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Abstract

Atmospheric methane is responsible for roughly half of the global warming
since pre-industrial times, relative to the net total human influence. The oil
and gas sector ranks second among anthropogenic methane sources despite
the possibility of a 39% reduction of its emissions at no net cost. How-
ever, the lack of reliable emissions data impairs the ability of governments
to implement effective mitigation actions at the scale and speed needed
to achieve the objectives set by the Global Methane Pledge. In order to
define methane-specific targets, policies, and strategies, countries are used
to rely on national methane emissions inventories. These last ones, mostly
derived using bottom-up methods (emissions factors) are well-known in lit-
erature to demonstrated systematic underestimation of methane emissions
from the oil and gas (O&G) supply chain. This calls into question the
use of bottom-up methodologies to estimate emission inventories, which
are then used to design regulatory guidelines for methane emissions mit-
igation. Incomplete and non accurate information about actual emission
levels is a key barrier to reducing methane emissions. However, a growing
amount of methane emissions data emerge through the regular launch of
new point source satellites dedicated to methane concentration measure-
ments with a higher resolution, greater coverage, and have more sensitive
detection thresholds. With adequate processing techniques, the data issued
from these satellites monitoring technologies is a key component to make
possible the characterization of the level and nature of methane emissions.
This thesis works then proposes an end-to-end framework for a novel dy-
namic inventory based on the use of artificial intelligence methods. This
framework allows to automatically dress methane emissions profiles by oil
and gas infrastructures, site and operators. The proposed framework is
divided into two components :

iii



1. Automated detection and recognition of oil and gas infrastructures
with the use of object detection algorithms;

2. Automated association of point source methane detections to con-
cerned oil and gas infrastructures, sites and operators with the use of
a clustering based method.

Our framework, when launched repeatedly over time, enables the auto-
mated constitution of multi-level emissions profiles (time series). These
emissions profiles, acquired on a long term period will allow the characteri-
zation of emitting behaviors and then could be used at the base of methane
mitigation regulation decisions.

Keywords: Methane; Oil & Gas; GHG inventory; Deep learning; Remote
sensing.
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Chapter 1

Introduction

Contents
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Motivations . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . 3
1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . 4
1.5 Publications . . . . . . . . . . . . . . . . . . . . . 5

1.1 Context

Climate change is at the origin of the alteration of Earth’s climate patterns,
including increases in global average temperatures and shifts in precipita-
tion patterns. These changes have far-reaching impacts on ecosystems,
biodiversity, and human societies, leading to disruptions in agriculture, wa-
ter resources, and infrastructure, as well as exacerbating extreme weather
events such as hurricanes, droughts, and wildfires. Global warming is a key
component of climate change and is primarily driven by the accumulation
of greenhouse gases in the Earth’s atmosphere, such as carbon dioxide and
methane, due to human activities like burning fossil fuels and deforestation.
These gases trap heat from the sun, causing the Earth’s surface temperature
to rise, leading to various climatic alterations including melting polar ice
caps, rising sea levels, and changes in precipitation patterns. Methane is re-

1
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sponsible for 50% [43] of the global warming since pre-industrial times. By
definition, methane is a critical short-lived climate pollutant with a global
warming potential over 80 times that of CO2 on a 20-year timescale.The oil
and gas (O&G) sector is the second largest anthropogenic methane emis-
sion source. In contrast to agriculture and wetlands, the O&G industry has
a long history of reducing methane emissions due to safety concerns, and
methane can be sold as natural gas, so reducing emissions has an important
financial benefit. The International Energy Agency (IEA) estimates that
the industry can reduce its global emissions by 78% and that up to 39% [41]
of these reductions can be achieved without a financial compromise. Effi-
cient methane abatement strategies directly depend on the accurate charac-
terization of emission sources. However, the lack of reliable emissions data
has made it hard for governments to carry out targeted action at the scale
and speed needed to achieve the objectives of the Global Methane Pledge
(GMP).

1.2 Motivations

In order to define methane-specific targets, policies, and strategies, coun-
tries rely on national methane emissions inventories. These last ones are
mostly derived using bottom-up methods which estimates overall methane
emissions by using activity data (e.g., the number of facilities or the ex-
tent of operations) multiplied by standardised emission factors which are
the average amount of methane emitted per facilities or operations. How-
ever, various studies (e.g. [1, 11, 93]) have demonstrated the systematic
underestimation of methane emissions from the O&G supply chain. This
finding calls into question the use of bottom-up methodologies to estimate
emission inventories, which are then used to design regulatory guidelines
for methane emissions reduction. Incomplete and non accurate information
about actual emission levels is a key barrier to reducing methane emissions.
However, a growing amount of methane emissions data emerge through the
regular launch of new satellites dedicated to methane concentration mea-
surements with a higher resolution, greater coverage, and have more sen-
sitive detection thresholds. Technological innovation around space-borne
methane measurement tools tends to focus its long-term vision in the area
of quasi-continuous monitoring. These advances in satellites monitoring
technologies and their processing techniques are a key component to permit
the characterization of the level and nature of methane emissions through
a quasi-continuous monitoring. By combining the respective advantages
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of top-down and bottom-up methane emission estimations will ultimately
improve their precision.

The primary objective of the International Methane Emissions Observa-
tory (IMEO), established under the auspices of the United Nations Envi-
ronment Programme (UNEP), is to furnish near-real-time data pertaining
to methane emissions originating from the fossil fuel sector. This initiative
involves the assimilation of data from diverse sources, including satellite
platforms such as TROPOMI, GHGSat, and MethaneSAT. Effectively har-
nessing these datasets to inform methane emissions reduction policies ne-
cessitates the establishment of a robust linkage between emissions data and
their respective sources, thereby enabling the characterization of emitting
behaviors. Achieving this entails attributing all methane detections to the
specific oil and gas infrastructures, sites, and operators from which they
originate. Given the disparate nature of methane emission detections ema-
nating from various satellites and locations, the attribution process neces-
sitates automation through the development of a new dedicated,framework
based on artificial intelligence methodologies.

Indeed, in this context, artificial intelligence methods will assume a central
role in automating and optimizing all steps of this process simultaneously.
Such a framework will facilitate the expansion of our understanding of the
spatial distribution, occurrence, and characterization of methane emissions.

1.3 Contributions

Figure 1.1: End-to-end dynamic methane emissions inventory framework.
Images source : @Google earth.

The thesis contributions are the following:
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• Conception of a benchmark dataset of high resolution satellite images
of oil and gas infrastructures;

• Automated oil and gas infrastructure detection and recognizing based
on object detection algorithms;

• Determination of object detection algorithm’s pre-training effects on
their performances;

• Sensitivity and robustness of object detection models to satellite based
adversarial attacks;

• Methane Emissions automated association to oil and gas supply-chain
sites, oil and gas operators and ground surveys extension;

• End-to-end framework for Automated determination of oil and gas
infrastructures emissions profile illustrated by the Figure 1.1

1.4 Thesis Outline

The thesis manuscript is organized as follows :

• Chapter 2 introduces the context of methane emissions in the oil
and gas industry and its role in global warming, the existing tools
and methods for measuring methane emissions as well as the current
regulation framework and its challenges.

• Chapter 3 first presents the state of the art of methane emissions
monitoring methods from automated methane plume detection to
methane emissions forecasting based on the use of artificial intelli-
gence. Then, presents the performance of 3 families of object de-
tection algorithms for the automatic recognition of oil and gas in-
frastructures on high-resolution satellite images. It also presents the
effect of pre-training and satellite image noises on object detection
performances.

• Chapter 4 presents a method for automatically associating methane
emissions with different parts of the oil and gas supply chain and
operators, based on the use of a clustering algorithm. It also describes
a framework for the automatic association of methane plumes with
oil and gas infrastructures.
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• Chapter 5 first presents a end to end framework for a dynamic and in-
telligent methane emissions inventory. Then, it discusses its potential
contributions to methane mitigation policies design.

• Chapter 6 concludes the thesis works and introduces perspectives of
futures works.
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Chapter 2

Methane Emissions from
the Oil and Gas industry

This chapter outlines the definitions and background of methane, the oil and
gas industry, and their contributions to global warming. It further discusses
existing regulations for methane mitigation, their constraints, and potential
solutions, introducing our research.

Section 2.1 defines methane and its sources, highlighting its role in global
warming. Section 2.2 presents tools for methane measurement and associ-
ated quantification methods. Section 2.3 delineates the fossil fuel sector,
with a focus on the oil and gas industry’s specificities concerning methane
emissions. Lastly, Section 2.4 reviews current methane mitigation policies,
their limitations, and introduces the foundational aspects of this thesis,
aiming to offer efficient methane mitigation solutions.
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2.4.3 Solutions . . . . . . . . . . . . . . . . . . . . . 33

2.1 Methane and Global Warming

2.1.1 Methane and its impacts

Figure 2.1: Different representations of methane (CH4) molecule [118].

Methane is a chemical compound with the molecular formula CH4, com-
posed of hydrogen (H) and carbon (C) as depicted in Figure 2.1. It is
an odorless, colorless greenhouse gas (GHG) lighter than air. Following
carbon dioxide, methane ranks as the second most significant contributor
to climate change and also impacts human and environmental health as a
pollutant[73]. While methane’s atmospheric lifetime is shorter than that of
CO2, its warming potential is substantially higher. The Intergovernmental
Panel on Climate Change (IPCC) estimates that the climate impact of one
unit mass of methane is 84 times that of CO2 over a 20-year period and
remains 28 times greater over 100 years. These attributes position methane
as a promising target for effective GHG emissions reduction.

The greenhouse effect[60, 5, 61] is a thermal phenomenon in which solar
radiation reaching Earth’s atmosphere is partly reflected back into space by
the atmosphere, white clouds, and bright surfaces, such as polar ice caps.
Unreflected incident rays are absorbed by the Earth’s atmosphere and/or
surface, providing heat (energy) that is subsequently radiated back as in-
frared rays (black body radiation). A portion of this radiation is absorbed
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by greenhouse gases (GHGs). In a subsequent stage, the absorbed heat is re-
emitted in all directions, including back towards Earth, creating the green-
house effect that elevates surface temperatures. This mechanism maintains
a positive temperature balance on Earth; without it, temperatures would
be considerably lower. However, increasing GHG concentrations intensify
this effect, trapping more radiation and leading to rising surface tempera-
tures. Over the past century, global average temperatures have increased
by approximately 1.25°C (2.25°F), with GHG increases playing a significant
role [39][141].

Figure 2.2: Globally-averaged, monthly mean atmospheric methane abun-
dance determined from 1983 to 2022. Image source: National Oceanic and
Atmospheric Administration (NOAA).

As shown in Figure 2.2, methane concentrations in the atmosphere sur-
passed 1,900 parts per billion (ppb) last year, nearly tripling pre-industrial
levels. In 2022, methane concentration rose by 14.0 ppb, representing the
fourth-largest annual increase since the National Oceanic and Atmospheric
Administration (NOAA) began systematic measurements in 1983. This rise
continues the trend observed in 2020 and 2021. The Global Methane Assess-
ment (GMA) 2021 reported a notable acceleration in atmospheric methane
concentrations during the 2010s, resulting in five-year average growth rates
not observed since the 1980s.

The observed methane levels substantially exceeded those projected in the
2°C scenario outlined in the IPCC 2013 Assessment[42]. Since the publi-
cation of the Global Methane Assessment (GMA) in 2021, official atmo-
spheric values for 2020 have been established by the World Meteorological
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Organization (WMO) Global Atmosphere Watch Programme (GAW). The
globally averaged surface methane level for 2020 was measured at 1889 ± 2
ppb, indicating a 262% increase from pre-industrial levels. The annual in-
crease from 2019 to 2020 was 11 ppb, surpassing the average annual growth
rate observed over the previous decade. Data analysis from U.S. National
Oceanic and Atmospheric Administration (NOAA) marine boundary layer
sites, accounting for approximately 40% of the GAW network, identified a
methane increase of 17.0 ppb in 2021, marking the highest annual increase
in the 38-year record.

Preliminary analysis of methane growth rates, derived from satellite to-
tal column data using SCIAMACHY/ENVISAT and TANSO-FTS/GOSAT
products from SRON, revealed a rate of 16.3 ppb per year in 2021. This
rate represents the highest value observed in the 2003-2021 record. Both
ground-based and satellite observations indicate that atmospheric methane
levels are continuing to rise rapidly as the world progresses into the 2020s
[122, 22, 120].

Figure 2.3: Global temperature anomaly by year in Fahrenheit and degree
Celsius from 1880 to 2022. image source: National Oceanic and Atmo-
spheric Administration (NOAA).

Methane contributes to approximately 50% [43] of global warming since pre-
industrial times, relative to the net total human influence. Global warming
refers to the long-term increase in Earth’s average surface temperature due
to the greenhouse effect. While Earth’s surface warming has been non-
uniform, the overall trend in globally averaged temperature indicates more
regions experiencing warming than cooling. According to NOAA’s 2023
Annual Climate Report[79] and Figure 2.3, the combined land and ocean
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temperature has increased at an average rate of 0.11°F (0.06°C) per decade
since 1850, resulting in a total increase of approximately 2°F. The rate
of warming has accelerated since 1982, with an average increase of 0.36°F
(0.20°C) per decade. The latest Synthesis Report from the IPCC[43] at-
tributes this warming trend to human activities, particularly GHG emis-
sions, with global surface temperatures reaching 1.1°C above pre-industrial
levels (1850-1900) between 2011 and 2020[122]. If GHG concentrations
and associated global temperatures continue to rise, widespread impacts
on global climate are anticipated, with some already underway [13] [123].
These impacts are expected to have significant implications for global food
production, human health, and the habitability of coastal and arid regions.

2.1.2 Methane sources

Figure 2.4: 2019 Anthropogenic Methane emission by sources in United
States. Image source: United States Environmental Protection Agency
(EPA).

Methane emissions can be categorized into two groups: natural sources and
anthropogenic sources. According to the EPA, natural sources contribute
to approximately 40% of global methane emissions. Among these, natural
wetlands are the predominant source, emitting methane through bacterial
decomposition of organic materials in oxygen-deprived conditions. Addi-
tional minor sources include termites, oceans, sediments, volcanoes, and
wildfires. Anthropogenic sources, as shown in Figure 2.4, account for 60%
of global methane emissions. Thus, over half of all methane emissions orig-
inate from the following primary human activities [114]:
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• Agriculture: Agriculture represents the largest anthropogenic source
of methane emissions, accounting for approximately 41% of total an-
thropogenic emissions. This is primarily attributed to enteric fermen-
tation in ruminant livestock, which generates methane as a digestion
byproduct. Additionally, manure management and rice cultivation
contribute to methane emissions from this sector.

• Energy Production: The energy sector, encompassing the extrac-
tion, production, and utilization of fossil fuels, is a significant con-
tributor to methane emissions, representing around 35% of the total.
This includes emissions from oil and natural gas production, coal min-
ing, as well as the combustion of fossil fuels for electricity generation,
heating, and transportation.

• Waste Management: Organic waste management practices, such
as landfilling, composting, and wastewater treatment, can produce
methane through anaerobic decomposition. Landfills stand out as a
significant source of methane emissions, contributing approximately
20% of total anthropogenic emissions.

• Others: Several other categories also contribute to methane emis-
sions, albeit with lower contributions. These include specific indus-
trial processes and biomass burning, encompassing wildfires, defor-
estation, and peatlands.

These emissions sources, by releasing methane, contribute to global warm-
ing, which in turn triggers various mechanisms leading to the release of
greenhouse gases (GHGs):

• Methane Hydrates: Methane hydrates are ice-like structures con-
taining methane molecules trapped within water molecules. These
deposits, found in permafrost regions and deep ocean sediments, have
the potential to release large amounts of methane if they melt or are
disturbed.

• Permafrost: Permafrost refers to soil that remains frozen through-
out the year and contains substantial amounts of organic carbon. As
permafrost thaws due to climate change, organic matter decomposes,
releasing methane and carbon dioxide into the atmosphere.

• Methane Seeps: Methane seeps are areas where methane gas es-
capes from the seafloor into the water column. These seeps can occur
naturally or as a result of human activities, such as oil and gas drilling.
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In summary, methane emissions originate from a range of natural and
human-made sources, with agriculture, energy production, and waste man-
agement serving as the largest anthropogenic contributors.

2.2 Methane emissions measurement

2.2.1 Measurement instruments

The concentration of methane in the atmosphere is determined by its emis-
sions. Elevated methane emissions result in increased atmospheric concen-
trations, which are typically measured in parts per million (ppm) or parts
per billion (ppb). The estimation and quantification of methane emissions
utilize methane-sensitive sensors employing various specific techniques (cf.
Section 2.2.2). These sensors facilitate the calculation of emission rates,
distinguishing between source emissions and background levels. The design
and type of sensor dictate the measurable parameters and operating condi-
tions. Sensor placement can be categorized into two primary approaches:
in-situ measurements and remote sensing.

In-situ sensors necessitate direct contact with methane molecules within a
plume for chemical or physical interactions and, therefore, must be situated
on-site, either near or directly within the methane plume [119][33]. Con-
versely, other sensors, suitable for both in-situ and remote sensing[150]
applications, operate based on the detection of electromagnetic signals,
such as infrared light from the sun or a laser. As electromagnetic radia-
tion traverses the atmosphere, specific wavelengths are absorbed by various
molecules, each exhibiting a unique absorption signature. Multiple detec-
tion instruments, including optical gas imaging and multi-spectral/hyper-
spectral imaging, leverage these methane absorption characteristics for de-
tection and measurement.

Methane absorbs infrared radiation across a specific range of wavelengths,
with pronounced absorption in certain wavelength regions. Methane demon-
strates absorption characteristics throughout the infrared spectral range of
0.75-14 µm. Additionally, other atmospheric gases, including CO2, CO, O3,
N2O, and water vapor, possess unique absorption signatures that partially
overlap with methane absorption wavelengths. Consequently, instrument
systems must be meticulously designed to differentiate and isolate methane
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signals from potential interference caused by these other gases.

Figure 2.5: Tools for Methane emissions measurement and its characteris-
tics

[77].

Measurements of methane concentrations can be conducted across vari-
ous spatial and temporal scales, ranging from broad global assessments to
localized evaluations of individual sources. The temporal interval for con-
centration measurements can vary from long-term, annual assessments to
short-term, near-real-time evaluations. These parameters are influenced by
the sensor characteristics and their placement. Sensor locations can vary
from ground-based installations to satellites, enabling measurements at dif-
ferent spatial scales based on altitude.

As depicted in Figure 2.5, at high altitudes (100-10,000 km from the emis-
sion source), satellite-based sensors can cover extensive spatial scales, in-
cluding global, continental, and regional levels (100-1000 km2). The mea-
surement frequency can range from continuous to hourly, daily, or annual
averages. At intermediate altitudes (100m-10km), aircraft campaigns and
tower-based measurements enable regional-level emissions readings (10-100
km2) with instantaneous or daily measurements. Additionally, targeted
measurements can be obtained for specific sites (<1-10 km2), such as indus-
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trial facilities, using aircraft campaigns, low-altitude drones (10m-10km),
providing instantaneous to daily measurements. Lastly, as previously men-
tioned, in-situ sensors can be positioned near or directly within the emission
source, providing instantaneous or longer-term measurements.

Figure 2.6: Satellite instruments for observation of methane in the short-
wave infrared (SWIR) by area flux mapper and point sources imagers.

The current satellite landscape includes at least 16 satellites dedicated to
monitoring methane concentrations, as shown in Figure 2.6. Each satellite
possesses distinct characteristics:

• Spectral resolution: Refers to the capability of a satellite sensor to
measure specific wavelengths within the electromagnetic spectrum. A
finer spectral resolution corresponds to a narrower wavelength range
for a particular channel or band.

• Spatial resolution: Represents the smallest object (pixel) that the
sensor can resolve or the ground area imaged. Each pixel corresponds
to a specific area of the Earth’s surface and has an associated intensity
value and location address within the two-dimensional image.

• Revisit time: Denotes the interval between two successive obser-
vations of the same point on Earth by the satellite. This parameter
is influenced by the satellite’s technical capabilities, such as attitude
control and the electronic steering capability of the payload antenna.



JADE E. GUISIANO 16

Satellite instruments can be categorized into two types: area flux mappers
and point source imagers, each with distinct characteristics. Area flux map-
pers are characterized by high precision (<1%) and pixel sizes ranging from
0.1 to 10 kilometers, facilitating the quantification of total methane emis-
sions at regional to global scales. These instruments are particularly suited
for assessing area sources, which may encompass a vast number of indi-
vidually small emitters that collectively contribute to significant emissions.
Notable examples of area flux mappers include GOSAT and TROPOMI,
which offer continuous daily mapping and long-term methane trend analy-
sis, respectively.

Conversely, point source imagers, such as the GHGSat constellation and
various hyperspectral and multispectral land imaging sensors (e.g., PRISMA,
Sentinel-2, Landsat-8/9, WorldView-3), feature finer pixel sizes (<60 me-
ters). They are designed to detect individual point sources by imaging their
plumes, as illustrated in Figure 2.7. These imagers have detection thresh-
olds ranging from 100–10,000 kilograms per hour, enabling the monitoring
of large point sources[124].

Figure 2.7: Methane plume enhancement over Libya by Satellites
TROPOMI Sentinel 5P and GHGSat Image source: European Spatial
Agency.

The constellation of satellites is planned to be extended through the contin-
uous development of technologies that offer improved spectral resolution,
spatial resolution, and temporal coverage, ultimately enabling quasi-real-
time monitoring.
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2.2.2 Emissions quantification

Figure 2.8: Top down & Bottom-up perspectives of methane emissions
estimation.

Measurements of methane concentrations obtained at various altitudes re-
quire specific transformations to estimate methane emissions. These trans-
formations are influenced by both the sensor’s position and the selected
study area. The methodologies for estimating emissions are categorized
into two approaches: bottom-up and top-down, as illustrated in Figure 2.8:

Bottom-up. methods estimate emissions using activity data (e.g., in-
dustry segment, annual production, type of component or equipment) and
emission factors tailored to the specific facility or component analyzed. For-
mally, bottom-up methods utilize activity information, such as the number
of facilities or the scale of operations, which is then multiplied by stan-
dardized emission factors, including default values or leak rates specific to
certain equipment types.

According to the 2006 IPCC Guidelines for National Greenhouse Gas In-
ventories [81], emission factors vary based on the level of methodological
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complexity employed in these engineering calculations. The IPCC identi-
fies three methodological tiers: the first corresponds to the basic method,
requiring minimal information from the emission source. As the tier num-
ber increases, more information is needed, leading to more complex calcu-
lations. Regardless of the tier used, emission factors are generic for the
specific industry segment, facility, or component to which they apply. In
more detailed cases, these factors are derived from direct measurements at
the emission source, which are then extrapolated to represent the entire
population of similar emission sources at regional or national levels. This
approach introduces inherent uncertainty into the calculations.

For bottom-up emissions estimates, models serve multiple purposes. They
are utilized to convert methane concentration data into methane emissions
estimates and to translate methane measurements taken away from a source
into emissions measurements using atmospheric dispersion models. Sub-
sequently, these models are employed to convert emissions measurements
across a sampled population into comprehensive emissions estimates at the
facility, regional, national, or global level using statistical models.

Top-down. Rather than estimating emissions from a representative sam-
ple of devices, as done in the bottom-up method, the top-down method
relies on observations of methane concentration in the atmosphere, ob-
tained using sensors located at high altitudes. To determine the location
and quantify the magnitude of a methane emission source, the transport
of methane from the emission source to the measurement location must
be simulated. Subsequently, methane concentrations are converted to an
emission flux using an atmospheric inversion model. This model relies on
atmospheric methane measurements and an atmospheric transport model
to infer the most likely distribution of emissions or methane fluxes at vari-
ous levels of the Earth’s atmosphere. To calculate flux rates, atmospheric
transport models incorporate factors such as wind, atmospheric conditions,
and background methane concentrations. Inversion models are categorized
based on the targeted scale of estimation:

• Global-regional inversion: Quantifying emissions on global-regional
scales, with multiple contributing sources, necessitates a broader ap-
proach. An ensemble of atmospheric observations from area flux map-
per instruments is fitted to a 2D field of emissions through inversion of
a 3D chemical transport model (CTM) that correlates emissions with
atmospheric concentrations [128]. The process involves simulating
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the movement of methane molecules, utilizing observed emissions and
prior data (bottom-up inventory), to ascertain their source. Through
optimization, the model iteratively refines prior emission estimates
until a consensus between simulated and observed concentrations is
achieved. Two main types of optimization models can be employed:

– Eulerian: These models concentrate on fixed locations and offer
a comprehensive, continuous, mass-preserving representation of
the atmosphere. They can also be retroactively integrated to
derive source fingerprints. Eulerian models are primarily used
for inverse analyses of methane observations at the satellite level,
where a large number of receiving points are present [29][82][115].

– Lagrangian: These models simulate the movement of air parcels
and the alterations they undergo due to their motion. The pri-
mary assumption of Lagrangian models is the absence of horizon-
tal dispersion of pollutants, implying that once materials enter
the column, they are not eliminated by mixing and dilution with
the surrounding air. Lagrangian models are directly integrable
backwards in time, allowing for cost-effective calculation of the
source footprint contributing to concentrations at a specific re-
ceptor point [130][3][83][85].

The combination of Eulerian and Lagrangian models is also feasible
[94, 6, 55], providing advantages such as high-resolution simulations
near measurement sites, minimized errors due to the aggregation of
emissions, and the flexibility to employ any combination of suitable
models without code modification. This approach allows for sensi-
tivity to the entire emissions field and facilitates estimation using
traditional statistical methods without multiple inversion steps.

• Point-source inversion: Targeted atmospheric measurements of
methane can quantify emissions on smaller scales (point source, urban
area, oil and gas basin). The behavior of methane plumes is influenced
by atmospheric turbulence, advection, and the intensity of the emis-
sion source. Various methods are available to estimate the source
rates of these plumes, including Gaussian plume inversion[102][103],
local mass balance[9], Gauss theorem[12], cross-sectional flux method
(CSF) [99, 125, 126, 96], and the Integrated Mass Enhancement
(IME) [125, 78, 126, 56] method. The optimal approach depends on
the availability of meteorological information and the instrument’s
ability to map the observed plume structure, which is influenced
by pixel size, measurement noise, the capacity to define the local
background, and flow complexity, including wind shear effects[128].
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Given the instantaneous nature and variability of plumes in down-
wind transport, the IME and cross-sectional methods are deemed the
most suitable for estimating source rates. Both methods require the
determination of local or effective wind speed, with the IME method
demonstrating lower error rates in effective wind speed determination.
Both methods are extensively applied to retrieve point source rates
from satellite observations, yielding consistent results[127].

Top-down and bottom-up approaches each offer distinct advantages and
face specific limitations. The bottom-up approach enables the direct quan-
tification of emissions from known sources or facilities, attributing emis-
sions to specific sources. However, this method necessitates comprehensive
accounting of activity data, precise emission factors, and a representative
sample size to characterize the scaled population accurately. The vast num-
ber of sources, which can vary substantially over time and space, poses a
significant challenge for establishing precise regional or national emissions
inventories. Moreover, full access to all sources is not always feasible.

Conversely, top-down approaches encompass contributions from all sources,
including unknown or underestimated sources. However, attributing emis-
sions to specific processes or activities is challenging due to the intermin-
gling of sources and limited detection capabilities of individual sources or
installations.

While bottom-up approaches offer valuable insights into the specific sources
of emissions and suggest targeted actions for emission reduction, top-down
approaches can reveal unexpected and often substantial leaks that may
remain unidentified using a bottom-up approach.

2.3 Oil and Gas Industry specificities

2.3.1 Fossil fuel sector

The fossil fuel sector encompasses the industry engaged in the extraction,
processing, and distribution of non-renewable energy sources, including
bioenergy, coal, oil, and natural gas. It spans activities from exploration
and drilling to refining and transportation, playing a pivotal role in global
energy production and consumption.
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Figure 2.9: Methane emission in (Mt) from energy sector between 2000 and
2020. Image source: International Energy Agency (IEA).

According to the International Energy Agency (IEA)[32], the global energy
sector contributed an estimated 135 million tonnes of methane emissions
in 2022 (cf. Figure 2.9), marking a slight increase from the previous year.
Methane emissions from the energy sector constitute nearly 40% of the to-
tal methane emissions attributed to human activities, ranking second only
to agriculture (cf. Section 2.1.2). Coal, oil, and natural gas operations indi-
vidually contributed approximately 40 million tonnes of methane emissions,
with an additional nearly 5 million tonnes originating from leaks in end-use
equipment. Approximately 10 million tonnes of emissions were attributed
to the incomplete combustion of bioenergy, primarily from the traditional
use of biomass. As illustrated in Figure 2.9, methane emissions from nat-
ural gas activities were estimated at 36.7 million tonnes, while those from
oil activities were estimated at 45.6 million tonnes in 2022, representing
approximately 62% of the global energy sector emissions.

Methane emissions from the fossil fuel sector significantly contribute to
global greenhouse gas emissions, with certain countries playing a more
substantial role in this context. As depicted in Figure 2.10, the leading
methane-emitting countries from fossil fuel activities include China, Rus-
sia, the United States, Turkmenistan, and Iraq. China, the world’s largest
coal producer and consumer, emits considerable methane from coal min-
ing activities. Similarly, Iraq, a major oil and gas producer, significantly
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Figure 2.10: Large leaks from fossil fuel operations in 2022 by country.
Image source: International Energy Agency (IEA).

contributes to methane emissions from fossil fuel operations. The United
States accounts for a significant share of methane emissions from oil and
gas activities, being the largest global producer in these sectors. Russia, an-
other major oil and gas producer, also contributes significantly to methane
emissions from its fossil fuel sector. Collectively, these countries account
for a substantial portion of global methane emissions from the fossil fuel
sector.

