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Abstract

Atmospheric methane is responsible for roughly half of the global warming
since pre-industrial times, relative to the net total human influence. The oil
and gas sector ranks second among anthropogenic methane sources despite
the possibility of a 39% reduction of its emissions at no net cost. How-
ever, the lack of reliable emissions data impairs the ability of governments
to implement effective mitigation actions at the scale and speed needed
to achieve the objectives set by the Global Methane Pledge. In order to
define methane-specific targets, policies, and strategies, countries are used
to rely on national methane emissions inventories. These last ones, mostly
derived using bottom-up methods (emissions factors) are well-known in lit-
erature to demonstrated systematic underestimation of methane emissions
from the oil and gas (O&G) supply chain. This calls into question the
use of bottom-up methodologies to estimate emission inventories, which
are then used to design regulatory guidelines for methane emissions mit-
igation. Incomplete and non accurate information about actual emission
levels is a key barrier to reducing methane emissions. However, a growing
amount of methane emissions data emerge through the regular launch of
new point source satellites dedicated to methane concentration measure-
ments with a higher resolution, greater coverage, and have more sensitive
detection thresholds. With adequate processing techniques, the data issued
from these satellites monitoring technologies is a key component to make
possible the characterization of the level and nature of methane emissions.
This thesis works then proposes an end-to-end framework for a novel dy-
namic inventory based on the use of artificial intelligence methods. This
framework allows to automatically dress methane emissions profiles by oil
and gas infrastructures, site and operators. The proposed framework is
divided into two components :

iii



1. Automated detection and recognition of oil and gas infrastructures
with the use of object detection algorithms;

2. Automated association of point source methane detections to con-
cerned oil and gas infrastructures, sites and operators with the use of
a clustering based method.

Our framework, when launched repeatedly over time, enables the auto-
mated constitution of multi-level emissions profiles (time series). These
emissions profiles, acquired on a long term period will allow the characteri-
zation of emitting behaviors and then could be used at the base of methane
mitigation regulation decisions.

Keywords: Methane; Oil & Gas; GHG inventory; Deep learning; Remote
sensing.
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Chapter 1

Introduction

Contents
1.1 Context . . ... i v v v ittt v i o
1.2 Motivations . . . . . . . 00 i e n e e .
1.3 Contributions . . . . . .. ...
1.4 Thesis Outline .. ... ........c0.....
1.5 Publications. . . ... ... ... ... ...

TR W N -

1.1 Context

Climate change is at the origin of the alteration of Earth’s climate patterns,
including increases in global average temperatures and shifts in precipita-
tion patterns. These changes have far-reaching impacts on ecosystems,
biodiversity, and human societies, leading to disruptions in agriculture, wa-
ter resources, and infrastructure, as well as exacerbating extreme weather
events such as hurricanes, droughts, and wildfires. Global warming is a key
component of climate change and is primarily driven by the accumulation
of greenhouse gases in the Earth’s atmosphere, such as carbon dioxide and
methane, due to human activities like burning fossil fuels and deforestation.
These gases trap heat from the sun, causing the Earth’s surface temperature
to rise, leading to various climatic alterations including melting polar ice
caps, rising sea levels, and changes in precipitation patterns. Methane is re-
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sponsible for 50% [43] of the global warming since pre-industrial times. By
definition, methane is a critical short-lived climate pollutant with a global
warming potential over 80 times that of CO2 on a 20-year timescale.The oil
and gas (O&G) sector is the second largest anthropogenic methane emis-
sion source. In contrast to agriculture and wetlands, the O&G industry has
a long history of reducing methane emissions due to safety concerns, and
methane can be sold as natural gas, so reducing emissions has an important
financial benefit. The International Energy Agency (IEA) estimates that
the industry can reduce its global emissions by 78% and that up to 39% [41]
of these reductions can be achieved without a financial compromise. Effi-
cient methane abatement strategies directly depend on the accurate charac-
terization of emission sources. However, the lack of reliable emissions data
has made it hard for governments to carry out targeted action at the scale
and speed needed to achieve the objectives of the Global Methane Pledge
(GMP).

1.2 Motivations

In order to define methane-specific targets, policies, and strategies, coun-
tries rely on national methane emissions inventories. These last ones are
mostly derived using bottom-up methods which estimates overall methane
emissions by using activity data (e.g., the number of facilities or the ex-
tent of operations) multiplied by standardised emission factors which are
the average amount of methane emitted per facilities or operations. How-
ever, various studies (e.g. [1, 11, 93]) have demonstrated the systematic
underestimation of methane emissions from the O&G supply chain. This
finding calls into question the use of bottom-up methodologies to estimate
emission inventories, which are then used to design regulatory guidelines
for methane emissions reduction. Incomplete and non accurate information
about actual emission levels is a key barrier to reducing methane emissions.
However, a growing amount of methane emissions data emerge through the
regular launch of new satellites dedicated to methane concentration mea-
surements with a higher resolution, greater coverage, and have more sen-
sitive detection thresholds. Technological innovation around space-borne
methane measurement tools tends to focus its long-term vision in the area
of quasi-continuous monitoring. These advances in satellites monitoring
technologies and their processing techniques are a key component to permit
the characterization of the level and nature of methane emissions through
a quasi-continuous monitoring. By combining the respective advantages
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of top-down and bottom-up methane emission estimations will ultimately
improve their precision.

The primary objective of the International Methane Emissions Observa-
tory (IMEO), established under the auspices of the United Nations Envi-
ronment Programme (UNEP), is to furnish near-real-time data pertaining
to methane emissions originating from the fossil fuel sector. This initiative
involves the assimilation of data from diverse sources, including satellite
platforms such as TROPOMI, GHGSat, and MethaneSAT. Effectively har-
nessing these datasets to inform methane emissions reduction policies ne-
cessitates the establishment of a robust linkage between emissions data and
their respective sources, thereby enabling the characterization of emitting
behaviors. Achieving this entails attributing all methane detections to the
specific oil and gas infrastructures, sites, and operators from which they
originate. Given the disparate nature of methane emission detections ema-
nating from various satellites and locations, the attribution process neces-
sitates automation through the development of a new dedicated,framework
based on artificial intelligence methodologies.

Indeed, in this context, artificial intelligence methods will assume a central
role in automating and optimizing all steps of this process simultaneously.
Such a framework will facilitate the expansion of our understanding of the
spatial distribution, occurrence, and characterization of methane emissions.

1.3 Contributions

Satellite methane Automated association of

plume detections methane plume to facilities

0&G facilites detection
andrecogniton B EEES

Yoe ; L
e Plume ID
Q A Q { g Latitiude,  "rastructure 1D .
j i g~ Meni T Longitude Y .
Obiect detection Automated [ CHirme T V- .
model - matching A Infrastructure 1D
i Infrastructure type

Infrastructure ID CH4
emission profile

CH4 rate

Figure 1.1: End-to-end dynamic methane emissions inventory framework.
Images source : @Google earth.

