
HAL Id: tel-04741096
https://theses.hal.science/tel-04741096v1

Submitted on 17 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Strongly correlated Hubbard model within the
composite operator formalism

Louis Haurie

To cite this version:
Louis Haurie. Strongly correlated Hubbard model within the composite operator formalism. Strongly
Correlated Electrons [cond-mat.str-el]. Université Paris-Saclay, 2024. English. �NNT : 2024UP-
ASP073�. �tel-04741096�

https://theses.hal.science/tel-04741096v1
https://hal.archives-ouvertes.fr


THE
SE

DE
DO

CTO
RAT

NN
T:2

024
UPA

SP0
73

Strongly correlated Hubbard modelwithin the composite operatorformalismRégime fortement corrélé du modèle de Hubbardétudié avec le formalisme des opérateurscomposites.

Thèse de doctorat de l’université Paris-Saclay

École doctorale n◦ 564, "Physique en Île-de-France", EDPIFSpécialité de doctorat: PhysiqueGraduate School : Physique. Référent : Faculté des sciences d’Orsay
Thèse préparée dans l’unité de recherche IPhT (Université Paris-Saclay, CNRS, CEA),sous la direction de Catherine Pépin, directrice de recherche au CEA.

Thèse soutenue à Paris-Saclay, le 20 septembre 2024, par

Louis HAURIE

Composition du jury
Membres du jury avec voix délibérative
Luca DE’ MEDICI PrésidentDirecteur de recherche, LPEM, Université PSL
Robert EDER Rapporteur et ExaminateurPrivatdozent, eq. HDR, Karlsruhe Institute of Technology,
Karyn LE-HUR Rapporteuse et ExaminatriceDirectrice de recherche, Center for Theoretical Physics,Ecole Polytechnique
Cécile REPELLIN ExaminatriceChargée de recherche, LPMMC, Université GrenobleAlpes



Titre: Régime fortement corrélé du modèle de Hubbard étudié avec le formalisme des opéra-teurs composites
Mots clés: corrélations électroniques, modèle de Hubbard, fonctions de Green, equations dumouvement
Ce manuscrit considère une approche dansun régime de fortes corrélations partant d’unétat fondamental décrivant un isolant de Mottobtenu avec un large terme de répulsion élec-tronique Coulombienne pour un réseau carré.Les opérateurs de Hubbard sont de bonnesexcitations pour ce terme, puisqu’ils décriventcorrectement la phase de Mott. Un terme desaut est alors ajouté dans un traitement dumodèle de Hubbard basé sur les équationsdu mouvement. Une approximation est réal-isée pour tronquer les courants des opéra-teurs de Hubbard et permettre une approcheauto-cohérente. Différents jeux d’équationsauto-cohérentes sont usuellement considérésdans la littérature et sont d’abord analyséspour des systèmes invariants par translation.La méthode viole le théorème de Luttingeret ne présente une symétrie particule trouqu’avec des termes de saut pour les plusproches voisins. Nous l’étendons alors pourétudier la supraconduction en symétrie d etdes sauts vers des voisins plus éloignés. Bienque nous arrivons à stabiliser la supracon-

duction, nous montrons qu’elle n’est non-nullequ’uniquement au voisinage d’une singularitéde Van Hove. En incluant les sauts vers desvoisins plus éloignés, la singularité de Van Hovecomme le pic de supraconduction est décaléevers des dopages plus élevés. Finalement,un modèle de Hubbard à deux orbitales estconsidéré en tant qu’application de la méth-ode. Lorsque l’énergie de saut interorbitaleest suffisamment faible, une brisure symétriespontanée est observée sur les orbitales. Enl’absence de cette énergie, la phase obtenuen’est pas hybridée et possède une orbitaledemi remplie, ce qui correspond aux élémentscaractérisant une phase de Mott orbitalementsélective, sans avoir à considérer un terme deHund. Alors que l’énergie de saut inter-orbitaleaugmente, cette phase de Mott selective survit,mais gagne légèrement en hybridation alorsqu’une des deux orbitales n’est désormais plusexactement demi remplie. Passé une valeur cri-tique, cette phase de Mott orbitalement sélec-tive est brisée, et le système passe dans unephase orbitalement uniforme.



Title: Strongly correlated Hubbard model within the composite operator formalism
Keywords: electronic correlations, Hubbard model, Green’s function, equations of motion
Abstract: This manuscript considers a strongcoupling approach starting with the expectedground-state of a Mott insulator obtained for alarge Coulomb electronic repulsion term witha square lattice. The Hubbard operators aregood excitations for this interaction term, asthey describe properly the Mott phase. Hop-ping is then considered in an equation of mo-tion treatment of Hubbard model. An approx-imation is performed to truncate the currentsof the Hubbard operators and allow for a self-consistent framework. Different sets of self-consistent equations are typically considered inthe literature and are firstly analyzed for trans-lationally invariant systems. The method vio-lates Luttinger’s theorem and is only particle-hole symmetric with nearest-neighbors. Wethen extend it to study d-wave superconductiv-ity and longer-range hopping. While we man-aged to stabilize superconductivity, we show itis non-zero only in the vicinity of a Van Hove

singularity. As longer ranged hoppings areincluded, the Van hove singularity is movedaway to higher doping and so does the super-conductivity peak. Finally, a two-orbital Hub-bard model is considered as an applicationcase of the method. For small enough inter-orbital hopping and no inter-orbital interaction,a spontaneous orbital symmetry breaking isobserved. In the absence of inter-orbital hop-ping, the resulting phase is unhybridized andhas one orbital close to half-filling, present-ing the characteristic features of the orbital-selectiveMott phasewithout having to considerany Hund term. As the inter-orbital hoppingis switched on, this selective Mott phase sur-vives but becomes slightly hybridized and withan orbital not exactly half-filled anymore. Past acritical value, this orbital selective phase is bro-ken and the system goes in an orbital uniformphase.

2



Contents

1 Acknowledgement 5

2 Introduction 5

3 The importance of strong interaction physics 7
3.1 Early days in the physics of interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Free electrons gas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
3.1.2 Fermi liquid and quasi-particles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.1.3 Luttinger theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 The case of Superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.1 BCS theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.2.2 Superconductivity in cuprates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2.3 Superconductivity within the Hubbard model . . . . . . . . . . . . . . . . . . . . 13

3.3 Orbital selective Mott-insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.3.1 The one orbital Mott-Insulator Physics . . . . . . . . . . . . . . . . . . . . . . . . 14
3.3.2 Hund’s coupling within multi-orbital systems . . . . . . . . . . . . . . . . . . . . 14
3.3.3 Selective Mott insulators . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 The composite operators method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.1 State of the art . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.4.2 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

4 Theoretical Tools 19
4.1 Basic notions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.1.1 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.1.2 Green’s function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
4.1.3 Tight-binding model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 The Hubbard model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
4.2.1 Description of the model and qualitative Hubbard I approximation . . . . . . . 26
4.2.2 Rigorous Hubbard I derivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.2.3 Luttinger theorem and its breakdown with Hubbard-I approximation . . . . . . 31

4.3 Kondo physics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.1 Kondo physics qualitatively . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.2 Heavy Fermions and enlarged Fermi surface . . . . . . . . . . . . . . . . . . . . 33
4.3.3 The competition of antiferromagnetism and hybridization . . . . . . . . . . . . . 36

5 The Composite operators method 37
5.1 General framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

5.1.1 Atomic limit study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
5.1.2 Composite operators approximation . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.1.3 Building a self-consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Mott-insulator transition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
3



5.2.1 Bands and Fermi surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 Density of states and Luttinger theorem . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Parameters study and particle-hole symmetry . . . . . . . . . . . . . . . . . . . 54

5.3 Superconductivity and Longer range hoppings . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.1 Extension to superconductivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.3.2 Bands and Luttinger theorem with longer ranged hopping . . . . . . . . . . . . 62
5.3.3 Superconductivity with longer ranged hoppings . . . . . . . . . . . . . . . . . . . 67

6 Two orbital Hubbard model with inter-orbital hopping 70
6.1 Description of the model and limit case studies . . . . . . . . . . . . . . . . . . . . . . . 70

6.1.1 Model and physical motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.2 Non-interacting limit (no U) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.1.3 Atomic limit (no t) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.2 Composite operator treatment and phase diagram . . . . . . . . . . . . . . . . . . . . . 74
6.2.1 Extending the theory to two orbitals . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2.2 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.2.3 Bands and hybridization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 The orbital selective Mott phase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.1 Fermi surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
6.3.2 Density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.3.3 quasiparticle weight and behavior with Coulomb repulsion . . . . . . . . . . . . 87

7 Conclusion and outlook 91

8 Other works 92

A Résumé de la thèse en Français 104

B Product of a real and symmetric matrix by a diagonal matrix has real eigenvalues 108

C Roth decoupling and computation of p 109
C.1 Pair-pair term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
C.2 Spin-Spin term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
C.3 Charge-Charge term . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

D Roth decoupling with superconductivity 113

E Roth decoupling for the 2 orbital Hubbard model 115
E.1 Decoupling of px and py . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
E.2 Decoupling of pxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4



1 . Acknowledgement
Je souhaite avant tout remercier ma directrice de thèse Catherine Pépin de m’avoir donné la

chance d’effectuer cette thèse. Au-delà de tout ce que j’ai pu apprendre en matière condensée, de la
rigueur et de l’esprit d’initiative qu’elle m’a permis de développer, cette thèse m’a beaucoup apporté
personnellement et fait gagné en recul et en maturité. Ce fut une vraie expérience psychologique
grandeur nature ! Et je suis certain qu’elle me servira pour le restant de ma vie, tant professionnelle-
ment qu’émotionnellement.

Je voudrais également particulièrement remercier mes collègues Anurag Banerjee et Emile Pang-
burn avec qui j’ai vraiment apprécié de travailler. J’ai beaucoup de reconnaissance pour le temps
qu’ils ont pris pour discuter avec moi sur les problèmes que nous avons pu rencontrer et pour le
soutien qu’ils m’ont apporté. Je remercie également Sébastien Burdin et Cristina Bena pour leurs
conseils et discussions intéressantes dans le cadre de plusieurs projets collaboratifs. De manière
plus générale, je souhaite remercier tous mes collègues doctorants et post-doctorants de l’IPhT pour
leur bienveillance, ainsi que tous les bons moments que nous avons passés ensemble: Benjamin,
Marc, Duc, Rémi, Dimitri, Siggtriggur, Pavel, Linéa, Maxence, Soufiane, sans oublier ceux avec qui j’ai
interagi plus ponctuellement. Je pense également à mes anciens professeurs qui m’ont transmis une
passion pour la physique, Patricia, Caroline et Daniel, ainsi que ceux qui m’ont tant appris lors demes
années universitaires.

Enfin, je souhaiterais remercier ma famille de m’avoir toujours soutenu et plus particulièrement
ma tante et mon oncle Dany et Pierre, mes tantes Pascale et Christine, ainsi que feu ma mère. Cette
thèse fut loin d’être sans son lot de difficultés et sa chargementale, et je n’aurais jamais pu tirer profit
de ces épreuves sans l’aide de mes amis. Je remercie Marie, Louis, Vincent, Emeric, Lucas, Florine,
Victoire et plus particulièrement Charlotte, Némo et Benjamin pour leur présence, leur soutien et
leur gentillesse.

2 . Introduction
Investigating strong electronic correlations is a central challenge in quantum matter, underlying

many non-trivial phenomena, such as high-Tc superconductivity, Mott insulators, and heavy Fermi
liquids, among others. The significant interactions between different degrees of freedom in quantum
materials lead to multiple broken symmetry phases, resulting in an extremely rich phase diagram.

The Hubbard model is a central focus of theoretical efforts to understand strong correlations.
More than 50 years after it was first introduced, it remains an intensive topic of study even now. The
main question at the core of these investigations is whether this simple yet still undefeated model
is enough to predict exotic behaviors caused by correlations and, more importantly, whether it can
provide a physical scenario to explain the appearance of such behaviors. Instances of these can in-
volve unconventional superconductivity, charge density waves, selective Mott insulators, or even the
putative pair density waves. In this manuscript, we consider the composite operator method, initially
introduced to encompass the strongly correlated regime of the Hubbard model.
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Chapter 3 offers a physical and equationless presentation of the relevance of strong electronic cor-
relation. It also qualitatively introduces several key concepts of this phd.
Chapter 4 presents more in depth important theoretical frameworks and studies we will use as a
basis for most of this work. Namely, after a general introduction on second quantization and Green’s
function, we present the Hubbard model and perform a detailed study of Hubbard I approximation.
For the sake of an analogy occurring in chapter 6, Kondo physics is also lightly introduced.
In Chapter 5 the main technique used in this manuscript, the composite operator method, is com-
pletely presented and detailed. The two usual self-consistent schemes performed with this method,
"Roth" and "Pauli" schemes are then introduced and compared. After making various benchmark
with litterature, we conclude which solution is the most physical. We then consider the study to the
violation of Luttinger theorem as well as a particle-hole symmetry. The method is then extended to
d-wave superconductivity and longer ranged hopping. The goal of this chapter is therefore charac-
terizing and understanding composite operators.
Finally, in Chapter 6 we apply the technique to a two orbital hubbard Hamiltonian. No inter-orbital
interaction is considered, but the inter-orbital hopping is fixed as an external parameter. Transla-
tional invariance is still imposed. A spontaneous orbital symmetry breaking is observed when this
parameter is small enough, and the system can enter in an orbital selective Mott phase, even though
no Hund term has been considered.
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3 . The importance of strong interaction physics

3.1 . Early days in the physics of interactions
3.1.1 . Free electrons gas

A crystal is defined by an ordering of atoms. Despite some possible irregularities or local impuri-
ties [1, 2], it is commonly assumed to be a periodic system described by a lattice. Valence electrons
maymove or remain on lattice sites, each of them containing positively charged ions enforcing charge
neutrality [3, 4, 5]. Because of the assumed discrete translational invariance, momentum of the elec-
trons (product of mass and velocity) is a good quantum number and is usually introduced in the study
of these systems. It is by definition the associated Fourier variable of the position of the electrons in
the lattice [3]. For simplicity, this position is usually defined only in the Wigner-Seitz unit cell, which
contains exactly one lattice site. This cell is repeated in space, and atomic nucleus with their core
electrons are positioned within it. Conversely, momentum is defined in the Brillouin zone which is
analogous to the Wigner-Seitz unit cell within the reciprocal lattice obtained from a Fourier transform
[6, 7].

One of the first assumptionmade in thesemodels is the weakly interacting nature of valence elec-
trons. They can move between lattice sites without feeling too much repulsion. This free electron gas
model (oftentimes referred as Fermi gas) was one of the early success of condensed matter, allowing
to predict the electrical nature of crystal. To analyze this system, Bloch assumed valence electrons
should be described as the solutions of a Schrodinger equation with a periodic potential of period
equal to the length of an unit cell. His theorem [8] states that the solution of such a Schrodinger
equation are plane wave modulated by a periodic potential. Thus the energies of valence electrons
depend on their positions within theWigner-Seitz unit cell. In the reciprocal lattice, this leads to eigen-
values dependent of the momentum. Hence, the name "bands" was introduced, as the energy levels
are not flat anymore when represented along position or momentum.

Figure 1: Display of the bands of a one dimensional system. (left): in the ground-state, the band ishalf-filled. (right): if a current occurs electrons accelerate, resulting in a shift in the filling of the band.This figure is taken from Ref. [9]
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The insulating or conducting nature of a material can then be described by considering the oc-
cupation of the bands [10]. Since electrons are fermions, in the absence of thermal excitations, they
will populate the lowest energy level of the bands and fill them progressively. The highest energy
occupied by an electron is called the Fermi energy (horizontal dashed line in the ground-state of fig.
1).

Let’s assume there is a current in the crystal (for instance by mean of an external electric field).
The electrons then gain velocity as they describe a global flow. This creates a shift in momentum.
However, as the energy of the electrons is constrained to the bands, this shift can only change the
filling of the band as depicted on fig. 1. Therefore a Fermi gas with states available above the Fermi
energy describes a metal [9]. In the case of a fully filled band, this shift in occupation cannot occur
because all states are filled and Pauli exclusion principle forbid two electrons of being in the same
state. In that case, a current can only occur if the electrons gains enough energy to hop in an empty
band at higher energy. Depending on the value of the energy gap between the filled and empty bands,
the system is either an insulator or a semi-conductor (small gap).

Despite an experimental agreement withmost of thematerials, bands theory is not able to predict
the behavior of all materials. This can be explained by two main arguments. First, because some
materials are too heterogeneous due to the presence of defects or impurities for the system to be
described with a periodic potential. [5, 9]. Second and this point will be the main interest of this
manuscript, because electrons of this model are assumed weakly interact. While this assumption
may be reasonable for a broad range of materials, a rich amount of physical behaviors find their
origin in electronic interactions.

3.1.2 . Fermi liquid and quasi-particles
Fermi liquid is the conventional way of treating electronic interactions. This theory was first intro-

duced qualitatively by Landau, and a more formal and mathematical framework was given later on
[13, 14, 15].

The key concept of Fermi liquid theory is adiabaticity: the electronic interaction is very slowly
switched on in the system [16]. In the absence of interaction, the usual Fermi gas model applies. For
simplicity let us consider the situation at vanishing temperature. Because of Fermi-Dirac statistics,
electrons are going to occupied states up to the Fermi energy. This will create a Fermi sea (the en-
semble of occupied states) and a Fermi surface (the cross-section inmomentum space of the bands at
the Fermi energy). If the interaction is now slowly switched on, Fermi liquid theory predicts a change
in the dynamic properties of the electrons due to electronic repulsion. Namely, their mass or their
momentum are going to be renormalized [17]. No symmetry will be broken, and the Fermi sea turns
to an interacting ground-state of "dressed" particles. These quasi-particles present particle-hole exci-
tations analogous to the Fermi gas situation, but are the results of the interactions and have different
dynamical properties, such as an effective mass [18].

A typical characteristic property of a Fermi liquid behavior is a discontinuity in the electron density
in momentum space in the neighborhood of the Fermi surface. As sketched on Fig 2, for the classic
Fermi gas the electron density is always equal to one (or 2 in the case of spin degeneracy) for momen-
tum inside the Fermi surface and jumps to zero for momentum out of the Fermi sea. In the case of a
Fermi liquid, the situation is different: due to interactions, it is possible for an electron near the Fermi
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Figure 2: (left): Electron density as a function of momentum modulus. In the ideal Fermi gas, below
kF in the Fermi sea the electron density is fully filled (one, or two in the case of spin degeneracy). Itthen drops to zero above kF . In the case of a Fermi-liquid, scattering processes occurs due to electroninteractions and creates a drop of the electron density in the Fermi sea, and an enhancement of thedensity above the Fermi energy. (right): display of such a particle-hole excitation: due to interactions,scattering processes occur and electron at momentum k greater than kF decays to momentum k′at a lower energy, closer the the Fermi surface. Due to momentum conservation, an electron insidethe Fermi surface is then scattered out of the Fermi sea. These scattering processes justify why someparticles resides outside of the Fermi sea (and respectively some hole are inside), making Z smallerthan 1. The figures are respectively from Ref. [11] and [12].

surface to be scattered, losing some energy and momentum. Because of momentum conservation
another electron from within the Fermi sea is then scattered out of the Fermi surface. These excita-
tions causes a non-zero density above kF for Fermi liquid, and conversely lower the density below
kF . Therefore the initial discontinuity of the Fermi gas is smaller, and called "quasi-particle weight"
Z. This weight can thus be described as the overlap between the quasi-particle and bare electrons so
that Z in the Fermi gas case. It is important to note that this quasi-particle weight is not exclusively
observed in Fermi liquids. In sec. 6.3.3 we display a jump in the momentum resolved electron density
for a non-Fermi liquid phase. The interpretation remain similar, and this is still measuring overlap be-
tween quasi-particles and bare electrons, but these quasi-particles are rather emerging directly from
the existence of a Fermi surface.

3.1.3 . Luttinger theorem
Not every strongly correlated system is well described by a Fermi liquid. The adiabatic assumption

is not always satisfied, there can be discontinuities that can break this assumption. These phases that
display a non Fermi liquid behavior are still nowadays an intensive research topic. Example of these
includes the famous one dimensional Luttinger liquid [19] or the strange metal observed in cuprates
materials with a linear resistivity with temperature [20] while Fermi liquid theory would predict a

9



quadratic resistivity. In the case of Mott Insulators usually observed around half-filling for a large
variety of strongly correlated materials [21], no Fermi surface exists causing a definition issue of the
theorem. Suggestions for solving this issue have been made by considering a Luttinger surface from
the zero of the Green’s function [22].

In a Fermi gas at vanishing temperature, every states under the Fermi energy are filled. As a
consequence, if one displays the Fermi surface, all momentum enclosed by the Fermi surface are
occupied by electron. Therefore, it is clear that the enclosed volume of the Fermi surface is equal to
the number of electrons in the system. Characteristic of a Fermi liquid behavior, Luttinger theorem
states that despite interaction, the Fermi surface of the quasi-particles will keep enclosing the number
of charge carriers of the system [23, 24].

A perturbative proof of the theorem was first performed using Luttinger-Ward functionnal [25].
Later, a non-pertubative proof was developped using topological argument [26]. In both cases it is
assumed the considered system is a Fermi liquid. A strong debate remains on whether the Luttinger
theorem is satisfied or not in the case of non Fermi liquid system, with many suggestions of how to
extend the theorem to various cases [27, 28]. In the case of theHubbardmodel, a Luttinger breakdown
has been reported using Determinantal Monte-Carlo simulations [29]. This is possible, as several
studies reported the non-Fermi liquid behavior of the Hubbard model [30, 31].

Further work also reports a violation of the theorem for the Hubbard I approximation [32]. In Sec.
4.2.3, this approximation is studied in depth and the area of the Fermi surface will be computed in the
neighborhood of half-filling to confirm Luttinger breakdown. In Sec.5.2.2 the analysis of the theorem
is also studied with the composite operators method.

3.2 . The case of Superconductivity
3.2.1 . BCS theory

Superconductivity is the typical example of interactions (whether they are weak or not, between
electrons or between electrons and lattice) giving birth to exotic behavior at very low temperatures.
Macroscopically, a superconductor is known for twomain properties: perfect conductivity with a van-
ishing resistivity, and the Meissner effect. The latter is a consequence of the perfect diamagnetism
in superconductors, causing material in this phase to repel magnetic fields [33]. In this section we
introduce qualitatively BCS theory and sketch the relevance of interaction to the modelisation of su-
perconductors.

Because of particle-wave duality, the collective motion of the lattice can be described by particles
called phonons which correspond to the quantum of vibrational energy require to excite the lattice.
One key experiment indicating the relevance of phonons in the superconducting states us the isotope
effect. The superconducting critical temperature below which a material enter a superconducting
phase decays with the isotope mass of the lattice [34, 35, 36]. This experiment showed importance in
the vibrational modes of the lattice and was later explained by BCS theory.

BCS theory relies on the notion of Cooper pairs to model superconductivity [37, 38]. BCS theory
suggested phonons as an attractive pairingmechanism leading to pairs of opposite spin andmomen-
tum. Let us first provide a qualitative scenario to justify such type of pairing of electrons. Consider an
electron propagating in the lattice. Because the lattice sites are positively charge, they are going to
be attracted by this electron. This attraction creates some vibration of lattice sites, that are going to
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change the electrostatic properties of other electrons. Correlations then gets created between elec-
trons of opposite spins and momentum in the lattice, forming pairs. The situation is described in Fig
3a.

(a) (b)

Figure 3: (a): sketch of the formation of a Cooper pair in the lattice for a conventional superconductor.A correlation between electrons of opposite spins and momentum is created by the vibrations of thelattice due to the attraction between lattice sites and electrons. Taken from ref. [39]. (b): Displayof the profile of the density of states for a BCS superconductor. At a low enough temperature theCooper pair form a Bose-Einstein condensate and cannot be described as single electrons anymore,resulting in a gap∆ in the density of states around the Fermi energy ϵF .
BCS theory relies on the idea that at low enough temperature, the Cooper pairs form a Bose-

Einstein condensate. A pair of electrons is indeed a boson. As such, they all get into the same ground-
state energy at vanishing temperature. Since Cooper pairs are not single electrons anymore, at low
enough temperature the electronic density of states looses states associated to the electrons involved
in pairing. This typically opens up a gap [38, 40] in the density of states sketched on Fig. 3. It is then
possible to prove the supercurrent and the perfect diamagnetism find their origin in this coherence
of the bose-Eistein condensate[41].

3.2.2 . Superconductivity in cuprates
In 1986, G. Berdnoz and K. A. Müller observed the first signature of high critical temperature su-

perconductivity in cuprates [42]. These are a materials family composed of oxygen and copper plans
with various atoms in between acting as charge reservoirs. These atoms can be substituted to mod-
ify the electronic doping within the planes. As such, most of the physics happens within these plans
[20, 43]. According to Band theory, undoped cuprates have half-filled bands and should be metallic
but are rather insulator, due to the strong electronic repulsion effects within the planes. At half-filling,
cuprates are described as Mott-insulators [20, 44]. These strong correlations are at the center of a
very rich phase diagram displayed in Fig 4 where superconductivity is only one among many exotic
phases. Although not central to this manuscript, we will briefly mention the pseudogap phase and
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the strange metal phase. The pseudogap is believed to be possibly related to the formation of su-
perconductivity and is characterized mainly by a loss in the density of states at the Fermi energy for
specific momentum and the absence of Fermi surface, only "Fermi arcs" are observed experimentally
[45]. On the other hand, the strange metal is known for a linear resistivity with temperature, contrary
to the usual quadratic behavior of Fermi liquids [46].

Figure 4: Sketch of the typical shape of cuprates phase diagram. p denotes the hole doping concen-tration. In the vicinity of half-filling, due to strong electronic correlation thematerial is aMott insulatorwith an antiferromagnetic ordering. Two exotic phases are intensively studied in the vicinity of thesuperconductivity (SC) dome, the pseudogap and strange metal phase. As we mostly focus on theMott and superconducting phase, they will not be described in depth. Let us finally note a Fermi liq-uid behavior is observed at high hole-doping. Taken from [47].
Because conventional superconductivity is caused by electron-phonon interaction, it is possible

to give an estimate of the highest critical temperature (below which the material becomes a super-
conductor) in these materials using the Debye frequency [37]. This temperature is estimated under
normal pressure at roughly 40K. In some cuprates compounds, the critical temperature can reach up
to 160K. Thismeans the pairingmechanism of such superconductors is not the usual electron phonon
interaction. Later on, other families of materials have exhibit unconventional superconductivity, such
as iron pnictides or strontium Ruthenate [48, 49].

While there is still an experimental and theoretical consensus of Cooper pairing [50, 51], the great
mystery of unconventional superconductivity is the origin of the interaction allowing the formation of
such pairs [52]. Let us note that the Cooper pairs of these systems are not always on site with opposite
spin pairs. The superconductivity order parameter can indeed be decomposed in the symmetries of
the lattice [12]. The ground-state energy can then be computed for each of these symmetries and the
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system form pairs in the lowest symmetry channel. While most conventional superconductors have
an s-wave symmetry, cuprates superconductivity is for instance d-wave [50].

3.2.3 . Superconductivity within the Hubbard model
The Hubbard model was suggested as a simple yet challenging model to analyze electronic in-

teractions. In this model electrons can hop from one site to another, but with a strong repulsion or
attraction (depending on the sign of the interaction term) whenever two of them lie at the same site
with opposite sites. Initially introduced in 1963 [53], it remains a theoretical challenge today. It has
been exactly solved in one dimension [54] but requires various approximation schemes in dimension
n greater than one.

In the early days of the model, many studies were focused on understanding the Mott phase such
as the one observed in cuprates close to half-filling [53]. To this end, various schemes were devel-
oped. The usual Hartree-Fock approximation has shown good description of the magnetic phase in
theweakly interacting limit [55], but as it is a weak coupling perturbative technique, it is not well suited
for describing the metal-insulator transition where interaction is strong [56]. The Hubbard I approxi-
mation, derived in Sec. 4.2 provided the first qualitative explanation of Mott-Insulators. It is however
only suited for the strong correlated regime, as the approximation mainly comes from the atomic
limit without any hopping. It also has notable drawbacks such as an electron-hole symmetry violation
[55]. To enhance it, other approximations were introduced such as the Hubbard-II and III. In Hubbard
II approximation, a frequency dependent self-energy correction to be determined self-consistently is
added to model the behavior of an electron of spin σ which can either hop on electrons of spin σ̄ or
empty sites. Electrons of spin σ̄ are assumed to not move, while in Hubbard-III approximation this
assumption is lifted and both spins are considered to fluctuate [55, 57].

Motivated by the rich physics of phases and order of cuprates, an underlying question of the
model also consists in determining the ground-state, and whether superconductivity can be stabi-
lized. Indeed, due to the close proximity of Mott-insulators and the superconducting domes in these
materials, a natural question was about the connection between these two phases. To this end,
more sophisticated techniques were applied, such as Density Matrix Renormalization Group (DMRG),
Gutzwiller wave function approximation or Determinantal QuantumMonte Carlo (DQMC) [29, 58, 59].
Dynamical Mean Field Theory (DMFT) solved the model in infinite dimensions by performing a map-
ping on an Anderson impurity problem. DMRG turned out to be a good method for one dimension,
but is becoming too complex for higher dimensions.

Recent studies [60, 61, 62] have shown the groundstates of the model is mainly composed of ver-
tical stripes in the strongly correlated regime around 12% hole doping: these stripes are a charge
ordering in space of the electrons, with superconductivity at higher energy. Already expected [63],
the competition between charge density waves and superconductivity is also a core question of the
Hubbardmodel, as people now try to understand what changes to themodel can favor superconduc-
tivity over stripes formations [64].

3.3 . Orbital selective Mott-insulators
3.3.1 . The one orbital Mott-Insulator Physics
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Already mentioned in the discussion on cuprates and Hubbard model, Mott-Insulators are a typ-
ical example of a non-conventional behavior caused by electronic repulsion because they cannot be
well described by bands theory detailed in Sec. 3.1.1. The understanding of Mott physics was one of
the first important achievement made by the Hubbard model in the strongly correlated regime.

