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Chapter 1

Introduction

The human hand's dexterity is truly remarkable, integrating intricate
sensory, motor control, and neural processes. Researchers have invested
e�orts to replicate this level of dexterity in robots for over four decades.
Enabling robots to manipulate objects dexterously would enhance their
interactions with the environment and allow them to perform daily tasks such
as picking up a bottle of water from a table and pouring the water into a glass.

As simple as the aforementioned task might seem, it belies its inherent
complexity. The robot must �rst locate the bottle, approach it, grasp it
securely, and then adjust its grip to facilitate smooth rotation without spilling
while pouring. Additionally, it must discern when to cease pouring, readjust
the bottle if necessary, and then return it to its original position on the table.
All these components require advanced perception and planning techniques.

Another fundamental challenge lies in the discontinuous and diverse dynamics
inherent in this manipulation process. Initially, the robot is not in contact
with the bottle, leading to di�erent control requirements compared to
when it is grasping the bottle and applying force. Seamlessly transitioning
between these dynamic states poses a signi�cant hurdle in achieving robust
manipulation capabilities.

Despite signi�cant advances, current robotic manipulation still falls short in
comparison to human pro�ciency. While robots can execute manipulation
tasks in controlled environments, they often lack the adaptability and robust-
ness required to operate e�ectively in real-world scenarios. One promising
aspect for improving robotic manipulation is tactile sensing technology.

Tactile sensors can provide real-time feedback on the physical interac-
tion between the robot and its environment, including the objects being
manipulated. This feedback includes crucial information such as object
weight, friction, slippage, and contact forces. By leveraging this tactile data,
robots can dynamically adjust their actions in response to environmental
uncertainties, ensuring the successful completion of manipulation tasks.
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This dissertation focuses on using tactile sensing to improve the performance
of robots in manipulation tasks. Throughout the work, we addressed multiple
aspects related to dexterous manipulation. First, we proposed and validated
a model-free approach for individual �nger slippage detection. Slippage
detection is essential for grasp stability and in-hand manipulation operations
where not all the �ngers are in contact with the object. Next, we proposed
and tested a method to control the direction of contact forces. Our goal was
to understand and lay out the di�culties associated with this type of control
and to provide insights on how it can be improved. Finally, we proposed
a method for initial grasp adaptation, conducted initial experiments for
validation, and laid out suggestions for potential future enhancements.

1.1 Grasping

Grasping is the act of �rmly seizing an object by hand. Grasp synthesis is
the process of �nding the optimal hand posture and �nger positioning to
satisfy criteria such as equilibrium and dexterity. Research on grasping has
been ongoing for over 50 years, with initial work dating back to the 19th

century [Reuleaux and Ferguson, 2012].

Grasping is one of the most challenging problems in robotics, encompassing
complexities in planning, control, perception, and the design of robotic
hands. Designing sensors for a human-like robotic hand is di�cult as it
requires �tting all the necessary components, such as sensors, actuators, and
wiring, into a small space while keeping the hand lightweight and capable of
manipulating everyday objects. Additionally, controlling individual �ngers
and coordinating them is challenging. Perception challenges arise when using
vision to obtain object properties such as location and shape as it has many
limitations, including occlusion, shadow, re�ection, and translucency.

Until the early 2000s, grasp synthesis relied predominantly on analytical
methods [Ding et al., 2001,Roa et al., 2009,Zhu and Ding, 2004,Kirkpatrick
et al., 1990, Ferrari et al., 1992, Pollard, 2004, Mishra et al., 2015, Cornelia
et al., 2009,Markensco� et al., 1990,Nguyen, 1988]. These methods employed
mathematical and physical models to compute optimal grasp con�gurations,
o�ering guarantees on properties like force-closure. However, they often
struggled to translate to real-world scenarios due to complexities in modeling
and uncertainties in physical interactions [Sahbani et al., 2012].
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In response to these limitations, data-driven approaches have gained promi-
nence [James et al., 2019, Lenz et al., 2015, Levine et al., 2016, Chu et al.,
2018, Jiang et al., 2011, Bousmalis et al., 2018,Mahler et al., 2017,Morrison
et al., 2018, Cheng et al., 2022, Li et al., 2021]. These methods, eschewing
analytical models, leverage data to emulate human grasping strategies or
utilize simulated data. They sample grasp candidates and rank them based
on experience, which can be simulated or obtained from real-world interac-
tions [Pozzi et al., 2022]. However, such approaches may su�er from biases,
lack of adaptability, and over-�tting to speci�c conditions, necessitating ex-
tensive and diverse datasets for training. Moreover, they o�er no guarantees
on grasp quality and can be computationally intensive [Sünderhauf et al.,
2018].

Despite signi�cant advancements in grasp synthesis, considerable work
remains to be accomplished in this �eld. In a recent review by [Billard
and Kragic, 2019], it was noted that while robots exhibit pro�ciency in
grasping and manipulating objects in environments where the geometry,
material properties, and weight of the objects are well-de�ned, they encounter
signi�cant challenges when dealing with uncertainties arising from imperfect
object models and interaction dynamics. Although robots can accommodate
certain variations in routine operations and adapt to minor di�erences in
object properties, the overall process is generally optimized for a limited
range of anticipated variations.

1.2 Motivation

A promising approach to addressing uncertainty-related issues and enabling
swift adaptation to environmental changes is through the use of tactile sens-
ing. Roboticists have developed tactile sensors to mimic the sense of touch in
humans, which plays a pivotal role in various tasks, particularly grasping. In
his book "How the mind works", [Pinker, 2003] gives an excellent example of
why the sense of touch is essential when grasping objects. He says: "Think of
lifting a milk carton. Too loose a grasp, and you drop it; too tight, and you
crush it; and with some gentle rocking, you can even use the tugging on your
�ngertips to gauge how much milk is inside!" Moreover, humans can even
perform blind grasping entirely relying on their sense of touch. For example,
they can reach out to their phones when it is dark or for the last cookie in
a jar. Both tasks seem e�ortless for humans, but a robot would struggle
to perform them. Therefore, the sense of touch is essential to grasping success.
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Signi�cant advancements have been achieved in the analysis of visual
information. However, there has been relatively little e�ort dedicated to the
analysis of haptic information [Billard and Kragic, 2019]. There is a need to
develop methods to integrate tactile sensing into the control loop, but it is
not a simple process. Tactile signals are complex and require pre-processing
to extract features. For instance, when an object held by the hand starts to
slip due to inadequate grasping or external disturbances, this leads to abrupt
changes in the signal output. These abrupt changes can be captured using
frequency analysis to extract high-frequencies corresponding to the changes
in the signal. A reactive control strategy is then required to adapt the grasp
and reject these disturbances to secure the grasp.

Many approaches [Deng et al., 2020, James and Lepora, 2020, Veiga et al.,
2020] secure the grasp by increasing its sti�ness. This approach is simple
and e�ective in speci�c cases; for example, when the hand can exert the
necessary forces, the object is rigid, and there is no risk of causing damage.
However, increasing the sti�ness of the grasp reduces the hand to a mere
gripper, thereby failing to utilize its full potential. To achieve a more e�ective
grasp, it is necessary to coordinate the forces applied by the �ngers or adjust
their placements. The control and coordination of individual �ngers are
complex challenges and active areas of research. There is limited knowledge
regarding individual �nger control and coordination in humans [Birznieks
et al., 1998,Burstedt et al., 1999,Johansson and Flanagan, 2009].

In summary, tactile sensing presents a promising means for addressing
uncertainty and adapting to environmental changes in robotic grasping tasks.
However, integrating tactile sensing into the control process of dexterous
grasping remains relatively unexplored. Pre-processing complex tactile
signals to extract relevant features poses a challenge, particularly in scenarios
where sudden changes, such as object slippage, occur. While some approaches
focus on increasing grasp sti�ness, individual �nger control and coordination
o�er greater potential for achieving robust and versatile grasps.

1.3 Goal of this thesis

It is widely acknowledged that automatic grasping is a di�cult problem
that requires many simpli�cations for practical implementation. The fact
that robust grasping in humans typically isn't fully developed until the age
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of 8-10 years underscores its complexity [Burstedt et al., 1997]. Grasping
involves several challenging tasks, including synthesizing optimal contact
points, controlling the grasp, ensuring stability, and planning and executing
the grasp. While all these factors are critical for e�ective grasping, this
thesis focuses speci�cally on the use of tactile sensing in grasp execution
and adaptation. Tactile sensing is an essential as it provides information
about the physical interaction between the hand and the object during grasp
execution. Speci�cally, we aim to obtain information for individual �ngertips
to create individual force control for �ngers. Our goal is to exploit these
components to obtain a control strategy for �ngers that improves the quality
of the initial grasp. All these components allow for improved grasp execution
and help overcome the limitations of existing methods for grasp synthesis
regarding grasp execution. The research aims thereby to achieve the following
objectives:

� Detection of independent �ngertip slippage This objective focuses
on developing a method to accurately detect and monitor slippage at the
individual �ngertip level during grasping tasks. It involves analyzing
tactile feedback data from sensors placed on each �ngertip to identify
subtle changes that indicate slippage.

� Implementation of contact force control utilizing tactile feed-

back This objective aims to integrate tactile feedback from sensors into
the control loop to regulate the direction of contact forces exerted by
each �nger during grasping. The goal is to gain insights into the com-
plexities of contact force control and provide perspectives on achieving
precise �nger force control.

� Adaptation of the initial grasp through tactile feedback Here,
our goal is to propose a method for adapting the initial grasp based
on tactile feedback. The system can dynamically adjust the �nger pose
by analyzing tactile data to enhance grasp quality. Initial results are
presented, laying the foundation for future enhancements.

1.4 Thesis funding

The CORSMAL project1 partially supported this PhD, a collaboration be-
tween Sorbonne University, Queen Mary University of London (QMUL), and

1https://corsmal.eecs.qmul.ac.uk/objectives.html

https://corsmal.eecs.qmul.ac.uk/objectives.html
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École Polytechnique Fédérale de Lausanne (EPFL) with a grant from CHIST-
ERA2. Coordinated by Andrea Cavallaro (QMUL) from March 2019 to De-
cember 2022, CORSMAL aimed to build a framework for collaborative object
recognition and manipulation through human cooperation, exploring touch,
sound, and vision modalities. Sorbonne University's role within CORSMAL
focused on integrating tactile feedback for successful grasping of objects during
handovers. This involved extracting relevant information about the physical
interaction and developing a strategy to include this information in the control
loop for successful grasping.

1.5 Thesis structure

The thesis is organized as follows:

� Chapter 2 reviews the various technologies for tactile sensing in under-
actuated robotic hands, highlighting their respective advantages and
disadvantages. The chapter also presents the tactile sensor used in this
study and the preprocessing done to their output.

� Chapter 3 reviews the current state of the art on slippage detection
methods, followed by a proposal for a method to detect slippage indi-
vidually for the manipulator's �ngers.

� Chapter 4 begins with an overview of the state of the art in force con-
trol. It then describes a proposed method to control the direction of
contact force measured using tactile sensing. The chapter also presents
experimental validation of this method, providing insight into the di�-
culties encountered when dealing with contact force control for robotic
manipulation, along with suggestions for future improvement.

� Chapter 5 reviews the state-of-the-art methods for grasp adaptation,
followed by a proposed method to improve the quality of the initial
grasp using tactile sensing.

� Chapter 6 concludes this work and provides perspectives for future work.

2https://www.chistera.eu/

https://www.chistera.eu/


Chapter 2

Tactile sensing for robotic

manipulation

In this chapter, we begin by reviewing the existing tactile sensing tech-

nologies for robotic manipulation, examining their underlying princi-

ples and respective strengths and limitations. Following the review, we

present the selected tactile sensor for the work in this dissertation and

the experimental platform. Additionally, we detail the methodologies

employed to pre-process raw sensor data.
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2.1 Introduction

Tactile sensing is a crucial aspect of robotic manipulation, o�ering numerous
advantages. It enables robots to perceive various object properties, including
size, temperature, and shape. Moreover, it provides vital information
about the physical interaction with the object, such as contact force and
location, which is essential for successful manipulation. Tactile sensing also
proves bene�cial by providing measurements in areas inaccessible to vision,
particularly when an object is partially occluded during manipulation. The
unique bene�ts of tactile sensing contribute greatly to the success of the
manipulation task.

The use of tactile sensors in robotic manipulation has evolved signi�cantly
over time. Initially, tactile sensing was relatively overlooked in the early years
of robotics, with only a few sensing devices developed by the end of 1970s.
However, the 1980s marked a signi�cant turning point, with substantial
progress in tactile sensing, led by advancements in sensor material, design,
and fabrication technologies [Tegin and Wikander, 2005].

The purpose of this chapter is to provide an overview of the current tactile
sensors used for robotic manipulation and to present the selected sensors for
this work. We also explain the pre-processing technique that we apply to
raw sensor data. The rest of this chapter is organized as follows: In the next
section, we introduce and discuss various tactile sensing technologies, their
advantages and limitations, as well as the criteria to consider when selecting
tactile sensors. Then, we present the experimental setup consisting of an
Allegro hand and Uskin tactile sensors. We explain why we chose both the
hand and the sensors. Finally, we describe in detail how we process the Uskin
output to decrease the amount of raw sensor data while providing meaningful
information that we will use later in this work.

2.2 Tactile sensing technologies

Tactile sensing requires transforming a mechanical deformation into an
electrical signal. To achieve this functionality, various technologies have been
proposed [Zou et al., 2017], such as piezo-resistive/piezo-electric, optical,
capacitive, ultrasonic, magnetic transduction, and barometric [Neto et al.,
2021]. For an in-depth analysis of tactile sensing technologies, readers can
refer to [Kappassov et al., 2015, Jiang and Luo, 2022, Liu et al., 2020]. In
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the following section, we will review the commonly used tactile sensing
technologies for robotic manipulation and discuss their respective advantages
and limitations.

2.2.1 Capacitive tactile sensors

Capacitive tactile sensors measure touch or pressure using capacitive sensing
technology. These sensors utilize the electrical property of capacitance
to detect pressure changes resulting from physical contact. They use a
compressible dielectric matrix placed between electrodes, which changes the
capacitance in response to applied pressure. Capacitive sensors o�er many
advantages, including being highly sensitive, simple, and �exible to design
since various capacitive materials can facilitate their integration. They can
measure normal and shear forces [Zhu and Spronck, 1992], which helps to
gather information about friction.

Even though capacitive sensors o�er many advantages, they are also subject
to several limitations. They have a limited spatial resolution, which restricts
their ability to accurately detect and measure small or detailed features.
Signi�cant hysteresis is also present after contact when the measured
values do not immediately return to zero, making capacitive sensors inaccu-
rate [Martinez-Hernandez, 2016]. Examples of tactile sensors used in robotics
manipulation in which small capacitive sensors �Taxels" are distributed
across arti�cial skin, allowing the robot to detect variations in pressure and
deformation for interpreting and responding to tactile stimuli: include the
IcubSkin sensor [Natale et al., 2021] and Dynamic sensors [Cutkosky and
Ulmen, 2014] shown in Figure 2.1.

(a) (b)

Figure 2.1: Exemple of capacitive tactile sensors forming an arti�cial skin:
(a) Icub skin sensor and (b) Dynamic sensors
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2.2.2 Piezo-resistive tactile sensors

Piezo-resistive tactile sensors used in robotic manipulation detect force
changes by measuring resistance variation caused by the deformation of sens-
ing elements. These elements are made of piezo-resistive composite materials
sandwiched between electrodes [Fritzsche et al., 2016]. The technology being
discussed has several advantages, including high sensitivity, which enables it
to detect even subtle variations in force, and a simple design that makes it
easy to integrate into robotic systems [Xu et al., 2023]. However, there are
also some disadvantages to consider, such as low spatial resolution and the
challenge of individually wiring multiple sensor elements. Additionally, this
technology can su�er from hysteresis, non-linearity, and sensitivity to envi-
ronmental factors like temperature, which can lead to potential inaccuracies
in force measurements [Romeo et al., 2017]. Examples of tactile sensing for
robotic manipulation using piezo-resistive material include Tekscan [Tekscan,
2012] and ATInano17 [Liu et al., 2015], shown in Figure 2.2.

(a) (b)

Figure 2.2: Tactile sensing for robotic manipulation including piezo-resistive
material: (a) Tekscan and (b) ATInano17

2.2.3 Optical sensors

These sensors use optical technology, such as cameras or LEDs, to capture
deformation patterns when interacting with objects. Optical sensors o�er a
high spatial resolution, are robust to electrical interference, and can resolve the
wiring complexity problem presented by other sensor types such as capacitive
and piezo-resistive sensors. However, they require machine learning algorithms
to process their output, and the results cannot be easily integrated with the
control loop of manipulation. Additionally, optical sensors are expensive,
bulky, and limited to 2D shapes, which may limit their practicality in speci�c
applications [Martinez-Hernandez, 2016]. Examples of these tactile sensors
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include TacTip [Ward-Cherrier et al., 2018] and DIGIT [Lambeta et al., 2020]
shown in Figure 2.3.

(a) (b)

Figure 2.3: Tactile sensing for robotic manipulation using optical technology:
(a) TacTip and (b) Digit.

2.2.4 Barometric sensors

Barometric tactile sensors operate by detecting changes in pressure within a
contained liquid. These pressure changes result from the deformation of the
sensors due to external forces. A set of electrodes then records the electrical
signals generated by these pressure changes [Romeo et al., 2017]. Barometric
sensors provide several advantages, including high sensitivity, compact size,
lower cost, faster response, and greater robustness compared to other tactile
sensing solutions. However, they have a limited sensing range, low spatial
resolution, and are susceptible to environmental changes such as temperature
�uctuations. Examples of such sensors include BaroTac [Kim and Hwang,
2023] and Biotac [Loeb, 2013], as illustrated in Figure 2.4.

