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Résumé: En apprenant des appariements passés,
les systèmes de recommandation ont le poten-
tiel de réduire les frictions informationnelles sur le
marché du travail. Cette thèse pose la question de
la conception et de l’évaluation d’algorithmes de
recommandation d’offres d’emploi, en s’appuyant
sur des données détaillées fournies par le service
public de l’emploi français.

Premièrement, nous proposons une nouvelle
architecture neuronale pour la recommandation
d’offres d’emploi. Cette architecture présente
l’avantage de répondre au problème du démarrage
à froid tout en passant à l’échelle. L’approche pro-
posée est comparée à l’état de l’art en termes de
performance hors-ligne. Elle est également éval-
uée sur le terrain en termes de satisfaction des
utilisateurs au moyen d’expériences randomisées à
grande échelle.

Deuxièmement, nous examinons les objectifs
possibles qu’un concepteur pourrait assigner à un
algorithme de recommandation d’offres d’emploi.
Cette analyse est réalisée dans le cadre d’un mod-
èle économique, qui nous permet de discuter les
mérites et limites de différentes approches plausi-
bles (satisfaire les critères de recherche exacts des
demandeurs, apprendre des candidatures ou des
embauches), et de les confronter aux besoins des
demandeurs d’emploi.

Troisièmement, nous étudions le problème de
la congestion qui peut survenir si les recomman-

dations se concentrent sur un ensemble excessive-
ment restreint d’offres, créant des conséquences
nuisibles au niveau agrégé. Nous proposons une
approche algorithmique utilisant des outils issus du
transport optimal computationnel pour limiter ce
phénomène, et étudions ses performances sur des
données publiques et propriétaires.

Enfin, comme les algorithmes de recomman-
dations sont entraînés sur des données issues du
monde réel, ils peuvent reproduire ou aggraver
certains comportements indésirables (discrimina-
tions) existants sur le marché du travail. Afin
de répondre à ces inquiétudes, nous réalisons un
audit fin de l’algorithme de recommandation (en-
traîné à partir des embauches) en se focalisant sur
les inégalités de genre. En s’inspirant de la lit-
térature en économie du travail, nous proposons
des mesures des écarts genrés en termes de car-
actéristiques des recommandations (salaire, type
de contrat...), en moyenne ou conditionnellement
aux qualifications et préférences des demandeurs
d’emploi. Selon nos résultats, l’algorithme repro-
duit, sans aggraver, les biais de genre présents
dans les données d’entraînement. Nous proposons
également une approche dite de “post-traitement"
dont l’objectif est de réduire les écarts femmes-
hommes en termes de caractéristiques des offres
recommandées. Nous décrivons les arbitrages en-
tre performance et équité que cette intervention
implique.
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Abstract: Recommender systems have the poten-
tial to reduce information frictions on the labor
market by leveraging past interactions between job
seekers and recruiters. This thesis presents sev-
eral contributions to the design and evaluation of
job recommender systems, leveraging detailed real-
world data provided by the French Public Employ-
ment Service.

First, we propose a novel neural architecture
for job recommendation, aimed at providing rel-
evant recommendations in the cold-start setting
while maintaining scalability. The proposed ap-
proach is compared to the state of the art in terms
of off-line performance. It is also evaluated in the
field in terms of user satisfaction, measured in the
context of large-scale randomized experiments.

Second, we discuss the possible objectives that
a designer could assign to a job recommender sys-
tem. Based on a formal economic model, we dis-
cuss the merits and limits of different plausible ap-
proaches (satisfying job seekers’ exact search pa-
rameters, optimizing for application or hiring prob-
ability), and confront them to job seekers’ needs.

Third, we study the issue of the congestion

that may arise if recommendations focus on an ex-
cessively small set of job ads, creating negative
aggregate consequences. Leveraging tools from
the computational transport literature, we propose
a post-processing approach to congestion-avoiding
recommendation, and assess its performance on
proprietary and public datasets.

Finally, as recommender systems are trained on
real-world data, they may replicate or worsen un-
desirable behaviors (discrimination) that may exist
on the labor market. We provide a detailed audit
of the proposed recommender system (trained on
hiring data) in terms of gender inequalities. Draw-
ing inspiration from the labor economics literature
on the gender wage gap, we propose measures
for gender gaps in recommendation characteristics,
on average or conditionally on job seekers’ quali-
fications and preferences. We find that the algo-
rithm reproduces, but does not increase, gender
gaps that exist in its training data. We propose a
post-processing approach to reduce unconditional
or conditional gender gaps, and describe the trade-
offs it entails.
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Introduction

Motivations According to the French National Institute of Statistics and Eco-
nomic Studies (INSEE), the unemployment rate in France (excluding the island of
Mayotte) was of 7.1% in the first quarter of 2023, and the share of young people
aged 15 to 29 neither in employment nor training of 12.3%. Since the labor mar-
ket constitutes a key source of income, social status and integration in developed
countries, reducing unemployment is a key objective for public policies.

Unemployment can stem from a fundamental mismatch of skills and location
between people and jobs (“structural" unemployment), but also from search frictions
(“frictional" unemployment). The importance of the latter, linked to the costs of
gathering information about job vacancies and labor availability, was highlighted in
economics by Diamond, Mortensen and Pissarides [Dia82; Mor82; Pis85]. Reducing
informational frictions and improving the labor market’s “matching function" thus
forms an avenue for public policies to reduce unemployment.

As job search increasingly moves online [Aut01; Kir22], recommender systems
(RS), which help users find relevant items in large databases, may form a welcome
addition to the policy maker’s toolbox by helping job seekers locate relevant job
ads at low marginal cost.

Evidence on labor market recommendation Despite growing interest in job
recommendation in computer science [FC21; DB21; Mas+22], the causal impact
of deploying job recommender systems at scale on labor market outcomes remains
under investigation in economics.

Studies exist on the effects of automated occupation recommendation, using
measures for occupation proximity based on labor market transitions or skill simi-
larity between jobs. In a field-in-the-lab randomized control trial (RCT), [BKM19]
study the effect of algorithmic occupation recommendations on job search in Edin-
burgh. The intervention increased the breadth of job applications and the number
of job interviews for the treated, with effects driven by job seekers who initially
searched narrowly. Translating occupational recommendation to the large-scale
setting of the Danish Public Employment Service, [Alt+22] find their intervention
to have positive effects on hours worked and labor earnings when targeting limited
shares of job seekers on local labor markets (especially in occupations with limited
prospects), but that spillover effects reduce the intervention’s impact at scale.

Other studies directly provide evidence on the effect of personalized algorithmic
recommendations in RCT settings. In a large scale experiment in France, [Beh+22]
study recommendations of firms based on their predicted hirings at the firm ×
occupation level. The intervention had a net positive effect of 2% on women’s
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rate of return to employment (but no effect on men’s), due to both an increase
in search effort and a focus on recommended firms. In Sweden, [LHR23] study
job recommendations generated by collaborative filtering applied to job seekers’
click history, and find 0.6% higher employment within 6 months following first
exposure to recommendations. Both studies find that recommendations expanding
occupational scope tend to have higher effects.

The present work is concerned with the design of job ad recommender sys-
tems for the labor market, in the context of a partnership with the French Public
Employment Service (PES), France Travail. By leveraging the wealth of informa-
tion gathered by the institution on the labor market and modern machine learning
methods, algorithmic job recommendations could improve matching on the labor
market by reducing the cognitive effort required to explore large number of ads and
leveraging other job seekers’ past experience to identify promising opportunities. In
contrast to expert systems, such as the institution’s current matching solution, these
methods may bypass the creation and maintenance of large ontologies, which may
be rendered obsolete by the evolution of the labor market, and alleviate the diffi-
culty of defining and weighting the importance of different aspects of match quality
(distance, wage, occupation) based on expert knowledge only. Our main questions
of interest are: how can past observed data be leveraged to design efficient job
recommender systems, and could they ease matching on the labor market?

Challenges Given a performance metric to optimize (e.g. the recall indicator on
hiring data), the design of job search recommender systems faces several challenges
[Mas+22]. A first challenge is related to the public availability of relevant datasets,
which has been key to breakthroughs in other application domains by enabling the
benchmarking of machine learning approaches (e.g. ImageNet for computer vision).
However, concerns over privacy and commercial interests hinder the publication
of job recommendation datasets. The CareerBuilder dataset, as well as the Rec-
Sys 2016 and 2017 challenge datasets [Abe+16; Abe+17] constitute noteworthy
exceptions, although the RecSys datasets are no longer or only partially available.
Moreover, datasets associated to different application contexts vary in terms of the
nature, source, quality and sparsity of gathered information on job seekers (nothing
at all, structured administrative data, unstructured text), job ads and interactions
(clicks, applications, hires). Thus, algorithms best suited to a given application
may be inapplicable when transposed to another setting. We will focus on the
application setting of the French PES, in which (largely tabular) administrative
data exist on job seeker and job ads, but interactions are sparse at the applications
and hiring level. A second challenge is linked to the so-called cold start issue, de-
noting the case in which few, if any, interactions are observed for a sizable share
of job seekers. In this setting, classical approaches to recommendation, such as
collaborative filtering algorithms relying on interaction history, may be inefficient
or inapplicable. Yet cold start is the norm in job recommendation: one expects
job seekers to only stay on a PES’s platform until they find a job. In the France
Travail data, sparsity of the interaction matrix is of the order of 10−8 at the hiring
level, and 10−7 at the application level. Contextual data thus has to be leveraged
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to generate recommendations. A third challenge is posed by the multi-faceted na-
ture of the data: relevant information about job seekers and ads come under many
forms, e.g. location, structured administrative data, text of CVs, and may require
standardization [ASL23]. These sources of information must be merged seamlessly
to be leveraged in the recommendation process. A fourth challenge is related to
scalability: a suitable job recommendation algorithm in the PES’s setting must be
able to recommend tens of thousands of job ads to hundreds of thousands of job
seekers in quasi real time.

Beyond efficiency in the sense of recall, issues specific to the labor market setting
plague job recommender systems. The first is related to the question of value align-
ment. Many possible objectives exist for machine-learned recommender systems
- e.g. reproducing clicks, applications or hiring behavior. Other expert systems,
widely used in national PESs, focus on explicitly satisfying job seekers’ search cri-
teria. Do these approaches yield similar results? How well do they align with job
seekers’ best interests, and can we design approaches even better aligned with those?
A second challenge is that job ads are rival goods : only a single or a few job seekers
may be hired to fill a given job opening. The popularity bias in recommender sys-
tems [BCC17] is a well-documented tendency to over-recommend already popular
items, ignoring the “long tail" of less frequently seen ones, and creating “winner-
takes-all" effects. Already problematic when recommending non-rival goods, this
tendency is a major concern in labor market settings [Mas+22], where congestion
effects have been noted to hamper the effect of real-world policies [Cré+13; Alt+22].
Accordingly, congestion must be monitored, and, if necessary, be reduced - although
such interventions may come at the cost of recommendation relevance as measured
by standard indicators. A third challenge lies with respect to fairness : while job
recommendation constitutes a high-stakes application of machine learning (e.g. with
respect to the European AI Act), recommender systems risk reproducing or wors-
ening discriminatory or unwanted biases when learning from real-world data.

Contributions A first contribution is Muse (MUlti-head Sparse E-recruitment),
a job recommender system learned from hires, designed with a concern for scalabil-
ity and performance in the cold start setting. Muse adopts a two-tiered architec-
ture. A first tier dedicated to candidate selection adopts a “two-tower" structure, in
which separate embeddings for job seekers and ads, designed to incorporate domain
knowledge, ensure the approach’s scalability. The second tier then leverages a more
elaborate model and features to re-rank the job ads short-listed by the first tier.
Muse is empirically validated on the proprietary France Travail data and on public
(RecSys 2017) challenge data [Abe+17]. On the France Travail dataset, Muse is
shown to outperform boosted tree ensembles inspired from the 2017 RecSys chal-
lenge winners [CG16; VYP17a] in terms of both performance and scalability. On
the RecSys 2017 challenge dataset, Muse is also shown to outperform a state-of-art
approach to cold start job recommendation [VYP17b]. Muse is also compared to
the state of the art and to France Travail ’s current expert system in large-scale
randomized control trials in the field. Explicit and implicit measures of users’ sat-
isfaction regarding recommendations are shown to favor Muse over the selected
benchmarks.
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A second contribution is a discussion of value alignment in the job recommen-
dation setting. We document that different algorithm designs empirically result in
very different rankings. Based on a formal economic model, we discuss the mer-
its and limits of different plausible approaches to recommendations (satisfying job
seekers’ exact requirements, optimizing for applications and hires). An algorithm
aligned with job seekers’ objective would combine the utility they derive from a job
and their hiring probabilities to rank job ads, although estimating these elements
from observed data is not trivial.

A third contribution is related to congestion in job recommendation. We provide
empirical evidence that congestion may be a concern in the PES’s setting. Leverag-
ing tools from the computational transport literature, we propose a post-processing
approach to congestion-avoiding recommendation, named Carot. Its performance
is assessed on the France Travail data and on a public dataset provided by [Li+19].
The terms of the trade-off between congestion and standard recommendation per-
formance are investigated.

Our fourth contribution is an audit of Muse in terms of gender gaps with re-
spect to performance (recall) and to the characteristics of recommended job ads
(e.g. wage, contract type) w.r.t. gender. In terms of recommendation performance,
the algorithm is shown to have slightly stronger performance for women than for
men, the difference being statistically significant. Drawing inspiration from the la-
bor economics literature on the gender wage gap [Kit55; Oax73; Bli73], we propose
measures for gender gaps in recommendation characteristics, proposing the possi-
bility to control for job seekers’ qualifications and preferences. In terms of job ad
characteristics, the algorithm is shown to reproduce, but not increase, gaps found
in its training data (namely hires). We propose a novel post-processing approach
to reduce unconditional or conditional gaps, and illustrate the trade-offs it entails
between recall and (conditional) gender gaps.

The algorithm’s design and evaluation will eventually contribute to a growing
literature in economics on the effects of personalized labor market recommendations
[BKM19; Alt+22; Beh+22; LHR23].

Thesis outline The first part of this work, based on [Bie+23c], studies efficient
(in the sense of standard relevance measures such as recall) job recommendation
when learning from sparse interactions. Chapter 1 reviews related work: after pro-
viding a brief overview of recommender systems based on implicit feedback, we
present state of the art approaches to job recommendation. Chapter 2 presents the
data collected by France Travail about job seekers, job ads and their interactions
which is leveraged throughout this work, in order to motivate downstream design
choices and discuss some of its limitations. Chapter 3 is dedicated to the proposed
approach to sparse job recommendation: the Muse recommender system. The
approach’s two-tiered design is presented in section 3.1. In section 3.2, Muse is
comparatively assessed on the France Travail and RecSys 2017 challenge datasets.
Ablation studies are provided to assess the importance of key choices in the archi-
tecture’s design. The second part of the thesis is dedicated to problems concerning
job recommendations beyond accuracy. Chapter 4, based on a working paper in
economics [Bie+23a], questions the design of job recommender systems from the
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point of view of value alignment. Leveraging two plausible recommender systems
(Muse and an expert system), we show that different recommendation objectives
lead to very different rankings, and discuss the objectives that job recommender sys-
tems should aim to optimize in the context of a formal economic model. Chapter 5,
based on unpublished work, describes the results of two field experiments gathering
job seekers’ assessments of a variety of job recommender systems - based on hires
(Muse but also the state of the art), on applications, and the institution’s expert
system. Chapter 6, based on [Bie+21], is dedicated to the issue of congestion: a
post-processing approach to congestion-avoiding recommendation, Carot, is pro-
posed and comparatively assessed on the France Travail and public [Li+19] data.
Chapter 7, based on [Bie+23b], describes our proposed methodology to measure
gender gaps in recommendations, provides an audit of Muse with respect to those,
and compares estimated gaps in recommendations to those observed in hiring and
application data. Results from a post-processing approach to mitigate gender gaps
are also presented. A general conclusion outlines perspectives for further research.
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Recurring notations

This section briefly summarizes recurring notations and abbreviations. Given a
n×m matrix M , we denote Mi,. its i-th row, and M.,j its j-th column.

General setup

Notation Meaning
I Set of all users (job seekers)
i User / job seeker index
J Set of all items (job ads)
j Item / job ad index
n Number of users / job seekers
m Number of items / job ads
xi Job seeker i’s characteristics in a domain X
yj Job ad j’s characteristics in a domain Y
M Interaction matrix between job seekers and items
P(i) Set of job seeker i’s positive interactions
k Number of recommendations in a list
rij, r(i, j) Rank of job ad j for job seeker i (according to a model)
sij, s(xi, yj) Score used to rank job ads j for job seeker i

Algorithms

Notation Meaning
Muse.0 First tier of Muse
Muse.1 Second tier of Muse (leverages hires only)
Muse.1.Applications Second tier of Muse (learning from applications only)
Muse.2 Second tier of Muse (learning from hires & applications)
Sdr France Travail ’s current expert system
Pbs Home-made expert system inspired by Sdr
Xgb Boosted tree ensemble (XGBoost, [CG16])
Mix Mixture algorithm combining a Muse variant and Pbs

Muse hyperparameters (Chapter 3)

Notation Meaning
η Margin size in margin loss
ϕ Job seeker embedding function
ψ Job ad embedding function
V ar(x, y) Pair-wise features between x and y

Value alignment (Chapter 4)
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Notation Meaning
U(x, y) Job seeker’s utility
U(i, j) Proxy for U , based on a Pbs variant
p(x, y), p(i, j) Hiring probability conditional on application
P(i, j) Calibrated proxy for hiring probabilities scores based on Muse.0
PU(i, j) U(i, j)× P(i, j)
π(x, y) Job seeker’s perception of p(x, y)
Aij Whether job seeker i applies to job j
M∗

ij Whether a match takes place if i and j meet (Mij =M∗
ijAij)

c Job seekers’ cost of submitting an application
r Cost of an application being rejected

Congestion-avoiding recommendation (Chapter 6)

Notation Meaning
g Monotonous function defining transport costs
Cij Cost of recommending j to i; Cij = g(sij) or g(rij)
ε Entropic penalization weight in Sinkhorn’s algorithm
µ Uniform distribution on the n job seekers
ν Uniform distribution on the m job ads
γ Assignment plan (from OT)

Gender gaps (Chapter 7

Notation Meaning
G Gender (equals one if the job seeker is a woman)
X All of job seekers’ characteristics
Z Job seeker characteristics on which to condition (Z ⊂ X)
Y Job ad characteristic of interest (e.g. recommended wage)
δ Average (unconditional) gender gap
τ Gender gap conditional on characteristics
mg(z) E[Y |Z = z,G = g]
eg(z) P[G = g|Z = z]
γ Assignment plan (from ILP)
wij Characteristics of recommendations defining ILP constraints
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Miscellaneous abbreviations

Notation Meaning
AIPW Augmented Inverse Propensity Weighting
AUC Area Under the (ROC) Curve
DPAE Déclaration Préalable à l’Embauche (administrative data on hires)
ILP Integer Linear Program
IPW Inverse Propensity Weighting
LTR Learning to Rank
ML Machine Learning
MLP Multi-Layer Perceptron
NDCG Normalized Discounted Cumulative Gain
OT Optimal Transport
PES Public Employment Service
RCT Randomized Control Trial
RMSE Root Mean Squared Error
ROME Répertoire Opérationnel des Métiers et Emplois (job ontology)
RS Recommender System
SVD Singular Value Decomposition
TF-IDF Term Frequency Inverse Document Frequency
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Part I: Toward accurate sparse job
recommendation
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Chapter 1

Related work

Recommender systems seek to help users to navigate and engage with large sets
of items. Such navigation is unprompted, in contrast to the query-based systems
studied in Information Retrieval.

Recommender systems emerged as a theme in research and applications in the
1990s. Early examples include Tapestry [Gol+92], which filtered e-mails based on
community annotations using a query language (coining the term “collaborative fil-
tering"), and GroupLens [Kon+97], which recommended news articles using user
similarities defined based on rating Pearson correlations. Key ideas of collabora-
tive filtering, such as the memory-based user-based or item-based algorithms, as
well as model-based approaches leveraging matrix factorization [Sar+00], were pro-
posed during this decade. Interest in the domain was fostered by the 2006-2009
Netflix challenge [BK07], and prompted the creation of dedicated conferences such
as the ACM Conference on Recommender Systems (henceforth RecSys) from 2007
onward. Recommender systems were also affected by the gain in prevalence of
neural networks in machine learning in the 2010s. Today, they feature among the
most ubiquitous applications of machine learning, as they are present at the core of
the services of information-economy behemoths such as Amazon (online shopping),
Netflix (movies), Google News (news articles), Youtube (videos), Facebook (friends,
content and news), Tripadvisor (hotels) or Spotify (music).

Subsection 1.1 sets up basic vocabulary regarding recommender systems, focus-
ing on the case of implicit feedback since the data on interactions we will consider
throughout this work (applications, hires) is of such nature 1. Subsection 1.2 re-
views some state of the art approaches for job recommendation, as well as some
field-specific challenges.

1.1 Recommender systems (with implicit feedback)

This section begins by a discussion of the goals and evaluation of recommender
systems. We then proceed to high-level families of approaches to recommendation,

1For a broader view of recommender systems, we refer the reader to the textbook [Agg16],
especially for its extensive coverage of collaborative filtering, and to [Zha+19] for a survey of
pre-2019 approaches relying on neural networks.
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and to discuss a few common recommender system architectures, before presenting
links between recommendation and the learning to rank problem.

Set-up and notations This section uses the following setup and notations. We
observe a set I = {1, . . . n} of n users with context xi ∈ X for each user i, and a
set J = {1, . . .m} of m items with context yj ∈ Y for each item j. For a subset of
user-item pairs I × J , we observe interactions Mij between users and items. These
interactions may be explicit - in the sense that user i rated item j on a continuous
or ordinal scale - or implicit (e.g. a click, application, hiring between i and j). Our
exposition will focus on the implicit feedback setting due to the nature of the data
encountered in this work (applications, hires)2. We denote P(i) = {j|Mij = 1} the
items with which i has positive implicit interactions. Given a user i, a recommender
seeks out to output a list of k recommended items (with k a fixed small integer).

1.1.1 Goals and evaluation of recommender systems

Goals of recommender systems Recommender systems may strive to achieve
several objectives from the point of view of their end user [Agg16; Her+04]. The
primary one is item relevance, i.e. recommending items an individual finds useful -
although usefulness is not always trivial to define and measure ([KMR23]; more on
what this may mean for job recommendation in Chapter 4). Secondary objectives
include novelty, serendipity, and recommendation diversity. Multi-stakeholder set-
tings may pit the interest of the user against that of items (e.g. recruiters), those
of the platform, of other users (if items are rival goods) and society as a whole. In
the following, we focus on the evaluation of whether a given recommender system
performs well in terms of item relevance.

“In the field" evaluations Randomised control trials (RCTs), also called A/B
tests, randomly assign users to a treated and a control group which differ by the
version of the recommender system they are exposed to. Under standard assump-
tions [IR15], the two groups may be compared to assess the causal impact of the
treatment (i.e. the impact of switching versions of the system) on metrics of interest.
These metrics of interest can be defined in terms of reactions to the recommenda-
tions (e.g. ratings, clicks on the recommended job ads) or in terms of downstream
user behavior (e.g. engagement with a website, job search behavior, speed of return
to employment). However, randomized control trials may be costly, lengthy to or-
ganize, run the risk of affecting user experience, and may not always feasible (e.g.
for practical or ethical reasons).

When the key quantity of interest (e.g. satisfaction with the recommendations)
can be provided by users, surveys can also be used to measure user satisfaction and
contrast several versions of recommender systems. Surveys nonetheless come with
issues of their own: they may inconvenience users; user utility may not always be
easy to elicit, and selection bias in survey responses must be accounted for.

2Most of the discussion in this section can easily be adapted to the case where Mij ∈ R. Ordinal
data may however call for more elaborate modeling.
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Offline evaluations A recommender system’s quality may also be assessed on
logged data, based on its ability to generate rankings in which positive interactions
are ranked above non-positive ones on a test set. Assume access to test set of pairs,
Stest ⊂ I × J , that has not been used for training. Let ntest denote the number of
users present in the test set, and, for a test set user i, P test(i) = {j|(i, j) ∈ Stest, j ∈
P(i)} be the set of pairs corresponding to i’s positive interactions in the test set,
and I test(i) = {j|(i, j) ∈ Stest} be all test set items in pairs involving i. Let r(i, j)
denote the rank of item i for job seeker j among I test(i) according to the assessed
recommender system. The recall@k 3 may be defined as:

recall@k =
1

ntest

∑
i

∑
j∈Ptest(i) 1{r(i, j) ≤ k}
min(|P test(i)|, k)

If |P test(i)| = 1 for all i (an rough approximation for hiring data), the recall@k is
simply the share of job seekers for which the algorithm correctly ranks their future
job among the top k recommendations among the test set’s job ads. Due to its in-
tuitive nature, the recall will be the main performance metric used in the following.
Other ranking quality measures including the Normalized Discounted Cumulative
Gain (NDCG)4, Mean Reciprocal Rank, Mean Average Precision, Expected Recip-
rocal Rank, Kendall’s tau, and Spearman’s rho.

As we shall see, rather than optimizing the metric of interest (e.g. recall) directly,
it is common to turn to surrogate learning problems. For instance, one may learn a
classifier yielding an estimate of interaction probability given job seeker and job ad
features P(Mij = 1|xi, yj) and rank items according to their predicted interaction
probability given the context of user i. In such cases, standard classification metrics,
such as the area under the Receiver Operating Characteristic (ROC) curve, may
also be used to assess the algorithm’s performance.

Two remarks are in order. First, if an item j is not part of P(i), this may either
mean that i) i was aware of j’s existence (e.g. j was shown to i on a web page) but
i didn’t interact positively with it; or ii) that i was never exposed to j and possibly
unaware of j’s existence. The principle of revealed preferences justifies rankings
items in case i) lower than those in P(i). How to treat items in case ii) is less
clear, especially since the set of items a person is exposed to typically depends on
a prior logging strategy (which may not always show job seekers the most relevant
job ads). Accordingly, it is debatable whether performance measures should be
measured among proven interactions, or among all test set pairs. Second, we can
not compute performance metrics for users for which we observe no interactions,
i.e. P(i) = ∅. When working with hiring data, we may not observe hires for some

3This information retrieval definition differs from recall in the classification setting, defined as
the ratio of true positives over the sum of true positives and false negatives. The two notions may
be reconciled if one considers a ranking model which ranks job ads j based on some score sij , and
consider “positive" predictions to be those in the top-k list (i.e. job ads above an individual-specific
threshold leaving k of them in the list).

4The NDCG, which weights the placement of correct items by a logarithmic factor propor-
tional to their position in rankings, is frequently used in the literature. In early experiments in
the development of Muse, comparison of algorithms based on their recall were consistent with
comparisons in terms of NDCG, leading us to focus on recall due to its simplicity.
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individuals; and these individuals are likely to differ from hired job seekers (more
in Chapter 2). Thus, even if we define relevance as a ranking of job ad by hiring
likelihood, using the recall directly as a proxy for relevance may lead to biased
estimates in the sense that they inform us about model quality on the population
of hired people only.

1.1.2 Types of recommender systems

To discuss the variety of existing recommender systems, we rely on a taxonomy
proposed by [Bur02], reproduced in Table 1.1, which is based on the background,
inputs and recommendation recommender systems leverage.

Technique Background Input Process
Collaborative
filtering Ratings Mij for all I Ratings Mij for user i

Extrapolate from ratings of users
in I similar to i

Content-based Features of items in J i’s rating of items in J
Generate a classifier that fits i’s
rating behavior and uses it on j

Demographic
Demographic informa-
tion about I and their
item ratings

Demographic informa-
tion about i

Identify users demographically
similar to u, and extrapolate
from their ratings of j

Utility-based Features of items in J
A utility function over
items in J that de-
scribes i’s preferences

Apply the function to the items
and determine j’s rank

Knowledge-
based

Features of items in J
+ knowledge of how
these items meet a
user’s needs

A description of i’s
needs or interests

Inter a match between j and i’s
needs

Table 1.1: Taxonomy of recommender systems according to [Bur02]

This taxonomy enables the authors to discuss the merits and weaknesses of the
different techniques, as reproduced in Table 1.2.

What we wish to highlight from this taxonomy is that not all recommender
systems leverage machine learning; and that the relevance of different approaches
depends on available data, objectives and domain knowledge.

Hybrid recommender systems, which combine the recommendation logic of the
different types of recommender systems described, strive to leverage the strengths
of these different approaches. [Bur02] provide a taxonomy of these hybridation
approaches, reproduced (up to minor changes) in Table 1.3.

For job recommendation, the taxonomy enables us to sharply contrast the col-
laborative filtering (leveraging ratings only) and utility-based / knowledge-based
(leveraging only features and expert knowledge, without any learning) approaches
from other ones. However, in many job recommendation settings, we observe some
ratings (at least for past users), some user demographics and item features, all of
which are relevant for generating recommendations. Thus, most common machine-
learning based approaches attempt to leverage all three sources, and fall into the
categories of demographic, content, and /or collaborative filtering-based hybrids.
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Technique Pluses Minuses

Collaborative
filtering

A) Can identify cross-genre
niches; B) Domain knowledge
not needed; C) Adaptive (quality
improves over time); D) Implicit
feedback sufficient

I) New user ramp-up problem; J)
New item ramp-up problem; K)
“Grey sheep" problem; L) Qual-
ity dependent on large historical
dataset; M) Stability vs plastic-
ity problem

Content-based B, C, D I, L, M

Demographic A, B, C I, K, L, M; N) Must gather de-
mographic information

Utility-based

E) No ramp-up required; F) Sen-
sitive to changes of preference;
G) Can include non-product fea-
tures

O) User must input utility func-
tion; P) Suggestion ability static
(does not learn)

Knowledge-
based

E, F, G, H) Can map from user
needs to products

P, Q) Knowledge engineering re-
quired

Table 1.2: Tradeoffs between recommender systems by [Bur02]

Hybridation method Description
Weighted Combine scores / votes of several RS to produce a single recommendation list
Switching Switch between RS depending on situation / context
Mixed Present recommendations from several RS at the same time

Feature combination
Features from different RS data sources (e.g. demographics augmented with
descriptions of users’ past clicks) are thrown into a single recommendation
algorithm

Cascade One RS refines the recommendations given by another
Feature augmentation Use output of a RS as an input for another
Meta-level The model learned by a RS is used as input to another

Table 1.3: Taxonomy of hybrid methods by [Bur02]
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1.1.3 Common approaches and architectures

After mentioning the links between recommender systems and learning to rank,
this section reviews prominent approaches to recommendation based on collabora-
tive filtering and contextual information before briefly discussing strategies used in
practice to ensure scalability.

Recommendation and learning to rank In essence, recommendation is a
learning to rank (LTR) problem [Liu09; Bur10]: what matters is not predicted
values at the pair level, but the rankings provided to users, and especially the top
of these rankings. Since ranking quality measures (e.g. recall or NDCG) are not
trivial to optimize directly, one typically turns to auxiliary learning problems. Dif-
ferent flavors of learning to rank exist, set up as different learning problems for a
scoring function s(i, j) aimed at ranking items. In the pointwise approach to LTR,
recommendation is viewed as a missing value prediction problem: among unseen
pairs, what would be the ones with highest predicted ratings s(i, j) if presented to
the users? Pointwise LTR attempts to predict the relevance of item j for user i by
predicting whether Mij is equal to one given user and items, hence learning a scoring
function s(i, j) such that L(s(i, j),mij) is low, with L a loss function (e.g. binary
cross-entropy, mean squared error). This simply follows the so-called probability
ranking principle in information retrieval [Rob77]: documents should be ranked in
order of the probability of relevance or usefulness. In the pairwise approach to LTR,
one attempts to predict whether item j ranked higher than item j′ for user i. For
instance, one may learn s to approximate P(Mij > Mij′) by σ(s(i, j)−s(i, j′)) where
σ is the logistic CDF, using a binary cross entropy loss (see e.g. RankNet [Bur+05]
as an example). Various learning methods, losses (contrastive, triplet, margin), and
insights from (deep) metric learning (see [Kul13; BHS22; KB19] for reviews of met-
ric learning, and for instance [ML10; Hsi+17] for applications to recommendation)
can be leveraged in the same spirit. In the listwise approach to LTR [Cao+07],
one directly tries to optimize the value of evaluation measures (e.g. NDCG) on all
queries of the training data. As of the writing of this thesis, the pointwise and
pairwise LTR approaches still seem the most prevalent in practice for recommender
systems.

Collaborative filtering We define collaborative filtering in the narrow sense of
recommender systems that only rely on ratings Mij to carry out recommendations.
For training purposes, we will focus on one-class recommendation setting - that is,
filling in Mij = 0 when it is not known if i viewed j in the past -, since it is the
most relevant to the labor market setting. Indeed, it is likely that a job that a
user applied to (or that is a user’s future position) is more relevant than a job ad
selected purely at random.

The simplest collaborative filtering methods are memory-based, or neighborhood-
based ones:

• Item-based: if you liked item j, recommend item j′ because item j is “close"
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to item j′. Rankings are then based on predicted scores

sij =

∑
j′ sim(j′, j)Mi,j′∑

j′ |sim(j′, j)|1{Mi,j′ > 0}

where sim(j′, j) is a similarity measure between two items j and j′. A typical
choice for sim(j′, j) is the cosine similarity: in the binary case, the number of
users who clicked on both j and j′, normalized by the product of the square
roots of the number of clicks on both job ads.

• User-based: you will like item j because users “like you" (in the sense of having
clicked on similar items as you) also liked item j

sij =

∑
i′ sim(i, i′)Mi′,j∑

i′ |sim(i, i′)|1{Mi′,j > 0}

where sim(i, i′) is a similarity measure between i and i′.

One can also consider model-based approaches to collaborative filtering, i.e. attempt
to model Mij based on observed ratings. Singular Value Decomposition (SVD) type
approaches resort to a learning problem of the type:

min
luser,litem

∑
(i,j)∈I×J

(Mij − (luser
i )T litemj )2 + λ(||luser||2 + ||litem||2) (1.1)

where luser and litem are latent, low-dimension vector representations of users and
items respectively, and λ > 0 is a regularization factor introduced to avoid over-
fitting. The link with SVD [Sar+00] is the following. Any n × m matrix M can
be decomposed in a singular value decomposition M = UΣV T where U ∈ Rn×n

is an orthornormal matrix (i.e. UUT = I), Σ ∈ Rn×m is rectangular diagonal
(with diagonal entries by convention sorted from high to low), and V T ∈ Rm×m is
orthornormal. A rank-r approximation of M , with r ≤ min(m,n, rank(M)), can
be proposed as

M̃ = U1:n,1:rS1:r;1:rV
T
1:r,1:m

This approximation is optimal in terms of Froebenius norm, defined for a matrix
M as ||M ||F =

√∑
i,j M

2
ij, in the sense that:

M̃ ∈ arg min
M ′,rank(M ′)≤r

||M −M ′||F

When λ = 0, a solution to the optimization problem in equation 1.1 would then be

luser = (U1:n,1:r(S1:r;1:r)
1/2), litem = ((S1:r;1:r)

1/2V T
1:r,1:m)

Variants of model-based matrix factorization approaches also include non-negative
factorization and margin factorization.

Bayesian Personalized Ranking from implicit feedback [Ren+12] instead takes
a pairwise stance, trying to rank positive pairs above missing values or viewed-but-
not-clicked interactions in a Bayesian setting.
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Neural network-based approaches generalize matrix factorization approaches to
generate and merge user and item embeddings in a learned fashion rather than
through a dot product. For instance, Neural Collaborative Filtering [He+17], taking
as input a one-hot representation of users xi ∈ {0, 1}n and items yj ∈ {0, 1}m, seeks
to predict interactions Mij through a score parametrized as

sij = f(P Txi, Q
Tyj)

where P T and QT are learnt embeddings, and f is a multi-layer feed-forward neural
network. The gains compared to matrix factorization remains under discussion
[Ren+20], and should be considered in light of added computational costs compared
to matrix factorization.

A key limit of collaborative filtering methods is their weakness in the cold start
setting: that is, when no previous interactions exist for job seekers or job ads. This
is the rule rather than the exception in a labor market setting, where interaction
history is typically rather short. The issue becomes only worse if one wishes to work
with hiring data rather than clicks or applications.

Feature-based recommendation While collaborative filtering-based methods
leveraged only interactions M , let us define feature-based recommender systems as
recommender systems that rely on user features xi and item features yj, merged
together, and perhaps provided with feature augmentation from e.g. past user and
clicks, into a joint representation zui, to generate recommendations5.

When both xi and yj are descriptions of users and items in natural language,
they may be represented in a joint embedding space in an unsupervised fashion.
For instance, one can learn a SVD on the concatenation of the multi-hot or TF-IDF
representations of resumes and job ads, and recommend to a job seeker the job ads
closest to his resume in the latent space. The issue, however, is that the recom-
mendations’ quality depends on the quality of distances in the latent space. As
emphasized by [Sch+17], job seekers and job ads “do not speak the same language".
For instance, a job announcement may read “You take in charge the physical re-
ception of the patients, the management of the planning and the patient records"
whereas a resume may read “Secretary accountant; Capture and storage of docu-
ments". Due to such differences in vocabulary, job seekers’ representations are not
guaranteed to be close to those of relevant job ads in a latent space constructed
without supervision.

More promising approaches to recommendations try to leverage both user fea-
tures and item features zij, as well as past interactions Mij, to learn a score s(zij)
by which job ads j may be ranked for a given user i. For instance, one may fit a
generalized linear model to fit past interactions Mij based on features zij (possi-
bly augmented with feature engineering), and rank job ads by predicted M̂.,j for a

5This terminology is introduced to avoid the ambiguity with respect to common definitions
in the literature. What we call feature-based recommendation amounts to what [FC21] call
content-based recommendation; yet “content-based recommendation" is defined otherwise in the
taxonomies of [Bur02] or [Agg16]. The delimitation between feature-based recommendation and
collaborative filtering remains somewhat vague: consider the extreme case discussed above where
xi = {0, 1}n, yj = {0, 1}m are one-hot representations of users and items.
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given user context. More recently, the Wide & Deep architecture [Che+16], imple-
mented at Google Play, seeks to improve on performance when user-item inputs are
sparse by leveraging deep neural networks with embeddings, learning a deep net-
work to learn user-item interactions for sparse features, while retaining a wide linear
model component to combine the benefits of memorization and generalization. The
DeepFM architecture [Guo+17] proposes an architecture combining matrix factor-
ization and deep layers to provide for both low and high order feature interactions.
Similarly (though initially proposed for pure collaborative filtering), [He+17] com-
bine MLP layers and a Generalized Matrix factorization layer (i.e. an elementwise
product of user and item embeddings) in a deep neural recommender system. In
any case, as highlighted by [Beu+18; Jay+20], the key question is how to learn good
representations of sparse features; a key intuition is that multiplicative interactions
might help in that context.

Scalability Scalability is paramount to handling real-world problems with mil-
lions of users and items. The popularity of models relying on neural or SVD-based
embeddings, asides from their performance, relies on their compatibility with ap-
proximate closest-neighbors or maximum inner product search methods [Mat+18].
A canonical structure for large-scale recommendation has thus emerged to balance
speed and efficiency: in a first stage, a “two-tower", embedding-based model selects
promising hundreds or thousands of job ads (“candidate retrieval") using (possibly
approximate) nearest neighbor search; these candidates are re-ranked in a second
stage, with a model potentially leveraging more elaborate features and architecture.

