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Résumé
Dans le cadre d’un espace-temps décrit par la relativité générale d’Einstein, sur lequel
évolue uniquement le champ électromagnétique de Maxwell, les trous noirs stationnaires
sont complètement caractérisés par leur masse, leur charge électrique ou magnétique, et
leur moment cinétique : il s’agit de l’une des versions du théorème de calvitie. Pour autant,
lorsque certaines des hypothèses de ce théorème sont omises, il a été établi qu’il cesse de
s’appliquer. Cela conduit à l’émergence de trous noirs dits chevelus. Jusqu’à présent, les
observations astronomiques ne permettent pas de détecter les « cheveux » des trous noirs.
Cependant, avec le développement de détecteurs d’ondes gravitationnelles toujours plus
précis, les trous noirs chevelus restent un sujet d’étude important en physique théorique.
Dans cette thèse, nous considérons deux options permettant de s’affranchir du théorème
de calvitie.

La première option consiste à décrire la métrique de l’espace-temps par une théorie
de gravitation alternative. Nous étudierons la stabilité de trous noirs chevelus dans un
espace-temps vide décrit par la théorie de la bigravité massive. Cette théorie est connue
pour ses solutions cosmologiques permettant de décrire un Univers en expansion accélérée
sans avoir besoin de recourir à la constante cosmologique. Nous montrerons que les trous
noirs chevelus en bigravité, obtenus à l’aide de méthodes numériques, sont capables de
représenter tant des trous noirs stellaires que des trous noirs supermassifs.

Une autre possibilité est de garder les équations d’Einstein, mais de considérer un
contenu matériel autre que le champ électromagnétique de Maxwell. Nous choisirons
pour cela les champs de la théorie électrofaible. Lorsque la gravitation est omise, cette
théorie décrit des monopôles magnétiques de masse infinie. La relativité générale per-
met de les régulariser en masquant leur singularité coulombienne derrière un horizon des
évènements. Les monopôles deviennent alors des trous noirs chargés magnétiquement,
pouvant être chevelus. Ces trous noirs électrofaibles pourraient s’être formés lors de fluc-
tuations primordiales, aux tout premiers instants de l’Univers. Après avoir étudié en
détail la structure interne des monopôles en espace-temps plat, nous verrons comment
leurs propriétés se généralisent au cas gravitationnel.

Lorsqu’un trou noir chevelu voit le rayon de son horizon se réduire à zéro, les champs
externes restent, et la configuration ainsi obtenue est appelée un soliton. Nous étudierons
pour terminer un cas particulier de soliton obtenu lorsqu’un champ scalaire complexe est
couplé à la relativité générale. Nous construirons des chaînes de ces solitons, appelés
étoiles à bosons. Les équations aux dérivées partielles sous-jacentes seront résolues à
l’aide de la méthode des éléments finis : une approche originale et peu utilisée par la
communauté de la relativité numérique.
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Abstract
In the realm of spacetimes governed by Einstein’s general relativity and containing only
Maxwell’s electromagnetic field, stationary black holes are fully characterized by their
mass, electric or magnetic charge, and angular momentum – a property encapsulated in
a version of the no-hair theorem. However, the validity of this theorem is contingent
on certain assumptions, and when these are relaxed, it has been established that the
theorem does not always apply. This gives rise to the so-called hairy black holes. To date,
astronomical observations have not provided concrete evidence of any type of black hole
"hair". Nevertheless, the development of increasingly precise gravitational wave detectors
has sparked renewed interest in hairy black holes. In this thesis, we delve into two
approaches to circumvent the no-hair theorem.

The first option consists in describing the spacetime metric by an alternative theory
of gravitation. We investigate the dynamical stability of hairy black holes in a vacuum
spacetime described by the theory of massive bigravity. This theory is known for its
cosmological solutions which can account for a self-accelerating expansion of the Universe
without requiring the use of the cosmological constant. We show that hairy black holes
in bigravity, which are obtained using numerical methods, can describe both stellar black
holes and supermassive black holes.

Another approach is to keep Einstein’s equations but to consider a different material
content than Maxwell’s electromagnetic field. For this we choose the fields of the elec-
troweak theory. In the absence of gravitation, this theory describes magnetic monopoles
with infinite mass. General relativity allows for their regularization by concealing their
Coulombian singularity within an event horizon. As a result, monopoles become mag-
netically charged black holes which can exhibit a non-Abelian hair. These electroweak
black holes might have formed during primordial fluctuations in the early Universe. Af-
ter providing a detailed analysis of the internal structure of monopoles in flat space, we
investigate how their properties generalize to the black hole case.

When the horizon radius of a hairy black hole shrinks to zero, only its external fields
remain, giving rise to a configuration known as a soliton. Lastly, we study a particular
example of soliton that arises when a complex scalar field is coupled to general relativity.
We construct chains of these solitons, which are referred to as boson stars, by solving the
underlying partial differential equations using the finite element method. This technique
is not very common in the numerical relativity community and provides an alternative to
the finite difference method.
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Introduction

En 1915, le physicien Albert Einstein énonce les principes de la relativité générale : une
nouvelle théorie de la gravitation [1], plus de 200 ans après la loi de l’attraction universelle
dévelopée par Newton. Cette dernière n’était pas compatible avec les principes de la
relativité restreinte [2], une autre théorie élaborée par Einstein en 1905. L’attraction
gravitationnelle, telle qu’elle est décrite par Newton, agit à distance entre deux corps de
façon instantanée. Or, selon la relativité restreinte, rien ne peut se déplacer plus vite que
la lumière, y compris les interactions entre deux objets distants. Il fallut donc concilier
ces deux propositions contradictoires, tout en gardant à l’esprit que les lois de Newton, en
leur temps, n’étaient contredites par quasiment1 aucune expérience. Revenons un instant
sur les principes fondateurs de la relativité restreinte.

Le principal postulat d’Einstein est le principe de relativité selon lequel les lois de la
physique s’expriment de la même manière dans tous les référentiels inertiels. On rappelle
que ces derniers ont pour caractéristique que tous les objets isolés qui s’y trouvent sont,
soit en mouvement rectiligne et uniforme, soit immobiles. Pour comprendre les raisons
qui poussèrent Einstein à introduire ce célèbre principe, nous devons faire un détour
par les équations de Maxwell. Ces dernières furent proposées en 1865 afin d’unifier les
phénomènes électriques et magnétiques. Les équations de Maxwell permettent de décrire
la lumière comme une onde dite, électromagnétique, c’est-à-dire une oscillation couplée
du champ électrique et du champ magnétique se propageant dans l’espace. Ces équations
prédisent une vitesse finie pour la lumière, communément dénotée c, et valant approxi-
mativement 3 × 108 m.s−1. En observant un rayon lumineux depuis le même référentiel
que sa source, on mesure effectivement qu’il se déplace à la vitesse c, mais les choses se
compliquent lorsque l’on change de référentiel. Par exemple, imaginons qu’un appareil
permettant de mesurer la vitesse de la lumière soit en mouvement rectiligne et uniforme
par rapport au référentiel dans lequel est émis le rayon lumineux. D’après la loi de compo-
sition des vitesses de Galilée, on devrait mesurer une vitesse plus petite que c, si l’appareil
se déplace dans le même sens que le rayon lumineux, ou plus grande que c, s’il se déplace
dans la direction opposée. Or, plusieurs expériences (dont celles de Michelson et Morley
en 1887) démontrent que cette prédiction est erronée. L’expérience montre en effet que
la lumière se déplace à la vitesse c, quel que soit le référentiel dans lequel on effectue la
mesure.

À l’époque des expériences de Michelson et Morley, la communauté scientifique voyait
la lumière comme une perturbation d’un milieu appelé éther. La constance de la vitesse
c, quel que soit le référentiel de la mesure, était incompatible avec le premier modèle sim-
ple de l’éther proposé par Maxwell dans le cadre de la cinématique galiléenne. Plusieurs

1Le seul échec de la théorie newtonienne concernait alors la précession du périhélie de Mercure, un
problème qui fut résolu par Einstein lui-même en 1915 grâce à la relativité générale.
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physiciens, dont Lorentz et Poincaré développèrent une modélisation plus sophistiquée
de l’éther qui permettait d’expliquer les expériences sur la vitesse de la lumière et qui
culmina, en 1905, avec l’obtention des transformations de Lorentz. La même année, Ein-
stein aborda le problème à l’envers, postulant que les lois de la physique doivent être les
mêmes dans tous les référentiels inertiels et remettant en cause la cinématique galiléenne.
En particulier, la vitesse de la lumière, qui est prédite par les équations de Maxwell, doit
donc être invariante sous les changements de référentiels. Einstein en déduit alors les
transformations de Lorentz, mais l’interprétation qu’il en fait est radicalement différente :
selon lui, l’éther devient complètement inutile pour la description des ondes électromag-
nétiques et les notions d’espace et de temps absolus s’effondrent. Les transformations de
Lorentz, qui sont au coeur de la relativité restreinte, prédisent notamment la dilatation
du temps et la contraction des longueurs entre deux observateurs se déplaçant à vitesse
constante l’un par rapport à l’autre.

La relativité restreinte donne un cadre robuste à l’étude des phénomènes électromag-
nétiques et plus encore, puisqu’elle permet de formaliser correctement toutes les théories
classiques2 des champs. Ces théories décrivent la dynamique de champs physiques qui
peuvent être d’une autre nature que le champ électromagnétique de Maxwell. En re-
vanche, la théorie newtonienne de la gravitation n’est pas compatible avec la relativité
restreinte. Ce constat poussa Einstein à développer une nouvelle théorie relativiste de la
gravitation.

Mathématiquement, l’espace-temps de la relativité restreinte est caractérisé par la
métrique de Minkwoski. Cette dernière permet la mesure de distances spatio-temporelles,
plus communément appelés intervalles d’espace-temps. Tout objet isolé verra sa trajec-
toire suivre une ligne droite dans l’espace-temps de la relativité restreinte, et la distance
entre deux objets isolés se déplaçant dans la même direction à la même vitesse restera
toujours la même : on dit que cet espace est de courbure nulle. L’idée qui mena Ein-
stein à la théorie de la relativité générale fut alors de décrire la gravitation, non pas
par une interaction à distance instantanée3, mais par une courbure non-nulle de l’espace-
temps. De ce point de vue, les objets se déplaçant librement dans un champ gravita-
tionnel ont des trajectoires qui suivent ce qui s’apparente à des lignes droites dans un
espace-temps courbe : des géodésiques. Ces dernières peuvent être déterminées à l’aide
de l’équation des géodésiques, une équation faisant intervenir la métrique, qui dans le cas
général sera différente de celle de Minkowski. Le développement de la relativité générale
requiert l’utilisation d’outils mathématiques associés à la géométrie différentielle, des out-
ils qu’Einstein ne maîtrisait pas. Il fut donc fut assisté dans ses travaux par son ami
mathématicien Marcel Grossmann [3]. David Hilbert figure également parmi les noms as-
sociés au développement de la relativité générale. Il fut le premier à proposer une action
de laquelle peut être déduite l’équation d’Einstein au moyen d’un principe variationnel.

Bien que la relativité générale se réduise aux lois de Newton dans la limite des champs
faibles, il convient de souligner encore une fois que cette théorie relativiste de la gravitation
est conceptuellement très différente de la théorie newtonienne. L’équation proposée par
Einstein est une relation entre la courbure de l’espace-temps et son contenu matériel
ou énergétique. La courbure est encodée dans le tenseur d’Einstein, membre de gauche
de l’équation, tandis que le contenu matériel est décrit par le tenseur énergie-impulsion
apparaissant dans le membre de droite. Ce dernier peut être issu d’une théorie des champs,
auquel cas les équations de cette théorie se retrouvent couplées à l’équation d’Einstein. La

2La qualification de « classique » fait référence ici, et dans le reste de ce manuscrit, à tout ce qui
n’est pas de nature « quantique ». L’unification de la relativité restreinte avec la mécanique quantique
est également possible, on parle dans ce cas de théorie quantique des champs.

3En relativité, la notion de simultanéité est d’ailleurs dépendante du référentiel.
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résolution de cette équation est en général un problème très complexe, puisqu’il s’agit d’un
système d’équations aux dérivées partielles non-linéaires qui déterminent les composantes
de la métrique de l’espace-temps. Une fois la métrique connue, il est possible de calculer les
trajectoires de particules tests à l’aide de l’équation des géodésiques. Une autre propriété
remarquable de la relativité générale est qu’elle permet d’étendre le principe de relativité
à tous les référentiels, même non-inertiels : les lois de la physique s’expriment ainsi de la
même façon pour tous les observateurs, à condition de remplacer les dérivées usuelles par
des dérivées covariantes.

La première validation expérimentale de la relativité générale fut fournie par la trajec-
toire de Mercure, en particulier le mouvemement de précession de son périhélie. Einstein
mis en évidence dès 1915 que les prédictions de sa théorie concernant l’obite de Mer-
cure étaient meilleures que celles de la théorie newtonienne. Les succès de la relativité
générale furent par la suite nombreux. On peut citer par exemple la déviation des rayons
lumineux qui fut vérifiée expérimentalement par Eddington [4] en 1919. Un autre effet
remarquable est la dilatation gravitationnelle du temps : le temps s’écoule plus lentement
à la surface de la Terre qu’en altitude. Cet effet a pu être vérifié expérimentalement à
l’aide d’horloges atomiques [5, 6] et doit être pris en compte par les satellites du système
GPS. Parmi les autres prédictions les plus importantes de la théorie d’Einstein figurent
l’expansion de l’Univers, les ondes gravitationnelles et les trous noirs. Notre attention
se portera désormais sur ces derniers, qui occupent une place centrale dans le domaine
d’étude de cette thèse.

Historiquement, la première solution décrivant un trou noir en relativité générale est
aussi la première solution non triviale aux équations d’Einstein à avoir été découverte.
Le physicien Karl Schwarzschild cherchait une solution exacte décrivant le champ gravi-
tationnel autour d’un corps sphérique statique. La solution qu’il trouva en 1916, appelée
métrique de Schwarzschild [7], possède une propriété étrange : l’espace-temps qu’elle
décrit possède une frontière qui ne peut être traversée que dans un seul sens. On appelle
cette frontière l’horizon des évènements. Il convient de noter que rien, pas même la lu-
mière, ne peut s’échapper de l’horizon, si bien qu’un observateur situé à l’intérieur ne peut
communiquer d’aucune façon avec le monde extérieur. La région à l’intérieur de l’horizon
est ce que l’on appelle de nos jours un trou noir. Pour un astre de rayon suffisamment
important, l’horizon des évènements est absent car l’espace-temps à l’intérieur de l’objet
est décrit par une métrique qui n’est pas celle de Schwarzschild. Pendant longtemps
il était alors admis que l’horizon décrit par la métrique de Schwarzschild n’était qu’un
artefact mathématique, et que tous les objets physiques de l’Univers avaient des rayons
suffisamment grands pour éviter l’apparition d’un horizon. Néanmoins, les travaux suc-
cessifs de Chandrasekhar [8], Tolman, Oppenheimer et Volkoff [9, 10] dans les années
30 sur les naines blanches et les étoiles à neutrons – des étoiles essentiellement consti-
tuées de fermions – mirent en évidence l’existence d’une masse limite au-delà de laquelle
l’effondrement gravitationnel ne pouvait être entravé par la pression de dégénérescence
des fermions. Oppenheimer et Synder [11] effectuèrent notamment le premier calcul
d’effondrement gravitationnel conduisant à la formation d’un trou noir. Bien que ce
résultat soit basé sur un modèle de la composition des étoiles à neutrons particulièrement
simpliste, il est désormais largement admis que l’effondrement d’étoiles extrêmement mas-
sive mène à la formation d’un trou noir.

Après les travaux de Schwarzschild, des solutions décrivant des trous noirs plus généraux
furent découvertes : la métrique de Reissner-Nordström [12, 13, 14] décrivant des trous
noirs portant une charge électrique ou magnétique, la métrique de Kerr [15] qui décrit des
trous noirs en rotation, et enfin la métrique de Kerr-Newman [16] pour des trous noirs
chargés en rotation.
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Au-delà de la théorie, la première observation indirecte d’un trou noir remonte aux
années 70 avec la détection du système binaire Cygnus X-1 dans la constellation du Cygne
[17, 18]. Ce système est constitué d’une étoile d’environ 20 à 30 masses solaires ainsi que
d’un compagnon invisible dont la masse est estimée autour de 7 à 13 masses solaires. Le
fait que ce dernier soit invisible suggère qu’il s’agit d’un objet compact, autrement dit, une
étoile à neutron ou un trou noir. Cependant, sa masse, estimée à l’aide des paramètres
orbitaux, permet de trancher en faveur du trou noir, puisqu’on considère qu’une étoile à
neutron ne peut avoir une masse supérieure à environ 3 fois la masse du soleil. Ce trou
noir serait d’origine stellaire, c’est-à-dire issu de l’effondrement gravitationnel d’une étoile
en fin de vie. Durant la même décennie furent détectés des objets extrêmement massifs,
notamment au centre de la Voie Lactée [19]. Les étoiles les plus proches du centre de notre
galaxie semblent en effet orbiter autour d’un objet dont la masse est estimée à environ 4
millions de fois la masse du soleil [20]. Il est aujourd’hui admis qu’il s’agit d’un trou noir
dit supermassif, dont la formation diffère de celle des trous noirs stellaires. Il pourrait
s’agir de l’effondrement de nuages de gaz peu de temps après le Big Bang. On dispose
depuis 2022 d’une image issue de la collaboration Event Horizon Telescope qui révèle le
disque d’accrétion entourant ce trou noir, nous permettant ainsi de discerner ce qui semble
être l’horizon des évènements4 [23]. Il faut souligner que la résolution angulaire impres-
sionnante de cette image, 50 microsecondes d’arc, est obtenue grâce à un réseau connecté
de radiotélescopes autour du monde. Un autre moyen technique très populaire permet-
tant la détection de trous noirs sont les observatoires d’ondes gravitationnelles. Il s’agit
d’interféromètres de Michelson dotés de bras extrêmement longs (quelques kilomètres).
Ces dispositifs sont capables de détecter des variations de longueurs infimes, de l’ordre
du diamètre d’un proton, qui sont associées au passage d’une onde gravitationnelle. Ces
dernières sont émises lors de processus astrophysiques très violents, comme par exemple la
fusion de deux trous noirs. Les deux principales collaborations travaillant sur la détection
de ces ondes sont LIGO aux États-Unis, et Virgo en Italie. En 2015, elles ont réalisé
la première détection d’un signal d’onde gravitationnelle, dont l’analyse a confirmé qu’il
résultait de la fusion de deux trous noirs [24].

Les propriétés intrigantes des trous noirs peuvent faire penser que ces objets sont parmi
les systèmes physiques les plus complexes qui puissent exister dans l’Univers. D’aucuns
considèrent pourtant les trous noirs comme des « particules fondamentales gravitation-
nelles », les entités les plus élémentaires que l’on puisse constituer à l’aide de l’interaction
gravitationnelle. En effet, en supposant que la théorie qui décrit le mieux la matière à
grande échelle soit l’électromagnétisme de Maxwell, les trous noirs, en relativité générale,
sont complètement caractérisés par leur masse, leur charge électrique ou magnétique,
ainsi que leur moment cinétique. Ces grandeurs sont analogues à la masse, la charge
et le spin des particules fondamentales du modèle standard. On dit que les trous noirs
les plus généraux dans le modèle Einstein-Maxwell sont décrits par la métrique de Kerr-
Newman [25]. Il s’agit d’un théorème d’unicité, communément appelé théorème de calvi-
tie5, en référence à l’aphorisme employé par John A. Wheeler [26] en 1971 : « les trous
noirs n’ont pas de cheveux ». Historiquement, la conjecture de ce théorème (et de ses
variantes) avait été proposée par des physiciens soviétiques dans les années 60 (Ginzburg,
Zeldovitch et Novikov) [27]. Leur formulation de la conjecture était la suivante : les trous

4Il faut noter que d’autres candidats alternatifs à un trou noir supermassif sont parfois envisagés. Voir
par exemple les travaux de Vincent et al. [21], ou de Herdeiro et al. [22].

5Nous parlons ici du théorème de calvitie s’appliquant lorsque seul le champ électromagnétique de
Maxwell est couplé à la relativité générale et que l’espace-temps, contenant quatre dimensions, est asymp-
totiquement plat. Ce théorème repose sur d’autres hypothèses plus techniques qui ne seront pas abordées
ici.
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noirs résultant de l’effondrement gravitationnel d’étoiles massives dépendent uniquement
de paramètres associés aux symétries du modèle considéré. Cette conjecture de la calvi-
tie des trous noirs est plus générale que le théorème mentionné plus haut, puisqu’elle ne
suppose pas une théorie particulière pour décrire la matière. Elle suppose en revanche
implicitement la stabilité des trous noirs. Aucune preuve de la conjecture de calvitie
n’existe à ce jour, c’est pourquoi nous préférons parler du théorème s’appliquant dans
le modèle Einstein-Maxwell. Si certaines des hypothèses de ce théorème sont omises, on
peut alors obtenir ce que l’on appelle des trous noirs chevelus. Ces solutions ont le même
comportement asymptotique qu’un trou noir de Kerr-Newman, mais le voisinage de leur
horizon est décrit par une configuration des champs non triviale : c’est le cheveu du trou
noir. La découverte théorique des premier exemples de trous noirs chevelus est attribuée
à Volkov et Galt’sov [28] en 1989. Leurs solutions numériques ont été obtenues dans le
cadre de la relativité générale couplée à un champ de jauge non-Abélien plus complexe
que le champ électromagnétique de Maxwell.

Nous considérerons dans cette thèse deux possibilités permettant de s’affranchir du
théorème de calvitie. La première option est de remplacer la relativité générale par une
théorie de la gravitation alternative. Cela nous amène à la question de savoir pourquoi il
faudrait modifier les équations d’Einstein qui semblent si bien décrire l’Univers à grande
échelle. Une première limitation inhérente à la relativité générale est son incompatibilité
avec la physique quantique. Il n’existe actuellement aucun consensus sur une théorie qui
permettrait de décrire la gravitation dans un cadre quantique. Des candidats pour une
telle théorie existent (gravitation quantique à boucles, théorie des supercordes, théories
supersymétriques, . . . ) mais se pose alors le problème de leur vérification expérimentale.
En effet, la gravitation quantique intervient à l’échelle de Planck, une échelle pour le
moment largement inaccessible à nos technologies. Le développement d’une théorie quan-
tique de la gravitation pourrait permettre de résoudre les problèmes de singularités qui
surviennent en relativité générale, notamment au sein des trous noirs ou lors du Big Bang.
Cette thèse ne traite pas des aspects quantiques de la gravitation, c’est pourquoi nous ne
nous étendrons pas davantage sur la question de la quantification de la relativité.

À l’opposé du problème de la quantification qui se pose lorsque l’on s’intéresse à des
échelles de longueur très petites, on trouve aussi d’autres types de problèmes à très grande
échelle. En 1917, l’astronome américain Vesto M. Slipher découvre que la lumière émise
par les galaxies nous parvient, en moyenne, décalée vers le rouge [29]. Plus tard, en 1929,
Edwin Hubble observe que ce décalage vers le rouge est environ proportionnel à la dis-
tance de la source par rapport à la Terre [30]. En interprétant ce phénomène à l’aide de
l’effet Doppler relativiste, on en vient à la conclusion que les galaxies s’éloignent de nous
à une vitesse proportionnelle à leur distance par rapport à la Terre. Cette interprétation
naïve est toutefois erronée car elle impliquerait, notamment, des vitesses supérieures à
celle de la lumière pour les galaxies trop éloignées. Il s’agit en réalité d’une manifes-
tation de l’expansion de l’Univers. Pour comprendre cette idée, on peut se représenter
l’espace-temps comme la membrane en latex d’un ballon de baudruche, et les galaxies
comme des points dessinés sur cette membrane. Lorsque l’on gonfle le ballon, sa sur-
face s’étire uniformément et tous les points s’éloignent les uns par rapport aux autres.
Il convient de noter les limites de cette analogie : elle représente l’espace-temps comme
un tissu matériel à deux dimensions qui est plongé dans un espace ambiant de dimension
supérieure et elle donne un volume fini6 à l’Univers. Elle permet néanmoins de com-
prendre une idée essentielle : l’éloignement apparent des galaxies s’explique par le fait

6La question de savoir si la courbure spatiale de l’Univers est positive, nulle ou négative n’est pas
tranchée à ce jour. En fonction de ces trois possibilités, on obtient un Univers de volume fini (courbure
positive) ou infini (courbure nulle ou négative).
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que leurs positions relatives sont dépendantes de la dynamique même de l’espace-temps.
L’expansion de l’Univers peut être décrite par la relativité générale dans le cadre du mod-
èle de Friedmann-Lemaître-Robertson-Walker (FLRW) [31, 32, 33, 34, 35, 36, 37], du nom
des quatre physiciens ayant travaillé sur la question de l’expansion. Leurs travaux sont le
fondement théorique de ce qui constitue de nos jours le modèle standard de la cosmologie
(aussi connu sous le nom de modèle de concordance). Néanmoins, en 1998, les observations
astronomiques menées par Adam G. Riess [38] et Saul Perlmutter [39] démontrèrent que
l’expansion de l’Univers est en fait accélérée. Pour expliquer ce phénomène dans le cadre
théorique fourni par la relativité générale, on doit supposer que l’Univers est rempli à 68%
d’un ingrédient appelé énergie sombre : il s’agit d’une forme d’énergie aux propriétés très
étranges puisque sa pression est négative, ce qui lui confère un caractère répulsif. Math-
ématiquement, l’énergie sombre peut être modélisée en ajoutant à l’équation d’Einstein
la fameuse constante cosmologique. Il est cependant très difficile d’admettre qu’une telle
forme d’énergie puisse réellement exister. Une alternative à l’énergie sombre est alors de
considérer que l’équation d’Einstein doit être modifiée pour décrire les phénomènes de
très grande échelle, tels que l’expansion de l’Univers. Cette idée est l’une des motivations
qui amena les physiciens théoriciens à développer de nouvelles théories (classiques) de la
gravitation. Citons par exemple les théories tenseur-scalaire, qui décrivent l’interaction
gravitationnelle par la combinaison du tenseur métrique ainsi que d’un champ scalaire,
les théories métrique-affine qui introduisent un cadre géométrique plus général que la
théorie d’Einstein, ou la gravité massive qui attribue une masse finie au graviton afin de
donner à l’interaction gravitationnelle une portée finie. Dans certaines de ces théories,
il est possible d’obtenir des trous noirs chevelus sans même devoir invoquer de champ
matériel (espace-temps vide). Un exemple récent en théorie tenseur-scalaire est discuté
dans l’article [40]. Dans le chapitre 2 de cette thèse, nous étudierons un autre exemple de
trou noir chevelu dans une théorie de gravité massive à deux métriques. Nous renvoyons
le lecteur à l’ouvrage [41] pour plus de détails sur les théories alternatives de la gravitation
et leurs applications en cosmologie.

Un autre problème ouvert est celui de la matière noire. En mesurant les vitesses de
rotation des étoiles autour de leur centre galactique, on observe que les étoiles les plus
externes tournent plus vite que ce que prévoit la théorie [42]. La prédiction théorique peut
se faire dans le cadre de la théorie newtonienne, elle se base sur la « masse lumineuse »
des galaxies – c’est-à-dire la masse que l’on peut estimer en fonction de leur luminosité.
Cela suppose que toute la masse des galaxies est constituée d’étoiles. En réalité, tout
se passe comme si les galaxies contenaient une forme de matière invisible, c’est-à-dire,
n’interagissant pas par interaction électromagnétique, que l’on nomme matière noire. La
densité de cette matière doit être suffisante pour contribuer significativement à la masse
totale des galaxies. La présence de matière noire a par la suite été mise en évidence dans
le milieu intergalactique par des effets de lentille gravitationnelle7 [43]. On estime que
la matière noire doit représenter 27% du contenu total de l’Univers, c’est-à-dire cinq fois
plus que la matière baryonique ordinaire. Comme pour l’énergie sombre, on peut choisir
d’aborder ce problème en tentant de modifier la théorie de la gravitation. Cependant,
compte tenu du nombre important d’observations indépendantes indiquant la présence
de matière noire, la communauté astrophysique admet communément l’existence de cette
forme de matière invisible [44], bien que sa nature exacte demeure encore inconnue à ce
jour.

Revenons maintenant aux trous noirs chevelus. Nous avons vu qu’il était possible d’en
7Une lentille gravitationnelle, ou mirage gravitationnel, est un effet de déviation de la lumière qui

se produit lorsque qu’une distribution de masse se trouve entre un observateur et une source lumineuse
lointaine.
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obtenir en considérant une théorie de la gravitation alternative. La seconde option que
nous considérerons dans cette thèse est de garder les équations d’Einstein, mais de choisir
un contenu matériel autre que le champ électromagnétique. Les équations de Maxwell
qui décrivent la dynamique de ce champ s’appliquent à l’échelle macroscopique; nous
savons toutefois qu’à plus hautes énergies, cette théorie doit être remplacée par la théorie
électrofaible de Weinberg [45] et Salam [46, 47] qui unifie l’interaction nucléaire faible et
l’électromagnétisme. Les symétries de cette théorie sont plus complexes, ce qui implique
un plus grand nombre de degrés de libertés physiques, et donc une plus grande richesse
dans le spectre des solutions. En espace-temps plat, la théorie électrofaible admet des
solutions de type « monopôles magnétiques » [48, 49, 50]. Ces configurations présentent
un champ magnétique non-nul, qui se comporte asymptotiquement comme un champ
électrique coulombien. Malheureusement, la théorie électrofaible n’est capable d’aucune
prédiction expérimentale sur ces monopôles puisqu’elle leur attribue une masse infinie,
associée à une singularité coulombienne à l’origine. La prise en compte de la gravitation
permet une régularisation des monopôles électrofaibles grâce à la présence d’un horizon
des évènements pouvant masquer la singularité centrale de tout observateur externe. On
obtient alors des trous noirs porteurs d’une charge magnétique qui peuvent être chevelus.
De tels trous noirs ont été considéré en 1994 par Lee et Weinberg dans le cadre d’une
théorie des champs proche de la théorie électrofaible [51]. Le physicien sud-américain Juan
M. Maldacena évoque à nouveau ce type de trou noir bien plus tard, en 2021, sans pour
autant fournir de solution explicite [52]. Il mentionne que, dans leur version chevelue, les
trous noirs électrofaibles sont entourés d’une région dans laquelle la symétrie complète
de la théorie est restaurée. Ce phénomène physique est associé à de très hautes énergies,
potentiellement inaccessibles dans les accélérateurs de particules. Asymptotiquement, la
symétrie électrofaible est brisée et la théorie se réduit à l’électromagnétisme de Maxwell.
Des versions à symétrie sphérique de ces trous noirs électrofaibles chevelus furent constru-
ites numériquement par un groupe américain [53]. Néanmoins, les solutions à symétrie
sphériques ont une taille de l’ordre de la longueur de Planck, ce qui compromet la validité
de la théorie classique. Afin d’éviter de devoir prendre en compte des effets quantiques, il
faut donc obtenir des solutions de plus grande taille. Maldacena estime que les trous noirs
électrofaible chevelus peuvent avoir une taille de l’ordre du centimètre. Il reste néanmoins
à clarifier le mécanisme permettant leur production, mais on peut raisonnablement con-
sidérer que ces trous noirs, s’ils existent, sont d’origine primordiale, c’est-à-dire issus de
fluctuations quantiques des champs aux tout premiers instants de l’Univers [54, 55].
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Contenu de la thèse

Dans cette thèse, nous proposons l’étude des trous noirs chevelus dans deux modèles dif-
férents. Notre objectif est de rendre nos résultats accessibles à un large public, notamment
à des étudiants en master curieux ou qui envisagent une thèse dans des domaines proches
(trous noirs chevelus, gravité modifiée, théorie des champs non-Abéliens, . . . ). Pour cela,
nous alternons entre des chapitres présentant de nouveaux résultats publiés dans des re-
vues scientifiques, et des chapitres rappelant certaines notions théoriques essentielles pour
la compréhension de nos travaux. Des connaissances de base en relativité générale et en
théorie classique des champs sont toutefois recommandées afin d’appréhender au mieux
le contenu de cette thèse. L’organisation du manuscrit est la suivante.

Le premier chapitre est une introduction courte aux trous noirs en relativité générale.
Nous commençons par rappeler l’équation d’Einstein ainsi que la formulation variation-
nelle de la relativité générale qui repose sur l’action de Einstein-Hilbert. Cette formulation
sera très utile lorsque nous présenterons d’autres modèles. Le tenseur énergie-impulsion
est introduit comme la dérivée variationnelle du Lagrangien de la matière par rapport à
la métrique. Nous présentons ensuite la solution non triviale la plus simple de l’équation
d’Einstein dans le vide : la métrique de Schwarzschild. Cet exemple simple nous permet
d’aborder des notions clefs associées aux trous noirs : l’horizon des évènements, la grav-
ité de surface et la température de l’horizon. Nous aborderons brièvement le processus
d’évaporation des trous noirs par le rayonnement de Hawking. Avant de passer à des trous
noirs plus généraux, nous expliquons comment les quantités telles que la masse, la charge
et le moment cinétique sont définies pour un espace-temps asymptotiquement plat. Nous
présentons alors la métrique de Reissner-Nordström (trous noirs chargés) puis la métrique
de Kerr (trous noirs en rotation). Nous terminons ce chapitre par une discussion autour
du théorème de calvitie.

Dans le deuxième chapitre, nous étudions des trous noirs chevelus dans un espace-
temps vide décrit par la théorie de la bigravité massive. Cette théorie a été proposée par
Hassan et Rosen [56] en 2012, et elle est connue pour ses solutions cosmologiques qui sont
capables de décrire un Univers en expansion accélérée sans devoir recourir à la constante
cosmologique. La bigravité massive décrit la dynamique de deux champs tensoriels qui
sont associés à deux gravitons : l’un est sans masse, tandis que le second est massif. C’est
l’interaction entre ces deux champs qui produit naturellement une constante cosmologique
effective. La théorie est aussi capable de décrire des trous noirs, on y retrouve notamment
le trou noir le plus simple de la relativité générale, celui de Schwarzschild. Malheureuse-
ment, ce dernier est instable en dessous d’une certaine valeur critique pour son rayon
d’horizon [57]. En parallèle du trou noir de Schwarzschild, des solutions chevelues asymp-
totiquement plates ont été découvertes par Brito, Cardoso et Pani [58] en 2013. Cette
découverte est le point de départ de nos travaux. Tout d’abord, notons que l’existence de
ces trous noirs chevelus a été remise en question ultérieurement par un groupe suédois [59].
Nos résultats confirment l’existence des solutions chevelues. Pour résoudre les équations
du champ de la théorie, nous avons utilisé un schéma numérique plus sophistiqué que celui
employé par Brito et al. En particulier, les équations sont intégrées en partant exactement
de l’horizon des évènements – un point singulier du système d’équations différentielles. De
plus, nous avons pris en compte des corrections non-linéaires dans la région asymptotique,
afin de nous assurer que les solutions construites sont bien asymptotiquement plates. Dans
un second temps, nous avons voulu analyser la stabilité des trous noirs chevelus dans le
cadre de la théorie des perturbations linéaires. Nous montrons que ces solutions peuvent
être stables ou instables, en fonction des paramètres de la théorie. Nous mettons en év-
idence une région de l’espace des paramètres dans laquelle les solutions chevelues sont



INTRODUCTION 9

stables alors que les trous noirs de Schwarzschild de mêmes masses ne le sont pas. Pour
cette région de l’espace des paramètres, la théorie est capable de décrire des solutions
cosmologiques en accord avec les observations astronomiques. Ainsi, si la dynamique de
l’espace-temps est effectivement régie par la théorie de la bigravité, l’instabilité des trous
noirs de Schwarzschild pourrait conduire à la formation de cheveux. La masse des trous
noirs ainsi formés pourrait aller de quelques masses solaires (trous noirs stellaires) à en-
viron un million de fois la masse du Soleil. Des trous noirs encore plus massifs peuvent
toujours être décrits en bigravité par la solution de Schwarzschild, qui est stable pour de
très grandes masses.

Le troisième chapitre est un interlude proposant une courte introduction à des notions
apparaissant en théorie de jauge. Nous commençons par décrire le mécanisme de brisure
spontanée de symétrie, en partant du cas d’une symétrie discrète, jusqu’au cas le plus
pertinent pour nos travaux : la brisure d’une symétrie de jauge. Les théories de jauge
dans lesquelles la symétrie est spontanément brisée donnent lieu à des solutions de type
« monopôles magnétiques ». Nous décrivons le monopôle le plus simple qui apparaît dans
le contexte de l’électromagnétisme de Maxwell, puis nous abordons ses généralisations
dans les théories de jauge non-Abéliennes. Ce sera également l’occasion de faire quelques
rappels sur la notion de champ de jauge non-Abélien.

Dans le quatrième chapitre, nous étudions des trous noirs chevelus qui portent une
charge magnétique dans le cadre du secteur bosonique de la théorie électrofaible de Wein-
berg et Salam couplé à la relativité générale. La théorie électrofaible est une partie du
modèle standard des particules, un modèle ayant largement fait ses preuves expérimentale-
ment, notamment avec la découverte du boson de Higgs en 2012 [60, 61]. Notre point de
départ est la découverte par Bai et Korwar [53] de trous noirs chevelus à symétrie sphérique
chargés magnétiquement. Il s’agit d’une généralisation gravitationnelle du monopôle non-
Abélien de Cho et Maison [48]. Les solutions de Bai et Korwar correspondent à la plus
petite charge magnétique qui peut être supportée par des champs non-Abéliens. Mal-
heureusement, la taille de leur horizon, de l’ordre d’une dizaine de fois la longueur de
Planck, en fait des objets très spéculatifs, puisqu’ils sont construits dans le cadre de la
théorie classique des champs, sans tenir compte de corrections quantiques. Pour remédier
à ce problème, nous proposons l’étude d’un cas plus général, celui d’un espace-temps à
symétrie axiale. Cela nous permet d’obtenir des trous noirs chevelus de charge magnétique
plus élevée, et donc, de plus grande taille. Avant de construire de telles solutions, nous
étudions la stabilité des trous noirs de Reissner-Nordström magnétiques dans la théorie.
Nous constatons que pour la même charge magnétique que les solutions chevelues de Bai
et Korwar, les trous noirs de Reissner-Nordström présentent une instabilité dans le secteur
à symétrie sphérique. L’évolution de cette instabilité pourrait naturellement conduire à la
formation de cheveux. Pour des charges magnétiques plus élevées, l’instabilité de Reissner-
Nordström persiste, mais n’est plus dans le secteur à symétrie sphérique. C’est pourquoi
les cheveux qui pourraient se former dans ce cas ne peuvent pas non plus être invariants
sous toutes les rotations spatiales. Nous revenons ensuite aux trous noirs chevelus de
Bai et Korwar, en proposant une étude plus approfondie de leurs propriétés. Nous pas-
sons enfin au cas axisymétrique, en commençant par la construction des monopôles en
espace-temps plat. Ces derniers généralisent le monopôle de Cho-Maison à des charges
magnétiques plus élevées et n’avaient jamais été construits auparavant. Le cas gravita-
tionnel est finalement abordé, ce qui nous conduit à des trous noirs dont les cheveux sont
constitués d’un anneau porteur de charge non-Abélienne et de deux boucles de courant
électrique de sens opposés. La construction de ces trous noirs électrofaibles nécessite la
résolution d’un système de dix équations aux dérivées partielles elliptiques. Nous utilisons
pour cela la méthode des éléments finis.
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Le cinquième chapitre présente des résultats annexes qui ont été obtenues à l’aide
de la méthode des éléments finis. Cette méthode n’a pratiquement jamais été utilisée
pour des problèmes gravitationnels. Avant de l’appliquer à la construction de trous noirs
électrofaibles, nous avons souhaité l’utiliser dans un cadre plus simple. On considère
pour cela un champ scalaire complexe couplé à la relativité générale. Si l’on admet
une dépendance temporelle harmonique pour le champ scalaire, il existe des solutions
stationnaires appelées étoiles à bosons [62, 63, 64]. Le potentiel du champ scalaire peut
contenir uniquement un terme de masse, mais dans ce chapitre, on considère un potentiel
incluant des auto-interactions. Dans ce contexte, les solutions présentent une limite en
espace-temps plat connue sous le nom de Q-balls. Il s’agit d’un exemple particulier de
soliton non-topologique : des solutions localisées dans l’espace qui ont une énergie finie
et dont l’existence est garantie par la conservation d’une charge de Noether. Notre point
de départ est l’article de Herdeiro, Kunz, Perapechka, Radu et Shnir [65] dans lequel des
chaînes d’étoiles à bosons statiques sont construites à l’aide de la méthode des différences
finies. Nous reproduisons leurs résultats en utilisant la méthode des éléments finis, et
proposons ensuite une généralisation naturelle de ces chaînes en ajoutant de la rotation.
Des tests de convergence numérique sont effectués et un argument qualitatif quant à la
stabilité de ces structures est proposé. Enfin, nous étudions la limite en espace-temps plat
des chaînes d’étoiles à bosons, qui n’existe que dans le cas avec rotation.

Nous concluons cette thèse par une synthèse générale et proposons des perspectives
pour l’extension de nos divers travaux. Ce manuscrit comprend également une annexe
décrivant les différentes méthodes numériques que nous avons utilisées pour la résolution
des équations différentielles.
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Notations et conventions
Nous représentons l’espace-temps par une variété différentielle de dimension 4 – une di-
mension temporelle, trois dimensions spatiales. L’espace-temps est doté d’une métrique
lorentzienne g de signature (−,+,+,+). Nous utiliserons toujours un système de coor-
données (x0, x1, x2, x3) qui sera adapté aux symétries du problème considéré. Les indices
spatio-temporels seront dénotés par des lettres grecques telles que µ, ν, · · · ∈ {0, 1, 2, 3}.
Les indices prenant uniquement des valeurs de 1 à 3 seront dénotés par des lettres latines
telles que i, j, a, b, . . . Des exceptions à ces règles peuvent survenir au cours du manuscrit ;
le cas échéant, elles seront explicitement signalées afin d’éviter toute ambiguïté. Nous
écrivons,

∂µ = ∂/∂xµ le champ de vecteurs associé à xµ,
dxµ le champ de 1-formes associé à xµ,
gµν les composantes de la métrique g,
δµ

ν = gµ
ν le symbole de Kronecker,

ϵabc, ϵµναβ le symbole de Levi-Civita,√
−g la racine carrée de la valeur absolue du déterminant de (gµν),
∇µ la dérivée covariante géométrique associée à g,
Γσ

µν le symbole de Christoffel de g,
Rµνρσ le tenseur de Riemann de g,
Rµν = Rα

µαν le tenseur de Ricci de g,
R = Rµ

µ le scalaire de Ricci de g,
Gµν le tenseur d’Einstein de g.

Nous définissons les symboles de Christoffel par,

Γσ
µν = 1

2g
σρ (∂µgρν + ∂νgµρ − ∂ρgµν) ,

et le tenseur de Riemann par,

Rµ
νρσ = ∂ρΓµ

νσ − ∂σΓµ
νρ + Γµ

λρΓλ
νσ − Γµ

λσΓλ
νρ.

Dans le chapitre 2, une deuxième métrique f est introduite. Nous noterons alorsG(g)µν

(resp. G(f)µν) le tenseur d’Einstein associé à la métrique g (resp. f), et de même pour les
autres quantités géométriques. Nous utilisons la convention d’Einstein de sommation des
indices répétés. Les tenseurs seront souvent désignés par leurs composantes, par exemple,
T µ

ν se réfère au tenseur T défini comme suit,

T = T µ
ν ∂µ ⊗ dxν .

Le symbole T désignera alors plutôt la trace du tenseur.
Lorsque nous introduisons des grandeurs sans dimension, nous noterons leurs homo-

logues avec dimension en utilisant des symboles en gras. Nous notons,

c la vitesse de la lumière dans le vide,
ℏ la constante de Planck réduite,
G la constante gravitationnelle de Newton,
κ = 8πG/c4 la constante gravitationnelle d’Einstein,
kB la constante de Boltzmann.
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Sauf mention explicite du contraire, nous choisissons la convention c = ℏ = kB = 1. Ainsi,
le temps et l’espace ont la même dimension physique, la masse et la température ont la
dimension de l’inverse d’une longueur, et les constante G et κ ont la dimension d’une
longueur au carré.

Nous utilisons les unités de Gauss pour les quantités électromagnétiques. Ainsi, les
équations de Maxwell s’écrivent, ∇νF

µν = 4π Jµ
e , où Fµν est le tenseur électromagnétique

et Jµ est le quadrivecteur densité de courant électrique.



Chapter 1
Black holes in general relativity

The notion of black holes was first proposed by the British physicist John Michell in 1783,
long before the theory of General Relativity was developed. Indeed, in the Newtonian
theory of gravitation, one can imagine an object so massive and small that its escape
velocity is greater than the speed of light. This object would be invisible since no light
ray could escape from its gravitational field. The same idea was rediscovered by Pierre-
Simon de Laplace in 1796. However the concept of Newtonian black holes relies on the
particle nature of light and requires light particles to be massive. The particle description
of light was challenged in 1801 by Young’s interference experiment which demonstrated
the wave-like behavior of light. Of course, from a modern viewpoint, the wave-particle
duality in quantum mechanics specifies that light can behave as a wave, or as a particle,
but in the latter case the light particles are massless which is not compatible with the
concept of Newtonian black hole.

In 1915, Albert Einstein [1] came up with his famous theory of General Relativity
(GR), a geometric theory of gravitation which generalizes the principles of special rela-
tivity and refines Newton’s law of universal gravitation. The basic idea behind Einstein’s
theory has been summarized by John Wheeler as follows: matter tells spacetime how to
curve, and curved spacetime tells matter how to move. In other words, the gravitational
interaction is a consequence of spacetime curvature, and the concept of gravitational force
has to be abandoned.

In 1916, Karl Schwarzschild found the first non-trivial exact solution to the Einstein
equations [7]. His solution describes a spherically symmetric gravitational field – the
spacetime metric – in vacuum. It can describe the external field around a spherical
object such as, for example, a star. However, the Schwarzschild solution contains the so-
called event horizon whose circumference depends linearly on the mass of the object. It
corresponds to a spacetime boundary beyond which gravity is so strong that nothing, not
even light, can escape. If the object radius is larger than the horizon radius then nothing
special happens since the interior spacetime is not described by the Schwarzschild metric.
For a long time, it was considered that all objects in the Universe were large enough to
avoid the appearance of an event horizon. However, the successive works of Chandrasekhar
[8] in 1931 and of Tolman, Oppenheimer, Volkoff [9, 10, 11] in 1939 demonstrated that
the gravitational collapse of relativistic stars, when they exceed certain maximal masses,
cannot be counterbalanced by the degeneracy pressure of fermions. As a very massive star
collapses, its radius shrinks, eventually becoming smaller than the horizon radius of the
Schwarzschild metric. The spacetime region inside the horizon is what we call nowadays
a black hole.

In this chapter, we review the different black hole solutions existing in GR and their

13
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properties. For a more detailed discussion about GR and black holes, we refer the reader to
the textbooks [66, 67, 68]. In Section 1.1, we introduce the Einstein equation and present
the Schwarzschild solution. In Section 1.2, we explain how to compute classical quantities
such as mass, charge, and angular momentum within an asymptotically flat spacetime.
This leads us to Sections 1.3 and 1.4 where we introduce the spacetime metrics describing
respectively charged and rotating black holes. Finally, Section 1.5 presents the no-hair
theorem in GR, its implications, and how to circumvent it.

1.1 Einstein equation and the Schwarzschild solution
The Einstein field equation relates the spacetime curvature with the energy, momentum
and stress contained in that spacetime. It can be written in the following form,

Gµν = κTµν , (1.1)

where Gµν is the Einstein tensor describing the curvature of spacetime, Tµν is the stress-
energy tensor of the non-gravitational fields and κ = 8πG with G, the Newtonian constant
of gravitation. The Einstein tensor is constructed from the spacetime metric denoted gµν

as
Gµν = Rµν −

1
2gµνR, (1.2)

where Rµν is the Ricci tensor and R = gµνR
µν is the Ricci scalar. The Einstein equation

must respect the conservation of energy, which can be expressed in curved spacetime by

∇µTµν = 0. (1.3)

This is compatible with the Einstein equation by virtue of the (contracted) Bianchi iden-
tity,

∇µRµν = 1
2∇νR. (1.4)

The Einstein equation (1.1) can be derived by means of a variational principle applied
to the action,

S =
∫ ( 1

2κR + LM

)√
−g d4x, (1.5)

where LM is the Lagrangian density describing non-gravitational fields and g = det(gµν)
is the determinant of the metric tensor. The first part of this action containing the Ricci
scalar R is called the Einstein-Hilbert action. Imposing that the variations of (1.5) with
respect to any small metric fluctuations δgµν vanish implies the Einstein field equation
(1.1). The stress-energy tensor is derived from the variations of LM with respect to the
metric,

Tµν = − 2√
−g

δ(√−gLM)
δgµν

. (1.6)

The description of GR in terms of the action (1.5) allows for easy unification with any
other classical field theory. For example the electromagnetism is coupled to GR by taking
LM = −(1/4)FµνF

µν where Fµν is the electromagnetic tensor. The Einstein-Hilbert action
is also the starting point for modifying GR. In practice, modified gravity theories are often
defined by their action, not by their field equations.

Let us now consider vacuum solutions in GR. We may first rewrite the Einstein equa-
tion in the following equivalent form,

Rµν = κ
(
Tµν −

1
2gµνT

)
, (1.7)
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where T = gµνT
µν is the trace of the stress-energy tensor. In vacuum, one has Tµν = 0 so

that the Einstein equation reduces to,

Rµν = 0. (1.8)

Even in this case, the equation is far from simple to solve. It consists of 10 nonlinear
Partial Differential Equations (PDEs) which determine the components of the metric.
Taking into account the freedom to choose the coordinate system, this can be reduced to
6 PDEs. The solution established by Schwarzschild in the special case of a spherically
symmetric and static spacetime can be written in the following form,

ds2 = gµνdx
µdxν = −

(
1− 2GM

r

)
dt2 +

(
1− 2GM

r

)−1
dr2 + r2dΩ2, (1.9)

where dΩ2 = dϑ2 +sin2 ϑ dφ2 is the metric on a unit 2-sphere in spherical coordinates and
M is a free parameter with the dimension of a mass. To interpret correctly the mass M ,
one can for example consider the geodesic equation,

d2xα

dτ 2 + Γα
µν

dxµ

dτ

dxν

dτ
= 0, (1.10)

where τ is the proper time measured by a test particle1 and Γα
µν are the Christoffel symbols

associated with the spacetime metric. This equation determines the trajectory xµ(τ) of
the test particle, hence, it can be seen as the equivalent of Newton’s second law in GR.
If the particle moves only in the r-direction in the Schwarzschild spacetime (1.9), its
acceleration is given by d2r/dτ 2 = −GM/r2, in accordance with the Newtonian result
if we identify τ with the absolute time of classical mechanics and M with the mass of
the gravitational source. This correspondence holds in the asymptotic region where GR
should reduces to Newton’s law of gravitation. We can further identify r with the spherical
radial coordinate in this region.

In GR, one should be careful with the physical interpretation of the coordinates used
to describe a given solution. First, by taking the limit r →∞, the Schwarzschild solution
reduces to the Minkowski metric,

ds2 = −dt2 + dr2 + r2
(
dϑ2 + sin2 ϑ dφ2

)
. (1.11)

This property is referred to as asymptotic flatness2. The timelike coordinate t can be
interpreted as the time measured by the clock of an observer at spatial infinity. Then, let
us consider the metric induced by Eq. (1.9) on a hypersurface with t and r constant. This
is equivalent to taking dt = dr = 0 in Eq. (1.9) and we obtain the metric on a 2-sphere
of radius r. Thus the (ϑ, φ) coordinates are just the same spherical coordinates as we are
used to in flat spacetime. One can also identify r as a quantity related to the area A of the
2-sphere by A = 4πr2. But can we identify r as the distance between the 2-sphere and its
center? The answer is negative. Indeed, from Eq. (1.9), one can see that an infinitesimal
change dr of the r coordinate is related to an infinitesimal proper distance ds by

ds =
(

1− 2GM
r

)−1/2
dr, (1.12)

1A test particle is an idealized physical system which, subjected to the action of an external field, does
not influence it in return.

2Of course, this gives only a coordinate-dependent meaning of what is an asymptotically flat spacetime.
The notion of asymptotic flatness can be defined independently of the system of coordinates, see for
example the section 4.3.2. of Ref. [69].
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hence the proper distance between two events A and B located at r = rA and r = rB is
greater than the difference |rA−rB|. Moreover, if r ≤ 2GM , then the quantity in the right
hand side of Eq. (1.12) is not well-defined. The special hypersurface with r = rH ≡ 2GM
is actually an event horizon.

The metric components grr is not defined at r = rH . However, the components
of the metric are coordinate-dependent quantities. A direct computation of curvature
invariants such as the Ricci scalar R or the Kretschmann scalar RµναβR

µναβ reveals that
the curvature is not divergent at r = rH . Therefore the apparent singularity here is only
a coordinate singularity: something that has nothing to do with an actual divergence
of any physical quantity. On the other hand the metric components and the curvature
invariants both diverge for r = 0. This means that r = 0 is a true curvature singularity
where the theory breaks down.

If r < rH , the component grr is negative which means that r is a timelike coordinate.
This explains why Eq. (1.12) is not valid if r < rH : a change of radial coordinate r in
this case is not associated with a proper distance but with a proper time. At the same
time, if r < rH , gtt is positive so that t is a spacelike coordinate. Similarly, hypersurfaces
with r = const. are timelike if r > rH , spacelike if r < rH and in the limiting case
r = rH , the hypersurface is null. This is a first important property: an event horizon is
a null hypersurface. It is worth noting however that not all null hypersurfaces are event
horizons. For example the light cone is a null hypersurface in Minkowski spacetime but
it is not an event horizon. The change of nature of the hypersurfaces with r = const. has
an important consequence. Indeed, spacelike hypersurfaces are one-way membranes: the
trajectories of physical particles (a.k.a. causal curves) can only pass through them in one
direction. Therefore, if a particle crosses the event horizon, all its possible trajectories are
necessarily oriented in the direction of decreasing r. In other words, it cannot escape back
to spatial infinity. This key feature is what defines the event horizon. It is worth noting
that the event horizon is a global concept: one must consider the possibility of reaching
spatial infinity to conclude whether or not a null hypersurface is an event horizon. For a
more rigorous and technical definition of event horizons, see for example [69].

Another possibility to characterize the event horizon is to consider Killing vector fields.
These are associated with the symmetries of spacetime. A Killing vector K satisfies the
so-called Killing equation,

∇µKν +∇νKµ = 0. (1.13)

Roughly speaking, the Killing vectors indicate the directions along which the geometry
does not change. For example the Schwarzschild geometry (1.9) has three rotational
Killing vectors which are associated with the spherical symmetry plus one Killing vector
associated with the time-translation symmetry. The latter is of particular interest in the
context of our discussion about the event horizon of the Schwarzschild metric. Up to an
overall constant, this Killing vector is ∂t and it goes from being timelike to spacelike at the
event horizon, just as the hypersurfaces with constant r. We say that the event horizon is
a Killing horizon of ∂t: it is a null hypersurface with the normal vector being the Killing
vector ∂t. In GR, every event horizon in a stationary and asymptotically flat spacetime is
a Killing horizon for some Killing vector K. This property is known as Hawking’s rigidity
theorem (see for example Sec. 5.5 of Ref. [69]). Then, to every Killing horizon Σ we can
associate a quantity called the surface gravity κg which is defined by

κ2
g = − 1

2∇µKν ∇µKν

∣∣∣∣
Σ
. (1.14)

If κg = 0, the horizon is said to be degenerate. If the Killing horizon is an event horizon
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then we define the temperature of the black hole as

TH = κg

2π . (1.15)

According to the zeroth law of black hole thermodynamics3, this quantity is constant
on the horizon. For a Schwarzschild black hole described by the metric (1.9), one has
κg = 1/(4GM) and TH = 1/(8πGM). The notion of black hole temperature has been
introduced by Stephen Hawking in 1974 [70]. It is based on the idea that black holes
should emit thermal radiation due to quantum effects4 near the event horizon. This
process is known as the Hawking radiation and it causes the evaporation of the black hole
as it loses mass over time. For stellar or larger black holes, Hawking radiation is negligible
due to its extremely low intensity. However, for primordial black holes formed during the
early Universe, the role of Hawking radiation becomes significant. Neutral and spherically
symmetric primordial black holes could evaporate completely through this process. We
shall see in Secs. 1.3 and 1.4 that this picture is different for charged or rotating black
holes.

As mentioned in the introduction of this section, the Schwarzschild metric does not
only describes black holes. It also describes the exterior geometry surrounding any spher-
ical object with mass M . If the surface of the object is located at r > 2GM , then there is
no event horizon since the metric of the interior will be different from Schwarzschild. More
importantly, the Schwarzschild solution still describes the exterior region if the massive
object is collapsing into a black hole. Indeed, the Birkhoff’s theorem [71, 72] states that
spherically symmetric solutions to the Einstein equation in vacuum must be static and
are described by the Schwarzschild metric (1.9).

Finally, let us discuss the central curvature singularity r = 0 inside Schwarzschild
black holes. If we assume these object to be the end state of gravitational collapse of
spherically symmetric mass distributions, the appearance of a singularity is pathological.
This actually reveals the limit of the classical theory: singularities are expected to be
regularized by taking into account quantum effects.

1.2 Mass, charge and angular momentum
We have seen that a Schwarzschild black hole is characterized by a unique parameter, its
mass M . Before moving on to different black hole solutions, we shall define the so-called
global quantities in curved spacetime. These are physical quantities that can be measured
by an observer far from the gravitational source such as for example, the mass, the electric
(or magnetic) charge and the angular momentum.

