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Abstract

The rising complexity of Artificial Intelligence (AI) applications significantly increases
demand for computing power to execute and train Machine Learning (ML) models,
thus boosting the energy consumption of data centers. In response to this demand,
Graphics Processing Units (GPUs) have been enhanced by application-specific hard-
ware developments. For example, NVIDIA (the GPU market leader) added tensor
cores to its GPUs in 2017, aiming to accelerate matrix multiplications, which are ubiq-
uitous operations in ML models. As a result, the GPU architecture has become the
default when it comes to training and running these ML models.

Building efficient ML computing systems relies on a deep understanding of the lim-
its of the existing tightly-coupled hardware/software paradigm. Hence, hardware and
software developers rely on profiling tools. These tools can help evaluate the perfor-
mance of such systems by gathering metrics during the application execution and ex-
posing useful insights to the developer, guiding the optimization decisions. However,
the high abstraction of ML frameworks and the closed-source design of state-of-the-art
GPU architectures obscure the execution process and/or limit the analysis scope that
profiling tools can target. This makes performance evaluation tedious as developers
often use these ML frameworks as black boxes and make decisions on profiling reports
that can be misleading, ultimately missing important bottlenecks.

The main goal of this thesis is to help bridge the existing knowledge gap on the run-
time execution of GPU-accelerated ML workloads and provide new profiling method-
ologies to evaluate performance and energy bottlenecks of such systems. Existing pro-
filing solutions are limited in three ways. First, ML frameworks are designed to assist
the development of ML models but are often used as a black box by the developers.
In addition, the profiling tools that the frameworks provide do not give insights into
the inner mechanisms composing the ML framework and decisions they take during
runtime execution. Second, while these profiling tools provide high-level metrics (i.e.,
application-related metrics) on the GPU device execution (e.g., execution time, mem-
ory utilization), these metrics can be misleading and overestimate the utilization of the
GPU resources. Lower-level profiling tools provide access to hardware performance
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counters, providing architecture-related metrics (e.g., counting hardware events such
as instructions issued, cache hits/misses), and insights on how to optimize GPU ker-
nels. However, these tools cannot capture the efficiency of host/device interactions
occurring at a higher level. Due to these inherent limitations of scope of both types of
tools, the developer has to develop an expertise in using both profiling tools to find
meaningful insights. Finally, when evaluating energy bottlenecks, the mentioned pro-
filing tools cannot provide a detailed breakdown of the energy consumed by modern
GPUs during ML training. To tackle these shortcomings, this thesis makes three key
contributions organized as a top-down analysis of GPU-accelerated ML workloads.

First, we analyze ML frameworks’ runtime execution on a CPU-GPU tandem. We
propose a new profiling methodology that leverages data from an ML framework’s
profiler. We use this methodology to provide new insights into the runtime execution
of inference, for three ML models. Our results show that GPU kernels’ execution must
be long enough to hide the runtime overhead of the ML framework, increasing GPU
utilization. However, this strive for longer kernel execution leads to the use of bigger
batches of data, seemingly pushing the need for more GPU memory.

Second, we analyze the utilization of GPU resources when performing ML train-
ing. We propose a new profiling methodology combining the use of multiple profilers
to provide new insights into the utilization of the GPU’s inner components. Our ex-
periments, on two modern GPUs, suggest that bigger GPU memory helps enhance
throughput and GPU utilization. However, our results also suggest that a plateau has
been reached, eliminating the push for bigger batches. Furthermore, we observe that
the fastest GPU cores (tensor cores) are idle most of the time, and the tested workloads
are now limited by kernels that do not use these cores. Thus, our results suggest that
the current GPU paradigm is reaching a saturation point.

Finally, we analyze the energy consumption of GPUs during ML training. We pro-
pose an energy model and calibration methodology that uses microbenchmarks to pro-
vide a breakdown of the GPU energy consumption. We implement and validate this
approach with a modern NVIDIA GPU. Our results suggest that data movement is
responsible for most of the energy consumption (up to 84% of the dynamic energy
consumption of the GPU). This further motivates the push for newer architectures, op-
timizing memory accesses (e.g., processing in/near memory, vectorized architectures).