Qualitatively, according to Hubbard-I approximation and later developed schemes, the insulating
nature of this phase is due to the considerable energy penalty electrons have to pay if they form a
pair due to Coulomb repulsion. Therefore at half-filling, the lowest energy configuration would be the
one with exactly one electron on each lattice site [65]. Let us then assume an electron tries to hop
on a neighboring site with another electron of opposite spin. This would create a pair, and penalize
so much the system in energy than this hopping process is very unlikely. Then, electrons are likely
to stay on their respective lattice site, and this localization makes the system insulator. It is also very
common for Mott-insulator to form some kind of antiferromagnetic ordering, where the spin of the
electrons get flip from one site to its nearest neighbors. This is rather well understood by Heisenberg
model, which can be obtained from the Hubbard model at half-filling with stron correlation by mean
of a Schrieffer-Wolff transformation [66].

While there is now a consensus that Mott-insulators are well understood, important questions
remain on their relationship with high temperature superconductors. Some models such as the
Hatsugai-Kohmoto Hamiltonian have even been analyzed to present a superconducting instability
when hole doping a Mott insulator [44]. The question of the relation between the Mott parent com-
pound and the superconducting phase upon doping is also deeply related to the question of charge
order formation, as proven by recent scanning tunneling experiments showing the emergence of
checkerboard patterns [67]. Since the Hubbard model describes so well Mott-insulators and the
metal-insulator transition upon doping, it is also at the center of theoretical efforts to understand
superconductivity and charge order formation away from half-filling. This regime is difficult to cap-
ture by DQMC: because of the sign problem the method is mainly applied at half-filling [97]. DMFT
has been a popular method for studying the energy of these phases in the vicinity of half-filling [55].

After revisitingHubbard I approximation in Sec. 4.2 and recovering theusualMott-insulator physics,
we will mostly focus on the composite operatormethod. Wewill see themethod can be applied in the
vicinity of half-filling. In Sec. 6 the analysis is then extended to a two orbitals Hubbard model, each
with strong repulsion for double occupancy. At half-filling themodel is expected to be in aMott phase
with one electron on each orbital for a given phase. In this system the question of what happen upon
doping is interesting. Will the ground-state still be an orbital uniform phase with the same electron
density on each orbital, or can a spontaneous orbital symmetry breaking happen ? This type of orbital
selectivity is usually obtained theoretically by considering a Hund term [71].

3.3.2 . Hund’s coupling within multi-orbital systems
Hund’s rules have been introduced in 1925 by physicist Friedrich Hund in the study of degenerated

atomic shells. These rules explain how to fill them with electrons: electrons must first occupy empty
spots and all single occupied spotsmust align their spins tomaximize total spin [68]. These rules have
to be also considered also for crystals.

Whenever a lattice is introduced, the crystal field lifts the degeneracy of the atomic orbitals de-
pending on the symmetry of the considered lattice [69]. A sketch of the effect of the crystal field for
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Figure 5: Example of the effect of crystal field effect on a d-shell of a free ion (sketched by 5 degen-erated energy level on the left) for a Octahedral lattice symmetry. The resulting energy levels are 3degenerated crystal orbital dxy , dxz , dyz and 2 degenerated orbitals d2z and dx2−y2 .

an octohedral lattice symmetry is shown on Fig. 5. Some crystal orbitals can still be degenerated in
energy after considering the crystal field effect. Hund’s term makes spin alignment on the of a given
set of degenerated crystal orbitals favorable.

Hund’s coupling has three different effects on an ordinary metal [70]. Firstly, it tends to enhance
the effective mass of the quasi-electrons. Second, it has a natural effect on spin correlation as it
forces singly occupied sites to align. Finally, in the case of a multi-orbital system it tends to enhance
the electronic correlation of one of the orbital and cause a spontaneous orbital symmetry breaking
[71]. These properties have been confirmed theoretically using DMFT [72, 73] or DMRG where Hund’s
term is showed to enhance superconductivity of a two orbital system [74].

In a typical Mott-insulator described by a one band Hubbard model, the charge fluctuation van-
ishes as we approach the Mott phase due to the penalized double occupancy and the charge local-
ization. This contrast with the effect of Hund coupling, where the constrains affect spin rather than
charge. Hund term is directly involved in the value of the Coulomb repulsion necessary to stabilize a
Mott insulator in the vicinity of half-filling. This result is typically obtained by adding a Hund term the
Hubbard model, as it increases the Mott gap it at half-filling and reduce it away from half-filling [75].

3.3.3 . Selective Mott insulators
Beside its relationship withMott insulators, Hund term has shown importance to differentiate two

degenerated set of crystal orbitals [76, 77]. In this regard several works report that this term must
be considered to obtain an orbital with an important mass renormalization compared to the other.
It is also believed to be a key ingredient in the formation of an orbital selective Mott-Insulator phase
(OSMP) [75, 78]

OSMPwas first proposed to explain the coexistence ofmetallic andmagnetic properties in ruthen-
ates [79, 80] and has since been recognized as key for understanding the normal [49] and supercon-
ducting properties [81, 82] of iron-based superconductors. It is characterized by the selective localiza-
tion of electrons in specific orbitals, while electrons in other orbitals remain itinerant. Initial evidence
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came from Angle-resolved photoemission spectroscopy (ARPES) studies [83] in Ca1.8Sr0.2RuO4, fol-lowed by similar observations in iron-chalcogenides [84]. In thesematerials, the spectral weight of the
dxy orbitals vanishes upon cooling, while the spectral weight of other 3d orbitals remains non-zero.
More recently, theoretical proposals suggest that OSMP could also emerge in twisted bilayer systems
such as twisted dichalcogenides [85] and twisted trilayer graphene [86].

This phase has been theoretically studied with either a multi-orbital Hubbard model with inter
and intra orbital on-site interaction or with Hund coupling or both[87]. In the OSMP, one orbital is
completely localized and decoupled from the other metallic orbitals. The stability of OSMP phase
with respect to kinetic inter-orbital interactions remains a subject of debate. While there is agree-
ment among various methods that an OSMP exists when the hopping between different orbitals is
negligible, the situation becomes more intricate when it is non-zero. Slave-spin method shows sta-
bility of the OSMP phase with inter-orbital hopping [88, 89], with the hybridization of the localized
orbitals to the others renormalized to zero. Single-site DMFT shows opposite results [90] claiming
any amount of inter-orbital hopping should lead to a finite hybridization. Both methods nevertheless
agree that for finite hybridization orbital differentiation exists with a large difference in effectivemass.
The hybridization of the OSMP is reminiscent of the Kondo model. In the latter, a lattice of strongly
interacting impurities is connected to a lattice of conduction electron by mean of a hopping from the
conduction to the impurity lattice. While the two systems are not exactly similar, some analogies can
be make between the OSMP we observe in Sec. 6 with a composite operators treatment of the 2
orbital Hubbard model and Kondo model. For this reason, Sec. 4.3 provides a light introduction on
Kondo physics.

3.4 . The composite operators method
3.4.1 . State of the art

While the Hubbard-I approximation discussed in Sec. 4.2.2 is a good enough scheme to under-
stand Mott insulators, there are nowmore advanced methods that showed good results in the analy-
sis of the Hubbardmodel in the regime of strong correlations. DMFT as well as DQMC are for instance
some of the leading technique that attracts a lot of attention for performing this analysis [29, 55].

DMFT is adapted to treat the strongly correlated regime of Hubbard model. It has notably ex-
plained themetal toMott-insulator transition when tuning the interaction strength. It has also proved
to be relevant in the study of ferromagnetism and disorder within the model [91]. Single-site DMFT
considers one site in a sea of electrons and perform a mapping to the Anderson impurity problem
[92, 93]. As a consequence the method is treating very well quantum fluctuations and dynamical ef-
fects, but has the drawback of being mostly local [94]. Several extensions of single-site DMFT have
been suggested to answer this issue and are still an intensive topic of research, like Cluster-DMFT
[95].

On the other hand, DQMC is an exact numerical method to solve the strongly correlated regime of
the Hubbard model. However, due to the inherent complexity of QuantumMonte-Carlo for fermions
because of the notorious sign problem, the main drawback of DQMC lies in its limitation with system
size and temperature, as it have aO(βN3) complexity [96], where N denotes the number of lattice site
and β is the inverse of temperature. Despite this problem DQMC has predicted numerous results in
the half-filled regime of Hubbard model where the sign problem can be avoided [97]. One could cite
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the study of charge order and stripes [98], Luttinger theorem and Fermi surface [29] or magnetism
[97]. Other famous strong coupling methods involved DMRG, or tensor networks, but these methods
are also mostly limited by number of sites or complexity [99, 100].

We now shift our attention to the method that is going to be considered in this thesis. The com-
posite operator technique, presented in Sec. 5 is a self-consistent framework developed from the
Hubbard-II approximation. Compared to DMFT, this method treats and considers local corrections
to the self-energy while also including dynamical corrections. Originally called two-poles approxima-
tion, it relies on the Hubbard operators and uses a decoupling scheme based on equation of motion
developed by L. Roth [101]. This decoupling is used express two bodies correlators obtained from a
truncation of the equation of motions. In the normal state, the metal to Mott-insulators transition
upon doping is recovered and a good qualitative agreement is made with Monte-Carlo simulations
[102]. Some early claims of Luttinger theorem violation have also been reported [102, 103]. In the
vicinity of half-filling a transfer of spectral weight, typical of what is experimentally observed in Mott
insulators has also been predicted by the method [102].

Superconductivity has also been considered and observed in the d-wave symmetry channel within
the method [102, 104, 105]. In these works, a gap opens in the band structure and present the usual d-
wave symmetry. The gap amplitude has also been reported as a function of Coulomb interaction and
the critical temperature predicted to be in the range of 10 to 100 K in the regime of moderate electron
interactions. This manuscript assume a paramagnetic order for simplicity. The different magnetic
orders stabilized by the method has been summarized in a phase diagram in [106].

A few other models have been considered with composite operators such as the extended Hub-
bard model [105], attractive Hubbard models [107] or the Emery model [108].

3.4.2 . Motivations
The composite operators method have the notable drawback of violating Pauli principle. This vi-

olation is likely a consequence of the uncontrolled approximation made to truncate the equation of
motions. While this violation is increasingly small as the Coulomb interaction is large, another self-
consistent scheme has been suggested. Instead of using Roth decoupling to express the two-bodies
correlators appearing in the self-consistency, these parameters are left to vary freely while the quan-
tities that should have vanished due to Pauli principle are imposed to be zero as a self-consistent
equation instead [103, 122, 141]. This second scheme, called "Pauli scheme" has been extensively stud-
ied in the last few years. Contrary to the initial "Roth scheme" it presents two self-consistent solutions
[121]. One of them is notMott insulators and does not present superconductivity, while the other does
but displays two electron pockets at the Fermi energy. A higher order computation of the equation
of motion allowed to show one of the two pockets has a vanishing lifetime [103].

Nowadays composite operators is a mostly unused method because of the respective drawbacks
of each schemes. On one hand, there is the violation of Pauli principle with Roth scheme, on the
other hand the Pauli scheme displays unconventional behaviors such as the two electron pockets in
the Fermi surface, or the uncontrolled variation of the two-bodies self-consistent parameters. It is
however a powerful method, as in allows to recover the bands, Fermi surface and the energy depen-
dence while allowing to tune electron density, Coulomb repulsion (as long as it dominates over the
hopping energy) and temperature as external parameters. In addition, contrary to DMFT it allows to
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consider both dynamical and momentum corrections to the self-energy.
The first goal of this thesis is to compute, compare and discriminate the various schemes and so-

lutions. To this end, we will compute the bands, Fermi surface, density of states of each solutions and
also consider new quantities such as the area of the Fermi surface to better characterize Luttinger
violation, particle-hole symmetry, an in depth study of the effect of each self-consistent parameters
and superconductivity. We claim Roth solution is the rightful self-consistency to consider, as Pauli
scheme presents a non self-consistent behavior and an uncontrolled variation of the two bodies pa-
rameters. We will then highlight the correlation between the Van Hove singularity in the density of
states and superconductivity. Finally we will extend the method to perform a new study with longer
ranged hopping to detail their effects on the solutions. As the Van Hove singularity is shifted away
with the details of the tight-binding parameters, we report a shift of superconducting peak at the
same density, confirming the correlation established with nearest-neighbors.

Once the method has been reviewed and clarified, the second objective is to consider a two or-
bital Hubbard model and check whether a spontaneous orbital symmetry breaking can be obtained
with the composite operators approach without any Hund coupling involved in the Hamiltonian. An
orbital selectiveMott phase (OSMP) is displayed and characterized by computing the bands, the Fermi
surface, the density of states, the quasi-particle weight as well as their orbitally resolved counterparts.
A phase diagram summarize and details the transition seen between the orbitally uniform and the
OSMP.
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4 . Theoretical Tools

4.1 . Basic notions
4.1.1 . Second Quantization

In all the following, the framework of second quantization will be heavily used. In this section we
give a small introduction of this formalism. In first quantization, states are described bywavefunctions
living in a Hilbert space, and the system evolves in time according to the Schrödinger equation under
the influence of a Hamiltonian. The eigenvalues of this Hamiltonian represent the energy levels of the
system, while the eigenvectors correspond to the states of the system [109]. The probabilities of mea-
suring specific outcomes are related to the squared eigenvectors associated to a specific eigenvalues.
In the case of multiple systems, the Hilbert space is decomposed as a tensorial product of subspaces
associated to each system. However, this formalism can become cumbersome, particularly when
dealing with a large number of particles.

Second quantization aims at replacing this tensorial product picture by an empty/occupied states
formalism. The two pictures are equivalents: the many-body state |Ψ⟩ is composed of a complete
basis of single particles states {|ν1⟩, ..., |νN ⟩} where νu denotes the state of single particle u. Hence,the tensorial product of first quantization is replaced by the N -particles states:

|nν1 , nν2 , ..., nνl⟩ with l∑
u=1

nνu = N (1)
In this picture, l denotes the number of considered states (which can be empty or not) and nνudenotes the number of particles in state |νu⟩. We define the quantum operator n̂νu such that:

n̂νu |nνu⟩ = nνu |nνu⟩ (2)
Some important elements of second quantization are the operators ĉu and ĉ†u that annihilates andcreates respectively a particle on site u. They are related to n̂u by the following :

n̂u = ĉ†uĉu and
{
ĉ†u|nνu⟩ = |nνu + 1⟩
ĉu|nνu⟩ = |nνu − 1⟩

(3)
Note that the eigenvalues of the annihilation operator ĉu acting on an empty state are zero, mean-

ing that ĉu|0u⟩ = 0.
The operator n̂u is a number operator associated with a specific single-particle state at site u.

Importantly, n̂u operates in the Fock space, a larger vector space that encompasses stateswith varying
numbers of particles. The Fock space is constructed by taking the tensor product of the single-particle
Hilbert spaces for each particle, providing a comprehensive framework for describing systems with
multiple particles.

It is important to distinguish the operator n̂u from the integer nu that counts the number of par-
ticles occupying a particular state on site u. The quantum state |nu⟩ corresponds to a vector in the
Fock space, specifically representing a configuration where n particles are on site u. In this context,
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the Fock space captures the full quantum state of a system by considering all possible configurations
of particles across different sites.

An equivalence can be built between the first and second quantization. The latter can be seen as
a shift mathematical representations rather than a change in physical content. In first quantization,
a quantum system is described by wavefunctions representing individual particles, while in second
quantization, the focus shifts to an ensemble of single particle states defined by occupation numbers.
The two pictures are therefore interchangeable.

The fermionic or bosonic nature of the considered particles is usually derived by exchanging the
particles. This exchange can be directly encoded in the algebra by imposing anticommutation rules
for fermions and commutation rules for bosons. The algebra of second quantization can be obtained
by considering:

{cu, c†v}± = δuv and {cu, cv}± = {c†u, c†v}± = 0 (4)
Where {., .}± is respectively a commutator for + and an anticommutator for -. The Pauli princi-

ple can be directly expressed from this algebra when fermions are considered. Indeed, from these
commutation relations, (c†i )2 = 0, meaning that two fermions cannot exist in the same state. Finally,
any n-body operator Ô can be rewritten in second quantization in term of creation and annihilation
operators:

Ô =
∑

u1,...,u2n

Oνu1 ,...,νu2n
c†νu1

...c†νun cνun+1
...cνu2n (5)

Where Oνu1 ,...,νu2n
are the matrix elements of the operator Ô. For the case of a one body param-

eter, we get:
Ô =

∑
uv

Ouvc
†
ucv =

∑
uv

⟨u|Ô|v⟩c†ucv (6)
In the followingwewill consider translational invariant systems inwhichwewill heavily rely Fourier

transforms. The Fourier transform of an operator ci in second quantization is defined by:

ck =
1√
N

∑
u

eikrucu (7)
Because of translational invariance of crystal lattice the momentum variable k will be considered

in the Brillouin zone, which is the smallest unit cell one can consider to fully reconstruct momentum
space by translations.

Second quantization proves particularly advantageous in solving condensed matter problems,
providing a powerful tool for handling many-body systems. By transforming the Hamiltonian from
the traditional first quantization form to its second quantized counterpart, expressed in terms of
creation and annihilation operators, one gains a more convenient and efficient framework. This ap-
proach simplifies the treatment of systems with varying particle numbers and facilitates the deriva-
tion of quantum many-body theories. Second quantization enables a natural description of complex
interactions and correlations within condensed matter systems.
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4.1.2 . Green’s function
Green’s functions, also known as propagators, play a central role in the field of quantum many-

body physics, providing a powerful tool for characterizing the response of a system to external per-
turbations. In essence, a Green’s function in condensed matter can be understood as an object de-
scribing the response of a system under an excitation. It can be define for an arbitrary number n of
particlesn-pointsGreen’s functions, but in thismanuscriptwewillmainly focus on the 2-pointsGreen’s
function. Let us first consider operators in the Heisenberg representation: they are time-dependent
operators ψ(τ) of a given Hilbert space such that:

ψ(x, t) = eiĤtψ(x, 0)e−iĤt (8)
Where Ĥ is theHamiltonianwhich define the timeevolution of a systembymeans of the Schrodinger

equation. As a direct consequence, we obtain the following result:
dψ(t)

dt
= [ψ(t), H] + i

∂ψ

∂t
(9)

Where the second term account for the explicit dependence in time of ψ, and will be considered 0
(time independant operator) in the following. We can now define the causal 2-points Green’s function
[110] as follow

Gc
uv(t, t

′) = −i⟨T (cu(t)c†v(t′))⟩ = −i⟨θH(t− t′)cu(t)c
†
v(t

′)− θH(t′ − t)c†v(t
′)cu(t)⟩ (10)

In this equation T is the time ordering operator and can be defined using heaviside function θH(we remind that θH(x) = 1 if x is positive, and 0 otherwise). With this time ordering (or heaviside
functions), the operator on the left always is at a later time than the one on the right. The subscripts
u and v denotes two quantum numbers (for example, spin, momentum or lattice site). ⟨Ô⟩ denotes
the thermal expectation value, defined as

⟨Ô⟩ = 1

Z
Tr(e−βHÔ) (11)

Where Z = Tr(e−βH) is the partition function. We can introduce the retarded and advanced
Green’s function, defined by :{

Gr
uv(t, t

′) = −iθH(t− t′)⟨{cu(t), c†v(t′)}⟩
Ga

uv(t, t
′) = iθH(t′ − t)⟨{cu(t), c†v(t′)}⟩

(12)
The retarded Green’s function is the complex conjugate of the advanced one, and the causal

Green’s function can be rebuilt from the retarded and advanced Green’s function. Even though they
are all related, the retarded Green’s function is usually the most considered because it is the most
physical in condensedmatter. Indeed, one can show from linear response theory [111] that this Green’s
function determine the linear response of the system to a perturbation. It makes sense, because the
response of a system appears after a perturbation.
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We nowmove on to the frequency domain to introduce the spectral representation. We consider
first a non-interacting (ie separable) Hamiltonian such as

H =
∑
n

ϵnc
†
ncn (13)

Computing the commutator of the operator cn with the Hamiltonian (called the "current" of this
operator) leads to the following equation of motion

dcn(t)

dt
= −i[cn, H] = −iϵncn (14)

This differential equation is solvable and one can get:
cn(t) = eiϵntcn(0) (15)

Introducing this in the definition of the retarded Green’s function leads to:
Gr

nn′(t− t′) = −iθ(t− t′)e−iϵn(t−t′)δnn′ (16)
Where we used {cn, c†n′} = δnn′ . We can now use the following property of the Heaviside step

function:

θH(t− t′) =
1

2πi

+∞∫
−∞

dω
e−ω(t−t′)

ω + i0+
(17)

Introducing this in Eq. (16) leadswith a bit of algebra to the non interacting Lehman representation:
Gr

nn′(ω) =
∑
u

⟨n|u⟩⟨u|n′⟩
ω − ϵn + i0+

(18)
For a non-interacting system, two important physical properties are lying in this definition. First,

the poles of the Green’s function is directly corresponding to the eigenvalues of the system. Sec-
ond, the imaginary part of the same site retarded Green’s function, called spectral function Ann is
proportional to the local density of states:

ρn(ω) = ∓ 1

π
Im(Gr

nn(ω)) = ∓ 1

π
Ar

nn(ω) (19)
In the case of an interacting system we can still define and call |m⟩ the eigenbasis for m electron,

but the particle-hole excitation operator c†n/cn removing or adding an electron at lattice site n will
create a state |m−1⟩which is not anymore an eigenstate of the interacting hamiltonian. The Lehman
representation of an interacting system thus takes the form:

GR
nn(ω) =

1

Z

∑
uv

|⟨u|cn(0)|v⟩|2(e−βϵu + e−βϵv)

ω − (ϵv − ϵu) + i0+
(20)
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WhereZ is the partition function of the system and β is inversely proportional to the temperature.
In the non interacting case, the overlap element |⟨u|cn(0)|v⟩|2 reduces to a Kronecker function and werecover the previously non-interacting Lehman representation of Eq. (18). The local density of states
is now taking the form:

ρn(ω) =
1

Z

∑
uv

|⟨u|cn(0)|v⟩|2(e−βϵu + e−βϵv)δ(ω − (ϵv − ϵu)) (21)

The |⟨u|cn(0)|v⟩|2(e−βϵu+e−βϵv )
Z factor is often referred as the spectral weight and modify the density

of states of interacting systems.
Let us finally mention imaginary time, defined as τ = it with t being real time. We can also define

the Matsubara Green’s function GM (τ). This Green’s function is often used because of the analytical
continuation that can connect it to the retarded Green’s function after a time-Fourier transform:

GR
nn′(ω) = lim

iωn→ω+i0+
GM

nn′(iωn) (22)
4.1.3 . Tight-binding model

In this section, we show an example of the previously introduced tool on a well known condensed
matter system: the tigh-binding model. The tight-binding Hamiltonian is a simple model, yet able
to capture a lot of complex phenomenons (ref [112]). This model considers that each lattice sites of
the total hamiltonian are described by an atomic hamiltonian with atomic orbitals of spatial extension
usually assumed to vanish for distances larger than lattice spacing. The electrons are therefore tightly
binded to atomic sites (explaining the name of themodel). Electrons can tunnel from one atom to the
other through overlapping of the orbitals. Therefore, the tight-binding model describes the kinetic
energy of these localized electrons by means of hopping process from one lattice site to another. In
second quantization, it is given by:

H =
∑
ij

tij(c
†
icj + c†jci) (23)

This Hamiltonian describes the destruction of an electron on one site i, and the creation of an
electron on a neighboring site j effectively representing the process of an electron hopping from site
i to j. tij is called the hopping parameter and is the energy cost of each hopping processes. It can
take several values depending on the configuration if i and j. For example, it is standard to consider

tij = 0 if i=j
tij = −t if i and j are nearest-neighbours
tij = t′ if i and j are next-nearest neighbours

(24)

The sign of t and t′ can vary depending on the considered material. The more hopping parameter
we consider, the more accurate it can describe the band structure of a material. These parameters
can be fitted from experiments such as angular photo-emission spectroscopy (ARPES) [113]. We now
Fourier transform this Hamiltonian using the rules defined in Sec. 4.1.1:
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H =
∑
ij

tij
N

∑
kk′

(eikrie−ik′rjc†kck′ + e−ikrieik
′rjc†k′ck)

= −t
∑
kk′δ

(δ(k − k′)e−ik′δc†kck′ + δ(k′ − k)eik
′δc†k′ck) + t′

∑
kk′δ′

(δ(k − k′)e−ik′δ′c†kck′ + δ(k′ − k)eik
′δ′c†k′ck)

=
∑
k

ϵkc
†
kck +

∑
k

ϵ′kc
†
kck

(25)
With δ and δ′ running respectively on the nearest and next-nearest neighbours of site i, and ϵkand ϵ′k the eigenvalues of the tight-binding model in momentum space, given by:

ϵk = −t
∑
δ

e−ikδ ϵ′k = t′
∑
δ′

e−ikδ′ (26)
The exact expression of ϵk and ϵ′k depends on the symmetry of the considered lattice. For a square

lattice, they are given by
ϵk = −2t(cos(kx) + cos(ky)) ϵ′k = 4t′cos(kx)cos(ky) (27)

Figure 6: Bands along high symmetry points and density of states for the tight-binding model with t=1and t’=0 for a square lattice. The high symmetry points for this lattice are Γ = (0, 0),M = (π, π) and
X = (π, 0). The chemical potential is computed from the Fermi-Dirac distribution at T=0K and n=0.9(corresponding to 10% hole doping). Since the chemical potential at the level of the bands, this meansthat this system would be a conductor at this doping. The density of states presents a peak at E = 0.This corresponds to the energy where the band is flat (near k=X). This divergence of the density ofstates is called "Van Hove singularity".
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In the case of a weakly interacting material, plotting the bands ϵk + ϵ′k can give information on
the electrical conducting nature of the considered material. In the absence of excitation, under the
chemical potential energy, the bands are filled, and they are empty above. The chemical potential µ
can be considered by adding the following expression to the tight-binding Hamiltonian:

Hµ = µ
∑
i

ni (28)
The value of µ can then be determined self consistently by fixing the total electron density of the

system n, defined by
n =

1

N

N∑
i=1

ni (29)
where N is the total number of site. In Fig. 6, we plot the bands of the tight-binding model for

a square lattice from Eq. (27) at vanishing temperature with no t′. The dashed line is the chemical
potential computed from the Fermi Dirac distribution with electron density n=0.9 which corresponds
to 10% hole doping. At this density the chemical potential is lying inside the band. This means that
in the ground-state at T=0K, all of the energies and momentum associated to the band for energy
below the chemical potential are filled with electrons, and conversely the band is empty above the
chemical potential. This also mean that a very small external electric field will create a current since
electron can be excited with this small field and fill an empty energy state just above the chemical
potential, the material is a conductor. If however, the chemical potential lies in between two bands,
the external electric field to apply must be at least of the order of the gap between the bands in order
to excite the electron from the band below the chemical potential to the empty band. The system is
an insulator (or a semi-conductor if this gap is small).

We can also get the density of states by using:

ρ(E) =
1

N

∑
k

δ(E − ϵk − ϵ′k) (30)
The dirac distribution can be computed numerically by approximating it to a Lorentzian with small

broadening. The density of states corresponds to the number of states (filled or not) at a given energy.
It is interesting to note the singularity around E = 0, called the "Van Hove singularity", and caused
by the flatness of the band around this energy. If the band is flat, it means there are indeed a lot of
momentum site available near this energy, creating effectively a singularity.

Let us finally note the same results can be recovered using Green’s function formalism. Since the
tight-binding model is a non-interacting system, from Eq. (18) we can extract ϵk + ϵ′k by consideringthe pole of the electronic Green’s function, and the imaginary part turns out to give the same density
of state as the one obtained by mean of Eq. 30

4.2 . The Hubbard model
4.2.1 . Description of the model and qualitative Hubbard I approximation
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Introduced by Hubbard in 1963 [53], the Hubbardmodel has often been described as the simplest
model one can build in order to capture the physics of strongly correlated material. The Hubbard
Hamiltonian is as follow:

H = −
∑
i,jσ

tij(c
†
iσcjσ + hc) + U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ (31)
The first term acts as the kinetic energy of the electron : they are hopping from one site to an-

other, this is simply the tight-binding Hamiltonian from sec. 4.1.3. The second term penalizes double
occupancy by adding an energy cost U if two electrons are on the same site. The sign of the U term
will decide whether the considered interaction is repulsive or attractive. The last term is the chemical
potential and acts on the filling of the system, and usually fixed by the electron density. This model is
exactly solvable in one dimension, and in infinite dimension [54] [114]. In two or three dimensions, it
has remained unsolved for decades and is still a hot topic of the field of strong correlations [115].

One of the big success of this model in the strongly correlated limit is its ability to well describe
theMott-Insulator transition around half-filling [53]. Qualitatively the idea behind is that at half-filling,
since there is only one electron per site, from a band picture the material should be a conductor
because the band is not filled. However, hopping processes are blocked by the Coulomb repulsion U
and the system is insulator.

To build the notorious picture of Hubbard bands to explain Mott insulators, we will first perform
an heuristic derivation starting from the ground-state at half-filling inspired by ref. [57]. In that case,
since the interaction is large, there can only be one electron per site. We will assume the system to be
paramagnetic, thus there is as many spin up than spin down, in a disordered configuration. Now, let’s
assume an excitation is created by the hopping term: an electronmoves to one of its neighboring sites
to form a doubly occupied state, at a penalty cost in energy of U. This hopping can only occur if the
electron of spin σ hops on a site with a spin σ̄ electron. This has a probability 1

2 to occur (paramagnetic
assumption). This excitation creates a double occupied state ηiσ at site i by adding an electron of spin
σ to a site with an electron of spin σ̄, therefore η†iσ = c†iσniσ̄. As a consequence, a hole is created fromthis hopping on a neighboring site j, since no electron of spin σ will be left on site j: ξjσ̄ = cjσ(1−njσ̄).The effective Hamiltonian resulting of this particle-hole excitation then takes the form:

Heff =
1

2

∑
ijσ

tij(η
†
iσξ

†
jσ̄ + hc) + U

∑
iσ

η†iσηiσ (32)
The first term describes the excitation of an electron forming a pair on site i and a hole on neigh-

boring site j, and the second term is the energy penalty of U for the formation of such a pair.
Once a pair have been formed, its propagation will not have a considerable energy cost because

this conserve the number of pairs and will not cost another penalty in energy of U . Assuming the
electron of the pair conserve its spin, it can hop to another neighboring site of spin σ̄ (which still has a
probability 1

2 due to the paramagnetic assumption). The hole can similarly propagate, leading to the
following particle-hole hopping Hamiltonian:

Heff,2 =
1

2

∑
ijσ

tij(η
†
iσηjσ − ξ†iσ̄ξjσ̄) (33)
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The negative sign in front of the hole term is due to the fact that hole propagation is the opposite
of electron propagation tijc†jσciσ. The global 1

2 prefactor comes again from the paramagnetic condi-
tion. The full effective Hamiltonian, obtained from summing these two processes can be expressed
in Fourier space.