Despite these challenges, there is considerable potential to reduce methane
emissions from the energy sector. It is estimated that approximately 70% of
methane emissions from fossil fuel operations could be mitigated using ex-
isting technologies. The oil and gas (O&G) sector, being the second largest
anthropogenic methane emission source, can achieve emission reductions
through the adoption of existing and proven technologies[32]. Moreover,
unlike other industries, the O&G sector has a longstanding history of re-
ducing methane emissions due to safety concerns, and methane can be mar-
keted as natural gas, providing a significant financial incentive for emission
reduction efforts. The International Energy Agency (IEA) estimates that
the industry can reduce its global emissions by 78%, with up to 39% of
these reductions achievable without financial compromise[41].



2.3. OIL AND GAS INDUSTRY SPECIFICITIES 23

2.3.2 Oil and Gas industry presentation

The oil and gas industry, also referred to as the petroleum industry, encom-
passes the exploration, extraction, production, refining, and distribution of
petroleum and natural gas resources. These primarily hydrocarbon-based
resources are crucial for fulfilling global energy demand, supplying fuel for
transportation, electricity generation, and various industrial processes.

The industry operates within a multifaceted network of companies, includ-
ing multinational corporations, national oil companies, and independent
operators, operating across diverse regions and countries. While the oil
and gas sector plays an essential role in global economic and geopolitical
dynamics, it also confronts challenges related to environmental sustainabil-
ity, fluctuating oil prices, and the transition to renewable energy sources.

Globally, there are over 25,000 oil and gas basins of varying sizes. The
world’s largest oil fields are predominantly located in the Middle East,
Brazil, Mexico, Venezuela, Kazakhstan, and Russia. However, the most
significant oil and gas basins are those that have historically yielded sub-
stantial quantities of hydrocarbons and continue to be primary contributors
to the global energy supply. Some of the most notable basins include:

• The Permian Basin: Situated in West Texas and southeastern New
Mexico, the Permian Basin stands as one of the largest and most pro-
ductive oil and gas basins globally. It has consistently contributed to
the United States’ oil and gas output for decades, drawing substantial
investment.

• The Ghawar Field: Located in Saudi Arabia, the Ghawar Field
represents the largest conventional oil field globally and has served
as a significant oil source for the international market over several
decades.

• The Marcellus Shale: Positioned in the northeastern United States,
the Marcellus Shale ranks among the largest natural gas-producing
regions in the country. Recent years have witnessed notable pro-
duction growth, attributable to advancements in hydraulic fracturing
technology.

O&G activities is divided in 3 sectors, and each sector has distinct sources
of methane emissions :



JADE E. GUISIANO 24

Figure 2.11: Oil and Gas Supply-chain. Upstream: (1,2), Midstream:
(6,7,8,9), Downstream: (3,4,5) Image source: U.S Environmental Pro-
tection Agency (EPA).

• Upstream: The upstream sector encompasses the initial stages of
the oil and gas industry, focusing on locating and extracting hydrocar-
bon resources from the earth’s subsurface. This includes exploration,
drilling, and production of crude oil and natural gas. Methane emis-
sions in the upstream sector primarily originate from wellheads, flares,
pipelines, and storage tanks;

• Midstream: The midstream phase encompasses the transportation,
storage, and processing of crude oil and natural gas subsequent to
their extraction. It also includes the conveyance of these resources
from production sites to refineries and other downstream facilities.
Methane emissions in the midstream sector primarily arise from pipelines,
compressor stations, and storage facilities.

• Downstream: The downstream phase encompasses the conversion of
crude oil into diverse petroleum products, including gasoline, diesel,
jet fuel, and lubricants. Additionally, this phase includes the estab-
lishment and operation of refineries, petrochemical plants, and retail
outlets. Methane emissions in the downstream sector primarily orig-
inate from refineries, distribution systems, and retail outlets.

The O&G industry’s upstream activities account for over 75% of total
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Figure 2.12: Oil and gas methane emissions in selected countries by oil and
gas sector, 2020. Image source: International Energy Agency (IEA).

methane emissions, while the downstream segment contributes the remain-
der. As depicted in Figure 2.12, the United States recorded the high-
est methane emissions in the upstream sector in 2020, with approximately
10,000 kt emitted. In the downstream sector, Russia emitted nearly 3000
kt of methane, followed by almost 2500 kt in the United States.

The upstream and downstream sectors are structured around production,
gathering, boosting, and processing sites. As shown in Figure 2.11, each
site is equipped with specific infrastructure. The upstream sector con-
sists of production sites, including wells, and gathering & boosting sites
encompassing gathering pipelines, separators, compressors, pneumatic de-
vices/pumps, storage vessels, heaters, and flares. The downstream sector
comprises processing sites characterized by refineries and wells.

Each of these infrastructures contributes to varying levels of methane emis-
sions. Studies [89, 156, 121, 48] have consistently identified storage tanks,
flares, and compressors as prominent sources of methane emissions. How-
ever, the order of contribution can vary across different surveys. For in-
stance, Figure 2.13 presents the findings of a recent aerial survey measuring
methane emissions from various O&G infrastructures in British Columbia,
Canada [49]. The study indicated that compressors accounted for 54% of
the total methane emissions, followed by tanks at 18%, and unlit flares at
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Figure 2.13: Relative contribution of source types to aerially detected
methane. (a) Fraction of detected sources and (b) fraction of measured
methane among quantified source types in the aerial survey[49].

7%.

Methane emissions from O&G production sites exhibit skewed distribu-
tions, where a small percentage of sites—often referred to as super-emitters—contribute
to the majority of emissions. A recent study [15] found that these strong
methane point sources contribute an average of 40% of total emissions
across multiple basins in the United States, highlighting the disproportion-
ate contribution of a limited number of emitters. Methane super emitters
are facilities, equipment, or sources within the oil and gas industry that
release significantly higher amounts of methane compared to the average
emissions from similar sources. Identifying and addressing super emitters
is essential for effective methane mitigation efforts, as they can significantly
influence overall methane emissions from the oil and gas sector.

Super emitters can release large quantities of methane due to various fac-
tors, including equipment malfunctions, operational inefficiencies, or design
flaws. Emissions from these super emitters, as well as from other sources,
can be classified into three categories:

• Fugitive methane emissions result from unintended leakages, often
due to faulty seals or leaking valves.

• Vented methane emissions are intentional releases, commonly for
safety reasons, resulting from the design or operational requirements
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Figure 2.14: Annual oil and gas sector methane emissions by production
type and reason in million tonnes (mt) in 2020. Image source: International
Energy Agency (IEA).

of the facility or equipment (e.g., pneumatic controllers and flaring)
or maintenance activities (e.g., venting a pipeline for inspection).

• Incomplete flaring methane emissions occur when natural gas, which
cannot be economically used or recovered, is burned instead of being
sold or vented. While the majority of the natural gas is converted
into CO2 and water through combustion, a portion may not be com-
pletely burned, resulting in methane emissions being released into the
atmosphere.

Figure 2.14 indicates that for oil and gas (on-shore and off-shore), vented
methane emissions are predominant, signifying that these emissions arise
from intentional actions. Regulatory measures tailored to discourage prac-
tices leading to methane emissions could mitigate vented emissions. For
fugitive emissions and incomplete flaring, implementing new components
and conducting repairs could offer mitigation solutions. According to the
IEA, the global oil and gas sector emitted more methane in 2021 than
Canada’s annual consumption. If this methane were captured and sold
at the current U.S. price of $4 per million British thermal units, it could
generate approximately $17 billion. The IEA estimates that an $11 billion
investment could eliminate around 75% of the world’s methane leaks, as
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well as a significant amount of gas wasted by flaring at the wellhead. In-
vesting in repairs and infrastructure would not only reduce emissions and
contribute to climate change mitigation but also generate profits for pro-
ducers and provide additional natural gas.

2.4 Methane mitigation’s actions

2.4.1 Current mitigation policies

Figure 2.15: Methane emissions from fossil fuels, historical and in the
Net Zero Scenario, 2020-2030. Image source: International Energy Agency
(IEA).

Rapid reductions in methane emissions from fossil fuel activities are essen-
tial for achieving global climate targets, particularly when combined with
substantial reductions in carbon dioxide emissions. Without targeted action
on methane, the global average surface temperature could exceed 1.6°C by
2050, even with significant reductions in fossil fuel use. Under the Net Zero
Emissions by 2050 (NZE) Scenario, total methane emissions from fossil fuel
operations are projected to decrease by around 75% between 2020 and 2030
(Figure 2.15). Unlike agriculture and wetlands, the O&G industry has a
long-standing history of reducing methane emissions due to safety concerns,
and methane can be sold as natural gas, making emission reduction finan-
cially beneficial. The International Energy Agency (IEA) estimates that
the industry can reduce its global emissions by 78%, and up to 39% [41]
of these reductions can be achieved without financial compromise. These
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reductions are crucial, as methane emission cuts from fossil fuel operations
are projected to contribute half of the total reduction in methane emissions
required by 2030 to limit warming to 1.5°C.

The oil and gas industry has instituted various policies and initiatives to
mitigate methane emissions. These encompass:

• Regulatory Measures: Governments and regulatory entities across
different countries have established regulations targeting methane emis-
sions from oil and gas operations. These often entail provisions for
monitoring, reporting, and mitigating methane emissions.

• International Agreements: International agreements and initia-
tives exist to address methane emissions from the oil and gas sector.
For instance, the United Nations Framework Convention on Climate
Change (UNFCCC) serves as a foundational treaty underpinning in-
ternational climate negotiations.

• Financial Incentives: Certain governments and entities provide fi-
nancial incentives to encourage methane emission reduction by com-
panies. These incentives may comprise grants, tax credits, or other
financial mechanisms.

• Voluntary Initiatives: Numerous oil and gas firms have volun-
tarily pledged to curtail methane emissions. These initiatives fre-
quently entail establishing emission reduction targets, adopting best
practices, and investing in innovative technologies. The Oil and Gas
Methane Partnership (OGMP) exemplifies a voluntary initiative tar-
geting methane emission reductions from oil and gas operations.

• Technology Development: Ongoing research and development ef-
forts are directed towards devising new technologies and practices for
methane emission reduction in oil and gas operations. This encom-
passes technologies for detecting and rectifying fugitive leaks, as well
as for capturing and utilizing methane that would otherwise be vented
or flared.

• Public Reporting: Some companies opt to publicly disclose their
methane emissions, fostering increased transparency and accountabil-
ity within the industry.

Mitigating methane emissions in the oil and gas industry lacks a one-size-
fits-all solution. The efficacy of policy and regulatory frameworks is contin-
gent upon jurisdiction-specific circumstances, encompassing political and
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regulatory contexts, industry characteristics, emission source size and loca-
tion, and policy objectives. Regulatory approaches exhibit varied advan-
tages and disadvantages across jurisdictions, necessitating consideration of
these factors in policy design.

National authorities possess multiple avenues for implementing policies and
regulations aimed at reducing methane emissions from the oil and gas sec-
tor. These include:

• Standards: These encompass requirements for the adoption of par-
ticular technologies and operational practices, alongside quantifiable
emission thresholds. Technical standards, often denoted as Best Avail-
able Technologies (BAT)[4], are prevalent, with emission limits fre-
quently integrated with economic mechanisms such as emission fees
or taxes. Requirements for regular leak detection and repair (LDAR)
[142] [17] programs are also part of this category.

• Economic instruments: This category includes emission fees or
taxes, emission trading systems, and offset credit schemes. Gas price
and reforms in gas pricing can also fall under this classification.

• Public-private partnerships and negotiated agreements: These
can manifest in diverse forms, ranging from loosely structured part-
nerships with voluntary objectives to formal agreements with com-
pulsory regulations in the absence of meeting specified quantitative
targets. Negotiated agreements might incorporate emission reduction
objectives, an overseeing institution for managing and coordinating
emission mitigation measures, and protocols for monitoring, report-
ing, and verifying adherence.

The United Nations Framework Convention on Climate Change (UNFCCC),
established in 1992, aims to stabilize greenhouse gas concentrations in the
atmosphere at levels that prevent detrimental anthropogenic interference
with the climate system. The UNFCCC delineates several principles to
direct the global response to climate change. A pivotal requirement of the
UNFCCC mandates countries to formulate and regularly update national
greenhouse gas (GHG) inventories. These inventories employ bottom-up
methodologies (cf. Section 2.2.2), applying emission factors to source ac-
tivity data. The compilation methodology for these inventories is stipulated
by the IPCC Guidelines on National Greenhouse Gas Inventories. Such in-
ventories offer a comprehensive account of all GHG emissions and removals
within a country’s boundaries, categorized by sector and activity. Utilized
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to monitor progress towards national emission reduction objectives and to
report emissions to the UNFCCC, these inventories also pinpoint emission
sources and opportunities for mitigation, thereby informing the formulation
of climate policies and measures.

In crafting methane mitigation regulations and strategies, policymakers
heavily depend on these inventories. The precision in characterizing emis-
sion sources is crucial for the development of effective mitigation regulations
and strategies.

2.4.2 Limitations and Challenges

Numerous studies [1, 11, 93, 100, 72, 104, 71, 146, 99] have highlighted sys-
tematic underestimation of methane emissions from the oil and gas (O&G)
supply chain. This raises concerns regarding the reliance on bottom-up
methodologies for estimating emission inventories, which subsequently in-
form regulatory guidelines for methane emissions reduction. A study by
[97] indicated that IPCC Tier 1 emission factors underestimated methane
emissions from the O&G sector in the United States. Such underestimation
is likely to affect countries employing these emission factors in their invento-
ries. The authors observed that updates to the IPCC Tier 1 emission factors
are not anticipated in the foreseeable future. Additionally, [20] compared
UNFCCC-reported emissions to a set of global inversions and found that
some of the highest fossil methane-emitting countries report lower emissions
to the UNFCCC than estimated by atmospheric inversions.

As outlined in Section 2.2.2, methane emissions exhibit considerable spatio-
temporal variability influenced by factors like weather, operating condi-
tions, and maintenance practices. Such variability may elude capture by
bottom-up approaches, introducing inaccuracies in emission estimates. Fur-
thermore, these approaches can be intricate and resource-intensive, neces-
sitating comprehensive data collection and analysis, posing challenges for
implementation, particularly in resource-constrained regions.

A substantial portion of the discrepancy in emission estimates stems from
the omission of super-emitters from emission inventories [58]. These sources,
characterized by elevated emission rates, account for an average of 40%
of total methane emissions. However, pinpointing these super-emitters
presents significant challenges due to their transient nature and resistance
to standard leak detection and repair (LDAR) methods. Their intermittent
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occurrence and varying locations further complicate identification.

The prevailing absence of reliable emissions data impedes governments’
ability to implement targeted actions at the requisite scale and pace to
realize the objectives of the Global Methane Pledge (GMP).

To address these challenges and align with GMP objectives, various initia-
tives and programs aim to furnish the most accurate and comprehensive
methane emission data feasible. The Oil and Gas Methane Partnership
(OGMP), a voluntary initiative spearheaded by the United Nations Envi-
ronment Programme (UNEP) and the European Union, strives to curtail
methane emissions from the oil and gas sector. A core OGMP objective is
to prompt participating companies to transparently report their methane
emissions and reduction endeavors, encompassing detailed data on emission
sources, mitigation measures, and progress towards reduction targets.

OGMP offers five tiers of reporting methods, ranging from generic emis-
sion factors to on-site and infrastructure methane emissions measurements
utilizing ground and aerial sensors (bottom-up & top-down).

From a bottom-up emissions perspective, on-site sensors have proliferated
and enhanced in precision. Companies stand to benefit from these monitor-
ing technologies by commercializing methane emissions data to interested
entities, such as governments or other oil and gas companies. Furthermore,
the deployment of ground-based emissions monitoring systems enables com-
panies to devise effective methane mitigation strategies to circumvent fines
levied under new methane regulations, like the Inflation Reduction Act
(IRA) in the USA, which imposes charges per ton of CH4 emitted ex-
ceeding 25,000 tons of CO2e. The evolution of the oil and gas industry
towards Industry 4.0[70, 131, 75], underpinned by advancements in pro-
cess automation technologies, entails augmented utilization of innovative
sensors[74] like infrared cameras[24], LIDAR[76], and Laser Path, facilitat-
ing precise and quasi-continuous spatio-temporal representation of on-site
methane emissions. Concurrently, various functional parameters associated
with infrastructures, such as age, flow rates, maintenance, and operational
efficiency of each equipment on site, will be monitored.

From a top-down emissions standpoint, the current satellite constellation
comprises at least 15 satellites (for global & point source perspectives)
dedicated to methane concentration monitoring. This satellite constella-
tion is poised to expand through ongoing technological advancements of-
fering enhanced spectral resolution, spatial resolution, and temporal cov-
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erage (cf. Section 2.2.1). Furthermore, technological innovation in space-
borne methane measurement tools appears to prioritize long-term quasi-
continuous monitoring, akin to advancements in carbon cycle analysis [45].
This regular methane emission measurement concept should facilitate con-
tinuous monitoring of emission levels from sites and infrastructures, en-
abling the establishment of their respective emission profiles. In the long
run, the diverse range of measurement tools in operation, coupled with
potential continuous measurement capabilities, is anticipated to generate
substantial data volumes.

Confronted with the escalating volume of raw data from top-down and
bottom-up sensors, the processing and analysis of this data pose significant
challenges, particularly in real-time contexts where expeditious processing
and analysis are imperative.

2.4.3 Solutions

To devise effective regulations for methane emissions reduction, it is essen-
tial to develop a robust and accurate inventory methodology that integrates
multi-level methane emission profiles applicable to on-site equipment and
national-level estimates.

The Methane Alert and Responses System (MARS) initiative, introduced
by UNEP and the Environmental Defense Fund (EDF) at COP27 [57],
aims to create a system capable of near real-time methane emissions detec-
tion from oil and gas operations. This system will leverage a combination
of methane emissions data, including satellite data from the International
Methane Emission Observatory (IMEO). The MARS initiative seeks to fur-
nish actionable insights to operators and regulators to curtail methane
emissions, facilitating enhanced monitoring and enforcement of methane
regulations.

Such systems should be grounded on the deployment of comprehensive mon-
itoring systems at both global and individual oil and gas infrastructure
levels, enabling precise characterization of methane emissions across vari-
ous levels (national, basins, operator, site, infrastructure). A recent study
[15] found that, on average, 40% of emissions from US oil and gas fields
emanate from point sources, underscoring the importance of characterizing
methane emissions both as area and point sources [124]. Furthermore, iden-
tifying the characteristics of super-emitters and predicting the likelihood of
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a site becoming a super-emitter, or forecasting the timing and location of
super-emitter events, would significantly contribute to methane emissions
reduction.

Characterizing methane emissions involves determining their source, vol-
ume, and location. Accumulated over time and across various levels, this
data could facilitate access to spatio-temporal and time series data, serving
as the foundation for in-depth analysis and spatio-temporal methane leak
forecasting. This forecasting capability is pivotal for preventing methane
leaks by providing a proactive window for intervention.

To enable real-time, global-scale operation of such a system, it must leverage
automated methods for processing and analyzing the substantial volume of
data implicated. The incorporation of artificial intelligence into this process
is the key element capable of meeting this requirement.



Chapter 3

Automated Oil and gas
infrastructures detection
and recognition

This chapter introduces in Section 3.1 the general role of artificial intelli-
gence and its state-of-the-art applications for diverse methane mitigation
tasks. Section 3.2 focuses on the description of objection detection algo-
rithms and their specific applications in oil and gas methane emissions mit-
igation domain. This chapter in Section 3.3 also presents a case study for
the automatic detection and recognition of oil and gas infrastructures in the
Permian basin (USA) based on the use of object detection algorithms and
high resolution satellites images. Then, the results are presented in Section
3.4 including also the results algorithms pre-training effect and satellite
images based adversarial attacks on our algorithms performances.

This chapter, is based on our 2 following publications : "Oil and Gas Au-
tomatic Infrastructure Mapping: Leveraging High-Resolution Satellite Im-
agery through fine-tuning of object detection models" [37] and "Object detec-
tion models sensitivity & robustness to satellite-based adversarial attacks"
[36].

35
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3.1 Artificial Intelligence for Methane Mitiga-
tion

3.1.1 Artificial Intelligence Introduction

The use and applications of artificial intelligence (AI) have experienced a
massive increase over the last decade. AI has been fundamental for han-
dling, in an automated way, heavy and repetitive time-consuming tasks
which could require quasi-continuous attention and high precision. Ma-
chine learning (ML) and deep learning (DL) - which are AI subsets - allow
for automated decision-making and forecasting, which are currently used in
wide categories of applications such as medical diagnostics, speech recogni-
tion, recommendation system, and autonomous driving. ML can intervene
in every domain, especially when dealing with large amounts of data and
when analysis and decisions have to be done efficiently and in a short period
of time.

AI enabled the development of supervised models capable of performing
multiple prediction tasks from massive amounts of labeled data (Figure
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Figure 3.1: Machine Learning methods presentation.

3.1). However, data associated with real-life problems are not always la-
beled and sometimes requires long hours of manual annotation to be pro-
cessed by supervised methods. In the case where a dataset is not labeled,
the unsupervised or semi-supervised methods can be directly used with-
out having to labeled data and just a small amount. However, unlabeled
data can be manually or automatically annotated to achieve the necessary
conditions for using a particular method.

As illustrated on the Figure 3.1, machine learning could regroups different
methods for different tasks, for example :

1. Regression which is used to estimate relationship between variable
and make forecasting;

2. Classification permits to automatically assign elements to classes;
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3. Clustering is used to group elements without having pre-determined
classes

For example, to perform an automatic methane plumes detection (e.g. clas-
sification) with very few plume images (semi-supervised), it is possible to
extend the dataset (to be in a supervised learning setting) by automati-
cally generating images similar to those in the original dataset. For this,
generative models can be used to generate automatically new data. Gen-
erative models can therefore replace the heavy manual annotation work
mentioned above and have the advantage of being applicable in supervised,
semi-supervised, and unsupervised learning.

All these machine learning methods can be applied in various domains
like Natural Language Processing (NLP) with, for example, text classifica-
tion, natural language generation, automatic summarizing, etc. But also
computer vision (images & videos) with classification, classification + lo-
calization object detection, instance & semantic segmentation for images
and videos, 3D scenes generation, etc.

3.1.2 General State of the art

The use of AI in the context of methane emissions monitoring and O&G
infrastructure has greatly increased in less than a decade. Indeed, the in-
creasing number of aerial and ground sensors for methane emissions track-
ing produce large and diverse sets data. Facing this large amount of data,
the use of automated methods to transform these data into interpretable
informations is required. The Table 3.1 present various works based on AI
by type of analysis :

1. Methane plume detection

2. Methane plume quantification

3. Methane emissions forecasting and O&G site/infrastructure detection
and recognition
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Methane plume detection. is part of the computer vision domain
where images and videos could be automatically process in order to deter-
mine the presence or not of methane plume. Through the use of sentinel-2
images, [80] proposes a Convolutional Neural Network (CNN) method to
automatically detect methane emissions and flaring activities. Still based
on the use of sentinel-2 images, [129] through the CH4Net system, focus
on the detection of methane super-emitter (large scale emissions) using a
CNN U-Net model for binary segmentation pixel by pixel indicating the
presence or not of a methane plume. [101] proposes a two-step machine
learning approach also using a CNN to detect plume-like structures in the
methane data and subsequently apply a support vector classifier to dis-
tinguish the emission plumes from retrieval artifacts based on TROPOMI
images (Sentinel-5P). The GasNet method [135] demonstrates that methane
plume could also be detected from optical gas videos using CNN models
applied on different background subtraction methods.

Methane plume quantification. relies on chemical transport models
(cf. Section 2.2.2) which requires the use of local measurements such as
background wind speeds. The MethaNet methods[50], based on CNN,
proposes to predict (regression) methane point-source emission directly
from high-resolution 2-D plume images without relying on other local mea-
surements from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-
NG). With the same objective, [87] compares different CNN architectures
such as VGG-19, ResNet-50, Inception-v3, DenseNet-121, Swin-T, and
EfficientNet-V2L for methane plume quantification based on Sentinel-2 im-
ages. Alternatives approaches based on classification such as [133] and
VideoGasNet [136], make it possible to classify methane emissions by sizes
from optical gas video with the use of CNN model’s Long Short Term Mem-
ory network (FC-LSTM) and the convolutional LSTM (ConvLSTM).

The literature also features studies combining both detection and quantifi-
cation of methane plume, like [109] where the authors compare the use of
neural network and reduced support vector machine (RSVM) models based
on images from unmanned aerial vehicles (UAVs) and atmospheric param-
eters. [8] presents a two-step algorithm called U-Plume for automated
detection and quantification of point sources from satellite imagery from
GHGSat-C1. The first step delivers plume detection and delineation (mask-
ing) with a machine learning U-Net architecture for image segmentation.
The second step quantifies the point source rate from the masked plume us-
ing wind speed information and either a convolution neural network (CNN)
or a physics-based Integrated Mass Enhancement (IME) method. [53] also
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proposes a CNN based method for detection and quantification from gas
pipelines in the subsea with the use of simulated flow and its parameters.

Methane emissions forecasting could be realized for different tasks
such as spatio-temporal forecasting, probabilistic classification or simple
forecasting. [134] proposes to predict high-emitting sites that can be prior-
itized for follow-up repair based on several variables contribute to the for-
mation of leaks such as infrastructure age, production, weather conditions,
and maintenance practices and methane emissions quantities. This study
compares various regression methods such as Logistic Regression, Decision
Trees, Random Forests and AdaBoost. [52] proposes to estimate the emis-
sion fluxes of methane from open-pit mines based on the uses of multi-layer
perceptron (MLP) artificial neural network, the gradient boosting (GBR),
XGBOOST (XGB), and support vector machines (SVM) with simulated
emissions flux and associate meteorological parameters. [116] compare the
use of SVM and back propagation neural networks for pipeline methane
leak forecasting based on the simulation of low-pressure gas pipeline sys-
tem, which reproduces the gas leakage scenes and its associates parameters
like pressure wave. The literature also contains hybrid approaches combin-
ing physic/chemistry models with neural network models. [106] proposes
a hybrid deep learning model by integrating variation inference and phys-
ical constraint with a deep learning backbone to forecast spatio-temporal
concentration evolution of natural gas release at plume area.

Others. tasks based on artificial intelligence could also contribute to the
reduction of methane emissions. For example, [59] proposes a solution to
detect, locate, and estimate the size of O&G pipelines metal-loss defects
with the use of dimension reduction through Principal Component Anal-
ysis (PCA) and neural network. The placement of ground sensors also
plays an important role for methane emissions monitoring, [138] proposes
to optimize sensor placement to maximize the detection of possible methane
leaks. To this end, the authors present a machine learning approach based
on the use of the clustering algorithm DBSCAN which leverages various
data sources including oil and gas facilities data, historical methane leak
rate distribution and meteorological data. An other study [132] proposes a
techno-economic analysis based on the comparison of classical Leak Detec-
tion and Repair (LDAR) and machine learning based LDAR for automated
leak detection with the use of neural network and optical gas imaging. They
highlights the benefits of automated LDAR including reduction in labor
cost, prioritization of large leaks, and maximization of mitigation efficiency
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and minimization of the net cost of mitigation.

All these studies, using artificial intelligence methods, makes a significant
contribution to improving the monitoring of methane emissions and its mit-
igation. However, in order to achieve optimum mitigation, the behaviour
of methane-emitting sources must be precisely characterised so that a max-
imum of unintentional emissions can be avoided. To reach this goal, fine-
grained automated monitoring of emitting sources is required. This process
begins with the automatic detection and recognition of sources (Section
3.2), then the spatial matching of the sources at the origin of the detected
emissions (Chapter 4).

3.2 O&G facilities detection and recognition

3.2.1 Object detection State of the art

Object recognition algorithms, a subset of computer vision techniques, fa-
cilitate the automatic identification and location of multiple instances of a
given class of objects in images or videos. These algorithms use both neural
network-based methods or non-neural techniques. The non-neural strate-
gies typically integrate SIFT [68] or HOG [16] (for feature extraction) with
a classification algorithm such as Support Vector Machines (SVM). Despite
their usefulness, recent studies suggest that neural-based object recognition
methods generally outperform their non-neural counterparts [137]. Neural
approaches to object recognition can be divided into three categories de-
pending on the degree of supervision in their learning process: supervised,
semi-supervised, and self-supervised models [40]. The works conducted
in this thesis only focus on the use of supervised algorithms. Supervised
object recognition algorithms require an annotated image database for ef-
fective training. In this context, annotating an image involves identifying
objects of interest by enclosing them in a bounding box and labeling them
appropriately. During supervised learning approach, an object recognition
algorithm learns to locate and subsequently recognize the targeted objects.
The structural organization of object detection algorithms is usually defined
by the following main components:

• Backbone: This refers to a deep learning architecture, usually a
convolutional neural network (CNN), that is tasked with the essential
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function of feature extraction. Through this process, the backbone
identifies and abstracts the salient features from the input data;

• Neck: Serving as an intermediary between the backbone and the
head the neck performs a fusion of the features extracted from the
different layers of the backbone model. This synthesized information
forms the basis for the subsequent predictions performed by the head;

• Head: The head forms the final component of the object recogni-
tion model and is responsible for predicting the classes and bounding
box regions. These predictions form the final output of the object
recognition model. In particular, the head can produce a number of
outputs, typically configured to detect objects of different sizes in an
image.

