 Use-Case: Logical Resource Estimation of the QLS Algorithm 34

C.2 Circuit Synthesis and Optimization . 36
C.2.1 Circuit Synthesis from Oracle Specification 37
C.2.2 Circuit Synthesis from General Unitary Matrices 41
C.2.3 Circuit Synthesis from ZX Specification 43

C.3 Specification and Verification of Quantum Programs 44
C.3.1 Challenges for Quantum Formal Verification 45
C.3.2 Floyd–Hoare Logic and Deductive Verification 45
C.3.3 Quantum Floyd–Hoare Logic Handling Measurements 46
C.3.4 Qbrick: Deductive Verification with Parametrized Path Sums 47

D Semantics ofQuantum Lambda-Calculi 51
D.1 Linear Logic and TypedQuantum Lambda Calculus 52

D.1.1 Linear Logic . 52
D.1.2 Quantum Lambda Calculus and Linear Logic 54
D.1.3 Cut-elimination and Curry-Howard Isomorphism 56

D.2 A Denotational Semantics . 57
D.2.1 Background on Denotational Semantics 57
D.2.2 CPM as Compact Closed Category . 58
D.2.3 Accommodating the Additives . 59

9

Table of Contents

D.2.4 Accommodating Recursive Datatypes 59
D.2.5 Accommodating Duplication . 60
D.2.6 Discussion . 61

D.3 An Executable Semantics . 61
D.3.1 Proof-Nets for MELL . 62
D.3.2 Encoding Higher-Order Languages . 63
D.3.3 Token-based Geometry of Interaction 64
D.3.4 Limits of the Conventional Approach 65
D.3.5 Multi-Token Geometry of Interaction 66
D.3.6 Towards aQuantum Geometry of Interaction 67

D.4 A Categorical Semantics for Circuit-Description 68
D.4.1 Formalizing Circuit-Description Languages 68
D.4.2 Semantics based on Operator Algebras 69
D.4.3 Semantics based on Category Theory 69
D.4.4 Semantics for Circuits with Measurements 70

E Quantum Control and Reversible Computation 73
E.1 ImplementingQuantum Control . 74

E.1.1 Physicality of Quantum Control . 74
E.1.2 A Minimal Quantum Control: theQuantum SWITCH 75
E.1.3 Syntactic Approaches for Quantum Control 75

E.2 Typing Superpositions of Lambda-Terms . 78
E.2.1 An Axiomatic Type System: Vectorial System-F 79
E.2.2 A Type System Based on Realizability 81

E.3 Reversible andQuantum Pattern-Matching . 84
E.3.1 Background on Reversible Language 84
E.3.2 Reversible Pattern-Matching . 85
E.3.3 A Categorical Interpretation . 86
E.3.4 Inductive Types, Fixpoints and termination 86
E.3.5 Pattern-Matching for Quantum Control 87
E.3.6 Relationship with the Logic 𝜇MALL 88

F Opening 91

Bibliography 97

Index 125

10

Chapter A

Introduction

The birthdate of quantum computing can be traced back to 1982 when Feynman [Fey82]
envisioned using controllable quantum systems to simulate physical behavior. Since then,
quantum computing has grown into a thriving research field, with foreseen applications in
a wide range of topics: quantum simulation for pharmaceuticals and chemicals applications,
quantum linear algebra for AI andmachine learning, quantum optimization and search, quan-
tum factorization, etc. As of December 2022, more than 430 algorithms were registered on the
Quantum Algorithm Zoo [QZOO22], a comprehensive catalog of quantum algorithms.

In parallel to this boom in algorithm design, the investment in quantum computing is
reaching an all-time high, both from public and private actors. France set up the “PlanQuan-
tique” last year, while Europe launched the “Quantum Flagship” a few years ago. In the previ-
ous five years, both the number of startups and the investment in quantum computation have
skyrocketed to more than 200 startups worldwide, and 25 billion dollars of public investment
as of 2021 [McKinsey21].

The idea behind quantum computing is to code information on the state of objects gov-
erned by the laws of quantum physics. The mathematical theory is well established [NC02]
and makes it possible to reason on what is doable—and what is not — in this computation
paradigm without having to rely on concrete hardware. The state of a quantum memory can
be regarded as a complex, linear combination of bit-strings. This mathematical formalism
entails two of the main features of quantum computation: superposition of data and entan-
glement. On the downside, reading information from a quantum memory is a destructive and
probabilistic operation, modifying the global state of the memory.

One of the first and maybe most notorious quantum algorithms, Shor’s factoring algo-
rithm [Sho94], placed quantum computation on the radar for potentially disruptive technolo-
gies. However, in part due to the lack of scalable hardware at the time, later quantum algo-
rithms were typically developed as tools to explore the complexity speedup entailed by using
a quantum memory. If this purely theoretical approach to quantum computation uncovered
interesting foundational results, it remained somehow far from concrete instantiations.

Quantum algorithms such as the one devised by Shor require a level of abstraction higher
than what can be needed by Feynman’s vision of quantum simulation. Knill [Kni96] proposed
in 1996 a rationale for what a quantum coprocessor should permit to implement such algo-
rithms. This analysis is the basis of a wide range of works on the computer science aspect of
quantum computation. On one end of the spectrum, a series of research developments discuss
concrete quantum programming languages or libraries for interacting with a quantum mem-
ory [BCS03, Öme00, Öme03]. At the other end of the spectrum, Knill’s description seeded
lines of research on the semantics of quantum programming language based on models of
linear logic, domain theory and category theory [Sel04a, Sel04b, Ton04, Val04, Val08], the lat-
ter cross-fertilizing with early formalizations of quantum information and quantum protocols

11

Chapter A Introduction

[Coe04, AC04].
The 2010s have seen a rapid upscaling of the proposals pertaining to quantum program-

ming. Stirred by the active development of hardware and integrated quantum coprocessors,
the field has moved from blackboards and lab benches to industrial use cases. Although the
hardware is still in the so-called Noisy Intermediate-ScaleQuantum (NISQ) state with quantum
memory of a few hundred uncorrected qubits subject to decoherence [Pre18], the research
in quantum programming and compilation is thriving in proposals for making use of these
memories [BCKH+22]. Indeed, the memories are large enough to make it impractible to ma-
nipulate by hand, yet constrained enough to require dedicated languages and sophisticated
compilation and optimization techniques. The field is furthermore opening the path toward
Large Scale Quantum (LSQ) computation, for when the hardware will be able to support error
correction.

The arrival of concrete machines with more than a handful of qubits has created a strong
pull effect for the development of quantum programming languages [QTOOLS24]. Indeed, if
hand-writing circuits is feasable for a few qubits, it quickly becomes cumbersome and error-
prone even for a few dozen of qubits. Turning a pen-and-paper algorithm to an effective,
runnable sequence of gates on a quantum coprocessor with a hundred qubits requires a pro-
gramming language to describe and manipulate the structure of the circuit. Whether this
language is standalone or embedded, it has to be formalized enough to support analysis tech-
niques and tools to assess the validity of quantum programs. Moreover, whether in the NISQ
or the LSQ era, quantum coprocessors are and will arguably be both expensive to run and lim-
ited in resources. Optimizing the resource footprint of an algorithm is then critical, opening
the field to the development of synthesis and optimization techniques for quantum programs.

I entered the game in 2002 when I started a Master’s program at the University of
Ottawa under the supervision of Peter Selinger. I had the opportunity to design a
quantum lambda calculus and work on its semantics, first as a Master’s student and
then as a PhD student, still under Peter Selinger’s supervision. I had, therefore, the
chance to be on the frontline of the research on quantum programming languages.
Since my Ph.D. defense in 2008, the field has evolved and significantly matured, and
I was lucky to be part of the process. The rest of the manuscript summarizes this evo-
lution, seen from my own view, and focuses on my contributions until now. Following
the rules of the Habilitation à diriger des Recherche (HDR), I take the year 2008—time
of my Ph.D. defense— as a pivot and focus on what happened next. The notion of
“present time” being a moving target, I chose 2020 (give or take) as the end of the past
and the beginning of the future—this is the time where I started to write this thesis.
I shall use blue text boxes like the one encapsulating this paragraph to reflect on my
experience with the topics and subjects discussed.

Scope and plan of the Manuscript. This thesis is concerned with quantum programming
languages from a formal perspective. The scope is deliberately skewed towards the research
interests—and the work—of the author. The document focuses on three emblematic research
threads (Chapters C, D and E) in which the author participated between 2008 and 2020. For
each chapter, the related publications are summarized at the end in a separated table: Ta-
bles D.8, C.13 and E.1. The later publications are in Table F.1.

Chapter B briefly presents some background material and reviews the state of quantum
programming languages as it was in 2008. The discussion covers the preliminary design pro-
posals for quantum languages with a focus on the quantum lambda calculus, one of our con-
tributions at the time.

Chapter C discusses the design of quantum programming languages within the copro-
cessor model and the shift from toy languages to scalable programming environments. We
have, in particular, been involved in the development of Quipper, a domain-specific, circuit-

12

Chapter A Introduction

description language embedded in Haskell. The language comes with sound design principles
that are still state of the art nowadays. We then discuss two related aspects: circuit synthe-
sis and quantum program certification. Our contributions to circuit synthesis are twofold: a
strategy for generating oracles by turning a classical piece of code into a family of reversible
circuits and approaches using numerical analysis to automate circuit synthesis based on a
matrix-like description. Regarding program verification, we have been involved in deductive
verification, particularly with developing the tool Qbricks.

Chapter D explores the semantics of quantum lambda calculus and its extension with
circuit-description capabilities, bridging with Chapter C. A semantics is a formal description
of some of the properties of a programming language: its structures, its behavior, its action,
etc. A semantics usually shares a strong connection with a model of some logic through a
Curry-Howard correspondence. In the case of quantum computation, one of our contributions
before 2008 has been to connect quantum lambda calculus with linear logic. This resource-
sensitive logic forms a natural framework for reasoning on the non-duplicability of quantum
registers. The chapter presents such Curry-Howard correspondence, linking linear logic and
the quantum lambda calculus. Three aspects of the problem are then discussed: first, the quest
for a denotational semantics for the corresponding typed quantum lambda calculus; then the
link between the typed quantum lambda calculus and an interaction-based model of linear
logic: Geometry of Interaction; finally, the description of denotational semantics for quantum
lambda calculi with circuit-description features.

Chapter E examines an effect specific to quantum computation: quantum control. This
non-standard model of computation generalizes the notion of superposition: On top of the
superposition of data, we consider the possibility of superposition of executions. All of this
opens several challenges, such as the expressivity of this new computational paradigm and
the design of syntactic languages to describe superpositions of programs. Concerning the ex-
pressivity of the model, our seminal contribution is the quantum Switch: a minimal algorithm
featuring a superposition of execution that quantum circuits cannot represent. On the syn-
tactic aspect, we explored several approaches for functional languages with superposition of
programs, using not only lambda calculus but also specific syntax based on pattern-matching.

Finally, Chapter F describes a few research trends in the community corresponding to
the interest of the author: the rise of graphical languages, the problem of the unification of
quantum and classical control, the definition of quantum compilation toolchains, and the
challenge of quantum program certification.

Blind Spot. Many important aspects pertaining to the field of quantum languages have been
left undiscussed in this document. In particular, we shall not consider the problem of error
correction, the development of quantum algorithms, or (most) practical aspects of quantum
compilation. Graphical languages and ZX in particular will not be discussed to the extent they
deserve—again, the scope of the document is only the author’s existing research production.
It should also be understood that we shall not discuss industrial-scale quantum programming
languages; the presentation stays at a formal, theoretical level.

Audience. The target audience for this document is a graduate student or a researcher in
formal methods interested in acquiring pointers to the field of quantum programming lan-
guages. More precisely, the main techniques used in the various works described in the doc-
ument are rewriting, logical and type systems, and category theory. The reader should not
expect complete proofs of results; instead, the presentation tries to stay high-level, and the
main results and constructions are, in general, given through the use of examples.

13

Chapter B

Quantum Programming
back in 2008

Since 2008, the state of the art in quantum programming languages has evolved a lot, par-
ticularly with new actors shaping the field in inconceivable ways back then. This chapter is
devoted to summarizing the state of the field back then.

• Section B.1 offers a quick introduction to quantum computation in general. On top of the
mathematical foundations, the section describes the standard computational paradigm
for quantum computation: the quantum coprocessor model. The section also discusses
an emerging language at the time with a graphical notation: the ZX calculus. This sec-
tion sets the playground for the rest of the thesis.

• Section B.2 presents the state of quantum programming languages around 2008. The
section discusses a few emblematic approaches and design strategies. Indeed, some of
them are at the root of the subsequent developments. For instance, in hindsight, the
notion of circuit-description language was already there in the quantum IO monad of
Altenkirch&Green’s [AG09], most of the challenges about quantum control were estab-
lished in for QML [AG05a], and Bettelli and Ömer had already started pondering the
interaction with the quantum coprocessor [BCS03, Öme03].

• Section B.3 introduces one of our main contributions at the time: the quantum lambda
calculus [Val04, Val08, SV06]. This extension of the lambda calculus provides a theo-
retical framework for reasoning on functional programming languages accommodating
quantum computation. The section discusses the necessity for a linear type system due
to the non-duplicability of quantum information and sketches the existing denotational
semantics at the time. As the section shows, existing semantics for the quantum lambda
calculus were still very modest. In particular, they could not capture both duplicable and
non-duplicable data at the same time [SV08a, SV08b].

B.1 Primer on Quantum Computation
In this section, we lay out the background on quantum computation needed for the rest of
the thesis. We invite the reader to consult e.g. [NC02] for more details.

B.1.1 Quantum Memory
In the standard model of quantum computation, one has access to a quantum coprocessor
holding a special kind of quantummemory. It consists of data encoded on the state of quantum

15

Chapter B Back in 2008

particles: photons, ions, etc. The behavior of the quantum memory is derived from the rules
of quantum mechanics. From a mathematical standpoint, the state of the quantum memory
is a normalized vector in a Hilbert space [NC02], usually considered modulo a global phase
—i.e. multiplication by a (non-zero) scalar. The smallest piece of quantum information is the
quantum bit , or qubit : its state is represented by a normalized vector in the Hilbert space
Q of dimension 2. One chooses a basis {|0⟩ , |1⟩} of two orthonormal vectors: a canonical
representation for the state |𝜙⟩ of a qubit is therefore of the general form

|𝜙⟩ = 𝜌0 |0⟩ + 𝜌1𝑒
𝑖𝜃 |1⟩ ,

where 𝜌0 and 𝜌1 are positive reals such that 𝜌2
0 + 𝜌2

1 = 1 and 𝜃 is an angle between 0 and 2𝜋 .
The value 𝜃 is a phase, whereas 𝜌0 and 𝜌1 are called amplitudes. In general, we however simply
consider a representative 𝛼 |0⟩ + 𝛽 |1⟩ with 𝛼, 𝛽 ∈ C and |𝛼 |2 + |𝛽 |2 = 1, keeping in mind that
the global phase 𝛼

|𝛼 |2 is not relevant.
The notation |𝜙⟩ is called a ket : if we choose the lexicographic ordering on the basis |0⟩ , |1⟩,

then |𝜙⟩ stands for the column vector

|𝜙⟩ = 𝛼 |0⟩ + 𝛽 |1⟩ =
(
𝛼

𝛽

)
.

There is a dual notation for row-vectors —or functionals—, the bra. The conjugate transpose
of |𝜙⟩ is therefore

⟨𝜙 | =
(
𝛼 𝛽

)
.

The notation is consistent with the scalar product, as follows:

⟨𝜙 | 𝜙⟩ = (⟨𝜙 |) (|𝜙⟩) =
(
𝛼 𝛽

) (
𝛼

𝛽

)
= |𝛼 |2 + |𝛽 |2 = 1.

The basis |0⟩ , |1⟩ therefore forms an orthonormal basis. Another standard orthonormal basis
is |+⟩ , |−⟩, where |+⟩ = 1√

2
(|0⟩ + |1⟩) and |−⟩ = 1√

2
(|0⟩ − |1⟩).

Kronecker product When considering several quantum registers simultaneously, the state
of the overall system lies within the Kronecker product , or tensor product of the individual state
spaces. If Kronecker products can be defined through a universal property [Lan02, Ch. XVI], a
simple presentation can be done with spaces equipped with bases. Consider the two Hilbert
spaces E and F of respective bases 𝐵E = {𝑒𝑖 }𝑖 and 𝐵F{𝑓𝑗 } 𝑗 . The space E ⊗F is defined as the
Hilbert space with (formal) basis 𝐵E × 𝐵F = {(𝑒𝑖 , 𝑓𝑗)}𝑖, 𝑗 . We write the pair (𝑒𝑖 , 𝑓𝑗) as 𝑒𝑖 ⊗ 𝑓𝑗 ,
and we bi-linearly extend the notation − ⊗ − to linear combinations as follows:(∑︁

𝑖

𝛼𝑖 · 𝑒𝑖

)
⊗

(∑︁
𝑗

𝛽 𝑗 · 𝑓𝑗

)
=

∑︁
𝑖, 𝑗

(𝛼𝑖𝛽 𝑗) · (𝑒𝑖 ⊗ 𝑓𝑗).

The ket- and bra-notations make it possible to shorten the tensor notation: we write |00⟩ for
|0⟩ ⊗ |0⟩. The canonical basis for a 2-qubit system is then in lexicographic ordering |00⟩, |01⟩,
|10⟩, |11⟩. Unless stated otherwise, the convention is to always use the lexicographic ordering
for basis.

Consider two registers 𝐴 and 𝐵 of respective states |𝜙⟩𝐴 ∈ H𝐴 and |𝜓 ⟩𝐵 ∈ H𝐵 . The state
of the joint system𝐴𝐵 is then |𝜙⟩𝐴 ⊗ |𝜓 ⟩𝐵 ∈ H𝐴𝐵 = H𝐴 ⊗H𝐵 . Such a state is called separable.
Every state is however not necessarily separable: suppose for instance that 𝐴 and 𝐵 are both
single qubits. A valid state for the 2-qubit system 𝐴𝐵 is

1
√

2
(|00⟩ + |11⟩)

which cannot be factorized as |𝜙⟩ ⊗ |𝜓 ⟩: such a state is called entangled .

16

Chapter B Back in 2008

𝐻 ≜ 1√
2

(
1 1
1 −1

)
𝑅𝑌 (𝜃) ≜

(
cos(𝜃2) − sin(𝜃2)
sin(𝜃2) cos(𝜃2)

)
𝑋,NOT ≜

(
0 1
1 0

)
𝑅𝑋 (𝜃) ≜

(
cos(𝜃2) −𝑖 sin(𝜃2)
−𝑖 sin(𝜃2) cos(𝜃2)

)
𝑍 ≜

(
1 0
0 −1

)
𝑅𝑍 (𝜃) ≜

(
𝑒−𝑖

𝜃
2 0

0 𝑒𝑖
𝜃
2

)
𝑆 ≜

(
1 0
0 𝑖

)
𝑇 ≜

(
1 0
0 𝑒

𝑖𝜋
4

)
Table B.1: Examples of 1-qubit Quantum Gates

B.1.2 Quantum Operations
The operations one can perform on a quantum memory are of two kinds: unitary operations
and measurements. The former correspond to actions internal to the quantum memory, with-
out feedback, while the latter models classical information retrieval from the quantum mem-
ory.

Unitary Operations. A unitary operation corresponds to a unitary endomorphism on the
space of states of the quantummemory—as in linear algebra—. In particular, such an operation
is linear, invertible, and sends orthonormal bases to orthonormal bases.

In general, a quantum coprocessor only supports a small set of unitary operations, called
unitary gates, or quantum gates. They usually only act on one or two qubits at a time. A standard
list of such gates acting on one qubit can be found in Table B.1. Standard gates acting on two
qubits are the control-NOT and the SWAP gate

CNOT =

©«
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

ª®®®¬ , SWAP =

©«
1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

ª®®®¬ ,
CNOT sends |0𝑥⟩ to |0𝑥⟩ and |1⟩ ⊗ |𝑥⟩ to |1⟩ ⊗ |¬𝑥⟩: it leaves invariant the subspace |0⟩ ⊗ Q
and acts as 𝑋 on the second qubit in the subspace |1⟩ ⊗ Q. The SWAP-gate is sending |𝑥𝑦⟩ to
|𝑦𝑥⟩: Note how we use the lexicographic ordering on bases to represent the matrices.

In general, given a unitary 𝑈 acting on 𝑛 qubits, the control of 𝑈 is the gate 𝐶 −𝑈 acting
on Q ⊗ Q⊗𝑛 and defined as |0⟩ ⊗ |𝜙⟩ ↦→ |0⟩ ⊗ |𝜙⟩ and |1⟩ ⊗ |𝜙⟩ ↦→ |1⟩ ⊗ (𝑈 |𝜙⟩). Using
the lexicographic representation of basis states, the gate 𝐶 − 𝑈 can be represented as the
block-matrix

𝐶 −𝑈 =

(
1 0
0 𝑈

)
.

As an example, the gate CNOT is𝐶−𝑋 . We can also define the Toffoli gate that acts on 3 qubits
and which is defined as 𝐶 −𝐶𝑁𝑂𝑇 . It sends |𝑥𝑦⟩ ⊗ |𝑧⟩ to |𝑥𝑦⟩ ⊗ |𝑧 ⊕ (𝑥 ∧ 𝑦)⟩.

A quantum gate-set is suitable for general quantum computation if it is universal, i.e. if
any unitary map acting on 𝑛 qubits can be realized with composition and tensors of elemen-
tary gates. Depending on the gate-set, this realization can be exact, or approximate up to an
arbitrary small error.

Measurement. A measurement corresponds to the (classical) observation of a quantum
system whose state lives in the Hilbert space H to retrieve a classical piece of information.
Operationally, it consists in choosing two orthogonal subspacesH0 andH1 spanningH and
determiningwhether the state of the system belongs toH0 orH1. In this case, any vector |𝜙⟩ ∈
H can be decomposed in |𝜙⟩ = 𝛼 |𝜙0⟩+𝛽 |𝜙1⟩, with |𝜙0⟩ ∈ H0 and |𝜙1⟩ ∈ H1, and |𝛼 |2+ |𝛽 |2 =

17

Chapter B Back in 2008

|𝜙⟩

𝑞0
𝑞1
𝑞2

𝐻 𝑈
𝑞2
𝑞3

𝑏1
𝑏0

Figure B.2: Example of quantum circuit

1. Ameasurement against the decompositionH = H0⊕H1 will project |𝜙⟩ onto one of the two
subspaces with some probability: |𝜙⟩ is changed to |𝜙⟩0 or |𝜙⟩1 (modulo renormalization) with
probability respectively |𝛼 |2 or |𝛽 |2. The classical result of the measurement is the subspace to
which the state now belongs.

For instance, measuring a qubit 𝛼 |0⟩ + 𝛽 |1⟩ along the basis {|0⟩ , |1⟩} —that is, the de-
composition Q = (C |0⟩) ⊕ (C |1⟩)— turns the qubit into |0⟩ with probability |𝛼 |2, in which
case we get the classical result “0”, or into |1⟩ with probability |𝛽 |2, in which case we get the
classical result “1”. By convention, the result “1” stands for “True” and “0” for “False”.

Quantum Circuits. Unitary gates are used to realize a global unitary operation on themem-
ory state-space. Such operations are historically represented using the ad-hoc, graphical nota-
tion of quantum circuit [Yao93]. Quantum circuits form the quantum counterpart of classical,
Boolean circuits. Due to the peculiar nature of quantum data, they are however much simpler
than Boolean circuits: there is no branching nor possible loop-back. Simple horizontal lines
read from left to right represents the life-span of a qubit or a quantum register, and boxes on
wires represents operations on them. An example is shown in Figure B.2. Wires can be labeled.
In the example circuit, 𝑞0, 𝑞1 and 𝑞2 are input wires of the circuit, while 𝑞3 is initialized with
|𝜙⟩. The NOT-gate is represented with a ⊕-symbol, and generic boxes are rectangles: 𝐻 acts
on 𝑞1, while𝑈 acts on 𝑞0 and 𝑞1.𝑈 is negatively controlled by 𝑞3, while the NOT-gate on 𝑞3 is
positively controlled by 𝑞1. Circuits can also contains measurements, shown in Figure B.2 as
the last box on the right. Boolean results are represented with double-wires and can be labeled
for easy referring.

Quantum circuits can be extended with more constructs: measurements, wire initializa-
tion (such as shown in Figure B.2), wire termination, etc. In a quantum circuit wires that are
initialized and then terminated inside the circuit correspond to temporary registers. They are
called auxiliary wires, or ancillas. Ancillas are more subtle to use than conventional, local vari-
ables: terminating an ancillas amounts to measure the corresponding qubit. If needed, special
care must therefore be taken to retain unitarity.

Hardware The mathematical model is an ideal representation of the memory setup at the
hardware level. Indeed, physical qubits are noisy, as they are subject to decoherence [Sch08].
The hardware also entails topological constraints —it might not be possible to act on two
physically distant qubits— or limitations on the gate set. From a programming perspective,
these problems are to be addressed in the context of a quantum compilation toolchain.

B.1.3 Mixed States

An arbitrary sequence of operations sent to a quantum memory interleaves unitaries and
measurement. In general, the resulting state of the quantum memory at the end of the com-
putation is therefore not a single quantum state |𝜙⟩ —a pure state— but a mixed state —whose
naive representation would be a probability distribution of pure states. Does this mean that
one can use the set of such probability distributions as a valid model for mixed states? The
answer is not so clear: it depends on what observations are allowed.

18

Chapter B Back in 2008

Superoperators. If a quantum computation is understood as a quantum experiment, the
only available operations are unitaries and measurements, and the only possible classical out-
come of an observation is the (classical) result of a measurement (did we measure 0 or 1?). In
this configuration, as physicists already noticed [NC02] probability distributions do not make
a sound model for mixed states. Instead of considering

∑
𝑖 𝑝𝑖 {|𝜙𝑖⟩}, a semantics matching the

observational equivalence given by unitaries and measurements is the positive matrix

𝜌 =
∑︁
𝑖

𝑝𝑖 |𝜙𝑖⟩ ⟨𝜙𝑖 |

A positive matrix of trace 1 (such as this one) is also called a density matrix . Positive matrices
form a semantics for mixed states supporting both unitary operations and measurements. In
this framework, a general quantum computation inputting𝑛 qubits and outputting𝑚 quantum
bits is represented by a trace-preserving, completely positive map —also known as superopera-
tor—

𝐹 : C2𝑛×2𝑛 → C2𝑚×2𝑚 . (B.1)

A completely positive map (CPM) is a linear map such that for all 𝑘 ∈ N, 𝐹 ⊗ idC𝑘×𝑘 sends
positive matrices to positive matrices.

Löwner order. Positive matrices (and by extension completely positive maps) feature an
ordering relation, the Löwner order [Löw34, Loe50, BB83]: 𝐴 ⊑ 𝐵 whenever 𝐵 − 𝐴 is positive.
This order is stable under sum and (non-negative) scalar multiple. It makes the cone of positive
𝑛×𝑛matrices a bounded dcpo: any bounded, directed set of positivematrices under the Löwner
order admits a least upper bound. This relation is consistent with the trace: if 𝐴 ⊑ 𝐵 then
tr(𝐴) ≤ tr(𝐵).

The Löwner order makes it possible to interpret possibly non-terminating quantum pro-
grams using positive matrices of trace less or equal to 1 and trace non-increasing completely
positive maps [Sel04a]. Following the standard domain interpretation [Plo83], the 0-valued
element —bottom of the cone— corresponds to the diverging program.

B.1.4 Quantum Coprocessor Model
In order to move from a mathematical model based on Hilbert spaces—or from physics ex-
periments—to a programmablemodel of computation, Knill proposes in 1996 theQRAMmodel
[Kni96], with a few basic pseudo-code constructs to express quantum algorithms.

Although other computational paradigms exist such as Measurement-based computation
[RBB03, RB01] or adiabatic computation [FGGS00, FGGLLP01], Knill’s QRAM model has so
far remained the standard model used in the design of quantum algorithms [QZOO22]. In-
deed, from the perspective of the quantum coprocessor, the run of a quantum algorithm can
be summarized with three classes of operations: quantum register initializations; application
of elementary gates on arbitrary qubits; measurements of arbitrary qubits.

Knill’s QRAM model requires these low-level operations since they form the core of the
interactions between the classical machine and the quantum coprocessor. In addition to these
elementary building blocks, Knill proposes a few high-level constructs such as subroutine in-
version or controlling.

He also proposes to support the invocation of classical operations as oracles. An oracle
is the translation of the classical structure of the program into a quantum unitary. It can for
instance be the structure of a graph, an arithmetic operation, etc. In general, provided that the
description of the problem is written as a (classical, irreversible) map 𝑓 : bool𝑛 → bool𝑚 , one
can always build the quantum unitary 𝑈𝑓 : Q⊗𝑛 ⊗ Q⊗𝑚 → Q⊗𝑛 ⊗ Q⊗𝑚 shown in Figure B.3
and defined as

𝑈𝑓 : |𝑥⟩ ⊗ |𝑦⟩ ↦→ |𝑥⟩ ⊗ |𝑦 ⊕ 𝑓 (𝑦)⟩ .
Oracle generation is the topic of Section C.2.1.

19

Chapter B Back in 2008

𝑈𝑓
|𝑥⟩
|𝑦 ⊕ 𝑓 (𝑥)⟩|𝑦⟩

|𝑥⟩

Figure B.3: Structure of the typical oracle

B.1.5 ZX calculus
Nowadays, graphical calculi for quantum computation are commonplace [CK17]. However,
if physicists were already making good use of graphical representations with e.g. Feynman
diagrams [Wüt11], in 2008 there were seldom graphical languages for quantum computation.

Apart from the ad-hoc representation of quantum circuits, in the late 2000’s a steady trend
was however taking off. Building on category theory and led by Abramski and Coecke [Coe04,
AC04], the computer science research group at Oxford became a thriving center for a novel
graphical representation based on the interaction of pairs of mutually unbiased observables:
the ZX calculus [CD07, CD08, pub22, CK17].

Falling within the large class of tensor network representation [BB17], the ZX calculus
can be regarded as a graphical language for a special kind of dagger, compact closed category
with two commutative †-Frobenius monoids [CPV13]:

n wires n wires

m wiresm wires

α α

(B.2)

ZX-diagrams are composed from these constructs and read from top to bottom. The green
spider corresponds to the basis {|0⟩ , |1⟩} and the red spider to the basis {|+⟩ , |−⟩}. The 𝛼 is
a phase. These two algebras form a bialgebra satisfying the Hopf law [CD08, CD11], so for
instance

α

β
α+β= =

where a node with no label corresponds to the phase 0.
The ZX calculus aims at abstracting away the structure of finite Hilbert spaces. A ZX term

indeed admits a standard representation as general, linear function acting on Hilbert spaces.
A diagram with 𝑛 input and 𝑚 output wires corresponds to a linear function Q⊗𝑛 → Q⊗𝑚 .
For instance, the “cap” in Eq. (B.2) is the map C → Q ⊗ Q sending 1 to |00⟩ + |11⟩, while the
green node is sending |1 · · · 1⟩ to 𝑒𝑖𝛼 |1 · · · 1⟩ and any other basis state to itself.

The ZX calculus is mentioned later in Section C.2.3.

B.2 Quantum Programming Paradigms

Before 2010, with the lack of concrete quantum coprocessors and use-cases for quantum al-
gorithms, quantum programming was mostly a theoretical playground [Gay06]. Nonetheless,
with hindsight, much of the current state-of-the-art techniques in quantum programming

20

Chapter B Back in 2008

were already latent. We present them in this section, building on five works spanning the
approaches at the time: Bettelli’s C++ library [BCS03], Ömer’s QCL language [Öme03], Al-
tenkirch&Grattage’s QML for quantum control [AG05a], Altenkirch&Green’s quantum IO
monad [AG09], Vizzotto’s quantum arrows [VAS06]. An important paradigm for this thesis
is the quantum lambda calculus [SV06]: we discuss it in Section B.3.

Quantum Programming within Classical Environment. A quantum algorithm aims at
solving a classical problem instance, and it is meant to run on a classical computer, piloting a
quantum coprocessor. As such, the control flow of the program is purely classical. It therefore
makes sense to package the interaction with the quantum coprocessor into a dedicated library
of an existing programming language. Bettelli et al [BCS03] proposes such a library within
C++, capitalizing on C++ object model to build circuit abstraction. Although this particular
implementation has not spurred any spin offs, the concept of using an existing (classical)
programming language to host a quantum language has been very successful and is still in
use in most current programming environment for quantum computation such asQiskit. The
limit of this approach is however the ability to reason about quantum programs and to offer
tools for certified quantum programming.

Circuits as Side-Effects. Instead of using C++ as a host language, Altenkirch&Green [AG09]
proposes a Haskell domain-specific language (DSL), building on Haskell’s monadic paradigm
to abstract away the interaction with the quantum coprocessor. Altenkirch&Green [AG09]
in fact presents the first formal baseline for a sound understanding of the interaction with
the quantum coprocessor: it can be understood as an input/output side-effect. A quantum
program outputs gates to the coprocessor, while it inputs results of measurements. Haskell
makes it possible to give a clear interface to a side effect. With the quantum IO monad QIO,
one can therefore type qubit initialization and measurements as

1 qinit :: Bool -> QIO Qbit
2 meas :: Qbit -> QIO Bool

that is, qinit inputs a Boolean value and returns a qubit object within the QIO interface: such
an operation only makes sense within the context described by the interface. An implementa-
tion can be a real quantum coprocessor, or a simulator, or some more exotic implementation
for instance recording all possible execution traces. The quantum IO monad framework forms
the baseline for the development of Quipper discussed in Section C.1.2.

Circuits as Functions. Unlike Bettelli’s approach [BCS03] a quantum circuit in the QIO
framework is a regular function in the host language. A circuit on one wire is typed with

Qbit -> Circ Qbit.

The input wire of the circuit is the input of the function, and the output wire of the circuit is
the output of the function. As a side-effect, the function generates a piece of circuit. The Circ
type constructor encapsulates all the interaction between the program and the coprocessor.

Using regular functions to model circuits might limit the amount of manipulation allowed
on circuits. Some operations such inversion cannot be easily formulated in such a general
context. An alternative proposal has been formulated by Vizzotto et al [VAS06]. The proposal
builds on Haskell’s implementation of arrows: a contrived notion of function, distinct from
Haskell’s usual function-type. This quantum arrow can therefore encapsulate all of the in-
teraction with the quantum coprocessor, and it offers an alternative approach to the QIO
monad—albeit arguably less intuitive to program. Nonetheless, the two layers of arrows (the
special quantum arrow and the regular, Haskell arrow-type) are very versatile, and can be seen
as a foundation for Theseus [JS14] and the contributions presented in Section E.3.2.

21

Chapter B Back in 2008

Programming Constructs of the Quantum Coprocessor. Although in the 2000’s quan-
tum coprocessors were still a very theoretical notion, there were already attempts at exploring
their programming capabilities. Instead of simply stacking gates into a circuit, Ömer proposes
with the imperative language QCL [Öme03] quantum-specific subroutines, making it possi-
ble to distinguish features only available classically or only available quantumly. QCL can
in a sense be regarded as a preliminary exploration of the current trend of hybrid quantum
programming.

The language QCL is very imperative and the approach fails to catch the control flow hid-
den inside a quantum circuit. A naïve quantum control consists in the usual control of unitary,
seen as a quantum test : an operator 𝑈 acting on wire 𝑞0 and controlled by wire 𝑞1 can be
regarded as a test on 𝑞1. The language QML [AG05a] is arguably the first one to offer such
syntactic, purely quantum test. The authors derive a small first-order language in which such
a control can be written with an if-then-else construct: the test is quantum in the sense
that the value tested upon is never measured, and both branches of the test fire in super-
position. Quantum control is however an elusive notion, and besides simple tests, allowing
general superpositions of execution paths has been shown highly non-trivial and is still an
active research area, discussed in Chapter E.

B.3 Quantum Lambda Calculus

One of the main topics of this thesis is the quantum lambda calculus [SV05, SV06, Val04, SV09,
Val08]. This language formalizes the notion of quantum, higher-order functional programming
language with classical control, where a program is running on a classical computer with
access to a quantum coprocessor. The language is equipped with a set of constructs and an
operational semantics to formalize the interaction with the coprocessor. This approach has
been shaping what is now the state of the art in term of quantum programming and quantum
program certification.

This section can be regarded as a quick introduction to Chapter D. We first briefly recall
the lambda calculus. We then discuss the strategy employed in [SV06] to extend it to support
quantum computation: the resulting formal language is the quantum lambda calculus, our
main contribution before 2008. We then present the notion of type system we developed using
linear logic, discussing why it makes a suitable framework for typing quantum data.We finally
quickly sketch the state of denotational semantics of the quantum lambda calculus in 2008.

This has been the subject of my M.Sc. [Val04] and my Ph.D. thesis [Val08]: my main
contribution at the time has been the study of the quantum lambda calculus and of
its semantics.

B.3.1 Lambda Calculus
The lambda calculus [Bar84] is a versatile model of higher-order programming languages,
where functions are first-class terms that can be returned or passed along as arguments. The
basic constructs consist of variables:𝑥,𝑦, . . ., lambda-abstractions 𝜆𝑥.𝑀 , standing for functions
of argument 𝑥 and body 𝑀 , and applications 𝑀𝑁 : the term 𝑁 is an argument fed to the
function 𝑀 . Terms of the language are called lambda-terms. A variable 𝑥 in a term 𝑀 may
be bound by a lambda; otherwise it is called free. Computation is typically defined with a
rewrite-system based on the so-called beta-reduction:

(𝜆𝑥 .𝑀)𝑁 → 𝑀 [𝑥 := 𝑁] .

Various constraints can be set, yielding evaluation strategies: call-by-value, call-by-name, call-
by-need, etc [Plo75,MOTW95], etc. The language can furthermore be extendedwith constants

22

Chapter B Back in 2008

and other constructs to natively support other programming features and/or side-effects.
Lambda-terms can be typed [BDS13]: the grammar of types consists at least of one con-

stant type 𝛼 and an arrow constructor 𝐴 ⇒ 𝐵. A term 𝜆𝑥 .𝑀 being a function, its type is of
the form 𝐴 ⇒ 𝐵, when 𝑥 is meant to be of type 𝐴 and 𝑀 of type 𝐵. A set of typing rules then
specify what is a valid type for a given term. For instance, if 𝑀 is of type 𝐴 ⇒ 𝐵 and 𝑁 is of
type 𝐴, then𝑀𝑁 can be specified of type 𝐵:

𝑀 : 𝐴 ⇒ 𝐵 𝑁 : 𝐴
𝑀𝑁 : 𝐵 . (B.3)

Typed lambda calculi form the canonical medium for the Curry-Howard isomorphism: a
correspondence identifying types with logic formulas, and terms with proofs in the logic
[GLT90]. For instance, the rule Modus-Ponens

𝐴 ⇒ 𝐵 𝐴

𝐵

corresponds to the typing rule of the application shown in Eq. (B.3). In a similar way as lambda
calculus can be extended with constants and constructs, type systems can be very sophisti-
cated to capture many properties of the underlying language [Pie02], drawing deep connec-
tions with expressive logics. In the context of a quantum extension to the lambda calculus,
such a relevant logic turns out to be linear logic [Gir87]: this is discussed in Section B.3.3.

B.3.2 Quantum Extension to the Lambda Calculus
The idea behind the quantum lambda calculus is to offer an interface to the quantum copro-
cessor. To this end, it is natural to endow the language with two constant types bit and qbit,
respectively standing for classical Boolean values and quantum bits. Three term constants can
then be added: meas for measuring a qubit, qinit for initializing new qubits, and a family of
constants𝑈 , ranging over a set of unitary gates.

The question is how to incorporate qubit objects in the language. A naïve approach consists
in adding one constant for each quantum state: one could then write for instance

𝜆𝑓 .𝜆𝑔.(𝑓 |0⟩)(𝑔 |1⟩) (B.4)

The problem with such an approach is entanglement: What if the two-qubit system in state
|01⟩ used in Eq (B.4) where instead in state 1√

2
(|00⟩+|11⟩)? As proposed by van Tonder [Ton04],

one could imagine a quantum superposition of terms. But this turns out to be in fact equivalent
to simply storing the quantum state on the side, and using pointers to qubits in the term, as
follows: [

1
√

2
(|00⟩ + |11⟩), |𝑥𝑦⟩ , 𝜆𝑓 .𝜆𝑔.(𝑓 𝑥) (𝑔𝑦)

]
(B.5)

with |𝑥𝑦⟩ being a compact representation for a function sending 𝑥 to qubit position 0 and 𝑦

to qubit position 1.
In a series of papers [SV05, SV06, Val04, SV09, Val08], we follow this now standard proce-

dure to define a quantum lambda calculus and its operational semantics. A program is then a
triple [𝑄, 𝐿,𝑀] mimicking a simple quantum coprocessor where gates are sent one-at-a-time.
In the triple, the element𝑄 is the state of the quantummemory,𝑀 is a lambda-term with free
variables standing for pointers to qubits in the memory, and 𝐿 is a linking function addressing
each pointer to their qubit position in the memory. Due to the nature of the measurement,
the evaluation ends up being probabilistic: there is the need for a choice of reduction strategy ,
since tossing a coin and duplicating the result is not the same thing as duplicating the coin
and tossing (once) each copy. In the case of the quantum lambda calculus, following effectful

23

Chapter B Back in 2008

higher-order languages such as Ocaml, the original choice has been a call-by-value reduction
strategy: an argument is reduced to a value before being passed along to the function.

This standard abstract machine and reduction procedure is described in more details in
Section D.1.2 together with our later contributions.

B.3.3 Linear Type System
In the quantum lambda calculus, qubits have a special property: they are non-duplicable. In-
deed, if the function

𝜆𝑥 .(CNOT𝑥) 𝑥

inputting a qubit and passing it to the control-NOT both as control and as active qubit is not
valid. Similarly, the behavior of the term

𝜆𝑥.(𝑀 (meas𝑥)) (𝑈 𝑥))

heavily depends on the evaluation ordering of arguments. In order to feature the usual safety
properties, a type system for the quantum lambda calculus has to enforce non-duplicability,
i.e. linearity of qubits.

Because of the higher-order nature of the language, non-duplicability is not restrained to
qubits. For instance, the term

(𝜆𝑥 .(𝜆𝑓 .𝑓 𝑥)) (qinit tt)

(where tt stands for the Boolean True) initializes a new qubit and makes a function using
this qubit. The function is thus non-duplicable as it contains a qubit inside its body. Non-
trivial examples can be constructed based on the teleportation algorithm [SV06] or the Bell
experiment [Val11].

A suitable resource-sensitive logic is linear logic [Gir87]: objects are strictly linear by de-
fault, and a special type constructor “!” is added to the logic to tag duplicable and erasable
elements. The original type systems for the quantum lambda calculus builds upon linear logic:
In Section D.1.2, we present an instantiation following intuitionistic affine linear logic.

B.3.4 Towards a Denotational Semantics
A denotational semantics is a mathematical—or categorical—models characterizing the behav-
ior of programs [Sto77, Sch86, LS89]. A denotational semantics attaches to each type a math-
ematical space—or an object of a category—and to each well-typed term a suitable function
—or morphism.

The strictly linear fragment. In the context of quantum computation, the natural mathe-
matical framework consists in density matrices and superoperators —or more generally, pos-
itive matrices and completely positive maps—. Capitalizing on the Choi theorem [Cho75],
Selinger [Sel04a, Sel04b] describes a (concrete) compact closed category based on cones of
positive matrices and completely positive maps. This category has been shown to provide
a fully-abstract model for strictly linear quantum computation in [SV08a]. However, as it is
based on finite-dimensional vector spaces it cannot handle inductive types such as natural
numbers or lists. Similarly, it is not expressive enough to model the type constructor “!”: this
will be the subject of Section D.2.

Towards duplication. In [SV08b], we made a preliminary, abstract proposal for the struc-
ture required for a model of a full quantum lambda calculus. The proposed structure is based
on 2 categories and a strong monad:

• A symmetric monoidal category C, standing for the computations available inside the
quantum coprocessor,

24

Chapter B Back in 2008

• A cartesian closed category D for classical, effect-free higher-order computation,

• A strong monad on D abstracting the probabilistic side-effect

The two categories C and D form a linear-non-linear model [Bie93, Ben94b], therefore giv-
ing rise to a semantics for the “!” operator as a comonad. Linear-non-linear models form the
root of all existing semantics for state-of-the-art circuit-description languages [PRZ17, RS18b,
LMZ18, FKS20]. Accommodating duplication and circuit construction is the topic of Chap-
ter D.

25

Chapter C

Quantum Languages and
Compilation Toolchain

At the turn of the 2010s, quantum coprocessors started to be considered mature enough for
quantum algorithms to be competitive compared to purely classical ones [QCS].

The problemwas to connect two distinct lines of work. On one side, the design of quantum
algorithms, focusing on their asymptotic behavior, and the other quantum programming lan-
guages, veryminimalist at the time. Furthermore, leaning toward the concrete use of quantum
algorithms requires to conceptualize the compilation of the language onto concrete hardware.
A quantum compilation toolchain needs to take into account the constraints of the coproces-
sor: the small memory size, the structure of thememory, and possibly the noise of the backend.
Because of the many ways quantum algorithms are described, a compilation frameworks has
to be equipped with robust methods for synthesizing and optimizing circuits out of classical
specifications—whether provided as matrices or given as classical code. Finally, the counter-
intuitive behavior of quantum computation added to the difficulty of testing programs hints
toward the development of a dedicated set of formal methods and analysis techniques for
quantum program.

This chapter is devoted to a presentation of the author’s work on these aspects: design of
a scalable quantum programming language, circuit synthesis techniques, and analysis tools
from a practical point of view. Each of them covers a section.

• Section C.1 presents our main contribution on the topic of scalable quantum program-
ming language: the design of the language Quipper [GLRSV13b]. We first discuss the
concept of circuit-description language and how it offers a sound, formal paradigm for
interacting with the coprocessor. We then introduce Quipper, a domain-specific lan-
guage embedded in Haskell and following this principle. We finally present a use-case
enlightening the effectiveness of the approach: The logical resource estimation of an
instance of theQuantum Linear System Algorithm [SVMABC17].

• Section C.2 discusses three of our lines of works concerned with circuit synthesis and
optimization. We first present a technique, novel at the time, to automatically construct
an oracle (the circuit𝑈𝑓 of Figure B.3) from the code of a classical function (the function
𝑓 of Figure B.3) [Val16]. We then discuss circuit synthesis out of the description of a
unitary matrix—an array of complex numbers [BBVA20]. We finally turn to the question
of the use of the ZX calculus as a tool for describing and optimizing quantum circuits
[BPV21].

• Section C.3 considers the problem of quantum program certification. Testing being hard
—if not impossible— when manipulating quantum information, certifying that a quan-

27

Chapter C Quantum Compilation

tum program behaves as expected requires formal methods and proof techniques. In
this section, we discuss the problems this raises and argue that deductive verification is
a suitable technique for the problem. We then present our contributions: a Floyd-Hoare
logic for recursive quantum programs [XVY21], and Qbrick, our proposal for proving
properties of quantum programs in a scalable manner [CBBPV21].

My contributions to the field are summarized by the sectioning of the chapter. Sec-
tion C.1 covers the series of works on the design of quantum programming languages
derived from my post-doc in the US in 2011-2013. Section C.2 highlights some of the
results I participated in developing, in particular with two of my former Ph.D stu-
dents: Timothée Goubault de Brugière, Ph.D student in CIFRE co-supervised with
Marc Baboulin (LMF) and Cyril Allouche (Atos), and Agustin Borgna, Ph.D student
co-supervised with Simon Perdrix (LORIA). Finally, Section C.3 skims through the
problem of specification and verification, and my contributions to the field, some of
it coming from a collaboration with the quantum group at CEA-LIST/LSL. The collab-
oration is still ongoing with a Ph.D student: Jérome Ricciardi.

C.1 Quipper: a Circuit-Description Language
This section is devoted to one of our main contributions: the design of Quipper, the first scal-
able quantum programming language. BeforeQuipper, the state of the field, described in Sec-
tion B.2, showed little connection between algorithm use-cases and quantum programming
languages. This was a serious roadblock for investigating the concrete applicability of quan-
tum algorithms.

The main formal realization we made while working on Quipper is the fact that realistic
quantum algorithms require a circuit-description language with both low-level and high-level
circuit constructors. WithQuipper, we propose a formal, sound setting for representing quan-
tum programming, opening the door to program verification and certification. This section
is devoted to the presentation of Quipper. Section C.1.1 discusses the main design principles
we developed. Section C.1.2 presents Quipper, and Section C.1.3 sketches one of our contri-
bution using Quipper: the logical resource estimation of an instance of a quantum algorithm
for solving linear systems of equations.

From 2011 to 2013 I was postdoc at the University of Philadelphia, in the US, employed
by the large pan-American QCS project [QCS] funded by IARPA. The project spanned
physics and computer science; I was hired to work on the language aspect.
One of the goals of the QCS project was to provide a concrete logical resource estima-
tion for quantum algorithms. Seven algorithms were chosen by IARPA:

1. [CCDFGS03] to find a labeled node in a graph;
2. [ACRŠZ10] to evaluate a NAND formula;
3. [Hal07] to approximate the class group of a real quadratic number field;
4. [WBA11] to compute the ground state energy level of a particular molecule;
5. [HHL09, Amb12, CJS13] to solve a linear system of equations;
6. [Reg04] to choose the shortest vector among a given set;
7. [MSS07] to exhibit a triangle inside a dense graph.

The objective was to span a reasonably representative set of the existing algorithms
of the timea. The chosen algorithms make use of a wide variety of quantum primitives
such as amplitude amplification, quantum walks, quantum Fourier transform (QFT),
quantum phase estimation (QPE), quantum simulation, etc. Several of the algorithms
also require the implementation of sophisticated classical oracles. The starting point

28

Chapter C Quantum Compilation

Generate

Run and get result
of measurement

Post-process

Start over
probabilistically

Output

Parameters

(a) Static scheme

measure

head of circuit one possible tail

another tail

prob.

processing
generate
& run

(b) Dynamic scheme

Figure C.1: Workflows for quantum algorithm

for each of our algorithm implementations was a detailed description of the algorithm
provided by IARPA.
As part of the project, we developed Quipper as a tool to answer the particular
problematics of coding the aforementioned algorithms in the context of the IARPA
project, and the research spurred a series of papers: [GLRSV12, GLRSV13b, GLRSV13a,
SRSV14, VRSAS15, SVMABC17]. Along the line we conceptualized the language de-
sign principles presented in Section C.1.1, and we used Quipper for concrete logical
resource estimation. My contribution on the latter part is presented in Section C.1.3.

aNote however how the later trend of variational algorithms is —obviously— not represented.

C.1.1 Discussion: Quantum Programming Language Design
In Section B.1.4, circuits were merely seen as sequences of elementary gates. However, in most
quantum algorithms circuits are more complex structures, built compositionally from smaller
sub-circuits and circuit combinators. If they are usually static objects, buffered until complete
before being flushed to the quantum coprocessor, in some algorithms, circuits are even dy-
namically generated: the tail of the circuit depending on the result of former measurements.

In this section, we discuss the high-level structure of quantum algorithms, the require-
ments for a quantum programming language, and review some of the existing proposals.1

C.1.1.1 Structure of Quantum Algorithms
The usualmodel for quantum computationwas discussed in Section B.1.4: a classical computer
controls a quantum coprocessor, whose role is to hold a quantum memory. A programmatic
interface for interacting with the coprocessor is provided to the programmer sitting in front
of the classical computer. The interface gives methods to send instructions to the quantum
memory to allocate and initialize new quantum registers, apply unitary gates on qubits, and
eventually perform measurements. If the set of instructions is commonly represented as a
circuit, it is merely the result of a trace of a classical execution of a classical program on the
classical computer.

Figure C.1 presents two standard workflows with a quantum coprocessor. In Figure C.1a,
the classical execution inputs some (classical) parameters, performs some pre-processing, gen-

1This section is heavily inspired from my own contribution in [CBBPV21].

29

Chapter C Quantum Compilation

A B C

Original circuit

A B C A B C A B C

Iteration, i.e. sequential composition

A B C

Control

C B A

Inverse

A B C

A B C

Vertical
composition

Figure C.2: Standard Circuits Combinators

erates a circuit, sends the circuit to the coprocessor, collects the result of themeasurement, and
finally performs some post-processing to decide whether an output can be produced or if one
needs to start over. Shor’s factoring algorithm [Sho97] andGrover’s algorithm [Gro96] fall into
this scheme: the circuit is used as a fancy probabilistic oracle. Most of the recent variational
algorithms [MRBA16, CABB+21] such as VQE [PMSY+14] or QAOA [FGGLLP01, FGG14] also
fall into this scheme, with the subtlety that the circuit might be updated at each step. The
other, less standard workflow is presented in Figure C.1b. In this scheme, the circuit is built
“on the fly”, and measurements might be performed on a sub-part of the memory along the
course of execution of the circuit. The latter part of the circuit might then depend on the re-
sult of classical processing in the middle of the computation. One can for example cite the
Unique Shortest Vector algorithm [Reg04], or the more standard repeat-until-success proce-
dures [LBK05, PS14].

Understanding quantum circuits as a by-product of the execution of classical programs
shines a fresh light on quantum algorithms. Unlike a naive interpretation, a quantum algo-
rithm cannot be identified with a quantum circuit. Instead, in general, at the very least a
quantum algorithm describes a family of quantum circuits. Indeed, consider the setting of
Figure C.1a. The algorithm is fed with some parameters and then builds a circuit: the circuit
will depend on the shape of the parameters. If for instance we were using Shor’s factoring
algorithm, we would not build the same circuit for factoring 15 or 110,423,192,017. A quantum
programming language should therefore be able to describe parametric families of circuits.

The circuits described by quantum algorithms are potentially very large. We show for in-
stance in [SVMABC17] how a concrete instance of the HHL algorithm [HHL09] for solving
linear systems of equations can require as many as ∼1040 elementary gates, if not optimized—
see Section C.1.3 for details. To handle the scalability, quantum algorithms describe circuits
by composing sub-circuits—possibly described as list of elementary gates but not only—using
high-level circuit combinators. These combinators build circuits by (classically) processing pos-
sibly large sub-circuits. Some standard combinators are shown in Figure C.2 (where we rep-
resent inverse with reflected letters). Note that there is a distinction to be made between a
combinator, applied on a sub-circuit, and its semantics, which is an action on each elementary
gate. Combinators are abstractions that can be composed to build larger combinators, such as
the one presented in Figure C.3 built from inversion, controlling and sequential composition.

C.1.1.2 Requirements for Quantum Programming Languages
Any scalable quantum programming language should therefore allow the following operations
within a common framework.

• Manipulation of quantum registers and quantum circuits as first-class objects. The pro-

30

Chapter C Quantum Compilation

A

A A−1B

B

Figure C.3: Example of derived circuit combinator

grammer should both be able to refer to “wires” in a natural manner and handle circuits
as independent objects.

• Description of parametric families of quantum circuits, both in a procedural manner
as sequence of operations—gates or subcircuits—and in an applicative manner, using
circuit combinators;

• Classical processing. In our experience [GLRSV13b], quantum algorithms mostly con-
sists of classical processing: processing the parameters, building the circuits, processing
the result of the measurement.

This broad description might call for refinements. For instance, some of the classical process-
ing might be performed on the quantum coprocessor —such as the simple classical controls
required for quantum error correction. The level of classical processing performed on the clas-
sical computer —therefore requiring communication through the interface— and performed
on the quantum coprocessor —requiring a more or less sophisticated device— is dependent
on the physical implementation. If some recent proposals such asQuingo [Qui20] discuss the
design of quantum programming languages aware of the two levels of classical processing —in
and out of the coprocessor— this is still work in progress.

C.1.1.3 Review of the Existing Approaches
Most of the current existing quantum programming languages follow the requirements dis-
cussed in Section C.1.1.2. In this section, we review some typical approaches followed both
in academic and in industrial settings. This review is by no means meant to be exhaustive:
its only purpose is to discuss the possible strategies for the design of quantum programming
languages (QPLs).

When designing a realistic programming language from scratch, the main problem is the
access to existing libraries and tools. In the context of quantum computation, one would need
for instance to access the filesystem,make use of specific libraries, etc. In order to quickly come
up with a scalable language, the easiest strategy consists in embedding the target language
in a host language. Indeed, a quantum programming language can be seen a domain-specific
language (DSL), and it can be built over a regular language. One can then rely on the possibly
well-maintained and optimized compiler or interpreter of the host language.

If the advantages of working inside a host language are clear, there are two main draw-
backs, The first one is the potential rigidity of the host language: there might be constructs
natural to the DSL that are hardly realizable inside the host language. The second drawback
has to do with the compilation toolchain: the shallow embedding of the DSL makes it impos-
sible to access its abstract syntax tree (AST), therefore rendering its manipulation impossible.

Embedded QPLs. The first scalable embedded proposal isQuipper [GLRSV13b, GLRSV13a].
Embedded in Haskell, it capitalizes onmonads to model the interaction with the quantum co-
processor. Quipper’s monadic semantics is meant to be easily abstracted and reasoned over:
it is the subject of Section C.1.2. Since Quipper, there has been a steady stream of embed-
ded quantum programming languages, often dedicated to a specific quantum coprocessor
or attached to a specific vendor, and mostly in Python: Qiskit [Qis] and ProjectQ [SHT18]

31

Chapter C Quantum Compilation

for IBM, CirQ for Google, Strawberry Fields [KIQBAW19] for Xanadu, PyQuil and Forest for
Rigetti [SCZ17], AQASM for Atos [Ato22], etc. From a language-design perspective, most of
these approaches make heavy use of Python objects to represent circuits and operations. The
focus is on usability and versatility more than safety and well-foundness.

Standalone QPLs. On the other side of the spectrum, quantum programming languages
have been designed as standalone languages, with their own parser, and therefore abstract
syntactic tree. Maybe the first proposed scalable language was Ömer’s QCL [Öme03]. Ömer
experimented with several features such circuit-as-function, automatic inversion and oracle
generation. However, due to its non-modular approach the language did not have successors.
Liqui|⟩ [WS14] and its sequel Q# [SGTA+18], developed by Microsoft are good examples of
an attempt at building a standalone language while keeping a tight link with an existing pro-
gramming environment: Q# is based on the F# framework, making it possible to easily “use”
library functions from within a Q# piece of code. On the other hand, Q# has his own syn-
tax and type system. This makes it possible to capture run-time errors specific to quantum
computation. ScaffCC [JPKH+15] is another example of a QPL with its dedicated parser. If
the language is rather low-level its compiler has been heavily optimized and experimented
over, and it serves as support for a long stream of research on quantum compiler optimiza-
tions [CFM17, LFSMC20]. The last noteworthy language to cite in series is Silq [BBGV20],
as it serves as a good interface with the next paragraph: aimed at capturing most of the best
practice in term of soundness and safety, it is nonetheless targeted toward usability.

C.1.2 Our Proposal: Quipper

This section is devoted to the presentation of the language Quipper: a circuit-description lan-
guage based on the design principles described in Section C.1.1. Quipper is a language em-
bedded in the host language Haskell and uses a monadic semantics to enforce the desired
operational semantics—that is, circuit construction. Section C.1.2.1 quickly presents what is a
monadic semantics and Section C.1.2.2 describes how Quipper makes use of it.

C.1.2.1 Circuit Construction with a Monadic Approach

The solution devised byQuipper consists in relying on a special language feature fromHaskell
called monad. A monad is a type operator encapsulating a side effect. Consider for instance
a probabilistic side effect. The monad is regarded as a type operator, e.g. P. There are two
classes of terms: terms without side-effect, with types e.g. Bool, or Int, and terms with side-
effect, with types e.g. P(Bool), standing for “term evaluating to a boolean, possibly with a
probabilistic effect”, or P(Int). The operator P(-) captures the probabilistic side effect.

A monad comes with two standard maps: return regards a value as a “term with a (trivial)
side-effect”, and eval, for applying a function to an effectful term. For P we would have

return :: a → P(a) eval :: (a → P(b)) → P(a) → P(b)

A few equations have to be satisfied by return and eval for them to describe a monad. For
instance, eval return is the identity on P(a). There can of course be more operations: for
instance, we can add to the signature of P an operator coin of type () -> P(Bool), whose
semantics would be to return tt or ff with equal probability.2.

A nice property of monads is that effectful operations can be written with syntactic sugar
in an imperative style, as follows.

2In Haskell, the unit type is denoted with ().

32

Chapter C Quantum Compilation

1 do
2 x <- coin ()

3 if x then return 0 else return 1

The program above is of type Int and is equal to

eval (𝜆 x.if x then return 0 else return 1) (coin ())

once the syntactic sugar has been removed.
Following this approach, quantum computation can be understood as a side-effect: it com-

bines both (1) read/write effects, since gates are sent to the coprocessor, and results of mea-
surements are received; (2) Probabilistic effects, since measurement is a probabilistic opera-
tion. The first attempt at formalizing this monad is Green’s quantum IO monad [AG09]: it has
then been further developed in Quipper [GLRSV13b], subject of Section C.1.2.2.

C.1.2.2 Design principles for Quipper

Quipper is built as an embedded language in Haskell. It makes heavy use of Haskell’s type
classes [WB89] and type families [KJS10] to enhance parametricity. Monads freely come in
Haskell as a particular type class. As discussed in Section C.1.2.1, Quipper’s operational se-
mantics relies on a specific monad encapsulating circuit construction: the Circ monad. The
interactionwith the coprocessor can bemodeledwith an I/O interface: gates are emitted, while
branching occurs following a read operation. The Circ monad is then based on an inductive
construction akin to the following.

1 data CircIO a =
2 Empty a

3 | Unit Gate
4 | Meas (Bool -> CircIO a)

Circuits in Quipper feature wires of type Qubit and Bit —i.e. bit-wires resulting from a
measure. The signature of the Circ monad includes the following operations.

1 qinit :: Bool -> Circ(Qubit)
2 measure :: Qubit -> Circ(Bit)
3 dynamic_lift :: Bit -> Circ(Bool)
4 had :: Qubit -> Circ(Qubit)

The coin-toss of Section C.1.2.1 can be written as

1 coin () = do
2 q <- qinit True
3 q' <- had q

4 r <- measure q'

5 dynamic_lift r

The function coin is of type () -> Circ(Bool): running coin will merely generate a compu-
tation —a circuit to be executed— waiting to be executed.

Thanks to the monadic encapsulation, circuits can be manipulated within Haskell. For in-
stance, inversion and control can be coded in Haskell as circuit combinators with the following
types.

