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Résumé
Le formalisme GW , dans le cadre des théories de perturbation à N -corps utilisant les fonctions
de Green, gagne en popularité pour la description des propriétés électroniques des systèmes de la
matière condensée en physique du solide, et plus récemment en chimie. Son application à des systèmes
complexes d’intérêt en nanoscience, chimie, voire biologie, est freinée cependant par son coût numérique
en particulier dans le cas de systèmes désordonnés, ou immergés dans un environnement ouvert (un
solvant, un milieu moléculaire, une électrode, etc.) Le but de cette thèse est de développer des
techniques multi-échelles, combinant des approches à N -corps de haut niveau pour le sous-système
d’intérêt, avec une description simplifiée, mais tout de même totalement ab initio, d’un environnement
électrostatique et diélectrique. Ces approches vont donc au-delà des modèles classiques paramétrés,
développés en particulier dans la communauté chimie quantique, et basés sur une description continue
(« polarizable continuum model ») ou discrète (QM/MM) de l’environnement.

Pour atteindre cet objectif, nous adoptons une approche en fragments de l’environnement, par-
ticulièrement adaptée aux systèmes moléculaires. La susceptibilité électronique non-interagissante
devient ainsi diagonale par blocs, permettant d’abaisser la complexité algorithmique de quartique
à cubique. Pour réduire le pré-facteur associé à l’obtention du potentiel écranté W (équation de
Dyson), nous avons développé un algorithme de compression de l’opérateur susceptibilité. L’obtention
automatique d’une base de polarisation très compacte permet de réduire fortement la taille des blocs
de susceptibilité associés aux fragments de l’environnement. Cette méthode permet de calculer la
réponse diélectrique de systèmes contenant des centaines de milliers d’atomes avec une excellente
précision. Cette approche est présentée via l’étude de cristaux de fullerènes en volume, en surface, et
en sous-surface.

Alors que le formalisme GW est dynamique par nature, avec ainsi un potentiel coulombien écranté
W dépendant de la fréquence, une première étude est réalisée dans le cadre d’une approximation
statique (limite basse fréquence) pour décrire l’écrantage par l’environnement. Une telle approche
s’inscrit dans la continuité des modèles semi-empiriques traditionnels pour la description d’un milieu
environnant polarisable. Cette thèse est donc l’occasion de mesurer la validité d’une telle approximation,
qui suppose que l’environnement répond de façon instantanée à une excitation électronique, grâce à
une comparaison explicite avec une description totalement dynamique de la réponse diélectrique de
l’environnement. L’étude d’une surface de fullerènes, ainsi que d’une molécule d’eau dans un nanotube
de carbone métallique, montrent qu’une description statique de l’environnement induit des erreurs sur
l’énergie de polarisation inférieure à 10% sous condition que le « repliement » de l’environnement soit
correctement effectué.

L’approche fragment est également appliquée à des cristaux covalents isolants, et en particulier au
nitrure de bore hexagonal (h-BN). Nous avons illustré en particulier comment calculer les niveaux
d’énergie de défauts ponctuels dans du h-BN, dans la vraie limite diluée, et donnons les lois d’échelle
pour la renormalisation de ces niveaux de la monocouche vers un nombre (n) de couches. Cette étude
démontre qu’à l’instar des systèmes moléculaires, la fragmentation de systèmes covalents isolants est
possible, en lien sans doute avec le caractère très courte portée de la susceptibilité dans ces systèmes.

Ces développements, permettant l’extension d’approches quantiques à N -corps à des systèmes de
plus en plus complexes, ont été implémentés dans le code beDeft, un code massivement parallèle
pour l’étude des propriétés électroniques de systèmes de grande taille.
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Abstract
The many-body perturbation theory GW formalism, based on Green’s functions, is growing in
popularity for the description of the electronic properties of condensed matter systems in solid-state
physics, and more recently chemistry. Unfortunately, its application to complex systems of interest in
nanosciences, chemistry, or even biology, is hampered by the large associated computing time cost,
in particular in the case of disordered systems, or systems immersed in an opened environment (a
solvent, a molecular medium, an electrode, etc.) The goal of the present PhD thesis is to focus on the
development of multiscale techniques, merging high-level many-body treatments of the subsystem of
interest, with a simplified but fully ab initio description of the electrostatic and dielectric environment.
Such approaches should go beyond classical parametrized models, mainly developed in quantum
chemistry community, which are based on a continuum (“polarizable continuum model”) or discrete
description (QM/MM) of the environment.

To reach such a goal, we adopt a divide-and-conquer fragmentation scheme for the environment,
particularly suited to molecular systems. This leads to a block-diagonal non-interacting electron
susceptibility, decreasing the algorithmic complexity from quartic to cubic. To reduce the prefactor,
associated to the inversion of the Dyson equation for the screened Coulomb potential W , we have
developed a compression algorithm for the susceptibility operator. The automatic computation of an
extremely compact polarization basis set allows a large reduction of the size of the susceptibility blocks,
associated to fragments in the environment. Such a method enables us to compute the dielectric
response of systems made of several hundred thousand atoms, with an excellent accuracy. This
approach is presented through the study of fullerene bulk, surface and subsurface crystals.

While the GW formalism is dynamical, with a frequency-dependent screened Coulomb potential
W , a first study is done in a static approximation (low-frequency limit) for the screening properties
of the environment. Such an approach follows the traditional semi-empirical models of a polarizable
environment. This PhD thesis assesses the validity of such an approximation, which assumes an
instantaneous response of the environment to an electronic excitation, thanks to an explicit comparison
with a fully dynamical dielectric response of the environment. The study of a surface of fullerenes,
as well as a water molecule inside a metallic carbon nanotube, show that a static description of the
environment leads to errors on the polarization energy below 10%, on condition of treating the “folding”
of the environment in the proper way.

The fragment approach is also applied to covalent insulator crystals, and more particularly to
hexagonal boron nitride (h-BN). We explain how to compute the energy levels of point defects in
h-BN, in the true dilute limit, and we give the asymptotic scaling laws for the renormalization of these
energy levels, from the monolayer to a (n)-layer system. In addition to molecular systems, this study
highlights the possibility to apply the fragment approach to covalent insulators, probably due to the
short range behavior of the susceptibility of these latter.

All of these developments, extending many-body methods to increasingly complex systems, have
been implemented in the massively parallel code beDeft, dedicated to the study of electronic
properties of large scale systems.



Introduction (version française)

L’analyse des propriétés électroniques de matériaux est un enjeu majeur pour l’étude des rela-
tions entre leur structure et leurs propriétés. Ces caractéristiques semblent pouvoir permettre
de mieux comprendre les raisons pour lesquelles telle ou telle combinaison d’atomes, suivant un
arrangement donné, mène à un milieu conducteur ou au contraire à un isolant, à un matériau
émettant ou absorbant de la lumière, à un ensemble prometteur pour le photovoltaïque, la
photosynthèse, la catalyse, etc. Certes, de nouvelles techniques d’apprentissage automatique
(en anglais machine learning) semblent pouvoir faire un lien direct entre structure et pro-
priétés, sans avoir recours à des théories de mécanique quantique complexes. Il est cependant
nécessaire que le jeu de données d’apprentissage soit basé sur des relevés expérimentaux.
Toutefois, les avancées majeures durant les dernières décennies dans le domaine des simulations
ab initio permettent d’espérer qu’une meilleure compréhension des phénomènes complexes, de
la physique du solide à la chimie des solutions, en passant par la biologie, puisse être obtenue
à l’aide de telles techniques numériques ab initio.

La théorie de perturbations à N -corps GW , représentant le formalisme central de ce
manuscrit de thèse, illustre cette évolution. À l’origine développée et testée par Lars Hedin
dans les années 1960 [1] pour le gaz homogène d’électrons interagissants, des implémentations
ab initio d’une telle méthode ont émergé au milieu des années 1980 pour le calcul de structures
de bandes de semi-conducteurs élémentaires. Aujourd’hui, des systèmes complexes tels des
systèmes désordonnés, des défauts ponctuels, des interfaces (voir Figure 1), des cristaux à
une ou deux dimensions, etc., contenant jusqu’à des centaines d’atomes, peuvent régulièrement
être étudiés. De façon plus récente, des calculs sur des systèmes moléculaires organiques
isolés en phase gaz gagnent en intérêt auprès d’une communauté de plus en plus large, faisant
le lien entre physique et chimie quantique. À cet égard, le succès du formalisme GW a même
été qualifié de « miracle » [2] dans la limite d’un faible nombre d’électrons. En effet, dans une
telle limite où l’écrantage est réduit, l’approche GW devrait se réduire au formalisme GV , à
savoir l’approche Hartree-Fock. De façon générale, l’approximation GW fait office d’approche
de bas niveau (efficace d’un point de vue numérique), mais pourtant robuste, au sens où elle
fournit des résultats satisfaisants pour des systèmes tant isolants que métalliques, de taille
finie ou infinie. Une telle affirmation exclue de fait les systèmes « fortement corrélés ».

Ce travail doctoral cherche à repousser les limites du formalisme GW dans sa capacité
à étudier des systèmes complexes. Complexité ne rime pas ici avec « corrélations fortes ».
Tout au long de ces trois années, le formalisme GW a été utilisé tel quel, sans chercher par
exemple à inclure des diagrammes d’ordre supérieur. La complexité réside plutôt dans la
taille et le désordre des systèmes étudiés. Malheureusement, beaucoup de systèmes d’intérêt
ne présentent pas de conditions aux limites périodiques, rendant invalide l’approche historique
des physiciens du solide basée sur l’utilisation d’ondes planes et du théorème de Bloch.
Cependant, le concept d’écrantage de moyenne à longue portée, inhérent au formalisme GW ,
nous semble toujours très pertinent pour des systèmes organiques désordonnés, des molécules
ou encore l’ADN en solution. Face à de tels problèmes, la communauté de chimie quantique a
développé des approches quantiques dites « environnées », dans lesquelles le système total est
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Figure 1: (Gauche) : Système amorphe de NPB (N,N’-di(1-naphthyl)-N,N’-diphenyl-(1,1’-
biphenyl)-4,4’-diamine) (en gris) dopé par du F6TCNNQ (2,2’-(perfluoronaphthalene-2,6-
diylidene)dimalononitrile) (en bleu). Image adaptée de [3]. (Milieu) : Interface PCBM
([6,6]-phényl-C61-butyrate de méthyle)/P3HT (poly(3-hexylthiophène)) désordonnés, utile
pour des cellules photovoltaïques organiques. Image adaptée de [4]. (Droite) : Représentation
schématique d’un défaut dans un réseau hexagonal de nitrure de bore. Image adaptée de [5].

partitionné en un sous-système « central » ou « actif », et son environnement. Les propriétés
électroniques du sous-système d’intérêt sont calculées précisément au niveau quantique tandis
que le milieu environnant est traité de façon plus simple. L’environnement ne nous intéresse
qu’à la mesure de ses effets sur le sous-système « actif ». L’importance d’une telle approche
a été reconnue par le prix Nobel de chimie 2013, remis à Martin Karplus, Michael Levitt
et Arieh Warshel pour « la mise au point de modèles multi-échelles de systèmes chimiques
complexes ».

Jusqu’à présent, l’approche ab initio GW a essentiellement été combinée avec une descrip-
tion semi-empirique continue (« polarizable continuum model ») [6–8] ou discrète (QM/MM)
de l’environnement [9–13]. Ce travail doctoral vise à aller au-delà de ces modèles classiques
paramétrés pour l’environnement, en proposant une approche simplifiée mais tout de même
ab initio du milieu polarisable.

Le chapitre 1 illustre de façon qualitative les effets d’écrantage, particulièrement utiles
pour comprendre et décrire les expériences de photoémission. Ce chapitre est également
dédié à la présentation des méthodes ab initio utilisées tout au long de ce manuscrit pour
quantifier ces phénomènes. Ainsi, la théorie de la fonctionnelle de la densité (DFT) et sa
reformulation par Kohn et Sham sont introduites. Elles servent de point de départ à la
théorie de perturbations à N -corps utilisée durant cette thèse, à savoir l’approximation GW .
Différents aspects de ce formalisme, au cœur de cette thèse, sont également présentés. Une
attention particulière est portée à son implémentation dans le code GW en bases gaussiennes
beDeft, développé en interne dans notre groupe. Ce chapitre, à la portée très générale, vise
à faciliter la compréhension des développements réalisés dans les chapitres suivants.

Le chapitre 2 décrit notre nouvelle approche permettant de réaliser des calculs GW sur
un sous-système « environné » dans un environnement contenant des centaines de milliers
d’atomes. Ce dernier est traité au niveau totalement ab initio de l’approximation de la phase
aléatoire (RPA). Notre implémentation repose sur l’approximation fragment, consistant à
négliger le recouvrement orbitalaire entre différents sous-systèmes, amenant à une susceptibilité
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non-interagissante χ0 diagonale par blocs. La taille des blocs associés est réduite de façon
drastique à l’aide d’un algorithme de compression sous contraintes, permettant de conserver
les tenseurs de polarisabilité de bas ordres essentiels pour les effets d’écrantage. En alliant
une telle méthode à des lois asymptotiques, nous montrons comment calculer à faible coût
l’énergie de polarisation d’un C60 dans un nombre fini de couches, en surface ou en volume
d’un cristal infini.

Le chapitre 3 mesure la validité d’un traitement adiabatique des effets de polarisation de
l’environnement, par une comparaison à une description totalement dynamique de la réponse
diélectrique de ce dernier. Utilisant une fois de plus la méthode fragment, nous introduisons
l’approche QMGW /QMCOHSEX, permettant d’allier dans le même calcul une description
dynamique de la partie « active » à celle statique COHSEX pour le milieu polarisable. Cette
méthode, ainsi que l’approche ∆COHSEX, sont comparées à une description totalement
dynamique du système total. Via l’étude d’une surface de C60 ou d’une molécule d’eau dans
un nanotube de carbone métallique, il apparaît que la méthode QMGW /QMCOHSEX reproduit
plus fidèlement les résultats dynamiques, avec des erreurs de l’ordre de quelques pour cent
sur les énergies de polarisation.

Finalement, le chapitre 4 illustre l’application de la méthode fragment à l’étude des
niveaux d’énergie de défauts ponctuels dans du nitrure de bore hexagonal. Il s’agit ici
d’atteindre la limite diluée, à savoir celle d’un défaut unique dans un environnement infini.
Un tel objectif est accompli en utilisant l’approximation fragment entre les couches, mais
également à l’intérieur de ces dernières. Ceci nous permet d’étudier des systèmes de taille
suffisamment grande pour entrer dans un régime asymptotique. Il devient alors possible de
calculer l’énergie de polarisation d’un défaut dans un système avec un nombre fini (n) de
couches, en surface ou en volume d’un cristal de h-BN. Nos résultats mettent en avant le
caractère universel en (1/n) d’une telle énergie, indépendamment de la nature exacte du
défaut.
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The study of the electronic properties of materials is a central issue when attempting to
correlate the relations between structure and properties. The reason why some specific
combinations of atoms, with a given arrangement, will stand as good conductors or insulators,
light absorbers or emitters, or may be of interest in applications related to photovoltaic,
photosynthesis, catalysis, etc., can be hopefully found in a better understanding of their
electronic properties. Emerging machine learning techniques may be regarded as an attempt
to make a direct relation between structure and properties, without involving necessarily
intermediate and complex quantum mechanical theories if the “learning set” originates from
experiments. It remains that the significant advances of ab initio simulations, in the last
decades, preserve the hope that the exploration of novel materials by ab initio computational
techniques may prove useful in providing a better understanding of complex phenomena,
from solid state physics to wet chemistry or biology.

The many-body perturbation GW theory, which stands as the central formalism in the
present doctoral manuscript, illustrates this evolution. Originally developed and tested
by Lars Hedin in the 60s [1] for the homogeneous interacting electron gas, early ab initio
implementations emerged in the mid-80s for the study of the band structures of elemental
semiconductors. Today, complex systems, such as disordered interfaces, point defects, inter-
faces (see Figure 2), one- or two-dimensional crystals, defects, etc., containing up to a few
hundred atoms, can be routinely studied. More recently, isolated gas phase molecular organic
systems are being treated by an increasingly large community, crossing the line between
physics and quantum chemistry. In that respect, the success of the GW formalism has been
coined “a miracle” [2] in this limit of few electrons. Indeed, in the limit of reduced screening,
the GW approach is expected to reduce to the GV formalism, namely Hartree-Fock. Overall,
the GW approximation stands as a relatively low-level (computationally efficient) approach
that is very robust, in the sense that it provides satisfactory results for insulating to metallic,
finite size to infinite systems. Such a statement clearly excludes “strongly correlated” systems.

The present doctoral studies attempt to push the limits of the GW formalism in its
ability to tackle complex systems. By complex systems, we do not mean systems where
electronic correlations become stronger: we somehow use the GW formalism as it stands
without attempting to include higher order diagrams. What we mean are systems for which
the complexity lies in the size and in disorder. Unfortunately, many systems of interest can
hardly be reduced to periodic boundary conditions, invalidating the historical planewave-basis
Bloch-theorem approach developed by solid-state physicists. Still, the concept of medium to
long-range screening, inherent to the GW formalism, is expected to be extremely relevant
for disordered organic systems, molecules in solution, DNA in its wet environment, etc. For
such problems, the quantum chemistry community has developed “embedded” techniques,
partitioning the collection of atoms in an “active” or “central” subsystem, treated at the
best quantum mechanical level, and an environment, that is only of interest for its action
on the central subsystem. As such, the environment is usually described at a lower level
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Figure 2: (Left): realistic amorphous morphology of NPB (N,N’-di(1-naphthyl)-N,N’-diphenyl-
(1,1’-biphenyl)-4,4’-diamine) (gray wireframe representation) doped with F6TCNNQ (2,2’-
(perfluoronaphthalene-2,6-diylidene)dimalononitrile) (blue sticks). Adapted from [3]. (Center):
PCBM ([6,6]-phenyl-C61-butyric acid methyl ester)/P3HT (poly(3-hexylthiophene-2,5-diyl))
disordered interface, particularly useful for organic photovoltaic cells. Adapted from [4].
(Right): Schematic representation of a point defect in hexagonal boron nitride. Adapted from
[5].

of theory. The importance of such a strategy was recognized by the 2013 chemistry Nobel
Prize awarded to Martin Karplus, Michael Levitt and Arieh Warshel for “the development of
multiscale models for complex chemical systems”.

Currently, the ab initio GW approach has been merged with semi-empirical continuous
(Polarizable Continuum Model (PCM)) [6–8] or discrete (Quantum Mechanics (QM)/Molecular
Mechanics (MM)) description of the environment [9–13]. This doctoral thesis is dedicated
to the development of approaches going beyond such parameterized classical models, with a
simplified but fully ab initio description of the polarizable medium.

The chapter 1 illustrates qualitatively the screening effects, particularly useful to describe
and to understand the photoemission experiments. This chapter also presents the ab initio
methods used throughout this manuscript to quantify such phenomena. Density-Functional
Theory (DFT), and its reformulation by Kohn and Sham are introduced. They serve as
a starting point for the GW many-body perturbation theory. Different aspects of this
latter, at the center of this manuscript, are also presented, with a particular emphasis on its
implementation in the Gaussian basis GW code beDeft developed in our group. This chapter,
of a general scope, aims at making easier the understanding of the following developments.

The chapter 2 describes our new approach to perform GW calculations on subsystems
“embedded” in an environment made of hundreds of thousands of atoms. The polarizable
medium is treated at the fully ab initio Random-Phase Approximation (RPA) level. Our
implementation is based on the fragment approach, consisting into neglecting the wavefunction
overlaps between different subsystems. This leads to a block-diagonal non-interacting electron
susceptibility χ0. The size of the different blocks is further drastically reduced thanks to
a compression under constraints algorithm conserving the low-order polarizability tensors,
particularly relevant for the screening effects. The combination of these methods with
asymptotic laws enables us to compute affordably the polarization energy of one C60 in a
finite number of layers, at the surface or in a bulk infinite crystal.
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The chapter 3 assesses the validity of an adiabatic treatment of the polarization effects
created by the environment, thanks to a comparison to a fully dynamical description of the
dielectric response of this latter. Using again the fragment approximation, we introduce
the QMGW /QMCOHSEX approach which enables us to combine, in the same calculation,
a dynamical description of the “active” part to a static COHSEX one for the polarizable
medium. This method, as well as the ∆COHSEX one, are compared to a fully dynamical
description of the total system. The study of a surface of C60, and another one of a water
molecule inside a metallic carbon nanotube, point out that the QMGW /QMCOHSEX method
is more accurate. It leads to errors on the polarization energies, with respect to a fully
dynamical approach, of the order of a few percent.

Finally, the chapter 4 illustrates the application of the fragment method to the study of
energy levels of point defects in hexagonal boron nitride. The goal is to reach the dilute limit,
representing one unique point defect in an infinite size environment. Such an objective is
achieved via the fragmentation between layers, but also inside each of them. This allows us
to study systems large enough to enter the asymptotic regime. The polarization energy of a
point defect can thus be computed within a slab with a finite number of layers, but also on a
surface or within a bulk material. Our results demonstrate that the evolution of the defect
energy levels as a function of layer number (n) varies as (1/n) in a universal fashion, namely
independently of the type of defect.
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Résumé

Ce chapitre a pour but de présenter qualitativement les phénomènes physiques majeurs que
nous souhaitons étudier dans cette thèse, ainsi que les méthodes générales employées pour y
parvenir.

La partie 1.1 permet de définir les grandeurs centrales que nous chercherons à calculer au
cours des chapitres suivants. Il s’agit des énergies d’ajout et de retrait d’électron, pouvant
être mesurées par des expériences de spectroscopie de photoémission. L’évolution de ces
quantités, de la phase gaz à la phase condensée, est qualitativement expliquée et illustrée à
l’aide de modèles simples de charges images.

L’approximation de Born-Oppenheimer, présentée dans la section 1.2, permet de simplifier
les approches plus quantitatives du problème à N -corps. La section suivante met en avant les
deux grandes méthodes ab initio utilisées tout au long de cette thèse pour arriver au calcul
des niveaux d’énergies électroniques.

La théorie de la fonctionnelle de la densité (DFT) est ainsi présentée dans la section
1.3.1. Les deux théorèmes majeurs de Hohenberg et Kohn sont démontrés, ainsi que la
reformulation de Kohn et Sham, qui consiste à retranscrire le problème exact à N -corps par
un problème d’électrons non-interagissants. Différents aspects de cette reformulation sont
ainsi discutés tels que les fonctionnelles d’échange-corrélation, ou encore le sens des valeurs
propres Kohn-Sham, notamment via le théorème de Janak. Enfin, des aspects pratiques sur
les calculs DFT réalisés durant cette thèse, sur des systèmes moléculaires de taille finie en
bases gaussiennes, sont également présentés.

La partie 1.3.2 permet la présentation du formalisme au cœur de ce travail doctoral. Il
s’agit d’une théorie des perturbations à N -corps, à savoir l’approximation GW . Sa grandeur
principale, la fonction de Green ordonnée en temps à un corps G, est définie à la fois en
temps et en représentation spectrale. L’équation de Dyson sur G, ainsi que l’équation de
quasi-particule, sont dérivées à l’aide de l’équation du mouvement de la fonction de Green.
D’autres relations sont obtenues via la réponse linéaire du système soumis à une perturbation
extérieure. L’ensemble permet d’arriver aux équations de Hedin, et à leurs approximations
dans le cadre GW . Différentes formulations de la self-energy Σ sont présentées, notamment
la version COHSEX et son approximation statique, jouant un rôle essentiel dans les chapitres
suivants. Enfin, ce chapitre souligne des aspects pratiques des calculs GW que nous avons
menés, comme la présentation des approches G0W0/evGW , ou celle des caractéristiques
propres au code GW développé et utilisé pendant ces trois dernières années.

Ce chapitre se conclut sur les objectifs généraux de ces études, à savoir la description
de systèmes complexes de grandes tailles à un niveau totalement ab initio, allant au-delà
des modèles semi-empiriques utilisés jusqu’à maintenant pour décrire un environnement
polarisable.
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Summary

This chapter aims at giving a qualitative description of the main physical phenomena studied
during this thesis, as well as an overview of the main methods and formalisms used throughout
this work.

Section 1.1 illustrates the main physical observables studied during this thesis. They
correspond to the electron addition and removal energies, measured in practice through
experiments of photoemission spectroscopy. The evolution of such quantities, from the gas
phase to the condensed phase, is qualitatively explained and illustrated through simple image
charges models.

Section 1.2 leads to a more quantitative description of the N -body problem, with its
restriction to the Born-Oppenheimer approximation. The following section aims at presenting
the two ab initio methods used during this thesis.

Density-Functional Theory (DFT) is briefly described in section 1.3.1. The two theorems
of Hohenberg and Kohn are demonstrated, as well as the reformulation by Kohn and Sham.
This latter maps the exact N -body problem on a fictitious one, made of non-interacting
electrons. Some aspects of such a reformulation are discussed, such as the exchange-correlation
functionals as well as the meaning of the Kohn-Sham eigenvalues through the Janak’s theorem.
Finally, some practical aspects of DFT, associated with calculations done during this thesis
on finite size systems and with Gaussian basis sets, are also presented.

Section 1.3.2 presents the main many-body perturbation theory used throughout this thesis,
namely the GW formalism. The one-body time ordered Green’s function G is introduced,
both in time and spectral representation. Its Dyson equation, as well as the quasiparticule
equation, are derived thanks to the equation of motion of G. Other relations are also
computed, thanks to linear response theory. All of these quantities result in the set of Hedin’s
equations, and their GW approximations. Various formulations of the self-energy Σ are
presented, like the COHSEX decomposition and its static approximation, which plays a major
role in the following chapters. Finally, this section illustrates some practical aspects of the
GW calculations done during this thesis, including the G0W0/evGW approaches, or some
specific features of the GW code which I developed rather extensively during the last three
years.

In conclusion of this chapter, the main objectives of this doctoral study are presented.
My thesis is devoted to set up new fully ab initio methods to described large and complex
systems, going beyond the semi-empirical parameterized models used until now to describe
large scale polarizable environments.
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1.1 Theoretical spectroscopy

1.1.1 Photoemission spectroscopy

Electronic energy levels represent one of the main properties of a quantum system. When
interactions between electrons are turned on (e.g. via the Coulomb potential), eigenstates of
the N -body Hamiltonian become many-body states, which can be different from single Slater
determinants. While electronic energy levels are no longer single particle energies, it is still
possible to define addition and removal energies. These latter are experimentally measured
by Photoemission Spectroscopy (PES) and Inverse Photoemission Spectroscopy (IPES), as
represented in Figure 1.1.

(a) PES (b) IPES

Figure 1.1: Schematic representation of the process of Photoemission (a) and Inverse Photoe-
mission (b). hν corresponds to the energy of the incoming/emitted photon and Ekin to the
kinetic energy of the removed/added electron. N refers to the initial number of electrons and
εn to the removal/addition energy of an electron. Courtesy of Gian-Marco Rignanese.

In a PES experiment, electrons are ejected from the system of interest due to irradiation
with light, ranging from ultraviolet light (Ultraviolet Photoelectron Spectroscopy) to X-rays
(X-ray Photoelectron Spectroscopy) according to the type of probed properties. In such an
experiment, a photon of energy hν impinges on the system, initially in its N-electron ground
state of total energy EN

0 . An electron is sent to the vacuum, with a kinetic energy Ekin,
while the sample remains in the ith excited (N − 1)-electron state, of total energy EN−1

i , as
represented in Figure 1.1a. The conservation of energy yields

hν + EN
0 = Ekin + EN−1

i , (1.1)

leading to the definition of the ith electron removal energy

εi = EN
0 − EN−1

i < µ, (1.2)

with µ the chemical potential. The particular case i = 0 leads to the definition of the
Ionization Potential (IP), such that IP = −ε0 = EN−1

0 − EN
0 . The IP corresponds to the



1.1. Theoretical spectroscopy 25

minimal energy to remove an electron of the ground state of the N -electron system, and is
always positive [14].

The IPES corresponds to the reverse process, to probe unoccupied states. As described
by Figure 1.1b, an incident electron with kinetic energy Ekin is scattered in the sample,
originally in its N-electron ground state of total energy EN

0 . A photon of energy hν is emitted
by the (N+1)-electron system, which ends up in the ath excited (N + 1)-electron state, of
total energy EN+1

a . The conservation of energy reads

Ekin + EN
0 = hν + EN+1

a , (1.3)

leading to the ath electron addition energy

εa = EN+1
a − EN

0 ≥ µ. (1.4)

The specific case a = 0 leads to the definition of the Electron Affinity (EA), such that
EA = −ε0 = EN

0 − EN+1
0 . The EA corresponds to the opposite of the minimal energy to

add an electron to the ground state of the N -electron system. It is negative when the added
electron is unbound, while it is positive if the electron is bound.

In this context, the fundamental gap Egap of the system, the one experimentally measured
in a photoemission experiment, is defined as

Egap = IP − EA. (1.5)

This defines one of the main quantity I will try to compute for different systems throughout
this thesis.

Finally, an important point to keep in mind for comparison between experimental and
theoretical results is that these experimental techniques sample essentially electrons close to
the surface of the studied system, because the escape depth of the electrons is small [15].

Through this short study of PES/IPES, we can see that the measurement of the band
structure of solids, or the electronic structure of molecules, requires adding explicit charges
to the system. This leads to interactions of this added charge with the other N electrons. To
better understand these different effects, we can (qualitatively) study the evolution of the IP
and of the EA when a molecule goes from the gas phase to a crystal phase.

1.1.2 From gas phase to crystal phase

Qualitatively, when a molecule is embedded in a dense phase (e.g. in a solvent, on a surface,
at an organic interface. . . ), three main effects alter its electronic structure with respect to
the gas phase:

a) an electrostatic effect, or in other words, a crystal field effect. Atoms or molecules of the
environment generate an electrostatic potential thanks to their permanent multipoles
(dipole, quadrupole, . . . ). Such a crystal field may alter the electronic energy levels of
the molecule of interest. It is important to note that such an effect is a property of the
ground state, and not a response of the environment to an excitation of the studied
system;
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b) a dynamical screening effect of the added charge in a photoemission experiment. Con-
trary to the effect a), the environment reacts to a charged excitation of the subsystem of
interest. This “polarization” effect will be the central phenomenon I will try to describe
in this present thesis;

c) a dispersion effect, or in other words, an effect of the delocalization of the wavefunctions.
It leads to the creation of energy bands in solids, or the broadening of the energy levels
in a disordered system.

These different effects are schematically represented in Figure 1.2. A more quantitative
study, through the example of a surface of pentacene and perfluoropentacene, can be found
in Ref.[11].

Figure 1.2: Evolution of the ionization potential IP and of the electronic affinity EA of a
molecule going from gas phase to crystal phase. Using the notations introduced before: a)
electrostatic effects, b) dynamical polarization effects of the environment and c) dispersion
effects. The red axis represents the Density Of States (DOS), with respect to the energy
(vertical axis). For each effect, the correction to EA can be different from the one of the IP.

The polarization effects b) correspond to the interaction of the added charge with the
induced dipoles generated in the environment. The added charge creates a long-range electric
field1 E. If the environment is polarizable, it responds in the linear regime via the creation on
each molecule of an induced dipole p = α(E + Eind) (in red in Figure 1.3a), where Eind is
the induced field generated by the response of other molecules, and α the molecular dipolar
polarizability tensor. These dipoles create a reaction field Φreac stabilizing the added charge
to the system via the polarization energy, as summarized in Figure 1.3b. Another possibility
to describe the effects of the environment is to use the dielectric function ϵ, which in general
is a tensor. In any case, both α and ϵ are in general dynamical (or frequency-dependent),
depending on the energy of the perturbing excitation, as represented in Figure 1.3c through
the example of silicon.

1In this thesis, the vectors or matrices are written in bold.
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Figure 1.3: (a) Schematic representation of induced dipoles (in red) created by an added
negative charge in the dark-blue molecule. Adapted from Ref.[10]. (b) Loop representing the
different processes leading to the stabilization of an added charge by a polarizable environment.
(c) Real and imaginary part of the isotropic macroscopic dielectric function of silicon in solid
phase, with respect to the excitation energy E. Adapted from Ref.[16].

To better understand these polarization effects, we may analyze simple classical models
of “image charges” to highlight the main physical phenomena.

1.1.3 Simple models of polarization

1.1.3.1 Charge in front of a metallic surface and image charges

We want to compute the polarization energy P for a charge q in the vacuum in front of a
semi-infinite metallic surface of uniform potential Φ = 0, as represented in Figure 1.4a. This
P corresponds to the work exerted on the charge q, to bring it adiabatically from infinity2

to the distance d from the surface. To do so, we adopt a classical electrostatic approach to
capture the effects created by the metallic surface and to estimate an order of magnitude of
P . Such a model corresponds roughly to a charged molecule in front of a metallic electrode.

Such a polarization energy can be computed via the image charges method, as represented
in Figure 1.4b. The electrostatic problem is formally equivalent to the one of two charges q
and −q in the vacuum, separated by a distance 2d. As required, the resulting electrostatic
potential is equal to zero in the plane (Oyz). The reaction potential created by the image
charge is

Φreac(r) = −q
4πϵ0∥r + dux∥

, (1.6)

with ϵ0 the vacuum permittivity and ux a unitary vector along (Ox). This leads to an
electrostatic potential energy between the two charges

V pot = − q2

8πϵ0d
. (1.7)

2In this context, it would represent a molecule in gas phase.
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Figure 1.4: (a) “Real” problem of a charge q at distance d (along (Ox) axis) of a semi-infinite
metallic surface (in blue) with a uniform electrostatic potential Φ = 0. Metal-vacuum interface
is located in the (Oyz) plane. (b) Equivalent images problem, with the interface represented
by the black line. A charge −q is located at −dux, with ux a unitary vector along (Ox).

To compute the polarization energy, we assume the adiabatic addition of an infinitesimal
charge q dλ to the already present charge λq, in the configuration of the Figure 1.4b (λ
going from 0 to 1). The interaction energy of the infinitesimal charge with the image charge
−λq is equal to

dV pot = dλ q × −λq
8πϵ0d

, (1.8)

leading to P such that

P =
∫

dV pot = −
∫ 1

0

q2

8πϵ0d
λ dλ (1.9)

P = − q2

16πϵ0d
. (1.10)

P is negative, independently of the sign of q. Qualitatively, everything happens as if a charge
reorganization, with an opposite sign compared to the new real charge q, occurred in the
metallic surface. The former stabilizes the latter. Typically, for an organic molecule in front
of a metallic electrode, d ≃ 3.3 Å, leading to P ≃ −1.1 eV.

For a molecule in a photoemission experiment, such a model leads to a stabilization of an
added electron to the system by an energy P . For an added hole, this leads to add −P to the
corresponding energy, as shown below. To understand the effects of the electrode on the gap
of the molecule, it should be noticed that adding a hole to the system means to remove an
electron. Using the same reasoning and notations as in part 1.1.1, the hole addition energy
is thus −εi = EN−1

i − EN
0 . Therefore, the presence of the interface means adding P to this

energy −εi, or equivalently adding −P to εi, that is stabilizing the hole by −P . It leads to a
closing of the gap of 2|P | between the gas phase and the presence of a metallic electrode.

The order of magnitude found here with a very simple model is in agreement with more
accurate results of the closing of the gap of benzene on top of a graphite surface [17]. Typical
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gaps of organic molecules being between 4 eV and 10 eV [18, 19], a polarization energy of this
order of magnitude corresponds to significant effects.

1.1.3.2 Charge in a dielectric cavity

Another simple model consists in computing the polarization energy P of a charge q at the
center of an empty sphere of radius R. This latter is embedded in a linear homogeneous
isotropic dielectric medium of permittivity ϵ = ϵ0ϵr, as depicted in Figure 1.5. Such a simple
model is closely related to the approaches of PCM [20] used to describe a molecule in a
solvent, where this latter is described as a continuous medium. For the sake of simplicity, we
consider only the static case.

By spherical symmetry, the created electrostatic field E is purely radial. The Gauss
theorem leads to the following formula for the radial part Er of the field:

Er(r) = 1
4πϵ0

q

r2 for r < R,

Er(r) = 1
4πϵ

q

r2 for r > R.

(1.11)

R

q

Figure 1.5: Charge q at the cen-
ter of an empty sphere of radius
R. The cavity is inside a linear
homogeneous isotropic dielectric
medium of permitivitty ϵ = ϵ0ϵr.

A surface density of bound charges σb appears at the
interface vacuum-dielectric medium (in blue in Figure
1.5). Using the interface conditions for the radial part of
the field leads to

σb = ϵ0Er(R+) − ϵ0Er(R−) (1.12)

σb = q

4πR2

( 1
ϵr

− 1
)
. (1.13)

Computing the electrostatic potential inside the cavity
is formally equivalent to compute the one created by a
point charge q at the center, and by the surface density
charge σb on the surface of the cavity. Thus, the total
surface charge 4πR2σb = q

(
1
ϵr

− 1
)

leads to a reaction
field on the point charge

Φreac = 1
4πϵ0R

q

( 1
ϵr

− 1
)
. (1.14)

This corresponds to the potential generated by the induced dipoles inside the dielectric
medium, in response to the field generated by q. Similar calculations as the ones of the end
of part 1.1.3.1 lead to a polarization energy P equal to

P = − q2

8πϵ0R

(
1 − 1

ϵr

)
. (1.15)

For typical organic systems, R ≃ 4.5 Å [21], ϵr ≃ 3 [22, 23] and P ≃ −1.1 eV. This leads to a
closing of the gap of 2|P | ≃ 2.2 eV, namely a significant effect with respect to the absolute
values of fundamental gaps.

In the subsequent sections, the objective is to describe the different formalisms used
during this thesis to quantitatively compute the effects presented above.
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1.2 The many-body problem

Atoms, molecules, and solids are all made of charged atomic nuclei and their corresponding
electrons. To describe a quantum system, section 1.1 points out the necessity to compute
the excited and ground state total energies E, which are solutions of the non-relativistic and
stationary Schrödinger equation

HtotΨ({ri}, {RI}) = EΨ({ri}, {RI}). (1.16)

Ψ({ri}, {RI}) corresponds to the many-body wavefunction of the system depending on {RI},
the set of spatial coordinates of the K ion cores of charge {ZI} and mass {MI}, and of
{ri}, the set of spatial coordinates of the N electrons. For the sake of simplicity, we do not
consider spin variables unless explicitly mentioned. From now on, and throughout the whole
manuscript, Hartree atomic units are used, i.e. the absolute value of the charge of an electron
e, the rest mass of an electron me, the reduced Planck constant ℏ and the Coulomb constant

1
4πϵ0

are set to unity. In this context, the Hamiltonian Ĥtot in position representation is given
by

Htot = −1
2

N∑
i=1

∇2
i − 1

2

K∑
I=1

∇2
I

MI
+

N∑
i=1

N∑
i<j

1
|ri − rj |

+
K∑

I=1

K∑
I<J

ZIZJ

|RI − RJ |
−

N∑
i=1

K∑
I=1

ZI

|ri − RI |
.

(1.17)

The first two terms correspond to the kinetic energy, while the other ones represent respectively
the electron-electron, the nuclei-nuclei and the electron-nuclei Coulomb interactions. Thus,
Eq.(1.16) is a problem of diagonalization, resulting in eigenwavefunctions in general impossible
to split into an electronic and a nuclear factorized parts.

1.2.1 The Born-Oppenheimer approximation

The masses of the nuclei being significantly larger than the mass of the electron (MI ≫ 1), it
seems wise to decouple the fast dynamics of the electrons and the slow ones of the nuclei.
Using an expansion of the Hamiltonian in terms of (me/M)1/4, with M the average of the
nuclei mass, Born and Oppenheimer showed the possibility to decouple the Schrödinger
equation in an electronic part and in an ionic part [24]. In this so-called Born-Oppenheimer
approximation, the nuclei can be considered as fixed for the dynamics of the electrons, and
their positions appear as classical parameters for the (approximated) electronic Hamiltonian

He = −1
2

N∑
i=1

∇2
i +

N∑
i=1

N∑
i<j

1
|ri − rj |

−
N∑

i=1

K∑
I=1

ZI

|ri − RI |
. (1.18)

Even though this approximation simplifies the Schrödinger equation, this latter still represents
a problem of N interacting electrons (via the Coulomb term) impossible to solve exactly. Real
macroscopic systems with a number of electrons of the order of magnitude of the Avogadro
number ∼ 1023 seem totally out of reach with such a direct resolution of the Schrödinger
equation. Therefore, additional approximations are required to decrease the complexity of
the problem to tackle.
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1.3 Ab initio approaches

As seen before, the exact resolution of the Schrödinger equation (1.18) is nearly impossible in
practice. Yet, quantities of interest can be computed via ab initio methods. These approaches,
based on the first principles of quantum mechanics, are thus not characterized by the absence
of any approximations, but rather by the absence of any adjustable physical parameters [25].
They can be used to characterize the electronic properties of a system before experimental
data. Two main classes of methods should be distinguished: the mean-field approaches, like
the Hartree-Fock approach and Density-Functional Theory, and the many-body methods, in
perturbation theory or not. Such a N -body perturbation theory, namely the GW formalism,
is at the heart of this thesis.

From now on, it should be noticed that the room temperature is associated to a thermal
energy of ∼ 26 meV which is much smaller than typical energy gaps or band dispersions of
the considered systems. In the following sections, we will thus describe ground and excited
states in their 0 K limit.

1.3.1 Density-Functional Theory (DFT)

DFT is an exact mean-field formalism to compute ground-state total energies and charge
densities. Instead of the total knowledge of the N -body wavefunction, DFT only requires
the electronic density n(r), a much simpler three-dimensional function, to compute the total
energy of the system and other associated quantities. However, the exact functional giving
the energy with respect to n(r) is not known, and in practice approximations are used, as
explained below.

1.3.1.1 The Hohenberg and Kohn theorems

Given the (normalized) N -body wavefunction Ψ of an electronic system, its electronic density
n(r1) is defined by the following integral over (N − 1) spatial coordinates:

n(r1) = N

∫ N∏
i=2

dri |Ψ({ri})|2, (1.19)

leading to the sum rule
∫

dr1 n(r1) = N . In 1964, Hohenberg and Kohn showed in their
seminal paper [26] that the ground state energy of a many-body system can be written as a
functional of the density n. The resulting DFT is based on two main theorems, which can be
formulated as follows [27]:

Theorem 1: For any system of interacting particles submitted to an external potential
Vext(r), this potential is determined uniquely, modulo an additive constant, by the exact
ground state particle density n0(r).

Proof (Reductio ad absurdum): Let us assume there are two external potentials, V (1)
ext

and V
(2)

ext , differing by more than an additive constant, but resulting in the same ground
state density n0(r). They are associated with two different Hamiltonians, Ĥ(1) and Ĥ(2),
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having two different ground state eigenwavefunctions, Ψ(1) and Ψ(2), of energy E(1)
0 and E(2)

0 .
Assuming that both Ĥ(1) and Ĥ(2) have a non-degenerate ground state3, and using the Dirac
notations, the definition of the ground state leads to

E
(1)
0 =⟨Ψ(1)|Ĥ(1)|Ψ(1)⟩<⟨Ψ(2)|Ĥ(1)|Ψ(2)⟩=⟨Ψ(2)|Ĥ(2)|Ψ(2)⟩+

∫
drn0(r)

(
V

(1)
ext (r)−V

(2)
ext (r)

)
(1.20a)

E
(2)
0 =⟨Ψ(2)|Ĥ(2)|Ψ(2)⟩<⟨Ψ(1)|Ĥ(2)|Ψ(1)⟩=⟨Ψ(1)|Ĥ(1)|Ψ(1)⟩+

∫
drn0(r)

(
V

(2)
ext (r)−V

(1)
ext (r)

)
. (1.20b)

Adding the two inequalities (1.20a)-(1.20b) leads to E
(1)
0 + E

(2)
0 < E

(1)
0 + E

(2)
0 , which is

impossible and therefore proving the theorem.

Theorem 2: An universal functional for the energy E[n], in terms of the density n(r), can
be defined, valid for any external potential Vext(r). For any particular Vext(r) and number of
electrons N , the exact ground state energy of the system is reached at the global minimum
value of this functional. This functional reaches its minimum for n(r) = n0(r), namely for
the exact ground state density.