This thesis provides a comprehensive analysis of the performance and energy bot-
tlenecks of GPU-accelerated ML workloads. We believe our contributions uncover
some of the limitations of current GPU architectures and motivate the need for more
advanced profiling techniques to design more efficient ML accelerators. We hope that
our work will inspire future research in this direction.



Résumé de la thèse

L’augmentation en complexité des applications d’Intelligence Artificielle (IA) entraîne
une demande accrue en puissance de calcul et en énergie pour entraîner et exécuter
des modèles d’apprentissage automatique (ML). Pour répondre à cette demande, les
processeurs graphiques (GPUs) ont reçu des amélioration matérielles visant spécifi-
quement les applications d’IA. Par exemple, NVIDIA (le leader du marché) a ajouté à
ses GPUs des cœurs dédiés à accélérer les multiplications de matrices, qui sont domi-
nantes dans la construction des modèles ML. En conséquence, les GPUs sont devenus
l’architecture de prédilection pour cette catégorie d’applications.

Concevoir des systèmes plus efficients pour l’IA n’est possible qu’avec une connais-
sance approfondie des limites des systèmes existants, où matériel et logiciel sont étroi-
tement couplés. Ainsi, développer ces systèmes repose sur l’utilisation d’outils de ca-
ractérisation qui peuvent assister à l’évaluation de performance. Ces outils mesurent
d’importantes métriques durant l’exécution de l’application dans le but de présenter
des rapports aux développeurs, guidant leurs décisions pour optimiser le système.
Mais l’abstraction des plateformes d’IA et la nature fermée des architectures GPU mo-
dernes masquent le processus d’exécution et/ou limitent les capacités d’analyse des
outils de caractérisation. Cela rend les performances du système difficiles à évaluer
car les développeurs utilisent souvent ces plateformes d’IA comme des boites noires
et prennent des décisions basées sur des rapports d’analyses qui peuvent induire en
erreur sur les réels facteurs limitants.

L’objectif de cette thèse est caractériser les facteurs limitant la performance et aug-
mentant la consommation énergétique des tâches d’IA exécutées avec des GPUs mo-
dernes. Cette thèse adresse trois limitations majeures des outils existants. Première-
ment, les outils de caractérisation proposés par les plateformes de développement d’IA
sont conçus pour aider les développeurs de modèles ML, mais ne donnent pas d’in-
formations sur la charge additionnelle que représente l’exécution de ces plateformes.
Deuxièmement, les outils de caractérisation proposés par les fabricants de GPUs per-
mettent l’accès à des compteurs de performance, mais qui ne permettent pas d’estimer
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l’efficacité des interactions entre le GPU et l’unité centrale (CPU). Enfin, pour caracté-
riser la consommation énergétique des GPUs lors de l’entraînement d’IA, ces outils ne
permettent pas d’obtenir une décomposition détaillée. Pour adresser ces limitations,
cette thèse propose trois contributions.

Premièrement, nous analysons l’exécution des plateformes d’IA sur un couple CPU-
GPU. Nous proposons une nouvelle méthodologie de caractérisation réutilisant les
données fournies par des outils existants. Cette méthodologie permet d’extraire de
nouvelles informations quant à l’exécution de modèles d’IA. Nous étudions l’exécu-
tion de trois modèles d’IA et nos résultats montrent que l’exécution des opérations
destinées au GPU doit être suffisamment longue pour masquer le temps d’exécution
de la plateforme d’IA, augmentant l’utilisation GPU. Pour autant, cette incitation à uti-
liser des opérations plus longues conduit à l’utilisation de lots de données plus consé-
quents, augmentant la demande en mémoire GPU.

Deuxièmement, nous analysons l’utilisation des ressources internes au GPU lors de
l’entraînement. Nous proposons une nouvelle méthodologie de caractérisation combi-
nant les outils proposés par les fabricants de GPUs et par les plateformes d’IA. Nos
résultats suggèrent qu’un plafond de performance a été atteint, annulant les bénéfices
à utiliser des lots de données plus larges pour l’entraînement. Nous observons que
les cœurs les plus performants du GPU (tensor cores) restent inactifs durant la majo-
rité du temps d’entraînement, limité par les opérations qui n’utilisent pas ces cœurs.
Nos résultats suggèrent que les architectures GPU modernes ont atteint un point de
saturation.