Heff =
∑
kσ

(
(
ϵk
2

+ U)η†kσηkσ − ϵk
2
ξ†kσξkσ +

ϵk
2
η†kσξkσ + hc

) (34)
Where ϵk is the Fourier transform of the tight-binding hamiltonian and depends on the details of

the considered lattice (refer to Sec. 4.1.3 for details). We now perform the following unitary transform
to get the eigenvalues of the Hamiltonian:

{
αkσ = akηkσ + bkξ

†
kσ̄

βkσ = −bkηkσ + akξ
†
kσ̄

(35)
Where ak and bk are some complex numbers. A bit of algebra leads to the following form of the

two eigenvalues of this effective Hamiltonian.

E
(±)
k =

1

2

(
ϵk + U ±

√
ϵ2k + U2

)
(36)

In the large U limit this simplifies into E−
k = ϵk

2 and E+
k = ϵk

2 +U , allowing to obtain this picture of
lower and upper Hubbard bands. In the case of half-filling, the chemical potential will lie in between
these bands. Since the Fermi energy is inside the gap, there are no available states for the electrons
if a small electric field is applied. The system is then called a Mott insulator.

It is important to understand another approximation is being made in Hubbard I approximation.
The energies we obtain are defined for the Hubbard operators. These operators do not commute the
same way the electronic operators do. As a consequence, the bands should not be filled according
to Fermi-Dirac distribution. However, by stating at half-filling the chemical potential is in between the
energies, we are already assuming the Hubbard operators behaves as the electronic one. We will
dwell on this approximation more in the next section.

4.2.2 . Rigorous Hubbard I derivation
We now build more rigorously the Hubbard I approximation the way it was historically introduced

in 1963 by Hubbard. We introduce formally the two previously defined operator:

ciσ = ηiσ + ξiσ with
{
ηiσ = ciσniσ̄

ξiσ = ciσ(1− niσ̄)
(37)

These operators ηiσ and ξiσ are called "Hubbard operators". They present the following commuta-
tion relation (often referred as "currents") with the Hubbard Hamiltonian in the atomic limit (tij = 0):

27



{
[ηiσ, HAL] = −(µ− U)ηiσ

[ξiσ, HAL] = −µξiσ
(38)

We now consider the hopping term as a small perturbation. The currents with the full Hubbard
Hamiltonian becomes:

[ξiσ, H] = −µξiσ −

∑
l

til

(
(1− ⟨niσ̄⟩)clσ − (niσ̄ − ⟨niσ̄⟩)clσ + S

sign(σ̄)
i clσ̄ + sign(σ̄)∆ic

†
lσ̄

)
[ηiσ, H] = −(µ− U)ηiσ +

∑
l

til

(
−⟨niσ̄⟩clσ − (niσ̄ − ⟨niσ̄⟩)clσ + S

sign(σ̄)
i clσ̄ + sign(σ̄)∆ic

†
lσ̄

) (39)

With S−
i = c†i↓ci↑, S+

i = c†i↑ci↓ the spin operators and ∆i = ci↑ci↓ a pair operator. The charge
operator ni have been rewritten as niσ̄ = niσ̄ + ⟨niσ̄⟩ − ⟨niσ̄⟩, introducing its expectation value to
make a distinction between the averaged part (first term in the sum) and the fluctuation part (second
term) of the charge channel. We take the following convention: sign(↑) = 1 and sign(↓) = −1. The
contribution of the hopping term to the current can therefore be divided in three contribution: a
charge excitation, a spin excitation and a pair excitation.

Hubbard I approximation neglects the spin and pair components as well as charge fluctuation
and only retain the expectation value of the charge (first term in the sum) to only describe the simple
propagation of a particle-hole excitation. In fact, the term neglected by this approximation are only
terms that appears because the Hubbard operators are not commuting like the usual electronic ones.
Indeed, we have:

{
{ξiσ, ξ†iσ} = 1− niσ̄

{ηiσ, η†iσ} = niσ̄
(40)

instead of the usual {ciσ, c†iσ} = 1. Thus, by neglecting these terms, the Hubbard I approximation
implicitly assume the Hubbard operators are behaving exactly as usual electronic operators.

The currents under Hubbard I approximation then rewrite as:

[ξiσ, H] ≈ −µξiσ − (1− ni

2 )
∑
l

tilclσ

[ηiσ, H] ≈ −(µ− U)ηiσ − ni
2

∑
l

tilclσ
(41)

This approximationmakes the problem solvable using operator while retaining partially the effect
of the hopping term. We used the paramagnetic assumption to rewrite ⟨niσ̄⟩ = ni

2 . We can indeed use
Hubbard operator to decompose the electronic operator and fully rewrite the current as a function
of the Hubbard operators. In Fourier space, we obtain

(
[ξkσ, H]
[ηkσ, H]

)
=

(
−µ− (1− n

2 )ϵk −(1− n
2 )ϵk

−n
2 ϵk −(µ− U)− n

2 ϵk

)(
ξkσ
ηkσ

)
(42)
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In this equation ϵk is the Fourier transform of the hopping term and depends on the details of the
lattice, and n is the averaged electron density.

Eq. (42) typically close the equation of motions of Green’s function defined with Hubbard opera-
tors. Let us indeed consider the following Green’s function:

Sαβ
kσ (τ) = θH(τ)⟨{αkσ(τ), β

†
kσ}⟩ (43)

Where α and β are Hubbard operators (∈ {ξkσ, ηkσ}). The equation of motion of this equation is
obtained by taking the time derivative. Using Heisenberg representation, this typically leads to the
following equation:

∂τS
αβ
kσ (τ) = δ(τ)⟨{αkσ, β

†
kσ}⟩+ θH(τ)⟨{[αkσ, H](τ), β†kσ}⟩ (44)

The anticommutator at the same time (with the dirac prefactor) can be exactly computed. We
arrive at the following matricial equation, after a time Fourier transform:

ω

(
Sξξ
kσ Sξη

kσ

Sηξ
kσ Sηη

kσ

)
=

(
1− n

2 0
0 n

2

)
+

(
−µ− (1− n

2 )ϵk −(1− n
2 )ϵk

−n
2 ϵk −(µ− U)− n

2 ϵk

)(
Sξξ
kσ Sξη

kσ

Sηξ
kσ Sηη

kσ

)
(45)

The first matrix corresponds to the dirac term in the equation of motion computed explicitly.
To reconstruct the Hubbard Green’s function on the right hand side we used [ξkσ, H](ω) ∝ ξkσ(ω).This matricial system can be solved. We can then use the relation between electronic and Hubbard
operators ciσ = ξiσ+ηiσ to reconstruct the electronic Green’s functionGkσ(τ) = θH(τ)⟨{ckσ(τ), c†kσ}⟩by summing the four Hubbard Green’s function. We arrive at the following expression:

Gkσ(τ) =
1

ω + µ+ ϵk +Σk(ω)
(46)

With Σk(ω) the self-energy given by:
Σk(ω) =

nU(µ+ ω)

(n− 2)U + 2(µ+ ω)
(47)

The electronic Green’s function can be rewritten in a more meaningful way by decomposing it as:

Gkσ(τ) =
Z+
k

ω − E+
k

+
Z−
k

ω − E−
k

(48)
With :

Z±
k =

1

2
(1∓ ϵk + (1− n)U

Wk
) and E±

k =
1

2
(U − ϵk ±Wk)− µ (49)

WhereWk =
√
U2 + ϵ2k + 2(1− n)Uϵk. With this latter form, it is clear that G presents two poles

associated to E±
k . Z±

k are the spectral weight (introduced qualitatively in Sec. 3.1.2) and renormalize
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Figure 7: Bands (top) and Fermi surface (bottom) obtained with Hubbard I approximation at U=8t,t=1, (left) n=0.8, (right) n=1.1. The colors of the bands correspond to the spectral weight Zk broadenedby some small imaginary lifetime. The two poles of the electronic Green’s function under HubbardI approximation corresponds to the lower (E−
k ) and upper (E+

k ) Hubbard bands. When hole doped(n smaller than 1, left hand plots), the Fermi energy lies at the lower Hubbard bands. At half-filling, ajump of chemical potential occurs so that the upper Hubbard band gets filled when electron doped(n bigger than 1).

these two lower and upper Hubbard bands respectively. At half-filling (corresponding to setting n=1)
we recover the qualitative derivation from Eq. (36), up to a sign convention on t. This form is rem-
iniscent of the Green’s function of a Fermi liquid theory, but there are two different quasi-particles
weights associated to the two Hubbard bands and the fractionalization of the electronic operator in
the two Hubbard operators. So while this is not a Fermi liquid anymore, Hubbard I approximation
leads to a "correlated" Fermi liquid. The electronic Green’s function appears as the sum of two Fermi
liquids, with two quasi-particles, which are assumed to behave like the electronic operators in Hub-
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bard I approximation.
In fig 7, we plot the bands E±

k and their spectral weight Z±
k at two different doping for a square

lattice (therefore ϵk = 2t(cos(kx) + cos(ky)), along with the associated Fermi Surface. The chemi-
cal potential is computed by mean of the Fermi Dirac distribution, since the Hubbard operators are
assumed to have the same statistic as normal fermions. We observe a gap of the order of U (since
Wk ≈ U ifU ≫ t) between the two bands. Whenmoving fromhole to electron doping (fromn⟨1 to n⟩1),
the chemical potential jumps from the lower to the upper Hubbard band. Therefore, at half-filling the
Hubbard I approximation describes the Mott-Insulator phase well since the chemical potential would
lie in between the bands. The spectral weight is given by the color of the bands and will be discussed
in Sec. 5.2.1. Let us finally note the Fermi surfaces can be extracted directly from the spectral function.
We represent on fig. 7 the Fermi contour, given by the equation E±

k = 0.
4.2.3 . Luttinger theorem and its breakdown with Hubbard-I approximation

Figure 8: Area of the Fermi surface As represented as a function of the electron density n with Hub-bard I approximation. The chemical potential is computed by mean of the Fermi Dirac distribution. Aviolation of Luttinger theorem (dashed-line) is observed at every doping.
As discussed in sec. 3.1.3, Luttinger theorem has broaden the Fermi gas concept of Fermi sea to

the case of interacting fermions using adiabaticity. It states that the volume enclosed by the Fermi
surface is invariant under interaction and is equal to the total number of fermions. This theorem is
fundamental in the description of Fermi liquid theory (cf Sec. 3.1.2).

The range of validity of the theorem is however very debated, especially the requirements on the
self-energy for the theorem to hold. This implies that Landau adiabatic assumption is not always
adapted for some systems. Few references even make a distinction between the "hard" version of
Luttinger theoremwe just mentioned, and a "soft" version where the invariance with respect to inter-
action is lost [116]. Nevertheless, there is now a consensus that a necessary and sufficient condition
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for the "hard" Luttinger theorem to hold is that the low energy excitation of the considered theory
should be described by a Fermi liquid [26].

Even though Hubbard-I approximation can somewhat describe a "correlated" Fermi liquid as ex-
plained in Sec. 4.2.2, fig 8 shows Luttinger theorem is not verified. The reason is that there are two
types of quasi-particles involved, the Hubbard operators, that are correlated (since in order to recon-
struct the electronic Green’s function they need to be summed). In addition, since Hubbard I wrongly
assume these quasi-particle excitations behaves as normal Fermions, the real filling of these two
lower and upper Hubbard bands is not described by a Fermi-Dirac distribution and causes Luttinger
theorem to be even less likely to hold [116].

The composite operator scheme we will introduce in the next section goes beyond Hubbard-I
approximation by correctly taking into account the non-electronic nature of the Hubbard operators
and fixing the chemical potential and the filling of the bands accordingly.

4.3 . Kondo physics
4.3.1 . Kondo physics qualitatively

Kondo physics is a rich and broad topic, and is still nowadays an intensive research subject. In this
section we only aim at providing a light introduction of the Kondo model in order to build an analogy
for the orbital selective phase discussed in Sec. 6.

We consider a lattice of conduction electrons ciσ described by a tight-binding model of dispersion
ϵk and nearest-neighbor hopping parameter t. The lattice is coupled at site 0 to a local impurity dσwith a coupling constant λ. Strong interaction Ud are imposed on the impurity site to penalize double
occupancy. The chemical potential of the impurity is given by ϵd. The situation is sketched for the onedimensional case on Fig 9.

Figure 9: Sketch of the Anderson impurity model in 1D. A lattice of conduction electrons ciσ is coupledat site 0 with an impurity. The conduction sites can hop on nearest-neighbors sites with energy t. Theimpurity is coupled to the conduction lattice through the constant λ. The impurity site has chemicalpotential ϵd and is strongly interacting, making the formation of pairs on the impurity site penalizedin energy by Ud.
The Hamiltonian used to describe this system is called the Anderson impurity model:
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HAI = HRLM + Udd
†
↑d↑d

†
↓d↓

HRLM =
∑
kσ

ϵkc
†
kσckσ +

∑
σ

[
ϵdd

†
σdσ − λ(d†σc0σ + hc)

] (50)

HRLM is called the resonant level model and exhibit a Fermi liquid behavior .The Kondo model
is directly derived from the Anderson impurity model under a Schrieffer-Wolff transformation. For
conciseness we will not give details of this transformation in this manuscript, but the derivation is
presented in ref [117]. The Kondo Hamiltonian is given by:

HK =
∑
k

ϵkc
†
kσckσ + JKSd · Sc (51)

With Sd a 1
2 spin acting on the impurity and Sc the spin operator for the conduction electron,

defined by:
Sc =

1

N

∑
kk′uv

c†ku
σuv
2
ck′v (52)

With σ the Pauli matrices and JK the exchange interaction and is given in term of Anderson im-
purity model parameters by:

JK = 2λ2
(
− 1

ϵd
+

1

ϵd + Ud

)
(53)

The Kondo model is a mapping of the Anderson impurity problem to an interacting spin picture.
Thismodel is at the core of a rich and still debatedphysics. It is known for providing a goodexplanation
to the Kondo effect, a rise of resistivity at very low temperature past a local minimum [118].

In Kondo physics, a relevant energy scale is the Kondo temperature TK . This temperature is such
that for TK ≫ T the system behaves like a Fermi liquid and there is hybridization between the impu-
rity and the conduction electron. On the other limit T ≫ TK , the impurity is not hybridize with the
conduction electron and is local.

A renormalization group approach [17] can be used to show that TK varies in e− 1
JK . Therefore,

TK decreases as Ud gets stronger.
4.3.2 . Heavy Fermions and enlarged Fermi surface

We now consider a situation closer than what will be studied in the following: instead of a single
impurity as described in Fig. 9, the system is now a lattice of impurities coupled to the lattice of con-
duction electrons, with a coupling constant λ at each site of the two lattices. The Anderson impurity
lattice model now takes the following form:

HAIL =
∑
k

(
ϵkc

†
kσckσ + ϵdkd

†
kσdkσ

)
+
∑
i

(
−λ(d†iσciσ + c†iσdiσ) + Udd

†
i↑di↑d

†
i↓di↓

) (54)
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With ϵdk the hopping in the impurity lattice. A Schrieffer-Wolff transformation in the Ud ≫ λ, ϵk, ϵ
d
klimit (so that the impurity lattice is at half-filling) leads once again to the Kondo-lattice model.

HKL =
∑
k

ϵkc
†
kσckσ + JK

∑
i

Sdi · Sci (55)

With Jk the exchange interaction, Sd
i a spin 1

2 operator acting on site i of the impurity lattice and
Sc
i = 1

2c
†
iuσuvciv. A Heisenberg Hamiltonian will also appear from the transformation but we do not

consider it in this section.
We want to derive using a mean field approach an important property of such system to deepen

the analogy with our observations in the two orbital Hubbardmodel. Namely, we want to prove in the
strong correlations regime that the Fermi surface enclosed volume is enlarged due to hybridization
between the conduction and impurities lattice. Using the spin representation, we can rewrite Sd as:

Sdi = f †iα
σαβ
2
fiβ (56)

Where fiσ is a fermionic spinon and we enforce the strong correlation on the impurity lattice by
mean of a LagrangemultiplierL to impose f †iσfiσ = 1. Therefore, we perform amean field decoupling
by introducing the following parameters:

P =
JK
N

∑
k

⟨f †kσfkσ⟩

1

2
=

1

N

∑
k

⟨f †kσfkσ⟩

nc
2

=
1

N

∑
k

⟨c†kσckσ⟩

(57)

The 1
2 factors are due to spin degenaracy. The first equation introduces the hybridization mean-

field parameter. Second equation fixes the constraint on the spinons fkσ , while third equation is usedto fix the total electron densitync. We first rewrite the Kondo-latticemodel using the following relation
on Pauli matrices:

σαβσα′β′ = 2δαβ′δβα′ − δαβδα′β′ (58)
We arrive at the following form:

HKL =
∑
k

ϵkc
†
kσckσ +

JK
4

∑
k

(
2f †kσckσc

†
kσ′fkσ′ − f †kσfkσc

†
kσ′ckσ′

)
+ L

∑
k

f †kσfkσ (59)
The second term of the exchange term is just a shift to the chemical potential since one can apply

f †kσfkσ = 1. We now perform a mean-field decoupling of the first term:

f †kσckσc
†
kσ′fkσ ≈ Pc†kσ′fkσ′ + P∗f †kσckσ − |P|2 (60)
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Therefore the Kondo-lattice model rewrite in mean field as:
HMF

KL ≈
∑
k

(ϵkc
†
kσckσ − Pf †kσckσ − P∗c†kσfkσ) + L

∑
k

f †kσfkσ − L
N

2
+

|P|2N
Jk

(61)
This Hamiltonian can be rewritten in the Nambu spinor (ckσ fkσ)

T , and diagonalizing it leads to
the following eigenvalues:

E± =
ϵk + L±

√
(ϵk − L)2 + 4|P|2
2

(62)

Figure 10: Dispersion of the 1D tight-binding model with nc = 0.875 (red). In green the mean-fieldeigenvalues of the Kondo-lattice model are plotted. The parameters P , L as well as the chemicalpotential have been computed self-consistently for an electron density nc = 0.875. The red and thepurple area represents the filled states of the mean-field Kondo lattice model, while the purple statesare the one of the tight-binding. The Fermi momentum kf is bigger for the Kondo lattice, resulting inan enlarged Fermi surface caused by hybridization.
The parametersL andP aswell as the chemical potential can then be determined self-consistently

by imposing Eq. 59. In Fig 10, we plot the tight-binding dispersion ϵk for the conducting electrons
as well as E±. For a non-zero P the enclosed volume by the Fermi surface is bigger than without
hybridization. Therefore, a signature of hybridization is an enlargement of the Fermi surface.
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4.3.3 . The competition of antiferromagnetism and hybridization
We now consider the effect of the Heisenberg term neglected in the previous section. This term is

known to create anti-ferromagnetic or ferromagnetic order depending on the value of the exchange
constant. In the case of the Kondo-Heisenbergmodel, the constant is known to be positive and there-
fore stabilize an anti-ferromagnetic order [119].

A competition between this order and hybridization is to be expected. Indeed, hybridization tends
to favor electron delocalization, since it involves hopping processes between the impurity lattice and
the conduction electrons. As a consequence, some effects such as spin flip or pairs or holes can arise
from hybridization, effectively destroying the anti-ferromagnetic ordering. This competition has been
extensively studied [120], and we won’t give any details in this section as we will just build an analogy
with this competition later on in Sec. 6.
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5 . The Composite operators method
The composite operatorsmethod (COM) consists in introducing a specific set of operators in order

to study a Hamiltonian in some particular regime where some terms can be neglected in the currents.
In the following we will mainly focus on the Hubbard model. The composite operators we consider
here are the same as the previously defined Hubbard operators. After introducing the method, we
will study the Mott-insulator transition, and extend the method to superconductivity, longer-range
hopping and sublattice (with the application to a 2 orbital Hubbardmodelwith an inter-orbital hopping
term).

5.1 . General framework
Starting from the one orbital Hubbard model Eq. (31), we introduce the following Hubbard op-

erators, that exactly solve the equation of motion of the electronic Green’s function in the atomic
limit:

ψiσ =

(
ξiσ
ηiσ

)
with

{
ξiσ = ciσ − ciσniσ̄

ηiσ = ciσniσ̄
(63)

Where σ̄ means we take a spin ↑ if σ =↓ and a spin ↑ if σ =↓. Hereafter, ψ1
iσ = ξiσ and ψ2

iσ = ηiσdenotes the first and second component of the spinor at site i and with spin σ. Before detailing how
this set of composite operators solve the equation of motion in the atomic limit, we want to provide
some physical interpretation to these operators. Let us consider a site i0 and study the effects of ξi0σand ηi0σ. We obtain the following:

ξi0σ| ↑↓⟩i0 = 0 ηi0σ| ↑↓⟩i0 = |σ̄⟩i0
ξi0σ|σ⟩i0 = |0⟩i0 ηi0σ|σ⟩i0 = 0

ξi0σ|σ̄⟩i0 = 0 ηi0σ|σ̄⟩i0 = 0

ξi0σ|0⟩i0 = 0 ηi0σ|0⟩i0 = 0

(64)

These operators differ from the usual electronic operators, and will only affect specific site con-
figurations. One can see the ξσ operator is going to act on the transition from an empty state to a
single occupied site with spin σ. On the other hand, ησ is a transforming a double occupied state to a
single occupied state of spin σ̄. The ησ operator is therefore expected to be particularly important to
treat the electron interaction terms.

5.1.1 . Atomic limit study
In the atomic limit, we do not consider hopping term t. The Hamiltonian is now local (each site is

independent, and we can consider a site independent model) and is given by
Hloc = U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ (65)
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Since the hamiltonian is now local, we can fix the consider site and work with the following hamil-
tonian:

Hloc = Un↑n↓ − µ(n↓ + n↑) (66)
The composite operator basis ψ can also be defined as site independant in the atomic limit:

ψσ =

(
ξ↑
η↑

)
=

(
c↑ − c↑n↓
c↑n↓

)
(67)

Let us start by introducing the 2 × 2 matrix composed of composite Green’s function, with spins
σ and σ′ and defined for Matsubara times τ and τ ′ by decomposing the electronic Green’s function
{
Gloc

σσ′(τ, τ ′) = ⟨⟨cσ(τ); c′σ(τ ′)⟩⟩ = (S11
σσ′)loc(τ, τ ′) + (S12

σσ′)loc(τ, τ ′) + (S21
σσ′)loc(τ, τ ′) + (S22

σσ′)loc(τ, τ ′)

(Snmσσ′)loc(τ, τ ′) = ⟨⟨ψn
σ(τ); (ψ

m
σ′)†(τ ′)⟩⟩loc (68)

Where, for two operators X and Y the double bracket notation is such that
⟨⟨X(τ);Y (τ ′)⟩⟩loc = θH(τ − τ ′)⟨{X(τ);Y (τ ′)}⟩loc (69)

θH(τ − τ ′) is one if τ > τ ′ and zero otherwise (Heaviside function). ⟨...⟩loc denotes the thermal
average (cf Eq. 11) taken with the HamiltonianHloc and {X(τ);Y (τ ′)} is the anticommutator of X and
Y. Since we are at thermal equilibrium we have Slocσσ′(τ, τ ′) = Slocσσ′(τ − τ ′). From now on we fix τ ′ to
zero as a choice of the origin of Matsubara time.

Eq. 68 has been obtained by decomposing the electronic operator in the definition of the Green’s
function: cσ = ξσ+ησ. Wewill nowwrite in boldmatrices in theψ vector, and the superscript indexwill
denotes the elements of these matrices. By differentiating with respect to τ the composite Green’s
function matrix, we get the following equations of motion

d

dτ
Slocσσ′(τ) = δ(τ)δσσ′⟨{ψσ(τ);ψ

†
σ(0)}⟩loc + δσσ′⟨⟨[ψσ(τ);Hloc];ψ

†
σ(0)⟩⟩loc (70)

Where [A;B] is the usual commutator between two operators A and B. This commutator appears
by considering the Heisenberg representation and by derivating it with respect to time.

For simplification purposes, we enforce a para-magnetic solution by adding δσσ′ prefactor, mean-
ing that in the following the results remain unchanged whether we consider an up or a down spin for
σ. The currents in the atomic limit are given by

J loc
σ (τ) =

d

dτ
ψσ(τ) = [ψσ(τ);Hloc] = Aψσ(τ) (71)

With

A =

(
µ 0
0 U − µ

)
(72)
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The equations of motion become
d

dτ
Slocσσ′(τ) = δ(τ)δσσ′⟨{ψσ(τ);ψ

†
σ(0)}⟩loc + A Slocσσ′(τ) (73)

By time Fourier transform we get

Slocσσ′(ω) = δσσ′(ω − A+ i0+)−1Ilocσ (74)
With Ilocσ = ⟨{ψσ;ψ

†
σ}⟩loc the normalization matrix. It is worth noting that the Imatrix corresponds

to the composite Green’s function at equal time. 0+ is a small positive parameter used for analytic
continuation. This Imatrix can be explicitly computed. A bit of algebra leads to

Ilocσ =

(
1− ⟨nσ⟩loc 0

0 ⟨nσ⟩loc

)
(75)

We finally obtain
Slocσσ(ω) = δσσ′

(
1−⟨nσ⟩loc
ω−µ+i0+

0

0 ⟨nσ⟩loc
ω−U+µ+i0+

)
(76)

Finally, by Eq. 68, we can deduce the electronic Green’s function

Gloc
σσ′(τ) =δσσ′⟨⟨cσ(τ); c†σ′⟩⟩loc

=δσσ′(S11 loc
σ (τ) + S12 loc

σ (τ) + S21 loc
σ (τ) + S22 loc

σ (τ))

=
1− ⟨nσ⟩loc
ω − µ+ i0+

+
⟨nσ⟩loc

ω − U − µ+ i0+

(77)

Where Snm loc
σ = ⟨⟨ψn

σ(τ);ψ
m
σ (0)⟩⟩loc denotes the (n,m) element of the 2x2 composite Green’s func-

tionmatrix. Therefore we have showed that the composite operators we introduced solve exactly the
atomic limit. The electronic Green’s function can be directly recovered.

At this level it is important to observe the connection with the lower and upper Hubbard bands
picture we already introduced with Hubbard I approximation. Indeed, this electronic Green’s function
has two poles at ω = µ and ω = µ+U . They both corresponds to flat bands (since there is no hopping
or terms that introduce a k-dependency, the system is local). These two bands are separated by U.
When turning on the hopping term as a perturbation, we can expect this two bands picture to remain
slightly similar, althoughmomentum dependant. This is in agreement with what we have seen in Sec.
4.2.2: the atomic limit picture is the precursor of the Hubbard bands.

5.1.2 . Composite operators approximation
Let us now consider the full Hamiltonian Eq. (31) that includes both the local term Hloc and the

hopping term t. We consider the limit where U ≫ t. Let’s consider the effect of the hopping term on
the current δJ , define as:
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δJiσ = [ψiσ, H −Hloc] = Jiσ − J loc
iσ (78)

Where the current operator in the atomic limit J loc
iσ is given by Eq. (71) and Jiσ = [ψiσ, H] is the

current operator taken with the full Hubbard Hamiltonian Eq. (31). Therefore, δJiσ is the current
associated to the hopping term. Let’s introduce the composite Green’s function, now site dependent
by:

Sijσσ′(τ) = θH(τ)⟨{ψiσ(τ);ψ
†
jσ′}⟩ (79)

From now on, ⟨...⟩ denotes the thermal averages taken with the full Hamiltonian. The site index
are written as susbscript and the ψ indexes as superscript, but it is important to remember S is a
matrix both in site and ψ elements. We will keep writing in bold the matrices with no superscripts.

Wewill again enforce a paramagnetic solution and consider a global δσσ′ factor in front of Sijσσ′(τ).
The equation of motion of this composite Green’s function is :

d

dτ
Sijσσ′(τ) = δσσ′(δ(τ)⟨{ψiσ;ψ

†
jσ}⟩+ θH(τ)⟨{Jiσ(τ);ψ†

jσ}⟩) (80)
Which we rewrite as

d

dτ
Sijσσ′(τ) =δσσ′(δ(τ)δijIiσ + θH(τ)Mijσ(τ)) (81)

Where we introduced the normalization matrix I and the overlap matrixM respectively as

Iijσ =⟨{ψiσ, ψ
†
jσ}⟩ = δij

(
1− ⟨niσ̄⟩ 0

0 ⟨niσ̄⟩

)
Mijσ =⟨{Jiσ, ψ†

jσ}⟩ =
(
m11

ij m12
ij

m12
ij m22

ij

) (82)

Because of the hopping term, the total current Jiσ is not proportional anymore to the composite
operator basis ψiσ. We will not be able to solve the problem exactly as in the atomic limit. We thus
need to do an approximation to truncate the equations of motion. Let us start by decomposing δJiσas follow:

δJiσ =
∑
l

Pilσψlσ + δϕiσ (83)
The first term contains the part of δJiσ proportional to ψiσ with a proportionality matrix P. δϕiσcontains the nonproportional part of δJiσ. To solve the equations ofmotion for the compositeGreen’s

function matrix, we need to compute the I andMmatrix. We directly computed the Imatrix in Eq. 82.
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The M matrix requires the total current Jiσ that we can express with the decomposition of δJiσ we
introduced

Jiσ =
∑
l

Eilσψlσ + δϕiσ

Eilσ =Aδil + Pilσ
(84)

The Ematrix contains all the terms proportional to ψ in the total current (the local Amatrix from
the atomic limit terms is analogous to Eq. 72), and δϕiσ contains all terms which are not, and comes
exclusively from the hopping term.

