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Abstract

Relativistic magnetospheres represent one of the most energetic environments in the
Universe and may be involved in high-energy phenomena such as Active Galactic Nuclei,
Gamma-ray Bursts, X-ray binaries or pulsars. They correspond to the highly magnetised
plasma-filled surroundings of a compact object. Pulsars are neutron stars which were first
detected via their radio pulsations. They are able to emit across the full electromagnetic
spectrum and show strong high-energy signals. Black holes do not emit light but their
surrounding does, from radio to gamma-ray wavelengths. The amount of observational
data grew a lot in recent years for both pulsars and black holes. The Fermi collaboration
published their third catalogue on gamma-ray pulsars, which are the ones emitting at the
highest energies. Compared to the previous catalogue, the number of these pulsars more
than doubled, making the conclusions on the population even more reliable. How and
where this high-energy radiation is coming from is not fully constrained yet. The recent
discovery by the HESS collaboration of TeV emission coming from the Vela Pulsar, only
confirms a similar detection from the Crab pulsar. This emission only reaffirms the fact
that pulsars are incredible particle accelerators. For black holes, the high variability ob-
served in gamma rays is also part of a larger puzzle. Thanks to the development of the
Very Long Baseline Interferometry, the Event Horizon Telescope collaboration was able to
give the first image of the “shadow” of two supermassive black holes, M87? and SgrA?.
In the images, the emission is probed down to the horizon scale and gives insights into
the physics around black holes. In both pulsar and black hole magnetospheres, the mat-
ter is pushed into extreme physical regimes either by the magnetic field (pulsars) or the
strong gravity (Lense-Thirring effect of black holes). If we want to study these magneto-
spheres, we have to rely on numerical simulations to consider the wide range of physical
phenomena.

The modelling of magnetospheres was originally done using the force-free approach,
the zero mass limit of magnetohydrodynamics. It allowed us to study the structure of the
magnetosphere but was not able to capture radiation by construction. The Particle-in-cell
method became the next approach used by the community, as the plasma near pulsars and
black holes is mostly collisionless. This method directly uses particles to model the mag-
netosphere and captures particle acceleration. However, it uses microscopic particles to
describe global systems. This implies a large-scale separation which is not achievable with
the PIC approach, thus they are scaled down while conserving the hierarchy of scales. Con-
sequently, PIC simulations are modelling a reduced system and cannot be used directly to
explain the observations.

In this thesis, I have developed a new numerical method in the ZELTRON code. This
method combines the force-free approach and the PIC approach simultaneously to de-
scribe relativistic magnetospheres. The goal behind it is to be able to push the scale sepa-
ration of the simulation as far as possible. The ideal regions of the simulation are treated
by the force-free method, while the non-ideal parts are described by the particles. Hid-
ing some regions behind the force-free treatment allowed me to push the parameters of
the simulation to a scale separation for the particles never reached before. As a result, I
pinpointed the fact that the weakest millisecond pulsar seen by the Fermi collaboration
can accelerate particles to TeV energies. Moreover, I highlighted the fact that the rescal-
ing of PIC simulations was valid. With this work, I gave the first proof-of-principle that
force-free-PIC methods are doable and can bridge the gap between simulations and obser-
vations.
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Résumé

Les magnétosphères relativistes font partie des environnements les plus énergétiques
de l’Univers et sont suspectées d’être impliquées dans les noyaux actifs de galaxie, sursauts
gamma, binaires X et pulsars. Elles correspondent à la région proche des objets compacts
qui est fortement aimanté et remplie de plasma. Les pulsars sont des étoiles à neutron
historiquement détectés grâce à leurs pulsations radio. Ils présentent aussi une émission
pulsée intense à travers tout le spectre électromagnétique. Les trous noirs quant à eux
n’émettent pas de lumière, l’émission détectée provient de la matière en orbite. Au fil des
années, beaucoup de données ont été recueillies sur les deux objets. La collaboration Fermi
a récemment publié son troisième catalogue qui recense tous les pulsars connus émettant
en gamma. Ils correspondent aux pulsars les plus énergétiques. Ce dernier catalogue con-
tient deux fois plus de pulsars que le précédent, ce qui permet de tirer des conclusions sur
les différentes populations. Où et comment les émissions à haute énergie sont produites
est toujours une question ouverte. La découverte par la collaboration HESS d’émission au
TeV pour le pulsar Vela réintroduit la question de l’accéleration de particules aux abords
des pulsars. Cette détection vient confirmer une détection plus ancienne au TeV du pulsar
du Crabe et indique que les pulsars sont d’incroyables accélérateurs de particules. Dans
le cas des trous noirs, on trouve aussi une forte variabilité du rayonnement gamma. Les
développements de la technologie VLBI ont permis à la collaboration Event Horizon Tele-
scope d’imager pour la première fois l’ombre des trous noirs supermassifs, M87* et SgrA*.
Les deux images montrent un plasma chaud en orbite et permettent de sonder la physique
dans des régimes extrêmes. Pour étudier ces magnétosphères, nous devons nous appuyer
sur des simulations numériques afin de prendre en compte toute leur complexité.

La modélisation des magnétosphères était d’abord faite en utilisant l’approche sans-
force. Elle correspond à la limite idéale de la magnétohydrodynamique. Cette méthode
nous a permis d’étudier la structure des magnétosphères mais ne permet pas, par construc-
tion, de contraindre le rayonnement. La méthode Particle-in-cell est maintenant préférée
à cette dernière car elle permet d’obtenir le rayonnement en utilisant directement des par-
ticules pour modéliser la magnétosphère. Cependant, la méthode particulaire doit décrire
un système à la fois micro- et macro-scopique ce qui est numériquement complexe. Cette
grande séparation d’échelle est réduite dans les simulations PIC en rééchelonnant toutes
les quantités, tout en conservant la hiérarchie des échelles du problème. Ainsi, les simula-
tions PIC modélisent des systèmes de taille réduite et ne permettent pas une comparaison
directe avec les observations.

Durant ma thèse, j’ai développé une nouvelle méthode numérique au sein du code
ZELTRON . Cette méthode combine les approches sans-force et PIC de façon simultanée
pour modéliser les magnétosphères relativistes. Le but de cette manœuvre est d’accroître
la séparation d’échelle des simulations PIC actuelles. Les régions idéales sont alors mod-
élisées par la méthode sans-force, tandis que pour les zones non idéales est employée la
méthode PIC. L’utilisation de la méthode idéale permet d’augmenter la séparation d’échelle
de la simulation de manière globale, ce qui impacte aussi les particules. Grâce à cette méth-
ode, j’ai pu augmenter la séparation d’échelle à des valeurs non atteintes par le passé. J’ai
démontré que le pulsar milliseconde le plus faible détecté par Fermi est capable d’accélérer
des particules jusqu’au TeV. J’ai aussi réussi à valider le processus de rééchelonnage des
simulations PIC. Avec ce travail, j’ai prouvé qu’il était possible de développer une méthode
sans-force-PIC permettant de faire le pont entre les simulations et les observations.
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CHAPTER 1

Compact objects and their observational
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In this chapter, I introduce the nature of compact objects with a focus on the obser-
vational aspect. More precisely, I describe the observational constraints gathered by the
community on gamma-ray pulsars and black holes. This section relies on Begelman and
Rees (2020) and lectures notes by Eric Gourgoulhon.

https://luth.obspm.fr/~luthier/gourgoulhon/fr/master/obj_compacts.pdf
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1.1 The nature of compact objects

Similar to how an author describes with details the first scene of a book, we must give to
the reader the background story of our main characters: neutron stars and black holes. Our
protagonists belong to the astrophysical category of compact objects, which also include
white dwarf stars. In astrophysics, the formation of compact objects marks the end of a
standard star life, see Fig. 1.1 for the life cycle of stars. Each of the three types of compact
objects are the by-product of a life-ending main sequence star. When stars are ageing, the
nuclear reaction inside them goes through different stages from burning hydrogen to he-
lium. When the star runs out of fuel, the thermonuclear reactions will stop. Consequently,
the thermal pressure drops below a point where the star gravitationally collapses. Which
of the three compact objects a star will become is determined by the initial mass of the star.
Below ∼ 8− 10M�, where M� is the mass of the Sun, the star will collapse into a white
dwarf. This collapse is stopped by the degenerate electronic pressure, when it is strong
enough to counterbalance gravity. White dwarfs typically have masses of M ≤ 1M�. The
upper limit on the mass of a star supported by the degenerate electron pressure is known
as the Chandrasekhar mass, MC = 1.44M� ( Chandrasekhar, 1935). In the case of an initial
star mass within ∼ 10− 25M�, the degenerate electron pressure is not strong enough to
counter-balance the collapse. However, the collapsing star can reach an other equilibrium,
in which the degenerate neutron pressure and the repulsive nuclear forces become strong
enough. The end product is a neutron star. The idea of forming neutron stars appeared
shortly after the discovery of the neutron in 1932 by James Chadwick ( Chadwick, 1932).
A few years after, Oppenheimer and Volkoff (1939) made the first calculation of the struc-
ture of a neutron star. They used general relativity and considered that the star was fully
made of neutrons acting as a degenerate Fermi gas. Regarding the origin of neutron stars,
Baade and Zwicky (1934) suggested that the formation site could be via supernovae. This
forming scenario has been validated since, when a neutron star was detected in the Crab
Nebula. Black holes are the last class of compact objects. Their formation depends on the
Tolman-Oppenheimer-Volkoff limit (TOV limit), this is the analogue of the Chandrasekhar
mass for white dwarfs. If the mass of the forming neutron star is larger than the TOV
limit, the star will keep on collapsing. The value of the TOV limit is not settled yet as it
relies on the equation of state of neutron star, the latter being an active domain of research.
However, under some assumptions, Rhoades and Ruffini (1974) showed that the mass of
a neutron star cannot exceed M = 3.2M�.
In this manuscript, I will only tackle the neutron star and black hole aspect of compact
objects.

1.2 Pulsars: cosmic lighthouses made of neutrons

Pulsars are a specific type of neutron stars emitting a pulsed signal. The original name of
these objects was pulsating radio source, shortened pulsar. The pulsed signal, observed
with periodicities between milliseconds and tens of seconds, is coming from a narrow
beam of light emitted by the source, sweeping the observer line of sight. This phenomenon
is identical to the one produced by a lighthouse on the coast. In a sense, pulsars are cosmic
lighthouses.
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FIGURE 1.1: Life cycle of stars depending on the mass. (Credits: NASA and the
Night Sky Network.)

FIGURE 1.2: Recorded pulses of CP1919 for two different frequencies ( Hewish
et al., 1968).

1.2.1 Pulsating neutron stars

Discovery

In 1967, Jocelyn Bell discovered radio pulsations on her chart recorder paper at the Mullard
Radio Astronomy Observatory, UK. The pulsations were first believed by Antony Hewish,
her supervisor, to come from interference. It was the first time that such a periodic signal
was observed by radio astronomers, the doubts on the signal were natural at first. How-
ever, with the repeated detections of these pulses, it became clear that a source was emit-
ting from the sky. In their seminal paper relating the discovery, Hewish et al. (1968) indi-
cated that the signal of CP1919 was periodic, with a periodicity of P = 1.33733± 0.00001s.
In Fig. 1.2, we show one of the recorded pulses for two different frequencies. The pulses
appear as sharp features occurring during 0.3s and repeating every 1.337s. If we consider
that this signal is emitted by a star, the short periodicity indicates that its size is small. The
link between pulsars and neutron stars was highlighted by Gold (1968), and was validated
when the community observed the supernova remnant SN 1054 and discovered a neutron
star at its centre.
Since the discovery of CP1919, the number of pulsars detected has jumped to the roof with
3534 pulsars identified1.

1number of detections at the date of writing (April 2024)
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Representing the pulsar space

As a neutron star, pulsars have a typical radius of r? = 10km and a typical mass of
M? = 1.4M�. These two parameters are valid for most neutron stars with an upper limit
on the radius at r? ≈ 13km and M ≈ 3M�. On the contrary, the rotation period of each
pulsar is an intrinsic parameter which can be precisely estimated via observations. If we
assume that pulsars are rotationally powered, their rotational energy is converted into the
radiation detected. Consequently, the pulsar loses energy and slows down, increasing its
rotation period. The gradual slowing down of the pulsar is computed as the time deriva-
tive of the period,

Ṗ =
dP
dt

. (1.1)

With the period P and period derivative Ṗ of a pulsar, we can build a P− Ṗ diagram. This
type of diagram is the analogue of the Hertzsprung-Russell diagram for stellar evolution,
in the context of pulsars. In Fig. 1.3, we show the P − Ṗ diagram representing all the
detected pulsars2 ( Manchester et al., 2005).
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FIGURE 1.3: P− Ṗ diagram of all detected pulsars. Blue, green, and red dashed
lines indicate respectively iso-levels of the age, surface magnetic field strength,

and spindown power.

Several things emerge when we use this representation to show the pulsar population.
The first aspect is the dichotomy in periods. The first category of pulsars is called normal
pulsar as they have parameters similar to the first pulsar detected. As a bulk population,
normal pulsars have a spin period P ∼ 1s and a period derivative Ṗ ∼ 10−15. The second

2Data provided by the ATNF pulsar catalogue, http://www.atnf.csiro.au/research/pulsar/psrcat/expert.
html

http://www.atnf.csiro.au/research/pulsar/psrcat/expert.html
http://www.atnf.csiro.au/research/pulsar/psrcat/expert.html
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population is located at the bottom left corner of the P− Ṗ diagram, and is referred to as the
millisecond pulsar population. The latter can be defined as pulsars with P ∈]1.39, 20[ms
and Ṗ < 10−19 ( Özel & Freire, 2016). Another point highlighted by this representation is
the absence of pulsars in the bottom right corner. This part of the diagram corresponds
to the dead-zone. It is possible to derive a frontier called the “death-line”, however, the
position of the frontier is model dependent ( Zhang et al., 2000). The reason behind this
absence of pulsations is believed to be a consequence of the shortage of pair production (
Sturrock, 1971; Ruderman & Sutherland, 1975) in an ageing pulsar.

The period of a pulsar and its derivative are also precious to compute three other in-
trinsic parameters. These new parameters are: the age τ, the surface magnetic field B?, and
the spindown power Ė of a pulsar. Each of these parameters appear in the P− Ṗ diagram
as different isolevels. The “characteristic age” is defined as

τ =
P

2Ṗ
. (1.2)

Looking at the P− Ṗ diagram, we can see that the normal population is younger than the
millisecond one, which is populated by old pulsars. When a pulsar gets older, its period
increases while its period derivative decreases. Following this argument, normal pulsars
move to the bottom right corner when ageing. However, we see that the millisecond pop-
ulation is older but still above the death-line. They have a smaller period derivative in
agreement with the expected behaviour, but their spin period has decreased. The hypoth-
esis behind this difference is that millisecond pulsars are recycled pulsars. They are be-
lieved to have be spun up by the accretion of material from a companion ( Alpar et al.,
1982). Millisecond pulsars are old normal pulsars which drifted to the left side of the dia-
gram thanks to their companion.
The second isolevel we can compute is for the spindown power Ė, which corresponds to
the energy extracted from the pulsar’s rotation. It is defined as

Ė = 4π2 I
Ṗ
P3 (1.3)

where I ≈ M?r2
? is the moment of inertia of the neutron star. We mentioned the death-

line of pulsars, past which pulsars turn off. In terms of power, this corresponds to a spin-
down power of Ė ∼ 1029erg/s. The total population is less divided regarding the average
spindown power. On the one hand, the milliseconds pulsars have a narrow spindown
power window centred at Ė ∼ 1034 erg/s. On the other hand, normal pulsars span a wider
range Ė ∈ [1031, 1035] erg/s. Among the normal pulsars, some of the youngest show the
highest spindown power observed. The Crab pulsar is one of these pulsars and is the focus
of the next section.
One last important parameter to describe a pulsar is its magnetic field. Here, we assume
that the rotator is an orthogonal dipole. If we consider that the spindown power Ė is pro-
duced by the radiation field of a magnetic dipole, i.e. Prad = 2B2

?r6
?Ω4/3c3, we can compute

the surface magnetic field as a function of P and Ṗ. The expression of the surface magnetic
field is

B? =

√
1.5Ic3PṖ
2πr3

?
' 3.2× 1019

√
PṖ G, (1.4)

where c is the speed of light. Plugging these isolevels in the P− Ṗ diagram, indicates that
normal pulsars have a strong magnetic field. The bulk of the normal population sits at
B? ∼ 1012G, while the recycled population has a much weaker field with B? ≤ 109G.
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FIGURE 1.4: Crab nebula seen by the JWST. (Credit: NASA, ESA, CSA, STScI, Tea
Temim (Princeton University))

1.2.2 Crab pulsar: the Rosetta stone of pulsar observations

History

This source represents one of the most well-studied astrophysical objects after the Sun,
with written traces going back to 1054 AD. At the time called “guest-stars”, Chinese as-
tronomers wrote in the Wenxian Tongkao, the emergence of SN 1054 in July 1054. Notes
translated by Édouard Biot in 1843, state that the new star was visible during 23 consecu-
tive days during daylight. This system is located close to Earth, at a distance d = 2kpc. In
Fig. 1.4, we show one of the most recent picture of this system.

SN 10543 or the Crab nebula, is a supernova remnant located in the constellation of
Taurus. The outer part of the nebula is made of the matter previously ejected by the star
mixed with the interstellar medium matter. The outer region probes the material coming
from the explosion of the star, thus the past history of the system. As we look closer to the
centre of the nebula, we probe the youngest part of it. At the very centre of the nebula,
we find the Crab pulsar or PSR J0534+22004 as the result of the collapse of the star. Be-
tween the outer and central part, we find the pulsar wind nebula. This region corresponds
to the wind emitted by the pulsar, propagating inside the nebula. The link between neu-
tron stars and pulsars occurred with the development of new observing technologies and
multiwavelength astronomy.

3first object in the Messier catalogue, M1.
4PSR: Pulsating Source of Radio, J: equinox J2000, 0534: right ascension 05h 34 min, +2200: declination

+22◦
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FIGURE 1.5: Observations of the Crab system across the full electromagnetic spec-
trum. Left: profile of the observed pulsations ( Moffett & Hankins, 1996). Right:
observations of the Crab nebula from radio (top) to X-rays (bottom) (Credits:

NASA, ESA, and Hubble/STScI).

Multiwavelength emission

When tackling multiwavelength emission, one has to start with radio emissions. As the
foundation of pulsar astronomy, radio telescope were pointed towards the Crab nebula.
The detection of the pulsar was reported by Lovelace et al. (1968), Staelin and Reifenstein
(1968). As a result of this observation, the pulsar spin period was constrained to P = 33ms.

In Fig. 1.5 (left), we show the pulsed profile of the Crab pulsar. In the figure, the radio
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profiles are correctly centred after removing the dispersion delay. However, the other pro-
files are arbitrarily aligned with respect to the peak of the main pulse ( Moffett & Hankins,
1996). We can see that two pulses, main and inter pulses, are detected in almost every
wavelength, from radio to X-rays. The main pulse is present at all wavelengths with the
exception at ν = 8412MHz where it vanishes. The second pulse also shows this behaviour
but at a different frequency, ν = 2695MHz. Regarding the shape of the pulses in the dif-
ferent frequency windows, pulses are wider at high frequencies and get narrower with a
decreasing frequency. For the amplitudes of the pulses, we see that their ratio is not con-
stant with wavelength. The interpulse can have an amplitude as large as the main pulse in
the X-rays but also only a small fraction at radio frequencies. In the latter, the pulse profile
contains a precursor before the main pulse. The precursor shifts to higher pulsar phase for
lower radio frequencies, eventually merging with the main pulse.
The pulsar is not the only source emitting across the full electromagnetic spectrum. In
Fig. 1.5, the right panel shows the observation of the Crab nebula for different wavelengths.
Starting with the radio emission, we see that the full nebula is shining with an excess at
the centre where the pulsar stays. The radio emission is associated to the pulsar itself,
but also to the radiation emitted by the nebula’s material energised by the particles inside
the pulsar wind. The next observation is in infrared. It shows the radiation emitted by the
dust after absorption of optical and ultraviolet emissions. In optical, the emission is mainly
coming from the matter inside the filaments of the nebula. The pulsar wind nebula is seen
in the ultraviolet, where the emission is produced by the mildly energetic particles of the
wind. The structure is more coherent (torus shape) and the pulsar can be seen at the centre
of the pulsar wind nebula. A more detailed observation of the inner region revealed the
presence of compact knots of emission close to the pulsar ( Weisskopf et al., 2000). The last
image is in the high-energy range, where the emission comes from accelerated energetic
particles. The question of this acceleration is still open, but the community tends towards
an acceleration at the pulsar wind termination shock which proceeds inside the nebula. In
X-rays, the pulsar wind nebula can be divided into several sharp features. First, at the cen-
tre of the image, we observe a bright spot corresponding to the (unresolved) pulsar and its
close environment. This feature indicates that significant X-ray radiations are being pro-
duced. Emerging from the pulsar, we see the development of a jet and counter-jet aligned
with the pulsar spinning axis. Finally, a torus emitting X-rays is visible, centred around
the pulsar. The inner-edge of the torus is well discernible, which was not the case in the
ultraviolet range.

There is one other way of looking at the Crab nebula and its pulsar, or any other astro-
physical objects. We can compute the spectral energy distribution associated to the object.
A spectral energy distribution (SED) allows us to represent the observed power per fre-
quency interval of a source as a function of energy. We show the SED of the Crab nebula
and pulsar in Fig. 1.6. Even though the SED is a different representation of the system,
we still see the emission across the full electromagnetic spectrum. For the nebula, a first
steep power-law is visible from the radio up to the near IR, where a first break occurs. It
evolves into a softer power-law from the near-IR to the near-UV before breaking a second
time. A third power-law describes the SED from the near-UV to the hard X-ray band. The
power-laws indicate that these distribution are non-thermal, such distributions can be pro-
duced for example by synchrotron and inverse Compton radiations. Moreover, the SED of
the Crab nebula, possesses an extra component at the highest energies. If we look at the
pulsar itself, we see a strong emission in the X-ray and gamma-ray band. The latter can
outshine the nebula at the highest energies. The gamma-ray detection from the Crab sys-
tem was recorded by Browning et al. (1971). The system is able to produce γ-ray emission,
meaning that particles are accelerated to relativistic speeds by the pulsar itself and in the
nebula. The emission at these high energies are not produced by all pulsars but only by a
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FIGURE 1.6: Observed SED of the Crab system spanning from radio to gamma-
rays, adapted from Bühler and Blandford (2014). The SED of the nebula and of the

pulsar are respectively in blue and black.
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FIGURE 1.7: Sky map showing where the gamma-ray pulsars of 3PC are located,
from Smith et al. (2023).

fraction of them, called gamma-ray pulsars.

1.2.3 Gamma-ray pulsars

Gamma-ray pulsars are a sub-class of pulsars and belong to both the normal and the mil-
lisecond population. This class of pulsars could not be detected with ground based tele-
scope as the gamma-rays do not penetrate Earth’s atmosphere. The detections started with
the launch of the Compton Gamma-Ray Observatory (CGRO). The instrument EGRET be-
hind the detections was on board of the CGRO, and allowed the community to discover at
least 6 high-confidence gamma-ray pulsars ( Thompson, 2004). This observatory was later
followed in 2008 by the Fermi satellite, on boarding the Large Array Telescope (LAT) with
an energy range of 10MeV− 300GeV. The Fermi-LAT opened a new sky for gamma-ray
astronomy, especially for gamma-ray pulsars. The first catalogue on gamma-ray pulsars
was released in 2010 ( Abdo et al., 2010) with 46 detections. The pulsars reported by the
collaboration were mostly located in the equatorial plane of the galaxy. In their third and
latest catalogue (3PC) on gamma-ray pulsars ( Smith et al., 2023), the number of detections
by the Fermi-LAT reached 294 pulsars. This represents almost 10% of the total pulsar pop-
ulation. In Fig. 1.7, we show the location of all LAT detected pulsars. With almost 300
gamma-ray pulsars and more than 3000 detected pulsar, the population study from the
skymap becomes relevant. We can see on the skymap that a high concentration of pulsars
and gamma pulsars lies in the equatorial plane of the galaxy, close to the centre. However,
a fraction of pulsars are also detected isotropically above and below the Galactic plane.
We note that most of the gamma-ray pulsars detected outside of the equatorial plane are
mainly millisecond pulsars.

The gamma-ray pulsars can be represented in the P− Ṗ diagram along with all other
pulsars, this is shown in Fig. 1.8. Gamma-rays pulsars are still rotationally powered, and
divided between millisecond pulsars and young pulsars. The split between both popula-
tion is sharper than the one previously given. The young pulsar population has typical
parameters slightly different than normal pulsars. The average spin period is P ∼ 0.1 s
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FIGURE 1.8: P − Ṗ diagram showing the gamma-ray pulsar population of 3PC,
from Smith et al. (2023).

and they have a stronger surface magnetic field, slightly above B? ∼ 1012 G. This results in
a strong spindown power with Ė ∼ 1035−36erg/s. The gamma-ray millisecond population
does not show differences with the other millisecond pulsars. For both gamma-ray pop-
ulation, a deathline can be drawn at Ė ∼ 1033erg/s, which is higher than the one derived
before. Among the young pulsars, two categories emerge: the radio loud and radio quiet
pulsars. The radio loud pulsars are sources showing pulsations in the gamma-rays as well
as in the radio, while the radio quiet ones do not show significant pulsations in the radio.
Figure 1.9 shows the pulse profile in gamma-ray and radio for a millisecond and a young
pulsar. In the gamma-ray profiles, two main pulses are observed along with two weaker
pulses. If we compare the main peaks with the radio peaks, we see a slight shift meaning
that there is a lag between the radio and gamma-ray emission. This difference seems to
indicate that radio and gamma-ray emissions are not produced at the same location in the
magnetosphere.

From gamma-ray observations, it is possible to derive a total gamma-ray luminosity.
Noted Lγ, this luminosity is given by

Lγ = 4πd2 fΩG100 (1.5)

where d is the distance, fΩ is the beaming fraction, and G100 is the spectral energy flux
integrated above 100 MeV. This luminosity can be used to establish how much spindown
energy is converted into gamma-rays. Noted η, the efficiency of a pulsar is the ratio be-
tween the gamma-ray luminosity and the spindown power. This procedure was applied to
the pulsars from 3PC to produce Fig. 1.10. From the figure, we can conclude that the effi-
ciency of gamma-ray pulsars is between 1− 10% on average, some pulsars do show higher
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FIGURE 1.9: Pulse profile of a millisecond pulsar and a young pulsar (Crab pul-
sar). The gamma-ray profile is in black while the radio profile is in red.
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FIGURE 1.10: Gamma-ray efficiency as a function of spindown power (from Smith
et al. 2023).

efficiencies. The computation of the efficiency does not come without some caveats. For ex-
ample, the distance is known with some errors and the computation does not consider the
inclination angle of each pulsar. However, one clear conclusion is that gamma-ray pulsars
are efficient at converting their spindown power in gamma-ray radiation. This indicates
that particle acceleration is occurring, thus a physical mechanism is at play. In order to pro-
duce gamma-ray photons, the accelerated particles must reach (ultra)-relativistic Lorentz
factors. Consequently, theoretical models need to explain the high-energetics of pulsars
but also give the mechanisms behind it.

But the puzzle of pulsars and their emission would not be complete without the recent
discovery of TeV photons. Up to 2022, the only pulsar emitting TeV photons was the Crab
pulsar ( Ansoldi, S. et al., 2016). At these energies, ground based Cherenkov telescopes can
be employed. By using the air-shower produced by the gamma-ray photons entering the
atmosphere, we are able to recover the location of the source. This emission was for the
moment an isolated case. However, in 2023, the HESS collaboration reported the detection
of a 20 TeV emission coming from the Vela pulsar ( Djannati-Ataï, 2022; H. E. S. S. Col-
laboration et al., 2023). The detection of both TeV emission is given in Fig. 1.11. Above 10
GeV, the SED of the Crab pulsar can be fitted with a power-law extending up to the TeV.
However, this is not the case for the Vela pulsar where the SED breaks from an exponential
cut-off to a power-law near TeV energies. With two different detections, the TeV emission
from pulsars is confirmed. The mystery of the TeV emission from the Crab and Vela pul-
sars adds to the puzzle surrounding pulsars and is challenging the models. One thing is
for sure: these high-energy photons are emitted by particles with very high Lorentz fac-
tors. One way of reaching this condition, is by having particles propagating in an extreme
environment where the energy density is high. For pulsars, the most extreme conditions
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FIGURE 1.11: SED of the pulse P2 of the Vela pulsar, from H. E. S. S. Collaboration
et al. (2023). The SED of the pulse P2 from the Crab pulsar is shown in grey.

are inside what is called the magnetosphere5. The latter corresponds to the environment
close to the neutron star, filled with plasma, and where the magnetic field is the strongest.
Therefore, theoretical models must explain how particles are accelerated to high Lorentz
factors in the magnetosphere, in order to produce the observed gamma-ray emission. They
also need to establish which mechanisms are able to convert the available energy in kinetic
energy.

1.3 Black holes

1.3.1 Concept and first black holes

A black hole is defined as a region of space where gravity is so strong that nothing can es-
cape from it, not even light. The existence of such astrophysical object was for a long time
highly debated in the community. The first track of this idea goes back to 1784 when Rev-
erend John Michell ( Michell, 1784) mentioned the idea that above a given mass, even light
could not have an escape velocity large enough to escape gravity. This idea was followed
by a similar writing by Laplace (1799) using the same argument on the escape velocity. The
proto-black holes, or “dark stars”, were left aside for many time before coming back on the
front scene with the theory of general relativity by Albert Einstein.
The concept of black hole was reintroduced in the physics community when Karl Schwarschild
gave the first solution of Einstein’s equations. In his paper, Schwarzschild (1916) derived
the description of the spacetime centred around a mass assuming a spherically symmet-
rical sphere. Within the solution appeared a critical radius, later called the Schwarschild

5The magnetosphere here is defined as the environment between the surface of the neutron star and a few
light-cylinders.
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radius, rS = 2GM/c2 where G is the gravitational constant and M is the mass of the spher-
ical body. It corresponds to the radius at which the escape velocity is equal to the speed of
light, and acts as the boundary between the visible and the invisible. For r > rS, the light
suffers from the gravitational field of the mass but can still reach a distant observer. This
is not the case any more for r < rS, where not even light can fight against the gravitational
attraction of the mass. The next important development occurred with the mathematician
Roy Kerr. In 1963, Kerr published the exact derivation of the spacetime around a rotating
mass ( Kerr, 1963). This solution played an important role in the development of black
hole’s theory and still does. The current consensus among the black hole community is
that black holes are simple objects which only need three fundamental parameters to be
described. These parameters are the mass, the angular momentum or spin, and the electric
charge. Black holes are often said to have no hair.

1.3.2 Emission from a non-emitting source

Proving the existence of black holes was not an easy task, especially when we remember
that black holes do not emit light. Therefore, the community had to rely on indirect signs
of the presence of black holes. Zel’dovich’s first way of finding black holes was to look
for binary systems in which the visible star seems to orbit around an invisible compan-
ion. With the trajectory of the secondary, it would be possible to estimate the mass of the
invisible star. The second idea in the mind of Zel’dovich (1964) and Salpeter (1964) was
based on the light emitted by accretion. Accretion is a physical phenomenon in which the
surrounding matter (gas and dust) is set into rotation around the star. As the matter is
rotating, it settles naturally in the form of a disc called an accretion disc. With differential
rotation inside the disc, the material is losing angular momentum and falling inwards onto
the star. The falling material will feel the gravitational field imposed by the star as it falls,
thus being compressed and heated. The heated matter is able to radiate away some of its
energy. In the case of a black hole, the matter radiates constantly before going dark when
it crosses the event horizon. The radiation emitted by the infalling matter corresponds to a
luminosity, which is finite. Known as the Eddington limit, the maximum luminosity from
accretion is computed as

LEdd =
4πGmpc

σT
=

4πrgmpc3

σT
= 1.3× 1038

(
M

M�

)
erg · s−1 (1.6)

where M is the mass of the star, mp is the mass of the proton (heaviest particle possible in
the accreted material), and σT is the Thomson cross-section. This luminosity corresponds
to the equilibrium luminosity between the gravitational force and the radiation pressure.
Above this limit, the radiation pressure is stronger than gravity, and the radiating material
close to the black hole prevents the outer material to fall in. Below the Eddington limit,
the system radiates less and matter keeps falling in. LEdd is an upper limit on the accre-
tion powered luminosity for a spherical accretion. In reality, the accretion is not perfectly
spherical and the opacity based on the Thomson scattering may not be the dominant one.
Some systems can even be in the super-Eddington regime, L > LEdd.
If we assume that the accretion disc radiates as a black-body

L = 4πr2σT4 (1.7)

(1.6)
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where σ is the Stefan-Boltzman constant and we consider r = rg = GM/c2 for a black hole.
For a solar mass black hole, the temperature is

T ' 5× 107
(

M
M�

)1/4

K. (1.9)

Radiations with the above temperature correspond to an energy of E = 4.5keV, which is
in the X-ray band. Therefore, if a black hole is surrounded by an accretion disc emitting
as a black body, the latter would be observable by an X-ray telescope. The assumption of
a black-body radiation is valid if we consider that the disc is optically thick, meaning that
only the surface of the disc is able to radiate photons away. In a similar way to gamma-
ray observations, X-ray observations cannot be done on the ground. As the atmosphere is
blocking the X-rays, the only solution was to have space telescopes. The X-ray sky became
available to the community with the launch of Uhuru in 1970. This satellite discovered a
new type of systems called X-ray binaries or microquasars.

1.3.3 Stellar mass black holes

X-ray binaries are composed of a companion star orbiting around a stellar-mass compact
object (neutron star or black hole), where the accretion disc around the compact object is
made from the material of the companion. The main difficulty for such systems is to distin-
guish if the compact object is a black hole or a neutron star. The most straightforward way
to dispel any doubts is to know the mass of the compact object. If the latter is above 3M�,
the neutron star scenario is directly excluded. The first candidate to pass this criterion was
Cyg X-1, with a mass estimate of M ≥ 9.5M� for a system located at 2.5kpc ( Paczynski,
1974). With a more constrained distance, the compact object mass in the system is now
estimated at M ' 21M� ( Miller-Jones et al., 2021). This type of black hole is called a stel-
lar mass black hole and is the direct result of the full collapse of a star. Many black holes
of this kind where discovered in the past years via gravitational waves produced during
merger. Very recently, a stellar mass black hole was discovered in our galaxy. Panuzzo
et al. (2024) discovered a new stellar mass black hole located at a distance d = 590pc. This
close-by black hole was found using the data from the Gaia satellite. The high precision
of the astrometry gives a well-defined orbit allowing the authors to derive the mass of the
black hole. The orbit of the star is given in Fig. 1.12. With the orbital constrain, the mass
of the dark companion is estimated to be M = 33M�. This estimation on the mass ex-
cludes the possibility of a neutron star companion, however it is still possible that the dark
companion is a more exotic star.

Nevertheless, stellar mass black holes are not the only ones we find in the Universe.
The second black hole flavour is the supermassive black holes.

1.3.4 Supermassive black holes

Active Galactic Nuclei

Supermassive black holes6 are defined as black holes with a mass M ≥ 105M�. They are
believed to be at the centre of most galaxies, but their formation mechanism is not con-
strained yet. While many of them are in quiescence, some show large and strong jets and
are called Active Galactic Nuclei (AGN). One of the first observation of a jet from a galaxy
was observed by Heber D. Curtis in 1918. His report states the presence of “a curious
straight ray [...] apparently connected with the nucleus by a thin line of matter”, during
his observation of NGC4486 (M87) in optical. The rise of radio astronomy in the 1930s,

6also a great song by Muse
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FIGURE 1.12: Astrometry measurements of a star orbiting the newly discovered
stellar mass black hole, figure from Panuzzo et al. (2024).

FIGURE 1.13: Relativistic jet from M87 from Blandford et al. (2019).

allowed Karl Jansky to detect radio waves originating from galaxies. The field greatly
improved its observations when astronomers realised that multiple radio dishes could be
combined to increase the angular resolution. Thanks to continuous improvements, Jen-
nison and Das Gupta (1953) identified the origin of the radio emission in Cygnus A. The
radio source corresponds to two lobes equally separated from the centre of the galaxy, also
emitting radio waves.

As years went by, radio telescopes increased their angular resolution power and are
now able to probe the full scales of jets. In Fig. 1.13, we show the jet radius from M87 as a
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FIGURE 1.14: A) S-stars orbits around the Galactic centre, from Gillessen et al.
(2009). B) orbit of the star S2, from GRAVITY Collaboration et al. (2020). The black

cross marks the position of the SgrA*.

function of distance from the core. We can see on the figure that it is possible to probe the
very large scale r ∼ 107rS, but also the scale close to the core up to a few Schwarzschild
radii. Looking at the inner part of the jet raises questions about its origin and its potential
connection to the black hole.

Proving supermassive black holes existence

Supermassive black holes are black holes with extremely high mass. In order to know the
mass of the supermassive black hole, it is possible to use the exact same technique as for
stellar mass black holes. In the case of a supermassive black hole, the astrometry is an even
more complex task that for stellar mass black holes. Because supermassive black holes are
supposed to be located at the centre of galaxies, the astrometry technique can be used on
known galaxies. The “most obvious” target was the centre of the Milky Way. However,
even with only a distance of 8.2kpc, this target was already a challenge. Optical and UV
telescopes were of no use as the Galactic centre is darkened by the gas and dust. However,
radio, infra-red, X-rays, and gamma-rays are still able to pierce through the material to
probe the Galactic centre. The development of adaptive optics ( Babcock, 1953) had a
strong impact on the observations of the Galactic centre. These new optics lifted many
issues and unveiled the trajectory of stars one by one.

In Fig. 1.14a, we show the recorded trajectories of stars at the Galactic centre. 26 trajec-
tories are represented, they all indicate that stars are orbiting a dark companion. Within the
wide range of orbits, the most interesting one is the orbit of the S2 star. A zoomed-in view
of its trajectory is given in Fig. 1.14b. The star is monitored since 1992 and has a period of 15
years. This long monitoring allowed to see the full elliptic trajectory and even the preces-
sion of its orbit predicted by general relativity ( GRAVITY Collaboration et al., 2020). The
constrain given by the trajectory yields a dark companion mass of MSgrA? ' 4.3× 106M�.
Given the mass and the compactness of the region (θ ' 20µas) where the mass needs to
be, the prediction of a supermassive black hole is the most reliable one.
The observations in infrared and X-rays reveal the existence of flares near SgrA?. During
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FIGURE 1.15: A) Simultaneous near infrared and X-ray observations of a SgrA?

flare, from Eckart et al. (2006). B) Hotspot orbit around SgrA*, from GRAVITY
Collaboration et al. (2018). Data points are in grey while the best fit is in blue.

a simultaneous observations campaign, Eckart et al. (2006) revealed that when an X-ray
flare is detected an infrared counterpart is observed, see Fig. 1.15a. However, the opposite
is not true, infrared flares occur on average four times per day while X-ray flares are of the
order of once per day.

More recently, the GRAVITY Collaboration et al. (2018) reported the orbit of a near-
infrared flare, see Fig. 1.15b. The location of the flare is consistent with a hotspot orbiting
at the inner-most stable orbit, r = 7rg. The physical mechanism behind the flares is be-
lieved to be synchrotron radiation emitted by electrons. Flares are also observable in the
gamma-ray band for the radio galaxy M87 ( Aharonian et al., 2006), PKS 2155-304 ( Aha-
ronian et al., 2007) and many more. The variability and high energy flares point towards a
magnetospheric origin, where the energy density is high. This origin is also supported by
the timescales of the variability being close the light crossing time rg/c.

“Bring me that horizon”

On the quest of understanding and characterising supermassive black holes and their en-
vironment, the Event Horizon Telescope (EHT) collaboration tried to produce images at
the horizon scale. Thanks to the Very Long Baseline Interferometer (VLBI), the EHT col-
laboration was able to observe SgrA* and M87*, the radio sources at the core of SgrA and
M87. One of the holy grail of black hole observations is shown in Fig. 1.16.

In the figure, we see the radiation emitted by the plasma orbiting close to the black
hole. The origin of the observed emission is most likely coming from synchrotron radiation
emitted by relativistic electrons. The asymmetric brightness of the ring in both images is
presumably due to Doppler boosting. We note that while the global structure of the ring
can be trusted, the details should be considered with a pinch of salt as they depend on the
reconstruction method used. Both images do not show the black hole but the shadow (
Luminet, 1979; Falcke et al., 2000) left by the event horizon. The shadow corresponds to
the boundary of the emitting region and is larger than the event horizon itself. In curved
spacetime, photons travel along geodesics which can cross the event horizon. When this
happens, the photon is absorbed by the black hole and is not detected. The lensing of
photons artificially increases the size of the black hole, leaving behind a shadow. The
outer edge of this shadow is called the photon ring. The latter corresponds to the locus
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FIGURE 1.16: Event Horizon Telescope observations of the close environment of
the supermassive black holes M87? (left) and SgrA? (right). The images are re-
spectively from Event Horizon Telescope Collaboration et al. (2019) and The Event

Horizon Telescope Collaboration (2023).

where photon orbits are not bound any more to the black hole, and can escape to a distant
observer. The size of the photon ring is related to the black hole mass by

rph =
√

27rg =
√

27
GM
c2 . (1.10)

The above equation originally assumes that the emission is coming from an optically thin
disc. A recent study by Narayan et al. (2019) indicates that the photon ring does not de-
pendent on the status of the accretion of the disc. With the shadow of both M87? and
SgrA?, we can compute the mass of each supermassive black holes. For M87? and SgrA?,
the photon ring yields MM87? = 6.5× 109M� and MSgrA? = 4× 106M�. The result for
SgrA? is in agreement with the mass constrained by stellar dynamics. Further analysis on
the polarimetry of the horizon scale plasma indicates the existence of a large-scale poloidal
magnetic field. The EHT collaboration reported magnetic fields of B ∼ 1− 30G for M87? (
Event Horizon Telescope Collaboration et al., 2021), and B ' 30G for SgrA? ( Event Hori-
zon Telescope Collaboration et al., 2022). The presence of this magnetic field could have a
strong impact on the dynamics of the plasma in these regions, i.e. in the magnetosphere.