Proof: Following Hohenberg and Kohn, we restrict ourselves to densities n(r) being ac-
ceptable (N -integrable, etc.) ground states densities of the Hamiltonian with some external
potential Vext(r). This latter contains typically the electron-nuclei Coulomb interaction. On
such a space, following the theorem 1, the external potential is fully determined by the
density. Consequently, this latter determines the Hamiltonian, because the kinetic and the
electron-electron part are universal operators, and therefore also its ground state wavefunction
Ψ. Still assuming a non-degenerate ground state, this latter is a unique functional of the
density Ψ[n] [25]. Thus, it is possible to define on this space a universal functional for the
energy E[n] such that

E[n] = ⟨Ψ[n]|Ĥ|Ψ[n]⟩ = FHK[n] +
∫

drVext(r)n(r). (1.21)

FHK[n] = T [n] +Eint[n] is the universal4 Hohenberg and Kohn functional, which contains the
kinetic energy

T [n] = ⟨Ψ[n]|
N∑

i=1

p̂2
i

2 |Ψ[n]⟩ , (1.22)

and the electron-electron interaction energy

Eint[n] = ⟨Ψ[n]|
N∑

i=1

N∑
i<j

1
|r̂i − r̂j |

|Ψ[n]⟩ . (1.23)

Now, let us consider a system made of N electrons, described by the ground state density
n0(r) associated to the external potential V (0)

ext (r). Its ground state energy E0 is given by

E0 = E[n0] = ⟨Ψ[n0]|Ĥ(0)|Ψ[n0]⟩ = FHK[n0] +
∫

drV (0)
ext (r)n0(r). (1.24)

3Results can be generalized to degenerate ground states [28, 29].
4Namely the same for all electron systems.
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Let n1(r) be the density associated to the wavefunction Ψ(1), and let E1 be its corresponding
energy such that

E1 =
〈
Ψ(1)

∣∣∣Ĥ(0)
∣∣∣Ψ(1)

〉
= FHK[n1] +

∫
drV (0)

ext (r)n1(r). (1.25)

The ground state being non-degenerate, we have E0 < E1, proving the end of the theorem.

1.3.1.2 The Kohn-Sham formulation

So far, the Hohenberg and Kohn theorems have recast the determination of the total energy of
an interacting system to a minimization problem of the energy functional E[n] with respect to
the density n, under the constraint

∫
drn(r) = N . However, the universal functional FHK[n],

defined in Eq.(1.21), is still unknown. This led Kohn and Sham to introduce, in 1965, their
famous approach [30]. Namely, they mapped the true interacting system into an effective
non-interacting one submitted to an effective local potential Veff(r). This auxiliary system,
called Kohn-Sham (KS) system, presents the same ground state density n0s and ground state
energy as the interacting one. It can be described in terms of N single-particle KS orbitals
ϕi such that

n0s(r) =
N∑

i=1
|ϕi(r)|2 (1.26a)

= n0(r) (the true interacting ground state density). (1.26b)

The kinetic energy Ts of this KS system is given by

Ts[n0s] = −1
2

N∑
i=1

∫
drϕ∗

i (r)∇2ϕi(r). (1.27)

Even if this formula shows an explicit dependency on the orbitals, Ts is a density functional
thanks to the Hohenberg and Kohn theorems for non-interacting particles [25]. In this context,
the functional E[n] for the energy of the interacting system can be rewritten

E[n] = Ts[n] + EH[n] + Eext[n] + EXC[n], (1.28)

with EH[n] the Hartree term, namely the classical interaction between the N electrons:

EH[n] = 1
2

∫
dr dr′ n(r)n(r′)

|r − r′|
, (1.29)

and Eext the coupling energy with the external potential, typically containing the electron-
nuclei Coulomb interaction:

Eext[n] =
∫

drVext(r)n(r). (1.30)

EXC[n] is the universal exchange-correlation energy functional, defined by (1.28), or equiva-
lently by

EXC[n] = FHK[n] − Ts[n] − EH[n] (1.31a)
= (T [n] − Ts[n]) + (Eint[n] − EH[n]) . (1.31b)
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This functional represents the difference between the kinetic energy plus the electron-electron
interaction energy of the real interacting system, and those of the effective non-interacting
system, with the Coulomb energy reduced to the Hartree term. Yet, its exact formula is still
unknown, and approximations are required. Since it is a difference, it is likely however to be
a much smaller unknown than the original FHK[n] quantity.

Then the minimization of E[n] of Eq.(1.28) can be performed with respect to the density
n. Equivalently, assuming a one-to-one correspondence between the non-interacting ground
state density and its corresponding single-particle wavefunctions [25], this minimization can
be performed with respect to these latter. The constraints of orthonormality of such a basis
set can be enforced through Lagrange multipliers Λij . This results in the minimization of the
following Lagrangian

L[n({ϕi(r)})](Λ) = E[n({ϕi(r)})] +
∑
i≤j

Λij(δi,j − ⟨ϕi|ϕj⟩), (1.32)

with δi,j the Kronecker delta. This leads to

δL
δϕ∗

i (r) = δTs

δϕ∗
i (r) +

(
δEext[n]
δn(r) + δEH[n]

δn(r) + δEXC[n]
δn(r)

)
∂n

∂ϕ∗
i (r) −

∑
i≤j

Λijϕj(r) = 0 (1.33)

An unitary rotation of the KS orbitals basis set, diagonalizing the Lagrange multipliers matrix
Λ of eigenvalues {εi}, leads to the KS equations[

−∇2

2 + Veff[n0s](r)
]
ϕi(r) = εiϕi(r). (1.34)

Veff[n](r) is a density functional effective potential, such that

Veff[n](r) = Vext(r) + VH[n](r) + VXC[n](r), (1.35)

with VH[n](r) the Hartree potential

VH[n](r) =
∫

dr′ n(r′)
|r − r′|

, (1.36)

and VXC[n](r) the exchange-correlation potential

VXC[n](r) = δEXC[n]
δn(r) . (1.37)

KS-DFT gives access to the total energy of the ground state, and its corresponding density,
through coupled non-linear equations of type (1.34). Veff[n](r) depends on the density, which
depends on the solution wavefunctions ϕi(r) via Eq.(1.26a). Such KS equations require a
Self-Consistent Field (SCF) procedure to be solved. In practice, Veff[n](r) is first computed via
a trial density n(0), providing a first set of eigenvalues and eigenfunctions {ε(1)

i , ϕ
(1)
i (r)}. An

improved density n(1) is computed on top of these wavefunctions, and an iterative procedure
is set up until convergence of the density. Now, the problem is to find a suitable formula for
EXC[n].
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1.3.1.3 Exchange-correlation functionals

An exact formula for the exchange-correlation energy functional is still unknown. Thus, one
of the main problem in KS-DFT is to find an accurate approximation for it. In practice,
even if KS-DFT is an exact formalism, EXC[n] being computed through approximations,
real calculations are no longer based on exact formulas. Some of the most widely used
approximations are the following ones:

Local Density Approximation (LDA): The first successful approximation was proposed
by Hohenberg and Kohn in 1964 [26], namely the Local Density Approximation (LDA):

ELDA
XC [n] ≃

∫
drn(r)εLDA

XC (n(r)). (1.38)

For an electron at r, its exchange-correlation energy per electron εLDA
XC (n(r)) is supposed to

depend only on the density n(r) at this position. εLDA
XC (n(r)) is no longer a functional of

n, but a “simple” function of n(r). Ceperley and Alder put this idea in practice in 1980
[31] by performing Quantum Monte Carlo (QMC) total energy calculations on interacting
Homogeneous Electron Gas (HEG), at different constant densities nHEG. Using previous
work of Dirac on the exchange energy [32], it is then possible to extract from these computed
total energies the correlation-only energy per electron εHEG

C (n). Such QMC data have been
fitted by different functional forms [33–35], leading to LDA functionals.

Even though strictly valid only for a homogeneous electron gas, such functionals have led
to quite accurate calculations of lattice parameters of solids [36] (with a tendency to overbind,
namely to predict too small lattice parameters). They have also shown their ability to well
compute ground-state densities [37], even in inhomogeneous systems.

Generalized Gradient Approximation (GGA): A possibility to improve results of LDA
is to include information on the possible inhomogeneities of the density, via its gradient, in the
exchange-correlation energy. This defines the semi-local Generalized Gradient Approximation
(GGA), such that

EGGA
XC [n] =

∫
drn(r)εGGA

XC (n(r),∇n(r)). (1.39)

Typical GGA functionals are the BLYP (Becke-Lee-Yang-Parr) [38, 39], the PW91 (Perdew-
Wang 1991) [40, 41], or the PBE (Perdew-Becke-Ernzherof) [42] functionals. For example,
the PBE functional improves the accuracy of the predicted lattice parameters of metals, as
compared to LDA (with a tendency to underbind, namely with too large lattice parameters)
[36], but does not give better results for non metallic-systems.

Hybrid functionals: In general, LDA and GGA functionals cannot really reproduce
the long-range behavior of the potential felt by an electron [43]. They also suffer from the
problem of self-interaction. VXC[n] both acts on occupied orbitals, and is built on them,
through the density. This is equivalent to have an electron in interaction with itself, which
can be dramatic for localized orbitals. To solve these problems, hybrid-functionals have been
designed. They are usually based on a mixture of LDA or GGA functional and of exact
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exchange energy EHF
X defined in the Hartree-Fock (HF) theory, computed in the current

context with the KS wavefunctions via

EHF
X = −1

2

occ∑
ij

∫∫
dr dr′ ϕ

∗
i (r)ϕj(r)ϕ∗

j (r′)ϕi(r′)
|r − r′|

δσi,σj . (1.40)

Here the spin variable σi have been reintroduced for clarity, and the sums run over occupied
states. Using such functionals and denoting N the number of electrons of the system, a
calculation goes from a O(N3) scaling with pure density functionals to a O(N4) scaling
[25]. Typical hybrid functionals are the B3LYP (Becke 3 parameters) [44] or the PBEh
(PBE-hybrid) functional. This latter, massively used in this thesis, is built on the PBE
functional via

EPBEh
XC [n](α) = EPBE

XC [n] + α
(
EHF

X [n({ϕi})] − EPBE
X [n]

)
, (1.41)

with EPBE
X [n] the exchange part of the PBE functional, and α ∈ [0; 1]. The specific value of

α = 0.25 corresponds to the PBE0 functional [45, 46].
Finally, the search for exchange-correlation functionals leading to universal (or at least

working for a large number of materials) and accurate description of observables based on
total energy (lattice parameters, binding energy, electronic density. . . ), is still one of the
main challenge in DFT. Two main strategies are setting up. The first one consists in building
functionals enforcing exact constraints, like the exchange-correlation hole sum rule, asymptotic
behavior [43]. . . . The second one is based on fits of functionals on experimental data, with the
help recently of machine learning. A discussion on the development of exchange-correlation
functionals over the last decades can be found in Ref.[47].

1.3.1.4 Discussion on the meaning of the Kohn-Sham single-particle energies

As seen in part 1.3.1.2, KS-DFT also provides us with single-particle eigenvalues. Even if it
seems attractive to consider such energies as electronic energy levels, no obvious link between
both quantities can be established. As seen in part 1.1.1, page 24, the electronic energy
levels of an interacting system are defined as total-energy differences between a charged and
the neutral system. At the opposite, the KS-DFT eigenvalues {εi} are only introduced as
Lagrange multipliers, to enforce orthonormality of the wavefunctions {ϕi(r)}. To emphasize
the differences between the two types of energies, one should consider the sum of KS-DFT
eigenvalues

N∑
i=1

εi =
N∑

i=1

∫
drϕ∗

i (r)
(

−∇2

2 + Veff[n](r)
)
ϕi(r) (1.42)

= Ts[n] +
∫

dr (Vext(r) + VH[n](r) + VXC[n](r))n(r). (1.43)

This can be compared to the true ground-state energy E[n] of the N -electron system, such
that

E[n] = Ts[n] + EH[n] + Eext[n] + EXC[n], (1.44)
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which can be rewritten

E[n] =
N∑

i=1
εi − EH[n] + EXC[n] −

∫
drVXC[n](r)n(r). (1.45)

This equation highlights the difficulties to assimilate the KS-DFT eigenvalues to total-energy
differences. In particular, the KS-DFT gap EKS

gap = εN+1 − εN struggles into reproducing
fundamental gaps in agreement with experimental values [48], because this latter is defined
as Egap =

(
EN+1

0 − EN
0

)
−
(
EN

0 − EN−1
0

)
, with EM

0 the ground state total energy of the
M -electron system.

However, it is possible to give a meaning to KS-DFT eigenvalues, via the Janak’s theorem
[49]. In his paper in 1978, Janak introduced a generalization of KS-DFT with fractional
occupation numbers {fi}. Each eigenstate of Eq.(1.34), described by {εi, ϕi(r)}, is associated
to an occupation factor such that fi ∈ [0; 1]. Such an approach allows the total number of
electron N to be real, and not only integer. The total energy turns to be now a functional of the
one-body wavefunctions, but also a function of the occupations numbers E[n({ϕi(r)})]({fi}).
The ground state energy is computed via its minimization with respect to the two types of
arguments. In this approach, the Janak formula leads to εi equal to

εi = ∂E

∂fi
. (1.46)

The KS-DFT eigenvalues, computed up to now, correspond to the specific configuration
fi ∈ {0; 1} for empty or occupied levels. Equation (1.46) shows that they are associated to
variation of the total energy with respect to an infinitesimal change of the charge of the
system. On the other side, electronic energy levels, measured in (inverse) photoemission
experiments, correspond to changes of the total energy when an entire electron is added or
removed to the system.

It has also been shown that the exact ground state total energy of N electrons EN
0 , with

the exact exchange-correlation functional and N ∈ R+ (so not only integer), is a piecewise
linear function with respect to N [50]. More explicitly, for N = N0 + ω, with N0 ∈ N and
ω ∈ [0; 1], EN

0 is given by
EN

0 = (1 − ω)EN0
0 + ωEN0+1

0 . (1.47)

In particular, such a formula can be used to compute the highest occupied KS eigenvalues
εN of a system made of N electrons, with N an integer number, leading to [51]

εN = EN
0 − EN−1

0 . (1.48)

This equation shows that the highest occupied KS eigenvalue is exactly the in-
verse of the Ionization Potential (IP). The same result can be obtained alterna-
tively by looking at the exponential decay of the charge density in the case of fi-
nite size systems [52]. This is known as the IP-theorem [53], which gives a physi-
cal meaning (only) to the highest occupied KS eigenvalue. However, there is no such
well-defined meaning for the other eigenvalues, and this relation only holds in “ex-
act” DFT, namely assuming that one knows the exact exchange-correlation potential.
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Figure 1.6: Typical shape of the vari-
ation of the ground state total en-
ergy EN

0 , with respect to the num-
ber of electron N , around its value
for N = N0. With exact exchange-
correlation functional, this function
is piecewise linear, while it becomes
convex with the LDA and concave in
the HF approximation. Inspired from
[54, 55].

In practice, the exchange-correlation functional is
approximated, leading to a total energy EN

0 which
is no longer piecewise linear with respect to N . As
represented in Figure 1.6, it has been shown that the
HF approximation leads to a concave energy curve,
while a (semi)-local approximation such that the LDA
leads to a mostly convex curve [54, 56]. Such opposite
curvatures can be seen as yet another reason for the
development of hybrid functionals, where the mixing of
the different approximations may restore the piecewise
linearity of the energy curve EN

0 with respect to N .
Such a rational offers a theoretical ground to develop
tuned functionals, as an alternative to functionals
fitted onto experimental data.

Even if the KS-DFT eigenstates are not formally
designed to reproduce excited properties of a system,
as the ones measured in (inverse) photoemission spec-
troscopy, they can be used as valuable and affordable
starting point of many-body perturbation theories

such as the GW formalism. This latter, the central theory of this thesis, is detailed in section
1.3.2. Before describing this formalism, we finish this part, about (general) DFT, with some
details about real implementations of KS-DFT, as the one used during this thesis.

1.3.1.5 DFT in practice

In practice, the diverse equations of KS-DFT need to be expressed in finite size basis sets, to be
solved numerically on computers via algebraic equations. This leads to operators represented
as finite size matrices or wavefunctions as vectors. For example, a given wavefunction ϕi(r) is
represented in the basis set of functions {αµ(r)}, of dimension M , by

ϕi(r) =
M∑

µ=1
ci,µαµ(r). (1.49)

In this context, the Eq.(1.34) becomes

[
−∇2

2 + Veff[n0s](r)
]

M∑
µ=1

ci,µαµ(r) = εi

M∑
µ=1

ci,µαµ(r). (1.50)

Multiplying on the left by a given function α∗
ν(r), and integrating over r ∈ R3, this equation

leads to the following generalized eigenvalue problem

Hci = εiSci, (1.51)
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with H and S two M ×M matrices such that

[H]νµ =
∫

drα∗
ν(r)

[
−∇2

2 + Veff[n0s](r)
]
αµ(r) (1.52)

[S]νµ =
∫

drα∗
ν(r)αµ(r). (1.53)

ci is the column vector of coefficients, of dimension M , such that [ci]µ = ci,µ. One of the
objective of real calculations of KS-DFT is to compute these sets of coefficients {ci,µ}. It
should be noticed that the introduction of a finite dimension basis set leads to approximations
of the exact solutions, which could be computed in the Complete Basis Set (CBS) limit.
Therefore, one should use a basis set close enough of the CBS to reach a good accuracy for the
final results, but also small enough in terms of dimension to do calculations in a reasonable
time.

The choice of the basis sets depends on the type of studied systems. For example, a
plane-wave basis is often well-adapted to describe an infinite periodic crystal. Concerning this
thesis, we restrict ourselves only to finite size system, where atom-centered basis functions
leads to a good compromise between accuracy and dimension of the basis set. Each atom I is
associated to a basis set BI of functions centered on its nucleus, and the total basis set B is
the direct sum of all these bases, namely B = ⊕

I BI . More particularly, we use Gaussian
Type Orbital (GTO) basis functions, with the Gaussian-basis DFT code Orca [57, 58]. A
primitive GTO, centered on nuclei at RI , is defined by

αl,m,ζ,I(r) = Rl,ζ(|r − RI |)Yl,m

( r − RI

|r − RI |

)
, (1.54)

with
Rl,ζ(|r − RI |) = ℵl,ζ |r − RI |l exp

(
−ζ|r − RI |2

)
. (1.55)

Yl,m is a spherical harmonic of degree, or angular momentum, l and order, or magnetic quan-
tum number, m. ℵl,ζ is a normalization factor and ζ is a real positive number which controls
the extent of the radial part. An important property of these GTOs is given by the Gaussian
product theorem. Namely, the product of two Gaussian functions G1(r) = exp

(
−ζ1|r − R1|2

)
and G2(r) = exp

(
−ζ2|r − R2|2

)
is still a Gaussian function G3 = C3 exp

(
−ζ3|r − R3|2

)
,

such that

ζ3 = ζ1 + ζ2, R3 = ζ1R1 + ζ2R2
ζ1 + ζ2

and C3 = exp
(

−ζ1ζ2|R1 − R2|2

ζ1 + ζ2

)
.

This leads to analytic expressions [59, 60] for example for integrals of products of GTOs (like
the one of Eq.(1.53)), or using also Boys functions, Coulomb integrals of the type5

(αλ1αλ2∥αλ3αλ4) =
∫

dr dr′ α
∗
λ1

(r)α∗
λ2

(r)αλ3
(r′)αλ4

(r′)
|r − r′|

. (1.56)

To improve the description of wavefunctions, for example near the nuclei, basis sets of GTOs
are often built on Contracted Gaussian Functions (CGFs), allowing to improve the description

5For the sake of compactness, we denote by λ all the coefficients (l, m, ζ, I).



40 Chapter 1. Theoretical background and methodology

of Slater-like atomic orbitals without increasing the size of the basis set. The angular part
of a CGF αCGF

l,m,I is the same as the one of a primitive GTO, as defined in Eq.(1.54). Yet,
its radial part RCGF

l becomes a fixed linear combination of radial parts of primitive GTOs,
namely

RCGF
l (|r − RI |) =

P∑
p=1

apRl,ζp(|r − RI |). (1.57)

An additional possibility to enhance the quality of such basis sets is to use split-valence basis
sets. These latter are built on the fact that valence electrons are more involved in chemical
processes than the core electrons. Therefore, the atomic split-valence basis set BI , associated
to atom I, is made of one CGF per core atomic orbital, and several CGFs per valence atomic
orbital. Accordingly to the number of CGF per valence atomic orbital, such bases are called
split-valence double-zeta, triple-zeta, quadruple-zeta, and so on, basis sets. However, only
increasing the number of CGF per atom does not automatically lead to a better quality basis.
CGFs with different properties should be included. The first possibility is to add polarization
functions, namely CGFs with higher angular momentum l. Atoms could benefit from higher
flexibility to form chemical bonds in all directions. Another possibility is to add diffuse
functions, namely CGFs with small {ζp}, to improve the description of wavefunctions far
from the nucleus. Many basis sets have been developed, and they can be found for example
in the Basis Set Exchange website [61]. Concerning this thesis, the main type of basis sets
used for calculations are the following ones:

Pople basis sets [62, 63]: The group of John Pople developed split-valence basis sets
labeled by “P0 −

(∏d
i=1 Pi

)
G”. P0 is the number of primitive GTO per CGF of each core

atomic orbital. Namely, for each core atomic orbital, P = P0 in Eq.(1.57). “d” is the number
of CGF per valence atomic orbital. Each ith valence CGF is a sum of Pi GTO. The addition
of an asterisk “∗” after the “G” (respectively of a plus sign “+” just before the “G”) means
that polarization functions (respectively diffuse functions) are added on all atoms, except
the hydrogen and helium ones. A double symbol means that all atoms benefit from these
additional functions. For example, in this thesis, we use the triple-zeta 6-311G∗ basis set.
Each core atomic orbital is a CGF which is the sum of 6 primitive GTOs. Each valence
atomic orbital is associated to three CGFs. The first one is a sum of 3 primitive GTOs, while
the two other ones are simple primitive GTOs. All atoms, different from the hydrogen and
helium ones, benefit also from polarization functions.

Karlsruhe basis sets [64]: The Karlsruhe basis sets correspond to split-valence basis
sets, with label of the type “def2-dVP” such that d ∈ {S,TZ,QZ} corresponds respectively to
a {double-, triple-, quadruple-}zeta basis set. “P” stands for polarization functions, and a
second added “P” means that two sets of such functions are used. A “D” at the end of the
label means that diffuse functions are added. For example, the def2-TZVPD correspond to a
triple-zeta split-valence basis sets, with polarization and diffuse functions.
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1.3.2 The GW formalism

As explained in section 1.1, we would like to characterize the studied systems by their
removal and addition energies. The calculation of such quantities needs to take into account
the interaction of the added charge with its environment, thus requiring to go beyond the
mean-field picture depicted by DFT in section 1.3.1. To describe the response of the system
to such perturbations, we turn to the Many-Body Perturbation Theory (MBPT) via the GW
approximation. This latter is at the heart of my thesis.

1.3.2.1 Green’s function

The central object of the GW approximation is the time ordered single-particle Green’s
function G defined as

G(1, 2) = −i ⟨N |T̂
[
ψ̂(1)ψ̂†(2)

]
|N⟩ . (1.58)

i is the imaginary unit such that i2 = −1, (l) ∈ {1, 2} corresponds to an abbreviated notation
for the position, time and spin variables (tl, rl, σl) and |N⟩ is the normalized ground state
of the N -body system. T̂ is the Wick time-ordering operator, which orders its arguments
from right to left in ascending time order, and adds a factor (−1)P , with P the number
of interchanges of fermionic operators from the original given order [65]. The ψ̂(l) and
ψ̂†(l) operators are the annihilation and creation field operators, within the Heisenberg
representation, at position rl and time tl, with spin σl.

To better understand this definition, let assume that t1 > t2, leading to T̂ = Î in Eq.(1.58),
with Î the identity operator. ψ̂†(2) creates an electron, on top of the ground state, at time
t2 and position r2, with spin σ2. This state is then propagated from time t2 to t1. At this
time t1, one electron with spin σ1 is annihilated at position r1 by ψ̂(1). G can be seen as a
propagator of the added electron. For t1 < t2, the same interpretation can be done, but for
an added hole to the system.

This Green’s function G is particularly useful to compute the ground-state expectation
value of single-particle operator Ô [66, 67]. In second quantization, such an operator depending
only on one time index t is given by Ô, such that

Ô(t) =
∫

d(1, 2) δ(t− t2)δ(t2 − t1)ψ̂†(1)O(1, 2)ψ̂(2), (1.59)

where
∫

d(l) is a shorthand notation for integration (or sum) over the three variables inside
(l), and δ(ti − tj) the Dirac distribution. This leads to

⟨N |Ô(t)|N⟩ = −
∫

d(1, 2) δ(t− t2)δ
(
t+2 − t1

)
O(1, 2) ⟨N |T̂

[
ψ̂(2)ψ̂†(1)

]
|N⟩, (1.60)

with t+2 = t2 + η. η is an infinitesimal positive real number added to t2 to introduce the
time-ordering operator T̂ , required in the definition of G. Such a formula can be rewritten

⟨N |Ô(t)|N⟩ = −i
∫

d(1, 2) δ(t− t2)δ
(
t+2 − t1

)
O(1, 2)G(2, 1), (1.61)

underlying the usefulness of the Green’s function.
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Furthermore, the total energy E0
N of the system can also be computed using only the

single-particle Green’s function via the Galitskii-Migdal formula [68]:

E0
N = − i

2
∑

σ1,σ2

δσ1,σ2

∫
dr1 lim

r2→r1
lim

t2→t+
1

[
i
∂

∂t1
+H0(r1)

]
G(1, 2), (1.62)

where δσ1,σ2 is the Kronecker delta, and H0(r1) = −∇2
r1/2+Vext(r1) with Vext(r1) the external

potential (with e.g. the ionic potential). It is also possible to go further and to extract the
desired addition and removal energies from this Green’s function, as explained below.

1.3.2.2 Lehmann representation and spectral function

The link between addition and removal energies, and the Green’s function, can be shown
thanks to the Lehmann (or spectral) representation. To compute it, we restrict ourselves
to time-independant Hamiltonian Ĥ, leading to a Green’s function depending only on time
difference τ = t1 − t2, namely G(1, 2) = G(x1,x2; τ). Here, xl corresponds to the space-spin
coordinates, namely xl = (rl, σl). Introducing the Heaviside distribution Θ such that

Θ(x) =


0 if x < 0
1/2 if x = 0
1 if x > 0,

(1.63)

and using the closure relations in the Fock space {|M,n⟩}, where |M,n⟩ is the nth excited
state with M electrons, Eq.(1.58) can be rewritten

iG(x1,x2; τ) = Θ(τ)
∑

a

⟨N |ψ̂(1) |N + 1, a⟩⟨N + 1, a| ψ̂†(2)|N⟩

−Θ(−τ)
∑

i

⟨N |ψ̂†(2) |N − 1, i⟩⟨N − 1, i| ψ̂(1)|N⟩ .
(1.64)

Using the Schrödinger representation, such that e.g. ψ̂(l) = exp
(
iĤtl

)
ψ̂(xl) exp

(
−iĤtl

)
,

Eq.(1.64) becomes

iG(x1,x2; τ) = Θ(τ)
∑

a

⟨N |ψ̂(x1) |N + 1, a⟩⟨N + 1, a| ψ̂†(x2)|N⟩ ei(EN
0 −EN+1

a )τ

−Θ(−τ)
∑

i

⟨N |ψ̂†(x2) |N − 1, i⟩⟨N − 1, i| ψ̂(x1)|N⟩ e−i(EN
0 −EN−1

i )τ .
(1.65)

with EM
n the total energy of the nth excited states with M electrons. We recognize exactly

the addition and removal energies defined in section 1.1.1 and measured in practice in Pho-
toemission Spectroscopy (PES) and Inverse Photoemission Spectroscopy (IPES) experiments,
namely

εi = EN
0 − EN−1

i for εi < µ (1.66a)
εa = EN+1

a − EN
0 for εa ≥ µ, (1.66b)
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with µ the chemical potential. We define the Lehmann amplitudes {fn(x)} such that

fi(x) = ⟨N − 1, i|ψ̂(x)|N⟩ (1.67a)
fa(x) = ⟨N |ψ̂(x)|N + 1, a⟩ . (1.67b)

Using the following convention for the Fourier transform of a function f(τ)

f(ω) =
∫ +∞

−∞
dτ f(τ)eiωτ and f(τ) = 1

2π

∫ +∞

−∞
dω f(ω)e−iωτ , (1.68)

and the following representation of the Heaviside distribution [69]

Θ(±τ) = ∓ 1
2iπ

∫ +∞

−∞
dω e−iωτ

ω ± iη , (1.69)

with η an infinitesimal positive shift, the Fourier transform of G, with respect to τ , is given
by

G(x1,x2;ω) =
∑

i

fi(x1)f∗
i (x2)

ω − εi − iη +
∑

a

fa(x1)f∗
a (x2)

ω − εa + iη . (1.70)

Such a formula highlights that the addition and removal energies are given by the poles of
the Lehmann representation of G.

Starting from Eq.(1.70), it is possible to introduce the spectral function [70]:

A(x1,x2;ω) =
∑

i

fi(x1)f∗
i (x2)δ(ω − εi) +

∑
a

fa(x1)f∗
a (x2)δ(ω − εa), (1.71)

such that
G(x1,x2;ω) =

∫
dω′ A(x1,x2;ω′)

ω − ω′ + iη sgn(ω′ − µ) , (1.72)

with sgn(x) the sign function, namely sgn(x) = 2Θ(x) − 1. This spectral function obeys the
following sum-rule ∫

dωA(x1,x2;ω) = δ(x1 − x2), (1.73)

with δ(x1 − x2) = δ(r1 − r2)δσ1,σ2 , because∑
i

fi(x1)f∗
i (x2) +

∑
a

fa(x1)f∗
a (x2) =

∑
i

⟨N |ψ̂†(x2) |N − 1, i⟩⟨N − 1, i| ψ̂(x1)|N⟩

+
∑

a

⟨N |ψ̂(x1) |N + 1, a⟩⟨N + 1, a| ψ̂†(x2)|N⟩

=δ(x1 − x2),

(1.74)

thanks to the anticommutation relation{
ψ̂(x1), ψ̂†(x2)

}
= ψ̂(x1)ψ̂†(x2) + ψ̂†(x2)ψ̂(x1) = δ(x1 − x2), (1.75)

and the closure relation in the Fock space. Such a spectral function gives also access to the
ground state density n(x) for the system of N electrons via∫ µ

−∞
dωA(x,x;ω) = ⟨N |ψ̂†(x)ψ̂(x)|N⟩

=n(x).
(1.76)
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Finally, using the following relation between distributions [71]

1
ω − ω0 ± iη = pv

( 1
ω − ω0

)
∓ iπδ(ω − ω0), (1.77)

with pv
(

1
ω−ω0

)
the Cauchy principal value, the diagonal part of the spectral function can be

rewritten
A(x,x;ω) = 1

π
sgn(µ− ω) Im [G(x,x;ω)]. (1.78)

This diagonal part is thus real (and positive thanks to Eq.(1.71)), and will be particularly
useful to compute in practice and to give a physical meaning to the Quasiparticle (QP)
energies, as detailed below, in section 1.3.2.10.

1.3.2.3 Dyson equation on G

The definition of G based on the knowledge of the many-body wavefunctions for the N , (N−1)
and (N + 1) electron systems is not useful in practice to calculate the Green’s function. We
can however compute its Equation of Motion (EOM). Rewriting the electronic Hamiltonian
of equation 1.18 in second quantization6 as

Ĥ =
∫

dx ψ̂†(x)H0(r)ψ̂(x) + 1
2

∫∫
dx dx′ ψ̂

†(x)ψ̂†(x′)ψ̂(x′)ψ̂(x)
|r − r′|

, (1.79)

with H0(r) = −∇2
r/2 + Vext(r), such that Vext(r) is the external potential (with e.g. the ionic

potential), the EOM of the annihilation field operator obeys the following formula [66]

i∂ψ̂(1)
∂t1

=
[
ψ̂(1), Ĥ

]
= eiĤt1

[
ψ̂(x1), Ĥ

]
e−iĤt1 ,

(1.80)

with
[
Â, B̂

]
= ÂB̂ − B̂Â the commutator. Using the following formulas [66][

Â, B̂Ĉ
]

=
{
Â, B̂

}
Ĉ − B̂

{
Â, Ĉ

}
(1.81a){

Â, B̂Ĉ
}

=
{
Â, B̂

}
Ĉ − B̂

[
Â, Ĉ

]
(1.81b)

with
{
Â, B̂

}
= ÂB̂ + B̂Â the anticommutator, and the anticommutation relations (1.75),

this leads to
i∂ψ̂(1)
∂t1

=
(
H0(1) +

∫
d(3) ψ̂†(3)V (1, 3)ψ̂(3)

)
ψ̂(1), (1.82)

where we have introduced H0(1) = H0(r1) and the Coulomb potential V (1, 3) = δ(t1 −
t3)V (x1,x3) = δ(t1 − t3)/|r1 − r3|.

Introducing the two-particle Green’s function G2 such that

i2G2(1, 3; 2, 3′) = ⟨N |T̂
[
ψ̂(1)ψ̂(3)ψ̂†(3′)ψ̂†(2)

]
|N⟩ , (1.83)

6Here, we take into account the spin part, even if during all this thesis we restrict ourselves to spin-paired
system.
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the EOM of the Green’s function is given by [66, 69][
i ∂
∂t1

−H0(1)
]
G(1, 2) + i

∫
d(3)V (1, 3)G2(1, 3+; 2, 3++) = δ(1, 2), (1.84)

where we add infinitesimal positive shifts η to t+3 = t3 + η and t++
3 = t+3 + η to keep the

proper ordering of field operators, and where we introduce δ(1, 2) = δ(t1 − t2)δ(x1 − x2). This
equation (1.84) highlights that the EOM of the single-particle Green’s function requires the
knowledge of the two-particle Green’s function. In fact, it can be shown that the EOM for
the n-particle Green’s function requires the knowledge of the (n+ 1)-particle Green’s function
[66]. This is the Green’s function hierarchy.

To formally close the equation (1.84) and to avoid dealing with a recurrence relation, we
introduce the non-local and time-dependent Hartree-exchange-correlation self-energy Σ̄(1, 3)
such that [14, 69]∫

d(3) Σ̄(1, 3)G(3, 2) = −i
∫

d(3)V (1, 3)G2(1, 3+; 2, 3++). (1.85)

Equivalently, using the definition of the inverse F−1 of the functional F such that [72]∫
d(3)F (1, 3)F−1(3, 2) =

∫
d(3)F−1(1, 3)F (3, 2) = δ(1, 2), (1.86)

the equation (1.85) can be rewritten

Σ̄(1, 4) = −i
∫

d(2, 3)V (1, 3)G2(1, 3+; 2, 3++)G−1(2, 4). (1.87)

We can separate out the Hartree potential defined by7

VH(r) =
∫

dr′ n(r′)
|r − r′|

(1.89a)

= −i
∫

d(3)V (1, 3)G(3, 3+), (1.89b)

leading to the definition of the self-energy Σ(1, 3) = Σ̄(1, 3)−δ(1, 3)VH(1), with VH(1) = VH(r1),
such that [

i ∂
∂t1

−H0(1) − VH(1)
]
G(1, 2) −

∫
d(3) Σ(1, 3)G(3, 2) = δ(1, 2). (1.90)

If G0 corresponds to the Hartree Green’s function, solution of[
i ∂
∂t1

−H0(1) − VH(1)
]
G0(1, 2) = δ(1, 2), (1.91)

7The total electronic density n(r) =
∑

σ
n(x) can be related to the single-particle Green’s function via

Eq.(1.61), with the time-independent density operator such that Ô(x) =
∑N

i=1 δ(x − x̂i). This leads to [66]

n(x) = −iG(x, t; x, t+). (1.88)
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the equation (1.90) can be rewritten as the following Dyson equation [14, 69]

G(1, 2) = G0(1, 2) +
∫

d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2) , (1.92)

or equivalently, after the factorization of G and multiplication on the left by G−1
0

G−1(1, 2) = G−1
0 (1, 2) − Σ(1, 2). (1.93)

To better understand the role of the self-energy Σ, let us recall that G(1, 2) and G0(1, 2)
depends only on the time difference τ = t1 − t2. Therefore, Σ(1, 2) depends also only on τ .
The Fourier transform into frequency space of Eq.(1.90), with respect to τ , is given by

[ω −H0(r1) − VH(r1)]G(x1,x2;ω) −
∫

dx3 Σ(x1,x3;ω)G(x3,x2;ω) = δ(x1 − x2). (1.94)

We can introduce the Lehmann representation of G in Eq.(1.94). If we consider that the
pole εn is discrete and nondegenerate, multiplying such an equation by (ω − εn)/f∗

n(x2), and
taking the limit ω → εn, leads to [67, 69]

[H0(r1) + VH(r1)]fn(x1) +
∫

dx3 Σ(x1,x3; εn)fn(x3) = εnfn(x1) . (1.95)

This equation (1.95), referred to as the Quasiparticle (QP) equation, gives access to the
Lehmann amplitudes and their corresponding addition/removal energies. Such an equation
shows similarities with the Kohn-Sham equations (1.34), but the exchange-correlation potential
is replaced by the self-energy Σ, which acts as a non-local and dynamical potential, depending
on the value εn we want to compute.

At this step, it should be noticed that such an equation reformulates the exact N -body
problem as a one-body QP equation, with a self-energy. To qualitatively understand this, one
should keep in mind that an additional electron or hole in the system creates around itself a
polarization cloud. Namely, because of Coulomb and Pauli repulsions, a variation of charge
appears to screen the added charge. In this context, a QP corresponds to an additional charge
and the perturbation of its environment around itself [14]. QPs are thus globally neutral and
hardly interact with each other, making it possible to describe them by a one-body equation
[73]. The interaction of the added charge with its polarization cloud becomes internal to the
QP and is encoded in the self-energy [14, 73].

Up to now, Σ and G are still exact. However, solving exactly equations (1.92) or (1.95) is
extremely difficult, and in practice approximations are needed. The goals of the following
parts is to explain one of them, namely the GW approximation.

1.3.2.4 The self-energy in linear response

One of the key idea to get rid of the two-particle Green’s function G2 in the formula of
the self-energy Σ̄ in Eq.(1.87)8, is to compute the linear response of G with respect to a
time-dependent perturbation of the Hamiltonian (1.79), described by

Ĥpert(t1) =
∫

dx1 ψ̂
†(x1)U(1)ψ̂(x1), (1.96)

8And therefore Σ.
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with U(1) a time-dependent local and external potential. At the end of the derivation, this
potential will be set equal to zero. Under such a perturbation, the EOM of G becomes [69][

i ∂
∂t1

−H0(1) − U(1)
]
G(1, 2) + i

∫
d(3)V (1, 3)G2(1, 3+; 2, 3++) = δ(1, 2). (1.97)

This leads to the following Dyson equation

G−1(1, 2) = G̃−1
0 (1, 2) − U(1)δ(1, 2) − Σ̄(1, 2), (1.98)

where G̃0 corresponds to the non-interacting Green’s function of the following Hamiltonian9

[
i ∂
∂t1

−H0(1)
]
G̃0(1, 2) = δ(1, 2). (1.99)

Thanks to the Schwinger functional derivative technique [74], it can be shown, for example
using the representation of the single-particle Green’s function in interaction picture [66, 67,
72], that

δG(1, 2)
δU(3) = G(1, 2)G(3, 3+) −G2(1, 3; 2, 3+). (1.100)

Using this formula in Eq.(1.87) leads to10

Σ̄(1, 4) = −δ(1, 4) i
∫

d(3)V (1, 3)G(3, 3+) + i
∫

d(2, 3)V (1+, 3)δG(1, 2)
δU(3) G−1(2, 4). (1.101)

The first term is exactly the Hartree potential δ(1, 4)VH(1), leading to the following formula
for the self-energy Σ:

Σ(1, 2) = i
∫

d(3, 4)V (1+, 3)δG(1, 4)
δU(3) G−1(4, 2). (1.102)

Using the following equation [72]

δF (1, 2)
δB(3) = −

∫
d(4, 5)F (1, 4)δF

−1(4, 5)
δB(3) F (5, 2), (1.103)

and the definition (1.86), the equation (1.102) can be rewritten

Σ(1, 2) = −i
∫

d(3, 4)V (1+, 3)G(1, 4)δG
−1(4, 2)
δU(3) . (1.104)

Such an expression is not appropriate to take the limit U → 0 because it requires the explicit
dependency of G with respect to U . Therefore, the next step is to reformulate this equation
in a suitable way to perform such a limit.

9Contrary to Eq.(1.91), this Hamiltonian has no Hartree term.
10Normally, to go from Eq.(1.87) to Eq.(1.101) we should use the formula (1.100) with (3) replaced by (3+).

However, the term G(3, 3+) depends only on the difference of the time arguments and t+
3 − t++

3 = t3 − t+
3 .

Concerning the second term, we do a substitution t+
3 = t3 + η = t′

3 and we use the fact that V (1, 3) also
depends only on the time difference t1 − t3.
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1.3.2.5 Hedin’s equations

In 1965, Lars Hedin computed a set of integro-differential equations [1], leading to an exact
formula for the self-energy Σ. While an expansion of Σ with respect to the bare Coulomb
potential V was known to show difficulties, he decided to expand the self-energy with respect
to the dynamical screened Coulomb potential W . Qualitatively, such an interaction W (1, 2)
corresponds to the potential at (1), created by both a source charge at (2) and the polarizable
environment, as described in parts 1.1.2 and 1.1.3, pages 25 to 29. The screened Coulomb
potential W is normally smaller than the bare one V , because the interaction is reduced by
the screening of the other electrons of the environment.

To arrive at Hedin’s equations, we start from the results of part 1.3.2.4, namely the linear
response of the system with respect to a perturbation U(1). Using Eqs.(1.89), let φ(1) be
the total potential such that

φ(1) = U(1) + VH(1). (1.105)

We can define the time-ordered inverse dielectric function ϵ−1 such that

ϵ−1(1, 2) = δφ(1)
δU(2) (1.106a)

= δ(1, 2) +
∫

d(3)V (1, 3)χ(3, 2). (1.106b)

χ is the reducible polarizability such that

χ(1, 2) = −iδG(1, 1+)
δU(2) (1.107a)

= δn(1)
δU(2) , (1.107b)

where we have used the Eq.(1.88), with n(1) = n(x1) the electronic density. This corresponds
to the variation of the electronic density with respect to a variation of the external perturbation.
Such a quantity is related to the irreducible polarizability χ̃, namely the same variation of
n(1), but with respect to the total potential φ(2)

χ̃(1, 2) = −iδG(1, 1+)
δφ(2) , (1.108)

via the following Dyson-like equation

χ(1, 2) = χ̃(1, 2) +
∫

d(34) χ̃(1, 3)V (3, 4)χ(4, 2). (1.109)

Such an equation can be demonstrated using Eq.(1.106) and the following chain rule [25]

δF [B[C]](1)
δC(2) =

∫
d(3) δF [B](1)

δB(3)
δB[C](3)
δC(2) . (1.110)

In this context, the dynamical screened Coulomb potential W , is defined by

W (1, 2) =
∫

d(3) ϵ−1(1, 3)V (3, 2) (1.111)
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or equivalently, using the previous equations on the polarizabilities,

W (1, 2) = V (1, 2) +
∫

d(3, 4)V (1, 3)χ(3, 4)V (4, 2) (1.112a)

= V (1, 2) +
∫

d(3, 4)V (1, 3)χ̃(3, 4)W (4, 2) (1.112b)

To obtain a set of equations, one should introduce the vertex function Γ such that

Γ(1, 2, 3) = −δG−1(1, 2)
δφ(3) . (1.113)

Using the chain rule of Eq.(1.110) in Eq.(1.104), and the previous definitions, leads to the
following formula of the self-energy

Σ(1, 2) = i
∫

d(3, 4)G(1, 4)W (3, 1+)Γ(4, 2, 3). (1.114)

As depicted by this equation, a more tractable and more amenable to approximations formula
for Γ is required. The equation (1.98), which can be rewritten G−1(1, 2) = G̃−1

0 (1, 2) −
φ(1)δ(1, 2) − Σ(1, 2), leads to

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) + δΣ(1, 2)
δφ(3) (1.115a)

= δ(1, 2)δ(1, 3) +
∫

d(4, 5) δΣ(1, 2)
δG(4, 5)

δG(4, 5)
δφ(3) (1.115b)

= δ(1, 2)δ(1, 3) +
∫

d(4, 5, 6, 7) δΣ(1, 2)
δG(4, 5)G(4, 6)G(7, 5)Γ(6, 7, 3), (1.115c)

where we have used the chain rule (1.110) and Eq.(1.103).
At this step, the Eq.(1.108) can be reformulated, using the definition of Γ of Eq.(1.113)

and the formula (1.103), leading to

χ̃(1, 2) = −i
∫

d(3, 4)G(1, 3)Γ(3, 4, 2)G(4, 1+). (1.116)

Now, taking the limit of U → 0 gives the exact closed set of Hedin’s equations [1]

G(1, 2) = G0(1, 2) +
∫

d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3) +
∫

d(4, 5, 6, 7) δΣ(1, 2)
δG(4, 5)G(4, 6)G(7, 5)Γ(6, 7, 3)

χ̃(1, 2) = −i
∫

d(3, 4)G(1, 3)Γ(3, 4, 2)G(4, 1+)

W (1, 2) = V (1, 2) +
∫

d(3, 4)V (1, 3)χ̃(3, 4)W (4, 2)

Σ(1, 2) = i
∫

d(3, 4)G(1, 4)W (3, 1+)Γ(4, 2, 3).