Let us consider first the case of the electric charge. Maxwell’s equations in a curved
spacetime read

∇νF
µν = 4πJµ

e , (1.16)

where Fµν is the electromagnetic tensor and Jµ
e is the 4-current density. The charge Q

inside a spacelike hypersurface Σ is then given by,

Q = −
∫

Σ
d3x
√
γ nµJ

µ
e = − 1

4π

∫
Σ
d3x
√
γ nµ∇νF

µν , (1.17)

3We refer to the Chap. 16 of [69] for a discussion on the other laws of black hole thermodynamics and
the assumptions on which they are based.

4Quantum effects here are taken into account by a semi-classical approach. One considers quantum
fields on a black hole background but one neglects the back-reaction on the spacetime geometry.
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where γ is the determinant of the induced metric on Σ and nµ is the unit normal vector to
Σ. The minus sign ensures that a positive charge distribution and a future-directed normal
vector yield a positive total charge. We know from Gauss’s theorem that the volume
integral in Eq. (1.17) can be transformed into a surface integral over the boundary ∂Σ.
This means that the knowledge of the electromagnetic field outside the charge distribution
is sufficient to compute the total charge. From a practical point of view, this is of particular
interest for black holes because it can be difficult to compute the integral (1.17) in the
presence of a singularity inside Σ. Applying Gauss’s theorem to the last expression in
Eq. (1.17), we obtain

Q = − 1
4π

∮
∂Σ
d2x

√
γ(2) nµσνF

µν , (1.18)

where γ(2) is the determinant of the induced metric on ∂Σ and σµ is the outgoing unit
normal vector to ∂Σ. This formula gives the total charge enclosed by the surface ∂Σ.
Thus to compute the electric charge in the whole spacetime, we can choose this surface
to be a 2-sphere at spatial infinity. The total magnetic charge is computed by replacing
in the above formula the electromagnetic tensor by its Hodge dual,

∗F µν = 1
2√−g ϵ

µναβFαβ, (1.19)

where ϵµναβ is the antisymmetric Levi-Civita symbol.
We turn now to the total mass of an asymptotically flat spacetime. The concept

of mass (or energy) is more subtle to define in GR. In classical field theory, the energy
density is typically described by the (t, t) component of the stress-energy tensor. However
in GR, this tensor describes only the properties of the matter fields and not those of the
gravitational field (the spacetime curvature). It turns out that different definitions of the
mass exist in GR and they agree only under some specific assumptions [66].

By analogy with the definition of the charge, we would like to construct a conserved
4-current to be integrated as in Eq. (1.17). If the spacetime is stationary, a first candidate
could be

Jµ
T = ξνT

µν , (1.20)

where ξµ is the asymptotically timelike Killing vector associated with the time-translation
symmetry. The divergence of Jµ

T is

∇µJ
µ
T = T µν∇µξν + ξν∇µT

µν = 0, (1.21)

where the first term vanishes since one has ∇µξν = −∇νξµ (Killing equation) and the
second one is also zero by virtue of the conservation of energy. One can then define a
conserved quantity by integrating Jµ

T over a spacelike hypersurface. However the corre-
sponding volume integral cannot be transformed into a surface integral of the form (1.18).

A second candidate for a conserved 4-current is,

Jµ
R = ξνR

µν . (1.22)

One can check that it is indeed conserved by computing its divergence,

∇µJ
µ
R = Rµν∇µξν + ξν∇µR

µν = 1
2ξν∇νR = 0, (1.23)

where the last expression vanishes because the directional derivative of the Ricci scalar
along a Killing vector field is zero (this is related to the fact that the geometry does not
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change in the direction of a Killing vector). Then we define the total mass by integrating
this 4-current,

MKomar = 1
4πG

∫
Σ
d3x
√
γ nµξνR

µν = 2
∫

Σ
d3x
√
γ nµξν

(
T µν − 1

2g
µνT

)
, (1.24)

where we have used the Einstein equation (1.7) to obtain the second expression and the
normalization factor has been introduced for future convenience. This definition of the
mass is due to the physicist Arthur Komar [73]. It can be rewritten as a surface integral
by using another identity which holds for any Killing vector field,

∇ν∇µξ
ν = ξνRµν . (1.25)

Substituting this into Eq. (1.24) and using Gauss’s theorem we obtain,

MKomar = 1
4πG

∮
∂Σ
d2x

√
γ(2) nµσν∇µξν . (1.26)

One can check that this definition for the mass agrees with the expected result5 for the
Schwarzschild metric (1.9), MKomar = M . This formula is sometimes called the Komar
integral associated with the timelike Killing vector ξµ.

Another definition of the mass is due to Arnowitt, Deser and Misner (ADM). Their
Hamiltonian formulation of GR [74] allows for a natural definition of the conserved energy
for an asymptotically flat spacetime. At spatial infinity, one can introduce small metric
fluctuations hµν around Minkowski,

gµν = ηµν + hµν , (1.27)

where ηµν is the Minkowski metric. The ADM energy (or ADM mass) is then defined as

MADM = 1
16πG

∮
∂Σ
d2x

√
γ(2) σi

(
∂jh

j
i − ∂ih

j
j

)
. (1.28)

It turns out that the ADM mass coincides with the Komar mass if hµν is time-independent
at infinity. In GR, the ADM definition of the mass is associated with a positive energy
theorem which ensures that it is non-negative under reasonable assumptions on the matter
fields6.

Let us finally consider the case of the angular momentum. It is defined by a Komar
integral associated with the rotational Killing vector χµ of spacetime,

JKomar = − 1
8πG

∮
∂Σ
d2x

√
γ(2) nµσν∇µχν , (1.29)

where only the normalization factor differs from the Komar integral for the mass (1.26).
Note that in an adapted system of coordinates such that the rotation is along the az-
imuthal direction φ, the rotational Killing vector is χ = ∂φ.

5More rigorously, the Komar mass in the form (1.24) yields a vanishing mass for the Schwarzschild met-
ric. This is because the maximal extension of Schwarzschild spacetime actually contains two asymptotic
boundaries and the corresponding surface integral of the form (1.26) should contain two contributions
which cancel each other.

6See for example the section 6.4 in Ref. [68] for more details.
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1.3 Charged black holes
Non-rotating black holes carrying an electric charge and/or a magnetic charge are de-
scribed in GR by the Reissner-Nordström (RN) solution. It has been discovered between
1916 and 1921 by Hans Reissner [12], Hermann Weyl [13], Gunnar Nordström [14] and
George Barker Jeffery [75] independently.

The RN metric is a solution to the Einstein equation (1.1) coupled to the vacuum
Maxwell’s equation,

∇µF
µν = 0, (1.30)

where Fµν = ∂µAν − ∂νAµ is the electromagnetic tensor, which is also referred to as the
field strength tensor or Faraday tensor. The stress-energy tensor entering the Einstein
equation in this case is given by

Tµν = FµλF
λ

ν −
1
4gµνFαβF

αβ. (1.31)

The field equations can be recovered by varying the following action,

S =
∫
d4x
√
−g

(
R

2κ −
1
4FµνF

µν
)
. (1.32)

It is sometimes referred to as the Einstein-Maxwell action. The gauge potential describing
a pointlike electric charge and a pointlike magnetic charge7 is

Aµdx
µ = Q

r
dt+ P (cosϑ− 1) dφ, (1.33)

where P and Q are constants. The radial components of the electric and magnetic fields
are respectively Er = F tr = −Q/r2 and Br = ∗F tr = −P/r2 so that the potential (1.33)
describes an electric charge −Q and a magnetic charge −P . The RN metric can then be
written as

ds2 = −N(r) dt2 + dr2

N(r) + r2dΩ2, (1.34)

with
N(r) = 1− 2GM

r
+ 4πG

r2

(
P 2 +Q2

)
. (1.35)

One can check that the fields (1.33) and (1.34) solve the equations (1.1) and (1.30). The
system of coordinates here has the same interpretation as for the Schwarzschild metric
(1.9). The latter is recovered if the charges are set to zero, P = Q = 0. Note that the
1/r2 dependence of the electric and magnetic fields is what we are used to in flat space.
However it should be emphasized that the r coordinate here approaches that of Minkowski
spacetime only in the limit r →∞.

The RN spacetime has a true curvature singularity at r = 0 where the curvature
invariants diverge. The event horizon can be located by determining where the hypersur-
faces with r = const. become null. Since ∂µr is a one-form normal to these hypersurfaces
with squared norm

gµν(∂µr)(∂νr) = grr, (1.36)
it suffices to determine at which r the component grr = N(r) of the inverse metric vanishes.
Of course this simple condition for locating the event horizon is coordinate-dependent.
Here one has grr(r) = 0 for

r = r± ≡ GM ±
√
G2M2 − 4πG(P 2 +Q2). (1.37)

7The aim this chapter is not to provide a precise description of magnetic charges, for this topic, we
refer to Sec. 3.2.
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Figure 1.1: Profiles of component grr of the RN metric against r for three typical cases.
The zeroes indicate the location of an event horizon. The Schwarzschild case with P =
Q = 0 is also shown for comparison.

Hence the horizon structure of RN spacetime is more complicated than for Schwarzschild
as there can be two, one or zero event horizons, see the Fig. 1.1. We shall therefore
distinguish the three following cases.

• GM2 < 4π(P 2 +Q2) (no horizon).
In this case there is no event horizon, hypersurfaces with constant r are always
timelike. This means that there is no obstruction to an observer to approach the
central singularity and return to report what he observed. This is called a naked
singularity, a curvature singularity without event horizon. In 1969 the physicist
Roger Penrose proposed the so-called cosmic censorship conjecture [76] which states
that any singularity that forms in the Universe as a result of gravitational collapse
must be hidden behind an event horizon, thus preventing it from being seen by
external observers. It turns out that there are actually good reasons to consider
the RN solution with GM2 < 4π(P 2 + Q2) as physically unacceptable. Roughly
speaking, this condition means that the total energy of the solution is less than the
energetic contribution of the electromagnetic field alone. In other words, this would
correspond to charges with negative masses.

• GM2 > 4π(P 2 +Q2) (two horizons).
This situation is considered to be more realistic as the energy of the electromagnetic
field is less than the total energy. The spacetime in this case has two event horizons
which are located at r = r± as in Eq. (1.37). As seen from from the outside, the outer
horizon r+ is similar to that of a Schwarzschild black hole but what happens inside
is very different. When going through the first horizon, hypersurfaces with constant
r become spacelike so that an infalling observer necessarily moves in the direction of
decreasing r. Then he reaches the inner horizon r− where the hypersurfaces switch
back to being timelike, hence the observer can stop his motion at some finite value
r = r0 < r−. He is now free to choose to move in the direction of increasing r.
At r = r−, the hypersurfaces once again become spacelike so that the observer is
now forced to move in the direction of increasing r. He will eventually be ejected
through the outer horizon r+, thus reaching the exterior region. One may think
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that this observer has been able to get into and out of a black hole. However he is
now in a different spacetime region, causally disconnected from where he was before
entering the black hole. This can be seen by maximally extending the RN metric
(1.34) and constructing the corresponding conformal diagram (see the figure 6.4 in
Ref. [68]). The spacetime in this case consists of infinitely many asymptotically flat
region connected to each other via wormholes. One must keep in mind that this
picture is actually unphysical as classical GR is certainly not appropriate to describe
what happens close to the central singularity, in the region r ≤ r−.

• GM2 = 4π(P 2 +Q2) (one horizon).
This case is known as the extremal RN solution. The metric describes a single event
horizon located at r = GM where the corresponding hypersurface is null. However
the hypersurfaces with constant r are timelike on either side. What happens inside
the horizon is similar to the previous case without the region r− < r < r+. It
is worth noting that the temperature of extremal RN black holes is zero hence
the horizon is degenerate. A careful computation reveals that if a non-extremal
RN black hole evaporates through the Hawking process, it can only approach the
extremal limit but it will never reach it.

1.4 Rotating black holes
While the solutions describing static black holes presented above were found soon after
GR was developed, the solution for rotating black holes was found by Roy Kerr only in
1963 [15]. The equation to be solved in this case is that of vacuum GR, Rµν = 0, but
the spherical symmetry has to be abandoned. The spacetime metric of a Kerr black hole
is only stationary and axially symmetric, thus it has two Killing vectors which can be
expressed (in adapted coordinates) as,

ξ = ∂t, χ = ∂φ. (1.38)

The Kerr metric can be written in the following (complicated) form,

ds2 =−
(

1− 2GMr

ρ2

)
dt2 − 4GMa

ρ2 r sin2 ϑ dt dφ

+ ρ2

∆dr2 + ρ2dϑ2 + sin2 ϑ

ρ2

(
(r2 + a2)2 − a2∆ sin2 ϑ

)
dφ2, (1.39)

where
∆ ≡ r2 − 2GMr + a2, ρ2 ≡ r2 + a2 cos2 ϑ. (1.40)

The Kerr solution is thus parameterized by two free parameters, M and a, which corre-
spond respectively to the mass and the angular momentum per unit mass. Note that it
is also possible to include electric and magnetic charges Q and P , the result is called the
Kerr-Newman metric [16]. However the inclusion of charges does not change significantly
the phenomena that occur in a Kerr spacetime so we will consider here only the Kerr
metric (1.39).

In the limit a → 0, the Schwarzschild metric (1.9) is recovered. However when M
vanishes, the line element (1.39) reduces to the Minkowki metric but not in usual spherical
coordinates. The coordinates (t, r, ϑ, φ) which are used here are known as Boyer-Lindquist
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coordinates [77] and in the flat space limit one has,

x =
√
r2 + a2 sinϑ cosφ,

y =
√
r2 + a2 sinϑ sinφ,

z = r cosϑ, (1.41)

where (x, y, z) are the usual Cartesian coordinates of the Euclidean 3-space. Hence the
parameter a is not anymore related to an angular momentum in this limit.

A direct inspection of the Kretschmann scalar reveals that the curvature singularity
of the Kerr metric is located where ρ(r, ϑ) = 0. From Eq. (1.40), this occurs at

(r, ϑ) = (0, π/2). (1.42)

This should not seems surprising as r = 0 is not a single point in space but a disk, and
the set of points which satisfy (1.42) is actually the boundary of this disk. Hence the
singularity inside a Kerr black hole has the topology of a ring.

As before, the event horizons are located where the hypersurfaces with constant r
are null. This occurs when grr = ∆/ρ2 = 0 and since ρ2 ≥ 0, we obtain the quadratic
equation,

∆(r) = r2 − 2GMr + a2 = 0. (1.43)
Thus, as for the RN geometry, there are three possibilities: GM > a (two horizons),
GM = a (one horizon) and GM < a (no horizon). The latter case corresponds to a naked
singularity and must be excluded while for GM ≥ a the event horizons are located at

r± = GM ±
√
G2M2 − a2. (1.44)

Therefore, the horizon structure of Kerr spacetime is similar to that of RN and the con-
formal diagram consists of infinitely many asymptotically flat exterior regions connected
via various wormholes (see the figure 6.8 in Ref. [68]). However the event horizons of Kerr
black holes are not Killing horizons for the time-translation Killing vector ξ. Instead,
they are Killing horizons for a linear combination of ξ and χ. For example, for the outer
horizon, the Killing vector which is null at r = r+ is

K+ ≡ ξ + ΩH χ, (1.45)

where
ΩH ≡

a

2GMr+
= a

2GM(GM +
√
G2M2 − a2)

. (1.46)

Hence the surface gravity and the temperature of Kerr black holes are computed by using
K+ in Eq. (1.14).

The norm of the time-translation Killing vector ξ is

ξµξµ = −(1− 2GMr

ρ2 ) = − 1
ρ2 (∆− a2 sin2 ϑ), (1.47)

and in particular at r = r+ (where ∆ = 0) one has ξµξµ = a2 sin2 ϑ/ρ2 ≥ 0 so that ξ is
already spacelike at the outer horizon. The norm of ξ is null on the surface such that

(r −GM)2 = G2M2 − a2 cos2 ϑ, (1.48)

which is called the stationary limit surface. The region between this surface and the outer
horizon is referred to as the ergosphere (or ergoregion). In this region, the trajectories
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with constant (r, ϑ, φ) are not allowed since they are tangent to ξ which is spacelike
there. However it is possible for an observer to keep constant his coordinates r and ϑ
while moving in the φ direction. As a result, an observer inside the ergoregion necessarily
moves in the direction of the black hole rotation. Of course this observer is able to escape
the ergoregion as he is still outside the event horizon.

The presence of an ergoregion have an important physical consequence known as the
Penrose process [78]. The energy of a particle is defined as

E = −ξµp
µ, (1.49)

where p is the particle’s four-momentum. Outside the ergoregion, both ξ and p are
timelike so that the energy (1.49) is positive-definite. However inside the ergoregion, ξ
is spacelike which means that it is possible for particles to have a negative energy. Now
imagine an observer entering the ergoregion from the outside with energy E(0) > 0. Once
he enters the ergoregion, he throws an object inside the black hole in such a way that the
energy of the object is negative. If we call E(1) the energy of the observer after leaving
the ergoregion and E(2) the energy of the object thrown into the black hole, we have

E(0) = E(1) + E(2), (1.50)

and since E(2) < 0, it follows that E(0) < E(1). Thus, the observer has left the ergoregion
with more energy than he entered with. Of course this energy does not come from nowhere
and it can be shown that the negative energy object falling into the black hole causes the
angular momentum of the hole to decrease. Therefore, energy has been extracted from
the black hole rotation.

Finally, let us mention black holes are not the only objects that can have an ergoregion,
see for example the rotating boson stars in Chap. 5.

1.5 More general black holes?
We have seen in the above sections black hole solutions that are characterized by their mass
M , their electric/magnetic charges Q, P and their angular momentum (per unit mass)
a. Are there more general solutions? In the spherically symmetric case, the Birkhoff’s
theorem ensures that the Schwarzschild metric (1.9) is the only solution of vacuum GR.
Including charges, the Birkhoff’s theorem can be generalized to prove that the only spheri-
cally symmetric and asymptotically flat solution to the Einstein-Maxwell field equations is
the RN metric (1.34). These results can be seen as gravitational counterparts of the situa-
tion in classical electromagnetism. Indeed, in a region free of charges, the only spherically
symmetric field configuration is the Coulombian field described by the gauge potential
(1.33).

What happens beyond spherical symmetry? For a planet, the external field depends
on the specific topography. If one decomposes the metric into multipole moments, then an
infinite number of coefficients is required to describe the external field exactly. One might
imagine the situation to be similar for black holes. However, it turns out that the number
of parameters needed to describe the metric of a stationary black hole is always very
small. If the only non-gravitational field is the electromagnetic one, we have a uniqueness
theorem which states that stationary and asymptotically flat black hole solutions that
are non-singular outside the event horizon are fully characterized by their mass, their
electric/magnetic charges and their angular momentum. This theorem is often referred to
as a no-hair theorem, named after the famous statement by Wheeler: "black holes have no
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hair" [26]. This means that black holes are completely characterized by a small amount
of parameters. Specifically, the Kerr-Newmann metric describes the most general black
hole solution in GR coupled to electromagnetism. The no-hair theorem considered here
follows from different results from Israel [79], Carter [80], Hawking [81], Robinson [82] and
Mazur [25]. The Ref. [83] provides proofs of the different black hole uniqueness theorems
in GR.

The no-hair theorem states nothing about the non-stationary case. However, station-
ary black holes are of particular interest as they are expected to be the end state of
gravitational collapse. For example, if we consider oscillating configurations, then they
will lose energy through the emission of gravitational waves so that the oscillations are
necessarily damped.

An important consequence of the no-hair theorem is the information loss paradox
[84]. Consider a very complicated collection of matter fields (for example, a star) and
collapse it into a black hole. According to the no-hair theorem, the final configuration
is completely determined by its mass, electric/magnetic charges and angular momentum,
implying that information about the initial configuration seems to have been lost during
the collapse. In classical GR, one usually states that the missing information is somehow
"hidden" behind the event horizon. However, black holes should also evaporate through
the emission of Hawking radiation and they may eventually disappear thus leaving no
trace of the information hidden inside. It is often speculated that the Hawking radiation
itself may encode the information about the original configuration. In any case, a theory
of quantum gravity would certainly cure this issue.

In this thesis, we investigate hairy black holes. These are black holes that arise when
some assumptions of the no-hair theorem are relaxed. Their asymptotic behavior is the
same as for a Kerr-Newman black hole, but the vicinity of their horizon is described
by a non-trivial field configuration: this is the black hole "hair". We shall consider two
possibilities which lead to hairy black holes. The first option is to consider a different
theory of gravitation than GR. Within the so-called modified gravity theories, examples of
hairy black holes are numerous. For instance, Ref. [40] presents rotating hairy black hole
solutions in the context of scalar-tensor theories, in which the gravitational interaction is
described not only by the metric tensor, but also by a scalar field. In Chap. 2 we will
present asymptotically flat hairy black holes in the massive bigravity theory. The second
possibility to evade the no-hair theorem is to keep GR but to couple it to a different field
than the electromagnetic one. The very first examples of hairy black holes were reported
in 1989 by Volkov and Galt’sov in this context [28, 85] (see also Ref. [86] for a review).
In their work, they considered non-Abelian Yang-Mills fields minimally coupled to GR.
It turns out that hairy black holes arise within even simpler models. For instance, in
Ref. [87], Herdeiro and Radu constructed hairy rotating black hole solutions in the simple
framework of a massive complex scalar field minimally coupled to GR. In Chap. 4, we will
construct black holes with magnetically charged hair by coupling GR to the non-Abelian
fields of the electroweak theory. For a recent review of hairy black holes that arise in
different contexts, we refer the reader to Ref. [88].
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Chapter 2
Asymptotically flat hairy black holes in
massive bigravity

This chapter is based on [89].

2.1 Introduction
Among the several options for modifying GR, theories with massive gravitons have aroused
strong interest since the pioneering work of Fierz and Pauli (FP) [90] in 1939. In their
paper, they present a linear theory describing a massive spin-2 field. The kinetic part of
the FP Lagrangian is the same as for GR linearized around flat spacetime, but their theory
also contains a mass term that is suitably chosen to avoid the presence of nonphysical
degrees of freedom. In this sense, the fundamental field hµν of the FP theory can be
viewed as a massive field (a massive graviton) evolving in the flat Minkowskian spacetime
whereas the metric fluctuation in linearized GR corresponds to a massless field (a massless
graviton).

To understand the motivation of giving a mass to the graviton, one can have the
following qualitative argument. A massless interaction as gravitation in GR is known
to be of infinite range. Therefore, if the Universe is filled only with ordinary matter or
energy1, the corresponding (attractive) gravitational interactions forbid the acceleration
of the expansion. On the other hand, a massive graviton is associated to a finite range
interaction that can presumably allow accelerated expansion of the Universe without
invoking exotic types of energy such as Dark Energy. The FP theory is thus a natural
candidate to describe such a massive gravitational interaction at the linear level.

Many decades after the original paper describing the FP theory, van Dam, Veltman
and Zakharov discovered that this linear theory suffers from a pathology. In presence of
matter fields, the predictions of the FP massive gravity differ from those of linearized GR,
even in the limit of vanishing graviton mass [91, 92]. This so-called vDVZ discontinuity
ruled out massive graviton theories since modifications of GR must agree with actual
observations, for example, at the level of the Solar system. However, two years later, in
1972, Vainshtein showed that this issue can be cured by taking into account nonlinear
corrections to the FP theory [93]. The nonlinearities are expected to restore GR at short
scales by screening the massive interactions, while in the far field region where the linear
theory applies, one should recover the FP massive gravity. This is refered to as the
Vainshtein screening mechanism.

1Ordinary matter/energy is characterized by positive pressure and energy density.

27
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Unfortunately, shortly after this finding, the seek for a nonlinear theory of massive
gravity encountered a new issue. Boulware and Deser shown that massive gravity theories
with a mass term reducing to that of FP upon linearization generically propagate an
additional degree of freedom with negative energy [94]. The latter is referred to as the
Boulware-Deser ghost and renders the theory unstable: any small fluctuation around a
given field configuration would grow without bound.

For almost forty year the idea of a massive graviton was abandoned until 2010 when
de Rham, Gabadadze and Tolley finally constructed an explicit example of a nonlinear
theory of massive gravity free of the Boulware-Deser ghost [95]. Their theory, commonly
called the dRGT theory, is described by the action

SdRGT = 1
κ

∫ (1
2R(g)−m2U(g, f)

)√
−g d4x, (2.1)

where κ = 8πG is the gravitational coupling, R(g) is the (dimensionful) scalar curvature
of the spacetime metric gµν , m is the graviton mass, and U(g, f) is a potential that depends
on gµν , but also on a second fixed metric fµν , which is usually called the reference metric.
The latter is a necessary ingredient for the construction of a FP-like mass term. In the
original dRGT theory, the reference metric is chosen to be Minkowski fµν = ηµν . The
Boulware-Deser ghost is avoided by a specific choice of the potential U – see Eq. (2.10)
below.

Unfortunately, it turns out that flat and closed FLRW cosmologies do not exist in
the original dRGT theory with a flat reference metric [96]. Although such cosmological
solutions can be constructed by choosing more a general reference metric, it was shown
that these cosmologies suffer from instabilities [97]. Moreover, the introduction of a
reference metric that is completely fixed seems to violate Einstein’s "no prior geometry"
requirement. A natural way to solve this issue is to render the reference metric dynamical
by adding a Einstein-Hilbert term for fµν in the dRGT action (2.1). Remarkably, Hassan
and Rosen showed that this straightforward generalization of the dRGT massive gravity
was possible, i.e. the resulting theory is free from any ghosts [56]. The action of the
Hassan-Rosen massive bigravity is given in Eq. (2.7) below. This theory describes at the
linear level two gravitons interacting together, one of which is massive and the other is
massless.

A crucial question must be answered in order to interpret physically the massive
bigravity theory: which metric is the one that describes the actual geometry of spacetime?
Or, in other words, to what metric should the matter fields be coupled? Hassan and Rosen
has considered different possibilities [56]. First, if the two metrics are coupled to the same
matter fields, √

−gLM,1(gµν , ϕ),
√
−f LM,2(fµν , ϕ), (2.2)

then the geodesic equation would be modified, which violates the equivalence principle.
Second, one can imagine a coupling to an effective metric ĝµν constructed out of gµν and
fµν , √

−ĝLM(ĝµν , ϕ). (2.3)
Unfortunately, this would generically bring back the Boulware-Deser ghost. The remain-
ing possibility is to consider two independent types of matter fields, say A and B, that
are each coupled to one of the metrics,

√
−gLM,A(gµν , ϕ

A),
√
−f LM,B(fµν , ϕ

B). (2.4)

This choice preserves the ghost-free feature of the massive bigravity theory. In this case,
one has two spacetime geometries: the particles of type A follow the geodesics of the
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g-metric while the trajectories of type B particles obey the geodesic equation of the f -
metric. In what follows, we consider that only one type of matter exists and that it is
coupled to one of the two metrics, say gµν . The spacetime geometry is thus described
by the g-metric and we interpret fµν simply as an additional tensor field coupled to the
spacetime metric gµν .

The massive bigravity theory admits viable self-accelerating cosmological solutions
[98, 99, 100, 101, 102, 103, 104, 105] with the cosmological constant mimicked by the
graviton mass. The theory also admits solutions describing black holes and stars [106] or
even wormholes [107]. We refer the reader to Ref. [108] for a review about cosmological
and black hole solutions. In this chapter we shall be discussing black holes.

First, the black hole solutions of GR also exist in massive bigravity. One usually
call them bald black holes, as opposed to the hairy ones that circumvent the no-hair
theorem. The bald black holes were reported long ago [109, 110, 111] in the context of
a different theory with two metrics inspired by the physics of strong interaction [112].
In the spherically symmetric case, both of their metrics describe a Schwarzschild-(anti)
de Sitter ((A)dS) geometry. Choosing the Eddington-Finkelstein coordinates, one can
represent them as [113]

gµνdx
µdxν = −Σg dv

2 + 2 dvdr + r2dΩ2,

fµνdx
µdxν = C2

(
−Σf dv

2 + 2 dvdr + r2dΩ2
)
, (2.5)

where Σg = 1 − 2Mg/r + Λg/(3r2), Σf = 1 − 2Mf/r + Λf/(3r2) and C, Λg, Λf are
constants whose values are determined by the field equations. It is possible to pass
to the Schwarzschild coordinates but only one of the two metrics can be diagonal in
this coordinate system. These solutions have been shown to exist also in the ghost-free
bigravity of Hassan and Rosen [114], and they admit charged [115] and spinning [116]
generalizations. In the special case of Mf = Λf = 0 one obtain the limit of the dRGT
theory where the f -metric is flat whereas the g-metric is non-trivial and describes a bald
black hole geometry. It is worth noting that this covers all possible static and spherically
symmetric black holes in the dRGT massive gravity theory (other time-dependent black
holes were reported in Ref. [117]).

It is also possible to construct bald black holes in massive bigravity whose metrics are
both diagonal in the Schwarzschild coordinates. Indeed, as it was noticed in [106], for
special values of the parameters entering the potential, the theory reduces to vacuum GR
when the two metrics coincide gµν = fµν . Then it follows immediately that all black holes
of vacuum GR can be embedded into the ghost-free bigravity. For example, one has the
bi-Schwarzschild solution:

gµνdx
µdxν = fµνdx

µdxν = −
(

1− 2M
r

)
dt2 +

(
1− 2M

r

)−1
dr2 + r2dΩ2. (2.6)

An effective cosmological constant Λ can be included by assuming the two metrics to be
proportional instead of being equal [106, 108]. However it has to be emphasized that these
solutions are different from those described by Eq. (2.5). For example, they do not admit
the dRGT theory limit (the mass M in Eq. (2.6) is the same for both metrics) and also
the solution (2.5) is linearly stable [118], whereas (2.6) is unstable for small masses with
respect to fluctuations which do not satisfy the condition2 gµν = fµν [57].

Second, the massive bigravity theory also admits hairy black hole solutions. These
solutions cannot be constructed analytically because it requires to solve a very involved

2There is no reason for small fluctuations around fµν and gµν to be equal.
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system of Ordinary Differential Equations (ODEs). The first numerical construction of
hairy black holes was carried out in Ref. [106], but none of the solutions found were
asymptotically flat. The hairy black holes exist in the case where both metrics are si-
multaneously diagonal and they must share the same horizon [119, 120]. Its radius rg

H

measured by the g-metric is generically different from the radius rf
H measured by the

f -metric. One can always set rH to unity via rescaling but the ratio u = rg
H/r

f
H is a

scale-invariant quantity. The choice of a value for u completely determines the boundary
conditions at the horizon. Therefore, the set of all black hole solutions (with bi-diagonal
metrics) can be labeled by the parameter u.

The special case u = 1 corresponds to the bi-Schwarzschild solution (2.6). Choos-
ing u ̸= 1 yields more general black holes supporting massive hair outside the horizon.
Generically, the two metrics do not approach that of Minkowski at spatial infinity but
one rather finds either a curvature singularity at a finite radius outside the horizon, or an
asymptotic behavior close to that of an AdS spacetime [106].

However it cannot be excluded that asymptotically flat hairy black holes exist for
a special, fine-tuned, value of the parameter u. Moreover, the stability analysis of the
bi-Schwarzschild solution (2.6) within the linear perturbation theory provides a good ev-
idence in favor of their existence. Indeed, bi-Schwarzschild black holes are stable for
rH > 0.86 (in units of the graviton mass) but unstable for rH ≤ 0.86 [57, 121]. This sug-
gests that the unstable bi-Schwarzschild black holes should decay to something else while
the asymptotic structure of spacetime must be preserved. Consequently, asymptotically
flat hairy black holes should exist as the final state of this instability. It is worth noting
that the mathematical structure of the pertubation equations is identical to that of black
strings in d = 5 GR. The instability of these black strings was studied by Gregory and
Laflamme (GL) [122] and therefore we shall refer to the bi-Schwarzschild black hole with
rH = 0.86 as the GL point.

Finding the asymptotically flat hairy black hole solutions requires to use an appro-
priate numerical scheme to solve the underlying boundary value problem such as, for
example, the shooting method presented in Appendix A.1.2. This was accomplished by
Brito, Cardoso and Pani [58]. However, a few years later, a different group analyzed
the asymptotic structure of the spherically symmetric solutions in massive bigravity [59],
and it was claimed that the bi-Schwarzschild solution (2.6) was the only asymptotically
flat black hole in the theory. Therefore, a controversy emerged: it became unclear if
asymptotically flat black holes with hair exist or not.

In this chapter, we reconsider this issue by ourselves and we are able to construct the
asymptotically flat hairy black holes [89], thereby confirming the finding in Ref. [58]. Our
numerical scheme, the multishooting method, is similar to the one employed by the authors
in Ref. [58], but we refine it to be able to integrate the field equations starting exactly
from the horizon radius (a singular point of the differential equations). We also take
into account nonlinear corrections in the far field region by using a technique involving
integral equations similar to that presented in, for example, Refs. [123, 124, 125]. From the
methodological viewpoint, this chapter provides an example of how one should properly
tackle a nonlinear boundary value problem with singular endpoints. We will discuss the
contradictory conclusion of Ref. [59] at the end of this chapter.

Apart from confirming the existence of asymptotically flat hairy black holes with
strong numerical evidence, we explore in more detail the parameter space of the theory
and discover many new features of these solutions. We also perform the stability analysis
of the hairy black holes within the linear perturbation theory and search for a region in
the parameter space where the hairy solutions are stable and have masses relevant to
describe astrophysical black holes.
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The rest of the chapter is organized as follows. In Section 2.2 we present the massive
bigravity theory of Hassan and Rosen [56]. The field equations in the spherically sym-
metric case and the simplest analytical solutions are described in Secs. 2.3 and 2.4. In
Secs. 2.5 and 2.6 we present the boundary conditions at the horizon and at infinity, and
then summarize our numerical procedure in Section 2.7. The asymptotically flat hairy
black holes and their new features are presented in Section 2.8. After that, we describe
the stability analysis of hairy solutions in Section 2.9. Finally our discussion culminates in
Section 2.10 where we explore the parameter space and its various limits. We also identify
in this section a region in the parameter space where the hairy solutions can consistently
describe astrophysical black holes. Section 2.11 gives our conclusion and we discuss the
arguments of Ref. [59]. The two appendices of this chapter contain the description of the
desingularization of the equations at the horizon and the time-dependent ansatz which is
used for the stability analysis.

2.2 The ghost-free massive bigravity
The massive bigravity theory of Hassan and Rosen is defined on a four-dimensional space-
time manifold equipped with two Lorentzian metrics gµν and fµν with the signature
(−,+,+,+). It is described by the action [56]

SHR = 1
2κ1

∫
R(g)

√
−g d4x + 1

2κ2

∫
R(f)

√
−f d4x− m2

κ

∫
U(g, f)

√
−g d4x, (2.7)

where κ1 and κ2 are the gravitational couplings, κ is a parameter with the same dimen-
sion, and m is the mass parameter. The interaction between the two metrics is described
by the potential U which is a function of the scalar invariants of the tensor

γ̂ =
√
ĝ−1f̂ , (2.8)

where the hats denote matrices and the square root is understood in the sense that
γ̂2 = ĝ−1f̂ . One can express this relation in components as

(γ2)µ
ν = γµ

αγ
α

ν = gµαfαν . (2.9)

Denoting by λa with a ∈ {1, 2, 3, 4} the eigenvalues of γ̂, the interaction potential is

U =
4∑

k=0
bk Uk, (2.10)

where bk are dimensionless parameters and Uk are defined by

U0 = 1, U1 =
∑

a

λa = [γ],

U2 =
∑
a<b

λaλb = 1
2!
(
[γ]2 − [γ2]

)
,

U3 =
∑

a<b<c

λaλbλc = 1
3!
(
[γ]3 − 3[γ][γ2] + 2[γ3]

)
,

U4 = λ1λ2λ3λ4 = det(γ̂). (2.11)

Here [γ] = Tr(γ̂) = γµ
µ and [γk] = Tr(γ̂k) = (γk)µ

µ.
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In vacuum, the two metrics actually enter the action in a symmetric way, since Eq. (2.7)
is invariant under the interchange

gµν ↔ fµν , κ1 ↔ κ2, bk ↔ b4−k. (2.12)

As a result, it is completely equivalent to couple the matter fields to either gµν or fµν .
Therefore we will assume without loss of generality that the metric to be minimally
coupled to matter is gµν and we shall call it the physical metric (the test particles follow
its geodesics). The theory is also invariant under rescalings κ → ±λ2κ, bk → ±bk,
m → λm. This allows one to impose the normalization condition κ = κ1 + κ2. The
variations of the action with respect to each metric give two sets of Einstein equations,

G(g)µν = m2κ1Tµν , G(f)µν = m2κ2Tµν , (2.13)

where κ1 = κ1/κ and κ2 = κ2/κ so that κ1 +κ2 = 1. The source terms in the right-hand
sides of (2.13) come from the variations of the potential U ,

T µ
ν = gµαTαν = τµ

ν − U δµ
ν , T µ

ν = fµαTαν = −
√
−g√
−f

τµ
ν , (2.14)

where fµα is the inverse of fµα and

τµ
ν =(b1 U0 + b2 U1 + b3 U2 + b4 U3)γµ

ν − (b2 U0 + b3 U1 + b4 U2)(γ2)µ
ν

+ (b3 U0 + b4 U1)(γ3)µ
ν − b4 U0(γ4)µ

ν . (2.15)

Finally, there is an identity following from the diffeomorphism invariance of the potential
term in the action,

√
−g

(g)

∇µT
µ
ν +

√
−f

(f)

∇µT µ
ν = 0, (2.16)

where
(g)

∇µ and
(f)

∇µ denote the covariant derivatives with respect to each metric.
The massive bigravity theory describes two interacting gravitons, one massive and one

massless. To make it apparent, one can consider the flat space limit. Setting gµν and fµν

to be equal to the Minkowski metric ηµν , Eqs. (2.13) reduce to

0 = −m2κ1(P0 + P1)ηµν , 0 = −m2κ2(P1 + P2)ηµν , (2.17)

with Pm = bm + 2bm+1 + bm+2. It follows that the flat space will be solution only if the
parameters bk satisfy the conditions P1 = −P0 = −P2. Assuming this to be the case, one
can consider small deviations δgµν and δfµν around the flat space solution, gµν = ηµν +δgµν

and fµν = ηµν +δfµν . Then, the linearization of Eqs. (2.13) with respect to the deviations
yields

Êαβ
µν h

(0)
αβ = 0, Êαβ

µν hαβ + m2
FP
2 (hµν − ηµνh) = 0, (2.18)

where h(0)
µν = κ1 δfµν + κ2 δgµν , hµν = δfµν − δgµν , h = ηµνhµν and Êαβ

µν denotes the linear
part of the Einstein tensor,

Êαβ
µν = −δα

µδ
β
ν□ + ηαλδβ

ν ∂λ∂µ + ηαλδβ
µ∂λ∂ν − ηαβ∂µ∂ν − ηµν∂

α∂β + ηµνη
αβ□. (2.19)

The equation for h(0)
µν is exactly the same as GR linearized around flat spacetime therefore,

it describes a massless graviton with two dynamical degrees of freedom. The second
effective metric fluctuation hµν fulfills a field equation equivalent to that of the FP massive
gravity, it corresponds to a massive graviton with five degrees of freedom and a mass

m2
FP = P1 m2. (2.20)
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Therefore it will be convenient to impose P1 = 1 so that the mass parameter m entering
the action (2.7) will coincide with the graviton mass mFP in flat space. Then, the condition
to have Minkowski as a solution becomes P0 = P2 = −1 and this can be used to express
the five bk in terms of only two independent parameters c3 and c4,

b0 = 4c3 + c4 − 6, b1 = 3− 3c3 − c4, b2 = 2c3 + c4 − 1,
b3 = −(c3 + c4), b4 = c4. (2.21)

At the same time, it has been shown that the theory propagates exactly 2+5 = 7 degrees
of freedom also away from the flat space limit and for arbitrary bk (see [126, 127, 128] for
the Hamiltonian formulation of massive bigravity).

Finally, we introduce dimensionless coordinates xµ via

xµ = mxµ. (2.22)

This is equivalent to the conformal rescaling of the metrics,

gµν →
1

m2 gµν , fµν →
1

m2fµν . (2.23)

The mass parameter m disappears from the field equations so that Eqs. (2.13) become

G(g)µ
ν = κ1T

µ
ν , G(f)µ

ν = κ1T µ
ν . (2.24)

The Bianchi identities for these two Einstein equations imply that
(g)

∇µT
µ
ν = 0,

(f)

∇µT µ
ν = 0, (2.25)

which is consistent with (2.16). In this dimensionless setting, the unit of length is 1/m,
the Compton wavelength of the massive graviton.

In what follows, we shall be analyzing the field equations (2.24) without any as-
sumptions about the values of κ1, κ2 and bk. However, when integrating the equations
numerically, we shall take into account that κ1 + κ2 = 1 by introducing a mixing angle η,

κ1 = cos2 η, κ2 = sin2 η, (2.26)

and we shall choose the bk according to (2.21). Therefore, our numerical solutions depend
on three parameters of the theory, c3, c4 and η.

2.3 Spherically symmetric field equations
Let us introduce spherical-like coordinates (x0, x1, x2, x3) = (t, r, ϑ, φ) where t is a timelike
coordinate, r is a radial coordinate and ϑ, φ are respectively the polar and azimuthal
angles. We assume that both metrics are static, spherically symmetric and diagonal.
Therefore, following for example Ref. [106], one has,

ds2
g = gµνdx

µdxν = −Q2dt2 + dr2

∆2 +R2dΩ2,

ds2
f = fµνdx

µdxν = −q2dt2 + dr2

W 2 + U2dΩ2, (2.27)

where dΩ2 = dϑ2 + sin2 ϑ dφ2 and Q, q, ∆, W , R, U are functions depending on the
radial coordinate r = mr only. We emphasize that this is actually not the most general
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ansatz for spherically symmetric fields, since one could also include an off-diagonal metric
element f01 as shown in Appendix 2.B. However, in the static case, the only possible black
hole solution with f01 ̸= 0 corresponds to Eqs. (2.5). Therefore the bi-diagonal ansatz
(2.27) is the most general one for obtaining non-Schwarzschild solutions.

The tensor γµ
ν encoding the coupling between the two metrics is then given according

to (2.8) by

γµ
ν = diag

(
q

Q
,

∆
W
,
U

R
,
U

R

)
, (2.28)

and the effective stress-energy tensors in Eq. (2.14) read

T µ
ν = diag

(
T 0

0 , T
1
1 , T

2
2 , T

2
2

)
, T µ

ν = diag
(
T 0

0 , T 1
1 , T 2

2 , T 2
2

)
, (2.29)

where

T 0
0 = −P0 − P1

∆
W
,

T 1
1 = −P0 − P1

q

Q
,

T 2
2 = −D0 −D1

(
q

Q
+ ∆
W

)
−D2

q∆
QW

,

(
U

R

)2
T 0

0 = −P2 − P1
W

∆ ,(
U

R

)2
T 1

1 = −P2 − P1
Q

q
,(

U

R

)2
T 2

2 = −D3 −D2

(
Q

q
+ W

∆

)
−D1

QW

q∆ .

Here we have introduced the shortened notations

Pk = bk + 2bk+1
U

R
+ bk+2

(
U

R

)2
, Dk = bk + bk+1

U

R
. (2.30)

The independent field equations are

G(g)0
0 = κ1T

0
0 , G(f)0

0 = κ2T 0
0 ,

G(g)1
1 = κ1T

1
1 , G(f)1

1 = κ2T 1
1 , (2.31)

plus the conservation condition
(g)

∇µT
µ
ν = 0, which has one non-vanishing component,

(g)

∇µT
µ
1 =

(
T 1

1

)′
+ Q′

Q

(
T 1

1 − T 0
0

)
+ 2R

′

R

(
T 1

1 − T 2
2

)
= 0, (2.32)

where the primes denote the differentiation with respect to r. The second stress-energy
tensor also fulfills a conservation condition with one non-trivial component,

(f)

∇µT µ
1 =

(
T 1

1

)′
+ q′

q

(
T 1

1 − T 0
0

)
+ 2U

′

U

(
T 1

1 − T 2
2

)
= 0, (2.33)

but this follows from Eq. (2.32) by virtue of the relation (2.16). As a result, we have
5 independent differential equations (2.31), (2.32), which is enough to determine the 6
metric functions Q, q, ∆, W , R, U , because the freedom of reparametrization of the radial
coordinate r → r̃(r) allows us to fix one of the unknown functions.
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We shall now introduce new functions

N = ∆R′, Y = WU ′, (2.34)

in terms of which the two metrics can be written as

ds2
g = −Q2dt2 + dR2

N2 +R2dΩ2,

ds2
f = −q2dt2 + dU2

Y 2 + U2dΩ2. (2.35)

This parametrization has the advantage of showing only first derivatives in the Einstein
tensor. The four equations (2.31) become

N ′ = −κ1

2
R

NY
(R′Y P0 + U ′N P1) + (1−N2)R′

2RN , (2.36)

Y ′ = −κ2

2
R2

UNY
(R′Y P1 + U ′N P2) + (1− Y 2)U ′

2UY , (2.37)

Q′ = −
(
κ1(QP0 + qP1) + Q(N2 − 1)

R2

)
RR′

2N2 , (2.38)

q′ = −
(
κ2(QP1 + qP2) + q(Y 2 − 1)

R2

)
R2U ′

2Y 2U
. (2.39)

The conservation condition (2.32) reads

(g)

∇µT
µ
1 = U ′

R

(
1− N

Y

)(
dP0 + q

Q
dP1

)
+
(
q′

Q
− NQ′U ′

Y QR′

)
P1 = 0, (2.40)

with
dPk = 2

(
bk+1 + bk+2

U

R

)
. (2.41)

The first derivatives of Q and q in Eq. (2.40) can be substituted by using Eqs. (2.38) and
(2.39), giving

R2Q
(g)

∇µT
µ
1 = U ′

Y
C = 0, (2.42)

where

C =
(
κ2
R4P2

1
2UY − κ1

R3P0P1

2N − (N2 − 1)RP1

2N + (N − Y )RdP0

)
Q

+
(
κ2
R4P1P2

2UY − κ1
R3P2

1
2N + (Y 2 − 1)R2P1

2UY + (N − Y )RdP1

)
q. (2.43)

The second conservation condition (2.33) becomes

−U2q
(f)

∇µT µ
1 = R′

N
C = 0. (2.44)

A first possibility to satisfy the two conditions (2.42) and (2.44) is U ′ = R′ = 0. However,
a direct inspection of the line elements (2.35) shows that in this case, both metrics are
degenerate (one has g11 = R′2/N2, f11 = U ′2/Y 2). Because physically relevant metrics
are not degenerate, one should consider the second possibility to satisfy (2.42), (2.44),
which is

C = 0. (2.45)
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This is an algebraic equation that can be resolved with respect to q to give

q = −Σ(R,U,N, Y )Q, (2.46)

where Σ(R,U,N, Y ) is the ratio of the coefficients in front of Q and q in Eq. (2.43).
As a result, we obtain four differential equations of first order (2.36)-(2.39) plus one

algebraic equation (2.45). As a consistency check, one can insert the ansatz (2.35) directly
to the action (2.7), which gives

SHR = 4π
m2κ

∫
L dtdr, (2.47)

where, dropping a total derivative,

L = 1
κ1

(
(1−N2)R′

N
− 2RN ′

)
Q+ 1

κ2

(
(1− Y 2)U ′

Y
− 2UY ′

)
q

− QR2R′

N
P0 −

(
QR2U ′

Y
+ qR2R′

N

)
P1 −

qR2U ′

Y
P2. (2.48)

The variations of (2.48) with respect to N , Y , Q, q reproduce Eqs. (2.36)-(2.39), while
varying it with respect to R, U gives the conditions (2.42) and (2.44). All the equations
and the reduced Lagrangian L are left invariant under the interchange (2.12), which now
reads

κ1 ↔ κ2, Q↔ q, N ↔ Y, R↔ U, bk ↔ b4−k. (2.49)
At this stage, one cannot solve the system of field equations since (2.36)-(2.39) contain

the first derivatives of R and U which are not yet known. One of these two radial functions
can be fixed by imposing a gauge condition to completely specify the radial coordinate, but
the other one should be determined dynamically. We need therefore one more differential
equation. Since the algebraic constraint (2.45) should be stable, one can differentiate it
to obtain the secondary constraint

C ′ = ∂C

∂N
N ′ + ∂C

∂Y
Y ′ + ∂C

∂Q
Q′ + ∂C

∂q
q′ + ∂C

∂R
R′ + ∂C

∂U
U ′ = 0. (2.50)

The derivatives N ′, Y ′, Q′, q′ can be replaced by using Eqs. (2.36)-(2.39) and q can be
substituted by virtue of Eq. (2.46). This yields

C ′ = A(R,U,N, Y )R′ + B(R,U,N, Y )U ′ = 0, (2.51)

where the explicit expressions of A(R,U,N, Y ) and B(R,U,N, Y ) are rather complicated
and we do not show them. It is worth noting that Eq. (2.51) is invariant under a change
of radial coordinate,

r → r̃(r) ⇒ R′ → R̃′ = dr

dr̃
R′, U ′ → Ũ ′ = dr

dr̃
U ′. (2.52)

We can express U ′ by using the secondary constraint,

U ′ = −A(R,U,N, Y )
B(R,U,N, Y )R

′ ≡ DU(R,U,N, Y )R′. (2.53)

Finally we specify completely the radial coordinate by setting

R′ = 1 ⇒ R = r. (2.54)
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This choice is very natural since it corresponds to a Schwarzschild-like radial coordinate3.
Then, Eq. (2.53) reduces to

U ′ = DU(r, U,N, Y ). (2.55)
Now, one can substitute U ′ in the right-hand sides of Eqs. (2.36) and (2.37), these two
equations together with (2.55) form a closed system of three differential equations

N ′ = DN(r, U,N, Y ),
Y ′ = DY (r, U,N, Y ),
U ′ = DU(r, U,N, Y ). (2.56)

To determine Q and q, we inject (2.46) to (2.38) to obtain,

Q′ = − r

2N2

(
κ1(P0 + Σ(r, U,N, Y )P1) + N2 − 1

r2

)
Q ≡ F(r, U,N, Y )Q. (2.57)

This differential equation determines Q whereas the function q can be obtained by using
its algebraic expression (2.46).

Summarizing, spherically symmetric spacetimes with bi-diagonal metrics are deter-
mined by the three coupled equations (2.56) for N , Y and U . As soon as their solution
is obtained, the remaining functions Q, q are determined from (2.57) and (2.46). Notice
that the system of equations (2.56) coincides with the one examined in previous works,
such as Refs. [106, 58].

2.4 Analytical solutions
We shall now describe the simplest solutions which can be found analytically [106, 129].
For this, it will be convenient to use the equations in the form (2.36)-(2.39).

2.4.1 Proportional backgrounds
One can recover GR black holes by choosing the two metrics to be proportional [106, 129],

ds2
f = C2ds2

g, (2.58)

where C is a constant that is determined by the field equations (see Eq. (2.60) below).
Then the equations (2.36)-(2.39) are solved by

Q2 = N2 = Y 2 = 1− 2M
r
− Λ(C)

3 r2, R = r, q = CQ, U = CR. (2.59)

It describes two proportional Schwarzschild-(A)dS geometries. We emphasize that the
cosmological constant Λ(C) here is effective, in the sense that it is produced by the massive
graviton, and not added by hand as in GR. The constants C and Λ(C) are determined by

κ1(P0 + C P1) = κ2

C
(P1 + C P2) ≡ Λ(C). (2.60)

The Pk terms are polynomials of order 2 in U/R = C so that the above equation is
algebraic and can have up to four real roots which determine the possible values of C.
Of course these values depend on the theory parameter. If the parameters bk are choosen

3Surfaces with r = const. are 2-spheres whose surface is 4πr2.
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according to (2.21), then C = 1 will automatically be one of the roots and Λ(C = 1) = 0.
It corresponds to a bald black hole with asymptotically flat geometry, or in other words,
a (bi-)Schwarzschild black hole with mass M .

At the same time, the dimensionful cosmological constant Λ should agree with the
observations of the accelerating expansion of the Universe. Therefore, one should have

Λ = m2Λ ∼ 1/(RHub)2, (2.61)

where RHub is the Hubble radius. One possible way to fulfill this condition is to assume
the graviton mass to be such that its Compton wavelength is of the order of the Hubble
radius,

1/m ∼ RHub. (2.62)

This is actually the historical choice in massive gravity theories. A second possibility is to
assume that the dimensionless Λ is very small. This is possible if one of the gravitational
coupling is negligible in front of the other : κ1 ≪ κ2 = 1 − κ1 ∼ 1. Indeed, Eq. (2.60)
then implies that Λ ∼ κ1 and that C should be very close to a root of P1 + C P2. The
hierarchy between the two couplings is in fact necessary to reconcile with the observations
the perturbation spectrum of cosmological solutions in massive bigravity since the latter
contains an instability in the scalar sector [130, 131, 132]. This instability can be shifted
toward early times of the Universe if [101, 102, 103, 104, 105]

κ1

κ2
∼ κ1 ≤

(
Mew

MPl

)2

∼ 10−34 ≪ 1, (2.63)

where Mew ∼ 100 GeV is the electroweak energy scale and MPl ∼ 1019 GeV is the Planck
scale. Here 10−34 is the upper bound for κ1 in order to make the instability unobservable.
Therefore, one can define a range of physcially acceptable values for κ1 by setting

κ1 = γ2 × 10−34 with γ ∈ [0, 1]. (2.64)

Then it follows that

1/m ∼
√

Λ RHub = √κ1 RHub = γ ×
(

Mew

MPl

)
RHub ∼ γ × 106 km, (2.65)

which is of the order of the solar size if γ ∼ 1. However, in what follows we shall not be
assuming κ1 to be small and shall present our results for arbitrary κ1 ∈ [0, 1].

2.4.2 Deformed AdS background

Another simple analytical solution can be obtained by choosing U , q to be constant,

U = U0, q = q0. (2.66)

This solves Eqs. (2.39) and (2.42) and the remaining equations (2.36)-(2.38) then can be
integrated in quadratures [106]. However, this solution is unphysical, since the f -metric
is degenerate if U ′ = 0. It turns out that other more general solutions approach (2.66)
at spatial infinity. For these solutions, the leading behavior of the functions at large r is
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given by

N2 = −κ1
b0

3 r
2 − κ1b1U0 r +O(1),

Y = −
√

3κ2b1

4U0
√
−κ1b0

r2 +O(r),

Q = q0

4U0
r +O(1),

U = U0 +O
(1
r

)
, q = q0 +O

(1
r

)
, (2.67)

where b0, b1 are integration constants. The g-metric approaches the AdS geometry in the
leading O(r2) order, but the subleading terms are different from AdS. This is why we
refer to this asymptotic behavior of the metrics functions as deformed AdS.

It has been shown numerically that black hole solutions of Eqs. (2.36)-(2.39) generically
approach for r → ∞ either (2.59) or (2.67) (or they exhibit a curvature singularity at a
finite r outside the horizon), hence they are not asymptotically flat [106].

2.5 Boundary conditions at the horizon
Let us now require the g-metric to have a regular event horizon located at r = rH . In
terms of the metric functions, this means that g00 = Q2 and g11 = N2 have simple zeroes
at this point. In other words, close to the horizon radius, one has Q2 ∼ N2 ∼ r − rH

and we shall consider only the exterior region r ≥ rH where Q2 ≥ 0 and N2 ≥ 0. This
behavior is compatible with the field equations only if the f metric also has a regular
horizon at the same place, hence q2 ∼ Y 2 ∼ r − rH . As a result, both metrics share a
horizon located at the radial coordinate r = rH , in agreement with [120, 119]. However,
it should be emphasized that the horizon radius measured by the g-metric, rH , can be
different from that measured by the second metric, U(rH). We therefore introduce the
parameter u ≡ U(rH)/rH .

As a result, close to the horizon we can construct a local solution close by expanding
the metrics functions in powers of (r − rH),

N2 =
∑
n≥1

an(r − rH)n, Y 2 =
∑
n≥1

bn(r − rH)n, U = u rH +
∑
n≥1

cn(r − rH)n, (2.68)

and
Q2 =

∑
n≥1

dn(r − rH)n, q2 =
∑
n≥1

en(r − rH)n. (2.69)

The coefficient an, bn, cn, dn, en can then be determined by the field equations. It turns
out that they all can be expressed in terms of a1 and the latter should fulfill a quadratic
equation,

Aa2
1 + Ba1 + C = 0 ⇒ a1 = 1

2A
(
−B + σ

√
B2 − 4AC

)
, σ = ±1, (2.70)

where A, B, C are functions of u, rH and of the theory parameters bk, κ1, κ2. The two
possible signs for σ describe two branches of solutions. The negative sign, σ = −1, always
yields solutions with a curvature singularity at a finite r > rH . Therefore, we choose
σ = 1 and then, for a given value of the horizon radius rH , the local solutions (2.68),
(2.69) comprise a set labeled by a continuous parameter u.
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The surface gravity for each metric is [106]

κ2
g = lim

r→rH
Q2N ′2 = 1

4d1a1, κ2
f = lim

r→rH
Q2

(
Y

U ′

)2
= e1b1

4c2
1
, (2.71)

and using the values of the expansion coefficients determined by the equations yields
the identity κg = κf . Hence the two surface gravities coincide as well as the Hawking
temperatures

TH = κg

2π = κf

2π . (2.72)

Close to the horizon, one has N(r) ∼ Y (r) ∼
√
r − rH hence the derivatives N ′

and Y ′ are not defined at the horizon. In the Refs. [106, 58], the authors start the
numerical integration at a point r = rH + ϵ with ϵ ≪ 1. The boundary conditions for
the integration are set using the local solutions (2.68) and (2.69) evaluated at this initial
point. However, although the dependence of the numerical solutions on ϵ is expected to be
small, still its presence in the procedure may lead to numerical instabilities. This point
was emphasized in [59]. To eliminate this arbitrary small parameter of the numerical
procedure, we introduce new functions

ν(r) = N(r)
S(r) , y(r) = Y (r)

S(r) with S(r) =
√

1− rH

r
. (2.73)

The functions ν, y and all their derivatives assume finite values at r = rH . Making this
change of variables in Eqs. (2.56) gives a desingularized version of the equations that
allows us to start the numerical integration exactly at r = rH . This is described in
Appendix 2.A.