1.2 Job recommender systems

The state of the art in job recommendation has been surveyed by [FC21; DB21;
Mas+22]. Before delving into a short review of job recommendation models, it is
worth noting some challenges job recommendation entails [Mas+22]: short interac-
tions history and sparsity, and multi-faceted data on job seekers and ads, pose an
important challenge; both suitability (of a job seeker profile to a job posting) and
preferences matter in order to generate relevant recommendations (and both notions
are multi-faceted); job ads are rival goods (i.e. have capacity constraints); and job
recommendation is a high-risk domain, leading to fairness and trustworthiness con-
cerns. We shall presently focus on works focusing on efficient job recommendations
with respect to standard metrics. Aspects related to the balance of suitability and
preferences, to the rival-goods nature of job recommendation and to fairness issues
will be reviewed in Chapters 4, 6 and 7 respectively.

Knowledge-based recommender systems Also known as expert systems, these
approaches, which represent 12.7% of the published works surveyed by [FC21], gen-
erate recommendations based on expert knowledge encoded in detailed ontologies
(e.g. of jobs, skills, contracts) and measures of distance between their entities. As
a leading example, the WCC ELISE Smart Search&Match solution, which matches
job seekers and job ads based on explicit requirements (in terms of job type, wage,
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skills . . . ), is used by several national Public Employment Services (France, Flan-
ders, Germany) as well as by private actors such as Robert Half. These approaches
have undeniable merits. Since they provide job seekers (almost) exactly what they
require, their recommendations avoid the risk of utter irrelevance, which can harm
user experience and a public institution’s image. Since their data requirements are
limited to a job seeker and the job ads’ description, they are robust to cold start.
Moreover, they are often interpretable by design, and raise fewer concerns about
privacy and fairness than systems learned to reproduce past data. However, defin-
ing ontologies and relations between their entities (e.g. job similarities) requires
expertise and constant maintenance to account for a shifting labor market. Find-
ing a simple model specification that covers all possible individual situations while
remaining truthful to experts’ intuitions is extremely challenging. The approach’s
output is also extremely brittle with respect to the many input parameters that
must be manually specified, e.g. the respective weights and definition of occupa-
tion, skill, or education similarities. If the approach implements filters to avoid
showing irrelevant job ads, a risk always exist of finding no jobs at all to show to
the user.

Collaborative filtering Collaborative filtering represent 6.35% of the work sur-
veyed by [FC21]. For instance, a matrix factorization approach akin to the SVD-
based model presented above (equation 1.1), specialized to implicit ratings by
[HKV08], was implemented at the Swedish PES and studied by [LHR23]. An-
other example is Indeed’s recommender system, which - at least in 2016 - leveraged
user-to-user collaborative filtering, implemented with Apache Mahout. Graph-
based learning methods for link prediction may also be leveraged - for instance,
[Mas+23] use Conditional Network Embeddings [KLD18] as a backbone recom-
mendation method on datasets provided by VDAB (the Flemish PES) and Career-
Builder. However, the application of collaborative filtering methods remains limited
to settings where sufficiently large interaction histories are observed for users.

Feature-based recommender A large portion of the job RS literature (forming
26.98% of [FC21]’s surveyed papers, to which can be added the bulk of the 33.33%
classified as "Other types" by the authors) focuses on feature-based recommender
systems. LAJAM [Sch+17; Sch18] uses natural language inputs describing both
job seekers and job ads, and past interactions, to generate embeddings for job
seekers and job ads using a Siamese network and a contrastive loss (resulting in a
two-tower structure). Similarly, Randstad’s talent recommender [Lav21] fine tunes
embeddings of CVs using job transition history, using a multi-lingual bi-encoder
BERT model. CareerBuilder’s recommender system [Zha+21] fuses embeddings for
CVs from raw text (learned on applications), skills parsed from raw CV text (based
on job transitions and skill co-occurrences, leveraging a job-skill interaction graph),
as well as location for candidate retrieval in a two-tower structure, leveraging further
contextual features in a re-ranking stage.

Due to a focus on settings when interactions are sparse and cold start is prevalent
(as the France Travail data which will be presented in Chapter 2), our proposed
approach, Muse, takes the form of a feature-based recommender. As [Zha+21],
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Table 1.4: Examples of different recommender systems

References Setting Knowledge-based Collaborative Fil-
tering Feature-based Target variable

WCC Elise National PESs,
Robert Half x

[LHR23] Swedish PES x Clicks
[Zha+21] CareerBuilder x Applications

[Shi+22] LinkedIn x x Applications,
“save"

[VYP17a] Xing challenge x x Mainly impres-
sions, clicks

[Ma+22] Indeed x x x Clicks, Applica-
tions

its closest neighbor in the literature, Muse adopts fused embeddings for candi-
date retrieval, with a more flexible representation of geographic information. In the
re-ranking stage, instead of a linear specification, Muse leverages a flexible archi-
tecture incorporating multiplicative interactions, and combines information from
applications and hires in its learning process.

Hybrids Hybrid job recommender systems leverage characteristics of several of
the previously described approaches. Since both contextual information and col-
laborative filtering data are often available, hybrids between feature-based recom-
mendation and collaborative filtering are especially prevalent. The approach of the
RecSys 2016 challenge winners [Xia+16] relied on an ensemble of boosted trees and
Hawkes processes, with a feature engineering strategy including both content and
behaviorial information. Similarly, the RecSys 2017 challenge winners [VYP17a]
predict positive interaction using boosted tree ensembles, leveraging user and item
features as well as pair-wise features comparing ranked job ads to those with which
the job seeker interacted in the past. LinkedIn’s recommender system predicts
matches using a large-scale generalized linear model, adding personalization by the
inclusion of individual-level and recruiter-level fixed effects when sufficient inter-
actions exists [Zha+16; Ozc+19; Shi+22]. Dropoutnet [VYP17b], used as bench-
mark in Chapter 3, propose a general, simple methodology for the hybridization of
content-based recommendation and collaborative filtering to handle cold start. The
method assumes a collaborative filtering (e.g. SVD-based) recommender system is
available in the warm start case. The Dropoutnet architecture maps content and
collaborative filtering in the same latent space, using dropout to learn the content-
based latent to reconstruct the collaborative filtering latent, enabling generalization
when the collaborative filtering input is missing. Various more complex hybridiza-
tion strategies exist: for instance, Indeed post-filters recommendations (based on
variants of collaborative filtering) using a mixture of rules based on expert knowl-
edge and feature-based learning [Ma+22].

Reciprocal recommendation [YAÖ21] views online recruiting as a reciprocal
recommendation problem. Their approach learns a bi-objective deepFM model
[Guo+17], with two heads predicting applications and positive recruiter feedback.
The multi-objective framework enables improvements (in terms of AUC and log-
loss) for both heads compared to their standalone version, and reciprocal recom-
mendation proceeds by considering a weighted sum of the two heads’ outputs.
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Chapter 2

Data description and analysis

This section introduces the data provided by France Travail, which will be used
throughout this work. After introducing the institutional setting (section 2.1), we
will describe the data available on job seekers (section 2.2), job ads (section 2.3)
and their interactions (section 2.4), highlighting its wealth and limitations.

2.1 Institutional and geographical setting

France Travail (formerly Pôle emploi) is a French governmental agency which reg-
isters job seekers, helps them find jobs and provides them with assistance - in
particular, unemployment benefits. Pôle emploi was created in 2007 as a merger
of the ANPE, which was dedicated to counseling, and the ASSEDIC, which was in
charge of unemployment insurance. As part of its missions, France Travail collects
a wide range of information on job seekers, job ads, and labor market interactions.

In the following, we provide descriptive statistics relative to the Auvergne-
Rhône-Alpes region of France from 2019 to mid 2022, which will be the setting
of most of the present work. This focus on a single region was chosen in agreement
with France Travail to facilitate data handling and experimentation. Auvergne-
Rhône-Alpes was because of its size - with 8 million inhabitants in 2018, it is the
second largest region in France - and the variety of the territories it comprises. In-
deed, local situations range from urban centers in the Rhône department (in which
Lyon, one of the three largest cities in France, is located) to medium-sized cities
(Grenoble, Saint-Etienne, Clermont-Ferrand) and rural departments (e.g. Allier,
Cantal). In 2018, according to INSEE, the region was slightly wealthier than the
national average, with a median income of 22 480 euros (830 euros more than the
national one), hiding considerable geographic heterogeneity (from 26 000 euros in
Haute-Savoie to less than 20 600 in Allier and Cantal). The unemployment rate in
Auvergne-Rhône Alpes was slightly lower than the national average in 2019 (7.3%
against 8.4% nationally), with sizeable variation among departments (it ranges from
5.0% in Cantal to 9.3% in Ardèche and Drôme)1.

While the results presented in Chapters 3, 5 and 7 were obtained in the described
setting, those presented in Chapters 4 and 6 were obtained on different (and older)

1Source : Insee, taux de chômage localisés.
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Chapters Region Time window Size (job seekers, ads, hires) Notes

3, 5, 7 Auvergnes-Rhône-Alpes 2019-mid 2022 1.3M, 2.2M, 258k
4 Rhône-Alpes 2019 1.2M, 515k, 75k Core results: transportation & logistics
6 Ile-de-France 2019 1.6M (spells), 477k, 43k Core results: transportation & logistics
Notes: This table describes the datasets used in this work in terms of location, time window and sample sizes.

Table 2.1: Datasets

Job seekers’ administrative status Share

Immediately available, looking for full-time & indefinite duration 65.4%
Immediately available, looking for part-time & indefinite duration 8%
Immediately available, looking for definite duration job 15.8%
Looking for a job but not immediately available 4.8%
Looking for a job but already have a job 5.9%
Notes: This table describes the administrative status of job seekers in Auvergne-
Rhône-Alpes from 2019 to mid 2022 (n=1 210 854).

Table 2.2: Categories of job seekers registered at France Travail

datasets, as recapitulated in Table 2.1.

2.2 Job seekers

Scope and institutional context Job seekers may register at France Travail if
they are looking for a job, regardless of whether they currently have one. Registra-
tion is mandatory in order to receive unemployment benefits.

During the window of observation, we observe 1 210 854 unique job seekers.
Since job seekers may leave and re-enter France Travail registries, potentially chang-
ing their search parameters, job seekers will be described at the level of their em-
ployment spells - defined as a period during which they are continuously registered
at France Travail (allowing for temporary interruptions taking no longer than two
weeks). 2 027 441 such unemployment spells are observed. In the following statis-
tics, when job seekers have several unemployment spells, we describe the parameters
of the most recent spell. On average, 427k job seekers are registered on a given week.

Table 2.2 describes the administrative categories of job seekers defined in terms
of availability for starting a new job and of the type of job sought. Most job seekers
are looking for a job and are immediately available (89.2%). The remainder is
looking for a job but not immediately available, either because they already have
a job (5.9%) or for other reasons (e.g. training, sickness or maternity leave). All
job seekers will be considered for model training and evaluation: even though all of
them may not be regular users of a recommender system in production, their labor
market interactions should provide relevant data for training.

Data sources Job seekers that are immediately available and that claim unem-
ployment benefits have a legal obligation to actively look for a job, and their search
process is monitored by France Travail. When registering, they have to define with
a caseworker the parameters describing what they would consider a “reasonable em-
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ployment offer" (Offre Raisonnable d’Emploi) - that is, a job offer they would not
turn down2. Job seekers may also define secondary job search parameters (e.g. in
another location or another occupation), to help the institution provide recommen-
dations. No legal obligations are associated to these secondary search parameters.
Our main source of information on job seekers is extracted from the definition of
the “reasonable employment offer" and secondary search parameters. All of these
provide a desired occupation (in France Travail ’s ROME3 nomenclature), and re-
quirements in terms of wage, geography, contract, part or full-time status, and
number of working hours. Job seekers also provide basic socio-demographic infor-
mation about themselves to the PES when registering.

France Travail also gives job seekers the possibility to showcase themselves and
their skills on a platform (the Profil de compétences) where recruiters and casework-
ers may browse a job seeker’s profile (if it is published). Profiles on the platform
roughly correspond to online resumes: they include a “business card" (or several of
them) describing the job seeker as well as a more in-depth textual description, the
provision of past experiences, of languages the job seeker speaks, driver’s licenses he
or she holds, and of skills. Skills may be provided in natural language or as entities
in the ROME ontology, which provides a catalog of circa 12,300 standardized skills
(e.g. “welding techniques", “tax system knowledge").

Since the use of the platform is non-mandatory, missing values abound: for
instance, no “business card" exists for circa 55% of job seekers.

While textual data is sometimes available, it is often absent or low-quality, in
contrast to the rich tabular data that is systematically collected on job seekers’
administrative background and job search parameters. This situation differentiates
France Travail ’s setting from that of many online job platforms.

Descriptive statistics Tables 2.3, 2.4 and 2.5 report descriptive statistics on
job seekers’ qualifications and desired occupations, search parameters, and socio-
demographic characteristics. 38% of job seekers had achieved tertiary education
(while that was the case of 46.9% of the French population aged 25-64 in 20194).
11% of job seekers are looking for executive positions. The most represented types
of desired occupations are white-collar qualified (39%) or unqualified (18.7%) ones.
14.7% of job seekers seek jobs in retail and sales; 16.4% in “social, socio-educative
and socio-cultural action" (37% of which are personal assistance jobs, e.g. care for

2Refusing two “reasonable" job offers may render job seekers ineligible to the reception of unem-
ployment benefits. The “reasonable unemployment offer" is defined with respect to the job seekers’
professional qualifications and skills. Job seekers do not have to accept offers that are part-time if
they are looking for a full time job; nor offers with wages below the wage practiced in the region
and occupation; nor offers that are in a job that is incompatible with their qualifications and skills.
Thus, job seekers have incentives to declare job search parameters that correspond to jobs they
would actually accept, but strategic considerations also come into play: if the parameters defining
the “reasonable unemployment offer" are stringent, job seekers have more time and opportunities
of considering alternative options without the threat of losing financial support.

3Répertoire Opérationnel des Métiers et Emplois. France Travail ’s job ontology distinguishes
14 high-level sectors (e.g. “agriculture", “healthcare"), composed of 110 intermediate sectors (e.g.
“woodcutting and pruning", “medical practitioner") and 531 detailed types of jobs. Each type of
job is associated with a list of skills based on expert knowledge.

4Source: OECD France country profile of the OECD, Annex B.
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Feature Share

Highest level of education achieved

5+ years of higher education 11.9%
3 or 4 years of higher education 11.5%
2 years of higher education 14.6%
General secondary education (“baccalauréat") 24%
Vocational secondary education (“CAP / BEP") 25.5%
Lower levels of education 9.2%
Missing 3.3%

Qualification

Missing 5.2%
“Manoeuvres" 2.8%
Blue-collar, unqualified 3.9%
Blue-collar, qualified 8.7%
White-collar, unqualified 18.7%
White-collar, qualified 39%
Technician 5.9%
Blue-collar supervision 5%
Executive 11%

Desired occupation

Agriculture, green spaces, animal care 3.4%
Craftsmanship 0.8%
Banking, finance, real estate 1.5%
Retail, sales 14.7%
Communication, media and multimedia 2.3%
Construction 7.6%
Hotels, restaurants, tourism, leisure, animation 9.5%
Industry 7.7%
Installation and maintenance 3.8%
Healthcare 4.8%
Social, socio-educative and socio-cultural action 16.4%
Entertainment industry 1%
Support to firms 13.3%
Transportation and logistics 9%
Missing 4.3%
Notes: This table describes the distribution of the educational achievements, qual-
ification and desired occupations of job seekers in Auvergne-Rhône-Alpes from
2019 to mid 2022 (n=1 210 854).

Table 2.3: Job seekers: desired occupations & qualifications

the elderly or children; 15.3% teaching jobs; 14% cleaning jobs); 13.3% in “support
to firms" (among which, 36.2% for secretary or assistant jobs; 10% for IT; 10% for
accounting and management). The median wage sought is 10.89 euros, close to the
minimum wage across the 2019-2022 period. Job seekers tend to look for full-time
jobs (76.1%), indefinite duration contract (61%), and the average accepted mobility
radius is around 30 kilometers.

Pre-processing After pre-processing and one hot encoding relevant categorical
variables, job seeker - more precisely, their unemployment spells - are represented
in circa 500 dimension. 100 of these dimensions correspond to a singular value
decomposition (SVD, [Dee+90]) of a TF-IDF representation of textual data de-
scribing the job seeker (“business card", professional experiences, training, skills).
50 other dimensions correspond to another SVD performed on skills (in the ROME
ontology) provided by the job seeker in one’s skills profile, augmented by the skills
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Desired hourly wage Euros

Mean 13.32
Median 10.89

Desired contract Share

Indefinite duration 61%
Definite duration 30%
Seasonal 5.5%
Interim 4%
Other contracts 0.5%

Part or full time Share

Looking for part time job 23.9%

Accepted mobility Kilometers

Mean 29.93
Median 30
Notes: This table describes the distribution of
the desired hourly wages, contract types, and
accepted mobility of job seekers in Auvergne-
Rhône-Alpes from 2019 to mid 2022 (n=1 210
854).

Table 2.4: Job seekers: search parameters

Feature Share

Socio-demographics

Women 50.3%
Has children 41%
Sensitive Urban Area (CUCS / ZUS) 7.7%

Age (at registration) Share
Below 25 24.4%
26-40 46.8%
41-55 22.2%
55+ 6.6%

Department of residence

Rhône 25%
Isère 15.1%
Haute-Savoie 11.5%
Loire 8.5%
Ain 7.1%
Puy-de-Dôme 6.9%
Drôme 6.5%
Savoie 5.8%
Ardèche 3.8%
Allier 3.6%
Haute-Loire 2.2%
Cantal 1.4%
Other 2.6%
Notes: This table describes the distribution of
socio-demographic attributes of job seekers in
Auvergne-Rhône-Alpes from 2019 to mid 2022
(n=1 210 854).

Table 2.5: Job seekers: socio-
demographic characteristics

corresponding to job seekers’ desired occupation 5. The remaining dimensions can
be roughly classified into: i) job seekers’ qualifications; ii) job seekers’ preferences;
iii) socio-demographic variables; iv) past employment history and relationship to
the PES; v) resume elements; vi) geographic information. Table 2.6 and 2.7 describe
all job seeker features used in the algorithm in further detail.6

5Correspondences between skills and occupations are based on France Travail ’s ROME ontol-
ogy.

6This set of features was constructed by progressive enlargement based on models’ validation set
performances (with candidate features for enlargement chosen based on expert suggestions). An
economist may be surprised at the absence of features known to predict return to employment,
such as the duration of unemployment, level and duration of unemployment benefits, and the
occupations’ tightness ratio. These features required computations at the weekly or monthly level
that reduced tractability, and had no significant effect on recall. Their lack of predictive power
for job recommendation is attributed to the fact that they may act as second-order modifications
on job seekers’ interest among job ads (while they may crucially matter for the timing of finding
a job).
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Qualifications

Target job sector categorical (x14)
Target job categorical (x110)
Number of years of experience numeric
Maximum level of qualification categorical (x10)
Department categorical (x13)
Vocational training field categorical (x27)
Skills (SVD) numeric (x50)
Driving licences categorical (x22)
Number of languages spoken numeric
Means of transportation categorical (x5)
Latitude numeric
Longitude numeric

Preferences

Reservation wage (euros / hour) numeric
The job seeker is looking for a full-time job binary
Target type of contract categorical (x13)
Maximum commuting time numeric
Maximum (and Minimum) number of work hours per week numeric

Notes: This table enumerates the features describing job seekers in terms of qual-
ifications and preferences given as input to the Muse algorithm, along with their
type (numeric, categorical) and dimension. The distinction between “qualifica-
tions" and “preferences" will be used in Chapter 7.

Table 2.6: Job seeker features (1): qualifications and preferences

Socio-demographic variables

Number of children numeric
Job seeker lives in a QPV area numeric

Past employment history

Number of unemployment periods since 2018 numeric
Reason why the job seeker registered at PES categorical (x15)
Type of accompaniment received from PES categorical (x4)
Main obstacles assumed to slow return to employment categorical (x4)

Resume

Curriculum text (SVD) numeric (x100)
Number of words in the curriculum text numeric
Number of visit cards numeric
Number of sectors considered by the job seeker numeric

Geographic information

Firm density within zip code numeric
Unemployment rate within zip code numeric
Notes: This table enumerates the features describing job seekers (aside from those
relatives to qualifications and preferences, listed in Table 2.6) given as input to
the Muse algorithm, along with their type (numeric, categorical) and dimension.

Table 2.7: Job seeker features (2): other variables
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2.3 Job ads

Scope and limits of labor demand coverage Firms may post job ads on
France Travail ’s website7, which can be browsed and applied to by job seekers. 2
205 647 job ads (pooling ads from the Auvergne-Rhône-Alpes region and adjacent
French “départements") are observed from early 2019 to mid 2022. The number
of job ads available at a given point in time is much smaller (67,720 on average
a given week) than the total over the period, since job ads can be deleted if the
firm has filled the position or stopped their recruiting process, and expire after a
set duration. These job postings stem from 165 395 establishments (i.e. geographic
sites of firms).

France Travail also gathers and displays job ads from “partner" institutions,
such as large recruitment or interim firms (e.g. Adecco, Manpower, APEC). These
partner-provided job ads represent 65.6% of all ads displayed on France Travail ’s
website at the national level. Nevertheless, these partner-provided job ads will not
be used in the present study for two reasons. First, their format differs from ads
directly posted at France Travail, making standardization a sizeable challenge. Sec-
ondly, the recruitment process for those ads is managed by the partner institutions
rather than France Travail making it much harder to track associated applications
and hires. Taking those ads into consideration in the training and recommendation
process would constitute an empirically valuable extension of the present work, but
is out of the scope of the present document.

Moreover, the union of France Travail ’s job ads, and of “partner" ads does not
constitute an exhaustive inventory of all region-wide job openings. For instance,
firms may also broadcast job openings informally, on their own websites, internally
only, through third party institutions that are not “partners" of France Travail.

Descriptive statistics When posting a job ad at France Travail, recruiters fill in
rich tabular information on the advertised position. Lower (mandatory) and upper
(optional) bounds for the job’s wage are provided. Contract type and duration,
occupation, working hours, required experience, education, driver’s licences, spoken
languages are specified. Both the job ad and the recruiting firm are described in
natural language.

Table 2.8 provides descriptive statistics on job ads posted at France Travail.
67.1% of job ads contain no upfront educational requirements (either required or
desired) - although this figure leaves out requirements that are implicit or specified
in additional text. Only 13.6% of ads explicitly require higher educational achieve-
ments. The median lower bound for hourly wage, at 10.92 euros, is close to the
hourly minimum wage (the gross minimum wage was 10.03 euros in 2019 and rose
to 10.57 euros in early 2022). 48% of job ads offer indefinite duration contracts,
and 78.4% of them offer full time jobs.

7They may do so standalone, or after having been contacted by France Travail ’s firm-oriented
caseworkers, whose missions include pro-actively contacting firms to seek to answer their recruit-
ment needs. Recruiters may optionally receive France Travail ’s help in the recruitment process
for the advertised positions, e.g. for candidate selection (as evaluated in [ACG20]).
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Required education level Share

5+ years of higher education 1.6 %
3 or 4 years of higher education 4.4 %
2 years of higher education 7.6%
General secondary education (“baccalauréat") 5.8%
Vocational secondary education (“CAP / BEP") 12%
Lower levels of education 1.5 %
Missing 67.1 %

Qualification Share

“Manoeuvres" 4.2%
Blue-collar, unqualified 5.5%
Blue-collar, qualified 10.6%
White-collar, unqualified 24.4%
White-collar, qualified 37.3 %
Technician 8.9%
Blue-collar supervision 4.5%
Executive 4.5%

Occupation Share

Agriculture, green spaces, animal care 2.2%
Craftsmanship 0.2%
Banking, finance, real estate 1.6%
Retail, sales 14.6%
Communication, media and multimedia 0.6 %
Construction 9.3%
Hotels, restaurants, tourism, leisure, animation 12.3%
Industry 9.2%
Installation and maintenance 7%
Healthcare 5.9%
Social, socio-educative and socio-cultural action 17.9%
Entertainment industry 0.1%
Support to firms 10.9%
Transportation and logistics 8.1%

Wage Euros

Lower bound (hourly), mean 11.89
Lower bound (hourly), median 10.92
Upper bound (hourly), mean 13.69
Upper bound (hourly), median 12.26

Contract Type Share

CDI 48.3%
CDD 30.5%
SAI 4.6%
Interim 14.6%
Other 2%

Full-time Share

Full-time 78.4%
Notes: This table provides descriptive statistics on job ads posted
at France Travail in the Auvergne-Rhône-Alpes region and adjacent
“départements" from 2019 to mid-2022 (n= 2 205 647).

Table 2.8: Job ads: descriptive statistics
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Features

Skills SVD numeric (x50)
Text numeric (x200)
Job sector categorical (x14)
Job categorical (x110)
Contract type categorical (x12)
Weekly duration numeric
Experience numeric
Full time boolean
Soft skills categorical (x14)
Driver’s license categorical (x16)
Yearly wage (min) numeric
Yearly wage (max) numeric
Contract duration numeric
Inferred wage lower bound numeric
Pop. density within zip code numeric
Firm density within zip code numeric
Unemployment within zip code numeric
Latitude numeric
Longitude numeric
Establishment size categorical (x16)
Wage type categorical (x5)
Missing yearly wage min boolean
Missing yearly wage max boolean
Education level categorical (x11)
Type of education categorical (x20)
Hourly min wage equivalent numeric
Hourly max wage equivalent numeric

Notes: This table enumerates features representing job ads provided
as input to the Muse algorithm, along with their type (numeric,
categorical) and dimension.

Table 2.9: Job ads: features

Pre-processing After pre-processing, job ads are represented in circa 500 dimen-
sion. 200 of these dimensions correspond to an SVD on the textual description of
the job ad and firm, concatenated together. 50 dimensions correspond to an SVD
on required and desired skills (in the ROME nomenclature), as well as those as-
sociated to the occupation8. The rest of features describe the job and firm. They
include the occupation, required education, the type of contract, weekly duration,
and wage descriptors. Establishments are characterized by their size, their location,
and socio-demographic features of the location. The list of features used as inputs
to the algorithm is provided in Table 2.99.

8In fact (and as on the job seeker side), the skills SVD is learned on the concatenation of the
skills of job seekers and job ads, because they share a common nomenclature. On the other hand,
the SVDs on textual data on both sides are fitted separately on job seekers and job ads because
language varies between the two parties, as noted by [Sch+17].

9As for job seekers, this set of features was constructed by progressive enlargement based on
models’ validation set performances.
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2.4 Interactions

We now describe the labor market interactions we shall leverage, namely applica-
tions (subsection 2.4.1) and hires (subsection 2.4.2). 10 We seek to recommend job
ads rather than firms, and accordingly to define matches at job seeker - job ad dyad
level (for training and evaluation downstream).

2.4.1 Applications

Institutional background France Travail enables and logs a variety of interac-
tions between labor supply and demand. First, France Travail ’s caseworkers may:
i) recommend job ads to job seekers (if interested, job seekers may apply by them-
selves, or let the caseworker serve as an intermediary); ii) recommend job seekers
to firms; iii) pre-select job seekers for job ads which rely on the PES’s pre-selection
service11. In all three cases, caseworkers have incentives to document applications
they inter-mediated on the institution’s platform - even more so if they end up
leading to a match. Second, job seekers may spontaneously apply to job ads on the
PES’s website without any help from caseworkers. These applications may be made
through the institution’s interface, in which case they are logged. However, if job
ads display recruiters’ contact information, job seekers may contact the employer
directly without using the PES’s website to apply (they have no incentive to use
it). In that case, the application is not logged, and we have no way of knowing
with certainty if it took place at all. Third, recruiters may also directly contact
job seekers (e.g. through the skills profile described above), possibly without going
through the PES’s interface if a job seekers’ contact details are given directly in his
or her skills profile.

Descriptive statistics In the following, we will focus on inter-mediation acts
initiated by job seekers, which we will refer to as applications. We observe 1 292 694
applications involving 154 934 job seekers - i.e. 12.8% of the job seeker population.
The sparsity of applications is 2 × 10−7 at the weekly level, and 4 × 10−7 at the
aggregate level (pooling all time periods).

Differences between job seekers with applications and job seekers without ap-
plications are documented in Table 2.10. First, unsurprisingly, be it in terms of
education, desired occupation, or qualification, job seekers who apply through the
PES are less often described by missing values. Second, applicants are less often
very qualified (4 percentage points fewer have a master’s degree or PhD, 3.3 per-
centage points fewer look for executive positions); but more frequently look for
white-collar qualified jobs (9 percentage points difference). They less often search
for jobs in construction (3.5 pp less), in industry (1 pp less), and more often in
support to firms (5.8 pp more).

10Clicks on job ads, collected when a job seeker is logged in on a personal account on the PES’s
website, would also be relevant, but were not systematically available for technical reasons (except
for the year 2019), and are thus left out of the analysis (except in Chapter 4).

11Job seekers apply to these ads through the PES’s system; the caseworker then selects which
profiles are shown to the employer.
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Non-applicants (pp) Applicants (pp) Difference (pp) p-value

Education

5+ years of higher education 12.5 8.4 -4.1 0.000
3 or 4 years of higher education 11.4 11.7 0.3 0.000
2 years of higher education 14.1 18.0 3.9 0.000
General secondary education (“baccalauréat") 23.8 24.7 0.9 0.000
Vocational secondary education (CAP / BEP) 25.0 29.2 4.2 0.000
Lower levels of education 9.6 6.4 -3.2 0.000
Missing 3.5 1.5 -2.0 0.000

Job

Agriculture, green spaces, animal care 3.6 2.4 -1.2 0.000
Craftsmanship 0.8 0.6 -0.2 0.000
Banking, finance, real estate 1.5 1.3 -0.2 0.000
Retail, sales 14.4 16.1 1.7 0.000
Communication, media and multimedia 2.4 2.0 -0.4 0.000
Construction 8.1 4.5 -3.5 0.000
Hotels, restaurants, tourism, leisure, animation 9.4 9.7 0.3 0.001
Industry 7.8 6.8 -1.0 0.000
Installation and maintenance 3.8 3.5 -0.4 0.000
Healthcare 4.9 4.6 -0.2 0.000
Social, socio-educative and socio-cultural action 16.4 17.0 0.6 0.000
Entertainment industry 1.0 0.5 -0.5 0.000
Support to firms 12.5 18.4 5.8 0.000
Transportation and logistics 8.8 10.8 2.0 0.000
Missing occupation 4.6 1.8 -2.8 0.000

Qualification

Manoeuvres 2.9 2.0 -0.9 0.000
Blue-collar, unqualified 3.9 3.4 -0.5 0.000
Blue-collar, qualified 8.7 7.8 -1.0 0.000
White-collar, unqualified 18.8 18.7 -0.0 0.803
White-collar, qualified 37.8 47.1 9.3 0.000
Technician 5.8 6.3 0.5 0.000
Blue-collar supervision 4.9 5.2 0.3 0.000
Executive 11.3 8.0 -3.3 0.000
Missing qualification 5.8 1.5 -4.3 0.000

Notes: This table describes the distribution of education, desired jobs and qualifications for job seekers within
the Auvergne-Rhône-Alpes region from 2019 to mid 2022 without any logged applications (Column 1, n =
1 055 920), for those with at least one application (Column 2, n = 154 934), the difference between the two
populations for each attribute (Column 3) and the p-value of a test of equal means (Column 4).

Table 2.10: Characteristics of job seekers who apply through the PES (percentage
points)
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Contract types

Indefinite duration 50.7 %
Definite duration 37.8 %
Interim 5.9%
Other 5.6 %

Distance (km)

Mean 24.56
Median 10.06

Wages (mean, euros)
Lower bound 11.37
Upper bound 12.67

Fit measures

Geography 50.4%
Job type 26.26%
Wage 45.8%
Contract 44.6%
Duration 75.7%
Notes: This table describes ap-
plications (n=192694) in terms
of job ads’ characteristics and fit
to job seekers’ search parame-
ters.

Table 2.11: Applications: descriptive statistics

Table 2.11 provides evidence on the characteristics of the job seeker - job ad
pairs in applications. 50.7% of them are indefinite duration contracts, and 37.8%
of them definite duration contracts (CDDs). The median distance of a job ad to
a job seeker’s post code is 10.06 kilometers. Table 2.11 also proposes measures of
the adequacy of the job to job seekers’ declared parameters. The average adequacy
between job seekers’ desired job and the job ad’s occupation (at the ROME level)
is 26.26%12. Job seekers’ search parameters in terms of geography are satisfied in
only 50% of applications; job seekers also apply more than half the time to jobs
that do not match their search parameters in terms of wage and contract.

2.4.2 Hirings

Match definition Our information on hires comes from two complementary
sources. First, France Travail ’s logs of interactions may contain hiring dates when
recorded interactions are successful. Second, France Travail has access to admin-
istrative data (the Déclaration Préalable À l’Embauche, henceforth DPAE) which
record in which firm job seekers were hired in a nearly exhaustive fashion, as re-
cruiters have legal obligations to declare new hires. However, matching these hires
in firms to posted job ads is not trivial.

Based on these data sources, hires at the job seeker - job ad level are defined
in the following fashion. First, France Travail ’s interaction logs may contain non-
empty hiring dates in the case of successful interactions. These are reliable in the

12This figure should be treated as a lower bound, and is heavily dependent on the pre-processing
of job seekers’ occupations. It does not account for the fact that job seekers may look for several
jobs.
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Non-hired (pp) Hired (pp) Difference p-value

Education

5+ years of higher education 12.9 6.5 -6.4 0.000
3 or 4 years of higher education 11.6 10.5 -1.2 0.000
2 years of higher education 14.4 15.7 1.3 0.000
General secondary education (“baccalauréat") 23.4 27.3 3.9 0.000
Vocational secondary education (CAP / BEP) 24.8 29.5 4.7 0.000
Lower levels of education 9.4 8.2 -1.2 0.000
Missing 3.4 2.3 -1.2 0.000

Job

Agriculture, green spaces, animal care 3.4 2.4 -0.0 0.969
Craftsmanship 0.8 0.6 0.1 0.001
Banking, finance, real estate 1.5 1.3 -0.5 0.000
Retail, sales 14.3 16.1 2.2 0.000
Communication, media and multimedia 2.5 2.0 -0.9 0.000
Construction 7.9 4.5 -2.0 0.000
Hotels, restaurants, tourism, leisure, animation 9.2 9.7 1.5 0.000
Industry 7.7 6.8 -0.1 0.356
Installation and maintenance 3.7 3.5 0.4 0.000
Healthcare 4.7 4.6 0.5 0.000
Social, socio-educative and socio-cultural action 16.5 17.0 -0.6 0.000
Entertainment industry 1.0 0.5 -0.4 0.000
Support to firms 13.4 18.4 -0.9 0.000
Transportation and logistics 8.8 10.8 2.2 0.000
Missing occupation 4.5 1.8 -1.6 0.000

Qualification

Manoeuvres 2.8 3.0 0.2 0.000
Blue-collar, unqualified 3.8 4.2 0.4 0.000
Blue-collar, qualified 8.5 9.2 0.7 0.000
White-collar, unqualified 18.3 21.1 2.8 0.000
White-collar, qualified 38.0 44.6 6.5 0.000
Technician 5.9 5.8 -0.0 0.417
Blue-collar supervision 5.2 3.7 -1.4 0.000
Executive 11.9 5.3 -6.6 0.000
Missing qualification 5.6 3.0 -2.5 0.000

Notes: This table describes the distribution of education, desired jobs and qualifications for job seekers
within the Auvergne-Rhône-Alpes region from 2019 to mid 2022 without any hires matched to job ads in
the dataset (Column 1, n = 1 030 584), for those with at least one such hire (Column 2, n = 180 270),
the difference between the two populations for each attribute (Column 3) and the p-value of a test of equal
means (Column 4).

Table 2.12: Job seekers linked to hires on job ads posted at France Travail

sense that false positives are unlikely, but may contain false negatives (interactions
may lead to a hire without the hire appearing in the records). Second, we assume
that if a job seeker applied to a firm’s job ad, and that he or she is hired in that firm
based on the DPAE, the hire took place on that job ad. This reconstruction process
may be flawed, especially for large firms, since a job seeker may have applied to
some kind of job and have been hired on another. Third, if a firm posted a single
job ad at France Travail, and a single job seeker is hired in that firm according to
the DPAE, the hire is assumed to have taken place for the posted job ad. This
induces a bias towards hires in small firms (compared to firms posting several ads
at the PES), on top of the same disadvantages listed in the second type of match
reconstruction (amplified by the fact that nothing ensures us that the job seeker
was interested in a specific ad).

This definition process yields 285,992 hires. 38.4% of them originate from France
Travail ’s logs directly, 46.2% from the match of interaction logs and the DPAE, and
15.3% from the third assumption. The sparsity of hires is 5 × 10−8 at the weekly
level, and 10−7 at the aggregate level.

Descriptive statistics Descriptive statistics of job seekers for which we observe
hires as defined above and their matches are provided in Tables 2.12 and 2.13
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Contract types

Indefinite duration 43.5 %
Definite duration 40 %
Interim 9.7%
Other 6.8 %

Distance (km)

Mean 18.2
Median 7.9

Wages (mean, euros)
Lower bound 11.16
Upper bound 12.44

Fit measures

Geography 52%
Job type 30.5%
Wage 48.2%
Contract 41.2%
Duration 77.2%
Notes: This table describes hir-
ings in terms of job ads’ char-
acteristics and fit to job seekers’
search parameters.

Table 2.13: Hirings: descriptive statistics

respectively. Job seekers which we manage to link to hires on job ads posted at
France Travail have less often spent five years in higher education (-6.4 percentage
points), and look less often for executive positions (-6.6 percentage points), than
job seekers for which this is not the case13. 43.5% of matches linked to France
Travail job ads are indefinite duration contracts, and 40% of them definite duration
contracts (CDDs). The median distance of a job ad to a job seeker’s post code
is 7.9 kilometers. The job seekers’ desired job and the job ad’s occupation match
in 30.5% of cases14. Job seekers’ search in times of geography are satisfied roughly
half the time; they often find contracts with a duration that fits their search criteria
(77%); but their demands in terms of wages and contracts are met less than half of
times. In comparison to applications (Table 2.13), hires are less often of indefinite
duration, slightly closer geographically, and around the same average wage levels
(this should not be over-interpreted since the population of applicants and hired
job seekers differ).

Representativity Hires as defined above should not be considered representa-
tive of all matches on the labor market. They should be thought of a subset of
the French labor market involving both job seekers and firms that search for jobs

13Our interpretation is that executives or highly qualified job seekers may resort less often to
France Travail ’s services when looking for a job compared to other platforms and search channels
(as suggested by statistics on applicants in Table 2.10). Job ads posted at France Travail may also
be less relevant to them (as suggested by Table 2.8). As a result, the matches these populations
find might take place out of the scope of our data more often.

