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A B S T R A C T

3D Computer-Aided Design (CAD) applications allow users to create visual repre-
sentations of models, helping create, edit, test, and analyze designs. Most offer a
Graphical User Interface (GUI) with direct manipulation providing easy-to-use inter-
actions, while a less popular category adopts a programming-based approach requir-
ing users to describe models using specific programming languages. Programming-
based CAD applications provide multiple benefits to 3D design, but their use remains
limited, potentially due to higher entry barriers and extensive programming require-
ments. Regrettably, a profound lack of understanding of the challenges faced by users
of programming-based CAD applications prevents a clear comprehension of the issues
of these applications. Furthermore, research addressing CAD challenges has predomi-
nantly focused on applications that provide direct manipulation interactions.

This doctoral thesis aims to improve the usability of programming-based CAD ap-
plications, focusing on their role in Personal Digital Fabrication with 3D printers. Our
research seeks to understand and address programming-based CAD users’ challenges
during the design process. In our first study, we interviewed twenty OpenSCAD users,
a leading programming-based CAD application in the 3D printing community. Data
analysis via a Reflexive Thematic Analysis (RTA) led to the development of a compre-
hensive codebook categorizing three main themes: user profiles, 3D design challenges,
and 3D printing challenges.

Our second study addressed the identified design challenges in linking 3D views
with code and difficulties in performing spatial transformations on the model. We
proposed to address these difficulties by introducing the concept of bidirectional pro-
gramming in programming-based CAD, allowing users to interact with both the code
and the view. We modified the source code of OpenSCAD to implement this approach,
developing bidirectional navigation features and allowing users to edit the model by
interacting with the view while the application updates the code coherently.

The third study addressed the keystone challenge of defining geometric properties
in parametric designs. After analyzing thirty OpenSCAD models, we developed bidi-
rectional programming features in OpenSCAD to facilitate the definition of parametric
properties, directly extracting information from the view to use in the code. Experi-
mentation with OpenSCAD users showed our solution may streamline design, reduce
errors, and lower entry barriers for newcomers.
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R É S U M É

Les applications de Conception Assistée par Ordinateur (CAO) 3D permettent aux util-
isateurs de créer des représentations visuelles de modèles, aidant à créer, éditer, tester
et analyser des conceptions. La plupart offrent une Interface Graphique Utilisateur
(GUI) avec manipulation directe, fournissant des interactions faciles à utiliser, tandis
qu’une catégorie moins populaire adopte une approche basée sur la programmation,
nécessitant des utilisateurs de décrire les modèles en utilisant des langages de pro-
grammation spécifiques. Les applications de CAO basées sur la programmation offrent
de multiples avantages pour la conception 3D, mais leur utilisation reste limitée, po-
tentiellement en raison de barrières d’entrée plus élevées et d’exigences de program-
mation étendues. Malheureusement, un manque de compréhension profond des défis
rencontrés par les utilisateurs des applications de CAO basées sur la programmation
empêche une compréhension claire des problèmes de ces applications. De plus, la
recherche traitant des défis de la CAO s’est principalement concentrée sur les applica-
tions offrant des interactions de manipulation directe.

Cette thèse doctorale vise à améliorer l’utilisabilité des applications de CAO basées
sur la programmation, en se concentrant sur leur rôle dans la Fabrication Numérique
Personnelle avec des imprimantes 3D. Notre recherche cherche à comprendre et à
relever les défis des utilisateurs de CAO basée sur la programmation pendant le pro-
cessus de conception. Dans notre première étude, nous avons interviewé vingt utilisa-
teurs d’OpenSCAD, une application de CAO basée sur la programmation leader dans
la communauté de l’impression 3D. L’analyse des données via une Analyse Théma-
tique Réflexive RTA a conduit au développement d’un codebook complet catégorisant
trois thèmes principaux : les profils d’utilisateurs, les défis de conception 3D et les
défis d’impression 3D.

Notre deuxième étude a abordé les défis de conception identifiés dans la liaison
des vues 3D avec le code et les difficultés à effectuer des transformations spatiales sur
le modèle. Nous avons proposé de relever ces difficultés en introduisant le concept
de programmation bidirectionnelle dans la CAO basée sur la programmation, perme-
ttant aux utilisateurs d’interagir à la fois avec le code et la vue. Nous avons modifié
le code source d’OpenSCAD pour implémenter cette approche, développant des fonc-
tionnalités de navigation bidirectionnelle et permettant aux utilisateurs de modifier
le modèle en interagissant avec la vue tandis que l’application met à jour le code de
manière cohérente.

La troisième étude a abordé le défi clé de la définition des propriétés géométriques
dans les conceptions paramétriques. Après avoir analysé 30 modèles OpenSCAD, nous
avons développé des fonctionnalités de programmation bidirectionnelle dans Open-
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SCAD pour faciliter la définition des propriétés paramétriques, extrayant directement
les informations de la vue pour les utiliser dans le code. L’expérimentation avec les util-
isateurs d’OpenSCAD a montré que notre solution pourrait rationaliser la conception,
réduire les erreurs et abaisser les barrières à l’entrée pour les nouveaux utilisateurs.
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1
I N T R O D U C T I O N

Computer-Aided Design (CAD) refers to an iterative problem-solving approach that in-
volves graphic design in a collaborative interaction between humans and machines.
This approach enables users to digitally and visually model problems, providing a
means to understand and sometimes verify results through digital simulations. CAD

applications are designed to assist users in articulating and refining detailed problem
statements, thereby facilitating the overall problem-solving process [174]. CAD appli-
cations find extensive use across various industries [92], including architecture and
construction [16, 80], automotive [5, 195], aerospace [49, 177], electronics [21, 207], me-
chanical engineering [48, 152], product design and manufacturing [161, 198], gaming
and entertainment [17, 140], medical devices [42, 93], fashion and apparel [28, 73], inte-
rior design [76, 216], or oil and gas [81, 96]. The market for these applications is valued
in billions of dollars [202], as they accelerate product design, improve quality, facilitate
drafting, and enhance documentation [55].

CAD applications provide users with a language for modeling problems as sets of
objects with defined relationships. The machine interprets these models to solve prob-
lems based on user specifications. The process typically follows an "outside-in" dy-
namic [174], where users start with broad ideas, and the modeling process reveals
nuanced details, leading to a clearer understanding and articulation of the problem,
allowing users to refine the model. For instance, OrCAD [207] is an application tailored
for circuit simulation and printed circuit board (PCB) design. Users can assemble rep-
resentations of electronic components using graphical icons within a viewer and estab-
lish connections to create electronic schematics. The application provides frameworks
for electronic components, allowing users to connect them and simulate behaviors to
verify the output. When users find errors in the simulations, they modify the model to
fix the problems and re-run the simulations. Upon completion of the modeling process,
users can export the corresponding PCB files for fabrication.

Given the highly interactive nature of CAD applications, the communication means
and the interactive paradigms that these applications offer become crucial. The initial
CAD applications [56, 206] allowed the creation of 2D drawings, akin to blueprints,
with graphical input instead of the classical text-based input for computers of that era.
Most CAD applications have since followed a similar interactive paradigm. The Direct
manipulation [192] approach enables users to interact directly with the graphical rep-
resentation of the output, modifying it through simple metaphors like drag-and-drop
interactions, menus, and buttons. This approach provides immediate feedback, incre-
mental and reversible operations [191, 192], resulting in a rapid learning curve [189].

1
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However, the direct manipulation paradigm has known limitations, such as difficulties
in performing repetitive actions, manipulating objects in high-density part models, or
ambiguity in resolving user intent [65, 117, 138]. For example, Autodesk Fusion360 [93]
(Figure 1a) is a CAD application providing direct manipulation interactions, enabling
users to create 3D models, simulate designs, and generate toolpaths for machining pro-
cesses, including computer-aided engineering (CAE) and computer-aided manufactur-
ing (CAM) features. Autodesk Tinkercad [15] (Figure 1b) is an easy-to-use, web-based
3D CAD application application designed for beginners, educators, and hobbyists who
want to create 3D models without the complexity of traditional CAD applications.

(a) Fusion360 is a CAD application that imple-
ments direct manipulation used for engi-
neering and manufacturing projects.

(b) Tinkercad, an easy-to-use, web-based CAD

application that implements direct manipu-
lation.

(c) OpenSCAD is a programming-based CAD

application that provides a functional lan-
guage to describe 3D models.

(d) CadQuery is a python library of
programming-based modeling.

Figure 1: Fusion360 and Tinkercad provides direct manipulation interactions while Open-
SCAD and CadQuery are programming-based technologies 1.

A less popular category of CAD applications uses a Programming-based approach.
This method allows users to create models by writing code in a text editor using a
specific programming language. Programming brings valuable advantages to 3D de-
sign, enabling easy automation of repetitive actions using programmatic structures
like conditionals and loops. Additionally, programming allows for creating complex
structured geometries, such as fractals or trees, using techniques like recursion. Fur-
thermore, programming provides a more suitable environment for using mathemati-
cal formulas and abstractions. Finally, current version control platforms enable better
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sharing of coded models [229]. OpenSCAD [160] is a free and open-source software
application for creating solid 3D CAD, providing a functional programming language
to describe geometries that render in a view, as depicted in Figure 1c. CadQuery is a
Python library for parametric 3D modeling that allows the creation complex geome-
tries through scripts (Figure 1d).

Despite the potential advantages, the adoption of programming-based CAD applica-
tions remains limited (Figure 3a), possibly attributed to the associated learning curve
in programming that requires extended training periods and repetitive practices [111].
However, the specific challenges faced by users utilizing CAD applications based on
programming are not well-defined. While previous research has identified program-
ming barriers in general environments [111], little attention has been given to the
domain of 3D modeling using programming-based CAD applications [105, 229].

Within various sectors and industries leveraging CAD, programming-based applica-
tions have demonstrated significant engagement in the practice referred to as Digi-
tal Personal Fabrication. This process involves creating objects through digital tools
like laser cutters, Computer-Numeric Controlled (CNC) mills, or 3D printers [13, 149].
Among these, 3D printers are gaining popularity due to their affordability and ease of
use, allowing makers of all skill levels to create precise geometric objects. These tools
create geometric objects by successive addition of material in layers [91]. Compared
to other fabrication options, 3D printers produce less waste and are more accessible
to a wider audience, making them an increasingly popular choice [149]. 3D printing
contributes to modeling and prototyping in industries such as automotive, aerospace,
and medical [98], forcing a redesign of the production chain in the industry [86, 139]
in a billionaire market [214]. In research, 3D printing has also contributed to different
fields such as sports [209], accessibility and prostheses [30, 31, 162], furniture fabrica-
tion [113, 121], health [142], or robotics [172].

Throughout the digital personal fabrication process, the maker undergoes iterative
stages of Ideation, Design, Print, and Validation [88, 217], as depicted in Figure 2. Design,
a pivotal stage, requires the user to obtain a digital object model stored in a format
readable by the printer, such as the STereoLithography (STL) file [43]. Makers can create
models from scratch using a CAD application or download designs from repositories
like Thingiverse [213] or Printables [235]. Downloaded models may require further
modifications to get a customized version, which makers can achieve by uploading
the model in a CAD application and editing it. Either for creating or modifying, the
maker must go through a CAD modeling application to produce a model.

In the context of 3D printing, the modeling process goes beyond mere utilization
of a CAD application. It involves diverse tasks, such as seeking inspiration, sketching,

1 Images taken from Fusion360: https://help.autodesk.com/view/fusion360/ENU/?guid=
GUID-27D089C0-5FC5-4AD4-841F-6E983AC99DCF, TinkerCAD: https://www.instructables.com/
Tinkercad-Robotics-for-School-Create-TWO-Walking-M/, OpenSCAD: https://openscad.org/, Cad-
Query: https://snapcraft.io/install/cadquery-editor/debian. Accessed on 12/01/2024

https://help.autodesk.com/view/fusion360/ENU/?guid=GUID-27D089C0-5FC5-4AD4-841F-6E983AC99DCF
https://help.autodesk.com/view/fusion360/ENU/?guid=GUID-27D089C0-5FC5-4AD4-841F-6E983AC99DCF
https://www.instructables.com/Tinkercad-Robotics-for-School-Create-TWO-Walking-M/
https://www.instructables.com/Tinkercad-Robotics-for-School-Create-TWO-Walking-M/
https://openscad.org/
https://snapcraft.io/install/cadquery-editor/debian
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Figure 2: A simplified version based on [88] of a common workflow of the Digital Personal
Fabrication process with 3D printing.

measuring physical objects, transferring data to design tools, incorporating physical
objects into designs, interpreting pre-existing models, considering printer capabilities,
and modifying models based on visual inspection of printed objects [13, 88]. The choice
of CAD technology significantly impacts the user experience and the complexity of
these tasks. For example, as discussed later, creating a cube with rounded corners
may be effortlessly accomplished in some applications while posing a considerable
challenge in others.

Figure 3b presents the ranking of CAD applications for 3D printing by the number
of users in the 3D Hubs community [148], a global network of manufacturing partners.
Although the data is from 2016, it offers a valuable snapshot of the trending CAD

applications due to the limited information available on the Internet. Similar to the
rankings of CAD applications in the general landscape (Figure 3a), the majority of
CAD applications in the 3D printing community, such as AutoCAD [16], CATIA [49],
or Fusion360 [93], predominantly adopt the direct manipulation paradigm [148, 192,
237]. Conversely, less popular CAD applications such as OpenSCAD [160], IceSL [127],
or JSCad [159] choose a programming-based approach.

Despite the lower prevalence of programming-based CAD applications in the com-
munity, the impact of such applications is substantial. Various web-storing platforms
empower makers to upload models for sharing. While most sites only allow down-
loading the STL model files, specific web applications like Customizer [212] from Thin-
giverse, MakeWithTech [187], or 3dCustomizer [1], permit users to upload OpenSCAD
models exposing modifiable parameters through widgets. This enables other users to
recreate customized versions of the models simply by modifying the parameter val-
ues, all within a web browser. For instance, on Thingiverse, users employed these
programming-based models with the Customizer tool to recreate customized versions
and re-upload them to the website. Approximately 74,949 customized models were
uploaded, representing 42% of all public things, from only 1,692 programming-based
parametric models, which represented less than 1% of the models on the website [158].
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In essence, less than 1% of the available models were uploaded in the programming-
based format, enabling other users to create about 40 times more models for the com-
munity. No other web application provides the same features for storing parametric
models created with direct manipulation CAD applications.

(a) Ranking of the most popular CAD appli-
cations based on the Reddit’s users [237].
Other category includes the applications:
Autodesk Inventor, Civil 3D, Microstation,
Revit, Sketchup, Alias, Vectorworks, Draft-
sight, Spaceclaim, Tekla, Geomagic Design,
ArtCam, Inroads, ArchiCAD, and BricsCAD

(b) Ranking of the most popular CAD applica-
tions in the 3D printing community accord-
ing to the website 3D hubs [148, 164]

Figure 3: Rankings of CAD applications by popularity. Values represent the percentage of users
compared to the total. Applications with blue bars implement mainly direct manip-
ulation interactions. Applications with red bars implement the programming-based
paradigm. There is no information about the interactive paradigm in bars with gray
bars.

This doctoral thesis focuses on improving the user experience of programming-
based CAD applications. Due to the broad spectrum that CAD may cover, we have
focused on studying these applications in the field of digital personal fabrication with
3D printers, where programming-based CAD applications have a significant influence.
Given the lack of research on understanding the challenges of applications implement-
ing this interactive paradigm, the objective of the first study of this thesis is to establish
the challenges that programming-based CAD applications empirically face in the 3D
printing community. Later, our aim is to address some of the identified challenges by
introducing the concept of Bidirectional Programming [19, 72, 143]. Bidirectional pro-
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gramming refers to systems that enable interaction with program output to update in-
put after defining a backward transformation, always maintaining coherence between
both [58]. Some GUI builders use bidirectional programming, and some research has
explored it to create 2D vector graphics [78, 103]. We have addressed some of the iden-
tified challenges of the programming-based paradigm by modifying the source code of
the most popular programming-based CAD application in the 3D printing community,
OpenSCAD (Figure 3), in two additional studies.

Specifically, we aim to answer the research question,

"How can interaction techniques be used to facilitate design in programming-based
CAD applications for 3D printing?"

To answer this question, this doctoral thesis aims to answer the following sub-
questions.

• RQ1 What are the motivations and challenges that users face when using programming-
based CAD applications when designing models for 3D printing in personal fabrication?

• RQ2 How can bidirectional programming be used to enhance navigation and editing in
programming-based CAD applications?

• RQ3 How can bidirectional programming facilitate the definition of geometric properties
of models in programming-based CAD applications?

1.1 research outline

The research comprises three studies, as depicted in Figure 4. In the first study, our
aim is to address the knowledge gap regarding user experience in programming-based
CAD applications for 3D printing. We conducted a comprehensive study that involved
interviewing twenty OpenSCAD users. The interview included user experience ques-
tions and a hands-on exercise replicating common tasks users perform while design-
ing in programming-based CAD applications. The goal was to understand users’ per-
spectives on the challenges of such applications, with the hands-on exercise revealing
challenges faced during design. We took notes during the interviews, documenting
participants’ answers and behaviors in the hands-on exercise. We then performed a
Reflexive Thematic Analysis (RTA), producing a codebook with three main themes:
Programming-based CAD users’ profile, Design, and Printing. Detailed results of this anal-
ysis are presented in Chapter 3, including a discussion on how these findings can
motivate further exploration in programming-based CAD applications.

The second study of our research work aims to tackle some of the identified chal-
lenges in the user experience of programming-based CAD applications. Specifically, our
goal was to address user challenges related to difficulties in navigating and relating the
code with the visual representation of the models and difficulties in performing spatial
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Figure 4: Overview of chapters summarising their research contributions.

edits. We based our work on previous research to apply the concept of Bidirectional
Programming in programming-based CAD applications. We proposed design goals to
address the challenges of navigation and model editing. Then we implemented the
design goals by modifying the source code of the programming-based CAD applica-
tion, OpenSCAD. We present and explain the features depicting how the new features
addressed the identified challenges in the Chapter 4.

In the third study, our goal is to address the difficulties that programming-based
CAD users face in defining geometric properties through arithmetic expressions when
creating parametric designs found in the first study. We conducted a formative study to
better understand how the definition of geometric properties is created in OpenSCAD
models uploaded to the website Thingiverse. Based on these findings, we modified the
source code of OpenSCAD to implement features that enable users to retrieve the para-
metric definition of the model’s parts directly from the view to be re-used in the code.
Then, we performed a user study, recruiting ten OpenSCAD users. In the experiment,
participants answered questions related to their experience with parametric design.
Later, they created one model in the normal version of OpenSCAD and one model
using the implemented features. We tracked performance measurements in both cases
to compare them. Moreover, participants scored the difficulty of the modeling task in
both cases and discussed the potential or difficulties of the implemented features. We
present the results of this study and discuss its implications in Chapter 5.
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1.2 research contributions

The contributions of this thesis includes:

• A comprehensive understanding of the motivations and challenges of programming-
based CAD applications users organized in three categories: Programming-based
CAD applications users’ profile, challenges when modeling, challenges when
printing.

• A modified version of OpenSCAD available at http://ns.inria.fr/loki/bp. This ver-
sion incorporates bidirectional programming features, specifically tailored to en-
rich navigation capabilities and simplify editing through direct manipulation
interactions.

• A formative study describing programming patterns in OpenSCAD models in
terms of creation of primitives and spatial transformations. The formative study
describes the structure that geometric properties definitions follow.

• A modified versions of OpenSCAD including a bidirectional programming fea-
tures to retrieve parametric definition of geometric properties of models’ parts
directly from the view to be re-used in the code aiming to facilitate the paramet-
ric design.

• A user study validating the potential of using bidirectionnal programming fea-
tures to facilitate parametric design in programming-based CAD applications.

• An analysis on common behaviors and errors that OpenSCAD users follow when
designing to better understand the design process.

1.3 document structure

Chapter 2 reviews relevant literature to this research, detailing CAD technologies and
their interaction paradigms. It explores key concepts such as construction modes [184]
and data representation [84], crucial for understanding CAD user experiences. Addi-
tionally, it outlines the process of Digital Personal Fabrication with 3D printers and
examines significant studies in CAD design.

Chapters 3, 4, and 5 detail the empirical studies conducted.
Chapter 3 reports on interviews with users of programming-based CAD applica-

tions to identify their challenges. This investigation uncovers specific challenges within
these applications, guiding the focus of subsequent studies.

Chapter 4 addresses challenges in model navigation and spatial transformations in
programming-based CAD applications identified in the previous chapter. This chapter
proposes a design solution and illustrates its application through integrating bidirec-
tional programming in OpenSCAD.

http://ns.inria.fr/loki/bp
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Chapter 5 investigates the challenge of defining geometric properties in parametric
designs within programming-based CAD models. Following insights from Chapter 3

and a formative study, this chapter introduces a design solution implemented in Open-
SCAD. An evaluation with OpenSCAD users demonstrates the utility of this approach.

Chapter 6 summarizes the research findings and discusses their implications. It also
outlines potential directions for future research, building on the contributions of this
thesis.





2
S TAT E O F T H E A RT

To better grasp the scope of the thesis, it is essential first to establish some fundamental
terms. This section will begin by outlining the specifics of CAD technologies and the
existing interaction paradigms including bidirectional programming. It will then delve
into an explanation of the background of digital personal fabrication practice using 3D
printers, as well as the current challenges faced by its users.

2.1 computer-aided design (cad)

Computer-Aided Design (CAD) refers to computer applications that assist humans in the
practice of creating, modifying, testing, and analyzing designs. This broad definition
covers several different CAD applications used in a wide range of industries [5, 76, 80,
92, 96, 195, 216]. Across diverse technologies, the fundamental essence of CAD remains
consistent. CAD applications enables users to articulate a model, generate a visual rep-
resentation for verification, and sometimes conduct tests. For instance, VStitcher [28],
a fashion CAD application, allows designers to craft clothing patterns and designs. It
offers a visual preview of body avatars for iterative adjustments (Figure 5a). Similarly,
SketchUp [216], widely used in architecture and interior design, facilitates layout and
model creation, providing a visual representation for design validation (Figure 5b).

(a) VStitcher is a CAD application specialized in
fashion design.

(b) SketchUp is a CAD application specialized in
architecture and interior design.

Figure 5: CAD applications allows users to create a visual representation of models for visual
validation. 1

1 Images taken from https://help.browzwear.com/hc/en-us/articles/4921641889945-VStitcher-3D-Window-Browzwear
and https://blog.sketchup.com/article/creating-plan-your-sketchup-model-layout
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https://help.browzwear.com/hc/en-us/articles/4921641889945-VStitcher-3D-Window-Browzwear
https://blog.sketchup.com/article/creating-plan-your-sketchup-model-layout
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In both VStitcher and SketchUp and most CAD applications, the design process in-
volves iterative interactions between the user and the application. Users edit the model,
visually verify results, and iterate until a satisfactory result is achieved. The effective
communication channels provided by CAD applications are pivotal in delivering a pos-
itive user experience.

While various challenges have been reported in 3D modeling applications, such as
modeling, dialog boxes, terminology, and others [124], this dissertation will focus on a
key aspect of CAD applications workflows and capabilities: interaction paradigms. Our
interest lies in exploring the potential of the programming-based paradigm in CAD ap-
plications. To facilitate a more meaningful comparison between different applications,
we will concentrate on those used in the field of personal fabrication with 3D printers,
where programming-based CAD applications exert significant influence [148, 237].

We will delve into different interaction paradigms within CAD applications, compar-
ing their challenges and potential with the programming-based CAD paradigm inves-
tigated in this thesis. Subsequently, we will describe the categories within two aspects
in CAD design that are closely related to the capabilities and challenges of interaction
paradigms: the construction mode [184] and data representation [84].

2.1.1 Interactive Approach

D.T. Ross et al. [174] introduced the term CAD in the 1960s as a revolutionary ap-
proach to problem-solving. It emphasized a more collaborative human-machine pro-
cess, challenging the predominant problem-solving paradigms of the time: Computer-
Automated Design (CAutoD) [104] and automatic programming [18]. The former relied
on elaborate automatic procedures, restricting user involvement to setting input pa-
rameters for desired outputs. The latter provided tools for programmers to create
routines and programs but lacked user support in problem-solving. In other words,
“CAutoD has the computer do too much, and the human do too little, whereas automatic pro-
gramming has the human do too much and the computer do too little” [174]. Ross proposed
CAD as an alternative that allowed intense human-machine interaction, enabling users
to express design intents that the machine would interpret and support. Consequently,
the communication and interaction channels provided by CAD applications as user
input mechanisms gained significant importance.

Early CAD applications like SketchPad (1963) [206] are believed to be among the
first to implement a Graphical User Interface (GUI). These applications facilitated the
creation of 2D drawings akin to blueprints by directly drawing on a Cathode-Ray
Tube (CRT) display using a light pen [46], possibly introducing the concept of direct
manipulation interactions. For instance, Sketchpad (Figure 6) allowed users to select
a geometric shape, like a line, and draw a path with a pen, transforming the user’s
trace into a straight line. The user could then use this line as the circle’s radius, illus-
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trating direct interaction with the design, which differs from the traditional text-entry
command mechanism at the time, although the use of scripts was also available.

Figure 6: Sketchpad is one of the first CAD applications using a GUI to interact with the users
with direct manipulation interactions.

Other applications like DAC-1 (1965) [115] or UNISURF (1968) [34] employed a
command-driven interface, requiring users to use code commands for data input—likely
due to the high cost of technologies such as light pens for implementing direct manip-
ulation interactions [46]. However, as computer technology advanced, direct manip-
ulation [192] became the dominant interaction paradigm in CAD applications. This
approach mirrored designers’ drawing practices, creating a different communication
logic with machines compared to text entry.

Currently, main interactive paradigms can be broadly categorized into direct ma-
nipulation and programming-based. As explained earlier, the former allows users to
interact directly with the design, while the latter provides a programming language for
users to programmatically describe a model, with the systems compiling and render-
ing the result. These paradigms are not mutually exclusive; several applications make
efforts to combine them, creating new interaction paradigms. For example, Blender
[62] enables users to create geometries through direct manipulation while integrating
a text editor for executing scripts for specific actions.

Mcguffin et al. [143] describe a taxonomy of systems using one, the other, or both
paradigms to create an output. We based on this taxonomy applied to the CAD field to
clarify the different interactive paradigms present in CAD applications. We will begin
by defining the two main interaction paradigms in CAD applications: direct manipu-
lation and programming-based. Subsequently, we will describe different approaches
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combining direct manipulation with programming-based CAD, following Mcguffin
et al.’s taxonomy. Finally, we will describe the concept of bidirectionnal programming.

2.1.1.1 Direct Manipulation

Direct manipulation [191] interactions in CAD applications empower users to modify
the visual representation of models through intuitive interactions, providing a seam-
less point-and-click modification experience with instantaneous feedback [89]. These
interactions often align with the Skeuomorphism principle, where the visual represen-
tation and interactions mirror physical world metaphors to enhance user comprehen-
sion [200]. For example, in TinkerCAD [15], to modify the size or position of a cube,
the user selects the object and moves the pointer to the desired position while the
program constantly updates the object’s property (Figure 7). This way, to modify the
digital dimension, the user needs to physically modify the controller’s position, which
is their hand or finger. The direct manipulation approach emphasizes the direct and
easy-to-understand manipulation of on-screen objects, enabling users to move, resize,
and delete objects through direct physical actions [201].

Figure 7: Direct manipulation aims to provide interactions in which their execution implies
functionality. In CAD applications such as Tinkercad, for instance, to change the po-
sition of a cube, the user can select the top face and pull by moving the pointer up
while the application continuously updates the object’s position.

Compared to programming-based approaches, direct manipulation interfaces help
reduce the gap, referred to as "gulf", between execution and evaluation by providing
immediate feedback on the user’s tasks [89, 226]. For instance, when scaling an object
using a drag-and-drop interaction, the system provides continuous real-time updates
on the object’s size throughout the entire process. This immediate feedback allows
users to assess the consequences of their actions swiftly [89]. In contrast, programming-
based CAD applications lack this immediacy as users must modify the code, followed
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by the system’s compilation and rendering of the geometry. This distinction is notewor-
thy because immediate feedback simplifies the validation of actions’ outcomes [191].
Therefore, direct manipulation interfaces enhance the user’s comprehension of digital
interactions by minimizing the gap between intention and action, ultimately promot-
ing increased user engagement [89].

Direct manipulation interaction is based on the following principles [189, 191, 192] :

1. Permanent representation of the objects of interest. There is a visual repre-
sentation of the object, including (and especially) when these are being edited.
It achieves a highly appreciated usability principle, continuing visibility of the
system status [153].

2. The use of physical actions instead of complex syntax. Interactions are executed
through more friendly input mechanisms than a command line, such as pointer
movements, pressing buttons, or clicks.

3. Fast, incremental, and reversible operations with an immediate and visible
impact on the object of interest. As a consequence of the continued visibility
of the system status, users can validate each action performed to continue or
reverse it if the result is not desired.

4. Progressive learning The use of direct manipulation has been reported to be
easier to learn than a programming-based approach [153, 228].

Applying the principles of direct manipulation helps to achieve usability goals such
as constant visibility of the system’s status, user control and freedom, recognition
rather than recall, and, to some extent, flexibility and efficiency of use [153]. Conse-
quently, the direct manipulation paradigm helps users to be more engaged [89, 236]
and reduces the cognitive resources required to understand the user interfaces [193].
Thus, users can obtain decent results with little effort [3, 4] and the learning curve is
normally shorter than programming-based paradigms [228]. Most CAD applications,
such as Autocad [16], Tinkercad [7], or FreeCAD [210] implement direct manipulation
interactions.