To recapitulate, all black hole solutions with a given rH can be labeled by only one
parameter u. If u = 1 then the two metrics coincide and they describe the bi-Schwarzschild
solution (2.6). If u = C where C is a root of the algebraic equation (2.60), then the
solution corresponds to a Schwarzschild-(A)dS black hole (2.59). For other values of u,
more general solutions can be obtained, they correspond to hairy black holes and they
can be of the following three qualitative types, depending on their asymptotic behavior
[106].

• Solutions extending up to arbitrarily large values of r and asymptotically approach-
ing a proportional AdS background (2.58), (2.59). At large r one has N = N0(1 +
δN), Y = Y0(1 + δY ), U = U0(1 + δU) where N0, Y0, U0 are given by Eq. (2.59),
while the deviations δN , δY , δU approach zero. Linearizing the field equations with
respect to these deviations, one finds that

δN = A

r3 , δU = B1eλ1r +B2eλ2r, δY = O(δU), (2.74)

where A, B1, B2 are integration constants and the real parts of λ1 and λ2 are
negative. As a result, all these pertubative modes vanish for r →∞, and since the
number of integration constants is the same as the number of equations (2.56), it
follows that the AdS background is an attractor at large r.

• Solutions extending up to arbitrarily large values of r and asymptotically approach-
ing a deformed AdS background (2.67). The latter is also an attractor at large
r.

• Solutions extending only up to r = rS < ∞ where derivatives of some metric
functions diverge. Computation of curvature invariants shows that this is associated
to a curvature singularity.
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This exhausts the possible types of generic hairy black holes. We shall see in the
next section that the flat space is not an attractor. For example, choosing u = 1 + ϵ
yields solutions which are close to Schwarzschild in the vicinity of the horizon, but for
larger values of r the metrics deviate from that of Schwarzschild [106]. This means the
bi-Schwarzschild solution is Lyapunov unstable [59]. However, it does not exclude the
existence of other asymptotically flat solutions which may exist for specific discrete values
of u.

2.6 Boundary conditions at infinity
We are looking for solutions approaching the flat space at infinity: gµν = fµν = ηµν as
r →∞. We thus set

N = 1 + δN, Y = 1 + δN, U = r + δU, (2.75)

where δN , δY , δU are small deviations. Injecting this into the field equations (2.56) yields

δN ′ = −1
r

(κ2 δN + κ1 δY )− κ1 δU +NN ,

δY ′ = −1
r

(κ2 δN + κ1 δY ) + κ2 δU +NY ,

δU ′ =
(

1 + 2
r2

)
(δY − δN) +NU , (2.76)

where NN , NY , NU represent all the terms that are nonlinear in δN , δY , δU . Keeping
only the linear terms, the solution to these equations is

δN = A

r
+B κ1

1 + r

r
e−r +C κ1

1− r
r

e+r,

δY = A

r
−B κ2

1 + r

r
e−r−C κ2

1− r
r

e+r,

δU = B
1 + r + r2

r2 e−r +C
1− r + r2

r2 e+r, (2.77)

where A, B, C are integration constants. The terms proportional to A are the Newtonian
modes describing the massless graviton. The other two modes proportional to B and C
correspond to the massive graviton contributions, they contain the Yukawa exponents e±r

(remember that r = mr). The terms proportional to C correspond to unstable4 modes:
they diverge exponentially in the limit r →∞. As a result, flat space is not an attractor.
If one numerically integrates Eqs. (2.56) starting from the horizon, trying to approach
flat space in this way, the modes proportional to e+r would grow rapidly and would drive
the solution away from flat space. The only way to proceed is to suppress the unstable
mode from the very beginning by requiring C = 0, thus the solution at large r should be

δN = A

r
+B κ1

1 + r

r
e−r + . . . ,

δY = A

r
−B κ2

1 + r

r
e−r + . . . ,

δU = B
1 + r + r2

r2 e−r + . . . , (2.78)

4Here we are implicitly referring to the instability in the Lyapunov sense: the small deviations are
time independent. We will study the dynamical stability with time-dependent perturbation in Sec. 2.9.
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where the dots denote nonlinear corrections. The usual practice would be to neglect
these corrections and assume that the linear terms approximate the solution correctly for
r > r⋆ ≫ rH . However, we have noticed that already the quadratic corrections contain
an additional factor log(r) and hence dominate the linear terms for r → ∞. Therefore,
nonlinear corrections can be important and should not be excluded from the procedure.

Fortunately, problems of this kind have already been studied in the literature, see for
example the Ref. [125]. Let us first express δN , δY , δU in terms of three new functions
Z0, Z+, Z−:

δN = Z0 + κ1
1 + r

r
Z+ + κ1

1− r
r

Z−,

δY = Z0 − κ2
1 + r

r
Z+ − κ2

1− r
r

Z−,

δU = 1 + r + r2

r2 Z+ + 1− r + r2

r2 Z−. (2.79)

Equations (2.76) then become

Z ′
0 + Z0

r
= S0(r, Z0, Z±) ≡ κ1NY + κ2NN ,

Z ′
+ + Z+ = S+(r, Z0, Z±) ≡ 1− r + r2

2r2 (NN −NY )− 1− r
2r NU ,

Z ′
− − Z− = S−(r, Z0, Z±) ≡ 1 + r + r2

2r2 (NY −NN) + 1 + r

2r NU . (2.80)

We emphasize that all the terms on the left in these equations are linear in Z0, Z±, while
those on the right are nonlinear. Keeping only the linear terms, the solution is Z0 ∝ 1/r,
Z+ ∝ e−r and Z− ∝ e+r. Hence the redefinition of the functions (2.79) allows one to
separate the different modes present in Eq. (2.77). If we set

Z0 = A

r
, Z+ = B e−r, Z− = 0, (2.81)

this reproduces the linear part of (2.78). Now, to take nonlinear corrections into account,
we convert Eqs. (2.80) into the equivalent set of integral equations,

Z0(r) = A

r
−
∫ ∞

r

r̄

r
S0(r̄, Z0(r̄), Z±(r̄)) dr̄,

Z+(r) = B e−r +
∫ r

r⋆

er̄−r S+(r̄, Z0(r̄), Z±(r̄)) dr̄,

Z−(r) = −
∫ ∞

r
er−r̄ S−(r̄, Z0(r̄), Z±(r̄)) dr̄, (2.82)

where r⋆ is some large value. These equations determine the solution in the far field
region r > r⋆, and they are solved by iterations. We start the iterations by injecting the
configuration (2.81) to the integrals, which gives a corrected configuration, and so on.
In practice, we introduce compactified variables x = r⋆/r and x̄ = r⋆/r̄ which map the
infinite interval [r⋆,∞) to the finite range [0, 1] and we discretize this interval to compute
the integrals by the trapezoid rule.

To see if the iterations converge, we compute for each function Z ∈ {Z0, Z±} and for
each discretization node the difference ∆Zi = Zi+1−Zi between each successive iteration,
and then we take the average ∆Zi over all discretization nodes. Computing similarly the
average Zi of Zi, we see that the ratios ∆Zi/Zi decrease with i exponentially, see the left
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Figure 2.1: Left: convergence of the iterations of the integral equations (2.82). Right: the
functions Z, Z± against x = r⋆/r. The insertion shows a closeup of Z−.

panel of Fig. 2.1. An example of solution of the integral equations is shown on the right
panel in Fig. 2.1. In the insertion of the plot, we can see that the amplitude Z− is always
small but nonvanishing. All the three amplitudes vanish at spatial infinity (x = 0), hence
the solution is indeed asymptotically flat.

To recapitulate, the procedure described above yields an asymptotically flat solution
in the region r > r⋆ and takes nonlinear corrections into account. To extend this solution
to the region rH < r < r⋆, one only needs its value at r = r⋆,

Z0(r⋆) = A

r⋆

−
∫ ∞

r⋆

r̄

r⋆

S0(r̄, Z0(r̄), Z±(r̄)) dr̄,

Z+(r⋆) = B e−r⋆ ,

Z−(r⋆) = −
∫ ∞

r⋆

er⋆−r̄ S−(r̄, Z0(r̄), Z±(r̄)) dr̄. (2.83)

It is worth noting that the parameter A is related to the ADM mass,

M = −A. (2.84)

2.7 Numerical procedure

Summarizing the above discussion, the asymptotically flat black holes in the massive
bigravity theory are described by solutions of the three coupled first order ODEs (2.56)
which determine the functions N(r), Y (r) and U(r). At the horizon r = rH one has

N(r) = ν(r)
√

1− rH

r
, Y (r) = y(r)

√
1− rH

r
, (2.85)

where the horizon value ν(rH) ≡ νH and y(rH) ≡ yH are finite and determined by the
Eqs. (2.127), (2.125) in Appendix 2.A. On the other hand, the value U(rH) ≡ urH can be
arbitrary. Therefore, the boundary conditions at the horizon are labeled by just one free
parameter u, and choosing some value for it completely determines the solution for r > rH .
However, the solutions are not necessarily asymptotically flat. One has to consider the
appropriate boundary conditions in the far field region.
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Far from the horizon, at r = r⋆ ≫ rH , one has

N(r⋆) = 1 + Z0(r⋆) + κ1B
1 + r⋆

r⋆

e−r⋆ +κ1
1− r⋆

r⋆

Z−(r⋆),

Y (r⋆) = 1 + Z0(r⋆)− κ2B
1 + r⋆

r⋆

e−r⋆ −κ2
1− r⋆

r⋆

Z−(r⋆),

U(r⋆) = r⋆ +B
1 + r⋆ + r2

⋆

r2
⋆

e−r⋆ +1− r⋆ + r2
⋆

r2
⋆

Z−(r⋆), (2.86)

where Z0(r⋆) and Z−(r⋆) are functions of A, B determined by (2.83).
As a result, we have the boundary conditions at r = rH labeled by u and the boundary

conditions at r = r⋆ labeled by A, B. We use them to construct solutions in the region
rH ≤ r ≤ r⋆ by using the multishooting method presented in Appendix A.1.2. The three
shooting parameters to be adjusted are u, A and B.

As a consistency check, one can verify that the bi-Schwarzschild solution is obtained
for the values of the shooting parameters

u = 1, A = −rH

2 , B = 0. (2.87)

Are there other solutions? Since the bi-Schwarzschild solution is Lyapunov unstable [59],
the different asymptotically flat black holes are parametrically isolated from each other.
This creates a practical problem. Indeed, the initial guess for u, A, B must be close to
the "true" values for the Newton’s iterations (A.16) to converge. Hence, some additional
information is needed to specify an appropriate initial guess.

This additional information is provided by the stability analysis of the bi-Schwarschild
solution (2.6) [57, 121]. In this analysis, one finds that for rH = 0.86 the time-dependent
perturbation equations admit a static solution (a zero mode) for which the small fluctua-
tions around the bi-Schwarzschild background depend only on r and are bounded every-
where in the exterior region r ≥ rH . This can be viewed as a perturbative approximation
of a new solution that merges with the bi-Schwarzschild one for rH = 0.86.

This suggests that these new solutions should be obtained by choosing the event
horizon radius to be close to rH = 0.86 and choose the initial guess for u, A, B to be
close to (2.87). Then the numerical iterations should converge to values u, A, B which
are slightly different from (2.87) and correspond to an almost bi-Schwarzschild black hole
distorted by massive hairs. Changing then iteratively the value of rH yields solutions
which can deviate considerably from the bi-Schwarzschild metrics in the vicinity of the
horizon, but always approach flat spacetime in the far field region.

2.8 Asymptotically flat hairy black holes
Applying the procedure outlined above, we have been able to construct asymptotically
flat hairy black hole solutions. We confirm the results of Ref. [58] and obtain also new
results.

2.8.1 General properties
First, we find that for rH approaching from below the GL value, rH ≈ 0.86, there are
asymptotically flat hairy solutions for any c3, c4, η. As expected, they are very close to
the bi-Schwarzschild solution: one has u = UH/rH ≈ 1 and the ADM mass M ≈ rH/2.
However for smaller values of rH the solutions deviate more and more from Schwarzschild.



2.8. ASYMPTOTICALLY FLAT HAIRY BLACK HOLES 45

 0.6

 0.7

 0.8

 0.9

 1

 1  10  100

c3=2, c4=-1, �=�/4, rH=0.6

r/rH

N/S
Y/S
Q/S
q/S

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

c3=-c4=3, �=�/4, rH=0.18

r/rH

N/S
Y/S
Q/S
q/S

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100  1000

c3=-c4=3/2, �=�/4, rH=0.18

r/rH

N/S
Y/S
Q/S
q/S

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 1

 1  10  100

�=�/4
U

'

r/rH

c3=2, c4=-1, rH=0.6

c3=-c4=3/2, rH=0.18

c3=-c4=3, rH=0.18

Figure 2.2: Profiles of N/S, Q/S, Y/S, q/S with S =
√

1− rH/r and that of U ′ for
solutions with η = π/4 but for various values of rH , c3, c4. The solution with c3 = −c4 =
3/2 shown on the two lower panels have a singular f -metric because the functions q, Y ,
U ′ develop zeroes outside the horizon.

To illustrate this, we present in Fig. 2.2 the ratios N/S, Q/S, Y/S, q/S and the derivative
U ′ for η = π/4 and different values of c3, c4. If these functions are equal to one, then the
solution corresponds to the bi-Schwarzschild metrics (2.6). As one can see, they deviate
considerably from unity in the vicinity of the horizon. Hence the massive graviton hair is
concentrated in this region.

Solutions are regular for rH close to 0.86. However for smaller rH and depending
on the values of c3, c4, η, the functions Y , q, U ′ may show negative values outside the
horizon, whereas Q, N always remain positive. This implies that the f -metric is singular,
because the curvature invariants of its Riemann tensor diverge where Y , q or U ′ vanish.
An example of this is shown on the lower two panels in Fig. 2.2, and also on the lower
two panels in Fig. 2.3 where one can see that the phenomenon occurs when η approaches
π/2. Nevertheless, a curvature singularity of the f -metric does not invalidate the solution
because the f -geometry is not directly measurable by test particles. The latter follow the
geodesics of the g-metric which is always regular when fµν is not. We shall therefore keep
such solutions in our considerations.

The solutions in Fig. 2.2 are shown up to large but still finite values of the radial
coordinate (r/rH ≤ 100 or r/rH ≤ 1000). What is shown is the combination of the
solutions of the differential equations (2.56) in the region rH ≤ r ≤ r⋆ and of the integral
equations (2.82) for r > r⋆ where r⋆/rH = 25. At the same time, our procedure yields
solutions in the whole region r ∈ [rH ,∞). Introducing the compactified radial variable

ξ = r − rH

r + rH

∈ [0, 1], (2.88)

we plot in Fig. 2.3 the ratios N/S, Y/S, Q/S, q/S against ξ. As one can see, they
approach unity as ξ → 1 (and the same is true for U ′), hence the solutions are indeed
asymptotically flat.
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If η = π/2 then κ1 = 0 and the field equation for gµν becomes identical to that of
vacuum GR so that the g-metric becomes Schwarzschild. In this limit, the theory reduces
to the massive gravity for the dynamical f -metric on a fixed Schwarzschild background.
The solution for the f -metric is shown on the lower right panel in Fig. 2.3. Similarly,
for η = 0 one has κ2 = 0 and the f -metric becomes Schwarzschild while the g-metric
is solution of the massive gravity on a Schwarzschild background. This is shown on the
upper left panel in Fig. 2.4. It should be emphasized that the radii of the background
Schwarzschild black holes for η = 0 and η = π/2 are not the same. Indeed the event
horizon radius measured by the g-metric is rH but that measured by the f -metric is
U(rH) ≡ UH . Thus, for the solution shown in Fig. 2.3 with η = π/2, the Schwarzschild
black hole is described by the g-metric and its horizon size is rH = 0.18, while for η = 0 the
Schwarzschild background is described by the f -metric with the horizon size UH = urH

where u ≈ 5 (as seen in Fig. 2.4); hence in this case the Schwarzschild black hole is
much larger. As a result, solutions on these different backgrounds look quite different:
the solution for the f -metric on the lower right panel in Fig. 2.3 shows zeroes hence it is
singular, while the solution for the g-metric on the upper left panel in Fig. 2.4 is regular.

Solutions for η = π/2 will play an important role in the Section 2.10 below. We shall
call them "hairy Schwarzschild" because their g-metric is Schwarzschild but their f -metric
supports hairs.

The figure 2.4 presents the dependence on η of u = UH/rH , of the ADM mass M
expressed in units of the Schwarzschild mass MS = rH/2 and of the temperature T
expressed in units of the Schwarzschild temperature TS = 1/(4πrH). As one can see, the
dependence is rather strong for small rH , in particular for u. It should be emphasized
that the mass as well as the temperature is the same with respect to each metric. If
η = π/2 then the g-metric is Schwarzschild hence M = MS and T = TS. If η = 0 then the
f -metric is Schwarzschild but with a larger radius UH = urH , hence the mass is larger,
M = UH/2 = uMS, while the temperature is smaller, T = TS/u. Therefore, if η = 0
then M/MS = u so that, for example, M/MS ≈ 5 ≈ u for rH = 0.18, as seen in Fig. 2.4.
Between the two limiting cases η = 0, π/2, the mass M , the temperature TH and u are
monotonic functions of η.

The figure 2.5 shows the dependence of u and M on c3 in the special case c3 = −c4.
One can see that the solutions exist only if the value of c3 is not too small. The points
where the solutions cease to exist are represented in the figure by plain circles. Similarly,
the hairy solutions generically do not exist for arbitrarily small values of rH . As was
noticed in Ref. [58], small rH black holes exist if the coefficient b3 in the potential (2.10)
vanishes so that the cubic part of the potential is absent. In view of (2.21), this requires
that c3 = −c4, but it is not the only condition. One can distinguish the following two
cases:

I: c3 ̸= −c4 or c3 = −c4 < 1, II: c3 = −c4 ≥ 1. (2.89)

In case I, asymptotically flat hairy black holes do not exist if rH < rmin
H where the value

of rmin
H > 0 depends on the specific values of c3, c4, η. In case II, they exist for arbitrarily

small rH , although their f -metric may be singular. We shall see below in Sec. 2.10 what
happens when rH approaches the lower bound.

2.8.2 Duality relation
In Ref. [58], the authors report the existence of asymptotically flat hairy black holes only
below the GL point, for rH ≤ 0.86. However the interchange symmetry (2.12) implies
that hairy solutions should exist as well for rH > 0.86. Indeed, the theory is left invariant
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under the replacement

η → π

2 − η, Q↔ q, N ↔ Y, r ↔ U, c3 → 3− c3, c4 → 4c3 + c4 − 6. (2.90)

This means that if for some values of η, c3, c4 there is a solution

Q(r), q(r), N(r), Y (r), U(r), (2.91)

then for η̃ = π/2 − η, c̃3 = 3 − c3, c̃4 = 4c3 + c4 − 6 there should be a "dual" solution
described by

Q̃(r) = q(w(r)), q̃(r) = Q(w(r)), Ñ(r) = Y (w(r)),
Ỹ (r) = N(w(r)), Ũ(r) = w(r), (2.92)

where w(r) is the inverse function of U(r), such that U(w(r)) = r. This duality corre-
spondence relates between themselves black holes of different sizes: the solution (2.91)
has the horizon located at r = rH while that of (2.92) is located at r = r̃H = U(rH).
Consequently, one has

ũ = Ũ(r̃H)
r̃H

= rH

U(rH) = 1
u
. (2.93)

Now, for hairy black holes with rH < 0.86, one always has U(rH) > 0.86 and u > 1. It
follows that their duals are characterized by r̃H > 0.86 and by ũ < 1.

An explicit example of dual black holes is shown in Fig. 2.6. The left panel presents
the solution for c3 = −c4 = 2, η = π/4, rH = 0.15 for which U(rH) = 1.364, hence
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u = 1.364/0.15 = 2.42. The right panel presents the dual solution which exists for c3 = 1,
c4 = 0, η = π/4. Its horizon radius is rH = 1.364 and u = 0.15/1.364 = 0.41. Plotting the
first solution against U/UH and the second against r/rH yields exactly the same profiles,
up to the interchange N ↔ Y , Q↔ q.

The reason why solutions with rH > 0.86 were not found in Ref. [58] is unclear. A
possible explanation is that the bi-Schwarzschild black hole (2.6) is unstable only for
rH < 0.86. Therefore the standard argument for the existence of new solutions states
that these should only exist for rH < 0.86 and they may be viewed as stable remnants of
the decay of the bi-Schwarzschild black hole. However as we shall see in Sec. 2.10 below,
the situation for hairy black holes in Massive Bigravity is more complicated than this
naive picture.

The duality is in fact a powerful tool for studying the solutions because, sometimes,
their properties may look puzzling in one description, but become obvious within the dual
description.

2.9 Stability analysis

2.9.1 Derivation of the perturbation equation
In this section we analyze the stability of the hairy solutions by studying their spherically
symmetric perturbations within the ansatz described in Appendix 2.B,

ds2
g = −Q2dt2 + dr2

N2 + r2dΩ2,

ds2
f = −(q2 − α2Q2N2)dt2 − 2α

(
q + QNU ′

Y

)
dtdr +

(
U ′2

Y 2 − α
2
)
dr2 + U2dΩ2, (2.94)

where Q, q, N , Y , α, U are functions of r and t. The static and bi-diagonal ansatz (2.35)
is recovered when nothing depends on time and when α = 0. Therefore, we describe small
fluctuations around the static solutions by setting

Q(r, t) =
(0)

Q(r) + δQ(r, t), q(r, t) = (0)
q (r) + δq(r, t),

N(r, t) =
(0)

N(r) + δN(r, t), Y (r, t) =
(0)

Y (r) + δY (r, t),

U(r, t) =
(0)

U(r) + δU(r, t), α(r, t) = δα(r, t), (2.95)

where the functions
(0)

Q(r), (0)
q (r),

(0)

N(r),
(0)

Y (r),
(0)

U(r) correspond to the background black
hole and δQ, δq, δN , δY , δU , δα are the small fluctuations.

We inject (2.95) to the field equations and linearize with respect to the perturbations.
Linearizing the equation G(g)0

1 = κ1T
0
1 yields

2
r NQ2 δṄ = κ1

P1

Q
δα, (2.96)

where N , Q, P1 relate to the static background (we do not write their over sign "(0)"
for simplicity). In the linear perturbation theory, one can consistently separate the time
variable by assuming the harmonic time dependence for all fluctuations:

δN(r, t) = eiωt δN(r), δα(r, t) = eiωt δα(r), (2.97)
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and similarly for δY , δQ, δq, δU . Injecting to (2.96) yields the algebraic relation

δα(r) = 2iω
r NQP1

δN(r). (2.98)

Then the linearization of G(f)0
1 = κ2T 0

1 yields a relation between δα, δY , δU . Using
these relations, one finds that the three equations G(g)0

0 = κ1T
0
0 , G(f)0

0 = κ2T 0
0 and

(g)

∇µT
µ
0 = 0 are equivalent. As a result, among the 8 equations (2.137), (2.138), only 6 are

independent at the linearized level.
Taking all of this into account, one finds that the 6 perturbation functions δQ(r), δq(r),

δN(r), δY (r), δU(r) and δα(r) can be expressed in terms of a single master amplitude
Ψ(r) subject to the Schrödinger-type equation,

d2Ψ
dr2

∗
+ (ω2 − V (r∗))Ψ = 0. (2.99)

The function Ψ(r) is a linear combination of δN(r) and δY (r) with rather complicated
coefficients involving the static background functions. The potential V (r) is also a com-
plicated function that we do not show. The tortoise radial coordinate r∗ ∈ (−∞,+∞) is
defined by the relation

dr∗ = 1
a(r)dr, (2.100)

where the function a(r) (also complicated) varies monotonically from 0 to 1 when r ranges
from rH to ∞. The potential V always tends to zero at the horizon, for r∗ → −∞, and
it approaches unit value at infinity, for r∗ → +∞.

For the bi-Schwarzschild background with Q = q = N = Y =
√

1− rH/r and U = r,
one has a(r) = Q(r) and the potential admits a simple expression

V (r) =
(

1− rH

r

)(
1 + rH

r3 + 6rH(rH − 2r) + r3(r − 2rH)
(rH + r3)2

)
, (2.101)

in agreement with Ref. [121]. In the flat space limit, rH → 0, this reduces to V (r) =
1 + 6/r2, which is the potential of a massive particle of unit mass with spin 2 (remember
that we use dimensionless quantities so that masses are expressed in units of the graviton
mass).

Equation (2.99) defines an eigenvalue problem on the line r∗ ∈ (−∞,+∞). Solutions
of this problem with ω2 > 0 describe scattering states of gravitons. There may also
be solutions with purely imaginary frequency ω = ±iσ (here σ > 0) and hence with
ω2 = −σ2 < 0. Such solutions are usually called bound states because the wave function
Ψ is everywhere bounded and square-integrable. One has

A e+σr∗ ← Ψ→ B e−
√

1+σ2 r∗ as −∞← r∗ → +∞, (2.102)

where A, B are integration constants. The time dependence of the perturbations in this
case is eiωt = e±σt so that they may grow in time exponentially. Therefore, the bound
state solutions to the eigenvalue problem (2.99) correspond to unstable modes of the
background black hole.

2.9.2 Computing the eigenfrequencies
We shall investigate the potential existence of bound state solutions with ω2 < 0 in the
spectrum of the eigenvalue problem (2.99). If such solutions exist, then the background
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Figure 2.7: The potential V (r) entering the perturbation equation (2.99) for rH = 0.36
(left) and for rH = 0.78 (right). Different values of c3, c4 are considered while η = π/4.

black hole is unstable, otherwise, the black hole is stable with respect to spherically
symmetric perturbations. In principle, it would then be necessary to consider more general
perturbations but in view of the complexity of the problem even in the case of spherically
symmetric perturbations, we shall not pursue the analysis further. Moreover, in many
cases, the potential instabilities reside in the spherically symmetric sector (of course, this
should be proven on a case-by-case basis).

First of all, we shall check the profile of the potential V (r). If it is positive definite,
then there are no bound states. We thus show in Fig. 2.7 typical examples of the potential
V (r) for hairy backgrounds with two different horizon sizes rH and different values of c3,
c4. We also show for comparison the potential (2.101) of the bi-Schwarzschild solution
with the same rH . In each case the potential shows negative values in the vicinity of
the horizon and therefore, bound states may exist. However their existence is not yet
guaranteed.

On the other hand, it is known that bound states certainly exist for bi-Schwarzschild
black holes with rH < 0.86 [57, 121]. Since the potentials for the hairy solutions with
rH = 0.78 shown in Fig. 2.7 are close to the Schwarzschild potential, bound states are
likely to exist for these hairy backgrounds.

In order to know whether bound states exist or not, we use the well-known Jacobi
criterion [133] which requires to construct the solution of the perturbation equation (2.99)
with ω = 0. We start the numerical integration in the asymptotic region where the
tortoise coordinate r∗ becomes identical to the usual r. Here Eq. (2.99) simply reduces to
Ψ′′ − Ψ = 0 so that the bounded solution is Ψ = e−r. Then we extend numerically this
solution5 toward small values of r. The Jacobi criterion states that the number of bound
states is equal to the number of nodes of the resulting solution for Ψ(r). We find that,
depending on the values of rH , η, c3, c4, it may indeed show a zero as r approaches rH .
Therefore, there exist a bound state.

The next step is to actually find the bound state by solving the eigenvalue problem
(2.99) with the potential V (r) obtained numerically from the hairy background configu-
rations. For this we set ω2 = −σ2 (with σ ∈ R) and use the local solutions at infinity
and close to the horizon given by the Eq. (2.102), which can be rewritten in terms of the
usual r coordinate as,

A× (r − rH)σrH ← Ψ(r)→ e−
√

1+σ2 r as rH ← r → +∞. (2.103)

Here we have kept only the integration constant A in the local solution close to the
5At this stage, we treat the pertubation equation as an initial value problem so we simply use the

Runge-Kutta 4 method presented in Appendix. A.1.1.
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horizon while the integration constant in the local solution at infinity has been set to
unity without loss of generality. Then we apply the multishooting method to solve the
perturbation equation by treating it as a boundary value problem (see Appendix. A.1.2).
The second-order ODE (2.99) can be transformed into two first-order ODEs so that we
need two shooting parameters. These parameters to be adjusted by the numerical method
are A and σ. This procedure yields the bound state solution Ψ(r) and the corresponding
eigenfrequency ω = ±iσ (see [134, 135] for reviews on the black hole perturbation theory
and the tools that can be used to solve the perturbation equation).

We consider first the hairy solutions with η = π/2 that have been reported previously
in Ref. [58]. Examples of profile of their wave functions Ψ against the ordinary radial
coordinate r are shown in Fig. 2.8. They vanish at the horizon, then show a maximum
very close to rH , and approach zero for r →∞.

We find bound states with ω2 < 0 for all the hairy black holes reported in Ref. [58], see
the left panel on Fig. 2.9. Therefore, all these solutions are unstable. We emphasize that
all of them correspond to the particular choice η = π/4, hence κ1 = κ2 = 1/2. In order
to test our method, we have also computed the eigenfrequencies for the bi-Schwarzschild
solution as in Ref. [121].

As seen in the left panel on Fig. 2.9, the absolute value of the negative ω2 for the
bi-Schwarzschild solution is always larger than that of the hairy solutions. Therefore, the
instability growth rate for the hairy black holes is not as large as for the bi-Schwarzschild
black hole. Since one has ω = ω/m where ω is the dimensionful physical frequency,
the instability growth time is 1/ω = 1/(ωm). If we assume the graviton mass m to be
very small as in Eq. (2.62), then the instability growth time will be cosmologically large,
hence the instability will not play an important role. However, as we shall see in the
next section, the physical choice is rather to assume that 1/m ≤ 106 km according to
(2.65), in which case the instability growth time will be less than 103 seconds. Hence the
instability must be avoided if we wish to describe the black holes of our Universe by the
hairy solutions of the massive bigravity theory.

The eigenvalue ω2(rH) < 0 approaches zero as rH → 0.86. In this limit, all hairy
black holes "lose their hair" and merge with the bi-Schwarzschild solution which admits
a zero mode6 for rH = 0.86. Close to the value rH = 0.86, all solutions are close to each
other and ω2 is close to zero for any c3, c4, η while for smaller rH , the backgrounds and
ω2 become parameter dependent. The eigenfrequency may approach zero also for type I
hairy black holes when the solutions cease to exist, i.e. for rH = rmin

H > 0. For example,
for c3 = 1, c4 = 0, the hairy solution disappears at rH ≈ 0.58, and at the same time ω2

6A zero mode is a bound state with eigenfrequency ω = 0.
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approaches zero, as seen in the insertion of the left panel on Fig. 2.9.
The instability of hairy black holes is in fact a somewhat puzzling phenomenon, since

it is unclear what they may decay to. Since the hairy solutions rH < 0.86 are more
energetic than the bi-Schwarzschild solution (see next section), they may approach the
latter via absorbing and/or radiating away their hair during the decay. However the bi-
Schwarzschild black hole is also unstable for rH < 0.86 and should decay into something
else.

The perturbative instability of the bi-Schwarzschild solution in massive bigravity is
mathematically equivalent [57] to the GL instability of black strings in d = 5 vacuum
GR [122]. It is known that the nonlinear development of the latter leads to the forma-
tion of an infinite string of "black hole beads" but the event horizon topology does not
change [136]. This fact being established within the d = 5 vacuum GR, a similar scenario
is not possible in the d = 4 massive bigravity theory. Hence the fate of the bigravity
black holes should be different. For example, they may radiate away all their energy via
spherically symmetric radiations (some radiative solutions are already known [137, 138]),
but it is unclear what happens to the horizon, whether it disappears or not. In GR, the
horizon cannot evaporate via a classical process [139], but in the massive bigravity theory
the situation might be different.

Now, let us see how the η parameter can affect the stability property of hairy black
holes. In the right panel on Fig. 2.9 we show ω2 as a function of η for several values of
rH and with c3 = −c4 = 2. Remarkably, one can see that the eigenfrequcency ω2(η) < 0
vanishes when η approaches π/2 and thus the unstable bound state disappears in a region
close to η = π/2. The same phenomenon occurs in a region close to η = 0, but only for
small values of the event horizon radius rH . For example for rH = 0.18, the eigenfrequency
vanishes for η ≈ π/8, as seen in the figure. At the same time, the bi-Schwarzschild
solution is certainly unstable for any values of η since we are considering here horizon
radii rH < 0.86.

As a result, depending on the value of η, some hairy black hole solutions can be stable
and thus be good candidates for the final state of unstable bi-Schwarzschild black hole
decay. On the other hand, we have not analyzed in this section the stability property of
hairy solutions with rH > 0.86. Their stability in this case is not a decisive criterion since
the corresponding bi-Schwarzschild solution is stable when rH > 0.86. Below we shall
describe in more detail the (rH , η)-parameter space for a specific choice of c3, c4 which
can lead to a large set of stable hairy solutions.
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2.10 Parameter space and the physical solutions
The full parameter space for asymptotically flat hairy black hole solutions in massive
bigravity is a four dimensional space spanned by the parameters (rH , η, c3, c4). To simplify
the study of this parameter space, we shall adopt the following strategy: we choose the
particular values

c3 = −c4 = 5/2, (2.104)
which fulfill condition II in (2.89) and study the solutions for all possible (rH , η). Then,
performing the duality transformation gives us all possible solutions for

c3 = 1/2, c4 = 3/2, (2.105)

which values corresponds to the case I in (2.89). This approach reveals interesting and
rather complex features of the solutions which are presumably generic for any c3, c4.

2.10.1 The ADM mass
In the figure 2.10, we show the ADM mass M and the horizon radius as measured by
the f -metric, UH , as functions of rH for several values of η ∈ [0, π/2]. As one can see,
all curves M(rH) intersect at the GL point (rH ,M) = (0.86, 0.43) where the solutions
bifurcate with the bi-Schwarzschild solution,

N(r) = Q(r) = Y (r) = q(r) =
√

1− rGL

r
, U(r) = r, (2.106)

where rGL = 0.86. At the same time, all curves UH(rH) intersect at the point (rH , UH) =
(rGL, rGL). Away from the GL point, the g-metric still remains Schwarzschild if η = π/2,
in which case M(rH) is a linear function,

η = π

2 : N(r) = Q(r) = 1− rH

r
⇒ M = rH

2 , (2.107)

but the f -metric for these solutions is not Schwarzschild. These are the solutions we call
hairy Schwarzschild, as explainded in Sec. 2.8. For η ̸= π/2 the mass depends nonlinearly
on rH .



2.10. PARAMETER SPACE AND THE PHYSICAL SOLUTIONS 55

Let us now introduce the mass function m(r) via N2(r) = 1 − 2m(r)/r. The equa-
tion. (2.36) then assumes the form

m′(r) = κ1
r2

2

(
P0 + U ′P1

N

Y

)
≡ κ1ρ(r), (2.108)

from which the ADM mass may be expressed as

M = m(∞) = rH

2 + κ1

∫ ∞

rH

ρ(r)dr ≡Mbare +Mhair. (2.109)

Here the "bare" mass Mbare = rH/2 is determined only by the horizon radius and coincides
with the mass of a Schwarzschild black hole of radius rH . The mass Mhair expressed by
the integral is the contribution of the massive hair distributed outside the horizon. As
one can see in Fig. 2.10, one has M > rH/2 if rH < rGL, hence the hair mass is positive
and the hairy solutions are more energetic than the bare bi-Schwarzschild black hole. On
the contrary, the mass of the hair becomes negative above the GL point, when rH > rGL,
and the hairy solutions are then less energetic than the bi-Schwarzschild. Therefore the
energy density of the hair ρ(r) can be negative. In fact, it is already known that the
standard energy condition do not hold within the massive bigravity theory [140].

It is important to notice that, unless κ1 = cos2 η is very small, the ADM mass of all
hairy solutions always varies within a finite range and remains close to the GL value,

M ≈ rGL

2 = 0.43, (2.110)

as seen in Fig. 2.10. It seems that this fact was not reported in Ref. [58], which always
shows only the ratio M/rH . This ratio diverges as rH → 0, however the mass M actually
remains finite in this limit. Let us restore for the moment the speed of light c and
Newton’s constant G, then the dimensionful ADM mass7 is

M = c2M

Gm
. (2.111)

In view of Eq. (2.110), this means that the dimensionful mass of the hairy solutions is
always close to that of a Schwarzschild black hole of size rH = rGL/m, which is close to
the Compton wavelength of the massive graviton. As a result, one cannot assume the
graviton mass m to be of the order of the inverse Hubble radius as in Eq. (2.62). Indeed,
this would imply the hairy black holes to be as heavy as a Schwarzschild black hole of
the size of the Universe – a physically meaningless result. One should rather assume
that 1/m = γ × 106 km with γ ∈ [0, 1] as in Eq. (2.65), which is consistent with the
cosmological observations if κ1 is very small, as expressed in Eq. (2.64). We shall see that
this choice leads to physically acceptable values of the mass.

For rH ≈ rGL, the masses of the hairy black holes are then close to that of a
Schwarzschild black hole of radius γ × 106 km, that is M ∼ 0.3 γ × 106 M⊙. If γ ∼ 1
this gives the typical value for supermassive black holes observed in the center of many
galaxies. However for smaller rH the ADM mass can deviate considerably from the GL
value and becomes very small or very large. As seen in the left panel on Fig. 2.10, for
small κ1, the mass M(rH) shows a minimum: first, it decreases with rH , then reaches a
minimal value Mmin, and then increases up to some M(rH = 0). For smaller values of
κ1, the minimum becomes more and more profound and the value Mmin approaches zero
while M(rH = 0) becomes larger and larger. Thus the curves M(rH) converge smoothly
towards the limiting case M(rH) = rH/2 as κ1 → 0, except for the point at rH = 0.

7We emphasize that what we call the graviton mass m is actually a quantity whose dimension is the
inverse of a length: 1/m is the Compton wavelength of the massive graviton.
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Figure 2.11: The functions U(r), Y (r), the hair energy density ρ(r) and its integral E(r)
whose asymptotic value E(∞) is the "hair energy" for the hairy solutions with κ1 = 0 and
small values rH .

To get an approximation for M(rH) when κ1 is very close to zero, we consider the
hairy Schwarzschild solutions with κ1 = 0. Their g-metric is Schwarzschild with all
the hair contained in the f -metric. It turns out that the Y and U functions of the f -
metric depend very strongly on rH when the latter is small, as seen in the top panels on
Fig. 2.11. We inject these solutions to Eq. (2.108) to obtain the hair energy density ρ(r)
and E(r) ≡

∫ r
rH
ρ dr. As one can see in the bottom panels on Fig. 2.11, these functions

show very large values when rH is small. Thus the total "hair energy", E(∞), becomes
larger and larger when rH decreases but it does not backreact since κ1 = 0 so that the g-
metric remains Schwarzschild. The hair energy starts to backreact if κ ̸= 0 and if κ1 ≪ 1
then one can deduce from Eq. (2.109) that

M = rH

2 + κ1E(∞) +O(κ2
1), (2.112)

where E(∞) is computed for κ1 = 0. We evaluate numerically E(∞) for various values
of rH and obtain the following best fit approximation:

M(rH) ≈ rH

2 + κ1
a

(rH)s
, (2.113)

with a = 0.0056 and s = 4.61. Assuming that κ1 = γ2 × 10−34, this function shows an
absolute minimum at

(rH)min ≈ 5.2 γ0.35 × 10−7, Mmin ≈ 3.1 γ0.35 × 10−7, (2.114)

whose dimensionful values are obtained by multiplying by 1/m = γ×106 km (and restor-
ing again the speed of light and Newton’s constant):

(rH)min = (rH)min

m
≈ 0.52 γ1.35 km, Mmin = c2Mmin

Gm
≈ 0.2 γ1.35 M⊙. (2.115)
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This determines the minimum mass for the hairy black holes with κ1 ≪ 1. When rH gets
smaller then the mass starts to grow again, but it grows only up to a finite although very
large value as rH → 0 because the approximation (2.113) is not valid for however small
rH .

2.10.2 The lower limit rH → 0: zero size black holes
All the solutions extend down to arbitrarily small values of rH . As seen in Fig. 2.10, the
ADM mass M does not vanish when rH → 0 (except for κ1 = cos2 η = 0). It approaches
finite values, even though the bare mass Mbare = rH/2 → 0. Therefore, all mass comes
from the hair contribution Mhair in this limit. As a result, the configuration remains
different from the flat space vacuum even when the horizon size rH shrinks to zero. This
phenomenon is actually not very surprising, since in many nonlinear field theories there
are solutions describing a small black hole inside a soliton8 (for example, inside a magnetic
monopole, see Ref. [86] and Chap. 4). Sending the horizon size to zero, the black hole
disappears, but its external nonlinear matter fields remain and become a gravitating
soliton containing a regular origin in its center instead of the horizon. Therefore, the
rH → 0 limit of a hairy black hole may correspond to a regular soliton.

However for the hairy solutions in massive bigravity, the limiting configuration exists,
but it seems to be singular and not of the regular soliton type. First, as seen in the right
panel on Fig. 2.10, the value of UH which determines the size of the f -horizon remains
finite when rH → 0, hence the f -geometry remains of black hole type even in this limit.
Second, the left panel on Fig. 2.12 shows a solution with a very small rH and one can see
that N2/S2 ∼ r for r ≲ 0.5. However, one has S =

√
1− rH/r → 1 as rH → 0, hence one

has in this limit N2 ∼ r. The numerical profiles shown on the figure actually suggests the
following small r behavior of the limiting configuration:

N2 ∼ Y 2 ∼ Q2 ∼ q2 ∼ r, U = Ulim +O(r). (2.116)

Therefore, the limiting form of the g-metric is something like a "zero size black hole" and it
is singular since its Ricci scalar R(g) = 2/r2 +O(1/r) diverges at r = 0. On the contrary,
the f -geometry remains of the regular black hole type because U does not vanish. The
temperature remains finite for rH → 0 and is always the same for both metrics. The
limiting g-temperature can be formally computed by assuming N2 = α r, Q2 = β r with
α ≈ 0.7 and β ≈ 6, according to the profiles shown in the left panel on Fig. 2.12. The
equations (2.71) and (2.72) then yield TH =

√
αβ/(4π) ≈ 0.163, which is very close to

the value TH = 0.16 for the solution with rH ∼ 10−5 shown in the figure. Of course
these considerations are purely formal since the zero size black hole cannot evaporate and
further reduce its size. Moreover, their geometry is singular at the "zero size" horizon. In
other words, the physical sense of the black hole temperature for the limiting configuration
is not well-defined and the configuration itself seems to be unphysical.

We finally emphasize again that the f -metric can become singular for small rH because
the functions q and Y develop additional zeroes outside the horizon. This happens along
the parts of the curves on the left of the points marked by crosses in Fig. 2.10. As we
have discussed before in Sec. 2.8, we do not exclude such solutions because we consider
the physical metric to be gµν . The f -geometry is not probed by test particles and all the
physical quantities of the solutions such as the ADM mass do not show anything special
when the functions q and Y start to oscillate. The potential V in the perturbation equation

8Solitons are nontrivial solutions which are localized in space and have no event horizon, see Chap. 5
for more details.
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Figure 2.12: Profiles of the solution with rH ∼ 10−5 that is close to the zero size black hole
(left), and of that close to the tachyon limit, withD ∼ 10−6 (right). One has S2 = 1−rH/r.
The function P1 determines the graviton mass via (2.118) and the graviton bahaves as a
tachyon if P1 < 0.

(2.99) also remains perfectly regular. As a result, we do not exclude that solutions with
singular f -geometry are physically relevant. Only the zero size black holes with rH → 0
are considered to be non-physical.

2.10.3 The upper "tachyon" limit rH → rmax
H (η)

For any value of η, there is an upper bound rmax
H (η) > rGL beyond which hairy solutions

cease to exist. At this limiting value of the horizon radius, the two roots of the algebraic
equation (2.127) (or, equivalently (2.70)) coincide. This equation determines the horizon
values of the solutions. Its two roots correspond to two solution branches: the root with
σ = +1 gives rise to asymptotically flat solutions whereas the second root with σ = −1
always yields solutions with a curvature singularity at a finite radius outside the horizon.
The determinant of (2.127) factorizes as

D ≡ B2 − 4AC = P2
1 (rH)D, (2.117)

where P1(rH) is defined by (2.30) and D is a complicated function of rH , UH , η, c3, c4.
When rH increases, then P1(rH) crosses zero at some rH = rtach

H (η) while D remains
positive. When rH continues to increase, then D approaches zero and vanishes as rH →
rmax

H (η) > rtach
H (η). No further increase of rH is possible since D would then be negative

thus rendering the solutions complex-valued. It is the reason why solutions cease to exist
in this upper limit.

Although the determinant D vanishes for rH = rtach
H (η) when P1(rH) = 0 and also for

rH = rmax
H (η) when D = 0, the two solution branches never merge. Specifically, the two

horizon values νH determined by (2.127) coincide when D = 0, but a careful inspection
reveals that yH , U ′

H in Eqs. (2.124) and (2.125) remain different for the two branches when
P1(rH) = 0. If D = 0 then all horizon values νH , yH , U ′

H coincide for the two branches,
but the derivatives y′

H defined by (2.130) remain different. This is a consequence of the
fact that the existence and uniqueness theorem applies only to regular points of the ODEs,
whereas the event horizon r = rH is a singular point.

In the interval rtach
H (η) < rh < rmax

H (η) one has P1(rH) < 0. This has an important
consequence for the corresponding solutions. Let us remember that the relation (2.20)
defining the graviton mass was obtained by linearizing the field equations around flat
spacetime. Therefore this relation holds only for a Minkowski background and can be
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Figure 2.13: The (rH , η)-parameter space for hairy black hole solutions with c3 = −c4 =
5/2. The dashed black lines corresponds to ω2 = 0 and separate stable and unstable
sectors. The upper left corner contains solutions with a singular f -metric; however their
g-geometry is regular.

written as m2
FP = P1(∞) m2. The graviton mass around an arbitrary spherically sym-

metric background has been derived in Ref. [141] and reads

m2
FP = P1(r) m2. (2.118)

Therefore, if P1(r) < 0 then the mass becomes purely imaginary: the graviton behaves
as a tachyon. As a result, solutions for rH > rtach

H (η) show unphysical features and we
call rH → rmax

H (η) the "tachyon limit". The horizon value y′
H diverges in this limit, but

it seems to be an integrable divergence similar to y′(r) ∼ 1/
√
r − rH and the limiting

solution itself always stays regular. We were able to approach this solution rather closely,
as shown in the right panel on Fig. 2.12 which presents a solution with the horizon value
D ∼ 10−6.

2.10.4 Parameter regions for solutions with c3 = −c4 = 5/2
Let us now collect all the facts together. The diagram in Fig. 2.13 shows the region in
the (rH , η) plane in which hairy black hole solutions exist. The low boundary at η = 0
corresponds to solutions whose f -metric is Schwarzschild, while the upper boundary at
η = π/2 corresponds to solutions whose g-metric is Schwarzschild. The zero size black
holes are on the left boundary at rH = 0. The right boundary marks the tachyon limit
beyound which the solutions would become complex-valued. The upper left corner of
the diagram contains solutions with a singular f -metric, but their g-geometry, which is
physically measurable, is regular.

The diagram also shows dashed lines corresponding to the zero modes, ω2 = 0, of
the perturbative eigenvalue problem (2.99). In particular, the vertical line corresponds
to the GL value rH = 0.86. The eigenfrequency ω2 changes sign when crossing these
lines. Therefore, the lines separate sectors where ω2 > 0 and hence the hairy solutions are
stable, from sectors where ω2 < 0 and the solutions are unstable. There are altogether
two stable and two unstable sectors. It is worth noting that the stable region is now much
larger than for solutions with c3 = −c4 = 2 considered in the previous section. One also
notices that the tachyonic solutions are in an unstable sector.
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solutions that should be excluded from considerations.

Finally, the diagram shows the "physical region" corresponding to physically acceptable
hairy solutions. As explained above, for such solutions the coupling κ1 = cos2 η should
be very small for their mass not to be too large, hence η should be very close to π/2.
Therefore the physical region, represented by the thick green line, is at the top of the
diagram, and it stops at the GL value, rH = 0.86, to the right of which hairy solutions
are unstable.

Physical solutions are therefore described by a g-metric which is extremely close to
Schwarzschid since

G(g)µν = κ1 Tµν , with κ1 ≤ 10−34. (2.119)

The "hairy features" of the solutions hidden in the f -metric should be difficult to observe,
unless in violent processes like black hole mergers producing large enough interaction Tµν

to overcome the 10−34 suppression. In summary, the physically acceptable hairy black
holes in massive bigravity are extremely close to the GR black holes, but we expect their
strong field dynamics to be different.

The physical region contains stable hairy black holes whose masses range from the
minimal value ∼ 0.2 γ1.35 M⊙ up to the maximal value ∼ 0.3 γ × 106 M⊙ with γ ∈ [0, 1].
Yet heavier black holes can be described within the massive bigravity theory but they
cannot be hairy and should be described by the bi-Schwarzschild solution (2.6), which is
stable for rH > 0.86. Stable black holes with M < 0.2 γ1.35 M⊙ can only be of the type
(2.5).

2.10.5 Parameter regions for dual solutions c3 = 1/2, c4 = 3/2
Let us finally see how the solutions described above transform under the duality (2.90).
This transformation converts the parameter values (2.104) into (2.105), flips the sign of
η − π/4 and exchanges the Q, N , r with q, Y , U . On the plots, this is equivalent to
relabel the functions and plotting them against U instead of r. The ADM mass and
the temperature are invariant under duality, since these quantities do not depend on the
metric from which they are computed. The stability property does not change neither
since, for example, if a solution is unstable and admits growing in time perturbations,
then its dual version will contain the same growing modes and hence will be unstable as
well.
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The figure 2.14 shows the dual version of Fig. 2.10. The mass curves M(rH) still
intersect at the GL point but they look quite different as compared to those in Fig. 2.10.
In particular, not all of them are single-valued. The reason is that the functions UH(rH)
in the right panel on Fig. 2.10 are not always monotone. This means that solutions of
different horizon radii rH and masses M with the parameter choice c3 = −c4 = 5/2
can have the same value for UH . After the duality transformation, this yields two hairy
solutions with the same rH but different UH and M .

The solutions now exist for rH ∈ [rmin
H (η), rmax

H (η)]. The lower limit rmin
H (η) corresponds

to what used to be the upper limit before the duality – tachyonic solutions with vanishing
horizon determinant D. The upper limit rmax

H (η) corresponds for small η to solutions dual
to the zero size black holes presented above. After the duality, their g-metric describes a
regular black hole while the f -metric has UH = 0, hence it describes the zero size black
hole geometry. For larger values of η, the upper boundary rmax

H (η) corresponds to points
where two different solutions with the same rH but with different M merge with each
other. In this case, the zero size black hole limit is not located at rmax

H (η), but at a
smaller value of the horizon radius where the curves terminate, as seen in the Fig. 2.14.

The solutions below the GL point, for rH < 0.86, are still more energetic than the
hairy Schwarzschild with η = π/2, hence their hair mass Mhair is positive, whereas above
the GL point it becomes negative.

Finally the figure 2.15 shows the (rH , η)-parameter space. The diagram now looks
different as compared to that in Fig. 2.13, although it corresponds to essentially the same
solutions, up to the duality transformation. The solutions with a singular g-metric, which
are dual to solutions with a singular f -metric in Fig. 2.13, are now excluded since we
are considering gµν as the one that actually describes the geometry of spacetime. The
physical region corresponding to stable solutions with η close to π/2 is now above the GL
point, where the hair mass is negative. The physical solutions are again characterized by
the g-metric that is extremely close to Schwarzschild, but the novel feature is that now for
each value of rH in the physical region, there are two different solutions whose g-metrics
are almost the same but the f -metrics are different. The physical region stops at rmax

H (η)
where the two different solutions merge with each other.

As a result, the physical region in Fig. 2.15 is rather short and corresponds only to
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supermassive black holes with 0.86 < rH < rmax
H (η). All black holes of smaller masses are

unstable. Therefore, the parameter choice c3 = 1/2, c4 = 3/2 is not physically interesting.

2.11 Conclusion
We have presented above a detailed analysis of static and asymptotically flat hairy black
holes in the ghost-free massive bigravity theory. Extending the earlier results of Ref. [58],
we find that for given values of the theory parameters c3, c4, η, and for a given event hori-
zon size rH ∈ [rmin

H , rmax
H ] there are one or sometimes two different black holes supporting

a nonlinear massive graviton hair. These solutions coexist with the bi-Schwarzschild
solution described by the Eq. (2.6). The hairy solutions are more energetic than the bi-
Schwarzschild one if rH < 0.86 and they less energetic otherwise. When rH approaches the
limiting values rmin

H or rmax
H , the solutions either become complex-valued or merge between

themselves. For some values of c3, c4, zero size black holes exist for which rmin
H = 0 but the

corresponding horizon size as measured by the f -metric, UH , remains finite. Depending
on values of rH , c3, c4, η, the hairy solutions can be either stable or unstable.

To avoid the hairy black holes from being unphysically heavy, one is bound to assume
the massive graviton Compton wavelength to be 1/m = γ × 106 km where the parameter
γ may range in the interval [0, 1]. The agreement with the cosmological data is then
achieved by assuming that κ1 = cos2 η = γ2 × (M ew/MPl)2 = γ2 × 10−34. Therefore, in
the (rH , η)-parameter space, we identify the physical region to be close to the η = π/2
boundary. In this region, the Einstein equation for gµν , G(g)µν = κ1Tµν , is extremely
close to that of vacuum GR since κ1 < 10−34. As a consequence, the physical hairy black
holes are described by a g-metric extremely close to Schwarzschild while all hairy features
are contained in the f -metric.

The stable hairy black holes have their masses ranging from ∼ 0.2 γ1.35 M⊙ to ∼
0.3 γ × 106 M⊙. Yet heavier black holes can be described in the theory by the bald bi-
Schwarzschild solution which is stable when the hairy solutions become unstable. There-
fore, astrophysical black holes from stellar ones to supermassive ones can be described by
stable solutions of the massive bigravity theory.

However, we expect the detection of the hairy features to be very complicated. Indeed,
the f -metric is not coupled to matter and cannot be directly probed, while the deviation
of the "visible" g-metric from Schwarzschild is suppressed by the factor κ1 < 10−34. Never-
theless, it is plausible that the interaction between the two metrics during violent processes
such as black holes mergers may produce an energy-momentum tensor strong enough to
overcome the 10−34 suppression. Therefore the signals detected by LIGO/VIRGO [24]
may carry information about the hairy structure of the black holes. We expect the "hair
imprint" in the signal to be stronger for small black holes since we know that the func-
tions U , Y of the f -metric become very large when the horizon size is small, which should
influence the effective energy-momentum tensor Tµν of the merger. However, to actually
determine the hair imprint in the signal would require dynamical simulations going be-
yond the scope this thesis. We therefore simply refer to the Ref. [142] where calculations
of this type are carried out within the framework of the ghost-free massive gravity theory
[95] and also to the Ref. [143] where the authors highlight the phenomenon of gravitational
waves oscillations that arises in massive bigravity.

Finally, we should discuss the paper [59] where the authors conjecture that the bi-
Schwarzschild solution (2.6) is the only asymptotically flat black hole solution in massive
bigravity. First of all, it was emphasized in Ref. [59] that the usual practice of starting
the numerical integration not at the horizon r = rH , a singular point of the ODEs, but
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at a regular nearby point r = rH + ϵ, as was done in Ref. [58], could in principle lead
to numerical instabilities. We agree with this, and it is actually for this reason that we
use a desingularization procedure (described in Appendix 2.A) which allows us to start
the numerical integration exactly at r = rH . Next, small initial deviations from the bi-
Schwarzschild solution were considered in [59] via setting at the horizon u = UH/rH =
1 + ϵ. Integrating the equations toward large r then yields metrics whose components
diverge as r →∞ instead of approaching finite values. This observation, made already in
Ref. [106], shows that the bi-Schwarzschild solution is Lyapunov unstable: no regular and
asymptotically flat solutions exists in a small vicinity of the bi-Schwarzschild solution.
However it does not exclude the existence of other asymptotically flat solutions for values
of u deviating considerably from unity. Ultimately, the authors in Ref. [59] attempt to
reproduce one of the asymptotically flat hairy solutions found in [58]. They find that some
metrics components diverge as r → ∞. The authors describe their numerical method in
their Appendix D: a straightforward integration starting from the horizon with a standard
routine of Mathematica. In other words, they treat the ODEs as an initial value problem.
To start the numerical integration, one must provide an initial value for the parameter
u at the horizon and the authors just take one of the numerical value given in [58].
However the asymptotically flat hairy black holes are also Lyapunov unstable, just as the
bi-Schwarzschild solution. In fact, the exponentially growing mode e+mr is generically
present for small deviations around the flat space. To avoid this mode, one must treat the
ODEs as a boundary value problem and use a suitable algorithm to solve the equations,
such as for example the multishooting method. This is the reason why the authors in
Ref. [59] were not able to obtain asymptotically flat hairy black holes.

2.A Desingularization at the horizon
The horizon r = rH is a singular point of the differential equations (2.56) – the derivatives
N ′ and Y ′ are not defined at this point. In this appendix, we describe the procedure to
desingularize the equations at the horizon.