(a) (b)

Figure 2.4: Examples of pressure tactile sensors: (a) BaroTac and (b) Biotac
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2.2.5 Magnetic sensors

In this type of tactile sensor, a magnetic sensor is a�xed to the robot �nger,
while a permanent magnet is embedded within an elastomeric component.
When a force is applied to the elastomeric part, it alters the relative
orientation between the sensor and the embedded magnet, resulting in a
change in the magnetic �eld. This change is detected by the magnetic sensor,
enabling the measurement of the applied force and the resolution of contact
locations [Neto et al., 2021]. Magnetic tactile sensors o�er high sensing
accuracy, low mechanical hysteresis, low cost, and are relatively easy to
assemble. They are designed to provide high sensing accuracy, guided by
theoretical models, making them suitable for applications in soft robotics.
However, they are susceptible to magnetic interference and noise [Dahiya
et al., 2009]. Examples of these sensors include the Sort sensor [Mohammadi
et al., 2019] and Uskin [Tomo et al., 2017], as shown in Figure 2.5.

(a) (b)

Figure 2.5: Exemples of magnetic tactile sensors: (a) Sort sensor on the index
�ngertip (b) Uskin sensor covering Allegro hand

2.2.6 Conclusion on tactile sensing

Each of the previously reviewed tactile sensing technologies has its advan-
tages and disadvantages and produces di�erent tactile signals based on the
technology used to construct them. For instance, the output could be a 1D
signal over time, like pressure in the liquid for barometric sensors, normal
and shear forces information in the case of capacitive sensors, or a 2D pattern
in the case of optical sensors. The output can be multimodal when di�erent
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sensing technologies are combined. For example, the Biotac sensor outputs
multiple signals, including voltage in the electrodes, �uid pressure, and
temperature.

The choice of appropriate sensing technology is highly dependent on the de-
sired application. Optical sensors are useful in detecting geometrical features
such as the shape of the contact surface with the object and its texture. How-
ever, they can not perceive the normal and the shear forces. In that case,
where it is desired to obtain other objects' properties, such as friction and
weight, it is necessary to use a sensor that outputs three axial force informa-
tion. Therefore, it is essential to consider the nature of the output produced by
the tactile sensor and the type of application before selecting the appropriate
one.

2.3 Tactile sensor selection

Parallel to developing tactile sensors, the robotics community has conducted
extensive research on hand design. Hand design is tailored to suit speci�c
applications, resulting in a wide range of arrangements - from basic two-�nger
grippers like the RobotiQ gripper 1(Figure 2.6a), to complex mechanisms
that mimic the mechanics of the human hand, such as the Shadow Hand2

(Figure 2.6b).

(a) (b)

Figure 2.6: Robotic manipulators: (a)RobotiQ gripper (b) Shadow hand

Choosing the appropriate tactile sensors for a robotic hand involves two main
requirements: task requirements and hand requirements. Task requirements
dictate the desired output of the sensors. For tasks necessitating friction
information, three axial force measurements are necessary. Spatial resolution

1https://robotiq.com/products
2https://www.shadowrobot.com/

https://robotiq.com/products
https://www.shadowrobot.com/
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is essential for tasks involving object shape exploration. Sensitivity and
frequency response are crucial for slip detection and grasp stability tasks.
Hand requirements present additional integration constraints for the sensors.
These constraints include ensuring that the sensors or wiring are not bulky
and that the tactile sensor can be integrated into the hand's interaction
surface without impeding its dexterity. Therefore, the technology adopted
must meet the requirements imposed by the robotic hand's design and layout,
as well as the desired application requirements.

This dissertation aims to propose methods to enhance grasp stability and
adaptation utilizing tactile sensing capabilities. The objective is to develop
independent �nger slippage detection and contact force control strategies to
improve the overall dexterity of the robotic system. To achieve this, we need
an experimental setup that consists of a robotic hand with tactile sensors to
test and validate the proposed methods. To choose the experimental setup,
we have identi�ed several requirements for the tactile sensors and the hand as
listed below.

- Sensor Frequency:
The sensors should have a su�ciently high-frequency response to capture
information regarding slips that might lead to grasp failure. This allows
for rapid detection and compensation of unstable grasps.

- Sensor Integration:
The sensors should be integrable on the interaction surface of the robotic
hand, and their integration should not impact the dexterity or range of
motion of the hand. Seamless integration is crucial for maintaining the
hand's manipulation capabilities.

- Force Sensing Range:
In addition to the frequency requirement, the sensors should also be
able to detect a wide range of interaction forces, from very low to high
magnitudes. This enables comprehensive force feedback and control
during dexterous manipulation tasks.

- 3-Axis Force Measurement:
To enable e�ective contact force control, the tactile sensors should pro-
vide three-axis force measurements, allowing for detecting and control-
ling forces in all relevant directions.

- Hand Design Requirements:
Dexterous manipulation tasks require a multi-�ngered robotic hand de-
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sign. The hand must o�er enough space to embed the tactile sensors
without compromising the hand's dexterity and range of motion.

To meet the aforementioned requirements, the experimental setup for this
study will employ the Allegro Hand from Wonik Robotics, equipped with
USkin sensors from Xela Robotics. The following section will provide a
detailed description of this experimental setup.

2.4 Experimental setup

The Allegro hand from Wonik Robotics3 is a low-cost hand with four �n-
gers and sixteen independent torque-controlled joints (Figure 2.7). We
equipped the hand with Uskin soft sensors4 covering the palm, the phalanges,
and the �ngertips' curved surface with a total of 368 taxels, including 30
taxel/�ngertip (Figure 2.8).

� 
  

Joint Directions 
Right Hand 

Left Hand 

Copyright � WONIK ROBOTICS. All rights reserved. 6 

Figure 2.7: Allegro hand joint directions.

The Uskin soft sensors utilize changes in the magnetic �eld induced by skin
deformation upon contact to deliver precise 3-axial force measurements at
the taxel level. Each �ngertip is composed of 30 taxels distributed across
its curved surface. Converting these measurements into Newtonian contact
force is a di�cult task. This is because the measurements depend on the
location of the contact on the sensors and require a mapping between the
total measured forces and the corresponding Newtonian contact force.

3http://wiki.wonikrobotics.com/
4https://www.xelarobotics.com/

http://wiki.wonikrobotics.com/
https://www.xelarobotics.com/
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(a) Allegro hand with tactile sensors (b) 3D model with taxels positions

Figure 2.8: The Allegro hand with tactile sensors and a 3D model view.

The geometric con�guration of the contact location highly in�uences the mea-
surements, this is illustrated in Figure 2.9. Measurements di�er when an ap-
plied contact force is directly on a taxel compared to a blind spot between two
taxels. Nevertheless, the sum of taxel forces measurement norms remains con-
sistent for both cases. This implies repeatability in the measurements. In the
next section, we detail the pre-processing step applied to the raw data from
the sensors at the �ngertips to reduce their dimensionality and to provide a
single force measurement vector for each �ngertip instead of 30.

Uskin sensor at 
resting state

Contact 
force Uskin 

deformation

Taxels f ⃗m1 f ⃗m2

f ⃗m1+f ⃗m2 f ⃗m1

(a) (b) (c)

Figure 2.9: Illustration of sensors measurements: (a) two neighboring taxels
in the resting state when no contact force is being applied to them, (b) contact
force applied to a blind spot between the two taxels, and (c) when the contact
force is being applied directly to the taxel
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2.5 Tactile output pre-processing

Each �ngertip has a total of Ns = 30 taxel sensors distributed along the
known surface of the �ngertip. For time-step k, taxel i provides the tactile
force measurement si ∈ R3, which is speci�ed in the reference frame placed
at the origin of the taxel {Si} as shown in Figure 2.7.

(a) Front view (b) Side view (c) Top view

Figure 2.10: Taxel placements on the �ngertip of the Allegro hand

Let {E} be the origin of an arbitrary frame attached to the last segment of
the �nger with the known rotation matrix Ri ∈ SO(3) for each {Si}. We
compute the total tactile force measurement Ftip applied to each �ngertip as
follows:

Ftip =
Ns∑
i=1

Risi (2.1)

with Ftip = [Fx, Fy, Fz]
T ∈ R3. Figure 2.11 shows the three components of

Ftip in an experiment where we place an object in the workspace, close the
hand on the object until it is locked, and then disturb it.
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2.6 Conclusion of the chapter

This chapter reviewed the existing tactile sensing technologies for robotic
manipulation, examining their underlying principles and respective strengths
and limitations.

We presented the selected tactile sensor for this work, the Uskin sensor,
and the Allegro hand from Wonik Robotics, forming the experimental
platform. We explained the considered criteria when selecting tactile sensors,
including sensor frequency, sensor integration, force sensing range, 3-axis
force measurement, and hand design requirements.

We then detailed the methodologies employed to pre-process the raw sensor
data from the Uskin sensors. This pre-processing involves computing the
total tactile force measurement applied to each �ngertip by summing the
individual taxel force measurements weighed by the corresponding rotation
matrix.

In the next chapter, we will present how we use tactile sensor data and build
a model-free approach to independently detect �nger slippage.
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In this chapter, we propose a method for detecting slippage at the indi-

vidual �nger level. The proposed method is model-free and can be easily
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with state-of-the-art methods, discuss the limitations of our approach,

and explore possibilities to improve this work.
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3.1 Introduction

In robotic manipulation, slippage detection deals with detecting the object's
movement relative to the �ngers. Movements that are not induced by the
robotic hand but result from an external force acting on the object. To
achieve a stable grasp, the hand must maintain full control of the dynamics
of the object and thereby be able to detect slippage in the early stages and
react to it. To detect slips, the hand requires information about the physical
interaction with the object. This information can be acquired through tactile
sensing.

The existing methods for slip detection in the literature are largely in�uenced
by the tactile sensors employed For instance, when a three-axial force sensor
is available, it's possible to extract friction-related information, which is
subsequently used to identify slippage. On the other hand, when the sensor
output is a pattern or an image, machine learning techniques are typically
utilized for slippage detection. Overall, slippage detection methods fall
under four categories: friction-based, vibration, di�erentiation, and learning
methods.

In most of the existing work, slippage is considered for the whole hand and
not for individual �ngers. This is convenient when using a gripper because
the only way to secure the grasp is by tightening the gripper or adjusting the
gripper's pose to counterpart external force like gravity. However, it is not
useful for dexterous manipulation, for example, in the case of �nger gaiting
when one �nger is relocated on the object, and the other �ngers maintain
contact with it. Furthermore, existing methods are object-dependent.

In this work, our primary objective is to design a slip-detection method for
individual �ngers. Additionally, we aspire that the developed method is
model-free, does not rely on speci�c objects or robotic hand con�gurations,
and can be easily applied to di�erent robots and sensors. Moreover, we
want to address the limitations of existing slippage detection methods.
Our proposed method should swiftly detect slips, enabling the robot
to adjust quickly. Furthermore, we hope to provide information that can
be used in the control loop of the robot, extending beyond mere slip detection.

This chapter is structured as follows. We begin by reviewing existing methods
for slippage detection, along with their advantages and disadvantages. Next,
we present our approach to addressing the previously mentioned issues,
including the experimental platform we will be using, the implementation of
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our methods, and the experimental results. Finally, we compare our results
with state-of-the-art methods, discuss the limitations of our approach, and
explore possibilities to improve this work.

3.2 Methods for slippage detection

Slippage detection refers to the ability to detect when an object that is be-
ing held starts to slip. This ability enables the hand to react quickly and
ensure that the grasp remains stable. Considerable research has been con-
ducted to understand the sliding process, and in this context, we will focus
on the current methods for slip detection that use tactile sensing. In a recent
review, [Romeo et al., 2017] have broadly categorized slip detection meth-
ods that use tactile sensing into four groups: friction-based, vibration-based,
di�erentiation-based, and learning-based methods. The authors also explain
that the choice of detection method largely depends on the output of the
tactile sensing system.

3.2.1 Friction-based methods

Friction-based methods are typically used when 3-axial force information is
available. They monitor the static friction coe�cient µs ∈ R+ between nor-
mal force fni ∈ R perpendicular to the contact surface and tangential forces
[fti, foi]

T ∈ R2 parallel to the contact surface at the ith contact point. The
static friction coe�cient µs is a property of the materials in contact. The static
friction coe�cient must be within the friction cone to prevent objects from
slipping. The friction cone is a geometric representation of the range of forces
that can be applied at a contact point without causing slippage Figure 3.1. It
is de�ned by the following equation [Savkoor, 2001],√

f 2
ti + f 2

oi ≤ µsf⃗ni (3.1)

Some of the works in the state of the art that used this method include [Mel-
chiorri, 2000,Okatani et al., 2017,Beccai et al., 2008,Zhang et al., 2014,Kaboli
et al., 2016]. These works show that relying on friction coe�cients to detect
slippage has several advantages, including fast prediction/detection, noise ro-
bustness, and the ability to estimate the grasping force, which is important for
maintaining a stable grasp. However, they heavily depend on complex con-
tact models with numerous parameters (such as the Coulomb contact model)
and models that are not general since the friction coe�cient di�ers from one
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Figure 3.1: Forces acting on a grasped object. The two �ngers apply a normal
force on the object fn1 and fn2 at both contact points that, in the absence
of disturbance, compensate for the gravity acting on the object. The friction
cone must contain the resultant force vector to prevent slip. Note that the
two cones have di�erent dimensions, as each �nger independently applies the
forces.

material to another and can not be generalized. These drawbacks limit the
application of friction-based methods in real-world applications.

3.2.2 Vibration-based methods

Slippage results in mechanical vibrations between the surfaces in contact,
present in the tactile signal output as abrupt changes, or in other words, high
frequencies, as shown in Figure 3.2. Vibration-based methods aim to detect
slippage in a model-free manner. They use signal processing techniques such
as Fourier transform to identify high frequencies caused by slippage. They are
typically used when only the normal component of the force is available or
when the friction coe�cient is hard to estimate or unknown [Fernandez et al.,
2014].
Among the early works are [Damian et al., 2010, Cheng et al., 2015, Romeo
et al., 2017] where researchers have proposed various approaches to detect
slips based on measuring high-frequency components of the output, most of-
ten based on Fast Fourier Transform (FFT) [Romano et al., 2011]. However,
the drawback of using FFT is the loss of temporal information. To address
this limitation, researchers used Discrete Wavelet Transform (DWT) [Yang
et al., 2015,Wang et al., 2016, Deng et al., 2016, Romeo et al., 2018] over
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Figure 3.2: The amplitude and the three components of force measured at
the contact point between an object and the index �nger of a robotic hand
during a grasp. In the �gure, we can see the initial contact with the object,
followed by contact without slippage, and �nally, contact with slippage, where
the object is slipping and the force changes rapidly.

short time windows. Nevertheless, DWT methods introduce a delay in the
signal, increasing the rate of false positives, i.e., false detection of slips. Over-
all, vibration-based methods have the advantage of being model-free, which
means that they do not have complex contact models that might limit their
application; they can be used with di�erent types of tactile sensors. How-
ever, these techniques can be sensitive to environmental factors such as noise
and other external disturbances, which may a�ect their accuracy in detect-
ing slippage. Using signal processing techniques may lead to delays that can
compromise their performance in real-time implementation. Lastly, determin-
ing the threshold for detecting changes in the signal without generating false
positives or negatives can be challenging.

3.2.3 Di�erentiation-based methods

Di�erentiation-based methods typically involve using the derivative of sensor
signals, such as force or tactile feedback, to identify changes that may indicate
slippage. By analyzing the rate of change of these signals, sudden variations
associated with slippage can be detected [Romeo et al., 2021]. Works using
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di�erentiation methods include [Lee et al., 2018, Feng and Jiang, 2019, Os-
born et al., 2013]. Di�erentiation-based methods are highly slip-sensitive,
fast, and simple to implement in real-time. Moreover, they do not require
knowledge about friction or signal processing techniques. However, they are
highly dependent on the characteristics of the surface of the object and hand-
in contact [Kyberd and Chappell, 1992]. They are also susceptible to noise
and have a high rate of false positives that can not be easily discarded [Romeo
et al., 2021].

3.2.4 Learning-based methods

Learning-based approaches utilize machine learning techniques to detect
slippage by framing it as a classi�cation task, distinguishing between "slip"
and "no-slip" events. Various contributions have been made in this domain.
For example, [Zhang et al., 2018] and [Begalinova et al., 2020] utilized long
short-term neural networks to capture temporal features from tactile sensors,
while [Zapata-Impata et al., 2018, Meier et al., 2016, Kwiatkowski et al.,
2017] employed Convolutional Neural Networks (CNNs) to integrate spatial
features. [James and Lepora, 2020] and [Agriomallos et al., 2018] utilized
support vector machines and multi-layer perceptrons, respectively, for feature
extraction. Additionally, [Gao et al., 2023], [Deng et al., 2020], [Calandra
et al., 2017], and [Li et al., 2018] leveraged deep learning, eliminating the
need for intricate feature extraction processes.

While these methods share a common goal, they vary in techniques, sensor
types, and preprocessing steps. For instance, [James and Lepora, 2020]
employed optical tactile sensors, converting pin position patterns to velocities
before classi�cation. [Zapata-Impata et al., 2019] utilized biotech sensors,
preprocessing signals by designing spatial matrices. [Meier et al., 2016]
utilized Myrmex sensors, extracting temporal features via Short Fourier
Transform and CNNs for classi�cation incorporating spatial resolution.