Independently from learning type, this process can be executed over three
primaries architectural frameworks [145]:

• Two-stage detectors: is based on two main models, firstly Region
Proposal Network (RPN) which are fully convolutional networks used
to extract regions of objects, and secondly an extra model is used to
classify and further refine the localization of each region proposal.
RCNN [31] architecture is based on a selective search algorithm to
propose regions of interest and then applies a CNN to each region to
classify it as an object or background. As this method was considered
as particularly slow, the Fast-RCNN [30] authors proposed, an opti-
mized approach to RCNN by sharing computation across all regions
proposed in an image. Finally, FASTER-RCNN [92], based on the ar-
chitecture of Fast-RCNN, replaces the selective search algorithm with
a RPN, which is trained to directly predict regions of interest. This
latest version reduces computation time and improves the detection
accuracy;

• One stage detectors: Contrary to two stage detectors, one stage
detectors don’t need to integrate RPN to generate a region proposal,
it can directly obtain the classification accuracy of the object and its
coordinate position. These algorithms have the advantage of being
faster than two-step algorithms. In this category, there are YOLO [91]
and its different versions [113], SSD [69] and RetinaNet [66]. Review
studies compares the latter 3 methods. For example [112] for the pill
identification task, showing that YOLO v3 offers the best performance
in terms of execution time but the lowest accuracy. Another study
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[23] focuses on the comparison of SSD, RetinaNet, YOLO v4 and
FASTER-RCNN for Tethered Balloon detection. It was shown that
YOLO v4 achieved the best trade-off between speed and accuracy
with a precision of 90.3%. [46] also concludes that YOLO has better
accuracy (increasing with version) via a broad comparison of RCNN
and YOLO models and their variants;

• Others: There are also object detection methods based on approaches
other than the one-two stage approaches detailed above. For example,
DETR[10] is a transformer based detector with a 3 parts architecture
constitute of a CNN, encoder-decoder transformer and a feed-forward
network (FFN).

Backbone Pre-training. The majority of object recognition models, in-
cluding but not limited to YOLO, FASTER-RCNN, and DETR, provide an
option for a pre-trained version of the backbone. This pre-training generally
helps to improve recognition performance. The pre-training of these algo-
rithms is done using extensive databases of thousands of image categories,
ranging from everyday objects such as airplanes, dogs, chairs, etc. Promi-
nent among these databases are ImageNet [19], which contains 200 classes
and about half a million annotated objects, and COCO [67], which contains
80 classes and nearly 1 million annotated objects. In addition, the Pascal
database VOC [26] includes about 20 classes with about 63,000 annotated
objects. Most recent object recognition algorithms are pre-trained on the
COCO dataset. A main advantage of pre-training backbones is the signifi-
cant reduction in the custom dataset training phase. Pre-trained backbones
that have already learned to recognize general features and patterns from
large databases can transfer this knowledge to the object recognition task
at hand. This not only minimizes training time, but also enables the use
of smaller datasets. Pre-built models also play a critical role in mitigating
the problem of over-fitting, which occurs when the model over-learns from
the training data, compromising its ability to generalize to new data.

3.2.2 Object detection O&G applications

Remote sensing object detection can be applied to a variety of problems,
various studies [7, 139, 65, 51] summarizes object recognition algorithms
applied to various remote sensing topics. For example, [63] summarizes the
performance of FASTER-RCNN, SSD, and YOLO v3 algorithms for agri-
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cultural GHGs detection based on high-resolution satellite imagery. [38]
proposes automatic detection of earthquake-induced ground failure effects
by using FASTER-RCNN. Others [18, 64, 111]focus on comparing one and
two-stage object detection algorithms on satellite and aerial images. [154]
uses DETR for object detection with enhanced multi-spectral feature ex-
traction. In particular, object detection algorithms are also used for prob-
lems in the oil and gas sector. For example, in the works [144] [143] YOLO
v4 is used to detect oil spills with Sentinel-1 SAR images. Some studies are
also looking at oil and gas infrastructure detection:

• Oil Tanks: [148] proposes a recognition algorithm that harnesses
deep environmental features, using the convolutional neural network
(CNN) model and SVM classifier for oil tank recognition. Another
study employs FASTER-RCNN for the same objective;

• Oil Wells: [107] introduces an enhanced version of YOLO v4 for
detection using high-resolution images, similar to [108], where the
authors utilize FASTER-RCNN algorithm. [140] presents a database,
dubbed Northeast Petroleum University-Oil Well Object Detection
Version 1.0 (NEPU-OWOD V1.0), which includes the geographical
locations of oil wells. This database was constructed via the applica-
tion and comparison of nine object detection algorithms;

• Pipelines: In the context of pipelines, [28] uses a deep learning ap-
proach for object detection in underwater pipeline images, employing
various YOLO configurations;

• Oil & Gas Sites: On a broader scale encompassing entire infras-
tructures, [149] employs high-resolution satellite images and YOLO
v2 for automatic recognition of oil industry facilities, with a particular
emphasis on well-sites.

In the field of object detection, a significant portion of existing methods are
dedicated to the identification of specific infrastructures. While this focused
approach proves beneficial in studies examining a single infrastructure, it
may not be entirely sufficient when examining methane emissions in the
oil and gas (O&G) sector. This is because such emissions can come from
a variety of infrastructures. Recognising this multi-faceted challenge, our
work broadens its scope to include three types of infrastructure that are
essential to the O&G sector: Wells, Tanks, and Compressors (cf. Subsection
2.3.2).
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3.3 Permian basin infrastructures detection

3.3.1 Introduction

To effectively reduce these emissions in the O&G sector, a comprehensive
understanding of the emissions profiles of individual operators, specific sites,
and associated infrastructure is needed. This knowledge would inform the
formulation and refinement of regulatory measures and potential penalties
to ensure they are appropriately tailored and thus optimally effective.

Figure 3.2: Example of a detected methane plume associated with infras-
tructure at its source. In 3 automatic steps: detection of methane plume,
detection of infrastructure, association of each plume and infrastructure.
Source: @Google Earth.

In order to characterise the emissions from each infrastructure, each methane
plume detected must be automatically associated with the infrastructure
from which it originated as illustrated on the Figure 3.2. If we consider a
case where for each detected methane plume a satellite image is extracted
representing site and infrastructures, these infrastructures have then to be
automatically detected and in a second place one of these last ones have to
be spatially associated with methane plume.

This Permian basin study case focuses on the automated detection of oil
and gas infrastructures, a topic that has not been explored in depth in
the existing literature. Sites in the oil and gas industry that contain wells,
storage tanks, or compressor infrastructures (Figure 3.4) are considered sig-
nificant contributors to fugitive emissions and therefore form the targets we
seek to automatically identify. Existing approaches to oil and gas infras-
tructure detection typically do not allow for the simultaneous detection of
multiple infrastructures.

Our work focus on the detection and recognition of O&G infrastructures in
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Figure 3.3: The Permian Basin extends over two states, Texas and New
Mexico, which is divided into multiple sub-basins including Delaware and
Midland basin. Source: [90].

the Permian basin in USA (Figure 3.3). The Permian basin is the America’s
largest and most productive oil basin, it extends over 168,000 km2 in the
Texas and New-Mexico states.

With the goal of enabling the automatic detection of compressors, tanks,
and well infrastructures simultaneously, we have used supervised object
detection methods, specifically using and comparing (cf. Subsection 3.4)
the YOLO, FASTER-RCNN, and DETR object detection algorithms (cf.
Subsection 3.3.3). These algorithms, initially pre-trained on the COCO
database, are fine-tuned using the Oil and Gas (OG) database (cf. Sub-
section 3.3.2). The OG database, which was developed specifically for this
study, contains satellite view with high spatial resolution (less than 1 me-
ter). The images in the OG database are randomly extracted from the
Permian Basin. We also focus on the impacts of pre-training on algo-
rithm’s results by comparing our 3 algorithms results with and without
pre-trained networks (cf. Subsection 3.4.1). Finally, we also present and
test the impacts of potential satellite images noises on the results of our
object detection algorithms, permitting to compare their robustness to dif-
ferent satellite image noises (cf. Subsection 3.4.2).
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3.3.2 O&G benchmark dataset

Algorithms employed in supervised object recognition require a learning
phase involving substantial interaction with a large repository of images.
These images must be labelled with the target object in order to enable
practical training. In the specific context of identifying wells, tanks, and
compressors, this database must contains a variety of aerial photographs
in which each of these objects or infrastructures is unambiguously identifi-
able. The procurement of such specialized labelled images, due to the lack
of public availability, demanded the development of a dedicated database
specifically designed for this purpose.

Figure 3.4: Example of images and annotated objects from OG database :
tank (red), compressor (purple) and well (blue)source : @Google Earth.

In this study, we chose to extract high-resolution satellite images from the
Permian Basin region (over the states of New Mexico and Texas in the
USA), which is the largest O&G basin in the world. 930 Google Earth
images of O&G sites with their infrastructures were extracted, with reso-
lutions ranging from 15cm to 1m. Each of these images was then manually
annotated by drawing bounding boxes around each well, compressor or tank
present, as shown in Figure 3.4. Each of these boxes is associated with 1
of our 3 objects (label). In total, out of the 930 images, 1951 objects were
annotated: Compressor 706 objects, Well 630 objects and Tank 615 objects

All the images are in a 640x640 size format, each featuring between one
and multiple instances of key infrastructure such as wells, tanks, and com-
pressors. By site, and therefore per image, compressors appear in groups,
generally between 2 and 5 as shown in Figure 3.3.2. Concerning tanks, in
the database we have considered tank units and not individual tanks, which
explains why only one unit is generally present on an image (Figure 3.3.2).
And finally, wells are in the vast majority of cases present alone on a site
(Figure 3.3.2).
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All infrastructures Compressor

Tank Well

Figure 3.5: Number of images in function of number of infrastructures in
the OG database.

Another aspect worth mentioning is the special consideration given to wells
in our database. Given the limited resolution of satellite imagery, it is of-
ten difficult to discern the structural details of wells. Therefore, the rec-
ognizable shadows of wells that are present even at lower resolutions are
included in the bounding boxes (as shown in the right column of Figure
3.4). This database is hosted on the open-source Roboflow platform and
can be accessed via the following link: https://universe.roboflow.com/
thesis-ffaad/og-otgc5/dataset/6. Following the requirements of a rig-
orous study design, we have divided our dataset into different subsets for
training, validation, and testing. Of the total images, 80% (744 images) are
used for training, 13% (or 120 images) for validation, and the remaining
7% (66 images) for testing.

3.3.3 Object detection algorithms

The 3 algorithms FASTER-RCNN, YOLO and DETR selected for this
study each have different architectures but also different pre-trained mod-
els (backbones). This Section present their details and also the models

https://universe.roboflow.com/thesis-ffaad/og-otgc5/dataset/6
https://universe.roboflow.com/thesis-ffaad/og-otgc5/dataset/6
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parameters selection for their fine-tuning :

Figure 3.6: FASTER-RCNN architecture.

FASTER-RCNN [92] process in 2 main steps, first it uses use a Re-
gion Proposal Network (RPN) to generate regions of interests and sec-
ondly it send the region proposals down the pipeline for object classifica-
tion and bounding-box regression.FASTER-RCNN architecture is based on
3 principal components : the backbone (CNN type varies according to cho-
sen model), the RPN , and the ROI heads (classification and regression).
FASTER-RCNN provide 3 backbones architectures pre-trained on COCO
2017 base (train2017 and val2017) :

• Feature Pyramid Network (FPN): Use a ResNet+FPN backbone
with standard conv and FC heads for mask and box prediction;

• C4: Use a ResNet conv4 backbone with conv5 head which correspond
to the original baseline in the FASTER-RCNN paper;

• Dilated-C5 (DC5): Use a ResNet conv5 backbone with dilations in
conv5, and standard conv and FC heads for mask and box prediction,
respectively.

We have fine-tuned 2 FPN model with ResNet50 and ResNet101, but also
a DC5 model based on ResNet101. Epochs were fixed to 100, batches to
64 and learning rate to 0,001.

You Only Look Once (YOLO) [91] v8 is one of the most recent versions
which outperforms previous versions in term of precision as illustrated in
Figure 3.8.
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Figure 3.7: YOLO architecture: Convolutional Neural Network (CNN),
Fully Connected (FC) layer, Girdded FC layer.

Figure 3.8: YOLO Mean Average Precision (mAP) for COCO object
detection by versions and models. Source : https: // github. com/
ultralytics/ ultralytics .

YOLO v8 utilizes a modified version of CSPDarknet53 as its backbone,
featuring 53 convolutional layers and cross-stage partial connections to en-
hance information flow. The head of YOLO v8 comprises convolutional
layers followed by fully connected layers, responsible for predicting bound-
ing boxes, objectness scores, and class probabilities. Incorporating a self-
attention mechanism, YOLO v8 dynamically adjusts feature importance,
enabling multi-scaled object detection through a feature pyramid network,
detecting objects of various sizes within an image. Its backbone is then
fine-tuned on the COCO dataset to learn to detect objects in 80 different
categories. YOLO v8 has a declination of 5 pre-trained models (n,s,m,l,x)
trained on COCO 2017 dataset. These models vary according to the num-
ber of parameters they hold directly influencing the level of precision, thus,

https://github.com/ultralytics/ultralytics
https://github.com/ultralytics/ultralytics
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the more parameters a model has, the better its accuracy (cf. Figure 3.8).
The 3 last pre-trained models (m,l,x) with the highest number of parame-
ters were chosen and fine tuned with the OG database (image size 640x640),
with 100 epochs, 16 batches, learning rate 0.001.

Figure 3.9: DETR architecture.

There are also object detection methods based on approaches other than
the one-two stage approaches detailed above. For example, DETR[10] is a
transformer based detector with a 3 parts architecture constitute of a CNN,
encoder-decoder transformer and a feed-forward network (FFN).

Unlike one-stage and two-stage detectors, DETR [10] is designed as a direct
set prediction problem encompassing a unified architecture. DETR employs
a backbone (with varying architecture contingent on the selected model),
a transformer encoder-decoder architecture, and a bipartite matching be-
tween predicted and ground-truth objects. By uniting the backbone and
transformer, DETR successfully simplifies the architecture by eliminating
specific components to one and two-stage approaches such as anchor gen-
eration and non-maximum suppression (NMS). The following pre-trained
backbone models are available, all of which have been pre-trained on the
COCO 2017 database:

• R50: Incorporates a backbone that is based on an ImageNet pre-
trained ResNet-50 model.

• R101: Deploys a backbone grounded in an ImageNet pre-trained
ResNet-101 model.

• R50-DC5: Increases the feature resolution by employing dilation in
the final stage of the backbone. The backbone in this model is based
on ResNet-50.

• R101-DC5: Implements a similar process to R50-DC5 but relies on
a backbone built on ResNet-101.
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Pre-trained model R50, R101 and R101-DC5 were selected for test with
epochs fixed to 100, batches to 2 and learning rate to 0,001.

Model evaluation. Average precision (AP) is a widely used metric for
evaluating the efficiency of object recognition tasks. The AP combines the
precision and recognition curves into a single scalar quantity. The AP value
ranges from 0 to 1 and tends toward 1 when both precision and recall are
high, while it tends toward zero when either metric is low over a spectrum
of confidence thresholds. AP is computed by calculating the difference
between the current and subsequent recalls and multiplying that difference
by the current precision:

AP =

k=n−1∑
k=0

[Recalls(k)− Recalls(k + 1)]× Precisions(k)

Where k is the number of object and n is the number of threshold. In
addition, the mean average precision (mAP) is often used. It represents
the average of AP calculated over all classes:

mAP =
1

n

k=1∑
k=n

APk

where APk is the AP of the class k and n the number of classes.

Environment. For each algorithms (YOLO v8, FASTER-RCNN, and
DETR), 3 models with different parameters and architectures were selected
and compared. For each models, the output corresponds to the AP by class
(Compressor, tank and well) and the mAP for the general model. The
experiments were conducted with the use of a GPU NVIDIA GeForce RTX
3090 with 24 GO of memory. The experiments required the use of 3 distinct
environments for the 3 algorithms with the following packages. YOLO v8:
ultralytics (Python 3.8 environment with PyTorch 1.8). FASTER-RCNN:
Detectron2 with torch 1.5 and torchvision 0.6 and DETR with PyTorch 1.7
and torchvision 0.7.
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3.4 Results

To facilitate visual inspection of the previous results, the pre-trained model
with the highest average precision (mAP) was selected for each algorithm
and tested against the Oil and Gas (OG) database test data. Figure 3.10
illustrates the recognition performance of each algorithm model when ap-
plied to four different images from the test data.

Figure 3.10: Visual object detection results from pre-trained YOLO v8,
FASTER-RCNN and DETR on 4 test images from OG database (images
sources @Google Earth).

Case A: This scenario showcases a view of three wells that are closely
spaced. YOLO v8 is able to detect and correctly discriminate each well.
In contrast, DETR detects the presence of wells but combines the first two
into a single object. FASTER-RCNN, which has significantly low average
precision (AP) for the well class (as shown in Table 3.2), is not able to
detect a well in this particular scenario.

Case B: This case represents an unusual circumstance where the appear-
ance of compressors is underrepresented in the Permian Basin and conse-
quently in the learning database OG (the most common representation is
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shown in Case B). YOLO v8 can only detect one of the five compressors
and one of the three tank units. DETR shows a slight improvement and
detects three of the five compressors and all three tank units. Interest-
ingly, FASTER-RCNN shows superior performance accurately recognizing
all infrastructures without error.

Case C: This scenario presents a view of a typical compressor type found
in the Permian Basin. In this specific instance, all algorithms correctly
identify the six compressors and a single tank unit.

Case D: This case showcases a view of two sites each with a well. Unlike
Case A, the image resolution in this case is lower and the wells are more
widely spaced. YOLO v8 and DETR successfully recognize the two wells,
while FASTER-RCNN fails to recognize either.

As highlighted in Case B, the visual representation of compressors in the
Permian Basin is variable. The OG database contains a few cases where
compressors are protected by a roof (as shown in the Case B images).
To evaluate the detection capabilities of the algorithms in these particular
circumstances, tests were extended to three additional images from the test
database showing covered compressors (see Figure 3.11 results).

Case E: This scenario involves two unusual compressors along with a tank
unit. FASTER-RCNN manages to identify all infrastructures, but it also
mistakenly recognizes an additional compressor. DETR delivers an intrigu-
ing result by identifying a compressor through only a small segment pro-
truding from the roof, as well as the tank unit. As for YOLO v8, it only
manages to recognize the tank unit.

Case F: This scene provides a view of two unusual compressors and a
tank unit. Both YOLO v8 and DETR fail to recognize the compressors,
with DETR only acknowledging the tank unit. Yet again, FASTER-RCNN
successfully identifies all the infrastructures as expected.

Case G: This scene presents a view of two unusual compressors exclusively.
YOLO v8 is unable to detect either of them, while DETR correctly iden-
tifies one of the two compressors. It also detects an additional one, which
does not correspond to a compressor but rather a small piece of infras-
tructure. Finally, FASTER-RCNN is also able to correctly recognize both
compressors in this case.
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Figure 3.11: Comparison of pre-trained YOLO v8, FASTER-RCNN and
DETR on a special (less representative) compressor architecture in the
Permian Basin (images sources @Google Earth).

3.4.1 Pre-training effect

In general, pre-trained models offer numerous advantages over non-pre-
trained models, including the need for less data (fine-tuning) and an im-
provement in accuracy. The models selected for this study were trained
using the COCO dataset, which consists of annotated everyday objects.
However, the COCO dataset does not contain any objects from industry
that could resemble the objects in the OG database. This discrepancy
raises the question of the extent to which pre-trained models, originally
trained on objects that are significantly different from our target objects,
can still outperform the predictive accuracy of non-pre-trained models. To
investigate this, the algorithms and models discussed previously were run
without the weights from the pre-training phase.

According to the results delineated in Table 3.3, it is observed that the
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mean Average Precision (mAP) for the non-pre-trained YOLO v8 models
is marginally lower than that for the pretrained models. Indeed, the average
mAP of the YOLO v8 models is 89.4%, while that of the non-pre-trained
models is 88.6%, indicating an overall decrease in mAP of 0.8%. While
the difference may seem negligible, this result substantiates the assertion
that pre-training YOLO v8 contributes to enhanced (slightly, in our results)
performance.

In compliance with the results delineated in Table 3.3, we observe that the
mean average precision (mAP) for the non-pre-trained YOLO v8 models is
marginally lower than that of the pre-trained models. In fact, the average
mAP of the YOLO v8 models is 89.4%, while that of the non-pre-trained
models is 88.6%, which represents an overall decrease in mAP of 0.8%.
Even though the difference seems negligible, this result supports the claim
that YOLO v8 pre-training contributes to improved performance.

In terms of average precision (AP) by class, the results mirror those of the
pre-trained YOLO v8 models; AP remains higher for the compressor class
and lower for the well class. An interesting observation is the comparative
analysis between the non-pre-trained YOLO v8 model and the pre-trained
FASTER-RCNN and DETR models. The non-pre-trained YOLO v8 model
outperforms all pre-trained FASTER-RCNN and DETR models in terms of
mAP. This remarkable result demonstrates the superior efficacy of YOLO
v8.

As regards of FASTER-RCNN, the pre-trained R50-FPN model shows sig-
nificantly low AP and mAP. For the other models of FASTER-RCNN and
all DETR models, convergence proved difficult even after increasing the
number of iterations 20-fold and decreasing the learning rate by a factor
of 1000. Non-pretrained models are notorious for their difficulty in achiev-
ing convergence, especially when dealing with smaller databases. The OG
database is comparatively small, which may explain the observed lack of
convergence, especially when compared to the larger COCO database.

3.4.2 Object detection robustness to satellite based ad-
versarial attacks

While the 3 models fine-tuned with satellite imagery from the OG database
— in particular YOLO v8 and RT-DETR — show promising accuracy, it
is crucial to assess their robustness for practical remote sensing.
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In supervised learning, a database of images labeled with objects is created
so that these algorithms can learn to recognize and to retrieve specific
objects. However, a notable challenge with this approach, especially in the
context of remote sensing, is the limited representational diversity of the
objects in the training database. Indeed, satellite images are well-known to
exhibit a wide range of variations due to different satellite sensor types (e.g.
resolution, noise) and environmental factors related to the position of the
satellite and the sampled area (e.g. tangential distortion, brightness and
saturation) [88]. These variations can significantly affect the algorithm’s
ability to generalize across different representations of the same object [86,
155].

We evaluated the robustness of YOLO, FASTER-RCNN, and RT-DETR
against five specific types of variations commonly found in satellite imagery.
To achieve this, we used the concept of adversarial attack during the in-
ference phase as described in previous studies [147, 62, 151, 110]. In this
method, the accuracy of both the pre-trained and fine-tuned algorithms
is evaluated when they are presented with modified images (counterex-
amples) containing different types of induced perturbations. For each of
the five types of variations, we systematically generated step-wise nega-
tive examples and then tested the performance of the algorithms for each
sub-variation.

(a) Tank (b) Compressor (c) Well

Figure 3.12: Base test images of O&G infrastructures. Source : @Google
earth.

Satellite images are subject to a number of variations that affect their vi-
sual representation. Technological differences between satellite sensors can
lead to variations in spatial resolution and noise levels. Also, systematic er-
rors can occur due to the Earth’s rotation, geometric distortions caused by
topography shifts, variations in satellite altitude and attitude, and instru-
ment anomalies. Furthermore, environmental factors such as the nature of
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the terrain (e.g. deserts) can influence image attributes such as luminosity
and saturation.

To assess the robustness of our algorithms against variations in the satel-
lite images, we implemented adversarial attacks [147, 62, 151, 110]. In
this method, the precision of the 3 pre-trained and fine-tuned algorithms is
evaluated in response to various perturbations generated as negative exam-
ples on the input images. Such a process is crucial to identify weaknesses
in the models and suggest areas for refinement. For example, a notable
drop in precision or a complete failure to recognise an object when con-
fronted with certain adversarial examples could indicate a lack of resilience
to that specific variation. We generated adversarial examples for each type
of "base" image that mimic variations in satellite imagery, such as changes
in resolution, tangential distortion, noise, brightness, and saturation.

(a) Spatial resolution (b) Tangential distortion

(c) Noise (d) Brightness / Saturation

Figure 3.13: Example of different degrees of satellite noises generated for
O&G infrastructures images.

Spatial resolution variations. Different satellites, equipped with differ-
ent imaging systems and specifications, have different spatial resolutions.
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These differences result from factors such as sensor types, technological
advances and the intended functions of the satellites. To mimic these reso-
lution differences, as shown in Figure 3.4.2 (a), we applied average pooling
with a square window (kernel size of 5 and stride of 3). In this way, ten
images with resolutions ranging from 0.5m to 5m were generated, which are
shown in Figure 3.12. This range mirrors the resolution spectrum of actual
satellite images and thus allows a thorough evaluation of the performance
of the object detection algorithms at different spatial resolutions.

Tangential Distortion. Tangential scale distortions, common in satellite
imagery, result from the compression of image features, especially those
further from the nadir point. Factors contributing to this distortion in-
clude sensor optics, the scanning system’s motion, Earth’s curvature and
rotation, and terrain relief variations. To emulate varying levels of this dis-
tortion as depicted in Figure 3.4.2 (b), we employed a left affine perspec-
tive transformation using the OPENCV library. This technique involved a
transformation matrix that maps 3 points from the original image to their
new positions in the distorted image. We progressively adjusted the value
of the left element in the matrix’s third line from 50 down to 0, in steps of
5. This method enabled a controlled increase in leftward distortion across
the images, providing a framework to evaluate the algorithms’ effectiveness
under different degrees of tangential scale distortions.

Noise. As shown in Figure 3.4.2 (c), the different on-board sensors of each
satellite can cause a range of noise types. These include additive (Gaussian),
multiplicative (speckle) and impulsive (salt and pepper) noise. To replicate
Gaussian noise, we added a normally distributed random value to each
pixel. For Salt and Pepper noise, we randomly altered pixels to extreme
values (0 for dark, 1 for bright). Speckle noise, being multiplicative, was
created using the formula out = image+n×image, with N as uniform noise
defined by a specific mean and variance. In this study, we simulated these 3
noise types, as well as the isolated effects of salt (bright) and pepper (dark)
values. Such a methodology enables a thorough assessment of the object
detection algorithms’ resilience against various noise types commonly found
in satellite images.

Brightness & Saturation. Satellite images are influenced by various fac-
tors, including atmospheric conditions, optical properties, sensor character-
istics and data processing techniques. For example, atmospheric scattering
can reduce color intensity, resulting in lower saturation. Min addition, cer-
tain geographical areas, such as deserts and polar regions, can influence the
image properties due to the high solar reflectance, which leads to increased
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brightness [27](Figure 3.4.2 (d) ). To replicate different brightness levels,
we used a function from the OPENCV Python library parameterized with
α ∈ [0, 1] and β ∈ [−127, 127]. We set α to 1 and varied β from 0 to 100
in steps of ten, with lower β values corresponding to lower brightness. To
simulate different degrees of saturation, we used a function from the Pillow
Python library with a single parameter. This saturation parameter ranged
from 0 (colourless image) to 1.5 and was increased in steps of 0.15. These
methodologies enabled us to evaluate the object detection algorithms’ ro-
bustness against a spectrum of brightness and saturation levels, reflecting
the diverse conditions encountered in real-world satellite imagery.

Figure 3.14: Impact of tangential resolution variations (from 0.5m to 5m)
on algorithms performances.

Results: Figure 3.14 illustrates the variations in mean Average Precision
(mAP) for each object detection model as a function of spatial resolution
changes, focusing on 3 types of infrastructures (compressors, tanks, and
wells). We set the mAP to zero in instances where the models fail to detect
and recognize the infrastructures. The effectiveness of the algorithms in
recognising these objects varies with the resolution. YOLO v8 in particular
can detect compressors at resolutions of up to 1.5m, whereas FASTER-
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RCNN extends this capability up to 4m. For tanks and wells, YOLO v8
successfully detects and recognizes them at resolutions as high as 5m, with
mAPs fluctuating between 40% and 60%. It’s important to mention that
FASTER-RCNN consistently fails to detect wells, even in the base image.
Furthermore, we observe that compressors are more challenging to detect
at lower resolutions (detected up to 4m), in contrast to tanks and wells,
which are detectable up to 5m.

Figure 3.15: Impact of tangential distortion variations (left gradual stretch-
ing from level 1 to 11) on algorithms performances.

Figure 3.15 shows that FASTER-RCNN exhibits remarkable consistency
in its performance, with minimal sensitivity to tangential distortions; the
mean Average Precision (mAP) for compressors and tanks remains rela-
tively stable across the different distortion levels. In contrast, YOLO v8
exhibits more significant fluctuations in mAP in response to these distor-
tions. Both YOLO and RT-DETR show a notable decrease in performance
at the 5th level of distortion when detecting and recognizing compressors.
In the case of tank detection, YOLO is more adversely impacted than RT-
DETR, particularly from the 7th level of distortion onward. Interestingly,
both YOLO and RT-DETR maintain almost consistent performance in the
tank case, unaffected by the levels of distortion presented.
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Figure 3.16: Impact of noises (gaussian, salt&pepper, salt, pepper and
speckle) on algorithms performances.

Figure 3.16 shows the varying impact of different noise types on the de-
tection of compressors. Notably, YOLO is significantly affected by salt
noise, while RT-DETR is more susceptible to pepper noise. Intriguingly,
YOLO demonstrates improved performance with speckle noise in detecting
compressors, compared to its performance on the base image. For wells
and tanks, RT-DETR exhibits greater resilience to the five types of noise
than YOLO, with the notable exception of salt and pepper noise in well
detection. On the other hand, FASTER-RCNN generally maintains stable
performance, although it shows a heightened sensitivity to salt and pepper
noise in the detection of tanks.

In Figure 3.17, we observe that increasing brightness levels (from 1 to 10)
generally leads to a decline in the mean Average Precision (mAP) of the
models. This effect is particularly evident in the case of compressors, where
YOLO’s performance begins to diminish from level 2. However, YOLO
is less affected than RT-DETR when detecting wells. For compressors,
both FASTER-RCNN and RT-DETR maintain a relatively steady mAP
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Figure 3.17: Impact of brightness on algorithms performances.

across the range of brightness levels. When detecting and recognising tanks,
the performance of FASTER-RCNN drops significantly from level 9, which
means that it can no longer perform detection.