(1.117a)

(1.117b)

(1.117c)

(1.117d)

(1.117e)

These equations represent an iterative solution of the many-body problem. Starting from an
initial guess for Σ and G, Γ, χ̃ and then W can be computed. Then, the computation of all
five quantities can be done up to self-consistency, as represented in Figure 1.7. However, in
practice these equations are extremely complex to solve, and approximations are required.
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Figure 1.7: Hedin’s pentagram, which is a symbolic representation of the Hedin’s equations.
Each quantity, in each vertex, is iteratively computed until self-consistency via its correspond-
ing equation (1.117), represented by one edge.

1.3.2.6 The GW approximation

q

Figure 1.8: Schematic representation
of a charge variation around an added
charge q in (2) (in red). The electron
gas of the environment is represented
in blue, and the charge variation by a
gradation of blue. W (1, 2) is the dy-
namical screened Coulomb potential
in (1) created by such a charge.

One of the central quantities of the Hedin’s equation
is the screened Coulomb potential W . It is possible to
better understand its physical meaning via classical
arguments, through its formula (1.112a). For the sake
of simplicity, we limit ourselves to the static limit and
neglect the spin. Let us assume we add a point test
charge q in r2. Such a charge generates a potential
q/|r − r2| in all the space, creating a charge variation
δnind around itself, represented by a gradation of blue
in Figure 1.8, and given by

δnind(r′, r2) =
∫

drχ(r′, r) q

|r − r2|
(1.118)

If q > 0, electrons accumulate around q, while a
charge q < 0 creates a depletion of electrons around
itself: it is namely the screening effects. The total
field, at r1, generated by the charge q and δnind is

q

|r1 − r2|
+
∫

dr′ dr 1
|r1 − r′|

χ(r′, r) q

|r − r2|
(1.119)

We recover the formula of W (1.112a) in the static limit. In general, W depends on time
difference (or frequency via its Fourier transform), allowing the relaxation and screening of
the QPs [14]. In polarizable materials, where screening effects are notable, W is significantly
reduced as compared to the bare Coulomb potential V . This has led Hedin to propose to keep
only the first-order of Σ of Eq.(1.117e) with respect to W [1], or equivalently to approximate
Γ = δ(1, 2)δ(1, 3) in Eq.(1.117b). In this approximation, called the GW approximation, the
Hedin’s equations become11

11In the GW approximation, χ̃ is replaced by the notation χ0.
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G(1, 2) = G0(1, 2) +
∫

d(3, 4)G0(1, 3)Σ(3, 4)G(4, 2)

Γ(1, 2, 3) = δ(1, 2)δ(1, 3)
χ0(1, 2) = −iG(1, 2)G(2, 1+)

W (1, 2) = V (1, 2) +
∫

d(3, 4)V (1, 3)χ0(3, 4)W (4, 2)

Σ(1, 2) = iG(1, 2)W (2, 1+).

(1.120a)

(1.120b)
(1.120c)

(1.120d)

(1.120e)

The Eq.(1.120e) gives its name to the approximation. This set of equation can also be
represented by Feynman diagrams, as illustrated in Figure 1.9.

Figure 1.9: Diagrammatic representation of the Hedin’s equations, via Feynman diagrams.
Adapted from [14].

Using the convention of Eq.(1.68), such a formula can be Fourier transformed in time
with respect to τ = t1 − t2, leading to

Σ(x1,x2; ε) = i
2π

∫ +∞

−∞
dω eiωη1G(x1,x2;ω + ε)W (x1,x2;ω), (1.121)

with η1 a positive infinitesimal shift. To better understand the meaning of this self-energy, this
latter can be split into two parts, namely its energy-independent exchange part ΣX(x1,x2),
and its energy-dependent correlation part ΣC(x1,x2; ε), such that Σ(x1,x2; ε) = ΣX(x1,x2) +
ΣC(x1,x2; ε). Its correlation part is defined by

ΣC(x1,x2; ε) = i
2π

∫ +∞

−∞
dω eiωη1G(x1,x2;ω + ε)[W (x1,x2;ω) − V (x1,x2)], (1.122)

and its exchange part by

ΣX(x1,x2) = i
2π

∫ +∞

−∞
dω eiωη1G(x1,x2;ω + ε)V (x1,x2) (1.123a)

= −
∑

i

fi(x1)f∗
i (x2)V (x1,x2). (1.123b)
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The last formula (1.123b) [67, 75] can be computed using the Eq.(1.70) page 43 and the
residue theorem [71] over the closed curve C+ of the Figure 1.10, in the limit of the radius
R → ∞. The sum runs only over states such that εi < µ. This decomposition can be
compared to another one, namely the Coulomb-Hole plus Screened-Exchange (COHSEX)
decomposition presented in part 1.3.2.7.

Figure 1.10: Schematic representation of the poles of G and W in the complex plane. C+ is a
complex semicircle contour, of radius R, enclosing all the poles located in the upper-plane,
and no pole of the lower-plane.

Finally, it should be noticed that the GW method is now accessible in many ab initio
codes and has been widely successful in predicting electron addition and removal energies
[14].

1.3.2.7 The COHSEX decomposition

The Coulomb-Hole plus Screened-Exchange (COHSEX) decomposition is another way to
split the GW self-energy, namely in its Screened-Exchange (SEX) ΣSEX and its Coulomb-
Hole (COH) ΣCOH parts, such that Σ = ΣSEX + ΣCOH. Its static version, presented below, is
an important approximation playing a central role in my thesis.

In the absence of magnetic fields12, which is the case during all this thesis, the screened
Coulomb potential W can be written in its spectral representation such that [48, 70, 78]

W (x1,x2;ω) = V (x1,x2) +
∑
λ>0

wλ(x1)wλ(x2)
[ 1
ω − Ωλ + iη2

− 1
ω + Ωλ − iη2

]
, (1.124)

where η2 is a strictly positive infinitesimal shift. Denoting |N,λ⟩ the λth excited states with
N electrons, of total energy EN

λ , the fluctuation potential13 wλ, and its corresponding charge
neutral excitation Ωλ, are defined by

wλ(x) =
∫

dx′ ⟨N,λ|ψ†(x′)ψ(x′)|N, 0⟩
|r − r′|

(1.125a)

Ωλ = EN
λ − EN

0 . (1.125b)
12See [76, 77] for a more general situation.
13If there is no magnetic fields, the eigenstates |N, λ⟩ can be chosen real, as well as wλ [48].
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The positions of the poles of G and W are schematically represented in Figure 1.10.
Using the Eq.(1.70) page 43 and Eq.(1.124), we can apply the residue theorem [71] over

the closed curve C+ of the Figure 1.10 to compute the Eq.(1.121). Taking the limit R → ∞,
the poles of G(r1, r2; ε) in the upper complex plane lead to the SEX term

ΣSEX(x1,x2; ε) = −
∑

i

fi(x1)f∗
i (x2)W (x1,x2; εi − ε), (1.126)

where the sum runs only over states such that εi < µ. This ΣSEX looks like a dynamically
screened exchange, where the bare Coulomb potential V is replaced by W in the exact
exchange of Eq.(1.123b).

Using the same method, the poles of W in the upper complex plane lead to the COH
term, such that

ΣCOH(x1,x2; ε) =
∑

n

fn(x1)f∗
n(x2)

∑
λ>0

wλ(x1)wλ(x2)
ε− εn − Ωλ + iη × sgn(εn − µ) (1.127)

where the sum on n runs over all the states.
At this step, the COHSEX decomposition is still exact, but it can be seen as the starting

point of an additional approximation, namely the static COHSEX approximation.

1.3.2.8 The static COHSEX approximation

In the static COHSEX approximation [1, 37, 67, 79, 80], we consider the limit ε− εn = 0 in
all the term of the equations (1.126) and (1.127), leading to

ΣSEX
static(x1,x2) = −

∑
i

fi(x1)f∗
i (x2)W (x1,x2;ω = 0) (1.128a)

ΣCOH
static(x1,x2) = 1

2δ(x1 − x2)[W − V ](x1,x2;ω = 0). (1.128b)

To arrive at the equation (1.128b), the η term is removed because there is no longer singularity,
and the closure relation (1.74) is used. Such a static COHSEX approximation, often called
abusively simply the COHSEX approximation, can also be computed via arguments on
the time structure of G and W [1, 67]. One should note that taking directly the limit
W (x1,x2;ω = 0) in Eq.(1.121) would lead only to the static SEX term (1.128a), missing the
static COH term (1.128b). The physical meaning of this latter term, both static and local in
space-spin, can be understood via classical arguments. It is related to the energy required to
adiabatically add a point charge to the system.

Similarly to simple models presented in section 1.1.3 page 27, let us assume we add an
infinitesimal point charge14 ±δ(r − r0)dλ to the already present charge ±δ(r − r0)λ (for λ
going from 0 to 1). This added charge induces a charge variation in the environment, given
by Eq.(1.118), leading to an interaction energy, created by the polarization cloud, equal to

dEind =
∫

dr1 dr2 dr3 dr4
(±λδ(r4 − r0))

|r4 − r3|
χ(r3, r2) (±dλδ(r1 − r0))

|r2 − r1|
(1.129a)

= λ dλ [W − V ](r0, r0;ω = 0). (1.129b)
14For the sake of simplicity, we omit the spin variable.
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The total energy required to add this point charge is given by

Eind =
∫

dEind =
∫ 1

0
dλλ[W − V ](r0, r0;ω = 0) (1.130a)

= 1
2[W − V ](r0, r0;ω = 0), (1.130b)

which is directly related to the formula of the static COH self-energy (1.128b).
Even if the static COHSEX approximation gives a good qualitative description of the

physical effects, it shows difficulties to give accurate results [48]. For example, it is known to
lead to fundamental gaps which are too large [79, 81]. However, this approximation requiring
W at only one frequency (ω = 0) is computationally interesting, making the calculations faster,
as explained in section 1.3.2.10. One of the main goal of this thesis is to quantitatively probe
the accuracy of such an approach, in the context of calculating the screening contribution
from a large environment.

To conclude this part, about the general GW approximation, we give some details about
real implementations of such a formalism, as the one used during this thesis.

1.3.2.9 GW in practice

In practice, one of the most widely used approaches is the non-self-consistent G0W0 one.
Starting from a mean-field Green’s function G = G0, such an approach corresponds to the first
iteration of the Hedin’s equations (1.120). In general, G0 corresponds the Green’s function of
a Hartree-Fock or Kohn-Sham (KS)-DFT mean-field Hamiltonian, closer to the interacting
one G than the Hartree Green’s function [14]. Using similar arguments than the ones used to
go from Σ̄ to Σ in Eq.(1.90), the equation (1.120a) becomes [82]

G(1, 2) = G0(1, 2) +
∫

d(3, 4)G0(1, 3)[Σ(3, 4) − VXC(3, 4)]G(4, 2), (1.131)

with VXC(3, 4) = VXC(x3)δ(3, 4) the exchange-correlation potential15.
In practice, during all this thesis, we restrict ourselves to spin-paired (or unpolarized)

systems. Therefore, from now on and for the sake of simplicity, we drop the spin variable σ
and take into account spin-degeneracy when required.

In this context, the Green’s function G0 is given by

G0(r1, r2;ω) =
∑

n

ϕ0
n(r1)ϕ0∗

n (r2)
ω − ε0

n + iη × sgn(ε0
n − µ) , (1.132)

with
{
ε0

n, ϕ
0
n(r)

}
the eigenvalues and the eigenfunctions of the (spin-paired) mean-field

Hamiltonian. The sum runs over all the states. The RPA irreducible polarizability χ0 [83], or
here independent-electron susceptibility, is computed via the product of G0 via Eq.(1.120c).
It is given by the Adler-Wiser expression [84, 85]

χ0(r1, r2;ω) =
∑
m,n

(fm − fn) ϕ0∗
m (r1)ϕ0

n(r1)ϕ0
m(r2)ϕ0∗

n (r2)
ω − (ε0

n − ε0
m) + iη × sgn(ε0

n − ε0
m) , (1.133)

15It can be non-local in space, for example if hybrid functionals are used.
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with {fn} the level occupation numbers, such that fn ∈ {0, 2} to take into account the spin-
degeneracy16. Each sum runs overs all the states. The corresponding screened Coulomb poten-
tial, denotedW0, is then computed via Eq.(1.120d). This leads to Σ(1, 2) = iG0(1, 2)W0(2, 1+),
giving the name to this approach. Finally, the Lehmann amplitudes {fn(r)} are approximated
by the mean-field eigenstates

{
ϕ0

n(r)
}
. Projecting onto

〈
ϕ0

n

∣∣, the QP equation (1.95) becomes

εn = ε0
n +

〈
ϕ0

n

∣∣∣Σ(εn) − VXC
∣∣∣ϕ0

n

〉
. (1.134)

The self-energy depending on the QP energy εn we want to compute, this equation requires
a self-consistent solution. Such an approach, based only on one iteration of the Hedin’s
equation, can present a significant dependence on the initial guess, namely on the mean-field
values

{
ε0

n, ϕ
0
n(r)

}
[14]. This is illustrated in Figure 1.11, where the fundamental gap in gas

phase of the fullerene C60, one of the central molecule of my thesis, is computed for different
methods. Starting from a KS-DFT mean-field calculation, with a hybrid functional PBEh(α)
(see section 1.3.1.3 page 35), the gap is computed with respect to the fraction of exact
exchange α. Calculations are done with the Gaussian basis def2-TZVP, and its corresponding
Resolution of the Identity (RI) basis def2-TZVP-RI (see section 1.3.2.10 for more information
about technical details). The KS-DFT gap, represented by blue dots, shows a linear trend,
going from 1.7 eV to 7.0 eV, highlighting the difficulties of this method to predict a value
close to the experimental reference of 4.9 eV [86] (dashed line). In the same time, the G0W0
approach (orange dots) leads to results in better agreement with the experimental value. The
error is at most 0.7 eV, with 1.1 eV between its two extreme predicted values.

To reduce the dependency of the results on the initial guess, one possibility is to reach
self-consistency in the GW Hedin’s equation [87–94]. This also cures further problems
associated with multiple QP solutions [95, 96]. However, a fully self-consistent procedure is
computationally expensive. One approximate solution consists into performing self-consistency
only on the QP energies {εn}, leading to the evGW approach [18, 92, 97–99] which is an
eigenvalue-self-consistent scheme. In this evGW approach, after the first G0W0 iteration,
the new QP energies {εn} are kept to replace the initial energies

{
ε0

n

}
in the definition of

G0 (1.132). The eigenfunctions
{
ϕ0

n(r)
}

are kept the same. Thanks to this new G0, a new
loop of Hedin’s equation is completed, leading to new QP energies. The process is iterated
until convergence of these energies. This approach has led to improvements in the predicted
fundamental gap for molecular systems [18, 100]. In Figure 1.11, the amplitudes of variation
of the gap of a C60 at the evGW level with 6 iterations, represented by green dots, decreases
to 0.4 eV, with a maximal error of 0.5 eV.

As stated before, this graph also shows the tendency of the static COHSEX approach
(red dots) to overestimates the fundamental gap, with a minimal error of 0.5 eV.

After this presentation of the different GW approaches, I would like to give some details
about the implementation of the code I have used and whose I developed some parts during
my thesis.

16It should be noticed that we restrict ourselves only to spin-independent Hamiltonian, like Eq.(1.79).
This leads to G(1, 2) = δσ1,σ2 G(r1, t1, r2, t2) [72]. Therefore, χ0 is also diagonal with respect to the spin.
In this context, Eq.(1.133) appears as a shortcut notation for χ0(r1, r2; ω) =

∑
σ

χ0(r1, σ, r2, σ; ω), leading
in particular to fn ∈ {0, 2} for spin-paired system. Such a shortcut, which embeds the spin summation, is
particularly useful in Eq.(1.120d). This enables us to directly replace

∫
d(3, 4) by

∫
dr3dt3dr4dt4 [83].
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Figure 1.11: Fundamental gap (eV) of a C60 in gas phase, with respect to the part of exact
exchange used in the exchange-correlation functional PBEh(α). KS-DFT calculations are
done with the def2-TZVP basis, while GW calculations are done using our Gaussian basis
GW code beDeft with the RI basis def2-TZVP-RI (see section 1.3.2.10 for more technical
details). Experimental value comes from [86]. Inset: symbolic representation of a C60.

1.3.2.10 Implementation in beDeft

e-

e

Figure 1.12: Logo of
beDeft, our Gaussian-
basis GW/BSE code
developed in our group.

All the GW calculations and developments presented in this
thesis have been done in the massively-parallel Gaussian-basis
GW/Bethe–Salpeter Equation (BSE) code Beyond Density-
Functional Theory (beDeft) [78, 101], a rewriting and ex-
tension of the Fiesta code [7, 10, 18, 102, 103]. This code,
whose logo is depicted in Figure 1.12, has been developed in
our group for calculations on non-periodic finite size systems.
An insight into a typical input file, with the main methods
developed during this thesis, is given in appendix C page 167.

Resolution of the Identity (RI): Our code adopts a RI
formalism [104–106] where the orbitals products

{
ϕ0

nϕ
0
m

}
, ap-

pearing for example in the definition of χ0 Eq.(1.133), are
expressed over a Gaussian auxiliary basis set {P}:

ϕ0
n(r)ϕ0

m(r) RI≃
∑
P

FP (ϕ0
nϕ

0
m)P (r). (1.135)
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Diverse choices are possible for the coefficients {FP } [106], and during this thesis, unless
explicitly mentioned, I use the so-called Coulomb-fitting approach (RI-V) [107] such that

FP (ϕ0
nϕ

0
m) =

∑
Q

[
V−1

]
P Q

(
Q∥ϕ0

nϕ
0
m

)
. (1.136)

V−1 is the inverse of the auxiliary basis Coulomb matrix of coefficients [V]P Q = (P∥Q),
with (·∥·) the Coulomb integral. As we restrict ourselves only to finite-size systems, without
magnetic field, the Gaussian auxiliary functions {P} can be taken to be real, as well as the
Molecular Orbitals (MOs)

{
ϕ0

n

}
. This auxiliary basis set globally follows the same rules as

the ones developed for the basis sets used at the KS-DFT level in section 1.3.1.5 page 38.
However, we consider only auxiliary basis sets developed in terms of cubic harmonics (and not
solid harmonics). Using the Cartesian coordinates such that r = (x, y, z), primitive auxiliary
Gaussian Type Orbitals (GTOs) are given by

Pnx,ny ,nz ,ζ,I(r) = ℵnx,ny ,nz ,ζ(x−XI)nx(y − YI)ny (z − ZI)nz exp
(
−ζ|r − RI |2

)
. (1.137)

RI corresponds to the position of the Ith atom. (nx, ny, nz) are natural numbers, ℵnx,ny ,nz ,ζ

a normalization factor and ζ is a real positive number controlling the width of the Gaussian
part. Such auxiliary basis sets have been optimized for each standard Gaussian KS basis set,
as for example the “def2-TZVP-RI” [108–110] associated to the corresponding “def2-TZVP”
Karlsruhe basis sets, or are more universal as the Coulomb fitting auxiliary basis developed
by Weigend [111]. They can also be found in the Basis Set Exchange website [61].

While the dimension of the product space spanned by the KS orbitals products
{
ϕ0

nϕ
0
m

}
grows formally as O(N2), with respect to the number of electrons N , the locality of GTOs
leads in practice to a linear growth O(N) in terms of system size. The auxiliary basis set
exploits this fact by further reducing the prefactor associated to this linear growth. As an
example, the prefactor associated to the number of non-zero KS basis product elements with
respect to the KS basis size would be 200–300, while the auxiliary basis is only 3–4 times the
size of this latter. With such a RI, the most expensive steps of a GW calculation becomes
the computation of χ0 of Eq.(1.133) which scales as O(N4) [14].

Then, one important step is the computation of the frequency integral (1.122).

Frequency integral: To compute such an integral, beDeft relies on a Contour Deformation
(CD) plus an Analytic Continuation (AC) approaches [78, 112, 113]. The CD method
transforms the integral along the real axis as a contour integral along the closed curve C
of Figure 1.13, in the limit R → ∞. Defining Wscr = (W − V ) the screening potential,
Eq.(1.122) becomes17

ΣC(r1, r2; ε) = − 1
2π

∫ +∞

−∞
dωG(r1, r2; ε+ iω)Wscr(r1, r2; iω)

−
occ∑

i

ϕ0
i (r1)ϕ0

i (r2)Wscr(r1, r2; εi − ε)Θ(εi − ε)

+
unocc∑

a

ϕ0
a(r1)ϕ0

a(r2)Wscr(r1, r2; εa − ε)Θ(ε− εa),

(1.138)

17Lehmann amplitudes are replaced by mean-field eigenfunctions to mimic real calculations.



58 Chapter 1. Theoretical background and methodology

Figure 1.13: Schematic representation of the poles of G and W in the complex plane. C is
the complex contour, potentially enclosing poles of G(ω + ε) in the first or third quadrant
(such that Re(ω) · Im(ω) > 0), used for the CD approach.

with Θ the Heaviside distribution, and i/a denoting the occupied/unoccupied states, respec-
tively. Thanks to the absence of imaginary poles of Wscr (see Eq.(1.124)), the numerical
integration over the imaginary axis can be performed with a few quadrature points. In
practice, only nω = 12 imaginary frequencies {iω} are used to compute such an integral.
The residues18 Wscr(r1, r2; εn − ε) appearing in Eq.(1.138) are computed through an AC of
Wscr to the real axis. During all this thesis, unless explicitly mentioned, the AC is required
only for states with energy close to the gap and is performed directly from the nω imaginary
frequencies. Such an AC leads to no-extra cost. If required, additional complex frequencies,
parallel to the real axis with an imaginary part, can be added to improve the accuracy of the
AC [78]. This can be used for example for core states.

At this step, it should be noticed that each imaginary frequency iω of the quadrature
requires the calculation of the corresponding Wscr(iω), and therefore of χ0(iω). The com-
putation of this latter is the only step scaling as O(N4). On the other hand, in the static
COHSEX approximation, only the static limit Wscr(ω = 0), and therefore χ0(ω = 0), is
required. Therefore, for systems large enough, beDeft leads to static COHSEX calculations
which are around nω times cheaper than the corresponding G0W0 calculations. In practice,
this represents an order of magnitude of difference.

An additional possibility to speed-up calculations is to reduce the scaling of the computa-
tion of χ0 via a space-time approach.

Cubic-scaling GW : beDeft offers the possibility to run GW calculations with a cubic-
scaling thanks to a space-time approach [101, 114]. The scaling reduction of the computation
of χ0 comes from its calculation on a Real Space (RS) grid {rk}, at imaginary times {iτ}. To
better understand this method, it should be noticed that the Eq.(1.133) of the non-interacting

18W is an even function with respect to ω, as shown by Eq.(1.124).
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electron susceptibility can be rewritten thanks to the RI

χ0(r1, r2;ω) RI≃
∑
P,Q

[X0(ω)]P QP (r1)Q(r2), (1.139)

with coefficients such that

[X0(ω)]P Q =
∑
m,n

(fm − fn) FP (ϕ0
mϕ

0
n)FQ(ϕ0

mϕ
0
n)

ω − (ε0
n − ε0

m) + iη × sgn(ε0
n − ε0

m) . (1.140)

The first step is to disentangle the occupied and unoccupied MOs in the weight factors{
FP (ϕ0

mϕ
0
n)
}
. This is done via a separable RI on an optimized RS grid {rk} such that

FP (ϕ0
mϕ

0
n) =

∑
k

[M]P kϕ
0
m(rk)ϕ0

n(rk), (1.141)

where the matrix M, of coefficients {[M]P k}, is computed via a least-square problem, with
O(N3) operations [114]. This leads to

[X0(ω)]P Q =
∑
k,k′

[M]P kχ0(rk, rk′ ;ω)[M]Qk′ . (1.142)

As explained before, in practice χ0 needs to be evaluated only on the imaginary axis. Thus,
using the Laplace transform [115, 116]

1
iω − (ε0

a − ε0
i ) − 1

iω + (ε0
a − ε0

i ) = −2
∫ +∞

0
dτ cos(ωt)e−(ε0

a−ε0
i )τ (1.143)

where a/i index unoccupied/occupied states, respectively, this leads to the computation of
χ0 in imaginary time, such that

χ0(rk, rk′ ; iτ) = 2G<(rk, rk′ ; iτ)G>(rk′ , rk; −iτ). (1.144)

These propagators G< and G> are given by [114]

G<(rk, rk′ ; iτ) = i
occ∑

i

ϕ0
i (rk)ϕ0

i (rk′)e(ε0
i −µ)τ (1.145a)

G>(rk′ , rk; −iτ) = −i
unocc∑

a

ϕ0
a(rk′)ϕ0

a(rk)e−(ε0
a−µ)τ (1.145b)

with τ > 0 and µ the chemical potential19. Occupied and unoccupied MOs are thus totally
disentangled. The RS grid scaling as O(N), the required G<(iτ) and G>(−iτ) can be
computed with O(N3) operations, as well as χ0(iτ) of Eq.(1.144). Finally, the representation
of χ0 in the auxiliary basis set, given by Eq.(1.142), can also be computed with O(N3)
operations thanks to matrix products and integral quadrature.

Such an approach leads to an accuracy at the meV level for QP energies, with respect to
a more traditional Coulomb-fitting RI-V approach [101].

Eventually, once all the different operators are calculated, one of the last step consists
into solving the QP equation (1.134).
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Figure 1.14: Spectral function An(ω) of the TCNQ molecule, for n = HOMO and a G0W0
calculation on top of a KS calculation with a PBE0 functional. An(ω) is computed along
axes parallel to the real axis, such that Im(ω) ∈ {10, 50, 200, 400} meV. The blue dashed
line corresponds to the fit given by the Eq.(1.149). The QP energy εQP

n , the renormalization
factor ZQP

n and the lifetime ΓQP
n appear as independent of the choice of the line parallel to

the real axis, aiming at fitting the calculated spectral function. Graphs adapted from [78].

Solving of the Quasiparticle (QP) equation: To solve such a QP equation, in practice
beDeft uses the diagonal part, in the KS basis set, of the spectral function A of Eq.(1.78)
page 44. More particularly, the diagonal parts of A and Σ − VXC are defined such that

An(ω) =
〈
ϕ0

n

∣∣∣A(ω)
∣∣∣ϕ0

n

〉
(1.146a)

Σn(ω) − VXC,n =
〈
ϕ0

n

∣∣∣Σ(ω) − VXC
∣∣∣ϕ0

n

〉
. (1.146b)

Neglecting the non-diagonal part of Σ − VXC, the Eq.(1.146a) is given by

An(ω) = 1
π

∣∣∣∣∣Im
[

1
ω − ε0

n − (Σn(ω) − VXC,n)

]∣∣∣∣∣. (1.147)

Using the equation (1.134), and having in mind that Σn(ω) is in general complex, An(ω) is
fitted by the following Lorentzian function [78]

Afit
n (ω) = 1

π

∣∣∣∣∣Im
[

ZQP
n

ω − (εQP
n + iΓQP

n )

]∣∣∣∣∣ with (ZQP
n , εQP

n ,ΓQP
n ) ∈ R3. (1.148)

ZQP
n is the renormalization factor, εQP

n the QP energy and ΓQP
n its inverse lifetime. As seen

in the definition of the spectral function (1.71) page 43, An(ω) is a sum of Dirac distributions.
The induced broadening of Afit

n , characterized by ΓQP
n , can be seen as the merging of many

peaks close enough in energy and centered around εQP
n [14]. This latter is associated to

the energy of the corresponding QP. The mean-field eigenstate
∣∣ϕ0

n

〉
being normalized, the

19Taking the reference of the energies
{

ε0
n

}
at the chemical potential, or Fermi level, µ ensures convergence

of Eq.(1.145) without any modification of Eq.(1.143).
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Figure 1.15: Same as in Figure 1.14, but for n = HOMO − 35.

frequency integral of the exact An(ω) should be equal to 1 thanks to Eq.(1.73). ZQP
n being

equal to the integral under the Lorentzian QP peak, it quantifies the validity of the QP
approximation to capture all the spectral weight. The part of An(ω) not described by such
a QP peak is called the incoherent or satellite structure and can be associated to collective
excitations of the system [48, 82]. At this step, it should be noticed that, contrary to the
poles of the Green’s function located on the real axis, the computed QP poles εQP

n + iΓQP
n are

complex and are no longer difference of exact eigenvalues of the N(±1)-body Hamiltonian
[14].

In practice, Afit
n (ω) is fitted along a ω axis parallel to the real axis, with a constant

imaginary part Im(ω), leading to [78]

Afit
n (ω) = ZQP

n

π

∣∣∣Im(ω) − ΓQP
n

∣∣∣(
Re(ω) − εQP

n

)2
+
(
Im(ω) − ΓQP

n

)2 . (1.149)

The impact of the choice of Im(ω) is shown in the Figure 1.14, through the example of the
Highest Occupied Molecular Orbital (HOMO) state of the TCNQ molecule.

For such a state, the QP peak is well-defined, with a pole separated from the others. This
leads to ZQP

n , εQP
n and ΓQP

n totally independent of the choice of Im(ω). The inverse lifetime
ΓQP

n vanishes, corresponding to the predicted behavior for states near the gap [78].

This influence of Im(ω) is also studied in the Figure 1.15, through the example of a
deeper state, namely the (HOMO − 35)th state of the same TCNQ molecule. A small value
of Im(ω) = 10 meV leads to a huge number of peaks, each one associated with a small value
of ZQP

n . Increasing the value of Im(ω) leads to a better defined QP peak. When such a value
is not too small, the 3 fitted coefficients are quite independent of this chosen imaginary part.
In practice, a value of Im(ω) = 100 meV is retained.
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1.4 Objectives

Finally, I would like to conclude this chapter by providing the main objectives of this thesis. As
highlighted before, the GW formalism is growing in popularity for the accurate description of
the electronic properties of condensed matter systems in solid-state physics and more recently
chemistry. Unfortunately, its application to complex systems of interest in nanosciences,
chemistry, or even biology, is hampered by the large associated computing time cost, in
particular in the case of disordered systems, or systems immersed in an opened environment
(a solvent, a molecular medium, an electrode, etc.). Therefore, in many situations, the studied
systems need to be divided into two parts, namely a subsystem of interest and its environment.
In general, this latter is not described at the same quantum level as the former.

Similarly to the ideas developed in section 1.1.3.2 page 29, the Polarizable Continuum
Model (PCM) [117, 118] corresponds to a quantum system embedded in a cavity described by
a linear homogeneous isotropic macroscopic dielectric constant. A better model of screening
inhomogeneities at short range can also be reached thanks to discrete polarizable models [119–
125]. In these approaches, denoted Quantum Mechanics (QM)/Molecular Mechanics (MM), or
QM/MMpol to highlight the polarizable character of the environment, each atom of this latter
is described by semi-empirical effective polarizable centers, such that the correct molecular
polarizability tensor or the macroscopic dielectric tensor of the environment in the low
frequency limit is well reproduced. The merging of the GW formalism with the PCM [6,
8] and discrete polarizable models [9–13] has been already tackled in our group before the
beginning of this thesis.

The goal of my thesis is to go further and to focus on the development of multiscale
techniques. The main objective is to merge high-level many-body treatments of the subsystem
of interest, namely using the GW formalism, with a simplified but fully ab initio description of
the electrostatic and dielectric environment beyond semi-empirical parameterized models.
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Résumé

Ce chapitre présente une approche pour effectuer des calculs GW pour un sous-système
quantique inclus dans un environnement polarisable discret de très grande taille, contenant
des centaines de milliers d’atomes. Ce dernier est traité au niveau totalement ab initio de
l’approximation de la phase aléatoire.

La partie 2.2 détaille les développements analytiques réalisés pour atteindre cet objectif.
Ce chapitre repose sur la méthode fragment, consistant à négliger le recouvrement orbitalaire
entre fonctions d’onde de différents sous-systèmes. Après une présentation de cette approche,
amenant à une susceptibilité électronique non-interagissante χ0 diagonale par blocs, nous
décrivons notre méthode de compression de la taille des sous-matrices associées aux frag-
ments de l’environnement. Cette réduction se traduit par un problème de régression de la
susceptibilité électronique interagissante, en phase gaz, des différents sous-systèmes. Nous
proposons une solution obtenue par minimisation sous contraintes dans laquelle les tenseurs de
polarisabilité de bas ordres sont exactement conservés pour chaque fragment. Nous détaillons
également notre méthode pour calculer une base de « polarisation » minimale, dans laquelle
sont exprimées les différentes matrices d’intérêt. L’ensemble de ces étapes permet de réduire
de façon drastique le coût de l’inversion de l’équation de Dyson associée au potentiel de
Coulomb écranté W , tout en préservant la description à courte comme à longue portée des
effets d’écrantage.

La partie 2.3 est dédiée à l’application de cette approche à des systèmes moléculaires
organiques, dans une approche ∆COHSEX. La méthode fragment est d’abord testée via
l’étude de systèmes à faible nombre de C60, pour lesquels l’approximation fragment peut être
abandonnée. La partie compression des matrices associées à l’environnement est validée par
l’étude d’amas sphériques de fullerènes, ainsi que d’une molécule de pentacène. Ceci nous
permet alors d’étudier des systèmes de grande taille, comprenant jusqu’à 202 020 atomes de
carbone, en moins de 10 000 heures CPU, à un niveau de base def2-TZVP. Ces résultats, sur
des systèmes de taille finie, sont alors couplés à des lois asymptotiques. Nous pouvons ainsi
calculer l’énergie de polarisation associée à un C60 dans un cristal infini à trois dimensions,
dans une surface, dans une sous-surface ainsi que dans un bloc à deux dimensions avec un
nombre variable de couches.
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Summary

In this chapter, we present a many-body GW formalism for quantum subsystems embedded
in discrete polarizable environments containing up to several hundred thousand atoms. These
latter are described at a fully ab initio random-phase approximation level.

Section 2.2 details the analytical developments done during this thesis to reach such
an objective. These developments are based on a fragment approximation, consisting in
neglecting the wavefunction overlap between different subsystems. After a presentation of
this approach, which results into a block-diagonal independent-electron susceptibility χ0, we
describe our compression method for the susceptibility blocks associated to fragments of
the environment. Such a reduction in size is made possible thanks to a fit procedure of the
interacting-electron susceptibilities, in the gas phase, of the different subsystems. Our scheme
preserves exactly the low order polarizability tensors through a constrained minimization
scheme, insuring the proper long-range reaction field. Our method leads to express the
susceptibility associated with each fragment into a very compact minimal “polarization” basis
set. This approach dramatically reduces the cost associated with inverting the Dyson equation
for the screened Coulomb potential W , while preserving the description of short to long-range
screening effects.

In section 2.3, such a method is applied to organic molecular systems, in a ∆COHSEX
approach. The fragment approximation is tested on systems made of a few numbers of C60,
for which calculations without the fragment approach can be afforded. The compression
scheme, for fragments in the environment, is validated through the study of spherical clusters
of fullerenes, as well as a pentacene molecule. Then, we can run calculations on large scale
systems, containing up to 202 020 carbon atoms, within less than 10 000 CPU hours, at
the def2-TZVP level. These results, on finite size systems, are then coupled to asymptotic
laws. They give access to the polarization energy associated to a C60 in a bulk, surface and
subsurface crystals, as well as in a slab structure with varying number of layers.
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2.1 Introduction

As presented in chapter 1, the GW formalism is particularly suited to capture the polar-
ization effects created by an environment. Such phenomena can have a large impact on
electronic energy levels, and can lead to renormalizations of some electronvolts. However,
the environment can be large and complex, and can hardly be described by such an ab initio
formalism because of large computation time and memory footprint requirements. Even
if recent studies showed that GW calculations with cubic or even lower scaling could be
achieved, [101, 127–137], such a formalism has still difficulties to capture all the dielectric,
or screening, effects associated with systems containing thousands of atoms. Polarization
energies converging slowly with the size of the studied system, brute force approaches are
impossible for large systems. As described in section 1.4 page 62, this has led to Quantum Me-
chanics (QM)/Molecular Mechanics (MM) techniques. The part of interest is described at the
GW level, while the environment can be described by a Polarizable Continuum Model (PCM)
or discrete polarizable models. Yet, these approaches are based on empirical values for the
macroscopic dielectric constant of the environment, or its molecular polarizability tensors.

The main objective of this chapter is to go further, and to develop a fully ab initio method
to run embedded GW calculations on hundreds of thousands of atoms in the environment.
Following the idea of the QM/MM approaches, we want to split our system into two parts,
namely the subsystem of interest and its environment. The central subsystem is treated at
the GW level, and the environment relies on a simpler representation, based on the fully ab
initio Random-Phase Approximation (RPA). Such an approach is entitled QM/QM’. This
chapter is devoted to the presentation of its analytical formulation, and its corresponding
application to crystal of fullerenes.

More particularly, we want to calculate the Quasiparticle (QP) energies for a “cen-
tral” molecule (a fullerene) surrounded by hundreds of other molecules. Calculations will
be performed here at the non-self-consistent static Coulomb-Hole plus Screened-Exchange
(COHSEX) level. We first adopt the fragment approximation that neglects the overlap
of wavefunctions between molecules, labeled fragments. In such an approximation, the
(non-self-consistent) Green’s function of the central molecule is the same as that of the
isolated (gas phase) Kohn-Sham one. Further, the non-interacting susceptibility of the full
system χ0 is block-diagonal, and can be calculated with a O(N) scaling, with respect to
total number of electrons N . However, the inversion of the Dyson equation, required to
get the restriction of the screened Coulomb potential W to the central molecule of interest,
remains prohibitive. This problem is bypassed by expressing the susceptibility associated
with each molecule (fragment) of the environment into a very compact “polarization” basis
that preserves very faithfully the restriction of W onto the central molecule of interest. The
polarization energies are then calculated at the ∆COHSEX level, namely, as the variation of
the static COHSEX energy levels from the gas phase to the dense environment. The impact
on the polarization energies of neglecting the dynamical nature of the self-energy will be
explored in the chapter 3.
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2.2 Analytical developments

2.2.1 Fragment approach

Fragment

approach

Figure 2.1: Schematic representation of the fragment approximation, where each C60 is
considered as one fragment. Instead of considering these 7 C60 as one entire system, the
overlap between wavefunctions of different molecules is neglected, but each fragment is still
interacting with the others via the bare Coulomb potential V entering the Dyson equation
for W .

As presented in section 1.3.2.10 page 56, the most expensive step of a GW calculation,
for a system large enough, is the calculation of the independent-electron susceptibility χ0. To
reduce its O(N4) scaling with respect to the number of electrons N , we resort to a fragment
approximation. As depicted in Figure 2.1, such a method consists into neglecting the
wavefunction overlaps between weakly interacting subsystems. These fragment or subsystem
approaches have been recently implemented at the GW and Bethe–Salpeter Equation (BSE)
levels for systems based on weakly interacting subunits like molecular systems [138–143],
interfaces [17, 144–146] or two-dimensional (2D) materials [147, 148].

To better understand the advantages of such an approximation, let us recall that our
GW code Beyond Density-Functional Theory (beDeft) is based on a Resolution of the
Identity (RI) formalism as presented in section 1.3.2.10. χ0 is given by

χ0(r1, r2;ω) RI≃
∑
P,Q

[X0(ω)]P QP (r1)Q(r2), (2.1)

with coefficients such that

[X0(ω)]P Q =
∑
m,n

(fm − fn) FP (ϕ0
mϕ

0
n)FQ(ϕ0

mϕ
0
n)

ω − (ε0
n − ε0

m) + iη × sgn(ε0
n − ε0

m) . (2.2)

X0(ω) is a matrix and corresponds to the representation of χ0 in the auxiliary basis set {P}.
In particular, the equation (1.136) page 57 shows that the fitting coefficients FP (ϕ0

mϕ
0
n) are

null when the two Kohn-Sham (KS) Molecular Orbitals (MOs) ϕ0
m and ϕ0

n do not overlap. By
hypothesis, this is the case for two MOs of two different fragments. Moreover, each product
(ϕ0

mϕ
0
n) is fitted only on the auxiliary basis of its corresponding fragment. The full auxiliary

basis set of the total system being the direct sum of basis sets of its subsystems, the joint
contribution of two different fragments to Eq.(2.2) is equal to zero. In other words, the
matrix X0(ω) is block diagonal. Its (I)th block, denoted X(I)

0 (ω), corresponds to the gas phase,
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i.e. isolated, non-interacting susceptibility of the (I)th fragment. The total non-interacting
Green’s function G0 is also the sum of the gas phase non-interacting Green’s functions G(I)

0 .
To understand the impact of this approach, we define X(ω) the representation of the

full system interacting susceptibility χ in the total auxiliary basis set, and V the matrix of
Coulomb interactions in the same basis set. Its coefficients are given by [V]P Q = (P∥Q),
with (·∥·) a Coulomb integral. In such a basis, the (Fourier transform of the) Dyson equation
(1.109) page 48 can be rewritten

X(ω) = X0(ω) + X0(ω)VX(ω). (2.3)

Labeling V(IJ) the matrix equal to Coulomb interactions between the auxiliary basis sets of
fragment (I) and (J), and zero otherwise, this equation is equivalent to

X(ω)−1 = X0(ω)−1 −
∑
I,J

V(IJ). (2.4)

Let Xg(ω) be the block-diagonal matrix such that its (I)th block is equal to X(I)
g (ω), namely

the gas phase (isolated) interacting susceptibility of the (I)th fragment. Such a block is
given by

X(I)
g (ω)−1 = X(I)

0 (ω)−1 − V(I), (2.5)

with V(I) the matrix of the Coulomb interactions in the auxiliary basis set of the (I)th

fragment. Thus, the equation (2.4) can be rewritten

X(ω)−1 = Xg(ω)−1 −
∑
I ̸=J

V(IJ), (2.6)

where only the off-diagonal Coulomb blocks V(IJ), with I ̸= J, appear explicitly. The Coulomb
interactions inside each fragment are already taken into account, in the diagonal blocks of
the gas phase interacting susceptibility Xg(ω).