We first introduce new functions

ν(r) = N(r)
S(r) , y(r) = N(r)

S(r) with S(r) =
√

1− rH

r
. (2.120)

Equations (2.36) and (2.37) then yield

ν ′ = − ν

2r + C1

2νyr2S2 , y′ = −yU
′

2U + C2

2νyr2US2 , (2.121)

where
C1 = (r2 − rHν

2 − κ1r
3P0)y − κ1r

3P1U
′ν,

C2 = νr2(1− κ2r
2P2)U ′ − κ2r

4P1y − rHUνy
2. (2.122)

It follows directly from (2.121) that the derivatives ν ′ and y′ will be finite at the horizon
only if

C1|rH
= 0, C2|rH

= 0, (2.123)
from where one obtains the horizon values

U ′
H = (1− ν2 − κ1r

2P0)y
κ1r2P1ν

∣∣∣∣∣
rH

, (2.124)

yH = 1 + (κ2r
2P2 − 1)ν2 + κ1κ2(P0P1 − P2

1 )r4 − (κ1P0 + κ2P2)r2

κ1rP1Uν

∣∣∣∣∣
rH

. (2.125)
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At the same time, the horizon value of U ′ can be obtained from (2.56),

U ′
H = lim

r→rH
DU(r, U, Sν, Sy). (2.126)

This value must agree with the one given by Eq. (2.124), which yields a condition on νH .
If the parameters bk are chosen according to (2.21), this condition reduces to a biquadratic
equation

A (ν2
H)2 + B ν2

H + C = 0, (2.127)

where Eq. (2.125) has been used to substitute yH and A, B, C are (rather complicated)
functions of rH , UH . As a result, for given rH , UH , there are two possible horizon values
ν

(1)
H and ν

(2)
H . Injecting to Eqs. (2.124) and (2.125), this determines the values yH and

U ′
H . Finally, the horizon values of ν ′ and y′ are obtained from (2.121) by using l’Hopital’s

rule, which gives

ν ′
H = − νH

2rH

+ C ′
1|rH

2rHνHyH

, y′
H = −yHU

′
H

2UH

+ C ′
2|rH

2rHνHyHUH

. (2.128)

There remains to compute the derivatives of C1 and C2. One has for example,

C ′
1|rH

=
(
∂

∂r
+ ν ′

H

∂

∂ν
+ y′

H

∂

∂y
+ U ′

H

∂

∂U
+ U ′′

H

∂

∂U ′

)
C1(r, U, ν, y, U ′)

∣∣∣∣∣
rH

, (2.129)

where the second derivative of U at r = rH is evaluated similarly by differentiating
Eq. (2.126) and similarly for C ′

2|rH
. Injecting this to (2.128) yields a linear algebraic

system determining ν ′
H and y′

H . Resolving it gives (we do not show explicit formulas in
view of their complexity)

ν ′
H = ν ′

H(rH , UH , νH , yH), y′
H = y′

H(rH , UH , νH , yH). (2.130)

Summarizing, the equations with the new functions ν and y read

ν ′ = − ν

2r + C1

2νyr2S2 ≡ Fν(r, U, ν, y),

y′ = −yU
′

2U + C2

2νyr2US2 ≡ Fy(r, U, ν, y),

U ′ = DU(r, U, Sν, Sy) ≡ FU(r, U, ν, y), (2.131)

where C1 and C2 are defined by (2.122) while DU is the same as in (2.56). These equations
apply for r > rH , while at r = rH they should be replaced by

ν ′ = ν ′
H(rH , UH , νH , yH),

y′ = y′
H(rH , UH , νH , yH),

U ′ = U ′
H(rH , UH , νH , yH), (2.132)

where ν ′
H , y′

H , U ′
H are given by Eqs. (2.124) and (2.130). These equations contain two

free parameters, rH and UH ≡ urH , while νH and yH are determined respectively by
the equations (2.127) and (2.125). This formulation allows us to start the numerical
integration exactly at the horizon r = rH . For r > rH , we are free to choose either the
original formulation (2.56) with the functions N and Y or the new formulation (2.131)
with the functions ν and y.
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2.B Ansatz with time dependence
Let us allow both metrics to depend on time, assuming that they are still spherically
symmetric. The freedom of reparametrizations of the t, r coordinates can be used to
make the g-metric diagonal, but the f -metric will in general contain an off-diagonal term.
The two metrics can be written as [98]

ds2
g = −Q2dt2 + dr2

∆2 +R2dΩ2,

ds2
f = −(q2 − α2Q2∆2)dt2 − 2α

(
q + Q∆

W

)
dtdr +

( 1
W 2 − α

2
)
dr2 + U2dΩ2, (2.133)

where Q, q, ∆, W , α, U , R are functions of r and t. The tensor γµ
ν encoding the coupling

between the two metrics is then given by

γµ
ν =


q/Q α/Q 0 0
−αQ∆2 ∆/W 0 0

0 0 U/R 0
0 0 0 U/R

 . (2.134)

This tensor is used to compute the effective stress-energy tensors T µ
ν and T µ

ν in (2.14).
One can introduce new functions N(r, t) and Y (r, t) similarly as in (2.34),

N = ∆R′, Y = WU ′, (2.135)
where the primes denote the partial derivatives with respect to r, and one can specify
completely the radial coordinate by setting

R(r, t) = r. (2.136)
The independent field equations in (2.24) are

G(g)0
0 = κ1T

0
0 , G(g)1

1 = κ1T
1
1 , G(g)0

1 = κ1T
0
1 ,

G(f)0
0 = κ2T 0

0 , G(f)1
1 = κ2T 1

1 , G(f)0
1 = κ2T 0

1 , (2.137)

plus two nontrivial components of the conservation condition
(g)

∇µT
µ
ν = 0,

(g)

∇µT
µ
0 = 0,

(g)

∇µT
µ
1 = 0. (2.138)

Here one has explicitly

G(g)0
0 = N2 − 1

r2 + 2NN ′

r
, G(g)1

1 = N2 − 1
r2 + 2N2Q′

r Q
, G(g)0

1 = 2Ṅ
r NQ2 , (2.139)

where the dot denotes the partial derivative with respect to t, and

T 0
0 = −P0 − P1

NU ′

Y
, T 1

1 = −P0 − P1
q

Q
, T 0

1 = P1
α

Q
, (2.140)

where the Pk are defined in Eq. (2.30). The components of the second stress-energy tensor
are

T 0
0 = − r2

NU2A
(
P1qY + P2

(
α2N2QY + qNU ′

))
,

T 1
1 = − r2

U2A
(
P1QU

′ + P2
(
α2NQY + qU ′

))
,

T 0
1 = − r2

NU2A
P1Y α, (2.141)

where A = NQY α2 +qU ′. The components of the second Einstein tensor G(f)µ
ν are very

complicated and their explicit expressions can be found in Ref. [89].
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Chapter 3
Gauge theories and magnetic monopoles

Having considered an explicit example of hairy black holes in modified gravity, we will now
return to GR and study black hole with magnetically charged hair. However, we have seen
in Sec. 1.5 that a no-hair theorem holds for the Einstein-Maxwell field equations. There-
fore, we must consider a more sophisticated field theory than Maxwell electromagnetism.
A very natural candidate is the electroweak theory of Weinberg [45] and Salam [46, 47]
which unifies electromagnetic and weak nuclear interactions1. This theory has been con-
structed based on the previous work of Glashow [144], and it relies on the fundamental
notions of gauge symmetries and spontaneous symmetry breaking.

While our primary focus is not on delving deeply into particle physics, it is essential to
have a good understanding of gauge theories in flat space before moving on to the study of
magnetic hairy black holes. Another important concept to grasp is magnetic monopoles,
as they are flat space counterparts of magnetically charged black holes. The aim of this
chapter is thus to provide an overview of all these theoretical concepts. In Section 3.1,
we introduce the notion of spontaneously broken symmetries in gauge theory. Magnetic
monopoles in electromagnetism and their generalizations in non-Abelian gauge theories
are introduced in Section 3.2.

3.1 Gauge theories and symmetry breaking
Gauge theories are a central topic in modern physics. In a nutshell, a gauge theory
is a field theory whose Lagrangian is left invariant under a local transformation of its
fundamental fields. It follows that any measurable quantity is also invariant under the
local transformation, which is often called the gauge transformation.

All the fundamental interactions are described by a gauge theory. What mainly distin-
guishes the different theories is the group G to which the gauge transformations belong.
For example, Maxwell electromagnetism is characterized by its U(1) gauge group, the
electroweak theory of Weinberg and Salam is invariant under SU(2)× U(1) gauge trans-
formations and the strong interaction is described by a SU(3) gauge theory. The com-
bination of the electroweak theory with the strong interaction constitutes the so-called
Standard Model of Particles.

For some theories the field configuration of minimal energy, the fundamental state,
does not have the same symmetries as the theory itself. We say that the symmetry is
spontaneously broken. Understanding this phenomenon is of great interest as it is a crucial
ingredient in the development of the Standard Model of Particles. We shall introduce

1The weak nuclear interaction is responsible for β-decay of neutrons in atomic nuclei.
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spontaneously broken symmetries in three steps: first by considering discrete symmetries,
then continuous global symmetries and finally local symmetries.

This section will stick to the main steps addressed in the chapter 5 of Ref. [145].
Interested readers are encouraged to refer to this source, and also to Refs. [146, 147, 148].

3.1.1 Breaking of a discrete symmetry
Let us consider the following theory describing a real scalar field ϕ in Minkowski spacetime,

L = −1
2∂µϕ ∂

µϕ− V (ϕ), (3.1)

where V (ϕ) is the interaction potential defined by

V (ϕ) = 1
4ϕ

4 + 1
2µ

2ϕ2. (3.2)

Here µ2 is a real parameter, which can be negative. Since the potential is an even function
of ϕ, the theory is invariant under the discrete symmetry ϕ→ −ϕ. The energy of a given
field configuration is

E =
∫
d3x

(1
2(∂tϕ)2 + 1

2(∇ϕ)2 + V (ϕ)
)
, (3.3)

where ∂t denotes the time derivative and ∇ is the gradient operator. The state of minimal
energy should be stationary. Then, since the potential is assumed to depend only on ϕ
and not on its gradient, it suffices to find the absolute minimum of V to determine the
fundamental state. By differentiating (3.2) with respect to ϕ,

∂V

∂ϕ
= ϕ

(
ϕ2 + µ2

)
, (3.4)

we find two distinct cases:

1. if µ2 > 0 then ϕ = 0 is the global minimum of the potential,

2. if µ2 < 0 then ϕ = ±
√
−µ2 are two global minima of the potential while ϕ = 0 is a

local maximum.

In the case µ2 > 0, the fundamental state is ϕ = 0 and it is invariant under the
parity transformation ϕ → −ϕ which is the discrete symmetry of the theory (3.1). The
symmetry in this case is said to be manifest. Introducing small perturbations around the
fundamental state, ϕ = δϕ, the Lagrangian describing the linearized theory is obtained
by keeping only the quadratic terms in δϕ in Eq. (3.1),

Llin = −1
2
(
∂µδϕ ∂

µδϕ+ µ2δϕ2
)
. (3.5)

This is precisely the Lagrangian describing a free massive field of mass µ whose dynamic
is governed by the linear field equation

(∂µ∂
µ − µ2)δϕ = 0. (3.6)

In the case µ2 < 0, there are two degenerate fundamental states, ϕ± = ±
√
−µ2. The

symmetry here is not manifest because ϕ+ and ϕ− are not invariant under the parity
transformation: we say that the symmetry is spontaneously broken. However, because of
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the parity invariance of the theory, the two states are physically indistinguishable. We
can therefore choose to study without loss of generality perturbations around ϕ+,

ϕ = ϕ+ + δϕ =
√
−µ2 + δϕ. (3.7)

Inserting this to the Lagrangian (3.1) yields,

L = −1
2∂µδϕ ∂

µδϕ+ µ2
(
δϕ4

4ϕ2
+

+ δϕ3

ϕ+
+ δϕ2 −

ϕ2
+
4

)
. (3.8)

We clearly see that the symmetry is not manifest because of the cubic term, although so
far this Lagrangian describes exactly the same theory but written in terms of δϕ instead
of ϕ. Keeping only the quadratic terms gives

Llin = −1
2
(
∂µδϕ ∂

µδϕ− 2µ2δϕ2
)
. (3.9)

Thus the linearized theory corresponds to a free massive field of mass
√
−2µ2.

As a result, with this simple example we find that nothing special happens when
the symmetry is spontaneoulsy broken: in any case the theory (3.1) describes one single
massive field whose mass depends on the parameter µ. We shall move on to the more
interesting case of continuous symmetries.

3.1.2 Breaking of a continuous global symmetry
The prototypical theory for studying the spontaneous breaking of a continuous symmetry
is the Goldstone model [149],

L = −∂µΦ∗∂µΦ− V (|Φ|2), (3.10)

with Φ a complex scalar field, Φ∗ its complex conjugate and

V (|Φ|2) = 1
2 |Φ|

4 + µ2|Φ|2. (3.11)

µ
2
< 0

µ
2
> 0

-6
-4

-2
 0

 2
 4

 6
Re(Φ)

-6 -4 -2  0  2  4  6

Im(Φ)

 0

V(|Φ|
2
)

Figure 3.1: Profile of the potential V (|Φ|2) for µ2 > 0 (blue/orange surface) and µ2 < 0
(purple/green surface). For µ2 > 0 there is an absolute minimum at Φ = 0 whereas for
µ2 < 0 the minimum is not unique and corresponds to the circle |Φ|2 = −µ2.
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The theory is invariant under global phase transformations Φ→ eiθΦ. Notice that these
transformations belongs to the group U(1) and the symmetry here is only global because
the transformations depend on a constant parameter θ.

As before, we shall distinguish the two cases µ2 > 0 and µ2 < 0, see Fig. 3.1. In the
former case the fundamental state is Φ = 0 : the symmetry is manifest and the linearized
theory describes two real scalar fields, ϕ1 = Re Φ and ϕ2 = Im Φ, whose mass is µ. The
case µ2 < 0 is that of spontaneously broken symmetry. The fundamental state is not
unique and is defined by

|Φ|2 = (Re Φ)2 + (Im Φ)2 = −µ2. (3.12)

The set of all fundamental states has the topology of a circle and all these states are
related to each other by a global phase transformation Φ → eiθΦ. We shall consider
without loss of generality Φ =

√
−µ2 ≡ Φ0 and introduce perturbations around this

fundamental configuration by setting

Φ = (Φ0 + η)eiξ, (3.13)

where η and ξ are two real fields. Inserting this to the Lagrangian (3.10) and keeping
only the quadratic terms yields

Llin = −∂µη ∂
µη − 2Φ2

0η
2 − ∂µξ ∂

µξ. (3.14)

This Lagrangian describes a massive field η whose mass is
√

2 Φ0 =
√
−2µ2 and a massless

field ξ. The non-vanishing mass of the field η can be viewed as a consequence of the
restoring force of the potential against radial oscillations: any small deviation in the
radial direction around the fundamental state increases the energy of the configuration.
In contrast, the field ξ corresponds to angular deviations around the fundamental state.
These deviations do not change the energy, by virtue of the global U(1) invariance of
the theory. Thus there is no restoring force against angular oscillations and the field ξ is
massless.

The appearance of a massless field when the global U(1) symmetry is spontaneously
broken can be generalized to other internal symmetries2, this is the Goldstone theorem.
In the general case, one massless scalar field will occur for each broken generator of the
original symmetry group or, in other words, for each generator that connects the different
fundamental states. These massless fields are referred to as the Nambu-Goldstone bosons
[149, 150], they are zero-energy excitations connecting the fundamental states together.

Unfortunately, the Goldstone theorem does not apply to gauge theories. As we shall
see, when the broken symmetry is local, the situation is different.

3.1.3 Breaking of a continuous local symmetry
Let us extend the Goldstone model (3.10) by rendering local its U(1) symmetry. This can
be achieved by replacing the usual derivative ∂µ by a covariant derivative,

Dµ ≡ ∂µ − iq Aµ, (3.15)

where q is a coupling constant and Aµ is the gauge vector field (also referred to as the
gauge potential). The latter must change in a specific way when a local transformation

2By internal symmetries, we exclude spacetime symmetries such as, for example, the time invariance.
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is performed (see Eq. (3.18) below). We can also add a kinetic term for the gauge field,
which yields the Higgs-Abelian model [151],

L = −(DµΦ)∗DµΦ− V (|Φ|)2 − 1
4FµνF

µν , (3.16)

where Fµν is the field strength tensor defined by

Fµν = ∂µAν − ∂νAµ, (3.17)

and V is the same potential as in Eq. (3.11). This Lagrangian is left invariant under the
local transformation

Φ→ Φ′ = eiqα(x)Φ,
Aµ → A′

µ = Aµ + ∂µα(x), (3.18)

where α can be any function of the spacetime coordinates. This type of symmetry is also
called gauge symmetry. The usual derivative ∂µΦ generates a new term proportional to
∂µα when the transformation (3.18) is performed so that the quantity ∂µΦ∗∂µΦ is not
invariant. However the introduction of the covariant derivative (3.15) together with the
transformation rule (3.18) for Aµ renders the kinetic term (DµΦ)∗DµΦ invariant.

As before, there are two cases depending upon the sign of µ2 in the potential (3.11).
If µ2 > 0 then the potential has a unique minimum at Φ = 0 which corresponds to
the fundamental state. This case corresponds to an unbroken U(1) symmetry and the
linearized theory describes a massless vector field Aµ plus two scalar fields, Re Φ and
Im Φ, with common mass µ.

In the case µ2 < 0 the potential has a continuum of absolute minima corresponding to
a continuum of degenerate fundamental states which are defined by the Eq. (3.12). We
shall study without loss of generality small perturbations around a specific fundamental
configuration by setting

Φ = (Φ0 + η)eiζ/Φ0 = Φ0 + η + iζ, (3.19)

where the second equality is valid at the linearized level and Φ0 =
√
−µ2. Injecting this

to the Lagrangian (3.16) and keeping only the quadratic terms yields,

Llin = −∂µη ∂
µη − 2Φ2

0η
2 − 1

4FµνF
µν − q2Φ2

0AµA
µ − ∂µζ ∂

µζ + 2qΦ0A
µ∂µζ. (3.20)

As it was the case for a broken global symmetry, the η-field associated with radial fluc-
tuations around the fundamental state has a mass

√
2 Φ0 =

√
−2µ2. The gauge field Aµ

seems to have acquired a mass too via the term q2Φ2
0AµA

µ. However the last term, which
couples the gauge field with the ζ-field, renders the interpretation of this Lagrangian
complicated.

The situation can be clarified by remarking that the last three terms in Eq. (3.20) can
be rewritten as

−q2Φ2
0AµA

µ − ∂µζ ∂
µζ + 2qΦ0A

µ∂µζ = −q2Φ2
0

(
Aµ −

1
qΦ0

∂µζ

)(
Aµ − 1

qΦ0
∂µζ

)
. (3.21)

This expression suggests that the field ζ disappear if we perform the following gauge
transformation,

Aµ → A′
µ = Aµ −

1
qΦ0

∂µζ(x). (3.22)
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At the same time, the field Φ transforms as

Φ→ Φ′ = e
−i

ζ(x)
Φ0 Φ = Φ0 + η. (3.23)

Returning to the original expression (3.16) and using now the gauge transformed fields
A′

µ and Φ′, the quadratic Lagrangian reads

Llin = −∂µη ∂
µη − 2Φ2

0η
2 − 1

4FµνF
µν − q2Φ2

0AµA
µ. (3.24)

The interpretation of the field content in the linear theory is now completely clear:
• one massive real scalar field η with mass

√
2 Φ0 =

√
−2µ2,

• one massive real vector field Aµ with mass
√

2 qΦ0 = q
√
−2µ2,

• no ζ-field!
The gauge field Aµ which was massless before spontaneous symmetry breaking is now
massive. However the massless Nambu-Goldstone boson which was present in the case of
a global symmetry breaking has disappeared. At first glance, this phenomenon can seem
puzzling. Where did the degree of freedom of the ζ-field go? A more careful analysis
of the number of degrees of freedom in the theory actually reveals that none is missing.
Before spontaneous symmetry breaking, the theory propagates four degrees of freedom:
two modes are contained in the complex scalar field Φ and two others in the massless
vector field Aµ. After the symmetry breaking, we are left with one scalar mode η plus
three modes contained in the massive vector field Aµ. As a result, the total number of
degrees of freedom is preserved by the spontaneous symmetry breaking.

This mechanism applies for any gauge theory whose symmetry can be spontaneously
broken (see for example [152]). It is called the Brout-Englert-Higgs-Hagan-Guralnik-
Kibble mechanism [153, 154, 155, 156] (often abbreviated the Higgs mechanism) and the
remaining massive scalar is associated with the Higgs boson. It was the key ingredi-
ent for the construction of the electroweak theory of Weinberg and Salam. Indeed, the
weak interaction involves massive bosons, but including a mass term in the Lagrangian
would break the gauge invariance. Therefore, the Higgs boson and the associated Higgs
mechanism provide an elegant way to get massive bosons within a gauge theory.

The gauge group of the Weinberg-Salam model is SU(2)×U(1) but the vacuum con-
figuration (fundamental state) exhibits only a U(1) symmetry. Thus the symmetry here
is only partially broken: SU(2) × U(1) → U(1). One has dim (SU(2)× U(1)) = 4 and
dim (U(1)) = 1. The residual U(1) symmetry is associated with the photon, a massless
gauge boson, and the number of massive bosons is 4 − 1 = 3 : these are the W± and Z
bosons whose masses were measured in colliders [157, 158, 60, 61].

To summarize, the Higgs mechanism occurs in the electroweak part of the Standard
Model. The remaining part, which corresponds to the strong nuclear interaction, is not
affected by the spontaneous symmetry breaking. Consequently, the gauge bosons of the
strong interaction – the gluons – remain massless. In their pursuit of unifying all the
fundamental interactions, physicists have considered models beyond the Standard Model,
where an additional Higgs mechanism takes place with the following symmetry breaking
pattern,

G→ SU(3)× SU(2)× U(1), (3.25)
where G should be a group which contains the Standard Model group. In the simplest
case, G = SU(5). These models are known as Grand Unified Theories (GUTs). One of the
key predictions of most GUTs is the possibility of proton decay. Numerous experiments
had searched for this process but, to date, no conclusive evidence has been found [159].
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3.2 Magnetic monopoles
The development of spontaneously broken gauge theories has led to a great understanding
of fundamental interactions and the particles that mediate them. If the gauge group is
non-Abelian, meaning the group elements do not commute (as is the case with the SU(2)
group), then the theory predicts the existence of finite-energy magnetic monopoles. In
the simplest framework of unbroken Abelian gauge theories, such as Maxwell electromag-
netism, magnetic monopoles also exist, but they have infinite energy. In this section,
we review the construction of magnetic monopoles, from the simple Abelian monopole of
Dirac, to its non-Abelian generalizations.

When examining Maxwell’s equations, a classic statement often encountered in under-
graduate studies is that isolated magnetic poles (a.k.a. magnetic monopoles) do not exist.
This is commonly illustrated in the following way: if a bar magnet is cut in half, one do
not obtain one north pole and one south pole. Instead, each piece becomes a magnet. In
other words, magnetic poles are always found in pairs of north and south poles. From the
mathematical point of view, this property is encoded in the Maxwell-Thomson equation
which has to be satisfied by the magnetic field B⃗,

∇⃗ · B⃗ = 0 ⇔
∮

Σ
B⃗ · n⃗ dS = 0, (3.26)

where Σ is a surface enclosing a volume Ω and n⃗ is the outgoing unit vector normal to Σ.
The integral equation is obtained by integrating the first equation over Ω and then using
Gauss’s theorem.

However, in 1931 Dirac discovered that magnetic monopoles were actually compatible
with Maxwell’s equations [160]. The construction of the monopole field configuration relies
on the U(1) gauge invariance of classical electromagnetism and as we shall see below, it
has a very important consequence for particle physics.

3.2.1 The Dirac gauge potential
Let us consider the Lagrangian describing electromagnetism in vacuum,

L = −1
4FµνF

µν , (3.27)

where Fµν = ∂µAν − ∂νAµ is the field strength tensor associated with the gauge potential
Aµ. The usual 3-dimensional magnetic field is then defined as Bi = (1/2)εijkFjk, where
ϵijk is the antisymmetric Levi-Civita tensor. The corresponding field equation is,

∇µF
µν = 0, (3.28)

where ∇µ is the geometrical covariant derivative (valid for any coordinate system, in any
spacetime) and the definition of Fµν also implies another equation,

∇αFµν +∇µFνα +∇νFαµ = 0. (3.29)

Equation (3.28) reproduces the Maxwell-Gauss and Maxwell-Ampère equations while
Eq. (3.29) is equivalent to the Maxwell-Thomson and Maxwell-Faraday equations. The
theory is left invariant under the gauge transformations,

Aµ → A′
µ = Aµ + i

q
U∂µU

−1 with U = eiqα(x). (3.30)
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This is exactly the same U(1) transformation defined by the Eq. (3.18) above but written
in more fashioned way. Note that the quantity q which appears here is identified with the
electron charge.

Let us describe the construction of the Dirac monopole by using the spherical coor-
dinates (r, ϑ, φ) on Minkowski spacetime. The gauge potential found by Dirac can be
expressed as,

Aµdx
µ = P (cosϑ− 1)dφ, (3.31)

where P is a constant. A direct computation reveals that this gauge field solves indeed the
Eqs. (3.28)-(3.29). But does it actually describe a magnetic monopole ? Let us compute
the 3-dimensional vector potential and the corresponding magnetic field:

A⃗ = P (cosϑ− 1)
r sinϑ e⃗φ ⇒ B⃗ = ∇⃗ × A⃗ = −P

r2 e⃗r, (3.32)

where e⃗r and e⃗φ are respectively the radial and azimuthal unit vectors. As one can see,
the magnetic field is radial and decays as 1/r2, just as the Coulombian electric field of a
pointlike electric charge. Thus the gauge potential (3.31) seems to effectively describes
a magnetic monopole whose magnetic charge is −P . At the same time, it seems to be
in contradiction with the integral form of the Maxwell-Thomson equation (3.26). To
understand what happens here, one must inspect more carefully the naive computation
that is performed in Eq. (3.32). The vector potential A⃗ is actually singular at ϑ = π
where the function (cos θ − 1)/ sinϑ diverges and the azimuthal vector e⃗φ is not defined
there. As a result, the expression for B⃗ that is given above is valid everywhere except at
ϑ = π. A more accurate description of the Dirac monopole is presented on the left panel
of Fig. 3.2. For ϑ ̸= π, the magnetic field is described by the Eq. (3.32) and if P > 0 then
its contribution to the magnetic flux through Σ is negative. For ϑ = π, the magnetic field
can be represented as a vector of "infinite" norm directed along the exterior. Thus its
contribution to the flux is positive and the precise computation (which have to be carried
out using distributions) shows that it exactly compensates the negative flux of B⃗(ϑ ̸= π).
Hence the gauge field (3.31) does not describe an isolated magnetic pole, but rather a
semi-infinite and infinitely thin solenoid lying on the negative z-axis: this is the singular
Dirac string.

3.2.2 Removing the string singularity
Dirac actually found that the singular string was nothing but a pure gauge artifact and
that a completely regular description of the magnetic monopole was possible. The most
rigorous description the string removal is due to Wu and Yang [161, 162] and we shall
describe below their approach.

First, we can show that the position of the Dirac string in space is defined up to a
gauge transformation. Let us consider the gauge transformation (3.30) with

U(φ) = e2iqP φ. (3.33)

The gauge transformed potential is

A′
µdx

µ = P (cosϑ+ 1)dφ ⇒ A⃗′ = P (cosϑ+ 1)
r sinϑ e⃗φ. (3.34)

The gauge potential A′
µ is regular at ϑ = π but the string singularity is now located in the

upper hemisphere at ϑ = 0. Thus the gauge transformation (3.33) acts as a rotation of the
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Σ
B⃗(ϑ ̸= π)

Singular string
B⃗(ϑ = π)

P

B⃗ = ∇⃗ × A⃗N

B⃗ = ∇⃗ × A⃗S

"Removed" S-string

"Removed" N-string

ϵP

Figure 3.2: Left: schematic representation of the Dirac monopole with the singular string
located at ϑ = π. The ingoing magnetic flux through Σ is compensated by the outgoing
flux of the string. Right: schematic representation of the globally regular Dirac monopole
described by two locally regular gauges.

Dirac string by an angle of π. One can actually find a more general gauge transformation
that rotates the singular string to any other direction. Thus the position of the string is
completely arbitrary and the different configurations are all related to each other by some
gauge transformation. This suggests that the magnetic field of the string should not be
physically observable.

We have now all the ingredients for the description of a globally regular field config-
uration surrounding the monopole3. Let us divide the 3-dimensional space R3/{0} into
two slightly overlapping hemisphere RN and RS,

RN : 0 ≤ ϑ ≤ π

2 + ϵ

2 ,

RS : π2 −
ϵ

2 ≤ ϑ ≤ π,

with ϵ > 0. We can choose the potential (3.31) to describe the field configuration in upper
hemisphere RN and its gauge transformed version (3.34) to describe the monopole field in
the lower hemisphere RS. Therefore, one consider two definitions of the gauge potential,

AN
µ dx

µ = P (cosϑ− 1)dφ, AS
µdx

µ = P (cosϑ+ 1)dφ, (3.35)

where AN
µ (resp. AS

µ) should be used in the upper hemisphere RN (resp. lower hemisphere
RS). Both of these potentials are regular within their domains of definition, ensuring that
the field configuration is now free of any string singularity, as illustrated in the right panel
of Fig. 3.2.

In the overlap region RN ∩RS, both AN
µ and AS

µ are well-defined and they are related
to each other by the gauge transformation (3.33). The latter has to be single-valued4,

U(φ+ 2π) + U(φ), (3.36)
3Strictly speaking, the origin where the monopole is located has to be excluded from our description

because the magnetic field B⃗ = −(P/r2)e⃗r is divergent there.
4This requirement comes from quantum mechanic considerations that have been skipped here, see for

example Ref. [163].
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which implies a very important condition for the electric and magnetic charges:

qP = n

2 , with n ∈ Z. (3.37)

This is the charge quantization condition [160]. Dirac suggested that the condition (3.37)
could provide an explanation for the quantization of the electric charge. Indeed, the exis-
tence of a single magnetic monopole in the Universe is sufficient to justify the quantization
electric charges, according to (3.37).

3.2.3 Non-Abelian generalization of the Dirac monopole
Although being an elegant construction, the Dirac monopole in U(1) electrodynamics still
suffers from a singularity in its center rendering its total energy infinite. This is actually
not very surprising since the Dirac monopole is a pointlike magnetic charge: all the charge
is concentrated in one single point in space. More rigorously, the Dirac potential (3.35)
describing the monopole field is defined everywhere in space except at the origin. In other
words, the Dirac theory of monopoles is only a correct description of a magnetic pole
at classical scales whereas the monopole "core" should be described in the context of a
quantum field theory. However, it turns out that monopole solutions that are regular at
the origin and have a finite energy were found later in classical field theories.

The first step was made by Wu and Yang who demonstrated that the Dirac monopole
can be embedded into non-Abelian Yang-Mills theories [164]. This is a natural result
since the group U(1) of the electromagnetic theory is a subgroup of SU(N), the gauge
group of Yang-Mills theories. Using the non-Abelian gauge transformations, one can then
globally remove the Dirac string instead of using two locally regular gauges. However the
magnetic field still remains singular at the origin. The expression of the gauge field in the
globally regular gauge is sometimes called the Wu-Yang potential [163].

Some times later, ’t Hooft [165] and Polyakov [166] demonstrated that the singularity
at the origin can be removed by adding a Higgs field in the adjoint representation of
the gauge group and choosing its potential to be such that the SU(N) symmetry is
spontaneously broken down to the U(1) symmetry. The corresponding model is called
Yang-Mills-Higgs theory and it is described by the Lagrangian,

L = −1
2Tr(FµνF

µν)− Tr(DµΦDµΦ)− V (Φ)

= −1
4F

a
µνF

aµν − 1
2Dµϕ

aDµϕa − V (Φ). (3.38)

Here Fµν = F a
µνTa and Φ = ϕaTa are respectively the non-Abelian field strength tensor

and the Higgs field while Ta is a basis of the su(N) Lie algebra. Notice that in these
expressions, Latin indices refer to components in the su(N) Lie algebra and should not
be confused with spacetime indices like µ, ν, . . . . In the simplest case N = 2, one can
choose the basis to be Ta = (1/2)τa, where τa are the Pauli matrices. The field strength
tensor is given by

Fµν = ∂µAν − ∂νAµ − iq[Aµ, Aν ] or F a
µν = ∂µA

a
ν − ∂νA

a
µ + q εabcA

b
µA

c
ν , (3.39)

where Aµ = Aa
µTa is the SU(2) gauge field. The covariant derivative is

DµΦ = ∇µΦ− iq[Aµ,Φ] or Dµϕ
a = ∇µϕ

a + q εabcA
b
µϕ

c, (3.40)

and finally the potential is,
V (Φ) = λ

4 (ϕaϕa − v2)2, (3.41)
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where λ is a coupling constant and v is the non-vanishing Higgs vacuum expectation value
which allows for a spontaneous breaking of the SU(2) gauge symmetry. The theory is left
invariant under the SU(2) gauge transformations,

Aµ → A′
µ = UAµU

−1 + i

q
U∂µU

−1,

Φ→ Φ′ = UΦU−1, with U = eiq θa(x)Ta . (3.42)

In the static case, the total energy of a given configuration is,

E =
∫
d3x

(
1
4F

a
µνF

aµν + 1
2Dµϕ

aDµϕa + λ

4 (ϕaϕa − v2)2
)
. (3.43)

Since every term in this integral is positive definite, we can extract two conditions on the
Higgs field for the energy to be minimal,

ϕaϕa = v2, Dµϕ
a = 0. (3.44)

Thus the fundamental state corresponds to |Φ| = v and the simplest of these configurations
can be expressed as

ϕa = (0, 0, v). (3.45)
One can also consider non-trivial fundamental states such as, for example,

ϕa = v(sinϑ cos(nφ), sinϑ sin(nφ), cosϑ), (3.46)

where n must be an integer5 to ensure that the Higgs field is single-valued. Then the
second condition in Eq. (3.44) is fulfilled if

Aa
µTadx

µ =1
q

(T1 sin(nφ)− T2 cos(nφ)) dϑ

+ n

q
sinϑ (cosϑ(T1 cos(nφ) + T2 sin(nφ))− T3 sinϑ) dφ. (3.47)

This is precisely the Wu-Yang potential describing the Dirac monopole embedded in the
SU(2) Yang-Mills theory. This gauge field is regular everywhere in space, which can be
seen by noting that Aa

φ = 0 for ϑ = 0, π. One can recover the more familiar expression of
the Dirac potential (3.31) by applying the (singular) gauge transformation,

U(ϑ, φ) = e−iT3nφeiT2ϑeiT3nφ, (3.48)

which transforms the gauge field to

A1
µdx

µ = A2
µdx

µ = 0, A3
µdx

µ = n

q
(cosϑ− 1)dφ. (3.49)

Thus the third isotopic component of non-Abelian gauge field corresponds to the Abelian
potential describing the Dirac monopole with a singular string located at ϑ = π. By
identification with Eq. (3.31), we see that the magnetic charge P in this case is such that,

qP = n, (3.50)

which is the non-Abelian version of the Dirac charge quantization (3.37).
5In topology, the integer n is referred to as the winding number.
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The field configuration (3.46)-(3.47) solves the field equations exactly but, as men-
tioned above, it still remains singular at the origin and its total energy,

E = 2πn2

q2

∫ ∞

0

dr

r2 , (3.51)

is divergent. At the same time, the field equations also admit other solutions which only
approach (3.46)-(3.47) at spatial infinity and which are perfectly regular at the origin.
They correspond to the celebrated ’t Hooft-Polyakov monopole. For the lowest allowed
value of the magnetic charge, |n| = 1, the field configuration is spherically symmetric
whereas for |n| > 1 the monopoles are not rotationally invariant in general (in the simplest
case, they are only axially symmetric).

We have only presented here the basic ideas behind the construction of non-Abelian
magnetic monopoles. Several important aspects have been omitted, for example, there is
no unique definition of the "physical" magnetic field in non-Abelian gauge theories. We
thus refer the interested reader to chapter 5 of Ref. [163] for more details.

It has long been considered that non-Abelian monopoles do not exist in the electroweak
theory of Weinberg and Salam. Although its gauge group SU(2)×U(1) is spontaneously
broken down to the subgroup U(1), the Higgs field is in the fundamental representation of
SU(2) and not in the adjoint representation (see the definition of the electroweak theory
in the Sec. 4.2). Nevertheless in 1996, Cho and Maison finally discovered a spherically
symmetric and non-Abelian monopole solution in the electroweak theory [48]. We shall
describe in more details the Cho-Maison monopole and its axially symmetric generaliza-
tions in the next chapter.



Chapter 4
Magnetic monopoles in the electroweak
theory and their black hole counterparts

This chapter is based on [49, 50, 167].

4.1 Introduction
The discovery of a globally regular magnetic monopole by ’t Hooft [165] and Polyakov
[166] in the SU(2) Yang-Mills-Higgs theory has triggered both theoretical [168, 169, 170,
171, 163] and experimental [172, 173, 174] studies over the last decades (see also Refs. [175,
176] for particular aspects of monopoles). However the experimental search for magnetic
monopoles has always been giving negative results. One possible explanation is that the
SU(2) ’t Hooft-Polyakov monopole is not described by the Standard Model. Instead,
one must consider extensions of this monopole within Grand Unified Theories. In this
case, the mass of the monopole is expected to be of the order of 1014 − 1016 GeV, thus
rendering their detection in colliders impossible [177]. One can wonder whether there
are monopoles within the framework of the Standard Model, without considering an
extension of it. The electroweak sector of the Standard Model is characterized by the
gauge group SU(2)×U(1), and it is spontaneously broken to the subgroup U(1) via the
Higgs mechanism. However, the Higgs field is in the fundamental representation of SU(2),
which means that it is expressed as Φ = (Φ1,Φ2)T, with Φ1,Φ2 ∈ C, whereas for the
’t Hooft-Polyakov monopole, the Higgs field is in the adjoint representation of SU(2),
meaning that Φ = ϕaTa with ϕa ∈ R and a = {1, 2, 3} (see Sec. 3.2.3). The standard
topological arguments [171] for the existence and stability of monopoles only apply when
the Higgs field is in the adjoint representation.

Nevertheless, the U(1) Dirac monopole can always be embedded into larger gauge
groups, and it follows that it must be a solution of the electroweak theory. The mass of this
monopole, however, cannot be predicted by the theory because it has an infinite energy.
Another type of electroweak monopoles was discovered in 1977 by Nambu [178] who
noticed the existence of vortex-type solutions1 in the theory. Nambu used the following
form for the Higgs field,

Φ = ϕ

(
sin ϑ

2 e
−iφ

− cos ϑ
2

)
, (4.1)

where ϕ is a real function of the spatial coordinates. This field is not defined on the
1In the context of classical gauge theory, vortices are infinitely long "tubular" solutions within which

energy and magnetic flux are confined.
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negative part of the z-axis because the first component has no limit for ϑ→ π. This can
be circumvented by assuming that ϕ vanishes at ϑ = π. One obtains then a semi-infinite
vortex extending along the negative part of the z-axis and terminating at a monopole
for z = 0. Analyzing the magnetic flux inside the vortex and that spreading out at
infinity through the vortex termination, Nambu arrived at the following condition for the
magnetic charge,

qP = n× sin2 θW, (4.2)

where θW is the weak mixing angle – a parameter of the electroweak theory. This resembles
the non-Abelian version of the Dirac charge quantization (3.50) but with the additional
factor of sin2 θW. However the construction of Nambu cannot be static because the vortex
will be pulling the monopole. An equilibrium configuration can be obtained if the vortex
has a finite length and terminates some distance away on an antimonopole. Then, the
resulting monopole-antimonopole pair configuration will have a finite energy and will be
spinning around the center of mass [179].

Another possibility to construct monopoles in the electroweak theory was found later,
in 1996, by Cho and Maison [48]. They used the same form (4.1) as Nambu for the Higgs
field, but instead of assuming that ϕ vanishes at ϑ = π, they avoided the line singularity
by using two locally regular gauges, as for the U(1) Dirac monopole (see the Sec. 3.2.2).
One assumes that Φ in (4.1) describes the Higgs field in the upper hemisphere while, in
the lower hemisphere, one uses its gauge-transformed version Φ′ = eiφΦ which is regular
for ϑ→ π. The U(1) gauge transformation eiφ which relates the two gauges is regular in
the equatorial transition region. This construction provides a globally regular description
for a static and spherically symmetric monopole whose magnetic charge corresponds to
that of the Dirac monopole (3.37) with n = ±2. The function ϕ in (4.1) depends only on
the radial coordinate, and it is determined by the field equations, together with another
unknown function f(r) that is contained in the SU(2) gauge field. We call this field
configuration the Cho-Maison (CM) monopole.

The SU(2) part of the CM monopole is regular at the origin and is similar to that
of the ’t Hooft-Polyakov monopole. Its U(1) part is divergent at the origin and renders
the total energy infinite, as for the Dirac monopole [48]. Hence the CM monopole can
be viewed as a hybrid between a U(1) Dirac monopole and a SU(2) ’t Hooft-Polyakov
monopole. Several attempts to regularize the monopole energy have been considered, but
they require to modify the Lagrangian of the theory [180, 181, 182, 183, 184]. In this
chapter, we consider a different perspective. Our aim is to investigate also the gravitating
counterparts of electroweak monopoles. In this case, it is not necessary to regularize the
central singularity because it will be hidden inside an event horizon, just like for a RN
black hole. In the spherically symmetric case, electroweak magnetic black holes have been
reported in 2021 by Bai and Korwar [53] and their ADM mass is finite.

In a recent paper, we showed that the CM monopole is stable with respect to arbi-
trary (small) perturbations [49]. At the same time, all Dirac monopoles with |n| > 1
are unstable with respect to perturbations with angular momentum j = |n|/2 − 1. In
particular, the Dirac monopole with |n| = 2 is unstable only in the spherically symmetric
sector (j = 0) while the CM monopole is stable and has the same magnetic charge. This
suggests that the CM monopole can be viewed as a stable remnant of the Dirac monopole
decay. One may similarly conjecture that stable remnants also exist for monopoles with
|n| > 2, but they cannot be spherically symmetric because the perturbations which grow
in time are not.

In this chapter, we confirm this conjecture by constructing generalizations of the CM
monopole for higher values of the magnetic charge in the simplest case of axial symmetry.
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However, we have not yet been able to analyze their stability. It is very plausible that
the less energetic configuration – and thus the most stable – is a non-Abelian monopole
with only discrete symmetries. We also construct the gravitating counterparts of the
axially symmetric monopoles, which are static black holes with an axially symmetric and
magnetically charged hair. These black holes still contain the U(1) singular part of the
magnetic charge within their horizons.

We construct the solutions numerically for various values of the charge, compute their
regularized energy, the quadrupole moment, and study their inner structure. This requires
solving the underlying system of nonlinear PDEs. Our discretization scheme is based on
the finite element method, and the nonlinearities are treated using Newton’s method.

The rest of the chapter is organized as follows. In Section 4.2, we present the field
equations of the bosonic sector of the Weinberg-Salam (WS) theory minimally coupled to
GR. We also define in this section the physical fields – the electromagnetic and Z fields.
In Section 4.3, we describe the general form of the axially symmetric fields and their
reduction to the spherically symmetric case. This section also presents the procedure for
removing the Dirac string singularity, and discuss the gravitational constraint equations
along with the gauge condition. Simple analytical solutions which correspond to RN and
RN-de Sitter black holes are presented in Section 4.4. The stability of the RN solution
is analyzed in Section 4.5. The spherically symmetric hairy black holes are described in
Section 4.6. Here, we provide a more complete description of these solutions as compared
to the paper [53]. After that, we present the axially symmetric monopoles and their black
hole counterparts in Section 4.7. The emphasis is placed on understanding the internal
structure of flat space monopoles, and then on the generalization of our results to the black
hole case. Finally, our concluding remarks are given in Section 4.8. The Appendix 4.A
presents an auxiliary result on the existence of neutral, oscillating configurations in the
electroweak theory. The remaining three appendices contain technical details such as
the asymptotic behavior of the solutions, the local behavior at the origin for flat space
monopoles, and the radial coordinate transformation relating the axially symmetric line
element to the spherically symmetric one.

4.2 Einstein-Weinberg-Salam theory

4.2.1 Action and field equations
We consider the bosonic part of the electroweak theory of Weinberg and Salam (WS)
minimally coupled to Einstein gravity. The dimensionful action can be represented in the
form,

SEWS = 1
cg2

0

∫ ( 1
2κR + LWS

)√
−g d4x, (4.3)

where R is the Ricci scalar associated with the spacetime metric gµν and

LWS = − 1
4g2W

a
µνW

aµν − 1
4g′2YµνY

µν − (DµΦ)†DµΦ− β

8 (Φ†Φ− 1)2, (4.4)

is WS Lagrangian density. All quantities in the integrand – the spacetime coordinates
xµ, the metric gµν , the WS fields and the couplings – are rendered dimensionless by an
appropriate rescaling. The Abelian U(1) and non-Abelian SU(2) field strength tensors
are respectively

Yµν = ∂µYν − ∂νYµ, W a
µν = ∂µW

a
ν − ∂νW

a
µ + ϵabcW

b
µW

c
ν , (4.5)
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while the Higgs field Φ = (Φ1,Φ2)T is in the fundamental representation of SU(2) with
the gauge covariant derivative

DµΦ =
(
∂µ −

i

2Yµ −
i

2τ
aW a

µ

)
Φ, (4.6)

where τa are the Pauli matrices. Notice that we have expanded the SU(2) gauge field
Wµ = TaW

a
µ and its field strength tensor Wµν = TaW

a
µν in the basis Ta = (1/2)τa which

satisfies the commutation relation [Ta, Tb] = i ϵabcTc. The two coupling constants for the
gauge fields are g = cos θW and g′ = sin θW where the physical value of the weak mixing
angle θW is such that g′2 = sin2 θW = 0.23.

The dimensionful (boldfaced) parameters in the action (4.3) are the speed of light c
and g0. The latter is related to the electron charge e via

α ≡ e2

4πℏℏℏc
= ℏℏℏc

4π (gg′g0)2 ≈ 1
137 ⇒ e = ℏℏℏcg0e with e ≡ gg′. (4.7)

The dimensionful fields which are commonly used in the literature are Y µ = (Φ0/g
′)Yµ,

W a
µ = (Φ0/g)W a

µ and Φ = Φ0Φ where Φ0 = 246 GeV is the Higgs vacuum expectation
value. The dimensionful coordinates are xµ = l0x

µ where l0 = 1/(g0Φ0) = 1.52×10−16 cm
is the electroweak length scale.

The theory is invariant under spacetime diffeomorphisms and SU(2)×U(1) gauge trans-
formations,

Φ→ UΦ, W → UWU−1 + iU∂µU
−1dxµ, (4.8)

with
W = 1

2(Yµ + τaW a
µ )dxµ, U = exp

(
i

2θ
0 + i

2τ
aθa

)
, (4.9)

where θ0 and θa are functions of the spacetime coordinates xµ. Varying the action (4.3)
with respect to the WS fields gives the equations,

∇µYµν = g′2 i

2(Φ†DνΦ− (DνΦ)†Φ) ≡ g′2J0
ν ,

DµW a
µν = g2 i

2(Φ†τaDνΦ− (DνΦ)†τaΦ) ≡ g2Ja
ν ,

DµD
µΦ− β

4 (Φ†Φ− 1)Φ = 0, (4.10)

where ∇µ is the geometrical covariant derivative with respect to the spacetime metric and
DµW

a
αβ = ∇µW

a
αβ + ϵabcW

b
µW

c
αβ. Varying the action with respect to the metric yields the

Einstein equations,
Eµν ≡ Gµν − κTµν = 0, (4.11)

with the energy-momentum tensor,

Tµν = 1
g2W

a
µσW

a σ
ν + 1

g′2YµσY
σ

ν + (DµΦ)†DνΦ + (DνΦ)†DµΦ + gµνLWS. (4.12)

The vacuum is defined as the configuration with the flat Minkowski metric gµν = ηµν

and with Tµν = 0. Up to a gauge transformation, the WS fields can be chosen as

W a
µ = Yµ = 0, Φ =

(
0
1

)
. (4.13)
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Linearizing the field equations with respect to small fluctuations around the vacuum gives
the perturbative mass spectrum of the theory containing the massless graviton and photon
and the massive Z, W and Higgs bosons whose dimensionless masses are,

mZ = 1√
2
, mW = g√

2
, mH =

√
β

2 . (4.14)

These masses are expressed in units of the electroweak mass scale m0 = ℏℏℏ/(cl0) =
(ℏℏℏ/c)g0Φ0 so that, for example, the dimensionful Z boson mass is mZ = m0/

√
2 ≈

91.18 GeV/c2. Using the Higgs mass mH ≈ 125 GeV/c2 yields the value β ≈ 1.88.
The dimensionless gravitational coupling κ in the action can be expressed in terms of

the Newton constant G or, equivalently, in terms of the Planck mass MPl and Z boson
mass mZ as follows,

κ = 8πGΦ2
0

c4 = 4e2

α

(
mZ

MPl

)2
= 5.42× 10−33. (4.15)

This value is very small because the Planck mass is many orders of magnitude larger than
the Z boson mass.

Summarizing, the theory contains four parameters which are known from experimental
measurements. Their dimensionless values are

g′2 = 0.23, g2 = 1− g′2, β = 1.88, κ = 5.42× 10−33. (4.16)

The underlying mass and length scales are

m0 =
√

2 mZ = ℏℏℏ
c

g0Φ0 = 128.94 GeV/c2, l0 = 1
g0Φ0

= 1.53× 10−16 cm, (4.17)

which correspond to the electroweak scales. Another relevant scale in the theory is the
Planck scale which is related to the electroweak one by,

m0 =
√
ακ

2e2 MPl = 1.05× 10−17 ×MPl, l0 =
√

2e2

ακ
LPl = 9.46× 1016 ×LPl. (4.18)

4.2.2 Electromagnetic and Z fields
In non-Abelian gauge theories, the definition of the electromagnetic tensor is not unique off
the Higgs vacuum [185]. We shall adopt the definition of Nambu for the electromagnetic
and Z fields [178],

Fµν = g

g′Yµν −
g′

g
NaW a

µν , Zµν = Yµν +NaW a
µν , (4.19)

where Na = Φ†τaΦ/(Φ†Φ). This definition was used by Hindmarsh and James to study
the so-called sphaleron configuration [186]. It should be noted that these 2-forms are not
closed in general which means that there is no field potential Aµ such that F = dA. This
is related to the fact that Maxwell equations do not hold off the Higgs vacuum. The
magnetic field is defined as in the flat space, Bi = (1/2)ϵijkFjk.

Using the electromagnetic tensor Fµν and its dual,

F̃ µν = ∗F µν = 1
2√−g ϵ

µναβFαβ, (4.20)
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one can define the conserved electric and magnetic 4-currents,

Jµ = 1
4π∇νF

µν , J̃µ = 1
4π∇νF̃

µν . (4.21)

By the definition (4.19) of Fµν , both Jµ and J̃µ split into a sum of two separately conserved
currents: the U(1) current determined by the contribution of Yµν and the SU(2) current
determined by W a

µν .
We are interested in purely magnetic2 field configurations for which the non-vanishing

components of the 4-currents are the electric current Jk and the magnetic charge density
J̃0. The magnetic charge P and its density split into U(1) and SU(2) parts,

J̃0 = 1
4π ∇⃗ · B⃗ ≡ ρU(1) + ρSU(2), (4.22)

and
P =

∫
Σ

(
ρU(1) + ρSU(2)

)√
−g d3x ≡ PU(1) + PSU(2), (4.23)

where Σ is a spacelike hypersurface. Here PU(1) and PSU(2) are separately conserved. Since
the Y field is Abelian, one has

PU(1) = g

g′

∮
S2
dB, (4.24)

where the S2 is a two-sphere at spatial infinity. This integral vanishes unless Y is topo-
logically non-trivial, in which case its value is determined by the topology and does not
depend on the radius of the sphere.

4.3 Axial symmetry
We are interested in static and axially symmetric black hole solutions. For these systems,
the spacetime metric admits two Killing vectors,

ξ = ∂

∂t
, ς = ∂

∂φ
, (4.25)

where t is the asymptotically timelike coordinate and φ is the azimuthal angle.
Because the Einstein-Weinberg-Salam model contains many fields, we shall describe

separately the gravity and the electroweak sectors.

4.3.1 Static and axially symmetric gravitational fields
The metric can be written in terms of the spheroidal3 coordinates (t, r, ϑ, φ) [187],

gµνdx
µdxν = −e2UN(r) dt2 + e2K

(
dr2

N(r) + r2dϑ2
)

+ e2S r2 sin2 ϑ dφ2, (4.26)

where U , K, S depend on r, ϑ. Except otherwise stated, N is a given function of r only
and we shall choose N(r) = 1− rH/r, where rH is the location of the event horizon. This
choice is well suited to describe generic black hole solutions with a simple event horizon.

2Purely magnetic configurations are characterized by an identically vanishing electric field, F 0i = 0.
3For N(r) = 1, the coordinates in the line element (4.26) are said to be quasi-isotropic because the

polar angles in the hypersurfaces with t = const. are represented without distortion. For fully isotropic
coordinates, the functions in front of r2dϑ2 and r2 sin2 ϑdφ2 would be the same. In the generic case when
N(r) ̸= 1, the coordinates are not (quasi-)isotropic.
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With the line element (4.26) considered here, the Einstein-Hilbert part of the La-
grangian in Eq. (4.3) can be represented as

1
2κR
√
−g = LG + ∂rΓr + ∂ϑΓϑ, (4.27)

where,

LG =1
κ
eS+U sinϑ

[
Nr ∂r(K − S) +Nr2(∂rK ∂rS + ∂rS ∂rU + ∂rU ∂rK)

+ rH

2 ∂r(K − U) + ∂ϑK ∂ϑS + ∂ϑS ∂ϑU + ∂ϑU ∂ϑK + cotϑ ∂ϑ(K − S)
]
,

Γr =− 1
κ
eS+UNr2 sinϑ ∂r(K + S + U),

Γϑ =− 1
κ
eS+U sinϑ ∂ϑ(K + S + U). (4.28)

Here LG is the essential part of the Lagrangian that should be kept, while the total
derivatives can be integrated by parts and do not affect the field equations.

We shall be considering asymptotically flat black holes with a regular event horizon.
Their mass can be determined by the asymptotic behavior of the g00 metric coefficient
which reads,

−g00 = 1− 2M
r

+ · · · = 1− GM

c2r
+ . . . , (4.29)

where the dots denote the subleading terms.
Alternatively, the mass also admits the Komar integral representation (1.26). The

latter consists in a surface integral at spatial infinity which can be transformed to a
volume integral over a spacelike hypersurface as in Eq. (1.24), but for black holes, a
boundary term at the horizon surface must be taken into account. The latter can be
expressed in terms of the horizon surface gravity, which gives (see for example the section
2.4 in Ref. [83]),

M = κgAH

4π + 1
4π

∫
Σ
nµξνR

µν√γ d3x = κgAH

4π − 1
4π

∫
r>rH

R0
0
√
−g d3x, (4.30)

where Σ is a spacelike hypersurface in the exterior black hole region, γ is the determinant
of the induced metric over Σ, n = −eU

√
Ndt is the future-directed unit normal vector to

Σ, Ah is the event horizon area and κg is the horizon surface gravity,

κ2
g = − 1

2∇µξν ∇µξν

∣∣∣∣
r=rH

. (4.31)

The dimensionful mass expressed in physical units is

M

m0
= c2l0

Gm0
M = 8π

κ
× M

ℏℏℏcg2
0

= e2

4πα ×
8π
κ
M ≡ e2

4πα ×M, (4.32)

where we have used the relations (4.7) and (4.15). Notice that both M and M are
dimensionless quantities related to the mass that we shall use in this chapter. Using
Eq. (4.30) and taking into account the Einstein equations yields

M = 8π
κ
M = 2κgAH

κ
−
∫

r>rH

(2T 0
0 − T )

√
−g d3x, (4.33)
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where T is the trace of the energy-momentum tensor. We emphasize that this formula is
also valid in the flat space limit κ→ 0. In this case, the first term vanishes because there
is no event horizon and the second term can be simplified by using the equation,

∫
r>0

(T 0
0 − T )

√
−g d3x = 0, (4.34)

which holds for any static solution in flat space field theory [188, 189]. Substituting T in
Eq. (4.33) and taking rH → 0 yields

Mκ→0 = −
∫

r>0
T 0

0
√
−g d3x, (4.35)

which agrees with the standard definition of energy in flat space.
Using the line element (4.26), the surface gravity and the horizon area are

κg = N ′

2 eU−K

∣∣∣∣∣
r=rH

, AH = 2πr2
H

∫ π

0
eK+S sinϑ dϑ

∣∣∣∣
r=rH

. (4.36)

The surface gravity should be constant at the horizon. This is true if ∂ϑ(U −K)|r=rH
= 0

and it turns out that the latter follows from the constraint equations to be described in
Sec. 4.3.4 below.