Nevertheless, the direct manipulation paradigm presents important and well-known
challenges.

selection The keystone operation in direct manipulation CAD applications is select-
ing elements in the visual representation [203]. Frequently, users need to point
to individual parts by hovering a pointer over them and clicking to select them.
The time required for this action has been effectively modeled by Fitts’ Law
[133], which states that the selection time increases with the distance to the tar-
get and decreases with the target’s size. Hence, selecting small, distant objects
takes notably longer. Following the same logic, the difficulty of selecting ob-
jects is similarly impacted by the distance to the object and its size [157]. While
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initially conceptualized for one-dimensional tasks, extended studies in both 2D
[134] and 3D environments [75] have shown that these difficulties persist across
dimensions. Consequently, selecting and manipulating objects in models featur-
ing small parts can be particularly challenging. The complexity further escalates
in scenes densely populated with elements [54], where overlapping parts can
hinder user’s ability to efficiently locate and select the desired parts due to lim-
ited viewport capabilities and suboptimal zooming or filtering functionalities [89,
117].

precision The precision capability in CAD applications is closely linked to the chal-
lenges in object selection [157]. Users often face difficulties in achieving precise
pointing and meticulous control over design elements, particularly in complex
or finely detailed designs. This is especially evident when users attempt to po-
sition the cursor accurately for small-scale components or tasks requiring high
precision levels. To address these limitations, some CAD applications incorporate
features that allow numerical input for defining object locations, thereby enhanc-
ing precision [89, 134].

spatial transformations Most 3D CAD applications require users to manipulate
3D objects on a screen with 2D input devices such as a mouse pointer. This causes
the problem of how to map a fundamentally 2D input device with two Degrees-
of-freedom (DOFs) into different operations with more DOFs, such as moving and
rotating an element in 3D [100]. Various solutions have been proposed, includ-
ing touch-based manipulation [180] and pseudo-physical interaction techniques
[32]. Nevertheless, the majority of CAD applications utilize graphic "manipulators"
[100], which are visual representations that aid in object manipulation, such as
arrow-shaped widgets that restrict movement to a specific direction.

navigation and spatial thinking Direct manipulation CAD applications require
intensive user interaction with the viewport for model navigation. Typically, 3D
views in most CAD applications encompass eight DOFs: three for positional place-
ment (i.e. translation), three for angular placement (i.e. , rotation), and two for
zooming in and out (i.e. , depth translation). Jankowski and Hachet [100] high-
light three primary challenges in navigating 3D spaces with 2D input devices.
Firstly, the complexity of simultaneously managing multiple navigation param-
eters to achieve a specific point, angle, and distance. Further, standard actions
like orbiting and panning are not consistently executed across different CAD ap-
plications. Secondly, the uniformity of interaction mechanisms across diverse
tasks with varying requirements, such as navigating large-scale environments
versus conducting precise inspections of 3D objects. Lastly, applications’ lack of
wayfinding features may disorient users in complex 3D scenes. Navigation in
programming-based CAD applications is primarily utilized for verifying models
in the viewport, as opposed to direct manipulation interfaces where navigation
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is essential for both verification and model modification. Moreover, research in-
dicates that comprehending 3D spaces on 2D screens can be challenging. Under-
standing the perspective is often difficult [88], and executing spatial transforma-
tions, such as translations and rotations, demands an in-depth understanding
of the 3D coordinate system. The projection of 3D objects onto 2D screens re-
lies on cerebral interpretation, which can lead to misconceptions in the visual
representation [221].

repetitve tasks Automation and repetitive tasks can also be challenging indirect
manipulation. Typically, performing repetitive tasks often results in tedious man-
ual tasks (e.g. copy-paste an object) that, depending on the complexity of the
desired output, can lead to tiresome and error-prone work. For example, if the
user would like to create multiple copies of an object, then adjust their position
one by one, and finally change one of their properties by editing each of them
independently [89, 117].

ambiguity Moreover, direct manipulation may introduce ambiguity. Gesture-based
interactions, common in direct manipulation, may have inherent ambiguity. Sim-
ilar gestures could be interpreted differently based on context, leading to confu-
sion. CAD applications require resolution heuristics from the system to interpret
the user’s intention when acting. As a result, a similar action can have differ-
ent results, making it difficult to create robust parameterized models with such
applications [138].

In summary, the direct manipulation paradigm significantly enhances user interac-
tion by employing intuitive metaphors and providing immediate feedback, effectively
narrowing the gap between execution and evaluation. This approach offers notable
benefits compared to programming-based CAD applications, where interactions are
confined to a text editor interface.

2.1.1.2 Programming-based

Programming-based or programmatic interfaces [138] allow the creation of 3D mod-
els using a textual description in the form of source code. Programming-based CAD

applications provide a programming language so the users can define objects, their ge-
ometric properties, and their relationships through scripts. The user creates the script
and later triggers a compile action; the application will transform the coded descrip-
tion into a visual representation so the user can verify the result as depicted in Figure
8. In programming-based CAD applications, the code fully describes the model, and
every modification is performed in the code so the system re-compiles the scripts and
re-render the visual representation of the model. Some CAD applications based on
direct manipulation interactions allow the execution of scripts as seen in FreeCAD
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Figure 8: OpenSCAD is a CAD application implementing the programming-based paradigm.
Normally, programming-based applications provide a text editor (1) to describe a
model with a programming language. The application compiles and transforms a
visual representation in a viewer (2).

[210] with Python scripts [63]. However, these solutions do not fall under the defi-
nition of programming-based CAD applications because the code does not fully de-
scribe the model but executes specific actions. Programming-based CAD applications
can re-create the models with only the source code. Commonly, programming-based
applications have a text editor in which users create the code, a compile button, and
a view where the applications display the visual representation of the model, which
usually offers few or no interaction capabilities except to change the position and an-
gle of the view to inspect the model (Figure 9). Some examples of programming-based
CAD applications are OpenSCAD [160], Cadquery [35], JSCAD [159], BRL-CAD [38],
ImplicitCAD [131], and IceSL [127].

Programming-based description can also include visual programming-based paradigm
[143], where applications allow users to describe models by manipulating graphical el-
ements rather than writing lines of code. These graphical elements replace text-based
programming constructs, such as functions, loops, and conditional statements, and are
often presented as icons, blocks, or nodes [173]. This visual representation of code ele-
ments simplifies the understanding of programming concepts and maps conventional
programming concepts into visual metaphors, significantly impacting the learning

2 Model taken from https://www.thingiverse.com/thing:6415987 accessed the 26/01/2024

https://www.thingiverse.com/thing:6415987
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(a) OpenSCAD 2 (b) CadQuery

(c) JSCAD (d) ImplicitCAD

Figure 9: Programming-based CAD applications usually provides a text editor where users cre-
ate a script describing the model and the application renders the result in a view.

of computer programming over text programming on beginners [155, 176]. However,
some evidence shows that visual programming-based paradigms can be less produc-
tive than text-based CAD applications, especially for large-scale, complex design tasks
[128]. BlocksCAD [94] and Grasshopper [50] are examples of visual programming-
based CAD applications as depicted in Figure 10.

Programming brings highly appreciated advantages to 3D design [41, 229]. Repeti-
tive and automatic actions are easily scripted [89]. For instance, making copies of an
object and placing them in a specific pattern is significantly easier with programming
compared to direct manipulation. Moreover, precision is an important advantage on
programming-based CAD applications. Geometric properties can be defined with ex-
act dimensions or expressed through mathematical expressions that assure exactitude
in the designs. Some complex geometries that can be significantly challenging to ex-
press with direct manipulation, such as fractals, can be generated using programming
strategies such as recursion. Versioning and collaborative works are also remarkable
advantages of designing with programming-based CAD compared to direct manipula-
tion. Furthermore, programming-based provides the user with complete design con-
trol with a non-ambiguous programming language, providing a consistent and robust

3 Model taken from https://www.blockscad3d.com/community/projects/596293 accessed the
26/01/2024

https://www.blockscad3d.com/community/projects/596293
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(a) BlocksCAD 3 (b) Grasshopper

Figure 10: Visual programming-based CAD applications allows users to describe models pro-
grammatically through a graphical interface rather than traditional textual coding.
Instead of writing code in a programming language, users visually construct and
connect nodes or blocks representing various operations and functions.

mechanism to design. Direct manipulation requires the application to interpret user
design intent and transform it into specific actions in the model. Different applications
can interpret design intent differently on the same action. Thus, it is possible to find
different results on the same action across different applications [138].

Despite the benefits of the programming-based paradigm, very few CAD applica-
tions implement it compared to other approaches, as illustrated in Figure 3 in Chapter
1. One of the reasons for this is possibly the difficulties that learning to program
presents, which can be an entry barrier for users [111]. Programming is difficult to
learn because of the distance semantics between the natural and programming lan-
guages. Previous research [111, 132, 175] has extensively studied different difficul-
ties that users must overcome to program successfully. Novice programmers often en-
counter difficulties in understanding fundamental programming concepts, including
the notion of machines and the syntax of languages to communicate with them [132].
Additionally, acquiring core programming concepts such as iteration, specific language
constructs, and program design has been identified as a significant challenge for learn-
ers [175]. Moreover, transforming intent into a syntax using the available features that
programming languages offer has also been reported as difficult [111, 227].

Despite the known problems of general programming, there is no clear understand-
ing of the challenges that programming-based CAD users face. Programming-based
CAD users may face (or not) some of the problems mentioned previously, but there
is no empirical evidence or research effort to understand the specific problems pre-
sented by these applications. For example, some research reveals the importance of
spatial thinking ability in successfully solving problems with multiple spatial parame-
ters, particularly in engineering problem-solving [114]. Further, previous studies also
look for new strategies to facilitate spatial skill learning among engineering students in
CAD education [14]. Developing CAD applications for 3D modeling has further empha-
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sized the relevance of spatial visualization skills in modern design practices within
engineering fields [95]. Nevertheless, all these studies are focused mostly on direct
manipulation interactions where the user has constant visual feedback of the object
they are modifying, and often, the application provides visual cues to facilitate the
task. When moving an object in Tinkercad, for instance, the user can select an arrow
pointing in a specific direction, and while moving the object, the applications display
a ruler to inform the distance that the object has moved as depicted in Figure 7. The
user experience is completely different when the user intends to translate an object in
a programming-based CAD application such as OpenSCAD. The user would need to
use a translate statement, which receives three values corresponding to the distance
as parameters to move along each of the three spatial axes. First, the user needs to
understand the code and locate where the intended object is created to place a spatial
translation statement. Then, the user needs to mentally match the view dimensions
with the parameters in the code statement to move the object in the target direction.
While in direct manipulation, the application provides visual cues to facilitate the pro-
cess; often, in programming-based CAD applications, the user is mentally loaded to
solve the problem [165].

In summary, programming introduces significant advantages to the field of CAD,
yet users’ utilization of programming-based CAD applications remains limited. No-
tably, prior research has not extensively explored the challenges these users face,
which could facilitate the use of programming-based CAD applications. This thesis con-
tributes by offering a thorough understanding of both the motivations and challenges
encountered by users of programming-based CAD applications detailed in Chapter 3.

2.1.1.3 Using programming in direct manipulation applications

Several applications that implement direct manipulation interactions allow certain in-
tegrations with code. McGuffin and Fuhrman’s taxonomy describes some approaches
where applications allow certain collaboration between direct manipulation and code
editing [143] to take advantage of both representations.

The Content-Oriented Programming (COP) approach allows users to modify the out-
put with both direct manipulation interaction and executing scripts. Scripts can also
be described through visual programming in the Content-Oriented Visual Program-
ming (COVP) approach. An illustration of the COP approach is found in web program-
ming, where an HTML document can be generated using a direct manipulation tool,
followed by the composition of JavaScript instructions to modify the HTML document.
Further, Arawjo et al. [11] designed an extension to Jupyter notebooks [47] that allow
users to create pen-based circuit representation through drawings and combining them
with Python scripts.

In CAD applications, several applications based on direct manipulation interactions
also provide a COP approach. For instance, Fusion360 [93] allows users to create models
by direct manipulation and to execute Python scripts to perform specific actions. Thus,
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users can use programming to automate edits, such as making multiple copies of an
object.

Another approach in McGuffin and Fuhrman’s taxonomy is Programming By Exam-
ple (PBE). Applications that implement PBE allow users to perform direct manipulation
interactions while the system generates the instructions in code that would perform
the same modification. Then, users can learn the scripted instructions to execute them
later. FreeCAD [210] is a CAD application implementing PBE. Users can open an out-
put console where the application will generate code statements corresponding to the
direct manipulation actions performed in the view. Users can learn from these exam-
ples and execute similar code statements later in a code editor, as depicted in Figure
11. This approach contributes to the learning process. However, it is limited to a few
actions because complex abstract elements such as loops or conditionals are not sup-
ported.

Figure 11: FreeCAD is CAD applications implementing the PBE approach. Users can perform
direct manipulation interactions in the view (1). The system generates the corre-
sponding in an output console (3) that users can execute later in the dedicated text
editor for scripts (2).

These approaches present a fundamental difference compared to programming-
based applications. The code is used to perform specific actions, but it does not compre-
hensively describe the 3D model visually represented. In programming-based CAD, a
modification requires the user to go through the code, edit it coherently, and re-execute
all the scripts to re-generate the model; in the other paradigms, the code executes spe-
cific actions to modify the model’s current state.
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2.1.1.4 Bidirectional Programming

McGuffin and Fuhrman define bidirectional programming in the context of program-
ming interfaces that comprise both a code editor and visual content related to the set
of instructions [143]. The instructions and the visual content define two different rep-
resentations of the same entity. It is possible to edit the model by editing the code or
directly manipulating the visual content. Furthermore, any update to either represen-
tation updates the other, maintaining synchronization between the two.

The concept of bidirectional programming is related to bidirectional transformations
in databases, concerning the problem of view updating [19, 72]. In this context, a view
created by a query on a data source must often be edited. Hence, the data source
must also be updated so that both ends remain coherent. Similar problems and ap-
proaches have been explored in different disciplines, such as Model-Driven Software
Development [52], Graphical User Interfaces [118], Relational Databases [19], or Struc-
ture Editors [87]. Despite the differences between different disciplines, there is some
common ground in the definition of bidirectional transformations [45]. There are two
representations of the information: the source and the view. It comprises a pair of uni-
directional transformations: one that transforms the information from the source to
the view, also called a forward transformation, and the other that interprets changes
in the view to update the source, also called a backward transformation.

A few examples in diverse disciplines implement the concept of bidirectional pro-
gramming. A common example is some GUI builders with which users can create
an interface by dragging and dropping widgets. The corresponding instructions are
automatically generated and can be edited to update the interface in the GUI builder
window. In a seminal work, Victor demonstrated how to generate instructions by draw-
ing graphical elements with direct manipulation [220]. The generated instructions can
then be edited to update the graphical view. i-LaTeX [70] allows users to edit the con-
tent of a document from the view by adding a transitional view. For instance, users
can click on the generated PDF’s tables, mathematic definitions, or figures. The ap-
plication will display an intermediate view of the element, combining the LATEX code
and the output. The user can modify the content assisted by visual cues while the
application modifies the LATEX code and the output. Similarly, Mage implements direct
manipulation interactions in the output view of Python notebooks, allowing edits that
the system reflects coherently in the code editor [107].

Some approaches provide a visual representation of code to facilitate understanding
and allow users to manipulate both textual and visual code. Hempel and Chug [77]
developed Maniposynth, which creates a visual representation of the code. This allows
users to employ direct manipulation interaction while maintaining coherence between
the code and the visual representation. Similarly, 3code [83] enables users to create
mathematical procedures in code, displaying the same procedures with blocks in a vi-
sual programming paradigm. Users can edit either representation, and changes in one
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representation are automatically updated in the other. These approaches exemplify the
advantages of using code to execute complex instructions while allowing interaction
in the view, where some tasks can be easier to perform.

Bidirectional programming is further exemplified by Sketch-N-Sketch [40, 78], a con-
tent creation tool for Scalable Vector Graphics (SVG) images (Figure 12). The system
presents a programming interface with a 2D view that can be edited through direct
manipulation while the system synchronizes both. Sketch-N-Sketch allows users to
create basic shapes, such as rectangles or circles, directly in the 2D view. Furthermore,
the program places control points around the shape to control characteristics (i.e. , po-
sition, size, color) by clicking on them. When a shape is created, the system inserts the
code statement that creates the shape, including the arguments related to its charac-
teristics. By performing direct manipulation, the user can update these arguments in
the code from the view. Moreover, the user can link different control points to create
constraints between the figures, such as keeping the size of two shapes equal. As a re-
sult, a variable is created in the instructions that are used by the different shapes and
manipulated by the control points in the view. When the user edits a characteristic
controlled by multiple variable constraints, Sketch-N-Sketch uses resolution heuristics
to define the best way to update the code, and the changes are propagated to other
shapes using the same variables. Twoville [103] adopts a similar approach; it is an SVG

application where users can define scenes programmatically, adding control points
that are editable from the view with drag-and-drop interactions while the applications
update the code coherently. These examples solve specific limitations for SVG. How-
ever, 3D CAD design follows different requirements, with different data structures and
different challenges.

In the context of 3D CAD software, CadQuery is a programming-based Python
module for building parametric 3D CAD models [35] based on Boundary Representa-
tion (BREP). CadQuery allows users to navigate and filter geometries from the model
in the code by using queries to modify them. For instance, a user can select specific
faces of a cube to apply a fillet (rounding) to the edges with the code described in the
listing 1.

1 # Create a solid cube

2 solid_cube = cq.Workplane("XY").box(10, 10, 10)

3 # Apply a fillet to the edges of the solid cube

4 filleted_cube = solid_cube.edges("|Z").fillet(2)

Listing 1: CadQuery Example

Users need to define correctly the query to select the elements they want to modify.
The application does not assist in constructing the query, which can be challenging.
Mathur et al. [138] facilitates the creation of query for CadQuery in FreeCAD [210].
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Figure 12: SVG - Bidirectional Programming example. Sketch-N-Sketch [78] creates and edits
the output through direct manipulation and scripting. Every change in the script
modifies the output and vice versa.

The users can select the element of interest directly on the view by clicking on it while
the application synthesizes the query statement and places it into the clipboard so the
user can re-use it to modify the part.

Blender is a 3D modeling application providing tools to create geometries with a
BREP representation. Users can manipulate models by modifying faces, vertices, or
points. Cascaval et al. [37] develop an addon for Blender [62] where users can create a
design based on a coded description in Python. The add-on enables users to modify
the position of elements in the view with direct manipulation interactions while the
system synthesizes the corresponding changes in the code to keep coherence.

Antimony [106] is a bidirectionnal visual programming CAD application. Users can
describe the model programmatically as in visual programming CAD. Antimony pro-
vides blocks that represent primitives and operations, and the user can connect inputs
and outputs with direct manipulation interactions. Once the visual representation is
rendered, users are provided with control points representing the blocks’ inputs. Users
can move these points with drag-and-drop interaction while the system updates the
block definitions coherently.

Previous work on bidirectionnal programming for CAD applications [37, 106, 138]
addresses specific problems in each domain. We draw inspiration from this work to
address other challenges present in programming-based CAD.



26 state of the art

Figure 13: Antimony is a bidirectionnal visual programming. Users can describe models by
visual programming and edit the model in the view while the system updates vari-
able values coherently

2.1.2 Construction Mode

Design applications employ different construction modes based on two key characteris-
tics: whether the model is parametric or non-parametric and whether the model main-
tains a history of design steps (history-based) or not (non-history-based). While there
are theoretically four possible combinations of these characteristics, in practice, two
main types of CAD applications are prevalent [233]: history-based parametric model-
ing, commonly known as parametric modeling, and non-history-based non-parametric
modeling, typically referred to as direct modeling.

2.1.2.1 Parametric Modeling

Parametric modeling, referred to as feature-based or history-based modeling [8, 109],
relies on parameters to define and control a model’s geometric features and relation-
ships. The design is created by specifying parameters and rules governing their inter-
actions, facilitating easy modifications by adjusting parameter values. Programming-
based CAD applications are naturally parametric due to their coding nature involving a
history of construction embedded in the code with a re-executable set of steps defined
by parameters. For instance, in OpenSCAD, users define parameters at the outset of
the code editor. The application places a control element in a dedicated panel, allowing
users to re-generate models by modifying parameters without directly editing the code
(Figure 14a). Direct manipulation applications embracing a parametric approach en-
able users to define constraints and operations stored as features, visible to the user in
a history tree. Users can revisit steps or features, modify them, and re-execute the entire
history tree to re-generate the model. Moreover, modifiable parameters control these
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features, allowing users to verify and edit the parameter values and re-execute the his-
tory tree based on the new values to obtain solid model variants without modifying
the base model [233]. For instance, in FreeCAD [210], geometric properties are con-
trolled by creating sketches that define geometric properties referencing cells within a
spreadsheet. Users can alter the values of the spreadsheet cells, providing a means of
recreating different versions of the model (Figure 14b).

(a) OpenSCAD provides a Customizer panel (on the right) to modify the param-
eters defined in the code.

(b) In FreeCAD, users can define geometric properties referencing variable cells
of a spreadsheet (on the right) and re-execute the features in the history tree
(on the left).

Figure 14: Parametric CAD applications examples in programming-based and direct manipula-
tion paradigms.
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Direct manipulation CAD applications employing parametric modeling present a
challenge known as Topological Naming Problem (TNP) [64, 101]. During the process,
users can refer to specific parts in the model to apply operations or constraints to them.
These parts are created by the history tree and the parameter values defined before
compiling the model. The application assigns a name to these parts, which serves as a
reference for the user to perform operations on them. For instance, a user can refer to
an edge, named "edge_1", to perform an operation such as smoothing corners created
as a result of an intersection between two parts. The problem arises when the user
makes changes in the history tree, such as changing operations or parameter values,
resulting in changes to the names of different parts. In our previous example, certain
changes may cause the application to name the target edge "edge_2", or even render
the target part non-existent if the parts no longer intersect. However, the operation of
smoothing corners on "edge_1" still exists in the history tree, creating inconsistency
and yielding undesired results or even compilation problems.

2.1.2.2 Direct modeling

Direct modeling allows users to edit the model without preserving the history of these
edits. Unlike parametric modeling, which captures a re-executable sequence of steps,
direct modeling only retains the model’s current state with no history tree. In other
words, users only have access to the last status of the model, and the system does
not store the executed steps in the past. Users can make changes without revisiting
previous steps, akin to sculpting clay. This approach offers flexibility by eliminat-
ing concerns about features and their interdependencies that impact when making
changes [29]. Tinkercad [7] serves as an example of a direct modeling application.

2.1.3 Data representation

There are several data representation types for 3D volumes, but two are mainly used
in CAD applications: Constructive Solid Geometry (CSG) and BREP [84].

2.1.3.1 Constructive Solid Geometry (CSG)

Constructive Solid Geometry (CSG) serves as a robust geometric modeling framework
extensively utilized in CAD and computer graphics. The modeling process in CSG ini-
tiates by incorporating primitives such as spheres, cylinders, cones, or cubes. These
primitives undergo spatial transformations, including translation, rotation, or scaling,
enabling modifications to their geometric properties. Additionally, primitives can be
combined using fundamental boolean operations such as union, difference, and inter-
section [169]. The resulting geometries can undergo further combinations using the
same operations. A binary tree representation is commonly employed for CSG mod-
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els, where leaves signify primitives, and intermediate nodes denote transformations
or operations, as illustrated in Figure 15.

Figure 15: CSG models can be represented in a binary tree where the leaves are primitives and
intermediate nodes are transformation and operations 4.

CSG allows the creation of very complex geometries, providing conciseness and
mathematical accuracy. Both the surface and the interior of an object are implicitly
defined. In other words, there is no description of specific geometric properties such
as points, edges, or positions but abstract descriptions of primitives and operations.
CSG objects are always watertight and manifold [205] if the primitives are [84]. There-
fore, CSG provides closed and well-formed geometries that are printable, making CSG

attractive for graphics [10] and 3D printing [68].
However, complex CSG models may incur longer rendering times, impacting perfor-

mance in CAD applications. Furthermore, the inherent lack of surface detail in CSG may
add limitations to creating specific shapes, such as curves. Figure 16b depicts how the
CSG representation is implemented in OpenSCAD.

2.1.3.2 Boundary Representation (BREP)

Boundary Representation (BREP) is widely used to represent 3D geometric models
in CAD applications. In BREP, a solid object is defined by describing its boundary or
surfaces. It represents the shape of an object by explicitly capturing its boundaries,
faces, edges, and vertices. BREP can be rendered efficiently on a graphic display sys-
tem, enabling easy differentiation between vertices, edges, and faces. This offers more
flexibility than CSG and allows for valuable operations in 3D printing, such as cham-

4 Image taken from https://en.wikipedia.org/wiki/Constructive_solid_geometry

https://en.wikipedia.org/wiki/Constructive_solid_geometry
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(a) FreeCAD is a parametric direct manipulation
software using B-rep. (1) Users can check the
history tree to revisit their steps. (2) They can
also interact in the view, individualizing ver-
tices, edges, or faces. (3) FreeCad provides a
Python console in which users can execute spe-
cific actions through code.

(b) OpenSCAD is parametric programming-based
CAD application using CSG. (1) Users can
describe the models through primitives
(e.g. sphere), transformations (e.g. translate),
and boolean operations (e.g. union) in a text
editor. (2) The system compiles and renders
the result in a 3D viewer.

Figure 16: Comparisson between a parametric BREP-based and a parametric CSG-based CAD

application

fering, blending, or drafting [68, 84]. FreeCAD [210] uses BREP as shown in Figure
16a.

2.1.4 OpenSCAD

The main focus of this dissertation is to understand the challenges of programming-
based CAD users and facilitate the design process in these applications. We have de-
cided to focus the efforts only on OpenSCAD users to conduct the investigation for
two main reasons. The first one is that although most programming-based CAD appli-
cations share similar characteristics such as a similar layout, a similar pipeline, the use
of CSG representation, or limited interactive features, there are differences in aspects
such as programming language syntax, programming features, or performance that
can make experience comparison difficult if using multiple CAD applications users.
The second and most important is that OpenSCAD is the most popular programming-
based CAD application with no real competitor [148, 237].

OpenSCAD is an open-source parametric CSG programming-based CAD application.
Users can describe 3D models in its functional declarative programming language using
the text editor, and the system compiles and renders the scripts in a viewer. Although
OpenSCAD has applications in various domains [196], it mainly provides 3D printing-
oriented features. For instance, OpenSCAD preferences menu offers features such as
connecting with OctoPrint [90], a web interface to control consumer 3D printers or
export models into the standard STL format for 3D printing [43]. OpenSCAD aims to
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give full control over the design by being purely programming-based. It is the most
popular of the programming-based CAD applications, which are mainly parametric
CSG applications such as IceSL [127], JSCad [159], BRL-CAD [38], ImplicitCAD [131],
or RapCAD [20].

OpenSCAD is not an interactive modeler and does not focus on the artistic aspects
of 3D modeling but on the CAD aspects [160]. In addition to CSG modeling techniques,
it allows the extrusion of 2D outlines. It also provides a preview mode that generates
approximations for rapid visualization and a render mode that generates exact geome-
tries using longer rendering times. In preview mode, OpenSCAD allows the user to
right-click on the models in the view to display a menu of the CSG elements that create
the clicked part. The user can click on a menu item while the system places the text
cursor in the line of code that creates the CSG element. Moreover, OpenSCAD language
includes modifiers5 for debugging. OpenSCAD modifiers are special characters placed
before code statements to alter the visual representation of the model. These modifiers
are beneficial for debugging by highlighting specific objects or modifying their render-
ing state, thus facilitating a clearer understanding of the code’s impact on the model’s
appearance.

2.2 digital personal fabrication and 3d printers

Digital Personal Fabrication is positioned within the Do-It-Yourself (DIY) movement
and is characterized as “any creation, modification, or repair of objects without the
aid of paid professionals” [116]. Gershenfeld [67] briefly defines it as the integration
of all necessary steps, including logic, design, sensing, or actuation, to produce objects
using digital tools like 3D printers, laser cutters, or CNC mills [13, 149].

3D printers construct geometric objects through the successive addition of mate-
rial in layers [91], employing various techniques and materials for this purpose [186].
Compared to other fabrication options like laser cutters or CNC machines, 3D printers
require minimal logistics and produce less waste and dust, making them the preferred
choice for makers [149]. This research exclusively focuses on personal digital fabri-
cation with 3D printers due to their potential affordability, ease of use, and installa-
tion [88, 149], heavily influenced by the use of programming-based CAD applications
[148, 237].

Figure 2 in Chapter 1 illustrates a simplified adaptation of the fabrication process
with 3D printers as described by Hudson et al. [88]. The process initiates in the ideation
stage with a need or an idea, where motivations range from self-expression to creativ-
ity, skill development, cost-effective production, or personalization of items [88, 116,
190]. Moving to the design stage, users acquire a digital design that aligns with their
idea and is in a format readable by the printer, such as STL format [43]. Design can
be performed from scratch using a CAD application. Alternatively, users often explore

5 https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Modifier_Characters Accessed: 10/01/2024

https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Modifier_Characters
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model repositories like Thingiverse [213] or MyMiniFactory [151] to download pre-
existing models. Subsequently, users may either directly print the model or customize
it to their specifications before printing in a CAD application. Then, the print stage in-
volves correctly configuring the printer and fabricating the object with the design files.
The validation stage follows, where users assess the result, iterating through previous
stages if modifications are necessary until achieving a satisfactory outcome.

This research specifically delves into the challenges users face in the design stage,
particularly when employing programming-based CAD applications. The literature re-
view explores the difficulties encountered by users in the practice of digital personal
fabrication with 3D printing, focusing on the design stage.

2.2.1 Designing from scratch

Makers can create digital designs from scratch using a CAD application. Designing a
model for 3D printing encompasses more than just interacting with a computer. In
instances where the object to be fabricated is intended for repairing [88] or enhancing
other objects (referred to as Augmented Fabrication), makers often need to take physical
measurements of objects and translate this information into the digital design [13].
When problems are identified during the physical inspection of printed objects, makers
must revisit the design stage to address the edits necessary for resolving these issues.

Previous research has delved into the challenges and solutions associated with de-
signing for personal fabrication, considering both direct manipulation and programming-
based CAD applications.

2.2.1.1 Modeling with direct manipulation CAD

In 3D printing CAD, Hudson et al. [88] studied novices interacting with TinkerCAD and
reported that manipulating elements in a 3D space through a 2D screen can confuse
and lead to errors that are known problems in other digital applications [59]. Similar
difficulties related to spatial thinking skills have also been reported in children using
TinkerCAD [22]. Specifically, problems related to understanding the 3D perspective,
understanding rotation in a 3D space, using the correct primitive shapes, and grouping
primitive shapes. Programming-based CAD applications can present similar problems
by having a 3D viewer rendering the output.

An everyday use of 3D printing is to repair [88] or to augment objects [13]. In such
cases, measurements of physical objects, their transfer, and their meaningful use in the
design are necessary. Mahapatra et al. [136] study how self-identified novice users cap-
ture physical measurements, transfer them to digital design, and verify their accuracy.
The study carried out on TinkerCAD reported several obstacles when novices create a
digital replica of an object, classified into three groups according to the moment they
occur: 1) Physical when capturing the data, 2) Digital when using the data in the digi-
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tal design, and 3) Transition when transferring (from physical to digital) or evaluating
(from digital to physical) the data. Although physical obstacles are independent of the
modeling CAD, digital and transition may differ when using a programming-based
CAD applications. Probably some challenges may persist (e.g. "3D camera causes confu-
sion"), others may occur differently (e.g. "Relative placement problems"), and others may
not make sense in programming-based CAD (e.g. "Miscalculating by hand"). We take
inspiration from this work to explore what problems programming-based CAD users
face when measuring, transferring, and using data in the design process.

2.2.1.2 Modeling with programming-based CAD

Significant efforts have been made to understand the difficulties in learning program-
ming languages [111, 171]. Expectedly, programming-based CAD users may present
similar challenges, such as difficulties in structuring and breaking down the problem
into smaller problems, difficulty finding the features the programs offer, or documen-
tation problems.

Yeh and Kim [229] report problems with programming-based CAD and direct ma-
nipulation software offering scripting features for 3D design. These problems include
difficulties reading code, re-using code, aligning objects, selecting parts, refactoring
code, and 3D printing. Unfortunately, these undetailed findings were obtained from
undocumented feedback from novice students with OpenSCAD and online forums
such as StackOverflow. We aim to cover a broader scope of the 3D design, 3D printing,
and re-using pre-existing models experience with OpenSCAD.