In such a fragment approximation, calculating all the diagonal blocks X(I)
0 (ω), or equiv-

alently all the X(I)
g (ω) blocks, scales as O(N). In other words, such a step scales linearly

with respect to the total number of fragments. This represents an important saving with
respect to the initial O(N4) scaling. The bottleneck becomes now the inversion of the Dyson
equation (2.6) with its O(N3) scaling. Indeed, such an equation can be rewritten

X(ω) = Xg(ω) + Xg(ω)VoffX(ω), (2.7)

with Voff a dense matrix whose diagonal blocks are null, such that

Voff =
∑
I̸=J

V(IJ). (2.8)

Due to the off-diagonal blocks V(I ̸=J), the full interacting susceptibility X(ω), as well as the
corresponding screened Coulomb potential matrix W(ω) = V + VX(ω)V, are not block-
diagonal. Therefore, their calculations, for large systems, require large memory footprints
and computation times. As such, the largest fragment-based GW calculations done until
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Figure 2.2: (Left): Symbolic representation of the fragment approach, through the total
gas phase block-diagonal interacting susceptibility Xg(ω). (Right): Representation of the
same matrix, but after compression of the diagonal blocks associated with fragments in the
environment, namely the shaded C60. The block associated to the fragment of interest (I = 0)
is not compressed, and keeps the same size as before.

now, to the best of our knowledge, was done on 595 benzene molecules (3570 non-hydrogen
atoms) in the case of molecular systems [140].

To tackle such a problem, and to be able to study bigger systems, we have developed an
algorithm to optimally reduce the size of each diagonal block X(I)

g (ω), and therefore the final
size of the matrices to invert.

2.2.2 Constrained compression of X(I)
g (ω)

To give some orders of magnitude of the current problem, it should be noticed that the def2-
TZVP-RI auxiliary basis set, associated to the triple-zeta def2-TZVP basis set, is composed
of 95 orbitals for atoms like B, C, N or O. Such a dimension leads for environment of the
order of 105 atoms, which is the targeted size during this thesis, to matrices X or W of
the order of 107 in size. Using double precision, such matrices would need of the order of
a petabyte of memory to be stored, which is currently nearly inaccessible. Thus, we have
developed new methods to reduce the size of the matrices of interest.

More particularly, for the fragment of interest whose we want to compute its GW QP
energies, we keep its full auxiliary basis set. However, for the other fragments of the
environment, we would like to reproduce as best as possible their meaningful physical effects.
Namely, we want to conserve their contribution to the screening potential Wscr = V χV

corresponding to the induced dipoles, quadrupoles, etc., in response to a charged excitation of
the system of interest. In other words, what we want to calculate is the restriction
of W to the central fragment of interest, not the full details of this matrix onto
the fragments in the environment. This may be done without the full details of the
susceptibility of these latter, in their auxiliary basis sets {P}. Therefore, we search for a
compact representation of their gas phase interacting susceptibility χ(I)

g (ω), leading to a total
gas phase interacting susceptibility Xg(ω) as represented in Figure 2.2. In other words,
for each fragment (I) of the environment, we look for a lower-rank approximation χ̃

(I)
g (ω) to



70 Chapter 2. Embedded GW formalism in a fully ab initio QM/QM’ approach

χ
(I)
g (ω), namely a model susceptibility, such that

χ(I)
g (r1, r2;ω) RI≃

∑
P,Q

[
X(I)

g (ω)
]

P Q
P (r1)Q(r2) (2.9)

MODEL≃ χ̃(I)
g (r1, r2;ω) =

∑
γ,γ′

[
X̃(I)

g (ω)
]

γγ′
γ(r1)γ′(r2). (2.10)

Following previous models of induced charges and dipoles of QM/MM techniques [149], the
small polarization basis set {γ} could be a minimal Gaussian (sp3) four-orbitals basis per
atom. However, we have decided to set up a more automated way to compute such a basis,
as explained in section 2.2.4 page 74.

Once the polarization basis {γ} is given, we compute the coefficients of the model suscep-
tibility X̃(I)

g (ω) via a minimization problem. Denoting X̃(I)
m (ω) the matrix of minimization

variables for a given isolated fragment (I), the error on its gas phase interacting susceptibility
is given by

∆χ(I)
g (r1, r2;ω) =

∑
γ,γ′

[
X̃(I)

m (ω)
]

γγ′
γ(r1)γ′(r2) −

∑
P,Q

[
X(I)

g (ω)
]

P Q
P (r1)Q(r2), (2.11)

which is associated to the following error on the screening potential

∆W (I)
scr(r1, r2;ω) =

∫
dr3 dr4 V (r1, r3)∆χ(I)

g (r3, r4;ω)V (r4, r2). (2.12)

The required matrix X̃(I)
g (ω) minimizes such an error through a basis set of test functions

{t}, via the following equation

X̃(I)
g (ω) = argmin{[

X̃(I)
m (ω)

]
γγ′

}∑
t,t′

∣∣∣ 〈t∣∣∆W (I)
scr(ω)

∣∣t′〉∣∣∣2. (2.13)

Since this error on the screening potential is measured on a basis set of test functions, we
can design this latter to specifically probe some characteristics of W (I)

scr(ω) we would like to
preserve.

Our first attempt was to take, for each fragment (I), its test basis set {t} equal to its
auxiliary basis set {P}. However, this choice leads to rather poor results, as detailed in
section 2.3 page 75. Indeed, such a model susceptibility X̃(I)

g (ω) is not designed to perform a
GW calculation directly on the fragment (I) itself. As shown by Eq.(2.6) or Eq.(2.7), such a
block aims at computing the total interacting susceptibility X(ω) which couples all fragments,
to perform, in the end, a GW calculation only on the fragment of interest (I = 0). As such,
the fit of X̃(I)

g (ω) should reproduce, as best as possible, the effects of the fragment (I) on the
other ones. This should be done for its nearest neighbors up to those at long-range, for which
interactions are dominated by low order momenta of its polarizability tensor.

To set up a simple method, we have decided to keep the test basis set {t} localized on
atoms of the fragment (I) for which we compute its model susceptibility. This enables a
compression of its susceptibility X(I)

g (ω) independent of the reduction for the other fragments.
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The test basis set {t} is designed to probe the effects of the reference susceptibility at short
to middle range. To achieve this goal, we develop test sets uniformly sampling the Coulomb
interaction. Starting from a set of functions {t0}, we orthonormalize it with respect to the
Coulomb norm, leading to the test basis {t1}. Namely, writing V0 the Coulomb matrix such
that its coefficients are equal to (t0∥t′0), the ith vector’s coordinates of {t1}, in the basis set
{t0}, is given by the ith column of V−1/2

0 . This basis set is such that (t1∥t′1) = δt1,t′
1
, with

δt1,t′
1

the Kronecker delta. Two of such sets are created:

(i) one spanning the auxiliary basis set, namely such that {t0} = {P};

(ii) another one {td1}, based on a set of diffuse orbitals {td0}. They aim at probing the
effects of the screening potential W (I)

scr(ω) in the vicinity of the fragment (I), where
other fragments of the environment1 should be located. The basis set {td0} consists of
atom-centered (s,p,d,f,g) diffuse Gaussian orbitals with, for sake of simplicity, the same
e−ζr2 radial part.

The final test basis set {t} is the direct sum of {t1} and {td1}. The first set is down-weighted
with respect to the second one, by a factor 1/50, to strengthen the influence of the diffuse
functions during the compression fitting process.

Moreover, to preserve the long-range interactions created by a given fragment (I), we
enforce low order Cartesian momenta of the interacting susceptibility via exact constraints of
the type〈

xmynzp
∣∣∣∆χ(I)

g (ω)
∣∣∣x′ m′

y′ n′
z′ p′〉 =

∫
dr dr′ xmynzp∆χ(I)

g (r, r′;ω)x′ m′
y′ n′

z′ p′ = 0. (2.14)

We denote lmax the maximal order m+n+ p and m′ +n′ + p′ enforced for a specific fragment.
For example, the choice lmax = 1 leads to the preservation of the fragment neutral monopole,
as well its dipolar polarizability tensor. Along with the adding of diffuse functions in the test
basis set, such a constraint should ensure an accurate reproduction of the screening potential
W

(I)
scr(ω) in the vicinity of the considered fragment, as well as at long-range.

At this step, I had to derive equations to solve the minimization problem Eq.(2.13).

2.2.3 Minimization problem for X̃(I)
g (ω)

This subsection is devoted to the computation of the model susceptibility X̃(I)
g (ω) solution

of the equation (2.13), under constraints of type (2.14). From now on and for compactness,
I drop the exponent (I) because I focus only on one fragment, and the frequency index ω.
Results can be computed separately for each required frequency.

Let B be the Coulomb matrix between the auxiliary basis and the test basis, such that its
coefficients are (P∥t), where (·∥·) indicates a Coulomb integral. Let Γ be the Coulomb matrix
between the polarization basis and the test basis, with coefficients (γ∥t), and E (respectively
R) the overlap matrix between the auxiliary basis set (respectively the polarization basis

1I recall that the compression for the fragment (I) is done independently of any other fragment (J).
Everything happens as if these latter did not exist.
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set) and the constraint basis, with coefficients ⟨P |xmynzp⟩ (respectively ⟨γ|xmynzp⟩). The
equation (2.13) can be reformulated as

X̃g = argmin
X̃m

∣∣∣∣∣∣∣∣B†XgB − Γ†X̃m Γ
∣∣∣∣∣∣∣∣2, (2.15)

with ∥ · ∥ the Frobenius norm, such that ∥A∥2 = Tr
(
A†A

)
, with Tr(A) denoting the trace of

the matrix A. Such a minimization is performed under the constraints of Eq.(2.14), which
can be rewritten

R†X̃mR = E†XgE. (2.16)

Such a Nγ ×Nγ matrix2 X̃g is computed via feasible solutions, namely matrices satisfying
all constraints enforced by the equation (2.16). Then, among all such feasible solutions, we
compute the optimal one, which minimizes Eq.(2.15).

To go further, one should introduce the Singular Value Decomposition (SVD) of matrices
[150]. Namely, for a given matrix M of size m× n, and of rank r, its SVD is a factorization
of the type

M = UMΣMV†
M, (2.17)

where UM and VM are m×m and n× n, respectively, complex3 unitary matrices. ΣM is a
m×n rectangular diagonal matrix with real and positive values on its diagonal. Such diagonal
elements σM

i = [ΣM]ii are called the singular values, and the number of strictly positive
value is equal to the rank r of M. They are ordered such that σM

1 ≥ σM
2 ≥ · · · ≥ σM

r > 0.
The compact SVD is a variant, where only the r first columns of UM and VM are kept. ΣM
becomes a r × r invertible square matrix, containing only the strictly non-negative singular
values. Such a SVD also leads to the definition of the pseudo inverse M⊕ of the matrix M,
such that

M⊕ = VMΣ⊕
MU†

M, (2.18)

where Σ⊕
M is a diagonal n×m real rectangular matrix such that

[
Σ⊕

M

]
ii

=


1

σM
i

if σM
i > 0

0 if σM
i = 0.

(2.19)

Concerning the initial problem of constrained minimization, one can define, for the sake
of compactness, the two following matrices O = E†XgE and Z = B†XgB. Assuming that the
rank of R is equal to the number of constraints Ncstr

4, the compact SVD of R = URΣRV†
R

is such that V†
R and ΣR are invertible. The equation (2.16) becomes equivalent to

U†
RX̃mUR = Σ−1

R V†
ROVRΣ−1

R . (2.20)
2In equations (2.15) and (2.16), matrices B, Γ, R and E are real because in finite size system, without

magnetic field, MOs can be taken to be real. So the computation of X̃g can be reduced to two identical and
independent problems of minimization under constraints, namely on one side its real part, and on the other
side its imaginary part. In the following paragraphs of this chapter, for the sake of simplicity and compactness,
X matrices (with different subscripts and superscripts) are an abbreviation for their real or imaginary parts.

3Unless explicitly mentioned, we restrict ourselves only to real matrices M, and therefore also to real
orthogonal matrices UM and VM.

4In practice, Ncstr ≤ 10 while Nγ ≥ 60 and the basis sets are such that this hypothesis is valid.
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Inverting the rectangular matrix UR requires considering the nullspace of U†
R, of which we

write an orthonormal basis as the columns of the Nγ × (Nγ − Ncstr) matrix K such that
U†

RK = 0. Under these considerations, X̃m has the form

X̃m = URΣ−1
R V†

ROVRΣ−1
R U†

R + KM1 + M2K†
, (2.21)

where M1 and M2 are unknown matrices. So far, there are some redundancies in the M1
and M2 terms which can be lifted by projection on UR and K orthogonal supplementary
subspaces. At the end, defining C = Σ−1

R V†
ROVRΣ−1

R , and using the fact that both O and
Z are symmetric, Eq.(2.21) becomes

X̃m = URCU†
R + KA1K† + URA2K† + KA†

2U†
R, (2.22)

where A1 and A2 are computed via the equation (2.15). Assuming a symmetric X̃m leads to
A†

1 = A1 .
Such a minimization problem (2.15) can be solved thanks to methods of matrix calculus,

and more particularly the derivative of the trace function with respect to a matrix. For a
given scalar function f such that

f : Rm×n −→ C
X 7−→ f(X), (2.23)

namely a complex-valued function taking as argument a real matrix, its derivative with
respect to X is a m× n complex matrix such that its coefficients (i, j) is given by [151][

∂f

∂X

]
ij

= ∂f

∂([X]ij) . (2.24)

Defining H(A1,A2) =
(
Z − Γ†X̃m Γ

)†(
Z − Γ†X̃m Γ

)
, where X̃m is given by Eq.(2.22),

and extending the definition (2.24) to a scalar function of two matrices, the equation (2.15)
leads to derivative conditions

∂ Tr(H(A1,A2))
∂A1

= 0 (2.25a)

∂ Tr(H(A1,A2))
∂A2

= 0 (2.25b)

I derive in appendix A.1 page 157 the solutions to this problem, leading to an optimal solution
X̃g. Defining the matrices P such that P =

(
K†Γ

)⊕
K†, and L such that L = R⊕[INγ − ΓP

]
,

where INγ is the identity matrix of size Nγ , such an optimal solution is given by

X̃g = L†OL + P†ZΓ⊕ + (Γ⊕)†ZP − P†ZP . (2.26)

The particular situation where no constraints are enforced is equivalent to the case where
R = 0, L = 0, K = INγ and P = Γ⊕. The formula (2.26) simplifies thus into

X̃g = (Γ⊕)†ZΓ⊕. (2.27)
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After having derived the formula (2.26), I have also implemented this constrained min-
imization procedure into our code beDeft. I had to understand the structure of this
massively-parallel code, which follows the object-oriented paradigm, and then to develop
new attributes and methods. I developed new routines, from methods for the user-interface
to choose different parameters, to implementation of the formula (2.26) via linear algebra
methods essentially based on the Scalable Linear Algebra PACKage (ScaLAPACK) library
[152], by way of methods dedicated to the creation and storage of the different involved basis
sets, matrices. . .

So far, the choice of the polarization basis set {γ} has been left arbitrary. Contrary to
the induced charge-and-dipole models used in semi-empirical QM/MM techniques, we follow
here a more automated route, as detailed in the following subsection.

2.2.4 Minimal effective polarization basis set {γ}

We have decided to compute the polarization basis set by a generalized minimization process,
that is we include {γ} in the minimization problem via

{γ} = argmin
{γm}

 min{[
X̃(I)

m (ω)
]

γmγ′
m

}∑
t,t′

∣∣∣ 〈t∣∣∆W (I)
scr(ω)

∣∣t′〉∣∣∣2
. (2.28)

In practice, the γ functions are expressed in the auxiliary basis set {P} associated with
fragment (I), namely

γ(r) =
∑
P

CγPP (r). (2.29)

The {CγP } coefficients are now the minimization variables. In practice, the only input choice
is now the number Nγ of γ(r) polarization vectors. It should be noticed that formally, setting
Nγ to the dimension of the original auxiliary basis set leads to a model susceptibility X̃g(ω)
strictly equal to the reference Xg(ω). Such an equality holds independently of the choice of
the test basis or the constraints. This somewhat complex minimization problem is tackled by
iterating over two distinct steps:

(i) inner optimization of the X̃(I)
g (ω) matrix elements at fixed {γ} via Eq.(2.13), which is

solved exactly through linear algebra;

(ii) outer optimization of the {CγP } coefficients at fixed X̃(I)
g (ω) matrix elements which is

done using gradient descent techniques.

More details about this last step are given in appendix A.2 page 159.
In the simplest case where test functions {t} only span the auxiliary basis set {P}, and

in the absence of constraint, the Eckart–Young–Mirsky theorem states that the Nγ optimal
{γ} polarization vectors are similar to those defined in references [153, 154], namely the
leading eigenvectors of the so-called symmetrized susceptibility. The present minimization
formulation allows further flexibility with the introduction of test functions and constraints,
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allowing on-the-fly design of model dielectric functions for specific purposes, emphasizing
short-to-long-range or on-site accuracy.

To conclude this section about the fragment approach and its diverse developments, it
should be noticed that the operations described above (calculations of the reference X(I)

g (ω)
and the compressed X̃(I)

g (ω) matrices, SVD decomposition of related matrices, etc.) are
performed on isolated fragments. This leads to a computational cost that is linear in the
number of distinct fragments. In turn, the number of operations related to inverting the Dyson
equation (2.7) for the total interacting susceptibility X(ω), involving interactions between all
fragments, keeps the same cubic scaling O(N3) but its associated prefactor is dramatically
reduced. As shown in section 2.3, the optimal polarization basis can be made typically 102

times smaller than the original auxiliary basis set while preserving the polarization energy
in the meV range. This leads to a reduction of the order of 106 of the cost associated with
obtaining an accurate screened Coulomb potential W on the central fragment (I = 0).

2.3 Application to organic molecules

To validate and to use the different methods presented in section 2.2, I have studied structures
of C60, as well as a pentacene molecule.

2.3.1 Technical details

As detailed in section 1.3.2.9 page 54, a Kohn-Sham (KS)-Density-Functional Theory (DFT)
calculation is required as a starting point for a GW one. Here, input KS eigenstates are
generated at the def2-TZVP PBE0 [45, 46] level with the Orca package [57, 58]. We adopt
the corresponding def2-TZVP-RI auxiliary basis sets associated with the Coulomb-fitting
Resolution of the Identity (RI-V) approach [104, 106]. The molecular geometries for the
C60 and the pentacene are obtained at the def2-TZVP PBE0 level. The Face-Centered
Cubic (FCC) C60 dense phase is constructed taking experimental lattice parameters [155]
(a0 = 14.17 Å), neglecting orientational disorder. The considered C60 surface is the (111) one.

In this chapter, all polarization energies Pn are computed at the static COHSEX level,
as presented in section 1.3.2.8 page 53. Following previous studies [10, 11, 138–141], such a
polarization energy Pn, for a given energy level n, is taken to be the difference between the
static COHSEX energy level in the presence of a polarizable environment and its analog in
the gas phase, namely:

Pn = εGWe
n − εGWg

n ≃ εCOHSEXe
n − εCOHSEXg

n︸ ︷︷ ︸
=P ∆COHSEX

n

, (2.30)

where the index (e) and (g) in GWe/g and COHSEXe/g stand for embedded (e) and gas (g)
phases, respectively. Since only the static susceptibility needs to be calculated, it is one order
of magnitude cheaper than a fully dynamical GW approach. Indeed, this latter requires the
calculation of nω ≃ 12 independent-electron χ0(iω) susceptibilities along the imaginary axis
in our Analytic Continuation (AC) scheme, as explained in section 1.3.2.10. The accuracy
of using such a static limit for the polarization energies induced by a neighboring dielectric
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medium was first analyzed in the case of molecules close to a metallic substrate [17]. Such
an approximation, that considers only the low-frequency limit of the environment electronic
dielectric response, is consistent with standard PCM implementations. In these latter, the
macroscopic dielectric constant originating from electronic degrees of freedom is taken to
be the optical one in the low frequency limit (square of the refractive index). Similarly, in
standard QM/MM implementations, the semi-empirical atomic polarizabilities are designed
to reproduce the fragment electronic polarizability in the static limit [149]. Extension to
dynamical reaction fields will be discussed in chapter 3 page 93.

From the knowledge of such a polarization energy Pn, calculated at the static ∆COHSEX
level, the absolute Quasiparticle (QP) energy can be obtained as

εGWe
n ≃ εGWg

n + P∆COHSEX
n . (2.31)

In the fragment approximation, and in the absence of wavefunction hybridization, such a
value yields the energy of the corresponding band center. The band dispersion, represented
by the continuous Density Of States (DOS) in Figure 2.3, originates from wavefunction
hybridization between fragments, and therefore cannot be accounted for. In particular, one

Figure 2.3: Schematic representation of the closing of the fundamental gap, from gas phase
to dense phase. The Density Of States (DOS), in red, represents the broadening of the
discrete energy levels and the creation of bands. In dense phase, two types of gaps can be
defined. The edge-to-edge gap (in black) is computed between the bottom of the Lowest
Unoccupied Molecular Orbital (LUMO) band and the top of the Highest Occupied Molecular
Orbital (HOMO) band, while the peak-to-peak gap (in brown) is computed between the two
maxima of the DOS of these two bands.

can recover the experimental peak-to-peak gap in the dense phase, namely the difference of
energy between the HOMO and LUMO band centers, as represented in Figure 2.3. In the
following, when needed, the gas phase εGWg

n QP energies will be calculated at the partially
self-consistent evGW level (see section 1.3.2.9), which we label evGW@PBE0 to highlight
the choice of the DFT exchange-correlation functional. Such an approach has been shown
[92, 98] to be more accurate than non-self-consistent calculations, unless an optimally tuned
functional is used for the starting KS-DFT calculation [98, 156].

Finally, it should be noticed that in the fragment approximation, the total non-interacting
Green’s function G0 is the sum, over all the fragments (I), of the gas phase non-interacting
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Green’s functions G(I)
0 . Thus, each fragment (I) possesses its own QP states associated to

localized wavefunctions
{
ϕ

(I)
n (r)

}
, although the renormalization of the corresponding QP

energies take into account effects of the environment, namely of the other fragments. In
other words, while the interacting susceptibility matrix X(ω = 0) of Eq.(2.7) is defined
and computed for the full system, only the diagonal blocks of the static screened Coulomb
potential matrix W(ω = 0) = V + VX(ω = 0)V, entering Eq.(1.128) page 53, are required
to correct the different fragments. Labeling W(I) the diagonal block corresponding to the
restriction of W to the (I)th fragment, I have implemented a routine to compute only these
small blocks for the explicitly corrected fragments, instead of the bigger full matrix. This
enables us to save both on memory footprint and Central Processing Unit (CPU) time aspects
because, in the following, we only perform an explicit GW correction for the fragment of
interest (I = 0).

2.3.2 Validity of the fragment approach

We start by assessing the quality of the fragment approximation, without using the compression
method. Namely, we measure the impact of neglecting the overlap of MOs for a small number
of fullerenes. To do so, we compare calculations performed using the fragment approximation
to reference calculations where all fullerenes in the environment are treated as a single
subsystem, allowing wavefunction delocalization over all molecules in the environment. We
focus on the closing of the peak-to-peak gap of a “central” C60 (in red, Figure 2.4) induced
by the screening originating from the environment (blue molecules, Figure 2.4). In gas phase,

(a) 3 C60 (b) 4 C60

(c) 5 C60 (d) HOMO − 1

Figure 2.4: Representations of the systems with (a) 3 C60, (b) 4 C60 and (c) 5 C60 used
to test the fragment approach. In red, the fullerene for which we calculate the difference
P∆COHSEX

Gap between the systems represented here and the gas phase. In (d) we represent the
delocalized (HOMO−1) molecular orbital associated with the 4 C60 in the environment of
system (c) beyond the fragment approximation.
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the HOMO of such a molecule is fivefold degenerate, and its LUMO threefold degenerate.
Thus, in all systems, we compute the peak-to-peak gap of the central C60 as the difference
between the average of its three LUMOs, and its five HOMOs. In the following, unless
explicitly mentioned, the term “gap” is an abbreviation for the peak-to-peak gap. Its closing
is computed via

PGap(n) = Gap(n C60) − Gap(1 C60), (2.32)
where Gap(n C60) corresponds to the gap of the central C60 surrounded by (n − 1) other
fullerenes.

Due to the cost of calculating the non-interacting susceptibility beyond the fragment
approximation, the number of fullerenes in the environment is limited to four. To compare
data on the same footing, we leave the central (red) fullerene as an isolated fragment to
prevent delocalization of the associated HOMOs and LUMOs. What we want to explore is
thus the impact of fragmenting the environment.

The results are provided in Table 2.1. The impact of the fragment approximation, namely
not allowing the delocalization of the molecular orbitals over all fullerenes in the environment,
ranges from 0.5 meV to 2.2 meV, remaining below the percent error. Even though limited to
rather small systems, such an exploration provides a better understanding of the quality of
the fragment approximation. One should note that the P∆COHSEX

Gap associated with the 5 C60
system (−0.45 eV) represents already ∼32% of the infinite surface limit (P∆COHSEX

Gap = −1.4 eV;
see Figure 2.11 page 86 with the blue symbols).

Table 2.1: Variation P∆COHSEX
Gap , from the gas phase to the 3, 4, and 5 C60 systems, for the

central C60 (in red in Figure 2.4) allowing wavefunction delocalization over all C60 in the
environment. The error induced by fragmenting the environment is provided in absolute
value and in percentage.

System P∆COHSEX
Gap (meV) Error (meV) Relative error (%)

3 C60 -245 0.5 0.2
4 C60 -348 1.0 0.3
5 C60 -447 1.5 0.3

The effects of the fragmentation being quantitatively measured, we can now test the
compression method of Xg.

2.3.3 Validation of the compression method for Xg

We start by looking at the evolution of the static dipolar polarizability tensor for a given
fullerene, in the gas phase, obtained with the model susceptibility matrix as a function of Nγ

(the number of polarization vectors we keep). Namely, I have computed

[α]ij = −
∫

dr dr′ ri

Nγ∑
γ,γ′

γ(r)
[
X̃g(ω = 0)

]
γγ′
γ′(r′)

 r′
j , (2.33)

for ri ∈ {x, y, z}. This tensor is a key quantity for the long-range screening effects originating
from a given fragment, and represents thus a direct measure of the accuracy of the fitted
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Figure 2.5: Evolution of the relative error
∥∥[α]fit − [α]ref

∥∥ / ∥∥[α]ref
∥∥ (in percentage) for a

fullerene RPA dipolar polarizability tensor [α] (see Eq.(2.33)) as a function of the number
Nγ of polarization vectors (maximum number 5700). || · || corresponds to the Frobenius norm.
[α]ref is computed with the susceptibility described in the full auxiliary basis (with 5700
vectors), while [α]fit is calculated using only Nγ polarization vectors. Results for different
choices of test functions are plotted.

susceptibility. First, we explore the strategy where the test functions {t} are taken to span
the auxiliary basis set {P} located on the fragment (a fullerene) for which we build the model
susceptibility. Relative errors on the (Frobenius) norm of the dipolar polarizability tensor,
with respect to a reference calculation using the full auxiliary basis set (5700 vectors), are
represented in Figure 2.5 (blue dots). As expected, this error decreases as the number of
polarization vectors increases. For Nγ = 240, the relative error is of the order of 10%, that
is still rather large. This number Nγ = 240 corresponds to a typical minimal sp3 basis per
atom of the kind used in semi-empirical induced charges-and-dipoles polarizable models.

I now perform the same exercise but adding to the test functions {t} a set of atom-centered
diffuse Gaussian orbitals, as explained in section 2.2.2 page 71. Such diffuse functions are
typically one set of (s,p,d,f,g) orbitals per atom with, for sake of simplicity, the same e−ζr2

radial part. Results for different values of ζ are reported on Figure 2.5. A value of
ζ = 0.1 bohr−2 (green down triangles), comparable to ζ = 0.2 bohr−2 for the most diffuse
carbon atomic orbital in the def2-TZVP-RI basis set, does not improve the quality of the
fit. Increasing the diffuse character of these functions, with ζ = 0.01 bohr−2 (orange up
triangles) improves significantly the quality of the results. For Nγ = 120, namely, ≃ 2% of the
dimension of the original auxiliary basis set {P}, the relative error is below 0.01%. Increasing
too much the extent of the diffuse orbitals, with e.g., ζ = 0.001 bohr−2 (red squares) degrades
the quality of the results. Even if relative errors are smaller with such a small ζ value in the



80 Chapter 2. Embedded GW formalism in a fully ab initio QM/QM’ approach

0 50 100 150 200 250 300
Number of polarization vectors Nγ

1

10

100

E
rr

or
on

ga
p

of
ce

nt
ra

l
C

60
(m

eV
) P∆COHSEX

Gap =-0.98 eV

Without diffuse

Without diffuse + constraint: lmax = 1

Without diffuse + constraint: lmax = 2

With diffuse

With diffuse + constraint: lmax = 1

With diffuse + constraint: lmax = 2

Figure 2.6: Error on the central C60 (red, inset) gap as a function of the number Nγ

of polarization vectors per C60 in the first-neighbors shell (blue, Inset). Energies on the
ordinates are in meV and log-scale. Results for test functions with and without diffuse orbitals,
with and without constraints (see section 2.2.2 page 69), are shown. Diffuse functions use
ζ = 0.01 bohr−2. The reference P∆COHSEX

Gap = −0.98 eV corresponds to the gap reduction
from the gas phase to the 13-C60 cluster when all fragments are described by their full basis
(Nγ = 5700).

limit of a very small number of polarization vectors (Nγ = 4 or 60), ζ = 0.001 bohr−2 leads
to greater errors than ζ = 0.01 bohr−2 for larger values of Nγ .

The quality of the polarizability tensor obtained with the low-rank susceptibility insures
that long-range interactions will be accurately reproduced. We now focus on nearest-neighbor
interactions. We study in particular the peak-to-peak energy gap associated with a fullerene
(in red in the inset of Figure 2.6) surrounded by its first shell of 12 nearest-neighbors (in
blue).

In a standard fragment calculation at the full def2-TZVP/def2-TZVP-RI level, the central
C60 peak-to-peak gap closes by ∼ 0.98 eV due to the enhanced screening induced by the first
shell of neighbors. This represents about 60% of the total polarization energy (see the orange
dots in the Figure 2.11 page 86) as compared to a fullerene in a fullerite, namely an infinite
fullerene crystal.

We now study the effect of reducing the size Nγ of the polarization basis on the 12
surrounding C60. As previously, I start by using test functions taken only in the span of the
auxiliary basis {P} of the fragment (a fullerene) whose model susceptibility is fitted. The
results are provided on Figure 2.6 (blue dots). As expected, the error on the central C60
peak-to-peak gap, as compared to the reference calculation, decreases with the number of
polarization vectors. For Nγ = 240, the error is of the order of 100 meV, allowing to have
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a qualitative result but representing still an error of the order of 10% with respect to the
targeted polarization energy. As discussed above, this error converges to zero with Nγ equal
to the size of the original atom-centered Gaussian auxiliary basis set (5700 vectors), but the
convergence is too slow.

Similarly to the previous study of the polarizability, I now add diffuse functions in the test
basis, with ζ = 0.01 bohr−2. The related evolution of the error on the polarization energy for
the gap is represented in Figure 2.6 (orange dots). Clearly, the addition of diffuse functions,
allowing to test the quality of the model VX̃(I)

g V screening potential in the vicinity of the
molecule (I), dramatically accelerates the convergence of the polarization energy with respect
to the size of the model susceptibility matrix. For Nγ = 180, namely ≃ 3% of the original
susceptibility matrix size (5700) for one C60, the error is now of the order of 1 meV, reaching
quantitative accuracy.

I further add the constraints Eq.(2.14), with and without diffuse functions, to enforce
the exact dipolar polarizability tensor with lmax = 1 (up triangles in Figure 2.6), or up to
second order moments with lmax = 2 (crosses in Figure 2.6). In all cases, the constraints
improve the accuracy, in particular in the small Nγ limit, even though their impact is not as
important as adding diffuse test functions. Such a behavior can be understood by looking,
e.g., at Figure 2.5 for ζ = 0.01 bohr−2 and Nγ = 120. The dipolar polarizability is already
quite well reproduced so that the constraint leads to a small improvement. Figure 2.6 reveals
that the constraint lmax = 2 improves very slightly the error on the gap, in comparison to
the constraint lmax = 1. When diffuse functions are added to the test basis, the differences
between lmax = 1 (orange up triangles) and lmax = 2 (oranges crosses) are less than 0.1 meV
for Nγ ≥ 120. Since imposing the constraint comes at no cost, we keep lmax = 1 in the
forthcoming calculations.

I also provide in Figure 2.7 the same study but for the HOMO and LUMO energies5. To
allow a log-scale representation, only the absolute value of the errors are plotted. Negative
errors are indicated by markers surrounded by black bold edges. Very similar results are
obtained as compared to the gap study. Taking Nγ = 180 polarization vectors, the value at
which the error on the gap becomes lower than 1 meV, we find that the errors on the absolute
HOMO and LUMO energies are only slightly larger, at the 3-4 meV scale. As such, not only
energy differences, but also absolute energy levels, are described quite accurately with very
few optimal polarization vectors to describe the environment susceptibility.

Very similar results as the ones presented in Figure 2.6 can also be obtained by considering
KS basis sets, and associated auxiliary basis sets, containing diffuse orbitals. As a matter of
fact, it is well documented that the description of response properties, such as the polarizability,
converges faster when diffuse channels are included for the description of MOs and associated
density [157, 158]. For sake of consistence with our def2-TZVP/def2-TZVP-RI calculations,
we adopt the def2-TZVPD/def2-TZVPD-RI basis sets [158] that add diffuse channels for
better response properties. The resulting data are presented in Figure 2.8. Due to the
addition of diffuse orbitals in the KS basis, the closing of the gap increases by about 2%, from

5Following the same arguments as in section 2.3.2 page 77, the embedded HOMO (respectively LUMO)
energy is computed as the average over the five highest occupied (respectively three lowest unoccupied) energy
levels.
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Figure 2.7: Same as Figure 2.6 but for the P∆COHSEX
HOMO and P∆COHSEX

LUMO energies, where
the P∆COHSEX means the evolution between the gas phase and the first-shell-of-neighbors
environment (see Inset in Figure 2.6). Data with black bold edges indicate negative values.

P∆COHSEX
Gap = −0.98 eV to P∆COHSEX

Gap = −1.00 eV, indicating a slightly enhanced screening,
consistent with an enhanced molecular polarizability. In the presence of diffuse orbitals
(ζ = 0.01 bohr−2) in the test set, together with imposing the lmax = 1, 2 constraints, the
error reaches the meV error for Nγ ≥ 120. The evolution of the error with the number Nγ of
polarization vectors is very similar to what we obtained in Figure 2.6, demonstrating that
our scheme (diffuse test functions and constraints) is universal, that is rather independent of
the chosen input KS basis set.

The test provided above for the polarization energy originating from the first-nearest-
neighbors is the most stringent test. For fragments located farther away, the dipolar component
of the screening potential, that we strictly impose, becomes more and more dominant. This is
illustrated in Figure 2.9 where we study the peak-to-peak gap of a C60 surrounded now by
its two nearest-neighbor shells (see the inset of Figure 2.9). The size of this cluster amounts
to 55 fullerenes. When all fullerenes are described at their full def2-TZVP/def2-TZVP-RI
level (in the fragment approximation), the gap of the central fullerene closes by 1.25 eV from
the gas phase to the 55-C60 cluster geometry. In this graph, I represent the effect of reducing
the size Nγ of the polarization basis used to describe the susceptibility of the 42 surrounding
C60 in the second shell, keeping the full auxiliary basis to describe the central fullerene and
its first-nearest-neighbor shell. As such, we mainly focus on the error induced by the fitting
process on fragments located at middle to long-range of the central subsystem of interest.

Consistently with the results obtained for the first shell of neighbors (Figure 2.6), my
calculations confirm that the addition of diffuse orbitals in the test set dramatically helps in
reducing the error below the meV with a small number of Nγ polarization vectors (compare
orange and blue data in Figure 2.9). Further, as compared to the first-nearest neighbors
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Figure 2.8: Same results as in Figure 2.6, but the def2-TZVP/def2-TZVP-RI basis sets are re-
placed by the def2-TZVPD/def2-TZVPD-RI basis sets. The reference P∆COHSEX

Gap = −1.00 eV
corresponds to the gap reduction from the gas phase to the 13-C60 cluster when all fragments
are described by their full def2-TZVPD-RI auxiliary basis set (Nγ = 6900).

case, a smaller number Nγ of polarization vectors is needed to go below the meV error when
the constraint on the dipolar polarizability (lmax = 1) is imposed. This is the signature that
in the long-range, the dipolar response dominates the screening potential, or reaction field.
The combination of diffuse test orbitals with ζ = 0.01 bohr−2 with the constraint lmax = 1
leads to an error of the order of 0.1 meV for Nγ = 60, namely one polarization vector per
atom. This is a dramatic reduction of the size of the polarization basis needed to describe
the susceptibility blocks entering the Dyson equation (2.7) page 68.

As a final validation, I plot in Figure 2.10 the static screening potential, or reaction
field, Wscr(r, r0;ω = 0) = [vχv](r, r0;ω = 0) associated with an elementary positive source
point-charge located in r0, in the vicinity of a single pentacene molecule. Namely, for a test
charge located in r0, I plot Wscr(r, r0;ω = 0) as a function of r in the pentacene plane. In the
case of a single fragment molecule, the reaction field reduces to vχ(I)v, with (I) the index of
that molecule. The reference screening potential is provided in Figure 2.10(a) while the error
associated with the model susceptibility, for a fixed Nγ = 70 number of retained polarization
vectors among the 2314 vectors of the original def2-TZVP-RI basis, is represented in the other
subfigures. Figure 2.10(b) shows the case where the test basis set does not contain diffuse
functions. In Figure 2.10(c) I add diffuse functions (ζ = 0.01 bohr−2), while Figure 2.10(d)
illustrates the fit of χ with the same diffuse functions and the constraint lmax = 1. Clearly,
the error associated with the screening potential around a given pentacene molecule (in meV
units) is dramatically reduced upon adding diffuse test functions and the constraint on the
dipolar polarizability tensor. The fullerene molecule is purposely replaced by a pentacene to
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Figure 2.9: Error on the gap for a fullerene surrounded by its two first-shells of neighbors.
The susceptibility of the central (in red, inset) and 12 first-nearest-neighbors (in blue, inset)
C60 are described by the full auxiliary basis (5700 orbitals), while the susceptibility for each
of the 42 C60 in the second shell of neighbors (in gray, inset) is described by Nγ polarization
vectors. Energies on the ordinates are in meV and log-scale. Results for test functions with
and without diffuse orbitals, with and without constraints (see section 2.2.2 page 69), are
shown. Diffuse functions use ζ = 0.01 bohr−2. The value P∆COHSEX

Gap = −1.25 eV corresponds
to the reference gap reduction for the central C60 from the gas phase to this 55-C60 cluster
configuration when all fragments are described with their full basis sets.

indicate that the accuracy of the present scheme is hardly system dependent.
After having tested and validated different parameters for the compression of the suscep-

tibility, we can now use this method to study large scale environment, which represents the
main objective of this thesis.

2.3.4 Large scale environments: the C60 crystal and surface structures

Beyond the small cluster models, we now study the evolution of the gap of a fullerene from
the gas phase to a C60 FCC crystal environment. We thus want to calculate the closing of
the gap by screening effects in the limit of an infinite environment. Such a quantity, labeled
P∆COHSEX

Gap and defined via Eq.(2.32) page 78, is also coined the polarization energy. We will
consider the cases of a C60 in a bulk (fullerite) and further of a C60 at the (111) surface
and sub-surface. Experimental photoemission experiments are very much surface sensitive,
with a limited penetration depth of the input photons or electrons, so that comparison with
the surface location is more appropriate. The bulk limit is obtained by immersing a C60
molecule in a sphere of fullerenes with increasing radius. The surface and subsurface limits are
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Figure 2.10: In plane Wscr(r, r0;ω = 0) = [vχv](r, r0;ω = 0) static screening potential
generated by a pentacene molecule in response to a positive unit source charge (gray dot
indicated by +e) in r0. In (a), the full screening potential. In (b), (c) and (d) the error
∆Wscr(r, r0;ω = 0) (see Eq.(2.12) page 70) with respect to the full screening potential upon
substituting the full χ by its low-rank approximation (with 70 polarization vectors). In (b),
low-rank χ model obtained without diffuse functions in the test basis set {t}; in (c) adding
diffuse orbitals to the test basis set {t}; and in (d) adding further the constraint on the
dipolar molecular polarizability lmax = 1. Coordinates are in angstroms, and units of the
screening potential are in meV and in log-scale. Equipotentials at (±1,±10,±100) meV in
figure (a), and at (±0.1,±1,±10) meV in figures (b), (c) and (d) are represented by white
lines. The value of the reference and of the error associated with the screening potential at
the position of the source is indicated.

obtained by using half-a-sphere of polarizable fullerenes in the environment. In the absence of
wavefunction delocalization (or band dispersion) in the fragment approach, we still focus on
the peak-to-peak gap, namely the gap between the center of the HOMO and LUMO bands
as defined in Figure 2.3 page 76. We emphasize that the absence of permanent ground-state
dipole, quadrupole, etc., in fullerene molecules, precludes the influence of any electrostatic
crystal field in the ground state.

In the present case of fullerene crystals, the reference X(I)
g susceptibility can be constructed

for a single fullerene and the resulting fitted and compressed X̃(I)
g matrix can be “copied”

to form the model susceptibility block associated with each fullerene in the environment.
Even though rotational disorder was not explored in this study, rotating the X̃(I)

g matrix, to
follow the rotation of a given fullerene, can be implemented. Beyond rotations, the effect on
the polarization energy of changes in the susceptibility matrix associated with slight atomic
distortions around some average equilibrium geometry, is expected to be small but may be
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explored in future studies.
I have run the calculations with the parameters described above, namely keeping the full

auxiliary def2-TZVP-RI basis set to describe the susceptibility of the C60 of interest for which
I perform these embedded GW calculations. The same full auxiliary basis set is also used
for its first-nearest neighbors. For the rest of the environment, namely the second-nearest
neighbors and those located farther away, I keep Nγ = 60 optimized polarization vectors for
each fullerene. Diffuse test functions with ζ = 0.01 bohr−2 are adopted with the lmax = 1
constraint. We focus on the gap closing (P∆COHSEX

Gap ) from the gas to the dense phase. Such
a polarization energy, originating from the screening by the environment, is described at the
∆COHSEX level as emphasized in section 2.3.1.

1−1/32−1/35−1/316−1/3125−1/3∞−1/3

N
−1/3
C60

−1.75

−1.50

−1.25

−1.00

−0.75

−0.50

−0.25

0.00

P
∆

C
O

H
S

E
X

G
ap

(e
V

)

3367 C60

(b) (c)

(a)

Sphere of C60

fit : (1.68/N
1/3
C60

-1.69) eV

Sub-surface half-sphere of C60

fit : (1.52/N
1/3
C60

-1.63) eV

Half-sphere of C60

fit : (1.27/N
1/3
C60

-1.40) eV

Figure 2.11: Evolution of the gap closing P∆COHSEX
Gap , at the static ∆COHSEX level, between

a gas phase fullerene and NC60 systems, as a function of 1/N1/3
C60

. The orange/blue/red dots
show calculations for one C60 embedded at the center of a sphere (in red in inset (a)), at
the surface of a half-sphere (inset (b)), and at the subsurface of a half-sphere (inset (c)),
respectively. Dashed lines represent [a/N1/3

C60
+ b] fits.

I plot in Figure 2.11 the evolution of the polarization energy, or P∆COHSEX
Gap , associated

with the peak-to-peak gap for a bulk C60 (orange dots), a surface C60 (blue dots) and a C60 at
subsurface (red dots), as a function of 1/N1/3

C60
, where NC60 represents the number of fullerenes

retained in the sphere or half-sphere we use for the environment. Analytic derivations show
indeed that such a polarization energy converges slowly, with an affine behavior with respect
to 1/N1/3

C60
in the asymptotic regime [123].

