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Résumé

La capture-recapture est une méthode largement utilisée pour estimer la taille des populations animales ou

des processus démographiques tels que la survie ou la migration. Au cours des dernières années, l’utilisation

de marques artificielles pour marquer les animaux a été remplacée par l’utilisation des marques naturelles

telles que des motifs visuels ou des empreintes génétiques. Les marques naturelles présentent l’énorme

avantage de permettre la "capture" de l’individu de manière non invasive, à l’aide de pièges photographiques

ou par la collecte de feces, de poils ou de plumes. Il n’est donc pas nécessaire de voir les individus pour les

capturer.

Bien que l’échantillonnage non invasif soit de plus en plus utilisé dans les expériences de capture-recapture,

il comporte un risque d’erreur d’identification individuelle qui ne peut être ignoré. Dans de nombreuses

situations, les données susceptibles d’erreur d’identification sont tout simplement écartées. La proportion de

données ainsi rejetées peut être non négligeable. Pour pallier à ce problème et mieux exploiter les données,

des modèles capables de traiter les erreurs d’identification individuelles ont donc été proposés. Toutefois, ces

modèles ne tiennent pas compte de plusieurs caractéristiques communes aux données d’échantillonnage

non-invasif. Premièrement, la qualité de l’identification n’est évaluée que globalement par les modèles

alors qu’une mesure de la qualité de l’identification est souvent disponible au niveau de l’échantillon.

Deuxièmement, les modèles ne tiennent pas compte des observations répétées, c’est à dire des différents

échantillons appartenant au même individu et obtenus à la même occasion. Troisièmement, la plupart des

modèles n’ont été proposés que pour des populations fermées ce qui ne concerne qu’un nombre restreint

d’études.

Mon travail aura permis de développer une large gamme de modèles autour du modèle latent multtinomial

(LMM) en présence d’erreurs d’identification individuelle. Dans cette thèse, je propose en effet des extensions

du LMM qui couvrent les populations fermées et ouvertes, avec un ou plusieurs états et avec ou sans

covariable d’identification. En outre, j’ai validé ces extensions par simulation et j’ai appliqué un de ces

modèles à des données de loutres.

J’ai implémenté ces extensions au LMM dans le langage R, avec la bibliothèque NIMBLE, dans une approche

bayésienne. À l’aide de simulations, j’ai testé les modèles étendus développés et je les ai comparés aux

modèles pré-existants appropriés.

Ce travail donne également un exemple du potentiel de modélisation des erreurs d’identification individuelle

à travers une étude de simulation d’une expérience de capture-recapture sur des larves de moustiques, dans

laquelle l’élimination des échantillons de faible qualité conduirait probablement à ne conserver presque

aucun échantillon.

Enfin, la mise en œuvre de ces modèles dans le langage R et sous environnement NIMBLE, très répandu dans

le milieu des utilisateurs potentiels, devrait permettre leur adaptation à des cas particuliers et contribuer à

leur diffusion dans un contexte plus large.



Abstract

Capture-recapture is a widely used method for estimating population size and inferring demographic

processes such as survival or migration rates. In recent years, the use of man-made tags to mark animals

has been replaced by natural tags such as visual patterns or genetic fingerprints. Natural marks have the

advantage of enabling the individual to be ’captured’ non-invasively, using photographic traps or by collecting

feces, hairs, or feathers for instance. It is therefore not necessary to see the individuals in order to capture

them.

Although non-invasive sampling is increasingly used in capture-recapture experiments, it carries a risk

of individual misidentification that cannot be ignored. In most studies, data susceptible to individual

misidentification are simply discarded. As a result, the proportion of discarded data may be significant. To

overcome this problem, models have been proposed that can deal with individual identification errors in

order to use a larger amount of data. However, these models do not take into account several characteristics

common to non-invasive sampling data. First, identification quality is only modelled globally, although a

measure of identification quality is often available at the sample level. Second, the models do not take into

account repeated observations, i.e. different samples belonging to the same individual and collected on the

same occasion. Third, most models have only been proposed for closed populations, which only concerns a

limited number of studies.

By going through the different models available, I selected one that had the potential to address all these

limitations. I implemented the selected model in the R language, specifically the NIMBLE package, in a

Bayesian approach, and extended it to overcome the identified limitations. I used simulations to test the

performances of the models I had developed and compared them with appropriate pre-existing models.

My work has allowed the development of a complete framework for all basic cases of capture-recapture in

the presence of individual misidentification. It covers closed or open populations, in single or multiple states,

and with or without an identification quality covariate. This work also provides an example of the potential

of modelling misidentification through a simulation study of capture-recapture on mosquito larvae, where

discarding the poor quality samples would likely result in almost no sample being retained. Finally, the

implementation of the model will make it usable by modellers and should contribute to the dissemination of

these new models in a wider context.
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Introduction

Population dynamics

The importance of population dynamics

Worldwide, biodiversity is in decline. Animal populations face many

threats due to human activities that affect their environment, or even

impact the population directly [1–3]. For example, overfishing directly

affects some species, but also disturbs the marine ecosystem equilibrium

[4]. Deforestation directly results in habitat reduction [5] and contributes

to the propagation of vector-borne diseases by creating new habitats

for vectors of these diseases [6]. Pollution, by making the environment

toxic or modifying physico-chemical variables such as acidity, can be

responsible for higher mortality [7]. Moreover, some species that have

been introduced (voluntarily or not) can become invasive and have

economic [8] and ecological [9] impacts. Reintroduced or protected

species can be involved in conflicts with humans when they share

territory, such as the wolf in France [10] or the elephant in Africa [11].

For these reasons, conservation management programmes are developed.

These programmes must be based on scientific knowledge determined

by both qualitative and quantitative data [12]. Ecological knowledge

allows us to understand how ecosystems function and the mechanisms

responsible for biodiversity loss [13, 14]. Population dynamics in particular

is an active area of research in which statistical modelling tries to answer

questions such as ’How many individuals are there in a population?’,

’Where do they live?’, ’What is their survival rate?’ and many others. The

need for modelling arises from the impossibility of directly observing the

elements that would answer these questions. For populations in the wild,

it is often impossible to carry out exhaustive monitoring of individuals

in a specific area. (Even plants in a 1m x 1m square cannot be counted

easily [15].) The failure to account for detectability issues then leads to

inaccurate results, such as underestimating the population size [16] or

the distribution area of the studied species [17]. In general, the imperfect

surveying of individuals is one of the main difficulties that must be

accounted for in ecological data [18, 19]. Methods have been developed

to try to address this issue. For instance, capture-recapture (CR) models

are powerful methods that can estimate population size, survival rate,

state transition between physiological states, or migration rates, while

taking into account imperfect detection [20].

The basics of capture-recapture

The concept of capture-recapture is quite simple – even intuitive. Consider

a population in a specific home range where it is assumed that no births,

deaths, immigration or emigration occur. This population remains the

same from the beginning to the end of the experiment and is qualified as

a closed population. We want to carry out longitudinal monitoring of
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this population at regular time intervals called occasions (at least two) to

estimate the size 𝑁 of the population. On a first occasion, 𝑀 individuals

are captured, tagged and released. On a second occasion, 𝑛 individuals

are captured from the whole population. Of these 𝑛 individuals, 𝑚 were

already marked on the first occasion. Assuming that all individuals have

the same probability of being captured, we expect that the proportion

of marked individuals in the second sample (𝑚/𝑛) is approximately the

proportion of marked individuals in the whole population (𝑀/𝑁):

𝑚

𝑛
≈ 𝑀

𝑁
. (0.1)

This concept can be traced back to the 16th century, but the detailed

explanation is attributed to Laplace (1786) [21]. He proposed estimating

the population𝑁 of France using birth registers as the marked population

𝑀 and major cities of known population size as the sample 𝑛, in which

𝑚 are births from these major cities.

Marking animals originated with Petersen (1894) [22], who marked fish to

estimate mortality rate. Although he did not estimate population size, the

estimator derived from Equation 0.1, 𝑁 ≈ 𝑛 ×𝑀/𝑚 took his name, along

with Lincoln’s – who used it to estimate the size of a duck population in

America [23]. It is known as the Lincoln-Petersen estimator.

Later, the capture-recapture method was extended for closed populations

to multiple capture-recapture. Models were developed to account for

more than two occasions [24–26]. Compared to two-occasion experiments,

this allowed more complex cases to be treated. These models allow

the capture probability to vary due to time, individual heterogeneity,

behavioural response, or even several of these combined.

In 1964, Cormack used multiple capture-recapture to estimate the survival

rate in an open population (i.e. individuals may enter or leave the

population of interest through birth, death, immigration or emigration)

[27]. In the following year, Jolly and Seber simultaneously published two

papers to ’complete’ Cormack’s model [28, 29]. These three papers led to

the model now called Cormack-Jolly-Seber (CJS) and several extensions

of this.

To estimate survival in several areas occupied by a population subject

to migration from one area to another, Arnason published two papers

in 1972 and 1973 [30, 31]. With the later paper of Schwarz in 1993 [32],

the model came to be known as the Arnason-Schwarz model. Its focus

is both the survival rate and the migration rate (or the transition rate

between different states).

Bayesian statistics

CR model parameters are either estimated using frequentist or Bayesian

inference. In our case, Bayesian inference is required. In Bayesian infer-

ence, parameters are considered random variables. This does not refer to

the variability of the parameters (as they are typically fixed unknown

quantities), but to uncertainty about their true value. As such, Bayesian

inference estimates the density of probability of the value that a parame-

ter can take. This density is calculated accounting for prior knowledge

about the parameter that is not represented in the likelihood for the data.
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Likelihood

Let𝑋 be a random variable with den-

sity (or mass) function 𝑓 depending

on the parameter �.

𝑥 ↦→ 𝑓 (𝑥 |�)

where 𝑥 is a realisation of 𝑋. The

likelihood function is 𝑓 when it is

viewed as a function of � with 𝑥

fixed:

� ↦→ 𝑓 (� |𝑥)
Noted L(� |𝑋)

Bayes’ formula

𝑃(𝐴|𝐵) = 𝑃(𝐵|𝐴)𝑃(𝐴)
𝑃(𝐵)

Markov chain

Markov chains are stochastic mod-

els describing a sequence of random

events in which the probability of

the outcome of each event depends

only on the previous outcome. Say

we have the sequence of random vari-

able 𝑋1 , ...𝑋𝑛 . The probability that

𝑋𝑖 = 𝑥∀𝑖 = 2, ..., 𝑛 only depends

on the value that took 𝑋𝑖−1
: 𝑃(𝑋𝑖 =

𝑥 |𝑋1 , ..., 𝑋𝑖−1
) = 𝑃(𝑋𝑖 = 𝑥 |𝑋𝑖−1

).
𝑃(𝑋𝑖 = 𝑥 |𝑋𝑖−1

) is the transition

probability of the Markov chain.

This contrasts with frequentist inference, which aims to estimate the most

likely value of the parameters conditional on the data. Another interest

of Bayesian inference is that it can be applied to complex models, with

the downside that the computations can be time-consuming.

Let us assume that we observe data 𝑋 that gives information about

a certain parameter � through a model with likelihood L(� |𝑋) . The

Bayesian paradigm aims to estimate the posterior probability of �,

denoted by 𝜋(� |𝑋). Using Bayes’ rule , the posterior density is computed

as:

𝜋(� |𝑋) = L(� |𝑋)𝜋(�)∫
L(� |𝑋)𝜋(�)

where 𝜋(�) is the density of the parameter distribution before the data

is used to inform it. It is called the prior distribution. The denominator

(called predictive probability) is unique because the whole fraction

should integrate to 1. Therefore, we often ignore it and write the posterior

probability as being proportional to the likelihood and the prior.

𝜋(� |𝑋) ∝ L(� |𝑋)𝜋(�)

When choosing a model, two key questions are what are the parameters

� and what is the likelihood. Contrary to frequentist statistics, before

estimating the parameters, Bayesian statistics also needs to define the

prior 𝜋(�). This is a complicated matter that has no definite answer.

The prior distribution can be chosen to integrate a priori information

about the parameters, either obtained from previous experiments or

elicited from subjective estimation. In these cases, we talk about an

informative prior. If the prior does not contain information, and is uniform

over the parameter space, it is called non-informative or uninformative.

Historically, mainly conjugate priors were used because they lead to known

posterior distribution families. For example, if 𝑋 ∼ 𝐵𝑖𝑛(𝑁, 𝑝) and 𝑁 is

known, and if we choose a beta prior over 𝑝, 𝑝 ∼ 𝛽(𝑎, 𝑏), then the posterior

distribution of 𝑝 is also a beta distribution 𝑝 |𝑥 ∼ 𝛽(𝑎+ 𝑥, 𝑏+𝑁 − 𝑥). Since

powerful methods such as Monte Carlo Markov Chains (MCMC) have

become more accessible, other common priors are used. The choice of

prior is not to be taken lightly. Some uninformative priors can be ’improper’
if they do not integrate to 1, like an unbounded uniform distribution. It

is important to verify that the resulting posterior distribution is proper.

Another point to consider is that a non-informative prior on a parameter

may not be uninformative on a function of this parameter. For example,

let 𝛼 be a probability parameter modelled as a probit function of a

parameter 𝑎. Then an uninformative prior on 𝑎 (e.g. a normal distribution

with a large standard error) will result in a prior on 𝛼, indicating that

either 𝛼 = 0 or 𝛼 = 1.

When the selected priors do not lead to a known distribution, computing

summary statistics for the posterior distribution may prove difficult. One

solution is to sample from the posterior distribution several times, then

use the samples to approximate the posterior distribution. The most

common method to sample from complex distributions is MCMC. An

MCMC algorithm is constructed by defining the transition probabilities

of the Markov chain in a way that the distribution in which we sample at

the 𝑛𝑡ℎ iteration converges to the distribution of interest when 𝑛 increases,

independently of the initial value of the chain. Various algorithms can be
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used to construct an MCMC, but we will use two specific algorithms: Gibbs
sampling and the Metropolis-Hastings (MH) algorithm. Gibbs sampling

consists of sampling successively from the posterior distribution of each

parameter conditionally on the others. It is used when the conditional

posterior is a known distribution from which it is easy to sample. For

example, assuming that we have a model (for data𝑋) with two parameters

𝑐 and 𝑑, and we assign the following conjugate priors: 𝑐 ∼ 𝛽(𝑎0 , 𝑏0) and

𝑑 ∼ N(�0 , 𝜎0), leading to full conditional posterior beta and normal

distributions. Although we cannot jointly sample 𝑐 and 𝑑, it is easy to

sample them successively from their conditional posterior distributions:

𝑐 |(𝑋, 𝑑) ∼ 𝛽(𝑎, 𝑏) and 𝑑 |(𝑋, 𝑐) ∼ N(�, 𝜎). More details about Gibbs

sampling can be found in various references such as Tierney (1994)

[33] and Gelfand (2000) [34]. Metropolis-Hastings is used when the

conditional posterior distribution cannot be sampled easily. As with

Gibbs sampling, the parameter is updated conditionally on the current

value of all other parameters, and possibly on its current value. First,

a proposal �′
for a new parameter value is drawn by sampling in a

given proposal distribution 𝑞(�). Then this proposal is accepted with

probability

𝑟 = 𝑚𝑖𝑛

(
1,

𝜋(�′ |𝑋)𝑞(� |�′)
𝜋(� |𝑋)𝑞(�′ |�)

)
.

If the proposal �′
is rejected, then the previous value � is kept and

the algorithm proceeds with sampling the following parameters. More

details about the MH algorithm can be found in several books and

reviews (see [35–37]). When using MH, the proposed value is often

dependent on the current value, and there is high auto-correlation in the

chains. The consequence is that many iterations may be needed to reach

the point where the distribution in which we are sampling has converged

to the distribution of interest. Thus, many more iterations are necessary

to approximate the distribution of interest.

Assessing the convergence of the chains can be done in various ways. By

running several chains with different starting points and plotting them

together, it can be seen if the chains converge to the same distribution and

if they mix well with each other. Various convergence statistics can also

be used. We will use the convergence diagnostic from Gelman, Rubin and

Brooks (GRB, [38, 39]). The GRB also consists of running several chains

with different starting points. Then it compares the variance within

and between chains. If there is no difference, the computed �̂� statistic

should be 1. The authors recommend a threshold of 1.1, with lower values

indicating convergence. Another useful metric is the effective sample

size. Since the samples are not independent, the metric estimates how

many independent samples they are worth. In the case of complete

independence, the effective sample size is the same as the sample size.

High auto-correlation will reduce the effective sample size, making it

smaller than the sample size. For example, a sample size of 5000 iterations

with high auto-correlation could be worth 100 independent samples. So

the effective sample size would be 100.
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Tags for CR

Types of tags

Several kinds of methods can be used for marking animals, which can be

referred to as ’tags’. Two categories of tags can be distinguished: man-made
tags and natural tags. There are many kinds of man-made tags. They can

be simple externally mounted tags such as rings for birds. Different

materials can be used, including plastic, aluminium or stainless steel.

When these tags are used for individual identification, they are engraved

or marked with a unique identifier. These tags may require the physical

recapture of an individual or its visual observation in order to read the

tags. This observing event is called ’recapture’. Some tags can also be used

remotely, such as radiotelemetry tags. These offer the advantage of being

detected without the need to actually see the individual and its tag. They

can be applied externally (with collars, for example) or internally (mainly

for mammals and fish). Weight, colour, material, method of attachment

are among many variables to consider when choosing a tag, because they

may affect the individual. For example, heavy tags will make it hard for

birds to fly, aluminium rings are known to harm the legs of some bird

species [40], and band colour can influence bird behaviour ([41]). For a

more extended review on tags and their impact, see Murray & Fuller

(2000) [42]. Using man-made tags has many advantages and allows a list

of tagged individuals. However, they all require the physical capture of

the animal at least once to apply the tag. This can be a problem when

studying elusive or difficult-to-catch species. Handling the animal can

also cause stress or harm.

In contrast, natural tags are existing features of animals that can be used

to identify them. In this category, two types of tags can be distinguished:

photographic tags and genetic tags. Photographic tags are distinctive marks

or patterns on visible parts of the animal. These marks can be present

at birth, like colour spots on leopards ([43]) or patterns on beetles

(Nicrophorus orbicollis and Nicrophorus americanus [44]). Photographic tags

can also be acquired, such as scars on dolphins (Tursiops truncatus [45]) or

whales (Ziphius cavirostris [46]). For terrestrial animals, photographic tags

have the advantage that observers are not needed to spot the individuals

in the field. Camera traps can be installed that automatically take pictures

of an individual triggering the movement captor. For marine animals, a

picture removes the need to get too close to the individual. Recognising

the individuals from photographs can be done manually, but with the

development of deep learning, algorithms can now match individuals

from photographs with good reliability [47].

Genetic tags, generally known as DNA fingerprints, allow the identifica-

tion of individuals through the genotyping of individuals. Historically

done through blood samples collected from individuals, the improvement

of genotyping technology now allows much lower quality samples to be

used. Today, many studies focus on DNA collected through non-invasive

genetic sampling. The DNA left by an animal, in scat or hair, can be

collected without having to catch or disturb the animal [48, 49]. Studies

using such DNA have been carried out on bears ([50]), bobcats ([51, 52]),

pronghorns ([53]), and elephants ([54]), for example. Environmental

samples such as scat are very convenient to sample. However, the sample
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must not be too degraded to allow the DNA to be replicated properly for

a correct identification of the genotype. In addition, a panel of markers

must be developed that is complex enough to differentiate between

individuals. Taberlet & Luikart (1999) [48] give the probability 𝑃𝐼 that

two individuals in a population have the same genotype (i.e. probability

of identity) for given allele frequencies:

𝑃𝐼 =
∑

𝑝4

𝑖 +
∑

(2𝑝𝑖𝑝 𝑗)2

where 𝑝𝑖 and 𝑝 𝑗 are the frequencies of the 𝑖𝑡ℎ and 𝑗𝑡ℎ alleles. 𝑃𝐼 is the

probability of identity. A 𝑃𝐼𝑠𝑖𝑏 exists that is a corrected statistic taking

into account the substructure of a population in which many siblings

can be found. The genetic markers are mainly microsatellites and single

nucleotid polymorphisms (SNPs).

Microsatellites and SNPs for genetic tagging

Historically, the genetic markers used to distinguish individuals were

microsatellites. Microsatellites are repetitive sequences of nucleotides

in the DNA, such as ’ATATATAT’. The number of repetitions of the

fragment (here ’AT’) varies between individuals, leading to multiple

alleles being available at a single locus within a population. The high

number of alleles available makes microsatellites useful for differentiating

between individuals; usually around 10 to 20 loci are needed to identify

individuals.

A recent and noteworthy shift in the field of markers is occurring as

microsatellites are being replaced by SNP markers. SNPs represent ge-

netic variations at a specific locus, with the theoretical possibility of up

to four alleles, although in most cases, the majority are bi-allelic due to

low mutation rates. These markers have many advantages compared to

microsatellites. They change in a way that is well described by simple mu-

tation models such as the infinite site model [55]. Since they only present

two alleles, the data produced is very easy to standardise, independently

of the laboratory or the methods used. In addition, false alleles are easily

detected since only two are expected. Lastly, the sequences of interest are

very short (around 50–70 base pairs) compared to microsatellites (around

80–300 base pairs). The shorter length makes it easier to amplify when

using degraded DNA [56]. This is important when using low-quality

DNA. However, being bi-allelic, SNPs have a much reduced identifying

power compared to microsatellites. Many more SNPs than microsatellites

are required to obtain the same power: around two to six times more [57].

Using SNPs, around 50 to 100 loci are required to differentiate between

individuals, whereas only 10 loci are needed for microsatellites.

Assumptions related to tags

Traditionally, several assumptions have been made about tags so that the

data can be used by a conventional CR model. These assumptions are

not always stated explicitly. Conventional CR models assume that:

1. All the individuals in the population of interest can be tagged.

2. The tagging method does not affect survival.
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3. A tag is unique to the individual.

4. The tag is permanent, i.e. cannot be lost or modified.

5. The tag allows the individual to be identified.

These assumptions are necessary to ensure unbiased estimates, along

with the other assumptions made when using conventional capture-

recapture models. The first hypothesis is usually met in the sense that

the population of interest is made up of the markable individuals. This

can often exclude young individuals, either because they are too small

for man-made tags or because they do not have natural identification

features such as scars yet. ’What is the population of interest?’ is a crucial

question related to this hypothesis.

The second hypothesis can be tested for man-made tags, and there is no

reason for natural tags to affect survival.

The third hypothesis is easily met with man-made tags. It should also

be met with photographic tags. To ensure that genetic tags are unique,

enough markers must be used to lower the probability that several indi-

viduals have the same genotype by chance (PI) under a given threshold.

Although man-made tags such as rings can be lost, this is unlikely, and

an individual’s genotype will not change. However, photographic tags

based on scars could change. New scars can appear on top of the old ones

and potentially change the pattern. If the pattern changes slowly enough

compared to the frequency of recapture, this may not be a problem, since

the individual would be recognised. However, if the pattern changes

drastically between two captures, then assumption four cannot be made.

This may happen either because of a specific event that led to larger scars

hiding the older marks, or because small modifications accumulated to

change the pattern drastically between two occasions far apart in time.

Birth patterns could potentially also be hidden by scarring.

Individual identification

The last hypothesis is the subject of particular attention in this thesis. It is

assumed that, with genetic tags, if the genotype of an individual is fully

observed without error, then the individual is identified without error.

In the same way, for photographic tags, if a photograph is taken in a way

that fully and clearly shows the pattern, then it allows the identification

of the individual without error.

But in some cases, a photograph is blurry or does not cover the entirety of

the pattern, so the individual might not be correctly recognised. Genetic

tags have similar problems. One prevalent issue is allelic dropout, in

which the PCR fails to amplify one of the alleles in a heterozygous

individual [58], resulting in the incorrect inference of homozygosity.

Furthermore, allelic dropout can result in missing data when both alleles

fail to amplify. Another source of error is the creation of false alleles during

PCR amplification. These artificial alleles can lead to erroneous genotype

calls, misidentifying homozygous individuals as heterozygous.

In order to mitigate these errors, PCR replicates are carried out [48, 59].

One sample is amplified in multiple independent PCRs, and a genotype

is called based on the consensus of several replicates, reducing the impact

of allelic dropout and false alleles. Yet even with replicates, missing



Introduction 9

[49]: Taberlet et al. (1999), ‘Noninvasive

genetic sampling’

[60]: Waits et al. (2005), ‘Noninvasive

Genetic Sampling Tools for Wildlife Biol-

ogists’

[61]: Bonner et al. (2013), ‘Mark-recapture

with multiple, non-invasive marks’

[62]: McClintock et al. (2013), ‘Inte-

grated modeling of bilateral photo-

identification data in mark–recapture

analyses’

[63]: McClintock (2015), ‘multimark’

[64]: Yoshizaki et al. (2009), ‘Mod-

eling misidentification errors in cap-

ture–recapture studies using photo-

graphic identification of evolving marks’

data can still occur if too many replicates fail to amplify a locus or if

a robust consensus cannot be reached. In these cases, the probability

of identifying an individual decreases, so these issues should not be

neglected [49, 60].

Another problem that can arise with photographic tags is that the

markings of many species are on their sides. If an individual is never

photographed from both sides simultaneously, there is no reliable way

of matching the marks from both sides, and these marks cannot be

recognised as belonging to the same individual. This specific problem

has been tackled in several papers [61, 62], and a method and a package

have been developed to analyse such data [63].

The following section focuses on the problem of individual misidentifi-

cation, describing what this consists of, the consequences of ignoring it,

and the different ways of dealing with it.

The challenge of misidentification in CR studies

Misidentification

Misidentifying an individual is not recognising it when it is captured,

thus not assigning the capture to the true individual. Three different cases

of misidentification can be distinguished, but this thesis only considers

the third:

1. misidentification due to evolving marks

2. misidentification in which two real individuals are confused with

each other

3. misidentification in which an individual that does not exist is

identified.

1) In contrast to man-made tags, natural tags cannot be matched to a

known bank of tags. Thus, when an individual is misidentified because

its tag has changed, a new individual is ’identified’ that does not exist

in the population, and subsequent captures will be identified as this

new individual (or another if the tag changes again) [64]. These false

individuals that are created in the dataset but which do not actually exist

are referred to as ’ghosts’. This problem is discussed at the end of this

thesis.

2) If the photographs do not show the full pattern clearly or if the

genotype is not observed perfectly (missing loci or genotyping error),

then the identification is uncertain. It may happen that the marks are so

unclear that a sample cannot be identified as belonging to an existing

individual. This would occur if the percentage of loci available for the

identification of a sample is too low. Then the PI corresponding to the

available loci would be high, meaning that several individuals could

likely share the same genotype for these loci. We can assume that this

case will not happen, as such samples represent the lowest quality data

and can be filtered out beforehand.

3) The data quality may be high enough to not confuse the individuals,

but too low to ensure that the individual is recognised. This would

lead to a sample being misidentified as another non-existing individual,
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creating a ghost. It is similar to the changing tags problem, but the

original individual can still be correctly identified on later occasions. The

below shows an example for an individual captured at occasions 1 and 3,

but misidentified (as a ghost) on one of these occasions:

True history Observed histories

101

100

001

Ignoring misidentification may have serious consequences on estimating

parameters with traditional CR models. Creel et al. (2003)[65] showed

that this can result in the population size being greatly overestimated.

In addition, Winiarski et al. (2016) [66] found that survival probability

can be underestimated by the models. The intuitive explanation is that

misidentification adds a lot of unobserved events in histories, thus lower-

ing the capture rate estimates, with an impact on the other parameters

of the model such as survival and population size. The conventional

models have multinomial distributions, with the outcomes being the

possible output histories. They cannot be modified to accommodate

misidentification and still maintain the multinomial structure [67].

This thesis focuses on the third kind of misidentification, and it also

assumes that misidentifications are unique. That is, each misidentification

will produce a different ghost. This hypothesis is more realistic with

SNPs as genetic markers than with microsatellites, where only a few loci

are examined.

Misidentification hypotheses

This thesis considers the following assumptions about misidentifica-

tion:

1. A real individual cannot be misidentified as another real indi-

vidual.

2. Misidentification always results in the creation of a new indi-

vidual or ’ghost’.

3. Misidentifications are unique, and two misidentifications cannot

be matched to the same ghost.

To reduce misidentification, several studies have proposed solutions

when using genetic tags. These solutions range from field methods

and improved laboratory techniques for genetic analysis [60, 68] to pre-

analysis software that helps filter out data likely to contain errors [69].

Regarding visual pattern recognition, computer-aided image matching

techniques [47, 70] have been developed to aid identification. However,

improved genetic methods often come at an increased cost and workload

because replicates must be carried out. In addition, whether with genetic

tags or computer-assisted methods, when using low-quality samples,

there will still be a risk of misidentification.

Modelling misidentification

Most studies simply remove the problematic data and assume that no

misidentification has occurred in the data they retain. The proportion of
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removed data can be quite large. For example, Laguardia et al. (2021) [54]

used only 58% of the collected samples. Lukacs and Burnham (2005) [71]

point out that it may be beneficial to allow a small degree of uncertainty

in identification (2–5%) by modelling it, if the cost is offset by the number

of additional samples that can be kept. Two types of models have been

developed that model uncertainty in identification.

The first type of model integrates genotype uncertainty. Wright et al.

(2009) [72] developed a model that uses replicates of genotypes to model

the genotype observation process before modelling capture-recapture.

Let 𝐺𝑜𝑏𝑠 be the observed genotypes, 𝐺𝑡𝑟𝑢𝑒 the true genotypes, 𝑋 the

capture matrix, 𝑑 the probability of allelic dropout, N the population

size, � the CR parameters, and 𝛾 the allele frequencies. They proposed

a model with three components: the genotype observation process

[𝐺𝑜𝑏𝑠 |𝐺𝑡𝑟𝑢𝑒 , 𝑋, 𝑝], the genotype distribution [𝐺𝑡𝑟𝑢𝑒 |𝑁, 𝛾], and the sam-

pling process [𝑋 |𝑁, �].

Another model, developed by Knapp et al. (2009) [73], uses the likelihood

of the observed genotype𝑃(𝐺𝑜𝑏𝑠 = 𝑔) to compute the probability that two

samples 𝑖 and 𝑗 from the same individual lead to the observed genotypes

𝑔 and 𝑔′, 𝑃(𝐺𝑜𝑏𝑠
𝑖

= 𝑔, 𝐺𝑜𝑏𝑠
𝑗

= 𝑔′ |𝐺𝑡𝑟𝑢𝑒
𝑖

= 𝐺𝑡𝑟𝑢𝑒
𝑗

). Then they reverse the

probability using Bayes’ rule to get 𝑃(𝐺𝑡𝑟𝑢𝑒
𝑖

= 𝐺𝑡𝑟𝑢𝑒
𝑗

|𝐺𝑜𝑏𝑠
𝑖

= 𝑔, 𝐺𝑜𝑏𝑠
𝑗

= 𝑔′).
The computation uses the population size 𝑁 , allowing its estimation.

However, these two models can only be used for genetic tags, and they

have only been developed to estimate population size, not survival.

(Wright et al.’s model could be extended to open populations.)

The second type of model deals directly with potential misidentification

in the capture-recapture history matrix. A first model was developed

by Lukacs and Burnham (2005) [71] for closed populations. Let 𝑝 be the

probability of capturing an individual, and 𝛼 the probability that the first

encounter of a history be correctly identified. They give the probability

of a history ℎ = (ℎ1 , . . . , ℎ𝑇) with the first encounter at 𝑙 and subsequent

encounters to be

𝑃(ℎ) =
[
𝑡=𝑙−1∏

1

(1 − 𝑝)
]
𝑝𝛼

[
𝑇∏

𝑡=𝑙+1

𝑝ℎ𝑡 (1 − 𝑝)1−ℎ𝑡
]
,

and the probability of a history ℎ with the first encounter at 𝑙 and no

recapture to be

𝑃(ℎ) =
[
𝑡=𝑙−1∏

1

(1 − 𝑝)
] [
𝑝𝛼

(
𝑇∏

𝑡=𝑙+1

(1 − 𝑝)
)
+ 𝑝(1 − 𝛼)

]
.

Yoshizaki et al. (2011) [67] remark that Lukacs and Burnham "do not

present a rigorous development of the cell probabilities" and that the

model "ignores the complete dependence between the pair of histories

created whenever a genotype is incorrectly identified". They modify the

model, giving the probability of a history with several encounters:

𝑃(ℎ) =
𝑇∏
𝑡=1

(𝑝𝑡𝛼)ℎ𝑡 (1 − 𝑝𝑡𝛼)1−ℎ𝑡 ,
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and the probability of a history ℎ with a unique encounter:

𝑃(ℎ) =
𝑇∏
𝑡=1

(𝑝𝑡𝛼)ℎ𝑡 (1 − 𝑝𝑡𝛼)1−ℎ𝑡 + 𝑝𝑡1(ℎ)(1 − 𝛼)

where 𝑡1(ℎ) is the occasion of the first capture of ℎ. The sum of the

probabilities of the possible histories is greater than 1. Thus, a multinomial

model cannot be used. To estimate the parameters, the authors use a

least-squares method.

Based on Yoshizaki’s model, Link et al. (2010) [74] developed a latent

multinomial model (LMM) that they named 𝑀𝑡 ,𝛼. In the 𝑀𝑡 ,𝛼 model, a

misidentification is coded by a 2 in the latent history:

Latent history Observed histories

102

100

001

And the probability of latent history ℎ is

𝑃(ℎ) =
𝑇∏
𝑡=1

(1 − 𝑝𝑡)𝐼(ℎ𝑡=0)(𝑝𝑡𝛼)𝐼(ℎ𝑡=1)(𝑝𝑡(1 − 𝛼))𝐼(ℎ𝑡=2).

The LMM is the framework that I chose to use in this thesis.

Another interesting model is presented by Yoshizaki et al. (2011) [67].

The idea of the model is to simply remove histories likely to be ghosts

and apportion a multinomial law to all the other observable histories.

Let ℎ′ be an observed history with two or more captures, and H′
the set

of possible histories with two or more captures. Let the random variable

𝑦ℎ′ represent the number of observed histories ℎ′. Then y′ = (𝑦ℎ′
1

, ...)
follows a multinomial of index 𝑁′ =

∑
y′

and probabilities

𝜋ℎ′/𝜋∗

where 𝜋ℎ′ =
∏𝑇

𝑡=1
𝑝
ℎ′
𝑖 ,𝑡

𝑡 (1 − 𝑝𝑡)1−ℎ
′
𝑖 ,𝑡 , and

𝜋∗ =
∑
ℎ∈H′

𝜋ℎ .

Finally, 𝑁 is estimated by

𝑁′/�̂�∗

As this model is very simple, I will refer to it as ’Yoshizaki’s model’ and

use it in comparison with the LMM and LMM extensions described in

Chapter 2 and Chapter 3.

Developments around the latent multinomial model

Since its development in 2010, the latent multinomial model (LMM, [74])

has received some interest. Bonner and Holmberg (2013) [61] adapted

it to photo identification with multiple "non-invasive" marks. They

modelled individual misidentification coming from left-side and right-

side photographs that might have been taken of the same individual. In

the same year, McClintock et al. (2013) [62] developed a similar model

and implemented it in the R package multimark [63]. McClintock et al.
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(2014) [75] also extended the LMM to individual heterogeneity in capture

or identification probability.

When Link et al. published their model, they explained how maximum

likelihood estimation was not realistic and showed how to construct a

Markov chain to estimate the parameters (details in Section 1.2.4). In

2014, Vale et al. used ADMB [76] to implement maximum likelihood

estimation [77]. The downside of Vale et al.’s method is that it is limited to

a single-state closed population, with no individual heterogeneity. This

means that transitions and survival cannot be estimated with this method.

They tested the model on simulations with low capture rates (down to

0.1) and showed that the model was highly biased, underestimating the

population size. In 2015 and 2016, Schofield & Bonner [78] and then

Bonner et al. [79] corrected and improved the construction of the MCMC

for faster computing. They also extended the model to a different case of

misidentification. They considered the case in which two individuals can

be confused. That is, an individual A who is seen can be misidentified as

another existing and previously tagged individual B, even though B is

not seen.

The thesis project

Context and objectives

This PhD project was funded by the French National Research Agency

(ANR) as part of the project MoVe=>ADAPT – Mosquito Vectors Adaptation
in a Changing World. The latter project aims ’to study how adaptation

of mosquito vectors to environmental modifications associated with

global change impacts their fitness and the life-history traits influencing

vectorial capacity, in order to predict more accurately the epidemiological

consequences of niche expansions and the spread of mosquito-borne

pathogens’. The thesis project involved applying the capture-recapture

analytical approach, which has been instrumental to obtain unbiased

field estimates of vertebrate population demographic parameters, to

the study of natural mosquito populations. The focus was on mosquito

larvae. The original plan was to collect and model data to assess the cost

of adaptation by comparing fitness trade-offs in reciprocally transplanted

natural populations occurring in contrasting environments. Since the

data quality was expected to be very poor, the model needed to account

for possible misidentification.

At the beginning of the PhD, the protocol for gathering the data on larvae

was an untested idea. The objective of the PhD was to develop the model

needed to analyse the data in parallel to the development of the protocol.

Some preliminary data was expected to be available by the beginning

of the first year. With this perspective, the PhD was started with the

purpose of delivering a model able to analyse this mosquito larvae data.

The plan was to select a model dealing with misidentification, implement

it and test it, extending it step by step towards the final model. Since the

selected model [74] was for a single-state closed population, these steps

were extensions to a multi-state closed population, single-state open

population and multi-state open population, adapting these to specific
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data requirements, incorporating environmental survival covariates, and

improvement of the estimates.

Around the midway point of the PhD, it became clear that the data

would not be available before the end of the thesis. It was judged that

the complete lack of data for a study aiming to specifically model this

data would greatly diminish the overall interest of the project. Hence,

while keeping the objective of the mosquito larvae model in mind, it

was decided to make the study more general. This was quite easy since

most of the steps already worked on were not specific to the mosquito

model. The thesis ended up considering the mosquito model simply as

an illustration of the potential of the LMM developed and extended in

the thesis.

Structure and content of the thesis

The thesis has five chapters, each describing different extensions of the

model.

Chapter 1: Closed population modelling of misidentification. This

chapter describes the original model from Link et al. (2010) [74] and

the algorithm used to construct an MCMC to estimate the parameters.

The chapter also presents the extension of the model to multi-state

observations. Finally, the chapter tests the model under various scenarios

and examines whether transition rates between states are well estimated

or not in the presence of misidentification.

Chapter 2: Using a covariate of identification. This chapter presents

an extension of the LMM that incorporates an identification quality

covariate in order to better discriminate which history with a unique

capture is a potential ghost. A comparative study of my model with the

original model and with Yoshizaki’s model is also made.

Chapter 3: Repeated observations on an occasion. This chapter presents

an extension of the model that accounts for multiple captures of the

same individual on a given occasion. The new model is compared to

Yoshizaki’s model, which could also be used for these cases. I also applied

the model to a real dataset from a study of the Eurasian otter (Lutra
lutra).

Chapter 4: Open population modelling of misidentification. The fourth

chapter presents the extension of the LMM to open populations. First

the single-state case is treated, followed by its extension including an

identification covariate, and lastly the multi-state open population case.

A simulation study shows the performance of the single-state open

population model.

Chapter 5: Using the LMM to study mosquito larvae survival. In the

last chapter, two fieldwork protocols are put forward for the mosquito

larvae study in order to obtain unbiased estimates with the multi-state

open population LMM. A simulation study compared the two protocols,

which differ in their way of dealing with pupae.

The chapters are relatively independent, but any reader not already

familiar with the LMM should read the first chapter. Chapter 1 can be

seen as an introduction to all the subsequent chapters, as it presents the
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LMM, its limitations, and how to extend it in different directions. Chapters

2, 3 and 4 are meant to be read independently by those interested in

specific extensions of the model. Thus, some parts are repeated, especially

the algorithms used to estimate the parameters.

At the very end of the thesis, I added a section with most of the notations

used in this work. It is presented twice so that one can be detached to

accompany the reading of a paper version.
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1.1 Aim of the chapter

Despite the interest that the LMM received and its potential, there is no

easy implementation. As a result it is not really used. Researchers tend to

simply delete the poor quality data and assume that no misidentifications

remain. In addition, Vale et al. (2014) [77] used simulations to show that the

LMM leads to very biased and uncertain estimates when recapture is low.