14As noted above, these figures should be treated as lower bounds, are heavily dependent on the
pre-processing of job seekers’ occupations, and do not account for the fact that job seekers may
look for several jobs.
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through France Travail, and bear the mark of the work of caseworkers. One may
contrast the observations we observe with overall hires observed in the DPAE -
which include establishments that do not use France Travail as a recruitment chan-
nel. For comparison, we can look at all hires involving jobs seekers from the sample,
from 2019 to mid-2022. 76% of job seekers (920 364 among 1 210 854) were involved
in at least one DPAE throughout the period. The hirings in the DPAE involve 2
871 848 job seeker - firm pairs - more than 10 times the number of job seeker -
job ad pairs described above. Taking the first contract between the pair by default
when several exist, we find 42.8% of these DPAE-logged contracts to be short-term
duration contracts, 31.4% to be indeterminate employment ones, and 25.7% to be
interim contracts.

Discussion: choice of the job seeker - job ad dyad level In the following,
recommender systems will be learnt at the job seeker - job ad dyad level (typically
from hires), and recommend job ads to job seekers. A justification of this choice is
in order given data limitations listed above, especially uncertainty about hires at
the job seeker - job ad dyad level. Another option would have been to learn from
job seeker - firm pairs, and recommend firms as in [Beh+22]. Such a choice would
enable a broader use of DPAE data and avoid any guesswork as to what counts as
a “hire". It also comes with important downsides: i) recommending a firm is vague
and uninformative, especially for large firms with different kind of job openings; ii)
firms may not necessarily have open positions (at France Travail and in general),
iii) their current open positions may be irrelevant for the job seeker.
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Chapter 3

The Muse algorithm

The present chapter presents our proposed contribution to cold-start, sparse recom-
mendation (section 3.1), named Muse (for “MUlti-head Sparse E-recruitment"). In
Section 3.2, the approach is validated on RecSys 2017 challenge data (for the sake
of public benchmarking), and on France Travail data.

3.1 Proposed approach

Overview Muse is a two-tiered neural architecture tailored for job recommen-
dation. The first tier, illustrated in Fig. 3.1, aims to enforce the scalability of the
approach by leveraging a “two-tower" structure. It uses the elementary descriptions
of the job seeker x and the job ad y, and computes a fast score Muse.0(x, y) based
on the dot product between their respective embeddings. This score is exploited to
rank and filter all but the top 1,000 job ads, narrowing the search for the second
tier Muse1 - illustrated in Fig. 3.2 -, enabling the use of a more expressive model
and of more intricate features1.

3.1.1 Muse.0: candidate retrieval stage

Muse.0 models three facets relevant to job recommendation, respectively concerned
with competences and skills, geographical, and general aspects. The faceted match
of job seeker x and job ad y is sought as:

s0(x, y) = ⟨ϕ0(x), ψ0(y)⟩
1In terms of its development process, Muse was developed on the France Travail dataset after

establishing a boosted tree ensemble baseline (Xgb) on the data [CG16]. Feature selection was
largely based on the impact on recall of iterative feature addition to Xgb. Muse started as a single,
standalone embedding-based model (the “general" Muse.0 module below) which under-performed
compared to Xgb. Based on inspection of the models’ errors, Xgb’s advantage seemed to be
linked to a better use of geographic information and to its use and definition of pair-level features
(which cannot be provided as inputs to a two-tower structure). These findings led to the addition
of the geographic module in Muse.0, and, due to the success of this fused-embedding strategy,
to the addition of the skills module. They also suggested the addition of second tier Muse.2 to
work around limits of the two-tower structure, enabling the architecture to take as input and learn
pair-wise elements (e.g. using multiplicative interactions) while maintaining scalability.
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Job Seeker Variables

x.geo

ϕgeo(x)

x.sk

ϕsk(x)

x.gal

ϕgal(x)

Embedding Job Seeker ϕ0(x)

Job Ads Variables

y.geo

ψgeo(y)

y.sk

ψsk(y)

y.gal

ψgal(y)

Embedding Job Ads ψ0(y)

Muse.0(x, y) =< ϕ0(x), ψ0(y) >

Figure 3.1: Muse.0 architecture: three embeddings are defined to model geograph-
ical, skills and general aspects of job seekers (left) and job ads (right), and compute
the hiring score.

x.gal ϕ0(x)

Job Seeker Variables & embedding

ϕ1(x) ϕ1(x)⊙ ψ1(x, y)

Job Ads Variables & embeddingPairwise Features

Muse.0 scores/rank

V ar(x, y)

Muse0(x, y) r.0(x, y)

y.gal ψ0(y)

ψ1(x, y)

Muse.1(x, y) = Head.1.Hiring(x, y)

Head.1.Application(x, y)

Muse.2(x, y)

Muse.2

Muse.1

Figure 3.2: Muse.1 (below dashed line) and Muse.2 architectures. Muse.2 includes
a second head to model applications, and a top head, leveraging both the standalone
hiring and the application scores to predict the overall hiring score.
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where embeddings ϕ0 and ψ0 are trained using a triplet loss [WS09]. Noting (x, y, y′)
a triplet2 made of job seeker x, their match y and another job ad y′ ̸= y,3 the loss
is defined as:

L(ϕ0, ψ0) =
∑

(x,y,y′)

[⟨ϕ0(x), (ψ0(y)− ψ0(y
′))⟩+ η]+ (3.1)

with [x]+ = max(x, 0) and η > 0 a margin factor. Intuitively, for a given triplet
x, y, y′, the minimal loss (of zero) is achieved if the score s0(x, y) associated to the
positively labeled pair is separated by a margin at least η on the real line from the
score s0(x, y′) associated to the negatively labeled pair. 4

ϕ0 and ψ0 are defined by concatenating three embeddings, respectively reflect-
ing skills, geography and general information. The separation of these aspects is
motivated by the evidence on hirings provided in section 2.4.2 (Table 2.13), which
highlights the role of geography in the matching process (a median of 7.9 kilometers
between job seekers and their future jobs), and of the importance of going beyond
the standard ROME job ontology since few job seeker - job ad pairs are exact
matches in terms of the ontology’s job definitions. The gains in separate treatment
of these aspects will be vindicated by ablation studies in Section 3.2.

The skill matching module (ϕsk, ψsk). This module takes as input the job
seekers’ and job ads’ skills sets in the ROME ontology, represented by multi-hot
encodings of dimension circa 12,3005. The job seekers’ (resp. ad’s) skill sets are
defined as the union of the skills explicitly indicated (resp. required or desired) by
the job seeker (resp. job ad), and those associated to the job seeker’s desired occu-
pations (resp. the ad’s occupation) in the ontology. Thus, the input representation
can be thought of as a joint representation of job seekers’ and ads’ jobs and skills.
Embeddings ϕsk and ψsk are learned using a triplet loss.

The geographical matching module (ϕgeo, ψgeo). This module is based on a
tiled representation of the locations, taking inspiration from kernel density estima-
tion and matrix factorization [Lia+14]. Formally, given a reference grid paving the
regional territory with points gi, the geographical representation of a job seeker

2One could also have considered sampling negative job seeker examples x′ and learning at the
level of a quadruplet x−y−y′−x′, which would be a first step towards bilateral recommendation.
However, the reverse problem of recommending job seeker profiles to recruiters is not necessarily
symmetric in practice (e.g. due to practical / legal / ethical constraints on data usage). In the
sole perspective of job recommendation, it is unclear whether such quadruplet-level training would
improve recommendations. Furthermore, symmetry between the treatment of job seekers and job
ads is broken at the re-ranking stage (Muse.2).

3y′ is uniformly sampled among the job ads available during the match week. More sophisticated
negative sampling strategies have been considered with no improvement. This is rather surprising
given common practices in the deep metric learning literature, but these findings nevertheless
align with those in [Sch18].

4Experiments using other losses, e.g. the logistic one at the pair level, were also conducted.
The choice of the loss function (among classical ones) seems to have limited impact.

5Rather than the 50-dimensional SVD embedding described in Chapter 2, which is however
provided to the general module described below.
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(resp. job ad) situated at x.geo ∈ R2 (i.e. a latitude, longitude tuple) and supplied
as input of the geographical module is set to:

G(x.geo) = {exp−ω . d(x.geo,gi)}i

with d the geodesic distance and ω > 0 controlling the granularity of the represen-
tation (the speed at which points far from gi tend to a representation of zero at gi).
The gi’s may be thought of as a way to perform “soft" encoding of post codes on a
discretized grid, in which post codes by (a transformation of) their distances to the
grid points. ψgeo is set to the identity 6, i.e. the geographic score takes the form

⟨ϕgeo([G(x.geo), x.geo]), G(y.geo)⟩

Embedding ϕgeo is learned on the top of the tiled representation using a triplet
loss. The only difference with respect to equation 3.1 lies in the negative sampling
strategy, as job ad y′ is uniformly selected among the job ads contemporary of y
and situated farther away from job seeker x.

Let us compare our approach to that of [Zha+21], which also incorporates geo-
location embeddings in a two-tower fused-embeddings candidate retrieval structure.
The authors encode latitude and longitude of ads and job seekers in their Cartesian
coordinates (in dimension 3). The dot product between the Cartesian coordinates
corresponds to an approximation of the geographic distance between the two points,
ensuring the representation’s compatibility with an inner-product based architec-
ture. Their approach has the merit of using only three dimensions to embed geog-
raphy. However, their modeling choice imposes that their model’s global scores are
partially linear in the geographic distance d(x, y), i.e. have the form

⟨ϕ0(x), ψ0(y)⟩+ wdd(x.geo, y.geo)

with wd a scalar weight. Our approach avoids this functional form assumption at
the cost of a larger embedding. Moreover, by its choice of negative sampling, this
module is also able to reflect the fact that the impact of the distance of a job seeker
to a job depends on other factors (public transportation; traffic jams) than the
distance in kilometers: it is not invariant by translation.

The general matching module (ϕgal, ψgal). The general matching module takes
as input the 500-dimensional vectors with all information related to job seekers and
job ads described in Section 2.2 and 2.3 (see in particular Tables 2.7) and 2.9).
Embeddings ϕgal and ψgal are likewise learned using a triplet loss.

The training schedule. The parameters to be trained are the neural network
weights which parametrize the embeddings, i.e. the weights of ϕsk, ϕgeo, ϕgal and
ψsk, ψgeo, ψgal. Each of the three modules is pre-trained standalone in a first phase
to provide appropriate initialization. In a second phase, all three modules are
jointly trained and fine-tuned in a second phase using stochastic gradient descent

6This choice led to improved results compared to learning an embedding for y.geo.
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with Adam [KB14]7. More details on hyper-parameters are provided in Appendix
A. Overall, Muse.0 yields a scalar matching score:

Muse.0(x, y) =
∑

m ∈{sk,geo,gal}

⟨ϕm(x), ψm(y)⟩

3.1.2 Muse.1 and Muse.2: re-ranking stage

Muse.1 As said, the Muse.0 score is used to filter the job ads considered for
each job seeker. The recall@1,000 of Muse0 is above 80%, making it possible to
only consider the top 1,000 job ads for each job seeker with a limited loss in recall.
Muse.1, refining the ordering of the top 1,000 job ads, uses more complex features
V ar(x, y) depending on both job seeker x and job ad y8, which would not be possible
for scalability reasons if all available job ads were considered, and a more elaborate
architecture.

Muse.1 takes as input the description of x and y (i.e. the inputs of Muse.0’s
General module), the crossed features V ar(x, y) and the information provided by
Muse.0 - i.e. the latent description ϕ0(x) and ψ0(y), the score Muse.0(x, y) and the
rank of y according to Muse.0(x, y). Overall, the recommendation score learned
by Muse.1 reads:

Muse.1(x, y) = MLP(ϕ(x), ψ(x, y), ϕ(x)⊙ ψ(x, y))

where MLP denotes a multi-layer perceptron, and ϕ, ψ are respectively job seeker
and job ad embeddings. The term ϕ(x)⊙ψ(x, y) enables the automated learning of
user-item interactions relevant to the recommendation problem using multiplicative
interactions in the spirit of [Guo+17]. Muse.1 is trained by minimizing a cross-
entropy loss, predicting whether a pair corresponds to a hire or not:

L =
∑

(x,y,y′)

log(Muse.1(x, y)) + log(1−Muse.1(x, y′)) (3.2)

The sampling of negative pairs is done uniformly at random among Muse.0’s top-
1000 selection. The network’s weights (i.e. those defining ϕ, ψ and the MLP) are
trained using Adam [KB14].

Muse.2 As said, a critical difficulty in the France Travail framework is the ex-
treme sparsity of the interaction matrix in the dataset (a single hire being generally
reported for the hired job seekers, and 0 for the others). In the spirit of multi-task
learning, to exploit information in application behavior that may be relevant to
predict hirings, a multi-head Muse.2 architecture is considered to enable informa-
tion sharing between the hiring and the application interaction matrices (taking the
definition of applications provided in section 2.4.1). A first head aims to predict

7While non-zero, the gains associated to this second phase are relatively limited compared to
simply concatenating the three pre-trained modules without joint training.

8Vector V ar(x, y) measures the adequacy of an (x, y) pair re the distance, skills, occupation,
education, experience, contract type, spoken languages, driving licenses and wages.
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the hirings; a second head aims to predict the applications; a third head, aimed to
predict the hirings, is learned on the top of both first and second heads, likewise
using a cross-entropy loss (Eq. 3.2)9.

3.2 Validation: experiments in silico

This section’s goal is to comparatively assess the performance of Muse in terms
of both performance and inference time. The single head (Muse.1) and the multi-
head (Muse.2) architectures are compared and the impact of the different modules
is assessed using ablation studies.

3.2.1 Experimental settings

Datasets

Xing As said, one of the datasets most relevant to job recommendation was pro-
vided by the social network Xing for the ACM Recsys 2017 challenge10. It involves
1.5M job seekers, 1.3M jobs and 30M interactions, recorded from Nov. 2016 to Jan.
2017 in Germany, Austria and Switzerland. As said, the source dataset was no
longer made available on the competition’s platform at the time of the writing of
this work. Accordingly, we rely on a pre-processed version of the data distributed
by [VYP17b]. After thorough anonymization and pre-processing carried out by
the competition organizers and/or [VYP17b], job seekers and job ads are repre-
sented in the provided data as vectors of dimension respectively 831 and 2,738.
The interaction matrix reports 6 levels of interaction, 4 of which (click, bookmark,
reply, recruited) are treated as “hiring". The fifth level (impressions) is treated as
“applying" and used for the Muse.2 training.

The Muse.0 architecture is not applicable as is on the RecSys dataset, since the
geographical information and specific skill-related features can not be distinguished
among the unnamed features11. Accordingly, the Muse.0 architecture assessed on
the RecSys dataset only includes the general module. The Muse.1 architecture is
trained from the only "hiring" interactions. The multi-head Muse.2 architecture
is trained end-to-end from the “hiring" interactions (first head and top head) and
from the “application" interactions (second head).

The same training/test split procedures followed in [VYP17b] are used, includ-
ing: i) a warm start scenario (426K interaction pairs), where users and items in-
volved in the test set are also present in the training set; ii) a user cold-start scenario

9Recombining the two heads in final layers yielded slightly improved performances compared
to a shared architecture with two separate heads (standard for multi-task learning), and from
simply pooling applications and hirings in the Muse.1 architecture.

10http://www.recsyschallenge.com/2017/
11[VYP17b] also provide pre-trained latent matrix factorization vectors (which they procede to

use as part of the input provided to their proposed algorithm, DropoutNet for training). These
may provide relevant behavioral information, and information on localization as a job seeker might
tend to interact with nearby job ads. Nevertheless, we do not adapt Muse to use these latent
vectors as input or additional sources of information, as similar-quality latent vectors cannot be
constructed in the main France Travail setting of interest.
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(159K pairs) where 42,153 test users have no interactions in the training set. The
difference in sparsity with the France Travail data (10−5 for interactions on the Xing
dataset, against 10−7 for applications and 10−8 at the hirings level in France Travail
data) is worth highlighting. While we report results in the warm start scenario for
the sake of completeness, the results in cold start are of primary interest, since this
is the case Muse aims to address.

France Travail The France Travail data has been described above (Chapter 2).
Weeks are split between train and test in 85%-15% proportions. The measure of
performance is the recall@k, computed on hires. Ranking is done at the weekly
level (i.e. among job ads available the week of the match).

Baselines

On the France Travail data, the machine learning baseline used for comparison is an
ensemble of boosted trees [CG16], inspired by [VYP17a], winner of the Recsys 2017
challenge. It will be denoted Xgb in the following. On the France Travail data,
Xgb is provided with the description input of the general Muse.0 module (x.gal
and y.gal) plus the cross-features V ar(x, y) also used by Muse.1 and Muse.2 for
a fair comparison12.

The baseline on the Xing dataset is DropoutNet [VYP17b] (described in Section
1.2), that exploits both the job seeker and job ad description and their latent de-
scription extracted from the interaction matrix. Other algorithms, e.g. [Zha+21],
that heavily rely on textual and geographical information, do not apply on the
considered datasets13.

3.2.2 Results

The reported computational times are obtained on Intel(R) Xeon(R) Silver 4214Y
CPU @ 2.20GHz, with 187 GB RAM and a Tesla T4 GPU. Experiments on the
France Travail dataset are conducted on a secure platform. More detail about the
experiments is provided in Supplementary Material (Appendix A).

The results report the recall indicator and the computational time. Significantly
best results (with 95% confidence with respect to the second best result) are denoted
“*” in all tables.

The RecSys dataset

Table 3.1 reports the recall@100 and computational time of DropoutNet and the
Muse algorithms14 along the two considered scenarios (warm and user cold start).

12Since the original Xing challenge data (and online test set) are no longer available, and that
features are not named in the [VYP17b] version of the Xing dataset, we are unable to reproduce
[VYP17a] on the Xing dataset directly.

13We do not assess [VYP17b] on the France Travail data due to its emphasis on warm start on
a section of the training data.

14Recsys experiments replication code is provided at https://gitlab.com/solal.nathan/vadore_ijcai.
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Table 3.1: Comparative results of Muse and DropoutNet on the RecSys dataset:
recall@100, overall training time and recommendation time per job seeker (in sec-
onds).

Recall@100 DropoutNet Muse.0 Muse.1 Muse.2
Warm start 41.2* 19.1 26.3 25.8

User cold-start 23.1 17.4 24.2* 24.4*
Training time >10h 2.7h 1.25h 8.3h

Recom. per j.s. 0.001” 0.002” 0.013” 0.016”

The warm start recommendation scenario considers test job ads and job seekers
present in the training set, allowing DropoutNet to directly exploit the pre-trained
matrix factorization of the collaborative filtering matrix, referred to as CF-based rep-
resentation. As noted by [VYP17b], taking the scalar product of the job seeker and
job ad representations in the CF-based representation even outperforms Dropout-
Net in warm-start mode (recall@100=42.6%). In warm-start mode, DropoutNet
very significantly outperforms all Muse variants, while Muse.1 notably improves
on Muse.0. This performance gap between Muse and DropoutNet is attributed to
the fact that Muse does not use the CF-based representation as input.

In the user-cold scenario, DropoutNet proceeds by gearing together content-
based embeddings called content-based representation trained to predict the score,
as well as a reconstruction of the CF-based representation based on user content.

As could have been expected, the recall@100 in the cold-start scenario is de-
graded compared to the warm-start one. The gap is very significant for DropoutNet
(from 41% to 23%) and less so for Muse (from 26% to 24% for Muse.2).

The significant improvement of Muse.1 compared to Muse.0 in both scenarios
is explained from the fact that Muse.1 builds upon the pre-selection of the top
1,000 job ads enabled by Muse.0 (the recall@1,000 of Muse.0 is 87%). This filter
allows for a refined negative sampling in training mode, selecting job ads y′ better
suited on average to the job seeker x than random job ads. In inference mode, the
filtering of the top 1,000 candidate job ads is key to the low computational cost.

Interestingly, Muse.1 and Muse.2 slightly but statistically significantly outper-
form DropoutNet in user cold-start mode. A tentative interpretation for this fact
is that both Muse.1 and Muse.2 exploit the score and rank associated with a pair
(x, y) by Muse.0: this information expectedly gives some hint into the global struc-
ture of the job market, though in the perspective of the job seeker only. Further
work will investigate the use of a better exploitation of the Muse.0 output, e.g.
considering also the rank of x for y based on Muse.0(x, y).

The fact that Muse.2 does not improve on Muse.1 suggests that the RecSys
“application" matrix (gathering only the “impression" interactions) does not yield
a sufficiently diversified information about the job seekers’ preferences compared to
the “hiring" matrix (gathering all other interactions).
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Experimental results on the France Travail data

Table 3.2 reports the recall@{10, 20, 100, 1000} and computational time of Xgb and
Muse on the France Travail dataset.

Validation w.r.t. Xgb The main finding is that all Muse variants but Muse.0
significantly outperform Xgb wrt recall@10, 20 and 100, with an inference runtime
lesser by two orders of magnitude.

Impact of the two-tier structure These good performances in both terms of
recall and runtime are explained from the filter built on the top of the Muse.0
score. On one hand, the recall@1000 of Muse.0 is circa 82%, upper bounding by
construction the recalls of Muse.1 and Muse.2 (though not in a significantly detri-
mental way). On the other hand, the filter based on the Muse.0 score contributes
to the quality of the learned model, re the description of the data and the algorithm
itself. At the level of the description of the (x, y) pairs, the filter enables to consider
the expensive V ar(x, y) features (reminding that these features are also provided
to Xgb for a fair comparison). At the level of the algorithm and the learning tra-
jectory, the filter also contributes to a more educated negative sampling, as job ads
y′ are now selected among the top 1,000 jobs suited to x.

Muse.1 significantly improves on Muse.0 for all recall indicators. It performs on
par with the first head of Muse.2 (also trained to predict the hiring interactions).
Note that the second head of Muse.2 (trained to predict hiring and application
interactions alike) is only slightly outperformed by the first head of Muse.2 re-
garding its recall on the hiring interactions (recall@10 = 28.4, vs 29.1 for the first
head). The key result is that the top head of Muse.2 (built on the top of the first
and second head and trained to predict the hiring interactions) manages to improve
on Muse.1 by about 2 percentage points for all recall levels regarding the hiring
interactions. A tentative interpretation for this improvement is that the internal
representation (shared by both heads of Muse.2) is more representative of the job
seekers and job ads than that of Muse.1, since it leverages multi-tasking to learn
from more data. Muse.2 also improves (in terms of recall on hires) compared to
Muse.1.Applications, which corresponds to using the single-head Muse.0 structure
but pooling both hires and applications for learning.

Table 3.2: Comparative results of Muse and Xgb on the PES dataset:
recall@{10, 20, 100, 1000}, overall training time and recommendation time per job
seeker (in seconds).

Recall@ Xgb Muse.0 Muse.1 Muse.1.Applications Muse.2
10 26.83 22.88 28.3 28.0 30.1*
20 35.59 31.55 38.0 37.8 40.2*
100 58.88 53.80 61.7 62.1 63.2*
1000 86.47* 82.13 - - -
Train. 1.83h 7.7h 8.3’ 38’ 1.25h
Recom. 1.4” 0.0004” 0.018" 0.018” 0.02”
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Muse.0 ablation studies The merits of the Muse.0 architecture are further
investigated using ablation studies, aimed to determine the contribution of a stan-
dalone module (geographical, skills, general) to the recall performance (Table 3.3,
left). The complementarity of the modules is also examined by removing a single
module from the overall architecture (Table 3.3, center: all modules but one).

These results confirm the importance of the geographical module (standalone
recall@100 circa 15%; loss in recall@100 circa 14% when omitted). The skills mod-
ule has a lesser impact (standalone recall@100 circa 4%; loss in recall@100 circa 2%
when omitted). More surprising is the impact of the general module (standalone
recall@100 circa 34%; loss in recall@100 circa 7% when omitted). Its standalone
performance suggests that it contains a larger share of the data information com-
pared to the other modules. On the other hand, the moderate loss suffered when
removing the general module suggests that this information is partially redundant
with that of the other modules (note that the skill module also has access to the
occupational profile of job seekers/job ads). Finally, the overall performance of
Muse.0 (recall@100 = 53.8) is close to the sum of the performances of its modules
(15.43 + 34.79 + 4.80 = 55.02), demonstrating their complementarity.

Table 3.3: Muse.0: Impact of the three geographical, skills and general modules on
the recall@100 through ablation studies. Left: module standalone. Right: Muse.0
without this module.

Single module All modules but one Muse.0 (all modules)
Geo Gal Sk Geo Gal Sk

R@100 15.43 34.79 4.80 39.97 47.28 51.96 53.80

Heterogeneity in terms of recall Tables describing the recall@10’s heterogene-
ity broken down by selected subgroups are provided in Appendix B.

At the job seeker level, the most educated job seekers (five years or more years
of educational achievements) have a significantly lower recall than the overall pop-
ulation (23.5 compared to a population mean of 30.4). Similar findings hold for the
job seekers’ level of qualification: the recall@10 for executives is 22.6.

At the pair level, the algorithm’s performance is better for matches that are
close geographically than for those farther away (for instance, the recall is 47.75
when a job seekers’ future workplace is in same zip code, 39.7 when it is less than
5 kilometers away, against 30.4 on average). Pairs in the same occupation (at the
level of the ROME nomenclature of granularity 14) are also easier to correctly rank
than those that aren’t (42.9 and 16.89 recall@10 respectively).

These differences could be interpreted in terms of the intrinsic difficulty of the
recommendation problem: ensuring high recall on a population of job seekers who
find jobs in a narrow geographic and occupation radius is easier than for job seek-
ers who are mobile and less predictable in terms of occupation choice. Another
interpretation could be in terms of statistical biases: in that case, algorithmic de-
velopment reweighing minority classes, or tailored to some sub-populations, may be
able to improve on a one-size-fit-all algorithm.
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These results shouldn’t be over-interpreted, as they do not fully answer the main
question of interest - identifying for whom the algorithm performs best or worse.
First, because recall (on hires) is not necessarily an ideal measure for algorithm
performance (as will be discussed in Chapter 4), and because this quantity can only
be assessed on job seekers who have been hired (who differ from the population of
job seekers as a whole, as described in Section 2, Table 2.12). Second, even though
one’s future job may not be ranked first, the ads ranked above said job could also be
relevant. Thus, we can not fully conclude by comparing two populations in terms
of recall that the algorithm is less relevant for a population than another, since
recommendation relevance also depends on the size of the pool of relevant job ads
for a category of job seekers.

3.3 Partial conclusion

This chapter described Muse, an algorithmic approach to cold-start recommenda-
tion, and bench-marked it in terms of an offline metric of interest (the recall@k on
hires) with respect to the state of the art. These results will be complemented by
the results of field experiments collecting Muse’s assessment by job seekers (Chap-
ter 5). Using Muse variants as a backbone, we will proceed to question whether
the training objectives and metrics used here where the right ones - in terms of
value alignment with job seekers’ interests (Chapter 4), of accounting for conges-
tion (Chapter 6), and discuss some underlying fairness issues (Chapter 7). Before
moving on to these topics, beyond the input data limitations in the France Tra-
vail setting noted in Chapter 2 (the main ones being: not using “partner offers";
selection bias when training from hires; representativity of hires used for training
compared to the global labor market; lack of access to clicks), let us discuss some
perspectives for further work to improve on Muse.

First comes the issue of scaling the model nation-wide: should this be done
using separate region-wide models, pooling all nation-wide data for training, or
might intermediate architectures enabling domain adaptation and multi-tasking be
relevant?

Second, it is unclear whether a “one-model-fits-all" approach as adopted here
can deliver appropriate results for all kinds of job seekers. Job seekers with differ-
ent backgrounds may be sensitive to different aspects of jobs, such as geographic
proximity compared to close fit to one’s own profile and qualifications. [Sch+17]
contrasted the models learnt from two datasets, one relative to PhD graduates and
another relative to job seekers with lower qualification, showing for instance that
geographic distance played a different role. While the Muse architecture formally
enables a different weighting of different fit aspects for different job seekers’ profiles,
alternative architectures - such as a a divide-and-conquer approach, or using higher-
level interactions and multiplicative architectures - may yield further improvements
in that regard.

Third, due to the availability of quality tabular data while text quality on job
seekers’ side greatly varied, the modeling of textual information in our architecture
was minimal (a TF-IDF followed by singular value decomposition plugged in among
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other input features). Advances in natural language processing could be leveraged
to improve different stages of the recommendation process (improved representa-
tion of textual data, missing data completion based on textual complements, skill
extraction, generating fit assessments of job seeker - job ad pairs for Muse.2).

Fourth, due to data limitations, Muse was not tailored to account for other
sources of data which, if available, might greatly enrich recommendations - for
instance, using job seekers’ previous clicks, which would call for the use of collabo-
rative filtering elements in Muse (and adaptations for the cold start case).

Finally, the Muse architecture does not take into account how issuing relevant
individual recommendations might depend on labor market context (the pool of
available job ads and of other job seekers). Listwise rather than pair-wise LTR
models, graph-based models or reciprocal recommendation approaches might be
appropriate to tackle this challenge.
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Part II: Job recommendation beyond
accuracy
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Chapter 4

Value alignment

So far, we have taken for granted the target metric for algorithm evaluation (the
recall@k measured on hires in Chapter 3). Yet, this choice of target for the learning
process may be questioned, in the broader context of the variety of algorithms
deployed by PESs [Bro23; Gut+19] or proposed in the machine learning literature
[FC21; DB21; Mas+22]. These ML algorithms are adapted to different observational
contexts, and often primarily aim to predict the success of a match (the likelihood of
a click on an ad, applying for a job, of being hired). Regardless of the specific goal,
the core objective remains the same: establishing a measure of closeness between
job openings and job seekers. Job recommendations are based on identifying the
ads that are the best match in some sense for each individual.

In this chapter, we address three main questions. First, we examine the vari-
ability of results generated by different recommendation algorithms. Are the job
rankings produced by these algorithms similar? How important are the differ-
ences? If significant variations exist, our second question concerns the goal that
these algorithms should aim to optimize: what objective best aligns with that of
job seekers1? Our third question centers on identifying the needs of job seekers an
algorithm should meet. Should it replicate job seekers’ behavior, enabling them to
carry out searches more efficiently than they could themselves, or should it uncover
relevant job opportunities that job seekers might overlook [BKM19; Alt+22]?

We address the first questions by a study of two algorithms. The first is an
expert system emphasizing the fit between job seekers’ search parameters and job
ads, measured by a matching score denoted U ranging from 0 (no search criteria met)
to 1 (all search criteria met). The other one is a machine learning algorithm that
predicts hirings based on job seekers’ and job ads’ characteristics (more precisely,
the Muse.0 algorithm presented in Chapter 3). We first show that this algorithm’s
predicted scores are indeed related to an applicant’s chances of being hired, and
calibrate it into a hiring probability P . For each job seeker i, we identify the best
ads according to U and to P , along with their respective scores or probabilities.
The differences are striking. For more than half of the job seekers, their top-U ad
has a P-rank over 381; conversely, the top-P ads’ U -ranks are greater than 3093 for

1Our discussion will focus on alignment with job seekers’ objectives. Note that the labor market
is a multi-stakeholder setting where the interests of other social groups or institutions (recruiters,
a PES, society) may not necessarily align with those of individual job seekers.
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more than half of the population. Moreover, the chances of being hired with the
top-U ads (1.5% on average across job seekers) are much lower than the chances of
being hired with the top-P ads (6%). Similarly, the best job ads in terms of hiring
opportunities are often less aligned with search criteria (median U scores of less than
0.5 for the top-P ads, compared to almost 1 for the top-U). In essence, the rankings
differ significantly, emphasizing that they each capture different dimensions of the
search process.

The observed differences underscore the importance of thinking about the ideal
goals that these algorithms should optimize. To address this second question we
construct a straightforward theoretical model of a job seeker’s application behavior
incorporating concepts from [CS06; HHA10; GS21]. In this model, the expected
utility plays a central role, encompassing two essential dimensions: the job’s utility
(U) and the application’s success probability (p). The model distinguishes between
an application’s probability of success “as perceived by the job seeker" and its true
success probability. It reveals that the actual success probability depends on the
job seeker’s utility and the match’s value to the firm. There is no inherent reason
to assume that the perceived and true success probabilities of an application are
the same.

Different recommender systems can be positioned in relation to this expected
utility objective. Algorithms focusing on matching job ad characteristics with search
parameters, such as the expert systems used by several national PESs, primarily
consider the utility a job seeker would derive from a job opening. Algorithms based
on hiring prediction primarily emphasize just one of the two fundamental compo-
nents of expected utility. Meanwhile, algorithms centered on job applications align
with expected utility as perceived by job seekers, approaching objective expected
utility only if job seekers accurately estimate their hiring probabilities.

Our second empirical finding supports the application decision implied by our
model, confirming that both job utility (U) and the likelihood of being hired (p)
contribute to the decision to apply for a job. We analyze job postings that job
seekers chose to apply to among the ones they initially clicked on, and our results
indicate that both U and P have a significant impact on this decision. This finding
is crucial as it underscores that relying solely on one of the two algorithms would
overlook an essential aspect of the decision-making process. It reinforces the idea
that effective algorithms should be grounded in a representation of job seeker pref-
erences and behaviors. Currently, both algorithms, based on U and P , are guided
primarily by data or available statistical methods, but they lack a representation of
search behavior.

Our third question concerns the job seekers’ needs that a recommendation al-
gorithm should address. The literature suggests two underlying ideas. First, an
algorithm can efficiently identify relevant job openings that a job seeker might
have uncovered on their own, lowering search costs [LHR23]. Second, it can help
job seekers discover job opportunities they might otherwise miss [BKM19; BKM22;
Alt+22]. Identifying a relevant job posting involves assessing whether the job aligns
with the seeker’s preferences and the likelihood of a successful application. These
evaluations demand effort and determine the number of job applications. The first
idea implies that the algorithm’s role is to reduce these costs for job seekers, en-
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couraging them to apply to more positions. The second idea acknowledges that
assessing key variables associated with job openings can be challenging, especially
in estimating application success probabilities, corresponding in our model to real
and perceived success probabilities. Job seekers may make errors in choosing which
jobs to apply to, particularly concerning their chances of success [CK20]. This is
consistent with the economic literature on job search, suggesting that there are of-
ten overlooked job postings in related fields. In this context, the algorithm’s role
is to broaden the search to include relevant job openings that job seekers may not
have explored.

Our third empirical finding explores job seekers’ needs by comparing recom-
mended job ads with their actual applications, revealing substantial heterogeneity.
While some job seekers widen their search beyond initial choices to improve success
chances, many have yet to explore the full range of possibilities. We also evalu-
ate the potential benefits of the best recommendations from different recommender
systems (based on P , U , or their product PU) compared to where job seekers ac-
tually apply. This highlights substantial but highly heterogeneous gains across the
population. However, gains relative to actual applications using the P or U criteria
are sometimes associated with losses relative to the symmetric criterion (U or P).
This is not the case when using expected utility (PU) as the guiding principle. In
this context, recommender systems prove valuable in helping job seekers uncover
and recognize relevant opportunities they might otherwise miss.

In summary, our study underscores the importance of identifying essential quan-
tities in creating a high-performance algorithm, specifically job utility (U) and the
likelihood of a successful application (p). The latter should be derived from avail-
able data, a task that ML tools excel at, especially in predicting job application
success. However, identifying job utility is challenging due to the lack of direct
observation.

Another prerequisite involves understanding how job seekers assess their hiring
prospects. Our findings reveal that recommender systems can help fulfill the need
for discovering new opportunities, addressing the challenge job seekers face in ac-
curately assessing key parameters describing job openings. Replicating observed
job seeker behavior, such as their applications for jobs, may inadvertently replicate
their errors.

Related literature This paper relates different strands of the economics litera-
ture. The first, in the context of online job search [KM14; Kir22], is related to the
impact of recommendations on frictions in the labor market. Several studies show
that (automatic) suggestions designed to extend job seekers’ search perimeter to
alternative occupations have an effect on interviews [BKM19; LRB20] and future
job outcomes [BKM22; Alt+22; Beh+22]. However, some find only modest effects
[LHR23]. Our contribution in this respect is to study a realistic ML algorithm rely-
ing on extensive data. One key insight of our analysis is that recommender systems
often focus on a precise objective - typically improving the chances of a match -
which may differ from the job seekers’ objectives. This disconnection between the
two can result in substantial losses, as some individuals may focus their search on
vacancies far from their preferences following the recommendations. Additionally,
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our analysis stresses the importance of accounting for behavioral aspects of job
search [Bab+12; CK20; Alt+18], such as biased expectations of the chances of suc-
cess of different strategies and/or perceptions of the market [MST21; MS23]. In an
experiment, [Fie+23] show that lowering users’ psychological cost of initiating job
applications has a strong effect on applications. These psychological costs might
prevent job seekers from applying to high-return vacancies. The paper is also re-
lated to the importance of preferences for various job attributes and how ignoring
their heterogeneity can lead to frictions [MP17; BC22; FNO22]. By questioning
how an algorithm’s objectives align with its end users’, our enquiry is inspired and
tied to literature on the so-called value misalignment problem in economics and
computer science [ZH20; KMR23; Kas24].

4.1 Two job recommender systems

Our sample contains job seekers registered at France Travail and the available job
ads on the PES’s website in the former French Rhône-Alpes region from ISO weeks
1 to 48 of 2019. The number of unique job seeker search sessions (resp. job ads) is
1,181,902 (resp. 516,776); on average, 610,986 job seekers (resp. 129,642 job ads) are
active a given week. We observe 75,744 matches (hires) in the data. Observations
from week 1 to 43 of 2019 are used as a training set (representing 66,914 matches);
while weeks 44 to 48 (representing 8,830 matches) are used as a test set.

Denote by M∗
i,j ∈ {0, 1} the latent variable which takes value 1 when there is

a match for a pair job seeker-firm (i, j), conditional on i having applied to j. The
observed hiring dummy between i and j is Mi,j = M∗

i,jAi,j, where Ai,j = 1 if job
seeker i applied to job posting j, and 0 otherwise.2

Definition of P The backbone algorithm for hire prediction is (a slightly older
version of) Muse.0, using features described in Appendix C.1. The model’s perfor-
mance on a test set achieved a recall@100 of 57.5. Inspired by [Che+18]’s approach,
we also check whether the algorithm’s predictions Si,j can predict hiring, by check-
ing whether P(Mi,j = 1|Si,j, Ai,j = 1) ̸= P(Mi,j = 1|Ai,j = 1). We study the history
of applications made by job seekers to vacancies, viewing the chronologically or-
dered sequence for an individual i0, 1(i0), 2(i0), . . . , jmax(i0) as a sequential search
model and analyzing it as a discrete duration model (see, e.g. [TS16]), where we
model the hazard rate as a known, assumed logistic3, transformation Λ of the score

P
(
Mi,j(i) = 1|Mi,1(i) = 0, . . . ,Mi,j−1(i) = 0

)
= Λ(αr(i,j(i)) + βSi,j(i)), (4.1)

where r(i, j) is the rank of the vacancy j among the set of applications, and S =
(Si,1(i), . . . , Si,jmax(i)) denotes the sequence of scores of the job ads.

2This sample also contains clicks on job postings and applications. The latter are not used for
the training of Muse.0, but later for the calibration of the hiring probability and the empirical
validation of model (4.6) in Section 4.3.

3The logistic form is a strong assumption given that the triplet ranking loss used to train
Muse.0 (equation 3.1) does not guarantee that scores are comparable between job seekers.
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Under strong assumptions (see Appendix C.2), including selection on observables
and the score being a sufficient statistic, we can interpret probability p(i, j) =
P (Mi,j = 1 |Si,j, Ai,j = 1) as P(M∗

i,j = 1|Si,j). Bearing in mind that the purpose
of the score is solely to rank job postings for each job seeker, such a procedure
transforms it into a hiring probability (while maintaining identical rankings).