With this rewriting, theMmatrix is now given by the following expression

Mijσ(τ) =
∑
l

Eilσ⟨{ψlσ(τ);ψ
†
jσ}⟩+ ⟨{δϕiσ(τ);ψ†

jσ}⟩ (85)
When injecting in Eq. 81, we obtain the following equation :

d

dτ
Sijσσ′(τ) = δσσ′(δ(τ)δijIiσ +

∑
l

EilσSljσ(τ) + θH(τ)⟨{δϕiσ(τ);ψ†
jσ}⟩ (86)

the first term of Eq. 85 is proportional to Sjlσσ′ . However the second term with the δϕiσ current isnot and will introduce higher-order Green’s function in the equations of motion. Hence, an approxi-
mation is needed: we will assume that δϕiσ is negligible:

∑
l

Eilσ⟨{ψlσ(τ);ψ
†
jσ}⟩ ≫ ⟨{δϕiσ(τ);ψ†

jσ}⟩ (87)
Three main relations can be inferred directly from this approximation. First, the total current is

now proportional to ψ by construction, with the proportionality matrix E:

Jiσ(τ) ≈
∑
l

Eilσψlσ(τ) (88)
Second, considering the definition of theMmatrix in Eq. 85 leads to the following relation between

E and theM and Imatrix, obtained by noticing that at τ = 0 (equal time) Iljσ = ⟨{ψlσ(0);ψ
†
jσ}⟩:

Mijσ ≈
∑
l

EilσIljσ (89)
Thirdly, we can obtain an easy form for the composite Green’s functionmatrix after a time Fourier

transform, of the equation of motion under the main approximation Eq. 87 :
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∑
l

δσσ′(ωId2δil − Eilσ)Sljσσ′ = δσσ′δijIiσ (90)
Where Id2 is the 2 dimensional identitymatrix. At this stage onehas to be careful with the inversion

of these matrices. When a product of these matrices occurs, it is both done on the sites and ψ index.
The inversion one needs to consider is therefore not only on the ψ parts, but also on the sites. This
means one must invert a (2N × 2N) matrix. We therefore obtain the following expression

Sijσσ′(ω) ≈ δσσ′
∑
l

[ωId2 − E]−1
il Iljσ (91)

These three equations Eq. (88), (89) and (91) are direct consequence from themain approximation.
We can also include higher order terms in the basis to go further in the approximation. This has been
done in Ref. [121].

Let’s finally note that Eq. (88) is similar to a Schrödinger equation for the composite operators
(by remembering that d

dτψiσ(τ) = Jiσ = [ψiσ(τ), H]). The E matrix therefore is a non-hermitian (due
to the approximation Eq. (87)) energy matrix for the composite operators. This non-hermiticity still
comes with real eigenvalues due to the following mathematical property: the product of a real and
symmetric matrix by a diagonal matrix has real eigenvalues (cf Appendix A for proof).

5.1.3 . Building a self-consistency
The equations of motion of the composite Green’s function matrix only depends on the E,M and

Imatrices under approximation Eq. 87. We can explicitly compute them. We already computed the I
matrix in the previous section. We obtained:

Iijσ = ⟨{ψiσ;ψ
†
jσ}⟩ = δij

(
1− ⟨ni⟩

2 0

0 ⟨ni⟩
2

)
(92)

Note that since this matrix is not an identity matrix, this indicates the commutation relation of the
composite operators ψiσ are different from the usual electronic operators ciσ.In order to perform a self-consistent scheme, we will introduce the 2 × 2 correlation function
matrix define as

Cijσ = ⟨ψiσψ
†
jσ⟩ (93)

The interest of introducing Cijσ comes from fluctuation-dissipation theorem:
Cijσ =

∫
dω(1− fD(ω))

(
− 1

π

)
Im(Sijσ(ω)) (94)

With fD = 1
Exp(βω)+1 the Fermi Dirac distribution. We now need to rewrite S in order to get an

easy expression for its imaginary part. Let’s introduce the matrix of eigenvectors Ω of E such that:
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Λ = Ω−1EΩ (95)
Then, the equation of motion Eq. 91 becomes:

Snm
ijσσ′(ω) ≈ δσσ′

∑
l1 l2 l3
u1 u2 u3

Ωnu1
il1

([ωId2 − Λ]−1)u1u2
l1l2

(Ω−1
l2l3

)u2u3Iu3m
l3j

(96)

We now use the fact that ωId2 − Λ is a diagonal matrix, so

([ωId2 − Λ]−1)nmil = δilδnm
1

ω − ϵni
(97)

Therefore, Skσσ′ becomes

Snm
ijσσ′(ω) ≈ δσσ′

∑
l l′
uu′

Ωnu
il

1

ω − ϵul
(Ω−1)uu

′
ll′ I

u′m
l′j (98)

Which can be rewritten as

Snmijσσ′(ω) = δσσ′
∑
l

2∑
u=1

(σu
l )

nm
ij

ω − ϵal
(99)

With
(σu

l )
nm
ij = Ωnu

il

∑
u′l′

(Ω−1)uu
′

ll′ I
u′m
l′j (100)

This expression simplifies in momentum space using translational invariance since this makes ev-
ery termdiagonal inmomentum space (indeed, the sumover the sites can be rewritten as convolution
products which are simple products in momentum space). Accordingly to ref. [122], we then get the
simpler expression:

Snm
kσσ′(ω) = δσσ′

2∑
u=1

(σuk )
nm

ω − ϵuk
(101)

With
(σu

k )
nm = Ωnu

k

∑
u′

(Ω−1)uu
′

k Iu
′m

k (102)
Equation (101) is an usual form for the Green’s function. Indeed, this looks like the Lehman repre-

sentation we obtained in sec. 4.1.2. We now introduce a vanishing complex quantity to the frequency
0+. Then, we use the Cauchy principal value distribution of the inverse function:

1

x+ i0+
= Pv(

1

x
)− iπδ(x) (103)
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Where Pv(x) denotes the Cauchy principal value of x. Applying this on Eq. (101) (using the fact that
σ are spectral weight and are therefore real) and injecting it in Eq. (94) leads to :

Ckσ =
1

2

2∑
a=1

(
1 + tanh

βϵakσ
2

)
σa
kσ (104)

Where β = 1
kBT comes from the Fermi Dirac distribution. Eq. (104) is important because it shows

that knowing the E matrix means one can express the correlation functions C. We know that from
theM and Imatrices we can obtain the energy matrix E using Eq. (89). Therefore, to close the system
and build a proper self-consistent scheme, we know need to explicitly compute theM and Imatrices
and express them as a function of the correlation functions.

The I matrix has already been determined in Eq. (82). In order to compute M, we now compute
explicitly the currents. Since the ψ basis is composed of the same Hubbard operators as the one
introduced in Sec. 4.2.1, the currents have the same form that we remind here:

j1iσ =− µξiσ −
∑
l

til

(
clσ − niσ̄clσ + S

sign(σ̄)
i clσ̄ + sign(σ̄)∆ic

†
lσ̄

)
j2iσ =− (µ− U)ηiσ +

∑
l

til

(
−niσ̄clσ + S

sign(σ̄)
i clσ̄ + sign(σ̄)∆ic

†
lσ̄

) (105)

With S−
i = c†i↓ci↑, S+

i = c†i↑ci↓ and ∆i = ci↑ci↓. We take the following convention: sign(↑) = 1 and
sign(↓) = −1. The coefficients of theMmatrix can then be expressed:

m11
ij =− µ

(
1− ni

2

)
δij − δij

∑
l

tα1
ileil − tα1

ij(1−
ni + nj

2
+ pij)

m12
ij =δij

∑
l

tα1
ileil − tα1

ij

(nj
2

− pij

)
m22

ij =− (µ− U)
ni
2
δij − δij

∑
l

tα1
ileil − tα1

ijpij

(106)

With
eij = ⟨ξjσξ†iσ⟩ − ⟨ηjση†iσ⟩
pij = ⟨niσnjσ⟩+ ⟨S−

i S
+
j ⟩ − ⟨∆i∆

∗
j ⟩

(107)
α1
il =

til
t is equal to 1 if i and l are nearest neighbors, and 0 otherwise.

The parameter e contains correlations between neighboring composite operators and will mainly
re-normalize the chemical potential because it always appear in M in front of a δij . The p parameter
contains charge-charge, spin-spin and pair-pair correlations and contain most of the physics of the
interactions.

We now use the translational invariance of the system: each parameters with a dependence in
two sites i and j will only depend on the distance between these two sites i− j. Hence we get

eij =ei−j

pij =pi−j

Mij =Mi−j

(108)

44



We assume lattice inversion and rotation (C4) symmetries and we take n, p and e as constants
ni = n

pi±δx =pi±δy = p

ei±δx =ei±δy = e

(109)

Under these assumptions the coefficients of theMmatrix become

m11
ij =− µ

(
1− n

2

)
δij − δij4te− tα1

ij(1− n+ p)

m12
ij =δij4te− tα1

ij

(n
2
− p
)

m22
ij =− (µ− U)

n

2
δij − δij4te− tα1

ijp

(110)

And the Ematrix defined by Eq. (89) is given by
Eij =

( 2
2−nm

11
ij

2
nm

12
ij

2
2−nm

12
ij

2
nm

22
ij

)
(111)

Figure 11: The self consistency loop. Our hypothesis on the currents allows us to get a relation betweenthe M and I matrices (Eq. (89)). The energy matrix E is diagonalizable. We can express correlationfunctions as a function of its eigenvalues with Eq. (104). Then, we can rewrite theM and Imatrices interm of these correlations functions and do a self-consistency (Eq. (112)).
This matrix is diagonalizable and Eq. (104) allows to relate the correlation function Cijσ = ⟨ψiσψ

†
jσ⟩with the eigenvalues of the E matrix. Thus in order to close the system the only thing left to do is

expressing the parameters in the M and I matrices as a function of the correlation functions. Since
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e and n are one-body parameters, they can easily be expressed. Expressing p as a function of the
correlations functions is not so direct since it is composed of two-bodies operators. Following the
step of L. Roth [101], we express p as a function of correlation functions by mean of equations of
motion. In appendix B are all of the details of Roth decoupling applied to p. After some algebra, the
final expression of the parameters appearing inM and I as a function of the correlation functions are

e = C11 − C22

n = 2(1− C11
0 − 2C12

0 − C22
0 )

p = n2

4 − ρ1
1−ϕ2 − ρ1

1−ϕ − ρ3
1+ϕ

With

ϕ = − 2

2−n(C
11
0 + C12

0 ) + 2
n(C

12
0 + C22

0 )

ρ1 = 2
2−n(C

11 + C12)2 + 2
n(C

22 + C12)2

ρ3 = 4
n(2−n)(C

11 + C12)(C22 + C12)

(112)

In this equation C0 = Cii are constants by translational invariance. and C = Cij = Ci−j is treatedas e and p in Eq. (109) using lattice inversion and rotation (C4) symmetry, so it is also a constant but
different from C0.The system has now been closed. For simplicity (namely due to Eq. (101)) we will perform the nu-
merical study in momentum space. In Fig. 11, we represented the self-consistency pattern. Starting
from initial guess for e, n and p, we compute the M and I matrices. We can then obtain E and di-
agonalize it. Then, using Eq. (104), we can relate the correlation functions with the eigenvalues of E.
Finally, using the self consistent Eq. (112), we compute again e, p and n. We stop when f(x) − x < δ

where x = (e, p, µ) and f are given in Eq. (112). We chose δ = 10−8. Once the system converges, we
use the parameters (e, p, µ) to compute the electronic Green’s function using the relation between S
and G:

Gk(ω) =S
11
k (ω) + S12

k (ω) + S21
k (ω) + S22

k (ω)

=

2∑
l=1

(σl)11k + (σl)12k + (σl)21k + (σl)22k
ω − ϵlk + i0+

(113)

Where the κ act as spectral weights and are defined in Eq. (102) and ϵ1 and ϵ2 are the eigenvalues
of the Ematrix, and can be built from the parameters (e, p, µ).

Finally the composite operator method can be compared with the Hubbard I approximation, wich
is also known to exhibit a Mott-insulator transition as long as U ̸= 0 [53] (cf Sec 4.2.2). It is however a
less refined assumption than the composite operator method because it completely neglects some
components of the currents and assume the Hubbard operators behave like electrons (see Sec. 4.2.2).
Albeit under the approximation from Eq. 87, the composite operator treatment consider the full
expression of the current and the non-electron like algebra of the Hubbard operators. It can thus
only be considered as more refined than Hubbard I.

5.2 . Mott-insulator transition
5.2.1 . Bands and Fermi surfaces

The method presented in the previous subsection use a decoupling scheme initially developped
by L. Roth for the expression of the parameter p. The converged solutions obtained with this self-
consistency have the notable drawback of having an on-site correlation function C12

0 non zero while
it should analytically be zero due to Pauli principle. Indeed, we can see that by explicit computation:
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C12
0 = ⟨ξiση†iσ⟩

= ⟨ciσc†iσniσ̄ + ciσc
†
iσ̄c

†
iσciσ̄niσ̄⟩

= ⟨−ciσ(c†iσ̄)
2c†iσ(ciσ̄)

2⟩
= 0

(114)

It is important to note that this Pauli violation of C12
0 not being zero after numerical convergence

gets smaller with increasing U and is exactly zero at half-filling [122]. Furthermore, Roth decoupling
does not introduce any other approximation: in appendix B, the only approximation used to express
the p parameter using Roth decoupling is the main composite operator approximation Eq. (87) that
is already assumed in the method itself.

In references [123] [122], another self-consistency have been suggested. Instead of considering a
self-consistent equation on the p parameter, C12

0 = 0 is explicitly imposed and p is allowed to vary
freely to satisfy this condition. From now on, we will call "Roth scheme" the self-consistency using
Roth decoupling, and "Pauli scheme" the one imposing C12

0 = 0 instead.
In this section we now compare the two schemes and their respective solutions with nearest-

neighbours. In Fig 12 we start by plotting the eigenvalues of the E matrix for two schemes. It is im-
portant to note that we found a unique solution for Roth scheme, and two solution for Pauli scheme,
that we will call "COM1" and "COM2" accordingly to ref. [122]. The eigenvalues of the E matrix can be
understood as the bands obtained after the composite operator treatment. Indeed in Eq. (113) one
can note the eigenvalues of the E matrix corresponds to the poles of the electronic Green’s function,
with a spectral weight given by Eq. (102). In red on Fig 12 we plot the U=0, tight-binding dispersion for
comparison.

The solutions have two Hubbard bands associated with the two eigenvalues of the energy ma-
trix, split by the interaction strength U . The COM2 and Roth solutions exhibit Mott insulator physics
at half-filling as the chemical potential resides between the two bands. In contrast, contrary to the
conventional understanding, the COM1 solution represents a metallic phase at half-filling for t = 1,
U = 8t. Consequently, COM1 cannot be deemed a physically viable solution for the Hubbard model
in strong coupling regimes.

The COM2 solution always presents two holes pockets, leading to two Fermi Surfaces in Fig. 13.
This is unexpected, as this has never been observed by ARPES experiments for strongly correlated
materials such as cuprates where this treatment of the Hubbard model is relevant. However, in Ref.
[121] the basis has been extended to take into account dynamical corrections of the self-energy. The
lifetime of the second hole pocket is then computed and happens to be small, which can explainwhy it
is not observed experimentally. Finally, the Roth solution (Fig. 12c) has the advantages of presenting
only one hole pocket and a maximum at (π, π). This maximum is consistent with the tight-binding
bands. COM2 bands have a minimum at (π, π) which can also comes as a surprise because it leads to
a solution completely different from the non-interactive one.

It is also important to notice the so called "waterfall" feature. This consists in a loss of spectral
weight on the lower Hubbard band around M = (π, π), and an increase on the upper band at the
same momentum. The spectral weight, overlapped in colors on Fig 14, is defined as the excitation
of the system when adding or removing an electron. It is obtained by plotting the spectral function
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(a) Roth Minimization.

(b) First Pauli solution (COM1)

(c) Second Pauli solution (COM2)
Figure 12: (a), (b), (c): Bands along high symmetry points with t = 1, U = 8t, T = 0, n = 0.8 for (a) PauliCOM1 solution, (b) Pauli COM2 solution, (c) Roth solution. The non interacting (tight-binding) band is inred. The composite operator treatment of the interaction splits it into 2 Hubbard bands obtained forevery solutions. We overlapped in color the spectral function A(k, ω) along high symmetry points. Athalf filling the chemical potential lies in between the two Hubbard bands and we get a Mott insulator,except for COM1 that is therefore considered unphysical. The shape of the COM1 Hubbard bands isalso similar to the non-interacting band, they are simply splitted by U. We observe a flattening of thebands around X=(π, 0) for both COM2 and Roth solution.

Ak(ω), which is defined as the imaginary part of the electronic Green’s function. The waterfall effect
is currently under debate of being an universal features in cuprates [124, 125].

Thewaterfall effect has already beenobservedwithHubbard I approximation, and the same trans-
fer of spectral weight aroundM is observable on Fig. 7. According to [57], the following interpretation
can be given in the context of lower and upper Hubbard bands: in momentum space, when hole
doping close the half-filling, the only available states lies near momentum close to (π, π) since the
lower Hubbard band presents a maximum. Therefore, upon adding an electron, the excitation can
only happen around this momentum. For electron density close to half-filling, this excitation has high
chances to create a double occupied states, thereby costing an energy U to the system, and trans-
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Figure 13: From left to right we plot the Fermi surfaces (imaginary part of Eq. (113) at ω = 0, herewe show the contour line ϵk = 0) of COM1, Roth, COM2 and the non-interacting (tight-binding) caserespectively at n=0.8, t=1, T=0 and U=8t (0 for the non-interacting case). COM2 solution exhibits twohole pockets around (0,0) and (π, π). The two dispersions obtained from the Pauli minimization weobtain are analogous to Ref. [122]. The Fermi surface of Roth solution is diamond-like and wouldcorresponds to half-filling if Luttinger theorem would hold.

fering the excitation to the upper Hubbard band at the same momentum. This is consistent with 12
which is at 20% electron density and exhibit much less spectral weight on the upper Hubbard band
around M symmetry point than on fig 14 which is closer to half-filling.

Once reaching half filling, the Roth and the COM2 solution bands become alike, and are plotted
on Fig. 14. The chemical potential has a degenerate range of value it can take within the gap, and the
system is a Mott-insulator.

Close to half filling (2% hole doping), the Roth solution exhibits a second small hole pocket at (π, π)
that can be observed both on the bands of 14 on the Fermi surface on Fig. 15. This second hole pocket
around (π, π)may be the consequence of the paramagnetic assumption ⟨ni↑⟩ = ⟨ni↓⟩ = n

2 . It appearsaround half filling where we know the antiferromagnetic phase dominates [126]. The wave-vector
(π, π) is associated with antiferromagnetism, so this second hole pocket might be an instability of the
system because we neglected it.

5.2.2 . Density of states and Luttinger theorem
In the previous section we arrived to the conclusion that COM1 is not a good solution. While the

presence of the second hole pocket at every filling that COM2 exhibit is unusual for strongly correlated
materials such as cuprates, both COM2 and Roth are indeed Mott insulator at half-filling and metallic
away from half-filling, as well as exhibiting the well known "waterfall" feature.

In this section we focus on the study of the density of states and the validity of Luttinger theorem.
In Fig. 16, we plot it as a function of energy for several doping with the Roth and COM2 solutions

respectively. The density of states has been computed from the spectral function using the following
formula

D(ω) =
1

N2

N∑
kx,ky=1

(
− 1

2π

)
Im(G(k, ω)) (115)
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(a) Half-filling.

(b) 2% hole doped

(c) 2% electron doped
Figure 14: (a) Bands obtained at half-filling with COM2 and Roth (both solution leads to the samebands). (b) and (c) Bands obtained by Roth minimization in the neighboorhood of half filling (2% holeand electron doped respectively).

Where N denotes the number of considered points for sampling kx and ky and G is the electronic
Green’s function introduced in eq. 113.

At half filling we do not have any states at the Fermi energy for both Roth and COM2, since the
model leads to a Mott insulator for this doping and the chemical potential lies in between the upper
and lower Hubbard bands. Close to the Hubbard gap two peaks can be distinguished. Usually, in 2D
a Van Hove singularity can only appear at a saddle point, not at a maximum or a minimum of the
dispersion. But these two peaks may be interpreted as a remnant of the tight-binding, U=0 model.
Indeed, as seen in Sec. 4.1.3, if only considered with nearest-neighbors, the Van Hove singularity lies
at half-filling. Here, at half-filling both COM2 and Roth density of states presents some peaks around
the gap, as if the tight-binding Van-Hove singularity have been "split" in two by the interaction. This
is possible thanks to the spectral weight in Eq. 102 that can renormalize the density of states. These
peaks near the edges of the gap seems to be a characteristic of Mott-Physics and the transfer of
spectral weight usually occuring [127].

For every doping except half-filling, a third peak is also observable for Roth solution and corre-
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Figure 15: Fermi Surfaces of Roth solution at n=0.98 (left) and n=1.02 (right). A second hole-pocketappear close at these dopings for Roth solution near. We assume this is a consequence of the param-agnetic assumption since it is centered on (π, π) when hole-doped. This second hole pocket disappearafter 3-4% hole or electron doping.

sponds to the Van Hove singularity. It is indeed associated to a saddle point of the dispersion on
Fig. 12 around (π, 0). The Fermi energy is exactly at this Van Hove peak at n=0.8 or n=1.2. In term of
Fermi surface for a square lattice the Van Hove singularity corresponds to the doping below which
the Fermi Surface is centered on (0, 0) and above which it is centered on (π, π). In Fig. 17 we confirm
the peak observed on the density of states away from the gap peaks is indeed following this behavior.
Note the COM2 solution has no such peaks. This is consistent with the absence of saddle point in the
dispersion.

Regarding the Mott transition, we see at half filling no quasiparticle peak is observed around the
Fermi energy. Instead, the density of states is closer to what was observed with determinantal quan-
tum Monte Carlo simulation (DQMC) in Ref. [29]. DQMC is a stochastic algorithm which allows under
some limitations to perform direct studies of complex condensed matter problems. As predicted by
DQMC in Ref [29], at doping close to half-filling we only observe a transfer of spectral weight between
the lower and upper Hubbard band occurs, changing the density of states, without creating a quasi-
particle peak at the Fermi energy at half filling. Therefore in this regime where U ≫ t the density of
states of the lower and upper Hubbard bands are the only contribution.

Wenow turn our attention to the Luttinger theorem. This theoremstates that the volumeenclosed
by the Fermi surface is proportional to the electron density [128]. The regime of validity of Luttinger
theorem is still a very debated topic [129, 130, 131]. To compute the volume enclosed by the Fermi
surface, we can use the spectral function at the Fermi energy, defined from the electronic Green’s
function Eq. (113). The σ act as spectral weights of the electronic Green’s function. The Fermi surface
is therefore given by the spectral function at the Fermi energy (corresponding to ω = 0):

Ak(ω = 0) =− 1

π
Im(Gk(ω = 0))

=
∑
l

[(σl)11k + (σl)12k + (σl)21k + (σl)22k ]δ(ϵlk)
(116)
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Figure 16: Density of states in energy with parameters t = 1, U = 8t and T = 0, of Roth solution (top)and COM2 solution (bottom) with nearest neighbors. From top to bottom the filling is respectively:n=0.76, 0.88, 0.92, 0.98, 1 (half filling), 1.08 and 1.24. Theblue line corresponds to the chemical potential.
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Figure 17: Fermi Surface obtained with Roth solution, at n=0.7 and n=0.9.The chemical potential orthe Fermi energy coincides with the Van Hove singularity for some specific electron density (heren=0.8). Below the singularity the Fermi surface is centered around (0, 0), and above the singularity itis centered around (π, π)

(a) Luttinger Violation at U=8t, T=0 (b) Luttinger violation at U=10t, T=0.5
Figure 18: Area of Fermi surface as a function of doping. It is computed using Eq. (117). We observe aviolation of Luttinger theorem for all solutions. The two figures are obtained at (a) T = 0K (β ≈ 105t)and U = 8t, (b) β = 2t and U=10t to make a comparison with what was obtained in Ref. [29] fromDeterminantalMonte Carlo. The solutions are proportional to the electron density only asymptotically(the curves and the black dotted line “FS=n" associated to Luttinger theorem are not parallel). Thesystem is in a “Luttinger breaking phase".

Thus, the Fermi contour is the set of points associated to a vanishing ϵlij . Therefore a way to
compute the enclosed area AFS is simply by considering the following equation
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Al
FS =

1

N2

N∑
kx,ky=1

θH(ϵlk) (117)
Note in this last equation we do not have the sum over the two eigenvalues. Indeed, one must

only consider the bands that are not completely filled (the empty bands are at a positive energy so
will not be counted), so l has to been chosen accordingly. For instance, in the electron-doped regime
the lower band is going to be filled, so l must correspond to the eigenvalue of the upper band in order
to not count the fully filled lower Hubbard band in the area of the Fermi Surface.

Fig. 18 reveals that the Luttinger theorem is violated. This violation is analogous to what was ob-
served by Ref. [29] using determinantal quantumMonte-Carlo simulations. In Fig. 18, we plot Luttinger
violation observed with the same parameters as in Ref. [29] (U=10t and β=2). We obtain analogous
results: while none of the solutions we considered are precisely similar to what was observed with
determinantal quantumMonte-Carlo, we have the same overall behavior. Our curves are not parallel
to the black dotted line representing the Luttinger theorem (where Fermi surface area equals electron
density). The system is in a “Luttinger breaking phase". Contrary to results of Ref. [29]which indicates
a critical density after which Luttinger theorem holds, with composite operators the theorem seems
broken at every doping and verified only asymptotically at maximum and minimum doping. This vi-
olation is expected, given the non-fermionic commutation relation of the composite operators: the
model is not describing a Fermi liquid.

5.2.3 . Parameters study and particle-hole symmetry
In this section, we consider the individual effect and physical meaning of the self-consistent pa-

rameter, and verify how and if they enforce particle-hole symmetry.
We first start by providing a physical interpretation of the effect of the parameters on the system.

In fig. 19, we plot the three self-consistent parameters as a function of the electron density at U = 8t,
t = 1 and T=0.

The chemical potential is awell knownphysical quantity : it fixes the filling of the bands accordingly
to the electron density that we fix as an external parameter. It is nonetheless worth mentioning the
jump at half-filling (corresponding to electron density n = 1) it makes for the COM2 and Roth solution.
This is in agreement with the band study: this chemical potential gap is of the order of U and therefore
corresponds to the lower Hubbard band being filled and the upper Hubbard band starting to be filled.
COM1 does not exhibit this behavior, as we concluded it is not a Mott-insulator close to half-filling and
is not a good physical solution.

The parameter e is defined as follow:
e = ⟨ξjσξ†iσ⟩ − ⟨ηjση†iσ⟩ (118)

where i and j are nearest-neighbors. We remind the ξ operator represents the transition from
an empty to a singly occupied state, and the η parameter the transition from a single to a doubly
occupied state. Hence ξjσξ†iσ moves a σ electron from single occupied state j to empty state i: it
corresponding to a hole propagating to nearest neighbors. On the other hand, ηjση†iσ destroys the
double occupied state on j and create a pair on site i. It is thus associated with pair propagation.
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(a) Chemical potential (b) Parameter e

(c) Parameter p
Figure 19: (a), (b) and (c): parameters as a function of doping for each solution. The dash lines in theelectron dope (n >1) region are the particle-hole symmetric (128) of their equivalent in the hole dopedregion.

Therefore, if e counts the number of hole propagating without creating a pair minus the number of
pair propagating without creating a hole. As a consequence, this parameter vanishes exactly at half-
filling because of the Mott-Insulator physics: no hole or pairs can propagate. The main contribution
of e to the dispersion will be to renormalize the chemical potential.

The p parameter involves two-bodies correlations. We remind it is defined as:
p = ⟨niσnjσ⟩+ ⟨S−

i S
+
j ⟩ − ⟨∆i∆

∗
j ⟩ (119)

It represents the interaction both in the charge, the spin and pair sector. Because it only involves
nearest neighbors processes, it can have many effects both on the shape or bandwidth of the disper-
sion. A notable drawback of the Pauli scheme is due to the fact p is free to vary since Pauli scheme
replaced the self-consistent Roth decoupling equation on p to enforce Pauli principle. However, the
Roth decoupling detailed in Appendix B does not make any other assumptions than the main com-
posite operator assumption we made at the beginning in Eq. 87.

This decoupling is therefore consistent with the method and should always be equal to the p pa-
rameter. But the converged value of p with the Pauli scheme is not matching the value of p one would
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Figure 20: Parameter p with Roth scheme (black) as a function of electron density n. In blue we plotthe p parameter after convergence for COM2 solution. Then, in red we display the value of p with Rothdecoupling using the converged self-consistent parameters from COM2 solution. Since the red andblue curves are not matching, COM2 solution is not respecting Roth decoupling. This is unexpected,as the decoupling involves no other approximation than the main COM approximation we alreadymake in the method.

obtain if we compute it from Roth decoupling using the converged Pauli correlation functions. This
issue shows that Pauli scheme is not giving consistent results with the composite operator approxi-
mation. The Pauli violation seems to come from themain approximation Eq. 87 itself. For this reason,
the Roth scheme appears as the best scheme to consider.