To demonstrate such a behavior, and to generalize it to systems at different dimensions,
one could use a simple model. Similarly to a photoemission experiment, let us imagine that a
localized charge, represented by a black dot in Figure 2.12, is added to the system. At long-
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Figure 2.12: Schematic representation of an isotropic system of radial size R, such that a
charge (black dot) is added at its center. Such a charge creates at long distance r (in the
blue area, farther away than a given distance R0) an electric field E ∝ 1

r2 ur (in red). The
polarizable environment reacts by an induced dipole p = αE (orange vector), with α the
dipolar polarizability. It stabilizes the added charge thanks to the reaction field Vreac(r) ∝ p·ur

r2

(in green).

range, such a perturbation can be approximated as a point charge. It generates a Coulomb
potential V ∝ 1

r , with r the distance to the charge and ∝ indicating the proportionality. In
other words, it produces an electric field E ∝ ur

r2 , with ur the radial unit vector in spherical
coordinates. The components of the polarizable environment react to this perturbation in
the linear response domain by an induced dipole p = αE, with α their dipolar polarizability.
Such a dipole mainly controls the long-range behavior of the reaction field, created by the
environment to stabilize the added charge and given by Vreac(r) ∝ p·ur

r2 ∝ 1
r4 . This model

is schematically represented in Figure 2.12. For an isotropic system at D dimensions, of
radial size R and centered around the added charge, the polarization energy P of this latter
is given by

P = a0 + a1

∫ R

R0
dr rD−1Vreac(r). (2.34)

R0 corresponds to the radial size at which the reaction field enters the asymptotic regime (in
blue in Figure 2.12), and (a0, a1) are some characteristic constants of the studied system.
Using Vreac(r) ∝ 1

r4 , such an equation becomes

P = a+ b

R4−D
, (2.35)

with (a, b) two characteristic constants of the system.
For the (hemi-)spheres of C60, D = 3 and NC60 ∝ R3, or equivalently R ∝ N

1/3
C60

in the
asymptotic regime. This leads to the aforementioned affine relation of the polarization energy
with respect to 1/N1/3

C60
. This asymptotic behavior is confirmed numerically in Figure 2.11

by the straight dashed-line fits, one for each type of system, going through the calculated
energies in the large NC60 limit.

In the asymptotic infinite bulk size limit, the gap of the central C60 is closing by 1.69 eV
(orange dashed line) with respect to the gas phase. This can be compared to the polarization
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energy of the biggest studied system. Calculations are performed for spheres containing up
to 3367 C60, representing 202 020 carbon atoms. The gap of such a system closes by 1.58 eV,
which represents a difference of 0.11 eV with respect to the extrapolated infinite size value.
This highlights the difficulty to capture the polarization energy with an accuracy within the
0.1 eV threshold when limited size environments are considered.

In order to compare to the G0W0@LDA 3.0 eV peak-to-peak gap in a fully periodic bulk
calculation performed by Shirley and Louie in their pioneering study [159], I compute the
def2-TZVP G0W0@LDA gap for an isolated fullerene. Subtracting the 1.69 eV polarization
energy in the bulk limit to our gas phase 4.46 eV G0W0@LDA HOMO-LUMO gap, we end
up with a 2.8 eV peak-to-peak gap, in fair agreement with the periodic G0W0@LDA value.

I also compute the asymptotic infinite limit for the gap of one C60 located at the (111)
surface (see Inset Figure 2.11(b)). The blue dashed line gives an asymptotic closing of
the gap amounting to 1.40 eV, which is in good agreement with the experimental values
of 1.1 eV [160], 1.2 eV [161, 162] or 1.4 eV [163, 164]. Such values were obtained by taking
the provided experimental peak-to-peak gaps subtracted to the experimental 4.9 eV gap
value for a fullerene in gas phase [86]. Alternatively, I have also computed the def2-TZVP
evGW@PBE0 gap value for one C60 in the gas phase. In the partially self-consistent evGW
approach, the HOMO and LUMO energy levels are converged at the 0.1 meV level at the
seventh cycle. Taking the computed 5.1 eV gas phase gap value, and adding the calculated
polarization energy at the surface, one obtains a surface peak-to-peak gap of 3.7 eV, within
the 3.5 eV to 3.8 eV experimental range. The presence of a metallic substrate when performing
photoemission experiments, potentially enhancing the screening in the limit of few C60 layers,
and alternatively the limited screening from the fullerene crystal in the few layer limits, may
explain variations between experimental values. On the theoretical side, the influence of the
fragment approximation, together with treating screening effects in the static COHSEX limit,
remains to be studied.

In addition, the polarization energy is calculated for one C60 at the subsurface (see Inset
Figure 2.11(c)), namely for one C60 in the middle of the layer just below the one at the
top. The red dashed fit provides an asymptotic infinite size polarization energy of 1.63 eV.
This value, closer to the bulk limit (difference of 0.06 eV) than the surface limit (difference of
0.23 eV), tends to show a rapid convergence of the polarization energy with respect to the
depth of the considered fullerene. Namely, a fullerene in the subsurface presents properties
already close to those in the bulk case.

We finally conclude this study by making a connection to periodic slab calculations,
namely the traditional approach for the study of surfaces with periodic boundary conditions.
In such periodic simulations, the unit cell is made of some layers of the material (the slab
part), as well as a large vacuum area above the atoms. The height of this part should be large
enough to restrict as best as possible interactions between the top of the slab and the bottom
of its periodic image (which should not exist for a perfect slab at two dimensions). Along
that line, I converge the polarization energy through the addition of C60 infinite sublayers,
rather than by increasing the radius R of a half-sphere of polarizable molecules. Such a
representation can be obtained by creating stacks of disks with increasing lateral radius R2D,
as represented in the Inset Figure 2.13(a). For a given number n of layers, the polarization
energy is computed for different radius R2D, and then is extrapolated to the limit R2D → ∞
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Figure 2.13: Gap evolution for one C60 at the surface (in red, inset (a)), as a function of
the inverse of the number n of C60 layers. Here, the reference is the gap of a fullerene in an
infinite C60 monolayer (see inset (b)). For each value of n, the infinite size layer(s) limit is
obtained by extrapolating disk(s) to their infinite R2D radius. The dashed line represents the
[a/n+ b] fit.

thanks to the formula (2.35) for D = 2. Namely, such an energy follows asymptotically an
affine relation with respect to 1/R2

2D or to 1/NC60 , using the fact in such cylindrical stacks
NC60 ∝ R2

2D.
To go further and to reach the infinite limit n → ∞ of infinite radial size layers (i.e. a

true surface), such that R2D → ∞, one needs an asymptotic relation between the polarization
energy and the number of layers n. To do so, one should restart from Eq.(2.34) for D = 3,
and use cylindrical coordinates with ρ the radial in-plane distance, and z the axial coordinate
(or height). Using Vreac(r) ∝ 1

(ρ2+z2)2 for a slab of finite height h and infinite radial size (as
represented in the inset Figure 2.13(a)), and denoting h0 the height at which the reaction
field enters the asymptotic regime, the equation (2.34) becomes

P = a0 + a1

∫ h

h0
dz
∫ +∞

0
dρ ρ

(ρ2 + z2)2 (2.36a)

P = a0 + b1

∫ h

h0
dz 1

z2 (2.36b)

P = a+ b

h
(2.36c)

The height of the slab h being proportional to the number of layers n, the polarization
energy follows asymptotically an affine relation with respect to 1/n.

To confirm such a relation, I have computed, in Figure 2.13, P∆COHSEX
Gap with respect to

1/n. Here, this polarization energy P∆COHSEX
Gap corresponds to the difference between the gap

of one C60, at the top of a slab of n layers in the limit R2D → ∞, and the same gap in the
limit of an infinite radial size monolayer, as represented in Figure 2.13(b). The asymptotic
affine behavior is numerically confirmed in Figure 2.13 by the straight dashed-line fit, leading
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to an extrapolated value P∆COHSEX
Gap = 0.54 eV. It should be emphasized that for (n = 5),

only 85% of this polarization energy is captured, highlighting the difficulty to converge such
long-range effects.

Summing the 0.85 eV polarization energy of one C60 embedded in an infinite size monolayer,
and the asymptotic polarization energy of 0.54 eV coming from an infinite number of layers
with respect to a single monolayer, we find a total polarization energy of 1.39 eV. This value
is nearly identical to the 1.40 eV value obtained with the “half-sphere” surface approach,
showing a good agreement between the two methods.

Finally, I would like to conclude this section with some details about computational
resources required to run such calculations, to show that such results are affordable.

2.3.5 Computational details: CPU and memory requirements

The calculation for the biggest studied system made of 3367 C60, amounting to 202 020
atoms as discussed in section 2.3.4, required around 8000 total CPU hours6 distributed
on 720 cores. Alternatively, this represents a typical wall-time (time to completion of the
run) of approximately 11 hours. Such a calculation was performed using the Irene SKL
partition (Intel Skylake 8168 processors, with a base frequency of 2.70 GHz) of the IRENE
supercomputer from GENCI-TGCC. Only 2.5 terabytes of memory were used to study this
system, making it possible to run such calculations on smaller-size computer clusters. Such
a small memory footprint was made possible thanks to the small dimension (60) of the
polarization basis for each fragment in the environment. Let us stress out here that describing
each fullerene by its full def2-TZVP-RI basis, of dimension 5700, would lead to a memory
footprint of 2.6 petabytes for each related matrices, with similar requirements for the total
Coulomb potential V or the total susceptibility matrix X. It would have been impossible to
store any of these large matrices on the 310 terabytes available on the supercomputer used
for this study. The present numbers are certainly indicative and may change depending on
the chosen parameters, but they illustrate how efficient QM/QM’ (GW/RPA) calculations
can be when using compressed susceptibility blocks for the environment.

2.4 Conclusion

In this chapter, I have presented fully ab initio QM/QM’ embedded GW calculations with
a polarizable environment containing up to 200 000 atoms, with total typical CPU timings
below 10 000 hours at the def2-TZVP level. Such calculations are made possible by adopting a
fragment, or sub-system, approximation. Further, the susceptibility matrices associated with
the fragments in the environment are reduced on-the-fly to a very low-rank representation,
with block dimensions equivalent to the number of atoms in the fragment. This approach
yields representations even more compact than standard semi-empirical approaches based
on polarizable atoms described by onsite (sp3) local charges and induced dipoles, namely
1 degree of freedom per site as compared to the 4 degrees of polarizable atoms. Such a

6This corresponds to the result of the multiplication between the elapsed real time needed to run the
calculation, and the number of cores required for the simulation.
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reduction allows inverting the Dyson equation for the screened Coulomb potential W with
very limited CPU and memory requirements.

The present scheme is certainly far from being optimal. The choice of the same localization
parameter (ζ) for all (s,p,d,f,g) diffuse channels in the ensemble of test functions could, e.g.,
lead to forthcoming improvements. Our main point was however to show that very simple
choices could already dramatically help in constructing model susceptibility operators both
extremely compact and accurate in reproducing medium-to-long-range screening potentials.

Finally, the GW formalism allows us to define a dynamical dielectric response, going
beyond the standard low-frequency limit in the optical range of common PCM or QM/MM
approaches. The importance of such dynamical corrections needs to be assessed, calculating
the polarization energies within the full dynamical GW formalism rather than its static
COHSEX limit. This is the main objective of the following chapter 3.
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Résumé

Les modèles polarisables discrets ou continus, pour l’étude de propriétés électroniques de
sous-systèmes environnés, reposent essentiellement sur une description statique des propriétés
diélectriques de l’environnement. Une telle approximation repose sur l’hypothèse d’électrons
du milieu environnant réagissant instantanément à une excitation dans la partie d’intérêt.
L’environnement polarisable est donc traité dans une limite adiabatique. S’appuyant sur les
méthodes développées dans le chapitre 2, permettant une description totalement ab initio
de l’environnement dans le cadre du formalisme GW , ce chapitre a pour but de mesurer la
validité de cette hypothèse adiabatique, grâce à une comparaison à une description totalement
dynamique de la réponse diélectrique de l’environnement.

La partie 3.2 présente les différents niveaux de description du milieu polarisable utilisés
dans ce chapitre, permettant de calculer des énergies de polarisation du sous-système d’intérêt.
L’approche de type QMGW /QMGW , utilisant la réponse dynamique de l’environnement, sert
de référence. Elle s’appuie sur la méthode fragment, ainsi que la méthode de compression
de la susceptibilité, présentées précédemment. Elle est comparée à l’approche ∆COHSEX,
nécessitant uniquement la limite statique de la réponse diélectrique des sous-systèmes environné
et environnant. Nous introduisons également une approche QMGW /QMCOHSEX, permettant
d’allier dans le même calcul une description dynamique GW pour la partie d’intérêt, à une
description statique COHSEX pour l’environnement.

Ces différentes méthodes sont comparées dans la partie suivante 3.3 via l’étude d’un
fullerène à la surface d’un cristal de C60. Afin de faciliter nos calculs, et notamment la méthode
de compression de la susceptibilité, nous montrons la possibilité de se restreindre à une base
de polarisation calculée dans le cas statique. Dans le cadre de l’approche QMGW /QMCOHSEX,
l’importance d’un traitement statique COHSEX de l’environnement est ensuite illustrée sur
une demi-sphère de 302 C60. Après avoir effectué les calculs dynamiques QMGW /QMGW de
référence, permettant de calculer l’énergie de polarisation du gap dans la limite d’une surface
infinie, nous mesurons la précision de ces deux approches statiques. Ce système de fullerènes,
dans lequel la dynamique du sous-système d’intérêt est identique à celle du milieu polarisable,
est a priori défavorable à un traitement adiabatique de ce dernier. Alors que l’approche
∆COHSEX introduit une erreur de 17.5% sur l’énergie de polarisation du gap dans la limite
d’une surface infinie, la méthode QMGW /QMCOHSEX n’induit que 2.9% d’erreur. Afin de
vérifier la robustesse de ces résultats, nous étudions également le cas d’une molécule de C60
entourée d’autres fullerènes, dont le gap Kohn-Sham DFT est modifié « à la main ». Cette
étude illustre que l’approximation adiabatique pour l’environnement est d’autant meilleure
que le gap de ce dernier est grand par rapport à celui de la partie d’intérêt. Enfin, nous
montrons également que l’approche QMGW /QMCOHSEX peut être améliorée, en décrivant au
niveau GW dynamique les premiers voisins de la molécule étudiée, menant à une approche
de type QMGW /QMGW /QMCOHSEX.

Finalement, nous étudions dans la partie 3.4 le cas d’une molécule d’eau dans un nanotube
de carbone métallique. Alors que l’approximation adiabatique devrait être appliquée à
la molécule d’eau à grand gap, et non pas à l’environnement (le nanotube), l’approche
QMGW /QMCOHSEX induit une erreur sur l’énergie de polarisation du gap ne dépassant pas
les 7%.
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Summary

Continuum or discrete polarizable models for the study of electronic properties in embedded
subsystems rely mostly on the restriction of the surrounding electronic dielectric response to
its low frequency limit. Such a description hinges on the assumption that the electrons in
the surrounding medium react instantaneously to any excitation in the central subsystem,
treating thus the environment in the adiabatic limit. Exploiting the embedded GW formalism
methods developed in the chapter 2, with an environment described at the fully ab initio
level, this chapter assesses the merits of the adiabatic limit with respect to an environment
where the full dynamics of the dielectric response is considered.

Section 3.2 presents the different types of embedding used throughout this chapter, enabling
us to compute polarization energies for the subsystem of interest. The calculations within
the QMGW /QMGW approach, based on the fully dynamical response of the environment,
serve as reference. They are performed within the fragment approximation, in combination
with the compression method for the susceptibility, as presented in the previous chapter.
These results are compared to the ∆COHSEX approach, requiring only the static limit of
the dielectric response of the embedding and embedded subsystems. We also introduce a
QMGW /QMCOHSEX approach, allowing us to merge in a single calculation a fully dynamical
GW description for the part of interest, with a static COHSEX approximation for the
environment.

These different methods are compared in the following section 3.3 via the study of a
fullerene at the surface of a C60 crystal. To make easier our calculations, in particular for
the compression method of the susceptibility, we show that we can restrict ourselves to a
static polarization basis set. Within the QMGW /QMCOHSEX framework, we highlight the
necessity to treat the effects of the environment at the static COHSEX level through the
example of a hemisphere of 302 C60. After having computed reference gap polarization
energies via the fully dynamical QMGW /QMGW approach, enabling us to extrapolate such a
quantity to the infinite size surface limit, we assess the accuracy of the two static methods.
Such a fullerene system, where the dynamics of the embedded and embedding subsystems
are similar, is a priori not suited to an adiabatic treatment of the environment. While the
∆COHSEX approach leads to an error on the gap polarization energy of 17.5% in the infinite
size surface limit, the QMGW /QMCOHSEX method induces only a relative error of 2.9%. To
test the robustness of these results, we also study a C60 molecule at the surface of a fullerene
hemisphere, where the Kohn-Sham DFT gap of these latter is modified “by hand”. The
results show that the adiabatic approximation becomes formally better validated, with a
reduced error, when the gap of the environment increases with respect to the one of the part
of interest. Eventually, we illustrate that the QMGW /QMCOHSEX method can be improved if
the first-nearest-neighbors of the studied molecule are also described at the fully dynamical
GW level. This leads to a QMGW /QMGW /QMCOHSEX approach.

Finally, section 3.4 is dedicated to the study of a water molecule inside a carbon metallic
nanotube. Even though the adiabatic approximation should be applied to the large gap water
molecule, and not to the nanotube of the environment, the QMGW /QMCOHSEX approach
induces an error on the gap polarization energy below 7%.
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3.1 Introduction

The description of the electronic properties of a quantum subsystem embedded in a large and
complex electrostatic and dielectric environment stands as a severe challenge to quantum
mechanical modeling. Thus, I have presented in chapter 2 a fully ab initio Quantum
Mechanics (QM)/QM’ GW formalism, allowing us to consider very large scale atomistic
environments, with a dielectric response described at the Random-Phase Approximation
(RPA) level. Following previous merging of this Many-Body Perturbation Theory (MBPT)
formalism with Polarizable Continuum Model (PCM) [6, 7] or semi-empirical QM/Molecular
Mechanics (MM) discrete polarizable approaches for the environment [6, 9–13, 166], this
latter was treated at the static level [123, 124, 167], through the ∆COHSEX approach.

In such an approximation, we have seen that we only retain the environment electronic
susceptibility χ(ω) in its low frequency limit (ω → 0). This hinges on the assumption that
the electrons in the environment respond instantaneously1 to an electronic excitation in the
central subsystem. This is an adiabatic approximation for the environment. Using the spectral
representation of χ(ω) [70], or the equivalent one of the screened Coulomb potential W (ω)
which presents the same poles, given by Eq.(1.124) page 52, such a hypothesis is expected
to be valid if the gap of the environment is much larger than that of the central subsystem.
Qualitatively, the dynamical response of the environment should be approximately the same
as the static limit one, for all the energies of interest which should be much smaller than the
values of the poles of the environment. In other situations, where such a decoupling is not
verified, in particular when the environment is characterized by a gap smaller than that of the
embedded subsystem, such an approximation needs to be validated. A critical assessment was
recently proposed on the basis of model solutes and solvents [168]. In addition, a pioneering
dynamical implementation of the PCM combined with the GW formalism was proposed, but
without comparisons to results obtained in the static PCM limit [8].

The main objective of this chapter is to assess the adiabatic limit for the embedding system.
To do so, we can take advantage of the ab initio treatment of the RPA dielectric response
of this environment developed in the chapter 2. This allows us to explore straightforwardly
the impact of switching the full dynamics of its susceptibility. In this chapter, we consider
situations where the adiabatic approximation for the environment is expected to fail. Following
the previous results, we study the polarization energies of a fullerene molecule at the surface
of a fullerene crystal, a situation where there is no energy decoupling between the embedded
and embedding subsystems electronic response. We also explore the case of a water molecule
inside a metallic carbon nanotube, where the adiabatic approximation should be used for
the large gap water molecule, not for the environment (the metallic nanotube). In these
diverse systems, we compare the accuracy of various implementations of the adiabatic
approach for the surrounding polarizable medium, within the GW framework. We show
in particular that such an approximation, when properly implemented, does not induce
errors larger than 10% for the gap polarization energy. Such results can be obtained via
a QMGW /QMCOHSEX approach, where the subsystem of interest is treated at the fully
dynamical GW level, while the environment is treated within an analog of the Coulomb-Hole

1The inverse Fourier transform, in time difference τ , of the approximated χ(ω) = χ(ω = 0) for all ω, is
proportional to the Dirac distribution δ(τ).
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plus Screened-Exchange (COHSEX) approximation.

3.2 The different types of embedding

In this section, I present the three types of embedding used throughout this chapter, for
a system of interest into a polarizable environment. They enable us to test the adiabatic
approximation for the environment. As detailed in chapter 2, in all situations our embedding
strategy relies on the fragment, or subsystem, approximation. Such an approach assumes a
weak overlap between the wavefunctions of the various fragments, resulting in a block-diagonal
independent-electron susceptibility χ0. The main objective of these embedding methods is to
compute the energy level shifts

Pn = ε embedded
n − ε gas

n , (3.1)

with εn the nth energy level, from the isolated (gas) phase to the embedded phase. Such
shifts are labeled polarization energies and can be as large as several electronvolts.

Strategies to go beyond the fragment approximation have been developed at the ground-
state Density-Functional Theory (DFT) [169] and many-body [140, 170] levels, attempting in
particular to correct the non-interacting susceptibility by the effect of the residual interaction
between subsystems. Such developments stand aside from the present chapter, devoted to
the validity of the adiabatic approximation for the environment electronic response.

3.2.1 The fully dynamical approach

Working with a fully ab initio description of the environment, we can avoid any adiabatic
approximation for the environment, and thus we can have access to reference calculations.
The extension to dynamical screening is formally straightforward. Following the Contour
Deformation (CD) plus Analytic Continuation (AC) scheme of our GW code Beyond Density-
Functional Theory (beDeft), as detailed in section 1.3.2.10 page 56, we need to calculate the
total interacting-electron susceptibility χ(ω) for each of the nω required imaginary frequencies.
In practice, we retain nω = 12 frequencies. To reduce the computational cost of these
calculations, we can also use the compression method for the gas phase susceptibility of the
fragments in the environment, as detailed in chapter 2. This method can be easily adapted
to the fully dynamical situation.

Namely, in the fragment approximation, I recall that the Dyson equation for χ(ω), and
its corresponding matrix representation X(ω) in the auxiliary basis set {P} associated to the
Resolution of the Identity (RI) formalism, is given by

X(ω) = Xg(ω) + Xg(ω)VoffX(ω). (3.2)

The dense matrix Voff, such that its diagonal blocks are null, is equal to

Voff =
∑
I̸=J

V(IJ), (3.3)

with V(IJ) the matrix of Coulomb interactions between the auxiliary basis sets of fragments
(I) and (J), and zero otherwise. Xg(ω) is a block-diagonal matrix, such that its (I)th block
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corresponds to X(I)
g (ω), the gas phase interacting susceptibility of the (I)th fragment. Each

of these isolated fragment susceptibility blocks is constructed following Eq.(2.5) page 68. The
computational cost of building all these blocks X(I)

g (ω) grows linearly with the number Nf of
fragments. In the following sections, I study the case of a C60 bulk or surface crystal. All the
fullerenes being related by translations, all the X(I)

g (ω) blocks can be obtained at no cost from
a single fullerene gas phase susceptibility. In the limit of a very large number of fragments,
the remaining cost lies essentially in inverting the Dyson equation (3.2). Such a cost can be
dramatically reduced thanks to our compression method. This latter aims at computing a
low-rank approximation X̃(I)

g (ω) of these blocks, such that

χ(I)
g (r1, r2;ω) RI≃

∑
P,Q

[
X(I)

g (ω)
]

P Q
P (r1)Q(r2) (3.4)

MODEL≃
∑
γ,γ′

[
X̃(I)

g (ω)
]

γγ′
γ(r1)γ′(r2). (3.5)

In our specific method, we have decided to express the elements of the optimal polarization
basis set {γ}, of dimension Nγ , as a linear combination of the auxiliary basis functions {P}.
Nγ should be as small as possible to study large scale systems, while preserving a good
accuracy on the polarization energies for the central fragment of interest.

In practice, the matrices X̃(I)
g (ω) and their corresponding polarization basis set {γ} should

be recomputed for each of the nω imaginary frequencies of the CD-AC scheme, via our
minimization method under constraints explained in section 2.2, pages 67 to 75. However,
for the sake of simplicity, we adopt the static optimal polarization basis vectors {γ(ω = 0)}
for the nω frequencies, and we only reoptimize the coefficients of the matrix X̃(I)

g (ω) for each
frequency. The accuracy of this approximation is assessed in section 3.3.2 page 105. A similar
choice was made in pioneering studies involving generalized plasmon-pole models [171] or
effective representation of dielectric matrices [153, 154, 172]. The dynamical susceptibility
was expressed in a static basis of polarization vectors, based on the leading eigenvectors of a
symmetrized representation V1/2X(ω = 0)V1/2 of the static susceptibility.

In the following sections, it should be noticed that the susceptibilities of the central
fragment and its first shell of neighbors are always described within the full auxiliary basis set
{P}. Fitting by optimal polarization basis sets is thus used only for second-nearest-neighbor
fragments and beyond.

3.2.2 The ∆COHSEX approach

At the opposite, in several studies merging the GW formalism with semi-empirical polarizable
environments [6, 10, 11, 17, 144], or in the chapter 2 where the polarizable medium was
treated at a fully ab initio level, the polarization energy Pn was efficiently calculated via
an adiabatic approximation for the environment. More exactly, Pn was computed as an
energy difference between two static COHSEX calculations performed with and without the
environment, namely

P∆COHSEX
n = εCOHSEX, embedded

n − εCOHSEX, gas
n , (3.6)
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with εn the nth energy level. The absolute Quasiparticle (QP) energies for the embedded
system can be obtained by adding these polarization energies to the corresponding gas phase
GW QP energies, computed for example at the evGW level. In that respect, such an approach
is essentially perturbative. This simple and efficient scheme is labeled ∆COHSEX below.

As shown in Eq.(1.128) page 53, the static COHSEX approximation to the GW self-
energy only requires the low-frequency limit of the screened Coulomb potential W (ω → 0),
or equivalently of the interacting electron susceptibility χ(ω → 0). As such, it offers an
obvious route for treating the environment within the adiabatic limit. Furthermore, both the
embedded and embedding subsystems are treated on the same footing. It remains, however,
that the static COHSEX approximation is known to dramatically overestimate gaps, which
are the difference between the Ionization Potential (IP) and the Electron Affinity (EA), as
defined in section 1.1.1 page 24. The static COHSEX approach tends to overestimate the IP
and to underestimate the EA. Taken as an energy difference between the gas and embedded
environments, it was found that reasonable polarization energies could be obtained. This
stems presumably from a cancellation of errors between the gas and embedded static COHSEX
calculations. While computationally very efficient, the following sections nevertheless show
that this approach can yield sizable errors as compared to a fully dynamical treatment of
both the embedded and embedding subsystems. This is presumably due to an incomplete
cancellation of errors, together with the error inherent to the adiabatic approximation for the
environment.

Following the previous studies in chapter 2, such an approach can be easily coupled to
the compression method for the susceptibility of the fragments in the environment.

3.2.3 The QMGW /QMCOHSEX approach

Finally, the third embedding strategy we would like to develop consist into a merging of the
two previous approaches. More explicitly, we want to treat the fragment of interest at the fully
dynamical level, while the environment is described, in the same calculation, at the static
COHSEX level. Such an method is entitled the QMGW /QMCOHSEX approach. The goal is
to take advantage of the accuracy of the dynamical GW formalism for the part of interest,
and to benefit from the efficiency of the static COHSEX for the large scale environment.

To achieve such an objective, we first work on a reformulation of the screened Coulomb
potential W (ω), more amenable to approximations for the environment.

3.2.3.1 Embedding generalities

We divide the total system into the central subsystem of interest (labeled by (A)) and
the environment (labeled by (B)) and, following the fragment approximation, we assume
non-overlapping wavefunctions between the two subsystems (A) and (B). This results in an
additive total non-interacting electron χ0(ω) operator, in the sense that

χ0(r1, r2;ω) = χ
(A)
0 (r1, r2;ω) + χ

(B)
0 (r1, r2;ω), (3.7)

where χ(S)
0 (r1, r2;ω) corresponds to the isolated (gas phase) non-interacting susceptibility of

the subsystem S. This is just an equivalent reformulation of the block-diagonal character of
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the matrix representation X0(ω) of χ0(ω), but in real space. Dropping the space variable
for the sake of compactness, the Dyson equation (1.120d) page 51 for the screened Coulomb
potential W becomes equivalent to

W (ω)−1 = V −1 − χ
(A)
0 (ω) − χ

(B)
0 (ω) (3.8a)

= Ṽ (ω)−1 − χ
(A)
0 (ω). (3.8b)

The potential Ṽ is defined by the following Dyson equation

Ṽ (ω) = V + V · χ(B)
0 (ω) · Ṽ (ω), (3.9)

where the operation · indicates the matrix product for two spatial-dependent functions,
namely such that

[D ·B](r1, r2) =
∫

dr3D(r1, r3)B(r3, r2). (3.10)

The equation (3.9) can be rewritten

Ṽ (ω) = V + Vreac(ω) (3.11)
Vreac(ω) = V · χ(B)

g (ω) · V , (3.12)

where χ(B)
g (ω) is the interacting susceptibility of the environment (B) in the absence of the

other subsystem, namely in gas phase. The potential Vreac(ω) is the so-called reaction field.
Qualitatively, a charge density change upon excitation, for example in the subsystem (A),
generates through the V Coulomb interaction a charge density change in the environment
(B), proportional to χ(B)

g (ω) · V . In return, this latter exerts a reaction field on (A) via V .
Finally, the equation (3.8b) can be rewritten

W (ω) = Ṽ (ω) + Ṽ (ω) · χ̃(A)(ω) · Ṽ (ω) (3.13)

χ̃(A)(ω) = χ
(A)
0 (ω) + χ

(A)
0 (ω) · Ṽ (ω) · χ̃(A)(ω). (3.14)

χ̃(A)(ω) appears as an interacting susceptibility of the central subsystem of interest (A) when
its Coulomb interactions are renormalized by the reaction field created by the environment
(B).

The next step, to develop a QMGW /QMCOHSEX approach, is to find a way to directly
incorporate the static COHSEX approximation for the subsystem (B) inside the expression
of χ(B)

g (ω).

3.2.3.2 Static COHSEX from a simple pole model

In this part, we focus on a system considered as a whole, namely without any subdivision.
We recover here the static COHSEX approximation within a very simple pole model for the
susceptibility, as an alternative to original approaches relying on the time-domain analysis of
the response operators [1, 37, 67]. Namely, taking as initial information only the low-frequency
limit of the screened Coulomb potential W (ω → 0), or equivalently of the susceptibility
χ(ω → 0), we assume a simple pole model χλ(ω). This latter is defined by

χλ(r, r′;ω) = χ(r, r′;ω = 0) × λ

2

[ 1
ω + λ− iη − 1

ω − λ+ iη

]
, (3.15)
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with λ an unique pole energy for simplicity, and η a strictly positive infinitesimal shift. Such
an expression has the correct low and high frequency limits and time-ordering structure in
the energy plane. The full static COHSEX expression of the self-energy Σ can be simply
recovered by taking the pole energy λ to infinity after performing the energy integration, as
illustrated below.

We separate the GW self-energy Σ = ΣX + ΣC into its bare-exchange part ΣX and its
correlation part ΣC, with

ΣX(r, r′) = i
2π

∫ +∞

−∞
dω eiηωG(r, r′; ε+ ω)V (r, r′) (3.16a)

= −
occp∑

i

ϕi(r)ϕ∗
i (r′)V (r, r′), (3.16b)

where the sum runs over the occupied states, associated to the Molecular Orbitals (MOs)
{ϕi}. Following the Eq.(1.122) page 51, and using the fact that W (ω) = V + V · χ(ω) · V ,
the correlation-only self-energy, built on the model susceptibility, reads

ΣC
λ (r, r′; ε) = i

2π

∫ +∞

−∞
dω eiηωG(r, r′; ε+ ω) × [V · χλ(ω) · V ](r, r′), (3.17)

where we use the convention of Eq.(3.10). Using Eq.(3.15) and the two following integral
identities∫ +∞

−∞
dω 1

ω + ε− (εi + iη)

( 1
ω + λ− iη − 1

ω − λ+ iη

)
= 2iπ

λ+ ε− εi
(3.18a)∫ +∞

−∞
dω 1

ω + ε− (εa − iη)

( 1
ω + λ− iη − 1

ω − λ+ iη

)
= − 2iπ

λ+ εa − ε
, (3.18b)

which can be shown thanks to the residue theorem [71], the correlation part becomes

ΣC
λ (r, r′; ε) = −[V · χ(ω = 0) · V ](r, r′) × λ

2

(∑
i

ϕi(r)ϕ∗
i (r′)

λ+ ε− εi
−
∑

a

ϕa(r)ϕ∗
a(r′)

λ+ εa − ε

)
, (3.19)

with (i) indexing the occupied states, and (a) the empty ones. The limit λ → ∞ results in
the frequency-independent correlation part ΣC

∞ such that

ΣC
∞(r, r′) = 1

2
[
W (r, r′;ω = 0) − V (r, r′)

]
×
[∑

a

ϕa(r)ϕ∗
a(r′) −

∑
i

ϕi(r)ϕ∗
i (r′)

]
. (3.20)

Using the fact that∑
a

ϕa(r)ϕ∗
a(r′) −

∑
i

ϕi(r)ϕ∗
i (r′) =

∑
n

ϕn(r)ϕ∗
n(r′) − 2

∑
i

ϕi(r)ϕ∗
i (r′), (3.21)

where (n) index all the states, and the closure relation∑
n

ϕn(r)ϕ∗
n(r′) = δ(r − r′), (3.22)
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we recover the static COHSEX approximation

Σ(r, r′) = ΣX(r, r′) + ΣC
∞(r, r′) (3.23a)

= ΣSEX
static(r, r′) + ΣCOH

static(r, r′), (3.23b)

as defined in Eq.(1.128) page 53. The same strategy will be used here below for the
susceptibility χ(B)

g (ω), in order to properly merge a polarizable environment, restricted to
its static COHSEX approximation, with a fully dynamical GW formalism for the central
subsystem.

3.2.3.3 Folding of the static COHSEX environment

To avoid relying on the cancellation of errors at the static ∆COHSEX level, we now merge
the fully dynamical GW formalism with a polarizable environment described at the static
COHSEX level, via a simple pole model χ(B)

g,λ (ω) as described in section 3.2.3.2. More exactly,
we start from the equations (3.12) and (3.14) for the folding of the screening effects of the
environment, and the definition (1.122) page 51 of the correlation self-energy ΣC. The
exchange part of the self-energy of the subsystem (A) is unchanged by the environment in a
fragment approximation, and is given by ΣX

(A) such that

ΣX
(A)(r, r′) = i

2π

∫ +∞

−∞
dω eiηωG(A)(r, r′; ε+ ω)V (r, r′) (3.24a)

= −
occp∑

i∈(A)
ϕi(r)ϕ∗

i (r′)V (r, r′). (3.24b)

G(A) corresponds to the Green’s function of the subsystem (A), and the sum runs only over
the occupied states of (A). The restriction of the correlation part of the self-energy, denoted
ΣC

(A), becomes

ΣC
(A)(r, r′; ε) = lim

λ→∞

i
2π

∫ +∞

−∞
dω eiηωG(A)(r, r′; ε+ ω)

×
[
Vreac(r, r′;ω, λ) +

(
Ṽ · χ̃(A) · Ṽ

)
(r, r′;ω, λ)

]
.

(3.25)

The simple pole λ is added as an argument to all the quantities which depend explicitly
on its value. The limit λ → ∞ is taken after the frequency integration, as emphasized in
section 3.2.3.2.

Concerning the second term of the screening potential in Eq.(3.25), namely the
[Ṽ · χ̃(A) · Ṽ ](ω, λ) contribution, we show in appendix B page 163 that it is possible to
interchange the limit on λ, and the frequency integral. The corresponding term becomes

lim
λ→∞

i
2π

∫ +∞

−∞
dω eiηωG(A)(r, r′; ε+ ω)

(
Ṽ (ω, λ) · χ̃(A)(ω, λ) · Ṽ (ω, λ)

)
(r, r′) (3.26a)

= i
2π

∫ +∞

−∞
dω eiηωG(A)(r, r′; ε+ ω)

(
Ṽ (0) · χ̃(A)

stat-env(ω) · Ṽ (0)
)
(r, r′). (3.26b)
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Using the equations (3.11) and (3.12), Ṽ (0) is built on the static limit of the reaction field
such that, for all ω:

lim
λ→∞

Ṽ (ω, λ) = lim
λ→∞

(
V + V · χ(B)

g,λ (ω) · V
)

(3.27a)

= V + V · χ(B)
g (0) · V (3.27b)

DEF= Ṽ (0), (3.27c)

where we have used the limit λ → ∞ in the definition (3.15). χ(B)
g (0) corresponds to the

correct (without model) static susceptibility of the environment (B). For the susceptibility
entering the Eq.(3.26b), χ̃(A)

stat-env(ω) corresponds to the interacting susceptibility of the
subsystem (A), when its Coulomb interactions are renormalized by the static reaction field
created by the environment (B). More exactly, using the limit when λ tends to infinity in
the formula (3.14) leads to the following definition:

lim
λ→∞

[
χ̃(A)(ω, λ)

]−1
= lim

λ→∞

([
χ

(A)
0 (ω)

]−1
− Ṽ (ω, λ)

)
(3.28a)

=
[
χ

(A)
0 (ω)

]−1
− Ṽ (0) (3.28b)

DEF=
[
χ̃

(A)
stat-env(ω)

]−1
. (3.28c)

To sum up, the [Ṽ · χ̃(A) · Ṽ ](ω, λ) contribution in Eq.(3.25) is treated by considering
directly the static response χ(B)

g (ω = 0) of the environment (B) in the renormalization of the
Coulomb interactions of the central part (A). At the opposite, the contribution of the term
Vreac(r, r′;ω, λ) is reminiscent of the static COHSEX approximation, and care must be taken
to properly include the analog of the Coulomb-Hole (COH) term.

Following the treatment exposed in section 3.2.3.2, the pole energy λ is taken to infinity
after performing the integration. Overall, the Vreac contribution to the integral (3.25), in the
proper adiabatic limit λ → ∞, can be reformulated as the sum of two self-energy terms such
that

lim
λ→∞

i
2π

∫ +∞

−∞
dω eiηωG(A)(r, r′; ε+ ω)Vreac(r, r′;ω, λ) = ΣSEX

Vreac(r, r′) + ΣCOH
Vreac (r, r′). (3.29)

They are defined by

ΣSEX
Vreac(r, r′) = −

occp∑
i∈(A)

ϕi(r)ϕ∗
i (r′)Vreac(r, r′;ω = 0) (3.30a)

ΣCOH
Vreac (r, r′) = 1

2
∑

n∈(A)
ϕn(r)ϕ∗

n(r′)Vreac(r, r′;ω = 0), (3.30b)

where the sum over (i) runs over occupied states of (A), while the sum over (n) runs over
all its states. The formulas (3.30) provide the P COH

n and P SEX
n direct contributions of the

static reaction field Vreac(0) to the polarization energies

P COH / SEX
n = ⟨ϕn|ΣCOH / SEX

Vreac
|ϕn⟩ . (3.31)
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Similarly to the standard COHSEX approximation, switching straightforwardly ω to zero for
the reaction field in Eq.(3.29), or equivalently interchanging the limit on λ and the frequency
integral on ω, would lead to neglecting P COH. Only the Screened-Exchange (SEX) term
P SEX would survive. As discussed in section 3.3.3 page 106, it would lead to non-negligible
errors.

Finally, it should be noticed that both in Eq.(3.26) and Eq.(3.29), only the static response
of the environment (B) is required, via its static susceptibility χ(B)

g (ω = 0). At the opposite,
the part of interest (A) is treated at a fully dynamical level. The QMGW /QMCOHSEX approach
enable us to directly probe the adiabatic limit for the environment. From the point of view
of the efficiency, such an approach is promising because the computation of the large scale
χ

(B)
g of the environment is performed only at one frequency ω = 0. For systems large enough,

this is one order of magnitude cheaper than a fully dynamical calculation, requiring with
our code beDeft nω = 12 frequencies. To go further in the reduction of computation times,
the compression method detailed in chapter 2 can also be used for the computation of the
susceptibility of the (B) part.

For this new description of the environment, I have developed new routines in beDeft.
For example, I have implemented functions for the user-interface to define some parameters.
I have also created new methods dedicated to the creation, storage, and usage of the different
matrices describing the effects of the environment, to perform the static embedding of this
latter on the part of interest.

3.3 Application to dense phase of C60

To compare the different embedding methods presented in section 3.2, and to assess the
adiabatic approximation for the environment, I have first studied a dense phase of C60.
Following the studies of the chapter 2, we use the fragment approximation and each fullerene
is considered as one fragment.

3.3.1 Technical details

The Kohn-Sham (KS)-DFT calculations required as starting points for the GW ones are
performed at the def2-TZVP level [64], with a PBE0 exchange-correlation functional [45, 46],
via the Orca package [57, 58]. We adopt the corresponding def2-TZVP-RI [108] auxiliary
basis sets associated with the Coulomb-fitting Resolution of the Identity (RI)-V approach
[104, 106]. The molecular geometry for the C60 is also computed at the def2-TZVP PBE0
level. In our fragment approach, since the C60 molecule does not present any ground-state
dipole, quadrupole, etc., we do not attempt to include environmental electrostatic effects in
the ground state. We focus on the dynamics of screening at the GW level. The dynamical
GW calculations are performed at the non-self-consistent G0W0 level, with our GW code
beDeft. They are done using the Contour Deformation (CD) scheme, based on nω = 12
quadrature imaginary frequencies, plus an Analytic Continuation (AC) of the screened
potential W (ω). More details can be found in section 1.3.2.10 page 56. For the fragments
(I) of the environment described in an optimal polarization basis set {γ}, their gas phase
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interacting electron susceptibility X(I)
g (ω) are compressed under the constraint lmax = 1 (see

section 2.2.2 page 69). This leads to the preservation of the exact dipolar polarizability tensor.
The Face-Centered Cubic (FCC) C60 dense phase is constructed taking experimental

lattice parameters [155] (a0 = 14.17 Å), neglecting orientational disorder. The considered C60
surface is the (111) one. Photoemission Spectroscopy (PES) is very much surface sensitive
due to the large absorption of incoming photons/electrons by the first layer. Fullerene surfaces
have been extensively studied experimentally [160–164], providing valuable reference data.
The fragment approximation preventing the formation of bands originating from wavefunction
overlap, it is the so-called peak-to-peak gap that is studied, as detailed in section 2.3.1
page 75. This corresponds to the energy difference between the centers of the Highest
Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO)
bands. Unless explicitly mentioned, the term “gap” refers to the peak-to-peak gap in the
following sections. It should be noticed that the HOMO of a C60 in gas phase is fivefold
degenerate, and its LUMO threefold degenerate. Following the discussion in section 2.3.2
page 77, we always compute the peak-to-peak gap of the central C60 as the difference between
the average of its three LUMOs energy levels, and its five HOMOs energy levels.

3.3.2 Polarization basis set for dynamical susceptibilities

As explained in section 3.2.1 page 97, I have first assessed an additional approximation
for the polarization basis vectors {γ} of the fragments (I) in the environment. Namely,
we have decided to keep the static optimal polarization basis vector {γ(ω = 0)} for all the
nω frequencies of the AC-CD scheme, instead of refitting this basis set for each frequency.
Only the matrix coefficients of the model susceptibility X̃(I)

g (ω) (see Eq.(3.5) page 98) are
recomputed at each frequency.

To show the accuracy of this approach, I study the energy levels (HOMO2, LUMO2 and
gap) for a central fullerene surrounded by two shells of neighbors in a bulk configuration
(see inset Figure 3.1). I plot the error associated with replacing the gas phase interacting
susceptibility X(I)

g (ω) by the model one, for the fragments (I) strictly beyond the first-shell of
neighbors. This error is plotted as a function of the number Nγ of chosen static {γ(ω = 0)}
vectors per fullerene.