The results from the EHT indicate that a hot plasma orbits around black holes at the
horizon scale. This plasma emits infrared radiation and presents an asymmetric bright-
ness. It might also be responsible of the different flares and high variability observed at
different energies. Understanding the behaviour of this plasma could bring a lot of po-
tential answers for the different observed signatures. Therefore, studying the close en-
vironment, i.e. the magnetosphere of black holes, is essential if we want to explain the
observations.
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1.4 Concluding remarks

Stellar mass compact objects are born from extremely violent events in which a massive
star collapses on itself, whereas the formation of supermassive black holes is still not clear.
As a result, neutron stars and black holes are formed. Whether it is black holes or pulsars,
both compact objects exhibit emissions across the full electromagnetic spectrum, even up
to TeV energies. If we want to understand how this emission is produced, we need to look
at the close environment of both compact objects, where the energy density is the highest.
In black holes and pulsars, the highest energy density is inside the magnetosphere where
the gravitational force or the magnetic field are the strongest.
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1.5 [Français] Points clés du chapitre

1.5.1 Pulsars : étoiles à neutrons pulsantes

Dans ce chapitre, nous avons vu différentes observations entourant les objets compacts en
nous focalisant sur les étoiles à neutrons et les trous noirs. Ces deux types d’objets com-
pacts sont le résultat de l’effondrement d’une étoile sur elle-même à la fin de sa vie. Parmi
les étoiles à neutrons, on distingue une catégorie particulière appelée pulsars. Ce terme
désigne les étoiles à neutrons qui sont initialement détectés via leurs pulsations radio. Il
est possible de représenter l’ensemble des pulsars dans un unique diagramme appelé di-
agramme P-Ṗ. Grâce à la période P et sa dérivée Ṗ, on peut calculer trois paramètres
intrinsèques aux pulsars : l’âge τ, le champ magnétique de surface B? et la puissance Ė.
Les pulsars détectés peuvent tout d’abord être divisés en deux catégories : les pulsars
dits normaux et les pulsars millisecondes. La première catégorie correspond aux pulsars
présentant des caractéristiques similaires au premier pulsar découvert. La seconde caté-
gorie correspond à des pulsars dits recyclés qui sont des pulsars âgés où l’on suppose
qu’un épisode d’accrétion de matière provenant d’une étoile compagnon a eu lieu. Parmi
tous les pulsars détectés, un en a été particulièrement étudié : le pulsar du Crabe. Ce
dernier est une véritable pierre de Rosette pour les observations de pulsars. Ses pulsations
sont observées à toutes les longueurs d’onde, de la radio jusqu’aux rayons gamma. Les
pulsars produisant ces pulsations dans la bande gamma constituent une sous-catégorie
importante car elle contient les pulsars les plus énergétiques connus. Ce champ d’étude
est devenu accessible grâce au satellite Fermi-LAT qui observe dans la bande gamma entre
10 MeV et 300 GeV. La classification précédente est toujours valide pour ce type d’objets,
les pulsars gamma se divisent en pulsars gamma normaux et en pulsars gamma millisec-
ondes. Quelle que soit la sous-catégorie de pulsars gamma, ces objets sont des sources très
efficaces avec des taux de conversion entre la puissance de rotation et la luminosité gamma
allant de 1 à 100%. Les modèles théoriques doivent donc expliquer comment l’émission à
très haute énergie est produite et déterminer quel mécanisme en est responsable, une piste
très prometteuse est la magnétosphère. Ce puzzle vient récemment d’être complété avec la
validation des pulsars en tant qu’émetteurs au TeV. Après une première détection pour le
pulsar du Crabe et une seconde pour le pulsar Vela, il est désormais certain que les pulsars
peuvent accélérer des particules proche de la limite théorique.

1.5.2 Trous noirs

Un trou noir est défini comme une région de l’espace où la gravité est si forte que rien
ne peut s’en échapper, pas même la lumière. L’existence d’un tel objet astrophysique a
longtemps été un sujet de débat au sein de la communauté scientifique. Ce n’est qu’au
siècle dernier que le concept de trou noir est devenu concret. Prouver l’existence d’un
objet n’émettant aucune lumière n’est pas chose facile. Une méthode consiste à trouver un
système binaire dans lequel une étoile semble orbiter autour d’un objet massif invisible.
Une autre façon est d’observer la lumière émise par le phénomène d’accrétion. Pendant
ce processus, le matériel en chute est chauffé et rayonne, ce qui permet d’associer à ce
rayonnement une luminosité et une température.

Pour les trous noirs, deux catégories sont à distinguer : les trous noirs de masse stel-
laire et les trous noirs supermassifs. Les trous noirs de masses stellaires sont des trous
noirs dont la masse varie de trois masses solaires à quelques dizaines de masses solaires.
Les trous noirs sont qualifiés de supermassifs lorsque la masse de l’objet est supérieure à
10 5 M�. Le mécanisme de formation de ces objets supermassifs reste inconnu à ce jour.
On suppose que de tels objets se trouvent au centre des galaxies. Beaucoup d’entre eux
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sont dans des états quiescents, mais certains possèdent des jets puissants et sont alors ap-
pelés Noyaux Actifs de Galaxies. La preuve de leur existence a été apportée par l’étude
des orbites des étoiles au niveau du centre galactique. Cette étude a conclu que ces étoiles
orbitent autour d’un compagnon invisible de masse MSgrA? ' 4.3× 106M�, situé dans une
région très compacte. Au vu de la taille de la région et de la masse nécessaire, un trou noir
supermassif est une hypothèse raisonnable.
Cette source présente également une variabilité importante avec des éruptions en infrarouge
et en rayons X. Une campagne d’observation menée par la collaboration GRAVITY a in-
diqué que les éruptions vues en infrarouge étaient compatible avec un point chaud grav-
itant sur l’orbite stable la plus interne. D’autres noyaux actifs de galaxies présentent des
éruptions, certaines étant même produites dans la bande gamma. L’observation des trous
noirs supermassifs a pris un tournant récemment grâce à la collaboration EHT. En utilisant
de l’interférométrie à très longue ligne de base, la collaboration a pu produire des images
des abords des trous noirs SgrA? et M87. Ces images montrent qu’un plasma chaud orbite
autour des trous noirs à l’échelle de l’horizon. Ce plasma émet un rayonnement infrarouge
et présente une luminosité asymétrique. Il pourrait également être à l’origine des dif-
férentes éruptions et de la grande variabilité observée à différentes énergies. Comprendre
le comportement de ce plasma pourrait apporter de nombreuses réponses aux différentes
signatures observées. Par conséquent, l’étude de l’environnement proche, c’est-à-dire de
la magnétosphère des trous noirs, est essentielle pour expliquer ces observations.

1.5.3 Résumé

Les objets compacts de masse stellaire naissent d’événements extrêmement violents au
cours desquels une étoile massive s’effondre sur elle-même. Il en résulte la formation
d’étoiles à neutrons et de trous noirs. Qu’il s’agisse de trous noirs ou de pulsars, ces deux
objets compacts émettent dans tout le spectre électromagnétique, jusqu’à des énergies de
l’ordre du TeV. Si nous voulons comprendre comment cette émission est produite, nous
devons examiner l’environnement proche de ces objets compacts, là où la densité d’énergie
est la plus élevée. Dans les trous noirs et les pulsars, cette densité d’énergie maximale
se trouve à l’intérieur de la magnétosphère, là où la force gravitationnelle ou le champ
magnétique sont les plus forts.
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In Chap. 1, we discussed the observational signatures associated with pulsars and black
holes. However, behind any signatures must exist a physical phenomenon or mechanism
responsible for the emission. In this chapter, we will see the theoretical developments
made by the community to try to have a better understanding of these objects. In Sect. 2.1,
we will focus on pulsar theory from the very first models up to current models. We will
also detail the physical mechanisms at play in relativistic magnetospheres. In Sect. 2.3, we
will describe some aspects of black hole theory and we will see that it is the general rela-
tivistic analogue of pulsar theory. Some valuable reviews on pulsar theory can be found in
Cerutti and Beloborodov (2017) and Philippov and Kramer (2022).
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2.1 First models

In order to tackle the theory of relativistic magnetospheres, we will rely on Maxwell’s
equations and on plasma processes. Maxwell’s set of equations is the following

∂B
∂t

= −c∇× E (2.1)

∂E
∂t

= c∇× B− 4πJ, (2.2)

∇ · B = 0 (2.3)

∇ · E = 4πρ (2.4)

where B is the magnetic field, E is the electric field, J is the current density and ρ is
the charge density. This set of equations describes the time evolution of an electromag-
netic field in a plasma of charged particles. Knowing the behaviour of the electromagnetic
field is of great interest to explain the various observational signatures. With relativistic
magnetospheres being among the most extreme environments in terms of energy densi-
ties (magnetic and gravitational), Quantum Electrodynamics (QED) processes play a very
important role. Therefore, they should be considered during the development of mod-
els with processes such as pair production (via Breit-Wheeler process) or photon-electron
scattering (Compton and inverse Compton scattering).

2.1.1 Vacuum magnetosphere

One of the very first frameworks of pulsar theory was to consider the pulsar to be in vac-
uum. This assumption comes from Hoyle et al. (1964). Their argument relies on gravity
and the propagation of electromagnetic waves after the formation of the neutron star. The
authors state that “the strong gravitational field of the star creates a near-vacuum immedi-
ately outside itself, and the electromagnetic waves are free to travel out into space. More-
over, any residual gas outside the star would simply be swept away by the pressure of the
electromagnetic waves”.

The first models ( Pacini, 1967; 1968; Ostriker & Gunn, 1969) were based on this
assumption. Even if the vacuum assumption is not correct, it was a first useful approxi-
mation for the pulsar theory. The global picture of a pulsar is the following. A pulsar is a
rotating and highly magnetised neutron star having two characteristic axes, the magnetic
axis or magnetic moment µ and the rotation axis with an angular velocity Ω. In order to
have a simpler picture we will not consider an oblique rotator but an aligned one (µ ‖ Ω).
In this picture, we lose the pulsation part of the emission as the problem is now axisymmet-
ric with respect to the spin axis Ω. We consider the neutron star to be a perfect conductor
with a magnetic field B? thus, we can write E′? = 0 in the corotating frame where E′? is the
electric field inside the star. This condition allows us to know the electric field E? in the lab
frame with

E′? = E? +
v× B?

c
= 0 (2.5)

where the velocity is v = Ω× r. The analogy can be made with an unipolar inductor or
Faraday disk. We consider a perfect conducting disc rotating with the angular velocity
Ω immersed in a vertical magnetic field BF. The rotation of the metallic disc forces the
charges inside it into rotation. The different charges will move to balance the Lorentz force
inducing an electric field inside the disc, Edisc = −v× BF/c (rotating frame). The result is
a potential drop and a charge separation. For Ω · B > 0, negative charges are located close
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to the “poles” of the disc (spin axis) while positive charges are localised on the outside of
the disc. This is the same situation inside a neutron star, where the negative charges will
be located at the poles and the positive ones near the equator.

The full description of a rotating dipole was derived by Deutsch (1955). The solution
describes the external electric field (r > r?). To do so, we need to solve Poisson’s equation
in vacuum∇2V = 0. The boundary condition for this equation is set by the potential drop
∆V across the neutron star surface in spherical coordinates.

∆V =
∫
C

E · dl =
∫ θ

0
Eθr?dθ′ (2.6)

where Eθ = −vφBr/c. This comes from Eq. (2.5) with Br = 2µ cos θ/r3
? the dipolar surface

magnetic field and vφ = Ωr? sin θ. The potential difference is

∆V = V(r?, θ)− V(r?, 0) =
Ωµ

cr?
sin2 θ (2.7)

This boundary condition is then used to solve for the full electric potential

∀r ≥ r?, V(r, θ) =

(
Vmono +

2Ωµ

3cr?

)
r?
r
+

Ωµ

cr?

( r?
r

)3
(

sin2 θ − 2
3

)
(2.8)

where Vmono = V(r?, 0) is the contribution coming from a monopole. If we assume
that the star has a zero net charge at its formation then the net charge is Q = 0 for
Vmono = −2Ωµ/3cr?, removing the first term on the right-hand side of Eq. (2.8). Finally,
the general expression of the electric field E = −∇V is

Er =

(
Vmono +

2Ωµ

3cr?

)
r?
r2 +

Ωµ

c
r2
?

r4

(
1− 3 cos2 θ

)
(2.9)

Eθ = −
Ωµ

c
r2
?

r4 sin(2θ) (2.10)

Eφ = 0 (2.11)

The radial component presents a discontinuity at the stellar boundary and causes the pres-
ence of a surface charge 4πΣ = Er − E?

r . Taking E?
r = vφB?

θ /c and B?
θ (r?, θ) = µ sin θ/r3

? for
the surface dipole magnetic field,

Qint =
1

4π

∫∫
E?

r r2
? sin θdθdφ =

2Ωµ

3c
(2.12)

where Qint is the interior net charge of the star. For the surface net charge,

4πΣ = −2Ωµ

cr?
cos2 θ (2.13)

giving the total surface charge

Q? = −
2Ωµ

3c
= −Qint. (2.14)

The star has a zero net charge due to the perfect counterbalancing of the surface charge by
the interior charge ( Michel & Li, 1999). The full expression of the electric and magnetic
field for the vacuum solution is
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(A) Radial electric field

(B) Polar electric field

FIGURE 2.1: Vacuum electric field for a zero net charge of an aligned rotator along
the z-axis. Figure taken from Cerutti and Beloborodov (2017).

Br = 2B?

( r?
r

)3
cos θ (2.15)

Bθ = B?

( r?
r

)3
sin θ (2.16)

Bφ = 0 (2.17)

Er =
Ωr?B?

c

( r?
r

)4 (
1− 3 cos2 θ

)
(2.18)

Eθ = −
Ωr?B?

c

( r?
r

)4
sin(2θ) (2.19)

Eφ = 0 (2.20)

with the equatorial surface magnetic field B? = µ/r3
?. This electromagnetic configuration

is only valid in vacuum with a zero net charge (Q = 0) and gives a quadrupolar electric
field (Fig. 2.1). If Q 6= 0, the electric field has a monopole component.

The solution can be generalised for an oblique rotator with an angle (̂µ, Ω) = χ. We
can compute the radial Poynting flux of the generalised solution ( Pacini, 1968),

Lvacuum =
∫∫

Π · dS =
∫∫

c
(

E× B
4π

)r

· dS =
2
3

µ2Ω4

c3 sin2 χ. (2.21)
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FIGURE 2.2: Sketch of the force-free magnetosphere for an aligned rotator. Figure
taken from Goldreich and Julian (1969).

We can see that for the aligned case χ = 0, there is no power emitted. The emission is
maximum for an orthogonal rotator.

2.1.2 Beyond the vacuum approximation: Force-free magnetosphere

The main flaw of the previous solution is regarding the vacuum approximation. For a pul-
sar, we have a strong magnetic field, meaning that particles are magnetised and have a
maximum drift velocity vdrift = E× B/B2. The movement of particles is thus constrained
in the perpendicular direction of the magnetic field lines, but not in the direction parallel
to the magnetic field. A strong parallel electric field develops at the surface of the star
E‖ = E · B 6= 0. This component is unscreened and is able to accelerate particles (electrons
or ions) from the crust. The lifting of particles was found possible from the vacuum so-
lution by Goldreich and Julian (1969) when they realised that the strength of the parallel
electric field can easily exceed the gravitational force. In their model, Goldreich and Julian
(1969) considered a magnetosphere filled with plasma for an aligned rotator. The sketch
of their model is shown in Fig. 2.2. These results still represent the basis of modern pulsar
theory.

For this model, we need to consider a steady-state solution. With this assumption,
the electric field vanishes in the frame of the moving plasma so that, E · B = 0 thus,
the corotating electric field is E = Ecor = −(v × B)/c = −(Ω × r) × B/c. The light-
cylinder, RLC = c/Ω, corresponds to the cylindrical radius at which the corotation veloc-
ity is vcor = c. For r > RLC, corotation cannot be sustained by the plasma as its corotation
velocity would be greater than the speed of light. Regarding the magnetic field lines an-
chored on the surface, two configurations are possible, either they are in the corotating
magnetosphere (inside the light-cylinder) and are closed, or they are crossing the light-
cylinder and open up to infinity. The opened field line region is referred to as the wind
zone and the closed region as the corotating magnetosphere. With the steady-state and
axisymmetric assumptions, magnetic field lines are also isorotation surfaces via Ferraro’s
law ( Ferraro, 1937), meaning that field lines have a constant angular velocity. Thanks to
the corotating electric field, Goldreich and Julian (1969) derived a charge density
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ρGJ =
1

4π
∇ · Ecor ' −

Ω · B
2πc

=
B?

2πc

( r?
r

)3 (
3 cos2 θ − 1

)
(2.22)

where ρGJ is often called the Goldreich-Julian charge density, derived for a dipole magnetic
field. It translates into a number density nGJ ∼ ρGJ/e (Goldreich-Julian density). This
corresponds to the required density needed to screen the parallel electric field. This is
equivalent to maintaining the corotation. In the wind region, electrons are flowing out and
drive a current density JGJ = cρGJ which induces a toroidal magnetic field. This exerts a
spindown torque on the pulsar, which can be computed as the net radial Poynting flux
carried outwards. Estimates of the Poynting flux were found via simulations, a long time
after the seminal paper of Goldreich and Julian (1969), by Timokhin (2006) and Gruzinov
(2005). The estimate is,

L0 =
∫∫

c
(

Ecor × B
4π

)
· dS =

µ2Ω4

c3 (2.23)

The aligned rotator configuration radiates energy in the form of a Poynting flux, which
was not the case for the vacuum solution.

We know that the magnetic field in the magnetosphere is strong, thus a reasonable
question to ask is if the energy of the system is dominated by the magnetic field. To have
the answer, we can compute the different ratios for the energy densities involved.

Ugrav

UB
=

∣∣∣∣−GMmp/r?
B2
?/8π

∣∣∣∣ ≈ 10−21 Ukin

UB
≈ nGJγmpc2

B2
?/8π

≈ 10−8 (2.24)

with B? = 109 G, M = M�, nGJ ' B?/2πRLCe ≈ 10−11 cm−3, γ = 10 and
P = 2π/RLC = 1 ms. These ratios confirm the fact that the plasma is dominated by the
magnetic energy in the magnetosphere. Under these assumptions, the plasma is described
by the “force-free electrodynamics”. The force-free electrodynamics is a limit of the rel-
ativistic magnetohydrodynamics (MHD). It corresponds to a regime where the plasma is
magnetically dominated, leading to the Lorentz force being the dominant one compared
to the pressure, inertia, and gravity terms (Eq. 2.24). The force-free regime is derived using
the momentum equation

ρ
(

∂tu + (u ·∇) u
)
= −∇P +

J× B
c

+ ρE− ρ∇φG (2.25)

(2.24)
=⇒ ρ∂tu =

J× B
c

+ ρE = 0 (2.26)

where ∇P, J × B/c + ρE, ρ∇φG are the pressure gradient, the Lorentz, and the gravity
forces. In this framework, we assume that the inertia of the plasma is small. The force-free
condition is written in a more compact way as

Fµν Iν = 0 (2.27)

where Fµν is the electromagnetic tensor and Iν is the 4-current. Two force-free conditions
can be expressed from Eq. (2.27). Separating the temporal and spatial part give

E · J = 0 (2.28)

ρE +
J× B

c
= 0 (2.29)
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The first condition implies that there is no dissipation in virtue of the Poynting flux
theorem. The plasma does not gain energy from the dissipation of the current, and parti-
cles are not accelerated. The second condition implies that the Lorentz force governs the
dynamics of the plasma. From Eq. (2.29), we also have E · B = 0. The parallel electric field
is perfectly screened in the magnetosphere, and deviations from this condition should be
small and narrow in space. Thanks to these conditions and Maxwell’s equations, an ana-
lytical expression of the current density can be derived ( Blandford, 2002),

J =
c

4π
∇ · E

(
E× B

B2

)
+

c
4π

(
B · (∇× B)− E · (∇× E)

) B
B2 (2.30)

The full demonstration to obtain this analytical expression is given below in Demo.1.

Demonstration 1: Current density in force-free electrodynamics

To derive the force-free current density, we will use the following set of equations,
namely Maxwell’s equations and the second force-free condition

∂B
∂t

= −c∇× E
∂E
∂t

= c∇× B− 4πJ ∇ · E = 4πρ ρE +
J× B

c
= 0

For the derivation, we start with E · B = 0⇒ ∂t (E · B) = 0

∂t (E · B) = B · ∂tE + E · ∂tB = 0
(2.1), (2.2)⇐⇒ cB · (∇× B− 4πJ)− cE · (∇× E) = 0 (2.31)

Then, we extract J · B which is a crucial term for the rest of the derivation.

J · B =
c

4π
(B · (∇× B)− E · (∇× E)) (2.32)

The next step is to cross the second force-free condition with B.

(2.29)×B
=⇒ ρE× B +

1
c
(J× B)× B = 0

⇐⇒ ρE× B +
1
c
((J · B)B− (B · B) J) = 0 (2.33)

Finally, injecting J · B gives the full expression of the current density

(2.4), (2.32)⇐⇒ J =
c

4π
∇ · E

(
E× B

B2

)
+

c
4π

(
B · (∇× B)− E · (∇× E)

) B
B2 (2.34)

The force-free current density only depends on the electric and magnetic fields, the
contribution is purely electromagnetic.

The total current density is expressed in the form of an effective Ohm’s law ( Gruzinov,
1999; Blandford, 2002). Eq. (2.30) is composed of two terms

J = J⊥ + J‖ (2.35)
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where

J⊥ = c
∇ · E

4π

(
E× B

B2

)
(2.36)

J‖ =
c

4π

(
B · (∇× B)− E · (∇× E)

) B
B2 . (2.37)

J⊥ corresponds to the current flowing across the field lines, while J‖ is flowing along them.
Physically speaking, the parallel term acts on E‖ by removing any excess of parallel electric
field. For the perpendicular term, it corresponds to the current produced by the advection
of the charge density with the drift velocity E× B. The drift velocity must remain smaller
than the speed of light, giving another condition

B2 − E2 > 0. (2.38)

We previously noted that the force-free condition E · J = 0 implies no dissipation.
However, in general we can have a topology where the above condition can be violated,
‖B‖ = 0 ( Uchida, 1997). When this is the case, the force-free approximation breakdowns
and we have a localised dissipation. It is possible to do an extension of the force-free
regime to have a dissipation term. Lyutikov (2003) gives the resistive force-free equations.
The main idea is to have a modified Ohm’s law to account for the resistivity noted ξ. Un-
der some assumptions detailed in Lyutikov (2003), the new Ohm’s law and current density
are

(E · B) = ξ

γ
(J · B) (2.39)

J =
c

4π
∇ · E

(
E× B

B2

)
+

1

ξ
√

1−
(E×B

B2

)2
(E · B) B

B2 (2.40)

The ideal force-free case is recovered for ξ −→ 0 in Ohm’s law, see Lyutikov (2003) for
the full derivation. With ξ = 0, the Ohm’s law becomes E · B = 0 and the ideal current is
recovered via Demo. 1.

2.1.3 Michel monopole

The next step for the community of pulsar theory was to provide analytical solutions to
model the force-free magnetosphere. The equation governing the electromagnetic field
in this regime is known as the pulsar equation. This equation is derived in cylindrical
coordinates (R, φ, z), under the axisymmetric and steady-state assumptions, from

ρE +
J× B

c
= 0

which is the force-free condition. The next step is to decompose the magnetic field into a
poloidal and a toroidal component,

B = Bp + Bφ (2.41)

The expressions of Bp and Bφ are derived from the magnetic flux function Ψ and the cur-
rent function I. The magnetic flux function gives

2πΨ =
∫∫

B · dS =
∮

A · dl = 2πRAφ. (2.42)
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Then the magnetic vector potential Aφ is

Aφ =
Ψ
R

(2.43)

with R = r sin θ the cylindrical radius. From the current function, we have

I =
∫∫

J · dS =
∫∫

Σ

c
4π

(∇× B) · dS =
c

4π

∮
C

B · dl =
2πRc

4π
Bφ (2.44)

therefore,

Bφ =
I
R

. (2.45)

We can give the full description of B:

B = ∇×A =


− ∂Aφ

∂z
∂AR
∂z − ∂Az

∂R

1
R

∂(RAφ)
∂R

 =


− 1

R
∂Ψ
∂z

∂AR
∂z − ∂Az

∂R
1
R

∂Ψ
∂R

 = Bp + Bφ (2.46)

written in a simpler expression

B =
1
R
∇Ψ× eφ + Bφ (2.47)

The associated electric field and charge density are computed from the corotation assump-
tion

E = −v× B
c

= − r sin θ

c
Ωeφ × B = − R

RLC
eφ × B (2.48)

ρ =
∇ · E

4π
= − R

4πRLC
∇ ·

(
eφ × B

)
(2.49)

The next step to derive the pulsar equation is to assume that in the rotating frame, we
have a stationary vector field, ∂t = −Ω∂φ. Under this hypothesis, we can express the
current density

∂tE = −ΩR
RLC

∂φ

(
eφ × B

)
= c∇× B− 4πJ

⇐⇒ J =
c

4π
∇× B− ΩR

4πRLC
∂φ

(
eφ × B

)
(2.50)

We now have all the key ingredients and can inject everything in the force-free condi-
tion. Eq. (2.29) reduces to the form (

∇× B′
)
× B = 0 (2.51)

where

B′ =

(
1− R2

R2
LC

)
∇Ψ× eφ

R
+

I
R

eφ (2.52)

We can inject Eqs. (2.47) and (2.52) in (∇× B′)× B = 0 in order to get
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(
1−

(
R

RLC

)2
)(

∂2Ψ
∂R2 +

∂2Ψ
∂z2

)
−
(

1 +
(

R
RLC

)2
)

1
R

∂Ψ
∂R

+ I
∂I
∂Ψ

= 0 (2.53)

This equation is the so-called pulsar equation ( Michel, 1973; Scharlemann & Wagoner,
1973) and relies on two unknowns Ψ(R, z) and I(Ψ). The analytical solution of the pulsar
equation is actually unknown, the only exception being for a rotating monopole. In this
case, the analytical solution is known as the Michel monopole ( Michel, 1973). In itself, the
solution is surprisingly simple. We assume the following magnetic flux function

Ψ = Ψ0 (1− cos θ) (2.54)

where cos θ = z/
√

R2 + z2. The given flux function corresponds to the flux of B through
a circle of radius R and at the height z. The current function is then derived by injecting
Eq. (2.54) in the pulsar equation.

∂RΨ =
Ψ0R cos θ

R2 + z2 ∂2
RΨ =

Ψ0
(
z2 − 2R2)

(R2 + z2)2 cos θ ∂2
zΨ =

3Ψ0R2

(R2 + z2)2 cos θ (2.55)

We can inject the expressions of the derivatives in Eq. (2.53),

− 2R2Ψ0

R2
LC (R2 + z2)

cos θ = −I
∂I
∂Ψ

= I
∂I

Ψ0∂ cos θ
(2.56)

written in the differential form

I dI = −2Ψ2
0

R2
LC

cos θ dcos θ (2.57)

The above expression can be integrated to give the current function

I = ± Ψ0

RLC
sin2 θ (2.58)

The current function has two possible signs depending on the orientation of the monopole,
Ω · B > 0 (aligned) or Ω · B < 0 (anti-aligned). With the expression of I, we can finally
give Michel’s solution in spherical coordinates:

Br = B?

( r?
r

)2
(2.59)

Bθ = 0 (2.60)

Bφ
(2.45)
= ∓B?

(
r?

RLC

)( r?
r

)
sin θ (2.61)

Er = 0 (2.62)
Eθ = Bφ (2.63)
Eφ = 0 (2.64)

(2.65)

where Ψ0 was replaced by the total flux Ψ0 = B?r2
?. Since the solution is analytic, we can

compute the current density associated with this solution,
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JM =
c

4π
(∇× B) = −Ω · B

2π
er = cρGJer. (2.66)

The current density is purely radial and indicates that the plasma flows outwards radially,
carrying out the fiducial Goldreich-Julian charge density.

Coming back to the solution, the two possible signs for I and thus of Bφ are convenient
to produce an alternative configuration. This solution known as the split monopole now
satisfies ∇ · B = 0. We remove the forbidden magnetic monopoles by using the negative
sign of Bφ in one hemisphere and the positive sign of Bφ in the other one. The current den-
sity is impacted by the reversal of B and becomes negative. Therefore, the jump in B at the
equator produces a positively charged current sheet which is responsible for carrying the
return current to close the electric circuit. A representation of the split-monopole solution
is given in Fig. 2.3.

FIGURE 2.3: Exact solution of the pulsar equation known as the split-monopole.
Left: 2D axisymmetric configuration, magnetic field lines are in solid black lines
while the contour arrows show the flow of the current density (Figure taken from
Beskin 2010). Right: 3D representation of the winding up of field lines outside the

light-cylinder (Figure taken from Cerutti and Beloborodov 2017).

The solution can be decomposed into two regions with respect to the light-cylinder. If
the cylindrical radius R = r sin θ � RLC, the magnetic field lines are almost radial near the
star. However, if R = r sin θ � RLC, the field lines wind up with radius and the magnetic
field is mainly toroidal. The spindown power of the solution can be computed and the
Poynting flux is
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LM =
c

4π

∫∫
(E× B) · dS =

c
4π

∫∫
r2 sin θ (E× B) · er dθdφ

=
c
2

∫ 1

−1
r2B2

φ dcos θ =
2c

3RLC
B2
?r4

? =
2c

3R2
LC

Ψ2
0 (2.67)

The solution also has a radial Poynting flux, indicating that the star is braking. This result
was generalised to the oblique rotator by Bogovalov (1999) and was found identical. The
rotational losses of the split monopole do not depend on the inclination angle χ between
the spin axis Ω and the magnetic axis µ.

2.2 Pulsar magnetosphere

In this section, we describe the current understanding and models proposed by the com-
munity to describe pulsar magnetospheres.

2.2.1 Historical simulations

In the previous section, we derived the pulsar equation (Eq. 2.53) and gave an analytical
solution. Contopoulos et al. (1999) were able to derive a numerical solution of the pulsar
equation for the aligned dipole. This solution was obtained thanks to an iterative method
using dipolar boundary conditions at the inner boundary (surface of the star). The solution
was later reproduced by Gruzinov (2005). The solution was not continuous at the light-
cylinder, and some numerical treatment was performed to have a smooth solution at the
light-cylinder below a numerical error threshold. This stationary solution was improved
by Timokhin (2006), giving a set of new solutions for the aligned rotator. A few months
after these new solutions, Spitkovsky (2006) performed the first time-dependent force-free
simulations of a pulsar magnetosphere for both the aligned and oblique configuration.
This simulation marks the beginning of time-dependent pulsar modelling. Before diving
into the realm of numerical simulations of pulsar magnetospheres, we remind the global
picture of the magnetosphere.

Figure 2.4 shows the full axisymmetric magnetosphere. The magnetic field configu-
ration is a dipole with magnetic field lines anchored on the stellar surface. The surface
magnetic flux function is

Ψ (r?, θ) = B?r2
? sin2 θ. (2.68)

The light-cylinder radius is noted RLC, at this radius a corotating particle has a velocity
equal to the speed of light. Inside the light-cylinder where the field lines are closed, the
plasma is in corotation with the star (i.e. the corotating magnetosphere), and the magnetic
field is poloidal Bφ = Jp = 0. Outside of these closed field lines, the plasma cannot
maintain the corotation. The result is in an outflowing plasma along open field lines in
the wind zone where the magnetic field is toroidal. If we consider r � RLC, this region
is quasi-identical to the monopole solution with a poloidal current density and a toroidal
magnetic field. One can identify a unique set of field lines closing exactly at the light
cylinder, this peculiar field line is called the separatrix. The approximate location of the
separatrix can be computed using the vacuum dipole solution as

sin2 θpc =
r?

RLC
(2.69)
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FIGURE 2.4: Schematic view of the force-free magnetosphere in the axisymmetric
configuration. Figure taken from Cerutti and Beloborodov (2017).

where θpc is the polar angle defined with respect to the rotation axis of the star. This angle
gives the angular size of the polar cap and indicates where the footpoints of open field
lines are located. In plasma-filled simulations, this angle is not equal to the vacuum one,
as there is a slight inflation of the closed region. This bundle of magnetic field lines carries
a magnetic flux Ψpc outwards. The parameter Ψpc will be crucial in the Sect. 5.2 and is
expressed as (Eq. 2.68)

Ψpc = B?r2
? sin2 θpc =

r3
?

RLC
B?. (2.70)

The field lines associated with the wind zone represent the active region of the mag-
netosphere. The consequence of that is a torque exerted on the star which spins it down.
An important aspect of the dipole configuration is at the equator where the magnetic field
switches sign and thus, goes to zero. In this exact region called the current sheet, the force-
free assumptions break down as B2 < E2. The physics happening in this region is not
captured in force-free and can have a strong impact on the solution. However, the current
sheet must exist in order to close the electric circuit, it is similar to the equatorial part of the
split monopole. Lyubarskii (1990) showed that this current sheet is unique and extends up
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to infinity. That author also showed that the separatrix has two branches inside the light
cylinder. They merge into a single one, i.e. the current sheet, after the light cylinder. The
point of connection is called the Y-point and links the two parts of the magnetosphere.

Force-free simulations do not exhibit dissipation by construction, but they are valuable
for studying the global structure of the magnetosphere as well as the spin-down power. A
good agreement was found between several groups with various numerical techniques on
the time-dependent structure of the magnetosphere ( Spitkovsky, 2006; Parfrey et al., 2012;
Pétri, 2012). The theoretical picture shown in Fig. 2.4 is recovered by all studies. They also
exhibit the presence of a current sheet with a strong return current. However, there is
a discrepancy about the location of the Y-point. Mahlmann and Aloy (2022) studied the
numerical diffusion of force-free simulations. Their experiment was looking at the impact
of the electric charge reconstruction scheme. They used a charge conservation scheme (CC)
and a local charge reconstruction scheme (LCR). In the CC scheme, the set of equations is

∂tB = −∇× E− c2
Ψ∇Ψ (2.71)

∂tE = ∇× B + c2
Φ∇Φ− J (2.72)

∂tΨ = −∇ · B− κΨΨ (2.73)
∂tΦ = ∇ · E− ρ− κΦΦ (2.74)
∂tρ = −∇ · J. (2.75)

where Φ, Ψ are scalar potentials, cΨ, cΦ are advection speeds and κΦ, κΨ are damping con-
stants. Φ is used to handle the errors to ∇ · E = ρ, Ψ has the same role for ∇ · B = 0. In
the LCR scheme, Eq. (2.75) is not solved and the charge density is directly computed from
ρ = ∇ · E. A parameter α measures the advection (τa) and diffusion (τd) timescales for
cleaning errors, α = τd/τa. Mahlmann and Aloy (2022) found that numerical diffusion im-
pacted the location of the Y-point. If the Y-point is inside the light-cylinder, this indicates
that more field lines are opened, thus the polar cap is wider and more flux is carried out by
the wind. The situation is the opposite in the case of a Y-point outside the light-cylinder.

FIGURE 2.5: Left: Maps of the toroidal magnetic field for different charge recon-
struction schemes. Magnetic field lines are the solid black lines, and the theoretical
light-cylinder is the vertical black line. Right: Poynting flux (solid lines) of each
simulation averaged over ∆t = 1.3P. Figure taken from Mahlmann and Aloy

(2022).

This statement is shown in Fig. 2.5 where the Poynting flux is shown in the rightmost
panel. The leftmost simulation has a Y-point close to the theoretical light-cylinder, resulting
in a Poynting flux equal to L0. The right simulation has a Y-point deeper inside the light-
cylinder and we see more field lines opened. Its Poynting flux is larger than for the left
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FIGURE 2.6: Results of 3D simulations of the oblique rotator. Left: snapshot of
magnetosphere where χ = 60◦. Magnetic field lines are in black solid lines, a flux
tube is shown in white lines, the toroidal and perpendicular magnetic fields are re-
spectively in the horizontal and vertical plane. Right: spindown power depending

on the inclination angle χ. (Figure taken from Spitkovsky, 2006).

simulation. Even if the Poynting flux is impacted by the location of the Y-point in the
simulation, it represents a valuable quantity.

With 2D simulations of the aligned rotator, the other step was to perform 3D force-
free simulations of the oblique rotator to model an active pulsar. From Fig. 2.6, two main
results emerge from 3D simulations ( Spitkovsky, 2006; Kalapotharakos & Contopoulos,
2009; Pétri, 2012): the current sheet is not straight and the spindown depends on the
inclination angle. The current sheet has the shape of a ballerina skirt, this is reminiscent of
the heliospheric current sheet but in a relativistic context. Regarding the spindown losses,
Spitkovsky (2006) proposed the following relation

L = L0(1 + sin2 χ) (2.76)

where L0 = cB2r6
?/R4

LC. It has the same dependence on the physical parameters of the
pulsar as in the vacuum spindown power (Eq. 2.21). Even for the aligned case (χ = 0◦),
the pulsar has a spin-down power. This was previously the case in the split-monopole
solution.

Unfortunately, force-free simulations were not enough to unveil the great mystery
behind pulsars and their emission. The main reason comes from the method being
dissipation-free. No energy can be exchanged or converted from one reservoir to another,
which is true everywhere in the magnetosphere except where the force-free approxima-
tion breaks down. We previously mentioned the current sheet as being the region where
the force-free regime is violated. Inside it, the magnetic field goes to zero and the plasma
becomes unmagnetised. Consequently, the plasma energy density overtakes the magnetic
energy density, Ukin � UB. The plasma in this region is governed by kinetic effects, thus
the simulation should consider the pressure and inertia of the plasma as well as a finite
resistivity resulting in a localised dissipation of energy. The current sheet could be tear-
ing unstable and could suffer from magnetic reconnection ( Lyutikov, 2003) producing a
non-thermal distribution of particles. One can add an artificial resistivity in force-free sim-
ulations ( Komissarov, 2006; Li et al., 2012; Parfrey et al., 2012) or even do full MHD
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simulations ( Komissarov, 2006; Tchekhovskoy et al., 2013). However, it will still not be
sufficient to study the acceleration and radiation of particles.

2.2.2 QED processes and radiations

Force-free simulations were incredibly useful for the pulsar theory and allowed to do the
first time-dependent simulations of such an extreme environment. However, due to its
limitations, the community had to use a different kind of simulations to study pulsar mag-
netospheres. To study the dissipation and emission produced in the magnetosphere, the
community had to change strategy and look at what the plasma community was doing.
The result of this is the use of Particle-In-Cell (PIC) codes. This type of simulation, widely
used since the late 1950s by the plasma community, was exactly what was needed. PIC
simulations allow to have an ab-initio kinetic modelling of the magnetosphere by having
Lagrangian particles in an Eulerian simulation. The full description of the PIC method is
given in Sect. 3.3. This switch of paradigm was encouraged by the observational side. Ob-
servations show a significant conversion of rotational energy in highly energetic photons,
especially gamma-ray photons. In order to explain the production of gamma-rays, we need
to know where particles are accelerated in the magnetosphere. The acceleration of particles
occurs in regions where E · B 6= 0, equivalent to the development of E‖. But also in regions
where E2 > B2 through magnetic reconnection. We remind that the parallel electric field
is unscreened if ρ� ρGJ. The unscreened electric field at the stellar surface allows particle
extraction with ‖E‖‖ ∝ B?Ω. This extraction injects a significant density, but this mecha-
nism is not strong enough to fill the full magnetosphere with plasma. The strong E‖ at the
surface accelerates particles up to large Lorentz factors. The full potential drop across the
polar cap can be expressed using the corotating electric field, E = − (Ω× r)× B/c, as

Φpc =
µΩ2

c2 . (2.77)

If a particle were to experience this full potential drop, the Lorentz factor it would reach
is

γpc =
eΦpc

mec2 ≈ 2.6× 108
(

B?

107G

)(
P

1ms

)−2

. (2.78)

Where the physical parameters of the pulsar correspond to the weakest pulsar detected by
the Fermi-LAT. The result of the above computation can be seen as a lower limit of γpc for
the millisecond pulsar population since it uses the weakest magnetic field observed. This
value only represents an upper limit inside the magnetosphere, as part of the accelerating
electric field would be screened by the plasma surrounding the star. However, quantum
electrodynamics predicts that the pair production mechanism is triggered if ( Erber, 1966;
Harding & Lai, 2006),

χQED ≡ εb ≥ 0.1 (2.79)

where ε = h̄ν/mec2 is the dimensionless photon energy, and b = B⊥/BQED is the
ratio of the perpendicular magnetic field to the critical quantum field or Schwinger
field, BQED = m2

ec3/h̄e ≈ 4.4× 1013G. It is usually assumed that electrons radiate via
synchrotron-curvature radiation ( Blumenthal & Gould, 1970). If we make this assump-
tion the critical energy of the photon is

εc =
3
2

bγ2. (2.80)
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FIGURE 2.7: Magnetic conversion illustration. The energetic photon γ (in dark
red) produces an electron-positron pair via magnetic conversion (magnetic field

line in dashed purple line).

The threshold Lorentz factor for an electron is given by combining Eqs. (2.79) and (2.80),

εcb = 0.1 =⇒ γth =

√
1

15b2 ≈ 106
(

B?

107G

)−1

. (2.81)

We see right away that, under our assumption of B∗ and P, γpc � γth meaning that
pairs are produced in the magnetosphere at least close to the star. In this region, the main
mechanism for pair production is believed to be via magnetic conversion. If pair produc-
tion is efficient enough, the charge density will reach the Goldreich-Julian density. Once
the latter is reached, the parallel electric field will be shorted out, making it inefficient at
accelerating particles near the surface. The particle’s Lorentz factor will drop under the
threshold and pair production will stop, until the density drops below the critical density
nGJ. This is the basic idea behind gap models, which are detailed further below. Neverthe-
less, pair production is not limited close to the stellar surface. It can happen anywhere in
the magnetosphere as long as the energy threshold is reached.