Enfin, nous analysons la consommation énergétique des GPUs lors de l’entraîne-
ment. Nous proposons une méthodologie basée sur l’utilisation de microprogrammes
afin d’obtenir une décomposition de la consommation énergétique. Nos résultats sug-
gèrent que les transferts de données sont responsables pour la majorité de la consom-
mation énergétique dynamique du GPU (jusqu’à 84%). Ces résultats soutiennent la
tendance de recherche pour des architectures cherchant optimiser les transferts de don-
nées (e.g., traitement en mémoire ou à proximité, architectures vectorielles).

Cette thèse propose une analyse approfondie des limites de performance et de
la consommation énergétique des tâches d’IA exécutées à l’aide de GPUs modernes.
Nous espérons que ce travail inspirera de futures recherches dans cette direction, pour
concevoir des accélérateurs d’IA plus efficients.
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1.1 Context

1.1.1 Machine Learning acceleration using GPUs

With the growth of popularity and complexity of Artificial Intelligence (AI) applica-
tions, the need for more computing power to execute and train ML models has in-
creased considerably. This increased demand for computing power also comes with
a growing energy footprint for the data centers that host these applications [1]. The
interest in energy-efficient computer architectures has been growing for decades in the
scientific community [26, 85, 136]. Nowadays, this interest extends to architectures
dedicated to ML training and inference (i.e., ML accelerators) [29, 56, 127] and energy-
efficiency is an increasingly important metric in the industry [55] to try and balance
the performance and energy consumption of these architectures. Nevertheless, for a
given cost budget, reducing energy consumption is of lower priority, and performance
increase is still the main objective [51].

ML models architectures are constantly evolving to better adapt to the human ca-
pabilities they are designed to reproduce (e.g., vision, speech, language). Hence, the
training and inference have to be executed on hardware architectures that can adapt
to the changes in the ML workloads. While programmable general-purpose archi-
tectures such as Central Processing Units (CPUs) have this flexibility, they are not
the most efficient for ML workloads due to the high parallelism and memory band-
width requirements of these workloads. In contrast, ML accelerators are domain-
specific architectures designed to accelerate the execution of ML models. These ac-
celerators are designed to efficiently execute the recurring operations in ML models
(e.g., matrix-multiplication, convolution), leveraging reconfigurable hardware such as
Field-Programmable Gate Array (FPGA) to adapt to the changes in the ML workloads.
From these explorations have emerged a wide range of ML accelerators, each with
their characteristics and trade-offs [29, 33, 72, 83].

Despite the active research around new architectures for domain-specific ML accel-
erators, GPUs (a term popularized by NVIDIA in 1999 [45]) are still the default when it
comes to ML acceleration at scale (e.g., training large ML models server-side). NVIDIA
GPUs specifically have been the most popular choice over the years, mostly thanks to
the strong establishment of the Compute Unified Device Architecture (CUDA) ecosys-
tem that provides a high-level programming language to exploit the high parallelism
of the GPU architecture. AMD has been the biggest competitor to NVIDIA, proposing
a similar devices and software stack with the Radeon Open Compute (ROCm) ecosys-
tem [118] and is also benefiting from the recent rise of interest in AI applications.
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Originally, the GPU architecture was only designed for graphics rendering. How-
ever, the high parallelism and memory bandwidth of GPUs make them a popular
choice for many other general-purpose applications (i.e., General-Purpose comput-
ing on GPUs (GPGPUs)), including ML training and inference. The recent evolutions
of modern GPU architectures (e.g., tensor cores in 2017 [109]) have enabled massive
throughput increases for specific tasks (e.g., matrix-multiplication [141]), which is par-
ticularly beneficial for ML workloads [151, 155]. In addition to the raw performance,
the dominance of GPUs in the ML domain can also be attributed to the availability of
high-level programming languages (e.g., CUDA, OpenCL) to program these accelera-
tors by writing GPU kernels. This makes GPU programming accessible to a wide range
of developers, without knowledge of the intricate details of the GPU architecture.