The errors go below the meV for a number of {γ} functions as small as 60, namely no
more than the number of atoms in a fullerene. This can be compared to 5700, the size of
the full def2-TZVP-RI auxiliary basis set per fullerene. These results suggest that we can
keep the static polarization basis set {γ(ω = 0)} for all frequencies. In the following sections,
calculations are done within this approximation. We also keep Nγ = 60 polarization vectors
for fullerenes located strictly beyond the first-nearest-neighbors, while these latter and the
central C60 are described by their full auxiliary basis set. Due to the exact preservation of
the fullerene dipolar polarizability tensor in the constrained fitting process, the induced error
by this approach becomes negligible. This allows us to invert the Dyson equation (3.2) at
each frequency for an environment involving hundreds of fullerenes, with very limited Central
Processing Unit (CPU) and memory requirements.

2As discussed in section 3.3.1, the embedded HOMO (respectively LUMO) energy level is computed as the
average over the five highest occupied (respectively three lowest unoccupied) QP energies.
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Figure 3.1: Absolute value of the errors on the gap, HOMO and LUMO energy levels, for
a fullerene surrounded by its two first-shell of neighbors in a sphere (bulk) geometry. The
susceptibility of the central (in green, inset) and 12 first-nearest-neighbors (in orange, inset)
C60 are described by the full auxiliary basis (5700 orbitals). The susceptibility of each of
the 42 C60 in the second-shell of neighbors (in blue, inset) is described by Nγ polarization
vectors. Energies on the ordinates are in meV and log-scale. Errors for the HOMO are
negative. Calculations performed at the fully dynamical G0W0 level both for the embedded
and embedding subsystems.

3.3.3 Discussion on P COH
n and P SEX

n

Figure 3.2: Representation of the hemisphere made of 302 C60. The central surface C60 of
interest (A) is in red, while the fullerenes of the environment (B) are in gray.

Before comparing the different methods for the description of the environment, we would
like to discuss on the importance of computing both PCOH

n and P SEX
n (see Eq.(3.31) page 103)

in the QMGW /QMCOHSEX approach. To do so, we study a fullerene at the surface of a 302
fullerene hemisphere, as represented in Figure 3.2. More exactly, we analyze in table 3.1
these two terms, together with the total polarization energy (see Eq.(3.1) page 97) resulting
from Eq.(3.25). Using the previous notations, the subsystem of interest (A) corresponds to
the central C60, while the 301 other C60 compose the environment (B). The shifts in energy
are presented for the HOMO, LUMO energy levels and the gap of the fullerene, from the gas
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Table 3.1: Decomposition of the QMGW /QMCOHSEX polarization energy (eV) for one
fullerene molecule at the surface of a hemisphere of 302 fullerenes. The P COH

n and P SEX
n

terms correspond to the two contributions defined in Eq.(3.31).

P COH
n P SEX

n P COH+SEX
n Pn Pn −P COH+SEX

n

HOMO -0.98 1.63 0.65 0.46 -0.19
LUMO -1.00 0.26 -0.74 -0.54 0.20
Gap -0.02 -1.37 -1.39 -1.00 0.39

phase to the center of the C60 hemisphere.
We observe that while the reaction field P SEX

n contribution accounts for most of the
polarization energy for the peak-to-peak gap, this is not the case for individual energy levels.
As a matter of fact, the P SEX

n contribution to unoccupied states is small. Clearly, for the
absolute position of individual levels, P COH

n cannot be neglected. In other words, switching
directly ω to zero for the reaction field in Eq.(3.29) page 103, resulting in the absence of
P COH

n , would lead to inaccurate results. A similar analysis can be found in Ref. [17] in
the case of a molecule facing a graphene substrate, as well as in the reference [37]. This
latter shows that the use of the full static COHSEX Hamiltonian provides a much better
approximation to the GW operator, as compared to the static SEX-only term.

We note further that the P COH
n + P SEX

n = P COH+SEX
n direct contributions from the

reaction field differ from the total polarization energies Pn. The differences, reported in the
last column, represent the impact of the renormalization of the integrand along the imaginary
axis, namely the frequency integral of G(A)[Ṽ · χ̃(A) · Ṽ − V · χ(A)

g · V ]. This points to the
fact that a perturbative approach, where the gas phase GW energy levels are only corrected
by the P COH

n and P SEX
n reaction field direct contributions, may lead to an error as large as

about 40% considering e.g. the case of the peak-to-peak gap.

3.3.4 C60 infinite surface at the G0W0 level

To assess the adiabatic approximation for the embedding subsystem, I have first computed
polarization energies at the fully dynamical G0W0 level, without any adiabatic (instantaneous
response) approximation for the environment. More exactly, in Figure 3.3, I plot the
polarization energy PGap associated with the gap of a surface C60 (in green in the inset), as a
function of the number NC60 of fullerenes in a surrounding hemisphere. This will serve as a
reference for calculations performed at the ∆COHSEX or QMGW /QMCOHSEX levels, namely
in an adiabatic limit for the surrounding fullerenes.

Due to screening, the surface fullerene gap is closing with a (1/R) scaling law, with R

the radius of the environment hemisphere. Equivalently, the gap closing follows an affine
relation with respect to N−1/3

C60
, where NC60 is the total number of fullerenes, as detailed in

section 2.3.4 page 87. The quality of the affine fit indicates that the considered NC60 are large
enough to enter the asymptotic 1/R scaling law regime. In the infinite limit, our dynamical
calculations provide a polarization energy of −1.2 eV for the surface fullerene gap. This can
be compared with experimental values of −1.1 eV [160], −1.2 eV [161, 162] or −1.4 eV [163,
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Figure 3.3: Evolution of the gap polarization energy for a C60 located at the surface of a FCC
crystal hemisphere containing NC60 fullerenes (see inset with the “central” surface fullerene
in green). The dashed line is the affine fit as a function of N−1/3

C60
, which is proportional to

1/R, with R the hemisphere radius. The red dots point to systems with NC60=1, 10, 37, 302
and 534. Calculations performed at the fully dynamical G0W0 level.

164] obtained by subtracting the experimental 4.9 eV gas phase fullerene HOMO-LUMO gap
[86] to the experimental surface peak-to-peak gap.
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Figure 3.4: Evolution of the gap polarization energy PGap for a C60 located at the surface
(in green in the inset) of a FCC fullerene crystal containing (n) layers, in a slab geometry.
Taking as reference the gap of a fullerene in an infinite C60 monolayer, PGap is computed
with respect to 1/n. The dashed line represents the [a/n+ b] fit. Calculations performed at
the fully dynamical G0W0 level.

Following exactly the same method as the one used for the Figure 2.13 page 89, I plot
in Figure 3.4 the results to recover the same surface dynamical limit, by growing the crystal
layer-by-layer as in a slab calculation. For a given (n) number of layers, the polarization
energy is obtained by growing disks of C60 with increasing R2D radius (see inset of Figure
3.4), extrapolating data with a 1/R2

2D scaling law. Taking as a reference the polarization
energy for a fullerene in a single fullerene layer (Pn=1 = −0.74 eV), the polarization energy
follows an affine asymptotic law with respect to (1/n) (see Eq.(2.36) page 89). One finds a
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Pn=∞ = −0.74 − 0.44 = −1.18 eV surface polarization energy, in good agreement with the
−1.19 eV of the hemisphere method.

3.3.5 Assessment of the adiabatic approximation for the environment

I now address the central issue of this chapter, namely the impact of assuming that the
environment responds instantaneously to an electronic excitation in a surface fullerene. In
the case of a fullerene inside a fullerene crystal, the decoupling of excitation energies between
the central subsystem and its environment is clearly not satisfied. The resulting errors in the
gap polarization energy PGap for the two static embedding approaches, as compared to fully
dynamical calculations, are provided in Figure 3.5.
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Figure 3.5: Errors, in eV, on the gap polarization energy PGap when using a static description
of the environment within the ∆COHSEX (orange dots) and QMGW /QMCOHSEX (blue dots)
schemes, as compared to a fully dynamical calculation. Errors calculated as a function of the
number of fullerenes in the hemisphere. The first and second shells of neighbors correspond
to NC60 = 10 and NC60 = 37. The abscissa axis is in log-scale. Dashed lines represent the
errors in the extrapolated infinite size limit.

Considering first the case of static ∆COHSEX calculations (orange dots), we observe that
the error in the gap polarization energy grows with the number of surrounding fullerenes. As
a matter of fact, the error grows rapidly when completing the first shell of neighbors (up to
NC60 = 10), more slowly when completing the second shell of neighbors (up to NC60 = 37),
etc. By using the extrapolation methods detailed in section 3.3.4, we can compute this error
for an infinite size surface. Asymptotically, the total error on the gap polarization energy
amounts to 0.208 eV, namely, a very sizable 17.5% of error as compared to the fully dynamical
calculation. Following the convention of the Figure 3.5, a positive error means that the
∆COHSEX scheme overestimates the closing of the gap by screening.

I now address the case of the QMGW /QMCOHSEX scheme (blue dots), merging a fully
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dynamical GW calculation for the subsystem of interest (A), namely the central surface C60,
with the proper static screening limit for the environment (B). The error is found to be
significantly reduced as compared to the ∆COHSEX scheme, with an asymptotic error of
−0.034 eV. This amounts to a much reduced 2.9% error with respect to the fully dynamical
asymptotic P dynamical

Gap = −1.19 eV. As another important difference with the ∆COHSEX
approach, the error essentially builds within the first-shell of neighbors. This really means
that in the QMGW /QMCOHSEX scheme, only the closely lying molecular fragments really need
to be treated at the fully dynamical level, to totally reproduce the effect of the environment
dynamical response.

I also plot similar results for the polarization energies associated with the individual
HOMO and LUMO energy levels in Figure 3.6, showing globally the same behavior as the
gap. The QMGW /QMCOHSEX approach induces less error than the ∆COHSEX scheme, not
only for the energy difference of the gap, but also for the absolute energy levels.
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Figure 3.6: Errors on the polarization energy for the (a) HOMO and (b) LUMO energy levels,
when adopting a static description of the environment within the ∆COHSEX (orange dots)
and QMGW /QMCOHSEX (blue dots) schemes, as compared to a fully dynamical calculation.
Errors (in eV) are given as a function of the number of fullerenes. The abscissa axis is in
log-scale. Dashed lines represent the errors in the extrapolated infinite size limit.

To better analyze the values of the errors, I conduct again in Figure 3.7 the same
study, but I focus on the relative error, given in percentage. The ∆COHSEX method leads
to increasing relative error with respect to the number of C60, while at the opposite, the
QMGW /QMCOHSEX scheme results into decreasing relative error.

The reason why the static approximation for the environment induces larger errors at
short-range, namely for polarizable fragments located close to the central subsystem of
interest, was hinted at in Ref. [17]. Focusing, e.g., on the ϕH HOMO eigenstate of the
subsystem of interest (A), with QP energy εH , the fully dynamical SEX-like contribution3 to

3Such a contribution can be computed by taking into account the fully dynamical susceptibility of the
environment (B), namely without using a simple pole model to describe this latter. In this case, using the
same method as the one to compute the formula (1.126) page 53, the static equation (3.30a) can be adapted
to lead to the dynamical ones (3.32).
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Figure 3.7: Relative errors on the polarization energy for (a) the gap, (b) the HOMO and
(c) LUMO energy levels, when using the reaction field static limit within the ∆COHSEX
(orange dots) and QMGW /QMCOHSEX (blue dots) schemes, as compared to a fully dynamical
calculation. The error is calculated as a function of the number of fullerenes. Relative errors
are in percentage, and the abscissa axis in log-scale. Dashed lines represent the errors in the
extrapolated infinite size limit.

the polarization energy reads

P SEX
H (εH) = ⟨ϕH |ΣSEX

Vreac(εH)|ϕH⟩ (3.32a)

= −
occp∑

i∈(A)
⟨ϕiϕH |Vreac(εH − εi)|ϕiϕH⟩ . (3.32b)

In the limit of a smoothly varying reaction field over the extent of the central subsystem,
orthogonalization of the MOs reduces the sum to the (i=HOMO) terms, and only the static
Vreac(εH − εH = 0) reaction field contribution is required. The same reasoning holds for the
P COH

H term. Qualitatively, adding far standing fullerenes amounts to adding components
of the reaction field that are more and more smoothly varying on the central subsystem.
Thereby, these distant fragments present decreasing contribution to the total error associated
with the static limit for the environment. In the same smoothly varying limit, for example for
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the polarization energies of an hemisphere of 302 C60 in table 3.1 page 107, one observes that
the P SEX contribution tends to vanish for the unoccupied states. For the occupied states,
the P COH term tends to (−1/2) of the P SEX contribution [17].

In terms of efficiency, it should be noticed that the fragment approximation transfers most
of the computer time requirements to the cubic-scaling inversion of the Dyson equation (3.2)
for the susceptibility χ. In the fully dynamical scheme, such an inversion must be performed
nω times, with nω the number of frequencies sampling the imaginary axis (nω=12 in this
chapter). In the QMGW /QMCOHSEX scheme, the construction of the environment static
susceptibility χ(B)(ω = 0) requires inverting only once the corresponding Dyson equation.
In the limit of systems with large scale environment, the dynamical scheme is thus formally
nω times more expansive than the QMGW /QMCOHSEX one. In practice, the calculation of
the (static) bare Coulomb potential entering the Eq.(3.2), with a quadratic-scaling, is also
expensive in time. However, such a cost is independent of nω, because the corresponding
matrix is computed once before being stored for the other frequencies. In the present stage of
implementation, this leads for the largest studied system in this chapter, namely an embedded
GW calculation over 534 fullerenes, to calculations in 420 CPU hours and 150 CPU hours
at the fully dynamical G0W0 and QMGW /QMCOHSEX levels, respectively. This represents a
factor ∼ 3 between the two approaches.

To further explore the impact of the adiabatic limit for the polarizable medium, we
consider now an environment of fictitious fullerenes where their KS-DFT HOMO-LUMO
gap has been artificially changed in a scissor fashion. More exactly, for each fragment
(I) in the environment, I move rigidly in energy its occupied manifold with respect to its
unoccupied one. Such modified KS energy levels are used to construct their corresponding
gas phase susceptibility diagonal blocks X(I)

g (ω), in the fully dynamical, ∆COHSEX and
QMGW /QMCOHSEX limits. The PBE0 energy levels for the central (surface) C60 are not
modified (PBE0 HOMO-LUMO gap of 2.99 eV).

I plot in Figure 3.8 the associated error on the gap polarization energy, as a function
of the modified KS-DFT gap. I keep constant here the number of surrounding fullerenes
(NC60 = 534). As expected, the absolute value of the error increases/decreases when the input
HOMO-LUMO gap of the surrounding fullerenes is decreased/increased with respect to the
unmodified central surface fullerene. When the gap of the surrounding fullerenes becomes
larger, the adiabatic approximation for the environment becomes formally better validated
and the error induced by the static approximation is reduced. Again, both in the small
and large environment gap limits, the QMGW /QMCOHSEX scheme (blue dots) provides the
smallest error, with a 3.9% maximum relative error in the limit of a small environmental
gap. In such a limit, the adiabatic approximation for the surrounding medium is expected
to fail. I also provide in Figure 3.9 the same plot but for the individual HOMO and
LUMO energy levels. The graphs indicate that there is no cancellation of errors between the
HOMO and LUMO data, and globally the absolute value of the errors at the ∆COHSEX and
QMGW /QMCOHSEX levels increase when the gap of the surrounding medium C60 decreases.
This is consistent with the idea that treating the environment in the adiabatic limit is an
approximation that becomes questionable if the surrounding medium has a smaller gap than
the central subsystem. One notes however that the increase in the error remains limited.
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Figure 3.8: Errors, in eV, on the gap polarization energy when using a static limit for the
description of the environment, as compared to a fully dynamical calculation. The error is
calculated as a function of the fictitious gap of the surrounding fullerenes (see text). The
color code is the same as in Figure 3.5. Data with black bold edges correspond to the true
Kohn-Sham (KS)-DFT PBE0 fullerene gap (2.99 eV).
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Figure 3.9: Same as Figure 3.8, but for the errors on the polarization energy for (a) the
HOMO and (b) the LUMO energy levels. Note that we subtract the absolute value of the
polarization energies (the polarization energy for the HOMO/LUMO energy level is always
positive/negative).
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3.3.6 The QMGW /QMGW /QMCOHSEX approach
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Figure 3.10: (a) Errors, in meV, on the polarization energy of the gap (orange dots), the
HOMO (blue dots) and the LUMO (red dots) energy levels of the central surface C60, in a
QMGW /QMGW /QMCOHSEX approach. Taking as a reference fully dynamical calculations,
errors are computed as a function of the number of fullerenes NC60 in the hemisphere. Abscissa
axis is in log-scale. Dashed lines represent the errors in the extrapolated infinite size limit.
The first and second shells of neighbors correspond to NC60 = 10 and NC60 = 37. Contrary
to previous graphs, the errors are null for NC60 = 10, because the central C60 (in red in (b))
and its 9 first-nearest neighbors (in blue in (b)) are described at the fully dynamical GW
level. The fragment farther away (in gray in (b)) are treated at the static COHSEX level.
(b) Schematic representation of the hemisphere made of 37 C60.

Finally, to try to improve the accuracy of the QMGW /QMCOHSEX approach, I have
increased the proportion of the system treated at the fully dynamical GW level. Following the
notations of section 3.2.3 page 99, the part of interest (A) is now composed of the fragment
of interest, plus some others. In the particular example of the half-sphere of C60, the group
(A) is made of the central fullerene (in red in Figure 3.10b), of which is computed the
polarization energies, plus its 9 first-nearest neighbors (in blue in the same figure). The
other C60, in gray, are still treated at the static COHSEX level. To emphasize the particular
treatment of the central C60, such a scheme can be regarded as a QMGW /QMGW /QMCOHSEX
approach.

In the Figure 3.10a, I plot the errors induced by this method on the polarization energies
of the central C60. Taking as reference the fully dynamical GW calculations, I have computed
the error on the gap, the HOMO and the LUMO energy levels. In comparison to the results
in the infinite size limit of the Figure 3.6, at the QMGW /QMCOHSEX level, the error on the
LUMO energy level is not improved. At the opposite, we can notice a reduction by a factor 6
of the error on the HOMO energy level, to reach a value of −6.5 meV. The same error for the
gap, in comparison to the Figure 3.5, is also reduced to a value of −13 meV. This represents
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a smaller relative error of 1.1%.
This example shows that treating the first-nearest-neighbors only at the fully dynamical

level, while assuming the adiabatic limit for farther lying fragments, allows improving the
accuracy of the calculations.

3.4 A water molecule inside a metallic nanotube

Figure 3.11: Geometry of the H2O@(10,10) nanotube section model system. The nanotube
section contains 280 carbon atoms with hydrogen-passivated edges. The water molecule
adopts a close to “one-leg” geometry [173] with an OH bond pointing towards a hexagon
center.

We conclude this exploration by considering the case of a water molecule inserted inside
a long section of a metallic (10, 10) carbon nanotube, as represented in Figure 3.11. The
behavior of water inside carbon nanotubes has been the subject of many studies, targeting
a better understanding of the structure of confined water and the nature of friction at the
water/tube interface [174], for applications to energy generation through inverse osmosis and
water desalinization [175, 176]. Such studies stand much ahead of the present exploration
aiming at better understanding the impact of dynamical versus static screening. The case of a
metallic surrounding medium, with a vanishing gap, offers a stringent test for the assumption
that the environment responds instantaneously to an electronic excitation in the central
subsystem, namely here the water molecule.

For this water-inside-nanotube system, containing 323 atoms, the tube relaxation has
been performed with the Siesta package [177], for the sake of efficiency. This has been done
at the double-zeta plus polarization level within the Local Density Approximation (LDA)
[33]. Keeping the nanotube positions frozen, the water molecule relaxation has been achieved
using the van der Waals Density Functional (vdW-DF) of Dion and coworkers [178, 179].
Concerning our many-body calculations, since we target the response of a metallic tube,
we favored input KS eigenstates generated at the LDA level, with the Orca package, over
hybrid functionals. We adopt the double-zeta def2-TZVP basis set, together with the def2-
TZVP-RI auxiliary basis set. For the sake of efficiency, the nanotube susceptibility has been
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calculated within our recently implemented cubic-scaling Real Space (RS) imaginary-time
approach [101, 114], as detailed in section 1.3.2.10 page 56. This induces errors at the meV
level for QP energies, as compared to a def2-TZVP/def2-TZVP-RI calculation within our
standard Coulomb-fitting RI-V implementation. The fully dynamical G0W0 calculation for
the water-plus-nanotube system, involving the calculation of the total susceptibility χ(ω) for
nω = 12 imaginary frequencies, required no more than a thousand CPU hours in total at the
def2-TZVP/def2-TZVP-RI level [180].

Due to its finite size, the nanotube LDA gap is finite, amounting to 0.3 eV. Even though
not strictly metallic, the nanotube gap is significantly smaller than that of the water molecule
(6.92 eV, LDA value). The water and nanotube are treated as separate fragments, namely we
do not allow hybridization between them and focus on long-range screening. The closing of the
water molecule HOMO-LUMO gap, from the gas phase to the nanotube-intercalated geometry,
amounts to −2.09 eV, −2.23 eV and −2.41 eV, at the fully dynamical, QMGW /QMCOHSEX
and ∆COHSEX schemes, respectively. Again, the QMGW /QMCOHSEX scheme yields the
smallest error (∼7%) as compared to the ∆COHSEX approach (∼15% error). This is
consistent with the data of Figure 3.8 in the limit of a small gap environment. The error
on the gap polarization energy benefits here, however, from a small compensation of errors,
between the polarization energies of the two frontier energy levels. At the ∆COHSEX and
QMGW /QMCOHSEX levels, the PHOMO is overestimated by 357 meV and 225 meV respectively,
as compared to the fully dynamical calculation, a rather large variation. However, the absolute
value of PLUMO is underestimated by 37 meV and 86 meV, respectively.

In conclusion, we observe that even in a situation where the environment adiabatic
treatment is expected to fail, a static description of the polarizable medium yields an error on
the gap polarization energy smaller than 7% when correctly treated. This tends to indicate
that what should matter is the relative position of the neutral excitation spectra, namely
the poles of the susceptibility, for the embedded and embedding subsystems. In that respect,
comparing just the HOMO-LUMO gaps may not be an accurate criterion.

3.5 Conclusion

Within the framework of an embedded QM/QM’ GW framework, I have studied in this
chapter the validity of the adiabatic approximation for the environment. Namely, I have
assessed the assumption that the electronic degrees of freedom in the environment (treated at
the QM’ level) respond instantaneously to an excitation in the central subsystem (treated at
the QM level). In practice, this amounts to restricting the environment electronic susceptibility
to its low frequency χ(B)

g (ω → 0) limit, where (B) points to the environment. As a first test
case, I have in particular explored a fullerene at the surface of a fullerene crystal. This is a
paradigmatic organic crystal where there is no decoupling in the excitation energy spectrum
between the embedded and embedding subsystems. Furthermore, I have studied the case of a
water molecule inside a metallic carbon nanotube section regarded as the environment. In
such a situation, the adiabatic limit for the environment is formally not expected to be valid.

Reference calculations are performed at the QMGW /QMGW level, where both embedded
and embedding subsystems are treated at the fully dynamical level, within a fragment
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approximation. Our findings are that the proper adiabatic limit for the environment consists
of a QMGW /QMCOHSEX approach. In this scheme, the reaction field from the environment is
treated in the same fashion as the static COHSEX approximation to the full GW self-energy.
Maximum errors in the gap polarization energy, that is the energy shift of the gap from the
isolated (gas) to the embedded phase, are found to remain below 10%. If better accuracy is
desired, we found that treating the first-nearest-neighbors only at the fully dynamical level,
while assuming the adiabatic limit for farther lying fragments, allows us to reduce the error.
Such a scheme may be regarded as a QMGW /QMGW /QMCOHSEX approach.

In contrast, the scheme employed in previous work, namely the ∆COHSEX approach, is
found to induce much larger errors. This method consists of following the shift of the energy
levels from a gas phase QMCOHSEX, to an embedded QMCOHSEX/QMCOHSEX calculation.
This represents an approach where both the embedded and embedding subsystems are treated
consistently in the static COHSEX limit. As compared to a fully dynamical GW calculation,
the static COHSEX scheme is well-known to lead to inaccurate energy levels of the central
(embedded) subsystem. The comparison to the more accurate QMGW /QMCOHSEX calculation
tends to show that such an inaccuracy does not fully cancel out, between the gas and embedded
systems.

In the last two chapters, the fragment approach has been applied to study molecular
systems, with well-separated subsystems. In the following chapter 4, I show that such a
method can also be relevant to study point defects in an insulator covalent crystal.
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Résumé

Ce chapitre illustre l’application de la méthode fragment, développée dans les deux chapitres
précédents, à l’étude des niveaux d’énergie de défauts ponctuels dans du nitrure de bore
hexagonal (h-BN). Alors qu’une telle étude est généralement réalisée avec des conditions
aux limites périodiques, créant des interactions entre les défauts périodiquement translatés,
nous cherchons ici à atteindre la vraie limite diluée. L’application de la méthode fragment à
un système covalent semble bien moins naturelle que dans le cas de systèmes moléculaires
faiblement liés.

La section 4.2 présente la méthodologie adoptée pour cette étude, basée sur l’utilisation
de fragments de forme hexagonale de nitrure de bore, permettant par pavage de reconstruire
du h-BN monocouche, ou multicouche. La fragmentation est appliquée entre les couches
de h-BN, mais également à l’intérieur de chacune d’entre elles. Ceci nous permet d’étudier
l’évolution des niveaux d’énergie d’un défaut, de la phase gaz (un seul fragment avec défaut)
à une phase environnée, où l’opérateur susceptibilité du h-BN environnant est reconstruit
par morceaux. Les défauts d’intérêt, à savoir le dimère de carbone CC, son variant CC-

√
7,

et le défaut avec lacune CBVN sont présentés dans la partie 4.2.4.
Dans la section 4.3, nous étudions tout d’abord les niveaux d’énergie des défauts dans la

limite diluée de la monocouche. L’utilisation d’une loi asymptotique affine en fonction de
1/Nat, avec Nat le nombre total d’atomes de bore et d’azote de la monocouche considérée,
permet de calculer les niveaux d’énergie de défaut dans cette limite diluée. Les résultats
obtenus à l’aide d’un seul fragment de taille croissante, avec défaut, ou ceux calculés par la
méthode fragment avec des hexagones d’une centaine d’atomes, montrent un accord de l’ordre
de la dizaine de meV au niveau G0W0 ou statique COHSEX. La possibilité de découper la
monocouche covalente en fragments pour le calcul de la susceptibilité est attribué au caractère
très courte portée de cette fonction de réponse dans les isolants. La préservation par la
fragmentation des effets d’écrantage à moyenne et longue portée est également illustrée par
l’étude du ratio entre le potentiel de Coulomb écranté W statique, et celui non renormalisé V .

Comme dans les chapitres précédents, la possibilité de fragmenter le système pour le
calcul de la susceptibilité permet d’atteindre des tailles de systèmes remarquables. L’approche
fragment permet d’étudier bien plus facilement la limite diluée en surface, ou en volume, des
niveaux d’énergies de défauts. Une telle limite est obtenue à l’aide d’une loi asymptotique sur
l’énergie de polarisation P = P0/n+ P∞, où n correspond au nombre de couches du système
considéré. L’étude des différents défauts montre dans la section 4.6 que les coefficients P0 et
P∞ sont relativement universels. Ils dépendent du milieu environnant et de la position du
défaut (en surface ou en volume), mais très peu du type de défaut considéré.

Nos calculs prenant en compte tous les électrons pour des systèmes de taille finie, les
niveaux d’énergie des défauts sont directement calculés par rapport au niveau du vide.
Toutefois, la partie 4.7 est l’occasion de calculer les variations de ces niveaux de quasiparticule
par rapport au haut de la bande de valence du h-BN. L’étude des états électroniques étendus
par l’approche fragment est bien plus délicate.
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Summary

This chapter is dedicated to the application of the fragment approach, developed in the
two previous chapters, to the study of energy levels of point defects in hexagonal Boron
Nitride (h-BN). While such a problem is traditionally tackled using periodic boundary
conditions, leading to interactions between the periodically translated defects, we would like
to reach the true dilute limit. Furthermore, the use of the fragment method for a covalent
system seems much less justified as compared to weakly bound organic crystals.

Section 4.2 outlines the methodology adopted in this study, based on the use of hexagonal
fragments of boron nitride used to reconstruct very large size h-BN mono- or multi-layer
systems. The fragmentation process is applied between layers of h-BN, but also inside each
of them. This allows us to study the evolution of the energy levels of a defect, from the
gas phase (only one defected fragment) to the embedded phase, where the embedding h-BN
susceptibility is reconstructed thanks to the fragment approach. The defects of interest,
namely the carbon-dimer CC, its variant CC-

√
7, and the nitrogen-vacancy CBVN, are

presented in section 4.2.4.
In section 4.3, we study the defects in the monolayer dilute limit. Thanks to an asymptotic

affine law with respect to 1/Nat, with Nat the total number of boron and nitrogen atoms of
the considered monolayer, we can compute the associated energy levels in this true dilute
limit. The results computed via the study of one defected fragment of increasing size,
and the ones obtained via the fragment method with hexagonal subsystems of a hundred
of atoms, show a good agreement of the order of a ten of meV at the G0W0 and static
COHSEX levels. The possibility to cut the monolayer into small pieces for the calculation
of the susceptibility originates in the very-short range nature of this response function in
insulators. The preservation of middle- to long-range screening effects upon fragmentation is
also illustrated through the study of the ratio between the static screened Coulomb potential
W and the bare one V .

As in previous chapters, the use of the fragmentation approach in the construction of
the susceptibility allows us to study very large scale systems at the many-body level. This
enables us to study very efficiently the dilute limit of defect energy levels in the surface
and bulk configurations. The dilute bulk limit is reached thanks to an asymptotic law for
the polarization energy P = P0/n + P∞, where n corresponds to the number of layers of
the considered system. The study of various defects shows in section 4.6 that the P0 and
P∞ coefficients are almost universal. They depend on the type of polarizable host and the
position of the defect (surface or bulk), but hardly on the defect type.

Our all-electron finite-size calculations provide energy levels directly related to the vacuum
level. However, we compute in section 4.7 the defects quasiparticle levels with respect to
the valence band maximum. The study of delocalized electronic states with the fragment
approach is less reliable.
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4.1 Introduction

In the previous chapters 2 and 3, the fragment approach has essentially been applied to C60 in
crystal-like structures, where each molecule is well-separated from the others. In this present
chapter, we would like to go further by using this scheme for other types of systems. More
particularly, we start from the fact that the one-body Green’s functions G(r, r′;ω) presents
an exponential decay in Real Space (RS) in the case of insulators [182]. The corresponding
susceptibility χ0(r, r′;ω) is thus also very short-ranged, following an exponential decay thanks
to the Eq.(1.120c) page 51. Such a behavior seems to be compatible with the fragment
approximation. In this context, we have decided to study polarization energies of point
defects in hexagonal Boron Nitride (h-BN), which is a layered covalent insulator system.

This kind of defects in such a polarizable medium has generated much research activity
both at the experimental [5, 183–195] and theoretical [196–221] level to better understand
their unique photoluminescent properties. The large gap of the host h-BN allows a variety
of localized occupied and unoccupied defect states controlling the absorption and emission
spectrum across the visible range. While the optical properties of defects can be used as
a way to unravel their chemical nature, thanks to the comparison between theoretical and
experimental optical emission energies and line shapes, much less is experimentally known
about their electronic energy levels as measured by photoemission. Still, optical properties
are strongly related to an accurate description of defect electronic properties, together with
the strength of the excitonic electron-hole screened interaction. Furthermore, the position
of the defect energy levels in the host gap, in conjunction with structural reorganization
energies, allows us to predict its charge state as a function of the chemical potential [212].

The exploration with ab initio simulations of the electronic properties of defects in the true
dilute limit, corresponding to one unique point defect in an infinite size environment, remains
a difficult task. The most common Periodic Boundary Conditions (PBC) calculations, with
defects periodically repeated, require rather large unit cells to minimize spurious defect-defect
interactions. This is all the more a difficulty in the case of charged defects for which Coulomb
truncation techniques must be used to annihilate long-range Coulomb interactions between
periodic images [222]. Furthermore, at the efficient Kohn-Sham (KS) Density-Functional
Theory (DFT) level, the position of the electronic energy levels is known to be strongly
sensitive to the choice of the exchange-correlation functional, limiting the predictive nature
of the related calculations. In the absence of experimental photoemission data characterizing
defect levels, this may lead to difficulties on the best strategy to adopt. Recently, a scheme
based on enforcing Koopman’s like conditions [223] illustrated the importance of changing
the amount of exact exchange at the generalized KS-DFT level as a function of the number
of h-BN layers [207]. At the GW level, following pioneering studies for defects in three-
dimensional (3D) systems [224–229], calculations for defects in cubic [230] and hexagonal
[196–199, 207, 213, 218–221] BN have been conducted in a few groups.

As a caveat of properly accounting for charging effects, GW calculations also encounter
difficulties associated with spurious long-range Coulomb interactions between images in the
case of PBC. As analyzed in the case of defected h-BN systems [199], two-dimensional (2D)
GW calculations converge slowly, both with the amount of vacuum between repeated images
and with the in-plane unit-cell size. While Coulomb truncation techniques can be used to avoid
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spurious interlayer interactions for the monolayer limit [199, 231, 232], eliminating interactions
between periodically repeated defects within a layer, without affecting the in-plane screening
by the h-BN host, stands as a difficult challenge. In the bulk limit, the necessity to include a
sufficient number of pristine layers in the c-axis direction further increases computational
cost. As a matter of fact, GW calculations for defects in h-BN were conducted essentially for
monolayers [196, 198, 199, 207, 213, 218, 220, 221], with one study of defected three-layer
systems [207] and one bulk study with two-layers per unit-cell [219].

In this chapter, we propose an alternative finite-size cluster approach, based on the
fragment approximation. This enables us to perform GW calculations of defect energy
levels in h-BN, reaching the monolayer, few-layers, surface, and bulk dilute limit conditions.
Defected and pristine flakes with increasing lateral size are stacked, reaching sizes large
enough to safely extrapolate to the infinite limit for a given number of layers. We show that
convergence with respect to in-plane dimensions can be dramatically facilitated with the
fragment approximation. This allows us to reconstruct each layer by patching large h-BN
fragments, neglecting wavefunctions overlap between fragments on the same or neighboring
layers. We can study at the many-body level systems containing several thousand atoms,
reaching sizes large enough to reliably extrapolate to the infinite 2D or 3D limits. Defect
energy level variations from the monolayer to a n-layer system follow a simple (P0/n+ P∞)
polarization energy behavior. The slope and asymptotic coefficients P0 and P∞ characterize
mainly the host and the position of the defect (surface or bulk), but hardly the defect type.
Our study rationalizes the evolution of defect energy levels as a function of the number of
layers. As a result, data obtained for the monolayer, or very-few layer systems, can be easily
extrapolated to the surface or bulk limit without the need to perform additional many-body
calculations.

4.2 Methodology

This section is dedicated to the general methodology adopted throughout this chapter, to
study the energy levels of points defects in h-BN within the GW formalism. More particularly,
we would like to tackle the problem of the true dilute limit of defect, corresponding to one
unique point defect in an undefected infinite size environment.

4.2.1 Fragmentation of h-BN

The price of calculating the screened Coulomb potential W for large multilayer systems (like
the h-BN) in the dilute defect limit is prohibitively expansive. To reduce such a cost, we
have decided to resort to the fragment approach, as detailed in section 2.2.1 page 67. In such
an approximation, one assumes that the system is partitioned into subsystems (labeled also
fragments or flakes below) with weakly overlapping wavefunctions. The matrix representation
X0(ω) of the non-interacting susceptibility χ0(ω), in the auxiliary basis set associated to
the Resolution of the Identity (RI) technique (see section 1.3.2.10 page 56), becomes block
diagonal. Its (I)th block, denoted X(I)

0 (ω), corresponds to the gas phase, i.e. isolated, non-
interacting susceptibility of the (I)th fragment. This represents a considerable saving since
in the fragment limit the cost of calculating the overall χ0 does not grow quartically with
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system size, but only linearly. If the fragments are identical, e.g. just translations of the same
fragment with identical susceptibility blocks, calculating the overall χ0 is independent of the
system size. As illustrated in the two previous chapters, such a fragment GW approach is
used in particular in the study of molecular organic crystals, with weak interactions between
molecular units [138, 141]. It is also applied to nanotube bundles [233], or layered 2D systems
bound by weak van der Waals interactions, defining the field of 2D-genomics [146–148, 234].

Figure 4.1: Symbolic representation of a finite-size multilayer system. The defect is represented
here by the black dot at the center of the surface layer or central fragment in darker blue.
On the left, without fragmentation, convergence to the infinite size layer limit can be
achieved by increasing the lateral radius R2D with a large computational cost increase. With
fragmentation, as represented on the right, the same limit is reached by adding shells of first-,
second-, etc. nearest neighbor domains, namely undefected hexagonal fragments translated
by a set of {RI} vectors.

In this chapter, we do not only neglect the wavefunction overlap between neighboring
layers, as already done in several studies [146–148, 234], but we further fragment individual
monolayers in domains. This is done by “reconstructing” monolayers by patching hexagonal
h-BN fragments, as symbolically represented in Figure 4.1. In real space, the fragment
approximation results in a total independent-electron susceptibility χ0(r, r′;ω) which is the
sum of the gas-phase independent-electron susceptibilities of all fragments. Indexing by (I)
the different fragments, with (I = 0) the defected one, the fragmentation of the h-BN leads
to

χ0(r, r′;ω) = χ
(I=0)
0 (r, r′;ω) +

∑
I>0

χ
(I)
0 (r, r′;ω) (4.1a)

= χ
(defect)
0 (r, r′;ω) +

∑
I>0

χ
(pristine)
0 (r − RI, r′ − RI;ω), (4.1b)

where χ(pristine)
0 is the susceptibility of an undefected (pristine) h-BN fragment and the {RI}

are the translations needed to reconstruct all layers with fragments of h-BN. Such an approach
only requires the susceptibility χ(defect)

0 (r, r′;ω) of an isolated defected h-BN fragment and
the susceptibility χ

(pristine)
0 (r, r′;ω) of an undefected h-BN fragment. This latter will be

“translated” to compute the full system susceptibility χ0(r, r′;ω). For the defected layer, the
central fragment contains the defect, as represented in Figure 4.1, surrounded by shells of
first-, second-, etc. nearest-neighbor pristine h-BN fragments. In practice, each layer contains
up to fourth-neighbor fragments, amounting to 57 flakes containing typically 86 to 138 atoms
each. This enables us to reach lateral sizes large enough to allow extrapolation to the infinite
layer size limit for a given number of layers, as presented in section 2.3.4 pages 87 to 89. The
accuracy of this scheme will be carefully validated below.



4.2. Methodology 125

4.2.2 Environmental effects: observables of interest

Denoting εn the nth energy level, the main objective of this chapter is to compute the energy
level shifts

∆n = ε embedded
n − ε gas

n . (4.2)

Such a shift is computed from the gas phase, namely an isolated defected fragment, to
the embedded phase, where the defected fragment is surrounded by undefected hexag-
onal h-BN flakes. In the following sections, this is computed at the fully dynam-
ical GW level ∆GW

n = εGW, embedded
n − εGW, gas

n , or this is approximated at the static
Coulomb-Hole plus Screened-Exchange (COHSEX) level (see section 1.3.2.8 page 53).
Following the two previous chapters, this leads to the ∆COHSEX approach, such that
∆COHSEX

n = εCOHSEX, embedded
n − εCOHSEX, gas

n . This static approximation offers the advantage
that the screened Coulomb potential W only needs to be calculated at the low-frequency limit
(ω → 0), greatly reducing computer cost. In the present Analytic Continuation (AC) and
Contour Deformation (CD) implementation of GW in our code Beyond Density-Functional
Theory (beDeft) (see section 1.3.2.10 page 56), for which the dynamical susceptibility needs
to be calculated at typically nω = 12 frequencies along the imaginary axis, the static COHSEX
approximation is thus an order-of-magnitude cheaper than the fully dynamical GW approach.
Such an approximation was shown to yield significantly too large gaps [79] but has been
central to most previous studies implementing the fragment many-body techniques [17, 141]
or the combination of many-body techniques with models of dielectric environment [6, 7].
In such studies, environmental corrections are calculated at the ∆COHSEX level. It would
have been also possible to compute ∆n at the QMGW /QMCOHSEX, as defined in section 3.2.3
page 99. However, chronologically the results of this chapter 4 were produced at the beginning
of my 3-year thesis, while the chapter 3 was developed at the end of these 3 years.

This energy shift ∆n may be decomposed into two contributions:

a) the shift of the KS-DFT energies ∆KS
n = (εKS, embedded

n − εKS, gas
n ). This quantity

accounts for hybridization, confinement, or electrostatic effects in the ground state.

b) the shift due to screening effects at the fully dynamical GW level, or approxi-
mated at the ∆COHSEX level. This occurs as a response to an electronic exci-
tation (e.g. Photoemission Spectroscopy (PES)) on the defect. We label polar-
ization energy Pn this second contribution that can be defined as the difference
P

GW/COHSEX
n = ∆GW/COHSEX

n − ∆KS
n .

While ∆KS
n can shift up or down energy levels, the second effect always stabilizes holes and

electrons. Namely, this pushes occupied levels towards the vacuum level, while on the contrary
empty levels go down in energy.

4.2.3 Technical details

The KS-DFT calculations are performed with the Orca code [57] that is used to obtain
relaxed geometries and generate the KS eigenstates used as an input for many-body GW

corrections. Such many-body calculations are performed with our Gaussian basis GW code
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beDeft. All occupied, including core states, and unoccupied energy levels are included in the
construction of the susceptibility and self-energy. We also use the standard Coulomb-fitting
Resolution of the Identity (RI)-V approach (see section 1.3.2.10 page 56). At that stage,
we emphasize that the present all-electron finite-size calculations with Gaussian basis sets,
not relying on the Bloch theorem nor on the use of pseudopotentials, provide energy levels
directly referenced to the vacuum level.

Structural relaxations are performed at the triple-zeta plus polarization 6-311G(d) level
[63]. We adopt the same basis set for the calculation of energy differences at the GW and
static COHSEX level. While absolute GW energies are not converged with such a basis
set, energy differences between the defected fragment and corresponding multilayer systems
are very well captured. Such energy differences involve long-range polarization effects that
converge very quickly with basis size, as further demonstrated below in our discussion on the
basis-set dependence of the fragments dipolar response.

Our dynamical GW calculations are performed at the non-self-consistent G0W0 level
starting with a PBEh(α) functional [45] with 40% of exact exchange (α = 0.4). In the
process of calculating polarization energies, input KS eigenstates enter indirectly through
the construction of the χ0 KS independent-electron susceptibility. Since we are interested
in exploring the impact of the dielectric response of added layers on the defect, we adopt
an α value close to an optimal one (α = 0.409) found in Ref. [207]. This reproduces the
monolayer long-range dielectric properties in an optimally tuned-functional approach. We
emphasize however that KS eigenstates are used in the present case as an input starting guess
to build the non-interacting susceptibility χ0 and the GW self-energy. This GW correction
dramatically reduces the impact of the chosen DFT functional on the final Quasiparticle (QP)
energies.