We just showed that the pair production mechanism can be triggered in the magne-
tosphere of a pulsar. Depending on where it is in this environment, the mechanism for
pair creation is different. Close to the surface, the process responsible is believed to be
via magnetic conversion. Far from the surface, the Breit-Wheeler or photon-photon anni-
hilation mechanism is expected to create the pairs. In order to have a full picture of pair
production inside a pulsar magnetosphere, we briefly detail the two main mechanisms of
pair creation.

Magnetic conversion: in this scenario of pair production, we consider a gamma photon
with an energy ε travelling across a uniform magnetic field B. The trajectory of the pho-
ton and the orientation of the magnetic field are not parallel, and we define θ the angle
between them. During the interaction, a part of the photon momentum is “absorbed” by
the magnetic field to create a pair,

γ + B −→ e− + e+ (2.82)

An illustration of the process is given in Fig. 2.7, and the full description of this mecha-
nism is given by Daugherty and Harding (1983). The first relation is the energy conserva-
tion of the process

ε = E− + E+ (2.83)

where E−, E+ are the electron and positron energy. The second relation is the conservation
of the parallel momentum
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ε cos θ = p−‖ + p+‖ . (2.84)

The perpendicular momentum is not conserved in the magnetic conversion. It is used
by the magnetic field to create the pair. In order for the mechanism to create an electron-
positron pair, the photon energy must be greater than the rest mass energy of the pair,
meaning

ε sin θ ≥ 2mec2. (2.85)

If a single photon does carry at least this amount of energy, pair production via magnetic
conversion is possible.

Breit-Wheeler: this process of pair production results from the annihilation of two pho-
tons.

γ1 + γ2 −→ e− + e+ (2.86)

where γ1, γ2 are two photons with the respective energy ε1mec2, ε2mec2. An illustration of
the process is given in Fig. 2.8.
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FIGURE 2.8: Breit-Wheeler mechanism or photon annihilation. Left: Lab frame.
Right: Centre-of-mass frame.

To trigger the Breit-Wheeler process, the amount of energy carried by the two photons
must be sufficient. In the centre-of-mass frame (starred quantities), the total energy E?

tot of
the photons must be larger than the rest-mass energy of the electron-positron pair,

E?
tot ≥ 2mec2. (2.87)

To estimate the photon energies required to have pair production via photon-photon anni-
hilation, we can use the relativistic invariant

c2PµPµ = c2P?µP?
µ =⇒ (p1 + p2)

2 = (p?1 + p?2)
2 (2.88)

where Pµ = (E/c, p) is the 4-momentum. Equation (2.88) can also be expressed as

E?
tot

2 − p?tot
2c2 = E?

tot
2 = E2

tot − p2
totc

2. (2.89)

The next step is to use the angle θ in the lab frame to express p1 and p2. The condition
for photon-photon annihilation becomes

s =
1
2

ε1ε2 (1− cos θ) ≥ m2
ec4. (2.90)
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With the above equation, we can see that pair production requires less energetic photons
in the case of a head-on collision, meaning θ = π. Using this case in Eq. (2.90) reads

1
2

ε1ε2 = m2
ec4. (2.91)

The conclusion of this process is the following. For pair production to occur via the
Breit-Wheeler process, the energy of the photons in the centre-of-mass frame needs to be at
least twice the rest mass energy of the electron. Therefore, combinations are possible. Pair
production can occur by annihilation of two MeV photons, a gamma-ray photon (GeV)
and an X-ray photon (keV) or a TeV photon and optical/infrared photon (eV).

Later on in this manuscript, we will mainly drag our attention into gamma-ray pulsars.
Therefore, it is useful to now give the different mechanisms able to produce photons in the
gamma band. These photons will be able to trigger pair production via the two processes
described above. Three mechanisms producing gamma photons can occur in pulsar mag-
netospheres. The first one is through synchrotron radiation, the second one is via curvature
radiation, and the last one is inverse Compton scattering. We will now give the details on
the first two mechanisms and leave the third one on side as it will not be used inside this
manuscript.

FIGURE 2.9: Sketch of the synchrotron radiation mechanism (figure from Emma
Alexander).

Synchrotron radiation is an electromagnetic radiation produced by a relativistic particle.
This radiation corresponds to the relativistic version of the cyclotron radiation and is rep-
resented in Fig. 2.9. If a particle is accelerated along a magnetic field line, it will radiate
some of its energy away during its gyration around the field line. The radiation is emitted
in a cone with an opening angle ∼ 1/γ represented by the blue shaded cones in Fig. 2.9.
Any observer outside this range would not see the synchrotron emission produced by the
particle.
We consider a particle of mass me and charge e evolving in a uniform magnetic field B.

https://emmaalexander.github.io/resources.html
https://emmaalexander.github.io/resources.html
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FIGURE 2.10: Synchrotron pitch-angle. The grey annulus indicates where the
emission is produced as the particle gyrates.

The particle spirals around the field line with a gyrofrequency νsync, a Larmor frequency
ωL and a Larmor radius rL:

νsync =
eB

2πγmc
ωL =

νsync

2π
rL =

v⊥
ωL

=
γmec2β sin α

eB
. (2.92)

where γ is the Lorentz factor of the particle. We define the pitch-angle α between Ωsync
and v (see Fig. 2.10). We can decompose the velocity vector of the particle v = v⊥ + v‖
by using this pitch-angle. Furthermore, we are interested here in the power of the emitted
radiation. To compute the emitted power, we can use the relativistic Larmor formula

P =
2e2

3m2c3

duµ

dτ

duµ

dτ
(2.93)

where uµ = γ (1, v) is the 4-momentum of the particle. The resulting power is

Psync =
2e4

3m2c3 γ2β2B2 sin2 α. (2.94)

If we consider an isotropic distribution of particles and of pitch-angles(
〈sin2 α〉 = 2/3

)
, the emitted power becomes

〈Psync〉 =
4
3

cσT γ2 β2 UB (2.95)

where σT = 8πr2
e /3 = 8πe4/3m2

e c4 is the Thomson cross-section and UB is the electromag-
netic energy density. With the emitted power and the energy of the particle E = γmec2, we
can compute the synchrotron cooling time

tsync =
E
Psync

=
3mec2

4γcσTβ2UB
. (2.96)

The cooling timescale has a strong dependence on the mass of the particle
(
m3) and a

weaker dependence on the Lorentz factor
(
γ−1). This indicates that the more energetic
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and the lighter a particle is, the faster it will cool due to synchrotron radiation. Electrons
are more efficient at cooling through synchrotron radiation than protons.

Finally, we can give the energy of the photon produced by synchrotron radiation. In
the case of a single charged particle, the radiation power spectrum is centred on the critical
frequency ( Blumenthal & Gould, 1970)

νc =
3eB⊥γ2

4πmec
(2.97)

where B⊥ = B sin α if we assume no external electric field. We can use this frequency to
derive the energy of the photon, which reads

ε ≈ h̄eB⊥γ2

mec
. (2.98)

Curvature radiation is also an electromagnetic radiation produced by a relativistic particle.
It is a variant of synchrotron radiation for a charged particle moving along a curved field
line, for which the gyromotion is neglected. If the magnetic field is strong enough, the
particle is bound to the curved magnetic field line, enforcing the trajectory of the particle
to be along the field line. By analogy, we can think of a bead (charged particle) on a wire
(magnetic field line), see Fig. 2.11.

B

v

e− ρc

FIGURE 2.11: Sketch of the curvature radiation produced by an electron moving
along a curved magnetic field line. The shaded parts correspond to the radiation

emitted.

As for the synchrotron case, we can compute the power emitted by curvature radi-
ation. For the curvature radiation, the radius that we need to consider is not the Larmor
radius any more but the curvature radius of the field line. This translates into the following
relation

v2
⊥

rL
=

v2

ρc
(2.99)

where ρc is the curvature radius of the field line which can be expressed as ρc =(
v2/v2

⊥
)

rL = rL/sin2 α. The amplitude of the magnetic field can be expressed as a function
of the curvature radius from Eq. (2.92),

B =
γmec2β

eρcsinα
. (2.100)

The next step is to inject Eq. (2.100) in Eq. (2.94) to obtain the total emitted power from
curvature radiation:

Pcurv =
2
3

e2cβ4

ρ2
c

γ4 (2.101)
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Finally, the cooling curvature timescale is given by

tcurv =
E
Pcurv

=
3mecρ2

c
2e2β4γ3 (2.102)

Similarly to the synchrotron radiation, the cooling timescale of the curvature radiation
is proportional to the mass of the particle. However, in the above equation it is propor-
tional to γ−3 meaning that energetic particles radiate even more than in the synchrotron
case. This aspect is also visible if we compare the total emitted power of synchrotron and
curvature radiation. A particle with a Lorentz factor γ will radiate more power via curva-
ture radiation, Pcurv ∝ γ4, than via synchrotron radiation, Psync ∝ γ2.

2.2.3 Goldreich and Julian (1969) model

Before adding complexity to the simulation with pair production, we can first simulate
the model proposed by Goldreich and Julian (1969) (GJ) in a PIC simulation. The star
is rotating and charges are extracted by the E‖ component. Because of the rotation and
the magnetic field of the star, charges at the surface of the star are decomposed into two
regions: negative charges near the poles and positive charges near the equator. If we start
spinning the star, the charges will order themselves and some E‖ will develop, leading
to the extraction of charges. Electrons, the negatively charged particles, leave the stellar
surface at the poles, and protons, positively charged, are extracted near the equator (similar
to the Faraday disc described previously). This results in a totally different picture than the
one proposed in the GJ magnetosphere. The simulation ends up in a disc-dome structure
also called the electrosphere ( Krause-Polstorff & Michel, 1985; Michel & Smith, 2001), see
Fig. 2.12. This configuration is fully charge-separated and has a zero spin-down power.
The charge separation occurs exactly at the null surface where the charge density is zero
as pointed out in Fig. 2.12. This structure could not be obtained via force-free simulations
because the solution is charge separated. This charge-separated aspect is an issue for force-
free simulations, but not for PIC simulations.

Therefore, it is necessary to account for pair production in the theory and in simulations
to fill the magnetosphere with plasma.

2.2.4 Gap models

The physics of gaps relies on the development of an unscreened electric field in the mag-
netosphere. The fundamental mechanism in gap models is that particles are accelerated
via the unscreened electric field. Once a particle is accelerated it will radiate its energy in
the form of photons. If the energy of the photon is sufficient, pair production will occur.
The creation of pairs leads to an increase of the number density. If the density reaches
the critical Goldreich-Julian density, the acceleration via E‖ will cease and pair production
will stop. We define the multiplicity parameter κ as the ratio κ = n/nGJ. This parame-
ter “measures” the number of pairs produced by a single accelerated particle. Once the
density drops below the critical one, the accelerator will be once again able to accelerate
particles to high-energy, resulting in the emission of photons able to pair produce. Sev-
eral gaps were proposed in the magnetosphere such as the polar-cap gap ( Sturrock, 1971;
Ruderman & Sutherland, 1975; Michel, 1979), the outer gap ( Cheng et al., 1986) and the
slot gap ( Arons, 1983; Muslimov & Harding, 2004). In these models, the gamma rays are
produced either by curvature radiation ( Sturrock, 1971) or inverse-Compton scattering of
photons present close to the star.
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FIGURE 2.12: Electrosphere configuration for the aligned case. Figure taken from
Cerutti and Beloborodov (2017).

The polar cap gap is historically the first model proposed. The polar cap is responsible
for loading the open field line bundle with plasma, which flows outwards and feeds the
wind zone. Two models are proposed: the vacuum gap and the space-charge-limited flow
gap. The vacuum gap model introduced by Ruderman and Sutherland (1975) relies on the
following main assumptions:

• the pulsar is considered as anti-aligned (opposite direction between µ and Ω),

• ions are not extracted from the stellar surface because of their high binding energy,

• electrons are easily extracted from the surface if the electric field has the appropriate
direction, giving a copious supply of electrons,

• pair cascades (sparks) can quench the gap when triggered.

The behaviour of the gap is given in Fig. 2.13. The gap in itself corresponds to the
region where the electric field is unscreened, E · B 6= 0. The model works as follows:

Position 0: an energetic photon is emitted via curvature radiation

Position 1: the photon is sufficiently energetic to pair produce via magnetic conversion. The
positron, and the electron are respectively accelerated outwards and inwards by the
electric field

Position 2: the electron emits a curvature photon towards the surface

Position 3: the photon is above the threshold for pair production, the produced pairs follow the
same trajectory as in Position 1

Position 4: a curvature photon is produced by the outflowing positron
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FIGURE 2.13: Polar-cap gap scheme, figure taken from Ruderman and Sutherland
(1975). The gap is located where E · B 6= 0.

Position 5: end of the previous cycle and beginning of the new one

The space-charge-limited flow gap is another polar cap gap model and was introduced
by Arons and Scharlemann (1979). The following assumptions are made in this model

• at the surface and in the close region, the electric potential is Φ = 0,

• space-charge-limited flow: the electrostatics and electron flow dynamics above the
surface determine the current flowing from the crust. Particles are extracted with a
zero-velocity,

• the gap ends with a pair creation front.

The first assumption implies that the star is highly conductive, which is expected from the
composition of a neutron star. The second assumption implies that a current flow is able
to cut the accelerating electric field at the star’s surface. Finally, the pair creation front
marks the height of the gap. At this location, a copious number of pairs are produced,
thus starting to screen the parallel electric field. The model is schematically described in
Fig. 2.14.

Outer gap model ( Cheng et al., 1986) is a model based on the null surfaces (Ω · B = 0)
already present in the electrosphere configuration. Compared to the previous model, the
outer gap model is located at least tens of stellar radii away from the star (close to the light-
cylinder). The outer gap lies between the first opened field line and the last closed field
line, as shown in Fig. 2.15. However, the gap does not extend along the entire field line but
starts at the null surface. If we consider that the plasma or charges are only supplied by
the star, an unscreened electric field develops in the gap until the Goldreich-Julian density
is reached. The acceleration of particles leads to radiation and eventually pair production,
with the underlying condition that the potential drop is large enough in the gap.

Slot gap model is an extension of the polar cap gap model and a direct consequence of
the space-charge-limited flow model ( Arons & Scharlemann, 1979; Muslimov & Harding,
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FIGURE 2.14: Space-charge-limited flow gap model, figure taken from Arons and
Scharlemann (1979).

FIGURE 2.15: Outer gap model. The left panel shows the location of the gaps in
the magnetosphere of an inclined rotator. The right panel shows the pair cascade

occurring in such a gap. Figures taken from Cheng et al. (1986).
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FIGURE 2.16: Slot gap model. Figure taken from Muslimov and Harding (2003)

2003). This model can be seen as a combination of the two polar cap gap models high-
lighted previously. For the parallel electric field to vanish in the closed region, the former
should decrease when getting closer and closer to the last opened field line. If the parallel
electric field is weaker on the last opened field line, the particle will need to be accelerated
by E‖ over a longer distance to radiate a photon with enough energy to pair produce. How-
ever, as the particle accelerates thanks to the electric field, the magnetic field decreases the
further the particle gets. The height of the pair production front increases as we approach
the edge of the polar cap, see Fig. 2.16.

2.2.5 Reconnecting current sheet

In the global picture of the force-free magnetosphere of a pulsar, we consider a dipolar
magnetic field. Outside the light-cylinder, we find a radial magnetic field very similar to
the split monopole configuration. The magnetic field switches polarity when crossing the
equator in the case of an aligned dipole, and magnetic field lines are facing opposite direc-
tions. This configuration represents the exact conditions required for relativistic magnetic
reconnection. The latter is well known by the collisionless plasma community (solar flares,
fusion). The interface between the two polarities, namely the current sheet, is tearing un-
stable. The current sheet is fragmented by the instability and forms magnetised structures
of plasma called plasmoids. They are magnetic islands of plasma.

In a reconnecting system, the upstream plasma (reconnecting) has an inflow velocity
vin and the downstream plasma (reconnected) has an outflow velocity vout. The relativistic
condition for magnetic reconnection is based on the magnetisation of the plasma, defined
as

σ =
B2

0
4πρc2 (2.103)
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FIGURE 2.17: Scheme of a 2D relativistic magnetic reconnection. Field lines of
opposite polarities are represented in red and blue, green field lines correspond to
plasmoids and the gold field line is the separatrix. The dashed black line shows

the X-point where magnetic reconnection occurs.

If σ � 1, meaning that the magnetic energy density dominates the rest-mass energy
density, magnetic reconnection occurs in the relativistic regime. When this is the case, a
significant fraction of the magnetic energy is transferred to the outflowing plasma. The
latter becomes relativistic due to the large energy gains. The outflow velocity is the Alfvén
speed vA, however, if σ� 1,

vA

c
=

σ

1 + σ
≈ 1 (2.104)

and the Alfvén speed approximates the speed of light ( Lyutikov & Uzdensky, 2003). Vari-
ous groups studied the effect of relativistic reconnection, all leading to the same conclusion:
magnetic reconnection is fast and efficient at dissipating magnetic energy, and it converts
this energy into kinetic energy. Consequently, particles are strongly accelerated (γ → σ) (
Kirk, 2004) and produce non-thermal spectra with a hard power index. Several studies (
Zenitani & Hoshino, 2001; Cerutti et al., 2012; Guo et al., 2014; Sironi & Spitkovsky, 2014;
Werner et al., 2016) showed that the power index associated to magnetic reconnection is
p ∈ [1, 2] and particles are accelerated up to a Lorentz factor of γ & σ.

The scenario of magnetic reconnection is shown in Fig. 2.17. The well-magnetised
plasma upstream collapses towards the current sheet of thickness δc bringing magnetic
flux. When the plasma arrives in the current sheet, the magnetic field is zero and the
plasma becomes unmagnetised. The particles of the upstream go through what is called
an X-point (black dashed lines). At the X-point, magnetic field lines of opposite polarity
snap (high magnetic tension) and reconnect while the slow incoming plasma is advected
along the current sheet at the Alfvén speed. We can define the separatrix as the magnetic
field lines currently reconnecting. The strong acceleration at the X-point comes from the
non-ideal effects driven by the out-of-the-plane electric field Erec. It is possible to compute
the reconnection rateR of field lines. From the Sweet-Parker model ( Parker, 1957; Sweet,
1958), the reconnection rate is

R =
vin

vA
=

δc

L
=

1√
S

, S =
LvA

Dη
(2.105)
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FIGURE 2.18: Hierarchy of plasmoids formation. This spacetime diagram shows
the evolution of the electrons density in time inside a reconnecting current sheet.
The number of plasmoids is set by the number of over-densities at each time. Fig-

ure adapted from Nalewajko et al. (2015).

where L is the macroscopic scale of the problem, S is the Lundquist number and Dη is
the magnetic diffusivity or resistivity. In astrophysical systems, the Lundquist number is
typically S ' 1020, resulting in a very small reconnection rate. If we do the same exercise
for the relativistic scenario

R =
vin

vA
≈ vin

c
∼ 0.1. (2.106)

The reconnection rate is faster and the strength of the reconnecting electric field is
around 10% of the magnetic field. This value can also be seen as a limit on the aspect
ratio between the current sheet thickness and the system size, δc/L ∼ 0.1. The condition
sets the critical aspect ratio beyond which a current sheet is tearing unstable, resulting in
the formation of plasmoids. The critical value of the Lundquist number for the breaking of
the current sheet is Sc ≥ 104. The scenario of fast reconnection was proposed by Uzdensky
et al. (2010). In this scenario, plasmoids can grow in size by merging with an adjacent one
and interplasmoid current sheets can develop during the merging. This mechanism occurs
until the critical layer is reached, when the current sheet becomes stable to the plasmoid
instability. It exists a hierarchy in the plasmoid history illustrated in Fig. 2.18, coming from
the successive mergers.

Magnetic reconnection is a powerful process for accelerating particles from a rearrange-
ment of the magnetic topology. A fraction of the magnetic energy density is converted into
particle energy. We may wonder about the application of relativistic magnetic reconnec-
tion in the context of a pulsar magnetosphere. What is the maximum energy reachable
by a particle if it undergoes magnetic reconnection in the current sheet beyond the light-
cylinder. If we consider that all the magnetic energy is converted into kinetic energy, we
have γ ≈ σ. We mentioned previously that the current sheet forms right at the light-
cylinder. In order to have the value of the particle Lorentz factor γLC at the light-cylinder,
we have to compute the magnetisation at the light-cylinder.

σLC =
B2

LC
4πnLCmec2 (2.107)

where BLC and nLC are the magnetic field strength and the number density at the
light-cylinder. A dipole magnetic field decreasing as r−3 thus we can approximate
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BLC ≈ B?(r?/RLC)
3. For the number density, we use nLC = κnLC

GJ , where κ is the multi-
plicity of the secondary pairs. We can use the full potential drop, Φpc = B?r3

?/R2
LC, to

express the magnetic field and the number density at the light-cylinder

BLC =
Φpc

RLC
, nLC

GJ ≈
ΩBLC

2πec
=

Φpc

2πeR2
LC

. (2.108)

The magnetisation finally reduces to ( Cerutti et al., 2015)

γLC ≈ σLC =
Φpce

2mec2κ
(2.109)

With the values of a canonical pulsar B? = 1012G, r? = 10km, RLC = cP/2π and κ = 102,
we find

σLC ≈ 107
(

B?

1012G

)(
P

100ms

)−2 ( κ

102

)−1
(2.110)

At the light-cylinder, particles can be accelerated to the maximum Lorentz factor
γLC ≈ 107. In reality, a particle will not have such a high acceleration as it will radiate
its energy away. However, we can see that magnetic reconnection is able in theory to
produce high-energy particles. Even pair production can be triggered after magnetic re-
connection, from the radiated photons of accelerated particles. This statement was devel-
oped by Lyubarskii (1996). In pulsar current sheets, particles are accelerated and radiate
synchrotron photons tangentially to field lines. If we consider that photons have an en-
ergy in the MeV range, they are able to pair produce via the Breit-Wheeler process with
another photon. The current sheet represents an active site of pair production where a
fresh plasma is injected. A recent study by Hakobyan et al. (2019) showed that this pair
production mechanism has an impact on the mass loading of the current layer. When the
mechanism is triggered, the multiplicity of the plasma increases. This directly impacts the
effective magnetisation and thus could also impact the maximum particle energy scale is
linked to the magnetisation. The mass loading effect could be important in the case of
pulsar magnetospheres.

2.3 Black hole magnetosphere

2.3.1 3+1 electrodynamics

In order to model black hole magnetospheres, we must take into account general relativ-
ity. To this purpose, we use the 3+1 formalism ( Thorne & MacDonald, 1982; Komissarov,
2004). In this approach, the spacetime is sliced between the “absolute” space and the “ab-
solute” time. The “absolute” space corresponds to 3D space-like hypersurfaces to which
an “absolute” time is associated. This decomposition eases the interpretation of the equa-
tions with a formulation similar to the flat spacetime equations. The physical intuition
from flat spacetime can be applied to the equations of the 3+1 formalism. This formulation
is also a pillar for numerical simulations, as only the absolute time needs to be accounted
for.
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Definition 1: Nomenclature

In this chapter, we use the following conventions:

• gµν • γij = gij • γ = det(γij) • g = −α2γ = det
(

gµν

)
• xµ = (t, xi) • xµyµ =

3

∑
k=0

xkyk

The metric tensor is noted gµν, the associated metric signature is (−,+,+,+). The
determinant of the metric is g. The space-like part of the tensor is written γij. The
determinant of the spatial metric is γ. Regarding the coordinates, they are written
as xµ = (t, xi) where Greek and Latin indices respectively span µ = 0, . . . , 3 and
i = 1, . . . , 3. Finally, we assume implicit summation over repeated indices.

The expression of the metric tensor can be derived from the spacetime interval ds2

using the ADM form ( Arnowitt et al., 1959).

ds2 =
(

β2 − α2)dt2 + 2βidxidt + γijdxidxj (2.111)

where α is the “lapse function” and β is the “shift vector”. The lapse function is used to
transform the time between the absolute time coordinate t and the proper time τFIDO of a
“fiducial observer” (FIDO),

dτFIDO = αdt. (2.112)

The consequence of this time transformation can be physically seen as a gravitational red-
shift of the FIDO with respect to an observer at infinity. The 4-velocity of the fiducial
observer’s time is

nµ = (−α, 0, 0, 0) (2.113)

The shift vector β expresses the spatial velocity of the FIDO with respect to the spatial grid
associated to the spacetime. It drifts on the coordinate grid with the 4-velocity

nµ =
1
α
(1,−βi). (2.114)

Finally, the spacetime interval gives the relation between time and space, and is used to
determine the full metric tensor, gµν. From Eq. (2.111), the metric tensor is expressed as

gµν =

(
β2 − α2 β j

βi γij

)
. (2.115)

The metric tensor relies on the lapse function, the shift vector and the spatial metric. A
useful quantity to compute is gµν, the inverse of the metric tensor. As for any tensor, we
have the identity relation gµσgσν = δν

µ. By plugging Eq. (2.115) in the identity relation, we
obtain

gµν =

(−1/α2 βj/α2

βi/α2 γij − βiβj/α2

)
(2.116)

where γij is the inverse of the spatial metric γij. The metric tensor will be useful to raise or
lower the indices of our tensors.
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With the description of the metric tensor out of the way, we can proceed to the deriva-
tion of Maxwell’s equations in curved spacetime. We use the formalism described by
Komissarov (2004, 2011). The covariant Maxwell’s equations are

∇µ?Fνµ = 0 (2.117)

∇µFνµ =
4π

c
Iν (2.118)

where Fµν = gµαgνβFαβ is the electromagnetic tensor, ?Fµν = (1/2)
√−g εµναβFαβ is the

Hodge dual of the electromagnetic tensor, and Iν is the 4-vector of the electric current. The
electromagnetic tensor can be expressed using the vector potential Aµ by

Fµν = ∂µ Aν − ∂ν Aµ (2.119)

Finding an analytical expression of Aµ will be at the centre of Sect. 2.3.3. Within the “3+1”
approach of Komissarov (2004), we define the following quantities

Bi =
1
2
√

γεijkFjk (2.120)

Ei = Fit (2.121)

Di = αFti (2.122)

Hi =
α

2
√

γεijkFjk (2.123)

Ji = αIi (2.124)

ρ = αIt (2.125)

Before giving Maxwell’s equations, we just need to express the divergence and curl of
a vector field in curved spacetime. They are expressed as

∇ ·A =
1√
γ

∂i

(√
γAi

)
(2.126)

(∇×A)i =
1√
γ

εijk∂j Ak (2.127)

Maxwell’s equations in curved spacetime using the “3+1” formalism can be written as

∇ ·D = 4πρ

1√
γ

∂
√

γ D
∂t

= c∇×H− 4πJ

∇ · B = 0

1√
γ

∂
√

γ B
∂t

= −c∇× E

assuming
====⇒

∂tgµν=0



∇ ·D = 4πρ

∂D
∂t

= c∇×H− 4πJ

∇ · B = 0
∂B
∂t

= −c∇× E

(2.128)

To obtain the right set of equations, we assume that the metric tensor is stationary. This
set is similar to the set of Maxwell’s equations for an active medium, except that here the
curved spacetime is playing as the active medium. The fields E and H are defined via
constitutive relations,
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{
E = αD + β× B
H = αB− β×D

(2.129)

The four fields can be related to two different classes of observers, the fiducial observer
and the observer on the coordinate grid. The interpretation of the fields is

• D and B are the fields measured by the FIDO

• E and H are the fields attached to the coordinates grid

For a flat spacetime, the proper time τFIDO and the absolute time t are equal thus, α = 1
and there is no shift of the observer in the spacetime, βi = 0. In these conditions, we have
E = D and H = B and the classical Maxwell’s equations are recovered from the “3+1” set.
The last unknown is the current density J,. This 3-vector is measured on the coordinates
grid, and we have a constitutive relation

J = αj + cρβ (2.130)

where j is the current density measured by the FIDO. The second term corresponds to the
current coming from the drifting charges relative to the FIDO.

2.3.2 Kerr metric

The first step towards the description of a black hole magnetosphere is to define the prop-
erties of the spacetime. The Kerr metric ( Kerr, 1963) describes the spacetime around a
rotating black hole. For convenience reasons, we use the Kerr-Schild coordinates. This set
of coordinates is powerful as it removes the singularity of the Boyer-Lindquist coordinates
located at the event horizon radius. The Kerr-Schild system also has a singularity but at
r = 0, which is more convenient numerically as the singularity is inside the event hori-
zon and thus does not need a specific treatment. In the spherical Kerr-Schild coordinates
system, the Kerr metric is ( Komissarov, 2004)

gµν =


z− 1 z 0 −zarg sin2 θ

z 1 + z 0 −a sin2 θ(1 + z)
0 0 ρ2 0

−zarg sin2 θ −a sin2 θ(1 + z) 0 Σ sin2 θ/ρ2

 (2.131)

where

ρ2 = r2 + a2 cos2 θ (2.132)

z =
2rrg

ρ2 (2.133)

Σ =
(
r2 + a2)2 − a2∆ sin2 θ (2.134)

∆ = r2 + a2r2
g − 2rrg (2.135)

The parameter a is a dimensionless number characterising the spin of the black hole. This
parameter ranges from a = −1 to a = 1 and corresponds respectively to a Schwarzschild
black hole (non-rotating) and a maximally rotating black. From the expression of the met-
ric, we can derive the Kerr-Schild lapse function and the shift-vector
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α =
1√

1 + z
βi =

(
z

1 + z
, 0, 0

)
(2.136)

The shift-vector indicates that in the Kerr-Schild coordinates, a fiducial observer moves
radially towards the singularity in r = 0. The spin of the black hole also defines the radius
of the event horizon rH. This radius corresponds to the positive root found when ∆ = 0.

∆ = r2 + a2r2
g − 2rrg = 0

⇒ rH = rg

(
1 +

√
1− a2

)
(2.137)

The event horizon radius gives the radial distance at which any observer, particles, or
massless particles are dragged inside the black hole without any possible escape. This
aspect is particularly important for numerical simulations: nothing can escape from the
black hole. This means that if we see fields or particles escaping from the inside of the
event horizon, they are not physical but numerical as nothing can escape once it crosses
the horizon. This is a significant feature to look at when developing a General Relativistic
(GR) code. Another critical radius is the radius of the ergosphere. Compared to the event
horizon, it is possible to move freely inside and outside of the ergosphere. However, any
observer, particles or massless particles suffer from the frame-dragging effect. They cannot
be at rest and are dragged by the rotating spacetime according to the black hole rotation.
The radius of the ergosphere is obtained by taking the positive root of gtt = 0.

gtt = z− 1 = 0
(2.133)⇐=⇒
(2.132)

r2 + a2r2
g cos2 θ − 2rrg = 0

=⇒ rerg = rg

(
1 +

√
1− a2 cos2 θ

)
(2.138)

The radius of the ergosphere depends on the spin of the black hole but also on the az-
imuthal angle θ. The influence of the spin on rH and rerg is given in Fig. 2.19.
The slower the black hole spins, the bigger the horizon is. However, while the horizon
shrinks with higher spins, the ergo-region gets bigger with spin. The maximum radial
extension of the ergo-region is at the equator and is independent of the spin.

∀ a, rerg (π/2, a) = 2rH (2.139)

The final characteristic of a Kerr black hole is the light surfaces. These are the exact
analogue of the light-cylinder in pulsar magnetospheres, except that here we have two
surfaces. To obtain their location, we consider a point orbiting the black hole with the
angular velocity Ω characterised by its worldline ( Komissarov, 2004)

f (Ω, r, θ) = gtt + 2gtφ
Ω
c
+ gφφ

Ω2

c2 (2.140)

where f (Ω, r, θ) is the light-surface function. Two regimes can be expressed from this
equation: the subluminal and superluminal rotations. The particle can corotate if f < 0
with a time-like (subluminal) worldline. If f > 0, the particle cannot corotate and its
worldline is space-like (superluminal). Instead of a particle, we can consider a rigidly
rotating magnetosphere at Ω. The above conditions on f give the regions where solid
rotation is possible. Light surfaces are defined as surfaces where f = 0. Eq. (2.140) allows
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FIGURE 2.19: Figure showing the spin dependence of the event horizon and the
ergosphere.

two sets of roots: one set for Ω and another one for r. First, we can the value of the angular
velocity Ω satisfying f = 0. The roots of Eq. (2.140) for the quadratic equation in Ω are

Ω± = ΩH ± c

√
g2

tφ − gφφgtφ

gφφ
(2.141)

where ΩH = −cgtφ/gφφ is the angular velocity of the black hole. It is related to the spin of
the black hole by

ΩH = −c
gtφ (rH)

gφφ (rH)
=

ac
2rH

(2.142)

Next, we can find the radii rls (θ) for which f = 0. We can consider the non-rotating
case and the slow-rotating one. In the case Ω = 0, the light surface is given by

f (0, r, θ) = gtt = 0 =⇒ rls (θ) = rerg = rg

(
1 +

√
1− a2 cos2 θ

)
= rg (2.143)

This radius corresponds to the location of the “inner light surface” which is the ergosphere
for Ω = 0. However, if Ω > 0, the light surface is not located at the ergosphere any more
but rather between the event horizon and the ergosphere. For the second light surface, we
assume 0 < Ω/ΩH � 1 and r � rg giving
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f (Ω, r, θ) = r2 sin2 θ
Ω2

c2 − 1 =⇒ rls (θ) =
c

Ω sin θ
(2.144)

The effect of Ω on the light surfaces is shown in Fig. 2.20.
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FIGURE 2.20: Light-surface function for a spin a = 0.999. The light-surfaces are
represented by the black dashed lines. Their positions depend on the angular

velocity Ω.

When Ω increases, the inner light surface gets closer to the ergosphere as expected from
the Ω = 0 case. For the outer light surface, it is closer for an increasing angular velocity.
It also corresponds to the classical light cylinder defined in pulsar magnetosphere theory.
No matter the value of Ω, both light surfaces never intersect.

2.3.3 Wald configuration

As for the pulsar theory, the first study was done in vacuum where Wald (1974) was able to
derive an exact solution. This solution describes a Kerr black hole embedded in a uniform
external magnetic field aligned with the black hole spin axis. Assuming stationarity and
the axisymmetric geometry, Wald’s 4-potential is

Aµ =
B0

2
(
ψµ + 2argηµ

)
(2.145)

where B0 is the amplitude of the magnetic field, ψµ and ηµ are the axial and timelike Killing
vectors. They are expressed as

ηµ = ∂t = (1, 0, 0, 0) ψµ = ∂φ = (0, 0, 0, 1) (2.146)
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These Killing vectors describe the two symmetries of our problem: stationarity ∂t and
axisymmetric geometry ∂φ. The covariant form of the Killing vectors can be expressed by
lowering the index

(
Kµ = gµνKν

)
,

ηµ = gµνην = (gtt, grt, 0, gφt) (2.147)
ψµ = gµνψν = (gtφ, grφ, 0, gφφ) (2.148)

The full expression of the 4-potential in the contravariant and covariant form is

Aµ =
B0

2
(
2arg, 0, 0, 1

)
(2.149)

Aµ =
B0

2
(

gtφ + 2arggtt, grφ + 2arggrt, 0, gφφ + 2arggφt
)

(2.150)

=
B0

2


−zarg sin2 θ + 2arg (z− 1)
−a sin2 θ (1 + z) + 2argz

0
Σ sin2θ

ρ2 − 2a2r2
g z sin2 θ

 (2.151)

With the full description of the 4-potential, the electromagnetic fields are expressed as

Bi =
1√
γ

εijk∂j Ak (2.152)

Ei = −∂i At − ∂t Ai (2.153)

The Wald solution, in vacuum for a maximally rotating black hole (a −→ 1), shows that
the magnetic field lines are not going through the horizon of the black hole but around it,
Fig. 2.21. The field lines are expelled by the black hole or are at maximum tangent to the
horizon. The effect is often called the “Meissner” effect and comes from the superconduc-
tor community. When a conductor is cooled below its critical temperature, it transitions
into the superconducting state. During this transition, the magnetic field is expelled and
does not enter the superconductor.

Just like in the pulsar case, we may wonder about the energetics of the vacuum solu-
tion. In general relativity, the energetics is contained in the electromagnetic-stress-energy
tensor Tµ

ν , which verifies the equation

∇µTµ
ν = −Fνσ Iσ. (2.154)

The resulting tensor reads

Tµ
ν =

1
4π

(
FµαFνα −

1
4

(
FαβFαβ

)
δµ

ν

)
(2.155)

The electromagnetic-stress-energy tensor can also be expressed in a matrix form,
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FIGURE 2.21: Map of D ·B for the Wald solution in vacuum showing the Meissner
effect. Magnetic field lines are represented by the solid black lines.

Tµ
ν =

(
Tt

t Ti
t

Tt
i Ti

j

)

=

− 1
8πα (E ·D + B ·H) − 1

4πα

√
γεijkEjHk

1
4πα

√
γεijkDjBk − 1

4πα

(
DiEj + Bi Hj

)
+ 1

8πα (E ·D + B ·H) δi
j

 (2.156)

The above tensor contains a lot of useful information regarding the energetics of the
system. For example, the Poynting flux is expressed with the Ti

t component as

L =
∫∫

Tr
t α
√

γdθdφ =
∫∫

Πr√γdθdφ (2.157)

where

Πr = −cαTr
t =

c
4π

(E×H)r (2.158)

For the Wald solution, we remind the Killing vectors which are ∂t = ∂φ = 0. If we
apply these conditions to Maxwell’s equations we are left with ∇×H = ∇× E = 0 which
implies (via Eq. 2.153) Eφ = Hφ = 0. This leads to a zero outgoing Poynting flux, meaning
that no electromagnetic energy is extracted from the black hole. The extraction of energy
can only happen if charges and currents are present in the magnetosphere.
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2.3.4 Beyond Wald solution in vacuum: force-free magnetosphere

The Wald solution played a crucial role in the development of black hole magnetosphere
theory. However, just like in pulsar theory, the vacuum solution is not sufficient and the
possibility of having plasma around the black hole needs to be discussed. In Fig. 2.21, we
show a map of D · B. This figure indicates the presence of a strong parallel component
of the electric field D. This is reminiscent of the unscreened electric field present in pulsar
magnetospheres. We recall that this unscreened field is able to accelerate particles to high
Lorentz factors, possibly above the pair creation threshold. Contrary to the case of a pulsar,
a black hole is not able to inject plasma from its “surface” to start a pair cascade. This issue
of the plasma supply is of high interest but at the limit of the scope of this dissertation. The
plasma coming from an accretion disc or a stellar wind of a companion could be a way of
supplying plasma to the magnetosphere. If such a plasma gets close to the black hole, it
will experience a strong D‖ resulting in particle acceleration. If particles are sufficiently
accelerated, they will radiate high-energy photons. The latter could interact with low-
energy photons in order to produce pairs via the Breit-Wheeler mechanism (γγ process).
If we consider that this mechanism is efficient enough to start a pair cascade and supply
plasma to the black hole, we can end up in having a density large enough to screen the
electric field. This could lead to the development of spark gaps similar to the gap models
in pulsar magnetospheres ( Crinquand et al., 2020).

The force-free electrodynamics was derived previously in Sect. 2.1.2. However, we
now consider a curved spacetime with modified Maxwell’s equations. Following the same
procedure as in the flat space case, we can derive the current density in the force-free
regime. We recall the set of Maxwell’s equations for a stationary metric

(
∂tgµν = 0

)
and

the force-free condition from flat space

∇ ·D = 4πρ (2.159)
∂D
∂t

= c∇×H− 4πJ (2.160)

∇ · B = 0 (2.161)
∂B
∂t

= −c∇× E (2.162)

ρE +
J× B

c
= 0 (2.163)

The recipe to derive the current density is the following ( McKinney, 2006; Komissarov,
2011):

Demonstration 2: 3+1 current density recipe

1. Assume ∂t (D · B) = 0 = (∂tD) · B + D · (∂tB)

2. Derive J · B by injecting Eqs. (2.160) and (2.162) in the previous equation

3. then, take the cross product Eq. (2.163)×B and inject J · B

If we follow this recipe, we end up with a current density given by

J =
c

4π
∇ ·D

(
E× B

B2

)
+

c
4π

(
B · (∇×H)−D · (∇× E)

) B
B2 (2.164)
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The expression of the current density is a combination of the fields from the FIDO
(D, B) and the fields (E, H) measured on the coordinate grid. The set of equations is now
closed by Eq. (2.164).

2.3.5 Blandford-Znajek solution

Similarly to what was done by the pulsar theory community, Blandford and Znajek wanted
to give an analytical solution within the force-free regime. Previously, we mentioned that
black hole magnetospheres are the analogue of pulsar magnetospheres in curved space-
time. Consequently, the pulsar equation appeared as a reasonable starting point. By ap-
plying a perturbation method, Blandford and Znajek (1977) were able to find an analytical
solution. This solution is a monopole verifying the Znajek (1977) condition at the hori-
zon, and the Michel monopole at infinity. If the black hole is non-rotating (i.e. a = 0),
Ψ = Ψ0(1 − cos θ) is an exact solution of the “pulsar equation”. Blandford and Znajek
took this solution and extended it to a slowly rotating black hole for a spin a� 1. A sketch
of the solution is given in Fig. 2.22. It is the GR analogue of the Michel monopole.

FIGURE 2.22: Sketch of the monopole solution in curved spacetime. Figure taken
from Blandford and Znajek (1977).

Contrary to the Wald solution, the Blandford and Znajek (1977) solution can extract
energy from the black hole. For a monopole configuration, the radially outgoing Poynting
flux is

LBZ =
∫∫

Tr
t α
√

γdθdφ =
∫∫

Πr√γ dθdφ (2.165)

Blandford and Znajek (1977) showed that, in Boyer-Lindquist coordinates and assuming
c = rg = 1,
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Tr
t α
√

γ =
1

4π
Ω (ΩH −Ω)

(
∂θ Aφ

)2 r2 + a2

r2 + a2 cos2 θ
sin θ (2.166)

Two unknowns are present in the above equation: Ω and ∂θ Aφ. For the first unknown, we
set Ω = ΩH/2 to maximise the expression of the radial Poynting vector. For the second un-
known, the solution is a monopole where Aφ = B0 (1− cos θ), this gives ∂θ Aφ = B0 sin θ.
A small manipulation needs to be done on the Poynting vector before computing its flux.
This manipulation consists of expanding the expression to the second order in spin a, we
assume that the black hole is slowly rotating such that a� 1. We can now express the final
Blandford-Znajek power as

LBZ =
1
6

Ω2
HB2

0 (2.167)

The radial Poynting flux is not zero, and we have energy extraction from the black hole.
Similar to the pulsar case, this quantity is a constant and depends on the angular velocity
of the object. A black hole with a high spin will extract more energy than one with a low
spin.