Let us now check the validity of particle-hole symmetry with the method. It is well known that
the Hubbard model with nearest neighbour hoppings only is particle-hole symmetric. This symmetry
exchanges particles and holes with the transformation

ciσ → (−1)ic†iσ c†iσ → (−1)iciσ (120)
We could also have taken another convention for this transformation without any (−1)i, as long

as we change t to -t to keep the Hamiltonian invariant. Applied to the composite operators one can
show that it becomes

ηiσ → (−1)iξ†iσ ξiσ → (−1)iη†iσ (121)
With the paramagnetic assumption, the particle-hole transformation is rewritten

⟨c†iσciσ⟩ → ⟨ciσc†iσ⟩

⇔ n

2
→ 1− n

2

(122)
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Hence applying the particle-hole transformation on electronic filling gives n → 2 − n. The transfor-
mation changes the self-consistent parameters µ, p and e (Eq. (107)) as follow:

For the chemical potential, we use the invariance under particle-hole symmetry of the Hubbard
Hamiltonian. We obtain

H =
∑
ijσ

tijc
†
iσcjσ + U

∑
ni↑ni↓ + µ

∑
iσ

niσ

→
∑
ijσ

tij(−1)i+jciσc
†
jσ + U

∑
i

(−1)4ici↑c
†
i↑ci↓c

†
i↓ − µ

∑
iσ

(−1)2iciσc
†
iσ

=
∑
ijσ

tijc
†
jσciσ + U

∑
i

(1− ni↓ − ni↑ + ni↑ni↓) + µ
∑
iσ

niσ

=
∑
ijσ

tijc
†
iσcjσ + U

∑
i

ni↑ni↓ + (µ− U)
∑
iσ

niσ + cste

(123)

Thus, to keep the Hamiltonian invariant and therefore have under the particle-hole transforma-
tionH → H , we need to impose

µ(2− n) = −(µ(n)− U) (124)
For e and p we work directly with their respective definitions

e =⟨ξiσξ†jσ⟩ − ⟨ηiση†jσ⟩
p =⟨niσnjσ⟩+ ⟨S+

i S
−
j ⟩ − ⟨∆i∆

∗
j ⟩

(125)
We use the particle-hole relations of the composite operators Eq. (121). For e we obtain

e(2− n) → (−1)i+j(⟨η†iσηjσ⟩ − ⟨ξ†iσξjσ⟩)

= ⟨ηjση†iσ⟩ − ⟨ξjσξ†iσ⟩

= −(⟨ξiσξ†jσ⟩ − ⟨ηiση†jσ⟩)
= −e(n)

(126)

We didn’t kept the terms with δij because e and p always appear with a tij prefactor and tij = 0 if
i = j. We used the fact that i and j are always nearest neighbors to get (−1)i+j = −1. For p, we have

p→ (−1)2i+2j⟨ciσc†iσcjσc
†
jσ + ci↑c

†
i↓cj↓c

†
j↑ − c†i↑c

†
i↓cj↓cj↑⟩

= ⟨cjσc†jσ − niσcjσc
†
jσ + S−

i S
+
j −∆∗

j∆i⟩
= ⟨1− njσ − niσ + niσnjσ + S+

j S
−
i −∆i∆

∗
j ⟩

= 1− n

2
− n

2
+ p(n)

= (1− n) + p(n)

(127)
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Therefore the particle-hole relation for the self-consistent parameters are the following
e(2− n) =− e(n)

p(2− n) =p(n) + (1− n)

µ(2− n) =U − µ(n)

(128)

In Fig. 19a, 19b and 19c we plot e, p and µ as a function of doping for the three solutions we studied
(COM1, COM2 and Roth). The dashed-lines on the electron-doped region is the value the parameter
must have to satisfy the particle-hole relations Eq. (128). We see that particle-hole symmetry is re-
spected for every parameters for the three solutions.

We obtain a different result fromRef. [122]. It is possible to have a particle-hole symmetric solution
which violates Pauli principle. This is indeed the case of the Roth solution which has a non vanishing
C12
0 despite the fact it is zero analytically. The solution is particle-hole symmetric as long as C12

0 is not
put to zero by hand in the self-consistent equations it must appear both in the equation of n and in
the ϕ term in the equation of p.

Finally, note that applying this transformation on the composite bands ϵ1 and ϵ2 leads to
ϵ1k(2− n) =− ϵ2k+(π,π)(n)

ϵ2k(2− n) =− ϵ1k+(π,π)(n)
(129)

5.3 . Superconductivity and Longer range hoppings
5.3.1 . Extension to superconductivity

Superconductivity can be studied by extending the initial basis. The new spinor ψ to consider is

ψ =


ξiσ
ηiσ
ξ†iσ̄
η†iσ̄

 (130)

The method described before in Sec. 5 remains the same except for the I and M matrix which
are now 4 × 4 matrices. Since we have chosen to make comparisons with cuprates when we will
include longer range hoppings, we consider in this section only the case of d-wave superconductivity.
Therefore, ⟨ci↑ci↓⟩ = 0. Within this new basis, two currents add up to the two previously define in Eq.
(105). After a bit of computation, we get the M and I matrices

Iij = δij


1− ni

2 0 0 0
0 ni

2 0 0
0 0 1− ni

2 0
0 0 0 ni

2

 Mij =


m11

ij m12
ij m13

ij −m13
ij

m12
ij m22

ij −m13
ij m13

ij

m13
ij −m13

ij −m11
ij −m12

ij

−m13
ij m13

ij −m12
ij −m22

ij

 (131)

We used the paramagnetic assumption: ⟨niσ⟩ = ni
2 . The coefficient of the M matrixm11

ij ,m12
ij and

m22
ij are the same as in Eq. (106). In addition, the coefficientm13

ij is defined by:
m13

ij = −tγijθij (132)
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γij is a d-wave form factor we artificially added to enforce d-wave superconductivity. It is such
that γi,i±δy = −γi±δx,i = 1 where δx/δy is the lattice constant along x/y axis.The parameter θ is given by

θij = ⟨ciσciσ̄njσ⟩ (133)
There ismore in θij than just superconductivity. For the sake of giving an intuition of this, we applyWick theorem on θij (this cannot be done since Wick theorem is only valid for weak correlations but

it will give an insight of the physics)

θij =⟨ciσciσ̄⟩njσ − ⟨ciσc†jσ⟩ciσ̄cjσ
+ ⟨ciσcjσ⟩ciσ̄c†jσ − ⟨ciσ̄cjσ⟩ciσc†jσ + ...

(134)
From this hand wavy decoupling it appears θij is composed of superconducting channels (showed

by the charge 2 correlations of type ⟨cc⟩), but also of bond-charge (⟨c†iσcjσ⟩) and spin flip hopping
(⟨c†iσcjσ̄⟩) channels. Since we impose d-wave symmetry by mean of the d-wave γij factor in Eq.(132),
all the superconducting channels except the one associated to the d-wave symmetry ⟨ciσ̄cjσ⟩ will beassumed to be negligible. θij can therefore been seen as an anomalous d-wave superconductivity
mean field parameter, and it also involves spin and charge correlations. Since we consider singlet
pairing, we have

⟨ciσciσ̄njσ⟩ = ⟨c†iσ̄c
†
iσnjσ⟩ (135)

We can still apply translational invariance to treat p, n and e as a constant. We can do likewise for
θ. The self-consistent equations remain the same for n and e since they are only one body correla-
tions. However extending the basis changes the self-consistent equations of pij and θij . We obtain
(cf appendix C for details)

{
p = n2

4 − ρ1+ϕρ2
1−ϕ2 − ρ1−ρ2

1−ϕ − ρ3
1+ϕ

θ = ζ
1+ϕ

(136)
With 

ϕ = − 2
2−n(C

11
0 + C12

0 ) + 2
n(C

12
0 + C22

0 )

ρ1 = 2
2−n(C

11 + C12)2 + 2
n(C

22 + C12)2

ρ2 = 2
2−n(C

13 + C14)2 + 2
n(C

23 + C24)2

ρ3 = 4
n(2−n)(C

11 + C12)(C22 + C12)

ζ = 2
2−n(C

11 + C12)(C13 + C14) + 2
n(C

12 + C22)(C23 + C24)

(137)

Let us note that this decoupling is not unique. Several choices can bemade (an example of this can
be found in appendix C). These choices give similar results but tend to overestimate or underestimate
some quantities, depending on which regime we consider [132]. Following the original suggestion of
L. Roth [101], we should symmetrize the different possible decoupling. Beside the size of the matrices,
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(a) Bands for the Roth solution (b) Bands for the COM2 solution

(c) Fermi Surface for the Roth solution (d) Fermi Surface for the COM2 solution

Figure 21: Bands and Fermi Surface with superconductivity at t = 1, U = 8t and T = 0 respectivelyfor (a) Roth solution at n = 0.8 (b) COM2 at n = 0.9. These are the respective doping at whichsuperconductivity is maximum. We observe a doubling of the bands associated to the doubling ofthe basis. The spectral weight, overlapped in colors is also particle-hole symmetric. The insets on thetop plots correspond to a zoom around zero energy of the bands: we see a gap opening at k=(π, 0).There is no gap opening between k=(0, 0) and k=(π, π) because of d-wave symmetry. The associatedFermi surfaces of (c) and (d) have been plotted with some broadening, as it is made only of one nodalpoint between Γ due to d-wave symmetry and the gap opening.

everything else remain the same: the expression of σ from Eq. (102) remains unchanged, but will
involve 4× 4matrices.

On Fig. 21 we plot the bands for the Roth and COM2 solutions. There is a doubling of the bands
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due to the particle-hole symmetry of the basis: we have four distincts eigenvalues ϵl of the E matrix
verifying the property ϵ1 = −ϵ3 and ϵ2 = −ϵ4. Beside this doubling, the bands are almost unmodified
compared to what we hadwithout superconductivity. Only one difference can be seen: a gap opening
at (π, 0). We performed a zoom around zero energy in order to see the gap better on the insets. The
presence of the gap also appears on the Fermi surface: there is less weight near the (π, 0) compared
to what we had in Fig. 12 without superconductivity.

On Fig. 22a, we plot the parameter θ as a function of the electron density n for the COM2 and the
Roth solutions. The dashed-line corresponds to the usual d-wave superconducting order parameter
∆d

ij = ⟨ciσcjσ̄⟩. We can recover it directly from the correlation functions involving nearest-neighbors
Cnm
ij = ⟨ψn

i (ψ
m
j )†⟩ using the following equation

∆d
ij = C13

ij + C14
ij + C23

ij + C24
ij (138)

(a) θ and∆d parameters as a function of n (b) Density of states at the Fermi Energy.

Figure 22: (a): Anomalous superconducting mean field parameter θ as a function of doping for Rothminimization and Pauli minimization (COM2 solution). θ satisfy particle-hole symmetry in both cases.The dashed lines corresponds to the d-wave superconducting order parameter ∆d. (b): Density ofstates at the Fermi energy with no superconductivity. We see a clear correlation between enhance-ment of the density of states and superconductivity. θ and ∆d are maximum at the Van Hove singu-larity. It lies at n=0.8 for Roth and around n=0.9 for COM2, as shown in Fig. 21.
Themaximumof θ and∆d are at the same electron density. For the Roth solution this corresponds

to n=0.8, while for the COM2 solution it is around n=0.9. We already showed that n=0.8 corresponds
to the Van Hove singularity for the Roth solution in the discussion of Fig. 16 and 17. This is in agree-
ment with other studies [105] [102]. The same phenomenon occurs for the COM2 solution. In Fig. 21
we plotted the bands and Fermi surfaces for the COM2 solution at n=0.9 where superconductivity is
maximum. Beside the gap opening, the band for COM2 exhibits some flatness at (π, 0) and its Fermi
Surface is almost diamond-like. We plot the density of states at the Fermi energy as a function of elec-
tron density on Fig. 22b. Let us note we did not considered superconductivity to compute this density
of states (otherwise therewould be a superconducting gap). The density of stateswas computed using
Eq. (115) at ω = 0. There is a clear correspondence between the maximum of superconductivity and
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of the density of states at the Fermi energy, both for Roth (at n=0.8) and COM2 (at n=0.9). For the Roth
solution a maximum can be found near half-filling but this maximum is associated with Mott physics
and does not improve superconductivity because it is too close to half-filling. The local maximum at
n=0.8 due to Van Hove singularity is the one relevant in the enhancement of superconductivity.

We checked that the θ parameter also verifies the following particle-hole symmetry
θ → θ∗ (139)

In order to satisfy particle-hole symmetry, there must be another maximum of θ, therefore another
Van Hove singularity in the electron doped regime. On Fig. 22b, we indeed see another peak both for
superconductivity and the density of states in the n > 1 area. They correspond to the particle-hole
symmetric of the peaks in the hole doped region.

In this method, the gap opening observed on the bands in Fig. 21 is of the order of ∆d, as it
is expected. The value of θ affects both superconductivity and the density n, since θ involves both
quantities.

5.3.2 . Bands and Luttinger theorem with longer ranged hopping
We nowwant to consider the effect of higher hopping terms in order to get closer tomore realistic

materials. We want to see if the results we had with nearest-neighbours hoppings on the bands, the
validity of the Luttinger theorem and superconductivity are modified by further hoppings. Including
at least next nearest neighbors in the model is enough to break the particle-hole symmetry. We will
only consider the Roth solution in this section, since COM2 and COM1 solutions have been studied
with next-nearest neighbors in Ref. [123], and Roth presents Fermi surface closer to what is observed
by ARPES for cuprates.

From now on we will consider four different sets of tight-binding parameters all corresponding to
a square lattice as described in Fig. 23.

Figure 23: Representation of the five longer ranged hopping parameter considered in this section fora square lattice.
These tight-binding parameters correspond to cuprates Bi2212 and LSCO, which are strongly cor-

related. Their values, taken from Ref. [133],are given in Table 1. They are such that the energy for a
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tight binding model of a square lattice is given by
ϵtb(k) = 2t(cos(kx) + cos(ky)) + 4t2cos(kx)cos(ky) + 2t3(cos(2kx) + cos(2ky))

+ 4t4(cos(kx)cos(2kx) + cos(2kx)cos(ky)) + 4t5cos(2kx)cos(2ky)
(140)

In the following we will normalize every plots so we have t=1 (we will divide every tight binding
parameter by t in absolute value).

t t2 t3 t4 t5tb1 -0.2956 0.0818 -0.0260 -0.0280 0.0255tb2 -0.3399 0.1184 -0.0397 0.0086 0.0006tb3 -0.2941 0.0731 0.0048 -0.0325 0.0035tb4 -0.3912 0.0370 -0.0294 -0.0350 -0.0087
Table 1: Values of the 4 tight bindings we are going to consider. tb1 is based on an ARPES fitof Bi2212. tb2 corresponds to the bonding surface of Bi2212, tb3 is a modified version of tb2to get a flatter band and tb4 corresponds to underdoped LSCO.

In this section we include hoppings up to t5 and study the bands and Fermi surface behavior.
With additional hopping terms, only the expression of the matrix M changes. In addition to the α1

ilparameter appearing in Eq. (106) higher hopping terms will appear in theMmatrix. It becomes

m11
ij =− µ(1− ni

2
)δij −

N∑
k=1

t

[
αk
ij(1−

ni + nj
2

+ pij) + δij
∑
l

αk
ileil

]

m12
ij =

N∑
k=1

t

[
αk
ij(
nj
2

− pij)− δij
∑
l

αk
ileil

]

m22
ij =− (µ− U)

ni
2
δij +

N∑
k=1

t

[
αk
ijpij − δij

∑
l

αk
ileil

] (141)

where αN
il = 1 if i and l are

N−1 times︷ ︸︸ ︷next-... -nearest neighbour
αN
il = 0 Otherwise

(142)

Each new hopping considered adds a term in the tight-binding Hamiltonian which is then added in
theMmatrix. The parameters p and e depend on bonds i-j, so we should make a distinction between
e1ij with i and j nearest neighbors (NN), e2ij with i and j next nearest neighbors (NNN)... enij and pnij willbe associated with their corresponding hopping as in Fig. 23. Translational invariance still allows us
to treat e1, e2,...,e5, p1, p2,...,p5 as constants. Correlation functions Cij = ⟨ψi;ψ

†
j⟩ are at different sitestoo, so we will also have to make a distinction in the self-consistent equations between C1 for NN, C2

for NNN and so on.
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(a) tb1: ARPES fit Bi2212 (b) tb2: fit of bonding surface of Bi2212

(c) tb 3: Modified tb2 (cf [133]) (d) tb 4: underdoped LSCO
Figure 24: Bands obtained using Roth minimization with hoppings up to order 5. The overlappedcolors are the spectral weight, and the same waterfall feature as described in Sec. 5.2.1 is observed.The tight bindings parameters are taken from Ref [133] and are given in table I. The red line is thenon-interactive, tight binding dispersion. We consider n=0.8 and U=8t.

Fig. 24 presents the bands we obtain for Roth solutions for the four sets of tight-binding pa-
rameters in Table. (1). In Fig. 25 and 26 we plotted respectively the Fermi surfaces obtained with
the method and the Fermi surfaces of the non-interactive tight-binding dispersions (corresponding
to Eq. (140)). In the hole doped regime, the Fermi surface we obtained from the Roth solution has
the same general shape as the non interacting Fermi Surface. This is expected since despite being
non-interactive, the tight-binding parameter taken from table 1 are fitted from ARPES experiment of
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strongly correlatedmaterials. The composite operatorsmethod produces Fermi surfaces that appear
to be smaller/larger than the tight-binding ones. This is in agreement with the violation of the Lut-
tinger theorem observed with nearest-neighbour hopping, and indicates that it is still violated with
further hoppings. We checked the opposite situation is accordingly observed in electron doped area:
the Fermi Surface obtained with the method is at a lower doping than the non interacting one. Let
us note that although the specific shape of the dispersions are different due to the characteristics of
the considered tight-binding parameters, the symmetry point are the same (one saddle point, one
maximum and one minimum).

Figure 25: Fermi Surfaces renormalized by the composite operator methods using Roth minimizationwith the parameters of Ref [133]. We consider n=0.8 and U=8t. Top left: tb1, top right: tb2, bottomleft: tb3, bottom right: tb4.

Figure 26: Non interacting (NI) Fermi Surfaces for the parameters of Ref [133] at 20% hole doping. Topleft: tb1, top right: tb2, bottom left: tb3, bottom right: tb4.

In the following we study the particle-hole symmetry and the Luttinger theorem violation with
next-nearest neighbours. For the sake of simplicity we restrict ourselves to next-nearest neighbors
in this part. Next-nearest neighbors hopping parameter t2 breaks translational invariance because ofthe hopping term of the Hamiltonian which transform as follow:

∑
ij

tijc
†
iσcjσ → −

∑
ij

tij(−1)i+jc†iσcjσ (143)

65



(a) Chemical potential (b) Parameters e

(c) Parameters p (d) Luttinger Violation

Figure 27: (a), (b) and (c) :Parameters as a function of doping for each tight binding with next nearestneighbors. The circles corresponds to p1 and e1 (NN) while the squares corresponds to p2 and e2(NNN). (d) : Luttinger violation for each tight binding.

For i and j next-nearest neighbour we have (−1)i+j = 1. The Hamiltonian is therefore not in-
variant if t2 is included because it changes sign. We are now going to check the parameters are in-
deed not going to follow the particle-hole symmetry. An interesting question is to know whether the
nearest-neighbor quantities like e1 and p1 are still particle-hole symmetric or if they are affected by
the presence of t2.For n and µ, the transformation is the same as with the nearest neighbors case:

n→ 2− n

µ→ U − µ
(144)

For the bond variables eij and pij , we already know the transformation for p1 and e1. The only
difference for p2 and e2 comes from the (−1)i+j term. p2 will not be affected because it involves only
two bodies operators. Thus only e2 has an additional minus sign under the transformation. Therefore
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the particle-hole transformation on the parameters leads to:
p1 → 1− n+ p1

p2 → 1− n+ p2

e1 → −e1

e2 → e2

(145)

In Figs. 27a, 27b and 27c we plot the parameters µ, e and p as a function of doping for the four
considered tight-binding parameters of Table. (1), only considering t and t2. Parameters e2 and p2
indeed break the particle-hole symmetry from Eq. (145). The chemical potential, as well as e1 and p1
behave as in the nearest neighbor case, so they remain particle-hole symmetric.

Finally we can again study the Luttinger theorem. In Fig. 27d, the area of the Fermi surface is
plotted as a function of electron density. Interestingly we observe an analogous behavior as in the
nearest-neighbor case. The Luttinger violation does not seem to be affected by the presence of next-
nearest neighbors hoppings and is barely changed when we modify tight-binding parameters. As
already mentioned before, the Luttinger theorem is strongly violated around half filling and is recov-
ered further away. This confirms why in the previous section the Fermi surfaces seemed to be at a
higher doping than the electron density we considered when we are in the hole doped regime (and
conversely, at a lower doping in the electron doped regime).

5.3.3 . Superconductivity with longer ranged hoppings
In this section we again consider hoppings up until t5, and we implement superconductivity. We

will assume again a d-wave symmetry and only consider nearest-neighbor pairing. As before, the
M and I matrices become 4x4 and have the same symmetries as the nearest neighbours case. The
I matrix is independent of t and t’ and is thus the same as before. The main difference is that the
coefficients m11

ij , m12
ij and m22

ij are now given by Eq. (141). m13
ij stays identical to its expression in the

nearest neighbor case since we only consider superconductivity for nearest neighbors. Thereforem13
ijis proportional to the θ parameter, defined the same way as previously (θij = ⟨ci↑ci↓njσ⟩).In Fig. 28a, the θ and∆d parameters are plotted as a function of electron density for the four tight-

binding parameters with the Roth solution. Sincewe have included further neighbors, θ is not particle-
hole symmetric anymore. In Fig. 28b, we plotted the density of states at the Fermi energy without
superconductivity using Eq. (115) at ω = 0 (in order to see the peaks with no superconducting gap).
In Fig. 28c and 28d, we plotted without and with superconductivity the bands at electron densities
corresponding to the maximum of the density of states for tb3 when the system is hole doped (n ≈
0.6). The bands with no superconductivity on 28c are flats at the Fermi energy. This proves that the
maximum of Fig. 28b correspond to the Van Hove singularity. On 28d we see in the inset the gap
at (π, 0) is again of the order of 2∆d. The maximum of the θ and ∆d parameters are thus at the
same electron density as the Van Hove singularity. Hence, the situation is the same as in the nearest-
neighbor case. In Table 2 we give the electron densities associated to the Van Hove singularities
for the four sets of tight-binding parameters. Let us note there is no proportionality between the
peak in the density of states and ∆d: it is different for every set of tight-binding parameters. This is
seemingly a consequence of the electronic correlations which are treated differently for each tight-
binding parameters as a consequence of the main approximation of the method Eq. (88).

67



(a) θ and∆d (b) Density of states at the Fermi energy

(c) no superconductivity (d) with superconductivity

Figure 28: (a): Anomalous superconducting order parameter θ as a function of doping for the four setsof tight bindings parameters with Roth minimization. The dashed line corresponds to the usual d-wave superconducting order parameter we rebuilt from the correlation function. We are at U=8t. (b):Density of states (with no superconductivity in order to see the peaks) at the Fermi energy. The 2 peakscorresponds to the 2 Van Hove singularity in hole and electron doping respectively. To illustrate thisthe bottom plots (c) and (d) are the bands at the Van Hove singularity with tight binding parameterstb3 at n=0.6 respectively with: (c) no superconductivity, where we clearly see the flat band associatedto Van Hove singularity (d) with superconductivity, the gap is located around X and is of the order of
∆d.

The most striking feature is that superconductivity in the method seems to be induced by the
proximity of the Van Hove singularity. This was already the case with nearest neighbors but this
property seems unaffected by further hopping terms. For cuprates there exist a consensus that an-
tiferromagnetism is the interaction necessary to explain the pairing mechanism [134]. This has also
the advantage to explain why experimentally superconductivity is observed around 15% hole dop-
ing. Since this method predicts superconductivity only close to the Van Hove singularity, it is non
zero at some doping values which does not correspond to what is expected. This flaw is maybe a
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tb1 tb2 tb3 tb4Van Hove (electron) 1.04 1.05 1.10 1.11Van Hove (hole) 0.57 0.45 0.6 0.58
Table 2: Electron density at which there is a Van Hove singularity at the chemical potential. Atthis values a flat band lies at the Fermi energy and the associated Fermi surface is diamondlike. These singularities occur both in electron and in hole.

consequence of the main hypothesis of the method: it is maybe necessary to consider dynamical
corrections to the self-energy in order to observe a different behavior for superconductivity.
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6 . Two orbital Hubbardmodel with inter-orbital hopping

6.1 . Description of the model and limit case studies
6.1.1 . Model and physical motivations

Unlike in cuprates, in iron-based superconductors, there is no Mott-Insulator phase close to the
superconductor phase. Instead, there is ametallic phase with spin order. In this context, the question
of the reconstruction of the Fermi Surface due to electron interactions have been extensively studied
[135] [136]. A local loss of spectral weight in the Fermi surface upon doping or temperature change
has been observed. It is associated to the unhybridization of one of the d orbital (usually dxy) [137].Such phase has been called orbital SelectiveMott phase (OSMP). Themainways to describe this phase
involves either Hund’s coupling [76] or Hubbard interaction with inter-orbital hopping [138].

In this sectionwewill show anOSMPphasewas achievedwith a two orbitals HubbardHamiltonian
with an inter-orbital hopping termbymean of composite operatormethod. We consider the following
Hamiltonian:

H = −
∑
ijασ

tαijc
†
iασcjασ −

∑
iσα

µαniασ − λ
∑
iσ

(c†ixσciyσ + c†iyσcixσ) +
∑
iα

Uαniα↑niα↓ (146)
Where c†iασ creates an electron on site i with spin σ ∈ {↑, ↓} on orbital α ∈ {x, y}. ciασ will destroysuch electron, and niασ is 1 if an electron is on the lattice at site i on orbital α with spin σ, and 0

otherwise. tαij is the intra orbital kinetic energy, with chemical potential µα. The λ term is a inter-
orbital hopping. Finally, Uα denotes the intra-orbital Coulomb repulsion. We start by studying the
limit case (atomic limit and non-interacting, since the λ = 0 limit has been studied in the previous
section and would simply lead to two identical orbital following the same physics as detailed in Sec.
5).

6.1.2 . Non-interacting limit (no U)
In the non-interacting limit, we do not consider any Coulombian interaction. In this case, the

Hamiltonian becomes:
HNI = −

∑
ijασ

tαij(c
†
iασcjασ + c†jασciασ)− λ

∑
iσ

(c†ixσciyσ + c†iyσcixσ)−
∑
iσα

µαniασ (147)

This Hamiltonian is diagonalizable in Fourier space. To simplify the picture we consider in this
section a 1D chain. Thus, it can be rewritten as:

HNI =
∑
k

Hk

Hk =
∑
ασ
ϵαk (c

†
kασckασ − λ

∑
kσ

(c†kxσckyσ + c†kyσckxσ)
(148)

With ϵαk = −2tαcos(k) − µα the tight-binding dispersion for a 1D chain. Introducing the Nambu
spinor ci = (cixciy) the Hamiltonian rewrite:
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Hk =

(
ϵxk −λ
−λ ϵyk

)
(149)

(a) (b)

(c) (d)
Figure 29: Bands of the 1D chain with no interaction for various values of the parameters. (a) In theabsence of λ and for tx = −ty the eigenvalues are particle-hole symmetric as one can expect. (b)A splitting is created because of λ of the two bands. (c) & (d) λ systematically opens a gap of 2λ,whatever the bandwidth or chemical potential (as long as they are taken equal).

Spin is not considered in this basis because Hk is spin degenerate (the off diagonal blocks con-
necting σ to σ̄ are equal to zero). Therefore, the two spin-degenerate eigenvalues of this Hamiltonian
are:

e±k =
ϵxk + ϵyk ±

√
(ϵxk − ϵyk)

2 + 4λ2

2
(150)
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This expression simplifies in the case tx = ty and µx = µy into:
e±k = ϵk ± λ (151)

In that case, the non interacting limit bands are composed of two tight-binding bands split by a
gap of 2λ.

It is also instructive to consider the situation with tx ̸= ty. In Fig. 29 we plot various parameters
regimes. At vanishing λ, the two eigenvalues are degenerate (particle-hole symmetric if tx = −ty) anddescribe the regime of Sec. 5. λ splits the band and opens up a gap of different size depending on the
values of µx − µy and tx − ty as shown by Eq. 150. This gap is thus always observable but for larger
bandwidth may appear negligible.

It is important to note that these bands are not directly associated to orbitals but to combination
of these orbitals. The eigenvectors of these bands indeed involve a mixture of the x and y orbitals.

6.1.3 . Atomic limit (no t)
In the atomic limit term, the bands are now local. Therefore there won’t be any momentum de-

pendency and we have discrete energy levels. For simplicity, we will then consider one site with its
two orbitals. The Hamiltonian in this limit (at µ = 0 and Ux = Uy for simplification) is:

HAL = −λ
∑
σ

(c†xσcyσ + c†yσcxσ) + U
∑
α

nα↑nα↓ (152)
Let us first notice that the total number of charges commutes with this Hamiltonian. The total

hamiltonian is block diagonal in the charge sector. Thus we can consider independently each of these
block matrices associated to a certain number of charges (0 for the doubly empty site to 4 for the
doubly occupied).

At half-filling we consider the following charge 2 basis:
B2 = {| ↑↓x, 0y⟩, |0x, ↑↓y⟩, | ↑x, ↓y⟩, | ↓x, ↑y⟩} (153)

The state |σx, σy⟩ is not relevant because the application of HAL to it always make it vanish. The
Coulomb term is going to give 0 if we apply the two stateswith single occupied orbitals. The twodoubly
occupied states are eigenvector of this term with eigenvalue U. Meanwhile the λ term transform two
single occupied orbital into one double occupied orbital and the other one empty. Therefore, in the
B2 basis, we have:

H2
AL =


U 0 −λ −λ
0 U −λ −λ
−λ −λ 0 0
−λ −λ 0 0

 (154)

The eigenvalues of this hamiltonian are:
e0 = 0

eU = U

e± = U±
√
U2+16λ2

2

(155)
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In the case of a large U, e0 and eU correspond to the lower and upper Hubbard bands from the
Mott-Insulator physics. It is important to note that e0 is three fold degenerate because of the |σx, σy⟩states. Then, {

e+ ≈ U + 4λ2

U

e− ≈ −4λ2

U

(156)
e± represents the gap opened by λ. In the U → ∞ limit, this gap tends to 0 and e− → 0, e+ → U ,

only the lower and upper Hubbard bands picture remain.
In the other limit where λ dominates over U, we have{

e+ ≈ 2λ+ U
2 + U2

16λ

e− ≈ −2λ+ U
2 − U2

16λ

(157)
Interestingly, in this limit U is not completely washed out by λ in the sense that e0 and eU remain

different than e± in the λ→ ∞ limit.
If we only consider one electron, the charge 1 basis is:

B1 = {| ↑x, 0y⟩, |0x, ↑y⟩, | ↓x, 0y⟩, |0x, ↓y⟩} (158)
In this basis, the Hamiltonian rewrite:

H1
AL =


0 −λ 0 0
−λ 0 0 0
0 0 0 −λ
0 0 −λ 0

 (159)

In case of three electrons, the charge 3 basis is:
B3 = {| ↑↓x, ↑y⟩, | ↑↓x, ↓y⟩, | ↑x, ↑↓y⟩, | ↓x, ↑↓y} (160)

The Hamiltonian in this basis is:

H3
AL =


U 0 −λ 0
0 U 0 −λ
−λ 0 U 0
0 −λ 0 U

 (161)

In the charge 1 channel the eigenvalues of H1
AL are doubly degenerate (because of the spin) and

given by :
e1pm = ±λ (162)

In the charge 3 channel, the eigenvalues are still doubly degenerate because of the spin (there is
always one pair, and a possible degeneracy of spin of the unpaired electron) and are given by:

e3± = U ± λ (163)
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Figure 30: Schematic of the spectrum of the system in the atomic limit. The 0 energy level is threefold degenerate. The states are depicted for U ≫ λ (right) and λ≫ U (left).