Figure 3.18 shows, for the compressor case, that YOLO presents a higher
mAP for images with low saturation, which decreases for higher levels of
saturation. Conversely, FASTER-RCNN exhibits the opposite trend. Con-
cerning RT-DETR, its mAP value remains almost constant over saturation
variations for the compressor case. For the tank case, all 3 models seem to
react similarly, with an increasing mAP over saturation augmentation. This
observation holds true for the well case between YOLO and RT-DETR.

3.5 Discussion & Conclusion

To effectively mitigate methane emissions in the oil and gas (O&G) sec-
tor, a comprehensive emissions profile of each O&G infrastructure is essen-
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Figure 3.18: Impact of saturation on algorithms performances.

tial to enable for an in-depth understanding of individual emission trends.
Therefore, satellite observed methane emissions from different oil and gas
basins must be accurately associated with the particular infrastructures
from which they emanate. This requires, as first step, an efficient solu-
tion to automatically detect and identify such infrastructures, a task that
can be well addressed by detection algorithms. However, these algorithms
come in myriad forms, each with a unique architecture and range of per-
formance. While previous studies have compared specific algorithms for
automatically detecting O&G infrastructures, these have typically focused
on a single infrastructure type. In response to this limitation, our work case
presents a comparative analysis of three main supervised algorithms-YOLO
v8, FASTER-RCNN, and DETR-for the simultaneous detection of tanks,
wells and compressors. A unique database of various aerial snapshots of
O&G infrastructures in the Permian Basin, USA, was used for the study.
The tests performed showed that YOLO v8 outperformed FASTER-RCNN
and DETR in terms of accuracy, although it was not pre-trained. Inter-
estingly, FASTER-RCNN showed a superior ability to detect compressor
styles that are significantly underrepresented in our database (and in the
Permian Basin) on certain occasions. We also conducted a systematic as-
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sessment of the impact of several satellite image variations—including reso-
lution changes, tangential distortion, noise, brightness, and saturation—on
3 algorithms. The experiment’s results indicate that FASTER-RCNN was
the least affected by these simulated variations, although it failed to de-
tect any wells. Conversely, YOLO, despite achieving the highest mean
Average Precision (mAP) post-training, exhibited the greatest sensitivity.
The study underscores that the influence of satellite image variations on
algorithm mAPs is highly dependent on the specific object being detected,
highlighting the necessity of tailoring algorithm performance to the tar-
geted objects. We identified a hierarchy in the impact of these variations
on mAPs: resolution, noise, distortion, brightness, and saturation, in de-
scending order of influence. This ranking offers valuable insights into their
relative significance in affecting algorithm performance. By incorporat-
ing these impactful variations into the training dataset, our experimental
approach seeks to bolster algorithm robustness in practical applications.
The comparative analysis of the 3 algorithms sheds light on their indi-
vidual strengths and weaknesses, providing crucial guidance for choosing
the appropriate algorithm for specific tasks under varying satellite imaging
conditions.

(a) Well Permian Basin,
USA

(b) Well Turkmenistan

Figure 3.19: Examples of different forms of well in USA and Turkmenistan
O&G basins. Source : @Google earth.

Future works would benefit from investigating the reusability of this method
in other O&G basins, and their adaptability to other learning paradigms.
Indeed, from a country to another and even from a basin to another (Fig-
ure 3.5), O&G infrastructures could have a totally different design. To
automatically detect and recognize new form of compressor, well and tank
or a new infrastructure like flare it will be required to constitute other
manual annotated database for the supervised approach. It would also be
useful to extend this scope to "few-shot" and "self-supervised" algorithms
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that require minimal or no training data in order to avoid time consuming
manual annotation. Also, it would be interesting to investigate ensemble
learning method in order to combines the individual advantages of our 3
tested models.
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Table 3.1: State of the art papers and their used artificial intelligence
method by categories.

Method Reg
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Dim
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Red
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Plume Detection

[80] CNN x
[135] CNN x
[54] GoogleLeNet,LSTM x
[116] ANN x
[101] CNN,SVM x x
[129] CNN x x

Plume quantification

[50] CNN x x
[133] FC-

LSTM,ConVLSTM
x

[136] CNN,ConVLSTM x

Plume Detection & Quantification

[53] ANN x
[109] ANN,RSVM x
[8] CNN x

O&G Infrastructure Recognition

[105] CNN x
[153] CNN x
[34] DBSCAN x
[37] YOLO, ... x

O&G Equipment

[59] PCA,ANN x x
[138] DBSCAN x

Emission Forecasting

[134] RF,.. x
[52] GBR,... x x
[106] CONVGRU x
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Table 3.2: Pre-trained Algorithms Average Precision (AP) results in % on
OG database. *The number of parameters is expressed in millions

Average Precision (AP)

Model Parameters* Compressor Tank Well Total

YOLO v8

8m 25.9 99.5 98.8 79.4 92.6
8l 43.7 99.5 88.1 80.3 89.3
8x 68.2 98.8 90.9 73.6 87.8

FASTER-RCNN

R50-FPN 41.7 51.6 51.1 40.5 47.7
R101-FPN 60.6 53.2 57.8 35.4 48.8
R101-DC5 184.5 52.1 47.1 42.9 47.4

DETR

R50 41 94.9 75.1 72.7 80.9
R101 60 100 80.4 77.1 85.8

R101-DC5 60 91.9 69.9 67.9 76.3

Table 3.3: Non pre-trained algorithms Average Precision (AP) results in %
on OG database. The empty spaces translate the non-convergence of the
models and then the absence of results.

Average Precision (AP)

Model Parameters* Compressor Tank Well Total

YOLO v8

8m 25.9 97.2 90.6 81.4 89.7
8l 43.7 97.7 90.4 78.0 88.7
8x 68.2 98.1 87.2 77.2 87.5

FASTER-RCNN

R50-FPN 41.7 25.4 2.3 7.2 11.6
R101-FPN 60.6 — — — —
R101-DC5 184.5 — — — —

DETR

R50 41 — — — —
R101 60 — — — —

R101-DC5 60 — — — —



Chapter 4

Automated Methane Plume
attribution

This chapter delves into the sophisticated process of automatically asso-
ciating satellite-detected point sources of methane emissions with specific
sites, operators, and infrastructures previously cataloged. It showcases the
integration of cutting-edge technology with existing data to improve the
accuracy and efficiency of methane emission monitoring within the Oil &
Gas (O&G) sector.

In Subsection 4.2, we introduce the O&G Profile framework, a novel sys-
tem designed for the automatic association of satellite detections with
operators and O&G sites identified during the PermianMAP ground sur-
vey. This innovative approach not only streamlines the process of linking
satellite-detected methane emissions to specific operators and sites but also
demonstrates the framework’s capability to augment and extend the reach
of ground surveys conducted at zero additional cost. Utilizing the Per-
mianMAP as a case study, the O&G Profile framework exemplifies how
integrating satellite data with ground-based observations can significantly
enhance our understanding and monitoring of methane emissions over time.

Subsection 4.3 explores the application of K-dimensional trees algorithm
for the automatic association of detected methane emissions with various
O&G infrastructures. This method employs a spatial data structure to
efficiently organize and query large datasets, enabling the precise match-

69
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ing of methane plumes to the nearest infrastructures within the dataset.
This approach significantly improves the speed and accuracy of attributing
methane emissions to specific infrastructures, a critical step in addressing
and mitigating the environmental impact of such emissions.

Finally, Section 4.4 addresses the inherent uncertainties associated with
these multi-level associations between methane detections and their sources.
It acknowledges the complexities involved in accurately identifying the ori-
gins of methane emissions and discusses the potential strategies for manag-
ing these uncertainties. This Section proposes a forward-looking perspec-
tive, suggesting the exploration of advanced statistical models, machine
learning techniques, and continuous data refinement processes as poten-
tial avenues for enhancing the precision of methane emission attributions.
Through these advancements, the chapter outlines a pathway towards more
reliable and actionable insights into methane management and mitigation
strategies in the O&G industry.
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4.2.5 Automated verification & corrections . . . . . . 81
4.2.6 Results . . . . . . . . . . . . . . . . . . . . . . 83

4.3 O&G infrastructure attribution . . . . . . . . . 85
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4.1 Introduction

The advancement of point source satellite sensor technology has signifi-
cantly enhanced the precision of methane emission estimations, achieving
levels of granularity that were previously unattainable. Furthermore, these
innovations have expanded the capacity for quasi-continuous measurements,
allowing for near-constant monitoring of methane emissions across vast ge-
ographic areas. These technological strides are set to revolutionize our
approach to environmental monitoring by providing a wealth of detailed
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data on methane emissions with unprecedented accuracy and temporal res-
olution.

As we move forward, the sheer volume of data generated by these sophisti-
cated sensors presents both an opportunity and a challenge. The potential
to transform this extensive dataset into accurate and actionable informa-
tion is immense, yet it requires the development of equally advanced data
processing and analysis methodologies. In this context, it is crucial to ex-
plore and implement cutting-edge data transformation techniques that can
efficiently handle and interpret the massive amounts of data produced.

To address this challenge, future research and development efforts should
focus on leveraging machine learning and artificial intelligence algorithms,
which are adept at processing large datasets and extracting meaningful
patterns. These technologies can be instrumental in automating the iden-
tification of methane emission hot-spots, tracking changes over time, and
predicting future emission trends based on historical data. Furthermore,
the integration of cloud computing and big data analytics platforms can
provide the necessary infrastructure to process and store the vast quanti-
ties of data, making it accessible to scientists, policymakers, and industry
stakeholders for informed decision-making.

Figure 4.1: Detected Methane plume association to O&G site, operator and
infrastructure by spatial location. Source : @Google earth.

The dataset derived from the fleet of ten satellites currently dedicated to
methane emissions detection encompasses critical information about each
detected methane plume. This includes the geographical coordinates (lati-
tude and longitude) of the plume, the rate of methane emission (measured
in kg/hr), and the associated uncertainty levels. Each methane leak detec-
tion, represented as a plume, is assigned a geographic location, which serves
to pinpoint the potential source of the emission. However, the identification
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of the geographic location of a detection within an Oil & Gas (O&G) basin
is merely the initial step in a more complex analysis process.

Identifying the precise source of a methane leak requires more than just
the geographical coordinates of the plume; it necessitates a comprehensive
understanding of the types of sites, the specific infrastructures present, and
the operators responsible for those assets. The mere geographical location
of a detection does not inherently reveal the nature of the site (e.g., well,
pipeline, storage facility) or the identity of the operating entity. This gap
highlights the need for a sophisticated analytical framework that can in-
tegrate satellite data with detailed ground-level information about O&G
operations.

To bridge this gap, integrating satellite detections with databases contain-
ing detailed records of O&G infrastructure types, their specific locations,
and operator information becomes essential. Such integration enables a
more nuanced analysis, facilitating the attribution of methane emissions to
specific sources. Advanced algorithms and machine learning models can
play a pivotal role in automating this process, analyzing spatial data to
match methane plumes with potential sources based on proximity, opera-
tor activity, and infrastructure type.

To develop a comprehensive profile of methane emissions by site type, in-
frastructure, and operator, it is imperative to first establish the origins of
each methane detection made by various satellite instruments. This in-
volves determining the specific operator, site, and infrastructure associated
with each detection, as illustrated in Figure 4.1. The task of associating
methane emission detections from a wide array of instruments with a diverse
range of operators, sites, and infrastructures across extensive areas such as
entire Oil & Gas (O&G) basins can quickly become an overwhelming man-
ual endeavor. Currently, there is a notable absence of automated methods
for performing these associations, making the process a labor-intensive and
time-consuming task that requires the expertise of specialists.

This manual approach to linking methane emission detections to their re-
spective sources involves a meticulous examination of data and often relies
on the expert knowledge of environmental scientists and industry profes-
sionals. They must sift through vast amounts of satellite imagery and
emissions data, cross-referencing this information with detailed records of
O&G infrastructure and operator activities. Such a process is not only
slow but also prone to human error, limiting the efficiency and scalability
of emissions monitoring efforts.
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To unlock the full potential of satellite technologies for methane emissions
monitoring in the O&G industry globally, there is a pressing need for the
development and implementation of automated methods that can stream-
line the association of methane detections with their multilevel sources.
Leveraging advancements in artificial intelligence (AI) and machine learn-
ing (ML), it is possible to create sophisticated algorithms capable of ana-
lyzing satellite data in conjunction with comprehensive databases of O&G
infrastructure, site types, and operator information.

By automating the process, it becomes feasible to rapidly and accurately
match methane detections with specific sources, thereby enhancing the ef-
ficiency and accuracy of emissions profiling. Such automation could sig-
nificantly reduce the time and resources required for emissions monitoring,
allowing for more frequent and comprehensive assessments. Moreover, au-
tomated systems can continuously learn and improve, adapting to new data
and evolving industry landscapes to provide increasingly precise emissions
insights.

In addition to improving the speed and accuracy of emissions monitoring,
automated association techniques can facilitate a more dynamic response to
methane leaks, enabling operators and regulatory bodies to take timely and
informed actions to mitigate emissions. By integrating these automated
methods into the existing frameworks for environmental monitoring and
regulatory compliance, the O&G industry can make substantial strides to-
ward reducing its environmental impact and advancing sustainability goals.

4.2 O&G sites and operators attribution

4.2.1 Context

The Permian Basin is the largest O&G basin in the United States, it covers
86,000 square miles of land across West Texas and Southeast New Mexico
and is home to more to tens of thousands of O&G sites. Many works,
as for example [152, 44, 14], have been devoted to the study of methane
emissions over different angle of view, which make the Permian one of
the most informed basins in terms of data. The Environmental Defense
Fund (EDF), through the PermianMap project, has launched two GAO air
campaigns and the collection of data from the CarbonMapper satellite to
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Figure 4.2: Perimeter of the study zone of PermianMAP survey (left:
Delaware basin, right: Midland basin).

survey its emissions in the Permian basin. All these detections, according
to their location, have been assigned to operators, type of site and emitting
infrastructure. These open-source data allow indirectly to have access to the
geographical coordinates of the sites and to their information concerning
their type and the concerned operator. This information is particularly
sought after and useful in order to be able to inform detections from any
other satellite measurements. For this study case, we propose to use the
data from CarbonMapper and GAO to label raw satellites point source
detections in order to collect their emissions profile.

4.2.2 Datasets presentation

Point-source satellites characteristics. The point-source satellite cur-
rent available data can be acquired via 8 satellites: Landsat-8, WorldView-
3, Sentinel-2, GHGSat, PRISMA, EnMAP, EMIT and CarbonMapper.
which are fine-pixel (≤ 60m) instruments designed to quantify individ-
ual point sources by imaging of the plume. Their detection thresholds
in the 100–10 000 kg/h range that enable monitoring of small to large
point sources.[45] The point source satellite used in this study will be name
Satellite X for confidentially reasons. Since the satellite X is a commer-
cial program, its database are under non disclosure agreement, implying
the impossibility for us to share information such as the location of the
plumes detected and their methane rates. The results presented at the
end of this chapter are a combination of data from the X satellite and the
PermianMAP project.



4.2. O&G SITES AND OPERATORS ATTRIBUTION 75

Figure 4.3: Illustration of satellite X informations for one detection. Source
: @Google earth.

Satellite X dataset description Satellite X data consists of a set of
detections of methane emissions from various sources around the world.
To each detection is associated the estimated geographic coordinates of the
detected plume (latitude and longitude)1, the estimated amount of methane
emitted and the uncertainty about this estimate (in %).This initial dataset
covers the period 01/01/2021 to 30/09/2022.

PermianMAP project description. The Environmental Defense Fund
launched the Permian Methane Analysis Project (PermianMAP), making
near real-time methane monitoring data available to the public online, en-
abling oil and gas companies, regulators and other stakeholders to directly
access this project measurements. The majority of these last ones are taken
in a 10,000 square-kilometer grid that spans the Delaware Basin and a
portion of Midland Basin, a subsection of the broader Permian Region.
Methane plume detections have been observed with the AVIRIS-NG in-
strument installed on the Global Atmospheric Observatory (GAO) aircraft
in coordination with the satellite CarbonMapper. The measurements were
made during two campaigns in Summer and Fall 2021 on predetermined re-
gions in both Delaware ( 5000 km2) and Midland ( 2500 km2) sub-basins.
Flights occurred on all days with acceptable atmospheric conditions with
the intent of mapping all predetermined regions at least three times dur-
ing the flight window. All detected emitting sources were then manually
inspected using a combination of high-resolution imagery collected by the
aircraft and Google Earth satellite imagery to determine the segment of
O&G production responsible: Production, Gathering & Boosting and Pro-

1It should be noted here that the uncertainty associated with the estimated location
of each plume is not reported.
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cessing. The observed plumes and emission sources were also attributed to
the most likely responsible operators for each source by using a combination
of open-source and commercial databases. Since the Permian area is very
dense and the sites are not widely spaced, the attribution of an operator to
a site contains uncertainty which is not quantified.

Figure 4.4: Illustration of PermianMap informations for one detection.
Source : @Google earth.

PermianMAP dataset description. The selected data are distributed
over two measurement periods, the first from 2021-07-26 to 2021-08-10 and
the second from 2021-10-03 to 2021-10-17. These two campaigns have al-
lowed the collection of 1696 detections in total. Each detection is associated
with its geographical location (latitude and longitude), the estimated quan-
tity of methane, the uncertainty of the estimation (in %), the site ID, the
type of site, the infrastructure and the operator at the origin of this emis-
sion. The number of sites involved in PermianMap detections is known for
each period of the campaign and can be obtained by counting the IDs of
these sites. However, the detections obtained during the second period can
come from already visited sites during the first campaign. So, the total num-
ber of visited sites from combined campaigns can not directly be obtained.
Site ID of both the campaign are sequence of letter and number starting by
"S2" for the Summer campaign and "F2" for the Fall campaign. Since we
have no uncertainty in the determination of the location of methane plumes
detected by satellite, we will propose an automatic association of plumes
only at the site level and not at the infrastructure level which, due to their
fine spatial granularity, requires more precision. It should also be noted
that the absence of uncertainty measurements implies that a certain degree
of unknown uncertainty is present in the association of our detections to
given sites.
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4.2.3 Study case objectives

Figure 4.5: Representation of the transfer of information from Permian-
MAP to satellite X for a same site. Source : @Google earth.

The objective of our O&GProfile method is to provide an emission profile
for each site but also to make it possible to associate satellite detections with
the type of site and operator from which they come. Thus, all satellite de-
tections can subsequently be studied independently of all other detections.
In our case, the satellite X detections are initially not associated with the
type of site or operator whence they come. PermianMAP detections are
initially associated with the type of site and operators, so they will be used
to label the satellite X data. However, in order for the PermianMAP in-
formation to be transferred to those of satellite X, it is necessary that they
are on the same site in order to share the type of site and operator as illus-
trated in Figure 4.5. Once satellite X detections is labelled, it is possible
to study the emission profile of a site from PermianMAP detections alone
and/or from the combination of PermianMAP and satellite X detections.
In the same way it is possible to draw up an emission profile by type of site
and operator.
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Figure 4.6: Presentation of O&GProfile method steps.

4.2.4 O&GProfile framework

In order to obtain emission profiles by site and operator composed of satel-
lite X and PermianMap quantified detection, we propose the O&GProfile
which is mainly based on the use of the DBSCAN clustering algorithm[25].
The O&GProfile consists of 4 main steps:

1. Selection of satellite X data included in the PermianMAP data study
perimeter selection of satellite X data included in the PermianMAP
data study perimeter;

2. clustering of satellite X and PermianMap detections (DBSCAN);

3. Verification and correction of the obtained clusters/sites using Voronoï
diagram and Nearest Neighbor KDtree;

4. Transfer of information from PermianMap detections to satellite X
detections when PermianMap and satellite X data are located on the
same site.

In order to benefit from PermianMap information, satellite X detections
must be included in the PermianMap study area. The PermianMap study
area is divided into two sub-basins, the Delaware basin and the Midland
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Figure 4.7: Representation of convex boundaries around 2 basins of Permi-
anMAP study.

basin. In order to obtain the precise perimeter of each of them, the Permi-
anMAP detections of the two basins were first separated via the use of the
K-means[47] clustering algorithm.

The K-means clustering algorithm computes the centroïds and iterates until
we it finds optimal centroïds. It is a parametric method which requires to
know in advance the number of cluster k. In our case, the parameter k is
fixed to k=2 in order to spatially dissociate 2 zones/basin (cluster 0 and 1).
the detection points are then assigned to a cluster in such a manner that the
sum of the squared distance between the data points and centroïd would be
minimum. As output, each of the PermianMAP detection is now linked to
one of the basin. For each of the two basins - which consist in two ensemble
of detection - the ConvexHull function was applied to obtain convex polygon
boundaries of each one. Finally, the geographical coordinates of the satellite
X detections were filtered according to their belonging or not to each of the
two basins boundaries.

Figure 4.8: O&GProfile : DBSCAN clustering with harvesine distance.
Source : @Google earth.

Concerning satellite X detections the number of sites involved is completely
unknown (as no sites are referenced in these data), so an initial number of
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sites from satellite X detection cannot be determined in advance. In order
to obtain PermianMAP and satellite X detection grouped by site without
a predetermined number of sites, spatial clustering method can be applied.
The Density-based spatial clustering of applications with noise (DBSCAN)
will be at the base of the O&GProfile method.

Contrary to other clustering methods (e.g. K-mean) DBSCAN is able to
form clusters of arbitrary shape (not restricted to a spherical or convex
shape), and can detect outliers, which makes it more suitable for our case
where the data (detections) are spatially irregularly distributed over the
sites. However, our study does not require the recognition and deletion
of outliers, because each methane detection in our database represents im-
portant information about the quantity of methane emitted at a time t.
DBSCAN works on the assumption that clusters are dense regions in space
separated by regions of lower density. Indeed, by looking at the local den-
sity of the detections in large spatial dataset, DBSCAN groups densely
grouped detections into a single cluster. The DBSCAN algorithm uses two
main parameters:

• minPts: The minimal number of points to be present within the
radius ε for the area to be considered "high density".

• Eps ε: A distance measure that will be used to locate the points in
the neighborhood of any point.

The input data for the DBSCAN algorithm are the geographic coordinates
of each detection (PermianMAP and satellite X): latitude and longitude. As
used distance is geographic distance, the metric parameter used should be
based on the haversine formula which determines the great-circle distance
between two points on a sphere given their longitudes and latitudes:

haversin

(
d

r

)
= haversin(ϕ2− ϕ1) + cos(ϕ1)cos(ϕ2)haversin(λ2− λ1))

(4.1)

where r as radius of earth, d as the distance between two points, ϕ1 , ϕ2 is
latitude of two points and λ1, λ2 is longitude of two points respectively

With the aim of grouping these detections by site, the Eps parameter
will therefore be set at 200m which is the general length and width of
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an O&G site. However, it will be necessary to fix the kilometers per radian
fixed at kms_per_rad = 6371.0088 and to convert the 200m to radians:
0.2/kms_per_rad.

The MinPts is fixed at 1 a way to avoid that some detection can be con-
sidered by noise and then discard.

Figure 4.9: Two examples of detections (red dots) forming a single cluster
spread over two sites centers (blue dots). Source : @Google earth.

4.2.5 Automated verification & corrections

Verification & correction : Voronoï diagram and KDtree algorithm Recall
here that to transfer PermianMAP site type and operator information to
satellite X detections it is required that they are positioned on the same site
(cf. Figure 4.10). Therefore, clusters comprising PermianMap and satellite
X measurements will be targeted in this step, and it will be verified if each
of these clusters corresponds to an O&G site.

The verification process consists in counting site IDs (from PermianMap
detections) by cluster, 3 scenarios are possible here:

• If an ID is found in several clusters, it means that the Eps is too small
and that a site is divided between several clusters as represented on
the left image of the Figure4.10;

• If a cluster contains several ID sites "S2" and/or "F2" it means that
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Figure 4.10: Example of clustering errors: (left) Eps too small, site break
in two clusters (right) Eps too big, 2 sites grouped in one cluster. Source :
@Google earth.

the Eps fixed at 200m is too large and that the cluster gathers several
sites as illustrated on the right image of the Figure4.10;

• In the case where a cluster contains 1 unique ID then the cluster
represents a site.

The last point represent the desired output, but in the case where the two
others situations describe on the Figure 4.10 are identified then a correction
process is require in order to correctly attribute detections to one site by
cluster.

The correction procedure is based on the use of a Voronoï[2] diagram and
the Nearest Neighbor (NN)[21] KDtree algorithm. The Voronoï diagram is
a system created by scattering points at random on a Euclidean plane. The
plane is then divided into tessellating polygons, known as cells (one around
each point) consisting of the region of the plane closest to that point. The
segments in a Voronoï Tessellation correspond to all points in the plane
equidistant to the two nearest sites. The Voronoï diagram, taking as input
the latitude and the longitude of the centers of sites established previously,
permits to represent the possible division of the space according to the
centers of site as represented on the Figure 4.9. The second step of the
correction consists in linking the detections of each cluster to the centers
of the two closest sites in order to constitute two new clusters for each site
as illustrated on the last image of Figure 4.9. For this purpose, the nearest
neighbor (NN) algorithm with the multi-dimensional search algorithm K-
dimensional tree (KDTree) is used. The NN problem formulated here is
to find the set of detections Pc in a data set P that are "closest" to a
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query point q (site center), as measured by a distance function d(p, q). The
KDTree is used partitioning spatial points using a tree-like data structure
that is useful for searching for the nearest point or nearest neighbors to a
given point.

4.2.6 Results

Figure 4.11: O&GProfile results in % of correct association for each step.

After the matching process, it was found that 103 satellite X detections be-
longing to the PermianMap study area spread over the two basins. These
satellite X detections are added to the PermianMap detections and consti-
tute a total dataset of 1799 detections. The location (latitude and longi-
tude) of each this detection database is then insert as input to the DBSCAN
algorithm which permits to obtain 879 clusters. Each of these cluster is sup-
posed to represent a single O&G site. Among these 879 clusters, there are
:

• 793 cluster only containing PermianMAP detections;

• 32 cluster containing PermianMAP and satellite X detections;

• 54 clusters only containing satellite X detections.

Since satellite X detections must be co-located with PermianMAP data in
order to be labeled and included in the study, the 54 clusters with only
satellite X detections will be removed from the study. It will be considered
therefore that 825 clusters (783 + 32).

After the verification procedure, the case where the fixed Eps does not seem
to be too small (left picture of the Figure 4.10) was not found On the other
hand, the second case where the Eps would be too large was detected on
21 clusters so 2,5% (21/825) of the initial clusters (right picture of Figure
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4.10). In order to understand the origin of these errors, the 21 clusters were
visually and manually inspected revealing that 11 of them (1,3% (11/825)
of the initial cluster number) have anomalies related to the site IDs and 10
others (1,2%) directly related to the established Eps.

These 11 clusters with detected anomalies contains each several site IDs for
a same and unique site. This error of annotation from the PermianMAP
database implied that several IDs are attributed to each of these 11 sites.
These 11 clusters will not be submitted to the correction process has the
error not comes from the DBSCAN clustering. Concerning the 10 other
clusters containing 2 sites each, a correction must be applied in order to
dissociate the intra-cluster sites. The itinerary of this procedure starts
with the extraction (manually) of the coordinates (latitude and longitude)
of the centers of each site that the clusters contain. At the end of the
correction process 10 anomalous clusters were replaced by 20 new clusters
where each one represents a single site. The number of clusters(=sites)
after this process is 835 (825-10+20).

Once the detections are correctly distributed by site, the membership of
a single operator per site must also be checked. Note here that in the
PermianMap study, the manual association of sites to operators contains
a certain amount of uncertainty that can lead to association errors. Af-
ter verification, 12 clusters (1,4% (12/835) of the initial clusters) contain
multiple operators, only populated from the PermianMAP measure. These
last one have been deleted not to introduce confusion by the presence of
several operator in only one site which is not possible. The final number of
obtained cluster is of 823 clusters composed of 32 sites containing Permian-
Map and satellite X detections and 791 sites only containing PermianMap
detections.

As summarized in the Figure 4.11, the DBSCAN algorithm allowed the
grouping of 835 clusters where 1.2% (10/835) of these clusters presented an
error and the other 98.8% were correctly grouped. The correction process
has enabled to rectify the 1,2% of errors and thus obtain in 100% of the
cases a cluster corresponding to a site.

Thanks to the O&GProfile method, the raw satellite X detections can now
be interpreted independently (Table 4.2 of the PermianMap data (Table
4.1 according to the type of site and the operator at their origin. For
sites/operators where both satellite and PermianMap measurements are
available, the detections data can be gathered to form a time series con-
cerning the quantity of methane emissions in time for a precise site/operator



4.3. O&G INFRASTRUCTURE ATTRIBUTION 85

Table 4.1: PermianMap data : number of plume and average CH4 k/hr by
site type.

PermianMap
Site type Number of plume Avg CH4 (kg/h)
Production 446 372.04
Gathering & Boosting 494 423.06
Processing 74 514.09

Table 4.2: Satellite X data : number of plume and average CH4 k/hr by
site type.

Satellite X
Site type Number of plume Avg CH4 (kg/h)
Production 8 712.45
Gathering & Boosting 13 2061.98
Processing 12 1285.84

(=site emission profile). It is also possible to directly compare the emissions
quantities levels of PermianMap and satellite X instruments.

4.3 O&G infrastructure attribution

Figure 4.12: Methane Plume and Infrastructure association. Source :
@Google earth.