The estimated coefficient of β, of value 0.061, is significantly positive at the
1% level. This finding is robust to the different specifications including application
and interview ranks effects (resp. 0.038 and 0.047) (see Table 4.1). Overall, this
validates the content of the Muse.0 score Si,j in terms of its potential to reflect
the hiring chances. From now on, we only consider the transformation of the score
P(i, j) := Λ(0.061 Si,j − 4.113), which is a signal on the hiring probability p(i, j).

Table 4.1: Estimates of the calibration model parameters

Method (1) (2)

Score Si,j 0.061* 0.038*

With application rank No Yes

AIC 28,040 25,116

Notes: On a half of the job seekers present in the
test sample (weeks 44-48 of 2019): 79,097 applica-
tions, 3,469 matches, 34,255 job seekers. Signifi-
cance levels: 1% : ∗. A robustness check including
dummies for the ranking of the application j in
the list of applications of job seeker i is provided.

Definition of U France Travail has developed a matching algorithm based on
WCC Elise (see [Gut+19]), which is used to suggest relevant vacancies to job seekers.
Each criterion is associated with a weight wk and the final matching score is the
weighted sum of each single fit between the criteria of applicants and the job ad’s
content (each fit measure ck(i, j) takes values between 0 and 1). The score used
at the PES involves some nonlinearities ignored here for simplicity. The simplified
version we use is:

U(i, j) =
K∑
k=1

wk∑K
k=1wk

ck(i, j), (4.2)

where the set of weights {wk}k=1,...,K , presented in Table 4.2, is the same for the
whole population.4 The weights are determined by expert knowledge but the score’s
relevance to the description of job seekers’ utility will be verified empirically in the
following (Section 4.3).

4[Fie+23] also use a similar specification and characteristics to evaluate the value of a vacancy
from the point of view of job seekers, see their Table 3 for details.
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Criterion Given weight wk

Occupation 1000
Skills in occupation 1000
Geographic mobility 300
Reservation wage 200
Diploma 100
Working hours 100
Driving license 100
Languages 100
Years of experience in occupation 100
Duration and type of contract 10

Table 4.2: Weights defining U

4.2 Do the two recommender systems recommend
similar job ads?

For the sake of tractability, we further restrict the sample and focus hereafter on the
subsample of job seekers and ads whose main sector is transportation and logistic
in the former French Rhône-Alpes region from ISO weeks 44 to 48 of 2019. This
sector contains 60,299 job seekers and 18,873 job openings. We will refer to the
P(i, j)-based rankings of job ads as P-rankings or hire-based rankings, and, those
based on U as U-rankings or preference-based rankings.

Firstly, we investigate the proximity of the P- and U -rankings, revealing sub-
stantial differences. Secondly, focusing on the quantitative dimension of the scores,
we show the best recommendations according to the U and P rankings would yield
substantially different U and P scores, underscoring the quantitative relevance of
these ranking differences in terms of outcomes.

Rankings rP and rU are very different. We compare for each job seeker i the
optimal ad based on the P-ranking, denoted jP(i), and the optimal job ad following
the U -ranking, denoted by jU(i). We first compare the respective ranks of these
optimal ads: the rank of jP(i) in the U -ranking: rU(i, jP(i)), and symmetrically the
rank of jU(i) in the P -ranking: rP(i, jU(i)). Figure 4.1(a) shows the distribution of
these ranks. Top-U and top-P ads match only for a small minority of job seekers.
For most, the ranks considered are very large. The median of rU(i, jP(i)) is 381
(top 2%) and that of rP(i, jU(i)) is 3,093 (top 16%). The two rankings are thus
substantially different.

Differences in U and P scores between top-P and top-U job ads Fig-
ure 4.1(b) shows the distribution of the hiring probabilities for the two job ads:
P(i, jP(i)) and P(i, jU(i)) along with their difference. The median value of the
maximum hiring probability for each individual P(i, jP(i)) is 0.06, sharply con-
trasting with the hiring probability for the optimal ad according to the adequacy
criterion (0.015). The difference between the hiring probabilities is substantial, with
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(a) Distributions of the ranks of the best recommendations

(b) Distributions of hiring probabilities

(c) Distributions of preference score

Notes: 60,299 job seekers whose main sector is transportation and logistic (Rhône-Alpes region,
ISO weeks 44-48 of 2019). 18,873 job ads are available at that period in this sector. Upper panel :
Distributions of the ranks of the best P and U recommendations in each other’s rankings. The
bunch at the right gathers top-P ads ranked after 18,800 according to U as they have a preference
score of 0. Middle panels: Histograms of the hiring probabilities for the best recommendations
in both systems. Lower panels: Histograms of the preference score for best recommendations in
both systems.

Figure 4.1: Comparison of the best recommendations in the two rankings: ranks,
hiring probabilities, and preference score

a median value of 0.04. Although the probability of hiring from the best ad in the
P-ranking is higher than the probability of hiring from the U -ranking, it is worth
noting that this probability in absolute terms is not so high; we will come back
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to this when we shall study the job ads to which job seekers apply. Even more
pronounced differences arise in the matching scores U(i, jU(i)) and U(i, jP(i)). As
shown in Figure 4.1(c), the distribution U(i, jU(i)) has a substantial mass at 1 (me-
dian 0.98), indicating that for many job seekers there are ads that meet all their
criteria. Conversely, for the optimal job ad according to the hiring probability,
there is a significant mass at zero (median 0.46). Figure 4.1 thus shows that a
switch from jU(i) to jP(i) would be likely to improve job-finding chances substan-
tially, but might compromise the suitability of the job concerning the job seeker’s
preferences.

4.3 Does a recommendation algorithm dominate the
other regarding job seekers’ objective?

The important question is whether these algorithms, designed to nail different ob-
jectives, align with the job seekers’ (JS) objectives, a problem known as value mis-
alignment. To investigate this question, we consider a simple model of job seekers’
application behavior derived from [HHA10].

The model has two stages. In the first stage, job seekers identify vacancies
and decide to apply. There are two sources of imperfect information about the
job: 1) job seekers do not know whether the job is the right one for them, and 2)
they do not know whether they are a good fit for the company. In the second stage,
more information is revealed during interviews, with job seekers selecting from their
applied vacancies and companies choosing from the received applications.

This section outlines the main features of the model and its first stage, and the
following section describes the second stage.

A matching model with an application stage Consider a market of I job
seekers and J firms of observed types x ∈ X and y ∈ Y .5 Let the utility of a job
seeker i of type x (resp. a firm j of type y) who is hired at a firm j of type y (resp.
who hires a job seeker i of type x) be

Ui,j = Ũ(x, y) + wx,y + εi,y, (4.3)

Vi,j = Ṽ (x, y)− wx,y + ηx,j, (4.4)

where Ũ(x, y) and Ṽ (x, y) are the nontransferable parts of the utility depending
only on observable types, wx,y is the wage posted by a firm of type y for a candidate
of type x, and εi,y (resp. ηx,j) is a mean-zero idiosyncratic taste shock of candidate
i for firms of type y (resp. of firm j for a candidate of type x).6 To simplify the
notations, we note U(x, y) = Ũ(x, y) + wx,y and V (x, y) = Ṽ (x, y)− wx,y.7

5These types should be denoted xi and yj respectively, but we remove the subscripts for ease
of notation.

6In general, this error term would depend on the index j of the firm and not only on its observed
type y, but similarly to, e.g., [CS16; Gal18], we make this restriction for simplicity.

7We normalize the outside options respectively to εi,0 and η0,j .
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To model the frictions arising from the application step, we assume that job
seekers have ex-ante imperfect information about the utilities (4.3)-(4.4). Informa-
tion about εi,y and ηx,j becomes available only after applying. Additionally, job
seekers’ expectations include irrelevant information δi,y about job posting of type
y.8 Job seekers’ information set I1 is generated by x, y, and δi,y. We assume for
simplicity that we are in a large market, i.e., that there are infinitely many jobs of
type y and profiles of type x.

We consider a process in two stages, starting with a Stage 1 where job seekers
decide the types y of job openings they apply to. They incur a cost c to apply for
a job and a cost r if there is in fine no match, encompassing psychological costs.
The fact that i applied for a job at j is denoted by Ai,j = 1. Job seeker i of type
x applies for the job in firm j of type y if its expected utility is greater than its
reservation utility Ux,0 that he or she gets if there is no match:

E(Ui,j|I1) ≥ Ux,0. (4.5)

The decision to apply is based on weighing the gains incurred in case of a hire
against the costs of applying plus the costs of rejection or refusing the offer in the
end. The set Ci ⊆ Y denotes the types of job ads job seeker i considers in Stage 1.

We consider applications decisions in Stage 1 as independent across vacancies -
see Appendix C.3 for sufficient conditions on δi,y ensuring this is the case. In this
context, using (4.5) and E(Ui,j|I1,M∗

i,j = 1) = U(x, y)+ δi,y, the first stage decision
rule is:

ψ(x, y) := U(x, y)− Ux,0 + r − c+ r

π(x, y)
≥ −δi,y, (4.6)

where π(x, y) is the subjective hiring probability perceived by the job seeker. Let
us discuss the latter now.

Subjective probabilities π(x, y) may diverge from objective ones p(x, y) if job
seekers do not hold rational expectations, i.e., have expectations that systematically
differ from the realized outcomes and do not efficiently use the available information.
Despite this, equation (4.6) highlights that there are two key factors entering the
decision to apply, one related to the utility of the job U(x, y) and one related to
the probability of the match π(x, y). Thus in this model they both matter for job
seeker’s application behavior.

Our interpretation of the two algorithms of Section 4.2 is that they both actually
capture distinct parts of relevant information. In equation (4.2), U(i, j) is a signal
about U(x, y) and P(i, j) in equation (4.1) can be interpreted as a signal about the
hiring probability, thus also connected to π(x, y).9,10

8Alternatively, one can view δi,y as an error in the decision to apply in (4.6).
9Although we maintain this interpretation of U and P in the sequel, we might consider more

broadly that U = U(U, p) and P = P(U, p). The important point is that U and p both matter,
and that U and P represent two different combinations of them. The following section 4.4 will
shed more light on the difference between U and p.

10In section 4.4, about stage 2 of the model, we derive the true expression of the hiring probability
p(x, y) and discuss its link with π(x, y).
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Do P and U truly matter for job seekers? We want to test whether the latter
interpretation about the information contained in U and P is consistent with the
application behavior described in equation (4.6).

To assess this, we consider the set of vacancies on which job-seekers have clicked
and estimate a logit model with fixed effects for the binary decision of applying to
a job opening. The model takes the form, based on (4.6):11

P (Ai,j = 1 |clicki,j = 1, ck(i, j),P(i, j), Xi, Yj, fi ) = Λ

(
α

K∑
k=1

γkck(i, j)−
β

P(i, j)
+ fi

)
,

(4.7)

where fi is an individual fixed effect. We first consider fixed (γk)
K
k=1 and α is

estimated. While we do this for γk = wk

/∑
l wl with either wk chosen by the PES

or uniform wk, these fixed γk naturally raises questions about their relevance and
their ability to truly reflect the preferences of job seekers.12 Using the available
data on applications we thus also estimate these weights. In such a case (γk)

K
k=1

are estimated and α = 1 (see, e.g., [HHA10; CHL23] for similar estimation in the
context of the marriage market).

The estimation results are displayed in Table 4.3. The application probabilities
increase with the utility score U(i, j) and decrease with the inverse of the hiring
probability P(i, j). This confirms that U and P capture different dimensions of the
search process13, and suggests that relying on either U or P alone would miss part of
the decision process and deviate from job seekers’ objectives. It prompts questions
about the best use of U(i, j) and P(i, j). What is the relevant objective to train a
recommender system? What about training an algorithm which would identify va-
cancies job seekers apply to, thereby reproducing their behavior? Addressing these
questions hinges on establishing the link between the perceived hiring probability
π(x, y) and the true hiring probability p(x, y) that we now focus on.

4.4 Should recommender systems reproduce job seek-
ers’ behavior?

Up to this point, we have not explicitly addressed the informational content of the
perceived hiring probability. In this section, we close the previous model to derive
the form of the hiring probabilities, and discuss the implications of potential dispar-
ities between perceived and actual probabilities. Our model has the following Stage
2. We consider that some information about the tastes of both sides is revealed dur-
ing the interview. Then, the matching is based on the maximization of the utilities
of both parties, conditional on the first stage interview. Job seeker i maximizes his
or her utility over the set of vacancies Ci they applied for: maxy∈Ci {U(x, y) + εi,y}.

11See equation (9) in [HHA10] or [LRR21].
12An ongoing experiment [Ban+22] consists in amending such weighting of the preferences to

substitute values chosen by the job seekers themselves.
13We emphasize in Section 4.2 that both U and P cannot be considered as two noisy measures

of the same underlying score.
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Table 4.3: Estimates of the model of application on job ads

Estimate Std. error Estimate Std. error Estimate Std. error Estimate Std. error

Utility score U(i, j) (α) 1.180∗∗ 0.155
Unif. Utility score U(i, j) (α) 0.883∗∗ 0.137
Sector occupation -0.068 0.170
Occupation 0.693∗∗ 0.199 0.626∗∗ 0.104
Skills 0.190† 0.114 0.191† 0.114
Reservation wage 0.254∗∗ 0.082 0.255∗∗ 0.082
Languages -0.011 0.229 -0.011 0.229
Experience in occ. -1.086∗∗ 0.340 -1.086∗∗ 0.340
Diploma 0.304∗ 0.119 0.305∗ 0.119
Driving license 0.111 0.097 0.110 0.097
Geographic mobility 0.666∗∗ 0.216 0.669∗∗ 0.215
Duration 0.146 0.098 0.146 0.098
Type of contract 0.015 0.068 0.015 0.068
Inverse of P(i, j) (β) -0.030∗∗ 0.004 -0.031∗∗ 0.004 -0.028∗∗ 0.004 -0.028∗∗ 0.004

Avg. indiv. Fixed effects -1.342 -1.372 -1.357 -1.355

Nb. observations 17,865 17,865 17,865 17,865

Estimation of equation (4.7) modeling applications as a fixed effect logit model
Notes: Our sample is the set of all applications for job seekers in the transportation and logistic sector during week 44 of 2019, leading to a hiring or
not. Fixed effect estimation keeps 70,557 observations for 8,105 job seekers, and 869 of them applying at least once. Thus, 17865 observations are kept for
estimation. Estimation of results for a logit panel without individual fixed effects are available in Appendix C.4. Results are robust to the different negative
sampling strategies we considered. Significance levels: < 1% : ∗∗, < 5% : ∗, < 10% : †.

Firm j of type y chooses an offer among the set of types x of workers for which its
type is maximizing their utility: maxx∈X {V (x, y) + ηj,x}.

The structural form of the hiring probability. Under further standard as-
sumptions on the distributions of εi,· and η·,j, one can derive a closed form expression
for the hiring probability p(x, y). This expression is similar to the seminal one in
[CS06] and [GS21],14

p(x, y) = pf,0(y)e
V (x,y)︸ ︷︷ ︸

Probability y selects x

pjs,0(x)e
U(x,y)︸ ︷︷ ︸

Probability x selects y

, (4.8)

where pf,0(y) = 1/(1 +
∑

x′∈X e
V (x′,y)) and pjs,0(x) = 1/(1 +

∑
y′∈Y e

U(x,y′)) are the
probabilities that a firm of type y and a job seeker of type x prefer to remain
unmatched. The matches that occur depend on the utility U of the job for the job
seekers and the value of the hire V for the firm. Moreover, the probability of hiring
is directly related to the total surplus via formula (4.8).

There are thus two sources of uncertainty explaining p and π. The first is that
job seekers have to assess the utility that they would get on the job, which might be
well performed. The more important one, implying that p and π might be different,
is due to the fact that job seekers have to assess Vij, i.e, how one’s profile will be
valued by the firm.

Biased job seekers’ perceptions about their chances to be hired on some va-
cancy π(x, y) ̸= p(x, y) entering in (4.6) may distort their applications. There
might be under and over estimation of the hiring probability. An underestima-
tion of the chances of recruitment π(x, y) < p(x, y), may lead to exclusion errors,
where job seekers discard ads y on which they consider have low selection chances

14See Lemma C.3.1 in Appendix C.3 which provides the exact form of this hiring probability.

66



ψ(x, y)+ δi,y < 0, whereas these chances are in fact sufficiently high for a profitable
application: ψ̃(x, y) + δi,y ≥ 0 (ψ̃ is the analogue of ψ replacing π with p). On the
other hand, an overestimation of the chances of recruitment π(x, y) > p(x, y) may
result in inclusion errors, where job seekers apply to ads on which they consider
have sufficient selection chances ψ(x, y) + δi,y ≥ 0 whereas the actual chances are
low, making an application unprofitable ψ̃(x, y) + δi,y < 0.

This means that job seekers might overlook or incorrectly select relevant job
opportunities. Consequently, replicating job seeker behavior would reproduce these
inclusion and exclusion errors. Conversely, learning from past hirings generates
information on the hiring chances p for a given position. If well designed, such a
recommender system could assist job seekers in discovering relevant job opportu-
nities beyond their typical search area. For instance, based on p(i, j) and Ui,j one
might consider the expected utility p(i, j)Ui,j and rank job ads based on such a
criterion rather than p(i, j) or Ui,j.

Exploration or reproduction of job seeker’s behavior? In this section, the
focus broadens to the positions job seekers apply to. We consider a simple counting
exercise: for each job seeker we examine the number of job postings with a higher
score than the actual observed applications according to different recommendation
algorithms. Let us stick with the two previous algorithms based on P and U , and
add a third one, reflecting the expected utility. It is obtained simply by considering
the product PU . This last ranking of job ads has the interest of being built from P
and U and being close to the objective of job seekers, while avoiding the replication
of their behavior and potential mistakes.

Table 4.4 presents the results, organized into several panels. The upper panel
contains the quantiles of the numbers of existing vacancies with a higher score
than where job seekers apply when considering each direction of exploration. The
intermediate panel provides some features of the distribution of the different scores
over the application set. In the lower part of the table, we consider the distribution
of relative gains according to P (column 1), U (column 2), and PU (column 3)
related to exploration in each of the dimensions P (upper panel), U (middle panel),
and PU (lower panel).15

The main result is that, for each criterion, there are significant gains associated
with exploration, but with notable heterogeneity. A segment of the population
has numerous unexplored opportunities. For instance, concerning the expected
utility criterion, for 25% of the population, there are at least 984 ads that would
score higher than those the job seekers are currently applying for, while 25% have
less than 17 such ads. This implies that some job seekers are already thoroughly
exploring existing opportunities, while many have untapped possibilities. Similar
patterns are observed for rankings based on P and U , and it is noteworthy that,
for the ranking based on U , the opportunities seem even more abundant.

Unexplored job postings offer substantial gains compared to current applica-
tions. In the last panel, for example, gains in expected utility when searching in

15The information in the different columns is approximately linked by
(1+col1)x(1+col2)=(1+col3).
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Table 4.4: Recommender systems’ ability to identify better job ads compared to
application set.

Job ads with better

Applications Matching
probability (P) Utility (U) Expected

Utility (PU)
than the application with best

P U PU

Nb. (quantile 0.75) 2 437 5,124 984
Nb. (median) 1 86 1,465 139
Nb. (quantile 0.25) 1 17 304 17

Applications
Maximum 0.044 0.399 0.018
Average 0.042 0.342 0.015
Minimum 0.040 0.332 0.013

Distribution of maximum gains from exploration among JS
according to the three different criteria

Quantiles of percentage change wrt. applications

Exploration according to P
Q25 20.8 -20.0 -3.3
Median 39.6 -62.3 -47.4
Q75 65.5 177.8 359.8

Exploration according to U
Q25 4.1 55.0 61.3
Median -81.1 138.1 -55.1
Q75 -60.7 258.0 40.7

Exploration according to PU
Q25 3.5 49.4 54.7
Median 60.6 44.8 132.5
Q75 40.3 219.8 348.5

Notes: All quantities are defined at the job seeker level and then we report the median over the
population of job seekers on our sample of applications for job seekers in the transportation and logistic
sector during week 44 of 2019, leading to a hiring or not. This represents 9,965 applications and 5,252
job seekers. We consider the set of all 138,237 ads available this week. The recall on this subsample is
respectively 33.89%, 54.93%, and 6.33% for the rankings based on P(i, j)U(i, j), P(i, j), and U(i, j).

this direction would be at least 348.5% for 25% of job seekers and at least 54.7%
for 75% of job seekers.

Another noteworthy result is that when searching in the directions of P and
U , gains are observed in both P and U , but instances exist where gains in one
dimension coincide with losses in the other, diminishing gains in expected utility.
Note that recommendations from algorithms akin to those in [BKM19] or [Alt+22]
can be seen as having the same spirit as exploration according to P .

This exercise thus provides suggestive evidence of the idea that some job seekers
are missing out on numerous job openings that would significantly increase their
expected utility. Consequently, replicating the job seekers’ search behavior would
result in reproducing their appraisal errors. Such a recommender system would,
therefore, overlook many ads that would be objectively relevant from the job seeker’s
perspective. Figure 4.2 provides a visual illustration of these findings: it represents
the jobs considered by two job seekers in a utility-probability plane and shows the
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impact of different recommender systems (U , P , and PU) on their job selections.

Note: These are two job seekers of the logistic and transportation sector and their search behavior in week
44 of 2019. Black points are available job ads and red ones are the two job seekers’ applications. The dark
blue line represents the Top-50 cut-off corresponding to the hiring probability of the 50th best ad in the
P-ranking. The green line represents the Top-50 cut-off corresponding to the U-rankings. The light blue
line corresponds to PU = W , where W is the expected utility of the 50th best ad in the ranking according
to the expected utility (“EU-recom").

Figure 4.2: Representation of the different selections between recommender systems and
actual search behavior for two job seekers

4.5 Partial conclusion

Recommendation algorithms are rapidly gaining popularity, and many PES are
planning to adopt them in the near future [Bro23]. However, there are various
approaches to designing these systems [FC21], each following different paths and
constraints, all rooted in training algorithms based on past observations to predict
future matches, applications, or clicks. In this chapter, we explore the economic
aspects of such algorithms, highlighting challenges in recommending jobs to job
seekers.

Our main findings highlight that these algorithms, represented by two ideal
cases, pursue objectives partially aligned with job seekers’ goals, recommending
substantially different vacancies. They rely on scores capturing fundamental as-
pects of job seekers’ selection behavior, specifically job utility (U ↔ U) and recruit-
ment chances (P ↔ p). Consequently, an algorithm exclusively focused on U or P
would overlook valuable information for job seekers, a conclusion supported by our
empirical analysis.

Our contribution underscores potentially important gains in exploring new op-
portunities in each direction (U , P , and PU), although these gains are very het-
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erogeneous across job seekers. Our analysis reveals that for a large share of job
seekers, there is a significant number of jobs with higher expected utility (PU) than
the ones where job seekers apply and that the gains in expected utility would be
quite substantial.

Consequently, designing a recommendation algorithm should be based on an
objective that is close to that of job seekers, while avoiding the replication of their
potentially biased behavior. Possible solutions include leveraging ML tools to iden-
tify the fundamental parameters P and U and constructing sets of recommendations
from these two scores. Another option is to predict Ui,jMi,j, which would identify
the expected utility, rather than Mi,j alone, which identifies the hiring probability.
A crucial step involves determining job-related utility (Ui,j), while limiting mis-
specification. However, this step is complex as there is no straightforward way to
quantify job-related utility, unlike for the recruitment Mi,j.
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Chapter 5

Field experiments

As discussed in Chapter 1, assessing recommender systems “in the lab" (in terms
of metrics such as recall) has limits. For instance, the recall (on hires) can only be
computed on the population of job seekers who found a job in the past; even on this
population, how this metric relates to job seekers’ actual objectives is less than clear
(as discussed in Chapter 4). This section describes the organization and results of
two field experiments1 , conducted in March 2022 and June 2023 (section 5.1 and
5.2 respectively). These randomized control trials aimed to assess the reception
of Muse’s recommendations by job seekers, as well as to answer questions about
optimal communication around job recommendations2. Leaving a complete study
of the trials’ implications in terms of communication and value alignment for further
work, the present chapter aims to present preliminary results relative to Muse’s
assessed relevance.

5.1 March 2022 field experiment

The first experiment, conducted in March 2022, set to answer several questions.
First, are Muse’s algorithmic recommendations relevant to job seekers? Recom-
mender systems trained from past hires may not provide suitable job recommenda-
tion in the perspective of a PES. In particular, recommending a job too far from
the job seeker’s desires and profile might be considered offensive.3 Moreover, the
margins of improvement related to pursuing the development of ML tools rather
than expert systems should be carefully assessed. Despite potential advantages,
developing ML tools is a costly endeavor with drawbacks in terms of the traceabil-
ity and interpretability of recommendations. A second concern is related to the
value alignment issues discussed in Chapter 4. Are recommendations from different
algorithmic sources assessed differently by job seekers in terms of fit to their search

1Both experiments were approved by the Institutional Review Board of the Paris School of Eco-
nomics (PSE), and registered at the American Economic Association’s Registry for Randomized
Control Trials (https://doi.org/10.1257/rct.8998-1.3).

2Both interventions contained additional treatment arms providing complementary information
about algorithms and job ads’ rankings, which will not be discussed in the present chapter.

3The issue of People With Disabilities is particularly critical. Note however that the type of
disability is unavailable for training or post-processing due to regulation policies.
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and hiring probabilities? Could the combination of recommendations trained from
hires, and proxies for job seekers’ utility, improve on either of these recommendation
algorithms standalone?

5.1.1 Experiment design

Algorithms The first algorithm considered is Muse.0, which at the time of the
experiment was the best Muse version in terms of recall@k on hires. A second con-
sidered algorithm is a preference-based system (Pbs) inspired from the proprietary
France Travail expert system. Pbs computes a weighted sum of criteria4 measuring
the adequacy between the job seeker’s preferences and profile, and the job ad, using
the same weights as the proprietary France Travail system 5. Pbs was used as the
actual France Travail system was not accessible on a large scale at the time for
technical reasons.

We also consider algorithms, denoted Mix hereafter, that seek to select recom-
mendations at the Pareto frontier between the two systems, while seeking to work
with ordinal quantities (ranks) rather than cardinal ones (scores). At a high level6,
Mix proceeds as follows: i) select a consideration set of job ads that are ranked
highly by Pbs, Muse.0, or both; ii) among this consideration set, select the top
ones according to Muse.0; iii) reorder these by Pbs score. The key hyperparameter
to the approach is the share of job ads that are not discarded in step ii), determin-
ing how close the top Mix ads are to Pbs and Muse.0 original recommendations.
Three versions of Mix are considered, where respectively a quarter (Mix-1/4), half
(Mix-1/2), or three quarters (Mix-3/4) of the consideration set in i) is discarded at
step ii). In other words, Mix-1/4 is closer to pure Muse.0 recommendations than
Mix-3/4, which is in turn closer to Pbs recommendations.

The recommendation policies based on Pbs and Muse.0 significantly differ: the
top-1 job ad recommended by Muse.0 is included in the top-10 recommendations
of Pbs for only circa 15% of the job seekers; it does not appear among the top-100
recommendations of Pbs for circa 64% of the job seekers.

Treatment groups Job seekers are randomly assigned to five treatment groups,
corresponding to assignment to one of the five algorithms: Pbs, Muse.0, Mix-1/4,
Mix-1/2, and Mix-3/4.

Surveyed population The eligible population are job seekers registered at France
Travail in the Auvergne-Rhône-Alpes region, of administrative category A (i.e.
available for a job and looking for one), aged over 18 years old, and having given
the PES the permission to contact them. Randomization was stratified by desired

4Working hours, reservation wage, geographic mobility, type of contract; skills, diploma, lan-
guages, experience, and driver’s license.

5More details are provided in Appendix D.1.1. Note in particular that in comparison to the
criteria-based algorithm U studied in Chapter 4, the algorithm has a “filtering" behavior with
respect to geographic distance.

6See Appendix D.1.1 for further details.
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job type (14 modalities), the kind of accompaniment by the institution (3 modali-
ties describing the job seeker’s degree of autonomy), and geographic location (level
of a French département, 12 modalities).

Survey protocol Job seekers are sent an email inviting them to complete a sur-
vey7. A link provided in the email directs them to the survey’s cover page. The
cover page provides them information on the survey’s goals, as well as assurance
that the information collected will be used for research purposes and have no impact
on their treatment by France Travail.

If they accept those terms, job seekers are first shown two job ads (their assigned
algorithm’s top-2). Job ads are characterised by the firm, working conditions, wage,
workplace (and distance), experience, experience, educational requirements, driver’s
licence requirements, and an overview of the job’s and firm’s textual description.
Job seekers are asked to rate the two job ads (out of ten, on a continuous slider) in
terms of i) global relevance, ii) their perception of their chances of being recruited,
and iii) fit to their job search criteria. They may also optionally provide comments
in natural language.

After rating the two job ads (which is mandatory to proceed in the survey),
job seekers visualize a final page displaying ten job ads (their assigned algorithm’s
top-10, including the two previously seen ones). Job seekers do not have to rate ads
on this page. They may click on the ads to view them on France Travail ’s website
(which provides further details on the ads, and allows job seekers to apply if they
wish to). Clicks of job seekers on the ads are recorded.

Data The survey enables us to collect ratings and clicks, which we are able to
merge with background information on job seekers gathered by the PES (as de-
scribed in Chapter 2).

5.1.2 Analysis

In the following regression tables, three stars refer to p < 0.001, two to p < 0.01,
one to p < 0.05, and none to a higher p-value.

Randomization, responses and attrition Completion rates on the survey are
documented in Table 5.1. Altogether, 17.7% of surveyed job seekers completed the
survey (i.e. rated two job ads and accessed the last page of the survey, regardless of
whether they clicked or not on ads). The null hypothesis of equality of completion
rates in the different treatment groups is not rejected in a linear regression (reported
in the Appendix, Table D.1), leading us not to model differential attrition in terms
of survey completion in the analysis.

Results Table 5.2 displays the results, across respondents to the survey, of the
regression:

Yi = α +
∑
k

βk{Ti = k}+ ϵi

7Screenshots of the different stages of the survey are provided in Appendix D.1.2.
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N Share (%)

Survey not started 38137 75.52
Survey started but no ads rated 2813 5.57
Survey started, only ad 1 rated 624 1.23
Survey completed, no click 6431 12.74
Survey completed, at least 1 click 2490 4.93

Table 5.1: Survey completion rates - March 2022 Field Experiment

with Ti job seeker i’s received treatment, and Yi the mean ratings of the top-2 job
ads presented to job seeker i - in terms of relevance, hiring probability, and fit to job
seekers’ criteria. The Pbs treatment serves as the reference category. Table 5.3 dis-
plays the results of the same regression with Yi taken to be the number of clicks and
the probability of clicking on at least one ad among the top-10 recommendations.

Altogether, recommendations’ overall ratings do not vary much across algo-
rithms. As expected, recommendations issued by Muse, as well as the Mix vari-
ants closest to Muse, are judged by job seekers to present higher hiring probabilities
than those of the Pbs baseline. On the other hand, the assessment of Muse’s rec-
ommendations in terms of fit to job seekers’ search criteria are slightly lower than
those of Muse, albeit not in a statistically significant fashion.

Overall rating Hiring Fit to job seekers’ criteria

α 5.1630∗∗∗ 3.3569∗∗∗ 3.2768∗∗∗
(0.0595) (0.0622) (0.0628)

Muse.0 -0.0064 0.1870∗ -0.0209
(0.0837) (0.0875) (0.0883)

Mix-1/4 0.0412 0.2402∗∗ 0.1725
(0.0841) (0.0879) (0.0887)

Mix-1/2 0.0393 0.2402∗∗ 0.1206
(0.0827) (0.0864) (0.0051)

Mix-3/4 -0.0027 0.0602 -0.0162
(0.0836) (0.0874) (0.8545)

Table 5.2: Ratings (top-2 ads) - March 2022 Field Experiment

Click-through rates are rather low for all treatments - between 0.4 and 0.5 clicks
per person among the 10 recommendations. Algorithmic variants Muse.0, Mix-
1/4 and Mix-1/2 are associated with slightly improved probabilities of clicking at
least once compared to Pbs, although this effect is only significantly different from
zero at the 10% threshold for Mix-1/2 (p=0.0542). All algorithmic variants except
Mix-3/4 improve on Pbs in terms of click numbers on the top-10 recommendations
(+14% for Muse.0, p=0.06; +18% for Mix-1/2, p=0.019). This is attributed to the
limitations of Pbs: while it is expected to query very relevant job ads when they
exist, the quality of its recommendations might degrade when having to weight the
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Number of clicks Clicked on at least one ad

α 0.4147∗∗∗ 0.2679∗∗∗
(0.0233) (0.0108)

Muse.0 0.0611 00.0150
(0.0328) (0.0151)

Mix-1/4 0.0543 0.0174
(0.0329) (0.0152)

Mix-1/2 0.0759∗ 0.0288
(0.0324) (0.0149)

Mix-3/4 0.007 -0.0058
(0.0327) (0.0151)

Table 5.3: Click behavior (top-10 ads) - March 2022 Field Experiment

importance of different criteria when all of them can’t be satisfied (using brittle,
non-individual weights).

Table 5.4 provides results of an individual-level regression, as above, on having
reported at least one of the two top job ads as having a rating of 1/10 (the worst
possible score), and of having reported at least one of the two top job ads as less
than 5/10. Compared to Pbs, none of the assessed algorithmic variants significantly
increased the rates of “poor" job ads (as so defined). Informally, when the job ads
proposed by Pbs or Muse.0 are judged negatively, they get the same comments
(e.g., “too far"; “I am not interested in this type of job anymore"), suggesting that
the acceptability of Muse.0 recommendations is similar to that of Pbs.

At least one ad rated 1/10 At least one ad rated lower than 5/10

α 0.1970∗∗∗ 0.6377∗∗∗
(0.0096) (0.0115)

Muse.0 0.0072 0.0119
(0.0135) (0.0161)

Mix-1/4 0.0006 0.0175
(0.0135) (0.0162)

Mix-1/2 -0.0041 0.0117
(0.0133) (0.0159)

Mix-3/4 0.0047 0.0171
(0.0134) (0.0161)

Table 5.4: Prevalence of inadequate job ads - March 2022 Field Experiment

Partial conclusion The March 2022 experiment enabled us to compare Muse.0
to the intuitive Pbs expert system, as well as Mix variants mixing their two ratio-
nales. The main conclusions from the analysis were the following. First, different
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rankings by plausible recommender systems were indeed perceived differently by job
seekers, underlining the importance of algorithm design. Second, Muse.0 seems at
least as acceptable as Pbs: its recommendations have higher click-through rates
and assessed hiring probabilities, and do not generate increased rates of rejection
(poor ratings) nor a significant decrease in assessed fit to job seekers’ criteria. Third,
the algorithms with the highest performance were found to be Mix variants, which
balanced hiring probability and fit measures to search parameters to generate rec-
ommendations.

5.2 June 2023 field experiment

The second experiment, conducted in June 2023, had several goals. A first goal
was to compare Muse to France Travail ’s current recommendation solution (Sdr),
and to the state of the art (Xgb). A second goal was to assess whether the two-
tiered structure of Muse.2 translates to meaningful gains in job seeker satisfaction
compared to standalone use of first tier Muse.0. The third was to compare Muse
variants focused on predicting hires (Muse.2) to approaches putting a higher weight
on job seeker utility (Muse.1.Applications and Mix), in the light of the questions
about value alignment raised in Chapter 4.

5.2.1 Experimental design

Algorithms Seven algorithms are studied in the experiment:

1. Muse.0: to i) enable a comparison to the March 2022 experiment, ii) assess
if the costs of Muse.2 in terms of algorithmic complexity and additional
computation time are balanced by gains in job seeker satisfaction;

2. Pbs: i) for comparison to the March 2022 experiment; ii) as it is a part of
Mix-1/2;

3. Sdr, based on Wcc Elise, which is France Travail ’s current recommender
system 8;

4. Muse.2, as the best Muse version in terms of recall computed on hires;
8Note that Sdr leverages data from the “Offre raisonnable d’emploi" (see Chapter 2 for details)

by default. This information is not necessarily as up to date or as much of a good fit to the job
seekers’ own wishes as additional data Muse may leverage (e.g. the secondary search parameters
mentioned in Chapter 2). Thus, the experimental setting can be considered to be slightly favorable
to Muse compared to Sdr. However, there is no obvious way to correct for this “bias" in the
evaluation setting. One way to do so would be to enable job seekers to choose which “métier
recherché" can be used by the Sdr in real time during the survey, which is out of the scope of
what could be implemented due to pratical constraints. Moreover, note that Sdr’s design goals
(retrieve a few, highly relevant ads corresponding to explicit search parameters) are very different
from Muse’s (retrieve broader lists of recommendations based on a job seekers’ profile as a whole
and past hiring data). These two designs may be complementary rather than in competition in
the broader scope of a PES’s missions and services (each of these designs may be better suited to
some application contexts).
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5. Muse.1.Applications: as defined in Chapter 3, it uses the same structure as
Muse.1 but is learnt from applications (and hires). It should place stronger
emphasis on job seekers’ perceived application success chances and utility than
Muse.2, possibly at the expense of actual success chances;

6. Mix-1/2, due to its success in the March 2022 field experiment. This version
of Mix-1/2 is updated to leverage Muse.2 instead of Muse.0 (since Muse.2
outperforms Muse.0 in terms of recall);

7. Xgb, as a representative of the state of art.

Sdr-eligible sample Access to Sdr during the experiment relied on an API
provided by France Travail. A call to the API to retrieve Sdr recommendations for
a given job seeker could sometimes return strictly less than 10 job ads, if these were
the only ones deemed relevant enough under the API’s parameters (which could
not be modified for the sake of the experiment). To enable comparison between
populations (i.e. avoid comparing the effect of 5 recommendations by an algorithm
to the effect of 10 recommendations from another one), Sdr recommendations are
only sent to the population of job seekers for whom at least 10 Sdr ads may
be retrieved. This population will be compared to the population in the other
treatment groups which would have received 10 recommendations from Sdr. This
population will be referred to as the Sdr-eligible sample in the following.

Treatment groups Job seekers are randomly assigned to seven treatment groups
(each of size 10000), each corresponding to one of the seven algorithms.

Surveyed population Sampling is conducted uniformly at random among cat-
egory A job seekers (i.e. available for a job and looking for one) in the Auvergne-
Rhône-Alpes region which have given France Travail the permission to contact
them.

Survey protocol Job seekers are sent an invitation email to complete a survey.
A link in the email leads them to a landing page describing the survey’s goals and
terms.

After accepting to participate, job seekers proceed to view a first page showing
them five job ads (their assigned algorithm’s top-5), that they are asked to rate in
terms of relevance on a five-point Likert scale. Rating all five ads is mandatory to
proceed in the survey. At the bottom of the page, job seekers may also optionally
indicate their interest in receiving more of the algorithm’s recommendations.

On a second page, job seekers view the algorithm’s top-10 recommendations
(including the five shown on the first page), with clickable links to view the ads in
more detail on France Travail ’s website (on which they may also apply if they wish
to). Clicks on the links are recorded.

An overview of the survey is provided in Appendix D.2.
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5.2.2 Analysis

As above, three stars refer to p < 0.001, two to p < 0.01, one to p < 0.05, and none
to a higher p-value.