Both the charge 1 and charge 3 channels presents two doubly degenerated eigenvalues due to a
spin degeneracy. The three electron case is analogous to the 1 electron case, but it is the hole that is
doubly degenerated. Let us finally note that the energy of the system is 0 in the charge 0 channel and
2U in the charge 4 channel. Therefore, we can represent the spectrum of this model in Fig. 30

In both limit cases, the ground-state is given by the e− = U−
√
U2+16λ2

2 eigenvalue. In the B2 half-filling basis given in Eq. (158), eigenvector |−⟩ associated to e− is given by:

|−⟩ = 4λ

U +
√
U2 + 16λ2

| ↑↓x, 0y⟩+
4λ

U +
√
U2 + 16λ2

|0y, ↑↓y⟩+ | ↑x, ↓y⟩+ | ↑x, ↓y⟩ (164)
Although this eigenvector is non normalized, we see in the U ≫ λ case the first two components

vanishes, and only the singlet states have a weight. This is in agreement with Mott-Insulator physics,
pair formation are avoided. If U is large but not infinite, some double occupations are still possible
when λ is non zero. We now want to know whether it is possible to have a Mott insulator on only one
orbital and a metal on the other orbital away from half-filling.

6.2 . Composite operator treatment and phase diagram
6.2.1 . Extending the theory to two orbitals

We want to study the strongly correlated limit of this hamiltonian in the following regime: Ux =

Uy = U ≫ λ, tx = ty = t. For simplicity we also consider µx = µy = µ. We choose this regime to
verify whether spontaneous orbital symmetry breaking can be observed only with this regime. The
two orbital Hubbard Hamiltonian is now given by
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H = −
∑
ijασ

tijc
†
iασcjασ − µ

∑
iσα

niασ − λ
∑
iσ

(c†ixσciyσ + c†iyσcixσ) + U
∑
iα

niα↑niα↓ (165)
α is the orbital quantum number and can be either x or y. We introduce the following basis which

is adapted to this limit because it commutes with the interaction terms:

ψiσ =


ξixσ
ηixσ
ξiyσ
ηiyσ

 (166)

With: {
ξiασ = ciασ − ciασniασ̄

ηiασ = ciασniασ̄
(167)

As usual with the method, it is important to notice that ciασ = ξiασ + ηiασ.The same equation of motion approach can be performed by introducing the 4 × 4 composite
Green’s function matrix defined by:

Sijσσ′(τ) = ⟨⟨ψiσ(τ);ψ
†
jσ′⟩⟩ = θH(τ)⟨{ψiσ(τ);ψ

†
jσ′}⟩ (168)

From now on we will assume a paramagnetic solution, therefore we will take σ′ = σ. The con-
nection between S matrix and the electronic Green’s function G appears from the relation ciασ =

ξiασ + ηiασ , and is now involving different matrix element depending on the considered orbital:

Gijxxσ(τ) = S11

ijσ + S12
ijσ + S21

ijσ + S22
ijσ

Gijyyσ(τ) = S33
ijσ + S34

ijσ + S43
ijσ + S44

ijσ

Gijxyσ(τ) = S13
ijσ + S14

ijσ + S23
ijσ + S24

ijσ

(169)

Gijxxσ and Gijyyσ are the usual electronic Green’s function for their respective orbitals, while
Gijxyσ is an inter-orbital electronic Green’s function and will be useful for studying hybridization.We perform the same equation of motion scheme and apply the usual composite operator ap-
proximation (Eq. 173) to obtain the usual relation between theM and Imatrices:

Mijσ ≈
∑
l

EilσIljσ (170)
Where

Iijσ = ⟨{ψiσ;ψ
†
jσ}⟩

Mijσ(τ) = ⟨{Jiσ(τ);ψ†
jσ}⟩

(171)
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Jiσ(τ) is the total current defined by:
Jiσ(τ) = ∂τψiσ(τ) = [ψiσ(τ), H] (172)

Under the main approximation of the composite operators method it simplify to:
Jiσ(τ) ≈

∑
l

Eilψl(τ) (173)
Finally, with the main hypothesis and translational invariance, we obtain in Fourier space the fol-

lowing equation of motion for the composite Green’s function:
Sijσ =

∑
l

[ωId4 − E]−1
il Iljσ (174)

The presence of the λ and t terms constrain us to neglect terms in the total current which are
non proportional to ψ. However, the currents are exactly proportional to the composite operators in
the atomic limit. As such, the Hubbard operators provides a good description of the Mott insulator
phase and are appropriate to study excitations around half-filling. Therefore the current truncation
is assumed to be a good hypothesis in the vicinity of the Mott phase.

The self-consistent loop then remain the same as depicted on Fig. 11: using fluctuation-dissipation
theorem an equation between the correlation functions Cijσ = ⟨ψiσψ

†
jσ⟩ and the eigenvalues of the

Ematrix can be obtained, and the self-consistency loop is closed by expressing the elements of the E
matrix as a function of theseCijσ. From the results of our analysis of Roth and Pauli solutions in Sec.
5, we will only consider Roth solution in this section as we showed it is more physical.

We thus explicitly compute the I and M matrix (which allows to obtain E). We start with the I

matrix:

Iijσ = ⟨{ψiσ, ψ
†
jσ}⟩ = δij


1− nix

2 0 0 0
0 nix

2 0 0
0 0 1− niy

2 0
0 0 0

niy

2

 (175)

To compute the M matrix we need first to explicitly compute the currents. From now on we will
assume σ =↑ and we will not write σ anymore. Note that the equations will be the same if σ =↓.

j1i = −µxξix↑ −
∑
j

txij(cjx↑ +Πijx)− λ(ciy↑ + Γixy)

j2i = −(µx − Ux)ηix↑ +
∑
j

txijΠijx + λΓixy

j3i = −µyξiy↑ −
∑
j

tyij(cjy↑ +Πijy)− λ(cix↑ + Γiyx)

j4i = −(µy − Uy)ηiy↑ +
∑
j

tyijΠijy + λΓiyx

(176)
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With:
Πijα = −niα↓cjα↑ + S−

iαcjα↓ −∆iαc
†
jα↓

Γiαα′ = −niα↓ciα′↑ + S−
iαciα′↓ −∆iαc

†
iα′↓

∆iα = ciα↑ciα↓ S−
iα = c†iα↓ciα↑

(177)

Finally, the explicit expression of theMmatrix is:

Mij =


m11

ijx m12
ijx m13

ij m14
ij

(m12
ijx)

∗ m22
ijx m23

ij m24
ij

(m13
ij )

∗ (m23
ij )

∗ m11
ijy m12

ijy

(m14
ij )

∗ (m24
ij )

∗ (m12
ijy)

∗ m22
ijy

 (178)

With :

m11
ijα = δij

(
−µα(1− niα

2
)−

∑
l

tαileilα − λeαᾱiα

)
− tαij (1− niα + pijα)

m12
ijα = δij

(∑
l

tαileilα + λeαᾱiα

)
− tαij

(niα
2

− pijα

)
m22

ijα = δij

(
−(µα − Uα)

niα
2

−
∑
l

tαileilα − λeαᾱiα

)
− tαijpijα

m13
ij = −λδij

(
1− nix + niy

2
+ pixy

)
m23

ij = −λδij
(nix

2
− pixy

)
m14

ij = −λδij
(niy

2
− pixy

)
m24

ij = −λδijpixy

(179)

With ᾱ = Y if α = X and conversely. Hence, since E = M I−1, we know the E matrix will depend
on the 9 following parameters to be determined self-consistently:

niα = ⟨c†iασciασ⟩

eαβ = ⟨ξjασξ†iβσ⟩ − ⟨ηjαση†iβσ⟩+ ⟨ηβσξ†ασ⟩ − ⟨ηασξ†βσ⟩

pαβ = ⟨n̂iασn̂jβσ⟩+ ⟨S−
iαS

+
jβ⟩ − ⟨∆iα∆

†
jβ⟩

(180)

We have used translational invariance and C4 rotational symmetry in order to consider these
parameters as site independents constants, the same way as in Sec. 5. Furthermore, since they are
physical observable we will assume these parameters are real. We will do likewise for correlation
functions. Now we have to express these parameters as a function of the correlation functions to
close the system. We define the on site and on bonds 4× 4 correlation function matrices as:

Cnm
0 = Cnm

ii = cste Cnm = Cnm
ij = cste (181)

We remind that i and j are now always considered as nearest neighbors.
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It is easy to express all the one-body parameters as a function of the correlation functions, one
simply has to decompose the electronic into composite operators. We get:

nx = 2(1− C11
0 − C12

0 − C21
0 − C22

0 ) ny = 2(1− C33
0 − C34

0 − C43
0 − C44

0 )

ex = C11 − C22 ey = C33 − C44

exy = C31
0 + C41

0 − C23
0 − C24

0 eyx = C13
0 + C23

0 − C41
0 − C42

0

(182)

For px, py and pxy we use Roth decoupling as mentioned earlier. The details of the computations
of px, py and pxy can be found in appendix D. The self-consistent equations for px and py are as follow:

px =
(nx)

2

4
− ρ′x

1− (ϕx)2
− ρ′x

1− ϕx
− ρx

1 + ϕx

py =
(ny)

2

4
−

ρ′y
1− (ϕy)2

−
ρ′y

1− ϕy
− ρy

1 + ϕy

(183)

With :
ρ′x = αx(C

11 + C12)2 + βx(C
12 + C22)2 ρ′y = αy(C

33 + C34)2 + βy(C
34 + C44)2

ρx = (αx + βx)(C
11 + C12)(C22 + C12) ρy = (αy + βy)(C

33 + C34)(C44 + C34)

ϕx = −αx(C
11
0 + C12

0 ) + βx(C
22
0 + C12

0 ) ϕy = −αy(C
33
0 + C34

0 ) + βy(C
44
0 + C34

0 )

(184)

And:
αx =

2

2− nx
βx =

2

nx
αy =

2

2− ny
βy =

2

ny
(185)

Similarly to superconductivity in Sec 5.3.1, several Roth decoupling are possible for pxy. Indeed, aterm such as ∆x∆
∗
y can be decouple by considering the x or the y channel (details on this arbitrari-

ness can be found in appendix D). However the two channels must be equal because of translational
invariance (∆x∆

∗
y = ∆y∆

∗
x). Therefore, following the original paper or Roth (ref [101]), we will again

symmetrize these equations. We then get the following equation:

pxy =
1

2

∑
α∈(xy)

Ωα
0 − Ωᾱ

1− (ϕα)2
−
(

Ωα

1− ϕᾱ
+

Ω′
α

1 + ϕᾱ

)
(186)

With:
Ωx
0 =

ny
2
[αx(C

11
0 + C21

0 )− 1](−1 + ϕx) Ωy
0 =

nx
2
[αy(C

33
0 + C43

0 )− 1](−1 + ϕy)

Ωx = αx(C
31
0 + C32

0 )2 + βx(C
41
0 + C42

0 )2 Ωy = αy(C
13
0 + C23

0 )2 + βy(C
14
0 + C24

0 )2

Ω′
x = (αx + βx)(C

31
0 + C32

0 )(C41
0 + C42

0 ) Ω′
y = (αy + βy)(C

13
0 + C23

0 )(C14
0 + C24

0 )

(187)

The self-consistency is now closed: starting from initial guess for the 9 parameters defined in Eq.
(180), we compute the eigenvalues of the 4×4 Ematrix. Then, we use fluctuation-dissipation theorem
(Eq. 104) to compute the correlation function, that we use to self-consistently obtained new set of
parameters.
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6.2.2 . Phase diagram
Rather than the nx and ny parameters of Eq. (180), we will fix the global electron density n =

nx+ny (between 0 and 4 due to spin and orbital). The chemical potential µ will be the self-consistent
parameter that vary, but is constrained by the following self-consistent equation:

n = nx + ny = 2(2− C11
0 − C12

0 − C21
0 − C22

0 − C33
0 − C34

0 − C43
0 − C44

0 ) (188)
Then, the electrondensity on eachorbital canbe recover by considering the following self-consistent

parameter:
δn = nx − ny = 2(C33

0 + C34
0 + C43

0 + C44
0 − C11

0 − C12
0 − C21

0 − C22
0 ) (189)

Therefore, instead of fixing nx and ny , we fix the total electron density n and the difference of
electron density between the orbital δn. If δn converges to zero, the two orbitals have the same
density.

The calculation are done on a square lattice of dimension 300× 300 with periodic boundary con-
ditions. In Fig 31A we present the phase diagram as a function of total electron density n and inter
orbital hopping λ for U = 20t in the hole-doped regime (n smaller than 2). Two solution can be ob-
tained: the orbital uniform phase (OUP) exists everywhere in this phase diagram and is characterized
by a vanishing δn and ex = ey , px = py , exy = eyx. When λ = 0 this phase is analogous to what was
described in Sec. 5.2.1 (with Roth scheme).

For lower values of λ in the vicinity of half-filling, the δn parameter converges to values such that
one orbital electron density is close to half-filling, and the other one such that n = nx+ny. Therefore,we call this phase Orbital Selective Mott Phase (OSMP). We will offer a better characterization of the
OSMP in Sec. 6.3. The red line on the phase diagram correspond to the limit beyond which the OSMP
cannot be stabilized anymore: the system can then only converge to the OUP. On Fig 31B we plotted
the δn parameter for several total electron density n: each line color corresponds to a specific total
electron density associated with the colored dashed lines of the phase diagram. For low values of
λ and close to half-filling, δn is such that one orbital α is close to half-filling: nα = n±δn

2 ≈ 1. This
regime thus corresponds to the OSMP. The chosen Mott orbital can be picked randomly, thus δn can
converge both with a positive or negative sign. A drop to zero is then observed when entering the
OUP phase, where nx = ny. This drop is therefore associated to the red line of the phase diagram.

On Fig 31C, the energy per site of the two phases are plotted for several total density, again fol-
lowing the same color code as Fig 31B. The dashed line corresponds to the energy per site of the OUP
while the continuous one is the OSMP. The energy per site Es is defined as follow:

⟨H⟩ =
∑
i

Es(i) (190)
To compute it, we start from the full expression of the 2 orbital Hubbard Hamiltonian at site i:

Hi = −
∑
δασ

tαc†iασci+δασ −
∑
σα

µαniασ − λ
∑
σ

(c†ixσciyσ + c†iyσcixσ) +
∑
α

Uαniα↑niα↓ (191)
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Figure 31: (A): Phase diagram at U = 20t, t = 1 and T = 0 of the system as a function of total electrondensity n and inter orbital hopping λ in the hole doped regime. The orbital uniformphase (OUP) existsacross the whole diagram: it is characterized by a vanishing δn (meaning that nx = ny), and allows torecover the results from Sec. 5 at λ = 0. An Orbital Selective Mott Phase (OSMP) emerges for smaller
λ and is such that one orbital has a half-filled electron density and the other one is such that the sumof the orbital density gives back n. The red line represents the limit of stability of the OSMP. (B): valueof the difference of orbital electron density δn as a function of λ/t for several density associated tothe colored lines (A). An abrupt drop to zero can be seen and corresponds to the red line of (A): theOSMP cannot be stabilize anymore. (C) represent the energy per site of the OUP (dashed) and theOSMP (continuous line) as a function of λ/t for electron density associated to the colored lines of (A).The values of (λ, n) such that the OSMP has a lower energy per site is represented by the green areaon (A). Between the red and black line, OSMP is metastable.

where δ runs over the nearest neighbours of site i. We now consider the expectation value and re-
express each term as a function of the correlation functionCnm = ⟨ψn

i (ψ
m
i+δ)

†⟩ andCnm
0 = ⟨ψn

i (ψ
m
i )†⟩.

For the hoppings terms (weather it is the t or the λ term), we simply use ci = ξi + ηi and commutes
the operator which are at different sites or orbital to obtain:
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
⟨Ht⟩ =

∑
δσ

(
tx(C11 + C12 + C21 + C22) + ty(C33 + C34 + C43 + C44)

)
⟨Hλ⟩ = λ

∑
σ
(C31

0 + C32
0 + C41

0 + C42
0 + C13

0 + C23
0 + C14

0 + C24
0 )

(192)

Then, we simplify this expression using the paramagnetic assumption, the C4 rotationnal invari-
ance and the fact that C41

0 = (C14
0 )∗. We obtain:{

⟨Ht⟩ = 2z[tx(C11 + C12 + C21 + C22) + ty(C33 + C34 + C43 + C44)]

⟨Hλ⟩ = 4λ(C13
0 + C23

0 + C14
0 + C24

0 )
(193)

Where z is the coordination number, and is 4 for a square lattice. The expectation value of the
interacting term can be derived by replacing the c by ξ and η:

⟨HU ⟩ = U(
nx + ny

2
− C21

0 − C43
0 − C22

0 − C44
0 ) (194)

Finally the expectation value of the chemical potential is just a shift of energy and should not be
consider to compute the ground-state energy. Finally, the expression of the energy per site is:
Ei = 2z[tx(C11 + C12 + C21 + C22) + ty(C33 + C34 + C43 + C44)] + 4λ(C13

0 + C23
0 + C14

0 + C24
0 )

− U(
nx + ny

2
− C21

0 − C43
0 − C22

0 − C44
0 )

(195)
Fig 31C reveals the energy per site of the OSMP is smaller than the OUP at low λ and closer to

half-filling. On the phase diagram of Fig 31A, we report with the black line the area where the OSMP
becomes energetically favorable (green area). In the white area between the black and red lines, the
OSMP is stabilized for low λ but not favorable compared to the OUP phase: it is in a metastable state.
We will now study these two phases more in depth.

6.2.3 . Bands and hybridization
In the context of the two orbital Hubbard model, hybridization corresponds to the tendency of

electrons to delocalize between orbitals. This information can be extracted from the orbitally resolved
spectral function Aαβ ∝ −Im(Gαβ) where α and β runs over x and y orbitals and Gαβ denotes oneof the four Green’s function introduced in Eq. 169. In Fig 32 We display the bands at electron density
n = 1.72 for three different values of λ corresponding to the blue stars of fig. 32. The color of the
bands represent the differenceAxx−Ayy. This is the tendency of the associated (energy, momentum)
set to be localized on the x (green) or on the y (blue) orbital. As in Sec. 5, bands corresponds to the
eigenvalues of the E matrix and are the poles of the electronic Green’s function for both orbitals. Let
us note we zoom around the Fermi energy to display the lower Hubbard bands, and we show as an
inset the upper Hubbard bands.

Fig 32A and 32B display the OSMP bands for λ = 0.06 and λ = 0.2, respectively corresponding to
the stable and metastable region of the OSMP. Among the two lower Hubbard bands, one of them
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Figure 32: Bands along high symmetry points of the square lattice associated to n = 1.72 and U = 20tfor three values of λ. (A) and (B) depicts the OSMP respectively in the stable and metastable regionwhile (C) is the OUP. The two bands observed corresponds to the lower Hubbard band splitted in twobecause of the orbital degree of freedom and λ. The upper Hubbard bands are also splitted in twoand represented as an inset for each figure. The colors of the bands depicts the differenceAxx−Ayy.A very blue or green color indicates strong localization on one of the orbital. (A) and (B) presents afully filled and orbitally localized band, hence it is indeed "Orbital Selective Mott Phase". Hybridizationis however not exactly zero and is enhanced with λ around the crossing points of the bands. In (C),
Ax−Ay is zero, and the bands are uniformly hybridized, but not degenerated due to the presence of
λ.

is fully filled and below the Fermi energy. A clear difference in color appears, meaning that Ax −
Ay is very positive for a band and negative for the other one. Thus, in the OSMP bands are mostly
associated to an orbital. We can then conclude that the band under the Fermi energy is theMott band
where one of the orbital (here, the y orbital as the Mott band is in blue) electron density is close to
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one. It is however important to note that only at exactly λ = 0, the bands are fully unhybridized. A
very small hybridization is observed at the crossing points of the band and gets larger with λ, until
it breaks completely the OSMP. Expectingly, the electron density of the Mott orbital is driven slightly
away (but remain close) to half-filling whenever hybridization increase. OSMP therefore appears as a
spontaneous orbital symmetry breaking.

In the OUP displayed on fig. 32C, the hybridization increased so much that the Mott band disap-
pear completely and gets fully hybridized, resulting in Ax = Ay everywhere. At λ = 0, the two lower
Hubbard bands are degenerated and show analogous behavior as in Sec. 5. However the degener-
acy is lifted with λ. Beside having the same electron density for both orbital (δn = 0), the OUP orbital
parameters are also equal (ex = ey , px = py , exy = eyx). For this solution, Ax −Ay are uniformly zero,
meaning that the OUP bands are strongly hybridized at all λ.

Figure 33: For λ = 0.06t n = 1.72 (A) displays the intra orbital spectral function Aαα as a functionof energy ω − µ for different high symmetry k-points. The spectral for each k-points are shifted by
1.5t for clarity. (B) Shows the inter-orbital spectral function Aαβ for the same parameter. Here theresults for each k-points are shifted by 0.3t for clarity. The inter-orbital spectral function is non-zerowhenever the two intra orbital spectral function overlaps, indicating hybridization.

To confirm this hybridization between the orbitals, we plot in Fig. 33A the spectral function for
both the x (green) and y (blue) orbitals as a function of of energy for several high symmetry points in
the OSMP at n = 1.72 and λ = 0.06t (associated to the band of Fig. 32A). Between each momentum
points a shift of 1.5t has been considered for clarity. On 33B, we plot the inter orbital spectral function
for the same parameters of the OSMP. As it takes smaller values, the shift between the k-points is
taken equal to 0.3t.

The spectral function of the two orbitals overlaps for electrons near Γ-X points of the Brillouin
zone. The overlaps lead to a substantial interorbital spectral function along the Γ − X regions, as
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shown in Fig. (33B). However, the spectral functions aroundM −X points remain well separated and
retain their orbital character. Therefore, the interorbital spectral function remains flat aroundM −X
regions.

Therefore, we reveal the characteristics of the bands in the OSMP and OUP phases. First, in the
OSMP phase, one of the bands flattens and goes below the Fermi level. Secondly, in the OSMP phase,
the two bands have weak hybridization and retain their orbital character. Thirdly, the hybridization
occurs only around specific momentum points where the two bands overlap. However, such hy-
bridization remains appreciable for any finite λ, indicating the absence of a complete breakdown of
hybridization in the OSMP phase.

Because of this small hybridization no Kondo breakdown is observed. The presence of an inter-
orbital repulsion Uxy may have to be considered in order to completely vanish hybridization. This
project is left for future studies.

We now shift our attention to the Fermi surface.
6.3 . The orbital selective Mott phase
6.3.1 . Fermi surface

To give a better characterization of the orbital selectiveMott phase, and establish an experimental
connection with ARPES experiments [83, 84], we represent in Fig. 34 the Fermi surfaces at n = 1.72

associated to the three values of λ of Fig. 32.
On the Fermi surface we only represent the Fermi contour, corresponding to the momentum

such that the bands have a vanishing energy. While diminushing λ and going from the OUP to the
OSMP, an electron pocket centered on (π, π) vanishes. This is in agreement with experimental papers
mentioning the loss of spectral weight in the Fermi surface as a characteristic component of Orbital
Selective Mott Phase [139]. In our model, this loss of spectral weight at the Fermi energy is explained
by the localization of one of the orbital, corresponding to the lower Hubbard band of Fig. 32 that gets
completely under the Fermi energy.

Fig. 34A and Fig. 34B are fairly similar. This is because they both corresponds to the OSMP at
different λ. Modifying the electron density have a direct effect on the Fermi surface, as observed in
the section were the violation of Luttinger theorem has been established (Sec. 5.2.2). To establish
the effect of λ, we report on Fig. 34D the evolution of the area enclosed by the Fermi surface as a
function of λ for several electron density, with the same color code as in Fig. 31. This area remains
almost constant with λ, explaining the similarities between the two figures. However, a big jump in
the Fermi surface area occurs when the system undergoes the transition to the OUP phase.

While this increase of the Fermi area can be explained by the second electron pockets being re-
stored, we would like to offer an analogy at this stage with Kondo lattice model. It is first important to
note this model is different from Kondo, as strong interaction and hopping are present on both or-
bitals. That being said, as detailed in Sec. 4.3 Kondo lattice model has the notable effect of enlarging
the Fermi surface whenever hybridization occurs as explained in Sec. 4.3.2. The situation is com-
parable here, as the fermi surface area is enlarged when the transition occurs between the almost
non hybridized OSMP and the hybridized OUP. We could also compare the fact that OSMP survive
to non zero λ with the competition between antiferromagnetism and hybridization of the Kondo-
Heisenberd model as explained in Sec. 4.3.3. This last comparison must be understood cautiously,
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Figure 34: (A) Displays the spectral function A(k, ϵF ) at λ = 0.06t in the OSMP phase for n = 1.72. (B)Depicts the same for λ = 0.2t, in the metastable region of the OSMP. (C) Fermi surface of the orbitaluniform phase at λ = 0.36t. In the OSMP, only a single Fermi sheet is observable, whereas in themetallic phase, two sheets are visible. Furthermore, the Fermi surface area is smaller in the OSMPphase compared to the OUP. (D) Illustrates the evolution of the Fermi volume As as a function ofinter-orbital hopping for different electron densities, showing a jump at the transition. In the OSMPphase, the Mott orbital does not contribute to the Fermi volume since one band remains filled.

as a paramagnetic assumption has been done in the beginning of the composite operator treatment.
Nevertheless, it appears two energy scales are competing in our system, one that would favor Mot-
tness and the other one favoring hybridization. This might explain why OSMP can "resist" to non-zero
λ, in contrast to other studies [140].

6.3.2 . Density of states
We shift our attention to the total density of states at n=1.72 as a function of λ on fig. 35A. The

lowest line corresponds to λ = 0 while the uppermost is λ = 0.42t, and a step of δλ = 0.02t is taken
between each density of states line, separated with an energy shift of 0.05t for clarity. The green
dashed line corresponding to 0 energy represent the Fermi energy. The system is in the OSMP until
it reaches the critical value of λ after which the phase cannot be stabilized anymore (red line of the
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phase diagram of Fig. 31). Above this value λc = 0.22t the system is in the OUP phase.

Figure 35: (A) Density of states at n = 1.72 and U = 20t for λ ranging from 0 to 0.42t with a step of
0.02t. A shift of energy of 0.05t ismade between each λ value for clarity. AMott peak is observed at low
λ and gets flatter as λ is increased. (B) Orbitally resolved Density of states at λ = 0.16t. This Mott peakis the consequence of one orbital, which is in consistent with the OSMP being almost unhybridized,as detailed in Sec. 6.2.3. (C) Display of the density of states at the Fermi energy. A jump is noticeableat the phase transition because the Mott orbital becomes metallic. Within the OSMP, λ increase thedensity at the Fermi energy as it creates small hybridization, and push away from half-filling one ofthe two orbitals. (D) The position of the maximum of the density as a function of λ. As λ increase,hybridization gets stronger and the peak gets closer to half-filling.

At low λ value in the OSMP, a peak below the Fermi energy is noticeable. It is associated to the
filled bands depicted in Sec. 6.2.3. Following the conclusion of Sec. 6.3.1 that system in this phase is
almost unhybridized, we display on Fig. 35B the orbitally resolved density of states corresponding to
λ = 0.16t. The total density of states is represented in brown while in blue and green are respectively
the y and x orbital density of states. The observed peak is indeed the consequence of only one of the
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two orbital, corresponding to the filled eigenvalue of the OSMP bands. However, at the Fermi energy,
this orbital still has a small but non-zero density of states.

32C tracks the density of states at the Fermi energy. While a clear jump is observed at the OSMP-
OUP transition due to the Mott orbital becoming metallic, an increasement ofD(ϵF ) is observed with
λ within the OSMP. This is in agreement with the small hybridization observed around the crossing
point of bands in the OSMP in Fig. 32. As showed in previous section, in the OSMP, only at λ = 0

one of the two eigenvalues is perfectly at half-filling and unhybridized. When λ gets non-zero, a small
hybridization is noticeable. As a consequence, the "Mott" orbital is not exactly at half-filling anymore
and some states appear at the Fermi energy. Inter orbital hopping compete against the OSMP and
progressively hybridized the orbitals and enhance the density of states at the Fermi energy. Once
λ gets big enough this hybridization fully destroys the OSMP and the two bands become perfectly
hybridized. As a consequence, the density at the Fermi energy presents an important jump.

The density of states gets flatter with increasing λ until no "Mott" peak is distinguishable. Fig. 32D
tracks the position of this peak with λ. While a noticeable jump also appears at the phase transition,
we observe a shift of the peak to the Fermi energy as it get flatter.