Despite their e�cacy in generalization and handling high-dimensional data,
learning-based methods face limitations. They often lack transferability be-
tween sensors and scenarios [Mandil et al., 2023]. Real-time implementation
can lead to performance degradation [Zhou et al., 2022], and their black-box
nature makes interpretation challenging. Moreover, they primarily focus on
event detection, o�ering limited applicability in manipulation tasks [Mandil
et al., 2023]. Their drawbacks include reliance on extensive labeled datasets,
lengthy training processes, and complex integration with real-world systems.
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3.2.5 Conclusion on methods for slippage detection

Existing methods for slip detection are speci�c to the nature of the output of
the tactile sensor and the desired application, and each has its strengths and
limitations. Friction-based methods are straightforward but may lack adapt-
ability. Learning-based methods o�er adaptability but require substantial
data and computational resources. Vibration-based methods are e�ective for
speci�c scenarios but are subject to delays. Di�erentiation methods are fast
and simple to implement but extremely sensitive to noise.

Moreover, the state-of-the-art methods for slippage detection mainly focus on
detecting slippage for the entire manipulator or hand and not for individual
�ngers. Slippage information for the whole manipulator is useful when the
latter is a gripper or acts as a gripper. In such cases, to prevent or react
to slip, we only increase the normal force applied to the object to stabilize
the grasp. By detecting slip at the individual �nger level, robotic hands can
adapt their grasp in real-time, adjusting the forces and movements of speci�c
�ngers to prevent the failure of the entire grasp.

Having slippage information about the whole hand does not allow for creating
independent control strategies for �ngers separately, which is crucial for
dexterous manipulation tasks, such as �nger gaiting, where a �nger moves
independently to a new contact location on an object while the other �ngers
maintain contact with it and adjust the applied force to keep the grasp
stable. Finally, having information on the contact quality and not only the
slip status allows the system to optimize the distribution of forces applied by
individual �ngers. This optimization is crucial for maintaining a stable grasp
while avoiding excessive force that could potentially damage delicate objects
or cause unnecessary energy consumption.

In this work, we aim to address the issues mentioned above by proposing
a method for detecting slippage at the individual �nger level. Our method
is model-free and can be easily applied to di�erent robots and sensors. We
will provide detailed information about our proposed method in the following
sections.

3.3 Proposed method description

Our work makes a contribution to the existing research on slippage detection
by proposing a method that addresses the issues mentioned in Section 3.2.5.
We have combined Vibration-based and Learning-based methods to make use
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of their respective advantages. As vibration-based method, we use a discrete
wavelet transform (DWT) to extract relevant frequency information, then
we employ a learning-based approach to train a classi�cation model for slip
detection. Our primary objective is to develop a model-free slippage detection
system for individual �ngers. We will provide detailed information about the
proposed method in the following sections.

3.3.1 Problem de�nition and strategy

We aim to create a system to predict slippage for a multi-�nger robotic hand
grasping an object using its �ngertips only. The system should not rely on
prior knowledge about the object's properties, such as weight, material, and
shape, nor make assumptions about contact models. We de�ne slip events as
�instabilities� or �unstable contacts� and the no-slip event where the contact
of the �ngertips is maintained on the object as �stabilities�. In our work, we
consider two types of instabilities. The �rst type is when the hand closes
on the object before it is locked. The second is when the hand has already
locked the object, and external forces are applied to it, resulting in slippage,
loss of contact, or both. Our system should not only detect slippage but also
provide measures for the contact quality, informing us about how likely the
contact is stable.

We will be following the strategy shown in the �owchart in Figure 3.3.
In the feature extraction step, we explain how we extract relevant features
from the tactile data using the Discrete Wavelet Transform (DWT). In the
classi�cation model selection step, we will choose appropriate classi�cation
models to train and classify the labeled data. Then, we proceed to collect
tactile data, pre-process and label it to indicate slip events and stable
contacts. In the classi�cation model training and validation step, we will
test and validate the performance of the selected classi�cation models using
experimental data. Finally, in the real-time implementation step, we will
implement the trained classi�cation models in real-time applications for slip
detection. Each of these steps will be detailed in the following section.

3.3.2 Features extraction

In this section, we will discuss how we extracted features from force mea-
surements. Our objective was to obtain features related to frequencies that
can assist us in identifying high frequencies caused by slippage. We used a
technique called Discrete Wavelet Transform (DWT) to extract information
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Features Extraction

Classi�cation Models Selection

Tactile Data Collection and Preprocessing
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Real-time Implementation

Figure 3.3: Proposed strategy work�ow

about these high frequencies.

DWT breaks down a time series signal into several sets of coe�cients
using wavelets. Wavelets like Haar, Daubichies, and Marley are wave-like
oscillations that have two main properties: scale and location. The scale, also
known as dilation, determines how "stretched" or "compressed" a wavelet
is, and this property is related to frequency as de�ned for waves. On the
other hand, the location determines the time and position of the wavelet.
Figure 3.4 shows an example of the Haar wavelet transform with di�erent
scales and time locations [Sundararajan, 2011].

The idea was to �lter the time series by multiplying it by a wavelet whose
width in time can be re-scaled to pick out variability on di�erent time
scales. In our work, we used the Haar wavelet transform because it o�ers
good localization in both time and frequency domains, which is crucial
for capturing abrupt changes in a signal. Additionally, it involves simple
operations, making it computationally e�cient for real-time applications.
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Figure 3.4: Haar wavelet transform with di�erent properties: (a) di�erent
scales and (b) at di�erent time locations

Haar wavelet transform

The single scale Haar transform decomposes the signal x = [x1, x2, ..., xN ]
T ,

where N is even, into two signals of length N/2. These signals are the ap-
proximation coe�cients am and detail coe�cients dm, with components:

am =
1√
2
(x2m−1 + x2m), m = 1, .., N/2 (3.2)

dm =
1√
2
(x2m−1 − x2m), m = 1, .., N/2 (3.3)

Each term in the detail vector represents variations between successive ele-
ments of the time series, i.e., on a time scale ∆. Similarly, each term in the
average vector is an average across the same time scale. The detail and ap-
proximation coe�cients can be written as an inner product of the time series
with the mth level 1 Haar wavelet ψm:

am = ϕmx (3.4)

dm = ψmx (3.5)

With ψm and ϕm in RN , the mother wavelet and the scaling function, respec-
tively, at di�erent time locations are de�ned as:
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ϕ1 =
1√
2
[1, 1, 0, 0, ..., 0, 0, 0]T

ϕ2 =
1√
2
[0, 0, 1, 1, ..., 0, 0, 0]T

...

ϕm =
1√
2
[0, 0, 0, 0, ..., 0, 1, 1]T

Similarly:

ψ1 =
1√
2
[1,−1, 0, 0, ..., 0, 0, 0]T

ψ2 =
1√
2
[0, 0, 1,−1, ..., 0, 0, 0]T

...

ψm =
1√
2
[0, 0, 0, 0, ..., 0, 1,−1]T

This transform can be inverted to reconstruct x from am and dm, as follows:

x2m−1 =
1√
2
(am + dm) (3.6)

x2m =
1√
2
(am − dm) (3.7)

The signal x can also be written in the vector form as:

x = A1 +D1 (3.8)

A1 and D1 are referred to as the approximation and the details of the signal
x, respectively, with:

A1 =

N/2∑
m=1

amϕm (3.9)

D1 =

N/2∑
m=1

dmψm (3.10)

which also can be written as:

A1 =
1√
2
[a1, a1, a2, a2, ..., aN/2, aN/2]

T (3.11)

D1 =
1√
2
[d1,−d1, d2,−d2, ..., dN/2,−dN/2]

T (3.12)

This vector form describes how to invert the Haar transform to get the original
time series [Bretherton, 2015].
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Features extraction with Haar wavelet transform

To extract frequency information from the force feedback measurements Ftip

- for details about Ftip see section2.5 -. We initially calculated Fa(k), repre-
senting the amplitude of �ngertip force at time-step k, as:

Fa(k) = ||Ftip(k)|| =
√
Fx(k)

2 + Fy(k)
2 + Fz(k)

2 (3.13)

Subsequently, we obtained Fa = [Fa(1), Fa(2), ..., Fa(N − 1), Fa(N)]T , which
depicts the amplitude of the �ngertip force measurements over time, with
Fa(N) being the latest value. We performed Haar wavelet decomposition over
a moving time window of size Nw. As explained in the previous section, we
chose a wavelet of scale two and level one. However, we introduced changes by
allowing overlapping during the transform calculation. Instead of computing
the approximation and detail coe�cients as shown in equations 3.2 and 3.3,
we used the following formulas:

ak,m =
1√
2
(Fa(k − (Nw −m)) + Fa(k − (Nw −m) + 1)) (3.14)

dk,m =
1√
2
(Fa(k − (Nw −m))− Fa(k − (Nw −m) + 1)) (3.15)

with m = 1, 2, .., Nw − 1. By allowing overlapping, we decompose the signal
(Fa(k−Nw), .., Fa(k))

T ∈ RNw into sub-signals ak,m and dk,m ∈ RNw−1 instead
of RNw/2, resulting in a larger time-frequency resolution. This approach
was chosen to extract a detailed time-frequency representation rather than
compressing the signal.

When disturbances occur, they appear in the signal as abrupt changes in the
amplitude of the force, that is, high frequencies. The wavelet decomposition
over small time windows allows us to capture these changes. The next step
is to extract information from the approximation coe�cients ak,m and the
details coe�cients dk,m. To do so, we chose the moving average and the
standard deviation as follows.

We compute the moving average of ak,m as:

m(k) =
1

Nw − 1

Nw−1∑
m=1

ak,m (3.16)

Similarly, we de�ne σ the standard deviation of dk,m as:
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σ(k) =

√√√√Nw−1∑
m=1

(dk,m − d̄k,m)2

Nw − 1
(3.17)

with d̄k,m ∈ R the mean of the approximation coe�cients calculated as:

d̄k,m =
Nw−1∑
m=1

dk,m
Nw − 1

(3.18)

The moving average m of the approximation coe�cients ak,m reduces the
noise due to measurement since no previous �ltering of the sensors has been
done. Hence, it gives more accurate information about the amplitude of
the force Fa(k). On the other hand, the standard deviation σ measures
�uctuations in the details caused by abrupt changes in the force amplitude
as shown in Figure 3.5.

For every time step k, we construct a feature vector Φ(k) ∈ R6 as:

Φ(k) = [Fa(k), Ftip(k)
T ,m(k), σ(k)]T (3.19)

With: Fa(k) , m(k) and σ(k) ∈ R, Ftip(k) ∈ R3.
In the next section, our goal was to train a classi�cation model that takes the
feature vector Φ as input and predicts the stability of the contact. We will
present the classi�cation models we selected and the evaluation metrics we
used to assess their performance.

3.3.3 Classi�cation model selection

We wanted to train a classi�cation model that distinguishes stable contacts
from unstable contacts. By stable, we refer to the state when the contact is
maintained on the object and its dynamics are fully governed by the robotic
hand. Unstable contacts include the absence of contact and slippage. The
absence of contact can be later separated from unstable contact by using
a small threshold of the amplitude of the measured force. When training
the classi�er, we aimed to assign the value 1 to the feature vector Φ when
the contact is stable and 0 otherwise. We selected two di�erent methods,
Support Vector Machines (SVMs) and Logistic Regression (LogReg), due
to their versatility, ease of implementation, and proven capability to yield
high-accuracy results. The combination of SVM's ability to handle complex
relationships and LogReg's simplicity and probabilistic output makes them
suitable candidates for our method.
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Figure 3.5: The total force Ftip applied to the thumb. In this �gure, the hu-
man hands over the object while the robot closes its �ngers. No contact:
The force equals zero before the �ngertips reach the object's surface. Initial
contact: The force grows to lock the object as the contact starts. Main-

tained contact: When the object is locked, the force amount is constant.
Disturbances: We manually move the object to mimic disturbances caused
by external forces. We plot the calculated features, m and σ. Here we can
observe thatm is a �ltered version of Fa and that σ increases when the contact
with the object is not maintained.

Support Vector Machine (SVM)

SVM is a powerful machine learning algorithm used for classi�cation and
regression tasks. It is adaptable and e�cient in various applications because
it can manage high-dimensional data and nonlinear relationships. SVM
constructs a hyperplane in multidimensional space to separate data into
di�erent classes and generates an optimal hyperplane in an iterative manner,
which is used to minimize error. When data is not linearly separable, it can
be transformed using a kernel before constructing a hyperplane. The reader
may refer to [Cortes and Vapnik, 1995] for more details about support vector
machines.
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Logistic regression (LogRegs)

LogReg is a highly e�ective machine learning technique for regression and
classi�cation tasks. It is often used as a baseline for comparison against more
complex methods. It is a binary classi�er that assigns an observation to a given
class. The logistic function gives a hypothesis based on a decision boundary.

hθ(x) =
1

e−(θ0+θx)
(3.20)

where x = (x1, x2, ..., xm) is a vector of observations and θ0 and θ =

(θ1, θ2, ..., θm) are the model parameters to be determined from optimizing
the �t of hθ(x) to the class labels.
LogReg is known for its simplicity and e�ciency, making it a practical choice
for many classi�cation problems. Additionally, it o�ers a probabilistic output
hθ(x), making it useful for predicting the likelihood of a particular class.
For further information regarding logistic regression, the reader may refer
to [Hosmer Jr et al., 2013].

Models evaluation

To assess the performance of our classi�ers, we use the following metrics:

False positive rate (FPR)

The proportion of actual negatives incorrectly classi�ed as positives:

FPR (%) =
FP

FP+ TN
× 100 (3.21)

False positive rate (FNR)

The proportion of actual positives incorrectly classi�ed as negatives:

FNR (%) =
FN

FN+ TP
× 100 (3.22)

Accuracy (Acc)

Accuracy is a measure of the overall performance of the classi�er. It is cal-
culated by dividing the number of correct predictions the classi�er makes by
the total number of samples as follows:

Acc (%) =
TP+ TN

TP+ TN+ FP+ FN
× 100 (3.23)

False discovery rate (FDR)

The False Discovery Rate (FDR) indicates the proportion of false positive
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predictions. It can be calculated using the following formula:

FDR (%) =
FP

TP+ FP
× 100 (3.24)

With TP, TN, FP, and FN representing the number of true positive, true
negative, false positive, and false negative predictions, respectively. These
metrics collectively o�er a comprehensive assessment of a classi�er's perfor-
mance in binary classi�cation tasks.

Now that we have presented the feature extraction and classi�cation models,
we will present the data collection and labeling process in the next section as
part of our method's experimental validation.

3.4 Experimental validation

In this section, we will present the data collection and labeling process, the
training and validation of the classi�cation models, and their performance.
We will also present the results of the feature ablation and the impact of the
temporal window used for feature extraction on the model's performance.

3.4.1 Data collection

To collect data for this work, we considered two cases. In the �rst case, we
placed an object in the hand's workspace. We then closed the �ngers around
a prede�ned axis until the hand fully locked the object. We maintained the
grasp for at least 10 seconds and then released it. In the second case, we
repeated the same steps as the �rst case. When the hand fully locked the ob-
ject, we waited 5 seconds. Then, we manually applied external forces to create
disturbances. We randomly pushed the object downward/upward, left/right.
We used a Proportional Derivative controller (PD) with the Allegro hand.
We increased the joint angles to close the �ngers and to achieve a prismatic
grasp, and we stopped when the object was locked, and the apparatus of the
amplitude of the force was constant.

We used a total of 6 objects to collect data for o�ine training and testing
(Figure 3.6). The objects had di�erent weights and textures. For each object,
the two cases were repeated 5 times. Figure 3.7 illustrates this procedure for
one experiment where an object was placed in the workspace of the Allegro
hand, and the �ngers closed on it to lock it.
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Figure 3.6: The 6 objects we use to collect data.

We obtained 6 objects × 2 cases × 5 repetitions = 60 samples corresponding
to a total of 250,000 �ngertip data. Each data is composed of the uncalibrated
force measurements Ftip = [Fx, Fy, Fz]

T and its total amplitude Fa = ||Ftip||.
The data was recorded with a frequency of 150Hz. We extracted features as
explained in Sections 2.5 and 3.3.2 with a sliding window size Nw = 14 for
the Haar wavelet decomposition, and we constructed the feature vector Φ.

Figure 3.8 corresponds to one sample of data collected in one experiment and
the extracted features. In this �gure, the total force equals zero as the hand
closes and before the �ngers reach the object. When contact occurs, the force
increases to lock the object. When the object is locked, the force amplitude
is constant. Then come the disturbances.
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3.4.2 Data labeling

Once we have collected our data, the next step was to label it into two
classes - �stable� and �unstable� contacts - to train the learning model. Stable
contact refers to maintained contact between the �ngertip and the object. In
contrast, unstable contact includes instances of slippage and moments just
before the �ngertips �rmly grip the object. To simplify the classi�cation into
a binary system, we consider the absence of contact as an unstable contact.
The absence of contact can be separated from the unstable class later by
applying a threshold to the force amplitude at each �ngertip. Our goal was
to create individual �ngertip slip detection models. To accomplish this, we
decided to label the collected data manually.

Suppose we were to implement automatic labeling methods using vision, for
example. The system would detect object movement and simultaneously
assign the same label to all �ngers. In contrast, manual labeling allows
us to capture nuances in scenarios where �ngers make contact at di�erent
times. For instance, in a grasping scenario, two �ngers may touch the object
and establish a stable connection before the third �nger joins to lock it.
While the �rst two �ngers exhibit stable contact, the third one does not - a
situation that automated vision-based labeling might struggle to recognize.
Similar challenges arise when one �nger loses contact with the object while
the others maintain their grip. To address these complexities, we opt for
manual labeling of our data. The process involves plotting each data sample
over time and selecting intervals where stable contact with the object is
maintained. We identify this by looking at the amplitude of the contact
force, which remains constant when the contact is stable. We assign the class
�1� to features corresponding to locked object states to indicate stability,
while the rest - encompassing data without contact, features leading up to
stable contact, and features during disturbances - are labeled as �0� Figure 3.8.