33

Chapter C Quantum Compilation

1 inverse :: (a -> Circ b) -> (b -> Circ a)

2 control :: (a -> Circ b) -> ((a,Qubit) -> Circ (b,Qubit))

One can also define operators to interact with circuits, such as

1 count :: (Circ a) -> Int
2 simulate :: (Circ [Qubit]) -> Prob [Bool]

where count returns the number of gates in the circuit, and simulate classically emulates the
input circuit followed with a measurement and returns the probability distribution.

The strength of Haskell’s monadic approach is the ability to capture parametric families of
circuits within the framework. For instance, a tower 𝐻⊗𝑛 of Hadamard gates (parameterized
by 𝑛) can be defined as

1 mapM hadamard :: [Qubit] -> Circ [Qubit]

where [Qubit] stands for the type of list of qubits. When fed with one specific list of qubits,
the program generates the corresponding circuit. This program is then indeed the description
of a family of circuits.

C.1.3 Use-Case: Logical Resource Estimation of the QLS Algorithm

In this section, we present one of the concrete application of the language Quipper: the first
complete logical resource estimation for one particular, concrete algorithm.

Indeed, before 2013, quantum algorithms were still theoretical apparatuses meant to study
the inherent asymptotic complexity of problems. While moving towards concrete use-cases,
one of the problem that arises is the discrepancy between the theoretical efficiency of an
algorithm and its particular implementation on a concrete problem instance. In particular, as
a quantum algorithm builds a circuit, what is the size of this circuit, provided a given problem
instance?

In a journal publication [SVMABC17], we perform a logical resource estimation for the
quantum linear system problem (QLS), for solving linear systems of equations. If the origi-
nal algorithm has been laid out by Harrow, Hassidim, and Lloyd [HHL09]—thus the common
name for the algorithm: HHL—the algorithm went through several refinements: first by Am-
bainis [Amb12] and then by Clader et al. [CJS13]. The latter was the focus of the work that
was analyzed in the journal publication [SVMABC17].

Statement of the Problem The QLS algorithm aims at solving a system of linear equations
of the form𝐴®𝑥 = ®𝑏, where𝐴 is a Hermitian 𝑁 ×𝑁 matrix of complex numbers, ®𝑏 is a C-vector
of dimension 𝑁 , and ®𝑥 is the unknown vector. Solving the equation morally corresponds to
inverting 𝐴.

The basic idea of the QLS algorithm is the following. Provided that 𝜆𝑖 and 𝑢𝑖 are respec-
tively the eigenvalues and eigenvectors of 𝐴, if ®𝑏 =

∑
𝑖 𝛽𝑖𝑢𝑖 , with suitable side conditions the

solution of the equation is simply

®𝑥 =

𝑁∑︁
𝑖=1

𝛽𝑖

𝜆𝑖
𝑢𝑖 .

The algorithm then relies on several non-trivial pieces: theQuantum Phase Estimation (QPE)
to retrieve the 𝜆𝑖 ’s; oracles for𝐴, ®𝑏 and the inversion; an Hamiltonian simulation [BACS07] to
build a circuit for 𝑒𝑖𝑡𝐴.

34

Chapter C Quantum Compilation

Summary of the Complexity Analysis. The original QLS algorithm and its subsequent
refinements [HHL09, Amb12, CJS13] leave aside the implementation details and only focus on
the general asymptotic complexity of the algorithm. It uses several parameters of the problem
instance: the size 𝑁 of the matrix ; the maximal error allowed 𝜀 ; the sparseness 𝑑 of the matrix
𝐴, that is, themaximumnumber of non-zero entries per row and column ; the condition number
𝜅, defined as the ratio between the largest and smallest eigenvalues of𝐴. The smaller 𝜅 is, the
closer it is to be invertible: 𝜅 gives information on the stability of the solution ®𝑥 .

That being said, the best known classical algorithm for solving linear systems of equa-
tions are based on the conjugate gradient method [She94, Saa03], and they have a run-time
complexity of 𝑂 (𝑁𝑑𝜅 log(1/𝜀)). By contrast, the HHL algorithm [HHL09] attains

𝑂 (𝜅2𝑑2 log(𝑁)/𝜀) (C.1)

(where𝑂 (−) suppressesmore slowly growing terms compared to𝑂 (−)). Provided that thema-
trix is well-conditioned and sparse enough, we theoretically get an exponential improvement
over the classical algorithm. The improvement proposed by Clader et al. [CJS13] provides a
complexity

𝑂 (𝜅𝑑7 log(𝑁)/𝜀2). (C.2)

For very sparse matrices, this algorithm is likely to beat the original HHL algorithm.
However, all of these “big-O” complexities are blind to the structure of the concrete de-

scription of the matrix 𝐴 and of the vector ®𝑏: they do not help with logical resource estimates
for concrete problem instances.

Logical Resource Estimation for a Problem Instance. In the project QCS—and the result-
ing paper [SVMABC17]—we applied theQLS algorithm to a linear system of equations coming
from the discretization of Maxwell’s equations using the finite-element method (FEM), to de-
termine the electromagnetic scattering cross-section of a specified target object [CJV93]. FEM
tends to generate sparse matrices, one of the conditions for the QLS algorithm.

To decide on the size 𝑁 of the matrix, using the big-O estimates, we came to 𝑁 ∼ 4 · 107

as the “cross-over point” at which the quantum algorithm would beat the classical algorithm.
We chose the somewhat larger value 𝑁 = 332, 020, 680 to stay on the safe side: it is reasonable
to expect such a problem size to be hardly tractable classically. The oracles for 𝐴 and ®𝑏 can be
derived from the problem instance. Their description is classical: see e.g. Fig. C.4 for a piece
of the specification of the oracle ®𝑟 , coded in Haskell. Note in particular how this requires
high-level libraries such as trigonometric functions.

Discussion For the chosen problem instance, the other parameters governing the complex-
ity yield 𝑑 = 7, 𝜅 = 104 and 𝜀 = 0.01. The logical resource estimation for 𝑁 = 332, 020, 680
is shown in [SVMABC17, Table 2, p. 42]: the circuit generated by the algorithm consists of
2.37 · 1029 elementary gates amongst 𝐻,𝑇 , 𝑆, 𝑋, 𝑍 and CNOT, and 3 · 108 total qubits (most of
them being ancillas required for the oracles). Not counting the oracles, the number of gates
falls to 3.34 ·1025 with only 281 qubits. The bottom line is that a big-O resource estimate is not
enough for deciding on the usability of a particular quantum algorithm. Another conclusion
is that optimization techniques are going to be an essential tool in a quantum compilation
toolchain.

The analysis performed in [SVMABC17] was novel at the time: it was the first concrete
analysis of the resources needed to run a quantum algorithm, without relying on “big-O”
estimates. Since the coding of the QLS algorithm in Quipper there has been a steady stream
of research on Hamiltonian simulation, see e.g. [BCCKS14, BCK15, Low19].

35

Chapter C Quantum Compilation

1 calcRweights y nx ny lx ly k theta phi =
2 let (xc',yc') = edgetoxy y nx ny in
3 let xc = (xc'-1.0)*lx - ((fromIntegral nx)-1.0)*lx/2.0 in
4 let yc = (yc'-1.0)*ly - ((fromIntegral ny)-1.0)*ly/2.0 in
5 let (xg,yg) = itoxy y nx ny in
6 if (xg == nx) then
7 let i = (mkPolar ly (k*xc*(cos phi)))*

8 (mkPolar 1.0 (k*yc*(sin phi)))*

9 ((sinc (k*ly*(sin phi)/2.0)) :+ 0.0) in
10 let r = (cos(phi) :+ k*lx)*((cos (theta - phi))/lx :+ 0.0) in i * r

11 else if (xg==2*nx-1) then
12 let i = (mkPolar ly (k*xc*cos(phi)))*

13 (mkPolar 1.0 (k*yc*sin(phi)))*

14 ((sinc (k*ly*sin(phi)/2.0)) :+ 0.0) in
15 let r = (cos(phi) :+ (- k*lx))*((cos (theta - phi))/lx :+ 0.0) in i * r

16 else if ((yg==1) && (xg<nx)) then
17 let i = (mkPolar lx (k*yc*sin(phi)))*

18 (mkPolar 1.0 (k*xc*cos(phi)))*

19 ((sinc (k*lx*(cos phi)/2.0)) :+ 0.0) in
20 let r = ((- sin phi) :+ k*ly)*((cos(theta - phi))/ly :+ 0.0) in i * r

21 else if ((yg==ny) && (xg<nx)) then
22 let i = (mkPolar lx (k*yc*sin(phi)))*

23 (mkPolar 1.0 (k*xc*cos(phi)))*

24 ((sinc (k*lx*(cos phi)/2.0)) :+ 0.0) in
25 let r = ((- sin phi) :+ (- k*ly))*((cos(theta - phi)/ly) :+ 0.0) in i * r

26 else 0.0 :+ 0.0

Figure C.4: Part of the specification of the ®𝑟 oracle

C.2 Circuit Synthesis and Optimization

A quantum circuit serves two purposes. First of all, it serves as the description of a linear
operation on the memory state space. Furthermore, it gives a procedure to implement this
linear map, with informations on the resources required to realize it.

Along the description of a quantum circuit, some subcircuits might only be specified by
the linear map they implement. The designers of the quantum algorithm relies on an external
authority to attest that the corresponding subcircuit is indeed realizable within the required
framework, and leaves the generation of the quantum circuit to a hypothetical compiler.

Circuit synthesis tools are therefore crucial tools for a quantum compilation toolchain.
This section explores three cases. Section C.2.1 considers the problem of synthesizing oracles.
A typical oracle is given as a classical description such as the structure of a graph to explore
or an arithmetic operation to perform. The section presents the solution we implemented for
Quipper, automatically turning a classical code into a reversible circuit. Section C.2.2 focuses
on the synthesis of circuits corresponding to linear maps given as matrices of complex num-
bers. We present two solutions based on numerical techniques to answer the problem, and
discuss the sizes of the generated circuits. Finally, Section C.2.3 sketches our contribution for
circuit generation out of a ZX description, in an hybrid quantum and classical setting.

Section C.2.1 is devoted to my contribution on automatic generation in Quipper for
the QLS algorithm, to be able to handle the oracle of Figure C.4. Section C.2.2 presents
works stemming out of the Ph.D supervision of Timothée Goubault de Brugière,
CIFRE co-supervised by Marc Baboulin (LRI) and Cyril Allouche (Atos). Section C.2.3
discusses results from the Ph.D of Agustin Borgna, co-supervised with Simon Perdrix
(LORIA, Nancy).

36

Chapter C Quantum Compilation

C.2.1 Circuit Synthesis from Oracle Specification

My first contribution to the field of circuit synthesis consists in the development of an auto-
mated procedure to translate a functional program working with Boolean values to a circuit
realizing the same computation. Written in Haskell using Template Haskell [TempHask], the
tool inputs a Haskell, first-order function and produces an object in the Circ monad, encap-
sulating a circuit realizing the input function. The tool is one of the libraries available with
Quipper, and it has been extensively used for the oracle of the QLS algorithm, as discussed in
Section C.1.3. In particular, it was what made it possible to realize the trigonometric functions
using fixed-point real numbers (see e.g. Figure C.4).

The tool makes heavy use of Haskell’s monad feature. I developed the formalism in a
publication [Val16]: This section is devoted to its presentation.

Irreversible to Reversible Computation The study of reversible computation and how it
relates to irreversible computation has been a subject of research since the 1960s. Landauer
[Lan61] follows a trend of research discussing how irreversible computation dissipates en-
ergy (and heat) and how reversible computation could be a way to reduce computational en-
ergy consumption. In the following years, several models of reversible computation have been
proposed: reversible Turing machines [Ben73], reversible cellular automata [Moo62, Tof77,
Dur02], reversible boolean circuits [Tof80b], billiard ball models [FT82], etc. Various concrete,
physical reversible processors have also been proposed in the literature, aiming at being more
efficient than their irreversible counterparts [Hal92, Fra99]. The interest for the subject has
not declined [Ben00, Ada02, FBCH+20], as for instance shown by the recent ICT COST Action
IC1405 [IC1405] and the series of conferences on reversible computation [RC21].

Although the two subjects stem from distinct origins, reversible computation has seen an
unexpected use in quantum computation. Indeed, as discussed in Section C.1.1 one of the
necessary building block of quantum algorithms is oracles: unitary maps realizing classical,
irreversible computations. As a unitary map is first and foremost a reversible operation, all
of the machinery developed for reversible computation can be used for oracle synthesis. And
indeed, in the literature most of the complexity analysis of quantum algorithm relies on the
seminal papers of Fredkin, Toffoli and Bennett [Tof80b, FT82, Ben73] to assert the existence
of efficient oracle synthesis.

Fredkin and Toffoli [Tof80b, FT82] were amongst the first ones to state the problem of
reversible computation using a circuit formalism. Within this framework, they integrate the
so-called Landauer’s embedding with Bennett’s trick to turn a classical, irreversible function

𝑓 : bit𝑛 → bit𝑚

into a reversible circuit in the shape of the oracle shown in Figure B.3, computing

𝑓 : bit𝑛 × bit𝑟 × bit𝑚 → bit𝑛 × bit𝑟 × bit𝑚

(®𝑥, ®0, ®𝑦) ↦→ (®𝑥, ®0, ®𝑦 ⊕ 𝑓 (®𝑥)) .
(C.3)

Recall that ⊕ stands for bitwise XOR boolean gate. Provided that the function 𝑓 is described
by a (boolean) formula, Toffoli shows that the function 𝑓 can be realized by a circuit of linear
size compared to the number of logical gates in the description of 𝑓 . The register of 𝑟 bits in
the middle is used for storing intermediate results, and the computation sets it back to ®0when
done.

The idea consists in using Bennett’s trick [Ben73] to first build a (reversible) circuit 𝑓

computing the Landauer embedding of 𝑓

𝑓 : bit𝑛 × bit𝑟 × bit𝑚 → bit𝑛 × bit𝑟 × bit𝑚

(®𝑥, ®0, ®0) ↦→ (®𝑥, garbage, 𝑓 (®𝑥))

37

Chapter C Quantum Compilation

in a compositional manner. Note that compared to Eq. (C.3), the middle register is not cleaned
after use, rendering the computation irreversible if we were to throw away the garbage. How-
ever, as discussed below the map 𝑓 is only built from reversible components: one can recover
the map 𝑓 of Eq (C.3) using the construction shown in Figure C.5.

𝑥

𝑦

0’s

𝑥

𝑦 ⊕𝑓 (𝑥)

0’s𝑓

𝑥

0⃗

0’s

𝑥

𝑓 (𝑥)

garbage𝑓

𝑦

𝑥

0⃗

0’s𝑓 −1

𝑦 ⊕ 𝑓 (𝑥)

≜

Figure C.5: Bennett’s trick

𝑥

0

𝑥
¬𝑥

0 ff
0 tt

𝑥

0

𝑥

𝑥 ∧ 𝑦

𝑦 𝑦

𝑓

𝑔0’s

0’s

0

𝑥

0

𝑓 (𝑥)

𝑥

𝑔(𝑓 (𝑥))

garbage

garbage

0’s
overall
garbage

Landauer embeddings 0̂ and 1̂

Landauer embedding ¬̂

Landauer embedding ∧̂

Landauer embedding 𝑔 ◦ 𝑓

Figure C.6: Landauer embeddings of elementary logical blocks

To understand how to compositionally build 𝑓 , assume that 𝑚 = 1, and that 𝑓 is built
from boolean constants, conjunction (∧), negation (¬), and composition thereof. The corre-
sponding Landauer embeddings are shown in Fig. C.6, and the embedding of the function
(𝑥,𝑦) ↦→ ¬((¬𝑥) ∧ (¬𝑦)) is presented in Figure C.7a. Although it gives a verbose circuit —see
the equivalent, shorter circuit in Figure C.7b— it is efficient in the sense that the size of the
circuit is linear on the size of the formula: each dashed sub-circuit corresponds to one logical
operator.

𝑥
𝑦

0
0

0
0

𝑥
𝑦

¬𝑥
¬𝑦

¬𝑥 ∧ ¬𝑦

¬(¬𝑥 ∧ ¬𝑦)

inputs

garbage

output

(a) Landauer embeddings

𝑥
𝑦

𝑥
𝑦

0 ¬(¬𝑥 ⊕ ¬𝑦)

(b) Direct implementation

Figure C.7: Circuits for (𝑥,𝑦) ↦→ ¬((¬𝑥) ∧ (¬𝑦))

Formalization of the Specification Language. The compositional procedure presented
above can be formalized and generalized to higher-order functions, with the use of a monad
to store the circuit under construction. For sake of conciseness, in the following, we present

38

Chapter C Quantum Compilation

a representative subset of the language described in [Val16] —we invite the reader to consult
the original paper for details.

The idea consists in considering a simply-typed lambda calculus with Boolean values, and
in relating two possible operational semantics for it. One semantics is the usual one, where a
term of Boolean type rewrites to a Boolean value. The other one is instead a partial evaluation
strategy, where the operations to perform are stored in a circuit: the circuit to be evaluated.

If the language is denoted with Λbool, we can consider for instance the definition of terms
and types as

𝑀, 𝑁 ::= 𝑥
�� 𝜆𝑥.𝑀 �� 𝑀𝑁

�� tt �� ff �� not �� and,
𝐴, 𝐵 ::= bool

�� 𝐴 → 𝐵.

The language in [Val16] also contains lists, pairing, if-then-else and fixpoints, but these con-
structs do not need a substantially different approach. In any case, typing judgment are stan-
dard: they consist of a typing context , i.e. a set of typed variables Δ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ,
and a term 𝑀 of type 𝐴, written Δ ⊢ 𝑀 : 𝐴. The typing rules for typing derivations de-
scribing valid typing judgments are as expected: the conjunction is for instance typed as
and : bool → bool → bool.

The first operational semantics is a standard call-by-value reduction strategy: we define
values𝑉 ,𝑊 and application contexts 𝑆 [−] as usual, and we for instance have the rule stating
that 𝑆 [(𝜆𝑥.𝑀)𝑉] →𝛽 𝑆 [𝑀{𝑥 := 𝑉 }] and that 𝑆 [(and ff) tt] →𝛽 𝑆 [ff]. The second operational
semantics consists in a partial evaluation: instead of evaluating not and and, the semantics
“stores” the operations to be performed inside a (reversible) circuit. The semantics is therefore
based on an abstract machine of the form

©«
x1

xn

x1

xnxn+1

xm

C , 𝑀

ª®®®¬ (C.4)

where𝐶 is a reversible circuit consisting in wire initializations, NOT, CNOT and Toffoli gates,
and where the free variables of 𝑀 are within {𝑥1, · · · , 𝑥𝑚}. For the detailed definition of cir-
cuits, we refer the reader to [Val16]. The rule for and is for instance shown in Figure C.8, where
𝑧 is a fresh variable.

©« C
xi

xj

, 𝑆 [and𝑥𝑖 𝑥 𝑗]
ª®®®®¬

→

©«
C

0

xi

xj

z

, 𝑆 [𝑧]

ª®®®®®®¬
Figure C.8: Rule for and in the monadic semantics

The two semantics feature usual safety properties, and they coincide [Val16, Th. 17]: the
circuit generated from the partial evaluation of a lambda-term 𝑀 realizes the function de-
scribed by𝑀 . For instance, the (non-closed) term

𝑥 : bool, 𝑦 : bool ⊢ (𝜆𝑓 .𝑓 (and (𝑓 𝑥) (𝑓 𝑦))) not : bool

reduces to the circuit shown in Figure C.7a.

Automated Oracle Synthesis as Monadic Lifting. The languageΛbool and the two seman-
tics can be extended with pairs, coproducts, lists, fixpoints and tests — see [Val16]. Together
with these extensions, one can internalize the definition of circuit within the language Λbool

39

Chapter C Quantum Compilation

itself. The abstract-machine semantics can then be simulated inside Λbool using a generic
monadic lifting, close to what was proposed in [SGLH11]. It is the transposition of Haskell’s
monads to our language Λbool —and of the strategy used inQuipper for automatic oracle syn-
thesis. The main characteristic of the reversible abstract-machine is to change the operational
behavior of the type bool: the terms tt, ff and the inline Boolean combinators do not reduce
as regular lambda-terms. Instead, they trigger a side-effect, which can be simulated within a
suitable monad.

The main strength of this approach—and its instantiation with Template Haskell inQuip-
per—is to allow the parametric description of families of circuits. Indeed, inQuipper, a program
of type [Bool] ->[Bool] is lifted to [Qubit] -> Circ [Qubit]: the resulting code generates
a circuit whose shape depends on the size of the input list. The circuit is provably equivalent
to its specification: the classical program being lifted. Such an approach was—and to this day
still is—novel.

Discussion of Other Approaches. In the literature, the design of a reversible circuit from
the description of a conventional function has conventionally been approached through its
truth table or properties thereof. Several methods have been designed to generate compact
circuits, although only for fixed-size circuits. It would be interesting to see how to merge the
two approaches.

One can for instance consider local, peep-hole optimizations based on templates [MDM03,
MDM05, SM13], or rely on SAT solvers [HMSM18]. Standard classical synthesis techniques
based on BDD [WD10], on LUT mapper [MSRM19] or on ESOP and Reed-Muller techniques
[FTR07, GAJ06, MWD09] have been used with some success. Approaches such as QMDDs —
quantum versions of binary decision diagrams— have also been considered and shown rather
efficient [ZW17]. At a high-level approach, one could also make use of efficient libraries of re-
versible circuits for arithmetic operations [VBE96, TK05, DKRS06, TK08, WR16, RG17, Mog19]
or real analysis [NTR11, WK13, NV14, SRWD17, HSRS18, HRS18].

However, if these techniques make it possible to write reversible functions with arbitrary
truth tables [WGTDD08], they do not usually scale well with the size of input [HMSM18].

Synthesis of reversible circuits can be seen as a small branch of the vast area of hardware
synthesis. In general, hardware synthesis can be structural (description of the structure of the
circuit) or behavioral (description of algorithm to encode). In this context, Bennett’s Pebble
game [Ben89, LS90] have been used with success to optimize the width and depth of circuits
[ARS17, BSDCM19]. Functional programming languages have been used for both structural
and behavioral descriptions. On the more structural side one finds Lava [Cla01], BlueSpec
[Nik04], functional netlists [PKI08], etc. On the behavioral side we have the Geometry of
Synthesis [Ghi12], Esterel [Ber00], ForSyDe [SJA17], etc. Two proposals sitting in between
structural and behavioral approaches are worth mentioning. First, the imperative, reversible
synthesis language SyRec [WOD10], specialized for reversible circuits. Then, Thomsen’s pro-
posal [Tho12], allowing to represent a circuit in a functional manner, highlighting the behavior
of the circuit out of its structure.

On the logic side, Geometry of Interaction [Gir89, Gir90, Gir95a, Gir03, Mac94, Mac95,
Ghi07] is a framework that can be adapted to turn functional programs into reversible compu-
tation [Abr05, DR99], using the idea of turning a typing derivation into a reversible automaton.
There have also been attempts to design reversible abstract machines and to compile regular
programs into reversible computation, e.g. a reversible version of the SEMCDmachine [Klu99].
More recently, the compiler REVS [PRS17] aims at compiling conventional computation into
reversible circuits.

Monadic semantics for representing circuits is something relatively common, specially
among the DSL community: apart from Quipper discussed in Section C.1.2, one can name
Lava [Cla01], Fe-Si [BC13], etc. Other approaches use more sophisticated constructions, with
type systems based on arrows [JS12b] in order to capture reversibility: these approaches point
towards full-fledged reversible programming languages, discussed in Section E.3.1.

40

Chapter C Quantum Compilation

Method CNOT count Rotation count Flops

QSD 23/48 × 4𝑛 9/8 × 4𝑛 19 × 8𝑛

Householder 2 × 4𝑛 2 × 4𝑛 2/3 × 8𝑛

Lower Bound 1/4 × 4𝑛 4𝑛 (unavailable)

Table C.9: Asymptotic counts for QSD and Householder decomposition

C.2.2 Circuit Synthesis from General Unitary Matrices
In the very general case, a unitary on 𝑛 quantum bits is characterized by a matrix consisting
of (2𝑛)2 complex numbers. Since the matrix is unitary, the number of parameters is slightly
smaller than 4𝑛 : it is however still very much exponential on the number of qubits.

In the case of an intentional description, such as a formula or a program, this description
might reduce the number of degrees of freedom of the problem and a quantum circuit of
polynomial size on the number of qubits might be obtained (as e.g. in the case presented in
Section C.2.1). However, for a given gate set on 1 and 2 wires, if the matrix is only given in
term of its (complex) coefficients, in general the size of a quantum circuit corresponding to
the matrix is bound to be exponential.

One question that can however nonetheless be posed is how to get a circuit out of this
array-based description, and how to obtain it in an as efficient as possible way. In this section,
we describe two results we obtained, together withMarc Baboulin, our Ph.D student Timothée
Goubault de Brugière, and Cyril Allouche [BBVA19, BBVA20, Bru20].

Circuit Synthesis via Householder Transformations An operator acting on 𝑛 qubits is
represented by a matrix of size 2𝑛 × 2𝑛 . Generating a circuit from an arbitrary matrix is a
problem that scales exponentially in 𝑛 in general, and the problem of finding the smallest pos-
sible circuit for a particular operator remains challenging: Knill [Kni95] asserts the necessity
of an exponential number of gates. If several decomposition techniques have been developed
[BBCD+95, Cyb01, MV06, RZBB94, SBM06], in all of them the resulting number of gates how-
ever still lies within a factor of 2 of the theoretical lower bound [BM04].

In [BBVA20], the circuit synthesis problem is analyzed with a focus on both the size of the
generated circuit and the time needed to generate it [AMMR13, HC18, MM16, NRSCM18].
We rely on a Householder decomposition of the matrix to construct the circuit.

In general, the Householder decomposition of any matrix 𝐴 is of the form 𝑄𝑅, where 𝑄
is a unitary and 𝑅 is upper triangular. 𝑄 is obtained iteratively by zero-ing out 𝐴 column by
column, applying Householder transformations of the form

𝐻𝑘 = 𝐼𝑘 − 𝑎𝑘 · |𝑢𝑘⟩ ⟨𝑢𝑘 |

for a well-chosen scalar 𝑎𝑘 and vector |𝑢𝑘⟩. At the end of the procedure, 𝑄 consists in the
product of the 𝐻𝑘 ’s.

Thanks to the specific structure of unitary matrices, one can derive a significant theo-
retical and practical speedup for this specific QR algorithm compared to the unmodified QR
routine and the usual technique for quantum circuit synthesis based on the quantum Shannon
decomposition (QSD) [SBM06].

From a Householder decomposition, we then propose a circuit synthesis procedure based
on CNOT gates and rotations. The asymptotic counts [BBVA20, Tab.2 and Tab.3] are summa-
rized in Table C.9. Overall, this technique turns out to be faster than the QSD-based method,
although it provides circuits twice as large. One of the interest of this work is to highlight the
tread-off in circuit synthesis: reducing the circuit size renders circuit generation more costly.

Circuit Synthesis with Gradient Descent. The focus of [BBVA19] is the question of the
synthesis of trapped-ions quantum circuits. The generic structure of such circuits is a sequence

41

Chapter C Quantum Compilation

𝑅𝑧 𝑅𝑥 (𝜋
2) 𝑅𝑥 (−𝜋

2)𝑅𝑧

𝑅𝑧 𝑅𝑥 (𝜋
2) 𝑅𝑥 (−𝜋

2)𝑅𝑧

𝑅𝑧 𝑅𝑥 (𝜋
2) 𝑅𝑥 (−𝜋

2)𝑅𝑧

MS

𝑅𝑧 𝑅𝑥 (𝜋
2) 𝑅𝑥 (−𝜋

2)𝑅𝑧

𝑅𝑧 𝑅𝑥 (𝜋
2) 𝑅𝑥 (−𝜋

2)𝑅𝑧

𝑅𝑧 𝑅𝑥 (𝜋
2) 𝑅𝑥 (−𝜋

2)𝑅𝑧

MS

Figure C.10: Structure of trapped-ions quantum circuits

𝑅𝑥 (𝜃2) 𝑅𝑦 (𝜃3) 𝑅𝑧(𝜃4)

𝑅𝑧(𝜃1)

Figure C.11: Example of parameterized circuit

of layers of the form shown in Figure C.10. The gates 𝑅𝑧 are each parameterized by a different
angle, while the gates MS are the entangling Mølmer–Sørensen gate [MS99] defined by

MS(𝜃) ≜ 𝑒𝑖𝜃 (
∑𝑛

𝑖=1 𝜎𝑖
𝑋
)2/4,

with 𝜎𝑖
𝑋
the operator 𝑋 applied to the 𝑖-th qubit.

The question is then: for a given unitary, how many layers are needed, and, for each layer,
what parameters to choose for theMS gate and the 𝑅𝑧 gates? The paper [BBVA19] offers two
answers: a theoretical lower bound and an experimental analysis of its optimality.

For the theoretical lower bounds, we build on a previous approach [SMB04], proposing
such a lower bound in the case of circuits built from {SU(2),CNOT}. The idea is to count the
number of degrees of freedom in a quantum circuit with a fixed structure and to show that
this number has to exceed a certain threshold to be sure that an exact synthesis is possible
for any operator.

Consider for instance the circuit shape given in Figure C.11. It can be understood as a
family of circuit with at most 4 degrees of freedom (one for each rotation). In general a circuit
structure with 𝑘 degrees of freedom can be seen as a smooth function 𝑓 : R𝑘 → U(2𝑛)
mapping the values of angles to the space of unitary matrices of size 2𝑛 . We are interested in
the image of the function 𝑓 . If for any operator𝑈 on 𝑛 qubits there exists a vector of angles ®𝜃
such that 𝑓 (®𝜃) = 𝑈 , then we say that the circuit shape is universal.

The contribution of [BBVA19] consists in deriving a lower bound on the number of layers
required for trapped-ions circuits of the shape shown in Figure C.10, using a similar reasoning.
The result is that, to be universal, a topology must in fact have at least⌈

2𝑛+1 − 2𝑛 − 2
2𝑛 + 1

⌉
layers of MS gates.

In order to address the problem of the tightness of the bound, we rely on a numerical
method: The BFGS algorithm [NW06] (named after Broyden [Bro70], Fletcher [Fle70], Gold-
farb [Gol70] and Shanno [Sha70]). If using heuristics or classical optimization methods to
synthesize circuits had already been tried before [MMNSB16, ABIMBK19], numerical meth-
ods had however never been used to estimate the minimum quantum resources required to
synthesize a quantum circuit.

If the paper [BBVA19] discusses the results in details, here we only want to discuss the
benchmark reproduced in Figure C.12. The plot is realized as follows. One picks topologies

42

Chapter C Quantum Compilation

Number of MS gates

Sy
nt
he

si
s
er
ro
r

#
It
er
at
io
ns

0 5 10 15 20 25 30 35
0

200

400

600

800

1000

1200

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

++
+

+
+

+

+

+

+

+

++

+

+

+

+
+
+
+++++

★

★

★

★

★

★

★
★ ★ ★ ★★★★★★★★★★★★★

···+··· # Iterations
···★··· Error

Lower bound

Figure C.12: 4-qubits quantum circuit synthesis problem [BBVA19].

with increasing numbers of layers. For each topology, one picks 50 random unitary matrices
on 4 qubits, and the optimization process is run. The resulting plot is the obtained number of
iterations and the synthesis error.

First, one can note that the error decreases exponentially with the number of MS gates:
this is explained by the fact that the more layers, the larger is the number of matrices that
can be reached. The interesting curve is the number of iterations required for convergence:
as the number of layers increases, so does the number of required iterations for convergence,
until the vertical red line. This line represents the theoretical lower bound: After this point,
the number of iterations sharply decreases.

The behavior of the curve corresponding to the number of iterations is a good indication
that the theoretical lower bound is indeed tight: after this point, converging becomes easier
and easier as we have more degrees of freedom than necessary.

C.2.3 Circuit Synthesis from ZX Specification
Quantum—and reversible— circuits are not the only graphical language for representing quan-
tum computation. In the late 2000’s, the ZX calculus of Section B.1.5 has turned into popu-
lar alternative representation of quantum circuit [CD08, CD11, CK17]. This formal diagram-
matic language with a more granular representation than quantum circuits has been success-
fully used in applications such as MBQC [DP10, Dun13], topological quantum computation
[Hor11], Lattice-code surgery [BH20] and Pauli fusion [BDHP19], as well as for circuit sim-
plification [DKPW20] and verification of QEC [CKRZH18] such as Steane [DL13] and Color
code [GD17].

Another strength of the ZX calculus is its versatility. One can for example find variants of
the ZX calculus [CJ20] such as the ZW calculus [Had15, Had17] or the ZH calculus aiming at
the fragment Toffoli+H [BK18]. But the ZX calculus can also easily be equipped with exten-
sions. One can for instance quote the SZX calculus, for reasoning on arrays of qubits [CHP19],
graphical calculi for qudits [Ran14] and qutrits [WB14, BW15, Wan17, TM22, WY22], and the
ZX calculus, for manipulating mixed states [CJPV19].

Hybrid Quantum-Classical Synthesis from ZX Terms. In a paper co-authored with Si-
mon Perdrix and our Ph.D student Agustin Borgna [BPV21], we propose a circuit simplifica-

43

Chapter C Quantum Compilation

tion technique in the context of quantum and classical operations, using the ZX -calculus.
This extension of the ZX-calculus adds a discarding generator—a “ground”, thus the symbol
“ ”—to the diagrams. making it possible to represent operations interacting with the classical
environment [CJPV19].

The novelty of our approach comes from the fact that common optimization strategies
focus solely on the purely quantum aspect of quantum computation [AMM14, HC18]. Intro-
duced by Duncan et al. [DKPW20], one of these optimization techniques uses the ZX-calculus
to apply granular rewriting rules that ignore the boundaries of each quantum gate. Their
rewriting steps preserve a diagram property called gFlow that is required for the final extrac-
tion of the ZX diagrams into circuits. Duncan’s ZX optimization method was latter used by
Kissinger and van de Wetering [KW20] to reduce the number of T-gates in quantum circuits.

In [BPV21], we define the natural extension of the pure Clifford optimization algorithm
by Duncan et al. to hybrid quantum-classical circuits using the ZX calculus. Our circuit op-
timization procedure forgets the difference between quantum and classical wires during the
simplification process, representing connections as a single type of edge. This allows it to
optimize the complete hybrid system as an homogeneous diagram, and results in similar rep-
resentations for operations that can be done either quantumly or classically. We then propose
a strategy to automatically recover the part of the optimized circuit that can be treated in
a classical manner. Generally, in a physical quantum computer, the classical operations are
simpler to implement than their quantum counterparts, and quantum simulators can exploit
the knowledge of which wires carry classical data to simplify their operation. As such, it is
beneficial to extract classical gates in the resulting circuit where possible.

C.3 Specification and Verification of Quantum Programs

In classical programming, a common verification technique consists in testing and debugging
[Jr08]. In the case of quantum programs, this standard approach is hard to implement and
bound to be insufficient [HM19a, HM19b]. A first problem is the probabilistic nature of quan-
tum algorithms: although feasible [LZYDYX20], assertion testing is very intrusive, expensive
resource-wise, and limited in its expressiveness. A second, more fundamental problem comes
from the cost of running a quantum program. The cost can be monetary when running the
code on a physical machine, or resource-wise when emulating it, as emulation requires an
exponential quantity of classical resources. In short, we may simply not be able to afford to
perform hundreds of runs of a piece of code just for testing.

If testing and debugging may not be a viable solution, a wide range of formal verifica-
tion techniques [CW96] have been shown to be versatile tools for quantum computation,
amenable to many situations. Several recent experiments have successfully adapted known
formal methodologies to the quantum setting: Floyd–Hoare logics [Unr19a, Unr19b, Yin11,
Yin19], use of proof-assistants [BKN15, PRZ17, RPLZ18, Ran18, HRHLH21, HRHWH21], ab-
stract interpretation [Per08], model checking [GNP08, YLYF14, FHTZ15], equational theories
[JPV18, KZ15, FD19, Amy18, Amy13, Amy19], and deductive verification [CBBPV21].

Section C.3.1 discusses the difficulties regarding formal verification of quantum programs.
Section C.3.2 then presents Floyd-Hoare logic and the corresponding deductive verification
techniques. Finally, Sections C.3.3 and C.3.4 presents our contribution on deductive verifica-
tion of quantum programs. Section C.3.3 discusses a quantum Floyd-Hoare logic for first-order
quantum programs supporting recursive calls andmeasurements, while Section C.3.4 presents
the deductive verification frameworkQbrick, based on a recent, compact semantics for quan-
tum computation: sum-over-paths.

44

Chapter C Quantum Compilation

C.3.1 Challenges for Quantum Formal Verification
Compared to classical computation, quantum computation raises a series of problems for ver-
ification in general [CBLVVX21].

Hybrid, probabilistic model Quantum algorithms are not monolithic, linear processes: as
discussed in Section C.1.1, a quantum algorithm is a subtle interaction between a classical
computer and a quantum coprocessor, each having their own properties and control flow.
Validating the concrete implementation of a quantum algorithm requires a suitable semantics
for this hybrid model.

Furthermore, gathering classical data from the quantum memory is an inherently proba-
bilistic procedure. In a sense, quantum computation supersedes probabilistic computation: all
of the issues coming from the probabilistic settings also occur within quantum computation.

Limited resources A quantum algorithm describes logical quantum circuits without much
care for the available resources. However, in the current NISQ era [Pre18] memory is expen-
sive, with hardware constraints such as limited connectivity. The number of coprocessor cy-
cles might also be limited in case of absent or limited error-correction: the evaluated circuit
therefore has to be kept under a certain depth [CBSNG19]. In the current state of the tech-
nique, adapting algorithms to the noise constraints can be challenging [GE21]. This makes
quantum coprocessors akin to embedded systems: there is a need for a fine-grained resource
management. If programming languages such asQuipper [GLRSV13b] can help with resource
estimation, dedicated compilation tools have been developed to automate circuit optimization
and physical qubit layout [AMM14, PRS17, MSRH20, HRHWH21, SDCSED20].

Functional specifications A quantum algorithm comes with a functional specification de-
scribing its behavior. There are two kinds of functional specifications. On one hand, an in-
tentional specification considers the algorithm as an opaque instantiation of a mathematical
function, and only discusses the relationship between the input and the output of the algo-
rithm. Ying’s quantum Floyd–Hoare logic [LZWY+19a, Yin11] is a typical approach leaning
towards intentional presentations. On the other hand, an extentional specification “opens the
box” and also describes how the computation gets to the result. An extentional specification
might then for instance give requirements on the size and shape of a circuit produced by the
algorithm. Approaches for extentional presentations typically use dependent type systems
[PPZ19] or embeds into program verification tools such as Coq [HRHWH21, PRZ17] or Why3
[FP13, CBBPV21].

Compilation Toolchain As discussed in Section C.1.1, a quantum program is not only the
description of one quantum circuit: at a minimum it describes a family of quantum circuits,
parameterized by the problem instance. A specification concerns this family —a versatile ver-
ification tool should be able to handle parametricity.

Furthermore, along the compilation process the generated (families of) circuits are trans-
formed and optimized according to various constraints coming from the errormodel, the hard-
ware connectivity, the cost of each gates, etc. In general, these transformations also need to
be validated: they should not modify the semantics of the circuit. This semantics in general in-
volves linear algebra: the validation tools should therefore handle it [HRHWH21, CBBPV21],
or restrict to subsets such as reversible circuits [PRS17].

C.3.2 Floyd–Hoare Logic and Deductive Verification
Deductive program verification is probably the oldest formal method technique, dating back
to Floyd and Hoare in the 1960’s [Flo67, Hoa69]. In this approach —the so-called Floyd–Hoare
logic— a piece of code 𝐶 is annotated with a logical contract [Mey92] consisting of a pre-
condition 𝑃 and a post-condition𝑄 . The tuple {𝑃}𝐶{𝑄} is valid if whenever 𝑃 is true, executing
the code 𝐶 makes the post-condition 𝑄 valid.

45

Chapter C Quantum Compilation

If one of the parameters of a Floyd–Hoare logic is the programming language, the other
parameter is the chosen logic. The objective is to allow for a logic as expressive as possible,
while being able to give complete set of syntactic deduction rules together with an algorithm
as efficient as possible for inferring a valid proof of a contract. The seminal works underlying
the whole development of the field are Dijkstra’s algorithm for weakest precondition inference
[Dij76] and Burstall’s proposal for the addition of intermittent assertions [Bur74].

The weakest precondition inference algorithm is at the core of the automation permit-
ted by deductive verification based on Floyd–Hoare logic. Consider the rule for sequential
composition:

{𝑃}𝐶1{𝑄} {𝑄}𝐶2{𝑅}
{𝑃}𝐶1;𝐶2{𝑅}. (C.5)

It states that for 𝑅 to be a valid-postcondition for the program𝐶1;𝐶2 under the pre-condition
𝑃 , one simply has to find 𝑄 that is both pre-condition for 𝐶2 and post-condition for 𝐶1. Dijk-
stra’s algorithm automates the discovery of a most-general pre-condition wp(𝐹,𝐶) for a code
𝐶 with post-condition 𝐹 . Rule (C.5) dictates that one can pick𝑄 to be wp(𝑅,𝐶2). The weakest
pre-condition for 𝐶1;𝐶2 then becomes wp(wp(𝑄,𝐶2),𝐶1). To recover {𝑃}𝐶1;𝐶2{𝑅}, a proof
obligation is generated:

wp(wp(𝑄,𝐶2),𝐶1) ⇒ 𝑃 .

This formula can either be proven in a proof assistant or discharged with an SMT-solver.
In the context of classical programming, these techniques have been applied in academic

or industrial contexts for many languages [HH19]. One can cite frameworks for the Pascal
language [DHKK95], Ada [LH85, SPA11], Modula-3 [LN98], Java [HAGH16, FM07, RLNS00],
C [Nor98, FM07, KKPSY15], the Method B capitalizing on Dijkstra’s weakest precondition
algorithm [Rob97, LFFP11], and the versatile Why3 environment for WhyML [FP13].

C.3.3 Quantum Floyd–Hoare Logic Handling Measurements

Twomain Floyd–Hoare logics specific to quantum computation have emerged in recent years.
The first line of work [Unr19b, Unr19a, BHYYZ20] proposes a Floyd–Hoare logic for reasoning
about programs implementing quantum protocols. The framework is based on regular, clas-
sical logical constructors. The logic is extended with the capability to reason about variables
holding quantum states, such as “𝑥 holds the qubit state 1√

2
(|0⟩ + |1⟩)”.

The second approach to quantum Floyd–Hoare logic is now more than 10 years old and
stems from Ying’s research group [Yin11, YYFD13, YYW17, LWZG+18, LY18, Yin19, ZYY19,
LZWY+19a, HHZYHW19, LZWY+19b, BHYYZ20, LZBY22, FLY22, YZLF22]. This prolific re-
search avenue can be traced back to d’Hondt and Panangaden’s work on quantum weakest
precondition [dP06, dP04], quantum equivalent to Dijkstra’s notion. D’Hondt and Panan-
gaden’s idea consists in regarding positive operators as (probabilistic) formulas on states.
Remember that the probability of measuring the density matrix 𝜌 in state |𝜙⟩ is ⟨𝜙 | 𝜌 |𝜙⟩.
This can be rewritten as Tr(𝑀𝜌), with 𝑀 = |𝜙⟩ ⟨𝜙 |. In general, 𝑀 can be any observable oper-
ator, which for our purpose we can consider as a density matrix. For instance, the observable
1
3 |0⟩ ⟨0| + 2

3 |1⟩ ⟨1| assesses the probability of 𝜌 to be in the mixed state 1
3 {|0⟩} +

2
3 {|1⟩}.

Quantum programs in Ying’s approach are the quantum equivalent of a textbook while-
language: a fixed set of possible variables, all quantum, and each spanning a given Hilbert
space, and a few imperative constructs with sequential composition for acting on the state of
the variables: assertion, tests, while-loop. Since the only available types are quantum, branch-
ing is probabilistic and based on the result of a measurement.

One can for instance write the program

𝑥 := 𝐻 𝑥 ; while (|0⟩⟨0|𝑥 = |0⟩) {𝑥 := 𝐻 𝑥} (C.6)

46

Chapter C Quantum Compilation

which repeatedly measure 𝑥 against |+⟩ until |1⟩ is obtained. An observable serving as formula
is in this case acting on the state of 𝑥 (i.e. it is acting on a qubit).

Given a post-condition 𝑄 and a program 𝐶 , a quantum precondition is an operator 𝑃 such
that for any density matrix 𝜌 representing a state of the memory of𝐶 , Tr(𝑃 𝜌) ≤ Tr(𝑄 (𝐶 𝜌)),
with 𝐶 𝜌 the state of the system after the action of 𝐶 . The operator 𝑃 is weakest precondition
for 𝑄 and 𝑃 if for all other precondition 𝑃 ′, we have 𝑃 ′ ⊑ 𝑃 (using the Löwner order). For
instance, a precondition for the program shown in Eq (C.6) and the postcondition |1⟩ ⟨1| is
|0⟩ ⟨0|. It is of course not unique —the operator 0 is also a pre-condition— but it is the weakest
one.

Minsheng Ying’s group has extensively worked on this approach, with special attention to
the structure of invariants required for the while-loop. The group studied various extensions
and problems such as non deterministism [LYY14], testing and debugging [LZYDYX20], linear-
time properties [YLYF14], termination and expected run-time [LY18, LZBY22], parallel and
distributed quantum programs [FLY22, YZLF22].

At a high-level, if Ying’s approachmakes it easy to discuss probabilistic behavior (since it is
part of the structure of the logic), the shallow embedding inside operators —similar to Birkhoff
and von Neumann’s quantum logics [BN36, Mit78]— limits its expressiveness. For instance,
It is hardly extensible to features such as first-order or native manipulation of conventional
types such as natural numbers, lists, etc.

In the context of the ANR project SoftQPro, I had the opportunity to dig into the
subject with a former collaborator of Minsheng Ying, Zhaowei Xu, hired as a postdoc
in our group. We worked on an extension of Ying’s approach to quantum Hoare logic,
to allow local variables and recursive subroutines. This collaboration yielded a paper
to appear in TOCL [XVY21].

C.3.4 Qbrick: Deductive Verification with Parametrized Path Sums

In 2017, I was invited at CEA-LIST/LSL by François Bobot and Sébastien Bardin to
give a seminar to present Quipper. Along the discussion afterwards, we came to the
conclusion that Why3 [FP13] could very well serve as a host language for a quan-
tum programming language, and that it could freely provide a means to certify and
verify embedded quantum programs. Unlike Ying’s quantum Hoare logic, the Why3
logic seemed expressive enough to state both intentional and extentional properties
of programs.
The project effectively started when they hired Christophe Chareton as postdoc to
build on the idea. Moving from an hypothetical concept to a concrete tool able to
prove Shor’s algorithm properties took about 3 years. In [CBBPV21], we present the
outcome: Qbrick, a DSL embedded inWhy3 coming with dedicated libraries of defini-
tions and lemmas based on sum-over-paths [Amy19], dedicated to the formalization
of quantum programs in a deductive verification framework. If I was involved in the
theoretical development behind Qbrick, Christophe has been the kingpin of the de-
velopment of the toolbox.

In the situation described in Chapter C, a quantum programmightmanipulate quantum regis-
ters of large dimension. For specification and verification purposes, this renders the technique
presented in Section C.3.3 hard to use: not only proofs become sprawling but also positive op-
erators in logical formulae becomes daunting. This renders pen-and-paper proofs impossible.

One solution consists in relying on a proof-assistant and to code intentional properties
inside the corresponding logic. This has been done in Isabelle/HOL for Ying’s Hoare logic
[LZWY+19a], and in Coq for the QWIRE language [PRZ17, Ran18], followed by the VOQC

47

Chapter C Quantum Compilation

framework [HRHLH21]. However, these approaches relies on (concrete) matrices, whether
unitary [PRZ17] or positive [LZWY+19a]. As it turns out, matrices are not well-suited for au-
tomation, and long, manual proofs are necessary for validating formal specification of quan-
tum programs in this formalism.

In the paper [CBBPV21], we propose an alternative solution. On one hand, instead of using
a generic proof-assistant such as Coq [PRZ17, Ran18] or Isabelle/HOL [LZWY+19a, MAT14],
we rely on Why3 [FP13], a platform for deductive verification dedicated to proof automa-
tion [BFMP11]. On the other hand, instead of using the hard-to-automate matrix formal-
ism, we rely on a compositional, functional semantics: sum-over-paths (or path-sums) [Amy18,
Amy19].

Sum-over-Paths. Amy’s path-sum semantics offer an algebraic, intentional presentation of
quantum circuits, alternative to the matrix presentation. The name comes from the corre-
spondence with Feynman’s path integral [FH65]. This very versatile framework is amenable
to other formalisms of quantum computation such as ZX calculus [CK17, Vil21].

The idea consists in formalizing the standard function-style presentation of an operator𝐴

|𝑥⟩ ↦−→
2𝑛∑︁
𝑘=0

𝛼𝑘,𝑥 |𝑘⟩ .

Instead of listing all of the 𝛼𝑘,𝑥 ’s exhaustively, the operator is written as a triple (𝑚, 𝑃, 𝜙),
where𝑚 is an integer and 𝑃 and 𝜙 are integer polynomials such that 𝐴 is

|𝑥⟩ ↦−→ 1
√

2𝑛

2𝑛−1∑︁
𝑘=0

𝑒
2𝑖𝜋 ·𝑃𝑘 (𝑥)

2𝑚 |𝜙𝑘 (𝑥)⟩ .

For many “interesting” operators, the polynomials 𝑃 and 𝜙 form a more compact representa-
tion than the array of the 𝛼𝑘,𝑥 ’s. Furthermore, this representation is closed under functional
composition and Kronecker product, making it ideal for reasoning on quantum circuits.

One limitation of Amy’s path sum is however that one cannot check parameterized fam-
ily of circuits: akin to a model-checker, the path-sum mechanism can only handle one fixed
circuit.

The Domain-Specific Language Qbricks In [CBBPV21] we propose Qbricks, a specifica-
tion and verification framework for quantum programs based on path-sums. Before Qbricks,
frameworks for proving properties of quantum programs where either handling parametricity
at the expense of automation [MAT14, LZWY+19a, PRZ17, RPLZ18, HRHLH21] or automated
at the expense of parametricity [Amy18, Amy19, KZ15]. Our contribution to the field consists
in reconciliating parametricity and automation, with the development of a deductive verifica-
tion framework based on parameterized path sums.

Qbricks is embedded in Why3, inheriting its specification and deductive verification fea-
tures. The formalization comes with a domain-specific language for circuit manipulation and
a logic library for manipulating path-sums. This gives a handle for reasoning in terms of the
WhyML language: our path-sums are naturally parameterized.

Qbricks’ domain specific language is following the qPCF’s strategy for circuit construction
[PZ17] —although qPCF is mainly a theoretical exploration of dependent type systems in this
context. Unlike Quipper where wires are qubits that can be instantiated and manipulated as
variable and where circuits are functions on qubits, circuits in Qbricks are opaque objects
manipulated with a few combinators: elementary gates, sequential and parallel composition.

The framework has been used to prove the first verified, parametric implementation of
the quantum part of Shor’s factoring algorithm [Sho94, Bea03], including both the polynomial
complexity of the circuits and the probability requirements.We also experimentedwithGrover
[Gro96] and the quantum phase estimation subroutine (QPE) [Kit95]. Ourmethod [CBBPV21,

48

Chapter C Quantum Compilation

Sec 8] achieves a high level of proof automation (96% on Shor) and significantly reduces proof
effort (factor 13.6x compared with [LZWY+19a] on Grover, factors 7.7x and 6.4x compared
with [HRHLH21] on respectively QPE and Grover).

Example of Parametric Path-Sums Let us present an example to illustrate the interplay
between the language and the parametric path-sums. Consider the family of circuits defined
as an even number of Hadamard gates

𝐻 𝐻 · · · 𝐻︸ ︷︷ ︸
𝑛 gates (𝑛 even)

We can give a specification for a program generating such a circuit family by

Precondition 𝑛 ≥ 0 is even

Postcondition 𝐶𝑛 sends |𝑥⟩ to |𝑥⟩ and 𝐶𝑛 consists of 𝑛 gates.

This contrived example is typical for the specification of a quantum algorithm:
• the description of the circuit family is parameterized by a classical parameter (here, the
non-negative integer 𝑛);

• The precondition imposes both constraints (here, the evenness of 𝑛) and soundness con-
ditions (here, the non-negativeness of 𝑛) on the parameters;

• The postcondition can both refer to the semantics of the circuit result and to its form
and shape (here, its size).

Regular path-sums are not adequate for representing the semantics of the circuit family since
the behavior of each circuit in the family depends on its size: the path sum is

|𝑥⟩ ↦→
{ 1√

20

∑20−1
𝑘=0 𝑒2𝑖𝜋 ·0 |𝑥⟩ when 𝑛 is even

1√
21

∑21−1
𝑘=0 𝑒2𝑖𝜋 ·

𝑘𝑥
2 |𝑘⟩ when 𝑛 is odd.

Compared to Amy’s proposal, the phase and boolean polynomials of path-sums are general-
ized to generic, parameterized terms. In the case of our example, the path-sum becomes

|𝑥⟩ ↦→ 1
√

2𝑛%2

2𝑛%2−1∑︁
𝑘=0

𝑒2𝑖𝜋 ·
(𝑛%2)𝑘𝑥

2 |if even(𝑥) then𝑥 else𝑘⟩ .

With Qbricks’ framework, such a path-sum can be defined in the language and reasoned upon
in the logic.

49

Chapter C Quantum Compilation

[GLRSV13b] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron.
“Quipper: a scalable quantum programming language”. In: Proceedings of the ACM SIGPLANConference
on Programming Language Design and Implementation, PLDI’13 (Seattle, WA, USA). Ed. by Hans-Juergen
Boehm and Cormac Flanagan. ACM, 2013, pp. 333–342. isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.
2462177. arXiv: 1304.3390.

[GLRSV13a] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron.
“An introduction to quantum programming in quipper”. In: [RC13], pp. 110–124. doi: 10.1007/978-3-
642-38986-3_10. arXiv: 1304.5485.

[SRSV14] Jonathan M. Smith, Neil J. Ross, Peter Selinger, and Benoît Valiron. “Quipper: concrete resource
estimation in quantum algorithms”. In: Informal Proceedings of QAPL’14, Grenoble, France. 2014. arXiv:
1412.0625.

[VRSAS15] Benoît Valiron, Neil J. Ross, Peter Selinger, Dana Scott Alexander, and Jonathan M. Smith.
“Programming the quantum future”. In: Communications of the ACM 58.8 (2015), pp. 52–61. doi:
10.1145/2699415. url: http://doi.acm.org/10.1145/2699415. hal: hal-01194416.

[Val16] Benoît Valiron. “Generating reversible circuits from higher-order functional programs”. In: Proceed-
ings of the 8th International Conference on Reversible Computation, RC’16 (Bologna, Italy). Ed. by Simon
J. Devitt and Ivan Lanese. Vol. 9720. Lecture Notes in Computer Science. Springer, 2016, pp. 289–306.
doi: 10.1007/978-3-319-40578-0_21. hal: hal-01474621.

[Val17] Benoît Valiron. Programmer un ordinateur quantique. Column in MathsInfos Hors-Série Numéro 3,
published by Fondation Mathématique de Paris. 2017. hal: hal-01763585.

[SVMABC17] Artur Scherer, Benoît Valiron, Siun-Chuon Mau, D. Scott Alexander, Eric van den Berg, and
Thomas E. Chapuran. “Concrete resource analysis of the quantum linear-system algorithm used to
compute the electromagnetic scattering cross section of a 2D target”. In:Quantum Information Process-
ing 16.3 (2017), p. 60. doi: 10.1007/s11128-016-1495-5. hal: hal-01474610. arXiv: 1505.06552.

[ABGV18] C. Allouche, M. Baboulin, T. Goubault de Brugière, and B. Valiron. “Reuse method for quantum
circuit synthesis”. In: Recent Advances in Mathematical and Statistical Methods, post-proceedings of the
IV AMMCS International Conference on Applied Mathematics, Modeling and Computational Science, Wa-
terloo, Canada, August 20 – 25, 2017. Ed. by D. Marc Kilgour, Herb Kunze, Roman Makarov, Roderick
Melnik, and Xu Wang. Springer International Publishing, 2018, pp. 3–12. isbn: 978-3-319-99719-3. doi:
10.1007/978-3-319-99719-3_1. hal: hal-01711378.

[Val18] Benoît Valiron. “A formal analysis of quantum algorithms”. In: ERCIM News 112 (Jan. 2018), pp. 23–
24. hal: hal-01763602.

[BBVA19] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, and Cyril Allouche. “Synthesiz-
ing quantum circuits via numerical optimization”. In: Proceedings of the 19th International Conference on
Computational Science, ICCS 2019, Part II (Faro, Portugal, June 12–14, 2019). Ed. by JoãoM. F. Rodrigues,
Pedro J. S. Cardoso, Jânio M. Monteiro, Roberto Lam, Valeria V. Krzhizhanovskaya, Michael Harold
Lees, Jack J. Dongarra, and Peter M. A. Sloot. Vol. 11537. Lecture Notes in Computer Science. Springer,
2019, pp. 3–16. isbn: 978-3-030-22740-1. doi: 10.1007/978-3-030-22741-8_1. hal: hal-02174967. arXiv:
2004.07714.

[BBVMA20] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Al-
louche. “Quantum CNOT circuits synthesis for NISQ architectures using the syndrome decoding prob-
lem”. In: [RC20], pp. 189–205. doi: 10.1007/978-3-030-52482-1_11.

[BBVA20] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, and Cyril Allouche. “Quan-
tum circuits synthesis using Householder transformations”. In: Computer Physics Communications 248
(2020), p. 107001. doi: 10.1016/j.cpc.2019.107001. hal: hal-02545123. arXiv: 2004.07710.

[CBBPV21] Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron.
“An automated deductive verification framework for circuit-building quantum programs”. In: Proceed-
ings of the 30th European Symposium on Programming Languages and Systems, ESOP 2021 (Luxembourg
City, Luxembourg, Mar. 27–Apr. 1, 2021). Ed. by Nobuko Yoshida. Vol. 12648. Lecture Notes in Computer
Science. Springer, 2021, pp. 148–177. isbn: 978-3-030-72018-6. doi: 10.1007/978-3-030-72019-3_6.
arXiv: 2003.05841.

[BPV21] Agustín Borgna, Simon Perdrix, and Benoît Valiron. “Hybrid quantum-classical circuit simplifica-
tion with the ZX-calculus”. In: Proceedings of the 19th Asian Symposium on Programming Languages
and Systems, APLAS 2021 (Chicago, IL, USA (Online Conference), Oct. 17–18, 2021). Ed. by Hakjoo Oh.
Vol. 13008. Lecture Notes in Computer Science. Springer, 2021, pp. 121–139. doi: 10.1007/978-3-030-
89051-3_8. arXiv: 2109.06071.

[CBLVVX21] Christophe Chareton, Sébastien Bardin, Dongho Lee, Benoît Valiron, Renaud Vilmart, and
Zhaowei Xu. “Formal Methods for Quantum Programs: A Survey”. Draft, to appear as a book chapter.
2021. arXiv: 2109.06493.

Table C.13: Personal publications related to Chapter C.

50

https://doi.org/10.1145/2491956.2462177
https://doi.org/10.1145/2491956.2462177
https://www.arxiv.org/abs/1304.3390
https://doi.org/10.1007/978-3-642-38986-3_10
https://doi.org/10.1007/978-3-642-38986-3_10
https://www.arxiv.org/abs/1304.5485
https://www.arxiv.org/abs/1412.0625
https://doi.org/10.1145/2699415
http://doi.acm.org/10.1145/2699415
https://hal.archives-ouvertes.fr/hal-01194416
https://doi.org/10.1007/978-3-319-40578-0_21
https://hal.archives-ouvertes.fr/hal-01474621
https://hal.archives-ouvertes.fr/hal-01763585
https://doi.org/10.1007/s11128-016-1495-5
https://hal.archives-ouvertes.fr/hal-01474610
https://www.arxiv.org/abs/1505.06552
https://doi.org/10.1007/978-3-319-99719-3_1
https://hal.archives-ouvertes.fr/hal-01711378
https://hal.archives-ouvertes.fr/hal-01763602
https://doi.org/10.1007/978-3-030-22741-8_1
https://hal.archives-ouvertes.fr/hal-02174967
https://www.arxiv.org/abs/2004.07714
https://doi.org/10.1007/978-3-030-52482-1_11
https://doi.org/10.1016/j.cpc.2019.107001
https://hal.archives-ouvertes.fr/hal-02545123
https://www.arxiv.org/abs/2004.07710
https://doi.org/10.1007/978-3-030-72019-3_6
https://www.arxiv.org/abs/2003.05841
https://doi.org/10.1007/978-3-030-89051-3_8
https://doi.org/10.1007/978-3-030-89051-3_8
https://www.arxiv.org/abs/2109.06071
https://www.arxiv.org/abs/2109.06493

Chapter D

Semantics of Quantum
Lambda-Calculi

Semantics can be considered the origin of all the formal tools developed to analyze, certify,
and verify programming languages [Lee90]. It consists in a formal description of the essence
of programs aiming at unearthing the structures underlying the capabilities of programming
language. Semantics draws links between the behavior of programs—how they evolve and
interact with their environment—, their logical properties—how they are structured—, and the
result of their action—what they compute.

For classical, regular programming languages, semantics—and formalmethods—have been
around for more than half a century. Based on powerful frameworks such as category theory
or the Curry-Howard isomorphism [CFC58, How80], semantics for classical programming
languages gave birth to a range of fine-grained analysis techniques of programs.

For classical programming languages, the underlying mathematical structures are typi-
cally set-based, discrete structures [Sto77]. Although the analysis of quantum programming
languages can rely on and adapt some of the work done in the classical setting, several aspects
fundamentally differ and require novel techniques. In particular, in quantum computing, one
deals with two kinds of objects: regular, duplicable objects and quantum, non-duplicable ob-
jects. Moreover, the canonical mathematical representation of quantum states is based on
vector spaces and operator algebras.

Developing a semantics for a quantum programming language then requires a novel ap-
proach. In this chapter, we present our contribution to the field, focusing on the quantum
lambda calculus and its extension as a circuit-description language.

• Section D.1 summarizes the base of our main approach: the fact that linear logic forms
a suitable framework for a quantum type system, following Section B.3.3.

• Section D.2 discusses the procedure we followed for building a denotational semantics
accounting for both quantum and duplicable data. This kind of semantics interprets
programs as functions. The semantics we propose is strongly inspired by quantitative
semantics of linear logics [PSV14].