The object detection algorithms presented in Section 3.2 are used to ob-
tain, for each infrastructure detected and recognized, the coordinates of the
bounding box delimiting the infrastructure in question and its type (tank,
well, compressor). In order to associate a detected methane plume with the
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infrastructure at its origin, we assume that the infrastructure at the ori-
gin of the methane emission is the (spatially) closest one to the estimated
location of the methane plume as illustrated on the Figure 4.12.

Figure 4.13: Methane plume attribution to infrastructure at its origin by the
shortest haversine distance using K-Dimensional Tree. Source : @Google
earth.

The framework shown in Figure 4.13 consists of several sub-steps for as-
sociating methane detections with the infrastructures that produced them.
A dozen methane detections were first selected from the Permian basin.
At the location (latitude, longitude) of each of these detections, a satellite
image was extracted using Google Earth to visualise the surrounding in-
frastructures. The YOLO v8 model was run on these images in order to
detect and recognise the infrastructures present on each image. Once the
bounding boxes had been obtained for each infrastructure detected, the co-
ordinates of the centre of these bounding boxes were extracted. Similarly
to the O&GProfile semi-automated correction method presented in the pre-
vious Subsection, the Nearest Neighbor (NN) KDtree algorithm based on
haversine distance was used. But instead of looking for k nearest neigh-
bors the search only focuses on the first nearest neighbor. Grouping each
methane detection to an infrastructure makes it possible to link to each
detection the infrastructure at its origin
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4.4 Discussion & conclusion

O&G Site and Operator attribution. The O&GProfile, an automatic
method based on clustering methods, is the first method enabling the group-
ing of detections by site for the study of emission profiles by type of site and
operators. It makes it possible to automatically label raw satellite detec-
tions in order to independently study and compare detections from different
instruments. The O&GProfile has been tested in the Permian Basin (specif-
ically the Midland and Delaware Basins) with labeled detections from the
EDF PermianMAP project (CarbonMapper and GAO) and unlabeled satel-
lite X detections. The association of these detections to sites via the use
of the DBSCAN algorithm achieved a success rate of 98.8%. The 1.2% of
errors was corrected with the Vornoï-NN-KDTree algorithm, resulting in a
success rate of 100%.

Thanks to our O&GProfile, emission profiles for the period 2021-2022 have
been obtained from 823 different O&G sites. Each site corresponding to
a type of site (Production, Gathering & Boosting, Processing), it was also
possible to establish emission profiles by site. This was also applicable for
the operators of each site. The O&GProfile has also allowed the label-
ing of 103 satellite X detections divided into 33 clusters, which allows for
independent analysis of satellite X data and/or comparison with Permian-
MAP data. Indirectly, our O&GProfile method has permitted to extend in
time the PermianMAP study conducted from 2019 to 2021 by attaching to
each surveyed sites new measurements from satellite X from 2021 to 2022
at zero cost. The O&GProfile method could easily be applied to different
unlabeled satellite , while the ground infrastructure data (type of site and
operators) can also be easily replaced by others data (most complete and/or
in other regions). The process of correction still contains a part of visual
and manual inspection concerning 1,2% of the cases, where site have to be
distinct by extracting their middle geographic position. This step could be
replaced in future studies by automated methods able to dissociate sites
by images analysis and then automatically extract for each of them their
middle geographic position.

However, our O&GProfile method relies on up-to-date O&G surveys/inventory,
incorporating the geographic coordinates of all existing O&G infrastruc-
tures. Currently, several datasets in free access are available:



JADE E. GUISIANO 88

• Globally, datasets such as GOGi[98]2, HIFLD3, GHGRP4, and EIA
cover the entire U.S.

• The Oil and Gas Infrastructure Mapping database (OGIM, [95]) pro-
vides detailed information, particularly for the conterminous US.

• At the state level, resources include the Texas Commission on Envi-
ronmental Quality (TCEQ)5 and the New Mexico Environment De-
partment (NMED6).

• At the basin level, the Permian Methane Analysis Project (Permian-
MAP)7 from the Environmental Defense Fund offers valuable insights.

Despite the detail provided by these datasets, they lack systematic updates
and often represent point-in-time surveys (e.g., PermianMAP includes air-
borne data for 2019 and 2021). Given the rapid evolution of the oil and gas
landscape, these "frozen" surveys become quickly obsolete. Object detec-
tion algorithms presented in the Section 3 could respond to this limitation
by automatically detect O&G site type, but determining the sites’ operators
remains dependant on available informations.

O&G Infrastructures attribution. In order to attribute an infrastruc-
ture to an emission, we assumed that the infrastructure at the source of
the emission was the one closest to the location of the emission. However,
the location of methane emissions remains an estimate with a degree of un-
certainty (cf. Subsection 2.2.2). This uncertainty can make the allocation
process complex.

Indeed, as illustrated on the Figure 4.14, there is an obvious attribution
case and a complex one. Evident cases make reference to site represen-
tation where infrastructures are alone or separated with large distance.
The complex cases make reference to site where the space between infras-
tructures is very thin (e.g. less than 10m). In complex case, uncertainty
concerning plume location could, even in small percentage, could lead to
wrong associations. Point source satellite like satellite X enables to obtain
a good precision concerning plume location (sufficient for site association),
but could potentially lead to wrong infrastructures association.

2https://edx.netl.doe.gov/group/global-oil-gas-infrastructure-gogi-group
3https://hifld-geoplatform.opendata.arcgis.com
4https://www.epa.gov/ghgreporting
5https://www.tceq.texas.gov/toxicology/q-a/natural-gas
6https://gis.web.env.nm.gov/oem/?map=methane
7https://www.permianmap.org
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Figure 4.14: Representation of evident (left) and complex (right) infrastruc-
tures attribution depending on O&G sites configuration. Source: @Google
earth.

Figure 4.15: Plume attribution to infrastructures in complex case according
to plume location uncertainty. Source : @Google earth.

A possible solution could be to use methane plume estimated locations
uncertainty to determine a perimeter of uncertainty around each detection.
This perimeter could be used to determine which infrastructure has he
highest probability to be at the origin of the detection (Figure 4.15). Indeed,
as plume location contains uncertainty, the output of the association process
should be express in probability of belonging to infrastructures around.



Chapter 5

Dynamic and Intelligent
Methane Emissions
Inventory

This chapter introduces our current works and perspectives for the Dy-
namic and Intelligent Methane Emissions Inventory (DIMEI) framework, a
comprehensive system that combines object detection (discussed in Chap-
ter 3) and automatic association methodologies (explored in Chapter 4) for
enhanced monitoring and inventory of methane emissions.

Section 5.1 details the structure and operational mechanisms of the DIMEI
framework, emphasizing its dynamic aspect for near real-time monitoring
(work in progress) and its intelligent component for emissions profile de-
termination and forecasting (perspectives). This Section, based on our
perspective publication of DIMEI [35], details how DIMEI could leverages
cutting-edge technology to identify, classify, and monitor methane emissions
from Oil & Gas (O&G) infrastructures.

In Section 5.2, we explore the potential integration of the DIMEI inventory
with existing and future methane mitigation regulations. This part exam-
ines how the futures data and insights generated by DIMEI could inform
policy development, facilitate compliance monitoring, and enhance the ef-
fectiveness of regulatory frameworks aimed at reducing methane emissions.

90



5.1. DIMEI FRAMEWORK PRESENTATION 91

It discusses the framework’s capacity to provide regulators and stakeholders
with actionable intelligence, thereby enabling more targeted and efficient
mitigation strategies.

Finally, Section 5.3 presents the prospective avenues for the implementation
and expansion of the DIMEI framework. It outlines potential enhancements
to the system’s algorithms and data acquisition methods, aiming to broaden
its application beyond the initial focus areas. The Section also considers
the implications of integrating new technologies and methodologies, such
as advanced deep learning models and satellite data with higher resolu-
tion and frequency, to improve the framework’s accuracy and applicability.
Furthermore, it discusses strategies for extending DIMEI’s reach to cover
more geographic areas and additional types of O&G infrastructure, thereby
increasing its utility and impact in the global effort to mitigate methane
emissions.
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5.1 DIMEI Framework Presentation

5.1.1 General

The Dynamic and Intelligent Methane Emissions Inventory (DIMEI), illus-
trated in Figure 5.1, is an advanced framework that synergizes object de-
tection capabilities with automatic association techniques experimented in
previous Chapters 3 & 4. This innovative approach enables the detection
and recognition of Oil & Gas (O&G) infrastructures and the subsequent
association of methane plumes to their originating sources. Specifically,
DIMEI focuses on profiling methane emissions from three primary types of
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Figure 5.1: Presentation of the dynamic methane inventory framework.
Source : @Google earth.

O&G infrastructures —wells, tanks, and compressors— within the Permian
Basin.

At the core of DIMEI is a comprehensive database that is based on point
source satellite methane emissions detections. This database encompasses
critical information, including the estimated geographical coordinates (lat-
itude and longitude) of each detected methane plume and its emission rate
(measured in kg/hr). This repository serves as the operational foundation
from which the framework initiates its analytical processes.

Indeed, upon the detection of a methane plume at a specific location,
DIMEI triggers the extraction of a high-resolution satellite image snap-
shot corresponding to the identified geographical position. We precise here
that the current version of our DIMEI do not integrates an API for auto-
mated snapshot extraction, extractions are therefore carried out manually
using Google Earth. Then, each snapshot is subsequently processed by
an object detection algorithm (DIMEI first component), which is metic-
ulously designed to automatically identify and classify the type of O&G
infrastructure depicted in the image. As a result, each processed snapshot
yields a detailed list of detected infrastructures, each tagged with a label
and precise geographical coordinates, thereby facilitating an accurate and
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comprehensive profiling of methane emissions.

The second component consists in matching the infrastructure closest to
that of the detected plume, using K-nearest-neighbor algorithm. Once the
distances between a methane plume and surrounding infrastructures have
been determined, the infrastructure with the shortest distance is considered
as the infrastructure at the plume origin. Thus, for each plume the type
of the closest infrastructure is attributed as its source. The final obtain
database, is composed of x rows corresponding to the x detected plume
from a high-resolution point source satellite, and each row contains the
following variables :

• Plume ID

• Plume Latitude, Longitude

• CH4 rate

• Infrastructure ID

• Infrastructure type

Carried out successively, this method allows to build up a time series of the
level and frequency of methane emissions by O&G infrastructures. This
framework, thanks to the object detection component, has the advantage to
offer instantiated detection of potential methane-emitting infrastructures,
without recourse to fixed databases/inventories of oil and gas infrastruc-
tures. Indeed, the landscape of O&G infrastructures is constantly evolving,
and the use of an inventory database produced at time t can quickly become
inaccurate. In the context of quasi-continuous monitoring, the principle of
snapshot instantiation is essential for building up an up-to-date inventory
of infrastructures (provided to have access to regularly updated satellite
images).

Expanding upon this foundation, DIMEI’s methodology could not only en-
hances the accuracy of emissions tracking but also significantly contributes
to our understanding of methane emission patterns across different types of
infrastructures. By leveraging advanced machine learning techniques and
high-quality satellite imagery, DIMEI stands at the forefront of environ-
mental monitoring, offering a powerful tool for researchers, policymakers,
and industry stakeholders alike. Furthermore, this framework’s modular
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design allows for future enhancements, including the integration of addi-
tional types of infrastructures and the expansion into other regions beyond
the Permian Basin, thereby broadening its applicability and impact in the
global effort to mitigate methane emissions.

5.1.2 Dynamic aspect

Figure 5.2: Inventory dynamic aspect : emissions profile determination.
Source : @Google earth.

As illustrated on the Figure 5.2, the iteration of DIMEI over time allows
to acquire temporal and spatial informations about methane emissions for
each of 3 oil and gas infrastructures. Gathering this information over time
enables to collect for each single infrastructure its emission frequencies and
levels over time, thus constituting emission profiles (time series).

Using satellite detections of the X satellite source point in the Permian
Basin, the DIMEI framework presented in Figure 5.1 enabled us to un-
derstand the dynamic aspect of the latter. Over the period 01/01/2021 -
30/09/2022, DIMEI enabled us to obtain multiple emissions for the same
infrastructure.

As the current version of the DIMEI framework does not include an API
for automatic snapshot extraction, it would have been time-consuming to
extract manually a snapshot for more than 1000 methane plume detections.
For this reason, we first selected detections for two O&G sites, where for
each site several detections are available. After running the DIMEI frame-
work, we obtained a first emission profile comprising 3 methane detections
from a well (site 1) and a second emission profile comprising 5 compressor
detections (site 2). As illustrated on the Figure 5.2 these emission profiles
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give access to the temporal frequency of methane emissions and their rate
for each of the two infrastructures. We are currently continuing this work in
order to extend the study to various other sites. We also plan to integrate
detections data from satellite X and others point source satellites in order
to obtain longer time series in order to obtain a better characterization of
infrastructures emission behaviors.

Collected over a sufficiently long period, these data will represent the base
used for the intelligence part of the inventory, enabling to make spatio-
temporal forecasts of methane emission levels for each infrastructure and
group of infrastructures. The presented framework enabled to identify the
recurrence of methane emissions over time for a number of specific infras-
tructures, thus characterizing the dynamic aspect of our framework.

5.1.3 Intelligent aspect

By being in possession of methane emissions profiles (spatio-temporal time
series) of each for each O&G infrastructure updated in near real time, these
profile can be aggregated by levels site/basin/region/country and even by
company (at the condition to have access to company’s site location).

The knowledge of the behavior of methane emissions from a specific infras-
tructures or level is mainly based on the characterization of the fluctuations.
Time series at all levels can be analyzed in order to reveal three major di-
agnostic variables:

• Trends : Methane emissions long-term increase or decrease

• Seasonality : variations due to market demands and production rates

• Irregular variations in methane emissions quantity :

– Episodic - unpredictable but identifiable

– Random / Residual variations : unpredictable and uncontrol-
lable in nature.

In order to precisely characterize the oscillations of the methane emissions,
a regression can be established in order to determine the factors behind
these oscillations as presented on the Figure 5.3. The methane emission
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Figure 5.3: DIMEI general representation.

quantities Ei∀iϵ{1 : N} represent the dependant variable in the equation, as
for the the explanatory variables they represent all compressor components
determined to have an influence on the amount of compressor emissions.
The regression coefficients β{1:N} associated with the explanatory variables
will be obtained and will allow to interpret in a quantitative way the effect
of each explanatory variable on the quantity of emissions. Note that the
values of β{1:N} can be negative or positive and analyzed statistically (e.g.,
elasticity coefficient, marginal effect)

The values of the β{1:N} coefficients can also be collected as a time series
to establish trends in the impacts of the explanatory variables, exploring
the causes of the variations in methane emissions by company, by country,
and by infrastructure type. Combining these data with the infrastructure
data in the comparison framework will allow for example to identify the
differences in emissions between compressors of two different companies, or
to evaluate the quality of the equipment and maintenance between different
O&G groups.

These analyses will benefit from integrating additional machine learning
methods. The Figure 5.4 shows the phenomenon of irregular variations in
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Figure 5.4: Presentation of the DIMEI intelligent aspect.

emissions at a given well. The above analyses allow us to determine the co-
efficients of the explanatory variables for an increase or decrease in methane
emissions. However, if a leak is not related to the operating process of a
facility, the explanatory variables are not representative of an increase in
the amount of emissions; it then can be assumed that the nature of the
leak is voluntary because it is different from the characteristics of involun-
tary leaks. This type of unusual behavior can be detected automatically
through the use of anomaly detection algorithms that will allow automati-
cally dissociate the cases of voluntary and involuntary leaks. Moreover, the
accumulation of data related to voluntary leaks will allow to draw up the
statistical profile and to characterize them better.

It is also possible to incorporate a predictive capability such as predict-
ing methane emissions in the coming months to years if the historical time
series is sufficiently constrained by data. The predictive aspect allows to
create an essential margin of action for the mitigation of methane emissions.
For example, it is possible to estimate the monthly emission quantities of
a proposed new O&G site project based on the knowledge of the com-
pany’s general emission profile, sites and facilities. Prediction of potential
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breakdowns (predictive maintenance), simulations for optimal site/facility
working process which reduce emissions, are also potential outcomes of such
a system. The occurrence of voluntary and involuntary leakage on the ba-
sis of their characterization is also within reach. These predictions can be
based on the use of statistical tools such as inferences or machine learning
approaches (classifications, regression and generative models). The pre-
sented learning, analysis and forecasting methods are mainly based on the
operation of O&G sites, hence linked to regulation factors, such as the eval-
uation of the influence of a regulation on the amount of methane emitted,
or even to establish the automatic determination of the optimal regulation
in relation to the amount of methane emitted and the behavior/practices
of the oil groups.

5.2 Mitigation Regulations and DIMEI sym-
biosis

5.2.1 Regulation role for DIMEI

One of the main requirements for the implementation of the DIMEI in-
ventory is the acquisition of activity and emission data from companies.
The regulations of each country or state play an important role in the ac-
quisition of this data by encouraging or requiring companies to maintain
records and reports on their measurement campaigns and estimates. These
requirements already exist within the government as part of the jurisdiction
of the UNFCCC national inventory program. However, in some cases, these
requirements must be revisited to ensure they adequately support national
methane regulations and goals.

Based on this, the OGMP - first multi-stakeholder partnership - works
on methane emissions reporting by providing a protocol to help companies
systematically mitigate their methane emissions from O&G operations. The
OGMP Reporting Framework is the highest standard of methane reporting,
requiring companies to report methane emissions from all sources at both
operated and non-operated ventures across the O&G value chain at an
unprecedented level of accuracy and granularity.

The OGMP framework is divided into several reporting levels, including
the "Gold Standard Reporting": a set of procedures for an empirical rec-
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onciliation of measurements at source (Level 4) and site (Level 5) level.
This "Gold Standard Reporting" is the central element of the DIMEI in-
ventory allowing to acquire the most accurate emission estimate possible
by taking advantage of complementary ground and air measurements. This
OGMP initiative is based on the voluntary action of companies to join this
movement, but it can nevertheless inspire a model for the imposition of
the same procedure at the state, national, or regional level. In fact, the
latest version from the European Council for a new methane regulation
(published on December 2022) uses the OGMP 2.0 Framework as a bench-
mark for methane emissions reporting and requires the quantification of
site-level methane emissions for all operated assets. According to IEA,
once these informations are locally or nationally collected, the local or na-
tional jurisdiction will need a mechanism to verify its accuracy. This may
include direct verification through inspections or third-party measurement.
Or companies can be based to certify their compliance with regulations and
submit independent audits in their submission.

More generally, after acquiring company reports and all other emission data
from ground or air measurements, a common database must be developed
to gather all these measurements and make them publicly accessible. For
this purpose, The IMEO initiative, launched at the G20 Summit by UNEP,
is in charge of collecting and integrating diverse methane emissions data to
establish a global public record of empirically verified methane emissions of
O&G industry at an unprecedented level of accuracy and granularity.

Additionally, IMEO will work in parallel with the Methane Alert and Re-
sponse System (MARS). MARS will process global satellite data in near
real-time to detect and attribute methane emission hot spots. Then, it will
notify operators in order to take mitigation actions. MARS is currently in
the test phase and the first public results are expected by the beginning
of 2024. DIMEI inventory principles could be integrate in the process of
automation MARS system. IMEO initiative are crucial for creating the
DIMEI inventory, which will require access to the maximum amount of
data concerning methane emissions based on a unified data collecting and
processing system.

5.2.2 DIMEI for dynamic and intelligent regulations

The monitoring over time of the emission profiles at different scales - which
allows the characterization of the behavior of households at different scales
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- that DIMEI proposes will allow tracking progress towards the goal of
methane mitigation and thus be able to adjust the directives to achieve these
objectives. Indeed, the dynamic aspect of the DIMEI opens the possibility
for having an adaptive regulatory framework that allows the transition from
a generalized regulation to a more efficient personalized regulation system.

Currently, most analyses and decisions on methane emissions are based on
ex-post analysis. According to the IEA, both at the industrial and policy
level, the goal should be to collect enough initial data and then monitor over
time sufficiently to characterise and to anticipate the problem sources. The
current framework with the lack of data does not allow to build up emis-
sion profiles of sites and their infrastructure which are necessary to predict
future emissions. By placing ourselves in the context defined by DIMEI,
predictions become possible. Indeed, DIMEI, by its intelligent aspect, not
only observes past and current emissions but can predict emissions, which
would create a margin of action to prevent any potential accident or failure
at the edge of methane emission.

These predictions would introduce the notion of pro-activity into the regu-
latory system which could permit to adapt designed in advance of suitable
mitigation policy for potential future context. It should be noted that all
forecasts include a certain margin of error, which must be taken into ac-
count in every decision-making process. However, a good knowledge of the
emission trends would allow obtaining predictions more or less close to the
real emission values. The information obtained from the DIMEI should also
allow for evaluation of the effects of policies put in place in order to judge
their efficiency and also to understand and analyze the reaction time and
reactions of the O&G operators.

Faced with the colossal volume of information that can emerge from the
DIMEI, the design of new "personalized regulations" by the usual means
could become a cumbersome task and risk losing its optimality. It would be
wise to think of a system of recommended regulations and optimal policy
in the face of the current or future context. This type of system could
support the work of synthesizing the various possible regulatory orientations
at local, regional, and national levels.
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5.3 Conclusion

The DIMEI, at the proof of concept stage, is able to automatically create
methane emission profiles for 3 types of O&G infrastructures (well, tank,
compressor) in the Permian Basin (USA). DIMEI is the first AI based inven-
tory regrouping object detection and automatic association, the two mains
technical pillars of this thesis. With its snap-shot instantiation module,
DIMEI presents the advantage to don’t be dependent of O&G infrastruc-
ture survey which quickly become inaccurate. Indeed, by regularly using
updated satellite images, DIMEI framework could provide up to date in-
frastructures survey for each detected emission. Launched over time, the
DIMEI has the availability to generate emissions profiles at O&G infras-
tructure level, which could be aggregated from O&G infrastructure to coun-
try level (regrouping multiple O&G basins). These emissions profiles are
spatio-temporal time series of emitted methane quantities which are keys
to characterize emission behavior by different levels. These emissions pro-
files could even permit to characterize specific action like intentional and
non-intentional leak and also be the base of spatio-temporal forecasting of
methane emissions. The possibility to forecast methane emissions would
permits to create a action margin to avoid these last ones. This forecasting
aspect would directly contribute to methane emissions mitigation. DIMEI
framework at his stage of proof concept will however need few adjustments
to be deploy. It will also required the use of new AI methods to extend his
application to other basin than the Permian.

Through DIMEI deployment The DIMEI framework, as showcased
in Figure 5.1, necessitates certain refinements to enable its seamless and
fully automated operation over time. Specifically, the current iteration of
the DIMEI framework mandates manual retrieval of satellite imagery at
the precise locations of detected methane emissions for each plume. In-
corporating an API to facilitate the automatic extraction of these satellite
images is therefore essential for enhancing operational efficiency.

Moreover, to ensure the accuracy of the associations made by DIMEI, it is
crucial to employ point source satellite data characterized by a low uncer-
tainty margin regarding the locations of plumes. To comprehensively cap-
ture emissions from infrastructures, the satellite data utilized should ideally
offer a very low revisit period—permitting multiple scans per day—or, in
the optimal scenario, near real-time scanning capabilities. This level of data
precision and temporal resolution is vital for DIMEI to function effectively
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and deliver reliable results.

Adaptation and extension The DIMEI framework is predicated on
employing an object detection algorithm that has been fine-tuned using our
OG database. This database comprises satellite images of three types of
infrastructures located within the Permian Basin. Consequently, the object
detection algorithm, as currently implemented within this framework, is
capable of identifying only tanks, wells, and compressors in the Permian
Basin (USA).

To broaden the applicability of DIMEI to encompass additional types of in-
frastructure, such as flares, and to facilitate the detection and recognition
of infrastructures in other oil basins, it is imperative to undertake modifica-
tions and enhancements to the existing supervised object detection models.
This expansion requires an adaptive approach to model training, allowing
DIMEI to accurately recognize and analyze a wider array of infrastructure
types across diverse geographical regions.

Figure 5.5: Differences between O&G infrastructures by country and by
State. Source : @Google earth.

Indeed, as depicted in Figure 5.5, the representation of Oil & Gas (O&G)
infrastructures can vary significantly from one country to another, and even
from one basin to another within the same country. Relying on supervised
object detection algorithms necessitates their recalibration for each new set
of infrastructures and for each new locale characterized by distinct infras-
tructure types. This calibration process demands the creation of an ex-
tensive manually annotated image database, which is both time-consuming
and suboptimal. To circumvent the need for this labor-intensive supervised
fine-tuning phase, exploring the potential of few-shot and self-supervised
learning algorithms for object detection emerges as a viable alternative.
These innovative approaches, capable of detecting and recognizing new and
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varied infrastructures, require few or no annotated images, thereby facil-
itating the seamless expansion of the DIMEI project to encompass new
infrastructures and geographical areas with greater efficiency.



Chapter 6

Conclusion

In this thesis, we introduce a novel methane emission inventory utilizing
artificial intelligence. The Dynamic and Intelligent Methane Emissions In-
ventory (DIMEI) facilitates automated monitoring of methane emissions
from three types of oil and gas (O&G) infrastructure in the Permian basin
(USA). As the DIMEI accumulates data over time, it captures methane
emission quantities from wells, tanks, and compressors, reflecting the emis-
sions profile of these infrastructures (dynamic component). This longitudi-
nal data collection enables characterization of the emission behavior across
various levels, including site, basin, country, and operator, and supports
forecasting of methane emissions (intelligent component).

The forecasting capability provided by the intelligent component creates a
proactive window for intervention to prevent methane emissions, thereby
directly contributing to methane mitigation efforts. Additionally, the emis-
sions profile information, ranging from infrastructure to operator level,
could inform the direction and design of methane mitigation regulations.

The DIMEI inventory is based on two principal pillars:

1. Automated O&G infrastructures detection and recognition in the Per-
mian basin (USA) (Chapter 3);

2. Automated association of detected methane plumes to O&G infras-
tructure, sites and operators at their origin (Chapter 4).

104
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6.1 Contributions

We meticulously fine-tuned and assessed three categories of object detec-
tion algorithms specifically designed for the automated identification and
monitoring of three types of Oil & Gas (O&G) infrastructures within the
Permian Basin, USA. To achieve this, we developed the inaugural database
of O&G infrastructure images by meticulously annotating high-resolution
satellite imagery.

Our research includes a comprehensive quantitative analysis of the impact
of pre-training on the detection capabilities of these algorithms, comparing
their performance with and without pre-training. Furthermore, we delved
into the resilience of these three algorithms by systematically quantifying
the effects of common satellite image disturbances on their accuracy and
performance.

In Chapter 4, we introduced a novel framework developed to facilitate the
automatic attribution of detected methane plumes to specific types of Oil
& Gas (O&G) sites and their operators. Utilizing a clustering algorithm,
this framework successfully automated the linkage of over 100 detected
methane plumes, identified via point source satellite imaging, to various
O&G site types and operators across the Permian Basin. Indirectly, the
framework also contributed to the temporal extension of the PermianMAP
survey by enabling the automatic association of new methane emissions
with previously surveyed sites. We concluded the chapter by presenting
a method for the automated attribution of detected methane plumes to
O&G infrastructures and discussed potential approaches to manage the
uncertainties associated with these attributions.

In Chapter 5, we have presented the first methane emission inventory "Dy-
namic and Intelligent Methane Inventory" (DIMEI) based on AI which
combines the methods presented in Chapter 3 and Chapter 4. We have
demonstrated his ability to automatically follow in time the methane emis-
sions from Permian O&G infrastructures (dynamic component). We have
also presented and detailed the possible future automated analysis (intel-
ligent component) that could be conduct based on use of DIMEI mid-log
term outputs. We concluded theses works by discussing the symbiosis be-
tween the DIMEI and regulations for optimized methane mitigation.
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6.2 Future work

The research surrounding DIMEI suggests several avenues for short-term
improvement and long-term development.

6.2.1 Short-term Perspective

Object Detection: Performance and Robustness The object detec-
tion algorithms employed are based on supervised learning, necessitating
the creation of a dedicated database for the fine-tuning phase of the three
algorithms.

Given that the extraction and annotation of O&G site satellite images are
time-consuming tasks, our database currently comprises 930 images and
1951 annotations, which is relatively small for the domain. Expanding our
database could enhance the detection and recognition capabilities of the
three algorithms. This can be achieved by extracting and annotating new
images or employing remote sensing data augmentation methods. These
methods involve using existing images to generate modified images through
rotations, blurring, noise addition, etc. The parameters for generating new
images can be determined based on our findings regarding the impact of
satellite image noise on algorithm performance. Specifically, generating
images with the most impactful noise could bolster algorithm robustness
through fine-tuning on this new dataset.

Our experiments have indicated that each of the three object detection
algorithms has its own advantages and limitations. To capitalize on the
strengths of these algorithms and mitigate their shortcomings, ensemble
models could be employed to combine them.

DIMEI Extension and Adaptability While our current work concen-
trates on determining the emission profiles of tanks, compressors, and wells
in the Permian Basin, it is essential to consider other types of infrastruc-
ture, such as flares, which are significant methane emission sources [84].
Additionally, differences in infrastructure appearance across different O&G
basins may necessitate analysis beyond the Permian Basin. To facilitate
the extension of DIMEI to other infrastructures without the need to manu-
ally construct a new database, few-shot or self-supervised learning methods
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could be beneficial. Our ongoing research aims to leverage these methods
to expedite the extension of DIMEI to diverse infrastructures.

Association: Uncertainty Management Our research on associating
detected methane plumes with O&G infrastructures and sites currently
lacks the incorporation of uncertainties related to the detected plume po-
sitions. The database of source point detections we use does not include
detailed information regarding the uncertainties associated with either the
estimated quantity of emitted methane or the estimated location. Incor-
porating the percentage of uncertainty in the estimated location for each
plume would enable a more rigorous attribution process, leveraging proba-
bilities for a plume’s association with other infrastructures.