Concerning the RI-V approach, we use the universal Coulomb fitting auxiliary basis set
[111] in conjunction with the 6-311G(d) basis set. It is in such an auxiliary basis representation
{P} that the Dyson equations for the screened Coulomb potential W , or equivalently the one
for the interacting susceptibility χ, are inverted. Reducing the dimension of this auxiliary basis
set can quickly degrade the quality of correlated calculations. We have observed, however,
that the static dipolar polarizability tensor α(I), of a given fragment (I), is hardly affected
by reducing significantly the dimension NP of the auxiliary basis set. Denoting X(I)

g (ω) the
matrix representation, in the auxiliary basis, of the gas phase interacting susceptibility of the
fragment (I), the coefficients of α(I) are given by

[
α(I)

]
ij

= −
∫

dr dr′ ri

NP∑
P,Q

P (r)
[
X(I)

g (ω = 0)
]

P Q
Q(r′)

 r′
j , (4.3)

for ri ∈ {x, y, z}. In the case of the h-BN fragments considered in this study, removing the
(d, f, g)-character orbitals and the core (s, p) ones from the auxiliary basis set {P} hardly
changes this fragment static dipolar polarizability tensor, with error well below the percent.
Such a reduction enables us to go from an auxiliary basis set of dimension NP = 3454 to
a more reduced one of dimension NP = 720, for fragments of 86 atoms, as detailed below.
We use such reduced auxiliary basis sets to expand the independent-electron susceptibility
χ

(I)
0 of fragments that are strictly beyond the first-nearest-neighbors of the central defected
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fragment of interest. We do not attempt to reduce the dimension of the basis of nearest-
neighbor fragments. As a result, the calculated polarization energies from the monolayer
to the multilayer cases do not change by more than a very few meV. We interpret this
favorable behavior by emphasizing that for long-range interactions, induced dipoles are the
major contribution to the reaction field and polarization energy. As such, an approximation
that preserves the calculated dipolar tensor of remote fragments may be very accurate, as
we observe. In fact, it would have been possible to use the compression method detailed
in section 2.2 pages 67 to 75, leading certainly to a much more reduced auxiliary basis set.
However, the study of this chapter 4 was achieved at the beginning of my 3-year thesis, while
the methods of the chapter 2 were developed during the second year. In practice, the success
of this reduction in size “by hand” was one of the starting point of the development of more
elaborated techniques.

4.2.4 Geometries of the fragments

Figure 4.2: Ball-and-stick representation of the (a) carbon-dimer CC defect, (b) the nitrogen-
vacancy CBVN defect and (c) the carbon-dimer defect in the fourth nearest-neighbor configu-
ration labeled CC-

√
7 [235]. Hydrogen, boron, carbon, and nitrogen atoms are in white, pink,

gray, and blue, respectively. Defects are located at the center of a BN86 flake (or fragment).
Edge atoms are passivated by hydrogen atoms. In the CBVN defect, the carbon atom stands
∼ 0.5 Å below the average plane defining the defected layer (see text).

In this chapter, we study h-BN fragments containing 86, 138, 202 and 278 atoms with
passivating hydrogens at the edge. These latter aim at repelling edge states away from the
host gap, and they reduce the spurious contribution of edge polarization as compared to the
bulk one. Such systems will be named BN86, BN138, etc. In the case of defected structures,
the defect is located at the center of the fragment. I represent in Figure 4.2 the paradigmatic
neutral carbon-dimer (labeled CC) defect and the so-called CC-

√
7 carbon-dimer variant

[235]. I also show the CBVN defect, where one boron atom B is substituted by a carbon
atom C, and a nitrogen atom N by a vacancy. In the following, we will use e.g. the notation
CC@BN86 for a CC defect at the center of a BN86 fragment (or flake). The CC defect in
the BN138, BN202, and BN278 fragments are reproduced in Figure 4.3. This carbon-dimer
defect has been proposed [211, 218] to be a likely candidate for the frequently observed
4.1 eV emission line, while the CBVN defect has been associated with the ∼ 2 eV emission line
[215, 236]. The CC-

√
7 carbon-dimer defect, with carbon atoms in fourth-nearest-neighbor
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Figure 4.3: Representation of the (a) CC@BN138, (b) CC@BN202 and (c) CC@BN278
structures, with the same color code as the one used in Figure 4.2.

position, is less stable than the standard (nearest-neighbor) CC carbon-dimer defect [235].
However, it exhibits a larger spatial extension and a gap significantly smaller (by ∼ 2.2 eV
at the static COHSEX level for the infinite-size monolayer) than the standard carbon-dimer
defect, allowing to show below that polarization (screening) effects are nearly independent of
the geometrical and electronic properties of the defect of interest. All structures are relaxed
at the PBE0 6-311G(d) level.

Except for the non-planar CBVN defect, we do not attempt to relax multilayer systems.
In the dilute limit, the energetics around the defect is not expected to govern the stacking
properties of the h-BN layers. As a test, in the case of the carbon-dimer (CC) defect located
in a BN86 fragment, we prepare a bilayer by adding an undefected BN86 fragment in an
AA’ stacking geometry with the experimental 3.33 Å interlayer spacing [237, 238]. Structural
relaxation including D3 dispersion forces [239] preserves the AA’ stacking geometry, with a
slightly reduced 3.25 Å interlayer spacing in the relaxed bilayer. As such, even in the rather
high-doping limit, planarity and stacking are preserved for the carbon-dimer defects. In what
follows, we will thus relax individually the layers and stack them in an AA’ fashion with the
experimental 3.33 Å interlayer spacing.

Figure 4.4: Representation of the CBVN defect in (a) a BN86 monolayer, (b) a BN86 bilayer,
and (c) a BN86 trilayer. Structures are not on scale.

The case of the CBVN defect is more complicated, since the relaxation of a single-layer
defected fragment leads to a highly non-planar system, as represented in Figure 4.4(a).
This is due presumably to the tensile strain induced by forming a B-B bond across the
missing N atom. However, adding a second undefected fragment in AA’ stacking and relaxing
with D3 dispersion corrections allows to dramatically restore planarity thanks to layer-layer
interaction, as illustrated in Figure 4.4(b). Nevertheless, the C atom goes towards the
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neighboring layer with an out-of-plane deviation of about 0.55 Å. The same result is obtained
in a trilayer system where the defect is sandwiched between two undefected layers, as shown
in Figure 4.4(c). The C atom remains 0.52 Å out of plane despite the restored symmetry of
having one layer on each side of the defect. In what follows, we thus adopt the bilayer or
trilayer geometry, for studying the surface and bulk limits, and add subsequent layers in an
AA’ stacking geometry and a 3.33 Å distance with respect to the nearest undefected layer.

4.3 Fragmentation of the monolayer

In a previous study [218] carried out in our group, the monolayer CC dimer defect was
studied using the GW and Bethe–Salpeter Equation (BSE) formalisms within an approach
based on one finite-size defected flake. The variations of the QP gap and optical excitation
energies were followed as a function of the flake size. It was shown in particular that the
defect electronic energy levels converge very slowly with system size following a 1/R2

2D scaling
law, with R2D the average radius of the defected h-BN flake considered. As illustrated in
section 2.3.4 page 87, or in Ref. [123], such a scaling law was shown to originate from long-
range polarization, or screening, effects in a 2D system. To reach such an asymptotic regime,
allowing to extrapolate to the infinite-size limit, GW calculations on systems with increasing
sizes well above 200 atoms had to be considered. Such results are reproduced in Figure 4.5
at the present G0W0@PBEh(0.4) (red dots) and static COHSEX@PBEh(0.4) (black dots)
levels. The evolution of the gap, denoted ∆Gap following notations of section 4.2.2, of a CC
defect at the center of BN138, BN202, and BN278 flakes are given, taking as a reference the
smallest CC@BN86 system. The dashed lines with corresponding colors are a (1/Nat) affine
fit of the data, with Nat the number of B/N atoms that is proportional to the squared radius
of the flake. The smallest CC@BN86 system is excluded from these fits to obtain an improved
affine behavior, indicating that large systems must be considered to enter the asymptotic
regime.

The significant evolution of the gap is the signature of the influence of enhanced screening
by additional B/N atoms. In the asymptotic infinite monolayer size limit, the defect gap is
closing by 0.46 eV (G0W0) or 0.51 eV (static COHSEX) as compared to the smaller CC@BN86
system. A small contribution from the closing of the gap originates from the evolution of the
KS-DFT gap that can be fitted with a ∆GapKS = [1.87/Nat − 0.05] eV law1. This change in
gap at the DFT level is an order of magnitude smaller than the evolution at the G0W0 level,
indicating that long-range polarization effects are not captured at the KS-DFT level. The
closing of the gap due to polarization only, subtracting the ground-state KS contribution,
amounts to (Pe −Ph) = −0.41 eV at the GW level. This originates both from the stabilization
of the defect occupied level (Ph = 0.20 eV) and of the unoccupied one (Pe = −0.21 eV), where
the subscripts “h” and “e” stand for hole and electron, respectively. I show now that the
same results can be obtained by fragmenting the monolayer in domains. This reproduces the
same screening, or polarization, effects on the central defect, but at a dramatically reduced
cost allowing us to reach much larger system sizes.

To rationalize this strategy, we plot in Figure 4.6 the three principal axes static po-
1Such an affine law may be associated to quantum-confinement effects, scaling as 1/R2

2D ∝ 1/Nat.
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Figure 4.5: Evolution of the gap between the occupied and unoccupied CC defect energy
levels with respect to the CC@BN86 fragment. ∆Gap, in eV, is computed as a function of
1/Nat. The red (black) dots are full G0W0 (static COHSEX) calculations for the CC@BN138,
CC@BN202 and CC@BN278 fragments. The blue (pink) up-triangles represent fragment
G0W0 (static COHSEX) calculations for a central defected CC@BN86 fragment surrounded
by up to four shells of undefected BN86 fragments. Dashed lines are [a/Nat + b] fits. The
fragment made of 86 atoms (∆Gap = 0.0 eV) is excluded from the fits.

larizabilities (as defined in Eq.(4.3) page 126) of the pristine (undefected) BN58, BN86,
BN138, BN202 and BN278 flakes in the RPA. It is such an approximation that is used to
build the screened Coulomb potential W in standard GW calculations (see section 1.3.2.9
page 54). Such results show that the polarizability principal components follow accurately
a linear relation with respect to the number of B/N atoms. As such, one can define a
polarizability-per-atom that is independent of the size of the considered fragment. We believe
that such a behavior is characteristic of insulating systems where charges cannot be displaced
from one side of the system to another, and polarization proceeds rather by the creation of
local dipoles. The consequence of such a behavior is that the effect on the central defect of
polarizing a B/N atom located in an infinite monolayer, or at the same distance from the
defect but in a finite-size fragment, are very similar. Such a finding allows us to set up a
fully ab initio embedding scheme, with a central defected fragment embedded in rings of first,
second, third, etc., undefected neighbor fragments. This approach, illustrated in the Figure
4.7, enables us to reproduce the effect of a continuous layer at a dramatically reduced cost.
As emphasized in section 4.2, instead of calculating the independent-electron susceptibility
χ0 of a system with increasing size, with a quartic scaling evolution in terms of the number
of operations to perform, the corresponding susceptibility matrix can be calculated fragment
by fragment, in a block-diagonal fashion. Such a method is associated to a linear scaling. As
highlighted in the zoom of the Figure 4.7b, the undefected fragments are put so that B/N
atoms are located at the position they would occupy in an infinite-size monolayer. We avoid
any vacuum between the different fragments, even if this leads to overlap between B/N and
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Figure 4.6: Evolution of the Random-Phase Approximation (RPA) static polarizability
tensor components (in atomic units) of pristine h-BN flakes, as defined in Eq.(4.3) page 126.
Components are computed with respect to increasing number Nat of B/N atoms. The three
principal axes (as defined in the inset) polarizabilities are given. The smallest contribution
indicates the out-of-plane polarizability. The shaded data indicates the BN86 flake (see inset)
used to fragment/reconstruct extended monolayers in the following.

(a) 7 fragments (b) Zoom on the “borders”

Figure 4.7: (a) Symbolic representation of the fragment approach to build the susceptibility
χ0. The central CC@BN86 defected fragment is surrounded by 6 undefected pristine BN86
first-nearest-neighbor fragments, highlighted by green hexagons. Larger systems can be
reconstructed by adding second-, third-, etc. nearest-neighbor fragments (not represented
here). (b) Zoom on the “borders” between different fragments, at the junction between the
three green hexagons of Figure (a). Since the hydrogen atoms hardly contribute to the
fragment polarizability, their overlap in real-space hardly matters.
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Figure 4.8: Ratio of the statically screened Coulomb potential W (r; r′;ω = 0) divided by the
bare Coulomb potential V (r, r′), with r fixed at the center of the CC bond and r′ varying
along the direction indicated by the horizontal black dashed lines in the inset. The case
of a defected monolayer reconstructed with BN86 fragments (orange plot) or larger BN138
fragments (blue plot) are compared. Inset: schematic representation of the atoms along the
direction in which is translated r′, for a monolayer reconstructed by BN86 (at the top) or
BN138 (at the bottom) fragments.

H atoms. These H atoms hardly contribute to the fragment polarizability. As such, their
overlap in real-space hardly matters.

To further confirm the preservation of long-range screening upon fragmenting the mono-
layer, I plot in Figure 4.8 the ratio of the statically screened Coulomb potentialW (r, r′;ω = 0)
over the bare Coulomb potential V (r, r′), with the susceptibility χ0 built within the fragment
approximation from the gas phase χdefect

0 and χpristine
0 susceptibilities. The r point is fixed to

the CC bond center while r′ varies radially in a specific direction, represented by horizontal
black dashed lines in the inset of Figure 4.8. One can see that we measure the potentials
close to H atoms when reforming the monolayer with BN86 fragments, and across H atoms
when reconstructing the monolayer with larger BN138 fragments. The [W/V ](|r − r′|) ratio
is very similar in both cases, with small differences when crossing or coming close to H atoms.
In the vicinity of the CC bond, where the defect states are localized, the W/V ratio for the
two systems is indistinguishable. As such, changing the size of the fragments, that is changing
the ratio of H atoms to B/N ones, hardly affects the screening properties. As expected for
a 2D system, the W/V ratio converges to unity in the long-range limit [232, 240–242], at
odds with the 1/ϵM limit in 3D systems, where ϵM is the macroscopic dielectric constant.
This is a clear indication that long-range screening properties in 2D or 3D systems cannot be
reproduced within DFT by the same functional.

A plot of the W/V ratio, for a monolayer reconstructed by BN86 fragments and for r′
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Figure 4.9: Representation of the ratio of the static screened Coulomb potential W (r, r′;ω = 0)
divided by the bare Coulomb potential V (r, r′) along several directions for r′, for a monolayer
reconstructed by BN86 fragments. The position r is fixed to the center of the defect CC
bond, as represented by the red dot in the inset. This latter represents also the orientation of
the considered axes ux and uy.

going in several directions, is provided in the Figure 4.9. While in the Figure 4.8, such a
ratio was computed only along the uy direction (see inset of the Figure 4.9), 4 others ones
are now probed. In all directions, smooth evolutions of the ratio can be noticed when r′ goes
from a fragment to another one. Moreover, the small variations for a given |r − r′| distance
indicate the magnitude of local field effects that fade away at large distance.

I now compare the G0W0 and static COHSEX calculations performed for the CC@BNX
systems, with X varying from 86 to 278, to the results within the fragment approach. In this
latter, the monolayer is fragmented into BN86 defected (center) and undefected fragments,
as represented in Figure 4.7. Since the fragment approach can only account for polarization
effects at the GW/static COHSEX level, the small ∆GapKS = [1.87/Nat − 0.05] eV (see
above) evolution of the KS-DFT gap with system size beyond the 86-atoms system is added
perturbatively to the polarization correction. As emphasized above, such a perturbative
approach is justified by the order-of-magnitude difference between gap changes at the KS-DFT
and many-body levels. As a result, the Figure 4.5 shows that extrapolations from the full
(unfragmented) calculations (red and black dotted lines) and from the much cheaper fragment
approach (up-triangles and corresponding fit) differ by no more than 11 meV (17 meV) in
the G0W0 (static COHSEX) calculations, respectively. As can be seen from the graph, the
system including the fourth shell of nearest-neighbor fragments, amounting to 57 flakes of
86 atoms each, (see e.g. blue up-triangle at the G0W0 level) is already very close to the
asymptotic infinite limit.

I have also performed the very same exercise by reconstructing the infinite monolayer
with larger BN138 fragments. Adopting bigger fragments allows reducing the possible effects
of edge H atoms polarizability. The results are represented in Figure 4.10. Since we start
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Figure 4.10: Same study as the one of the Figure 4.5, with the same notations, but using
BN138 fragments instead of BN86 ones. The reference here (∆Gap = 0.0 eV) is computed for
a CC@BN138 fragment, and is not excluded from the affine fits without fragment.

from a larger system, the infinite-size correction is smaller. The extrapolated value using the
fragment approach falls within 5 meV (9 meV) of the extrapolated value obtained without
any fragment approximation at the G0W0 (static COHSEX) level, respectively. As such,
fragmenting the monolayer with small BN86 flakes or larger BN138 ones leads to very close
results, confirming that edge effects (e.g. hydrogen polarization) are negligible.

For further validation, we explored even larger systems using an efficient classical induced-
dipole model of polarizable points [123, 149], with site polarizabilities fitted to reproduce
the results of Figure 4.6. Such a microelectrostatic model allows us to reach systems more
than one order of magnitude larger than the one we can afford at the ab initio level with
the fragment approach. The outcome of these model calculations is that extrapolating the
evolution of the gap to the infinite monolayer, on the basis of data acquired with much larger
systems, does not change by more than a meV the extrapolated value obtained with systems
of the size we study ab initio in the present fragments scheme. This is reported in more
details in our corresponding article [181].

Coming back to the distinction between static and dynamical GW calculations, we observe
at that stage that the static COHSEX approximation leads to polarization energies that are
overestimated by about 10% as compared to G0W0 calculations. This is in a fair agreement
with results of the chapter 3. The static COHSEX approximation slightly overestimates the
closing of the gap due to enhanced dielectric screening.

4.4 Fragmentation of the multilayers

I now study the effect of layering on the defect energy levels, considering first the carbon-dimer
CC defect. I start this exploration by providing in Figure 4.11 the evolution of the defect
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Figure 4.11: Evolution as a function of the number of layers of the defect gap of a defected
CC@BN86 fragment located at the surface of a stack of BN86 undefected fragments in an
AA’ geometry. The reference is taken to be the monolayer CC@BN86 fragment. Full G0W0
(red stars) and static COHSEX (blue stars) are compared to fragment G0W0 (yellow dots)
and static COHSEX (green dots). Energies are in eV. Dashed lines are [a/n3 + b] fits. Inset:
schematic representation of the (n = 4) system.

G0W0 (red stars) and static COHSEX (blue stars) gaps from the monolayer to n-layer systems
in an 86-atoms finite size layered geometry. Namely, I here do not stack infinite layers but
create a “cylinder” of stacked 86-atoms flakes. I put a surface defected CC@BN86 fragment
deposited on top of undefected BN86 fragments in an AA’ stacking fashion with 3.33 Å
separation between layers (see schematic inset Figure 4.11). We start with full G0W0 and
static COHSEX calculations, without any fragment approximation, stopping at five layers,
representing already 430 atoms.

As expected, interlayer screening reduces the gap associated with the defect. At the
G0W0 level in this 86-atoms stack geometry, the gap closes by as much as 0.4 eV upon adding
a second layer, 0.49 eV with a third layer, etc. Such a correction can be compared to the
0.106 eV closing of the gap at the KS-DFT level originating from the addition of a second
layer, the difference between the pentalayer and the bilayer being reduced to 4 meV. This
illustrates again that KS-DFT cannot reproduce long-range screening unless a strategy is
adopted to readjust the functional for each number of layers in order to mimic increased
screening with increasing number of layers [207]. Concerning many-body approaches, we
observe again that the static COHSEX approximation overestimates the effect of screening.
This “cylinder” being a one dimensional system, we can use the formula (2.35) page 87 for
D = 1 to extrapolate ∆Gap in the infinite number of layers limit. In the present situation,
R ∝ n leads to an asymptotic affine relation ∆Gap = a/n3 + b with respect to 1/n3. This is
what we can observe in Figure 4.11, where such fits, starting from n = 3, are represented
by dashed lines. In the infinite number of layers limit, the static COHSEX approximation
overestimates the closing of the gap by 0.05 eV with respect to the G0W0 approach, to be
compared to a total correction of 0.55 eV, namely an error not larger than 9%.
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In a second step, I adopt a fragment approach, namely decoupling the wavefunctions at the
KS-DFT level between adjacent layers, constructing the independent-electron susceptibility
in a block-diagonal fashion from the susceptibility of the isolated layers. Such an approach
has been used in several previous studies devoted to exploring the properties of stacked 2D
systems (intercalating e.g. h-BN, graphene, dichalcogenides) [146, 147]. As done in the
previous section for reaching the infinite monolayer limit, the small KS-DFT shift between
monolayer and multilayer systems is added perturbatively to the fragment GW and static
COHSEX calculations to allow comparisons with the full (unfragmented) calculations.

The present decoupling scheme is shown in Figure 4.11 to underestimate the impact of
screening on the defect gap beyond the bilayer system (compare the yellow dots to the red
stars at the G0W0 level and the green dots to the blue stars at the static COHSEX level).
The error is however of the order of 60 meV at most, to be compared to a total closing of the
gap of 0.4 − 0.6 eV. This relatively small error certainly confirms the success of the fragment
approach in the 2D-genomics studies.

We further observe that this error is comparable in magnitude with that induced by the
static COHSEX approximation, but with an opposite sign. As a result, and up to the five-
layers system for which full reference G0W0 calculations were possible, there is a significant
cancellation of errors between the static COHSEX approximation, that overestimates the
effect of screening, and the fragment approximation that underestimates it. We conclude
from these tests that the fragment plus static COHSEX approximation reproduces with a
limited error full G0W0 calculations, thanks to a cancellation of error between the static and
the fragment approximations. This cancellation reduces the 30 − 60 meV errors associated
with each separate approximation to significantly lower values. For example, in the infinite
number of layers limit, the G0W0 approach without fragment, and the static COHSEX one
with fragments differ by less than 10 meV. While such a cancellation is certainly fortuitous,
since both errors are of different nature, this latter approach is adopted in the following.

4.5 Point defects in the surface and bulk limit

I now explore within the fragment static COHSEX scheme the evolution of the correction
upon increasing the size of the layers, namely trying to converge towards the stacking of
infinite-size layers. I first study in Figure 4.12a the effect of stacking 138-atoms (red squares)
and 202-atoms (blue pluses) flakes beyond the 86-atoms (green up triangles) systems studied
in Figure 4.11. The defect is here again localized on the surface layer. Clearly, as expected,
increasing the size of each layer leads to increasing the polarization energy.

Enlarging further the size of each layer becomes prohibitively expensive. I thus adopt the
strategy of section 4.3 page 129 consisting into increasing the in-plane lateral size by patching
undefected BN86 fragments around each CC@BN86 (defected layer) or BN86 (undefected
layers) central fragment. Adding first-, second-, third- and fourth-nearest-neighbor flakes
allows reaching much larger layers. These systems are large enough to extrapolate to infinite-
size layers for each (n) value. This is again carefully checked with the semi-empirical model
of polarizable points (see the corresponding article [181]). Reaching the asymptotic regime is
shown to be more difficult upon increasing the number of layers, suggesting that convergence
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Figure 4.12: Evolution of the defect gap (with respect to the monolayer) as a function of
the inverse of the number of layers (n) and the size of each layer. In (a) the defect is on
the surface layer, as represented by the black dot in the inset, while in (b) it is in the bulk
with layers added alternatively on each side of the defect. The black down triangles are
extrapolations to the infinite layers size for a given (n) value. Extrapolated data points can
be nicely fitted by a [0.55/n − 0.90] eV functional form for the defect at the surface and
[1.34/n− 1.49] eV for the defect in the bulk. Data obtained at the fragment ∆COHSEX level.

criteria are related to the aspect ratio of the systems.
The closing of the gap extrapolated to the infinite layer size for each (n) value are

represented by black down triangles. Following the formulas (2.36) page 89, polarization
energies should scale as (1/n) as a function of the number (n) of layers in the limit of
infinite-size layers. This is what we observe in Figure 4.12a with an affine fit of the n = 4
to 7 layers extrapolated values by a [0.55/n− 0.90] eV functional form. I turn now to the
bulk case in Figure 4.12b, adding additional layers alternatively on one side and the other
of the defected layer. One obtains an asymptotic evolution of the gap from the monolayer
to the bulk that scales as [1.34/n− 1.49] eV, when fitting the n = 5 to 7 layers data. The
functional form yields a gap closing by 1.04 eV and 1.16 eV for n = 3 and n = 4, respectively,
in close agreement with the 1.04 eV and 1.14 eV explicit values. This indicates that the
asymptotic regime is already quite accurate for very few layers. The n = 2 case, very far
from the asymptotic limit, can be much better estimated by the “surface” fit that yields
−0.63 eV, within 0.05 eV of the explicit ∆Gap = −0.58 eV value. This rapid recovery of
the (1/n) asymptotic behavior of the polarization energy, with respect to the number of
layers, was again confirmed with the semi-empirical micro-electrostatic model presented in
the corresponding article [181].

As expected, the closing of the gap by 1.49 eV in the bulk limit as compared to the
monolayer is significantly larger than the 0.90 eV value found for a defect at the surface.
We observe that for (n = 3) the polarization energy correction accounts for ∼ 70% (1.04 eV
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Figure 4.13: Evolution of the defect gap (with respect to the monolayer) as a function of
the inverse of the number of layers (n), for CC dimer defect at the surface, subsurface,
subsubsurface and bulk position. For each value of (n) and each configuration, ∆Gap is
extrapolated to the infinite size limit (R2D → ∞ in insets of Figure 4.12).

instead of 1.49 eV) of the (n → ∞) limit. This means that the nearest layers contribute
significantly to the screening, but that the true bulk limit requires additional layers. Using
the obtained functional form, 90% of the closing of the gap is obtained for eight additional
layers, that is four layers on each side of the defected layer.

I also provide in Figure 4.13 the evolution of the defect gap for the CC dimer defect from
the monolayer to a n-layer system with the defect in surface, subsurface, subsubsurface and
bulk positions. In the subsurface case, the (n = 2) layer is added on one side of the defected
layer, while all the other layers for (n > 2) are added on the other side. In the subsubsurface
case, the layers are added alternatively on each side of the defected layer up to n = 5 (2
layers on each side) and then added subsequently only on one side. The asymptotic closings
of the gap show a rapid convergence with respect to the depth of the defect. For example,
the computed value for the CC dimer in the subsurface (−1.32 eV) is closer to the bulk value
(difference of 0.16 eV) than the surface one (difference of 0.42 eV).

I present in Figure 4.14 the evolution of the QP gap of another point defect in h-BN,
namely the CBVN one. Taking as a reference the monolayer, its gap is also computed with
respect to the inverse of the number of layers n, in a bulk configuration. Layers are added on
each side alternatively of the central defected layer, respecting AA’ stacking. In the fragment
approach, the evolution of this gap properly contains the perturbatively added −40 meV and
−57 meV evolution (closing) at the KS-DFT level from the monolayer to the bi- and trilayers,
respectively. Additional layers hardly change the KS gap value. As such, both ground-state
electrostatic and hybridization effects, together with polarization (screening) effects at the
many-body level, are accounted for. This graph shows that the closing of the gap from the
monolayer to the bulk amounts to 1.45 eV, very close to the 1.49 eV value obtained before
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Figure 4.14: Evolution of the QP gap as a function of the inverse of the number of layers
n and as compared to the monolayer, for the CBVN defect in the bulk geometry (layers
successively added on both side of the defect). The black down triangles are extrapolations
to the infinite layers size for a given (n) value. The dashed line corresponds to an affine fit
[1.34/n− 1.45] eV of these extrapolated data points.

for the CC defect. These values are consistent with the 1.27 eV, 1.31 eV and 1.49 eV gap
variations obtained for the CB, CN and CBVN defects within KS-DFT using Koopman’s-type
conditions to adjust the fraction of exact exchange upon changing the number of layers [207].
Such an agreement is remarkable given that the two techniques are significantly different.

We observe thus that the energy shift from the monolayer to the bulk is very weakly
defect-dependent. The KS-DFT energy shifts between the monolayer and the multilayer
systems is expected to change from one defect to another, depending on the local chemistry
(hybridization, ionicity, etc.). Considering, e.g., the CBVN defect, the PBEh(0.4) KS-DFT
gap is shown to close by about 60 meV from the monolayer to the three-layer system on the
basis of the stack of BN86 fragments. This value can be compared to the 0.19 eV closing
in the carbon-dimer CC defect case. These two shifts are very different in percentage but
small in absolute value. In the following section, the stability of the much larger polarization
energy induced by long-range screening from one defect to another is thus explored.

4.6 Universality of the polarization energies among the differ-
ent defects

I now compare the evolution with layers number of the QP energy levels for several defects,
focusing on the CC carbon-dimer defect in its most stable first-nearest-neighbor conformation
and its “CC-

√
7” fourth-nearest-neighbor geometry, together with the much studied CBVN

defect. As discussed above, the evolution of the energy levels can be partitioned into a
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Figure 4.15: Polarization energy, in eV, as a function of the inverse of the number of layers n
for the CC, CBVN and CC-

√
7 defect-associated occupied level in the surface and bulk limits.

In (a) the polarization energy Ph is taken with respect to the monolayer, while in (b) it is
taken with respect to the bilayer for surface defects and in (c) with respect to the trilayer
(one layer on each side of the defected layer) for the bulk ones. For each given number of
layers n, Ph is computed for systems in the infinite size layers limit (namely, R2D → ∞ in
the insets of Figure 4.12 page 137). The asymptotic affine fits [a/n+ b] are provided.

KS-DFT correction and the long-range polarization energies. While the KS-DFT correction
has been shown to be short-range, involving mainly nearest-neighbor layers interactions, and
rather small in magnitude, we now show that the larger polarization energy is very much
universal, namely system independent.

I plot in Figure 4.15(a) the evolution, from the monolayer to the n-layer case, of the
defect occupied energy level polarization energy (Ph) with respect to 1/n. I consider both
cases of the defected layer in the bulk or at the surface. In the bulk limit, the polarization
energies from one defect to another range from 0.57 eV to 0.61 eV, namely a variation around
the mean value of about 3%. Further, the prefactors governing the (1/n) evolution are
remarkably close, comparing the evolution to the bulk limit and separately the evolution to
the surface limit. The CBVN defect is associated with the largest polarization energy. We
attribute this to the CBVN geometry, with the carbon atom coming closer to its neighbor
layer by ∼ 0.5 Å, inducing a larger reaction field from this layer. The two other carbon-dimer
defects are planar and, even though showing different in-plane extension and electronic
properties, lead to very similar polarization energies.

To further analyze the small differences from one defect to another, I provide in Figure
4.15(b) the evolution of the polarization energy for the defect at the surface, taking the
bilayer system as reference. As such, this removes the evolution from the monolayer to the
bilayer. Clearly, the various defects are characterized by residual polarization energies that
are now within a very few meV. In the case of the bulk, I reproduce the same exercise
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in Figure 4.15(c) but starting from the three-layer case (one layer on each side of the
defected one). Again, the evolution beyond the nearest-neighbor layers is very much defect
independent, with variations within 5 meV in the bulk limit. Such results confirm that the
small differences observed in Figure 4.15(a) between defects originate mainly from the
response of the nearest-neighbor layers. The response of other layers is nearly completely
independent of the defect chemical nature.

To conclude this section, one should notice that polarization energies, originating from
environmental screening, are very much universal. Namely, they depend on the host dielectric
properties and on the defect location (surface or bulk), but hardly on the defect chemical
nature. Indeed, even though the studied defects showed different chemical composition and
band gap, variations of the polarization energies from the monolayer to the bulk are within
a very few percent of their mean value. In practice, they are even smaller if the defects do
not break the planarity of the defected layer. To better rationalize this universal behavior,
we emphasize that the surrounding medium reacts to a localized added charge of which the
exact spatial distribution, defect and level dependent, only affects its environment through
higher-order (dipolar, quadrupolar, etc.) contributions.

The small observed differences originate nearly entirely from the effects of the nearest-
neighbor layers. Further, the universal (1/n) long-range behavior, with n the number of
layers, starts being valid for a very small number of added layers. In practice, this really
means that KS-DFT calculations may be required for a specific defect in the bilayer and
trilayer geometries, to capture short-range ground-state crystal field and hybridization effects.
Concerning the long-range polarization effects beyond the monolayer case, they can be
accurately accounted for on the basis of the simple scaling laws provided in this chapter. As
such, expensive GW calculations beyond the monolayer limit may be spared when exploring
a large zoology of defects in their neutral state.

4.7 Defect levels with respect to h-BN valence band edge

All-electron finite-size Gaussian basis sets calculations provide energy levels directly related
to the vacuum level. Locating defect levels with respect to the host semiconductor band edge
may also be an important issue when it comes to discuss, e.g., the evolution with the number
of layers of the stability of defect charged states [212]. Contrary to localized states, addressing
the energy of extended Bloch states from a finite size fragment calculation is a difficult task
as compared to periodic boundary calculations. The flakes to be considered for extrapolating
to infinity are much larger than a standard unit cell of the pristine semiconductor, and the
physical interpretation in terms of k-points is lost. However, we try in the following to apply
the fragment approach to study the evolution of defect energy levels with respect to the h-BN
valence band edge. Such a procedure is certainly not optimal to achieve such an objective,
but this may provide guidance for this problem.

In our defected flake calculations, the levels lying below the defect occupied level are
delocalized h-BN states. As such, the scheme presented here above can be used as well to
extrapolate to the bulk limit not only the defects localized states, but further the highest
occupied h-BN states representative of the h-BN top of the valence band. The results are
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Ref.

Figure 4.16: Polarization energies P , in eV, from the monolayer to the bulk for a larger
set of occupied and unoccupied states, including defect and h-BN delocalized states, as a
function of KS-DFT energy εKS with respect to the vacuum level. Data corresponding to
defect states present black bold edges. Most unoccupied states are unbound. Inset: evolution
of the polarization energies from the 3-layer system (one undefected layer on each side of the
defected one) to the bulk, as represented in the schematic cylinder.

represented in Figure 4.16 which reports the bulk polarization energy, as compared to the
monolayer, for a large set of states around the gap in the case of the CC, CC-

√
7 and CBVN

defects. The states are ordered according to their KS-DFT energy. The data corresponding
to defect states are emphasized by black bold edges.

The salient result is that polarization energies for the occupied states at the top of the
h-BN occupied states manifold are very stable around Ph ∼ 0.6 eV, to be compared to the
0.57 − 0.61 eV shift obtained for the localized defect levels (see Figure 4.15). As such,
screening by additional layers hardly affects the difference of energy between localized defect
levels and delocalized h-BN states at the top of the valence bands.

An additional analysis via the Figure 4.17, considering larger fragments, confirms that
the polarization energy is hardly dependent on the in-plane localization of the considered
states. In such a graph, we evaluate the evolution of the polarization energy associated with
the highest occupied h-BN delocalized states as a function of the fragment size. Since in
our approach the h-BN states are confined to the central fragment, varying the size of such
a fragment, from BN86 to BN138, allows us to assess the influence of the in-plane spatial
extension. More particularly, in Figure 4.17, we compare the polarization energies obtained
for the HOMO of pure (undefected) central BN86 and BN138 flakes, surrounded by fragments
of the same size in the same layer or in surrounding layers. We also look at the evolution of
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Figure 4.17: Polarization energies Ph from the monolayer to a n-layer system for the highest
occupied h-BN state delocalized over a central fragment with size BN86 or BN138. Ph is
computed with respect to 1/n. Both the Highest Occupied Molecular Orbital (HOMO) orbital
of a pristine (pure) central BN86 or BN138 fragments, and the highest-but-one (HOMO − 1)
orbital of defected CC@BN86 or CC@BN138 fragments, are studied in the bulk and surface
limits.

the HOMO − 1 of defected central CC@BN86 and CC@BN138 fragments. Both the surface
and bulk limits are considered. For a given surface or bulk configuration, with a given size of
the considered fragments, the energy level of the HOMO of the pure central BN fragment or
the HOMO − 1 of the defected one follow globally the same evolution. This indicates that
the states with energy levels below the defect occupied one can be associated to delocalized
h-BN states. When the number of atoms in the flakes is increased, variations of the order of
10 meV are observed on the polarization energy, e.g. from Ph ≃ 0.60 eV to Ph ≃ 0.61 eV in
the bulk limit. This tends to confirm the stability of the obtained polarization energies for
extended h-BN Bloch states as a function of fragment size.

These different results leave hybridization and electrostatic effects in the ground state
as the only source able to modify significantly the position of the occupied defect energy
levels with respect to the h-BN Valence Band Maximum (VBM). Here again, polarization
energies, difficult to obtain at the KS-DFT level, are very much universal. Defect-dependent
shifts with respect both to the vacuum level, but also the VBM, can be obtained at the much
cheaper (as compared to GW ) KS-DFT level.

As discussed above, the effect of stacking layers in a bulk configuration moves the defect
occupied level towards the vacuum level (reduced Ionization Potential (IP)) by about 0.19 eV
and 0.11 eV, respectively, at the KS-DFT ground-state level for the CC and CBVN defects.
This correction is nearly entirely due to the interaction with the nearest layers. Concerning
h-BN, it has been shown and analyzed in several papers that the top of the valence band
at the high-symmetry point K is very weakly dispersive in the AA’ stacking configuration
[243–245]. Namely, from the monolayer to the bulk, the top of the valence band remains
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degenerate, dispersion growing slowly away from the K-point. Taking the vacuum level as a
reference, the top of the valence band at K was shown to go down in energy by about 0.08 eV
[244] at the KS-DFT level with the HSE hybrid functional [246, 247], demonstrating both
weak electrostatic and hybridization effects. A similar value of 0.06 eV was found in Ref. [212]
at the PBE level [42], confirming the stability of the VBM at the KS-DFT ground-state level,
namely in the absence of polarization effects between the monolayer and the bulk. Adding
the ∼ −0.1 eV shift of the h-BN VBM and the ∼ +0.1 eV to ∼ +0.2 eV shift upward of the
occupied defect levels in the CC and CBVN cases, one finds that the energy spacing between
the occupied defect levels and the VBM increases by a limited 0.2 eV to 0.3 eV from the
monolayer to the bulk limit. Such an effect is mostly related to electrostatic and hybridization
effects accounted for at the KS-DFT level.

We finally address the challenging case of unoccupied states. Focusing first on the defect
states, we observe in Figure 4.16 that their polarization energy Pe is larger (in absolute
value) as compared to the one associated with occupied defect levels. Unoccupied defect
states are approaching the vacuum level, being weakly bound to the atomic layer. As such,
the associated wavefunctions start delocalizing away from the atomic layer, inducing an
enhanced polarization response from neighboring layers. The study of the charge density
accumulated within a distance z of a CC@BN86 defected system for selected states highlights
such a behavior. Namely, defining the z-axis as the normal one to the plane of the flake, we
can define a charge density ρ(z) along this axis, associated to a given wavefunction ϕ(r), such
that

ρ(z) =
∫

dx dy |ϕ(x, y, z)|2. (4.4)

In the Figure 4.18, focusing on the charge localized only on one side of the fragment, I
compute ∫ z

0
dz′ ρ(z′) (4.5)

with respect to z. Namely, taking the reference z = 0 in the plane of the CC@BN86
fragment, I calculate the charge density contained within a height z. This graph evidences
the delocalization away from the atomic plane with increasing KS-DFT energy. This can be
used as a mean to better understand the increase of polarization energies (in absolute value)
for unoccupied states with increasing energies in Figure 4.16.

However, such a delocalization phenomenon affects mainly the polarization response
from the nearest-neighbor layers. If we calculate the polarization energy from the 3-layer
system to the bulk, as illustrated in the inset of Figure 4.16, one observes that the effect of
screening becomes much more state-independent and symmetric between holes and electrons.
This is an indication that delocalization away from the defected layer remains small, at
least for states close to the conduction edge, affecting mostly the response of the nearest
layers but not beyond. This is similar to what was observed for the CBVN defect, with the
out-of-plane C atom polarizing more strongly (as compared to the in-plane CC defect) the
nearest layers. This overscreening effect due to loosely bound charges spilling out the BN
layer vanishes quickly for the response of layers located farther away. As a result, polarization
effects stabilize unoccupied defect levels by an energy |Pe| ∼ 0.7 − 0.8 eV , or an energy
|Pe − Ph| ∼ 1.3 − 1.4 eV as compared to the h-BN VBM.
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Figure 4.18: Integrated charge (see Eq.(4.4)) accumulated within a distance z of a CC@BN86
defected fragment for various states. The z-axis is perpendicular to the plane of the fragment.
HOMO indicates the highest occupied orbital, while Lowest Unoccupied Molecular Orbital
(LUMO), (LUMO+1) and (LUMO+2) indicate the lowest, lowest-plus-one and lowest-plus-
two unoccupied ones. The vertical dashed line indicates the position of the neighboring layer.

We will not attempt here to discuss the position of the h-BN Conduction Band Minimum
(CBM). As shown in Figure 4.16, states above the unoccupied defect levels lie above the
vacuum with a positive KS-DFT energy. As such, delocalized nearly-free-electron states are
expected to be present at the CBM of h-BN as documented in early studies on h-BN [245,
248]. The difficulties associated with describing unbound states with localized basis sets, and
the much larger dispersion of h-BN states upon stacking at the CBM [244, 245], are serious
limitations for the present localized-basis fragments calculations. The reader is reported to
previous periodic-boundary GW and Quantum Monte Carlo (QMC) studies of the evolution
of the electronic properties of pristine h-BN from the monolayer to the bulk [207, 213, 245,
249].

4.8 Conclusion

In this chapter, our fragment GW approach has been applied and validated for the study
of defects in h-BN multilayer systems, where individual layers are fragmented in domains
with non-overlapping wave functions. The resulting interacting susceptibility and screened
Coulomb potential are shown to accurately describe the screening properties of infinite
monolayers in the vicinity of the dopant, reproducing at the few meV level the extrapolation
of QP energies in the infinite layer size limit. Such a divide-and-conquer scheme allows us to
study at the many-body level systems containing thousands of atoms, dramatically facilitating
the study of dilute defects in monolayer, few-layers, surface, or bulk h-BN systems.

The success of the fragmentation scheme for the block diagonalization of the independent-
electron susceptibility is associated with the large ionic gap character of the h-BN substrate.
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For such systems, the response to a perturbation proceeds by the creation of very localized
induced dipoles, rather than the displacement of electrons over large distances. This can be
restated by saying that the susceptibility χ0(r, r′;ω) is very short-ranged, with an exponential
decay in real-space in the case of insulators [182]. Along that line, exploring the robustness
of this approach for other 2D systems with smaller gap (e.g., dichalcogenides) would be an
interesting direction. In the present case, we find that our results are rather insensitive to
fragment size and shape, provided that the fragments are large enough (around 100 atoms
in the present study). As an additional ingredient, passivation of edge atoms, by repelling
edge states away from the host gap, reduces the spurious contribution of edge polarization as
compared to the bulk one. We do not exclude more efficient passivation strategies.

As a first application, we have studied the evolution of the paradigmatic carbon-dimer
and CBVN defects energy levels from the monolayer to n-layer systems, including the surface
and bulk limits. The polarization energy, namely, the evolution of the GW electronic energy
levels as a function of increased screening upon the inclusion of additional layers, is shown to
follow a nearly-universal (P0/n+ P∞) law with the number n of layers. The slope P0 and
the asymptotic value P∞ depend on the defect location (bulk or surface) but hardly on the
defect type. Such an approach rationalizes the evolution of defect energy levels as a function
of the number of layers and allows us to easily extrapolate data obtained for the monolayer
or very-few-layer systems to the bulk.

This universal behavior can be rationalized by emphasizing that the surrounding polariz-
able substrate reacts basically to an added charge associated with the photoemission process
used to measure electron addition or removal energies. As such, the exact spatial distribution
of this added charge, that depends on the defect type and chosen energy level, only contributes
to higher order (dipolar, quadrupolar, etc.) terms to the perturbation felt by the polarizable
substrate. While such arguments allow to rationalize asymptotic behaviors, it is remarkable
that they start applying to the reaction of second-, and even first-, nearest-neighbor layers.
While the present scheme ideally applies to localized defect states, our results suggest that
similar polarization energies can be obtained for extended h-BN Bloch states, leaving aside
conduction band edge states that start delocalizing away from the plane of atoms. Special
care should probably be taken with defects inducing large elastic deformations, requiring
potentially larger fragments.