The thesis contributions are the following:
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e Conception of a benchmark dataset of high resolution satellite images
of oil and gas infrastructures;

e Automated oil and gas infrastructure detection and recognizing based
on object detection algorithms;

e Determination of object detection algorithm’s pre-training effects on
their performances;

e Sensitivity and robustness of object detection models to satellite based
adversarial attacks;

e Methane Emissions automated association to oil and gas supply-chain
sites, oil and gas operators and ground surveys extension;

e End-to-end framework for Automated determination of oil and gas
infrastructures emissions profile illustrated by the Figure 1.1

1.4 Thesis Outline

The thesis manuscript is organized as follows :

e Chapter 2 introduces the context of methane emissions in the oil
and gas industry and its role in global warming, the existing tools
and methods for measuring methane emissions as well as the current
regulation framework and its challenges.

e Chapter 3 first presents the state of the art of methane emissions
monitoring methods from automated methane plume detection to
methane emissions forecasting based on the use of artificial intelli-
gence. Then, presents the performance of 3 families of object de-
tection algorithms for the automatic recognition of oil and gas in-
frastructures on high-resolution satellite images. It also presents the
effect of pre-training and satellite image noises on object detection
performances.

e Chapter 4 presents a method for automatically associating methane
emissions with different parts of the oil and gas supply chain and
operators, based on the use of a clustering algorithm. It also describes
a framework for the automatic association of methane plumes with
oil and gas infrastructures.
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e Chapter 5 first presents a end to end framework for a dynamic and in-
telligent methane emissions inventory. Then, it discusses its potential
contributions to methane mitigation policies design.

e Chapter 6 concludes the thesis works and introduces perspectives of
futures works.

1.5 Publications

Journal

e Jade E Guisiano, Zitely A. Tzompa-Sosa, Thomas Lauvaux, Eric
Moulines, Jérémie Sublime. "Dynamic & Intelligent Methane Emis-
sions Inventory (DIMEI) Framework: Next-generation methane emis-
sion inventory for oil and gas industry based on Artificial Intelligence"
Iscience CellPress (2024) [peer-review|

Articles

e Jade E Guisiano, Domenico Barretta, Eric Moulines, Thomas Lau-
vaux, Jérémie Sublime. "Object detection models sensitivity & ro-
bustness to satellite-based adversarial attacks". International Geo-
science and Remote Sensing Symposium IGARSS (2024), Athens,
Greece. [peer-review]

e Jade E Guisiano, Thomas Lauvaux, Eric Moulines, Jérémie Sublime
"Oil and Gas Automatic Infrastructure Mapping: Leveraging High-
Resolution Satellite Imagery Through Fine-Tuning of Object Detec-
tion Models". International Conference On Neural Information Pro-
cessing ICONIP (2023), Changsha, China.

e Jade E Guisiano, Thomas Lauvaux, Claudio Cifarelli, Eric Moulines,
Jérémie Sublime. "O&GProfile : An automated method for attribu-
tion of satellite methane emissions detections to oil and gas sites and
operators". International Conference on Machine Learning and Data
Mining MLDM (2023), New-York, United States.
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Workshop

e Jade E Guisiano, Zitely A. Tzompa-Sosa, Thomas Lauvaux. "Artifi-
cial intelligence for dynamic and intelligent methane inventory". Eu-
ropean Geosciences Union EGU General Assembly (2024), Vienna,
Austria.

e Jade E Guisiano, Eric Moulines, Thomas Lauvaux, Jérémie Sublime.
"Artificial Intelligence for Methane Mitigation : Through an Auto-
mated Determination of Oil and Gas Methane Emissions Profiles".
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Chapter 2

Methane Emissions from
the Oi1l and Gas industry

This chapter outlines the definitions and background of methane, the oil and
gas industry, and their contributions to global warming. It further discusses
existing regulations for methane mitigation, their constraints, and potential
solutions, introducing our research.

Section 2.1 defines methane and its sources, highlighting its role in global
warming. Section 2.2 presents tools for methane measurement and associ-
ated quantification methods. Section 2.3 delineates the fossil fuel sector,
with a focus on the oil and gas industry’s specificities concerning methane
emissions. Lastly, Section 2.4 reviews current methane mitigation policies,
their limitations, and introduces the foundational aspects of this thesis,
aiming to offer efficient methane mitigation solutions.
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2.1 Methane and Global Warming

2.1.1 Methane and its impacts

Figure 2.1: Different representations of methane (C'Hy) molecule [118].

Methane is a chemical compound with the molecular formula CH,, com-
posed of hydrogen (H) and carbon (C) as depicted in Figure 2.1. It is
an odorless, colorless greenhouse gas (GHG) lighter than air. Following
carbon dioxide, methane ranks as the second most significant contributor
to climate change and also impacts human and environmental health as a
pollutant[73]. While methane’s atmospheric lifetime is shorter than that of
CO», its warming potential is substantially higher. The Intergovernmental
Panel on Climate Change (IPCC) estimates that the climate impact of one
unit mass of methane is 84 times that of COs over a 20-year period and
remains 28 times greater over 100 years. These attributes position methane
as a promising target for effective GHG emissions reduction.

The greenhouse effect[60, 5, 61] is a thermal phenomenon in which solar
radiation reaching Earth’s atmosphere is partly reflected back into space by
the atmosphere, white clouds, and bright surfaces, such as polar ice caps.
Unreflected incident rays are absorbed by the Earth’s atmosphere and/or
surface, providing heat (energy) that is subsequently radiated back as in-
frared rays (black body radiation). A portion of this radiation is absorbed
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by greenhouse gases (GHGs). In a subsequent stage, the absorbed heat is re-
emitted in all directions, including back towards Earth, creating the green-
house effect that elevates surface temperatures. This mechanism maintains
a positive temperature balance on Earth; without it, temperatures would
be considerably lower. However, increasing GHG concentrations intensify
this effect, trapping more radiation and leading to rising surface tempera-
tures. Over the past century, global average temperatures have increased
by approximately 1.25°C (2.25°F), with GHG increases playing a significant
role [39][141].
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Figure 2.2: Globally-averaged, monthly mean atmospheric methane abun-
dance determined from 1983 to 2022. Image source: National Oceanic and
Atmospheric Administration (NOAA).

As shown in Figure 2.2, methane concentrations in the atmosphere sur-
passed 1,900 parts per billion (ppb) last year, nearly tripling pre-industrial
levels. In 2022, methane concentration rose by 14.0 ppb, representing the
fourth-largest annual increase since the National Oceanic and Atmospheric
Administration (NOAA) began systematic measurements in 1983. This rise
continues the trend observed in 2020 and 2021. The Global Methane Assess-
ment (GMA) 2021 reported a notable acceleration in atmospheric methane
concentrations during the 2010s, resulting in five-year average growth rates
not observed since the 1980s.

The observed methane levels substantially exceeded those projected in the
2°C scenario outlined in the IPCC 2013 Assessment[42]. Since the publi-
cation of the Global Methane Assessment (GMA) in 2021, official atmo-
spheric values for 2020 have been established by the World Meteorological
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Organization (WMO) Global Atmosphere Watch Programme (GAW). The
globally averaged surface methane level for 2020 was measured at 1889 + 2
ppb, indicating a 262% increase from pre-industrial levels. The annual in-
crease from 2019 to 2020 was 11 ppb, surpassing the average annual growth
rate observed over the previous decade. Data analysis from U.S. National
Oceanic and Atmospheric Administration (NOAA) marine boundary layer
sites, accounting for approximately 40% of the GAW network, identified a
methane increase of 17.0 ppb in 2021, marking the highest annual increase
in the 38-year record.

Preliminary analysis of methane growth rates, derived from satellite to-
tal column data using SCTAMACHY /ENVISAT and TANSO-FTS/GOSAT
products from SRON, revealed a rate of 16.3 ppb per year in 2021. This
rate represents the highest value observed in the 2003-2021 record. Both
ground-based and satellite observations indicate that atmospheric methane
levels are continuing to rise rapidly as the world progresses into the 2020s
[122, 22, 120].

Global Land and Ocean
January Temperature Anomalies

1.40°C r2.52°F

1.20°CH [2.16°F

0.80°C 144°F

sonc ||| ||| il |I.I| | | |I|| |||| || || || |

||| Illl‘“ || |||||||| |I ||||‘ |||||||'||||||‘||||‘||||lll||-IIlll‘||| ||||-- || [y ™ 000

.72°F

3

-0.40°C [-0.72°F

-0.80°C T T T T —+-1.44°F
1850 1860 1870 1880 1890 1900 1910 1920 1930 1940 1950 1960 1970 1980 1990 2000 2010 2023

Figure 2.3: Global temperature anomaly by year in Fahrenheit and degree
Celsius from 1880 to 2022. image source: National Oceanic and Atmo-
spheric Administration (NOAA).