2.2.2 Sharing and re-using models.

Sharing is a keystone in the 3D printing community [116]. Multiple model-storing web-
sites allow authors to upload models to share with other users, such as Thingiverse
[213], MyMiniFactory [151] or Printables [235]. Some of them allow authors to upload
coded parametric models that expose widgets so other users can modify parameter
values for the system to create a customized version of the models [1, 187, 212]. Thin-
giverse, with its Customizer application [212] is an example of these solutions that
store OpenSCAD models. Oehlberg et al. [158] reported how, after a year of the release
of Customizer, about 40% of the Thingiverse models were created from parametric
models. These findings depict how some users re-use models to remix them by chang-
ing parameters.

Alcock et al. [6] highlight several challenges faced by makers using applications such
as Thingiverse, including difficulties in understanding model functionality, limited
customization capabilities, issues with recognizing printability limitations of designs,
and obstacles in understanding the creation process. Notably, this research does not
concentrate on the experiences of programming-based model authors or examine how
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programming-based users might reuse these models. We aim to understand the role
of model-storing websites in programming-based CAD design.

In summary, programming-based CAD applications are crucial in the 3D printing
community. They offer distinct advantages over direct manipulation applications, fos-
tering a unique design thinking process that could attract a diverse user base. A sig-
nificant benefit of programming-based CAD applications lies in their ability to support
web applications, enabling users to upload and customize parametric models easily.
Despite these strengths, the utilization of programming-based CAD applications re-
mains limited, with only modest efforts directed toward understanding and resolving
the challenges faced by their users. This thesis aims to thoroughly understand the user
experience with programming-based CAD applications and propose practical solutions
to some of the identified challenges.



3
U N D E R S TA N D I N G P R O G R A M M I N G - B A S E D C A D A P P L I C AT I O N S
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Note: The content of this chapter is the basis of a manuscript

that has been accepted for publication in the proceedings of

the 2024 CHI Conference on Human Factors in Computing

Systems, to be held in Hawaii, USA, in May 2024.

Previous research on user behavior in CAD applications for 3D printing has predomi-
nantly focused on investigating improvement opportunities for CAD almost exclusively
in direct manipulation tools [110, 112, 136, 217]. However, the findings from these stud-
ies are often not directly applicable to programming-based CAD. For instance, Maha-
patra et al. [136] investigated the barriers involved in measuring objects, transferring
these measurements to CAD applications, and digitally manipulating the data. They
identified difficulties classified as “Digital” that are specific to direct manipulation
tools, such as “3D camera causes manipulation errors”.

Furthermore, the literature related to programming-based CAD applications is lim-
ited. Previous research has explored the coding patterns on coded designs stored in
online makerspaces [41] and the potential in programming-based CAD for students to
learn programming through 3D design [105]. However, these studies address specific
task difficulties within a limited scope of the design experience for 3D printing.

A better understanding of the user experience with these applications, their advan-
tages, and the problems users face when 3D printing is still missing. In this study,
we aim to investigate the following research questions: What are the motivations and
challenges that users face when using programming-based CAD applications when de-
signing models for 3D printing in personal fabrication? We seek to understand the
current limitations of these applications and compare them with the challenges found
previously with direct manipulation applications. There is an interesting opportunity
for HCI to investigate the current challenges programming-based CAD applications
users face to facilitate the design process and possibly ease the entry barriers for new-
comers.

This project investigates how users of programming-based CAD applications expe-
rience the design and fabrication process. We conducted semi-structured interviews
with twenty users of the most popular programming-based CAD application in 3D
printing for personal fabrication, OpenSCAD [135, 148, 154, 237]. We asked partici-
pants about their design experiences with programming-based and direct manipula-
tion CAD applications and their comparisons in the design and printing process. Addi-
tionally, we draw on previous work to explore their motivations and contrast barriers

35
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found in 3D printing with direct manipulation tools. Specifically, we included ques-
tions related to problems measuring physical objects to create digital designs [136]
and limitations working with pre-existing models from websites [6]. We also included
a short hands-on exercise to observe design workflows and difficulties [229]. Based on
the findings from the interviews, we provide a comprehensive analysis of the prefer-
ences of programming-based CAD users, current challenges in the design and printing
process, and desired features expressed by the participants to improve these tools.

Our findings suggest that OpenSCAD users, often with a long programming ex-
perience and a programming-oriented mindset, face significant difficulties measuring
and designing organic and curve shapes, mentally connecting the code with the view,
performing spatial transformation due to the required mathematical skills, and ad-
dressing uncertainty when 3D printing.

3.1 method

We conducted twenty semi-structured interviews to understand the motivations and
challenges of OpenSCAD users empirically. The interview was divided into three parts.
First, we asked participants for demographic information. Also, we asked them to self-
rate their skill level on a scale from one (novice) to five (expert) on direct manipulation
CAD applications, programming-based CAD applications, and general programming
languages outside CAD. Similarly, we asked participants to self-rate their skill level in
OpenSCAD on the same scale. The responses are reported in Table 1.

In the second part, we asked participants open questions about their experience
in 3D printing and 3D modeling. Specifically, we were interested in understanding
the motivations of makers in using OpenSCAD for 3D design, the challenges and
limitations they face using OpenSCAD for 3D printing, their perception of direct ma-
nipulation programs compared to OpenSCAD, and ideas to improve OpenSCAD that
might apply to other programming-based CAD applications. Furthermore, we draw
on previous work on understanding the complexity and challenges of 3D modeling
in direct manipulation applications to contrast these findings with the experience of
OpenSCAD users. Concretely, we have included questions related to difficulties mea-
suring physical objects and transferring data to digital designs [136], and sharing and
re-using models in model-storing websites [6, 229]. The full questionnaire is attached
in the Appendix A.

Finally, we wanted to understand the limitations of more specific actions when de-
signing in OpenSCAD. We decided it would be easier to study participants’ behavior
in a real scenario while we observe them instead of only asking them to describe how
they use the software, which could lead to easily missing specific actions or strategies
they use. Thus, we asked the participants to perform a short hands-on exercise in the
third part to observe their behavior while performing tasks. Based on the findings of
previous work, we report problems in programming-based CAD related to selecting
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specific parts to apply operations, including challenges in reading, navigating, and
refactoring code [229]. If possible, we asked the participants to bring one of their own
OpenSCAD models to the interview. P2 did not provide a model, so he used the ex-
ample candleStand.scad provided by OpenSCAD.

The participants explained the motivation behind the model and went through their
code, discussing difficulties and how they modeled their object. We asked them to
perform search tasks replicating the need to select a part to modify it or apply an
operation. We pointed at specific parts in the 3D view and asked the participant to
locate the lines of code that created them. We asked participants to think aloud while
we carefully observed the process, recurrent behaviors, and strategies. We paid special
attention to the software features they used, the typical patterns they followed to per-
form the tasks, and the errors they made. Last, we discussed ideas they could have to
improve their experiences in OpenSCAD.

The interviews lasted approximately 60 minutes on average. We took notes of their
answers and the observed behaviors during the hands-on exercise. The experiment
protocol was examined and approved by the ethics board in our laboratory.

3.1.1 Recruitment and Participants

We relied on the common use of 3D modeling in research and the active sharing nature
of programming and maker communities on social media. We recruited participants
from research laboratories and OpenSCAD channels on Reddit (r/openscad) and Face-
book (OpenSCADAcademy) to conduct the semi-structured interview using video con-
ferencing or in person. The only requirement was having enough experience with
OpenSCAD to read and write code, but we also expressed that having 3D printing
experience would be an asset.

We report our participant demographics and experience in Table 1. All the partic-
ipants self-identified as male and varied in age: one was between 20 and 29, four
were between 30 and 39, seven were between 40 and 49, four were between 50 and
59, and four were between 60 and 69 (average: 48.0, standard deviation: 11.7). All par-
ticipants, except P8, had three or more years of 3D printing experience (average: 7.9y,
standard deviation: 3.8). Except for P13 and P18, all participants self-rated with four
or more in at least two programming languages. Moreover, all participants, except
P20 mentioned having experience with direct manipulation CAD applications. Only
five participants self-rated their direct manipulation CAD application skills with four
or more. Regarding experience with other programming-based CAD applications or
applications that allow scripting, only six participants expressed having any, and only
P2 and P12 self-rated their skill level above 3 in one of those applications. Finally, par-
ticipants self-rated their skill level with OpenSCAD as follows: One participant with
1, one participant with 2, six participants with 3, eight participants with 4, and four
participants with 5.
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Table 1: Demographics and self-rated skill level in CAD programs and programming lan-
guages.
Participants self-rated their skill level on the scale: 1 (Novice), 2 (Advanced Beginner),
3 (Competent), 4 (Proficient), 5 (Expert). The level reported in the category Others is
the highest rank expressed by the participant among the options.
*Direct manipulation CAD others: LibreCAD, Sketch Up, AutoCAD, Curve3D, On-
Shape, Catia, SolidWorks.
**Programming Language Others: Prolog, MaxMSP, PureData, Ruby, GoLink, MatLab,
Cobol, Pearl, Pascal, Groovy, TypeScript.
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P1 50 - 59 10 3 1 1 1 4 4 4 4 4 4

P2 40 - 49 6 1 3 5 2 5 3 4 3

P3 20 - 29 7 4 2 4 1 4 4 5

P4 30 - 39 5 3 3 3 4 4 4 4 4 4

P5 40 - 49 6 4 4 4 4 4 3

P6 40 - 49 15 4 2 4 2 4 3

P7 30 - 39 8 4 3 3 3 4 4 4

P8 40 - 49 1.5 3 2 4 4 5 5

P9 30 - 39 14 3 4 3 4 3 4 5 3 3

P10 60 - 69 8 5 2 1 5 5 5

P11 40 - 49 7 4 1 1 5 5 5

P12 50 - 59 13 4 1 1 1 4 4 4 4

P13 60 - 69 5 3 1 2 1 1 1

P14 60 - 69 4 5 1 3 5 2 4 4 3

P15 40 - 49 8 3 1 1 1 4 4 4

P16 50 - 59 6 4 1 4 4 4 4

P17 30 - 39 15 5 4 4 4 2 2 4 4

P18 60 - 69 8 2 1 1 1

P19 40 - 49 3 4 1 1 5 5 3

P20 50 - 59 9 5 1 4 4 5
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3.1.2 Data Analysis

We followed a Reflexive Thematic Analysis (RTA) [25, 33] approach in an iterative
coding process. Our study aims to understand the user experience when using Open-
SCAD, and part of the data collected included behavioral observations from the hands-
on experience. Thus, we opted for a data analysis approach suitable for these stud-
ies [26, 33] that allows flexible participation of the researcher’s interpretations rather
than other qualitative analysis approaches such as code reliability or ground theory
[24, 197].

We imported the interview data into the MaxQDA data analysis software [69]. One
of the researchers performed an inductive analysis to develop a set of codes by coding
the first ten interviews. Then, the coder started grouping codes by recognizing recur-
ring patterns and identifying codes describing a central concept to create subthemes
and themes [27]. To achieve a richer interpretation of the coding process [26], a second
researcher performed a deductive thematic analysis on a randomly selected interview.
The second coder used the codes created by the first coder in this interview and could
create new codes when necessary. Then, both coders discussed the disagreements and
refined the codes by removing, merging, changing, or adding new codes. After re-
organizing codes, subthemes, and themes, the first ten interviews were re-coded with
the resulting set of codes. In the second iteration, the first coder continued the induc-
tive analysis with the next five interviews, followed by the deductive coding from the
second coder, discussions on the codes, refinement of the codebook, and re-coding of
the interviews. A third iteration was performed to complete the coding of the total of
interviews.

Although RTA does not seek reliability coding [25], we were interested in tracking
the level of agreement between coders. We calculated Cohen’s kappa index in every
iteration to verify inter-coder reliability [141]. At the end of the coding of all inter-
views, we achieved a substantial [119] agreement: iteration 1 (κ = 0.543), iteration 2

(κ = 0.592), iteration 3 (κ = 0.617). Most of the codes were created in the first fourteen
interviews, achieving a potential code saturation. However, it was not until the seven-
teenth interview that codes, themes, and subthemes found in the codebook did not
have substantial changes, and their meaning was well established, achieving meaning
saturation [79].

3.2 themes

We created 266 individual codes to code a total of 783 segments of our notes. We
grouped codes into subthemes and then into three main themes. Programming-based
CAD user profile theme groups 22 codes (59 segments coded) and 9 subthemes as de-
picted in Table 2. Table 3 depicts the theme Design that covers 193 codes (632 seg-
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ments coded) and 80 subthemes. Finally, Printing theme includes 51 codes (92 seg-
ments coded) and 20 subthemes (Table 4).

3.2.1 Programming-based CAD users profile

We start by discussing the design experience of the participants in OpenSCAD. Later,
we discuss why participants use a programming-based CAD and their opinions on
direct manipulation programs.

Table 2: Structure of theme Programming-based CAD user profile. Color intensity is proportional
to the number of interviews coded with codes of the theme and subthemes.

Theme Subtheme

Advantages 

(n = 10)Programming-based 

CAD users

(n = 18)

Experience with 

OpenSCAD (n = 13)

OpenSCAD is popular and open source (n = 4)

Programming features make design easier (n = 3)

Easy to describe complex shapes (n = 2)

Parameters allow a flexible definition of objects (n = 3)

Disadvantages (n = 7)

Programmer mindset (n = 13)

Direct manipulation mindset does not work for me (n = 6)

3.2.1.1 Experience with OpenSCAD
"I do not know any

other realistic
competitor against
OpenSCAD, I do

not hint there is
anything"

Participants (n = 10) mentioned the advantages of using OpenSCAD. The first is
related to the parametric capability of programming-based CAD. P17, for instance, dis-
cussed his work in a laboratory making prototypes “it was useful to have this program-
matic base to create arbitrary variations of similar things”. Participants found it helpful to
define complex geometries through mathematical definitions instead of storing high
volumes of data when having geometric information, as happens in direct modeling.
P2 worked with robotics and talked about his needs “I want compact shape descriptions
that generate highly complex geometries (. . . ) we don’t want to store all the geometry with tri-
angles”. Programming-based CAD also helps to generalize models better. For instance,
P2 mentioned that resizing a robotic articulated arm involves more than just geometric
scaling. The operation may require adding another articulated section, and describing
this behavior in direct manipulation is difficult. Moreover, programming features such
as abstraction allow participants to re-use work. Further, participants found it conve-
nient that OpenSCAD is open-source, runs on all major operating systems, and is the
most popular programming-based application, so it has community support. (P6 “ I
do not know any other realistic competitor against OpenSCAD, I do not hint there is any-
thing”). P12 mentioned “It’s also the most popular program. If you find a problem, someone
else already had it and you can just copy the code or see a different approach”.

However, some participants (n = 7) identified liabilities of using OpenSCAD. De-
spite the support community, they feel that the development of the application is slow.
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P4 mentioned trying to contribute to the project on GitHub and realizing that multi-
ple pull requests have been on hold for a long time without being integrated into the
application. Moreover, they found that the available features of the application are too
basic and the rendering time of complex models inconveniently long.

3.2.1.2 Programmer mindset
"Oh, hey, this is just
models and
software"

All participants except P18 (Table 1) had a programming background and found the
3D modeling programming-based paradigm convenient. P19 expressed “I discovered
OpenSCAD. I was like, "Oh, hey, this is just models and software" (. . . ) It was beneficial to
be able to develop parametric models in code, which was part of my skill set.”. Programmatic
interfaces are a good entry door to 3D printing for this population. For instance, P20

mentioned “I was learning the modeling (. . . ) When I saw the OpenSCAD code and I looked
at and then I said ’This is programming, this is source code, this is how I do things’ (. . . ) it
was a continuation of what I already did rather than learning something completely new.”.

Participants (n = 13) also mentioned that OpenSCAD also fits their mathematically
oriented mindset. Interestingly, P12 and P15 expressed that despite having a program-
mer mindset, one of their problems was their lack of math skills. P12 said “I’d like to
say I’m an expert in OpenSCAD (. . . ) The one thing that bugs me down is the math. I always
get stuck on that”.

3.2.1.3 Experience with direct manipulation programs
"I’m not a visual
guy, not really an
artist"

Six participants commented that the direct manipulation paradigm did not work with
their mindset. P11 and P15 said respectively “I’m not a visual guy, not really an artist. I
can imagine what I want to do and write it down without a preview” and “(direct manipula-
tion) seems to be complicated for me for some reason”.

Interestingly, some participants (n = 4) thought that they would inevitably need to
learn direct manipulation applications due to the perceived limitations of programming-
based ones. However, some of them have succeeded without learning a new applica-
tion. P5 commented “I’ve always said to myself, I’ll learn AutoCAD when I need it, and so
far I haven’t needed it.”

3.2.2 Design

We discussed several aspects of the design process and how it relates to the other
stages in the fabrication process.
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Participants discussed the difficulties they usually face when performing this task in
OpenSCAD and compared it with direct manipulation applications.

Table 3: Structure of theme Design. Color intensity is proportional to the number of interviews
coded with codes of the theme and subthemes.

Theme

I use non orthodox methods (n = 7)

I prefer not to deal with it (n = 4)

Challenges (n = 6)

Advantages (n = 3)

Disadvantages (n = 3)

Relate objects with something I know (n = 4)

Read and analyze the code (n = 13)

I remember what I coded (n = 12)

Limitations with parametric models (n = 4)

Search engines and availability (n = 6)

Licenses restrictions (n = 2)

It is difficult to edit meshes (n = 4)

STL files are usually broken non manifold (n = 11)

Code models are more flexible to re-use (n = 3)

Libraries (n = 2)

Available code quality, understanding other people's code (n = 5)

I adapt pre-existing code to my models (n = 4)

Subtheme

Reusing models or Design 

from scratch (n = 20)

My pipeline (n = 10)

I enjoy doing it, wanna do it better (n = 5)

My needs are too specific for pre-existing models (n = 6)

It is easier, faster, or better quality if I do it (n = 4)

Pre-existing models do not fulfill my needs (n = 16)

Model storing websites and its 

offer of models (n = 7)

Pre-existing models are time savers (n = 7)

Pre-existing models are for inspiration (n = 8)

Re-using meshes (n = 14)

Re-using code (n = 10)

Sharing models (n = 8)

Other challenges (n = 3)

Improvement opportunities 

(n = 17)

Spatial information extraction (n = 7)

OpenSCAD is convenient (n = 3)

Verifying (n = 8)

Parametric modeling

(n = 11)

Interactive editing (n = 8)

Interactive selection and navigation (n = 11)

Using modifiers (n = 15)

Changing colors (n = 3)

Removing objects temporarily (n = 10)

Trial and error (n = 9)

Challenges (n = 7)

Design from scratch 

(n = 12)

Reusing models

(n = 20)

Design 

(n = 20)

Working with existing 

objects (n = 13)

Linear measurements (n = 11)

Curves, round, and organic 

shapes (n = 11)

Making things fit (n = 5)

Manipulating the model 

(n = 16)

In direct manipulation programs (n = 2)

In programming-based CAD (n = 15)

Programming-based specifics 

(n = 20)

Working with several files/parts (n = 9)

Code practices (n = 14)

Challenges (n = 7)

Code editor (n = 6)

Reading the code to understand 

(n = 18)

Creating organic and curved 

shapes (n = 10)

In programming-baed CAD (n = 9)

In direct manipulation programs (n = 2)

Screen problems (n = 2)

CSG (n = 7)
Not possible to individualize points or faces (n = 3)

Subtracted parts (n = 6)

Physical Measuring

(n = 12)

Spatial actions 

(n = 15)

In programming based 

CAD (n = 9)

Dealing with code 

(n = 18)

Code-view navigation, 

selecting parts and 

understanding 

(n = 20)

Versioning and collaborative work (n = 3)

Repetitive actions (n = 4)

Text Search feature (n = 5)

Errors (n = 4)

Other challenges (n = 8)

Guessing from the view (n = 1)

OpenSCAD search (n = 4)

In programming-based CAD (n = 9)

In direct manipulation programs 

(n = 6)

Achieving digital precision 

(n = 9)

In direct manipulation (n = 2)
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3.2.2.1 Working with existing objects

Often, makers fabricate objects that will interact with other objects, such as in the case
of repairing or augmenting an object. Participants shared their experiences in such
cases.

linear measuring The preferred measurement tool for linear measurements is
the digital caliper. However, two participants stated that the task of measuring in-
creases uncertainty and leads to more iterations. P8 mentioned “If I was better at taking
measurements, I would go through fewer iterations, and my first print would probably be closer
to what I want” and P20 “I would say the difficulty of measuring on my part. I am not good
at working with my hands”. Moreover, calipers have size limitations, according to two
participants. P14 commented “calipers don’t go big enough to measure a lot of this stuff ”
and P17 “There are cases where the thing that you’re trying to measure is too big for calipers”.

measuring organic shapes and curves . Measuring organic or curved shapes
is complex (n = 11). For instance, P12 and P15 commented on their work repairing
pieces that “the rounded organic hardware, if you need to make it fit, it can be a pain.” and
“it’s rectangular and then there’s a curve, and that part I had to print like 15 times to get that
right.”. To deal with it, seven participants reported using creative solutions. For exam-
ple, P12, P14, and P20 have used cameras or scanners to get the outline of a shape and
use it later in the design by transforming it into an SVG or by measuring the outline
and approximating the curves. P14 commented “I photocopied the object, I put it down ". . . the rounded

organic hardware, if
you need to make it
fit, it can be a pain"

on a photocopier, so I could get a picture of the rim of the profile, from which I could make
measurements of it. Then I had to run an optimization program in a spreadsheet to figure out
how everything fits together, how all the curves match, and what angles join each other. . . ”.
P14 also reported using photogrammetry with no good results. “I tried photogrammetry
to make a 3D model of this; it just doesn’t work if you have shiny or transparent surfaces. I
got a nice model but also sort of a cloud of nondescript points because of all the reflections
on the surface”. Other participants have tried to measure some points to interpolate by
guessing in a trial-and-error strategy. P4 mentioned “I guess there I would do some mea-
surements, and then there will be some guesswork and trial and error”. P12 mentioned using
a contour gauge to approximate curves and P14 said that at some point, he would
hold the physical object in front of the screen to validate the result “I would hold up the
vacuum cleaner in front of the screen to see how well it matched.”.

Some participants (n = 4) prefer to avoid organic shapes and curves. P20 com-
mented that “I try to avoid them (curves and organic shapes) in my designs. If I’m just
talking about rounding corners, I pick up a set of radius measurement tools so I can get the
correct size of rounded edges. Beyond that, it’s trial and error.”
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using digital replicas . It is easy to miss context elements when fabricating
objects interacting with other things (n = 5). Makers cannot imagine every aspect of"I’d like to have a

model of that object
in my CAD software

so that I can build
around it or in it"

the physical objects in the 3D view to see if the design will satisfy their needs. P9

explained “this piece is a cover for an emergency button that you need to screw in manually.
I did not think about it in my first iteration, so I could not access the screw hole and had to
repeat it, adding a small hole”. Some participants create a digital representation of the
physical object to have a reference to work with, making them more confident about
the design decisions. For instance, P11 used an STL model in a project for his phone:
“I’ve used a model of my phone for that. I just use an STL of the phone and design around it”.
P14 mentioned the convenience of having digital replicas for his projects “if I’m making
something to fit another object that already exists that (. . . ) I’d like to have a model of that
object in my CAD software so that I can build around it or in it”

3.2.2.2 Spatial transformations

The keystone modeling action is manipulating objects’ position, orientation, and size.
Participants discussed the difficulties they usually face when performing this task in
OpenSCAD and compared it with direct manipulation applications.

Some participants (n = 2) acknowledge how easy this task is in direct manipulation
applications. P2 and P19 commented “You have immediate feedback of the shape with direct
manipulation. It’s extremely easy when you want to move things in the 3D space.” and “With
Fusion360 or TinkerCAD (it is handy) to make a cylinder of the right dimension in the right
place, basically drag and drop and get it where it belongs”. On the contrary, the same task
in programming-based CAD is reported to be very difficult (n = 15). Trying to place
an element in the right place can be challenging, as commented by P7 “Most times, my
difficulty is not drawing but where it should be drawing. Like I aim to draw a sphere here and
OpenSCAD put it over there, and I am like "why?"”.

It seems to be challenging to relate the transformation parameters of a code state-
ment with the spatial coordinates in the view without visual cues. For instance, if a
translation is applied with 10 units in the second parameter on a sphere, it is not easy
to predict the direction the sphere will move in the view. The camera view can be in
a position and orientation that may make it hard to understand where the axes are
located and there is not enough visual help for the user. OpenSCAD view has a wid-
get representing the canonical x, y, and z axes directions. However, users often need
to locate coordinate systems different from canonical ones. The position and orienta-
tion of objects are typically the result of multiple nested spatial transformations. Each
transformation has a scope where the relative coordinates system does not match with
the canonical one, so the widgets are useless. P7 and P15 said “Let’s say you have a
geometry and you need to have features that have a certain offset, and you create the translate
for these offsets but these translations then build above each other and then you are like wait,
what one I am changing now?” and “if you are creating some volume (. . . ) it is difficult to
predict, with all the operation, where they land and what precise coordinates would be”
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Participants also found dealing with translations and rotations of the same object
challenging. These spatial transformations are not commutative. In other words, ap-
plying a translate after a rotate would not give the same result if the commands
are executed in the opposite order. P19 commented “you need to think about how you
want to translate and rotate it before you can even get it to where you want. (Otherwise) You
might find that you get your translation operations out of order, and all of a sudden, you’re
in the wrong place. One of the most challenging parts of working with OpenSCAD is under-
standing translations and rotations”. To deal with this, participants use a trial-and-error
technique. P6 mentioned “If you would ask me right now, to rotate this in a certain direc-
tion, I would not, without testing, be able to tell you if it is -90, 0, 90, or what combination
of the three parameters I need to get it in the direction I want”. P9 commented on having
a specific order for transformations: “I rotate first and translate later. It is easier because
when I translate before rotation, sometimes the rotation center is not the same as the object’s
center.” The participants proposed another strategy implementing position and orien-
tation checkpoints. They correctly generated the transformation required for placing
objects where they belong. The elements were then designed in the canonical coordi-
nate system, and after completion, the participants applied the previously calculated
transformation. P17 commented “I remember doing like a checkpoint where I start. I make
sure that everything starts from this origin point. Then, when you add in multiple modules,
make sure that they’re centered around so you don’t have to keep track of all the different sys-
tems.”. Similarly, P16 commented that he created modules solely to place elements in a
location and orientation of interest. Some participants mentioned avoiding having sev-
eral layers of transformations because it becomes unmanageable. P3 commented about
a model they shared with us “my approach is to avoid it (multiple nested transformations).
This volume is at the base of most parts in this model, and it has this particular translation
that is my X-Y plane for all of time. And I don’t ever want to change it, so everything can be
referenced with respect to this plane.” ". . . I have to

painfully
mathematically
calculate where that
plane is in space, its
slope . . . "

In addition, it was deemed challenging to calculate the appropriate parameter values
for the spatial transformations. As objects’ position and orientation are built upon
multiple transformations and involve the sizes of other objects, the coordinates system
changes constantly, and participants must mathematically derive parameters’ values
of spatial transformations. Depending on the previous spatial transformations, the
relative coordinate system varies. P14 commented “. . . I have to painfully mathematically
calculate where that plane is in space, its slope, and where its normal vector is, and then
get the surface on there. . . ”. Interestingly, some of the self-considered knowledgeable
participants found themselves lacking math skills. For instance, P12 said “I’d like to say
I’m an expert because I can pretty much try everything in the language. The one thing that
bugs me down is the math. I always get stuck on that.”.
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3.2.2.3 Parametric modeling

The creation and use of parametric models were reported as valuable for the par-
ticipants (n = 11). For instance, P14 stated that direct modeling is not enough for
serious developments “TinkerCAD is easy and fun, but not useful for parametric modeling
or anything serious.”. Further, they value the possibility of revisiting their steps. P7 said
“because everything is written down . . . if I pick up something one year later, I’ll remember ex-
actly what I did.”. Moreover, they made clear differences between creating a parametric
model in direct manipulation software and OpenSCAD.

Six participants shared their thoughts about creating parametric models through
constraints in direct manipulation applications such as FreeCAD and Fusion360. The
ability to select objects of interest directly from the view is perceived as practical, as
mentioned by P14 “you can grab a vertex and snap it to some other location and not have to
worry about numbers and measurements so much, but you can make things fit just by moving
things around and snapping things to grid points or to other vertices, I find that’s very nice.”.
However, the constraints management in such programs was perceived as difficult."It is not evident to

keep track of the
constraints,

especially in
FreeCAD where you

have many panels
. . . "

Participants found tracking constraints challenging because they are represented as
a list in a panel different from the view as P9 said “It is not evident to keep track of
the constraints, especially in FreeCAD where you have many panels, well as many other CAD

programs I guess.”. In consequence, it is easy to get into a model with several constraints
that are hard to edit or that end up being overconstrained. P9 commented “I try to
avoid using constraints normally because when I’ve tried, I’ve ended up stuck, I have too many
constraints and keep receiving the "Overconstrained" error message, and it is not easy to fix it
for me. I do not know how to know which constraint is the problem”.

Moreover, P13 mentioned not trusting parametric modeling in direct manipula-
tion CAD applications due to the Topological Naming Problem (TNP) (section 2.1.2.1):
“. . . from a practical standpoint, you really can’t go back and change anything. You can change
parameters, but you can’t change anything in connection. If you change a parameter that causes
a connection to break, you lose it. And I’m constantly going back and changing things. To me,
that’s the power of CAD. That’s actually why I use OpenSCAD, because you can go back and
rearrange your whole model, change your whole concept, and it doesn’t break.”

Some participants (n = 9) commented on the way of creating parametric models
by defining object properties through parameters and variables in OpenSCAD. All
agreed on the importance of generalizing model behaviors through the use of variables
and avoiding the definition of object properties with hard-coded numbers. P6 said
“. . . everything is based on making the outer frame as a combination of parameters, so the
parameters can change and then the model still works”. However, participants mentioned
that defining everything in terms of variables can be exhausting, so sometimes, they
use variables only when they anticipate that a certain property will need to change.
Moreover, working out the mathematical expressions for creating parametric models
is perceived as very challenging. P6 expressed “I sometimes have a harder time doing the
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math (to define object’s properties), using all the combinations of variables where they should
be”.

3.2.2.4 Achieving digital precision

One primary need of some participants (n = 9) when printing is to achieve precision.
They perceive that OpenSCAD allows them to achieve accuracy in easier ways by ex-
plicitly expressing the sizes and dimensions of every placed part. P1 commented “from
Blender I could not make things precise (. . . ) I use CAD programs for electronic devices, from
there I get measurements. In OpenSCAD, it is very easy to be precise with this. I only need to
make a box of this size or that size . . . ”. P12 acknowledges that some direct manipulation
programs allow one to express precise measures but it is not as clear and flexible.