They tested the model with capture probabilities varying between 0.05

and 0.5 and identification probabilities between 0.9 and 0.99. It would be

interesting to know how the model performs with a lower identification

rate. Finally, the scope of the model is limited to single-state closed-

population experiments. It is even unknown how misidentifications

affect transition estimates if they are not accounted for in a multi-state

experiment.

In this chapter, I implement the LMM, using the algorithm proposed by

Bonner et al. (2016) [79]. I code it in the R language, using the NIMBLE

package [80]. Since R and NIMBLE are widely used by researchers doing

CMR, such an implementation will be easier to share and use.

I replicate the simulation study of Vale et al. (2014) [77]. I extend the

range of parameters to include lower identification rates, down to 80%

good identifications. I also test the effect of an informative prior on the

identification rate as a first way of correcting the bias from low capture

probabilities.

In the next step I extend the LMM to multi-state observations, while

still estimating population size in closed population experiments. This

will allow the additional estimates of migration between studied sites or

transition between states.

I test the effect of ignoring the misidentifications on the transition

estimates in the case of state dependant capture and identification

probabilities, and see how the multi-state LMM performs in estimating

both the transition probabilities and the population size.

1.2 Models of capture-recapture for single-state
in closed-population

1.2.1 Notations

Parameters

• 𝑁 : Population size,

• 𝑝𝑡 : Probability that an individual is captured at time 𝑡,

• 𝛼: Probability that a captured individual correctly identified

• 𝜓𝑟,𝑠 : in multistate, probability that an individual transition from

state 𝑟 to state 𝑠 between two consecutive occasions.
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Data and Latent variables

• 𝜔𝑖 : Observed history 𝑖

• �𝑗 : Latent error history 𝑗 (in which misidentification are noted

down)

• �𝑘 : Latent capture history 𝑘 (real capture history)

Statistics

• 𝑦𝑖 : number of observed history 𝑖

• 𝑥 𝑗 : number of latent error history 𝑗

• 𝑧𝑘 : number of latent capture history 𝑘

• y = (𝑦1 , ..., 𝑦2
𝑇−1)): vector of counts of observed histories

• x = (𝑥1 , ..., 𝑥3
𝑇 )): vector of counts of latent error histories

• z = (𝑧1 , ..., 𝑧2
𝑇 )): vector of counts of latent capture histories

1.2.2 The "classical" model (𝑀𝑡)

When estimating population size 𝑁 in a closed capture-recapture exper-

iment (i.e. the population is assumed not to change), with the model

known as 𝑀𝑡 ([25, 26]), individuals are assumed to be observed (’cap-

tured’) with probability 𝑝𝑡 at occasion 𝑡 for 𝑡 = 1, 2, ..., 𝑇 and identified

individually through tags/tracking devices or natural markings. Capture

events are assumed independent between individuals and over time.

For each occasion, an individual is assigned 0 if it was not captured,

or 1 if it was. This leads to 2
𝑇

possible distinct histories, including the

unobservable all-zero history. They are represented by the sequence

𝝎𝑖 = (𝜔𝑖 ,1 , ..., 𝜔𝑖 ,𝑇) where 𝜔𝑖 ,𝑡 is 0 or 1. Here, 𝑦𝑖 is the number of

individuals with history 𝜔𝑖 and y = (𝑦1 , 𝑦2 , ..., 𝑦2
𝑇−1

). The likelihood of

history 𝑖 is

𝜋𝑖 =
𝑇∏
𝑡=1

[
𝑝
𝐼(𝜔𝑖 ,𝑡=1)
𝑡 (1 − 𝑝𝑡)𝐼(𝜔𝑖 ,𝑡=0)

]
(1.1)

where 𝐼(𝑡𝑒𝑠𝑡) is 1 if test is true, and is 0 otherwise. Then, y follows a

multinomial distribution

[y|𝑁, p] = 𝑁 !∏
𝑖 𝑦𝑖 !

∏
𝑖

𝜋
𝑦𝑖
𝑖

(1.2)

1.2.3 The Latent Multinomial Model, 𝑀𝑡 ,𝛼

To account for individual misidentifications, Yoshizaki et al. [67] proposed

an 𝑀𝑡 ,𝛼 model in which captured individuals are correctly identified

with probability 𝛼. Misidentifications are assumed to always create a new

individual (a "ghost"). An individual cannot be mistaken as another and

two errors cannot create the same ghost. Essentially what will happen is

what is described on Figure 1.1.

To estimate the parameters of the model, Link et al. (2010) [74] developed a

latent structure for the 𝑀𝑡 ,𝛼 model, which allows for Bayesian parameter

estimation. In this structure, misidentifications are represented by 2

in the latent error histories 𝝂 𝑗 = (�𝑗 ,1 , ..., �𝑗 ,𝑇). The frequency of the

latent error history �𝑗 is noted 𝑥 𝑗 , and the vector of all latent error

frequencies is x = (𝑥1 , ..., 𝑥3
𝑇 ). To make future developments of the
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Figure 1.1: Misidentification process. On

occasion 3, the cute rabbit was misiden-

tified so we do not realise that we have

captured it (a 0 is registered) and we add

a ghost in the dataset.

[79]: Bonner et al. (2015), ‘Extending the

latent multinomial model with complex

error processes and dynamic markov

bases’

model easier, the observation process of the likelihood is broken down

into two parts, the capture process and the identification process. We

followed Bonner et al. (2015) [79] by introducing latent capture histories

𝝃𝑘 = (�𝑘,1 , ..., �𝑘,𝑇). These are the true capture histories, i.e. in the absence

of individual misidentifications, composed of 0 and 1. The frequency

of the latent capture history �𝑘 is noted 𝑧𝑘 , and the vector of all latent

capture frequencies is z = (𝑧1 , ..., 𝑧2
𝑇 ).

In this model framework, the observed frequencies vector y is a linear

transformation y = Ax of the latent error frequencies x for a known

matrix A. The constraint matrix A is (2𝑇 − 1) × 3
𝑇

with a 1 in row 𝑖 and

column 𝑗 if the latent error history 𝑗 gives rise to the observed 𝑖. All the

other entries are zeros. The latent capture frequencies vector z is also a

linear transformation of the same x, z = Bx, for another known matrix B.

B is 2
𝑇 × 3

𝑇
with 1 at row 𝑘 and column 𝑗 if the latent capture history �𝑘

and the latent error history �𝑗 have the same capture pattern.

The joint likelihood of y, x and z is

[y, x, z|𝑁, 𝑝, 𝛼] = 𝐼(y = Ax) [x|z, 𝛼] [z|𝑁, p] (1.3)

The probability of the capture process [z|𝑁, p] is the same as the closed

CMR 𝑀𝑡 model, using histories � and frequencies z. The capture likeli-

hood is the following multinomial product where 𝜋𝑘 is computed as in

Equation 1.2, using history � instead of 𝜔:

[z|𝑁, p] = 𝑁 !∏
𝑘 𝑧𝑘 !

∏
𝑘

𝜋𝑧𝑘
𝑘

(1.4)

Bonner et al. (2015) [79] gives the likelihood of the identification process,

knowing the real captures:

[x|z, 𝛼] = 𝐼(z = Bx)
∏

𝑘 𝑧𝑘 !∏
𝑗 𝑥 𝑗 !

∏
𝑗

[
𝑇∏
𝑡=1

𝛼𝐼(�𝑗 ,𝑡=1)(1 − 𝛼)𝐼(�𝑗 ,𝑡=2)

] 𝑥 𝑗
(1.5)

The ratio of factorials accounts for the many relabelling of the marked

individuals that would produce the same counts in x and z.

The full likelihood is obtained by summing [y, x, z|𝑁, 𝑝, 𝛼] over all values

of x belonging to the set Fy = {x|y = Ax}:

[y|𝑁, 𝑝, 𝛼] =
∑
𝑥∈Fy

[y|x, z, 𝑁 , 𝑝, 𝛼] (1.6)



1 Closed population modelling of misidentification 20

[74]: Link et al. (2010), ‘Uncovering a

Latent Multinomial’

[79]: Bonner et al. (2015), ‘Extending the

latent multinomial model with complex

error processes and dynamic markov

bases’

1: 𝑎𝑡 =
∑
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Note that there is no need to sum over z because z is defined by x

1.2.4 Estimating parameters of the LMM

The feasible set Fy is complicated to enumerate, which makes the likeli-

hood (Equation 1.6) almost untractable in terms of computation. Maxi-

mum likelihood estimation (MLE) is therefore not practical. Conveniently,

Link et al. [74] show how a Markov Chain Monte Carlo (MCMC) can

be constructed in a Bayesian analysis. The Markov chain allows for the

estimation of the posterior density:

[𝑁, p, 𝛼 |y] ∝ [y|𝑁, p, 𝛼] [𝑁] [p] [𝛼], (1.7)

where [𝑁], [p] and [𝛼] denote the priors on population size, capture

probability and identification probability. The algorithm presented in

this section is the one developed by Link et al. (2010) [74], with the

improvements from Bonner et al. (2015) [79]. The modification they made

are explained where they occur.

The MCMC is constructed following six steps:

1. Let 𝛽(𝑎𝑡
0
, 𝑏𝑡

0
) denote the beta prior on 𝑝𝑡 and 𝛽(𝑎𝛼

0
, 𝑏𝛼

0
) denote the

beta prior on 𝛼.

2. Initialize all parameters as well as a set of latent histories satisfying

y=Ax. Such a set can be obtained by assuming that no mistakes

were made. The latent frequencies of the histories containing 2’s

are 0 and all the other match the observed frequencies one-to-one.

In order to run several chains with different initialisations, one can

take the previous initialisation of x and follow the later steps of (5)

by only adding misidentification to the set and always accepting

the proposed ones without going though the Metropolis-Hasting

acceptance. In the initial latent set, fix the number of unseen

individual to a random realistic number.

3. Sample the capture rate with Gibbs sampling as shown by Link et

al. [74]. The likelihood being multinomial, it follows that the beta

priors lead to full conditional beta posterior distribution:

𝑝𝑡 |Z ∼ 𝛽(𝑎𝑡
0
+ 𝑎𝑡 , 𝑏𝑡

0
+ 𝑏𝑡)

where 𝑎𝑡 1
is the number of captured individuals at time 𝑡 and 𝑏𝑡

2
is the number of unseen individuals at time 𝑡 (including those

never seen).

4. Sample the identification rate using Gibbs sampling. Similar to the

capture rate, it has a full conditional beta posterior distribution:

𝛼 |x ∼ 𝛽(𝑎𝛼
0
+ 𝑎𝛼 , 𝑏𝛼

0
+ 𝑏𝛼)

where 𝑎𝛼 3
is the total number of correct identifications and 𝑏𝛼 4

is

the total number of misidentifications.

5. Sample jointly 𝑁 and x since the number of errors in x changes

the population size. Sampling x requires to be able to sample from
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Fy. Link et al. (2010) [74] proposed sampling moves from the null

space of matrix A (that is from the set of x such as Ax = 0)
5
, and

adding or subtracting them to the current x in the MCMC.

Schofield and Bonner [78] showed that if the basis of 𝐾𝑒𝑟ℤ(A) was

not carefully selected, some parts of the space Fy could be discon-

nected from the others and the Markov chain would only explore

sub-spaces, depending on the initial x, possibly leading to biased

estimations. They proposed to sample moves from the Markov

basis of A [81], a set in 𝐾𝑒𝑟ℤ(𝐴) that connect all Fy irrespective

of the values in y. Such a basis ensures that the whole set Fy is

connected by single moves and that no move will get out of the set.

The drawback is that the computation of that Markov basis is heavy

and algebraic software such as 4ti2 [82] will not be able to calculate

it for 𝑇 ≥ 5. Bonner et al. [79] proposed a mechanism to avoid

computing that basis. It consists in sampling from dynamic Markov

basis [83] which is the set of moves 𝑀(𝑥) that connect each x to

some neighbours. 𝑀(𝑥) is a subset of the complete Markov base

that contains only the moves with a positive acceptance probability.

It is easy to infer which sets x′ are next to a given x, making the

dynamic base much more simple to use than the Markov base.

The algorithm is randomly adding or removing an error from the

set of latent histories. To add an error, the authors choose a history

that may have generated a ghost (i.e. a history containing a 0),

and "merge" it with a potential ghost (i.e. replace the 0 by a 2 and

remove the ghost history). To remove an error, they choose a history

containing a 2, replace it by a 0 and add a history with a unique

capture (coded 1) at that time.

More formally, follow the steps:

a) Define:

• 𝝂(1𝑡)
the history with a unique capture at time 𝑡 (potential

ghost),

• 𝜒0,𝑡(x) = {𝝂 |�𝑡 = 0, 𝑥� > 0, 𝑥�(1𝑡) > 0} the set of histories

having potentially generated a ghost at time 𝑡, for the given

x,

• 𝜒2,𝑡(x) = {𝝂 |�𝑡 = 2, 𝑥� > 0} the set of histories containing
a ghost at time 𝑡, for the given x.

b) With probability 0.5, go to (i), otherwise go to (ii).

i. Add a misidentification (i.e. a ghost) to the latent set.

• Sample 𝝂(0) ∈ 𝜒0.(𝑥) =
⋃
𝑡 𝜒0,𝑡(𝑥).

• Sample 𝑡 ∈ {𝑡 |�(0)𝑡 = 0, 𝑥�1𝑡 > 0}.
• Define 𝝂(2) = 𝝂(0) + 2𝝂(1𝑡)

.

• Define the move 𝑏𝝂(0) ,𝝂(1𝑡) ,𝝂(2) = (−1,−1,+1), and 𝑏� =

0 for all other latent histories.

ii. Remove a misidentification from the latent set.

• Sample 𝝂(2) ∈ 𝜒2.(𝑥) =
⋃
𝑡 𝜒2,𝑡(𝑥).

• Sample 𝑡 ∈ {𝑡 |𝝂(2)
𝑡 = 2}.

• Define 𝝂(0) = 𝝂(2) − 2𝝂(1𝑡)
.

• Define the move 𝑏𝝂(0) ,𝝂(1𝑡) ,𝝂(2) = (+1,+1,−1), and 𝑏� =

0 for all other latent histories.

c) Define x′ = x(𝑘−1) + b.

d) Calculate z′ = Bx′ and 𝑁′ =
∑

x′.
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Likelihood ratio simplification

When adding an error, we have

[x′ |z′, 𝛼]
[x(𝑘−1) |z(𝑘−1) , 𝛼]

[z′ |𝑁′, p]
[z(𝑘−1) |𝑁, p]

=
𝑥�

0
𝑥�

1
(1 − 𝛼)

𝑥′�
2

𝛼

1

𝑁
∏𝑇
𝑡=1

𝑝𝑡

(1.9)

and when removing an error,

[x′ |z′, 𝛼]
[x(𝑘−1) |z(𝑘−1) , 𝛼]

[z′ |𝑁′, p]
[z(𝑘−1) |𝑁, p]

=
𝑥�

2
𝛼

𝑥′�
0

𝑥′�
1

(1 − 𝛼)𝑁
′
𝑇∏
𝑡=1

𝑝𝑡

(1.10)

Proposal density

The proposal densities are calculated

by multiplying the probabilities of

each sampling step used for defining

the move. They are successively: the

probability of adding (or removing)

an error, the probability of choosing

the �0 (or �2) and the probability

of choosing the 𝑡 knowing the sam-

pled �. When adding an error, the

proposal density 𝑞 is:

𝑞(𝑥′ |𝑥(𝑘−1)) =
0.5

#𝜒0.#{𝑡 |�0,𝑡 = 0, 𝑥�
1𝑡 > 0} (1.11)

and when removing an error, is:

𝑞(𝑥′ |𝑥(𝑘−1)) =
0.5

#𝜒2.#{𝑡 |�2,𝑡 = 2} (1.12)

where #𝑆 denotes the cardinality of

𝑆.

[79]: Bonner et al. (2015), ‘Extending the

latent multinomial model with complex

error processes and dynamic markov

bases’

[84]: Robert et al. (2004), Monte Carlo
Statistical Methods

e) Let 𝑟1 be

𝑟1 = 𝑚𝑖𝑛

(
1,

[y, x′, z′ |𝑁′, p, 𝛼]
[y, x(𝑘−1) , z(𝑘−1) |𝑁, p, 𝛼]

𝑞(x(𝑘−1) |x′)
𝑞(x′ |x(𝑘−1))

)
(1.8)

With probability 𝑟1, set x(𝑘) = x′, z(𝑘) = z′ and 𝑁 (𝑘) = 𝑁′
.

Otherwise set x(𝑘) = x(𝑘−1)
, z(𝑘) = z(𝑘−1)

and 𝑁 (𝑘) = 𝑁 (𝑘−1)
.

See Appendix A for the detail of how the likelihood ratio part of 𝑟1
simplifies.

6. Sample the number of unseen individuals 𝑥1:

a) set x′ = x, z′ = z and 𝑥0 the number of unseen individual in z
(and x),

b) sample a move 𝑐 ∈ [−𝐷, 𝐷] where D is fixed integer,

c) define 𝑥′
0
= 𝑥0 + 𝑐,

d) set the number of unseen individuals in x′ and z′ to 𝑥′
0
,

e) accept it with probability 𝑟2 with:

𝑟2 = 𝑚𝑖𝑛

(
1,

[z′ |𝑁′, 𝑝]
[z|𝑁, 𝑝]

)
. (1.13)

7. repeat steps 3 to 6 as much as needed.

1.2.5 Proof of convergence

Bonner et al. (2015) [79] give the proof of convergence of the algorithm

they developed for their band read error model in the supplementary

material. For the sake of completeness of this manuscript, we copy the

proof of convergence they gave, using the notations from this thesis.

Despite the model of Bonner et al. (2015) being different, the proof is the

same for the algorithm of the 𝑀𝑡 ,𝛼 model.

To prove that chains generated from the algorithm of Section 1.2.4

converge to the correct distribution, we need to satisfy four conditions:

1. that Step 3 and 6 produce chains which converge to 𝜋(𝑁, p|z) for

any z such that z = Bx for some x ∈ F𝑦 ,

2. that step 4 produces chains which converge to 𝜋(𝛼 |x),
3. that Step 5 produces chains which converge to 𝜋(x|y, 𝑁 , p, 𝛼) for

any 𝑁 , p and 𝛼 in the parameter space,

4. that the joint posterior distribution 𝜋(x, z, 𝑁 , p, 𝛼 |y) satisfies the

positivity condition of Robert and Casella (2010, pg. 345 [84]).

Sampling from 𝜋(𝑁, p|z) is equivalent to sampling from the posterior

distribution for a simple 𝑀𝑡 model. This is now standard, and so we

conclude that Condition 1 is satisfied. It is also trivial to show that

Condition 2 is satisfied since it is the proof that the 𝛽 prior is conjugate

with the product of binomial in the likelihood. It is also simple to show

that the positivity constraint is satisfied given that the prior distributions

for p is positive over all of [0, 1]𝑇 , as assumed. It remains to show that

Condition 3 holds.

We assume here that F𝑦 contains at least two elements. The fibre always

contains at least one element with no errors which we denote by x∅. The
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entries of this element are

x∅� =
{

y� if � is observable,

0 otherwise

.

Cases in which F𝑦 = x∅ arise when no errors could have occurred, for

example, if no individuals were ever recaptured. These situations are

easily identified and there is no need to sample from the joint posterior

of both x and � in such cases since x = x∅ with probability one.

Some useful results that are easy to prove are:

1. that any configuration of the latent error histories within the fibre

has a positive probability under the conditional posterior for all

values of the parameters in the parameter space,

Lemma 1.2.1 If x ∈ F𝑦 , then 𝜋(x|y, 𝑁 , p, 𝛼) > 0 for all values of 𝑁
and p in the parameter space.

2. that the local sets within the dynamic Markov basis are symmet-

ric,

Lemma 1.2.2 Let M1(x) and M2(x) be, respectively the sets of moves
that add and remove an error to x, and let x ∈ F𝑦 . If b+ ∈ M1(𝑥), then
−b+ ∈ M2(𝑥 + b+), and if b− ∈ M2(𝑥), then −b− ∈ M1(𝑥 + b−).

3. that all proposals remain inside F𝑦 ,

Lemma 1.2.3 Let x ∈ F𝑦 . If b ∈ M(𝑥) = M1(𝑥)
⋃

M2(𝑥) then
𝑥 + 𝑏 ∈ F𝑦 .

4. that there is a unique element x∅ in F𝑦 with no errors.

Lemma 1.2.4 Let 𝑒𝑡(x) be the number of misidentification in x at
occasion 𝑡. Suppose that x∅ ∈ F𝑦 . Then 𝑒𝑡(x∅) = 0 ∀𝑡 = 1, ..., 𝑇 if
and only if

x∅� =
{

y� if � is observable,
0 otherwise

First we establish irreducibility. Proposition 1.2.5 implies that there is a

path connecting any two elements in the fibre while Proposition 1.2.6

implies that each step, and hence the entire path, has positive probability

under the transition kernel. Together, these show that that the chains are

irreducible.

Proposition 1.2.5 For any distinct x1 , x2 ∈ F𝑦 there exists a sequence of
moves b1 , ..., b𝐿 such that:

1. b𝐿′ ∈ M(x1 +
∑𝐿′−1

𝑙=1
b𝑙) for all 𝐿′ = 1, ..., 𝐿,

2. x1 +
∑𝐿′−1

𝑙=1
b𝑙 ∈ F𝑦 for all 𝐿′ = 1, ..., 𝐿 − 1, and

3. x2 = x1 +
∑𝐿
𝑙=1

b𝑙 ,

where we take x1 +
∑

0

𝑙=1
b𝑙 = x1.
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Notations reminder
• F𝑦 = {x : y = Ax}
• M(x): dynamic Markov base (i.e.

set of moves available from x),

• 𝜒2,𝑡 (x): set of histories that contain

misidentifications at 𝑡 and whose

count in x is positive.

• 𝑒𝑡 (x): number of misidentifica-

tions at 𝑡 in x.

[85]: Çınlar (2013), Introduction to stochas-
tic processes

[86]: Liu (2004), Monte Carlo Strategies in
Scientific Computing

Proof. The proof follows by (reverse) induction on the number of errors.

Suppose that 𝑒𝑡(x1) > 0 for some 𝑡. Then 𝜒2,𝑡(x1) is non-empty and

∃b−
11

∈ M2(x1). Then 𝑒𝑡(x1 + b−
11
) = 𝑒𝑡(x1) − 1 and x1 + b−

11
∈ F𝑦 by

Lemma 1.2.3. Repeating this procedure 𝐿1 =
∑𝑇
𝑡=1

𝑒𝑡(x1) times, we find

b−
11
, ..., b−

1𝐿1

such that

1. b−
1𝐿′ ∈ M2(x1 +

∑𝐿′−1

𝑙=1
b−

1𝑙
) for 𝐿′ = 1..., 𝐿1,

2. x1 +
∑𝐿′

𝑙=1
b−

1𝑙
∈ F𝑦 for all 𝐿′ = 1..., 𝐿1, and

3. 𝑒𝑡(x1 +
∑𝐿1

𝑙=1
b−

1𝑙
) = 0.

It follows by Lemma 1.2.4 that x1 +
∑𝐿1

𝑙=1
b−

1𝑙
= x∅. By the same argument,

∃b−
21
, ..., b−

2𝐿2

such that

1. b−
2𝐿′ ∈ M2(x2 +

∑𝐿′−1

𝑙=1
b−

2𝑙
) for 𝐿′ = 1..., 𝐿2,

2. x2 +
∑𝐿′

𝑙=1
b−

2𝑙
∈ F𝑦 for all 𝐿′ = 1..., 𝐿2, and

3. 𝑒𝑡(x2 +
∑𝐿2

𝑙=1
b−

2𝑙
) = 0.

Moreover, −b2,𝐿2−𝑙+1 ∈ M1(x∅ +
∑𝐿′−1

𝑙=0
−b−

2,𝐿2−𝑙) for all 𝐿′ = 1, ..., 𝐿2 by

Lemma 1.2.2. Then the sequence b1 , ..., b𝐿 where 𝐿 = 𝐿1 +𝐿2, b𝑙 = b−
1𝑙

for

𝑙 = 1, ..., 𝐿1 and b𝐿1+𝑙 = −b−
2,𝐿2−𝑙+1

for 𝑙 = 1, ..., 𝐿2 satisfies the conditions

of the proposition. Note that half of this argument suffices if either x1 = x∅
or x2 = x∅.

Proposition 1.2.6 Let x ∈ F𝑦 . If b ∈ M(x) then 𝑃(x(𝑘+1) = x + b|x(𝑥) =
x) > 0.

Proof. Suppose that b ∈ M1(x) and let x′ = x + b. Then −b ∈ M2(x′) by

Lemma 1.2.2. Direct calculation of Equation 1.11 and Equation 1.12 shows

that both 𝑞(x′ |x) > 0 and 𝑞(x|x′) > 0. Combined with Lemma 1.2.1 it

follows that 𝑃(x(𝑘+1) = x′ |x(𝑘) = x) = 𝑟1 > 0 (from Equation 1.8). A similar

argument shows that 𝑃(x(𝑘+1) = x+ b|x(𝑘) = x) > 0 for all b ∈ M2(x).

We establish aperiodicity by showing that there is positive probability of

holding at x∅.

Proposition 1.2.7 If x(𝑘) = x∅ then 𝑃(x(𝑘+1) = x∅) ≥ 0.5.

Proof. The set M2(x∅) is empty since there are no errors to remove

from x∅. However, the algorithm still proposes to draw a move from

M2(x∅) with probability 0.5. When this occurs we set x(𝑘+1) = x(𝑘) so that

𝑃(x(𝑘+1) = x∅) > 0.5.

This shows that x∅ is an aperiodic state and hence that the entire chain is

aperiodic (Cinlar, 1975, pg. 125 [85]). Since the fibre is finite, irreducibility

and aperiodicty are sufficient to ensure that the chains have a unique

stationary distribution which is also the limiting distribution (see Cinlar,

1975, Corollary 2.11 [85]). That this distribution is equal to the target

distribution is guaranteed by the detailed balance condition of the MH

algorithm which holds under Proposition 1.2.8 (Liu, 2004, pg. 111 [86]).
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Proposition 1.2.8 If 𝑞(x′ |x) > 0 then 𝑞(x|x′) > 0 for all x, x′ ∈ F𝑦 .

Proof. Suppose that 𝑞(x′ |x) > 0. Then either x′ − x ∈ M1(𝑥) or x′ −
x ∈ M2(𝑥). If x′ − x ∈ M1(𝑥) then x − x′ ∈ M2(𝑥′) by Lemma 1.2.2

and 𝑞(x|x′) > 0. Similarly if x′ − x ∈ M2(𝑥) then x − x′ ∈ M1(𝑥′) and

𝑞(x|x′) > 0.

This complete Bonner et al. (2015)’s proof that the Markov chains pro-

duced by the algorithm of Section 1.2.4 have unique limiting distribution

𝜋(x, 𝑁 , p|y, 𝛼) so that realisations from the tail of a converged chain can

be used to approximate properties of the joint posterior distribution of x,

𝑁 and p.

1.3 Extending the Latent Multinomial Model

1.3.1 Additional notations

Parameters

• 𝜓𝑟,𝑠 : Probability that an individual transition from state 𝑟 to state 𝑠

between two consecutive occasions.

• 𝛿𝑠 : Probability that an individual is in state 𝑠 at 𝑡 = 1.

1.3.2 Multi-state capture-recapture model

The time-dependent multistate model assumes individuals to move

independently over a finite set of S states, 𝐸 = {𝑒1 , ...𝑒𝑆}. These states are

not observed at each occasion for every individual but only when they

are captured. Capture histories 𝜔𝑖 are now composed of 𝑆 + 1 values.

The 1, ..., 𝑆 are used when the individuals are seen in states 𝑒1 , ...𝑒𝑆 and

the 0 when the individuals are not seen. We assume that the state is

always correctly identified on capture. We now have 𝑝𝑠,𝑡 , the detection

probabilities that vary both in time (denoted as before 𝑡) and in states

(denoted s). We note

• 𝜓𝑠,𝑟 the probability of being in state 𝑒𝑟 at time 𝑡 + 1 if in state 𝑒𝑠 at

time 𝑡 (i.e. the transition probability),

• 𝛿𝑠 the probability of being in states 𝑒𝑠 at 𝑡 = 1.

To compute the probability of history 𝜔𝑖 , define

𝜋(1)
𝑖
(𝑠) =

{
𝛿𝑠(1 − 𝑝𝑠,1) if 𝜔𝑖 ,1 = 0

𝛿𝑠(𝑝𝑠,1) if 𝜔𝑖 ,1 = 𝑠
(1.14)

Then for 𝑡 = 1, ..., 𝑇 − 1,
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LMM likelihood reminder

Capture process:

[z|𝑁, p] = 𝑁 !∏
𝑘 𝑧𝑘 !

∏
𝑘

𝜋
𝑧𝑘
𝑘

With single-state histories probabili-

ties:

𝜋𝑘 =
𝑇∏
1

𝑝
𝐼(�𝑘,𝑡=1)
𝑡 (1 − 𝑝𝑡 )𝐼(�𝑘,𝑡=0)

Identification process:

If 𝐼(z = Bx), then

[x|z, 𝛼] =
∏
𝑘 𝑧𝑘 !∏
𝑗 𝑥 𝑗 !

∏
𝑗

[
𝑇∏
𝑡=1

𝐴𝑗 ,𝑡

] 𝑥 𝑗
𝐴𝑗 ,𝑡 = 𝛼𝐼(�𝑘,𝑡=1)(1 − 𝛼)𝐼(�𝑘,𝑡=2)

𝜋(𝑡+1)
𝑖

(𝑠) =


[∑𝑆

𝑟=1
𝜋(𝑡)
𝑖
(𝑟)𝜓𝑟,𝑠

]
(1 − 𝑝𝑠,𝑡+1) if 𝜔𝑖 ,𝑡+1 = 0[∑𝑆

𝑟=1
𝜋(𝑡)
𝑖
(𝑟)𝜓𝑟,𝑠

]
𝑝𝑠,𝑡+1 if 𝜔𝑖 ,𝑡+1 = 𝑠

0 if 𝜔𝑖 ,𝑡+1 = 𝑟 ≠ 𝑠

(1.15)

Note that

∑𝑆
𝑠=1

𝜋(𝑡)
𝑖
(𝑠) is the probability of the history 𝜔𝑖 until time 𝑡.

Then, the likelihood of history 𝜔𝑖 is

𝜋𝑖 =
𝑆∑
𝑠=1

𝜋(𝑇)
𝑖

(𝑠) . (1.16)

As for the 𝑀𝑡 model, conditioned on the population size, the vector y
follows a multinomial with cell probabilities 𝜋𝑖 :

[y|𝑁, 𝜹,𝝍, p] = 𝑁 !∏
𝑖 𝑦𝑖 !

∏
𝑖

𝜋
𝑦𝑖
𝑖

(1.17)

1.3.3 Multistate LMM

In Section 1.2.3 we broke the likelihood of the LMM into two components:

the capture one and the identification one. Thanks to that we can modify

each part independently. The global likelihood given by Equation 1.3 is

still valid:

[y, x, z|𝑁, 𝑝, 𝜹,𝝍, 𝛼] = 𝐼(y = Ax) [x|z, 𝛼] [z|𝑁, 𝜹,𝝍, p] (1.18)

For the detection part, the process is the same as for the multi-state

capture-recapture model (Section 1.3.2). Thus, the likelihood is computed

with Equation 1.4. The probabilities 𝜋𝑘 are calculated using Equations

1.14 to 1.16 replacing observed histories 𝜔 by the latent capture histories

�.

If we consider that the probability of correctly identifying an individual

is the same for every state, then the likelihood doesn’t change much

compared to the single-state model. To account for possible misidentifi-

cations, latent error histories �𝑗 have to include other values to denote

misidentifications on the different stages. They now include 2𝑆 + 1 differ-

ent values (0 for the unseen, 𝑆 values for the 𝑆 seen states and 𝑆 values

for misidentifications on the 𝑆 states). There are (2𝑆 + 1)𝑇 latent error

histories. The likelihood of the identification process is computed with

Equation 1.5, rewriting 𝐴 𝑗 ,𝑡 = 𝛼𝐼(�𝑗 ,𝑡∈[1,𝑆])(1 − 𝛼)𝐼(�𝑗 ,𝑡>𝑆). For example, if

three states are considered, the identification likelihood of latent history

(1, 4, 0, 2, 6) is

𝐴(1,4,0,2,6) = 𝛼 × (1 − 𝛼) × 1 × 𝛼 × (1 − 𝛼) = 𝛼2(1 − 𝛼)2

State heterogeneity could be considered for the identification process

by setting 𝜶 = (𝛼1 , ..., 𝛼𝑆). In that case the previous example likelihood

would simply be

𝐴(1,4,0,2,6) = 𝛼1 × (1 − 𝛼1) × 𝛼2 × (1 − 𝛼3)
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[74]: Link et al. (2010), ‘Uncovering a

Latent Multinomial’

6: 𝑎𝑡 =
∑
𝑛 𝐼(�𝑛,𝑡 > 0)

7: 𝑏𝑡 =
∑
𝑛 𝐼(�𝑛,𝑡 = 0)

8: This is done using the forward and

backward algorithms to sample the ini-

tial state in its full posterior distribution.

More details in Appendix B.1.

9: This again is done using the forward

and backward algorithms to sample the

realised transitions in their full posterior

distribution. More details in Appendix

B.2.

10: 𝑎𝛼 =
∑
𝑗
∑
𝑡 𝑥 𝑗 𝐼(�𝑗 ,𝑡 ∈ [1, 𝑆])

11: 𝑏𝛼 =
∑
𝑗
∑
𝑡 𝑥 𝑗 𝐼(�𝑗 ,𝑡 =∈ [𝑆 + 1, 2𝑆])

1.3.4 Estimating parameters with multi-state observation

The algorithm to construct the MCMC is pretty much the same as in

Section 1.2.4. We need to add samplers for the initial state probability 𝜹
and for the transition probabilities 𝝍. In addition, the way of proposing

a x′ must be adapted. The MCMC is constructed this way:

1. Let 𝛽(𝑎𝑡
0
, 𝑏𝑡

0
) denote the beta prior on 𝑝𝑡 , 𝛽(𝑎𝛼

0
, 𝑏𝛼

0
) denote the beta

prior on 𝛼, 𝐷𝑖𝑟(a0
𝜹) the Dirichlet prior on 𝛿 and 𝐷𝑖𝑟(a0

𝝍𝑠,. ) the

Dirichlet prior on 𝝍𝑠,..

2. Initialize all parameters as well as a set of latent histories satisfying

y=Ax. Such a set can be obtained by assuming that no mistakes

were made. The latent frequencies of the histories containing errors

are 0 and all the other match the observed frequencies one-to-one.

In order to run several chains with different initialisations, one can

take the previous initialisation of x and follow the later steps of (7)

by only adding misidentification to the set and always accepting

the proposed ones without going though the Metropolis-Hasting

acceptance. In the initial latent set, fix the number of unseen

individual to a random realistic number.

3. Sample the capture rate with Gibbs sampling as shown by Link et

al. (2010) [74]. The likelihood being multinomial, it follows that the

beta priors lead to full conditional beta posterior distribution:

𝑝𝑡 |Z,𝝍, 𝜹 ∼ 𝛽(𝑎𝑡
0
+ 𝑎𝑡 , 𝑏𝑡

0
+ 𝑏𝑡)

where 𝑎𝑡 6
is the number of captured individuals at time 𝑡 and 𝑏𝑡

7
is the number of unseen individuals at time 𝑡 (including those

never seen).

4. Sample 𝜹, the initial states probabilities with Gibbs sampling. It

has a full conditional dirichlet posterior distribution.

𝜹 |z, p,𝝍 ∼ 𝐷𝑖𝑟(a0
𝜹 + a𝜹)

where a𝜹 is the number of individual in each state at occasion 1.

For the unseen individual at occasion 1, the state they were in is

unknown but can be sampled
8
.

5. Sample the transition rates with Gibbs sampling. They have a full

conditional beta posterior distribution.

𝜓𝑠,. |z, p𝜹 ∼ 𝐷𝑖𝑟(a0
𝝍𝑠,. + a𝝍𝑠,. )

where a𝝍𝑠,. is the number of of times an individual transitioned

from state 𝑠 to the others. Just like for the initial states, we cannot

know what transition occurred for an unseen individual but a

transition can be sampled.
9
.

6. Sample the identification rate using Gibbs sampling. Similar to the

capture rate, it has a full conditional beta posterior distribution:

𝛼 |x ∼ 𝛽(𝑎𝛼
0
+ 𝑎𝛼 , 𝑏𝛼

0
+ 𝑏𝛼)

where 𝑎𝛼 10
is the total number of correct identifications and 𝑏𝛼 11
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Proposal density

The proposal densities are calculated

by multiplying the probabilities of

each sampling step used for defining

the move. They are successively: the

probability of adding (or removing)

an error, the probability of sampling

the state, the probability of choos-

ing the �0 (or �2) and the probability

of choosing the 𝑡 knowing the sam-

pled �. When adding an error, the

proposal density 𝑞 is:

𝑞(𝑥′ |𝑥𝑘−1) =
0.5/𝑆

#𝜒0.#{𝑡 |�0,𝑠 ,𝑡 = 0, 𝑥�
1𝑠𝑡 > 0}

(1.19)

and when removing an error, is:

𝑞(𝑥′ |𝑥𝑘−1) =
0.5/𝑆

#𝜒2,𝑠 ,.#{𝑡 |�2,𝑠 ,𝑡 = 2} (1.20)

where #𝑆 denotes the cardinality of

𝑆.

12: 𝑟2 takes the same form as 𝑟1 but

only the number of unseen individuals

changes and the proposal density is sym-

metric. Thus the ratio parts involving

[x|z, 𝛼] and 𝑞(𝑥′ |𝑥𝑘−1) simplify to 1 and

we are left with Equation 1.22.

is the total number of misidentifications.

7. Sample jointly 𝑁 and x since the number of errors in x changes the

population size.

a) Define:

• 𝝂(1𝑠𝑡)
the history with a unique capture at occasion 𝑡 in

state 𝑒𝑠 (potential ghost),

• 𝜒0,𝑠 ,𝑡(𝑥) = {𝝂 |�𝑡 = 0, 𝑥� > 0, 𝑥�(1𝑠𝑡) > 0} the set of his-

tories having potentially generated a ghost in state 𝑒𝑠 at

occasion 𝑡, for the given x,

• 𝜒2,𝑠 ,𝑡(𝑥) = {𝝂 |�𝑡 = 𝑠 + 𝑆, 𝑥� > 0} the set of histories

containing a ghost in state 𝑒𝑠 at occasion 𝑡, for the given x.

b) Sample a state 𝑠 uniformly from 1, ..., 𝑆.

c) With probability 0.5, go to (i), otherwise go to (ii).

i. Add a misidentification (i.e. a ghost) to the latent set.

• Sample 𝝂(0) ∈ 𝜒0,𝑠 ,.(𝑥) =
⋃
𝑡 𝜒0,𝑠 ,𝑡(𝑥).

• Sample 𝑡 ∈ {𝑡 |𝝂(0)
𝑡 = 0, 𝑥�(1𝑠𝑡) > 0}.

• Set 𝝂(2) = 𝝂(0)
and then �(2)𝑡 = 𝑠 + 𝑆.

• Define the move 𝑏𝝂(0) ,𝝂(1𝑠𝑡) ,𝝂(2) = (−1,−1,+1) and 𝑏� =

0 for all other latent histories.

ii. Remove a misidentification from the latent set.

• Sample 𝝂(2) ∈ 𝜒2,𝑠 ,.(𝑥) =
⋃
𝑡 𝜒2,𝑠 ,𝑡(𝑥).

• Sample 𝑡 ∈ {𝑡 |𝝂(2)
𝑠,𝑡 = 𝑆 + 𝑠}.

• Define 𝝂(0) = 𝝂(2)
and then �(0)𝑡 = 0.

• Define the move 𝑏𝝂(0) ,𝝂(1𝑠𝑡) ,𝝂(2) = (+1,+1,−1) and 𝑏� =

0 for all other latent histories.

d) Define x′ = x(𝑘−1) + 𝑏.

e) Calculate z′ = Bx′ and 𝑁′ =
∑

x′.
f) With probability 𝑟1, set x𝑘 = x′, z𝑘 = z′ and 𝑁 (𝑘) = 𝑁′

.

Otherwise set x𝑘 = x𝑘−1
, z𝑘 = z𝑘−1

and 𝑁 (𝑘) = 𝑁 (𝑘−1)
.