Methane contributes to approximately 50% [43] of global warming since pre-
industrial times, relative to the net total human influence. Global warming
refers to the long-term increase in Earth’s average surface temperature due
to the greenhouse effect. While Earth’s surface warming has been non-
uniform, the overall trend in globally averaged temperature indicates more
regions experiencing warming than cooling. According to NOAA’s 2023
Annual Climate Report[79] and Figure 2.3, the combined land and ocean
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temperature has increased at an average rate of 0.11°F (0.06°C) per decade
since 1850, resulting in a total increase of approximately 2°F. The rate
of warming has accelerated since 1982, with an average increase of 0.36°F
(0.20°C) per decade. The latest Synthesis Report from the IPCCJ[43] at-
tributes this warming trend to human activities, particularly GHG emis-
sions, with global surface temperatures reaching 1.1°C above pre-industrial
levels (1850-1900) between 2011 and 2020[122]. If GHG concentrations
and associated global temperatures continue to rise, widespread impacts
on global climate are anticipated, with some already underway [13] [123].
These impacts are expected to have significant implications for global food
production, human health, and the habitability of coastal and arid regions.

2.1.2 Methane sources
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Figure 2.4: 2019 Anthropogenic Methane emission by sources in United
States. Image source: United States Environmental Protection Agency
(EPA).

Methane emissions can be categorized into two groups: natural sources and
anthropogenic sources. According to the EPA, natural sources contribute
to approximately 40% of global methane emissions. Among these, natural
wetlands are the predominant source, emitting methane through bacterial
decomposition of organic materials in oxygen-deprived conditions. Addi-
tional minor sources include termites, oceans, sediments, volcanoes, and
wildfires. Anthropogenic sources, as shown in Figure 2.4, account for 60%
of global methane emissions. Thus, over half of all methane emissions orig-
inate from the following primary human activities [114]:
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e Agriculture: Agriculture represents the largest anthropogenic source
of methane emissions, accounting for approximately 41% of total an-
thropogenic emissions. This is primarily attributed to enteric fermen-
tation in ruminant livestock, which generates methane as a digestion
byproduct. Additionally, manure management and rice cultivation
contribute to methane emissions from this sector.

e Energy Production: The energy sector, encompassing the extrac-
tion, production, and utilization of fossil fuels, is a significant con-
tributor to methane emissions, representing around 35% of the total.
This includes emissions from oil and natural gas production, coal min-
ing, as well as the combustion of fossil fuels for electricity generation,
heating, and transportation.

e Waste Management: Organic waste management practices, such
as landfilling, composting, and wastewater treatment, can produce
methane through anaerobic decomposition. Landfills stand out as a
significant source of methane emissions, contributing approximately
20% of total anthropogenic emissions.

e Others: Several other categories also contribute to methane emis-
sions, albeit with lower contributions. These include specific indus-
trial processes and biomass burning, encompassing wildfires, defor-
estation, and peatlands.

These emissions sources, by releasing methane, contribute to global warm-
ing, which in turn triggers various mechanisms leading to the release of
greenhouse gases (GHGs):

e Methane Hydrates: Methane hydrates are ice-like structures con-
taining methane molecules trapped within water molecules. These
deposits, found in permafrost regions and deep ocean sediments, have
the potential to release large amounts of methane if they melt or are
disturbed.

e Permafrost: Permafrost refers to soil that remains frozen through-
out the year and contains substantial amounts of organic carbon. As
permafrost thaws due to climate change, organic matter decomposes,
releasing methane and carbon dioxide into the atmosphere.

e Methane Seeps: Methane seeps are areas where methane gas es-
capes from the seafloor into the water column. These seeps can occur
naturally or as a result of human activities, such as oil and gas drilling.
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In summary, methane emissions originate from a range of natural and
human-made sources, with agriculture, energy production, and waste man-
agement serving as the largest anthropogenic contributors.

2.2 Methane emissions measurement

2.2.1 Measurement instruments

The concentration of methane in the atmosphere is determined by its emis-
sions. Elevated methane emissions result in increased atmospheric concen-
trations, which are typically measured in parts per million (ppm) or parts
per billion (ppb). The estimation and quantification of methane emissions
utilize methane-sensitive sensors employing various specific techniques (cf.
Section 2.2.2). These sensors facilitate the calculation of emission rates,
distinguishing between source emissions and background levels. The design
and type of sensor dictate the measurable parameters and operating condi-
tions. Sensor placement can be categorized into two primary approaches:
in-situ measurements and remote sensing.

In-situ sensors necessitate direct contact with methane molecules within a
plume for chemical or physical interactions and, therefore, must be situated
on-site, either near or directly within the methane plume [119][33]. Con-
versely, other sensors, suitable for both in-situ and remote sensing|[150]
applications, operate based on the detection of electromagnetic signals,
such as infrared light from the sun or a laser. As electromagnetic radia-
tion traverses the atmosphere, specific wavelengths are absorbed by various
molecules, each exhibiting a unique absorption signature. Multiple detec-
tion instruments, including optical gas imaging and multi-spectral /hyper-
spectral imaging, leverage these methane absorption characteristics for de-
tection and measurement.

Methane absorbs infrared radiation across a specific range of wavelengths,
with pronounced absorption in certain wavelength regions. Methane demon-
strates absorption characteristics throughout the infrared spectral range of
0.75-14 pm. Additionally, other atmospheric gases, including CO2, CO, O3,
N20, and water vapor, possess unique absorption signatures that partially
overlap with methane absorption wavelengths. Consequently, instrument
systems must be meticulously designed to differentiate and isolate methane
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signals from potential interference caused by these other gases.
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Figure 2.5: Tools for Methane emissions measurement and its characteris-
tics
[77].

Measurements of methane concentrations can be conducted across vari-
ous spatial and temporal scales, ranging from broad global assessments to
localized evaluations of individual sources. The temporal interval for con-
centration measurements can vary from long-term, annual assessments to
short-term, near-real-time evaluations. These parameters are influenced by
the sensor characteristics and their placement. Sensor locations can vary
from ground-based installations to satellites, enabling measurements at dif-
ferent spatial scales based on altitude.

As depicted in Figure 2.5, at high altitudes (100-10,000 km from the emis-
sion source), satellite-based sensors can cover extensive spatial scales, in-
cluding global, continental, and regional levels (100-1000 km?). The mea-
surement frequency can range from continuous to hourly, daily, or annual
averages. At intermediate altitudes (100m-10km), aircraft campaigns and
tower-based measurements enable regional-level emissions readings (10-100
km?) with instantaneous or daily measurements. Additionally, targeted
measurements can be obtained for specific sites (<1-10 km?), such as indus-
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trial facilities, using aircraft campaigns, low-altitude drones (10m-10km),
providing instantaneous to daily measurements. Lastly, as previously men-
tioned, in-situ sensors can be positioned near or directly within the emission
source, providing instantaneous or longer-term measurements.
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Figure 2.6: Satellite instruments for observation of methane in the short-
wave infrared (SWIR) by area flux mapper and point sources imagers.