• Section D.3 focuses on a complementary approach: the Geometry of Interaction. This
technique provides executable semantics based on token-based automata.We showhow
quantum lambda-terms can be regarded as folded quantum circuits; the semantics gives
a procedure for “running” them [LFVY15, LFVY17].

• Finally, Section D.4 briefly discusses one of our recent results: a categorical semantics
for ProtoQuipper, a circuit-description extension of the quantum lambda calculus sup-

51

Chapter D Semantics

porting dynamic lifting: the ability to govern circuit generation based on the result of
previous measurements [LPVX21].

D.1 Linear Logic and Typed Quantum Lambda Calculus
As discussed in Section B.3.3, a natural logical framework for a type system for quantum
computation is linear logic. In this section, we briefly introduce the logic and how it lays out
a natural type system for the quantum lambda calculus.

D.1.1 Linear Logic
The logic formula from linear logic (LL) that we shall be considering are

𝐴, 𝐵 ::= 𝛼
�� 𝐴⊥ �� 1 �� ⊥ �� 0 �� ⊤ �� 𝐴 ⊗ 𝐵

�� 𝐴 &

𝐵
�� 𝐴 ⊕ 𝐵

�� 𝐴&𝐵
�� !𝐴 ��?𝐴,

where 𝛼 ranges over a set of atomic formulas. In linear logic there are two pairs of conjunc-
tions/disjunctions: a multiplicative version: ⊗ (with unit 1) and

&

(with unit ⊥), and an addi-
tive version: & (with unit ⊤) and ⊕ (with unit 0). The connective (−)⊥ stands for the linear
negation. It is extended to an involution on formulas where (𝐴⊥)⊥ = 𝐴 as follows:

1⊥ = ⊥ (𝐴 ⊗ 𝐵)⊥ = 𝐴⊥ &

𝐵⊥, (!𝐴)⊥ =?(𝐴⊥),
0⊥ = ⊤ (𝐴 ⊕ 𝐵)⊥ = 𝐴⊥&𝐵⊥,

emphasizing the fact that ⊗/ &

, ⊕/&, !(−)/?(−), 1/⊥ and 0/⊤ are dual connectors. Intuitively,
a negated formula stands for an hypothesis (i.e. an “input”) while a non-negated formula for
a conclusion (i.e. an “output”). Following the intuition that

&
is a disjunction, we define a

macro 𝐴 ⊸ 𝐵 = 𝐴⊥ &
𝐵, then representing a (multiplicative) linear implication. In light of

the duality of connectives, we can give a meaning to the two last connectives, the modalities
!(−) (the exponential) and ?(−). Indeed, in linear logic, formulas are linear by default: they
correspond to resources that have to be used exactly once. The connectives !(−) and ?(−)
make it possible to relax this constraint: !𝐴 stands for a duplicable and erasable output of type
𝐴, while ?𝐴 stands for a duplicable and erasable input of type 𝐴.

Example D.1. According to the intuitive meaning we gave to the linear logic connectives,
without additional axioms the formula 𝛼 ⊸ 𝛼 should then be correct, while 𝛼 ⊸ (𝛼 ⊗ 𝛼)
should not. On the other hand, !𝛼 ⊸ (𝛼 ⊗ 𝛼) should be valid, since !𝐴 is a “duplicable”
resource.

As in classical logic, linear logic features a notion of sequent , that is, a sequence of formulas,
denoted with ⊢ 𝐴1, . . . , 𝐴𝑛 . We call “⊢” a turnstyle. Generic sequences of formulas are denoted
with Δ, Γ, If Δ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 , and if □ is a unary connective, we write □Δ for the
sequence 𝑥1 : □𝐴1, . . . , 𝑥𝑛 : □𝐴𝑛 .

We say that a sequent is valid if it can be derived from the following rules.

⊢ 1 (1) ⊢ Γ
⊢ Γ,⊥ (⊥) ⊢ Γ,⊤ (⊤) ⊢ 𝐴,𝐴⊥ (ax) ⊢ 𝐴1, . . . 𝐴𝑛

⊢ 𝐴𝜎 (1) , . . . , 𝐴𝜎 (𝑛)
(ex𝜎)

⊢ Γ, 𝐴 ⊢ Δ, 𝐴⊥

⊢ Γ,Δ
(cut)

⊢ Γ, 𝐴 ⊢ Δ, 𝐵
⊢ Γ,Δ, 𝐴 ⊗ 𝐵

(⊗) ⊢ Γ, 𝐴, 𝐵
⊢ Γ, 𝐴

&

𝐵
(

&

)

⊢ Γ, 𝐴
⊢ Γ, 𝐴 ⊕ 𝐵

(⊕1)
⊢ Γ, 𝐵

⊢ Γ, 𝐴 ⊕ 𝐵
(⊕2)

⊢ Γ, 𝐴 ⊢ Γ, 𝐵
⊢ Γ, 𝐴&𝐵

(&)

⊢?Γ, 𝐴
⊢?Γ, !𝐴 (p)

⊢ Γ, 𝐴
⊢ Γ, ?𝐴

(d) ⊢ Γ
⊢ Γ, ?𝐴

(w)
⊢ Γ, ?𝐴, ?𝐴
⊢ Γ, ?𝐴

(c)

52

Chapter D Semantics

where 𝜎 is a permutation over {1, . . . 𝑛}. Note that there is no rule for the unit 0. By abuse
of notation the rule (ex𝜎) is left implicit in the description of proofs. From the rules one can
check that ⊗ indeed behaves like a conjunction while

&

behaves like a disjunction. One can
also see how ⊗/& has a multiplicative flavor —contexts are disjoints— while ⊕/& has an
additive flavor —contexts are shared—.

Remark D.2. Note that the position of the formulas in a sequent is essential, as otherwise the
following proof is ambiguous:

⊢ 𝐴,𝐴⊥ (ax) ⊢ 𝐴,𝐴⊥ (ax)

⊢ 𝐴,𝐴⊥ (cut).
(D.1)

Which pair 𝐴,𝐴⊥ was canceled out by the (cut)-rule?

Remark D.3. Two derivable rules are often added; they are specially useful when considering
proof-nets.

⊢ (empty)
⊢ Γ ⊢ Δ
⊢ Γ,Δ

(mix)

in which case we refer to the logic as LL+mix.

Example D.4. A linear Modus-Ponens can be derived as follows, where we add a dummy rule
for highlighting the unfolding of ⊸:

.... 𝜋1
⊢ 𝐴

.... 𝜋2
⊢ 𝐴 ⊸ 𝐵

⊢ 𝐴,𝐴⊥ (ax) ⊢ 𝐵, 𝐵⊥ (ax)

⊢ 𝐴 ⊗ 𝐵⊥, 𝐵, 𝐴⊥ (⊗)

⊢ (𝐴 ⊸ 𝐵)⊥, 𝐵, 𝐴⊥ (unfold)

⊢ 𝐵,𝐴⊥ (cut)

⊢ 𝐵 (cut)
(D.2)

In the proof of Eq. (D.2), we omitted a call to the rule (ex𝜎) at the (unfold) position: a full proof
with sequents is potentially verbose with many bureaucratic permutations of formulas.

Remark D.5. The turnstyle notation for sequent can be extended by identifying Δ ⊢ Γ and
⊢ Δ⊥, Γ. The notation adds the meta-information that Δ is to be regarded as an input and Γ
as an output. This triggers one interesting variant of linear logic for this chapter: intuitionistic
linear logic (ILL) [Tro92]. In ILL, we consider special sequents with exactly one formula as
conclusion: sequents are of the form Δ ⊢ 𝐴. Additionally, the negation (−)⊥ is not anymore
an involution.

Intuitionistic logic can be faithfully encoded inside linear logic [Gir87, Sec 5.1]. Regu-
lar, classical simply-typed programs can therefore be mapped to proofs of linear logics; cut-
elimination then corresponds to program evaluation. Passing through a linear-logic encoding
gives a fine-grained handle on the choice of evaluation strategy through the placement of the
exponential modality [Sim05]. The intuition is to consider a term typed with !𝐴 as a thunk: a
frozen computation. It can be duplicated (with contraction), erased (with weakening), and run
with dereliction. Historically, there are two canonical encodings building on this intuition: one
implementing call-by-value, where − → − is mapped to !(− ⊸ −) the other one call-by-name,
where − → − is mapped to (!−) ⊸ 𝐵.

We conclude this section by mentioning interesting fragments of linear logic, each one
with a intuitionistic and a classical variant. The first one can be inferred from Example D.4:
Multiplicative Linear Logic (MLL), where formulas are restricted to ⊗ and

&

(and ⊸). This
logical fragment is purely linear. There is thenMultiplicative Exponential Linear Logic (MELL),
where formulas consists of ⊗, &

together with the modalities “!” and “?”. These are the two
fragments that we shall be considering in this paper. We can nonetheless mention the (strictly
linear) fragment MALL of Multiplicative, Additive Linear Logic with ⊗/ &

and ⊕/&.

53

Chapter D Semantics

D.1.2 Quantum Lambda Calculus and Linear Logic
We claimed in B.3.3 that linear logic forms a natural framework for a type system of quantum
lambda calculi. In this section, we present the instantiation described in [PSV14]: it will serve
as a support for the rest of the discussion in this chapter.

The language is defined as follows.

𝑀, 𝑁, 𝑃 ::= 𝑥
�� 𝜆𝑥 .𝑀 �� 𝑀𝑁

�� (D.3)

⟨𝑀, 𝑁 ⟩
�� let ⟨𝑥,𝑦⟩ = 𝑀 in𝑁

�� ⟨⟩ �� let ⟨⟩ = 𝑀 in𝑁
�� (D.4)

tt
�� ff �� if𝑀 then𝑁 else 𝑃

�� (D.5)

𝑈
�� qinit �� meas �� (D.6)

It consists of a regular lambda calculus (D.3), extended with: pairing constructs (D.4), where
⟨𝑀, 𝑁 ⟩ stands for the pair of𝑀 and 𝑁 and ⟨⟩ is the unit-term; Boolean values and tests (D.5);
constants for manipulating qubits (D.6), where𝑈 ranges over a fixed set of unitary maps. The
language can also be extended with recursion, using the following construct:

let rec 𝑓 𝑥 = 𝑀 in𝑁 . (D.7)

The type system for the language is as follows.

𝐴, 𝐵 ::= qbit
�� bit �� 𝐴 ⊸ 𝐵

�� 𝐴 ⊗ 𝐵
�� 1 �� !𝐴. (D.8)

It consists of two constant types qbit, for representing qubits, and bit, for the Boolean values
tt and ff, and type constructors: for pairing (𝐴 ⊗ 𝐵), functions (𝐴 ⊸ 𝐵), unit-type 1 for repre-
senting ⟨⟩, and duplicable elements (!𝐴). We use the same notations as MELL to highlight the
relationship with the logic. The tensor is associative to the right: 𝐴 ⊗ 𝐵 ⊗𝐶 = 𝐴 ⊗ (𝐵 ⊗𝐶). We
write 𝐴⊗𝑛 for the 𝑛-th tensor of 𝐴. Finally, we define a notion of value:

𝑉 ,𝑊 ::= 𝑥
�� tt �� ff �� 𝜆𝑥 .𝑀 �� ⟨⟩ �� ⟨𝑉 ,𝑊 ⟩.

We consider terms to be implicitly typed: every subterm comes with a type. A typing judg-
ment is a triple written Δ ⊢ 𝑀 : 𝐴, where𝑀 is a (typed) term,𝐴 is a type and Δ is an unordered
list of typed variables: Δ = 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 . A typing judgment is valid if it can be derived
from the typing rules presented below. We also require that whenever Δ ⊢ 𝑀 : 𝐴 is valid, then
𝐴 is the implicit type of𝑀 .

The typing rules follow the proof rules of intuitionistic linear logic (as discussed in Re-
mark D.5). The typing rules for the core lambda calculus of (D.3) are as follows.

!Δ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴
(ax)

Δ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵
Δ ⊢ 𝜆𝑥.𝑀 : 𝐴 ⊸ 𝐵

(⊸𝐼)

!Δ, Γ1 ⊢ 𝑀 : 𝐴 ⊸ 𝐵 !Δ, Γ2 ⊢ 𝑁 : 𝐴
!Δ, Γ1, Γ2 ⊢ 𝑀𝑁 : 𝐵

(⊸𝐸)

Note how contraction is included inside the (⊸𝐸)-rule: this will be the case for every branching
rule. Also note how a cut-rule is implicitly used, as it will be the case for every elimination rules.

The pairing constructs correspond to the proof rules of ⊗ and 1.

!Δ, Γ1 ⊢ 𝑀 : 𝐴 !Δ, Γ2 ⊢ 𝑁 : 𝐵
!Δ, Γ1, Γ2 ⊢ ⟨𝑀, 𝑁 ⟩ : 𝐴 ⊗ 𝐵

(⊗𝐼) !Δ ⊢ ⟨⟩ : 1
(1𝐼)

!Δ, Γ1 ⊢ 𝑀 : 𝐴 ⊗ 𝐵 !Δ, Γ2, 𝑥 : 𝐴,𝑦 : 𝐵 ⊢ 𝑁 : 𝐶
!Δ, Γ1, Γ2 ⊢ let ⟨𝑥,𝑦⟩ = 𝑀 in𝑁 : 𝐶

(⊗𝐸)

54

Chapter D Semantics

!Δ, Γ1 ⊢ 𝑀 : 1 !Δ, Γ2 ⊢ 𝑁 : 𝐶
!Δ, Γ1, Γ2 ⊢ let ⟨⟩ = 𝑀 in𝑁 : 𝐶

(1𝐸)

If contraction is included inside branching rules, weakening is handled at axiom rules. The
two remaining rules for manipulating modalities —dereliction and promotion— each feature
an explicit rule but with a caveat. We force dereliction to only happen at a leaf of the typing
derivation, in order to ensure uniqueness of typing derivation. For technical convenience, we
also restrict duplication to function-types. Finally, promotion is constrained to values this is
in line with the call-by-value operational semantics of the languages, presented below.

!Δ, 𝑥 : !(𝐴 ⊸ 𝐵) ⊢ 𝑥 : 𝐴 ⊸ 𝐵
(axd) !Δ ⊢ 𝑉 : 𝐴 ⊸ 𝐵 𝑉 a value

!Δ ⊢ 𝑉 : !(𝐴 ⊸ 𝐵) (p)

If the language can be expanded with additive types —and even inductive types— [PSV14], in
this chapter we only consider Boolean values, which, albeit weaker, already capture much of
the intricacy of the additives.

!Δ ⊢ tt, ff : bit
(tt, ff)

!Δ, Γ1 ⊢ 𝑃 : bit !Δ, Γ2 ⊢ 𝑀, 𝑁 : 𝐶
!Δ, Γ1, Γ2 ⊢ if 𝑃 then𝑀 else𝑁 : 𝐶

(if)

Finally, the constants for manipulating qubits are typed as follows.

!Δ ⊢ qinit : qbit ⊸ bit !Δ ⊢ meas : bit ⊸ qbit !Δ ⊢ 𝑈 : qbit⊗𝑛 ⊸ qbit⊗𝑛

In the rule for𝑈 , the number 𝑛 stands for the arity of𝑈 .

Remark D.6. Note how there is no need for an exchange rule similar to (ex𝜎), since types are
indexed with variables. This is one of the solutions to the problem of bureaucracy; the other
one is to use proof-nets, discussed in Section D.3.

The language is equipped with an operational semantics in the form of the abstract ma-
chine described in Section B.3.2: a program is a triple [𝑄, 𝐿,𝑀], where 𝑄 ∈ Q⊗𝑛 is a normal-
ized vector of dimension 2𝑛 , 𝑀 is a term with 𝑛 free variables 𝑥1, . . . , 𝑥𝑛 and 𝐿 is a bijection
{𝑥1, . . . , 𝑥𝑛} → {1, . . . , 𝑛}. The variables 𝑥𝑖 represent qubits inside the term 𝑀 . A program is
well-typed of type 𝐴, written [𝑄, 𝐿,𝑀] : 𝐴, whenever

𝑥1 : qbit, . . . , 𝑥𝑛 : qbit ⊢ 𝑀 : 𝐴

is valid.
Programs are equipped with a probabilistic rewrite system (→𝑝) (𝑝 ∈ [0, 1]), extending

the call-by-value evaluation of (regular) lambda calculus.
An applicative context is a “term with a hole” pointing where evaluation can happen. For

instance, in our setting we do not allow rewriting under lambdas. Applicative contexts are
defined according to the following grammar.

𝐶 [−] ::= [−]
�� 𝑀𝐶 [−]

�� 𝐶 [−]𝑉 �� ⟨𝐶 [−], 𝑁 ⟩
�� ⟨𝑉 ,𝐶 [−]⟩ ��

let ⟨𝑥,𝑦⟩ = 𝐶 [−] in𝑁
�� let ⟨⟩ = 𝐶 [−] in𝑁

��
if𝐶 [−] then𝑁 else 𝑃 .

The rewrite system consists of two parts: the “classical” part, not interacting with 𝑄 and 𝐿,
and the “quantum” part, whose goal is to emulate the interaction with the quantum copro-
cessor. We define a first rewrite system →𝑐 on terms characterizing the classical part of the
evaluation, as follows.

𝐶 [(𝜆𝑥 .𝑀)𝑉] →𝑐 𝐶 [𝑀 [𝑥 := 𝑉]]
𝐶 [let ⟨⟩ = ⟨⟩ in𝑀] →𝑐 𝐶 [𝑀]
𝐶 [let ⟨𝑥,𝑦⟩ = ⟨𝑉 ,𝑊 ⟩ in𝑀] →𝑐 𝐶 [𝑀 [𝑥 := 𝑉 ,𝑦 :=𝑊]]
𝐶 [if tt then𝑀 else𝑁] →𝑐 𝐶 [𝑀]
𝐶 [if ff then𝑀 else𝑁] →𝑐 𝐶 [𝑁]
𝐶 [let rec 𝑓 𝑥 = 𝑀 in𝑁] →𝑐 𝐶 [𝑁 [𝑓 := 𝜆𝑥 .let rec 𝑓 𝑥 = 𝑀 in𝑀]]

55

Chapter D Semantics

We can then define the rewrite system on programs as first

𝑀 →𝑐 𝑁 implies [𝑄, 𝐿,𝑀] →1 [𝑄, 𝐿,𝑀 ′]

for the classical part, and for the quantum part, assuming 𝑄 ∈ Q⊗𝑛 and 𝑧 is fresh:

[𝑄, 𝐿,𝐶 [qinit tt]] →1 [𝑄 ⊗ |1⟩ , 𝐿 ∪ {𝑧 ↦→ 𝑛 + 1},𝐶 [𝑧]],
[𝑄, 𝐿,𝐶 [qinit ff]] →1 [𝑄 ⊗ |0⟩ , 𝐿 ∪ {𝑧 ↦→ 𝑛 + 1},𝐶 [𝑧]],

[𝑄, 𝐿,𝐶 [𝑈 𝑥]] →1 [(𝑈 ⊗ 𝐼)𝑄, 𝐿,𝐶 [𝑥]] if𝑈 is unary and 𝐿(𝑥) = 1,
[𝑄, 𝐿,𝐶 [𝑈 ⟨𝑥,𝑦⟩]] →1 [(𝑈 ⊗ 𝐼)𝑄, 𝐿,𝐶 [⟨𝑥,𝑦⟩]] if𝑈 is binary, 𝐿(𝑥) = 1, 𝐿(𝑦) = 2,
[𝑄, 𝐿,𝐶 [meas𝑥]] → |𝛼𝑏 |𝑛 [𝑄𝑏, 𝐿,𝐶 [𝑏]],

when 𝑄 = 𝛼ff |0⟩ ⊗ 𝑄ff + 𝛼tt |1⟩ ⊗ 𝑄tt with 𝑄ff and 𝑄tt normalized.
The language satisfies the usual safety properties: subject reduction and progress.

Example D.7. The type system is designed to not allow the duplication of quantum bits. The
type !qbit is therefore empty: there is no closed term 𝑀 such that ⊢ 𝑀 : !qbit. This property
heavily relies on the constraint we placed on the promotion rule (p): one can only duplicate
values. It is however possible to build a duplicable term of type !(1 ⊸ qbit), as for instance

⊢ 𝜆𝑥.(let ⟨⟩ = 𝑥 in𝐻 (qinit ff)) : !(1 ⊸ qbit)

is derivable. We come back to this example in Example D.9

D.1.3 Cut-elimination and Curry-Howard Isomorphism
Besides the cut-rule (and (ex𝜎), which does not count), the proof rules of linear logic are struc-
tural: they construct a sequence of formulas out of more primitive ones. One important ques-
tion in logic is, given a proof 𝜋 , whether one can rewrite it to obtain a cut-free proof, using only
structural rules (and exchange rules). This problem is known as cut-elimination. In the case of
LL (and LL+mix), one can equip the set of proofs with a strongly normalizing and confluent
rewriting system whose normal forms are precisely cut-free proofs [GLT90]. For the sake of
the presentation, we only discuss two of them: the interaction between (cut) and (ax)

⊢ 𝐴,𝐴⊥ (ax)

𝜋....
⊢ 𝐴

⊢ 𝐴 (cut) →

𝜋....
⊢ 𝐴

and the rewriting of a cut between (⊗) and (

&

)

𝜋1....
⊢ Δ1, 𝐴

𝜋2....
⊢ Δ2, 𝐵

⊢ Δ1,Δ2, 𝐴 ⊗ 𝐵
(⊗)

𝜋3....
⊢ Γ, 𝐴⊥, 𝐵⊥

⊢ Γ, 𝐴⊥ &

𝐵⊥ (

&

)

⊢ Δ1,Δ2, Γ
(cut) →

𝜋1....
⊢ Δ1, 𝐴

𝜋2....
⊢ Δ2, 𝐵

𝜋3....
⊢ Γ, 𝐴⊥, 𝐵⊥

⊢ Γ,Δ2, 𝐴
⊥ (cut)

⊢ Δ1,Δ2, Γ
(cut)

(D.9)
Remembering that the linear implication 𝐴 ⊸ 𝐵 is built as 𝐴⊥ &

𝐵, note how the rewrite
rule shown in Eq. (D.9) corresponds to a form of ⊸-elimination. This in fact precisely corre-
sponds to the beta-rule of the lambda calculus, such as in the presentation of Section B.3.1
(Although the relation is slightly non-trivial [Reg92] and linked to explicit substitution [CK97,
Acc15])

This Curry-Howard correspondence for linear logic has been analyzed by many authors
[Abr93, BBHP92, BBPH93, Bie93, Wad93]. Formalizing the intuition drawn in Example D.1,

56

Chapter D Semantics

type systems based on linear logic make it possible to specify whether resources are used
only once: a function of type 𝐴 ⊸ 𝐵 is guaranteed to use its argument exactly once, while
the type 𝛼 ⊸ (𝛼 ⊗ 𝛼) is empty. Many refinements or extensions are possible. For instance,
one can relax the linearity constraint and allow weakening —i.e. erasure— of linear resources
to get affine linear logic [Tro92]. One can use the exponential modality to characterize im-
plicit computational complexity [AR02, BT04, Gir98, Laf04, LMZ10], or add annotations to
exponentials to keep track of the number of uses of a particular resource with bounded lin-
ear logic [GSS92, LH10] or discuss differential privacy [RP10, GHHNP13]. And, as exemplified
in [PSV14] and the sketch of Section B.3, one can distinguish between duplicable and non-
duplicable data and apply it to quantum computation and the manipulation of qubits.

D.2 A Denotational Semantics

This section is devoted to the study of a denotational semantics for the quantum lambda cal-
culus. A denotational semantics is an interpretation of programs as mathematical functions,
composition of programs corresponding to function composition. Denotational semantics are
expressive tools to bridge programming languages with logical theories through the Curry-
Howard correspondence. By exhibiting the compositional structures underlying a language, a
denotational semantics validates the soundness of its design.

One of the challenge in semantics is the compatibility of quantum and classical features
when intertwined, as exemplified in the quantum lambda calculus. On the one hand, the typ-
ical semantics for quantum computation relies on linear maps and positive operators in finite
dimension. On the other hand, classical information should be duplicable, therefore requir-
ing some notion of non-linearity. Finally, the mix of quantum information within classical
datatypes such as lists entails non-standard objects such as infinite datatypes of list of qubits,
hinting at the need for infinite dimensional vector spaces.

In this section, we present our solution for such a denotational semantics. We follow an
iterative approach, starting with a quick review of the previous existing approaches (Sec-
tion D.2.1). We then present our work: a simple semantics based on completely positive maps
(Section D.2.2) to which we progressively add constructs: additives (Section D.2.3), recursive
datatypes (Section D.2.4), and duplication (Section D.2.5). We conclude with a discussion on
other possible approaches (Section D.2.6).

This section is the result of a long gestation. It started at the end of my Ph.D thesis
with the design of a CPM-based semantics for a purely linear quantum lambda calcu-
lus [SV08a]. The adjunction of recursive datatypes and duplication was then a road-
block for a long time: how to include them in a sound way within a finite-dimensional
setting? The knot was untangled in 2014 with the development of general techniques
for quantitative semantics of linear logic and semantics of probabilistic PCF [ETP14].
With Michele Pagani, we were able to port these technique to the quantum case and
answer the problem [PSV14].

D.2.1 Background on Denotational Semantics
Modeling higher-order languages have historically been done using domains and continu-
ous lattices. Algebraic effects, such as probabilities, can be handled with the use of a suitable
monad [Jon90, GHKLMS03] (although this requires some care [Gra88, JT98]). On the other
hand, linear algebra and functional analysis have been from the very beginning an exten-
sional target model for linear logic. Originally designed for System F [Gir86], coherent spaces
—at the root of the design of linear logic [Gir87]— have soon been generalized to support
algebraic effects [Gir99, Ehr02, Gir04, DE11, EPT11]. The other original semantics for linear

57

Chapter D Semantics

logic, quantitative domains [Gir88], has also spurred many rich algebraic models: Fock spaces
[BPS93a], Hopf algebras [Blu96], Köthe spaces [Ehr02], finiteness spaces [Ehr05], etc. It makes
it possible to prove fine-grained quantitative properties of programs [LMMP13].

From a categorical perspective, building a model of linear logic requires one to accommo-
date four components: the multiplicative fragment, the additive fragment, the modalities and
the involution —the last one being optional if the target is intuitionistic linear logic. Depend-
ing on the computational objective, one can also ask for traces, and/or fixpoints, and/or allow
affine behavior, etc.

As the type system of quantum lambda calculus is based on linear logic, it is reasonable to
look for a suitable algebraic model of linear logic capturing quantum effects. One of Girard’s
goals is to bridge physics and logic: Instead of trying to organically extract logical structure out
of positive operators and quantum observables [BN36,Mit78, DG02]—a problematic approach
from a computational perspective [Abr07]— Girard started from the desired logical structures
and built a semantics inspired from quantum structures: quantum coherent spaces [Gir04].
Although such a quantum-based semantics is expressive enough to model (restricted forms
of) modalities [Bar10], Selinger [Sel04b] showed that it is not adequate for modeling quantum
computation, as it is missing some entangled states —for instance 1√

2
(|00⟩ + |11⟩).

D.2.2 CPM as Compact Closed Category
As discussed in Section B.1.3, linear distributions of pure states are adequately represented
with trace-1 positive matrices. Selinger discusses how possibly non-terminating quantum pro-
grams can then be modeled with trace-non-increasing completely positive maps: a superoper-
ator . A completely positive map (CPM) 𝑓 : C𝑛×𝑛 → C𝑚×𝑚 is a linear map such that for all 𝑘 ,
the map idC𝑘×𝑘 ⊗ 𝑓 sends positive matrices to positive matrices. Let us discuss a few aspects
of this definition.

1. A superoperator might therefore output a positive matrix of trace strictly less than one:
this trace corresponds to the overall probability of termination of the corresponding
algorithm.

2. Consider a valid quantum algorithm 𝑃 of input 𝐴 and of output 𝐵. One can construct
another valid quantum algorithm with a dummy variable 𝐶 : the resulting algorithm 𝑃 ′

inputs in 𝐶 ⊗ 𝐴 and outputs in 𝐶 ⊗ 𝐵. The denotation J𝑃 ′K is equal to idJ𝐶K ⊗ J𝑃K. This
is the reason for the second constraint on superoperator.

The trace-non-increasing constraint gives a fully completemodel for first-order quantum com-
putation, as discussed in [Sel04a]. In the case of higher-order quantum computation, we drop
this constraint and work instead with general, completely positive maps. Indeed, in order to
model functions we can then rely on the Choi theorem [Cho75], stating that

Theorem D.8 ([Cho75, Th. 2]). Let 𝑓 be a linear map from C𝑛×𝑛 to C𝑚×𝑚 . Then 𝑓 is completely
positive if and only if 𝜒𝑓 ∈ C𝑚𝑛×𝑚𝑛 blockwise defined as

𝜒𝑓 =
©«

𝑓 𝐸1,1 · · · 𝑓 𝐸1,𝑛
...

. . .
...

𝑓 𝐸𝑛,1 · · · 𝑓 𝐸𝑛,𝑛

ª®®¬
is positive, where 𝐸𝑖, 𝑗 ∈ C𝑛×𝑛 is the matrix with 0s everywhere apart for one 1 on the 𝑖-th line and
𝑗-th column. □

Using TheoremD.8, one can design amodel ofMLL using positivematrices and completely
positive maps, as follow. We define the category CPM with the following data:

• Objects: natural numbers;

58

Chapter D Semantics

• Morphisms: 𝑓 : 𝑛 →𝑚 is a completely positive map C𝑛×𝑛 → C𝑚×𝑚 .

CPM can be equipped with a monoidal structure, behaving as the (usual) multiplication on
integers and as Kronecker product on morphisms. Thanks to Theorem D.8, the functor𝐴⊗ (−)
admits a right adjoint, according to the natural isomorphism

CPM(𝐴 ⊗ 𝐵,𝐶) ≃ CPM(𝐴, 𝐵 ⊗ 𝐶).

This makes CPM compact closed [Sel07], model of MLL. Note however that the model is
degenerated as

&

and ⊗ coincide.

D.2.3 Accommodating the Additives
In order to be able to at least manipulate Boolean values, we need to extend CPM to ac-
commodate the additives. Since we are in the context of finite dimensional vector spaces, the
easiest is to consider the biproduct completion CPM⊕

fin of CPM:

• Objects: lists of natural numbers 𝜎 = 𝑛1, . . . , 𝑛𝑘

• Morphisms: If 𝜎 = 𝑛1, . . . , 𝑛𝑘 and 𝜏 =𝑚1, . . . ,𝑚𝑘 ′ , then 𝑓 : 𝜎 → 𝜏 is a family 𝑓 = {𝑓𝑖, 𝑗 }𝑖, 𝑗
where 𝑓𝑖, 𝑗 : 𝑛𝑖 →𝑚 𝑗 is a CPM-morphism.

• Composition is obtained with matrix multiplication:

{𝑓𝑖, 𝑗 }𝑖, 𝑗 ◦ {𝑔 𝑗,𝑘 } 𝑗,𝑘 =

{∑︁
𝑗

𝑓𝑖, 𝑗 ◦ 𝑔 𝑗,𝑘

}
𝑖,𝑘

(D.10)

whereas the identity is a diagonal matrix of identities.

The compact-closed structure of CPM carries over to CPM⊕
fin in a straightforward manner:

(𝑛1, . . . , 𝑛𝑘) ⊗ (𝑚1, . . . ,𝑚𝑙) = 𝑛1𝑚1, . . . , 𝑛1𝑚𝑙 , 𝑛2𝑚1, . . . , 𝑛2𝑚𝑙 , , 𝑛𝑘𝑚𝑙

The categoryCPM⊕
fin makes amodel ofMALL, albeit degenerate since both themultiplicatives

and the additives collapse. However, it makes a fully-abstract model of a strictly linear lambda
calculus, as shown in [SV08a].

D.2.4 Accommodating Recursive Datatypes

If the category CPM⊕
fin can accommodate additives, the system is restricted to finite biprod-

ucts
⊕𝑛

𝑖=1𝐴𝑖 . This limits the expressiveness of the system: recursive datatypes such as lists:

[𝐴] =
∞⊕
𝑛=0

𝐴⊗𝑛 (D.11)

cannot be represented as they require infinite biproducts. Following the same intuition as for
the construction of CPM⊕

fin, an infinite biproduct would correspond to having infinite lists of
natural numbers for objects, and infinite-dimensional matrices. The difficulty then comes with
the composition, as we now end up with an infinite sum in Eq. (D.10). Indeed, in general, the
summight not converge: consider for instance 𝑓 : 1, 1, 1 . . . → 1, 1, 1 . . . defined as 𝑓𝑖, 𝑗 : 1 → 1
being the identity for all 𝑖, 𝑗 . The composition of 𝑓 with itself does not converge.

The solution we propose in [PSV14] consists in first completingCPMwith “all possible in-
finite” elements. Recall that positive matrices admit a natural ordering: Löwner order. This can
be pointwise ported to completely positive maps: each homset CPM(𝐴, 𝐵) is a Löwner posi-
tive cone. One interesting property of the Löwner order is that such a positive cone is bounded

59

Chapter D Semantics

directed complete: (1) there is a minimum element (the 0 function), and (2) any bounded di-
rected subset 𝐷 ∈ CPM(𝐴, 𝐵) admits a least upper bound.

Formally, the completion we consider is the D-completion [ZF10]. For the purpose of the
discussion, we are interested in two properties: First, the D-completion is functorial, and then
it preserves existing least upper bounds. On other words, the only additional elements are “at
infinity” —precisely what we need.

We can therefore define the categoryCPM𝐷 as follows: the objects are those ofCPM, and
the morphisms from 𝑛 and𝑚 are exactly the elements of the D-completion ofCPM(𝑛,𝑚). The
homsets CPM𝐷 (𝑛,𝑚) are now dcpos: generalized sums are always defined. This then makes
it possible to define the infinite biproduct completion CPM⊕

𝐷
of CPM𝐷 exactly as desired:

objects are infinite lists of objects ofCPM𝐷 , andmorphisms are infinite-dimensionalmatrices.
The composition is defined as in Eq. (D.10), and the possibly infinite sum resulting from the
definition is well-defined.

D.2.5 Accommodating Duplication
With infinite coproducts we can encode the behavior type !𝐴 inside the type of lists shown in
Eq. (D.11). Indeed, a duplicable element of type !𝐴 can be regarded as the biproduct of zero
copies of the element, one copy of the element, two copies of the element, etc.

The typical example is the program that inputs a coin, tosses it twice and computes the
conjunction of the results. In CPM the type of a coin is 1, 1: a pair of two probabilities (𝑎, 𝑏),
where 𝑎 is the probability of getting tt and 𝑏 the probability of getting ff. The aforementioned
program therefore corresponds to the (non-linear) map

(𝑎, 𝑏) ↦−→ (𝑎2, 2𝑎𝑏 + 𝑏2).

The reason for the non-linearity is the identification of bit and !bit. Instead, we can consider
a more expressive representation for the input, as

(𝑎∗, 𝑎tt, 𝑎ff, 𝑎tt,tt, 𝑎tt,ff, 𝑎ff,tt, 𝑎ff,ff, 𝑎tt,tt,tt, 𝑎tt,tt,ff, 𝑎tt,ff,tt . . .) ∈ 1 ⊕ bit ⊕ (bit ⊗ bit) ⊕ · · · .

A duplicable coin producing tt with probability 𝑎 and ff with probability 𝑏 is now represented
as the sequence

(𝑎 + 𝑏, 𝑎, 𝑏, 𝑎2, 𝑎𝑏, 𝑎𝑏, 𝑏2, . . .)

and the aforementioned program has now for semantics

(𝑎∗, 𝑎tt, 𝑎ff, 𝑎tt,tt, 𝑎tt,ff, 𝑎ff,tt, 𝑎ff,ff, . . .) ↦→ (𝑎tt,tt, 𝑎tt,ff + 𝑎ff,tt + 𝑎ff,ff),

now a linear, completely positive map.
Such a construction is however failing in providing the required categorical structure of

comonoid. Indeed, if !𝐴 is modeled with [𝐴], two copies of 𝐴 can very well be distinct.
Instead of a plain tensor, what is needed for !𝐴 is a symmetric tensor [MTT09], connected to

Fock spaces and used e.g. for modeling probabilistic programs in probabilistic coherent spaces
[ETP14]. Considering the case of !bit, it corresponds to define

!bit ≜ 1 ⊕ bit ⊕ bit⊙2 ⊕ bit⊙3 ⊕ · · · ,

where bit⊙𝑛 is the equalizer of

bit⊙𝑛 // bit⊗𝑛
symmetry

++

symmetry

33· · · bit⊗𝑛

60

Chapter D Semantics

For instance, bit⊙2 corresponds to the subcone of 1, 1, 1, 1 invariant under swap: this corre-
sponds to

{ (𝑎, 𝑏, 𝑏, 𝑐)
�� 𝑎, 𝑏, 𝑐 ∈ [0, 1] and 𝑎 + 2𝑏 + 𝑐 ≤ 1 }

or, equivalently,
{ (𝑎, 𝑏) ⊗ (𝑎, 𝑏)

�� 𝑎, 𝑏 ∈ [0, 1] and 𝑎 + 𝑏 ≤ 1 }.

In our case, this requires to modify the original category CPM to account for such equiv-
alence classes: we invite the reader to consult the paper for more information [PSV14]. In any
case, the resulting model is shown to be adequate for a quantum lambda calculus of the form
presented in Section D.1.2 together with coproducts and recursive types. The model is in fact
richer than what we originally showed: it is fully-abstract [CV20].

Example D.9. In Example D.7 we discuss the type !(1 ⊸ 𝐴). On the semantic side, in CPM𝐷 ,
this type is literally equal !𝐴. We can reconciliate this fact with the non-duplicability of qubits
by realizing that the semantics CPM𝐷 is richer than what can be expressed in the quan-
tum lambda-calculus. In particular, the semantics can support not only call-by-value but also
call-by-name. The semantics of !qbit then represents thunks of terms computing a qubit. On
the language side, in a call-by-value perspective such a term has to be encapsulated inside a
lambda-abstraction: we fall back on !(1 ⊸ qbit).

D.2.6 Discussion
To overcome the finite-dimensional limitation ofCPM, we used in [PSV14] abstract construc-
tions based on category and domain theory. If one can argue that we only added “infinite”
elements that are anyway not representable by programs, it can be regarded as a limitation
of our approach. Clairambault and de Visme [CV20] offer an alternative approach based on
event structures [Win80, Win87] and game semantics that does not require infinite dimen-
sional spaces. It is worth noting that their approach solves a long-standing issue in quantum
game semantics: capturing entangled elements within the tensor [DP08, Del11, Del08b].

Other approaches rely on generalizations of CPM: C∗ and von Neumann algebras. West-
erbaan et al. [Wes16] discusses how to recover the required structures, while [Wes19, Sec. 4.3]
describe amodel for the quantum lambda calculus in this framework. Finally, lately Pechoux et
al. [PPRZ20] discusses how to build recursive types with von Neumann algebras. One can also
mention the presheaf model of Malherbe [Mal10, MSS13] and the categorical construction of
Hasuo and Hoshino based on Geometry of Interaction [HH11, HH17].

D.3 An Executable Semantics

This section is devoted to the description of a low-level, operational semantics for a quantum
lambda calculus. As discussed in Section D.1.2, the standard computational interpretation of
the quantum lambda calculus is a rewrite system based on variable substitution. We discuss
here how to retrieve a circuit-based interpretation of a quantum lambda-term, using a tech-
nique stemming from the study of linear logic: the Geometry of Interaction (GoI). Originating
from Girard [Gir89], GoI has shown useful in understanding the relationship between high-
level constructs and low-level, assembly-like presentations [Mac95, GSS11].

Section D.3.1 first presents the graphical notation of proof-nets for representing proofs of
linear logic. Section D.3.2 discusses how typed lambda-terms can be interpreted as proof-nets.
Section D.3.3 describes the token-machine presentation of GoI [DR99], giving a graph-based,
executable semantics for programs when translated to proof-nets. Section D.3.4 exposes the
limit of the standard approach, as it does not support token synchronization: this is required
for quantum computation. Section D.3.5 offers a generic solution, and Section D.3.6 discusses
the solution we build specifically for quantum computation.

61

Chapter D Semantics

The strength of our proposal is to unfold the circuit-like structure hidden inside quantum
lambda-terms: tokens follow the tangled wires of the circuit.

D.3.1 Proof-Nets for MELL
One of the nagging issues with proofs of linear logic is the exchange rules: as discussed in Re-
mark D.2 it is essential, yet it looks like an unnecessary, bureaucratic construct. An alternative,
graphical presentation of proofs of linear logic consists in proof nets. For more information on
proof-nets, consult e.g. Laurent’s notes [Lau13], from which this section takes inspiration.

A proof net is a proof structurewith a validity criterion. A proof structure is a directed graph,
possibly piecewise connected, with labeled edges and nodes. Thanks to the graph structure,
there is no need for permuting anything, and the possible ambiguity of Eq (D.1) disappears.
In the context of this thesis, we will concentrate on the multiplicative exponential fragment
of linear logic (MELL), without units. A proof structure for MELL is built out of the nodes of
Figure D.1.

(cut)

𝐴 𝐴⊥ (ax)

𝐴 𝐴⊥ ⊗
𝐴 𝐵

𝐴 ⊗ 𝐵

&

𝐴 𝐵

𝐴 &𝐵

! ? ?⋯
⋯

𝑅
⋯𝐴

!𝐴
?Δ

?Δ

?𝑑
𝐴

?𝐴
?𝑐
?𝐴

?𝐴?𝐴?𝑤

?𝐴

𝑒 𝑓
𝑒 𝑓 𝑒

𝑔

𝑓 𝑓𝑒

𝑔

MELL fragment

Figure D.1: Constructors for MELL proof structures.

When clear, we shall omit the arrows symbol. Input edges are called premises and output
edges conclusions; the edges of a node are ordered. The nodes (cut) and (ax) corresponds to the
similarly named proof rules, while the nodes ⊗ and

&

decompose multiplicative formulae. The
edges for the MLL fragment (in the Turquoise dashed box) are named 𝑒 , 𝑓 and 𝑔: they shall
be used in Section D.3.3. The four other nodes are for managing modalities. The right-most
node, the box-node, stands for the promotion proof rule (p). The box encapsulates a proof-
structure 𝑅. The wires going in the box goes through doors: left-most one is the principal door
while the other are auxiliary doors. The remaining nodes ?𝑤 , ?𝑑 and ?𝑐 respectively stand
for weakening, dereliction and promotion. We extend the notion of premises and conclusions
to proof-structures: if the premises of the structure 𝑆 are 𝐴1, . . . 𝐴𝑛 and the conclusions are
𝐵1, . . . , 𝐵𝑚 , we say that 𝑆 corresponds to the sequent ⊢ 𝐴⊥

1 , . . . 𝐴
⊥
𝑛 , 𝐵1, . . . , 𝐵𝑚 .

Note how each node corresponds to a proof rule (apart for the exchange rule). A proof can
then be directly transposed into a proof structure. For instance, Fig. D.2 the proof of Eq. (D.2)
becomes the proof net shown in Figure D.2b. As it is a graph, it is the same as the net in
Figure D.2a.

Remark D.10. In the case where we have constant formulas 𝛼 in the grammar of the logic, we
can add specific nodes to reflect the corresponding proofs.

The fact that a sequent ⊢ Δ admits a proof structure does not however always imply that
there exists a proof for it: consider for instance the proof structure

⊗
𝐴 ⊗ 𝐴⊥

(ax)

𝐴 𝐴⊥
(D.12)

62

Chapter D Semantics

𝐴 𝐴⊥ 𝐵⊥𝐵

𝐴 ⊗ 𝐵⊥ 𝐵 𝐴⊥𝐴⊥ &𝐵
𝐴

𝐵

(cut)

(cut)

(ax) (ax)

⊗
𝜋1

𝜋2

(a) Following the proof

𝐴⊥ &𝐵𝐴
𝜋1

𝜋2

(cut)
(cut)

(ax)
(ax)

⊗

𝐵

𝐴 ⊗ 𝐵⊥

𝐵⊥
𝐴

𝐴⊥

(b) Untangled

Figure D.2: Proof-net corresponding to Eq. (D.2)

associated to the invalid sequent ⊢ 𝐴 ⊗ 𝐴⊥.
Characterizing proof nets, i.e. proof structures representing a valid proof for a given se-

quent, requires a validity criterion: many proposals [NM07] have been proposed since the
original Girard’s longtrip condition [Gir87]. Originally developed for MLL [DR89] but general-
izable to MELL [Dan90, GM01], a versatile criterion is Danos&Regnier’s switching condition.
It uses the notion of path: a path in a proof structure 𝜋 is a sequence of nodes, pairwise con-
nected with edges. In the case of MLL, it is called switching if its does not go through both
premises of a

&

-node. A proof-structure 𝜋 is called switching acyclic when it does not contain
switching cyclic paths. In this case, we call it a proof net .

Example D.11. The proof structure presented in Eq. (D.12) is not switching acyclic: it does
not correspond to a proof of ⊢ 𝐴 ⊗ 𝐴⊥.

In Section D.1.3, we discussed cut-elimination for the proofs of sequents: a similar proce-
dure can be designed for proof-nets. For instance, the rewrite rule shown in Eq. (D.9) becomes
for proof-nets

𝐴⊥ &𝐵⊥

𝜋

(cut)

⊗𝐴 ⊗ 𝐵

𝐵𝐴 &𝐵
⊥𝐴⊥

−→

(cut)

𝐵𝐴

𝜋

𝐵⊥𝐴⊥

(cut)

(D.13)

The validity criterion are preserved through the reduction: a valid proof-structure remains
valid through rewriting.

There have been plenty of works and extensions of proof-nets: interaction nets [Laf90,
Laf95, Maz06], differential nets [ER06, Tra11], etc. It is a flexible structure able to capture
many logical aspects while leaving out much of the bureaucracy of proofs.

D.3.2 Encoding Higher-Order Languages
Being a graphical representation, proof-nets make an easily extensible, versatile represen-
tation for programs. Typically, as mentioned in Remark D.10 one can add to the graphical
language nodes representing constants and opaque operators, and update the rewriting sys-
tem accordingly. Similarly, one can extend the boxing constructs to other situations, such as
dealing with tests [LFHY14] and recursion [LFVY15].

A proof-net directly comes from the typing derivation: in the case of the quantum lambda
calculus, as the type system is based on linear logic the translation is immediate. For instance,
the term

⊢ (𝜆𝑓 .𝜆𝑥 .𝑓 (𝑓 𝑥))𝜆𝑤.𝑀 : 𝐴 ⊸ 𝐴

63

Chapter D Semantics

⊗ ⊗
?𝑑?𝑑

?𝑐

&

&

𝑀
𝐴⊥ 𝐴

!

𝐴 ⊸ 𝐴

𝐴⊥
𝐴

!(𝐴 ⊸ 𝐴)

(a) Original

⊗ ⊗

&

𝐴 ⊸ 𝐴

𝐴⊥ 𝐴

&

𝑀
𝐴⊥ 𝐴 &

𝑀
𝐴⊥ 𝐴

(b) Opening boxes

&

𝐴 ⊸ 𝐴

𝐴⊥ 𝐴

𝑀 𝑀
𝐴⊥𝐴

(c) Unfolding 𝜆’s

Figure D.3: Translation of ⊢ (𝜆𝑓 .𝜆𝑥 .𝑓 (𝑓 𝑥))𝜆𝑤.𝑀 : 𝐴 ⊸ 𝐴

corresponds to the proof-net shown in Figure D.3. Figure D.3a corresponds to the original term
(modulo some yanking for legibility). The duplicated subterm 𝜆𝑤.𝑀 is the box on the right of
the cut, while the contraction on the left corresponds to the duplication of the variable 𝑓 . The
derelictions “open” the two copies of the box. The result of the copy and the opening of the
boxes is shown in Figure D.3b: it corresponds to 𝜆𝑥 .(𝜆𝑤.𝑀) ((𝜆𝑤.𝑀)𝑥). Finally, Figure D.3c
shows the beginning of the unfolding of the two “𝜆𝑤.”.

D.3.3 Token-based Geometry of Interaction

Geometry of Interaction (GoI) stands as one of Girard’s flagship research projects. Its main
goal consists in extracting the computational content of a proof, stable under cut-elimination. If
Girard attacked this problem under many different angles [Gir89, Gir90, Gir95a, Gir03, Gir11],
the one we consider in this chapter is the token-based GoI [Gir89]. In this approach, GoI can
be seen as a procedure to construct a sequential data-flow machine, with a token running in
a proof net. In particular, it draws a direct link between high-level programming constructs
and low-level, assembly languages [DR99, Mac95, Mac94] —it has even been used as a back-
bone for designing compilers, with support for higher-order functions [GS11], local, assignable
states [Ghi07], concurrency [GS10], recursion [GSS11], etc.

In order to illustrate the difference between the standard approach and the contribution
presented in Section D.3.5, we propose a brief introduction of the IAM [DR99] —the Interaction
Abstract Machine—. We focus for this presentation on the multiplicative fragment MLL of
MELL —that is, without modalities. In this section, to relate with Section D.1.2, we follow the
notation presented in [LFVY15].

In the MLL fragment we consider, a formula is given by the grammar

𝐴, 𝐵 ::= 𝛼
�� 𝛼⊥ �� 𝐴 ⊗ 𝐵

�� 𝐴 &

𝐵.

For the purpose of the discussion, and in line with Section D.1.2 we replace the units with
constants 𝛼 , ranging over fixed set of identifiers. A proof-net consists of the nodes (cut), (ax),
(⊗), (&

), together with a dummy node (𝛼) with one conclusion of type 𝛼 and no premises.
The state of an IAM on a proof-net 𝜋 consists of a triple (𝑒, 𝑠, 𝑑) where 𝑒 is an edge of 𝜋 ,

𝑠 an address and 𝑑 is a direction ↑ or ↓. An address is a stack: a list of the literals 𝑙 and 𝑟 .
Cons is denoted with “:”, while the empty stack is 𝜀. An address represents the position of a
subformula inside a formula. For instance, the address 𝑟 : 𝑙 : 𝜀 points to 𝛼3 in the formula
(𝛼1 ⊗ 𝛼2)

&(𝛼3 ⊗ 𝛼4).
A (reversible) rewrite system for IAM states is then derived from the structure of a net.

Following the naming convention for edges shown in Figure D.1, the rules for the token move-
ments in MLL proof nets are shown in Table D.4. An initial (resp. final) state of the IAM on an
MLL-net 𝜋 consists in a state of the form (𝑒, 𝑠, ↑) (resp. (𝑒, 𝑠, ↓)), where 𝑒 is a conclusion edge

64

Chapter D Semantics

(cut) (𝑒, 𝑠, ↓) → (𝑓 , 𝑠, ↑) (𝑓 , 𝑠, ↓) → (𝑒, 𝑠, ↑)
(ax) (𝑒, 𝑠, ↑) → (𝑓 , 𝑠, ↓) (𝑓 , 𝑠, ↑) → (𝑒, 𝑠, ↓)
up (⊗) (𝑔, 𝑙 :𝑠, ↑) → (𝑒, 𝑠, ↑) (𝑔, 𝑟 :𝑠, ↑) → (𝑓 , 𝑠, ↑)
up (&) (𝑔, 𝑙 :𝑠, ↑) → (𝑒, 𝑠, ↑) (𝑔, 𝑟 :𝑠, ↑) → (𝑓 , 𝑠, ↑)
down (⊗) (𝑒, 𝑠, ↓) → (𝑔, 𝑙 :𝑠, ↓) (𝑓 , 𝑠, ↓) → (𝑔, 𝑟 :𝑠, ↑)
down (&) (𝑒, 𝑠, ↓) → (𝑔, 𝑙 :𝑠, ↓) (𝑓 , 𝑠, ↓) → (𝑔, 𝑟 :𝑠, ↑)

Table D.4: Rules for the IAM token Machine, MLL fragment.

of 𝜋 and 𝑠 points to a constant subformula of the formula attached to 𝑒 . We write I the set of
initial states and O the state of final states.

Proposition D.12. If 𝜋 is an MLL-proof-net, the IAM machine deterministically sends initial
states to final states: it induces a bijection Σ𝜋 : I → O. Furthermore, this bijection is invariant
under cut-elimination. □

Figure D.5 shows the behavior of the IAM machine on the proof-net corresponding to the
cut of the proof of 𝛼1 ⊗𝛼2 ⊢ 𝛼2 ⊗𝛼1 and the proof of 𝛼2 ⊗𝛼1 ⊢ 𝛼1 ⊗𝛼2. This gives the identity
on 𝛼1 ⊗ 𝛼2. The token machine “realizes” the computation. Note for instance how the initial
state (𝑒, 𝑟 :𝜀, ↑) sitting on 𝛼2 goes to the terminal state (𝑜, 𝑟 :𝜀, ↓), corresponding to a token also
sitting on 𝛼2. Note also how this is invariant under the rewrite rule shown in Eq. (D.13).

This example generalizes: the IAM rewrite system on a proof-net 𝜋 realizes the compu-
tation described by the corresponding proof. The abstract machines stemming from such an
approach follow a call-by-name strategy [DR99, Mac95]: arguments are passed to their calling
functions without being evaluated. Formally, [DR99] makes a connection between the IAM
and the Krivine abstract machine (KAM) [Kri07].

& ⊗ & ⊗
e

fg

h

i

jk

p
m

n

o

(𝑒, 𝑟∶𝜀, ↑)

(𝑓 , 𝜀, ↑)

(ℎ, 𝜀, ↓)

(𝑗, 𝑙∶𝜀, ↓)(𝑘, 𝑙∶𝜀, ↑)

(𝑝, 𝜀, ↑)
(𝑛, 𝜀, ↓) (𝑚, 𝜀, ↑)

q

(𝑞, 𝜀, ↓)

(𝑜, 𝑟∶𝜀, ↓)(𝑜, 𝑙∶𝜀, ↓) (𝑒, 𝑙∶𝜀, ↑)

(𝑔, 𝜀, ↑)
(𝑖, 𝜀, ↓)

(𝑗, 𝑟∶𝜀, ↓)(𝑘, 𝑟∶𝜀, ↑)

𝛼1 ⊗ 𝛼2𝛼⊥1

&𝛼⊥2

𝛼⊥2

&𝛼⊥1𝛼2 ⊗ 𝛼1
(cut)

(ax)

(ax)(ax)

(ax)

Figure D.5: A run of the IAM token machine.

D.3.4 Limits of the Conventional Approach
For our purpose, the two main limits to this conventional, stateless token-based presenta-
tion of GoI are the strict sequentiality of the machinery and the fact that it is call-by-name.
As in the case of game semantics [AM97], directly handling call-by-value —without specific
encoding, such as CPS [Wad03]— typically requires side-effects [Sch14, HMH14].

The strict sequentiality is a problem in the context of additional nodes reflecting oper-
ations on atomic types. Suppose for instance that one of the type 𝛼 stands for the natural

65

Chapter D Semantics

numbers N: we can add to token states a register holding a natural number, and have a spe-
cial node “+” for addition. If 𝑀 and 𝑁 are terms of type N, the term ⊢ 𝑀 + 𝑁 : N then
corresponds to some net

+

𝑀 𝑁

ℕ

ℕℕ

Computing with an IAM-style machine requires to start from the conclusion; but what should
we do when we reach the +-node? Should we go left, right? Traditional solutions involve mak-
ing an arbitrary choice on which premise the token should explore first. However, despite the
fact that this requires a state to store the intermediate result, in languages such as the quan-
tum lambda calculus, this is not always possible as some operators act on non-atomic types
—for instance, 2-qubit unitary gates act on qbit⊗qbit. This makes it difficult to adapt to the
single-token IAM, and requires a novel approach.

D.3.5 Multi-Token Geometry of Interaction

In order to answer the sequentiality problem listed in Section D.3.4, dal Lago et al. [LFHY14]
offers an alternative approach for a Geometry of Interaction: Instead of starting from con-
clusion to fetch values, values “flow” on their own from inputs towards conclusions —in a
call-by-value spirit. Instead of one single token, the GoI machine of [LFHY14] fires one token
per potential value. Tokens are then emitted from negative conclusions and, if any, from nodes
introducing atomic types. This solves the problem discussed in Section D.3.4: each one of the
premises of the +-node eventually meets with a value-token. The problem [LFHY14] addresses
—in the very restricted case of MLL— is the synchronization issue: for the +-node to fire, it
needs both of its argument-tokens to have arrived, as shown in this example

+
ℕ

ℕℕ

(ax)

(ax)

ℕ⊥ ℕ⊥
+
ℕ

ℕℕ

(ax)

(ax)

ℕ⊥ ℕ⊥

(wait)
+
ℕ

ℕℕ

(ax)

(ax)

ℕ⊥ ℕ⊥

(unlocked)
+
ℕ

ℕℕ

(ax)

(ax)

ℕ⊥ ℕ⊥

This might however lead to deadlock, as illustrated in the following (bogus) run

+
ℕ

ℕℕ
(ax)(ax)

ℕ⊥
(cut)

ℕ⊥

+
ℕ

ℕℕ
(ax)(ax)

ℕ⊥
(cut)

ℕ⊥

(wait)

In the last panel, the +-box is unable to fire anything before the arrival of a token on its right
input. But this token will never come since it would be resulting from the output of the same
+-box.

Formally, dal Lago et al. [LFHY14] introduce proof-nets for SMLL, an extension of MLL
with synchronization points. The authors describe a correctness criterion for ruling out dead-
locks, and they present a token-based Geometry of Interaction where tokens flow from val-
ues to conclusions. They then sketch how this can be used to model a strictly linear quantum
lambda calculus.

66

Chapter D Semantics

⊗ ⊗
?𝑑?𝑑

?𝑐

&

&

!

& ⊗
𝐻
CNOT

qbit
qbit

qbit ⊗ qbit
(qbit ⊗ qbit)⊥ !(qbit ⊗ qbit ⊸ qbit ⊗ qbit)

qbit ⊗ qbit ⊸ qbit ⊗ qbit

(a) Original

& ⊗

𝐻
CNOT

&

& ⊗

𝐻
CNOT

qbit ⊗ qbit
(qbit ⊗ qbit)⊥

qbit
qbitqbit

qbit

(b) Intermediary state

& ⊗

𝐻
CNOT

𝐻
CNOT

&

(c) Final Unfolding

Figure D.6: Instantiating and unrolling the net of Fig. D.3.

D.3.6 Towards a Quantum Geometry of Interaction

I joined the research project at the time of the publication of [LFHY14], and my par-
ticipation led to two publications [LFVY15, LFVY17]. In this section, I summarize the
corresponding contributions.

The paper [LFVY15] presents a generalization of SMLL nets and their multi-token GoI to
support exponential modalities and recursive behavior. The resulting nets —called SMEYLL1—
therefore add to MELL-nets synchronization points and two additional boxes: the ⊥-box of
SMLL, to encode a primitive conditional, and the𝑌 -box, to represent fixpoints. The presence of
fixpoints forces us to consider a restricted notion of reduction, namely closed surface reduction
(i.e., reduction never takes place inside a box). Cuts cannot be eliminated (in general) from
SMEYLL proofs, as one expects in a system with fixpoints. Reduction, however, is proved to
be deadlock-free, i.e., normal forms cannot contain surface cuts.

If we invite the reader to read the full paper for details [LFVY15], we present here a small
example to illustrate the setting. Let us instantiate the term of Section D.3.2 to

(𝜆𝑓 .𝜆𝑥 .𝑓 (𝑓 𝑥)) (𝜆𝑤.let ⟨𝑥,𝑦⟩ = 𝑤 inCNOT⟨𝑥, 𝐻 (𝑦)⟩)

The type 𝐴 is qbit ⊗ qbit, and the net is presented in Fig. D.6: Fig. D.6a and D.6b recall the
original state and the result of the partial unfolding. Fig. D.6c shows the final result, and high-
lights an informal result: SMEYLL nets describe “folded” quantum circuits that the rewriting
unfolds.

SMEYLL nets are seen as interactive objects through a synchronous interactive abstract
machine (SIAM in the following). As for SMLL, multiple tokens circulate around the net si-
multaneously, and synchronize at sync nodes. In [LFVY15] however, SMEYLL nets and SIAM
tokens do not support probabilistic behavior and can only carry very simple additional states
such as natural numbers or Boolean values.

The follow-up paper [LFVY17] extends the setting to support quantum information and
probabilistic side-effects. The resulting model then supports all of the structures needed to
model the quantum lambda calculus. The model addresses two problems: the handling of
entanglement, and the probability behavior.

The problem of entanglement can be exemplified by the following example: in the state
1√
2
(|00⟩ + |11⟩), we want to be able to manipulate both qubits independently. In previous

approaches [HH17, Del08b, DP08, Del08a], either this was not possible, or the expressive power
of the system was too weak, lacking recursion and duplication [LZ14, LFHY14].

In the literature, probabilistic behavior is usually handled through sequentialization. This
can be done with the help of a reduction strategy, as in the probabilistic lambda calculus

1We thought of using the name “SMELLY” but it was ruled out despite my heavy lobbying

67

Chapter D Semantics

[ETP14], or with the use of polarity [DH02, HMH14]. The proposal in [LFVY17] defines instead
a confluent probabilistic transition system that is both infinitary and parallel.

Unlike the original proposal of [SV06], the new framework proposed in [LFVY17] models
memory and choice effects in a parametric way, via amemory structure. The memory structure
is presented in an algebraic manner and relies on nominal sets [Pit13]. This can be regarded
as a generalization of Staton’s equational system [Sta15], specific to quantum computation.
Compared to purely categorical presentations of quantum GoI [HH17], this semantics offers
a concrete, executable model where tokens follow the folded quantum circuit hidden inside a
quantum program.

D.4 A Categorical Semantics for Circuit-Description

Up until this point, in the presentation there have been two distinct lines of research. On
one hand, Chapter C discusses how quantum programming languages are all about circuit-
description languages. On the other hand, this chapter has only been presenting semantics of
quantum lambda calculi based on a very simple, QRAM operational semantics.

This section is devoted to closing the gap: we discuss a denotational semantics for a circuit-
description lambda calculus. The challenge is that circuits are syntactic description: one can-
not only rely on (some extension) of CPM. The usual suspect for sketching an answer is to
rely on pure categorical constructs to capture all of the required structures of the language.

Section D.4.1 introduces the existing attempts at formalizing circuit-description languages
with a focus on ProtoQuipper: a formal, core subset of Quipper expressed as an lambda cal-
culus extension for circuit manipulation. Section D.4.2 sketches the proposal of Rennela and
Staton [RS18a] for extending a concrete model of first-order quantum computation based on
𝐶∗ algebras to express quantum circuit manipulation. However, because circuits are identi-
fied with the operations they represent, the semantics fails at encompassing syntactic circuit
operations. Section D.4.3 discusses a purely categorical, more general semantics proposed by
Selinger and Rios [RS18b]. It is still limited in the sense that it only supports a limited form of
measurement. Finally, Section D.4.4 presents our proposal, answering this problem [LPVX21].