Randomization, responses and attrition Tables 5.5 and 5.6 describe the size
of populations that opened and completed the survey (i.e. reached the second page)
per treatment group in the full sample and the Sdr-eligible sample respectively. The
survey completion rates range from 16.45 to 17.17 percent for the full sample, and
from 14.17 to 15.45 percent in the Sdr-eligible sample. Among comparable full-
sample groups (i.e. leaving the Sdr-assigned group aside), a formal test (a F-test
considering the null hypothesis that all groups have the same rates as Pbs) does
not let us conclude in different group-wise opening and completion rate between the
6 groups. Among the Sdr-eligible sample, we also cannot conclude (using a F-test
with a null hypothesis of all rates being equal to Sdr) in different group-wise open
and completion rates among the 7 groups.

Pbs Muse.0 Muse.2 Muse.1.Applications Mix-1/2 Xgb

Sent emails 9999 9999 9999 9999 10000 9999
Opened survey 2067 2000 2014 1997 2091 2015
Completed survey 1682 1653 1645 1648 1716 1648
Completion rate 16.82 16.53 16.45 16.48 17.17 16.48

Table 5.5: Response Rate by Treatment (full sample)

Sdr Pbs Muse.0 Muse.2 Muse.1.Applications Mix-1/2 Xgb

Sent emails 10000 5115 5073 5106 5121 5122 5158
Opened survey 1923 955 899 909 955 963 920
Completed survey 1539 776 719 732 791 782 764
Completion rate 15.39 15.17 14.17 14.33 15.45 15.27 14.81

Table 5.6: Response Rate by Treatment (Sdr-eligible sample)

Interest for recommendations Tables 5.7 and 5.8 display the results, on the
population of job seekers who completed the survey, of a regression of measures
of interest in recommendations (share of job seekers expressing interest for more
recommendations, share of job seekers who found at least one ad relevant9, number
of ads found relevant, share of job seekers who clicked on at least one ad, number of
clicks) on the treatment groups, in the overall population and the Sdr-eligible one
respectively. The reference treatment is Pbs in Table 5.7, and Sdr in Table 5.7.

On the full sample, Muse.0 does not improve on Pbs in a statistically sig-
nificant fashion with respect to any of the considered measures of interest. The
comparison of the two algorithms is altogether coherent with those of the March
2022 experiment (non-significantly higher number of clicks and similar or slightly
lower average relevance for Muse.0). Xgb slightly outperforms Pbs on all interest

9Relevance is defined here as ratings of 4 or 5 on the 5-point Likert scale.
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Interest for further rec. ≥ 1 relevant ad Number of relevant ads ≥ 1 click Number of clicks

Constant 0.5*** 0.473*** 1.052*** 0.206*** 0.322***
(0.009) (0.009) (0.024) (0.008) (0.017)

Muse.0 0.01 0.009 -0.078 0.021 0.036
(0.015) (0.015) (0.042) (0.013) (0.029)

Muse.2 0.069*** 0.065*** 0.093* 0.083*** 0.173***
(0.015) (0.015) (0.042) (0.013) (0.029)

Muse.1.Applications 0.091*** 0.109*** 0.251*** 0.085*** 0.16***
(0.015) (0.015) (0.042) (0.013) (0.029)

Mix 0.047** 0.056*** 0.061 0.054*** 0.143***
(0.015) (0.015) (0.041) (0.013) (0.029)

Xgb 0.029 0.041** 0.015 0.032* 0.073*
(0.015) (0.015) (0.042) (0.013) (0.029)

Table 5.7: Interest for recommendations - June 2023 experiment, full sample

measures (although the difference is non-significant when it comes to interest for
further recommendations and the number of ads found relevant). Mix also performs
better than Pbs for all outcome measures (in a statistically significant fashion, ex-
cept for the number of ads found relevant). Muse.1.Applications and Muse have
the highest means for all interest measures (with Muse.1.Applications above Muse
for all measures aside from the number of clicks). For both algorithms, the differ-
ence with respect to Pbs is statistically significant, and sizeable in magnitude (e.g.
improvements of 18% and 14% in the share of respondents interested in further
recommendations; of 53% and 50% in terms of number of clicks).

Results on the Sdr-eligible population lead to similar conclusions. Sdr out-
performs Pbs on all outcomes (differences are statistically significant for expressed
interest and relevance), as well as Muse.0 (the difference is significant for expressed
interest). It has similar performances to Mix (except on likes at the extensive
margin, for which Mix has significantly higher mean) and Xgb. Muse.2 and
Muse.1.Applications outperform Sdr on all outcomes, with the differences be-
ing significant (except for Muse.2 in terms of the number of relevant ads), and
quantitatively sizeable. For instance, Muse.1.Applications recommendations (resp.
Muse.2) lead to 13% more expressions of interest (resp. 10%), and to 30% (resp.
45%) more clicks.

Interest for further rec. ≥ 1 relevant ad Number of relevant ads ≥ 1 clicks Number of clicks

Constant 0.564*** 0.543*** 1.332*** 0.227*** 0.374***
(0.013) (0.013) (0.038) (0.011) (0.025)

Pbs -0.059** -0.045* -0.288*** -0.014 -0.054
(0.022) (0.022) (0.065) (0.019) (0.043)

Muse.0 -0.045* 0.01 -0.114 0.005 0.019
(0.022) (0.022) (0.067) (0.02) (0.045)

Muse.2 0.059** 0.072** 0.031 0.077*** 0.17***
(0.022) (0.022) (0.066) (0.019) (0.044)

Muse.1.Applications 0.076*** 0.12*** 0.222*** 0.075*** 0.114**
(0.022) (0.022) (0.065) (0.019) (0.043)

Mix 0.022 0.075*** 0.066 0.036 0.077
(0.022) (0.022) (0.065) (0.019) (0.043)

Xgb 0.012 0.032 -0.056 0.025 0.066
(0.022) (0.022) (0.065) (0.019) (0.044)

Table 5.8: Interest for recommendations - June 2023 experiment, Sdr-eligible sample

Partial conclusion The June 2023 march experiment enabled us to compare
Muse variants to the institution’s expert system and to the state of the art. The
gains associated to the use of the proposed two-tier Muse architecture, rather than
simply relying on the first-tier Muse.0 rankings, was vindicated. Muse variants
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Muse.2 and Muse.1.Applications, learned from hirings and applications respec-
tively, were shown to outperform the institution’s system (Sdr) as well as Xgb on
a variety of indicators of interest. While Muse.1.Applications slightly outperformed
Muse.2 on most indicators (albeit not necessarily in a statistically significant fash-
ion), judging of the relative quality of both algorithms in terms of usefulness to job
seekers requires more evidence. Indeed, it is unsurprising that an algorithm mimick-
ing applications is more appreciated by job seekers; yet Muse.2 recommendations
may yet, perhaps, lead to more successful matches down the line.

The main perspective is the investigation of the effect of recommendations on
downstream labor market behavior (applications, return to employment and em-
ployment quality), which requires larger sample sizes and continuous exposure of
job seekers to recommendations. It shall be pursued in a large-scale experiment
providing a stream of exposition to recommendations to job seekers on the long
term, with an experiment design accounting for possible externalities. Other per-
spectives for further work include the study of possibly heterogeneous treatment
effects of Muse.1.Applications and Muse with respect to Sdr, in order to under-
stand which job seekers may benefit from machine-learned recommendations and
why; and improving the design of Muse itself by leveraging the feedback collected
from job seekers.
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Chapter 6

Congestion-avoiding job
recommendation

As noted in Chapter 1, job ads are rival goods : while recommender systems typically
aim at independently recommending to each user the most desirable item for them,
it is inappropriate to recommend the same irresistible job ad to many job seekers,
as this would induce a congestion phenomenon at the population level and a poor
eventual satisfaction at the individual level. More generally, in domains such as
the labor market or online dating, referred to as reciprocal recommendation settings
[Pal+21], an appropriate recommendation policy should globally take into account
the populations of job seekers and job ads, and somehow connect both populations
in a congestion-free way.

Taking inspiration from related works in recommender systems [Li+19; LBZ19;
CHL19] and in econometrics [CS16; Gal18], this chapter investigates the coupling
of optimal transport [Cut13; PC19] with recommender systems. The presented
approach, referred to as Congestion avoiding recommendation with Optimal Trans-
port (Carot), learns matchings between the users (job seekers) and the items (job
ads) populations, aimed to maximize some trade-off between the interestingness of
the recommended items, and their sufficient diversity at the population level (as
opposed to recommendation serendipity [KP17], aimed at the recommendation di-
versity at the individual level). The scientific questions considered thus regard: i)
how to measure and algorithmically prevent congestion; ii) how to assess the trade-
off between the mainstream recommendation performance indicator, that is, recall,
and congestion.

Our contributions are threefold. Firstly, congestion avoidance is formalized
within the optimal transport framework (Section 6.2). Secondly, the Carot al-
gorithm proposed to tackle this problem is agnostic regarding the data distribution
(as opposed to the assumptions in [Li+19; LBZ19; Gal18; CS16]), and is less com-
putationally demanding than e.g. combinatorial optimization approaches [Xia+19].
Thirdly, the merits of Carot are empirically demonstrated on public data on mar-
riages (for comparative evaluation with [Li+19]), and on the France Travail data.
The experimental results demonstrate the robustness of the approach w.r.t. the
state of the art, and yield some unexpected lessons about the interactions of the
recall and congestion indicators.
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6.1 Related work

This section reviews other congestion-related approaches to recommendation, and
introduces the so-called optimal transport setting for the sake of self-containedness
(see [PC19] for a thorough survey).

Notations. As previously, let n (respectivelym) denote the number of users (resp.
items), with xi (resp. yj) the description of the i-th user (resp. j-th item). The
boolean collaborative matrix Mi,j is such that Mi,j = 1 if and only if user i selected
item j.

Position of the problem. A recommender system usually learns a scoring func-
tion s such that the matrix defined from si,j = s(xi, yj) maximizes the fit with
the collaborative matrix M (expressed in terms of mean-square error or Kullback-
Leibler divergence), possibly penalized with a regularization term [Agg16]. For
convenience of notations, and with no loss of generality, it is assumed in the re-
mainder of this chapter that the items recommended to the i-th user are ordered
by increasing si,j.

In a rival good setting, item j is subject to capacity constraint nj: only the
top nj users selecting this item can be served. New optimization objectives and
algorithms need be defined to accommodate such constraints.

Related works. An early approach facing reciprocal recommendation, [GMZ13]
assign recommendations as the solution of a constrained optimization problem.
[Xia+19] casts reciprocal recommendation as a (NP-hard) multi-objective optimiza-
tion problem, where the additional objective accounts for satisfying the capacity
constraints; it is tackled using greedy optimization.

In [BZK17], a Poisson model is used in real time to forecast the expected number
of clicks on an ad. The ad’s visibility is shifted up or down accordingly. The
downside of this lightweight intervention, however, is that it requires real-time access
to modify the ads’ visibility.

Our closest neighbors are [CHL19]: inspired from decentralized economic mod-
els, they consider the scoring functions reflecting the mutual utility of xi w.r.t. yj,
and use an optimal transport approach (see below) to alleviate congestion.

Since the presentation of this Chapter’s key results in a 2021 workshop [Bie+21],
further approaches leveraging tools from optimal transport have been proposed. In
economics, the ideas presented [CHL19] were improved (by considering global as-
signment plans rather than local, individual-level approximations in a “local mar-
ket"), tested in the field and published in in [CHL23]. [Tom+23] proposed to lever-
age optimal transport in a recommender system setting with an overall approach
close to ours. [Mas+23; Mas+24] propose an in-processing approach to congestion-
avoiding recommendation (using an optimal transport term in the within-batch
training loss of a neural recommender system), and have favorably compared their
approach to the one presented here.
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Computational optimal transport. Optimal transport (OT) aims to map some
(continuous or discrete) distribution µ onto another distribution ν. In the follow-
ing, µ (respectively ν) stands for the uniform discrete distribution on the set of n
users (resp. on the set of m items). Denoting Γ(µ, ν) the set of measures such that
their marginals with respect to first and second arguments respectively are µ and
ν, letting Ci,j be the cost of mapping i onto j, the OT problem aims to find a joint
distribution γ∗ in Γ(µ, ν) s.t.:

γ∗(C) = arg min
γ∈Γ(µ,ν)

n∑
i=1

m∑
j=1

γi,jCi,j (6.1)

A tractable relaxation of the above optimization problem is proposed by [Cut13] by
regularization with an entropic term:

γ∗(C, ε) = arg min
γ∈Γ(µ,ν)

n∑
i=1

m∑
j=1

γi,jCi,j + ε

n∑
i=1

m∑
j=1

γi,j(log(γi,j)− 1) (6.2)

with ε the regularization weight. When ϵ→ 0, the solution converges to a solution
of Problem 6.1 with maximum entropy; whereas when ϵ → ∞, the solution tends
to µ⊗ γ, i.e. a uniform coupling that does not take cost C into account. Crucially,
the solution to optimization problem 6.2 is unique and takes the form:

∀(i, j) ∈ [[n]]× [[m]], γij = uiKijvj

for two scaling variables (u, v) ∈ Rn
+ × Rm

+ , and Kij = exp(−Cij/ϵ), meaning that
it can be parametrized by n+m variables. Moreover, u and v satisfy:

diag(u)Kdiag(v)1m = µ, diag(v)KTdiag(u)1n = ν

To find u and v satisfying this equation (the so-called matrix scaling problem),
one can resort to Sinkhorn’s algorithm, which proceeds by initializing v(0) by an
arbitrary positive vector (say 1m), and iterating:

u(l+1) =
µ

Kv(l)

v(l+1) =
ν

KTu(l+1)

We refer the reader to [PC19], Chapter 4, for proofs of the above statements, and a
thorough introduction to entropic-regularized optimal transport (including conver-
gence analysis and computational tricks).

Discussion A distinct line of work, for instance in econometrics [GS22; CS16], but
also in recommendation ([Li+19], which is the main baseline used for comparison in
this chapter) assume the observed collaborative matrixM to be the optimal solution
of an OT plan based on some matching cost C [CS16; GS22; Li+19; LBZ19]. They
infer C from training data, and use the estimated cost model to build matchings
on other data.
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In econometrics, [DG14; CS16; GS22] formalize matching markets (e.g. dating)
as the result of an optimal transport process and infer the individual matching
utilities Ci,j from the observed matching. Along the same lines, [Li+19] infer the
cost Ci,j such that the optimal solution of the OT problem (Eq. (6.2)) is as close
as possible to M in the sense of the KL divergence. Another approach, motivated
by applications in bioinformatics, is proposed by [LBZ19]. The observed matchings
among sets of RNA sequences, referred to as clusters, is exploited to infer the cost
of transport among these clusters and derive new matchings.

In the context of the job market, it is however debatable whether the actual
matching, i.e. the observed collaborative matrix M , should be viewed as the so-
lution of an optimal transport plan. This is only the case under strong structural
assumptions, e.g. the transferable utility assumptions of [CS06]. We remain ag-
nostic on the data-generating process, and instead view optimal transport as a
post-processing tool. Accordingly, the proposed approach will be structured along
two phases: learning the matching cost function C from M (without assuming M
to be an OT solution), and using C within an OT process.

6.2 Overview of Carot

Let sij in R denote the sought recommendation score of the j-item for the i-th user.

Performance criteria. Beside the standard recall@k indicator, measuring the
fraction of users for which the actually preferred item is ranked among the top-k
recommendations, we define the notion of item market share MSk(j) of item j as
the fraction of users i such that j is among the top k items recommended to i (with
k < m). Informally, the congestion is minimized if minus the entropy of the market
shares is minimized (all the more so as k goes to 1):

Congestion@k(s) :=
m∑
j=1

MSk(j) log (MSk(j)) (6.3)

For the sake of normalization, the congestion indicator is mapped to [−1, 0]. Perfect
congestion avoidance is obtained for equal market shares of the items, with −1 as
optimal value.

Enforcing congestion avoidance with OT. As said, optimal transport is ap-
plied based on a matrix of pairwise costs Ci,j, denoting how costly it is to match i
and j. The key algorithmic design question then becomes the definition of the cost
function. Leaving end-to-end learning of Ci,j for further work, we focus on choices
of the form Ci,j = g(sij) or g(rij), where rij is the rank of j for i in terms of sij. g is
a monotonous scalar function, hyper-parameter of the approach, such that the cost
Ci,j of transporting i toward j increases with the recommendation score sij (that
is, as the relevance of matching i and j decreases), or with the rank rij.

A first key consideration is whether to use ranks or scores. Depending on the
quality of the underlying scoring function sij and what it represents (if it is a proxy
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of hiring probabilities for instance), directly using values of sij in the cost enables
between-person comparisons in terms of match quality and better accounting for
the distribution of the quality of recommendations. Using ranks rij on the other
hand puts all job seekers on a formal foot of equality and is agnostic about the
interpretation of sij’s (only within-individual rankings by sij’s matters, which is
reassuring when sij is trained with a ranking loss), but may result in a loss of
information. A second key consideration is whether g is to be chosen concave,
convex or linear: depending on the choice of concavity or convexity, keeping a
strong weight in γ on the very top recommendations compared to the very next
ones becomes more or less crucial.

In the following, sij is capped to the score of the 1,000-th item recommended to
each i, noted s(1000)i (sij ← max(si,j, s

(1000)
i ) in the following). Four g functions have

been considered, respectively linear, or exponential functions of sij, or rank-based,
or NDCG-like.

Cij = min(
sij − smin(i)

si,1000 − smin(i)
× 100, 100) (Linear / Id+)

Cij = min
(
exp(log(10)× sij − smin(i)

si,1000 − smin(i)
), 10

)
− 1 (Exponential)

Cij =



1 rij = 1

2 rij ∈]1, 2]
3 rij ∈]2, 10]
4 rij ∈]10, 100]
5 rij ∈]100, 1000]
6 rij > 1000

(Rank-based)

Cij = 1− log(2)

log(1 + rij)
(NDCG)

To enable the comparison of results obtained with same entropic regularization
weight ε but different cost definitions, Ci,j’s are normalized so that

∑
i,j Ci,j = 1.

The Carot algorithm. Overall, Carot is a 2-step process: i) learning a scoring
function s; ii) solving the optimal transport problem defined from Cij = g(sij).

Carot: 1. Learning s. The two considered learning approaches for s are Xgb
and neural networks (NN). Xgb is a recommender system based on gradient boost-
ing [CG16; VYP17a], that can be efficiently trained by aggressively subsampling
the negative pairs (i, j), at the expense of a lesser scalability in recommendation.
NN corresponds to an earlier version of Muse.0; it is a neural net trained with a
triplet loss whose architecture is tailored to the specifics of the domain (e.g., con-
sidering submodules devoted to geographic or skill-related information)1. As for
Xgb, negative sampling is used to cope with the number of negative pairs. More
details on the NN architecture, and on the hyper-parameters of Xgb and Muse.0
are provided in Appendix E.

1Details on the approach are provided in Appendix E.
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Carot: 2. Optimal transport. Depending on the regularization weight ε and
the g function (with Cij = g(sij)), discrete distribution γ is trained by optimizing
Eq. (6.2) using Sinkhorn’s algorithm. Note that the extension of the approach to
the general reciprocal recommendation case (e.g. where several positions are opened
for the j-th job ad) is straightforward by making νj proportional to the capacity
constraint of item j.

Eventually, the Carot recommendation proceeds deterministically, ordering
the j items recommended to user i in decreasing order w.r.t. γi,j.

6.3 Results

This section presents the empirical validation of the approach, conducted on two
datasets: public mariage data (noted MAR), first introduced by [Li+19], for the
sake of comparison with the state of art; and a proprietary dataset provided by
France Travail.

The first goal of experiments is to assess the efficiency of the proposed approach
in terms of trade-off between recall and congestion. The second goal is to investigate
how the results depend on the hyper-parameters of the approach: s being learned
using Xgb or Muse.0; entropic regularization weight ε ranging in 10−2, . . . , 102;
transport cost Cij defined as g(sij) with g ranging in {Id, Exp, Ndcg, Rank}.

With each hyper-parameter setting is associated seven performance indicators:
recall@k with k = 1, 10, 100, congestion@k with k = 1, 10, and coverage@k with
k = 1, 10, indicating the fraction of items involved in top-k recommendation of at
least one user. Additional results are reported in Appendix E.

6.3.1 MAR Dataset

Dataset description. The data include 2,475 men (respectively women), parti-
tioned in 50 clusters. Each individual is described with 11 mostly ordinal features.
The 1-to-1 matching is described at the individual level and the data also include
the Mc,c′ collaborative matrix, reporting the fraction of matches between men from
cluster c and women from cluster c′.

Table 6.1: Comparative results on MAR at the cluster level; average and standard
deviation of the RMSE and MAE w.r.t. the cluster matrix M , over 5-fold CV.
Results for Carot correspond to g = Id+,ε = 1.

Random PMF SVD itemKNN RIOT γNN γXGB

RMSE 10.71± 0.13 446.6± 9.86 441.4± 11.2 9.36± 0.12 9.12± 0.12 8.98± 0.17 8.89± 0.11
MAE 7.22± 0.06 251.3± 6.00 249.2± 5.71 6.30± 0.03 5.98± 0.10 5.80± 0.13 5.79± 0.12

Benchmarks. The baseline results on MAR are those of RIOT [Li+19], an SVD-
based decomposition, and itemKNN. At the cluster level, the performance indicators
include the RMSE (Root Mean Squared Error) and the MAE (Mean Absolute
Error) between the collaborative matrix M at the cluster level and the estimated
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Table 6.2: Comparative Results on MAR at the individual level: Recall, Coverage
and Congestion.

Algorithm Recall (%) Coverage (%) Congestion
@1 @10 @1 @10 @1 @10

s Random 0.16 2.27 63.32 100 -0.90 -0.98

s XGBoost 7.93 27.88 48.55 98.69 -0.84 -0.94

C
a
ro

t
-X

G
B γXGB,g = Id+,ε = 1.0 8.05 28.41 49.77 99.18 -0.85 -0.95

γXGB,g = Id+,ε = 0.1 8.01 27.02 72.73 100 -0.93 -0.95
γXGB,g = Id+,ε = 0.01 6.47 23.77 96.05 100 -0.98 -0.84
γXGB,g = ndcg,ε = 1.0 7.93 28.2 48.55 99.02 -0.84 -0.95
γXGB,g = ndcg,ε = 0.1 8.10 25.72 59.42 100 -0.89 -0.93
γXGB,g = ndcg,ε = 0.01 6.06 19.49 94.26 100 -0.98 -0.73

s NN 3.82 15.50 46.27 98.00 -0.83 -0.93

C
a
ro

t
-N

N

γNN ,g = Id+,ε = 1.0 2.84 14.32 38.86 92.47 -0.80 -0.90
γNN ,g = Id+,ε = 0.1 3.94 15.46 70.12 100 -0.92 -0.98
γNN ,g = Id+,ε = 0.01 3.78 15.46 93.48 100 -0.98 -0.95
γNN ,g = ndcg,ε = 1.0 3.82 15.63 46.27 98.73 -0.83 -0.94
γNN ,g = ndcg,ε = 0.1 4.23 13.87 57.99 99.91 -0.88 -0.93
γNN ,g = ndcg,ε = 0.01 2.89 11.60 93.44 100 -0.98 -0.72

recommendation matrix, measured using a 5-cross fold validation. Carot is also
assessed at the individual level, using the performance indicators defined above.

Results. On the marriage benchmark, tables 6.1 and 6.2 respectively display the
comparative results obtained at the cluster2 and the individual level.

At the cluster level, γXGB slightly but statistically significantly improves on
RIOT w.r.t. both RMSE (8.89± 0.11 as compared to 8.98± 0.17) and MAE (5.80±
0.13 in contrast to 5.79± 0.12). γNN also slightly improves on RIOT. Other bench-
marks (random, PMF, SVD and itemKNN) are outperformed.

At the individual level, Xgb significantly outperforms NN in both terms of recall
and congestion for all values of k.

γXGB is found to only improve the congestion at the expense of the recall:
improving the congestion (from -.84 to -.98) is obtained by decreasing the recall@10
(from 28.4% to 23.7% at best, for g = Id, ε = 10−2).

For γNN, the congestion can be significantly improved (from -.84 to -.98, for
g = Id, ε = 10−2) while preserving the recall@10 (circa 15.4%); however, the initial
recall is significantly lower than for Xgb, as said above.

The recall and the congestion indicators may not actually be antagonistic in the
MAR problem: by construction, the sought collaborative matrix is a permutation.
The main difficulty for this recommendation problem thus seemingly comes from

2The difference with [Li+19] is explained as a bug was found (and corrected) in the publicly
available code for RIOT and other baselines, dividing the error by the number of folds in each
iteration. The performance order is not modified by (correcting) the bug.
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the small size of the dataset and the poor description of the individuals.

6.3.2 JOB Dataset

Dataset description. The training dataset includes circa 1,650,000 job seekers,
477,000 job ads and 43,000 matches (signed contracts) reported in Ile-de-France
during the Feb.-Oct 2018 period. The description xi (respectively yj) of a job
seeker (resp. job ad) is in R448 (resp R582). Function s is learned on the training
set. The optimal transport plan γ is computed on the test set, restricted to the job
sector of logistics for scalability reasons, including 110,000 job seekers, 14,200 job
ads and 450 matches in Ile-de-France in November 2018.

Results Figure 6.1 displays the different methods in the 2D recall@10, conges-
tion@10 plane, illustrating the trade-off between both indicators, and shows the
Pareto front of the non-dominated approaches. Table 6.3 summarizes the results of
selected methods (full results are provided in Appendix E). Figure 6.2 also displays
so-called Lorenz curves plotting the cumulative percentage of occurrences in recom-
mendations among job ads sorted by number of occurrences (akin a Gini index) for
selected methods.

Figure 6.1: Pareto front Congestion (-Congestion@10) - Recommendation accuracy
(Recall@10) tradeoff, France Travail Dataset

Firstly, NN is dominated by Xgb in terms of all three performance indicators:
recall, coverage and congestion. Compared to Xgb, the lesser recall of NN (4% loss
in recall@100) comes with a much lower coverage (7% loss in coverage@1). This
counter-performance is blamed on the architecture of the neural net (as reported
in Chapter 3, it has since been improved). Congestion is found to be a potentially
substantial issue. Despite job seekers outnumbering job ads by a factor of roughly
8, and the restriction of job seekers and job ads to a common occupation, only
12.94% of job ads appear in any of Xgb’s top-ones, and only a quarter of them in
any of its top-tens.
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Table 6.3: Comparative Results on France Travail : Recall, Coverage and Conges-
tion.

Algorithm Recall (%) Coverage (%) Congestion
@1 @10 @100 @1 @10 @1 @10

s Random 0 0.21 0.65 99.95 100 -0.99 -0.99

s XGB 9.62 31.40 61.59 12.94 25.16 -0.62 -0.64

C
a
ro

t
-X

G
B γXGB,g = Id+,ε = 1.0 4.81 21.99 57.87 21.61 31.76 -0.74 -0.75

γXGB,g = Id+,ε = 0.1 2.18 15.31 56.01 27.54 41.24 -0.78 -0.81
γXGB,g = Id+,ε = 0.01 4.37 20.45 43.21 46.75 57.61 -0.85 -0.79
γXGB,g = ndcg,ε = 1.0 9.62 31.61 62.36 12.96 26.14 -0.62 -0.67
γXGB,g = ndcg,ε = 0.1 8.97 25.38 46.06 14.69 30.84 -0.67 -0.74
γXGB,g = ndcg,ε = 0.01 5.03 14.00 18.81 36.81 57.52 -0.82 -0.81

s NN 5.68 28.66 57.98 6.02 17.78 -0.46 -0.49

C
a
ro

t
-N

N

γNN ,g = Id+,ε = 1.0 6.78 26.14 60.39 11.99 26.30 -0.62 -0.65
γNN ,g = Id+,ε = 0.1 2.40 19.03 50.43 28.23 40.16 -0.80 -0.79
γNN ,g = Id+,ε = 0.01 3.93 16.30 27.89 53.38 62.35 -0.83 -0.70
γNN ,g = ndcg,ε = 1.0 5.68 27.46 59.08 6.02 19.75 -0.46 -0.55
γNN ,g = ndcg,ε = 0.1 5.25 23.3 49.01 8.85 26.40 -0.53 -0.65
γNN ,g = ndcg,ε = 0.01 1.53 12.36 24.28 35.41 51.56 -0.81 -0.81

Secondly, coverage (@1 and @10) increases, and recall (@1, @10, @100) decreases
as ε decreases from 1 to .01, leaving little hope that one can combine a good coverage
with a decent recall. More encouraging is the fact that the congestion@1 can be
significantly improved (from -.62 to .78 and -0.85) at the expense of a moderate
recall loss (recall@100 goes from 62% to 56% and 43%) for g = Id+, ε = .1 and
ε = .01.

The option g = ndcg has little (slightly positive for both recall and congestion)
effects for ε = 1 and strongly detrimental effects (for recall) for ε = .1 or .01.

Somewhat surprisingly, decreasing ε yields a better (lower) congestion at the
expense of a worse recall. This was not obvious: the higher ε, the more uniform the
transport plan γ (everything else being equal). Yet, performance indicators depend
on the order induced by γ, as opposed to the actual γi,j values. Complementary
experiments reported in Appendix E illustrate the interaction of ε and actual market
shares.

6.4 Partial conclusion

This chapter aimed at documenting, and investigating algorithmic ways to prevent,
undesirable side effects of recommender systems in terms of congestion.

On the France Travail dataset, congestion was found to be a potentially impor-
tant issue - at least based on offline measures. Despite job seekers outnumbering
job ads by a factor of eight in the experiments, three ads in four never appear in any
job seekers’ top-10 recommendation list (in the case of Xgb, the least congested
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Figure 6.2: Lorenz curves computed on Top10 recommendations

(a) XGB on France Travail dataset (b) NN on France Travail dataset

standard recommender system studied).
To address congestion issues, we proposed Carot, an algorithmic approach

taking inspiration from computational optimal transport, with the idea of globally
"transporting" the job seekers population onto the job ads population, enforcing a
decent recall with low congestion. The key question becomes the definition of the
transport cost, which in this chapter is based on a mainstream recommender score
or ranks. The surprising lessons learned from the application of the approach on
the France Travail dataset is that the transport cost and the entropic regulariza-
tion (used to enforce OT’s scalability [Cut13]) interact in subtle ways. Chiefly, a
strong regularization significantly degrades the recall while it does not improve the
congestion to the desired extent.

This work opens a series of perspectives, both from the point of view of computer
science and economics.

Various perspectives exist to improve on Carot. As a first step, learning the
cost-defining function g to balance recall and congestion directly, or adopting an in-
processing approach as in [Mas+23; Mas+24], should improve the balance between
recall and congestion. Second, even given a satisfactory transport cost, the OT
formalization is not completely adequate to the problem of interest despite its algo-
rithmic convenience. The results of an OT plan γ can either be used in determinis-
tic mode (sorting γij’s) or probabilistic mode (drawing indices without replacement
proportionally to {γij}j=1,...m). The probabilistic mode comes with guarantees in
expectation if k=1, but degraded recall excessively in complementary experiments3.
The deterministic mode is brittle, achieves imperfect congestion-avoidance (in the
Carot experiments, coverage@10 remains far 100% on the France Travail dataset
despite the sample imbalance), and lacks mathematical guarantees. The choice of
ε in deterministic mode only helps navigate the congestion-recall trade-off to an
extent, without formal guarantees. Moreover, the OT formulation (forcing γ to re-
spect pre-specified marginals µ and ν) implicitly assumes that the number of times
each job ad should be shown can be pre-defined in advance. A more convincing ap-

3Unless ε is taken extremely low, which creates other numerical and convergence speed issues
with Sinkhorn’s algorithm.
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proach would simply put a bound B on the number of times a job ad could at most
be recommended, and leverage B to trade off congestion and recall. Given a cost
matrix, the problem of job recommendation under such capacity constraints natu-
rally takes the form of an integer linear programming problem (ILP). Tackling this
ILP using a mix of linear programming relaxations and randomized rounding may
yield formal and empirical improvements (see [Man+13] for a relevant large-scale
application of such methods).

Congestion, and the effects of congestion-avoidance policies, should also be bet-
ter understood from an economic perspective. First, to what extent does congestion
already exist in the training data? What kinds of ads experience the most compe-
tition, and why? Conversely, why are some ads unpopular (shortage of applicants
with specific skills, poor working conditions or wages, poor writing of the job ad)?
Second, our congestion measures and algorithmic approach implicitly assumed that
recommendations were followed upon in terms of applications by job seekers (at least
in a uniform fashion). This is unlikely to be the case in practice (given, for instance,
the reply and click rates documented in Chapter 5), and should be accounted for to
confirm congestion is a primary problem for job recommender systems in practice.
The effects of recommendations on congestion, and overall welfare effects, could
be better understood using specific randomized control trials designs with levels of
exposure varying by micro-markets [Cré+13] instead of relying on offline measures.
Moreover, the reactions of job seekers to recommendations (especially ones far from
their top ones) should be better accounted in algorithmic approaches to congestion
- for instance by defining the cost in terms of economic fundamentals (rather than
an ad hoc cost function).

Redirecting job search from a “central planner" point of view as in Carot also
poses ethical issues. Understanding which job seekers bear the cost of congestion-
avoidance is necessary before any application of such methods in the field (in
Carot, this population may strongly vary on the definition of the cost function -
especially, on whether it depends on scores or on ranks). This inquiry should be
conducted on both sides on the market, as emphasized by [LTL23].

Instead of deciding to redirect their search efforts in their stead, giving job
seekers information about (expected or actual) competition [BFH21; Gee19] in order
to let them decide whether to apply (potentially showing a variety of more-or-
less expected-to-be-competitive job ads), or more light-weight approaches [BZK17]
might be more effective and respectful of job seekers’ well being and decision ability
in practice (although this could require fine-grained access to application counts, ads
display and recommendations in real time). As noted by [Alt+22], another possible
policy is simply targeting populations most likely to benefit from recommender
system advice, while keeping overall program scale limited (although this also poses
a range of ethical issues).
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Chapter 7

Fairness in job recommendations:
estimating, explaining, and reducing
gender gaps

While job recommender systems have the potential to help reduce frictional un-
employment, they are also a textbook case of fairness issues in machine learning
[BHN23]. Algorithms trained on real-world data, which involve human biases and
discriminatory practices, may reproduce past undesirable behavior such as gender
stereotypes, and widen labor market inequalities. Ensuring this does not happen is
a major concern for the scientific community, Public Employment Services as well
as for all citizens.

This chapter investigates the issue of gender fairness 1 within the context of the
audit of the Muse recommender system (more precisely, of Muse.1, learned solely
from hires)2.

While we document gender differences in recall, our discussion focuses on gender
disparities in recommendations viewed in terms of job characteristics (e.g., occupa-
tion, distance, wage, full or part-time status). Gender gaps may arise from different
application behavior between men and women, which may reflect different prefer-
ences or distinct perceived hiring probabilities between job seekers. Some fairness
definitions justify algorithms’ replication of job seekers’ preferences since it should
maximise users’ welfare – see the related individual, envy-freeness, and preference-
based notions of fairness [Dwo+12; Var74; Zaf+17]. However, these gaps can also
arise from differential valuations of inherent job seeker’s characteristics by recruiters
based on gender, which may be deemed discriminatory. Other fairness definitions
such as (conditional) recommendation independence require (conditional) indepen-
dence of recommendations from gender, regardless of the gaps’ origins.

Our contributions are threefold. First, we discuss the origins of gender dispari-
ties and their links with common fairness definitions. Second, we propose measures
of gender gaps conditional on job seekers’ qualifications and preferences, using dou-

1Despite the limitations of representing gender as a binary construct, our analysis treats gender
as binary, as it is provided in France Travail ’s data sources in a binary fashion.

2Recall that Muse does not use gender as a feature directly; it may nevertheless be indirectly
learnt from other features during the learning process.
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bly robust estimators [RRZ94; Che+17]. We document gender disparities in job
ad recommendations both unconditionally and conditionally on qualifications and
preferences and find that these standalone do not fully account for the observed
gender gaps. We also show that the system does not exacerbate existing gaps in
observed hiring or application decisions. This discussion brings forth a tension
between a PES’s missions and values: providing optimal personalized recommenda-
tions regarding access to employment while ensuring fair treatment between women
and men. Our third contribution is to propose a scalable post-processing approach
to mitigate gender gaps and to investigate the trade-off it entails. The proposed
strategy is based on a Lagrangian relaxation of an integer linear programming prob-
lem, maximizing recommendation quality under unconditional or conditional gender
gaps (in terms of recommendation characteristics). Empirically, we find that this
approach reduces gender gaps in recommendations, at the cost of a loss of perfor-
mance (as measured by recall).

The rest of this chapter is structured as follows. Section 7.1 reviews related
work. Section 7.2 discusses how differential treatment may arise in recommenda-
tions, discusses its links to fairness definitions, and proposes to leverage doubly
robust estimators to make inference on the effect of gender on the recommenda-
tions, while controlling for the channel of qualifications and preferences. Section
7.3 presents the experimental setting. Section 7.4 audits the algorithm in terms
of recommendation performance, provides evidence of differentiated treatment, and
compares these differences to those found in hiring and application behavior. Sec-
tion 7.5 introduces a post-processing approach aiming at reducing (conditional)
gender gaps and documents its impact on performance metrics as well as on gender
gaps. Section 7.6 concludes and provides perspectives for further work.

7.1 Related work

Overview Fairness in the context of recommender systems draws an increasing
amount of work, surveyed by [Eks+22; Wan+22; Li+22], and, specifically in recruit-
ment applications, by [Kum+23]. Depending on the application domain, fairness
issues may arise w.r.t. items (sharing users’ attention among items in an equitable
way), w.r.t. users (presenting a fair selection of items to the users ), or both [SJ18;
SJ19; GAK19; Do+21]. In the present work, we focus on user fairness.

Equity of utility Some approaches to user fairness question whether recommen-
dations are equally useful to different subgroups of users - so-called equity of utility
according to [EP22]. In practice, this may entail questioning whether standard met-
rics measuring the quality of recommendations are similar between different groups
of users. In a collaborative filtering context, [YH17] proposes metrics to measure
discrepancies between a recommender system’s prediction behavior between groups.
[Meh+17] audits search engines for differential satisfaction between demographics.
[Eks+18] extends this investigation to several public recommendation datasets, dis-
cussing whether different groups of users (in terms of age or gender) retrieve the
same utility from recommendations based on standard metrics. Such differences
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may be due to class imbalance, which may lead a recommender system to better
capture the interaction patterns of a majority group in a collaborative filtering set-
ting [Mel+21]. Our audit takes into account these concerns by interrogating gender
differences in terms of recall, as well as by measuring the fit of job recommendations
to job seekers’ search criteria.