6.2.2 Long-term Perspective

O&G Sites Types Automated Detection The framework we pro-
pose for automatically associating methane plumes with O&G site types
and operators relies on existing surveys, such as the PermianMAP project
in our case. This framework necessitates a database containing site loca-
tions, types, and operators. While databases like OGIM and GOGi provide
such information, they quickly become outdated due to the rapidly evolv-
ing O&G landscape. Although methods like METER-ML and OGNet can
detect oil refineries and petroleum terminals, further refinement is required
to precisely identify site types, such as production, gathering, boosting,
and processing. Our dynamic snapshot method for infrastructures could
potentially be adapted to identify the type of O&G site without depending
on existing static surveys.

O&G Operators Site Automated Survey Unlike determining the
type of O&G site, identifying the operator of an O&G site cannot be
achieved through object detection methods due to the absence of distinct
visual indicators. While several databases offer information about site oper-
ators, they are not freely accessible. A potential solution to obtain operator
information could involve automatically extracting data from the Title V
program [117] website through web scraping. This program provides access
to permit applications for each O&G site infrastructure, including their
addresses. However, this approach has limitations as a permit application
does not always correspond to the actual location of the infrastructure.
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DIMEI Future Deployment and Use The DIMEI framework, cur-
rently at the proof-of-concept stage, requires several adjustments to be
deployed and to provide continuous, long-term methane emissions profiles.
Our framework utilizes a single satellite data source for feature detections,
but integrating various satellite sources with different estimates could en-
hance detection capabilities. Utilizing an API to automatically and effi-
ciently extract satellite images corresponding to each methane detection
location could also be beneficial.

In the medium to long term, the intelligent aspect of DIMEI could be lever-
aged to generate substantial amounts of data, i.e., emission profiles. Given
the large volumes of data this new inventory type will produce, manually
transforming this data into actionable information for methane mitigation
regulation design will be challenging for policymakers. This shift in the
inventory landscape necessitates an evolution in policy design frameworks,
which will need to incorporate artificial intelligence to efficiently process
this wealth of new information. Consequently, new regulatory frameworks
tailored to the use of innovative inventory types like DIMEI will be essential.





Bibliography

[1] Ramón A. Alvarez et al. “Assessment of methane emissions from
the U.S. oil and gas supply chain”. In: Science 361.6398 (2018),
pp. 186–188. doi: 10.1126/science.aar7204. eprint: https://
www.science.org/doi/pdf/10.1126/science.aar7204. url:
https://www.science.org/doi/abs/10.1126/science.aar7204.

[2] Franz Aurenhammer and Rolf Klein. “Chapter 5 - Voronoi Dia-
grams**Partially supported by the Deutsche Forschungsgemeinschaft,
grant K1 655 2-2.” In: Handbook of Computational Geometry. Ed.
by J.-R. Sack and J. Urrutia. Amsterdam: North-Holland, 2000,
pp. 201–290. isbn: 978-0-444-82537-7. doi: https : / / doi . org /
10 . 1016 / B978 - 044482537 - 7 / 50006 - 1. url: https : / / www .
sciencedirect.com/science/article/pii/B9780444825377500061.

[3] Justin Bagley et al. “Assessment of an atmospheric transport model
for annual inverse estimates of California greenhouse gas emissions”.
In: Journal of Geophysical Research Atmospheres 122 (Feb. 2017).
doi: 10.1002/2016JD025361.

[4] Pascal Barthe et al. “Best available techniques (BAT) reference doc-
ument for the refining of mineral oil and gas”. In: European Com-
mission 754 (2015).

[5] David Beerling et al. “Methane and the CH 4 related greenhouse ef-
fect over the past 400 million years”. In: American Journal of Science
309.2 (2009), pp. 97–113.

[6] D. A. Belikov et al. “Adjoint of the global Eulerian–Lagrangian cou-
pled atmospheric transport model (A-GELCA v1.0): development
and validation”. In: Geoscientific Model Development 9.2 (2016),
pp. 749–764. doi: 10.5194/gmd- 9- 749- 2016. url: https://
gmd.copernicus.org/articles/9/749/2016/.

110

https://doi.org/10.1126/science.aar7204
https://www.science.org/doi/pdf/10.1126/science.aar7204
https://www.science.org/doi/pdf/10.1126/science.aar7204
https://www.science.org/doi/abs/10.1126/science.aar7204
https://doi.org/https://doi.org/10.1016/B978-044482537-7/50006-1
https://doi.org/https://doi.org/10.1016/B978-044482537-7/50006-1
https://www.sciencedirect.com/science/article/pii/B9780444825377500061
https://www.sciencedirect.com/science/article/pii/B9780444825377500061
https://doi.org/10.1002/2016JD025361
https://doi.org/10.5194/gmd-9-749-2016
https://gmd.copernicus.org/articles/9/749/2016/
https://gmd.copernicus.org/articles/9/749/2016/


BIBLIOGRAPHY 111

[7] Kanchan Bhil et al. “Recent Progress in Object Detection in Satellite
Imagery: A Review”. In: Sustainable Advanced Computing. Ed. by
Sagaya Aurelia et al. Singapore: Springer Singapore, 2022, pp. 209–
218. isbn: 978-981-16-9012-9.

[8] J. Bruno et al. “U-Plume: Automated algorithm for plume detec-
tion and source quantification by satellite point-source imagers”. In:
EGUsphere 2023 (2023), pp. 1–24. doi: 10.5194/egusphere-2023-
1343. url: https://egusphere.copernicus.org/preprints/
2023/egusphere-2023-1343/.

[9] M. Buchwitz et al. “Satellite-derived methane hotspot emission esti-
mates using a fast data-driven method”. In: Atmospheric Chemistry
and Physics 17.9 (2017), pp. 5751–5774. doi: 10.5194/acp-17-
5751-2017. url: https://acp.copernicus.org/articles/17/
5751/2017/.

[10] Nicolas Carion et al. “End-to-end object detection with transform-
ers”. In: (2020), pp. 213–229.

[11] Elton Chan et al. “Eight-Year Estimates of Methane Emissions from
Oil and Gas Operations in Western Canada Are Nearly Twice Those
Reported in Inventories”. In: Environmental Science & Technology
54.23 (2020). PMID: 33169990, pp. 14899–14909. doi: 10.1021/
acs.est.0c04117. eprint: https://doi.org/10.1021/acs.est.
0c04117. url: https://doi.org/10.1021/acs.est.0c04117.

[12] S. Conley et al. “Application of Gauss’s theorem to quantify lo-
calized surface emissions from airborne measurements of wind and
trace gases”. In: Atmospheric Measurement Techniques 10.9 (2017),
pp. 3345–3358. doi: 10.5194/amt-10-3345-2017. url: https:
//amt.copernicus.org/articles/10/3345/2017/.

[13] U Cubasch et al. “G. Introduction, in”. In: Climate Change 2013:
The Physical Science Basis. Contribution of Working Group 1 to the
Fifth Assessment Report of the Intergovernmental Panel on Climate
Change (), pp. 119–158.

[14] Daniel H. Cusworth et al. “Intermittency of Large Methane Emitters
in the Permian Basin”. In: Environmental Science & Technology Let-
ters 8.7 (2021), pp. 567–573. doi: 10.1021/acs.estlett.1c00173.
eprint: https://doi.org/10.1021/acs.estlett.1c00173. url:
https://doi.org/10.1021/acs.estlett.1c00173.

https://doi.org/10.5194/egusphere-2023-1343
https://doi.org/10.5194/egusphere-2023-1343
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1343/
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-1343/
https://doi.org/10.5194/acp-17-5751-2017
https://doi.org/10.5194/acp-17-5751-2017
https://acp.copernicus.org/articles/17/5751/2017/
https://acp.copernicus.org/articles/17/5751/2017/
https://doi.org/10.1021/acs.est.0c04117
https://doi.org/10.1021/acs.est.0c04117
https://doi.org/10.1021/acs.est.0c04117
https://doi.org/10.1021/acs.est.0c04117
https://doi.org/10.1021/acs.est.0c04117
https://doi.org/10.5194/amt-10-3345-2017
https://amt.copernicus.org/articles/10/3345/2017/
https://amt.copernicus.org/articles/10/3345/2017/
https://doi.org/10.1021/acs.estlett.1c00173
https://doi.org/10.1021/acs.estlett.1c00173
https://doi.org/10.1021/acs.estlett.1c00173


JADE E. GUISIANO 112

[15] Daniel H. Cusworth et al. “Strong methane point sources contribute
a disproportionate fraction of total emissions across multiple basins
in the United States”. In: Proceedings of the National Academy of
Sciences 119.38 (2022), e2202338119. doi: 10.1073/pnas.2202338119.
eprint: https://www.pnas.org/doi/pdf/10.1073/pnas.2202338119.
url: https://www.pnas.org/doi/abs/10.1073/pnas.2202338119.

[16] Navneet Dalal and Bill Triggs. “Histograms of oriented gradients
for human detection”. In: 2005 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR’05) 1 (2005),
886–893 vol. 1.

[17] Pratyush Datta. “How effective LDAR campaigns contribute to min-
imizing methane emissions”. In: Abu Dhabi International Petroleum
Exhibition and Conference. SPE. 2020, D021S029R004.

[18] Dmitry Demidov, Rushali Grandhe, and Salem Almarri. “Object De-
tection in Aerial Imagery”. In: (Nov. 2022). doi: 10.48550/arXiv.
2211.15479.

[19] Jia Deng et al. “Imagenet: A large-scale hierarchical image database”.
In: Ieee. 2009, pp. 248–255.

[20] Z. Deng et al. “Comparing national greenhouse gas budgets reported
in UNFCCC inventories against atmospheric inversions”. In: Earth
System Science Data 14.4 (2022), pp. 1639–1675. doi: 10.5194/
essd - 14 - 1639 - 2022. url: https : / / essd . copernicus . org /
articles/14/1639/2022/.

[21] Philip M Dixon. “Nearest neighbor methods”. In: Encyclopedia of
environmetrics 3 (2002), pp. 1370–1383.

[22] Edward J Dlugokencky et al. “Global atmospheric methane: bud-
get, changes and dangers”. In: Philosophical Transactions of the
Royal Society A: Mathematical, Physical and Engineering Sciences
369.1943 (2011), pp. 2058–2072.

[23] Débora F. Dos Santos et al. “Performance Comparison of Convo-
lutional Neural Network Models for Object Detection in Tethered
Balloon Imagery”. In: 2021 Latin American Robotics Symposium
(LARS), 2021 Brazilian Symposium on Robotics (SBR), and 2021
Workshop on Robotics in Education (WRE). 2021, pp. 246–251. doi:
10.1109/LARS/SBR/WRE54079.2021.9605459.

[24] Guillaume Druart et al. “Test of SIMAGAZ: a LWIR cryogenic mul-
tispectral infrared camera for methane gas leak detection and quan-
tification”. In: Algorithms, Technologies, and Applications for Multi-
spectral and Hyperspectral Imaging XXVII. Vol. 11727. SPIE. 2021,
pp. 53–59.

https://doi.org/10.1073/pnas.2202338119
https://www.pnas.org/doi/pdf/10.1073/pnas.2202338119
https://www.pnas.org/doi/abs/10.1073/pnas.2202338119
https://doi.org/10.48550/arXiv.2211.15479
https://doi.org/10.48550/arXiv.2211.15479
https://doi.org/10.5194/essd-14-1639-2022
https://doi.org/10.5194/essd-14-1639-2022
https://essd.copernicus.org/articles/14/1639/2022/
https://essd.copernicus.org/articles/14/1639/2022/
https://doi.org/10.1109/LARS/SBR/WRE54079.2021.9605459


BIBLIOGRAPHY 113

[25] Martin Ester et al. “A Density-Based Algorithm for Discovering
Clusters in Large Spatial Databases with Noise”. In: KDD’96. Port-
land, Oregon: AAAI Press, 1996, 226–231.

[26] Mark Everingham et al. “The Pascal Visual Object Classes (VOC)
Challenge”. In: Int. J. Comput. Vision 88.2 (June 2010), 303–338.
issn: 0920-5691. doi: 10.1007/s11263-009-0275-4. url: https:
//doi.org/10.1007/s11263-009-0275-4.

[27] Forrest Fankhauser, J. Anthony Tyson, and Jacob Askari. “Satel-
lite Optical Brightness”. In: The Astronomical Journal 166.2 (July
2023), p. 59. doi: 10.3847/1538-3881/ace047. url: https://dx.
doi.org/10.3847/1538-3881/ace047.

[28] Boris Gašparović et al. “Deep Learning Approach For Objects De-
tection in Underwater Pipeline Images”. In: Applied Artificial Intel-
ligence 36.1 (2022), p. 2146853. doi: 10.1080/08839514.2022.
2146853. eprint: https://doi.org/10.1080/08839514.2022.
2146853. url: https : / / doi . org / 10 . 1080 / 08839514 . 2022 .
2146853.

[29] C. Geels et al. “Comparing atmospheric transport models for future
regional inversions over Europe ; Part 1: mapping the atmospheric
CO2 signals”. In: Atmospheric Chemistry and Physics 7.13 (2007),
pp. 3461–3479. doi: 10.5194/acp- 7- 3461- 2007. url: https:
//acp.copernicus.org/articles/7/3461/2007/.

[30] Ross Girshick. “Fast r-cnn”. In: Proceedings of the IEEE interna-
tional conference on computer vision. 2015, pp. 1440–1448.

[31] Ross Girshick et al. “Rich feature hierarchies for accurate object
detection and semantic segmentation”. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. 2014, pp. 580–
587.

[32] GlobalMethaneTracker. https://iea.blob.core.windows.net/assets/b5f6bb13-
76ce-48ea-8fdb-3d4f8b58c838/GlobalMethaneTrackerdocumentation.pdf .

[33] Joost de Gouw et al. “Daily Satellite Observations of Methane from
Oil and Gas Production Regions in the United States”. In: Scientific
Reports 10 (Jan. 2020). doi: 10.1038/s41598-020-57678-4.

[34] Jade E Guisiano et al. “O&GProfile : An automated method for at-
tribution of satellite methane emissions detections to oil and gas sites
and operators”. In: International Conference on Machine Learning
and Data Mining MLDM 2023. New-York, United States, July 2023.
url: https://hal.science/hal-04043407.

https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.1007/s11263-009-0275-4
https://doi.org/10.3847/1538-3881/ace047
https://dx.doi.org/10.3847/1538-3881/ace047
https://dx.doi.org/10.3847/1538-3881/ace047
https://doi.org/10.1080/08839514.2022.2146853
https://doi.org/10.1080/08839514.2022.2146853
https://doi.org/10.1080/08839514.2022.2146853
https://doi.org/10.1080/08839514.2022.2146853
https://doi.org/10.1080/08839514.2022.2146853
https://doi.org/10.1080/08839514.2022.2146853
https://doi.org/10.5194/acp-7-3461-2007
https://acp.copernicus.org/articles/7/3461/2007/
https://acp.copernicus.org/articles/7/3461/2007/
https://doi.org/10.1038/s41598-020-57678-4
https://hal.science/hal-04043407


JADE E. GUISIANO 114

[35] Jade Eva Guisiano et al. “Dynamic & Intelligent Methane Emissions
Inventory (DIMEI) Framework: Next-generation methane emission
inventory for oil and gas industry based on Artificial Intelligence”.
In: iScience (2024).

[36] Jade Eva Guisiano et al. “Object detection models sensitivity & ro-
bustness
to satellite-based adversarial attacks”. In: IEEE International Geo-
science and Remote Sensing Symposium (IGARSS). Athens, Greece,
2024.

[37] Jade Eva Guisiano et al. “Oil and Gas Automatic Infrastructure
Mapping: Leveraging High-Resolution Satellite Imagery through fine-
tuning of object detection models”. In: International Conference on
Neural Information Processing (ICONIP). Changsha, China, 2023.
url: https://hal.science/hal-04197007.

[38] Kemal Hacıefendioğlu, Hasan Basri Başağa, and Gökhan Demir.
“Automatic detection of earthquake-induced ground failure effects
through Faster R-CNN deep learning-based object detection using
satellite images”. In: Natural Hazards 105 (2021), pp. 383–403.

[39] J. Hansen, M. Sato, and R. Ruedy. “Radiative forcing and climate
response”. In: J. Geophys. Res. 102 (1997), pp. 6831–6864. doi: 10.
1029/96JD03436.

[40] Gabriel Huang et al. “A survey of self-supervised and few-shot object
detection”. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence (2022).

[41] IEA. “IEA Methane Tracker”. In: (2023). url: https://www.iea.
org/data-and-statistics/data-tools/methane-tracker.

[42] IPCC. “Climate Change 2013: The Physical Science Basis (AR5)”.
In: (2013). url: https://www.ipcc.ch/report/ar5/wg1/.

[43] IPCC. “IPCC AR6 Report”. In: (2023). url: https://www.ipcc.
ch / report / ar6 / wg1 / figures / summary - for - policymakers /
figure-spm-2.

[44] Itziar Irakulis-Loitxate et al. “Satellite-based survey of extreme methane
emissions in the Permian basin”. In: Science Advances 7.27 (2021),
eabf4507. doi: 10.1126/sciadv.abf4507. eprint: https://www.
science.org/doi/pdf/10.1126/sciadv.abf4507. url: https:
//www.science.org/doi/abs/10.1126/sciadv.abf4507.

https://hal.science/hal-04197007
https://doi.org/10.1029/96JD03436
https://doi.org/10.1029/96JD03436
https://www.iea.org/data-and-statistics/data-tools/methane-tracker
https://www.iea.org/data-and-statistics/data-tools/methane-tracker
https://www.ipcc.ch/report/ar5/wg1/
https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers/figure-spm-2
https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers/figure-spm-2
https://www.ipcc.ch/report/ar6/wg1/figures/summary-for-policymakers/figure-spm-2
https://doi.org/10.1126/sciadv.abf4507
https://www.science.org/doi/pdf/10.1126/sciadv.abf4507
https://www.science.org/doi/pdf/10.1126/sciadv.abf4507
https://www.science.org/doi/abs/10.1126/sciadv.abf4507
https://www.science.org/doi/abs/10.1126/sciadv.abf4507


BIBLIOGRAPHY 115

[45] D. J. Jacob et al. “Quantifying methane emissions from the global
scale down to point sources using satellite observations of atmo-
spheric methane”. In: Atmospheric Chemistry and Physics Discus-
sions 2022 (2022), pp. 1–44. doi: 10.5194/acp-2022-246. url:
https://acp.copernicus.org/preprints/acp-2022-246/.

[46] Maroš Jakubec et al. “Comparison of CNN-Based Models for Pot-
hole Detection in Real-World Adverse Conditions: Overview and
Evaluation”. In: Applied Sciences 13.9 (2023). issn: 2076-3417. doi:
10.3390/app13095810. url: https://www.mdpi.com/2076-3417/
13/9/5810.

[47] Xin Jin and Jiawei Han. “K-Means Clustering”. In: Encyclopedia of
Machine Learning. Ed. by Claude Sammut and Geoffrey I. Webb.
Boston, MA: Springer US, 2010, pp. 563–564. isbn: 978-0-387-30164-
8. doi: 10.1007/978-0-387-30164-8\_425. url: https://doi.
org/10.1007/978-0-387-30164-8\_425.

[48] Derek Johnson et al. “Methane emissions from oil and gas produc-
tion sites and their storage tanks in West Virginia”. In: Atmospheric
Environment: X 16 (2022), p. 100193. issn: 2590-1621. doi: https:
//doi.org/10.1016/j.aeaoa.2022.100193. url: https://www.
sciencedirect.com/science/article/pii/S2590162122000478.

[49] Matthew Johnson, David Tyner, and Bradley Conrad. “Origins of
Oil and Gas Sector Methane Emissions: On-Site Investigations of
Aerial Measured Sources”. In: Environmental Science & Technology
57 (Jan. 2023). doi: 10.1021/acs.est.2c07318.

[50] Siraput Jongaramrungruang et al. “MethaNet – An AI-driven ap-
proach to quantifying methane point-source emission from high-
resolution 2-D plume imagery”. In: Remote Sensing of Environment
269 (2022), p. 112809. issn: 0034-4257. doi: https://doi.org/10.
1016/j.rse.2021.112809. url: https://www.sciencedirect.
com/science/article/pii/S0034425721005290.

[51] Junhyung Kang et al. “A Survey of Deep Learning-Based Object
Detection Methods and Datasets for Overhead Imagery”. In: IEEE
Access 10 (2022), pp. 20118–20134. doi: 10.1109/ACCESS.2022.
3149052.

[52] Seyedahmad Kia et al. “Machine Learning to Predict Area Fugitive
Emission Fluxes of GHGs from Open-Pit Mines”. In: Atmosphere
13.2 (2022). issn: 2073-4433. url: https://www.mdpi.com/2073-
4433/13/2/210.

https://doi.org/10.5194/acp-2022-246
https://acp.copernicus.org/preprints/acp-2022-246/
https://doi.org/10.3390/app13095810
https://www.mdpi.com/2076-3417/13/9/5810
https://www.mdpi.com/2076-3417/13/9/5810
https://doi.org/10.1007/978-0-387-30164-8\_425
https://doi.org/10.1007/978-0-387-30164-8\_425
https://doi.org/10.1007/978-0-387-30164-8\_425
https://doi.org/https://doi.org/10.1016/j.aeaoa.2022.100193
https://doi.org/https://doi.org/10.1016/j.aeaoa.2022.100193
https://www.sciencedirect.com/science/article/pii/S2590162122000478
https://www.sciencedirect.com/science/article/pii/S2590162122000478
https://doi.org/10.1021/acs.est.2c07318
https://doi.org/https://doi.org/10.1016/j.rse.2021.112809
https://doi.org/https://doi.org/10.1016/j.rse.2021.112809
https://www.sciencedirect.com/science/article/pii/S0034425721005290
https://www.sciencedirect.com/science/article/pii/S0034425721005290
https://doi.org/10.1109/ACCESS.2022.3149052
https://doi.org/10.1109/ACCESS.2022.3149052
https://www.mdpi.com/2073-4433/13/2/210
https://www.mdpi.com/2073-4433/13/2/210


JADE E. GUISIANO 116

[53] Juhyun Kim et al. “The development of leak detection model in
subsea gas pipeline using machine learning”. In: Journal of Natural
Gas Science and Engineering 94 (2021), p. 104134. issn: 1875-5100.
doi: https://doi.org/10.1016/j.jngse.2021.104134.

[54] Alibek Kopbayev et al. “Gas leakage detection using spatial and
temporal neural network model”. In: Process Safety and Environ-
mental Protection 160 (2022), pp. 968–975. issn: 0957-5820. doi:
https://doi.org/10.1016/j.psep.2022.03.002.

[55] Y. Koyama et al. “Simulation of variability in atmospheric carbon
dioxide using a global coupled Eulerian â€“ Lagrangian transport
model”. In: Geoscientific Model Development 4.2 (2011), pp. 317–
324. doi: 10.5194/gmd-4-317-2011. url: https://gmd.copernicus.
org/articles/4/317/2011/.

[56] G. Kuhlmann et al. “Quantifying CO2 emissions of a city with
the Copernicus Anthropogenic CO2 Monitoring satellite mission”.
In: Atmospheric Measurement Techniques 13.12 (2020), pp. 6733–
6754. doi: 10.5194/amt- 13- 6733- 2020. url: https://amt.
copernicus.org/articles/13/6733/2020/.

[57] Guanter L. et al. “Methane Alert and response system (MARS):
IMEO’s satellite-based system for detection and attribution of methane
point sources around the world”. In: EGU General Assembly 2023
(2022). doi: https://doi.org/10.5194/egusphere-egu23-9548.

[58] T. Lauvaux et al. “Global assessment of oil and gas methane ultra-
emitters”. In: Science 375.6580 (Feb. 2022), 557–561. issn: 1095-
9203. doi: 10.1126/science.abj4351. url: http://dx.doi.org/
10.1126/science.abj4351.

[59] Mohamed Layouni, Mohamed Salah Hamdi, and Sofiène Tahar. “De-
tection and sizing of metal-loss defects in oil and gas pipelines using
pattern-adapted wavelets and machine learning”. In: Applied Soft
Computing 52 (2017), pp. 247–261. issn: 1568-4946. doi: https:
//doi.org/10.1016/j.asoc.2016.10.040. url: https://www.
sciencedirect.com/science/article/pii/S1568494616305658.

[60] J. Lelieveld, P.J. Crutzen, and C. Brühl. “Climate effects of at-
mospheric methane”. In: Chemosphere 26.1 (1993). Proceedings of
the NATO advanced research workshop, pp. 739–768. issn: 0045-
6535. doi: https://doi.org/10.1016/0045-6535(93)90458-H.
url: https://www.sciencedirect.com/science/article/pii/
004565359390458H.

[61] Jos Lelieveld and Paul J Crutzen. “Indirect chemical effects of methane
on climate warming”. In: Nature 355.6358 (1992), pp. 339–342.

https://doi.org/https://doi.org/10.1016/j.jngse.2021.104134
https://doi.org/https://doi.org/10.1016/j.psep.2022.03.002
https://doi.org/10.5194/gmd-4-317-2011
https://gmd.copernicus.org/articles/4/317/2011/
https://gmd.copernicus.org/articles/4/317/2011/
https://doi.org/10.5194/amt-13-6733-2020
https://amt.copernicus.org/articles/13/6733/2020/
https://amt.copernicus.org/articles/13/6733/2020/
https://doi.org/https://doi.org/10.5194/egusphere-egu23-9548
https://doi.org/10.1126/science.abj4351
http://dx.doi.org/10.1126/science.abj4351
http://dx.doi.org/10.1126/science.abj4351
https://doi.org/https://doi.org/10.1016/j.asoc.2016.10.040
https://doi.org/https://doi.org/10.1016/j.asoc.2016.10.040
https://www.sciencedirect.com/science/article/pii/S1568494616305658
https://www.sciencedirect.com/science/article/pii/S1568494616305658
https://doi.org/https://doi.org/10.1016/0045-6535(93)90458-H
https://www.sciencedirect.com/science/article/pii/004565359390458H
https://www.sciencedirect.com/science/article/pii/004565359390458H


BIBLIOGRAPHY 117

[62] Debang Li, Junge Zhang, and Kaiqi Huang. “Universal adversar-
ial perturbations against object detection”. In: Pattern Recognition
110 (2021), p. 107584. issn: 0031-3203. doi: https://doi.org/10.
1016/j.patcog.2020.107584. url: https://www.sciencedirect.
com/science/article/pii/S0031320320303873.

[63] Min Li et al. “Agricultural Greenhouses Detection in High-Resolution
Satellite Images Based on Convolutional Neural Networks: Com-
parison of Faster R-CNN, YOLO v3 and SSD”. In: Sensors 20.17
(2020). issn: 1424-8220. doi: 10.3390/s20174938. url: https:
//www.mdpi.com/1424-8220/20/17/4938.

[64] Qingyun Li, Yushi Chen, and Ying Zeng. “Transformer with Trans-
fer CNN for Remote-Sensing-Image Object Detection”. In: Remote
Sensing 14.4 (2022). issn: 2072-4292. doi: 10.3390/rs14040984.
url: https://www.mdpi.com/2072-4292/14/4/984.

[65] Zheng Li et al. “Deep Learning-Based Object Detection Techniques
for Remote Sensing Images: A Survey”. In: Remote Sensing 14.10
(2022). issn: 2072-4292. doi: 10.3390/rs14102385. url: https:
//www.mdpi.com/2072-4292/14/10/2385.

[66] Tsung-Yi Lin et al. “Focal loss for dense object detection”. In: Pro-
ceedings of the IEEE international conference on computer vision.
2017, pp. 2980–2988.

[67] Tsung-Yi Lin et al. “Microsoft COCO: Common Objects in Context”.
In: (2014). Ed. by David Fleet et al., pp. 740–755.

[68] Tony Lindeberg. “Scale Invariant Feature Transform”. In: vol. 7. May
2012. doi: 10.4249/scholarpedia.10491.

[69] Wei Liu et al. “Ssd: Single shot multibox detector”. In: Computer
Vision–ECCV 2016: 14th European Conference, Amsterdam, The
Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer.
2016, pp. 21–37.

[70] Hongfang Lu et al. “Oil and Gas 4.0 era: A systematic review and
outlook”. In: Computers in Industry 111 (2019), pp. 68–90.

[71] J. D. Maasakkers et al. “2010–2015 North American methane emis-
sions, sectoral contributions, and trends: a high-resolution inver-
sion of GOSAT observations of atmospheric methane”. In: Atmo-
spheric Chemistry and Physics 21.6 (2021), pp. 4339–4356. doi:
10.5194/acp-21-4339-2021. url: https://acp.copernicus.
org/articles/21/4339/2021/.

https://doi.org/https://doi.org/10.1016/j.patcog.2020.107584
https://doi.org/https://doi.org/10.1016/j.patcog.2020.107584
https://www.sciencedirect.com/science/article/pii/S0031320320303873
https://www.sciencedirect.com/science/article/pii/S0031320320303873
https://doi.org/10.3390/s20174938
https://www.mdpi.com/1424-8220/20/17/4938
https://www.mdpi.com/1424-8220/20/17/4938
https://doi.org/10.3390/rs14040984
https://www.mdpi.com/2072-4292/14/4/984
https://doi.org/10.3390/rs14102385
https://www.mdpi.com/2072-4292/14/10/2385
https://www.mdpi.com/2072-4292/14/10/2385
https://doi.org/10.4249/scholarpedia.10491
https://doi.org/10.5194/acp-21-4339-2021
https://acp.copernicus.org/articles/21/4339/2021/
https://acp.copernicus.org/articles/21/4339/2021/


JADE E. GUISIANO 118

[72] J. D. Maasakkers et al. “Global distribution of methane emissions,
emission trends, and OH concentrations and trends inferred from
an inversion of GOSAT satellite data for 2010–2015”. In: Atmo-
spheric Chemistry and Physics 19.11 (2019), pp. 7859–7881. doi:
10.5194/acp-19-7859-2019. url: https://acp.copernicus.
org/articles/19/7859/2019/.