The work presented in Section D.4.4 has been the result of the Ph.D thesis of이동호
(Dongho Lee) [Lee22] who I co-supervised with Valentin Perrelle (CEA-LIST/LSL).

D.4.1 Formalizing Circuit-Description Languages
The formalization of circuit description languages started with two research threads. Arguably
the first one is the formal language ProtoQuipper [Ros15], aimed at describing the core com-
putational behavior of Quipper. The other approach has been the language QWIRE embed-
ded in Coq [PRZ17], aiming at proving properties of quantum programs. Both works follow a
similar approach to quantum programming: the circuit is a data-structure that is being con-
structed in a dynamic manner by a classical program. In the following I will concentrate on
ProtoQuipper, as its structure is closer to the quantum lambda calculus already discussed
in Section D.1.2. Moreover, ProtoQuipper has been the seminal work for many more im-
provements on the semantics side of quantum description languages [RS18b, LMZ18, FKS20,
FKRS20, LPVX21, CD22, FKRS22a, FKRS22b].

ProtoQuipper can be regarded as an extension of the quantum lambda calculus. Instead of
sending gates to the QRAM one at a time, the language features a constructor box for turning
functions into circuits—i.e. buffering gates into an circuit-object that can then be manipulated
as any other object. This box-operation can be regarded as a kind of thunk [Ing61, HD96] with
partial evaluation [CD93]: a term box𝑀 will become a circuit-object, for instance a list of gates,
but the gates will not be sent to the QRAM. In order to do so, another construct unbox aims at

68

Chapter D Semantics

“running” the circuit, effectively sending the gates downstream. Circuits are modeled in the
language using a special arrow-type circ: a circuit with input 𝐴 and output 𝐵 is typed with
circ(𝐴, 𝐵). We can therefore give the following type to box and unbox.

box : !(𝐴 ⊸ 𝐵) ⊸ circ(𝐴, 𝐵),
unbox : circ(𝐴, 𝐵) ⊸!(𝐴 ⊸ 𝐵).

The constant box makes a circuit out of the (partial evaluation) of a function, while box turns
a circuit into a function.

In the original ProtoQuipper of Neil Ross [Ros15], the language would not support proba-
bilistic behavior. So measurement is only allowed as a circuit gate sending a wire of type qubit
to a wire of type bit. The possibility to turn a bit into a regular Boolean value on which to
run the if-then-else construct of lambda calculus —the dynamic lifting feature— is not part of
the formalism. It is then for instance not possible to realize dynamic circuits such as the one
sketched in Figure C.1b.

Following Ross’s work [Ros15], the team at Dalhousie has developed a categorical se-
mantics for circuit-description languages [RS18b], based on the variant ProtoQuipperM. This
language and its categorical semantics has been the seminal work on which most of the
later works step up: [LMZ18] discusses (classical) recursion, [FKS20, FKRS20] generalizes the
model to support dependent-types, while [FKRS22a, FKRS22b] (with ProtoQuipperDyn) and
[LPVX21] (with ProtoQuipperL) study the addition of dynamic lifting to the language. The
former approach [FKRS22a, FKRS22b] describes the set of axioms required for the categorical
semantics to be sound, whereas the latter [LPVX21] constructs a concrete category based on
quantum channels, and shows how the branching stemming from measurements can be seen
as a Kleisli category in this framework (see Section D.4.4 for a more detailed discussion).

D.4.2 Semantics based on Operator Algebras

The semantics of regular, first-order quantum computation—with both unitaries and mea-
surements—have been studied for a long time. If one trend of research focuses on mathe-
matical, concrete models extending the original semantics of trace-non-increasing completely
positive maps [Sel04a, Wes16, Wes19], other works follows a more axiomatic approach. Sam
Staton [Sta15] in particular proposes a complete equational theory of first-order quantum
computation, characterized by unitary applications andmeasurements. The equational theory
is complete and comes with nine axioms, relying on𝐶∗ algebras: positive elements of𝐶∗ alge-
bras can be regarded as observables in quantum theory. WithMatthys Rennela [RS18a, RS20],
they later explore how to build a linear-non-linear category à la Benton [Ben94a]. Themodel is
very general and models any interacting computation involving a notion of circuit. To recover
quantum computation (withmeasurement), they instantiate themodel on Staton’s equational
theory [Sta15] (and 𝐶∗-algebras). As presented, the model is therefore very intentional: in its
𝐶∗ instantiation, one can for instance hardly count the number of gates of a circuit within the
model.

D.4.3 Semantics based on Category Theory

Following Ross’s formalization of ProtoQuipper [Ros15], Rios and Selinger [RS18b] offer a
categorical semantics of a related circuit-description language dubbed ProtoQuipperM. The
semantics accounts for the box and unbox operations, as well as—when correctly instantiated—
classical operators on circuits such as gate-count. The model is built from the following.

• A symmetric monoidal category 𝑀 . Objects corresponds to bunches of wires and mor-
phisms to circuits.

69

Chapter D Semantics

|0⟩
|1⟩

𝑈

𝑉

𝑊

𝐻

probabilistic branch

probabilistic branch
measure = 0

measure = 1

|0⟩

Figure D.7: Example of quantum channel.

• A symmetric monoidal closed category𝑀 with arbitrary products encapsulating𝑀 . This
category is a technical vessel for the category 𝑀 defined next.

• A category 𝑀 aiming at modeling parameterized circuits: An object of 𝑀 is a pair
(𝑋, {𝐴𝑥 }𝑥∈𝑋) where 𝑋 is a set and 𝐴𝑥 an object of 𝑀 . A morphism (𝑋, {𝐴𝑥 }𝑥∈𝑋) →
(𝑌, {𝐵𝑦}𝑦∈𝑌) is a pair (𝑓0, {𝑓𝑥 }𝑥∈𝑋) where 𝑓0 : 𝑋 → 𝑌 is a set-function and where for
all 𝑥 ∈ 𝑋 , 𝑓𝑥 : 𝐴𝑥 → 𝐵𝑓0 (𝑥) is a morphism of𝑀 .

One can canonically construct the embedding 𝑝 : Set → 𝑀 , and 𝑝 features an adjoint functor
♭ : 𝑀 → Set. This adjunction describes a linear-non-linear category and turns 𝑀 into a
model of linear logic [Ben94b]. Moreover, it makes it possible to model boxing and unboxing
in a natural way: the homset𝑀 (𝐴, 𝐵) —the representation of a circuit between 𝐴 and 𝐵— can
be regarded as a map 𝐴 ⊸ 𝐵 in 𝑀 .

If Rios and Selinger’s construction can be extended to support recursive datatypes and fix-
points [LMZ18], it is a priori not expressive enough to support measurements as such. Indeed,
if syntactic circuits can feature wires of type bit, this bit cannot be lifted to a Boolean value
in the category 𝑀 of regular, classical computations.

D.4.4 Semantics for Circuits with Measurements
In [LPVX21], we propose the language ProtoQuipperL, extending ProtoQuipper with dy-
namic lifting. The box operation now not only captures unitary operations but also measure-
ments, so that one can for instance box the function

⊢ 𝜆𝑥.let 𝑧 = 𝐻 (qinit ff) in if meas 𝑧 then𝑈 𝑥 else𝑉 𝑥 : qbit → qbit

(written in the language of Section D.1.2). Circuits are therefore now not only lists of gates,
but branching trees accounting for the choice to make for continuing a circuit after a measure.
Such generalized circuits are called quantum channels. A typical quantum channel is presented
in Figure D.7: the measurement spawns two independent branches, one for each result of the
measure. This follows the intuition drawn by the data-structure CircIO underlying Quipper’s
Circ monad presented in Section C.1.2.2.

We design a companion concrete category 𝑀 of syntactic quantum channels that can
account for (first-order) quantum computation with both unitaries and measurements, in the
similar spirit as what was proposed by Ross Duncan [Dun09]. In particular, the category𝑀 is
alreadymonoidal closed and features products, so thatwe can identify𝑀 and𝑀 .We showhow
in this situation, the category 𝑀 features a monad capturing branching side-effects coming
from the measure. This branching monad is the categorical interpretation of the Circ monad
of Quipper. Quantum computations with dynamic lifting can then naturally be represented
in the corresponding Kleisli category.

70

Chapter D Semantics

[SV09] Peter Selinger and Benoît Valiron. “Quantum lambda-calculus”. In: [GM09]. Chap. 4, pp. 135–172.
[Val10a] Benoît Valiron. “Orthogonality and algebraic lambda-calculus”. In: Proceedings of the 7th In-

ternational QPL Workshop Quantum Physics and Logic, QPL’10 (Oxford, UK). Ed. by Bob Coecke,
Prakash Panangaden, and Peter Selinger. 2010, pp. 169–175. url: http://www.cs.ox.ac.uk/people/
bob.coecke/QPL_proceedings.html.

[Val12] Benoît Valiron. “Quantum computation: a tutorial”. In: New Generation Computing 30.4 (2012), pp.
271–296. doi: 10.1007/s00354-012-0401-7.

[Val13b] Benoît Valiron. “Quantum computation: from a programmer’s perspective”. In: New Generation
Computing 31.1 (2013), pp. 1–26. doi: 10.1007/s00354-012-0120-0.

[PSV14] Michele Pagani, Peter Selinger, and Benoît Valiron. “Applying quantitative semantics to higher-
order quantum computing”. In: [POPL14], pp. 647–658. doi: 10.1145/2535838.2535879. arXiv: 1311.
2290.

[VZ14a] Benoît Valiron and Steve Zdancewic. “Finite vector spaces as model of simply-typed lambda-
calculi”. In: Proceedings of the 11th International Colloquium on Theoretical Aspects of Computing, ICTAC
2014 (Bucharest, Romania, Sept. 17–19, 2014). Ed. by Gabriel Ciobanu and Dominique Méry. Vol. 8687.
Lecture Notes in Computer Science. See [VZ14b] for the long version. Springer, 2014, pp. 442–459. doi:
10.1007/978-3-319-10882-7_26.

[VZ14b] Benoît Valiron and Steve Zdancewic. “Modeling simply-typed lambda calculi in the category of
finite vector spaces”. In: Scientific Annals of Computer Science 24.2 (2014), pp. 325–368. doi: 10.7561/
SACS.2014.2.325.

[LFVY15] Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. “Parallelism and syn-
chronization in an infinitary context”. In: [LICS15], pp. 559–572. doi: 10.1109/LICS.2015.58. hal:
hal-01231831. arXiv: 1505.03635.

[LFVY17] Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. “The geometry of paral-
lelism: classical, probabilistic, and quantum effects”. In: [POPL17], pp. 833–845. doi: 10.1145/3009837.
3009859. hal: hal-01474620. arXiv: 1610.09629.

[DGMV19] Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, and Benoît Valiron. “Realizability
in the unitary sphere”. In: [LICS19], pp. 1–13. doi: 10.1109/LICS.2019.8785834. hal: hal-02175168.
arXiv: 1904.08785.

[XVY21] Zhaowei Xu, Benoît Valiron, and Mingsheng Ying. “Reasoning about Recursive Quantum Pro-
grams”. Draft, to appear in ACM TOCL. 2021. arXiv: 2107.11679.

[LPVX21] Dongho Lee, Valentin Perrelle, Benoît Valiron, and Zhaowei Xu. “Concrete categorical model of
a quantum circuit description language with measurement”. In: Proceedings of the 41st IARCS Annual
Conference on Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2021. Ed.
by Mikolaj Bojanczyk and Chandra Chekuri. Vol. 213. LIPIcs. 2021, 51:1–51:20. doi: 10.4230/LIPIcs.
FSTTCS.2021.51.

Table D.8: Personal publications related to Chapter D.

71

http://www.cs.ox.ac.uk/people/bob.coecke/QPL_proceedings.html
http://www.cs.ox.ac.uk/people/bob.coecke/QPL_proceedings.html
https://doi.org/10.1007/s00354-012-0401-7
https://doi.org/10.1007/s00354-012-0120-0
https://doi.org/10.1145/2535838.2535879
https://www.arxiv.org/abs/1311.2290
https://www.arxiv.org/abs/1311.2290
https://doi.org/10.1007/978-3-319-10882-7_26
https://doi.org/10.7561/SACS.2014.2.325
https://doi.org/10.7561/SACS.2014.2.325
https://doi.org/10.1109/LICS.2015.58
https://hal.archives-ouvertes.fr/hal-01231831
https://www.arxiv.org/abs/1505.03635
https://doi.org/10.1145/3009837.3009859
https://doi.org/10.1145/3009837.3009859
https://hal.archives-ouvertes.fr/hal-01474620
https://www.arxiv.org/abs/1610.09629
https://doi.org/10.1109/LICS.2019.8785834
https://hal.archives-ouvertes.fr/hal-02175168
https://www.arxiv.org/abs/1904.08785
https://www.arxiv.org/abs/2107.11679
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51

Chapter E

Quantum Control and
Reversible Computation

A typical execution in the coprocessor model consists of elementary gates applied to the quan-
tum memory. The memory state consists of a superposition of basis elements: the gates are
applied indistinctly on all basis elements at once. This model can be summarized by the slo-
gan “quantum data, classical control” [Sel04a]. In this scheme, a quantum program is merely
a classical program with classical control-flow, manipulating a quantum memory. The only
thing in superposition in this model is the data.

However, a particular circuit combinator is hinting at a possibly finer execution model: the
control of an operator. This combinator makes it possible to filter out the state space and only
act on a subspace. A computational model of purely quantum executions generalizes the no-
tion of controlled gate with quantum superposition of executions instead of only superposition
of data [Nie97]. One shifts from a model of classical control-flow of programs to a quantum
control-flow, where program (or circuits) can be superposed, yielding an alternative slogan:

“Quantum data, quantum control”.

This non-standard model of computation raises several challenges: this chapter discusses two
of them. The first one is whether this model is realistic and can bring anything new compared
to the standard circuit model. Another challenge of interest to us is the design of a suitable
language to express superpositions of programs. In particular, the difficulty is to preserve uni-
tarity.

• Section E.1 discusses the problem with the concrete implementation of quantum con-
trol. It discusses the literature on the subject and focuses on one of our main contribu-
tions: the quantum SWITCH [CDPV13]. This small protocol highlights how quantum
control is not reducible to quantum circuits even though it was shown to be physically
implementable. The section concludes by discussing the several approaches followed in
the literature to define a syntax for superpositions of executions. In particular, the sec-
tion discusses the notion of tests, loops, and recursion in a purely quantum context. It
describes the problems that one must overcome while designing a syntax for quantum
control.

• Section E.2 presents one of our contributions on the design of a syntax accounting for su-
perpositions of programs. We focus on an extension of lambda calculus featuring terms
in superposition, and we discuss the design of two possible type systems accounting
for superpositions of terms and unitarity [ADV17, DGMV19]. In this approach, the lan-
guage supports arbitrary linear combinations of terms. The type systems aims at deter-
mining which terms are “valid”, i.e., make sense as quantum superpositions.

73

Chapter E Quantum Control

• Section E.3 presents our other contribution for a syntax of quantum control [SVV18].
Leaving the realm of pure lambda calculus, we propose a language based on pattern
matching. The approach is dual to the one of Section E.2: Instead of allowing any linear
combination of any programs, the syntax enforces valid quantum programs from first
principles. We discuss how the language handles naturally both (some form of) recur-
sion and unitarity. We also discuss how the corresponding type system agrees with an
extension of linear logic: the logic μMALL [CSV23].

E.1 Implementing Quantum Control

Deciding to turn controlled gates into a general superposition of execution raises several ques-
tions: does it make sense in general? If yes, how does it differ from the regular model of quan-
tum circuits? And, last but not least, how to program in this model? Each subsection addresses
one question. Section E.1.1 discusses the debates pertaining to the physicality of quantum con-
trol. Section E.1.2 presents our seminal contribution on the topic: the quantum SWITCH. It
consists in a minimal protocol exhibiting quantum superposition of execution. We show how
the quantum SWITCH cannot be realized with quantum circuits. Section E.1.3 finally reviews
the attempts at capturing quantum control within a syntax, and highlights the problems that
occur.

E.1.1 Physicality of Quantum Control
This is part of a larger problem: the physical Church-Turing thesis whose scope is to describe
what computation means within the constraints imposed by the laws of physics.

Citing Gandy [Gan80], the standard Church-Turing thesis1 states that “Every effectively
calculable function is a computable function”. In the 1930s, on one hand, two main computa-
tional models were developed: “purely mechanical devices”, the soon-to-become Turing ma-
chines [Tur36], and Church and Kleene’s 𝜆-definable functions [Kle35a, Kle35b, Chu36]. On
the other hand, as described by Turing [Tur38], the notion of effectively calculable “refers to
the intuitive idea without particular identification with any one of these definitions”. Turing
showed how these two definitions turn in fact out to be equal [Tur36], yielding the aforemen-
tioned thesis.

With its physical Church-Turing thesis, the problem unearthed by Gandy [Gan80] can be
summarized by asking what physical process can be regarded as a valid “purely mechanical
device”. Unlike approaches attempting to describe the notion of computability from an ax-
iomatic standpoint [DG08], Gandy derives a few physical principles entailing computational
constraints on the behavior of any reasonable physical machine. His thesis “M” then states
that “what can be calculated by a machine is computable” [Gan80].

Gandy was only considering the context of classical machines, leaving open the case of
quantum computation. For the latter, Deutsch [Deu85] discussed its computational power
and derived that it is no more powerful than classical computation: is the case closed? The
question is not so clear. For instance, Nielsen [Nie97] discusses a paradox, with an (infinite-
dimensional) unitary operator solving the halting problem: unitaries being the core elemen-
tary constructions for quantum computation, how to reconciliate the paradox with Deutsch’s
thesis [JS12a, AD12b]? According to Arrighi &Dowek [AD12b], the main problem lies with the
infinite dimensionality that needs to be tamed: they provide a few physical principles, quan-
tum equivalent to the one proposed by Gandy and ruling out Nielsen’s paradox. This analysis
sheds a new light on the physicality of non-standard models of quantum computation, such
as quantum automata [Dow12, Arr19], and generally models based on indefinite causal orders:
quantum causal graphs [AM17]; causal boxes [PMMRT17]; routed quantum circuits [VKB21];

1According to Copeland [Cop17], the term “Church-Turing thesis” was coined by Kleene [Kle67]

74

Chapter E Quantum Control

quantum switches [CDPV13, WC20]; supermaps [CDP08b, WDAB21]; extended circuit dia-
grams [LB21].

E.1.2 A Minimal Quantum Control: the Quantum SWITCH
One of the seminal works on quantum control and superposition of causal orders is [CDPV13],
presenting the simplest example of non-causal gate ordering: the so-called quantum SWITCH.
A presentation proceeds as follows. Suppose that you are given one single copy of a gate𝑈 and
a gate 𝑉 , and that you are asked to realize the operation Switch(𝑈 ,𝑉) acting on two qubits
𝐴 and 𝐵:

|0⟩𝐴 ⊗ |𝑦⟩𝐵 ↦→ |0⟩𝐴 ⊗ (𝑈𝑉 |𝑦⟩𝐵),
|1⟩𝐴 ⊗ |𝑦⟩𝐵 ↦→ |1⟩𝐴 ⊗ (𝑉𝑈 |𝑦⟩𝐵).

(E.1)

Provided that 𝑈 and 𝑉 are unitary, it is easy to check that this 2-qubit operator is unitary.
Depending on the state of the first qubit, the action on the second qubit is either 𝑈𝑉 or 𝑉𝑈 .
But if the first qubit is in superposition, the action on the second qubit is non-causal.

Provided that 𝑈 and 𝑉 are known, fixed operators, Switch(𝑈 ,𝑉) can be synthesized as a
circuit without problem. The difficulty appears when𝑈 and𝑉 are unknown: we are therefore
looking for a “higher-order” circuit with two holes such as

|y〉B

U V

|x〉A

and whose behavior would be the one described in Eq. (E.1). As we showed in [CDPV13], such
a “circuit with a hole”, also known as quantum comb [CDP08a, CDP09], cannot possibly im-
plement the behavior of Eq. (E.1). Of course, the quantum SWITCH can be realized if you ever
had two copies of 𝑈 and 𝑉 —and if you were allowed to control unknown gates [FDDB14]—
as follows:

• • ◦ ◦

𝑈 𝑉 𝑉 𝑈

But with only one copy of each, this is not possible.
Despite this impossibility within the circuit model, not only the quantum SWITCH has

been shown to be physically realizable [PMAC+15, TCMG+21] but it has also been proven to
bring a computational advantage [ACB14, TCMG+21] to be relevant in the context of quantum
metrology [ZYC20] and thermodynamics [CVCC23].

E.1.3 Syntactic Approaches for Quantum Control
In order to analyze quantum superpositions of execution paths, another approach followed in
the literature consists in focusing on the programming language constructs able to yield such
a behavior. The focus is moved towards the control flow of a quantum computation happening
inside the coprocessor: a quantum control flow instead of the (standard) classical control flow.

In conventional models of computation with algebraic effects such as non-deterministic or
probabilistic computation, a successful approach has been to adapt the versatile lambda calcu-
lus to the new paradigm. The mainstream technique consists in encapsulating the side-effect
inside a monad, following Moggi’s proposal [Mog89]: the effect is outside of the calculus, only
appearing as an epiphenomenon along the execution. A generic computational lambda calcu-
lus can be used for any side-effects representable with a monad. Another approach instead
takes the algebraic effect as a part of the computation: the language is augmented with the

75

Chapter E Quantum Control

corresponding algebraic structure. In this paradigm, a term non-deterministically reducing to
𝑀 or to 𝑁 is typically represented with 𝑀 + 𝑁 [dP95]. Similarly, one can equip the lambda
calculus with a probabilistic sum [LZ12, Lev16], and more general cases can be handled by
furthermore adding scalar multiplications [Vau09].

E.1.3.1 Van Tonder’s Quantum Lambda Calculus
To make superpositions part of the computation, a natural solution therefore consists in con-
sidering superpositions of lambda-terms. The first author to try it out was van Tonder [Ton04]
in 2004. His proposal is very intuitive: instead of coding lambda-terms on a regular memory,
let us encode them on the quantum memory; the superposition therefore comes for free. In
this language, one can for instance write (𝜆𝑥 .𝐻 𝑥) 1√

2
(0 + 1), represented in the memory as

| (⟩ ⊗ |𝜆⟩ ⊗ |𝑥⟩ ⊗ |.⟩ ⊗ |𝐻 ⟩ ⊗ |𝑥⟩ ⊗ |)⟩ ⊗ 1√
2
(|0⟩ + |1⟩),

and meant to reduce to |0⟩. The beta-reduction has to be encoded with quantum operations:
typically with with a unitary map. In his paper, van Tonder describes the three main prob-
lems occurring along the way, and proposes solutions to them. The first problem is the fact
that beta-reduction is not reversible: As for the case of reversible abstract machines [Klu99],
this can be countered by keeping track of previous moves. The second problem is concerned
with implicit weakening. Consider as an illustration the term |𝜆𝑥.0⟩ ⊗ 1√

2
(|0⟩ + |1⟩): a naive

interpretation yields 2√
2
|0⟩, whose norm is not 1. The problem comes from the non-linearity

of the lambda-term. Finally, the third problem occurs with non-trivial terms in superpositions.
Consider for instance 1√

2
(| (𝜆𝑥𝑦.𝑥) 1 0⟩+ |(𝜆𝑥𝑦.𝑦) 0 1⟩): although this state is arguably of norm

1, it should reduce to a state of norm different from 1. Van Tonder then describes his solution,
which is to restrict the language to a system where terms in superposition have to be equal,
apart for 0’s and 1’s: this essentially amounts to only having classical control, as this corre-
sponds precisely to the quantum lambda calculus of [SV06]. In other words, this simple, naive
approach fails to capture any quantum control.

E.1.3.2 QML
The first successful attempt at quantum control can be traced back to QML [AG05a, AG05b,
AGVS05]: in this line of work, the authors present the first example of a programmable quan-
tum test, together with a compiler to circuits. In QML, it is possible to give a formal meaning
to the intuitive program

𝑥 : qbit, 𝑦 : qbit ⊢ if◦ 𝑥 then ⟨𝑥,𝑈 𝑦⟩ else ⟨𝑥,𝑉 𝑦⟩ : qbit ⊗ qbit,

which inputs two qubit wires 𝑥,𝑦 and compiles down to the circuit

𝑥 • ◦

𝑦 𝑈 𝑉

The if◦-construct consists in a quantum test: unlike the if-then-else construct in the quantum
lambda calculus presented in Section D.1.2, the qubit 𝑥 is not measured, and both branches
happen in parallel. For this to make sense, we however need both branches to somehow yield
orthogonal states. For instance, the term

𝑥 : qbit, 𝑦 : qbit ⊢ if◦ 𝑥 then𝑥 elseNOT𝑥 : qbit

is not valid, since it maps 1√
2
(|0⟩ + |1⟩) to 2√

2
|1⟩, therefore not preserving the norm.

76

Chapter E Quantum Control

Altenkirch&Grattage proposes a small, first-order language with a simple type system
of tensors of qubits. The system comes with a syntactic notion of orthogonality, but, partly
because of the limited expressiveness of the type system it is very constrained. Despite its
limitations, it does compile to quantum circuits: it is therefore “fully quantum”.

E.1.3.3 Linear Algebraic Lambda Calculus
QML answers one of the problems of van Tonder’s quantum lambda calculus: superposing
distinct execution flows, but at the expense of expressiveness. An alternative to gain expressive
power is to lift part of the restrictions imposed by the encoding onto the quantum memory.

Instead of requiring a strict unitarity of the beta-reduction while asking for a norm condi-
tion on terms, Lineal, the linear, algebraic lambda calculus of Arrighi &Dowek [AD08, AD17]
support any linear combination of terms:

𝑀, 𝑁 ::= 𝑥
�� 𝜆𝑥.𝑀 �� 𝑀𝑁

�� 𝛼 ·𝑀
�� 𝑀 + 𝑁

�� ®0
This line of work questions the fundamental notion of computation: what does it mean to
compute in a vector space [AD05]?

The operational semantics of Lineal formalizes the idea of “terms-as-operators”: a (pure)
term is seen as a basis vector. The application is then distributive over sum and scalar multi-
plication:

(𝛼1 ·𝑀1 + 𝛼2 ·𝑀2) (𝛽1 · 𝑁1 + 𝛽2 · 𝑁2) →∗

𝛼1𝛽1 · (𝑀1𝑁1) + 𝛼1𝛽2 · (𝑀1𝑁2) + 𝛼2𝛽1 · (𝑀2𝑁1) + 𝛼2𝛽2 · (𝑀2𝑁2), (E.2)

while the 𝜆-constructor is not, acting like a thunk [Ing61, HD96]. Formally, the beta-reduction
is extended with a set of rules for manipulating sum and scalar multiple of terms, such that
Eq. (E.2) can be deduced. Several possibilities exists: are terms considered modulo associativ-
ity and commutativity? modulo the algebraic equational theory? Each of these possibilities
provide sensible —and related— models of computation [DPTV10, ADPTV14]: as shown in
[AD05], the equational theory for vector spaces can be made into a confluent rewrite system.

Lineal follows a call-by-value reduction strategy. Or, more precisely, a call-by-base reduc-
tion strategy: (𝜆𝑥.𝑀)𝑉 only evaluates whenever 𝑉 is a pure term: a term that is not a distri-
bution.

The underlying idea is that terms are regarded as generalized operators. In particular, it is
then possible to encode matrices:

𝑈 ≜
(
𝛼 𝛽

𝛿 𝛾

)
can be regarded as a map acting on the space of terms generated by tt ≜ 𝜆𝑥𝑦.𝑥 and ff ≜ 𝜆𝑥𝑦.𝑦.
The matrix𝑈 can be modeled with

𝑀𝑈 ≜ 𝜆𝑏.𝑏 (𝜆𝑧.(𝛼 · tt + 𝛿 · ff)) (𝜆𝑧.(𝛽 · tt + 𝛾 · ff))𝜆𝑧.𝑧.

The term𝑀𝑈 (𝑎 · tt + 𝑏 · ff) then reduces to (𝑎𝛼 + 𝑏𝛽) · tt + (𝑎𝛿 + 𝑏𝛾) · ff, corresponding to the
operation (

𝛼 𝛽

𝛿 𝛾

) (
𝑎

𝑏

)
.

As Arrighi &Dowek discuss, in Lineal one can encode matrices, vectors, but also tensor prod-
ucts, and therefore simulate quantum circuits.

If this extension of lambda calculus looks promising, it is however to takewith care. Indeed,
consider the following term

𝑌𝑀 ≜ (𝜆𝑥.(𝑥𝑥 +𝑀)) (𝜆𝑥.(𝑥𝑥 +𝑀)). (E.3)

77

Chapter E Quantum Control

The term 𝑌𝑀 reduces to 𝑌𝑀 + 𝑀 . But then 𝑌𝑀 − 𝑌𝑀 is beta-equivalent to both 𝑀 and 0, the
null vector: all terms collapse to zero.

Arrighi &Dowek address the problem by by enforcing a rewriting strategy disallowing
the reduction of terms such as 𝑌𝑀 − 𝑌𝑀 . This consistency problem however appears in many
algebraic extensions of lambda calculi, and several approaches to deal with the problem have
been proposed in the literature [Vau09, Val10b, Val13a].

E.1.3.4 Other Algebraic Extensions of Lambda Calculus
Lineal fits within the large class of algebraic extensions of lambda calculus. The origin of the
study can be traced back to Breazu-Tannen, discussing code optimization at compilation time
[BM87], and how replacing x - x with 0 can be problematic within an untyped setting. This
seminal paper yielded a line of works showing how type discipline can help [Bre88], and how
the consistency of the system is related to the confluence of the underlying algebraic rewrite
system, whether in a typed [BG89, BG91, BG94] or in an untyped setting [Dou92].

Algebraic lambda calculi in the style of Lineal —that is, where linear combinations of terms
are themselves terms— were introduced concurrently to Arrighi &Dowek [AD08] within the
context of the differential lambda calculus [ER03], stemming from an analysis of quantitative
models of linear logic [Ehr02]. The interaction of the algebraic structure and the lambda cal-
culus in this context has then been studied by Vaux [Vau09], who rediscovered the problems
discussed by Breazu-Tannen 20 years earlier [BM87]. With linear combinations, the algebraic
structure of terms is very rigid, and Vaux discusses several ways to recover consistency: with
a type system enforcing strong normalization of terms, or with positive scalars (thus ruling
out terms such as the one of Eq. (E.3)), or with finitely splittable scalars.

Compared to Arrighi &Dowek approach, Vaux’s algebraic lambda calculus [Vau09] is call-
by-name: application is not distributive on the right, so

(𝜆𝑥 .𝑀) (𝛼 · 𝑁1 + 𝛽 · 𝑁2) → 𝑀 [𝑥 := 𝛼 · 𝑁1 + 𝛽 · 𝑁2]

while
𝑀 (𝛼 · 𝑁1 + 𝛽 · 𝑁2) ≠ 𝛼 ·𝑀𝑁1 + 𝛽 ·𝑀𝑁2 .

The two are incompatible, as it is already the case, say, in probabilistic computation: tossing
a coin and duplicating the result is not the same thing as tossing twice the coin.

E.2 Typing Superpositions of Lambda-Terms
This section presents our work on the development of a type system for the lambda calculus
presented in Section E.1.3.3. Extended with linear combinations of terms, this lambda calculus
aims at modeling quantum superposition of programs.

The challenge addressed in this section concerns the validity of a lambda-term in super-
position. How can we decide whether such a program indeed represents a physical, quantum
operation? We want for instance a program to correspond to a unitary operation.

One of the formal tools to separate “valid” programs from “invalid” ones is the use of a
type system. It consists in a formal term annotation, stable under composition, and charac-
terizing a property we want “valid” programs to satisfy. Typical use-cases for a type system
are termination and error-freeness.

This section presents two type systems for a linear algebraic lambda calculus. The type
system of Section E.2.1 comes as a set of sophisticated, compositional definitions. Proving
properties of well-typed terms then requires complex proofs. The type system presented in
Section E.2.2 is instead defined organically using the operational semantics: a type is a set
of terms with suitable properties. The compositionality of the type system is derived as a
corollary. We discuss how the system we obtain is more fine-grained.

78

Chapter E Quantum Control

Both of the works presented here are collaborations with Alejandro Díaz Caro. The
one discussed in Section E.2.1 started while Alejandro was doing his Ph.D—we are
still collaborators nowadays. In Section E.2.2, I present a work Alejandro and I realized
later on, on a collaboration with the logic group in Montevideo (Uruguay).

E.2.1 An Axiomatic Type System: Vectorial System-F
As discussed in Section E.1.3.4, the simplest strategy to recover consistency for an algebraic
lambda calculus is to add a type system enforcing termination.

Vaux’s simple type system is very natural: it consists in typing
∑

𝑖 𝛼𝑖 · 𝑀𝑖 with 𝐴 as long
as each 𝑀𝑖 can be typed with 𝐴. This approach is akin to the approach one can follow in the
context of probabilistic or non-deterministic behavior: terms “in superpositions” should share
the same type 𝐴, and the overall “computation” is then given the type 𝐴.

Instead, the approach we followed in [ADV17] is to allow terms with distinct types to be
summed. This section describes the approach.

E.2.1.1 Simply-Typed Vectorial Lambda Calculus
The grammar for the vectorial lambda calculus is the same as the one of Lineal, presented in
Section E.1.3.3. A simple type system is as follows:

𝐴, 𝐵 ::= 𝑋
�� 𝐴 ⇒ 𝐵.

Following the Lineal approach, the rewrite-system of the vectorial lambda calculus is call-by-
base.

Coding Qubits. In the regular lambda calculus the Boolean values tt and ff can be coded
with 𝜆𝑥𝑦.𝑥 and 𝜆𝑥𝑦.𝑦. These terms can both be typed with 𝑋 ⇒ 𝑋 ⇒ 𝑋 . Within the vectorial
lambda calculus, it is possible to write any linear combination

𝛼 · 𝜆𝑥𝑦.𝑥 + 𝛽 · 𝜆𝑥𝑦.𝑦,

and the typing rules can give to all of these terms the type 𝑋 ⇒ 𝑋 ⇒ 𝑋 . If scalars range over
the complex field, and if we impose |𝛼 |2 + |𝛽 |2 = 1, we can claim to have embedded the state
of quantum bits in the vectorial lambda calculus.

Quantum If. With the Boolean values coded as 𝜆𝑥𝑦.𝑥 and 𝜆𝑥𝑦.𝑦, in the regular lambda
calculus, the if-then-else construct if𝑀 then𝑁 else 𝑃 can simply be written with (𝑀𝑁)𝑃 . As
we are in a call-by-value setting, we want to forbid the branches of the test to evaluate: we
can use thunks [Ing61, HD96] to “freeze” the computations in the branches, as follows:

if𝑀 then𝑁 else 𝑃 ≜ ((𝑀 (𝜆𝑧.𝑁)) (𝜆𝑧.𝑃)) ∗ (E.4)

where 𝑧 is a fresh variable and ∗ is any closed normal form, for instance 𝜆𝑥.𝑥 .
The vectorial lambda calculus being call-by-value, we can rely on the encoding of Eq. (E.4)

to emulate the behavior of a “quantum test” as in QML. As the language does not enforce
any unitary constraint, we can in fact encode any matrix. Consider for instance the map 𝑈

sending tt to 𝛼 · tt + 𝛽 · ff and ff to 𝛾 · tt + 𝛿 · ff. The operator𝑈 can be emulated with the term

𝑈 ≜ 𝜆𝑥.if𝑥 then (𝛼 · tt + 𝛽 · ff) else (𝛾 · tt + 𝛿 · ff) (E.5)

using the encoding of Eq. (E.4).
Typing the operator𝑈 with the simple type system is akin to typing if-then-else in the reg-

ular simply-typed lambda calculus: to get a portable solution the type systemmisses universal

79

Chapter E Quantum Control

quantifiers. Such quantifiers can be à priori easily added to the vectorial lambda calculus, with
the two standard typing rules

Δ ⊢ 𝑀 : ∀𝑋 .𝐴

Δ ⊢ 𝑀 : 𝐴[𝑋 := 𝐵]
Δ ⊢ 𝑀 : 𝐴 𝑋 ∉ FV(Δ)

Δ ⊢ 𝑀 : ∀𝑋 .𝐴

The Boolean values (and their linear combinations) can then be typed with ∀𝑋 .𝑋 ⇒ 𝑋 ⇒ 𝑋 ,
and the operator𝑈 with

(∀𝑋 .𝑋 ⇒ 𝑋 ⇒ 𝑋) ⇒ (∀𝑋 .𝑋 ⇒ 𝑋 ⇒ 𝑋).
However, as expressive as it is this type system is unable to capture algebraic properties of
terms. Several studies have in particular been performed by Arrighi &Díaz-Caro [AD09, DD17,
AD12a, ADV11, ADV17], with the addition of scalars or more generally a vectorial structure
to types.

E.2.1.2 Quantifiers: Vectorial System-F
The objective of this section is to present the work initiated in [ADV11] and achieved in
[ADV17]. Its aim is to capture some algebraic properties of the vectorial lambda calculus
within a type system. Schematically, if 𝑀 : 𝐴 and 𝑁 : 𝐵, we aim at a meaningful way of
saying that 𝛼 · 𝑀 + 𝛽 · 𝑁 is of type 𝛼 · 𝐴 + 𝛽 · 𝐵. The type-system should also be expressive
enough to be able to give a parametric type to the operator𝑈 presented in Eq (E.5). This was
conceived as a first step towards a type system enforcing unitarity constraints.

The language of Section E.2.1.1 is now equipped with the type grammar

Types 𝑇, 𝑅, 𝑆 ::= 𝑈
�� 𝛼 ·𝑇

�� 𝑇 + 𝑅
�� X,

Unit Types 𝑈 ,𝑉 ,𝑊 ::= X
�� 𝑈 ⇒ 𝑇

�� ∀X.𝑈
�� ∀X.𝑈 .

The type system acknowledges the fact that any term is first and foremost a linear combina-
tion of base terms: a general type is therefore a linear combination of unit types, where pure
types are meant to type base terms. A base type cannot be a linear combination: it is there-
fore either an arrow-type or a quantified type. The type system features two kinds of type
variables: type variables X standing for general types, and type variables X standing for unit
types. Arrow types reflect the fact that the language is call-by-base: the domain of an arrow
type is a unit-type. Indeed, consider 𝜆𝑥 .𝑀 : although 𝑀 can be any term, the term variable 𝑥
can only be replaced by a base term, and base terms are meant to be typed with unit types.

The types come equipped with an equivalence relation ≡, defined as follows:

1 ·𝑇 ≡ 𝑇 𝛼 ·𝑇 + 𝛽 ·𝑇 ≡ (𝛼 + 𝛽) ·𝑇
𝛼 · (𝛽 ·𝑇) ≡ (𝛼𝛽) ·𝑇 𝑇 + 𝑅 ≡ 𝑅 +𝑇

𝛼 ·𝑇 + 𝛼 · 𝑅 ≡ 𝛼 · (𝑇 + 𝑅) 𝑇 + (𝑅 + 𝑆) ≡ (𝑇 + 𝑅) + 𝑆

This relation is used in the typing rules for the algebraic aspect of the language, as follows:

Γ ⊢ 𝑀 : 𝑇
Γ ⊢ 𝛼 ·𝑀 : 𝛼 ·𝑇 (𝛼𝐼) Γ ⊢ 𝑀 : 𝑅 Γ ⊢ 𝑁 : 𝑇

Γ ⊢ 𝑀 + 𝑁 : 𝑅 +𝑇 (+𝐼) Γ ⊢ 𝑀 : 𝑅 𝑅 ≡ 𝑇

Γ ⊢ 𝑀 : 𝑇 (≡)

Finally, the term 0 can be given any inhabitated type, as follows:

Γ ⊢ 𝑀 : 𝑇
Γ ⊢ 0 : 0 ·𝑇 (0𝐼)

This rules out the possibility to introduce bogus, empty types inside a linear combination. It
stems from the fact that the only possible way to introduce a 0-term is through the rewrite
rule 0 ·𝑀 → 0.

One peculiar thing to note in the type system is the absence of a 0-type: there is no notion
of “empty” linear combination of types. One of the reasons is consistency: With a 0-type, it
would make sense to ask for 0 · 𝑇 ≡ 0, thus rendering all 0-scalared types equal, including
empty ones.

80

Chapter E Quantum Control

Dealing with functions. The typing rule for the lambda-abstraction follows the intuition
given while describing the type system:

Γ, 𝑥 : 𝑈 ⊢ 𝑀 : 𝑅
Γ ⊢ 𝜆𝑥 .𝑀 : 𝑈 ⇒ 𝑅

(⇒𝐼)

The rule for the application is more involved, as we want to be able to handle for instance
terms of the form (𝑀1 + 𝑀2) (𝑁1 + 𝑁2). For the purpose of the discussion, we only give an
example and we invite the reader to consult the full paper [ADV17] for details.

Because quantifiers can only happen at the level of unit-types, the typing rule for appli-
cation contains both an arrow-elimination and a quantifier-elimination. In order to illustrate
what we mean, assume that we have defined pairs and projections in the usual way, using
the second-order. Now, the term (𝜋1 + 𝜋2) (⟨𝑈1,𝑈2⟩ + ⟨𝑉1,𝑉2⟩) reduces to 𝑈1 +𝑈2 +𝑉1 +𝑉2:
assuming that the 𝑈𝑖 ’s and 𝑉𝑖 ’s are well-typed, this should also be well-typed. Following the
way the rewrite procedure distributes the application over the sum, the rule can be stated as

Γ ⊢ 𝑀 : ∀XY .(X × Y ⇒ X) + ∀XY .(X × Y ⇒ Y) Γ ⊢ 𝑁 : (𝑈1 ×𝑈2) + (𝑉1 ×𝑉2)
Γ ⊢ 𝑀𝑁 : 𝑈1 +𝑈2 +𝑉1 +𝑉2 .

Both of the types𝑈1 ×𝑈2 and𝑉1 ×𝑉2 are matched against the domain X×Y of the function,
and in each case each summand of the type of the function yields its part, therefore producing
all of the𝑈𝑖 ’s and 𝑉𝑗 ’s.

This instance of the application rule features all of the subtleties of the general version
presented in [ADV17].

Discussion. The vectorial lambda calculus can emulate (finite-dimensional) linear opera-
tions: one can encode quantum circuits in the language. The proposed vectorial System-F is
then expressive enough to correctly type this encoding. Moreover, the type system enforces
consistency: all typed terms are strongly normalizing. However, the standard property of sub-
ject reduction, stating that if 𝑀 → 𝑁 and 𝑀 : 𝐴 then 𝑁 : 𝐴 does not quite hold in our
system. The problem comes from the mismatch between the equivalence on types that does
not equate 𝑇 and 𝑇 + 0 · 𝑅 and the rewrite system, sending all terms of the form 0 · 𝑀 to 0.
The language however features a weakened version, based on a relation ⊒ satisfying several
rules, among which 𝑇 ⊒ 𝑇 + 0 · 𝑅, capturing the “problem” with the zero-term.

E.2.2 A Type System Based on Realizability
Two strategies can be followed in order to design a type system. On one hand, one can define
a formal grammar of types, and types can then be attached to terms using an (external) set
of axiom rules. This is what has been done in Section E.2.1 A type system usually aims at
capturing various properties of typed terms: These properties are then proven from the typing
rules, as corollaries. On the other hand, one can follow the route of realizability [Kle45] and
instead define types inductively, as sets of terms. The properties to enforce on typed terms can
be added as constraints on the definition of the types. In this situation, typing rules becomes
lemmas to be proven, instead of primitive axioms. The fact that a well-typed term verifies one
of desired property is obtained “by definition”.

E.2.2.1 Example based on simply-typed lambda calculus
The archetypal example is the proof of strong normalization of a typed lambda calculus. On
one hand, one can set up the type up front with an abstract grammar:

𝑀,𝑀 ::= 𝑥
�� 𝜆𝑥 .𝑀 �� 𝑀𝑁,

𝐴, 𝐵 ::= 𝜎
�� 𝐴 ⇒ 𝐵,

81

Chapter E Quantum Control

set up a notion of typing judgment 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑀 : 𝐵 and define what it means to
be a valid typing judgment with a series of typing rules, posed as axioms:

Δ, 𝑥 : 𝐴 ⊢ 𝑥 : 𝐴
Δ, 𝑥 : 𝐴 ⊢ 𝑀 : 𝐵

Δ ⊢ 𝜆𝑥 .𝑀 : 𝐴 ⇒ 𝐵

Δ ⊢ 𝑀 : 𝐴 ⇒ 𝐵 Δ ⊢ 𝑁 : 𝐴
Δ ⊢ 𝑀𝑁 : 𝐵 (E.6)

The rewrite system of lambda calculus is based on beta-reduction: 𝑀 → 𝑁 is defined as the
smallest congruent relation satisfying (𝜆𝑥 .𝑀)𝑁 → 𝑀 [𝑥 ↦→ 𝑁] . It is well-known that although
the untyped lambda calculus is not strongly normalizing, the simply-typed fragment is. A
proof can be designed using reducibility candidates [Tai67, GLT90].

The intuition behind reducibility candidates consists in defining for each type 𝐴 a set of
terms RED𝐴, called reducibility candidates of type 𝐴. They are defined by induction, following
the “structure” of the types. For instance,𝑀 ∈ RED𝐴⇒𝐵 whenever for all 𝑁 ∈ RED𝐴, we have
𝑀𝑁 ∈ RED𝐵 . For the base case RED𝜎 , we enforce the desired property: 𝑀 ∈ RED𝜎 whenever
it is strongly normalizing and of type 𝜎 . One then derives various properties of these sets of
terms, from which one can conclude strong normalization of well-typed terms.

An alternative approach to typing consists in directly starting from the computational be-
havior given by the beta-reduction. In this setting, we start from an untyped lambda calculus,
and we define types in a semantic manner as closed normal forms. A term 𝑀 is a realizer for
a type 𝐴, denoted with 𝑀 ⊩ 𝐴, if 𝑀 reduces to a term in 𝐴. We then define the arrow (⇒) as
an operator on sets of terms as follows:

𝑋 ⇒ 𝑌 ≜ { 𝜆𝑥.𝑀 closed term | ∀𝑁 ∈ 𝑋, 𝑀 [𝑥 ↦→ 𝑁] ⊩ 𝑌 } . (E.7)

Note how realizers of 𝑋 ⇒ 𝑌 are strongly normalizing when the realizers of 𝑋 and 𝑌 are
strongly normalizing. Typing judgments of the form 𝑥1 : 𝐴1, . . . , 𝑥𝑛 : 𝐴𝑛 ⊢ 𝑀 : 𝐵 are then
defined as a shortcut notation for

∀𝑁1 ∈ 𝐴1, . . . 𝑁𝑛 ∈ 𝐴𝑛, 𝑀 [𝑥1 ↦→ 𝑁1, . . . , 𝑥𝑛 ↦→ 𝑁𝑛] ⊩ 𝐵.

The 3 typing rules of Eq. (E.6) then become lemmas: we essentially have to choose as base
type 𝜎 a set of strongly normalizing closed terms. . .

The system is very versatile: it can be applied to extended lambda calculi, and other type
operators can be constructed from their computational interpretation: products, co-products,
lists, quantifiers, etc [Lep16].

E.2.2.2 Weak Vector Spaces
A realizability model heavily relies on the computational behavior of an untyped language. As
discussed in Section E.1.3.3, without types the consistency of the vectorial lambda calculus is
not guaranteed, seemingly jeopardizing any meaningful notion of normal form and, therefore,
computation.

In a research thread [Val10b, Val13a], we propose a solution to this problem. The idea is
akin to what was proposed for the algebraic structure of the vectorial system-F: disconnect
the 0-vector and vectors scaled to 0: the latter register what information got zero-ed out while
in the former case everything is discarded. When the information is consistent one can indeed
identify both approaches — but this is not possible anymore if the information is inconsistent,
as for instance with the term 𝑌𝑀 of Eq. (E.3).

The solution we propose for retaining consistency in a vectorial lambda calculus where
arbitrary fixpoints are allowed is to weaken the equations of module by disallowing the rule
equating 0 ·𝑀 and ®0: if we still have 𝑌𝑀 −𝑌𝑀 = 0 ·𝑌𝑀 , one cannot anymore get to ®0. Formally,
if (A, 1,★, 0, +) is a ring, an weakA-module (𝑀, +, ®0, ·) is the data consisting of a commutative
monoid (𝑀, +, ®0) and an operation (·) : A × 𝑀 → 𝑀 such that for all 𝑎, 𝑏 ∈ A and for all
𝑥,𝑦 ∈ 𝑀 ,

𝑎 · (𝑥 + 𝑦) = 𝑎 · 𝑥 + 𝑎 · 𝑦, 𝑎 · (𝑏 · 𝑥) = (𝑎 ★𝑏) · 𝑥,
(𝑎 + 𝑏) · 𝑥 = 𝑎 · 𝑥 + 𝑏 · 𝑥, 1 · 𝑥 = 𝑥 .

82

Chapter E Quantum Control

In particular, we do not impose 0 · 𝑥 = ®0, meaning that ®0 is not the same as 𝑥 + (−1) · 𝑥 .
By turning the vectorial lambda calculus into a weak module, the term 𝑌𝑀 −𝑌𝑀 still exists

but cannot be used to collapse the equational theory anymore: it does not equate ®0 anymore.
This has been formalized in [Val13a], where I show how a typed vectorial lambda calculus
with fixpoint based on an equational theory of weak module admits a non-trivial model.

E.2.2.3 Realizability Model Capturing Unitary
Based on [Val13a], it is possible to give a sound computational interpretation of a vectorial
lambda calculus (based on weak modules). With such a computational interpretation, one can
then design a realizability model. Interestingly enough, it is even possible to capture within a
type system a notion of unitarity: this is the topic of a collaboration with Alejandro Díaz Caro,
Mauricio Guillermo and Alexandre Miquel [DGMV19].

The language we consider is a (vectorial) lambda calculus extended with constructs to deal
with a unit term★, pairing and (binary) injections. For the purpose of the discussion, we note
the pairing of 𝑀 and 𝑁 as ⟨𝑀, 𝑁 ⟩, and we consider Boolean values tt and ff defined in the
usual way using injections. The pairing is bilinear with respect to the weak module structure,
so for instance we have

⟨𝑀1 +𝑀2, 𝛼 · 𝑁 ⟩ = 𝛼 · ⟨𝑀1, 𝑁 ⟩ + 𝛼 · ⟨𝑀2, 𝑁 ⟩.

The operational semantics is “call-by-base”: one does not reduce under lambda-abstractions.

Notation E.1. For this section, we use the following notation: 𝑉 ,𝑊 stands for pure values:
lambda-abstractions, pairs of values, or injections of values ; ®𝑉 , ®𝑊 stands for linear combina-
tions of pure values, and𝑀, 𝑁 stands for general terms.

Since the ring is the field of complex numbers, we show in the paper that some of the
notion of Hilbert spaces can be defined in this weakened context. In particular, one can define
the naive notion of scalar product and ℓ2-norm as follows:〈 ∑

𝑖 𝛼𝑖 ·𝑉𝑖
�� ∑

𝑗 𝛽 𝑗 ·𝑊𝑗

〉
=

∑
𝑖, 𝑗 𝛼𝑖𝛽 𝑗 · 𝛿𝑉𝑖 ,𝑊𝑗

| | ∑𝑖 𝛼𝑖 ·𝑉𝑖 | | =
√︁∑

𝑖 |𝛼𝑖 |2

where the 𝑉𝑖 ’s and the𝑊𝑗 ’s are pure values and 𝛿𝑉 ,𝑊 = 1 if 𝑉 = 𝑊 and 0 otherwise2. This
gives a notion of orthogonality, making for instance tt and ff orthogonal. We can define the
span span(𝑋) and the basis ♭𝑋 of a set of terms 𝑋

span(𝑋) =
{ ∑𝑛

𝑖=1 𝛼𝑖 ·𝑀𝑖

�� 𝑛 ∈ N, ∀𝑖, 𝑀𝑖 ∈ 𝑋
}
,

♭𝑋 = { 𝑉 | 𝛼 ·𝑉 +𝑀 ∈ 𝑋 } .

We can also define the unit sphere of values as

𝑆1 =

{
®𝑉

��� | | ®𝑉 | | = 1
}
.

This gives a canonical notion of “normalized vector” in the “vector space” of linear combina-
tions of terms.

In this model, the type of Boolean values can then be defined as B ≜ { tt, ff }, and the type
of quantum bits as Q ≜ span(B) ∩ 𝑆1 . A qubit is then literally a superposition of Boolean
values.

In general, we define a unitary type as a subset of 𝑆1: In [DGMV19], on top of ♭ we define
several unitary type operators, among which:

𝐴 × 𝐵 =

{
⟨ ®𝑉 , ®𝑊 ⟩

��� ®𝑉 ∈ 𝐴, ®𝑊 ∈ 𝐵

}
, 𝐴 ⊗ 𝐵 = span(𝐴 × 𝐵) ∪ 𝑆1 .

2There is some subtlety in term equality. Please refer to the paper [DGMV19] for details

83

Chapter E Quantum Control

Note how Q ⊗ Q consists in normalized linear distributions of pairs of Boolean values.
We can define function types as discussed for Eq. (E.7), and from the system we can derive

that the function type Q → Q corresponds to unitary operators on the Hilbert space C2. We
then derive a set of typing rules [DGMV19, Tab. 6], providing a compositional way to construct
terms that enforces unitarity “by construction”.

Discussion. In order to assess the expressiveness (and the versatility) of the language, we
show how to embed the quantum lambda calculus (albeit without measurement), similar to
the one discussed in Section D.1.2. Moreover, because of vectorial structure of the language,
we show that we can also define a control operator, and, in general define a form of quantum
SWITCH (discussed in Chapter E), thus offering a framework for both classical and quantum
control.

However, although this paper offers a solution to the long-standing question of seeing vec-
torial lambda calculus as a medium for representing quantum computation, it is still unsat-
isfactory. The main limitation stands in the discrepancy between the semantic interpretation
of unitary terms in the realizability model and their concrete, syntactic structure. One inter-
esting research direction consists in developing a compilation framework to turn valid terms
into executable quantum circuits.

E.3 Reversible and Quantum Pattern-Matching

The vectorial lambda calculus is based on a inherently irreversible model of computation.
Instead of trying to adjust its defects to purely quantum computation, an alternative approach
consists in changing the paradigm and moving towards reversible computation.

This section is devoted to amodel of computation alternative to lambda calculus, reversible
and based on pattern-matching [SVV18]. This computational model shares links with the vec-
torial lambda calculus, yet it allows a finer control over problematic aspects: there is no need
for weak modules, yet the system supports a notion of recursive behavior.

Section E.3.1 presents the concept of reversible language, while Section E.3.2 discusses how
reversible pattern-matching can be seen as a primitive design for a reversible language. Sec-
tion E.3.3 sketches its categorical interpretation, while Section E.3.4 provides an strategy for
introducing inductive types and recursion. Section E.3.5 discusses how to extend the language
to quantum control, and Section E.3.6 reviews a Curry-Howards interpretation based on the
logic μMALL.

If this line of work started from an epistolary discussion with Amr Sabry and Juliana
Vizzotto, it has become one of mymain research vehicles in recent years. In particular,
reversible pattern matching has been the subject of the Ph.D of my students Kostia
Chardonnet [Cha23], co-supervised with Alexis Saurin (IRIF) and Louis Lemonnier
[Lem24], co-supervised with Vladimir Zamdzhiev.

E.3.1 Background on Reversible Language
Discussed in Section C.2.1, the subject of reversible computation has spurred an avenue of
research in programming languages and type systems.

On one hand, following the trend of research oriented towards reversible architectures
[FBCH+20], a line of research aims at designing imperative programming languages targeting
reversible computation. The ancestor of such languages is arguably Janus [Lut86], an impera-
tive flow-chart language rediscovered in [YG07] and studied in details in [YAG16]. Reversible
computation is linked to linearity, and [Bak92, Mat03] explore the subject with respectively
Ψ-lisp and SRL, akin to a linear Janus language.

84

Chapter E Quantum Control

In the realm of syntactic functional languages, lambda calculus is not well-suited — al-
though there has been a proposal for a reversible combinatory algebra [PHW06]. In terms of
syntax, a seminal proposal for a reversible, functional language is the untyped Rfun [YAG12] —
although Thomsen concurrently aimed at a proposal [Tho12]. From this seminal Rfun several
extensions were developed: heap manipulation and algebraic datatypes in [AG13], the ability
to manipulate non-linear objects in [Mog14], the addition of garbage collection in [Mog18].
On the side of concrete use of the language, a series of examples of code have been proposed
[TA15], while on the formal side a core fragment of the language (CoreFun) has been analyzed
in [JKT18].

A last trend consists in the study of point-free languages. The first approach is the lan-
guage INV [MHT04], followed by Π, presented by James and Sabry [JS12b] with a sound
presentation of isomorphism between types and a discussion on irreversibility as side effect.
A (reversible) compiler for the language has also been designed [JS12c]. A specific discussion
on type systems for reversible programming as semirings can be found in [CS16].

To conclude, an approach linking point-free languages and regular, typed functional lan-
guage is Theseus [JS14]. Initiated in [SVV18], the line of work I follow can be seen as the study
of a formalization of a core of Theseus.

E.3.2 Reversible Pattern-Matching
In [SVV18], we propose a simple yet extensible model of reversible computation. Consider a
grammar of typed patterns defined as follows:

𝑣,𝑤 ::= 𝑥
�� ★ �� ⟨𝑣,𝑤⟩

�� inl(𝑣) �� inr(𝑣),
𝑎, 𝑏 ::= 1

�� 𝑎 ⊗ 𝑏
�� 𝑎 ⊕ 𝑏,

where 𝑥 ranges over a set of (typed) variables, ★ is a unit term of unit type 1, ⟨𝑣,𝑤⟩ : 𝑎 ⊗ 𝑏 is
a pair of a value 𝑣 : 𝑎 and a value 𝑤 : 𝑏, and provided that 𝑣 : 𝑎, we have inl(𝑣) : 𝑎 ⊕ 𝑏 and
inr(𝑣) : 𝑏 ⊕ 𝑎. A pattern 𝑣 is valid if each variable appears at most once in it. We denote with
FV(𝑣) the set of variables appearing in 𝑣 . A closed pattern is called a value.

In a functional setting, a reversible computation between type 𝑎 and type 𝑏 is a bijection
between values of the respective types. Aiming at an applicative language on structured types,
in [SVV18] we follow the standard strategy [Lan66, Bur69, Tur79] and propose a syntax of
isomorphisms based on pattern-matching.

An iso consists of a set of clauses
𝑣1 ↔ 𝑣 ′1

...

𝑣𝑛 ↔ 𝑣 ′𝑛

 ,

where for each 𝑖 , we have FV(𝑣𝑖) = FV(𝑣 ′𝑖). The iso is well-type of type 𝑎 ↔ 𝑏 whenever each
𝑣𝑖 is of type 𝑎 and each 𝑣 ′𝑗 is of type 𝑏. For the iso to be well-defined, the patterns on the
left of each clause should be non-overlapping. For the iso to be injective, the patterns should
furthermore be exhaustive: all values of type 𝑎 should have a matching pattern in the iso. To
enforce bijectivity, the same two constraints should also be set on the right-hand-side of the
clauses of the iso.

In other word, an iso defines a bijection between values of type 𝑎 and values of type 𝑏 if
and only if the patterns are exhaustive and non-overlapping on the left and on the right. For
instance, the (bijective) iso 𝜔 of type 𝑎 ⊗ (𝑏 ⊕ 𝑐) ↔ (𝑎 ⊗ 𝑏) ⊕ (𝑎 ⊗ 𝑐) can be defined{

⟨𝑥, inl𝑦⟩ ↔ inl ⟨𝑥,𝑦⟩
⟨𝑥, inr𝑦⟩ ↔ inr ⟨𝑥,𝑦⟩

}
.

One can check that the left hand-side of the iso satisfies the two required properties: Any
value of type 𝑎 ⊗ (𝑏 ⊕ 𝑐) is either of the form ⟨𝑥, inl𝑦⟩ or of the form ⟨𝑥, inr𝑦⟩.

85

Chapter E Quantum Control

E.3.3 A Categorical Interpretation

Together with Kostia Chardonnet and Louis Lemonnier, we studied the categori-
cal structure underlying the pattern-matching presented in Section E.3.2. This work
yielded a publication [CLV21] presented in this section. The text is taken from the
introduction of the paper.

The categorical analysis of partial injective maps have been thoroughly analyzed since
1979, first by Kastl [Kas79], and then by Cockett and Lack [CL02, CL03, CL07]. This led to
the development of inverse category: a category equipped with an inverse operator in which
all morphisms have partial inverses and are therefore reversible. The main aspect of this line
of research is that partiality can have a purely algebraic description: one can introduce a re-
striction operator on morphisms, associating to a morphism a partial identity on its domain.
This categorical framework has recently been put to use to develop the semantics of specific
reversible programming constructs and concrete reversible languages: analysis of recursion
in the context of reversibility [AK16, Kaa19, KV19], formalization of reversible flowchart lan-
guages [12, 22], analysis of side-effects [HK15, HKK18], etc. Interestingly enough however, the
adequacy of the developed categorical constructs with reversible functional programming lan-
guages has been seldom studied. For instance, if Kaarsgaard et al. [KAG17] mention Theseus
as a potential use-case, they do not discuss it in details. So far, the semantics of functional
and applicative reversible languages has always been done in concrete categories of partial
isomorphisms [KV19, KR21].

In particular, one important aspect that has not been addressed yet in detail is the cate-
gorical interpretation of pattern-matching. If pattern-matching can be added to reversible im-
perative languages [GKY19], it is particularly relevant in the context of functional languages
where it is one of the core construct needed for manipulating structured data. This is for in-
stance emphasized by the several existing languages making use of it [YAG12, TA15, JS14,
JKT18, SVV18, CSV20, CSV23]. In the literature, pattern-matching has either been considered
in the context of a Set-based semantics [GKY19], or more generally in categorical models
making heavy use of rig structures [CS16] or co-products [KR21, KV19] to represent it. If such
rich structures are clearly enough to capture pattern-matching, we show in [CLV21] that they
are too coarse, and that a weaker structure is enough for characterizing pattern-matching.

E.3.4 Inductive Types, Fixpoints and termination

As it stands, the language is very limited: it is for instance not possible to express natural
numbers, or lists. One simple solution consists in extending the language with inductive types
and recursion.