Together with the fragmentation scheme, we have shown that the neglect of neighboring
layer wavefunction overlap, a common approximation in the 2D-genomics approach, leads to
underestimating screening effects by up to 10%. This error is, however, very largely canceled
by neglecting the frequency dependence of the dielectric response in the calculation of the QP
energy difference between the monolayer and n-layer systems. This approximation takes the
form of the well-known static COHSEX approximation in the GW framework. This static
∆COHSEX scheme for calculating the increase in polarization energy upon adding layers,
leads to overestimating polarization energies. It significantly reduces the error introduced by
decoupling wave function overlaps between layers.

We further explored a multipole-like expansion of the long-range susceptibility, with a
dramatic reduction of the auxiliary basis size used to express density variations in the long-
range. Together with fragmentation, this approach also contributed significantly to reducing
the cost of performing many-body calculations. For the sake of indication, static COHSEX
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calculations on ∼105 electrons, as encountered for seven-layer systems, were conducted with
a typical cost of 1600 CPU hours in the present fragment approach. While done here in a
somehow ad hoc fashion by removing high-angular momentum channels in the auxiliary basis,
such a scheme can certainly be improved by using the susceptibility compression scheme
developed in the chapter 2.





Conclusion (version française)

Ce travail doctoral a ouvert la voie aux calculs GW sur des environnements extrêmement
grands et de plus en plus réalistes, contenant des centaines de milliers d’atomes. Ceci a
été rendu possible grâce à l’utilisation d’approches quantiques dites « environnées », dans
lesquelles le système total est partitionné en un sous-système « central » ou « actif », et son
environnement. Alors que le formalisme ab initio GW était jusqu’à présent majoritairement
associé à des approches semi-empiriques pour la prise en compte des effets de l’environnement,
cette thèse a été l’occasion de développer une description totalement ab initio de ce dernier.

Les différents travaux présentés dans ce manuscrit reposent tous sur l’approximation
fragment. Celle-ci consiste à négliger le recouvrement orbitalaire entre les différents sous-
systèmes, permettant d’obtenir une susceptibilité électronique non-interagissante χ0 diagonale
par blocs. La complexité globale d’un calcul GW passe alors de quartique à cubique. Afin de
pouvoir étudier des systèmes de très grande taille, il est également nécessaire de réduire le
préfacteur associé à l’inversion de l’équation de Dyson du potentiel de Coulomb écranté W .
Pour ce faire, nous avons développé un algorithme de compression de l’opérateur susceptibilité,
nous permettant ainsi de réduire de façon drastique la taille des blocs associés aux fragments
de l’environnement. Lors de la validation de notre approche sur des cristaux de fullerènes en
surface ou volume, nous avons ainsi pu étudier des systèmes contenant jusqu’à près de 200
000 atomes, en moins de 10 000 heures CPU.

Traditionnellement, les méthodes semi-empiriques multi-échelles, pour la description d’un
milieu environnant polarisable, reposent sur une description statique de l’environnement.
Afin de mieux caractériser notre approche « environnée », et en s’appuyant sur le caractère
dynamique par nature du formalisme GW , nous avons cherché à quantifier l’erreur induite
par une telle approximation. Nous avons donc réalisé des comparaisons explicites, sur une
surface de fullerènes et une molécule d’eau dans un nanotube de carbone métallique, entre
deux approches statiques d’une part et une description totalement dynamique de la réponse
diélectrique de l’environnement d’autre part. Notre nouvelle approche QMGW /QMCOHSEX,
permettant d’allier dans le même calcul une description dynamique de la partie « active » à
celle statique COHSEX pour le milieu polarisable, s’avère la plus précise. Elle mène à des
erreurs sur l’énergie de polarisation inférieure à 10%.

Au-delà de ces travaux de développement, l’approche fragment a également été appliquée
à l’étude des niveaux d’énergie de défauts ponctuels dans du nitrure de bore hexagonal
(h-BN). Plus précisément, la fragmentation est utilisée entre les couches de h-BN, mais aussi
à l’intérieur de celles-ci. En repoussant suffisamment la limite sur la taille des systèmes
étudiables, nous avons pu calculer la renormalisation de ces niveaux dans la vraie limite
diluée, à l’aide de lois d’échelle sur le nombre de couches de h-BN considérées. Cette étude
met également en avant un caractère universel pour l’énergie de polarisation correspondante,
qui ne dépend pas du type exact de défaut analysé.
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Perspectives

Concernant la méthode fragment à proprement parler, une possibilité d’amélioration consis-
terait à la coupler avec des méthodes scindant le système total en plusieurs sous-systèmes
au niveau DFT [169, 250, 251]. Ceci permettrait d’améliorer les états propres Kohn-Sham,
en prenant en compte les effets créés par les densités électroniques (gelées) de l’ensemble
des fragments. En particulier, le champ électrostatique généré dans l’état fondamental,
d’une grande importance dans les milieux organiques présentant un dipôle, quadrupôle, etc.,
permanents [3, 123, 149, 166, 252], pourrait être pris en compte au niveau DFT.

De plus, la méthode fragment semble pouvoir être améliorée au niveau GW en prenant
en compte des corrections associées à des dimères de fragments [140]. Une autre solution
pourrait être de conserver les effets de la susceptibilité de fragments totalement interagissants,
mais en se restreignant uniquement à un faible nombre d’états vides ou occupés [170, 253].

Concernant l’étude des défauts ponctuels dans du h-BN, celle-ci a mis avant la possibilité
de fragmenter des systèmes covalents isolants. Ceci ouvre la voie à l’étude au niveau GW

de divers systèmes désordonnés. Il peut s’agir de structures composées d’un empilement de
couches, de différentes natures ou tournées les unes par rapport aux autres, entraînant un
effet de Moiré [254]. L’étude d’interfaces désordonnées [4], particulièrement utile pour le
photovoltaïque organique, ou celle de monocouches également désordonnées telles le h-BCN,
composé d’une juxtaposition de domaines de graphène et de h-BN [255, 256], semblent être
des sujets propices à l’utilisation de la méthode fragment.

De manière plus générale, une extension naturelle des travaux réalisés au cours de ces
trois dernières années consisterait à utiliser nos résultats comme points de départs pour des
calculs BSE (Bethe-Salpeter Equation), afin de pouvoir calculer des excitations neutres, ou
autrement dit l’absorption optique. Une fois les énergies de quasiparticules et le potentiel de
Coulomb écranté W du système d’intérêt renormalisés par les effets de l’environnement, les
calculs BSE peuvent être menés comme d’habitude, sur la partie « active » isolée. Toutes les
informations nécessaires concernant les effets de l’environnement sont déjà pris en compte au
niveau sous-jacent GW [7]. D’autre part, l’approche standard BSE « adiabatique » néglige
la dépendance en fréquence de W . Les subtilités sur le traitement statique ou dynamique
des effets de l’environnement ne sont donc plus pertinentes à ce niveau. Au-delà des énergies
d’absorption, l’impact de l’environnement sur le couplage exciton-exciton pour les transferts
d’énergie au niveau BSE pourrait également être étudié. De même, toujours en lien avec les
travaux en cours dans notre groupe au CNRS et au CEA, l’influence du milieu environnant
sur les gradients BSE et les propriétés du système (distribution de charge, géométrie, etc.)
dans l’état excité, sont de possibles extensions aux développements réalisés durant cette thèse.

Finalement, durant mes trois années de thèse, la majeure partie de mon temps a été
consacrée aux développements mathématiques, et par-dessus tout, à l’implémentation efficace
des différentes équations dans notre code massivement parallèle Beyond Density-Functional
Theory (beDeft) (C++/MPI/OpenMP). Ceci peut s’apparenter à la mise en place, pendant
plusieurs années, d’un vaste système expérimental par nos collègues expérimentateurs. Par
conséquent, peu d’applications ont été réalisées au cours des trois dernières années. Nos
exemples ont servi essentiellement à illustrer notre méthodologie, plutôt qu’à répondre à
des questions spécifiques sur un matériau ou un phénomène donné. Cependant, l’étude de
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l’évolution des niveaux de quasiparticules pour un défaut dans du h-BN, en fonction du
nombre de couches considérées, fait quelque peu exception. Cette étude transmet un véritable
message physique à la communauté. Les simples lois asymptotiques mises en valeur, en lien
avec les effets d’écrantage à longue portée, sont des résultats quelquefois mal compris par
la communauté, notamment celle de la DFT. Il n’en demeure pas moins que les nouvelles
fonctionnalités du code beDeft devraient permettre bien plus d’applications. Bien que notre
groupe s’intéresse avant tout au développement méthodologique, l’ouverture prochaine du
code à tous devrait s’accompagner, je l’espère, de nouvelles applications intéressantes.





Conclusion (English version)

These doctoral studies have paved the way to perform GW calculations in very large-scale
and more realistic environments, containing up to hundreds of thousands of atoms. This has
been made possible thanks to “embedded” quantum approaches, where the total system is
divided into an “active” or “central” subsystem, and its environment. Until now, the ab initio
GW formalism has essentially been merged with semi-empirical methods to describe the
effects of the environment. To go further, this thesis has been dedicated to the development
of an ab initio description of this latter.

All the different studies presented in this manuscript are based on the fragment approxi-
mation. It consists into neglecting the wavefunction overlap between the different subsystems,
resulting in a block-diagonal non-interacting electron susceptibility χ0. The global complexity
of a GW calculation goes from quartic to cubic. To study very large-scale systems, one
should also decrease the prefactor associated to the Dyson equation of the screened Coulomb
potential W . To do so, we have developed a compression algorithm under constraints of the
susceptibility operator. This enables us to drastically reduce the size of the blocks associated
to fragments within the environment. We have been able to tackle systems containing up to
200 000 atoms, within less than 10 000 CPU hours, during the validation of our approach on
surface and bulk fullerene crystals.

Traditionally, the multiscale semi-empirical methods, used for the description of a polar-
izable environment, are based on a static description of this latter. To better characterize
our “embedded” scheme, and based on the dynamical nature of the GW formalism, we have
tried to quantify the error induced by such an approximation. We have explicitly compared,
through the examples of a fullerene surface and a water molecule inside a metallic carbon
nanotube, two static approaches to a fully dynamical description of the dielectric response of
the environment. Our new QMGW /QMCOHSEX approach, which enables us to describe, in
the same calculation, the “active” part at the fully dynamical level and the environment at
the static COHSEX level, is the most accurate method. It leads to errors on polarization
energies below 10%.

Beyond these development parts, the fragment approximation has also been applied to
the study of energy levels of point defects in hexagonal Boron Nitride (h-BN). More exactly,
the fragmentation has been used between the h-BN layers, but also inside each of them.
By pushing enough the boundaries of the size of affordable systems, we have been able to
compute the renormalizations of these energy levels in the true dilute limit. This has been
possible thanks to scaling laws on the number of layers of h-BN. This study also highlights a
universal behavior of the corresponding polarization energy, which does not depend on the
exact type of defect under study.

Perspectives

The fragment approach could be improved by merging it with subsystem-Density-Functional
Theory (DFT) techniques [169, 250, 251]. It may enhance the input Kohn-Sham eigenstates,
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by taking into account the effects created by the frozen density of every fragment. More
specifically, the electrostatic field generated by the environment in the ground state, of crucial
importance in organic media made of molecules with a permanent dipole, quadrupole, etc. [3,
123, 149, 166, 252], could be further accounted for at the DFT level.

Moreover, the fragment method could also be improved at the GW level by taking into
account fragments-dimer corrections [140]. Another possibility would be to conserve the
effects created by the interacting susceptibility of the full system, but restricted to a small
subset of occupied or unoccupied states [170, 253].

Concerning the study of point defects in h-BN, this application illustrates the possibility
to apply the fragment approach to covalent insulators. This paves the way to study, at
the GW level, diverse disordered systems. This includes the stacking of layers of different
chemical nature, or systems made of rotated layers with Moiré patterns [254]. Disordered
interfaces [4], particularly useful for organic photovoltaic cells, or disordered monolayers such
as h-BCN with the formation of segregated h-BN and graphene domains [255, 256], seem to
be relevant systems for the fragment approach

More generally, an obvious extension of the present studies is the possibility to perform
Bethe–Salpeter Equation (BSE) calculations for the study of neutral excitations, namely
optical absorption. As a matter of fact, once the Quasiparticle (QP) energies and screened
Coulomb potential are renormalized by the environment, BSE calculations can be per-
formed as usual, that is as a standard calculation in the gas phase. All needed information
about the effect of the environment are already available as outputs of the preceding GW
calculations. Furthermore, in the standard “adiabatic” BSE approach that neglects the
frequency-dependence of the screened Coulomb potential, the subtleties of whether one should
consider a static or dynamical environment become irrelevant. Beyond absorption energies,
the impact of the environment on the exciton-exciton coupling for energy transfers at the
BSE level can be straightforwardly considered. Similarly, still in relation with ongoing studies
in our groups at CNRS and CEA, the influence of the environment on BSE excited-state
gradients, and on the related excited states properties (charge distribution, geometries, etc.),
may stand as future extension made possible by the present developments.

During the three years devoted to my doctoral studies, much time was spent in mathe-
matical developments and, most of all, in implementing all related equations efficiently in the
massively parallel Beyond Density-Functional Theory (beDeft) code (C++/MPI/OpenMP).
This is very much like building for many years a big experimental setup for our experimentalist
colleagues. As such, the applications we considered were relatively scarce, with the purpose
to illustrate the methodology rather than answering some specific questions about a given
material and phenomenon. As an exception, the change in QP energies for defects levels in
h-BN, as a function of the number of layers, was a real physical message to the community.
The simple laws we could illustrate, in relation with long-range screening, are results not
so commonly understood by the community, and in particular by the DFT community. It
remains that the novel functionalities of the beDeft code should allow much more applica-
tions. While our group is mostly involved in methodology, the upcoming distribution of the
beDeft package should, I hope, foster interesting applications.
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Appendix A

Constrained compression of the
fragment susceptibility

This appendix is dedicated to some algebraic developments for the constrained compression
of the gas phase susceptibility of the different fragments, as presented in section 2.2 page 67.

A.1 Computation of X̃g

In this section, I present algebraic details to go from Eq.(2.22) page 73, to Eq.(2.26), via the
equations (2.25).

In practice, all matrices appearing in Eq.(2.25) are real. In this context, it can be shown
[257, 258] that1

∂ Tr(AXB)
∂X =

∂ Tr
(
B†X†A†

)
∂X = A†B† (A.1a)

∂ Tr
(
X†AXB

)
∂X = AXB + A†XB†

. (A.1b)

Using these formulas, the cyclic property of the trace and the fact that A1 is symmetric, this
leads to [259]

K†Γ
[
Z − Γ†

(
URCU†

R + KA1K† + URA2K† + KA†
2U†

R

)
Γ
]
Γ†K = 0 (A.2a)

U†
RΓ
[
Z − Γ†

(
URCU†

R + KA1K† + URA2K† + KA†
2U†

R

)
Γ
]
Γ†K = 0. (A.2b)

K and UR being orthogonal matrices spanning supplementary subspaces, it comes that

KK† + URU†
R = INγ , (A.3)

with INγ the identity matrix of size Nγ . Thus, the two equations (A.2) lead to

Γ
[
Z − Γ†

(
URCU†

R + KA1K† + URA2K† + KA†
2U†

R

)
Γ
]
Γ†K = 0. (A.4)

Assuming that ΓΓ† is invertible2, such an equation is equivalent to(
KA1K† + URA2K† + KA†

2U†
R

)
ΓΓ†K =

[(
ΓΓ†

)−1
ΓZ − URCU†

RΓ
]
Γ†K. (A.5)

1Namely, the same symbol can be used for the transpose A⊤ and the conjugate transpose A† of the matrix
A, which simplifies the equations in this section.

2In practice, the dimension Nγ of polarization basis {γ} is much smaller than the one Nt of the test basis
{t}. In the following subsections, Nγ ∼ 60, while Nt ∼ 8000 and the basis set are such that this hypothesis is
valid.
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It should be noticed that K†ΓΓ†K, which is the Gram matrix3 of the columns of K, is also
invertible. Multiplying Eq.(A.5) on the left by U†

R leads to

A2 = U†
R

[(
ΓΓ†

)−1
ΓZ − URCU†

RΓ
]
Γ†K

(
K†ΓΓ†K

)−1
. (A.6)

Once A2 is computed, multiplying Eq.(A.5) on the left by K† leads to A1 such that

A1 =
(

K†
[(

ΓΓ†
)−1

ΓZ
]

− A†
2U†

RΓ
)

Γ†K
(
K†ΓΓ†K

)−1
. (A.7)

To simplify formulas of A1 and A2, one can introduce

J = K†Γ. (A.8)

Still assuming that JJ† and ΓΓ† are invertible, UΓ and UJ are thus square orthonormal
matrices. In particular, using the compact Singular Value Decomposition (SVD) leads to(

ΓΓ†
)−1

Γ = UΓΣ−1
Γ V†

Γ =
(
Γ⊕)† (A.9a)(

K†ΓΓ†K
)−1

K†Γ = UJΣ−1
J V†

J =
(
J⊕)†, (A.9b)

where M⊕ is the pseudo-inverse of M (see definition (2.18) page 72). Equations (A.6) and
(A.7) can be rewritten

A2 = U†
R

[(
Γ⊕)†Z − URCU†

RΓ
]
J⊕ (A.10a)

A1 =
[
K†(Γ⊕)†Z − A†

2U†
RΓ
]
J⊕ (A.10b)

Introducing P the matrix such that

P = J⊕K†
, (A.11)

and using Eq.(A.3), the equations (A.10) lead to

URA2K† =
(
Γ⊕)†ZP − KK†(Γ⊕)†ZP − URCU†

RΓP (A.12a)

KA1K† = KK†(Γ⊕)†ZP − KA†
2U†

RΓP. (A.12b)

It follows that

KA1K† + URA2K† + KA†
2U†

R =
(
Γ⊕)†ZP − URCU†

RΓP + KA†
2U†

R
(
INγ − ΓP

)
. (A.13)

The last term can be rewritten

KA†
2U†

R
(
INγ − ΓP

)
=
[
P†Z

(
Γ⊕) − P†Z

(
Γ⊕)KK† − P†Γ†URCU†

R

](
INγ − ΓP

)
(A.14a)

= − P†Γ†URCU†
R
(
INγ − ΓP

)
+ P†Z

(
Γ⊕)(INγ − ΓP − KK† + KK†ΓP

)
(A.14b)

= − P†Γ†URCU†
R
(
INγ − ΓP

)
+ P†Z

(
Γ⊕)(INγ − ΓP − KK† + KJJ⊕K†

)
(A.14c)

= − P†Γ†URCU†
R
(
INγ − ΓP

)
+ P†Z

(
Γ⊕ − P

)
. (A.14d)

3For the scalar product defined by the symmetric positive definite matrix ΓΓ†.
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To go from Eq.(A.14c) to Eq.(A.14d), I use the hypothesis that UJ is a square orthonormal
matrix, leading to JJ⊕ = I, and the fact that

Γ⊕ΓP = Γ†
(
ΓΓ†

)−1
ΓΓ†K

(
K†ΓΓ†K

)−1
K† (A.15a)

= Γ†K
(
K†ΓΓ†K

)−1
K† (A.15b)

= J⊕K† (A.15c)
= P, (A.15d)

thanks to Eq.(A.9). Defining the matrix L such that L = R⊕[IN − ΓP], the optimal solution
X̃g is given by

X̃g = L†OL + P†ZΓ⊕ + (Γ⊕)†ZP − P†ZP . (A.16)

The absence of constraints is similar to the case where R = 0, L = 0, K = INγ and
P = Γ⊕. The formula (A.16) simplifies thus into

X̃g = (Γ⊕)†ZΓ⊕. (A.17)

A.2 Computation of the polarization basis {γ}

This section explains our method to compute the polarization basis set {γ}, of dimension
Nγ , via the Eq.(2.28) page 74. X̃(I)

g (ω) is computed in such a basis set. Following the
previous sections, for the sake of compactness the exponent (I) and the frequency index ω are
now dropped. More exactly, in this section, we develop our method to compute the {CγP }
coefficient set of Eq.(2.29). An exact solution being too difficult to calculate, we start from
the equation (2.22) page 73 and we compute an approximation of these coefficients through
two sub-problems. Still, in this section, all the matrices are real.

A.2.1 Optimization for Nγ = Ncstr

Keeping the same notation as in section 2.2.3 pages 71 to 74, we start by studying the specific
problem of Nγ = Ncstr, with a initial choice of the polarization basis set {γ0} = {P}. Namely,
this corresponds to a polarization basis set which is the same as the auxiliary one. To be more
explicit, we re-index by 0 all matrices depending directly on {γ0}. C0 being invertible, with
rank(C0) = Ncstr, there is a matrix S such that A1 = SC0S†, and A2 = C0S†. Following the
equation (2.15), we search for S(1)

opt such that

S(1)
opt = argmin

S

∣∣∣∣∣∣Z − Γ†
0(UR0 + K0S)C0(UR0 + K0S)†Γ0

∣∣∣∣∣∣2 . (A.18)
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The solution S(1)
opt of this non-linear optimization problem is computed by a gradient descent

algorithm, thanks to the gradient G(S) such that4

G(S) = ∂

∂S

∣∣∣∣∣∣Z − Γ†
0(UR0 + K0S)C0(UR0 + K0S)†Γ0

∣∣∣∣∣∣2 (A.19a)

= −4K†
0Γ0

[
Z − Γ†

0
(
UR0 + K0S

)
C0
(
UR0 + K0S

)†Γ0

]
Γ†

0
(
UR0 + K0S

)
C0. (A.19b)

We keep UR = UR0
+ K0S(1)

opt as a subset of the researched optimal directions {γ}. More
exactly, the ith column of UR corresponds to the coefficients {CγP } of the ith vector of the
required basis set {γ}.

A.2.2 Optimization problem for A2 = 0

To find the other coefficients {CγP }, we use a greedy strategy. We consider only the first
and second terms of the right-hand side of the equation (2.22), so namely A2 = 0. We also
write the factorized form of the general symmetric matrix A1 = S∆S†, with ∆ a diagonal
matrix. Independently of ∆, the required coefficients {CγP } defining the optimal directions
are only determined by the S matrix5. Using the Ncstr first directions previously found, given
Zcstr = Z − Γ†

0URC0U†
RΓ0, and m = max(0, Nγ −Ncstr), we thus search for solutions S(2)

opt
of the low rank sub-problem

S(2)
opt = argmin

S,∆ / rank(S)≤m

∣∣∣∣∣∣Zcstr − Γ†
0K0S∆S†K†

0Γ0

∣∣∣∣∣∣2 . (A.20)

Defining J0 = K†
0Γ0, and using its compact SVD J0 = UJ0

ΣJ0
V†

J0
, this problem is equivalent

to
S(2)

opt = argmin
S,∆ / rank(S)≤m

∣∣∣∣∣∣V†
J0ZcstrVJ0 − ΣJ0U†

J0S∆S†UJ0ΣJ0

∣∣∣∣∣∣2 . (A.21)

Indeed, even if VJ0
is not a square orthonormal matrix, we can consider the nullspace

of V†
J0

, of which we write an orthonormal basis as the column of the matrix W, such that
V†

J0
W = 0. In particular, WW† + VJ0

V†
J0

= I, with I the identity matrix, leading for every
matrix A to

||A||2 =
∣∣∣∣∣∣(WW† + VJ0V†

J0

)
A
∣∣∣∣∣∣2 (A.22a)

=
∣∣∣∣∣∣WW†A

∣∣∣∣∣∣2 +
∣∣∣∣∣∣VJ0V†

J0A
∣∣∣∣∣∣2 . (A.22b)

The last formula comes from the fact that VJ0
and W are orthonormal matrices, spanning

orthogonal subspaces. Then, using the fact that V†
J0

VJ0
= I, W†W = I and ∥B∥2 =

Tr
(
B†B

)
for every matrix B, Eq.(A.22b) becomes

∥A∥2 =
∥∥∥W†A

∥∥∥2
+
∥∥∥V†

J0A
∥∥∥2
. (A.23)

4The formula (A.19b) can be computed thanks to the definition (2.24) page 73, or in a faster way thanks
to this online matrix calculus tool: https://www.matrixcalculus.org/.

5Each direction is defined only modulo a multiplicative factor.

https://www.matrixcalculus.org/
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Following the same methods for ||B||2 =
∣∣∣∣∣∣B(WW† + VJ0

V†
J0

)∣∣∣∣∣∣2 leads to

∥A∥2 =
∥∥∥W†AW

∥∥∥2
+
∥∥∥W†AVJ0

∥∥∥2
+
∥∥∥V†

J0AW
∥∥∥2

+
∥∥∥V†

J0AVJ0

∥∥∥2
. (A.24)

In the specific situation of A = Zcstr − Γ†
0K0S∆S†K†

0Γ0, Eq.(A.24) becomes∥∥∥Zcstr − Γ†
0K0S∆S†K†

0Γ0

∥∥∥2
=
∥∥∥W†ZcstrW

∥∥∥2
+
∥∥∥W†ZcstrVJ0

∥∥∥2
+
∥∥∥V†

J0ZcstrW
∥∥∥2

+
∥∥∥V†

J0

(
Zcstr − Γ†

0K0S∆S†K†
0Γ0

)
VJ0

∥∥∥2
,

(A.25)

thanks to the relation V†
J0

W = 0. The first three terms being constant with respect to S,
the minimization can be performed only on the last term, leading to Eq.(A.21).

One can define the SVD of V†
J0

ZcstrVJ0
= U1Σ1V†

1 and Σ(m)
1 the m×m diagonal matrix

made of the first m singular values of Σ1. Defining U(m)
1 (respectively V(m)

1 ) the submatrix
made of the first m columns of U1 (respectively V1 ), the Eckart–Young–Mirsky theorem
leads to a solution S(2)

opt of Eq.(A.21) such that

S(2)
opt =

[√
Σ(m)

1

(
V(m)

1

)†
Σ−1

J0
U†

J0

]†

, ∆ =
(
V(m)

1

)†
U(m)

1 .

The required coefficients {CγP } are given by the columns of K0S(2)
opt.

At the end of the process, the coordinates of the Nγ polarization vectors {γ} in the
auxiliary basis {P}, corresponding to the {CγP } coefficients, are given by the columns of UR
and of K0S(2)

opt. In the specific case where no constraints are enforced, R0 is not defined, nor
UR0

, and K0 is the identity matrix. So the basis {γ} is given by the columns of S(2)
opt, with

Zcstr = Z and J0 = Γ0.
We emphasize that such a method can be easily adapted to another choice of the first

guess {γ0}, different of the auxiliary basis set.





Appendix B

The QMGW /QMCOHSEX approach:
interchange of limit and integral

This appendix is totally inspired of our work published in Journal of Chemical Theory and
Computation [260].

B.1 Introduction

This appendix gives more details on how to go from Eq.(3.26a) to Eq.(3.26b) page 102. In
this section, and for the sake of compactness, we remove the space variables.

Taking the limit λ → ∞ in Eq.(3.26a) is not a priori a simple task, because of the
non-trivial dependency of χ̃(A)(ω, λ) with respect to λ. However, to tackle this limit, we can
first remark that the integral along a closed complex contour C enclosing the two poles Ω1
and Ω2 of the following product∫

C
dω 1

ω − Ω1

1
ω − Ω2

= 2iπ
Ω2 − Ω1

+ 2iπ
Ω1 − Ω2

= 0, (B.1)

is always null. This property will be useful to rewrite the correlation-only self-energy ΣC
(A)

integral by considering only the residues taken at the poles of G(A). Once we have such an
expression, it becomes possible to take the limit value of these residues when λ → ∞. Finally,
we can revert the expression by casting the sum over limit values of the residues as an integral
of the form G(A)(ε+ ω)[Ṽ (ω = 0) · χ̃(A)(ω, λ → ∞) · Ṽ (ω = 0)].

B.2 Demonstration

To start our demonstration, it should be noticed that

W (ω, λ) − V = Vreac(ω, λ) +
[
Ṽ · χ̃(A) · Ṽ

]
(ω, λ) (B.2)

has simple poles, thanks to its general spectral decomposition (1.124) page 52. Thanks
to the definition of the reaction field (3.12), and the definition of the model susceptibility
of the environment (3.15), Vreac(ω, λ) has also simple poles. By linearity, it follows that
[Ṽ · χ̃(A) · Ṽ ](ω, λ) is also a sum of simple poles.

We can thus rewrite this formula as

[Ṽ · χ̃(A) · Ṽ ](ω, λ) =
[
∆(+) + ∆(−)

]
(ω, λ), (B.3)
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where ∆(+) regroup all its poles within the complex upper-plane (such that Im(ω) > 0), while
∆(−) holds all its poles within the complex lower-plane (such that Im(ω) < 0). Similarly,
using the spectral decomposition of the Green’s function given by the equation (1.70) page 43,
we split G(A) into G(A)

occ and G(A)
vir with poles occupying also respectively the upper-plane and

the lower-plane. This leads to

i
2π

∫ +∞

−∞
dω eiηω G(A)(ε+ ω)

[
Ṽ · χ̃(A) · Ṽ

]
(ω, λ) (B.4a)

=
i

2π

∫ +∞

−∞
dω eiηω

(
G(A)

occ (ε+ ω) +G
(A)
vir (ε+ ω)

)(
∆(+)(ω, λ) + ∆(−)(ω, λ)

)
. (B.4b)

We insist on the fact that all these sub-quantities have a 1/ω asymptotic behavior, with
no constant terms, as they are sums of simple poles. Thus, expression (B.4b) is clearly an
integral over products of simple poles. Using Eq.(B.1) as selection rule for which of these
product residues to keep after integration over a semicircle enclosing all the upper-plane (as
represented in Figure 1.10 page 52), with an infinite radius, we can now express Eq.(B.4a)
as

i
2π

∫ +∞

−∞
dω eiηω G(A)(ε+ ω)

[
Ṽ · χ̃(A) · Ṽ

]
(ω, λ) (B.5a)

= −
∑

i

Res(G(A)
occ , εi) ∆(−)(εi − ε, λ) −

∑
k

G
(A)
vir (ε+ Ωk) Res(∆(+),Ωk), (B.5b)

where the sum over (i) runs over occupied states, while the sum over (k) runs over the poles
of ∆(+). Res(f, x) corresponds to the residue of the function f , associated to its pole x. We
can use again Eq.(B.1) on a closed complex contour enclosing all the poles of G(A)

vir and ∆(+).
By linearity of the spectral decomposition with respect to the simple poles functions, we can
rewrite the sum over (k) as another one over the empty states (a) such that

∑
k

G
(A)
vir (ε+ Ωk) Res(∆(+),Ωk) =

∑
k

∑
a

Res(G(A)
vir , εa)

ε+ Ωk − εa
Res(∆(+),Ωk) (B.6a)

= −
∑

a

∑
k

Res(G(A)
vir , εa)Res(∆(+),Ωk)

εa − ε− Ωk
(B.6b)

= −
∑

a

Res(G(A)
vir , εa) ∆(+)(εa − ε, λ). (B.6c)

In particular, it leads to an expression of (B.4a) that involves only residues taken at the poles
of G(A):

i
2π

∫ +∞

−∞
dω eiηω G(A)(ε+ ω)

[
Ṽ · χ̃(A) · Ṽ

]
(ω, λ) (B.7a)

= −
∑

i

Res(G(A)
occ , εi) ∆(−)(εi − ε, λ) +

∑
a

Res(G(A)
vir , εa) ∆(+)(εa − ε, λ). (B.7b)
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Now that we have an expression that requires only evaluation of ∆(+) and ∆(−) at finite
values of ω, we can explore their limit when λ → ∞. Using the fact that for all ω

lim
λ→∞

χ
(B)
g,λ (ω) DEF= χ(B)

g,∞(ω) (B.8a)

= χ(B)
g (0), (B.8b)

thanks to the definition (3.15), where χ(B)
g (0) is the correct (without model) static suscepti-

bility of (B), it follows that

lim
λ→∞

Ṽ (ω, λ) = lim
λ→∞

(
V + V · χ(B)

g,λ (ω) · V
)

(B.9a)

= V + V · χ(B)
g (0) · V (B.9b)

DEF= Ṽ (0), (B.9c)

where Ṽ (0) is also the correct (without model susceptibility) static value of this potential.
Then, using the definition (3.14), it comes that

lim
λ→∞

[
χ̃(A)(ω, λ)

]−1
= lim

λ→∞

([
χ

(A)
0 (ω)

]−1
− Ṽ (ω, λ)

)
(B.10a)

=
[
χ

(A)
0 (ω)

]−1
− Ṽ (0) (B.10b)

DEF=
[
χ̃

(A)
stat-env(ω)

]−1
. (B.10c)

χ̃
(A)
stat-env(ω) corresponds to the interacting susceptibility of the subsystem (A), when its

Coulomb interactions are renormalized by the static reaction field created by the environment
(B).

Thus, for any finite value ω, these different results lead to

lim
λ→∞

(
Ṽ (ω, λ) · χ̃(A)(ω, λ) · Ṽ (ω, λ)

)
= Ṽ (0) · χ̃(A)

stat-env(ω) · Ṽ (0). (B.11)

We can then proceed as previously by separating

Ṽ (0) · χ̃(A)
stat-env(ω) · Ṽ (0) = ∆̃(+)(ω) + ∆̃(−)(ω) (B.12)

into contributions of the upper-plane and lower-plane poles. The equation (B.11) being true
for all finite ω, this implies that we now can make the identification

lim
λ→∞

∆(+/−)(ω, λ) = ∆̃(+/−)(ω). (B.13)

The limit values of ∆(+/−)(ω, λ) can be re-injected into the finite sums of (B.7), leading to

lim
λ→∞

i
2π

∫ +∞

−∞
dω eiηω G(A)(ε+ ω)

[
Ṽ · χ̃(A) · Ṽ

]
(ω, λ) (B.14a)

= −
∑

i

Res(G(A)
occ , εi) ∆̃(−)(εi − ε) +

∑
a

Res(G(A)
vir , εa) ∆̃(+)(εa − ε). (B.14b)
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Finally, it is now possible to revert the derivation starting from Eq.(B.14) and rewinding
the steps Eq.(B.7) back to Eq.(B.4) to finally obtain that

lim
λ→∞

i
2π

∫ +∞

−∞
dω eiηω G(A)(ε+ ω)

[
Ṽ · χ̃(A) · Ṽ

]
(ω, λ) (B.15a)

=
i

2π

∫ +∞

−∞
dω eiηω G(A)(ε+ ω)

(
Ṽ (0) · χ̃(A)

stat-env(ω) · Ṽ (0)
)
. (B.15b)



Appendix C

Typical input file of beDeft

This appendix presents below a typical input file to run a GW calculation with our code
beDeft. Such a script is written in Lua, enabling us to use all the functions and methods of
this language. More information will be available in the user manual distributed with the
code.

1 -- ------------------------------------------------------------------------
2 -- 1) Instanciation of fragments from atomic positions
3 -- ------------------------------------------------------------------------
4 mol = Fragment.new ( [[
5 <system name =" H2O">
6 <fragment name =" H2O">
7 <atoms unit =" angstrom ">
8 O 0.0000 0.0000 0.0000
9 H 0.7571 0.5861 0.0000

10 H -0.7571 0.5861 0.0000
11 </atoms >
12 </fragment >
13 </system >
14 ]] )
15

16

17 mol2 = Fragment.new ( [[
18 <system test >
19 <fragment name ="H2">
20 <atoms unit =" angstrom ">
21 H 0. 3.3 0.
22 H 0. 3.3 0.741
23 </atoms >
24 </fragment >
25 </system >
26 ]] )
27

28

29 -- ------------------------------------------------------------------------
30 -- 2) Set species in use
31 -- ------------------------------------------------------------------------
32

33 mol: setKohnShamSpecies ("*","def2 -tzvp")
34 mol: setAuxiliarySpecies ("*","def2 -tzvp -ri")
35 mol: setRealspaceSpecies ("*","def2 -tzvp -rs")
36

37 mol2: setKohnShamSpecies ("*","def2 -qzvp")
38 mol2: setAuxiliarySpecies ("*","def2 -qzvp -ri")
39
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40

41

42 -- ------------------------------------------------------------------------
43 -- 3) Compute KS DFT wave functions with Orca
44 -- ------------------------------------------------------------------------
45

46 mol: OrcaDysonOrbitals ([[
47 ! PBE0 TightSCF
48 ]])
49

50 mol2: OrcaDysonOrbitals ([[
51 ! PBE0 TightSCF
52 ]])
53

54

55 -- ------------------------------------------------------------------------
56 -- 4) Set RI methods
57 -- ------------------------------------------------------------------------
58

59 mol: setRealspaceRI () -- set Real Space RI for mol
60 mol: setLTMode (" LTMode :: precise ") -- set Laplace Transform for mol
61

62 lmax_RV = 6 -- we ask for RI -V
63 lmax_constraint = -1 -- do not constrain exact

density charge and dipoles
64 mol2: setStandardRI (lmax_RV , lmax_constraint ) -- set standard coulomb RI

method for mol2
65

66

67 -- ------------------------------------------------------------------------
68 -- 5) Set number of corrected occupied and virtual states
69 -- for the fragment of interest
70 -- ------------------------------------------------------------------------
71

72 nocc = 3
73 nvir = 2
74

75

76 -- ------------------------------------------------------------------------
77 -- 6) Creation of new references of fragments
78 -- ------------------------------------------------------------------------
79

80 -- Lua tables to store the initial fragment , the number of corrected
81 -- occupied states , and the number of corrected virtual states
82

83 table_frag ={ mol}
84 table_nocc ={ nocc}
85 table_nvir ={ nvir}
86

87 for k = 1,2 do
88

89 -- rotation angle
90 theta=k* math.pi /4
91
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92 -- define new axis coordinates
93 new_x = { math.cos (theta), math.sin (theta), 0.0 }
94 new_y = { -1.0* math.sin (theta), math.cos (theta), 0.0}
95 new_z = { 0.0 , 0.0 , 1.0 }
96

97 -- creation of the rotation
98 transformation = RigidMotion :new ()
99 transformation = transformation : rotate (new_x ,new_y ,new_z)

100

101 -- add translation on top of the rotation
102 transformation = transformation : translate ({ k*6.2 , 0.0 , 0.0 })
103

104 -- insertion of the new fragment reference (the translated / rotated one)
into table_frag

105 table.insert (table_frag ,mol: transform ( transformation ))
106

107 -- we do not correct at the GW level these fragments , so we correct 0
states for them

108 table.insert (table_nocc ,0)
109 table.insert (table_nvir ,0)
110

111 end
112

113

114 -- ------------------------------------------------------------------------
115 -- 7) Creation of a FragmentList. It is an object which regroups different
116 -- fragments , and which presents specific methods for group of fragments
117 -- ------------------------------------------------------------------------
118

119 L_interest = FragmentList.new (table_frag ,"H2Os")
120

121 -- Creation of a file.xyz with the structure of the 3 water molecules
122 L_interest :xyz("H2Os")
123

124 -- ------------------------------------------------------------------------
125 -- 8) perform one GW iteration , with 12 pure imaginary
126 -- axis integration points
127 -- static COHSEX : set 12 to 0 (no calculation along the imaginary axis)
128 -- ------------------------------------------------------------------------
129

130 for i=1,1 do
131 evGW(L_interest ,12, table_nocc , table_nvir )
132 end
133

134 -- ------------------------------------------------------------------------
135 -- 9) Creation of another FragmentList for the environment , to use the
136 -- QM_{GW}/ QM_{ COHSEX } method on one water molecule
137 -- ------------------------------------------------------------------------
138

139 -- Parameters for the compression method for the susceptibility of fragment
in the environment

140

141 mol2: dysonOrbitalsEpol (mol2: dysonOrbitalsEqp ())
142 mol2: setConstraintsSpecies (" fragment ","lmax =1")
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143 mol2: setModelSpecies ("*","def2 -qzvp -ri")
144

145 -- We keep only 10 directions for the polarization basis set
146 mol2: nmodelChi (10)
147

148 L_QM_COHSEX = FragmentList.new ({ mol2}," Environment ")
149

150 -- ------------------------------------------------------------------------
151 -- 10) QM_{GW}/ QM_{ COHSEX } method on one H2O molecule
152 -- ------------------------------------------------------------------------
153

154 L_QM_GW = FragmentList.new ({ mol}," H2O_alone ")
155 L_QM_COHSEX :embed( L_QM_GW )
156

157 -- evGW method on the part of interest , with 6 iterations.
158 -- We decide to correct only the HOMO and LUMO of the water molecule
159

160 for i=1,6 do
161 evGW(L_QM_GW ,12 ,1 ,1)
162 end

• As already commented in the input file, section 1) is dedicated to the definition of the
atomic positions of the different Fragments (here a H2O molecule, and a H2 one), as
defined in chapter 2 page 63.

• Section 2) aims at defining the different required basis sets, as the Kohn-Sham (KS)-
DFT one, or the auxiliary one. For the first type of fragment mol, we also define a basis
set for the Real Space (RS)-Resolution of the Identity (RI) method.

• Section 3) indicates to beDeft to run KS-DFT calculations with the Orca package.

• The following section 4) defines the RI methods used for the different fragments.

• Starting from the initial fragment mol, we duplicate this latter, through rotations and
translations, in section 6). At the end of the process, starting from the fragment on the
left in the picture below, we generate the two other ones:

• Section 7) defines a FragmentList containing the three fragments presented before. A
FragmentList is an object made of fragments, with specific methods applying to all its
subsystems.

• In section 8), we perform a G0W0 calculation on this FragmentList.
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• Section 9) defines the parameters for a typical fragment in the environment of an
embedded calculation. The gas phase susceptibility of the fragment mol2 is compressed
under the constraint lmax = 1 (see section 2.2.2 page 69).

• Finally, in section 10), the QMGW /QMCOHSEX method (see section 3.2.3 page 99) is
used via the embed method. The fragment mol2 (via its corresponding FragmentList) is
described at the QMCOHSEX level, while the fragment mol (here alone) is described
at the QMGW level. An evGW calculation, with 6 iterations, is then performed on
this fragment. Contrary to its first GW calculation done before, with 2 other water
molecules, these evGW iterations do not start from KS-DFT eigenvalues. Each fragment
stores the results of previous computations. Therefore, these evGW calculations rather
start from results of line 130.





Appendix D

Scientific production

Articles

• David Amblard, Gabriele D’Avino, Ivan Duchemin, and Xavier Blase. “Universal
polarization energies for defects in monolayer, surface, and bulk hexagonal boron nitride:
A finite-size fragments GW approach”. In: Phys. Rev. Mater. 6 (6 June 2022),
p. 064008

• David Amblard, Xavier Blase, and Ivan Duchemin. “Many-body GW calculations with
very large scale polarizable environments made affordable: A fully ab initio QM/QM
approach”. In: J. Chem. Phys. 159.16 (Oct. 2023), p. 164107

• David Amblard, Xavier Blase, and Ivan Duchemin. “Static versus dynamically polariz-
able environments within the many-body GW formalism”. In: J. Chem. Phys. 160.15
(Apr. 2024), p. 154104

• Ivan Duchemin, David Amblard, and Xavier Blase. “Polarizable Continuum Models
and Green’s Function GW Formalism: On the Dynamics of the Solvent Electrons”. In:
J. Chem. Theory Comput. 10.1021/acs.jctc.4c00745 (As Soon As Publishable). PMID:
39226212

Conferences and workshops

• Poster presentation “Optimal representation for electronic susceptibility” in Emerging
excited-state methods in electronic structure workshop (April 2023), Toulouse,
France

• Poster presentation “Recent developments in embedded many-body GW perturbation
theory” in Accelerating theoretical spectroscopy for complex multiscale
materials workshop (March 2023), Leiden, the Netherlands

• Contributed talk “Dynamical versus static embedding in QM/QM many-body GW
formalisms” in CπC-12 symposium (May 2022), Grenoble, France

http://dx.doi.org/10.1103/PhysRevMaterials.6.064008
http://dx.doi.org/10.1103/PhysRevMaterials.6.064008
http://dx.doi.org/10.1103/PhysRevMaterials.6.064008
http://dx.doi.org/10.1063/5.0168755
http://dx.doi.org/10.1063/5.0168755
http://dx.doi.org/10.1063/5.0168755
http://dx.doi.org/10.1063/5.0203637
http://dx.doi.org/10.1063/5.0203637
http://dx.doi.org/10.1021/acs.jctc.4c00745
http://dx.doi.org/10.1021/acs.jctc.4c00745
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