(Conditional) recommendation independence Other works emphasize the
trade-off between recommendation performance and other fairness measures. Among
them, [Kam+12] approach the problem of collaborative filtering under the lenses
of a notion of neutrality akin to demographic parity: recommendations should be
independent from a user-specified viewpoint such as gender. In a similar fashion,
[Isl+21], concerned with occupation recommendation, consider a differential fair-
ness metric akin to demographic parity in the classification setting - in other words,
the recommended occupation should not depend on gender. In occupation and job
recommendation contexts respectively, [Rus+22] and [Li+23] consider the aggregate
difference in wages between recommendations to men and women (the unconditional
gender wage gap) as a fairness metric. As noted by [Eks+18], these objectives of
recommendation independence are typically framed in terms of representational
harms - the goal being to avoid conveying undesirable gender stereotypes in recom-
mendations - as well as the real-world impact of reproducing gender inequalities.
Our audit is also primarily concerned with recommendation dependence of job ad
characteristics such as wage on gender, and documents such average gaps in rec-
ommendations. Yet, as noted in [Rus+22]’s discussion, “the disparate behavior of
typical recommendation systems (...) may partly reflect legitimately differing real-
world preferences in career choices by women and men". From a methodological
point of view, drawing from the economics literature on gender gaps [SW21], we
propose to also document, and focus our discussion, on gender gaps conditional
on characteristics (qualifications and/or preferences), proposing to measuring these
gaps using doubly robust estimators [RRZ94; Che+17; GQ10]. From the empirical
point of view, we provide evidence of gender gaps in job recommendations through
the scrutiny of a large-scale, real-world dataset of relevance for other PES settings.
This focus on gaps in terms of conditional recommendation independence is also
related with audit studies in economics. In particular, [Zha21] audits recommen-
dations on Chinese job boards in an audit study setting (creating worker profiles
differing only by gender), demonstrating the existence of gendered differential treat-
ment.

Algorithmic interventions Interventions aimed at ensuring algorithmic fairness
definitions are satisfied can be divided into the categories of pre-processing (adjust
data before training), in-processing (adapt model training to include fairness-related
aspects) and post-processing (modify predictions or rankings, taking a trained
model as granted). In particular, adversarial in-processing methods [ES15; WVP18;
Beu+17; Let+23], which attempt to decorrelate latent representations with gen-
der, have been proposed for neural recommender systems in labor market settings
[Rus+22; Isl+21; Li+21] with different motivations and notions of fairness in mind.
On the other hand, post-processing methods have the merit of being model-agnostic.
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As in the present work, [Li+23] cast the problem of recommendation selection under
gender gap constraints as an integer linear programming (ILP) problem. While the
authors also consider quantity constraints on the number of recommendations per
job ads (which would be non-trivial to accommodate in our proposed framework),
their use of off-the-shelf ILP solvers scales poorly to large-scale problems3. One of
our contributions consists in addressing this limitation by noticing that the struc-
ture of the linear program of interest lends itself to Lagrangian relaxation [Fis81].
Furthermore, the proposed framework (presented in section 7.5) is extended to con-
ditional gap reduction by inverse propensity weighting.

7.2 Measuring gender gaps in recommendations

7.2.1 Outcomes of interest

We consider three sets of outcomes defined at the job seeker level (generically de-
noted Y in the following).

Recommendation performance First, we seek to measure how the algorithm’s
top-k recommendation performance varies between men and women, which will be
measured by the recall@k, evaluated on hires. Thus, for a job seeker in the test set
which was hired at a given point in time, we will define his or her contribution to
the recall as Yi = 1 if the person’s future job was correctly ranked in the algorithm’s
top-k recommendations, and 0 otherwise.

Characteristics of recommended jobs We also wish to describe how the char-
acteristics of the top k job ads4 depend on gender, unconditionally and conditionally
on qualifications and preferences. We will thus consider the following average char-
acteristics of the top k recommended job ads: i) the logarithm of the ad’s wage;
ii) the distance in kilometers of the job’s workplace to the job seeker’s zip code;
iii) whether the job ad corresponds to an executive position in the company; iv)
whether the contract is defined for an indefinite duration or not; v) whether the
contract is full-time; vi) the experience required for the job (in months). k will be
set to 10 in the experiments.

Fit to job seeker’s search criteria We also consider an aggregate indicator of
the fit between the job seeker’s search criteria and the recommended jobs, defined
as an average of five binary indicators describing the fit w.r.t. to the job seeker’s i)
accepted geographic mobility; ii) desired type of occupation; iii) desired wage; iv)
desired type of contract; v) desired working hours.

3Their experiments are conducted on 3,000 users and 5,105 companies - several orders of mag-
nitude below our real-world setting of interest.

4Note that this measure fixes the number k of recommended jobs by job seekers, and gives each
of these k jobs equal importance. Other measures weighting recommended jobs based on their
ranks (e.g. with DCG-type weights), either among the top-k ads or throughout the full ranking of
all job ads, could also be relevant, and would be compatible with our methodology for the analysis
of gender gaps.
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7.2.2 Measuring unconditional and conditional gaps

Average gaps In order to first assess whether the algorithm recommends different
job ads to men and women, we consider the naive average characteristics Y of the
recommended offers:

δ = E[Y |G = 1]− E[Y |G = 0],

G = 1 and G = 0 denoting respectively women and men hereafter. This parameter
can simply be estimated by taking a difference in means5.

Conditional gaps However, part of the gaps δ might be shaped by characteris-
tics of job seekers that could be considered legitimate to take into account when
generating recommendations. Conditioning on such characteristics Z may provide
more insights on the composition of the raw gender gaps δ. If the measured gaps
are to be interpreted in a normative fashion (i.e. as fairness measures), defining
what variables Z should be conditioned upon is a crucial choice.

In the following, we consider two specifications for Z. In the first specification,
Z represents the qualifications of job seekers, including education, experience, and
job type. In the second specification, control variables include both qualifications
and job seekers’ stated job search criteria - for instance, their search criteria in
terms of reservation wage, commuting time, type of contract, and working hours;
this augmented set of controls will be denoted Zp. Table 2.6 in Chapter 2 lists the
features used to define Z and Zp in more detail.

Denotem0(z) = E[Y |Z = z,G = 0] the expected characteristics of recommended
jobs for men with features z, and m1(z) = E[Y |Z = z,G = 1] the expected char-
acteristics of recommended jobs for women with features z. We are then interested
in estimating the average conditional gender gap:

τ = E[m1(Z)−m0(Z)]

Note that the expectation is taken over the distribution of Z in the entire population
of job seekers, pooling together men and women.6

Estimation of conditional gaps Estimating such average conditional gender
gaps is closely linked to the problem of estimating average treatment effects given
differences in population characteristics in the causal estimation literature [IR15],
granted that in our setting, gender is not literally a “treatment". It is also linked to
the so-called Kitagawa-Oaxaca-Blinder gender gaps decomposition in the economics
literature [Kit55; Oax73; Bli73; SW21].

5This focus on unconditional, or later conditional, gender gaps may hide heterogeneity (a
particular form of which may take the form of intersectionality). Other features of the distribution
of outcomes than its average may also be of interest.

6τ is thus related to δ by:

δ = [(E[m1(Z)|G = 1]− E[m1(Z)])− (E[m0(Z)|G = 0]− E[m0(Z)])] + τ
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Two approaches can be used to estimate τ . The direct method forms estimates
m̂1(z) and m̂0(z) of conditional expectations m1(z) and m0(z) using standard su-
pervised learning techniques to form an estimate:

τ̂DM =
1

n

∑
i

(m̂1(zi)− m̂0(zi)).

where n is the population size. The inverse propensity score approach instead
proceeds by re-weighting each sample by an estimate of the inverse of the propensity
score eg(zi) = P(Gi = g|Z = zi)

7:

τ̂ IPW =
1

n

∑
i

(
yi1{gi = 1}
p̂1(zi)

− yi1{gi = 0}
p̂0(zi)

)
.

Both methods are consistent under standard assumptions on the direct method
models or the propensity score, but present drawbacks. The direct method approach
is model-dependent, whereas the inverse propensity weighting method depends on
the propensity score model and has poor small sample properties when propensity
scores are close to zero or one. Doubly robust, or “augmented inverse propensity
weighting" estimators [RRZ94; Che+17; GQ10] combine both approaches, forming
estimates of the form:

τ̂AIPW =
1

n

∑
i

(
m̂1(zi)+

yi − m̂1(zi)

ê1(zi)
1{gi = 1}

)
−
(
m̂0(zi)+

yi − m̂0(zi)

ê0(zi)
1{gi = 0}

)
This approach has the merit of being consistent either of the estimators m̂ or p̂
consistently estimate m and p, and is robust to associated estimation errors.

7.2.3 Discussion

Differential treatment between individuals by an algorithm may arise from preexist-
ing biases in the training dataset. This section discusses how the proposed gender
gap measures may relate to actual economic behavior and to existing normative
stances on fairness.

A simple model of application and hiring Let us first analyze the application
and hiring behavior in a simple economic model (a simplified version of the model
in Chapter 4). Let x denote the vector representing job seeker characteristics (e.g.
qualifications, preferences, and other relevant attributes) and, with a slight overload
of notations, y represent the characteristics of job advertisements (e.g. proposed
wage, contract type, and job location). Job seekers are risk neutral, and decide
whether or not to apply to jobs in order to maximize their expected utility. We
denote U(x, y) + ν the amount of utility the job seeker x would perceive if hired
for the job offer y, where ν is an unobserved random part. If a job seeker applies,
she or he has a probability p(x, y) of actually being hired for the job. However, as
in Chapter 4, job seekers do not necessarily know the true success chances of their

7One may re-normalize the weights so they sum to one, as we do in practice.
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applications p(x, y). Instead, they form their own estimates π(x, y) of p(x, y), which
may differ from the actual value. When a job seeker applies to a job ad, he or she
incurs a fixed cost c. Let us also assume that that if the job seeker does not apply
to any offer, they receive a utility amount of zero. In this model, the job seeker x
decides to apply to job ad y if and only if his expected utility is positive:

(Decision applying) π(x, y)(U(x, y) + ν)− c︸ ︷︷ ︸
Expected utility when applying

≥ 0
Utility without applying

The probability of observing an application of x on a job ad of type y is

(Probability of observing an application) A(x, y) = F−ν

(
U(x, y)− c

π(x, y)

)
,

where F−ν denotes the CDF of −ε. The probability of observing a hiring is simply
the product of the probability of application times the objective probability of a
positive output after the interview: H(x, y) = A(x, y)p(x, y).

When the cost of application is zero, i.e. c = 0, only utility matters in job seekers’
decisions. Otherwise, their expected chances π(x, y) that their application succeeds
weigh their utility gains and could censor their decision of applying. This simply
underlines that realized applications are then not a pure expression of preferences,
but also mix with possibly wrong expectations.

Possible explanations of gender gaps We may observe different labor mar-
ket outcomes for men and women, leading to different recommendations learnt in
the algorithm’s training process, if they differ in terms of utility U(x, y), bias in
estimating their success chances π(x, y), or in actual application success chance
p(x, y).

First, preferences U might be gender-specific. For example, possibly due to
social norms and other constraints, women may appreciate the relative values of
commuting time and wages differently from men [LRR21], or prefer or be forced to
work for less hours due to childcare [GPO22]. The data collected on job seekers’
declared preferences and presented in Panel B of Table F.1 in the Appendix within
our sample supports this hypothesis of gendered preferences. On average, women
tend to seek job opportunities located, on average, 5 kilometers closer to their place
of residence. Their average reservation wage (the minimum salary accepted to
work) is €230 per month less than that of men. Additionally, women are less often
searching for full-time contracts, with only 64% pursuing such positions compared
to 83% of men.

Second, even if job seekers hold rational expectations, there might be gendered
differences in the hiring chances π [GMR15], e.g. taste or statistical discrimination
against a gender by recruiters. For instance, in the French context, a large-scale
correspondence study [Arn+21] highlights the existence of heterogeneous gender
biases in callback rates in different industries.

Third, hiring expectations π might also be gendered: aside from a possible
anticipation of discrimination from recruiters, there might be differences in the
perceptions and the representations of the chances to be hired, leading to differences
in self-censorship or over-confidence [Cor+23]; as well risk aversion (or different
values for the cost of an application c in the model).
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Gender gaps and fairness While this work is motivated by common definitions
of fairness applicable to the labor market, and while we believe the proposed gender
gap measures to be valuable in the audit of algorithms with respect to these notions,
we make no normative claim on what a fair recommender should be, and as to
whether the measured gaps are to be directly interpreted as measures of (un)fairness.

As explained above, the proposed definitions of gender gaps are closely linked to
demographic parity and recommendation independence in the algorithmic fairness
literature, as well as to issues of distributional and representational harm. Our
exposition nevertheless also puts emphasis on conditional measures of gaps, which
could be mapped to conditional fairness measures - as some elements of a job seekers’
profiles, such as qualifications and / or stated preferences, could possibly be deemed
legitimate for use by a recommender system, despite being distributed differently
across genders for (possibly unfair) historical reasons.

Measured gender gaps also imperfectly map to the structural economic param-
eters linked above, as it is unclear whether the contributions of gender differences
in p, π, U or c, or a mixture thereof in gaps can be disentangled. This is an issue
with respect to fairness notions emphasizing the origins of gender gaps: one may for
instance enable recommendations to allow for differences in preferences, but forbid
differences due to discrimination by recruiters. Such a discussion would require
learning a structural model of the labor market that is out of the scope of this
work. Nevertheless, let us first note that conditioning on a set Z containing stated
preferences might partially account for gender differences in utility U . Secondly, as
tentative evidence to describe the role that gender differences in acceptance proba-
bility p may play in generating gaps in historical data, we documents gender gaps
not only in hires (the algorithm’s training data) but also in job seekers’ applications
(where only π, U and c are at play according to the model).

7.3 Experimental setting

Datasets We study the France Travail dataset relative to the Auvergne-Rhône-
Alpes region from 2019 to mid-2022, as described in Chapter 2. The train and test
set cover 1.2 million job seekers and 2.2 million job ads. The 285,992 observed hires
are split between train and test on a weekly basis: 85% of weeks are assigned to
the train set (representing 241,715 hires), and the rest to the test set (44,277 hires,
46.66% of which include men).

To study gender gaps conditionally on features Z, the analysis must be restricted
to men and women that cannot be perfectly distinguished on the basis of Z, follow-
ing the overlap / common support assumption [IR15]. More precisely, if individuals’
gender could be perfectly predicted on the basis of Z, one could hardly disentangle
the impact of Z and that of gender on the recommendations.

The population with common support is selected as follows. The prediction of
gender is achieved using a logistic regression considering selected features including
education, desired wage, experience, geographic location, desired contract type,
occupation, level of qualification, search for part-time job, accepted mobility. The
learned classifier, referred to as propensity score, with accuracy circa 85%, is used to
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select job seekers in the common support, retaining individuals with the propensity
score in [0.01, 0.99].

To study recommendations issued to all job seekers at a given point in time, we
consider all job seekers registered during a randomly chosen week of the test set
(the fourteenth week of 2022). In order to measure recommendation performance
and to contrast differentiated treatment by the algorithm with differences observed
in hiring behavior, we also consider recommendations to all job seekers which are
hired during the test weeks. To study application behavior, we consider the average
characteristics (all weeks pooled together) of the applications of job seekers with
applications in the test weeks.

The sizes, compositions in terms of gender, and size after restriction to job
seekers in the common support, of the datasets of interest are reported in Table
F.2 in the appendix. The distribution of propensity scores among our population
is given in appendix F.3.

7.4 Results

7.4.1 Recommendation performance is higher for women

Table 7.1 reports the recall@k for all hires in the test set, as well as for men and
women separately. The recall@10 is 24% for men, and 26.5% for women, with a
statistically significant difference. More generally, we find the recall@k to be higher
for women than for men at all values of k considered. While the magnitude of the
difference is limited, it is statistically significant. 8

Top k Recall@k Men Women p-value

1 0.0573 0.0546 0.0597 0.0281
5 0.1744 0.1641 0.1833 0.0000
10 0.2532 0.2401 0.2647 0.0000
20 0.3468 0.3279 0.3632 0.0000
50 0.4843 0.4670 0.4995 0.0000
100 0.5834 0.5680 0.5968 0.0000
Notes: Recall@k is the recall for the population for the
first top recommendations k. The columns “Men" and
“Women" present the same recall@k separately for men
and women. The last column performs a test of equality
between columns 2 and 3.

Table 7.1: Difference in recall between genders.

8Hypothesized reasons for this disparity in recall include sample imbalance (women slightly
outnumber men) and the role of the distance criterion (women may assign greater value to prox-
imity when searching for a job, see Table 7.4 on hires and applications, which could make their
job choices easier to predict). In preliminary experiments, re-training the model on a balanced
sample, and controlling for distance and/or characteristics Z, reduces but does not completely
eliminate the gap.
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7.4.2 Characteristics of job ads recommended to men and
women are different

Table 7.2 provides conditional and unconditional estimates of gender gaps for a
subset of characteristics of the recommended job ads. The first column provides
the mean average difference between women and men (for the entire job-seeking
population of the fourteenth week of 2022). On average, women are recommended
job ads that have different characteristics than those recommended to men. Their
recommended job ads are paid 2.1% less than men; 350 meters closer to home, less
often in full-time contract (19.7 percentage points); less often of indefinite duration
(4 percentage points less often) and executive status (0.5 percentage points); require
less experience (1.7 year on average). Jobs recommended to women also have a
lower degree of fit with their own search criteria (a loss of 0.031 points in the
aggregate fit measure between 0 and 1). All of these differences are statistically
significant. These results also hold for the population of common support (which
has a propensity score that ranges between 0.01 and 0.99) presented in the third
column of the table (Uncond. δ (overlap)).

We now turn to the analysis of conditional gaps, using the estimators described
in Section 7.2, and conditioning on qualifications Z. Our analysis focuses on the
population that fulfills the common support assumption, which comprises job seek-
ers with propensity scores ranging between 0.01 and 0.99. The fifth column (Cond.
τ (IPW)) and the seventh column (Cond. τ (DRL)) respectively present the in-
verse propensity weighting estimator and doubly robust estimators. Conditioning
for job seeker’s characteristics Z using the IPW estimator leads to a reduced gender
gap for all job ads characteristics considered. However, the recommended jobs for
women still fit less with their search parameters (by 0.014 points) and remain signif-
icantly different in all the dimensions discussed except for executive positions. For
example, 33% of the gender wage gap is left unexplained by the characteristics and
qualifications of the job seekers. The same conclusions hold when the doubly robust
estimator is used to compute the gender gaps. The minimal disparities between the
two estimators suggest the robustness of our results.

In conclusion, even after controlling for a set of observable factors defining job
seeker key qualifications, women and men continue to receive job recommendations
that differ in their attributes.

Including job seekers’ preferences into the control vector Z As discussed
in section 7.2, incorporating stated preferences into Z (we will denote this aug-
mented vector Zp) in addition to objective qualifications could partially explain
gender differences due to differences in utility. Table 7.3 presents an analysis simi-
lar to that of Table 7.2, but conditioning on Zp instead of Z. Including preferences
in the control vector helps to better explain gender gaps in the recommendations
generated. The portion of the gender gap left unexplained diminishes across most
job offer characteristics, although it remains significant except for executive posi-
tions and experience. For instance, the unexplained part of the gender wage gap
now stands at only 23% (compared to 33% when conditioning on Z), yet it remains
statistically significant. Overall, incorporating preferences into the control vector
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Uncond. δ pval Uncond δ pval Cond. τ pval Cond. τ pval
(full pop.) (overlap) IPW DRL

Wage (log) -0.021 0.0 -0.018 0.0 -0.006 0.000 -0.006 0.0
Distance -0.350 0.0 -0.219 0.0 0.639 0.000 0.674 0.0
Executive Position -0.005 0.0 -0.008 0.0 -0.001 0.117 -0.002 0.0
Indefinite duration -0.040 0.0 -0.044 0.0 -0.016 0.000 -0.020 0.0
Full time -0.197 0.0 -0.165 0.0 -0.045 0.000 -0.044 0.0
Experience (months) -1.696 0.0 -1.199 0.0 -0.166 0.000 -0.170 0.0

Fit to job search parameters -0.031 0.0 -0.027 0.0 -0.014 0.000 -0.016 0.0
Notes : The first column reports the average gender gaps δ recommendations in the total population. The third
column reports the gender gap in recommendations for job seekers with a propensity score between 0.01 and 0.99,
i.e., belonging to the common support. The fifth column represents the conditional gaps measured by the inverse
propensity weighting estimator. The seventh column reports the estimates using doubly robust estimators. The
results are given using random forests as estimators for the function m and logistic regression for p. All “pval"
columns present the p-value indicating the significance of the measure reported in the adjacent left column. For
conditional estimators, the p-value is computed by bootstrapping.

Table 7.2: Unconditional and conditional gender differences in the characteristics
of the recommended offers.

results in minimal changes in estimated gender gaps compared to controlling for
qualifications alone.

Uncond. δ pval Uncond δ pval Cond. τ pval Cond. τ pval
(full pop.) (overlap) IPW DRL

Wage (log) -0.021 0.0 -0.017 0.0 -0.004 0.000 -0.004 0.000
Distance -0.350 0.0 -0.206 0.0 0.681 0.000 0.742 0.000
Executive Position -0.005 0.0 -0.008 0.0 0.001 0.292 -0.000 0.121
Indefinite duration -0.040 0.0 -0.044 0.0 -0.009 0.000 -0.017 0.000
Full time -0.197 0.0 -0.160 0.0 -0.030 0.000 -0.030 0.000
Experience (months) -1.696 0.0 -1.170 0.0 -0.077 0.129 -0.030 0.683

Fit to job search parameters -0.031 0.0 -0.025 0.0 -0.008 0.000 -0.011 0.000
Notes : The first column reports the gender gap δ on average in the total population. The third column reports
the gender gap in recommendations for job seekers with a propensity score between 0.01 and 0.99, i.e., belonging
to the common support. The fifth column represents the conditional gaps measured by the inverse propensity
weighting estimator. The seventh column reports the estimates using doubly robust estimators. The results
are given using random forests as estimators for the function m and logistic regression for p. All “pval" columns
present the p-value indicating the significance of the measure reported in the adjacent left column. For conditional
estimators, the p-value is computed by bootstrapping.

Table 7.3: Unconditional and conditional gender differences in the characteristics of
the recommended offers (when conditioning on qualifications and preferences Zp).

Heterogeneity Average gaps can hide substantial heterogeneity. To provide sug-
gestive evidence about possible heterogeneity, we identify, for each type of job ad
characteristic, the top decile of the population in terms for which the doubly robust
scores (Eq. 7.2.2) differ the most in disfavor of women - in other words, the job seek-
ers with qualifications Z for which the largest gender gaps disfavoring women are
predicted by the learned models. Table F.5 provides descriptive statistics on the de-
mographic characteristics of these top deciles - with column 1 providing population
means for reference.

Based on column 2 (Wage), we observe that compared to the population mean,
the subgroup experiencing the most pronounced wage loss associated to being a
woman (approximately 2.5% average loss) exhibits different characteristics. These
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individuals possess a higher level of experience (78 months compared to 53 months
in the overall population), are more frequently in executive positions (16.5% com-
pared to 9.4%), are more often married (43% compared to 37%), and have higher
reservation wages (2440 euros compared to 1923 euros). Moreover, they are more
often aged between 30 to 50 years (58% compared to 54%). In terms of sectors, the
most affected group is more often looking for jobs in Industry (27% compared to
8% in the general population).

7.4.3 Comparison of gender gaps in recommendations, hir-
ings and applications

We now turn to the comparison of gender gaps in recommendations to those found
in the training data, namely hires; and to those found in job seekers’ own application
behavior.

Comparison with hires To compare gender gaps in recommendations to those
found in hiring behavior, we focus on all hires that occurred during the test weeks9.
When job seeker i is hired on ad j∗ during week t, we compare the characteristics
of j∗ with those of the top-10 recommendations i would have received at time t.
Table 7.4, panel A, displays the results of this comparison.

The first column of Table 7.4, Panel A (τHire), corresponds to IPW estimates of
gender gaps conditional on qualifications in hiring data (i.e. in terms of the actual
hires j∗)10, on the population with common support. Conditional on qualifications,
women are hired on jobs that are paid less (1.2 percentage points)11, less often in
indefinite duration contracts (4 percentage points) and less often in full time con-
tract (7.4 percentage points). Moreover, women obtain jobs with a lower aggregate
fit to their search parameters compared to men (by 0.02 points). These gender gaps
are statistically significant.

The third column (τ(MUSE)) of Table 7.4, Panel A, presents the correspond-
ing estimates (gender gaps conditional on qualifications on the common support
population) on the recommendations hired job seekers would have received at the
time t of their hire. Similarly, women are found to receive recommendations with
lower wages (0.7 percentage points), a lower share of indefinite duration contracts (1

9As noted above, we pool hires from all weeks, rather than restraining the analysis to the
fourteenth week of 2022, for the sake of statistical power. We thus study a total population of 41,
787 individuals (22, 291 of which are women).

10Table F.4 in the Appendix provides estimates of all quantities of Table 7.4 using doubly robust
estimators, rather than IPW ones, as a robustness check.

11An estimate of 1% for the gender wage gap on the job offers, conditional on qualifications,
might be surprising considering the larger magnitudes generally discussed in the economics litera-
ture. It should be noted that we condition on a large set of variables and that the analysis focuses
on registered job seekers (rather than on the working population as a whole), with jobs closer to
the national minimum wage than those in the national population. Moreover, reported wages are
those posted in job openings (more precisely, an average between an lower and upper bound for
the proposed wage, when the upper bound is available). Gaps in wages on the job may be larger
than the reported ones due to gendered behavior in negotiations between the job seeker and the
employer, as emphasized by [Rou24].
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Differences between women and men Difference of Differences
A. In hirings τHire(Observed) p-value τ (MUSE) p-value τDifH (MUSE) p-value

Wage (log) -0.012 0.000 -0.007 0.001 0.005 0.162
Distance -2.517 0.130 0.812 0.000 3.329 0.032
Executive Position -0.001 0.534 -0.001 0.689 0.000 0.682
Indefinite duration -0.040 0.001 -0.010 0.032 0.029 0.048
Full time -0.074 0.000 -0.044 0.000 0.030 0.000
Experience (months) 0.504 0.359 0.175 0.123 -0.329 0.791

Fit to job search parameters -0.020 0.000 -0.016 0.000 0.003 0.211
B. In applications τApp (Observed) p-value τ (MUSE) p-value τDifA (MUSE) p-value

Wage (log) -0.011 0.000 -0.005 0.004 0.006 0.002
Distance -6.409 0.000 0.648 0.000 7.056 0.000
Executive Position -0.003 0.220 0.001 0.240 0.004 0.095
Indefinite duration -0.025 0.001 -0.009 0.011 0.016 0.062
Full time -0.076 0.000 -0.051 0.000 0.025 0.000
Experience (months) -0.132 0.312 0.115 0.230 0.247 0.113

Fit to job search parameters -0.020 0.000 -0.015 0.000 0.004 0.013
Notes: In Panel A, the results are presented for the subsample of hired job seekers with hires in the testing weeks. Panel B presents results on the

subsample of job seekers for which we observe applications in the testing weeks. The first column presents the conditional estimates for the gender

gaps on observed hirings (resp. observed applications) between women and men for the population with common support. The third one presents

the same difference on the characteristics of the algorithm’s recommendations. Differences with the conditional effects presented in the fifth column

of Table 7.2 are due to the restriction on the subsample of job seekers with hires / applications. The fifth column reports the difference of two latter

differences, i.e., the conditional estimates for the differences between a hire’s characteristics (resp application’s) and the algorithm’s recommendation.

Table 7.4: Conditional gender gaps in hires and applications and in the algorithm’s
recommendations on the subsample of hired job seekers

percentage points) and full time jobs (4.4 percentage points), and lower fit to their
search parameters (0.016 points). These gender gaps are statistically significant.

Yet, when comparing the magnitude of gender gaps in hires and in recommen-
dations, we note that those in recommendations are not wider than those observed
in hiring. Column τDifH of Table 7.4, Panel A, provides the results of a formal
comparison of the gender gaps in recommendations and in hirings, achieved by
running IPW estimates on Y taken as the difference between the characteristics of
MUSE recommendations and those hires. An estimate of zero would indicate that
the conditional gaps remain unchanged in recommendations, whereas positive co-
efficients indicate conditional difference between men and women are reduced in
recommendations compared to hires. The algorithm’s recommendations are found
to significantly reduce gaps in terms of indefinite duration and full time recom-
mendations. Altogether, the algorithm either maintains the gender gap unchanged
compared to its training data, or, sometimes, narrows it.

Comparison with applications Panel B of Table 7.4 replicates the exercise
of panel A, comparing the algorithm’s recommendations to job seekers’ application
behavior (which underly hiring behavior). The analysis is conducted on the average
characteristics of job seekers’ applications over all test weeks (compared to the
average characteristics of the corresponding recommendations over all test weeks).
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When conditioning on qualifications, women tend to apply to positions that
offer lower pay (0.01 percentage points), shorter commute distances (6km closer),
fewer long-term contracts (0.025 percentage points) and fewer full-time positions
(7.6 percentage points). Additionally, they apply to positions that align less with
their search parameters by 0.02. All of these gaps are statistically significant. The
algorithm does not exacerbate the gender gaps observed in application behavior
(Column 5, τDiff ). For most job characteristics, we observe a positive coefficient,
with several of them being statistically significant (wage, distance, and full time
nature of the job). This indicates that the algorithm tends to narrow the gender
gap observed in application behavior for most characteristics.

Eventually, if the algorithm recommends different types of job offers to men and
women, there is no evidence suggesting that it exacerbates the existing gender gaps
observed in the labor market, whether in hiring behavior or in application behavior,
when we control for job seekers’ qualifications.

7.5 A post-processing approach to reducing gender
gaps in recommendations

The goal of this section is twofold. First, we present a scalable post-processing
approach to reduce unconditional or conditional average gender gaps in terms of
recommendation characteristics, casting the selection of recommendations as a La-
grangian relaxation of an integer linear programming problem. Second, we describe
the trade-offs it implies between standard performance measures and achieving re-
duced gender gaps in recommendations.

7.5.1 Methodology

We cast the problem of recommendation selection under gender gap constraints as
an integer linear programming (ILP) problem. We circumvent the issue of scala-
bility by noticing that the structure of the linear program of interest lends itself to
Lagrangian relaxation [Fis81].12

Unconstrained top-k recommendation as an integer linear program Con-
sider n users and m job ads registered at a given point in time. Assume that for
each job seeker - job ad pair i − j, we have access to the recommender system’s

12An earlier workshop paper this chapter is based on [Bie+23a] rather used an adversarial
in-processing approach at the pair level to decorrelate latent representations of job seeker - job
ad pairs from gender during training, as e.g. in [Rus+22]. Both approaches have merits. In
general, in-processing approaches have the potential to be more efficient than post-processing
ones. Adversarial training would also target distributions (of pairwise scores) rather than averages.
On the other, the ILP approach used here optimizes overall rankings whereas the adversarial
one operates at the pair level (translation from scores to rankings comes without guarantees).
Moreover, the ILP approach is straightforward to extend to conditional gaps; is more explicit in
terms of its gaps targets and enforcing trade-offs than the adversarial approach; is model-agnostic
and does not require retraining.
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score sij 13. Formally, selecting the set of the top k job ads in terms of sij’s for each
job seeker i may be written as solving the integer linear program:

max
{γij}i≤n,j≤m

n∑
i=1

m∑
j=1

sijγij = max
γ∈Rnm

sTγ (7.1)

subject to:

γij ∈ {0, 1}, ∀i, j,
m∑
j=1

γij = k, ∀i (7.2)

Here, γij = 1 signifies that job ad j would be chosen among job seeker i’s top k
ads; and γij = 0 that job ad j is not shown to job seeker i. Contraints 7.2 simply
encode that exactly k job ads must be selected to feature in each job seeker’s
recommendations. Equation 7.1 indicates that recommendations should have the
highest scores according to the baseline recommender system. 14

Top-k recommendation with constraints on unconditional average gender
gaps Let gi = 1 if i is a women, 0 otherwise, and let ngi be the number of
individuals with the same gender as i. Let wij be a characteristic of job ad j,
possibly depending on i, in terms of which gender gaps should be restricted in
recommendations (for instance, wij can set to be the wage of job ad j, or the
geographic distance between j and i). This can be achieved by adding to the
integer linear program described above the additional constraint:

−ϵ ≤ 1

k

∑
i:gi=1

∑
j

wij

ngi

γij −
1

k

∑
i:gi=0

wij

ngi

γij ≤ ϵ (7.3)

where ϵ > 0 should ideally be chosen by consensus among stake-holders (public
decision-makers, job seekers and recruiters). This equation encodes that the gender
gap in terms of w′

ijs of recommendations must be lower than ϵ in absolute value.
This gender gap constraint can be rewritten as Aγ ≤ b, A ∈ R2×nm, b = (ϵ, ϵ)T

(details of the transformation are provided in Appendix F.4). The formulation easily
extends to constraints on gaps in terms of several features wij’s (e.g. constraints on
both the wage and distance gaps).

Top-k recommendation with constraints on conditional gender gaps If,
rather than unconditional gaps, gender gaps conditional on covariates Z are to be
targeted, one may substitute to constraint (7.3) the alternative constraint:

−ϵ ≤ 1

k(
∑

i:gi=1
1

ê1(zi)
)

∑
i|gi=1

∑
j

wij

ê1(zi)
γij −

1

k(
∑

i:gi=0
1

ê0(zi)
)

∑
i:gi=0

∑
j

wij

ê0(zi)
γij ≤ ϵ

(7.4)
13In the following, sij could be replaced by any transformation of scores and initial ranks (for

instance, an NDCG-like formula based on initial rank) that would be deemed to express in a
meaningful way how relevant job ad i is for job seeker j.

14This integer linear programming problem selects which k job ads should be shown, but does not
specify their order. Optimizing rankings (to account for the so-called position bias) is important
in practice, but is left for further work.
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where êg(zi) corresponds to an estimate of the propensity score eg(zi) = P (G =
g|Z = zi). In other words, features wij are weighted by the inverse of the propensity
score in order to take into account the differences in covariates Z between men and
women.

A scalable Lagrangian relaxation approach While the size of the integer
linear programming problem (in nm variables) is forbidding, its structure lends
itself to the use of Lagrangian relaxation. Indeed, this hard problem can be viewed
as an easy problem - solving (7.1) under constraint (7.2) - complicated by side
constraints (7.3) or (7.4), which can be dualized. We thus consider the Lagrangian
relaxation

L(λ) = max
γ∈Rnm

sTγ − λ(b−Aγ) s.t γij ∈ {0, 1}, ∀i, j,
∑
j

γij = k, ∀i

For a given value of λ, solving the problem defining L(λ) simply amounts, for each
job seeker, to the unconstrained problems of finding the highest k values in a size
m array (as detailed in Appendix F.4). This task can be achieved in O(m+k log k)
(expected) complexity for a given job seeker, and thus for a total complexity of
O(n(m+k log k)) for all job seekers. The overall Lagrangian relaxation problem we
seek to solve for is then:

min
λ≥0

L(λ)

which we optimize by subgradient descent, noting that a subgradient of L(λ) with
respect to λ is −(b − Aγ). In practice, we reduce the problem to the top-200
recommendations of each job seeker i, which can be interpreted in the problem
above as adding the constraint γij = 0 must hold for recommendations ranked
above 200. This restriction stems from a pragmatic perspective, and further eases
the computational burden.

Discussion Recommendation independence requires Y ⊥ G, which is a stronger
requirement than the restriction on |E[Y |G = 1]− E[Y |G = 0]| studied here in the
non-conditional setting. The two approaches are equivalent for binary variables. For
continuous variables (e.g. wage), requiring both genders to have the same distribu-
tions can be approximated in the proposed approach by discretizing the distribu-
tions, and simultaneously imposing constraints on the share of recommendations in
each discretized bucket (since the framework can accommodate several constraints).

These remarks can be extended to the conditional setting, replacing Y ⊥ G by
Y ⊥ G|Z, and |E[Y |G = 1] = E[Y |G = 0]| by |E[Y |G = 1|Z] = E[Y |G = 0|Z]|.

Ensuring Y ⊥ Z|Z = z for all z is a question of primary interest but is left
for further work (one way to work towards satisfying this constraint in our setting
would be to create clusters among Z and solve integer linear programming programs
in each cluster).

7.5.2 Results

Experimental setting This section investigates the consequences on recommen-
dation characteristics and recall of reducing gender gaps using the methodology
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proposed in Section 7.5. A first subsection studies the reduction of average (uncon-
ditional) gaps, while the second subsection focuses on analyzing the reduction of
conditional gaps.

In both cases, three sets of constraints ϵ, of increasing stringency, are imple-
mented for the sake of illustration. These constraints are simultaneously imposed
on several objective characteristics of recommended job ads: log-wage, distance,
executive qualification, indefinite duration contract, full time status and experi-
ence requirements. Values of the constraints are summarized in Table F.6 in the
appendix. The constraints are imposed on the top k = 10 recommendations.

Constrained recommendations are computed for all weeks in the test set, on a
week by week basis. Consistently with the methodology employed in the first part
of this chapter, all results except those for recall are presented on the fourteenth
week of 2022, and the recall is computed on the full set of test weeks to ensure
sufficient statistical power.

Aside from gender gaps and recall, we also document the share of job seekers
for which post-processing causes at least one recommendation to change compared
to unconstrained recommendations, and the share of pairs of job seekers and job
ads in top-10 recommendations that are modified after post-processing. Since one
might fear that the modification of the γij’s comes at the price of increased conges-
tion of recommendations, our analysis also takes into account congestion measures.
Congestion is measured by the Gini Index, taking values between 0 and 1. A lower
Gini Index indicates lower congestion (i.e. a more equal spread of recommendations
across all available job ads).

Constraining average (unconditional) gaps Table 7.5 presents the conse-
quences of imposing constraints on unconditional gender gaps, for the three con-
sidered levels of ϵ. For each level of constraint stringency (Low, Intermediate and
High), column ϵ displays the constraints that are simultaneously imposed on the
different types of gender gaps, whereas column “value" displays the actual gender
gaps achieved in recommendations after post-processing. The average gender gaps
in the attributes of the recommended job ads align with the specified constraints,
as required. Surprisingly, the gender gap in terms of fit of recommendations to
job search parameters (which does not feature in the required constraints) also
decreases.

The second panel of Table 7.5 displays the recall@10 for all hirings in the test
set, segmented by gender. The recall is 0.253 for unconstrained recommendations,
and decreases slightly when constraints are imposed - reaching 0.2484 for “high"
constraint levels. Both genders experience a decline in recall.

The third panel of Table 7.5 presents other relevant descriptive statistics. Cor-
recting for average gaps appears to slightly increase congestion, with the Gini Index
rising from an initial value of 0.7877 to 0.7900 in the case of high constraints on
average gaps. Depending on constraint stringency, from 68% to 72% of job seekers
experience at least one change in the recommendations they receive due to post-
processing. However, only 11% to 12% of the total pairs present in the unconstrained
rankings are modified after post-processing, suggesting that the modifications of
displayed rankings at the individual level remain limited on average.
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Initial Low Intermediate High

value p-value ϵ value p-value ϵ value p-value ϵ value p-value
Unconditional gaps
Wage (log) -0.0213 0.0 0.0050 -0.0050 0.0000 0.0025 -0.0025 0.0000 0.0010 -0.0010 0.0020
Distance -0.4293 0.0 0.5000 -0.3541 0.0000 0.2500 -0.2500 0.0000 0.1250 -0.1250 0.0000
Executive Position -0.0048 0.0 0.0025 0.0022 0.0000 0.0010 0.0011 0.0035 0.0005 0.0005 0.1597
Indefinite duration -0.0404 0.0 0.0100 -0.0100 0.0000 0.0050 -0.0050 0.0000 0.0025 -0.0025 0.0069
Full time -0.1965 0.0 0.0100 -0.0101 0.0000 0.0050 -0.0051 0.0000 0.0025 -0.0026 0.0007
Experience (months) -1.8079 0.0 1.0000 -1.0000 0.0000 0.5000 -0.5000 0.0000 0.2500 -0.2500 0.0000

Fit to job search parameters -0.0308 0.0 -0.0001 0.8031 0.0017 0.0008 0.0027 0.0000

Performance indicators

R@10 0.2530 0.2498 0.2487 0.2484
R@10 (Women) 0.2645 0.2620 0.2608 0.2605
R@10 (Men) 0.2398 0.2358 0.2349 0.2345

Other descriptive statistics

Gini Index 0.7877 0.7896 0.7898 0.7900
% Offers modified 0.0000 0.1110 0.1172 0.1210
% Ranking modified 0.0000 0.6777 0.7045 0.7208
Notes: The results are presented using recommendations generated for job seekers (and job ads) existing at week 2022-14, the overall population of
job seekers being taken into account. We present results for increasingly stringent unconditional constraints ϵ (“weak", “intermediate", and “high").
The set of ϵ values is given for each intensity level, respectively, in the third, sixth, and ninth columns. The first two columns restate the results of
the standard algorithm in terms of average gender gaps for comparison purposes. p-values are computed via bootstrap estimation (100 randomly
selected samples drawn from the initial population).