2.4 Summary

In this chapter, we have introduced some aspects of the theory behind pulsars and black
holes as well as some QED processes at play in their magnetosphere. In both cases, the
theory started in vacuum and migrated towards a plasma-filled magnetosphere. Whether
it is for pulsars or black holes, the number of analytical solutions to describe the mag-
netosphere is very limited. For pulsars, only one solution was found and corresponds
to the Michel solution (magnetic monopole configuration). For black holes, we have the
Wald solution and the Blandford-Znajek solution (the general relativistic analogue of the
Michel solution). However, this lack of analytical solution did not stop the community
from building complex models where QED processes are at play, to try to explain the dif-
ferent emissions observed. Nonetheless, because of the wide range of physical phenomena
and their high non-linearity nature, the community must use numerical simulations to go
further in its understanding of relativistic magnetospheres.
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2.5 [Français] Points clés du chapitre

2.5.1 Pulsars

Au début de la théorie, les pulsars étaient considérés comme évoluant dans le vide. Cette
hypothèse a permis de lancer la communauté mais elle fut vite remise en question. Ce type
d’objet possèdant un champ magnétique intense, il est possible d’extraire de la surface de
l’étoile à neutrons des particules. L’environnement proche des pulsars va donc être rem-
plis de ces particules sous la forme d’un plasma. L’un des modèles fondateurs de la théorie
des pulsars a été développé par Goldreich and Julian (1969). Ce modèle considère la mag-
nétosphère d’un rotateur dipolaire aligné dans un régime physique dit sans-force. Dans
ce régime, nous pouvons négliger toutes les forces à l’exception de la force de Lorentz. Ce
régime se base sur l’hypothèse que le champ magnétique est très intense et que la force
de Lorentz domine toutes les autres. Cependant, le modèle de Goldreich and Julian (1969)
est purement théorique et ne possède pas de solution analytique. La première solution
mathématique fut dérivée par Michel (1973). Cette solution correspond à un monopole
magnétique et représente la seule solution analytique de la théorie des pulsars à ce jour.
Une étape importante dans la théorie des pulsars s’est produite grâce à l’avènement des
simulations numériques. Dans un premier temps, les simulations étaient des simulations
sans-force reposant sur les équations de Maxwell. Ces simulations ont permis à la commu-
nauté d’obtenir de nouvelles solutions purement numérique. Elles ont permis de déter-
miner la structure de la magnétosphère dans le cas d’un dipole magnétique. Cette magné-
tosphère peut être séparée en deux régions en utilisant un critère portant sur la topologie
des lignes de champs, ouverte ou fermée. Ce découpage est lié à la présence d’un cylindre
de lumière dont le rayon indique la position à partir de laquelle la corotation devient su-
perluminal. Ces simulations ont aussi permis d’étudier la puissance du pulsar en fonction
de son inclinaison, la valeur de l’angle étant facilement modifiable dans une simulation car
il s’agit d’un paramètre d’entrée. La théorie des pulsars a pu faire un pas en avant grâce
ces simulations mais il était nécessaire d’aller encore plus loin afin de pouvoir comprendre
et expliquer l’émission des pulsars. Cette méthode ne permettant pas de dissiper l’énergie
contenue dans la magnétosphère, il n’était pas possible d’étudier la conversion de cette
énergie en rayonnement. Une raison supplémentaire d’utiliser une autre méthode est que
dans une région très spécifique de la magnétosphère les hypothèses sur lequel repose le
régime sans-force sont violées. Pour palier à ce défaut des simulations sans-force et étudier
le rayonnement, la communauté s’est orientée vers des simulations « Particules-in-Cell »
(PIC). Ce type de simulations cinétique est ab-initio et permet de décrire la magnétosphère
depuis l’échelle cinétique grâce aux particules individuelles. Elle permet aussi de pren-
dre en compte les effets d’électrodynamique quantique (QED) et de rayonnement. L’un
des effets QED principaux mis en avant par les modèles est la création de paires. Elle
peut intervenir via deux processus dans les magnétosphères de pulsar : conversion mag-
nétique et/ou processus Breit-Wheeler. Dans le cas du rayonnement, les deux principaux
processus attendus sont le rayonnement synchrotron et le rayonnement de courbure. Les
simulations PIC ont mis en avant le besoin d’avoir de la production de paires que ce soit
pour les simulations numériques mais aussi pour la théorie. Différents scénario ont été
mis au point pour la communauté pour tenter d’expliquer la création de paires ainsi que
les observations. Des modèles utilisent la notion de zone de vide dans la magnétosphère
dans lesquelles les particules subissent une forte accéleration causé par un champ élec-
trique. Via cette accélération, les particules gagnent de l’énergie. Si cette dernière dépasse
l’énergie seuil de la production de paires, la conséquence directe est la perte d’énergie de la
particule primaire pour produire une paires. Cependant, l’accélération des particules n’est
pas limitée uniquement au zone de vide, elle peut aussi être produite grâce au processus
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de reconnection magnétique dans une nappe de courant. Ce mécanisme se déclenche à
l’interface entre deux polarités opposées du champ magnétique. Il s’avère que ce proces-
sus est très efficace pour accélérer des particules à haute énergie et que cette configuration
est exactement celle rencontrée dans une magnétosphère de pulsars.

2.5.2 Trous noirs

Pour le cas des trous noirs, il nous faut tout d’abord définir une métrique afin de décrire
l’espace-temps courbé. Pour tenir compte de cette courbure, nous utilisons le formalisme
« 3+1 » pour faciliter l’interprétation des équations. Grâce à ce formalisme, il est possible
d’exprimer notre jeu d’équations dans une forme quasiment identique à celle des équa-
tions de Maxwell en espace plat, avec comme différence notable le nombre de champs qui
passe de 2 à 4. Une autre similarité entre les trous noirs et les pulsars est la présence de
surfaces de lumière au nombre de 2 pour les trous noirs contre 1 pour les pulsars. Le critère
porte aussi sur la possibilité ou non d’être en corotation avec l’objet.
À l’instar de ce qui avait été fait au début de la théorie des pulsars, la première solution
fut donnée pour une configuration dans le vide. Cette solution connue sous le nom de
configuration de Wald (1974), s’exprime sous la forme d’un 4-potentiel totalement analy-
tique. Suivant le même cheminement, la communauté travaillant sur les magnétosphères
de trous noirs passa d’une magnétosphère vide à une magnétosphère remplie de plasma.
L’origine de ce plasma est plus complexe que pour les pulsars que les trous noirs n’ont
pas de surface propre d’où des particules peuvent être extraites. Le régime physique de
ce type de magnétosphère est encore une fois identique au cas pulsar, elle se trouve dans
un régime sans-force. Sous ces hypothèses, une seule solution analytique existe et il s’agit
de la solution de Blandford and Znajek (1977). Pour obtenir cette solution, les auteurs ont
utilisé la solution de Michel (monopole) et l’ont ensuite étendue au cas d’un trou noir en
rotation lente. Cette solution est d’autant plus intéressante qu’elle permet d’extraire de
l’énergie du trou noir.

2.5.3 Résumé

Dans ce chapitre, nous avons présenté certains aspects de la théorie des pulsars et des
trous noirs, ainsi que certains processus QED à l’œuvre dans leur magnétosphère. Dans les
deux cas, la théorie a commencé dans le vide et a migré vers une magnétosphère remplie
de plasma. Que ce soit pour les pulsars ou les trous noirs, le nombre de solutions analy-
tiques pour décrire la magnétosphère est très limité. Pour les pulsars, une seule solution
a été trouvée et correspond à la solution Michel (configuration de monopole magnétique).
Pour les trous noirs, nous disposons de la solution de Wald et de la solution de Blandford-
Znajek (l’analogue relativiste général de la solution de Michel). Cependant, cette absence
de solution analytique n’a pas empêché la communauté de construire des modèles com-
plexes où des processus QED sont en jeu, pour tenter d’expliquer les différentes émissions
observées. Néanmoins, en raison de la grande diversité des phénomènes physiques et de
leur forte non-linéarité, la communauté doit recourir à des simulations numériques pour
aller plus loin dans sa compréhension des magnétosphères relativistes.
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We have seen the different observational and theoretical aspects of relativistic magne-
tospheres. In order to understand and handle the wide variety of physical phenomena in
these environments, we need to use numerical simulations. In this chapter, we will intro-
duce some of the numerical facets behind the modelling of relativistic magnetospheres.
This chapter aims at giving the required material needed for Chap. 5. In Sect. 3.1, we will
describe one possible numerical method used to solve Maxwell’s equations, the Finite Dif-
ference Time Domain method. In Sect. 3.2, we will detail the force-free scheme under the
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FDTD method. In Sect. 3.3, we will do a similar work to the previous section but applied in
the framework of Particle-in-cell simulations. Finally, we will give some limitations of both
numerical methods and possible ways of overcoming them in Sect. 3.4. A great resource
for numerical plasma physicists is the book by Birdsall and Langdon (1991).

3.1 Solving Maxwell’s equations numerically

In order to study relativistic magnetospheres, we must do numerical simulations because
of the high non-linearity of the problem. Several approaches can be used to do so. In the
following, I describe the two main approaches and give the advantages and disadvantages
of both.

We remind the set of equations that one must solve to model relativistic magneto-
spheres, i.e. Maxwell’s equations:

∂B
∂t

= −c∇× E (3.1)

∂E
∂t

= c∇× B− 4πJ, (3.2)

∇ · B = 0 (3.3)

∇ · E = 4πρ (3.4)

To numerically solve the time evolution of Eqs. (3.1, 3.2, 3.3, 3.4), we need to discretise
them both in time and space. I describe in the following the numerical scheme generally
used, as it is explicit and rather simple to understand and implement.

3.1.1 Finite-Difference Time Domain

The Finite-Difference Time-Domain (FDTD) method is an explicit numerical method. From
here, we will only consider its second-order version. The use of higher-order methods is
also possible, for example with a Runge-Kutta 4th-order scheme in time, but the higher the
order the more expensive the method. The FDTD allows for second-order accuracy both in
time and in space. It is relatively cheap and offers good stability when solving Maxwell’s
equations. This algorithm described in the following sections relies on two pillars: the Yee
mesh and the leapfrog scheme. It is also possible to use implicit or semi-implicit Maxwell
solvers ( Bacchini et al., 2019).

No matter what the explicit numerical method is and its accuracy, they are enforced
to validate the Courant-Friedrichs-Lewy (CFL) condition ( Courant et al., 1928). The latter
ensures that the algorithm is numerically stable throughout the time integration of the
solution (i.e. convergence condition). For a Cartesian grid, the CFL condition ( Sironi &
Cerutti, 2017) reads

1D :
c2∆t2

∆x2 < 1 (3.5)

2D : (c∆t)2
(

1
∆x2 +

1
∆y2

)
< 1 (3.6)

3D : (c∆t)2
(

1
∆x2 +

1
∆y2 +

1
∆z2

)
< 1 (3.7)
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where ∆t is the timestep, ∆x, ∆y, ∆z are the spatial step size in the x, y, z directions. There-
fore, we can extract the condition on ∆t from Eq. (3.6) depending on the grid spatial size
in the 2D case:

∆t =
1
c
C
√

∆x2∆y2

∆x2 + ∆y2 (3.8)

where C is the CFL number, which must be below 1 in order to validate Eq. (3.6). Con-
sequently, the timestep of the simulation ∆t is constrained by the grid spatial resolution.
Therefore, if we consider a logarithmic grid along the x-axis, the timestep will be curtailed
by the smallest cell (i.e. ∆x = min(∆ log(x)|xmax

xmin )). This condition also tells us that any
timescale smaller than ∆t cannot be resolved by the simulation. In practice, the most lim-
iting frequency is the electronic plasma frequency ωpe =

√
4πnee2/me. This issue can be

easily encountered by pushing the parameters of a simulation for a fixed resolution. For
example one simulation can have a timestep ∆t small enough to resolve the plasma fre-
quency ωpe. However, if we increase the density in the simulation, ωpe becomes larger
and the time resolution is not sufficient to resolve it.

If we do not respect the CFL condition, numerical instabilities develop in the simu-
lation, leading to the explosion and the crash of the simulation. To demonstrate this ef-
fect, we consider a 1D problem in which we evolve a plane wave in vacuum along the
x-direction. This initial condition reads:{

Ez(t = 0) = Eini
z = E0 sin

( 2πx
λ

)
By(t = 0) = Bini

y = 0
(3.9)

where E0 and B0 are the amplitudes of the waves, λ is the wavelength. The space and time
discretization are explained in detail in Sects. 3.1.3 and 3.1.2 respectively. We now solve
Eqs. (3.1) and (3.2) to evolve the wave in time with an explicit integrator. To demonstrate
the impact of not respecting the CFL condition, we show two different cases in Fig. 3.1.
The first case validates the CFL condition with C = 0.9 whereas the second one does not
with C = 1.5.

We see right away in Fig. 3.1 the numerical instability developing (internal oscillations
of the solution) after a few iterations for C = 1.5 whereas the case with C = 0.9 is per-
fectly stable even after a long integration. The growth of the instability is exponential, and
shortly the solution is overwhelmed/dominated by the instability. In practice, the grid
resolution ∆x and the CFL number are given by the user and the timestep ∆t is defined by
using Eq. (3.8) in a given geometry.

3.1.2 Space discretization

I describe in this section the space discretisation generally done when solving an electro-
magnetic problem with the FDTD method. From now on, we will consider a 2D Cartesian
grid linearly spaced in the x and y directions. Each components of E and B are staggered
on the numerical grid to solve Maxwell’s equations. A way of staggering the fields is to
use the so-called Yee mesh ( Yee, 1966), see Fig. 3.2.

With this grid structure, the E-components and B-components are respectively edge-
centred and face-centred on the numerical cell (see Fig. 3.2). This configuration allows us
to solve Maxwell’s equations in their integral form for a cell using the Stokes theorem

∂

∂t

∫∫
B · dS =

∂

∂t

∫∫
(∇× E) · dS = −c

∮
Ccell

E · dl. (3.10)
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FIGURE 3.1: Impact of the CFL condition on the time evolution of a 1D plane
wave. Left: Initial state of the wave (t = 0). Right: Solution after 18 iterations for
two values of C = {0.9, 1.5} respectively in red and blue. The top row shows the

electric field while the bottom row corresponds to the magnetic field.

The circulation of the electric field E on the edges of the cell gives the flux of B at the cor-
responding cell face. If we consider this configuration, we can derive Maxwell’s equations
by following a given nomenclature.

Definition 2: Space discretisation nomenclature

We define the position of a quantity A by its position on the grid by using the index
i for the x-direction and the index j for the y-direction. Given this rule, we write

• A(xi, yj) = (A)i,j

Therefore, if we apply this to the components shown in Fig. 3.2, we write for exam-
ple (Ez)i,j , (Ex)i+1/2,j ,

(
Ey
)

i,j+1/2 , (∇ · B)i+1/2,j+1/2.

We can rewrite Maxwell’s equation using Def. 2 and by considering derivatives (curl, div)
to be centred finite-differences. The discretised version of Eq. (3.2)) reads:
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FIGURE 3.2: Yee mesh on a 2D Cartesian grid in the xy-plane. The index i corre-
sponds to the x direction and the index j to the y direction.

∂t (Ex)i+1/2,j = c

(
(Bz)i+1/2,j+1/2 − (Bz)i+1/2,j−1/2

∆y

)
− 4π (Jx)i+1/2,j (3.11)

∂t
(
Ey
)

i,j+1/2 = −c

(
(Bz)i+1/2,j+1/2 − (Bz)i−1/2,j+1/2

∆x

)
− 4π

(
Jy
)

i,j+1/2 (3.12)

∂t (Ez)i,j = c

((
By
)

i+1/2,j −
(

By
)

i−1/2,j

∆x

)
(3.13)

− c

(
(Bx)i,j+1/2 − (Bx)i,j−1/2

∆y

)
− 4π (Jz)i,j

The most valuable benefit of using the Yee grid is that the algorithm automatically
ensures the validation of Maxwell-Thomson’s equation (∇ · B = 0) to machine precision.
An underlying condition still needs to be respected which is that the initial magnetic field
configuration must be divergence-free, the demonstration is done in Sect. 3.1.4.

3.1.3 Time-discretisation: Leapfrog algorithm

To constrain the time-dependence nature of the electromagnetic field, we also discretise
Maxwell’s equations along the time axis. A common way of doing the time discretisation
is to use the leapfrog scheme, which is a time-centred second order scheme. If we want
to use this scheme, a first procedure is mandatory because our set of equations (Eqs. 3.2
and 3.1) is coupled through E and B. Therefore the procedure implies pushing one of the
fields in time by half a timestep, meaning ∆t/2 for the initial condition. In the following,
the procedure is applied on B at t = 0. We note n the index with which time is evolved.
Therefore, in our case we have n ∈N for E and n ∈ 1

2 N for B and J.
The leapfrog scheme is schematically described in Fig. 3.3. The main point to notice is

that the electric field E is known at a different time than B and J which are offset by ∆t/2.
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FIGURE 3.3: Sketch of the leapfrog scheme applied to the fields.

In the following, in order to simplify the expressions, we define a nomenclature for the
time discretisation in the spirit of the one defined in Def. 2.

Definition 3: Time discretisation nomenclature

We note:

• E(tn) = (E)n

where the time is tn = n∆t and

• B(tn+1/2) = (B)n+1/2

where the time is tn+1/2 = (n + 1/2)∆t

We can rewrite Maxwell’s equation with this convention (Def. 3) by applying the time-
centred difference on time derivatives. The time-discretised equations read:

(B)n+1/2 − (B)n−1/2

∆t
= −c (∇× E)n (3.14)

(E)n+1 − (E)n

∆t
= c (∇× B)n+1/2 − 4π (J)n+1/2 (3.15)

We can compute the value of each field based on the previous timestep, thus we can update
the value of each field in time. The expressions of the new updated fields are

(B)n+1/2 = (B)n−1/2 − c∆t (∇× E)n (3.16)

(E)n+1 = (E)n + c∆t (∇× B)n+1/2 − 4π∆t (J)n+1/2 . (3.17)

Assuming the initial offset of B by half a timestep and that (E)n , (B)n−1/2 are known,
the leapfrog steps are:

Step 1: (B)n+1/2 ←− (B)n−1/2 − c∆t (∇× E)n

Step 2: Compute (J)n+1/2

Step 3: (E)n+1 ←− (E)n + c∆t (∇× B)n+1/2 − 4π∆t (J)n+1/2
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These three steps correspond to one cycle of the leapfrog scheme. The next integration
cycle will use (B)n+1/2 as (B)n−1/2 and (E)n+1 as (E)n, meaning that all time indices are
incremented by +1.

3.1.4 Fully discretised Maxwell’s equations

We summarise the full set of discretised Maxwell’s equations, both in time and in space by
using the nomenclature defined in Def. 2 and 3. The general expressions for a 2D grid are
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(E1)
n+1
i+1/2,j = (E1)

n
i+1/2,j − 4π∆t (J1)

n+1/2
i+1/2,j

+ c
∆t√

γi+1/2,j

 (B3)
n+1/2
i+1/2,j+1/2 − (B3)

n+1/2
i+1/2,j−1/2

∆x2

 (3.18)

(E2)
n+1
i,j+1/2 = (E2)

n
i,j+1/2 − 4π∆t (J2)

n+1/2
i,j+1/2

− c
∆t√

γi,j+1/2

 (B3)
n+1/2
i+1/2,j+1/2 − (B3)

n+1/2
i−1/2,j+1/2

∆x1

 (3.19)

(E3)
n+1
i,j = (E3)

n
i,j + c

∆t√
γi,j

 (B2)
n+1/2
i+1/2,j − (B2)

n+1/2
i−1/2,j

∆x1


− c

∆t√
γi,j

 (B1)
n+1/2
i,j+1/2 − (B1)

n+1/2
i,j−1/2

∆x2

− 4π∆t (J3)
n+1/2
i,j

(3.20)

(B1)
n+1/2
i,j+1/2 = (B1)

n−1/2
i,j+1/2 − c

∆t√
γi,j+1/2

(
(E3)

n
i,j+1 − (E3)

n
i,j

∆x2

)
(3.21)

(B2)
n+1/2
i+1/2,j = (B2)

n−1/2
i+1/2,j + c

∆t√
γi,j

(
(E3)

n
i+1,j − (E3)

n
i,j

∆x1

)
(3.22)

(B3)
n+1/2
i+1/2,j+1/2 = (B3)

n−1/2
i+1/2,j+1/2 − c

∆t√
γi+1/2,j+1/2

(
(E2)

n
i+1,j+1/2 − (E2)

n
i,j+1/2

∆x1

)

+ c
∆t√

γi+1/2,j+1/2

(
(E1)

n
i+1/2,j+1 − (E1)

n
i+1/2,j

∆x2

) (3.23)

where γi,j is the determinant of the metric at the (i, j) position of the grid, Ak is the k-
component of the vector and ∆xi is the differential step in the xi-direction. A more com-
prehensible example is to consider the geometry of the problem to be 2D Cartesian with

(E1, E2, E3) = (Ex, Ey, Ez) γi,j = det
(

1 0
0 1

)
= 1 (∆x1, ∆x2) = (∆x, ∆y) (3.24)

Applying this to Eq. (3.21)

(B1)
n+1/2
i,j+1/2 = (B1)

n−1/2
i,j+1/2 − c

∆t√
γi,j+1/2

(
(E3)

n
i,j+1 − (E3)

n
i,j

∆x2

)
(3.25)

=⇒ (Bx)
n+1/2
i,j+1/2 = (Bx)

n−1/2
i,j+1/2 − c ∆t

(
(Ez)

n
i,j+1 − (Ez)

n
i,j

∆y

)
(3.26)
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We can show by using the Yee lattice and the leapfrog scheme that the algorithm
automatically validates ∇ · B = 0, provided that the initial magnetic configuration is
divergence-free.

Demonstration 3: ∇ · B = 0 for the leapfrog with Yee mesh scheme.

We can compute the variation over time of ∇ · B. If we use the differential form, we
obtain:

∂

∂t
(∇ · B) = ∇ ·

(
∂B
∂t

)
= ∇ · (−c∇× E) = −c∇ · (∇× E) = 0. (3.27)

The discretised divergence of the magnetic field is

(∇ · B)n+1/2
i+1/2,j+1/2 =

(Bx)
n+1/2
i+1,j+1/2 − (Bx)

n+1/2
i,j+1/2

∆x
+

(
By
)n+1/2

i+1/2,j+1 −
(

By
)n+1/2

i+1/2,j

∆y
. (3.28)

If we look at the variation over time of ∇ · B but this time with the discretised ver-
sion of Eq. (3.3), we have:

∂t (∇ · B)i+1/2,j+1/2 =
(∇ · B)n+1/2

i+1/2,j+1/2 − (∇ · B)n−1/2
i+1/2,j+1/2

∆t

(3.28)
=

(Bx)
n+1/2
i+1,j+1/2 − (Bx)

n+1/2
i,j+1/2

∆t∆x
+

(
By
)n+1/2

i+1/2,j+1 −
(

By
)n+1/2

i+1/2,j

∆t∆y

−
 (Bx)

n−1/2
i+1,j+1/2 − (Bx)

n−1/2
i,j+1/2

∆t∆x
+

(
By
)n−1/2

i+1/2,j+1 −
(

By
)n−1/2

i+1/2,j

∆t∆y


=

(Bx)
n+1/2
i+1,j+1/2 − (Bx)

n−1/2
i+1,j+1/2

∆t∆x
+

(
By
)n+1/2

i+1/2,j+1 −
(

By
)n−1/2

i+1/2,j+1

∆t∆y

−
 (Bx)

n+1/2
i,j+1/2 − (Bx)

n−1/2
i,j+1/2

∆t∆x
+

(
By
)n+1/2

i+1/2,j −
(

By
)n−1/2

i+1/2,j

∆t∆y


(3.21, 3.22)

=
c

∆x∆y

[
−
(
(Ez)

n
i+1,j+1 − (Ez)

n
i+1,j

)
+
(
(Ez)

n
i+1,j+1 − (Ez)

n
i,j+1

)
−
{
−
(
(Ez)

n
i,j+1 − (Ez)

n
i,j

)
+
(
(Ez)

n
i+1,j − (Ez)

n
i,j

)} ]
= 0 (3.29)

The scheme maintains a zero variation of ∇ · B over time up to machine precision.

3.1.5 Parallelisation

We have described the most common temporal and spatial schemes used, we can now per-
form simulations of relativistic magnetospheres, but there is a caveat. The code will only
use a single Central Processing Unit (CPU), thus the simulation can take quite some time
to compute the solution. To circumvent this problem, we need to parallelise the tasks. By
doing so, we will be able to use multiple CPUs at once, therefore increasing the computa-
tional power. This is achieved by using an external library called Message Passing Interface
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(MPI). With this library, the user can give directives directly to all CPUs to exchange scalars,
vectors, or even arrays between different units.

The natural way of using multiple CPUs is to do a domain decomposition. Each of
the subdomains are allocated to a single CPU, and it is exactly for this reason that we
need communications between all CPUs. To illustrate this, we can try to compute a spatial
derivative at the edge of a CPU domain. The domain belonging to this CPU ranges from
[1, NXP] and the derivative is

∂ (Bx)NXP
∂x

=
(Bx)NXP+1 − (Bx)NXP−1

∆x
. (3.30)

The value (Bx)NXP+1 is unknown to this CPU as it is outside of its subdomain, but it is
known by its neighbour. This is exactly where we want to use communications. The basic
idea is that each CPU will transfer data from their subdomain to its adjacent neighbour via
a buffer. The communications needed in our example above are given in Fig. 3.4 and can
be generalised easily.

21 · · ·

Proc. 1

2 · · ·1 Proc. 2
Proc. 3

NXP· · · NXP− 1

NXPNXP− 1· · ·

FIGURE 3.4: MPI communications. The subdomain belonging to Proc. 2 is
[1, NXP]. The arrows correspond to the communications, meaning that the value

from which the arrow originates is sent to the neighbouring Proc.

We consider a 1D decomposition of the domain into subdomains, each allocated to a
Proc. in the figure. To know the value of the derivative at the outer-edge of its subdomain,
Proc. 2 receives the value of the inner-edge of Proc. 3 and is able to compute the value of
the derivative at its outer-edge. We can rewrite Eq. (3.30) in a different form:

∂ (Bx)
Proc. 2
NXP

∂x
=

(Bx)
Proc. 3
2 − (Bx)

Proc. 2
NXP−1

∆x
(3.31)

Once the communications are done, Proc. 2 knows the value right outside of its subdomain
and the derivative can be computed.

A more efficient way of doing these communications is to build so-called “ghost cells”.
These cells are outside the physical domain and are only used to communicate between
CPUs. This procedure is more user-friendly as all communications are usually encapsu-
lated in a single function. Ghost-cells have become the cleanest way of doing communica-
tions inside numerical codes, an illustration of such an application is given in Fig. 3.5.
In the configuration of Fig. 3.5, the physical domain of each process is [2,N-1] with N the
number of cell edges where the fields are set, for example. The darker cells are the ghost
cells and are here to send and receive buffers from the neighbouring processes. In Fig. 3.5,
Proc. 2 is sending and receiving buffers from both Proc. 1 and Proc. 3.

Even though communications are very powerful, they also represent a bottle-neck in
terms of computing time, as they require time to be done. In practice, communications are
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Proc. 1

2

NN − 1· · ·

· · ·1 Proc. 2
Proc. 3

N

21

N − 1· · ·

· · ·

FIGURE 3.5: MPI communication in the form of ghost cells. Ghost cells are repre-
sented by the darker colours.

limited by the bandwidth of the databuses1 connecting the different CPUs or nodes of the
cluster. In High-Performance Computing (HPC), the scalability of a code is very important.
It is a way of measuring the efficiency of the code and to see where improvements can be
made if any are possible. The scalability can be estimated by two methods which are the
strong and weak scaling. For the strong scaling, the domain size (i.e. the number of cells) is
fixed and we increase the number of CPUs therefore reducing the subdomain size of each
CPU. For the weak scaling, both the size of the problem and the number of CPUs vary but
we keep the size of each subdomain identical. In Fig. 3.6, we show the weak scaling of the
ZELTRON code. The departure from the ideal curve shows the impact of communications
on the speed of the code. More CPUs require more communications, which have a strong
impact on the code.

FIGURE 3.6: Weak scaling of ZELTRON to show the impact of communications on
the speed-up of the code. The blue points are measurement points, while the red

dashed line is the ideal scaling (Courtesy of Benoît Cerutti).

3.1.6 Other method: Pseudo-spectral method

The FDTD method is commonly used to model relativistic magnetospheres, but it is not
the only one. Other methods can be used such as the pseudo-spectral method that I will
briefly describe.

1High-performance databuses can reach up to 200Gbit/s
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Parfrey et al. (2012), Pétri (2012) respectively developed pseudo-spectral codes to study
relativistic magnetospheres. The strong aspect of this method is that it does not need to
be spatially centred like for the FDTD method meaning that all quantities are known at
the same grid points. The pseudo-spectral method can be seen as an FDTD method for
which the stencil of derivatives extends to all grid points. A consequence of the pseudo-
spectral method is the transformation of Partial Differential Equations in Ordinary Differ-
ential Equations easier to solve but it does come with its own limitations. The method has
very low numerical dissipation in itself thus it is subject to the aliasing instability. This in-
stability can be reduced by using spectral filters to remove the high-frequencies produced
by non-linear terms. A second limitation is the difficulty of the method to handle jump
discontinuities. The way this is counter-balanced is by smoothing the solution to remove
those discontinuities.

As an example to illustrate the pseudo-spectral method, I describe here the decomposi-
tion in spherical harmonics used by Pétri (2012). The method is based on a decomposition
of the electromagnetic field in vector spherical harmonics relying on the scalar spherical
harmonic Ylm.

Ylm =

√
2 l + 1

4π

(l −m)!
(l + m)!

Pm
l (cos θ) (3.32)

where Pm
l are the Legendre functions. Then we can construct the different vector spherical

harmonics:

Ylm = Ylmer (3.33)

Ψlm =
r√

l (l + 1)
∇Ylm (3.34)

Φlm =
r√

l (l + 1)
×∇Ylm (3.35)

Finally, we can give the vector expansions of the electric and magnetic fields which are:

E =
∞

∑
l=0

l

∑
m=−l

(
Er

lmYlm + E(1)
lm Ψlm + E(2)

lm Φlm

)
(3.36)

B =
∞

∑
l=0

l

∑
m=−l

(
Br

lmYlm + B(1)
lm Ψlm + B(2)

lm Φlm

)
(3.37)

The next step is to use for example a Runge-Kutta scheme to update the electromagnetic
field.

3.2 Force-free method

Historically, the force-free method was the first used to model relativistic magnetospheres.
The first simulation of a time-dependent force-free magnetosphere was performed by
Spitkovsky (2006) for a pulsar. This method relies on the assumptions done in Sect. 2.1.2. I
explain in the following how the force-free method works.

3.2.1 Standard force-free timestep

The force-free method usually adopts the FDTD scheme described in Sect. 3.1.1 to solve
Maxwell’s equations in time. The standard loop of the force-free method is described in
Fig. 3.7.
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FIGURE 3.7: Timestep FFE algorithm

Of course, the stability of the force-free method is still constrained by the CFL condition
(Eq. 3.6 for a 2D cartesian grid). For the loop in time, we assume that the electric and
magnetic fields are known at time t = 0 from initial conditions in order to start the loop.
Only two steps are actually required for the force-free loop in time. The first step is to
compute the current density J thanks to E and B. We recall the expression of the force-free
current density,

J = c
∇ · E

4π

(
E× B

B2

)
+

c
4π

(
B · (∇× B)− E · (∇× E)

) B
B2 . (3.38)

Once the current density is computed and known on the full grid, it is injected into
Maxwell’s equations. They are solved using the leapfrog scheme presented in Sect. 3.1.3.
E and B are then updated in time and this closes the timestep. We iterate by following the
same method for the next timestep until the desired time is reached.

3.2.2 Current density treatment

The current density computation in the force-free method represents the most technical
aspect. At every steps of the computation, we must maintain the second-order accuracy of
the FDTD method for stability reasons. Equation (3.38) can be divided into two terms J⊥
and J‖, where:

J⊥ = c
∇ · E

4π

(
E× B

B2

)
(3.39)

J‖ =
c

4π

(
B · (∇× B)− E · (∇× E)

) B
B2 (3.40)

J⊥ and J‖ are respectively the current perpendicular and parallel to the magnetic field. In
both terms, the electromagnetic field components lie at different locations within the Yee
mesh and are mixed. These locations do not correspond to the position of the staggered
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current density. Consequently, keeping the second-order accuracy in space is not straight-
forward. In practice, all field components are temporarily unstaggered and positioned at
the grid nodes (i, j) using an arithmetical average:

Ai,j =
Ai+1/2,j +Ai−1/2,j

2
(3.41)

Once the current density is computed on the nodal grid, it is staggered back onto the
Yee mesh via arithmetical averaging. Even with this manipulation, the J‖ term is still cum-
bersome to compute. It always involves all the field components and many derivatives.
As an example, we report the expression for Jz,

(Jz)i,j =

(
c

4π

[
Bx∂yBz − By∂xBz + Bz

(
∂xBy − ∂yBx

)
− Ex∂yEz + Ey∂xEz − Ez

(
∂xEy − ∂yEx

)] Bz

B2
x + B2

y + B2
z

)
i,j

. (3.42)

For example, in the above equation (Bx)i,j and
(
∂yBz

)
i,j are

(Bx)i,j =
(Bx)i,j+1/2 + (Bx)i,j−1/2

2
(3.43)

(
∂yBz

)
i,j =

(
∂yBz

)
i+1/2,j +

(
∂yBz

)
i−1/2,j

2
=

1
2

(
(Bz)i+1/2,j+1/2 − (Bz)i+1/2,j−1/2

∆y

+
(Bz)i−1/2,j+1/2 − (Bz)i−1/2,j−1/2

∆y

) (3.44)

This procedure must be done for each term of Eq. (3.42) and each component of J‖.
The heavy centring of J‖ is avoided by not computing this term but only applying its
consequences. The effect of J‖ is to maintain the force-free condition E · B = 0 valid.
Therefore, the impact of J‖ is to remove all the parallel electric field (i.e. E‖ = 0). This is
usually done by hand in force-free codes. To fulfil E‖ = 0, we remove the component of E
projected along B in the following form:

E = E′ ←− E− (E · B) B
B2 . (3.45)

E′ is the new electric field affected to E for which E′ · B = 0 is verified. Even in this
manipulation of the electric field, we still need to conserve the second-order accuracy of
the FDTD method (recentering). However, this manipulation of the electric field is not the
only one done in the force-free method. A second numerical treatment needs to be applied
to verify the second force-free condition B2 − E2 > 0 (see Sect. 2.1.2 for the derivation).
Some configurations can lead to a violation of this second condition. A common way of
avoiding this violation is to rescale the electric field whenever E2 > B2.

E = E′ ←−
√

B2

E2 E (3.46)

The treatment given by Eq. (3.46) ensures B2 − E′2 = 0 where E′ is affected to E. In
practice, this numerical trick is applied if a current sheet is present in the simulation as the
magnitude of the magnetic field drops to zero inside it. Physically speaking, this reduction
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of the electric field acts as a source of dissipation that is highly localised. The energy lost
because of the dissipation has no feedback on the physical domain, thus it is a straight loss
for the simulation energy budget.

Generally, the numerical treatments given by Eqs. (3.45) and (3.46) are only applied
at the end of the force-free timestep when all quantities have been evolved in time. This
procedure assure that the next timestep will start with both force-free conditions satisfied.

3.2.3 Adding dissipation

Recently, there has been some study on the impact of dissipation in force-free simulations.
Dissipation can be added to force-free simulations by modifying the expression of the cur-
rent density. Several studies on resistive force-free were performed in the last decade, see
Li et al. (2012), Parfrey et al. (2017), Mahlmann et al. (2021), Mahlmann and Aloy (2022).
The resistive force-free current density is mainly a modification of the parallel term, which
reads:

J‖ =
c

4π

(
B · (∇× B)− E · (∇× E) + κIB · E

) B
(1 + κIξ)B2 (3.47)

κI is the driving rate and ξ is the resistivity or dissipation coefficient. This modification is
similar to an Ohm’s law applied on J‖ and requires the computation of the J‖ term. We
can recover the ideal force-free current density of Eq. (3.38) by setting κI → 0. Taking
into account this resistivity allows for a stabilisation of current sheets if any are present
in the problem modelled. The other interest is to be able to control how the dissipation
works and not only relying on the numerical resistivity2. This can be done by injecting a
resistivity ξ > ξgrid where ξgrid is the numerical resistivity associated with the grid. Even
with this modification, we are still limited by the fact that the resistivity is put by hand and
not driven by the physics or kinetic scales.

3.3 Particle-in-cell method

3.3.1 Theoretical framework: collisionless plasma

The Particle-in-cell method is designed to model a collisionless plasma. The point of view
of the method is kinetic instead of fluid like in force-free. This theoretical framework in-
volves that the frequency νC between two Coulomb collision is much smaller than the
plasma frequency, ωpe =

√
4πnee2/me i.e. ωpe � νC. If this is the case, the governing

equation of such a plasma is the Vlasov equation ( Vlasov, 1967):

∂ f
∂t

+
p

γm
· ∂ f

∂r
+ q

(
E +

v× B
c

)
· ∂ f

∂p
= 0 (3.48)

f (r, p, t) is the distribution function, p = γmv is the momentum of the particle and r is
its position. The distribution function depends on 7 parameters: 3 parameters in space
r, 3 velocity parameters in momentum p and 1 parameter in time. The Vlasov equation
describes the time evolution of the distribution function, taking into consideration long-
range interactions. The equation is coupled to Maxwell’s equations to fully describe the
plasma and electromagnetic field. It is possible to solve numerically this set of equations
but as mentioned above, the problem has a high dimensionality in phase space. Thus,
solving for the distribution function requires a lot of computational power, memory, and

2related to the numerical diffusivity which is introduced when we numerically solve discretised hyperbolic
systems of partial differential equations; it is also linked to the resolution
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storage space. As an example, a code such as VLASIATOR ( Palmroth et al., 2013) was only
able to perform a 3D − 3V simulation of the Earth’s magnetosphere very recently (see
Ganse et al. 2023). A recent review of Vlasov methods ( Palmroth et al., 2018) describes the
different ways of solving Vlasov equation, as well as the heavy computing machinery.

In the Particle-in-cell approach, the Vlasov equation can be indirectly solved using the
method of characteristics. In this method, the distribution function is

f (r, p, t) =
N

∑
k=1

wkδ (r− rk (t)) δ (p− pk (t)) (3.49)

where N is the number of macroparticles and wk, rk, pk respectively the weight, the posi-
tion and the momentum of the particle k. In PIC simulations, particles are grouped in what
is called macroparticles. These are numerical particles representing a bundle of particles
that would have the same trajectory in phase space. We assign a weight to each macropar-
ticle, this weight tells us how many physical particles are modelled by each macroparticle.
Even with this procedure, the number of macroparticles in the simulation needs to be large
enough to have a good sampling of the distribution function.

The goal of PIC simulations is to have an ab-initio description of the plasma to study the
kinetic scales. We define the kinetic scale as the scale of the plasma skin depth or near the
Larmor radius. The first PIC simulations of a relativistic magnetosphere was performed
by Philippov and Spitkovsky (2014).

As for the force-free method described in Sect. 3.2, the PIC approach has its own nu-
merical scheme. It also relies on the FDTD scheme (see Sect. 3.1.1). The standard PIC-loop
is described in Fig. 3.8.

Step 3

∆t

Step 1

Solve
Maxwell’s
equations
(E, B)

Solve
Newton’s
equation

Step 2

currents (J)

Deposit
charges (ρ) &

(x, p)

FIGURE 3.8: Standard PIC timestep.

It is divided into three different steps. Two steps are actually reminiscent of the force-free
method, namely step 2 where the current density is computed and step 3 where Maxwell’s
equations are solved. Each step is described in detail in the following.

3.3.2 Step 1: Particle push

The first step is to push or update particles’ positions and velocities according to the rela-
tivistic Newton’s equation. Because of the strength of the magnetic field, the equation of
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motion only contains the Lorentz force, all other forces (pressure, gravity) are negligible.
Therefore, our set of equations reads:

du
dt

=
q

msc

(
E +

u× B
γ

)
(3.50)

dr
dt

= v =
c
γ

u (3.51)

where r is the particle position, u = γv/c is the spatial component of the 4-velocity of the

particle normalised by the speed of light, γ = 1/
√

1− (v/c)2 =
√

1 + u2 is the Lorentz
factor of the particle, q is the charge of the particle and ms is the particle’s mass. The most
commonly spread algorithm to solve this set of equations (Eqs. 3.50 and 3.51) is called
the Boris push ( Boris, 1970). It is a robust and stable algorithm widely used by the PIC
community in various physical applications. The second-order accuracy is maintained, it
is fast, volume-conserving in phase space as well as it conserves the particle energy ( Qin
et al., 2013). It has some limitations, for instance, it is not symplectic3 and it must respect
the CFL condition (Eq. 3.6). Some numerical development is currently undergoing to step
away from conditionality and move to unconditionally stable time stepping ( Ramachan-
dran et al., 2023).

The Boris push algorithm can be decomposed in a similar way as the leapfrog scheme,
meaning that the velocity u and position r are staggered in time. The Boris push is given in
Fig. 3.9. We use the same nomenclature as the one described in Def. 3 but this time applied
to the momentum u and position r.

tn−1 tn−1/2 tn tn+1/2 tn+1 t

rn+1

un+1/2
γn−1/2 γn+1/2

un−1/2

rn−1 rn

En, Bn

FIGURE 3.9: Boris push algorithm based on the leapfrog scheme.