Paradoxically, while users feel a sense of precision by being able to describe position
and sizes explicitly, eight participants complained about the lack of means to check
dimensions in the OpenSCAD view. P1 and P19 mentioned “the problem is that I can
not verify from the view the dimensions I am creating from the code.” and “I had a really
tough time taking measurements and showing measurements visually as part of the model.”
As mentioned, spatial transformation involves several nested operations and variables,
so verification is important. P14 said “I wrote all these formulas, but did the resulting piece "I wrote all these

formulas, but did the
resulting piece have
the correct size and
location?"

have the correct size and location?”. To deal with this, participants use echo operations
to print the expression results in a console (P4 “I could put some echos to verify those
formulas, but It would be much better measure on the screen.”) or visually inspect parts on
the view by emulating a ruler (P11 “. . . I put a cube of the right size next to it and just
visually inspect if they are the same height”)

3.2.2.5 Designing curves and organic shapes

Nine participants said that, in general, they feel that OpenSCAD is not a friendly appli-
cation for creating nonstructured curves and organic shapes that are difficult to define
using mathematical expressions. For instance, creating smooth corners was reported as
difficult and painfull. Participants commented: P4 “(in OpenSCAD) making rounded edges
is a pain”; P13 “It is just easier for the printer to 3D print something that’s rounded (. . . ) But
designing it, that is really super hard to do in OpenSCAD”. P16 “That (rounding edges) is
the most difficult part of OpenSCAD”. Even using prebuilt OpenSCAD functions for this
purpose is hard, such as Minkowski function. P16 and P1 mentioned “the most difficult
in OpenSCAD is figuring out how to do rounded edges and fillets and chamfers without using
Minkowski because it is too time-consuming to render” and “. . . making smooth corners is
possible, I use the Minkowski tool but the dimensions changes, it is inconvenient.”. However,
three participants said that when the shape or curve can be defined mathematically,
OpenSCAD is convenient for designing it. P10 discussed a project where he defined a
Bézier curve that changed parametrically. Although the mathematical expression was
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hard to create, it would work better to have a parametric design because the curve can
be expressed in code.

On the other hand, this task seems significantly easier in B-rep direct manipulation
programs. P6 mentioned “in Fusion360 if I want to have a squared box and I want to have a
nice rounded corner, I just can click on both faces and I have a nice rounded edge”. This differ-
ence in difficulty between programming-based and direct manipulation applications
in this seemingly simple task creates frustration for the participants. P4 expressed
“What makes it hard is that you can not point to a specific edge or corner and make it round. I
don’t like that”

3.2.2.6 Dealing with CSG

Some participants (n = 7) mentioned limitations inherent in the CSG representation.
First, four participants said it is hard to verify the result when using the difference

and intersect operations that remove volume. The removed parts are not visible, and
verifying the correctness of the operations seems problematic. P4 commented “When
you do a subtraction, it is hard to figure out if you are doing it right, if the subtracted piece is in
the right spot, and if it has the right shape”. One mechanism to deal with this difficulty is
using OpenSCAD modifiers (see section 2.1.4). However, modifiers require a trial-and-
error approach, which is still time-consuming. P16 expressed “(I use modifiers) with the
invisible things, the things I’m subtracting. I’d said it’s an easy way to figure it out, but it
always takes some time”. Second, three participants expressed frustration that they were". . . you cannot

point to a specific
edge or corner and

make it a round, for
instance, this is

hard"

unable to individualize points or faces from the volumes as it is possible with B-rep.
For instance, P4 mentioned it was hard not to be able to point a corner and round it
from the view “What makes (OpenSCAD) hard is that you cannot point to a specific edge or
corner and make it a round, for instance, this is hard”. A similar problem occurs when, for
instance, the model requires two cubes to touch in one face. By placing one box at the
end of the other, there is no guarantee that the objects are overlapping. CSG does not
represent faces or vertices information but abstract definitions. Hence, users can only
define two boxes with coincident faces by correctly defining their positions and sizes.
Thus, it seems to be common practice to add small offsets to ensure overlapping as
mentioned P13 “You can’t have coincident faces; they have to go past each other. Every time
you put one thing on top of another, you have to add those overlaps”.

3.2.2.7 Versioning and collaborative work

Few participants (n = 3) highly valued the flexibility of code to use repositories such
as GitHub for versioning and collaborative work. Although it is possible with direct
manipulation programs such as FreeCAD, it is not that convenient, as expressed by
P3 “I especially like how well OpenSCAD checks in the GitHub repository . . . this is a very
collaborative project, and you can check in Fusion360 in GitHub but it just does not work. The
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repository becomes huge very fast. But OpenSCAD is text-based, making it very well suited to
the collaborative environments we are already using for the source code.”

3.2.2.8 Specifics of programming-based CAD

We discussed with the participants the advantages and limitations of programming-
based CAD applications in general and specifically in OpenSCAD.

working with several files/parts It is normal to break down the model
into parts when having complex models. In addition to facilitating the design process,
it is an alternative when the part has to be printed in several parts. This scenario
presented some difficulties for the participants (n = 9). OpenSCAD does not have any
option to define parts in the design, so the participants can export parts individually.
One solution mentioned by the participants was to create the design and later apply
a difference and intersection with a cube. First, the participant would apply the
difference and remove half of the model to export it to an STL file for printing. Later,
the participant would use the same cube and apply an intersection, removing the
second half to export and print. Once both parts are printed, they will be assembled.
The result would not make parts easy to connect. Therefore, other participants used
some libraries to split the model into parts to better assemble them.

In other cases, applying difference and intersection is not enough when the
model is complex. Thus, participants create a file for each part. This allows them to
isolate each part and focus their efforts without being distracted by the other parts.
Nevertheless, the process of validating all the parts together is very difficult. For in-
stance, P5 shared with us a model of a GoPro camera gimbal with many parts that
form an articulated arm. He imported all the parts into the same project when he
wanted to verify how it would look together. However, when modeling individually,
all pieces are placed in the center. Thus, when importing all parts together, it is not
easy to place them in the correct position and orientation only to verify the result.

dealing with code Eighteen participants discussed issues and experiences man-
aging code in OpenSCAD. In general, participants try to keep good coding practices to
make their models easy to understand. They mentioned the importance of comment-
ing on code, avoiding very long modules, organizing the code, and using expressive
and telling names for variables and modules. However, they acknowledge that using
expressive names for all variables is impossible. Moreover, using the expressiveness of
the language is not always useful. For instance, P15 explained his model, which was
extensively documented in his mother tongue, Slovakian.

Some participants (n = 7) discussed the challenges they face when dealing with
code. According to them, problems include difficulties in easily finding parts in the
code, keeping track of variables on complex models, and refactoring code. Moreover,
we observed another challenge in the hands-on exercise. When participants were look-
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ing for a code statement of a particular part, they would analyze and perform tests
on the code that was not being evaluated. For example, elements created inside a con-
ditional structure that was not evaluated. OpenSCAD does not warn users about this
situation, and they realize this after spending some time analyzing the code.

Some participants (n = 6) stressed that OpenSCAD code editor is basic and lacks
more advanced code editor features, as commented by P6 “OpenSCAD really lacks rich-
ness in helpers how to write code, there is no autocompletion and that kind of stuff ”.

code-view navigation In programming-based CAD, the description of the model
(i.e. code editor) is separated from the model visualization (i.e. viewer). Thus, users
must constantly switch between the code where they edit the model and the view
where they validate the result of the modifications. As a result, navigating the model
and making edits can be difficult [229]. Some participants opted to use Visual Studio
Code (VS Code) [145] instead of using OpenSCAD code editor. They stated that VS
Code allows for the installation of OpenSCAD plugins that streamline the coding pro-
cess. The participants used VS Code to modify their code files and accessed a separate
window within OpenSCAD to review the output. We observed the behavior of the
participants in the hands-on exercise and discussed with them the challenges related
to these tasks.

We identified a three-step search pattern when looking for code statements that
create specific parts in the view. First, they would try to identify the block of code
where the target part could be defined. Then, they would study the code to confirm
the selected code statement logically. Finally, they would seek a visual confirmation in
the view.

Participants had five strategies for trying to locate the code statement based on the
view: rely on their memory, link the part to a variable and search the variable, guess
how the part should be created and look for the pattern, follow the comments, and
using OpenSCAD search feature (see section 2.1.4). As participants worked with their
own models, some participants (n = 12) tried to remember how the model was built
and relate it to their normal way of structuring the code. For instance, when P7 and P9

tried to find the code statement of a part, they said “I know how the hex array (main frame
of the model) is organized in the first play, so I would go here (scrolls the code until finding
the hex_array module), ok here it is” and “well I know I started by creating a big cube for
this”. The second strategy was to link the target part with the variables and use a text
search feature, as P17 commented “I would assume that it’s related to this variable” before
searching for the occurrences of the variable. This strategy did not work well when
the model repeatedly used the variable the participant picked to locate the target. The
large number of occurrences made it difficult to study all of them to decide which
code statement was correct. Moreover, OpenSCAD code editor features are basic and
do not provide visual cues to help developers understand the code (e.g. highlight calls
in the scroll bar of a selected variable or jump to the definition of a selected module



3.2 themes 51

by clicking on the module call). Participants who use VS Code could easily follow
the places in the code where a variable was used. In some occasions, participants
using VS Code made mistakes by editing the code of a file different from the file
OpenSCAD was rendering. They edited the code and did not see any change in the
view until they realized the problem after some time. The third strategy was to try to
think about how the selected part should have been created in the code and look for
that pattern in the text editor. For example, the target element for P6 and P2 was a
hole, so they started looking for a difference code statement. In the fourth strategy,
when the model was well documented, participants used comments to understand the
structure of the code and find the correct statement. Finally, participants could locate
the code statement with the OpenSCAD search feature. Only three participants knew
about these features and mentioned not using them normally. When seeking the code
statement, participants always read the code to understand it and confirm that it was
the target statement.

After the participants thought they had located the target code statement, they nor-
mally sought visual confirmation. The strategies used to confirm were removing the
code statements and verifying missing objects, changing the parameter values of the
code statement and verifying changes in the object’s properties, using a color oper-
ations to highlight the object, and using OpenSCAD modifiers as a debugging task.
We could identify some challenges when performing these strategies. Removing code
statements can break the syntax of the code. For example, when a translate state-
ment is written without opening and closing brackets, the transformation is applied
only to the next code statement. The system will report an error if the code statement
is temporarily removed and the next statement is not an object (e.g. variable definition).
Also, using color operation does not work if the object is already inside a color scope.
The system will override the statements, prioritizing the statement placed higher in
the tree of operations. Participants frequently use modifiers for visual inspection but
they often forget the correct syntax and characters to use. Moreover, modifiers do not
work when they are used on 2D elements or code statements that are not being used
(e.g. not evaluated conditional). In any case, all participants used a trial-and-error tech-
nique and required reading and understanding of the code. ". . . if I could point

at something in
OpenSCAD and say
and tell me where
this is, that would be
a huge help"

Some participants (n = 8) mentioned some challenges they identified after the
hands-on exercise. They acknowledge that reading and understanding the code is
difficult. It becomes more challenging in complex models with long scripts, highly de-
coupled with several module calls, and with several parameters. They also mentioned
that finding code based on the view is a repetitive, hard, and mentally demanding task.
P13 commented “if I could point at something in OpenSCAD and say and tell me where this
is, that would be a huge help. Especially if you have complex geometry, it’s super hard to figure
out just where you are.”.
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other programming-based cad challenges Eight participants mentioned
some difficulties they identified when designing with OpenSCAD. We observed that
participants are often surprised by the changes performed on the models because it
is not possible to confidently anticipate the result of the edit. programming-based ap-
plications do not provide a transition between two states of the code. Consequently,
understanding the impact of the changes made to the code is not always easy or obvi-
ous, as commented by P2 “One of the difficulties is that you don’t have immediate feedback
when you change something as a result of the screen; there are always delays.”. Other chal-
lenges were related to difficulties in managing text elements in the view, and confusion
with OpenSCAD units.

3.2.2.9 How to improve OpenSCAD

Some participants (n = 14) shared ideas about features that they considered would
help their modeling experience. One key idea was the capability to easily identify parts
of the code based on the view and vice versa. Participants thought that there could
be features to help with this task. In particular, they would like to have a visual cue
that helps them locate the code based on interactions with the view. P13 commented
“If I could point at something in OpenSCAD and tell me where this is (in the code editor), that
would be a huge help. Especially if you have complex geometry, it’s just super hard to figure
out just where you are.”. Participants also commented on how to facilitate the task of"(I would like) if I

could click on this
point (in the view)

and OpenSCAD
would automatically
create an expression
using the variables

to describe that
point"

applying spatial transformations. First, they mentioned the need to be able to measure
distances in the view. They also commented that it would be very convenient to be
able to extract spatial coordinates of objects directly from the view. P14 commented
that “There are cases where I want to know all those coordinates, but OpenSCAD doesn’t give
that to you. I would like it to tell me what the bounding boxes of my model are. It doesn’t have
to show me on the screen, but at least when I render it in the output area, it would tell me the
bounding box and the center of mass”. Moreover, seven participants indicated that they
would like the system to assist them in retrieving the spatial coordinates in terms of
the existing variables for parametric models by interacting with the view. P3 said “(I
would like) if I could click on this point (in the view) and OpenSCAD would automatically
create an expression using the variables to describe that point (. . . ) and then with this other
point, create the constraints in terms of my variables (. . . ) not hardcoded numbers because it is
not useful anymore that way”. Further, in addition to working out the expressions, they
would like the system to allow the creation of constraints directly from the view. P5

commented “So being able to simply point at an object to say, I want to attach this face of this
item to that point there and for it to be able to calculate that distance would be such a timesaver”
and P17 “we need some extra assistance to make it useful like guides where you can see like
this is 15 degrees, this is 45 degrees or perhaps even like smart snapping where it’s like snap
this part to some other geometry. I can think of times when that would have been useful instead
of putting in multiple numbers, many times with trial and error to get it to the right spot”.
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Finally, participants mentioned the need to facilitate some recurrent tasks for 3D
printing. Specifically, they mentioned that they would like to have more elaborate
libraries to perform usual actions, such as creating chamfers.

3.2.2.10 Designing from scratch or re-using models

We discussed re-using models from websites such as Thingiverse, Printables, or Github
with the participants. Half of the participants (n = 10) expressed that it is normal to
check pre-existing models from websites before starting to design one from scratch.
However, the reasons for that differ according to several aspects. For instance, P8 said
that he usually starts by searching for models in Google when it is something com-
plicated. This is probably because P8 has a short experience with OpenSCAD and 3D
printing. Nine participants mentioned that if they needed to print something very pop-
ular, they would definitely go to check other people’s solutions first. P20 said “if it’s
something that’s really popular that I absolutely know that there would be models for (. . . ) I’ll
just go get one rather than design yet another one”.

Nevertheless, opinions on preferences between re-using models (and what using
them for) or designing from scratch are divided.

designing from scratch Six participants prefer to design from scratch because
they have specific needs and look for very customized models. P4 commented “I can
design to fit my own setup . . . for instance, my screwdriver holder, all the holes are a different
size to fit my particular set of screwdrivers so that they fit snug. . . ”. Other participants
(n = 5) expressed their satisfaction in challenging themselves to build models of good
quality on their own, as mentioned by P11 “I just like the process of designing and printing
things and be ready to say, I’ve done this by my own.”. Furthermore, four participants said
that starting from scratch is easier, faster, and has better quality results.

re-using pre-existing models We discussed with participants their thoughts
about using pre-existing models. We asked them if they use them, their motivations,
limitations, and the model format they prefer to look for.

Most of the participants (n = 16) reported that pre-existing models do not meet
their needs. Even when several models exist, they usually do not exactly fit partici-
pants’ needs. And even if the model is parametric, available parameters rarely cover
the modification participants want. Moreover, some models are too complex, with
several parameters adding significant complexity to the printing process, so they are
discouraged from using them. In addition, participants perceive several difficulties
with the available model-storing websites. To start, six participants commented that
searching on these websites is challenging. The naming system is deficient, so it is
difficult to find useful models. Moreover, dealing with licenses can be problematic.
Some participants use 3D printing for commercial applications, so using public mod-
els is not ideal for them. Participants also commented on the Customizer application
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from Thingiverse. Although they find it useful, they also mentioned that it is very lim-
ited because authors can only upload models with one file, without the possibility of
making references to other files or libraries.

However, the participants also acknowledge the potential of such websites. Six par-
ticipants mentioned that pre-existing models can be time savers. They said that for
printing popular objects, and for people with little experience in design, it is a good
alternative. Some participants (n = 8) used pre-existing models as inspiration. These
websites present alternatives for participant’s projects in progress where they can col-
lect ideas. Some of them mentioned being surprised to see things they never thought
possible to do with 3D printing.

Although participants did not use pre-existing models to print them directly, some
have incorporated or edited pre-existing designs for their projects. Fourteen partici-
pants commented on difficulties editing STL files in direct manipulation and programming-
based applications. All of them agreed that finding manifold and printable geometries
is rare. In most cases, they needed to fix broken geometries before being able to use
them, which was reported to be “difficult” and “painful”. Participants preferred to have
a pre-existing model with code instead. The offer of models with source code is more
limited and quality varies significantly. Often, available models are not coded follow-
ing good programming practices, such as adding documentation, so reading and un-
derstanding the code is very hard. Some participants mentioned the importance of
good-quality code if it is meant to be shared as mentioned P5 “One thing is designing
for yourself, and other designing for sharing” This is not always the case and depends on
the author."One thing is

designing for
yourself, and other

designing for
sharing"

sharing models Some participants (n = 8) had profiles on websites such as Thin-
giverse and Printables, where they shared their designs. They manifested that they
enjoyed sharing their models, contributing, and seeing other people using and com-
menting on their models. Three participants said that although they liked sharing, they
did not want to spend more time adjusting their models. Unfortunately, the models
need to be adjusted to share parametric models in applications like Thingiverse Cus-
tomizer. For instance, Customizer only accepts one-file models. P5 commented that
they would like to share more of his models, but they often re-uses their own libraries
that cannot be uploaded to the website. P6, on the other hand, said that they would
like to customize the parameters to provide a better experience using sliders instead of
input boxes, but would not spend time learning how to do it. Also, some participants
mentioned that websites are not controlled, and they had seen users taking models
from authors and selling them on other websites.



3.2 themes 55

Table 4: Structure of theme Printing. Color intensity is proportional to the number of interviews
coded with codes of the theme and subthemes.

Theme

What do I like 

about it? (n = 10)

Material properties (n = 3)
Printer limitations (n = 9)
Limitations to iterate (n = 1)

Other challenges (n = 8)

What do I use it 

for? (n = 8)

Subtheme

Printing 

(n = 19)

Motivations for 3D 

printing 

(n = 16)

It started with a family member or a friend (n = 3)

I like creating customized things (n = 7)

I feel intellectually satisfied with achieving things (n = 3)

I like tech (n = 2)

Hobby (n = 3)

I like to repair things (n = 3)

I use it for work (n = 3)

Prototyping (n = 3)

Design for printing (n = 6)

Iterating the design after printing (n = 2)

Printing challenges 

(n = 15)

Clearances introduce uncertainty, making objects fit (n = 6)

Testing (n = 4)

3.2.3 Fabrication

Some of the questions in the interview were intended to identify challenges in the
fabrication process. We discuss our findings related to motivations and challenges.

3.2.3.1 Motivations for 3D printing

Participants use 3D printing for prototyping, for work, for repairing other objects, and
as a hobby. They discussed what they liked about 3D printing. Five participants said
that they were interested in technology and applications so it was almost natural for
them to try 3D printing. Other participants mentioned that they have an “intellectual
satisfaction” when they fabricate complex customizable things successfully. In addition,
seven participants mentioned enjoying the fabrication process and especially having
the physical result.

3.2.3.2 Design for printing
". . . you need to
design your models
with printing in
mind"

Three participants mentioned that designing and designing for printing are two dif-
ferent ideas. As explained by P11 “Surely you can design everything in CAD, but having
prints with many overhangs or supports is impossible. You need to design your models with
printing in mind”. They also commented that it is easy to find very complex models
that, in practice, are not printable. When rendering a model in OpenSCAD, users can
use a rapid preview or a more realistic rendering option. P3 commented that these dif-
ferences add uncertainty to the design process because the way both rendering options
process the information can lead the designer to errors.
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3.2.3.3 Printing challenges

Participants (n = 15) discussed different problems encountered with 3D printing. Very
often, they expressed that tolerances and clearances are factors that introduce high un-
certainty on the success of the printed object. 3D printing does not precisely reproduce
the dimensions and sizes in the digital design. P10 commented “ I usually have to print
multiple times to get the clearances correct, especially if there are moving parts. It usually takes
several times to get the tolerances right”.

Another challenge is the difficulty of taking into account the material property in
the design process. Different materials have different behaviors that are difficult to
include in the design because OpenSCAD does not support this information. For in-
stance, how to design taking into account weak points in the design. P14 commented
that “most difficult in designing for 3D printing is making sure you’re accounting for the
anisotropic strength properties of the material . . . anything you print is weaker along layer
lines, for instance”.

Nine participants considered that knowing the printer they use is a key factor in
minimizing uncertainty. They mentioned that hardware in 3D printing is sensitive to
failure and requires good skills to set up for success, as commented by P19 “ if it’s your
own printer, you have a better sense of what to expect and you have agency over the state of
your machine”.

Other limitations were discussed. When the model is large, there is less flexibility
to iterate due to the amount of material required. Moreover, participants mentioned
that sometimes, putting models in a correct orientation for better printing is not trivial.
Furthermore, some participants (n = 4) mentioned that printing with supports can be
tedious, so they prefer to avoid it when possible.

3.2.3.4 Testing

Testing was important to avoid false printings and waste of material. Participants (n =

4) acknowledge that their only validation strategy was test prints. P13 and P16 said
they would print layers to verify clearances before printing the entire piece. Although
test prints are time-consuming, they were unable to find another testing mechanism
to anticipate what the result of printing would look like.

3.3 discussion

We answer our research question RQ1: What are the motivations and challenges that
users face when using programming-based CAD applications when designing models
for 3D printing in personal fabrication? We discuss the motivations of programming-
based CAD users and their challenges and limitations.
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3.3.1 Programming-based CAD users in 3D printing

3.3.1.1 Users motivations

Findings in programming-based CAD user preferences (section 3.2.1) allowed us to
identify two types of motivations when users 3D print. The utilitarian and the en-
thusiastic. Users with utilitarian motivation use 3D printing to solve problems prag-
matically. They are more flexible in design decisions when there are limitations or a
lack of motivation. For instance, participants expressed not liking re-using pre-existing
models, but due to the time limitations, for example, P19 found pre-existing models a
very convenient solution. He expressed “As a father with a full-time job, it’s difficult to sit
down and develop a model (. . . ) So oftentimes, I’ll look for existing models, and if they work,
I go with them because it’s often easier to have something that works”. Similar situations
occurred when printing common objects that participants felt they could find on the
Internet.

In contrast, users with enthusiastic motivation invest time and energy in achieving
neat and highly customized objects. Participants used very creative methods and could
iterate several times to achieve a satisfactory result. P4 shared how a small model for
a screwdriver hole changed over 5 iterations to achieve a satisfactory result. P14 had
experimented with different creative solutions to capture the outline of curved objects
he wanted to repair. When having an enthusiastic motivation, users are more likely to
design from scratch rather than use pre-existing STL models with questionable qual-
ity and printability, or coded models that would require time and effort to understand.
Moreover, some participants were moved by the feeling of pride of “intellectual sat-
isfaction” when achieving a result. As commented by P16 “I like OpenSCAD because
it is very functional, not procedural. That’s an intellectual like . . . functional languages (like
OpenSCAD) are intellectually satisfying for me.”

3.3.1.2 Perception on direct manipulation CAD applications

Programming-based CAD applications users often have a programming or engineer-
ing background, but some of them expressed having issues with the mathematical
requirements that parametric modeling needs. Most participants opted to use Open-
SCAD because they could reuse their previous experience with other programming
languages. Also, most of them mentioned not liking direct manipulation CAD applica-
tions in their first interactions with them, and only a few participants had experience
with them and used them for their workflow. We identified some common difficulties
that users face with these applications.

Direct modeling applications (section 2.1.2), such as TinkerCAD, are perceived as
too basic for doing “serious” 3D modeling. Parametric applications such as FreeCAD
and Fusion360 presented similar challenges. First, having the different parts that de-
scribe the model, such as the tree history and the constraints panel, disconnected and
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distributed in the interface is confusing. Participants mentioned how difficult it was
to visualize all the constraints and relate them to the model. Moreover, although di-
rect manipulation applications allow the use of mathematical expressions for doing
parametric modeling, the definition of expressions is also difficult to manage and un-
derstand because the properties of the objects are defined in multiple places in the
application. For instance, in FreeCAD, users must first create a spreadsheet containing
the parameter’s definition in cells. Then in a different window in the view, create con-
straints using the cells’ definition to relate geometric properties. These constraints are
also stored as a list in a different panel. So users have three different views for creating
a parametric model, while in OpenSCAD, everything is defined in one place, the code
editor. Moreover, creating coherent constraints can be challenging. P9 mentioned he
was normally concerned to have an overconstrained warning when using FreeCAD,
for instance. Another problem is related to the TNP (section 2.1.2). Participants men-
tioned that introducing changes in the tree history in applications such as FreeCAD
easily resulted in breaking the model.

3.3.1.3 Fabrication as a hobby

We identified that the fabrication process involved stages that users can or cannot
enjoy. P7 mentioned that “ (3D printing) It’s actually three hobbies in one, which is why a
lot of people find it very overwhelming (. . . ) There’s the modeling, setting and improving the
3D printer, and the actual making of the 3D prints”. Indeed, we could observe different
enjoyment from the participants at the different stages of the process. For instance,
P14 described a project that took him weeks to create a highly customizable model for
pliers. On the other hand, P16 explained a workflow he developed to create objects
with multiple colors on a single-color printer by playing with the printer settings and
the design. Moreover, P8 said that, although he enjoyed the design process, what he
liked was the result. Consequently, he rushed other parts despite the errors he could
make, such as taking measurements with care. “I think like to go to the good part, I
want to get to the fun, having the thing in my hand.” Previous studies [88] reported that
novices were easily frustrated designing objects for 3D printing, probably because their
motivations were to get the objects, not to design them.

3.3.2 Programming-based CAD design challenges

The interviews reveal challenges that programming-based CAD users face (section
3.2.2), representing a research opportunity for the HCI community.

Programming-based CAD inputs are coded instructions that the machine uses to
create a visual representation where the user can verify the result and perform edits
in the code if required. Therefore, the user verifies in one space and edits in another in
an intensive and iterative exercise. Consequently, users are forced to understand the



3.3 discussion 59

connections between the code and the rendered model, but current tools barely try to
help users in this task.

navigability Our hands-on exercise revealed that users use several strategies to
identify code statements responsible for creating specific parts based on visual inspec-
tion with considerable difficulty. Most of the participants went through the code to
understand it, and in every case, they needed to make edits to seek visual confir-
mation. Programming-based CAD applications could facilitate this task by using the
implicit connection between the code and the view. OpenSCAD provides a backward
search (section 2.1.4) to place a cursor on a code statement based on a selected part
in the view. However, it does not provide visual cues to confirm that the selected part
is aimed, and users need to modify the code to seek visual confirmation. IceSL [127]
provides better visual cues to highlight code statements responsible for creating parts
in the view but does not discriminate between statements involved, so it is impossible
to navigate the CSG structure. In Chapter 4, we propose enhanced navigation features
that facilitate users to explore the model and understand the connection between the
different parts in the visual representation with their corresponding code statements.

understanding spatial coordinate systems in the code Understanding
3D spaces on a 2D screen is a difficult task reported in direct manipulation [88]. Our
interview revealed that this problem can be more difficult in programming-based CAD

where the editing space is disconnected from the view, and no visual help to relate
them. In other words, users have to mentally imagine the behavior in the view that a
spatial transformation will have when stated in code. Moreover, CSG structures create
nested scopes where the coordinate system is relative to the aggregated effect of spa-
tial transformations performed previously. Participants mentioned the need for trial
and error strategies to apply a spatial transformation successfully. The task becomes
more complex when using rotations, which are generally more difficult to understand.
Some participants tried to avoid nested transformations due to difficulty understand-
ing them. Programming-based CAD applications could support the understanding of
spatial properties when coding. For instance, when modeling, CAD applications could
add widgets in the view to clarify the relative position and orientation of a specific
object’s center in each axis. Moreover, these widgets could have different colors to
distinguish the translation axis, which the code editor could use in the space of the
transformation parameters to make this correspondence explicit. Moreover, by click-
ing on the widgets, the application could open a text dialog to edit the corresponding
parameter directly in the view, as is possible in some direct manipulation applications
[93].

defining geometric properties based on pre-existing information In
CAD design, the geometric properties of an object are closely related to those of other
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objects. For example, users may want to place a cube on top of another. Direct ma-
nipulation applications facilitate user interaction through visual aids such as rulers
and volume highlighting during overlap, the use of snap effects that guide positioning
during drag-and-drop actions, or the use of constraints [63, 93]. These applications
facilitate the re-use of additional information from the model within the model. How-
ever, programming-based CAD makes this task more challenging. Applications such as
OpenSCAD or JSCAD often limit interactions within the view, preventing users from
selecting specific parts or re-using information, for example, the position of an object.
Certain applications such as RapCAD [20] permit such operations within the code. For
instance, users can use functions to extract an object’s position as a parameter, store
it in a variable, and later use this information to define another element. While this
method enables the selection of objects to extract and re-use information in the code, it
maintains a separation between the code and the visual representation, necessitating
users to conceptualize the behavior mentally. Applications could use visual elements
as rulers that allow for measurement or even retrieve raw positions, orientations, or
sizes from objects directly from the view when clicking on parts of the model’s vi-
sual representation. Implementing bidirectional programming [143] behaviors could
support this task as has been done in SVG [78] and CAD previous work [106].

Two cases emerge in this context. First, applications could allow for retrieving raw
positions, orientations, or sizes from objects directly from the view. For instance, users
could select a cube and obtain the center’s position. Applications might allow for
selecting specific parts, enabling the extraction of fundamental information such as
center position and size. This capability could extend to derived positions, such as
determining the position of the corners of a cube, calculated using the cube’s center
position and size. Second, the application could articulate this information based on
the variables used in the code to define it. Participants expressed difficulties work-
ing out mathematical expressions to define an object’s position parametrically. The
application could report how a geometric property was defined regarding variables,
empowering users to automatically retrieve this information and create other objects
based on it. Additionally, the application could allow the user to express the intent of
certain actions directly on the view and assist in coherently implementing the code.
For example, users could select an object, choose an option "next to another object,"
select a second object, and the system would create a translate statement in the code
using variables to place the first object next to the second. This output-oriented behav-
ior or bidirectional programming [143] has already been implemented in SVG [78] with
different logics and even in programming-based CAD applications [106], but not to de-
fine geometric properties parametrically. In Chapter 5, we introduced features based
on bidirectional programming that enable users to define objects’ positions parametri-
cally, relative to the positions of other objects, through interaction with the view.