The current satellite landscape includes at least 16 satellites dedicated to
monitoring methane concentrations, as shown in Figure 2.6. Each satellite
possesses distinct characteristics:

e Spectral resolution: Refers to the capability of a satellite sensor to
measure specific wavelengths within the electromagnetic spectrum. A
finer spectral resolution corresponds to a narrower wavelength range
for a particular channel or band.

e Spatial resolution: Represents the smallest object (pixel) that the
sensor can resolve or the ground area imaged. Each pixel corresponds
to a specific area of the Earth’s surface and has an associated intensity
value and location address within the two-dimensional image.

e Revisit time: Denotes the interval between two successive obser-
vations of the same point on Earth by the satellite. This parameter
is influenced by the satellite’s technical capabilities, such as attitude
control and the electronic steering capability of the payload antenna.
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Satellite instruments can be categorized into two types: area flux mappers
and point source imagers, each with distinct characteristics. Area flux map-
pers are characterized by high precision (<1%) and pixel sizes ranging from
0.1 to 10 kilometers, facilitating the quantification of total methane emis-
sions at regional to global scales. These instruments are particularly suited
for assessing area sources, which may encompass a vast number of indi-
vidually small emitters that collectively contribute to significant emissions.
Notable examples of area flux mappers include GOSAT and TROPOMI,
which offer continuous daily mapping and long-term methane trend analy-
sis, respectively.

Conversely, point source imagers, such as the GHGSat constellation and

various hyperspectral and multispectral land imaging sensors (e.g., PRISMA,
Sentinel-2, Landsat-8/9, WorldView-3), feature finer pixel sizes (<60 me-

ters). They are designed to detect individual point sources by imaging their

plumes, as illustrated in Figure 2.7. These imagers have detection thresh-

olds ranging from 100-10,000 kilograms per hour, enabling the monitoring

of large point sources[124].

Methane enhancement
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Figure 2.7: Methane plume enhancement over Libya by Satellites
TROPOMI Sentinel 5P and GHGSat Image source: FEuropean Spatial
Agency.

The constellation of satellites is planned to be extended through the contin-
uous development of technologies that offer improved spectral resolution,
spatial resolution, and temporal coverage, ultimately enabling quasi-real-
time monitoring.
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2.2.2 Emissions quantification
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Figure 2.8: Top down & Bottom-up perspectives of methane emissions
estimation.

Measurements of methane concentrations obtained at various altitudes re-
quire specific transformations to estimate methane emissions. These trans-
formations are influenced by both the sensor’s position and the selected
study area. The methodologies for estimating emissions are categorized
into two approaches: bottom-up and top-down, as illustrated in Figure 2.8:

Bottom-up. methods estimate emissions using activity data (e.g., in-
dustry segment, annual production, type of component or equipment) and
emission factors tailored to the specific facility or component analyzed. For-
mally, bottom-up methods utilize activity information, such as the number
of facilities or the scale of operations, which is then multiplied by stan-
dardized emission factors, including default values or leak rates specific to
certain equipment types.

According to the 2006 IPCC Guidelines for National Greenhouse Gas In-
ventories [81], emission factors vary based on the level of methodological
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complexity employed in these engineering calculations. The IPCC identi-
fies three methodological tiers: the first corresponds to the basic method,
requiring minimal information from the emission source. As the tier num-
ber increases, more information is needed, leading to more complex calcu-
lations. Regardless of the tier used, emission factors are generic for the
specific industry segment, facility, or component to which they apply. In
more detailed cases, these factors are derived from direct measurements at
the emission source, which are then extrapolated to represent the entire
population of similar emission sources at regional or national levels. This
approach introduces inherent uncertainty into the calculations.

For bottom-up emissions estimates, models serve multiple purposes. They
are utilized to convert methane concentration data into methane emissions
estimates and to translate methane measurements taken away from a source
into emissions measurements using atmospheric dispersion models. Sub-
sequently, these models are employed to convert emissions measurements
across a sampled population into comprehensive emissions estimates at the
facility, regional, national, or global level using statistical models.

Top-down. Rather than estimating emissions from a representative sam-
ple of devices, as done in the bottom-up method, the top-down method
relies on observations of methane concentration in the atmosphere, ob-
tained using sensors located at high altitudes. To determine the location
and quantify the magnitude of a methane emission source, the transport
of methane from the emission source to the measurement location must
be simulated. Subsequently, methane concentrations are converted to an
emission flux using an atmospheric inversion model. This model relies on
atmospheric methane measurements and an atmospheric transport model
to infer the most likely distribution of emissions or methane fluxes at vari-
ous levels of the Earth’s atmosphere. To calculate flux rates, atmospheric
transport models incorporate factors such as wind, atmospheric conditions,
and background methane concentrations. Inversion models are categorized
based on the targeted scale of estimation:

¢ Global-regional inversion: Quantifying emissions on global-regional
scales, with multiple contributing sources, necessitates a broader ap-
proach. An ensemble of atmospheric observations from area flux map-
per instruments is fitted to a 2D field of emissions through inversion of
a 3D chemical transport model (CTM) that correlates emissions with
atmospheric concentrations [128]. The process involves simulating



2.2.

METHANE EMISSIONS MEASUREMENT 19

the movement of methane molecules, utilizing observed emissions and
prior data (bottom-up inventory), to ascertain their source. Through
optimization, the model iteratively refines prior emission estimates
until a consensus between simulated and observed concentrations is
achieved. Two main types of optimization models can be employed:

— Eulerian: These models concentrate on fixed locations and offer
a comprehensive, continuous, mass-preserving representation of
the atmosphere. They can also be retroactively integrated to
derive source fingerprints. Eulerian models are primarily used
for inverse analyses of methane observations at the satellite level,
where a large number of receiving points are present [29][82][115].

— Lagrangian: These models simulate the movement of air parcels
and the alterations they undergo due to their motion. The pri-
mary assumption of Lagrangian models is the absence of horizon-
tal dispersion of pollutants, implying that once materials enter
the column, they are not eliminated by mixing and dilution with
the surrounding air. Lagrangian models are directly integrable
backwards in time, allowing for cost-effective calculation of the
source footprint contributing to concentrations at a specific re-
ceptor point [130][3][83][85].

The combination of Eulerian and Lagrangian models is also feasible
[94, 6, 55], providing advantages such as high-resolution simulations
near measurement sites, minimized errors due to the aggregation of
emissions, and the flexibility to employ any combination of suitable
models without code modification. This approach allows for sensi-
tivity to the entire emissions field and facilitates estimation using
traditional statistical methods without multiple inversion steps.

Point-source inversion: Targeted atmospheric measurements of
methane can quantify emissions on smaller scales (point source, urban
area, oil and gas basin). The behavior of methane plumes is influenced
by atmospheric turbulence, advection, and the intensity of the emis-
sion source. Various methods are available to estimate the source
rates of these plumes, including Gaussian plume inversion[102][103],
local mass balance[9], Gauss theorem[12], cross-sectional flux method
(CSF) [99, 125, 126, 96], and the Integrated Mass Enhancement
(IME) [125, 78, 126, 56] method. The optimal approach depends on
the availability of meteorological information and the instrument’s
ability to map the observed plume structure, which is influenced
by pixel size, measurement noise, the capacity to define the local
background, and flow complexity, including wind shear effects[128].
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Given the instantaneous nature and variability of plumes in down-
wind transport, the IME and cross-sectional methods are deemed the
most suitable for estimating source rates. Both methods require the
determination of local or effective wind speed, with the IME method
demonstrating lower error rates in effective wind speed determination.
Both methods are extensively applied to retrieve point source rates
from satellite observations, yielding consistent results[127].

Top-down and bottom-up approaches each offer distinct advantages and
face specific limitations. The bottom-up approach enables the direct quan-
tification of emissions from known sources or facilities, attributing emis-
sions to specific sources. However, this method necessitates comprehensive
accounting of activity data, precise emission factors, and a representative
sample size to characterize the scaled population accurately. The vast num-
ber of sources, which can vary substantially over time and space, poses a
significant challenge for establishing precise regional or national emissions
inventories. Moreover, full access to all sources is not always feasible.