Here we assume that (En, Bn, rn) are initially known as well as
(
un−1/2) in order to

start the leapfrog scheme. The fields used in this section are not taken on the grid but at
the particle position. This is done thanks to a linear interpolation, which is in most cases
sufficient. If we do the same exercise as the one done with the leapfrog scheme, the time
discretisation of Eqs. (3.50) and (3.51) reads:

un+1/2 − un−1/2

∆t
=

q
msc

(
En +

un × Bn

γn

)
(3.52)

rn+1 − rn

∆t
=

c
γn+1/2 un+1/2 (3.53)

3a symplectic integrator conserves the area in phase space
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Where we define un = (un+1/2 + un−1/2)/2 the arithmetic average and the same goes
for Bn = (Bn+1/2 + Bn−1/2)/2. Injecting this decomposition in Eq. (3.52) gives:

un+1/2 − un−1/2

∆t
=

q
msc

(
En +

(
un+1/2 + un−1/2)× Bn

2γn

)
(3.54)

Even with this new formulation, the time integration of the velocity is difficult because
of the velocity-dependence of the u× B term in the Lorentz force. To overcome this diffi-
culty, the Boris push splits the electric acceleration by defining,

un−1/2 = u− − q∆t
2msc

En (3.55)

un+1/2 = u+ +
q∆t

2msc
En (3.56)

We substitute these in Eq. (3.54) to obtain

u+ − u−

∆t
=

q
2mscγn

((
u+ + u−

)
× Bn) (3.57)

The impact of such a decomposition can be seen as a three-step process. The first step
is half an electric impulse that linearly accelerates the particle (Eq. 3.55), this gives u−.
Then, a rotation is performed by the magnetic force (Eq. 3.57). Finally, the remaining half
electric impulse reaccelerates the particle, leading to a full acceleration by the electric field
during the timestep. The rotation can be shown by taking the scalar product of Eq. (3.57)
with (u+ + u−). This gives ‖u+‖ = ‖u−‖ meaning a rotation of u− done by the vector
R = q∆t/(2mscγn) Bn. Nonetheless, the expression of u+ needed to know the time evolu-
tion is not yet explicit in u−. It is possible to demonstrate that after some manipulations,
the component u+ can be expressed as

u+ = u− + u− × s + (u− × R)× s (3.58)

where
s =

2R
1 + R2 γn =

√
1 + (u−)2 (3.59)

The full demonstration is given below in Demo. 4
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Demonstration 4: Isolation of u+ demonstration

We start from Eq. (3.57)

u+ − u−

∆t
=

q
2mscγn

((
u+ + u−

)
× Bn) (3.60)

We note
R =

q∆t
2mscγn Bn (3.61)

We can express Eq (3.60) using Eq. (3.61)

u+ − u− =
(
u+ + u−

)
× R (3.62)

The next step is to estimate the dot product Eq. (3.62)·R

(
u+ − u−

)
· R =

((
u+ + u−

)
× R

)
· R (3.63)

⇐⇒ u+ · R− u− · R = 0 (3.64)
=⇒ u+ · R = u− · R (3.65)

Then we estimate Eq. (3.62)×R(
u+ − u−

)
× R =

((
u+ + u−

)
× R

)
× R (3.66)

=
(
R ·
(
u+ + u−

))
R− R2 (u+ + u−

)
(3.67)

=⇒ u+ × R = u− × R + 2
(
R · u−

)
R− R2 (u+ + u−

)
(3.68)

The final step to have the expression of u+ is to inject Eq. (3.68)

u+ − u− = u+ × R + u− × R (3.69)

u+ (3.68)
= u− + u− × R + u− × R + 2

(
R · u+

)
R− R2 (u− + u−

)
(3.70)

u+
(
1 + R2) = u−

(
1− R2)+ 2u− × R + 2

(
R · u−

)
R (3.71)

u+ = u−
(

1− R2

1 + R2

)
+

2
1 + R2 u− × R +

2
1 + R2

(
R · u−

)
R (3.72)

We note

s =
2R

1 + R2

(
1− R2

1 + R2

)
= 1− s · R (3.73)

The final result is

u+ = u− − u− (s · R) + u− × s +
(
s · u−

)
R (3.74)

Using vectorial analysis, the final result is

u+ = u− + u− × s + (u− × R)× s (3.75)

Expressing rn+1 from Eq. (3.53) is straightforward,

rn+1 = rn +
c∆t

γn+1/2 un+1/2 (3.76)
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where γn+1/2 =
√

1 + (un+1/2)
2. In practice, the numerical workflow of the Boris push is:

Step 1: Compute u− from Eq. (3.55)

Step 2: Compute the rotation u′ = u− + u− × R

Step 3: Compute u+ = u− + u′ × s

Step 4: Update un+1/2 from Eq. (3.56)

Step 5: Update rn+1 from Eq. (3.76)

It is possible to account for continuous emission from particles by considering the
radiation-reaction force in Eq. (3.50). This induces a slight modification of the Boris push (
Tamburini et al., 2010).

3.3.3 Step 2: Currents and charges deposition

To be able to solve Maxwell’s equation, the current and charge densities of the plasma or
particles are required. Each individual particle evolves freely inside a numerical cell and
thus does not bring the same amount of current or charge to each grid node. Previously
the fields were interpolated at the particle position, here it is the opposite. The charge and
current given by the particle within a cell are deposited at its grid nodes. What we want
to do is the following: the closer the particle is to a grid node the more current and charge
it will deposit on the node. To achieve this, the procedure is rather simple and consists of
attributing weights to particles in the deposition scheme by computing different surfaces
in 2D.

If we consider a continuous space, we define the source terms by summing over all
particles within this space.

J (r) =
N

∑
k=1

qkwkvkδ(r− rk) (3.77)

ρ (r) =
N

∑
k=1

qkwkδ(r− rk) (3.78)

where N is the number of particles, qk, wk, vk, rk are respectively the electric charge, the
weight, the 3-velocity and the position of the particle k. In PIC, we do not have a continu-
ous space but a grid-based space, therefore we cannot directly sum over all particles. We
need to know the contribution of particles to each grid node and this is done through a
deposition scheme. The general idea is to write

J (r) =
N

∑
k=1

qkwkvkS(r− rk) (3.79)

ρ (r) =
N

∑
k=1

qkwkS(r− rk). (3.80)

The shape function S(r− rk) replaces the Dirac function used previously. This replacement
is caused by the fact that particles are not point-wise any more but have a finite size. The
expression of this function depends on the deposition scheme. To illustrate how it works
in practice, we illustrate a first-order linear scheme in Fig. 3.10.
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FIGURE 3.10: Charge and current deposition scheme using the area-weighting
method for a single particle located at (xP, yP) in a 2D Cartesian grid. Adapted

from Sironi and Cerutti (2017).

We note (xP, yP) the position of the particle P confined in the cell x ∈ [xi, xi+1],
y ∈ [yj, yj+1]. The contribution associated with the particle to each grid node is

�i,j+1 =
S2

Stot
=

(xi+1 − xP)
(
yP − yj

)
(xi+1 − xi)

(
yj+1 − yj

) , �i+1,j+1 =
S1

Stot
=

(xP − xi)
(
yP − yj

)
(xi+1 − xi)

(
yj+1 − yj

)
�i,j =

S4

Stot
=

(xi+1 − xP)
(
yj+1 − yP

)
(xi+1 − xi)

(
yj+1 − yj

) , �i+1,j =
S3

Stot
=

(xP − xi)
(
yj+1 − yP

)
(xi+1 − xi)

(
yj+1 − yj

) .

(3.81)

The current at each grid node is computed as

Ji,j =
N

∑
k=1

qkwkvk (1− pk) (1− qk) (3.82)

Ji+1,j =
N

∑
k=1

qkwkvk pk (1− qk) (3.83)

Ji,j+1 =
N

∑
k=1

qkwkvk (1− pk) qk (3.84)

Ji+1,j+1 =
N

∑
k=1

qkwkvk pkqk, (3.85)

where pk = (xk − xi) / (xi+1 − xi) and qk =
(
yk − yj

)
/
(
yj+1 − yj

)
are the bilinear coeffi-

cients of the interpolation obtained from decomposing �i+1,j+1 along the two axes.
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It is worth noting that the interpolation scheme for the deposition and the Boris push
(on the fields) should be the same to avoid self-forces (i.e. a particle accelerating itself). The
scheme described above is the deposition scheme used in ZELTRON . It is rather simple and
robust, but it is not charge-conserving. Other schemes can be used to conserve the charge
( Villasenor & Buneman, 1992; Esirkepov, 2001).

3.3.4 Step 3: Field evolution

The final step of the PIC algorithm is to update E and B by solving Maxwell’s equations.
This step uses the leapfrog scheme and is identical to the one described in Sect. 3.1.1. The
only difference being the current density which is coming from the particles instead of
the fields. However, there is a new procedure that needs to be done. This procedure
corresponds to a divergence cleaning, which is required by the deposition scheme used.
As mentioned previously, the deposition scheme is not charge-conserving, meaning that
∇ · E = 4πρ is not enforced to machine precision. This results in small errors accumu-
lating, leading to unphysical charge densities. Usually, the divergence cleaning is applied
periodically at the end of a timestep after the update of the electric field. We note E′ the up-
dated electric field and ρ the charge density. The true electric field is E = E′ + δE, with the
small error δE = −∇φ where φ is the electric potential. We can derive Poisson’s equation
for φ

∇ · E = ∇ · E′ +∇ · (δE) = 4πρ (3.86)

⇔ ∇2φ = ∇ · E′ − 4πρ. (3.87)

The next step is to discretise the above equation on the grid.

φi+1,j + φi−1,j − 2φi,j

∆x2 +
φi,j+1 + φi,j−1 − 2φi,j

∆y2 =
(
∇ · E′ − 4πρ

)
i,j (3.88)

Then, isolating φi,j gives

φi,j =

(
φi+1,j + φi−1,j

)
∆y2 +

(
φi,j+1 + φi,j−1

)
∆x2

2 (∆x2 + ∆y2)
−

∆x2∆y2 (∇ · E′ − 4πρ)i,j

2 (∆x2 + ∆y2)
. (3.89)

The standard way of solving for φi,j is to use an iterative method. This kind of method
can rapidly be very expansive, depending on the accuracy wanted for the solution. After
an initial guess, the chosen algorithm will iterate and converge towards a value of φi,j
satisfying Eq. (3.89) up to the wanted error. Many algorithms exist for this procedure such
as the Jacobi method, the Gauss-Seidel method or the Successive Overrelaxation method
(see Press et al. 2007 for in-depth analysis of the different methods). In ZELTRON , we use
the Gauss-Seidel method which is faster than the Jacobi method but still quite expansive.

3.3.5 Radiation-reaction force

We mentioned in Sect. 3.3.2 the fact that the Boris push could be slightly modified, to ac-
count for other forces. The pusher can handle the implementation of the radiation-reaction
force, noted gµ. This force, also called radiation dumping or Lorentz frictional force, mod-
els the radiation emitted by a moving charged particle (see Fig. 3.11). If this force is the
only one in the system, the particle will continuously slow down as the radiation is emit-
ted. There is a continuous feedback between the particle and the radiation emitted. To
consider the radiation-reaction force, we need to modify the equation of motion while still
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Particle

Trajectory

g β

FIGURE 3.11: Radiation-reaction force acting as a friction force slowing the parti-
cle.

considering the Lorentz force. The new equation of motion, in full covariant formulation,
is called the Lorentz-Abraham-Dirac equation.

mc
duµ

ds
=

e
c

Fµνuν + gµ (3.90)

where uµ is the 4-velocity of the particle normalised by the speed of light, ds = cdt/γ is
the spacetime interval, and Fµν is the electromagnetic tensor. Landau and Lifshitz (1971)
derived the expression of gµ in the relativistic case:

gµ =
2e2

3c

(
d2uµ

ds2 − uµuν d2uν

ds2

)
. (3.91)

The expression of the second derivative can be written by extracting the first derivative
from the relativistic equation of motion, supposing gµ = 0.

duµ

ds
=

e
mc2 Fµνuν (3.92)

d2uµ

ds2 =
e

mc2
∂Fµν

∂xλ
uλuν +

e2

m2c4 FµνFνλuλ (3.93)

Injecting the second derivative in Eq. (3.91) gives

gµ =
2e3

3mc3
∂Fµν

∂xλ
uλuν −

2e4

3m2c5 FµλFλνuν +
2e4

3m2c5

(
Fνλuλ

)
(Fµκuκ) (3.94)

In the standard 3-force formalism, the expression reads

g =
2e3

3mec3 γ [(∂t + cβ ·∇) E + cβ× (∂t + β ·∇)B] +
2
3

r2
e [(E + β× B)× B + (β · E) E]

− 2
3

r2
eγ2

[
(E + β× B)2 − (β · E)2

]
β (3.95)

where re = e2/mec2 is the classical radius of the electron and β is the 3-velocity normalised
to the speed of light c. The non-relativistic limit is recovered for β� 1.

Several numerical implementations do exist to take into account the radiation-reaction
force. Here we describe the procedure used in ZELTRON from Tamburini et al. (2010), other
implementations can be found in Sokolov et al. (2009), Capdessus et al. (2012). The new
(discretised) equation of motion with both the Lorentz and radiation-reaction force is

du
dt

=
1

msc
(FL + g) ⇐⇒ (u)n+1/2 − (u)n−1/2

∆t
=

1
msc

(
(FL)

n + (g)n) (3.96)
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where FL is the Lorentz force and g is still the radiation-reaction force, but where the
first term of Eq. (3.95) is neglected. The radiation-reaction is important for ultra-relativistic
particles γ � 1, meaning that the third term is dominant. The second term is kept
in the radiation-reaction force to model the curvature radiation ( Cerutti, Philippov, &
Spitkovsky, 2016). In practice, the equation of motion is split in two to add the contribution
of each force separately, before merging the effect of each force on the particle momentum.
This gives a set of two equations

(uL)
n+1/2 − (uL)

n−1/2

∆t
=

1
msc

(FL)
n (3.97)

(uR)
n+1/2 − (uR)

n−1/2

∆t
=

1
msc

(g)n (3.98)

where uL, uR are two intermediate momenta. Next, we assume that
un−1/2

L = un−1/2
R = un−1/2, the value of (g)n required in Eq. (3.98) is still unknown.

Combining the previous assumption and the above equation, we have

(u)n+1/2 = (uL)
n+1/2 + (uR)

n+1/2 − (u)n−1/2 (3.99)

= (uL)
n+1/2 +

∆t
msc

(g)n (3.100)

This is where the independently computed impact of FL and FR comes in. The above
equation closes the leapfrog step where we get (u)n+1/2, similar to the classic Boris push.
However, to compute it, we need to know (g)n. The latter depends on the velocity at half
a timestep (β)n (Eq. 3.95). The trick here is to have an approximation of (u)n to access it.
This is done by doing the Boris push on the Lorentz force to have (uL)

n+1/2. This way the
estimate becomes

(u)n ≈ (uL)
n+1/2 + (u)n−1/2

2
; (β)n ≈ (u)n

(γ)n (3.101)

where (γ)n =
√

1 +
(
(u)n)2. With the expression given by the equation above, (g)n can

be computed easily. It allows next to fully compute (u)n+1/2.

3.4 Limitations of force-free and PIC approaches

3.4.1 Strengths and weaknesses

We have described the force-free approach in Sect. 3.2 and the PIC method in Sect. 3.3. We
will now discuss what are the benefits and disadvantages of each method.

• Timestep cycle: if we compare Figs. 3.7 and 3.8, the obvious difference is the number
of steps required per timestep. The PIC method has three steps, whereas the force-
free method only has two. This difference is caused by the particle approach, for
which we need to evolve the particles in time. A possible conclusion coming from
this crude comparison between the two methods is that the force-free approach is
faster than the PIC approach because it requires one step less,

• Current density computation: in the force-free method, the current density requires
the recentring of the electromagnetic field components. The associated complexity



3.4. Limitations of force-free and PIC approaches 95

is OFFE = O
(

Ng
)
, where Ng is the number of grid points. For the PIC method,

we need to deposit the current of each individual particle on the grid nodes with
an interpolation. The complexity of the deposition is O (N), where N is the total
number of macroparticles. Usually, we have at least two species composing the
plasma in PIC simulations. This results in the general case to N = ∑s Ns, where
Ns is the number of macroparticles/species. Even in the extreme case of a single par-
ticle/species/cell, the final crude estimate of the PIC complexity is OPIC = O (2Ns),
leading to OPIC ≥ OFFE. Commonly, PIC simulations have a large number of par-
ticle/cell, Ns � 1. The computation in PIC is therefore more expensive than in
force-free,

• Shot noise: because in the PIC method we have a finite number of discrete particles,
PIC simulations suffer from what is called the shot noise. The sampling of the distri-
bution function in phase-space is sensitive to the number of macroparticles (Eq. 3.49).
This effect or shot noise impacts all quantities reconstructed from the macroparticles
(e.g. f , J, ρ). Two possible ways exist to counter the shot noise: (i) increase N the
number of macroparticles as the signal-to-noise ratio is SNR = N/

√
N =

√
N; (ii)

use a filtering procedure to remove the high-frequencies associated with the lack of
macroparticles, this last solution usually requires multiple filter passes,

• HPC constraints: both PIC and force-free methods can be run on a relatively high
number of CPUs (good scalability). In a force-free simulation as long as the number
of cells/process is the same, the duration of a timestep (computing time) is constant.
This is not the case in a PIC simulation where the duration of a timestep is con-
strained by the process hosting the largest number of particles. A simple illustration
is if Proc. 1 has N particles to treat and Proc. 2 has 2N particles, Proc. 2 is the bot-
tleneck as it will take twice as long to treat all particles. Physically speaking, this
happens when an over-density develops in the simulation. A way of dealing with
this issue is to implement a load-balancing algorithm in the code. This procedure
modifies the subdomain of each process on-the-fly in order to have roughly the same
amount of particles/process, see Beck et al. (2016) for an example of implementation.
It is also possible to implement variable particle weights ( Vranic et al., 2015),

• Physical information: this is the most important point of comparison. Depending
on the method, the physical information captured does not have the same amount
of details. In PIC, all the kinetic scales are modelled, therefore, a wide range of
physics can be accessed. Examples are particle spectra, densities, Lorentz factors,
non-thermal radiation, reconnection, dissipation, and fluid quantities . . . (the list is
not exhaustive). In force-free, we only have the macroscopic scales, not the kinetic
ones. Consequently, this method is very useful if we want to study the global be-
haviour of a system and its response to a perturbation. The difference in the physical
details comes from the ab-initio modelling done with the PIC method,

• Scale separation issue: this issue is only intrinsic to a specific type of simulation us-
ing the PIC approach. The scale separation issue arises when we try to model global
systems in PIC. Because the particles are on the kinetic scale, global simulations need
to cover the physics from this point up to the macroscopic scale. The difference be-
tween both scale is usually several orders of magnitude, especially in the context of
relativistic magnetospheres. PIC simulations are, in principle, able to cover these or-
ders of magnitudes. This would require extremely high spatial resolution and tens
of millions of CPU-hours, which is not acceptable. In practice, the problem is scaled
down in PIC simulations while maintaining the correct hierarchy of scales between
the most fundamental ones, i.e., the plasma scales, and the macroscopic system.
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The conclusions from this comparison are quite clear. The force-free approach is com-
putationally cheaper, it does not require explicit load balancing, and simulations can reach
macroscopic scales easily. However it does not give a wide range of information on the
physics of the system. The PIC approach is expensive because of the number of particles
used, it can suffer from uneven load balancing, but the method gives insights on all the
kinetic scales. The main issue with the PIC method is the modification of the simulated
scales, which impacts the physics. An example is for particle acceleration, where the max-
imum energy or Lorentz factor of particles suffers from the rescaling. The consequence of
this is that PIC simulations cannot be directly compared to observations as the strength
of the physical parameters or the system size are smaller. This aspect of PIC simulations
is treated in the next chapter. Assuming that the assumption behind the rescaling is cor-
rect, results from PIC simulations can still be scaled up to realistic parameters to compare
to observational data. In conclusion, we need to find ways of pushing the limit of our
simulations to be closer to realistic parameters with the least assumptions possible.

3.4.2 Beyond stand-alone approaches

To get closer to real system sizes or to access the full physics of a system, state-of-the-art
numerical codes are trying to mix different approaches together to develop what are called
hybrid methods. Nowadays many hybrid methods exist, always pushing the limits and
numerical barriers. We give in the following a brief overview of existing hybrid approaches.

Kinetic ions and fluid electrons: in this approach, the main point is to treat ions and
electrons differently. Ions/protons are kinetic, while electrons are assumed massless and
treated as a fluid. This difference allows to remove the electronic scales thus, the simulation
only needs to resolve the ionic scale. The latter is a factor

√
mp/me =

√
1836 ≈ 42 larger

than the electronic scale. With this gain in scale, the system size can be larger with the
same resolution. Various codes are available on the market such as dHybrid ( Gargaté et
al., 2007), Pegasus ( Kunz et al., 2014) or H-VLPL ( Tückmantel & Pukhov, 2014) and even
a Python package ( Li et al., 2024). For the ions, everything remains the same as in the
PIC method, but not for the electrons. The set of equations is the same as for standard PIC
method and is complemented by an Ohm’s law with a pressure term

E = −ve × B− 1
ene

∇Pe (3.102)

ve and Pe are respectively the velocity and the pressure of the electrons, we note that a
resistive term can also be added. Further details on this type of approach can be found in
Winske et al. (2023). This approach is powerful for studying the acceleration of ions but
is not suited for relativistic magnetospheres. In these environments, the electronic scale
plays an important role in the description of the magnetosphere. For example, the current
sheet is tearing unstable at the electronic scale. Pair production is also important in these
environments and leads to a larger number of leptons than ions. Inside the magnetosphere,
the leptons are not passive as they dictate some of the dynamics.

MHD-PIC: this method is similar to the previous one, meaning that we have a background
plasma considered as a fluid, and kinetic particles. However, in this approach, MHD mod-
els the background plasma where electrons and ions are thermal. Only the non-thermal
population of ions (low in number) is modelled via particles. This method has been im-
plemented in the non-relativistic MHD regime. The application of such a method can be
to study cosmic rays ( Zachary & Cohen, 1986; Lucek & Bell, 2000; Bai et al., 2015; Mak-
wana et al., 2018; Mignone et al., 2018; van Marle et al., 2018; Sun & Bai, 2023), but also to
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model magnetic island coalescence by embedding a PIC box inside the MHD ( Shou et al.,
2021; Li et al., 2023), or even the Earth’s magnetosphere ( Daldorff et al., 2014). On the
PIC side, the set of equation is the same as for the standard PIC algorithm. Compared to
the previous method, here the MHD equations are solved (conservation of mass density,
momentum density, magnetic field and energy density). Depending on the problem, feed-
back terms can be added as source terms in the equations. For a full description of the
procedure needed to embed PIC regions in MHD, see Daldorff et al. (2014).

Force-free-GRMHD approach: this last method is probably the most interesting in the
context of compact objects. The method proposed by Parfrey and Tchekhovskoy (2017,
2023) is applied to accreting pulsars, and works both in 2D and 3D in spherical coordi-
nates. It combines in the same numerical framework two different fluid approaches: rela-
tivistic MHD and force-free. The MHD part models the accretion disc and material falling
onto the pulsar, while the force-free handles the magnetosphere. This approach is very
interesting if we want to look at the interaction between the magnetosphere and the accre-
tion disc. However, it is not suited to study particle acceleration. The algorithm can adapt
dynamically with the evolution of the solution, and regions are allowed to switch back and
forth between the force-free and relativistic MHD descriptions. The force-free approach is
used to model the magnetosphere, where the magnetisation is high σ � 1, and the MHD
models the disc, where σ . 1. The approach solves the GRMHD equations

∇µ(ρuµ) = 0 ∇µTµ
ν = 0 ∇µF∗µν = 0 (3.103)

where Tµν is the total energy-momentum tensor, uµ is the fluid 4-velocity and F∗µν is the
dual of the electromagnetic tensor. The coupling is done thanks to a blending function
called A = 1−FP where F is a passive scalar used to know if the region is force-free or
MHD, and P is a restricting radial profile used on the force-free solution. A = 0 means
that the regime is force-free while A = 1 is the full GRMHD regime, and, in between,
the value of A is interpolated to produce a smooth transition. This method removes the
issue encountered in regions where the magnetisation is too high for GRMHD simulations,
caused by the floor in mass density. These peculiar regions are treated with the force-free
approach.

3.5 Summary

In this chapter, we have detailed two numerical approaches used to model relativistic mag-
netospheres. Both the PIC and force-free method presented here rely on a Finite-Difference
Time-Domain scheme, in which we use a Yee mesh (space) combined to a leapfrog algo-
rithm (time). The force-free numerical scheme appears simpler than the PIC one. It does
not account for particles which removes a step from the algorithm. However, the force-free
scheme hosts a complex computation of the current density when we want to maintain the
second-order accuracy. Therefore, some numerical treatments are done by hand to avoid
some of the difficulties.
In the PIC method, the particle aspect forces us to do additional steps, like solving for the
trajectories. The contribution to the current and to the charge density of each individual
particle must be computed at each grid node, meaning that the more particle the simula-
tion hosts the longer the computation takes. Despite this aspect, the PIC method is able to
model the trajectory of particles but also to apply the radiation-reaction force to them.
However, whether the method is force-free or PIC, both have limitations. Either they are
not able to account for dissipative effects but are cheap, or they can give insights of the
microphysics but are expensive.
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The community is now trying to by-pass some of these limitations by building hybrid meth-
ods. Such new methods are usually combining two approaches in order to describe two
different behaviours of a system.
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3.6 [Français] Points clés du chapitre

Dans ce chapitre, nous avons détaillé deux approches numériques utilisées pour mod-
éliser les magnétosphères relativistes. Ces deux approches reposent sur la résolution des
équations de Maxwell au cours du temps. Pour procéder à cette résolution, nous avons
considéré la méthode des différences finies dans le domaine temporel (FDTD) à l’ordre 2.
Pour cette méthode, il est nécessaire de discrétiser à la fois en espace et en temps notre
problème. Ces deux discrétisations sont d’ordre 2 afin de conserver la précision du second
ordre voulu pour la méthode FDTD. La discrétisation spatiale utilise la maille de Yee et la
discrétisation temporelle repose sur la méthode du saute-mouton. Afin d’accélerer la ré-
solution de notre problème, il est possible de paralléliser les tâches entre différents CPUs.
Pour cela, il est nécessaire de communiquer des informations entre les différentes unités
de calcul. On peut, par exemple, utiliser des communications directes entre les unités ou
définir des cellules fantômes qui sont utilisées pour les échanges. La méthode FDTD n’est
pas la seule possible, on peut aussi utiliser une méthode pseudo-spectrale pour modéliser
une magnétosphère.

Les approches sans-force et PIC peuvent toutes deux utiliser la méthode FDTD. Dans
un premier temps, nous appliquons la méthode FDTD dans le cas sans-force. Le schéma
sans-force se divise en deux étapes : 1) calcul de la densité de courant, 2) résolution des
équations de Maxwell. Le traitement de la densité de courant est assez complexe dans le
cas sans-force lorsqu’on veut conserver la précision du second ordre, de nombreux termes
liés à des opérateurs doivent être calculés ce qui est très coûteux. Une astuce consiste à
calculer uniquement une partie du courant et d’appliquer un traitement numérique pour
imiter les effets des parties non calculées. Une fois le courant calculé, il est naturel de
l’injecter dans les équations de Maxwell afin de les résoudre et de faire évoluer la solution.
L’approche PIC présente quelques différences avec l’approche sans-force, mais elle est très
similaire lorsque l’on utilise la méthode FDTD. Cette approche est décomposée en trois
étapes, soit une de plus que l’approche sans-force : 1) résolution de l’équation de Newton,
2) dépôt des courants et des charges, 3) résolution des équations de Maxwell. La première
étape découle du caractère particulaire de la méthode PIC, car il est nécessaire de faire
évoluer les particules dans le temps pour décrire la magnétosphère. Pour les courants et
les charges, il faut déposer la contribution individuelle de chaque particule aux coins de
la cellule dans laquelle la particule se trouve. Une méthode possible consiste à attribuer
un poids à la contribution de la particule pour chacun des coins de sa cellule. La dernière
étape est identique à l’approche sans-force, c’est-à-dire que la densité de courant est injec-
tée dans les équations de Maxwell, qui sont ensuite résolues. Il est toutefois possible de
modifier légèrement l’approche PIC pour tenir compte de la force de réaction au rayon-
nement, cette modification intervenant dans la résolution de l’équation de Newton.
Ces deux approches permettent donc de modéliser des magnétosphères relativistes, mais
elles ne sont pas infaillibles. En effet, elles présentent toutes les deux des points forts, des
points faibles et des limitations. L’approche sans-force est plus rapide car l’algorithme ne
comporte que deux étapes et n’implique pas de particules et donc aucun traitement indi-
viduelle de ces dernières. Pour l’approche PIC, l’étape supplémentaire liée aux particules
a un impact non négligeable sur le temps de calcul. Celui-ci est fortement lié au nombre de
particules présentes dans la simulation. Il est possible de réduire cet effet en diminuant le
nombre de particules, mais cette astuce introduit le problème du bruit de grenaille. En ter-
mes de physique, l’approche PIC est plus complète car elle permet d’accéder à différentes
quantités soit directement depuis les particules, soit reconstruites à partir de celles-ci.
Cependant, un problème très important fait partie intégrante du paysage PIC : celui de
la séparation des échelles (discuté dans le prochain Chapitre).
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La communauté cherche aujourd’hui à contourner certaines de ces limitations en élab-
orant des méthodes dites hybrides. Ces nouvelles méthodes combinent généralement deux
approches ou deux traitements distincts afin de décrire deux comportements différents
d’un système. Nous avons vu quelques exemples de couplage possible à la fin de ce
chapitre, la liste n’est en aucun cas exhaustive.
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We have seen in the previous chapters that in relativistic magnetospheres, a wide range
of plasma processes can be triggered. Consequently, to model such an environment, nu-
merical simulations should account for all of them. This aspect is rather complex to obtain,
and some simplifications must be done. Nonetheless, current state-of-the-art simulations
of relativistic magnetospheres bring a lot of potential explanations for the observed emis-
sions. In Sect. 4.1, we will see the current state-of-the-art simulations of pulsar magneto-
spheres and the inherent issue of the scale separation. In Sect. 4.2, we will do the same
exercise for black hole magnetospheres and we will see that the scale separation is still a
problem. Finally, Sect. 4.3 will establish the different questions that I aim at answering
with my thesis.
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4.1 Pulsar magnetosphere simulations

4.1.1 State-of-the-art PIC simulations

In the past decade, the community has been developing a wide range of tools to have ab-
initio simulations of pulsar magnetospheres. Within these tools, we can highlight force-
free and PIC codes which were detailed in Chapt. 3. Nowadays, the community uses PIC
simulations to try to explain the different observational signatures of pulsars by contin-
uously adding more physics. These simulations allowed the community to study dissi-
pation, particle acceleration and emission in pulsar magnetospheres. We can name a few
PIC codes with which it is possible to model such magnetospheres: APERTURE ( Chen &
Beloborodov, 2017), C-3PA ( Kalapotharakos et al., 2018), OSIRIS ( Fonseca et al., 2002),
TRISTAN-MP V2 ( Hakobyan, Spitkovsky, et al., 2023), ZELTRON ( Cerutti et al., 2013).

At the beginning of pulsar magnetosphere simulations, the configuration used was
the aligned rotator. The first PIC study of this configuration was done by Philippov and
Spitkovsky (2014) in 3D using Cartesian coordinates. In their simulations, they use a volu-
metric injection of plasma which is an idealised injection. However, this work showed that
the magnetosphere could have different structures depending on the amount of plasma
injected. For low injection, the magnetosphere is an electrosphere while for a high plasma
supply, the magnetosphere reaches a force-free state. Following this work, several groups
performed 2D spherical PIC simulations to study the injection parameter. The plasma in-
jection mechanism took different forms: a simplified pair production model based on an
energy threshold ( Chen & Beloborodov, 2014), a reservoir of pairs at the stellar surface (
Cerutti et al., 2015) or a criterion based on the parallel electric field ( Belyaev, 2015). Inde-
pendently of the injection prescription, all studies agreed that two regimes (and a transi-
tion) are reached depending on the amount of plasma injected. The simulation either ends
up in a fully developed force-free-like magnetosphere when the plasma injection is large
enough, or it reaches the electrosphere regime and an intermediate state in between. This
conclusion is in agreement with the previous 3D Cartesian work. These 2D simulations
were also used to study the acceleration of particles and the dissipation of electromagnetic
energy, especially in the context of gamma-ray pulsars. To show some of these results, we
will use one of the latest simulations of the aligned rotator. The results presented in Fig. 4.1
are taken from Hu and Beloborodov (2022). The simulation setup is almost identical to the
one from Chen and Beloborodov (2014). In this study, the pair production is based on an
energy threshold above which a lepton produces a photon. Inside the light-cylinder, the
mean-free-path of the photon is rather short, λmfp = r?, and it gets larger after the light-
cylinder, with λmfp = RLC. The photon-photon interaction and pair production is done via
a Monte-Carlo approach. However, the two simulations differ on the grid resolution. The
recent work has a grid resolution eight times larger in both directions than the first work.
In terms of physics, this increase of resolution allowed them to have a larger potential
drop. The latter results in a new maximum Lorentz factor at the polar cap, from γpc = 425
to γpc = 104. The current highest value of this parameter was set by Bransgrove et al.
(2023) and reached γpc = 2× 104, thanks to another increase of resolution up to (8192)2.
The value of γpc gets closer to realistic values, but it still remains far from the value of a
true pulsar. For the Crab pulsar (J0534+2200), P = 33.6 ms and B? ≈ 8× 1012 G, leading to
γpc ∼ 1011.

The left panel of Fig. 4.1 shows that gamma-rays are mainly emitted by the current
sheet, with a strong production around the Y-point. Some gamma-rays are also produced
along the separatrix. As expected by the presence of a large number of gamma-ray pho-
tons, the current sheet is a great site for pair production (middle panel of Fig. 4.1). At the
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FIGURE 4.1: Left: emission rate of gamma-ray per unit volume. Middle: cre-
ation rate of electron-positron pairs per unit volume. Right: Map of E · J showing
where dissipation occurs and its rate. Figures taken and adapted from Hu and

Beloborodov (2022).

Y-point, pair production is the strongest and is correlated with the high number of gamma-
ray photons present in a small volume around the Y-point. The right panel of Fig. 4.1 rep-
resents a map of E · J. This quantity traces where the dissipation of electromagnetic energy
occurs and at which rate. The Poynting flux dissipated is converted into particle energy via
Poynting’s theorem and particles are accelerated to high Lorentz factors. Unsurprisingly,
the current sheet is the dominant site of dissipation. This conclusion is consistent with
all previous work studying dissipation in pulsar magnetospheres ( Belyaev, 2015; Cerutti
et al., 2015). However, we can see that the separatrix is also dissipating energy. In their
simulation, the authors also model ions with a mass ratio mi/me = 5. The ratio is orders
of magnitude below the realistic value mi/me = 1836. In this setup, ions can almost be
seen as non-radiating positrons. One of the highest mass ratios used for a pulsar magneto-
sphere simulation is mi/me = 18.36 ( Guépin et al., 2020), the true mass ratio is still waiting
to be used.

Still with 2D simulations, it is possible to study the inclined rotator in its equatorial
plane. Such study was performed by Cerutti and Philippov (2017). In this setup, pair
production by photon-photon annihilation is not considered. The pairs are created and
injected from the surface of the star. The results of this more realistic pulsar, in the sense
that there is a misalignment between the spin axis and the magnetic axis, are shown in
Figure 4.2.

In their work, the authors showed similar results to the one obtained in the 2D aligned
rotator. However, in the equatorial setup and with an oblique rotator, two current sheets
appear as Archimedean spirals and form a striped wind. The left panel of Fig. 4.2 shows
the multiplicity of the plasma, indicating dense regions. Such regions appear to be the
current sheet where particles are accelerated. The right panel of the same figure shows
again the dissipation rate of electromagnetic energy. As for the aligned rotator, the current
sheet is highlighted meaning that it dissipates energy and converts it into particle energy.

On the 3D side, the inclined rotator was modelled by Philippov et al. (2015) at first
without radiative losses. The simulations were then upgraded to account for radiative
processes and could also track photons ( Cerutti, Philippov, & Spitkovsky, 2016; Philippov
& Spitkovsky, 2018). Now that 3D simulations are able to model an inclined rotator with
its associated emission, the community was able to produce light-curves and spectra.

Cerutti, Philippov, and Spitkovsky (2016) identified a caustic effect coming from the
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FIGURE 4.2: Left: map of the plasma multiplicity in log-scale. Right: E · J map
showing the dissipation of electromagnetic energy, normalised by

(
B? JGJ

)
(r?/r)3.

Figures taken and adapted from Cerutti and Philippov (2017)

current sheet. This means that photons emitted at different places of the current sheet
arrive in phase to the observer. The peaks observed are the result of the current sheet
photons hitting the observer’s screen at the same time. The latest 3D simulation of an
inclined rotator was performed by Hakobyan, Philippov, et al. (2023) where they recovered
a high density of pairs in the current sheet and a force-free state outside of it, see Fig. 4.3. In
the 3D setup, the current sheet fragments in both the radial and the φ−direction (the latter
is dominant in the wind) and forms flux tubes. 3D simulations also allows to study the
impact of the inclination angle on the electromagnetic dissipation. This was highlighted
by Cerutti, Philippov, and Spitkovsky (2016) in their 3D study of the dissipation of the
pulsar wind. They showed that when the inclination angle increases, the dissipation of
electromagnetic energy drops significantly.

A global conclusion of these recent works is that in the regime of abundant pair supply,
the force-free state is achieved almost everywhere in the magnetosphere, such that force-
free simulations are sufficient for the majority of the magnetosphere. The only exception is
the current sheet/separatrix where non-ideal fields develop. One way of illustrating this
is to say that force-free simulation results are encapsulated in PIC results, when the latter
consider a high supply of pairs.

Moreover, PIC simulations allow to study specific regions of the magnetosphere in de-
tails where the force-free assumptions break. This is the case if we want to study gap
models and for example the polar cap gap. The most recent study on this gap was per-
formed by Torres et al. (2024). In this work, the PIC simulation is able to capture the polar
cap dynamics and the behaviour of the pair cascade. The latter could be responsible for
the detected radio emission, see the review by Philippov and Kramer (2022).

4.1.2 PIC simulations in the scope of observations

Via PIC simulations, we can obtain the structure of the magnetosphere and have an ab-
initio modelling of the plasma. However, these are not the only benefits. It is possible to
derive synthetic observables (light curves, spectra, polarisation) from the simulations. We
show some of these synthetics in Fig. 4.4, the list is not exhaustive.
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FIGURE 4.3: 3D rendering of the plasma density for an aligned rotator simulation,
figure taken from Hakobyan, Philippov, et al. (2023). The upper left panel shows a
slice along a magnetic field line, while the upper right panel is a slice perpendicu-

lar to the same field line.

These synthetic observables are crucial if we want to constrain the models. However,
it is not possible to make a direct comparison between some of the synthetics and observa-
tions. This is the case for spectra. The top left panel of Fig. 4.4 shows a synthetic spectrum
of particles. This is not directly a synthetic observable but the information inside it can
be translated into a photon spectrum, which is observed. The latter would be compared
to Fig. 4.5, where we show an observed spectrum in the gamma band. If we consider
that photons are emitted via synchrotron radiation, we can compute the energy of the
parent particle (Eq. 2.98). A photon of energy ε = 0.7 GeV radiated at the light-cylinder
where BLC ' 105 Gauss would have been produced by a particle with a Lorentz factor of
γ = 7× 105 or an energy E = 4× 1011 = 400 GeV. If we try to compare the two figures, we
see that the particle spectra from the simulation extends up to tens of MeV. Such particles
are thus producing gamma-rays, but are not able to cover the full range of observed ener-
gies. Therefore, it is impossible to compare the two results. This issue is currently inherent
to global PIC simulations and is caused by the rescaling of the simulation.

4.1.3 Scale separation issue

When we model a global magnetosphere in PIC, we want to have the microscopic scales,
i.e. kinetic scales, and the macroscopic scales. In this section, we consider a pulsar belong-
ing to the canonical pulsar population. The latter is defined as an isolated, magnetised,
rotating neutron star. For such a pulsar, we estimate that its mass is M? ≈ 1.44M�, its
magnetic field is B? = 1012G and its spin period is P = 100ms. In a canonical pulsar, the
smallest microscopic scale is set by the electron skin depth at the surface
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FIGURE 4.4: Classical synthetic observables obtained thanks to a PIC simulation.
Top left: Spectra of pairs and ions taken from Guépin et al. (2020). Top right: Light
curves obtained from a 3D simulation for three different viewing angles, figure
taken from Philippov and Spitkovsky (2018). Bottom: Polarisation measurements

from a 3D simulation, figure taken from Cerutti, Mortier, et al. (2016).
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while the macroscopic scale is set by the light-cylinder

RLC =
cP
2π
≈ 500r?

(
P

100ms

)
≈ 5000km. (4.2)

The resulting scale separation is nine orders of magnitude. Such scale separation would
be achievable in a PIC simulation, but it would require a simulation with an extremely
high resolution and thus many CPU hours. To explain why PIC simulations are not able to
produce spectra with the right energy range, we need to look at the maximum energy of a
particle. At the surface, the upper limit on the particle energy is set by

γpc =
eΦpc

mec2 =
eB?r3

?Ω2

mec4 ≈ 2.6× 109
(

B?

1012G

)(
P

100ms

)−2

. (4.3)

To reduce the numerical cost of simulations, the size of the star and the strength of the
magnetic field are reduced thus, lowering the maximum energy

(
∝ B?r3

?