6.3.3 . quasiparticle weight and behavior with Coulomb repulsion
Although composite operator theory is a non-Fermi liquid theory due to its apparent violation

of Luttinger theorem (cf Sec. 5.2.2), the quasi-particle weight can still be introduced as the overlap
between bare electrons and the quasi-particles of this theory. Indeed, the expression of the electronic
Green’s function in the composite operator framework is given by

Gαβ =
∑
nγν

σnγν
ω − ϵnk + i0+

(196)
Where n runs over the four eigenvalues of the E matrix ϵn and σn are the spectral weight matrix

defined by Eq. 102. The indices γ and ν are chosen accordingly to rebuildGxx,Gyy orGxy and are thematrix elements in the ψ basis of σ (for instance, for Gxx γ and ν runs from 1 to 2).
In general, close to the Fermi surface and at small energies, a Green function can be written [12]

as:
G =

Z

ω − Ẽk +
i

2τ(k,ω)

(197)
τ(k, ω) is the quasiparticle lifetime, and diverges as ω → 0 for a Fermi liquid. As we consider only

real Green’s function, we do not have this term. Z is the quasiparticle weight. By comparing Eq. 196
and Eq. 197, we get:

Gαβ =

4∑
n=1

Zn
αβ

ω + ϵnk + i0+
with Zαβ =

∑
γν

σnγν (198)

On figure 36A we report the value of the total quasi-particle weight Z =
∑
n
Zn
xx + Zn

yy as a func-
tion of λ for several electron density n. An average over the Fermi surface has been done, and the
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Figure 36: (A): Quasi-particle weighZ as a function of λ for several electron density n (given in legend).The continuous line correspond to the explicit computation of Z using the Green’s function while thedots are obtained bymeasuring the discontinuity in themomentum resolved electron densityNk. (C):an example of the orbital resolved momentum density in the Γ toM high symmetry line. Two jumpsare seen in the OUP because of the presence of two Fermi contour. In the OSMP, only one jumpoccurs, but Nk is non zero atM due to the filled Mott orbital. (B) The orbital resolved quasi-particleweight. In the OSMP, one of the two orbital has a vanishing weight due to the strong localization ofthe electrons of the Mott orbital.

displayed errorbar corresponds to the standard deviation. As Z is never close to one, the quasipar-
ticles of the theory are different from the bare electron. Eq. 198 indeed indicates the bare electrons
have been fractionalized into four quasi-particles associated to the bands. As a consequence, none
of these overlap can be close to one since these quasi-particles have different features than the bare
electrons.

We also report the typical shape ofNk along theΓ toMhigh symmetry line in fig. 36C. By definition
of the Green’s function in Eq. 197, when crossing the Fermi contour a discontinuity of the order of Z
is observed in momentum space. One drop is observed for the OSMP, and the momentum resolved
density does not vanish atM due to the fully filled Mott bands. Two drops are seen in the OUP due
to the two Fermi contour of the phase. In this case, Z is defined as the sum of these two drops. We
report the Z measured this way as a function of λ on Fig 36A as dots. There is a good agreement
between the two ways of computing Z

Since there is no Fermi surface at half-filling, and that Z is a quantity defined at the Fermi energy,
Z = 0 at half-filling. As electron density n is decreasing, Z increases. Therefore, we can also interpret
the quasi-particle weight as a measurement of how close the system is from Mott regime.
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36B displays the orbitally resolved Quasi-particle weight. In the OSMP the Mott orbital has an
almost (exactly at λ = 0) vanishing quasi-particle weight due to the almost localized nature of the
electron. Since the other, non-Mott orbital is further away from half-filling than the two orbital in the
OUP, its associatedweight is higher. An abrupt drop of the total quasi-particlemomentum is observed
at the transition, meaning that having two orbitals hole doped makes quasi-particles feel in average
more the interaction than in the OSMP.

Figure 37: We present the phase diagram as a function of intra-orbital interaction strength U and λfor n = 1.85. The colored area shows the region where the OSMP phase is energetically favorable,whereas the OUP phase is favorable in the white region. The OSMP is a metastable state between thethick and dashed lines.
Finally, In Fig. 37, we present the phase diagram when the on-site repulsion U is varied for elec-

tron density n = 1.85. The colored region indicates where the OSMP phase is more favorable than
the uniform phase. On the other hand, the OUP phase is stable in the white areas. The OSMP is a
metastable state between the thick and dashed lines.

For lower U , there is a weak increment of critical interorbital hopping λc where the OSMP phase
becomes unfavorable. For large U > 15 the same λc reduces with increasing U . Thus, the critical λcshows a non-monotonic behavior with Hubbard interaction U .

To qualitatively understand this result, we examine the destabilization of theOSMPphase. Initially,
we assume double occupancy is forbidden due to strong repulsion. First, we focus on comprehending
the decrease of λc with increasing Hubbard interaction.In the OSMP phase, all the Mott orbital sites are singly occupied, whereas the metallic orbital
has itinerant vacancies. When λ ̸= 0, electrons can hop from the Mott to the metallic orbitals if the
metallic site is vacant. A stable OSMP phase depends on refilling the holes in the Mott orbital without
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significant hybridization. Without recombination, holes will proliferate in the Mott orbital, leading to
the breakdown of the orbital differentiation. The hole created in the Mott-orbital is heavy and can be
assumed to be approximately immobile.

Two scenarios are possible once an electron hops to the metallic orbital: it either immediately
hops back to the Mott orbital or transfers to a neighboring site within the same orbital. The stability
of the OSMP phase depends on the ratio between t and λ for a fixed U and electron density.

In the λ ≪ t regime, electrons are more likely to hop between neighboring sites of the same
orbitals rather than between orbitals. Since double occupancy is forbidden, recombination can only
happen when any electron on themetallic orbital returns to the site at whichMott orbital has the hole
and goes back to the Mott orbital. The mobility of electrons in the metallic orbitals is crucial in such
a recombination pathway, which is relatively enhanced for lower U . Thus, the OSMP phase survives
for a broader range of λ when U is lower.

In the λ ≫ t regime, inter-orbital hopping between the x and y orbitals dominates. This leads to
strong hybridization between the x and y orbitals, which destroys the OSMP phase.

Finally, we focus on understanding why λc decreases forU < 15. In this regime, double occupancy
contributes to destabilizing the OSMP ordering. As U decreases, double occupancies become more
likely, increasing hybridization between the Mott and itinerant orbitals. Consequently, a metastable
OSMP phase can still be present at lower U due to the competing processes that are favored when
lowering U . However, the OSMP becomes energetically less favorable compared to the orbitally uni-
form phase.
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7 . Conclusion and outlook
The composite operator scheme is a very powerful tool to study strong correlation, that has been

forgotten for too long. In this manuscript, we have considered Hubbard operators which are good
excitation of the Mott phase, and have performed a detailed analysis of the method in the vicinity of
the Mott-region, around half-filling.

In Sec. 5, we brought an answer to the long conflict between the two usually considered [104, 141]
set of self-consistent equations: Roth and Pauli scheme. We made a in-depth study of the solution,
bands, fermi surface and densities of states. Among the two solutions obtained with Pauli scheme
named "COM1" and "COM2", COM1 does not describe aMott-insulator at half-filling, does not stabilize
superconductivity and overall does not seem to take the interaction into account as the bands we
obtained are simply the tight-binding dispersion splitted by the interaction. While COM2 is describing
a Mott-insulator at half-filling and stabilize superconductivity, its associated Fermi surface displays
an unexplained second electron pocket for every doping. The density of states of both Roth and
COM2 solution displays the expected transfer of spectral weight from the lower to the upper Hubbard
bands. This is also reported by the "waterfall" feature displayed when plotting the spectral weight on
the bands: in the hole doped regime, closer to half-filling, pairs are more likely to form and the upper
Hubbard bands gains some states. The final argument to discriminate Pauli scheme is detailed on Fig.
20, as it violates Roth decoupling. As the decoupling does not involve any additional approximation
than the central composite operator hypothesis on the current (Eq. 87) that we already assume, it
has to be satisfied after convergence. We thus claim Roth scheme is the physical solution one should
consider.

Further benchmarks of the method have been established by observing a Luttinger violation at
every electron density, and extending the method to longer ranged hopping and d-wave supercon-
ductivity. Luttinger violation is even more consequent in the neighborhood of half-filling, and we can
conclude this region is a non-Fermi liquid phase. We proved the presence of d-wave superconduc-
tivity is a direct consequence of the Van Hove singularity in the density of states, as is only observed
in its vicinity. Superconductivity creates a particle-hole symmetry of the bands and opens up a gap
of the order of the anomalous superconducting order parameter θ around (π, π). Due to the d-wave
symmetry factor, a nodal point is also reported: the Fermi surface therefore consists in set of dots,
broadened with some lifetime on fig. 21 for clarity. As more states are available, every quantities is
increased, including the mean-field superconducting order parameter. Furthermore, the inclusion
longer ranged hopping have confirmed this correlation: as the Van Hove singularity is driven away at
higher doping, so do the superconducting peak. We also reported that beside breaking particle-hole
symmetry, the extension to longer ranged hopping does not help to satisfy better Luttinger theorem.

In Sec. 6, we applied composite operators method to the interesting case study of a two orbital
Hubbard model with inter-orbital hopping. A spontaneous orbital symmetry breaking is reported
leading to an orbital selective Mott phase, without any inter orbital interaction or Hund term in the
model. In the absence of inter orbital hopping, the electronic bands of this phase are exactly unhy-
bridized, leading to one of the two bands completely filled and below the Fermi energy. The orbital
associated to the filled band is then at half-filling and insulating because of Mott physics. As the in-
ter orbital hopping increases, hybridization progressively occurs at the crossing points of the bands,
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driving slightly away the Mott orbital from half-filling case. Past a critical value, the two bands get
fully hybridized as the system enter an orbital uniform phase. A phase diagram as a function of the
inter-orbital hopping and total electron density is displayed on Fig. 31.

If one consider the Fermi energy, this localization of an orbital in the orbital selective Mott phase
leads to a charactistic loss of spectral weight reported by ARPES experiments [84]. Analogously to
Kondo physics, as hybridization is increased, an increasing of the Fermi surface area is seen in the
orbital uniform phase. An orbitally resolved density of states picture also support the strong local-
ization of the selective Mott phase with a peak below the Fermi energy getting progressively flatter
and indistinguishable as hybridization is increased by tuning the inter orbital hopping. We finally con-
firm once again this localization of an orbital by observing a vanishing of one of the orbitally resolved
quasi-particle weight in the selective Mott phase. The effect of Coulomb interaction is also studied,
as a phase diagram as a function of the interaction and the inter orbital hopping is diplayed on Fig.
37. A maximum of the stability of the orbital selective Mott phase is found in the phase diagram, as
the resulting competitions of hopping processes and energy penalty of pairs formations.

Let us provide some final few mentions of the still unexplored potential of this method. This
manuscript only considered translational and rotational invariance to perform the self-consistent loop
in momentum space. An extension to a fully real space treatment with a finite size lattice is under
development and will be the object of further studies. This real space composite operator method
might bring to light translational breaking order such as charge density wave or topological effect.

8 . Other works
In this final section, we give a summary of the main results of the other studies performed during

this PhD as a co-author. Aswe deemed themdifficult to connect with the composite operatormethod,
which was the main focus of this thesis, it was decided to only synthetically explain the projects as
well as my personal contribution in each of these articles.

A serie of three articles was made on superconductivity in monolayer and few layers graphene.
The goal of this project was to study and categorize the various superconducting symmetry in these
materials. To this end, the first article focused on the computation of the different superconducting
symmetry channels. We characterized the momentum resolved lowest energy bands for the various
channels as well as the density of states. The study is then repeated to bilayer ABA and ABC stacking.
Among all the symmetries considered, twodifferent profiles are distinguished. The fully gapped states
displays a U-shaped density of states and includes s−, f−, d+ id′− and p+ ip′−wave states while the
nodal states such as dxy−, dx2−y2−, px− ans py− wave states present a V-shaped density of states.
In the case of few-layers graphene, the low energy bands is modified by the presence of interlayer
coupling changes the profile compare to the monolayer case of only nodal states. In this case, all the
nodal points presents a small splitting in momentum space which is not observed in the monolayer
study. My personal contribution in this first article wasmainly the computation of the form factor, the
generation the band structures figures for monolayer graphene, as well as helping in the redaction
of the article.

The second article on graphene then focuses on the Chern number study and the edge states.
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Chiral states d + id′ and p + ip′ are considered as only those break time reversal symmetry and can
have a non-zero Chern number as the chemical potential and the superconducting pairing strength
are tuned. Using an impurity technique, the edge states are visualized within the gap and related to
the value of the Chern number. Edge states are also confirmed to be spin degenerated by observing
a Zeeman splitting. More complicated diagram for the value of the Chern number are displayed for
the bi- and tri-layer graphene case, but the conclusions are mostly the same, and the value of the
Chern number is related to the edge states. As such, this can provide a way of characterizing the
superconducting pairing symmetry. As I haven’t work on any topological related topic, my personal
contribution in the second paper was only limited to computing the form factors, as well as a few
equations extracted from the first article.

The final article presents the effect of a scalar or magnetic impurity in both monolayer and few
layer graphene. For each of the superconducting symmetries the additional local density of states
from the impurity is computed by mean of a T-matrix technique [142]. The presence of such addi-
tional density means the impurity is creating states within the gap. In the case of a scalar impurity,
no subgap is created for superconducting in both the extended s-wave and on-site channels. For any
other symmetry, two spin-degenerated subgaps are observable. In the case of a magnetic impurity,
two subgaps are seen in the case of an extended s-wave and the other nodal states while four sub-
gaps states exists for the d + id′, f and p + ip′ channels. A momentum resolved representation of
the local density of states is given by computing quasi-particle interferences and shows a breaking of
the six fold symmetry for nodal states and not for the fully gapped states, which is in agreement with
bands structure computation from the first paper. The results remain similar for bilayer and trilayer
graphene, allowing to keep the same analysis. This article therefore provide ways by characterizing
the subgaps caused by impurities to constrain the superconducting symmetry of graphene. My per-
sonal contribution to this third article was consequent. Beside the computation, I generated all local
density of states plots as well as quasi-particle interference for monolayer graphene, and few cases
for bi- and tri- layers graphene. I also contributed in the making of the draft, then in the redaction of
captions and appendices.

Another study of a metallic junctions has been performed. In this study an attractive Hubbard
model is considered and a charge density wave is artificially stabilized on the left side of the junction,
with a non-zero attractive interaction. The right side is kept metallic with no interaction. A proximity
effect of charge order is observed as chargemodulation persist in themetallic section. When changing
the electron density of the right metallic side, the proximity effect survive but in domains caused by
phase shifts. Therefore a tunneling of the quasi-particle from the ordered region is observed to the
metallic region similarly to what is known with a junction between a superconductor and a normal
metal. In this article, my contributionwas a full rewriting of the code in parallel of the other author and
observing the proximity effect for charge density wave together with collaborator. I mostly rechecked
all the results detailed in the article, but did not contribute in the redaction.
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A . Résumé de la thèse en Français
Cette thèse porte sur l’étude du modèle de Hubbard, considéré comme le modèle le plus sim-

ple pour étudier des matériaux où les électrons interagissent fortement entre eux. Les interactions
électroniques sont cruciales à comprendre d’un point de vue théorique, car elles sont à l’origine de
beaucoup de comportements intriguants parfois encore mal compris, comme la supraconductivité à
haute température, les isolants de Mott, les transitions orbitalement sélectives...

Depuis son introduction, le modèle de Hubbard est toujours non résolu exactement dans le cas
général, bien qu’il soit analytiquement résolu en une dimension. Ainsi, la plupart des approchesmod-
ernes sur ce modèle consiste à faire des approximations pour extraire des informations. Parmi la
grande quantité de méthodes théoriques utilisées sur ce modèle, nous pouvons citer la DMFT (dy-
namical mean field theory), la DQMC (determinantal quantum Monte Carlo), ou des approches vari-
ationnelles avec les fonctions d’onde de Gutzwiller.

Cette thèse se concentre sur une méthode approximative de résolution du modèle de Hubbard
dans le cas où les interactions sont dominantes: les opérateurs composites. Dans ce résumé, nous
détaillerons succinctement le principe des opérateurs composites et montrerons quelques résultats
obtenus.

Considérons un réseau carré 2D. L’hamiltonien de Hubbard est le suivant:

H = −
∑
ijσ

tij(c
†
iσcjσ + hc) + U

∑
i

ni↑ni↓ − µ
∑
iσ

niσ (199)

Dans cette équation, ciσ et c†iσ respectivement détruisent ou créent un électron au site i avec un
spin σ. niσ = c†iσciσ vaut 1 s’il y a un électron au site i avec un spin σ et zéro autrement. Ainsi le terme
en U est une interaction coulombienne qui rend défavorable la présence de deux électrons au même
site (et avec des spins opposés à cause du principe de Pauli). Comme U est considéré grand dans
ce manuscrit, si une paire d’électrons est formée, le système doit payer une énergie U, ce qui rend
ces configurations défavorables (mais pas impossibles). tij est l’énergie qu’il faut payer pour qu’unélectron saute du site i au site j. µ est le potentiel chimique, et fixe le nombre total d’électrons dans
le système.

Le principe de la méthode des opérateurs composites se rapproche de l’approximation de Hub-
bard I. En effet, nous allons introduire les mêmes opérateurs de Hubbard que dans cette approxima-
tion:

ψiσ =

(
ξiσ
ηiσ

)
avec

{
ξiσ = ciσ(1− niσ̄)

ηiσ = ciσniσ̄
(200)

Il est important de noter l’introduction du vecteur ψ: nous dénoterons ψ1
iσ = ξiσ sa première

composante et ψ2
iσ = ηiσ sa deuxième. Ces opérateurs ont la propriété notable d’avoir des courants

Jiσ proportionnels à eux-même dans la limite atomique (où tij = 0. Nous noteronsHloc l’hamiltonien
résultant). Ainsi:

Jiσ = [ψiσ, Hloc] = Aψiσ (201)
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Puisque ψiσ est un vecteur,A est une matrice de proportionnalité et sera notée en gras. Calculer
les commutateurs explicitement permet d’obtenir son expression:

A =

(
µ 0
0 U − µ

)
(202)

Beaucoup de propriétés importantes du système peuvent être extraites de la fonction de Green
electronique Gijσσ′ , définie par:

Gijσσ′(τ) = ⟨⟨ciσ(τ); c†jσ′⟩⟩ = θH(τ)⟨{ciσ(τ); c†jσ′}⟩ (203)
Dans cette équation nous avons introduit le temps deMatsubara τ , la fonction de Heaviside θH(τ)

et la notation ⟨⟨., .⟩⟩, définie par le second terme de l’équation. L’opérateur ⟨.⟩ signifie une valeur
moyenne thermique, tandis que {., .} représente l’anticommutateur de deux opérateurs.

Afin de déterminer la fonction de Green électronique, la technique des opérateurs composites
utilise l’eq. 202 et introduit la matrice des fonctions de Green composites, définie par:

Sijσσ′ = ⟨⟨ψiσ(τ);ψ
†
jσ′⟩⟩ (204)

L’intérêt principal d’introduire cette matrice réside dans le fait que sommer ses composantes per-
met de reconstruire la fonction de Green électronique. En effet, il faut remarquer que ξiσ + ηiσ = ciσpour en déduire que:

Gijσσ′ = S11
ijσσ′ + S12

ijσσ′ + S21
ijσσ′ + S22

ijσσ′ (205)
Ainsi, déterminer la fonction de Green électronique revient à déterminer la matrice de fonctions

deGreen composites. En utilisant la propriété des courants des opérateurs deHubbard (Eq. 202), il est
facile de le faire dans la limite atomique (tij = 0). En effet, on peut calculer l’équation du mouvement
de cette matrice:

d

dτ
Sijσσ′ = δσσ′(δ(τ)⟨{ψiσ(τ);ψjσ}⟩loc + ⟨⟨[ψiσ(τ);Hloc];ψ

†
jσ⟩⟩loc (206)

δσσ′ a été introduit car nous supposerons dans tout le manuscrit la limite paramagnétique. Il est
important de noter que comme nous sommes dans la limite atomiques, les valeurs moyennes ther-
miques se font dans cette même limite locale, d’où le ⟨...⟩loc. De manière générale, le second terme
des équations du mouvement de fonctions de Green est une autre fonction de Green, difficile à cal-
culer puisqu’il faut refaire son équation dumouvement, ce qui donnera encore une fonction de Green
inconnue... Cependant, grâce à la propriété des opérateurs de Hubbard dans la limite atomique (Eq.
202), l’équation du mouvement est entièrement soluble. On obtient:

Sijσσ′ = δσσ′(ω −A+ i0+)−1Iijσ (207)
Où Iijσ est appelée matrice de renormalisation et est définie par:

Iijσ = δij

(
1− ⟨niσ⟩loc 0

0 ⟨niσ⟩loc

)
(208)
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Ainsi dans la limite atomique la fonction de Green obtenue est donnée par:
Gijσσ′ =

1− ⟨niσ⟩loc
ω − µ+ i0+

+
⟨niσ⟩loc

ω − U − µ+ i0+
(209)

Le système est donc exactement soluble dans cette limite. Maintenant, la méthode des opéra-
teurs composites consiste à effectuer une approximation lorsque l’on considère le terme de saut tij .En effet dans le cas général, les courants Jiσ = [ψiσ, H] ne sont plus proportionnels à ψiσ. Ils peu-vent néanmoins être décomposés en une partie proportionnelle, et une partie non-proportionnelle.
Ainsi l’approximation principale des opérateurs composites consiste à supposer que les courants des
opérateurs de Hubbard demeurent proportionnels à ces opérateurs dans le cas général:

Jiσ ≈
∑
l

Eilσψlσ (210)
Deux autres relations peuvent être déduites en conséquence de cette approximation. En effet,

en introduisantMijσ = ⟨{Jiσ, ψjσ}⟩, il vient naturellement que:
Mijσ ≈

∑
l

EilσIljσ

Sijσσ′(ω) ≈ δσσ′
∑
l

[ωId2 −E]−1
il Iljσ

(211)

La première équation vient directement de la définition de M, tandis que la deuxième peut être
obtenue en effectuant une transformée de Fourrier temporelle sur l’équation du mouvement de S.

L’intérêt de cette approximation se trouve dans le fait que la matrice S (et donc la fonction de
Green électronique) peut être obtenue endéterminant lesmatricesE et I correctement. Ces dernières
peuvent être calculées explicitement, mais dépendront des paramètres suivants:

niσ = ⟨c†iσciσ⟩ =
ni
2

eij = ⟨ξjσξ†iσ⟩ − ⟨ηjση†iσ⟩
pij = ⟨niσnjσ⟩+ ⟨S−

i S
+
j ⟩ − ⟨∆i∆

∗
j ⟩

(212)

Ainsi, grâce à l’approximation des opérateurs composites, déterminer la fonction de Green élec-
tronique dans le cas général revient à fixer correctement ces trois paramètres. Cela peut alors être
fait en utilisant le théorème de fluctuation dissipation pour relier les fonctions de corrélations Cijσ =

⟨ψiσψ
†
jσ⟩ aux valeurs propres deE. On obtient alors l’équation (104). Ensuite, les paramètres ci-dessus

peuvent être décomposés en fonction des Cij (Eq. 112) afin d’établir un calcul auto-cohérent de ces
paramètres. Le paramètre p est exprimé en fonction des fonctions de corrélations en utilisant le
découplage de Roth, détaillé en annexe.

La méthode présente le défaut de posséder après convergence une fonction de corrélation qui
devrait valoir zéro à cause du principe de Pauli, mais qui est non nulle. Ainsi, une autre méthode fut
suggérée: au lieu d’utiliser le découplage de Roth pour contraindre la valeur de p, on impose cette
fonction de corrélation à zéro et on laisse p varier librement demanière auto-cohérente. Cemanuscrit
se concentre sur ce long débat dans la littérature de la méthode [122], et arrive à la conclusion que
la méthode imposant le principe de Pauli n’est pas physique, puisque le paramètre p varie librement
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et n’est pas fixé de manière auto-cohérente. Plus exactement, le découplage de Roth ne suppose
aucune approximation supplémentaire que celle déjà effectuée par la méthode. Il doit alors être
exact. Néanmoins la figure ci-dessous montre que le p obtenu avec la méthode de Roth n’est pas
égal à celui calculé par le découplage de Roth à paramètres équivalents.

Figure 38: paramètre p calculé avec la méthode de Roth (points noirs), p calculé avec la méthodede Pauli (points bleus) et p calculé avec le découplage de Roth à partir des fonctions de corrélationsobtenues avec la méthode de Pauli. Puisque le découplage de Roth ne suppose aucune autre approx-imation que celle des opérateurs composites, il devrait associer à p sa vraie valeur physique. Puisqueles points bleus et rouge ne sont pas confondus, le p calculé avec la méthode de Pauli n’est pas con-traint à la valeur physique qu’il devrait avoir. La méthode de Pauli n’est pas physique.
Fort de cette conclusion le reste du manuscrit se concentre sur le découplage de Roth. Une vi-

olation du théorème de Luttinger est observée, ce qui n’est pas inattendu puisque l’approximation
de Hubbard I le violait aussi, et des articles utilisant la DQMC montraient aussi une violation [29]. La
méthode est également étendue à la supraconduction, où nous concluons que la supraconduction
prédite par la méthode n’est qu’une conséquence de la singularité de Van Hove. En effet sur la figure
ci-dessous, il apparaît que le pic de la supraconductivité coïncide avec un pic dans la densité d’état
à l’énergie de Fermi (densité calculée sans supraconduction). Cette coïncidence a été confirmée en
étendant une deuxième fois la méthode à des voisins éloignés jusqu’à l’ordre 5 et en observant les
mêmes pics coïncider.

Finalement, un nouveau système est étudié avec les opérateurs composites en se concentrant sur
la solution issue du découplage de Roth: unmodème de Hubbard à deux orbitales. Un diagramme de
phase est calculé en fonction de l’énergie de saut inter-orbitale, et une phase de Mott orbitalement
sélective apparaît quand cette énergie est suffisamment faible. Ceci traduit une brisure spontanée de
la symmétrie orbitale qui a de l’intérêt dans le domaine desmatériaux supraconducteurs à base de fer,
où une telle phase a déjà été observée expérimentalement [84]. En parallèle, une phase orbitalement
uniforme (où les deux orbitales sont identiques) est observable sur l’ensemble du diagramme de
phase. Il est alors possible de calculer l’énergie libre des deux phases pour savoir quand l’une est
favorable par rapport à l’autre. Ainsi, le diagramme de phase présenté en figure 31 possède une zone
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(a) paramètres θ et∆d. (b) Densité d’état à l’énergie de Fermi.
Figure 39: (a) Paramètre d’ordre supraconducteur anormal θ calculé avec la méthode et paramètred’ordre supraconducteur en symétrie d reconstruit avec les fonctions de corrélations. (b) Densitéd’état à l’énergie de Fermi en l’absence de supraconduction. Les maximums de (a) et (b) coïncident:la supraconduction apparaît comme une conséquence de la singularité de Van Hove.

verte là où la phase orbitalement sélective est favorable, une zone blanche où elle est défavorable, et
une ligne séparant la zone blanche selon que la solution peut être stabilisée (et est alors métastable)
ou non.

i
d

dt

(
Fijl(t)
Gijl(t)

)
=
∑
k

Eik

(
Fklj(t)
Gkjl(t)

)
+ δ(t)

(
f1ijl
f2ijl

)
(213)

B . Product of a real and symmetric matrix by a diagonal
matrix has real eigenvalues

At the center of the composite operator method lies the E matrix, whose eigenvalues are corre-
lated to the self-consistent parameters of the method. It is then important to know whether these
eigenvalues can be complex or if they will always be real.

The E matrix is the product of a real and symmetric M matrix with a real diagonal I matrix, as
described by Eq. 89. Let us show this implies that the eigenvalues of E are real.

The characteristic polynomial of a real symmetric n× nmatrix M is given by the equation:

det(XIdn −M) = 0 (214)
From spectral theorem it is known the eigenvalues of a symmetric matrix with real entries are

real. Therefore the solution of the above characteristic polynomial (which are the eigenvalues) are
real. Let us now consider the product of M by a diagonal n× nmatrix with positive entries D:

E =MD (215)
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The characteristic polynomial can be rewritten as follow:

det(XIdn −MD) = det(D1/2(Xidn −D1/2MD1/2)D−1/2) (216)
Using the product property of determinant det(AB) = det(A)det(B) the right hand term can be

simplified. It follows that the characteristic polynomial of E = MD and F = D1/2MD−1/2 are the
same. As a consequence, E and F matrices have the same eigenvalues. Since F is a product of a
real symmetric eigenvalue by diagonal matrix, according to spectral theorem F has real eigenvalues.
Therefore, E also has real eigenvalues.

Because of this, no broadening has to be considered as all involvedquantities in the self-consistency
are real.