Even though manually labeling the data is a long and time-consuming process,
it is the only approach that ensures a nuanced representation of the varied
contact scenarios encountered during object manipulation. We label the 60
data samples, which correspond to a total of 250,000 features. We ensure that
the dataset is balanced between the two classes to prevent the model from
over-�tting to a speci�c class. Our dataset exhibits a balanced distribution,
with 49% of the feature set representing stable contact and 51% representing
unstable contact.
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Figure 3.8: A sample of data for one �ngertip, where the hand closes on an
object, grasps it, and the object is manually disturbed. The �gure represents
the extracted features and labels for a single �ngertip. Stable features -when
the contact with the object is maintained, and the force amplitude is constant-
are labeled 1, while unstable features - the initial contact and the disturbances
and �nally the no contact- are labeled 0.

3.4.3 Classi�cation models training and testing

After collecting and labeling the data, we trained and tested the classi�cation
models - SVM and LogReg - using the extracted features. We split the
dataset into training and testing sets, with 80% of the data used for training
and the remaining 20% for testing. We used the Classi�cation learner toolbox
in MATLAB [MathWorks, 2005] to train and evaluate both models. The
toolbox employs Bayesian optimization to optimize the hyperparameters of
the models.
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In the training phase, LogReg achieved an accuracy of 95.3% and an FDR of
5.06%, while SVM attained 96.4% accuracy with an FDR of 3.7%. Although
both classi�ers performed well, SVM slightly outperformed LogReg. After
testing with unseen data, both classi�ers maintained their commendable per-
formance. LogReg yielded an accuracy of 95.7% and an FDR of 4.60%, while
SVM achieved 96.2% accuracy with an FDR of 3.8%. The confusion matrices
for the training process are presented in Table 3.1, and Table 3.2 presents
the confusion matrix for the testing phase, revealing satisfactory rates of false
positives and false negatives for both classi�ers.

Predicted class

0 1

T
ru
e
C
la
ss

0 95.1% 4.9%

1 4.5% 95.5%

(a) LogReg

Predicted class

0 1

T
ru
e
C
la
ss

0 96.2% 3.8%

1 3.5% 96.5%

(b) SVM

Table 3.1: Training confusion matrices for LogReg and SVM. The results
demonstrate a satisfactory accuracy for both classi�ers during the training
phase.

Predicted class

0 1

T
ru
e
C
la
ss

0 95.6% 4.4%

1 4.1% 95.9%

(a) LogReg

Predicted class

0 1

T
ru
e
C
la
ss

0 96% 4%

1 3.6% 96.4%

(b) SVM

Table 3.2: Testing confusion matrices for LogReg and SVM. The results
demonstrate a satisfactory accuracy for both classi�ers during the testing
phase.

In the following section, we will investigate the impact of temporal window
and feature ablation on the Logistic Regression (LogReg) classi�cation model,
instead of SVM, which performed slightly better. This decision is because
LogReg is a relevant baseline model with good interpretability, making it par-
ticularly useful for analyzing how individual features and temporal window
sizes a�ect classi�cation performance. Although SVM outperformed LogReg,
the transparency of LogReg allows for a more nuanced analysis of the contri-
butions of features and temporal considerations. This strategic choice enables
a detailed exploration of these aspects, providing valuable insights into the
dynamics of the classi�cation process.
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3.4.4 E�ect of temporal window size

We investigated the in�uence of Nw, the temporal window size used in the
DWT decomposition to extract the features m and σ, on the performance of
the Logistic Regression (LogReg) classi�er. Results showed that the accuracy
of the classi�er improved as the window size increased Table. 3.3. However,
beyond Nw = 14, the accuracy (Acc), False Negative (FNR), and False
Positive (FPR) rates remained relatively unchanged.

We opted not to explore values of Nw above 22, as a larger temporal window
could introduce interference from past instability events on the current
state of the contact and result in delay when implementing this classi�er in
real-time. As a result, for the rest of this work, we used Nw = 14.

Nw 2 4 6 8 10 12 14 16 18 20 22

T
ra
in
ni
g FPR 20,7 8,6 7,2 6,4 5,8 5,5 5,2 5,0 4,9 4,3 4,3

FNR 16,7 5,3 5,4 5,3 5,0 4,8 4,7 4,5 4,5 4,7 4,6
FDR 20,4 8,6 7,3 6,5 6,0 5,6 5,4 5,1 5,1 4,8 4,7
Acc 81,3 93,0 93,7 94,2 94,6 94,9 95,0 95,2 95,3 95,5 95,6

T
es
ti
ng

FPR 21,1 8,5 7,1 6,4 5,9 5,7 5,3 5,1 4,4 4,5 4,5
FNR 16,7 5,5 5,2 5,3 5,1 4,7 4,8 4,6 4,1 4,5 4,5
FDR 20,9 8,5 7,1 6,5 6,1 5,8 5,5 5,2 4,6 4,7 4,7
Acc 81,1 93,0 93,8 94,2 94,5 94,8 95,0 95,2 95,7 95,5 95,5

Table 3.3: LogReg perforrmance (%) with respect to Nw. This table compares
the classi�er's performance using di�erent temporal window sizes Nw used to
extract features.

3.4.5 Feature ablation

We conducted a feature ablation study to evaluate each feature's contribution
to the LogReg classi�er's performance. As seen in TABLE. 3.4. Ftip is the
force feedback measurements, Fa is the amplitude of the force, m is the
moving average of the approximation coe�cients, and σ is the standard
deviation of the details coe�cients. The results indicate that the standard
deviation σ and force amplitude Fa were the most signi�cant contributors
to the classi�er's performance. Moreover, we observed a high correlation
between the mean m and Fa, which aligns with m being interpretable as a
�ltered version of Fa. Consequently, we excluded m from the feature vector
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Φ for the rest of this work. Notably, the results underscore the signi�cance of
the σ feature. Removing σ from the feature vector Φ led to a notable decline
in accuracy by 14.0%, accompanied by an increase in the False Discovery
Rate (FDR) from 5.1% to 20.3%. Furthermore, we also trained the logistic
regression classi�er for the rest of the two other �ngertips. It gave a similar
performance to the previous classi�er. For the middle �nger, Acc 95.8%,
FDR 12.6%, and for the thumb: Acc 95.7%, FDR 3.5%.

Furthermore, during the testing phase, we achieved satisfactory performance
by using Fa and σ, resulting in an accuracy (Acc) of 93.5% and a False De-
tection Rate (FDR) of 7.0%. This indicates that our method can be utilized
with tactile sensors that only provide amplitude of the contact force and lack
three axial force components. The combination of σ and Fa enables us to cap-
ture frequencies associated with slippage, which is crucial for slip detection
applications.

Features Trainning (%) Testing (%)
Fa Ftip m σ FPR FNR FDR Acc FPR FNR FDR Acc
✓ ✓ ✓ ✓ 4.9 4.5 5.1 95.3 4,4 4,1 4,6 95,7
✕ ✓ ✓ ✓ 4,9 4,6 5,0 95,3 4,6 4,4 4,8 95,5
✓ ✕ ✓ ✓ 7,0 6,7 7,2 93,1 6,7 6,5 6,9 93,4
✓ ✓ ✕ ✓ 4,9 4,6 5,0 95,3 4,6 4,2 4,7 95,6

✓ ✓ ✓ ✕ 20,5 16,9 20,3 81,3 20,5 16,9 20,2 81,3
✕ ✕ ✓ ✓ 7,1 6,7 7,3 93,1 6,6 6,6 6,8 93,4
✓ ✕ ✕ ✓ 7,0 6,7 7,2 93,2 6,8 6,2 7,0 93,5
✓ ✓ ✕ ✕ 20,9 16,8 20,5 81,1 20,7 16,8 20,6 81,2
✕ ✓ ✕ ✓ 5,2 4,7 5,4 95,0 5,0 4,3 5,1 95,3
✕ ✓ ✓ ✕ 20,3 16,8 20,2 81,4 19,7 16,3 19,5 82,0
✓ ✕ ✓ ✕ 26,1 32,9 28,6 70,6 26,3 33,0 29,0 70,4
✓ ✕ ✕ ✕ 33,0 25,0 27,8 71,1 33,6 25,3 28,1 70,6
✕ ✓ ✕ ✕ 24,8 22,2 23,3 76,5 10,5 26,5 19,2 82,4
✕ ✕ ✓ ✕ 11,8 51,9 37,8 67,8 33,4 25,3 28,1 70,7
✕ ✕ ✕ ✓ 33,09 25,8 28,5 70,6 11,9 52,5 38,0 67,5

Table 3.4: Performance of the LogReg Classi�er in feature ablation study.
This table shows the accuracy of the classi�er with di�erent features removed
(✕) from the input data. The results provide insights into which features
among Fa, Ftip, m, and σ are most relevant for the contact type classi�cation.
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3.4.6 Temporal analysis

After designing our classi�er, we plotted the feature vector for di�erent
scenarios and analyzed the predicted labels of the classi�er over time.
By plotting the temporal data alongside the predicted labels, we aimed
to gain insights into the strengths and limitations of the classi�er. This
analysis helped us to identify areas where the classi�ers excelled or struggled,
providing valuable information to re�ne and understand their performance.
Figures 3.9, 3.10 and 3.11 showed the predicted labels for two experiments.

In Figure 3.9, we recorded a series of eleven successive grasps in which
the hand closed on the object, locked it for approximately 10 seconds, and
then released it. The instability here was the absence of contact during the
short interval where the �ngers applied pressure on the object to lock it
and when the object was released. The force amplitude Fa increased, and
the standard deviation σ decreased as the �nger pushed to lock the object.
Before locking, the �nger may have moved in opposite directions, causing the
standard deviation to increase and the predicted class to change between 0

and 1. After locking the object, the force amplitude and standard deviation
variation were minimal. The logistic regression classi�er successfully managed
to classify those events.

In Figure 3.10, the data represent �ve successive grasps where the hand
locked the object, and then the object was manually disturbed. The classi�er
also di�erentiated between stable and unstable states. However, when we
manually moved the object to disturb the grasp, there could be small time
intervals where the object did not move relative to the �nger. The standard
deviation dropped, and the observation was classi�ed as stable.

In Figure 3.11, we observed some glitches in the �ngers due to using a
simple, ine�cient Proportional Derivative controller for the Allegro hand.
These glitches resulted in abrupt changes in the force. LogReg could detect
these changes and classify them as unstable contact. We implemented
it in real-time with the robot, and it proved to be fast and e�cient in
di�erentiating between stable and unstable contact. Overall, the performance
of the classi�er was satisfactory.
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Figure 3.12: A series of two grasps with disturbance followed by three grasps
without disturbances. The �gure illustrates the dynamic changes in class
membership probability over time during grasp sequences.

Furthermore, in addition to the advantages of interpretability and simplic-
ity that Logistic Regression (LogReg) o�ers over SVM, it also provides class
probabilities. Figure 3.12 displays the probability of class membership over
time. Here, we observe that this probability increases as the �nger exerts
pressure to lock the object. This information can be valuable; for instance,
if the probability drops in one �nger during a grasp attempt, it may indicate
improper execution, suggesting potential slippage or contact loss. Addition-
ally, probability assessments become crucial when handling fragile objects. In
such cases, stopping the grasp when the probability exceeds 0.6 could prevent
excessive force application, reducing the risk of object damage.
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3.5 Discussion

In this part, we will compare our work to the most relevant studies on the
detection of slippage and instability in robotic hands. [Zhang et al., 2016]
presented a dynamical model that considers disturbances during the initial
grasp. In practice, they used force-sensitive tactile sensors (FSR) to measure
the grasping force and then applied the Haar wavelet transform to extract
detail coe�cients. Moreover, they considered an object slipping when the en-
ergy of the details exceeds a threshold determined through experimentation.
We implemented and tested their method on Fx, i.e., the normal component
of Ftip. We used SVM to �nd the optimal threshold. The accuracy was not
more than 62.7% and the FDR was up to 49.1%. The performance of our
method drastically exceeds theirs (Acc 95.3%, FDR 5.1%). While this study
provides valuable insights, it is limited by the adoption of di�erent thresholds
for slips caused by gravity and disturbance. In addition, using energy values
only for slip prediction can result in errors in real-world applications.

In contrast, our work also measures the amplitude of the force, its three
components, and the standard deviation. The amplitude (Fa) provides
information about the magnitude of the grasping force. This measure is
crucial for classi�cation because energy variation with large grasping forces is
relatively higher than with small grasping forces, even for slips with the same
velocity. Shear forces also carry information that contributes to the detection
of slips. Hence, three components of the grasping force are used in our work.

Finally, we argue that the standard deviation (σ) is a better measure for
abrupt changes in the detail coe�cients than energy. While both energy and
σ measure data dispersion, σ takes the mean of the details into account.
In the presence of noise, the energy will amplify the values of the details
and lead to false detection of slip, whereas the standard deviation will stay
relatively small. Overall, our method is more e�ective since it relies on richer
features and employs an automatic learning algorithm for slip detection,
i.e., �nding a nonlinear decision boundary rather than a hand-tuned threshold.

[James and Lepora, 2020] used a multi-�ngered hand with optical tactile
sensors. They trained a global classi�er for the whole hand and local
classi�ers for each �ngertip for using collected tactile data. They used
di�erent techniques, including SVM and LogReg, to classify �slip� and
�static� data. In the training phase, their results are similar to ours, i.e., their
global classi�er reaches an accuracy of 96% for SVM and 95.7% for LogReg.
In our method, SVM and LogReg scored 96.0% and 95.6%, respectively.
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However, Their local classi�er had a relatively low performance compared to
the global classi�er, with a maximum accuracy of 83.9% The performance
of our classi�ers surpasses the performance of local classi�ers. Furthermore,
their study only considered slippage due to gravity, i.e., when the object
moves downward on a vertical axis. However, in this work, we considered
slippage due to gravity and external forces in all possible directions. As for
the previous work by James et al. [James and Lepora, 2020], their work only
predicts slip without providing relevant features that can be exploited in the
control loop.

[Grover et al., 2022] used barometric tactile sensors to collect tactile data
in di�erent scenarios. They then trained a classi�er using a convolutional
neural network to classify �slip� and �non-slip�. The classi�er scored 91.4%
in the training phase and 87.5% in the testing phase (our LogReg classi�er
scored 95.2% in the training phase and 95.6% in the online testing).

In conclusion, our work presents a more robust and e�ective approach to
slip and instability detection for robotic hands compared to previous studies.
By incorporating proposed features into the control loop, our approach has
the potential to achieve reliable performance in a wider range of real-world
applications.

3.6 Conclusion of the chapter

In this chapter, our goal was to address the limitations of current methods
for slip detection in robotic hands. We aimed to develop a model-free slip-
page detection method for individual �ngertips that is not limited to speci�c
objects or tactile sensors and can be implemented with various tactile sensors.

We proposed a method for predicting slippage in grasping and manipulation
tasks using 3-axial tactile sensors. The method is based on collecting tactile
data and extracting relevant features to train and evaluate two classi�cation
methods: support vector machine and logistic regression. The performance
of the Logistic regression classi�er was evaluated with di�erent sizes of the
time window and through feature ablation. The �nal results show that the
logistic regression classi�er accurately detects instability caused by slippage
and disturbances.

Our classi�er's use of DWT for feature extraction and a logistic model for
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regression makes it an e�cient tool for real-world implementations. Further-
more, our method provides the type of contact (�stable� vs. �unstable�) and
two measures of instability, the standard deviation (σ), and the probabilistic
output of Logistic regression for each �ngertip separately. This makes it
suitable for independent feedback control strategies for grasp adaptation and
optimization.

The labeling process can be considered a limitation of our work. To indepen-
dently assess the stability of each �ngertip, we opted for manual labeling of
the data. Unfortunately, this process is prone to human errors and can be
time-consuming. A more robust and e�cient labeling method can be imple-
mented in future work by placing markers on the �ngertips and the object and
tracking their relative movements. Moreover, we consider incorporating the
features calculated in our study into the control loop. These features provide
important information about disturbances and slippage's direction, ampli-
tude, and stability. Our results show that the standard deviation decreases as
contact stability is reached, indicating that the grasp is becoming more secure.
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Contact force control through

tactile Feedback

In this chapter, we explore the challenges related to individual �nger

contact force control and propose a method to control the direction of the

contact forces perceived through tactile sensing. The proposed method

is evaluated using an Allegro hand with Xela tactile sensors. Results

are presented and discussed, alongside consideration for potential future

improvements
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4.1 Introduction

Contact force control enhances the robot's ability to handle physical contact
and improves the overall manipulation task. Contact with the environment
in robotic manipulations was long considered tedious and complex to man-
age [Suomalainen et al., 2022]. This is mainly due to the changing contact
dynamics encountered when transitioning from having no contact with the
object to contact and vice versa, the state of contact itself, i.e., contact
with or without slippage and when lifting an object. Another component
is environmental uncertainties arising from imprecise or unknown object
characteristics such as shape, weight, and friction. Moreover, contact models
used to model the interaction between the robot and the object are complex
and nonlinear. When implementing force control strategies, these contact
models are often simpli�ed to ease calculation, adding an additional layer of
environmental uncertainty.

Contact force control witnessed signi�cant advancement led by improvements
in sensing, adaptive control algorithms, robot compliance, either mechanical
or virtual, and ongoing research e�orts. Enabling robots to perform tasks
requiring force modulation and adjustments such as peg-in-hole assembly,
polishing, wiping, and opening doors [Kramberger et al., 2018,Leidner et al.,
2019, Deng et al., 2016]. However, while various strategies and techniques
were developed to address the challenges of contact force control using tactile
feedback, individual �nger contact force control for robotic manipulation is
still relatively unexplored [Deng et al., 2020].

Robots with individual �nger control can perform a broader range of manipu-
lation tasks that involve intricate object manipulation, such as turning a key,
assembling small components, or handling delicate objects. Furthermore,
controlling each �nger individually enables better force regulation and
compliance, which is crucial when manipulating deformable objects or when
the force applied to each contact point needs to be �nely tuned. Individual
�nger control provides the �exibility required to perform precise and delicate
movements.