[73] Kathleen Mar et al. “Beyond CO2 equivalence: The impacts of methane
on climate, ecosystems, and health”. In: Environmental Science &
Policy 134 (Aug. 2022), pp. 127–136. doi: 10.1016/j.envsci.
2022.03.027.

[74] Mahmoud Meribout et al. “Leak detection systems in oil and gas
fields: Present trends and future prospects”. In: Flow Measurement
and Instrumentation 75 (2020), p. 101772.

[75] Mehdi Mohammadpoor and Farshid Torabi. “Big Data analytics in
oil and gas industry: An emerging trend”. In: Petroleum 6.4 (2020),
pp. 321–328.

[76] MBME Muhammad, IR Ehigiator, and SO Oladosu. “Application
of LIDAR Technology in Oil and Gas Pipeline Route Selection and
Optimization”. In: J Remote Sens GIS 10.5 (2021), p. 288.

[77] NationalAcademiesofSciencesEngineeringandMedicine. “Improving Char-
acterization of Anthropogenic Methane Emissions in the United States”.
In: The National Academies Pres (2018). doi: https://doi.org/
10.17226/24987.

[78] Stijn Naus et al. “Assessing the Relative Importance of Satellite-
Detected Methane Superemitters in Quantifying Total Emissions for
Oil and Gas Production Areas in Algeria”. In: Environmental Science
& Technology 57 (Nov. 2023). doi: 10.1021/acs.est.3c04746.

[79] NOAA. “NOAA’s 2023 Annual Climate Report”. In: (2023). url:
http://elib.suub.uni-bremen.de/publications/dissertations/
E-Diss845_treude.pdf.

[80] Sudhanshu Pandey et al. “Automated monitoring of methane super-
emitters using multispectral satellite instruments and machine learn-
ing.” In: AGU Fall Meeting Abstracts. Vol. 2021. Dec. 2021, A54F-02,
A54F–02.

[81] D. Picard et al. FUGITIVE EMISSIONS. The Intergovernmental
Panel on Climate Change, 2006. Chap. 4.

https://doi.org/10.5194/acp-19-7859-2019
https://acp.copernicus.org/articles/19/7859/2019/
https://acp.copernicus.org/articles/19/7859/2019/
https://doi.org/10.1016/j.envsci.2022.03.027
https://doi.org/10.1016/j.envsci.2022.03.027
https://doi.org/https://doi.org/10.17226/24987
https://doi.org/https://doi.org/10.17226/24987
https://doi.org/10.1021/acs.est.3c04746
http://elib.suub.uni-bremen.de/publications/dissertations/E-Diss845_treude.pdf
http://elib.suub.uni-bremen.de/publications/dissertations/E-Diss845_treude.pdf


BIBLIOGRAPHY 119

[82] D. Pillai et al. “Comparing Lagrangian and Eulerian models for
CO2 transport â€“ a step towards Bayesian inverse modeling us-
ing WRF/STILT-VPRM”. In: Atmospheric Chemistry and Physics
12.19 (2012), pp. 8979–8991. doi: 10.5194/acp-12-8979-2012.
url: https://acp.copernicus.org/articles/12/8979/2012/.

[83] Ignacio Pisso et al. “Assessing Lagrangian inverse modelling of urban
anthropogenic CO2 fluxes using in situ aircraft and ground-based
measurements in the Tokyo area”. In: Carbon Balance and Manage-
ment 14 (May 2019). doi: 10.1186/s13021-019-0118-8.

[84] Genevieve Plant et al. “Inefficient and unlit natural gas flares both
emit large quantities of methane”. In: Science 377.6614 (2022), pp. 1566–
1571. doi: 10 . 1126 / science . abq0385. eprint: https : / / www .
science.org/doi/pdf/10.1126/science.abq0385. url: https:
//www.science.org/doi/abs/10.1126/science.abq0385.

[85] Prajaya Prajapati and Eduardo A Santos. “Comparing methane
emissions estimated using a backward-Lagrangian stochastic model
and the eddy covariance technique in a beef cattle feedlot”. In: Agri-
cultural and forest meteorology 256 (2018), pp. 482–491.

[86] Nilantha Premakumara et al. “Improving Object Detection Robust-
ness against Natural Perturbations through Synthetic Data Aug-
mentation”. In: Proceedings of the 2023 Asia Conference on Com-
puter Vision, Image Processing and Pattern Recognition. CVIPPR
’23. Phuket,Thailand: Association for Computing Machinery, 2023.
isbn: 9798400700033. doi: 10.1145/3596286.3596293.

[87] Ali Radman et al. “S2MetNet: A novel dataset and deep learning
benchmark for methane point source quantification using Sentinel-2
satellite imagery”. In: Remote Sensing of Environment 295 (2023),
p. 113708. issn: 0034-4257. doi: https : / / doi . org / 10 . 1016 /
j.rse.2023.113708. url: https://www.sciencedirect.com/
science/article/pii/S0034425723002596.

[88] S. Rajkumar and Malathi Ganesan. “A Comparative Analysis on
Image Quality Assessment for Real Time Satellite Images”. In: In-
dian Journal of Science and Technology 9 (Sept. 2016). doi: 10.
17485/ijst/2016/v9i34/96766.

[89] Subramanian Ramachandran et al. “Methane Emissions from Natu-
ral Gas Compressor Stations in the Transmission and Storage Sector:
Measurements and Comparisons with the EPA Greenhouse Gas Re-
porting Program Protocol”. In: Environmental science & technology
49 (Feb. 2015). doi: 10.1021/es5060258.

https://doi.org/10.5194/acp-12-8979-2012
https://acp.copernicus.org/articles/12/8979/2012/
https://doi.org/10.1186/s13021-019-0118-8
https://doi.org/10.1126/science.abq0385
https://www.science.org/doi/pdf/10.1126/science.abq0385
https://www.science.org/doi/pdf/10.1126/science.abq0385
https://www.science.org/doi/abs/10.1126/science.abq0385
https://www.science.org/doi/abs/10.1126/science.abq0385
https://doi.org/10.1145/3596286.3596293
https://doi.org/https://doi.org/10.1016/j.rse.2023.113708
https://doi.org/https://doi.org/10.1016/j.rse.2023.113708
https://www.sciencedirect.com/science/article/pii/S0034425723002596
https://www.sciencedirect.com/science/article/pii/S0034425723002596
https://doi.org/10.17485/ijst/2016/v9i34/96766
https://doi.org/10.17485/ijst/2016/v9i34/96766
https://doi.org/10.1021/es5060258


JADE E. GUISIANO 120

[90] Sebastian Ramiro-Ramirez et al. “Porosity and Permeability Het-
erogeneity in the Upper Wolfcamp, Delaware Basin, West Texas:
Implications for Production”. In: July 2020. doi: 10.15530/urtec-
2020-2105.

[91] Joseph Redmon et al. “You only look once: Unified, real-time object
detection”. In: (2016), pp. 779–788.

[92] Shaoqing Ren et al. “Faster r-cnn: Towards real-time object detec-
tion with region proposal networks”. In: Advances in neural infor-
mation processing systems 28 (2015).

[93] Stuart N. Riddick and Denise L. Mauzerall. “Likely substantial un-
derestimation of reported methane emissions from United Kingdom
upstream oil and gas activities”. In: Energy Environ. Sci. 16 (1 2023),
pp. 295–304. doi: 10.1039/D2EE03072A. url: http://dx.doi.org/
10.1039/D2EE03072A.

[94] M. Rigby, A. J. Manning, and R. G. Prinn. “Inversion of long-lived
trace gas emissions using combined Eulerian and Lagrangian chemi-
cal transport models”. In: Atmospheric Chemistry and Physics 11.18
(2011), pp. 9887–9898. doi: 10.5194/acp- 11- 9887- 2011. url:
https://acp.copernicus.org/articles/11/9887/2011/.

[95] Gautam Ritesh. “Oil and Gas Infrastructure Mapping (OGIM) database”.
Version OGIM_v1.1. In: (May 2023). doi: 10.5281/zenodo.7922117.
url: https://doi.org/10.5281/zenodo.7922117.

[96] Clive D. Rodgers. Inverse methods for atmospheric sounding : theory
and practice. Ed. by Clive D. Rodgers. World Scientific Publishing,
2000.

[97] Jeffrey Rutherford et al. “Closing the methane gap in US oil and
natural gas production emissions inventories”. In: Nature Communi-
cations 12 (Aug. 2021). doi: 10.1038/s41467-021-25017-4.

[98] Michael Sabbatino. “Global Oil & Gas Infrastructure Features Database
Geocube Collection”. In: (Mar. 2018). doi: 10.18141/1502839. url:
https://www.osti.gov/biblio/1502839.

[99] Pankaj Sadavarte et al. “Methane Emissions from Superemitting
Coal Mines in Australia Quantified Using TROPOMI Satellite Ob-
servations”. In: Environmental Science & Technology 55.24 (2021).
PMID: 34842427, pp. 16573–16580. doi: 10.1021/acs.est.1c03976.
eprint: https://doi.org/10.1021/acs.est.1c03976. url: https:
//doi.org/10.1021/acs.est.1c03976.

https://doi.org/10.15530/urtec-2020-2105
https://doi.org/10.15530/urtec-2020-2105
https://doi.org/10.1039/D2EE03072A
http://dx.doi.org/10.1039/D2EE03072A
http://dx.doi.org/10.1039/D2EE03072A
https://doi.org/10.5194/acp-11-9887-2011
https://acp.copernicus.org/articles/11/9887/2011/
https://doi.org/10.5281/zenodo.7922117
https://doi.org/10.5281/zenodo.7922117
https://doi.org/10.1038/s41467-021-25017-4
https://doi.org/10.18141/1502839
https://www.osti.gov/biblio/1502839
https://doi.org/10.1021/acs.est.1c03976
https://doi.org/10.1021/acs.est.1c03976
https://doi.org/10.1021/acs.est.1c03976
https://doi.org/10.1021/acs.est.1c03976


BIBLIOGRAPHY 121

[100] M. Saunois et al. “The Global Methane Budget 2000–2017”. In: Earth
System Science Data 12.3 (2020), pp. 1561–1623. doi: 10.5194/
essd - 12 - 1561 - 2020. url: https : / / essd . copernicus . org /
articles/12/1561/2020/.

[101] B. J. Schuit et al. “Automated detection and monitoring of methane
super-emitters using satellite data”. In: Atmospheric Chemistry and
Physics Discussions 2023 (2023), pp. 1–47. doi: 10.5194/acp-
2022-862. url: https://acp.copernicus.org/preprints/acp-
2022-862/.

[102] A. Shah et al. “Testing the near-field Gaussian plume inversion flux
quantification technique using unmanned aerial vehicle sampling”.
In: Atmospheric Measurement Techniques 13.3 (2020), pp. 1467–
1484. doi: 10.5194/amt- 13- 1467- 2020. url: https://amt.
copernicus.org/articles/13/1467/2020/.

[103] Adil Shah et al. “A Near-Field Gaussian Plume Inversion Flux Quan-
tification Method, Applied to Unmanned Aerial Vehicle Sampling”.
In: Atmosphere 10.7 (2019). issn: 2073-4433. doi: 10.3390/atmos10070396.
url: https://www.mdpi.com/2073-4433/10/7/396.

[104] Lu Shen et al. “Unravelling a large methane emission discrepancy
in Mexico using satellite observations”. In: Remote Sensing of En-
vironment 260 (2021), p. 112461. issn: 0034-4257. doi: https://
doi.org/10.1016/j.rse.2021.112461. url: https://www.
sciencedirect.com/science/article/pii/S0034425721001796.

[105] Hao Sheng et al. “OGNet: Towards a Global Oil and Gas Infrastruc-
ture Database using Deep Learning on Remotely Sensed Imagery”.
In: ArXiv abs/2011.07227 (2020).

[106] Jihao Shi et al. “Real-time natural gas release forecasting by us-
ing physics-guided deep learning probability model”. In: Journal of
Cleaner Production 368 (2022), p. 133201. issn: 0959-6526. doi:
https : / / doi . org / 10 . 1016 / j . jclepro . 2022 . 133201. url:
https://www.sciencedirect.com/science/article/pii/S0959652622027895.

[107] Pengfei Shi et al. “Oil Well Detection via Large-Scale and High-
Resolution Remote Sensing Images Based on Improved YOLO v4”.
In: Remote Sensing 13.16 (2021). issn: 2072-4292. doi: 10.3390/
rs13163243. url: https://www.mdpi.com/2072-4292/13/16/
3243.

[108] Guanfu Song et al. “Detection of oil wells based on faster R-CNN in
optical satellite remote sensing images”. In: Image and Signal Pro-
cessing for Remote Sensing XXVI. Vol. 11533. SPIE. 2020, pp. 114–
121.

https://doi.org/10.5194/essd-12-1561-2020
https://doi.org/10.5194/essd-12-1561-2020
https://essd.copernicus.org/articles/12/1561/2020/
https://essd.copernicus.org/articles/12/1561/2020/
https://doi.org/10.5194/acp-2022-862
https://doi.org/10.5194/acp-2022-862
https://acp.copernicus.org/preprints/acp-2022-862/
https://acp.copernicus.org/preprints/acp-2022-862/
https://doi.org/10.5194/amt-13-1467-2020
https://amt.copernicus.org/articles/13/1467/2020/
https://amt.copernicus.org/articles/13/1467/2020/
https://doi.org/10.3390/atmos10070396
https://www.mdpi.com/2073-4433/10/7/396
https://doi.org/https://doi.org/10.1016/j.rse.2021.112461
https://doi.org/https://doi.org/10.1016/j.rse.2021.112461
https://www.sciencedirect.com/science/article/pii/S0034425721001796
https://www.sciencedirect.com/science/article/pii/S0034425721001796
https://doi.org/https://doi.org/10.1016/j.jclepro.2022.133201
https://www.sciencedirect.com/science/article/pii/S0959652622027895
https://doi.org/10.3390/rs13163243
https://doi.org/10.3390/rs13163243
https://www.mdpi.com/2072-4292/13/16/3243
https://www.mdpi.com/2072-4292/13/16/3243


JADE E. GUISIANO 122

[109] Sarvesh Kumar Sonkar et al. “Detection and Estimation of Natural
Gas Leakage Using UAV by Machine Learning Algorithms”. In: IEEE
Sensors Journal 22.8 (2022), pp. 8041–8049. doi: 10.1109/JSEN.
2022.3157872.

[110] Huiming Sun et al. “Defense against Adversarial Cloud Attack on
Remote Sensing Salient Object Detection”. In: (2023). arXiv: 2306.
17431 [cs.CV].

[111] Arsalan Tahir et al. “Automatic Target Detection from Satellite Im-
agery Using Machine Learning”. In: Sensors 22.3 (2022). issn: 1424-
8220. doi: 10.3390/s22031147. url: https://www.mdpi.com/
1424-8220/22/3/1147.

[112] Lu Tan et al. “Comparison of RetinaNet, SSD, and YOLO v3 for
real-time pill identification”. In: BMC Medical Informatics and De-
cision Making 21 (Nov. 2021). doi: 10.1186/s12911-021-01691-8.

[113] Juan Terven and Diana-Margarita Cordova-Esparza. “A Compre-
hensive Review of YOLO: From YOLOv1 to YOLOv8 and Beyond”.
In: (Apr. 2023).

[114] TheWorldBank. “World Bank Group Is Leading the Effort on Methane
Emissions Reduction with Impactful Projects and Initiativest”. In:
(2022). url: https://www.worldbank.org/en/news/factsheet/
2022/09/19/world- bank- group- is- leading- the- effort-
on-methane-emissions-reduction-with-impactful-projects-
and-initiatives.

[115] Ranga Rajan Thiruvenkatachari et al. “Uncertainty in using disper-
sion models to estimate methane emissions from manure lagoons in
dairies”. In: Agricultural and Forest Meteorology 290 (2020), p. 108011.

[116] Xinghao Tian et al. “Leakage detection of low-pressure gas distri-
bution pipeline system based on linear fitting and extreme learning
machine”. In: International Journal of Pressure Vessels and Piping
194 (2021), p. 104553. issn: 0308-0161. doi: https://doi.org/10.
1016/j.ijpvp.2021.104553.

[117] TitleV. “Title V Operating Permits”. In: (). url: https://www.epa.
gov/title-v-operating-permits.

[118] Tina Treude. “Anaerobic Oxidation of Methane in marine sediments.”
In: (Jan. 2004). url: http://elib.suub.uni-bremen.de/publications/
dissertations/E-Diss845_treude.pdf.

[119] Erin E Tullos et al. “Use of short duration measurements to estimate
methane emissions at oil and gas production sites”. In: Environmen-
tal Science & Technology Letters 8.6 (2021), pp. 463–467.

https://doi.org/10.1109/JSEN.2022.3157872
https://doi.org/10.1109/JSEN.2022.3157872
https://arxiv.org/abs/2306.17431
https://arxiv.org/abs/2306.17431
https://doi.org/10.3390/s22031147
https://www.mdpi.com/1424-8220/22/3/1147
https://www.mdpi.com/1424-8220/22/3/1147
https://doi.org/10.1186/s12911-021-01691-8
https://www.worldbank.org/en/news/factsheet/2022/09/19/world-bank-group-is-leading-the-effort-on-methane-emissions-reduction-with-impactful-projects-and-initiatives
https://www.worldbank.org/en/news/factsheet/2022/09/19/world-bank-group-is-leading-the-effort-on-methane-emissions-reduction-with-impactful-projects-and-initiatives
https://www.worldbank.org/en/news/factsheet/2022/09/19/world-bank-group-is-leading-the-effort-on-methane-emissions-reduction-with-impactful-projects-and-initiatives
https://www.worldbank.org/en/news/factsheet/2022/09/19/world-bank-group-is-leading-the-effort-on-methane-emissions-reduction-with-impactful-projects-and-initiatives
https://doi.org/https://doi.org/10.1016/j.ijpvp.2021.104553
https://doi.org/https://doi.org/10.1016/j.ijpvp.2021.104553
https://www.epa.gov/title-v-operating-permits
https://www.epa.gov/title-v-operating-permits
http://elib.suub.uni-bremen.de/publications/dissertations/E-Diss845_treude.pdf
http://elib.suub.uni-bremen.de/publications/dissertations/E-Diss845_treude.pdf


BIBLIOGRAPHY 123

[120] Alexander J Turner, Christian Frankenberg, and Eric A Kort. “Inter-
preting contemporary trends in atmospheric methane”. In: Proceed-
ings of the National Academy of Sciences 116.8 (2019), pp. 2805–
2813.

[121] David Tyner and Matthew Johnson. “Where the Methane Is—Insights
from Novel Airborne LiDAR Measurements Combined with Ground
Survey Data”. In: Environmental Science and Technology 55 (July
2021), 9773–9783. doi: 10.1021/acs.est.1c01572.

[122] UNEP. “Global Methane Assessment: 2030 Baseline Report”. In:
(2022). url: https://www.unep.org/resources/report/global-
methane-assessment-2030-baseline-report.

[123] USGCRP. “Climate Science Special Report”. In: (2017). url: https:
//science2017.globalchange.gov/downloads/CSSR2017_FullReport.
pdf.

[124] D. J. Varon et al. “Integrated Methane Inversion (IMI 1.0): a user-
friendly, cloud-based facility for inferring high-resolution methane
emissions from TROPOMI satellite observations”. In: Geoscientific
Model Development 15.14 (2022), pp. 5787–5805. doi: 10.5194/
gmd-15-5787-2022. url: https://gmd.copernicus.org/articles/
15/5787/2022/.

[125] D. J. Varon et al. “Quantifying methane point sources from fine-scale
satellite observations of atmospheric methane plumes”. In: Atmo-
spheric Measurement Techniques 11.10 (2018), pp. 5673–5686. doi:
10.5194/amt-11-5673-2018. url: https://amt.copernicus.
org/articles/11/5673/2018/.

[126] Daniel Varon et al. “Quantifying Time-Averaged Methane Emissions
from Individual Coal Mine Vents with GHGSat-D Satellite Observa-
tions”. In: Environmental Science & Technology XXXX (July 2020).
doi: 10.1021/acs.est.0c01213.

[127] Daniel Varon et al. “Satellite Discovery of Anomalously Large Methane
Point Sources From Oil/Gas Production”. In: Geophysical Research
Letters 46 (Nov. 2019). doi: 10.1029/2019GL083798.

[128] Daniel J. Varon et al. “Quantifying Time-Averaged Methane Emis-
sions from Individual Coal Mine Vents with GHGSat-D Satellite Ob-
servations”. In: Environmental Science & Technology 54.16 (2020).
PMID: 32672947, pp. 10246–10253. doi: 10.1021/acs.est.0c01213.
eprint: https://doi.org/10.1021/acs.est.0c01213. url: https:
//doi.org/10.1021/acs.est.0c01213.

https://doi.org/10.1021/acs.est.1c01572
https://www.unep.org/resources/report/global-methane-assessment-2030-baseline-report
https://www.unep.org/resources/report/global-methane-assessment-2030-baseline-report
https://science2017.globalchange.gov/downloads/CSSR2017_FullReport.pdf
https://science2017.globalchange.gov/downloads/CSSR2017_FullReport.pdf
https://science2017.globalchange.gov/downloads/CSSR2017_FullReport.pdf
https://doi.org/10.5194/gmd-15-5787-2022
https://doi.org/10.5194/gmd-15-5787-2022
https://gmd.copernicus.org/articles/15/5787/2022/
https://gmd.copernicus.org/articles/15/5787/2022/
https://doi.org/10.5194/amt-11-5673-2018
https://amt.copernicus.org/articles/11/5673/2018/
https://amt.copernicus.org/articles/11/5673/2018/
https://doi.org/10.1021/acs.est.0c01213
https://doi.org/10.1029/2019GL083798
https://doi.org/10.1021/acs.est.0c01213
https://doi.org/10.1021/acs.est.0c01213
https://doi.org/10.1021/acs.est.0c01213
https://doi.org/10.1021/acs.est.0c01213


JADE E. GUISIANO 124

[129] A. Vaughan et al. “CH4Net: a deep learning model for monitor-
ing methane super-emitters with Sentinel-2 imagery”. In: EGUsphere
2023 (2023), pp. 1–17. doi: 10.5194/egusphere-2023-563. url:
https://egusphere.copernicus.org/preprints/2023/egusphere-
2023-563/.

[130] A. T. Vermeulen et al. “COMET: a Lagrangian transport model
for greenhouse gas emission estimation â€“ forward model tech-
nique and performance for methane”. In: Atmospheric Chemistry and
Physics Discussions 6 (2006), pp. 8727–8779. doi: 10.5194/acpd-
6-8727-2006. url: https://acp.copernicus.org/preprints/6/
8727/2006/.

[131] Thumeera R Wanasinghe et al. “The internet of things in the oil
and gas industry: a systematic review”. In: IEEE Internet of Things
Journal 7.9 (2020), pp. 8654–8673.

[132] J. Wang, A. P. Ravikumar, and A. R. Brandt. “Techno-economic
Analysis of Deep-Learning-Enabled Automated Natural Gas Leak-
age Detection Technologies”. In: AGU Fall Meeting Abstracts. Vol. 2019.
Dec. 2019, GC51M-0960, GC51M–0960.

[133] J. Wang et al. “Deep Learning to Classify Methane Leak Size At Oil
and Gas Facilities”. In: 2018, A43R-3438 (Dec. 2018), A43R–3438.

[134] Jiayang Wang et al. “A Machine Learning Approach to Methane
Emissions Mitigation in the Oil and Gas Industry”. In: (Nov. 2020).
doi: 10.31223/X57W29.

[135] Jingfan Wang et al. “Machine vision for natural gas methane emis-
sions detection using an infrared camera”. In: Applied Energy 257
(2020), p. 113998. issn: 0306-2619. doi: https://doi.org/10.
1016/j.apenergy.2019.113998.

[136] Jingfan Wang et al. “VideoGasNet: Deep learning for natural gas
methane leak classification using an infrared camera”. In: Energy
238 (2022), p. 121516. issn: 0360-5442. doi: https://doi.org/10.
1016/j.energy.2021.121516. url: https://www.sciencedirect.
com/science/article/pii/S0360544221017643.

[137] Pin Wang, En Fan, and Peng Wang. “Comparative analysis of image
classification algorithms based on traditional machine learning and
deep learning”. In: Pattern Recognition Letters 141 (2021), pp. 61–
67. issn: 0167-8655. doi: https://doi.org/10.1016/j.patrec.
2020.07.042. url: https://www.sciencedirect.com/science/
article/pii/S0167865520302981.

https://doi.org/10.5194/egusphere-2023-563
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-563/
https://egusphere.copernicus.org/preprints/2023/egusphere-2023-563/
https://doi.org/10.5194/acpd-6-8727-2006
https://doi.org/10.5194/acpd-6-8727-2006
https://acp.copernicus.org/preprints/6/8727/2006/
https://acp.copernicus.org/preprints/6/8727/2006/
https://doi.org/10.31223/X57W29
https://doi.org/https://doi.org/10.1016/j.apenergy.2019.113998
https://doi.org/https://doi.org/10.1016/j.apenergy.2019.113998
https://doi.org/https://doi.org/10.1016/j.energy.2021.121516
https://doi.org/https://doi.org/10.1016/j.energy.2021.121516
https://www.sciencedirect.com/science/article/pii/S0360544221017643
https://www.sciencedirect.com/science/article/pii/S0360544221017643
https://doi.org/https://doi.org/10.1016/j.patrec.2020.07.042
https://doi.org/https://doi.org/10.1016/j.patrec.2020.07.042
https://www.sciencedirect.com/science/article/pii/S0167865520302981
https://www.sciencedirect.com/science/article/pii/S0167865520302981


BIBLIOGRAPHY 125

[138] Shirui Wang et al. “Unsupervised Machine Learning framework for
sensor placement optimization: analyzing methane leaks”. In: (Jan.
2022).

[139] Yi Wang et al. “Remote sensing image super-resolution and object
detection: Benchmark and state of the art”. In: Expert Systems with
Applications 197 (2022), p. 116793. issn: 0957-4174. doi: https:
//doi.org/10.1016/j.eswa.2022.116793. url: https://www.
sciencedirect.com/science/article/pii/S0957417422002524.

[140] Zhibao Wang et al. “An Oil Well Dataset Derived from Satellite-
Based Remote Sensing”. In: Remote Sensing 13.6 (2021). issn: 2072-
4292. doi: 10.3390/rs13061132. url: https://www.mdpi.com/
2072-4292/13/6/1132.

[141] Donald J Wuebbles and Katharine Hayhoe. “Atmospheric methane
and global change”. In: Earth-Science Reviews 57.3 (2002), pp. 177–
210. issn: 0012-8252. doi: https://doi.org/10.1016/S0012-
8252(01 ) 00062 - 9. url: https : / / www . sciencedirect . com /
science/article/pii/S0012825201000629.

[142] Haojun Xia, Alan Strayer, and Arvind P Ravikumar. “The Role
of Emission Size Distribution on the Efficacy of New Technologies
to Reduce Methane Emissions from the Oil and Gas Sector”. In:
Environmental Science & Technology 58.2 (2024), pp. 1088–1096.

[143] Yi-Jie Yang, Suman Singha, and Ron Goldman. “An automatic oil
spill detection and early warning system in the Southeastern Mediter-
ranean Sea”. In: EGU General Assembly Conference Abstracts. EGU
General Assembly Conference Abstracts. May 2022, EGU22-8408,
EGU22–8408. doi: 10.5194/egusphere-egu22-8408.

[144] Yi-Jie Yang, Suman Singha, and Roberto Mayerle. “A deep learning
based oil spill detector using Sentinel-1 SAR imagery”. In: Interna-
tional Journal of Remote Sensing 43.11 (2022), pp. 4287–4314. doi:
10.1080/01431161.2022.2109445. eprint: https://doi.org/10.
1080/01431161.2022.2109445. url: https://doi.org/10.1080/
01431161.2022.2109445.

[145] Xiao Youzi et al. “A review of object detection based on deep learn-
ing”. In: Multimedia Tools and Applications 79 (Sept. 2020). doi:
10.1007/s11042-020-08976-6.

[146] Daniel Zavala-Araiza et al. “A tale of two regions: methane emissions
from oil and gas production in offshore/onshore Mexico”. In: Envi-
ronmental Research Letters 16 (Feb. 2021). doi: 10.1088/1748-
9326/abceeb.

https://doi.org/https://doi.org/10.1016/j.eswa.2022.116793
https://doi.org/https://doi.org/10.1016/j.eswa.2022.116793
https://www.sciencedirect.com/science/article/pii/S0957417422002524
https://www.sciencedirect.com/science/article/pii/S0957417422002524
https://doi.org/10.3390/rs13061132
https://www.mdpi.com/2072-4292/13/6/1132
https://www.mdpi.com/2072-4292/13/6/1132
https://doi.org/https://doi.org/10.1016/S0012-8252(01)00062-9
https://doi.org/https://doi.org/10.1016/S0012-8252(01)00062-9
https://www.sciencedirect.com/science/article/pii/S0012825201000629
https://www.sciencedirect.com/science/article/pii/S0012825201000629
https://doi.org/10.5194/egusphere-egu22-8408
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1080/01431161.2022.2109445
https://doi.org/10.1007/s11042-020-08976-6
https://doi.org/10.1088/1748-9326/abceeb
https://doi.org/10.1088/1748-9326/abceeb


JADE E. GUISIANO 126

[147] Haichao Zhang and Jianyu Wang. “Towards Adversarially Robust
Object Detection”. In: Proceedings of the IEEE/CVF International
Conference on Computer Vision (ICCV). Nov. 2019.