In this context, open-source ML frameworks (e.g., TensorFlow [2], PyTorch [121])
are major catalysts for the democratization of ML applications. ML frameworks are
software tools that facilitate the development and deployment of ML models by ab-
stracting the operation of the ML accelerator (e.g., GPU) away from the user. This high
abstraction greatly enables ML application developers to focus on the functionality of
ML models without worrying about the underlying hardware and low-level imple-
mentation details. However, this wide support increases the number of enabling tasks
that the framework has to execute before launching execution of the core operations
(i.e., kernels) on the ML accelerator. These enabling tasks constitute the framework’s
runtime, which can add time and energy overhead if not efficiently hidden by the ex-
ecution of core operations. Due to this underlying complexity, ML frameworks are
often operated as black boxes even though their runtime execution is key in achieving
efficient execution and peak performance on the GPU accelerator.

Figure 1.1: Some of the devices supported by TensorFlow

To run efficiently on a plethora of hardware platforms, ML frameworks support a
wide range of vendor-specific libraries to run the different operations of the ML mod-
els. These optimized libraries are designed to leverage the specific features of the hard-
ware platform to try and achieve peak performance (e.g., cuDNN [34], which is part of
the CUDA ecosystem for NVIDIA GPUs). Hence, the performance of these libraries is
as important as the performance of the ML framework itself. These ecosystems repre-
sent a major competitive advantage for the GPU vendors over newer, more specialized
architectures. However, the limited composability of these libraries can limit the scope
of optimizations that can be applied to a complete ML model. Hence, ML frameworks
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also provide compilers that can optimize the execution of the ML model by leveraging
a wider scope of software optimizations [32, 44, 128, 129]. The programmable nature of
GPUs is key in enabling these software optimizations for a wide range of ML models.

Building better, more efficient computing systems for ML relies on a deep under-
standing of the limitations of both parts of this tightly coupled hardware/software
paradigm. On the one side, while software optimizations can greatly improve the per-
formance of the ML model, they have to be guided by hardware insights to be the
most effective. On the other side, the design space for ML accelerators is too large
to be exhaustively explored. Reducing this design exploration space also lies in the
understanding of the limitations of the software stack that will run on the accelerator.

Thus, the main objective of this thesis is to uncover and analyze the current limi-
tations of ML inference and training on modern GPUs.

1.1.2 Profiling performance and energy of ML workloads on GPUs

Profiling tools (or software monitors [69]) are tools that expose application metrics to
the user (e.g., execution time, memory usage, energy consumption) during the exe-
cution of a workload on a given system (see Fig. 1.2). This allows the user to extract
meaningful insights, which guides the development and optimization process. Hence,
profiling tools are key for software developers and hardware designers to build ef-
ficient systems. Various profiling tools exist and they each cover a different part of
the software/hardware stack (e.g., ML profilers [100, 124, 148], Linux perf [14], Intel
VTune for Intel CPUs [125], NVIDIA Nsight for NVIDIA GPUs [114]).

User

ML framework

ML model

application metrics progress info

orchestrates

Device

Execution flow

Profiling flow
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Figure 1.2: ML frameworks are central to the execution of ML models but are often used as a
black box by the user, creating an artificial abstraction layer between them and the target device
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Popular ML frameworks provide profiling tools that help developers compose ML
models, monitor the training process, and identify bottlenecks in the software exe-
cution of these models. For example, ML profilers can provide insights on the con-
vergence of the training process, the accuracy of the model, the execution time of each
operation of the ML model, the memory usage, and the communication speed between
the host and the accelerator. While these profiling tools are essential for software devel-
opers to build efficient ML models, they do not provide insights into the performance
and energy efficiency of the accelerator architecture executing the operations of the
ML model. GPU vendors also provide profiling tools that help developers build GPU
kernels that are optimized for the target GPU architecture. These profiling tools can
provide access to the performance counters of the GPU architecture. This helps kernel
developers to assess if the GPU architecture is efficiently executing the kernel and to
identify bottlenecks in its execution.

While these tools are essential for software developers to build efficient ML mod-
els and GPU kernels, computer architects have to ensure that the software stack is
as optimized as possible for the hardware platform before being able to evaluate the
limitations of the hardware. Hence, they have to combine the insights from multiple
profiling tools across multiple levels of abstraction of the software/hardware stack.
This is a challenging task as it requires expertise in the ML software stack and the GPU
architecture to be able to interpret the insights from all the different profiling tools.

Thus, towards the main objective of this thesis, we provide new profiling method-
ologies to evaluate the performance and energy consumption of the GPU architecture
executing ML workloads.

1.1.3 Related works

Here, we present an overview of works that are related to the contributions of this the-
sis. In the following chapters, we will provide more detailed analyses of these works
and how they relate to our contributions.