)
. The scale sepa-

ration of standard global PIC simulations of pulsar magnetospheres is of a few thousands.
However, the rescaling is not done randomly, it must respect the hierarchy of scales. For
pulsars, this hierarchy is based on three characteristic Lorentz factors

• polar cap γpc

• pair production threshold γth

• secondary pairs energy γs

where they must respect
γs � γth � γpc (4.4)

to keep the physical ordering.
Another point is regarding the radiative losses. If the simulation does model the

radiation-reaction force, the latter must also be modified, to account for the rescaling done
on the magnetic field. The force has a new parameter frad, which artificially enhances the
strength of the magnetic field. This parameter reduces the synchrotron timescale so that
energetic particles lose a significant fraction of their energy during a gyration time.

4.2 Black hole magnetospheres simulations

PIC or GRPIC simulations of black hole magnetospheres are still at an early stage. The
first full kinetic simulation of such magnetospheres was performed a few years ago by
Levinson and Cerutti (2018) in 1D and Parfrey et al. (2019) for 2D simulations. These
simulations are a unique tool to understand what is happening in the close vicinity of the
black hole and to try to explain what is causing the observed emission.

4.2.1 State-of-the-art GRPIC simulations

The black hole community is able to perform 2D and 3D global GRPIC simulations of the
magnetosphere. In Fig. 4.6, we highlight some results of 2D and 3D simulations.
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FIGURE 4.6: Left: Pair creation rate in a 2D GRPIC simulation, figure taken from
Crinquand et al. (2020). The top panel shows a spacetime diagram of the pair pro-
duction, while the bottom one shows where on average pairs are created. Right:
3D rendering of a GRPIC black hole magnetosphere, figure taken from Crinquand

et al. (2022).

The right panel of Fig. 4.6 shows a 3D rendering of the number density inside the mag-
netosphere. In the equatorial plane, we can see the current sheet fragmenting into flux
tubes with a high density. This is the sign of 3D magnetic reconnection and, thus, of parti-
cle acceleration. The left panel shows the pair creation rate. The spacetime diagram at the
top left shows that pair creation is not continuous. The behaviour is identical to the polar
cap gap for pulsars, where pair creation occurs while the density is below the Goldreich-
Julian density. The lower left panel pictures where pair creation is occurring in the poloidal
plane. The main mechanism for pair production close to the black hole is expected to be via
Breit-Wheeler or photon-photon annihilation. Because photons are tracked in the simula-
tion, this means that is possible to produce synthetic images to compare to observations.

4.2.2 GRPIC simulations in the scope of observations

Once simulations are performed, we need to compare or try to apply what is seen in them
to astrophysical objects. Thanks to the EHT collaboration, the community has an image
of the emission at the horizon scale for both M87? and SgrA?. They represent a valuable
comparison for the models.

Figure 4.7 shows on the left side a synthetic image of a GRPIC simulation and on the
right the image of M87?. The left panel was obtained from a simulation by using a ray-
tracing method while the right one was constructed from observational data. Even if we
cannot compare the two images in details, the comparison of the overall structure is im-
portant to build an intuition of what is happening. For example, the simulation recovers
two features present in the observation: a side of the image is brighter (Doppler boosting)
and the croissant shape of the brighter region. This emission is coming from synchrotron
radiation for an optically thin regime.

4.2.3 Scale separation issue

The issue of the scale separation remains in GRPIC simulations. However, in this context,
we define a new parameter B̃0 to measure the scale separation. The expression of B̃0 is
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FIGURE 4.7: Left: Synthetic observables of synchrotron emission from a simula-
tion, figure taken from El Mellah et al. (2022). Right: image obtained by the Event

Horizon Telescope Collaboration et al. (2019).

B̃0 =
eB0rg

mec2 =
rg

rL
. (4.5)

Its expression is directly related to the macroscopic and microscopic fiducial scales, respec-
tively the gravitational radius and the Larmor radius of particles.

In black magnetospheres, the scale separation is similar to the one of pulsars. We can
compute the value of B̃0 for M87? and SgrA? where the magnetic field at the horizon is
between 1− 100 G. For these two supermassive black holes, the scale separation is

B̃0,M87? ≈ 1011−13 B̃0,SgrA? ≈ 108−10 (4.6)

These scales are not yet tractable to GRPIC simulations. Consequently, GRPIC simula-
tions also perform a rescaling similar to the one of standard PIC simulations. Commonly,
the scale separation of GRPIC simulations reaches B̃0 ∼ 106 in 2D and 104 in 3D. The gap
between simulations and realistic systems is large and is waiting to be filled.

The conclusion of this section and the previous one is rather simple. If we want to
rigorously confront our models to observations, we must increase the scale separation of
(GR)PIC simulations. However, a few constraints do apply: (i) all the physics of relativistic
magnetospheres must remain, (ii) simulations must have a reasonable cost in terms of
computing hours.
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4.3 Objectives of the thesis

In light of the scale separation issue that we highlighted previously, the main idea was to
shift gears by trying a new method. We recall that relativistic magnetospheres are glob-
ally in the force-free regime, except the current sheet and separatrix. The idea behind the
possible new approach is to have a force-free description, in regions where the force-free
regime is valid, and a particle description, in regions where non-ideal fields and plasma
processes are important. My thesis work is articulated as follows:

• Is it possible to develop a viable force-free-PIC approach?

• If so, could this force-free-PIC approach be used to model pulsar magnetospheres?

• With a working hybrid approach, what is the maximum reachable scale separation?

• Are PIC results holding strong for close to realistic scale separation?

• Without rescaling, what is the typical energy of particles and where does the acceler-
ation occurs?

• Can this approach be translated from flat space to a curved spacetime to model black
hole magnetospheres?

This manuscript is outlined as follows. In this Part I, I presented the observational,
theoretical and numerical context as well as the state-of-the-art simulations of relativistic
magnetospheres. In Part II, I describe the force-free-PIC approach with a first validation
using the Michel monopole. Then, I use my method to model a weak millisecond pulsar
for an aligned configuration. Finally, I summarise the main results of my thesis in Part III
with a statement on the current development of the method in curved spacetime to model
black hole magnetospheres.
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4.4 [Français] Objectifs de la thèse

Dans ce chapitre, nous avons mis en avant différentes simulations de magnétosphères rel-
ativistes. Que ce soit pour les pulsars ou pour les trous noirs, ces simulations ont per-
mis d’étudier le comportement du plasma autour de ces objets extrêmes. Elles permet-
tent aussi de produire des observables synthétiques qui peuvent être utilisées pour tenter
d’interpréter les diverses observations. Cependant, les simulations produisant ces observ-
ables utilisent principalement la méthode PIC et présentent donc une faille majeure. Celle-
ci est liée à l’utilisation d’une méthode particulaire (échelle microscopique) pour décrire
un système macroscopique. Pour les magnétosphères relativistes, ces deux échelles sont
séparées par environ neuf ordres de grandeur. Cela implique donc d’utiliser des résolu-
tions extrêmes pour capturer en totalité ces deux échelles simultanément ou de recourir
à une procédure de rééchelonnement. C’est cette dernière méthode qui est généralement
utilisée par la communauté. Cette procédure permet de réduire les écarts entre les dif-
férentes échelles tout en conservant la hiérarchie du système réel, mais elle introduit une
faille dans les simulations. Les échelles étant réduites, cela impacte directement les éner-
gies accessibles dans le système par les particules. De ce fait, la comparaison directe avec
les observations devient impossible.

En raison de cette faille présente dans les simulations globales actuelles, nous avons
décidé de changer de tactique en essayant une nouvelle méthode. Pour rappel, les
magnétosphères relativistes sont globalement dans un régime physique dit sans-force, à
l’exception de la nappe de courant et de la séparatrice. L’idée principale derrière cette
tentaive de nouvelle approche est d’utiliser une description sans-force dans les régions où
cette hypothèse est valide, et d’employer une description particulaire dans les régions où
des champs non-idéaux se développent et où les processus plasmas sont importants. La
liste suivante regourpe les différentes questions auxquelles je vais tenter d’apporter une
réponse dans le cadre de mon travail de thèse :

• Est-il possible de mettre au point une approche sans-force-PIC viable ?

• Si tel est le cas, cette approche sans-force-PIC peut-elle être utilisée pour modéliser
les magnétosphères de pulsars ?

• Avec une approche hybride fonctionnelle, quelle est la séparation d’échelle maximale
que l’on peut atteindre ?

• Est-ce que les résultats obtenus avec la méthode PIC sont toujours valables pour une
séparation d’échelle proche de la réalité ?

• Sans rééchelonnage, quelle est l’énergie typique des particules et où sont-elles ac-
célérées ?

• Est-il possible de transposer cette approche en espace plat vers une approche en es-
pace courbe pour modéliser les magnétosphères de trous noirs ?

Ce manuscrit s’articule de la façon suivante. Dans la Partie I, j’ai présenté les contextes
observationnel, théorique, mais aussi numérique des objets compacts. J’ai également établi
l’état de l’art actuel et soulevé des questions auxquelles je tenterais de répondre par la suite.
Dans la Partie II, je décris l’approche sans-force-PIC et l’applique sur le cas analytique du
monopole de Michel afin de valider l’approche. Ensuite, j’utilise cette méthode pour mod-
éliser un rotateur dipolaire aligné correspondant à un pulsar faible. Enfin, je résume les
principaux résultats de mon travail de thèse dans la Partie III et je présente aussi l’avancé
actuelle de mes travaux sur le portage de ma méthode en espace courbe afin de modéliser
les magnétosphères de trous noir.
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Hybrid approach
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In this chapter, I describe how I implemented my hybrid approach in the ZELTRON

code. In Sect. 5.1, I present the procedure behind the implementation of the force-free
module. In Sect. 5.2, I give all the details of the force-free-PIC approach (coupling, criterion,
difficulties). In Sect. 5.3, I apply the new force-free-PIC method to the Michel monopole
configuration. This solution is analytical and represents a valuable resource when doing
numerical development on pulsar magnetospheres. Finally, I summarise the results in
Sect. 5.4. This chapter is partly adapted from my paper “Scaling up global kinetic models
of pulsar magnetospheres using a hybrid force-free-PIC numerical approach” accepted in
Astronomy & Astrophysics ( Soudais et al., 2024).
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5.1 Force-free module in Zeltron

ZELTRON is a PIC code first introduced by Cerutti et al. (2013). It uses the FDTD method
described in Sect. 3.1.1 to solve Maxwell’s equations and the Boris push (Sect. 3.3.2) to
solve the equation of motion. In the spherical version of the code, the Yee mesh is slightly
modified to fit the geometry as shown in Fig. 5.1. This was the current state of the code
when I started the project, an ab-initio PIC code solving global magnetospheric problems.
To develop the hybrid coupling between the PIC and the force-free method, I had first to
develop a new force-free module in ZELTRON from scratch.

r

θ

Bφ,∇ · B

(i, j)

Eθ, Jθ

Br

Eφ, Jφ,∇ · E

Bθ

Er, Jr

(i, j + 1/2)

(i + 1/2, j)

(i, j + 1)

(i + 1, j)

(i + 1/2, j + 1/2)

FIGURE 5.1: Spherical Yee mesh used in ZELTRON .

5.1.1 Impact on the code

The force-free method is encapsulated in a new module that contains all the tools needed.
The core of the code was slightly modified to allow the use of the force-free module, with
a switch to change from the PIC to the force-free approach. At this stage, this change is the
only one which touches the spin of the code. The force-free method is not intrusive as it is
only contained in one module and can run in parallel.

In a force-free code, we need to solve Maxwell’s equations to evolve the electromag-
netic field. This step is common in PIC and force-free thus, the Maxwell solver used in our
force-free approach is the one used in the original PIC method. However, during the de-
velopment of the module, I implemented a third-order Runge-Kutta scheme (RK3) for the
time integrator. This scheme has a higher accuracy and was originally used by Spitkovsky
(2006). Moreover, it allows to have the electric and magnetic fields centred on the same
time. As a consequence, the current density computation is always correctly centred in
time. This will become clearer in the next section. No differences were shown between the
two schemes, and the RK3 scheme was left behind to favour the leapfrog scheme. Sticking
to the original time integrator of ZELTRON was also a way of starting with solid foun-
dations. This exact solver was already involved in previous works ( Cerutti et al., 2015;
Cerutti & Philippov, 2017; Guépin et al., 2020).
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5.1.2 Current density computation

Even if the Maxwell solver is identical in PIC and force-free, there is a strong difference in
the origin of the current density. In PIC, it comes directly from the individual contribution
of particles. In force-free, there are no particles and the current density is only computed
from the electromagnetic field. We recall the expression of the force-free current density

J = J⊥ + J‖ (5.1)

with

J⊥ = c
∇ · E

4π

(
E× B

B2

)
J‖ =

c
4π

(
B · (∇× B)− E · (∇× E)

) B
B2 . (5.2)

Computing these expressions in a temporally and spatially centred scheme is a difficult
task. The computation uses all the components of E and B, which are staggered on the Yee
mesh (Fig. 5.1). Therefore, computing the different components of the current density
requires a proper re-centring. Each components of the electromagnetic field need to be
computed at the exact location of Jr, Jθ , Jφ. In addition to the spatial misalignment, we recall
that in the leapfrog scheme B and J are misaligned with respect to E by half a timestep.
To have a clean estimate of the current density and to keep the second order accuracy, the
current density must be computed at the right time. This introduces another extra centring
step. If this procedure is not done properly in space and time, the second-order accuracy
is lost, leading to the accumulation of small errors. With the current density being used in
Maxwell’s equations, the small errors will propagate in time and grow in amplitude. The
simulation will result at best in the crash of the code if not worse, an unphysical solution.
From a practical point of view, the first term J⊥ is relatively simple to centre in space and
in time. However, the second term J‖is cumbersome to compute if we want to maintain
the second-order accuracy in time and space. To avoid the computation of J‖, we apply
the same method as Spitkovsky (2006) for the current density. This means that only the
perpendicular component of the current density is computed and evolved in the loop in
time. To simplify the computation of J⊥, all quantities from the Yee mesh are computed
on the nodal grid. This grid differs from the Yee mesh, as the physical quantities are only
known at the points (i, j). In this configuration, the current density is

(J⊥)i,j =
c

4π
(∇ · E)i,j

 (E)i,j × (B)i,j

(Br)
2
i,j + (Bθ)

2
i,j +

(
Bφ

)2
i,j

 (5.3)

where
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(Er)i,j =
(Er)i+1/2,j

√
γi+1/2,j + (Er)i−1/2,j

√
γi−1/2,j√

γi+1/2,j +
√

γi−1/2,j
(5.4)

(Eθ)i,j =
(Eθ)i,j+1/2

√
γi,j+1/2 + (Eθ)i,j−1/2

√
γi,j−1/2√

γi,j+1/2 +
√

γi,j−1/2
(5.5)(

Eφ

)
i,j =

(
Eφ

)
i,j (5.6)

(Br)i,j =
(Br)i,j+1/2

√
γi,j+1/2 + (Br)i,j−1/2

√
γi,j−1/2√

γi,j+1/2 +
√

γi,j−1/2
(5.7)

(Bθ)i,j =
(Bθ)i+1/2,j

√
γi+1/2,j + (Bθ)i−1/2,j

√
γi−1/2,j√

γi+1/2,j +
√

γi−1/2,j
(5.8)
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[ (
Bφ

)
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√
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Bφ

)
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(

Bφ

)
i−1/2,j−1/2

√
γi−1/2,j−1/2 +

(
Bφ

)
i−1/2,j+1/2

√
γi−1/2,j+1/2

]
(5.9)

× 1√
γi+1/2,j+1/2 +
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γi−1/2,j+1/2 +

√
γi−1/2,j−1/2 +

√
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(∇ · E)i,j =
3

∆r3
i

(
r2

i+1/2 (Er)i+1/2,j − r2
i−1/2 (Er)i−1/2,j

)
+

3∆r2
i

2∆r3
i ∆µj

(
sin θj+1/2 (Eθ)i,j+1/2 − sin θj−1/2 (Eθ)i,j−1/2

) (5.10)

where ∆r3
i =

(
r3

i+1/2 − r3
i−1/2

)
, ∆r2

i =
(

r2
i+1/2 − r2

i−1/2

)
and

∆µj =
(
cos θj−1/2 − cos θj+1/2

)
. The centring of each field component is done by

taking the arithmetic average, in which
√

γi,j is the determinant of the 2D spherical metric
at the grid node (i, j),

√
γi,j = r2

i sin θj. (5.11)

This centring is heavy to write and needs to use several buffers for communications to
work in parallel. This term is implemented in ZELTRON and works for highly parallelised
simulations.

The current density from Eq. (5.1) has a second term, J‖. The difficulty with the parallel
term comes from the centring of the two curls. Even if we use the nodal grid to compute
J‖, we need to compute the three components of the two curls on the Yee mesh before
computing them at each grid node. This manipulation adds truncation errors to the so-
lution (coming from the order of the scheme) that spreads across multiple cells. Despite
the cumbersomeness of the computation, the parallel current density is still implemented
and parallelised in the force-free module. The reason behind this implementation is that
the computation of J‖ is mandatory if we want to look at the current density or any quan-
tity related to J. In practice, J‖ is computed right before the output of the simulation to
reconstructed the full current density. We performed a numerical experiment in which the
parallel term was computed and evolved in order to have the true current density injected
into Maxwell’s equations. Surprisingly, the result of this experiment was not successful.
The benefit of adding the J‖ term was not significant and even showed some failures. The
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reason behind this is still unclear to this date. For this reason, only the perpendicular
term is computed for the time evolution. Consequently, the numerical treatment given in
Sect. 3.2.2 and detailed in Sect. 5.1.3 must be applied.

Once the current density is computed on the nodal grid, it is staggered on the Yee mesh
using the same arithmetical average method.

(Jr,⊥)i+1/2,j =
(Jr,⊥)i+1,j

√
γi+1,j + (Jr,⊥)i,j

√
γi,j√

γi+1,j +
√

γi,j
(5.12)

(Jθ,⊥)i,j+1/2 =
(Jθ,⊥)i,j+1

√
γi,j+1 + (Jθ,⊥)i,j

√
γi,j√

γi,j+1 +
√

γi,j
(5.13)(

Jφ,⊥
)

i,j =
(

Jφ,⊥
)

i,j (5.14)

The current density is now at the right spatial location, but its time centring needs to be
done. We remind that in the FDTD method, the electric and magnetic fields are misaligned
in time. The electric field is known at integer timestep (E)n and the magnetic field at half-
timestep (B)n+1/2. Just like for the magnetic field, the current density should be computed
at half time step (J)n+1/2 for the time evolution of E to be centred (Eq. 3.17). To maintain
the second-order in time, the electric field is pushed in time by half a time step and a
temporary variable is used (E)n −→

(
Etemp

)n+1/2. The current density used for the half
push is computed from the misaligned field in time. A new current density is computed
with

(
Etemp

)n+1/2 to maintain the time centring. Once this procedure is done, the correctly
centred current density is injected to evolve (E)n −→ (E)n+1.

5.1.3 Rescaling

Because we do not use the parallel current density, we need to mimic its physical effect
by hand. This term acts on the electric field to maintain E · B = 0, to remove the parallel
component. Physically speaking, particles would be accelerated by the spurious electric
field to unrealistic velocities. The numerical way of mimicking the parallel current is to
remove the parallel excess of the electric field after its time evolution. We use Eq. (3.45)
from Sect. 3.2.2 for this purpose. As for the perpendicular current density, we use the
nodal grid

E = E−
(

E · B
B2

)
BEr

Eθ

Eφ


i,j

=

Er
Eθ

Eφ


i,j

−
(Er)i,j (Br)i,j + (Eθ)i,j (Bθ)i,j +

(
Eφ

)
i,j

(
Bφ

)
i,j

(Br)
2
i,j + (Bθ)

2
i,j +

(
Bφ

)2
i,j

Br
Bθ

Bφ


i,j

(5.15)

While we have the electric field on the nodal grid, we also rescale it according to Eq.
(3.46)
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E =

√
B2

E2 EEr
Eθ

Eφ


i,j

=

√√√√√ (Br)
2
i,j + (Bθ)

2
i,j +

(
Bφ

)2
i,j

(Er)
2
i,j + (Eθ)

2
i,j +

(
Eφ

)2
i,j

Er
Eθ

Eφ


i,j

(5.16)

This rescaling ensures that the force-free condition B2 − E2 > 0 is verified in the whole
domain. To preserve the time centring, the magnetic field is pushed by half a time step
before removing the parallel component and rescaling the electric field. Once the two
treatments are applied to the electric field, it is staggered back onto the Yee mesh with
Eq. (5.1.2) where

(
Jr, Jθ , Jφ

)
is replaced by

(
Er, Eθ , Eφ

)
.

5.1.4 Time integration loop

We now have all the ingredients needed to describe explicitly how in practice the time
integration loop works. In Fig. 5.2, we show the time scheme corresponding to the force-
free implementation in the ZELTRON code.
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to the evolution of the fields while the right one indicates the adjustments made

in force-free.
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5.2 Hybrid approach

Before diving into the full description of this new approach, we briefly recall the main
aspects of each method.

5.2.1 Hybrid approach philosophy

In Fig. 5.3, we show side by side the main steps of the time loop of each method. Only two
steps are needed in force-free: a first one to compute the current density and a second one
to update the electric and magnetic field. In PIC, an extra step is needed due to the particle
approach. This extra step allows to solve Newton’s equation to update the positions and
velocities of the particles in the simulation. Even if the PIC current density is obtained via
current deposition on the nodal grid, it still remains a step where we compute the current
density.

Step 2

Step 1

Compute
current

Solve
Maxwell’s
equations
(E, B)

∆t

density (J)

Step 3

∆t

Step 1

Solve
Maxwell’s
equations
(E, B)

Solve
Newton’s
equation

(x, p)

Step 2

currents (J)

Deposit
charges (ρ) &

PICFFE

FIGURE 5.3: Comparison of the steps in the Particle-in-cell and force-free method.

With the hybrid approach, we wanted to do the lowest amount of modifications to
the architecture of the code. With these constraints, the grid, Maxwell solver and particle
pusher remained untouched. The modifications will impact the particle injection, espe-
cially where the particles are injected and allowed to exist and the current density. Even
with this willingness, the hybrid approach still touches the core of the code.

5.2.2 Magnetic flux function

I will now elaborate on one of the crucial aspects of the method: which quantity do we
use to distinguish if a region is force-free or PIC? We have seen in Sect. 2.1.2 that for the
aligned rotator we have two main morphologies of field lines: closed or opened. To trace
where magnetic field lines are, we can use the magnetic flux function Ψ, defined as

Ψ =
1

2π

∫∫
B · dS =

∫ θ

0
Brr2 sin θ′dθ′. (5.17)

We can use the isocontours of the magnetic flux function to obtain the magnetic field
lines. In the context of axisymmetric pulsar magnetosphere, this choice is the most evident
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one, as the field lines are anchored in the crust of the neutron star. In a simulation, the
magnetosphere is a dynamic environment which never really reaches a steady-state but
more of a quasi-steady state. As magnetic reconnection is occurring, some magnetic fields
lines will close and produce plasmoids. Their shape and structure evolve with time during
their advection outwards. To consider the behaviour of the magnetosphere in the simula-
tion, the flux function must be computed at every time step of the loop in time to adapt to
the solution. The parallel computation of Ψ is implemented in the code.

Coming back to the morphology of magnetic field lines, we have the specific case of the
last closed field line connected to the current sheet. The separatrix and current sheet can
also be localised thanks to the isocontours of Ψ. However, this configuration is the exact
location where non-ideal fields develop and where magnetic reconnection occurs. If we
have relativistic magnetic reconnection, we have the conversion of magnetic energy into
particle acceleration. With this in mind, we see that particles must be present along the
separatrix and must populate the current sheet. This specific region (separatrix + current
sheet) is not described by the force-free approach but rather by the PIC approach.

5.2.3 Coupling

With the hybrid method heavily relying on the magnetic flux function to distinguish the
topology of field lines, it is natural to base the coupling on this same function. In Fig. 5.3,
we can note that the major difference between the PIC and force-free approach lies in
the computation of the current density. Therefore, it appeared that coupling the two ap-
proaches through the current density might be the proper way of doing it.
Current from the PIC and the force-free parts are computed independently before being
blended together into a unique current density. The resulting blended current is injected
into Maxwell’s equations to evolve the electromagnetic field in time. The Maxwell solver
remains identical and conserves its original properties. The updated fields are unique
across the simulation.

The equation performing the coupling between the force-free and the PIC region is the
following

J = JPIC (1− f (Ψ)) + JFFE f (Ψ) (5.18)

where f (Ψ) is the blending function, JPIC and JFFE are respectively the PIC and force-free
current densities. The profile of the blending function is shown in Fig. 5.4.

Its profile corresponds to three possible behaviours in the simulation.

f (Ψ) =


1 force-free region
∈]0, 1[ transition layer
0 PIC region

(5.19)

The current density from Eq. (5.18) reduces to the force-free current when f (Ψ) = 1
and to the PIC current when f (Ψ) = 0. We set two pairs of critical values, namely
Ψ0, Ψ1, Ψ2 and Ψ3. These values are used to define two transition layers, which are used to
switch between the two numerical approaches. Inside the transition layers, the force-free
and PIC currents are gradually mixed to smooth out the transition and avoid the propaga-
tion of numerical artefacts.

We give in Fig. 5.5 two azimuthal profiles of the radial current density. The results
shown in this figure are purely to illustrate the impact of the transition layer. Both simula-
tions are identical ( setup and resolution), the only difference is the presence of a transition
layer. The switch of method is set at θ = π/2. When the transition layer is active, it is cen-
tred on θ = π/2 and has a width of ±ε (shaded region in Fig. 5.5). We can see a clear drop
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location of the interface when the transition layer is removed.
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in the profile when the transition layer is disabled. The second profile is smoother, and is
the result of the active transition layer. This example illustrates the fact that the transition
layer impacts the solution and eases the switch of approach.

We are now on track to perform the first test of the hybrid approach, but before that, we
have a few constraints that we need to tackle. Two distinct treatments must be performed
in each region. In the force-free region, we need to validate the force-free conditions. To
this aim, Eqs. (5.15) and (5.16) are only applied in the force-free domain. The second treat-
ment comes from the deposition scheme. Because of the non-charge-conserving deposition
scheme used in ZELTRON , we must solve Poisson’s equation

∇2φ = 4πρPIC (5.20)

where ρPIC is the charge density of the PIC region. During a timestep, the electric field is
modified at three different places: (i) Poisson’s equation, (ii) first force-free condition, (iii)
second force-free condition.

The final aspect of the coupling is regarding the particles. In the hybrid method, they
are only allowed to evolve in the PIC regions and the transition layer. At every timestep,
the position of each individual particle is compared to the position of the PIC boundary. If
the particle is inside a PIC region, we keep it for the next timestep. However, if this particle
crosses the boundary, we remove it from the simulation by setting its weight to zero. This
treatment acts as a one way membrane, where particles can exit the PIC regions but never
enter.

5.2.4 Hybrid time integrator

The hybrid scheme can be represented in a similar way to the PIC or force-free sequence.
In Fig. 5.6, we show the hybrid scheme with the same representation used for the force-free
and PIC methods.

Step 1 corresponds to the particle aspect with the evolution of the particle positions
and velocities. In Step 2, the current of each numerical domain is computed independently
before being blended during Step 3. Step 4 is the common step where we solve Maxwell’s
equations. The fully detailed time integrator of the hybrid method is given in Fig. 5.7.



128 Chapter 5. Hybrid approach

Compute
current density

(JFFE)

equations

Solve
Maxwell’s

(E, B)

Newton’s
equation

Solve
Step 1

Compute
total current

(J)

DepositPIC

Step 4

Step 2

∆t

FFE

FFE

PIC

PIC

Hybrid

Step 3

charges (ρPIC),
currents (JPIC)

(r, p)

FIGURE 5.6: Diagram showing the construction of a hybrid timestep. PIC and FFE
notation correspond respectively to Particle-in-cell and force-free regions of the

simulation.



5.2. Hybrid approach 129

Remove leaking particles

Poisson solver for E with ρPIC

Stagger Jn+1/2
PIC on Yee mesh

(E, B)Yee −→ (E, B)g

Compute (J⊥)g

(J⊥)g −→ (J⊥)Yee

J = JPIC (1− f (Ψ)) + JFFE f (Ψ)

(E)n −→
(
Etemp

)n+1/2

(
Etemp, B

)
Yee −→

(
Etemp, B

)
g

End of time step

PIC
Force-free

Hybrid(E, B)n , (r, p)n−1/2 , Ψ

(B)n+1/2 −→ (B)n+1

(E, B)Yee −→ (E, B)g

(E)n −→ (E)n+1

(E)g − (E‖)g

Compute Ψ and f (Ψ)

(B)n −→ (B)n+1/2

(r, p)n−1/2 −→ (r, p)n+1/2

Beginning of time step

Common

Deposit ρPIC and Jn+1/2
PIC

(E)g −→ (E)Yee in FFE regions

Verify B2
g − E2

g > 0

Jn+1/2 = JPIC (1− f (Ψ)) + JFFE f (Ψ)

(J⊥)
n+1/2
g −→ (J⊥)

n+1/2
Yee

Compute (J⊥)
n+1/2
g

FIGURE 5.7: Hybrid time integrator details. (A)g denotes quantities on the nodal
grid, while (A)Yee are quantities on the Yee mesh. Quantities from the PIC and
force-free regions are respectively noted (A)PIC and (A)FFE. The left side cor-
responds to a standard PIC scheme and the right side shows the force-free and

hybrid steps.
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5.3 Validation of the method

In this section, we put the new force-free-PIC method to the test against an exact solution
of the pulsar equation.

5.3.1 Aide-mémoire for the Michel monopole

Regarding the magnetic configuration, we use the Michel monopole derived in Sect. 2.1.3.
In this setup, the magnetic flux function is given by

ΨM (θ) = Ψ? (1− cos θ) , (5.21)

where Ψ? = B?r2
?. From the magnetic flux function, we can express the magnetic and

electric field components

Br = B?

( r?
r

)2

Bθ = 0

Bφ = ∓B?

(
r?

RLC

)( r?
r

)
sin θ

Er = 0

Eθ = Bφ

Eφ = 0

If Ω · B > 0, the sign of Bφ is negative, while it is positive for Ω · B < 0. This exact
solution also allows us to compute the associated current density

JM =
c

4π
∇× B = −J?GJ

( r?
r

)2
cos θ er, (5.22)

where J?GJ = ΩB?/2π is the Golreich-Julian current density. The last characteristic quantity
we can compute is the Poynting flux

LM =
c

4π

∫∫
(E× B) · dS =

c
2

∫ 1

−1
r2B2

φd cos θ =
2Ψ2

?Ω2

3c
. (5.23)

The current density and the Poynting flux will play a crucial role in the validation of the
method.

5.3.2 Numerical setup

We perform a set of three simulations with identical physical parameters. The only differ-
ence between each simulation is the resolution. This allows us to study the convergence of
the method as well as the numerical dissipation of the algorithm. For each simulation, we
prescribe the initial radial magnetic field in vacuum. We set the other components and the
electric field to zero. At t = 0, we enforce the rotation of the star from 0 −→ Ω, this proce-
dure is instantaneous. It is also possible to ramp up the angular velocity with time up to the
wanted Ω. We chose the instantaneous maximal rotation to reduce the integration time of
the simulation. The numerical setup corresponds to a millisecond pulsar (P = 1ms) with
a magnetic field at the surface B? = 5× 105 G. The strength of the magnetic field does not
fit within the range of magnetic field associated with pulsars, but is sufficient to reach a
quasi-force-free regime. This is not an issue for this setup as we want to study the numer-
ical side of the method and not its physical one. The full set of parameters is summarised
in Table 5.1.

For these simulations, we use a logarithmic spacing in the radial direction and a linear
one in the azimuthal direction. An example of such grid is shown in Fig. 5.8a. Regarding
the boundary conditions, they are different for the fields and for the particles. At the inner
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Physical parameters Values

Neutron star radius r? = 10 km

Spin period P = 1 ms

Light cylinder radius RLC = 5r?
Surface magnetic field B? = 5× 105 G

Numerical parameters Values

# grid cells (r, θ) (1024× 1024) , (2048× 2048) , (4096× 4096)

Radial log-grid r ∈
[
r?, 10

3 RLC
]

Azimuthal linear-grid θ ∈ [0, π]

Absorbing layer radius rabs = 3RLC

FFE-PIC domain boundary Ψ0 = Ψ?

TABLE 5.1: Physical and numerical parameters of the validation setup.

boundary, the magnetic field is set to the Michel solution and the electric field sets the
corotation of the star with

E? = −
(Ω× r?)× B

c
. (5.24)

For this simulation, the inner boundary injects corotating electrons and positrons in the
simulation. The momentum of the injected particles is set to zero in the poloidal direction.
The inner boundary constantly supplies the Goldreich-Julian density for both leptons and
the electric field dictates how many particles are injected in the simulation per timestep.
At the outer boundary, we use a perfectly matched layer (PML) (see Fig. 5.8b) to mimic
an opened boundary. The layer damps the fields to zero to avoid possible reflections at
the edge of the box. Any particle entering this perfectly matched layer is deleted from
the simulation. There is a small chance that when the particles are deleted, they leave
behind a small fraction of their electric charge. This could add some small fluctuations
on the pml boundary. The final boundary conditions are at the poles. There, we use a
symmetrical conditions for the fields and a reflective condition for the particles. The latter
are elastically reflected on the boundary.

For the hybrid part of the simulation, we need to define the various force-free and
PIC regions. In this experiment, we cut the box at the equator for θ = π/2. With this
decomposition, we have one hemisphere described in PIC and the other one in force-free.
We can thus, study the behaviour of the method in each individual domain or in its entirety.
To have this transition, we define the magnetic flux boundary to be

Ψ0 = ΨM

(
θ =

π

2

)
= Ψ? (5.25)

This setup does not contain a transition layer at the equator. As we will see in the next
section, when the resolution increases we have smoother gradients between the cells. The
direct consequence is a gradual adjustment of the solution at the interface, where the nu-
merical discontinuity is located. For the PIC hemisphere, we continuously inject a plasma
of electron-positron pairs from the neutron star surface. The multiplicity of the injected
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matched layer applied on the field component F.

plasma is κinj = 10, this high multiplicity ensures that the force-free state is reached. This
simulation does not consider pair creation or ions.

5.3.3 Validation of the simulation

To validate the FFE-PIC method, we must pass three checkpoints: (i) the structure of the
magnetosphere is a monopole, (ii) the current density of the simulation matches the an-
alytical expression, (iii) the Poynting flux of the simulation corresponds to the analytical
Poynting flux.

Magnetospheric structure

For the moment, we only show results from the simulation with the highest resolution. The
conclusions are the same for lower resolutions. In Fig. 5.9, we show the toroidal magnetic
field after a time integration of about two periods.
We remind that this component is not present at the beginning of the simulation. It is being
produced self-consistently by the electric field emerging from the rotation. We recover the
analytical description of the toroidal component. The first step towards the validation of
the method is passed.

Current density

The next checkpoint is the current density. In Michel’s solution, the current is purely radial.
A map of the radial component of the current density from the simulation is shown in
Fig. 5.10.

The overall description of the current density corresponds to the expected one for a
monopole. We recover two hemispheres of opposite signs. The current in the PIC do-
main is mainly carried by electrons with the presence of some positrons near the equator,
while the force-free current which is reconstructed from the electromagnetic field has the
opposite sign. Figure 5.10 presents the right overall description of the current density.
Nonetheless, it is more accurate to compare cuts of the current density to the analytical
expression from Eq. (5.22). In Fig. 5.11, we show the profile of the current density for the
three resolutions. The profiles are taken at the middle of the physical box, r = 1.5RLC.
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FIGURE 5.9: Map showing the toroidal component of the magnetic field. The black
dashed line indicates the position of the light-cylinder, while the magenta dashed

line shows the numerical domain separation.

Each profile is normalised by JGJ and multiplied by (r?/r)2, this procedure only keeps the
cosine form (visual purpose).

The profile of each simulation matches with the predicted cosine evolution in both
hemisphere. Regarding the absence of a transition layer, we note a small glitch for the
lowest resolution. The match with the predicted evolution shows that the solution is well-
balanced between both hemispheres. The magnetosphere as well as the interface does not
show signs of net charge accumulation. The outgoing force-free current is perfectly bal-
anced by the ingoing PIC current, no net current is present. The main difference between
the PIC and force-free regions is regarding the small variations within the profiles. Con-
trary to force-free profiles, PIC profiles are noisy. This noise is coming from the shot noise
from the finite number of particles and fast plasma oscillations.

Numerical dissipation

The last step that the simulation needs to pass is regarding the Poynting flux. A great
benefit of using Michel’s solution is the constant value of the Poynting flux. Since the
solution is dissipation-free, any divergence from the analytical value corresponds to an
estimation of the dissipation of the numerical scheme. This estimation is mostly true for
the force-free domain as the PIC region can physically dissipate (e.g. gaps). In Fig. 5.12, we
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FIGURE 5.10: Spatial distribution of the hybrid radial current density normalised
to the fiducial current density, J?GJ, and compensated by (r/r?)2 for visualisation
purposes, for the 40962 cells run. The division between the force-free and the
PIC domains is the equatorial plane (dashed magenta line). Solid lines show the

poloidal magnetic field lines.

show the Poynting flux evaluated for the three resolutions. Each curve corresponds to the
Poynting flux of the associated simulation which is averaged over one period (t ∈ [2, 3] P)
when a steady state is achieved.

We see right away that the Poynting flux is not perfectly conserved for all radii but is
still close to the analytical value. Thus, we can measure the amount of numerical dissipa-
tion of the method. The rate of dissipation is computed as

εdiss =
|Lin − Lout|

Lout
(5.26)

where Lin is the Poynting flux averaged in the r ∈ [r?, 2 r?] interval, and Lout is averaged
over the r ∈ [2RLC, 3RLC] interval (grey intervals in Fig. 5.12). We observe numerical con-
vergence with a numerical dissipation decreasing with increasing resolution. The error
is always small and varies between εdiss < 1%, for the lowest resolution (1024)2, and
εdiss ∼ 0.15% for the highest resolution. We note that the main origin of the numerical
dissipation is associated with the force-free hemisphere, this is shown in Fig. 5.13.

The deviation of the force-free hemisphere is stronger than for the PIC one. This indi-
cates that the force-free scheme is numerically more dissipative. The conclusion from this
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study on the numerical dissipation is that: the hybrid method suffers from small numerical
dissipation, however, any dissipation larger than εdiss (for a given resolution) will have a
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physical origin.

5.4 Summary

In this chapter, I have described the full process behind the development of the force-
free-PIC approach. The first step was to develop a new force-free module which could be
used in the framework of the ZELTRON PIC code. Once the implementation was done,
the force-free-PIC approach could start. During development of a hybrid approach, one
has to answer two questions: How do I couple the two approaches? and What criterion
do I use to distinguish which method needs to be used? In the force-free-PIC method,
the coupling is done on the current density. Each numerical method computes its own
current separately. Once this is done, the blending of the currents is performed by using
a blending function. To build the latter, we must answer the second question. For pulsar
magnetospheres, the easiest way was to use the magnetic flux function which isocontours
highlight the magnetic field lines. The magnetic topology of these magnetospheres is well
understood thanks to the previous studies. Therefore, we can use this topology at our
advantage to build the blending function. The user decides at which field lines the change
of numerical approach is done, and he must also give the thickness of the transition layer. It
is imperative to consider this layer in the simulations so that the two methods can “speak”
to each other and smoothly transition.

To validate the method, I performed a set of simulations of a Michel monopole. This
solution is analytic and is a do or die test for the method. In these simulations, each hemi-
sphere is modelled by one method and the transition between them occurs at the equator.
This set of simulations uses different resolutions in order to make a convergence study
on the method. As a result, I find that the azimuthal profile of the current density of the
full set of simulations is in agreement with the analytic expression. The structure of the
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magnetosphere is also coherent with the monopole magnetic configuration. The particu-
larity of the Michel solution is that it is dissipation free, meaning that the Poynting flux
is constant. With the convergence test, I estimated the amount of numerical dissipation
from the method. The maximum dissipation observed is approximately 1% and decreases
with a higher resolution, as expected. The force-free scheme occurs to have a numerical
dissipation higher than the PIC method. This conclusion is based on the computation of
the dissipation is each hemisphere and thus, corresponds to each method.

With all the above steps validated, we were confident enough to move to the applica-
tion of the hybrid approach to a physical case: the aligned rotator.
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5.5 [Français] Points clés du chapitre

Dans ce chapitre, j’ai décrit l’ensemble du processus de développement de l’approche sans-
force-PIC. La première étape a consisté à développer un nouveau module sans-force qui
pourrait être utilisé dans le cadre du code PIC ZELTRON . Une fois l’implémentation ter-
minée, l’approche sans-force-PIC a pu être mise en œuvre. Lors du développement d’une
approche hybride, il faut principalement répondre à deux questions : Comment coupler
les deux approches ? et quel critère dois-je utiliser pour déterminer la méthode à appli-
quer dans une région donnée ? Dans la méthode sans-force-PIC, le couplage se fait via
la densité de courant. Chaque méthode numérique calcule séparément sa propre densité
de courant. Une fois cela fait, la fusion des courants est réalisée à l’aide d’une fonction
de mélange. Pour construire cette dernière, nous devons répondre à la deuxième ques-
tion. Pour les magnétosphères de pulsars, le plus simple était d’utiliser la fonction de flux
magnétique, dont les isocontours mettent en évidence les lignes de champ magnétique.
La topologie magnétique de ces magnétosphères étant bien comprise grâce aux études
précédentes, nous pouvons donc utiliser cette topologie à notre avantage pour construire
la fonction de mélange. L’utilisateur détermine à quelles lignes de champ le changement
d’approche numérique s’effectue et il doit également définir l’épaisseur de la couche de
transition. Il est impératif de prendre en compte cette couche dans les simulations afin
que les deux méthodes puissent échanger les informations entre elles et que la transition
se fasse en douceur.