Enabling individual �nger control in robotic hands brings them closer to hu-
man dexterity. Studies in neuroscience showed that subtle �nger movements
are introduced during human manipulation that changes the direction of the
forces applied to the manipulated object or the contact point [Johansson and
Flanagan, 2009]. These changes modify the overall distribution of the forces
applied to the object and enhance the grasp [Goodwin et al., 1998]. Achieving
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precise control over the individual �ngers of a robotic hand is a complex task
in terms of both hardware and software. Developing sophisticated robotic
hands capable of such control involves intricate mechanisms, sensors, and
actuators [Billard and Kragic, 2019].

In this chapter, we focus on the crucial aspect of controlling the direction
of contact forces for individual �ngers using tactile feedback. Despite its
importance for manipulation tasks, it is often overlooked in the literature.
Our primary objective is to understand the di�culties and challenges involved
in controlling the direction of contact forces for each �nger using tactile
feedback. We propose a method to address this issue, and we experimentally
test and evaluate it while exploring its strengths and limitations. Finally, we
provide insights on how to improve individual contact force control.

The remainder of this chapter is structured as follows: initially, we provide
an overview of contact force control and the relevant preliminary concepts,
followed by related work. Then, we propose a method for controlling the
direction of contact forces using tactile feedback. Furthermore, we describe
the experimental setup used to implement and test the proposed method.
Additionally, we present and discuss the results obtained from the tests.
Finally, we o�er insights to re�ne and advance this work.
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List of Notations

Symbol Notation
{W} world frame
{C}i ith contact frame
{O} object frame
{E} end-e�ector frame
p, ϕ the object's pose expressed in {W}, with p the position and ϕ the orientation
ṗ, ϕ̇ the object's twist wrt {W}
q,q̇ joint positions and joint velocities respectively
n number of joints
oj origin of the coordinate frame associated with the jth joint
r⃗oj unit vector in the direction of the rotational axis for the jth Revolute joint
J̃i partial hand jacobian (Finger Jacobian)
G̃i partial grasp matrix
ẋi,hand ith Contact point twist on the �nger
vi,hand ith contact point linear velocity
ωi,hand ith contact point angular velocity
Ri rotation matrix of {C}i wrt {W}
ẋi,obj the ith contact point twist on the object
vi,obj the ith contact point linear velocity
ωi,obj ith contact point angular velocity
fi the ith contact force applied but the �nger to the surface of the object
ci, ϕc the contact pose expressed in {W}, with ci the position and ϕc the orientation
wi transferable wrench based on contact model
f measured contact force (uncalibrated, unitless)
fd desired measured force direction
Rθ the rotation matrix in {W} that brings f to fd
θ,r the angles axis representation of Rθ, with θ the angle , and r the axis
v end-e�ector linear velocity
ω end-e�ector angular velocity
Jv maps q̇ to the end-e�ector's linear velocities v
Jω maps q̇ to the end-e�ector's angular velocities ω
y is the type of contact stable (y = 1) or unstable (y = 0)

Table 4.1: Table of notations
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4.2 Contact force preliminaries

When grasping an object, the contact points between the robot and the ob-
ject are considered the interaction interface. The interaction at these con-
tact points allows the robot to exert control over the object's dynamics by
applying speci�c wrenches, in�uencing its motion, orientation, and stability.
A contact model is established to synthesize a grasp, and then the quality
of the grasp can be analyzed using the resulting contact forces [Kao et al.,
2016a]. The force applied by a �nger at the contact point generates a wrench
wi = [fT

i ,m
T
i ]

T ∈ R6 on the object's surface Figure 4.1, represented as follows:

wi =

[
fi
mi

]
=

[
fi

(ci − p)× fi

]
(4.1)

Where fi = [fni, foi, fti]
T ∈ R3, mi = [mni,moi,mti] ∈ R3 are the force and

the moment, respectively applied by the robot to the surface of the object at
the contact point ci, p is the center of mass of the object. {W} is the world
frame, {C}i is the contact point i coordinate frame with axes {n⃗, t⃗, o⃗}. {O}
is the object frame.

ci

{W}

{O}

x

y

z

n⃗i  

o⃗i ti⃗

y

x

z

p

q1, 𝜏1

q2, 𝜏2

{C}i

f i⃗

Figure 4.1: Notations for an object in contact with a manipulator

4.2.1 Contact model

A contact model maps the wrenches that can be transmitted through the
contact to the resultant wrenches wi relative to the object. This mapping is
based on the geometry of the surfaces in contact and the material properties
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of the objects involved, which dictate friction and possible contact deforma-
tion [Mason and Salisbury Jr, 1985]. A taxonomy of eight contact models was
proposed by [Salisbury, 1982]. Among these models, the commonly used ones
in robotic manipulation are the point without friction, the point with friction
and the soft-�nger [Mason and Salisbury Jr, 1985]. Figure 4.2 showcases
these three models. For a detailed explanation of di�erent contact mod-
els, reader can refer to [Kao et al., 2016a,Murray et al., 2017,León et al., 2014].

n⃗i  

o⃗iti⃗

{C}i

fnin⃗i

n⃗i  

o⃗iti⃗

{C}i

f i⃗

n⃗i  

o⃗iti⃗

{C}i

f i⃗
mni

(a) (b) (c)

ci ci ci

Figure 4.2: Contact models commonly used in robotics: (a) Frictionless point
contact, (b) Point contact with friction, and (c) Soft-�nger contact

Frictionless point contact

As the name of this model suggests, frictionless point contact is achieved in
the absence of friction between the �ngertip and the object. In this case,
forces can only be transmitted in the direction normal to the object's surface
and no deformation is allowed [Murray et al., 2017]. The applied wrench can
be represented as follows :

wi =



0

0

1

0

0

0

 fni (4.2)

With fni ∈ R the magnitude of the force the �nger applies in the normal
direction. In practice, frictionless point contacts rarely occur, but they
can serve as a helpful model for contacts in which the friction between the
�nger and the object is low or when the contact surfaces are very small or
slippery [Coulomb, 1809,Kao et al., 2016a]. Since frictionless point contact
exerts forces in the normal direction only, modeling a contact as frictionless
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Object 
surface
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side view

Figure 4.3: Geometric interpretation of the Coulomb friction model

implies that we do not rely on frictional forces when manipulating the
object [León et al., 2014].

Point contact with friction

When we desire to use friction in a manipulation, we can select the point
contact with the friction model. In this case, we must also select a friction
model representing tangential forces arising from friction. A commonly used
model of friction in robotic manipulation is Coulomb's friction model [Kao
et al., 2016a]. It is an empirical model that asserts that the allowed tan-
gential force is proportional to the applied normal force, and the constant of
proportionality is a function of the materials in contact:

√
f 2
oi + f 2

ti ≤ µfn , fni ≥ 0 (4.3)

With
√
f 2
oi + f 2

ti denoting the magnitude of tangential forces, fni ∈ R repre-
senting the normal component force, and µ the friction coe�cient depending
on the two materials in contact, typically ranging from 0.1 to 1. The set of
forces that can be applied at a contact must lie in a cone centered about the
normal force. This cone is called the friction cone and is shown in Figure 4.3.
The angle of the cone with respect to the normal is given by α = arctan(µ).

Hence, in the point contact with friction model, forces can be exerted in any
direction within the contact's friction cone. We represent the wrench applied
to the object with respect to a basis of directions which are consistent with
the friction model:
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wi =



1 0 0

0 1 0

0 0 1

0 0 0

0 0 0

0 0 0

 fi fi ∈ FCi (4.4)

With:

FCi =

{
fi ∈ R3 :

√
f 2
oi + f 2

ti ≤ µfni fni ≥ 0

}
(4.5)

If the applied forces are outside the friction cone, the object may start to
slip or slide along the surface instead of undergoing the intended motion or
manipulation [Coulomb, 1809].

Soft-�nger contact

The soft contact model is a more realistic model. It is used when the surface
friction and the contact patch are large enough to generate signi�cant friction
forces and a friction moment about the contact normal. It is used to model
the contact between a soft �nger and a rigid object, allowing the �nger to
apply an additional torsional moment with respect to the normal at the
contact point [León et al., 2014].

In the context of this soft contact model, the applied contact wrench is ex-
pressed by the matrix equation:

wi =



1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

0 0 0 0

0 0 0 1


[
fi
mni

]
[fT

i ,mni]
T ∈ FCi (4.6)

Here, fi = [foi, fti, fni]
T represents the contact force, and mni denotes the

moment about the contact normal. The friction cone, denoted as FCi, is
de�ned by the following conditions:

FCi =

{
[fT

i ,mni]
T ∈ R4 :

√
f 2
oi + f 2

ti ≤ µfni fni ≥ 0 mni ≤ γfni

}
(4.7)

In this expression, µ represents the coe�cient of friction, and γ > 0 is the
coe�cient of torsional friction. These constraints ensure that the contact
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forces and moments adhere to realistic conditions, accounting for both normal
and tangential components as well as torsional friction.

4.2.2 Partial hand Jacobian

The partial hand Jacobian J̃i ∈ R6×n (Finger Jacobian) maps the manipulator
joint velocities q̇ ∈ Rn to the contact twists ẋi,hand (Figure 4.4), expressed in
the contact frame {C}i as in [León et al., 2014]:

ẋi,hand =

[
vi,hand
ωi,hand

]
= J̃iq̇ (4.8)

With q = [q1...qn]
T ∈ Rn the vector of joint positions and n the number of

�nger joints. vi,hand,wi,hand are the linear and angular velocities of the contact
point on the �nger, respectively. J̃i can be calculated as:

J̃i = Ri

[
di,1 ... di,n
li,1 ... li,n

]
(4.9)

n⃗i  

{W}

cip qn

q1

o⃗i

t i⃗

qj

{Ci}

Figure 4.4: A multi-�ngered manipulator holding an object

Ri ∈ R3×3 represents the rotation matrix of the {C}i ith contact frame with
respect to the world frame {W}, ci is the position of the contact point. di,j
and li,j are calculated based on the kinematic model of the manipulator as
follows:

di,j =

{
03×1 if contact i does not a�ect the joint j
(ci − oj)× r̂oj if j joint is revolute

(4.10)
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li,j =

{
03×1 if contact i does not a�ect the joint j
r⃗oj if j joint is revolute

(4.11)

oj is the origin of the coordinate frame attached to the j-th joint of the
manipulator, and r⃗oj is the unit vector in the direction of the rotational axis
for the revolute joint expressed in the world frame {W}.

4.2.3 Partial grasp matrix

Similar to the partial hand Jacobian, the partial grasp matrix G̃i ∈ R6×6 maps
the object (obj) twist [ṗT , ϕ̇T ]T to the contact twists ẋi,obj, expressed in the
contact frame {C}i as in [León et al., 2014]:

ẋi,obj =

[
vi,obj
ωi,obj

]
= G̃i

[
ṗ

ϕ̇

]
(4.12)

With ṗ the object's linear velocity and ϕ̇, it is angular velocity. G̃i can be
calculated as follows:

G̃i =

[
Ri 03×3

S(ci − p) Ri

]
(4.13)

where Ri ∈ R3 represents the rotation matrix of the {C}i contact frame with
respect to {W}, p the position of the object and S(ci−p) the skew-symmetric
matrix that, given a three-vector r = [rx, ry, rz]

T is:

S(r) =

 0 −rz ry
rz 0 −rx
−ry rx 0

 (4.14)

4.2.4 Contact constraint

To ensure that the contact between the robot �nger and the object is main-
tained, ẋi,obj must be equal to ẋi,hand. Therefore, the contact constraint can
be written by combining equations 4.12 and 4.8 as follows:

G̃i

[
ṗ

ϕ̇

]
− J̃ q̇ = 0 (4.15)
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4.2.5 Quasi-static assumption

The quasi-static assumption in robot manipulation implies that components
move slowly enough, rendering inertial e�ects negligible. Constraints associ-
ated with a manipulator and a rigid body can be addressed using solutions
with velocities rather than accelerations. These velocities must adhere to
both kinematic and force constraints, ensuring that the net forces acting on
the components sum to zero [Kao et al., 2016b]. Consequently, we can express
this relationship as:

τtask = JTFtask (4.16)

Where Ftask represents the task force, J is the Jacobian mapping of the joint
velocities to end-e�ector twists, and τtask corresponds to the associated joint
torques. When incorporating a contact model, the �nger Jacobian J̃i can
be computed, allowing the control of the task force ftask with respect to the
contact on the �nger rather than the end-e�ector and its mapping to joint
velocities, as follows:

τtask = J̃T
i ftask (4.17)

It is necessary to di�erentiate between the task force ftask and the contact
force fi seen in section 4.2. ftask encompasses the overall forces involved in
achieving a desired task, and fi speci�cally denotes forces arising from contact
points between the robot and its environment.

4.3 Related work

The contact task is characterized by a dynamic interaction between the robot
and the environment in which the use of a pure motion control strategy
for controlling interaction is prone to failure [Khatib and Siciliano, 2016].
Successful execution of an interaction task with the environment requires
force control. In general, force control methods fall under two main categories:
direct force control and indirect force control. Indirect force control relies
on motion control to achieve force control without explicitly using force
feedback. On the other hand, direct force control o�ers the possibility of
controlling contact force to a desired value thanks to the force feedback in
the loop [Villani and De Schutter, 2016].

Indirect force control includes compliance control and impedance con-
trol [Hogan, 1984], which use mechanical sti�ness or adjustable parameters'
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impedance to relate position error to contact force. Direct force control meth-
ods, like hybrid position/force control [Raibert and Craig, 1981,Perdereau and
Drouin, 1993], require force/torque feedback and a detailed description of the
environment. They are employed to control position along the unconstrained
task directions and force along the constrained task directions [Siciliano
and Luigi, 2000]. Many works have been done on force control, making
it a well-established subject, including [Gao et al., 2020, Stepputtis et al.,
2022, Pang et al., 2022, Yang et al., 2022, Katayama et al., 2022, Nakatsuru
et al., 2023]. However, when we closely examine these works, we notice
that they focused mainly on industrial robot manipulators rather than
anthropomorphic robot hands. More attention should be paid to the force
control of this kind of e�ectors, especially when we want them to perform
dexterous manipulation [Nguyen and Perdereau, 2013].

Anthropomorphic robot hands lack force control for manipulation due to
the complexity of replicating the dexterity and sensitivity of human hands.
Replicating human-like robotic hands poses hardware challenges, such as
designing human-like robotic hands and implementing rich tactile sensors
that provide force feedback. Software challenges include implementing
e�cient algorithms to process the rich tactile information in real-time, which
requires computational load that can result in delays limiting the integration
of these sensors in real-time with robotic systems. Finally, control challenges
arise when incorporating force feedback from the tactile sensors in the
control loop, which requires detailed contact models to represent the contact
behavior [Billard and Kragic, 2019].

Contact force was considered in methods for grasping force optimization [Liu
and Li, 2004], in which contact forces are obtained by projecting joint torques
through a contact model such as contact with friction [Coulomb, 1809].
Notably, these methods do not actively control contact forces but provide a
combination of required forces to maintain a secure grip on an object, relying
on contact models without real-time tactile force feedback [Cloutier and
Yang, 2018]. Various approaches have been employed to obtain information
about physical interaction using tactile sensing. [Nguyen and Perdereau,
2013] proposed a method that models contact force and controls sti�ness by
estimating the contact location with tactile sensing. [Ramón et al., 2013]
increased joint torques of manipulators when the pressure provided by tactile
sensors decreased. [Hang et al., 2016] developed a method that used tactile
sensing to control the impedance of the �nger to adapt to environmental
uncertainties. [Veiga et al., 2020] proposed a method that uses tactile sensing
to detect slippage during grasp tasks and increases the amplitude of the
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normal forces in case of slips.

To the knowledge of the author, no previous work investigated the control
of the direction of the contact force using tactile sensing feedback, which is
an essential component since it allows the robot to adjust its �nger to local
friction conditions to prevent slips and to do �ne manipulation tasks such as
the control of the orientation of the object. In this chapter, our goal is to
understand the di�culties and challenges associated with the control of the
direction of the contact force and provide insights on how it can be improved.

4.4 Proposed method

In this chapter, we will present a method that allows controlling the direction
of contact force. This can only be done when the contact between the robot's
�nger and the object is maintained and there is no slippage. In a previous
work, we proposed and validated a method for detecting individual �ngertip
slippage. Therefore, we will start by presenting our previous work. Subse-
quently, we will present the proposed method for controlling the �nger force
direction.

4.4.1 Slippage detection

In our previous work in Chapter 3, we addressed the problem of slippage
detection at the �nger level. We proposed a classi�cation method that dis-
tinguishes between stable contact, in which the contact between the �ngers
and the object is maintained, and unstable contact, which includes slippage
and contact loss. We handcrafted features from tactile sensor feedback and
formed a stable and unstable contact dataset. We used this data to train a
classi�cation model. The model outputs a probability of the contact being
stable p. The contact state is described by L:{

y = 1 if p ≥ 0.5

y = 0 if p < 0.5
(4.18)

y = 0 denotes an unstable contact, and y = 1 denotes a stable contact.
When tested with previously unseen data, the classi�er showed satisfactory
performance with an accuracy of 95.5%.

4.4.2 Contact force control

Consider a robotic �nger in contact with a rigid body as in Fig. 4.5. We
will refer to the last segment of the �nger as the end-e�ector. Let {W}
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represent the inertial frame �xed in the workspace, and {E} represent the
�xed frame attached to the end-e�ector. Contact between the �nger and
the rigid body may occur at any location on the external surface of the
end-e�ector and the object. {C} is the contact frame with axes {o⃗, t⃗, n⃗}.
The unit vector n⃗ is normal to the surface of the end-e�ector. The other two
unit vectors t⃗ and o⃗ are orthogonal and lie on the tangent plane to the contact.