In general, programming-based CAD could benefit from allowing a more enriched in-
teraction in the derived information rendered in the view while coherently connecting
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it with the code and supporting the edit based on this information. Moving towards
bidirectional programming [78] or live programming [219] paradigms could bridge the
gap existing between both spaces, code and view, which is one significant difficulty in
programming [156].

3.3.3 3D printing challenges.

The interviews revealed problems in the process related to the disconnection between
the CAD model and the target environment as described in section 3.2.3.

fit between the design object and other physical objects Users cannot
consider contextual limitations, resulting in longer processes and creativity limitations
[194]. P9 explained that the lack of context resulted in more iterations fabricating a case
for an emergency button. Bridging the digital design and the physical environment can
facilitate the design process. One approach is incorporating digital references of the
physical environment into the digital design. Some participants upload STL replicas
of objects into OpenSCAD and FreeCAD to have a reference of the object and design
around it. Websites such as Thingiverse [213] or MyMiniFactory [151] offer models,
mostly in STL format, that users can use as references when designing, although par-
ticipants and previous work have reported some problems with the search engines
and meshes quality [39, 129]. Another possibility is to bring the model into the envi-
ronment. DesignAR [168], for instance, allows designers to work in augmented reality
environments and place models in physical environments using direct manipulation.
Programming-based CAD applications could explore having virtual or augmented re-
ality previews for a realistic preview of objects. Moreover, these environments could
also facilitate code interaction and understanding, as previously explored in other
fields [85, 108, 182, 183]. Furthermore, expanding interaction in programming-based
CAD can leverage bidirectional programming [78, 143].

include physical measurements Capturing data from physical objects has
been also reported as challenging [110, 136, 167]. Participants reported difficulties in
measuring curved and organic shapes using programming-based CAD. Research could
explore sensing devices to capture and transfer information to CAD applications. Some
participants use photogrammetry and scanners to capture the outline of curves and
reproduce them digitally, but these solutions were found to be time-consuming, com-
plex, and imprecise. Additionally, retrieved information as a point cloud is difficult
to parameterize. An alternative solution is to use Bezier curves, where a few control
points mathematically define a contour. Solutions like ShArc [185] can capture data
from these control points with less effort, creating a suitable solution to replicate or-
ganic shapes parametrically. The use of augmented reality could also help to capture
control points to create Bezier curves.
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other challenges in 3d printing Users go through different disconnected
stages when 3D printing. CAD applications often limit functionalities to the design,
ignoring limitations concerning the printing process. For example, participants used
to apply spatial transformations to their models to locate them in an optimal position
and orientation for 3D printing. However, if any edit was required, they removed these
transformations to see the model in a more familiar position and orientation. Similarly,
when participants needed to split a model into parts. They first finish the model and
then apply a difference and intersection with conditionals to save two different
STL files.

CAD applications could facilitate the design by including information related to the
printing process. For example, the same model would not print the same on different
printers or with different materials. One of the main factors of uncertainty expressed
by the participants was the tolerances and clearances. After printing and detecting
problems, they would have to go to the CAD model, adjust it, export it, and print
it again. CAD software could inform users of possible problems related to the design
complexity (e.g. need for supports), printer tolerances, printer capabilities (e.g. possible
angles of printing), or materials properties when printing.

We identified other problems related to misuse of applications (e.g. using Blender
[62] as an STL viewer) and licensing in model-storing websites (e.g. people using mod-
els from one website to make a profit in another website without authorization).

3.4 limitations

The hands-on exercise was a short observation task rather than a controlled user study.
Findings related to it may be limited, missing other challenges that users face in the de-
sign process. Moreover, having experience in direct manipulation programs was not an
exclusion criterion. Consequently, some of the participants had no previous experience
in such software, and their answers related to these applications were not based on a
reasonable experience and understanding of the direct manipulation paradigm. An
exploration with direct manipulation CAD applications users can provide a different
perspective on the perceived challenges of these solutions Finally, our interview only
included OpenSCAD users. Although most programming-based CAD applications also
use a CSG representation, each tool provides different features, and not all of our find-
ings may be generalizable. Further, a few programming-based CAD applications that
use B-rep representation, such as CadQuery, may provide a different user experience
and challenges than the ones reported in our findings.

3.5 conclusion

We interviewed twenty users of the most popular programming-based CAD applica-
tion, OpenSCAD, to investigate their motivations and challenges in the design of 3D
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objects and the 3D printing process. During these interviews, we included hands-on ex-
perience to observe behaviors and difficulties when navigating the model. With the in-
formation collected, we performed a reflexive thematic analysis in an iterative process,
developing main themes related to the user’s profile, design experience, and printing
experience. Our findings reveal that users are motivated to use programming-based
CAD applications thanks to their parametric capability, the possibility of using math-
ematical expressions, and the precision for 3D printing. Moreover, it reveals several
challenges in connecting the code with the view, understanding and performing spa-
tial transformations, measuring and designing organic and curve shapes, validating
dimensions in the view, and re-using pre-existing models. Programming-based CAD

could facilitate some of these tasks by enabling the information that the system stores
and effectively communicating it to the user. Last, our findings also reveal difficulties
in the 3D printing process, such as handling uncertainty introduced by printers and
material properties, identifying code locations to perform correction based on physical
inspection, and validation before printing.

Chapter 4 and Chapter 5 address specific design challenges inspired by the findings
of this study.
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N AV I G AT I O N A N D S PAT I A L E D I T I N G C H A L L E N G E S

Note: The content of this chapter is the basis of a manuscript

that has been published and presented in the Proceedings

of 2023 ACM Symposium on Spatial User Interaction

(SUI’23), held in Sydney, Australia, in Oct. 2023 [71].

A notable difficulty identified in Chapter 3 involves navigating and correlating the
code with the 3D view, such as identifying the code statement responsible for a specific
part of the model. Users often use various strategies to locate these code statements
corresponding to particular model parts without the application support. Additionally,
the study highlighted the reciprocal challenge where users struggle to determine the
specific impact of a code statement on the model’s visual representation. This bidi-
rectional difficulty in linking code and visual elements significantly complicates the
design process.

Another significant challenge reported is executing spatial transformations. Users
must not only comprehend the existing code to identify the correct insertion point
for new spatial transformation statements but also mentally visualize the effects of
prior transformations on the coordinate system. This often leads to a trial-and-error
approach, where users experiment with random values, seeking visual cues to guide
the correct application of transformations. These findings underscore the complexity
of the design process in programming-based CAD applications, where users frequently
rely on repetitive and time-consuming methods to bridge the gap between code and
visual output.

One alternative to bridge the “gulf” [89, 226] between the code and view spaces is
the bidirectionnal programming approach. As elaborated in Chapter 2, bidirectional
programming facilitates user interaction with both the code and its corresponding
output. This method ensures coherence between the two, enabling changes in one
to be reflected in the other. In essence, bidirectional programming allows for an in-
formation flow from the view back to the code, diverging from the typical unidirec-
tional flow characteristic of programming-based CAD applications. Drawing on prior
work in this domain, we propose alternative solutions based on the bidirectional pro-
gramming approach to address the specific navigation and editing challenges faced by
programming-based CAD users.

We introduce our modified version of OpenSCAD (Figure 17), featuring a naviga-
tion system that bridges code and the 3D model to make explicit their relationships.
This system also supports object manipulation in the 3D view for tasks that are intu-
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itively simpler than code modification. For instance, users can relocate an object com-
ponent by selecting it in the 3D view using the mouse and relocating it through direct
manipulation, prompting an automatic code update or the addition of a transforma-
tion to accommodate the move. Our contributions include (1) the conceptualization of
bidirectional navigation and editing functionalities for CSG programming-based CAD

applications, and (2) a proof-of-concept through a modified version of OpenSCAD.

Forward search

Reverse search

Editing +

Editing from the code

Figure 17: Bidirectional Programming features implemented in OpenSCAD. The system allows
to navigate the code through direct manipulation in the view (reverse search) and
vice versa (forward search). Also, the program enables modification of the 3D model
from the view while the system updates the code coherently.

Based on the insights from the study of Chapter 3 and an explorative study, we
propose design goals for a bidirectional programming approach: (1) facilitating the
understanding of models by creating a navigation system that leverages the inherent
connection between the view and code, and (2) easing the execution of spatial transfor-
mations through direct manipulation interactions within a programming-based envi-
ronment. Implementing these design goals, we present our modified version of Open-
SCAD (Figure 17). We implemented a navigation system between the code and the
3D view, allowing a better understanding of the relationships between the code and
the different parts of a 3D model. Our modifications also integrate code editing by
interacting with the objects in the 3D view for operations that appear more straightfor-
ward than modifying the code. For example, the user can translate an element of an
object simply by selecting it in the 3D view with their computer mouse and adjusting
its position with direct manipulation. As a result, the values in the code that define
its position would be updated, or a transformation would be added to support the
translation. Our contributions are (1) the design of bidirectional navigation and edit-
ing features for CSG programming-based CAD application; (2) a proof-of-concept in a
modified version of OpenSCAD.

Our implementation is available as Supplementary Materials and on the website
http://ns.inria.fr/loki/bp.

4.1 specific related work

The bidirectional programming approach facilitates a two-way flow of information
between code and view. Beyond enabling model editing as detailed in Section 2.1.1.4,
this approach also offers opportunities in navigability.

http://ns.inria.fr/loki/bp
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We will first discuss relevant studies on bidirectional navigation. Subsequently, we
explore the existing capabilities within OpenSCAD for navigating between the code
and the view.

4.1.1 Bidirectionnal Navigation

Programming-based CAD inputs consist of coded instructions that the machine uses to
create a visual representation where the user can verify the result and edit the code if
necessary. Therefore, the user validates in one domain (the visual representation) and
modifies in another (the code) in an intensive and iterative exercise. For every mod-
ification, the user needs to locate where in the code modifications need to be placed
before doing the edit. Consequently, establishing a link between specific elements of
the visual representation and the corresponding code statements that generate them
is essential.

Some applications, outside the scope of CAD, allow the user to perform bidirection-
nal navigation providing mechanisms that make explicit the connection between both
the code and the output. For example, SyncTex allows synchronizing a LATEX source
document with its corresponding PDF [123]. It is then possible to click on a sentence
in the PDF viewer to jump to the corresponding line in the source document or click
on a line in the source document to display the corresponding paragraph in the PDF
viewer. Similarly, modern web browsers have an inspector that allows users to navi-
gate between elements in the web view and HTML source code. To avoid switching
between a code editor and the corresponding visual rendering, Gliimpse introduced a
way to create smooth in-place transitions between markup code and its visual render-
ing [53].

In programming-based, some CAD applications allow a certain level of navigation.
IceSL [127] is a programming-based CAD application implementing a CSG represen-
tation. IceSL highlights the corresponding instructions when an object is clicked, as
shown in Figure 18. However, it is impossible to differentiate between the different
CSG nodes that contribute to creating the clicked part.

In general, navigation capabilities between the code and the view in programming-
based CAD applications are limited and nearly nonexistent.

4.1.2 Navigation in OpenSCAD

Drawing on insights from Chapter 3, users typically need to undertake two actions
to connect the view with the code. Often, after visually inspecting a model in the
view, users must identify the code statements responsible for generating a specific
part of the model, i.e. navigating from the view to the code. Additionally, users seek
to determine the impact of particular code statements on the model within the view,
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Figure 18: IceSL allows users to click on elements in the view while the application highlights
the corresponding code.

i.e. navigating from the code to the view. OpenSCAD offers limited functionalities to
somewhat facilitate these tasks.

4.1.2.1 Navigating from the view to the code

To help understand the relationship between the code and the 3D model, the last
version of OpenSCAD introduced the ability to jump to the source code from the
3D preview. Users can click on the model, and the application will display a menu
showing the different code statements that contribute to creating the clicked part. The
text editor will place the cursor on the corresponding code statement by clicking on
the menu items. Although this feature can help to locate where in the code a part is
created, it is very limited in creating an explicit connection between the code and the
view. Consider part of the example CSG.scad provided by OpenSCAD in listing 2. To
start, it is impossible to select the removed volumes, i.e. the subtracted sphere in the
difference statement, because it does not have representation in the view (Figure 19).
Moreover, when clicking on one of the other statements, it is impossible to confirm
what part of the view corresponds to the statement nor what the statement’s scope is
in the code editor. Additionally, it is not possible to determine what part of the visual
representation corresponds to the selected statement.

4.1.2.2 Navigating from the code to the view

Users often need to identify the specific impact of a code statement on the view. De-
spite strategies like inserting a color statement to differentiate parts of the model or
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1 translate([24,0,0]) {

2 difference() {

3 cube(15, center=true);

4 sphere(10);

5 }

6 }

Listing 2: OpenSCAD Example Figure 19: OpenSCAD displays a menu con-
taining all the statements con-
tributing to creating the right-
clicked part.

adjusting parameters to observe visual changes highlighted in Chapter 3, users can
utilize OpenSCAD modifiers1.

Modifiers are special characters that precede code statements, altering the model’s
visual representation to simplify code understanding. Specifically, modifiers influence
the way that OpenSCAD processes the CSG tree as illustrated in Table 5. Modifiers
provide the following features:

• Background: By placing the character ’%’, the application will ignore the subtree
created in that code statement for the normal rendering process and draw it in
transparent gray (all transformations are still applied to the nodes in this tree).

• Debug : By placing the character ’#’, the application will use the subtree cre-
ated in that code statement as usual in the rendering process but also draw it
unmodified in transparent pink.

• Root: By placing the character ’!’, the application will ignore the rest of the design
and use the subtree marked as the design root.

• Background: By placing the character ’*’, the application will simply ignore this
entire subtree.

Modifiers facilitate altering the visual representation of the model, aiding in compre-
hending the impact of specific code statements on the view. Regardless, their utiliza-
tion requires code modification. Additionally, users frequently forget the exact effect
or the specific character, leading to a practice of trial and error, as detailed in Chapter
3. Our approach is inspired by the functionality offered by OpenSCAD modifiers.

1 https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Modifier_Characters Accessed: 10/01/2024

https://en.wikibooks.org/wiki/OpenSCAD_User_Manual/Modifier_Characters
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Table 5: Code example and result in preview of applying modifiers in OpenSCAD

Code Example Preview

B
ac

kg
ro

un
d

(%
)

difference ( ) {
cyl inder ( h = 12 , r=5 ,

c e n t e r = true ) ;
r o t a t e ( [ 90 , 0 , 0 ] ) cyl inder (

h = 15 , r=1 , c e n t e r =
true ) ;

%r o t a t e ( [ 0 , 90 , 0 ] ) cyl inder
( h = 15 , r=3 , c e n t e r =
true ) ; }

D
eb

ug
(#

)

difference ( ) {
cyl inder ( h = 12 , r=5 ,

c e n t e r = true ) ;
# r o t a t e ( [ 90 , 0 , 0 ] ) cyl inder

( h = 15 , r=1 , c e n t e r =
true ) ;

# r o t a t e ( [ 0 , 90 , 0 ] ) cyl inder
( h = 15 , r=3 , c e n t e r =
true ) ; }

R
oo

t
(!)

difference ( ) {
cube ( 10 , c e n t e r = true ) ;
t r a n s l a t e ( [ 0 , 0 , 5 ] ) {

! r o t a t e ( [ 90 , 0 , 0 ] ) {
# cyl inder ( r = 2 , h = 20 ,

c e n t e r = true ) ; }
}

}

D
is

ab
le

(*
)

difference ( ) {
cube ( 10 , c e n t e r = true ) ;
t r a n s l a t e ( [ 0 , 0 , 5 ] ) {

r o t a t e ( [ 0 , 90 , 0 ] ) {
cyl inder ( r = 2 , h = 20 ,

c e n t e r = true ) ; }
* r o t a t e ( [ 90 , 0 , 0 ] ) {

# cyl inder ( r = 2 , h = 20 ,
c e n t e r = true ) ; } } }
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4.2 design

Building upon our previous findings, we initiated an in-depth investigation to identify
the fundamental causes of the challenges in navigation and editing within programming-
based CAD applications. Our first step involved an exploratory analysis of OpenSCAD
models from the Thingiverse website. This analysis aimed to understand better user
needs and the root problems users face. Subsequently, we formulated specific de-
sign goals for a bidirectional programming application tailored to these challenges.
Informed by these objectives, we developed and implemented a solution within the
programming-based CAD applicationOpenSCAD. This implementation is a practical
approach to addressing the previously identified navigation and editing difficulties.

4.2.1 Initial exploration

The study detailed in Chapter 3 highlighted challenges users encounter when attempt-
ing to connect the code with the visual representation of models. We analyzed the code
of twelve Thingiverse models to investigate these challenges further. We download the
models after filtering Thingiverse models, selecting those labeled as "Customizable"
(i.e. including an OpenSCAD file) and "Popular all time.". The length of the models’
code ranged from 63 to 392 lines of code (average: 189.6, standard deviation: 110.9).
Our analysis involved editing these models to fulfill specific requests made by users
on Thingiverse or to implement improvements we considerated as beneficial. For ex-
ample, for the model ID:421886

2, titled "Customizable drawer box with hex pattern sides",
one user requested the addition of holes for magnets on each surface to allow multiple
prints to adhere to each other, along with customization options for magnet dimen-
sions. Through this process, we focused on identifying areas within the code that were
difficult to navigate, repetitive, or particularly time-consuming to edit. This led to rec-
ognizing two prevalent issues: navigating the model based on its visual output and
modifying it.

The first challenge relies on the constant need to mentally associate specific code
statements with their corresponding elements in the visual representation and vice
versa. Upon visually inspecting the model, users must identify the relevant modifica-
tion code statement. However, due to the disconnection between the code and its visual
output, the users are often required to confirm the accuracy of the targeted code state-
ment. One method to address this is using OpenSCAD’s search functionality, which
allows users to locate code segments based on visual observations. Nevertheless, this
approach often lacks contextual information and feedback, making it unclear if the
selected part is indeed the one requiring modifications. The context menu accessed
via right-click (Section 4.1.2) provides several options, yet it may not always be appar-
ent which code statement is the target one. Additionally, code within difference and

2 https://www.thingiverse.com/thing:421886

https://www.thingiverse.com/thing:421886
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intersect blocks, which are visually subtracted, are inaccessible through this feature.
Another strategy involves analyzing the code to associate it with visual components
and variables, as discussed in Chapter 3. Both approaches are time-consuming and
require verification.

Verification relies on visual feedback, aligning with findings from Chapter 3. Each
confirmation method is essentially a trial-and-error process that involves modifying
the code to employ modifiers, inserting a color statement, adjusting parameter values,
or removing code sections. Modifiers require memorization of their characters and
functions. Color statements fail with subtracted elements and may conflict with other
color statements. Altering parameter values can become complex, especially when
parameters influence other objects of the model. Removing code sections might result
in misunderstandings if the corresponding contribution is hidden in the view.

The second challenge involves understanding the code’s logic to execute modifica-
tions. Spatial transformations, such as translate, rotate, and scale, require an un-
derstanding of the view’s coordinate system in relation to the code’s parameters. De-
termining the impact of modifying a spatial transformation parameter on the visual
output is not straightforward. This complexity escalates when additional transforma-
tions are applied, complicating the mental visualization of their effects on the model’s
orientation and scope center. The immediate recourse to trial and error can be both
challenging and time-consuming.

4.2.2 Design goals

We establish two primary design goals for our approach: 1) improving the navigability
of the system and 2) facilitating spatial editing.

4.2.2.1 Improving the navigability of the system

Typically, the user codes and the system compiles and renders. A direct relationship
exists between code statements and the different parts of the model. After visually in-
specting the output, the user returns to the input to modify it. However, to do this, the
system’s assistance in locating the precise place in the input through existing relation-
ships to modify the output is practically nonexistent. Thus, as noted in the participants’
interviews and our exploratory exercise, the user needs to make this trip back from
the output to the input on their own.

The system must provide interactive ways to inform users about the links between
code statements and the view to facilitate navigation. Using identifiers with visual
cues, such as OpenSCAD modifiers, with effective search mechanisms can significantly
facilitate the design process. For instance, the user could click on a pixel in the view,
and the system would show the different code statements that create it. Moreover, the
user could select a code statement while the system would color the corresponding



4.3 bidirectional programming for programming-based cad 73

subpart in the view and highlight the code statements. This type of navigation should
also be available for objects in the design that do not have a visual representation
(i.e. elements removed from the model in intersect and difference statements). Also,
the system could provide a mechanism to visually isolate the contribution of a specific
set of code statements in the view.

4.2.2.2 Spatial editing

The users find difficulties in performing spatial transformations in programming-
based CAD applications due to the lack of visual assistance. Our previous study also
revealed that his task is considerably easier to perform in direct manipulation pro-
grams.

The system must provide direct manipulation actions to perform spatial transforma-
tions while keeping the code coherent. For example, the system could select a subpart
in the model. The system would add visual cues to inform the current position and
orientation of the subpart. The user would then perform edits through drag-and-drop
mechanisms while the system adds the necessary changes to the code.

4.3 bidirectional programming for programming-based cad

We created a proof-of-concept of bidirectional programming for CSG programming-
based CAD application by modifying the code of OpenSCAD. Before explaining the
features we added to OpenSCAD, we describe its overall architecture.

First, OpenSCAD parses the code to create an Abstract Syntax Tree (AST) [2], which
is a structured interpretation of the OpenSCAD language. Then, it processes the AST by
identifying the instantiating statements and evaluating the expressions (e.g. variables,
loops, functions) to create an Abstract CSG Tree [59]. Each node in this tree is identified
with in id number and represents an element that contributes to the creation of the
model and is a module instance. The tree leaves are always primitives (e.g. spheres or
cylinders). Intermediate nodes can be boolean operations (e.g. union), transformations
(e.g. translate), or groups such as control structures (e.g. conditionals or loops). Each
node in this tree represents an element that contributes to the model’s creation and is a
module instance. Subsequently, OpenSCAD uses the CSG to compute a mesh hierarchy
that contains the 3D points, normal vectors, and colors of all nodes in the CSG and
stores it in a Geometric Tree. Finally, OpenSCAD uses this tree to render the objects in
the 3D view.

In preview mode (2.1.4), the rendered objects retain the ID of the CSG leaf node.
When the user right-clicks on an object, the application retrieves the ID of the CSG leaf
node. Subsequently, it iterates through the CSG tree to locate the branch containing the
selected node. The application then generates a menu listing the branch’s nodes and
presents it to the user, allowing them to select a specific node.
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We present the new features of OpenSCAD in three categories: (1) reverse search
navigation, (2) forward search navigation, and (3) transformations with direct manip-
ulation. We illustrate these features with the 3D model depicted in Figure 20.

Figure 20: A battery box model from Thingiverse 3Left: After 3D printing. Right: 3D view in
OpenSCAD

4.3.1 Reverse Search Navigation

Reverse search allows users to explore the code by interacting with the 3D model and
select elements.For instance, the user wants to locate the line of code that creates a
specific element of the model (e.g. the holes for the batteries in the battery box). Using
reverse search, the user can hover or select an element in the 3D view and get visual
feedback related to that element both in the 3D view and in the code editor (Figure 21).

We modified the source code of OpenSCAD. Special flags were added to the CSG

nodes, allowing the application to designate them as target or impacted. When selecting
a part, the application marks the chosen node as a target. Subsequently, it utilizes the
CSG node to access the corresponding AST node and traverses the CSG tree to identify
other nodes generated by the same AST node. Nodes within the CSG tree, distinct from
the selected one but originating from the same AST node, are labeled as impacted. For
example, primitives generated inside a loop or through multiple calls to a user-defined
module result in different CSG nodes created from the same AST node. In essence, the
target element denotes the node within the branch of the CSG node selected by the user
in the view. The impacted elements represent other CSG nodes created from the same
code statement or AST node as the selected part.

3 https://www.thingiverse.com/thing:5485266
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Figure 21: Reverse navigation features. F1: (1) The user hovers items in the contextual menu to
select an element. F2: (2) The code of the selected element is highlighted in green.
(3) Instantiating statements are also highlighted in green and marked in the margin
with the call order. F3: (4) The 3D view shows ghosts of removed elements from
differences, highlights the selected element in green and impacted elements in pink

f1 . browse the csg nodes of an element In the original OpenSCAD, a popup
menu appears when the user right-clicks an element in the 3D view. The items of this
menu represent all the nodes in the CSG tree from the clicked element up to the root
and the line number of the associated instruction in the code.

When the user clicks and selects one of these menu items, the menu disappears,
and the cursor of the code editor moves to the corresponding code statement. If the
user wants to locate the code of the other nodes, they need to click again on the
same element in the view and select a different item, which breaks the navigation flow.
Also, OpenSCAD does not differentiate the elements in the 3D view, and the user
may be unable to make this distinction. Hence, navigation with this selection process
also exposes the user to accidentally clicking on a different element between trials,
causing an error by exploring an element different from the one initially selected. We
improved this feature by selecting elements by hovering the pointer over the menu
items. Therefore, the user can browse the different pieces of code that created this
element without closing the menu and the node references. It helps them identify the
instructions they are searching for and navigate through the code, mainly when the
instructions are scattered across different parts of an extended code.

f2 . highlight the selected element in the code editor When selecting
an item in the 3D view, the code displays visual cues to inform the user about the
relationship between the selected element and the code.
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The application identifies the branch containing the target part. The code editor adds
a number in the margin of the branch’s nodes, indicating the instruction’s call order
in the call stack. It also adds a green highlight with decreasing intensity. Further, the
system highlights the code of the impacted nodes in pink. It indicates these elements
will change if the user edits the selected element.

f3 . highlight the selected element in the 3d view We implemented vi-
sual feedback in the 3D view, following the logic on the code editor, to make the
connection between the code and the 3D model evident. First, the system colors the
edges of the selected item in green to mark it as selected. Moreover, it colors the edges
of the elements corresponding to the impacted nodes in pink. It explicitly shows the
parts that would change if the user edits this code.

Intersection and difference operations subtract the volume of elements (2.1.3.1). Ele-
ments that produce these operations are not all clickable in the 3D view. To address this
limitation, when the selected element is one of these operations, we draw the elements
used in its creation as ghosts. Now, the user can see and select these elements. Ghosts
are also classified as targeted or impacted and are duly colored in semi-transparent
green or pink.

To implement it, the renderer interprets the selected or impacted flags from the CSG

nodes to add semi-transparent volumes in the view when the selected element is an
intersection or a difference operation. It adds either a semi-transparent green or pink
color consistently with the code color scheme.

4.3.2 Forward Search Navigation

Forward search is the opposite of reverse search. It allows users to explore the 3D
view by interacting with the code. For example, the user would like to understand
which elements of the 3D view are created by a specific expression in the code. Using
forward search, they select this expression in the code editor, and the system highlights
the impacted elements on the 3D view. These features are illustrated in Figure 22.

f4 . forward search in expressions corresponding to an element In-
stantiating statements contribute to creating at least one node in the CSG tree. When
the user selects two or more characters from such an expression and presses the F1

key, the system highlights the resulting elements in the code editor and the 3D view.
The application iterates on the CSG tree, looking for all the nodes created by the

selected statement. If there is only one, the application marks the node as targeted; if
there is more than one, it marks all nodes as impacted. Then, the code and the model
apply visual feedback as explained in F2 and F3.
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Figure 22: Forward navigation features. F4: After selecting a portion of an instantiating state-
ment, (1) all the instance creations of the selected code are highlighted in pink, and
(2) all the resulting elements are highlighted in pink in the 3D view (3).

f5 . forward search in variables Variables are used in arithmetic expressions
in the instruction parameters. Therefore, modifying these variables affects the elements
defined by these instructions. When the user selects two or more characters from a vari-
able and presses the F1 key, the system identifies all affected nodes and highlights in
pink all the expressions in the code editor affected by this variable and the correspond-
ing elements in the 3D view.

4.3.3 Transformations with direct manipulation

CAD software typically allows users to perform transformation operations, such as
translations, rotations, and scaling through direct manipulation action on the elements
on the view. It is convenient because users can immediately validate the result and
quickly set the value according to this validation. The same task through the code
requires multiple trials and errors. We implemented similar features in OpenSCAD.
For example, when users want to translate an element, they select it in the 3D view
and click a translation button in the toolbar. A translation gizmo appears in the relative
position and orientation of the selected object (i.e. applying previous translation and
rotation from the root to the selected object), and they can drag-and-drop one of the
three axes to translate the element accordingly. The element moves continuously and
the system modifies the code simultaneously. As moving the pointer produces large
changes, the user can use the mouse wheel to make small changes of 0.1 units to
achieve precise edits.



78 navigation and spatial editing challenges

To achieve this, we have modified the source code of OpenSCAD, enabling direct
interaction with the view by adding buttons to activate the three basic spatial trans-
formations: translate, rotate, and scale. When the user interacts with the gizmo
for each transformation, the application calculates the corresponding value for edit-
ing based on the user’s pointer position and the viewport camera’s position and ori-
entation. We have ensured that the application does not generate unnecessary code.
Therefore, when modifying a node, the application searches for CSG nodes within the
tree that can be modified to achieve the desired result. If it finds one, it modifies the
parameters coherently. Otherwise, it creates and injects the code, as explained in the
following sections.

Modifying elements in the view can result in various possible modifications in the
code. This presents scenarios where the application needs to interpret the user’s in-
tent and decide [78]. Particularly, when modifying an element in the view where the
application has identified impacted objects, one solution could be to apply the change
to all elements. Alternatively, the application could make the necessary changes in
the code to affect only the target CSG node. We followed Sketch-N-Sketch rationale for
these cases [78]. We assume that significant modifications must be initiated by the user.
Therefore, when performing a modification, the application warns the user that other
parts may be impacted by that modification (i.e. through visual cues on impacted CSG

nodes) and modifies the object, allowing changes to propagate to other elements. This
implies that the application only modifies the code by changing spatial transformation
parameters or injecting spatial transformation code statements. It will not add more
complex programming structures such as conditionals.

This feature is illustrated in Figure 23.

f6 . translation from the 3d view When the user translates an element in the
3D view as described before, the system adds a translate element in the CSG tree and
the code. It adjusts the x, y, or z parameter depending on the gizmo axis the user is
dragging. The system does not add another translate element if an existing one only
affects the translated element.

f7 . rotation from the 3d view The rotation of elements is similar to the trans-
lation described above. The system places a rotation gizmo at the relative position
and orientation of the object, which is the rotation center. Then, the user adjusts the
rotation axes through drag-and-drop. Similarly to translations, the system only adds
a rotate element if necessary; otherwise, it modifies an existing one.

f8 . scaling from the 3d view The user can resize an element directly from the
view. We added two options in the menu for this purpose: Scale and Scale primitive.
The user can perform the Scale option with any selected part. If it is the only child of
a scale element, the system updates the parameters of this scale element. Otherwise,
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Figure 23: Simple 3D view editing. F6: (1) After selecting an element, the user enters editing
mode by clicking on the translate button and a gizmo appears. (2) The user clicks
and holds the z-axis and moves the pointer to the desired position. (3) The system
infers the code changes by adding a translate statement. (4) All elements impacted
are also updated in the view.
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the system adds a new scale element. Likewise, the user can perform the Scale primi-
tive option if the selected part is a primitive. The system will update the instantiating
parameters.