Conversely, top-down approaches encompass contributions from all sources,
including unknown or underestimated sources. However, attributing emis-
sions to specific processes or activities is challenging due to the intermin-
gling of sources and limited detection capabilities of individual sources or
installations.

While bottom-up approaches offer valuable insights into the specific sources
of emissions and suggest targeted actions for emission reduction, top-down
approaches can reveal unexpected and often substantial leaks that may
remain unidentified using a bottom-up approach.

2.3 Oil and Gas Industry specificities

2.3.1 Fossil fuel sector

The fossil fuel sector encompasses the industry engaged in the extraction,
processing, and distribution of non-renewable energy sources, including
bioenergy, coal, oil, and natural gas. It spans activities from exploration
and drilling to refining and transportation, playing a pivotal role in global
energy production and consumption.
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Figure 2.9: Methane emission in (Mt) from energy sector between 2000 and
2020. Image source: International Energy Agency (IEA).

According to the International Energy Agency (IEA)[32], the global energy
sector contributed an estimated 135 million tonnes of methane emissions
in 2022 (cf. Figure 2.9), marking a slight increase from the previous year.
Methane emissions from the energy sector constitute nearly 40% of the to-
tal methane emissions attributed to human activities, ranking second only
to agriculture (cf. Section 2.1.2). Coal, oil, and natural gas operations indi-
vidually contributed approximately 40 million tonnes of methane emissions,
with an additional nearly 5 million tonnes originating from leaks in end-use
equipment. Approximately 10 million tonnes of emissions were attributed
to the incomplete combustion of bioenergy, primarily from the traditional
use of biomass. As illustrated in Figure 2.9, methane emissions from nat-
ural gas activities were estimated at 36.7 million tonnes, while those from
oil activities were estimated at 45.6 million tonnes in 2022, representing
approximately 62% of the global energy sector emissions.

Methane emissions from the fossil fuel sector significantly contribute to
global greenhouse gas emissions, with certain countries playing a more
substantial role in this context. As depicted in Figure 2.10, the leading
methane-emitting countries from fossil fuel activities include China, Rus-
sia, the United States, Turkmenistan, and Iraq. China, the world’s largest
coal producer and consumer, emits considerable methane from coal min-
ing activities. Similarly, Iraq, a major oil and gas producer, significantly
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Figure 2.10: Large leaks from fossil fuel operations in 2022 by country.
Image source: International Energy Agency (IEA).

contributes to methane emissions from fossil fuel operations. The United
States accounts for a significant share of methane emissions from oil and
gas activities, being the largest global producer in these sectors. Russia, an-
other major oil and gas producer, also contributes significantly to methane
emissions from its fossil fuel sector. Collectively, these countries account
for a substantial portion of global methane emissions from the fossil fuel
sector.

Despite these challenges, there is considerable potential to reduce methane
emissions from the energy sector. It is estimated that approximately 70% of
methane emissions from fossil fuel operations could be mitigated using ex-
isting technologies. The oil and gas (O&G) sector, being the second largest
anthropogenic methane emission source, can achieve emission reductions
through the adoption of existing and proven technologies[32]. Moreover,
unlike other industries, the O&G sector has a longstanding history of re-
ducing methane emissions due to safety concerns, and methane can be mar-
keted as natural gas, providing a significant financial incentive for emission
reduction efforts. The International Energy Agency (IEA) estimates that
the industry can reduce its global emissions by 78%, with up to 39% of
these reductions achievable without financial compromise[41].
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2.3.2 Oil and Gas industry presentation

The oil and gas industry, also referred to as the petroleum industry, encom-
passes the exploration, extraction, production, refining, and distribution of
petroleum and natural gas resources. These primarily hydrocarbon-based
resources are crucial for fulfilling global energy demand, supplying fuel for
transportation, electricity generation, and various industrial processes.

The industry operates within a multifaceted network of companies, includ-
ing multinational corporations, national oil companies, and independent
operators, operating across diverse regions and countries. While the oil
and gas sector plays an essential role in global economic and geopolitical
dynamics, it also confronts challenges related to environmental sustainabil-
ity, fluctuating oil prices, and the transition to renewable energy sources.

Globally, there are over 25,000 oil and gas basins of varying sizes. The
world’s largest oil fields are predominantly located in the Middle East,
Brazil, Mexico, Venezuela, Kazakhstan, and Russia. However, the most
significant oil and gas basins are those that have historically yielded sub-
stantial quantities of hydrocarbons and continue to be primary contributors
to the global energy supply. Some of the most notable basins include:

e The Permian Basin: Situated in West Texas and southeastern New
Mexico, the Permian Basin stands as one of the largest and most pro-
ductive oil and gas basins globally. It has consistently contributed to
the United States’ oil and gas output for decades, drawing substantial
investment.

e The Ghawar Field: Located in Saudi Arabia, the Ghawar Field
represents the largest conventional oil field globally and has served
as a significant oil source for the international market over several
decades.

e The Marcellus Shale: Positioned in the northeastern United States,
the Marcellus Shale ranks among the largest natural gas-producing
regions in the country. Recent years have witnessed notable pro-
duction growth, attributable to advancements in hydraulic fracturing
technology.

0&G activities is divided in 3 sectors, and each sector has distinct sources
of methane emissions :
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Figure 2.11: Oil and Gas Supply-chain. Upstream: (1,2), Midstream:
(6,7,8,9), Downstream: (3,4,5) Image source: U.S Environmental Pro-
tection Agency (EPA).

e Upstream: The upstream sector encompasses the initial stages of
the oil and gas industry, focusing on locating and extracting hydrocar-
bon resources from the earth’s subsurface. This includes exploration,
drilling, and production of crude oil and natural gas. Methane emis-
sions in the upstream sector primarily originate from wellheads, flares,
pipelines, and storage tanks;

e Midstream: The midstream phase encompasses the transportation,
storage, and processing of crude oil and natural gas subsequent to
their extraction. It also includes the conveyance of these resources
from production sites to refineries and other downstream facilities.
Methane emissions in the midstream sector primarily arise from pipelines,
compressor stations, and storage facilities.

e Downstream: The downstream phase encompasses the conversion of
crude oil into diverse petroleum products, including gasoline, diesel,
jet fuel, and lubricants. Additionally, this phase includes the estab-
lishment and operation of refineries, petrochemical plants, and retail
outlets. Methane emissions in the downstream sector primarily orig-
inate from refineries, distribution systems, and retail outlets.

The O&G industry’s upstream activities account for over 75% of total
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Figure 2.12: Oil and gas methane emissions in selected countries by oil and
gas sector, 2020. Image source: International Energy Agency (IEA).

methane emissions, while the downstream segment contributes the remain-
der. As depicted in Figure 2.12, the United States recorded the high-
est methane emissions in the upstream sector in 2020, with approximately
10,000 kt emitted. In the downstream sector, Russia emitted nearly 3000
kt of methane, followed by almost 2500 kt in the United States.

The upstream and downstream sectors are structured around production,
gathering, boosting, and processing sites. As shown in Figure 2.11, each
site is equipped with specific infrastructure. The upstream sector con-
sists of production sites, including wells, and gathering & boosting sites
encompassing gathering pipelines, separators, compressors, pneumatic de-
vices/pumps, storage vessels, heaters, and flares. The downstream sector
comprises processing sites characterized by refineries and wells.

Each of these infrastructures contributes to varying levels of methane emis-
sions. Studies [89, 156, 121, 48] have consistently identified storage tanks,
flares, and compressors as prominent sources of methane emissions. How-
ever, the order of contribution can vary across different surveys. For in-
stance, Figure 2.13 presents the findings of a recent aerial survey measuring
methane emissions from various O&G infrastructures in British Columbia,
Canada [49]. The study indicated that compressors accounted for 54% of
the total methane emissions, followed by tanks at 18%, and unlit flares at
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7%.