[pT , ϕT
p ]

T ∈ R6 denotes the vector describing the position p ∈ R3 and the
orientation ϕp ∈ R3 of the end-e�ector frame {E} - end-e�ector pose - relative
to the inertial frame {W}. [cT , ϕT

c ]
T ∈ R6 denotes the vector describing the

position and the orientation of the contact frame {C} with respect to the
end-e�ector frame {E}. Lastly, q = [q1, .., qi, .., qn]

T ∈ Rn de�nes the vector
of revolute joint positions, and τ ∈ Rn represents joint torques.

n⃗  o⃗  

t ⃗ qn

q0

{C}f ⃗

{W}

qi

{E}
f d⃗

c

Figure 4.5: A robotic manipulator in contact with a rigid body

Let {W}R{E} ∈ R3×3 be the rotation matrix that maps the axis of the
end-e�ector {E} to the inertial frame {W}, and {E}R{C} ∈ R3×3 be the
rotation matrices that map {C}, the axis of the contact frame, to the
end-e�ector frame {E}.

Let {C}f = [fx, fy, fz]
T ∈ R3 the force feedback measured by the tactile sensors

in the contact frame {C}. It represents the forces arising from contact points
between the robot and its environment. {C}f = [fx, fy, fz]

T ∈ R3 is mapped
to the world frame as follows:
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{W}f = {W}R{E}
{E}R{C}

{C}f (4.19)

In order to regulate the direction of the tactile force feedback {W}f and send
it to a desired direction {W}fd, we compute {W}Rθ ∈ R3×3, the rotation ma-
trix that maps {W}f to the desired tactile force feedback {W}fd, following
Rodriguez's formula [Dai, 2015] as follows:

{W}Rθ = I3×3 + sθS(w) + (1− cθ)S(w)
2 (4.20)

With:

cθ =
{W}f. {W}fd (4.21)

sθ = | {W}f × {W}fd| (4.22)

w =
{W}f × {W}fd

| {W}f × {W}fd|
(4.23)

S is the skew symmetric matrix of w = [wx, wy, wz]
T calculated as in

equation 4.14.

[Caccavale et al., 1998] state that the orientation error can be expressed in
terms of an axis-angle representation {W}o in the inertial frame {W} from the
rotation matrix {W}Rθ, as:

{W}o = θr (4.24)

Where θ ∈ R and r ∈ R3 are the angle and the axis respectively obtained
from the axis-angle representation of Rθ as follows:

θ = cos−1

(
trace(Rθ)− 1)

2

)
(4.25)

r =
1

2 sin θ

Rθ32 −Rθ23

Rθ13 −Rθ31

Rθ21 −Rθ12

 (4.26)

r is then normalized to obtain a unit vector.

To align f with fd, we need to rotate the end-e�ector around the contact
point. For this end, we generate Ftask at the end-e�ector. We propose Ftask

to be proportional to the end-e�ector's orientation error as:

Ftask = Kθ
{W}∆ϕ (4.27)
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Where Kθ ∈ R3×3 is a diagonal gain matrix and ∆ϕ is the orientation error
of the {E} frame in {W}. The {E} frame orientation error relative to {W}
can be expressed as the axis-angle error as:

{W}∆ϕ = {W}o (4.28)

It can be expressed in {C} as :

{C}∆ϕ = ({W}R{E}
{E}R{C})

T {W}∆ϕ (4.29)

This mapping is only valid if the coordinates of the contact [cT , ϕT
c ]

T relative
to {E} remain constant, thus maintaining a �xed {E}R{C}. On the other
hand, the coordinates of the end-e�ector [pT , ϕT

p ]
T relative to {W} may

change. This process ensures a pure rotation around the contact frame
without introducing any translation. We must emphasize that our objective
is not to precisely control the end-e�ector pose. Instead, we aim for changes
in the end-e�ector's pose to result from the rotation around the contact frame.

Considering the quasi-static assumption [Kao et al., 2016b], we can then trans-
late Ftask into joint torques τtask as follows:

τtask = Jω
TFtask (4.30)

By substituting Equation 4.24, Equation 4.27 and Equation 4.28 in Equa-
tion 4.30, we obtain:

τtask = Jω
Tkθθr (4.31)

The following equation governs the �nger's dynamics:

M(q)q̈ + C(q, q̇)q̇ + g(q) + JTFext = τmotion + τtask (4.32)

Where M(q) is the mass matrix, C(q, q̇) is the Coriolis e�ect, g(q) is the
gravitational e�ect, and Fext are the forces arising from contact with the
object. Fext equals zero in the absence of contact. The torque τmotion is
associated with the motion of the �nger, while τtask incorporates additional
task-related torque. In scenarios involving slow motion, the Coriolis e�ect
becomes negligible, simplifying Equation 4.32 as follows:

M(q)q̈ + g(q) + JTFext = τmotion + τtask (4.33)

Here, τmotion serves to move the �nger toward the object, and τtask corrects
the orientation of the force.
Before correcting the orientation of f , a stable contact with the object must
be established. We use y the output of the contact stability detection method
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+
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d
dt

Kd +
+

M(q) 1− y +
+

+

Robot

Kp g(q)

Jω
T Kθ ∆ϕy

qref
q

e ė τ

θr

Tactile feedback

f

fd

Figure 4.6: Proposed control scheme for the direction of contact force

from Section 4.4.1 to switch between �ngertip position control and interaction
force direction control. A Proportional-Derivative (PD) controller with inertia
and gravity compensation allows incremental adjustment of joint positions to
close the �nger and make contact with the object. Upon achieving stable
contact and receiving contact force feedback, τtask is introduced to control the
force direction and compensate for gravity. y is the variable representing the
type of contact. y = 1 if there's stable contact between the robot and the
object, and y = 0 otherwise. Then, we choose our control as follows:

τmotion = (1− y)M(q)[Kpe(t) +Kdė(t)] + g(q) (4.34)

τtask = yJT
ωKθθr (4.35)

Here, Kp ∈ R3×3 and Kd ∈ R3×3 represent the proportional and derivative
gains of the PD controller, respectively, with e(t) denoting the joint position
error. To maintain contact while adjusting the force direction, a small force
in the normal direction of the contact n is added, modifying our control as
follows:

τtask = y[JT
ωKθθr + JT

ωKs(
{W}R{E}

{E}R{C})
{C}n] (4.36)

Ks ∈ R3×3 is a diagonal gain matrix representing contact sti�ness, whose
values we empirically chose to apply a small force in the normal direction n.
In the following section, we will present the experimental validation of the
proposed method.
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4.5 Experimental validation

To implement and test our method, we used the same platform introduced in
Chapter 2, which consists of an Allegro hand equipped with tactile sensors
from Xela robotics. Additionally, a rigid body was securely �xed within the
hand's workspace. This con�guration ensures a controlled environment for
testing the proposed control system, allowing for consistent and repeatable
experiments to precisely evaluate the performance of the proposed method.

Figure 4.7: Experimental setup: Allegro hand with a �xed rigid body

Further steps are needed to implement the proposed method. First, we need
to estimate the contact position and frame (contact pose). Then, we need to
estimate the contact force. Finally, we can control the direction of the contact
force.

4.5.1 Contact pose

Each �ngertip of the Allegro hand was equipped with ntx = 30 taxels. The
pose of the ith taxel frame with respect to the end-e�ector frame at the back
of the �ngertip (Figure 4.8) is given by:

[uTi ϕ
T
ui
] i = 1, .., ntx (4.37)

ui represents the position of the origin of the taxel. ϕui
represents the orien-

tation of the contact frame in the roll-pitch-yaw representation.
Each taxel outputs si = [si,x si,y si,z]

T , a measure of force in the taxel frame.
To obtain the location c ∈ R3 and orientation of the contact frame ϕc ∈ R3,
we compute a weighted sum of the positions of the taxels.
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Figure 4.8: Taxel frames on a �ngertip

[cTϕT
c ] =

∑ntx

i=1∆i[u
T
i ϕ

T
ui
]

∆
(4.38)

where: ∆i = ||si|| =
√
s2i,x + s2i,y + s2i,z

∆ =
∑ntx

i=1 ∆i

ntx

(4.39)

Now that we have the pose of the contact frame, we proceed to estimate the
contact force in the next section.

4.5.2 Contact pseudo-force estimation

To calculate the pseudo-force, we can project the tactile force Ftip ∈ R3 onto
it to obtain the contact force f ∈ R3. The details of how Ftip is calculated
can be found in Section 2.5.

f = R(ϕc)
TFtip (4.40)

Here, R(ϕc) ∈ R3×3 represents a rotation whose yaw, pitch, and roll angles
are included in the vector ϕc. For details on how R(ϕc) is calculated,
see Appendix 6. Figures 4.9 show the contact tactile forces represented in
the contact frame {C} for the thumb and the index �ngers of the Allegro hand.

The tactile sensor is uncalibrated. Therefore, the 3-axial tactile measurement
denoted by f is not expressed in Newton. We refer to it as a pseudo-force. Fur-
thermore, choosing a contact model for the sensor is challenging because the
taxels are not uniformly distributed on its surface, the sensor is deformable,
and its shape does not have a �xed curvature. Due to these factors, the sen-
sors are very complex to calibrate, making it di�cult to establish a contact
model. As a result, the force measurements cannot be directly mapped to
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(a) (b) (c) (d)

Figure 4.9: The 3D model of the Allegro hand is shown using Rviz on the top
and the physical model on the bottom. The columns (a) and (b) show top
and front views of the Allegro hand and the calculated contact frame {C} and
tactile force f for the index �nger. Similarly, the columns (c) and (d) display
the same components for the thumb �nger.

joint torque, and similarly, contact twists cannot be mapped to joint veloci-
ties. More details about the tactile sensors and the di�culties associated with
their calibration are given in Chapter 2.

4.5.3 Orientation error calculation

To test our method, we used the controller proposed in Section 4.4.2. The
joint positions of the �nger were increased until stable contact was achieved
with the �xed object. In this case, we measured the pseudo-force f applied
to the object rather than the slippage forces. The contact force was measured
using the tactile sensors, and the contact frame was estimated. The force
control was initiated automatically when the contact between the �nger and
the �xed object was stable.

We chose the desired force direction fd to be colinear and opposite to the
normal of the object's surface and to have the contact point as the origin.
We implemented our method for the thumb and the index of the Allegro
hand. We chose these two �ngers since the thumb has a distinct workspace
from the rest of the �ngers, whereas the index and the rest of the �ngers
have similar workspaces. Figures 4.10 show the current direction of the force
f measured by the tactile sensors and the desired force direction fd for the
thumb and the index �ngers. In the next section, we will present the results
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(a) (b) (c) (d)

Figure 4.10: The 3D model of the Allegro hand is shown using Rviz on the
top and the physical model on the bottom. The columns (a) and (b) show top
and front views of the Allegro hand and the calculated contact frame {C} and
tactile force f and the desired tactile force direction fd for the index �nger.
Similarly, the columns (c) and (d) display the same components for the thumb
�nger.

of the proposed method.
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4.6 Results

We implemented and applied the torque computed in the previous section
4.4. When the controller is started, the �nger's joint positions are increased
to close the �ngers and establish stable contact with the object. During this
process, the output of the classi�er y is equal to zero, and thus the control
torque τ is equivalent to:

τ = τmotion =M(q)[Kpe(t) +Kd
de(t)

dt
] + g(q) (4.41)

where τtask = 0. Once the contact is stable, the command becomes:

τ = τtask + g(q) = [JT
ωKθθr + JT

ωKs(
{W}R{E}

{E}R{C})
{C}n] + g(q) (4.42)

Here, the term g(q) enables us to maintain the �nger in its con�guration and
compensate for the e�ects of gravity. We manually tune the gain matrices
Kθ and Ks until achieving the desired behavior.

Figures 4.11 and 4.12 show the tactile contact force direction control results
for the index �nger and thumb. Each �gure comprises three plots, each a
function of the time step k. The sampling frequency is 150[Hz]. The plots
from top to bottom respectively track the evolution of the three components
of f (Equation 4.40), the error angle θ from the axis-angle representation of
Equation 4.24 and the contact state y de�ned in Equation 4.18.

Figure 4.11a and Figure 4.11b show the result for two experiments for the
Index �nger. In experiment 1, Figures 4.11a, during stable contact intervals,
the angle error θ undergoes exponential decay, stabilizing at 0.2 radians
without further correction. A similar pattern is observed in Figure 4.11b.
Moreover, we manually adjusted the gain matrix Kθ to boost the correction
when the error remained constant, reducing the angle error θ. The values of
Kx were not modi�ed, leading to a decrease in the tactile contact force vector
components and an overall reduction in force amplitude.

Figure 4.12a and Figure 4.12b show the result for two experiments for the
thumb �nger. Similar results were observed for the thumb �nger as for
the index �nger. In Figure 4.12a, the angle error θ decreases during stable
contact, but the decay is less smooth than for the index �nger. The �gure
further illustrates a loss of contact, which is subsequently regained, allowing
θ to continue decreasing until it reaches 0 radians. Figure 4.12b provides
additional insights into the thumb's contact force control. Notably, a di�erent
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behavior is observed with a more frequent occurrence of contact loss. Despite
this, we can observe an overall decrease in the angle error θ.

Because of the design of the Allegro hand, only two rotations around the
�ngertip frame are possible for the thumb and one for the rest of the �nger.
Moreover, the ability to rotate around the �ngertip frame does not imply
that we can rotate around the contact frame. Additionally, these rotations
are not possible in all �nger con�gurations. Therefore, the angle error θ
stabilizes at a certain value and does not reach 0.

Overall, the fact that the angle error θ decreases in both the index and
thumb �ngers demonstrates the e�ectiveness of the proposed method. The
results show that the proposed method can control the direction of the tactile
contact force. However, the method is highly dependent on the contact
location, and the gains Ks and Kθ must be manually tuned to achieve the
desired behavior.
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4.7 Discussion

When testing our method experimentally, we noticed that gains Ks and
Kθ in our control system highly depend on the contact location. Notably,
changes in the contact point necessitate a retuning of these gains. In
our experimentation, certain con�gurations allowed us to �ne-tune these
parameters, yielding a desired control behavior for force direction.

Not only are the gains highly dependent on the contact location, but they also
exhibit a strong interdependence. Achieving an optimal balance is challenging,
as Ks must be su�ciently high to maintain the contact point yet low enough
to facilitate rotation around it. Similarly, Kθ should be enough to allow for
rotation around the contact point and low enough to prevent contact loss.
This intricate relationship complicates the determination of appropriate gains.

The ability to control the direction of the force is further in�uenced by hand
kinematics. While �ngers can rotate around the �ngertip frame along two
axes, executing two rotations around the contact point depends on the contact
point's location. Moreover, inconsistencies between the physical model and
the URDF model introduce errors. These errors might be negligible in cases
where precise control is not required. However, in our case, those errors
may potentially cause the failure of precise torque application to achieve the
desired orientation.

The fact that the tactile sensor is uncalibrated and the absence of a contact
model (as discussed in Section 4.5.2) introduce additional challenges. The
tactile contact force we calculate is a combination of the taxel measurements
and their noises. The taxel measurements also carry information about
the sensor's deformation during contact. Thus, �ltering the measurement
would remove valuable information about the force. Therefore, the lack of
calibration prevents e�ective noise �ltering. Furthermore, the absence of a
contact model makes it di�cult to relate the contact force to joint torque and
obtain a contact Jacobian. By implementing a contact model and calibrating
the sensors, we can formulate the control of the direction of the force as an
optimization problem. This allows us to �nd a solution that respects the
hand and contact kinematics.

The rigid body's �xed setup, chosen for testing our method with the Allegro
hand, imposes additional constraints on the movement. To overcome the
latter problems, one might think of doing a reachability study. This would
mean that we sample the con�guration space of the Allegro hand while in
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contact with the �ngertip and perform the study to obtain a reachability
map for every contact point. The number of contact points for the study
and the sampling of the con�guration space in�uence the size of the map.
To have precise information for contact points would mean doing the study
for a larger number of points, resulting in voluminous maps with a long
computational time and a longer search time in the map for the candidate
with the best reachability index, complicating the use of this information in
real-time applications.

4.8 Conclusion

In this chapter, we focused on contact force control using tactile sensing
feedback for individual �ngers. Our goal was to understand the di�culties
and challenges associated with controlling the direction of the contact force.
For this purpose, we proposed a method to control the direction of the
contact force measured by tactile sensing for individual �ngers. Our approach
involves gathering tactile data for each �nger, estimating the contact location
and force, calculating the error between the current and desired force,
and then adjusting �nger movements to achieve the desired force direc-
tion. We implemented and tested our method using Xela tactile sensors with
the Allegro hand, revealing promising results in contact force direction control.

Developing and implementing this method with the Allegro hand and the Xela
sensors enabled us to understand the challenges associated with controlling
the direction of the contact force. These challenges include the lack of sensor
calibration, the absence of a contact model, and inconsistencies between
the physical and mathematical models used for dynamics and kinematics
calculations. Our method highlights these existing challenges, paving the
way for further exploration and improvement in contact force control.

To further improve our work, we suggest establishing a contact model
through machine learning techniques and utilizing a force sensor, such as the
ATI-Nano, as a ground truth. Addressing errors between the physical and
mathematical models could be achieved by employing controllers capable
of handling imprecision, such as compliant control or adaptive control.
However, in the case of adaptive control, �nding an appropriate adaptation
law that considers no-contact constraints and corrects contact force remains
challenging. In conclusion, controlling contact force for individual �ngers
remains an open and challenging research topic. Our method highlights the
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existing challenges in this area, paving the way for further exploration and
improvement in contact force control.