4.3.4 Informal validation by example

We aim to show how our system addresses the design goals. Specifically, we demon-
strate it allows the user to (1) Navigate interactively between the code and the 3D
model making explicit the relationship between them, including removed elements
from difference and intersection operations. (2) Isolate the contribution of specific
code statements. (3) Perform spatial edits on the model without the need to fully un-
derstand the code. We explored 11 models on Thingiverse under the “Popular Last
30 Days” and “Customizable” filters. These models have on average 195 lines of code
(sd 113). We performed modifications requested by Thingiverse users in the comments
section of the models. We describe below the case of a buckle box4 (Figure 24), which
has two parts linked by a hinge.

a) b)

Figure 24: 3D View when highlighting a) the union item; b) the difference item.

First, we explored how the hinge structure is built (1). With one click on the hinges,
the system displayed the menu of involved elements. We hovered the pointer on the
elements of this menu to explore the structure of this element. The module top defines
a union between a part of the box and a part of the hinge (Figure 24). The part of
the hinge part is created by a difference statement between a hull and a set of
cubes. When hovering over the difference statement we can observe the parts used
to remove some volume of the hull, represented by transparent green cubes.

By right-clicking on one of these cubes, we repeated the navigation exercise. When
selecting the subsequent translate statement (Figure 25), we quickly see that all cubes
are created by the same statement when the system colors pink some of the elements in
the view. We confirmed this in the highlighted code which shows the statement inside
a loop structure. With two clicks, we could picture the code structure of a module of
84 lines of code of the model.

Then we looked at the code to understand its logic (2). For example, we look around
further in the code and find a comment indicating the start of the description of a “new

4 https://www.thingiverse.com/thing:82620
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Figure 25: After right-clicking on one of the transparency, code editor and 3D view highlight-
ing the translate item.

latch”. By placing the cursor on the first code statement and pressing F1 , we could
see the complete scope of the code by the highlighted text and isolate its contribution
on the view with the highlighted elements and added transparencies (Figure 26). Then
we clicked on the transparencies on the view to observe each part individually in the
code.

Figure 26: By placing the cursor on a code statement and performing a forward search, the
system highlights the code and the 3D models consistently.

Last, we checked that we could perform spatial edits in the model through the 3D
view (3). For example, we aimed to perform an operation that some of the participants
mentioned. Once they finish the model, they often reorganize it to print it in an efficient
way. We further explored and realized that the model defines 3 parts. We then selected
each of these parts and performed spatial operations directly on the view to place the
different parts to print them. We started by translating and rotating only with direct
manipulation actions the view (Figure 27).

We moved the parts in a satisfactory position and orientation while the system
updated the code accordingly (Figure 28). We referred to the code to fix imprecise
values in the spatial operations. We could easily reorganize the elements from the
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a)

b)

Figure 27: Editing the model with a direct manipulation a) translate and b) rotate transfor-
mations on the view.

view without needing to calculate the exact angles or on what axis the edits had to be
done.

Figure 28: The code updates accordingly to the spatial transformation performed on the view

4.4 discussion

We discuss the results of our work giving an answer to the research question RQ2:
How can bidirectional programming be used to enhance navigation and editing in
programming-based CAD applications?. Specifically, we discuss the findings of our
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formative study, the potential of bidirectional programming to solve problems that
programming-based CAD users face, and the challenges remaining that we will address
in future work.

the importance of programmatic interfaces . Previous works [78, 138,
229] highlight the importance of programming in design due to its flexibility, preci-
sion, and potential in complex tasks. In addition to confirming these technical aspects
with our work, we also found that programming-based CAD facilitates access to 3D
design for a more programmatic-oriented population that cannot or does not want to
use direct manipulation programs. The interviews show that this public includes not
only programmers but also engineers of different fields with math-oriented academic
backgrounds. These results suggest that there is an opportunity for HCI research to
understand better in-depth and assist this group of designers in the whole process of
personal fabrication.

supporting the process of exploring a 3d model . The code helps to de-
scribe the model, whereas the view creates a visual representation that helps validate
and identify errors. If users need to edit the model based on a visual inspection of
the view, they must return to the code, make sense of it, locate a specific statement,
and edit it coherently. Users need to follow a similar process if they want to reuse
and adapt models to new projects. Making this link mentally can be challenging not
only because there is no trivial transformation from the view to the code (e.g. one
code statement can create multiple parts in the view when it is inside a loop) but also
because current tools do not facilitate this task. Indeed, our formative study revealed
that users do not know an easy way to do it. Participants showed different strategies
to achieve it that required a significant effort to understand the code followed by a vi-
sual confirmation (e.g. removing statements or using modifiers). None of them could
quickly locate a code statement based on the view without studying the code.

Our solution comprehensively addresses this limitation in programming-based CAD

applications for the first time. It allows users to visually and quickly understand the
structure of the code-based models, solving specific problems found in the formative
study: difficulty in finding a code statement that creates a part in the view, isolating
the contribution of a code statement in the view, understanding the code structure
when a code statement creates multiple parts (e.g. a module called multiple times
inside a loop), and lacking visual representation of removed objects in intersect and
difference operations.

With the reverse and forward search, users can navigate between the code and the view
back and forth. They can identify a part in the view by clicking on it and locating the
corresponding code statements involved in the text editor without studying the code
while the system coherently highlights the part in the view and the corresponding
code statements. This is also helpful when exploring models from other authors, as
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expressed in the interviews by P6 in Chapter 3: “In other people’s code, even trying to
figure out what I need to isolate to see where it fits can take a lot of time”. The system creates
a visual representation of removed objects so that navigation features can be used on
them. These features improve the system of placing debug modifiers on the code, a
solution that programming-based 3D CAD modelers repetitively use when designing.

Our navigation system is novel compared to existing alternatives. IceSL [127] high-
lights code when hovering the pointer over the model in the view, but it does not
acknowledge that the contribution of multiple statements creates the selected part
and the user cannot navigate or differentiate them in the view or the code. Sketch-N-
sketch [78] presents a type of reverse search, mainly based on the recognition of the
influence of variables on the selected object rather than the instantiating statements.
Moreover, 2D SVG data structure differs from CSG, which builds objects by operat-
ing on them, creating a tree data structure that can benefit more from our navigation
system. Finally, none of the previous work presents a forward search feature.

We have identified non-solved challenges in our modified version of OpenSCAD. We
noticed that different nodes of the code statement produce the same visual feedback
when selecting elements in the view with our navigation features. For instance, when
there is a sphere inside a translation inside a rotation statement, selecting any of these
three nodes will color the sphere identically. The users do not have a way to see on
the 3D view the difference between code statements in these scenarios. In our future
work, we will investigate visual feedback for spatial transformation statements.

spatial transformations . Spatial understanding and transformation are diffi-
cult tasks for 3D CAD modelers in general [138]. Our study showed that it can be even
more challenging for programming-based CAD users because they have to transform a
visual location and orientation into written operations with no visual representation of
the relative coordinate system of the parts on the view. Moreover, they do not perceive
immediate and incremental feedback when modifying. Thus, performing spatial trans-
formation is a task that extensively requires a trial-and-error strategy. Our approach
solves this problem by placing interactive widgets on the axis of the coordinate system
of the model parts. Users can understand the relative position and orientation of the
parts and edit them directly in the view.

However, spatial transformations in bidirectional programming have limitations.
Users typically use variables and arithmetic expressions in transformations to create
constraints between parts of their models. Therefore, there are several ways to modify
an existing transformation: either changing the value of one of its variables or even
changing the arithmetic expression. Sketch-N-Sketch [78] addresses this problem for
SVG models by deciding on the best solution based on heuristics. However, our inter-
views show that programming-based CAD users would like to control the model they
design and make precise and deterministic modifications. Non-code-based parametric
programs, such as FreeCAD, use a constraint solver to compute solutions that fulfill all
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the constraints and choose one of them when there are several possibilities. Therefore,
instead of making decisions on behalf of the user, we would like to give them control
over which variables they would like to change or not.

4.5 conclusion

We presented an adaptation of the concept of Bidirectional Programming to programming-
based CSG CAD applications. Users can browse and edit 3D models from both their
programmatic description and the 3D view with direct manipulation Based on our
previous study and exploratory analysis, we found that code analysis in 3D modeling
requires either a fine knowledge of the code and the model, or trial-and-error proce-
dures to navigate the code and perform edits. Moreover, we noticed that participants
struggled to perform spatial transformations, in particular when they are combined.
We explained to the participants the concept of bidirectional programming and they
expressed interest in it and mentioned situations in which they would find it useful.
Then, we proposed design goals based on this study and described the features of
a proof-of-concept implementation based on OpenSCAD that implements them. We
describe an informal validation with a detailed walkthrough that illustrates how the
new features help with the current difficulties we observed among the participants of
our initial study. Finally, we discuss the strengths and limitations of our work, as well
as future work.

The next Chapter addresses another key design challenge identified in Chapter 3

related to the difficulties of defining geometric properties for creating parametric de-
signs in programming-based CAD applications.





5
PA R A M E T R I C D E F I N I T I O N O F G E O M E T R I C P R O P E RT I E S

CAD parametric design is a modeling approach that includes parameters in the design
process to define and manipulate the shape and geometry of objects within the design.
Parametric designs allow for rapid alteration of existing models by simply editing the
values of specific parameters, allowing reusability and flexibility of the design [36].
This customization is particularly valuable in the democratization of manufacturing in
practices such as personal fabrication, allowing consumers to create personalized and
customized artifacts for their individual needs and contexts [204]. Moreover, designers
can share their models so that other users can create new versions of a model without
the need to re-design the model. In web applications such as Customizer [212] from
Thingiverse, MakeWithTech [187], or 3dCustomizer [1], users can upload OpenSCAD
parametric models exposing parameters so that other users can create different ver-
sions of the base models. For example, model ID 6402905

1 allows users to re-generate
different versions of a "Pot lid holder" as depicted in Figure 29

To create parametric designs, the author needs to carefully define and relate the
different parts of the models using variables instead of using fixed numeric values. Se-
lected variables, designated as parameters, are made accessible for user modification,
allowing users to modify their value to re-generate the model and preserve the de-
sign’s structure. However, the process of creating parametric designs in programming-
based CAD applications can be challenging, as revealed in Chapter 3. Programming-
based CAD applications barely assist this task, significantly differing from the dynamic
in direct manipulation CAD applications.

In direct manipulation CAD applications, users create models defining constraints
[44] attached to variables that can be later modified. A constraint is a rule or condition
applied to geometric elements within a model to control dimensions, positions, or
relationships between different components. For example, the user can create a box,
applying a constraint to define the box’s width with a variable box_width. The variable
can be exposed as a parameter so the user can edit its value at any time. Then, the
application would re-create the model, replacing the variable’s new value in the model
and propagating its effects. CAD applications provide a set of possible constraints that
the user applies to the model to describe it.

On the other hand, in programming-based CAD applications, users are tasked with
defining geometric properties using variables normally deriving arithmetic expres-
sions that encapsulate the desired behavior. We will refer to these expressions as para-
metric definitions. For example, to ensure a cube B is placed on top of another cube

1 https://www.thingiverse.com/thing:6402905 accessed on 01/09/2024
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(a) Customizer tool exposes parameters for
users to re-create versions of the model by
modifying parameters’ values.

(b) Customized version 1 of the Pot lid holder
from Thingiverse

(c) Customized version 2 of the Pot lid holder
from Thingiverse

(d) Customized version 3 of the Pot lid holder
from Thingiverse

Figure 29: Model of a Pot lid holder from the thing number 6402905 on Thingiverse. By mod-
ifying the parameters the Customizer application re-generates customized versions
of the model
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A, the position on the z-axis of B could be defined in terms of a variable that also
defines the height of A. However, accurately formulating mathematical expressions
for geometric properties in programming-based CAD applications poses a significant
challenge for users. It demands both mathematical proficiency to articulate geometric
properties with variables and spatial reasoning skills to establish a connection between
the variables in the code editor and their impact on the model in the visual repre-
sentation. Furthermore, some expressions can be intricate to derive, especially when
multiple parts and parameters are involved. Remembering the Pot lid holder from
Thingiverse (Figure 29), the position of the highlighted element in red in Figure 30 is
encoded as in Listing 3.

65 translate([-width/2, num*(length+spike_thickness)+spike_thickness-

thickness, 0])

66 cube([width,thickness,thickness]);

Listing 3: Example of parametric definition of a translate in OpenSCAD

Figure 30: Model of a Pot lid holder from the thing number 6402905 on Thingiverse.

Overlooking the meaning of the variables and the lack of programming context,
it is noteworthy that crafting such expressions can be somewhat challenging, even
for an arguably simple model like this one, which consists of 68 lines of code and 8

parameters.
Interestingly, programming-based CAD applications possess all the information and

means to facilitate the formulation of these expressions. Consider a scenario where
a user designs the object depicted in Figure 30. The highlighted part of the object is
missing, and the user is about to create and position it. The location of this highlighted



90 parametric definition of geometric properties

part is related to the position of the two vertical rounded spikes—as labeled in the origi-
nal code -located on the left side of the object. Consequently, the user must deduce the
position of the spikes, considering all spatial transformations, and mentally correlate
this with the center of the highlighted part to formulate the mathematical expression
outlined in Listing 3. The expression must ensure that any change in the parameters
controlling the positions of the spikes also correctly adjusts the placement of the high-
lighted part.

It is important to note that the geometric definitions of all parts, including sizes and
positions, are already defined in the code. Therefore, the application possesses all the
necessary data to calculate the positions of the parts based on their parametric defini-
tion. The application could allow users to specify a part of interest and the application
to calculate and provide the parametric definition of the part’s geometric properties.
Given that pinpointing parts of interest is more straightforward in the visual repre-
sentation of the model than in the textual code, the application could facilitate users
in selecting these components directly within the view. For instance, in the previous
example of the model depicted in Figure 30, the user could select one of the spikes
directly on the view while the application provides the parametric definition of the
spike position. The user can adjust this position, including the information about the
highlighted part dimensions, to create a translate statement and place the part cor-
rectly. Thus, the user would not need to study the code and derive the expression,
speeding up the process.

We aim to enhance the parametric design capabilities within programming-based
CAD applications by introducing bidirectional programming interactions. This enables
users to leverage information from the view directly in the code. We started by analyz-
ing thirty OpenSCAD models from Thingiverse to understand how typical geometric
definitions for elements are constructed. Subsequently, we modified the source code
of OpenSCAD, incorporating features that empower users to extract parametric defini-
tions of geometric properties from objects in the view following the concept of bidirec-
tional programming. This simplifies the creation of parametric models within the code.
In the final phase, we tested the effectiveness of the implemented solution with ten
OpenSCAD users to assess its potential. The findings reveal that geometric properties
are expressed mainly as linear combinations of variables. Furthermore, users highly
appreciate the ability to extract information from the view, mirroring certain constraint
interactions found in direct manipulation CAD applications to reduce design errors,
enhance the interactivity and appeal of the design process, and facilitate entry for
newcomers by reducing the mathematical skill requirements in programming-based
CAD.
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5.1 specific related work

Parametric design needs users’ foresight about which aspects of a model might require
future modifications. Consider, for example, the design of a lamp structure. A user may
want to be able to create multiple lamps of varying heights. This requires a careful
correlation between this requirement and the geometric properties of the parts of the
model, achieved through the use of variables. In the lamp example, the overall height
could be a function of the heights of its constituent parts: the base, the stem, and
the lampshade. The user might opt to define fixed proportions for the heights of these
components, such as 20% for the base, 60% for the stem, and 20% for the shade needing
only one exposed parameter. Alternatively, the user might choose to make each part’s
height adjustable independently, making the lamp height the total sum of all parts,
thereby requiring the exposure of multiple parameters. In either scenario, effectively
linking these parameters to the respective sizes and positions of the parts is crucial for
successfully implementing a parametric model.

Direct manipulation and programming-based CAD applications present a different
workflow and tools to achieve parametric models.

5.1.1 Parametric design in direct manipulation

When designing in CAD applications with direct manipulation, users start by creating
general sketches defined to fix the geometrical properties and dimensions later [82].
In parametric CAD applications implementing a direct manipulation approach, users
fix geometric properties through constraints [44]. A constraint is a rule or condition
applied to geometric elements within a model to control dimensions, positions, or
relationships between different components. There are two types of constraints: Ge-
ometric Constraints and Dimensional Constraints [130]. Geometric constraints define
the relationship between two or more elements in the scene. For example, users can
apply a constraint to ensure that two lines always keep the same length. Dimensional
constraints fix the values of geometric properties of elements such as positions, sizes,
or angles. Table 6 describes some of the most common constraints in CAD applications
such as FreeCAD2, Fusion360

3, or AutoCAD4.
Constraints are crucial in maintaining the design’s intent and ensuring that the

model structure holds as intended when parameters change. They help define and
enforce specific geometric relationships between different design parts. When design-
ing parametrically, these constraints can be defined using variables that users can

2 https://wiki.freecad.org/Constraint accessed on 20/01/2024

3 https://help.autodesk.com/view/fusion360/ENU/?guid=SKT-CONSTRAINTS accessed on
20/01/2024

4 https://help.autodesk.com/view/ACDLT/2024/ENU/?guid=GUID-899E008D-B422-4DF2-AC8D-1A4F5701ED4E
accessed on 20/01/2024

https://wiki.freecad.org/Constraint
https://help.autodesk.com/view/fusion360/ENU/?guid=SKT-CONSTRAINTS
https://help.autodesk.com/view/ACDLT/2024/ENU/?guid=GUID-899E008D-B422-4DF2-AC8D-1A4F5701ED4E
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Table 6: Common Geometric and Dimensional Constraints in CAD

Geometric Constraints Dimensional Constraints

Coincident: Forces two points or ob-
jects to share the same location.

Distance: Specifies the distance be-
tween two points or objects.

Collinear: Requires two elements to
lie on the same straight line.

Angle: Defines the angle between two
lines or edges.

Concentric: Enforces a common cen-
ter point for two circles or arcs.

Radius/diameter: Sets the radius/di-
ameter of a circle or arc.

Parallel: Aligns two lines or edges to
be parallel.

Length: Determines the length of a
line or the size of an object.

Perpendicular: Forces two lines or
edges to meet at a right angle.

Width/height: Specifies the width or
height of an object.

Tangent: Ensures that a curve or circle
is tangent to another curve or circle at
a specified point.

Depth: Sets the depth or thickness of
an object.

Symmetry: Requires elements to be
symmetric with respect to a specified
axis or plane.

Chamfer: Creates a beveled edge or
corner.

Perpendicular Bisector: Defines a line
that is perpendicular to and passes
through the midpoint of another line.

Midpoint: Forces two points to share
the same midpoint.

redefine to create different design versions [102]. For instance, a box design can have
a constraint for its width, where a variable defines the value. This variable can be ex-
posed as a parameter of the model, so if users change its value, the application will
re-generate a new box with the new width specified by the user. Figure 14b in Chap-
ter 2 depicts a typical case in FreeCAD of a parametric design. Geometric properties
are linked to the value of cells in a spreadsheet. Users can modify cells’ values to
re-generate a new version of the model.

When users define constraints in a CAD application, the application internally ex-
presses them as algebraic equations, with variables representing the coordinates of the
geometric entities involved [130]. Consequently, the application formulates an equa-
tion system, which it solves using a geometric constraint system [234]. The outcome
possibilities of this system depend on the consistency of the defined equations. In
cases where all geometric properties are uniquely and coherently defined with con-
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straints, the system is termed "fully constrained". This implies a well-defined equation
system with a unique solution. In contrast, when not all geometric properties are
constrained, but those constrained are defined coherently, the system is considered
consistent and under-constrained. In such instances, multiple solutions exist, and the
application must decide which solution to apply. For example, a user creates two lines
pointing in different directions and imposes a constraint to make them parallel. The
application then faces several options to resolve this constraint. It can maintain one line
in its original position while adjusting the other or vice versa. Alternatively, the appli-
cation may relocate both lines to achieve parallelism. Geometric properties can also be
defined with conflicting constraints, making the system inconsistent. An illustrative
case is applying a parallel constraint followed by an orthogonal constraint to two lines
[234]. Even for experts, creating constraints can be challenging. Solutions like CODA
[218] assist by suggesting applicable constraints based on elements in the view. We
drew inspiration from this concept, recognizing that leveraging existing application
information can enhance our solution’s definition of new geometric properties.

It is important to note that in direct manipulation CAD applications users express
design intents through tools that are described in a more explicit language compared
to programming-based CAD applications. As seen in Table 6, constraints include high-
level definitions such as making two lines collinear. This forces the application to
interpret them and propose a solution. In other words, the user expresses WHAT they
want, and the system seeks a solution to provide it. This differs from programming-
based CAD applications where users need to describe HOW the models are built.

5.1.2 Parametric design in programming-based

When designing in programming-based CAD applications, users need to define all the
geometric properties of the elements of the model. The only exception would be when
the application provides default values to information not provided in the code by
the user. For example, when a cube is created in OpenSCAD without defining the
parameter size, the application will create a cube of 1x1x1. Under the definition of
the constrained system, we could arguably say that programming-based models are
always consistent and fully constrained. However, the definition of constraints would
not be the same as in direct manipulation applications. Dimensional constraints (Table
6) equivalents would define sizes, positions, and orientations in the code. For instance,
the "distance" constraint could be expressed as applying a translate transformation.
On the other hand, geometric constraints such as keeping two lines parallel must be
described by the user with arithmetic expressions.

Users articulate geometric properties in programming-based CAD applications through
programming and mathematical expressions. To facilitate the parametric design pro-
cess, it is crucial to understand how users in programming-based CAD environments
define geometric properties in parametric designs. As noted, in programming-based
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CAD applications, users specify HOW elements are sized and positioned using math-
ematical expressions. However, beyond code comments, there is often no clear indi-
cation of the users’ intentions behind these definitions. Consider, for instance, the
example presented in Listing 3 from the introduction of this chapter. The rationale
behind the author’s specific choices for the definition of location and size is not imme-
diately apparent. Furthermore, there is a lack of research investigating design patterns
in defining geometric properties in programming-based CAD applications. Chyteas
et al. [41] conducted a study on several OpenSCAD models from websites to identify
programming patterns and design preferences. Their research provides statistics on
various code statements (e.g. frequency of loops, conditionals, or spatial transforma-
tion usage) but does not delve into how geometric properties are interrelated with
other objects. The study detailed in Chapter 3 unveils that users often encounter dif-
ficulties in formulating mathematical expressions for parametric models, a process
scarcely supported by existing tools. Furthermore, participants indicated that the defi-
nition of objects’ positions and sizes is frequently relative to the positions and sizes of
other objects, highlighting a complex interdependence in design decisions.

5.2 method

This study aims to facilitate the creation of parametric models in programming-based
CAD applications. Firstly, we conducted a formative study analyzing thirty OpenSCAD
models from Thingiverse to identify how the geometric properties are defined. Then,
based on the findings, we proposed a design goal for a bidirectional application that
facilitates the definition of geometric properties in parametric models. To achieve this
goal, we have modified the source code of OpenSCAD to allow users to retrieve para-
metric definitions of objects directly from the view to be re-used in the code. Finally,
we have tested our modified version with OpenSCAD users and discussed their user
experience.

5.2.1 Formative study

Programming-based CAD applications allow users to define geometric properties with
programming expressions. For example, the size of a cube can be defined with a raw
number, a variable, an arithmetic expression, or more complex programming struc-
tures such as conditionals. Based on the findings of the project described in Chapter
3, we hypothesize that most of the time, users define positions and sizes of elements
as a linear combination of the positions and sizes of other elements. For example, a
very common operation is to place a box on top of another box. In such a case, the
position of the second box is defined in terms of the size and position of the first cube,
as depicted in Listing 4:
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1 // Size of the cubes

2 size_cube_1 = 10;

3 size_cube_2 = 20;

4 // First cube

5 cube(size = size_cube_1, center = true);

6 // Second cube

7 translate([0,0,size_cube_1/2 + size_cube_2/2])

8 cube(size = size_cube_2, center = true);

Listing 4: OpenSCAD example. Parametric model of a cube on top of another cube

When the model becomes more complex, the definition of geometric properties con-
siders the position and orientation of multiple parts. As a result, these definitions can
be defined as linear combinations of the defined variables of the type translate([tx,

ty, tz]) where ti =
∑︁

αi · xi, αi a constant, and xi a variable.
The focus is on identifying the nature of parameter definitions, categorizing them

as either non-zero raw numerical values (C1), a single variable (C2), a linear combi-
nation of variables (C3), a non-linear combination (C4), or a structure involving more
complex programming constructs (C5), as delineated in Table 7. For example, a cube
defined as cube(size = [5, size_y, size_z+3]) would be classified under C1, C2,
and C3, whereas a spatial transformation like translate([0,0, size_x*i]) would be
allocated solely to the C4 category.

To assess this hypothesis, we have analyzed thirty models from Thingiverse. Ac-
cessing the website on 02/11/2023, we filtered customizable models with the option
"Popular Last 7 Days" and downloaded the first ten models. We have repeated the same
process with the filters "Popular Last 30 Days" and "Popular This Year". Duplicated mod-
els were discarded and replaced with the next in the list. Figure 41 in the appendix B
contains all the models used in the formative study.

We modified OpenSCAD to analyze the definition of geometric properties. Upon
loading a model, the modified application parses its code into an AST. It then traverses
the AST to identify code statements responsible for generating geometric primitives
(e.g. spheres, cubes, or cylinders) and executing spatial transformations (i.e. transla-
tions, rotation, scale). The application would identify the nature of parameter defini-
tions, categorizing them as either non-zero raw numerical values (C1), a single variable
(C2), a linear combination of variables (C3), a non-linear combination (C4), or a struc-
ture involving more complex programming constructs (C5), as delineated in Table 7.
For example, a cube defined as cube(size = [5, size_y, size_z+3]) would be clas-
sified under C1, C2, and C3, whereas a spatial transformation like translate([0,0,

size_x*i]) would be allocated solely to the C4 category.
The analysis results are depicted in Table 8. It is important to note that the scale

statement is barely used in the models. Its participation in the total of expressions
analyzed is only 1%. Moreover, most expressions in the rotate statements (48.95%)
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Table 7: Categories used to classify expressions of OpenSCAD models.

ID Classification Description

C1 Raw number A double ignoring zero values. e.g., 4.0

C2 One variable A variable call. e.g., var1

C3 Linear combination Linear combination of variables
∑︁

αi · xi.
e.g. , 3 + 2*var1 - var2

C4 Polynomial expression Non-linear polynomial expressions∑︁
αi · xi · yi. e.g. , 3 + 2*var1*var2

C5 Other Other programming structures such as
conditionals. e.g. , (var1>3)?1:2

are raw numbers. Indeed, when validating the results, we confirmed that in most
cases, rotations are performed at standard angles such as 45 or 90 degrees. Finally,
we confirmed our hypothesis, verifying that most of the positions (through translate

statements) and sizes (through primitive definitions) are defined as raw numbers, one
variable call, or a linear combination of existing variables.

Table 8: Formative study results. Total and percentual occurrences per category used to define
parameters in primitives, translation, rotation, and scale statements

Primitive Translate Rotate Scale Total

C1 196 (11%) 130 (7%) 140 (8%) 8 (0.4%) 474 (25%)

C2 294 (16%) 126 (7%) 35 (2%) 2 (0.1%) 457 (25%)

C3 312 (17%) 234 (13%) 29 (2%) 5 (0.3%) 580 (31%)

C4 0 (0%) 48 (3%) 31 (2%) 4 (0.2%) 83 (4%)

C5 26 (1%) 191 (10%) 51 (3%) 0 (0%) 268(14%)

Total 828 (45%) 729 (39%) 286 (15%) 19 (1%) 1862 (100%)

5.2.2 Design goals

Users define geometric properties by leveraging the relationships between objects, as
outlined in Chapter 3 and corroborated by the formative study. Concerning sizes and
positions, many instances define these properties as linear combinations of variables,
reflecting linear relationships between elements. The positioning of a new model el-
ement often depends on another object’s location and dimensions. Moreover, iden-
tifying a desired position is straightforward in the visual representation. Therefore,
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a valuable tool would enable the extraction of model information for defining other
elements’ geometric properties within the code. This information must be readily ac-
cessible, allowing users to understand its spatial implications directly in the visual
representation, where identification is simplest. In essence, the design goal is to facili-
tate the extraction of geometric information from objects’ parametric definitions in the view for
code re-use.

5.3 bidirectionnal programming to define geometric properties

We have implemented a proof-of-concept that introduces features that enhance the
creation of parametric models using bidirectional programming in the OpenSCAD
application to fulfill the design goal.

Typically, OpenSCAD parses code into an AST and later into the Abstract CSG Tree,
evaluating all programming structures and variables, retaining only numeric infor-
mation after evaluation. No information about the parametric definition of objects is
stored at this stage. We modified the source code of OpenSCAD to ensure that CSG tree
nodes store the parametric definition of the geometric properties used to define them.
Primitives store the size’s definition, while spatial transformation stores the parametric
definition of the transformation.

When users position an object relative to another, they are often concerned with
specific locations around it. For instance, when placing cube A on top of cube B, the
translate statement needs to consider the top of cube B and the bottom of cube A.
Unfortunately, most programming-based CAD applications work with a CSG represen-
tation lacking information on vertices, faces, or edges, as explained in Section 2.1.3. We
redefined node definitions in OpenSCAD to include "control points" that the user can
use to retrieve the parametric definition of an object’s position. Control points were
added to each primitive as described in Table 9.

Non-primitive nodes include a single control point in the node’s position, covering
boolean operations, spatial transformations, or programming structures. We updated
OpenSCAD source code so that, given a determined control point of a selected node,
the application can define the control point’s position in terms of the variables used
in the code. The application iterates on the CSG tree to locate the selected node. Then,
the selected node provides the definition of the control point’s position relative to
the node’s center. Later, the application iterates on translate nodes in the branch of
the selected node, adding their definitions to the control point’s position. Figure 31

describes how OpenSCAD derives the parametric position of the control point placed
in the middle of the bottom face of the cube created by the code in Listing 5.

This proof-of-concept currently supports cases where only translations apply as spa-
tial transformations to objects. Control points are displayed correctly in models with
other transformations, like rotations or scaling, but the system does not calculate the
control points’ position. The system defines the position of the control point by aggre-
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Table 9: Description of Control Points for Primitive Shapes

Cube (27 points): Cube nodes create a grid of
3x3x3 points, including 1 point in the center, 1

at each corner (8 points), 1 in the center of each
face (6 points), and 1 in the middle of each edge
(12 points).

Sphere (27 points): Spheres create a bound-
ary cube using the diameter as the size for the
height, width, and depth. The node places con-
trol points on the boundary cube following the
same distribution as the cube nodes.

Cylinder (27 points): Cylinder nodes form a
boundary cuboid, with its bottom and top
square faces sized by the cylinder parameters
d1 and d2, respectively. The cuboid’s height is
determined by h. Control points are positioned
on the cuboid’s boundary, following the cube
nodes’ distribution pattern.