4.3.2 Static, axially symmetric and purely magnetic electroweak
fields

The axially symmetric and purely magnetic electroweak SU(2) gauge field, U(1) weak
hypercharge field and Higgs field can be represented in the form,

W = TaW
a
µdx

µ = T2 (F1 dr + F2 dϑ) + ν (T3 F3 − T1 F4) dφ,

Y = Yµdx
µ = ν Y3 dφ, Φ =

(
ϕ1
ϕ2

)
, (4.37)

where F1, F2, F3, F4, Y3, ϕ1, ϕ2 are 7 real-valued functions of r, ϑ and ν is a constant
parameter. The SU(2) field here corresponds to the purely magnetic ansatz of Rebbi
and Rossi [190]. The ansatz (4.37) preserves its form under gauge transformations (4.8)
generated by U = exp {iχ(r, ϑ)T2}, which transform the field amplitudes as

F1 → F1 + ∂rχ, F2 → F2 + ∂ϑχ, Y3 → Y3,

F3 → F3 cosχ− F4 sinχ, F4 → F4 cosχ+ F3 sinχ,
ϕ1 → ϕ1 cos(χ/2) + ϕ2 sin(χ/2), ϕ2 → ϕ2 cos(χ/2)− ϕ1 sin(χ/2). (4.38)

Inserting (4.26), (4.37) to Eq. (4.12) yields the energy density of the WS fields

E ≡ −T 0
0 = e−2K

2g2r2EW + e−2K

2g′2r2EY + EΦ = −LWS, (4.39)
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where

EW =e−2KN(∂ϑF1 − ∂rF2)2

+ e−2SN
[
(∂rF3 + F1F4)2 + (∂rF4 − F1F3)2

] ν2

sin2 ϑ

+ e−2S
[
(∂ϑF3 + F2F4)2 + (∂ϑF4 − F2F3)2

] ν2

r2 sin2 ϑ
,

EY =e−2S
[
N(∂rY3)2 + 1

r2 (∂ϑY3)2
]

ν2

sin2 ϑ
,

EΦ =e−2KN

[(
∂rϕ1 −

1
2F1ϕ2

)2
+
(
∂rϕ2 + 1

2F1ϕ1

)2]

+ e−2K

[(
∂ϑϕ1 −

1
2F2ϕ2

)2
+
(
∂ϑϕ2 + 1

2F2ϕ1

)2] 1
r2

+ e−2S
[
((F3 + Y3)ϕ1 − F4ϕ2)2 + ((F3 − Y3)ϕ2 + F4ϕ1)2

] ν2

4r2 sin2 ϑ

+ β

8
(
ϕ2

1 + ϕ2
2 − 1

)2
. (4.40)

As a consistency check, one can verify that the energy density is invariant under the
residual gauge transformation (4.38).

The zero energy configuration can be expressed as

F1 = F2 = F4 = ϕ1 = 0, ϕ2 = 1, F3 = Y3 = const. ≡ Y∞, (4.41)

in which case the solution for the metric corresponds to that of vacuum GR. This con-
figuration keeps its form under gauge transformations U = exp {iCνφ(1 + τ3)/2} with a
constant C, whose effect is simply a shift Y∞ → Y∞ + C.

The total reduced Lagrangian is the sum of the gravitational part defined in Eq. (4.28)
and the electroweak part specified in Eq. (4.39),

LEWS = LG + LWS with LWS =
√
−gLWS. (4.42)

The field equations can be obtained by varying L with respect to the 10 unknown functions
U,K, S, F1, F2, F3, F4, Y3, ϕ1, ϕ2.

The fields (4.37) can describe two different classes of axially symmetric solutions.
Indeed, if we assume the energy density to be invariant under reflections with respect to
the equatorial plane, ϑ→ π−ϑ, then certain field amplitudes must be invariant under the
reflections so that they are even whereas the others must change sign hence they are odd.
If we assume further that ϕ2 → 1 at spatial infinity, then a direct inspection of Eq. (4.40)
reveals two different possibilities that we call "monopole case" and "sphaleron case":

monopole case : odd F1, F3, Y3, ϕ1 and even F2, F4, ϕ2;
sphaleron case : odd F1, F4, ϕ1 and even F2, F3, Y3, ϕ2. (4.43)

At the same time, all metric functions are always of even parity. The magnetic charge
density in the sphaleron case is odd and therefore the total magnetic charge is identically
vanishing. In contrast, for monopole solutions, we will see that the total magnetic charge
can be non-zero and is proportional to ν. We shall consider in this chapter only the
monopole case. We refer the reader to our publication [50] for a discussion of the axially
symmetric sphalerons in flat space and their relation to monopoles.
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For our purpose, it is convenient to re-express the gauge fields functions as,

F1 = −H1(r, ϑ)
r
√
N

, F2 = H2(r, ϑ), F3 = cosϑ+H3(r, ϑ) sinϑ,

F4 = H4(r, ϑ) sinϑ, Y3 = cosϑ+ y(r, ϑ) sinϑ. (4.44)

The parity under the reflections ϑ→ π − ϑ of the new functions is as follows,

odd H1, H3, y, ϕ1 and even H2, H4, ϕ2. (4.45)

The regularity of the energy density at the polar axis requires that

H1 = H3 = y = ϕ1 = 0, H2 = H4 for ϑ = 0, π. (4.46)

These conditions also guarantee that the WS fields can be transformed to a regular gauge.
Specifically, the φ-components of W and Y in Eq. (4.37) do not vanish for ϑ = 0, π. This
means that the fields written in this form contain a Dirac string singularity located along
the symmetry axis. We shall see below that this line singularity can be gauged away, but
only if the parameter ν in (4.37) is an integer.

4.3.3 Removing the Dirac string
The gauge transformation that removes the Dirac string singularity for monopole solutions
is generated by

U± = e−iνφT3e−iϑT2e±iνφ/2 = e±iνφ/2
(

cos(ϑ/2)e−iνφ/2 − sin(ϑ/2)e−iνφ/2

sin(ϑ/2)eiνφ/2 cos(ϑ/2)eiνφ/2

)
. (4.47)

It transforms the SU(2) field into

W = Tφ

(
− H1

r
√
N
dr + (H2 − 1)dϑ

)
+ ν

(
Tr H3 + Tϑ(1−H4)

)
sinϑ dφ. (4.48)

This is the form of the field that is commonly used in the literature, see e.g. Refs. [191, 192,
193]. Here the angle-dependent basis of the su(2) Lie algebra is related to the constant
one {T1, T2, T3} via

Tr = naTa, Tϑ = ∂ϑTr, Tφ = 1
ν sinϑ∂φTr, (4.49)

where
na = [sinϑ cos(νφ), sinϑ sin(νφ), cosϑ] . (4.50)

This basis fulfills the standard commutation relations, for example [Tr, Tϑ] = i Tφ. It
is clear that the parameter ν must be an integer since, otherwise, the vector na is not
single-valued. The conditions (4.46) imply that in the vicinity of the symmetry axis one
has W = (T1 dx

1 − T2 dx
1)(1 − H2) + . . . where xa = rna are the Cartesian coordinates

and the dots represent terms that vanish for ϑ = 0, π. This field is perfectly regular and
the Dirac string is gone.

The transformation generated by (4.47) brings Y and Φ to the form,

Y± = ν(cosϑ± 1 + y sinϑ)dφ, Φ± = e±iνφ/2
(

(ϕ1 cos ϑ
2 − ϕ2 sin ϑ

2 )e−iνφ/2

(ϕ1 sin ϑ
2 + ϕ2 cos ϑ

2 )e+iνφ/2

)
. (4.51)
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Here the sign choice "±" represents two locally regular gauges. On the one hand, Y− and
Φ− are regular for ϑ = 0, but Y− shows the Dirac string singularity along the negative
z-axis at ϑ = π while Φ− has no limit there. Therefore, this gauge can be used in the
upper hemisphere, for ϑ ∈ [0, (π + ϵ)/2]. On the other hand, Y+ and Φ+ are regular for
ϑ = π and can be used in the lower hemisphere, for ϑ ∈ [(π − ϵ)/2, π]. As a result, Y
and Φ are completely regular if one uses these two local gauges. In the equatorial region,
(π − ϵ)/2 ≤ ϑ ≤ (π + ϵ)/2, the gauge transformation which relates Y−, Φ− to Y+, Φ+ is
generated by U = eiνφ and it is single-valued if ν ∈ Z.

The U(1) contribution to the magnetic charge in Eq. (4.24) is defined by the integral

1
4π

∮
S2
dY = 1

4π

∮
S1

(Y− − Y+) = − ν

2π

∮
S1
dφ = −ν, (4.52)

where S1 is a circle around the equatorial region of S2. The parameter ν is usually called
the winding number. The U(1) part of the magnetic charge and the corresponding charge
density are then

PU(1) = − g
g′ν, ρU(1) = PU(1)δ

3(x⃗). (4.53)

The U(1) charge is thus pointlike and located at the origin (the latter being hidden inside
an event horizon in the gravitating case).

4.3.4 Constraint equations and gauge condition
Injecting the ansatz (4.26),(4.37) to the Eqs. (4.10),(4.11) gives the set of PDEs which
determines the field amplitudes. These equations must agree with that obtained from
the variations of the reduced Lagrangian (4.42). For the Einstein equations, we use the
following combinations,

−E0
0 + Er

r + Eϑ
ϑ + Eφ

φ = 0, (4.54)
E0

0 + Er
r − Eϑ

ϑ + Eφ
φ = 0, (4.55)

E0
0 + Er

r + Eϑ
ϑ − Eφ

φ = 0, (4.56)

which yields a set of second-order PDEs for, respectively, U , K and S. At the same time,
there are also two non-trivial equations

C1 ≡ r
√
−g Er

r = 0, C2 ≡
√
−g
r

Er
ϑ = 0, (4.57)

which still contain second derivatives, but only those of U and S. These equations can
be resolved with respect to ∂rK and ∂ϑK, yielding

∂rK = K1, ∂ϑK = K2, (4.58)

where K1, K2 depend on U , S and their derivatives but not on K. In principle, the
function K can be obtained by integrating these two equations, which is possible only
if ∂ϑK1 = ∂rK2. This condition follows from the Eqs. (4.54),(4.56) while the remaining
equation (4.55) is identically fulfilled by virtue of (4.58).

However, in practice, we rather consider the two equations (4.57) as constraints instead
of solving them directly. Specifically, the two non-trivial Bianchi identities ∇µE

µ
ν = 0

(with ν = r, ϑ) can be represented as

∂ϑC2 = −N ∂rC1 −
1
2N

′C1 + . . . , ∂ϑC1 = r2∂rC2 + r C2 + . . . , (4.59)
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where the dots denote terms linear in the left-hand sides of Eqs. (4.54)-(4.56). It follows
that if the second-order PDEs are imposed and if the constraints (4.57) are fulfilled at
the symmetry axis, then they are fulfilled everywhere. One has at the symmetry axis,

ϑ = 0, π : C1 = −r eS+U∂ϑ(K −U − 2S) + . . . , C2 = r2N eS+U∂r(K −S) + . . . , (4.60)

where the dots represent the matter part. These two equations vanish when the appro-
priate boundary conditions are imposed at the symmetry axis. Therefore, by solving the
second-order PDEs (4.54)-(4.56) with the boundary conditions to be detailed in Sec. 4.7.1
below, the two constraints (4.57) will be automatically satisfied. Moreover, for r = rH

when N = 0, the second constraint in Eq. (4.58) reduces to,

∂ϑK|r=rH
= K2|r=rH

= ∂ϑU |r=rH
⇒ ∂ϑ(U −K)|r=rH

= 0, (4.61)

hence the difference U −K and the surface gravity κg in Eq. (4.36) are constant at the
horizon.

The field equations admit pure gauge solutions which are associated with the residual
gauge invariance (4.38). Such solutions should be removed by fixing the gauge since,
otherwise, the differential operator in the equations is not invertible. We choose a gauge
condition commonly employed in the literature [191, 192, 193] which consists in setting to
zero the covariant divergence of the two-vector F1 dr + F2 dϑ in Eq. (4.37). This requires
that

r
√
N ∂rH1 = ∂ϑH2 ⇒ ∂sH1 = ∂ϑH2 where s =

∫ r

rH

dr

r
√
N
. (4.62)

This gauge condition turns out to yield a good numerical convergence. Its disadvantage,
as will be shown in App. 4.B, is that it gives rise to a spurious long-range mode in the
asymptotic behavior of the solutions at large r. This spurious mode can be avoided by
using a different gauge condition such as for example the unitary gauge ϕ1 = 0. However
the differential operator in the equations is then more complicated and it is therefore
preferable to use instead the gauge condition (4.62).

The condition (4.62) still allows for residual gauge transformations (4.38) with the
gauge parameter χ subject to (

∂ss + ∂ϑϑ

)
χ = 0. (4.63)

This equations possesses bounded solutions in the integration domain s ∈ [0,∞) , ϑ ∈
[0, π] which generate gauge transformations H1 → H1−∂sχ and H2 → H2+∂ϑχ. However,
as seen in Eq. (4.44), one must have H1 = 0 at the horizon since otherwise the gauge
amplitude F1 diverges. Therefore, the only allowed solution of Eq. (4.63) is χ = const.,
but then a non-vanishing value of this constant would change the Higgs field at infinity
whereas we assume that ϕ1 = 0 and ϕ2 = 1 (see Eq. (4.130) below).

As a result, the gauge is completely fixed by the condition (4.62) together with the
boundary conditions to be described below in Sec. 4.7. Using this gauge condition, the
field equations become manifestly elliptic: the principal part of the differential operator
is diagonal and contains the Laplacian,

∆ = 1√
−g

∂µ

(√
−g gµν∂ν

)
= e−2K

(
N
∂2

∂r2 + 1
r2

∂2

∂ϑ2

)
+ . . . (4.64)

4.3.5 Spherical symmetry
The fields (4.26),(4.37) become spherically symmetric when

H1 = H3 = y = ϕ1 = 0, H2 = H4 = f(r), ϕ2 = ϕ(r), (4.65)
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and for the metric functions,

U = ln σ(r), K = S = 0. (4.66)

Hence the line element reduces to

ds2 = −σ2(r)N(r)dt2 + dr2

N(r) + r2
(
dϑ2 + sin2 ϑ dφ2

)
. (4.67)

Notice that here we consider N(r) as an unknown function subject to the field equations.
The precise correspondence between the line elements (4.26) and (4.67) is described in
App. 4.D. The WS fields in Eq. (4.37) become

W = f(r) (T2 dϑ− ν T1 sinϑ dφ)+T3 ν cosϑ dφ, Y = ν cosϑ dφ, Φ =
(

0
ϕ(r)

)
. (4.68)

The Einstein-Weinberg-Salam equations (4.10),(4.11) then reduce to a system of ODEs
plus two algebraic constraints,

(Nσf ′)′ = σ

(
f 2 − 1
r2 + g2

2 ϕ
2
)
f,

(r2Nσϕ′)′ = σ

(
βr2

4 (ϕ2 − 1) + 1
2f

2
)
ϕ,

m′ = κ

2 (NU0 + U1 + U2) = −κ2 r
2T 0

0 ,

σ′

σ
= κ

r
U0,

(ν2 − 1)f ′ = (ν2 − 1)fϕ = 0, (4.69)

where we have introduced the mass function m related to N via N(r) = 1− 2m(r)/r and

U0 = 1
g2f

′2 + r2ϕ′2, U1 = ν2 (f 2 − 1)2

2g2r2 + 1
2f

2ϕ2 + βr2

8 (ϕ2 − 1)2, U2 = ν2

2g′2r2 . (4.70)

These equations admit simple analytical solutions that will be presented in the next
section. We also emphasize that a generalized ansatz which allows for time dependence is
presented in App. 4.A. This ansatz can be used to describe oscillating solutions (oscillons).

4.4 Analytical solutions
In the spherically symmetric case, analytic solutions of Eqs. (4.69) exist. They describe
Abelian configurations for which the commutators in the SU(2) field strength vanish4. We
shall present these solutions and review their main properties.

4.4.1 Reissner-Nordström solution
The simplest solution of (4.69) exists for any value of ν,

f = 0, ϕ = σ = 1, N = 1− 2M
r

+ Q2

r2 ≡ NRN, with Q2 = κν2

2e2 , (4.71)

4This amounts to saying that the term ϵabcW b
µW c

ν in Eq. (4.5) vanishes identically for Abelian solutions.
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where M is an integration constant. This describes a magnetically charged RN black
hole of mass M where the source of the magnetic charge is the Abelian Dirac monopole
embedded into the electroweak theory. To avoid naked singularities, one has necessarily
M ≥ |Q| and the spacetime metric contains two horizons located at r = r± where

r± = M ±
√
M2 −Q2. (4.72)

The event horizon, located at r = rH , corresponds to the outer horizon of the RN geom-
etry,

rH = r+ ≥ |Q| ≡ rex
H , (4.73)

where the lower bound rH = rex
H is the extremal limit in which case one has N = (1 −

rex
H /r)2.

The WS fields for this configuration are

Y = ν cosϑ dφ, W = T3 Y, Φ =
(

0
1

)
. (4.74)

This corresponds to the fields describing a Dirac monopole with the singular string located
along the z axis, i.e. at ϑ = 0, π. After the gauge transformation generated by U± =
exp {±iνφ(1 + τ3)/2} the fields become

Y± = ν(cosϑ± 1)dφ, W± = T3 Y±, Φ =
(

0
1

)
. (4.75)

Using Y−, W− in the upper hemisphere and Y+, W+ in the lower hemisphere gives a
completely regular description of the field configuration. In particular these two local
gauges are related to each other by the transformation

U = exp(iνφ(1 + τ3)) =
(
e2iνφ 0

0 1

)
, (4.76)

which is well-defined in the equatorial transition region if ν is an integer or a half-integer.
Notice that this way of removing the Dirac string singularity works only for Abelian
configurations. In this very special case, half-integer values of ν are also allowed.

Since the Higgs field in Eq. (4.75) evaluates to its vacuum expectation value, Maxwell
electromagnetism should be recovered. In particular, the electromagnetic field Fµν in
Eq. (4.19) admits a potential, F = dA with

A = Aµdx
µ =

(
g

g′Yµ + g′

g
W 3

µ

)
dxµ = 1

gg′Y = ν

e
(cosϑ± 1)dφ, (4.77)

from where one can read-off the magnetic charge (see the Sec. 3.2),

P = −ν
e
. (4.78)

Here e = gg′ is the dimensionless electron charge defined in Eq. (4.7). Since ν can be an
integer or a half-integer, one recover the standard Dirac charge quantization,

eP = n

2 with n ∈ Z. (4.79)

According to Eq. (4.23), the magnetic charge can be split into two parts which corre-
spond to the contributions from Yµ and W 3

µ in (4.77),

P = PU(1) + PSU(2) with PU(1) = − g
g′ν, PSU(2) = −g

′

g
ν. (4.80)
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The corresponding charge densities are described by Dirac delta distributions and thus
both the U(1) and SU(2) parts of the magnetic charge are pointlike.

In the flat space limit, the event horizon disappears, leaving only the Dirac monopole
located at the origin. According to the Eq. (4.35), the mass of the flat space monopole is

M = 2πν2

g′2

∫ ∞

0

dr

r2 + 2πν2

g2

∫ ∞

0

dr

r2 = 2πν2

g′2r
+ 2πν2

g2r

∣∣∣∣∣
r→0

, (4.81)

which is manifestly infinite.
Summarizing, the magnetically charged RN black hole may be viewed as the gravitat-

ing counterpart of the flat space Dirac monopole. The latter has an infinite energy due
to its Coulombian singularity at the origin but, in the gravitating case, the presence of
an event horizon at r = rH > 0 provides a natural cut-off which regularizes the monopole
energy.

4.4.2 Reissner-Nordström-de Sitter solution
Another simple solution of Eqs. (4.69) is described by

f = σ = 1, ϕ = 0, N = 1− 2M
r

+ Q
2

r2 −
Λ
3 r

2, with Q2 = κν2

2g′2 , Λ = κβ

8 . (4.82)

The Higgs field is in the so-called false vacuum and its potential acts as an effective
cosmological constant. This solution corresponds to a magnetic RN black hole but with
an asymptotically de Sitter geometry. The SU(2) gauge field expressed in the gauge (4.47)
vanishes, as does the Higgs field, and there remains only the U(1) field,

Y± = ν(cosϑ± 1)dφ, W = Φ = 0. (4.83)

As in the RN case, the U(1) potential can be expressed in two locally regular gauges
that can be related to each other in the equatorial transition region if 2ν ∈ Z and which
describe together the radial hypercharge field. Because W = Φ = 0, only the U(1) sector
contributes to the magnetic charge, hence P = PU(1) = −(g/g′)ν and the full electroweak
gauge symmetry is preserved everywhere in space. Notice that P in the RN-de Sitter case
does not fulfill the standard Dirac quantization condition (4.79) because the system is not
in the Higgs vacuum and classical electromagnetism does not apply.

The function N(r) in Eq. (4.82) has three positive roots corresponding to the inner
black hole horizon, the outer black hole horizon rH and the cosmological horizon rC . The
value of rH is bounded from below,

rH ≥ rex
H =

√
1−
√

1− 4ΛQ2

2Λ = |Q|
(

1 + Λ2

2 + . . .

)
=
√
κ

2
|ν|
g′ |+O(|ν|3κ5/2). (4.84)

The lower bound rH = rex
H corresponds to the extremal limit when the two black hole

horizons merge together forming a degenerate horizon so that N(r) factorizes as,

N(r) =
(

1− rex
H

r

)2 [
1− Λ

3
(
r2 + 2rex

H r + 3(rex
H )2

)]
. (4.85)

The positive root of the second factor determines the location of the cosmological horizon,

rC =
√

3
Λ − 2(rex

H )2 − rex
H =

√
24
βκ

+O(ν
√
κ). (4.86)
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The cosmological horizon radius is much larger than the black hole horizon radius rex
H if

|Q| is small but rC and rex
H approach each other when |Q| increases. They merge together

when Q = 1/
√

4Λ and one has then

|ν| = νmax ≡
2g′

κ
√
β

= 1.28× 1032, rC = rex
H = 2√

βκ
, (4.87)

which corresponds to the dimensionful value rex
H = rC = 3 cm. In this limiting case,

r = rex
H corresponds to a triple zero of N(r). Further increasing the magnetic charge

would lead to a naked singularity.
The RN-de Sitter solution itself is physically less interesting because it is not asymp-

totically flat, however, as we shall see below, it provides an approximate description of
the near-horizon region of hairy solutions for |ν| ≫ 1. For small magnetic charges, i.e.
when |ν| ≪ νmax, the RN-de Sitter solution also describes appropriately the near-horizon
region of extremal hairy black holes.

Yet another RN-de Sitter solution can be obtained by setting in Eq. (4.82) f = 0 and
replacing Q → Q = Q/g. However, this solution is not related to the hairy black holes
considered below.

4.5 Stability of the Reissner-Nordström black hole
Let us consider small perturbations δgµν , δW a

µ , δYµ, δΦ around the RN solution,

gµν → gµν + δgµν , W a
µ → W a

µ + δW a
µ , Yµ → Yµ + δYµ, Φ→ Φ + δΦ, (4.88)

where {gµν ,W
a
µ , Yµ,Φ} is the background configuration. The metric is thus given by

Eq. (4.67) with σ = 1 and N = NRN and the WS fields are those in Eq. (4.74). Linearizing
the field equations with respect to the perturbations and assuming the unitary gauge,
δΦ = (0, δϕ)T, one finds that the equations for δW 1

µ and δW 2
µ decouple from the rest and

reduce to the complex Proca equation,

Dµwµν + ie Fνσw
σ = g2

2 wν . (4.89)

Here wµ = δW 1
µ + i δW 2

µ is the complex W-boson field, wµν = Dµwν −Dνwµ is the corre-
sponding field strength and Dµ = ∇µ + ieAµ where Aµ is the background electromagnetic
field potential (4.77) with strength Fµν = ∂µAν − ∂νAµ.

We consider a generic perturbation one-form, wµdx
µ ≡ w(t, r, ϑ, φ), with no rotational

symmetry. A rather involved analysis that we do not show explicitly reveals that, after
separating the angular variables using spin-weighted spherical harmonics, the 4 equations
contained in (4.89) reduce to a single radial equation in the sector with orbital angular
momentum j = |ν| − 1. The resulting master perturbation equation reads,[

− d2

dr2
∗

+N(r)
(
g2

2 −
|ν|
r2

)]
ψ(r) = ω2ψ(r), (4.90)

where ψ is the perturbation amplitude, ω is the frequency entering the harmonic time
dependence of the perturbations, and r∗ is the tortoise coordinate defined by dr∗ =
dr/N . If this equation admits bounded solutions with ω2 < 0 (a.k.a. bound states)
then perturbations grow in time and the background is unstable.
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In the flat space limit where N(r) = 1, the RN solution reduces to the Dirac monopole
in Minkowski space and the equation (4.90) admits infinitely many bound states with
ω2 < 0. Indeed, if we set ω = 0 then the solution close to the origin reads,

ψ(r) =
√
r cos


√

4|ν| − 1
2 ln r

 , (4.91)

which oscillates infinitely many times as r → 0. According to the Jacobi criterion, the
number of nodes of the solution with ω = 0 corresponds to the number of bound states
[133]. It follows that all Dirac monopoles are unstable within the electroweak theory,
except those with ν = ±1/2 since in this case the value of j = |ν| − 1 would be negative.
In the Ref. [49], we have shown that the instabilities reside only in the W-sector considered
here.

In the gravitating case, the range of the radial coordinate in Eq. (4.90) has to be
restricted to outer black hole region, r > rH , hence the attractive term −|ν|/r2 cannot
be arbitrarily large. Therefore it is expected that the perturbation equation can admit at
most only a finite number of bound states. When the horizon radius rH is large enough,
one has

g2

2 −
|ν|
r2 > 0 for r > rH , (4.92)

which excludes the existence of bound states. It follows that instabilities can only occur
for small black holes.

By varying the horizon radius, one can detect the threshold value of rH at which a
bound state just starts to appear. At this threshold value, the solution is called a zero
mode: it is a normalizable solution of the perturbation equation with ω = 0. The latter
property implies that the zero modes are static solutions.

To check this, we consider a RN background with |ν| = 1. Notice that in this case
j = |ν| − 1 = 0 hence the perturbations described are spherically symmetric. According
to the Eq. (4.73), the horizon radius is bounded from below as

rH ≥ rex
H =

√
κ

2
1
gg′ = 1.23× 10−16. (4.93)

Starting from a large rH and decreasing its value, we find that the first zero mode appears
for rH = r0

H ≈ 0.89, the corresponding solution ψ0(r) being nodeless. As rH decreases
further, this solution becomes a bound state with ω2 < 0, and for rH = r1

H ≈ 0.04 the
equation admits a second zero mode ψ1(r) which has one node. Then, when rH decreases,
this solution becomes a bound state with ω2 < 0, in addition to the nodeless ψ0(r), and
so on. We find that as rH descends all the way down to the minimal value rex

H , the
perturbation equation (4.90) develops in total up to 13 bound states. The values of rH

for which zero modes appear, rn
H , are shown in Table 4.1.

Each zero mode becomes a bound state with ω2 < 0 when rH descends below rn
H .

For example a black hole with rH = 3× 10−16 admits 11 bound states, a larger one with
rH = 1× 10−15 admits only 10 bound states, etc. For rH = 1× 10−5, say, there are four
bound states and the corresponding profiles ψn(r) of the first three (n = 0, 1, 2) are shown
in the left panel of Fig. 4.1. The eigenvalues ω2(rH) ≤ 0 start from zero for rH = rn

H

and then decrease as rH gets smaller, but the product η ≡ |ω|rH rapidly approaches a
constant value, as seen in the right panel of Fig. 4.1.

As a result, small magnetically charged RN black holes are unstable in the Einstein-
Weinberg-Salam theory. At the same time, each new instability settling in at rH =
rn

H appears first as a static zero mode. The latter can be viewed as a perturbative
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n rn
H

0 0.8983
1 4.3255× 10−2

2 1.1777× 10−3

3 3.1323× 10−5

4 8.3259× 10−7

n rn
H

5 2.2130× 10−8

6 5.8822× 10−10

7 1.5634× 10−11

8 4.1557× 10−13

9 1.1047× 10−14

n rn
H

10 3.3876× 10−16

11 1.2766× 10−16

12 1.2380× 10−16

Table 4.1: Values of rH for which the perturbation equation (4.90) admits zero mode with
n nodes for |ν| = 1.
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Figure 4.1: The first three bound state solutions ψn of the perturbation equation (4.90)
against the tortoise coordinate r∗ for rH = 10−5 (left) and the quantity η = |ω|rH against
rH for n = 0, 1, 2 (right).

approximation of a new solution describing a hairy black hole. This new solution bifurcates
with the RN black hole for rH = rn

H but deviates from it when rH < rn
H . It is expected

to be less energetic than RN and may be stable. Since we are currently discussing the
perturbation sector with j = 0, the new solutions should be spherically symmetric.

For higher magnetic charges, |ν| > 1, the term −|ν|/r2 in Eq. (4.90) becomes more
attractive and the number of bound states should increase. The radii rn

H for which an
n-nodes zero mode appears grow with ν, as seen in the Table 4.2. The Fig. 4.2 shows
the functions rn

H(ν) for n = 0, 1, 2, assuming ν to be a continuous variable, and it seems
that rn

H ∝
√
|ν| for large |ν|. It should be emphasized that these zero modes are in the

sector with j = |ν| − 1 > 0 hence they are not spherically symmetric. They can be used
to approximate new hairy black hole solutions which are also not spherically symmetric.

Specifically, any zero mode solution ψ(r) of the radial equation (4.90) determines the
perturbation one-form wµdx

µ = w(r, ϑ, φ) whose angular dependence is given by (spin-
weighted) spherical harmonics. This one-form depends on the azimuthal quantum number
m that can assume 2j + 1 different values, m = −j, . . . , j, but the perturbation equation
itself does not depends on m. Therefore, one zero mode solution ψ(r) corresponds to
2j+1 = 2|ν|−1 different solutions of the Proca equation (4.89). Ifm = 0, then the solution

ν 1 2 3 5 10 20 50 100
r0

H 0.8983 1.4724 1.9362 2.6948 4.1278 6.1928 10.3378 15.0352
r1

H 0.0432 0.2466 0.5110 1.0597 2.2847 4.2108 8.2401 12.8822
r2

H 0.0012 0.0251 0.0885 0.3076 1.0714 2.6391 6.3711 10.8785

Table 4.2: Values rn
H(ν) for which the perturbation equation (4.90) admits an n-nodes

zero mode.
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Figure 4.2: The logarithm of the horizon radius rn
H of the RN black hole admitting an

n-nodes zero mode against ln(ν).

w(r, ϑ) approximates an axially symmetric hair. We will construct the corresponding
hairy black holes at the fully nonlinear level in Sec. 4.7 below. If m ̸= 0, then the solution
w(r, ϑ, φ) approximates a black hole hair with only discrete symmetries. Construction of
these solutions at the non-perturbative level remains an open issue.

To recapitulate, the equation (4.90) describing perturbations around a RN black hole
admits zero mode solutions for discrete values rn

H of the horizon radius. These zero modes
can be viewed as perturbative approximations of new black hole solutions that exist for
rH < rn

H . The new solutions can be spherically symmetric only for |ν| = 1.

4.6 Spherically symmetric hairy black holes
The instabilities of the magnetic RN black hole that have been described above indicate
the existence of new non-Abelian hairy solutions. In the simplest case, such solutions are
spherically symmetric, which is possible only if ν = ±1, hence for the magnetic charge
number n = ±2 in the Dirac charge quantization formula (4.79). These solutions have
already been reported in Ref. [53] and they are gravitating counterparts of the flat space
monopole of Cho and Maison [48]. We shall only summarize their essential properties,
before discussing in the next sections more general solutions with higher magnetic charges.

4.6.1 General properties
First, one can rewrite the system of ODEs in (4.69) in such a way that the equation for σ
decouples from the others. The problem then reduces to a system of three coupled ODEs,

(Nf ′)′ + κ

r
U0Nf

′ =
(
f 2 − 1
r2 + g2

2 ϕ
2
)
f,

(r2Nϕ′)′ + κ r U0Nϕ
′ =

(
βr2

4 (ϕ2 − 1) + 1
2f

2
)
ϕ,

1− (rN)′ = κ (NU0 + U1 + U2) , (4.94)

where U0, U1, U2 are defined in Eq. (4.70). When these equations are solved, the σ-equation
in (4.69) can be integrated. We shall focus here only on the system of three ODEs (4.94)
for N , f and ϕ. For a black hole solution one has N(rH) = 0, N ′(rH) ≡ N ′

H > 0 (unless
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for a degenerate horizon for which N ′
H = 0). Taking in Eq. (4.94) the limit r → rH , one

obtains the value N ′
H while the derivatives f ′′ and ϕ′′ must be finite at the horizon. Using

the latter condition, one can obtain an expression for f ′
H ≡ f ′(rH), ϕ′

H ≡ ϕ(rH) in terms
of fH ≡ f(rH), ϕH ≡ ϕ(rH). One finds that

N ′
H = 1

rH

(1− κU1,H − κU2,H) ,

f ′
H = 1

N ′
H

(
f 2

H − 1
r2

H

+ g2

2 ϕ
2
H

)
fH ,

ϕ′
H = 1

r2
HN

′
H

(
βr2

H

4 (ϕ2
H − 1) + 1

2f
2
H

)
ϕH , (4.95)

where Uk,H are the horizon values of Uk. This determines the boundary conditions at the
horizon in terms of two free parameters: fH and ϕH .

At large r the metric should approach Minkowski, N = 1, and the WS fields should
approach the Dirac monopole configuration (4.74) which corresponds to f = 0 and ϕ = 1.
Hence one can set

N = 1 + δN, f = δf, ϕ = 1 + δϕ, (4.96)
where δN , δf and δϕ are small deviations. Injecting this to Eq. (4.94) yields

(rδN)′ = NN , δf ′′ +
(

1
r2 −

g2

2

)
δf = Nf , δϕ′′ + 2

r
δϕ′ − β

2 δϕ = Nϕ, (4.97)

where NN , Nf , Nϕ are the nonlinear in δN , δf , δϕ terms. The solution of these equations
read

δN = −2M
r

+ δNN ,

δf = Cf exp(−mWr) + δfN ,

δϕ = Cϕ

r
exp(−mHr) + δϕN , (4.98)

where M , Cf , Cϕ are integration constants while δNN , δfN , δϕN contains sub-leading
terms and nonlinear corrections. Neglecting the latter, one can evaluate the Eqs. (4.98)
at some large radius r = r⋆ to obtain boundary conditions depending on three free pa-
rameters, M , Cf and Cϕ. Notice that it is also possible to take into account the nonlinear
corrections at r = r⋆ by converting the Eqs. (4.97) into integral equations and applying
the procedure described in Sec. 2.6.

The values of the 5 parameters fH , ϕH , M , Cf , Cϕ entering the boundary conditions
can be adjusted by using the multishooting method (see the Appendix A.1.2). This yields
a global solution in the region r > rH . There always exists the trivial RN solution for
which fH = f(r) = 0 and ϕH = ϕ(r) = 1. However, choosing a value of rH slightly below
r0

H in Table 4.1, for example rH = 0.89, the algorithm is able to find another solution for
which fH is small but non-zero while ϕH is close to unity. This describes a "slightly hairy"
black hole. Decreasing then iteratively rH , the horizon value fH grows while ϕH decreases,
yielding "fully fledged" hairy black holes. Examples of hairy solutions for rH = 0.8 and
rH = 0.24 are shown in the Fig. 4.3. We emphasize that the function N is very close to
NRN because the back-reaction of the WS fields on the spacetime geometry is negligible
for rH ≫

√
κ ≈ 10−16.

For smaller values of rH we also find solutions with oscillating f -function. They
correspond to the new hairy solutions that appear at the values rn

H given in Table 4.1 for
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n ≥ 1. For example, choosing rH = 4 × 10−2 < r1
H , one finds two hairy solutions: the

fundamental one with a monotone f -profile and the excited one for which f(r) shows one
node. For rH < r2

H one finds the fundamental hairy solution and two excitations: the
function f exhibit one zero for the first excitation and two zeroes for the second excitation.
More generally, the n-th excitation would correspond to a solution with n nodes. These
excited solutions were not reported in Ref. [53]; their profiles for rH = 10−6 are compared
to that of the fundamental solution in the left panel of Fig. 4.4. However, the excited
solutions are probably unstable and hence less interesting physically. We shall not discuss
them anymore.

The horizon radius of the (fundamental) hairy black holes takes values in the interval
rH ∈ [rex

H , r
0
H ]. The upper bound r0

H = 0.8983 corresponds to the bifurcation with the
RN solution while the lower bound coincides with the extremal radius (4.84) of the RN-
de Sitter solution with |ν| = 1. One has rex

H ∼
√
κ ∼ 10−16 which is of the order of

the Planck scale. In the right panel of Fig. 4.4, we present the horizon values ϕH , fH

against rH for the fundamental hairy black holes. As the horizon radius decreases, the
value of fH approaches unity while ϕH approaches zero. This is a manifestation of the
electroweak symmetry restoration in a strong magnetic field [194] since for small rH the
U(1) hypercharge field strength Yµν becomes very large at the horizon. On the other
hand, the horizon value of the SU(2) field strength W a

µν decreases when fH grows and the
SU(2) part of the magnetic charge moves outside the horizon. This can be understood as
follows.

In the spherically symmetric case, the SU(2) part of magnetic charge density in
Eq. (4.22) is given by

ρSU(2) = ν

4π
g′

gr2σ
(f 2)′. (4.99)

Hence the SU(2) part of the magnetic charge is now distributed smoothly in space instead
of being pointlike as for a RN black hole. The total SU(2) charge outside the horizon is
then given by the integral (here ν = ±1),

P outside
SU(2) =

∫
r>rH

ρSU(2)
√
−g d3x = ν

g′

g

∫ ∞

rH

(f 2)′dr = −ν g
′

g
f 2

H . (4.100)

This is less than the total SU(2) magnetic charge which can be measured at infinity as
in Eq. (1.18), PSU(2) = −νg′/g. However the above equation gives only the SU(2) charge
distributed in the outer black hole region while the rest of the charge must be inside the
event horizon. As a result, the horizon value f 2

H ∈ [0, 1] gives the fraction of the SU(2)
magnetic charge distributed outside the horizon. This SU(2) charge distribution is the
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Figure 4.3: Profiles of the fundamental hairy magnetic black holes with rH = 0.8 (left)
and rH = 0.24 (right).
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Figure 4.4: Left: profiles of the fundamental hairy black hole with rH = 10−6 and of its
first two radial excitations. Right: the horizon values ϕH , fH for the fundamental hairy
solutions.

black hole "hair". In the extremal case, one as fH = 1 and thus all the SU(2) charge is
in the outer region. As the horizon radius increases, the charge is absorbed by the black
hole until rH = r0

H in which case the hairy solutions bifurcate with RN. In this limit all
the SU(2) charge is contained inside the horizon and the black hole loses its hair.

4.6.2 The mass
To study the mass of spherically symmetric field configurations, it is convenient to use the
mass function m related to N via the relation N(r) = 1 − 2m(r)/r. The mass function
is determined by the differential equation m′(r) = −(κ/2) r2 T 0

0 and its asymptotic value
coincide with the total mass M of the solution as defined in Eq. (4.30). We introduce a
"rescaled" mass function M(r) = (8π/κ)m(r) which fulfills

M′(r) = −4πr2T 0
0 = 4π (NU0 + U1 + U2) . (4.101)

The asymptotic value M(∞) coincide with the "rescaled" mass M defined in Eq. (4.33).
Integrating the Eq. (4.101) with the boundary condition N(rH) = 0 yields

M(r) = 4π
[
rH

κ
+ 1

2g′2

( 1
rH

− 1
r

)]
+ 4π

∫ r

rH

(NU0 + U1)dr ≡MH(r) +Mh(r), (4.102)

where MH(r) contains the horizon term and the contribution of the U(1) field whileMh(r)
contains the contribution of the SU(2) and Higgs field, which is the "hair". The total mass
M thus splits into the horizon mass MH and the hair mass Mh,

M≡M(∞) =MH(∞) +Mh(∞) ≡MH +Mh, (4.103)

where

MH = 4π
(
rH

κ
+ 1

2g′2rH

)
,

Mh = 4π
∫ ∞

rH

[
N

(
1
g2f

′2 + r2ϕ′2
)

+ (f 2 − 1)2

2g2r2 + 1
2f

2ϕ2 + βr2

8 (ϕ2 − 1)2
]
dr. (4.104)

The horizon massMH is the same for RN black holes and for hairy black holes while the
hair massMh is not the same. Notice that the denomination "hair mass" is not adequate
in the RN case since all the SU(2) charge is inside the horizon and thus RN black holes
have no hair.
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Figure 4.5: The hair mass Mh for the hairy black holes and for the RN black holes.

For the RN solution (4.71) one has f = 0 and ϕ = 1 so that

Mh = 4π
2g2rH

, (4.105)

which varies from zero up to a very large value of the order of 1/
√
κ when rH reaches its

extremal value. It follows that the total mass of RN black holes is

M = 4π
(
rH

κ
+ 1

2e2rH

)
⇒ M = κ

8πM = rH

2 + κ

4e2rH

, (4.106)

the latter being equivalent to the condition NRN(rH) = 0.
For the fundamental hairy black holes,Mh can only be computed numerically and we

show it against rH on the Fig. 4.5. We find that the hair mass varies within the following
limits,

ECM = 15.759 >Mh ≥
4π

2g2r0
H

= 9.083. (4.107)

When rH decreases, Mh increases from the minimal value 9.083 corresponding to the
bifurcation with the RN solution and approaches for small rH the maximal value ECM =
15.759. As a result, the hairy black holes are less massive than the RN black holes of
same size.

4.6.3 Hairy black holes versus Cho-Maison monopole
The value of ECM in Eq. (4.107) corresponds to the regularized energy of the Cho-Maison
monopole [48]. The latter is a solution in the flat space limit where κ→ 0 and N = σ = 1,
when the equations (4.94) reduce to

f ′′ =
(
f 2 − 1
r2 + g2

2 ϕ
2
)
f, (r2ϕ′)′ =

(
βr2

4 (ϕ2 − a) + 1
2f

2
)
ϕ. (4.108)

These equations admit a smooth solution which interpolates between the following values
for 0← r →∞,

1 +O(r2)← f(r)→ O(e−mWr), O
(
r

√
3−1
2

)
← ϕ(r)→ 1 +O(e−mHr). (4.109)

The corresponding profiles of f and ϕ are shown in the Fig. 4.6. This solution describes
a magnetic monopole with the same magnetic charge as for spherically symmetric hairy
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Figure 4.6: Profiles of f(r) (left) and ϕ(r) (right) for the flat space CM monopole (κ = 0)
and for hairy black holes with rH = {10−1, 10−3, 10−5}. For black holes, the profiles are
shown for r > rH .

black holes, that is P = PSU(2) + PU(1) = ±1/e. The SU(2) contribution to the magnetic
charge is smoothly distributed in space while the U(1) contribution is pointlike and makes
the total energy divergent beacause of the term ν2/(2g′2r4) in the energy density (see the
expression of −T 0

0 in Eq. (4.69)). Subtracting this divergent part from the energy leaves
the finite value ECM = 15.759 (see the Ref. [50] for more details and also the Sec. 4.7.2).
This value turns out to be the same as the upper bound in Eq. (4.107).

The coincidence can be explained by the observation that the profiles f(r) and ϕ(r)
for the CM monopole are very close to those for hairy black holes in the r > rH region, as
seen in the Fig. 4.6. When rH decreases, more and more of the SU(2) charge of the black
hole goes outside the horizon and the profiles f(r) and ϕ(r) approach those for the CM
monopole closer and closer. In the extremal limit, rH = rex

H ∼ 10−16, the hairy black hole
can be viewed as a CM monopole harboring in its center a tiny RN-de Sitter black hole
whose size is microscopically small as compared to the size of the monopole itself; the
latter being of order unity. The monopole configuration remains unaffected by the black
hole presence, unless at very short distances of the order of rH . However, we emphasize
that the black hole presence is important because it renders the energy finite via replacing
the divergent U(1) contribution of the flat space monopole by the finite termMH defined
in Eq. (4.104).

The hair mass Mh of the extremal hairy black hole is given by the integral in
Eq. (4.104) where the lower bound of the integration is r = rex

H ∼ 10−16. The regu-
larized energy of the CM monopole ECM is given by the same integral, but the integration
starts at r = 0. This is why one has Mh(rex

H ) = ECM up to terms of order
√
κ.

4.6.4 Extremal limit

When the horizon radius approaches its lower bound, rH → rex
H , one has ϕ(rH) → 0 and

f(rH) → 0 so that the near-horizon solution approaches the RN-de Sitter configuration
(4.82). In the extremal limit, rH reaches the minimal value determined by the Eq. (4.84)
with |ν| = 1,

rex
H =

√
κ

2
1
g′ +O(κ5/2) = 1.0855× 10−16, (4.110)

and the near-horizon geometry becomes extremal RN-de Sitter. In particular N(r) de-
velops a double zero at the horizon, as seen in Eq. (4.85). Therefore one has N ′(rH) = 0
and the equations (4.95) become meaningless. To describe the near-horizon behavior, one
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defines
s =

∫ dr√
N
, A2 = σ2N, (4.111)

after which the line element (4.67) becomes

ds2 = −A(s)2dt2 + ds2 + r2(s)
(
dϑ2 + sin2 ϑ dφ2

)
. (4.112)

Passing in Eq. (4.69) to the new radial coordinate s, the equations admit a solution,

f(s) = 1, ϕ(s) = 0, r(s) = rex
H , A(s) = eλs, (4.113)

where rex
H is determined from

κ

(
1 + βg′2

4 (rex
H )4

)
= 2g′2(rex

H )2 ⇒ rex
H =

√
κ

2
1
g′ +O(κ5/2), (4.114)

which agrees with Eq. (4.110), and λ is given by

λ = k

rex
H

with k =
√

1− 2(rex
H )2Λ = 1 +O(κ2) ⇒ λ = 1

rex
H

+O(κ3/2). (4.115)

This solution describes the near-horizon region of the extremal hairy black hole, which
coincide with the near-horizon limit of the extremal RN-de Sitter black hole. The radial
coordinate s is the proper distance and the horizon is located at s → −∞, but at finite
values of s the configuration deviates from its near-horizon limit (4.113). Therefore one
can set

f = 1 + δf(s), ϕ = δϕ(s), r = rex
H + δr(s), (4.116)

where the deviations δf , δϕ, δr are small when s is large and negative. Linearizing the
field equations with respect to the deviations, one finds

δf = const.× eλf s + . . . , δϕ = const.× eλϕs + . . . , δr = const.× eλrs + . . . , (4.117)

where

λf =
√

8 + k2 − k
2rex

H

= 1
rex

H

+O(κ3/2), λr = λ = 1
rex

H

+O(κ3/2),

λϕ =

√
2 + k2 − β(rex

H )2 − k
2rex

H

=
√

3− 1
2rex

H

+O(κ1/2). (4.118)

The dots in Eq. (4.117) denote higher order corrections that start from quadratic terms
proportional to e2λf s, e2λϕs, e2λrs. One might think that these can be neglected, however,
the leading terms for s → −∞ are those with the smallest exponent, and since one has
2λϕ < λf and 2λϕ < λr, it follows that the leading behavior is given by,

δf = const.× e2λϕs + . . . , δϕ = const.× eλϕs + . . . , δr = const.× e2λϕs + . . . (4.119)

The last relation implies that e2λϕs = const.× δr + . . . , therefore

δf = const.× (r − rex
H ) + . . . , δϕ = const.×

√
r − rex

H + . . . , (4.120)

where the dots denote higher order terms in (r − rex
H ). In addition, one has

N =
(
dr

ds

)2

= λ2(r − rex
H )2 + · · · = k2

(
1− rex

H

r

)2
+ . . . , (4.121)
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Figure 4.7: The extremal hairy black hole with rH = rex
H = 1.0855× 10−16.

which agrees with the near-horizon limit of the extremal RN-de Sitter solution in (4.85).
As a result, the function N(r) for the asymptotically flat extremal hairy black hole

can be represented as

N(r) = k2(r)
(

1− rex
H

r

)2
with k(rH) = k =

√
1− 2(rex

H )2Λ and k(∞) = 1. (4.122)

The solutions is thus determined by four functions: k(r) = 1+O(κ2) and σ(r) = 1+O(κ),
both of which are extremely close to unity, together with f(r) and ϕ(r) (shown in Fig. 4.7),
whose profiles closely coincide with those of the flat space CM monopole. For example
they show the same short-distance behavior as in Eq. (4.109),

r ≪ 1 : δf = const.× r2 + . . . , δϕ = const.× r
√

3−1
2 + . . . , (4.123)

and only for r ∼ rex
H ≪ 1 this changes to (4.120).

As seen in Fig. 4.7, the amplitudes f , ϕ stay close to the horizon values f ≈ 1, ϕ ≈ 0 for
r < 10−4, that is in the interval that exceeds the horizon size by 12 orders of magnitude.
The spacetime geometry in this region is very close to the extremal RN-de Sitter and the
analytical expression (4.85) perfectly approximates the numerical curve N(r) in Fig. 4.7.
In fact, the contribution of the Higgs field to the energy density, Λ = βκ/8, is negligible as
compared to the U(1) contribution and neglecting in Eq. (4.85) small terms proportional
to κ yields N(r) = (1− rex

H )2 with rex
H =

√
κ/(
√

2g′). Therefore, with high precision, the
near-horizon geometry can be approximated by the extremal RN geometry with magnetic
charge P = PU(1) = ±g/g′.

The function N(r) quickly relaxes to unity and already for r ≥ 102 × rex
H ∼ 10−14 the

spacetime geometry is almost flat. It follows that the functions f(r) and ϕ(r) show the
same behaviour as for the flat space CM solution. In particular, they start to vary only
when r ∼ 1 (see the Fig. 4.7), that is at a distance which exceeds the horizon size by
many orders of magnitude.

As a result, the extremal solution is characterized by two parametrically different
scales: the horizon scale which is of order of 10−16 and the electroweak scale which is
of order unity. The separation of scales is exhibited by the mass functions MH(r) and
Mh(r) defined in Eq. (4.104). On the one hand, the horizon mass function reduces to

MH(r) = 4πrex
H

κ

(
2− rex

H

r

)
+O(κ5/2), (4.124)



4.6. SPHERICALLY SYMMETRIC HAIRY BLACK HOLES 105

0

4

8

12

15.76

rexH 1× 10−12 1× 10−8 0.0001 1 1× 104

rH = rexH

rexH 1× 10−14

3× 1017

5× 1017

M
h

r

M
H

0

5

10

15

20

rexH 1 3 6 9

rH = rexH

r

M′
h

M′
H

Figure 4.8: The horizon mass function MH(r), the hair mass function Mh(r) (left), and
the corresponding energy densities M ′

H(r), M ′
h(r) (right) for the extremal hairy black

hole.

which grows quickly in the horizon vicinity up to the asymptotic value MH = 8πrex
H /κ

so that it varies essentially only close to the horizon, for rH ≪ 1, as seen in the left
panel of Fig. 4.8. On the other hand, the hair mass function Mh(r) stays very close to
zero for r < 1 but for r ∼ 1 the gauge amplitude f(r) starts to vary and approaches
zero while the Higgs amplitude ϕ(r) approaches unity. This produces a spherical shell
of energy containing the non-Abelian hair which forcesMh(r) to grow and approach the
asymptotic valueMh = ECM = 15.759 (see the left panel of Fig. 4.8). Therefore the mass
function M(r) =MH(r) +Mh(r) increases to reach the asymptotic value

M =MH +Mh = 8π√
2κg′

+ ECM = 5.033× 1017 + 15.759. (4.125)

This is the mass of the CM monopole regularized by gravity. The horizon contribution
in the above equation diverges in the flat space limit κ→ 0, but for the physical value of
κ it is finite, although very large as compared to the hair contribution. However we shall
see in the next section that the hair mass becomes more important for higher values of
the magnetic charge.

The distinction between scales is also evident when examining the energy densities
associated with the horizon and with the hair. The latter correspond to the derivatives
M′

H(r) and M′
h(r) which are shown in the right panel of Fig. 4.8. The horizon energy

density contains U(1) charge contribution, M′
H(r) = 2π/(g′2r2), and it becomes very

large at the horizon. The hair energy density shows a maximum at r ∼ 1, it approaches
zero both at the horizon and at spatial infinity.

Since f(r) decreases from unit value to zero, the hairy region contains the magnetic
charge PSU(2) = ±g′/g whose density is shown in the left panel of Fig. 4.9. The total
magnetic charge is always P = PU(1) + PSU(2) = ±1/e, but unlike for non-extremal black
holes, the whole SU(2) charge is now distributed in the hairy region outside the black
hole.

To recapitulate, the extremal solution describes the CM monopole with the central
pointlike singularity replaced by a tiny black hole. With a high precision, the geometry
is the extremal RN which approaches flat space already for r ≪ 1. This is why the
monopole profiles f(r), ϕ(r) are insensitive to the black hole presence. The dominant
part of the total mass is the U(1) contribution regularized by the cut-off imposed by the
event horizon while the hair energy is contained in a spherical shell of radius r ∼ 1. The
U(1) contribution to the magnetic charge is confined inside the black hole whereas the
SU(2) part is supported by the hair.
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As seen in Eq. (4.125), the horizon massMH is largely dominant as compared to the
hair massMh, hence for the total mass one may use the valueM≈MH = 8π/(

√
2κg′).

The dimensionful mass and horizon size are conveniently expressed in terms of the Planck
mass and length,

M = e2

4παM×m0 = g√
α
×MPl, rex

H = rex
H × ℓ0 = g√

α
×LPl, (4.126)

where g/
√
α = 10.27. For the extemal RN black hole with the same magnetic charge the

mass and radius are larger, M = MPl/
√
α = 11.71 ×MPl and rex

H = LPl/
√
α (see the

right panel of Fig. 4.9) because the whole magnetic charge is contained inside the RN
black hole, while the hairy black hole contains inside only the U(1) part of the charge.

As discussed above, the flat space Dirac monopoles and their gravitating RN coun-
terparts of small size are unstable, unless for ν = ±1/2. However, the CM monopole,
which has ν = ±1, is stable [49]. This suggests that its gravitating counterpart, the
extremal hairy black hole, is stable as well. In addition, this extremal solution is stable
also quantum-mechanically because its Hawking temperature vanishes which means that
it does not radiate.

4.7 Axially symmetric solutions
The spherically symmetric hairy black holes described above exist only for the magnetic
charge P = ±1/e ⇔ ν = ±1. In order to construct their generalizations for higher values
of |P |, one should relax the assumption of spherical symmetry. The simplest possibility
is to consider the axially symmetric fields discussed in Sec. 4.3. The field equations are
then solved numerically in the domain (r, ϑ) ∈ [rH ,∞)× [0, π/2].

4.7.1 Boundary conditions
We require the spacetime geometry to be asymptotically flat, symmetric with respect
to reflection in the equatorial plane, and globally regular outside the event horizon. In
particular, the absence of conical singularity require the condition K = S at the symmetry
axis and for this, it is convenient to introduce a new metric function,

h ≡ K − S. (4.127)
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To describe the boundary conditions at the horizon, r = rH , it is more suitable to intro-
duce a new radial coordinate,

x ≡
√
r2 − r2

H ⇒ x ∈ [0,∞). (4.128)

The horizon r = rH is now located at x = 0. The derivatives of the metric functions
with respect to r should be finite there, which is equivalent to the requirement that the
derivatives with respect to x vanish. Summarizing, here are the boundary conditions for
U , S and h:

axis, ϑ = 0 : ∂ϑU = ∂ϑS = 0, h = 0;
equator, ϑ = π/2 : ∂ϑU = ∂ϑS = ∂ϑh = 0;
horizon, x = 0 : ∂xU = ∂xS = ∂xh = 0;
infinity, x→∞ : U = S = h = 0.

(4.129)

For the WS fields, one has the conditions (4.46) which guarantee the regularity of the
energy density at the symmetry axis and the parity under the reflections ϑ→ π−ϑ of the
field amplitudes is given by the Eq. (4.43). At spatial infinity, the field configuration should
approach that of the Dirac monopole (4.74). At the horizon, where N = 0, the function
H1 should vanish since otherwise the radial component of the gauge field (4.48) would
diverge. The other WS amplitudes can assume any finite values at the (non-degenerate)
horizon and their derivatives with respect to r will be finite as well provided that the
derivatives with respect to x vanish. Taking all of this into account, the appropriate
boundary conditions are,

ϑ = 0 : H1 = H3 = y = ϕ1 = 0, ∂ϑH2 = ∂ϑH4 = ∂ϑϕ2 = 0;
ϑ = π/2 : H1 = H3 = y = ϕ1 = 0, ∂ϑH2 = ∂ϑH4 = ∂ϑϕ2 = 0;
x = 0 : H1 = 0, ∂xH2 = ∂xH3 = ∂xH4 = ∂xy = ∂xϕ1 = ∂xϕ2 = 0;

x→∞ : H1 = H2 = H3 = H4 = y = ϕ1 = 0, ϕ2 = 1.

(4.130)

Moreover, one should have H2 = H4 and ∂ϑh = 0 at the symmetry axis. It turns
out that these relations are automatically fulfilled when the conditions (4.129),(4.130) are
imposed. One can check that the constraints (4.60) are fulfilled at the symmetry axis by
virtue of the above boundary conditions.

To summarize, the field equations consist in a set of ten coupled nonlinear PDEs for
the functions (H1, H2, H3, H4, y, ϕ1, ϕ2, U, S, h) which must fulfill the boundary conditions
(4.129),(4.130). We solve the equations with the FreeFem finite element solver [195]
together with Newton’s method to handle the non-linearities. Details about the numerical
methods can be found in the Appendix A.2. To avoid the use of a cut-off radius, we use
a compactified radial coordinate,

x̄ ≡ x

1 + x
, (4.131)

which maps the semi-infinite interval x ∈ [0,∞) to the finite range x̄ ∈ [0, 1].
To assess the numerical accuracy of our solutions, we use the so-called virial identities.

The latter are formulated in terms of integrals which are identically vanishing, even though
their integrands do not, see for example the Refs [196, 197, 189]. These identities are
fulfilled for all our solutions with a precision depending on the numbers of discretization
points Nx̄, Nϑ along the x̄, ϑ directions. Taking Nx̄ = 130 and Nϑ = 30 yields typically
errors of the order of 10−7 or 10−8.