𝑟1 = 𝑚𝑖𝑛

(
1,

[y, x′, z′ |𝑁′, 𝑝,𝝍, 𝜹, 𝛼]
[y, x(𝑘−1) , z(𝑘−1) |𝑁, 𝑝,𝝍, 𝜹, 𝛼]

𝑞(x(𝑘−1) |x′)
𝑞(x′ |x(𝑘−1))

)
. (1.21)

8. Sample the number of unseen individuals 𝑥1:

a) sample a move 𝑐 ∈ [−𝐷, 𝐷] where D is fixed integer,

b) define 𝑥′
1
= 𝑥1 + 𝑐,

c) if 𝑥′
1
≥ 0, accept it with probability 𝑟2

12
:

𝑟2 = 𝑚𝑖𝑛

(
1,

[z′ |𝑁′, 𝑝,𝝍, 𝜹]
[z|𝑁, 𝑝,𝝍, 𝜹]

)
. (1.22)

9. repeat steps 3 to 6 as much as needed.

In the case where we consider state heterogeneity in identification

probability, after having updated 𝜶 from its full conditional posterior,

the sampling step of x should be repeated once for each state instead of

just once for a random state.

Only a few details change the proof of convergence of the algorithm

compared to Section 1.2.5. The first condition becomes that Step 3 to 5

and 7 produces chains which converge to 𝜋(𝑁, p, 𝜹,𝝍 |z) for any z such
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that z = Bx for some x ∈ F𝑦 . The validity of the condition is as trivial

as it was in the original proof. The second and third conditions do not

change, and their proof remain the same.

1.4 Simulation studies

1.4.1 Simulation design for single-state model

Link et al. [74] have shown that the 𝑀𝑡 ,𝛼 model was effective on one sim-

ulation with 5 capture occasions, 𝛼 = 0.9 and p = (0.3, 0.4, 0.5, 0.6, 0.7)
over a population of 400 individuals. Vale et al. tested it for numbers of

occasions between 4 and 12, capture rates between 0.05 and 0.5, identifi-

cation rates between 0.9 and 0.99 and with population size of 400 and

1000. They show that for low recapture rate the parameter 𝛼 becomes

unidentifiable. Thus we expect the model to be weakly identifiable for

simulations with low capture rate, making the posterior density uniden-

tifiable. Gartett and Zeger (2000) [87] define weak identification as the

situation where the technical conditions for identifiability are met but

the data provides little information about the particular parameters so

that their posterior and prior distributions are similar. Cole and Mc Crea

(2016) [88] say that using informative priors can result in an identifiable

posterior when the model is weakly identifiable. We ran the model using

three different priors for parameter 𝛼.

Thus, we will test the model 𝑀𝑡, 𝛼 on parameters range similar as

Vale et al. (2014) [77] and compare the result for three different priors.

We simulated observation data for 5, 7 and 9 occasions, on population

size of 500 and 1000 with identification rate of 0.8, 0.9 and 0.95 and

capture rates of 0.1, 0.2, 0.3 and 0.4. It makes 24 parameters combinations

for each of the three different number of occasions. For the sake of

simplicity, we considered the time-dependent 𝑀𝑡 ,𝛼 model, even though

the capture rate was held constant over time in the simulations. For the

priors, the first one is a non-informative Beta prior. The other two are

informative such as might have been obtained through an evaluation of

the identification protocol. Assume that the protocol is run on 𝑛 known

individuals and results in 𝑛𝑎 correct identifications and 𝑛𝑏 errors. The

prior is then 𝛼 ∼ 𝛽(𝑛𝑎 , 𝑛𝑏). We used 𝑛 = 100 because it is a convenient

value to use and it is very close to the capacity of a 96-well PCR plate.

The first informative prior was centered on the value used for simulation:

for 𝛼 simulated at 0.8, we have 𝛼 ∼ 𝛽(80, 20), for 𝛼 simulated at 0.9,

𝛼 ∼ 𝛽(90, 10) and for 𝛼 simulated at 0.95, 𝛼 ∼ 𝛽(95, 5).
The second informative prior is similar to the first one but it is centered on

a value that underestimates 𝛼. It is represented on Figure 1.2. We chose

to underestimate alpha because the model has a tendency to do as such

when the capture rate gets too low. By reproducing the observed bias in

the prior, we test the sensitivity to the prior in an unfavourable case.. The

values of 𝑛𝑎 and 𝑛𝑏 were chosen such that the true value used for the

simulation lies around the 95th percentile of the prior distribution (dashed

line on Figure 1.2). They are as following: 𝛼𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑(0.8) ∼ 𝛽(74, 26),
𝛼𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑(0.9) ∼ 𝛽(85, 15) and 𝛼𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑(0.95) ∼ 𝛽(91, 9). These priors have

respective means of 0.74, 0.85 and 0.91. In order to study the effect of

the prior on 𝛼 over the model, we calculated the overlap 𝜏 between this
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prior and the estimated posterior as suggested by Garrett and Zeger

(2000)[87].
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Figure 1.2: Beta densities for biased pri-

ors on identification probability for the

three values used in simulations. The

dashed line represents the 95th per-

centile, the black line the median of the

prior and the dotted line the true value

of the simulation.

1.4.2 Simulation design for multistate model

For the multistate model, we tested the estimation of population size with

the same design as for single-state was used (i.e. for the same capture

and identification probability scenarios). We considered three states with

possibility of transition between all states. For the sake of comparison,

the transition matrix used is taken from Worthington et al. (2019) [89]

as:

𝝓 =

©«
0.76 0.12 0.12

0.1 0.8 0.1

0.15 0.15 0.7

ª®®®®¬
and the initial states are fixed to its equilibrium distribution, that is

𝜹 = (0.33, 0.4, 0.27).

Additionally, we tested the impact of errors on the estimates of transition

rates. For that part, we made ten simulations for each of the four following

scenarios:

constant probabilities state dependant probabilities

1 identification, capture -

2 capture identification

3 identification capture

4 - identification, capture

When the capture was state dependent, it was simulated as p = (0.3, 0.4, 0.5).
When the identification was state dependent, it was simulated as 𝜶 =

(0.8, 0.9, 0.95). Otherwise they were 𝑝 = 0.4 and 𝛼 = 0.9. The transitions

were the same as previously. For each of the scenarios, we ran the model

𝑀 that does not take into account the misidentification and the model

𝑀𝛼 that incorporates misidentifications. The models were adapted to the

state dependence of the simulations.

1.4.3 Implementation

We used NIMBLE [80] to implement the model. Unlike Jags (for example),
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NIMBLE allows new distributions as well as all samplers for the MCMC

to be written as we need. We needed it to code the likelihood of the

model and to code the sampler of x. We were also able to write all

the Gibbs samplers previously detailed for a maximum computational

efficiency. In order to improve efficiency, all observable histories which

had zero count were not considered, i.e. their corresponding rows and

columns in matrices A and B were deleted as suggested in Schofield &

Bonner (2015) [78]. For the single-state simulations, the MCMC was run

over 1E6 iterations after a burn-in period of 20,000 iterations (30,000 for

𝛼 = 0.8) and the chains were thinned by a factor of 1/200 in order to

limit memory usage. For the multistate simulations, the computational

cost per iteration is much higher so we only ran 500,000 iterations with

a thinning of 1/100 and an additional burn-in of 60,000 iterations. For

most simulation scenarios, this proves to be enough. For simulations

where 𝑇 = 5 as well as where 𝑇 = 7, 𝑝 ≤ 0.2, we instead had to use

more iterations. We used 1E6 iteration with a thinning of 1/200 and

an additional burn-in of 100,000 iterations. We ran two chains for each

simulation with two different starting points. For the first one, x was

initialised as the set of observed histories, as if there was no error. In the

second one, we arbitrarily added 40 errors randomly.

1.4.4 Results single-state

Running two chains with 1,030,000 iterations on a 3.0GHz Intel processor

took less than five minutes, even with 𝑇 = 9. Convergence was assessed

by looking at the N chains. It is necessary as the �̂� can be under 1.1 and the

effective sample size over 100 while the chains clearly show convergence

problems. With the uninformative prior on 𝛼, convergence was achieved

for all simulations with a capture rate of 0.3 or above. For 𝑇 = 5, with

𝑝 = 0.2 some chains did not converge while with 𝑝 = 0.1 none did.

Increasing 𝑇 to 7 did allow for a better convergence with 𝑝 = 0.2 but not

with 𝑝 = 0.1. Finally, 𝑇 = 9 resulted in good convergence for more than

half the simulations with 𝑝 = 0.1. In addition, convergence was slower

for lower values of 𝛼 and for 𝑁 = 1000. There is a high autocorrelation

for the N-chains that makes some of them have an effective sampling size

less than 100. When an informative prior on 𝛼 is used, the chains always

converge and the effective sampling size is always over 75 (average is

over 200).

The population size estimation with a single-state and 𝑁 = 500 is shown

in Figure 1.3. Using the uninformative prior, no bias was observed for

𝑝 ≥ 0.3. When 𝑝 = 0.2, the average relative bias goes from 3% (when

T=9) to 14% (when T=5). When convergence was reached for simulations

with 𝑝 = 0.1, the average relative bias was over 30% when T=9 and over

40% when T=7.

When adding the unbiased prior, for 𝑝 = 0.1, the population size is

underestimated by about 10% on average but this bias rises to 40% for

some simulations. Also, for 80% of the simulations with 𝑝 = 0.1, the real

population size lies in the estimated 95% interval. The use of the biased

prior does not affect the estimations for 𝑝 = 0.4. But as 𝑝 decreases, the

population size gets more underestimated.

At the lowest, the average bias goes down to 32% for the lowest values of

𝑝 and 𝛼 with 9 capture sessions. Higher values of 𝛼 lead to a reduced



1 Closed population modelling of misidentification 32

(a) (b) (c)

5

7

9

P
op

. s
iz

e 
es

tim
at

es

200

350

500

650

0.1 0.2 0.3 0.4

200

350

500

650

0.1 0.2 0.3 0.4

200

350

500

650

0.1 0.2 0.3 0.4

200

350

500

650

0.1 0.2 0.3 0.4

200

350

500

650

0.1 0.2 0.3 0.4

200

350

500

650

0.1 0.2 0.3 0.4

200

350

500

650

0.1 0.2 0.3 0.4

200

350

500

650

0.1 0.2 0.3 0.4

200

350

500

650

0.1 0.2 0.3 0.4

alpha

0.8

0.9

0.95

Capture rate

Figure 1.3: Single-state population size estimations (y axis) depending on capture probability (x axis), identification probability and

number of capture occasion (on the left). Columns are for various priors on the identification probability, (a) uninformative, (b)

informative centered on true value, (c) informative centered on a lower value. Horizontal dashed lines indicate true population size.

Grey and red symbols show simulation-specific estimates of the population-size posterior mean, red ones indicating that the N chains

had �̂� > 1.1 or an effective sample size under 50. Black symbols connected by lines and error bars show, respectively, the estimates of the

mean and the 95% credible intervals of the posterior distribution of population-size averaged across simulations.
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bias when it occurs and a reduced confidence interval. The results are

very similar for 𝑁 = 1000 only slightly better.

When looking at the overlaps between a prior and a posterior, Garrett

et al. (2000) [87] give the value of 0.35 as a guide, over which a model

is weakly identified. We show the overlaps between prior and posterior

of 𝛼 in Figure 1.4. With the uninformative prior, all simulations with

𝑝 ≥ 0.3 and most of the ones with 𝑝 = 0.2 result in an overlap between

prior and posterior for 𝛼 that is lower than 0.35. With the informative

priors, for most of the simulations, the prior and posterior of 𝛼 are highly

overlapping and almost confounded for low recaptures. The informative

priors overlap less with their corresponding posterior for 𝑝 ≥ 0.3.

1.4.5 Results multi-state, population size estimates

Running two chains of 1,100,000 iterations, on the same processor as

for single-state, took around 4 hours for 𝑇 = 9. With the uninformative

prior on 𝛼, almost no chain converged when 𝑝 = 0.1. Where 𝑇 = 5

and 𝑝 = 0.2, the MCMC converged for around half of the simulations.

Convergence was reached for all the other scenarios. For the scenarios

where convergence was not reached, adding an informative prior led to
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Figure 1.4: Boxplots of the overlap value
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proper convergence. Some more iterations are needed for 𝑁 = 1000 as a

lot of chains have an effective sampling size under 100.

Multistate population size estimation for 𝑁 = 500 are shown on Figure

1.5. Using the uninformative prior, no bias is observed for 𝑝 ≥ 0.4. For

𝑇 = 5, the estimates are biased as soon as 𝑝 ≤ 0.3. The average relative

bias ranges from 10% (for 𝑝 = 0.3, 𝛼 = 0.95) to 50% (for 𝑝 = 0.2, 𝛼 = 0.8).

When 𝑇 = 7, the estimates are slightly biased (5% at most) for 𝑝 = 0.3.

Results show more bias for lower capture rates, bias ranging between

16% and 30% for 𝑝 = 0.2. When 𝑇 = 9, the estimates are biased only for

𝑝 ≤ 0.2, bias ranging between 9% and 14%. When adding the unbiased

prior, the average relative bias is reduced. For 𝑝 = 0.2, 𝛼 = 0.8, it is

reduced to 10% for 𝑇 = 9 and to 17% for 𝑇 = 7 and 𝑇 = 5. The results for

𝑁 = 1000 are similar although the bias is reduced.

The estimations of transitions probabilities are globally unbiased for

𝑝 ≥ 0.3 or for 𝑇 = 9. Some transitions have an average bias that is always

under 0.1. The relative bias can be quite high for low probability transition

but the estimation always lies in the 95% interval. For 𝑝 = 0.2 the size of

this interval is around 0.4, the estimates are thus very imprecise. Finally

adding an informative prior on 𝛼 does not change the estimates of the

transitions probabilities nor the size of the estimated intervals.

1.4.6 Results multi-state, transition estimates

The estimates of states transition rates for all scenarios are shown in

Figure 1.6. When both the capture and identification probabilities are

constant, no bias is observed and there is no difference in the estimates

between models 𝑀 and 𝑀𝛼. When only the identification probability is

state dependent, if the misidentifications are ignored, we only see a small

bias for the probability to stay in state one, the one that had the more

misidentifications. A greater bias is observed if the capture probability

depends on the state and model 𝑀 is used. Transitions towards the least

observed state (the 1) are overestimated while transitions towards the

most observed state (the 3) are underestimated. If both probabilities

depend on the state, the bias is amplified. Transitions toward state 1 (least

observed state and higher rate of misidentifications) are systematically

overestimated while it is the contrary for state 3. In all scenarios where
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Figure 1.5: Multistate population size estimations (y axis) depending on capture probability (x axis), identification probability (point

shape) and number of capture occasions (on the left). Columns are for various priors on the identification probability, (a) uninformative,

(b) informative centered on true value. Grey and red symbols show simulation-specific estimates of the population-size posterior mean,

red ones indicating that the N chains had �̂� > 1.1 or an effective sample size under 50. Black symbols connected by lines and error bars

show, respectively, the estimates of the mean and the 95% credible intervals of the posterior distribution of population-size averaged

across simulations.

bias was observed when using model 𝑀, the use of model 𝑀𝛼 led to

unbiased estimates.
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stands for alpha state dependent, P for capture state dependant, AP for both state dependant and C for both constant. The star indicates

that misidentifications were ignored. The black dots are the average estimates, the error bar are the limits of the average 95% interval.
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1.5 Discussion

We conducted a simulation analysis to help design CMR experiments

where low-quality DNA is to be used for identification and where low

capture rates are expected. We have shown, in single and multi-state

experiments, the range of parameters over which the LMM can be safely

used to estimate population size and transition probabilities in a closed

population. For experiments with fewer occasions than those tested

here, a higher capture probability must be achieved. For four occasions,

some simulations suggested that a capture probability around 0.4 was a

minimum for good estimates. For three occasions, a capture probability

of around 0.5 could lead to either good estimates or high bias, while

0.6 seems to lead to more reliable estimates. We have also shown how

transition estimates are biased by misidentification when there is state

heterogeneity in the probability of capture or identification. We have

shown how the use of the LMM allows for good estimates. If transition

rates are the main interest of a study and there is evidence of state

dependence of the capture and identification probabilities, then it is

necessary to model the potential misidentifications. The greater the

differences between states in the capture and identification probabilities,

the greater the bias will be.

When the capture rates and the number of capture occasions are too

low, the model is weakly identified. Carlin and Louis (1996) [90] say that,

in this case, there is a high cross-correlation between the parameters

which leads to very slow convergence. As the probability of identification

𝛼 decreases, this problem is amplified and the estimates become less

precise. This demonstrates that the use of the LMM does not completely

solve the identification problem, but should be used in parallel with

experimental error reduction. Although the use of an informative prior

does not guarantee the identifiability of a weakly identified model, this

appears to be the case for our simulations since convergence is always

achieved when using one, even a biased one. Considering that the priors

we used were highly informative, in cases with low recaptures, where the

data do not inform on 𝛼, it may seem reasonable to remove the parameter

by fixing its value, rather than trying to estimate it. Finally, sensitivity to

this prior should be tested, since with enough captures the biased prior

will lead to slightly biased estimates compared to using an uninformative

prior. An important consideration in the decision to use such a prior is

the cost involved. If it is more expensive to test the identification protocol

on known individuals than it is to increase the capture effort, then it

may not be worthwhile. The limiting factor is having access to known

individuals from which we can collect DNA. For very rare species, this

may not even be possible.

In this chapter, we implemented the LMM of Link et al. (2010) [74] using

Nimble and the sampling algorithm of Bonner et al. (2015) [79]. This

allowed for much faster MCMC than what Link et al. (2010) [74] reported.

This work is a first step toward the accessibility of the model at a larger

scale. The nimble implementation will allow others to use the model

for their own needs. However, for cases different from what has been

presented here, some changes must be done, both in the model code and

in the samplers code.
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It is important to keep in mind that the model assumes that ghosts

can only be seen once. This hypothesis may not be true in some cases,

so the model is not applicable to them. It is also useful to note that

the framework of the LMM is not limited to closed populations and

can be modified to estimate survival. This is achieved by replacing the

likelihood of the capture process [z|𝑁, p] with the likelihood of an open

population model, such as the Cormack-Jolly-Seber (CJS) model [z|𝜙, p].
Bonner et al. (2015) [79] developed such a model with a different kind

of misidentification (an individual is misidentified as another one that

has been seen at least once before) and we are currently working on a

multistate open population with misidentifications such as in this paper.

The model can also be extended using data augmentation, in order to

account for capture heterogeneity between individuals as in McClintock

et al. (2014) [75].

In extreme cases where 𝑝 ≈ 1, the sampling efficiency of misidentifications

(step 5 in Section 1.2.4) can be very low. This is because when sampling a

history possibly responsible for a misidentification (containing a 0), the

probability of sampling another ghost (i.e. history with a single capture)

is high. Nevertheless if such a problem were to occur, it is very likely that

keeping only good quality data would be a viable option, hence making

the LMM unnecessary.

For studies using low-quality DNA in order to identify individuals, the

simulation study in this chapter shows that more samples could be kept

or even collected. The LMM makes it possible to allow for about 5 to 10%

of misidentifications and have good estimates of the parameters. Higher

error rates are not a real problem, but the uncertainty in the estimates

will be much higher. A low capture probability can be compensated for

if prior information about the misidentifications is available. The LMM

is especially promising for the study of large populations or very elusive

species, where increasing the capture effort could then be expensive

compared to keeping samples. In addition, there is potential for new

experiments where lower quality samples can be obtained, provided

DNA can be sampled. An example of such a study would be on insects

such as mosquitoes, as in the project that motivated this paper.
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2.1 Aim of the chapter

Experiments using low-quality DNA for identification of the individuals

involve a series of distinct steps. First, samples are collected, from which

DNA is extracted and amplified according to a given panel, made such

that genotypes should be unique. Finally, individuals are genotyped

based on the amplified DNA. Traditionally, the identification panel has

relied on microsatellites. Amplification of DNA by Polymerase Chain

Reaction (PCR) or quantitative PCR allows for the resolution of the

alleles through electrophoresis. However, a recent and noteable shift is

occurring, as microsatellites are being replaced by Single Nucleotide

Polymorphism (SNP) markers. SNP genotyping is primarily conducted

through SNP chips or next-generation sequencing (NGS). SNP chips, are

microarrays with thousands to millions of specific SNP probes attached

to their surface. These chips allow high-throughput analysis, enabling

the simultaneous genotyping of a large number of SNPs from a single

sample. The choice between microsatellites and SNPs as marker types

profoundly influences the processing of samples and consequently on

the resulting data and the underlying assumptions made about them.

Assessing the quality of genotyping data is critical to ensuring the reli-

ability of the results. An important measure of data quality is the call

rate, which assesses the percentage of successfully genotyped loci in a

sample. A high call rate indicates that a large proportion of loci have been

successfully genotyped, reflecting a more complete data-set. For PCR-

based genotyping, the reproducibility of genotypes across replicates can

be used as an indicator of data quality. Consistent genotype calls across

replicates provide confidence in the accuracy of the results, whereas

discrepancies between replicates may indicate potential problems. An

example of a measure of quality when using multitube PCR is given by

Miquel et al. (2006) [91].

For next-generation sequencing (NGS), the depth of coverage is a critical

parameter for assessing data quality. A higher coverage depth ensures

that more reads are allocated to a locus, increasing the confidence in

genotype calls. Conversely, low coverage depth can introduce uncertainty

and false positives or negatives in genotype identification. NGS technolo-

gies typically provide a measurement of the sequencing quality, such as

the Q-score for Illumina [92].

Both measurement cited above are continuous values. The quality mea-

surement given by Miquel et al. (2006) [91] is comprised between 0 and 1.

The Q-score output from Illumina sequencing is a log probability. In this

chapter, we will consider a quantitative continuous covariate.

In addition to the genotypes and quality measures, the relatedness

between the genotypes of all samples is also calculated. Information

about quality and relatedness are used to construct the capture histories.

In the context of the LMM, the quality is currently used to screen out

data of too low quality and remove the samples that would break the
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1: As such, it does not change the likeli-

hood to multiply by 𝛼𝑛,𝑡

misidentification hypothesis (ensuring that the only misidentifications

are the creation of ghosts). The relatedness between all genotypes is used

to match those from the same individuals. However this information is

only used to construct the capture histories and is not used in the model

to detect potential ghosts. In this chapter, I propose a new model that

integrates the quality data as a covariate.

McClintock et al. (2014) [75] developed a probit model based on the LMM

that allows for individual heterogeneity in either the capture probability

or the identification probability. This model can account for individual

covariates in the identification probability, but it doesn’t allow the use

of a covariate that is not at the individual level, such as the quality of

an observed genotype. However, the genotyping quality of each sample

is a factor that greatly affects the probability of correctly identifying

which individual the sample comes from. Therefore, in this chapter I

extend the LMM to include the quality of the genotypes used to identify

the individuals. This should allow for a better understanding of which

history with a unique capture may be the result of an error and improve

the estimates.

2.2 A probit extension of the LMM

2.2.1 Additional notations

Parameters

• 𝛼𝑛,𝑡 : Probability that the individual 𝑛 is correctly identified at 𝑡

• �𝛼 = (𝑎, 𝑏): regression parameters of the probit model.

Data and Latent variables

• Y: set of observed histories

• X: set of latent error histories

• Z: set of latent capture histories

2.2.2 The probit model

The 𝑀𝑡 ,𝛼 model presented earlier uses only capture histories: i.e. the

data are histories composed of 1s and 0s (0: not observed, 1: observed).

If there are multistate observation, histories are composed of as many

number as there are states plus the 0. For simplicity reasons, we will

present the model here for single state observation. In addition to the

histories, we now have a quality measurement for each sample. This

will be used as a covariate for identification probability. Compared to

the previous model, the use of a covariate involves some changes. The

probability of correct identification 𝛼 is no longer constant. Thus, we use

the detailed matrices of histories Y, X and Z. Note that the notations x
and z are still used to account for the number of matrices identical, with

the exception of individual labelling. We define 𝛼𝑛,𝑡 as the probability of

correctly identifying individual 𝑛 at time 𝑡, given that it was captured

at that time. If 𝑛 was not captured at time 𝑡, then 𝛼𝑛,𝑡 is not needed.

For the sake of completion, in these cases we set 𝛼𝑛,𝑡 = 1
1
. We note

𝜶 = (𝛼𝑛,𝑡)𝑛∈[1,𝑁],𝑡∈[1,𝑇]:�𝑛,𝑡>0
, the vector of identification probabilities
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associated with each realised capture. In order to model 𝛼𝑛,𝑡 as a function

of a covariate, we introduce 𝜽𝛼, the set of parameters defining 𝜶. We

write [𝜶 |𝜽𝛼]. Since 𝛼 depends on 𝑛, we refer to this model as 𝑀𝑡 ,𝛼𝑛 .

Following the above, the likelihood is as follows:

[Y,X,Z|𝑁, p, 𝜶, 𝜽𝛼] = 𝐼(Y|X)[X|Z, 𝜶][Z|𝑁, p][𝜶 |𝜽𝛼]. (2.1)

We then modify the various parts of the likelihood.

• 𝐼(Y|X)

Let’s define a function 𝑓 such that, for a latent error history �𝑗 , it results

in the corresponding set of observed histories (𝜔𝑖): 𝑓 (�𝑗) = (𝜔𝑖). For

example, 𝑓 ((1, 1, 2)) = {(1, 1, 0), (0, 0, 1)}. If we apply 𝑓 to all the latent

histories in X, the resulting set of histories (𝜔𝑖) must be equal to Y, except

for index inversions. An example is given on Figure 2.1. Thus, 𝐼(Y|X) is 1

if 𝑓 (X) = ∪𝑗 𝑓 (�𝑗) = Y and 0 otherwise. We write this as 𝐼(Y = 𝑓 (X)).

Figure 2.1: Example of 𝑓 (X) = Y

• [X|Z, 𝜶]

First, we rewrite the part 𝐼(z = Bx) of the Equation 1.5. As for 𝐼(Y|X),
let’s define a function 𝑔 that, for a latent error history �𝑗 , results in

the corresponding latent capture history �𝑗 : 𝑔(�𝑗) = �𝑗 . For example

𝑔((1, 1, 2)) = (1, 1, 1). If we apply 𝑔 to all histories in X, the resulting set

of histories (�𝑗) must be equal to Z. An example is given in Figure 2.2.

Thus, 𝐼(X|Z) is 1 if 𝑔(X) = ∪𝑗 𝑔(�𝑗) = Z and 0 otherwise. We write this as

𝐼(Z = 𝑔(X)).

Figure 2.2: Example of 𝑔(X) = Z

The identification likelihood is a product of Bernoulli trials for all captured

individuals at all times they were captured. All the different 𝛼𝑛,𝑡 cannot

be summarised and must be multiplied according to the identification

result.

[X|Z, 𝜶] = 𝐼(X|Z)
∏

𝑘 𝑧𝑘 !∏
𝑗 𝑥 𝑗 !

𝑁∏
𝑛=1

𝑇∏
𝑡=1

𝛼
𝐼(�𝑛,𝑡=1)
𝑛,𝑡 (1 − 𝛼𝑛,𝑡)𝐼(�𝑛,𝑡=2) . (2.2)
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• [Z|𝑁, p]

The capture likelihood is a product of categorical trials, that results in

each individual having a well-defined history, and a factorial accounting

for the possible reordering:

[Z|𝑁, p] = 𝑁 !∏
𝑘 𝑧𝑘 !

𝑁∏
𝑛=1

𝑇∏
𝑡=1

𝑝
𝐼(�𝑛,𝑡=1)
𝑡 (1 − 𝑝𝑡)𝐼(�𝑛,𝑡=0) , (2.3)

Since the capture probability is constant across individuals, it can be

simplified as Equation 1.4.

• [𝜶 | 𝜽]

For this part, similar to McClintock et. al (2014) [75], we chose to develop

a probit model. Other links could be used, especially since there are no

missing covariates. The probit model gives us

𝛼𝑛,𝑡 = 𝝓(𝑎 · 𝜏𝑛,𝑡 + 𝑏)

where 𝝓 is the standard normal cumulative distribution function. Thus,

𝜽 = (𝑎, 𝑏). We propose a model where 𝑏 ≠ 0. To understand why, let’s

consider what would happen if we kept a sample for which 𝜏 = 0 (i.e.

having observed no loci at all for that sample). In that case, we could

only randomly assign the sample in an already existing history or in a

new one. The probability of putting it in the right history would be very

low. On the other hand, if 𝜏 is large enough (i.e. having observed most

loci with good confidence), the probability of misidentifying the sample

would be very small. Thus we want 𝛼 = 𝝓(𝑎 · 0 + 𝑏) ≈ 0, so 𝑏 < 0.

To fully specify the probit model, we define 𝑢𝑛,𝑡 as a binary indicator of

the success of the identification of the capture of individual 𝑛 at occasion

𝑡. That is, 𝑢𝑛,𝑡 = 1 if the sample 𝑛, 𝑡 resulted in a correct individual

identification, and 0 otherwise. We also define �̃�𝑛,𝑡 , a continuous latent

process of 𝑢𝑛,𝑡 . We set �̃�𝑛,𝑡 ∼ N(𝑎𝜏𝑛,𝑡 + 𝑏, 1) and if �̃�𝑛,𝑡 < 0 then 𝑢𝑛,𝑡 = 0,

or else if �̃�𝑛,𝑡 > 0 then 𝑢𝑛,𝑡 = 1.

We note u = (𝑢𝑛,𝑡)𝑛∈[1,𝑁],𝑡∈[1,𝑇]|�𝑛,𝑡>0
and ũ = (�̃�𝑛,𝑡)𝑛∈[1,𝑁],𝑡∈[1,𝑇] Since

all covariates are known, conditional on X, all the 𝑢𝑛,𝑡 are known. So

the definition of �̃�𝑛,𝑡 is not really needed, but it does allow for Gibbs

sampling of 𝑎 and 𝑏 (see Section 2.2.3).

We only have left to specify priors for 𝑎 and 𝑏:

𝑎 ∼ N(�𝑎 , 𝜎2

𝑎),

𝑏 ∼ N(�𝑏 , 𝜎2

𝑏
).

2.2.3 Estimating the parameters

In order to construct the Markov chain to estimate the parameters, some

changes have to be done to the algorithm. The capture probability can be

updated as for the 𝑀𝑡 ,𝛼 model, but the MCMC has to sample the latent

values �̃� and the parameters 𝑎 and 𝑏 instead of 𝛼. To account for the

individual level, the algorithm for sampling the latent histories X also

needs to change.
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2: 𝑎𝑡 =
∑
𝑛 𝐼(�𝑛,𝑡 = 1)

3: 𝑏𝑡 =
∑
𝑛 𝐼(�𝑛,𝑡 = 0)

The MCMC is constructed this way:

1. Let 𝛽(𝑎𝑡
0
, 𝑏𝑡

0
) denote the beta prior on 𝑝𝑡 , N(�𝑎 , 𝜎2

𝑎) the normal prior

on 𝑎 and N(�𝑏 , 𝜎2

𝑏
) the normal prior on 𝑏.

2. Initialize all parameters as well as a set of latent histories satisfying

𝐼(Y = 𝑓 (X)). Such a set can be obtained by assuming that no

mistakes were made (i.e. the exact set of observed histories). In

order to run several chains with different initialisations, one can

take the previous initialisation of X and follow the later steps of (5)

by only adding misidentifications to the set and always accepting

the proposed ones without going though the Metropolis-Hasting

acceptance. In the initial latent set, fix a random realistic number

of all-zero histories to be part of the population.

3. Sample the capture rate with Gibbs sampling. Nothing changes

compared to Section 1.2.4, sample from

𝑝𝑡 |Z ∼ 𝛽(𝑎𝑡
0
+ 𝑎𝑡 , 𝑏𝑡

0
+ 𝑏𝑡)

where 𝑎𝑡 2
is the number of captured individuals at time 𝑡 and 𝑏𝑡

3
is the number of unseen individuals at time 𝑡 (including those

never seen).

4. Sample the identification rate probit parameters with Gibbs sam-

pling. With the probit model, the parameters 𝑎 and 𝑏 can be

sampled in their full conditional posterior. First, the ũ also need to

be updated by sampling the u𝑛,𝑡 in their full conditional posterior

using the values of 𝝉. For simplification of the notation, we intro-

duce notation 𝐿 denoting the total number of capture realised and

𝑙 = 1, ..., 𝐿 the indexes of each capture. Then:

�̃�𝑙 |· ∼
{

TN(0,+∞)(𝑎𝜏𝑙 + 𝑏, 1) if �𝑙 = 1,

TN(−∞,0)(𝑎𝜏𝑙 + 𝑏, 1) if �𝑙 = 2,

𝑎 |· ∼ N(�′
𝑎 , 𝜎

′2
𝑎 ),

𝑏 |· ∼ N(�′
𝑏 , 𝜎

′2
𝑏
),

(2.4)

where TN is the truncated normal distribution and
𝜎′2𝑎 =

(
1

𝜎2

𝑎
+∑𝐿

𝑙=1
𝜏2

𝑙

)−1

,

�′
𝑎 = 𝜎′2𝑎

(
�𝑎
𝜎2

𝑎
+∑𝐿

𝑙=1
𝜏𝑙(�̃�𝑙 − 𝑏)

)
,

(2.5)

and 
𝜎′2
𝑏

=
𝜎2

𝑏

𝐿𝜎2

𝑏
+1

,

�′
𝑏

= 𝜎′2
𝑏

(
�𝑏
𝜎2

𝑏

+∑𝐿
𝑙=1

(�̃�𝑙 − 𝑎𝜏𝑙)
)
.

(2.6)

5. Sample X with Metroplis Hastings. In order to propose an X′
, the

definitions of sets that where sampled (𝜒0,𝑡(𝑥) and 𝜒2,𝑡(𝑥)) need

to be changed. Let 𝜒0,𝑡(X) = {𝑖 |�𝑖 ,𝑡 = 0} be the set of individual

which were unseen at time 𝑡 in their latent error history if at least

one individual is seen only at occasion 𝑡. Otherwise 𝜒0,𝑡(X) = ∅.

Let 𝜒2,𝑡(X) = {𝑖 |�𝑖 ,𝑡 = 2} be the set of individual which were

misidentified at time 𝑡 in their latent error history. Finally, let

𝜒1,𝑡(X) = {𝑖 |�𝑖 ,𝑡 = 1, (�𝑖 ,𝑠)𝑠≠𝑡 = 0} be the set of individual which
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were only seen once, at time 𝑡, in their latent error history. Then, to

generate X(𝑘)
, use the following steps:

a) Set X′ = X(𝑘−1)
.

b) With probability 0.5 go to step c, otherwise go to step d.

c) Add a ghost to the proposal set of latent histories X′
.

i. Sample uniformly 𝑡 ∈ {𝑡 |𝜒0,𝑡(X) ≠ ∅}, the set of occasions

for which at least one individual is unseen and one

individual is only seen at that occasion.

ii. Sample uniformly 𝑖0 ∈ 𝜒0,𝑡(X) the set of unseen individu-

als at occasion 𝑡.

iii. Sample 𝑖1 ∈ 𝜒1,𝑡(X) proportionally to 1 − 𝛼𝑖1 ,𝑡 .
iv. Set �′

𝑖0 ,𝑡
= 2, with the covariate of identification associated

to �𝑖1 ,𝑡 .
v. Remove �𝑖1 from X′

.

vi. Go to step e.

d) Remove a ghost from the proposal set of latent histories X′
.

i. Sample uniformly 𝑡 ∈ {𝑡 |𝜒2,𝑡(X) ≠ ∅}, the set of occasions

where at least one misidentification is present.

ii. Sample 𝑖2 ∈ 𝜒2,𝑡(X) proportionally to 𝛼𝑖2 ,𝑡 .
iii. Add to X′

an individual with a single capture at time 𝑡

with the covariate of identification that is associated to

�𝑖2 ,𝑡 .
iv. Set �′

𝑖2 ,𝑡
= 0.

e) Compute Z′ = 𝑔(X′) Set 𝑁′
as the number of individuals in

X′
.

f) With probability 𝑟1, set X(𝑘) = X′
, Z(𝑘) = Z′

and 𝑁 (𝑘) = 𝑁′
.

Otherwise set X(𝑘) = X(𝑘−1)
, Z(𝑘) = Z(𝑘−1)

and 𝑁 (𝑘) = 𝑁 (𝑘−1)
.

𝑟1 = 𝑚𝑖𝑛

(
1,
𝑁′

!

∏𝑁′
𝑖=1

𝜋𝑖

𝑁 !

∏𝑁
𝑖=1

𝜋𝑖

𝑞(X(𝑘−1) |X′, 𝜶)
𝑞(X′ |X(𝑘−1) , 𝜶)

)
, (2.7)

where 𝜋𝑖 =
∏𝑇

𝑡=1
𝑝
𝐼(�𝑖 ,𝑡>0)
𝑡 (1− 𝑝𝑡)𝐼(�𝑖 ,𝑡=0)𝛼

𝐼(�𝑖 ,𝑡=1)
𝑖 ,𝑡

(1−𝛼𝑖 ,𝑡)𝐼(�𝑖 ,𝑡=2)
and

[X′ |X] is the proposal density for X′
. When adding a ghost:

[X′ |X, 𝜶] = 0.5(1 − 𝛼�1 ,𝑡)∑
𝑖∈𝜒1,𝑡 (X)(1 − 𝛼𝑖 ,𝑡)#{𝑡 |𝜒0,𝑡(X) ≠ ∅}#𝜒0,𝑡

(2.8)

and when removing a ghost:

[X′ |X, 𝜶] = 0.5𝛼�2 ,𝑡∑
𝑖∈𝜒2,𝑡 (X)(𝛼𝑖 ,𝑡)#{𝑡 |𝜒2,𝑡(X) ≠ ∅} (2.9)

where #𝑆 denotes the cardinal of ensemble 𝑆.

6. Sample the number of unseen individuals:

a) set X′ = X, Z′ = Z and 𝑥0 the number of unseen individual in

Z (and X),
b) sample a move 𝑐 ∈ [−𝐷, 𝐷] where D is fixed integer,

c) define 𝑥′
0
= 𝑥0 + 𝑐,

d) set the number of unseen individuals in X′
and Z′

to 𝑥′
0
,

e) accept X′
and Z′

with probability 𝑟2:

𝑟2 = 𝑚𝑖𝑛

(
1,

[Z′ |𝑁′, p]
[Z|𝑁, p]

)
. (2.10)
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[67]: Yoshizaki et al. (2011), ‘Modeling

misidentification errors that result from

use of genetic tags in capture–recapture

studies’

Yoshizaki’s conditional model

If𝜔 is any observable capture history,

let 𝜔′′
denote capture histories with

2 or more captures. Let the random

variable 𝑦𝜔′′ represent the number

of observed histories 𝜔′′
. Then y′′ =

(𝑦𝜔′′
1

, ...) follows a multinomial of

index 𝑁′′ =
∑

y′′ and probabilities

𝜋𝜔′′ = 𝜋𝜔/𝜋∗

where 𝜋𝜔 is the same as Equation

1.2 and

𝜋∗ =
∑
𝜔′′

𝜋𝜔 .

Finally, 𝑁 is estimated by

𝑁′′/𝜋∗

[80]: Valpine et al. (2017), ‘Programming

With Models’

7. repeat steps 3 to 6 as much as needed.

The proof of convergence of this algorithm is the same as in Section 1.2.4.

Some notations change, due to the moves not being written as vectors. In

the proof, we replace the definition of moves as vectors by functions of a

set of latent histories: 𝑏(X) ∈ M(X). The reverse move of 𝑏(X) is 𝑏−1(𝑏(X)).
The full proof can be re-written with these new notation. It will remain

the same so the proof is still valid.

2.3 Simulation study

2.3.1 Scenarios

In this section, we conducted a simulation study in which we evaluated

the models 𝑀𝑡 ,𝛼 and 𝑀𝑡 ,𝛼𝑛 , along with the model proposed by [67] , in

which all histories with a single capture are excluded. We also compared

the models with the standard capture-recapture𝑀𝑡 model to demonstrate

the danger of disregarding the misidentifications.

We simulated capture-recapture according to the model 𝑀𝑡, 𝛼𝑛. We

simulated observation data for 𝑇 = 5, 7, 9, 𝑁 = 500, 𝑝 = 0.1, 0.2, 0.3, 0.4

and �̄� = 0.8, 0.9, 0.95. Values of parameters 𝑎 and 𝑏 were computed

automatically, depending on the number of captured individuals, to

achieve the wanted �̄�. There were 12 parameters combinations for each

of the three different number of occasions. For the sake of simplicity,

we always used the time-dependent models (𝑀𝑡 , 𝑀𝑡 ,𝛼 and 𝑀𝑡, 𝛼𝑛),

although the capture rate was kept constant over time in the simulations.