Chapter 5

Grasping force adaptation

through tactile sensing

In this chapter, we propose a method to enhance the initial grasp of an

object. Our method uses tactile sensors to acquire information about

the contact forces arising from an initial blind grasp of an object and

then control the direction of these forces to improve the quality of the

grasp. Our method is not concerned with the grasp synthesis problem but

rather with its execution. We have discussed previously that many of the

existing methods for grasp synthesis have limitations when it comes to

grasping execution due to environmental uncertainties and assumptions

about the contact. By proposing this method, our goal is to allow for

better execution and adaptation of the grasp.
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5.1 Introduction

During the execution of a pre-planned grasp, it is essential for a robot to adapt
to both object properties and environmental conditions swiftly, dynamically
adjusting its grasping force to ensure successful execution. Despite signi�cant
advancements in grasping techniques, encompassing both analytical and
data-driven approaches (as highlighted in Section 1.1), challenges persist
during the execution phase.

Inconsistencies between real-world scenarios and simulation models, along
with environmental factors like sensor noise and unexpected disturbances,
often lead to grasping execution failures due to insu�cient adaptability and
robustness [Liu et al., 2021, Kleeberger et al., 2020, Bohg et al., 2013b].
Perceiving the physical interaction with the object and controlling the
grasping force in real-time is vital for grasp execution [Newbury et al.,
2023,Kleeberger et al., 2020,Sahbani et al., 2012].

Humans successfully grasp diverse objects with di�erent properties and
continuously adapt to environmental changes. A key feature of the human
hand is the ability to control �ne movements and forces at individual
�ngers [Schieber et al., 2004]. Although �ngers move individually and exhibit
individual force control to account for local friction, these movements are
coordinated, and the mechanisms behind this �ne coordination are only
partially understood [Birznieks et al., 1998,Burstedt et al., 1997].

For instance, neuroscientists studying the human hand have observed that
this adaptation occurs in pre-grasp and post-grasp coordination. Pre-grasp
coordination is concerned with hand con�guration. [Johansson and Flanagan,
2009] showed a high correlation between pre-grasp hand con�guration and
object shape. Similar coordination patterns were observed for objects with
similar shape properties.

Post-grasp coordination is initiated upon the �rst contact with the object
and lasts until the object is fully grasped. It was observed that when contact
is achieved with the object, individual contact force control takes place to
satisfy local friction constraints by acting on the direction of interaction
forces and to characterize the control of the grasp force [O'Shea et al.,
2021, Burstedt et al., 1999, Flanagan et al., 1999]. For example, [Flanagan
et al., 1999] demonstrated that during the grasping of vertically oriented
objects with three �ngers, grasp stability is maintained by constraining the
direction of forces toward the center of the object despite changes in object
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weight, roughness of contact surfaces, and �nger combination.

In this chapter, we deal with the problem of grasp execution. Inspired by how
humans introduce small �nger movements when in contact with an object to
improve the quality of the grasp. We aim to use tactile sensing to acquire
information about the contact forces arising from an initial blind grasp of an
object and then control the direction of these forces to improve the quality of
the grasp. By proposing this method, our goal is to allow for better execution
and adaptation of the grasp. Our method is not concerned with the grasp
synthesis problem but rather with its execution.

The chapter is organized as follows. Firstly, we will introduce some basic
concepts related to grasping force, grasping constraints, and grasp quality
measures. Secondly, we will review the existing literature on grasping force
control. Next, we will provide further details of the proposed method and
perform experimental evaluation. Finally, we will discuss the limitations of
our work and explore future improvements.

5.2 Grasping force

Grasping force in robotic manipulation refers to the amount of force exerted
by a robot manipulator's �ngers on the object [León et al., 2014]. The
grasping force has two components: the internal force and the manipulation
force. The internal grasp force is necessary to satisfy friction constraints
to preserve contact with the object and avoid slippage [Salisbury, 1982].
The manipulation grasp force is the force required to change the state of
an object, for example, pivoting, rolling, or resisting external forces. The
goal of grasp force control is to stabilize an object without damaging or
dropping it, especially under physical uncertainties, and to resist external
disturbances [Deng et al., 2020]. In the following section, we will introduce
the grasping matrix and the hand's full Jacobian.

5.2.1 The full hand Jacobian and the grasping matrix

Considering a multi-�ngered robotic hand manipulating an object in the 3D
space with frictional contact shown in Figure 5.1, the two essential matrices
for grasping analysis are the grasping matrix G̃ and the full hand Jacobian
J̃ . These two matrices de�ne the force/torque and velocities transmission
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properties between the hand and the object [Khatib and Siciliano, 2016].

In the previous chapter, in Section 4.2.2, we introduced the partial hand
Jacobian J̃i ∈ R6×n that maps the �nger's joint velocities to the ith contact's
twist. The full-hand Jacobian can be written as follows:

J̃ = diag
[
J̃1, J̃2, .., J̃m

]
(5.1)

c1

{W}x

y

z

c2

{O}

y

x

z

p

q1, 𝜏1

q2, 𝜏2

q3, 𝜏3

q4, 𝜏4

q5, 𝜏5

{C}1

{C}2

Figure 5.1: A multi-�ngered robotic hand manipulating an object in the 3D
space

with J̃ ∈ R6×nm, n the number of joints per �nger, m the number of contacts,
and also the number of �ngers.

In the same way, the partial hand Jacobian projects the �nger's joint velocities
to the contact i twist. The partial grasping map G̃i ∈ R6×6 projects object
twists to contact twists. For details about computing the grasping matrix,
see [León et al., 2014]. The full grasping matrix G̃ ∈ R6×6m is then de�ned as
follows:

G̃ = diag
[
G̃1, G̃2, .., G̃m

]
(5.2)

We can consider each contact point i as two coincident points xi,hand ∈ R6

and xi,object ∈ R6, one on the hand and one on the object. Then we can write:
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{
ẋi,hand = J̃iq̇i

ẋi,object = G̃T
i

[
ṗT ϕ̇T

p

]T (5.3)

with qi = [q1,i, q2,i, .., qn,i], qi ∈ Rn the joint velocities of the �nger i,
[
ṗT ϕ̇T

p

]T
are the object twist represented in the world frame. Then, we can conclude
that for a contact point to be maintained, ẋi,hand the twist of the �nger ex-
pressed in the contact frame, must be equal to ẋi,object the twist of the object
expressed in the contact frame, equivalent to :

J̃iq̇i = G̃T
i

[
ṗT ϕ̇T

p

]T
(5.4)

Which forms the contact constraint of point i as:

J̃iq̇ − G̃T
i

[
ṗT ϕ̇T

p

]T
= 0 (5.5)

The full contact constraint to maintain contact points can be written as fol-
lows:

J̃ q̇ − G̃T

[
ṗ

ϕ̇

]
= 0 (5.6)

with q ∈ Rnm the �ngers joint velocities grouped in the same vector.

The quasi-static assumption is typically considered in robotic manipulation.
In the next section, we will introduce the quasi-static assumption and the
relationship between forces and velocities in manipulation tasks.

5.2.2 The quasi-static assumption

The quasi-static assumption states that dynamics are typically not considered
to play a major role in manipulation tasks [Bicchi, 1995]. Thus, the forces
applied by the �ngers are mapped to the joint torques as follows:

τtast = J̃TFtask (5.7)

With Ftask ∈ R6m the desired forces to be applied by the �ngers of the object
to achieve the manipulation task, τtast torques corresponding to joint torques,
and J̃ the full hand Jacobian. The relationship between force/torque and
velocities between the hand and the object are illustrated in Figure. 5.2.
Respectively, the wrench applied to the object by the contact points is:

w = G̃f (5.8)
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q̇ ∈ Rnm xc ∈ R6m

[
ṗ

ϕ̇

]
∈ R6

τ ∈ Rnm f ∈ R6m w ∈ R6

Velocities
domain

Force/Torque
domain

Hand Contact Object

J̃ G̃T

J̃T G̃

Figure 5.2: Relationship between forces and velocities

Finally, the hand-object Jacobian can be written as [Bicchi, 1995]:[
ṗ

ϕ̇

]
= (G̃T )†J̃ q̇ (5.9)

(G̃T )† is the pseudo-inverse of GT . To produce any wrench on the object, it
is necessary that rank(G̃) = 6, equivalent to Null(G̃T ) = 0 [Prattichizzo and
Trinkle, 2016].

5.2.3 Grasp analysis

Grasp analysis in robotic manipulation involves the study of hand kinematics,
contact, and grasp quality. It considers using contact models to describe the
forces and torques between the hand and the object. Furthermore, given an
object and a robotic end-e�ector, multiple grasp con�gurations are possible.
Grasp analysis methods evaluate each grasp using numeric quality measures
and visualization methods to determine the quality of the grasp and select
the optimal grasp.

The key factors considered in grasp analysis include hand kinematics, con-
tact models, and grasp quality. Hand kinematics are necessary to determine
whether the robotic hand's grasp con�guration is feasible. Hand kinematics
are commonly represented in terms of angular, velocity, and torque limits as:

θi,min ≤ qi ≤ θi,max i ∈ nm (5.10)

With qi the ith joint position, and nm, the degrees of freedom of the robotic
hand. θi,min and θi,max represent the bounds of the joint positions.



5.2. Grasping force 87

θ̇i,min ≤ q̇i ≤ θ̇i,max (5.11)

with q̇i the ith joint velocity. θ̇i,min, θ̇i,max are the bounds of velocity

τmin ≤ J̃(q)q̇ ≤ τmax (5.12)

with J̃(q)q̇ the torque at joint level, τmin and τmax are the torque limits.

Contact models describe how the forces and wrenches are transmitted to the
object from the hand through the contact points. The contact constraint
states that the twists of the contact points projected on the contact points
using the full hand Jacobian must be equal to the twists projected from the
object velocity using the grasping matrix.

xi,object − xi,hand = 0 (5.13)

To lock the object, the robot hand must generate enough force. However, the
force must be feasible by the hand as:

τmin ≤ J̃(q)TFtask ≤ τmax (5.14)

Ftask is the desired force and J̃(q) the full hand Jacobian.

5.2.4 Grasp quality measure

When searching for the optimal grasp con�guration, grasp analysis often
yields multiple solutions that adhere to kinematic and dynamic constraints.
Beyond these constraints, grasp quality measures assess additional crucial
aspects. These encompass grasp dexterity, which denotes the ability to
adjust the grasp con�guration, equilibrium, which is essential for applying
adequate forces to stabilize the object's weight and the ability to resist
external perturbations, thereby preventing potential slippage induced by
random forces acting upon the object.

Quality measures can be divided into two categories based on the main
aspect they evaluate. The �rst category considers hand con�guration, while
the second category evaluates grasp quality based on contact locations on
the object [Roa and Suárez, 2015]. Combining quality measures from both
categories can provide a global evaluation of grasp quality.
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Grasp quality measures that evaluate the hand con�guration include distance
to singular con�gurations, the volume of the manipulability ellipsoid, and
task compatibility. On the other hand, quality measures concerning contact
location entail the evaluation of object properties such as size, shape,
and weight, along with constraints related to friction, form-closure, and
force-closure conditions. For a full review of grasp quality measures, see [Roa
and Suárez, 2015].

5.2.4.1 Form and force closure propreties

The form-closure property of a grasp concerns the end-e�ector's ability to
constrain the grasped object's movement, relying only on frictionless contact
points. It is a purely geometric property of a set of unilateral contact
constraints. To achieve the form-closure property, at least four contact points
are required in the planar case versus seven in the general spatial case.
This is because a three-dimensional object has six degrees of freedom (three
translational and three rotational), and to fully constrain its motion without
relying on friction, a greater number of contact points is necessary compared
to the planar case [Bicchi, 1995].

The form-closure property does not consider a grasp's kinematics nor the
contact force's magnitude. To account for this shortcoming, [Ohwovoriole,
1980] and [Salisbury, 1982] introduced force-closure properties and used
the screw theory to approach the problem. The force-closure property
refers to the ability to generate an arbitrary wrench that counters external
disturbances through a set of frictional contact points. Force-closure grasps
require fewer contact points than form-closure but may not be able to cancel
all disturbance wrenches if the friction forces are too weak [Bicchi, 1995].
Figure 5.3 shows examples of planar form and force closure grasps.

5.2.4.2 Normal components of contact forces

The quality measure associated with normal forces of a grasp is a measure
that evaluates the e�ciency of a grasp based on the magnitudes of the applied
normal forces [Roa and Suárez, 2015]. This measure is de�ned as the inverse
sum of the magnitudes of the normal components in the applied forces needed
to balance an expected demanding wrench. The quality index is:

Q = min
G̃f=ωext

1∑m
i=1 fi,n

(5.15)
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f1
f2

f3CM

(a) (b)

Figure 5.3: Examples of planar grasps: (a) Form-closure grasp where the
contact points are distributed along the surface of the object and constraint
its movement; (b) Force-closure grasp where the resultant of the wrenches
applied to the object is null (CM Center of Mass)

with G̃ the grasp matrix, f the contact forces, and ωext the external wrench
to be balanced. This quality measure must be minimized to optimize the
grasp. It is subject to G̃f = ωext, which means that the �ngers generate a
wrench on the object G̃f equal to the external wrench ωext and f satisfy the
friction cone constraint.

Now that we have introduced the basic concepts related to grasping force,
grasping constraints, and grasp quality measures, we will review the existing
literature on grasping force control.

5.3 Related work

The goal of grasping force control is to maintain contact with an object and
provide enough force to lock it in place. This chapter focuses on the success
of grasp execution and initial grasp adaptation, reviewing works falling under
three main categories. Firstly, we consider methods that view grasping force
optimization as part of the grasp synthesis. Secondly, we look at methods
that use tactile sensing, and thirdly, we explore compliant control methods.

Typically, methods for grasping force control rely on models of contact, the
hand, and the object. The interaction forces are modeled using the Coulomb
friction model for hard contact with friction or as hard contact without
friction. Once the problem is formulated, a search for the optimal grasp
is performed. A compliant controller is then used to apply pressure to the
object to ensure that it remains locked in place [Sahbani et al., 2012].

Earlier works include [Nguyen, 1986], who formalized and studied the force-
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closure constraints from three di�erent perspectives: physics, mathematics,
and computation. His study includes di�erent contact models, di�erent
numbers of contacts, and the wrench space of a grasp. He proposed an
algorithm to construct force-closure grasps. [Ferrari and Canny, 1992] de�ned
two quality measures that consider the total force applied by the �ngers
and the maximum applicable force. They then proposed formulating the
grasp synthesis as an optimization problem, where an objective function
that considers hand, object, and contact dynamics is optimized based on the
proposed quality measures.

However, despite the extensive work on grasping force control, many lim-
itations remain. Firstly, �nding an optimal grasp is complex due to the
complexity of the models, making them hard to implement in real-time.
Secondly, inaccuracies between real-world scenarios and the models used to
synthesize the optimal grasp can lead to grasp execution failure. Furthermore,
these methods do not consider the interaction force but a model obtained
by projecting the joint torque to the contact points using the full hand
Jacobian [Bohg et al., 2013a]. Even though grasping force control methods
deal with contact forces during grasp, they do not do it directly because they
use the estimation of interaction forces, and they are done o�ine, so they
need more adaptability in real-life applications.

Tactile sensing has been gaining popularity lately, and more research on
grasping and manipulation using tactile sensing has been published recently.
This increasing popularity could be due to the development of tactile sensors
adequate for robotic hands, such as the BioTac sensor, the GelSight sensor,
and the OptoForce sensor. However, the use of tactile sensing in grasping
force control is mostly focused on slip detection or shape estimation. Still,
some works use tactile sensing for grasp adaptation and force control.

For instance, [Kleeberger et al., 2020] used a tactile sensor to detect slippage
and then adjusted the grasping force to prevent slippage. Their method
was tested on a robotic hand and showed promising results. However, their
method was limited to detecting slippage and adjusting the grasp sti�ness to
stabilize it. They did not consider the contact forces' direction or the grasp's
quality.

Similarly, [Hang et al., 2016] performed o�ine grasp synthesis to obtain an
initial grasp. They then executed the grasp. Using a probabilistic model, they
determined the stability through tactile sensing. When the grasp was stable,
they initiated the grasp adaptation step, which consisted of grasping force
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adaptation through sti�ness control and �nger gaining. Their experimental
testing showed promising results. However, as with most learning-based
methods, their work is limited to a few objects used in training. Their grasp
force control consists of acting on the sti�ness of the contact, which means
that they only act by squeezing or releasing the object, which could damage
fragile objects.

Lastly, [Ruiz Garate and Ajoudani, 2020] proposed a bio-inspired control
for grasp sti�ness to achieve a stable grasp. They synthesized an initial
grasp following the analytical approach based on the object's 3D, hard
contact without friction, and hand model. They computed a desired initial
Con�guration Dependent Sti�ness to lock the object and then computed a
desired sti�ness to adapt the grasp to task requirements. The method was
implemented and tested with the Allegro hand and multiple objects. The
results showed the e�ectiveness of their approach.

These works are impressive, and they are advancing robotic grasping.
However, they share a common limitation, that is, they only stabilize the
grasp by increasing the sti�ness of the grasp or the normal forces applied
to the object, which could damage the object, and they do not consider the
direction of the contact forces.

5.3.1 Conclusion on the state of the art

In conclusion, while signi�cant progress has been made in robotic grasping
force control, several limitations persist in existing methods. Firstly, the
complexity of the models used for optimal grasp synthesis poses challenges
in real-time implementation, hindering their practical applicability. Addi-
tionally, inconsistencies between real-world scenarios and synthesized models
can lead to grasp execution failures, highlighting the need for improved
adaptability in real-life applications. Moreover, current methods often rely
on o�ine estimation of interaction forces rather than directly addressing
them, limiting their e�ectiveness in dynamic environments.