Square (9 points): Square nodes create a grid
of 3x3 points, including 1 point in the center, 1

at each corner (4 points), and 1 in the middle of
each edge (4 points).

Circle (9 points): Circle nodes create a bound-
ary square using the diameter as the size for the
height and width. 1 point in the center and 1 at
each extreme along each axis (4 points).
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1 tx = 10;

2 ty = 15;

3 tz = 0;

4 size_x = 15;

5 size_y = 15;

6 size_z = 5;

7 translate([tx,ty,tz])

8 cube([size_x,size_y,size_z]);

Listing 5: Control points example Figure 31: Representation of how Open-
SCAD computes the position of
the control point placed in the
center of the bottom face of a
cube.

gating all translate definitions from the root to the selected object and incorporating
the local position of the control point relative to the center of the selected object. This
process gathers information without filtering out trivial values, such as translating 0

units in one direction, possibly leading to less easily readable final expressions and re-
quiring an expression simplification. To streamline the development, we implemented
a Python server that exposes a service for simplifying arithmetic expressions using the
"simpy" library5. The OpenSCAD application sends the raw expression to the server,
returning a simplified expression.

Additionally, OpenSCAD considers parameters within primitives that affect the ob-
jects’ center positions, thereby influencing the calculated positions for control points.
For instance, the control point located at the top center of a cylinder defined by
cylinder(h = height, r1 = rad1, r2 = rad2); would yield a relative position to
the cylinder’s center as [0,0,height]. However, if the cylinder is defined with cylinder(h

= height, r1 = rad1, r2 = rad2, center = true);, the returned position adjusts
to [0,0,height/2], reflecting the parameter’s impact on the positioning of control
points.

We developed two features to facilitate information retrieval directly from the model’s
view. These features, built upon the developments outlined in Section 4.3.1, enable
users to select objects within the model and utilize the capabilities of Absolute location
and Relative location

5 https://simpy.readthedocs.io/en/latest/index.html Accessed on 01/09/2024

https://simpy.readthedocs.io/en/latest/index.html
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5.3.1 Absolute location

The absolute location feature enables users to determine the position of a control point
in a selected object relative to the origin (i.e. , CSG root’s position [0,0,0]) of the view.
Users activate this feature by selecting the "Absolute location" button in the menu bar
and then choosing an object, following the process detailed in section 4.3.1. When
a user selects an object, the application displays the control points. The application
marks the object’s center with always-visible purple control points. The rest of the
control points behave like any other geometry and can be hidden behind other ge-
ometries. Based on previous work [138], this feature aims to provide information to
the user without automatically editing the code, ensuring user control over the model
definition. Users can right-click on any control point to turn it green, indicating that
the system has copied the parametric position to the clipboard so the user can place it
in the code to define new element translations.

Consider the case where a user is designing a board game piece. The user has placed
a cylindrical base and a cylindrical stem on top, as depicted in Listing 6. Using the
absolute location feature, the user could then place a cylinder for the cup on top of the
stem (Figure 32).

6 r_top = 18 ;
7 h_top = 33 ;
8 / / Cup
9

10

11 / / Stem
12 t r a n s l a t e ( [ 0 , 0 , t h i c k n e s s ] ) {
13 cyl inder ( r 1=r_stem 1 , r 2=r_stem 2 , h=

h_stem ) ;
14 }
15 / / Base
16 cyl inder ( r=r_base , h= t h i c k n e s s ) ;

Listing 6: Example before using absolute location
feature

Figure 32: Example preview of
a cup in progress.

The user could first select the stem’s cylinder by right-clicking on it. The user could
select the cylinder after the menu with the CSG nodes involved in that part, as depicted
in Figure 33a. OpenSCAD would display the control points, and the user could select
the one in the middle of the top where the cup’s cylinder will be placed. The control
point would turn green so the user would have in the clipboard the definition of that
point’s position in terms of the variables used in the model (Figure 33b). Then, the
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user can create a translation, paste the definition stored in the clipboard as shown in
Listing 7, and add a cylinder to create the cup (Figure 33c).

(a) The user select an object as
described in Section 4.3.1

(b) The user right-click on a
control point of interest,
which turns green when the
position definition is stored
in the clipboard.

(c) The user place the definition
stored in the clipboard in a
translate to place another
object parametrically

Figure 33: Absolute location feature allows users to retrieve the location of an object’s control
point relative to the origin.

7 h_top = 33 ;
8 / / Cup
9 t r a n s l a t e ( [0,0,h_stem+thickness] )

10 cyl inder ( r = r_top , h = h_top ) ;

Listing 7: Example after using absolute location feature

5.3.2 Relative location

The relative location feature calculates the arithmetic expression required to align one
object’s control point with another object’s control point, effectively establishing a "co-
incidence" constraint or a "snapping" effect. The process is similar to the absolute
location feature but in a two-step process. Users enable this feature by pressing the
"Relative location" button in the menu bar and then selecting the object they want
to move, as described in section 4.3.1. The application marks the object’s center with
always-visible purple control points. The rest of the control points behave like any
other geometry and can be hidden behind other geometries. The user then selects a
destination object, and the application also shows its control points, with centers in
purple and others in blue. In this setup, red points indicate origin points and blue
points mark destination points.
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After right-clicking a red control point, which turns it white, the user selects the des-
tination point by right-clicking it. This action turns both control points green, signaling
that the system has placed the parametric definition in the clipboard. The relative lo-
cation feature essentially calculates the difference between the destination and origin
control points, allowing users to determine the necessary transformation to align the
origin point with the destination point.

Revisiting the example of a board game piece, consider the addition of decorative
spheres around its upper part. Using the relative location feature enables precise place-
ment. The user selects the sphere and then the cylinder at the top of the piece, prompt-
ing control points to appear on both. By right-clicking on corresponding control points
intended to align, as shown in Figure 34a, the application generates the exact trans-
formation [r_top - r_sphere,0, thickness + h_stem + h_top] and stores it in the
clipboard. Inserting this into a translate statement accurately positions the sphere, as
seen in Figure 34b. This process can be repeated or used in a loop to place additional
decorations symmetrically.

(a) After selecting the object to move and
the destination object, the user right-
clicks the control point to move (1)
and then the destination control point
(2). The system stores the necessary
translate definition in the clipboard.

(b) The user can place the translate

into the sphere definition to lo-
cate it parametrically.

Figure 34: Relative location allows users to place one object’s control point relative to another
object’s control point.
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5.4 user study

We conducted an experiment with ten OpenSCAD users to evaluate the effective-
ness of bidirectional programming in simplifying the parametric design process in
programming-based CAD applications.

The experiment consisted of three parts. Firstly, we collected demographic informa-
tion from participants and asked about their experience with other CAD applications.
Participants self-rated their skill levels on a scale from one (novice) to five (expert) for
each application. We also collected information about their experience with general-
purpose programming languages and asked them to rate their OpenSCAD skills on
the same scale. Additionally, we discussed their understanding of parametric design
and interest in creating parametric models. In the second part, participants performed
a task to create a parametric design using the original OpenSCAD version. They ver-
balized their thought process throughout the task. Upon completion, we discussed the
challenges encountered and their overall experience. We then introduced and demon-
strated the features implemented in OpenSCAD. Participants practiced briefly with
the enhanced OpenSCAD version before creating a second parametric model, utiliz-
ing the new features where applicable. The third part involved participants sharing
their experiences using the new features and discussing the potential impact of such
solutions in programming-based CAD applications.

Each experiment session lasted approximately 90 minutes. We took detailed notes on
participants’ responses and their design thinking processes. Additionally, We recorded
the screen during the design tasks to assess performance.

5.4.1 Recruitment and Participants

The recruitment process mirrored that of the study described in Chapter 3. We con-
tacted participants from the study described in Chapter 3 and recruited in OpenSCAD
communities on Reddit (r/openscad) and Facebook (OpenSCADAcademy) to conduct the
experiment using Zoom video conferencing. The only criterion for participation was
the ability to create parametric designs with OpenSCAD.

Participants used a configured version of OpenSCAD on a computer we set up.
Before the session, we asked them to install the remote desktop application Anydesk6.
During the experiments, they accessed a Linux machine we prepared with Anydesk to
execute their parametric design tasks.

We report participants’ demographics and previous experience with CAD applica-
tions in Table 10. All participants self-identified as male and varied in age: one was
between 20 and 29, three were between 30 and 39, three were between 40 and 49, one
was between 50 and 59, and two were between 60 and 69 (average: 44.6, standard
deviation: 15.0). All participants, except P3, had four or more years of 3D modeling

6 https://anydesk.com/

https://anydesk.com/
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experience (average: 9.3y, standard deviation: 5.9). Except for P3, all participants self-
rated with four or more in at least one programming language. All participants except
P4 and P7 had experience with other CAD application, but only P3, P6, P8, P9, and
P10 self-rated with 3 or more at least one of them. Finally, participants self-rated their
skill level with OpenSCAD as follows: One participant with 2, four participants with
3, four participants with 4, and one participant with 5.

Table 10: Demographics and self-rated skill level in CAD applications and programming lan-
guages.
Participants self-rated their skill level on the scale: 1 (Novice), 2 (Advanced Beginner),
3 (Competent), 4 (Proficient), 5 (Expert). The level reported in the category Others is
the highest rank expressed by the participant among the options.
Others*: Onshape, MeshMixer, Inventor, CATIA
Others**: Matlab, PHP, Bash, IBM Assembly, ARM Assembly

Other CAD applications Programming languages
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P1 40-49 8 3 1 5 5

P2 60-69 9 5 2 2 4 5 5

P3 60-69 2 3 2 3 1

P4 50-59 10 3 5 5 5

P5 30-39 18 4 1 1 3 4 2 2

P6 30-39 20 2 3 4 1 2 2 3 2

P7 40-49 12 4 5 5 5 5

P8 30-39 5 4 1 4 4 4 4

P9 20-29 4 3 4 3 2 3 3 3 2 4

P10 40-49 5 4 4 2 1 5 3

5.4.2 Design tasks

Participants performed two parametric design tasks first using the original version of
OpenSCAD and later our modified versions of OpenSCAD.

We proposed two models: the model A, a chalise-like model (Figure 35a), and model
B, a box (Figure 35b), aiming to make them comparably challenging in terms of the
number of required primitives, spatial transformations, and boolean operations. How-
ever, we designed them with distinct structures to avoid redundancy in the design
experience. For model A, participants were required to make a parametric design ex-
posing parameters at least for the size of the cutouts in the base, the sizes of the holes
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in the cup, the height and radius of the cup, and the length of the stem. In Model B,
participants were required to create a parametric design that exposed parameters for
the length of the legs, the size of the windows, and the height, width, and depth of
the box. We converted the models into STL files and uploaded them to the STL online
viewer, 3DViewer7, generating shareable links that allowed participants to view the
models in 3D on their computers. As mentioned in the first model participants used
the original version of OpenSCAD and in the second model they used the modified
version of OpenSCAD. To mitigate order bias, we counterbalanced the sequence: half
of the participants worked on Model A first, followed by Model B, while the remaining
participants started with Model B, and then proceeded to Model A.

(a) Model A. Participants were required to
replicate it parametrically, exposing param-
eters for the size of cutouts in the base, the
sizes of the holes in the cup, the height and
radius of the cup, and the length of the
stem.

(b) Model B. Participants were required to repli-
cate it parametrically, exposing parameters
for the length of the legs, the size of win-
dows, and the dimensions (i.e. height, width,
and depth) of the box.

Figure 35: Models used in the experiment. Participants replicated the models, exposing param-
eters as required

In the first task, participants used the original OpenSCAD version, articulating their
thought process. This exercise had three goals: first, to establish a baseline for compar-
ing the performance of the design process and user experience with the later exercise
using the modified OpenSCAD version; second, to refresh participants’ understand-
ing of parametric design in OpenSCAD, facilitating a subsequent discussion about its
challenges; and third, to allow observation and analysis of workflows, practices, and
difficulties in creating parametric designs. After completing the first design, we asked
the participants about their user experience, task difficulty, and specific challenges in
executing parametric designs with OpenSCAD. We then introduced the new Open-

7 https://3dviewer.net/

https://3dviewer.net/
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SCAD features using elements from their initial designs. This was followed by tasks
like determining the parametric position of a cube’s corner or positioning the bottom
of a sphere on top of a cube to familiarize participants with the new features. After
about 10 minutes of practice and resolving doubts, participants embarked on the sec-
ond design task, encouraged to utilize the new features where feasible. The users then
discussed their experience and the potential of such solutions for programming-based
CAD applications.

5.4.3 Data collection

During the experiment, various forms of data were collected. We recorded the Open-
SCAD window activity while participants worked on both design tasks. Recordings
of participants creating the first model with the original OpenSCAD version were ana-
lyzed to find common patterns and behaviors in designing. Moreover, these recordings
were compared to the recording of participants creating the design with the modified
version of OpenSCAD to evaluate the potential and challenges of our solution.

Moreover, upon completing each model, participants were asked to rank the task’s
difficulty. At the end of the second design exercise, they provided comparative eval-
uations of both versions of OpenSCAD. Participants answered Likert scale questions
focused on the functionality and usability of the new features and engaged in discus-
sions about their perceptions of these solutions.

5.4.4 Data analysis

We created a log of participants’ events, creating a parametric design in the original
version of OpenSCAD. Events included detailed actions such as creating parameters,
first rendering, creating spatial transformations, and errors performing design tasks.
We tracked all the translate statements declaration and all attempts to verify their
correctness. We compared these logs and identified common behaviors and patterns.

Then, we analyzed the participant’s answers regarding the difficulty of the tasks,
functionality, and usability of the features. We summarize their answers and present
them.

Finally, we created a log of participants’ translate statements declaration and all
attempts to verify their correctness. We compared these results with those from the
designs on the original version of OpenSCAD.

5.4.4.1 Parametric design in programming-based CAD

We identified common behaviors when participants designed with the original version
of OpenSCAD.
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parametric design The participants’ approaches to creating parametric designs
in OpenSCAD were analyzed through screen recordings, revealing a significant an-
ticipatory mental process. Initially, all participants focused on setting up parameters,
with some attempting to forecast all necessary parameters for the entire model, while
others concentrated on parameters for specific sections, revisiting the creation process
as needed. Regardless of the approach, additional parameters were often introduced
as the design progressed.

All participants mentioned they would try to define the geometric properties para-
metrically when possible. Indeed, none of the geometric properties were defined with
raw numbers, and participants frequently asked about the relationship of an object
with others to better generalize the definition of the geometric properties. Common
questions were related to the position of the spheres in model A in relation to the cup
height or the position of the windows in the box of model B.

design style Participants split the design into sub-parts and designed them sepa-
rately, although the way to split the design varied. For example, in the case of model
B, some participants divided the design into 2: the box and the legs. Eight participants
opted to design the box as a cube with subtracted parts. However, P2 and P10 created
the box as a union of different walls.

Three participants showed the pattern of creating subparts in the origin and then
removing them from the scene by commenting on the code statement to continue
with the next subpart. When all subparts were completed, the participants started by
placing the bottom part and creating translate statements to place each part on top
of the other. The rest of the participants created the designs cumulatively without
removing elements.

desfining positions In creating parametric designs using OpenSCAD, partic-
ipants exhibited a consistent common methodology and encountered specific chal-
lenges. Initially, they aimed to mentally locate the center of the object’s coordinate
system, accounting for any preceding spatial transformations. Then, axis by axis, par-
ticipants started to find the required translation based on the existing variables.

For example, consider the base of model A. Initially, some participants constructed
a cylinder to serve as the base. This cylinder was then enclosed within a difference

block to incorporate cube-shaped cutouts along its edges. Initially, a cube geometry
not centered (i.e. , with the parameter center set to false)—is created. Subsequently, a
translate transformation is applied to position this cutout, typically along the positive
’x’ axis, following the syntax’s axis order. The process involves initially positioning the
cube’s moving center at the origin by adding the cylinder’s radius (or half its diameter)
to align it with the cylinder’s edge. Then, participants subtract half of the cube’s x-
dimension to embed the cube halfway into the cylinder. A similar approach is taken
for the ’y’ axis, while for ’z,’ the cylinder’s height is subtracted.
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This process involves identifying the center of the object being manipulated, ad-
justing its position relative to other components in the design by considering their
dimensions, and iteratively applying addition or subtraction as needed. Common er-
rors encountered in this process include:

1. Neglecting the specific center that the translate operation targets. Spatial trans-
formations might use a center that varies based on the geometric center of the
object. For example, cube(center = true) centers the cube’s geometry at the
origin, while cube() or cube(center = false) places the cube’s corner at the
origin. This requires considering an offset for translations and possibly adjusting
the rotation axis when rotating for centered versus non-centered objects.

2. Misinterpreting the multipliers needed for positioning. For instance, participants
occasionally miscalculate the offset using a quarter instead of half of the object’s
dimension, leading to trial and error to achieve the desired visual outcome.

3. Misinterpreting the coordinate system’s orientation and mistakenly applying the
wrong sign to variables. Participants accurately identified the necessary variables
and their multiplier factors but occasionally erred on the sign, adding when they
should subtract, indicative of a disconnect between spatial conceptualization and
code expression.

4. Confusing variables, particularly in complex expressions involving multiple vari-
ables, lead to the inclusion of incorrect variables in calculations.

5. Difficulties in mathematically deriving complex expressions when dealing with
subtracted elements not visually represented in the model. To counteract this,
some participants temporarily removed elements from difference blocks for
verification or used modifiers for visual guidance, reintegrating elements upon
satisfaction with the placement.

Strategies to address these errors typically involved trial and error with variable fac-
tors and signs, along with meticulous code examination to ensure accurate expression
formation.

ensuring overlapping Another common strategy involved creating a variable
with a minimal value to ensure necessary overlap. Participants frequently utilized
preview mode in OpenSCAD due to its speed advantage. However, this mode demon-
strates limitations in CSG expression. Given the abstract nature of CSG definitions, tran-
sitioning to geometric representation can exhibit unintended behaviors in preview
mode. Specifically, when elements theoretically align perfectly, their visual represen-
tation might not clearly depict this coincidence. For instance, in scenarios where two
cubes should intersect on a face, the application may fail to execute the intended sub-
traction if they are precisely coincident. To bypass this issue, participants introduced
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a "delta" variable, slightly enlarging the element meant for subtraction. This adjust-
ment ensures that the geometric calculations accurately reflect the desired subtraction,
addressing the preview mode’s imperfections.

5.4.4.2 Perception on implemented features

Participants shared their experiences on the difficulty of creating the models and the
functionality and usability of the implemented features.

Most participants rated both models as relatively easy to create, as shown in Figure
36. P1, P2, and P4 indicated that they perceived Model B as slightly more challenging
than Model A. However, all participants rated the difficulty of both models between
Neutral (option 3), Easy (option 4), and Very Easy (option 5). Specifically, for Model
A using the original version, two participants considered it neutral, one easy, and
two very easy. In the design of Model A with the modified version of OpenSCAD, 4

participants considered easy, and one very easy. For Model B using the original version
of OpenSCAD, one found it neutral, two easy, and two very easy. Participants ranked
equally for Model B using the modified version of OpenSCAD.

Figure 36: Participants ranked the difficulty of Models A and B in the original and modified
version of OpenSCAD using the scale: 1 (Very Difficult), 2 (Difficult), 3 (Neutral), 4

(Easy), and 5 (Very Easy).

After completing the design exercise using the implemented features, we asked par-
ticipants if the modified version of OpenSCAD made the design task easier or more
difficult (Figure 37). All participants answered above About the same (option 3), with
seven participants with Somewhat Easier (option 4) and three participants with Much
easier (option 5). Then, we asked a similar question but individually targeted both fea-
tures, absolute location and relative location. Not all participants used both features
in the design exercise according to personal preference, so answers in Figure 37 re-
port the percentage of the total of participants who used the feature and answered the
question: seven participants for the absolute location feature and nine participants for
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the relative location feature. For the question, “Did the absolute location make the de-
sign easier or more difficult?” one participant (14.3%) answered about the same, and
six participants (85.7%) answered somewhat easier. Regarding the relative location fea-
ture, four participants (44.4%) answered somewhat easier, and five participants (55.6%)
answered much easier. Models A and B were perceived as similarly difficult, although
some participants mentioned that model B was slightly more difficult.

Figure 37: Participants answered if the modified version of OpenSCAD and the individual
features made the design task easier or more difficult with the scale 1 – Much more
difficult, 2 – Somewhat more difficult, 3 – About the same, 4 - Somewhat easier, 5 –
Much easier

We also asked how difficult it was to use each of the implemented features in terms
of usability, as depicted in Figure 38. Similarly to the previous question, the answers
report on the total of participants who used and answered the question about the fea-
ture. In all cases, all participants answered between Neutral (option 3), Easy (option
4), and Very easy (option 5). For the absolute location feature, six participants (58.7%)
answered easy and one participant (14.3%) answered very easy. Regarding the rela-
tive location feature, four participants (44.4%) answered neutral, and five participants
(55.6%) answered easy. Three participants indicated that selecting control points with
a right-click is inconvenient. P4 and P5 commented “My initial inclination is to left click
those handles; it’s a little bit extra to remember to right-click the handle” and “For me, select-
ing with the right click is a bit unintuitive”. Furthermore, the control points did not scale
when zoomed in, which was also reported as problematic. P9 commented “It was easy
except for the control points size; it would be nice to have scaling on those.” For the relative
location, half of the participants answered Neutral (option 3) and the other half Easy
(option 4). Participants found the process with two objects difficult to remember and
listed some problems. For example, participants missed visual cues that guided them
through the different steps. P5 commented “There was no clear prompt indicating what
was copied to the clipboard; it’s unclear if it’s correct. Upon pasting, the directionality, whether
red goes into blue or vice versa, is confusing. A potential improvement from the rendering side
could be to draw an animated arrow to indicate the directionality of the relative location, pro-
viding better guidance on its use.” Further, P3 mentioned that using color as indication
of the process can be difficult for some people “I’m not exactly colorblind, but it’s hard



5.4 user study 111

for me to see colors. So it’s nice for people like us if you have an indication that is not entirely
dependent on colors.” However, they found it easy overall, as commented P1 “It is not
obvious but easy”.

Figure 38: Participants answered how difficult was to use the implemented features with the
scale 1 – Very difficult, 2 – Difficult, 3 – Neutral, 4 – Easy, 5 – Very easy

Later, we asked participants if they thought that these features would help them in
the design process in their normal modeling process. All participants answered Yes.
Participants found several advantages. P1 commented that it could help to avoid errors
when designing parametrically: “A few days ago, I positioned objects by adding variables
I believed would bring them to the correct position. It appeared to be correct in the preview
because the two values were similar. However, when one value changed, the alignment was
disrupted. One part was not where it was supposed to be. It was only correctly positioned when
the variables coincidentally lined up.”. P2 found that this is a more interactive alternative
than other alternatives that try to include “anchors” selectable from the code. “Tools like
Cascade and others are being used by designers who are trying to add anchors to objects, making
them selectable in the code. What you’re doing is making a user interface more interactive,
combining the interactivity of Fusion 360 with the capabilities of OpenSCAD, and putting
together the advantages of both worlds. So I think this is a better solution to the problem.” For
instance, P4 and P9 found that such features could facilitate the transition of people
with little experience into programming-based CAD applications. They commented
“It would definitely ease the transition into (programming-based) parametric design for those
people who are used to using traditional CAD (direct manipulation).” and “I think it would be
incredibly valuable in helping users transition from normal CAD to scripted CAD, especially
for those who don’t have a rigorous background in computer science or math” respectively.
Finally, P2, P5, P6, P7, P8, and P10 mentioned that this would facilitate the deriving
of mathematical expressions, making the design faster. P2 said “When designing objects
that need to be combined to form one design, I often do calculations to position things. This
would mean fewer calculations for me to do”.

5.4.4.3 Comparing original and modified version of OpenSCAD

Our analysis focused on participant approaches to defining translate statements in
both the original and the modified versions of OpenSCAD. When participants defined
a translation, they continued to render the result to verify the correctness of the code.
Each rendering attempt was logged and categorized based on outcome: Success for
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correct placements, Wrong location for incorrect placements, Uncertain/false positive for
when participants were unsure or incorrectly deemed the placement, and Syntac errors
for errors in the programming syntax.

Participants generated a total of 94 translate statements using the original Open-
SCAD version (52 in Model A and 42 in Model B) and 85 with the modified version
(42 in Model A and 43 in Model B). The original version had 155 rendering attempts
(averaging 1.64 attempts per translation), while the modified version had 117 attempts
(averaging 1.37 attempts per translation), possibly implying that with our modified
version, participants required fewer attempts to reach a successfully translate def-
inition. The distribution of these attempts across different categories reveals signifi-
cant insights. As the number of spatial transformations differs between programming
styles, we focused on investigating how difficult it is to correctly define the translate

statements defined by the users in terms of the number of attempts per statement. As
illustrated in Figure 39a, the modified version demonstrated a higher success rate and
fewer instances of incorrect placements, uncertain/false positives, and syntax errors
compared to the original version. Similar behavior is depicted in Figure 39b when
the analysis is done per model. Notably, Model B exhibited a lower success rate and
an increase in wrong location attempts in both OpenSCAD versions, aligning with
participant feedback that Model B was slightly more challenging than Model A.

(a) Comparison between the original and mod-
ified versions of OpenSCAD

(b) Comparison between the original and mod-
ified versions of OpenSCAD for Models A
and B

Figure 39: Each attempt to verify a translate statement upon rendering was logged and clas-
sified to compare both versions.

During the second design using the modified version of OpenSCAD, not all transla-
tions were defined using the developed features. Participants often opted to calculate
expressions manually. Figure 40a depicts the different attempts using the modified
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version of OpenSCAD using the implemented features or describing the translate

manually. The participants actively tried to use the features. Interestingly, the Model
B presented a higher number of errors using the features. We perceived that Model
B geometry presented more cases where the control points were hidden by geome-
tries and cases where participants could not find a control point in the location they
needed. Moreover, Figure 40b shows the trials of using the implemented features. In
most of cases, users could use the features although in some cases they made mistakes
or required assistance with specific questions.

(a) Attempts to verify translate using the mod-
ified version of OpenSCAD

(b) Outcomes when users attempted to use the
features

Figure 40: Results of feature usage in OpenSCAD and possible outcomes.

5.5 discussion

We are interested in facilitating the parametric designs in programming-based CAD ap-
plications, particularly addressing the challenge identified in Chapter 3: the difficulty
of defining parametric geometric properties of certain objects based on the properties
of others.

We have evaluated the potential and challenges of our proposed solution, answering
the research question RQ3: How can bidirectional programming facilitate the defini-
tion of geometric properties of models in programming-based CAD applications?.

Participants unanimously agreed that our solution would significantly ease the de-
sign process. They highlighted that such alternatives could help avoid errors, sim-
plify the mathematical definition of properties, make the design process more in-
teractive and appealing, and lower the mathematical skill barrier for newcomers in
programming-based CAD applications.

We foresee two distinct user scenarios for these alternatives: one involving newcom-
ers and the other experts. Prior studies have indicated that newcomers often avoid
design tasks due to perceived high-skill requirements [88]. This issue is exacerbated in
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programming-based CAD, where the semantic gap between natural and programming
languages is more pronounced [111, 132, 175]. To design effectively, users typically
need to visually inspect the current state of the model to determine the next element’s
parametric position. Our solution minimizes this “gulf” between evaluation and exe-
cution [226] by allowing users to extract positions directly from the view, bypassing
the need to interpret and manipulate code to derive parametric expressions.

This solution is equally beneficial for experts. The study described in Chapter 3

revealed that even self-identified expert OpenSCAD users face challenges with math-
ematical definitions. Experienced participants often exhibited mechanical workflows
when defining parameters, yet hesitated over the accuracy of their parametric defi-
nitions in complex designs, resorting to trial and error. Our solution can speed up
this process by automatically providing accurate positional descriptions. However, it
also challenges experienced users accustomed to established programming workflows.
Users seem to be accustomed to reaching solutions restricted to the features of the
programming language. P3 noted that some applications, like JSCAD, offer functions
to extract geometry boundary box information (i.e. minimum and maximum values
in all dimensions) for later use in code8, but this still limits users to the code editor
and mental reconstruction of code results. Our approach, by contrast, focuses on di-
rect understanding and interaction in the view, easily identifying a required position
in the view but having to derive it in the code. Similar challenges are faced by other
programming-based CAD tools like CadQuery. Mathur et al. [138] propose a solution
for creating queries that also incorporate interaction in the view, albeit for a different
purpose, but with the same underlying principle of extracting information from the
view for code reuse.

The comparison between the original version of OpenSCAD and our approach re-
vealed that using the developed features participants would require less attempts to
reach the aimed geometric properties, resulting in a proportional lower rate of errors
and higher rates of successful attempts. Model B presented a higher rate of errors
when using the developed features.

Despite these advantages, we observed experienced users’ resistance to deviating
from their established workflows. P6 expressed, “It seems easy to use, but changing the
mindset to use the view for design is challenging without practice.” Similar views were
echoed in OpenSCAD web forums9, where discussions about integrating such solu-
tions are limited to programming language features or in a Application Programming
Interface (API).

While there may be initial resistance among experienced users, our user study sug-
gests that the perceived benefits can facilitate adaptation.

8 https://openjscad.xyz/dokuwiki/doku.php?id=en:design_guide_measurements accessed on
28/01/2024

9 https://github.com/openscad/openscad/issues/954 accessed on 28/01/2024

https://github.com/openscad/openscad/issues/301 accessed on 28/01/2024

https://openjscad.xyz/dokuwiki/doku.php?id=en:design_guide_measurements
https://github.com/openscad/openscad/issues/954
https://github.com/openscad/openscad/issues/301
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However, our implementation does present some usability challenges, as users noted.
Certain control points were inaccessible due to overlaps with other volumes, and us-
ing right-click for selection was not always intuitive. These feedback points are crucial
considerations for future refinements of our solution.

Another identified problem is related to the removed geometries in the difference

statements. Participants wanted to use the features to place subtracted elements but
these elements where not reachable from the view. Some participants used background
modifiers to make these geometries visible and selectable so they could use the fea-
tures. Normally, participants placed the cursor in the statement they were modified.
Thus, the application could make always visible the element that create the code state-
ment where the cursor is placed so the user has a explicit visual representation of
the part they are working on and could help in cases where geometries are sub-
tracted. Other challenge is related to the difficulty of understanding nested transforma-
tions. Sometimes, participants wanted to use the absolute location feature to replace a
translate statement definition. However, often, these statements were placed inside
other translate statements. As the absolute location feature gives the position relative
to the CSG root, the definition retrieved is not useful to use inside another transforma-
tion. The application could take into account the position of the cursor to locate where
the new definition will be placed and incorporate previous transformations.

5.6 limitations

Our study initially intended to compare the performance of the original and the mod-
ified version of OpenSCAD. However, the 15-minute practice session seemed to be
insufficient for users to get used to the logic of the new features. We concluded that
a longer use time would be necessary to evaluate this factor and focused on the user
experience, which we considered more important.

Moreover, our solution only considers a limited set of cases. Specifically, it does not
include cases with spatial transformations other than translate.