Pour valider la méthode, j’ai effectué une série de simulations d’un monopôle de
Michel. Cette solution est analytique et constitue un test important pour la méthode. Dans
ces simulations, chaque hémisphère est modélisé par une méthode et la transition entre
les deux méthodes s’effectue à l’équateur. Cette série de simulations utilise différentes ré-
solutions afin d’étudier la convergence de la méthode. En conséquence, j’ai constaté que
le profil azimutal de la densité de courant de l’ensemble des simulations est en accord
avec l’expression analytique. La structure de la magnétosphère est également cohérente
avec la configuration magnétique monopolaire. La particularité de la solution de Michel
est qu’elle est exempte de dissipation, ce qui signifie que le flux de Poynting est constant.
Grâce au test de convergence, j’ai pu estimer la quantité de dissipation numérique in-
troduite par la méthode. La dissipation maximale observée est d’environ 1% et diminue
avec une résolution plus élevée, comme attendu. Le schéma sans-force semble présen-
ter une dissipation numérique plus élevée que la méthode PIC. Cette dernière conclusion
est fondée sur le calcul de la dissipation dans chaque hémisphère, correspondant donc à
chaque méthode.

Avec toutes les étapes ci-dessus validées, nous pouvons avoir suffisamment confiance
en la méthode pour passer à l’application de l’approche hybride à un cas physique : le
rotateur dipolaire aligné.
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The time has come to use the force-free-PIC approach in an astrophysical context. In
this chapter, we aim at modelling a weak millisecond pulsar within the Fermi-LAT detec-
tion range, in order to produce the first realistic pulsar magnetosphere. In Sect. 6.1, we
will compute the different scales that we need to reach for the targeted pulsar. In Sect. 6.2,
we will give the numerical parameters of the fiducial simulation. Section 6.3 will provide
the different results of the weak millisecond pulsar simulation. In Sect. 6.4, we will ad-
dress the effect of rescaling PIC simulations to smaller system sizes. Finally, we will show
in Sect. 6.5 that the simulations presented here have numerically converged before sum-
marising the results in Sect. 6.6. This chapter is partly adapted from my paper “Scaling up
global kinetic models of pulsar magnetospheres using a hybrid force-free-PIC numerical
approach” accepted in Astronomy & Astrophysics ( Soudais et al., 2024).
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6.1 Scale separation

We presented the micro and macro-scales of the problem previously for a canonical
pulsar, we will now translate these scales to our targeted pulsar. For the simulation, we
set the two main pulsar parameters, P and B?, to P = 1 ms and B? = 107 G. In terms of
spindown power, this corresponds to

L0 =
µ2Ω4

c3 = 4.8× 1033 erg.s−1
(

B?

107 G

)2 ( P
1 ms

)−4

. (6.1)

This value corresponds to one of the weakest gamma-ray pulsar reported by the Fermi-
LAT, see Fig. 1.8 from Chapt. 1. For the smallest scales, the relevant limit is set by the
electronic skin depth at the stellar surface. With the previous parameters, the skin-depth is

d?e =

√
γmec2

4πn?e2

≈ 2
( γ

100

)1/2 ( κ

102

)−1/2
(

P
1ms

)1/2 ( B?

107G

)−1/2

cm, (6.2)

where the number density of the plasma is n? = κn?
GJ. This density is proportional to the

fiducial Goldreich-Julian density presented in Sect. 2.1.2. If we compare this scale to the
star, we end up with d?e/r? = 2× 10−6. This value is large even for the weakest pulsar con-
sidered here. However, as we introduced earlier, particles are not extracted from the crust
of the star at rest. They have a non-zero Lorentz factor thanks to the parallel electric field
at the surface. The maximum Lorentz factor a particle can reach, is given by the vacuum
potential drop across the polar cap. We remind that such potential drop is expressed as

Φpc =
µΩ2

c2 . (6.3)

An electron experiencing this potential would acquire a Lorentz factor

γpc =
eΦpc

mec2 ≈ 2.6× 108
(

B?

107G

)(
P

1ms

)−2

. (6.4)

Therefore, we can compute an upper limit for the electronic skin depth,

d?e
(
γpc
)
≈ 3× 104

(
γ

γpc

)1/2 ( κ

102

)−1/2
(

P
1ms

)1/2 ( B?

107G

)−1/2

cm. (6.5)

This value is attractive but it only represents an upper limit for the size of the skin
depth. As we saw in Sect. 2.2.4, pair production is occurring close to the surface of the star.
Therefore, a more realistic Lorentz factor to consider would be the energy of secondary lep-
tons. The detailed mechanism for pair creation is given in Sect. 2.2.2. Assuming magnetic
conversion, the pair production energy scales for our pulsar parameters are: the threshold
Lorentz factor,

γth =

√
1

15b2 ≈ 106
(

B?

107G

)−1

, (6.6)

and the secondary Lorentz factor,
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γs =
1

20b
≈ 2.2× 105

(
B?

107G

)−1

. (6.7)

This last value for the Lorentz factor is more realistic for the bulk of the extracted particles
than the polar cap one. The skin depth and scale separation then become

d?e (γs) ≈ 103
(

γ

γs

)1/2 ( κ

102

)−1/2
(

P
1ms

)1/2 ( B?

107G

)−1/2

cm (6.8)

d?e (γs)

r?
≈ 10−3 (6.9)

This scale separation directly appears more tractable if we assume that pair production
is vigorous enough to fill the magnetosphere with a high multiplicity, κ � 1. Pair produc-
tion via QED processes also put constraints on the magnetic field strength. In fact, we can
derive the minimum magnetic field required to have pair production by equating Eq. (6.4)
and (6.6). The lowest magnetic field is

B? =

√
25√
15

BQEDmec2

er?
& 7× 105 G. (6.10)

Any pulsar with a surface magnetic field lower than the above value cannot develop
a pair cascade. Below this value, the threshold for pair production becomes larger than
the maximum Lorentz factor achievable at the surface. This is a hard floor as this is for an
electron experiencing the full potential drop, which is rather exceptional.

Another scale appears more tractable if we go further from the star, and look at the
light-cylinder. We presented in Sect. 2.2.5 the relativistic reconnection process. The thick-
ness, δ, of the current sheet is set by the electronic skin depth at the light-cylinder, dLC

e .
However, during magnetic reconnection at the light-cylinder, particles are accelerated to
Lorentz factors of values similar to the magnetisation. The magnetisation and thickness of
the current are expressed as

γLC ∼ σLC =
B2

LC

4πΓLCκnLC
GJ mec2

=
γpc

2ΓLCκ
, (6.11)

δ ∼ dLC
e (γLC) =

√
γLCmec2

4πκΓLCnLC
GJ e2

=
RLC

2ΓLCκ
, (6.12)

where ΓLC is the bulk Lorentz factor of the pulsar wind. We remind that the strength of the
magnetic field is evaluated at the light-cylinder as BLC = B? (r?/RLC)

3. In terms of values,
the thickness of the current layer is

δ ∼ 2.4× 104
(

ΓLC

100

)−1 ( κ

102

)−1
(

P
1ms

)
cm, (6.13)

this corresponds to a scale separation of

δ

r?
∼ 2× 10−2 δ

RLC
∼ 5× 10−3. (6.14)

With these considerations, the scale separation of the current layer is an order of mag-
nitude larger than the scale separation at stellar surface (Eq. 6.9). Therefore, the scale sep-
aration at the light-cylinder appears more tractable in terms of resolution with realistic
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parameters. This region is the one of interest in this work because it is a great site of accel-
eration and thus, of gamma-ray emission.

The last technical part on the scale separation is regarding the radiative cooling, set
by the radiation-reaction-force. From Sect. 3.3.5, we recall that this force acts as a con-
tinuous drag force to balance the accelerating electric force. Equation-wise, it translates
in eE‖ ∼ Frad. In the ultra-relativistic regime (γ � 1), the radiation-reaction-force from
Eq. (3.95) can be approximated by

Frad ≈
2
3

r2
eγ2B2

⊥. (6.15)

Thus, we can deduce the “radiation-reaction-limited” electron Lorentz factor,

γrad =

√
3eE‖

2r2
eB2
⊥

. (6.16)

The Lorentz factor values at the surface and light-cylinder are respectively

γrad ≈ 3× 104
( E‖

B⊥

)1/2 ( B⊥
107G

)−1/2

γLC
rad ≈ 3.3× 105

( E‖
B⊥

)1/2 ( B⊥
BLC

)−1/2

(6.17)

The radiation-reaction-limited Lorentz factor at the light-cylinder stands precisely be-
tween the secondary energy and the threshold energy. Physically speaking, the particles
will accelerate up to γrad. If the acceleration pushes the particles above this critical Lorentz
factor, they will radiate their energy away and will never reach the pair creation threshold.
However, the current sheet is able to break this behaviour and is an active site for pair
production. In the current layer, the magnetic field goes to zero and the parallel electric
field is strong. The radiation-reaction becomes weaker and particles are able to accelerate
above γrad until they reach γth and pair production occurs.

We now have all the different physical and energetic scales to fully constrain our fidu-
cial pulsar. We emphasise that the various energy and spatial scales are derived in the case
of a weak millisecond pulsar, where P = 1 ms and B? = 107 G. Firstly, for the spatial scales

ds
e

r?
∼ 10−3 � δ

r?
∼ 2.5× 10−2 � 1 <

RLC

r?
= 5, (6.18)

where all scales are normalised by the pulsar radius r?. Secondly, regarding the energy
scales

γs

γpc
∼ 8.5× 10−4 <

γLC
rad

γpc
∼ 10−3 <

γth

γpc
∼ 4× 10−3 � 1, (6.19)

where the energy scales are normalised by the full potential drop energy γpc. The two
scales derived above do not apply for all pulsar parameters. One should verify all these
scales whenever one of the pulsar parameters is modified. One noticeable fact is that the
gap between the spatial scale is roughly one or two orders of magnitude while the energy
gaps are quite narrow in the pair cascade and cooling.
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6.2 Numerical setup

6.2.1 Initial and boundary conditions

The simulation is initialised with a dipolar magnetic field in a box empty of plasma. The
initial magnetic field is set by the magnetic flux function

ΨD =
µ sin2 θ

r
. (6.20)

At the inner boundary, we have two constraints for the fields. First, the magnetic field
verifies the dipolar field at the surface. Second, the star is put in corotation by setting the
initial electric field

E? = −
(Ω× r?)× B

c
. (6.21)

Regarding the plasma inner boundary, the simulation is allowed to extract both elec-
trons and ions. Injected particles are in corotation with the star, but do not have poloidal
momentum. In the simulation, ions are actually protons as the mass-ratio is set to the full
value, mp = 1836me. This is the first time that a global magnetosphere simulation uses
the full mass ratio. All previous studies used a reduced mass ratio of at most mp = 20me.
The number density available at the inner boundary for each species is always equal to
the Goldreich-Julian number density, n?

GJ. The number of particles injected from the sur-
face at each timestep is set by the requirements given by the surface electric field. The
latter extracts the different charges and accelerates them to high Lorentz factors. In a re-
alistic system, the accelerated electrons can emit photons responsible for pair production.
The simulation does consider the pair creation mechanism but with a highly simplified
mechanism. We use the energy threshold from Eq. (6.6) above which a lepton is able to
pair produce. We do not model photons in the simulation, we make the assumption that
pair creation occurs on-the-spot where the parent lepton has reached an energy above the
threshold. The created leptons have a momentum aligned with the parent’s one and a
Lorentz factor γs. In the simulation, pair creation can occur anywhere in the magneto-
sphere. This is an important assumption which can have an impact on the description of
the magnetosphere.

For the outer boundary, we perform again two treatments related to the physical na-
ture of the incoming quantity. For fields, we use the same absorption layer described in
Sect. 5.3.2. For particles, we set their weight to zero whenever they enter the numerical
layer. The axial boundary conditions are also identical to the monopole simulation, reflec-
tive for particles and symmetric for the fields.

The last boundary conditions needed are related to the hybrid method itself. We need
to place the PIC domain around the separatrix and current sheet. However, from the initial
dipole state, we do not know precisely where the current sheet and separatrix will form.
The hybrid boundaries locations are educated from previous studies in which we focused
on the magnetic topology. Theoretically, the separatrix emerges at the polar cap angle-size
θpc, see Sect. 2.2.1. At this angle, we can compute the theoretical polar cap magnetic flux
function Ψpc associated to a dipole in vacuum. We use this specific scale as a reference in
the method, which is a good approximation even for a force-free dipole. Based on a trials
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FIGURE 6.1: “Dead” simulations. The top row show the issue of the “force-free
bubbles”. The bottom left panel highlights the issue during the transient. Bottom

right panel shows a simulation where the boundary in red reconnects.

and errors method, we ended with the following set of boundaries:

• 0 < Ψ < 0.9Ψpc: first force-free domain corresponding to the polar cap region

• 0.85Ψpc < Ψ < 2.4Ψpc: PIC domain encapsulating the separatrix and current sheet

• 2.3Ψpc < Ψ < Ψmax: second force-free domain modelling the deep closed field line
region inside the light-cylinder.

Ψmax = µ/r? is the maximum magnetic flux function. ΨD is maximum at the equator of
the star surface, see Eq. (2.68). If the PIC domain is too large, then the method becomes
useless in a sense. The simulation box will mainly contain particles and will be equivalent
to a full PIC simulation. However, a too narrow PIC domain also represents an issue. If
we do not give enough room to the PIC domain with respect to the separatrix, the result is
a “dead” simulation. In this kind of simulation, the PIC region is not able to open the field
lines completely and does not connect to the outer boundary. Even when the PIC domain
extends from the pulsar surface all the way to the end of the box, it is still possible for the
simulation to end in a dead regime. An example of such behaviour shown in the bottom
right panel of Fig. 6.1. The particles are not able to break through the reconnected field
line and are trapped in the simulation. In nature, the particles from the current sheet are
advected outwards at relativistic speeds. If this does not occur in the simulation, it is a
consequence of the hybrid approach, not a physical one.

The last crucial point of the hybrid boundary is its thickness. In the dipole case, the
thickness of the layer appeared as a highly sensitive problem. While the inner transition
layer inside the closed region always behaves as expected, it is not the case for the outer
one in the wind zone. For low resolution simulations, the outer transition layer must exist
to smooth out the transition. With the increase of resolution, we faced a rather disturbing
conclusion. During the transient state of the simulation, the outer transition layer becomes
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vertical and acts a “wall”. Particles must push against this to break through the field lines.
This leads to an accumulation of particles right behind the transition layer, see the bottom
left panel of Fig. 6.1. Even if the particles manage to open the field lines and to connect
to the PML, the simulation could end up in a dead state where “force-free bubbles” are
trapped inside the PIC domain. They can also grow in size and completely disturb the
magnetosphere, see the top row of Fig. 6.1. This technical issue prevented the field lines
from the polar cap to open up correctly. Even with this numerical issue, the magnetosphere
could sometimes achieve a quasi-steady-state but not consistently, only when the bubbles
are advected outwards. The numerical issues during the transient were counterbalanced
by removing the transition layer of high resolution simulations. The hybrid layer is reap-
plied once the opened field lines connect to the outer boundary. In the end, we found that
a layer of thickness ∆Ψ = 0.1Ψpc is optimum.

6.2.2 Resolution

We derived in Sect. 6.1 the various scales that must be resolved by the simulation. We
fill the simulation box with 81922 cells, and use a logarithmic grid spacing in the radial
direction and a constant one for the θ direction. The grid spans radially from r? = 106 cm
up to rmax = (10/3) RLC where RLC = 5× 106 cm. The azimuthal grid spans from θ = 0
up to θ = π. With such grid and number of cells, the smallest cell is located at the surface
of the star and has a resolution power of

∆r = 3.4× 102 cm. (6.22)

We can compare this to the most constraining scale to see if it is sufficiently resolved.
The comparison to the skin depth of secondary at the surface gives

ds
e

∆r
≈ 3. (6.23)

This means that the skin depth of the secondary is captured by three cells in the simulation.
More cells would be preferable to fully trust what is happening close to the surface, here
we are touching the limits in terms of resolution. Given the CFL condition, the temporal
resolution is fixed with the spatial resolution at a value

∆t = 4.3× 10−9 s. (6.24)

We can do the same exercise as the one for the skin depth at the surface but for the
electronic plasma frequency,

ω−1
pe

∆t
≈ 8. (6.25)

The plasma frequency is better resolved than the skin depth at the surface but the most
important fact is that both quantities are sufficiently resolved. The resolution constrains
get softer as we go further from the star surface, resulting in well resolved scales after a
few times the stellar radii.

With this high resolution, we also resolve the Larmor scales after the light-cylinder, es-
pecially in the equatorial current sheet. At the light-cylinder, the most constraining Larmor
scales are for the secondary pairs as they have a Lorentz factor γs. The Larmor radius and
timescale are locally resolved by

rL

∆RLC
=

γsmec2

eBLC
≈ 3

rL,s

c∆t
≈ 36 (6.26)
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where ∆RLC = ∆r RLC/r? is the local spatial grid at the light-cylinder.

6.2.3 Cooling treatment

The simulation does consider cooling in the form synchrotron cooling. In the simulation,
the synchrotron cooling time is well resolved with

tLC
sync ∼

3mec
2r2

eγsB2
LC
≈ 85∆t. (6.27)

However, close to the surface the cooling is stronger. This can represent a numerical
issue for the particle integrator, where it cannot integrate the particle trajectory. To avoid
this numerical effects near the surface, the particle pusher is modified to remove any par-
ticle momentum perpendicular to the magnetic field. This is applied at every timestep but
only inside a thin shell of thickness r?. The particle pusher is not modified outside of this
shell. Another manipulation is done on the cooling in the simulation to avoid the crash
of the simulation. We need to reduce by hand the strength of the radiation-reaction force
during the transient phase. We set the amplitude of the force to only 1% of its true value
and apply it on particles during one period. During the second period, the force is slowly
increased from 1% to 10%. The last step is to ramp up the force from 10% to 100% after
the second period. Once the nominal force strength is reached and quasi-steady-state is
achieved, the simulation becomes physically exploitable.

6.2.4 Simulation parameters

We summarise the numerical setup and different scales of the simulation in Table 6.1.
Compared to the current state-of-the-art simulation, the simulation presented here goes

deeper in the physics modelled. First, the rescaling done in previous PIC studies is not
applied. The size of the star and spin period are coherent with the one of neutron stars.
The surface magnetic field is stronger than any previous studies. The radiation-reaction
force is not modified/amplified to account for the rescaling of the magnetic field. We use
protons with their real mass. The code uses cgs units and we put the true values of each
parameters. The pair production threshold is based on QED estimations. This simulation
is equal in terms of resolution to the work of Bransgrove et al. (2023). The scale separation
modelled here is realistic for a weak millisecond pulsar.
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Physical parameters Values

Neutron star radius r? = 10 km

Spin period P = 1 ms

Surface magnetic field B? = 107 G

Spindown power L0 = 4.8× 1033erg/s

Polar cap energy γpc = 2.6× 108

Threshold energy γth = 106

Secondary pairs energy γs = 2.2× 105

Radiation-reaction energy γLC
rad = 3.3× 105

Electron plasma skin depth ds
e = 103cm

Plasma timescale ω−1
pe = 3.3× 10−8s

Synchrotron cooling time tLC
syn = 3.6× 10−7s

Numerical parameters Values

# grid cells (r, θ) 8192× 8192

Proton to electron mass ratio mp/me = 1836

Time step ∆t = 4.3× 10−9s

Highest spatial resolution ∆r = 3.4× 102cm

FFE domain I boundaries Ψmin = 0, Ψ1 = 0.85Ψpc

PIC domain boundaries Ψ0 = 0.85Ψpc, Ψ3 = 2.4Ψpc

FFE domain II boundaries Ψ2 = 2.3Ψpc, Ψmax = µ/r?

TABLE 6.1: Physical and numerical parameters for the reference weak gamma-ray
pulsar hybrid force-free-PIC simulation. Energy scales refer to electron Lorentz

factors.
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6.3 Results

In this section, we present the result of the first simulation of a weak gamma-ray millisec-
ond pulsar. Before giving the different results, I want to underline the fact that some fea-
tures of the magnetosphere, mainly the closed region, are not fully relaxed yet. The steady-
state picture of the magnetosphere could be slightly different than the one presented in the
following.

6.3.1 Leptonic and proton density maps

The first result is shown in Fig. 6.31 and displays the pairs density. Several features are
visible on the figure. Starting from the surface of the star, we see two prominent sepa-
ratrices merging near the light-cylinder. The structure of the two branches between the
last closed and first opened field lines is coherent with previous PIC studies, even though
it might be slightly thicker in the hybrid simulation. This result should be taken with a
grain of salt as the closed region still present some magnetic tension. This region is not
yet in a steady-state, longer integration could show a different final state for the closed
region and separatrix. However, this region is not the main focus of this work in which
we focus on particle acceleration in the wind zone. The latter is physically relevant as the
quasi-steady-state has been reached. At the beginning of the simulation (transient phase),
the two branches of the separatrix forms a Y-point located well inside the light-cylinder.
The Y-point forms at rY ≈ 0.6RLC and slowly migrates outwards, rY ≈ 0.95RLC at the final
snapshot. We note that the Y-point keeps migrating radially towards the light-cylinder at
the end of the simulation. The magnetic reconnection history of field lines is visible in
the closed region. It is shown by the curved sawtooth pattern inside the thick separatrix,
where the “tooth” are attached to reconnected field lines. Moving away from the closed
region to the opened one, we enter in the wind zone. At first sight, the wind zone appears
depleted of plasma outside of the equatorial plane. Some plasma depletion is expected
in the region, however, our pair production model probably exaggerates this feature as
photons do not have a mean-free-path. We believe that this aspect does not impact the
high-energy emission of the magnetosphere. Focusing on the equatorial region, we can
see a current layer emerging from the Y-point, which is where pair production starts to
become efficient. The layer extends radially from the Y-point to the edge of the simulation
box, it shows slight kinks and a plasmoid-chain. The kinked current sheet is a result of
current-driven instabilities that were already presented in previous works ( Belyaev, 2015;
Cerutti et al., 2015). Near the light-cylinder, the layer is extremely thin with a thickness
δ ∼ 10−3RLC. This extreme narrowest was not seen in previous PIC studies but is in agree-
ment with the expected thickness computed in Sect. 6.1. We have reached the expected
scale separation for the current sheet. To appreciate the narrowness of this layer, we give a
zoomed-in view in Fig. 6.2.

The current layer does not only suffer from current-driven instabilities but also from
the tearing instability. This instability leads to the formation of plasmoids. During the sim-
ulation, we observe the fragmentation of the current sheet into plasmoids of different sizes
and also mergers of plasmoids. They grow from the microscopic scale up to the macro-
scopic one. Microscopic (∼ layer-thickness) and macroscopic (∼ star radius) plasmoids
are showed in Fig. 6.3. These magnetic islands present internal structures in the form of
concentric rings. The highest densities, with multiplicities of κ ∼ 10− 100, are at the core
of the plasmoids while the rim of them shows the lowest density, with multiplicities of
κ ∼ 1− 10. In Fig. 6.2, we show the bulk velocity map of electrons and positrons in the

1I encourage the reader to take a few minutes to look carefully at all the figures of this section to appreciate
all the features captured by the high-resolution.
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FIGURE 6.2: Zoomed-in view on the current layer. Panel a): Map of the pairs
density to show the extreme thinness of the current layer. Panel b): Map of the
pairs energy. Panel c): velocity map of electrons in the current layer. Panel d):

velocity map of positrons in the current layer.
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FIGURE 6.3: Snapshot of the aligned rotator using the hybrid approach at time t/P = 3.01. Solid black lines show the poloidal magnetic field
lines, green and red solid lines show respectively the transition from region I to the PIC region and from the PIC region to region II. Map of

the pairs density normalised by nGJ and compensated by (r/r?)2. Light-cylinder shown by the vertical dashed black line.
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FIGURE 6.4: Snapshot of the aligned rotator using the hybrid approach at time t/P = 3.01. Solid black lines show the poloidal magnetic field
lines, green and red solid lines show respectively the transition from region I to the PIC region and from the PIC region to region II. Map of

the protons density normalised by nGJ and compensated by (r/r?)2. Light-cylinder shown by the vertical dashed black line.
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current layer. This velocity corresponds to the reconstructed fluid velocity of each species.
From this figure, we can conclude that we have two counter-streaming beams of electrons
(inwards) and positrons (outwards) when magnetic reconnection is triggered at X-points.
This aspect is needed to carry the return current necessary inside the magnetosphere. The
counter-streaming is strong near the light-cylinder and diminishes radially. However, this
is not the case for all electrons, especially those trapped in plasmoids. The latter form a
“coherent” structure moving radially outwards, thus carrying electrons.

The simulation does also contain protons. In Fig. 6.4, we show the density of protons
with the same normalisation and range of density as for the pairs, such that direct com-
parison can be made. Overall, the density of protons is at best of order unity which is low
compared to the pairs density. In the closed region, protons are extracted from the surface
and go along the separatrix. Then, they enter the current layer at the equator where only a
small density is evacuated from the simulation. The proton beam has a thickness ∼ 0.1RLC
at the light-cylinder, which is much thicker than the current layer at the same position. Re-
garding the structure of the proton beam, it is not impacted by the presence of plasmoids,
meaning that protons and pairs scales are perfectly decoupled. Finally, all the protons of
the simulation have a positive radial velocity, they have a positron-like radial motion.

6.3.2 Particle energy maps

The main focus of this study is on particle acceleration. We want to know where particles
are accelerated and the different energies probed in a magnetosphere. In Fig. 6.6, we show
a map of the energy of pairs in the simulation, while in Fig. 6.7 we show the same map
for protons. To allow a straightforward comparison, the same energy scale is used in both
figures. In the case of pairs, the separatrix has pairs with energies around a few tens of
GeV. However, when the pairs enter the current layer, they experience a strong parallel
electric field. The latter accelerates pairs to high-energies around E = γmec2 ∼ 1TeV. On
the other end of the energy spectrum, we have plasmoids in which pairs have a low energy.
The difference between the two behaviours rely on the cooling. Inside the current layer,
the radiation-reaction is small because of the low strength of the perpendicular magnetic
field. Therefore, pairs are able to accelerate above the radiation-reaction-limited energy
Erad = γLC

radmec2. On the other hand, inside plasmoids, the perpendicular magnetic field
is strong, meaning that pairs are cooled catastrophically. All their energy is radiated away
in the form of synchrotron photons ( Cerutti et al., 2013). This effect is visually impressive
in Fig. 6.6 where we can see pairs accelerated deep inside the current layer losing all their
energy when they enter a plasmoid. A zoomed-in view of this behaviour is shown in
Fig. 6.2. Once pairs are cooled inside the plasmoid, they are not able to gain energy via
plasmoid contraction or escape plasmoids to reaccelerate ( Petropoulou & Sironi, 2018;
Zhang et al., 2021). The acceleration timescale for a lepton corresponds to the timescale
between the merge of two plasmoids.

For the protons, everything that we mentioned previously for pairs is irrelevant. They
do not suffer from radiative losses, thus they are purely accelerated in the current layer
as shown in Fig. 6.7. They are freely accelerated by the strong parallel electric field inside
the current layer, with trajectories described by relativistic Speiser orbits. In the linear
accelerator, i.e. the current sheet, protons reach energies of Ep ≈ 10 TeV. This average
energy corresponds to a significant fraction of the full polar-cap potential drop, and is in
agreement with previous PIC studies ( Philippov & Spitkovsky, 2018; Guépin et al., 2020).
This fraction fits with the maximum energy reachable when the acceleration occurs via
reconnection in a system-size limited accelerator. The typical energy for such mechanism
is E ∼ βreceΦpc ≈ βrec × 130 TeV, where the reconnection rate βrec is between 10− 20%.
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6.3.3 High-energy signature

We have seen in Sect. 6.3.1 and 6.3.2 the global structure of the magnetosphere, the acceler-
ation site as well as the energy dumping of plasmoids. Here, we describe the high-energy
signature and emission of the magnetosphere.

Particle spectra

In a first step, we can compute the energy spectra of all particles. Useful information
contained in the latter are the shape, the energy range and cut-off energy. The spectrum for
each species is given in Fig. 6.5. To compute the spectrum, we only use the particles located
after the Y-point and up to the outer boundary. This region has reached the wanted regime
in terms of cooling and steady-state, while the region before still presents some signs of
relaxation.

FIGURE 6.5: Energy spectra of electrons (solid blue), positrons (solid red)
and protons (dashed green). From left to right, the vertical dashed lines
correspond respectively to: the light-cylinder radiation-reaction-limited energy,
γLC

radmec2 ≈ 150 GeV, the pair production energy threshold, γthmec2 ≈ 500GeV,
and the polar-cap potential drop energy, eΦpc = 130TeV.

Electrons and positrons spectra have a similar shape below the radiation-reaction-
limited energy, the two spectra are almost identical. However, above this energy, the spec-
tra have two different shapes. The number of high-energy electrons diminishes while the
positrons show an extra component. The latter is occurring between the radiation energy
and the energy threshold for pair creation, and peaks at about 300− 400GeV. Particles ac-
celerated and thus energised at X-points typically reach this energy, see Fig. 6.6 and the
zoomed-in view from Fig. 6.2. However, this difference in the spectral shape is expected
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FIGURE 6.6: Snapshot of the aligned rotator using the hybrid approach at time t/P = 3.01. Solid black lines show the poloidal magnetic field
lines, green and red solid lines show respectively the transition from region I to the PIC region and from the PIC region to region II. Map of

the mean Lorentz factor of pairs. Light-cylinder shown by the vertical dashed black line.
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FIGURE 6.7: Snapshot of the aligned rotator using the hybrid approach at time t/P = 3.01. Solid black lines show the poloidal magnetic field
lines, green and red solid lines show respectively the transition from region I to the PIC region and from the PIC region to region II. Map of

the mean Lorentz factor of protons. Light-cylinder shown by the vertical dashed black line.
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in the case where Ω · µ > 0. In this configuration, the magnetosphere is electrically po-
larised and the equatorial regions possess a positive net charge. If we had a simulation
with Ω ·µ < 0, the extra spectral component would be present in the electronic spectrum.
The spectral shape difference at high-energy is enhanced by the aligned configuration.
With an increasing inclination angle, the difference becomes smaller and vanishes in the
orthogonal case (see Figure 6 of Philippov and Spitkovsky 2018). The overall conclusion
for the leptons is that they have a narrow energy spectrum coming from the proximity of
the different energy scales.

Moving on to the proton spectrum, we see that its probed energies are shifted by two
orders of magnitudes to the highest energies compared to leptons, but they are also fewer
in numbers by an order of magnitude. In terms of energies, the protons probe mostly
energies of 1− 30TeV. As mentioned in the previous section, this represent approximately
10% of the maximum energy available in the system. If we fit a power-law on the proton
spectrum, we find a power index p ∼ −1.5. This is in qualitative agreement with works of
local magnetic reconnection ( Melzani et al., 2014; Werner et al., 2018).

However, we must be careful with the conclusions drawn from the spectral shape of
each species. Since the pair production model is oversimplified, the spectral shapes are not
exact and may differ when considering a more realistic pair production model. Despite this
flaw, we believe that the different results on the energy budget, energy scales and width of
the spectra are robust.

Synchrotron spectrum

From Fig. 6.5, we can see that leptons are accelerated to energies higher that the radiation-
reaction-limited energy. Above this energy, pairs radiate their energy away in the form a
synchrotron radiation. The latter is only relevant for pairs as protons do not radiate. In
Fig. 6.8, we show the total synchrotron spectrum. We use the same procedure as for the
particle spectra, meaning that the synchrotron spectrum is only the result of particles after
the Y-point.

The energy range of the synchrotron spectrum spans from 0.1MeV to 1GeV. The syn-
chrotron emission is not perfectly equal between electrons and positrons. This is a result
of the positronic bump in the energy spectrum. Since observations cannot distinguish
between the electronic and positronic signatures, we show in the same figure the total
synchrotron spectrum. The latter shows a strong component above 100MeV which cor-
responds to the detection threshold of the Fermi-LAT. The synchrotron emission from our
fiducial simulation would be visible by the satellite. We remind that the synchrotron emis-
sion is strongly beamed, see Sect. 2.2.2, meaning that this spectrum would be seen by an
observer pointing directly at the equatorial plane. The synchrotron emission produced
above 100MeV is emitted by the particles above the 100GeV band of the particle spectra.
The latter is populated by particles accelerated at X-points which radiate. These particles,
mostly positrons, produce synchrotron photons that are above the synchrotron burn-off
limit defined by εrad = (9/4) βrecmec2/αfs ≈ 160 MeVβrec ( Uzdensky et al., 2011), where
αfs is the fine structure constant. Above the burn-off limit, leptons cool off catastrophi-
cally via synchrotron. To estimate the power lost in the form of synchrotron, we need to
integrate the spectrum over all frequencies. When doing so, we find that the synchrotron
luminosity represents a significant fraction of the pulsar spindown power, about 18%. The
latter is computed as the amount of Poynting flux that is dissipated in the magnetosphere
in the current layer, from the Y-point up to a few light-cylinder. The dissipation of Poynt-
ing flux is dictated by the reconnection rate ( Cerutti et al., 2020; Hakobyan, Philippov,
et al., 2023). We argue that this dissipation is physical and not numerical as the numerical



6.3. Results 159

105 106 107 108 109 1010

h  (eV)

1029

1030

1031

1032

1033
F

 (e
rg

/s
)

Electrons
Positrons
Total

FIGURE 6.8: Synchrotron spectral energy distribution. The electronic contribution
is in blue while the positronic one is in red. The black dashed line is the total
synchrotron SED. The 100MeV energy threshold of the Fermi-LAT is indicated by

the vertical dotted line.

dissipation given in Sect. 2.1.3 was way below 1% (Fig. 5.12). In our simulation, the dissi-
pated energy is almost entirely channelled into non-thermal radiation. This conversion is
possible in the simulation as a consequence of the strong cooling regime. If we look at the
energy budget presented in Fig. 6.9, we see that the pairs are leaving the box with . 1%
of the spindown power and protons leave with ∼ 2% of it. Further from the star, these
energy fractions would be greater as the acceleration and dissipation proceeds, as well as
a more and more inefficient synchrotron cooling.

The final result on this simulation is to compare our pulsar to the Fermi-LAT gamma-
ray pulsars. To do so, we integrate the obtained synchrotron spectrum above the energy
detection threshold of the satellite. We give the direct comparison to the observed pulsars
in Fig. 6.10. The simulation is shown in red with error bars coming from the variability of
the spectrum within half a period. Our result is consistent with what is reported by the
Fermi collaboration, where our gamma-ray efficiency is in the 1− 10% range ( Smith et al.,
2023).



160 Chapter 6. Pulsar magnetosphere: Aligned rotator

0

1

2

L[
er

g/
s]

×1034 Time=2.45

Poynting

0.5 1.0 1.5 2.0 2.5 3.0
r/RLC

0.0

2.5

5.0

7.5

L s
pe

ci
es

/
L

[%
] Electrons Positrons Protons

FIGURE 6.9: Energy budget of the simulation. The top panel shows the outgoing
radial Poynting flux while the bottom panel shows the energy of electrons (blue),

positrons (red), and protons (green) as a percentage of Poynting flux.

6.4 Effect of rescaling

6.4.1 Rescaling procedure

We, painfully but successfully, performed a simulation of an aligned rotator with realistic
pulsar parameters. With this as our reference, we can now explore the following question:
How far from reality are we when we perform a rescaling in PIC? To this end, we perform
three additional simulations. They are identical to the fiducial run presented in the above
section in terms of numerical parameters. However, we change the value of the surface
magnetic field. This change of parameter impacts all the scales from the spatial one to
the energetic ones including radiation. To have consistency between these runs and the
fiducial one, and to test the rescaling performed by previous PIC studies, we keep the ratio
of energies identical to the ones from Eq. (6.19):

γs

γpc
∼ 8.5× 10−4 <

γLC
rad

γpc
∼ 10−3 <

γth

γpc
∼ 4× 10−3 � 1.

With this approach, we place ourselves in conditions where we model a rescaled version of
our reference pulsar. To perform the rescaling of the radiation-reaction force, we artificially
amplify its amplitude by a factor frad. The radiation-reaction-limited Lorentz factor is
expressed as

γrad =

√
3eE‖

2r2
e fradB2

⊥
. (6.28)
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FIGURE 6.10: Gamma-ray efficiency of pulsar above 100MeV. The grey stars are
from the third Fermi-LAT catalogue ( Smith et al., 2023). The red dot corresponds

to our simulation.

The artificial amplification is derived by equating the ratio γrad/γpc between the fidu-
cial simulation and the rescaled one.

γref
rad

γref
pc

=
γ′rad
γ′pc

=⇒ frad =

(
E′‖
Eref
‖

)(
Bref
?

B′?

)2(Bref
⊥

B′⊥

)2

. (6.29)

where primed quantities are the parameters of the rescaled simulations, the other quanti-
ties correspond to the simulation with Bref

? = 107G. If we assume that E‖ ≈ B⊥ ≈ B? for
the reference and rescaled simulations, the amplification is computed as

frad =

(
Bref
?

B′?

)3

. (6.30)

We give the different rescaled magnetic field used in this experiment and values of frad
in Table 6.2.

B′? 107 106 105 104

frad 1 103 106 109

TABLE 6.2: Rescaling parameters.

6.4.2 Results

We do not seen major differences either in the global structure of the magnetosphere or
the leptons parameters. However, we note that the protons are less prone to propagate
in the magnetosphere for smaller magnetic fields. Their number density is reduced as a
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FIGURE 6.11: Spectral energy distribution peaks for various rescaled magnetic
field strengths. The black dashed line shows the polar-cap potential drop as a

function of the magnetic field.

consequence of a less efficient extraction. The magnetic field is weaker while the mass ratio
stays the same. This indicates that during the rescaling of PIC simulations, we also need to
rescale the mass of the protons accordingly. Another difference is on the energies probed
by the simulation. The main result of this experiment is shown in Fig. 6.11.

The conclusion of our experiment is reassuring. We see a linear correlation between
the strength of the magnetic field and the peak of the spectral energy distribution of each
species. This result shows that, for a valid rescaling of a PIC simulation, we must keep the
value of the different energy ratios identical to the one of the pulsar we want to model. If
the hierarchy of scales of the realistic system is respected, the conclusions of a rescaled PIC
simulation are legitimate.

6.5 Numerical convergence of the aligned rotator

To assess the validity of the method, we performed several tests where we focus on the
global structure of the magnetosphere, the Poynting flux and the net charge. In the fol-
lowing, we consider a weaker and less resolved simulation compared to the fiducial sim-
ulation. The simulation setup for this aligned rotator consists of a 40962 cells grid, and a
surface magnetic field B? = 5.7× 105 G. The modification of the magnetic field is neces-
sary if we want to do a full PIC simulation. The parameters from the fiducial run are too
extreme and a full PIC simulation would simply crash right away.
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FIGURE 6.12: Comparison of the pairs density for three numerical configurations.
Left: pure PIC simulation. Middle: wide hybrid simulation, the polar-cap is cut in
half. Right: optimal hybrid simulation, narrow setup. The vertical green dashed

line indicates the light-cylinder radius.

6.5.1 Sensitivity to the force-free-PIC boundary position

For this test, we perform a set of three simulations. They are identical regarding the phys-
ical and numerical parameters, the only difference lies in the outer force-free-PIC frontier.
The inner hybrid boundary is kept identical. Our reference simulation corresponds to a
full PIC simulation, where the outer hybrid boundary is removed. For the second simula-
tion, we decided to cut the polar-cap in half. The upper half (close to the pole) is described
in force-free, meaning that the other half is described by particles. We will refer to this sim-
ulation as the wide simulation. The final simulation corresponds to an optimal (narrow)
hybrid decomposition where the hybrid frontier is set close to the separatrix, completely
removing the particle description of the polar-cap. In terms of magnetic flux boundaries,
the different simulation have

Simulation Pure PIC Hybrid wide Hybrid narrow

Hybrid boundary
(
Ψpc units

)
Ψ = 0 Ψ = 0.4 Ψ = 0.85

In Fig. 6.12, we show the last snapshot of each simulation at time t = 3P. At the
equator, all simulations show a clear current layer within which plasmoids are visible,
the separatrix is also present in all simulations. However, for the full PIC simulation,
the separatrix appears more rounded. The location of the Y-points is roughly the same
with rY ≈ 0.85RLC. Regarding the densities in the current layer and separatrix, the same
number density is reached. We note a difference in the plasma density around the current
layer. In the full PIC simulation, the region around the current sheet is denser with a higher
multiplicity. In the hybrid case, the depletion of plasma above and below the current sheet
is significant and leaves a large gap. A possible reason behind this difference is regarding
the plasma supply and pair production model. The magnetosphere is heavily impacted
by the initial transient with a lot of movement along the field lines while they are opening
up. During the full PIC transient, particles are injected along all field lines to fill the full
magnetosphere. Therefore, these initial particles fall back near the equator during the
transient and can play the role a seed particles for pair creation, populating regions close
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FIGURE 6.13: Outgoing radial Poynting flux for each simulation, averaged over
one period.

to the current layer. In the hybrid run, the plasma supply is azimuthally limited to the PIC
region. Therefore, it is impossible to have particles from the polar region falling back near
the equator during the transient phase. The PIC boundary is set to be as close as possible
to the separatrix, shortening out the particle supply. The intermediate run shows a slight
depletion of density around the equatorial current sheet but is near the density reached in
the full PIC simulation.

From this set of simulation, we can compute the radial Poynting flux. The latter is
shown in Fig. 6.13, where the fluxes are averaged between t = 2− 3P. Each Poynting flux
is normalised by the expected force-free spindown power L0 and is computed without
the inner force-free region. The latter presents a high level of noise in the fields and does
not participate in the dissipation process. From the figure, we can see that the spindown
power of all simulations is not identical. The hybrid simulation tends to have a higher
spindown power than the pure PIC one. This aspect is also seen in Fig. 6.12, where more
field lines are opened in the hybrid run. However, if we look at the dissipation of Poynting
flux from the light-cylinder to a few light-cylinder radii away, we see that the amount of
dissipation is the same, around ∼ 15− 20%. This dissipation corresponds to the fraction
of spindown power converted into particle acceleration. The latter is the main focus of this
work, thus having a hybrid dissipation equivalent to the PIC dissipation is a positive sign.
The conclusions on the dissipation from the hybrid run are relevant.