4.7.2 Flat space monopoles
We shall begin the study of axially symmetric solutions by considering the flat space
monopoles [50]. For this, one should set κ = 0, N = 1 and U = S = h = 0. The
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Einstein equations are then automatically fulfilled and only the WS equations remain.
The boundary conditions at the horizon have to be replaced by the following conditions
at the origin,

x = 0 : H1 = H3 = y = ϕ1 = ϕ2 = 0, H2 = H4 = 1. (4.132)

The equations contain the parameter ν, and for |ν| = 1 the solution is known – it is
the spherically symmetric CM monopole for which

H1 = H3 = y = ϕ1 = 0, H2 = H4 = f(r), ϕ2 = ϕ(r), (4.133)

where the profiles of the functions f and ϕ are shown in the Fig. 4.6. We use this solution
as the starting point in an iterative procedure to change the value of ν. Of course, ν should
be an integer to avoid the Dirac string singularity but the equations can be formally solved
for any real ν. This allows us to vary the value of ν by small steps. Our numerical scheme
converges well for |ν| ≠ 1 and we are able to go as far as |ν| = 100, after which the virial
identities deteriorate.

4.7.2.1 General properties

The profiles for the ν = 2 solution are shown in Fig. 4.10 and Fig. 4.11. On the one hand,
the functions H2, H4, ϕ2 which do not vanish in the spherically symmetric case, |ν| = 1,
remain essentially the same for the ν = 2 solution. In particular they almost do not
depend on the polar angle ϑ. The most notable change is that ϕ2 now approaches zero
at the origin more quickly, as described by Eq. (4.139) below, whereas H2 is no longer
positive definite. On the other hand, the functions H1, H3, y, ϕ1 which vanish for |ν| = 1
are now non-zero and show a strong ϑ-dependence. The norm of the Higgs field |Φ| still
vanishes at the origin, according to the boundary conditions (4.132).

The energy density (4.39) is singular at the origin due to the U(1) contribution EY .
Since Y3 = cosϑ+ y sinϑ, one has

EY =
[
(∂rY3)2 + 1

r2 (∂ϑY3)2
]

ν2

sin2 ϑ
= ν2

r2 + . . . , (4.134)

where the dots denote terms that are regular at the origin. Injecting this to (4.35) yields

M =
∫

r>0
E
√
−g d3x = 2πν2

g′2

∫ ∞

0

dr

r2 + Ereg ≡ EU(1) + Ereg. (4.135)

Here the first term, EU(1) is infinite whereas the second term, Ereg, is finite and contains
the finite part of the EY and also contributions of the SU(2) and Higgs fields. In other
words, Ereg is the regularized energy obtained by subtracting the divergent term EU(1) to
the total energy. For the CM monopole, ν2 = 1, the regularized energy reads

Ereg =4π
∫ ∞

0

 1
g2

(
ν2 + 1

2 f ′2 + ν2 (f 2 − 1)2

2r2

)

+ (rϕ′)2 + ν2 + 1
4 (fϕ)2 + r2β

8 (ϕ2 − 1)2

dr, (4.136)

and it evaluates to the value Ereg = 15.759 = ECM. Notice that in the above formula ν is
kept arbitrary for the purpose of Sec. 4.7.2.4.
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Figure 4.10: The SU(2) amplitudes for the ν = 2 monopole solution against ρ̄ = x̄ sinϑ
and z̄ = x̄ cosϑ.
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Figure 4.11: The U(1) and Higgs amplitudes and the regularized energy density for the
ν = 2 monopole solution.
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Figure 4.12: The regularized energy density ε̄(x, ϑ) of the ν = 2 (left) and ν = 5 (right)
monopole solutions for several fixed values of ϑ. In the latter case the maximum is much
higher.

It is convenient to represent the regularized energy density by a function ε̄ as

Ereg ≡ 2π
∫ π

0
sinϑ dϑ

∫ 1

0
ε̄(x̄, ϑ) dx̄. (4.137)

The profile of ε̄ for the ν = 2 solution is shown in bottom right panel of Fig. 4.11 and
it shows a strong ϑ-dependence with a marked maximum in the equatorial plane. It is
worth noting that the regularized energy density ε̄ is actually not positive definite and can
assume negative values in the central region, although the total energy density including
the unbounded U(1) contribution is of course always positive. At spatial infinity, it is not
difficult to check that the boundary conditions (4.130) imply that

ε̄(x̄, ϑ)→ ν2

2g2r2
dr

dx̄
= ν2

2g2 . (4.138)

Therefore, the regularized energy density approaches a constant value as x̄→ 1.
In the Fig. 4.12 we show the regularized energy density ε̄ for fixed values of ϑ. As one

can see, ε̄ is an almost monotone function of the radial coordinate along the symmetry
axis, ϑ = 0, and it shows a marked maximum along the equatorial plane for ϑ = π/2.
This implies that surfaces with constant energy density ε̄ = ε0 are similar to ellipsoids if
ε0 is small, but they have a toroidal shape for larger values of ε0, as seen in the Fig. 4.13.

Solutions with |ν| > 2 have essentially the same structure as the ν = 2 solution. The
functions H2, H4, ϕ2 always depend weakly on the polar angle ϑ while H3, H4, y, ϕ1 show
more and more pronounced extrema when ν increases. The Higgs norm vanishes only at
the origin and one has close to the origin [50],

ϕ1 ∼ ϕ2 ∼ rλ with λ =
√

1 + 2ν − 1
2 . (4.139)

The energy density gets more and more concentrated in the equatorial region and attains
higher and higher values there, see for example the Fig. 4.12 where ε̄ is shown for ν = 2

ν 1/2 1 2 3 4 5
Ereg 6.94 15.76 38.12 65.76 97.92 134.13

q -0.51 0 3.66 10.61 20.68 33.78

Table 4.3: The regularized energy Ereg and quadrupole moment q for several monopole
solutions.
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Figure 4.13: Isosurfaces of the regularized energy density ε̄ = ε0 expressed in Cartesian
coordinates (x, y, z) for the ν = 5 monopole solution and several values of ε0. For small
values of ε0 the surfaces are deformed ellipsoids and for larger ε0 they become tori.

and ν = 5. The numerical values of the regularized energy Ereg for several values of the
winding number ν are shown in Table 4.3. We include for completeness the case ν = 1/2
because it corresponds to the minimal value of the magnetic charge according to the Dirac
charge quantization (4.79). However for non-Abelian solutions, only integer values of ν
are allowed and thus the solution with ν = 1/2 contains the string singularity.

4.7.2.2 The interior structure

For the CM monopole, which corresponds to |ν| = 1 and is spherically symmetric, the
interior structure is quite simple. At the origin, one has the pointlike U(1) magnetic charge
described by the Eq. (4.53). The W bosons condensate in a central region of typical size
∼ 1/mW which contains all the SU(2) charge. The corresponding charge density ρSU(2)
is given by the Eq. (4.99) (where one has σ(r) = 1 in the flat space theory). The SU(2)
part of the magnetic charge is thus distributed smoothly over 2-spheres.

The axially symmetric monopoles show a richer structure. In addition to the smooth
SU(2) charge density, we find that the field configuration describes a non-vanishing electric
current density. The latter is shown together with the SU(2) magnetic charge density for
the ν = 2 monopole in the Fig. 4.14. The total magnetic charge splits as P = PU(1)+PSU(2)
where the U(1) part is still pointlike and given by the Eq. (4.53), while the SU(2) part
can be conveniently represented via a function Q as

PSU(2) =
∫

Σ
ρSU(2)

√
−g d3x ≡ 2π

∫ π

0
sinϑ dϑ

∫ 1

0
Q(x̄, ϑ) dx̄. (4.140)

This part of the charge is smoothly distributed over the space, but its value is the same
as for a Dirac monopole,

PSU(2) = −g′2ν/e = −νg′/g, (4.141)
see the Eq. (4.80). This equivalence directly arises from the boundary conditions (4.130)
at infinity since the total magnetic charge depends only on the asymptotic field behavior.
Additionally, the magnetic charge can be computed numerically by evaluating the integral



4.7. AXIALLY SYMMETRIC SOLUTIONS 113

Q

0 0.25 0.5 0.75 1

ρ̄

−1

−0.5

0

0.5

1
z̄

−0.5 −0.4 −0.3 −0.2 −0.1 0

r Jφ

0 0.25 0.5 0.75 1

ρ̄

−1

−0.5

0

0.5

1

z̄

−0.002 −0.001 0 0.001 0.002

Figure 4.14: The magnetic charge (left) and electric current (right) densities for the ν = 2
monopole solution.

(4.140) and we check that it yields the correct value (4.141). This is a good consistency
check for our procedure.

As one can see in the left panel of Fig. 4.14, already for ν = 2 the SU(2) charge density
is not at all spherical and shows a strong ϑ dependence with a profound minimum in the
equatorial plane. As a result, the SU(2) magnetic charge distribution has a toroidal shape
with a maximal value located along a ring in the equatorial plane z = 0. The solutions
with a higher ν show a similar toroidal distribution of the charge density.

For the monopoles with |ν| > 2, we also find a non-zero azimuthal component Jφ

of electric current density. The total current through the ρ − z half-plane is zero, but
the currents in the z > 0 and z < 0 regions do not vanish and compensate each other.
This is a direct consequence of the parity of the field amplitudes (4.43) which implies
that Jφ is an odd function. As a result, the monopoles contain two oppositely directed
circular electric currents, which can be viewed as a manifestation of the electroweak
superconductivity [194, 198]. One has Jφ ∼ 1/r close to the origin which does not make
singular the total flux but complicates the graphical representation of Jφ. Therefore, we
show in the plots the bounded product r×Jφ. As seen in the right panel of Fig. 4.14, Jφ is
antisymmetric with respect to the reflections along the equatorial plane, with a minimum
in the upper hemisphere and a maximum in the lower hemisphere. This corresponds to
two superconducting azimuthal currents flowing in opposite directions and giving rise to
two oppositely directed magnetic moments.

In the Fig. 4.15 we show level surfaces for the SU(2) charge density Q defined in
Eq. (4.140) and for the current density rJφ for the ν = 2 and ν = 4 monopole solu-
tions. The thick toroidal region centered in the equatorial plane contains the non-Abelian
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Figure 4.15: Isosurfaces of the SU(2) magnetic charge density (green to orange) and of
the electric current density (red and blue) for the ν = 2 (upper panel) and ν = 4 (lower
panel) monopole solutions in Cartesian coordinates of the 3-space. The ring radii in the
latter case are twice as large, but their thickness is the same.

magnetic charge. Although solutions with |ν| > 1 can be viewed as superpositions of ν
Cho-Maison monopoles, these monopoles cannot be distinguished from each other and
merge together into a toroidal condensate. The two other systems of tori above and be-
low the equatorial plane correspond to two oppositely directed distributions of azimuthal
electric current – superconducting rings. As one can see in the Fig. 4.15, the whole picture
is qualitatively the same for ν = 2 and ν = 4, and the same picture is found for other
(even or odd) values of ν.

All of this suggests the following description of the inner structure of the monopole
solutions. The SU(2) part of their magnetic charge is distributed inside a torus centered
in the equatorial plane (the U(1) part is always located at the origin and is pointlike).
This magnetic ring produces a magnetic field which is mostly anti-parallel to the z-axis for
z < 0 (assuming that ν > 0, the charge of the ring is negative) and mostly parallel to z-axis
for z < 0. This magnetic field forces the electrically charged W bosons constituting the
condensate inside the monopole to Larmor orbit in one direction in the upper hemisphere
and in the opposite direction in the lower hemisphere5. This constitutes the two circular
superconducting electric currents. The latter produce two oppositely directed magnetic
dipole moments repelling each other but attracted to the magnetic ring. Each dipole
creates a magnetic field directed oppositely to that of the magnetic ring (Lenz’s law),

5Since we are describing a purely magnetic configuration, the condensates in each hemisphere consist
of both W + and W − bosons, thereby avoiding the presence of an electric dipole moment. The W −

bosons orbit in the opposite direction to the W + bosons.
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hence pushing the individual CM monopoles (or rather their SU(2) charge) toward the
equatorial plane. This field overcomes the mutual repulsion of the individual monopoles
and squeezes them into a toroidal condensate.

Of course, this electromagnetic description of the inner structure is not completely
accurate since standard electromagnetism applies only in the Higgs vacuum, whereas the
Higgs field is not in its vacuum state inside the monopole.

4.7.2.3 Quadrupole moment

The electromagnetic description shows that the total magnetic dipole moment of the
monopoles is zero (see the App. 4.B). Indeed, the oppositely directed electric currents
produce two dipole moments which compensate each other while the magnetic charge
density is everywhere sign definite. However the magnetic quadrupole moment does not
vanish. The latter is described by a traceless tensor qik receiving contributions from the
magnetic charge and electric current [199],

qik =
∫

Σ
(3xixk − r2δik)ρSU(2) d

3x+
∫

Σ

[
xi(r⃗ × J⃗)k + xk(r⃗ × J⃗)k

]
d3x, (4.142)

where xk = (x, y, z) are the Cartesian coordinates and J⃗ is the spatial part of the
electric 4-current. Owing to the axial symmetry, this tensor has the structure qik =
diag[−q/2,−q/2, q], where the only independent component is

q = qzz =
∫

Σ

[
3z2 − r2

]
ρSU(2) d

3x+
∫

Σ
2zJφ d

3x. (4.143)

The first integral here gives the dominant contribution and for the oblate systems shown
in Fig. 4.15, one has q > 0 since ρSU(2) is negative when ν is positive. We can get the
value of q for our solutions as follows. The quadrupole moment (4.142) determines the
non-spherically symmetric part of the asymptotic behavior of the magnetic field [199],

δBidx
i = 1

2r7

[
5xixjxk − r2(xiδjk + xjδik + xkδij)

]
qjkdx

i. (4.144)

Notice that the spherically symmetric part of the magnetic field is that of the Dirac
monopole associated with the potential (4.77). In the axially symmetric case, passing to
spherical coordinates, this reduces to

δBi dx
i = 3q

4r4

[
(3 cos2 ϑ− 1)dr + r sin(2ϑ)dϑ

]
. (4.145)

On the other hand, as shown in Eq. (4.204), the asymptotic form of the electromagnetic
vector potential is

δAµdx
µ = ν

gg′yγ sinϑ dφ = ν

gg′
Cγ

r2 sin2 ϑ cosϑ dφ, (4.146)

where the value of the coefficient Cγ is determined by the numerics. Computing then the
magnetic field δB⃗ = ∇⃗ × δA⃗ yields exactly the same expression as in Eq. (4.145) with

q = 4ν
3gg′Cγ. (4.147)

We can therefore read-off the quadrupole moment from the asymptotic behavior of our
solutions and we show its values for the lowest ν in Table 4.3. As one can see, the value
of q increases with ν which corresponds to the fact that the oblateness of the solutions
increases with growing magnetic charge. It is also worth noting that q becomes negative
for |ν| < 1, and we checked that solutions becomes prolate in this case: the magnetic
charge density isosurfaces become stretched along the z-axis.
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Figure 4.16: The norm of the Higgs field |Φ| (left) and the regularized energy density ε̄
(right) for the monopole solution with ν = 50.

4.7.2.4 The limit of large magnetic charge

Both the regularized energy Ereg and the quadrupole moment q increase with ν. We
propose in this subsection to derive analytical estimates in the large magnetic charge
limit.

First, it is known that the Higgs field should approach zero when the magnetic field
becomes very strong. The electroweak gauge symmetry is then fully restored [200, 201].
This can be seen at the level of classical solutions by studying their inner structure
[194, 198]. In our case, when the magnetic charge P ∝ ν increases, the magnetic field
gets stronger, hence the Higgs field in the central region of the monopole is expected to
approach zero. This expectation is confirmed already at the perturbative level since close
to the origin one has

ϕ1 ∼ rλ

(sin ϑ2

)ν+1

+
(

cos ϑ2

)ν+1
 , ϕ2 ∼ ∂ϑϕ1, (4.148)

with λ = (
√

1 + 2ν − 1)/2, hence the Higgs field gets smaller in the central region when
ν increases.

The numerical analysis confirms the expectation at the non-perturbative level and
shows that for large ν the monopoles develop in the central region a spheroidal bubble
where the norm of the Higgs |Φ| =

√
ϕ2

1 + ϕ2
2 is very close to zero. Hence the system is

in the so-called Higgs false vacuum there. This can be seen in the left panel of Fig. 4.16.
The SU(2) gauge field also vanishes inside the bubble since H1, H3 are very close to zero
while H2, H4 are very close to unity which implies that W a

µ = 0, see Eq. (4.47). The y
function is very close to zero too. As a result, inside the bubble there remains only the
U(1) hypercharge field,

inside: Yµdx
µ = ν(cosϑ± 1)dφ, W a

µ = 0, Φ = 0. (4.149)

In view of the Eq. (4.19), this describes the electromagnetic field Fµν = (g′/g)Yµν associ-
ated with the pointlike U(1) charge PU(1) = −νg/g′ and the Z field is Zµν = Yµν . Since
the gauge symmetry is restored, the Z field is massless inside the bubble.
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Figure 4.17: Internal structure of the non-Abelian magnetic monopole with ν = −20. The
central region is occupied by a spheroidal bubble (cyan) containing the U(1) hypercharge
field generated by the pointlike magnetic charge PU(1) = −νg/g′ in the center. This field is
strong enough to suppress all other fields. Outside the bubble, the nonlinear fields interact
and produce a condensate forming a ring of non-Abelian magnetic charge PSU(2) = −νg′/g
squeezed between two superconducting rings of oppositely directed electric currents. Still
farther away, the nonlinear fields die away and there remains only the magnetic field of a
Dirac monopole with total charge PU(1) + PSU(2) = −ν/e.

Outside the bubble, the Higgs field approach its vacuum expectation value, |Φ| = 1,
generating non-zero masses for the fields, and being now massive, the latter tend to zero
at large distances exponentially fast except for the photon that remains massless and
long-ranged. The field configuration then approaches that in Eq. (4.75),

outside: Yµdx
µ = ν(cosϑ± 1)dφ, TaW

a
µ = T3 Yµdx

µ, Φ =
(

0
1

)
. (4.150)

This corresponds to the Dirac monopole with charge PU(1) + PSU(2) = −ν/e.
Therefore, the Higgs field interpolates between |Φ| = 0 and |Φ| = 1 in a transition

region – the "bubble crust". This region contains a W-condensate in the form of rings
close to the equatorial plane, as shown in Fig. 4.17 for ν = −20. The condensate consists
of a magnetically charged ring squeezed between two rings of oppositely directed electric
currents. Comparing with the similar picture in Fig. 4.15, one can see that the rings
become large and strongly "squashed" for large |ν|, while their thickness in the z-direction
visibly does not change. The total non-Abelian magnetic charge contained in the crust is
PSU(2) = −νg′/g.

As seen in the left panel of Fig. 4.16 where the region of Higgs false vacuum corresponds
to the black region, the bubble is not exactly spherical. However we can obtain reasonable
estimates by approximating the fields by their spherically symmetric expressions (4.65)
with the functions f , ϕ given by

f(r) = 1 if r < R, f(r) = 0 if r > R, ϕ(r) = 1− f(r), (4.151)

where R is the bubble radius. Injecting this to Eq. (4.136) where ν is kept arbitrary yields
the energy,

Ereg = β

8
4πR3

3 + 4π ν2

2g2R
. (4.152)

Here the first term is the contribution of the constant Higgs energy density inside the
bubble, and the second one is the non-Abelian magnetic energy outside the bubble. Min-
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Figure 4.18: Left: the regularized energy Ereg(ν) in units of the CM monopole energy
ECM = Ereg(1) and Ereg(ν) divided by ν3/2. Right: the quadrupole moment q and also q
divided by 4ν2/(9gg′) against the winding number ν.

imizing with respect to R yields the following estimates for the bubble size and energy,

R =
(

4
βg2

)1/4√
|ν| ≈ 1.29

√
|ν|, Ereg = 8π

3

(
β

4g2

)1/4

|ν|3/2 ≈ 7.4|ν|3/2. (4.153)

We can identify the bubble size and hence the position of the bubble crust with the radius
of the magnetic ring in the Fig. 4.17. The values of the bubble size that can be obtained
from the numerical solutions are in good agreement with R in Eq. (4.153). Moreover,
as seen in the left panel of Fig. 4.18, the numerically obtained ratio Ereg/ν

3/2 converges
indeed toward a constant value at large ν. This value, 11.4, is larger than 7.4 as suggested
by the Eq. (4.153). This is because the above analytical estimates take into account only
the energy inside and outside the bubble without considering the energy in the crust.
More accurate estimates could be obtained by introducing a finite transition region where
f(r) and ϕ(r) interpolate between their inside and outside values.

Our numerics suggests that for large ν the constant Cγ in the asymptotic formula
(4.204) approaches the value ν/3. Hence the quadrupole moment defined by Eq. (4.147)
is

q = 4
9gg′ν

2. (4.154)

This can be seen in the right panel of Fig. 4.18. This can be represented as

q = − 4ν
9g′2PSU(2) ≈ −1.16× PSU(2)R

2, (4.155)

with R given in Eq. (4.153). Thus one has q ≈ PSU(2)R
2 which is the quadrupole moment

of a homogeneously charged torus of radius R and charge PSU(2). This shows again that
the above estimate for the bubble size R is sensible, because the dominant contribution
in the quadrupole moment formula (4.143) is the first integral containing the magnetic
charge density while the second integral containing the contribution of the electric current
is negligible for large |ν|. Specifically the currents I± in each hemisphere can be computed
as

I+ = −I− =
∫ ∞

0
dz
∫ ∞

0
(J⃗ · n⃗φ)ρ dρ, (4.156)

where n⃗φ is the unit vector in the azimuthal direction. We find that these currents
approach the constant value I± = ∓0.095 for large |ν|. Since the radius R of the su-
perconducting rings is proportional to

√
ν, the dipole moments produced by each rings

scale as πR2I± ∝ ν. These dipole moments are separated in space and their fields do not
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exactly compensate each other but instead produce a quadrupole moment. However the
separation between the two superconducting rings is almost independent on ν and there-
fore their quadrupole moment grows slower than ν2 and is sub-dominant as compared to
that produced by the magnetic ring.

One can finally wonder why the condensate which constitutes the magnetic ring and
the two superconducting rings are strongly squashed for large ν. As seen in the Eq. (4.205),
the angular dependence of the W-modes in the far field zone is given in terms of the
associated Legendre polynomials P ν

j (cosϑ) and P ν±1
j (cosϑ). For large ν one has ν ±

1 ≈ ν and since the leading contribution corresponds to the value j = |ν|, the angular
dependence of the W-modes is given by

P ν
|ν|(cosϑ) ∝ (sinϑ)|ν|. (4.157)

These modes are strongly localized around ϑ = π/2, which agrees with the rings in the
equatorial region shown in Fig. 4.17. On the other hand, the angular dependence of the
Z, Higgs and electromagnetic modes is different. It follows that the electric currents and
the SU(2) magnetic charge must be supported mainly by a condensate of W bosons.

It is also worth reminding that the Dirac monopole embedded in the electroweak theory
is unstable with respect to perturbations with angular momentum j = |ν| − 1 and the
instability resides in the W-sector (see the discussion in Sec. 4.5). The Dirac monopole can
be viewed as a superposition of two pointlike charges, PU(1) and PSU(2). It seems plausible
that the instability growth affects the SU(2) field configuration by radiating away all its
central part, and what remains condenses to the rings in the equatorial region. The total
magnetic charge does not change but its SU(2) part gets distributed over the volume of the
central torus. Of course, it remains to verify that the non-Abelian monopoles with |ν| > 1
are indeed stable, in which case they may be viewed as remnants of the decay of Dirac
monopoles. For the CM monopole (|ν| = 1), numerical evidences regarding its stability
are provided in our publication [49]. One should also remember that the instabilities are
not necessarily axially symmetric for |ν| > 1. Therefore the non-Abelian monopoles that
have been considered here are only a special case of more general solutions which have no
symmetry at all, or perhaps show only discrete symmetries as for the spherical harmonics.
The stable remnant of the Dirac monopole decay may be one of these monopoles rather
than our axially symmetric configurations.

4.7.3 Axially symmetric hairy black holes
Let us move on to the black hole case. The set of PDEs to be solved contains the parameter
ν, and for |ν| = 1 the solutions are already known. These are the spherically symmetric
black holes expressed by the fields (4.67),(4.68) in terms of 4 functions N , σ, f , ϕ of the
radial coordinate r. The event horizon is located at r = rH where N(rH) = 0. These
solutions can also be expressed in the axially symmetric form (4.26),(4.48),(4.51) in terms
of 10 functions U , K, S, . . . depending only on the radial coordinate. The line element
(4.26) also contains N = 1− rH/r which is a given function of r (i.e. not subject to the
field equations). This function is introduced for convenience, and can always be gauged
away by passing to the new radial coordinate r̃ such that dr̃/r̃ = dr/(r

√
N). The horizon

is located at r = rH where the 10 functions assume values UH , KH , SH , etc.
Naively, the relation between the two descriptions is provided by the Eqs. (4.65),(4.66)

which provides the method to rapidly descend from the axially symmetric to the spher-
ically symmetric case. However, this does not determine the precise correspondence be-
tween the two descriptions since the radial coordinate r is not the same in the line elements
(4.26) and (4.67). The relation between the two coordinate systems is given in App. 4.D.
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Summarizing here the results presented in the App. 4.D, the spherically symmetric
hairy solutions can be described using the line element (4.67) as was done in the Sec. 4.6.
They are labeled by the Schwarzschild radius of their event horizon which takes value in the
interval, rH ∈ [rex

H , r
0
H ]. The same solutions can be described using instead the line element

(4.26). The parameter rH in this case does not correspond to the Schwarzschild radius
anymore. It takes value in the interval, rH ∈ [0, r0

H − r0
−], where r0

− = ν2κ/(2e2r0
H) is the

inner horizon radius of the RN geometry. Hence, the bifurcation of hairy solutions with RN
does not occur for rH = r0

H ; instead, it happens for rH = r0
H−r0

−. In the extremal limit, rH

now approaches zero and the horizon values UH , KH , SH become infinite. Consequently,
one has to use a different function N(r) in the ansatz (4.26).

The same conclusion applies to axially symmetric hairy black holes for which |ν| > 1.
The parameter rH and the function N(r) in the line element (4.26) assume the following
values,

non-extremal case: 0 < rH ≤ r0
H − r0

−, N(r) = 1− rH

r
,

extremal case: rH = rex
H , N(r) = k2(r)

(
1− rH

r

)2
, (4.158)

where r0
H is given in the Table 4.2 for a few values of |ν|, rex

H is the extremal horizon radius
for RN-de Sitter black holes which is defined in Eq. (4.84), and

k2(r) = 1− Λ
3
(
r2 + 2rHr + 3r2

H

)
× 1 + r4

H

1 + r4 . (4.159)

The spherically symmetric solutions with |ν| = 1 can be used as the starting point in
an iterative procedure to change the value of ν. Our numerical scheme converges well
for |ν| ≠ 1 and we are able to go as far as |ν| = 100, after which the virial identities
deteriorate.

4.7.3.1 General properties

The simplest non-spherical solutions are obtained when ν = ±2. To illustrate their
profiles, we set κ = 10−3 instead of choosing the physical value κ ∼ 10−33 since otherwise
it is difficult to see the deviation from spherical symmetry. The parameter rH ranges from
zero up to the maximal value r0

H − r0
− ≈ 1.4657 corresponding to the bifurcation with the

RN solution.
If rH is close to the upper bound, r0

H − r0
−, then the black hole is only "slightly hairy"

and the spacetime geometry is essentially RN with magnetic charge P = ±2/e. We
therefore choose an intermediate value, rH = 0.7, and show in Figs. 4.19-4.21 the profiles
for the solution with ν = 2 against ln(r/rH) and ϑ.

The functions H2, H4 and ϕ2, which do not vanish in the spherically symmetric case
when |ν| = 1, exhibit only a weak dependence on ϑ for the ν = 2 solution. Their ϑ-
dependence is more visible at the horizon, as seen in the profile of ϕ2 in the Fig. 4.20.
Although the profiles of H2 and H4 closely resemble each other, the maximum value of
H2 occurs in the equatorial plane, ϑ = π/2, whereas the maximum of H4 is located at the
symmetry axis, ϑ = 0. On the other hand, the functions H1, H3, y and ϕ1, which are zero
for |ν| = 1, no longer vanish when |ν| > 1, and they show a strong ϑ-dependence. They
exhibit a distinct maximum in between the symmetry axis and the equatorial plane. At
the horizon, their dependence on ϑ remains pronounced, except for H1 which vanishes at
r = rH – see the boundary conditions (4.130).

The metric functions U,K and S almost do not depend on the polar angle ϑ. In the
case of the RN solution, one has K = S = −U , as shown in the Eq. (4.228). Therefore,
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to emphasize the deviation from the RN geometry, we present in the Fig. 4.21 the combi-
nations S+U and K−S. These are non-zero only for the non-Abelian hairy black holes.
As one can see, S + U exhibits a slight maximum in the equatorial plane for r = rH ,
whereas K − S shows a pronounced minimum there. The latter illustrates the deviation
from spherical symmetry since K = S holds for a spherically symmetric spacetime. This
deviation is always small, typically of the order of 10−5. For ϑ = 0, one has K = S
and also ∂ϑU = ∂ϑK = ∂ϑS = 0. In view of Eq. (4.60), this guarantees that the two
gravitational constraints C1 and C2 vanish at the symmetry axis, while (4.59) then implies
that they should vanish everywhere. This is indeed confirmed by our numerics with the
same precision as the virial identities.

We also check that the combination U −K which determines the surface gravity,

κg = N ′

2 eU−K

∣∣∣∣∣
r=rH

= 1
2rH

eU−K

∣∣∣∣
r=rH

, (4.160)

is constant at the horizon. To illustrate this, we compare in the bottom panel of Fig. 4.22
the angular dependence of U − K at r = rH with that U and S for the solution with
rH = 0.7. As one can see, U − K remains constant – confirming once again that the
constraints are fulfilled – while the dependence on ϑ of U(rH) and S(rH) is clearly visible.
We do not show the angular dependence of K(rH) as it closely resembles that of S(rH), see
for example the difference K −S shown in the Fig. 4.21. One has U −K|r=rH

= −0.0366
which yields the value κg = 0.6885.
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Figure 4.19: The SU(2) amplitudes H1, H2, H3, H4 for the hairy black hole solution with
κ = 10−3, rH = 0.7, ν = 2 against ln(r/rH) and ϑ.
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In the top left panel of Fig. 4.22, we compare the surface gravity as a function of rH for
the RN and for the hairy black holes. In both cases, when the horizon size decreases, the
surface gravity first grows, then attains a maximal value and starts decreasing, approach-
ing zero in the extremal limit. In this limit, one has rH → 0 so that the factor 1/rH in
Eq. (4.160) diverges but it is damped by the exponent eU−K approaching zero because the
horizon value of U −K becomes large and negative. The surface gravity for hairy black
holes is always greater than or equal to that for RN black holes. When rH → r0

H − r0
−,

the hairy solutions bifurcate with RN and the surface gravity evaluates to κg = 0.3376.
In our system of coordinates, the horizon resides at a surface of constant radial co-

ordinate, r = rH . However, for the hairy black hole with ν = 2, the WS fields are
angle-dependent at the horizon, see the Figs. 4.19 and 4.20. This suggests that the hori-
zon is deformed. The deformation is revealed when measuring the horizon circumference
along the equator, Le, and its circumference along the poles, Lp,

Le = 2πrH e
S
∣∣∣
r=rH ,ϑ=π/2

, Lp = 2rH

∫ π

0
eK dϑ

∣∣∣∣
r=rH

. (4.161)

The deviation of the ratio Le/Lp from unity is shown against rH in the top right panel
of Fig. 4.22. This ratio is often referred to as the horizon sphericity [202, 203]. For a
spherical horizon, one has Le = Lp, but for the hairy black hole solutions we find that

0 ≤ Le

Lp
− 1 ≲ 8× 10−5 ⇒ Le ≥ Lp. (4.162)

Hence the horizon is an oblate ellipsoid but the deviation from spherical symmetry is small.
The ratio Le/Lp approaches unity as rH reaches its upper bound, rH → 1.4657, and in the
extremal limit, rH → 0. This can be easily understood since in the former case the hairy
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Figure 4.23: The horizon values of ϕ2 and H2 (top left), the differences |ϕ2(rH , ϑ) −
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horizon value of e2U (bottom right) as functions of rH .

solutions bifurcate with RN, which is a spherically symmetric field configuration; whereas
in the later case, the near-horizon geometry is that of a RN-de Sitter black hole, which
is again spherically symmetric. For the intermediate solution with rH = 0.7 shown in
Figs. 4.19-4.21, the deviation from spherical symmetry is almost maximal, (Le/Lp)− 1 ≈
8× 10−5.

In the whole range rH ∈ [0, 1.4657], the functions Le(rH) and Lp(rH) vary monoton-
ically. For rH = 0 and rH = 1.4657, the horizon is spherical, hence the circumferences
Le, Lp coincide and become directly related to the usual Schwarzschild horizon radius. In
particular, we check that

Le

2π

∣∣∣∣
rH=0

= rex
H ≈ 0.0932, Le

2π

∣∣∣∣
rH=1.4657

= r0
H ≈ 1.4734, (4.163)

where rex
H is the Schwarzschild horizon radius of the extremal RN-de Sitter black hole with

ν = 2, while r0
H is the Schwarzschild radius of the RN black hole that bifurcates with the

hairy solutions. This show again that the results obtained with our code are consistent.
Additional information about the horizon values of the fields is presented in the

Fig. 4.23. In the top left panel, the horizon values of H2 and ϕ2 are shown for ϑ =
{0, π/2, π/4}. Remembering that these are functions which are non-vanishing in the spher-
ically symmetric case (|ν| = 1), this panel is analogous to the right panel of Fig. (4.4).
Specifically, H2(rH , ϑ) and ϕ2(rH , ϑ) both lie in the range [0, 1]. As the horizon size de-
creases, the value of H2 approaches unity, while ϕ2 approaches zero. The key difference
is that now, these horizon values depend on ϑ for intermediate values of rH . The angu-
lar dependence of H2 and ϕ2 at the horizon is highlighted in the top right panel of the
Fig. 4.23. We compare their values at ϑ = 0 with those at ϑ = {π/4, π/2}. Notably,
the ϑ-dependence of ϕ2(rH) is more pronounced when rH ≈ 0.7 – coinciding with the
maximal deviation from spherical symmetry of the horizon geometry. On the other hand,
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the maximal angular variations of H2(rH) occur at rH ≈ 1.2.
In the spherically symmetric limit, one has also H4 = H2. Therefore the difference

H2 − H4 also provides information about the deviation from spherical symmetry. The
horizon value of this difference is shown in the bottom left panel of Fig. 4.23 for ϑ =
{0, π/2, π/4}. One can see that H2 − H4 vanishes both for rH = 0 and rH = 1.4657 –
in these limits the horizon is spherically symmetric. The difference between H4(rH) and
H2(rH) becomes maximal at rH ≈ 1.2. This figure also demonstrates that the regularity
condition H2 = H4 for ϑ = 0 holds at the horizon. Of course we also check that it is
fulfilled for r > rH .

Finally, the bottom right panel of Fig. 4.23 presents the horizon value of e2U at ϑ = π/4
for RN and for hairy black holes. We do not show this horizon value for ϑ ̸= π/4 because
U is almost angle-independent. The two curves are very close to each other and the hairy
branch bifurcates with RN at rH = 1.4657. In the extremal limit, rH → 0, one has
exp[2U(rH , ϑ)]→ 0 and therefore U(rH , ϑ)→ −∞.

It follows that the extremal solution cannot be obtained by using the metric pa-
rameterization (4.26) with the function N(r) = 1 − rH/r. Instead, one should set
N(r) = k2(r)(1−rH/r)2, where k(r) is given in Eq. (4.159) and rH = rex

H is determined by
Eq. (4.84). One has then N ′(rH) = 0 so that the surface gravity (4.160) identically van-
ishes and no large values of the metric functions are needed. The profiles of U , S, K − S
and ϕ2 for the extremal solution with ν = 2 and κ = 10−3 are shown in the Fig. 4.24.
While the metric function U still shows little variation with respect to the polar angle,
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extremal hairy black hole solution with κ = 10−3 and ν = 2.
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its r-dependence is no longer monotonic. The horizon becomes spherical so that K − S
now vanishes at r = rH and, furthermore, S(rH) = 0, indicating that rH coincides with
the Schwarzschild horizon radius, rH = Le/(2π) = Lp/(2π) = rex

H . All the WS amplitudes
are now constant at the horizon: H1, H3, y, ϕ1, ϕ2 all vanish, while H2, H4 equal to unity.
Hence, close to the horizon, the spacetime geometry is extremal RN-de Sitter with the
WS fields given by,

Y = ν cosϑ dφ, W = Φ = 0. (4.164)
This is again a manifestation of the electroweak symmetry restoration in strong magnetic
fields [194].

4.7.3.2 Non-abelian magnetic charge distribution

The SU(2) part of the magnetic charge moves in the outer black hole region as the horizon
size decreases. In the spherically symmetric case, the fraction of the SU(2) charge dis-
tributed in the outer region was given by the horizon value of a single function, according
to the Eq. (4.100). For axially symmetric hairy black holes, the situation is more compli-
cated. The integral giving the SU(2) magnetic charge distributed outside the horizon,

P outside
SU(2) =

∫
r>rH

ρSU(2)
√
−g d3x, (4.165)

cannot be evaluated analytically. Therefore, we compute this integral numerically and
show in the Fig. 4.25 the ratio P outside

SU(2) /PSU(2), where PSU(2) = −ν g′/g is the total SU(2)
charge. At rH = 1.4657, when the hairy solutions bifurcates with RN, the SU(2) charge
is confined inside the horizon so that P outside

SU(2) = 0. In the extremal limit, rH → 0, one has
P outside

SU(2) = PSU(2), hence the whole SU(2) charge is distributed in the exterior region.
In the spherically symmetric limit (|ν| → 1), the functions H2 and H4 reduce to one

single radial function f(r), as shown in Eq. (4.65). The horizon value of f 2 coincide with
the ratio P outside

SU(2) /PSU(2). To understand what happens in the axially symmetric case, we
also show in the Fig. 4.25 the horizon values of (H2)2 and (H4)2 for ϑ = {0, π/4, π/2}. It
is instructive to see that the curve corresponding to the fraction of the SU(2) charge in
the outer region lies between the curves for (H2)2 and (H4)2. For ν = 1, the same figure
would show that all curves coincide with each other.
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SU(2) ,
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and ν = 2. This ratio is compared to the horizon values of (H2)2 and (H4)2 at ϑ =
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κ = 10−3, rH = 0.7, ν = 2.

For the flat space monopoles with |ν| > 1, the SU(2) charge distribution has a toroidal
shape with a maximum located along a ring in the equatorial plane. In the black hole
case, we can represent the magnetic charge distribution by the same function Q as in the
flat space theory, see the Eq. (4.140). The profile of Q for our reference black hole solution
with ν = 2 is shown in the left panel of Fig. 4.26. We plot this profile using non-compact
cylindrical coordinates (ρ, z) = (r sinϑ, r cosϑ) rather than their compactified counter-
parts, (ρ̄, z̄), to provide a clearer view of the horizon, located at r = 0.7. Remember,
however, that the horizon is not spherical. The SU(2) magnetic charge is still confined
within a torus centered in the equatorial plane; but this torus now contains only a fraction
of the total charge. Notice that the magnetic charge density Q vanishes at r = rH .

In the right panel of the Fig. 4.26, we present the electric current density for the
reference solution. As for flat space monopoles, the only non-vanishing component of
the electric current density is Jφ and therefore, we plot the scalar product J⃗ · n⃗φ where
n⃗φ is the unit vector in the azimuthal direction. The electric current density exhibits a
minimum in the upper hemisphere and a maximum in the lower hemisphere, both very
close to the horizon. They correspond to the superconducting rings of oppositely directed
electric currents discussed in Sec. 4.7.2.2. The current density clearly does not vanish at
r = rH .

The magnetic torus containing a fraction of the SU(2) charge and the rings of oppo-
sitely directed electric currents constitute the black hole hair. It is made of a condensate
of W bosons. When decreasing the horizon size, we observe that the magnetic ring re-
mains fixed at ρ ≈ 1, while the electric currents rings remain stuck to the horizon and
decrease in size. This is consistent with the picture of the Fig. 4.15 in flat space which
shows that the circular electric currents are very close to the origin while the magnetic
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ring has a radius of order unity.
As a result, the main feature of the magnetic hairy black holes as compared to their

flat space counterparts is the presence of the horizon which regularizes the monopole
energy. The horizon hides the singular U(1) magnetic charge as well as a fraction of the
SU(2) magnetic charge from all observers in the exterior black hole region. The WS field
configuration remains very similar to that of the monopoles, especially in the extremal
limit when the horizon size shrinks, causing the entire SU(2) charge to be distributed
outside the horizon.

4.7.3.3 The mass

In the spherically symmetric case, we decomposed the rescaled mass M of hairy black
holes in terms of the "hair mass" Mh and the "horizon mass" MH which are defined in
Eq. (4.104). However, these cannot be defined in the general case when |ν| > 1 since their
definitions rely on the ODE for the mass function m(r) in (4.69). Instead, one should use
the general definition (4.33) of the mass which can be represented as,

M = 2κgAH

κ
+Mbulk with Mbulk = −

∫
r>rH

(2T 0
0 − T )

√
−g d3x. (4.166)

We find it convenient to decompose Mbulk into two parts,

Mbulk =MU(1) +MSU(2), (4.167)

whereMU(1) contains the contribution of the Abelian field Yµ in the stress-energy tensor,

U(1)

Tµν = 1
g′2YµσY

σ
ν − 1

4g′2 gµνYαβY
αβ, (4.168)

while MSU(2) accounts for the contributions of the non-Abelian field W a
µ and the Higgs

field Φ. For the sake of completeness, we also consider the regularized energy of the WS
fields that was introduced for the flat space monopoles,

Ereg =
∫

r>rH

(
E − ν2

2g′2
e−2(K+S)

r4

)
√
−g d3x. (4.169)

This integral coincide with the definition (4.135) of Ereg in the flat space limit.
For the RN solution, one has

2κgAH

κ
= 4π

κ
(r+ − r−), MU(1) = 4πν2

g′2r+
, MSU(2) = 4πν2

g2r+
= 2Ereg, (4.170)

where r+ = Le/(2π) is the outer horizon radius of the RN geometry, and r− = ν2κ/(2e2r+)
is the inner horizon radius. For the hairy solutions with ν = 2, κ = 10−3, these quantities
are presented as functions of the equatorial radius Le/(2π) in the top panels of Fig. 4.27.
They interpolate within the following limits,

2.342× 103 ≥MU(1) ≥
4πν2

g′2r0
H

= 148.3, 0 ≤ 2κgAH

κ
≤ 4π

κ
(r0

H − r0
−) = 18.42× 103,

38.08 ≤MSU(2) ≤
4πν2

g2r0
H

= 44.30, 36.98 ≥ Ereg ≥
2πν2

g2r0
H

= 22.15. (4.171)
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Figure 4.27: The mass of the Abelian field MU(1), the horizon contribution to the mass
(top left), the mass of the non-Abelian fields MSU(2), the regularized energy Ereg (top
right) and the total mass M divided by Le/(2π) (bottom) as functions of the equatorial
horizon radius, Le/(2π), for RN and hairy black holes with κ = 10−3 and ν = 2.

The curves representingMU(1) and 2κgAH/κ for the hairy solutions almost coincide with
those for RN black holes. Close to the bifurcation, the horizon contribution to the total
mass is

2κgAH

κ
= 4πr+

κ
− 4πr−

κ
= 2Le

κ
− 4π2ν2

e2Le
≈ 2Le

κ
if κ≪ 1, (4.172)

which is the value for a Schwarzschild black hole. The distinction between the RN and
the hairy branches becomes evident when looking at the non-Abelian massMSU(2), or the
regularized energy Ereg. For RN black holes, these quantities grow up to large values of
order of 1/

√
κ when the equatorial horizon radius Le/(2π) descends to its lower bound.

For the hairy black holes, the non-Abelian mass decreases with the equatorial radius
down to the minimal value MSU(2) ≈ 38.08, as seen in the top right panel of Fig. 4.27.
Therefore, just as in the spherically symmetric case, the hairy solutions are less energetic
than the RN black holes of same size. The same conclusion holds if one is considering
Ereg instead of MSU(2).

The total mass M can be represented as,

M = κ

8πM = κgAH

4π + κ

8π
(
MU(1) +MSU(2)

)
. (4.173)

At the bifurcation with RN, the Abelian and non-Abelian masses are negligible in front
of the horizon term, one has M = Le/(4π) +O(κ) and hence 2πM/Le approaches 1/2, as
seen in the bottom panel of Fig. 4.27. In the extremal limit, the horizon term vanishes
and the dominant contribution to the mass is from the Abelian field. The figure shows
that the ratio 2πM/Le approaches a value close to unity. Hence, one has for the extremal
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hairy black hole with ν = 2 and κ = 10−3,

M ≈ Le

2π = rex
H =

√
κ

2
|ν|
g′ + β κ5/2|ν|3

32
√

2 g′3
+O(|ν|5κ9/2), (4.174)

where we have used the expression of rex
H given in Eq. (4.84), and expanded up to the

cubic order in |ν|. We emphasize that this cubic term is negligible for the values of the
parameters considered here. For the extremal RN black hole, the mass and radius are
larger, given by M = Le/(2π) =

√
κ|ν|/(

√
2gg′), where the difference with the hairy

solution is essentially the factor 1/g ≈ 1.14.
Heretofore, we have provided a description of axially symmetric hairy black holes with

ν = 2. We shall now consider only extremal solutions and increase the value of ν to see
whether the mass hierarchy MU(1) ≫MSU(2) still holds for ν > 2. For this, we consider
values of ν ranging in the interval [0, 100]. The solutions with ν < 0 are essentially
identical to those with positive ν, up to an overall change of sign in the magnetic charge
and electric current densities. In the left panel of Fig. 4.28, we present the logarithm
of the Abelian (resp. non-Abelian) mass MU(1) (resp. MSU(2)) divided by its value for
ν = 1. The figure indicates that the non-Abelian mass grows faster than the Abelian
mass when ν increases. The slope of the curve for MU(1) is almost equal to unity in the
whole range of ν and therefore MU(1) ∝ |ν|. This agrees with our previous observation
of the Abelian mass being approximately the same in the hairy case and in the RN case.
Indeed, according to Eqs. (4.170) and (4.174), one has in the extremal limit,

MU(1) = 4πν2

g′2rex
H

= 4π
√

2√
κg′ |ν| −

π

4
β κ3/2
√

2g′3
|ν|3 +O(|ν|5κ7/2), (4.175)

where the cubic term is negligible compared to the linear term, even when ν = 100. Hence
the linear approximation is valid.

For the non-Abelian mass, we do not have an analytical estimate. Therefore, we
can only rely on the numerical results and find that the slope of the curve for MSU(2)
in the left panel of Fig. 4.28 is approximately 1.5 for large ν. Hence, it appears that
MSU(2) ∝ ν3/2, exhibiting the same behavior as the regularized energy of flat space
monopoles, see Eq. (4.153). However, for the range of ν considered here, the Abelian
mass is still larger than the non-Abelian mass. In the right panel of the Fig. 4.28, we
present the total mass M as function of the extremal horizon radius rex

H . The orange
curve illustrates that the approximation M ≈ rex

H is no longer valid when ν increases.
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Figure 4.28: Left: the logarithm ofMSU(2)/Mν=1
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U(1) against ln(ν) for
the extremal hairy black hole solutions with κ = 10−3. Right: the total mass M against
the extremal horizon radius rex

H ; the insertion shows the relative difference between M
and rex

H in percentage.
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This suggests a growing significance of the non-Abelian mass in front of the Abelian
mass. Indeed, using the estimate (4.175) forMU(1), the total mass M for extremal hairy
black holes can be represented as,

M =
√
κ

2
|ν|
g′ + κ

8πMSU(2) +O(|ν|3κ5/2) = rex
H + κ

8πMSU(2) +O(|ν|3κ5/2), (4.176)

and therefore the essential difference betweenM and rex
H comes fromMSU(2). The insertion

in the right panel of the Fig. 4.28 presents the relative difference (M/rex
H )− 1. It reaches

approximately 8% for rex
H = rex

H |ν=100 ≈ 4.675. All this suggests that the non-Abelian
mass will eventually become comparable to the Abelian mass for a value of ν > 100.

Summarizing, for the range |ν| ∈ [0, 100] considered here, one always has MU(1) >
MSU(2) but the non-Abelian contribution to the total mass becomes more and more
important so that the approximation M ≈ rex

H is no longer valid when |ν| ≫ 1. What
happens for very large values of |ν| remains unclear, but we expect the solutions to
approach a limiting configuration as |ν| → νmax = 2g′/(κ

√
β), see Eq. (4.87). We leave

this analysis for a future project [167].

4.7.3.4 Physical value of κ and limit of large magnetic charge

So far, we have been discussing axially symmetric hairy black holes with the nonphysical
value κ = 10−3. This is actually sufficient to understand many properties of the hairy black
holes with the physical value κ = 5.42×10−33. For example, the event horizon is spherical
at the bifurcation with RN and in the extremal limit, which correspond respectively to
the maximum and minimum horizon sizes,

Le

2π

∣∣∣∣
max

= r0
H ∝

√
|ν|, Le

2π

∣∣∣∣
min

= rex
H =

√
κ

2
|ν|
g′ +O(|ν|3κ5/2). (4.177)

The values of r0
H(ν) for the physical value of κ are given in the Table 4.2 or in the Fig. 4.2.

The deviation from spherical symmetry of the event horizon geometry is maximal at an
intermediate value of its size, when the black hole hair is close to the horizon. For |ν| = 2,
this maximal deviation is very small, already for κ = 10−3. Hence, small magnetic charge
hairy black holes with the physical value of κ have an almost spherical horizon – the back-
reaction of the WS field configuration on the spacetime geometry being smaller when κ
decreases. Of course, the maximal deviation from a spherically symmetric horizon is
expected to grow when |ν| increases.

The physically most interesting hairy magnetic black holes are those which are close to
extremality, since the horizon size shrinks when the black hole evaporates. According to
Maldacena [52], the Hawking radiation is even enhanced for magnetically charged black
holes, which accelerates their evaporation. Our analysis actually highlighted that the
extremal hairy black holes are very similar to their flat space counterparts which have
been extensively studied in the Sec. 4.7.2. The main difference is the presence of the event
horizon which is of great importance as it regularizes the monopole energy. The horizon
contains the U(1) part of the magnetic charge and it is surrounded by a toroidal SU(2)
magnetic charge distribution and two rings of oppositely directed electric currents. We
expect the picture of Fig. 4.17 describing the internal structure of monopoles to accurately
describes as well the extremal hairy black holes as long as the winding number |ν| is not
too large. The central U(1) singularity in this figure just has to be replaced by a small
horizon.

Eq. (4.177) actually reveals that extremal hairy magnetic black holes cannot exist for
arbitrarily large values of |ν|. Indeed, the minimal value of horizon size is proportional
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to |ν| whereas its maximal value is r0
H ∝

√
|ν|. Hence the extremal horizon radius for

hairy black holes grows faster than the horizon size corresponding to the bifurcation with
RN. Moreover, the Eq. (4.153) shows that the region of Higgs false vacuum for flat space
monopoles has a radius R ∝

√
|ν|. Assuming this estimate to hold in the black hole case,

the bubble of Higgs false vacuum grows with |ν| slower than the extremal horizon radius.
However, the latter cannot be larger than R since the WS fields are supposed to be in
the Higgs false vacuum at the extremal horizon. This again shows that more complicated
effects are expected to occur when |ν| becomes very large.

To estimate at which value of |ν| our description of extremal hairy black holes breaks
down, we extrapolate our numerical results on the values r0

H(ν) (Fig. 4.2) and find that

r0
H(ν) < rex

H (ν) for |ν| ≳ 1032. (4.178)

This is of the same order of magnitude as the maximal value of ν mentioned in (4.87),
which prevents the occurrence a naked singularity for RN-de Sitter black holes. It also
agrees with the estimates made by Maldacena [52]. Understanding the behavior of the
fields near this limit is a current challenge [167], as it requires considering the Einstein-
Weinberg-Salam equations assuming very large values for the winding number ν, and very
small values for the gravitational coupling κ.

As a result, we are confident in our understanding of extremal hairy black holes if their
magnetic charge |P | = |ν|/e satisfies |ν| ≪ 1032. In this case, the backreaction of the
non-Abelian hair on the spacetime geometry is negligible and the dominant contribution
to the total mass is from the Abelian field. The dimensionful mass and horizon size are,
in Planck units,

M = 2e2

κα
M ×m0 ≈

|ν|g√
α
×MPl,

Le

2π = rex
H × ℓ0 ≈

|ν|g√
α
×LPl. (4.179)

Hence one has M/MPl ≈ Le/(2πLPl), as for extremal RN black holes. The latter
are larger in mass and size than their hairy counterparts by a factor of 1/g ≈ 1.14. The
approximation (4.179) holds as long as Abelian massMU(1) in (4.173) is dominant in front
of the non-Abelian mass MSU(2). For large |ν|, we find that MSU(2) scales as |ν|3/2, the
non-Abelian mass therefore becomes more and more significant, and it could ultimately
overcome the Abelian mass MU(1), which can be estimated using the Eq. (4.175).

4.8 Summary and concluding remarks
We have constructed static black holes with a non-Abelian magnetic hair in the framework
of the bosonic part of the Weinberg-Salam electroweak theory minimally coupled to GR. In
the simplest case, these black holes are spherically symmetric and carry a total magnetic
charge of P = ±1/e. They were previously reported in Ref. [53] and are gravitating
counterparts of the electroweak monopole of Cho and Maison [48]. The new solutions we
have constructed are axially symmetric and exist for any value of P , but they are free
of the Dirac string singularity only if their magnetic charge is an integer multiple of 1/e,
specifically, P = PU(1) +PSU(2) = −ν/e with ν ∈ Z. Far away from the event horizon, the
solutions become purely electromagnetic and the field configuration approaches that of
a RN black hole with magnetic charge P . At some finite distance from the horizon, the
solutions support a non-Abelian hair made of a condensate of W bosons, which carries
a fraction of the total SU(2) magnetic charge. The remaining part of the SU(2) charge,
along with the U(1) contribution to the magnetic charge, is confined inside the event
horizon.
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For |ν| = 1, the black hole hair is contained within a spherical shell whose radius is
R ∼ 10−16 cm, which is of the order of the electroweak length scale. The horizon has a
size ranging from the minimal value rex

H ∼ 10 LPl ∼ 10−32 cm in the extremal limit, up to
the maximal value r0

H ∼ 10−16 cm. Therefore, in this upper limit, the black hole hair is
absorbed inside the horizon and the solution becomes the Abelian RN configuration. Of
course, it is essential to emphasize that the physical relevance of spherically symmetric
hairy black holes should be considered in context, as quantum effects, which are entirely
disregarded in this study, are expected to play a significant role at these scales. For
|ν| > 1, the black hole hair consists of a toroidal distribution of SU(2) magnetic charge
plus two superconducting rings of oppositely directed electric currents. If |ν| ≪ 1032,
the maximal value of the horizon size scales as

√
|ν| and it corresponds again to the

bifurcation of hairy solutions with the RN branch. The minimal value of the horizon size
is rex

H ∼ 10|ν| × LPl, it corresponds to extremal hairy black holes. What happens for
extremely large magnetic charges remains unclear, but we expect the hairy solutions to
approach a limiting configuration with |P | ∼ 1032/e and with an event horizon radius of
the order of 3 cm.

The flat space Dirac monopoles and their gravitating RN counterparts of small sizes
are unstable for |P | ≥ 1/e. On the contrary, the CM monopole, which has P = ±1/e,
is stable [49]. Therefore, the spherically symmetric hairy black holes, which generalize
the CM monopole in the presence of gravity and are always less energetic than RN, are
expected to be stable as well. Now, let us consider a RN black hole of large horizon size
with P = ±1/e. Its horizon radius shrinks as it evaporates through the Hawking radiation
process until rH = r0

H . At this moment, the instability is triggered, and the black hole
begins to radiate part of its energy. The perturbations that grow in time during this
process are spherically symmetric and hence it is conceivable that the remnant of the RN
black hole decay is the hairy solution with the same magnetic charge, since it is itself
spherically symmetric and presumably stable. The Hawking radiation then continues
to reduce the size of the hairy black hole, until it reaches the extremal state for which
rH = rex

H . At this juncture, the black hole can no longer undergo further evaporation as
its temperature is vanishing.

A similar scenario is expected to apply for black hole with larger magnetic charges,
and it leads to the (extremal) axially symmetric hairy solutions considered in this chap-
ter. However, one should keep in mind that the instability of small RN black holes is
characterized by spherical harmonics with angular momentum j = |ν|−1. The azimuthal
quantum number m can assume 2j+1 different values, m = −j, . . . , j, and only for m = 0
the perturbations are axially symmetric. One may therefore conjecture that this insta-
bility leads to the formation of non-Abelian hairy black holes with no spatial symmetry
at all, or perhaps only discrete symmetries. The possible existence of such black holes
was recently advocated by Maldacena [52]. While we have focused on the special case of
axial symmetry, the numerical construction of more general solutions with no continuous
isometries remains an open challenge, as it requires solving the underlying full 3D elliptic
problem.

The physically most interesting solutions are the extremal ones as they are the end
state of the Hawking evaporation process. The extremal hairy black holes are very similar
to the flat space monopoles. The major difference is that the central U(1) Coulombian
singularity of monopoles is now hidden inside the event horizon so that everything is
regular from the outside. In particular the ADM mass of hairy black holes is finite, and in
the extremal limit, it is of the order of |ν|g/

√
α×MPl ≈ 10|ν|×MPl. Close to the horizon,

the hypercharge U(1) field is strong enough to suppress all other fields and restore the
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full electroweak gauge symmetry within a spheroidal bubble of size R ∼
√
|ν| × 10−16 cm.

Inside this bubble of Higgs false vacuum, the spacetime geometry is that of a RN-de
Sitter black hole. Outside the bubble, the non-linearly interacting fields produce the
SU(2) magnetically charged ring sandwiched between the loops of oppositely directed
electric currents. The magnetic ring gives the leading contribution to the electromagnetic
quadrupole moment q ∝ |PSU(2)|R2.