Through the Curry-Howard isomorphism, inductive types are the twin siblings of induc-
tively defined predicates. Arguably, the formalization of induction takes its root on one hand
[BCMS89] from the theory of inductive definitions [Fef70, BFPS81, Acz77] and Martin Löf’s
type theory [Mar71, Mar84], and on the other hand from de Bakker and Scott’s 𝜇-calculus
[SB69, Bak71, Pra81, Koz83]. The main design choice consists in whether to use an equational
presentation with named constructors [CP90, Dyb91, Dyb94] or an anonymous presentation
using 𝜇-abstractions [BR72, Roe74, Men88, Mat98], in the same way 𝜆-abstractions can be
used to express (unnamed) functionals.

If in [SVV18] we use named constructors for the dedicated type constructor [𝑎] for lists,
in later works [CSV20, CSV23] we work with the more generic anonymous inductive types,
using a 𝜇-construction, as follows.

𝑎, 𝑏 ::= 𝑋
�� 1 �� 𝑎 ⊗ 𝑏

�� 𝑎 ⊕ 𝑏
�� 𝜇𝑋 .𝑎.

86

Chapter E Quantum Control

The additional type constructor 𝜇𝑋 .𝑎 comes with a pattern/value constructor fold. The typing
rules enforces the equivalence

fold 𝑣 : 𝜇𝑋 .𝑎 ∼ 𝑣 : 𝑎[𝑋 ↦→ 𝜇𝑋 .𝑎],

encapsulating de Bakker and Scott’s induction principle [SB69]. A type constructor [𝑎] for lists
can for instance be defined as [𝑎] ≜ 𝜇𝑋 .1⊕(𝑎⊗𝑋). The list constructor nil and 𝑣1 ::𝑣2, standing
respectively for the empty list and the cons operation, can be defined as nil ≜ fold inl★ and
𝑣1 :: 𝑣2 ≜ fold inr ⟨𝑣1, 𝑣2⟩.

An inductive type might have arbitrarily large values: in a functional setting, the tradi-
tional method [Jon87] consists in using fixpoints. To do so, one missing feature of the iso
language is the capability to manipulate variables representing isos. In [SVV18] we extend
the language by adding iso variables, application, lambda-abstraction over iso-variables, and
a fixpoint operator fix. Assuming fix 𝑓 .𝜔 has the behavior

fix 𝑓 .𝜔 → 𝜔 [𝑓 ↦→ fix 𝑓 .𝜔]

and assuming a suitable syntax extension for the right-hand-side of isos, we can then define
the (higher-order) map operation of type (𝑎 ↔ 𝑏) ⇒ ([𝑎] ↔ [𝑏]) as follows:

map ≜ 𝜆𝑔.fix 𝑓 .

{
nil ↔ nil
ℎ :: 𝑡 ↔ (𝑔ℎ) :: (𝑓 ℎ)

}
.

Assuming the iso𝑔 is of type 𝑎 ↔ 𝑏, the operation map𝑔 sends nil to nil and otherwise applies
𝑔 to the head of the list and itself to the tail.

Introducing fixpoints pose the question of the termination of programs: without termina-
tion, the isos describes injective maps between sets of values. Bijections are only obtained in
the case of terminating isos. One of the result of [SVV18] is to formalize this fact.

E.3.5 Pattern-Matching for Quantum Control
The reversible iso-language described in Section E.3.4 is amenable to the same algebraic ex-
tension as the vectorial lambda calculus presented in Section E.1.3.3: values are extended to
linear combinations. Therefore, assuming tt ≜ inl★ and ff ≜ inr★ are the two (standard) val-
ues of type 1 ⊕ 1, one can now consider values of the form 𝛼 · tt + 𝛽 · ff, where 𝛼, 𝛽 are scalars:
the type 1 ⊕ 1 is a 2-dimensional module. In [SVV18] we formalize an algebraic extension of
the iso-language supporting the encoding of unitary maps (when scalars ranges over complex
numbers). For instance, the Hadamard gate can be represented with the iso{

ff ↔
√
2
2 (ff + tt)

tt ↔
√
2
2 (ff − tt)

}
of type (1 ⊕ 1) ↔ (1 ⊕ 1). In the paper, we discuss how this idea can be extended to types of
infinite dimension such as lists, and we provide a (restricted) formal setting for the support of
lists and linear combinations. In particular, we provide a compositional interpretation of isos
as unitaries in ℓ2-spaces.

The quantum SWITCH. In the context of the algebraic extension of the iso-language, the
quantum SWITCH is simple to write. Indeed, suppose that 𝑢 : 𝑎 ↔ 𝑏 and 𝑣 : 𝑏 ↔ 𝑎 are two
isos, then one can write the iso {

inl𝑥 ↔ inl(𝑣 (𝑢 𝑥))
inr𝑥 ↔ inr(𝑢 (𝑣 𝑥))

}
of type (𝑎 ⊕ 𝑏) ↔ (𝑎 ⊕ 𝑏). Depending on the branch (left or right), either 𝑢 𝑣 or 𝑣 𝑢 is applied.
The remaining question is whether 𝑢 and 𝑣 are indeed “used” only once.

87

Chapter E Quantum Control

E.3.6 Relationship with the Logic 𝜇MALL

This section summarizes a series of papers obtained with Kostia Chardonnet, a Ph.D
student I co-supervised with Alexis Saurin [CSV20, CSV21, CSV23, Cha23].

The extended type system presented in Section E.3.4 is very reminiscent of the logic μMALL,
an extension of MALL with inductive formulae. Introduced by Baelde, [BM07, Bae08] the
logic μMALL is linear and features tensors and coproducts. Inductive formulae are dealt with
infinite proof structures. The problem in this context is then to characterize whether a given
infinite derivation is indeed correct: there exist several validity criteria [Bae12, BDS16, Dou17,
NST18]. The strict linearity of the logic together its ability to express inductive formulaemakes
μMALL a good candidate logic to serve as a Curry-Howard correspondence with the iso-
language sketched in Section E.3.4.

As mentioned earlier, an iso 𝜔 : 𝐴 ↔ 𝐵 corresponds to both a computation sending a
value of type 𝐴 to a result of type 𝐵 and a computation sending a value of type 𝐵 to a result
of type 𝐴. The logical counterpart consists in two proofs: a proof 𝜋 of 𝐴 ⊢ 𝐵 and a proof 𝜋⊥ of
𝐵 ⊢ 𝐴. These proofs describes an isomorphism if the two possible cuts between them reduce
to an identity proof.

The case of structurally recursive isos is considered in [CSV23]. We show that the resulting
language can encode any primitive recursive function [Har87], andwe give an interpretation of
well-typed isos as proofs of isomorphisms inμMALL. Thework described in [CSV23] discusses
how the syntactical constraints of structural recursion are linked to the validity of infinite
proofs corresponding to programs.

The example discussed in the paper is the proof Jmap𝑔K corresponding to the term map𝑔
with 𝑔 : 𝐴 ↔ 𝐵 being

[A] ⊢ [B]

1⊕(A⊗[A]) ⊢ 1⊕(B⊗[B])

1 ⊢ 1⊕(B⊗[B]) A⊗[A] ⊢ 1⊕(B⊗[B])

1 ⊢ 1 A,[A] ⊢ 1⊕(B⊗[B])

A,[A] ⊢ B⊗[B]

A ⊢ B [A] ⊢ [B]

nil ↔ nil

ℎ ∶∶ 𝑡 ↔ (𝑔 ℎ) ∶∶ (𝑓 𝑡)

[| g |]
ℎ

𝑡 𝑓 𝑡
𝑔 ℎ

recursive call

and where J𝑔K is the proof corresponding to 𝑔. Although the proof is folded in a cyclic manner,
it corresponds to an infinite proof: the back-edge is really an infinite branch consisting of
“copy-and-paste” of the proof structure:

[A] ⊢ [B]

1⊕(A⊗[A]) ⊢ 1⊕(B⊗[B])

1 ⊢ 1⊕(B⊗[B]) A⊗[A] ⊢ 1⊕(B⊗[B])

1 ⊢ 1 A,[A] ⊢ 1⊕(B⊗[B])

A,[A] ⊢ B⊗[B]

A ⊢ B [A] ⊢ [B]

[| g |] 1⊕(A⊗[A]) ⊢ 1⊕(B⊗[B])

1 ⊢ 1⊕(B⊗[B]) A⊗[A] ⊢ 1⊕(B⊗[B])

1 ⊢ 1 A,[A] ⊢ 1⊕(B⊗[B])

A,[A] ⊢ B⊗[B]

A ⊢ B [A] ⊢ [B]

[| g |] 1⊕(A⊗[A]) ⊢ 1⊕(B⊗[B])

1 ⊢ 1⊕(B⊗[B]) A⊗[A] ⊢ 1⊕(B⊗[B])

1 ⊢ 1 A,[A] ⊢ 1⊕(B⊗[B])

A,[A] ⊢ B⊗[B]

A ⊢ B [A] ⊢ [B]

[| g |]

The fact that proof is valid comes from the infinite number of left-unfolding of the list.

88

Chapter E Quantum Control

[Val10b] Benoît Valiron. “Semantics of a typed algebraic lambda-calculus”. In: Proceedings of the SixthWork-
shop on Developments in Computational Models: Causality, Computation, and Physics, DCM 2010 (Ed-
inburgh, Scotland, July 9–10, 2010). Ed. by S. Barry Cooper, Prakash Panangaden, and Elham Kashefi.
Vol. 26. Electronic Proceedings in Theoretical Computer Science. Preliminary work to the journal paper
[Val13a]. 2010, pp. 147–158. doi: 10.4204/EPTCS.26.14.

[ADV11] Pablo Arrighi, Alejandro Díaz-Caro, and Benoît Valiron. “Subject reduction in a curry-style poly-
morphic type system with a vectorial structure”. In: Proceedings of the 7th International Workshop on
Developments of Computational Methods, DCM 2011 (Zurich, Switzerland, July 3, 2021). Ed. by Elham
Kashefi, Jean Krivine, and Femke van Raamsdonk. Vol. 88. Electronic Proceedings in Theoretical Com-
puter Science. Preliminarywork to the journal paper [ADV17]. 2011, pp. 1–15.doi: 10.4204/EPTCS.88.1.
hal: hal-00924926. arXiv: 1012.4032.

[CDPV13] G. Chiribella, G. M. D’Ariano, P. Perinotti, and B. Valiron. “Quantum computations without def-
inite causal structure”. In: Physical Review A 88 (2013), p. 022318. doi: 10.1103/PhysRevA.88.022318.
arXiv: 0912.0195.

[Val13a] Benoît Valiron. “A typed, algebraic, computational lambda-calculus”. In: Mathematical Structures
in Computer Science 23.2 (2013). Journal, extended version of [Val10b]., pp. 504–554. doi: 10.1017/
S0960129512000205.

[ADPTV14] Ali Assaf, Alejandro Díaz-Caro, Simon Perdrix, Christine Tasson, and Benoît Valiron. “Call-by-
value, call-by-name and the vectorial behaviour of the algebraic lambda-calculus”. In: Logical Methods
in Computer Science 10.4 (2014). doi: 10.2168/LMCS-10(4:8)2014. arXiv: 1005.2897v7.

[VZ14a] Benoît Valiron and Steve Zdancewic. “Finite vector spaces as model of simply-typed lambda-
calculi”. In: Proceedings of the 11th International Colloquium on Theoretical Aspects of Computing, ICTAC
2014 (Bucharest, Romania, Sept. 17–19, 2014). Ed. by Gabriel Ciobanu and Dominique Méry. Vol. 8687.
Lecture Notes in Computer Science. See [VZ14b] for the long version. Springer, 2014, pp. 442–459. doi:
10.1007/978-3-319-10882-7_26.

[VZ14b] Benoît Valiron and Steve Zdancewic. “Modeling simply-typed lambda calculi in the category of
finite vector spaces”. In: Scientific Annals of Computer Science 24.2 (2014), pp. 325–368. doi: 10.7561/
SACS.2014.2.325.

[ADV17] Pablo Arrighi, Alejandro Díaz-Caro, and Benoît Valiron. “The vectorial lambda-calculus”. In: Infor-
mation and Computation 254 (2017), pp. 105–139. doi: 10.1016/j.ic.2017.04.001. hal: hal-00921087.

[SVV18] Amr Sabry, Benoît Valiron, and Juliana Kaizer Vizzotto. “From symmetric pattern-matching to
quantum control”. In: Proceedings of the 21st International Conference on Foundations of Software Science
and Computation Structures, FoSSaCS 2018 (Thessaloniki, Greece). Ed. by Christel Baier and Ugo Dal
Lago. Vol. 10803. Lecture Notes in Computer Science. Springer, 2018, pp. 348–364. doi: 10.1007/978-3-
319-89366-2_19. hal: hal-01763568. arXiv: 1804.00952.

[DGMV19] Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, and Benoît Valiron. “Realizability
in the unitary sphere”. In: [LICS19], pp. 1–13. doi: 10.1109/LICS.2019.8785834. hal: hal-02175168.
arXiv: 1904.08785.

[CSV20] Kostia Chardonnet, Alexis Saurin, and Benoît Valiron. “Toward a Curry-Howard equivalence for
linear, reversible computation - work-in-progress”. In: [RC20], pp. 144–152. doi: 10.1007/978-3-030-
52482-1_8. hal: hal-03103455.

[CLV21] Kostia Chardonnet, Louis Lemonnier, and Benoît Valiron. “Categorical semantics of reversible
pattern-matching”. In: [MFPS21], pp. 18–33. doi: 10.4204/EPTCS.351.2.

[CSV23] Kostia Chardonnet, Alexis Saurin, and Benoît Valiron. “Towards a Curry-Howard correspondence
for linear, reversible computation”. In: Proceedings of the 5th International Workshop on Trends in Linear
Logic and Applications (TLLA 2021) (Rome (virtual), Italy). 2021. hal: lirmm-03271484.

Table E.1: Personal publications related to Chapter E.

89

https://doi.org/10.4204/EPTCS.26.14
https://doi.org/10.4204/EPTCS.88.1
https://hal.archives-ouvertes.fr/hal-00924926
https://www.arxiv.org/abs/1012.4032
https://doi.org/10.1103/PhysRevA.88.022318
https://www.arxiv.org/abs/0912.0195
https://doi.org/10.1017/S0960129512000205
https://doi.org/10.1017/S0960129512000205
https://doi.org/10.2168/LMCS-10(4:8)2014
https://www.arxiv.org/abs/1005.2897v7
https://doi.org/10.1007/978-3-319-10882-7_26
https://doi.org/10.7561/SACS.2014.2.325
https://doi.org/10.7561/SACS.2014.2.325
https://doi.org/10.1016/j.ic.2017.04.001
https://hal.archives-ouvertes.fr/hal-00921087
https://doi.org/10.1007/978-3-319-89366-2_19
https://doi.org/10.1007/978-3-319-89366-2_19
https://hal.archives-ouvertes.fr/hal-01763568
https://www.arxiv.org/abs/1804.00952
https://doi.org/10.1109/LICS.2019.8785834
https://hal.archives-ouvertes.fr/hal-02175168
https://www.arxiv.org/abs/1904.08785
https://doi.org/10.1007/978-3-030-52482-1_8
https://doi.org/10.1007/978-3-030-52482-1_8
https://hal.archives-ouvertes.fr/hal-03103455
https://doi.org/10.4204/EPTCS.351.2
https://hal.archives-ouvertes.fr/lirmm-03271484

Chapter F

Opening

Over the past dozen years, the field of quantum programming languages has experienced
substantial maturation. Fifteen years ago, programming languages were restricted to toy lan-
guages, independent from hardware, and only relied on small mathematical specifications
such as Knill’s QRAM model [Kni96]. What happened below this layer was left “to the physi-
cists”. Nowadays, quantum programming languages address large, industrial-scale problem
instances and target concrete hardware [McKinsey21]. It has become clear that many low-
level aspects require scrutiny and are of interest to the programmer: Timing, coprocessor ex-
pressivity power, quantum superposition of execution, etc. All of this needs to be taken into
account at once, and it is not clear whether this can be compartmented into an intermedi-
ate representation, with the compiler responsible for the translation, or if some or all of the
constraints have to be lifted to the high-level language. Both points of view are interesting:
leveraging intermediate representations for quantum computation to this extended paradigm
but also having a full-fledged high-level language for describing such processes.

Our seminal work on Quipper is arguably a milestone in the design of quantum program-
ming languages [GLRSV13b]. Quipper can indeed be seen as an experiment in the design
of a scalable language with sound principles. The central axiom is that programming quan-
tum algorithms is, first of all, the description of the construction of a circuit: any quantum
programming language should, therefore, be a classical programming language providing a
series of specialized constructs to realize circuits as efficiently as possible. Several design prin-
ciples ensue. For instance, one such design is the capability to box functions—i.e., considering
a function from qubit to qubit as a circuit— and unbox circuits—that is, considering a circuit
as a function acting on a qubit. Another principle is the ability to build and apply higher-order
circuit combinators: the programming language should make it easy to control a circuit, use it
in the context of local, ancilla wires, and otherwise perform arbitrary transformations on it. A
last principle worth mentioning is the ability to generate a circuit from a classical description.
These principles have been laid out in the context of Quipper: they are still state-of-the-art in
the design of current quantum programming languages.

The field is, however, moving fast, and as NISQ [Pre18] reaches the level of industrializa-
tion, new paradigms are needed. On the one hand, the so-called realm of hybrid computation
requires more than circuit-description languages: a distributed programming model where
the classical processor and the quantum coprocessor speak on equal grounds. Programming
in this context opens novel questions. For instance, what is the classical expressive power of
the quantum coprocessor compared to that of the classical processor? What are the program-
ming features needed within the quantum coprocessor, i.e., what are the reasonable capa-
bilities of the coprocessor in terms of memory, clock, and timing related in the interactions?
The large-scale development of quantum hardware also opens the door to the question of
quantum compilation. Quantum circuits can no longer be considered low-level targets, and a

91

Chapter F Opening

quantum programming environment cannot be reduced to circuit description and evaluation
[Qui20, BISG+20, HFGB+23, Qis, Mei24].

From a theoretical standpoint, in the last 15 years, we have proposed a novel computa-
tional construct: quantum SWITCH [CDPV13]. This construct can be summarized by asking
whether it is conceivable to realize in superposition the sequence “𝑈 then𝑉 ” and the sequence
“𝑉 then𝑈 ”, given only one single copy of each. Said otherwise, instead of only having data in
superposition, is it possible to also have executions in superposition? If 𝑈 and 𝑉 are unitary,
the overall operation is unitary, so this should not be a problem. The issue’s crux is the impos-
sibility of building a circuit with only two holes–one for𝑈 and one for 𝑉–when realizing this
procedure.

Although this “quantum test” makes sense from a computational perspective and is math-
ematically meaningful, it lies outside the circuit model. Nonetheless, it has been realized by
concrete physical experiment [PMAC+15, TCMG+21]. This exemplifies the cross-fertilization
happening between physics and computer science: The scientific community has derived sev-
eral exciting results from the realization of quantum superposition of executions, including
speedup in communication and finer analysis of quantum metrology [ACB14, TCMG+21,
ZYC20]. From the quantum programming language side, the promise of quantum control lies
in the programming of quantum unitaries. Instead of constructing circuits as lists of opaque
low-level gates, quantum control opens the door to a complete programming environment
manipulating classical and quantum operations within a unified paradigm.

Since 2008, in parallel with the development of quantum programming languages, seman-
tics have seen a significant development [RS18a, LMZ18, Wes19]. Indeed, semantics is es-
sential to unearth the structures underlying quantum computation and to shed light on the
suitable structures for manipulating quantum computation soundly and consistently. The de-
velopment of semantics for a programming language is, in particular, what makes it possible
to obtain language-supporting techniques to express and prove the properties of programs.

At the dawn of 2010, the semantics of quantum programming languages were either very
abstract or very close to physics textbooks: based on superoperators and completely positive
maps, following the standard models of quantum information theory, or, on the opposite,
following purely categorical constructions [SV08a, SV08b,Mal10]. Since then, themodels have
tremendously evolved, capturingmore fine-grained concrete, useful programmatic paradigms.
An example is the interplay between quantum circuits and measurements in the context of
circuit-description languages: we now havemathematical representations of dynamic circuits,
where the circuit’s shape might depend on the result of previous measurements. Another
example is the range of sophisticated type systems based on linear logic. Such type systems
can now enforce the non-duplicability of quantum data and, at the same time, provide refined
logical properties by relying on dependent types [FKS20]. Finally, a last example concerns
quantum control and superposition of executions: we now have several proposals of formal
languages equipped with rewrite systems able to formalize what it means to feature quantum
superposition of executions.

A Few Current Trends of Research

The rest of the chapter broadens the focus to a set of ongoing trends of research.

Rise of Graphical Languages. In the field of quantum programming languages, one crucial
event in recent years has been the advent of graphical languages targeted toward quantum
computation. Arguably, the first one is the ZX calculus . Abstracting away from quantum
circuits, the language is a formal graph-based language akin to what is used in the context
of tensor networks but specialized for the specificities of quantum computation. In ZX, wires
correspond to qubit states, and the available nodes in the graph stand for linear maps related
to elementary operations such as rotations along 𝑋 and 𝑍 basis. Unlike quantum circuits,

92

Chapter F Opening

it is equipped with sound semantics and a complete equational theory, making it a strong
candidate for reasoning and processing quantum computation.

Over time, the ZX calculus has proven more versatile than quantum circuits when con-
sidering several classes of problems such as circuit optimization, qubit layout, post-selection,
or reasoning over error-correcting schemes [pub22]. The language is also easily extensible. It
has, for instance, been extended to support features such as measurement and trace, or arrays
of qubits. Compared to syntactic, more conventional approaches such as Qasm implementing
plain quantum circuits, the ZX calculus has shown to be a credible approach for serving as an
intermediate representation in the context of a quantum compilation toolchain [Mei24].

The success of the ZX calculus has spurred a line of research in the design of graphical
languages with a focus on specific backends. Indeed, the ZX calculus is particularly well-suited
for hardware based on the gate-set Clifford+T but possibly less fitted for other models. For
instance, for Clifford+Toffoli—the canonical gate-set for cat-qubits—the ZH calculus is better
suited [Vil18]. Similarly, the ZW calculus [HNW18] is considered adequate for reasoning on
quantum computation with Rydberg atoms. Recently, one can also cite languages such as the
LOv-calculus developed for linear optical circuits [CHMPV22].

These trends emphasize connecting theoretical computer science concepts with physical
implementations. Such a cross-disciplinary integration has already been shown to be effective:
we have recently shown a completeness result for quantum circuits based on the development
of the LOv-calculus [CHMPV23a].

The story is still ongoing, and exciting questions await us. For instance, existing languages
currently only model quantum computation in finite-dimensional spaces; the ability of graph-
ical languages to handle infinite-dimensional objects is still work in progress [FC22, SYG24].
Another question is the interoperability of these languages. In particular, if the Kronecker
product is the canonical operation to join systems together in ZX-based languages, linear-
optical languages use the product. Finally—and maybe more generally—these languages are
still far from many considerations closer to the hardware: they do not handle (yet) timing,
noise, nor hybrid computation.

Unification of Quantum and Classical Control. Hybrid quantum computation is a model
of computationwhere the interactionwith the quantum coprocessor can depend on the results
of intermediate measurements. In the standard model, the coprocessor is considered a closed
box that can be manipulated using an interface given once for all. In particular, the elementary
operations available in the quantum coprocessor are not programmable.

The model of quantum control instead considers the case where the programmer can de-
scribe a superposition of executions instead of a simple list of gates. In this model, one can
express the purely quantum part with native, quantum-specific programming constructs such
as the quantum SWITCH [CDPV13].

One missing aspect of quantum control is the interaction with the classical machine. In-
deed, current descriptions of quantum control only focus on the purely quantum part, and the
model does not encompass a hybrid system where, for instance, quantum information could
be measured, let alone used to drive quantum evolution. Therefore, finding a model unifying
both classical and quantum control in the same framework is an open question.

Another more foundational issue is how to handle quantum, recursive datatypes. Con-
sider, for instance, the type of lists of qubits and the element consisting of a list of size 2 and
a list of size 5. What does it mean to iterate over this superposition of lists? The question can
be generalized: What kind of recursion is allowed in a purely quantum context? This question
lies in the more general problem of the expressive power of quantum control. Indeed, if super-
positions of programs makes a powerful computational paradigm, the constraint of unitarity
is a subtle condition to enforce at the syntactic level.

A last large research avenue open for quantum control is the problem of turning the de-
scription of a superposition of executions into something that can be physically executed on
a quantum backend. The question is twofold. On the one hand, several non-standard models

93

Chapter F Opening

of quantum computation feature some notion of quantum control, such as AQG or routed cir-
cuits. Compiling on these (formal) backends is already a stimulating question. On the other
hand, we do have concrete hardware candidates for (physical) quantum computation. A nat-
ural question is to study how much quantum control these hardware candidates can handle
and devise a suitable compilation scheme for them.

Quantum Compilation Toolchain. Although the field of quantumprogramming languages
is now reaching a mature state, turning a quantum program into a realistic set of low-level
operations executable on a quantum coprocessor is still a work in progress. Currently, each
vendor offers a specific solution, usually with a particular quantum dialect and a compilation
framework specifically tailored for one particular hardware. Existing quantum compilers are
also currently very limited. For once, they provide little parametrization and do not scale well:
they mainly target (small) NISQ devices, and LSQ is still an open field of research. Another
issue is the ability to handle hybrid computation; static circuits remain the norm of what is
possible to compile.

A crucial open question in this realm consists in devising tools and techniques to effec-
tively compile quantum programs down to low-level, executable physical operation. Following
what has been done in the classical setting, it would be natural to consider one or several in-
termediate representations specific to quantum computation, such as graphical languages.
In any case, problems such as timing and parallelism of quantum operations and topological
constraints of the hardware (or of the quantum error-correcting layer) need to be addressed
in a consistent manner. Because of the very distinct kinds of hardware, it is now admitted
that there will not be a one-fit-all solution. Nonetheless, many problems are cross-platform,
yielding similar answers. Although a generic hardware-independent rigid compiler might not
be doable, devising a common framework for building and composing compiling tools and
modules is an active research area.

A complementary problem in quantum compilation concerns optimizing and estimating
the resources needed to run a given quantum program. Although this program is written in
a hardware-agnostic, higher-order language, the target backend is one specific coprocessor.
The problem is akin to what happens for critical systems: This processor has limited memory.
Error correction—if any—is costly: we want the code to be as optimized and as parallel as
possible. This tension calls for developing optimization schemes to minimize resources and
static analysis tools to evaluate these resources.

Static Analysis for Quantum Programs. Verification techniques for quantum programs
are currently in their early stages of development. So far, various attempts have been followed
with little of a unified approach [CBLVVX21]. Among these, one can mention the use of proof
assistants such as Coq and Isabelle/HOL to prove properties of quantum programs, but also
deductive verification techniques, either standalone and based on a crafted Hoare logic or
embedded in existing tools such asWhy3. Although other novel SMT-based tools have recently
emerged, the field still needs to be more structured, making it challenging to compare these
methods and ascertain the overall direction of the discipline.

The main problem with static analysis of quantum programs is the nature of the thing we
want to analyze. Many aspects can be considered. If the program describes a static circuit, as
discussed in the trend related to quantum compilation, one can be interested in the circuit’s
size, shape, or depth. Another critical aspect is ensuring that the circuit generated by the pro-
gram implements the correct unitary map. In the context of a probabilistic algorithm relying
on measurements, one should also guarantee the probability of success.

In the context of a quantum compilation toolchain, one can also be interested in certify-
ing other layers of the compilation stack, such as the optimization schemes, the qubit layout
process, and, in general, circuit transformations and translations to dedicated graphical, in-
termediate representations.

Finally, an untouched aspect of the static analysis of quantum programs is quantum con-

94

Chapter F Opening

trol. What can be asserted in this context, how to do it, and how to verify it is still a completely
open area of research.

The questions discussed above rely on sound, expressive semantics of both quantum pro-
grams and layers in the quantum compilation toolchain. Unlike classical computation, where
models are discrete structures, in quantum computation, the mix of discrete and continuous
structure, duplicable and non-duplicable objects, linear algebra, and operator theory renders
the development of powerful analysis tools challenging without a fine-grain understanding of
the structures at stake. The development of semantics for quantum programming languages is
a continuous dialog between three actors: physics, hinting at the underlying constraints; com-
puter science, discovering unknown computational structures and techniques; and semantics,
formalizing them and providing a firm, sound framework upon which to build and reason.

Conclusion

This thesis has presented how I understand the evolution of quantum programming
language within the past fifteen years. In this time frame, the field of quantum pro-
gramming languages has shifted from toy examples to a more mature state. A dialog
between physics and computer science has fostered unforeseen discoveries along this
path. The story is, however, not over, and the field remains open, presenting exciting
questions and opportunities for future developments.
I am already involved in some of the research paths presented in this section, in par-
ticular with currently ongoing Ph.D students. With Nicolas Heurtel, Ph.D funded
by a CIFRE with Quandela, we are studying graphical languages for quantum linear
optics—this yielded for instance the LOv calculus [CHMPV22]. With Julien Lamiroy,
co-supervised with Renaud Vilmart, we are investigating graphical languages for
quantum control. With Jérome Ricciardi, Ph.D funded by CEA and co-supervised with
Christophe Chareton, we are studying static analysis methods for quantum programs
with measurements.

95

Chapter F Opening

[QPL20b] Benoît Valiron, Shane Mansfield, Pablo Arrighi, and Prakash Panangaden, eds. Proceedings 17th
International Conference on Quantum Physics and Logic, QPL 2020 (Online (due to Covid), June 2–6,
2020). Vol. 340. EPTCS. 2020.

[CVV21] Kostia Chardonnet, Benoît Valiron, and Renaud Vilmart. “Geometry of interaction for ZX dia-
grams”. In: Proceedings of the 46th International Symposium on Mathematical Foundations of Computer
Science, MFCS 2021 (Tallinn, Estonia). Ed. by Filippo Bonchi and Simon J. Puglisi. Vol. 202. LIPIcs.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2021, 30:1–30:16. isbn: 978-3-95977-201-3. doi:
10.4230/LIPIcs.MFCS.2021.30.

[BBVMA21] Timothee Goubault De Brugiere, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Al-
louche. “Reducing the depth of linear reversible quantum circuits”. In: IEEE Transactions on Quantum
Engineering 2 (2021), p. 3102422. doi: 10.1109/TQE.2021.3091648. hal: hal-03553916.

[GBVMA21] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Al-
louche. “Gaussian elimination versus greedy methods for the synthesis of linear reversible circuits”. In:
ACM Transactions onQuantum Computing 2.3 (2021), p. 11. doi: 10.1145/3474226. hal: hal-03547117.

[Val22] Benoît Valiron. “Semantics of quantumprogramming languages: classical control, quantum control”.
In: Journal of Logical and Algebraic Methods in Programming 128 (2022), p. 100790. doi: 10.1016/J.
JLAMP.2022.100790. hal: hal-04038653.

[BBVMA22] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Al-
louche. “Decoding techniques applied to the compilation of CNOT circuits for NISQ architectures”.
In: Science of Computer Programming 214 (2022), p. 102726. doi: 10.1016/J.SCICO.2021.102726. hal:
hal-03547113.

[CHMPV22] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron.
“LOv-calculus: a graphical language for linear optical quantum circuits”. In: 47th International Sym-
posium on Mathematical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Aus-
tria. Ed. by Stefan Szeider, Robert Ganian, and Alexandra Silva. Vol. 241. LIPIcs. 2022, 35:1–35:16. doi:
10.4230/LIPICS.MFCS.2022.35. url: https://doi.org/10.4230/LIPIcs.MFCS.2022.35.

[CVVV22] Kostia Chardonnet, Marc de Visme, Benoît Valiron, and Renaud Vilmart. “The Many-Worlds
Calculus: RepresentingQuantum Control”. 2022.

[CTV23] Théodore Chapuis-Chkaiban, Zeno Toffano, and Benoît Valiron. “On new pagerank computation
methods using quantum computing”. In: Quantum Information Processing 22.3 (2023), p. 138. doi: 10.
1007/S11128-023-03856-Y. hal: hal-04056045.

[ACCRV23] Pablo Arrighi, Christopher Cedzich, Marin Costes, Ulysse Rémond, and Benoît Valiron. “Ad-
dressable quantum gates”. In: ACM Transactions on Quantum Computing 4.3 (2023), pp. 1–41. doi:
10.1145/3581760. hal: hal-03936367. arXiv: 2109.08050.

[HFGB+23] Nicolas Heurtel, Andreas Fyrillas, Grégoire de Gliniasty, Raphaël Le Bihan, SébastienMalherbe,
Marceau Pailhas, Eric Bertasi, Boris Bourdoncle, Pierre-Emmanuel Emeriau, Rawad Mezher, Luka Mu-
sic, Nadia Belabas, Benoît Valiron, Pascale Senellart, Shane Mansfield, and Jean Senellart. “Perceval:
a software platform for discrete variable photonic quantum computing”. In: Quantum 7 (2023), p. 931.
doi: 10.22331/Q-2023-02-21-931. hal: hal-03874624.

[HMSV23] NicolasHeurtel, ShaneMansfield, Jean Senellart, and Benoît Valiron. “Strong simulation of linear
optical processes”. In: Computer Physics Communications 291 (2023), p. 108848. doi: 10.1016/J.CPC.
2023.108848. hal: hal-03874624v1.

[CHMPV23a] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron.
“A complete equational theory for quantum circuits”. In: 38th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2023, Boston, MA, USA, June 26-29, 2023. IEEE, 2023, pp. 1–13. doi: 10.1109/
LICS56636.2023.10175801. hal: hal-03926757.

[CHMPV23b] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron.
“A Complete Equational Theory forQuantum Circuits”. Presentation accepted at the 18th Conference
on the Theory of Quantum Computation, Communication and Cryptography (TQC 2023), in Aveiro,
Portugal. 2023. hal: hal-04318291v1.

[QPL23b] Shane Mansfield, Benoît Valiron, and Vladimir Zamdzhiev, eds. Proceedings of the Twentieth In-
ternational Conference on Quantum Physics and Logic, QPL 2023 (Paris, France, July 17–21, 2023). Vol.
384. EPTCS. 2023. doi: 10.4204/EPTCS.384.

Table F.1: Personal publications since ∼2020 not yet mentioned.

96

https://doi.org/10.4230/LIPIcs.MFCS.2021.30
https://doi.org/10.1109/TQE.2021.3091648
https://hal.archives-ouvertes.fr/hal-03553916
https://doi.org/10.1145/3474226
https://hal.archives-ouvertes.fr/hal-03547117
https://doi.org/10.1016/J.JLAMP.2022.100790
https://doi.org/10.1016/J.JLAMP.2022.100790
https://hal.archives-ouvertes.fr/hal-04038653
https://doi.org/10.1016/J.SCICO.2021.102726
https://hal.archives-ouvertes.fr/hal-03547113
https://doi.org/10.4230/LIPICS.MFCS.2022.35
https://doi.org/10.4230/LIPIcs.MFCS.2022.35
https://doi.org/10.1007/S11128-023-03856-Y
https://doi.org/10.1007/S11128-023-03856-Y
https://hal.archives-ouvertes.fr/hal-04056045
https://doi.org/10.1145/3581760
https://hal.archives-ouvertes.fr/hal-03936367
https://www.arxiv.org/abs/2109.08050
https://doi.org/10.22331/Q-2023-02-21-931
https://hal.archives-ouvertes.fr/hal-03874624
https://doi.org/10.1016/J.CPC.2023.108848
https://doi.org/10.1016/J.CPC.2023.108848
https://hal.archives-ouvertes.fr/hal-03874624v1
https://doi.org/10.1109/LICS56636.2023.10175801
https://doi.org/10.1109/LICS56636.2023.10175801
https://hal.archives-ouvertes.fr/hal-03926757
https://hal.archives-ouvertes.fr/hal-04318291v1
https://doi.org/10.4204/EPTCS.384

Bibliography

[ABGV18] C. Allouche, M. Baboulin, T. Goubault de Brugière, and B. Valiron. “Reuse method for quantum circuit
synthesis”. In: Recent Advances in Mathematical and Statistical Methods, post-proceedings of the IV AMMCS In-
ternational Conference on Applied Mathematics, Modeling and Computational Science, Waterloo, Canada, Au-
gust 20 – 25, 2017. Ed. by D. Marc Kilgour, Herb Kunze, Roman Makarov, Roderick Melnik, and Xu Wang.
Springer International Publishing, 2018, pp. 3–12. isbn: 978-3-319-99719-3. doi: 10.1007/978-3-319-99719-3_1.
hal: hal-01711378.

[ABIMBK19] Juan Miguel Arrazola, Thomas R Bromley, Josh Izaac, Casey R Myers, Kamil Brádler, and Nathan Killo-
ran. “Machine learning method for state preparation and gate synthesis on photonic quantum computers”. In:
Quantum Science and Technology 4.2 (Jan. 2019), p. 024004. doi: 10.1088/2058-9565/aaf59e.

[Abr05] Samson Abramsky. “A structural approach to reversible computation”. In: Theoretical Computer Science 247.3
(2005), pp. 441–464. doi: 10.1016/j.tcs.2005.07.002. arXiv: 1111.7154.

[Abr07] Samson Abramsky. “Temperley-Lieb algebra: from knot theory to logic and computation via quantum me-
chanics”. In:Mathematics of Quantum Computation andQuantum Technology. Ed. by Goong Chen, Louis Kauff-
man, and Samuel J. Lomonaco. New York: Chapman, Hall/CRC, Taylor, and Francis, 2007. Chap. 15, pp. 415–458.
isbn: 978-1-58488-900-7. doi: 10.1201/9781584889007. arXiv: 0910.2737.

[Abr93] Samson Abramsky. “Computational interpretations of linear logic”. In: Theoretical Computer Science 111.1-2
(1993), pp. 3–57. doi: 10.1016/0304-3975(93)90181-R.

[AC04] Samson Abramsky and Bob Coecke. “A categorical semantics of quantum protocols”. In: [LICS04], pp. 415–
425. doi: 10.1109/LICS.2004.1319636. arXiv: quant-ph/0402130.

[ACB14] Mateus Araújo, Fabio Costa, and Časlav Brukner. “Computational advantage from quantum-controlled
ordering of gates”. In: Physical Review Letters 113 (25 2014), p. 250402. doi: 10.1103/PhysRevLett.113.250402.
arXiv: 1401.8127.

[Acc15] Beniamino Accattoli. “Proof Nets and the Call-by-Value Lambda-Calculus”. In: Theoretical Computer Science
606 (2015), pp. 2–24. doi: 10.1016/j.tcs.2015.08.006.

[ACCRV23] Pablo Arrighi, Christopher Cedzich, Marin Costes, Ulysse Rémond, and Benoît Valiron. “Addressable
quantum gates”. In: ACM Transactions on Quantum Computing 4.3 (2023), pp. 1–41. doi: 10.1145/3581760. hal:
hal-03936367. arXiv: 2109.08050.

[ACRŠZ10] Andris Ambainis, Andrew M. Childs, Ben Reichardt, Robert Špalek, and Shengyu Zhang. “Any AND-OR
formula of size 𝑁 can be evaluated in time 𝑁 1/2+𝑜 (1) on a quantum computer”. In: SIAM Journal on Computing
39.6 (2010), pp. 2513–2530. doi: 10.1137/080712167.

[Acz77] Peter Aczel. “An introduction to inductive definitions”. In: Handbook of Mathematical Logic. Ed. by John
Barwise. Vol. 90. Studies in Logic and the Foundations of Mathematics. North Holland, 1977, pp. 739–782. doi:
10.1016/S0049-237X(08)71120-0.

[AD05] Pablo Arrighi and Gilles Dowek. “A computational definition of the notion of vectorial space”. In: Proceedings
of the Fifth International Workshop on Rewriting Logic and its Applications (WRLA’04). Vol. 117. Electronic Notes
in Theoretical Computer Science. 2005, pp. 249–261. doi: 10.1016/j.entcs.2004.06.013.

[AD08] Pablo Arrighi and Gilles Dowek. “Linear-algebraic lambda-calculus: higher-order, encodings, and conflu-
ence.” In: Proceedings of the 19th International Conference on Rewriting Techniques and Applications, RTA’08 (Ha-
genberg, Austria). Ed. by Andrei Voronkov. Vol. 5117. Lecture Notes in Computer Science. Springer, 2008, pp.
17–31. isbn: 978-3-540-70588-8. doi: 10.1007/978-3-540-70590-1_2.

[AD09] Pablo Arrighi and Alejandro Díaz-Caro. “Scalar system F for linear-algebraic lambda-calculus: towards a
quantum physical logic”. In: Proceedings of the 6th International Workshop onQuantum Physics and Logic, QPL’09
(Oxford, UK.). Ed. by B. Coecke, P. Panangaden, and P. Selinger. Vol. 270-2. Electronic Notes in Theoretical
Computer Science. 2009, pp. 219–229. doi: 10.1016/j.entcs.2011.01.033.

[AD12a] Pablo Arrighi and Alejandro Díaz-Caro. “A system F accounting for scalars”. In: Logical Methods in Computer
Science 8.1 (2012). See also extended abstract [AD09]. doi: 10.2168/LMCS-8(1:11)2012.

97

https://doi.org/10.1007/978-3-319-99719-3_1
https://hal.archives-ouvertes.fr/hal-01711378
https://doi.org/10.1088/2058-9565/aaf59e
https://doi.org/10.1016/j.tcs.2005.07.002
https://www.arxiv.org/abs/1111.7154
https://doi.org/10.1201/9781584889007
https://www.arxiv.org/abs/0910.2737
https://doi.org/10.1016/0304-3975(93)90181-R
https://doi.org/10.1109/LICS.2004.1319636
https://www.arxiv.org/abs/quant-ph/0402130
https://doi.org/10.1103/PhysRevLett.113.250402
https://www.arxiv.org/abs/1401.8127
https://doi.org/10.1016/j.tcs.2015.08.006
https://doi.org/10.1145/3581760
https://hal.archives-ouvertes.fr/hal-03936367
https://www.arxiv.org/abs/2109.08050
https://doi.org/10.1137/080712167
https://doi.org/10.1016/S0049-237X(08)71120-0
https://doi.org/10.1016/j.entcs.2004.06.013
https://doi.org/10.1007/978-3-540-70590-1_2
https://doi.org/10.1016/j.entcs.2011.01.033
https://doi.org/10.2168/LMCS-8(1:11)2012

Bibliography

[AD12b] Pablo Arrighi and Gilles Dowek. “The physical Church-Turing thesis and the principles of quantum the-
ory”. In: International Journal of Foundations of Computer Science 23.5 (2012), pp. 1131–1146. doi: 10.1142/
S0129054112500153. arXiv: 1102.1612.

[AD17] Pablo Arrighi and Gilles Dowek. “Lineal: a linear-algebraic lambda-calculus”. In: Logical Methods in Computer
Science 13.1 (2017). doi: 10.23638/LMCS-13(1:8)2017.

[Ada02] Andrew Adamatzky, ed. Collision-Based Computing. Springer-Verlag, 2002. url: http://www.cems.uwe.ac.
uk/~aadamatz/compiled.htm.

[ADPTV14] Ali Assaf, Alejandro Díaz-Caro, Simon Perdrix, Christine Tasson, and Benoît Valiron. “Call-by-value, call-
by-name and the vectorial behaviour of the algebraic lambda-calculus”. In: Logical Methods in Computer Science
10.4 (2014). doi: 10.2168/LMCS-10(4:8)2014. arXiv: 1005.2897v7.

[ADV11] Pablo Arrighi, Alejandro Díaz-Caro, and Benoît Valiron. “Subject reduction in a curry-style polymorphic
type system with a vectorial structure”. In: Proceedings of the 7th International Workshop on Developments of
Computational Methods, DCM 2011 (Zurich, Switzerland, July 3, 2021). Ed. by Elham Kashefi, Jean Krivine, and
Femke van Raamsdonk. Vol. 88. Electronic Proceedings in Theoretical Computer Science. Preliminary work to
the journal paper [ADV17]. 2011, pp. 1–15. doi: 10.4204/EPTCS.88.1. hal: hal-00924926. arXiv: 1012.4032.

[ADV17] Pablo Arrighi, Alejandro Díaz-Caro, and Benoît Valiron. “The vectorial lambda-calculus”. In: Information
and Computation 254 (2017), pp. 105–139. doi: 10.1016/j.ic.2017.04.001. hal: hal-00921087.

[AG05a] Thorsten Altenkirch and JonathanGrattage. “A functional quantumprogramming language”. In: Proceedings
of the 20th Symposium on Logic in Computer Science, LICS’05 (Chicago, Illinois, US.). Ed. by Prakash Panangaden.
IEEE. IEEE Computer Society Press, 2005, pp. 249–258. doi: 10.1109/LICS.2005.1. arXiv: quant-ph/0409065.

[AG05b] Thorsten Altenkirch and Jonathan Grattage. “QML:Quantum data and control”. Draft, extended version of
the LICS publication [AG05a]. 2005.

[AG09] Thorsten Altenkirch and Alexander S Green. “The quantum IO monad”. In: [GM09], pp. 173–205.

[AG13] Holger Bock Axelsen and Robert Glück. “Reversible representation and manipulation of constructor terms
in the heap”. In: [RC13], pp. 96–109. doi: 10.1007/978-3-642-38986-3_9.

[AGVS05] Thorsten Altenkirch, Jonathan Grattage, Juliana Kaizer Vizzotto, and Amr Sabry. “An algebra of pure quan-
tum programming”. In: [QPL07], pp. 23–47. doi: 10.1016/j.entcs.2006.12.010.

[AK16] Holger Bock Axelsen and Robin Kaarsgaard. “Join inverse categories as models of reversible recursion”. In:
Proceedings of the 19th International Conference on Foundations of Software Science and Computation Structures,
FoSSaCS’16 (Eindhoven, The Netherlands). Ed. by Bart Jacobs and Christof Löding. Vol. 9634. Lecture Notes in
Computer Science. Springer, 2016, pp. 73–90. doi: 10.1007/978-3-662-49630-5_5.

[AM17] Pablo Arrighi and Simon Martiel. “Quantum causal graph dynamics”. In: Physical Review D 96 (2 2017), p.
024026. doi: 10.1103/PhysRevD.96.024026. arXiv: 1607.06700.

[AM97] Samson Abramsky and Guy McCusker. “Call-by-value games”. In: Computer Science Logic, 11th Interna-
tional Workshop, CSL’97 Annual Conference of the EACSL (Aarhus, Denmark). Ed. by Mogens Nielsen and Wolf-
gang Thomas. Vol. 1414. Lecture Notes in Computer Science. European Association for Computer Science Logic.
Springer Verlag, Aug. 1997, pp. 1–17. doi: 10.1007/BFb0028004.

[Amb12] Andris Ambainis. “Variable time amplitude amplification and quantum algorithms for linear algebra prob-
lems”. In: Proceedings of the 29th International Symposium on Theoretical Aspects of Computer Science, STACS
2012 (Paris, France, Feb. 29–Mar. 3, 2012). Ed. by Christoph Dürr and Thomas Wilke. Vol. 14. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2012, pp. 636–647. isbn: 978-3-939897-35-4. doi: 10.4230/LIPIcs.
STACS.2012.636.

[AMM14] Matthew Amy, Dmitri Maslov, and Michele Mosca. “Polynomial-time T-depth optimization of Clifford+t
circuits via matroid partitioning”. In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and
Systems 33.10 (2014), pp. 1476–1489. doi: 10.1109/TCAD.2014.2341953.

[AMMR13] MatthewAmy, DmitriMaslov,MicheleMosca, andMartin Roetteler. “Ameet-in-the-middle algorithm for
fast synthesis of depth-optimal quantum circuits”. In: IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems 32.6 (2013), pp. 818–830. doi: 10.1109/TCAD.2013.2244643.

[Amy13] Matthew Amy. “Algorithms for the Optimizations ofQuantumCircuits”. MA thesis. University ofWaterloo,
2013.

[Amy18] Matthew Amy. “Towards large-scale functional verification of universal quantum circuits”. In: [QPL19], pp.
1–21. doi: 10.4204/EPTCS.287.1.

[Amy19] Matthew Amy. “Formal Methods inQuantum Circuit Design”. PhD thesis. University of Waterloo, Ontario,
Canada, 2019. url: http://hdl.handle.net/10012/14480.

[AR02] Andrea Asperti and Luca Roversi. “Intuitionistic light affine logic”. In: ACM Transactions on Computational
Logic 3.1 (2002), pp. 137–175. doi: 10.1145/504077.504081.

[Arr19] Pablo Arrighi. “An overview of quantum cellular automata”. In: Natural Computing 18.4 (2019), pp. 885–899.
doi: 10.1007/s11047-019-09762-6. arXiv: 1904.12956.

98

https://doi.org/10.1142/S0129054112500153
https://doi.org/10.1142/S0129054112500153
https://www.arxiv.org/abs/1102.1612
https://doi.org/10.23638/LMCS-13(1:8)2017
http://www.cems.uwe.ac.uk/~aadamatz/compiled.htm
http://www.cems.uwe.ac.uk/~aadamatz/compiled.htm
https://doi.org/10.2168/LMCS-10(4:8)2014
https://www.arxiv.org/abs/1005.2897v7
https://doi.org/10.4204/EPTCS.88.1
https://hal.archives-ouvertes.fr/hal-00924926
https://www.arxiv.org/abs/1012.4032
https://doi.org/10.1016/j.ic.2017.04.001
https://hal.archives-ouvertes.fr/hal-00921087
https://doi.org/10.1109/LICS.2005.1
https://www.arxiv.org/abs/quant-ph/0409065
https://doi.org/10.1007/978-3-642-38986-3_9
https://doi.org/10.1016/j.entcs.2006.12.010
https://doi.org/10.1007/978-3-662-49630-5_5
https://doi.org/10.1103/PhysRevD.96.024026
https://www.arxiv.org/abs/1607.06700
https://doi.org/10.1007/BFb0028004
https://doi.org/10.4230/LIPIcs.STACS.2012.636
https://doi.org/10.4230/LIPIcs.STACS.2012.636
https://doi.org/10.1109/TCAD.2014.2341953
https://doi.org/10.1109/TCAD.2013.2244643
https://doi.org/10.4204/EPTCS.287.1
http://hdl.handle.net/10012/14480
https://doi.org/10.1145/504077.504081
https://doi.org/10.1007/s11047-019-09762-6
https://www.arxiv.org/abs/1904.12956

Bibliography

[ARS17] Matthew Amy, Martin Roetteler, and Krysta M. Svore. “Verified compilation of space-efficient reversible
circuits”. In: Computer Aided Verification - 29th International Conference, CAV 2017, Heidelberg, Germany, July 24-
28, 2017, Proceedings, Part II. Ed. by RupakMajumdar and Viktor Kuncak. Vol. 10427. Lecture Notes in Computer
Science. Springer, 2017, pp. 3–21. isbn: 978-3-319-63389-3. doi: 10.1007/978-3-319-63390-9_1. arXiv: 1603.
01635.

[Ato22] Atos. MyQLM Documentation: The AQASM Format. 2022. url: https://myqlm.github.io/aqasm.html (vis-
ited on Sept. 1, 2022).

[BACS07] Dominic W. Berry, Graeme Ahokas, Richard Cleve, and Barry C. Sanders. “Efficient quantum algorithms
for simulating sparse Hamiltonians”. In: Communications in Mathematical Physics 270 (2 2007), pp. 359–371. doi:
10.1007/s00220-006-0150-x.

[Bae08] David Baelde. “A Linear Approach to the Proof-Theory of Least and Greatest Fixed Points”. PhD thesis. École
Polytechnique, Palaiseau, France, 2008.

[Bae12] David Baelde. “Least and greatest fixed points in linear logic”. In: ACM Transactions on Computational Logic
13.1 (2012), 2:1–2:44. doi: 10.1145/2071368.2071370. url: http://doi.acm.org/10.1145/2071368.2071370.

[Bak71] J.W. Bakker.Recursive Procedures. Vol. 24.Mathematical Centre Tracts.MathematischCentrumAmsterdam,
1971.

[Bak92] Henry G. Baker. “NREVERSAL of fortune - the thermodynamics of garbage collection”. In: International
Workshop on Memory Management, IWMM 92 (St. Malo, France, Sept. 17–19, 1992). Ed. by Yves Bekkers and
Jacques Cohen. Vol. 637. Lecture Notes in Computer Science. Springer, 1992, pp. 507–524. isbn: 3-540-55940-X.
doi: 10.1007/BFb0017210.

[Bar10] Stefano Baratella. “Quantum coherent spaces and linear logic”. In:RAIRO Theoretical Informatics Applications
44.4 (2010), pp. 419–441. doi: 10.1051/ita/2010021.

[Bar84] Henk P. Barendregt. The Lambda-Calculus, its Syntax and Semantics. 2nd ed. Vol. 103. Studies in Logic and
the Foundation of Mathematics. North Holland, 1984. isbn: 0-444-86748-1.

[BB17] Jacob Biamonte and Ville Bergholm. “Tensor Networks in a Nutshell”. To appear in Contemporary Physics.
Draft available as arXiv:1708.00006. 2017. arXiv: 1708.00006v1.

[BB83] Edwin F. Beckenbach and Richard Bellman. Inequalities. Fourth. Vol. 30. Ergebnisse der Mathematik und
ihrer Grenzgebiete. Springer-Verlag, 1983.

[BBCD+95] Adriano Barenco, Charles H. Bennett, Richard Cleve, David P. DiVincenzo, Norman Margolus, Peter
Shor, Tycho Sleator, John A. Smolin, and Harald Weinfurter. “Elementary gates for quantum computation”. In:
Physical Review A 52 (5 Nov. 1995), pp. 3457–3467. doi: 10.1103/PhysRevA.52.3457.

[BBGV20] Benjamin Bichsel, Maximilian Baader, Timon Gehr, and Martin T. Vechev. “Silq: a high-level quantum
language with safe uncomputation and intuitive semantics”. In: Proceedings of the 41st ACM SIGPLAN Interna-
tional Conference on Programming Language Design and Implementation, PLDI’20 (London, UK). Ed. by Alastair
F. Donaldson and Emina Torlak. ACM, 2020, pp. 286–300. doi: 10.1145/3385412.3386007.

[BBHP92] Nick Benton, Gavin M. Bierman, Martin Hyland, and Valeria C. V. de Paiva. “Linear lambda-calculus and
categorical models revisited”. In: Computer Science Logic, Sixth International Workshop, CSL’92, Selected Papers
(San Miniato, Italy). Ed. by E. Börger, G. Jäger, H. Kleine Büning, S. Martini, and M. M. Richter. Vol. 702. Lecture
Notes in Computer Science. European Association for Computer Science Logic. Springer Verlag, Sept. 1992. isbn:
978-3-540-56992-3. doi: 10.1007/3-540-56992-8_6.

[BBPH93] Nick Benton, Gavin M. Bierman, Valeria C. V. de Paiva, and Martin Hyland. “A term calculus for intu-
itionistic linear logic”. In: Proceedings of the International Conference on Typed Lambda Calculi and Applications,
TLCA’93 (Ultrech, Netherlands). Ed. by Marc Bezem and Jan Friso Groote. Vol. 664. Lecture Notes in Computer
Science. Springer Verlag, Mar. 1993, pp. 75–90. isbn: 3-540-56517-5. doi: 10.1007/BFb0037099.

[BBVA19] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, and Cyril Allouche. “Synthesizing quan-
tum circuits via numerical optimization”. In: Proceedings of the 19th International Conference on Computational
Science, ICCS 2019, Part II (Faro, Portugal, June 12–14, 2019). Ed. by João M. F. Rodrigues, Pedro J. S. Cardoso,
Jânio M. Monteiro, Roberto Lam, Valeria V. Krzhizhanovskaya, Michael Harold Lees, Jack J. Dongarra, and Peter
M. A. Sloot. Vol. 11537. Lecture Notes in Computer Science. Springer, 2019, pp. 3–16. isbn: 978-3-030-22740-1.
doi: 10.1007/978-3-030-22741-8_1. hal: hal-02174967. arXiv: 2004.07714.

[BBVA20] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, and Cyril Allouche. “Quantum circuits
synthesis using Householder transformations”. In: Computer Physics Communications 248 (2020), p. 107001. doi:
10.1016/j.cpc.2019.107001. hal: hal-02545123. arXiv: 2004.07710.

[BBVMA20] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Allouche.
“Quantum CNOT circuits synthesis for NISQ architectures using the syndrome decoding problem”. In: [RC20],
pp. 189–205. doi: 10.1007/978-3-030-52482-1_11.

[BBVMA21] Timothee Goubault De Brugiere, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Allouche.
“Reducing the depth of linear reversible quantum circuits”. In: IEEE Transactions on Quantum Engineering 2
(2021), p. 3102422. doi: 10.1109/TQE.2021.3091648. hal: hal-03553916.

99

https://doi.org/10.1007/978-3-319-63390-9_1
https://www.arxiv.org/abs/1603.01635
https://www.arxiv.org/abs/1603.01635
https://myqlm.github.io/aqasm.html
https://doi.org/10.1007/s00220-006-0150-x
https://doi.org/10.1145/2071368.2071370
http://doi.acm.org/10.1145/2071368.2071370
https://doi.org/10.1007/BFb0017210
https://doi.org/10.1051/ita/2010021
https://www.arxiv.org/abs/1708.00006v1
https://doi.org/10.1103/PhysRevA.52.3457
https://doi.org/10.1145/3385412.3386007
https://doi.org/10.1007/3-540-56992-8_6
https://doi.org/10.1007/BFb0037099
https://doi.org/10.1007/978-3-030-22741-8_1
https://hal.archives-ouvertes.fr/hal-02174967
https://www.arxiv.org/abs/2004.07714
https://doi.org/10.1016/j.cpc.2019.107001
https://hal.archives-ouvertes.fr/hal-02545123
https://www.arxiv.org/abs/2004.07710
https://doi.org/10.1007/978-3-030-52482-1_11
https://doi.org/10.1109/TQE.2021.3091648
https://hal.archives-ouvertes.fr/hal-03553916

Bibliography

[BBVMA22] Timothée Goubault de Brugière,Marc Baboulin, Benoît Valiron, SimonMartiel, and Cyril Allouche. “De-
coding techniques applied to the compilation of CNOT circuits for NISQ architectures”. In: Science of Computer
Programming 214 (2022), p. 102726. doi: 10.1016/J.SCICO.2021.102726. hal: hal-03547113.

[BC13] Thomas Braibant and Adam Chlipala. “Formal verification of hardware synthesis”. In: Proceedings of the 25th
International Conference on Computer Aided Verification, CAV 2013 (Saint Petersburg, Russia, July 13–19, 2013).
Ed. by Natasha Sharygina and Helmut Veith. Vol. 8044. Lecture Notes in Computer Science. Springer, 2013, pp.
213–228. isbn: 978-3-642-39798-1. doi: 10.1007/978-3-642-39799-8_14. arXiv: 1301.4779.

[BCCKS14] Dominic W. Berry, Andrew M. Childs, Richard Cleve, Robin Kothari, and Rolando D. Somma. “Exponen-
tial improvement in precision for simulating sparse Hamiltonians”. In: Proceedings of the Symposium on Theory
of Computing, STOC 2014 (New York, NY, USA, May 31–June 3, 2014). Ed. by David B. Shmoys. ACM, 2014, pp.
283–292. isbn: 978-1-4503-2710-7. doi: 10.1145/2591796.2591854. arXiv: 1312.1414.

[BCK15] Dominic W. Berry, Andrew M. Childs, and Robin Kothari. “Hamiltonian simulation with nearly optimal
dependence on all parameters”. In: Proceedings of the IEEE 56th Annual Symposium on Foundations of Computer
Science, FOCS 2015 (Berkeley, CA, USA, Oct. 17, 2014–Oct. 20, 2015). Ed. by Venkatesan Guruswami. IEEE Com-
puter Society, 2015, pp. 792–809. doi: 10.1109/FOCS.2015.54. arXiv: 1501.01715.

[BCKH+22] Kishor Bharti, Alba Cervera-Lierta, Thi Ha Kyaw, Tobias Haug, Sumner Alperin-Lea, Abhinav Anand,
Matthias Degroote, Hermanni Heimonen, Jakob S. Kottmann, Tim Menke, Wai-Keong Mok, Sukin Sim, Leong-
Chuan Kwek, and Alán Aspuru-Guzik. “Noisy intermediate-scale quantum algorithms”. In: Reviews of Modern
Physics 94 (1 Feb. 2022), p. 015004. doi: 10.1103/RevModPhys.94.015004.

[BCMS89] Roland Backhouse, Paul Chisholm, Grant Malcolm, and Erik Saaman. “Do-it-yourself type theory”. In:
Formal Aspects of Computing 1.1 (1989), pp. 19–84. doi: 10.1007/BF01887198.

[BCS03] Stefano Bettelli, Tommaso Calarco, and Luciano Serafini. “Toward an architecture for quantum program-
ming”. In: The European Physical Journal D - Atomic, Molecular and Optical Physics 25.2 (Aug. 2003), pp. 181–200.
doi: 10.1140/epjd/e2003-00242-2. arXiv: cs/0103009.

[BDHP19] Niel de Beaudrap, Ross Duncan, Dominic Horsman, and Simon Perdrix. “Pauli fusion: a computational
model to realise quantum transformations from ZX terms”. In: [QPL20a], pp. 85–105. doi: 10.4204/EPTCS.318.6.

[BDS13] Henk Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with Types. Perspective in Logic.
Cambridge University Press and ASL, 2013.

[BDS16] David Baelde, AminaDoumane, andAlexis Saurin. “Infinitary proof theory: themultiplicative additive case”.
In: Proceedings of the 25th EACSL Annual Conference on Computer Science Logic (CSL’16) (Marseille, France). Ed.
by Jean-Marc Talbot and Laurent Regnier. Vol. 62. LIPIcs. Schloss Dagstuhl Leibniz-Zentrum fuer Informatik,
2016, 42:1–42:17. isbn: 978-3-95977-022-4. doi: 10.4230/LIPIcs.CSL.2016.42. url: http://www.dagstuhl.de/
dagpub/978-3-95977-022-4.

[Bea03] Stephane Beauregard. “Circuit for Shor’s algorithm using 2𝑛 +3 qubits”. In:Quantum Information and Com-
putation 3.2 (2003), pp. 175–185. doi: 10.26421/QIC3.2-8.

[Ben00] Charles H. Bennett. “Notes on the history of reversible computation”. In: IBM Journal of Research and De-
velopment 44.1 (2000), pp. 270–278. doi: 10.1147/rd.441.0270.

[Ben73] Charles H Bennett. “Logical reversibility of computation”. In: IBM Journal of Research and Development 17.6
(1973), pp. 525–532. doi: 10.1147/rd.176.0525.