Methane emissions from O&G production sites exhibit skewed distribu-
tions, where a small percentage of sites—often referred to as super-emitters—contribute
to the majority of emissions. A recent study [15] found that these strong
methane point sources contribute an average of 40% of total emissions
across multiple basins in the United States, highlighting the disproportion-
ate contribution of a limited number of emitters. Methane super emitters
are facilities, equipment, or sources within the oil and gas industry that
release significantly higher amounts of methane compared to the average
emissions from similar sources. Identifying and addressing super emitters
is essential for effective methane mitigation efforts, as they can significantly
influence overall methane emissions from the oil and gas sector.

Super emitters can release large quantities of methane due to various fac-
tors, including equipment malfunctions, operational inefliciencies, or design
flaws. Emissions from these super emitters, as well as from other sources,
can be classified into three categories:

e Fugitive methane emissions result from unintended leakages, often
due to faulty seals or leaking valves.

e Vented methane emissions are intentional releases, commonly for
safety reasons, resulting from the design or operational requirements
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Figure 2.14: Annual oil and gas sector methane emissions by production
type and reason in million tonnes (mt) in 2020. Image source: International
Energy Agency (IEA).

of the facility or equipment (e.g., pneumatic controllers and flaring)
or maintenance activities (e.g., venting a pipeline for inspection).

e Incomplete flaring methane emissions occur when natural gas, which
cannot be economically used or recovered, is burned instead of being
sold or vented. While the majority of the natural gas is converted
into CO2 and water through combustion, a portion may not be com-
pletely burned, resulting in methane emissions being released into the
atmosphere.

Figure 2.14 indicates that for oil and gas (on-shore and off-shore), vented
methane emissions are predominant, signifying that these emissions arise
from intentional actions. Regulatory measures tailored to discourage prac-
tices leading to methane emissions could mitigate vented emissions. For
fugitive emissions and incomplete flaring, implementing new components
and conducting repairs could offer mitigation solutions. According to the
IEA, the global oil and gas sector emitted more methane in 2021 than
Canada’s annual consumption. If this methane were captured and sold
at the current U.S. price of $4 per million British thermal units, it could
generate approximately $17 billion. The IEA estimates that an $11 billion
investment could eliminate around 75% of the world’s methane leaks, as
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well as a significant amount of gas wasted by flaring at the wellhead. In-
vesting in repairs and infrastructure would not only reduce emissions and
contribute to climate change mitigation but also generate profits for pro-
ducers and provide additional natural gas.

2.4 Methane mitigation’s actions

2.4.1 Current mitigation policies
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Figure 2.15: Methane emissions from fossil fuels, historical and in the
Net Zero Scenario, 2020-2030. Image source: International Energy Agency
(IEA).

Rapid reductions in methane emissions from fossil fuel activities are essen-
tial for achieving global climate targets, particularly when combined with
substantial reductions in carbon dioxide emissions. Without targeted action
on methane, the global average surface temperature could exceed 1.6°C by
2050, even with significant reductions in fossil fuel use. Under the Net Zero
Emissions by 2050 (NZE) Scenario, total methane emissions from fossil fuel
operations are projected to decrease by around 75% between 2020 and 2030
(Figure 2.15). Unlike agriculture and wetlands, the O&G industry has a
long-standing history of reducing methane emissions due to safety concerns,
and methane can be sold as natural gas, making emission reduction finan-
cially beneficial. The International Energy Agency (IEA) estimates that
the industry can reduce its global emissions by 78%, and up to 39% [41]
of these reductions can be achieved without financial compromise. These
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reductions are crucial, as methane emission cuts from fossil fuel operations
are projected to contribute half of the total reduction in methane emissions
required by 2030 to limit warming to 1.5°C.

The oil and gas industry has instituted various policies and initiatives to
mitigate methane emissions. These encompass:

e Regulatory Measures: Governments and regulatory entities across
different countries have established regulations targeting methane emis-
sions from oil and gas operations. These often entail provisions for
monitoring, reporting, and mitigating methane emissions.

e International Agreements: International agreements and initia-
tives exist to address methane emissions from the oil and gas sector.
For instance, the United Nations Framework Convention on Climate
Change (UNFCCC) serves as a foundational treaty underpinning in-
ternational climate negotiations.

e Financial Incentives: Certain governments and entities provide fi-
nancial incentives to encourage methane emission reduction by com-
panies. These incentives may comprise grants, tax credits, or other
financial mechanisms.

e Voluntary Initiatives: Numerous oil and gas firms have volun-
tarily pledged to curtail methane emissions. These initiatives fre-
quently entail establishing emission reduction targets, adopting best
practices, and investing in innovative technologies. The Oil and Gas
Methane Partnership (OGMP) exemplifies a voluntary initiative tar-
geting methane emission reductions from oil and gas operations.

e Technology Development: Ongoing research and development ef-
forts are directed towards devising new technologies and practices for
methane emission reduction in oil and gas operations. This encom-
passes technologies for detecting and rectifying fugitive leaks, as well
as for capturing and utilizing methane that would otherwise be vented
or flared.

e Public Reporting: Some companies opt to publicly disclose their
methane emissions, fostering increased transparency and accountabil-
ity within the industry.

Mitigating methane emissions in the oil and gas industry lacks a one-size-
fits-all solution. The efficacy of policy and regulatory frameworks is contin-
gent upon jurisdiction-specific circumstances, encompassing political and
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regulatory contexts, industry characteristics, emission source size and loca-
tion, and policy objectives. Regulatory approaches exhibit varied advan-
tages and disadvantages across jurisdictions, necessitating consideration of
these factors in policy design.

National authorities possess multiple avenues for implementing policies and
regulations aimed at reducing methane emissions from the oil and gas sec-
tor. These include:

e Standards: These encompass requirements for the adoption of par-
ticular technologies and operational practices, alongside quantifiable
emission thresholds. Technical standards, often denoted as Best Avail-
able Technologies (BAT)[4], are prevalent, with emission limits fre-
quently integrated with economic mechanisms such as emission fees
or taxes. Requirements for regular leak detection and repair (LDAR)
[142] [17] programs are also part of this category.

e Economic instruments: This category includes emission fees or
taxes, emission trading systems, and offset credit schemes. Gas price
and reforms in gas pricing can also fall under this classification.

e Public-private partnerships and negotiated agreements: These
can manifest in diverse forms, ranging from loosely structured part-
nerships with voluntary objectives to formal agreements with com-
pulsory regulations in the absence of meeting specified quantitative
targets. Negotiated agreements might incorporate emission reduction
objectives, an overseeing institution for managing and coordinating
emission mitigation measures, and protocols for monitoring, report-
ing, and verifying adherence.

The United Nations Framework Convention on Climate Change (UNFCCC),
established in 1992, aims to stabilize greenhouse gas concentrations in the
atmosphere at levels that prevent detrimental anthropogenic interference
with the climate system. The UNFCCC delineates several principles to
direct the global response to climate change. A pivotal requirement of the
UNFCCC mandates countries to formulate and regularly update national
greenhouse gas (GHG) inventories. These inventories employ bottom-up
methodologies (cf. Section 2.2.2), applying emission factors to source ac-
tivity data. The compilation methodology for these inventories is stipulated
by the IPCC Guidelines on National Greenhouse Gas Inventories. Such in-
ventories offer a comprehensive account of all GHG emissions and removals
within a country’s boundaries, categorized by sector and activity. Utilized
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to monitor progress towards national emission reduction objectives and to
report emissions to the UNFCCC, these inventories also pinpoint emission
sources and opportunities for mitigation, thereby informing the formulation
of climate policies and measures.