It is likely that our solutions can be generalized to describe pairs of magnetic black
holes with opposite magnetic charges, as was the case for the ’t Hooft-Polyakov monopoles
[204, 205].

Finally, it remains to provide a scenario for the formation of these electroweak hairy
black holes. Production of magnetically charged black holes from primordial fluctuations
in the early Universe is unlikely [206]. A more plausible scenario would involve the separate
production of, first, monopoles and then, neutral black holes. Since monopoles in the
electroweak theory are always singular, these primordial monopoles must be considered
within a GUT framework [207, 208]. Subsequently, primordial black holes could swallow
the monopoles, resulting in magnetically charged black holes (see Ref. [209] for a recent
discussion). This mechanism was proposed by Maldacena [52], and it draws inspiration
from the work in Refs. [54, 55]. Once they are produced, the Hawking evaporation of the
magnetic black holes would certainly yield to the formation of the non-Abelian hair and
they may have reached extremality by now. For a general discussion about methods to
detect them, we refer to the work of Bai et al. [210] (see also the Refs. [211, 212, 213]).

Since extremal hairy magnetic black holes are thermodynamically stable, it is very
appealing to promote them as dark matter candidate. The astrophysical constraints on
the abundance of magnetically charged black holes are qualitatively similar to those for
monopoles. The first constraint is called the Parker bound, and it arises from the obser-
vation of large magnetic fields within galaxies [214, 215]. These magnetic fields would
accelerate magnetically charged objects, causing them to extract energy from the field. If
the abundance of monopoles is too high, it could lead to the disappearance of the mag-
netic field. A similar constraint can be derived from the recent observation of primordial
magnetic fields in the intergalactic void [216]. These constraints on the abundance of
monopoles greatly limit their relevance as dark matter candidates. Although considering
magnetically charged black holes instead of monopoles changes quantitative aspects of the
Parker bound [54], a recent preprint suggests that this would not be sufficient to resolve
the monopole problem [217]. Additional constraints arise from the potential catalysis of
proton decay by monopoles [218, 219] and the implications of this phenomenon for astro-
nomical bodies. For a discussion of this effect in the context of magnetic black holes, see
for example the Ref. [220].

As a result, considering electroweak hairy black holes as dark matter candidates seems
to be very speculative for the moment. Nonetheless, these objects remain of particular
interest as they provide insights into very high energy phenomena, with a restoration of
the full electroweak symmetry in their near-horizon region.

4.A Ansatz with time dependence
In this Appendix, we present a generalized ansatz for spherically symmetric solutions
which allows for time dependence. For this, the metric can be chosen in the form

gµνdx
µdxν = −σ2Ndt2 + dr2

N
+R2

(
dϑ2 + sin2 ϑ dφ2

)
, (4.180)
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where σ, N and R are functions of t, r. It is invariant under the action of the SO(3)
spatial rotations.

The spherically symmetric gauge fields should be invariant under the combined action
of spatial rotations and gauge transformations [221]. It follows that the most general
SO(3)-invariant SU(2) gauge field can be represented in the form

W = TaW
a
µdx

µ = T3(a0 dt+ a1 dr) + (w2 T1 + w1 T2)dϑ
+ ν(w2 T2 − w1 T1) sinϑ dφ+ T3 ν cosϑ dφ, (4.181)

where a0, a1, w1, w2 are functions of t, r and ν is a constant parameter. This field
generalizes the well-known ansatz of Witten [222]. Written in this gauge, the field is
singular at the z-axis, but the singularity can be removed if ν ∈ Z in the general case, or
if 2ν ∈ Z in the special case when w1 = w2 = 0 [49].

The spherically symmetric U(1) gauge field is

Yµdx
µ = b0 dt+ b1 dr + ν cosϑ dφ, (4.182)

where b0 and b1 depend on t, r. This field is also singular at the z-axis unless 2ν ∈ Z.
Finally, the spherically symmetric Higgs field is

Φ = ϕ eiξ/2
(

0
1

)
, (4.183)

where ϕ and ξ depend on t, r.
The ansatz for the WS fields (4.181)-(4.183) preserves its form under gauge transfor-

mations (4.8) generated by
U = exp

(
i

2λ+ i

2γ τ3

)
, (4.184)

where λ, γ are arbitrary functions of t, r. Its effect on the 8 field amplitudes is

w1 → w1 cos γ − w2 sin γ, w2 → w1 sin γ + w2 cos γ, a0 → a0 + γ̇,

a1 → a1 + γ′, b0 → b0 + λ̇, b1 → b1 + λ′, ϕ→ ϕ, ξ → ξ + λ− γ. (4.185)

It is then convenient to set w1 = f cosα and w2 = f sinα so that f → f , α → α + γ. It
follows that the combinations

Ω0 ≡ a0 − α̇, Ω1 ≡ a1 − α′, Θ0 ≡ a0 − b0 + ξ̇, Θ1 ≡ a1 − b1 + ξ′, (4.186)

and also f , ϕ are gauge-independent. Injecting the ansatz (4.180)-(4.183) to the field
equations (4.10), (4.11), the angular dependence separates and the gauge-dependent am-
plitudes α, ξ drop out from the equations.

The field equations consist of second-order PDEs depending on t, r, but also first-order
differential constraints and an algebraic constraint. The latter is

(ν2 − 1)fϕ = 0, (4.187)

hence either ν2 = 1, f = 0 or ϕ = 0. Then the equations for f and ϕ read

∂

∂r

(
Nσf ′

)
− ∂

∂t

(
ḟ

Nσ

)
= σ

(
f 2 − 1
R2 +NΩ2

1 −
Ω2

0
Nσ2 + g2

2 ϕ
2
)
f,

∂

∂r

(
R2Nσϕ′

)
− ∂

∂t

(
R2ϕ̇

Nσ

)
= 1

4σR
2
(
β(ϕ2 − 1) +NΘ2

1 −
Θ2

0
Nσ2 + 2

R2f
2
)
ϕ, (4.188)



136 CHAPTER 4. ELECTROWEAK BLACK HOLES WITH MAGNETIC HAIR

while the equations for Ω0, Ω1, Θ0, Θ1 are

∂

∂r

(
R2

σ

(
Ω′

0 − Ω̇1
))

= 2
Nσ

f 2 Ω0 + g2

2NσR
2ϕ2 Θ0,

∂

∂t

(
R2

σ

(
Ω′

0 − Ω̇1
))

= 2Nσf 2 Ω1 + g2

2 NσR
2ϕ2 Θ1,

∂

∂r

(
R2

σ

(
Θ′

0 − Θ̇1
))

= 2
Nσ

f 2 Ω0 + 1
2NσR

2ϕ2 Θ0,

∂

∂t

(
R2

σ

(
Θ′

0 − Θ̇1
))

= 2Nσf 2 Ω1 + 1
2NσR

2ϕ2 Θ1. (4.189)

In addition there are two first-order differential constraints,

∂

∂r

(
Nσf 2 Ω1

)
= ∂

∂t

(
f 2

Nσ
Ω0

)
,

∂

∂r

(
NσR2ϕ2Θ1

)
= ∂

∂t

(
R2ϕ2

Nσ
Θ0

)
, (4.190)

but these are not independent and follow from (4.189) since the t-derivatives of the first
and third equations in (4.189) must coincide with the r-derivatives of the second and
fourth equations. The Einstein equations are rather involved and we shall not show them
explicitly. They consist of three second-order PDEs for N , σ, R, plus one differential
constraint.

In the static and purely magnetic case, one can set

Ω0 = Ω1 = Θ0 = Θ1 = 0, R = r, (4.191)

and the remaining amplitudes should depend only on r. The equations (4.188), (4.189)
and the Einstein equations then reduce to the system of ODEs (4.69).

As discussed in the main text, the field configuration always contains the Coulombian
U(1) singularity at r = 0. The only way to avoid it is to set ν = 0, choosing then f = 0
to satisfy the algebraic constraint (4.187), the Eqs.(4.188), (4.189) reduce to

∂

∂r

(
R2Nσϕ′

)
− ∂

∂t

(
R2ϕ̇

Nσ

)
= 1

4σR
2
(
β(ϕ2 − 1) +NΘ2

1 −
Θ2

0
Nσ2

)
ϕ,

1
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∂r

(
R2

σ

(
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1
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0 − Ω̇1
))
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2 Nσϕ
2 Θ1,

1
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∂r

(
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σ
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= 1
2Nσϕ

2 Θ0,
1
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∂

∂t

(
R2

σ

(
Θ′

0 − Θ̇1
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= 1
2Nσϕ

2 Θ1,

(4.192)

while the Einstein equations remain complicated. One can show that non-trivial static
solutions of these equations have infinite energy. However, there are time-dependant
solutions with a finite energy. In the flat space limit, solutions of this type were previously
studied assuming a different ansatz for the Higgs field, in which case the fields are not
spherically symmetric unless for θW = 0 [223, 224, 225, 226]. On the other hand, the
Eq. (4.192) describes spherically symmetric systems for any value of the Weinberg angle.

Let us set the gauge amplitudes to zero, Ω0 = Ω1 = Θ0 = Θ1 = 0, and consider the
flat space limit, κ = 0, N = σ = 1, R = r. Rescaling the spacetime coordinates via
t→ (2/

√
β) t and r → (2/

√
β) r, the remaining Higgs equation reduces to

1
r2

(
r2ϕ′

)′
− ϕ̈ = (ϕ2 − 1)ϕ. (4.193)
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This equation has been extensively studied in the literature, and it is known to describe
oscillons – oscillating quasi-periodic field configurations with a finite energy [227, 228,
229]. Oscillons are well-localized in space during a certain period of time but finally
they decay into pure radiation. However their lifetime, that is the period when they
remain localized, can be as large as the age of the universe. We therefore discover that
the electroweak theory admits spherically symmetric oscillons, which, to the best of our
knowledge, has never been observed before.

Although being out of the scope of the present thesis, the study of the system of
equations (4.192) could reveal the existence of more general oscillons. This has never
been considered before, even in the flat space theory.

4.B Far field region
In this Appendix, we analyze the asymptotic behavior of monopole solutions at spatial
infinity. This shows in particular that monopoles have a magnetic quadrupole moment,
but no dipole moment. We will also see that the gauge condition (4.62) used in our
numerical calculations gives rise to a spurious long-range mode of pure gauge origin.

We consider the flat space theory: κ = 0, N = 1, and U = S = K = 0. At large
distances, the WS fields approach that of the Dirac monopole, we can therefore set

H1 = δH1, H2 = δH2, H3 = δH3, H4 = δH4,

ϕ1 = δϕ1, ϕ2 = 1 + δϕ2, y = δy, (4.194)

where δH1, . . . , δϕ2 are small deviations. It will be convenient to use the original field
equations where the gauge is not fixed. Then, the linearized equations admit the gauge
symmetry,

δH1→ δH1 − r∂rχ, δH2 → δH2 + ∂ϑχ, δH4 → δH4 + χ cotϑ,
δϕ1 → δϕ1 + χ/2, δH3 → δH3, δy → δy, δϕ2 → δϕ2, (4.195)

which is obtained by linearizing the transformations (4.38) and assuming the gauge pa-
rameter χ to be small.

The linearized equation for δϕ2 decouples from the others and reads,(
∂2

∂r2 + 2
r

∂

∂r
+ 1
r2

∂2

∂ϑ2 + cotϑ
r2

∂

∂ϑ
− β

2

)
δϕ2 = 0. (4.196)

The angular dependence separates if we set

δϕ2 = RH(r)
r

Pj(cosϑ), (4.197)

where Pj(cosϑ) are the Legendre polynomials. It remains then only a radial equation for
RH , (

d2

dr2 −
j(j + 1)
r2 − β

2

)
RH = 0. (4.198)

The orbital quantum number j can take any positive value, j = 0, 1, 2, . . . , hence the
general solution is a superposition of modes with different j, but the j = 0 mode decays
slower than the others at large r. Therefore, the leading behavior of δϕ2 is described by
the Yukawa potential,

δϕ2 = CH

r
e−mHr, (4.199)
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where CH is an integration constant and mH is the Higgs boson mass defined in Eq. (4.14).
The equations for δH3 and δy comprise a closed system and setting δy = yγ + g′2yZ ,

δH3 = yγ − g2yZ , the system splits into two independent equations,

D̂1yγ = 0,
(
D̂1 −

1
2

)
yZ = 0, (4.200)

where the differential operator is defined by

D̂m = ∂2

∂r2 + 1
r2

(
∂2

∂ϑ2 + cotϑ ∂

∂ϑ
− m2

sin2 ϑ

)
. (4.201)

The eigenfunctions of the angular part of this operator are the associated Legendre polyno-
mials Pm

j (cosϑ) and the corresponding eigenvalues are −j(j+1) with j = |m|, |m|+1, . . . .
Hence we can set

yγ = Rγ(r)P 1
j (cosϑ), yZ = RZ(r)P 1

j (cosϑ), (4.202)

where the two radial functions are determined by the equations,(
d2

dr2 −
j(j + 1)
r2

)
Rγ = 0,

(
d2

dr2 −
j(j + 1)
r2 − 1

2

)
RZ = 0. (4.203)

This describes the massless photon and massive Z modes. One should have y = H3 = 0 for
both ϑ = 0 and ϑ = π/2, hence the minimal value j = 1 is not allowed since P 1

1 = − sinϑ
does not vanish for ϑ = π/2. Therefore the first non-vanishing mode is the one with j = 2
which defines the leading behavior,

yγ = Cγ

r2 sinϑ cosϑ, yZ = CZe
−mZr sinϑ cosϑ+ . . . , (4.204)

and this corresponds to the magnetic quadrupole moment.
The four amplitudes δH1, δH2, δH4, δϕ1 fulfill a system of four equations admitting

the gauge symmetry (4.195). The analysis of this sector can be simplified by imposing
the unitary gauge, δϕ1 = 0. Then the angular dependence separates by setting

δH1 = ν
f1(r)
r

P ν
j (cosϑ),

δH2 = νf3(r)P ν−1
j (cosϑ) + νf2(r)P ν+1

j (cosϑ),
δH4 = f3(r)P ν−1

j (cosϑ)− f2(r)P ν+1
j (cosϑ), (4.205)

and using the recurrence relations

(∂ϑ ∓m cotϑ)Pm
j (cosϑ) = λ±P

m±1
j (cosϑ), (4.206)

where λ+ = 1 and λ− = m(m− 1)− j(j + 1). The equations for f1(r) and f2(r) become(
d2

dr2 + ν2 − j(j + 1)
r2 − g2

2

)
f1 = 0,(

d2

dr2 + ν2 − j(j + 1)
r2 − g2

2

)
f2 = f1

r3 , (4.207)

and the remaining equations reduce to the constraint

f3 = f1′ + (j − ν)(j + 1 + ν)f2, (4.208)
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which determines the amplitude f3. Denoting C
(1)
W and C

(2)
W two integration constants,

one obtains from the Eq. (4.207),

f1 = C
(1)
W e−mWr + . . . , f2 = C

(2)
W e−mWr + . . . . (4.209)

This solution describes massive W boson modes.
Summarizing, all field amplitudes approach their asymptotic values exponentially fast,

except δH3 and δy which decay as 1/r2. This agrees with properties of the perturbative
spectrum of the theory. However, this behavior is manifest only in the unitary gauge,
while we rather use the gauge condition (4.62) in our numerical computations. This does
not change the asymptotic solutions for δϕ2, δH3, δy since these amplitudes are gauge
invariant, see the Eq. (4.195). For the gauge-dependent amplitudes δH1, δH2, δH4, δϕ1,
the situation changes and one finds that

δH1 = A

r2 sin(2ϑ) + . . . , δH2 = A

r2 cos(2ϑ) + . . . ,

δH4 = A

r2 cos2 ϑ+ . . . , δϕ1 = A

4r2 sin(2ϑ) + . . . .

Here A is an integration constant and the dots denote subleading terms containing the
exponentially small massive modes (4.209). As a result, our numerical solutions exhibit
this second long-range tail in addition to the electromagnetic one. One can remove this
spurious long-range mode by applying the gauge transformation (4.195) generated by the
gauge transformation

χ = −2δϕ1 = − A

2r2 sin(2ϑ) + . . . . (4.210)

One may wonder why not to have used the unitary gauge, ϕ1 = 0, from the beginning in
our numerics. As shown below in Appendix. 4.C, it turns out that this gauge is singular
at the origin, whereas the gauge (4.62) is globally regular. Moreover the principal part
of the differential operator in the nonlinear field equations is not diagonal in the unitary
gauge.

The asymptotic analysis of the full gravitating theory is a topic for future publica-
tion [167]. In the gravitating case, the electromagnetic sector couples to the gravity sector,
which contains a gravitational quadrupole moment.

4.C Local solution at origin for flat space monopoles
For black hole solutions, the behavior of amplitudes at the horizon can be obtained
by expanding the field equations in power series with the radial coordinate x defined
in Eq. (4.128). In this Appendix, we analyze the behavior at the origin for flat space
monopoles. The complete analysis turns out to be rather involved, and we shall consider
only the behavior of the Higgs field which will lead to important conclusions.

Close to the origin, the monopole fields approach

H1 = H3 = y = ϕ1 = ϕ2 = 0, H2 = H4 = 1, (4.211)

which is often dubbed Higgs false vacuum. This in an exact solution of the equations for
any r, ϑ, but the monopole fields approach it only for r → 0. Therefore we set

H1 = δH1, H2 = 1 + δH2, H3 = δH2, H4 = 1 + δH4,

y = δy, ϕ1 = δϕ1, ϕ2 = δϕ2, (4.212)
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where δH1, . . . , δϕ2 are small deviations. Injecting this to the field equations and lineariz-
ing with respect to the deviations, we find that the equations for δϕ1 and δϕ2 decouple
from the rest. One can neglect in these two equations terms proportional to the Higgs
coupling β since they are small as compared to the other terms if r is small. After this,
the equations become homogeneous in r so that we can set

δϕ1 = rλS1(ϑ), δϕ2 = rλS2(ϑ). (4.213)

The variables separate and the equations reduce to

0 =
(
λ(λ+ 1) + d2

dϑ2 + cotϑ d

dϑ
− ν2

sin2 ϑ
+ 3ν2 − 1

4

)
S1 −

(
d

dϑ
+ 1− ν2

2 cotϑ
)
S2,

0 =
(
λ(λ+ 1) + d2

dϑ2 + cotϑ d

dϑ
− ν2 + 1

4

)
S2 +

(
d

dϑ
+ 1 + ν2

2 cotϑ
)
S1. (4.214)

This constitutes an eigenvalue problem to determine λ.
In the spherically symmetric case, one has |ν| = 1, S1 = 0, S2 = const., and the

equations reduce to

λ(λ− 1)− 1
2 = 0 ⇒ λ =

√
3− 1
2 , (4.215)

which reproduces the small r behavior of the CM monopole [48]. If |ν| ̸= 1 then the
solution is obtained by choosing (assuming that ν > 0),

λ =
√

1 + 2ν − 1
2 , S1(ϑ) = − 2

ν + 1
d

dϑ
S2(ϑ). (4.216)

Injecting this to (4.214), the two equations reduce to(
d2

dϑ2 − ν cotϑ d

dϑ
+ 1− ν2

4

)
S2 = 0, (4.217)

whose solution is
S2(ϑ) =

(
sin ϑ2

)ν+1

+
(

cos ϑ2

)ν+1

. (4.218)

Since the derivative dS2/dϑ vanishes for both ϑ = 0 and ϑ = π/2, the deviations δϕ1 and
δϕ2 satisfy the correct boundary conditions at the symmetry axis and in the equatorial
plane.

This result has an interesting consequence. The gauge transformation (4.38) changes
the Higgs amplitude as

δϕ1 → δϕ̃1 = δϕ1 cos χ2 + δϕ2 sin χ2 ,

δϕ2 → δϕ̃2 = δϕ2 cos χ2 − δϕ1 sin χ2 , (4.219)

and if we require the new gauge to be unitary, δϕ̃1 = 0, this implies that

tan χ2 = −δϕ1

δϕ2
= −S1(ϑ)

S2(ϑ) . (4.220)

This determines the r → 0 limit of the gauge parameter χ which put the solution to the
unitary gauge. Notice that although δϕ1 and δϕ2 are small close to the origin, their ratio
and hence χ are not small.
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Figure 4.29: Left: plots of tan(χ/2) obtained analytically and numerically for ν = 2 in
the limit r → 0. Right: the amplitude H2 of the ν = 2 monopole solution in the unitary
gauge.

We can use this to check the quality of our numerical solutions obtained in the gauge
(4.62). In order to transform a given solution to the unitary gauge, one should perform
the gauge transformation (4.38) with the parameter,

tan χ2 = −ϕ1

ϕ2
, (4.221)

where ϕ1 and ϕ2 are obtained numerically. This gauge parameter must agree for small r
with the one in Eq. (4.220) for the procedure to be consistent, and this is indeed the case.
In the left panel of Fig. 4.29, we plot tan(χ/2) given by the analytical formula (4.218),
(4.220) and also tan(χ/2) numerically obtained from the Eq. (4.221) in the limit r → 0.
As one can see, the two curves exactly coincide with each other so that our procedure is
indeed consistent.

At the same time, the gauge transformation associated with the parameter χ in (4.220)
changes the false vacuum configuration (4.211) to

H1 = 0, H2 = 1 + dχ

dϑ
, y = ϕ1 = ϕ2 = 0,

H3 = (cosχ− 1) cotϑ− sinχ, H4 = cosχ+ sinχ cotϑ, (4.222)

which is the r → 0 limit of the solution expressed in the unitary gauge. As one can see,
this limit is ϑ-dependent since χ in (4.220) depends on ϑ. However, r = 0 is a single point
in flat space where nothing should depend on ϑ. Therefore the solution is not single-
valued at the origin in the unitary gauge. To illustrate this, we show in the right panel of
Fig. 4.29 the function H2 for the ν = 2 solution, the same as in Fig. 4.10 but transformed
to the unitary gauge. One can see that H2 does not have a definite limit at the origin,
ρ̄ = z̄ = 0 but assumes there all values from the interval [0, 2]. For example, approaching
the origin by keeping ϑ = 0 constant gives the value H2 = 0 whereas for ϑ = π/2 the
r → 0 is H2 = 2. Therefore the unitary gauge is singular at small r, although it is well
adapted to describe the large r region.

4.D Radial coordinate transformation
The spherically symmetric solutions can be expressed using either the line element (4.67),
or the more general metric (4.26). In this Appendix, we provide the precise correspondence
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between the two descriptions. Let us denote by r̃ the radial coordinate in the spherically
symmetric spacetime metric (4.67),

ds2 = −σ2(r̃)Ñ(r̃)dt2 + dr̃2

Ñ(r̃)
+ r̃2

(
dϑ2 + sin2 ϑ dφ2

)
. (4.223)

Notice that we have also introduced a tilde (∼) notation for the function Ñ(r̃) to prevent
any confusion with N(r) = 1− rH/r in the axially symmetric line element (4.26).

A direct comparison of Eq. (4.223) with Eq. (4.26) reveals that r̃ = r eS(r) = r eK(r).
Hence, for spherically symmetric solutions, one has S(r) = K(r) and r̃ = r̃H corresponds
to the Schwarzschild radius of the event horizon. However, rH does not have a direct
physical interpretation since r̃H = rH e

SH = rH e
KH with KH = K(rH) and SH = S(rH)

generally not equal to zero. A further inspection of the line elements (4.223) and (4.26)
reveals that the coordinates r and r̃ are related by

dr

r
√
N(r)

= dr̃

r̃
√
Ñ(r̃)

, (4.224)

integrating which yields r = r(r̃). For the non-Abelian hairy black holes presented in
Sec. 4.6, the function Ñ is only known numerically. The 10 functions in the axial ansatz
are then given by

e2U = Ñ(r̃)
N(r)σ

2(r̃), eK = eS = r̃

r
,

H2 = H4 = f(r̃), H1 = H3 = y = ϕ1 = 0, ϕ2 = ϕ(r̃), (4.225)

where ϕ, f and σ are only known numerically for the non-Abelian hairy black holes.
It is instructive to consider first the RN solution (4.71) for which

Ñ(r̃) =
(

1− r̃−

r̃

)(
1− r̃+

r̃

)
, σ(r̃) = ϕ(r̃) = 1, f(r̃) = 0. (4.226)

Here, r̃− and r̃+ = r̃H correspond respectively to the inner and outer horizons radii, as
given in Eq. (4.72). Integrating (4.224) then yields,
√
r +
√
r − rH =

√
r̃ − r̃+ +

√
r̃ − r̃− ⇒ r = r̃ − r̃−, rH = r̃+ − r̃−. (4.227)

Notice that rH = r̃+ − r̃− vanishes in the extremal limit when the two horizons merge.
Then, it follows from (4.225) that,

eU(r̃) = 1− r̃−

r̃
, eK(r̃) = eS(r̃) = r̃

r̃ − r̃−
= e−U(r̃). (4.228)

Therefore, S = K = −U and the horizon values UH , SH , KH are given by

eUH = r̃+ − r̃−

r̃+
= e−KH = e−SH . (4.229)

In the extremal limit, one has M → |Q| hence rH = r̃+ − r̃− → 0 while r̃H → |Q| so
that UH → −∞ and SH , KH → +∞. As a result, the horizon values UH , SH , KH do not
correspond to the naive formula (4.66).

Finally, r̃− can be expressed in terms of rH using the fact that r̃± = M ±
√
M2 −Q2,

r̃+r̃− = r̃2
− + rH r̃− = Q2 ≡ κν2

2e2 ⇒ r̃− = 1
2

(√
r2

H + 4Q2 − rH

)
, (4.230)
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and this complete the expression of the RN solution in terms of the axially symmetric
variables,

eU = e−K = e−S = r

r + r̃−
, H1 = H2 = H3 = H4 = y = ϕ1 = 0, ϕ2 = 1. (4.231)

To integrate (4.224) for the non-Abelian solutions, it is convenient to represent Ñ(r̃)
as

Ñ(r̃) = 1
α2(r̃)

(
1− r̃H

r̃

)
, (4.232)

where α(r̃H) ≡ αH and α(∞) = 1. Then the integration yields,

X(r, rH) = (X(r̃, r̃H))α(r̃)×F(r̃) with F(r̃) = exp
(∫ ∞

r̃
α′(r̃) ln (X(r̃, r̃H)) dr̃

)
, (4.233)

with X(x, xH) ≡ (
√
x +
√
x− xH)/2. This implies that at infinity when r, r̃ → ∞ one

has r/r̃ → 1 and U, S,K → 0. At the horizon when r → rH and r̃ → r̃H one has

√
rH = 2

(√
r̃H

2

)αH

×F(r̃H), (4.234)

which determines the relation between the horizon radius expressed in terms of r and r̃
radial coordinates. This also shows that the value of eSH = r̃H/rH is not equal to unity.
Both N(r) and Ñ(r̃) vanish at the horizon. Using the chain rule and l’Hopital’s rule, one
finds

lim
r̃→r̃H

dÑ(r̃)
dr̃

= 1
α2

H r̃H

, lim
r̃→r̃H

dN(r(r̃))
dr̃

= α2
H

r̃H

⇒ eUH = σH

α2
H

, (4.235)

where σH ≡ σ(r̃H). Therefore, eUH is not equal to σH , as suggested by the naive formula
(4.66). It includes the additional factor 1/α2

H which is related to the surface gravity.
Computing the later using Eq. (4.36) in the spherically symmetric and axially symmetric
formalisms yields,

κg = 1
2rH

eUH−KH = σH

2α2
H r̃H

= 1
2r̃H

eUH , (4.236)
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Figure 4.30: The metric functions U (left) and S (right) for the spherically symmetric
hairy black hole with ν = 1, κ = 10−3 and rH = 0.02 against ln(r/rH) and ϑ.
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where in the last equality we have used the Eq. (4.235). In the extremal limit r̃H →
r̃ex

H > 0, when the horizon becomes degenerate, one has κg → 0 but at the same time σH

approaches a non-zero value. It follows that αH →∞ and

r̃H → r̃ex
H , rH → 0, eUH → 0, eKH = eSH = r̃H

rH

→∞. (4.237)

Having computed U, S, . . . from the Eqs. (4.224),(4.225), the same values are obtained
by directly solving the axially symmetric problem for ν = 1. The Fig. 4.30 shows the
profiles of U and S for κ = 10−3 and rH = 0.02. For this solution, one has r̃H = rH e

SH =
0.0577 > r̃ex

H = 0.0466 while rH < r̃ex
H . When rH decreases further, the profiles remain

essentially the same but UH becomes more and more negative whereas SH grows, as
suggested by the Eq. (4.237).

Since UH , SH , KH become unbounded when approaching the extremal limit, the latter
should be considered separately. The horizon is degenerate and the function Ñ(r̃) has
the structure shown in Eq. (4.122). The equations (4.224),(4.225) then imply that the
functions U,K, S will be finite at the horizon and approach zero at infinity only if N(r)
has the same structure as Ñ(r̃),

Ñ(r̃) = k̃2(r̃)
(

1− r̃H

r̃

)2
, N(r) = k2(r)

(
1− rH

r

)2
, (4.238)

where, according to the Eq. (4.122), k(rH) = k̃(r̃H) ≡ k =
√

1− 2(r̃ex
H )2Λ and k(∞) =

k̃(∞) = 1, whereas,
rH = r̃H = r̃ex

H . (4.239)

Injecting this to (4.224) and integrating by parts yields,

ln(r̃ − rH)
k̃(r̃)

− ln(r − rH)
k(r) =

∫ ∞

r̃
ln(r̃ − rH) k̃

′(r̃)
k̃2(r̃)

dr̃ −
∫ ∞

r
ln(r − rH) k

′(r)
k2(r)dr. (4.240)

The right-hand side of this equation approaches zero when r, r̃ → ∞ so that r/r̃ → 1
and (4.225) implies that U,K, S → 0. At the horizon, r, r̃ → rH , the right-hand side of
(4.240) approaches a finite value that can be denoted by C, hence close to the horizon
one has

r̃ − rH

r − rH

=

√√√√Ñ(r̃)
N(r) = ekC . (4.241)

Finally, the Eq. (4.225) implies that,

eUH = σHe
kC , eKH = eSH = 1, (4.242)

so that now everything is finite at the horizon. Notice that the above formulas become
very simple for the extremal RN solution. In this case, one has k(r) = k̃(r̃) = 1, r = r̃
and U = K = S = 0.

To summarize, for extremal hairy solutions, close to the horizon, one should have
N = Ñ , and the spacetime geometry should be that of an extremal RN-de Sitter black
hole. According to Eq. (4.85), the function N is therefore given by,

N(r) =
(

1− rH

r

)2
[
1− Λ

3
(
r2 + 2rHr + 3r2

H

)]
, (4.243)
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Figure 4.31: The metric functions U (left) and S (right) for the extremal spherically
symmetric hairy black hole with ν = 1 and κ = 10−3, in which case rH = rex

H = 0.046.

with rH = rex
H defined in Eq. (4.84). For the numerical computations, we choose k2(r) in

Eq. (4.238) to be the same as the expression inside the square brackets above, but with
an additional cut-off factor,

k2(r) = 1− Λ
3
(
r2 + 2rHr + 3r2

H

)
× 1 + r4

H

1 + r4 . (4.244)

Hence k2(rH) = k2 and k2(∞) = 1. Solving the axially symmetric equations for the
extremal hairy black hole with ν = 1 and κ = 10−3 then yields the profiles of U and S
shown in the Fig. 4.31. They look quite different from those for the non-extremal solution
in the Fig. 4.30 but they agree with Eq. (4.242). In particular, S = ln(r̃/r) now vanishes
both at the horizon and at infinity.
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Chapter 5
Chains of rotating boson stars

This chapter is based on [230].

5.1 Introduction
So far we have focused on black hole solutions in GR and in the massive bigravity theory.
Another class of solutions to explore is the so-called gravitating solitons. These are
nontrivial solutions without an event horizon in a theory of gravitation that is minimally
coupled to some matter fields. Generically, hairy black holes and solitons are closely
related to each other: when the horizon radius of a hairy black hole shrinks to zero, one
usually obtains a soliton configuration (see for example the Sec. 2.10.2 in the context of
the massive bigravity theory). In the previous chapter, we have considered electroweak
hairy black holes. In this case, the horizon size could not be arbitrarily small. Instead,
one approaches the extremal hairy solution at a finite value of the horizon size. This
is related to the absence of regular monopoles in the flat space electroweak theory. In
essence, the presence of an event horizon is necessary to avoid a naked U(1) singularity.
In this chapter, we shall consider the well-known class of nontopological solitons in GR.

Nontopological solitons were first introduced in flat space field theory by Rosen [231]
and later by Friedberg et al. [232] in the 70s. In this context, they consist in nontrivial
stationary solutions of a nonlinear theory which have a finite energy and are spatially
localized. Unlike topological solitons such as (regular) monopoles, their existence is guar-
anteed by the conservation of a Noether charge rather than a topological charge1. A
simple example of these solitons are Q-balls, introduced by Coleman [233] in 1985. Q-
balls are nontopological solitons in a complex scalar field theory with a self-interacting
potential. The theory proposed by Coleman exhibits a global phase invariance which
yields to a conserved charge Q, according to Noether’s theorem. Upon quantization, the
theory describes interacting massive bosons. In light of this, Q-balls can be seen as an
agglomerate of massive bosons in flat space tied together by their self-interactions and
the charge Q is related to the number of particles [232, 233]. For a given charge Q, the
minimization of the energy favors a configuration in which particles are glued together
in a soliton, rather than a configuration with individual free particles. This ensures the
existence of Q-balls [233].

Spherically symmetric Q-balls are described by a complex scalar field of the form
Φ = ϕ(r) eiωt where ϕ is a real function of the radial coordinate, ω is a constant frequency
and t is the time coordinate. The harmonic time dependence is a crucial ingredient which,

1In the case of monopoles, the topological charge is the winding number.

147
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together with a well-chosen potential, allows the existence of solitons [234]. Because of the
spherical symmetry, surfaces with constant energy density are spheres. Solutions exist in
a finite frequency range ωmin < ω < ωmax: the upper bound is related to the mass of the
scalar field whereas the lower bound depends on the shape of the potential [232, 233, 62].
The mass M of a Q-ball and its charge Q reach their minimal values at a critical frequency
ωcr ∈ (ωmin, ωmax) and they both diverge at the boundaries of the frequency domain. For a
fixed frequency ω, there are infinitely many spherically symmetric Q-balls labeled by the
number n of nodes of their ϕ profile [235]. Solutions with n ≥ 1 are called radially excited
Q-balls and are unstable, whereas solutions with n = 0 are referred to as fundamental Q-
balls and are stable in the range ωmin < ω < ωcr [232]. In general, finding Q-ball solutions
requires solving a nonlinear differential equation numerically; however, it has been found
recently that very accurate analytical approximations of stable Q-balls can be obtained
[236].

Rotating generalizations of Q-balls exist [235, 237]. The rotation is achieved by adding
a extra phase factor eimφ to the scalar field, where φ is the azimuthal angle and m is the
integer rotational number. The rotating solutions are classified according to the behavior
of their ϕ profile under reflections with respect to the equatorial plane. The energy density
isosurfaces consist in one or more tori. The solutions can thus be interpreted as one single
rotating Q-ball or a chain of several rotating Q-balls. These solutions carry an angular
momentum J directly related to the charge by J = mQ. Their angular momentum is
thus quantized at the classical level and as a consequence, for a fixed Q, there are no
slowly rotating Q-balls (with arbitrarily small J). Apart from a different ϕ profile and a
nonzero angular momentum, spinning Q-balls share the same properties as the spherically
symmetric ones regarding the frequency dependence of their mass or charge.

Boson stars (BSs) arise when Q-balls are coupled to gravity [62, 63, 64]. BSs are glob-
ally regular solitonic configurations, namely, they have neither horizons nor singularities.
Because the coupling to gravity provides an attractive interaction, BSs exist also when the
scalar field potential contains only a mass term [238, 239]. The corresponding solutions
are sometimes called mini-boson stars because their maximum mass is very small, except
for tiny values of the boson mass [240]. BSs can be rotating and their angular momentum
obeys the quantization relation J = mQ [237, 241, 242]. Although the spacetime geome-
try of BSs does not have horizons, ergoregions may be appear for rotating BSs [242, 243].
It should be also mentioned that self-gravitating solitons exist also if the scalar field is
replaced by a vector or a spinor field [244, 245, 246].

The study of BSs was motivated by different elements. First, the discovery of the Higgs
boson [60, 61] has shown that fundamental scalar fields exist in nature. In light of this, BSs
can be seen as a toy model for solitonic configurations of more realistic fields. Second, BSs
are known to be good black holes mimickers [247, 22], hence they can have applications
in astrophysics. Third, in cosmology, scalar fields are the fundamental ingredient in many
models such as, for example, in primordial inflation models [248] or in quintessence models
of dark energy [249]. We refer the reader to the Refs. [62, 240, 250, 251, 252] for reviews
about BSs.

In this chapter, we consider BSs which have flat space counterparts (Q-balls): the
scalar field potential contains self-interactions carried by terms quartic and sextic in |Φ|.
The coupling with gravity has a crucial influence on the frequency dependence of the mass
and the charge. Solutions exist below a maximal frequency ωmax for which BSs emerge
from the flat vacuum. In this limit, the mass M and the charge Q vanish (rather than
diverge in the Q-ball case). For fundamental BSs, the (ω,M) and (ω,Q) curves present
a spiraling behavior so that the solutions are no longer uniquely determined by their
scalar field frequency. The configurations approach a limiting solution at the center of
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the spirals with finite mass and charge [63]. For excited BSs, the spiraling pattern occurs
for nonrotating configurations [253]. For a single excited and rotating BS, the spiraling
behavior is replaced by a loop patern: BS sequences start and end at ωmax where they
approach the vacuum configuration.

In this chapter, we present the construction of chains of rotating BSs and analyze their
properties. In the nonrotating case, chains with two constituents were first considered by
Yoshida and Eriguchi [254] and then generalized to larger numbers of constituents by
Herdeiro et al. [65]. Their solutions consist in static, axisymmetric equilibrium configura-
tions interpreted as several BSs located along the symmetry. The different constituents in
the chains are tied together by the gravitational attraction and are kept apart from each
other by the scalar repulsion [255]. Adding rotation to these solutions is a very natural
generalization and we numerically construct the rotating chains [230].

The rest of the chapter is organized as follows. In Section 5.2 we describe the model,
recalling the action and the general field equations. We also present the axisymmetric
ansatz for the fields, the conserved quantities and the boundary conditions. In Section 5.3,
we describe our numerical procedure which is based on the finite element solver FreeFem
[195]. In Section 5.4, we reproduce sequences of already known solutions–rotating BSs
with even/odd parity [237, 242] and chains of nonrotating BSs [65]–to test our numerical
solver. We also present our chains of rotating BSs, analyze their properties and their flat
space limit. Section 5.6 gives our conclusions and perspectives. Finally we give in the
Appendix 5.A the coupled set of elliptic PDEs to be solved.

5.2 The model

5.2.1 Action and conserved quantities
We consider the theory of a complex scalar field Φ minimally coupled to GR. The dimen-
sionless2 action is given by

SBS =
∫
d4x
√
−g

[
R

4α2 −
1
2g

µν (∂µΦ∗∂νΦ + ∂νΦ∗∂µΦ)− U(|Φ|2)
]
, (5.1)

where R is the Ricci scalar associated with the spacetime metric gµν , α is the gravitational
coupling and U is the scalar field potential. Here we consider a potential with self-
interactions,

U(|Φ|2) = |Φ|6 − λ|Φ|4 + u2
0|Φ|2, (5.2)

where u0 is the mass of the scalar field (i.e., the boson mass) and λ > 0 is a parameter
determining the self-interactions.

By taking the limit α→ 0 and setting the background metric to be Minkowski, gravity
decouples and the theory reduces to that of flat space Q-balls. In this sense, BS solutions
in the theory (5.1) with the sextic potential (5.2) can be seen as gravitating Q-balls. We
choose the following values for the parameters in the potential,

u2
0 = 1.1, λ = 2, (5.3)

which are the values commonly used in the literature (see for example Refs. [235, 237,
242]). With these values, the potential has a global minimum at |Φ| = 0 and a local
minimum at some finite value of |Φ|. Hence the potential (5.2) does not allow for a
spontaneous symmetry breaking.

2In the dimensionfull action, the potential U(|Φ|2) contains an overall factor that has been set to unity
by a rescaling.
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The field equations are obtained by varying the action (5.1). Variations with respect
to the scalar field yield the nonlinear Klein-Gordon equation,(

∇µ∇µ − dU

d|Φ|2

)
Φ = 0. (5.4)

Variations with respect to the spacetime metric give the Einstein equation,

Eµν ≡ Rµν −
1
2gµνR− 2α2Tµν = 0, (5.5)

where Tµν is the stress-energy tensor of the scalar field,

Tµν = ∂µΦ∗∂νΦ + ∂νΦ∗∂µΦ− gµν

[1
2g

αβ (∂αΦ∗∂βΦ + ∂βΦ∗∂αΦ) + U(|Φ|2)
]
. (5.6)

We are interested in solutions which are axisymmetric and stationary. These sym-
metries are associated with two Killing vector fields which can be expressed in adapted
coordinates as,

ξ = ∂t, χ = ∂φ, (5.7)
where t, φ are respectively the asymptotic time and the azimuthal angle. We also assume
that spacetime is asymptotically flat so that the mass M and the angular momentum J
of the solutions can be computed by the Komar integrals (see Sec. 1.2),

M = 1
α2

∫
Σ
d3x
√
γ nµξνR

µν = 2
∫

Σ
d3x
√
γ nµξν

(
Tµν −

1
2g

µνT
)
, (5.8)

J =− 1
2α2

∫
Σ
d3x
√
γ nµχνR

µν = −
∫

Σ
d3x
√
γ nµχν

(
Tµν −

1
2g

µνT
)
, (5.9)

where Σ is a spacelike hypersurface, γ is the determinant of the induced metric on Σ and
n is the normal vector to Σ such that nµn

µ = −1.
The theory (5.1) is invariant under global phase transformations Φ → eiθ Φ, with a

constant β. This global U(1) symmetry is associated with a conserved 4-current,

jµ = −i(Φ∂µΦ∗ − Φ∗∂µΦ), ∇µj
µ = 0. (5.10)

The integration of this 4-current over a spacelike hypersurface gives the conserved Noether
charge,

Q =
∫

Σ
d3x
√
γ nµj

µ. (5.11)

5.2.2 Ansatz and boundary conditions
In a system of coordinates such that the Killing vectors are given by Eq. (5.7), the
stationary and axisymmetric spacetime metric is independent of t, φ. Then, the line
element can be put in the Lewis-Papapetrou form [192, 256],

ds2 = −f dt2 + ℓ

f

[
h(dr2 + r2dϑ2) + r2 sin2 ϑ

(
dφ− w

r
dt
)2
]
, (5.12)

where f , ℓ, h and w are four functions of the quasi-isotropic coordinates (r, ϑ). The
symmetry axis of spacetime is the set of points such that χµχ

µ = (ℓ/f)r2 sin2 ϑ is van-
ishing. It corresponds to the z axis in cylindrical coordinates or, equivalently, ϑ = 0, π.
The Minkowski metric is recovered when f = ℓ = h = 1 and w = 0. Notice that the
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line element (4.26), which was used in the previous chapter to describe the electroweak
black holes, reduces to the one above after gauging away the function N(r) and when
w = 0 (this is the condition for spacetime to be static). One has then the identifications,
f = e2U , ℓ = e2(S+U) and h = e2(K−S).

The axisymmetric ansatz for the scalar field Φ is [237, 242],

Φ = ϕ(r, ϑ) eiωt+imφ, (5.13)

where ϕ is a real function, ω is the constant frequency parameter and m is the constant
rotational number. The latter has to be integer to ensure that the scalar field is single-
valued. We will assume without loss of generality that m is positive. Although the field
(5.13) depends explicitly on t and φ, a direct computation reveals these dependencies
disappear in the stress-energy tensor and in the field equations.

With the line element (5.12), the normal vector in Eqs. (5.8),(5.9) and (5.11) is n =√
f dt and √γ = √−g/

√
f . Then the mass and the charge are

Q =4π
∫ ∞

0
dr
∫ π

0
dϑ r2 sinϑℓ

3/2h

f 2

(
ω + mw

r

)
ϕ2, (5.14)

M =4π
∫ ∞

0
dr
∫ π

0
dϑ r2 sinϑℓ

3/2h

f 2

[
f U(ϕ2)− 2ω

(
ω + mw

r

)
ϕ2
]
, (5.15)

while for the angular momentum, one finds the quantization relation

J = mQ, (5.16)

which was first derived in Ref. [241].
Alternatively, M and J can be read off from the asymptotic expansions of the functions

f and w [257]
M = 2π

α2 lim
r→∞

r2∂rf, J = 2π
α2 lim

r→∞
r2w. (5.17)

This provides a way to check the numerical accuracy of the solutions since the computation
of the mass and angular momentum from the volume integrals in Eqs. (5.15)-(5.16) should
agree with the values measured at infinity in Eq. (5.17).

Injecting the fields (5.12)-(5.13) into the Einstein-Klein-Gordon equations (5.4)-(5.5)
yields a coupled set of five PDEs for the unknown functions ϕ, f , ℓ, h, w whose explicit
expressions are given in the Appendix 5.A. The set of PDEs is elliptic and is treated as a
boundary value problem with appropriate boundary conditions.

The theory (5.1) depends only on the norm of the scalar field |Φ|. As a consequence,
the solutions can be classified according to the behavior of the function ϕ under reflections
with respect to the equatorial place ϑ = π/2,

P = 1 (even parity) : ϕ(r, π − ϑ) = ϕ(r, ϑ),
P = −1 (odd parity) : ϕ(r, π − ϑ) = −ϕ(r, ϑ). (5.18)

At the same time, the geometry is left invariant under these reflections

f(r, π − ϑ) = f(r, ϑ), ℓ(r, π − ϑ) = ℓ(r, ϑ),
h(r, π − ϑ) = h(r, ϑ), w(r, π − ϑ) = w(r, ϑ). (5.19)

As a result, we can reduce the integration domain to (r, ϑ) ∈ [0,∞)× [0, π/2].
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As we are assuming asymptotic flatness, the metric should approach Minkowki when
r →∞ while the scalar field goes to its vacuum configuration,

f |r→∞ = ℓ|r→∞ = h|r→∞ = 1, w|r→∞ = ϕ|r→∞ = 0. (5.20)

The regularity of the solutions at the origin requires that

∂rf |r=0 = ∂rℓ|r=0 = 0, h|r=0 = 1, w|r=0 = 0, (5.21)

while for the scalar field

∂rϕ|r=0 = 0 if m = 0 and P = 1,
ϕ|r=0 = 0 otherwise. (5.22)

Reflection symmetry with respect to the equatorial plane (5.18)-(5.19) requires that

∂ϑf |ϑ=π/2 = ∂ϑℓ|ϑ=π/2 = ∂ϑh|ϑ=π/2 = ∂ϑw|ϑ=π/2 = 0, (5.23)

while the conditions for the scalar field depend on the parity,

∂ϑϕ|ϑ=π/2 = 0 if P = 1,
ϕ|ϑ=π/2 = 0 if P = −1. (5.24)

Finally, axial symmetry and regularity imply the following conditions on the symmetry
axis,

∂ϑf |ϑ=0 = ∂ϑℓ|ϑ=0 = ∂ϑw|ϑ=0 = 0, h|ϑ=0 = 1, (5.25)

and for the scalar field

∂ϑϕ|ϑ=0 = 0 if m = 0,
ϕ|ϑ=0 = 0 if m ≥ 1. (5.26)

In addition, the absence of a conical singularity also requires that ∂ϑh|ϑ=0 = 0. This
constraint is not imposed in practice but we checked that it holds once a solution is
obtained, up to numerical accuracy.

Let us finally mention that the scalar field function ϕ exponentially vanishes at infinity
only if,

ω ≤ u0 ≡ ωmax. (5.27)

This provides the upper bound for the field frequency.

5.3 Numerical approach
To construct the chains of rotating BS, we solve numerically the set of five coupled non-
linear PDEs for the functions (ϕ, f, ℓ, h, w) with the boundary conditions defined in the
previous section. For this, we use the finite element solver FreeFem [195] together with
the Newton’s method to deal with nonlinear equations. Details about the numerical
method employed here can be found in the Appendix A.2. It should be emphasized that
the numerical schemes commonly used in the literature are based on the finite difference
method [258, 259] or on spectral methods [260, 261]. To our knowledge, there are very
few examples of using the finite element method in GR.
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Figure 5.1: Left: Various error indicators against the number of triangles Nx in the x-
direction for a typical chain of three BSs. Right: Differences ∆M ≡M(Nx + 1)−M(Nx)
and ∆Q ≡ Q(Nx + 1)−Q(Nx) for typical chains with two and three constituents against
Nx. The peaks of the curves occur because of the logarithmic scale when the plotted
quantities are coincidentally close to zero.

The finite element approach requires equations to be in a weak form. As a first step,
Eqs. (5.33)-(5.37) are multiplied by an overall factor such that the second derivative terms
are

f

ℓh

∂2X

∂r2 + f

r2ℓh

∂2X

∂ϑ2 = [. . . ], (5.28)

where X denotes the functions ϕ, f , ℓ, h and w. This is the structure of the Laplace-
Beltrami operator ∆ϕ ≡ 1√

−g
∂µ(√−g gµν∂νϕ) for the metric (5.12). Then we introduce a

compactified radial coordinate
x ≡ r

1 + r
, (5.29)

which maps the semi-infinite interval r ∈ [0,∞) to the finite range x ∈ [0, 1]. Finally, the
PDEs are multiplied by test functions, integrated over the domain (x, ϑ) ∈ [0, 1]× [0, π/2],
and the second derivates are integrated by parts as described in the Appendix A.2.1.

The Einstein equations (5.5) contains two additional constraints, Er
ϑ = 0 and Er

r −
Eϑ

ϑ = 0, which are not solved in practice. If the numerical procedure is consistent,
they should be satisfied by the numerical solutions. Therefore we integrate them over
a spacelike hypersurface to obtain an estimation of numerical errors. In addition, we
also evaluate the relative difference on the mass and angular momentum computed from
(5.15)-(5.16) and from (5.17). We have noticed that increasing the number of triangles
Nϑ in the ϑ-direction does not change significantly the errors. Therefore, we set Nϑ = 25
and present the dependence of the different error indicators on the number of triangles
Nx in the x-direction in the left panel of Fig. 5.1. In the following, we fix Nx = 200 so
that our errors are typically of the order of 10−5. The computation time for obtaining
one solution on a personal computer with a parallelized code is about thirty seconds.

The right panel of Fig. 5.1 shows a convergence test of our code. We evaluate the
mass and the charge for increasing values of Nx and compute the differences ∆M ≡
M(Nx + 1) −M(Nx) and ∆Q ≡ Q(Nx + 1) − Q(Nx). The latter are shown against Nx

with a logarithmic scale for both axis. After an oscillating phase when the number of
triangles is too small, all curves becomes straight lines with a slope of −4. Hence the
convergence is of fourth order in the number of triangles used to construct the mesh.

Our code contains 3 input parameters: the gravitational coupling α, the scalar field’s
frequency ω and the rotational number m. The parity is imposed via the appropriate
boundary condition at ϑ = π/2 as in Eq. (5.24). The number of individual constituents of
the chain is fixed by a suitable initial guess of the ϕ-function. We compute first a solution
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for a small value of α, choosing Minkowski as the initial guess for the metric, and then
increase α iteratively. Generally, it is more easy to start with ω close to ωmax; the full
sequences of solutions are then obtained by varying ω by small steps.

5.4 The solutions
We have constructed numerically solutions corresponding to chains of rotating BSs. The
chains with one and two constituents have already been considered in the literature, they
correspond respectively to the even and odd parity configurations of Ref. [242]. The non-
rotating chains with m = 0 have also been considered in Ref. [65]. We have reproduced
these solutions to test our code before moving on to solutions never studied before.

What we call the number of constituents in the chains corresponds to the number
of extrema of the scalar field function ϕ or, equivalently, the number of maxima of the
energy density T 0

0 . The solutions are classified according to the parity of the scalar field
amplitude: chains with an even (odd) number of constituents have an odd (even) ϕ profile.

To illustrate this, we show in Fig. 5.2 typical examples of solutions where the profiles
of ϕ, T 0

0 and f are plotted against the quasi-isotropic cylindrical coordinates ρ = r sinϑ
and z = r cosϑ. A single BS is shown in the first row, the ϕ function and the energy
density show a single peak and have a parity P = 1. A pair of BSs is shown in the
second row, the scalar field amplitude is now antisymmetric: its parity is P = −1. The
number of extrema is two (one peak and one trough) while the energy density presents
two symmetric maxima. We also show the lapse squared function f (right column); its
profile exhibits as many minima as the number of constituents in the chain and they
are located where the maxima of the energy density are. The profiles for chains with a
larger number of constituents present similar features: the ϕ amplitude shows alternating
peaks troughs which are related to symmetric peaks for the energy density and symmetric
troughs for the lapse. The shape of the surfaces with constant energy density gives the
spatial structure of the solutions. Single BSs have a typical torus shape just like rotating
Q-balls (see e.g. the Ref. [262]), pairs have a double tori shape, triplets correspond to
triple tori and so on. All these solutions are rotating generalizations of the static chains
presented in Ref. [65].

5.4.1 Single boson stars and pairs
We will now recall the main results on single and pairs of BSs [237, 242]. The solutions
emerge from the flat vacuum at the maximal value of the scalar field frequency ωmax = u0.
The mass M and the charge Q of BSs vanish in this upper limit (rather than diverge in
the Q-balls case). Decreasing ω spans the first (or fundamental) branch of solutions; it
ends at a frequency ωmin whose value depends on the gravitational coupling α and the
rotational number m. As seen on the upper panels of Fig. 5.3, the mass M remains finite
at ωmin and the curves present their first backbending. The sequences of solutions can
be extended by moving toward larger frequencies. Second branches start after the first
backbendings, third branches after the second backbendings, etc.

The curves for single and pairs of BSs exhibit an inspiraling behavior, approaching a
limiting solution at the center of the spirals. In practice, the complete determination of
spirals is extremely difficult because the profiles of the solutions become more and more
sharp [237]. Therefore to avoid very time-consuming numerical computations, we only
present the first few branches in the figures. The (ω,Q) diagrams are now shown here
but they show similar inspiraling pattern, see the Refs. [237, 242]. Examples of profiles
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Figure 5.2: Chains of rotating BSs with one to five constituents (from top to bottom) on
the fundamental branch of solutions for α = 0.25, ω = 0.9 and m = 1. The plots represent
the scalar field amplitude ϕ (left), the energy density T 0

0 (middle) and the metric function
f (right) against the cylindrical coordinates (ρ, z).
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Figure 5.3: Scaled mass M (upper panels), maximal value of the scalar field amplitude
ϕmax (lower left panel), and minimal value of the metric function fmin (lower right panel)
against the frequency ω for single BSs (dash-dotted curves) and pairs (solid curves).
Different values of the rotational number m and gravitational coupling α are presented.
The red dots indicate the onset of ergoregions. Note the quadratic scale for fmin.

for solutions on the second branch can be seen in Fig. 5.4. For the chains with one or
two constituents considered in this subsection, the main features remains qualitatively
the same. The extrema of the scalar field function and the energy density are sharper
and closer to the z axis as compared to solutions on the fundamental branch. Hence the
ϕ function presents in this region very high second derivatives, rendering the numerical
computations more challenging.

We also show in Fig. 5.3 the frequency dependence of the maximal value of the scalar
field amplitude ϕmax (lower left panel) and the minimal value of the metric function fmin
(lower right panel). The curves present damped oscillations instead of an inspiraling
behavior. On the one hand, the maximal value of the scalar field function goes from zero
at ωmax when the solutions emerge and then grows as we move to the different branches.
On the other hand, the minimal value of the lapse function begins from the vacuum value√
fmin = 1, and then appraoches zero after (presumably) infinitely many oscillations.

From the comparison between the curves for α = 0.25 (upper left panel) and α = 1
(upper right panel), one can see that a larger gravitational coupling increases the minimal
value of the frequency ωmin and thus reduces the domain of existence of solutions. The
rotational number m has a more complicated influence on the value of ωmin. For rotating
(m ≥ 1) single BSs and pairs of BSs, increasing m decreases the value of ωmin, but when
we pass from nonrotating (m = 0) to rotating solutions (m ≥ 1), whether the minimal
frequency increases or decreases depends on the value of gravitational coupling α. For
example, ωmin increases for BS pairs with α = 0.25 if we compare the m = 0 to the m = 1
sequence (upper left panel of Fig. 5.3). In contrast for α = 1 (upper right panel), ωmin
decreases when m goes from 0 to 1.

Another remarkable property of rotating BSs is that they can have an ergoregion. The
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Figure 5.4: Chains of rotating BSs with one to five constituents on the second branch
of solutions with m = 1, α = {0.25, 0.25, 0.25, 0.25, 0.15} and ω = {0.5, 0.7, 0.7, 0.7, 0.7}
(from top to bottom). The plots show the scalar field function ϕ (left), the energy density
T 0

0 (middle) and the metric function f (right) against the cylindrical coordinates (ρ, z).
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stationary limit surface (or ergosurface) is defined as the set of points such that

gtt = −f + ℓ

f
w2 sin2 ϑ = 0, (5.30)

and the ergoregion resides inside this hypersurface, where gtt > 0 (see Sec. 1.4). The onset
of ergoregions is indicated by red dots on the curves. Generically, an ergoregion appears
on the first or second branch and then the solutions further down the spiral all possess
one. However the presence of ergoregions for objects without horizon is associated with
a superradiant instability [243] and a light ring instability [263]. Therefore the physical
relevance of BSs that have an ergoregion is limited.