[Ben89] Charles H. Bennett. “Time/space trade-offs for reversible computation”. In: SIAM Journal on Computing 18.4
(1989), pp. 766–776. doi: 10.1137/0218053.

[Ben94a] Nick Benton. AMixed Linear and Non-Linear Logic: Proofs, Terms and Models. Tech. rep. UCAM-CL-TR-352.
65 pages. Computer Science department, Cambridge University, 1994.

[Ben94b] Nick Benton. “A mixed linear and non-linear logic: proofs, terms and models (extended abstract)”. In: Com-
puter Science Logic, Eighth International Workshop, CSL’94, Selected Papers (Kazimierz, Poland). Ed. by Leszek
Pacholski and Jerzy Tiuryn. Vol. 933. Lecture Notes in Computer Science. European Association for Computer
Science Logic. Springer Verlag, Sept. 1994, pp. 121–135. isbn: 3-540-60017-5. doi: 10.1007/BFb0022251.

[Ber00] Gérard Berry. “The foundations of Esterel”. In: Proof, Language, and Interaction, Essays in Honour of Robin
Milner. Ed. by Gordon D. Plotkin, Colin Stirling, and Mads Tofte. The MIT Press, 2000, pp. 425–454. isbn: 978-0-
262-16188-6. doi: 10.7551/mitpress/5641.003.0021.

[BFMP11] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. “Why3: shepherd your
herd of provers”. In: Proceedings of Boogie 2011: First International Workshop on Intermediate Verification Lan-
guages (Wroclaw, Poland). 2011, pp. 53–64. hal: hal-00790310.

[BFPS81] Wilfried Buchholz, Solomon Feferman, Wolfram Pohlers, and Wilfried Sieg. Iterated Inductive Definitions
and Subsystems of Analysis: Recent Proof-Theoretical Studies. Vol. 897. Lecture Notes in Mathematics. Springer-
Verlag, 1981.

100

https://doi.org/10.1016/J.SCICO.2021.102726
https://hal.archives-ouvertes.fr/hal-03547113
https://doi.org/10.1007/978-3-642-39799-8_14
https://www.arxiv.org/abs/1301.4779
https://doi.org/10.1145/2591796.2591854
https://www.arxiv.org/abs/1312.1414
https://doi.org/10.1109/FOCS.2015.54
https://www.arxiv.org/abs/1501.01715
https://doi.org/10.1103/RevModPhys.94.015004
https://doi.org/10.1007/BF01887198
https://doi.org/10.1140/epjd/e2003-00242-2
https://www.arxiv.org/abs/cs/0103009
https://doi.org/10.4204/EPTCS.318.6
https://doi.org/10.4230/LIPIcs.CSL.2016.42
http://www.dagstuhl.de/dagpub/978-3-95977-022-4
http://www.dagstuhl.de/dagpub/978-3-95977-022-4
https://doi.org/10.26421/QIC3.2-8
https://doi.org/10.1147/rd.441.0270
https://doi.org/10.1147/rd.176.0525
https://doi.org/10.1137/0218053
https://doi.org/10.1007/BFb0022251
https://doi.org/10.7551/mitpress/5641.003.0021
https://hal.archives-ouvertes.fr/hal-00790310

Bibliography

[BG89] Val Breazu-Tannen and Jean H. Gallier. “Polymorphic rewriting conserves algebraic strong normalization
and confluence”. In: Proceedings of the 16th International Colloquium on Automata, Languages and Programming,
ICALP’89 (Stresa, Italy, July 11–15, 1989). Ed. by Giorgio Ausiello, Mariangiola Dezani-Ciancaglini, and Simona
Ronchi Della Rocca. Vol. 372. Lecture Notes in Computer Science. Springer, 1989, pp. 137–150. isbn: 3-540-51371-
X. doi: 10.1007/BFb0035757.

[BG91] Val Breazu-Tannen and Jean H. Gallier. “Polymorphic rewriting conserves algebraic strong normalization”.
In: Theoretical Computer Science 83.1 (1991), pp. 3–28. doi: 10.1016/0304-3975(91)90037-3.

[BG94] Val Breazu-Tannen and Jean H. Gallier. “Polymorphic rewriting conserves algebraic confluence”. In: In-
formation and Computation 114.1 (1994). Available as U. Penn. Tech. Report MS-CIS-90-37., pp. 1–29. doi:
10.1006/inco.1994.1078.

[BH20] Niel de Beaudrap and Dominic Horsman. “The ZX calculus is a language for surface code lattice surgery”.
In:Quantum 4 (2020), p. 218. arXiv: 1704.08670.

[BHYYZ20] Gilles Barthe, Justin Hsu, Mingsheng Ying, Nengkun Yu, and Li Zhou. “Relational proofs for quantum
programs”. In: Proceedings of the ACM on Programming Languages 4.POPL (2020), 21:1–21:29. doi: 10.1145/
3371089.

[Bie93] Gavin M. Bierman. “On Intuitionistic Linear Logic”. Available as Technical Report 346, August 1994. PhD
thesis. England, UK.: Computer Science department, Cambridge University, 1993.

[BISG+20] Ville Bergholm, Josh Izaac, Maria Schuld, Christian Gogolin, M. Sohaib Alam, Shahnawaz Ahmed, Juan
Miguel Arrazola, Carsten Blank, Alain Delgado, Soran Jahangiri, Keri McKiernan, Johannes Jakob Meyer, Zeyue
Niu, Antal Száva, andNathan Killoran. “PennyLane: Automatic differentiation of hybrid quantum-classical com-
putations”. 2020. arXiv: 1811.04968.

[BK18] MiriamBackens andAleks Kissinger. “ZH: a complete graphical calculus for quantum computations involving
classical non-linearity”. In: [QPL19], pp. 23–42. doi: 10.4204/EPTCS.287.2.

[BKN15] Jaap Boender, Florian Kammüller, and Rajagopal Nagarajan. “Formalization of quantum protocols using
coq”. In: Proceedings of the 12th International Workshop on Quantum Physics and Logic, QPL 2015 (Oxford, UK).
Ed. by Chris Heunen, Peter Selinger, and Jamie Vicary. Vol. 195. Electronic Proceedings in Theoretical Computer
Science. 2015, pp. 71–83. doi: 10.4204/EPTCS.195.6.

[Blu96] Richard F. Blute. “Hopf algebras and linear logic”. In:Mathematical Structures in Computer Science 6.2 (1996),
pp. 189–212. doi: 10.1017/S0960129500000943.

[BM04] Stephen S. Bullock and Igor L. Markov. “Asymptotically optimal circuits for arbitrary n-qubit diagonal com-
putations”. In: Quantum Information and Computation 4.1 (2004), pp. 27–47.

[BM07] David Baelde and Dale Miller. “Least and greatest fixed points in linear logic”. In: Proceedings of the 14th
International Conference on Logic for Programming, Artificial Intelligence, LPAR’07 (Yerevan, Armenia). Ed. by
Nachum Dershowitz and Andrei Voronkov. Vol. 4790. Lecture Notes in Computer Science. Springer, 2007, pp.
92–106. isbn: 978-3-540-75558-6. doi: 10.1007/978-3-540-75560-9_9.

[BM87] Val Breazu-Tannen and Albert R. Meyer. “Computable values can be classical”. In: Proceedings of the 14th
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’87 (Munich, West Germany).
ACM, 1987, pp. 238–245. isbn: 0-89791-215-2. doi: 10.1145/41625.41646.

[BN36] Garrett Birkhoff and John Von Neumann. “The logic of quantum mechanics”. In: Annals of Mathematics 37.4
(1936), pp. 823–843. doi: 10.2307/1968621.

[BPS93a] Richard F. Blute, Prakash Panangaden, and Robert A.G. Seely. “Fock Space: A Model of Linear Exponential
Types”. Manuscript, revised version of [BPS93b]. 1993.

[BPS93b] Richard F. Blute, Prakash Panangaden, and Robert A.G. Seely. “Holomorphic models of exponential types
in linear logic”. In: [MFPS93], pp. 474–512.

[BPV21] Agustín Borgna, Simon Perdrix, and Benoît Valiron. “Hybrid quantum-classical circuit simplification with
the ZX-calculus”. In: Proceedings of the 19th Asian Symposium on Programming Languages and Systems, APLAS
2021 (Chicago, IL, USA (Online Conference), Oct. 17–18, 2021). Ed. by Hakjoo Oh. Vol. 13008. Lecture Notes in
Computer Science. Springer, 2021, pp. 121–139. doi: 10.1007/978-3-030-89051-3_8. arXiv: 2109.06071.

[BR72] J. W. de Bakker andWillem P. de Roever. “A calculus for recursive program schemes”. In: Automata, Languages
and Programming: Proceedings of a Symposium Organized by IRIA (Rocquencourt, France, 1972). Ed. by Maurice
Nivat. Also found as a Technical Report of Stichting Mathematisch Centrum, CWI. North-Holland, Amsterdam,
1972, pp. 167–196. isbn: 0-7204-2074-1. url: https://ir.cwi.nl/pub/9145/ (visited on Aug. 11, 2022).

[Bre88] Val Breazu-Tannen. “Combining algebra and higher-order types”. In: Proceedings of the Third Annual Sympo-
sium on Logic in Computer Science, LICS ’88 (Edinburgh, Scotland, UK, July 5–8, 1988). IEEE Computer Society,
1988, pp. 82–90. isbn: 0-8186-0853-6. doi: 10.1109/LICS.1988.5103.

[Bro70] C. G. Broyden. “The convergence of a class of double-rank minimization algorithms”. In: IMA Journal of
Applied Mathematics 6.1 (1970), pp. 76–90.

101

https://doi.org/10.1007/BFb0035757
https://doi.org/10.1016/0304-3975(91)90037-3
https://doi.org/10.1006/inco.1994.1078
https://www.arxiv.org/abs/1704.08670
https://doi.org/10.1145/3371089
https://doi.org/10.1145/3371089
https://www.arxiv.org/abs/1811.04968
https://doi.org/10.4204/EPTCS.287.2
https://doi.org/10.4204/EPTCS.195.6
https://doi.org/10.1017/S0960129500000943
https://doi.org/10.1007/978-3-540-75560-9_9
https://doi.org/10.1145/41625.41646
https://doi.org/10.2307/1968621
https://doi.org/10.1007/978-3-030-89051-3_8
https://www.arxiv.org/abs/2109.06071
https://ir.cwi.nl/pub/9145/
https://doi.org/10.1109/LICS.1988.5103

Bibliography

[Bru20] Timothée Goubault de Brugière. “Methods for optimizing the synthesis of quantum circuits”. Thèse de Doc-
torat. Université Paris-Saclay, 2020. hal: tel-03127089.

[BSDCM19] Debjyoti Bhattacharjee, Mathias Soeken, Srijit Dutta, Anupam Chattopadhyay, and Giovanni De
Micheli. “Reversible pebble games for reducing qubits in hierarchical quantum circuit synthesis”. In: Proceedings
of the 49th International Symposium onMultiple-Valued Logic, ISMVL 2019 (Fredericton, NB, Canada, May 21–23,
2019). IEEE, 2019, pp. 102–107. isbn: 978-1-7281-0092-0. doi: 10.1109/ISMVL.2019.00026.

[BT04] Patrick Baillot and Kazushige Terui. “Light types for polynomial time computation in lambda-calculus”. In:
[LICS04], pp. 266–275. doi: 10.1109/LICS.2004.1319621. hal: hal-00003468. arXiv: cs/0402059.

[Bur69] Rod M. Burstall. “Proving properties of programs by structural induction”. In: The Computer Journal 12.1
(1969), pp. 41–48. doi: 10.1093/comjnl/12.1.41.

[Bur74] Rod M. Burstall. “Program proving as hand simulation with a little induction”. In: Proceedings of the 6th
IFIP Congress on Information Processing (Stockholm, Sweden, Aug. 5–10, 1974). Ed. by Jack L. Rosenfeld. North-
Holland, 1974, pp. 308–312. isbn: 0-7204-2803-3.

[BW15] Xiaoning Bian and Quanlong Wang. “Graphical calculus for qutrit systems”. In: IEICE Transactions on
Fundamentals of Electronics, Communications and Computer Sciences 98-A.1 (2015), pp. 391–399. doi: 10.1587/
transfun.E98.A.391.

[CABB+21] M. Cerezo, Andrew Arrasmith, Ryan Babbush, Simon C. Benjamin, Suguru Endo, Keisuke Fujii, Jarrod
R. McClean, Kosuke Mitarai, Xiao Yuan, Lukasz Cincio, and Patrick J. Coles. “Variational quantum algorithms”.
In: Nature Reviews Physics 3.9 (2021), pp. 625–644. doi: 10.1038/s42254-021-00348-9.

[CBBPV21] Christophe Chareton, Sébastien Bardin, François Bobot, Valentin Perrelle, and Benoît Valiron. “An au-
tomated deductive verification framework for circuit-building quantum programs”. In: Proceedings of the 30th
European Symposium on Programming Languages and Systems, ESOP 2021 (Luxembourg City, Luxembourg, Mar.
27–Apr. 1, 2021). Ed. by Nobuko Yoshida. Vol. 12648. Lecture Notes in Computer Science. Springer, 2021, pp.
148–177. isbn: 978-3-030-72018-6. doi: 10.1007/978-3-030-72019-3_6. arXiv: 2003.05841.

[CBLVVX21] Christophe Chareton, Sébastien Bardin, Dongho Lee, Benoît Valiron, Renaud Vilmart, and Zhaowei Xu.
“FormalMethods forQuantumPrograms: A Survey”. Draft, to appear as a book chapter. 2021. arXiv: 2109.06493.

[CBSNG19] Andrew W. Cross, Lev S. Bishop, Sarah Sheldon, Paul D. Nation, and Jay M. Gambetta. “Validating
quantum computers using randomized model circuits”. In: Physical Review A 100 (3 Sept. 2019), p. 032328. doi:
10.1103/PhysRevA.100.032328. arXiv: 1811.12926.

[CCDFGS03] AndrewM.Childs, RichardCleve, Enrico Deotto, Edward Farhi, SamGutmann, andDaniel A. Spielman.
“Exponential algorithmic speedup by a quantum walk”. In: Proceedings of the 35th Annual ACM Symposium on
Theory of Computing, STOC’03 (San Diego, CA, USA, June 2003). Ed. by Lawrence L. Larmore and Michel X.
Goemans. ACM, 2003, pp. 59–68. isbn: 1-58113-674-9. doi: 10.1145/780542.780552.

[CD07] Bob Coecke and Ross Duncan. “A graphical calculus for quantum observables”. Historical note from Bob
Coecke: First paper containing ZX-diagrams. Rejected from QIP with reports like: “nice pictures, so what?”.
2007. url: http://www.cs.ox.ac.uk/people/bob.coecke/GreenRed.pdf (visited on Aug. 24, 2022).

[CD08] Bob Coecke and Ross Duncan. “Interacting quantum observables”. In: Proceedings of the 35th International
Colloquium on Automata, Languages and Programming (ICALP 2008), Part II (Reykjavik, Iceland, July 7–11, 2008).
Ed. by Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor
Walukiewicz. Vol. 5126. Lecture Notes in Computer Science. Springer, 2008, pp. 298–310. doi: 10.1007/978-3-
540-70583-3_25.

[CD11] Bob Coecke and Ross Duncan. “Interacting quantum observables: categorical algebra and diagrammatics”.
In: New Journal of Physics 13.4 (Apr. 2011), p. 043016. doi: 10.1088/1367-2630/13/4/043016. arXiv: 0906.4725.

[CD22] Andrea Colledan andUgoDal Lago. “OnDynamic Lifting and Effect Typing in Circuit Description Languages
(Extended Version)”. Presented at TYPES 2022. 2022. arXiv: 2202.07636.

[CD93] Charles Consel and Olivier Danvy. “Tutorial notes on partial evaluation”. In: Conference Record of the Twen-
tieth Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’93 (Charleston,
South Carolina, USA). Ed. by Mary S. Van Deusen and Bernard Lang. ACM Press, 1993, pp. 493–501. isbn: 0-
89791-560-7. doi: 10.1145/158511.158707.

[CDP08a] G. Chiribella, G. M. D’Ariano, and P. Perinotti. “Quantum circuit architecture”. In: Physical Review Letters
101 (6 Aug. 2008), p. 060401. doi: 10.1103/PhysRevLett.101.060401. arXiv: 0712.1325.

[CDP08b] G. Chiribella, G. M. D’Ariano, and P. Perinotti. “Transforming quantum operations: quantum supermaps”.
In: EPL (Europhysics Letters) 83.3 (2008), p. 30004. doi: 10.1209/0295-5075/83/30004. arXiv: 0804.0180.

[CDP09] Giulio Chiribella, GiacomoMauro D’Ariano, and Paolo Perinotti. “Theoretical framework for quantum net-
works”. In: Physical Review A 80 (2 Aug. 2009), p. 022339. doi: 10.1103/PhysRevA.80.022339.

[CDPV13] G. Chiribella, G.M. D’Ariano, P. Perinotti, and B. Valiron. “Quantum computations without definite causal
structure”. In: Physical Review A 88 (2013), p. 022318. doi: 10.1103/PhysRevA.88.022318. arXiv: 0912.0195.

102

https://hal.archives-ouvertes.fr/tel-03127089
https://doi.org/10.1109/ISMVL.2019.00026
https://doi.org/10.1109/LICS.2004.1319621
https://hal.archives-ouvertes.fr/hal-00003468
https://www.arxiv.org/abs/cs/0402059
https://doi.org/10.1093/comjnl/12.1.41
https://doi.org/10.1587/transfun.E98.A.391
https://doi.org/10.1587/transfun.E98.A.391
https://doi.org/10.1038/s42254-021-00348-9
https://doi.org/10.1007/978-3-030-72019-3_6
https://www.arxiv.org/abs/2003.05841
https://www.arxiv.org/abs/2109.06493
https://doi.org/10.1103/PhysRevA.100.032328
https://www.arxiv.org/abs/1811.12926
https://doi.org/10.1145/780542.780552
http://www.cs.ox.ac.uk/people/bob.coecke/GreenRed.pdf
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1007/978-3-540-70583-3_25
https://doi.org/10.1088/1367-2630/13/4/043016
https://www.arxiv.org/abs/0906.4725
https://www.arxiv.org/abs/2202.07636
https://doi.org/10.1145/158511.158707
https://doi.org/10.1103/PhysRevLett.101.060401
https://www.arxiv.org/abs/0712.1325
https://doi.org/10.1209/0295-5075/83/30004
https://www.arxiv.org/abs/0804.0180
https://doi.org/10.1103/PhysRevA.80.022339
https://doi.org/10.1103/PhysRevA.88.022318
https://www.arxiv.org/abs/0912.0195

Bibliography

[CFC58] Haskell H. Curry, Robert Feys, and William Craig. Combinatory Logic. Vol. 22. Studies in Logic and the
Foundations of Mathematics. North-Holland, 1958.

[CFM17] Frederic T. Chong, Diana Franklin, andMargaretMartonosi. “Programming languages and compiler design
for realistic quantum hardware”. In: Nature 549 (7671 2017), pp. 180–187. doi: 10.1038/nature23459.

[Cha23] Kostia Chardonnet. “Vers une correspondance de Curry-Howard pour le calcul quantique”. Thèse de Doc-
torat. Université Paris-Saclay, 2023.

[CHMPV22] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron. “LOv-
calculus: a graphical language for linear optical quantum circuits”. In: 47th International Symposium on Mathe-
matical Foundations of Computer Science, MFCS 2022, August 22-26, 2022, Vienna, Austria. Ed. by Stefan Szeider,
Robert Ganian, and Alexandra Silva. Vol. 241. LIPIcs. 2022, 35:1–35:16. doi: 10.4230/LIPICS.MFCS.2022.35. url:
https://doi.org/10.4230/LIPIcs.MFCS.2022.35.

[CHMPV23a] Alexandre Clément, Nicolas Heurtel, ShaneMansfield, Simon Perdrix, and Benoît Valiron. “A complete
equational theory for quantum circuits”. In: 38th Annual ACM/IEEE Symposium on Logic in Computer Science,
LICS 2023, Boston, MA, USA, June 26-29, 2023. IEEE, 2023, pp. 1–13. doi: 10.1109/LICS56636.2023.10175801. hal:
hal-03926757.

[CHMPV23b] Alexandre Clément, Nicolas Heurtel, Shane Mansfield, Simon Perdrix, and Benoît Valiron. “A Com-
plete Equational Theory for Quantum Circuits”. Presentation accepted at the 18th Conference on the The-
ory of Quantum Computation, Communication and Cryptography (TQC 2023), in Aveiro, Portugal. 2023. hal:
hal-04318291v1.

[Cho75] Man-Duen Choi. “Completely positive linear maps on complex matrices”. In: Linear Algebra and its Appli-
cations 10.3 (1975), pp. 285–290.

[CHP19] Titouan Carette, Dominic Horsman, and Simon Perdrix. “SZX-calculus: scalable graphical quantum reason-
ing”. In: Proceedings of the 44th International Symposium onMathematical Foundations of Computer Science, MFCS
2019 (Aachen, Germany, Aug. 26–30, 2019). Ed. by Peter Rossmanith, Pinar Heggernes, and Joost-Pieter Katoen.
Vol. 138. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2019, 55:1–55:15. isbn: 978-3-95977-117-7.
doi: 10.4230/LIPIcs.MFCS.2019.55.

[Chu36] Alonzo Church. “An unsolvable problem of elementary number theory”. In: American Journal of Mathematics
58.2 (1936), pp. 345–363. doi: 10.2307/2371045.

[CJ20] Titouan Carette and Emmanuel Jeandel. “A recipe for quantum graphical languages”. In: Proceedings of the
47th International Colloquium on Automata, Languages, and Programming, ICALP 2020 (Saarbrücken, Germany
(Virtual Conference), July 8, 2022–July 11, 2020). Ed. by Artur Czumaj, Anuj Dawar, and Emanuela Merelli. Vol.
168. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020, 118:1–118:17. doi: 10.4230/LIPIcs.ICALP.
2020.118.

[CJPV19] Titouan Carette, Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. “Completeness of graphical
languages for mixed states quantum mechanics”. In: Proceedings of the 46th International Colloquium on Au-
tomata, Languages, and Programming, ICALP 2019 (Patras, Greece, July 9–12, 2019). Ed. by Christel Baier,
Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi. Vol. 132. LIPIcs. Schloss Dagstuhl - Leibniz-
Zentrum für Informatik, 2019, 108:1–108:15. isbn: 978-3-95977-109-2. doi: 10.4230/LIPIcs.ICALP.2019.108. url:
http://www.dagstuhl.de/dagpub/978-3-95977-109-2.

[CJS13] B. D. Clader, B. C. Jacobs, and C. R. Sprouse. “Preconditioned quantum linear system algorithm”. In: Physical
Review Letters 110 (25 2013), p. 250504. doi: 10.1103/PhysRevLett.110.250504. arXiv: 1301.2340.

[CJV93] A. Chatterjee, J. M. Jin, and J. L. Volakis. “Edge-based finite elements and vector abc’s applied to 3D scatter-
ing”. In: IEEE Transactions on Antennas and Propagation 41.2 (1993).

[CK17] Bob Coecke and Aleks Kissinger. Picturing Quantum Processes: A First Course in Quantum Theory and Dia-
grammatic Reasoning. Cambridge University Press, 2017. isbn: 9781316219317. doi: 10.1017/9781316219317.

[CK97] Roberto Di Cosmo and Delia Kesner. “Strong normalization of explicit substitutions via cut elimination in
proof nets (extended abstract)”. In: Proceedings of the Twelfth Annual IEEE Symposium on Logic in Computer
Science, LICS’97 (Warsaw, Poland, June 29–July 2, 1997). IEEE Computer Society, 1997, pp. 35–46. isbn: 0-8186-
7925-5. doi: 10.1109/LICS.1997.614927.

[CKRZH18] Nicholas Chancellor, Aleks Kissinger, Joschka Roffe, Stefan Zohren, and Dominic Horsman. “Graphical
Structures for Design and Verification of Quantum Error Correction”. Draft. 2018.

[CL02] J. Robin B. Cockett and Stephen Lack. “Restriction categories I: categories of partial maps”. In: Theoretical
Computer Science 270.1 (2002), pp. 223–259. doi: 10.1016/S0304-3975(00)00382-0.

[CL03] J. Robin B. Cockett and Stephen Lack. “Restriction categories ii: partial map classification”. In: Theoretical
Computer Science 294.1 (2003), pp. 61–102. doi: 10.1016/S0304-3975(01)00245-6.

[CL07] Robin Cockett and Stephen Lack. “Restriction categories III: colimits, partial limits and extensivity”. In:Math-
ematical Structures in Computer Science 17.4 (2007), pp. 775–817. doi: 10.1017/S0960129507006056.

[Cla01] Koen Claessen. “Embedded Languages for Describing and Verifying Hardware”. Doktorsavhandlingar.
Chalmers University of Technology, Gothenburg, Sweden, 2001. isbn: 91-7291-014-3.

103

https://doi.org/10.1038/nature23459
https://doi.org/10.4230/LIPICS.MFCS.2022.35
https://doi.org/10.4230/LIPIcs.MFCS.2022.35
https://doi.org/10.1109/LICS56636.2023.10175801
https://hal.archives-ouvertes.fr/hal-03926757
https://hal.archives-ouvertes.fr/hal-04318291v1
https://doi.org/10.4230/LIPIcs.MFCS.2019.55
https://doi.org/10.2307/2371045
https://doi.org/10.4230/LIPIcs.ICALP.2020.118
https://doi.org/10.4230/LIPIcs.ICALP.2020.118
https://doi.org/10.4230/LIPIcs.ICALP.2019.108
http://www.dagstuhl.de/dagpub/978-3-95977-109-2
https://doi.org/10.1103/PhysRevLett.110.250504
https://www.arxiv.org/abs/1301.2340
https://doi.org/10.1017/9781316219317
https://doi.org/10.1109/LICS.1997.614927
https://doi.org/10.1016/S0304-3975(00)00382-0
https://doi.org/10.1016/S0304-3975(01)00245-6
https://doi.org/10.1017/S0960129507006056

Bibliography

[CLV21] Kostia Chardonnet, Louis Lemonnier, and Benoît Valiron. “Categorical semantics of reversible pattern-
matching”. In: [MFPS21], pp. 18–33. doi: 10.4204/EPTCS.351.2.

[Coe04] Bob Coecke. “Quantum information-flow, concretely, abstractly”. In: [QPL04], pp. 57–73.

[Cop17] B. Jack Copeland. “The Church-Turing thesis”. In: The Stanford Encyclopedia of Philosophy. Ed. by Edward
N. Zalta. Summer 2020 Edition. 2017. url: https://plato.stanford.edu/archives/sum2020/entries/church-
turing/ (visited on Sept. 6, 2021).

[CP90] T. Coquand and C. Paulin. “Inductively defined types”. In: [MM90], pp. 50–66.

[CPV13] Bob Coecke, Dusko Pavlovic, and Jamie Vicary. “A new description of orthogonal bases”. In: Mathematical
Structures in Computer Science 23.3 (2013), pp. 555–567. doi: 10.1017/S0960129512000047.

[CS16] Jacques Carette and Amr Sabry. “Computing with semirings and weak rig groupoids”. In: Proceedings of the
25th European Symposium on Programming Languages and Systems (ESOP’16) (Eindhoven, The Netherlands).
Ed. by Peter Thiemann. Vol. 9632. Lecture Notes in Computer Science. Springer, Apr. 2016, pp. 123–148. doi:
10.1007/978-3-662-49498-1_6.

[CSV20] Kostia Chardonnet, Alexis Saurin, and Benoît Valiron. “Toward a Curry-Howard equivalence for linear,
reversible computation - work-in-progress”. In: [RC20], pp. 144–152. doi: 10.1007/978-3-030-52482-1_8. hal:
hal-03103455.

[CSV21] Kostia Chardonnet, Alexis Saurin, and Benoît Valiron. “Towards a Curry-Howard correspondence for lin-
ear, reversible computation”. In: Proceedings of the 5th International Workshop on Trends in Linear Logic and
Applications (TLLA 2021) (Rome (virtual), Italy). 2021. hal: lirmm-03271484.

[CSV23] Kostia Chardonnet, Alexis Saurin, and Benoît Valiron. “A curry-howard correspondence for linear, reversible
computation”. In: 31st EACSL Annual Conference on Computer Science Logic, CSL 2023 (Warsaw, Poland, Feb. 13–
16, 2023). Ed. by Bartek Klin and Elaine Pimentel. Vol. 252. LIPIcs. 2023, 13:1–13:18. doi: 10.4230/LIPICS.CSL.
2023.13.

[CTV23] Théodore Chapuis-Chkaiban, Zeno Toffano, and Benoît Valiron. “On new pagerank computation methods
using quantum computing”. In: Quantum Information Processing 22.3 (2023), p. 138. doi: 10.1007/S11128-023-
03856-Y. hal: hal-04056045.

[CV20] Pierre Clairambault and Marc de Visme. “Full abstraction for the quantum lambda-calculus”. In: Proceedings
of the ACM on Programming Languages 4.POPL (2020), 63:1–63:28. doi: 10.1145/3371131.

[CVCC23] Matheus Capela, Harshit Verma, Fabio Costa, and Lucas C. Céleri. “Reassessing thermodynamic advan-
tage from indefinite causal order”. In: Physical Review A 107 (6 2023), p. 062208. doi: 10.1103/PhysRevA.107.
062208.

[CVV21] Kostia Chardonnet, Benoît Valiron, and Renaud Vilmart. “Geometry of interaction for ZX diagrams”. In:
Proceedings of the 46th International Symposium on Mathematical Foundations of Computer Science, MFCS 2021
(Tallinn, Estonia). Ed. by Filippo Bonchi and Simon J. Puglisi. Vol. 202. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik, 2021, 30:1–30:16. isbn: 978-3-95977-201-3. doi: 10.4230/LIPIcs.MFCS.2021.30.

[CVVV22] Kostia Chardonnet, Marc de Visme, Benoît Valiron, and Renaud Vilmart. “The Many-Worlds Calculus:
RepresentingQuantum Control”. 2022.

[CW96] Edmund M. Clarke and Jeannette M. Wing. “Formal methods: state of the art and future directions”. In:
ACM Computing Surveys 28.4 (1996), pp. 626–643. doi: 10.1145/242223.242257.

[Cyb01] George Cybenko. “Reducing quantum computations to elementary unitary operations”. In: Computing in
Science & Engineering 3.2 (2001), pp. 27–32. doi: 10.1109/5992.908999.

[Dan90] Vincent Danos. “La Logique Linéaire appliquée à l’étude de divers processus de normalisation (principale-
ment du Lambda-calcul)”. Thèse de Doctorat en Mathématiques. Université Paris 7, 1990.

[DD17] Alejandro Díaz-Caro and Gilles Dowek. “Typing quantum superpositions and measurement”. In: Proceedings
of the 6th International Conference on the Theory and Practice of Natural Computing (TPNC’17) (Prague, Czech
Republic). Ed. by Carlos Martín-Vide, Roman Neruda, and Miguel A. Vega-Rodríguez. Vol. 10687. Lecture Notes
in Computer Science. Springer, 2017, pp. 281–293. doi: 10.1007/978-3-319-71069-3_22.

[DE11] Vincent Danos and Thomas Ehrhard. “Probabilistic coherence spaces as a model of higher-order probabilistic
computation”. In: Information and Computation 209.6 (2011), pp. 966–991. doi: 10.1016/j.ic.2011.02.001.

[Del08a] Yannick Delbecque. “A quantum game semantics for the measurement calculus”. In: [QPL08], pp. 33–48.

[Del08b] Yannick Delbecque. “Quantum Games asQuantum Types”. PhD thesis. McGill University, 2008.

[Del11] Yannick Delbecque. “Game semantics for quantum data”. In: [QPL11], pp. 41–57. doi: 10.1016/j.entcs.
2011.01.005.

[Deu85] David Deutsch. “Quantum theory, the Church-Turing principle and the universal quantum computer”. In:
Proceedings of the Royal Society of London A 400.1818 (1985), pp. 97–117. doi: 10.1098/rspa.1985.0070.

[DG02] Maria Luisa Dalla Chiara and Roberto Giuntini. “Quantum logics”. In: Handbook of Philosophical Logic. Ed.
by Dov M. Gabbay and F. Guenthner. 2nd ed. Vol. 6. Springer, Dordrecht, 2002, pp. 129–228. isbn: 978-1-4020-
0583-1. doi: 10.1007/978-94-017-0460-1_2.

104

https://doi.org/10.4204/EPTCS.351.2
https://plato.stanford.edu/archives/sum2020/entries/church-turing/
https://plato.stanford.edu/archives/sum2020/entries/church-turing/
https://doi.org/10.1017/S0960129512000047
https://doi.org/10.1007/978-3-662-49498-1_6
https://doi.org/10.1007/978-3-030-52482-1_8
https://hal.archives-ouvertes.fr/hal-03103455
https://hal.archives-ouvertes.fr/lirmm-03271484
https://doi.org/10.4230/LIPICS.CSL.2023.13
https://doi.org/10.4230/LIPICS.CSL.2023.13
https://doi.org/10.1007/S11128-023-03856-Y
https://doi.org/10.1007/S11128-023-03856-Y
https://hal.archives-ouvertes.fr/hal-04056045
https://doi.org/10.1145/3371131
https://doi.org/10.1103/PhysRevA.107.062208
https://doi.org/10.1103/PhysRevA.107.062208
https://doi.org/10.4230/LIPIcs.MFCS.2021.30
https://doi.org/10.1145/242223.242257
https://doi.org/10.1109/5992.908999
https://doi.org/10.1007/978-3-319-71069-3_22
https://doi.org/10.1016/j.ic.2011.02.001
https://doi.org/10.1016/j.entcs.2011.01.005
https://doi.org/10.1016/j.entcs.2011.01.005
https://doi.org/10.1098/rspa.1985.0070
https://doi.org/10.1007/978-94-017-0460-1_2

Bibliography

[DG08] Nachum Dershowitz and Yuri Gurevich. “A natural axiomatization of computability and proof of Church’s
thesis”. In: Bulletin of Symbolic Logic 14.3 (2008), pp. 299–350. doi: 10.2178/bsl/1231081370.

[DGMV19] Alejandro Díaz-Caro, Mauricio Guillermo, Alexandre Miquel, and Benoît Valiron. “Realizability in the
unitary sphere”. In: [LICS19], pp. 1–13. doi: 10.1109/LICS.2019.8785834. hal: hal-02175168. arXiv: 1904.
08785.

[DH02] Vincent Danos and Russel S. Harmer. “Probabilistic game semantics”. In:ACMTransactions on Computational
Logic 3.3 (2002), pp. 359–382. doi: 10.1145/507382.507385.

[DHKK95] Peter Deussen, A. Hansmann, Thomas Käufl, and Stefan Klingenbeck. “The verification system Tatzel-
wurm”. In: KORSO - Methods, Languages, and Tools for the Construction of Correct Software. Ed. by Manfred
Broy and Stefan Jähnichen. Vol. 1009. Lecture Notes in Computer Science. Springer, 1995, pp. 285–298. isbn:
3-540-60589-4. doi: 10.1007/BFb0015468.

[Dij76] Edsger W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976. isbn: 013215871X. url: https://www.
worldcat.org/oclc/01958445.

[DKPW20] Ross Duncan, Aleks Kissinger, Simon Perdrix, and John van deWetering. “Graph-theoretic simplification
of quantum circuits with the ZX-calculus”. In:Quantum 4 (2020), p. 279. issn: 2521-327X. doi: 10.22331/q-2020-
06-04-279.

[DKRS06] Thomas G. Draper, Samuel A. Kutin, Eric M. Rains, and Krysta M. Svore. “A logarithmic-depth quantum
carry-lookahead adder”. In: Quantum Information and Computation 6.4–5 (2006), pp. 351–369. arXiv: quant-
ph/0406142.

[DL13] Ross Duncan and Maxime Lucas. “Verifying the Steane code with Quantomatic”. In: Proceedings of the 10th
International Workshop on Quantum Physics and Logic, QPL 2013 (Castelldefels (Barcelona), Spain, July 17–19,
2013). Ed. by Bob Coecke and Matty J. Hoban. Vol. 171. EPTCS. 2013, pp. 33–49. doi: 10.4204/EPTCS.171.4.

[Dou17] AminaDoumane. “On the Infinitary Proof Theory of Logics with Fixed Points”. Thèse de doctorat. Université
Paris Diderot, 2017.

[Dou92] Daniel J. Dougherty. “Adding algebraic rewriting to the untyped lambda calculus”. In: Information and Com-
putation 101.2 (1992), pp. 251–267. doi: 10.1016/0890-5401(92)90064-M.

[Dow12] Gilles Dowek. “Around the physical Church-Turing thesis: cellular automata, formal languages, and the
principles of quantum theory”. In: Proceedingsof the 6th International Conference on Language and Automata
Theory and Applications, LATA 2012 (A Coruña, Spain, Mar. 5–9, 2012). Ed. by Adrian-Horia Dediu and Carlos
Martín-Vide. Vol. 7183. Lecture Notes in Computer Science. Springer, 2012, pp. 21–37. isbn: 978-3-642-28331-4.
doi: 10.1007/978-3-642-28332-1_3.

[dP04] Ellie d’Hondt and Prakash Panangaden. “Quantum weakest preconditions”. In: [QPL04], pp. 75–90.

[dP06] Ellie d’Hondt and Prakash Panangaden. “Quantum weakest preconditions”. In: Mathematical Structures in
Computer Science 16.3 (2006), pp. 429–451. doi: 10.1017/S0960129506005251. arXiv: quant-ph/0501157.

[DP08] Yannick Delbecque and Prakash Panangaden. “Game semantics for quantum stores”. In: Proceedings of the
24th Conference on theMathematical Foundations of Programming Semantics, MFPS XXIV (Philadelphia, PA, USA).
Ed. by A. Bauer and M. Mislove. Vol. 218. Electronic Notes in Theoretical Computer Science. May 2008, pp. 153–
170. doi: 10.1016/j.entcs.2008.10.010.

[DP10] Ross Duncan and Simon Perdrix. “Rewriting measurement-based quantum computations with generalised
flow”. In: Proceedings of the 37th International Colloquium on Automata, Languages and Programming, ICALP’10,
Part II (Bordeaux, France). Ed. by Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer auf der
Heide, and Paul G. Spirakis. Vol. 6199. Lecture Notes in Computer Science. Springer, 2010, pp. 285–296. doi:
10.1007/978-3-642-14162-1_24.

[dP95] Ugo de’Liguoro and Adolfo Piperno. “Non deterministic extensions of untyped lambda-calculus”. In: Informa-
tion and Computation 122.2 (1995), pp. 149–177. doi: 10.1006/inco.1995.1145.

[DPTV10] Alejandro Díaz-Caro, Simon Perdrix, Christine Tasson, and Benoît Valiron. “Equivalence of algebraic
lambda-calculi (work in progress)”. In: Pre-Proceedings of the 5th International Workshop on Higher-Order Rewrit-
ing (HOR’10), Edinburgh, 14 juillet 2010. This work has been finalized in [ADPTV14]. 2010, pp. 6–11.

[DR89] Vincent Danos and Laurent Regnier. “The structure of multiplicatives”. In: Archive for Mathematical Logic
28.3 (1989), pp. 181–203. doi: 10.1007/BF01622878.

[DR99] Vincent Danos and Laurent Regnier. “Reversible, irreversible and optimal lambda-machines”. In: Theoretical
Computer Science 227.1-2 (1999), pp. 79–97. doi: 10.1016/S0304-3975(99)00049-3.

[Dun09] Ross Duncan. “Generalized proof-nets for compact categories with biproducts”. In: [GM09]. Chap. 3, pp.
70–134. doi: 10.1017/CBO9781139193313.004. arXiv: 0903.5154.

[Dun13] Ross Duncan. “A graphical approach to measurement-based quantum computing”. In: Quantum Physics
and Linguistics: A Compositional, Diagrammatic Discourse. Ed. by Chris Heunen, Mehrnoosh Sadrzadeh, and
Edward Grefenstette. Oxford University Press, 2013. Chap. 3. isbn: 9780199646296. doi: 10.1093/acprof:oso/
9780199646296.003.0003. arXiv: 1203.6242.

105

https://doi.org/10.2178/bsl/1231081370
https://doi.org/10.1109/LICS.2019.8785834
https://hal.archives-ouvertes.fr/hal-02175168
https://www.arxiv.org/abs/1904.08785
https://www.arxiv.org/abs/1904.08785
https://doi.org/10.1145/507382.507385
https://doi.org/10.1007/BFb0015468
https://www.worldcat.org/oclc/01958445
https://www.worldcat.org/oclc/01958445
https://doi.org/10.22331/q-2020-06-04-279
https://doi.org/10.22331/q-2020-06-04-279
https://www.arxiv.org/abs/quant-ph/0406142
https://www.arxiv.org/abs/quant-ph/0406142
https://doi.org/10.4204/EPTCS.171.4
https://doi.org/10.1016/0890-5401(92)90064-M
https://doi.org/10.1007/978-3-642-28332-1_3
https://doi.org/10.1017/S0960129506005251
https://www.arxiv.org/abs/quant-ph/0501157
https://doi.org/10.1016/j.entcs.2008.10.010
https://doi.org/10.1007/978-3-642-14162-1_24
https://doi.org/10.1006/inco.1995.1145
https://doi.org/10.1007/BF01622878
https://doi.org/10.1016/S0304-3975(99)00049-3
https://doi.org/10.1017/CBO9781139193313.004
https://www.arxiv.org/abs/0903.5154
https://doi.org/10.1093/acprof:oso/9780199646296.003.0003
https://doi.org/10.1093/acprof:oso/9780199646296.003.0003
https://www.arxiv.org/abs/1203.6242

Bibliography

[Dur02] Jérome Durand-Lose. “Computing inside the billiard ball model”. In: [Ada02], pp. 135–160. url: http://www.
univ-orleans.fr/lifo/Members/Jerome.Durand-Lose/Recherche/Publications/2002_BBM_book.pdf.

[Dyb91] Peter Dybjer. “Inductive sets and families in Martin-Löf’s type theory and their set-theoretic semantics”. In:
ed. by Gérard Huet and Gordon D. Plotkin. Cambridge University Press, 1991, pp. 280–306. isbn: 9780511569807.
doi: 10.1017/CBO9780511569807.012.

[Dyb94] Peter Dybjer. “Inductive families”. In: Formal Aspects of Computing 6.4 (1994), pp. 440–465. doi: 10.1007/
BF01211308.

[Ehr02] Thomas Ehrhard. “On köthe sequence spaces and linear logic”. In:Mathematical Structures in Computer Sci-
ence 12.5 (2002), pp. 579–623. doi: 10.1017/S0960129502003729.

[Ehr05] Thomas Ehrhard. “Finiteness spaces”. In: Mathematical Structures in Computer Science 15.4 (2005), pp. 615–
646. doi: 10.1017/S0960129504004645.

[EPT11] Thomas Ehrhard, Michele Pagani, and Christine Tasson. “The computational meaning of probabilistic co-
herence spaces”. In: [LICS11], pp. 87–96. doi: 10.1109/LICS.2011.29. hal: hal-00627490.

[ER03] Thomas Ehrhard and Laurent Regnier. “The differential lambda-calculus”. In: Theoretical Computer Science
309.1-3 (2003), pp. 1–41. doi: 10.1016/S0304-3975(03)00392-X.

[ER06] Thomas Ehrhard and Laurent Regnier. “Differential interaction nets”. In: Theoretical Computer Science 364.2
(2006), pp. 166–195. doi: 10.1016/j.tcs.2006.08.003. hal: hal-00150274.

[ETP14] Thomas Ehrhard, Christine Tasson, and Michele Pagani. “Probabilistic coherence spaces are fully abstract
for probabilistic PCF”. In: [POPL14], pp. 309–320. doi: 10.1145/2535838.2535865.

[FBCH+20] Michael P. Frank, Robert W. Brocato, Thomas M. Conte, Alexander H. Hsia, Anirudh Jain, Nancy A.
Missert, Karpur Shukla, and BrianD. Tierney. “Special session: exploring the ultimate limits of adiabatic circuits”.
In: 38th IEEE International Conference on Computer Design (ICCD). 2020, pp. 21–24. doi: 10.1109/ICCD50377.
2020.00018.

[FC22] Giovanni de Felice and Bob Coecke. “Quantum linear optics via string diagrams”. In: [QPL23a], pp. 83–100.
doi: 10.4204/EPTCS.394.6.

[FD19] Andrew Fagan and Ross Duncan. “Optimising Clifford circuits with Quantomatic”. In: [QPL19], pp. 85–105.
doi: 10.4204/EPTCS.287.5.

[FDDB14] Nicolai Friis, Vedran Dunjko, Wolfgang Dür, and Hans J. Briegel. “Implementing quantum control for
unknown subroutines”. In: Physical Review A 89 (3 2014), p. 030303. doi: 10.1103/PhysRevA.89.030303. arXiv:
1401.8128.

[Fef70] Solomon Feferman. “Formal theories for transfinite iterations of generalized inductive definitions and some
subsystems of analysis”. In: Intuitionism and Proof Theory: Proceedings of the Summer Conference at Buffalo N.Y.
1968. Ed. by A. Kino, J. Myhill, and R. E. Vesley. Vol. 60. Studies in Logic and the Foundations of Mathematics.
North-Holland, 1970, pp. 303–326. doi: 10.1016/S0049-237X(08)70761-4.

[Fey82] Richard P. Feynman. “Simulating physics with computers”. In: International Journal of Theoretical Physics
21.7-8 (1982), pp. 467–488.

[FGG14] Edward Farhi, JeffreyGoldstone, and SamGutmann.AQuantumApproximate Optimization Algorithm. Tech.
rep. MIT-CTP/4610. MIT, 2014.

[FGGLLP01] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, Joshua Lapan, Andrew Lundgren, and Daniel Preda.
“A quantum adiabatic evolution algorithm applied to random instances of an NP-complete problem”. In: Science
292.5516 (2001), pp. 472–475. doi: 10.1126/science.1057726. arXiv: quant-ph/0104129.

[FGGS00] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser.Quantum Computation by Adiabatic
Evolution. Tech. rep. MIT-CTP-2936. MIT, 2000.

[FH65] Richard P. Feynman and A. R. Hibbs. Quantum Mechanics and Path Integrals. McGraw-Hill Publishing Com-
pany, 1965. isbn: 0-07-020650-3.

[FHTZ15] Yuan Feng, Ernst Moritz Hahn, Andrea Turrini, and Lijun Zhang. “QPMC: a model checker for quantum
programs and protocols”. In: Proceedings of the 20th International Symposium on Formal Methods (FM 2015) (Oslo,
Norway). Ed. by Nikolaj Bjørner and Frank S. de Boer. Vol. 9109. Lecture Notes in Computer Science. Springer,
2015, pp. 265–272. isbn: 978-3-319-19248-2. doi: 10.1007/978-3-319-19249-9_17.

[FKRS20] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. “A tutorial introduction to quantum circuit pro-
gramming in dependently typed proto-quipper”. In: [RC20], pp. 153–168. doi: 10.1007/978-3-030-52482-1_9.
arXiv: 2005.08396.

[FKRS22a] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. “A biset-enriched categorical model for Proto-
Quipper with dynamic lifting”. In: [QPL23a]. doi: 10.4204/EPTCS.394.16. arXiv: 2204.13039.

[FKRS22b] Peng Fu, Kohei Kishida, Neil J. Ross, and Peter Selinger. “Proto-Quipper with dynamic lifting”. See also
the companion paper [FKRS22a]. 2022. arXiv: 2204.13041.

106

http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose/Recherche/Publications/2002_BBM_book.pdf
http://www.univ-orleans.fr/lifo/Members/Jerome.Durand-Lose/Recherche/Publications/2002_BBM_book.pdf
https://doi.org/10.1017/CBO9780511569807.012
https://doi.org/10.1007/BF01211308
https://doi.org/10.1007/BF01211308
https://doi.org/10.1017/S0960129502003729
https://doi.org/10.1017/S0960129504004645
https://doi.org/10.1109/LICS.2011.29
https://hal.archives-ouvertes.fr/hal-00627490
https://doi.org/10.1016/S0304-3975(03)00392-X
https://doi.org/10.1016/j.tcs.2006.08.003
https://hal.archives-ouvertes.fr/hal-00150274
https://doi.org/10.1145/2535838.2535865
https://doi.org/10.1109/ICCD50377.2020.00018
https://doi.org/10.1109/ICCD50377.2020.00018
https://doi.org/10.4204/EPTCS.394.6
https://doi.org/10.4204/EPTCS.287.5
https://doi.org/10.1103/PhysRevA.89.030303
https://www.arxiv.org/abs/1401.8128
https://doi.org/10.1016/S0049-237X(08)70761-4
https://doi.org/10.1126/science.1057726
https://www.arxiv.org/abs/quant-ph/0104129
https://doi.org/10.1007/978-3-319-19249-9_17
https://doi.org/10.1007/978-3-030-52482-1_9
https://www.arxiv.org/abs/2005.08396
https://doi.org/10.4204/EPTCS.394.16
https://www.arxiv.org/abs/2204.13039
https://www.arxiv.org/abs/2204.13041

Bibliography

[FKS20] Peng Fu, Kohei Kishida, and Peter Selinger. “Linear dependent type theory for quantum programming lan-
guages: extended abstract”. In: Proceedings of the 35th Annual ACM/IEEE Symposium on Logic in Computer Sci-
ence, LICS 2020 (Saarbrücken, Germany). Ed. by Holger Hermanns, Lijun Zhang, Naoki Kobayashi, and Dale
Miller. ACM, July 2020, pp. 440–453. isbn: 978-1-4503-7104-9. doi: 10.1145/3373718.3394765. arXiv: 2004.13472.

[Fle70] R. Fletcher. “A new approach to variable metric algorithms”. In: The Computer Journal 13.3 (1970), pp. 317–322.
doi: 10.1093/comjnl/13.3.317.

[Flo67] Robert W. Floyd. “Assigning meanings to programs”. In: Mathematical Aspects of Computer Science. Ed. by
J. T. Schwartz. Vol. 19. Proceedings of Symposia in Applied Mathematics. AMS, 1967, pp. 19–32. doi: 10.1090/
psapm/019.

[FLY22] Yuan Feng, Sanjiang Li, and Mingsheng Ying. “Verification of distributed quantum programs”. In: ACM
Transactions in Computational Logic 23.3 (2022), 19:1–19:40. doi: 10.1145/3517145.

[FM07] Jean-Christophe Filliâtre and Claude Marché. “The Why/Krakatoa/Caduceus platform for deductive pro-
gram verification”. In: Proceedings of the 19th International Conference on Computer Aided Verification, CAV 2007
(Berlin, Germany, July 3–7, 2007). Ed. byWerner Damm and Holger Hermanns. Vol. 4590. Lecture Notes in Com-
puter Science. Springer, 2007, pp. 173–177. isbn: 978-3-540-73367-6. doi: 10.1007/978-3-540-73368-3_21. hal:
inria-00270820.

[FP13] Jean-Christophe Filliâtre and Andrei Paskevich. “Why3 – where programs meet provers”. In: Proceedings of
the 22nd European Symposium on Programming Languages and Systems, ESOP 2013 (Rome, Italy, Mar. 16–24,
2013). Ed. by Matthias Felleisen and Philippa Gardner. Vol. 7792. Lecture Notes in Computer Science. Springer,
2013, pp. 125–128. isbn: 978-3-642-37035-9. doi: 10.1007/978-3-642-37036-6_8. hal: hal-00789533.

[Fra99] Michael Patrick Frank. “Reversibility for Efficient Computing”. PhD thesis. MIT, 1999.

[FT82] Edward Fredkin and Tommaso Toffoli. “Conservative logic”. In: International Journal of Theoretical Physics 21
(3 1982), pp. 219–253. doi: 10.1007/BF01857727.

[FTR07] K. Fazel, M. A. Thornton, and J. E. Rice. “ESOP-based Toffoli gate cascade generation”. In: Proceedings of the
2007 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, PACRIM 2007 (Victoria,
BC, Canada, Aug. 22–24, 2007). IEEE, 2007. isbn: 978-1-4244-1189-4. doi: 10.1109/PACRIM.2007.4313212.

[GAJ06] Pallav Gupta, Abhinav Agrawal, and Niraj K. Jha. “An algorithm for synthesis of reversible logic circuits”.
In: IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 25.11 (2006), pp. 2317–2330.
doi: 10.1109/TCAD.2006.871622.

[Gan80] Robin Gandy. “Church’s thesis and principles for mechanisms”. In: The Kleene Symposium (Madison, Wis-
consin, USA, June 18–24, 1978). Ed. by Jon Barwise, H. Jerome Keisler, and Kenneth Kunen. Vol. 101. Studies
in Logic and the Foundations of Mathematics. North-Holland Publishing Company, 1980, pp. 123–148. isbn:
978-0-444-85345-5. doi: 10.1016/S0049-237X(08)71257-6.

[Gay06] Simon J. Gay. “Quantum programming languages: survey and bibliography”. In:Mathematical Structures in
Computer Science 16.4 (2006), pp. 581–600. doi: 10.1017/S0960129506005378.

[GBVMA21] Timothée Goubault de Brugière, Marc Baboulin, Benoît Valiron, Simon Martiel, and Cyril Allouche.
“Gaussian elimination versus greedy methods for the synthesis of linear reversible circuits”. In: ACM Transac-
tions onQuantum Computing 2.3 (2021), p. 11. doi: 10.1145/3474226. hal: hal-03547117.

[GD17] Liam Garvie and Ross Duncan. “Verifying the smallest interesting colour code with Quantomatic”. In:
[QPL18], pp. 147–163. doi: 10.4204/EPTCS.266.10.

[GE21] Craig Gidney and Martin Ekerå. “How to factor 2048 bit RSA integers in 8 hours using 20 million noisy
qubits”. In:Quantum 5 (2021), p. 433. doi: 10.22331/q-2021-04-15-433. arXiv: 1905.09749.

[GHHNP13] Marco Gaboardi, Andreas Haeberlen, Justin Hsu, Arjun Narayan, and Benjamin C. Pierce. “Linear de-
pendent types for differential privacy”. In: Proceedings of the 40th Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, POPL’13 (Rome, Italy). Ed. by Roberto Giacobazzi and Radhia Cousot.
ACM, 2013, pp. 357–370. isbn: 978-1-4503-1832-7. doi: 10.1145/2429069.2429113.

[Ghi07] Dan R. Ghica. “Geometry of synthesis: a structured approach to VLSI design”. In: Proceedings of the 34th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL 2007 (Nice, France). Ed. by Mar-
tin Hofmann and Matthias Felleisen. ACM, Jan. 2007, pp. 363–375. isbn: 1-59593-575-4. doi: 10.1145/1190216.
1190269. url: https://doi.org/10.1145/1190216.1190269.

[Ghi12] Dan R. Ghica. “The geometry of synthesis – how to make hardware out of software”. In: Proceedings of the
11th International Conference on Mathematics of Program Construction, MPC 2012 (Madrid, Spain). Ed. by Jeremy
Gibbons and Pablo Nogueira. Vol. 7342. Lecture Notes in Computer Science. Abstract of Invited Talk. Springer,
June 2012, pp. 23–24. isbn: 978-3-642-31112-3. doi: 10.1007/978-3-642-31113-0_3.

[GHKLMS03] G. Gierz, K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove, and D. S. Scott. Continuous Lattices and
Domains. Vol. 93. Encyclopedia of Mathematics and its Applications. Cambridge University Press, 2003. isbn:
0-521-80338-1.

107

https://doi.org/10.1145/3373718.3394765
https://www.arxiv.org/abs/2004.13472
https://doi.org/10.1093/comjnl/13.3.317
https://doi.org/10.1090/psapm/019
https://doi.org/10.1090/psapm/019
https://doi.org/10.1145/3517145
https://doi.org/10.1007/978-3-540-73368-3_21
https://hal.archives-ouvertes.fr/inria-00270820
https://doi.org/10.1007/978-3-642-37036-6_8
https://hal.archives-ouvertes.fr/hal-00789533
https://doi.org/10.1007/BF01857727
https://doi.org/10.1109/PACRIM.2007.4313212
https://doi.org/10.1109/TCAD.2006.871622
https://doi.org/10.1016/S0049-237X(08)71257-6
https://doi.org/10.1017/S0960129506005378
https://doi.org/10.1145/3474226
https://hal.archives-ouvertes.fr/hal-03547117
https://doi.org/10.4204/EPTCS.266.10
https://doi.org/10.22331/q-2021-04-15-433
https://www.arxiv.org/abs/1905.09749
https://doi.org/10.1145/2429069.2429113
https://doi.org/10.1145/1190216.1190269
https://doi.org/10.1145/1190216.1190269
https://doi.org/10.1145/1190216.1190269
https://doi.org/10.1007/978-3-642-31113-0_3

Bibliography

[Gir03] Jean-Yves Girard. “Geometry of interaction IV: the feedback equation”. In: Logic Colloquium ’03. Proceeedings
of the Annual European Summer Meeting of the Association for Symbolic Logic, held in Helsinki, Finland, August
14–20, 2003. Ed. by Viggo Stoltenberg-Hansen and Jouko Väänänen. Vol. 24. Lecture Notes in Logic. ASL, 2003,
pp. 76–217.

[Gir04] Jean-Yves Girard. “Between logic and quantic – a tract”. In: ed. by Thomas Ehrhard, Jean-Yves Girard, Paul
Ruet, and Philip Scott. Vol. 316. LondonMathematical Society Lecture Notes Series. Cambridge University Press,
2004. Chap. 10, pp. 346–381. isbn: 0-521-60857-0. doi: 10.1017/CBO9780511550850.011.

[Gir11] Jean-Yves Girard. “Geometry of interaction V: logic in the hyperfinite factor”. In: Theoretical Computer Science
412.20 (2011), pp. 1860–1883. doi: 10.1016/j.tcs.2010.12.016.

[Gir86] Jean-Yves Girard. “The system F of variable types, fifteen years later”. In: Theor. Comput. Sci. 45.2 (1986), pp.
159–192. doi: 10.1016/0304-3975(86)90044-7.

[Gir87] Jean-Yves Girard. “Linear logic”. In: Theoretical Computer Science 50.1 (1987), pp. 1–101. doi: 10.1016/0304-
3975(87)90045-4.

[Gir88] Jean-Yves Girard. “Normal functors, power series and lambda-calculus”. In: Annals of Pure and Applied Logic
37.2 (1988), pp. 129–177. doi: 10.1016/0168-0072(88)90025-5.

[Gir89] Jean-Yves Girard. “Geometry of interaction I: interpretation of system F”. In: Logic Colloquium ’88. Proceed-
ings of the Colloquium Held in Padova, Italy, August 22–31, 1988. Ed. by R. Ferro, C. Bonotto, S. Valentini, and A.
Zanardo. Vol. 127. Studies in Logic and the Foundations of Mathematics. North-Holland, 1989, pp. 221–260. doi:
10.1016/S0049-237X(08)70271-4.

[Gir90] Jean-Yves Girard. “Geometry of interaction II: deadlock-free algorithms”. In: [MM90], pp. 76–93. doi: 10.
1007/3-540-52335-9_49.

[Gir95a] Jean-Yves Girard. “Geometry of interaction III: accommodating the additives”. In: [GLR95], pp. 329–389.

[Gir95b] Jean-Yves Girard, ed. La Machine de Turing. Vol. 131. Points Sciences. Contains [Tur36] and [Tur50] in inte-
grality, with comments. Editions du Seuil, 1995. isbn: 2-02-036928-1.

[Gir98] Jean-Yves Girard. “Light linear logic”. In: Information and Computation 143.2 (1998), pp. 175–204. doi: 10.
1006/inco.1998.2700.

[Gir99] Jean-Yves Girard. “Coherent Banach spaces: a continuous denotational semantics”. In: Theoretical Computer
Science 227.1-2 (1999), pp. 275–297. doi: 10.1016/S0304-3975(99)00056-0.

[GKY19] Robert Glück, Robin Kaarsgaard, and Tetsuo Yokoyama. “Reversible programs have reversible semantics”.
In: Formal Methods. FM 2019 InternationalWorkshops - Porto, Portugal, October 7-11, 2019, Revised Selected Papers,
Part II. Ed. by Emil Sekerinski, Nelma Moreira, José N. Oliveira, Daniel Ratiu, Riccardo Guidotti, Marie Farrell,
Matt Luckcuck, Diego Marmsoler, José Campos, Troy Astarte, Laure Gonnord, Antonio Cerone, Luis Couto,
Brijesh Dongol, Martin Kutrib, Pedro Monteiro, and David Delmas. Vol. 12233. Lecture Notes in Computer
Science. Springer, 2019, pp. 413–427. isbn: 978-3-030-54996-1. doi: 10.1007/978-3-030-54997-8_26.

[GLR95] Jean-Yves Girard, Yves Lafont, and Laurent Regnier, eds. Advances in Linear Logic. Vol. 222. London Mathe-
matical Society Lecture Note Series. Cambridge University Press, 1995. isbn: 0-521-55961-8.

[GLRSV12] Alexander S. Green, Peter L. Lumsdaine, Neil J. Ross, Peter Selinger, and Benoî Valiron. Report on the
Quipper language, version 0.3, with GFI algorithm implementations (Updated for revision 0.3-4). Report to IARPA,
for official use only. 2012.

[GLRSV13a] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. “An intro-
duction to quantum programming in quipper”. In: [RC13], pp. 110–124. doi: 10.1007/978-3-642-38986-3_10.
arXiv: 1304.5485.

[GLRSV13b] Alexander S. Green, Peter LeFanu Lumsdaine, Neil J. Ross, Peter Selinger, and Benoît Valiron. “Quipper:
a scalable quantum programming language”. In: Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI’13 (Seattle, WA, USA). Ed. by Hans-Juergen Boehm and Cormac
Flanagan. ACM, 2013, pp. 333–342. isbn: 978-1-4503-2014-6. doi: 10.1145/2491956.2462177. arXiv: 1304.3390.

[GLT90] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types. 2nd ed. Vol. 7. Cambridge Tracts In Theo-
retical Computer Science. Cambridge University Press, 1990. isbn: 0-521-37181-3. url: http://www.cs.man.ac.
uk/~pt/stable/Proofs+Types.html.

[GM01] Stefano Guerrini and Andrea Masini. “Parsing MELL proof nets”. In: Theoretical Computer Science 254.1-2
(2001), pp. 317–335. doi: 10.1016/S0304-3975(99)00299-6.

[GM09] Simon Gay and IanMackie, eds. Semantic Techniques inQuantum Computation. Cambridge University Press,
2009. isbn: 978-0-521-51374-6.