For each scenario, we simulated 100 data-sets.

We utilised uninformative priors for all parameters. Setting uninformative

priors is straightforward for all the parameters of the models 𝑀𝑡 , 𝑀𝑡 ,𝛼

and Yoshizaki’s model, as well as for the parameter p of the 𝑀𝑡 ,𝛼𝑛 model.

For the parameters 𝑎 and 𝑏 of the 𝑀𝑡 ,𝛼𝑛 model, we estimated both

parameters in the case where no misidentification occurred and in the

case where all single-capture histories resulted from misidentifications

(arbitrarily limited to a maximum of 30% misidentifications). The mean

of the prior was then set as the mean of the two estimates, and the

standard error as the difference between both estimates divided by four.

We compared these priors with those obtained by estimating 𝑎 and 𝑏 in all

cases of numbers of misidentifications, between zero misidentifications

and the maximum of misidentifications (or resulting 30% of the captures)

and fitting a normal to all estimates. Since the inverse-probit function is

not linear, the obtained prior is not really normal, but the one computed

using only the minimum and maximum number of misidentifications

turns out to be very close to being absolutely uninformative.

2.3.2 Implementation

As previously, we used NIMBLE ([80]) to implement the models. The

advantage of NIMBLE is that it allows writing all the samplers of the

MCMC (mandatory here) and new distributions. Thus, we wrote the

likelihood of the model and the sampler of X. We were also able to
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rewrite all the Gibbs samplers of the MCMC for maximum computational

efficiency.

For the 𝑀𝑡 ,𝛼, the MCMC was run over 1E6 iterations after a burn-in

period of 200,000 iterations and the chains were thinned by a factor of

1/100 in order to limit memory usage. For the 𝑀𝑡 ,𝛼𝑛 , the MCMC was

run over 1E6 iterations after a burn-in period of 40,000 iterations and the

chains were thinned by a factor of 1/100 in order to limit memory usage.

These numbers of iterations were to ensure that, when it can be achieved,

all chains converge, but less iteration are needed in most cases. We ran

two chains for each simulation with two different starting points. For the

first one, X was initialised as the set of observed histories, as if there was

no error. In the second one, we arbitrarily added 40 errors randomly.

The 𝑀𝑡 model was run using the same scripts as the 𝑀𝑡 ,𝛼 but without

the MCMC sampler relatives to x and 𝛼. Yoshizaki’s conditional model

was also implemented with NIMBLE. No sampler were rewritten for that

model as it doesn’t need too many iteration to be run.

2.3.3 Compared results of models
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Figure 2.3: Single state population size estimations (y axis) depending on capture probability (x axis), identification probability (columns),

number of capture occasions (lines) and model used (dot shape). Horizontal dashed lines indicate true population size. Grey and red

symbols show simulation-specific estimates of the population-size posterior mean, red ones indicating that the N chains had �̂� > 1.1 or

an effective sample size under 50. Black symbols connected by lines and error bars show, respectively, the estimates of the mean and the

95% credible intervals of the posterior distribution of population-size averaged across simulations.

Running two chains of 1,200,000 iteration on a 3.0GHz Intel processor

took about 1 hour 40 minutes. We checked the convergence graphically
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4: With 9 occasions and 𝑝 = 0.4, percent

of simulations with true population size

in the confidence interval:

• yoshizaki’s model: 77%

• 𝑀𝑡 ,𝛼 : 94%

A table in Appendix C gives these per-

centages for all scenarios.

by looking at the N chains because 𝑁 is the slowest moving parameter.

We also looked at the �̂� and the resulting effective sample size. The 𝑀𝑡

model always converged perfectly and there was no indication of any

problems.Yoshizaki’s model converged in all scenarios. However, for

𝑝 = 0.1, the chains appeared to be constrained by a lower bound. For the

𝑀𝑡 ,𝛼, the MCMC converged on all simulations where 𝑝 ≥ 0.2 but when

𝑝 = 0.1, it only converged for simulations with nine capture occasions.

In comparison, with the 𝑀𝑡 ,𝛼𝑛 , the MCMC almost always converged:

only a few simulations with five occasions and 𝑝 = 0.1 failed to converge.

Convergence was always faster for higher identification rates.

The population size estimates of all models are shown on Figure 2.3. The

𝑀𝑡 model always overestimated the population size, up to a factor of two.

Lower identification rates and higher capture rate both led to greater

overestimation.

Yoshizaki’s model had the same trend of estimates as the 𝑀𝑡 ,𝛼 model.

For very low capture rates, when convergence was achieved, the chains

seemed to minimize the population size, resulting in an unlikely very

low identification probability estimate. For capture rates greater than 0.2

there was no bias and with nine occasions or more, 𝑝 = 0.2 is sufficient

to obtain unbiased estimates. For capture rates that were too low, when

the convergence was acceptable, the confidence interval estimated by

Yoshizaki’s model averaged over the simulations included the true value.

This was not the case with 𝑀𝑡 ,𝛼. In addition, in cases with no bias, the

confidence interval of Yoshizaki’s model was smaller than that of 𝑀𝑡 ,𝛼,

making the former more accurate. However, despite the zero average

bias, with a high number of occasions and high capture rates, Yoshizaki’s

model resulted in a lower percentage of simulations with the true value

of 𝑁 in the confidence interval than the 𝑀𝑡 ,𝛼
4
: with nine occasions and

𝑝 = 0.4, the percentage of simulations with the true population size in

the confidence interval was 77% using Yoshizaki’s model, and 94% using

the 𝑀𝑡 ,𝛼 model.

The 𝑀𝑡 ,𝛼𝑛 model performed slightly better than the others: with 𝑝 = 0.1,

the average bias was lower than with Yoshizaki’s model, and more than

90% had the true population size in the confidence interval (against

60% to 70% for the conditional). With 𝑝 ≥ 0.2, there was no bias on

average, and the confidence interval was smaller than that produced by

𝑀𝑡 ,𝛼. The confidence interval estimated with 𝑀𝑡 ,𝛼𝑛 was smaller than

that obtained with 𝑀𝑡 ,𝛼: from 5% up to 35% on average when the 𝑀𝑡 ,𝛼

model converged. It was also smaller than that produced by Yoshizaki’s

model with 𝑝 ≤ 0.3. Also, the confidence interval contained the true

value of the population size more than 90% of the time in all scenarios.

The identification rate played a significant role in the estimates. The lower

it was, the higher the uncertainty in the estimates.

2.4 Discussion

In this chapter, I developed and implemented an extension of the LMM

that uses quality covariates to model the probability of identification.

This new 𝑀𝑡 ,𝛼𝑛 model proved to be better than the 𝑀𝑡 ,𝛼. Specifically,

provided that misidentification rate is kept below a maximum of 5%,

even with only five occasions and a capture rate as low as 0.1, accurate
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estimates of the parameters can be obtained. In addition, although the

computation time for the probit model is drastically increased compared

to the original model (from 5 minutes to 2 hours for 9 occasions with a

population size of 500 individuals), it is still very reasonable. We also

showed that Yoshizaki’s model gives equivalent estimates to the 𝑀𝑡 ,𝛼

model. The estimates are biased in the same scenarios and the bias is of

similar magnitude. Since Yoshizaki’s model is very easy to implement

and fast to run, we suggest to run it for any closed CMR experiment.

The comparison with a classical model will confirm whether the data

contains misidentifications or not. Then, if there are misidentifications,

run the 𝑀𝑡 ,𝛼𝑛 model. We give the NIMBLE code for running Yoshizaki’s

model in Appendix D.

With very low capture rates (≤ 0.1), misidentification rates higher than

0.05 will require more occasions to produce good estimates. Even with

9 occasions, the estimates are slightly biased for 10% misidentifications,

but the bias is reduced compared to scenarios with fewer occasions.

To make the 𝑀𝑡 ,𝛼𝑛 model worth using, the total number of identifications

realised must be enough to allow for a good estimate of the probit

parameters. If the population is small (e.g. less than a hundred individuals

for example) and the capture rate does not compensate it, the total number

of capture will be low. The probit may be difficult to estimate, and higher

confidence interval may result from the 𝑀𝑡 ,𝛼𝑛 model compared to the

𝑀𝑡 ,𝛼. Thus, in such a case, the 𝑀𝑡 ,𝛼 model could lead to a better fit.

In some cases, even if the �̂� statistic is below 1.1, poor convergence of

the chain can be observed. Therefore, the convergence must be visu-

ally checked in the chains of parameter 𝑁 , the slowest parameter to

converge.

The extension we propose here may also have applications other than

simply improving the estimates. For example, in a multistate CMR

experiment where the identification probability is expected to vary

between states, a model 𝑀𝑡 ,𝛼𝑠 (without covariate) could be built where

𝜶 = (𝛼1 , ..., 𝛼𝑆), that is estimating as many different 𝛼𝑠 as there are states.

In this case, using the 𝑀𝑡 ,𝛼𝑛 model with the quality as a covariate should

be enough to model the differences between states, without having

separate parameters. The 𝑀𝑡 ,𝛼𝑛 model would also allow information to

be shared between all states for a better estimate than if all 𝛼𝑠 had to be

estimated independently.

The 𝑀𝑡 ,𝛼𝑛 model could easily be extended to account for more than

one covariate. An example still lies in the use of quality measure: since

it is most likely computed per locus, each value could be used as a

different covariate with its own parameter. If there is reason to believe

that some loci inform more or less than others on an individual’s identity,

differentiating them in the probit may lead to better results.

We have used the data quality information to improve the estimate of

the number of error-prone histories and their selection, bringing the

genotyping data a step closer to the model. A major step now remains to

bring it even closer by potentially using information about proximity, i.e.

how close genotypes are to each other. By modelling the identification

probability as a function of relatedness, the ghosts would be matched

to those likely to have produced them, rather than at random. Thus, a

single capture history with no close proximity to any history would have
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a low likelihood as a ghost, and conversely one with close proximity to

another history would have a high likelihood as a ghost.

However, one of the challenges is to define the relation between re-

latedness and the probability of a good identification. To model the

identification probability as a function of relatedness, we need to calcu-

late how likely a misidentification is depending on all other samples. The

relatedness to the other samples from the history should increase the

probability of identifying it from that individual. And the relatedness to

samples from other histories should support the fact that they are not

from the same individual. If the relatedness to other samples is left out,

the identification probability for individuals with unique capture could

not be calculated, or would have to be 1. In addition, a lot of information

would be needed and stored (the relatedness of all samplers to each

other). Although the moves could be sampled in a more efficient way

and convergence could be reached with less iteration than what we have

reported, building an MCMC for a model that include relatedness seems

to remain a challenge.
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3.1 Aim of the chapter

One of the main hypotheses of the LMM published by Link et al. (2010)

[74] is that individuals can only be seen once per occasion. As many

studies use eDNA extracted from faeces, it is common for multiple

samples to be collected from the same individual on the same occasion.

These individuals are ’captured’ multiple times. Although these studies

could benefit from modelling misidentification, the LMM is not suitable

for these experiments because the single-capture assumption is violated.

In this chapter I extend the LMM to account for repeated observations

of individuals on the same occasion. To do this, I use a Poisson process

to model the observation process. In addition, I propose an MCMC

algorithm that generates a latent set of histories accounting for repeated

observations. Finally, I apply the new model to a real data set from a

study of Eurasian otters.

3.2 A Poisson extension of the model

3.2.1 The Poisson model

In the case where several captures of the same individual can occur at

the same occasion, the observable history 𝜔𝑖 of an individual is thus

composed of counts representing the number of time the individual was

observed and identified. For example we might observe the following

individual history: (0, 2, 0, 3, 1) where 2 is the number of times the

individual is detected at occasion 2. In an experiment in which individuals

can be "captured" several times on one occasion, one of the captures

might result in a misidentification and the creation of a ghost history,

while the other captures are correct identifications. In contrast to the

model 𝑀𝑡 ,𝛼, an individual producing a ghost at a given occasion can

be seen at the same occasion if another capture of it results in a good

identification.

Due to the new structure of the data, we must modify the notations. A

history may contain several misidentifications at the same occasion. To

represent latent error histories �𝑗 , we note the total number of observations

of an individual on each occasion with the number of these observations

that resulted in misidentification as a superscript. For example, the

observed history (0, 2, 0, 3, 1) might have been generated by the latent

error history (1(1) , 2, 0, 3, 3(2)). In this example, the observation at the first

occasion and two observations at the fifth occasion were misidentified,

resulting in zero observations at occasion 1 and one observation at

occasion 5. The latent capture history �𝑘 is the same as the latent error

history without the superscripts. In our example, the latent capture

history is (1, 2, 0, 3, 3).



3 Repeated observations on an occasion 52

In this section, we make the same assumptions about the misidentifica-

tions as in the model 𝑀𝑡 ,𝛼. Identifications are independent, misidentifi-

cations always result in ghosts (i.e. false individuals), and ghosts cannot

be seen again (i.e. ghosts have exactly one observation in their history).

The observed histories of an experiment can be summarised in the

frequency vector y. The different latent error histories possibly responsible

for the observed histories can be summarised in the frequency vector

x. As in the model 𝑀𝑡 ,𝛼, the vector y is the linear transformation of the

vector x: y = Ax, where A is a known matrix.

The Table 3.1 shows an example of y, x and A in the case where the

three histories (1, 2), (0, 3) and (1, 0) were observed, (1, 2) three times,

(0, 3) twice, and (1, 0) only once. Any observed history with at least

2 observations corresponds necessarily to a real individual because a

central assumption of our model is that no two misidentifications may

produce the same error (note that this means that the genotyping process

must be sufficiently discriminant). Under this assumption, the set of

observed histories in Table 3.1 implies that there are at least 5 individuals

in our population: 3 with observed history (1, 2), and 2 with observed

history (0, 3). As for the observed history (1, 0), it may correspond to a

sixth individual that was correctly identified or not–this last point we

cannot know–or be a ghost generated by the misidentification at the first

occasion of one of the 5 individuals already mentioned. We have actually

4 different possible sets of latent error histories:

1. {(1, 2), (1, 2), (1, 2), (0, 3), (0, 3), (1, 0)}
2. {(1, 2), (1, 2), (2(1) , 2), (0, 3), (0, 3)}
3. {(1, 2), (1, 2), (1, 2), (0, 3), (1(1) , 3)}
4. {(1, 2), (1, 2), (1, 2), (0, 3), (0, 3), (1(1) , 0)}

The Table 3.1 presents the second possibility.

�𝑗 (1, 2) (0, 3) (1, 0) (2(1) , 2) (1(1) , 3) (1(1) , 0)
𝜔𝑖 y/x 2 2 0 1 0 0

(1, 2) 3 1 0 0 1 0 0

(0, 3) 2 0 1 0 0 1 0

(1, 0) 1 0 0 1 1 1 1

Table 3.1: The first and second columns

are, respectively, the observed histories

and the observed history frequencies.

The first and second rows are, respec-

tively, the possible latent error histories

and one possible set of frequencies of the

latent error histories. The rest of the table

is the matrix A.

Similarly, the latent capture histories can be summarised in the frequency

vector z. Also, z is a linear transformation of x: z = Bx. The Table 3.2

continues the example from above, showing possible z and B.

�𝑗 (1, 2) (0, 3) (1, 0) (2(1) , 2) (1(1) , 3) (1(1) , 0)
�𝑘 z/x 2 2 0 1 0 0

(1, 2) 2 1 0 0 0 0 0

(0, 3) 2 0 1 0 0 0 0

(1, 0) 0 0 0 1 0 0 1

(2, 2) 1 0 0 0 1 0 0

(1, 3) 0 0 0 0 0 1 0

Table 3.2: The first and second columns

are, respectively, the latent capture his-

tories and the latent capture history fre-

quencies. The first and second rows are,

respectively, the latent error histories and

the same set of latent error history fre-

quencies as in Table 3.1. The rest of the

table is the matrix B.
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Let 𝝀 = (�1 , ...,�𝑇) be the set of parameters involved in the capture

process, modelled by a Poisson process (each �𝑡 being a parameter of the

Poisson process at occasion 𝑡). The likelihood of the model, conditional

on x and z is given by the Equation 3.1.

[y, x, z|𝑁, 𝝀, 𝛼] = 𝐼(y = Ax) [x|z, 𝛼] [z|𝑁, 𝝀] (3.1)

We now describe the two elements that change compared to model 𝑀𝑡 ,𝛼 ,

i.e. [z|𝑁, 𝝀] and [x|z, 𝛼].

• [z|𝑁, 𝝀]

We model the true number of observations of an individual at an occasion

with a Poisson distribution. The probability 𝜋𝑘 that an individual has a

given latent capture history �𝑘 is given by:

𝜋𝑘 =
𝑇∏
𝑡=1

𝝀
�𝑘,𝑡
𝑡

�𝑘,𝑡 !
𝑒−�𝑡 (3.2)

The capture likelihood has a multinomial form:

[z|𝑁, 𝝀] = 𝑁 !∏
𝑘 𝑧𝑘 !

∏
𝑘

𝜋𝑧𝑘
𝑘

(3.3)

• [x|z, 𝛼]

All realised captures are potentially subject to misidentifications. Let 𝑜 𝑗 ,𝑡
be the number of good identifications for individuals with history �𝑗 at

occasion 𝑡. Then, knowing the true number of captures, the probability

that it was correctly identified 𝑜 𝑗 ,𝑡 times is Binomial. Thus:

[x|z, 𝛼] =
∏
𝑗

𝑇∏
𝑡=1

(
�𝑗 ,𝑡
𝑜 𝑗 ,𝑡

)
𝑜𝛼𝑗 ,𝑡(�𝑗 ,𝑡 − 𝑜 𝑗 ,𝑡)

1−𝛼
(3.4)

3.2.2 Estimating the parameters

To the algorithm used for model 𝑀𝑡 ,𝛼 , we need to add how we sample 𝝀,

which is a new parameter, but also the way we propose a new x. The way

we sample 𝛼 does not really change.

The MCMC is constructed this way:

1. Let �𝑡 ∼ Γ(𝛼(𝑡)
0
, 𝛽(𝑡)

0
) be the Gamma prior over 𝝀, and 𝛽(𝑎𝛼

0
, 𝑏𝛼

0
)

denote the beta prior on 𝛼.

2. Initialize all parameters as well as a set of latent histories satisfying

y=Ax. Such a set can be obtained by assuming that no mistakes

were made. The latent frequencies of the histories containing 2’s

are 0 and all the other match the observed frequencies one-to-one.

In order to run several chains with different initialisations, one can

take the previous initialisation of x and follow the later steps of (5)

by only adding misidentification to the set and always accepting

the proposed ones without going though the Metropolis-Hasting
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1: 𝑎(𝑡) =
∑
𝑘 �𝑘,𝑡

2: 𝑎𝛼 =
∑
𝑗
∑
𝑡 𝑥 𝑗 𝐼(�𝑗 ,𝑡 = 1)

3: 𝑏𝛼 =
∑
𝑗
∑
𝑡 𝑥 𝑗 𝐼(�𝑗 ,𝑡 = 2)

acceptance. In the initial latent set, fix the number of unseen

individual to a random realistic number.

3. Sample the capture parameter 𝝀 with Gibbs sampling. The likeli-

hood being a product of Poisson, it follows that the Gamma priors

lead to full conditional Gamma posterior distribution:

�𝑡 |z ∼ Γ(𝛼(𝑡)
0

+ 𝑎(𝑡) , 𝛽(𝑡)
0

+ 𝑏(𝑡))

, where 𝑎(𝑡) 1
is the total number of observations on occasion 𝑡 and

𝑏(𝑡) is the number of individuals that were available at occasion 𝑡.

4. Sample the identification rate with Gibbs sampling. Similarly to

the capture rate, it has a full conditional beta posterior distribution.

𝛼 |x ∼ 𝛽(𝑎𝛼
0
+ 𝑎𝛼 , 𝑏𝛼

0
+ 𝑏𝛼)

where 𝑎𝛼 2
is the total number of correct identifications and 𝑏𝛼 3

is

the total number of misidentifications.

5. Sample jointly 𝑁 and x. To update the frequencies of the latent

histories x and z and the number of individuals we use Metropolis-

Hastings. Since an individual can be correctly identified on one of

its observations and misidentified on another on the same occasion,

to propose an x′ we need to be able to add an error to any individual.

Except for this point, the concept of the algorithm remains the

same. Randomly add or remove a misidentification. To add a

misidentification, sample an occasion 𝑡 from those that could have

generated one (i.e., the occasions for which there is at least one

individual with a unique capture, at that occasion). Then sample a

history �0 from all the available ones in the current set of histories.

And "merge" a history with a unique capture at occasion 𝑡 into

the sampled history (i.e., add a capture and a misidentification at

occasion 𝑡 to an individual with history �0 and remove one history

�1𝑡). To remove a misidentification, sample an occasion 𝑡 from those

where at least one misidentification has occurred. Then sample

a history �2 that contains a misidentification at that occasion 𝑡,

remove a capture and an error at occasion 𝑡 to one individual with

history �2, and add an individual with a unique capture at occasion

𝑡.

More formally, follow the steps:

a) Define:

• 𝝂(1𝑡)
the history with a unique capture at time 𝑡 (potential

ghost),

• 𝜒2,𝑡(x) = {�𝑗 |�𝑗 ,𝑡 − 𝑜 𝑗 ,𝑡 > 0, 𝑥�𝑗 > 0} the set of histories

containing at least one ghost at occasion 𝑡, for the given x.

b) With probability 0.5, go to (i), otherwise go to (ii).

i. Add a misidentification (i.e. a ghost) to the latent set.

• Sample 𝑡 ∈ {𝑡 |𝑥�(1𝑡) > 0}.
• Sample 𝝂(0)

uniformly from the set of histories for

which x𝑗 > 0.

• Set 𝝂(2) = 𝝂(0) + 𝝂(1𝑡)
and add one error at occasion 𝑡.

For example, if 𝝂(1𝑡) = (0, 1(0)), and 𝝂(0) = (1(0) , 3(1)),
then 𝝂(2) = (1(0) , 4(2)).
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Proposal density

The proposal densities are calculated

by multiplying the probabilities of

each sampling step used for defining

the move. They are successively: the

probability of adding (or removing)

an error, the probability of choosing

the �0 (or �2) and the probability

of choosing the 𝑡 knowing the sam-

pled �. When adding an error, the

proposal density 𝑞 is:

𝑞(𝑥′ |𝑥𝑘−1) =
0.5

#𝜒0.#{𝑡 |�0,𝑡 = 0, 𝑥�
1𝑡 > 0} (3.5)

and when removing an error, is:

𝑞(𝑥′ |𝑥𝑘−1) =
0.5

#𝜒2.#{𝑡 |�2,𝑡 = 2} (3.6)

where #𝑆 denotes the cardinality of

𝑆.

[67]: Yoshizaki et al. (2011), ‘Modeling

misidentification errors that result from

use of genetic tags in capture–recapture

studies’

• Define the move 𝑏𝝂(0) ,𝝂(1𝑡) ,𝝂(2) = (−1,−1,+1), and 𝑏� =

0 for all other latent histories.

ii. Remove a misidentification from the latent set.

• Sample 𝑡 in the set of occasions where at least one

misidentification occurred.

• Sample𝝂(2) ∈ 𝜒2,𝑡(𝑥), the history containing a misiden-

tification at occasion 𝑡.

• Define 𝝂(0) = 𝝂(2) − 𝝂(1𝑡)
and remove one error at

occasion 𝑡. For example, if 𝝂(1𝑡) = (0, 1(0)), and 𝝂(2) =
(1(0) , 4(2)) then 𝝂(0) = (1(0) , 3(1)).

• Define the move 𝑏𝝂(0) ,𝝂(1𝑡) ,𝝂(2) = (+1,+1,−1), and 𝑏� =

0 for all other latent histories.

c) Define x′ = x(𝑘−1) + 𝑏.

d) Calculate z′ = Bx′ and 𝑁′ =
∑

x′.
e) With probability 𝑟1, set x𝑘 = x′, z𝑘 = z′ and 𝑁 (𝑘) = 𝑁′

.

Otherwise set x𝑘 = x𝑘−1
, z𝑘 = z𝑘−1

and 𝑁 (𝑘) = 𝑁 (𝑘−1)
.

𝑟1 = 𝑚𝑖𝑛

(
1,

[y, x′, z′ |𝑁′, 𝝀, 𝛼]
[y, x(𝑘−1) , z(𝑘−1) |𝑁, 𝝀, 𝛼]

𝑞(x(𝑘−1) |x′)
𝑞(x′ |x(𝑘−1))

)
. (3.7)

6. Sample the number of unseen individuals 𝑥1:

a) set x′ = x, z′ = z and 𝑥0 the number of unseen individual in z
(and x),

b) sample a move 𝑐 ∈ [−𝐷, 𝐷] where D is fixed integer,

c) define 𝑥′
0
= 𝑥0 + 𝑐,

d) set the number of unseen individuals in x′ and z′ to 𝑥′
0
,

e) accept it with probability 𝑟2:

𝑟2 = 𝑚𝑖𝑛

(
1,

[z′ |𝑁′, 𝝀]
[z|𝑁, 𝝀]

)
. (3.8)

7. repeat steps 3 to 6 as much as needed.

The proof of convergence of the algorithm stays mainly the same as

in Section 1.2.5. The first condition becomes that step 3 and 6 produce

chains which converge to 𝜋(𝑁, 𝝀, |z) for any z such that z = Bx for some

x ∈ F𝑦 . The validity of the condition is trivial again. The second and

third conditions do not change, and their proof remain the same.

3.3 Simulation study design

3.3.1 Comparison of models for repeated observations

We conducted a simulation study in which we evaluated the 𝑀�,𝛼 model

against the model proposed by Yoshizaki et al. (2011) [67], in which all

histories with a single capture are excluded. We also tested the standard

capture-recapture 𝑀𝑡 model to demonstrate the importance of disregard-

ing misidentifications.

We simulated datasets according to the 𝑀�,𝛼 model for a population

of 𝑁 = 500 individuals. We aimed for capture rates (with the meaning

"seen at least once" or "not seen at all" on an occasion) of 0.1, 0.2, 0.3, and

0.4, so we set �𝑡 = 0.11, 0.23, 0.36, 0.51. We simulated identification rates
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[80]: Valpine et al. (2017), ‘Programming

With Models’

as in the first study, 𝛼 = 0.8, 0.9, 0.95. We simulated 10 datasets for these

12 scenarios.

3.3.2 Practical implementation

As we did previously, we used NIMBLE ([80]) to implement the model.

The advantage of NIMBLE is that it allows writing all the samplers of

the MCMC (mandatory here) and new distributions. Thus, we wrote

the likelihood of the model and the sampler of x. We were also able to

rewrite all the Gibbs samplers of the MCMC for maximum computational

efficiency.

the 𝑀�,𝛼 model, was run over 1E6 iterations after a burn-in period of

100,000 iterations and the chains were thinned by a factor of 1/100 in order

to limit memory usage. The 𝑀𝑡 model was run over 100,000 iteration

after a burn-in period of 10,000 iterations, and the chains were thinned

by a factor of 1/10. Yoshizaki’s model was run over 10,000 iterations after

a burn-in period of 1000 iterations. These numbers of iterations were

to ensure that, when it can be achieved, all chains converge, but less

iteration are needed in most cases.

We ran two chains for each simulation with two different starting points.

For the first one, X was initialised as the set of observed histories, as if

there was no error. In the second one, we arbitrarily added 40 errors

randomly. Previous tests indicated that two chains were sufficient to see

convergence.

3.4 Results

3.4.1 Simulation study results

Running two chains of 1,100,000 iterations for the𝑀�,𝛼 model on a 3.0GHz

Intel processor took less than 10 minutes. We checked the convergence

graphically by looking at the N chains, as 𝑁 is the slowest moving

parameter. We also looked at the �̂� and the resulting effective sample size.

The 𝑀𝑡 model always converged perfectly and there was no evidence

of any problems. Yoshizaki’s model converged for all simulations, but

some chains for 𝑝 = 0.1 seemed to be constrained by a lower bound. For

the 𝑀�,𝛼, the MCMC converged in all scenarios. The convergence was

always faster for higher identification rates.

The population size estimates for both models are shown in Figure 3.1.

The 𝑀𝑡 model always overestimated the population size, up to a factor

of two. Lower identification rates and higher capture rates both led to

greater overestimation. In these scenarios, Yoshizaki’s model and model

𝑀𝑡 ,𝛼 had the same trend of estimates. For very low capture rates, the

chains seemed to minimize the population size, resulting in an unlikely

very low identification probability estimate. For a capture rate of 0.2,

there was only a small bias with seven or fewer occasions, and no bias

with nine occasions. There was no bias for higher capture rates. The

confidence interval estimated by the 𝑀�,𝛼 model was smaller than that

estimated by Yoshizaki’s model for most scenarios with seven or fewer

occasions. They were slightly larger with nine occasions, but the true
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Figure 3.1: Multi-capture CMR population size estimations (y axis) depending on capture probability (x axis), identification probability

(columns), number of capture occasions (lines) and model used (dot shape). The 𝑀�,𝛼 model is noted Mla. Horizontal dashed lines

indicate true population size. Grey and red symbols show simulation-specific estimates of the population-size posterior mean. Red ones

indicates that the N chains had �̂� > 1.1 or an effective sample size under 50. Black symbols connected by lines show the mean estimates

averaged across simulations. Error bars show the estimate of the 97.5% and 2.5% quantiles averaged across simulations.

Figure 3.2: European otter (Lutra lutra)

at the British wildlife centre (Surrey), by

karen Bullock

https://www.flickr.com/photos/
karen_cb/

[93]: Lampa et al. (2015), ‘Non-Invasive

Genetic Mark-Recapture as a Means to

Study Population Sizes and Marking Be-

haviour of the Elusive Eurasian Otter

(Lutra lutra)’

[94]: Kruuk (2006), Otters: Ecology, be-
haviour and conservation
[71]: Lukacs et al. (2005), ‘Estimating

population size from DNA-based closed

capture-recapture data incorporating

genotyping error’

population size was more often in the confidence interval estimated by

the 𝑀�,𝛼 model.

3.4.2 Application to Otter dataset

We applied our model to data from a study of the Eurasian otter (Lutra
lutra), in Upper Lusatia, Saxony, Germany [93]. Otters are nocturnal

and elusive and pose challenges for (live-)trapping [94]. Otter faeces

(spraints) are particularly suitable for studying the species, as they are

used for intraspecific communication. Otters produce up to 30 spraints a

day, tending to defecate on frequently visited visible terrestrial sites at

specific locations throughout their home range. Data collection involved

collecting spraints over five consecutive days (𝑇 = 5) from 2006 to 2012

(excluding 2009). Sampling was conducted in March (2006, 2010, 2011,

2012), April (2007), and May (2008). The authors considered it unlikely

that repeated PCR could completely eliminate all genotyping errors due

to the relatively high genotyping error rates and low success rates. They

used the error-incorporating misidentification model proposed by Lukacs

& Burnham (2005) [71] (hereafter model L&B), implemented in the MARK

program [95]. However this model relies on several assumptions that

are unlikely to be met in practice and does not adequately address ghost

https://www.flickr.com/photos/karen_cb/
https://www.flickr.com/photos/karen_cb/
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Table 3.3: Closed population model estimates of the otter population in Upper Lusatia (Saxony, Germany). 𝑁 is the population size, and

here 𝑁𝛼 indicates the number of misidentifications. The values are the mean estimate ± the standard error.

Model 2006 2007 2008 2010 2011 2012

𝑁 Yoshizaki’s 15.1 ± 0.8 20.4 ± 1.4 14.7 ± 0.5 15.2 ± 0.2 23.6 ± 0.9 18.4 ± 0.3

𝑀�,𝛼 16.1 ± 0.4 22.7 ± 0.9 14.3 ± 0.5 16.1 ± 0.3 23.6 ± 0.8 18.1 ± 0.3

𝑀𝑡 21.7 ± 0.9 30.5 ± 1.4 20.4 ± 0.7 18.1 ± 0.2 24.2 ± 0.4 21.1 ± 0.3

L&B 19.0 ± 2.6 24.0 ± 3.5 19.4 ± 2.2 15.4 ± 2.1 25.1 ± 1.8 21.5 ± 2.2

𝑁𝛼 𝑀�,𝛼 5.8 7.5 7.8 4.9 2.5 5.9

L&B 8.3 12.9 4 17.6 3.9 13

[95]: White et al. (1999), ‘Program MARK’

[67]: Yoshizaki et al. (2011), ‘Modeling

misidentification errors that result from

use of genetic tags in capture–recapture

studies’

[74]: Link et al. (2010), ‘Uncovering a

Latent Multinomial’

capture histories resulting from misidentification [67, 74]. After model

selection, the authors of the previous study kept the model 𝑀0 without

individual or time heterogeneity. For simplicity and because we expect no

substantial difference, we applied our 𝑀�,𝛼 model with time-dependent

capture. We also applied Yoshizaki’s model (discarding single capture

histories) and the standard model 𝑀𝑡 , in which misidentifications are

ignored. The identification rates from the L&B model and the 𝑀�,𝛼

cannot be compared directly because the L&B model consider only one

capture of an individual per occasion. We will compare the number

of estimated misidentifications. When estimating the population size,

we took Yoshizaki’s model estimates as reference, as it estimates one

parameter less and does not rely on any strong assumption.

The estimates are shown in Table 3.3. For 2011, all models estimate a

similar population size. For all other years, the 𝑀𝑡 model overestimates

the population size compared to the other models. For most years, the

𝑀�,𝛼 model and Yohizaki’s model have similar estimates. The minimum

population size (numbers of observed individuals that cannot be ghosts

considering the hypothesis of the LMM) are 16, 22, 14, 16, 23, 18 for each

year respectively. For 2006, 2007 and 2010, the population size estimated

by Yoshizaki’s model is under this minimum.

Considering the hypothesis of the LMM, the maximum number of

misidentifications were 6, 8, 8, 5, 3 and 6 for each year respectively. For all

years, the model𝑀�,𝛼 estimated that all the histories with a single capture

were probably ghosts. In contrast, for most years, the mean estimate

identification rates from model L&B indicated more misidentifications

than our assumptions allowed. Other histories than those with only

one capture would need to contain misidentifications. Compared to the

simulations we conducted, the otter dataset was on the favourable side

for good estimates. The capture rates were higher than what were tested

in the simulations, and the identification rate was around the highest

tested (95%). However, the population size was very small compared to

the simulations.

3.5 Discussion

In this chapter, we developed and implemented an extension of the LMM

to account for repeated observations of individuals on the same occasion.

We used a Poisson process to model the counts, replacing the Bernoulli
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detection process. This new model demonstrates the flexibility of the

LMM framework. With this extension of the model, we have removed the

constraining assumption that individuals cannot be captured more than

once on the same occasion. This model, which deals with misidentification

in the presence of repeated observations, could be used in the many

studies of mammals that use faecal DNA. Using it will help confirm

whether or not the data contain misidentifications, if the estimated 𝛼 is 1

or less than 1. And if misidentifications are present, then it can estimate

the population size without bias.

We also compare our model to Yoshizaki’s model. To use Yoshizaki’s

model, we remove the multiple observations from the data, keeping a

maximum of one per individual and occasion. Yoshizaki’s model also

estimates the population size correctly, but its estimated confidence

interval is higher than that of the 𝑀�,𝛼. This is probably due to the fact

that Yoshizaki’s model does not use repeated observations but uses only

the first observation on each occasion, and also discard all the potential

ghost.

We also applied the 𝑀�,𝛼 model to a Eurasian Otter data-set. The model

estimates the population size as Yoshizaki’s model for most of the

years, and it confirms the thoughts of Lampa et al. (2015) [93] that

misidentifications were present in the datasets. However the population

size is quite small, and the variance of the observed counts in each

year’s dataset is in most cases larger than the mean, up to four times.

Some simulations with large population sizes but similar overdispersion

to that observed suggest that overdispersion is not in itself a problem.

However, for other simulations with a small population size (and no

overdispersion) the population size was often underestimated and the

identification rate was underestimated.

The 𝑀�,𝛼 model performs poorly in a similar way to the model 𝑀𝑡 ,𝛼

with very low capture probabilities (i.e. ≤ 0.1). To mitigate this problem,

as in the previous chapter, we can use a probit model to estimate the

misidentifications through an identification quality covariate. As the

probit model was shown to improve the results compared to the original

𝑀𝑡 ,𝛼 model, it would most likely also improve the estimates of the 𝑀�,𝛼

model. Since more identifications are made when several observation

can be made of an individual at the same occasion, the probit approach

is probably even more interesting with this model.
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4.1 Aim of chapter

So far, we have presented the LMM and some extensions for dealing with

misidentification in closed population. However, a large proportion of

capture-recapture experiments focus on studying the survival rates in

open populations, where births and deaths (and eventually immigration

and emigration) can occur. The LMM has already been extended to the

open population [79]. However, this has been done for a different type of

misidentification than the one I consider in this thesis. Bonner et al. (2015)

[79] consider the case where two individuals are mistaken for each other:

the one actually seen is noted as unseen while the one actually unseen

is noted as seen. This is not relevant to our case where we assume that

misidentifications only result in the creation of ghosts. Therefore, in this

chapter I present several extensions of the model to open populations. I

consider extensions for single-state, multi-state, and single-state with a

probit model for an identification covariate. I use simulations to show

the importance of modelling the misidentifications in open population

models, and to evaluate the performance of the single-state model. The

other models were developed as necessary steps for the next chapter and

so were not tested with repeated simulations.

4.2 Single-state open population models

4.2.1 Notations

Parameters

• 𝑝𝑡 : Probability that an individual is captured at time 𝑡,

• 𝛼: Probability that a captured individual correctly identified

• 𝜙: probability that an individual survives from one occasion to the

next one.

• 𝜓𝑟,𝑠 : in multistate, probability that an individual transition from

state 𝑟 to state 𝑠 between two consecutive occasions.

Data and Latent variables

• 𝜔𝑖 : Observed history 𝑖

• �𝑗 : Latent error history 𝑗 (in which misidentification are noted

down)

• �𝑘 : Latent capture history 𝑘 (real capture history)

Statistics

• 𝑁 : number of individuals seen at least once,

• (𝑛𝑡) = (𝑛1 , ..., 𝑛𝑇): number of individuals first seen at each occasion,

• 𝑦𝑖 : number of observed history 𝑖

• 𝑥 𝑗 : number of latent error history 𝑗
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• 𝑧𝑘 : number of latent capture history 𝑘

• y = (𝑦1 , ..., 𝑦2
𝑇−1)): vector of counts of observed histories

• x = (𝑥1 , ..., 𝑥3
𝑇 )): vector of counts of latent error histories

• z = (𝑧1 , ..., 𝑧2
𝑇 )): vector of counts of latent capture histories

4.2.2 Single state open population: Cormack-Jolly-Seber

To study the probability of survival of individuals in a population over

a period of time (say daily), individuals can be captured and released

at regular intervals of a duration of the period of interest (one day) 𝑇

times. Individuals are captured with probability 𝑝𝑡 at occasion 𝑡. When

captured for the first time an individual is marked to be recognised and

a capture history is created for it. When recaptured at a later occasion a 1

is registered in the history. Otherwise if not recaptured for an occasion,

a 0 is registered in its history. I will consider losses on capture, i.e. the

possibility of not releasing a captured animal, because it was killed when

manipulated. When this happens at occasion 𝑡, a -1 is registered in the

history at occasion 𝑡 + 1, indicating the end of the history. Assuming

we cannot recover a dead individual, this leads to 𝑁 capture histories

composed of 0s, 1s and -1s.

With the Cormack-Jolly-Seber model (CJS) ([28], [29]), the likelihood of

an history is conditional on the first capture. Then, each of the histories

can be seen as the combination of two independent partial histories. The

first corresponds to the consecutive sightings of an individual (for which

we know it is alive). It is of the form 1, ..., 1. The second one corresponds

to the last observation and beyond, and is of the form 1, 0, ..., 0. These

two parts being independent of each other, the likelihood of an history

can be separated in two.

The likelihood of history 𝜔𝑖 from the first capture at occasion 𝐶 to the

last capture at occasion 𝐷 is

𝐿𝑖 ,1 = 𝜙𝐶𝑝𝐷
𝐷−1∏
𝑡=𝐶+1

[
𝜙𝑡𝑃𝑖 ,𝑡

]
(4.1)

where 𝑃𝑖 ,𝑡 = 𝑝
𝐼(𝜔𝑖 ,𝑡∈{−1,1})
𝑡 (1 − 𝑝𝑡)𝐼(𝜔𝑖 ,𝑡=0)

and 𝐼(𝑡𝑒𝑠𝑡) equals 1 if 𝑡𝑒𝑠𝑡 is

true and 0 otherwise.