In crafting methane mitigation regulations and strategies, policymakers
heavily depend on these inventories. The precision in characterizing emis-
sion sources is crucial for the development of effective mitigation regulations
and strategies.

2.4.2 Limitations and Challenges

Numerous studies [1, 11, 93, 100, 72, 104, 71, 146, 99] have highlighted sys-
tematic underestimation of methane emissions from the oil and gas (O&G)
supply chain. This raises concerns regarding the reliance on bottom-up
methodologies for estimating emission inventories, which subsequently in-
form regulatory guidelines for methane emissions reduction. A study by
[97] indicated that IPCC Tier 1 emission factors underestimated methane
emissions from the O&G sector in the United States. Such underestimation
is likely to affect countries employing these emission factors in their invento-
ries. The authors observed that updates to the IPCC Tier 1 emission factors
are not anticipated in the foreseeable future. Additionally, [20] compared
UNFCCC-reported emissions to a set of global inversions and found that
some of the highest fossil methane-emitting countries report lower emissions
to the UNFCCC than estimated by atmospheric inversions.

As outlined in Section 2.2.2, methane emissions exhibit considerable spatio-
temporal variability influenced by factors like weather, operating condi-
tions, and maintenance practices. Such variability may elude capture by
bottom-up approaches, introducing inaccuracies in emission estimates. Fur-
thermore, these approaches can be intricate and resource-intensive, neces-
sitating comprehensive data collection and analysis, posing challenges for
implementation, particularly in resource-constrained regions.

A substantial portion of the discrepancy in emission estimates stems from
the omission of super-emitters from emission inventories [58]. These sources,
characterized by elevated emission rates, account for an average of 40%
of total methane emissions. However, pinpointing these super-emitters
presents significant challenges due to their transient nature and resistance
to standard leak detection and repair (LDAR) methods. Their intermittent
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occurrence and varying locations further complicate identification.

The prevailing absence of reliable emissions data impedes governments’
ability to implement targeted actions at the requisite scale and pace to
realize the objectives of the Global Methane Pledge (GMP).

To address these challenges and align with GMP objectives, various initia-
tives and programs aim to furnish the most accurate and comprehensive
methane emission data feasible. The Oil and Gas Methane Partnership
(OGMP), a voluntary initiative spearheaded by the United Nations Envi-
ronment Programme (UNEP) and the European Union, strives to curtail
methane emissions from the oil and gas sector. A core OGMP objective is
to prompt participating companies to transparently report their methane
emissions and reduction endeavors, encompassing detailed data on emission
sources, mitigation measures, and progress towards reduction targets.

OGMP offers five tiers of reporting methods, ranging from generic emis-
sion factors to on-site and infrastructure methane emissions measurements
utilizing ground and aerial sensors (bottom-up & top-down).

From a bottom-up emissions perspective, on-site sensors have proliferated
and enhanced in precision. Companies stand to benefit from these monitor-
ing technologies by commercializing methane emissions data to interested
entities, such as governments or other oil and gas companies. Furthermore,
the deployment of ground-based emissions monitoring systems enables com-
panies to devise effective methane mitigation strategies to circumvent fines
levied under new methane regulations, like the Inflation Reduction Act
(IRA) in the USA, which imposes charges per ton of C'H, emitted ex-
ceeding 25,000 tons of CO2e. The evolution of the oil and gas industry
towards Industry 4.0[70, 131, 75|, underpinned by advancements in pro-
cess automation technologies, entails augmented utilization of innovative
sensors|74] like infrared cameras[24|, LIDAR|76|, and Laser Path, facilitat-
ing precise and quasi-continuous spatio-temporal representation of on-site
methane emissions. Concurrently, various functional parameters associated
with infrastructures, such as age, flow rates, maintenance, and operational
efficiency of each equipment on site, will be monitored.

From a top-down emissions standpoint, the current satellite constellation
comprises at least 15 satellites (for global & point source perspectives)
dedicated to methane concentration monitoring. This satellite constella-
tion is poised to expand through ongoing technological advancements of-
fering enhanced spectral resolution, spatial resolution, and temporal cov-
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erage (cf. Section 2.2.1). Furthermore, technological innovation in space-
borne methane measurement tools appears to prioritize long-term quasi-
continuous monitoring, akin to advancements in carbon cycle analysis [45].
This regular methane emission measurement concept should facilitate con-
tinuous monitoring of emission levels from sites and infrastructures, en-
abling the establishment of their respective emission profiles. In the long
run, the diverse range of measurement tools in operation, coupled with
potential continuous measurement capabilities, is anticipated to generate
substantial data volumes.

Confronted with the escalating volume of raw data from top-down and
bottom-up sensors, the processing and analysis of this data pose significant
challenges, particularly in real-time contexts where expeditious processing
and analysis are imperative.

2.4.3 Solutions

To devise effective regulations for methane emissions reduction, it is essen-
tial to develop a robust and accurate inventory methodology that integrates
multi-level methane emission profiles applicable to on-site equipment and
national-level estimates.

The Methane Alert and Responses System (MARS) initiative, introduced
by UNEP and the Environmental Defense Fund (EDF) at COP27 [57],
alms to create a system capable of near real-time methane emissions detec-
tion from oil and gas operations. This system will leverage a combination
of methane emissions data, including satellite data from the International
Methane Emission Observatory (IMEO). The MARS initiative seeks to fur-
nish actionable insights to operators and regulators to curtail methane
emissions, facilitating enhanced monitoring and enforcement of methane
regulations.

Such systems should be grounded on the deployment of comprehensive mon-
itoring systems at both global and individual oil and gas infrastructure
levels, enabling precise characterization of methane emissions across vari-
ous levels (national, basins, operator, site, infrastructure). A recent study
[15] found that, on average, 40% of emissions from US oil and gas fields
emanate from point sources, underscoring the importance of characterizing
methane emissions both as area and point sources [124]. Furthermore, iden-
tifying the characteristics of super-emitters and predicting the likelihood of
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a site becoming a super-emitter, or forecasting the timing and location of
super-emitter events, would significantly contribute to methane emissions
reduction.

Characterizing methane emissions involves determining their source, vol-
ume, and location. Accumulated over time and across various levels, this
data could facilitate access to spatio-temporal and time series data, serving
as the foundation for in-depth analysis and spatio-temporal methane leak
forecasting. This forecasting capability is pivotal for preventing methane
leaks by providing a proactive window for intervention.

To enable real-time, global-scale operation of such a system, it must leverage
automated methods for processing and analyzing the substantial volume of
data implicated. The incorporation of artificial intelligence into this process
is the key element capable of meeting this requirement.



Chapter 3

Automated Oil and gas
infrastructures detection
and recognition

This chapter introduces in Section 3.1 the general role of artificial intelli-
gence and its state-of-the-art applications for diverse methane mitigation
tasks. Section 3.2 focuses on the description of objection detection algo-
rithms and their specific applications in oil and gas methane emissions mit-
igation domain. This chapter in Section 3.3 also presents a case study for
the automatic detection and recognition of oil and gas infrastructures in the
Permian basin (USA) based on the use of object detection algorithms and
high resolution satellites images. Then, the results are presented in Section
3.4 including also the results algorithms pre-training effect and satellite
images based adversarial attacks on our algorithms performances.

This chapter, is based on our 2 following publications : "Oil and Gas Au-
tomatic Infrastructure Mapping: Leveraging High-Resolution Satellite Im-
agery through fine-tuning of object detection models” [37] and "Object detec-
tion models sensitivity & robustness to satellite-based adversarial attacks”
[36].