[GNP08] Simon J. Gay, Rajagopal Nagarajan, and Nikolaos Papanikolaou. “QMC: a model checker for quantum sys-
tems”. In: Proceeding of the 20th International Conference on Computer Aided Verification (CAV 2008) (Princeton,
NJ, USA). Ed. by Aarti Gupta and Sharad Malik. Vol. 5123. Lecture Notes in Computer Science. Springer, 2008,
pp. 543–547. isbn: 978-3-540-70543-7. doi: 10.1007/978-3-540-70545-1_51.

108

https://doi.org/10.1017/CBO9780511550850.011
https://doi.org/10.1016/j.tcs.2010.12.016
https://doi.org/10.1016/0304-3975(86)90044-7
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/0168-0072(88)90025-5
https://doi.org/10.1016/S0049-237X(08)70271-4
https://doi.org/10.1007/3-540-52335-9_49
https://doi.org/10.1007/3-540-52335-9_49
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1006/inco.1998.2700
https://doi.org/10.1016/S0304-3975(99)00056-0
https://doi.org/10.1007/978-3-030-54997-8_26
https://doi.org/10.1007/978-3-642-38986-3_10
https://www.arxiv.org/abs/1304.5485
https://doi.org/10.1145/2491956.2462177
https://www.arxiv.org/abs/1304.3390
http://www.cs.man.ac.uk/~pt/stable/Proofs+Types.html
http://www.cs.man.ac.uk/~pt/stable/Proofs+Types.html
https://doi.org/10.1016/S0304-3975(99)00299-6
https://doi.org/10.1007/978-3-540-70545-1_51

Bibliography

[Gol70] Donald Goldfarb. “A family of variable-metric methods derived by variational means”. In: Mathematics of
Computation 24 (1970), pp. 23–26.

[Gra88] Steven K. Graham. “Closure properties of a probabilistic domain construction”. In: Proceedings of the 3rd
Workshop on Mathematical Foundations of Programming Language Semantics, MFPS’87 (Tulane University, New
Orleans, Louisiana, USA). Ed. by Michael G. Main, Austin Melton, Michael W. Mislove, and David A. Schmidt.
Vol. 298. Lecture Notes in Computer Science. Springer, 1988, pp. 213–233. isbn: 3-540-19020-1. doi: 10.1007/3-
540-19020-1.

[Gro96] Lov K. Grover. “A fast quantum mechanical algorithm for database search”. In: Proceedings of the Twenty-
Eighth Annual ACM Symposium on the Theory of Computing, STOC’96 (Philadelphia, Pennsylvania, USA, May
22–June 24, 1996). Ed. by Gary L. Miller. ACM, 1996, pp. 212–219. isbn: 0-89791-785-5. doi: 10.1145/237814.
237866.

[GS10] Dan R. Ghica and Alex I. Smith. “Geometry of synthesis II: from games to delay-insensitive circuits”. In:
Proceedings of the 26th Conference on the Mathematical Foundations of Programming Semantics, MFPS 2010,
Ottawa, Ontario, Canada, May 6-10, 2010 (Ottawa, Ontario, Canada). Ed. by Michael W. Mislove and Peter
Selinger. Vol. 265. Electronic Notes in Theoretical Computer Science. Elsevier, May 2010, pp. 301–324. doi:
10.1016/j.entcs.2010.08.018.

[GS11] Dan R. Ghica and Alex I. Smith. “Geometry of synthesis III: resource management through type inference”.
In: Proceedings of the 38th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
2011, Austin, TX, USA, January 26-28, 2011 (Austin, TX, USA). Ed. by Thomas Ball and Mooly Sagiv. ACM, Jan.
2011, pp. 345–356. isbn: 978-1-4503-0490-0. doi: 10.1145/1926385.1926425.

[GSS11] Dan R. Ghica, Alex Smith, and Satnam Singh. “Geometry of synthesis IV”. In: [ICFP11], pp. 221–233. doi:
10.1145/2034773.2034805]].

[GSS92] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. “Bounded linear logic: a modular approach to
polynomial-time computability”. In: Theoretical Computer Science 97.1 (1992), pp. 1–66. doi: 10.1016/0304-
3975(92)90386-T.

[Had15] AmarHadzihasanovic. “A diagrammatic axiomatisation for qubit entanglement”. In: [LICS15]. doi: 10.1109/
LICS.2015.59.

[Had17] Amar Hadzihasanovic. “The algebra of entanglement and the geometry of composition”. PhD thesis. Oxford
Univesity, 2017.

[HAGH16] Marieke Huisman, Wolfgang Ahrendt, Daniel Grahl, and Martin Hentschel. “Formal specification with
the java modeling language”. In: Deductive Software Verification - The KeY Book - From Theory to Practice. Ed.
by Wolfgang Ahrendt, Bernhard Beckert, Richard Bubel, Reiner Hähnle, Peter H. Schmitt, and Mattias Ulbrich.
Vol. 10001. Lecture Notes in Computer Science. Springer, 2016. Chap. 7, pp. 193–241. isbn: 978-3-319-49811-9.
doi: 10.1007/978-3-319-49812-6_7.

[Hal07] Sean Hallgren. “Polynomial-time quantum algorithms for Pell’s equation and the principal ideal problem”.
In: Journal of the ACM 54.1 (2007), 4:1–4:19. doi: 10.1145/1206035.1206039.

[Hal92] J.S. Hall. “An electroid switching model for reversible computer architectures”. In: Workshop on Physics and
Computation. 1992, pp. 237–247. doi: 10.1109/PHYCMP.1992.615549.

[Har87] Rogers Hartley Jr. Theory of Recursive Functions and Effective Computability. MIT Press, 1987. isbn: 978-0-
262-68052-3.

[HC18] Luke E Heyfron and Earl T Campbell. “An efficient quantum compiler that reduces T count”. In: Quantum
Science and Technology 4.1 (Sept. 2018), p. 015004. doi: 10.1088/2058-9565/aad604.

[HD96] John Hatcliff and Olivier Danvy. Thunks and the Lambda-Calculus. Tech. rep. RS-96-19. BRICS, University of
Aahrus, 1996.

[HFGB+23] Nicolas Heurtel, Andreas Fyrillas, Grégoire deGliniasty, Raphaël Le Bihan, SébastienMalherbe,Marceau
Pailhas, Eric Bertasi, Boris Bourdoncle, Pierre-Emmanuel Emeriau, Rawad Mezher, Luka Music, Nadia Belabas,
Benoît Valiron, Pascale Senellart, ShaneMansfield, and Jean Senellart. “Perceval: a software platform for discrete
variable photonic quantum computing”. In: Quantum 7 (2023), p. 931. doi: 10.22331/Q-2023-02-21-931. hal:
hal-03874624.

[HH11] Ichiro Hasuo and Naohiko Hoshino. “Semantics of higher-order quantum computation via geometry of in-
teraction”. In: [LICS11], pp. 237–246. doi: 10.1109/LICS.2011.26.

[HH17] Ichiro Hasuo and Naohiko Hoshino. “Semantics of higher-order quantum computation via geometry of in-
teraction”. In: Annals of Pure and Applied Logic 168.2 (2017). Long version of LICS paper [HH11]., pp. 404–469.
doi: 10.1016/j.apal.2016.10.010.

[HH19] Reiner Hähnle and Marieke Huisman. “Deductive software verification: from pen-and-paper proofs to in-
dustrial tools”. In: Computing and Software Science - State of the Art and Perspectives. Ed. by Bernhard Steffen
and Gerhard J. Woeginger. Vol. 10000. Lecture Notes in Computer Science. Springer, 2019, pp. 345–373. doi:
10.1007/978-3-319-91908-9_18.

109

https://doi.org/10.1007/3-540-19020-1
https://doi.org/10.1007/3-540-19020-1
https://doi.org/10.1145/237814.237866
https://doi.org/10.1145/237814.237866
https://doi.org/10.1016/j.entcs.2010.08.018
https://doi.org/10.1145/1926385.1926425
https://doi.org/10.1145/2034773.2034805]]
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1016/0304-3975(92)90386-T
https://doi.org/10.1109/LICS.2015.59
https://doi.org/10.1109/LICS.2015.59
https://doi.org/10.1007/978-3-319-49812-6_7
https://doi.org/10.1145/1206035.1206039
https://doi.org/10.1109/PHYCMP.1992.615549
https://doi.org/10.1088/2058-9565/aad604
https://doi.org/10.22331/Q-2023-02-21-931
https://hal.archives-ouvertes.fr/hal-03874624
https://doi.org/10.1109/LICS.2011.26
https://doi.org/10.1016/j.apal.2016.10.010
https://doi.org/10.1007/978-3-319-91908-9_18

Bibliography

[HHL09] AramW.Harrow, AvinatanHassidim, and Seth Lloyd. “Quantum algorithm for linear systems of equations”.
In: Physical Review Letters 103 (15 2009), p. 150502. doi: 10.1103/PhysRevLett.103.150502. arXiv: 0811.3171.

[HHZYHW19] Shih-Han Hung, Kesha Hietala, Shaopeng Zhu, Mingsheng Ying, Michael Hicks, and Xiaodi Wu.
“Quantitative robustness analysis of quantum programs”. In: Proceedings of the ACM on Programming Languages
3.POPL (2019), 31:1–31:29. doi: 10.1145/3290344.

[HK15] Chris Heunen and Martti Karvonen. “Reversible monadic computing”. In: Proceedings of the 31st Conference
on the Mathematical Foundations of Programming Semantics, MFPS XXXI (Nijmegen, The Netherlands). Ed. by
Dan Ghica. Vol. 319. Electronic Notes in Theoretical Computer Science. 2015, pp. 217–237. doi: 10.1016/j.
entcs.2015.12.014. arXiv: 1505.04330.

[HKK18] Chris Heunen, Robin Kaarsgaard, and Martti Karvonen. “Reversible effects as inverse arrows”. In: Proceed-
ings of the 34th Conference on the Mathematical Foundations of Programming Semantics, MFPS XXXIV (Dalhousie
University, Halifax, Canada). Ed. by Sam Staton. Vol. 341. Electronic Notes in Theoretical Computer Science.
Elsevier, 2018, pp. 179–199. doi: 10.1016/j.entcs.2018.11.009.

[HM19a] Yipeng Huang and Margaret Martonosi. “QDB: from quantum algorithms towards correct quantum pro-
grams”. In: Proceedings of the 9th Workshop on Evaluation and Usability of Programming Languages and Tools,
PLATEAU@SPLASH 2018 (Boston, Massachusetts, USA, Nov. 5, 2018). Ed. by Titus Barik, Joshua Sunshine, and
Sarah E. Chasins. Vol. 67. OASICS. SchlossDagstuhl - Leibniz-Zentrum für Informatik, 2019, 4:1–4:14. isbn: 978-3-
95977-091-0. doi: 10.4230/OASIcs.PLATEAU.2018.4. url: http://www.dagstuhl.de/dagpub/978-3-95977-091-
0.

[HM19b] Yipeng Huang and Margaret Martonosi. “Statistical assertions for validating patterns and finding bugs in
quantum programs”. In: Proceedings of the 46th International Symposium on Computer Architecture, ISCA 2019
(Phoenix, AZ, USA, June 22–26, 2019). Ed. by Srilatha Bobbie Manne, Hillery C. Hunter, and Erik R. Altman.
ACM, 2019, pp. 541–553. isbn: 978-1-4503-6669-4. doi: 10.1145/3307650.3322213.

[HMH14] Naohiko Hoshino, KokoMuroya, and Ichiro Hasuo. “Memoryful geometry of interaction: from coalgebraic
components to algebraic effects”. In: [LICS14], 52:1–52:10. doi: 10.1145/2603088.2603124.

[HMSM18] Winston Haaswijk, Alan Mishchenko, Mathias Soeken, and Giovanni De Micheli. “SAT based exact syn-
thesis using DAG topology families”. In: Proceedings of the 55th Annual Design Automation Conference, DAC 2018
(San Francisco, CA, USA). ACM, 2018, 53:1–53:6. isbn: 978-1-5386-4114-9. doi: 10.1145/3195970.3196111.

[HMSV23] Nicolas Heurtel, Shane Mansfield, Jean Senellart, and Benoît Valiron. “Strong simulation of linear optical
processes”. In: Computer Physics Communications 291 (2023), p. 108848. doi: 10.1016/J.CPC.2023.108848. hal:
hal-03874624v1.

[HNW18] Amar Hadzihasanovic, Kang Feng Ng, andQuanlong Wang. “Two complete axiomatisations of pure-state
qubit quantum computing”. In: [LICS18], pp. 502–511. doi: 10.1145/3209108.3209128.

[Hoa69] C. A. R. Hoare. “An axiomatic basis for computer programming”. In:Communications of the ACM 12.10 (1969),
pp. 576–580. doi: 10.1145/363235.363259.

[Hor11] Dominic Horsman. “Quantum picturalism for topological cluster-state computing”. In: New Journal of
Physics 13.9 (Sept. 2011), p. 095011. doi: 10.1088/1367-2630/13/9/095011. arXiv: 1101.4722.

[How80] W. A. Howard. “The formulae-as-type notion of construction”. In: To H.B. Curry : Essays on Combinatory
Logic, Lambda Calculus and Formalism. Ed. by Jonathan Paul Seldin and James Roger Hindley. Academic Press,
1980.

[HRHLH21] Kesha Hietala, Robert Rand, Shih-Han Hung, Liyi Li, and Michael Hicks. “Proving quantum programs
correct”. In: Proceedings of the 12th International Conference on Interactive Theorem Proving, ITP 2021 (Rome, Italy
(Virtual Conference), June 29–July 1, 2021). Ed. by Liron Cohen and Cezary Kaliszyk. Vol. 193. LIPIcs. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 21:1–21:19. isbn: 978-3-95977-188-7. doi: 10.4230/LIPIcs.ITP.
2021.21.

[HRHWH21] Kesha Hietala, Robert Rand, Shih-Han Hung, Xiaodi Wu, and Michael Hicks. “A verified optimizer
for quantum circuits”. In: Proceedings of the ACM on Programming Languages 5.POPL (2021), 37:1–37:29. doi:
10.1145/3434318.

[HRS18] ThomasHäner,Martin Roetteler, andKrystaM. Svore. “OptimizingQuantumCircuits for Arithmetic”. Draft.
2018. arXiv: 1805.12445.

[HSRS18] Thomas Häner, Mathias Soeken, Martin Roetteler, and Krysta M. Svore. “Quantum circuits for floating-
point arithmetic”. In: [RC18], pp. 162–174. doi: 10.1007/978-3-319-99498-7_11.

[IC1405] Official Webpage of the COST Action IC1405 on Reversible Computation. url: http://www.revcomp.eu/ (vis-
ited on Aug. 27, 2021).

[ICFP11] Manuel M. T. Chakravarty, Zhenjiang Hu, and Olivier Danvy, eds. Proceeding of the 16th ACM SIGPLAN
international conference on Functional Programming, ICFP 2011 (Tokyo, Japan, Sept. 19–21, 2011). ACM, 2011.
isbn: 978-1-4503-0865-6.

[Ing61] Peter Z. Ingerman. “Thunks: a way of compiling procedure statements with some comments on procedure
declarations”. In: Communications of the ACM 4.1 (1961), pp. 55–58.

110

https://doi.org/10.1103/PhysRevLett.103.150502
https://www.arxiv.org/abs/0811.3171
https://doi.org/10.1145/3290344
https://doi.org/10.1016/j.entcs.2015.12.014
https://doi.org/10.1016/j.entcs.2015.12.014
https://www.arxiv.org/abs/1505.04330
https://doi.org/10.1016/j.entcs.2018.11.009
https://doi.org/10.4230/OASIcs.PLATEAU.2018.4
http://www.dagstuhl.de/dagpub/978-3-95977-091-0
http://www.dagstuhl.de/dagpub/978-3-95977-091-0
https://doi.org/10.1145/3307650.3322213
https://doi.org/10.1145/2603088.2603124
https://doi.org/10.1145/3195970.3196111
https://doi.org/10.1016/J.CPC.2023.108848
https://hal.archives-ouvertes.fr/hal-03874624v1
https://doi.org/10.1145/3209108.3209128
https://doi.org/10.1145/363235.363259
https://doi.org/10.1088/1367-2630/13/9/095011
https://www.arxiv.org/abs/1101.4722
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://doi.org/10.4230/LIPIcs.ITP.2021.21
https://doi.org/10.1145/3434318
https://www.arxiv.org/abs/1805.12445
https://doi.org/10.1007/978-3-319-99498-7_11
http://www.revcomp.eu/

Bibliography

[JKT18] Petur Andrias Højgaard Jacobsen, Robin Kaarsgaard, and Michael Kirkedal Thomsen. “CoreFun : a typed
functional reversible core language”. In: [RC18], pp. 304–321. doi: 10.1007/978-3-319-99498-7_21.

[Jon87] Simon Peyton Jones. The Implementation of Functional Programming Languages. Prentice Hall, 1987.

[Jon90] Claire Jones. “Probabilistic Non-Determinism”. PhD thesis. University of Edinburgh, 1990.

[JPKH+15] Ali JavadiAbhari, Shruti Patil, Daniel Kudrow, Jeff Heckey, Alexey Lvov, Frederic T. Chong, and Margaret
Martonosi. “ScaffCC: scalable compilation and analysis of quantum programs”. In: Parallel Computing 45 (2015),
pp. 2–17. doi: 10.1016/j.parco.2014.12.001.

[JPV18] Emmanuel Jeandel, Simon Perdrix, and Renaud Vilmart. “A complete axiomatisation of the ZX-calculus for
Clifford+T quantum mechanics”. In: [LICS18], pp. 559–568. doi: 10.1145/3209108.3209131. arXiv: 1705.11151.

[Jr08] Frederick P. Brooks Jr. The Mythical Man-Month - Essays on Software Engineering. Anniversary Edition.
Addison-Wesley, 2008. isbn: 0-201-83595-9.

[JS12a] Roshan P. James and Amr Sabry. Embracing the Laws of Physics. Presented at OBT’12. 2012.

[JS12b] Roshan P. James and Amr Sabry. “Information effects”. In: Proceedings of the 39th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’12 (Philadelphia, Pennsylvania, USA). Ed. by John
Field and Michael Hicks. ACM, 2012, pp. 73–84. isbn: 978-1-4503-1083-3. doi: 10.1145/2103656.2103667. url:
http://dl.acm.org/citation.cfm?id=2103656.

[JS12c] Roshan P. James and Amr Sabry. “Isomorphic interpreters from logically reversible abstract machines”. In:
Post-Proceedings of the 4th International Workshop on Reversible Computation, RC’12 (Copenhagen, Denmark).
Ed. by Robert Glück and Tetsuo Yokoyama. Vol. 7581. Lecture Notes in Computer Science. Springer, 2012, pp.
57–71. doi: 10.1007/978-3-642-36315-3_5.

[JS14] Rosham P. James and Amr Sabry. “Theseus: A High-Level Language for Reversible Computing”. Booklet of
work-in-progress and short reports for RC 2014. 2014.

[JT98] Achim Jung and Regina Tix. “The troublesome probabilistic powerdomain”. In:Comprox III, ThirdWorkshop on
Computation and Approximation (Birmingham, England, Sept. 11–13, 1997). Ed. by Abbas Edalat, Achim Jung,
Klaus Keimel, and Marta Kwiatkowska. Vol. 13. Electronic Notes in Theoretical Computer Science. 1998, pp.
70–91. doi: 10.1016/S1571-0661(05)80216-6.

[Kaa19] Robin Kaarsgaard. “Inversion, iteration, and the art of dual wielding”. In: [RC19], pp. 34–50. doi: 10.1007/
978-3-030-21500-2_3. arXiv: 1904.01679.

[KAG17] Robin Kaarsgaard, Holger Bock Axelsen, and Robert Glück. “Join inverse categories and reversible recur-
sion”. In: Journal of Logical and Algebraic Methods in Programming 87 (2017), pp. 33–50. issn: 2352-2208. doi:
10.1016/j.jlamp.2016.08.003.

[Kas79] J. Kastl. “Inverse categories”. In: Algebraische Modelle, Kategorien und Gruppoide. Studien zur Algebra und
ihre Anwendungen, Band 7. Berlin, Akademie-Verlag, 1979, pp. 51–60.

[KIQBAW19] Nathan Killoran, Josh Izaac, Nicolás Quesada, Ville Bergholm, Matthew Amy, and Christian Weed-
brook. “Strawberry Fields: a software platform for photonic quantum computing”. In:Quantum 3 (2019), p. 129.
doi: 10.22331/q-2019-03-11-129. arXiv: 1804.03159.

[Kit95] A Yu Kitaev. “Quantum measurements and the Abelian stabilizer problem”. 1995. arXiv: quant-ph/9511026.

[KJS10] Oleg Kiselyov, Simon Peyton Jones, and Chung-Chieh Shan. “Fun with type functions”. In: Reflections on the
Work of C.A.R. Hoare. Springer, 2010. Chap. 14, pp. 301–331. doi: 10.1007/978-1-84882-912-1_14.

[KKPSY15] Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Signoles, and Boris Yakobowski. “Frama-C: a
software analysis perspective”. In: Formal Aspects of Computing 27.3 (2015), pp. 573–609. doi: 10.1007/s00165-
014-0326-7.

[Kle35a] Stephen C. Kleene. “A theory of positive integers in formal logic, part I”. In: American Journal of Mathematics
57.1 (1935), pp. 153–173. doi: 10.2307/2372027.

[Kle35b] Stephen C. Kleene. “A theory of positive integers in formal logic, part II”. In:American Journal of Mathematics
57.2 (1935), pp. 219–244. doi: 10.2307/2371199.

[Kle45] Stephen Cole Kleene. “On the interpretation of intuitionistic number theory”. In: Journal of Symbolic Logic
10.4 (1945), pp. 109–124. doi: 10.2307/2269016.

[Kle67] Stephen Cole Kleene. Mathematical Logic. Dover Publication Inc., 1967.

[Klu99] Werner E. Kluge. “A reversible SE(M)CD machine”. In: Selected Papers of the 11th International Workshop on
the Implementation of Functional Languages, IFL’99 (Lochem, The Netherlands, Sept. 7–10, 1999). Ed. by Pieter
W. M. Koopman and Chris Clack. Vol. 1868. Lecture Notes in Computer Science. Springer, 1999, pp. 95–113. isbn:
3-540-67864-6. doi: 10.1007/10722298_6.

[KMR89] Jan Willem Klop, J. J. C. Meijer, and Jan J. M. M. Rutten, eds. J.W. de Bakker, 25 Jaar Semantiek: Liber Ami-
corum. CWI, 1989. url: https://ir.cwi.nl/pub/20371/ (visited on Aug. 11, 2022).

[Kni95] E. Knill. Approximation by Quantum Circuits. Tech. rep. LANL report LAUR-95-2225. Los Alamos National
Laboratory, 1995.

111

https://doi.org/10.1007/978-3-319-99498-7_21
https://doi.org/10.1016/j.parco.2014.12.001
https://doi.org/10.1145/3209108.3209131
https://www.arxiv.org/abs/1705.11151
https://doi.org/10.1145/2103656.2103667
http://dl.acm.org/citation.cfm?id=2103656
https://doi.org/10.1007/978-3-642-36315-3_5
https://doi.org/10.1016/S1571-0661(05)80216-6
https://doi.org/10.1007/978-3-030-21500-2_3
https://doi.org/10.1007/978-3-030-21500-2_3
https://www.arxiv.org/abs/1904.01679
https://doi.org/10.1016/j.jlamp.2016.08.003
https://doi.org/10.22331/q-2019-03-11-129
https://www.arxiv.org/abs/1804.03159
https://www.arxiv.org/abs/quant-ph/9511026
https://doi.org/10.1007/978-1-84882-912-1_14
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.1007/s00165-014-0326-7
https://doi.org/10.2307/2372027
https://doi.org/10.2307/2371199
https://doi.org/10.2307/2269016
https://doi.org/10.1007/10722298_6
https://ir.cwi.nl/pub/20371/

Bibliography

[Kni96] Emanuel H. Knill. Conventions forQuantum Pseudocode. Tech. rep. LAUR-96-2724. Los Alamos, New Mexico,
US.: Los Alamos National Laboratory, 1996.

[Koz83] Dexter Kozen. “Results on the propositional 𝜇-calculus”. In: Theoretical Computer Science 27 (1983), pp. 333–
354. doi: 10.1016/0304-3975(82)90125-6.

[KR21] Robin Kaarsgaard and Mathys Rennela. “Join inverse rig categories for reversible functional programming,
and beyond”. In: [MFPS21], pp. 152–167. doi: 10.4204/EPTCS.351.10.

[Kri07] Jean-Louis Krivine. “A call-by-name lambda-calculus machine”. In: Higher-Order and Symbolic Computation
20.3 (2007), pp. 199–207. doi: 10.1007/s10990-007-9018-9.

[KV19] Robin Kaarsgaard and Niccolò Veltri. “En garde! unguarded iteration for reversible computation in the delay
monad”. In: Proceedings of the 13th International Conference on Mathematics of Program Construction, MPC 2019
(Porto, Portugal). Ed. by Graham Hutton. Vol. 11825. Lecture Notes in Computer Science. Springer Verlag, Oct.
2019, pp. 366–384. isbn: 978-3-030-33635-6. doi: 10.1007/978-3-030-33636-3_13.

[KW20] Aleks Kissinger and John van deWetering. “Reducing the number of non-Clifford gates in quantum circuits”.
In: Physical Review A 102 (2 2020), p. 022406. doi: 10.1103/PhysRevA.102.022406. arXiv: 1903.10477.

[KZ15] Aleks Kissinger and Vladimir Zamdzhiev. “Quantomatic: a proof assistant for diagrammatic reasoning”. In:
Proceedings of the 25th International Conference on Automated Deduction, CADE-25 (Berlin, Germany, Aug. 1–7,
2015). Ed. by Amy P. Felty and Aart Middeldorp. Vol. 9195. Lecture Notes in Computer Science. Springer, 2015,
pp. 326–336. isbn: 978-3-319-21400-9. doi: 10.1007/978-3-319-21401-6_22. arXiv: 1503.01034.

[Laf04] Yves Lafont. “Soft linear logic and polynomial time”. In: Theoretical Computer Science 318.1–2 (2004), pp.
163–180. doi: 10.1016/j.tcs.2003.10.018.

[Laf90] Yves Lafont. “Interaction nets”. In: Proceedings of the 17th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, POPL’90 (San Francisco, California, USA). Ed. by Frances E. Allen. ACM, 1990, pp.
95–108. isbn: 0-89791-343-4. doi: 10.1145/96709.96718.

[Laf95] Yves Lafont. “From proof-nets to interaction nets”. In: [GLR95], pp. 225–247.

[Lan02] Serge Lang. Algebra. Revised Third Edition. Vol. 211. Graduate Texts in Mathematics. Springer, 2002. isbn:
0-387-95385-X.

[Lan61] Rolf Landauer. “Irreversibility and heat generation in the computing process”. In: IBM Journal of Research
and Development 5.3 (1961), pp. 183–191. doi: 10.1147/rd.53.0183.

[Lan66] Peter J. Landin. “The next 700 programming languages”. In: Communications of the ACM 9.3 (1966), pp. 157–
166. doi: 10.1145/365230.365257. url: https://doi.org/10.1145/365230.365257.

[Lau13] Olivier Laurent. “An Introduction to Proof-Nets”. Notes. 2013.

[LB21] Robin Lorenz and Jonathan Barrett. “Causal and compositional structure of unitary transformations”. In:
Quantum 5 (2021), p. 511. doi: 10.22331/q-2021-07-28-511. arXiv: 2001.07774.

[LBK05] Yuan Liang Lim, Almut Beige, and Leong Chuan Kwek. “Repeat-Until-Success linear optics distributed
quantum computing”. In: Physical Review Letters 95 (3 2005), p. 030505. doi: 10.1103/PhysRevLett.95.030505.

[Lee22] Dongho Lee. “Formal Methods forQuantum Programming Languages”. Thèse de doctorat. Université Paris-
Saclay, 2022.

[Lee90] Jan van Leeuwen, ed. Formal Models and Semantics. Vol. B. Handbook of Theoretical Computer Science.
Elsevier, 1990. isbn: 0-444-88074-7.

[Lem24] Louis Lemonnier. “The Semantics of Effects : Centrality, Quantum Control and Reversible Recursion”. PhD
thesis. Université Paris Saclay, 2024.

[Lep16] Rodolphe Lepigre. “Semantics and Implementation of an Extension of ML for Proving Programs”. Thèse de
Doctorat. Université de Grenoble, 2016.

[Lev16] Thomas Leventis. “Probabilistic 𝜆-Theories”. Thèse de Doctorat. Aix-Marseille Université, 2016. hal: tel-
01427279.

[LFFP11] Michael Leuschel, Jérôme Falampin, Fabian Fritz, and Daniel Plagge. “Automated property verification for
large scale B models with ProB”. In: Formal Aspects of Computing 23.6 (2011), pp. 683–709. doi: 10.1007/s00165-
010-0172-1.

[LFHY14] Ugo Dal Lago, Claudia Faggian, Ichiro Hasuo, and Akira Yoshimizu. “The geometry of synchronization”.
In: [LICS14], 35:1–35:10. doi: 10.1145/2603088.2603154. arXiv: 1405.3427.

[LFSMC20] Andrew Litteken, Yung-Ching Fan, Devina Singh, Margaret Martonosi, and Frederic T Chong. “An up-
dated LLVM-based quantum research compiler with further OpenQASM support”. In: Quantum Science and
Technology 5.3 (2020), p. 034013.

[LFVY15] Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. “Parallelism and synchronization in
an infinitary context”. In: [LICS15], pp. 559–572. doi: 10.1109/LICS.2015.58. hal: hal-01231831. arXiv: 1505.
03635.

112

https://doi.org/10.1016/0304-3975(82)90125-6
https://doi.org/10.4204/EPTCS.351.10
https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1007/978-3-030-33636-3_13
https://doi.org/10.1103/PhysRevA.102.022406
https://www.arxiv.org/abs/1903.10477
https://doi.org/10.1007/978-3-319-21401-6_22
https://www.arxiv.org/abs/1503.01034
https://doi.org/10.1016/j.tcs.2003.10.018
https://doi.org/10.1145/96709.96718
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1145/365230.365257
https://doi.org/10.1145/365230.365257
https://doi.org/10.22331/q-2021-07-28-511
https://www.arxiv.org/abs/2001.07774
https://doi.org/10.1103/PhysRevLett.95.030505
https://hal.archives-ouvertes.fr/tel-01427279
https://hal.archives-ouvertes.fr/tel-01427279
https://doi.org/10.1007/s00165-010-0172-1
https://doi.org/10.1007/s00165-010-0172-1
https://doi.org/10.1145/2603088.2603154
https://www.arxiv.org/abs/1405.3427
https://doi.org/10.1109/LICS.2015.58
https://hal.archives-ouvertes.fr/hal-01231831
https://www.arxiv.org/abs/1505.03635
https://www.arxiv.org/abs/1505.03635

Bibliography

[LFVY17] Ugo Dal Lago, Claudia Faggian, Benoît Valiron, and Akira Yoshimizu. “The geometry of parallelism:
classical, probabilistic, and quantum effects”. In: [POPL17], pp. 833–845. doi: 10.1145/3009837.3009859. hal:
hal-01474620. arXiv: 1610.09629.

[LH09] Ugo Dal Lago and Martin Hofmann. “Bounded linear logic, revisited”. In: Proceedings of the 9th International
Conference on Typed Lambda Calculi and Applications (TLCA’09) (Brasilia, Brazil). Ed. by Pierre-Louis Curien.
Vol. 5608. Lecture Notes in Computer Science. See also the journal’s version [LH10]. Springer, 2009. isbn: 978-3-
642-02272-2. doi: 10.1007/978-3-642-02273-9_8.

[LH10] UgoDal Lago andMartin Hofmann. “Bounded linear logic, revisited”. In: Logical Methods in Computer Science
6.4 (2010). Long version of the TLCA’09 publication [LH09]. doi: 10.2168/LMCS-6(4:7)2010. arXiv: 0904.2675.

[LH85] David C. Luckham and Friedrich W. von Henke. “An overview of Anna, a specification language for Ada”. In:
IEEE Software 2.2 (1985), pp. 9–22. doi: 10.1109/MS.1985.230345.

[LICS04] Proceedings of the 19th Symposium on Logic in Computer Science, LICS’04 (Turku, Finland, July 14–17, 2004).
IEEE. IEEE Computer Society Press, July 2004. isbn: 0-7695-2192-4.

[LICS11] Proceedings of the 26th Annual IEEE Symposium on Logic in Computer Science, LICS 2011 (Toronto, Ontario,
Canada, June 21–24, 2011). IEEE Computer Society, 2011. isbn: 978-0-7695-4412-0.

[LICS14] Thomas A. Henzinger and Dale Miller, eds. Proceedings of the Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science, CSL-LICS’14 (Vienna, Austria). ACM, 2014. isbn: 978-1-4503-2886-9.

[LICS15] Proceedings of the 30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’15 (Kyoto, Japan).
IEEE Computer Society, 2015. isbn: 978-1-4799-8875-4.

[LICS18] Anuj Dawar and Erich Grädel, eds. Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Com-
puter Science, LICS’2018 (Oxford, UK). ACM, 2018. doi: 10.1145/3209108.

[LICS19] Proceedings of the 34th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS’19 (Vancouver,
BC, Canada, June 24–27, 2019). IEEE, 2019. isbn: 978-1-7281-3608-0.

[LMMP13] Jim Laird, Giulio Manzonetto, GuyMcCusker, andMichele Pagani. “Weighted relational models of typed
lambda-calculi”. In: Proceedings of the 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2013
(New Orleans, LA, USA, June 25–28, 2013). IEEE Computer Society, 2013, pp. 301–310. isbn: 978-1-4799-0413-6.
doi: 10.1109/LICS.2013.36.

[LMZ10] Ugo Dal Lago, Andrea Masini, and Margherita Zorzi. “Quantum implicit computational complexity”. In:
Theoretical Computer Science 411.2 (2010), pp. 377–409. doi: 10.1016/j.tcs.2009.07.045.

[LMZ18] Bert Lindenhovius, Michael W. Mislove, and Vladimir Zamdzhiev. “Enriching a linear/non-linear lambda
calculus: A programming language for string diagrams”. In: [LICS18], pp. 659–668. doi: 10.1145/3209108.
3209196. hal: hal-03018477. arXiv: 1804.09822.

[LN98] K. Rustan M. Leino and Greg Nelson. “An extended static checker for Modular-3”. In: Proceedings of the 7th
International Conference on Compiler Construction, CC’98 (Lisbon, Portugal, Mar. 28–Apr. 4, 1998). Ed. by Kai
Koskimies. Vol. 1383. Lecture Notes in Computer Science. Springer, 1998, pp. 302–305. isbn: 3-540-64304-4. doi:
10.1007/BFb0026441.

[Loe50] Charles Loewner. “Some classes of functions defined by difference or differential inequalities”. In: Bulletin
of the American Mathematical Society 56.6 (1950), pp. 308–319.

[Low19] Guang Hao Low. “Hamiltonian simulation with nearly optimal dependence on spectral norm”. In: Proceed-
ings of the 51st Annual ACM SIGACT Symposium on Theory of Computing, STOC 2019 (Phoenix, AZ, USA, June
23–26, 2019). Ed. by Moses Charikar and Edith Cohen. ACM, 2019, pp. 491–502. doi: 10.1145/3313276.3316386.
arXiv: 1807.03967.

[Löw34] Karl Löwner. “Über monotoneMatrixfunktionen”. In:Mathematische Zeitschrift 38.1 (1934), pp. 177–216. doi:
10.1007/BF01170633.

[LPVX21] Dongho Lee, Valentin Perrelle, Benoît Valiron, and Zhaowei Xu. “Concrete categorical model of a quan-
tum circuit description language with measurement”. In: Proceedings of the 41st IARCS Annual Conference on
Foundations of Software Technology and Theoretical Computer Science, FSTTCS 2021. Ed. by Mikolaj Bojanczyk
and Chandra Chekuri. Vol. 213. LIPIcs. 2021, 51:1–51:20. doi: 10.4230/LIPIcs.FSTTCS.2021.51.

[LS89] Joachim Lambek and Philip Scott. Introduction to Higher Order Categorical Logic. 2nd ed. Vol. 7. Cambridge
studies in advanced mathematics. Cambridge University Press, 1989. isbn: 0-521-35653-9.

[LS90] Robert Y. Levin and Alan T. Sherman. “A note on Bennett’s time-space tradeoff for reversible computation”.
In: SIAM Journal on Computing 19.4 (1990), pp. 673–677. doi: 10.1137/0219046.

[Lut86] Christopher Lutz. “Janus: a time-reversible language”. Letter to R. Landauer, posted online by Tetsuo
Yokoyama on http://www.tetsuo.jp/ref/janus.html. 1986.

[LWZG+18] Shusen Liu, Xin Wang, Li Zhou, Ji Guan, Yinan Li, Yang He, Runyao Duan, and Mingsheng Ying. “Q|SI〉
: a quantum programming environment”. In: Symposium on Real-Time and Hybrid Systems - Essays Dedicated to
Professor Chaochen Zhou on the Occasion of His 80th Birthday. Ed. by Cliff B. Jones, Ji Wang, and Naijun Zhan.
Vol. 11180. Lecture Notes in Computer Science. 2018, pp. 133–164. doi: 10.1007/978-3-030-01461-2_8.

113

https://doi.org/10.1145/3009837.3009859
https://hal.archives-ouvertes.fr/hal-01474620
https://www.arxiv.org/abs/1610.09629
https://doi.org/10.1007/978-3-642-02273-9_8
https://doi.org/10.2168/LMCS-6(4:7)2010
https://www.arxiv.org/abs/0904.2675
https://doi.org/10.1109/MS.1985.230345
https://doi.org/10.1145/3209108
https://doi.org/10.1109/LICS.2013.36
https://doi.org/10.1016/j.tcs.2009.07.045
https://doi.org/10.1145/3209108.3209196
https://doi.org/10.1145/3209108.3209196
https://hal.archives-ouvertes.fr/hal-03018477
https://www.arxiv.org/abs/1804.09822
https://doi.org/10.1007/BFb0026441
https://doi.org/10.1145/3313276.3316386
https://www.arxiv.org/abs/1807.03967
https://doi.org/10.1007/BF01170633
https://doi.org/10.4230/LIPIcs.FSTTCS.2021.51
https://doi.org/10.1137/0219046
https://doi.org/10.1007/978-3-030-01461-2_8

Bibliography

[LY18] Yangjia Li and Mingsheng Ying. “Algorithmic analysis of termination problems for quantum programs”. In:
Proceedings of the ACM on Programming Languages 2.POPL (2018), 35:1–35:29. doi: 10.1145/3158123.

[LYY14] Yangjia Li, Nengkun Yu, and Mingsheng Ying. “Termination of nondeterministic quantum programs”. In:
Acta Informatica 51.1 (2014), pp. 1–24. doi: 10.1007/s00236-013-0185-3.

[LZ12] Ugo Dal Lago andMargherita Zorzi. “Probabilistic operational semantics for the lambda calculus”. In: RAIRO
Theor. Informatics Appl. 46.3 (2012), pp. 413–450. doi: 10.1051/ita/2012012. arXiv: 1104.0195.

[LZ14] Ugo Dal Lago and Margherita Zorzi. “Wave-style token machines and quantum lambda calculi”. In: Proceed-
ings Third International Workshop on Linearity, LINEARITY 2014 (Vienna, Austria, July 13, 2014). Ed. by Sandra
Alves and Iliano Cervesato. Vol. 176. Electronic Proceedings in Theoretical Computer Science. 2014, pp. 64–78.
doi: 10.4204/EPTCS.176.6.

[LZBY22] Junyi Liu, Li Zhou, Gilles Barthe, and Mingsheng Ying. “Quantum weakest preconditions for reasoning
about expected runtimes of quantum programs”. In: Proceedings of the 37th Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’22 (Haifa, Israel, Aug. 2–5, 2022). Ed. by Christel Baier and Dana Fisman. ACM,
2022, 4:1–4:13. isbn: 978-1-4503-9351-5. doi: 10.1145/3531130.3533327.

[LZWY+19a] Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, and
Naijun Zhan. “Formal verification of quantum algorithms using quantum Hoare logic”. In: Proceedings of the
31st International Conference on Computer Aided Verification, CAV 2019, Part II (New York City, NY, USA, July
15–18, 2019). Ed. by Isil Dillig and Serdar Tasiran. Vol. 11562. Lecture Notes in Computer Science. Springer, 2019,
pp. 187–207. isbn: 978-3-030-25542-8. doi: 10.1007/978-3-030-25543-5_12. arXiv: 1601.03835.

[LZWY+19b] Junyi Liu, Bohua Zhan, Shuling Wang, Shenggang Ying, Tao Liu, Yangjia Li, Mingsheng Ying, and
Naijun Zhan. “Quantum Hoare logic”. In: Archive of Formal Proofs 2019 (2019). url: https://www.isa-afp.org/
entries/QHLProver.html (visited on Aug. 15, 2022).

[LZYDYX20] Gushu Li, Li Zhou, Nengkun Yu, Yufei Ding, Mingsheng Ying, and Yuan Xie. “Projection-based runtime
assertions for testing and debugging quantum programs”. In: Proceedings of the ACM on Programming Languages
4.OOPSLA (2020), 150:1–150:29. doi: 10.1145/3428218. arXiv: 1911.12855.

[Mac94] Ian Mackie. “The Geometry of Implementation : Applications of the Geometry of Interaction to Language
Implementation”. PhD thesis. University of London, 1994.

[Mac95] Ian Mackie. “The geometry of interaction machine”. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL’95 (San Francisco, California, US.). ACM. ACM Press,
1995, pp. 198–208. doi: 10.1145/199448.199483.

[Mal10] Octavio Malherbe. “Categorical models of computation: partially traced categories and presheaf models of
quantum computation”. PhD thesis. University of Ottawa, 2010. arXiv: 1301.5087.

[Mar71] Per Martin-Löf. “Hauptsatz for the intuitionistic theory of iterated inductive definitions”. In: Proceedings of
the Second Scandinavian Logic Symposium. Ed. by J. E. Fenstad. Vol. 63. Studies in Logic and the Foundations of
Mathematics. North-Holland, 1971, pp. 179–216. doi: 10.1016/S0049-237X(08)70847-4.

[Mar84] Per Martin-Löf. Intuitionistic Type Theory. Studies in Proof Theories. Napoli, Italy: Bibliopolis, 1984.

[Mat03] Armando B.Matos. “Linear programs in a simple reversible language”. In: Theoretival Computer Science 290.3
(2003), pp. 2063–2074. doi: 10.1016/S0304-3975(02)00486-3.

[MAT14] Mohamed Yousri Mahmoud, Vincent Aravantinos, and Sofiène Tahar. “Formal verification of optical quan-
tum flip gate”. In: Proceedings of the 5th International Conference on Interactive Theorem Proving, ITP’14 (Vienna,
Austria). Ed. by Gerwin Klein and Ruben Gamboa. Vol. 8558. Lecture Notes in Computer Science. Springer, 2014,
pp. 358–373. doi: 10.1007/978-3-319-08970-6_23.

[Mat98] RalphMatthes. “Extensions of System F by Iteration and Primitive Recursion onMonotone Inductive Types”.
PhD thesis. Ludwig-Maximilians-Universität, München, Germany, 1998.

[Maz06] Damiano Mazza. “Interaction Nets : Semantics and Concurrent Extensions”. Thèse de Doctorat. Université
de la Méditerranée/Università degli Studi Roma Tre, 2006.

[McKinsey21] Matteo Biondi, Anna Heid, Ivan Ostojic, Nicolaus Henke, Lorenzo Pautasso, Niko Mohr, LindeWester,
and Rodney Zemmel. Quantum computing: An emerging ecosystem and industry use cases. Report. McKinsey &
Company, 2021.

[MDM03] Dmitri Maslov, Gerhard W. Dueck, and D. Michael Miller. “Fredkin/Toffoli templates for reversible logic
synthesis”. In: Proceedings of the International Conference on Computer-Aided Design, ICCAD’03 (San Jose, CA,
USA). IEEE Computer Society / ACM, 2003, pp. 256–261. isbn: 1-58113-762-1. doi: 10.1109/ICCAD.2003.1257667.

[MDM05] Dmitri Maslov, Gerhard W. Dueck, and D. Michael Miller. “Toffoli network synthesis with templates”. In:
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 24.6 (2005), pp. 807–817. doi:
10.1109/TCAD.2005.847911.

[Mei24] ArianneMeijer–van de Griend. “Advances inQuantumCompilation in the NISQ Era”. PhD thesis. University
of Helsinki, 2024.

114

https://doi.org/10.1145/3158123
https://doi.org/10.1007/s00236-013-0185-3
https://doi.org/10.1051/ita/2012012
https://www.arxiv.org/abs/1104.0195
https://doi.org/10.4204/EPTCS.176.6
https://doi.org/10.1145/3531130.3533327
https://doi.org/10.1007/978-3-030-25543-5_12
https://www.arxiv.org/abs/1601.03835
https://www.isa-afp.org/entries/QHLProver.html
https://www.isa-afp.org/entries/QHLProver.html
https://doi.org/10.1145/3428218
https://www.arxiv.org/abs/1911.12855
https://doi.org/10.1145/199448.199483
https://www.arxiv.org/abs/1301.5087
https://doi.org/10.1016/S0049-237X(08)70847-4
https://doi.org/10.1016/S0304-3975(02)00486-3
https://doi.org/10.1007/978-3-319-08970-6_23
https://doi.org/10.1109/ICCAD.2003.1257667
https://doi.org/10.1109/TCAD.2005.847911

Bibliography

[Men88] Paul Mendler. “Inductive Definition in Type Theory”. PhD thesis. Cornell University, USA, 1988. url: https:
//hdl.handle.net/1813/6710 (visited on Aug. 3, 2022).

[Mey92] Bertrand Meyer. “Applying “design by contract””. In: IEEE Computer 25.10 (1992), pp. 40–51. doi: 10.1109/
2.161279.

[MFPS21] Ana Sokolova, ed. Proceedings 37th Conference on Mathematical Foundations of Programming Semantics
(MFPS 2021) (Hybrid: Salzburg, Austria and Online, Aug. 30–Sept. 2, 2021). Vol. 351. EPTCS. 2021. doi: 10.4204/
EPTCS.351.

[MFPS93] Stephen Brookes, Michael Main, Austin Melton, Michael Mislove, and David Schmidt, eds.Mathematical
Foundations of Programming Semantics: Ninth International Conference, MFPS IX (New Orleans, Louisiana, US.).
Vol. 802. Lecture Notes in Computer Science. Springer Verlag, Apr. 1993. isbn: 3-540-58027-1. doi: 10.1007/3-
540-58027-1.

[MHT04] Shin-Cheng Mu, Zhenjiang Hu, and Masato Takeichi. “An injective language for reversible computation”.
In: Proceedings of the 7th International Conference on Mathematics of Program Construction, MPC 2004 (Stirling,
Scotland, UK). Ed. by Dexter Kozen. Vol. 3125. Lecture Notes in Computer Science. Springer Verlag, July 2004,
pp. 289–313. isbn: 978-3-540-22380-1. doi: 10.1007/978-3-540-27764-4_16.

[Mit78] PeterMittelstaedt.Quantum Logic. Vol. 126. Synthese Library. Dordrecht, Holland: D. Reidel Publishing Com-
pany, 1978. isbn: 978-94-009-9873-5. doi: 10.1007/978-94-009-9871-1.

[MM16] Olivia Di Matteo and Michele Mosca. “Parallelizing quantum circuit synthesis”. In: Quantum Science and
Technology 1.1 (Mar. 2016), p. 015003. doi: 10.1088/2058-9565/1/1/015003.

[MM90] Per Martin-Löf and Grigori Mints, eds. Proceedings of the International Conference on Computer Logic
(COLOG-88) (Tallinn, USSR). Vol. 417. Lecture Notes in Computer Science. Springer, 1990.

[MMNSB16] Esteban A.Martinez, ThomasMonz, Daniel Nigg, Philipp Schindler, and Rainer Blatt. “Compiling quan-
tum algorithms for architectures with multi-qubit gates”. In: New Journal of Physics 18 (2016), p. 063029.

[Mog14] Torben Ægidius Mogensen. “Reference counting for reversible languages”. In: Proceedings of hte 6th Interna-
tional Conference on Reversible Computation, RC 2014 (Kyoto, Japan, July 10–11, 2014). Ed. by Shigeru Yamashita
and Shin-ichi Minato. Vol. 8507. Lecture Notes in Computer Science. Springer, 2014, pp. 82–94. isbn: 978-3-319-
08493-0. doi: 10.1007/978-3-319-08494-7_7.

[Mog18] TorbenÆgidiusMogensen. “Reversible garbage collection for reversible functional languages”. In:New Gen-
eration Computing 36.3 (2018), pp. 203–232. doi: 10.1007/s00354-018-0037-3.

[Mog19] Torben Ægidius Mogensen. “Reversible in-place carry-lookahead addition with few ancillae”. In: [RC19],
pp. 224–237. doi: 10.1007/978-3-030-21500-2_14.

[Mog89] Eugenio Moggi. “Computational lambda-calculus and monads”. In: Proceedings of the Fourth Symposium on
Logic in Computer Science, LICS’89 (Pacific Grove, California, US.). IEEE. IEEEComputer Society Press, June 1989,
pp. 14–23. isbn: 0-8186-1954-6. doi: 10.1109/LICS.1989.39155. url: http://www.lfcs.inf.ed.ac.uk/reports/
88/ECS-LFCS-88-66/.

[Moo62] Edward F. Moore. “Machine models of self-reproduction”. In: Mathematics Problems in Biological Sciences
(New York City, US. Apr. 5–8, 1961). Ed. by R. E. Bellman. Vol. XIV. Proceedings of a Symposia in Applied Math-
ematics. AMS, 1962, pp. 17–33.

[MOTW95] JohnMaraist, Martin Odersky, David N. Turner, and PhilipWadler. “Call-by-name, call-by-value, call-by-
need and the linear lambda calculus”. In: Proceedings of the 11th Annual Conference onMathematical Foundations
of Programming Semantics, MFPS XI (New Orleans, Louisiana, USA). Vol. 1. Electronic Notes in Theoretical Com-
puter Science. See also journal version [MOTW99]. 1995, pp. 370–392. doi: 10.1016/S1571-0661(04)00022-2.

[MOTW99] John Maraist, Martin Odersky, David N. Turner, and Philip Wadler. “Call-by-name, call-by-value, call-
by-need and the linear lambda calculus”. In: Theoretical Computer Science 228.1-2 (1999). Long version of
[MOTW95]., pp. 175–210. doi: 10.1016/S0304-3975(98)00358-2.

[MRBA16] Jarrod R McClean, Jonathan Romero, Ryan Babbush, and Alán Aspuru-Guzik. “The theory of variational
hybrid quantum-classical algorithms”. In: New Journal of Physics 18 (2016), p. 023023. doi: 10.1088/1367-2630/
18/2/023023. arXiv: 1509.04279.

[MS99] Klaus Mølmer and Anders Sørensen. “Multiparticle entanglement of hot trapped ions”. In: Physical Review
Letters 82 (9 1999), pp. 1835–1838. doi: 10.1103/PhysRevLett.82.1835.

[MSRH20] Giulia Meuli, Mathias Soeken, Martin Roetteler, and Thomas Häner. “Enabling accuracy-aware quantum
compilers using symbolic resource estimation”. In: Proceedings of the ACMon Programming Languages 4.OOPSLA
(2020), 130:1–130:26. doi: 10.1145/3428198.

[MSRM19] Giulia Meuli, Mathias Soeken, Martin Roetteler, and Giovanni De Micheli. “ROS: resource constrained
oracle synthesis for quantum computers”. In: [QPL20a], pp. 119–130. doi: 10.4204/EPTCS.318.8.

[MSS07] Frédéric Magniez, Miklos Santha, and Mario Szegedy. “Quantum algorithms for the triangle problem”. In:
SIAM Journal on Computing 37.2 (2007), pp. 413–424. doi: 10.1137/050643684.

115

https://hdl.handle.net/1813/6710
https://hdl.handle.net/1813/6710
https://doi.org/10.1109/2.161279
https://doi.org/10.1109/2.161279
https://doi.org/10.4204/EPTCS.351
https://doi.org/10.4204/EPTCS.351
https://doi.org/10.1007/3-540-58027-1
https://doi.org/10.1007/3-540-58027-1
https://doi.org/10.1007/978-3-540-27764-4_16
https://doi.org/10.1007/978-94-009-9871-1
https://doi.org/10.1088/2058-9565/1/1/015003
https://doi.org/10.1007/978-3-319-08494-7_7
https://doi.org/10.1007/s00354-018-0037-3
https://doi.org/10.1007/978-3-030-21500-2_14
https://doi.org/10.1109/LICS.1989.39155
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/
http://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-66/
https://doi.org/10.1016/S1571-0661(04)00022-2
https://doi.org/10.1016/S0304-3975(98)00358-2
https://doi.org/10.1088/1367-2630/18/2/023023
https://doi.org/10.1088/1367-2630/18/2/023023
https://www.arxiv.org/abs/1509.04279
https://doi.org/10.1103/PhysRevLett.82.1835
https://doi.org/10.1145/3428198
https://doi.org/10.4204/EPTCS.318.8
https://doi.org/10.1137/050643684

Bibliography

[MSS13] Octavio Malherbe, Philip Scott, and Peter Selinger. “Presheaf models of quantum computation: an out-
line”. In: Computation, Logic, Games, and Quantum Foundations. The Many Facets of Samson Abramsky – Es-
says Dedicated to Samson Abramsky on the Occasion of His 60th Birthday. Ed. by Bob Coecke, Luke Ong,
and Prakash Panangaden. Vol. 7860. Lecture Notes in Computer Science. Springer, 2013, pp. 178–194. doi:
10.1007/978-3-642-38164-5_13. arXiv: 1302.5652.

[MTT09] Paul-André Melliès, Nicolas Tabareau, and Christine Tasson. “An explicit formula for the free exponen-
tial modality of linear logic”. In: Proceedings of the 36th Internatilonal Colloquium on Automata, Languages and
Programming, ICALP 2009, Part II (Rhodes, Greece, July 5–12, 2009). Ed. by Susanne Albers, Alberto Marchetti-
Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and Wolfgang Thomas. Vol. 5556. Lecture Notes in Com-
puter Science. Springer, 2009, pp. 247–260. isbn: 978-3-642-02929-5. doi: 10.1007/978-3-642-02930-1_21. hal:
hal-00391714.

[MV06] M. Mottonen and J. J. Vartiainen. “Decompositions of general quantum gates”. In: Trends in Quantum Com-
puting Research. Ed. by Susan Shannon. Nova Science Publishers, 2006. Chap. 7. arXiv: quant-ph/0504100.

[MWD09] D. Michael Miller, Robert Wille, and Gerhard W. Dueck. “Synthesizing reversible circuits for irreversible
functions”. In: Proceedings of the 12th Euromicro Conference on Digital System Design, Architectures, Methods and
Tools, DSD 2009 (Patras, Greece, Aug. 27–29, 2009). Ed. by Antonio Núñez and Pedro P. Carballo. IEEE Computer
Society, 2009, pp. 749–756. isbn: 978-0-7695-3782-5. doi: 10.1109/DSD.2009.186.

[NC02] Michael A. Nielsen and Isaac L. Chuang.Quantum Computation andQuantum Information. Cambridge Uni-
versity Press, 2002. isbn: 0-521-63503-9.

[Nie97] M. A. Nielsen. “Computable functions, quantummeasurements, and quantum dynamics”. In: Physical Review
Letters 79 (15 1997), pp. 2915–2918. doi: 10.1103/PhysRevLett.79.2915. arXiv: quant-ph/9706006.

[Nik04] Rishiyur S. Nikhil. “BlueSpec System Verilog: efficient, correct RTL from high level specifications”. In: Pro-
ceedings of the 2nd ACM & IEEE International Conference on Formal Methods and Models for Co-Design, MEM-
OCODE 2004 (San Diego, California, USA, June 23–25, 2004). IEEE Computer Society, 2004, pp. 69–70. isbn:
0-7803-8509-8. doi: 10.1109/MEMCOD.2004.1459818.

[NM07] Paulin Jacobé de Naurois and Virgile Mogbil. “Correctness of multiplicative (and exponential) proof struc-
tures is NL -complete”. In: Proceedings of the 21st International Workshop on Computer Science Logic and 16th
Annual Conference of the EACSL, CSL 2007 (Lausanne, Switzerland, Sept. 11–15, 2007). Ed. by Jacques Duparc
and Thomas A. Henzinger. Vol. 4646. Lecture Notes in Computer Science. Springer, 2007, pp. 435–450. isbn:
978-3-540-74914-1. doi: 10.1007/978-3-540-74915-8_33. hal: hal-00143926.

[Nor98] Michael Norrish. “C Formalised in HOL”. Also: Technical Report UCAM-CL-TR-453. PhD thesis. University
of Cambridge, 1998.

[NRSCM18] Yunseong Nam, Neil J. Ross, Yuan Su, Andrew M. Childs, and Dmitri Maslov. “Automated optimization
of large quantum circuits with continuous parameters”. In: npj Quantum Information 4.1 (2018), p. 23. doi: 10.
1038/s41534-018-0072-4.

[NST18] Rémi Nollet, Alexis Saurin, and Christine Tasson. “Local validity for circular proofs in linear logic with fixed
points”. In: 27th EACSL Annual Conference on Computer Science Logic, CSL 2018 (Birmingham, UK, Sept. 4–7,
2018). Ed. by Dan R. Ghica and Achim Jung. Vol. 119. LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2018, 35:1–35:23. isbn: 978-3-95977-088-0. doi: 10.4230/LIPIcs.CSL.2018.35. hal: hal-01825477.

[NTR11] Michael Nachtigal, Himanshu Thapliyal, and Nagarajan Ranganathan. “Design of a reversible floating-
point adder architecture”. In: Proceedings of the 11th IEEE International Conference on Nanotechnology. 2011, pp.
451–456. doi: 10.1109/NANO.2011.6144358.

[NV14] Trung Duc Nguyen and Rodney Van Meter. “A resource-efficient design for a reversible floating point adder
in quantum computing”. In: ACM Journal on Emerging Technologies in Computing Systems 11.2 (2014), 13:1–13:18.
issn: 1550-4832. doi: 10.1145/2629525. arXiv: 1306.3760.

[NW06] Jorge Nocedal and Stephen J. Wright. Numerical Optimization. Springer Series in Operations Research and
Financial Engineering (ORFE). Springer, 2006.

[Öme00] Berhnard Ömer. “Quantum Programming in QCL”. PhD thesis. TU Wien, 2000.

[Öme03] Berhnard Ömer. “StructuredQuantum Programming”. PhD thesis. TU Wien, 2003.

[Per08] Simon Perdrix. “Quantum entanglement analysis based on abstract interpretation”. In: Proceedings of the 15th
International Symposium on Static Analysis (SAS’08) (Valencia, Spain). Ed. by María Alpuente and Germán Vidal.
Vol. 5079. Lecture Notes in Computer Science. Springer, 2008, pp. 270–282. doi: 10.1007/978-3-540-69166-2_18.
arXiv: 0801.4230.

[PHW06] Alessandra Di Pierro, Chris Hankin, and Herbert Wiklicky. “Reversible combinatory logic”. In: Mathemat-
ical Structures in Computer Science 16.4 (2006), pp. 621–637. doi: 10.1017/S0960129506005391.

[Pie02] Benjamin C. Pierce. Types and Programming Languages. MIT Press, 2002. isbn: 0-262-16209-1.

[Pit13] Andrew M. Pitts. Nominal Sets: Names and Symmetry in Computer Science. Vol. 57. Cambridge Tracts in The-
oretical Computer Science. Cambridge University Press, 2013. isbn: 978-1-107-01778-8.

116

https://doi.org/10.1007/978-3-642-38164-5_13
https://www.arxiv.org/abs/1302.5652
https://doi.org/10.1007/978-3-642-02930-1_21
https://hal.archives-ouvertes.fr/hal-00391714
https://www.arxiv.org/abs/quant-ph/0504100
https://doi.org/10.1109/DSD.2009.186
https://doi.org/10.1103/PhysRevLett.79.2915
https://www.arxiv.org/abs/quant-ph/9706006
https://doi.org/10.1109/MEMCOD.2004.1459818
https://doi.org/10.1007/978-3-540-74915-8_33
https://hal.archives-ouvertes.fr/hal-00143926
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.1038/s41534-018-0072-4
https://doi.org/10.4230/LIPIcs.CSL.2018.35
https://hal.archives-ouvertes.fr/hal-01825477
https://doi.org/10.1109/NANO.2011.6144358
https://doi.org/10.1145/2629525
https://www.arxiv.org/abs/1306.3760
https://doi.org/10.1007/978-3-540-69166-2_18
https://www.arxiv.org/abs/0801.4230
https://doi.org/10.1017/S0960129506005391

Bibliography

[PKI08] Sungwoo Park, Jinha Kim, andHyeonseung Im. “Functional netlists”. In: Proceeding of the 13th ACMSIGPLAN
international conference on Functional programming, ICFP 2008 (Victoria, BC, Canada, Sept. 20–28, 2008). Ed.
by James Hook and Peter Thiemann. ACM, 2008, pp. 353–366. isbn: 978-1-59593-919-7. doi: 10.1145/1411204.
1411253.

[Plo75] Gordon D. Plotkin. “Call-by-name, call-by-value and the lambda-calculus”. In: Theoretical Computer Science
1.2 (1975), pp. 125–159. doi: 10.1016/0304-3975(75)90017-1.

[Plo83] Gordon D. Plotkin. “Domains, Pisa Notes”. Course notes on domain theory, available on the author’s website
under the name “Pisa Notes”. 1983.

[PMAC+15] Lorenzo M. Procopio, Amir Moqanaki, Mateus Araújo, Fabio Costa, Irati Alonso Calafell, Emma G.
Dowd, Deny R. Hamel, Lee A. Rozema, Časlav Brukner, and Philip Walther. “Experimental superposition of
orders of quantum gates”. In: Nature Communications 6.1 (2015), p. 7913. doi: 10.1038/ncomms8913. arXiv:
1412.4006.

[PMMRT17] Christopher Portmann, Christian Matt, Ueli Maurer, Renato Renner, and Björn Tackmann. “Causal
boxes: quantum information-processing systems closed under composition”. In: IEEE Transactions on Information
Theory 63.5 (2017), pp. 3277–3305. doi: 10.1109/TIT.2017.2676805. arXiv: 1512.02240.

[PMSY+14] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J. Love, Alán
Aspuru-Guzik, and Jeremy L. O’Brien. “A variational eigenvalue solver on a photonic quantum processor”. In:
Nature 5 (2014), p. 4213. doi: 10.1038/ncomms5213.

[POPL14] Suresh Jagannathan and Peter Sewell, eds. Proceedings of the 41st ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, POPL’14 (San Diego, California, USA). ACM, 2014. isbn: 978-1-4503-2544-8.