Some of our recommendations are related to newcomers, although none of the par-
ticipants were newcomers. Further exploration with beginner users must be carried
out to confirm our suggestions.

5.7 conclusion

Based on the insights of the study presented in Chapter 3, we hypothesized a gen-
eral structure for the creation of geometric properties in parametric designs within
programming-based CAD applications. To test our hypothesis, we conducted a forma-
tive study, analyzing the code of thirty OpenSCAD models sourced from Thingiverse,
which validated our initial assumptions.
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Subsequently, we proposed a design goal centered on a bidirectional programming
approach to streamline the creation of parametric models in programming-based CAD

applications. To achieve this goal, we modified the source code of OpenSCAD, im-
plementing features that align with our design objectives. To validate our solution,
we conducted an experimental study involving ten OpenSCAD users. These partici-
pants engaged in creating parametric designs using both the original and our modified
versions of OpenSCAD. They evaluated their experience and engaged in discussions
about the challenges and potential of such solutions.

Our findings indicate that the concept of allowing users to retrieve information di-
rectly from the view using direct manipulation interactions and subsequently utilizing
this information in the code holds significant promise. This approach could notably
reduce design errors, enhance the interactivity and appeal of the design process, and
facilitate entry for newcomers by reducing the mathematical skills requirements typi-
cally associated with programming-based CAD applications.
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C O N C L U S I O N

This thesis is dedicated to improving the user experience in programming-based CAD

applications. We have conducted three distinct studies, each contributing to discover-
ing previously unidentified challenges faced by users of these applications. To address
some of these challenges, we have implemented bidirectional programming solutions
within the programming-based CAD application, OpenSCAD. These solutions aim to
alleviate user difficulties, thus improving the overall usability of programming-based
CAD applications.

6.1 research contribution summary

This research aimed to identify and address the challenges faced by users of programming-
based CAD applications to improve their usability. Initially, we encountered a substan-
tial gap in understanding the user experience within these applications. We have fo-
cused our investigation on 3D design in the field of personal digital fabrication with
3D printers, where programming-based CAD applications have a significant influence.
In our first study, we conducted a comprehensive study that included interviews with
active users of popular programming-based CAD applications like OpenSCAD. The
data collected were analyzed using a Reflexive Thematic Analysis (RTA), revealing
three main themes in 3D printing design practice: the profile of programming-based
CAD applications users, challenges in 3D modeling and difficulties encountered in 3D
printing. These insights, detailed in Chapter 3, provide an in-depth understanding of
the motivations and behaviors of makers in programming-based CAD, along with the
challenges observed in a hands-on exercise and reported by users answering the re-
search question RQ1. Our findings extend to programming-based CAD applications
beyond digital personal fabrication and to broader challenges of 3D printing within
the digital personal fabrication community. Therefore, this study has laid the ground-
work for future research to address specific problems and facilitate the adoption of
programming-based CAD applications.

After our initial study, we addressed two specific design challenges: the difficulty
in linking the 3D view with the corresponding code and the complexities involved
in executing spatial transformations. An exploratory exercise was conducted to delve
deeper into these challenges, which led to the development of specific design goals for
a system designed to mitigate these issues. Embracing the bidirectional programming
approach, we modified the source code of OpenSCAD to implement these goals. We
specifically introduced two features to enhance navigation between the view and the
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code: reverse search and forward search. These features, relying on direct manipula-
tion interactions, enable users to select parts of the model directly on the view and
receive visual cues that make the code-view connection explicit. This innovation sim-
plifies the location of specific code statements based on visual inspections and isolates
the impact of a code statement in the view. Furthermore, the application supports
spatial transformations such as translate, rotate, and scale through drag-and-drop
interactions, with automatic code updates. This approach allows users to easily com-
prehend the relative coordinate systems of specific parts and make view-based edits,
where design intent is more intuitively established. This study focused on respond-
ing to the research question RQ2. The results, including informal validations of these
features, are discussed in Chapter 4, evaluating the potential, limitations, and future
directions of this approach.

In Chapter 5, we tackle a key challenge identified in our initial study: the precise
definition of geometric properties in parametric models. Recognizing users’ difficulty
in formulating mathematical expressions for parametric designs, we hypothesized
that geometric properties in programming-based CAD applications are commonly for-
mulated as linear combinations of existing variables. This hypothesis was substanti-
ated through a formative study analyzing thirty models from Thingiverse. Based on
these insights, we proposed and implemented a design solution in OpenSCAD, en-
abling users to directly extract geometric information from the view for use in the
code through bidirectional programming interactions. An experimental study with
ten OpenSCAD users evaluated this solution, focusing on its influence on the creation
of parametric designs and its potential to streamline the design process. Our findings
reveal unanimous agreement among participants on the usefulness of this feature, in-
dicating its potential to simplify the access of newcomers to programming-based CAD

applications and aid in the accurate definition of geometric properties giving an an-
swer to the research question RQ3.

In conclusion, this doctoral thesis presents a thorough approach to answer our re-
search question:

"How can interaction techniques be used to facilitate design in programming-based
CAD applications for 3D printing?"

We start by presenting an understanding of the programming-based CAD user com-
munity that uncovers numerous challenges these users encounter during the design
process, establishing a foundation for future investigations. Furthermore, this research
addresses three significant identified challenges through the application of bidirec-
tional programming in two distinct studies. The proposed solutions, implemented
in OpenSCAD, are designed to be compatible and operational together, as a proof-
of-concept of the potential of these solutions in enhancing programming-based CAD

usability and efficiency.
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6.2 future work

This section delves into the potential facets of work that can be a continuation of our
research. Initially, we will discuss two projects that were conceived and started during
our research but were not completed. Although not fully realized, these projects offer
valuable insight and learning experiences that have contributed to the overall research
journey.

Subsequently, we will explore potential research opportunities that could further ex-
tend and build on our current investigation. These opportunities represent prospective
avenues for continued exploration and development in the field, potentially opening
new doors for advancements and discoveries based on the groundwork laid in this
thesis.

6.2.1 Other Explorations

In exploring potential contributions to address the challenges faced by users of programming-
based CAD applications in 3D printing, as identified in Chapter 3, our focus initially
narrowed to two additional issues. Due to time constraints, our efforts were mainly
directed toward the studies presented in Chapters 4 and 5. However, early discussions
and initial work on some of these challenges are worth sharing.

The first challenge involves the disconnection between the visual representation
of objects in the design environment and their actual physical context. The second
challenge concerns the difficulties that users experience in modifying models post-
printing.

6.2.1.1 Bidirectional Programming on Augmented Reality

In digital personal fabrication with 3D printers, objects are often intended to be inte-
grated into a physical environment, either to create new objects [67], repair them [88],
or augment existing ones [13]. Designing these objects typically requires considering
constraints from the physical environment. However, most available design applica-
tions are limited to a 2D screen interface, which presents an isolated, empty canvas.
Users encounter problems handling 3D spaces in 2D viewports [100] and are forced
to design without considering the context of the intended physical environment. This
limitation not only restricts creativity [194] but also complicates the verification of the
accuracy of the model [110]. Additionally, by separating the creative and validation
stages [57], the likelihood of needing multiple printing trials increases, which is time
consuming [149].

Various approaches have attempted to bridge the gap between the digital and phys-
ical worlds. Techniques such as scanning physical objects or capturing 2D images for
3D object design [60, 61, 122, 166, 224] and using physical 3D props such as blocks
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[9, 126] or clay [188] have been explored. While these methods allow some interaction
with physical objects, the design process remains isolated from the target environment
due to the 2D screen limitation. To provide a more immersive design experience, ex-
tensive research has been done on virtual [66, 97, 137, 144, 146, 178, 215, 230] and
augmented reality solutions [12, 23, 51, 99, 120, 168, 208, 225]. These 3D environments
enhance spatial perception, potentially mitigating depth perception issues [97] and
aiding in understanding the real scale of objects [120]. Furthermore, 3D interactions
can offer more intuitive workflows for 3D environments compared to 2D screens [147],
which benefits general 3D modeling tasks [181]. Augmented reality, in particular, im-
proves user experience and performance by combining design and validation stages
in a pre-printing phase, reducing design time and fabrication iterations [57].

Nevertheless, similar to the broader trend in CAD applications, these solutions have
predominantly focused on design assistance in direct manipulation applications. This
is likely due to the differing interactive nature of programming-based and direct ma-
nipulation approaches. In essence, both virtual and augmented reality allow for direct
manipulation interactions. Thus, it is arguably evident that the transition between a
2D screen and these environments included applications that followed the same inter-
action approach: direct manipulation.

Introducing bidirectional programming into programming-based CAD applications
offers an opportunity to leverage the interactive space provided by augmented reality,
effectively addressing the issue of design isolation from the intended physical environ-
ment of the object. These immersive environments could also enhance code interaction
and comprehension, a concept previously explored in various fields [85, 108, 182, 183].
Furthermore, augmented environments could be enriched by the solutions proposed
in Chapters 4 and 5.

Future studies could explore the potential of augmenting programming-based CAD

applications with bidirectional programming interactions in an augmented reality set-
ting based on previous work.

capturing shapes from physical objects Various projects have attempted to
incorporate the physical environment into the digital realm. KidCAD [61] en-
ables children to imprint toy shapes onto a malleable gel input device for sub-
sequent design use. CopyCAD [60] captures 2D shapes of arbitrary objects us-
ing a camera/projector system for integration into new models. Lau et al. [122]
extract contours from photographs for use in designing new objects. RetroFab
[166] scans device interfaces to redesign adapted layouts incorporating actuators.
These solutions underscore the importance of integrating geometries from the
physical environment into digital design. However, they typically only incorpo-
rate a fraction of the environment into the digital realm and lack mechanisms for
exporting digital models back into the physical world for validation.
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modeling through props Other approaches emphasize design using physical ob-
jects instead of solely capturing geometries. Sheng et al. [188] investigate sculpt-
ing via physical proxies, where the system tracks the user’s actions in sculpt-
ing clay and translates them into digital designs. Anderson et al. [9] advocate
for designing with interconnected blocks to represent geometries later digitized.
StrutModeling [126] introduces a kit for low-fidelity modeling using magnetic
connection pieces. While these methods facilitate quick validation and interac-
tive design, they are not designed to transform designs into coded formats and
may struggle with modifications to pre-existing models.

mixed reality The capacity of virtual and augmented reality to display geometries
in 3D space makes them appealing for 3D design. Research in mixed reality
design is extensive, covering both virtual and augmented reality. Trika et al. [215]
integrate CAD with virtual reality to improve model understanding, particularly
in complex junctions. Gao et al. [66] combine virtual reality with voice recognition
to improve design precision. Mine et al. [146] address virtual reality’s precision
challenges by incorporating 2D touch surfaces. Lift-Off [97] and Martin [137]
explore enhancing virtual reality CAD modeling. However, these virtual reality
solutions still separate the physical environment from the design process.

Augmented reality appears to be more suitable for integrating the physical envi-
ronment. Arisandi et al. [12] and Mockup Builder [51] combine augmented reality
with physical props and multi-touch surfaces for 3D modeling. Lau et al.’s Situ-
ated Modeling [120], MixFab [225], and DesignAR [168] further this integration
with augmented reality and multi-touch screens for design.

Although building on these solutions to explore different interaction techniques,
current research does not facilitate programming-based design in 3D spaces.

6.2.1.2 Development

To effectively integrate OpenSCAD into an augmented reality environment and lever-
age the solutions implemented in Chapters 4 and 5, it was imperative that the appli-
cation supports preview features similar to those offered by OpenSCAD. A significant
challenge in this integration is the lack of existing solutions capable of creating and
manipulating CSG geometries in runime within an augmented reality context in appli-
cations such as Unity [211]. Addressing this gap, we initiated the development of a
library specifically designed to dynamically generate and manipulate CSG structures
and geometries for augmented reality applications.

This work was carried out by Danny Kieken, a member of the Loki team and
co-author of one of our studies [71] in the course of this investigation. The frame-
work developed due to this collaboration is accessible at https://github.com/LokiResearch/

LibCSG-Runtime, offering a novel library for creating new meshes from CSG operations
in Unity during the runtime.

 https://github.com/LokiResearch/LibCSG-Runtime
 https://github.com/LokiResearch/LibCSG-Runtime
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6.2.1.3 Facilitating post-printing modifications in programming-based CAD applications

Personal digital fabrication inherently involves an iterative process. Despite thorough
validations during the design stage, users frequently need to modify their designs
post-fabrication [57].

A common approach to ascertain the required changes in the digital model is to first
experiment with physical modifications on the printed object. While this process en-
sures the model meets user expectations, physical edits do not automatically translate
to the digital model [223]. Subsequently, users are tasked with interpreting these physi-
cal modifications and translating them into corresponding code adjustments. This pro-
cess necessitates a second round of analysis, where edits, already made and validated
visually, must be re-implemented in the code.

There are some efforts to allow users to integrate modifications performed in the
physical object into the digital design. Some studies have explored initiating the de-
sign process with a physical prototype [125, 179], later digitized using image capture
tools like scanners. Others have proposed systems for annotating physical prototypes,
where annotations are recognized and transferred to the digital model, aiding in edit-
ing [199]. Additionally, the concept of interactive fabrication has been proposed, where a
dynamic collaboration between the user and the digital tool allows for an incremental
design and fabrication process [74, 150, 163, 170, 231, 232]. Notably, Weichel et al. [223]
explore bidirectional fabrication, wherein the user and machine collaborate to perform
edits and update the digital model simultaneously.

However, these approaches primarily cater to direct manipulation applications and
do not address scenarios where the digital design is code-based. Future work could
investigate assistive systems that integrate physical edits on printed objects into digital
designs created by programming-based CAD applications, thus facilitating the fabrica-
tion process.

The creation of prototypes as a preliminary step in design, serving as a pre-fabrication
validation, has been explored in several research studies. Leen et al. [126] introduce a
toolkit comprising interconnected pieces with a digital counterpart. Users can assem-
ble and disassemble these pieces to form a low-fidelity structure, which is then imme-
diately reconstructed on the screen. Clay modeling has also been used for the creation
of prototypes, either integrated into the digital design process through finger tracking
[188] or by photographing the finished model [9]. These methods enhance the design
process with interactivity and provide a clearer understanding of the final object’s ap-
pearance in the physical world. However, they primarily function as an initial design
step and are not suited for iterative design processes. In essence, these technologies
are beneficial for crafting an initial object prototype and digitizing it, but subsequent
edits made to the printed design do not directly influence the digital model.

HotFlex [74] offers a post-printing customization option. It embeds a system that
can alter shapes using bendable materials, allowing users to adapt the final object after
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printing, based on anticipated design changes. While this method provides some flexi-
bility for post-print modifications, it requires precise anticipation of potential changes
and is limited by the material’s properties.

The concept of interactive fabrication, breaking away from traditional 3D printing
workflows, has been explored in various innovative solutions. FreeD [231, 232], a hand-
held digital milling tool, assists users during fabrication, alerting them to potential
errors. Rivers et al. [170] propose a system that guides users in sculpting 3D objects
over different materials by projecting color indications. FormFab [150] enables users to
reshape thermoplastic materials through hand gestures, tracked by a robotic heat gun.
Similarly, Roma [163] combines an augmented reality headset with a robotic printer
for an incremental fabrication process. These interactive methods promote creativity by
allowing design alterations during the fabrication stage. Weichel et al. [223] further this
concept with bidirectional fabrication, where both the user and machine collaborate on
prototype edits, with the system updating the digital model in response to physical
modifications. However, most of these solutions do not maintain the changes in the
final digital design and are not readily applicable to designs based on programming-
based CAD applications.

Song et al. [199] propose a system that enables users to annotate physical proto-
types created from a digital design. The annotations made on the prototype’s sur-
face are then transferred to the digital CAD model, assisting in editing the digital
design. This method opens up possibilities for integrating physical modifications into
programming-based CAD applications, enhancing the workflow for 3D printed models.

This literature review provides a foundation for future research. It highlights exist-
ing developments and underscores significant research gaps, thereby guiding future
studies in facilitating the inclusion of digital modifications based on physical changes
of post-printed objects.

6.2.2 Research gaps

We discuss several research possibilities that our investigation has uncovered.

6.2.2.1 Understanding specific challenges

The study outlined in Chapter 3 uncovers a range of previously unidentified challenges
encountered by users in 3D printing with programming-based CAD models. While
providing valuable insights, the study did not probe deeply into the nuances of these
challenges.

A notable issue identified involves difficulties in measuring linear dimensions, which
becomes particularly pronounced with curved and organic shapes. Confirming this,
prior research, such as by Hudson et al. [88], acknowledges measurement as an error-
prone aspect in 3D printing workflows. The measurement process extends beyond
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mere tool usage and data capture; it encompasses accurate tool operation, interpreta-
tion of measurements, and their meaningful integration into the design.

Mahapatra et al. [136] explore this process extensively in the context of TinkerCAD,
a CAD application following a non-history-based direct manipulation paradigm. Their
study outlines a series of challenges in transferring information from the physical to
the digital realm, utilizing this data in digital designs, and digitally validating results
against physical references. It is plausible that these challenges manifest distinctively
across different CAD technologies. To illustrate, consider the task of designing a light
switch plate, as investigated by Mahapatra et al.. In a CAD application like TinkerCAD,
a user measures a light switch to determine the hole’s dimensions in the middle of
the plate, creating a cube as a subtractive volume in the plate using drag-and-drop in-
teractions. Conversely, in OpenSCAD, the user must account for the positions of other
objects and potential nested spatial transformations to position the hole accurately.
Moreover, the challenges in a programming-based CAD application based on BREP such
as CadQuery might present differently. In essence, the difficulties identified in studies
like Mahapatra et al.’s could vary significantly when applied to programming-based
CAD applications. A better understanding in this process could lead to specialized
solutions to facilitate data measurement and integration into models, such as SPATA
toolkit [222] intended for direct manipulation CAD applications.

The formative study presented in Chapter 5 delves into the methodology of creat-
ing geometric properties in OpenSCAD models with a formative study. While a coded
model represents a sequence of steps in constructing a geometry, interpreting the au-
thor’s intention solely from the code is difficult. Aside from explicit comments, the
underlying purpose behind each code statement is not obvious. Future research could
focus on a more in-depth exploration of design patterns used by programming-based
CAD users, aiming to uncover specific challenges they encounter during the design
process. Notably, in the experiment conducted for the study in Chapter 5, some par-
ticipants expressed a desire for constraint definition options in OpenSCAD, similar to
those available in FreeCAD or Fusion360. It remains uncertain whether users would
actively utilize such geometric definitions if they were readily accessible or if cur-
rent limitations or complexities in coding constraints hinder their implementation. A
more comprehensive understanding of these aspects could facilitate the development
of solutions, like those proposed in this dissertation, to address these challenges more
effectively.

This dissertation has primarily focused on improving 3D design in programming-
based CAD applications, uncovering various challenges and addressing some of them.
However, the research involved only experienced users. Challenges for novices might
differ. Future research should investigate novices’ experiences with programming-
based CAD applications, aiming to understand and alleviate entry barriers, thus in-
creasing access to these applications.
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In summary, future research should delve deeper into the nuanced challenges en-
countered by programming-based CAD applications users. This includes examining the
complexities in measuring physical objects and the subsequent data transfer to digital
designs. In addition, exploring the general programming patterns and the specific dif-
ficulties novice users face in this domain deserves attention. Such investigations could
significantly improve our understanding and contribute to facilitating and expanding
the use of programming-based CAD applications.

6.2.2.2 Design challenges

Editing geometric properties is a crucial task in CAD applications, and our research, as
outlined in Chapters 4 and 5, has identified key issues and opportunities for advance-
ment.

Editing geometric properties is arguably the most important task when designing
in CAD applications. Our investigation revealed problems addressed by the studies
described in Chapters 4 and 5, paving the way for further explorations.

The editing functionality proposed in Section 4.3.3 enables users to directly apply
spatial transformations to elements in the view while the system correspondingly up-
dates the code. However, this feature is currently restricted to transformations defined
by raw numerical values. When an element is defined using a variable-based expres-
sion, the system’s response is to merely adjust the value by adding or subtracting a
fixed number to achieve the desired result. Two specific user scenarios would greatly
benefit from enhanced functionality that includes coherent variable editing, similar to
how Sketch-N-Sketch operates with SVG outputs.

The first scenario involves users who initially set variables with arbitrary values,
planning to refine these once a more developed model and visual representation are
available. Here, users use a trial-and-error method, tweaking one parameter at a time
to arrive at satisfactory values. This process can be challenging, particularly when it is
difficult to predict how changes in a single parameter might affect the entire code. The
second scenario involves debugging the model errors by altering parameter values to
detect errors visually. However, this approach often leads to confusing results, making
it difficult for users to pinpoint the issue.

A solution that not only allows users to directly edit elements in the view, as pro-
posed in Chapter 4.2, but also enables the system to coherently modify existing vari-
ables would be highly beneficial. Such an approach would not alter the code’s struc-
ture but would adjust the existing variables to reflect the updated model. Users would
not have to scrutinize parameters to determine necessary changes tediously; instead,
they could directly interact with the view, making the process more efficient. Addition-
ally, this immediate feedback could improve code comprehension, resonating with the
principles of direct manipulation [193] and live coding [219].

Nonetheless, this approach poses certain challenges. Modifications in the view could
lead to multiple potential solutions, especially if multiple variables define the ge-
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ometric property being manipulated. Future research might explore strategies like
application-specific heuristics for decision-making, as seen in Sketch-N-Sketch [78],
or innovative interactions that present users with different options, allowing them to
make informed choices.

The features to define geometric properties, as introduced in Chapter 5, could be
further enhanced with direct manipulation interactions. Although these features were
well received, they also highlighted certain challenges. Users could easily determine
positions in the view and obtain parametric data, requiring them to incorporate this
information into the code manually. The separation between the code and the view
requires users to mentally interpret the impact of code changes, which can be chal-
lenging and demanding.

Future research could investigate ways to simplify the entire process of positioning
an object in relation to a parametric position in the view using direct manipulation. An
idea could be to allow users to move objects in space, utilizing the features proposed
in Chapter 4, while the application employs a ’snap-to-grid’ effect at control points,
based on the parametric logic detailed in Chapter 5. Such a solution would modify the
code coherently.

Another limitation noted in Chapter 5 is that control points are fixed, limiting users
to predetermined positions. For example, a participant noted the feature’s usefulness
for centering a part on a cube’s edge but questioned its utility for placing a part at
a specific, nonstandard position, like a quarter way along the edge. Future studies
could explore ways to generalize information extraction from the view, accommo-
dating more diverse and precise positioning needs. The formative study indicated
that geometric properties are typically defined as linear combinations of existing vari-
ables, with objects often positioned as simple proportions of these variables. For in-
stance, it is common to see definitions like translate[2/3*size_cube,0,0] rather than
translate[1.8596*size_cube,0,0]. A potential development could enable users to se-
lect any part of a model and receive a close approximation of the clicked position in
any part of the model based on existing variables. For example, clicking on the edge
of a cube defined as cube([size_x,size_y,size_z]) could prompt the application
to return a position like [(9/10)*size_x,size_y,size_z], simultaneously displaying
this position visually. This approach would enhance the user experience, allowing for
a generalized way to extract parametric information from the view.
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Base questionnaire used in the semi-structured interviews.

1. Are you at least an Advanced Beginner with OpenSCAD? (Are you capable of
creating designs and understanding the code of a model?)

2. What is your gender?

3. How old are you?

4. What is your academic background?

5. What is your current job?

6. Do you have experience with 3D printing?

7. If yes, tell me about your experience with 3D printing. When did you start? What
were your motivations?

8. How often do you 3D print?

• Daily

• Weekly

• Monthly

• Every two months

• Every semester

• Less often

Here, we define the terms of direct manipulation and programming-based paradigms
that we use in the rest of the interview.

9. What direct manipulation CAD applications have you used before, and what is
your experience in each? Name of the application and skill level

• 1 - Novice

• 2 - Advanced Beginner

• 3 - Competent

• 4 – Proficient

129



130 appendix a

• 5 - Expert

10. Other than CAD, what other programming languages, in general, have you used,
and what is your skill level in each one? Programming language name and skill
level

• 1 - Novice

• 2 - Advanced Beginner

• 3 - Competent

• 4 – Proficient

• 5 - Expert

11. What is your skill level in OpenSCAD ?

• 1 - Novice

• 2 - Advanced Beginner

• 3 - Competent

• 4 – Proficient

• 5 - Expert

12. What motivated you to learn/use OpenSCAD specifically? How did you start?
Did you try other applications? Why OpenSCAD and no others?

13. Let’s talk about the last three objects you 3D printed. Describe the object and
motivation.

14. Would you say that, in general, you 3D print for the motivations mentioned
before, or are there other main reasons you print for?

15. How did you get the design for those objects? Design them from scratch, Pre-
existing models

16. How do you normally get your models? Design them from scratch, Pre-existing
models

17. What CAD applications did you use to design/edit your last three objects and
why?

18. What were the major difficulties you found in the process of fabricating these ob-
jects (Including all the processes, ideation, design, configuration, printing, itera-
tion, etc)? What is the most time-consuming part? What brings more uncertainty?
(What makes you iterate more?)
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19. In general, what are the most difficult parts of the fabrication process (including
all the processes, ideation, design, configuration, printing, iteration, etc)? What
is the most time-consuming part? What brings more uncertainty? (What makes
you iterate more?)

20. What factors bring more uncertainty or usually make you iterate more times?

21. Specifically in the model design part, what is the most difficult and time-consuming
part? Is it something related to the software? Is it different when you use direct
manipulation than programming-based?

22. If different than the previous answer, Specifically in OpenSCAD, what is the
most difficult and time-consuming part?

23. Do you need to measure physical sizes to transfer them into the digital design?
How do you do it? What tools and strategies do you use? How do you verify the
correctness of the measurements?

24. Tell me about measurement difficulties, Linear measurements, Curved and or-
ganic shape measurements

25. Generally, when you 3D print, how often do you design the models you print
from scratch? Why?

• (0%) Never

• (1% - 20%) Rarely

• (20% - 40%) Often

• (40% - 60%) Sometimes

• (60% - 80%) Frequently

• (80% - 99%) Very frequently

• (100%) Always

26. Generally, when you 3D print, how often do you use a pre-existing model for the
models you print (previous projects, friend’s model, website model)? Why?

• (0%) Never

• (1% - 20%) Rarely

• (20% - 40%) Often

• (40% - 60%) Sometimes

• (60% - 80%) Frequently

• (80% - 99%) Very frequently
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• (100%) Always

27. What motivates you to design from scratch or to use a pre-existing model?

28. Do you know model-storing websites such as Thingiverse? What others?

29. If yes, what do you think about them? Do you use them? Do you find them
useful?

30. If you know Thingiverse, have you used the Customizer tool? Talk to me about
your experience with this tool.

31. When you use pre-existing models, in what format do you get them? (stl, obj,
code...)

32. When you re-use a non-coded pre-existing model, how often do you need to edit
it? What types of modifications do you make?

• (0%) Never

• (1% - 20%) Rarely

• (20% - 40%) Often

• (40% - 60%) Sometimes

• (60% - 80%) Frequently

• (80% - 99%) Very frequently

• (100%) Always

33. When you re-use a non-coded pre-existing model, how difficult is it to edit it?
Explain what applications you use and why the level of difficulty you selected.

• 1- Very easy

• 2- Easy

• 3- Neutral

• 4- Difficult

• 5- Very difficult

34. When you re-use a coded pre-existing model, how often do you need to edit it?
What types of modifications do you make?

• (0%) Never

• (1% - 20%) Rarely

• (20% - 40%) Often

• (40% - 60%) Sometimes
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• (60% - 80%) Frequently

• (80% - 99%) Very frequently

• (100%) Always

35. When you re-use a coded pre-existing model, how difficult is it to edit it? Explain
what applications you use and why the level of difficulty you selected.

• 1- Very easy

• 2- Easy

• 3- Neutral

• 4- Difficult

• 5- Very difficult

36. Did you bring some of your previous OpenSCAD projects? Talk to me about one
of them, How was the process, how many iterations did you need, and what was
the most difficult part of the process?

37. (Hands-on exercise) I will ask you to localize in the code the specific statements
that create a part that I will point out in the view. Share aloud the thinking
process you follow to find it. Is this a task you normally do when designing:
looking for a specific part in the code based on the view? What is the hardest
part of doing it? What strategies do you use normally?

38. How difficult was the task?

39. In OpenSCAD (and programming-based), how easily can you link the output in
the view to the code?

40. What would you say is the best of OpenSCAD and the worst? What would you
say is the best of programming-based CAD and the worst?

41. What are the advantages and disadvantages of direct manipulation and programming-
based applications like OpenSCAD? When do you prefer to use one or the other?
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(i) Multi-Color
Pencil Cup,
Thing:6291495

(ii) Master Lock
M1 Key,
Thing:6289846

(iii) Gridfinity
Kcup Holder,
Thing:6284181

(iv) Kumihimo Disk,
Thing:6290477

(v) Spare Peg For
Ikea Hammer,
Thing:6287601

(vi) Kettle Whistle,
Thing:6291759

(vii) Hook On
A Plate,
Thing:6287141

(viii) Turret Cap
Generator,
Thing:6292455

(ix) Cable Hook,
Thing:6288817

(x) Door Hook
1 Angle,
Thing:6287795

(xi) Parametric
Porch Hook,
Thing:6286541

(xii) Filament Holder,
Thing:6255969

(xiii) Battery
End Caps,
Thing:6248029

(xiv) Small Box,
Thing:6266913

(xv) Infinity Cube,
Thing:6249758

(xvi) Key Tag,
Thing:6249968
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https://www.thingiverse.com/thing:6291495
https://www.thingiverse.com/thing:6289846
https://www.thingiverse.com/thing:6284181
https://www.thingiverse.com/thing:6290477
https://www.thingiverse.com/thing:6287601
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https://www.thingiverse.com/thing:6287141
https://www.thingiverse.com/thing:6292455
https://www.thingiverse.com/thing:6288817
https://www.thingiverse.com/thing:6287795
https://www.thingiverse.com/thing:6286541
https://www.thingiverse.com/thing:6255969
https://www.thingiverse.com/thing:6248029
https://www.thingiverse.com/thing:6266913
https://www.thingiverse.com/thing:6249758
https://www.thingiverse.com/thing:6249968
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(xvii) Spider,
Thing:6253273

(xviii) Filter Basket,
Thing:6267303

(xix) Halloween
Candle,
Thing:6267335

(xx) Twist-Lock
Flange,
Thing:5988719

(xxi) Screw Lid
Container,
Thing:6095952

(xxii) 3D Snowflake,
Thing:5673707

(xxiii) Shotgun
Shell Case,
Thing:6153068

(xxiv) Jar/Bottle,
Thing:6211287

(xxv) Parametriz-
able Box,
Thing:5983067

(xxvi) Cable Tie,
Thing:5789087

(xxvii) Phone Mount,
Thing:5816088

(xxviii) Folding Knife,
Thing:6117454

(xxix) Halloween
Lantern,
Thing:6221369

Figure 41: OpenSCAD models taken from Thingiverse for the formative study.
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