35
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3.1 Artificial Intelligence for Methane Mitiga-
tion

3.1.1 Artificial Intelligence Introduction

The use and applications of artificial intelligence (AI) have experienced a
massive increase over the last decade. Al has been fundamental for han-
dling, in an automated way, heavy and repetitive time-consuming tasks
which could require quasi-continuous attention and high precision. Ma-
chine learning (ML) and deep learning (DL) - which are AI subsets - allow
for automated decision-making and forecasting, which are currently used in
wide categories of applications such as medical diagnostics, speech recogni-
tion, recommendation system, and autonomous driving. ML can intervene
in every domain, especially when dealing with large amounts of data and
when analysis and decisions have to be done efficiently and in a short period
of time.

AT enabled the development of supervised models capable of performing
multiple prediction tasks from massive amounts of labeled data (Figure
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Figure 3.1: Machine Learning methods presentation.

3.1). However, data associated with real-life problems are not always la-
beled and sometimes requires long hours of manual annotation to be pro-
cessed by supervised methods. In the case where a dataset is not labeled,
the unsupervised or semi-supervised methods can be directly used with-
out having to labeled data and just a small amount. However, unlabeled
data can be manually or automatically annotated to achieve the necessary
conditions for using a particular method.

As illustrated on the Figure 3.1, machine learning could regroups different
methods for different tasks, for example :

1. Regression which is used to estimate relationship between variable

and make forecasting;

2. Classification permits to automatically assign elements to classes;
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3. Clustering is used to group elements without having pre-determined
classes

For example, to perform an automatic methane plumes detection (e.g. clas-
sification) with very few plume images (semi-supervised), it is possible to
extend the dataset (to be in a supervised learning setting) by automati-
cally generating images similar to those in the original dataset. For this,
generative models can be used to generate automatically new data. Gen-
erative models can therefore replace the heavy manual annotation work
mentioned above and have the advantage of being applicable in supervised,
semi-supervised, and unsupervised learning.

All these machine learning methods can be applied in various domains
like Natural Language Processing (NLP) with, for example, text classifica-
tion, natural language generation, automatic summarizing, etc. But also
computer vision (images & videos) with classification, classification + lo-
calization object detection, instance & semantic segmentation for images
and videos, 3D scenes generation, etc.

3.1.2 General State of the art

The use of Al in the context of methane emissions monitoring and O&G
infrastructure has greatly increased in less than a decade. Indeed, the in-
creasing number of aerial and ground sensors for methane emissions track-
ing produce large and diverse sets data. Facing this large amount of data,
the use of automated methods to transform these data into interpretable
informations is required. The Table 3.1 present various works based on Al
by type of analysis :

1. Methane plume detection

2. Methane plume quantification

3. Methane emissions forecasting and O&G site/infrastructure detection
and recognition
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Methane plume detection. is part of the computer vision domain
where images and videos could be automatically process in order to deter-
mine the presence or not of methane plume. Through the use of sentinel-2
images, [80] proposes a Convolutional Neural Network (CNN) method to
automatically detect methane emissions and flaring activities. Still based
on the use of sentinel-2 images, [129] through the CH4Net system, focus
on the detection of methane super-emitter (large scale emissions) using a
CNN U-Net model for binary segmentation pixel by pixel indicating the
presence or not of a methane plume. [101] proposes a two-step machine
learning approach also using a CNN to detect plume-like structures in the
methane data and subsequently apply a support vector classifier to dis-
tinguish the emission plumes from retrieval artifacts based on TROPOMI
images (Sentinel-5P). The GasNet method [135] demonstrates that methane
plume could also be detected from optical gas videos using CNN models
applied on different background subtraction methods.

Methane plume quantification. relies on chemical transport models
(cf. Section 2.2.2) which requires the use of local measurements such as
background wind speeds. The MethaNet methods[50], based on CNN,
proposes to predict (regression) methane point-source emission directly
from high-resolution 2-D plume images without relying on other local mea-
surements from Airborne Visible/Infrared Imaging Spectrometer (AVIRIS-
NG). With the same objective, [87] compares different CNN architectures
such as VGG-19, ResNet-50, Inception-v3, DenseNet-121, Swin-T, and
EfficientNet-V2L for methane plume quantification based on Sentinel-2 im-
ages. Alternatives approaches based on classification such as [133] and
VideoGasNet [136], make it possible to classify methane emissions by sizes
from optical gas video with the use of CNN model’s Long Short Term Mem-
ory network (FC-LSTM) and the convolutional LSTM (ConvLSTM).

The literature also features studies combining both detection and quantifi-
cation of methane plume, like [109] where the authors compare the use of
neural network and reduced support vector machine (RSVM) models based
on images from unmanned aerial vehicles (UAVs) and atmospheric param-
eters. [8] presents a two-step algorithm called U-Plume for automated
detection and quantification of point sources from satellite imagery from
GHGSat-C1. The first step delivers plume detection and delineation (mask-
ing) with a machine learning U-Net architecture for image segmentation.
The second step quantifies the point source rate from the masked plume us-
ing wind speed information and either a convolution neural network (CNN)
or a physics-based Integrated Mass Enhancement (IME) method. [53] also



JADE E. GUISIANO 40

proposes a CNN based method for detection and quantification from gas
pipelines in the subsea with the use of simulated flow and its parameters.

Methane emissions forecasting could be realized for different tasks
such as spatio-temporal forecasting, probabilistic classification or simple
forecasting. [134] proposes to predict high-emitting sites that can be prior-
itized for follow-up repair based on several variables contribute to the for-
mation of leaks such as infrastructure age, production, weather conditions,
and maintenance practices and methane emissions quantities. This study
compares various regression methods such as Logistic Regression, Decision
Trees, Random Forests and AdaBoost. [52] proposes to estimate the emis-
sion fluxes of methane from open-pit mines based on the uses of multi-layer
perceptron (MLP) artificial neural network, the gradient boosting (GBR),
XGBOOST (XGB), and support vector machines (SVM) with simulated
emissions flux and associate meteorological parameters. [116] compare the
use of SVM and back propagation neural networks for pipeline methane
leak forecasting based on the simulation of low-pressure gas pipeline sys-
tem, which reproduces the gas leakage scenes and its associates parameters
like pressure wave. The literature also contains hybrid approaches combin-
ing physic/chemistry models with neural network models. [106] proposes
a hybrid deep learning model by integrating variation inference and phys-
ical constraint with a deep learning backbone to forecast spatio-temporal
concentration evolution of natural gas release at plume area.

Others. tasks based on artificial intelligence could also contribute to the
reduction of methane emissions. For example, [59] proposes a solution to
detect, locate, and estimate the size of O&G pipelines metal-loss defects
with the use of dimension reduction through Principal Component Anal-
ysis (PCA) and neural network. The placement of ground sensors also
plays an important role for methane emissions monitoring, [138] proposes
to optimize sensor placement to maximize the detection of possible methane
leaks. To this end, the authors present a machine learning approach based
on the use of the clustering algorithm DBSCAN which leverages various
data sources including oil and gas facilities data, historical methane leak
rate distribution and meteorological data. An other study [132] proposes a
techno-economic analysis based on the comparison of classical Leak Detec-
tion and Repair (LDAR) and machine learning based LDAR for automated
leak detection with the use of neural network and optical gas imaging. They
highlights the benefits of automated LDAR including reduction in labor
cost, prioritization of large leaks, and maximization of mitigation efficiency
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and minimization of the net cost of mitigation.

All these studies, using artificial intelligence methods, makes a significant
contribution to improving the monitoring of methane emissions and its mit-
igation. However, in order to achieve optimum mitigation, the behaviour
of methane-emitting sources must be precisely characterised so that a max-
imum of unintentional emissions can be avoided. To reach this goal, fine-
grained automated monitoring of emitting sources is required. This process
begins with the automatic detection and recognition of sources (Section
3.2), then the spatial matching of the sources at the origin of the detected
emissions (Chapter 4).

3.2 0&G facilities detection and recognition

3.2.1 Object detection