The likelihood of history 𝜔𝑖 , from the last capture at 𝑡 = 𝐷 to the end of

study, conditionally on the fact the individual was released at 𝐷, is given

as a recursion by Catchpole et al. (1998) [96]. If 𝜒𝑡 is the probability that

an individual, alive at 𝑡, is not seen again after, then:

𝜒𝑡 =

{
(1 − 𝜙𝑡) + 𝜙𝑡(1 − 𝑝𝑡+1)𝜒𝑡+1 if 𝐷 ≤ 𝑡 ≤ 𝑇 − 1

1 if 𝑡 = 𝑇
. (4.2)

Then, the complete likelihood of history 𝜔𝑖 is 𝜋𝑖 = 𝐿𝑖 ,1 · 𝜒𝐷 and the

vector of counts of the observed histories, y is a product multinomial

random variable with density

[y|𝜙, p] =
∏𝑇

𝑡=1
𝑛𝑡 !∏

𝑖 𝑦𝑖 !

∏
𝑖

𝜋
𝑦𝑖
𝑖
, (4.3)



4 Open population modelling of misidentification 63

LMM likelihood reminder

Capture process:

[z|𝑁, p] = 𝑁 !∏
𝑘 𝑧𝑘 !

∏
𝑘

𝜋
𝑧𝑘
𝑘

With single state histories probabili-

ties:

𝜋𝑘 =
𝑇∏
1

𝑝
𝐼(�𝑘,𝑡=1)
𝑡 (1 − 𝑝𝑡 )𝐼(�𝑘,𝑡=0)

Identification process:

If 𝐼(z = Bx), then

[x|z, 𝛼] =
∏
𝑘 𝑧𝑘 !∏
𝑗 𝑥 𝑗 !

∏
𝑗

[
𝑇∏
𝑡=1

𝐴𝑗 ,𝑡

] 𝑥 𝑗
𝐴𝑗 ,𝑡 = 𝛼𝐼(�𝑘,𝑡=1)(1 − 𝛼)𝐼(�𝑘,𝑡=2)

where 𝑛𝑡 is the number of individuals first seen at occasion 𝑡.

4.2.3 Open population LMM

In Section 1.2.3 we broke the likelihood of the LMM into two components:

the capture one and the identification one. For the model we will call

𝐶𝐽𝑆𝛼, the likelihood will take the same form, with one component for

the capture process and one for the identification process. Similarly to

Section 1.3.3 and Section 2.2.2 we can now change these components to

create a 𝐶𝐽𝑆𝛼 model for an open population experiment. As we already

presented the model 𝑀𝑡 ,𝛼 in Section 1.2.3 and the CJS in Section 4.2.2,

we already described the needed processes. The likelihood is

[y, x, z|(𝑛𝑡), 𝜙, p, 𝛼] = 𝐼(y = Ax) [x|z, 𝛼] [z|(𝑛𝑡), 𝜙, p] (4.4)

The capture process for a 𝐶𝐽𝑆𝛼 is simply the capture process of the CJS

so the likelihood is the same. Thus, the likelihood is computed with

Equation 4.3. The probabilities 𝜋𝑖 are calculated by replacing observed

histories 𝜔 by the latent capture histories �. The values of 𝑦𝑖 are also

replaced by those of the 𝑧𝑘 and the 𝑛𝑡 are also the ones corresponding to

the latent capture histories.

[z|𝜙, p] =
∏𝑇

𝑡=1
𝑛𝑡 !∏

𝑖 𝑧𝑖 !

∏
𝑘

𝜋𝑧𝑘
𝑘

(4.5)

The identification process is exactly the same for the 𝐶𝐽𝑆𝛼 model as for

the 𝑀𝑡 ,𝛼. As such, the first capture can very well be a misidentification.

Hence, the number of individuals first captured at an occasion will

change from one iteration to another in the MCMC.

4.2.4 Estimating the parameters of the 𝐶𝐽𝑆𝛼

The MCMC is constructed this way:

1. Let 𝛽(𝑎𝑡
0
, 𝑏𝑡

0
) denote the beta prior on 𝑝𝑡 , 𝛽(𝑎𝛼

0
, 𝑏𝛼

0
) denote the beta

prior on 𝛼 and 𝛽(𝑎𝜙
0
, 𝑏

𝜙
0
) the beta prior on 𝜙.

2. Initialize all parameters as well as a set of latent histories satisfying

y=Ax. Such a set can be obtained by assuming that no mistakes

were made. The latent frequencies of the histories containing 2’s

are 0 and all the other match the observed frequencies one-to-one.

In order to run several chains with different initialisations, one can

take the previous initialisation of x and follow the later steps of (6)

by only adding misidentification to the set and always accepting

the proposed ones without going though the Metropolis-Hasting

acceptance.

3. Sample the capture rate with Gibbs sampling. The likelihood being

multinomial, it follows that the beta priors lead to full conditional

beta posterior distribution:

𝑝𝑡 |z, 𝜙 ∼ 𝛽(𝑎𝑡
0
+ 𝑎𝑡 , 𝑏𝑡

0
+ 𝑏𝑡)
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1: To compute 𝑏𝑡 , the latent state ’dead

or alive’ of each individual must be sam-

pled. The probability that an individ-

ual last released before 𝑡 and never seen

again is still alive at 𝑡 can be computed

with the forward-backward algorithm.

2: This again is done using the forward

and backward algorithms.

3: 𝑎𝛼 =
∑
𝑗
∑
𝑡 𝑥 𝑗 𝐼(�𝑗 ,𝑡 = 1)

4: 𝑏𝛼 =
∑
𝑗
∑
𝑡 𝑥 𝑗 𝐼(�𝑗 ,𝑡 = 2)

[83]: Dobra (2012), ‘Dynamic markov

bases’

where 𝑎𝑡 is the number of individuals seen at least once before 𝑡

that were captured at 𝑡 and 𝑏𝑡 is the number of individuals seen at

least once before 𝑡 that were alive but unseen at 𝑡 1
.

4. Sample the survival rate with Gibbs sampling. Again, it has a full

conditional beta posterior distribution.

𝜙 |z, p ∼ 𝛽(𝑎𝜙
0
+ 𝑎𝜙 , 𝑏𝜙

0
+ 𝑏𝜙)

where 𝑎𝜙 is the total number of of times an individual survived

from one occasion to the next after its first sight and 𝑏𝜙 is the total

number of individual seen once or more that have died during

before the last occasion. After the last release of an individual, there

is no way of knowing it survived or died, but the transition toward

one state or another can be sampled
2
.

5. Sample the identification rate using Gibbs sampling. Similar to the

capture rate, it has a full conditional beta posterior distribution:

𝛼 |x ∼ 𝛽(𝑎𝛼
0
+ 𝑎𝛼 , 𝑏𝛼

0
+ 𝑏𝛼)

where 𝑎𝛼 3
is the total number of correct identifications and 𝑏𝛼 4

is

the total number of misidentifications.

6. Sample x. Sampling x is done the exact same way as it is with model

𝑀𝑡 ,𝛼. It requires to be able to sample from Fy. To do so, sample

moves from a dynamic Markov basis [83] which is the set of moves

𝑀(𝑥) that connect each x to some neighbours. Randomly add or

remove an error from the set of latent histories. To add an error,

sample a history that may have generated a ghost (i.e. a history

containing a 0), and "merge" it with a potential ghost (i.e. replace

the 0 by a 2 and remove the ghost history). To remove an error,

sample a history containing a 2, replace it by a 0 and add a history

with a unique capture (coded 1) at that time.

More formally, follow the steps:

a) Define:

• �1𝑡 the history with a unique capture at time 𝑡 (potential

ghost),

• 𝜒0,𝑡(x) = {� |�𝑡 = 0, 𝑥� > 0, 𝑥�1𝑡 > 0} the set of histories

having potentially generated a ghost at time 𝑡, for the given

x,

• 𝜒2,𝑡(x) = {� |�𝑡 = 2, 𝑥� > 0} the set of histories containing
a ghost at time 𝑡, for the given x.

b) With probability 0.5, go to (i), otherwise go to (ii).

i. Add a misidentification (i.e. a ghost) to the latent set.

• Sample 𝝂(0) ∈ 𝜒0.(𝑥) =
⋃
𝑡 𝜒0,𝑡(𝑥).

• Sample 𝑡 ∈ {𝑡 |�(0)𝑡 = 0, 𝑥�1𝑡 > 0}.
• Define 𝝂(2) = 𝝂(0) + 2𝝂(1𝑡)

.

• Define the move 𝑏𝝂(0) ,𝝂(1𝑡) ,𝝂(2) = (−1,−1,+1), and 𝑏� =

0 for all other latent histories.

ii. Remove a misidentification from the latent set.

• Sample 𝝂(2) ∈ 𝜒2.(𝑥) =
⋃
𝑡 𝜒2,𝑡(𝑥).

• Sample 𝑡 ∈ {𝑡 |𝝂(2)
𝑡 = 2}.

• Define 𝝂(0) = 𝝂(2) − 2𝝂(1𝑡)
.
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Proposal density

The proposal densities are calculated

by multiplying the probabilities of

each sampling step used for defining

the move. They are successively: the

probability of adding (or removing)

an error, the probability of choosing

the �0 (or �2) and the probability

of choosing the 𝑡 knowing the sam-

pled �. When adding an error, the

proposal density 𝑞 is:

𝑞(𝑥′ |𝑥𝑘−1) =
0.5

#𝜒0.#{𝑡 |�0,𝑡 = 0, 𝑥�
1𝑡 > 0} (4.6)

and when removing an error, is:

𝑞(𝑥′ |𝑥𝑘−1) =
0.5

#𝜒2.#{𝑡 |�2,𝑡 = 2} (4.7)

where #𝑆 denotes the cardinality of

𝑆.

Notations reminder
• 𝜙: survival probability,

• p = (𝑝1 , ..., 𝑝𝑇 ): capture probabil-

ities,

• 𝜶 = (𝛼𝑛,𝑡 ): identification proba-

bilities,

• (𝑛𝑡 ): numbers of individuals first

capture for each occasion,

• Y: matrix of observed histories,

• X: matrix of latent error histories,

• Z: matrix of latent capture histo-

ries.

• Define the move 𝑏𝝂(0) ,𝝂(1𝑡) ,𝝂(2) = (+1,+1,−1), and 𝑏� =

0 for all other latent histories.

c) Define x′ = x(𝑘−1) + 𝑏.

d) Calculate z′ = Bx′.
e) Calculate the proposal numbers of first capture per occasion

(𝑛𝑡)′.
f) Set x(𝑘) = x′ with probability 𝑟. Otherwise set x(𝑘) = x(𝑘−1)

.

𝑟 = 𝑚𝑖𝑛

(
1,

[y, x′, z′ |(𝑛𝑡)′, 𝜙′, 𝑝, 𝛼]
[y, x(𝑘−1) , z(𝑘−1) |(𝑛𝑡), 𝜙, 𝑝, 𝛼]

𝑞(x(𝑘−1) |x′)
𝑞(x′ |x(𝑘−1))

)
(4.8)

7. repeat steps 3 to 6 as much as needed.

The proof of convergence is once again the same as in Section 1.2.5. The

first condition becomes that Step 3 and 4 produces chains which converge

to 𝜋(𝜙, p, |z) for any z such that z = Bx for some x ∈ F𝑦 . The validity of

the condition is as trivial as it was in the original proof. The second and

third conditions do not change, and their proof remain the same.

4.2.5 Covariate of identification in open-population

We can also extend the 𝐶𝐽𝑆𝛼 to include a covariate of identification as

we did in Chapter 2. We develop this model (𝐶𝐽𝑆𝛼𝑛 ) in this section.

Starting with the model described in Chapter 2, we would only have to

modify the capture likelihood to specify a 𝐶𝐽𝑆𝛼𝑛 . To keep the chapters

as independant as possible, we re-describe the identification process but

note that it is the same as in Chapter 2. Because we cannot summarise

the histories due to the covariate, we use the complete history sets Y, X,

and Z instead of the frequency vectors y, x and z. (Note that the notations

x and z are still used to account for the number of matrices identical,

with the exception of individual labelling.) Let 𝛼𝑛,𝑡 be the probability of

correct identification for individual 𝑛 at occasion 𝑡. If 𝑛 was not captured

at 𝑡, we take 𝛼𝑛,𝑡 = 1.

The likelihood, conditional to a given X is:

[Y,X,Z|(𝑛𝑡), 𝜙, p, 𝜶, 𝜽𝛼] = 𝐼(Y|X)[X|Z, 𝜶][Z|(𝑛𝑡), 𝜙, p][𝜶 |𝜽𝛼], (4.9)

• 𝐼(Y|X)

Let’s define a function 𝑓 such that, for a latent error history �𝑗 , it results

in the corresponding set of observed histories (𝜔𝑖): 𝑓 (�𝑗) = (𝜔𝑖). For

example, 𝑓 ((1, 1, 2)) = {(1, 1, 0), (0, 0, 1)}. If we apply 𝑓 to all the latent

histories in X, the resulting set of histories (𝜔𝑖) must be equal to Y, except

for index inversions. An example is given on Figure 2.1 in Section 2.2.2.

Thus, 𝐼(Y|X) is 1 if 𝑓 (X) = ∪𝑗 𝑓 (�𝑗) = Y and 0 otherwise. We write this as

𝐼(Y = 𝑓 (X)).

• [X|Z, 𝜶]

First, we rewrite the part 𝐼(z = Bx) of the Equation 1.5. (Remember that

the identification process was the same for the models 𝑀𝑡 ,𝛼 and 𝐶𝐽𝑆𝛼.)

As for 𝐼(Y|X), let’s define a function 𝑔 that, for a latent error history �𝑗 ,
results in the corresponding latent capture history �𝑗 : 𝑔(�𝑗) = �𝑗 . For
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[75]: McClintock et al. (2014), ‘Probit

models for capture-recapture data sub-

ject to imperfect detection, individual

heterogeneity and misidentification’

example 𝑔((1, 1, 2)) = (1, 1, 1). If we apply 𝑔 to all histories in X, the

resulting set of histories (�𝑗) must be equal to Z. An example is given in

Figure 2.2 in Section 2.2.2. Thus, 𝐼(X|Z) is 1 if 𝑔(X) = ∪𝑗 𝑔(�𝑗) = Z and 0

otherwise. We write this as 𝐼(Z = 𝑔(X)).

The identification likelihood is a product of Bernoulli trials for all captured

individuals at all times they were captured. The product of factorial

denotes the various ways of ordering the individuals.

[X|Z, 𝜶] = 𝐼(Z = 𝑔(X))
∏

𝑘 𝑧𝑘 !∏
𝑗 𝑥 𝑗 !

𝑁∏
𝑛=1

𝑇∏
𝑡=1

𝛼
𝐼(�𝑛,𝑡=1)
𝑛,𝑡 (1 − 𝛼𝑛,𝑡)𝐼(�𝑛,𝑡=2) . (4.10)

• [Z|p, 𝜙, (𝑛𝑡)]

This part is very similar to the capture process of the 𝐶𝐽𝑆𝛼:

[Z|(𝑛𝑡), 𝜙, p] =
∏𝑇

𝑡=1
𝑛𝑡 !∏

𝑘 𝑧𝑘 !

𝑁∏
𝑛=1

𝜋𝑛 , (4.11)

where 𝜋𝑛 is computed as in Section 4.2.2. As the capture probabilities are

constant across individuals, the capture likelihood simplifies as Equation

4.5

• [𝜶 | 𝜽𝛼]

For this part, similar to Mc clintock et. al (2014) [75], we chose to develop

a probit model. Other links could be used, especially since there are no

missing covariates. The probit model gives us

𝛼𝑛,𝑡 = 𝝓(𝑎 · 𝜏𝑛,𝑡 + 𝑏)

where 𝝓 is the standard normal cumulative distribution function. Thus,

𝜽𝛼 = (𝑎, 𝑏). We propose a model where 𝑏 ≠ 0. To understand why, let’s

consider what would happen if we kept a sample for which 𝜏 = 0 (i.e.

having observed no loci at all for that sample). In that case, we could

only randomly assign the sample in an already existing history or in a

new one. The probability of putting it in the right history would be very

low. On the other hand, if 𝜏 is large enough (i.e. having observed most

loci with good confidence), the probability of misidentifying the sample

would be very small. Thus we want 𝛼 = 𝝓(𝑎 · 0 + 𝑏) ≈ 0, so 𝑏 < 0.

To fully specify the probit model, we define 𝑢𝑛,𝑡 as a binary indicator of

the success of the identification of the capture of individual 𝑛 at occasion

𝑡. That is, 𝑢𝑛,𝑡 = 1 if the sample 𝑛, 𝑡 resulted in a correct individual

identification, and 0 otherwise. We also define �̃�𝑛,𝑡 , a continuous latent

process of 𝑢𝑛,𝑡 . We set �̃�𝑛,𝑡 ∼ N(𝑎𝜏𝑛,𝑡 + 𝑏, 1) and if �̃�𝑛,𝑡 < 0 then 𝑢𝑛,𝑡 = 0,

or else if �̃�𝑛,𝑡 > 0 then 𝑢𝑛,𝑡 = 1.

We note u = (𝑢𝑛,𝑡)𝑛∈[1,𝑁],𝑡∈[1,𝑇] and ũ = (�̃�𝑛,𝑡)𝑛∈[1,𝑁],𝑡∈[1,𝑇] Since all

covariates are known, conditional on X, all the 𝑢𝑛,𝑡 are known. So the

definition of �̃�𝑛,𝑡 is not really needed, but it does allow for Gibbs sampling

of 𝑎 and 𝑏 (see Section 2.2.3).
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5: To compute 𝑏𝑡 , the latent state ’dead

or alive’ of each individual must be sam-

pled. The probability that an individ-

ual last released before 𝑡 and never seen

again is still alive at 𝑡 can be computed

with the forward-backward algorithm.

6: This again is done using the forward

and backward algorithms.

We only have left to specify priors for 𝑎 and 𝑏:

𝑎 ∼ N(�𝑎 , 𝜎2

𝑎),

𝑏 ∼ N(�𝑏 , 𝜎2

𝑏
).

4.2.6 Estimating the parameters of the 𝐶𝐽𝑆𝛼𝑛

To construct the MCMC, the parameters 𝜙 and p are sampled as described

in Section 4.2.3 while𝜽𝛼 is sampled as in Section 2.2.3. The matrix of latent

histories X is sampled as in Section 2.2.3 but updating the numbers of

individuals first captured (𝑛𝑡) instead of the total number of individuals.

The MH ratio given by Equation 2.7 does not changes but the history

probabilities are computed same as for the likelihood (see Section 4.2.2).

The MCMC is constructed this way:

1. Let 𝛽(𝑎𝑡
0
, 𝑏𝑡

0
) denote the beta prior on 𝑝𝑡 , N(�𝑎 , 𝜎2

𝑎) the normal prior

on 𝑎 and N(�𝑏 , 𝜎2

𝑏
) the normal prior on 𝑏.

2. Initialize all parameters as well as a set of latent histories satisfying

𝐼(Y = 𝑓 (X)). Such a set can be obtained by assuming that no

mistakes were made, i.e. the exact set of observed histories. In

order to run several chains with different initialisations, one can

take the previous initialisation of X and follow the later steps of (5)

by only adding misidentifications to the set and always accepting

the proposed ones without going though the Metropolis-Hasting

acceptance. In the initial latent set, fix a random realistic number

of all-zero histories to be part of the population.

3. Sample the capture rate with Gibbs sampling. The likelihood being

multinomial, it follows that the beta priors lead to full conditional

beta posterior distribution:

𝑝𝑡 |Z, 𝜙 ∼ 𝛽(𝑎𝑡
0
+ 𝑎𝑡 , 𝑏𝑡

0
+ 𝑏𝑡)

where 𝑎𝑡 is the number of individuals seen at least once before 𝑡

that were captured at 𝑡 and 𝑏𝑡 is the number of individuals seen at

least once before 𝑡 that were alive but unseen at 𝑡 5
.

4. Sample the survival rate with Gibbs sampling. Again, it has a full

conditional beta posterior distribution.

𝜙 |Z, p ∼ 𝛽(𝑎𝜙
0
+ 𝑎𝜙 , 𝑏𝜙

0
+ 𝑏𝜙)

where 𝑎𝜙 is the total number of of times an individual survived

from one occasion to the next after its first sight and 𝑏𝜙 is the total

number of individual seen once or more that have died during

before the last occasion. After the last release of an individual, there

is no way of knowing it survived or died, but the transition toward

one state or another can be sampled
6
.

5. Sample the identification rate probit parameters with Gibbs sam-

pling. With the probit model, the parameters 𝑎 and 𝑏 can be

sampled in their full conditional posterior. First, the ũ also need to

be updated by sampling the u𝑛,𝑡 in their full conditional posterior
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using the values of 𝝉. For simplification of the notation, we intro-

duce notation 𝐿 denoting the total number of capture realised and

𝑙 = 1, ..., 𝐿 the indexes of each capture. Then:

�̃�𝑙 |· ∼
{

TN(0,+∞)(𝑎𝜏𝑙 + 𝑏, 1) if �𝑙 = 1,

TN(−∞,0)(𝑎𝜏𝑙 + 𝑏, 1) if �𝑙 = 2,

𝑎 |· ∼ N(�′
𝑎 , 𝜎

′2
𝑎 ),

𝑏 |· ∼ N(�′
𝑏 , 𝜎

′2
𝑏
),

(4.12)

where TN is the truncated normal distribution and
𝜎′2𝑎 =

(
1

𝜎2

𝑎
+∑𝐿

𝑙=1
𝜏2

𝑙

)−1

,

�′
𝑎 = 𝜎′2𝑎

(
�𝑎
𝜎2

𝑎
+∑𝐿

𝑙=1
𝜏𝑙(�̃�𝑙 − 𝑏)

)
,

(4.13)

and 
𝜎′2
𝑏

=
𝜎2

𝑏

𝐿𝜎2

𝑏
+1

,

�′
𝑏

= 𝜎′2
𝑏

(
�𝑏
𝜎2

𝑏

+∑𝐿
𝑙=1

(�̃�𝑙 − 𝑎𝜏𝑙)
)
.

(4.14)

6. Sample X with Metroplis-Hastings. In order to propose an X′
, the

definitions of sets that where sampled (𝜒0,𝑡(𝑥) and 𝜒2,𝑡(𝑥)) need

to be changed. Let 𝜒0,𝑡(X) = {𝑖 |�𝑖 ,𝑡 = 0} be the set of individual

which were unseen at time 𝑡 in their latent error history if at least

one individual is seen only at occasion 𝑡. Otherwise 𝜒0,𝑡(X) = ∅.

Let 𝜒2,𝑡(X) = {𝑖 |�𝑖 ,𝑡 = 2} be the set of individual which were

misidentified at time 𝑡 in their latent error history. Finally, let

𝜒1,𝑡(X) = {𝑖 |�𝑖 ,𝑡 = 1, (�𝑖 ,𝑠)𝑠≠𝑡 = 0} be the set of individual which

were only seen once, at time 𝑡, in their latent error history. Then, to

generate X(𝑘)
, use the following steps:

a) Set X′ = X(𝑘−1)
.

b) With probability 0.5 go to step c, otherwise go to step d.

c) Add a ghost to the proposal set of latent histories X′
.

i. Sample uniformly 𝑡 ∈ {𝑡 |𝜒0,𝑡(X) ≠ ∅}, the set of occasions

for which at least one individual is unseen and one

individual is only seen at that occasion.

ii. Sample uniformly 𝑖0 ∈ 𝜒0,𝑡(X) the set of unseen individu-

als at occasion 𝑡.

iii. Sample 𝑖1 ∈ 𝜒1,𝑡(X) proportionally to 1 − 𝛼𝑖1 ,𝑡 .
iv. Set �′

𝑖0 ,𝑡
= 2, with the covariate of identification associated

to �𝑖1 ,𝑡 .
v. Remove �𝑖1 from the set of individuals.

vi. Go to step e.

d) Remove a ghost from the proposal set of latent histories X′
.

i. Sample uniformly 𝑡 ∈ {𝑡 |𝜒2,𝑡(X) ≠ ∅}, the set of occasions

where at least one misidentification is present.

ii. Sample 𝑖2 ∈ 𝜒2,𝑡(X) proportionally to 𝛼𝑖2 ,𝑡 .
iii. Add an individual with a single capture at time 𝑡 with

the covariate of identification that is associated to �𝑖2 ,𝑡 .
iv. Set �′

𝑖2 ,𝑡
= 0.

e) Compute Z′ = 𝑔(𝑋′). Set 𝑛′ as the number of individuals in X′
.

Set (𝑛′𝑡) the numbers of individuals first caught per occasion.

f) With probability 𝑟, set X(𝑘) = X′
, Z(𝑘) = Z′

and (𝑛(𝑘)𝑡 ) = (𝑛′𝑡).
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Otherwise set X(𝑘) = X(𝑘−1)
, Z(𝑘) = Z(𝑘−1)

and (𝑛(𝑘)𝑡 ) = (𝑛(𝑘−1)
𝑡 ).

𝑟 = 𝑚𝑖𝑛

(
1,

∏
𝑡 𝑛

′
𝑡 !
∏𝑁′

𝑖=1
𝜋𝑖∏

𝑡 𝑛𝑡 !
∏𝑁

𝑖=1
𝜋𝑖

𝑞(X(𝑘−1) |X′, 𝜶)
𝑞(X′ |X(𝑘−1) , 𝜶)

)
, (4.15)

where 𝜋𝑖 = 𝐿𝑖 ,1 · 𝜒𝐷
∏

𝑡 𝛼
𝐼(�𝑖 ,𝑡=1)
𝑖 ,𝑡

(1 − 𝛼𝑖 ,𝑡)𝐼(�𝑖 ,𝑡=2)
(see Equation 4.1

and Equation 4.2 for 𝐿𝑖 ,1 and 𝜒𝐷) and [X′ |X, 𝜶] is the proposal

density for X′
. When adding a ghost:

[X′ |X, 𝜶] = 0.5(1 − 𝛼�1 ,𝑡)∑
𝑖∈𝜒1,𝑡 (X)(1 − 𝛼𝑖 ,𝑡)#{𝑡 |𝜒0,𝑡(X) ≠ ∅}#𝜒0,𝑡

(4.16)

and when removing a ghost:

[X′ |X, 𝜶] = 0.5𝛼�2 ,𝑡∑
𝑖∈𝜒2,𝑡 (X)(𝛼𝑖 ,𝑡)#{𝑡 |𝜒2,𝑡(X) ≠ ∅} (4.17)

where #𝑆 denotes the cardinal of ensemble 𝑆.

7. repeat steps 3 to 6 as much as needed.

The proof of convergence of this algorithm is the same as in Section 1.2.4.

Some notations change, due to the moves not being written as vectors. In

the proof, we replace the definition of moves as vectors by functions of a

set of latent histories: 𝑏(X) ∈ M(X). The reverse move of 𝑏(X) is 𝑏−1(𝑏(X)).
The full proof can be re-written with these new notation. It will stay the

same so the proof is still valid.

4.3 Multi-state open population models

4.3.1 Multistate open population: Arnason-Schwarz
model

If the individuals can be observed in different states (corresponding

to biological states, locations...), then the state they are in when seen

can be registered. We assume the state is always identified without

error. Assuming 𝑆 states (𝑠 ∈ S) can be observed, the capture histories

are composed of S+1 different numbers (0 if not captured and 1, ..., 𝑆

for the 𝑆 states). Additionally, on a loss on capture, a -1 is recorded at

𝑡 + 1. King et al. (2003) [97] give a closed form of the commonly named

Arnason-Schwarz model (first developed by Arnason & Schwarz[30–32,

98]).

Let𝑂(𝑐,𝑑)(𝑟, 𝑠) denote the probability that an animal in state 𝑟 ∈ Sat time

c remains unobserved until it is subsequently resighted in state 𝑠 ∈ Sat

time 𝑑 + 1. Then, for 𝑐 ≤ 𝑑,

𝑂(𝑐,𝑑)(𝑟, 𝑠) = 𝑝𝑑+1,𝑠𝑄(𝑐,𝑑)(𝑟, 𝑠), (4.18)

where 𝑄(𝑐,𝑑)(𝑟, 𝑠) denotes the probability that an animal changes from

state 𝑟 at time 𝑐 to state 𝑠 at time 𝑑 + 1, and is unobserved between these
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times, and is given by

𝑄(𝑐,𝑑)(𝑟, 𝑠) =
{

𝜙𝑟,𝑐𝜓𝑟,𝑠 if 𝑐 = 𝑑

𝜙𝑟,𝑐
∑
𝑙∈S

[
(1 − 𝑝𝑐+1,𝑙)𝜓𝑟,𝑙𝑄(𝑐+1,𝑑)(𝑙 , 𝑠)

]
if 𝑐 < 𝑑

.

(4.19)

Let (𝑐, 𝑑) ∈ CDdenote the pairs of consecutive times the individual was

captured. Then the likelihood 𝐿𝑖 ,1 of the part of history 𝜔𝑖 that precedes

the last sighting at 𝐷 is

𝐿𝑖 ,1 =
∏

(𝑐,𝑑)∈CD

𝑂(𝑐,𝑑)(𝑟, 𝑠) . (4.20)

The second part of the likelihood of history 𝜔𝑖 , if the individual was

released at 𝐷 is 𝜒𝑟,𝐷 . It is the probability that an individual, alive at 𝐷 in

state 𝑟, is not seen again afterwards. It is given by

𝜒𝑟,𝑡 =

{
(1 − 𝜙𝑟,𝑡) + 𝜙𝑟,𝑡

∑
𝑠∈S [𝜓𝑟,𝑠(1 − 𝑝𝑠,𝑡+1)𝜒𝑠,𝑡+1] if 𝐷 ≤ 𝑡 ≤ 𝑇 − 1

1 if 𝑡 = 𝑇
.

(4.21)

Then, the complete likelihood of history 𝜔𝑖 is 𝜋𝑖 = 𝐿𝑖 ,1 · 𝜒𝑟,𝐷 . And the

vector of counts of the observed histories, y is a product multinomial

random variable with density

[y|𝜙,𝝍, p] =
∏

𝑠∈S
∏𝑇−1

𝑡=1
𝑛𝑠,𝑡 !∏

𝑖 𝑦𝑖 !

∏
𝑖

𝜋
𝑦𝑖
𝑖

, (4.22)

where 𝑛𝑠,𝑡 is the number of individuals first captured at 𝑡 in state 𝑠.

4.3.2 Arnason-Schwarz LMM

Now that we’ve introduced the AS model, we can present a last general

extension of the LMM, in open-population with multistate observations:

the 𝐴𝑆𝛼 model. It should now be clear as to how this is done. The

likelihood conditional to the set of latent histories is:

[y, x, z|(𝑛𝑠,𝑡), 𝜙,𝝍, p, 𝛼] = 𝐼(y = Ax) [x|z, 𝛼] [z|(𝑛𝑠,𝑡), 𝜙,𝝍, p] (4.23)

The capture likelihood [z|(𝑛𝑠,𝑡), 𝜙,𝝍, p] is the same as for the Arnason-

Schwarz. This part is exactly the same as in Section 1.3.3. If we consider

that the probability of correctly identifying an individual is constant

between states, the identification part [x|z, 𝛼] does not change much

compared to model 𝑀𝑡 ,𝛼. The latent error histories � are composed of

2𝑆+1 different values: one per state when correctly identified, one per state

when misidentified and the 0. The likelihood of the identification process

is computed with Equation 1.5, rewriting 𝐴 𝑗 ,𝑡 = 𝛼𝐼(�𝑗 ,𝑡∈[1,𝑆])(1− 𝛼)𝐼(�𝑗 ,𝑡>𝑆).
For example, if three states are considered, the identification likelihood

of latent history (1, 4, 0, 2, 6) is

𝐴(1,4,0,2,6) = 𝛼 × (1 − 𝛼) × 1 × 𝛼 × (1 − 𝛼) = 𝛼2(1 − 𝛼)2

State heterogeneity can be considered for the identification process by

setting 𝜶 = (𝛼1 , ..., 𝛼𝑆). In that case the previous example likelihood
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7: To compute 𝑏𝑡 , the latent state ’dead

or alive’ of each individual must be sam-

pled. The probability that an individ-

ual last released before 𝑡 and never seen

again is still alive at 𝑡 can be computed

with the forward-backward algorithm.

8: This again is done using the forward

and backward algorithms.

9: This again is done using the forward

and backward algorithms.

would simply be

𝐴(1,4,0,2,6) = 𝛼1 × (1 − 𝛼1) × 𝛼2 × (1 − 𝛼3)

4.3.3 Estimating the parameters of the 𝐴𝑆𝛼

The construction of the MCMC is done the same way as for the 𝐶𝐽𝑆𝛼
except that the transitions are also to be sampled.

The MCMC is constructed this way:

1. Let 𝛽(𝑎𝑡
0
, 𝑏𝑡

0
) denote the beta prior on 𝑝𝑡 , 𝛽(𝑎𝛼

0
, 𝑏𝛼

0
) denote the beta

prior on 𝛼, 𝛽(𝑎𝜙
0
, 𝑏

𝜙
0
) the beta prior on 𝜙 and 𝜓𝑠,. ∼ 𝐷𝑖𝑟(𝛼𝜓𝑠

0
) be

the Dirichlet prior on 𝜓𝑠,..

2. Initialize all parameters as well as a set of latent histories satisfying

y=Ax. Such a set can be obtained by assuming that no mistakes

were made. The latent frequencies of the histories containing 2’s

are 0 and all the other match the observed frequencies one-to-one.

In order to run several chains with different initialisations, one can

take the previous initialisation of x and follow the later steps of (6)

by only adding misidentification to the set and always accepting

the proposed ones without going though the Metropolis-Hasting

acceptance.

3. Sample the capture rate with Gibbs sampling. The likelihood being

multinomial, it follows that the beta priors lead to full conditional

beta posterior distribution:

𝑝𝑡 |z, 𝜙,𝝍 ∼ 𝛽(𝑎𝑡
0
+ 𝑎𝑡 , 𝑏𝑡

0
+ 𝑏𝑡)

where 𝑎𝑡 is the number of individuals seen at least once before 𝑡

that were captured at 𝑡 and 𝑏𝑡 is the number of individuals seen at

least once before 𝑡 that were alive but unseen at 𝑡 7
.

4. Sample the survival rate with Gibbs sampling. Again, it has a full

conditional beta posterior distribution.

𝜙 |z, p,𝝍 ∼ 𝛽(𝑎𝜙
0
+ 𝑎𝜙 , 𝑏𝜙

0
+ 𝑏𝜙)

where 𝑎𝜙 is the total number of of times an individual survived

from one occasion to the next after its first sight and 𝑏𝜙 is the total

number of individual seen once or more that have died during

before the last occasion. After the last release of an individual, there

is no way of knowing it survived or died, but the transition toward

one state or another can be sampled
8
.

5. Sample the transition rates with Gibbs sampling. They have a full

conditional beta posterior distribution.

𝜓𝑠,. |z, p,𝜓 ∼ 𝐷𝑖𝑟(a0
𝝍𝑠,. + a𝝍𝑠,. )

where a𝝍𝑠,. is the number of of times an individual transitioned

from state 𝑠 to the others. Just like for the initial states, we can’t

know what transition occurred for an unseen individual but it can

also be sampled
9
.
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10: 𝑎𝛼 =
∑
𝑗
∑
𝑡 𝑥 𝑗 𝐼(�𝑗 ,𝑡 ∈ [1, 𝑆])

11: 𝑏𝛼 =
∑
𝑗
∑
𝑡 𝑥 𝑗 𝐼(�𝑗 ,𝑡 =∈ [𝑆 + 1, 2𝑆])

[83]: Dobra (2012), ‘Dynamic markov

bases’

Proposal density

The proposal densities are calculated

by multiplying the probabilities of

each sampling step used for defining

the move. They are successively: the

probability of adding (or removing)

an error, the probability of choosing

the �0 (or �2) and the probability

of choosing the 𝑡 knowing the sam-

pled �. When adding an error, the

proposal density 𝑞 is:

𝑞(𝑥′ |𝑥𝑘−1) =
0.5

#𝜒0.#{𝑡 |�0,𝑡 = 0, 𝑥�
1𝑡 > 0} (4.24)

and when removing an error, is:

𝑞(𝑥′ |𝑥𝑘−1) =
0.5

#𝜒2.#{𝑡 |�2,𝑡 = 2} (4.25)

where #𝑆 denotes the cardinality of

𝑆.

6. Sample the identification rate with Gibbs sampling. Similarly to

the capture rate, it has a full conditional beta posterior distribution.

𝛼 ∼ 𝛽(𝑎𝛼
0
+ 𝑎𝛼 , 𝑏𝛼

0
+ 𝑏𝛼)

where 𝑎𝛼 10
is the total number of correct identifications and 𝑏𝛼 11

is the total number of misidentifications.

7. Sample x. Sampling x is done the exact same way as it is with the

multistate model 𝑀𝑡 ,𝛼. It requires to be able to sample from Fy.

To do so, sample moves from a dynamic Markov basis [83] which

is the set of moves 𝑀(𝑥) that connect each x to some neighbours.

Randomly add or remove an error from the set of latent histories.

To add an error, sample a history that may have generated a ghost

(i.e. a history containing a 0), and "merge" it with a potential ghost

(i.e. replace the 0 by a 2 and remove the ghost history). To remove

an error, sample a history containing a 2, replace it by a 0 and add

a history with a unique capture (coded 1) at that time.

More formally, follow the steps:

a) Define:

• 𝝂(1𝑠𝑡)
the history with a unique capture at occasion 𝑡 in

state 𝑒𝑠 (potential ghost),

• 𝜒0,𝑠 ,𝑡(𝑥) = {𝝂 |�𝑡 = 0, 𝑥� > 0, 𝑥�(1𝑠𝑡) > 0} the set of his-

tories having potentially generated a ghost in state 𝑒𝑠 at

occasion 𝑡, for the given x,

• 𝜒2,𝑠 ,𝑡(𝑥) = {𝝂 |�𝑡 = 𝑠 + 𝑆, 𝑥� > 0} the set of histories

containing a ghost in state 𝑒𝑠 at occasion 𝑡, for the given x.

b) Sample a state 𝑠 uniformly from 1, ..., 𝑆.

c) With probability 0.5, go to (i), otherwise go to (ii).

i. Add a misidentification (i.e. a ghost) to the latent set.

• Sample 𝝂(0) ∈ 𝜒0,𝑠 ,.(𝑥) =
⋃
𝑡 𝜒0,𝑠 ,𝑡(𝑥).

• Sample 𝑡 ∈ {𝑡 |𝝂(0)
𝑡 = 0, 𝑥�(1𝑠𝑡) > 0}.

• Set 𝝂(2) = 𝝂(0)
and then �(2)𝑡 = 𝑠 + 𝑆.

• Define the move 𝑏𝝂(0) ,𝝂(1𝑠𝑡) ,𝝂(2) = (−1,−1,+1) and 𝑏� =

0 for all other latent histories.

ii. Remove a misidentification from the latent set.

• Sample 𝝂(2) ∈ 𝜒2,𝑠 ,.(𝑥) =
⋃
𝑡 𝜒2,𝑠 ,𝑡(𝑥).

• Sample 𝑡 ∈ {𝑡 |𝝂(2)
𝑠,𝑡 = 𝑆 + 𝑠}.

• Define 𝝂(0) = 𝝂(2)
and then �(0)𝑡 = 0.

• Define the move 𝑏𝝂(0) ,𝝂(1𝑠𝑡) ,𝝂(2) = (+1,+1,−1) and 𝑏� =

0 for all other latent histories.

d) Define x′ = x(𝑘−1) + 𝑏.

e) Calculate z′ = Bx′.
f) Calculate the proposal numbers of first capture per occasion

(𝑛𝑠,𝑡)′.
g) Set x(𝑘) = x′ with probability 𝑟. Otherwise set x(𝑘) = x(𝑘−1)

.

𝑟 = 𝑚𝑖𝑛

(
1,

[y, x′, z′ |(𝑛𝑠,𝑡)′,𝝓,𝝍, p, 𝛼]
[y, x, z|(𝑛𝑠,𝑡),𝝓,𝝍, p, 𝛼]

𝑞(x(𝑘−1) |x′)
𝑞(x′ |x(𝑘−1))

)
(4.26)

8. repeat steps 3 to 7 as much as needed.