Recent e�orts leveraging tactile sensing in grasping force control have shown
promise, yet they predominantly focus on slip detection or shape estimation
rather than comprehensive grasp adaptation and act only on grasp sti�ness
to stabilize the grasp, potentially risking damage to fragile objects, and do
not consider the direction of contact forces. However, studies in neuroscience
revealed the importance of considering both the amplitude and direction
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of contact forces in achieving a grasp similar to humans. Human grasping
behavior involves subtle �nger movements upon contact initiation to adjust
contact force direction, enhancing grasp stability [Birznieks et al., 1998].

In light of the previously mentioned limitations, in the next section, we
propose a method to adapt the initial grasp of an object. Our method uses
tactile sensors to acquire information about the contact forces arising from
an initial blind grasp of an object and then acts on the direction of these
forces to improve the quality of the grasp. By proposing this method, our
goal is to allow for better execution and adaptation of the grasp.
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5.4 Main idea

We aim to improve the quality of an initial three-�ngered grasp on an
unknown object by utilizing tactile sensing feedback. Our approach involves
controlling the direction of contact forces to decrease the total force applied
to the object, which is perceived through tactile sensing upon contact.
Our method is inspired by human grasping behavior, where subtle �nger
movements are introduced upon contact initiation to adjust the contact force
direction, thus enhancing grasp stability. We believe that by controlling the
direction of contact forces, we can improve the quality of the grasp.

In this work, we use sensors that are not calibrated due to the complexity of
the calibration process, as explained in Chapter 2, Section 2.4. In Chapter
4, we propose a method to calculate a pseudo-force, which is a measurement
of the contact force but not exactly the contact force. Additionally, we
propose a method to control the direction of contact forces of a manipulator
in contact through one point with a �xed rigid body. In this chapter, we
extend the previously proposed method to three contact points to adapt the
contact forces applied to the object to improve the initial grasp.

Our idea is to perform an initial blind grasp of an object and, upon achieving
contact without slippage between the �nger and the object, we rotate the
�ngers around the contact points to change the direction of forces and bring
them to the grasp plane. We act on the direction of the contact force to
maximize the sum of the normal forces applied to the object and satisfy the
normal component of the force quality measure. We do not risk damaging
the object by increasing the normal forces. We propose to bring the contact
forces closer to the grasp plane formed by the contact point. The closer
the contact force is to the grasp plane, the better the grasp. We follow a
similar approach to how humans adapt their initial grasp and bring the
contact forces toward the center of the manipulated object. In the next
section, we will present the proposed method and the experimental evaluation.



94 Chapter 5. Grasping force adaptation through tactile sensing

{C}1

{W}

{C}3

{C}2c2
{E}2

{E}3

c3

c1oc {E}1
f d⃗,1

f d⃗,2

f d⃗,3

Figure 5.4: A manipulator holding an object

5.5 Strategy

Let's consider a robotic hand in contact with an object in space as shown
in Figure 5.4. This con�guration is achieved in this work by �rst blindly
grasping an object placed in the hand's workspace and then closing the
�ngers around the object to achieve an initial grasp. Subsequently, the robot
obtains the �rst three contacts with the object and receives feedback from
the tactile sensors.

The object is subject to the external force Fext and contact pseudo-forces
fi, i = 1 : nc with nc the number of contact points, in this case, nc = 3, and
the object is in equilibrium. The contact pseudo-forces are represented in the
world frame {W}.

Using the contact locations ci at each �nger represented in the world frame
{W}, we created a triangle bounded by the three contact points. We calcu-
lated the center of gravity of the triangle as:

oc =

∑nc

i=1 ci
nc

(5.16)



5.5. Strategy 95

We calculated the vectors formed by the three contact points toward the center
of gravity of the triangle in the world frame {W}:

fd,i = oc − ci (5.17)

These vectors represent the best combination of forces that can be applied
to the object and that satisfy the force-closure grasp as explained in Sec-
tion 5.2.4.1. We then calculated the orientation error between those three
vectors and the measured contact forces represented in the world frame {W}
at each contact point ci, using Rodriguez's formula as explained in Chapter 4,
Section 4.4.2 to obtain:

Ftask,i = Kθiθiri (5.18)

with Ftask,i the task force for �nger i, Kθ a gain matrix and θi, ri the
angular-axis error, for the ith �nger.

The following equation expresses the equation of motion governing the �nger's
dynamics:

M(q)q̈ + C(q, q̇)q̇ + g(q) + J(q)TFext = τ (5.19)

Here,M(q) represents the mass matrix, C(q, q̇) accounts for the Coriolis e�ect,
and g(q) represents the gravitational e�ects. The torque τ is associated with
the motion and incorporates additional task-related torque, J(q) is the full
robot Jacobian, Fext are the external wrenches acting on the robot, including
the e�ect of the gravity of the object. In scenarios involving slow motion, the
Coriolis e�ect becomes negligible, simplifying Equation 5.19 as follows:

M(q)q̈ + C(q, q̇)q̇ + g(q) + J(q)TFext = τ (5.20)

We choose our τ as:

τ = τmotion + τtask (5.21)

Here, τmotion serves to move the �nger toward the object and lock it, and
τtask corrects the orientation of the force. τmotion is a proportional derivative
controller (PD) with gravity and inertial e�ect compensation and is expressed
as:

τmotion =M(q)[Kpe(t) +Kd
de(t)

dt
] + g(q) (5.22)
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with: Kp, Kd, the proportional and derivation gains respectively. In order
to correct the direction of the contact force, we must �rst achieve stable
contacts without slippage with all �ngers. In Chapter 5, we proposed a
method to detect the stability of the contact for �ngers individually. The
method's output is 1 when the contact is stable and 0 otherwise. Let yi be
the indicator of the state of the contact at �nger i as:

yi =

{
1 stable contact
0 unstable contact

(5.23)

In order to correct the direction of the contact force, all the �ngers must make
contact with the object without slippage. We chose s as:

Y =
nc∏
i=1

yi (5.24)

When all contacts from the �ngers are stable Y = 1, Y is also an indicator
that the object is locked by the hand. In this case, we can initiate the control
of the direction of the contact forces and choose τtask as:

τtask = sJT
ω diag (Kθ1, Kθ2, Kθ3)

Ftask,1

Ftask,2

Ftask,3

 (5.25)

By choosing small gain values for Kθi, we can perform small rotations around
the contact points when the object is locked, which allows us to bring the
measured contact forces to a better combination of forces. This should in-
crease the sum of the normal forces applied to the object without applying
more contact force rather than redirecting them. Additionally, this correction
should not alter the grasp's state too much and allow for an online adaptation
of the grasp based on tactile feedback. In the next section, we will present
the experimental results of our method.

5.6 Experimental results

We used the same robotic platform as in the two previous chapters to conduct
our experiment. We employed the classi�er from Chapter 3 to identify
stable contacts with the object. Using a PD controller, we grasped the
object, and once stable contacts were established, the adaptation process was
initiated automatically. Figure 5.5 shows the Allegro hand locking an object.
We manually tuned the gain matrices Kθ until achieving the desired behavior.
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(a) (b)

Figure 5.5: The Allegro hand locking an object.
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Figure 5.6: The 3D model of the Allegro hand visualized using Rviz, f⃗i the
directions of the current forces, f⃗di the desired force direction and the triangle
formed by the contact points ci.

Upon locking the object and establishing stable contacts, the triangle created
by the contact points ci is automatically calculated. It is shown using Rviz in
Figure 5.7. The �gure also shows the directions of the current pseudo-contact
forces fi from tactile measurements and the desired force direction f⃗d,i, and
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the triangle formed by the contact points is displayed.

Figure 5.7 is a close-up of the �ngertips with a better focus on the �ngertips.
It shows the directions of the desired force f⃗d,i, the contact points ci, and
frames {Ci} in addition to the grasped triangle.

{C}1
{C}3

{E}1

{E}3

{C}2

{E}2

f d⃗3

f d⃗1f d⃗2
oc

(a)

{C}1
{C}3

{E}1

{E}3

(b)

Figure 5.7: A close-up on the 3D model of the Allegro hand's �ngers is vi-
sualized using Rviz, showing the directions of the current forces fi measured
through tactile sensors, the desired force direction f⃗di, the triangle formed by
the contact points.

Initial tests of this method showed promising results in improving the quality
of an initial grasp. These results are illustrated in Figures 5.8 and 5.9. Each
�gure comprises six plots, each a function of the time step k. The sampling
frequency is 150[Hz]. The plots from top to bottom respectively track the
evolution of the three components of f1, f2 and f3 representing the contact
forces for each �nger, Fn the sum of the normal force at each contact point,
and Ft the sum of the contact forces. Finally, θi are the angle errors.

The adaptation process, as described in the strategy section, is automatically
initiated. It is essential to note that it moves the object when the adaptation
is launched, thereby altering the stability states at the �ngertip level.
However, the �ngers return to a stable state, and then the adaptation process
is launched again. In this case, the adaptation occurs in the form of small
pulses altering the directions of the contact forces fi. θi are equal to zero
when Y = 0, and correspond to the axis-angle error when Y = 1. What we
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can see here is that with small pulses of the force control, the sum of the
normally applied forces to the object Fn increases, which is an indicator of
a better grasp based on the grasp quality measure "Normal components of
contact forces" seen in Section 5.2.4.2. Additionally, the axis-angle errors
decrease over time.
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Figure 5.8: The evolution of the contact forces f1, f2, and f3 over time, the
sum of the normal forces Fn, the total forces Ft, and the angle-axis errors θi
over time.
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Figure 5.9: The evolution of the contact forces f1, f2, and f3 over time, the
sum of the normal forces Fn, the total forces Ft, and the angle-axis errors θi
over time.

5.7 Discussion

Through our initial experimental validation, we demonstrated the e�ective-
ness of our proposed method in improving the quality of an initial grasp.
Our approach leverages tactile sensing feedback to adapt the contact forces
applied to an object, enhancing the grasp quality. The results obtained from
our experiments are promising, showcasing the potential of our method in
enhancing grasp execution.

Our study focused on regulating the force direction without prior knowledge
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of the speci�c object. The e�ectiveness of the adaptation depends on the
object's inherent characteristics, such as its shape, surface attributes, and
weight. While our adaptive approach may be e�ective for objects with certain
prede�ned properties, it requires re-tuning when applied to a di�erent object.

Our method is in�uenced by the Allegro hand's dexterity and feasible
movement directions. However, the control inputs may not yield the intended
force, necessitating further investigation in the future. Future methods should
consider the reachability of each �ngertip and compute optimal combinations
of forces attainable by the robot.

We omitted sensor calibration due to its complexity, but it could provide
contact force measurements in Newtons. This, in turn, could help choose
a contact model and establish a comprehensive contact Jacobian, mapping
joint velocities to contact velocities and joint torques to contact wrenches.
Such mapping would facilitate the computation of angle-axis errors, respect
hand kinematics, and address the current limitations where some task forces
are unattainable by the hand.

Sensor calibration would also enhance the estimation of contact position
and contact frame. While our measurements are un�ltered, calibrating the
sensors could re�ne the accuracy of these estimations.

The dynamic model available for the Allegro hand does not perfectly align
with its physical counterpart, introducing errors during control. This dispar-
ity becomes a signi�cant concern in our case, where precision is paramount for
executing very small and precise movements. Addressing these discrepancies
is crucial to mitigate the adverse impact on our intended control objectives.
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5.8 Conclusion of the chapter

In this chapter, we introduced a novel approach aimed at improving the
initial prismatic grasp of an object by acting in the direction of contact
forces. Our method was inspired by human grasping behavior, where subtle
�nger movements are employed to adjust the contact force direction, adapt to
local object properties, change the distribution of contact forces, and enhance
grasp stability. We presented an innovative approach to improve the initial
prismatic grasp of an object by directing the contact force. Our method is
inspired by human grasping behavior, where subtle �nger movements are
used to adjust the contact force direction, adapt to local object properties,
change the distribution of contact forces, and enhance grasp stability.

Our method utilizes tactile feedback to retrieve contact characteristics. We
compute the contact location frame and associated contact forces, using
this information to determine a triangle formed by the contact points.
Subsequently, we use this data to strategically guide the �nger's movements,
redirecting the contact force and improving the overall quality of the grasp.

We validated our methodology experimentally using the Allegro hand
equipped with Xela sensors, yielding promising results. Despite limitations
regarding the sensors not being calibrated, inconsistencies between the
physical model and the model used to control the hand complicating precise
control of �ne movements required to change the direction of the contact
forces, and restrained dexterity of the Allegro hand, our approach still showed
potential to enhance grasp execution and adaptability.



Chapter 6

Conclusion and perspectives for

future work

Problem reminder

Robotic grasping is a fundamental challenge in robotics, requiring the integra-
tion of perception, planning, and control to achieve successful manipulation.
Despite signi�cant advancements in recent years, robotic grasping remains a
complex and unsolved problem, with many challenges yet to be addressed.
One of the main challenges in robotic grasping is executing grasps, which
requires precise control of the �ngers to achieve the desired contact forces
and torques. While many control strategies have been proposed for grasp
execution, these strategies often do not consider the tactile feedback from
the �ngers, which can provide valuable information about the object and
the quality of the grasp. Another challenge in robotic grasping is adapting
grasps, which requires the ability to detect and correct errors in the initial
grasp to achieve a stable and secure grasp. This research aimed to address the
challenges of grasp execution and adaptation by leveraging tactile feedback
from the �ngers to improve the quality of grasps and enhance the adaptability
of robotic grasping systems.

Contributions

Throughout the life cycle of this PhD, we tackled di�erent aspects of the
grasping execution problem:

In Chapter 3, we dealt with the slippage detection problem. Our goal was
to detect slippage for individual �ngers. We proposed a model-free approach
that uses the tactile signals from the �ngers to detect slippage events. The
proposed approach uses a sliding window to extract features from the tactile
signals and then uses Logistic regression (LogReg) to classify the features
as either slippage or non-slippage. We evaluated the proposed approach on
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a dataset of real-world grasping experiments and showed that it can detect
slippage with high accuracy and low latency.

In Chapter 4, we dealt with contact force control. More precisely, we focused
on the control of the direction of contact forces at the �ngertips using tactile
feedback. Our goal was to understand the challenges associated with contact
force control in the context of robotic manipulation. We proposed a method
that computes a pseudo-contact force from a tactile signal and then we
proposed a control strategy to correct the direction of the contact forces.
We used the Rodriguez formula to compute the rotation matrix, which will
correct the direction of the contact forces. We experimentally tested this
method which allowed us to gain many insights on the control of contact
forces in robotic manipulation.

In Chapter 5, we dealt with the grasp adaptation problem. Our goal was to
adapt the grasp in real time to maintain stability and security. We proposed
a model-based approach that uses tactile signals from the �ngers to estimate
the contact forces and torques at the �ngertips. The estimated contact forces
and torques were then used to update the grasp con�guration to maintain
stability and security. We evaluated the proposed approach on a dataset
of real-world grasping experiments and showed that it can adapt the grasp
in real time to maintain stability and security. The results of this study
demonstrate the potential of using tactile feedback for adapting grasps in
robotic grasping systems.

Perspectives for future work

The research in this dissertation is a humble attempt to improve the grasping
execution problem incrementally. Other directions for future work could build
on the results of this research and further advance the �eld of robotic grasping.
In the possible directions for future work, some are speci�c to the experimental
platform used in this work, and some are general. They include:

� Improvement related to hardware One of the limitations of this
research is that the tactile sensors were not calibrated. Future work
could explore the calibration of tactile sensors to improve the accuracy
and reliability of tactile feedback.

� Integration of tactile feedback with other sensing modalities:

This research only considered tactile feedback from the �ngers. Fu-
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ture work could explore integrating tactile feedback with other sensing
modalities, such as vision, to improve the quality of grasps and enhance
the adaptability of robotic grasping systems.

� Development of more advanced control strategies: Another direc-
tion for future work is the development of a more sophisticated controller
for the Allegro hand that could deal with the inconsistencies between
the physical model and the real world; allowing for a more robust control
of the contact forces and the adaptation of the grasp.

� Evaluation on a wider range of objects and environments: The
research in this dissertation was evaluated on a limited set of objects
and hands with one type of tactile sensor. Future work could evaluate
the proposed approaches on a wider range of objects, with other robotic
hands and other tactile sensors, to assess their ability to generalize and
their robustness.

� Shape estimation: Another direction for future work is the estimation
of the shape of the object from the tactile signals, which can be used to
improve the quality of grasps and enhance the adaptability of robotic
grasping systems. The Allegro hand was equipped with 368 3-axial
tactile sensors, which can provide a rich source of information about
the object. Future work could explore machine learning techniques to
estimate the object's shape from the tactile signals.

� Exploration of new applications and use cases: Future work could
explore new applications and use cases for the proposed approaches. For
example, the proposed approaches could be applied to other domains,
such as prosthetics, to improve the quality of interactions between hu-
mans and machines.





Appendix

Roll, pitch yaw rotation

The Rotation matrix whose yaw, pitch, and roll angle are α, β, and γ can be
calculated as follows:

R =Ryaw(γ)Rpitch(β)Rroll(α) (1)

=

 cos γ − sin γ 0

sin γ cos γ 0

0 0 1

 cos β 0 sin β

0 1 0

− sin β 0 cos β

 1 0 0

0 cosα − sinα

0 sinα cosα

 (2)

Rodriguez Rotation

Following the Rodriguez formula, the rotation that takes v1 to v2, can be
calculated as follows:

Rθ = I3×3 + sθK + (1− cθ)K
2 (3)

with:

cθ = v1.v2 (4)

sθ = |v1 × v2| (5)

w =
v1 × v2
|v1 × v2|

(6)

and K the skew symmetric matrix of w which can be calculated as follows:

K =

 0 −wz wy

wz 0 −wx

−wy wx 0

 (7)
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