[148] Lu Zhang, Zhenwei Shi, and Jun Wu. “A Hierarchical Oil Tank De-
tector With Deep Surrounding Features for High-Resolution Optical
Satellite Imagery”. In: IEEE Journal of Selected Topics in Applied
Earth Observations and Remote Sensing 8.10 (2015), pp. 4895–4909.
doi: 10.1109/JSTARS.2015.2467377.

[149] Nannan Zhang et al. “Automatic Recognition of Oil Industry Facil-
ities Based on Deep Learning”. In: IGARSS 2018 - 2018 IEEE Inter-
national Geoscience and Remote Sensing Symposium. 2018, pp. 2519–
2522. doi: 10.1109/IGARSS.2018.8518054.

[150] Siwei Zhang et al. “Atmospheric remote sensing for anthropogenic
methane emissions: Applications and research opportunities”. In:
Science of The Total Environment 893 (2023), p. 164701. issn: 0048-
9697. doi: https : / / doi . org / 10 . 1016 / j . scitotenv . 2023 .
164701. url: https://www.sciencedirect.com/science/article/
pii/S0048969723033247.

[151] Yifan Zhang, Junhui Hou, and Yixuan Yuan. “A Comprehensive
Study of the Robustness for LiDAR-based 3D Object Detectors
against Adversarial Attacks”. In: (2023). arXiv: 2212.10230 [cs.CV].

[152] Yuzhong Zhang et al. “Quantifying methane emissions from the
largest oil-producing basin in the United States from space”. In:
Science Advances 6.17 (2020), eaaz5120. doi: 10.1126/sciadv.
aaz5120. eprint: https://www.science.org/doi/pdf/10.1126/
sciadv.aaz5120. url: https://www.science.org/doi/abs/10.
1126/sciadv.aaz5120.

[153] Bryan Zhu et al. “METER-ML: A Multi-sensor Earth Observation
Benchmark for Automated Methane Source Mapping”. In: arXiv
preprint arXiv:2207.11166 (2022).

[154] Jiahe Zhu et al. “Transformer Based Remote Sensing Object De-
tection with Enhanced Multispectral Feature Extraction”. In: IEEE
Geoscience and Remote Sensing Letters (2023), pp. 1–1. doi: 10.
1109/LGRS.2023.3276052.

[155] Zijian Zhu et al. “Understanding the Robustness of 3D Object Detec-
tion with Bird’s-Eye-View Representations in Autonomous Driving”.
In: CVPR ’23. Mar. 2023.

[156] Daniel Zimmerle et al. “Methane Emissions from Gathering Com-
pressor Stations in the U.S”. In: Environmental Science & Technol-
ogy XXXX (May 2020). doi: 10.1021/acs.est.0c00516.

https://doi.org/10.1109/JSTARS.2015.2467377
https://doi.org/10.1109/IGARSS.2018.8518054
https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.164701
https://doi.org/https://doi.org/10.1016/j.scitotenv.2023.164701
https://www.sciencedirect.com/science/article/pii/S0048969723033247
https://www.sciencedirect.com/science/article/pii/S0048969723033247
https://arxiv.org/abs/2212.10230
https://doi.org/10.1126/sciadv.aaz5120
https://doi.org/10.1126/sciadv.aaz5120
https://www.science.org/doi/pdf/10.1126/sciadv.aaz5120
https://www.science.org/doi/pdf/10.1126/sciadv.aaz5120
https://www.science.org/doi/abs/10.1126/sciadv.aaz5120
https://www.science.org/doi/abs/10.1126/sciadv.aaz5120
https://doi.org/10.1109/LGRS.2023.3276052
https://doi.org/10.1109/LGRS.2023.3276052
https://doi.org/10.1021/acs.est.0c00516




i

Résumé étendu (français)

Chapitre 1. Introduction

Le changement climatique est à l’origine de l’altération des modèles clima-
tiques, y compris les augmentations des températures moyennes mondiales
et les changements dans les schémas de précipitations. Le réchauffement
climatique est un élément clé du changement climatique et est principale-
ment causé par l’accumulation de gaz à effet de serre dans l’atmosphère
terrestre, tels que le dioxyde de carbone et le méthane, dus aux activités
humaines. Le méthane est responsable d’environ 50% [43] du réchauffe-
ment global depuis l’époque préindustrielle. Par définition, le méthane est
un polluant climatique à courte durée de vie critique avec un potentiel de
réchauffement global plus de 80 fois supérieur à celui du CO2 sur une échelle
de temps de 20 ans. Le secteur Pétrolier et Gazier (P&G) est la deuxième
plus grande source d’émissions anthropiques de méthane. Contrairement à
l’agriculture, l’industrie P&G a une longue histoire de réduction des émis-
sions de méthane en raison des préoccupations de sécurité, et le méthane
peut être vendu comme gaz naturel, donc réduire les émissions a un avan-
tage financier important. L’Agence internationale de l’énergie (AIE) estime
que l’industrie peut réduire ses émissions mondiales de 78% et que jusqu’à
39% [41] de ces réductions peuvent être réalisées sans compromis financier.

Les stratégies efficaces de réduction du méthane, dépendent directement
de la caractérisation précise des sources d’émission. Cependant, le manque
de d’informations fiables copncernant les émissions de méthane a rendu
difficile pour les gouvernements de mener des actions ciblées à l’échelle et à
la vitesse nécessaires pour atteindre les objectifs de l’Engagement Méthane
Mondial - Global Methane Pledge (GMP) -.
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Motivations

Pour définir des objectifs, des réglementations et des stratégies spécifiques
de reduction des emissions de méthane, les pays s’appuient sur les inven-
taires nationaux des émissions de méthane. Ces derniers sont principale-
ment dérivés en utilisant des méthodes ascendantes qui estiment les émis-
sions totales de méthane en utilisant des facteurs d’émissions. Cependant,
diverses études (e.g. [1, 11, 93]) ont démontré la sous-estimation systéma-
tique des émissions de méthane de la chaîne d’approvisionnement P&G.
Cette constatation remet en question l’utilisation des méthodologies ascen-
dantes pour estimer les inventaires d’émissions, qui sont ensuite utilisés
pour concevoir des lignes directrices réglementaires pour la réduction des
émissions de méthane. Des informations incomplètes et non précises sur les
niveaux réels d’émissions constituent un obstacle majeur à la réduction des
émissions de méthane. Cependant, une quantité croissante de données sur
les émissions de méthane émerge grâce au lancement régulier de nouveaux
satellites dédiés à la mesure de la concentration de méthane avec une résolu-
tion spatiale de plus en plus élevée, une plus grande couverture et des seuils
de détection plus sensibles. L’innovation technologique autour des outils de
mesure du méthane en orbite tend à se concentrer sur la vision à long terme
dans le domaine de la surveillance quasi-continue. Ces avancées dans les
technologies de surveillance par satellite et leurs techniques de traitement
sont un élément clé pour permettre la caractérisation du niveau et de la
nature des émissions de méthane par une surveillance quasi-continue. En
combinant les avantages respectifs des estimations ascendantes et descen-
dantes des émissions de méthane, on améliorera finalement leur précision.

L’Observatoire International des Émissions de Méthane (IMEO) du Pro-
gramme des Nations Unies pour l’Environnement (PNUE) a pour objectif
de fournir des données en quasi en temps réel sur les émissions de méthane
issues du secteur des combustibles fossiles. Il intègre des informations de
diverses sources, y compris des satellites comme TROPOMI, GHGSat et
MethaneSAT. Afin de pouvoir tirer partie de ces données et créer des infor-
mations utiles pour l’orientation des politiques de réduction des émissions
de méthane, ces données d’émissions doivent être reliée à la source à leur
origine pour caracteriser les comportements emetteurs de ces dernières.
Pour ce faire, il est nécessaire d’attribuer toutes ces détections de méthane
aux infrastructures, sites et opérateurs pétroliers et gaziers à leurs origines.
Afin de parvenir à ces attributions pour chaque détection d’émissions de
méthane de différents satellites à différents emplacements, il est nécessaire
que le processus d’attribution repose sur des méthodes automatiques via
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l’usage de l’intelligence artificielle.

Contributions

Figure 6.1: Méthode complète pour la détermination automatisée du profil
d’émissions des infrastructures pétrolières et gazières. Source des Image :
@Google earth.

• Conception d’un ensemble de données de référence d’images satel-
litaires à haute résolution annotée en fonction des infrastructures
pétrolières et gazières;

• Détection et reconnaissance automatisées des infrastructures pétrolières
et gazières basées sur des algorithmes de détection d’objets (fine-
tuning et comparaisons de 3 types d’algorithme de detection d’objet);

• Détermination des effets du pré-entraînement des 3 algorithmes de
détection d’objets sur leurs performances;

• Sensibilité et robustesse des 3 algorithmes et leurs modèles de détec-
tion d’objets aux attaques adverses basées sur les satellites;

• Association automatisée des émissions de méthane aux sites de la
chaîne d’approvisionnement en pétrole et en gaz, aux opérateurs pétroliers
et gaziers et à l’extension temporelle automatisée des campagnes de
mesures passées;

• Méthode complète pour la détermination automatisée du profil d’émissions
des infrastructures pétrolières et gazières illustrée par la Figure 6.1.
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Chapitre 2. Émissions de méthane du secteur
pétrolier et gazier

Le Chapitre 2 présente le contexte des émissions de méthane dans l’industrie
pétrolière et gazière et son rôle dans le réchauffement climatique, les outils
et méthodes existants pour mesurer les émissions de méthane ainsi que le
cadre réglementaire actuel et ses défis.

Le méthane (CH4) est un puissant gaz à effet de serre, dont l’impact sur
le climat est estimé 84 fois supérieur à celui du dioxyde de carbone (CO2)
sur 20 ans et 28 fois sur 100 ans. Malgré sa courte durée de vie dans
l’atmosphère, les concentrations de méthane ont presque triplé depuis l’ère
préindustrielle, contribuant à environ 5% du réchauffement climatique. En
2022, les niveaux de méthane ont augmenté de 14,0 ppb, dépassant les
prévisions, indiquant une tendance inquiétante et conduisant à une aug-
mentation de 1,25°C des températures mondiales au cours du siècle dernier.
Les émissions de méthane proviennent à la fois de sources naturelles et
humaines. Les sources naturelles, principalement les zones humides, con-
tribuent à environ 40 % des émissions mondiales de méthane, tandis que
les sources anthropiques, notamment l’agriculture, la production d’énergie
et la gestion des déchets, en représentent 60%. Ces émissions contribuent
au réchauffement de la planète et peuvent entraîner la libération d’autres
gaz à effet de serre provenant de sources telles que les hydrates de méthane
présents dans le pergélisol et les océans. Les concentrations de méthane
dans l’atmosphère sont mesurées en parties par million (ppm) ou en par-
ties par milliard (ppb). Des capteurs sensibles au méthane, classés en deux
catégories : in situ et à distance, sont utilisés pour quantifier les émis-
sions. Les satellites sont des outils essentiels pour monitorer le méthane,
chacun d’entre eux ayant des résolutions spectrales et spatiales uniques.
L’estimation des émissions de méthane fait appel à deux approches : as-
cendante et descendante. Les méthodes ascendantes utilisent les données
d’activité et les facteurs d’émission pour calculer les émissions, tandis que
les méthodes descendantes utilisent les observations du méthane atmo-
sphérique.

Le secteur des combustibles fossiles, y compris les activités pétrolières et
gazières, a produit environ 135 millions de tonnes d’émissions de méthane
en 2022, soit près de 40% des émissions de méthane d’origine humaine.
Le secteur a un potentiel de réduction de 70% grâce aux technologies ex-
istantes, plus de 75% des émissions de méthane provenant d’activités en
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amont telles que le forage et la production. Diverses politiques et initia-
tives ont été mises en place pour réduire les émissions de méthane, mais il
n’existe pas de solution unique et l’efficacité des politiques dépend des cir-
constances spécifiques à chaque juridiction. L’estimation précise des émis-
sions de méthane se heurte notamment à la sous-estimation systématique
des émissions et à l’exclusion des super-émetteurs, qui représentent environ
40% des émissions totales de méthane. Des initiatives telles que le Parte-
nariat pour le méthane dans l’industrie pétrolière et gazière (OGMP) et le
Système d’alerte et de réponse pour le méthane (MARS) visent à fournir
des données plus précises et plus complètes sur les émissions de méthane.
La mise en œuvre de réglementations efficaces en matière d’émissions de
méthane nécessite une nouvelle méthode d’inventaire fiable qui intègre des
profils d’émissions de méthane à plusieurs niveaux. L’intelligence artificielle
(IA) est essentielle pour traiter et analyser la grande quantité de données
en temps réel et à l’échelle mondiale.

Chapitre 3. Détection et reconnaissance au-
tomatisées des infrastructures pétrolières et gaz-
ières

Le Chapitre 3 présente d’abord l’état de l’art des méthodes de monitor-
ing des émissions de méthane, de la détection automatisée du panache de
méthane à la prévision des émissions de méthane basée sur l’utilisation
de l’intelligence artificielle. Il expose ensuite les performances de trois
familles d’algorithmes de détection d’objets que nous avons adapté pour
la reconnaissance automatique d’infrastructures pétrolières et gazières sur
des images satellite à haute résolution. Il détaille également l’effet du pré-
entraînement et des bruits de l’image satellite sur les performances de la
détection d’objets.

Dans le contexte des émissions de méthane et de la surveillance des in-
frastructures P&G, les applications de l’IA se sont développées en raison
de la disponibilité de vastes ensembles de données provenant de capteurs
aériens et terrestres. Des techniques telles que les réseaux neuronaux convo-
lutifs (CNN) sont utilisées pour la détection automatique des panaches de
méthane, et l’IA est employée pour la prévision des émissions, la détection
des défauts dans les pipelines, l’optimisation du placement des capteurs et
la comparaison des méthodes traditionnelles de détection et de réparation
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des fuites (LDAR) avec les méthodes LDAR basées sur la ML. Les algo-
rithmes de reconnaissance d’objets, qui font partie de la vision par ordina-
teur, identifient et localisent automatiquement des objets dans des images
ou des vidéos. Les méthodes basées sur les neurones sont généralement plus
performantes que les techniques non neuronales et sont supervisées, nécessi-
tant des bases de données d’images annotées pour l’apprentissage. Il existe
différentes architectures de détection d’objets, classées en détecteurs à deux
étapes, détecteurs à une étape, et d’autres comme DETR, un détecteur basé
sur un transformateur. Dans les applications P&G, la détection d’objets
est utilisée pour des problèmes de télédétection tels que la détection de
déversements de pétrole, de réservoirs de pétrole, de puits, d’oléoducs et
d’infrastructures P&G entières. Toutefois, le fait de se concentrer unique-
ment sur des infrastructures spécifiques pourrait ne pas rendre compte de
la complexité des émissions de méthane dans le secteur de l’exploitation
et de la gestion des ressources naturelles, d’où la nécessité d’adopter des
approches plus larges incluant de multiples infrastructures.

Figure 6.2: Présentation des étapes de la méthode O&GProfile. Résultats
de la détection visuelle d’objets par YOLO v8, FASTER-RCNN et DETR
pré-entraînés sur 4 images test de la base de données OG (sources des
images). @Google Earth).

Notre étude se concentre sur la réduction des émissions de méthane dans le
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secteur du pétrole et du gaz en comprenant les profils d’émissions au niveau
de l’opérateur individuel, du site et de l’infrastructure afin d’informer des
mesures réglementaires efficaces. L’étude utilise le bassin permien aux
États-Unis comme étude de cas, en employant et comparant trois algo-
rithmes de détection d’objets : YOLO, FASTER-RCNN et DETR (cf.
Figure 6.2) et les affine en utilisant une base de données spécialement
conçue des infrastructures (P&G) avec des images satellite à haute réso-
lution du bassin permien. L’étude évalue les algorithmes à l’aide de la
précision moyenne (AP) et évalue leur robustesse par rapport aux varia-
tions des images satellites. Les principales conclusions de l’étude indiquent
que YOLO v8 a dépassé les deux autres algorithmes en termes de pré-
cision dans la plupart des scénarios, que FASTER-RCNN a montré des
performances supérieures dans l’identification de styles de compresseurs
spécifiques, et que DETR a eu des performances adéquates mais a été
généralement dépassé par YOLO v8. En termes de robustesse face aux
variations des images satellite, FASTER-RCNN a été le moins affecté mais
n’a pas réussi à détecter les puits, YOLO v8 a fait preuve d’une plus grande
sensibilité mais a atteint la précision moyenne la plus élevée (mAP) après
l’entraînement, et DETR a montré des performances variées face à dif-
férentes variations d’images mais a généralement été moins résilient que
FASTER-RCNN. Nos expériences concluent que si YOLO v8 fait preuve
de la plus grande précision dans la détection des infrastructures OG, le
choix de l’algorithme doit tenir compte des exigences spécifiques et des
types d’infrastructures à détecter. Il est également essentiel de prendre en
compte l’impact des bruits communs que les images satellitaires peuvent
contenir pour améliorer la robustesse des algorithmes dans les applications
réelles. En effet, d’après nos expérimentations ces bruits tels que les distor-
sions tangentielles, les bruits Gaussien, etc. impactent tous d’une manière
plus ou moins prononcé nos 3 algorithmes. Les directions de recherche
futures suggérées par l’étude comprennent l’adaptation de la méthode à
d’autres bassins de pétrole et de gaz, l’exploration d’autres paradigmes
d’apprentissage tels que l’apprentissage "few-shot" et l’apprentissage "auto-
supervisé", et l’étude de méthodes d’apprentissage d’ensemble pour com-
biner les points forts des algorithmes et modèles testés.
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Chapitre 4. Attribution automatisée des panaches
de méthane

Le Chapitre 4 présente une méthode d’association automatique des émis-
sions de méthane aux différentes parties de la chaîne d’approvisionnement
en pétrole et en gaz et aux opérateurs, basée sur l’utilisation de l’algorithme
de clustering DBSCAN. Il décrit également notre méthode pour l’association
automatique des panaches de méthane aux infrastructures pétrolières et gaz-
ières.

Figure 6.3: Présentation des étapes de la méthode O&GProfile.

Les progrès de la technologie des capteurs satellitaires point-source ont
amélioré les estimations des émissions de méthane, permettant une surveil-
lance quasi-constante sur de vastes zones. Cependant, le traitement de
l’énorme quantité de données générées nécessite des techniques avancées
de transformation des données, y compris des algorithmes d’apprentissage
automatique. Les données des satellites spécialisés dans la détection du
méthane fournissent des détails cruciaux sur chaque panache de méthane,
mais l’identification de la source exacte d’une fuite de méthane nécessite
l’intégration des données satellitaires avec des informations détaillées sur
l’P&G au niveau du sol. Actuellement, il n’existe pas de méthodes au-
tomatisées permettant d’associer les détections de méthane à des sources
spécifiques, ce qui rend le processus long et sujet aux erreurs. L’utilisation
de l’IA et de la ML peut automatiser ce processus, améliorer l’efficacité et la
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précision, et permettre une réponse plus dynamique aux fuites de méthane,
conduisant à des actions opportunes pour atténuer les émissions et aider
l’industrie de l’P&G à réduire son impact sur l’environnement.

Nos travaux sur l’attribution des sites et des opérateurs P&G à l’aide de
données satellitaires se concentrent sur le bassin permien aux États-Unis, le
plus grand bassin P&G des États-Unis, largement étudié pour les émissions
de méthane. Notre étude utilise des données provenant du satellite Carbon-
Mapper et des campagnes aériennes du GAO du projet PermianMAP lancé
par l’Environmental Defense Fund (EDF). L’objectif principal est d’annoter
les détections brutes provenant d’un satellite point-source "X" en utilisant
les données PermianMAP afin de collecter des profils d’émission. La méth-
ode proposée (cf. Figure 6.3), appelée P&GProfile, utilise l’algorithme de
clustering DBSCAN pour regrouper les détections satellitaires et Permi-
anMAP par site permettant de transferer les annotations (type de site et
operateur) PermianMAP aux données satellitaires non annotées. Notre
méthode utilise ensuite l’algorithme KDtree du plus proche voisin pour
vérifier et corriger les clusters, ce qui permet d’obtenir un cluster pour
chaque site. Le second volet de nos travaux se concentre également sur
l’attribution des émissions de méthane à leurs infrastructures P&G grâce à
des techniques avancées de détection d’objets, en utilisant des algorithmes
de détection d’objets précédemment développés (cf. Chapitre 2.3) pour
identifier et catégoriser les infrastructures P&G telles que les réservoirs,
les puits et les compresseurs. Les panaches de méthane sont associés à
l’infrastructure la plus proche en fonction de leur proximité spatiale, ce
qui permet d’établir un lien précis entre les émissions de méthane et les
infrastructures qui en sont la source, améliorant ainsi la surveillance et la
compréhension des émissions de méthane provenant des activités P&G.

En conclusion, notre méthode O&GProfile emploie des techniques de re-
groupement pour l’attribution automatique des sites et des opérateurs des
détections satellitaires d’P&G, atteignant un taux de réussite de 98,8%
dans l’association des sites via DBSCAN, encore amélioré à 100% avec la
correction Voronoi-NN-KDTree. Cette méthode permet de générer des pro-
fils d’émissions à partir des sites P&G, permettant une catégorisation par
type de site et par opérateur, et peut être adaptée à différents ensembles de
données et régions, bien qu’elle s’appuie sur des informations au sol qui peu-
vent devenir obsolètes en raison de l’évolution rapide du paysage P&G. La
méthode suppose que l’infrastructure la plus proche de l’emplacement es-
timé d’une émission de méthane est la source d’émission, mais l’incertitude
quant à l’emplacement de l’émission introduit une complexité dans ce pro-
cessus d’attribution. Pour pallier ce problème, un périmètre d’incertitude



x

autour de l’emplacement estimé de chaque détection pourrait déterminer
l’infrastructure source la plus probable, en exprimant les résultats de l’association
sous forme de probabilités d’appartenance à des infrastructures proches.

Chapitre 5. Inventaire dynamique et intelligent
des émissions de méthane

Figure 6.4: Présentation du cadre de l’inventaire dynamique du méthane.
Source : @Google earth.

Le Chapitre 5 présente le cadre de l’Inventaire Dynamique et Intelligent
des Émissions de Méthane (DIMEI), illustré par la figure 6.4, qui intègre
des techniques de détection d’objets (Chapitre 2.3) et d’association au-
tomatique (Chapitre 2.4) pour améliorer la surveillance et l’inventaire des
émissions de méthane des infrastructures pétrolières et gazières (P&G).
Le cadre DIMEI est structuré de manière à permettre un monitoring en
temps quasi-réel permettant la détermination des profils d’émissions aux
niveaux des infrastructures, sites et opérateurs P&G. Ces derniers, collec-
tés sur le long terme, pourront permettre de caractériser des événements
spécifiques tels que les émissions volontaires et involontaires, de caractériser
le comportement émetteur aux divers niveaux, mais aussi la prévision des
spatio-temporelle des émissions de méthane. Le DIMEI se base sur base
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de données de détections d’émissions de méthane par satellite, comprenant
les coordonnées géographiques et les taux d’émission de ces derniers, qui
sert de base aux processus analytiques du cadre. En effet, pour chaque
panache de méthane détectés, le DIMEI utilise des algorithmes de détection
d’objets pour identifier et classer les infrastructures P&G à partir d’images
satellites à haute résolution (extraites à l’emplacement de chaque panache
detecté) puis utilise un algorithme de clustering pour associer les panaches
de méthane à leurs sources. L’aspect dynamique de DIMEI est illustré par
sa capacité à collecter des informations temporelles et spatiales sur les émis-
sions de méthane (cf. Figure ci-dessus), en générant des profils d’émission
pour différents types d’infrastructures d’P&G au fil du temps.

L’aspect intelligent (à l’état de perspective) implique l’agrégation et l’analyse
des profils d’émissions à différentes échelles, pouvant révéler les tendances,
la saisonnalité et les variations irrégulières des émissions de méthane. Le
potentiel d’intégration du DIMEI avec les réglementations existantes et
futures en matière d’atténuation des émissions de méthane est détaillé,
discutant sa capacité à informer l’élaboration des politiques, à faciliter
le contrôle de la conformité et à améliorer l’efficacité de la réglementa-
tion. Le cadre DIMEI s’aligne sur des initiatives telles que l’OGMP et
IMEO, visant à fournir des données précises et granulaires sur les émissions
de méthane afin de soutenir les efforts mondiaux en matière de réduction
du méthane. En conclusion, DIMEI représente un nouvel inventaire basé
sur l’IA pour le suivi des émissions de méthane, offrant une approche dy-
namique et intelligente de la surveillance, de l’analyse et de la prévision
des émissions. Bien qu’il soit actuellement axé sur le bassin permien et
limité à certains types d’infrastructures P&G, la conception modulaire du
cadre permet des améliorations et des extensions futures à d’autres régions
et à d’autres types d’infrastructures. Des améliorations et des adaptations
essentielles sont nécessaires pour permettre un fonctionnement entièrement
automatisé, élargir le champ d’application des types d’infrastructures et
améliorer la précision des données et la résolution temporelle afin d’obtenir
des performances et une fiabilité optimales.

Chapitre 6. Conclusion

Dans cette thèse, nous avons présenté l’inventaire dynamique et intelligent
des émissions de méthane (DIMEI), un nouveau système de surveillance des
émissions de méthane pour trois types d’infrastructures P&G dans le bassin
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permien, aux États-Unis, utilisant l’intelligence artificielle. Le DIMEI re-
cueille de manière dynamique des données sur les émissions de méthane au
fil du temps, fournissant des profils d’émissions qui caractérisent les com-
portements des différentes infrastructures, sites, bassins, pays et opérateurs
de l’industrie pétrolière et gazière. Cette composante dynamique, exécuté
sur le long terme, a pour objectif de fournir des series spatio-temporelles
afin prévoir les émissions de méthane (aspect intelligent). En outre, l’aspect
intelligent du DIMEI vise à créer une marge d’action pour réduire les émis-
sions de méthane grâce aux prévisions, contribuant ainsi directement à la
réduction du méthane et à l’élaboration de réglementations en la matière.
Le DIMEI repose sur deux piliers principaux : la détection et la recon-
naissance automatisées des infrastructures P&G dans le bassin permien et
l’association automatisée des panaches de méthane détectés à des infras-
tructures P&G, des sites et des opérateurs spécifiques.

Nos contributions comprennent la mise au point méticuleuse et l’évaluation
de trois algorithmes de détection d’objets conçus pour l’identification et
la surveillance automatisées des infrastructures P&G dans le bassin per-
mien. Nous avons développé une base de données inaugurale d’images
d’infrastructures P&G grâce à l’annotation d’images satellites à haute réso-
lution et avons effectué une analyse quantitative complète des impacts de la
préformation sur les capacités de détection algorithmique. Notre nouvelle
méthode a été introduite pour automatiser l’attribution des panaches de
méthane détectés à des sites et opérateurs P&G spécifiques, reliant avec
succès plus de 100 panaches de méthane à divers types de sites P&G et
opérateurs dans le bassin permien. Notre méthode a indirectement étendu
la couverture temporelle de l’étude PermianMAP et a fourni une méthode
d’attribution automatisée des panaches de méthane détectés aux infras-
tructures P&G, tout en discutant des approches potentielles pour gérer les
incertitudes associées à ces attributions. Le Chapitre 5 a présenté le premier
DIMEI basé sur l’IA, combinant les méthodes des Chapitres 3 et 4, démon-
trant sa capacité à suivre de manière autonome les émissions de méthane
dans le temps et détaillant les futures analyses automatisées potentielles
basées sur les résultats DIMEI à moyen et long terme. Nous avons conclu
en discutant de la symbiose entre DIMEI et les réglementations pour une
réduction optimisée du méthane.

En ce qui concerne les travaux futurs, les perspectives à court terme com-
prennent l’amélioration des performances et de la robustesse de l’algorithme
de détection des objets en élargissant la base de données et en utilisant des
méthodes d’augmentation des données de télédétection, ainsi que l’amélioration
de l’adaptabilité et de l’extension de DIMEI à d’autres infrastructures et
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bassins de pétrole et de gaz par le biais de méthodes d’apprentissage su-
pervisé ou de quelques clichés. En outre, la gestion des incertitudes liées
au positionnement des panaches de méthane détectés est cruciale pour
la rigueur du processus d’attribution. Les perspectives à long terme im-
pliquent le développement de méthodes permettant de détecter et de recon-
naître automatiquement les différents types de sites P&G et les exploitants,
ce qui permet de s’affranchir de la dépendance à l’égard des études et des
bases de données existantes qui deviennent rapidement inexactes en rai-
son de l’évolution rapide du paysage P&G. En outre, l’automatisation de
l’acquisition d’informations sur les sites des exploitants d’hydrocarbures à
l’aide de méthodes de récupération sur le web à partir du programme Title
V a été proposée comme une solution potentielle, bien qu’elle reste lim-
itée. Pour le déploiement et l’utilisation futurs de DIMEI, des ajustements
sont nécessaires pour intégrer diverses sources satellitaires fournissant des
estimations différentes et pour utiliser une API pour l’extraction automa-
tique et optimisée dans le temps d’images satellitaires sur les sites de dé-
tection du méthane. DIMEI générant de grandes quantités de données sur
les émissions, de nouvelles méthodes d’élaboration des politiques basés sur
l’intelligence artificielle seront nécessaires pour traiter efficacement ces don-
nées et les transformer en informations exploitables pour concevoir des ré-
glementations sur l’atténuation du méthane, ce qui nécessitera des change-
ments dans les méthodes réglementaires pour s’adapter à ce nouveau type
d’inventaire.
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