Table 7.5: Unconditional gender gaps in job ads characteristics after imposing un-
conditional constraints

Distributional changes As discussed above, for continuous variables such as
the wage, constraining the mean alone is a weaker constraint than requiring equal
distributions for both genders. In particular, one may be worried that adjustment
only occurs through the manipulation of a few outlying values. Figure 7.1 displays
the impact of the selected constraints on the distribution of wages for men and
women, to further assess the distributional changes that occur when imposing aver-
age constraints. Applying the mean constraints impacts the wage distribution as a
whole, and not a few outliers. However, the distributions do not fully overlap after
post-processing.

Figure 7.1: Distribution of Wages (log) according to stringency of applied con-
straints
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Initial Low Intermediate High

value p-value ϵ value p-value ϵ value p-value ϵ value p-value
Conditional gaps
Wage (log) -0.0065 0.0000 0.0050 -0.0052 0.0000 0.0025 -0.0027 0.0006 0.0010 -0.0012 0.1594
Distance (km) 0.7175 0.0000 0.5000 0.4986 0.0000 0.2500 0.2473 0.0035 0.1250 0.1215 0.2934
Executive position -0.0007 0.1965 0.0025 -0.0002 0.8132 0.0010 0.0005 0.3090 0.0005 0.0003 0.4852
Indefinite duration -0.0153 0.0000 0.0100 -0.0097 0.0000 0.0050 -0.0047 0.0204 0.0025 -0.0022 0.2878
Full time -0.0450 0.0000 0.0100 -0.0102 0.0000 0.0050 -0.0052 0.0217 0.0025 -0.0027 0.2526
Experience (months) -0.2070 0.0000 1.0000 -0.1429 0.0025 0.5000 -0.0898 0.0601 0.2500 -0.0591 0.2189

Fit to job search parameters -0.0141 0.0000 -0.0084 0.0000 -0.0070 0.0000 -0.0061 0.0000

Performance indicators

R@10 0.2388 0.2386 0.2388 0.2387
R@10 (Women) 0.2512 0.2512 0.2515 0.2515
R@10 (Men) 0.2236 0.2232 0.2233 0.2231

Other descriptive statistics

Gini Index 0.7969 0.7969 0.7969 0.7969
% Offers modified 0.0000 0.0048 0.0066 0.0074
% Ranking modified 0.0000 0.0451 0.0614 0.0687
Notes: The results are presented using recommendations generated for job seekers (and job ads) for week 2022-14, the overall population of job seekers
being taken into account. We present results for increasingly stringent conditional constraints ϵ (“weak", “intermediate", and “high"). The set of ϵ
values is given for each intensity level, respectively, in the third, sixth, and ninth columns. The first two columns restate the results of the standard
algorithm in terms of average gender gaps for comparison purposes. p-values are computed via bootstrap estimation (100 randomly selected samples
drawn from the initial population).

Table 7.6: Conditional gender gaps in job ads characteristics after imposing condi-
tional constraints

Constraining conditional gaps We now turn to the analysis of the impact of
imposing conditional constraints. We focus on the analysis of gaps conditional on
the specification of Z containing qualifications only. Complementary results for
the specification including both qualifications and preferences are provided in the
Appendix (Table F.7).

Table 7.6 describes the impact of constraining average gaps conditional on qual-
ifications. The measures for gaps are conditional ones (conditioning by qualifica-
tions), for the sake of coherence with the required constraints. The post-processed
recommendations result in a reduction in the conditional gender gaps, aligned with
the enforced constraint ϵ. Surprisingly, gender gaps in terms of fit to job search
parameters also decrease as a by-product of the imposition of the other constraints.

The imposition of conditional constraints has negligible impact on the recall@10,
both on average and for either gender.

This is attributed to the fact that fulfilling the require constraints is achieved
with little modifications to overall recommendations. For instance, on the popula-
tion of the fourteenth week of 2022, the most stringent constraints ϵ on conditional
gaps are achieved by modifying less than 1% of the initial job seeker-job ad pairs
recommended, and the post-processed rankings remain unchanged for more than
93% of job seekers. The congestion in recommendations remains unchanged by
post-processing. We emphasize that the number of recommended jobs k, set to 10
for these experiments, might affect the performance-fairness trade-off.
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7.6 Partial conclusion

In this chapter, we build on the literature in labor economics to propose and measure
gender gaps in job recommendations, emphasizing the relevance of conditional gap
measures. These gap measures are furthermore applied in the context of the audit
of Muse.

Our main findings are the following. First, we find recall to be slightly higher
for women than for men. Second, we provide evidence of differentiated treatment of
men and women by the algorithm in terms of recommended job characteristics (in
particular, wages, contract lengths, full time job status), even conditionally on job
seekers’ qualifications and search criteria. However, the algorithm’s recommenda-
tions does not increase gendered gaps observed in hirings, and even decreases them
in some cases. A comparison of recommended job ads to application behavior leads
to similar conclusions. Third, we propose a scalable post-processing approach, under
the form of the Lagrangian relaxation of an integer linear program, to reduce un-
conditional and conditional gender gaps. We empirically demonstrate the method’s
ability to reduce conditional gender gaps, and investigate the trade-offs between
recall and gender gaps it entails.

Our analysis has focused on average gaps, which could hide substantial het-
erogeneity - in particular, intersectional biases. Future work could consider other
features of the distribution of gaps, both in terms of measure and post-processing
targets.

One of the drawbacks of our analysis is that we relied on the declared preferences
of job seekers, summarized by a few variables (e.g. desired job and contract type,
maximum geographic mobility). Such declarative variables might be too minimalist
to truthfully reflect the complexity of job seekers’ trade-offs between the different
components of a job ad. A way to improve our analysis would be to collect more
information on these preferences, and find a way to elicit them empirically, e.g.
through experiments exposing job seekers to job ads with randomized components.

Ultimately, the merits of de-biased algorithms attempting to reduce gender gaps
in recommendations hinge on the acceptability of the proposed job ads in terms of
job seekers’ (possibly gendered) preferences. An algorithm straying off too far from
job seekers’ search behavior might lead to a dead-weight loss: a loss in recommen-
dation quality without any effect on labor market inequalities if recommendations
are simply discarded as irrelevant. Moreover, formal guarantees for gender gaps
in recommendations do not imply bounds on the actual impact of an algorithm’s
implementation on gender gaps in applications and hirings. Measuring the algo-
rithm’s capacity to actually modify labor market decisions toward fairer outcomes
requires experiments in practice, for instance under the form of A/B tests comparing
post-processed recommendations to a suitably chosen benchmark.

Major limitations of the inquiry we conducted must be acknowledged. First, the
analysis has focused on a single protected attribute (gender, moreover treated as
binary due to data limitations), leaving aside other groups for which fairness con-
cerns exist (e.g. age, ethnicity), and possible issues of intersectionality. Second, our
discussion of fairness should be extended to the value alignment question and tied
to the investigation conducted in Chapter 4. Indeed, the choice of an algorithm’s
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objective function is itself a key problem in discussing fairness issues [KA21; Kas24].
Moreover, our analysis has focused on the narrow, technical viewpoint of AI fairness,
despite its inherent limitations [BD24]. A complete analysis of fairness issues with
job recommender systems should take into account the full socio-technical scope
of their deployment, how these tools are used and understood by users, and how
they contribute to shaping the broader relations between job seekers, employers and
government services [CP22].

112



Conclusion and perspectives

Conclusion

This work aimed at exploring problems related to the design of job recommender
systems in the context of a collaboration with the French Public Employment Ser-
vice, France Travail.

Our first contribution is Muse, a two-tiered neural architecture aimed at ad-
dressing the challenges of learning from sparse interactions and heterogeneous data
sources while ensuring scalability. Muse’s first tier is a “two-tower" recommender
system, with separate embeddings accounting for the specific roles of geography
and of skill proximity in labor market matching. The second tier re-ranks the first
tier’s selection, leveraging more elaborate features and a more complex architec-
ture with multiplicative interactions. Muse is comparatively assessed to the state
of the art on public data from the Xing 2017 RecSys Challenge as well as France
Travail data. It is shown to have strong performances in recall while maintain-
ing scalability (several orders of magnitude compared to boosted tree ensembles).
Muse was also validated in the context of two large-scale randomized field experi-
ments, which gathered feedback from job seekers on recommendations. Variants of
the two-tier Muse architecture learned from hires and applications were shown to
significantly outperform boosted tree ensembles as well as the institution’s current
expert systems on explicit and implicit satisfaction metrics.

Our second contribution is a discussion of the objective that job recommender
systems should pursue in order to be aligned with job seekers’ goals. Based on a
formal economic model, we argued that such a well-aligned algorithm would rank
job ads by their expected utility for job seekers - a quantity that involves the
utility job seekers would derive from a job posting, and their probability of being
hired conditional on applying. Using proxies for job seekers’ utility and hiring
probabilities, we documented the fact that the rankings they induced significantly
differed, underlining that this algorithm design problem is important in practice.
Efficiently combining utility and hiring probabilities in recommendations could lead
to sizeable gains for job seekers, although identifying these quantities is non-trivial.

Our third contribution questions the issue of congestion in job recommender
systems. As job ads are rival goods, recommending the same subset of job ads
to all job seekers might be sub-optimal, however good the recommendations may
individually seem. We found congestion to be a likely issue in practice: in a given
occupation, despite job seekers outnumbering job ads by a factor of roughly eight,
only a quarter of all job ads appeared at all in any job seekers’ top-ten recommen-
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dations. Leveraging tools from the computational optimal transport literature, we
proposed Carot, a post-processing approach to congestion-reducing recommen-
dation. Comparative validation on public and France Travail data investigated
Carot’s ability to balance recall and congestion.

Our fourth contribution is linked to the measure of gender gaps in recommen-
dations, in the context of concerns about the algorithm’s fairness with respect to
gender. We discussed possible origins for these gaps, which may come from job
seekers (different utility functions, risk aversion, over or under-confidence) as well
as from discrimination from recruiters. Leveraging ideas from the gender gaps liter-
ature in economics, we proposed tools to measure gender gaps in recommendations,
possibly conditioning on job seekers’ qualifications and preferences. An audit of
Muse led to the conclusion that gender gaps existed in recommendations, but were
no greater than those observed in the training data (hires), nor than those observed
in job seekers’ applications. We also proposed a scalable post-processing approach
to reducing (possibly conditional) average gender gaps, leveraging the Lagrangian
relaxation of an integer linear program. We investigated the trade-offs between
gender gap reduction and recall the approach entailed.

Perspectives

Noting that contribution-specific research perspectives were outlined in partial con-
clusions at the end of relevant chapters of this thesis, let us now focus on a few
selected avenues for further work.

Improving Muse’s scope and architecture To improve the scope and quality
of Muse recommendations, the most obvious perspectives are to scale the approach
nationwide, and to remove key limitations on the data Muse leverages (as described
in Chapter 2), which in turn requires improvement in Muse’s architecture. Muse
could be modified to leverage more hires of job seekers than only those identified
in our work (less than a tenth of the total), perhaps using multi-instance learn-
ing. More elaborate natural language processing tools, perhaps including Large
Language Models, could be leveraged to better represent and leverage textual data.

Towards an economic understanding of job recommendation A key theme
underlying this work is that job recommendation is not an usual learning to rank
problem.

Past query-level or pair-level data is not i.i.d. in the sense that a “good" recom-
mendation or match depends on context - the state of the labor market, and local
supply and demand of labor. On the algorithmic side, seeking to account for this
may take the form of posing the problem as a reciprocal recommendation one, and
learning from labor market data viewed as a graph.

A better understanding of how data is generated and what constitutes optimal
interventions is also required from the point of view of economic theory - separating
the role of utility, perceived and actual hiring probabilities, and competition in the
data generating process, and modeling the welfare impact of the introduction of
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recommendations on the labor market. This improved understanding could then be
leveraged into the recommendation process by mixing structural assumptions with
the non-parametric flexibility of machine learning to identify key components in job
seekers’ decisions (hiring probabilities, utility), although this comes with statistical
and econometric challenges.

Communication and behavioral aspects Another key perspective is under-
standing how best to convey recommendations to job seekers.

For instance, what key pieces of information on job ads should be presented
to job seekers? Especially when learning from hires, some elements underlying
recommendations (such as how they were computed, and/or the probability of being
hired conditional on application), might be valuable for job seekers, potentially
representing a key complement to provided rankings. Yet, how can this information
be conveyed given uncertainty on the probability’s estimation quality, and without
any risk of psychological harm?

Moreover, especially if recommendations are identified as generated by an al-
gorithm, the documented phenomenon of aversion to algorithms could reduce job
seekers’ interest in the proposed job ads. To what extent does this phenomenon
exist in the job recommendation context? Can communication variants highlighting
selected features of algorithms reduce aversion?

These questions are also crucially linked to those of explainability and inter-
pretability. Seeking to propose simple and relevant explanations of recommenda-
tions is an important and open problem, due to the complexity of leveraged archi-
tectures and features in multi-tiered recommender systems, and because faithfully
explaining rankings is arguably harder than simply plugging in local post-hoc ex-
plainability tools (e.g. LIME or SHAP). Ensuring interpretability by design may be
a way forward.

Moreover, we have so far treated job seekers as passive consumers of lists of
recommendations. Could algorithmic tools giving job seekers agency in exploring
currently posted job ads in an intuitive and interactive fashion also be relevant?

Large-scale impact evaluation A main perspective is a randomized evaluation
of the causal impact of Muse’ deployment on the labor market, including job
seekers’ search behavior, return to, and quality of employment. A proper experiment
design may enable the measure of externalities (such as congestion and displacement
effects), for instance by randomizing the level of exposure of local labor markets to
recommendations. Such a study would thus be relevant to the RecSys community, to
labor economics, and in terms of policy implications. An improved understanding of
how job seekers react to recommendations would greatly further our understanding
of many themes discussed throughout the thesis, including congestion and fairness.

Exploration Whether algorithms learn from clicks, hires or applications, the data
they learn from is noisy and biased (in a statistical sense): job seekers may sub-
optimally look for jobs, probably missing relevant opportunities; and their past
labor market opportunities depend on past states of the labor market. Principled
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exploration, e.g. under the form of contextual bandits, may improve recommenda-
tions and provide positive side effects in terms of diversity and fairness [LRB20;
Cow18]. Exploration may also be an attractive alternative to a structural econo-
metric approach to value alignment, by identifying promising recommendation op-
portunities not tried in past data under weaker assumptions. It may also provide
a path towards lifelong learning (adaptation to cohort changes). This comes with
many algorithmic challenges, which include seeking to build strong priors from past
data; measuring uncertainty in large-scale, complex neural recommender systems;
and exploiting feedback (e.g. hiring data) which may be sparse and only available
on the long run, without excessively degrading user experience.

Beyond job recommendation Further opportunities exist for machine learning
to play a useful role on the labor market, especially in a PES setting.

First, while the economic literature studying interventions targeting recruiters
remains limited [ACG20; BHK24; Lu18], recommending job seekers to recruiters
has a large potential for impact, yet raises even more acute (and different) fairness
issues.

Second, caseworkers play an essential role in the missions of PESs to bridge
the gap between caseworkers and firms, yet they are under overwhelming demand.
Given caseworkers’ current portfolio of job seekers and current job ads on the mar-
kets, machine learning methods (with a special concern for interpretability, and
perhaps a human-in-the-loop approach) could help caseworks identify job seeker, or
job seeker - job ad pairs, to focus on.

Finally, the recommendation of training opportunities, requiring counter-factual
causal reasoning, could help tackle structural rather than frictional unemployment.
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Appendix A

Muse: hyper-parameters and
configuration

This Appendix describes the hyper-parameters used in the experiments presented
in Chapter 3.

Muse First, let us detail the Muse.0, Muse.1 and Muse.2 architecture dimen-
sions and hyper-parameters. The dimensions of the inputs provided to the different
Muse modules are described in Table A.1. The neural architecture and hyper-
parameters of Muse are displayed in Table A.2.

Table A.1: France Travail dataset input dimensions

Muse.0 Muse.1 / Muse.2
Input dim. General Geo Skills
Job seekers 483 573 12.3k 483(x.Gal)+771(ϕ0)

Job ads 469 571 12.3k 469(y.Gal)+771(ψ0)+
13(V ar(x,y))+2(r0,M0)

DropoutNet DropoutNet’s hyper-parameters on the Xing dataset are left as re-
ported in the authors’ code.

Xgb On the France Travail dataset, Xgb is used with the hyper-parameters re-
ported in Table A.3. Other hyper-parameters are set to their default value. Negative
examples are sampled uniformly at random.
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Table A.2: Muse hyper-parameters: Neural architecture of Muse.0, Muse.1 and
Muse.2 on the RecSys and France Travail datasets

Recsys Dataset Muse.0 Muse.1/Muse.2
Input dim Job ad:2738 / Job seeker: 831

Hidden Layer 800-800 ϕ1, ψ1: 200
Size →400 MLP: 200

Muse.2 Layer 2→100→100
Batch size 128 128

Learning rate 10−4 10−3

Negative sampling Uniform Top-1000
France Travail dataset Muse.0 Muse.1 / Muse.2

Gal Geo Skills
Hidden Layer 500 573 200 ϕ1, ψ1: 200

Size →100 → 571 →100 MLP: 200
Muse.2 Layer 2→100→100

Batch size 256 32 32 128
Learning rate 10−3 10−3 10−3 10−4

Negative Uniform d(x,neg)> Uniform Top-1000
sampling d(x,pos)

col_sample_bytree 0.6
eta 0.075
gamma 0.85
max_depth 12
min_child_weight 1
subsample 0.9
num_boost_round 400
Loss Logistic
Negative sampling ratio 5

Table A.3: Xgb Hyper-parameters on France Travail dataset
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Appendix B

Muse: recall heterogeneity analysis

This Appendix provides a decomposition of Muse.2’s recall@10 (trained in the
experimental settings described in Chapter 3), on the test set (44 277 matches), by
characteristics of the job seekers and job seeker - job ad pairs. The R@10 overall is
30.4.

Based on Figure B.1, Muse.2’s recall@10 tends to increase with job seeker’s
age category. Based on Figure B.2, recall is highest for job seekers looking for
blue-collar positions, and lower for job seekers looking for executive jobs (or with
missing qualification level). Figure B.3 presents recall according to job seekers’
level of education: recall is lowest for those with five or more years spent in higher
education. When looking at the recall based on the characteristics of the job seeker
- job ad pair (Figures B.4 and B.5), Muse.2 achieves higher recall when job seekers
find jobs close to their geographic location, and in the exact occupation they are
looking for.

Figure B.1: Recall@10 by job seeker age
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Figure B.2: Recall@10 by job seeker qualification

Figure B.3: Recall@10 by job seeker education

Figure B.4: Recall@10 by distance to workplace

Figure B.5: Recall@10 according whether job seeker and job ad are in the same
occupation
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Appendix C

Complements on value alignment

C.1 Algorithm details

Table C.1: Information on ads and job seekers respectively used by U and P

Preference-based Machine learning (Muse.0)
Job seekers Offers Job seekers Offers
Skills Skills Skills (SVD, embedding) Skill (SVD, embedding)
Diploma Diploma Diploma Diploma
Languages Languages
Driver’s licence Driver’s licence Driver’s licence Driver’s licence
Experience Experience Experience Experience
Occupation (lv. 3) Occupation (lv. 3) Occupation (lv. 1, 2, 3) Occupation (lv. 1, 2, 3)
Working hours Working hours Working hours Working hours
Wage Wage Wage (several measures) Wage (upper, lower bounds)
Location Location Location Location
Geo. mobility Geo. mobility
Contrat type Contract type Contract type Contract type

Qualification Qualification
Soft skills Soft skills

Job description (text)
Firm description (text)
Contract type
Contract duration
Establishment size
Establishment status
Num. applications (ad)
Num. applications (establishment)
Num. days since posted
Geo. soc.-dem. features

Former occupation
Gender
Num. children
Search obligations
Job search type
Min. allowance status
Days unemployed
Age
Num. applications
Geo. soc.-dem. features
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C.2 Calibration of the ML score into a hiring prob-
ability

One might want to characterize the true probability of i being matched with j
conditional on the available information Xi, Yj, namely P

(
M∗

i,j = 1|Xi, Yj
)
. There

are two main difficulties arising in the estimation of this true conditional probability.
First, as we want to consider all the potentially relevant covariates at our disposal,
this is an high dimensional problem. Second, there is a selection issue as we only
observe matches conditional on an past interviews Ai,j = 1, thus the variable Mi,j =
M∗

i,jAi,j. In this section, we provide a framework which allows to calibrate the ML
score Si,j := S(Xi, Yj) produced by the Muse.0 and learned on past matches to
learn about the true conditional hiring probability.

We want to give an interpretation to the ML score in terms of hiring probability
and to characterize the information contained in Si,j about the probability of a
match. Thus, our aim is to identify the probability of a match conditional on the
score for a randomly chosen pair (i, j) that would be put artificially in contact with
a given score, namely

p(i, j) = P
(
M∗

i,j = 1|Si,j = si,j
)
.

We leverage all inter-mediation acts (see Chapter 2) operated by France Tra-
vail between job seekers and job ads, at the initiative of the job seeker, the re-
cruiter, or the caseworker, and (with the limitations noted in Chapter 2) observe
the dates of the contact as well as whether it resulted in a hire. We want to identify
P (M∗

i,j = 1|Si,j), but show in the next paragraph that our data only allows identi-
fying P (Mi,j = 1|Si,j, Ai,j = 1). To handle this selection issue and relate p(i, j) to
the true hiring probability conditional on Xi,j, we make two assumptions:

• Assumption 1. Selection on observables:

M∗
i,j ⊥⊥ Ai,j | Xi, Yj.

• Assumption 2. Si,j, which is only a function of Xi and Yj, is a sufficient
statistic, i.e.,

P(M∗
ij, = 1|Si,j, Xi, Yj) = P(M∗

ij, = 1|Si,j)

Under these two assumptions, P(Mi,j = 1|Si,j, Ai,j = 1) = P(M∗
ij, = 1|Si,j).

Thus, we now describe the procedure we follow to identify P(Mi,j = 1|Si,j, Ai,j = 1).

Identification and estimation of the conditional hiring probability. We
consider the model described in Section 4.1, where observations follow (4.1). Note
that, in this model the probability that a job seeker matches on the n-th offer of
the sequence S is given by

P(Mi,1(i) = 0, . . . ,Mi,n−1(i) = 0,Mi,n(i) = 1|J (i), S)

= Λ(αn + βSi,n(i))

n(i)−1∏
j=1

(1− Λ(αr(i,j(i)) + βSi,j(i))),

138



where n(i) is the number of observed application for job seeker i.
Taking into account completed and censored spells (see, e.g. p.53 in [TS16]),

the log-likelihood function, conditional on the scores produced by the recommender
system, is given by

L(α, β|M,S) =
N∑
i=1

Mi,n(i) ln(Λ(αr(i,n(i)) + βSi,n(i)))

+
N∑
i=1

∑
j∈J (i)\{n(i)}

(1−Mi,j) ln(1− Λ(αr(i,j + βSi,j)),

where N the number of observed job seekers.

Note that, if we omit the rank of vacancy j, this expression is symmetric in i and
j. Thus, we could see as well this expression as the result of a process in which firm
posting vacancy j sequentially considers candidates applying to the vacancy. This
simple remark shows that there is a simple generalisation of the former expression
to account for r(i, j) the rank of offer j in the application set of job seeker i, but
also q(i, j) the rank of i in the applicant pool for vacancy j. The expression of the
likelihood in this case writes as

L(α, β|M,S) =
∑

(i,j): Ai,j=1

Mi,j ln(Λ(α
v
q(i,j) + αjs

r(i,j) + βSi,j)

+
∑

(i,j): Ai,j=1

(1−Mi,j) ln(1− Λ(αv
q(i,j) + αjs

r(i,j) + βSi,j)),

where αv and αjs are the sequences of “weariness” effects for vacancies and job
seekers.

The calibration of the ML score is performed on 34,255 randomly selected job
seekers in the test set representing 84,538 applications.
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C.3 Complements on the model

We denote by Λ the cumulative logistic distribution function. To be able to derive
hiring probabilities conditional on the observed types, we make the following stan-
dard assumption. They are sufficient to obtain the results mentioned in Section
4.3.

Assumption 1 For all i ∈ I, j ∈ J ,

1. The errors δi,y are i.i.d distributed according to a logistic distribution, and
independent of εi,y and ηx,j;

2. The errors δi,y for y ∈ Y, do not enter the subjective hiring probability con-
ditional on applying on an offer of type y: π(M∗

i,j = 1|I1) = π(M∗
i,j =

1|x, y, Ai,j = 1) = π(M∗
i,j = 1|x, y, y ∈ Ci).

We assume that the market is large, which implies that firms can always find any
type of worker. In general, the consideration set for the firms, denoted by X (y, Fδ,π),
depends only on y and the distributions of {δi,y}y∈Y and {π(M∗

i,j = 1|I1)}y∈Y among
the population of workers. As the distribution of (c + r)/π(M∗

i,j = 1|I1) − δi,y has
full support for all types, then with nonzero probability all firms receive application
from all types of workers X (y, Fδ,π) = X .

Assumption 1.1 means that δi,y does not contain useful and additional to x, y
information for predicting the utility before the interview.1 This can be thought
as unobservable quantities such as mood, weather, etc, that would impact the sub-
jective beliefs but not the final utility the job seekers would get from a match.
Assumption 1.2 first restricts the use of the private information {δi,yj}, which is not
used by job seekers, to predict their chances of success.

Assumption 2 For all i ∈ I, j ∈ J , εi,· and η·,j are i.i.d of standard type I extreme
value (Gumbel).

Under this assumption it is possible to derive the hiring probability resulting
from the job seeker’s application and the selection on the employer side. Lemma
C.3.1 in Appendix C.3 gives the exact form of this hiring probability. This result
is more complex but close to the one of [CS06] and [GS21]. In their model, there
is no stage 1: all job seekers and firms in a market meet each other Ai,j = 1 ∀i, j,
hence M∗

i,j =Mi,j. They derive the following expression for the hiring probability:

P
(
M∗

i,j = 1
∣∣x, y, Ai,j = 1

)
= pf,0(y)e

V (x,y)︸ ︷︷ ︸
Probability y selects x

pjs,0(x)e
U(x,y)︸ ︷︷ ︸

Probability x selects y

, (C.1)

1When relaxing this Assumption 1.1, assuming that δi,y is correlated with εi,y, then the job
seekers would have relevant private information about their second stage utilities. This can be
handled by conditioning on this information to derive expressions of the hiring probabilities, but
this complicates the discussion and the final formulae, without providing further insights for the
role of recommender systems in this context.
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where pf,0(y) = 1/(1 +
∑

x′∈X e
V (x′,y)) and pjs,0(x) = 1/(1 +

∑
y′∈Y e

U(x,y′)) are the
probabilities that a firm of type y and a job seeker of type x prefer to remain un-
matched. A notable difference, due to the selection step, between the expression of
the equation (4.8) and the one we derive in the Lemma C.3.1 concerns the proba-
bility pj,0(x). In our model, job seekers’ expectations in the preliminary selection
stage distorts pj,0(x) as it integrates over the possible consideration sets.

In the following lemma, we obtain a similar result, the only change being re-
lated to the probability that x selects y, which takes into account all the possible
consideration sets.

Lemma C.3.1 (Observed hiring probabilities with a selection stage) Under
assumptions 1 and 2 and at equilibrium, the probability that we observe a hire for a
worker i and firm j of types x ∈ X and y ∈ Y is given by

P (Mi,j = 1|x, y) = P
(
M∗

i,j = 1
∣∣x, y, Ai,j = 1

)
P (Ai,j = 1|x, y),

where the observed probability of applying for a job is

P (Ai,j = 1|x, y) = P (y ∈ Ci|x, y) = Λ(Ψ(x, y)),

where
Ψ(x, y) = U(x, y)− Ux,0 + r − c+ r

π(M∗
i,j = 1|x, y, Ai,j = 1)

,

and the probability that we observe a hire conditionally on the application is

P
(
M∗

i,j = 1
∣∣x, y, Ai,j = 1

)
= pf,0(y)pjs,0(x|y ∈ Ci)eU(x,y)+V (x,y), (C.2)

where

pjs,0(x|y ∈ Ci) =
∑
S⊆Y
y∈S

pjs,0(x|S)P (Ci = S|x, y, y ∈ Ci), (C.3)

pjs,0(x|S) = 1/(1 +
∑
y′∈S

eU(x,y′)+wx,y′ ),

P (Ci = S|x, y, y ∈ Ci) =
∏

y′∈S,y′ ̸=y

Λ (Ψ(x, y′))
∏
y′ /∈S

(1− Λ (Ψ(x, y′))) . (C.4)

The main difference between equations (4.8) and (C.2) is the expression of the
probability that a job seeker of type x prefers staying unmatched. In equation (4.8)
it is pj,0(x|Y) = pj,0(x), as he is facing all possible alternatives in Y rather than a
selected set. In Lemma C.3.1, we express the observed hiring probabilities from the
point of view of a researcher who does not observe to the consideration set Ci. Thus,
in the formula (C.3) of pj,0(x|y ∈ Ci), the probability that a job seeker of type x
prefers staying unmatched after the interview conditionally on having applied to a
type y offer, we integrate over all the possible values S ⊆ Y for the consideration set.
In this context, the probability that job seeker i considers the set of offer S, given in
(C.4), is the product of the probabilities that he selects all the offers in S and that
he does not apply for the rest, which are all results of unrelated binary choices (4.6).
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Proof of Lemma C.3.1. Let x ∈ X and y ∈ Y , then based on (4.6) and with
Assumption 2, we have (C.3). We also have

P (Mi,j = 1|x, y) = P (M∗
i,j = 1|x, y, y ∈ Ci)P (Ai,j = 1|x, y),

and P (M∗
i,j = 1|x, y, y ∈ Ci) = P (i chosen by j|x, y, y ∈ Ci)P (j chosen by i|x, y, y ∈

Ci). First, because Ci is unobserved, we integrate over it:

P (i chosen by j|x, y, y ∈ Ci) =
∑
S⊆Y
y∈S

P (Ci = S|x, y, y ∈ Ci)
eU(x,y)

1 +
∑

y′∈S e
U(x,y′)+wx,y′

.

Second, using that X (y, Fδ,π) = X , we obtain

P (j chosen by i|x, y, y ∈ Ci) = pf,0(y)e
V (x,y)−wx,y .

This yields the result. □
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C.4 Robustness check - modelling applications with-
out fixed effects

Table C.2: Estimates of the model of application on job offers without fixed effects

Estimate Std. error Estimate Std. error Estimate Std. error Estimate Std. error

Utility score U(i, j) (α) 1.375∗∗ 0.180
Unif. Utility score U(i, j) (α) 0.914∗∗ 0.204
Sector occupation -0.277 0.184
Occupation 1.088∗∗ 0.221 0.801∗∗ 0.064
Skills 0.198∗ 0.095 0.198∗ 0.087
Reservation wage 0.432∗∗ 0.085 0.437∗∗ 0.055
Languages 0.028 0.194 0.027 0.177
Experience in occ. -1.188∗∗ 0.340 -1.180∗∗ 0.340
Diploma 0.392 0.108∗∗ 0.402∗∗ 0.106
Driving license 0.023 0.100 0.025 0.101
Geographic mobility 0.414† 0.232 0.417† 0.232
Duration 0.141 0.114 0.139 0.114
Type of contract 0.078 0.053 0.076 0.053
Inverse of P(i, j) (β) -0.019∗∗ 0.007 -0.022∗∗ 0.007 -0.016∗ 0.007 -0.016∗ 0.007
Intercept -3.375∗∗ 0.162 -3.314∗∗ 0.169 -3.287∗∗ 0.169 -3.287∗∗ 0.168

Nb. observations 70,557 70,557 70,557 70,557
AIC 18,230 18,300 18,100 18,100

Estimation of equation (4.7) modeling applications as a logit model without fixed effects
Notes: Our sample is the set of all applications for job seekers in the transportation and logistic sector during week 44 of 2019, leading to a hiring or not.
We have 70,557 observations for 8,105 job seekers. Standard errors are clustered at the individual level. Results are robust to the different negative sampling
strategies we considered. Significance levels: < 1% : ∗∗, < 5% : ∗, < 10% : †.
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Appendix D

Complements on field experiments

D.1 March 2022 field experiment

This appendix provides details on algorithms used for the March 2022 field experi-
ment, as well as supplementary material for its analysis.

D.1.1 Algorithms

The Pbs algorithm The Pbs algorithm takes the form:

sij = fij × (
∑

k∈Criteria

wksijk)

where:

• fij ∈ {0, 1} is a filter, taking value 1 if the score assigned to geography is
different from zero

• The criteria sijk and their weights wk are:

1. Skills: weight 1000

2. Job type: weight 1500 (500 at the ROME level and 1000 at a finer level
of granularity)

3. Experience: weight 100

4. Geographic mobility1, weight 100

5. Contract type, weight 10

6. Weekly working hours, weight 100

7. Education, weight 100

8. Languages, weight 100
1This score is not necessarily based on distance between the ad and the job seekers’ place of

residence. It takes into account the kind of mobility declared acceptable by the job seeker. Job
seekers can declare a zip code and a commuting radius (in which case the score is a decreasing
function of distance, taking value 0 after a threshold), but also, less often, a country, region or
département (in which case the score takes binary values).
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9. Driver’s licence, weight 100

10. Wage, weight 200

Scores take value between 0 (complete mismatch) and 1 (perfect fit), with interme-
diate values determined by expert-provided matrices and discontinuities. The final
ranking is a lexicographic sort by decreasing sij, increasing geographic distance (to
one’s zip code of residence), and decreasing job ad creation date.

The Mix algorithm We first attribute “stars" to job ads with respect to both
Muse.0 and Pbs to construct a consideration set of job ads that have a high ranking
for one of these algorithms, or good rankings for both. Stars with respect to an
algorithm are determined in the following fashion: 4 if the ad’s rank is below 10;
3 if the ad’s rank is below 25; 2 if the ad’s rank is below 50; 1 if the ad’s rank is
below 100; 0 otherwise.

Mix only takes into consideration job ads for which the sum of Muse.0 and
Pbs “stars" are greater or equal to 3. This consideration set takes a size between 25
(the top-25s of Muse.0 and Muse.1 are the same) and 100 (disjoint top-25s, and
the job ads ranked 25-50 by an algorithm are among the other’s top 50-100).

From this consideration set, Mix aims to generate 15 recommendations per job
seeker2. Mix-p (p ∈ {1/4, 1/2, 3/4}) takes the max(15, p× size(consideration set))
first ones according to Muse.0, and reorders them by the Pbs score.

2In order to present 10 job ads to each job seeker in the experiment. A larger amount of
ads nevertheless has to be ranked in order to anticipate a mismatch between job ads available
at recommendation time and those actually online at the time of sending the survey (in order to
make sure recommended job ads are actually online).
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D.1.2 Survey design

Figure D.1: March 2022 Field Experiment - Landing Page
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Figure D.2: March 2022 Field Experiment - First page - Job Ad Description and
Rating Scale
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Figure D.3: March 2022 Field Experiment - Second Page
Clicking on “Voir le détail de l’offre sur Pôle-emploi.fr" leads to a more thorough description of
job ads on France Travail ’s website, on which job seekers may also apply.
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D.1.3 Attrition differential

Table D.1 displays the results of the regression:

Yi = α +
∑
k

βk{Ti = k}+ ϵi

among job seekers who received an email, where Ti is job seeker i’s received treat-
ment, and Yi corresponds to a binary indicator of having completed the survey
(rated the top two ads and accessed the final page). The Pbs treatment serves
as the reference category. A F-test of the joint nullity of coefficients associated to
Muse.0, Mix-1/4, Mix-1/2 and Mix-3/4 yields a F-stat 1.885 (p=0.11). Accordingly,
we do not attempt to model attrition differential.

Coefficient Std. err. t P> |t| [0.025 0.975]

α 0.1718 0.004 45.288 0.000 0.164 0.179
Muse.0 0.0042 0.005 0.784 0.433 -0.006 0.015
Mix-1/4 0.0012 0.005 0.216 0.829 -0.009 0.012
Mix-1/2 0.0133 0.005 2.470 0.014 0.003 0.024
Mix-3/4 0.0055 0.005 1.022 0.307 -0.005 0.016

Table D.1: Survey completion
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D.2 June 2023 field experiment

D.2.1 Survey

Figure D.4: June 2023 Field Experiment - First Page
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Figure D.5: June 2023 Field Experiment - Second Page
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Appendix E

Complements on congestion-avoiding
job recommendation

E.1 Additional tables

Table E.1 details the full results obtained on the MAR dataset, including cluster-
level evaluations.