The proof of convergence is once again the same as in Section 1.2.5. The

first condition becomes that Step 3 and 4 produces chains which converge
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[80]: Valpine et al. (2017), ‘Programming

With Models’

to 𝜋(𝜙, p, |z) for any z such that z = Bx for some x ∈ F𝑦 . The validity of

the condition is as trivial as it was in the original proof. The second and

third conditions do not change, and their proof remain the same.

4.4 Simulation study

4.4.1 Scenarios and implementation

From the models above, we tested only tested the 𝐶𝐽𝑆𝛼 . We simulated ten

datasets for each of the following scenario: survival 𝜙 = 0.6, 0.7, 0.8, 0.9,

capture probability 𝑝𝑡 = 0.3, 0.4, 0.5, 0.6, 0.7, identification probability

𝛼 = 0.8, 0.9, 0.95. For every scenario, the initial population size is 500

and it was maintained approximately constant. We simulated constant

capture rate but they were treated as time dependant by the models.

These simulations have two objectives. The first is showing the impact of

misidentification over the estimation of survival while the second is to

show how the LMM perform in the various scenarios of survival, capture

and identification rates. hence, for all simulations we ran both the 𝐶𝐽𝑆

and the 𝐶𝐽𝑆𝛼.

The 𝐶𝐽𝑆𝛼 was implemented with NIMBLE ([80]) and the 𝐶𝐽𝑆 was ran

using the same scripts but without the samplers for the set of latent

histories x and the identification probability 𝛼 were removed. The MCMC

for the 𝐶𝐽𝑆𝛼 was run over 1,000,000 to 2.000.000 iterations with an

additional burn-in phase of 100,000 to 400,000 iterations. We ran two

chains for each simulation with two different starting points. For the

first one, x was initialised as the set of observed histories, as if there was

no error. In the second one, we arbitrarily added 50 errors randomly.

Obviously for running the 𝐶𝐽𝑆 to simulate the effect of misidentifications,

there is no latent set x but just the observed data x. Knowing that the

auto-correlation is very high due to slow movements through the fiber Fy,

we ran the samplers for 𝛼 and x (steps 5 and 6 in the algorithm of Section

4.2.3) five times each alternating them in an iteration of the MCMC. This

almost amounts to having five times as many iteration but for a much

lower computing time than if we had to update every parameters at each

of the iteration.

4.4.2 Results

Running two chains of 1,400,000 iteration on a 3.0GHz Intel processor

took a bit more than two hours. We checked the convergence graphically

by looking at the 𝜙 chains and the number of misidentifications chains.

We also looked at the �̂� and the resulting effective sample size. The 𝐶𝐽𝑆

always converges perfectly and there are no indication of any problems.

The 𝐶𝐽𝑆𝛼 also always converge perfectly if we look at the 𝜙 chains but

the chains of misidentifications number show a poor convergence for

𝜙 ≤ 0.7.

The relative bias on the estimates with the 𝐶𝐽𝑆 is shown on the Figure

4.1, and the relative bias on the estimates with the 𝐶𝐽𝑆𝛼 is shown on the

Figure 4.2. The Figure 4.1 shows that the 𝐶𝐽𝑆 always underestimates the

survival. The relative bias does not seem to depend on the true survival
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Figure 4.1: CJS relative survival estimate bias (y axis) depending on capture probability (x axis), identification probability (dot shapes),

number of capture occasions (rows) and simulated survival (columns). Grey and red symbols show simulation-specific estimate bias of

the survival posterior mean, red ones indicating that the N chains had �̂� > 1.1 or an effective sample size under 50. Black symbols

connected by lines and error bars show, respectively, the estimate bias of the mean and the 95% credible intervals of the posterior

distribution of survival averaged across simulations.

but rather on the capture rate and the identification rate. For 𝛼 = 0.95,

the relative bias is low, a few percents, but when 𝛼 = 0.8, the relative bias

reaches 10%. Also, the higher the capture rate is, the higher the bias is.

The Figure 4.2 shows that the 𝐶𝐽𝑆𝛼 is not biased given that either there

are seven or more occasions, either the true survival is of 0.8 or more,

either the capture rate is at 0.5 or more. The identification rate does not

cause bias in the estimates, but as it get smaller,it increases the size of

the 95% confidence interval. When 𝜙 ≤ 0.7 and 𝑇 = 5 and 𝑝 ≤ 0.4, the

average bias is still low but the uncertainty is quite large (between 0.5

and 0.75 for 𝜙 = 0.6).
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Figure 4.2: 𝐶𝐽𝑆𝛼 relative survival estimate bias (y axis) depending on capture probability (x axis), identification probability (dot shapes),

number of capture occasions (rows) and simulated survival (columns). Grey and red symbols show simulation-specific estimate bias of

the survival posterior mean, red ones indicating that the N chains had �̂� > 1.1 or an effective sample size under 50. Black symbols

connected by lines and error bars show, respectively, the estimate bias of the mean and the 95% credible intervals of the posterior

distribution of survival averaged across simulations.

4.5 Discussion

In this chapter I have extended the latent multinomial model to open

population capture recapture data. I have developed the LMM in the

Cormack-Jolly-Seber framework. As in Chapter 2, I then extended it using

a probit approach in order to consider an identification quality covariate.

In the same way, I also developed the LMM in the Arnason-Schwarz

framework. The development of the model 𝐴𝑆𝛼 is of fundamental im-

portance because the aim of many studies is migration or transition rates

in the context of an open population, and we have shown in Chapter 1

that transition estimates were biased if the capture or identification rates

depend on the states and misidentifications are ignored. I conducted a

simulation study of the 𝐶𝐽𝑆𝛼, and showed that the model estimates the

survival without bias, even with an identification rate as low as 0.8.

In order to access the full fiber F𝑥 = {x|y = Ax}, and to be able to

explore the full parameter space with the MCMC, there should be a move

that leads to histories containing only misidentifications (e.g.: history

020). Such a history is only theoretical and cannot actually happen,

because if there is only one capture in a history, then it cannot really

be misidentified since identification is more about matching samples

together than matching them to individuals. However, in the LMM, such
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histories have a positive probability, so the algorithm should be able

to propose such histories in the MCMC. In closed population, there

are individuals with unseen histories, which the algorithm can use to

propose histories with only misidentifications (if a misidentification is

added to an unseen history). In the CJS framework, the likelihood is

conditioned on the first capture so the unseen histories are not considered

and the possibility of moving toward an all-misidentification history

must be allowed as a move of the MCMC.

I have implemented the MCMC with this in mind, but some tests

comparing estimates with and without such a possibility of move seem

to indicate that it may not be absolutely necessary.

Parameters estimation for open population models is much slower than

for closed population models, and the MCMC requires many more itera-

tions for low capture probabilities. In addition, with low survival, the

computation time increased substantially due to the increased autocorre-

lation of the MCMC and the need for more iterations.

Both the 𝐴𝑆𝛼 model and the 𝐶𝐽𝑆𝛼𝑛 model have not been tested with

repeated simulations on a diverse panel of scenarios.

The 𝐴𝑆𝛼 model was only developed as a necessary step for the next chap-

ter. Therefore we did not take the time to run such simulations. However,

it would be interesting to see how the survival and the transitions are

estimated by the model in presence of misidentifications.

The 𝐶𝐽𝑆𝛼𝑛 model was developed to be applied to a real data set. However,

this has not been possible. Therefore, testing the model and comparing

it with the 𝐶𝐽𝑆𝛼 remains to be done. As in Chapter 2, we expect that

the 𝐶𝐽𝑆𝛼𝑛 would lead to more precise results than the 𝐶𝐽𝑆𝛼, but the

evaluation of this extension remains to be done.

I developed some models in this chapter but other potentially useful

models still need to be developed. The Table 4.1 summarises which

models have been developed and which models have been omitted .

Single observation Multiple observation

no covariate covariate no covariate covariate

Single state Yes Yes No No

Multistate Yes No No No

Table 4.1: Current state of development

for open population models. "Yes" indi-

cates that the model is developed and

implemented and "No" indicates that the

model is not developed.

The interest of a multi-state open population model using an identification

quality covariate lies in improving the estimates of the model. This model

is built by replacing the capture process of the 𝐶𝐽𝑆𝛼𝑛 with the capture

process of the 𝐴𝑆 model, and adapting the algorithm to sample the state

in which we add or remove an error.

All the models for studies with multiple observations on an occasion

(see Chapter 3) are an extension that would allow many studies to use

the LMM, namely, most studies that collect faeces to study individual

survival.

For the closed population studies, and for any study where misidentifi-

cations could have occurred, the data should be analysed with a model

such as the 𝐶𝐽𝑆𝛼 to confirm whether or not misidentifications occurred.

If the estimated 𝛼 is around 1, this validates that no misidentifications

have occurred and the data can be analysed using a classical model. If

the estimated 𝛼 is less than 1 and the estimates of the classical model and
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the one modelling misidentifications are significantly different then the

𝐶𝐽𝑆𝛼 (or the 𝐶𝐽𝑆𝛼𝑛 ) is the model to use.

Identifiability issues can arise especially when the capture or the survival

or the identification rate is low. Testing the sensitivity to the prior of 𝛼
can help to detect lack of identifiability.

Since, in our simulations, the 𝐶𝑆𝐽𝛼 estimates the survival without bias

even when it is as low as 0.6, with a low capture rate of 0.3 and a low

identification probability of 0.8, many more samples could be kept by

allowing misidentifications. This could open the door to new study

designs where a large percentage of the samples would not pass the

quality threshold for eliminating misidentifications. In the next chapter I

present an example of a study where it would be expected that deleting

low quality samples would lead to keep almost no sample. The chapter

shows how the LMM could be used to estimate the survival of mosquito

larvae with CMR.
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5.1 Introduction

5.1.1 Project aim

This PhD project was part of a larger research project that advocates

the study of the adaptation of mosquito vectors to environmental mod-

ifications, in particular, how global change might impact their fitness

and life-history traits and influence their vectorial capacity. This will

allow more accurate prediction of the epidemiological consequences

of niche expansion and the spread of mosquito-borne pathogens. Such

predictions are essential in order to adapt disease control programmes

and avoid the emergence of vector-borne diseases.

This chapter presents a simulation study of mosquito larvae survival rate

using capture-recapture in the context of misidentification. Although

the study is based on simulations, these have been made as realistic

as possible using external biological information on mosquitoes and

knowledge from the field. Thus, this chapter may be viewed as a good

illustration of the opportunities offered by the latent multinomial model

(LMM).

The chapter starts by introducing the context of the research project as

well as the current state of knowledge about the demographic parameters

of mosquitoes. It then describes two possible protocols for studying

mosquito larvae survival. In these protocols, individual capture histories

are obtained by ‘marking’ mosquito larvae with genetic fingerprints

using eDNA. The specific extensions of the 𝐴𝑆𝛼 model (see Chapter 4)

used to analyse the data in the two protocols are defined. Based on the

literature, realistic simulations were created corresponding to the two

protocols and these were then compared using the models developed.

5.1.2 Mosquitoes, vectors of disease

Mosquitoes transmit some of the most acute infectious diseases impacting

humans. Despite recent progress, malaria, Bancroftian filariasis, and

viruses such as dengue, chikungunya, Zika and yellow fever continue

to pose major challenges to public health. These challenges are further

compounded by global changes in both the environment and society that

are promoting the emergence and resurgence of these diseases world-

wide. Among these global environmental changes, the demographic

and spatial growth of densely populated urban areas is causing a shift

in the way mosquito-borne diseases spread. Previously, these diseases

mainly affected rural areas with lower host populations. However, with

the expansion of urban centres and the resulting increase in population

density, new risks for the transmission of these pathogens are arising.

In fact, the least developed countries are those experiencing the highest

urbanisation rates, often in the range of 2–6% per year. This trend is
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especially evident in tropical Africa, where major disease vectors such as

the Anopheles gambiae complex, responsible for transmitting malaria

and filariasis, are adapting to the haphazard growth of urban centres.

These mosquitoes are now thriving in anthropogenically polluted water,

which were previously unsuitable as larval habitats [99].

Increased resilience to environmental stressors, such as pollutants, ap-

pears to be a key factor driving this phenomenon [100]. Another illustra-

tion of recent niche expansion involves certain freshwater species such

as Aedes albopictus, Ae. aegypti, and An. coluzzii, which are adapting to

brackish waters within certain regions of their distribution [101, 102].

This adaptation carries the potential of heightened transmission risk,

particularly as rising global temperatures contribute to sea-level rise,

resulting in the expansion of saline and brackish water along coastlines.

Similarly, the globalisation of transport and trade has facilitated the

widespread invasion of new ecological niches by Ae. albopictus. This

expansion has given rise to the development of traits such as diapause

and increased inter-specific competitive ability. Yet there is limited un-

derstanding of whether these adaptations linked to niche expansion will

amplify or diminish the intensity of disease transmission. Moreover, there

is uncertainty whether these adaptations will drive the dissemination of

mosquito-borne pathogens into even more distant areas. For instance,

the exposure of mosquitoes to foreign substances and pollutants in urban

hubs might encourage the emergence of resistance to insecticides, po-

tentially undermining our ability to manage these vectors. On the other

hand, costs associated with the evolution of adaptive traits may affect

life-history traits and fitness [103]. These aspects, in turn, may influence

the vector’s capacity to transmit disease and the force of transmission.

Studying how current global transformations influence life-history traits

connected to fitness will allow us to more accurately anticipate the

epidemiological consequences of anthropogenic mosquito vector niche

expansion and the proliferation of mosquito-borne diseases.

5.1.3 Life cycle and environmental conditions

The life cycle of mosquitoes is shown in Figure 5.1. It is characterised by

four distinct stages: egg, larva, pupa and adult. Mosquitoes undergo a

process known as complete metamorphosis, which involves a series of

morphological and physiological changes. Each stage plays a vital role

in mosquito development and survival, with the immature stages being

particularly susceptible to environmental factors and control interven-

tions.

The life cycle of a mosquito begins when a female mosquito lays her eggs

in or near a water source. These habitats can vary from natural breeding

sites such as stagnant ponds, rice fields and river edges to artificial

containers such as rainwater-filled tyres or water storage containers.

The female An. gambiae typically lays her eggs in clusters of highly

variable size, depending on her size [104], parity [105], access to blood

or oviposition site [105], plasmodium infection [106], parasites [107] or

sugar sources [108]. The number of eggs ranges between a few dozen

to more than 200. The time required for mosquito eggs to hatch varies

based on environmental conditions, primarily temperature and humidity.

In optimal conditions, eggs can hatch within 24 to 48 hours.
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Figure 5.1: Biological cycle of the

Anophele (Boussès Ph.).

Upon hatching, the mosquito larvae emerge from the eggs and enter the

larval stage. The larval phase of An. gambiae is a multi-stage developmental

period marked by a series of moults, resulting in four distinct larval instars.

An. gambiae larvae progress through four larval instars, with each stage

characterised by specific morphological and physiological changes. First-

instar larvae emerge upon hatching from the eggs, displaying a relatively

simple structure. As they progress through successive instars, their

bodies become more segmented and elongated. Notably, the mouthparts

become more developed, allowing them to feed more efficiently on

microorganisms and organic matter in their aquatic habitat. The duration

of each instar varies, with the fourth instar being the longest, lasting

up to several days. Larvae primarily feed on microorganisms, detritus

and organic matter present in the water, contributing to nutrient cycling

in aquatic ecosystems. They undergo multiple moults, shedding their

exoskeletons as they grow.

As the larval stage nears completion, larvae transition into pupae. Pupae

are more mobile than larvae, but do not engage in feeding activity. Instead,

their primary focus is the completion of their transformation into adult

mosquitoes. The pupal stage is a critical period for the development of

adult structures, including wings, legs and reproductive organs. The

pupal stage typically lasts about 2 days, after which the adult An. gambiae
emerges onto the water’s surface. At this stage, the mosquito is fragile,

and it takes some time for its exoskeleton to harden and its wings to fully

expand before it becomes a functional, flight-capable adult.

Once the female flies away, she mates and then requires a blood meal

to complete the reproductive cycle. Once the eggs are developed, the

female looks for a larval site and lays the eggs. Then, without needing

to be fecundated again, the female starts another cycle, looking for a

blood meal. The female’s lifespan is around 3 to 4 weeks in sub-Saharan

Africa.

5.1.4 Development time of the immature stages

Table 5.1 provides several estimates of the average time spent in each

larval stage for An. gambiae. The overall duration from hatching to adult

emergence varies by up to a factor of two. A large part of these variations
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is likely due to variations in environmental temperature, which is often

not measured or reported, though it is known to have a significant effect

[109]. While the estimates differ slightly, they are generally consistent

in approximating the duration of the complete immature cycle from

hatching to adulthood. The complete cycle takes between one and two

weeks. Service (1971, 1973 [110, 111]) observed a longer development time

for the fourth instar. This is consistent with the fact that a fourth instar

larva must prepare for the pupa stage and does not feed during this

time. However, Bayoh et al. (2003) [109] observed this phenomenon only

for temperatures below 25°C. At temperatures around 25°C, a similar

development time was observed for all instars, and for temperatures

above 25°C they reported a shorter development time for the fourth

instar than for the other instars.

°C Instar 1 Instar 2 Instar 3 Instar 4 Pupa Total

[112] 24-26 - - - 5-8 1 6-9

[113] ? - - - 9.2 1.2 10.4

[110] ? 1.5 3 2 4 2 12.5

[111] ? 1.42 2.88 1.93 3.75 1.79 11.77

[109] 30 1.90 2.09 2.27 1.42 1.11 8.79

Table 5.1: Instar development time per

state (in days). If only state 4 is given, it

is for the complete larval cycle.

Figure 5.2: Average development time per instar depending on temperature.

In addition, Holstein (1954) [113] measured the cycle time from egg to

adult as a function of temperature. By subtracting from these total times

one day for the egg duration status, we obtain the development time of

the immature post-hatching stages as a function of temperature. In Figure

5.2 (a), the total immature cycle time depending on the temperature as

measured by Holstein (1954) [113] and by Bayoh (2003) [109] is shown. If

we consider the development time reported by Service (1973) [111] to be

representative of the ratio of time spent in each stage, these ratios can

then be used to calculate the average time per stage and per temperature,

as estimated by Holstein (954) [113]. Figure 5.2 (a) and (b) show the

average development time for each instar given the temperature based
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on Holstein’s or Bayoh’s data.

5.1.5 Survival of the immature stages

The survival of mosquito larvae has long been a topic of study. Bates

(1941) [114] used the duration of the larval instar to estimate the theoretical

proportion of each larval instar in a population if there was no mortality.

He compared it with observations in several sites. The method has since

been improved and life tables have been constructed. First, larvae from

the different stages are collected. The numbers of each instar are then

divided by the corresponding instar duration. Then these values are

plotted against the age (in days) of the larvae and pupa. A survivorship

curve (see Figure 5.3) is then fitted. From this curve, one can obtain

the number of larvae surviving to each age in days. These numbers

of surviving individuals are then used to create life tables, leading to

survival probability for each age.

Figure 5.3: Example of survivorship

curve (from Service 1971 [110])

This method has been used in several studies to estimate the survival of

immature stages of An. gambiae in different habitats, including borrow pits

and marshes (in Kenya [110]), Rabour and Chiga (in Kenya [111]), sprayed

rice fields, unsprayed rice fields, and pools and ponds (in Kenya [115]).

The survival probability estimates from the previously cited studies are

given in Table 5.2. The survival probability is estimated daily as a function

of larval age. Service (1971) [110] estimates survival over a longer lifetime,

so an additional survival probability is given. The overall mortality over

the complete immature cycle is between 0.9 and 0.96 days. I aggregated

the values of Table 5.2 in Section 5.3.1 to simulate survival.
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Table 5.2: Survival probability to age 𝑡 + 1.

Age (days ) 0 1 2 3 4 5 6 7 8 9 10 11

Marshes 0.93 0.92 0.90 0.85 0.80 0.66 0.59 0.62 0.72 0.80 0.77 0.84

Borrow pits 0.94 0.92 0.90 0.87 0.83 0.77 0.69 0.63 0.60 0.61 0.61 0.65

Rabour 0.96 0.92 0.89 0.85 0.77 0.71 0.65 0.55 0.58 0.61 0.63

Chiga 0.94 0.88 0.84 0.81 0.78 0.74 0.70 0.59 0.63 0.63 0.65

Rice field 0.81 0.79 0.83 0.84 0.83 0.81 0.80 0.76 0.75 0.68 0.59

Pools & ponds 0.95 0.94 0.90 0.87 0.81 0.80 0.76 0.75 0.75 0.68 0.52

Sprayed rice field 0.95 0.94 0.91 0.90 0.88 0.73 0.80 0.78 0.77 0.80 0.76

[48]: Taberlet et al. (1999), ‘Non-invasive

genetic sampling and individual identi-

fication’

5.2 Capture-recapture on mosquito larvae

5.2.1 Experimental design

This section presents two capture-recapture (CR) protocols for mosquito

larvae. An idea for a protocol was proposed by the team working on the

research project (at the MIVEGEC research institute in France). From

this, I defined two protocols, which are detailed below, indicating their

points in common and how they differ.

On a capture occasion 𝑡, larvae are captured in a larval site and kept

for 24 hours in contaminant-DNA-free water. They are released in their

larval site immediately after the next capture occasion. By releasing a

larva at 𝑡 + 1, it cannot be captured twice consecutively. The impacts of

the manipulation on the larvae are thus limited. Thus, we can assume

that captures do not affect the survival or transition rates between states

of released individuals. An additional benefit of releasing an individual

after the next capture is that the state of the individual is known for two

consecutive occasions.

DNA is extracted from the water in which a larva has been kept and is

genotyped. The genotypes are matched to each other in order to construct

capture histories. However, obtaining DNA from a small sample of water

that contained a larva for one day is challenging. Typically, little DNA

is available, so the genotype is very likely to be incomplete. Hence,

misidentification can occur. In this case, the probability of identification

[48] is kept low enough to avoid confusing two individuals. Any sample

that could result in confusion because the identification probability is

too high is discarded. So the only possible source of error is the creation

of a new individual (a ghost). I also considered that there is no confusion

between states, as each instar is sufficiently different.

The protocol involves manipulating fragile individuals. Larvae are sam-

pled from the larval site and rinsed in DNA-free water to minimise

contamination before being put in individual tubes. This leads to the like-

lihood that some individuals will be killed accidentally. This mortality is

added to natural mortality occurring in the tubes for different reasons.

The first and second instars are smaller and more delicate than the other

instars. Consequently, there is a higher risk of accidentally causing harm

or killing them when trying to capture and handle them. Moreover, due

to their smaller size, they are likely to release less DNA. Abstaining from

capturing the first and second instars reduces the population of interest
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Capture notations

Protocol 1

• 1, 2, 3: Third instar, fourth instar,

pupa

• 4, 5: Misidentification of third and

fourth instar

• 6: History end (right censoring)

Protocol 2

• 1, 2, 3, 4: Third instar, fourth instar,

pupa, adult

• 5, 6, 7: Misidentification of third

instar, fourth instar and pupa

• 8: History end (right censoring)

(to third and fourth instars and pupae). Thus, for equivalent capture

effort (in the number of captured individuals), the capture rate will be

higher (because less individuals are available). Considering all these

points, I designed two different protocols.

For the first protocol, the pupae caught are killed and identified. The

reason is that pupae take only around two days to develop to adulthood.

Thus, if one is released, the probability of recapturing it is very low.

Furthermore, when it becomes an imago, the probability of seeing it

again is zero. Additionally, using the individuals DNA to identify pupae

ensures sufficient DNA to avoid misidentification at this stage. The

drawback of this is that there will be no information in the data-set about

the survival probability of pupae. Fourth instar developing into pupae

during the 24h of a capture are released. This is for reasons of simplicity

as it makes encoding simpler. (Captures were always over two occasions,

even for pupa, as the second occasion indicates the end of the history.)

To solve the problem of pupa survival, I designed a second protocol. In

this protocol, larval sites are covered with a net to allow the capture of

all emerging adults. Compared to the first protocol, captured pupae are

released and potentially recaptured as pupae, although this is unlikely.

However, they are recaptured as adults if they successfully develop.

The net also protects the larval site from large predators of the larvae,

which helps to compare the survival in different larval sites in relation to

conditions of interest such as salinity and water pollution. However, the

net also prevents new eggs from being laid in the site.

To code individual histories, unseen individuals are denoted as is usual

with 0s. Then we denote the capture of individuals at different stages

starting from 1 for third instar, to 4 for adults. In the latent error history,

individual misidentification is noted with numbers above the one used

for the last available stage. Thus, in the first protocol, as no adults are

captured, misidentification is noted 4 and 5 for the third and fourth instar

respectively. In the second protocol, misidentification is noted 5, 6 and 7

for the third instar, fourth instar and pupae respectively. Right censoring

occurs either because an individual is killed accidentally when handling

it or voluntarily because it is a pupa (in the first protocol) or an adult (in

the second protocol). The right censoring of a history is denoted with a 6

in the first protocol and with an 8 in the second protocol.

For the first protocol, a history is shown below for an individual first

captured in the third instar, released in the third instar after the next

occasion, then later recaptured in the fourth instar and released as a

pupa, then recaptured as a pupa and killed:

1 1 0 2 3 3 6

For the second protocol, the same history is considered for the five first

occasions. At occasion 6, the pupa is not recaptured, but it is recaptured

as an adult at occasion 7:

1 1 0 2 3 0 4 8

.
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Notation reminder
• (𝑁𝑠,𝑡 ): number of individuals first

captured at 𝑡 in state 𝑠

• y: frequencies of observed histo-

ries

• x: frequencies of latent error histo-

ries

• z: frequencies of latent capture his-

tories

• 𝝓: survival probabilities,

• 𝝍: transition probabilities,

• p: capture probabilities,

• 𝛼: identification probability

5.2.2 Modelling the capture data of the larvae

To model the data from these experiments, I consider a special case of the

𝐴𝑆𝛼 model from Section 4.3.2. The models for both protocols are very

similar. However, the 𝝍 parameter matrix takes into account transitions

up to pupa in the first protocol and up to adult in the second. In the

second protocol, the additional capture probability for the adult state is

set to 1.

The structure of the transition matrix for both protocols is:

𝝓(𝑃1) =
©«
𝜓1,1 𝜓1,2 0

0 𝜓2,2 𝜓2,3

0 0 1

ª®®¬ 𝝓(𝑃2) =
©«
𝜓1,1 𝜓1,2 0 0

0 𝜓2,2 𝜓2,3 0

0 0 𝜓3,3 𝜓3,4

ª®®¬
In a small larval site, the population can vary significantly in a day.

Thus, it is considered that the capture probability is time dependent.

Second, as it is possible to capture larvae independently of their state, it

is considered that the capture probability is not state dependent. Finally,

the identification probability is considered constant.

The formulation of the likelihood is the same as in Section 4.3.2:

[y, x, z|(𝑁𝑠,𝑡),𝝓,𝝍, p, 𝛼] = 𝐼(y = Ax) [x|z, 𝛼] [z|(𝑁𝑠,𝑡), 𝜙,𝝍, p] (5.1)

• [z|𝝓,𝝍, p]

To model the capture process, we need to take into account that a

captured individual is kept for 24h and is released just after the next

capture occasion, having a capture probability of 1 at 𝑡 + 1 conditional

on being captured at 𝑡. To implement this constraint, we first modify

Equation 4.18. Let S be the set of states a larvae may be observed in.

Let 𝑂(𝑐,𝑑)(𝑟1 , 𝑟2 , 𝑠1 , 𝑠2) be the probability that an animal in state 𝑟1 ∈ S

and 𝑟2 ∈ S at occasions 𝑐 and 𝑐 + 1 remains unobserved until it is

subsequently resighted in states 𝑠1 ∈ S and 𝑠2 ∈ S at times 𝑑 + 1 and

𝑑 + 2, for 𝐶 ≤ 𝑐 ≤ 𝑑 ≤ 𝐷 − 2

𝑂(𝑐,𝑑)(𝑟1 , 𝑟2 , 𝑠1 , 𝑠2) = 𝜓𝐼(𝑐=𝐶)
𝑟1 ,𝑟2 𝑝𝑑+1,𝑠1𝜓𝑠1 ,𝑠2𝑄(𝑐+1,𝑑)(𝑟2 , 𝑠1), (5.2)

where 𝑄(𝑐,𝑑)(𝑟2 , 𝑠1) denotes the probability that an animal changes from

state 𝑟2 at time 𝑐 to state 𝑠1 at time 𝑑+1, and is unobserved between these

times. It is the same as in Equation 4.19. The likelihood of the sighting in

history �𝑘 , 𝐿𝑘,1 takes the same form as Equation 4.20:

𝐿𝑘,1 =
∏

(𝑐,𝑑)∈CD

𝑂(𝑐,𝑑)(𝑟, 𝑠) . (5.3)

The probability that an individual last released at 𝐷 in state 𝑟 is not

resighted again, 𝜒𝑟,𝐷 , is the same as in Equation 4.21. It need not be

changed since it only concerns when larvae were unobserved.
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The likelihood of history �𝑘 is 𝜋𝑘 = 𝐿𝑘,1 · 𝜒𝑟,𝐷 and the likelihood for the

capture process is

[z|𝜙, p] =
∏

𝑠∈S
∏𝑇

𝑡=1
𝑁𝑠,𝑡 !∏

𝑘 𝑧𝑘 !

∏
𝑘

𝜋𝑧𝑘
𝑘

. (5.4)

• [𝜶 |𝜽]

Next we change the likelihood of identification. Since a capture always

consists of two observations, an identification always concerns two

capture occasions. The likelihood of the identification process is computed

with Equation 1.5, rewriting 𝐴 𝑗 = 𝛼𝑎(1− 𝛼)𝑏 , with 𝑎 the number of times

an individual with latent history �𝑗 is correctly identified and 𝑏 the

number of times they are misidentified. The identification likelihood

is:

[x|z, 𝛼] = 𝐼(z = Bx)
∏

𝑘 𝑧𝑘 !∏
𝑗 𝑥 𝑗 !

∏
𝑗

[
𝑇∏
𝑡=1

𝛼𝐽𝑡 ·𝐼(�𝑗 ,𝑡∈S)(1 − 𝛼)𝐽𝑡 ·𝐼(�𝑗 ,𝑡>𝑆)
] 𝑥 𝑗

(5.5)

where 𝐽𝑡 is the indicator that the individual was captured at occasion 𝑡

and will be released after occasion 𝑡 + 1. S is the set of states that can

be misidentified. For the first protocol, S= {1, 2}, as only the third and

fourth instar can be misidentified. For the second protocol, S= {1, 2, 3},
as only the adults cannot be misidentified.

5.2.3 Estimating parameters of the larvae models

The algorithm to estimate the parameters of the model is almost the same

as in Section 4.3.3. However, the way of indicating a different vector of

latent counts x′ is adapted to the specific capture process.

The MCMC is constructed this way:

1. Let 𝛽(𝑎𝑡
0
, 𝑏𝑡

0
) denote the beta prior on 𝑝𝑡 , 𝛽(𝑎𝛼

0
, 𝑏𝛼

0
) denote the beta

prior on 𝛼 and 𝛽(𝑎𝜙
0
, 𝑏

𝜙
0
) the beta prior on 𝜙.

2. Initialise all parameters as well as a set of latent histories satisfying

y=Ax. Such a set can be obtained by assuming that no mistakes

were made. The latent frequency of the histories containing 2s are

0, and all the others match the observed frequency one-to-one. In

order to run several chains with different initialisations, one can

take the previous initialisation of x and follow the later steps of (6)

by only adding misidentification to the set and always accepting

the proposed values without going though the Metropolis-Hasting

acceptance.

3. Sample the capture rate with Gibbs sampling. The likelihood being

multinomial, it follows that the beta priors lead to full conditional

beta posterior distribution:

𝑝𝑡 |z,𝝓,𝝍 ∼ 𝛽(𝑎𝑡
0
+ 𝑎𝑡 , 𝑏𝑡

0
+ 𝑏𝑡)
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1: To compute 𝑏𝑡 , the latent state ’dead

or alive’ of each individual must be sam-

pled. The probability that an individ-

ual last released before 𝑡 and never seen

again is still alive at 𝑡 can be computed

with the forward-backward algorithm.

2: This is also done using the forward

and backward algorithms.

3: This is also done using the forward

and backward algorithms.

4: 𝑠 is the state the ghost was observed

when captured, and 𝑟 the state it was

observed before released.

where 𝑎𝑡 is the number of individuals seen at least once before

𝑡 that were available and captured at 𝑡, and 𝑏𝑡 is the number of

individuals seen at least once before 𝑡 that were alive but unseen at

𝑡 1
. The individuals that were captured at 𝑡 − 1 are not available for

capture at 𝑡, so they do not contribute to the posterior of 𝑝𝑡 .

4. Sample the survival rate with Gibbs sampling. Again, it has a full

conditional beta posterior distribution.

𝜙 |z, p,𝝍 ∼ 𝛽(𝑎𝜙
0
+ 𝑎𝜙 , 𝑏𝜙

0
+ 𝑏𝜙)

where 𝑎𝜙 is the total number of times an individual survived from

one occasion to the next after its first sighting, and 𝑏𝜙 is the total

number of individuals seen once or more that have died before

the last occasion. After the last release of an individual, there is no

way of knowing if it survived or died, but the transition towards

one state or another can be sampled.
2

The observation of survival

before the release of captured individuals does not contribute to

this survival probability.

5. Sample the transition rates with Gibbs sampling. They have a full

conditional beta posterior distribution.

𝜓𝑠,. |z, p, 𝜙 ∼ 𝐷𝑖𝑟(a0
𝝍𝑠,. + a𝝍𝑠,. )

where a𝝍𝑠,. is the number of of times an individual transitioned

from state 𝑠 to the others. Just like for the initial states, we can’t

know what transition occurred for an unseen individual but it can

also be sampled.
3
.

6. Sample the identification rate with Gibbs sampling. Similar to the

capture rate, it has a full conditional beta posterior distribution.

𝛼 |x ∼ 𝛽(𝑎𝛼
0
+ 𝑎𝛼 , 𝑏𝛼

0
+ 𝑏𝛼)

where 𝑎𝛼 is the total number of correct identifications and 𝑏𝛼 the

total number of misidentifications.

7. Sample x. Sampling x is done the same way as in previous models.

Randomly add or remove an error from the set of latent histories.

The difference is that an individual is always seen twice in a row,

so misidentification can only come from individuals where at least

two consecutive 0s are observed. To add an error, sample a history

that may have generated a ghost (i.e. a history containing two

consecutive 0s), and ’merge’ it with a potential ghost (i.e. replace

the first 0 by 𝑠+𝑆,
4

the second 0 by 𝑟 and remove the ghost history).

To remove an error, sample a history containing a value used for

misidentification, replace it by a 0, as well as the following number

in its history, and add a history with only two consecutive captures

(coded 𝑠 and 𝑟) at that time. More formally, follow the steps:

a) Define:

• 𝝂(1,𝑠𝑟𝑡)
the history with only two captures at time 𝑡 and

𝑡 + 1 in states 𝑠 and 𝑟 (potential ghost)

• 𝜒0,𝑠𝑟𝑡(x) = {𝝂 |�𝑡 = 0, �𝑡+1 = 0, 𝑥� > 0} the set of histories

having potentially generated a ghost in state 𝑠 at time 𝑡
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Proposal density

The proposal density is calculated by

multiplying the probability of each

sampling step used for defining the

move. They are successive: the prob-

ability of adding (or removing) an

error, the probability of choosing

the states 𝑠 and 𝑟, the probability

of choosing the 𝑡, and the probabil-

ity of choosing the �0 (or �2).

and 𝑟 at time 𝑡 + 1, for the given x
• 𝜒2,𝑠𝑟𝑡(x) = {𝝂 |�𝑡 = 𝑠 + 𝑆, �𝑡+1 = 𝑟, 𝑥� > 0} the set of

histories containing a ghost at time 𝑡 in consecutive states

𝑠 and 𝑟, for the given x.

b) With a probability of 0.5, go to (i), otherwise go to (ii).

i. Add a misidentification (i.e. a ghost) to the latent set.

• Sample a state 𝑠 and a state 𝑟 that can follow the state

𝑠.

• Sample 𝑡 ∈ {𝑡 |∃𝝂 : �(𝑡 ,𝑡+1) = 0, 𝑃(�(𝑡 ,𝑡+1) = 𝑠, 𝑟) >
0, 𝑥�(1,𝑠𝑟𝑡) > 0}.

• Sample 𝝂(0) ∈ 𝜒0,𝑠𝑟𝑡(𝑥).
• Set 𝝂(2)

as 𝝂(0)
, 𝝂(2)

𝑡 = 𝑠, �(2)
𝑡+1

= 𝑟.

• Define the move 𝑏�(0) ,�(1,𝑠𝑟𝑡) ,�(2) = (−1,−1,+1), and

𝑏� = 0 for all other latent histories.

ii. Remove a misidentification from the latent set.

• Sample a state 𝑠 and a state 𝑟 that can follow the state

𝑠.

• Sample 𝑡 ∈ {𝑡 |∃𝝂 : �𝑡 = 𝑠 + 𝑆, 𝑛𝑢𝑡+1 = 𝑟, 𝑥�(1,𝑠𝑟𝑡) > 0}.
• Sample 𝝂(2) ∈ 𝜒2,𝑠𝑟𝑡(𝑥).
• Set 𝝂(0)

as 𝝂(2)
, 𝝂(0)

𝑡 = 0, 𝝂(0)
𝑡+1

= 0.

• Define the move 𝑏𝝂(0) ,𝝂(1,𝑠𝑟𝑡) ,𝝂(2) = (+1,+1,−1), and

𝑏� = 0 for all other latent histories.

c) Define x′ = x(𝑘−1) + 𝑏.

d) Calculate z′ = Bx′.
e) Calculate the proposal numbers of first capture per occasion

and state (𝑁𝑠𝑡)′.
f) Set x(𝑘) = x′ with probability 𝑚𝑖𝑛(1, 𝑟). Otherwise set x(𝑘) =

x(𝑘−1)
.

𝑟 = 𝑚𝑖𝑛

(
1,

[y, x′, z′ |(𝑁𝑠𝑡)′,𝝍𝝓′, 𝑝, 𝛼]
[y, x(𝑘−1) , z(𝑘−1) |(𝑁𝑠𝑡),𝝍,𝝓, 𝑝, 𝛼]

𝑞(x(𝑘−1) |x′)
𝑞(x′ |x(𝑘−1))

)
(5.6)

8. Repeat steps 3 to 6 as much as needed.

5.3 Simulation study

5.3.1 Simulations

• Experimental design

The study considered simulations with nine occasions. Several reasons

led to that choice. First, a larva would not be available for more than

nine days between the third instar and the pupa. Second, nine occasions

provide very good estimates with the LMM. And lastly, nine consecutive

experimental days seems reasonable. Hence, a capture history is ten

occasions long. The last occasion is different from 0 only if the individual

was captured on occasion 9.

• Population size and initial states

The focus of the study was on urbanised areas, so small larval sites were

simulated, such as those provided by abandoned tyres. The population

size was initialised randomly between 500 and 1000 individuals, and all
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[116]: Birley (1979), ‘The estimation and

simulation of variable developmental pe-

riod, with application to the mosquito

Aedes aegypti (L.)’

instars were taken into account. The resulting number of individuals

available for capture for the third instar, the fourth instar and the pupa

state was between 150 and 300. For the first protocol, the population was

maintained through hatching by randomly sampling additional individ-

uals (around one-fifth of the initial population size) at each occasion. For

the second protocol, the net that trapped the individuals prevented new

eggs from being laid. Thus, no hatching occurred. Although eggs already

present at the outset could hatch around the first and second occasion,

these were ignored.

At the beginning of the experiment, there is no way to know if a larval

site is at equilibrium. So the initial state probability was set to differ from

the equilibrium. The initial state probability was set to:

Instar 1 Instar 2 Instar 3 Instar 4 Pupa

0.4 0.3 0.15 0.1 0.05

• Capture effort

A fixed number of captures was simulated at each occasion, which is easy

to do experimentally. In addition, it helps in genotyping, as we know

approximately how many samples need to be processed at each occasion.

It also helps to plan the budget. I chose to sample 100 individuals per

occasion. I assumed that all individuals had the same probability of

being sampled on an occasion, but the probability was different between

occasions. I took into account that if the number of individuals available

is close to the targeted number, the target may be difficult to reach. Hence,

if 110 or less individuals were available for a target of 100, between 90%

and 100% of them were randomly captured .