Finally, we have also computed two curvature invariants: the Ricci scalar R and
the Kretschmann scalar K = RαβµνR

αβµν . The Fig. 5.5 show their maximal values as
functions of ω for single BSs and pairs. This provides new information about the limiting
configuration at the center of the spirals. Indeed the increase of Rmax and Kmax as one
moves towards the different branches becomes larger and larger. Therefore, if the spirals
are infinite, it strongly suggests that the curvature invariants diverge and become infinite
for the limiting solutions. As a result, the latter are certainly singular and thus unlikely
to be numerically obtained.

5.4.2 Chains with odd numbers of constituents
Let us now consider chains of BSs with a higher odd number of constituents. These
solutions are characterized by an even parity (P = 1) of their ϕ profile: one BS is
centered in the equatorial plane and the other ones are located symmetrically in the
upper and lower semispaces as one can see in Fig. 5.2 where a triplet and a quintet are
shown. It turns out that these chains exhibit a different frequency dependence of their
mass (or charge) as compared to single BSs or pairs. The (ω,M) diagrams for triplets
are shown in Fig. 5.6. For all rotating solutions (m > 0) the curves no longer present
the inspiraling behavior but instead form nontrivial loops with only two branches. A first
branch of solution starts at the maximal value of scalar field frequency ωmax, extends until
the backbending is reached, and a second branch leads all the way back to the vacuum
configuration.

The terminology first and second branches can thus seem ambiguous in this case but
one can actually distinguish solutions belonging to one or the other. Indeed, for solutions
on the fundamental branch when ω is close to its maximal value (high-frequency regime),
the peaks and troughs of the ϕ function (left column of Fig. 5.2) are similar in shape and
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Figure 5.6: Triplets of BSs: the ω dependence of the scaled mass M for different gravita-
tional coupling α and rotational number m (upper panels), maximal value of the scalar
field amplitude ϕmax (middle left panel), minimal value of the metric function fmin (mid-
dle right panel) and maximal values of the curvature invariants R, K (lower panels) for
different values of α and m = 1. The onset and termination of ergoregions are indicated
respectively by red dots and triangles. In the upper right panel, the curve for BS quintets
with m = 1 is also shown for comparison.

located along a line parallel to the z axis. On the contrary, for solutions on the second
branch, the central BS dominates in amplitude and the different constituents no longer
form a line. For example in the third row of Fig. 5.4, the two satellites are located at
a larger ρ coordinate than the central BS. Moreover, the central trough of the f profile
overlaps with that of the satellites for solutions on the second branch. Regarding the
(ω,M) diagrams, the fundamental branch is always the one with a lower mass for ω close
to ωmax. This suggests that the fundamental branch in the high-frequency regime is more
stable than the second branch. However for lower values of ω, this mass hierarchy is
inverted.

In the upper left panel of Fig. 5.6, we show the (ω,M) diagrams for different values of
the gravitational coupling α. The two branches always intersect at some value of the scalar
field frequency but the curves in the low-frequency regime can present more complicated
patterns when α is small. For example the curves for α ≳ 0.25 are very similar in shape
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but for α = 0.15, the second branch have two successive backbendings before returning to
the vacuum configuration. We also see that ergoregions do not necessarily occur: for BS
triplets with m = 1, they only appear below a critical value αcr ≲ 0.25. Since the second
branch terminates at the flat vacuum configuration, if there is an onset of ergoregion (red
dots on the figure), a termination (red triangles) necessarily occurs. Finally, as for single
BSs, the domain of existence of solutions increases when α decreases.

The influence of the rotational number m on odd chains is presented in the upper right
panel of Fig. 5.6 where sequences of solutions have been constructed with a fixed value
of α and m = 0, 1, 2. A larger rotational number seems to increase the minimal value
of the scalar field frequency and thus reduces the domain of existence of the solutions.
We also note that rotating odd chains have a different branch structure than the static
ones. Indeed, the nonrotating (m = 0) triplets with α = 0.15 exhibit the same inspiraling
pattern as single BSs and pairs. In fact, the authors in Ref. [65] have noticed that static
triplets can have a loop structure but only for large gravitational coupling whereas rotating
triplets seem to never show the spiral pattern, even when α is small. Moreover, it is shown
in Ref. [65] that when nonrotating odd chains present the loop structure (large α), the
second branch overlaps with the fundamental branch of a radially excited and spherically
symmetric single BS sequence.

We expected a similar scenario for the rotating odd chains because they present a loop
structure. However it turns out that our solutions coincide exactly with excited rotating
single BSs previously constructed in Ref. [253]. On the one hand, we have found no other
solutions different from the radially excited BSs of Ref. [253]. On the other hand, the
chain structure of the ϕ profile (see Fig. 5.2) is in total agreement with their nonrotating
counterparts – the static chains of Ref. [65]. We conclude that rotating chains with an
odd number of constituents exist, and correspond to radial excitations of single BSs. To
support this result, we present in Fig. 5.7 the mass of single BSs, triplets and quintets
against their charge Q. For a given charge, the less energetic solution always lies on the
sequence of single BSs. Even in the region where the different curves overlap, the single
BS sequence is still below the two others. Therefore if triplets and higher odd chains
are unstable, they could possibly radiate their energy keeping their charge fixed, and
decay into a single BS. Of course to rigorously confirm this scenario, fully time-dependent
simulations would be required, which is out of the scope of this work.
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Figure 5.7: Scaled mass M against the scaled charge Q for chains of BSs with odd numbers
of constituents with m = 1 and α = 0.15.
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For the sake of completeness, we also present in the middle and lower panels of Fig. 5.6
the maximal value of the scalar field function ϕmax, the minimal value of the metric
function fmin and the maximal values of the curvature invariants Rmax, Kmax against the
frequency ω for BSs triplets. These curves also form loops but contrary to the (ω,M)
diagrams they do not intersect. Therefore the point of intersection on a (ω,M) curve
corresponds to two distinct solutions. It worth noting that whereas single BSs and pairs
with fixed rotational number m could be uniquely parametrized by ϕmax, fmin, Rmax or
Kmax, this is not possible for higher odd chains because of the loop structure. This
peculiarity was already mentioned in Ref. [253] but with a different parameter choice.

We have checked that the loop pattern occurs for the BS quintets (as seen in the upper
right panel of Fig. 5.6) and expect this to be generic for all rotating chains with a higher
odd number of constituents.

5.4.3 Chains with even numbers of constituents
We now turn to rotating chains with a higher even number of constituents. These solutions
have a odd parity ϕ profile (P = −1) just like BS pairs. Although these are very natural
generalizations of the configurations considered in Refs. [242, 65], this is the first time such
solutions have been explicitly constructed. It turns out that the (ω,M) diagrams for even
chains are all similar to those for BS pairs. As one can see on the upper panels of Fig. 5.8,
the curves present the inspiraling behavior with (presumably) infinitely many branches.
The upper left panel show the (ω,M) diagrams for m = 1 and different values for the
gravitational coupling. Again, larger values for α yield a smaller domain of existence
of the solutions. The sequences present an ergoregion onset (red dots) and all solutions
located further down the spiral possess one. We expect the spirals to occur for all even
chains, although so far we have checked it only for quartets and sextets.

The higher even chains also share some properties with the odd chains. For example
the upper right panel of Fig. 5.8 shows the (ω,M) diagrams for quartets with α = 0.15
and m = 0, 1, 2. One can see that increasing the rotational number seems to decrease the
domain of existence just like for the triplets of Fig. 5.6. Another similarity with the odd
chains is the profile of the configurations as we move on the second branch. The solutions
of the fundamental branch have all constituents aligned and parallel to the z axis (fourth
row of Fig. 5.2) while on the second branch, the central BS pair dominates in amplitude
and the other constituents are located at a larger ρ coordinate than the two central ones
(fourth row of Fig. 5.4). However the situation between odd and even chains becomes
different when we pursue the sequence. For odd chains, the amplitude of all extrema
decreases as the solutions dissolve to the flat vacuum: this can be seen on the middle left
panel of Fig. 5.6 where the value of ϕmax for triplets is shown. In contrast for even chains,
only the amplitude of the outer constituents decreases while the central pair continues to
grow in amplitude as we move to the different higher branches, see the middle left panel
of Fig. 5.8.

Unfortunately, we cannot conclude on the finiteness of ϕmax for the limiting configu-
ration at the center of spirals since the ϕ function becomes extremely sharp for higher
branches. Regarding the minimal value of the metric function fmin, it seems to approach
zero as we move towards more involved spirals, as seen in the middle right panel of Fig. 5.8.

Even though it is not clear whether the scalar field function remains finite or not as
we approach the center of spirals, the limiting solutions are certainly singular. Indeed, we
show in the lower panel of Fig. 5.8 the maximal values of curvature invariants R and K
as functions of ω. Their values increase as we move towards the different branches, and
the increase itself becomes larger and larger. This suggests that the curvature invariants
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diverge for the limiting solution.

Finally, as for the chains with odd numbers of constituents, we conjecture that the
higher even chains coincide with excitations of BS pairs. To support this conjecture, we
present in Fig. 5.9 the masses of pairs of BSs, quartets and sextets as functions of the
charge Q. For all the solutions with an even number of constituents greater than or equal
to four (quartets and sextets in the figure) there is a pair configuration with the same
charge and lower mass. As for the odd chains in Fig. 5.7, the sequence of BS pairs is still
below the two others even in the region where the curves almost coincide. As a result,
chains with a higher even number of constituents can decay into a pair of BSs keeping
their charge fixed. It is therefore plausible that they are unstable and correspond to
excitations of BS pairs.

 0

 10

 20

 30

 40

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.05

m=1

M

�

2

�

�=0.5
�=0.25
�=0.2
�=0.15

Ergoregion

 0

 10

 20

 30

 40

 0.3  0.4  0.5  0.6  0.7  0.8  0.9  1  1.05

�=0.15

M

�

2

�

m=0
m=1
m=2

Ergoregion
Sextet

Quartet

 0

 0.5

 1

 1.5

 2

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.05

m=1

�

m
a
x

�

�=0.15
�=0.2
�=0.25
�=0.5 Ergoregion

0

0.25

0.5

0.75

1.0

 0.4  0.5  0.6  0.7  0.8  0.9  1  1.05

m=1

f m
in

�

�=0.15
�=0.2
�=0.25
�=0.5 Ergoregion

 0

 5

 10

 15

 20

 25

 30

 35

 0.5  0.6  0.7  0.8  0.9  1  1.05

m=1

�

�=0.5

�=0.25
�=0.2

(K1/2)max   
Rmax

Figure 5.8: Quartets of BSs: the ω dependence of the scaled mass M for different gravi-
tational coupling α and rotational number m (upper panels), maximal value of the scalar
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5.5 Flat space limit

The model of BSs we are considering here have a flat space limit: Q-balls. This limit is
reached as the gravitational coupling α approaches zero. However, constructing full se-
quences of rotating solutions with small value of α turns out to be numerically challenging
[237, 242]; for the chains configurations, only a part of the fundamental branch can be
easily constructed. We have thus fixed the value of the boson frequency ω by choosing a
solution on the fundamental branch, and then varied only α. Our results are expected to
apply for every BS chains belonging to the fundamental branches.

We present the mass M of the chains up to four constituents against the gravitational
coupling α in the left panel of Fig. 5.10. One can see that the flat space limit is approach
smoothly when α→ 0. For single BSs and pairs, the flat space solutions are the rotating
Q-balls with even and odd parity presented in Refs. [235, 237, 242]. More interestingly,
we find that triplets and quartets also have Q-ball counterparts in the absence of gravity;
the limiting solutions thus corresponds to chains of Q-balls (also referred to as Q-chains).
To our knowledge, these configurations have never been reported before in the literature
although chains of nonrotating Q-balls coupled to a U(1) gauge field (a.k.a. gauged
Q-balls) have been constructed recently [264].
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Figure 5.11: Q-ball triplets of the first family (left) and second family (right) with ω = 0.9
and m = 1. The scalar field function ϕ is plotted against cylindrical coordinates (ρ, z).

As seen in the right panel of Fig. 5.11, the ϕ profile for the Q-chains is very similar to
that of BSs. We have checked that our solutions are numcerically stable by increasing the
resolution of the mesh used for the discretization. Increasing the number of grid points
for a given solution does not affect the ϕ profile and in particular, the distance between
neighboring constituents does not change.

The sequences of Q-cahins up to four constituents are presented in the right panel of
Fig. 5.10 where the mass M is plotted against ω. The frequency dependence of the charge
Q is qualitatively similar. We recover the main properties that are known for single Q-
balls or pairs. The mass and the charge both diverge at the upper bound of the frequency
domain, ω = ωmax, where ωmax still corresponds to the boson mass u0 as in Eq. (5.27).
The domain is also bounded from below at a finite value of the frequency, but now the
lower bound depends only on the parameters entering the potential [235, 237, 242],

ωQ-ball
min =

√
u2

0 + λ2

4 . (5.31)

Mass and charge diverge as well in this limit. It is worth mentioning that contrary to
the BS case, the different constituents in the Q-chains remain aligned throughout the
sequence.

A remarkable observation is that the mass of a Q-chain with n constituents coincides
with n times the mass of a single Q-ball. This can be understood in the following way. In
the absence of gravity, the different constituents interact with each other via the scalar
interaction which is short ranged because the scalar field in massive. Therefore, if the
neighboring Q-balls in chains are far enough apart, then they almost do not interact. As
a consequence, the energy of the whole Q-chain should be very close to the sum of the
energies of the different constituents taken indivudally.

It remains to clarify what happens to the higher branches of BS chains in the flat
space limit. For single BSs, this analysis has already been carried out by the authors
in Ref. [237]. They found that the spiral is shifted to the low frequencies so that the
minimal frequency for the BSs becomes smaller than the one for Q-balls as α approaches
zero. Therefore, for small values of α, the solutions belonging to higher branches in the
spiral have their frequency in the range

ω ∈
[
ωmin(α→ 0), ωQ-ball

min

]
, (5.32)

and they do not admit a flat space limit with finite charge or mass.
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The chains of rotating BSs with even numbers of constituents also exhibit the spiraling
frequency dependence of their mass (or change). Although we have not been able to
construct full sequences for very small values of the gravitational coupling, we conjecture
that the higher branches of BS chains with even numbers of constituents do not have a
regular flat space limit just like the single BSs.

The situation is different for the chains of BSs with an odd number of constituents.
These configurations have their second branch starting at ωmin and ending at ωmax where
the solutions converge to the flat vacuum. Choosing a solution on the second branch, we
find that a regular limiting solution is approached when α → 0. The α dependence of
the mass for BS triplets and quintets on the second branch are presented in the left panel
of Fig. 5.12. We also compare to the curves for solutions on the fundamental branch. It
turns out that the two flat space solutions are different and thus new families of Q-balls
exist.

We construct the sequences of these new families of solutions for triplets and quintets
and show them in right panel of Fig. 5.12. The second families are always more energetic
than the first ones, for any value of the scalar field frequency. In the right panel of
Fig. 5.11, we present the ϕ profile for a typical triplet of the second family: the central
constituent is centered in the equatorial place and is surrounded by the other companions
but the different constituents are not aligned. The two satellites are close to the central
Q-ball and thus the scalar interaction between them is no longer negligible. As a result,
the energy of Q-chains of the second family is higher than the sum of the energies of the
individual constituents.

We conclude that the set of rotating solutions in the Q-ball theory is richer than
expected. There is still an open question whether the Q-chains are stable or not. If
the BS chains are unstable as we conjecture, it seems very unlikely that their flat space
counterparts would be stable in the absence of the attractive gravitational interaction.

Our result are expected to generalize for higher number of constituents and for all
rotational numbers m ≥ 1. However the flat space limit of the nonrotating (m = 0)
chains of BSs found by Herdeiro et al. [65] remains an open issue. A proof of non-
existence have been reported recently for nonrotating Q-dipole [265]. Their argument
holds for all solutions with an odd ϕ profile (even numbers of constituents) but not for
even ϕ profile. Our numerical approach indicates that chains of nonrotating Q-balls are
unlikely to exist for any parity of the scalar field function. Indeeed, it is possible to obtain
numerical solutions for α→ 0, but the configurations are numerically unstable: increasing
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the grid resolution leads to an increase of distances between the neighboring constituents.
Moreover, it seems unlikely that an equilibrium field configuration exists since there is no
dipole-dipole interaction in the absence of rotation. The only possible interaction between
static Q-balls is either a scalar attraction (if they are in phase), or a scalar repulsion (if
they are in opposite phase) [266, 267].

5.6 Conclusion and perspectives
We have addressed the rotating generalization of the static chains of BSs reported in
Ref. [65]. They are regular configurations of a self-interacting complex scalar field mini-
mally coupled to GR. The scalar field has a harmonic time and azimuthal dependencies
associated with the boson frequency ω and the rotational number m. Similar chains were
also considered in Refs. [268, 269] but for a scalar field potential without self-interactions.
In our model, this limit is reached when α → ∞. A single rotating BS has a toroidal
shape [237] and the chains we have constructed here consist of a stack of multiple tori.

The scalar field amplitude changes sign between two neighboring constituents in a
chain. This can be viewed as two BSs with opposite phase and it yields a repulsive
scalar interaction [266, 267, 265]. This repulsion between neighboring constituents must
be balanced by an attractive interaction for an equilibrium configuration to exist. In the
present case, there are actually two attractive interactions: gravitation and the dipole-
dipole interaction which is due to the non-zero angular momentum.

The rotating chains of BSs have been constructed by using the FreeFem finite element
solver. To test the robustness of our code, we have also reproduced known solutions:
rotating single BSs, pairs [237, 242] and nonrotating chains [65]. The convergence of our
code when computing global quantities is of fourth-order in the number of points used for
the discretization.

We have constructed chains of rotating BSs with up to six constituents but they are
likely to exist for an arbitrarily large number of constituents. The frequency range for
which solutions exist is finite, just like for the single BSs or the pairs. The upper bound is
completely determined by the mass of scalar excitations around the vacuum (namely, the
coefficient in front of the quadratic term in the potential) whereas the lower bound depends
in the gravitational coupling α and on the rotational number m. We have constructed
sequences of solutions with fixed values α, m and focused our interest on the frequency
dependence of quantities such as the mass, the maximal value of the scalar field amplitude
or the maximal values of curvature invariants. Different properties emerge depending on
the parity of the scalar field function. We have also discussed a qualitative argument
regarding the stability of the chains and analyzed the flat space limit when α→ 0.

On the one hand, the chains with an odd number of constituents do not present the
spiraling frequency dependence of their mass that is typical for single BSs. Instead, the
(ω,M) diagrams form non-trivial loops which start and terminate at the flat vacuum. As
a consequence, these solutions cannot be uniquely parametrized by a single parameter. It
turns out that the BS triplets were previously obtained in Ref. [253] in which the solutions
are referred to as radially excited BSs. It should be emphasized that the starting point
of this work was the static chains of Ref. [65]. It was only after constructing the BS
triplets that we discovered that they correspond to the solutions of Ref. [253]. Hence all
the chains with an odd number constituents may correspond to excitations of single BSs.
To illustrate this, we have shown that triplets and quintets are more energetic than single
BSs with the same Noether charge. The latter is related to the number of particles in
the field configuration and must be conserved over time. Therefore, triplets, quintets and
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other chains with higher odd numbers of constituents are likely to radiate their energy
and decay into a single BS with the same number of particles or, equivalently, with the
same charge. The odd chains admit a flat space limit when the gravitational coupling
approaches zero. In this limit, the solutions reduce to two different families of Q-ball
chains (Q-chains) which have never been reported in the literature.

On the other hand, the chains with an even number of constituents exhibit a spiraling
frequency dependence of their mass. At the same time, the scalar field amplitude and
the curvature invariants grow as we move along the different branches of the spiral. In
particular the growth of the curvature invariants indicates that the limiting configurations
at the spiral centers certainly have a singular spacetime geometry. We have also found
Q-chains with even numbers of constituents which correspond to the flat space limit of
even BS chains. Although we have checked these properties only for pairs, quartets and
sextets, we expect our results to be generic for all chains with higher even numbers of
constituents. Finally, for a given charge, the quartets and the sextets are more energetic
than BS pairs so they are likely to be unstable. Hence we conjecture that all the chains
with higher even numbers of constituents correspond to excitations of BS pairs.

A dynamical study of the chains of BSs is still lacking. This would confirm their
possible decay into single BSs or pairs. On the top of that, dynamical simulations could
help to find potential scenarios for the formation of the chains. The time evolution of such
a nonlinear physical system is certainly very complex and cannot be inferred from the
present work. Time evolution and stability analysis of BSs with a self-interacting potential
have already been carried out in the literature [252, 270, 271, 272], but only for nonrotating
or rotating single BSs. For BSs without self-interactions, dynamical simulations of binaries
can be found, for example in Ref. [255]. Nevertheless, we found strong evidences that
chains with more than two constituents are certainly unstable. In any case, the onset of
ergoregions in the sequences of BS chains indicates the presence of an instability for the
configurations which possess one.

Another perspective would be to include rotating black holes. For a single rotating
BS, it is known that the configuration can support a black hole at the center [87], which
is not possible in the non-rotating case. The combination of a black hole with a pair of
rotating BSs has also been considered in Ref. [273]. Therefore, it is natural to consider a
generalization of these configurations for rotating chains with more than two constituents.
One could place a black hole either at the center of the chain, or include a black hole at
the center of each of the constituents in the chain.
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5.A System of partial differential equations
The set of coupled elliptic PDEs we obtain after injecting the ansatz (5.12), (5.13) to the
field equations is the following

r2ϕ,rr + ϕ,θθ + 2r ϕ,r + cot θ ϕ,θ =− h

f 2

(
ℓ(r ω +mw)2 − r2ℓ f U ′(ϕ2)− f 2m2csc2θ

)
ϕ

− 1
2ℓ
(
r2 ℓ,rϕ,r + ℓ,θϕ,θ

)
, (5.33)

r2f,rr + f,θθ + 2r f,r + cot θ f,θ = ℓ

f

(
8α2h (r ω +mw)2 ϕ2 − 4r2α2f hU(ϕ2)

+ sin2 θ(w − r w,r)2 + sin2 θ w2
,θ

)
+ 1
f

(
r2f 2

,r + f 2
,θ

)
− 1

2ℓ
(
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)
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r2ℓ,rr + ℓ,θθ + 3r ℓ,r + 2 cot θ ℓ,θ =8α2ℓ2h
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r2w,rr + w,θθ + 2r w,r + 3 cot θ w,θ =8α2csc2θmh(r ω +mw)ϕ2 + 2w − 2
f

(
r f,r(w − r w,r)

− f,θw,θ

)
+ 3

2ℓ (r ℓ,r(w − r w,r)− ℓ,θw,θ) , (5.37)

where we have introduced the compact notation ϕ,µ ≡ ∂µϕ. The Eq. (5.33) corresponds to
the Klein-Gordon equation, (5.4), whereas the Eqs. (5.34)-(5.37) correspond respectively
to the following combinations of the Einstein equation (5.5),
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ϑ + Eφ
φ − Et

t −
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wEt

φ = 0,

Er
r + Eϑ

ϑ − Eφ
φ + Et

t + 2
r
wEt

φ = 0,

Er
r + Eϑ

ϑ − Eφ
φ − Et

t = 0,
Et

φ = 0. (5.38)

If we fix the metric to be Minkowski f = ℓ = h = 1, w = 0, and set to zero the
gravitational coupling α, only one PDE remains, Eq. (5.33), and it describes rotating
Q-balls.



Conclusion

Dans cette thèse, nous avons considéré et analysé deux exemples de trous noirs sta-
tiques avec cheveux. Tout d’abord, nous avons étudié des trous noirs chevelus à symétrie
sphérique dans la théorie de la bigravité massive. Ces derniers avaient été découverts
pour la première fois par Brito, Cardoso et Pani [58] en 2013, mais leur existence avait
été remise en question par un groupe Suédois [59] quelques années plus tard. Nous con-
firmons les résultats de Brito et al., et avons élucidé les raisons pour lesquelles Torsello,
Kocic et Mörtsell n’ont pas été en mesure de reproduire ces solutions. Nous renvoyons à
la conclusion du premier chapitre pour une discussion à ce sujet. Nous avons aussi mis
en évidence que ces trous noirs chevelus peuvent être stables, ce qui permet de résoudre
le problème d’instabilité de la solution de Schwarzschild en bigravité [57]. Afin d’obtenir
des masses physiquement acceptables pour ces trous noirs, il est nécessaire de choisir
une valeur extrêmement faible pour la constante de couplage de l’une des deux métriques.
Dans cette limite, l’équation qui détermine la métrique physique, celle qui est choisie pour
décrire la géométrie de l’espace-temps, est extrêmement proche de l’équation d’Einstein
dans le vide. Ainsi, la géométrie des trous noirs chevelus que nous considérons comme
physiquement pertinents est très proche de la géométrie de Schwarzschild. Les cheveux
de ces trous noirs résident dans la seconde métrique, qui n’est pas directement mesurable.
Cela soulève la question de leur détection par le biais d’observations astronomiques.

Bien que les solutions statiques (ou stationnaires) de la bigravité s’éloignent peu de
la relativité générale, des effets considérablement différents, tant qualitativement que
quantitativement, sont attendus lors de processus dynamiques. En effet, la dynamique de
la relativité générale est caractérisée par la propagation de deux degrés de liberté associés
au graviton sans masse, tandis que la bigravité massive propage 7 degrés de liberté – 5
pour le graviton massif et 2 pour le graviton sans masse. À titre d’exemple, les travaux de
Max, Platscher et Smirnov [143] mettent en évidence un phénomène de modulation des
signaux d’ondes gravitationnelles en bigravité qui est absent en relativité générale. Dans
une pré-publication récente [274], Cardoso et ses collaborateurs établissent également
la présence d’un mode dipolaire nouveau dans les signaux décrits par la bigravité. Il
convient cependant de noter qu’aucune simulation de fusion de trous noirs n’a encore été
réalisée dans le cadre de cette théorie alternative de la gravitation. De telles simulations
pourraient potentiellement révéler la signature des cheveux lors de la fusion de deux trous
noirs chevelus.

La solution de Kerr qui est la plus pertinente pour décrire des trous noirs réalistes existe
également en bigravité [116]. Il serait intéressant de vérifier si des versions chevelues de
ce trou noir existent.

Nous avons ensuite étudié des trous noirs chevelus portant une charge magnétique
dans le cadre du secteur bosonique de la théorie électrofaible couplé à la relativité générale
(modèle Einstein-Weinberg-Salam). Une version à symétrie sphérique de ces trous noirs
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avait été établie par Bai et Korwar [53] en 2021. Leurs solutions correspondent à la plus
petite charge magnétique admissible pour une configuration non-Abélienne du champ.
Nous avons construit des généralisations de ces trous noirs pour des charges magnétiques
plus élevées dans le cas à symétrie axiale. Cependant, il est attendu que des solutions
encore plus générales, sans symétrie continue, existent. De telles solutions avaient été
construites au niveau perturbatif dans une théorie similaire par Ridgway et Weinberg [275]
en 1995. De plus, notre analyse des perturbations de la solution de Reissner-Nordström
pour de grandes charges magnétiques donne également des indications en ce sens. En
effet, nous avons identifié des instabilités dont la dépendance angulaire est caractérisée
par des harmoniques sphériques Yj,m(ϑ, φ) avec j > 0. Lorsque m = 0, ces perturbations
présentent une symétrie axiale, et leur développement au niveau non-linéaire conduit à la
formation de cheveux axisymétriques. Néanmoins, la croissance de modes plus généraux
avec m ̸= 0 ne peut être exclue, ce qui pourrait mener à des trous noirs chevelus présentant
seulement des symétries discrètes. Pour obtenir ces solutions de manière explicite, il
est nécessaire de résoudre numériquement un problème elliptique tridimensionnel. En
principe, cette tâche est réalisable avec la librairie FreeFem, à condition de disposer de
suffisamment de puissance de calcul.

Si plusieurs trous noirs chevelus existent avec la même charge magnétique mais dif-
férentes symétries, il restera à déterminer lequel est stable. Une bonne indication peut
être l’argument énergétique : la configuration du champ la plus stable est, en général, celle
qui a la plus basse énergie. Une autre possibilité serait de laisser évoluer dynamiquement
un trou noir (instable) de Reissner-Nordström pour observer quel est l’état stable final.
Cette perspective est toutefois difficile à réaliser en pratique dans le cas gravitationnel.
Puisque les propriétés de stabilité des trous noirs électrofaibles sont similaires à celles de
leurs analogues en espace-temps plat, un bon point de départ serait de réaliser cette évo-
lution pour les monopôles, sans tenir compte de la gravitation. Des évolutions en théorie
classique des champs sans gravité ont déjà été réalisées avec FreeFem, voir par exemple
les travaux de Garaud, Radu et Volkov sur les vortons [276].

Enfin, il serait également intéressant d’étudier l’existence d’états liés constitués d’une
paire de trous noirs électrofaibles de charges opposées. De telles configurations existent au
niveau statique dans le modèle Einstein-Yang-Mills-Higgs [205], mais elles sont instables.
Aucune étude avec dépendance temporelle n’a cependant été réalisée. Dans le cadre du
modèle Einstein-Weinberg-Salam, cela se traduirait par des systèmes liés de deux trous
noirs magnétiques en orbite l’un autour de l’autre. Il est fort probable que l’émission
d’ondes gravitationnelles empêche un tel système d’exister éternellement, mais sa durée
de vie pourrait potentiellement être importante. Si les trous noirs constituant ce système
sont extrémaux (ou quasi-extrémaux), leur petite taille, de l’ordre du centimètre, pourrait
en faire de potentiels candidats pour la matière noire. En effet, contrairement aux trous
noirs magnétiques isolés, ces binaires de trous noirs ont une charge magnétique totale
nulle, et n’ont donc pas de champ magnétique monopolaire. Cependant, leur moment
dipolaire non nul pourrait laisser une signature observable qui reste à déterminer.

Pour conclure sur une note plus générale, cette thèse a été l’occasion de développer un
algorithme robuste basé sur la méthode des éléments finis pour résoudre des problèmes
gravitationnels elliptiques. Nous avons pu tester notre algorithme pour des configurations
avec ou sans horizon des évènements (comme illustré dans les chapitres 4 et 5). À notre
connaissance, les algorithmes employés pour des problèmes elliptiques dans la commu-
nauté de la relativité numérique sont basées soit sur les différences finies [258, 259], soit
sur les méthodes spectrales [260]. La librairie FreeFem [195] sur laquelle est basée notre
algorithme offre une alternative intéressante. Cette librairie est en constante évolution,
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avec de nouvelles fonctionnalités régulièrement présentées lors d’un workshop annuel3. La
prise en main de FreeFem est très accessible à quiconque a déjà codé en C++, et les codes
réalisés pour un problème spécifique peuvent être facilement adaptés à d’autres théories
classiques des champs. La parallélisation des algorithmes est également simple à mettre
en place puisque la plupart des fonctions natives proposent cette fonctionnalité. Il est à
noter que nous avons utilisé FreeFem exclusivement pour des problèmes à deux dimen-
sions effectives. Il sera intéressant de tester ses capacités pour résoudre des problèmes
gravitationnels à trois dimensions.

3Voir https://freefem.org.

https://freefem.org
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Appendix A
Numerical methods for solving differential
equations

In classical field theory, the equations of motion generically consist in a system of non-
linear Partial Differential Equations (PDEs). These equations have to be equipped with
appropriate conditions at the boundaries of the integration domain in order to be solved.
The boundary conditions follow from physical assumptions such as requiring the energy to
be finite, regularity, asymptotic flatness, or symmetry considerations. If we are interested
in stationary and spherically symmetric field configurations, the PDEs can be reduced to
a system of Ordinary Differential Equations (ODEs).

In general, analytical solutions to such nonlinear differential equations (ODEs or
PDEs) do not exist. Numerical analysis is then required to obtain approximate solu-
tions at the nonlinear level. In this appendix, we present the numerical techniques that
have been used throughout this thesis to solve ordinary and partial differential equations.
We refer the reader to Refs. [277, 278, 279, 280, 281] for further reading about numerical
analysis.

A.1 Ordinary Differential Equations
An ODE is defined on a domain D ⊆ R and can be written as

y′(r) = f(r, y), r ∈ D, (A.1)

where y is the unknown function depending on the variable r and f is an arbitrary function
which can depend non-linearly on r and y. The unknown function can be scalar-valued,
y : R → R, or vector-valued, y : R → Rn with n ∈ N. In the latter case, Eq. (A.1) then
describes a system of coupled ODEs where the unknown functions are the components of
y = (y1, y2, . . . , yn).

Although the differential equation in the form (A.1) is of first order, it can also de-
scribes an arbitrary order equation since any ODE of order n can be rewritten as a system
of n first order ODEs. To illustrate this, consider the following second order equation for
the unknown function u : R→ R,

u′′ + αu′ + β u = 0, α, β ∈ R. (A.2)

One can define a new function v(r) ≡ u′(r). Then Eq. (A.2) can be rewritten as

u′ = v,

v′ = −α v − β u. (A.3)
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This is a system of two first order equations which can be cast in the form (A.1) by the
identification y ≡ (u, v), f ≡ (v,−α v − β u).

In what follows we will describe how the general problem formulated by Eq. (A.1) can
be solved using numerical analysis. We emphasize that all the ODEs encountered in this
thesis belong to this class of problems although they may not be written explicitly in the
form (A.1) in the main text.

The differential equation alone does not have a unique solution. It has to be equipped
with conditions to be fulfilled by the unknown function y at the boundaries of the in-
tegration domain D. Generically, there must be as many conditions as there are first
order equations in the system (in other words, the appropriate number of conditions is
the dimension n of the vector-valued function y). Depending on the location at which
the conditions are imposed, the ODE is said to be an initial value problem or a boundary
value problem. We shall treat these two types of problems separately as the latter are
substantially more difficult to solve.

A.1.1 Initial value problem
In the context of ODEs, an initial value problem (also known as a Cauchy problem) is a
differential equation for which the unknown functions have to satisfy some conditions at
one of the two boundaries of the integration domain. To be specific, let us set D ≡ [a, b],
a < b ∈ R, then an initial value problem on D is defined as

y′(r) = f(r, y) with y(r = a) = ya. (A.4)
Here we impose without loss of generality that the function y should take the specific
value ya at the beginning of the interval [a, b]. The evolution of y is then governed by
the differential equation. In this context, the condition at r = a is often called the
initial condition. From the theoretical point of view, an initial value problem has good
mathematical properties: the existence and uniqueness of the solution is guaranteed by
the Cauchy-Lipschitz theorem [282].

In physics, this type of problem arises in the field of dynamical systems. The variable
r is then often interpreted as a time variable. In this context, the ODE governs the time
evolution of some physical quantities (y1, . . . , yn) which are in a state (y1

a, . . . , y
n
a ) at the

initial time r = a.
There are several methods to solve an initial value problem numerically. In most cases,

the integration domain first have to be discretized. For concreteness, let us consider a
homogeneous discretisation of D with N + 1 nodes located at ri ∈ D, i ∈ {0, . . . , N},

ri = a+ i∆r, ∆r = b− a
N

⇒ r0 = a, rN = b. (A.5)

We attempt to calculate the values of y at the nodes, yi ≡ y(ri), given the initial value
y0 = ya. The most simple method to achieve this is called the explicit Euler method. Each
value yi+1 is computed from yi by the recurrence relation

yi+1 = yi + ∆r f(ri, yi). (A.6)
Its derivation follows from the Taylor expansion of y around ri up to the first order in
∆r. Unfortunately, this method is very imprecise since it generates at each step errors of
the order of (∆r)2, leading after N steps to a total accumulated error of the order of ∆r.
This would require in practice to use tiny step sizes. Therefore we choose to compute the
successive values of yi by using the so-called Runge-Kutta 4 method:

yi+1 = yi + ∆r
6 (k1 + 2k2 + 2k3 + k4), (A.7)
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where the coefficient k1,2,3,4 are given by

k1 = f (ri, yi) ,
k2 = f (ri + ∆r/2, yi + ∆r k1/2) ,
k3 = f (ri + ∆r/2, yi + ∆r k2/2) ,
k4 = f (ri + ∆r, yi + ∆r k3) . (A.8)

At each step, the errors are of the order of (∆r)5 so that the accumulated error is now of
the order of (∆r)4 ; this is why the Runge-Kutta 4 method is said to be of fourth-order.

The performance of the method can be improved further by using an adaptive step
size instead of the constant steps defined by the Eq. (A.5). Typically one can take big
steps when the solution varies little, and small steps when it has big variations. There
are several way to do this in practice, we refer for example to the Ref. [278] for details.

A.1.2 Boundary value problem
A boundary value problem consists in a differential equation for which the conditions to
be fulfilled by the unknown functions are specified on both boundaries of the domain D.
Such a problem can be formulated as follows

y′(r) = f(r, y) with C (y(a), y(b)) = 0, (A.9)

where C can be any vector-valued function, C : Rn × Rn → Rn, encoding the boundary
conditions. The existence and uniqueness of the solution for this type of problem is in
general not guaranteed as it was the case for initial value problems.

From the numerical point of view, boundary value problems are also more complicated
to solve since typically, the "initial" state y(r = a) is not completely fixed and depends on
some unknown parameters. The "missing" information resides in the conditions specified
at the second boundary, for y(r = b). For example, the boundary conditions can be such
that the m first components of y at r = a are fixed but not the remaining n−m ones,

y1(a) = α1, y
2(a) = α2, . . . , y

m(a) = αm. (A.10)

The problem then consists in finding the appropriate values of ym+1(a), ym+2(a), . . . , yn(a)
such that on the second boundary one has,

ym+1(b) = β1, y
m+2(b) = β2, . . . , y

n(b) = βn−m. (A.11)

One cannot use directly the Eqs. (A.6) or (A.7) to integrate the ODE in this case.
Among the various existing algorithms for dealing with boundary value problems [277,

278], we use the shooting method. We illustrate how this algorithm works in the Fig. A.1.
First, one splits the domain D into two intervals,

DI = [a, rint], DII = [rint, b], with a < rint < b. (A.12)

Then, one chooses an initial guess for y(a) and y(b) which satisfy the boundary conditions.
If the problem is well-posed, one should have

y(a) = ya(c0, . . . , cn), y(b) = yb(c0, . . . , cn) such that C(ya, yb) = 0 ∀ck ∈ R. (A.13)

The ck’s are sometimes called the shooting parameters and there should be as many
as there are equations in the system, k ∈ {1, . . . , n}. Choosing an initial guess means
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Figure A.1: Schematic representation of the resolution of a boundary value problem
using the shooting method. The system of ODEs is of the form N ′(r) = DN(r,N, ϕ, f),
ϕ′′(r) = Dϕ(r,N, ϕ, f), f ′′(r) = Df (r,N, ϕ, f) and can be rewritten as a system of 5
first order equations. The shooting parameters are {ϕa, fa,M,A,B} and their values are
obtained by resolving the matching conditions ∆N = 0, ∆ϕ = 0, ∆f = 0, ∆ϕ′ = 0 and
∆f ′ = 0.

assigning some numerical values to these parameters. The next step is to integrate the
ODE on DI by using for example Eq. (A.7), starting from r = a up to r = rint and obtain
a value yint,I ≡ y(rint). Then, integrate the ODE for r ∈ DII, starting from r = b up
to r = rint and obtain yint,II ≡ y(rint). At this stage, the values yint,I and yint,II would
not agree, but since they are obtained from direct integration with the initial conditions
(A.13), their difference depends on the shooting parameters, yint,II−yint,I ≡ ∆y(c0, . . . , cn).
A global solution on D = DI ∪DII is thus obtained only if

∆y(c0, . . . , cn) = 0. (A.14)

This is formally an algebraic system of n equations for the unknowns parameters c0, . . . , cn.
The Eq. (A.14) is sometimes called the matching condition. Such a system can be solved
by iteration using the Newton’s method. At each iteration, one has to integrate the
ODE as described above, compute ∆y, and adjust the values of the shooting parameters
according to the Newton’s formula (see the next subsection). The iterations are supposed
to converge provided that the initial guess is not too far from the "true" solution.

Summarizing, with the shooting method, a boundary value problem is transformed
into two independent initial value problems so that we can use the Runge-Kutta 4 for-
mula (A.7). Then, the problem is reduced to an algebraic equation to solve which requires
multiple iterations using the Newton’s method. The drawback of this algorithm is its sen-
sibility to the initial guess. Typically if the shooting parameters are initialized randomly,
the iterations may not converge. It is also possible to encounter singularities that prevent
integrating the ODEs up to r = rint. Both of these issues can be avoided by using the
multishooting method. The idea is to generalize the shooting method by dividing the inte-
gration domain in several intervals, D = DI ∪DII ∪DIII ∪ . . . . In addition to the original
shooting parameters at the boundaries of D, we have new parameters to adjust which are
the values of y at each intersection between the intervals. The algebraic system to solve is
thus bigger than the one obtained from the shooting method (it consists in more than n
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equations). Therefore, the computation time may be increased, but the issues mentioned
above should be avoided.

Finally, it is worth noting that the convergence of the (multi)shooting method towards
a numerical solution does not prove the existence of the solution. For example, by satis-
fying the matching condition (A.14), the continuity of the numerical solution at r = rint
is guaranteed, but not that of its derivatives. In practice, one can check the validity of a
solution by varying the number of intervals used for the multishooting or their sizes. The
numerical solution and its global physical quantities (for example, the mass) should not
be affected by such changes.

A.1.3 Newton’s method
In numerical analysis, it is very common that a differential system of equations is reduced
to algebraic equations (for example, with the shooting method). For linear equations,
finding the solution requires inverting a matrix (numerical methods for linear equations
can be found in Ref. [278]). Here we present briefly the Newton’s method which is an
algorithm for solving nonlinear equations. Let us consider the following generic algebraic
system of equations,

F (x) = 0, x = (x1, x2, . . . , xn) ∈ Rn, (A.15)

where F is a differentiable vector-valued function, F : Rn → Rn, representing any system
of n equations for the n real variables x1, . . . , xn. The strategy is to find an approximated
solution by iterations starting from an initial guess x0. The successive values xi are then
computed by

xi+1 = xi − αJ−1F (xi), (A.16)

where α is a real parameter characterizing the step size and J is the Jacobian matrix of
F whose coefficients are Jkℓ ≡ ∂F k/∂xℓ. If the partial derivatives of the vector function
F are not known analytically (this is the case in Eq. (A.14) for the shooting method), one
can use finite differences to compute them approximately,

∂F k

∂xℓ
≈ F k(. . . , xℓ + h, . . . )− F k(. . . , xℓ, . . . )

h
, h > 0. (A.17)

For a zero of F with a multiplicity of 1, the convergence will be quadratic in the
neighborhood of the solution. This means roughly that the number of correct digits of xi

doubles at each step. One usually stops the algorithm when the difference |xi+1 − xi| is
below a certain prescribed tolerance.

The drawback of the Newton’s method is its sensibility to the initial guess used to
start the iterations. If there is no unique solution to Eq. (A.15), finding the different
solutions requires using different initial guesses and it may not be clear which solution the
algorithm will converge to. In some cases, it may not converge at all. The convergence can
be improved by choosing a suitable value for α at each step and we refer to the Ref. [278]
for more details.

A.2 Partial Differential Equations
The theory of PDEs is a much richer topic than the study of ODEs. For example, one
cannot transform a PDE of order n into a system of n first order equations which renders
their classification more complicated. Here we will treat only the case of second order
equations which are of great interest in physics. More specifically, in classical field theory,
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one usually encounters semilinear PDEs. Such equations are linear only in the highest
order derivatives and can be cast in the form

n∑
i=1

n∑
j=1

aij
∂2u

∂xi∂xj
+ lower-order terms = 0, (A.18)

where u = u(x1, . . . , xn) is the unknown function and aij = aij(x1, . . . , xn) are (real)
coefficients. The second order PDEs are then classified according to the signature of the
eigenvalues of the coefficient matrix aij:

• elliptic: the eigenvalues are all positive or all negative,

• parabolic: the eigenvalues are all positive or all negative, except one that is vanishing,

• hyperbolic: there is only one negative (resp. positive) eigenvalue and all the rest are
positive (resp. negative).

The most basic examples of PDEs arising in physics are the wave equation (hyperbolic),
the heat equation (parabolic) and the Laplace equation (elliptic). The wave equation in
one spatial dimension is

∂2u

∂t2
− c2∂

2u

∂x2 = 0, (A.19)

where x is the spatial coordinate, t is the time coordinate1 and c is a parameter (typically
interpreted as the wave velocity). The heat equation is

∂u

∂t
− α∂

2u

∂x2 = 0, (A.20)

where α is a parameter (the thermal diffusivity). Finally, the Laplace equation in two
spatial dimensions is

∂2u

∂x2 + ∂2u

∂y2 = 0, (A.21)

where x, y are spatial coordinates.
The numerical methods for solving PDEs depends on the type of the equations. Here

we shall describe only the finite element method for elliptic equations. For a more detailed
description of this method, we refer to the Refs. [279, 280, 281, 283].

A.2.1 Weak formulation of PDEs
The equations (A.19)-(A.21) are the strong formulations of the PDEs. The finite element
method requires to convert the PDEs in their weak (or variational) formulations. This
is an alternative way to formulate PDEs that involves integrals. We shall describe the
procedure to obtain a weak form with an illustrative example.

Let us consider the Poisson equation on a domain D ⊆ Rn equipped with Dirichlet
conditions on the boundary Γ ≡ ∂D,

−∆u = f on D,

u = 0 on Γ, (A.22)

1For hyperbolic or parabolic PDEs, one of the variables is naturally interpreted as the time variable



A.2. PARTIAL DIFFERENTIAL EQUATIONS 179

where ∆ is the Laplacian operator and f is a given function on D. If u solves the equations
(A.22), then for any function v that satisfies also the Dirichlet boundary conditions we
have

−
∫

D
v∆u dV =

∫
D
vf dV , (A.23)

where dV is the infinitesimal "volume" element on D. Conversely, if a function u such
that u = 0 on Γ solves Eq. (A.23) for any v then it solves also the original PDE (A.22).
This formulation is already a weak form of the Poisson equation but one can rewrite the
left-hand side in a more symmetric way by using a Green’s identity (multi-dimensional
integration by parts):

−
∮

Γ
v∇u · n dS +

∫
D
∇u · ∇v dV =

∫
D
vf dV , (A.24)

where ∇ denotes the gradient operator, n is the outgoing unit vector normal to Γ and dS
is the infinitesimal "surface" element. Since v is assumed to vanish on the boundary, the
surface integral vanishes and we obtain the weak formulation∫

D
∇u · ∇v dV =

∫
D
vf dV . (A.25)

Up to some mathematical subtleties [283], solving the weak equation (A.25) is equivalent
to solve the original Poisson equation (A.22). The function v is usually called the test
function.

This procedure can be generalized for other types of boundary conditions (the condi-
tions to be satisfied by the test function must be modified and the surface integral may
not vanish [283]) and for other PDEs. We can show that the weak formulation of any
elliptic linear PDE is of the form

a(u, v) = L(v), ∀v ∈ V, (A.26)

where V is a suitable space of functions, a : V × V → R is a bilinear application and
L : V → R is a linear application.

If the original problem involves several coupled PDEs, a weak formulation is obtained
by introducing as many test functions as unknowns functions, applying the procedure
described above for each equation, and then summing all the integral equations of the
form (A.25) together.

A.2.2 Finite element method
The idea of the finite element method is to transform a linear weak PDE into a linear
algebraic system of equations. Nonlinear PDEs can also be solved numerically with this
method, but it requires using an algorithm to solve nonlinear algebraic equations such as
the Newton’s method.

First of all, the integration domain must be discretized. In this thesis, we consider
at most 2D problems (axisymmetric field configurations). The two spatial variables are
typically a compactified radial coordinate x ∈ [0, 1] which maps spatial infinity to x = 1
and a polar coordinate ϑ ∈ [0, π/2] so that the integration domain is a rectangle

D = [0, 1]× [0, π/2]. (A.27)

The most obvious way to discretize this domain is to consider a grid with rectangular
cells covering D (a 2D generalization of the line discretization presented in Eq. (A.5)).
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Figure A.2: Examples of meshes generated by FreeFem on a rectangular domain. The
distribution of triangles can be homogeneous (top left panel) or inhomogeneous (other
panels).

However, many finite element softwares rather use triangular cells. The explicit construc-
tion of such a grid (or mesh) may seem complicated but the software we use, FreeFem
[195], has its own internal mesher which automatically generates meshes over a given do-
main. To illustrate this, we present of Fig. A.2 four different meshes covering the domain
D defined by Eq. (A.27). The top left panel shows a homogeneous distribution of the
triangles. Depending on the behavior of the field functions, the accuracy can be improved
by choosing a higher density of triangles near the asymptotic boundary (x = 1), near the
origin/horizon (x = 0) or near the symmetry axis (ϑ = 0). This is shown on the other
panels.

The next step is to choose a finite element space on the mesh. It typically consists
of a set of polynomial functions of order k ≥ 0 with certain properties at the edges and
nodes. A simple example of such a space is the set of piecewise linear functions. In one
dimension, D = [0, 1], this finite element space is

Vh =
{
u(x) =

N∑
i=0

ui ϕi(x) s.t. ϕi(xj) = δij, ϕi(x) is affine for x ∈ ]xj, xj+1[
}
, (A.28)

where xi = i/N are the nodes coordinates, ϕi(x) are the basis functions, and ui ∈ R are
the components of a function u(x) ∈ Vh expanded in this basis. This clearly constitutes a
finite dimension vector space. Of course all the functions defined on D do not belong to
Vh because they live in an infinite dimensional function space. The finite element method
approximates any of those functions by a finite expansion, u0 ϕ0(x)+ · · ·+uN ϕN(x) ∈ Vh.

The piecewise linear functions generalize in two dimensions, see Fig. A.3. The corre-
sponding basis functions are sometimes called the tent functions. In our work, we mainly
use piecewise quadratic functions which give more accurate results.
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Figure A.3: Example of a piecewise linear function in two dimensions.

A.2.2.1 Linear PDEs

We shall now describe how to find an approximated solution u to a linear weak problem
of the form (A.26). For this, we require that the unknown function and the test function
belong to the finite element space Vh. We expand them over the finite element basis,

u =
M∑

i=1
ui ϕi, v =

M∑
i=1

vi ϕi, (A.29)

where M ≡ dim(Vh). Injecting this to (A.26), the equation can be rearranged as

∑
j

vj

[(∑
i

ui a(ϕi, ϕj)
)
− L(ϕj)

]
= 0. (A.30)

Since this should hold for any test function, or in other word, for any coefficients vj ∈ R,
the expression inside the square brackets has to be zero. Introducing the stiffness matrix
A and a vector B by

Aij ≡ a(ϕi, ϕj), Bi ≡ L(ϕi), (A.31)

the problem reduces to the linear algebraic system,∑
j

Aij uj = Bi, (A.32)

for the M unknowns (u1, . . . , uM) which are sometimes called the degrees of freedom. We
emphasize that the basis functions ϕi are known so that all the components Aij and Bi

defined by Eq. (A.31) can be computed. Finding the solution to (A.32) thus requires the
inversion of the stiffness matrix:

ui =
∑

j

(A−1)ij Bj. (A.33)

The approximated solution u is expected to converge to the true solution of the original
problem (A.26) when the dimension M of the finite element space is increased. See
Refs. [279, 280, 281, 283] for details.
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A.2.2.2 Nonlinear PDEs

Let us finally consider the case of nonlinear (elliptic) PDEs. Such equations can also be
written in the generic form (A.26), but the difference is that now the application a(u, v)
is nonlinear in u. To illustrate how to deal with the nonlinearities, we shall consider the
following example:

−∆u = g(u) on D,

u = 0 on Γ, (A.34)

where the function g depends on the unknown function u non-linearly. The corresponding
weak form is ∫

D

(
∇u · ∇v − g(u) v

)
dV = 0. (A.35)

By expanding u and v over a finite element basis as in Eq. (A.29), this problem can be
rewritten as ∑

i

vi Fi(u) = 0 with Fi(u) =
∫

D
(∇u · ∇ϕi − g(u)ϕi) dV . (A.36)

The nonlinear algebraic system to solve is thus

Fi(u) = 0, (A.37)

where the unknowns are the components of u in the finite element basis, (u1, . . . , uM).
We shall describe how to apply the Newton’s method in this context. Introducing

small variations δu, we differentiate the components Fi(u) with respect to u,

δFi =
∫

D
(∇δu · ∇ϕi − g′(u) δu ϕi) dV . (A.38)

Then we expand the variations δu over the finite element basis and rewrite δFi as

δFi =
∑

j

δuj Jij with Jij ≡
∫

D

(
∇ϕi · ∇ϕj − g′(u)ϕi ϕj

)
dV . (A.39)

Here Jij are the components of the Jacobian matrix of the nonlinear system (A.37). We
can now apply the Newton’s formula (A.16) to find a solution by iterations. The unknown
x entering this formula is here (u1, . . . , uM) and the vector F is defined by its components
in Eq. (A.36). Of course to start the iterations, an initial guess (u1,0, · · · , uM,0) should be
provided. In practice, we choose a constant step size, α = 1, and adapt the initial guess
to the physical situation.
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Romain GERVALLE
Trous noirs chevelus et autres objets compacts dans des

théories de la gravité
Résumé :
Dans le cadre d’un espace-temps décrit par la relativité générale d’Einstein, sur lequel évolue uniquement le champ électromagné-
tique de Maxwell, les trous noirs stationnaires sont complètement caractérisés par leur masse, leur charge électrique ou magnétique,
et leur moment cinétique : il s’agit de l’une des versions du théorème de calvitie. Pour autant, lorsque certaines des hypothèses
de ce théorème sont omises, il a été établi qu’il cesse de s’appliquer. Cela conduit à l’émergence de trous noirs dits chevelus.
Jusqu’à présent, les observations astronomiques ne permettent pas de détecter les « cheveux » des trous noirs. Cependant, avec
le développement de détecteurs d’ondes gravitationnelles toujours plus précis, les trous noirs chevelus restent un sujet d’étude
important en physique théorique. Dans cette thèse, nous considérons deux options permettant de s’affranchir du théorème de
calvitie.
La première option consiste à décrire la métrique de l’espace-temps par une théorie de gravitation alternative. Nous étudierons
la stabilité de trous noirs chevelus dans un espace-temps vide décrit par la théorie de la bigravité massive. Cette théorie est
connue pour ses solutions cosmologiques permettant de décrire un Univers en expansion accélérée sans avoir besoin de recourir à
la constante cosmologique. Nous montrerons que les trous noirs chevelus en bigravité, obtenus à l’aide de méthodes numériques,
sont capables de représenter tant des trous noirs stellaires que des trous noirs supermassifs.
Une autre possibilité est de garder les équations d’Einstein, mais de considérer un contenu matériel autre que le champ électro-
magnétique de Maxwell. Nous choisirons pour cela les champs de la théorie électrofaible. Lorsque la gravitation est omise, cette
théorie décrit des monopôles magnétiques de masse infinie. La relativité générale permet de les régulariser en masquant leur singu-
larité coulombienne derrière un horizon des évènements. Les monopôles deviennent alors des trous noirs chargés magnétiquement,
pouvant être chevelus. Ces trous noirs électrofaibles pourraient s’être formés lors de fluctuations primordiales, aux tout premiers
instants de l’Univers. Après avoir étudié en détail la structure interne des monopôles en espace-temps plat, nous verrons comment
leurs propriétés se généralisent au cas gravitationnel.
Lorsqu’un trou noir chevelu voit le rayon de son horizon se réduire à zéro, les champs externes restent, et la configuration ainsi
obtenue est appelée un soliton. Nous étudierons pour terminer un cas particulier de soliton obtenu lorsqu’un champ scalaire
complexe est couplé à la relativité générale. Nous construirons des chaînes de ces solitons, appelés étoiles à bosons. Les équations
aux dérivées partielles sous-jacentes seront résolues à l’aide de la méthode des éléments finis : une approche originale et peu
utilisée par la communauté de la relativité numérique.

Mots-clés : trous noirs, gravité massive, méthodes numériques, monopôles magnétiques, théorie des champs classiques, relativité
numérique.

Abstract :
In the realm of spacetimes governed by Einstein’s general relativity and containing only Maxwell’s electromagnetic field, stationary
black holes are fully characterized by their mass, electric or magnetic charge, and angular momentum – a property encapsulated in
a version of the no-hair theorem. However, the validity of this theorem is contingent on certain assumptions, and when these are
relaxed, it has been established that the theorem does not always apply. This gives rise to the so-called hairy black holes. To date,
astronomical observations have not provided concrete evidence of any type of black hole "hair". Nevertheless, the development of
increasingly precise gravitational wave detectors has sparked renewed interest in hairy black holes. In this thesis, we delve into two
approaches to circumvent the no-hair theorem.
The first option consists in describing the spacetime metric by an alternative theory of gravitation. We investigate the dynamical
stability of hairy black holes in a vacuum spacetime described by the theory of massive bigravity. This theory is known for
its cosmological solutions which can account for a self-accelerating expansion of the Universe without requiring the use of the
cosmological constant. We show that hairy black holes in bigravity, which are obtained using numerical methods, can describe
both stellar black holes and supermassive black holes.
Another approach is to keep Einstein’s equations but to consider a different material content than Maxwell’s electromagnetic field.
For this we choose the fields of the electroweak theory. In the absence of gravitation, this theory describes magnetic monopoles with
infinite mass. General relativity allows for their regularization by concealing their Coulombian singularity within an event horizon.
As a result, monopoles become magnetically charged black holes which can exhibit a non-Abelian hair. These electroweak black
holes might have formed during primordial fluctuations in the early Universe. After providing a detailed analysis of the internal
structure of monopoles in flat space, we investigate how their properties generalize to the black hole case.
When the horizon radius of a hairy black hole shrinks to zero, only its external fields remain, giving rise to a configuration known
as a soliton. Lastly, we study a particular example of soliton that arises when a complex scalar field is coupled to general relativity.
We construct chains of these solitons, which are referred to as boson stars, by solving the underlying partial differential equations
using the finite element method. This technique is not very common in the numerical relativity community and provides an
alternative to the finite difference method.

Keywords : black holes, massive gravity, numerical methods, magnetic monopoles, classical field theory, numerical relativity.
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