[POPL17] Giuseppe Castagna and Andrew D. Gordon, eds. Proceedings of the 44th ACM SIGPLAN Symposium on
Principles of Programming Languages, POPL’17 (Paris, France). ACM, 2017. isbn: 978-1-4503-4660-3. doi: 10.1145/
3009837.

[PPRZ20] Romain Péchoux, Simon Perdrix,Mathys Rennela, and Vladimir Zamdzhiev. “Quantumprogrammingwith
inductive datatypes: causality and affine type theory”. In: Proceedings of the 23rd International Conference on
Foundations of Software Science and Computation Structures, FoSSaCS 2020 (Dublin, Ireland, Apr. 25–30, 2020).
Ed. by Jean Goubault-Larrecq and Barbara König. Vol. 12077. Lecture Notes in Computer Science. Springer, 2020,
pp. 562–581. isbn: 978-3-030-45230-8. doi: 10.1007/978-3-030-45231-5_29. hal: hal-03018513.

[PPZ19] Luca Paolini, Mauro Piccolo, and Margherita Zorzi. “qPCF: higher-order languages and quantum circuits”.
In: Journal of Automated Reasoning 63.4 (2019). Extended version of a TAMC’17 paper [PZ17]., pp. 941–966. doi:
10.1007/s10817-019-09518-y.

[Pra81] Vaughan R. Pratt. “A decidable mu-calculus: preliminary report”. In: Proceedings of the 22nd Annual Sympo-
sium on Foundations of Computer Science (FOCS’81) (Nashville, Tennessee, USA). IEEE Computer Society, 1981,
pp. 421–427. doi: 10.1109/SFCS.1981.4.

[Pre18] John Preskill. “Quantum computing in the NISQ era and beyond”. In:Quantum 2 (2018), p. 79. doi: 10.22331/
q-2018-08-06-79. arXiv: 1801.00862v3.

[PRS17] Alex Parent, Martin Roetteler, and Krysta M. Svore. “REVS: a tool for space-optimized reversible circuit
synthesis”. In: [RC17], pp. 90–101. doi: 10.1007/978-3-319-59936-6_7. arXiv: 1510.00377.

[PRZ17] Jennifer Paykin, Robert Rand, and Steve Zdancewic. “QWIRE: a core language for quantum circuits”. In:
[POPL17], pp. 846–858. doi: 10.1145/3009837.3009894. hal: hal-01474620. arXiv: 1610.09629.

[PS14] AdamPaetznick and KrystaM. Svore. “Repeat-until-success: non-deterministic decomposition of single-qubit
unitaries”. In:Quantum Information and Computation 14.15-016 (2014), pp. 1277–1301. doi: 10.26421/QIC14.15-
16-2. arXiv: 1311.1074.

[PSV14] Michele Pagani, Peter Selinger, and Benoît Valiron. “Applying quantitative semantics to higher-order quan-
tum computing”. In: [POPL14], pp. 647–658. doi: 10.1145/2535838.2535879. arXiv: 1311.2290.

[pub22] ZX-calculus publications. East, Richard and van de Wetering, John. 2022. url: https://zxcalculus.com/
publications.html (visited on Aug. 24, 2022).

[PZ17] Luca Paolini and Margherita Zorzi. “qPCF: a language for quantum circuit computations”. In: Proceedings of
the 14th Annual Conference on Theory and Applications of Models of Computation, TAMC’17 (Bern, Switzerland).
Ed. by T. V. Gopal, Gerhard Jäger, and Silvia Steila. Vol. 10185. Lecture Notes in Computer Science. Extended
journal version: [PPZ19]. 2017, pp. 455–469. isbn: 978-3-319-55910-0. doi: 10.1007/978-3-319-55911-7_33.

[QCS] Official webpage for the IARPA research program QCS. url: https://www.iarpa.gov/research-programs/qcs
(visited on Aug. 30, 2024).

[Qis] Qiskit Development Team. Qiskit Documentation. url: https://qiskit.org/documentation/ (visited on July
28, 2021).

[QPL04] Peter Selinger, ed. Proceedings of the Second International Workshop on Quantum Programming Languages,
QPL’04 (Turku, Finland). Vol. 33. TUCS General Publication. TUCS, 2004. isbn: 9-5212-1374-4. url: http://urn.
fi/URN:NBN:fi:bib:me:I00035039900.

117

https://doi.org/10.1145/1411204.1411253
https://doi.org/10.1145/1411204.1411253
https://doi.org/10.1016/0304-3975(75)90017-1
https://doi.org/10.1038/ncomms8913
https://www.arxiv.org/abs/1412.4006
https://doi.org/10.1109/TIT.2017.2676805
https://www.arxiv.org/abs/1512.02240
https://doi.org/10.1038/ncomms5213
https://doi.org/10.1145/3009837
https://doi.org/10.1145/3009837
https://doi.org/10.1007/978-3-030-45231-5_29
https://hal.archives-ouvertes.fr/hal-03018513
https://doi.org/10.1007/s10817-019-09518-y
https://doi.org/10.1109/SFCS.1981.4
https://doi.org/10.22331/q-2018-08-06-79
https://doi.org/10.22331/q-2018-08-06-79
https://www.arxiv.org/abs/1801.00862v3
https://doi.org/10.1007/978-3-319-59936-6_7
https://www.arxiv.org/abs/1510.00377
https://doi.org/10.1145/3009837.3009894
https://hal.archives-ouvertes.fr/hal-01474620
https://www.arxiv.org/abs/1610.09629
https://doi.org/10.26421/QIC14.15-16-2
https://doi.org/10.26421/QIC14.15-16-2
https://www.arxiv.org/abs/1311.1074
https://doi.org/10.1145/2535838.2535879
https://www.arxiv.org/abs/1311.2290
https://zxcalculus.com/publications.html
https://zxcalculus.com/publications.html
https://doi.org/10.1007/978-3-319-55911-7_33
https://www.iarpa.gov/research-programs/qcs
https://qiskit.org/documentation/
http://urn.fi/URN:NBN:fi:bib:me:I00035039900
http://urn.fi/URN:NBN:fi:bib:me:I00035039900

Bibliography

[QPL07] Peter Selinger, ed. Proceedings of the 3rd International Workshop on Quantum Programming Languages,
QPL’05 (DePaul University, Chicago, USA). Vol. 170. Electronic Notes in Theoretical Computer Science. 2007.

[QPL08] Peter Selinger, ed. Proceedings of the Fourth International Workshop on Quantum Programming Languages,
QPL’06 (Oxford, UK.). Vol. 210. Electronic Notes in Theoretical Computer Science. July 2008.

[QPL11] B. Coecke, I. Mackie, P. Panangaden, and P. Selinger, eds. Proceedings of the Joint 5th International Workshop
on Quantum Physics and Logic and 4th Workshop on Developments in Computational Models, QPL/DCM 2008
(Reykjavik, Iceland). Vol. 270-1. Electronic Notes in Theoretical Computer Science. 2011.

[QPL14] Bob Coecke, Ichiro Hasuo, and Prakash Panangaden, eds. Proceedings of the 11th workshop on Quantum
Physics and Logic, QPL 2014 (Kyoto, Japan). Vol. 172. Electronic Proceedings in Theoretical Computer Science.
2014. doi: 10.4204/EPTCS.172.

[QPL18] Bob Coecke and Aleks Kissinger, eds. Proceedings 14th International Conference on Quantum Physics and
Logic, QPL 2017 (Nijmegen, The Netherlands). Vol. 266. Electronic Proceedings in Theoretical Computer Science.
2018.

[QPL19] Peter Selinger and Giulio Chiribella, eds. Proceedings 15th International Conference onQuantum Physics and
Logic, QPL 2018 (Halifax, Canada, June 3–7, 2018). Vol. 287. EPTCS. 2019.

[QPL20a] Bob Coecke and Matthew Leifer, eds. Proceedings 16th International Conference on Quantum Physics and
Logic, QPL 2019 (Chapman University, Orange, CA, USA, June 10–14, 2019). Vol. 318. EPTCS. 2020.

[QPL20b] Benoît Valiron, Shane Mansfield, Pablo Arrighi, and Prakash Panangaden, eds. Proceedings 17th Interna-
tional Conference on Quantum Physics and Logic, QPL 2020 (Online (due to Covid), June 2–6, 2020). Vol. 340.
EPTCS. 2020.

[QPL23a] Stefano Gogioso and Matty Hoban, eds. Proceedings 19th International Conference onQuantum Physics and
Logic, QPL 2022 (Wolfson College, Oxford, UK, June 27–July 1, 2022). Vol. 394. EPTCS. 2023.

[QPL23b] Shane Mansfield, Benoît Valiron, and Vladimir Zamdzhiev, eds. Proceedings of the Twentieth International
Conference onQuantum Physics and Logic, QPL 2023 (Paris, France, July 17–21, 2023). Vol. 384. EPTCS. 2023. doi:
10.4204/EPTCS.384.

[QTOOLS24] GQI. List of Tools, by Quantum Computing Report. 2024. url: https://quantumcomputingreport.com/
tools/ (visited on June 30, 2024).

[Qui20] Quingo Development Team. “Quingo: A Programming Framework for Heterogeneous Quantum-Classical
Computing with NISQ Features”. 2020. arXiv: 2009.01686.

[QZOO22] Stephen Jordan. Quantum Algorithm Zoo. 2022. url: https://quantumalgorithmzoo.org/ (visited on
Sept. 10, 2022).

[Ran14] André Ranchin. “Depicting qudit quantum mechanics and mutually unbiased qudit theories”. In: [QPL14],
pp. 68–91.

[Ran18] Robert Rand. “Formally VerifiedQuantum Programming”. PhD thesis. University of Pennsylania, 2018. url:
https://repository.upenn.edu/edissertations/3175/ (visited on Aug. 29, 2021).

[RB01] Robert Raussendorf and Hans J. Briegel. “A one-way quantum computer”. In: Physical Review Letters 86 (22
2001), pp. 5188–5191. doi: 10.1103/PhysRevLett.86.5188. arXiv: quant-ph/0510135.

[RBB03] Robert Raussendorf, Daniel E. Browne, and Hans J. Briegel. “Measurement-based quantum computation
on cluster states”. In: Physical Review A 68 (2 2003), p. 022312. doi: 10.1103/PhysRevA.68.022312. arXiv: quant-
ph/0301052.

[RC13] Gerhard W. Dueck and D. Michael Miller, eds. Proceedings of the 5th International Conference on Reversible
Computation, RC’13 (Victoria, BC, Canada, July 4–5, 2013). Vol. 7948. Lecture Notes in Computer Science.
Springer, 2013. isbn: 978-3-642-38985-6. doi: 10.1007/978-3-642-38986-3.

[RC17] Iain Phillips and Hafizur Rahaman, eds. Proceedings of the 9th International Conference on Reversible Com-
putation, RC’17 (Kolkata, India, July 6–7, 2017). Vol. 10301. Lecture Notes in Computer Science. Springer, 2017.
isbn: 978-3-319-59935-9. doi: 10.1007/978-3-319-59936-6.

[RC18] Jarkko Kari and Irek Ulidowski, eds. Proceedings of the 10th International Conference on Reversible Compu-
tation, RC 2018 (Leicester, UK). Vol. 11106. Lecture Notes in Computer Science. Springer, 2018. isbn: 978-3-319-
99497-0. doi: 10.1007/978-3-319-99498-7.

[RC19] Michael Kirkedal Thomsen and Mathias Soeken, eds. Proceedings of the 11th International Conference on Re-
versible Computation, RC 2019 (Lausanne, Switzerland). Vol. 11497. Lecture Notes in Computer Science. Springer,
2019. isbn: 978-3-030-21499-9. doi: 10.1007/978-3-030-21500-2.

[RC20] Ivan Lanese and Mariusz Rawski, eds. Proceedings of the 12th International Conference on Reversible Com-
putation, RC 2020. Vol. 12227. Lecture Notes in Computer Science. Springer, 2020. isbn: 978-3-030-52481-4. doi:
10.1007/978-3-030-52482-1.

[RC21] Shigeru Yamashita and Tetsuo Yokoyama, eds. Proceedings of the 13th International Conference on Reversible
Computation, RC 2021 (Virtual Event, July 7–8, 2021). Vol. 12805. Lecture Notes in Computer Science. Springer,
2021. isbn: 978-3-030-79836-9. doi: 10.1007/978-3-030-79837-6.

118

https://doi.org/10.4204/EPTCS.172
https://doi.org/10.4204/EPTCS.384
https://quantumcomputingreport.com/tools/
https://quantumcomputingreport.com/tools/
https://www.arxiv.org/abs/2009.01686
https://quantumalgorithmzoo.org/
https://repository.upenn.edu/edissertations/3175/
https://doi.org/10.1103/PhysRevLett.86.5188
https://www.arxiv.org/abs/quant-ph/0510135
https://doi.org/10.1103/PhysRevA.68.022312
https://www.arxiv.org/abs/quant-ph/0301052
https://www.arxiv.org/abs/quant-ph/0301052
https://doi.org/10.1007/978-3-642-38986-3
https://doi.org/10.1007/978-3-319-59936-6
https://doi.org/10.1007/978-3-319-99498-7
https://doi.org/10.1007/978-3-030-21500-2
https://doi.org/10.1007/978-3-030-52482-1
https://doi.org/10.1007/978-3-030-79837-6

Bibliography

[Reg04] Oded Regev. “Quantum computation and lattice problems”. In: SIAM Journal on Computing 33.3 (2004), pp.
738–760. doi: 10.1137/S0097539703440678.

[Reg92] Laurent Regnier. “Lambda-Calcul et Réseaux”. Thèse de Doctorat. Université Paris 7, 1992.

[RG17] Lidia Ruiz-Perez and Juan Carlos García-Escartín. “Quantum arithmetic with the quantum fourier trans-
form”. In: Quantum Information Processing 16.6 (2017), p. 152. doi: 10.1007/s11128-017-1603-1.

[RLNS00] K. Rustan, M. Leino, Greg Nelson, and James B. Saxe. ESC/Java User’s Manual. SRC Technical Note 2000-
002. Compaq Computer Corporation, 2000.

[Rob97] Ken Robinson. “The B method and the B toolkit”. In: Proceedings of the 6th International Conference on
Algebraic Methodology and Software Technology, AMAST’97 (Sydney,Australia, Dec. 13–17, 1997). Ed. by Michael
Johnson. Vol. 1349. Lecture Notes in Computer Science. Springer, 1997, pp. 576–580. isbn: 3-540-63888-1. doi:
10.1007/BFb0000503.

[Roe74] W. P. de Roever. “Recursive Program Schemes : Semantics and Proof Theory”. Proefschrift. Vrije Universiteit
te Amsterdam, 1974.

[Ros15] Neil J. Ross. “Algebraic and Logical Methods in Quantum Computation”. PhD thesis. Dalhousie University,
2015. arXiv: 1510.02198.

[RP10] Jason Reed and Benjamin C. Pierce. “Distance makes the types grow stronger: a calculus for differential
privacy”. In: Proceeding of the 15th ACM SIGPLAN international conference on Functional programming, ICFP
2010 (Baltimore, Maryland, USA, Sept. 27–29, 2010). Ed. by Paul Hudak and Stephanie Weirich. ACM, 2010, pp.
157–168. isbn: 978-1-60558-794-3. doi: 10.1145/1863543.1863568.

[RPLZ18] Robert Rand, Jennifer Paykin, Dong-Ho Lee, and Steve Zdancewic. “Reqwire: reasoning about reversible
quantum circuits”. In: [QPL19], pp. 299–312. doi: 10.4204/EPTCS.287.17.

[RS18a] Mathys Rennela and Sam Staton. “Classical control and quantum circuits in enriched category theory”. In:
Proceedings of the Thirty-Fourth Conference on the Mathematical Foundations of Programming Semantics, MFPS
2018 (Dalhousie University, Halifax, Canada, June 6–9, 2018). Ed. by Sam Staton. Vol. 341. Electronic Notes in
Theoretical Computer Science. See also the journal version [RS20]. Elsevier, 2018, pp. 257–279. doi: 10.1016/j.
entcs.2018.03.027. arXiv: 1711.05159.

[RS18b] Francisco Rios and Peter Selinger. “A categorical model for a quantum circuit description language”. In:
[QPL18], pp. 164–178. doi: 10.4204/EPTCS.266.11. arXiv: 1706.02630.

[RS20] Mathys Rennela and Sam Staton. “Classical control, quantum circuits and linear logic in enriched category
theory”. In: Logical Methods in Computer Science 16.1 (2020). Journal version of an MFPS publication [RS18a].
doi: 10.23638/LMCS-16(1:30)2020.

[RZBB94] Michael Reck, Anton Zeilinger, Herbert J. Bernstein, and Philip Bertani. “Experimental realization of any
discrete unitary operator”. In: Physical Review Letters 73 (1 July 1994), pp. 58–61. doi: 10.1103/PhysRevLett.73.
58.

[Saa03] Yousef Saad. Iterative Methods for Sparse Linear Systems. 2nd ed. SIAM, 2003. isbn: 978-0-89871-534-7.

[SB69] Dana Scott and J. W. de Bakker. “A Theory of Programs”. Unpublished, manuscript notes for an IBM Seminar,
Vienna, August 1969. Reprinted in [KMR89]. 1969.

[SBM06] Vivek V. Shende, Stephen S. Bullock, and Igor L. Markov. “Synthesis of quantum-logic circuits”. In: IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems 25.6 (2006), pp. 1000–1010. doi: 10.
1109/TCAD.2005.855930. arXiv: quant-ph/0406176.

[Sch08] Maximilian A. Schlosshauer. Decoherence and the Quantum-To-Classical Transition. Springer, 2008.

[Sch14] Ulrich Schöpp. “Call-by-value in a basic logic for interaction”. In: Proceedings of the 12th Asian Symposium
on Programming Languages and Systems,(APLAS 2014) (Singapore). Ed. by Jacques Garrigue. Vol. 8858. Lecture
Notes in Computer Science. Springer, Nov. 2014, pp. 428–448. isbn: 978-3-319-12735-4. doi: 10.1007/978-3-319-
12736-1_23.

[Sch86] David A. Schmidt. Denotational Semantics: A Methodology for Language Development. Allyn and Bacon, Inc,
1986.

[SCZ17] Robert S. Smith, Michael J. Curtis, andWilliam J. Zeng. “A PracticalQuantum Instruction Set Architecture”.
White paper presenting the assembly languageQuil used in pyQuil for the Rigetti Forest framework. 2017. arXiv:
1608.03355v2.

[SDCSED20] Seyon Sivarajah, Silas Dilkes, Alexander Cowtan, Will Simmons, Alec Edgington, and Ross Duncan.
“T|ket〉: a retargetable compiler for NISQ devices”. In:Quantum Science and Technology 6.1 (2020), p. 014003. doi:
10.1088/2058-9565/ab8e92.

[Sel04a] Peter Selinger. “Towards a quantum programming language”. In: Mathematical Structures in Computer Sci-
ence 14.4 (2004), pp. 527–586. doi: 10.1017/S0960129504004256.

[Sel04b] Peter Selinger. “Towards a semantics for higher-order quantum computation”. In: [QPL04], pp. 127–143.

119

https://doi.org/10.1137/S0097539703440678
https://doi.org/10.1007/s11128-017-1603-1
https://doi.org/10.1007/BFb0000503
https://www.arxiv.org/abs/1510.02198
https://doi.org/10.1145/1863543.1863568
https://doi.org/10.4204/EPTCS.287.17
https://doi.org/10.1016/j.entcs.2018.03.027
https://doi.org/10.1016/j.entcs.2018.03.027
https://www.arxiv.org/abs/1711.05159
https://doi.org/10.4204/EPTCS.266.11
https://www.arxiv.org/abs/1706.02630
https://doi.org/10.23638/LMCS-16(1:30)2020
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1103/PhysRevLett.73.58
https://doi.org/10.1109/TCAD.2005.855930
https://doi.org/10.1109/TCAD.2005.855930
https://www.arxiv.org/abs/quant-ph/0406176
https://doi.org/10.1007/978-3-319-12736-1_23
https://doi.org/10.1007/978-3-319-12736-1_23
https://www.arxiv.org/abs/1608.03355v2
https://doi.org/10.1088/2058-9565/ab8e92
https://doi.org/10.1017/S0960129504004256

Bibliography

[Sel07] Peter Selinger. “Dagger compact closed categories and completely positive maps (extended abstract)”. In:
[QPL07], pp. 139–163. doi: 10.1016/j.entcs.2006.12.018.

[SGLH11] Nikhil Swamy, Nataliya Guts, Daan Leijen, and Michael Hicks. “Lightweight monadic programming in
ML”. In: [ICFP11], pp. 15–27. doi: 10.1145/2034773.2034778.

[SGTA+18] Krysta Svore, Alan Geller, Matthias Troyer, John Azariah, Christopher Granade, Bettina Heim, Vadym
Kliuchnikov, Mariia Mykhailova, Andres Paz, and Martin Roetteler. “Q#: enabling scalable quantum computing
and development with a high-level DSL”. In: Proceedings of the Real World Domain Specific Languages Work-
shop 2018 (Vienna, Austria). ACM, 2018, 7:1–7:10. isbn: 978-1-4503-6355-6. doi: 10.1145/3183895.3183901. arXiv:
1803.00652.

[Sha70] D. F. Shanno. “Conditioning of quasi-Newton methods for function minimization”. In:Mathematics of Com-
putation 24 (1970), pp. 647–656.

[She94] Jonathan R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. Tech.
rep. CMU-CS-94-125. School of Computer Science, Carnegie Mellon University, 1994.

[Sho94] Peter W. Shor. “Algorithms for quantum computation: discrete log and factoring”. In: Proceedings of the
35th Annual Symposium on Foundations of Computer Science (FOCS’94) (Santa Fe, New Mexico, US.). IEEE. IEEE
Computer Society Press, Nov. 1994, pp. 124–134. isbn: 0-8186-6580-7. doi: 10.1109/SFCS.1994.365700.

[Sho97] Peter W. Shor. “Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum
computer”. In: SIAM Journal on Computing 26.5 (1997), pp. 1484–1509. doi: 10.1137/S0097539795293172. arXiv:
quant-ph/9508027.

[SHT18] Damian S. Steiger, Thomas Häner, and Matthias Troyer. “ProjectQ: an open source software framework for
quantum computing”. In:Quantum 2 (2018), p. 49. doi: 10.22331/q-2018-01-31-49. arXiv: 1612.08091v2.

[Sim05] Alex K. Simpson. “Reduction in a linear lambda-calculus with applications to operational semantics”. In:
Proceedings of the 16th International Conference on Term Rewriting and Applications, RTA’05 (Nara, Japan). Ed.
by Jürgen Giesl. Vol. 3467. Lecture Notes in Computer Science. Springer, 2005, pp. 219–234. isbn: 3-540-25596-6.
doi: 10.1007/978-3-540-32033-3_17.

[SJA17] Ingo Sander, Axel Jantsch, and Seyed-Hosein Attarzadeh-Niaki. “ForSyDe: system design using a functional
language and models of computation”. In: Handbook of Hardware/Software Codesign. Ed. by Soonhoi Ha and
Jürgen Teich. Springer, 2017, pp. 99–140. isbn: 978-94-017-7266-2. doi: 10.1007/978-94-017-7267-9_5.

[SM13] Mehdi Saeedi and Igor L. Markov. “Synthesis and optimization of reversible circuits - a survey”. In: ACM
Computing Surveys 45.2 (2013), 21:1–21:34. doi: 10.1145/2431211.2431220.

[SMB04] Vivek V. Shende, Igor L. Markov, and Stephen S. Bullock. “Minimal universal two-qubit controlled-NOT-
based circuits”. In: Physical Review A 69 (6 2004), p. 062321. doi: 10.1103/PhysRevA.69.062321.

[SPA11] SPARK Team. SPARK – The SPADE Ada Kernel (including RavenSPARK). 2011. url: https://docs.adacore.
com/sparkdocs-docs/SPARK_LRM.htm (visited on Sept. 10, 2022).

[SRSV14] JonathanM. Smith, Neil J. Ross, Peter Selinger, and Benoît Valiron. “Quipper: concrete resource estimation
in quantum algorithms”. In: Informal Proceedings of QAPL’14, Grenoble, France. 2014. arXiv: 1412.0625.

[SRWD17] Mathias Soeken, Martin Roetteler, NathanWiebe, and Giovanni DeMicheli. “Hierarchical reversible logic
synthesis using luts”. In: Proceedings of the 54th Annual Design Automation Conference (DAC’17) (Austin, TX,
USA). ACM, 2017, 78:1–78:6. isbn: 978-1-4503-4927-7. doi: 10.1145/3061639.3062261.

[Sta15] Sam Staton. “Algebraic effects, linearity, and quantum programming languages”. In: Proceedings of the 42nd
Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL’15 (Mumbai, India).
Ed. by Sriram K. Rajamani and David Walker. ACM, 2015, pp. 395–406. isbn: 978-1-4503-3300-9. doi: 10.1145/
2676726.2676999. url: http://dl.acm.org/citation.cfm?id=2676726.

[Sto77] Joseph E. Stoy. Denotational Semantics: The Scott-Strachey approach to Programming Language Theory. Vol. 1.
MIT Press Series in Computer Science. MIT Press, 1977.

[SV05] Peter Selinger and Benoît Valiron. “A lambda calculus for quantum computation with classical control”. In:
Proceedings of the Seventh International Conference on Typed Lambda Calculi and Applications, TLCA’05 (Nara,
Japan). Ed. by Pawel Urzyczyn. Vol. 3461. Lecture Notes in Computer Science. Journal version appeared in
MSCS [SV06]. Springer Verlag, Apr. 2005, pp. 354–368. isbn: 3-540-25593-1. doi: 10.1007/11417170_26. hal:
hal-00483924. arXiv: cs/0404056.

[SV06] Peter Selinger and Benoît Valiron. “A lambda calculus for quantum computation with classical control”. In:
Mathematical Structures in Computer Science 16 (3 2006), pp. 527–552. doi: 10.1017/S0960129506005238.

[SV08a] Peter Selinger and Benoît Valiron. “On a fully abstract model for a quantum linear functional language”. In:
[QPL08], pp. 123–137. doi: 10.1016/j.entcs.2008.04.022.

[SV08b] Peter Selinger and Benoît Valiron. “A linear-non-linear model for a computational call-by-value lambda
calculus (extended abstract)”. In: Proceedings of the 11th International Conference on Foundations of Software
Science and Computational Structures, FoSSaCS’08 (Budapest, Hungary). Ed. by Roberto M. Amadio. Vol. 4962.
Lecture Notes in Computer Science. Springer, 2008, pp. 81–96. doi: 10.1007/978-3-540-78499-9_7. hal: hal-
00483903.

120

https://doi.org/10.1016/j.entcs.2006.12.018
https://doi.org/10.1145/2034773.2034778
https://doi.org/10.1145/3183895.3183901
https://www.arxiv.org/abs/1803.00652
https://doi.org/10.1109/SFCS.1994.365700
https://doi.org/10.1137/S0097539795293172
https://www.arxiv.org/abs/quant-ph/9508027
https://doi.org/10.22331/q-2018-01-31-49
https://www.arxiv.org/abs/1612.08091v2
https://doi.org/10.1007/978-3-540-32033-3_17
https://doi.org/10.1007/978-94-017-7267-9_5
https://doi.org/10.1145/2431211.2431220
https://doi.org/10.1103/PhysRevA.69.062321
https://docs.adacore.com/sparkdocs-docs/SPARK_LRM.htm
https://docs.adacore.com/sparkdocs-docs/SPARK_LRM.htm
https://www.arxiv.org/abs/1412.0625
https://doi.org/10.1145/3061639.3062261
https://doi.org/10.1145/2676726.2676999
https://doi.org/10.1145/2676726.2676999
http://dl.acm.org/citation.cfm?id=2676726
https://doi.org/10.1007/11417170_26
https://hal.archives-ouvertes.fr/hal-00483924
https://www.arxiv.org/abs/cs/0404056
https://doi.org/10.1017/S0960129506005238
https://doi.org/10.1016/j.entcs.2008.04.022
https://doi.org/10.1007/978-3-540-78499-9_7
https://hal.archives-ouvertes.fr/hal-00483903
https://hal.archives-ouvertes.fr/hal-00483903

Bibliography

[SV09] Peter Selinger and Benoît Valiron. “Quantum lambda-calculus”. In: [GM09]. Chap. 4, pp. 135–172.

[SVMABC17] Artur Scherer, Benoît Valiron, Siun-Chuon Mau, D. Scott Alexander, Eric van den Berg, and Thomas
E. Chapuran. “Concrete resource analysis of the quantum linear-system algorithm used to compute the elec-
tromagnetic scattering cross section of a 2D target”. In: Quantum Information Processing 16.3 (2017), p. 60. doi:
10.1007/s11128-016-1495-5. hal: hal-01474610. arXiv: 1505.06552.

[SVV18] Amr Sabry, Benoît Valiron, and Juliana Kaizer Vizzotto. “From symmetric pattern-matching to quantum
control”. In: Proceedings of the 21st International Conference on Foundations of Software Science and Compu-
tation Structures, FoSSaCS 2018 (Thessaloniki, Greece). Ed. by Christel Baier and Ugo Dal Lago. Vol. 10803.
Lecture Notes in Computer Science. Springer, 2018, pp. 348–364. doi: 10.1007/978-3-319-89366-2_19. hal:
hal-01763568. arXiv: 1804.00952.

[SYG24] Razin A. Shaikh, Lia Yeh, and Stefano Gogioso. “The Focked-up ZX Calculus: Picturing Continuous-Variable
Quantum Computation”. Accepted for Communication at QPL 2024. 2024. arXiv: 2406.02905.

[TA15] Michael Kirkedal Thomsen and Holger Bock Axelsen. “Interpretation and programming of the reversible
functional language RFUN”. In: Proceedings of the 27th Symposium on the Implementation and Application of
Functional Programming Languages, IFL 2015, Koblenz, Germany, September 14-16, 2015. Ed. by Ralf Lämmel. ACM,
2015, 8:1–8:13. isbn: 978-1-4503-4273-5. doi: 10.1145/2897336.2897345.

[Tai67] W. W. Tait. “Intensional interpretations of functionals of finite type”. In: Journal of Symbolic Logic 32.2 (1967),
pp. 198–212. doi: 10.2307/2271658.

[TCMG+21] Márcio M. Taddei, Jaime Cariñe, Daniel Martínez, Tania García, Nayda Guerrero, Alastair A. Abbott,
Mateus Araújo, Cyril Branciard, Esteban S. Gómez, Stephen P. Walborn, Leandro Aolita, and Gustavo Lima.
“Computational advantage from the quantum superposition of multiple temporal orders of photonic gates”. In:
PRXQuantum 2 (1 2021), p. 010320. doi: 10.1103/PRXQuantum.2.010320. arXiv: 2002.07817.

[TempHask] Template Haskell Library. url: https://hackage.haskell.org/package/template-haskell (visited on
Aug. 26, 2021).

[Tho12] Michael Kirkedal Thomsen. “A functional language for describing reversible logic”. In: Proceeding of the 2012
Forum on Specification and Design Languages (FDL’12) (Vienna, Austria). IEEE, 2012, pp. 135–142. isbn: 978-1-
4673-1240-0. url: http://ieeexplore.ieee.org/document/6336999/.

[TK05] Yasuhiro Takahashi and Noboru Kunihiro. “A linear-size quantum circuit for addition with no ancillary
qubits”. In:Quantum Information and Computation 5.6 (2005), pp. 440–448.

[TK08] Yasuhiro Takahashi and Noboru Kunihiro. “A fast quantum circuit for addition with few qubits”. In:Quantum
Information and Computation 8.6–7 (2008), pp. 636–649.

[TM22] Alex Townsend-Teague and Konstantinos Meichanetzidis. “Simplification Strategies for the Qutrit ZX-
Calculus”. Presentation at QPL 2022. 2022. arXiv: 2103.06914.

[Tof77] Tommaso Toffoli. “Computation and construction universality of reversible cellular automata”. In: Journal of
Computer and System Sciences 15.2 (1977), pp. 213–231. doi: 10.1016/S0022-0000(77)80007-X.

[Tof80a] Tommaso Toffoli. Reversible Computing. Tech. rep. MIT/LCS/TM-151. See also the ICALP’80 paper [Tof80b].
MIT, 1980.

[Tof80b] Tommaso Toffoli. “Reversible computing”. In: Automata, Languages and Programming, 7th Colloquium, No-
ordweijkerhout, The Netherlands, July 14-18, 1980, Proceedings (Noordweijkerhout, The Netherlands, July 14–18,
1980). Ed. by J. W. de Bakker and Jan van Leeuwen. Vol. 85. Lecture Notes in Computer Science. See also the
corresponding technical report [Tof80b]. Springer, 1980, pp. 632–644. isbn: 3-540-10003-2. doi: 10.1007/3-540-
10003-2_104.

[Ton04] André van Tonder. “A lambda calculus for quantum computation”. In: SIAM Journal on Computing 33.5 (2004),
pp. 1109–1135. doi: 10.1137/S0097539703432165. arXiv: quant-ph/0307150.

[Tra11] Paolo Tranquilli. “Intuitionistic differential nets and lambda-calculus”. In: Theoretical Computer Science
412.20 (2011), pp. 1979–1997. doi: 10.1016/j.tcs.2010.12.022.

[Tro92] Anne S. Troelstra. Lectures in Linear Logic. Vol. 29. CSLI Lecture Notes. Stanford, California, US.: Center for
the Study of Language and Information, 1992. isbn: 0-937073-77-6.

[Tur36] AlanM. Turing. “On computable numbers, with an application to the Entscheidungsproblem”. In: Proceedings
of the London Mathematical Society, Series 2 42 (1936). Can be found integrally, and commented, in [Gir95b], pp.
230–265.

[Tur38] Alan Turing. “Systems of Logic Based on Ordinals”. PhD thesis. Princeton University, 1938.

[Tur50] Alan M. Turing. “Computing machinery and intelligence”. In: Journal of the Mind Association 59.236 (1950).
Can be found integrally, and commented, in [Gir95b], pp. 433–460.

[Tur79] D. A. Turner. “A new implementation technique for applicative languages”. In: Software – Practice and Expe-
rience 9.1 (1979), pp. 31–49. doi: 10.1002/spe.4380090105.

[Unr19a] Dominique Unruh. “QuantumHoare logic with ghost variables”. In: [LICS19], pp. 1–13. doi: 10.1109/LICS.
2019.8785779.

121

https://doi.org/10.1007/s11128-016-1495-5
https://hal.archives-ouvertes.fr/hal-01474610
https://www.arxiv.org/abs/1505.06552
https://doi.org/10.1007/978-3-319-89366-2_19
https://hal.archives-ouvertes.fr/hal-01763568
https://www.arxiv.org/abs/1804.00952
https://www.arxiv.org/abs/2406.02905
https://doi.org/10.1145/2897336.2897345
https://doi.org/10.2307/2271658
https://doi.org/10.1103/PRXQuantum.2.010320
https://www.arxiv.org/abs/2002.07817
https://hackage.haskell.org/package/template-haskell
http://ieeexplore.ieee.org/document/6336999/
https://www.arxiv.org/abs/2103.06914
https://doi.org/10.1016/S0022-0000(77)80007-X
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1007/3-540-10003-2_104
https://doi.org/10.1137/S0097539703432165
https://www.arxiv.org/abs/quant-ph/0307150
https://doi.org/10.1016/j.tcs.2010.12.022
https://doi.org/10.1002/spe.4380090105
https://doi.org/10.1109/LICS.2019.8785779
https://doi.org/10.1109/LICS.2019.8785779

Bibliography

[Unr19b] Dominique Unruh. “Quantum relational Hoare logic”. In: Proceedings of the ACM on Programming Lan-
guages 3.POPL (2019), 33:1–33:31. doi: 10.1145/3290346.

[Val04] Benoît Valiron. “A Functional Programming Language for Quantum Computation With Classical Control”.
Master thesis. University of Ottawa, 2004. hal: tel-00483944.

[Val08] Benoît Valiron. “Semantics for a Higher Order Functional Programming Language for Quantum Computa-
tion”. PhD thesis. University of Ottawa, 2008. hal: tel-00483944.

[Val10a] Benoît Valiron. “Orthogonality and algebraic lambda-calculus”. In: Proceedings of the 7th International QPL
WorkshopQuantum Physics and Logic, QPL’10 (Oxford, UK). Ed. by Bob Coecke, Prakash Panangaden, and Peter
Selinger. 2010, pp. 169–175. url: http://www.cs.ox.ac.uk/people/bob.coecke/QPL_proceedings.html.

[Val10b] Benoît Valiron. “Semantics of a typed algebraic lambda-calculus”. In: Proceedings of the Sixth Workshop on
Developments in Computational Models: Causality, Computation, and Physics, DCM 2010 (Edinburgh, Scotland,
July 9–10, 2010). Ed. by S. Barry Cooper, Prakash Panangaden, and ElhamKashefi. Vol. 26. Electronic Proceedings
in Theoretical Computer Science. Preliminary work to the journal paper [Val13a]. 2010, pp. 147–158. doi: 10.
4204/EPTCS.26.14.

[Val11] Benoît Valiron. “On quantum and probabilistic linear lambda-calculi (extended abstract)”. In: [QPL11], pp.
121–128. doi: 10.1016/j.entcs.2011.01.011.

[Val12] Benoît Valiron. “Quantum computation: a tutorial”. In: New Generation Computing 30.4 (2012), pp. 271–296.
doi: 10.1007/s00354-012-0401-7.

[Val13a] Benoît Valiron. “A typed, algebraic, computational lambda-calculus”. In: Mathematical Structures in Com-
puter Science 23.2 (2013). Journal, extended version of [Val10b]., pp. 504–554. doi: 10.1017/S0960129512000205.

[Val13b] Benoît Valiron. “Quantum computation: from a programmer’s perspective”. In: New Generation Computing
31.1 (2013), pp. 1–26. doi: 10.1007/s00354-012-0120-0.

[Val16] Benoît Valiron. “Generating reversible circuits from higher-order functional programs”. In: Proceedings of the
8th International Conference on Reversible Computation, RC’16 (Bologna, Italy). Ed. by Simon J. Devitt and Ivan
Lanese. Vol. 9720. Lecture Notes in Computer Science. Springer, 2016, pp. 289–306. doi: 10.1007/978-3-319-
40578-0_21. hal: hal-01474621.

[Val17] Benoît Valiron. Programmer un ordinateur quantique. Column in MathsInfos Hors-Série Numéro 3, published
by Fondation Mathématique de Paris. 2017. hal: hal-01763585.

[Val18] Benoît Valiron. “A formal analysis of quantum algorithms”. In: ERCIM News 112 (Jan. 2018), pp. 23–24. hal:
hal-01763602.

[Val22] Benoît Valiron. “Semantics of quantum programming languages: classical control, quantum control”. In: Jour-
nal of Logical and Algebraic Methods in Programming 128 (2022), p. 100790. doi: 10.1016/J.JLAMP.2022.100790.
hal: hal-04038653.

[VAS06] Juliana K. Vizzotto, Thorsten Altenkirch, and Amr Sabry. “Structuring quantum effects: superoperators as
arrows”. In: Mathematical Structures in Computer Science 16.3 (2006), pp. 453–468. arXiv: quant-ph/0501151.

[Vau09] Lionel Vaux. “The algebraic lambda-calculus”. In: Mathematical Structures in Computer Science 19.5 (2009),
pp. 1029–1059. doi: 10.1017/S0960129509990089.

[VBE96] Vlatko Vedral, Adriano Barenco, and Artur Ekert. “Quantum networks for elementary arithmetic opera-
tions”. In: Physical Review A 54.1 (1996), pp. 147–153. doi: 10.1103/PhysRevA.54.147. arXiv: quant-ph/9511018.

[Vil18] Renaud Vilmart. “A zx-calculus with triangles for Toffoli-Hadamard, Clifford+T, and beyond”. In: [QPL19],
313–p344. doi: 10.4204/EPTCS.287.18.

[Vil21] Renaud Vilmart. “The structure of sum-over-paths, its consequences, and completeness for Clifford”. In: Pro-
ceedings of the 24th International Conference on the Foundations of Software Science and Computation Structures,
FoSSaCS 2021 (Luxembourg City, Luxembourg, Mar. 27–Apr. 1, 2021). Ed. by Stefan Kiefer and Christine Tas-
son. Vol. 12650. Lecture Notes in Computer Science. Springer, 2021, pp. 531–550. isbn: 978-3-030-71994-4. doi:
10.1007/978-3-030-71995-1_27. hal: hal-02651473.

[VKB21] Augustin Vanrietvelde, Hlér Kristjánsson, and Jonathan Barrett. “Routed quantum circuits”. In:Quantum 5
(2021), p. 503. doi: 10.22331/q-2021-07-13-503. arXiv: 2011.08120.

[VRSAS15] Benoît Valiron, Neil J. Ross, Peter Selinger, Dana Scott Alexander, and JonathanM. Smith. “Programming
the quantum future”. In: Communications of the ACM 58.8 (2015), pp. 52–61. doi: 10.1145/2699415. url: http:
//doi.acm.org/10.1145/2699415. hal: hal-01194416.

[VZ14a] Benoît Valiron and Steve Zdancewic. “Finite vector spaces as model of simply-typed lambda-calculi”. In:
Proceedings of the 11th International Colloquium on Theoretical Aspects of Computing, ICTAC 2014 (Bucharest,
Romania, Sept. 17–19, 2014). Ed. by Gabriel Ciobanu and DominiqueMéry. Vol. 8687. Lecture Notes in Computer
Science. See [VZ14b] for the long version. Springer, 2014, pp. 442–459. doi: 10.1007/978-3-319-10882-7_26.

[VZ14b] Benoît Valiron and Steve Zdancewic. “Modeling simply-typed lambda calculi in the category of finite vector
spaces”. In: Scientific Annals of Computer Science 24.2 (2014), pp. 325–368. doi: 10.7561/SACS.2014.2.325.

122

https://doi.org/10.1145/3290346
https://hal.archives-ouvertes.fr/tel-00483944
https://hal.archives-ouvertes.fr/tel-00483944
http://www.cs.ox.ac.uk/people/bob.coecke/QPL_proceedings.html
https://doi.org/10.4204/EPTCS.26.14
https://doi.org/10.4204/EPTCS.26.14
https://doi.org/10.1016/j.entcs.2011.01.011
https://doi.org/10.1007/s00354-012-0401-7
https://doi.org/10.1017/S0960129512000205
https://doi.org/10.1007/s00354-012-0120-0
https://doi.org/10.1007/978-3-319-40578-0_21
https://doi.org/10.1007/978-3-319-40578-0_21
https://hal.archives-ouvertes.fr/hal-01474621
https://hal.archives-ouvertes.fr/hal-01763585
https://hal.archives-ouvertes.fr/hal-01763602
https://doi.org/10.1016/J.JLAMP.2022.100790
https://hal.archives-ouvertes.fr/hal-04038653
https://www.arxiv.org/abs/quant-ph/0501151
https://doi.org/10.1017/S0960129509990089
https://doi.org/10.1103/PhysRevA.54.147
https://www.arxiv.org/abs/quant-ph/9511018
https://doi.org/10.4204/EPTCS.287.18
https://doi.org/10.1007/978-3-030-71995-1_27
https://hal.archives-ouvertes.fr/hal-02651473
https://doi.org/10.22331/q-2021-07-13-503
https://www.arxiv.org/abs/2011.08120
https://doi.org/10.1145/2699415
http://doi.acm.org/10.1145/2699415
http://doi.acm.org/10.1145/2699415
https://hal.archives-ouvertes.fr/hal-01194416
https://doi.org/10.1007/978-3-319-10882-7_26
https://doi.org/10.7561/SACS.2014.2.325

Bibliography

[Wad03] Philip Wadler. “Call-by-value is dual to call-by-name”. In: Proceedings of the Eighth ACM SIGPLAN Inter-
national Conference on Functional Programming, ICFP’03 (Uppsala, Sweden). Ed. by Colin Runciman and Olin
Shivers. ACM, 2003, pp. 189–201. isbn: 1-58113-756-7. doi: 10.1145/944705.944723.

[Wad93] Philip Wadler. “A syntax for linear logic”. In: [MFPS93], pp. 513–529.

[Wan17] QuanlongWang. “Qutrit ZX-calculus is complete for stabilizer quantummechanics”. In: [QPL18], pp. 58–70.
doi: 10.4204/EPTCS.266.3.

[WB14] Quanlong Wang and Xiaoning Bian. “Qutrit dichromatic calculus and its universality”. In: [QPL14], pp. 92–
101. doi: 10.4204/EPTCS.172.7.

[WB89] Philip Wadler and Stephen Blott. “How to make ad-hoc polymorphism less ad-hoc”. In: Conference Record
of the Sixteenth Annual ACM Symposium on Principles of Programming Languages (POPL’89) (Austin, Texas, USA,
Jan. 11–13, 1989). ACM Press, 1989, pp. 60–76. doi: 10.1145/75277.75283.

[WBA11] James D. Whitfield, Jacob Biamonte, and Alán Aspuru-Guzik. “Simulation of electronic structure Hamilto-
nians using quantum computers”. In:Molecular Physics 109.5 (2011), pp. 735–750. doi: 10.1080/00268976.2011.
552441.

[WC20] MattWilson and Giulio Chiribella. “A Diagrammatic Approach to Information Transmission in Generalised
Switches”. 2020. arXiv: 2003.08224.

[WD10] Robert Wille and Rolf Drechsler. “Effect of BDD optimization on synthesis of reversible and quantum logic”.
In: Proceedings of the Workshop on Reversible Computation, RC’09 (York, UK). Ed. by Irek Ulidowski. Vol. 253.
Electronic Notes in Theoretical Computer Science 6. 2010, pp. 57–70. doi: 10.1016/j.entcs.2010.02.006.

[WDAB21] Julian Wechs, Hippolyte Dourdent, Alastair A. Abbott, and Cyril Branciard. “Quantum circuits with clas-
sical versus quantum control of causal order”. In: PRXQuantum 2 (3 2021), p. 030335. doi: 10.1103/PRXQuantum.
2.030335. hal: hal-03124176. arXiv: 2101.08796.

[Wes16] AbrahamWesterbaan. “Quantum programs as kleisli maps”. In: Proceedings of the 13th International Confer-
ence onQuantum Physics and Logic, QPL 2016 (Glasgow, Scotland). Ed. by Ross Duncan and Chris Heunen. Vol.
236. Electronic Proceedings in Theoretical Computer Science. 2016, pp. 215–228. doi: 10.4204/EPTCS.236.14.

[Wes19] Abraham Anton Westerbaan. “The Category of Von Neumann Algebras”. PhD thesis. Radboud Universiteit
Nijmegen, 2019. url: https://hdl.handle.net/2066/201611. arXiv: 1804.02203.

[WGTDD08] Robert Wille, Daniel Große, Lisa Teuber, Gerhard W. Dueck, and Rolf Drechsler. “RevLib: an online
resource for reversible functions and reversible circuits”. In: Proceedings of the 38th IEEE International Symposium
on Multiple-Valued Logic, ISMVL 2008 (Dallas, Texas, USA, May 22–23, 2008). IEEE Computer Society, 2008, pp.
220–225. isbn: 978-0-7695-3155-7. doi: 10.1109/ISMVL.2008.43.

[Win80] Glynn Winskel. “Events in Computation”. PhD thesis. University of Edinburgh, 1980.

[Win87] Glynn Winskel. “Event structures”. In: Petri Nets: Applications and Relationships to Other Models of Con-
currency. Ed. by W. Brauer, W. Reisig, and G. Rozenberg. Springer Berlin Heidelberg, 1987, pp. 325–392. isbn:
978-3-540-47926-0.

[WK13] Nathan Wiebe and Vadym Kliuchnikov. “Floating point representations in quantum circuit synthesis”. In:
New Journal of Physics 15.9 (2013), p. 093041. doi: 10.1088/1367-2630/15/9/093041. arXiv: 1305.5528.

[WOD10] Robert Wille, Sebastian Offermann, and Rolf Drechsler. “SyReC: a programming language for synthesis of
reversible circuits”. In: Proceedings of the 2010 Forum on specification &Design Languages, FDL 2010, September 14-
16, 2010, Southampton, UK. Ed. by AdamMorawiec and Jinnie Hinderscheit. See also Journal’s version [WSSD16].
ECSI, Electronic Chips & Systems design Initiative, 2010, pp. 184–189. doi: 10.1049/ic.2010.0150.

[WR16] Nathan Wiebe and Martin Roetteler. “Quantum arithmetic and numerical analysis using repeat-until-
success circuits”. In:Quantum Information and Computation 16.1&2 (2016), pp. 134–178. doi: 10.26421/QIC16.1-
2-9. arXiv: 1406.2040.

[WS14] DaveWecker and KrystaM. Svore. “LIQUi|〉: A Software Design Architecture and Domain-Specific Language
for Quantum Computing”. 2014. arXiv: 1402.4467.

[WSSD16] Robert Wille, Eleonora Schönborn, Mathias Soeken, and Rolf Drechsler. “SyReC: a hardware description
language for the specification and synthesis of reversible circuits”. In: Integration, the VLSI Journal 53 (2016). See
also extended abstract presented at FDL’10 [WOD10]., pp. 39–53. doi: 10.1016/j.vlsi.2015.10.001.

[Wüt11] Adrian Wüthrich. The Genesis of Feynman Diagrams. Vol. 26. Archimedes. Springer, 2011.

[WY22] John van de Wetering and Lia Yeh. “Building qutrit diagonal gates from phase gadgets”. In: [QPL23a]. doi:
10.4204/EPTCS.394.4.

[XVY21] Zhaowei Xu, Benoît Valiron, and Mingsheng Ying. “Reasoning about RecursiveQuantum Programs”. Draft,
to appear in ACM TOCL. 2021. arXiv: 2107.11679.

[YAG12] Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. “Towards a reversible functional language”. In:
Revised Papers of the Third International Workshop on Reversible Computation, RC’11 (Gent, Belgium, July 4–5,
2011). Ed. by Alexis De Vos and Robert Wille. Vol. 7165. Lecture Notes in Computer Science. Springer, 2012, pp.
14–29. doi: 10.1007/978-3-642-29517-1_2.

123

https://doi.org/10.1145/944705.944723
https://doi.org/10.4204/EPTCS.266.3
https://doi.org/10.4204/EPTCS.172.7
https://doi.org/10.1145/75277.75283
https://doi.org/10.1080/00268976.2011.552441
https://doi.org/10.1080/00268976.2011.552441
https://www.arxiv.org/abs/2003.08224
https://doi.org/10.1016/j.entcs.2010.02.006
https://doi.org/10.1103/PRXQuantum.2.030335
https://doi.org/10.1103/PRXQuantum.2.030335
https://hal.archives-ouvertes.fr/hal-03124176
https://www.arxiv.org/abs/2101.08796
https://doi.org/10.4204/EPTCS.236.14
https://hdl.handle.net/2066/201611
https://www.arxiv.org/abs/1804.02203
https://doi.org/10.1109/ISMVL.2008.43
https://doi.org/10.1088/1367-2630/15/9/093041
https://www.arxiv.org/abs/1305.5528
https://doi.org/10.1049/ic.2010.0150
https://doi.org/10.26421/QIC16.1-2-9
https://doi.org/10.26421/QIC16.1-2-9
https://www.arxiv.org/abs/1406.2040
https://www.arxiv.org/abs/1402.4467
https://doi.org/10.1016/j.vlsi.2015.10.001
https://doi.org/10.4204/EPTCS.394.4
https://www.arxiv.org/abs/2107.11679
https://doi.org/10.1007/978-3-642-29517-1_2

Bibliography

[YAG16] Tetsuo Yokoyama, Holger Bock Axelsen, and Robert Glück. “Fundamentals of reversible flowchart lan-
guages”. In: Theoretical Computer Science 611 (2016), pp. 87–115. doi: 10.1016/j.tcs.2015.07.046.

[Yao93] A. Chi-Chih Yao. “Quantum circuit complexity”. In: Proceedings of the 34th Annual Symposium on Foundations
of Computer Science (FOCS’93) (Washington, DC, USA). IEEE Computer Society, 1993, pp. 352–361. doi: 10.1109/
SFCS.1993.366852.

[YG07] Tetsuo Yokoyama and Robert Glück. “A reversible programming language and its invertible self-interpreter”.
In: Proceedings of the 2007 ACM SIGPLAN Workshop on Partial Evaluation and Semantics-based Program Manip-
ulation, PEPM 2007, Nice, France, January 15-16, 2007. Ed. by G. Ramalingam and Eelco Visser. 2007, pp. 144–153.
doi: 10.1145/1244381.1244404.

[Yin11] Mingsheng Ying. “Floyd-Hoare logic for quantum programs”. In: ACM Transactions on Programming Lan-
guages and Systems 33.6 (2011), 19:1–19:49. doi: 10.1145/2049706.2049708. arXiv: 0906.4586.

[Yin19] Mingsheng Ying. “Toward automatic verification of quantum programs”. In: Formal Aspects of Computing
31.1 (2019), pp. 3–25. doi: 10.1007/s00165-018-0465-3. arXiv: 1807.11610.

[YLYF14] Mingsheng Ying, Yangjia Li, Nengkun Yu, and Yuan Feng. “Model-checking linear-time properties of quan-
tum systems”. In: ACM Transactions on Computational Logic 15.3 (2014), 22:1–22:31. doi: 10.1145/2629680.

[YYFD13] Mingsheng Ying, Nengkun Yu, Yuan Feng, and Runyao Duan. “Verification of quantum programs”. In:
Science of Computer Programming 78.9 (2013), pp. 1679–1700. doi: 10.1016/j.scico.2013.03.016.

[YYW17] Mingsheng Ying, Shenggang Ying, and Xiaodi Wu. “Invariants of quantum programs: characterisations
and generation”. In: [POPL17], pp. 818–832. doi: 10.1145/3009837.3009840.

[YZLF22] Mingsheng Ying, Li Zhou, Yangjia Li, and Yuan Feng. “A proof system for disjoint parallel quantum pro-
grams”. In: Theoretical Computer Science 897 (2022), pp. 164–184. doi: 10.1016/j.tcs.2021.10.025.

[ZF10] Dongsheng Zhao and Taihe Fan. “Dcpo-completion of posets”. In: Theoretical Computer Science 411.22-24
(2010), pp. 2167–2173. doi: 10.1016/j.tcs.2010.02.020.

[ZW17] Alwin Zulehner and Robert Wille. “Improving synthesis of reversible circuits: exploiting redundancies in
paths and nodes of QMDDs”. In: [RC17], pp. 232–247. doi: 10.1007/978-3-319-59936-6_18.

[ZYC20] Xiaobin Zhao, Yuxiang Yang, and Giulio Chiribella. “Quantum metrology with indefinite causal order”. In:
Physical Review Letters 124 (19 2020), p. 190503. doi: 10.1103/PhysRevLett.124.190503.

[ZYY19] Li Zhou, Nengkun Yu, and Mingsheng Ying. “An applied quantum Hoare logic”. In: Proceedings of the 40th
ACM SIGPLAN Conference on Programming Language Design and Implementation, PLDI 2019 (Phoenix, AZ, USA,
June 22–26, 2019). Ed. by Kathryn S. McKinley and Kathleen Fisher. ACM, 2019, pp. 1149–1162. isbn: 978-1-4503-
6712-7. doi: 10.1145/3314221.3314584.

124

https://doi.org/10.1016/j.tcs.2015.07.046
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1109/SFCS.1993.366852
https://doi.org/10.1145/1244381.1244404
https://doi.org/10.1145/2049706.2049708
https://www.arxiv.org/abs/0906.4586
https://doi.org/10.1007/s00165-018-0465-3
https://www.arxiv.org/abs/1807.11610
https://doi.org/10.1145/2629680
https://doi.org/10.1016/j.scico.2013.03.016
https://doi.org/10.1145/3009837.3009840
https://doi.org/10.1016/j.tcs.2021.10.025
https://doi.org/10.1016/j.tcs.2010.02.020
https://doi.org/10.1007/978-3-319-59936-6_18
https://doi.org/10.1103/PhysRevLett.124.190503
https://doi.org/10.1145/3314221.3314584

Index

affine linear logic, 57
amplitude, 16
ancilla, 18
applicative context, 55
auxiliary, 18

base term, 80
Bennett’s trick, 37
beta-reduction, 22
BFGS algorithm, 42
biproduct completion, 59
bound variable, 22
bounded dcpo, 19
bra, 16
branching tree, 70

call-by-base, 77, 79
call-by-name, 65
circuit-description, 28
classical control, 73, 75
compact closed, 59
completely positive map, 19, 58
conclusions, 62
condition number, 35
control, 17
control flow, 21
coprocessor, 15
CPM, 19, 58
Curry-Howard correspondence, 56
Curry-Howard isomorphism, 23
cut-elimination, 56
cut-free, 56

D-completion, 60
denotational semantics, 24, 57
density matrix, 19
dereliction, 55
domain-specific language, 21, 31
DSL, 21, 31
dual, 52
dynamic lifting, 69

electromagnetic scattering, 35
embedded language, 31
entangled, 16
evaluation strategy, 22
exhaustive, 85
exponential, 52

families of circuits, 40
FEM, 35
finite-element method, 35
fixpoints, 87
Floyd–Hoare logic, 45
formal verification, 44
free variable, 22

gates, 17
Geometry of Interaction, 61, 64
gFlow, 44
global phase, 16
GoI, 61, 64
green spider, 20

Hamiltonian simulation, 34
Haskell, 31
host language, 31
Householder decomposition, 41

IAM, 64
ILL, 53
inductive formula, 88
inductive types, 86
Interaction Abstract Machine, 64
intuitionistic linear logic, 53
iso, 85

KAM, 65
ket, 16
Krivine abstract machine, 65
Kronecker product, 16

lambda calculus, 22
lambda-terms, 22
Landauer’s embedding, 37

125

Index

Large Scale Quantum, 12
Lineal, 77
linear, 52
linear logic, 24, 52
linking function, 23
LL, 52
logical resource estimation, 34
LSQ, 12
Löwner order, 19

MALL, 53, 88
measurement, 17
MELL, 53
memory structure, 68
mixed state, 18
mixed states, 43
MLL, 53
modalities, 53
Modus-Ponens, 23, 53
monadic lifting, 40
monads, 31
Multiplicative Exponential Linear Logic,

53
Multiplicative Linear Logic, 53
Multiplicative, Additive Linear Logic, 53
Mølmer–Sørensen, 42

NISQ, 12
Noisy Intermediate-Scale Quantum, 12
non-causal gate, 75
non-overlapping, 85

observable, 46
observations, 18
oracle, 19
orthonormal basis, 16

parameterized path sums, 48
parametric families, 30
path, 63
path-sum, 48
pattern, 85
phase, 16
positive matrix, 19
premises, 62
promotion, 55
proof net, 63
proof nets, 62, 63
proof obligation, 46
proof structure, 62
pure state, 18

QCL, 22

QFT, 28
QLS, 34
QPE, 28, 34
QPL, 31
QRAM model, 19
QSD, 41
quantum arrow, 21
quantum bit, 16
quantum channel, 70
quantum circuit, 18
quantum control, 22, 73, 75
quantum IO, 21
quantum linear system, 34
quantum memory, 15
Quantum Phase Estimation, 34
quantum precondition, 47
quantum state, 16
quantum SWITCH, 75
quantum test, 22
quantum weakest precondition, 46
qubit, 16
Quipper, 31

realizability, 81
realizer, 82
recursion, 86
red spider, 20
reducibility candidates, 82
reduction strategy, 23
reversible computation, 84

separable, 16
sequent, 52
Shannon decomposition, 41
sparse, 35
state, 16
sum-over-paths, 44, 48
superoperator, 19, 58
superposition of executions, 73
switching, 63
switching acyclic, 63
symmetric tensor, 60

tensor product, 16
thunk, 53, 79
thunks, 61
Toffoli gate, 17
token-based GoI, 64
trapped-ions, 41
turnstyle, 52
typing rules, 23

unit sphere, 83

126

Index

unitary type, 83
universal, 17

validity criterion, 62, 63
value, 54, 85

weak A-module, 82
weakest precondition, 46, 47

ZX, 43
ZX , 43

127

	Introduction
	Quantum Programming back in 2008
	Primer on Quantum Computation
	Quantum Memory
	Quantum Operations
	Mixed States
	Quantum Coprocessor Model
	ZX calculus

	Quantum Programming Paradigms
	Quantum Lambda Calculus
	Lambda Calculus
	Quantum Extension to the Lambda Calculus
	Linear Type System
	Towards a Denotational Semantics

	Quantum Languages and Compilation Toolchain
	Quipper: a Circuit-Description Language
	Discussion: Quantum Programming Language Design
	Our Proposal: Quipper
	Use-Case: Logical Resource Estimation of the QLS Algorithm

	Circuit Synthesis and Optimization
	Circuit Synthesis from Oracle Specification
	Circuit Synthesis from General Unitary Matrices
	Circuit Synthesis from ZX Specification

	Specification and Verification of Quantum Programs
	Challenges for Quantum Formal Verification
	Floyd–Hoare Logic and Deductive Verification
	Quantum Floyd–Hoare Logic Handling Measurements
	Qbricks: Deductive Verification with Parametrized Path Sums

	Semantics of Quantum Lambda-Calculi
	Linear Logic and Typed Quantum Lambda Calculus
	Linear Logic
	Quantum Lambda Calculus and Linear Logic
	Cut-elimination and Curry-Howard Isomorphism

	A Denotational Semantics
	Background on Denotational Semantics
	CPM as Compact Closed Category
	Accommodating the Additives
	Accommodating Recursive Datatypes
	Accommodating Duplication
	Discussion

	An Executable Semantics
	Proof-Nets for MELL
	Encoding Higher-Order Languages
	Token-based Geometry of Interaction
	Limits of the Conventional Approach
	Multi-Token Geometry of Interaction
	Towards a Quantum Geometry of Interaction

	A Categorical Semantics for Circuit-Description
	Formalizing Circuit-Description Languages
	Semantics based on Operator Algebras
	Semantics based on Category Theory
	Semantics for Circuits with Measurements

	Quantum Control and Reversible Computation
	Implementing Quantum Control
	Physicality of Quantum Control
	A Minimal Quantum Control: the Quantum SWITCH
	Syntactic Approaches for Quantum Control

	Typing Superpositions of Lambda-Terms
	An Axiomatic Type System: Vectorial System-F
	A Type System Based on Realizability

	Reversible and Quantum Pattern-Matching
	Background on Reversible Language
	Reversible Pattern-Matching
	A Categorical Interpretation
	Inductive Types, Fixpoints and termination
	Pattern-Matching for Quantum Control
	Relationship with the Logic muMALL

	Opening
	Bibliography
	Index