For the first protocol, where the size of the population remains constant,

the resulting capture rate is very high for populations of around 500

individuals. After the first occasion, there are less than 100 individuals

available (in third instar or later states), while around 100 individuals are

waiting to be released from the previous occasion. So the capture rate

is above 90%. For populations with 1000 individuals, the capture rates

are still between 0.35 and 0.45. For the second protocol, no eggs can be

laid in the site, so the size of the population decreases. Thus, the capture

probability increases to the limit of 0.9–1, even with an initial population

size of 1000 individuals.

• Development time

In order to simulate transitions between instars as realistically as possible,

the time spent by a larva in an instar is drawn randomly from an

asymmetric normal distribution, as suggested by Birley (1979) [116]. I

chose for the means the values from Figure 5.2 (b) [instead of Figure 5.2

(c)] because the development time is longer for the fourth instar. The

standard deviations for the asymmetric normal distribution are those

estimated for Ae. aegypti by Birley (1979) [116], although this is not the

same species.

Figure 5.4 gives an overview of the density of the time needed to go from

the third instar to the fourth instar. The time spent in a state is defined

according to a medium temperature that remains constant throughout
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the experiment (assuming no extreme temperature has occurred). For

simplicity, all the datasets were simulated at the same temperature, 25°C.

The corresponding average transition probability (from the third instar

to the adult stage) is:

𝝍 =

©«
0.41 0.59 0 0

0 0.75 0.25 0

0 0 0.40 0.60

0 0 0 1

ª®®®®®¬

Figure 5.4: Probability density of time

spent by larvae in state 3 depending on

temperature.

• Survival

Taking the survival estimates from Table 5.2 and averaging the values

over the days corresponding to each instar, we can obtain an average

daily survival probability per instar. Additionally, I averaged them over

the various sites and studies. These values are shown in Table 5.3 and in

Figure 5.5.

Instar 1 Instar 2 Instar 3 Instar 4 Pupa

Marsh 0.93 0.85 0.62 0.73 0.84

Borrow pit 0.93 0.87 0.73 0.61 0.65

Rabour pond 0.94 0.84 0.68 0.58 0.63

Chiga pond 0.91 0.81 0.72 0.62 0.65

Rice field 0.80 0.83 0.80 0.73 0.59

Pools 0.94 0.86 0.78 0.73 0.52

Sprayed rice 0.95 0.90 0.76 0.78 0.76

Average 0.91 0.85 0.73 0.68 0.66

Table 5.3: Average daily survival proba-

bility for each instar.

• Death on capture

It is very likely that the survival probability will differ if an individual is
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Figure 5.5: Average daily probability of

survival by state. Coloured lines are the

estimates and the black dashed line the

average.

kept captive in a DNA-free water tube or if it is in its natural environment.

However, we do not know if the ’survival during capture’ will be higher

or lower than the actual survival in the larval site. Since we can assume

that accidental death may occur on capture, I chose to simulate a lower

’survival during capture’. First the population was simulated with its

deaths, and then the captures were simulated. There is an additional

0.025 probability that the individual will die in the tube.

• Number of simulations

For each protocol, 100 datasets were simulated. For each simulation,

survival and transition probability of each instar was estimated with the

LMM.

5.3.2 Results

Figure 5.6 shows estimates of larvae survival when using the first protocol

(pupae killed and identified without error). The results show that the

survival is estimated without bias for the third instar and the fourth instar.

However, as expected, the survival of the pupa is highly underestimated.

This is explained by the fact that the two events – (1) that a pupa dies and

(2) that a pupa becomes an adult – cannot be distinguished. Thus, we

can only estimate ’apparent survival’.

Figure 5.7 shows estimates of larvae survival when using the second

protocol (adults trapped, caught and identified without error). The

survival probability is estimated without bias, independently of the true

survival for all studied stages. But the uncertainty for pupae survival is

quite high, especially for the lower values of survival.

When comparing the survival estimates of the two protocols, both

estimates of third and fourth instar survival are equivalent. But only

the second protocol allows pupae survival to be estimated. For both



5 Study of mosquito larvae survival rate using capture-recapture 93

protocols, confidence intervals are smaller for the fourth instar than for

the other instars. The first protocol confidence interval increases when

survival increases, while for the second, the confidence interval decreases

when survival increases. The second protocol is more precise than the

first when true survival is around 0.7 or more: the 95% confidence

intervals are almost three-quarters smaller for the highest survival. For

the lowest survival, the difference between the confidence interval for

the two protocols is low.
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Figure 5.6: Estimates of survival for third (1) and fourth (2) instar and pupa (3), using the first protocol where pupae are killed. The

equation of the black line is 𝑦 = 𝑥.
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Figure 5.7: Estimates of survival for third (1) and fourth (2) instar and pupa (3), using the second protocol where adults are trapped and

captured. The equation of the black line is 𝑦 = 𝑥.

Figure 5.8 shows the estimates of the transition rates using both protocols.
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The first protocol leads to biased estimates of all transitions. In addition,

there are no estimates for transitions from the pupa stage. In contrast,

the second protocol leads to unbiased estimates of all transitions, up to

the adult stage.
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Figure 5.8: Estimation of transition rates for third (1) and fourth (2) instar and pupa (3), using both protocols. P1 is the first protocol

(pupae killed) and P2 the second (adult captured). The third instar is number 3, the fourth instar number 4 and pupae number 5, so Psi33

is the probability that a third instar stays in third instar until the next occasion. The horizontal lines indicate the simulated transition rate.

5.4 Discussion

This study investigated an example of a capture-recapture experiment

taking into account misidentification of individuals. This study design

could be used to study mosquito larvae survival and transitions between

stages with capture-recapture. We proposed two different field protocols.

The first protocol consists of killing the captured pupae, while the second

uses a net allowing the recapture of the adult stage of the released pupae.

While the first protocol is easier to implement, the second allows the

estimation of pupae survival. Simulations were also conducted to evaluate

both protocols and check the accuracy of the survival estimations, even

for the lowest simulated survival.

The findings show that the two evaluated protocols are bias-free for

estimating the survival of third and fourth instars. But only the second

protocol estimates pupae survival. Pupae survival is estimated with high

uncertainty in cases of low survival (0.5 < 𝜙 < 0.6). But the simulated

survival in these cases is lower than the lowest survival reported in the

literature (𝜙 ≈ 0.6). This means that actual survival is likely to be higher,

and lower uncertainty can be expected. The lower uncertainty on fourth

instar survival may be due to the low transition rate from fourth instar to

pupa, which makes the fourth instar stage longer, and as a consequence,

more represented in the population.

Only the second protocol estimates the transition rate without bias.
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Transitions are slightly biased in the first protocol. This may be due to

the non-observation of pupae to adulthood. This lack of information is

reflected in the transition estimates.

Overall, the second protocol performed better in the simulations. The

price is that a net must be installed and controlled so that adult mosquitoes

cannot escape from the study area, and that effort must be made to catch

all adults in the net before a capture. These additional efforts make the

second protocol less convenient to use. Furthermore, it is not known what

consequences the net may have on the larvae environment. It protects

the larvae from outside predators and prevents new eggs from being

laid. This is likely to increase the survival of the larvae. If the aim is to

study survival in the absolute, then testing the impact of the net is a

prerequisite to using the second protocol. However, if the objective is

to compare survival in different sites and perhaps link the difference

in survival to environmental conditions (such as pollution), then it

may not be a problem to alter survival. In fact, the effect of predators

could be controlled by the net and help to compare survival based on

environmental conditions.

This study is the first to put forward and test a CR protocol on mosquito

larvae, and could pave the way for new experiments. As it is an original

study, it was based on several hypotheses. As I explain below, some of

these are more significant and likely to affect the results, and others are

more minor.

The model I developed aimed to evaluate the effect of an environmental

covariate on survival. This requires the experiment to be deployed on a

reasonably large number of larval sites of equivalent size with different

values for the environmental covariate. In such cases, the model could

easily be extended to model the datasets from all sites together. Such a

model would allow an estimation of the effect of the covariate of interest.

If only a few sites are studied, or the effect of a covariate is too small to be

detected, the model would still give estimates of several parameters of

interest, namely the survival rate and the transition rate. Such estimates

are very important for using models such as agent-based population

models, which aim to realistically characterise the impacts of mosquito

control.

The main hypothesis, conditioning the validity of the study design, is

that the capture process does not affect true survival. I tried to meet this

assumption by letting at least 24h pass before recapturing an individual

in order to minimise the potential impact of the capture process. However,

this hypothesis was not tested. The fact that a larva has been captured

previously could lower its survival probability even after being released.

In the same way, the study design relies on the hypothesis that the

capture process does not change the speed of the immature life cycle.

This was not tested either. In addition, with the second protocol, the

larvae population size will decrease because no hatching occurs. This

may affect the survival of the remaining larvae: for example, because

competition will decrease.

In the model it was also assumed that the transition probability was

the same in the tube during a capture and in the larval site. This may

not hold because individuals in tubes have nothing to feed on, which

may delay their growth, for example. This could be easily resolved by
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modelling different transition probabilities, at the likely cost of increased

uncertainty of the estimates.

For the second protocol, it was assumed that all adults are caught with a

probability of 1 on the first occasion after emergence. If the actual capture

probability of adults is lower, then this would need to be modelled.

Estimating the capture probability of adults would require estimating

how many of them escape the net. This appears complicated and would

likely increase the uncertainty concerning pupae survival.

It was also considered that all stages had the same capture probability.

This could be the case using a strict protocol, but pupae behave differently

than larvae and are highly mobile to avoid predators: as such they are

harder to catch. If the pupae capture probability must be estimated apart

from the other stages, the uncertainty might be high, especially given

that there are few available pupae. This increased uncertainty of capture

probability would likely increase the uncertainty of pupae survival.

The model was also based on state-independent identification probability.

If more data was available, identification probability could be considered

state-dependent if there is evidence that some states lead to better data

for identification, or the model could use a covariate of quality as shown

in Section 2.2.2 and Section 4.2.5.

For the sake of simplicity, second instar larvae were not considered. They

could easily be captured, so the model would be able to estimate the

transition rate from second to third instar and second instar survival.

This could help improve to some extent the uncertainty of third instar

survival. But it would increase the population size of interest in a larval

site and so diminish the capture rate if the number of captures is kept

constant as in my simulation.

The transition time for each state of a larva was simulated independently.

Thus, a larva could take a very short time to get from an instar to the next

stage (compared to other larvae) and then a very long time to get to the

following stage. This may not be very realistic biologically, but should

not affect the validity of the simulations.

It would be valuable to test these protocols in the field, which would

improve the quality and usefulness of the LMM and allow it to be

developed. This study remains conceptual with no proof on the practical

feasibility of the experiment. However, I hope that it will help lead to

new experiments in the future for mosquitoes or for other species.
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Discussion

The original objective of this thesis was to develop a capture-recapture

model to estimate the effect of environmental covariates on the survival

of mosquito larvae. As individual misidentification of mosquito larvae

was expected, the goal was to integrate this in the model. The protocol to

obtain the data about the larvae was developed in parallel by another

team. After two years, it became clear that the protocol would not be

ready to use during the thesis as initially planned, and that no data about

larvae would be available. For that reason, the focus was shifted to the

sole question of modelling misidentification in CMR, and I proceeded

with the mosquito case to explore the potential offered by the model.

I will first discuss the extensions of the LMM that were developed (The
latent multinomial model) and some limitations of this.

I will then discuss the application of the models (Applications).

I will then discuss the implementation of the models (Code). I will

summarise what has been achieved and what is yet to be done.

Finally, the section What comes next examines the perspectives of the

results for current and future methods of planning and analysing CR data

from low-quality DNA, and more broadly in the presence of potential

misidentification, as well as possible future extensions of this model.

The latent multinomial model

The model and its extensions

The latent multinomial model (LMM) stands as a robust tool within the

field of CMR models, specifically designed to handle the complexities of

misidentification. This model takes into account the unavoidable errors

that occur when identifying individuals from low-quality eDNA. One of

the distinct advantages of employing the LMM is its ability to estimate

misidentification rates from traditional capture-recapture data (unlike

models that estimate genotyping errors such as Wright’s model). The

LMM uses all available data from CMR studies, ensuring that no poten-

tially valuable information is left unused. This is better than Yoshizaki’s

model, which discards histories with single captures. In addition, the

LMM is a highly adaptable framework, making it a good choice for a

wide range of applications beyond a specific study. Its flexibility sets it

apart from other models designed to address misidentification issues.

In the first step, I covered all the main models of a closed CMR, which

aims to estimate population size. I started by extending the LMM to

multiple states. Such a model could potentially be used for studies like

the one on great crested newts by Worthington et al. (2019) [89], where the

states correspond to ponds. In that study, the newts were identified man-

ually based on visual patterns. It was assumed that no misidentification

occurred. However, misidentification could have occurred. And in similar
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studies, the matches of photographs could be made by an algorithm, po-

tentially generating misidentification. This covers the closed-population

cases of CMR, especially since the closed population model was extended

to account for individual heterogeneity by McClintock et al. (2014) [75].

I then extended the LMM to open populations, first for a single state

with the CJS framework (𝐶𝐽𝑆𝛼 model), and then for multiple states with

the Arnason-Schwarz framework (𝐴𝑆𝛼 model). These extensions allow

the estimation both of survival and transitions between states. Ignoring

misidentification in standard models can lead to biased survival estimates

if misidentification occurs. While the CJS model estimates survival, not

recruitment, I gave guidelines to write an open population LMM that

would estimate recruitment.

I gave particular attention to the case of low recapture rates (between 0.1

and 0.2). In that situation, Yoshizaki et al. (2011) [67] and Vale et al. [77]

highlighted that the parameters of their models were unidentifiable. In the

LMM, I proposed the use of identification quality data, readily available

with genetic tags, to improve the estimates. I developed an extension of

the LMM that incorporates a measurement of identification quality as a

covariate of identification probability, using a probit model. Provided

that there are enough occasions (nine or more) and a high identification

probability (𝛼 ≥ 0.9), the model can estimate the population size without

bias, even in cases of very low capture rates (𝑝 = 0.1). And in any case,

this model performed better than the model without a covariate. This

extension can be used for any kind of data, as long as a continuous

measure of quality can be obtained about the identification process.

For example, with photographic tags, a continuous measure could be

developed that would take into account the angle of the photo and its

clarity or blurriness.

Finally, one of the key assumptions of the original LMM is that individuals

can only be captured once per occasion. This assumption was constraining.

It is unrealistic for many studies such as the ones using DNA from faeces.

To address this, I proposed allowing individuals to be spotted several

times on one occasion in the LMM.

General limitations

In addition to the specific limitations discussed in each chapter, three

general points can be added that concern this study.

First, while the simulations conducted provided valuable insights, it

is worth noting that due to the multitude of scenarios explored, the

simulations were limited to ten in many cases. There is little reason why

significantly different results would emerge with additional simulations.

But the open population scenario results showed some inconsistencies.

Bias was observed for five occasions, 𝜙 = 0.6 and 𝑝 = 0.4, but not

with 𝑝 = 0.3. For these scenarios, more simulations might improve the

results.

Second, the two extensions developed in Chapter 2 and Chapter 3

were not developed for all cases. The probit model was developed and

implemented for a single state only (closed or open population). In an

open population, the probit model was tested on some simulations, but
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not with repetitions on a complete set of scenarios. The Poisson model

was only developed in a single state for a closed population. However,

the formulation of the LMM as two independent processes, capture and

identification, would easily allow the model to be extended. Extending

the probit and Poisson models to multi-state and an open population

would greatly extend the LMM’s range of applicability.

Applications

The third limitation concerns model validation. The use of real-world

data, particularly to validate the probit model and the larval model,

would have been highly beneficial. I tried twice to obtain data to validate

the probit model, but unfortunately the data would not have been suitable

for the model. A great deal of time was spent trying to obtain this data

and analysing it to find it would not suit the needs of the project.

However, I was able to obtain a real dataset on otters to illustrate the

Poisson extension of the LMM. I also developed and compared two

protocols for collecting mosquito larvae.

Application to otters

In one application, I used the model 𝑀�,𝛼 on a dataset on the Eurasian

otter. I compared its estimates with those of the𝑀𝑡 model and Yoshizaki’s

model. The results showed that when there was evidence of misidentifi-

cation, the 𝑀�,𝛼 model provided estimates similar to Yoshizaki’s model,

but with enhanced precision.

In this thesis study, running the LMM in parallel to Yoshizaki’s model

and the model 𝑀𝑡 helped identify the years where misidentification

occurred. The consensus between the 𝑀�,𝛼 model and Yoshizaki’s model

for most years indicates that the model can be used on real data.

Application to mosquito larvae

The previous chapter describes a model developed specifically to analyse

data from a study on mosquito larvae. Although the data acquisition

protocol is still in development, I conducted a simulation study to

compare the two potential protocols and determine the advantages and

disadvantages of each. The previous chapter explains that provided

certain assumptions are valid, one of the protocols performs better, and

the survival and transition probabilities between the various instars can

be estimated without bias. This represents the first such protocol for

mosquitoes, and the simulation tests show the potential of the LMM for

studying specific situations in the wild.

The final objective of the project on mosquito larvae was to study the

effect of environmental covariates on survival. Although I developed a

model to estimate survival, I did not develop a model to analyse the effect

of environmental covariates as originally planned. Based on the larvae

extension of the LMM, I do not think this will be a difficult problem. But

as a consequence, I did not perform a sensitivity analysis on an estimate
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of the covariate effect, but simply estimated survival and observed the

uncertainty arising on simple estimates. It is unknown if the precision of

the estimates will allow the detection of a potential environmental effect

on the survival rate. These further analyses remain to be done in future

studies, when data is available.

Thus, the final step of the application of the model will be carried out

when data is collected. For simplicity, I did not consider capturing second

instars, but the final protocol may allow their capture and identification.

In that case, the model will need to be modified accordingly. The code

modifications for that should be minor and simple to implement.

Code

A major downside of the LMM is the near absence of the practical

implementation of the model. To date, the only available implementa-

tion (Vale et al. 2014 [77]) was for a single-state closed population and

was written with the Automatic Differentiation Model Builder (ADMB)

[76]. Consequently, the many studies focusing on open populations or

transitions between sites or states cannot make use of it, and modifying

this implementation is out of reach of most researchers. As a result, re-

searchers interested in using the LMM find themselves with the challenge

of writing their own implementation, which is a barrier to its widespread

use.

At the outset of my thesis project, I began by discovering the LMM

published by Link [74] and the improvements made to the sampling

algorithm by Schofield & Bonner [78, 79]. I then implemented the model

using the R language and the package NIMBLE for all the extensions

described in this thesis. This type of implementation has great potential

for specific use cases, as the R language is widely used by researchers

for CMR, and they could modify the code to fit the specific use they

have. This is an improvement over the sole implementation previously

available from Vale et al. (2014) [77].

In The Lord of the Rings, in order to destroy the ring, Frodo first has to

get to Mordor: and this step is the longest. In this thesis project, the

first step of understanding and implementing the LMM as published by

Link with the improved algorithm from Bonner & Schofield was also

the longest. Yet despite the intricacies and complexities of the model,

NIMBLE proved a flexible enough tool that even as somewhat of a novice

I could get the model to work.

Now that the model has been generalised to the basic cases, the main

limitation to its use is the absence of accessible implementation. During

this project, I developed the R/Nimble codes for running all the models

detailed in this thesis. These codes constitute a solid basis for imple-

menting a package that will allow anyone without specific knowledge in

NIMBLE code or a detailed understanding of the model to run it. In a

next step, I plan to develop such a package.
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What comes next

A new way to think about capture-recapture

This study could lead to major changes in the way we approach and

use genetic data in ecological studies. Currently, researchers often face

the problem of dealing with risky data, which leads to the exclusion of

valuable information. By extending the latent multinomial model (LMM)

to all general cases of CMR, this work paves the way for collecting and

using more data, rather than focusing only on high-quality samples.

As the cost of sequencing continues to fall, and new methods such as

genotyping-in-thousands [117] emerge, there is a growing opportunity

to explore the potential of low-quality DNA samples. This is leading

to the current transition from the use of microsatellites to SNPs in

DNA studies. The latter have many advantages, such as being in short

sequences and being bi-allelic. Although they are less informative for

identification, using larger panels compensates for this problem. In

contrast to microsatellites, the larger panel makes it much less likely to

lead to the recapture of a ’ghost’ (i.e. ghost histories with several captures).

The required hypothesis that ghosts are unique is therefore much more

robust with SNPs.

Ongoing studies could be improved by reconsidering any poor quality

data that has already been collected. Studies that are being planned

can go even further. By considering samples not yet taken into account

because of their low quality, this could broaden the range of data that

can be used. For example, studies using faecal samples usually collect

only fresh faeces. The model would allow considering the collection of

older faeces with more degraded DNA. This development may lead to

new ideas and methods for DNA collection, particularly for species that

have been challenging to study using capture-mark-recapture methods.

As this thesis has shown that a study with a low capture rate (around

0.1) is still possible using a quality covariate, studies could be developed

with an expected low recapture rate and potential misidentification.

The implications of these advances are far reaching and offer exciting

prospects for the field of population dynamics.

Future developments of the model

In his 2014 paper, McClintock identified several extensions needed for the

LMM: "to allow misidentifications to match legitimate individuals" and

"to allow for ghost histories consisting of multiple encounters". The second

implies that a ghost can be resighted: that is, several misidentifications

could lead to the same ghost. Although this thesis did not tackle these

challenges, I discuss some ideas about solving them below.

"Allowing identification errors to match legitimate individuals"

Chapter 2 mentions matching misidentifications to legitimate individuals

and discusses how to model the identification rate as a function of the

relatedness. Going a step further, I suggest the identification probability

is modelled as a function of relatedness using two components, one intra
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and one inter individual component. The intra component would use

the relatedness of a sample to the other samples in the same history. This

component would inform on the probability of matching the sample with

the individual it has been matched to. The inter component would use

the relatedness of the sample to all other samples of other individuals.

This component would inform on the probability of matching the sample

as another individual. A drawback is that the computations might be

time-consuming.

To make the MCMC efficient and limit computation time, the relatedness

could be used to propose x′ in an efficient way. Say we have a vector

of continuous data 𝑟 indicating the relatedness of a potential ghost to

all individuals. This vector could be used in a very simple way in the

algorithm by proposing a new latent set. When adding an error to the

set and after having sampled a potential ghost (�1), instead of uniformly

sampling the individual in which the ghost will be placed (the �0), it can

be sampled proportionally to its relatedness 𝑟 to the ghost. The proposal

density [X′ |X] is adapted to take it into account.

Another ’naive’ idea is for simple situations when the population is small,

and the number of possible misidentifications is low. In these cases, it

might be possible to identify all the likely sets of latent histories. With this

prior work, one would only need to move between the different identified

sets. The algorithm would be much simpler than it is currently. We would

need to sample a latent set from the identified sets. This could be done

either uniformly or proportionally to the difference in the number of

misidentifications between the current and the proposed set, to avoid

large jumps that would likely be rejected. Of course, the initial definition

of likely latent sets would be very important in this design. If some

possible latent sets are forgotten, problems may arise. If the number of

sets is not too large, maximum likelihood might be possible.

"Allowing for ghost histories to consist of multiple encounters"

In this study, the hypothesis was retained that ghosts can never be

resighted, so their histories only have one capture. Here I suggest some

ideas about how a model could be constructed that would allow for

resighting ghosts. We will suppose that only ghosts from the same

individual can be resighted. For example, an individual A with the true

capture history 11111, misidentified on occasions 2 and 3, may generate

the ghost 01100. However, two different individuals A and B, respectively

misidentified on occasions 2 and 3, cannot generate together the ghost

01100.

Say a latent history generated several ghosts identified as the same

individual. For example, the true history 101111 can be observed as

histories 10010, 00101 and 000001. Then in the latent history, the two

misidentifications are linked to indicate that they were identified together.

We can rewrite the latent histories with a superscript for each linked

misidentification. In the example, the first and second misidentifications

were linked, so we write the latent history 102
(1)

12
(1)

2
(2)

. The superscript

"(1)" indicate that the capture were identified as the same ghost, and the

"(2)" was identified as another ghost. Then we can reconstruct a matrix A
that gives y = Ax. If we consider the identification rate to be the same for
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any number of linked misidentifications, the likelihood would actually

be the same as for the 𝑀𝑡 ,𝛼 model. The algorithm proposing a new set of

latent histories would change to sample any history as a potential ghost.

However, the uniform sampling of the ghost histories would probably be

very inefficient.

Evolving marks

Yoshizaki et al. [64] highlighted another challenge that the LMM could

be faced with: evolving natural tags. This is particularly important for

studies using visual marks such as scars. When scars are used as a natural

identification marking (because no two individuals have the exact same

scars), issues can arise if new scars appear between two captures, hiding

the older scar. If the pattern changes to the point that the individual is

not recognisable, the result is that one individual history can be divided

into several histories. For example, the history 1111 could be observed

as three histories: 1000, 0110 and 0001. Yoshizaki developed a model

’EV’ (EvolVing marks) for such cases, but did not make the latent states

explicit. Similar to how Link et al. (2010) [74] developed the 𝑀𝑡 ,𝛼 model,

the latent histories in the EV model could be made explicit. Yoshizaki

gives the likelihood of the latent histories. The first time an individual

is captured, it cannot be misidentified because the marks cannot have

changed from a previous situation.

I suggest that in the latent history, each time an individual is misidentified

and a new history is created, the capture is noted with a new number.

Then the probability of latent history 1223 is 𝑝1𝑝2(1 − 𝛼)𝑝3𝛼𝑝4(1 − 𝛼).
The capture process is the same as model 𝑀𝑡 , so [z|𝑁, p] from Section

1.2.3 does not change. The identification likelihood for history 1223 is

then (1 − 𝛼)𝛼(1 − 𝛼).

Let 𝑛 𝑗 be the number of captures occurring in the history �𝑗 , and 𝑐 𝑗 the

sequence of numbers different from 0 in �𝑗 (i.e. 122 for history 10202).

The identification likelihood is:

[x|z, 𝛼] = 𝐼(z = Bx)
∏
𝑗

𝑛 𝑗∏
𝑙=2

𝛼𝐼(𝑐 𝑗 ,𝑙=𝑐 𝑗 ,𝑙−1
)(1 − 𝛼)𝐼(𝑐 𝑗 ,𝑙≠𝑐 𝑗 ,𝑙−1

).

Then, to estimate the parameters, we just need to change step 5 of

Section 1.2.4 so that it can correctly combine the histories from the same

individual.

It is likely that the longer the time between two captures of an individual,

the greater the probability that the mark has changed. Thus, the identifi-

cation probability could potentially be modelled as a function of passed

time since the last capture.

This model would be very close to the LMM developed in this thesis

project. It could easily be implemented and applied to simulations to test

its effectiveness. Moreover, many datasets should already be available

to test the model on real data. Scar patterns are widely used to study

marine mammals. In amphibians, visual implant elastomer (VIE), a visual

tag of coloured liquid injected subcutaneously, is widely used. Grant

(2008) [118] shows that these marks can be subject to changes, causing
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misidentification of the individuals by observers. Such data illustrate the

interest of the model proposed here.

Other extensions and conclusion

For studies of reproductive success, multi-event models are often used

because individuals can be spotted with uncertainty concerning their

reproductive state. To deal with this problem, multi-event models (Pradel

(2005) [119]) include uncertainty in the observed state. Using photo-

graphic tags for such a study would additionally lead to the challenge of

misidentification. Thus, extending the LMM to multi-event cases would

prove useful.

The model description would remain relatively straightforward. The

observation process of the LMM would be replaced by the observation

process outlined in Pradel (2005) [119]. It is very likely that uncertainty

in the observation process added to the misidentification process would

lower the precision of the estimate, especially if misidentification depends

on the state. Nonetheless, I think that with reasonable capture probability

values, the uncertainty could be kept at a reasonable level.

Lastly, seeing how the capture-recapture paradigm has shifted to spatial

data in recent years, there is a need for models such as the LMM that

will allow the collection of more data of lower quality by dealing with

misidentification. Augustine et al. (2020) [120] took a step in this direction

by developing a statistical framework that uses spatial proximity to

mitigate genotype uncertainty in genetic tagging studies.

To conclude, the LMM is a generalisation of standard CMR models

that uses latent histories to describe hidden processes. All extensions

developed in this thesis project are steps towards completing a ’full’

LMM-CMR framework. I hope this project has contributed to that aim.

When most imaginable cases can be modelled, the limits of research

become mainly those of technical feasibility and imagination.

And so basically, yeah.
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Synthèse

Introduction

L’identification individuelle basée sur des marques naturelles est large-

ment utilisée dans les études de capture-recapture (CR) pour estimer la

taille des populations, la survie en conditions naturelles ou bien encore

les transitions d’états géographiques ou physiologiques. On parle alors

de marquage non invasif. Les marques naturelles peuvent être constitué

d’ADN extrait de fèces, plumes ou poils par exemple. Des études utilisant

l’ADN comme marque ont été menées sur plusieurs taxa comme des ours

([50]), des lynx roux ([51, 52]), des antilopes ([53]) ou encore des éléphants

([54]). Les motifs visuels sont un autre exemple de marquage naturel.

Les motifs peuvent être des rayures naturelles ou bien des cicatrices par

exemple. Des études utilisant la reconnaissance par photo ont été menées

sur des mammifères tels que les baleines ([46]), les dauphins ([45]),

les léopards ([43]) ou encore des insectes comme les coléoptères ([44]).

Bien que l’échantillonnage non invasif permette d’étudier des espèces

en liberté sans avoir à capturer les individus, les manipuler ou même,

dans le cas d’une identification génétique, les observer. Ces méthodes

présentent certaines limites. En particulier, par rapport aux méthodes de

marquage traditionnelles. En effet le risque d’identification incorrecte

des individus est beaucoup plus élevé lorsque les marques sont basées

sur des caractéristiques naturelles ([49]). Si les erreurs d’identification

sont ignorées, les modèles standard peuvent alors surestimer largement

la taille de la population ([65]) puisque de nouveaux individus factices

vont être créés.

Au niveau de l’échantillonnage de l’ADN, plusieurs études ont proposé

des solutions pour réduire les erreurs d’identification. Ces solutions

couvrent les méthodes de terrain et l’amélioration des techniques de

laboratoire pour l’analyse génétique ([60, 68]), jusqu’aux logiciels de

pré-analyse qui aident à filtrer les données susceptibles de contenir des

erreurs ([69]). En ce qui concerne la reconnaissance des schémas visuels,

des techniques d’appariement d’images assistées par ordinateur ([47, 70])

ont été mises au point pour faciliter l’identification. De plus un logiciel

d’analyse sous R traite les données pour lesquelles des photographies

des côtés gauche et droit des individus sont disponibles sans moyen

fiable de les faire correspondre ([63]). En outre, diverses approches ont

été proposées pour prendre en compte des erreurs d’identification dans

les modèles d’estimation de la taille des populations ([67, 71, 72, 74]).

Aujourd’hui, la pratique la plus courante consiste encore à filtrer en

retirant les photographies de mauvaise qualité ou les échantillons d’ADN

mal génotypés.

Cependant, le rejet d’un pourcentage non négligeable de données de

mauvaise qualité peut avoir pour conséquence que les données conservées

sont trop peu nombreuses pour permettre une estimation fiable des

paramètres d’intérêt. Parmi les études utilisant des marques naturelles

citées ci-dessus, cinq ont rejeté entre 20 et 40% des échantillons collectés.

Dans ces cas, il aurait pu être avantageux d’autoriser un petit degré

d’incertitude dans l’identification, environ 1-5% comme le suggère [71],

en modélisant le taux d’erreur ([67, 71–74]). Si le coût de l’ajout d’un
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paramètre (le taux d’erreur) est compensé par le nombre supplémentaire

d’échantillons qui peuvent être conservés, le compromis est intéressant.

Erreurs d’identifications

Nous faisons les hypothèses suivantes sur les erreurs d’identification:

• un individu réel ne peut pas être confondu avec un autre

individu réel,

• une erreur d’identification crée un nouvel individu qui n’existe

pas réellement, un "fantôme",

• les erreurs sont toutes unique et deux erreurs ne peuvent donc

pas être reliées au même fantôme.

Exemple pour un individu vu trois occasions consécutive mais mal

identifié à la troisième :

Histoire réelle Histoires observées

111

110

001

Parmi les approches qui intègrent un processus d’erreur d’identification

dans l’analyse, deux types de modèle sont utilisés.

Le premier type de modèle intègre l’incertitude de génotypage en calcu-

lant par exemple, la probabilité que deux échantillons aient réellement le

même génotype en sachant les génotypes observés. Dans cette classe de

modèles, on trouve le modèle de Wright et al. (2009) [72] ou encore celui

de Knapp et al. (2009) [73]. Ces approches sont cependant limitées aux

identifications basées sur de l’ADN.

Le second type de modèles consiste à ajouter un paramètre de probabilité

d’identification correcte d’un événement de capture. Au sein de cette

classe de modèle, le modèle de Yoshizaki et al. (2011) [67] est le plus

simple, au prix de l’élimination de toutes les histoires contenant une

unique capture. Ainsi, toutes les histoires susceptible de résulter d’une

erreur d’identification sont retirées. Le modèle peut donc se concen-

trer sur l’estimation de la taille de population sans se soucier d’erreurs

d’identifications d’histoire avec une unique capture. Cependant, le mod-

èle ne fonctionne pas bien lorsque les recaptures sont peu nombreuses.

Un autre modèle du second type, est le modèle multinomial latent (LMM,

[74]). C’est un cadre malléable qui a particulièrement retenu l’attention

et a été développé dans plusieurs publications ([75, 78, 79]). Il estime,

dans un cadre bayésien, le taux de bonnes/mauvaises identifications

sans avoir besoin d’informations supplémentaires que la matrice des

histoires de capture. Ainsi il peut être utilisé quelque soit la façon dont

les individus sont identifiés, que ce soit à l’aide d’ADN ou de marques

visuelles. La thèse se concentre sur ce modèle.

En dépit de l’intérêt qu’il soulève et de son potentiel, le LMM présente

plusieurs limitations. Premièrement, les simulations de Vale et al. (2014)

[77] montrent que ce modèle n’est pas performant dans les scénarios de

faibles recaptures.

Deuxièmement, le LMM n’utilise pas toute l’information disponible.

En effet, si les identifications sont faites par génotypage, une mesure

de qualité du génotype observé peut être obtenue. Par exemple, le
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séquençage Illumina donne un q-score ([92]) et une méthode de mesure

de qualité est proposée par Miquel et al. (2006) [91] pour une PCR

multitube. Ainsi on peut penser que de prendre en compte une mesure de

qualité des génotypes dans le modèle pourrait améliorer les estimations.

Bien que McClintock et al. (2014) [75] étende le modèle pour incorporer

l’hétérogénéité de capture ou d’identification individuelle, son modèle

ne prend pas en compte une hétérogénéité au niveau de l’échantillon.

Troisièmement, le LMM suppose qu’on ne peut pas observer un individu

plus d’une fois par occasion. Or de nombreuses études utilisent l’ADN

extrait des fèces. Dans ce cadre expérimental, les individus peuvent

être "capturés" plusieurs fois à la même occasion. Ainsi le LMM n’est

pas adapté à ce cas de figure. Enfin, le LMM a été étendu en popula-

tion ouverte par Bonner et al. (2015) [79] mais pour un type d’erreur

d’identification différent. Dans cette étude, les individus peuvent être

confondus, contrairement à la première hypothèse que l’on fait sur

les erreurs d’identification. De plus le modèle n’a pas été étendu aux

cas multi-état pour l’étude des changements d’états géographiques ou

physiologiques.

Dans cette thèse, j’étends le LMM dans trois directions. Une première

extension permet d’intégrer une covariable de qualité d’identification. La

deuxième extension permet l’analyse de jeux de données où les individus

sont potentiellement vus plus d’une fois par occasion. Ces deux extensions

sont considérées dans le cadre d’une population fermées, comme le

modèle d’origine. Trois autres extensions permettent de considérer

plusieurs modèles en population ouverte: le modèle à un seul état sans

covariable, à un seul état avec une covariable d’identification et le modèle

en multi-état sans covariable. Ce dernier modèle sera utilisé dans le

dernier chapitre de la thèse qui propose et compare deux protocoles

de terrains pour l’étude de la survie de larves de moustiques. Nous

considérerons cette étude à travers des simulations.

Modéliser les erreurs d’identification

Le modèle multinomial latent (𝑀𝑡 ,𝛼)

Une erreur d’identification est le fait de ne pas reconnaître un individu

lorsqu’il est capturé, et d’assigner la capture à une histoire qui n’est pas

la sienne. Nous faisons les hypothèses suivantes concernant les erreurs

d’identifications:

• une erreur d’identification conduit toujours à la création d’une

histoire fantôme,

• deux individus ne peuvent pas être confondus.

• deux erreurs ne peuvent pas être liées à la même histoire fantôme,

elles créent chacune un fantôme différent.

Par exemple, si un individu a l’histoire de capture réelle 111 mais qu’une

erreur a été commise à la deuxième occasion, alors on observera les

histoires 101 et 010. Dans cet exemple, l’histoire 010 est une histoire

fantôme. Aucun individu réel ne correspond à cette histoire et il ne peut

pas y avoir d’autres captures qui seront liées à l’histoire fantôme 010.
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Pour tenir compte des erreurs d’identification, Link et al. (2010) [74] ont

développé le modèle latent multinomial (LMM). Le modèle utilise des

histoires d’erreurs latentes dans lesquelles les erreurs d’identification

sont notées par des 2. Dans l’exemple précédent, l’histoire latente est

121. Les histoires d’erreurs latentes sont notées 𝝂 𝑗 = (�𝑗 ,1 , ..., �𝑗 ,𝑇). La

fréquence de l’histoire latente �𝑗 est notée 𝑥 𝑗 , et le vecteur de toutes les

fréquences des histoires latentes d’erreurs est x = (𝑥1 , ..., 𝑥3
𝑇 ).

Pour faciliter les développements futurs du modèle, Bonner et al. (2015)

[79] ont divisé la vraisemblance en deux parties, le processus de capture

et le processus d’identification. En plus des histoires latentes d’erreurs,

ils ont introduits des histoires latentes de capture 𝝃𝑘 = (�𝑘,1 , ..., �𝑘,𝑇). La

fréquence de l’histoire de capture latente �𝑘 est notée 𝑧𝑘 , et le vecteur de

toutes les fréquences de capture latentes est z = (𝑧1 , ..., 𝑧2
𝑇 ).

Dans la suite de ce document, 𝜽1 désigne les paramètres liés au processus

de capture (ici 𝑁 et p) et 𝜽2 désigne les paramètres liés au processus

d’identification (ici 𝛼). La vraisemblance jointe des données et données

latentes est

[y, x, z|𝜽1 , 𝜽2] = 𝐼(y = Ax)[x|z, 𝜽2][z|𝜽1] (5.1)

Je décrirais chacune des composantes de cette vraisemblance dans le

modèle original. Pour décrire les extensions du modèle, je considérerais

seulement les composantes qui changent et non plus l’ensemble du

modèle .

• 𝐼(y = Ax)

𝐼(z = Bx) vaut 1 si z = Bx, et 0 sinon.

• [x|z, 𝜽2]

Ici, 𝜽2 = 𝛼. Conditionnellement aux captures qui ont été réalisées et à la

probabilité d’identification, la vraisemblance d’identification est

[x|z, 𝛼] = 𝐼(z = Bx)
∏

𝑘 𝑧𝑘 !∏
𝑗 𝑥 𝑗 !

∏
𝑗

[
𝑇∏
𝑡=1

𝛼𝐼(�𝑗 ,𝑡=1)(1 − 𝛼)𝐼(�𝑗 ,𝑡=2)

] 𝑥 𝑗
(5.2)

• [z|𝜽1]

Ici, 𝜽1 = (𝑁, p). p = (𝑝1 , ..., 𝑝𝑇 ) est le vecteur des probabilités de capture

à chaque occasion. La vraisemblance de capture est celle du modèle

classique en population fermée (𝑀𝑡) :

[z|𝑁, p] = 𝑁 !∏
𝑘 𝑧𝑘 !

∏
𝑘

𝜋𝑧𝑘
𝑘

(5.3)

avec

𝜋𝑘 =
𝑇∏
𝑡=1

[
𝑝
𝐼(�𝑘,𝑡=1)
𝑡 (1 − 𝑝𝑡)𝐼(�𝑘,𝑡=0)

]
(5.4)

Extension avec covariable de qualité d’identification
(𝑀𝑡 ,𝛼𝑛 )

Le LMM est un modèle conçu pour des études utilisant de l’ADN.