6.5.2 Net charge

In this next test, we study the net charge of the simulation to see if we have some accumu-
lation in the magnetosphere. This study allows us to see if the magnetosphere is properly
screened and also to see when the steady-state is reached. The net charge is computed as

Q =
∫∫

E · dS =
∫∫

Err2 sin θdθdφ. (6.31)

At the surface of the star, the net charge is given by the Michel charge,
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FIGURE 6.14: Spacetime diagram of the net charge for a force-free-PIC simulation
of an aligned rotator, normalised to the net charge of the star. The right panel
shows a cut of the diagram. The time of the profile is indicated by the grey dashed

line.

Q0 =
2µΩ

3c
(6.32)

In Fig. 6.14, we show a spacetime diagram of the net charge computed at every radii of
the simulation over three spin periods. In this figure, we see a strong net charge for t ≤ 1P.
This net charge is a consequence of the initial transient when the magnetosphere is being
filled with plasma. Once the transient is evacuated (t > 1P), we can see that the closed
region (up to the Y-point) does present a net charge which is expected. This indicates that
the magnetosphere has reached a steady-state after one spin period. The transition in the
net charge value at r ≈ 0.75RLC corresponds to the location of the Y-point. Once the Y-
point is passed, the net charge goes towards zero as we get further from the star. To better
visualise this behaviour, we show the radial profile of the net charge at t = 1.5P (right
panel of Fig. 6.14). The various darker curves present in the spacetime diagram indicate
the trajectory of the plasmoids inside the simulation. Their number at each time of the
simulation can be estimated using this proxy.

6.5.3 Numerical benefits of the hybrid approach

Regarding the numerical aspects, the method shows interesting elements. The domain
separation allows us to avoid particles in the polar cap regions and inner closed regions.
In these regions, the plasma scales are smaller than at the light-cylinder. This is a direct
consequence of the plasma being less relativistic at the poles. These scales are a bottleneck
for full PIC simulations, in which the skin depth at the polar cap must be resolved. One
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crucial point is that a full PIC simulation will not be able to handle the set of parameters of
our fiducial pulsar.
By using the hybrid approach, the required memory is considerably reduced as well as
the final data size. Thanks to the force-free treatment in some regions, we are able to
have a quicker simulation. If we compare two identical simulations, one using the PIC
description and the second using the force-free-PIC approach, we find a speed-up factor
f = ∆thybrid/∆tPIC ≈ 4 − 5. The speed-up factor is not as large as what we expected,
however it also depends on the CPU decomposition used. For instance, if a single CPU
has to handle a large density of particles, it will slow down the simulation as the rest of the
CPUs will be waiting for it to finish, i.e. race condition.

Finally, I want to give some estimation of the cost of such a new numerical method.
In terms of computing time, the overall approach (from the start to the production runs
included) required approximately 8 million CPU hours at the Très Grand Centre de Calcul
(TGCC), and countless hours on my laptop. Developing new numerical methods costs a
lot of time to be perfect but also has a carbon footprint which is often forgotten.

6.6 Summary

In this chapter, I presented the first application of the force-free-PIC method on a physi-
cal case. By using this method, I was able to produce the very first simulation of a weak
millisecond pulsar, with a realistic set of parameters, cooling treatment and scale sepa-
ration. The simulation has a surface magnetic field B? = 107G, a spin period P = 1ms
corresponding to a spindown power L = 4.8× 1033erg/s. Thanks to this simulation, I was
able to highlight the fact that the current layer of pulsars is an efficient particle accelerator.
Inside it, leptons can reach energies up to 1 TeV and protons are able to get up to ∼ 10
TeV. The leptons in the simulation produce a synchrotron spectrum extending up to 1GeV
which is above the detection threshold of the Fermi-LAT. The modelled pulsar presents an
efficiency between 1− 10% which is in agreement with the gamma-ray millisecond pul-
sar population. Thanks to this new method, I was able to bridge the gap between global
kinetic simulations of pulsar magnetospheres and observations of gamma-ray pulsars.

The hybrid approach also allowed me to validate the rescaling performed by previous
PIC simulations. The maximum energy of the different species scales linearly with the
strength of the surface magnetic field as long as the hierarchy of scales is respected. If this
is the case, PIC results can be extrapolated to the targeted pulsar modelled.

I also carried out a convergence study on the method for the aligned rotator. The
method recovers the proper description of the net charge inside the simulation. A compar-
ison between two hybrid simulations and a full PIC simulation indicates that the method
does not add dissipation to the system. This means that the dissipation measured in a
hybrid simulation can be trusted.



6.7. [Français] Points clés du chapitre 167

6.7 [Français] Points clés du chapitre

Dans ce chapitre, j’ai présenté la première application de la méthode sans-force-PIC à un
cas physique. En utilisant cette méthode, j’ai pu réaliser la toute première simulation d’un
pulsar milliseconde faible, avec un ensemble réaliste de paramètres, allant du traitement
du refroidissement à la séparation d’échelle. La simulation a un champ magnétique de
surface B? = 107G, une période de rotation P = 1ms correspondant à une puissance de
L = 4.8× 1033erg/s. Grâce à cette simulation, j’ai mis en évidence le fait que la nappe de
courant des pulsars est un accélérateur de particules efficace. À l’intérieur de celle-ci, les
leptons peuvent atteindre des énergies allant jusqu’à 1 TeV et les protons jusqu’à∼ 10 TeV.
Les leptons de la simulation produisent un spectre synchrotron s’étendant jusqu’à 1 GeV,
ce qui dépasse le seuil de détection du Fermi-LAT. Le pulsar modélisé présente une efficac-
ité comprise entre 1 et 10%, ce qui est en accord avec la population des pulsars millisecon-
des observée en rayons gamma. Grâce à cette nouvelle méthode, j’ai pu combler le fossé
entre les simulations cinétiques globales de magnétosphères de pulsars et les observations
des pulsars gamma.

L’approche hybride m’a également permis de valider le rééchelonnement effectué dans
les simulations PIC précédentes. Ce résultat provient d’une série de simulations basées
sur la simulation du pulsar réaliste (simulation fiduciaire). Dans cette série de simula-
tions, seulement deux paramètres ont été modifiés : l’intensité du champ magnétique et
celle de la force de réaction au rayonnement. Les rapports entre les différentes échelles
d’énergie sont identiques à ceux de la simulation fiduciaire. La procédure suivie ici est
quasiment identique à celle utilisée dans les simulations PIC antérieures. Cette série de
simulation révèle un résultat important : l’énergie maximale des différentes espèces aug-
mente linéairement avec l’intensité du champ magnétique de surface. Tant que la hiérar-
chie des échelles est respectée, cette conclusion reste valable et les résultats des simulations
PIC peuvent être extrapolés au pulsar ciblé et modélisé.

J’ai également réalisé une étude de convergence sur la méthode appliquée au rotateur
aligné. La méthode reconstruit correctement la distribution de la charge nette à l’intérieur
de la simulation. On observe d’abord une charge nette proche de l’étoile à neutrons, qui
tend vers zéro à mesure que l’on s’éloigne de l’étoile. Un dernier test pour valider la méth-
ode a consisté à comparer deux simulations hybrides avec une simulation PIC complète.
Les paramètres physiques et numériques sont identiques entre les trois simulations, seul
l’emplacement de la transition sans-force-PIC est différente entre les deux simulations hy-
brides. Le calcul de la dissipation dans chacune des simulations hybrides montre que le
taux de dissipation est cohérent avec celui de la simulation PIC. Ce test démontre que la
méthode sans-force-PIC n’introduit pas de dissipation supplémentaire dans le système.
Par conséquent, cela signifie que la dissipation mesurée dans une simulation hybride est
fiable.





169

Part III

Conclusions & perspectives





171

CHAPTER 7

Conclusions & Perspectives

Pulsars and black holes are fascinating and terrifying objects. Close to them, the plasma
is constantly oppressed by the strong magnetic- and gravitational fields. These extreme
conditions could explain the production of high energy gamma-rays but also the high
variability in the signals observed described in Chapt. 1. In this thesis, I focused on the
development of a new numerical method to study the high-energy emission coming from
relativistic magnetospheres.
The new method uses the Particle-in-cell and force-free framework simultaneously to de-
scribe the magnetosphere. The force-free approach is adapted to study the macroscopic
scales. It cannot deal with the microphysics and non-ideal regions. The latter are not a
problem for the PIC approach, in which we evolve individual particles. They can undergo
acceleration, radiation processes during their evolution, and the observational signatures
can be computed. The numerical aspect of each method is described in Chapt. 3. The first
aspect of my work was to see if this kind of method could work and give a first proof-
of-principle if it does. To this end, I first model a neutron star with a monopole magnetic
field to test the method in Chapt. 5. With the test validated, it was time to modelled a
more realistic solution: the aligned dipole. The simulation presented in Chapt. 6, is the
first simulation of a pulsar within the detection range of observed Fermi pulsars. Finally,
the moment arrives to translate the method from flat spacetime to curved spacetime. I am
currently working on this last aspect at the moment of writing.

I will now summarise the different results obtained in this thesis, by answering the
different questions raised in the introduction (Chapt. 4).

Is it possible to develop a viable force-free-PIC approach?

The quick answer is: yes it is! In Chapt. 5, I give the full details of the force-free-PIC
method. The approach requires the implementation of both a force-free module and a PIC
module in order to work. In the framework of a standard PIC code, the force-free module
can easily be implemented by relying on the Maxwell solver already existing. The cou-
pling between both methods is done via the current density, which is the main difference
between the force-free and PIC numerical description. Once the current of both approaches
is computed, it is assembled to create a unique current density. The latter is constructed
thanks to a blending function built on the magnetic flux function. In the case of an axisym-
metric pulsar, the magnetic flux function allows to establish where the magnetic field lines
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are. With their footpoints anchored on the neutron stars, the field lines are a perfect proxy
to know the regime in which the magnetosphere is. The choice of this proxy was picked
based on previous PIC and force-free studies. The method on-boards a transition layer,
which boundaries are set by hand by the user. This numerical layer is needed to avoid
the development of numerical artefacts at the numerical transition, and to blend the two
respective currents. Picking the right domain separation is one of the most difficult aspect
of the method. It often relies on trials and errors.

If so, could this force-free-PIC approach be used to model pulsar magnetospheres?

For the first test of the method, I used a monopolar configuration for the magnetic field.
This solution is not realistic but is the only analytical solution available in pulsar theory.
The main idea with this test was to see how the method was performing physically and
numerically. For the physics part, the magnetosphere has the right structure with radial
field lines and the current density profile is in agreement with the analytical expression.
Regarding the numerics, the method presents an intrinsic error below 1% for low resolu-
tions. The error decreases with higher resolution as expected. My force-free-PIC method
passes the monopole test.
The second test was get closer to a pulsar magnetosphere by modelling an aligned dipole.
The idea was to recover the main results of a full PIC simulation with the hybrid method,
and to check that the numerics was holding strong in this less friendly setup. Despite some
differences in the solution, the hybrid method was able to recover the magnetospheric
structure as well as the dissipation of electromagnetic energy. The net charge in the simu-
lation is also coherent with what is expected. It is non-zero close to the star while it decays
further away towards zero. This diagnosis allowed me to check that the simulation was
not accumulating some net charge at the numerical boundary, between the force-free and
PIC regions. Therefore, the method can be used to model pulsar magnetospheres.

Without rescaling, what is the typical energy of particles and where does the accelera-
tion occurs?

This part was one of the real crux of my thesis work. In order to remove the various param-
eters, I had to proceed steps by steps. I started with a simple plasma of pairs and slowly
added ions. Once the simulation was under control, I increased the mass of the ions to
the real mass of protons. This step lifted for the first time the rescaling performed on ions
by previous studies. The next step was to have a simple pair production mechanism, but
where the threshold for pair creation was motivated by QED estimations. This step was
only achieved when I slightly increased the magnetic field strength and resolution. The
pair production was working but a new problem arrived. The results from the simulation
were not consistent between each runs, and the method failed several times to model the
magnetosphere. I dealt with these issues for a long time before discovering that the tran-
sition layer was causing the trouble. The layer was counter-productive during the initial
transient of the simulation, and prevented the magnetosphere to reach a steady-state. The
solution was to remove this layer during the initial transient, before putting it back. The
last step was to remove the rescaling of the radiation-reaction force. This point appeared
as an unbreakable wall for a long time. This last rampart was taken down by starting the
simulation with a smaller radiation-reaction force and by ramping it up in time. When the
strength of the radiation-reaction force reached its true value, the production run could be
done.
The pulsar simulated without rescaling corresponds to a weak millisecond pulsar(

P = 1ms, B? = 107G
)

within the detection range of the Fermi-LAT. The estimated spin-
down power of this pulsar is 4.8× 1033erg/s. My simulation indicates that:
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• an aligned pulsar exhibits an extremely thin current sheet at the light-cylinder. The
layer shows sign of the current driven instability and fragments into plasmoids (tear-
ing instability). These magnetic islands of plasma do merge and have sizes ranging
from the microscopic to the stellar radius scales,

• pair production occurs in the current layer where particles are accelerated by the
non-ideal electric field. The acceleration happens deep inside the current sheet,

• protons are extracted from the pulsar surface and are insensitive to the dynamics of
the leptons,

• acceleration is strong after the light-cylinder. Deep inside the current layer, leptons
are accelerated up to 1 TeV, while those inside plasmoids radiated all their energy
away and have energies of the order of 10-100 GeV,

• on the other hand, protons do not radiate. They see the current layer as a linear
accelerator and reach the 10 TeV energy mark,

• the synchrotron spectrum is broad, and reach above the synchrotron burn-off limit.
The spectrum extends from 0.1MeV to 1GeV,

• the efficiency of the simulated pulsar is consistent with the 1 − 10% efficiency ob-
served for millisecond gamma-ray pulsars.

As a general result, the current sheet in the magnetosphere of pulsars is able to accel-
erate particles to energies above the tera-electronvolt. With protons accelerated at least to
10TeV, pulsars could participate significantly to the production of Galactic cosmic rays.

This simulation is the first global kinetic simulation to reach the realistic scales of a
pulsar magnetosphere. Therefore, the results of the simulation can directly be compared
to the observations. We are finally able to bridge the gap between simulations and ob-
servations. This represents a considerable step towards understanding the high-energy
emission of pulsars.

Are PIC results holding strong for close to realistic scale separation?

To address this question, I performed a series of simulations, in which I applied the tradi-
tional PIC rescaling for different magnetic fields. The weak millisecond pulsar simulation
is used as a reference simulation. Downscaling this simulation to lower surface magnetic
field strength implied to increase the radiation-reaction force strength. In this study, the
energy hierarchy of scales is identical throughout the different simulations. This study
allowed me to conclude that the rescaling done in PIC simulations was valid. The peak
energy of the particle spectra shows a linear dependence with the surface magnetic field
strength. The rescaling is valid as long as the simulation respects the realistic hierarchy of
scales. The latter corresponds to the different scales of the targeted pulsar.

Can this approach be translated from flat space to a curved spacetime to model black
hole magnetospheres?

For the moment, I cannot give a reliable answer as I am presently working on it. However,
I can describe the on-going development of the method. To model black hole magneto-
sphere, we need to account for general relativistic effects. To this aim, a new version of
ZELTRON has been developed, called GRZELTRON. The General Relativistic PIC (GRPIC)
method is already implemented, and works on different setups including the monopole
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and Wald configuration. The first goal was to add a new general relativistic force-free
module to the code. This step is similar to the beginning of the method in flat space. How-
ever, the way the algorithm works in GR is very different than in flat space. It uses the
3+1 formalism from Komissarov (2011), meaning that four fields are now evaluated in the
simulation. The next difference with the flat space code is the particle integration. The
Boris push was originally designed to work in Cartesian coordinates but here we need to
use it in a spherical curved spacetime. The code uses the concept of tetrads to perform this
transformation, see Takahashi (2007) for the full explanations in Kerr-Schild coordinates.
After facing many issues, I finally managed to implement and fully parallelised the GR
force-free module. To assess if it yields physical results, the first test I conducted was to
consider a rapidly spinning black hole (a = 0.99) with a monopole magnetic field. This
configuration corresponds to the analytical solution derived by Blandford and Znajek
(1977) (BZ). For this test, I am able to recover the magnetic configuration, the angular
velocity of the field lines, and to integrate for long timescales ∼ 103rg/c. The power of the
BZ jet is computed from the simulation and is in agreement with the analytical expression.
This first test indicates that the force-free module implementation is correct and stable in
time.
The targeted magnetic setup for this work is the Wald configuration. At the equator, a
current layer is expected and implies that the force-free assumptions will not hold. For
low enough resolutions, the effect of this layer should be weak. In my tests with the Wald
setup, I find that the force-free method is having a lot of trouble with the ergo-region where
the current sheet develops. The long time integration does not give clean results and get
worst the longer the integration. Despite this issue, the point of the force-free-PIC method
is to replace the regions where force-free fails with particles.
The next part of the approach is to couple the two methods in the same way as for the
pulsar. Again, I am using the current density from both method and blending them inside
a transition layer. The blending function is connected to the magnetic topology and relies
on Aφ. The magnetic flux function is equal to the 4-potential. The coupling was compara-
tively more difficult than in flat space as a consequence of the GR algorithm. The real crux
arrived with the first hybrid run. I took the monopole configuration in order to start with
the only analytical solution. Even with this simple setup, the simulation did not behave
properly and I was not able to recover the solution. The issue was numerical and came
from the current density computation. I recall that the expression of the force-free current
is not kind with codes using the FDTD scheme. The GR algorithm tends to break more
easily than the flat space one, thus going back on forth between the nodal grid and the Yee
mesh was introducing numerical artefacts. I had to implement some numerical manoeu-
vres to compute the right quantities on the right grid and at the right time to stabilise the
scheme. This “trick” took me some time to master but it finally came out properly.
I am currently testing the new version of the approach with the monopole configuration.
The decomposition between force-free and PIC is identical to the validation test case for
a pulsar. The switch of method is set at the equator so that both hemispheres are numer-
ically solved differently. Once this configuration is working efficiently and the BZ jet is
recovered, I will move on to the force-free-PIC Wald simulation. The goal is to push the
scale separation as far as possible with this method, to study particle acceleration near the
horizon-scale. I will be able to give predictions of the particle and electromagnetic spectra.
I will not tackle the issue of the plasma injection in this future work. For pulsars, the injec-
tion was straightforward as the neutron star possesses a surface. However, this is not the
case for black holes where the plasma and magnetic field are external.

The force-free-PIC method is working but not to its full potential yet. For the moment,
the method is setup-dependent and more efforts are needed to make it more general. From



Chapter 7. Conclusions & Perspectives 175

this point several options are possible.
The first one is to extend the 2D method to 3D. In this geometry, one can still use the
current density to couple both approaches but the location of each of them will be more
difficult. Indeed, if the axisymmetry is broken by the 3D, the isocontours of the magnetic
flux function do not represent the poloidal magnetic field lines any more. The quantity on
which the method would rely in 3D is still unknown. It could very well be a combination
of different criterion. One could potentially do a geometrical cut of the 3D space. It would
be a great start to see the potential of the method, but the approach would become very
stiff. If the method is portable in 3D, we will be able to produce simulations with higher
scale separation, getting closer and closer to realistic systems.
The second option is to move to a more dynamic approach by having an adaptive bound-
ary between force-free and PIC regions. This modification would be similar in the spirit to
what is done with the Adaptive Mesh Refinement. If we look at different domains of as-
trophysics, we can see that some communities have already started this process. The non-
relativistic community already possesses codes where MHD and PIC are coupled with
static PIC boxes. Last year, Chen et al. (2023) presented their method to have adaptive
PIC boxes embedded in an MHD simulation. They managed to apply this method in the
context of the Earth’s magnetosphere. To my knowledge such codes do not exist in the
relativistic community. Transposing this tool, or having one similar, to model relativistic
magnetospheres would have a strong impact for the community. Therefore, I would like to
upgrade the force-free-PIC method by finding a proxy in the force-free region that would
allow me to turn a force-free region into a PIC region. The switch should produce the
smallest numerical transient possible and properly describe the plasma. A starting point
for this adaptive boundary could be magnetic reconnection simulations with a Harris sheet
configuration.

One last possible extension of this thesis is regarding the pair production model used
in the pulsar simulation. In the simulation, we use a very simple pair creation model.
Tracking photons and treating pair production in a realistic way would bring us closer to
the real physics happening in the magnetosphere. This would also increase the power of
simulation to predict the shape of the particle spectrum, identify specific pair production
regions and constrain the pair multiplicities.

As a final point, I want to say that we need to port our codes to GPUs. It will allow
us to study systems at later stages, and also to probe parameters unachievable for the
moment. One of the crux in the porting is the treatment of particles when multiple GPUs
are used. We need to come up with clever ways of communicating the particles and their
information.

The take away message of this manuscript is the following. I want to say that working
on relativistic magnetospheres was a real pleasure but the high diversity of physical phe-
nomenon can sometimes be overwhelming. The challenge of developing a new method is
at the image of relativistic magnetospheres: both exiting and frightening.
The force-free-PIC method is working but is setup-dependent for the moment. This ap-
proach is not tender with the user as it is very fragile and can break at any time, until the
right set of parameters is found. Thanks to this development, I was able to prove that the
current sheet can be the locus of acceleration of particles to very high energies, and that
the magnetosphere is able to produce the high-energy emission observed. My approach
is new and offers a unique way of comparing simulations results to observations. We are
getting closer and closer to realistic simulations, allowing us to unveil some mysteries of
compact objects.
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7.1 [Français] Conclusions et perspectives

Les pulsars et les trous noirs sont des objets à la fois fascinants et terrifiants. Près d’eux,
le plasma est constamment soumis à de puissants champs magnétiques et gravitation-
nels. Ces conditions extrêmes pourraient expliquer la production de rayons gamma de
haute énergie ainsi que la grande variabilité des signaux observés, décrite dans le Chapt. 1.
Dans cette thèse, j’ai développé une nouvelle méthode numérique pour étudier l’émission
à haute énergie provenant des magnétosphères relativistes.

Cette nouvelle méthode combine les approches « Particle-in-cell » (PIC) et sans-force
pour modéliser la magnétosphère. L’approche sans-force est adaptée pour l’étude des
échelles macroscopiques mais elle ne peut pas traiter la microphysique et les régions non
idéales. Ces dernières ne représentent pas un problème pour l’approche PIC, dans laquelle
les particules évoluent de manière individuelle. Les particules peuvent subir des processus
d’accélération et de rayonnement au cours de leur évolution, et les signatures observation-
nelles peuvent être calculées. L’aspect numérique de chaque méthode est décrit dans le
Chapt. 3. Le premier objectif de mon travail a été de voir si ce type de méthode pouvait
fonctionner et de fournir une première preuve de concept si c’était le cas. Pour ce faire, j’ai
commencé par modéliser une étoile à neutrons avec un champ magnétique monopolaire
pour tester la méthode dans le Chapt. 5. Le test étant validé, il était temps de modéliser
une solution plus réaliste : le dipôle aligné. La simulation présentée dans le Chapt. 6 est
la première simulation d’un pulsar dans la gamme de détection des pulsars observés par
Fermi. Enfin, le moment est venu de transposer la méthode d’un espace-temps plat à un
espace-temps courbé. Je travaille actuellement sur ce dernier aspect au moment où j’écris
ce manuscrit.

Je vais maintenant résumer les différents résultats obtenus dans cette thèse, en répon-
dant aux différentes questions posées dans l’introduction (Chapt. 4).

Est-il possible de mettre au point une approche sans-force-PIC viable ?

La réponse brève est : oui, c’est possible ! Dans le Chap. 5, je donne tous les détails de la
méthode sans-force-PIC. Cette nouvelle approche requiert l’implémentation dans le code
à la fois d’un module sans-force et d’un module PIC pour pouvoir fonctionner. Dans le
cadre d’un code PIC standard, le module sans-force peut facilement être implémenté en
s’appuyant sur le solveur de Maxwell déjà existant. Le couplage entre les deux méth-
odes se fait par l’intermédiaire de la densité de courant, qui est la principale différence
entre la description numérique sans-force et la description numérique PIC. Une fois que le
courant des deux approches est calculé, il est assemblé pour créer une densité de courant
unique. Cette dernière est construite grâce à une fonction de mélange. Cette fonction
prend pour paramètre la valeur de la fonction de flux magnétique et permet d’attribuer
un poids aux deux densités de courants pour les fusionner. Dans le cas d’un pulsar ax-
isymétrique, la fonction de flux magnétique permet de connaître la position des lignes
de champs magnétique. Ces dernières sont ancrées à la surface de l’étoile à neutrons et
représentent un bon indicateur pour connaître le régime physique dans lequel se trouve
la magnétosphère. Le choix de cette approximation a été fait sur la base d’études PIC et
d’études sans-force antérieures. La méthode intègre une couche de transition, dont les lim-
ites sont fixées manuellement par l’utilisateur. Cette zone de transition est nécessaire afin
de limiter le développement d’artefacts numériques à l’interface entre les deux méthodes,
et pour mélanger les deux densités de courants. Le choix du positionnement de la zone
de transition est l’un des aspects les plus complexes de la méthode. Cette partie se fait
principalement par tâtonnement avec des essais répétitifs jusqu’à convergence.
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Si tel est le cas, cette approche sans-force-PIC pourrait-elle être utilisée pour modéliser
les magnétosphères de pulsars ?

Pour le premier test de la méthode, j’ai utilisé une configuration du champ magnétique
dite monopolaire. Cette solution n’est pas réaliste mais elle correspond à la seule solution
analytique disponible dans la théorie des pulsars. L’idée principale pour ce test était de
voir le comportement à la fois physique mais aussi numérique de la méthode sans-force-
PIC et d’étudier ses performances. Pour la partie physique, la magnétosphère répond aux
différents critères avec des lignes de champs purement radiales ainsi que des profils de
densité de courant en accord avec l’expression analytique. En ce qui concerne la partie
numérique, la méthode présente une erreur intrinsèque inférieur à 1% pour des résolu-
tions basses. Cette erreur décroît avec l’augmentation de la résolution comme attendu.
Tous les voyants sont donc au vert pour affirmer que ma méthode sans-force-PIC passe le
test du monopole.
Le deuxième test avait pour but de se rapprocher d’une magnétosphère de pulsar en mod-
élisant un dipole aligné. L’idée était de retrouver les principaux résultats obtenus via une
méthode entièrement PIC avec la méthode hybride, et de vérifier que la partie numérique
était toujours robuste dans une configuration plus complexe. Malgré quelques différences
dans la solution, la méthode hybride est capable de retrouver la bonne structure magné-
tosphérique ainsi que la quantité d’énergie électromagnétique dissipée. La charge nette de
la simulation est aussi en accord avec ce qui est attendu pour un dipole. Une charge nette
est présente à proximité de l’étoile et elle décroît vers zéro à mesure que l’on s’éloigne ra-
dialement. Ce diagnostic m’a aussi permis de vérifier qu’il n’y avait aucune accumulation
de charge nette dans la simulation au niveau de la frontière numérique entre les régions
décrites par le PIC et celles décrites par le sans-force. Pour toutes ces raisons, la méthode
peut donc être utilisée pour modéliser les magnétosphères de pulsars.

Sans rééchelonnement, quelle est l’énergie typique des particules et où sont-elles ac-
célérées ?

Cette parti a été l’une des plus problématique de mon travail de thèse. Le but était de
retirer le plus de paramètres libres possible des simulations. Afin de pouvoir faire cela, j’ai
dû procéder par étapes. J’ai tout d’abord commencé en injectant un plasma de paires avant
d’ajouter des ions. Une fois la simulation sous contrôle, j’ai augmenté la masse des ions
jusqu’à atteindre la masse réelle des protons. Cette étape m’a permis de supprimer pour la
première fois le rééchelonnement qui était habituellement fait sur les ions dans les études
antérieures. L’étape suivante était d’avoir un mécanisme simple pour la production de
paires, tout en se basant sur les estimations données pour l’électrodynamique quantique.
Cette étape n’a pu être réalisé qu’après l’utilisation d’un champ magnétique plus intense
et d’une résolution numérique plus élevée. Le processus de production de paires était
donc fonctionnel mais un nouveau problème de taille est apparue. Les résultats des
simulations n’étaient pas cohérents d’une simulation à une autre, la méthode échouait
plusieurs fois à modéliser la magnétosphère. J’ai fait face à ce problème pendant un
long moment avant de découvrir que l’origine du problème était la couche de transition.
Cette zone était contre-productive pendant la phase transitoire initiale de la simulation et
empêchait la magnétopshère d’atteindre un régime (quasi)-stationnaire. La solution a été
de supprimer cette zone pendant le transitoire initial avant de la réintroduire une fois le
transitoire passé. La dernière étape a consisté à supprimer le rééchelonnement effectué sur
la force de réaction au rayonnement. Dès les premiers tests, cette étape apparut comme
un mur infranchissable. Ce dernier rempart fut brisé en démarrant la simulation avec
une force de réaction au rayonnement faible puis d’augmenter son intensité au cours du
temps. Quand l’amplitude de cette force atteint sa vraie valeur, la simulation peut être
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utilisée comme simulation de production.

Le pulsar simulé sans rééchelonnement correspond à un pulsar milliseconde faible(
P = 1ms, B? = 107G

)
dans la gamma de détection du Fermi-LAT. La puissance de ce pul-

sar est estimée à 4.8× 1033erg/s. My simulation indicates that:

• un pulsar aligné présente une nappe de courant extrêmement fine au niveau du
cylindre de lumière. Cette dernière montre des signes d’instabilité due au courant
et se fragmente en plasmoïdes (instabilité de déchirement). Ces îlots magnétiques de
plasma fusionnent et ont des tailles allant de l’échelle microscopique à l’échelle du
rayon stellaire,

• la production de paires se produit essentiellement dans la nappe de courant où les
particules sont accélérées par le champ électrique non idéal (profondément dans la
nappe),

• les protons sont extraits de la surface du pulsar et sont insensibles à la dynamique
des leptons,

• l’accélération est forte après le cylindre de lumière. Au plus profond de la couche
de courant, les leptons sont accélérés jusqu’à 1 TeV, tandis que ceux qui se trouvent
à l’intérieur des plasmoïdes ont rayonné toute leur énergie et ont des énergies de
l’ordre de 10-100 GeV,

• en revanche, les protons ne rayonnent pas. Ils considèrent la couche de courant
comme un accélérateur linéaire et atteignent une énergie de 10 TeV,

• le spectre synchrotron est large et dépasse la limite de « burn-off » du synchrotron.
Le spectre s’étend de 0,1 MeV à 1 GeV,

• l’efficacité du pulsar simulé est cohérente avec l’efficacité de 1 à 10% observée pour
les pulsars gamma millisecondes.

De manière générale, la nappe de courant dans la magnétosphère des pulsars est ca-
pable d’accélérer les particules à des énergies supérieures au téraélectronvolt. Avec des
protons accélérés au moins à 10 TeV, les pulsars pourraient participer de manière significa-
tive à la production de rayons cosmiques galactiques.

Cette simulation est la première simulation cinétique globale à atteindre les échelles
réalistes d’une magnétosphère de pulsars. Les résultats de la simulation peuvent donc
être directement comparés aux observations. Nous sommes enfin en mesure de combler
le fossé entre les simulations et les observations. Cela représente un pas en avant consid-
érable pour la compréhension de l’émission à haute énergie des pulsars.

Est-ce que les résultats obtenus avec la méthode PIC sont toujours valables pour une
séparation d’échelle proche de la réalité ?

Pour répondre à cette question, j’ai effectué une série de simulations dans lesquelles j’ai ap-
pliqué le rééchelonnement PIC traditionnel pour différents champs magnétiques. La sim-
ulation du pulsar milliseconde faible est utilisée comme simulation de référence dans cette
série. La réduction d’échelle de cette simulation, pour une intensité de champ magnétique
de surface plus faible, implique aussi l’augmentation de l’intensité de la force de réaction
au rayonnement. Dans cette étude, la hiérarchie des échelles énergétiques est identique
dans les différentes simulations. Cette étude m’a permis de conclure que le rééchelonnage
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des simulations PIC était valide. L’énergie maxminale des spectres de particules montre
une dépendance linéaire avec l’intensité du champ magnétique de surface. Le rééchelon-
nement est valable tant que la simulation respecte la hiérarchie réaliste des échelles. Cette
dernière correspond aux différentes échelles du pulsar ciblé.

Est-il possible de transposer cette approche en espace plat vers une approche en espace
courbe pour modéliser les magnétosphères de trous noirs ?

Pour l’instant, je ne peux pas donner de réponse fiable car je suis en train de travailler
sur cette implémentation. Toutefois, je peux décrire le développement en cours de la
méthode. Pour modéliser la magnétosphère d’un trou noir, nous devons tenir compte
des effets produit par la relativité générale (RG). Pour cela, une nouvelle version de
ZELTRON a été développée, appelée GRZELTRON. La méthode General Relativistic PIC
(GRPIC) est déjà implémentée et fonctionne sur différentes configurations, y compris le
monopôle et la configuration de Wald. Le premier objectif était d’ajouter un nouveau
module sans-force tenant compte de la relativité générale au code. Cette étape est similaire
au développement initial de la méthode en espace plat. Cependant, le fonctionnement
de l’algorithme en RG est très différent de celui de l’espace plat. Il utilise le formalisme
3+1 de Komissarov (2011), ce qui signifie que quatre champs sont maintenant évalués
dans la simulation. La différence suivante avec le code en espace plat est l’intégration des
particules. Le pousseur de Boris a été conçue à l’origine pour fonctionner en coordonnées
cartésiennes, mais ici nous devons l’utiliser dans un espace-temps sphérique courbé. Le
code utilise le concept de tétrades pour effectuer cette transformation, voir Takahashi
(2007) pour les explications complètes en coordonnées de Kerr-Schild.
Après avoir rencontré de nombreux problèmes, j’ai finalement réussi à implémenter et
à entièrement paralléliser le module RG sans-force. Pour évaluer s’il fonctionnet et s’il
produit des résultats physiques, le premier test que j’ai effectué a consisté à modéliser un
trou noir en rotation rapide (a = 0.99) avec un champ magnétique monopolaire. Cette
configuration correspond à la solution analytique dérivée par Blandford and Znajek
(1977) (BZ) et représente l’analogue du monopole du Michel pour les pulsars. Pour ce test,
je suis capable de retrouver la configuration magnétique (lignes de champ radiales), la
vitesse angulaire des lignes de champ, et d’intégrer pendant de longues échelles de temps
∼ 103rg/c. La puissance du jet BZ est calculée à partir de la simulation et est en accord
avec l’expression analytique. Ce premier test indique que l’implémentation du module
sans-force est correcte et stable dans le temps. La configuration magnétique ciblée pour
ce travail est la configuration de Wald. À l’équateur, une couche de courant est attendue
ce qui implique que les hypothèses sur lesquelles reposent le régime sans-force ne seront
plus valables. Pour des résolutions suffisamment basses, l’effet de cette nappe de courant
devrait être faible. Dans mes tests avec la configuration de Wald, je trouve que la méthode
sans-force a beaucoup de problèmes avec la région à l’intérieur de l’ergosphère où la
nappe de courant se développe. L’intégration sur des échelles de temps long ne donne pas
des résultats clairs et les résultats empirent à mesure que l’intégration est temporelle dure.
Malgré ce problème, l’intérêt de la méthode sans-force-PIC est de remplacer les régions
où la méthode sans-force échoue par des particules.
L’étape suivante pour l’approche consiste à coupler les deux méthodes de la même
manière que pour le pulsar. Encore une fois, j’utilise la densité de courant des deux
méthodes et je les mélange à l’intérieur d’une couche de transition. La fonction de
mélange est liée à la topologie du champ magnétique et repose sur la quantité Aφ. La
fonction de flux magnétique est égale au 4-potentiel. Le couplage était comparativement
plus difficile que pour la version en espace plat, en raison de la relativité générale prise en
compte par l’algorithme. Le véritable nœud du problème est apparu lors de la première
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simulation hybride. Pour cette simulation, j’ai utilisé la configuration monopolaire afin de
pouvoir comparer les résultats à la seule solution analytique disponible. Même avec cette
configuration simple, la simulation ne s’est pas comportée correctement et je n’ai pas pu
retrouver la solution. Le problème était numérique et provenait du calcul de la densité
de courant. Je rappelle que l’expression de la densité de courant dans l’approximation
sans-force n’est pas tendre avec les codes utilisant le schéma FDTD. De plus, l’algorithme
en relativité générale a tendance à casser plus facilement que l’algorithme en espace plat.
Les aller-retours entre les nœuds de la grille et la maille de Yee introduisaient des artefacts
numériques qui étaient trop important pour l’algorithme. J’ai dû implémenter certaines
manœuvres numériques pour calculer les bonnes quantités sur la bonne grille et au bon
temps afin de stabiliser le schéma. Il m’a fallu du temps pour maîtriser cette « astuce »,
mais j’ai fini par aboutir à quelque chose de propre numériquement .
Je teste actuellement la nouvelle version de l’approche avec la configuration monopolaire.
La décomposition entre le sans-force et le PIC est identique au cas de test pour un pulsar
et permet de valider ou non la méthode. Le changement de méthode est fixé au niveau
de l’équateur de sorte que les deux hémisphères sont résolus numériquement de deux
manières différentes. Une fois que cette configuration fonctionnera parfaitement et que le
jet BZ sera récupéré, je passerai à la simulation Wald utilisant la méthode sans-force-PIC.
L’objectif est de pousser la séparation d’échelles aussi loin que possible avec cette méth-
ode, afin d’étudier l’accélération de particules proche de l’horizon. Je serai en mesure de
donner des prédictions sur les spectres de particules et électromagnétiques. Je n’aborderai
pas la question de l’injection de plasma dans cette simulation. Pour les pulsars, l’injection
de plasma est simple car l’étoile à neutrons possède une surface. Cependant, ce n’est pas
le cas pour les trous noirs où le plasma et le champ magnétique sont externes.

La méthode sans-force-PIC fonctionne mais n’a pas encore atteint son plein potentiel.
Pour l’instant, la méthode dépend de la configuration du problème et des efforts supplé-
mentaires sont nécessaires pour la rendre plus générale. À partir de là, plusieurs options
sont possibles.
La première consiste à étendre la méthode 2D à une méthode 3D. Dans cette géométrie,
on peut toujours utiliser la densité de courant pour coupler les deux approches, mais la
séparation numérique entre les deux sera plus difficile. En effet, si l’axisymétrie est brisée
par la 3D, les isocontours de la fonction de flux magnétique ne représentent plus les lignes
de champ magnétique poloïdal. La quantité sur laquelle la méthode s’appuierait en 3D
est encore inconnue. Il pourrait très bien s’agir d’une combinaison de différents critères.
On pourrait éventuellement faire une coupe géométrique de l’espace 3D. Ce serait un bon
début pour voir le potentiel de la méthode, mais l’approche deviendrait très rigide. Si la
méthode est transposable en 3D, nous serons en mesure de produire des simulations avec
une séparation d’échelle plus importante, nous rapprochant de plus en plus des systèmes
réalistes.
La deuxième option consiste à passer à une approche plus dynamique en ayant une fron-
tière adaptative entre les régions sans-force et les régions PIC. Cette modification serait
similaire dans l’esprit à ce qui est fait avec le raffinement adaptatif de maillage. Si nous
regardons dans différents domaines de l’astrophysique, nous constatons que certaines
communautés ont déjà entamé ce processus. La communauté non relativiste possède
déjà des codes où la MHD et le PIC sont couplés avec des boîtes PIC statiques. L’année
dernière, Chen et al. (2023) ont présenté leur méthode pour intégrer des boîtes PIC adap-
tatives dans une simulation MHD. Ils ont réussi à appliquer cette méthode dans le con-
texte de la magnétosphère terrestre. À ma connaissance, de tels codes n’existent pas en-
core dans la communauté relativiste. Transposer cet outil, ou en avoir un similaire, pour
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modéliser les magnétosphères relativistes aurait un fort impact pour la communauté. Par
conséquent, j’aimerais améliorer la méthode sans-force-PIC en trouvant un proxy dans la
région sans-force qui me permettrait de transformer une région sans-force en une région
PIC. Le changement devra produire le plus petit transitoire numérique possible et décrire
correctement le plasma. Un point de départ pour cette frontière adaptative pourrait être
les simulations de reconnexion magnétique avec une configuration de feuille de Harris.

Une dernière extension possible de cette thèse concerne le modèle de production de
paires utilisé dans la simulation du pulsar. Dans la simulation, nous utilisons un modèle
de création de paires très simple. Le suivi des photons et le traitement de la production de
paires de manière réaliste nous rapprocheraient de la physique réelle qui se produit dans
la magnétosphère. Cela augmenterait également la capacité de la simulation à prédire la
forme du spectre de particules, à identifier des régions spécifiques de production de paires
et à contraindre les multiplicités de paires.

Pour conclure, je voudrais dire que nous devons migrer nos codes d’une utilisation
CPU pur à une utilisation basée sur les GPUs. Cela nous permettra d’étudier les systèmes
à des stades plus avancés et de sonder des paramètres impossibles à atteindre pour le mo-
ment. L’un des points cruciaux du portage sur GPU est le traitement des particules lorsque
plusieurs GPUs sont utilisés. Nous devons trouver des moyens astucieux de communiquer
les particules et leurs informations.

Les message à retenir de ce manuscrit sont les suivants. Je tiens à dire que travailler
sur les magnétosphères relativistes a été un réel plaisir, mais la grande diversité des
phénomènes physiques peut parfois nous submerger. Le défi que représente le développe-
ment d’une nouvelle méthode est à l’image des magnétosphères relativistes : à la fois pas-
sionnant et effrayant.
La méthode sans-force-PIC fonctionne mais dépend pour l’instant de la configuration du
problème. Cette approche n’est pas tendre avec l’utilisateur car elle est très fragile et peut
se briser à tout moment, jusqu’à ce que le bon ensemble de paramètres soit trouvé. Grâce à
ce développement, j’ai pu prouver que la nappe de courant peut être le lieu d’accélération
de particules à de très hautes énergies, et que la magnétosphère est capable de produire
l’émission à haute énergie observée. Mon approche est nouvelle et offre un moyen unique
de comparer les résultats des simulations aux observations. Nous nous rapprochons de
plus en plus de simulations réalistes, ce qui nous permettra de lever le voile sur certains
mystères entourant les objets compacts.
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