Table E.2 provides the full results obtained on the France Travail dataset.
Table E.3 displays computational costs. It shows a limited training time of

respectively Xgb (circa 2 hours) and Muse.0 (circa 30 mn). The cost of optimal
transport increases as ε decreases, up to circa 10mn for ε = .01 (see also [Sch19]).
The highest part of the cost comes from computing the recommendations with Xgb
and γXGB, due to the fact that it requires to compute joint adequacy features for
all (user, item) pairs.
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Table E.1: Results - MAR Matrimonial dataset

Algorithm Recall Coverage Congestion Ind-Cluster Cluster-Cluster
@1 @10 @1 @10 @1 @10 RMSE MAE RMSE MAE

ϕ Random 0.16 2.27 63.32 100 -0.90 -0.98 12.68 6.186 nc nc
ϕ XGBoost 7.93 27.88 48.55 98.69 -0.84 -0.94 12.60 5.619 nc nc
ϕ NN 3.82 15.5 46.27 98 -0.83 -0.93 12.99 5.905 nc nc

Carot - XGBoost
γXGB ,g = exp+,ε = 100.0 8.01 28.16 48.51 99.14 -0.84 -0.95 12.64 5.629 9.044 5.944
γXGB ,g = exp+,ε = 10.0 7.97 28.16 48.59 99.14 -0.84 -0.95 12.64 5.629 9.016 5.928
γXGB ,g = exp+,ε = 1.0 8.09 28.08 49.57 99.22 -0.85 -0.95 12.57 5.616 8.856 5.756
γXGB ,g = exp+,ε = 0.1 8.14 28.37 73.82 100 -0.93 -0.98 12.06 5.427 16.41 6.376
γXGB ,g = exp+,ε = 0.01 6.63 26.98 95.44 100 -0.98 -0.95 11.87 5.341 24.30 7.221
γXGB ,g = Id+,ε = 100.0 8.1 28.41 49.2 99.06 -0.84 -0.95 12.56 5.603 9.044 5.944
γXGB ,g = Id+,ε = 10.0 8.1 28.41 49.2 99.1 -0.84 -0.95 12.56 5.603 9.022 5.931
γXGB ,g = Id+,ε = 1.0 8.05 28.41 49.77 99.18 -0.85 -0.95 12.55 5.596 8.887 5.786
γXGB ,g = Id+,ε = 0.1 8.01 27.02 72.73 100 -0.93 -0.95 12.13 5.440 19.51 6.704
γXGB ,g = Id+,ε = 0.01 6.47 23.77 96.05 100 -0.98 -0.84 11.99 5.391 24.49 7.257
γXGB ,g = ndcg,ε = 100.0 7.93 28.2 48.55 98.98 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = ndcg,ε = 10.0 7.93 28.24 48.55 99.02 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = ndcg,ε = 1.0 7.93 28.2 48.55 99.02 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = ndcg,ε = 0.1 8.1 25.72 59.42 100 -0.89 -0.93 12.34 5.512 nc nc
γXGB ,g = ndcg,ε = 0.01 6.06 19.49 94.26 100 -0.98 -0.73 12.02 5.433 nc nc
γXGB ,g = rank − based,ε = 100.0 7.93 27.63 48.55 98.98 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = rank − based,ε = 10.0 7.93 27.63 48.55 98.98 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = rank − based,ε = 1.0 7.93 27.63 48.55 99.02 -0.84 -0.95 12.60 5.619 nc nc
γXGB ,g = rank − based,ε = 0.1 7.53 25.76 62.43 99.95 -0.90 -0.93 12.25 5.473 nc nc
γXGB ,g = rank − based,ε = 0.01 6.02 21.41 84.08 100 -0.96 -0.79 11.87 5.352 nc nc

Carot NN
γNN ,g = exp+,ε = 100.0 1.5 9.32 13.75 51.4 -0.56 -0.65 16.10 6.824 9.045 5.945
γNN ,g = exp+,ε = 10.0 1.54 9.48 14.56 53.07 -0.58 -0.66 15.96 6.795 9.030 5.935
γNN ,g = exp+,ε = 1.0 1.95 11.35 20.38 65.76 -0.65 -0.75 15.17 6.655 8.976 5.839
γNN ,g = exp+,ε = 0.1 3.74 15.5 54.94 99.06 -0.87 -0.97 12.77 5.896 12.32 5.940
γNN ,g = exp+,ε = 0.01 3.78 15.67 88.15 100 -0.97 -0.97 12.03 5.543 23.14 7.164
γNN ,g = Id+,ε = 100.0 2.76 14 35 88.88 -0.77 -0.87 13.68 6.196 9.045 5.944
γNN ,g = Id+,ε = 10.0 2.72 14 35.4 89.58 -0.78 -0.88 13.64 6.179 9.024 5.931
γNN ,g = Id+,ε = 1.0 2.84 14.32 38.86 92.47 -0.80 -0.90 13.40 6.085 8.980 5.798
γNN ,g = Id+,ε = 0.1 3.94 15.46 70.12 100 -0.92 -0.98 12.36 5.668 17.08 6.512
γNN ,g = Id+,ε = 0.01 3.78 15.46 93.48 100 -0.98 -0.95 12.02 5.576 24.37 7.264
γNN ,g = ndcg,ε = 100.0 3.82 15.67 46.27 98.53 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = ndcg,ε = 10.0 3.82 15.67 46.27 98.53 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = ndcg,ε = 1.0 3.82 15.63 46.27 98.73 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = ndcg,ε = 0.1 4.23 13.87 57.99 99.91 -0.88 -0.93 12.51 5.716 nc nc
γNN ,g = ndcg,ε = 0.01 2.89 11.6 93.44 100 -0.98 -0.72 11.94 5.504 nc nc
γNN ,g = rank − based,ε = 100.0 3.82 15.14 46.27 99.26 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = rank − based,ε = 10.0 3.82 15.14 46.27 99.26 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = rank − based,ε = 1.0 3.82 15.18 46.27 99.3 -0.83 -0.94 12.99 5.905 nc nc
γNN ,g = rank − based,ε = 0.1 3.7 14.28 65.81 100 -0.91 -0.94 12.29 5.674 nc nc
γNN ,g = rank − based,ε = 0.01 2.76 12.29 83.84 100 -0.96 -0.84 12.16 5.612 nc nc
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Table E.2: Results - France Travail dataset

Algorithm Recall Coverage Congestion OT Comp. Time
@1 @10 @100 @1 @10 @1 @10 sec.
(1) (2) (3) (4) (5) (6) (7) (8)

ϕ Random 0 0.21 0.65 99.95 100 -0.99 -0.99
ϕ XGB 9.62 31.4 61.59 12.94 25.16 -0.62 -0.64
ϕ NN 5.68 28.66 57.98 6.02 17.78 -0.46 -0.49

Carot - XGBoost
γXGB ,g = exp+,ε = 1000.0 3.93 16.3 52.18 20.98 34.25 -0.73 -0.75 35.93
γXGB ,g = exp+,ε = 100.0 3.93 16.3 52.18 21 34.26 -0.73 -0.75 40.04
γXGB ,g = exp+,ε = 10.0 3.93 15.86 52.18 21.03 34.33 -0.73 -0.75 49.91
γXGB ,g = exp+,ε = 1.0 3.71 14.98 50.76 20.93 34.8 -0.73 -0.75 45.84
γXGB ,g = exp+,ε = 0.1 1.53 11.59 49.67 27.23 44.7 -0.78 -0.80 55.20
γXGB ,g = exp+,ε = 0.01 3.06 15.97 52.29 48.88 59.05 -0.86 -0.83 514.1
γXGB ,g = Id+,ε = 1000.0 5.03 22.42 59.73 21.19 31.01 -0.74 -0.74 36.03
γXGB ,g = Id+,ε = 100.0 5.03 22.42 59.4 21.18 31.01 -0.74 -0.74 40.03
γXGB ,g = Id+,ε = 10.0 5.03 22.42 58.97 21.24 31.09 -0.74 -0.74 49.60
γXGB ,g = Id+,ε = 1.0 4.81 21.99 57.87 21.61 31.76 -0.74 -0.75 48.27
γXGB ,g = Id+,ε = 0.1 2.18 15.31 56.01 27.54 41.24 -0.78 -0.81 67.69
γXGB ,g = Id+,ε = 0.01 4.37 20.45 43.21 46.75 57.61 -0.85 -0.79 448.8
γXGB ,g = ndcg,ε = 1000.0 9.62 31.83 62.36 12.96 26.05 -0.62 -0.67 40.69
γXGB ,g = ndcg,ε = 100.0 9.62 31.83 62.36 12.96 26.05 -0.62 -0.67 37.50
γXGB ,g = ndcg,ε = 10.0 9.62 31.83 62.36 12.96 26.06 -0.62 -0.67 36.34
γXGB ,g = ndcg,ε = 1.0 9.62 31.61 62.36 12.96 26.14 -0.62 -0.67 42.03
γXGB ,g = ndcg,ε = 0.1 8.97 25.38 46.06 14.69 30.84 -0.67 -0.74 45.99
γXGB ,g = ndcg,ε = 0.01 5.03 14 18.81 36.81 57.52 -0.82 -0.81 478.0
γXGB ,g = rank − based,ε = 1000.0 9.4 27.13 60.5 15.82 37.2 -0.69 -0.73 36.36
γXGB ,g = rank − based,ε = 100.0 9.4 27.13 60.5 15.82 37.2 -0.69 -0.73 36.28
γXGB ,g = rank − based,ε = 10.0 9.4 27.13 60.28 15.85 37.2 -0.69 -0.73 39.69
γXGB ,g = rank − based,ε = 1.0 9.4 26.91 59.19 16.09 37.28 -0.69 -0.73 45.54
γXGB ,g = rank − based,ε = 0.1 7 22.53 44.42 24.06 38.74 -0.76 -0.79 49.69
γXGB ,g = rank − based,ε = 0.01 2.18 11.59 21 56.69 68.13 -0.87 -0.85 312.7

Carot - NN
γNN ,g = exp+,ε = 1000.0 5.25 20.35 51.2 19.7 32.96 -0.69 -0.71 36.46
γNN ,g = exp+,ε = 100.0 5.25 20.35 51.2 19.73 32.96 -0.69 -0.71 39.29
γNN ,g = exp+,ε = 10.0 5.25 20.13 50.98 19.83 33.1 -0.69 -0.71 49.46
γNN ,g = exp+,ε = 1.0 4.15 20.24 50 21.37 34.41 -0.71 -0.72 49.30
γNN ,g = exp+,ε = 0.1 0.65 6.89 42.23 35.04 50.43 -0.82 -0.83 58.90
γNN ,g = exp+,ε = 0.01 2.62 17.39 37.85 58.32 65.97 -0.87 -0.80 490.8
γNN ,g = Id+,ε = 1000.0 6.78 26.8 59.19 11.03 25.21 -0.60 -0.64 36.07
γNN ,g = Id+,ε = 100.0 6.78 26.8 59.19 11.05 25.21 -0.60 -0.64 36.08
γNN ,g = Id+,ε = 10.0 6.78 26.8 59.19 11.14 25.3 -0.60 -0.64 46.01
γNN ,g = Id+,ε = 1.0 6.78 26.14 60.39 11.99 26.3 -0.62 -0.65 49.23
γNN ,g = Id+,ε = 0.1 2.4 19.03 50.43 28.23 40.16 -0.80 -0.79 54.80
γNN ,g = Id+,ε = 0.01 3.93 16.3 27.89 53.38 62.35 -0.83 -0.70 518.9
γNN ,g = ndcg,ε = 1000.0 5.68 28.11 59.73 6.02 19.51 -0.46 -0.54 36.80
γNN ,g = ndcg,ε = 100.0 5.68 28.11 59.73 6.02 19.51 -0.46 -0.54 37.60
γNN ,g = ndcg,ε = 10.0 5.68 28.11 59.51 6.02 19.53 -0.46 -0.54 40.72
γNN ,g = ndcg,ε = 1.0 5.68 27.46 59.08 6.02 19.75 -0.46 -0.55 45.86
γNN ,g = ndcg,ε = 0.1 5.25 23.3 49.01 8.85 26.4 -0.53 -0.65 46.89
γNN ,g = ndcg,ε = 0.01 1.53 12.36 24.28 35.41 51.56 -0.81 -0.81 517.8
γNN ,g = rank − based,ε = 1000.0 5.68 25.27 52.95 10.74 38.47 -0.58 -0.67 37.20
γNN ,g = rank − based,ε = 100.0 5.68 25.27 52.95 10.76 38.47 -0.58 -0.67 36.78
γNN ,g = rank − based,ε = 10.0 5.68 25.27 52.95 10.79 38.5 -0.58 -0.67 40.34
γNN ,g = rank − based,ε = 1.0 5.68 25.27 52.29 11.24 38.71 -0.59 -0.67 46.50
γNN ,g = rank − based,ε = 0.1 3.06 12.58 40.7 26.55 42.65 -0.74 -0.77 49.85
γNN ,g = rank − based,ε = 0.01 0.65 4.81 25.6 61.91 73.03 -0.89 -0.88 502.9
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Table E.3: Computational runtime in seconds on France Travail (averaged over all
g options). NN is trained on a server with 2 Intel Xeon Silver 4214 2,2GHz CPUs,
192Go RAM, and a Tesla T4 GPU. Xgb is trained on a DELL PowerEdge R640
server with 2X Intel Xeon Gold 6130 2.10GHz CPUs (2 × 16 cores) and 384Go
RAM. The optimal transport plan is computed on the DELL with same resources
as for Xgb.

Comp. Time ϕ γXGB γNN

XGBoost NN ϵ = 0.01 ϵ = 0.1 ϵ = 1 ϵ = 0.01 ϵ = 0.1 ϵ = 1
Total 104,340 4,104 104,778 104,394 104,385 4,611 4,156 4,148
(inc. Learning/OT) (7,454/−) (2,039/−) (7,454/438) (7,454/54) (7,454/45) (2,039/507) (2,039/52) (2,039/44)
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Figure E.1: Input cost matrix

E.2 Higher entropic regularization may not reduce
congestion

After [PC19] (prop. 4.1), when the weight ε of the entropic regularization term
goes to ∞, the solution γ of the regularized optimal transport problem tends to
a uniform coupling. When ϵ → 0 instead the solution converges to the optimal
transport plan with maximal entropy. Informally, increasing ϵ leads to solutions γ
that are less sparse.

However, the exploitation of γ through the sorting recommendation process is
such that a more uniform γ does not necessarily lead to less congestion.

This phenomenon is investigated in simulation. 1,000 cost matrices C of size
n = 30, m = 10 are independently generated, with Cij ∼ U( j

m
, j
m
+ 1) (items being

ordered by increasing attractiveness). Transport plans γ with uniform marginals
w.r.t. users and items are then computed using Sinkhorn algorithm with entropic
regularization weight ε = 100 and ε = 0.01. The average and standard deviation
over the 1,000 runs of the congestion obtained after sorting these plans indicate
that the congestion is significantly higher for the higher value of ε:

ϵ Mean congestion@1 Std.
100 -0.940521 0.029445
0.01 -0.996059 0.003586

Figures E.1, E.2, E.3 and E.4 illustrate this phenomenon on a single representa-
tive run. γij’s are more uniform when ϵ = 100 than when ϵ = 0.01, yet sorting each
line leads to a more unequal distribution of recommendations towards the different
offers.

Altogether, higher entropic regularization has an indeterminate impact on con-
gestion, and may increase it in practice. The choice of the ϵ should thus be chosen
based on a validation set, as well as on numerical criteria for the convergence of
Sinkhorn’s algorithm. One may note that taking extremely small values of ϵ using
a naive implementation of Sinkhorn’s algorithm may have adverse consequences on
numerical stability as well as convergence speed, although alternatives have been
developed, for instance in [Sch19].
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Figure E.2: ϵ = 100

Figure E.3: ϵ = 0.1

Figure E.4: ϵ = 0.01
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E.3 Hyperparameters

This appendix details the hyperparameters used to train Xgb and NN on both
benchmarks.

Xgb

On MAR, Xgb is used with its default parameters, except for the number of boost-
ing rounds, set to 200. A logistic loss is used and the negative sampling ratio is set
to 50 (Table E.4).

Table E.4: Xgb Hyperparameters on MAR

num_boost_round 200
Loss Logistic
Negative sampling ratio 50

On France Travail, Xgb is used with the hyper-parameters reported in Table
E.5. Other hyper-parameters are set to their default value.

Table E.5: Xgb Hyperparameters on France Travail

col_sample_bytree 0.6
eta 0.075
gamma 0.85
max_depth 12
min_child_weight 1
subsample 0.9
num_boost_round 400
Loss Logistic
Negative sampling ratio 50

NN

The margin parameter η in the triplet loss is set to 1 in all experiments.
On MAR, NN is used with the hyper-parameters reported in Table E.6. In each

batch, 10 negative pairs are uniformly selected for each positive one.
On the France Travail dataset, the neural architecture is adapted to account for

the domain knowledge, involving four modules:
A "geographic" 2-100-100-50 module takes as input the (standard-scaled) lati-

tude and longitude, with 2 hidden layers of size 100 and outputs a representation
of the user/item location in dimension 50. All activation functions are tanh. This
module is trained for 100 epochs (batch size 32) with Adam optimizer and base
learning rate 10−4. Negative sampling selects items farther than the actual positive
one.
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Table E.6: NN Hyperparameters on MAR

Layer 1 tanh, size = 300
Embedding tanh, size = 300
Optimizer Adam
Learning rate 0.001
Epochs 300
Batch size 64
Negative sampling ratio (per epoch) 10

A "skill" 14,000-200-100 module takes as input the (standard-scaled) skills, with
1 hidden layer of size 200 (activation RELU) and outputs a representation of size
100 (activation function tanh). The module is trained for 100 epochs (batch size
32) with Adam optimizer and base learning rate 10−4. The similarity matrix is
diagonal.

An "other" d-500-200 module takes as input the other descriptive features, with
d = 448 for users and d = 582 for items, with a hidden layer of size 500 (activation
RELU) and outputs a representation of size 200 (activation function tanh). The
module is trained for 100 epochs (batch size 32) with Adam optimizer and base
learning rate 10−4.

The overall architecture is warm-started using the preliminary training of the
above three modules. The similarity matrix A is constrained to be block-wise
diagonal. The module is trained for 35 epochs (batch size 256) with Adam optimizer
and base learning rate 10−4.

Except for the "geography" module, negative examples are sampled uniformly
anew in each epoch, with a negative ratio of 50.

Other hyper-parameters are detailed in Table E.5.
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Table E.7: Hyperparameters - NN (France Travail)

Geography module
Layer 1 tanh, size = 100
Layer 2 tanh, size = 100
Embedding tanh, size = 50
Optimizer Adam
Learning rate 0.0001
Epochs 100
Batch size 32
Skills module
Layer 1 ReLu, size = 200
Embedding tanh, size = 100
Optimizer Adam
Learning rate 0.0001
Epochs 100
Batch size 32
Other module
Layer 1 ReLu, size = 500
Embedding tanh, size = 200
Optimizer Adam
Learning rate 0.0001
Epochs 100
Batch size 256
Training from warm start
Block-diagonal Structure True
Epochs 10 / 25
Optimizer Adam
Learning rates 0.0001 / 0.00001
Batch size 256
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Appendix F

Complements on gender gaps

F.1 Sample characteristics

Table F.1 displays the average characteristics of the job seekers in our sample of
interest (present on the fourteenth week of 2022). Column 1 displays the population
mean, while columns 2 and 3 respectively illustrate the average characteristics for
men and women. Column 4 showcases the difference between women (column 3)
and men (column 2), with the final column providing the associated p-value for the
difference estimate.

On average, women possess higher levels of education compared to men. Specif-
ically, 65% of women have attained post-secondary education, whereas 51% of men
have. Women are more prevalent in sectors such as Services to individuals and com-
munities, Business support, Sales and Retail, and Health, while men dominate in
areas like Construction, Industrial Installation and Maintenance, and Transporta-
tion and Logistics. Additionally, women exhibit, on average, approximately one year
less of experience than men (with men averaging 5 years of experience compared to
4 years for women).

Furthermore, preferences also exhibit gendered patterns. Women tend to seek
job opportunities located, on average, 5 kilometers closer to their residences. They
also demonstrate a lower reservation wage (the minimum salary accepted to work),
which is €230 per month less than that of men. Additionally, women search less
often for full-time contracts, with only 64% pursuing such positions compared to
83% of men.
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Pop. Mean Men Women Women - Men p-value

Qualifications

Education

Post Secondary Education 0.58 0.51 0.65 0.14 0.0

Vocational Certificate 0.28 0.34 0.23 -0.10 0.0

Other education 0.11 0.12 0.09 -0.02 0.0

Qualification category

Unskilled workers 0.08 0.12 0.04 -0.08 0.0

Qualified workers 0.09 0.15 0.03 -0.13 0.0

Unskilled employees 0.22 0.18 0.26 0.08 0.0

Skilled employees 0.41 0.33 0.49 0.16 0.0

Foreman 0.09 0.10 0.08 -0.02 0.0

Executives 0.08 0.09 0.07 -0.02 0.0

Driving Licenses

Car Driving License 0.05 0.08 0.02 -0.06 0.0

Truck driving license 0.03 0.05 0.00 -0.05 0.0

Number of driving licenses 0.73 0.89 0.58 -0.31 0.0

Sector

Agriculture 0.04 0.05 0.03 -0.03 0.0

Arts and Crafts 0.01 0.01 0.01 0.01 0.0

Banking, Insurance and Real Estate 0.01 0.01 0.01 0.00 0.0

Sales and Retail 0.15 0.10 0.19 0.08 0.0

Communication 0.02 0.02 0.03 0.01 0.0

Construction 0.08 0.14 0.01 -0.14 0.0

Hotel, Restaurant, Tourism 0.10 0.10 0.10 0.00 0.4

Industry 0.07 0.10 0.05 -0.05 0.0

Installation and Maintenance 0.04 0.07 0.01 -0.07 0.0

Health 0.05 0.01 0.08 0.06 0.0

Services to individuals and Communities 0.17 0.08 0.26 0.18 0.0

Arts and Entertainment 0.01 0.01 0.01 -0.00 0.0

Business support 0.12 0.07 0.17 0.10 0.0

Transports and logistics 0.10 0.18 0.03 -0.15 0.0

Number of languages spoken 1.00 0.95 1.04 0.09 0.0

# Months of Experience 53.49 59.93 47.27 -12.67 0.0

Preferences

Full Time 0.73 0.83 0.64 -0.18 0.0

Commuting Distance 27.74 30.23 25.33 -4.90 0.0

Reservation Wage 1940.50 2057.83 1827.15 -230.68 0.0

Number of hours 30.56 30.75 30.38 -0.37 0.0

Permanent Contract 0.58 0.59 0.57 -0.02 0.0

Table F.1: Sample characteristics
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F.2 Additional tables

Sample size Number men Number women % women

Full Week 2022-14

Full week 358682 176244 182438 0.509
Full week (overlap Z) 293579 138824 154755 0.527
Full week (overlap Zp) 291870 137982 153888 0.527

Hires

Hires 41787 19496 22291 0.533
Hires (overlap Z) 34622 15465 19157 0.553
Hires (overlap Zp) 34532 15380 19152 0.555

Applications

Applications 97179 39238 57941 0.596
Applications (overlap Z) 80542 32670 47872 0.594
Applications (overlap Zp) 80263 32472 47791 0.595
Notes: The first column presents the total sample size for the different datasets used in the analysis.
“Full week" and “Full week (overlap)" present the sample size for a week in the test set before and after
restriction to job seekers satisfying the overlap condition required in the AIPW method of Section 7.2.
“Hires", “Hires (overlap)", and “Hires & Applications (overlap)" respectively present the sample sizes
for the subsamples of job seekers in the test set who have been hired, hired and for whom the overlap
condition holds, and the subset of the latter one where we also observe applications.

Table F.2: Size of datasets used for the analysis
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Observed Recommendations

Men Women Diff. p-value Men Women Diff. p-value

Total Population

Wage (log) 7.491 7.470 -0.021 0.0

Distance 7.052 6.702 -0.350 0.0

Executive Position 0.029 0.024 -0.005 0.0

Indefinite duration 0.472 0.432 -0.040 0.0

Full time 0.881 0.684 -0.197 0.0

Experience 6.739 5.044 -1.696 0.0

Fit to job search parameters 0.503 0.472 -0.031 0.0

% Observations 176244 182438

Hirings

Wage (log) 7.454 7.436 -0.019 0.00 7.446 7.430 -0.016 0.000

Distance 25.59 21.69 -3.894 0.00 7.499 7.359 -0.140 0.012

Executive Position 0.013 0.012 -0.001 0.31 0.013 0.013 0.000 0.903

Indefinite duration 0.462 0.423 -0.039 0.00 0.435 0.399 -0.037 0.000

Full time 0.868 0.678 -0.190 0.00 0.865 0.673 -0.192 0.000

Experience 7.754 6.569 -1.185 0.00 7.240 5.885 -1.355 0.000

Fit to job search parameters 0.516 0.481 -0.034 0.00 0.516 0.482 -0.034 0.000

% Observations 19496 22291 19496 22291

Applications

Wage (log) 7.489 7.460 -0.029 0.0 7.456 7.434 -0.023 0.0

Distance 32.50 23.15 -9.332 0.0 7.296 7.126 -0.170 0.0

Executive Position 0.040 0.021 -0.019 0.0 0.021 0.014 -0.007 0.0

Indefinite duration 0.549 0.492 -0.058 0.0 0.454 0.394 -0.060 0.0

Full time 0.863 0.694 -0.169 0.0 0.856 0.667 -0.189 0.0

Experience 10.453 9.575 -0.877 0.0 8.289 7.326 -0.963 0.0

Fit to job search parameters 0.514 0.475 -0.038 0.0 0.502 0.465 -0.037 0.0

% Observations 39238 57941 39238 57941

Table F.3: Average recommended job characteristics and observed behavior with
respect to job ads for the total population, the subsample of hired jobseekers and
the subsample of applicants
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Differences between women and men Difference of Differences

A. In hirings τHire(Observed) p-value τ (MUSE) p-value τDifH (MUSE) p-value

Wage (log) -0.009 0.002 -0.006 0.000 0.003 0.312

Distance -2.352 0.013 0.588 0.000 2.801 0.002

Executive Position -0.003 0.454 -0.001 0.450 0.003 0.783

Indefinite duration -0.045 0.001 -0.012 0.010 0.031 0.066

Full time -0.078 0.000 -0.046 0.000 0.032 0.020

Experience 0.323 0.579 0.142 0.561 -0.263 0.730

Fit to job search parameters -0.021 0.000 -0.019 0.000 0.003 0.560

B. In applications τApp (Observed) p-value τ (MUSE) p-value τDifA (MUSE) p-value

Wage (log) -0.008 0.000 -0.004 0.000 0.005 0.004

Distance -5.341 0.000 0.493 0.000 5.725 0.000

Executive Position -0.004 0.076 -0.001 0.029 0.003 0.246

Indefinite duration -0.029 0.000 -0.014 0.000 0.016 0.167

Full time -0.057 0.000 -0.045 0.000 0.011 0.008

Experience -0.142 0.493 -0.033 0.899 0.063 0.500

Fit to job search parameters -0.015 0.000 -0.015 0.000 -0.002 0.199

Notes: The results are presented in the subsample of hired job seekers. Due to different data sources, we study the sub-population of job seekers

with hires in the testing weeks for which we observe applications (all weeks taken together). The first column presents the conditional estimates for

the gender gaps on observed hirings (resp. observed applications) between women and men for the population with common support. The third one

presents the same difference on the characteristics of the algorithm’s recommendations. For hirings, the differences with the doubly robust effects

presented in the fifth column of Table 7.2 are due to the restriction on the subsample of hired job seekers. The fifth column reports the difference

of two latter differences, i.e., the conditional estimates for the differences between a hire’s characteristics (resp application’s) and the algorithm’s

recommendation.

Table F.4: Conditional gender gaps in hires and applications and in the algorithm’s
recommendations on the subsample of hired job seekers (Doubly Robust estimators)
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Pop. Wage Distance Executive Indef. Full Adequ. Experience

Mean Qualif. Duration Time

Other Individual Characteristics

Age

Less than 30 0.312 0.221 0.288 0.248 0.272 0.277 0.267 0.180

Between 30 and 50 0.540 0.580 0.577 0.595 0.579 0.562 0.568 0.573

More than 50 0.148 0.199 0.135 0.157 0.149 0.161 0.165 0.247

Family Status

Is Married 0.368 0.431 0.353 0.432 0.347 0.352 0.396 0.419

Have Children 0.415 0.442 0.412 0.414 0.404 0.397 0.429 0.430

City

Live in a priority district 0.092 0.069 0.105 0.052 0.087 0.064 0.098 0.085

Unemployment history

Unemployed > 1 year 0.414 0.453 0.437 0.449 0.426 0.421 0.428 0.442

Qualifications

Executive qualification 0.094 0.165 0.030 0.360 0.067 0.061 0.106 0.174

Months of Experience 52.887 78.425 37.406 69.499 51.820 61.385 57.257 98.218

Education

Post Secondary Education 0.614 0.672 0.652 0.866 0.557 0.573 0.685 0.489

Sector

Agriculture 0.043 0.053 0.029 0.029 0.115 0.023 0.035 0.029

Arts and Crafts 0.010 0.067 0.018 0.037 0.053 0.026 0.009 0.020

Banking, Insurance and Real Estate 0.015 0.025 0.009 0.024 0.008 0.025 0.026 0.006

Sales and Retail 0.165 0.062 0.114 0.057 0.108 0.213 0.164 0.043

Communication 0.026 0.012 0.011 0.025 0.012 0.025 0.020 0.003

Construction 0.040 0.067 0.023 0.043 0.019 0.045 0.084 0.162

Hotel, Restaurant, Tourism 0.117 0.096 0.090 0.089 0.221 0.290 0.076 0.187

Industry 0.079 0.269 0.077 0.161 0.048 0.052 0.103 0.208

Installation and Maintenance 0.027 0.049 0.015 0.019 0.038 0.068 0.030 0.055

Health 0.049 0.052 0.054 0.011 0.042 0.017 0.049 0.014

Services to individuals and Communities 0.159 0.066 0.179 0.112 0.110 0.053 0.122 0.102

Arts and Entertainment 0.015 0.019 0.016 0.032 0.015 0.008 0.005 0.001

Business support 0.123 0.087 0.084 0.289 0.027 0.069 0.116 0.051

Transport and logistics 0.097 0.069 0.264 0.061 0.166 0.055 0.144 0.109

Preferences

Full Time 0.729 0.788 0.768 0.774 0.818 0.796 0.767 0.794

Commuting Distance 27.510 31.704 30.180 35.405 31.043 26.977 28.034 30.672

Reservation Wage 1923.093 2440.376 1714.099 3248.486 1960.697 2143.989 1957.713 2229.719

Permanent Contract 0.575 0.649 0.568 0.685 0.571 0.596 0.670 0.630

Average Loss of the 10% -0.025 -2.789 -0.017 -0.084 -0.172 -0.051 -1.825

Notes: The first column presents the population mean (with overlap) on the fourteenth week of 2022.The rest of the columns shows the
average characteristics of a subset of the population that would incur the largest costs in terms of wages, distance, executive status, type of
contract, type of contract hours, fit to job search parameters and experience (respectively in columns 2,3,4,5,6,7,8) if they were a woman.
This population is constructed by taking the 10% most affected according to each corresponding doubly robust estimator.

Table F.5: Sample characteristics of the 10% individuals experiencing the highest
loss in job ad characteristics
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Low Intermediate High

Wage (log) 0.0050 0.0025 0.0010
Distance 0.5000 0.25 0.1250
Executive Position 0.0025 0.001 0.0005
Indefinite duration 0.0100 0.005 0.0025
Full time 0.0100 0.005 0.0025
Experience 1.0000 0.5 0.2500

Table F.6: Value of the constraint on gender gaps (ϵ) for each intensity level

Initial Low Intermediate High

value p-value ϵ value p-value ϵ value p-value ϵ value p-value
Unconditional gaps
Wage (log) -0.0045 0.0000 0.0050 -0.0048 0.0000 0.0025 -0.0028 0.0003 0.0010 -0.0013 0.0803
Distance 0.7620 0.0000 0.5000 0.5044 0.0000 0.2500 0.2587 0.0064 0.1250 0.1223 0.3248
Executive position 0.0008 0.1529 0.0025 0.0010 0.0874 0.0010 0.0011 0.0639 0.0005 0.0006 0.2959
Indefinite duration -0.0110 0.0000 0.0100 -0.0108 0.0000 0.0050 -0.0058 0.0094 0.0025 -0.0033 0.1454
Full time -0.0303 0.0000 0.0100 -0.0105 0.0000 0.0050 -0.0055 0.0090 0.0025 -0.0030 0.1376
Experience -0.1087 0.0182 1.0000 -0.0704 0.1086 0.5000 -0.0333 0.4359 0.2500 -0.0041 0.8664

Fit to job search parameters -0.0080 0.0000 0.0000 -0.0056 0.0001 0.0000 -0.0043 0.0021 0.0000 -0.0035 0.0136

Performance indicators

R@10 0.2387 0.2385 0.2385 0.2386
R@10 (Women) 0.2504 0.2502 0.2502 0.2503
R@10 (Men) 0.2243 0.2241 0.2242 0.2242

Other descriptive statistics

Gini Index 0.7971 0.7971 0.7971 0.7971
% Offers modified 0.0000 0.0029 0.0042 0.0050
% Ranking modified 0.0000 0.0283 0.0403 0.0474
Notes: The results are presented using recommendations generated for job seekers (and job ads) existing at week 2022-14 for which the estimated propensity
score is within the interval [0.01, 0.99]. Propensity scores are estimated through regularized regression. Variables that are used for conditioning (Z) include
all job seekers qualifications. We present results for an increase set of conditional constraints ϵ that we call weak, intermediate, and high. The set of ϵ values
is given for each intensity level, respectively, in the third, sixth, and ninth columns. The first two columns restate the results of the standard algorithm in
terms of conditional gender gaps for comparison purposes. The point estimates (columns 1, 3, 6, 9) are calculated following the methodology in 7.4 (IPW)
and associated p-values are calculated using bootstrap estimation (100 randomly selected samples drawn from the initial population).

Table F.7: Conditional gender gaps in job ads characteristics for post-processed
recommendations
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F.3 Additional figures

Figure F.1: Distribution of propensity scores among job seekers
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F.4 Details regarding the post-processing approach

In this Appendix, we begin by formulating the integer linear program of recommen-
dation under gender gap constraints in explicit fashion (Section F.4.1). We then
then provide more insights on how the dualized program L(λ) can be efficiently
evaluated for a given value of λ (Section F.4.2).

F.4.1 Formulation of gender gap constraints

Recall the notations of section 7.5: there are n users, m job ads, and for each user
i, k recommendations to generate. The variable to be optimized are the nm bi-
nary variables {γij}, i ∈ [[1, n]], j ∈ [[1,m]] where γij = 1 denotes that job ad j
is shown to job seeker i. The quality of a given recommendation policy is mea-
sured by

∑n
i=1

∑n
j=1 sijγij, where scores sij’s are the pairwise scores provided by

the recommender system.
Let f be a bijection from [[1, n]] × [[1,m]] to [[1, nm]], and let i : Rnm →

[[1, n]], i(p) = pr1(f
−1(p)), j : Rnm → [[1,m]], j(p) = pr2(f

−1(p)).
The problem of interest can be rewritten as the choice of γ ∈ Rnm, such that

γp ∈ {0, 1} corresponds to whether to whether job ad j(p) is recommended to
job seeker i(p). Let s ∈ Rnm be a vector representations of scores sij, such that
sp = si(p),j(p) The unconstrained recommendation problem then formally becomes:

max
γ∈Rnm

sTγ

subject to:

γp ∈ {0, 1} ∀p ∈ [[1, nm]];
m∑
j=1

γf(i,j) = k ∀i

Now, recall for instance the constraint on unconditional average gender gaps:

−ϵ ≤ 1

k

∑
i:gi=1

∑
j

wij

ngi

γij −
1

k

∑
i:gi=0

wij

ngi

γij ≤ ϵ

It may be rephrased as:

aTγ ≤ ϵ and − aTγ ≤ ϵ

where a ∈ Rnm has components

ap =
1

k
(2× gi(p) − 1)

wi(p)j(p)

ngi(p)

And thus as
Aγ ≤ b

where A is obtained by stacking vertically a and −a, and b = (ϵ, ϵ)T .
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F.4.2 Efficiently evaluating L

Recall that
L(λ) = max

γ∈Rnm
sTγ − λ(b−Aγ)

subject to:

γp ∈ {0, 1} ∀p ∈ [[1, nm]];
m∑
j=1

γf(i,j) = k ∀i

The value of γ minimizing L(λ) also minimizes

max
γ

(sT + λA)γ s.t. γp ∈ {0, 1} ∀p ∈ [[1, nm]];
m∑
j=1

γf(i,j) = k ∀i

= max
γ

∑
i

∑
j

(sij+
∑
d

λdAf(i,j),d)γij s.t. γij ∈ {0, 1}∀i, j
∑
j

γij = k ∀i

This simply amounts, for each job seeker i, to choosing the top j job ads in terms
of (sij +

∑
d λdAf(i,j),d). Finding the top k elements in an array of size m can be

done efficiently, for instance in average complexity O(m + k log k), or worst case
complexity O(m+ k logm).
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Appendix G

Thesis summary in French (résumé
substantiel)

En apprenant des appariements passés, les systèmes de recommandation ont le po-
tentiel de réduire les frictions informationnelles sur le marché du travail et d’améliorer
l’appariement entre demandeurs d’emploi et recruteurs.

Cette thèse étudie la question de la conception et de l’évaluation d’algorithmes de
recommandation d’offres d’emploi, en s’appuyant sur des données détaillées fournies
par le service public de l’emploi français (France Travail).

Premièrement, nous proposons une nouvelle architecture neuronale pour la recom-
mandation d’offres d’emploi, visant à répondre au problème du démarrage à froid
(présentation de recommandations à des nouveaux utilisateurs) tout en passant à
l’échelle. Dans une première étape, offres et demandeurs d’emplois sont représentés
par des plongements dans un espace latent appris des embauches, dont la structure
prend en compte les spécificités du domaine d’application (représentations dédiées
à la géographie, aux compétences et aux métiers, à des informations générales). Ces
représentations permettent la sélection rapide d’un sous-ensemble d’offres pour un
demandeur d’emploi. Ces offres sont ensuite reclassées lors d’une deuxième étape
par une architecture exploitant des informations plus détaillées au niveau de la
paire demandeur-offre et une architecture plus complexe comportant des interac-
tions multiplicatives, apprise des embauches et candidatures. L’approche proposée
est validée de manière comparative en termes de performance hors-ligne et de rapid-
ité de génération des recommandations sur des données publiques et propriétaires.
Elle est également évaluée sur le terrain en termes de satisfaction des utilisateurs
au moyen d’expériences randomisées à grande échelle, conduites en mars 2022 et
juin 2023. L’approche s’avère compétitive à l’état de l’art comme au système expert
actuel de France Travail.

Deuxièmement, nous examinons les objectifs possibles qu’un concepteur pour-
rait assigner à un algorithme de recommandation d’offres d’emploi. Cette analyse
est réalisée dans le cadre d’un modèle économique, qui nous permet de discuter
les mérites et limites de différentes approches plausibles (satisfaire les critères de
recherche exacts des demandeurs, apprendre des candidatures ou des embauches),
et de les confronter aux besoins des demandeurs d’emploi. Un algorithme aligné
à ces besoins combinerait deux quantités cruciales, la probabilité d’embauche en
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cas de candidature et l’utilité associée à un emploi, dont l’estimation est cependant
complexe.

Troisièmement, nous étudions le problème de la congestion qui peut survenir
si les recommandations se concentrent sur un ensemble excessivement restreint
d’offres, créant des conséquences nuisibles au niveau agrégé. A l’aide d’outils issus
du transport optimal computationnel, nous proposons une approche algorithmique
pour limiter la congestion dans des recommendations, et étudions ses performances
sur des données publiques et propriétaires.

Enfin, comme les algorithmes de recommandations sont entraînés sur des don-
nées issues du monde réel, ils peuvent reproduire ou aggraver certains comporte-
ments indésirables (notamment, de discrimination) existants sur le marché du tra-
vail. Afin de répondre à ces inquiétudes, nous réalisons un audit de l’algorithme
de recommandation (entraîné à partir des embauches) en termes d’inégalités de
genre. En s’inspirant de la littérature en économie du travail, nous proposons
des mesures des écarts genrés en termes de caractéristiques des recommandations
(salaire, type de contrat...), en moyenne ou conditionnellement aux qualifications et
préférences des demandeurs d’emploi. Selon nos résultats, l’algorithme reproduit,
sans aggraver, les biais de genre présents dans les données d’entraînement. Nous
proposons également une approche dite de “post-traitement", s’appuyant sur la re-
laxation lagrangienne d’un problème d’optimisation linéaire en nombre entiers, dont
l’objectif est de réduire les écarts femmes-hommes en termes de caractéristiques des
offres recommandées. Nous décrivons les arbitrages entre performance et équité que
cette intervention implique.
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