L’obtention de l’identité des individus se fait en génotypant les échantil-
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lons d’ADN. Les erreurs d’identification sont dues à la qualité imparfaite

des génotypes observés (principalement les loci manquants). La qualité de

ces génotypages n’est pas utilisée dans le LMM malgré le fait qu’elle peut

être évaluée. Utiliser une telle information pourrait permettre d’améliorer

les estimations du modèle. Nous avons donc étendu le modèle pour

prendre en compte une covariable de qualité d’identification.

Par rapport au modèle précédent, l’utilisation d’une covariable im-

plique quelques changements. Comme la probabilité d’une identification

correcte 𝛼 n’est plus constante, nous devons travailler au niveau de

l’échantillon et les fréquences y, x et z ne sont plus des statistiques

suffisantes. Nous utilisons donc les ensembles détaillés d’histoires Y, X et

Z. Nous définissons 𝛼𝑛,𝑡 comme la probabilité d’identifier correctement

l’individu 𝑛 au moment 𝑡, pour un individu capturé à ce moment-là. Si

𝑛 n’a pas été capturé au moment 𝑡, nous fixons 𝛼𝑛,𝑡 = 1. Nous notons

𝜶 = (𝛼𝑛,𝑡)𝑛∈[1,𝑁],𝑡∈[1,𝑇], le vecteur des probabilités d’identification asso-

ciées à chaque capture réalisée. Afin de modéliser 𝛼𝑛,𝑡 en fonction d’une

covariable, nous introduisons 𝜽𝛼 , l’ensemble des paramètres définissant

𝜶. Nous écrivons [𝜶 |𝜽𝛼]. Comme 𝛼 dépend de 𝑛, nous appelons ce

modèle 𝑀𝑡, 𝛼𝑛 .

la vraisemblance s’écrit alors

[Y,X,Z|𝑁, p, 𝜶, 𝜽𝛼] = 𝐼(Y|X)[X|Z, 𝜶][Z|𝑁, p][𝜶 |𝜽𝛼]. (5.5)

Nous modifions ensuite les différentes parties de la vraisemblance.

• 𝐼(Y|X)

Définissons une fonction 𝑓 telle que, pour une histoire d’erreurs latentes

�𝑗 , elle aboutisse à l’ensemble correspondant d’histoires observés (𝜔𝑖)
: 𝑓 (�𝑗) = (𝜔𝑖). Par exemple, 𝑓 ((1, 1, 2)) = {(1, 1, 0), (0, 0, 1)}. Si nous

appliquons 𝑓 à toutes les histoires latentes dans X, l’ensemble d’histoires

résultant (𝜔𝑖) doit être égal à Y, à l’exception des inversions d’index.

Ainsi, 𝐼(Y|X) vaut 1 si 𝑓 (X) = ∪𝑗 𝑓 (�𝑗) = Y et 0 sinon. Nous l’écrivons

sous la forme 𝐼(Y = 𝑓 (X)).

• [X|Z, 𝜶]

Tout d’abord, nous réécrivons la partie 𝐼(z = Bx). Comme pour 𝐼(Y|X),
définissons une fonction 𝑔 qui, pour une histoire d’erreurs latentes �𝑗 ,
aboutit à l’histoire de capture latente correspondant �𝑗 : 𝑔(�𝑗) = �𝑗 . Par

exemple, 𝑔((1, 1, 2)) = (1, 1, 1). Si nous appliquons 𝑔 à toutes les histoires

de X, l’ensemble d’histoires résultant (�𝑗) doit être égal à Z. Ainsi, 𝐼(X|Z)
vaut 1 si 𝑔(X) = ∪𝑗 𝑔(�𝑗) = Z et 0 sinon. Nous l’écrivons sous la forme

𝐼(Z = 𝑔(X)).

Chaque échantillon contribue à la vraisemblance par sa probabilité

d’identification 𝛼𝑛,𝑡 si aucune erreur n’est commise ou par son complé-

ment en cas d’erreur.

[X|Z, 𝜶] = 𝐼(X|Z)
𝑁∏
𝑛=1

𝑇∏
𝑡=1

𝛼
𝐼(�𝑛,𝑡=1)
𝑛,𝑡 (1 − 𝛼𝑛,𝑡)𝐼(�𝑛,𝑡=2)

; . (5.6)

• [Z|𝑁, p]
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La vraisemblance de capture est un produit catégorielles donnant à

chaque individu d’avoir une histoire bien définie :

[Z|𝑁, p] = 𝑁 !

𝑁∏
𝑛=1

𝑇∏
𝑡=1

𝑝
𝐼(�𝑛,𝑡=1)
𝑡 (1 − 𝑝𝑡)𝐼(�𝑛,𝑡=0) , (5.7)

• [𝜶 | 𝜽]

Pour cette partie, à l’instar de Mc clintock et. al (2014) [75], nous avons

choisi de développer un modèle probit. D’autres liens pourraient être

utilisés, d’autant plus qu’il n’y a pas de covariables manquantes. Le

modèle probit nous donne

𝛼𝑛,𝑡 = 𝝓(𝑎 · 𝜏𝑛,𝑡 + 𝑏)

où 𝝓 est la fonction de distribution cumulative normale standard. Ainsi,

𝜽 = (𝑎, 𝑏).

Pour spécifier complètement le modèle probit, nous définissons 𝑢𝑛,𝑡
comme un indicateur binaire du succès de l’identification de la capture

de l’individu 𝑛 à l’occasion 𝑡. Autrement dit, 𝑢𝑛,𝑡 = 1 si l’échantillon

𝑛, 𝑡 a donné lieu à une identification correcte de l’individu, et 0 sinon.

Nous définissons également �̃�𝑛,𝑡 , un processus latent continu de 𝑢𝑛,𝑡 .

Nous fixons �̃�𝑛,𝑡 ∼ N(𝑎𝜏𝑛,𝑡 + 𝑏, 1) et si �̃�𝑛,𝑡 < 0 alors 𝑢𝑛,𝑡 = 0, ou bien si

�̃�𝑛,𝑡 > 0 alors 𝑢𝑛,𝑡 = 1.

On note u = (𝑢𝑛,𝑡)𝑛∈[1,𝑁],𝑡∈[1,𝑇] et ũ = (�̃�𝑛,𝑡)𝑛∈[1,𝑁],𝑡∈[1,𝑇] Puisque toutes

les covariables sont connues, conditionnellement à X, tous les 𝑢𝑛,𝑡 sont

connus. La définition de �̃�𝑛,𝑡 n’est donc pas vraiment nécessaire, mais

elle permet l’échantillonnage de Gibbs de 𝑎 et 𝑏.

Extension pour capture multiple au cours d’une occasion
(𝑀�,𝛼)

Dans le cadre d’observations multiples, les histoires de capture peuvent

contenir n’importe quels nombres, indiquant combien de fois l’individu

a été capturé à chaque fois. Nous ne pouvons donc pas utiliser "2"

pour indiquer une erreur d’identification. En outre, une histoire peut

contenir plusieurs erreurs d’identification pour la même occasion. Nous

commençons donc par modifier les notations utilisées pour les erreurs

d’identification. Pour représenter les histoires d’erreurs latentes �𝑗 , nous

notons le nombre total d’observations d’un individu à chaque occasion

avec, en exposant, le nombre de ces observations qui ont donné lieu à une

erreur d’identification. Par exemple, l’histoire observée (0, 2, 0, 3, 1) peut

avoir été générée par l’histoire d’erreurs latentes (1(1) , 2, 0, 3, 3(2)). Dans

cet exemple, l’observation à la première occasion et deux observations

à la cinquième occasion ont été mal identifiées, ce qui a donné zéro

observation à l’occasion 1 et une observation à l’occasion 5. L’histoire

latente de capture �𝑘 est la même que l’histoire latente d’erreurs sans

les exposants. Dans notre exemple, l’histoire latente de capture est

(1, 2, 0, 3, 3).

Soit 𝝀 = (�1 , ...,�𝑇) l’ensemble des paramètres intervenant dans le pro-

cessus de capture, modélisé par un processus de Poisson (chaque �𝑡 étant
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le paramètre du processus de Poisson à l’occasion 𝑡). La vraisemblance

du modèle est

[y, x, z|𝑁, 𝝀, 𝛼] = 𝐼(y = Ax) [x|z, 𝛼] [z|𝑁, 𝝀] (5.8)

Nous décrivons maintenant les deux éléments qui changent par rapport

au modèle 𝑀𝑡 ,𝛼, à savoir [z|𝑁, 𝝀] et [x|z, 𝛼].

• [z|𝑁, 𝝀]

Nous modélisons le nombre réel d’observations d’un individu à une

occasion par une distribution de Poisson. La probabilité𝜋𝑘 qu’un individu

ait une histoire de capture latent donné �𝑘 est donnée par :

𝜋𝑘 =
𝑇∏
𝑡=1

𝝀
�𝑘,𝑡
𝑡

�𝑘,𝑡 !
𝑒−�𝑡 (5.9)

La vraisemblance de capture a une forme multinomiale :

[z|𝑁, 𝝀] = 𝑁 !∏
𝑘 𝑧𝑘 !

∏
𝑘

𝜋𝑧𝑘
𝑘

(5.10)

• [x|z, 𝛼]

Toutes les captures réalisées sont potentiellement sujettes à des erreurs

d’identification. Soit 𝑜 𝑗 ,𝑡 le nombre de bonnes identifications pour les

individus ayant une histoire �𝑗 à l’occasion 𝑡. Alors, connaissant le nombre

réel de captures, la probabilité qu’il ait été correctement identifié 𝑜 𝑗 ,𝑡 fois

est Binomiale. Ainsi :

[x|z, 𝛼] =
∏
𝑗

𝑇∏
𝑡=1

(
�𝑗 ,𝑡
𝑜 𝑗 ,𝑡

)
𝑜𝛼𝑗 ,𝑡(�𝑗 ,𝑡 − 𝑜 𝑗 ,𝑡)

1−𝛼
(5.11)

Population ouverte

Cette section je décrit les principaux développements en population

ouverte réalisés au cours de cette thèse. Par souci de légèreté, cette section

se contente de lister les modèles développés et implémentés, en décrivant

quelle partie du modèle change par rapport au modèle LMM. J’encourage

le lecteur à se reporter au Chapitre Chapter 4 pour plus de détails.

Le LMM a d’abord été étendu pour estimer la survie en population

ouverte avec un seul état. Pour ce modèle, la vraisemblance de capture

[z|𝜽1] est celle du modèle de Cormack-Jolly-Seber (CJS [27–29]). Nous

le notons 𝐶𝐽𝑆𝛼. Les paramètres de capture sont 𝜽1 = (p, 𝜙), où p est

le vecteur des probabilités de capture par occasion et 𝜙 est la proba-

bilité de survie supposée constante des individus d’une occasion à la

suivante. Le modèle pourrait facilement être modifié pour tenir compte

d’une éventuelle variabilité temporelle de la survie. La vraisemblance

d’identification est aussi supposée constante, comme pour le modèle

𝑀𝑡 ,𝛼.

Le modèle 𝐶𝐽𝑆𝛼 a ensuite été étendu pour tenir compte d’une covari-

able de qualité d’identification comme dans le modèle probit présenté
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précédemment. Pour ce modèle noté 𝐶𝐽𝑆𝛼𝑛 , la vraisemblance de capture

[z|�1] est celle du 𝐶𝐽𝑆 ; et la vraisemblance d’identification [x|z, �2] est

celle du modèle 𝑀𝑡 ,𝛼𝑛 .

Enfin, le LMM a été étendu au cas multi-état en population ouverte. Pour

ce modèle, les paramètres du processus d’observation sont𝜽1 = (p, 𝜙,𝜓),
où p est le vecteur des probabilités de capture par occasion, 𝜙 est la

probabilité de survie supposée constante des individus d’une occasion

à la suivante, et 𝜓est la matrice de probabilité de transition des états

aux autres. La vraisemblance de capture est celle du modèle d’Arnason-

Schwarz (AS [30, 31]). La vraisemblance d’identification est la même que

celle du modèle 𝑀𝑡𝛼.

Estimation des paramètres des modèles

L’estimation des paramètres du modèle ne peut pas être faite par maxi-

mum de vraisemblance car il faudrait sommer la vraisemblance jointe

[y, x, z|𝜽1 , 𝜽2] sur l’ensemble de x possible. Cet ensemble est trop com-

plexe pour être énuméré. Link et al. (2010) [74], et Bonner et al. (2015)

[79] montrent comment estimer les paramètres grâce à un algorithme

de Monte Carlo Markov Chain (MCMC). Dans ce MCMC, un ensemble

latent x est proposé à chaque itération et accepté ou refusé à travers une

procédure de Métropolis-Hastings (MH).

Pour chaque modèle, j’ai proposé un algorithme de MCMC tel que la

proposition de l’ensemble latent x permette d’accéder à tout ensemble

d’histoires latentes possible. Spécifiquement, pour le modèle probit inté-

grant la covariable de qualité d’identification, l’algorithme a notamment

été optimisé pour proposer des ensembles latents en fonction de la qual-

ité d’identification des histoires susceptibles d’être des erreurs. Pour le

modèle de Poisson (observations répétées), l’algorithme a été notamment

modifié de sorte de pouvoir proposer des histoires latentes où plusieurs

erreurs d’identification ont pu être faites pour un même individu à une

même occasion. Le ratio de Metropolis-Hasting a aussi dû être calculé

de manière différente pour chaque modèle.

Code

Tous les modèles présentés dans cette thèse ont été implémentés avec

le langage R, en utilisant la bibliothèque NIMBLE [80]. Le choix du

langage R permet de rendre accessible les codes développés à une très

large proportion de la communauté utilisant la CR car ce langage y est

largement maîtrisé. La bibliothèque NIMBLE permet de coder l’ensemble

des algorithmes MCMC et de compiler le code en C++ pour le rendre

rapide à exécuter.

Le développement des codes a été conséquent mais ouvre aujourd’hui une

porte d’accès au modèle qui n’existait pas jusque-là. Les codes développés

peuvent permettre à des chercheurs de faire tourner facilement les

modèles à un état et constituent une bonne base pour le développement

d’une bibliothèque dans le langage R qui permettrait une large diffusion

du LMM.



115

[77]: Vale et al. (2014), ‘Maximum likeli-

hood estimation for model 𝑀𝑡 ,𝛼 for cap-

ture–recapture data with misidentifica-

tion’

Validation des modèles par simulations

Nous avons réalisé plusieurs études à l’aide de simulations afin de tester

et comparer les différents modèles disponibles.

Réplication des résultats de Vale et al. (2014)

La première étude a répliqué les résultats de Vale et al. (2014) [77].

Dans cette étude, les auteurs montrent que le modèle 𝑀𝑡 ,𝛼 produit des

estimations très biaisées si le taux de capture est faible (𝑝 ≤ 0.1). En plus

de reproduire les résultats, j’ai ajouté des simulations avec une probabilité

d’identification plus faible que ce qui avait été testé (𝛼 = 0.8).

Population fermée, pas de capture répétées, estimation de
la taille de population

Nous avons simulées des données suivant le modèle 𝑀𝑡 ,𝛼𝑛 . Nous avons

ensuite estimé la taille des populations à partir des simulations à l’aide

des modèles suivants:

• 𝑀𝑡 : modèle classique en population fermée,

• 𝑀𝑡 ,𝛼: LMM publié par Link et al. (2010) [74],

• 𝑀𝑡 ,𝛼𝑛 : LMM avec une covariable de qualité d’identification,

• Yoshizaki: modèle proposé par Yoshizaki et al. (2011) [67].

Nous rappelons que le modèle suggéré par Yoshizaki demande à retirer

les histoires ne contenant qu’une unique capture, et donc susceptibles

d’être de faux individus.

Nous avons simulé des données pour les valeurs de paramètres suivantes:

𝑁 = 500, 𝑝 = 0.1, 0.2, 0.3, 0.4, �̄� = 0.8, 0.9, 0.95 et 𝑇 = 5, 7, 9. Les valeurs

des paramètres 𝑎 et 𝑏 du modèle probit sont calculée automatiquement

en fonction de la probabilité d’identification moyenne �̄� voulue. En tout

36 scénarios sont testés (12 scénarios avec différentes combinaisons de

probabilités de capture et d’identification pour 3 nombres d’occasions

différents).

Les résultats montrent que le modèle 𝑀𝑡 surestime toujours la taille de

la population, jusqu’à 1.5 fois (pour 𝛼 = 0.8).

Pour les scénarios avec 𝑝 ≥ 0.3, tous les autres modèles estiment très

bien la taille de la population. Le plus précis est le modèle 𝑀𝑡 ,𝛼𝑛 , les

intervalles de confiances estimés sont plus faibles et contiennent plus

souvent la vraie valeur de la population en moyenne. Le modèle de

Yoshizaki estime des intervalles de confiances plus étroits que le modèle

𝑀𝑡 ,𝛼 mais qui contiennent moins souvent la vraie valeur.

Pour les scénarios avec 𝑝 = 0.2, les trois modèles intégrant les erreurs

d’identification sont biaisées si la probabilité d’identification et le nombre

d’occasions sont faibles (𝛼 = 0.8 et𝑇 = 5). Si la probabilité d’identification

ou le nombre d’occasions est suffisamment élevé, alors ces modèles

produisent des estimations non biaisées. Le modèle 𝑀𝑡 ,𝛼𝑛 est celui qui

produit des estimations non biaisées dans le plus grand nombre de

scénarios pour 𝑝 = 0.2 (tous sauf le scénario 𝛼 = 0.8&𝑇 = 5).

Pour les scénarios où 𝑝 = 0.1, les modèles 𝑀𝑡 ,𝛼 et Yoshizaki sont toujours

biaisées. Ils sous estiment la taille de la population jusqu’à 50%. Le modèle
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𝑀𝑡 ,𝛼𝑛 estime correctement la taille de la population quand 𝛼 = 0.95. Pour

les autres scénarios, il est le modèle le moins biaisé. Lorsque 𝛼 = 0.9 et

𝑇 ≥ 7, en moyenne le modèle 𝑀𝑡 ,𝛼𝑛 surestime la taille de population

mais pas systématiquement. Et la vraie taille de population est comprise

dans l’intervalle de confiance pour plus de 90% des simulations.

Population fermée, capture répétées, estimation de la taille
de population

Nous avons simulé des données selon le modèle𝑀�,𝛼 . Nous avons ensuite

utilisé les trois modèles suivants pour estimer la taille de population:

• 𝑀𝑡 : Modèle classique en population fermée,

• 𝑀�,𝛼: LMM intégrant les captures multiples au cours d’une occa-

sion,

• Yoshizaki: modèle proposé par Yoshizaki et al. (2011) [67].

Les scénarios simulés sont les mêmes que dans la section précédente.

Les � simulés sont ceux qui permettent d’observer au moins une fois

un pourcentage de la population proche du taux de capture voulu.

Pour simuler une probabilité de capture 𝑝 = 0.4, j’ai choisi un � qui

conduira 40% de la population à être observé au moins une fois ainsi

� = 0.11, 0.23, 0.36, 0.51.

Les résultats montrent que le modèle 𝑀𝑡 surestime la taille de la popula-

tion plus encore que lorsque les individus ne peuvent être vus qu’une

seule fois et jusqu’à 2 fois la taille réelle de la population.

Pour les deux autres modèles, dans les scénarios où � ≥ 0.23 (correspon-

dant à 𝑝 ≥ 0.2), un faible biais est observé quand 𝑇 = 5. Lorsque 𝑇 ≥ 7,

l’estimation de taille de population n’est pas biaisée.

Enfin, quand� = 0.11 (correspond à 𝑝 = 0.1), la taille de la population est

systématiquement sous-estimée (jusqu’à être sous-estimée de moitié).

Population fermée, estimation des transitions

Une étude en multi-état et population fermée a porté sur l’impact des er-

reurs d’identification sur l’estimation des probabilités de transition d’un

état à un autre. Nous avons montré que si la probabilité d’identification

ne dépend ni de l’état ni de l’occasion de capture, alors un modèle

classique estime les probabilités de transitions sans biais. Si la proba-

bilité d’identification dépend de l’état ou de l’occasion de capture, les

estimations du modèle classique sont biaisées, et à plus forte raison si la

probabilité d’identification dépend à la fois du stade et de l’occasion de

capture. Dans chaque situation, le LMM permet d’estimer correctement

les probabilités de transition.

Population ouverte, estimation de la survie

Une autre courte étude a porté sur l’estimation de la probabilité de

survie par le modèle 𝐶𝐽𝑆𝛼, ainsi que l’importance de ne pas ignorer

les erreurs d’identification. Nous avons montré que le 𝐶𝐽𝑆 classique

sous-estime la survie en présence d’erreurs d’identification et qu’une
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survie relativement faible (𝜙 = 0.6) peut être estimée correctement par le

modèle 𝐶𝐽𝑆𝛼 , même avec une probabilité de capture de seulement 0.3.

Étude de la taille de la population de la loutre
européenne

Nous avons appliqué les modèles 𝑀𝑡 , 𝑀�,𝛼, et le modèle de Yoshizaki à

un jeu de données d’une étude sur la loutre européenne (Lutra lutra). La

collecte des données a consisté à recueillir des fèces de loutre (épreintes)

sur cinq jours consécutifs (𝑇 = 5) lors de 6 années, de 2006 à 2012 (à

l’exception de 2009).

Les auteurs ont estimé qu’il était peu probable que la PCR répétée

puisse éliminer complètement toutes les erreurs de génotypage en raison

des taux d’erreur de génotypage et de loci non-observés relativement

élevés. Ils ont utilisé le modèle d’erreur d’identification proposé par [71]

(ci-après modèle L&B), mis en œuvre dans le programme MARK [95].

Cependant le modèle L&B ne prend pas correctement en compte les

erreurs d’identification car il ignore la dépendance complète entre la

paire d’histoires créées chaque fois qu’un génotype est incorrectement

identifié.

L’utilisation des 3 modèles (𝑀𝑡 ,𝑀�,𝛼 et celui de Yoshizaki), révèle que les

jeux de données de 4 années sur 6 contenaient des erreurs d’identification.

Pour ces années-là, le modèle 𝑀�,𝛼 et celui de Yoshizaki donnent les

mêmes estimations de taille de population. Mais l’écart-type estimé de la

taille de la population par le modèle 𝑀�,𝛼 est plus faible que celui estimé

par le modèle de Yoshizaki. Pour les deux autres années, le modèle 𝑀𝑡

et celui de Yoshizaki donnent les mêmes estimations. Le modèle 𝑀�,𝛼

donne une estimation plus faible de la taille de population comparée aux

autres modèles.

Étude de deux protocoles pour l’estimation de la
survie des larves de moustique

Les moustiques transmettent certaines des plus importantes maladies

infectieuses de l’homme. Le paludisme, la filariose bancroftienne et les

virus tels que la dengue, le chikungunya, le Zika ou la fièvre jaune

continuent de poser des défis majeurs à la santé publique. Ces défis sont

encore aggravés par les changements globaux de l’environnement et de

la société, qui favorisent l’émergence et la résurgence de ces maladies

dans le monde entier.

Ce n’est qu’en étudiant la manière dont les transformations globales

influencent les traits de leur histoire de vie que nous pourrons anticiper

plus précisément les conséquences épidémiologiques de l’expansion de

la niche des moustiques vecteurs et limiter la prolifération des maladies

qu’ils transmettent.

Afin d’étudier en particulier la survie des larves de moustiques dans des

environnements urbains, une équipe de l’UMR MIVEGEC a pensé une

expérience de terrain pour le suivi individuel des larves de moustiques.
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Figure 5.1: Cycle biologique de

l’Anophele (Boussès Ph.). Les larves

passent par 4 stades larvaires et un stade

de nymphe avant de devenir adulte.

Un organisme comme le moustique ne peut faire l’objet d’un marquage

traditionnel de part sa petite taille. Le cycle de vie du moustique est

montré sur la Figure 5.1. L’idée du protocole est de capturer des larves de

moustique et de les isoler dans de l’eau sans contaminant ADN. Ensuite,

les larves sont relâchées, l’ADN est extrait de l’eau et les larves sont

identifiées individuellement sur la base de cet ADN. La quantité et la

qualité de l’ADN ainsi extrait étant faible, des erreurs d’identification

sont donc à prévoir.

Sur la base de l’idée qu’ils ont développée, j’ai proposé deux protocoles

de terrain distincts.

1) Le premier consiste à capturer les larves aux stades 3 et 4 ainsi que les

nymphes. Les nymphes sont tuées car la probabilité de les ré-attraper si

elles sont relâchées est très faible. On suppose qu’on ne fait pas d’erreur

d’identification du stade nymphe car l’on dispose de beaucoup d’ADN

pour identifier individuellement les nymphes. Par contre on ne pourra

pas estimer la survie des nymphes puisqu’elles sont tués.

2) Le second protocole consiste à poser un filet au dessus du gîte larvaire.

Ainsi on capture tous les adultes (avec une probabilité supposée de 1) en

plus des larves aux stades 3-4 et des nymphes. Ce protocole permet de

relâcher les nymphes et d’estimer leur survie.

J’ai simulé 100 jeux de données selon chaque protocole. La taille des

populations simulées varient aléatoirement entre 500 et 1000 larves

tous stades confondus (du stade 1 à la nymphe), afin de correspondre

à de petits gîtes larvaires tels qu’un pneu abandonné. La probabilité

d’identification simulée est de 0.9 et 100 individus sont capturés à chaque

occasion. Les valeurs de survie et de transition utilisées sont empruntées

à la littérature afin que les simulations soient le plus proche possible de

la réalité.

L’ensemble des simulations a été analysé avec une version multi-état

du LMM tenant compte des spécificités des protocoles. Les résultats

montrent que la survie des larves aux stades 3 et 4 est estimée sans

biais pour les deux protocoles. En revanche contrairement au premier

protocole, la survie des nymphes est aussi estimée assez précisément pour

le second protocole. Le second protocole permet d’estimer correctement

toutes les probabilités de transition d’un stade à un autre du stade 3 à

l’adulte. En comparaison, le premier protocole ne permet pas l’estimation
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des probabilités de transition de la nymphe à l’adulte et les estimations

de transitions qu’il fait sont biaisées.

Cette étude, même si elle ne se base que sur des simulations, est une

première tentative pour définir un protocole de CR sur des larves de

moustiques. A l’aide de cette étude, je montre que le LMM peut être utilisé

pour des situations complexes qui ne pourraient pas être étudiées sans

modéliser les probabilités d’identification. D’autres espèces pourraient

ainsi être étudiées à l’aide d’un protocole précis, évalué par simulation

et d’une des extensions du LMM.

Conclusion

Dans cette thèse, j’ai abordé de nombreux modèles de CR en présence

d’erreurs d’identifications individuelles, allant jusqu’à définir un LMM

multi-état en population ouverte.

En premier, j’ai développé des modèles visant à estimer la taille de la

population en population fermé. J’ai commencé par étendre le LMM en

population fermé à plusieurs états. Puis j’ai étendu le modèle LMM pour

prendre en compte une covariable de qualité d’identification. Ce modèle

permet notamment d’améliorer les estimations et d’estimer les paramètres

dans des cas de probabilité de capture faible. Ensuite j’ai étendu le LMM

au cas où les individus peuvent êtres capturés plusieurs fois au cours

d’une même occasion. Ce modèle offre de nouvelles perspectives dans la

mesure où de nombreuses études obtiennent les données en prélevant

des fèces. Ces études prélèvent de l’ADN de faible qualité avec plusieurs

échantillons d’un même individu.

Ensuite j’ai étendu le LMM aux populations ouvertes pour estimer la

survie des individus. En particulier, j’ai développé le modèle à un seul état,

avec ou sans covariable de qualité d’identification. Puis j’ai développé le

modèle en multi-état, ouvrant la possibilité d’estimer des probabilités de

transition entre états conditionnellement à la survie.

Enfin, j’ai décris comment de la CR pourrait être réalisée sur des larves

de moustique. Pour cela je propose deux protocoles de terrain différents

et je les compare à l’aide de simulations. Je montre, d’abord, que la survie

peut être estimée correctement. Ensuite, je montre qu’un protocole est

meilleur que l’autre, mais un peu plus contraignant.

Le LMM est une généralisation des modèles CR classiques qui utilise

des histoires latentes pour décrire les processus cachés. Toutes les exten-

sions développées dans cette thèse et proposées ici sont des étapes vers

l’exhaustivité du cadre de la CR. Lorsque la plupart des cas imaginables

sont modélisés, les limites de la recherche sont repoussées vers les limites

de la faisabilité technique et de l’imagination. J’espère que ce travail aura

contribué à cet objectif.
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A
Metropolis-Hastings ratio simplification

]

The ratio 𝑟1 given in Section 1.2.4 is

𝑟1 = 𝑚𝑖𝑛

(
1,

[y, x′, z′ |𝑁′, 𝑝, 𝛼]
[y, x(𝑘−1) , z(𝑘−1) |𝑁, 𝑝, 𝛼]

𝑞(x(𝑘−1) |x′)
𝑞(x′ |x(𝑘−1))

)
(A.1)

The first fraction of Equation A.1 can be simplified in as the product of

two fractions:

[x′ |z′, 𝛼]
[x(𝑘−1) |z(𝑘−1) , 𝛼]
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(A.2)

The only difference in the nominators and denominators are: the values

of 𝑥 𝑗 and 𝑥′
𝑗
for the histories �𝑗 whose counts have been changed (by the

proposal algorithm), and the population size 𝑁 and 𝑁′
.

And since we only add or remove one misidentification at the time, the

difference between 𝑥 𝑗 and 𝑥′
𝑗
, and between 𝑁 and 𝑁′

is always 1 (or -1).

When we add a misidentification, we remove 1 from 𝑥 𝑗 for the histories

�0 and �1 that were sampled, and we add 1 to 𝑥 𝑗 for the defined history

�2 (see Section 1.2.4). Thus,

[x′ |z′, 𝛼]
[x(𝑘−1) |z(𝑘−1) , 𝛼]

[z′ |𝑁′, p]
[z(𝑘−1) |𝑁, p]

=
𝑥�0
𝑥�1

∏𝑇
𝑡=1

𝐴�2 ,𝑡

𝑥′�2

∏𝑇
𝑡=1

(𝐴�0 ,𝑡𝐴�1 ,𝑡)
𝜋�2

𝑁𝜋�0
𝜋�1

=
𝑥�0
𝑥�1

(1 − 𝛼)
𝑥′�2

𝛼
1

𝑁
∏𝑇

𝑡=1
𝑝𝑡

(A.3)

When we remove a misidentification, we can show that .



A Metropolis-Hastings ratio simplification 122

[x′ |z′, 𝛼]
[x(𝑘−1) |z(𝑘−1) , 𝛼]

[z′ |𝑁′, p]
[z(𝑘−1) |𝑁, p]

=
𝑥�2

𝛼

𝑥′�0

𝑥′�1

(1 − 𝛼)𝑁
′
𝑇∏
𝑡=1

𝑝𝑡

(A.4)



Notation reminder
• 𝑝𝑠,𝑡 : probaility of observing an in-

dividual in state 𝑠 at occasion 𝑡

(in the manuscript we kept 𝑝 state

independant),

• 𝛿𝑠 : probability that an individual

is in state 𝑠 at occasion 1,

• 𝜓𝑟,𝑠 : probability that an individ-

ual transition from state 𝑠 to state

𝑟 between two occasions.x.

B
Forward-backward algorithm

B.1 The forward-backward algorithm

The forward-backward algorithm is an algorithm used to compute

posterior marginal probabilities of hidden states. I present the algorithm

to compute the probability that an individual was in a state 𝑠 given it’s

history, in a closed population experiment.

Say that an individual can be in 𝑆 different states, and during the

experiment it was in states z = (𝑧1 , ..., 𝑧𝑇) ∈ {1, ..., 𝑆}𝑇 . This individual

had the latent capture history 𝝎 = (𝜔1 , ..., 𝜔𝑇).

We want to compute the probabilities 𝑃(𝑧𝑡 = 𝑠 |�,𝝎) for 𝑡 = 1, ..., 𝑇 and

𝑠 = 1, ..., 𝑆. The algorithm proceeds as follows.

1) First, the "forward probabilities" are computed. For each occasion

𝑡 = 1, ..., 𝑇, it is the probability 𝑃(𝑧𝑡 = 𝑠,𝝎1,...,𝑡) = 𝛼𝑡(𝑠) that the

individual was in state 𝑠 at 𝑡 and that the history 𝝎1,...,𝑡 was observed.{
𝛼1(𝑠) = 𝛿𝑠𝑝1,𝑠

𝛼𝑡(𝑠) =
∑𝑆
𝑟=1

[
𝛼𝑡−1(𝑟)𝜓𝑟,𝑠𝑝𝐼(𝜔𝑡=𝑟)𝑟,𝑡 (1 − 𝑝𝑟,𝑡)𝐼(𝜔𝑡=0)

0
𝐼(𝜔𝑡∉{0,𝑟})

]
∀𝑡 = 2, ..., 𝑇

2) Second, the "backward probabilities" are computed. For each occasion

𝑡 = 1, ..., 𝑇 − 1, it is the probability 𝑃(𝝎𝑡+1,...,𝑇) = 𝛽𝑡(𝑠) that the history

𝝎𝑡+1,...,𝑇 was observed, knowing that the individual was in state 𝑠 at

occasion 𝑡.{
𝛽𝑇(𝑟) = 1

𝛽𝑡(𝑟) =
∑𝑆
𝑠=1

[
𝜓𝑟,𝑠𝑝

𝐼(𝜔𝑡=𝑠)
𝑠,𝑡 (1 − 𝑝𝑠,𝑡)𝐼(𝜔𝑡=0)

0
𝐼(𝜔𝑡∉{0,𝑠})𝛽𝑡+1

]
∀𝑡 = 1, ..., 𝑇 − 1

3) Lastly, the forward and backward probabilities are multiplied to give

the marginal posterior probabilities.

𝑃(𝑧𝑡 = 𝑠 |�,𝝎) = 𝛼𝑡(𝑠)𝛽𝑡(𝑠)

In open population, an additional state "dead" must be considered and

the probability that the individual survived or transitioned from state

"alive" to "dead" must be added.

B.2 Probabilities of transition

The posterior probability that an individual transitioned from state 𝑟

at time 𝑡 to state 𝑠 at time 𝑡 + 1 can be calculated using the forward
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probabilities 𝛼𝑡(𝑟) and the backward probabilities 𝛽𝑡(𝑠).

Let 𝜏𝑡 be the realised transition between occasions 𝑡 and 𝑡 + 1.

𝑃(𝜏𝑡 = (𝑟, 𝑠)|𝝎, �) = 𝛼𝑡(𝑟)𝜓𝑟, 𝑠𝑝𝐼(𝜔𝑡=𝑠)𝑠,𝑡+1
(1−𝑝𝑠,𝑡+1)𝐼(𝜔𝑡=0)

0
𝐼(𝜔𝑡∉{0,𝑠})𝛽𝑡+1(𝑠)



C
Single state models confidence interval

T 𝑝 𝑀𝑡 Yoshizaki 𝑀𝑡 ,𝛼 𝑀𝑡 ,𝛼𝑛

5 0.1 62 61 15 90

5 0.2 16 92.3 82 93.3

5 0.3 2.33 90.7 92 96

5 0.4 0 93 97 94.7

7 0.1 38 67 26 92.3

7 0.2 0.667 90.7 86.3 93

7 0.3 0 90 92.3 94.7

7 0.4 0 76.7 89.3 93

9 0.1 15.3 71.3 41.7 92.3

9 0.2 0 89.3 88.7 94.7

9 0.3 0 90 96 96.7

9 0.4 0 77.3 94.3 94.3

Table C.1: Percent of simulations for

which the various models’ 95% confi-

dence interval contain the true popula-

tion size.



D
NIMBLE code for Yoshizaki’s model

• Nimble code:

yoshiCode <- nimbleCode({

# priors

for(t in 1:S){

capture[t] ~ dbeta(1.0, 1.0)

}

tau[S+1] <- prod(1 - capture[1:S])

for(t in 1:S) tau[t] <- capture[t] * prod(1 - capture[1:S]) / (1-capture[t])

tauStar <- 1 - sum(tau[1:(S+1)])

N <- sum(x[1:nbLatentObs]) / tauStar

# Likelihood, x

x[1:nbLatentObs] ~ dYoshi(capture[1:S], tauStar,

latentObservation[1:nbLatentObs, 1:S],

latentIndex[1:nbLatentObs], S)

})
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• Nimble Distribution:

dYoshi <- nimbleFunction(

run = function(x = double(1),

capture = double(1),

tauStar = double(0),

latentObservation = double(2),

latentIndex = double(1),

S = double(0),

log = integer(0, default = 1)

) {

logProbData <- lfactorial(sum(x))

indexs <- which(x > 0)

for(i in 1:length(indexs)){

I <- indexs[i]

hist <- latentObservation[I,]

logProbData <- logProbData - lfactorial(x[I])

probHist <- 1

for(t in 1:S){

if(hist[t] == 0)

probHist <- probHist * (1-capture[t])

else if(hist[t] == 1)

probHist <- probHist * capture[t]

}

logProbData <- logProbData + x[I] * log(probHist / tauStar)

}

if(log) return(logProbData)

return(exp(logProbData))

returnType(double(0))

})
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Notations

Parameters

𝑁 Population size

𝑁𝑡 Number of individual first captured at occasion 𝑡 (open population models)

𝑁𝑠,𝑡 Number of individual first captured at occasion 𝑡 in state 𝑠 (open population models)

𝑝𝑡 Capture probability at occasion 𝑡

�𝑡 Expected number of observations of an individual at occasion 𝑡 in the Poisson model

𝛼 identification probability

𝛼𝑛,𝑡 identification probability of individual 𝑛 at occasion 𝑡

�𝛼 = (𝑎, 𝑏) regression parameters of the probit model

𝜙 survival probability of individual 𝑛 at occasion 𝑡

𝝍 matrix of transition probabilities

𝜓𝑟,𝑠 transition probability from state 𝑟 to state 𝑠

𝜹 vector of initial state probabilities

𝛿𝑠 probability that an individual is in state 𝑠 at the beginning of the experiment

Data and latent variables

𝜔𝑖 Observed history 𝑖

�𝑗 Latent error history 𝑗 (in which misidentification are noted down)

�𝑘 Latent capture history 𝑘 (true capture history)

Y set of observed histories

X set of latent error histories

Z set of latent capture histories

𝑦𝑖 number of observed history 𝑖

𝑥 𝑗 number of latent error history 𝑗

𝑧𝑘 number of latent capture history 𝑘

y = (𝑦1 , ..., 𝑦2
𝑇−1) vector of counts of observed histories

x = (𝑥1 , ..., 𝑥3
𝑇 )) vector of counts of latent error histories

z = (𝑧1 , ..., 𝑧2
𝑇 )) vector of counts of latent capture histories

𝑜 𝑗 ,𝑡 number of correct identifications in history 𝑗 at occasion 𝑡

(for the repeated observation model, in Chapter 3)

Computed values

𝜋𝑘 probability of history 𝑘

𝜒𝑡 probability that an individual, alive at 𝑡, is not seen again after

𝑄(𝑐,𝑑)(𝑟, 𝑠) probability that an animal changes from state 𝑟 at time 𝑐 to state 𝑠 at time 𝑑,

and is unobserved between these times

𝑂(𝑐,𝑑)(𝑟, 𝑠) probability that an animal in state 𝑟 at time 𝑐 remains unobserved until it is

subsequently resighted in state 𝑠 at time 𝑑 + 1

𝑂(𝑐,𝑑)(𝑟1 , 𝑟2 , 𝑠1 , 𝑠2) probability that an animal in state 𝑟1 and 𝑟2 at times 𝑐 and 𝑐 + 1 remains

unobserved until it is subsequently resighted in state 𝑠1 and 𝑠2 at times 𝑑 + 1 and 𝑑 + 2



Models

𝑀𝑡 Classical closed population model (no misidentifications)

𝑀𝑡 ,𝛼 Closed population model with misidentification (constant across individual)

𝑀𝑡 ,𝛼𝑛 Closed population model with identification covariates

𝑀�,𝛼 Closed population model with multiple recapture and misidentification

𝐶𝐽𝑆 Cormack-Jolly-Seber (CJS) model (no misidentifications)

𝐶𝐽𝑆𝛼 CJS model with misidentifications

𝐶𝐽𝑆𝛼𝑛 CJS model with identifications covariates

𝐴𝑆 Arnason-Schwartz (AS), open population multi-state model (no misidentifications)

𝐴𝑆𝛼 AS model with misidentifications
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