C . Roth decoupling and computation of p
In this appendix we derive the self-consistent equation of

p(i− j) = ⟨ni↑nj↑⟩+ ⟨S+
i S

−
j ⟩ − ⟨∆i∆

∗
j ⟩ (217)

C.1 . Pair-pair term
Following the step of L. Roth [101], we express p as a function of correlation functions by mean of

equations of motion.
First, notice we can write

⟨∆i∆
∗
j ⟩ = ⟨ξi↑ci↓∆∗

j ⟩+ ⟨ηi↑ci↓∆∗
j ⟩ (218)

Note we illustrate this decoupling with ξi↑ and ηi↑ but the idea is exactly the same with ψi↓. We
introduce the following Green’s functions{

Fijl(τ) = ⟨⟨ξi↑(τ); cj↓∆∗
l ⟩⟩

Gijl(τ) = ⟨⟨ηi↑(τ); cj↓∆∗
l ⟩⟩

(219)
We then consider the equations of motion for these Green’s functions

∂τ

(
Fijl(τ)
Gijl(τ)

)
= θH(τ)

(
⟨{∂tξi↑(τ); cj↓∆∗

l }⟩
⟨{∂τηi↑(τ); cj↓∆∗

l }⟩

)
+ δ(τ)

(
f1ijl
f2ijl

) (220)

where fnijl = ⟨{ψn
i ; cj↓∆

∗
l }⟩. We now use Eq. (88) to obtain

∂τ

(
Fijl(τ)
Gijl(τ)

)
=
∑
k

Eik

(
Fkjl(τ)
Gkjl(τ)

)
+ δ(τ)

(
f1ijl
f2ijl

)
(221)
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We then time and space Fourier transform associating the Fourier variable k1 to ri − rl and k2 to
ri − rj . The equation becomes

(
Fk1k2(ω)
Gk1k2(ω)

)
= (ωId2 − Ek1+k2)

−1

(
f1k1k2
f2k1k2

)
(222)

Finally we use Eq. (91) to obtain
(
Fk1k2(ω)
Gk1k2(ω)

)
= Sk1+k2(ω)I

−1

(
f1k1k2
f2k1k2

)
(223)

Finally, we can extract ⟨∆i∆
∗
j ⟩ by summing F and G, integrating over ω and taking the imaginary

part to use Eq. (94) in order to replace the composite Green’s functions by correlation functions. We
get

TF [⟨ciσcjσ̄∆∗
l ⟩](k1, k2) =

2

2− n

∑
k

(C11
k1+k2 + C12

k1+k2)f
1
k1k2

+
2

n

∑
k

(C12
k1+k2 + C22

k1+k2)f
2
k1k2

(224)

We compute fnkjl = ⟨{ψn
k ; cj↓∆

∗
l }⟩ using the algebraic relations given in appendix C leads to
f1ijl =δij⟨∆i∆

∗
l ⟩+ δil(C

21
ij + C22

ij )

f2ijl =− δij⟨∆i∆
∗
l ⟩+ δil(C

11
ij + C12

ij )
(225)

Performing a Fourier transform of f1ijl and f2ijl and setting i=j by integrating on k2, then finally inverseFourier transform on k1 leads to:

⟨∆i∆
∗
l ⟩ =

4

n(2− n)

(C11
il + C12

il )(C
22
il + C21

il )

1− 2
2−n(C

11
0 + C12

0 ) + 2
n(C

21
0 + C22

0 )
(226)

Which is the form in the main text. We pose
ϕ = − 2

2− n
(C11

0 + C12
0 ) +

2

n
(C21

0 + C22
0 ) (227)

Replacing C11
0 and C22

0 by their definitions allows us to express these correlations function explic-
itly as a function of n. We don’t explicit C12

0 however, else it will be zero while it is not numerically:
C12
0 should stay in the numerical minimization process to obtain our results. Doing so leads to the

following expression for ϕ

ϕ =
n2 − 4(n2 − ⟨ni↑ni↓⟩ − C12

0 )

n(2− n)
(228)

With our notations the pair-pair term becomes
⟨∆i∆

∗
l ⟩ =

ρ3
1 + ϕ

(229)
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C.2 . Spin-Spin term
The spin-spin term is defined as ⟨S+

i S
−
l ⟩ = ⟨c†i↑ci↓c

†
l↓cl↑⟩. In order to have our basis element as the

first term, we rewrite it as
⟨S+

i S
−
l ⟩ = −⟨c†i↑ci↓cl↑c

†
l↓⟩ = −⟨cl↑c†l↓c

†
i↑ci↓⟩ (230)

We therefore introduce the following Green’s functions (setting τ ′ = 0){
Fijl(τ) = ⟨⟨ξi↑(τ); c†j↓S

+
l ⟩⟩

Gijl(τ) = ⟨⟨ηi↑(τ); c†j↓S
+
l ⟩⟩

(231)
The next steps are the same as with the pair-pair term. The only difference lies in the definition

of fn in the resulting equations of motion. For the spin-spin term it is defined as fnijl = ⟨{ψn
i ; c

†
j↓S

+
l }⟩.Hence we arrive at the following equation

TF (⟨ci↑c†j↓S
+
l ⟩)(k1, k2) =

2

2− n
(C11

k1+k2 + C12
k1+k2)f

1
k1k2

+
2

n
(C12

k1+k2 + C22
k1+k2)f

2
k1k2

(232)

A computation of the fn leads to

f1ijl = δij⟨S−
i S

+
l ⟩ − δkl(C

11
ij + C12

ij )

f2ijl = −δij⟨S−
i S

+
l ⟩ − δkl(C

12
ij + C22

ij )
(233)

Therefore by Fourier transform the expression of f, then by integrating over k2 to set i=j and by
inverse Fourier transform on k1, we obtain

⟨S−
i S

+
l ⟩ = −

2
2−n(C

11
il + C12

il )
2 + 2

n(C
12
il + Cil

22)
2

1 + 2
2−n(C

11
0 + C12

0 )− 2
n(C

12
0 + C22

0 )
(234)

Which become with our notations

⟨S−
i S

+
l ⟩ =

ρ1
1− ϕ

(235)
C.3 . Charge-Charge term

As we did for the ⟨S−
i S

+
l ⟩ term we need to commute the charge charge term so the first element

can be decomposed using our spinor. We then rewrite
⟨c†i↑ci↑nl↑⟩ =

n

2
− ⟨ci↑c†i↑nl↑⟩ (236)

We introduce the following Green’s functions
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{
Fijl(τ) = ⟨⟨ξi↑(τ); c†j↑nl↑⟩⟩
Gijl(τ) = ⟨⟨ηi↑(τ); c†j↑nl↑⟩⟩

(237)
Once again the general form of the equation for ⟨ciσc†iσnlσ⟩ will be the same as for the other 2

terms. However the definition of the involved fnijlwill not be the same. We compute fnijl = ⟨{ψn
i ; c

†
j↑nl↑}⟩

f1ijl = δij(
n

2
− ⟨ni↓nl↑⟩) + δil(C

11
ij + C12

ij )

f2ijl = δij⟨ni↓nl↑⟩+ δil(C
12
ij + C22

ij )
(238)

We hence obtain
⟨ni↑nl↑⟩ =

n

2
− ρ1 − ϕ⟨ni↑nl↓⟩+

n

2− n
(C11

0 + C12
0 ) (239)

We don’t know how to express ⟨ni↓nl↑⟩ as a function of the correlations functions. So we need toredo this decoupling on this term. This time we use
⟨ni↓nl↑⟩ =

n

2
− ⟨cl↑c†l↑ni↓⟩ (240)

We therefore introduce {
Fijl(τ) = ⟨⟨ξi↑(τ); c†j↑nl↓⟩⟩
Gijl(τ) = ⟨⟨ηi↑(τ); c†j,↑nl↓⟩⟩

(241)
The fnijl = ⟨ψn

i , c
†
j↑nl↓⟩ are given by

f1ijl = δij(
n

2
− ⟨ni↓nl↓⟩)

f2ijl = δij⟨ni↓nl↓⟩
(242)

Using the paramagnetic assumption we have ⟨ni↑nl↑⟩ = ⟨ni↓nl↓⟩, leading to
⟨ni↑nl↓⟩ =

n

2
− ϕ⟨ni↑nl↑⟩+

n

2− n
(C11

0 + C12
0 ) (243)

If we inject this in the equation of ⟨ni↑nl↑⟩, we obtain
⟨ni↑nl↑⟩ = −ρ1 + ϕ2⟨ni↑nl↑⟩+

n

2− n
(C11

0 + C12
0 )(1− ϕ) (244)

The last term can be simplified. An explicit computations of the C0 leads to C11
0 + C12

0 = 1− n+

⟨ni↑ni↓⟩, allowing us to show the last term is in fact just equal to n2

4 . We therefore obtain

⟨ni↑nl↓⟩ =
n2

4
− ρ1

1− ϕ2
(245)

Which is the self consistent equation we have. Combining the three terms, since p = ⟨ni↑nl↑⟩ +
⟨S+

i S
−
l ⟩ − ⟨∆i∆

∗
l ⟩, we obtain the following self consistent equation

p =
n2

4
− ρ1

1− ϕ2
− ρ1

1− ϕ
− ρ3

1 + ϕ
(246)
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D . Roth decoupling with superconductivity
In this appendix we show how Roth decoupling changes when we include superconductivity with

4x4 basis. We will redo one of the terms of p as an example, and perform the decoupling for the θ
parameter. Let us start by considering ⟨S−

i S
+
l ⟩ in p for example. The superconducting basis is of size

4 and define by

ψ =


ξi↑
ηi↑
ξ†i↓
η†i↓

 (247)

To include the full basis we need to introduce 4 Green’s functions now

Aijl =⟨⟨ξi↑; c†j↓S
+
l ⟩⟩

Bijl =⟨⟨ηi↑; c†j↓S
+
l ⟩⟩

Fijl =⟨⟨ξ†i↓; c
†
j↓S

+
l ⟩⟩

Gijl =⟨⟨η†i↓; c
†
j↓S

+
l ⟩⟩

(248)

Now the equations of motion has to be defined for the 4 Green’s functions. Hence

∂τ


Aijl

Bijl

Fijl

Gijl

 (τ) =
∑
k

Eik


Aijl

Bijl

Fijl

Gijl

 (τ) + δ(τ)


f1ijl
f2ijl
f3ijl
f4ijl

 (249)

With fnijl = ⟨{ψn
i ; c

†
j↓S

+
l }⟩. As before we can use the relation (ω − Ek) = Sk(ω)I

−1 after a space
Fourier transform and integrate over ω after we took the imaginary part to replace the composite
Green’s function matrix by a correlation function matrix. Thus

−TF [⟨c†j↓ci↑S
+
l ⟩](k1, k2) =

2

2− n
[(C11

k1+k2 + C12
k1+k2)f

1
k1k2 + (C12

k1+k2 + C22
k1+k2)f

2
k1k2

+ (C13
k1+k2 + C23

k1+k2)f
3
k1k2 + (C14

k1+k2 + C24
k1+k2)f

4
k1k2 ]

(250)

In the last equation, the first line is the same as before, while the second line are additionnal terms
appearing with the superconducting basis. f1 and f2 have already been computed before in Eq. (233).
We give here f3 and f4:

f3ijl =δil(C
13
ij + C14

ij )

f4ijl =δil(C
23
ij + C24

ij )
(251)

Finally the spin-spin term in p becomes
⟨S−

i S
+
l ⟩ =− ρ1 + ρ2

1− ϕ
(252)
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With ρ2 = 2
2−n(C

13
il + C14

il )
2 + 2

n(C
23
il + C24

il )
2.

Nowwemoveon to theRothdecoupling for θ. We consider a decoupling starting from ⟨⟨c†i↓, c
†
i↑nlσ⟩⟩.We introduce the following Green’s functions

Aijl = ⟨⟨ξi↑; c†j↑nl↑⟩⟩
Bijl = ⟨⟨ηi↑; c†j↑nl↑⟩⟩
Fijl = ⟨⟨ξ†i↓; c

†
j↑nl↑⟩⟩

Gijl = ⟨⟨η†i↓; c
†
j↑nl↑⟩⟩

 (253)

The decoupling is identical and by considering F+G we arrive to

TF [⟨c†i↓c
†
j↑nlσ⟩](k1, k2) =

2

2− n
[(C13

k1+k2 + C14
k1+k2)f

1
k1k2

+ (C33
k1+k2 + C44

k1+k2)f
3
k1k2 ]

+
2

n
[(C23

k1+k2 + C24
k1+k2)f

2
k1k2

+ (C34
k1+k2 + C44

k1+k2)f
4
k1k2 ]

(254)

With fnijl = ⟨{ψn
i ; c

†
j↑nlσ}⟩. Computing the f gives

f1ijl =δij(
n

2
− ⟨ni↑nl↑⟩) + δil(C

11
ij + C12

ij )

f2ijl =δij⟨ni↑nl↑⟩+ δil(C
12
ij + C22

ij )

f3ijl =− δij
θil
2

f4ijl =δij
θil
2

(255)

We therefore obtain
θ

2
=
⟨ni↑nl↑⟩[ 2n(C

23
0 + C24

0 )− 2
2−n(C

13
0 + C14

0 )] + ζ

1 + ϕ

+
n

2

C13
0 + C14

0

1 + ϕ

(256)

With ζ = 2
2−n(C

11
il +C

12
il )(C

13
il +C

14
il )+

2
n(C

12
il +C

22
il )(C

23
il +C

24
il ). Finally by noting thatC23

0 +C24
0 = 0

and C13
0 + C14

0 = 0, we obtain the equation we used
θ

2
=

ζ

1 + ϕ
(257)

Let us finally note several decoupling are possible for the 4× 4 basis. As mentioned in Ref. [102],
these choices will over estimate or underestimate the real value of θ but the behaviour will remain
globally the same [104]. For θ, another choice of Roth decoupling would start by considering θil =

⟨ci↑ci↓nlσ⟩. This definition is equivalent to the other one because of singlet pairing assumption. We
can then introduce the following set of Green’s functions:
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
Aijl = ⟨⟨ξi↑; cj↓nlσ⟩⟩
Bijl = ⟨⟨ηi↑; cj↓nlσ⟩⟩
Fijl = ⟨⟨η†i↓; cj↓nlσ⟩⟩
Gijl = ⟨⟨η†i↓; cj↓nlσ⟩⟩

 (258)

We would then have to consider A+B in order to rebuild θ. Note there are several decoupling
choice for p too. In the ψ = (ξi↑, ηi↑)

T case, there is only one possible decoupling for p, but the more
the basis is extended the more choices are possible. When several choices can be considered, the
final expression should be symmetrized and consider all of the possible Roth decoupling.

E . Roth decoupling for the 2 orbital Hubbard model

E.1 . Decoupling of px and py
In this appendix we give more details on how Roth decoupling was done for each terms.
We introduce the 4 following Green’s function:


A
B
F
G


ijk

(τ) =


⟨⟨ξix↑(τ); cjx↓∆∗

kx⟩⟩
⟨⟨ηix↑(τ); cjx↓∆∗

kx⟩⟩
⟨⟨ξiy↑(τ); cjx↓∆∗

kx⟩⟩
⟨⟨ηiy↑(τ); cjx↓∆∗

kx⟩⟩

 (259)

Let’s derive the equations of motion of these Green’s functions:

∂τ


A
B
F
G


ijk

(τ) = δ(τ)


f1

f2

f3

f4


ijk

+ θH(τ)


⟨{∂τξix↑(τ); cjx↓∆∗

kx}⟩
⟨{∂τηix↑(τ); cjx↓∆∗

kx}⟩
⟨{∂τξiy↑(τ); cjx↓∆∗

kx}⟩
⟨{∂τηiy↑(τ); cjx↓∆∗

kx}⟩

 (260)

With fnijk = ⟨{ψn
ijk; cj↓x∆

∗
kx}⟩. We now use the main approximation of the composite operator

method Eq. (173) to get:

∂τ


A
B
F
G


ijk

(τ) = δ(τ)


f1

f2

f3

f4


ijk

+
∑
l

Eil


A
B
F
G


ljk

(τ) (261)

After a time Fourier transform we can rewrite this equation as:

∑
l

(ωδilId4 − Eil)


A
B
F
G


ljk

(ω) =


f1

f2

f3

f4


ijk

(262)
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We now use the equation of motion (Eq. (174)) to get:
A
B
F
G


ijk

(ω) =
∑
l

Sil(ω)I
−1
i


f1

f2

f3

f4


ljk

(263)

We used the global δij prefactor in the I matrix to rewrite it as Inmij = δijI
nm
i . We can now take the

imaginary part and integrate over frequencies in order to use fluctuation-dissipation theorem (Eq.
(104): 

⟨ξix↑cjx↓∆∗
kx⟩

⟨ηix↑cjx↓∆∗
kx⟩

⟨ξiy↑cjx↓∆∗
kx⟩

⟨ηiy↑cjx↓∆∗
kx⟩

 =
∑
l

CilI
−1
i


f1

f2

f3

f4


ljk

(264)

I−1
i is diagonal. Now we need to compute the matricial products and consider the sum of the two

first components of the vector of the left hand side of the equation. Using the fact that ξix↑ + ηix↑ =

cix↑, we obtain:

⟨cix↑cjx↓∆∗
kx⟩ =

∑
l

αix(C
11
il + C21

il )f
1
ljk + βix(C

12
il + C22

il )f
2
ljk

+ αiy(C
13
il + C23

il )f
3
ljk + βiy(C

14
il + C24

il )f
4
ljk

(265)

With:
αix = (I−1

i )11 =
2

2− nix
αiy = (I−1

i )33 =
2

2− niy

βix = (I−1
i )22 =

2

nix
βiy = (I−1

i )44 =
2

niy

(266)

The only thing left is to compute explicitly the fn and take i=j. We get:
f1ljk = δlj⟨∆j∆

∗
k⟩+ δlk(C

12
ik + C22

ik )

f2ljk = −δlj⟨∆j∆
∗
k⟩+ δlk(C

11
ik + C12

ik )

f3ljk = 0

f4ljk = 0

(267)

f3 and f4 vanishes because they only contain commutators of x operators with y operators. In the
end, we get the same expression for ⟨∆ix∆

∗
iy⟩ as in the uniform case:

⟨∆ix∆
∗
kx⟩ = (αix + βix)

(C11
ik + C12

ik )(C
22
ik + C12

ik )

1− αix(C11
ii + C12

ii ) + βix(C22
ii + C12

ii )
(268)
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Every other terms in pijx and pijy will also be similar to the uniform case because the f3 and f4
that will be considered in the decoupling will vanish for pijx quantities while for pijy it will be f1 and
f2 that vanish. Roth decoupling will be exactly the same for pxy.Let’s detail the other terms of px and py. First it is important to notice that px and py decouplingwill be exactly the same but with the top-left block for the x channel and the bottom-right block for
the y channel of the I and C matrix. This means that an αx = (I−1)11 for px will become αy = (I−1)33

for py , and a C11 = ⟨ξix↑ξ†ix↑⟩ for px will become C33 = ⟨ξiy↑ξ†iy↑⟩ for py. For this reason we will only
consider terms of px here.Let’s start with ⟨S−

ixS
+
kx⟩ with i and k nearest neighbors. We start by rewriting :

⟨S−
ixS

+
kx⟩ = −⟨ci↑c†i↓S

+
kx⟩ (269)

This way we can introduce the following Green’s functions:

A
B
F
G


ijk

=


⟨⟨ξix↑; c†jx↓S

+
kx⟩⟩

⟨⟨ηix↑; c†jx↓S
+
kx⟩⟩

⟨⟨ξiy↑; c†jx↓S
+
kx⟩⟩

⟨⟨ηiy↑; c†jx↓S
+
kx⟩⟩

 (270)

The steps that follow are similar to what was detailed in the main text: we consider the equation
of motion, and use a time Fourier transform and the equation of motion Eq. (174) to obtain:


A
B
F
G


ijk

(ω) =
∑
l

Sil(ω)I
−1
i


f1

f2

f3

f4


ljk

(271)

This time, fnljk is defined by fnljk = ⟨{ψn
l ; c

†
jx↓S

+
kx}⟩. Now one can apply fluctuation dissipation

theorem to replace Green’s functions by correlation functions and sum over the two first components
of the vector of Green’s functions (so that we obtain ⟨ξix↑ + ηix↑c

†
jx↓S

+
kx⟩):

⟨cix↑c†jx↓S
+
kx⟩ =

∑
l

αix(C
11
il + C21

il )f
1
ljk + βix(C

12
il + C22

il )f
2
ljk

+ αiy(C
13
il + C23

il )f
3
ljk + βiy(C

14
il + C24

il )f
4
ljk

(272)

A computation of fnljk leads to:

f1ljk = δlj⟨S−
ixS

+
kx⟩ − δkl(C

11
ik + C12

ik )

f2ljk = −δlj⟨S−
ixS

+
kx⟩ − δkl(C

12
ik + C22

ik )

f3ljk = 0

f4ljk = 0

(273)
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Again, if we were considering ⟨S−
iyS

+
ky⟩, f1 and f2 will vanish and f3 and f4 will have the same form

of f1 and f2 but with αx → αy , C11 → C33, ...
Finally, we get the following expression for ⟨S−

ixS
+
ky⟩ = −⟨ci↑c†i↓S

+
kx⟩ :

⟨S−
ixS

+
kx⟩ = − ρ′x

1− ϕx
(274)

With ρ′x and ϕx defined in the main text.
The last term of px we haven’t considered yet is ⟨nix↑nkx↑. This term is a bit more difficult to

decouple. Let’s start by rewriting it as:
⟨nix↑nkx↑⟩ =

nkx
2

− ⟨cix↑c†ix↑nkx↑⟩ (275)
We introduce the four following Green’s functions:


A
B
F
G


ijk

=


⟨⟨ξix↑; c†jx↑nkx↑⟩⟩
⟨⟨ηix↑; c†jx↑nkx↑⟩⟩
⟨⟨ξiy↑; c†jx↑nkx↑⟩⟩
⟨⟨ηiy↑; c†jx↑nkx↑⟩⟩

 (276)

Again, the following steps are similar to what is detailed in the main text. We will sum the two first
components to reconstruct ⟨cix↑c†ix↑nkx↑⟩. We get:

⟨cix↑c†jx↑nkx↑⟩ =
∑
l

αix(C
11
il + C21

il )f
1
ljk + βix(C

12
il + C22

il )f
2
ljk

+ αiy(C
13
il + C23

il )f
3
ljk + βiy(C

14
il + C24

il )f
4
ljk

(277)

This time, fnljk = ⟨{ψl; c
†
jx↑nkx↑}⟩. A direct computation of the anticommutators leads to:

f1ljk = δlj(
nkx
2

− ⟨njx↓nkx↑⟩) + δlk(C
11
lj + C12

lj )

f2ljk = δlj⟨njx↓nkx↑⟩+ δlk(C
12
lj + C22

lj )

f3ljk = 0

f4ljk = 0

(278)

Hence we get:

⟨nix↑nkx↑⟩ =
nx
2

− αx(C
11
0 + C12

0 )
nx
2

− ⟨nix↓nkx↑⟩ϕx − ρ′x (279)
⟨nix↓nkx↑⟩ is unknown and must be decouple again with Roth’s method. We have:

⟨nix↓nkx↑⟩ = ⟨nkx↑nix↓⟩ =
nix
2

− ⟨ckx↑c†kx↑nix↓⟩ (280)
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Hence we introduce A, B, F, G = ⟨ψn
i ; c

†
jx↑nkx↓⟩. Everything that follows is the same, and we get:

⟨nix↑nkx↓⟩ =
nx
2

− ϕx⟨nix↑nkx↑⟩ − αx(C
11
0 + C12

0 )
nx
2

(281)
With this equation we can express ⟨nix↑nkx↑⟩. We obtain:

⟨nix↑nkx↑⟩ =
(nx)

2

4
− ρ′x

1− (ϕx)2
(282)

To obtain this result we computed explicitly the C0 and expressed everything as a function of nx.
E.2 . Decoupling of pxy
pxy involves two bodies on the same site but on different orbitals. The method we used with pxand py will mainly be unchanged, except that at the end we will take i=j=k. It is important to note

however that there are two ways of decoupling each terms: in the x or in the y channel. Let’s start
with ⟨∆ix∆

∗
iy⟩, in the x channel. We introduce the following four Green’s functions:


A
B
F
G


ijk

(ω) =


⟨⟨ξix↑; cjx↓∆∗

ky⟩⟩
⟨⟨ηix↑; cjx↓∆∗

ky⟩⟩
⟨⟨ξiy↑; cjx↓∆∗

ky⟩⟩
⟨⟨ηiy↑; cjx↓∆∗

ky⟩⟩

 (283)

We say this decoupling is in the x channel because to reconstruct ∆x∆
∗
y we need to sum the

composite operator of the x orbital. The step that follow are the same than before. We get:

⟨cix↑cjx↓∆∗
ky⟩ =

∑
l

αix(C
11
il + C21

il )f
1
ljk + βix(C

12
il + C22

il )f
2
ljk

+ αiy(C
13
il + C23

il )f
3
ljk + βiy(C

14
il + C24

il )f
4
ljk

(284)

With fnljk = ⟨ψn
i cjx↑∆

∗
ky⟩. An explicit computation leads to:

f1ljk = δlj⟨∆lx∆
∗
ky⟩

f2ljk = −δlj⟨∆lx∆
∗
ky⟩

f3ljk = δlk(C
14
jk + C24

jk )

f4ljk = δlk(C
13
jk + C23

jk )

(285)

Note that the four fn are non zero because both x and y terms appears in pxy. This term is the
one which couple x and y. Hence, after setting i=j and k=i we obtain the following equation :

⟨∆ix∆
∗
iy⟩ =

Ω′
y

1 + ϕx
(286)
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With:
Ω′
y = (αy + βy)(C

13
0 + C23

0 )(C14
0 + C24

0 )

ϕx = −αx(C
11
0 + C21

0 ) + βx(C
12
0 + C22

0 )
(287)

For completion, let’s do the decoupling in the y channel. Then, we introduce the following Green’s
function, after noticing that ⟨∆x∆

∗
y⟩ = ⟨∆y∆

∗
x⟩ due to translational invariance.


A′

B′

F ′

G′


ijk

(ω) =


⟨⟨ξix↑; cjy↓∆∗

kx⟩⟩
⟨⟨ηix↑; cjy↓∆∗

kx⟩⟩
⟨⟨ξiy↑; cjy↓∆∗

kx⟩⟩
⟨⟨ηiy↑; cjy↓∆∗

kx⟩⟩

 (288)

Since now we want to sum the composite operator in the y channel, we want to consider F’+G’.
After the same procedure, we get the following equation:

⟨cix↑cjx↓∆∗
ky⟩ =

∑
l

αix(C
31
il + C41

il )f
′1
ljk + βix(C

32
il + C42

il )f
′2
ljk

+ αiy(C
33
il + C43

il )f
′3
ljk + βiy(C

34
il + C44

il )f
4
ljk

(289)

With f ′nljk = ⟨ψn
i cjy↑∆

∗
kx⟩. An explicit computation leads to:

f ′1ljk = δlk(C
32
jk + C42

jk )

f ′2ljk = δlk(C
31
jk + C41

jk )

f ′3ljk = δlj⟨∆ly∆
∗
kx⟩

f ′4ljk = −δlj⟨∆ly∆
∗
kx⟩

(290)

We get:
⟨∆iy∆

∗
ix⟩ =

Ω′
x

1 + ϕy
(291)

With:
Ω′
x = (αx + βx)(C

31
0 + C32

0 )(C41
0 + C42

0 )

ϕy = −αy(C
33
0 + C43

0 ) + βy(C
34
0 + C44

0 )
(292)

Let’s move on to ⟨S−
ixS

+
iy⟩ = −⟨cix↑c†ix↑S

+
iy⟩. We introduce the following Green’s functions:


A
B
F
G


ijk

(ω) =


⟨⟨ξix↑; c†jx↓S

+
ky⟩⟩

⟨⟨ηix↑; c†jx↓S
+
ky⟩⟩

⟨⟨ξiy↑; c†jx↓S
+
ky⟩⟩

⟨⟨ηiy↑; c†jx↓S
+
ky⟩⟩

 (293)
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Applying Roth decoupling leads to:

⟨cix↑c†jx↓S
+
ky⟩ =

∑
l

αix(C
11
il + C21

il )f
1
ljk + βix(C

12
il + C22

il )f
2
ljk

+ αiy(C
13
il + C23

il )f
3
ljk + βiy(C

14
il + C24

il )f
4
ljk

(294)

With fnljk = ⟨ψn
l ; c

†
jx↓S

+
ky⟩. We can compute directly fn and get:

f1ljk = δlj⟨S−
lxS

+
ky⟩

f2ljk = −δlj⟨S−
lxS

+
ky⟩

f3ljk = δlk(C
31
jl + C32

jl )

f4ljk = δlk(C
41
jl + C42

jl )

(295)

Hence, we get:
−⟨S−

ixS
+
iy⟩ = −ϕx⟨S−

ixS
+
iy⟩+ αy(C

13
0 + C23

0 )2 + βy(C
14
0 + C24

0 )2 (296)
Which give what is in the text:

⟨S−
ixS

+
iy⟩ = − Ωy

1− ϕx
(297)

With :
Ωy = αy(C

13
0 + C23

0 )2 + βy(C
14
0 + C24

0 )2 (298)
A decoupling in the y channel would lead to:

⟨S−
iyS

+
ix⟩ = − Ωx

1− ϕy
(299)

With :
Ωx = αx(C

31
0 + C32

0 )2 + βx(C
41
0 + C42

0 )2 (300)
Finally let’s consider ⟨nix↑niy↑⟩ =

niy

2 − ⟨cix↑c†ix↑niy↑⟩ (x channel). We pose the following Green’s
functions:


A
B
F
G


ijk

(ω) =


⟨⟨ξix↑; c†jx↑nky↑⟩⟩
⟨⟨ηix↑; c†jx↑nky↑⟩⟩
⟨⟨ξiy↑; c†jx↑nky↑⟩⟩
⟨⟨ηiy↑; c†jx↑nky↑⟩⟩

 (301)

To reconstruct ⟨nix↑niy↑⟩ we need to consider A+B in the equation of motions. Thus we get:
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⟨cix↑c†jx↑nkx↑⟩ = =
∑
l

αix(C
11
il + C21

il )f
1
ljk + βix(C

12
il + C22

il )f
2
ljk

+ αiy(C
13
il + C23

il )f
3
ljk + βiy(C

14
il + C24

il )f
4
ljk

(302)

With fnljk = ⟨{ψi; c
†
jx↑nky↑}⟩. We compute them explicitly and get:

f1ljk = δlj(
ny
2

− ⟨nlx↓nky↑⟩)

f2ljk = δlj⟨nlx↓nky↑⟩
f3ljk = δlk(C

31
jl + C32

jl )

f4ljk = δlk(C
41
jl + C42

jl )

(303)

We get:
⟨nix↑niy↑⟩ =

ny
2

− αx(C
11
0 + C21

0 )
ny
2

− ϕx⟨nix↓niy↑⟩ − Ωy (304)
In the y channel we get:

⟨niy↑nix↑⟩ =
nx
2

− αy(C
33
0 + C43

0 )
nx
2

− ϕy⟨niy↓niy↑⟩ − Ωx (305)
Another Roth decoupling needs to be done on ⟨nix↓niy↑⟩. It is very similar to the one on ⟨nix↑niy↑⟩.We obtain:

⟨nix↓niy↑⟩ =
ny
2

− αx(C
11
0 + C21

0 )
ny
2

− ϕx⟨nix↑niy↑⟩ (306)
For the x channel. In the y channel we get:

⟨niy↓nix↑⟩ =
nx
2

− αy(C
33
0 + C43

0 )
nx
2

− ϕy⟨niy↑nix↑⟩ (307)
We can therefore express ⟨nix↑niy↑⟩. There are two decoupling (x/y) for ⟨nix↑niy↑⟩ and two for

⟨nix↓niy↑⟩. Since ⟨nxny⟩ = ⟨nynx⟩, we consider the symetrize expression obtain by taking the average
of all of the four decoupled expressions, as Roth did in her original paper Ref. [101]. We get :

⟨nix↑niy↑⟩ =
1

2

∑
α∈(xy)

Ωα
0 − Ωᾱ

1− (ϕα)2
(308)

With:
Ωx
0 =

ny
2
[αx(C

11
0 + C21

0 )− 1](−1 + ϕx)

Ωy
0 =

nx
2
[αy(C

33
0 + C43

0 )− 1](−1 + ϕy)
(309)
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