The scientific community has been actively researching new methodologies to pal-
liate the limitations of the existing profiling tools. They aim to provide new insights on
the performance and energy consumption of the hardware executing ML models.

On the performance analysis side, there have been efforts to build new ML pro-
filing platforms using existing profiling tools. Some of these platforms try to identify
bottlenecks by doing automatic post-processing of the output data from a single profil-
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ing tool [130, 159, 160], or aggregate the output data from multiple profiling tools [58,
90, 91, 151]. However, these platforms do not analyze the runtime execution of the
ML frameworks, which is key in understanding the performance of ML execution and
the limitations of the interactions between the ML framework and the GPU architec-
ture. In addition, these platforms limit their analyses of GPU resource utilization to
a high-level, application-related view, counting the time when a GPU kernel is being
executed. Hence, these platforms ignore how efficiently the GPU kernel actually uses
inner GPU resources (e.g., active GPU cores cycles, instruction issuing opportunities).
This lack of fine-grained insights can be misleading and can over-evaluate how inten-
sively the GPU resources are used. Hence, more fine-grained analyses are needed to
understand the limitations of the GPU architecture when executing ML workloads, to
further guide the software and hardware optimizations.

On the energy analysis side, there have been efforts in the scientific community to
build energy models for the GPU architecture [6, 20, 61, 64, 94, 97, 101, 135, 154]. How-
ever, these models and methodologies are either based on outdated GPU architectures,
rely on source code analysis of the precompiled GPU kernels, or use ML models to
predict the power consumption of the GPU architecture, or ignore crucial parameters
of the GPU execution that can lead to over-evaluations of the energy consumption.
Moreover, these methodologies are also limited when it comes to evaluating energy
consumption at a finer granularity (i.e., inner components of the GPU architecture),
as manufacturer profiling tools only provide access to sensors that measure the over-
all power consumption of the GPU device [113]. For example, using these profiling
methodologies, it is not possible to evaluate a detailed breakdown of the energy con-
sumption of modern GPU architectures executing ML workloads.

1.2 Contributions

In this thesis, to tackle the shortcomings in the state-of-the-art, we propose three main
contributions.

1.2.1 Analysis of ML frameworks eager runtime execution

First, we focus on profiling runtime execution of ML frameworks for ML inference.
ML frameworks have high programming abstraction to facilitate the development and
deployment of ML models. However, such an abstraction also obfuscates the runtime
execution of the model and complicates the understanding and identification of per-
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formance bottlenecks. Thus, we analyze how a modern ML framework manages code
execution from a high-level programming language. We focus on the TensorFlow ea-
ger execution, which remains obscure to many users despite being the simplest mode
of execution across ML frameworks. While this contribution focuses on this specific
mode of execution, our approach can still be applied to other modes of execution in
TensorFlow and other ML frameworks. We describe in detail the process followed by
the runtime to execute code on a CPU-GPU tandem. We propose new metrics to un-
cover and analyze how the framework manages to reduce the performance overhead
of its runtime execution and tries to maximize the utilization of the accelerator (GPU).
We use the previously defined metrics to conduct an in-depth analysis of the inference
process of two Convolutional Neural Networks (CNNs) (LeNet-5 and ResNet-50) and
a transformer (BERT) looking at different batch sizes. Our results show that GPU ker-
nels’ execution needs to be long enough to exploit thread parallelism, effectively hide
the runtime overhead of the ML framework, and increase GPU utilization. This strive
for longer kernel execution can be achieved by using bigger batches of data during
inference, seemingly pushing the need for more GPU memory.

1.2.2 Multi-level analysis of GPU utilization in ML training

Second, we focus on evaluating how efficiently ML frameworks use GPU computing
resources when training ML models. To uncover this, we first describe an ideal ref-
erence execution of a GPU-accelerated ML training loop and identify relevant metrics
that can be measured using existing profiling tools. Second, we describe a methodol-
ogy to produce a coherent integration of traces obtained from different profiling tools.
Third, we leverage the metrics from the integrated trace to analyze the impact of differ-
ent software optimizations (e.g., mixed-precision, various ML frameworks, and execu-
tion modes) on throughput, memory, and computing resources utilization at multiple
levels of hardware abstraction (i.e., whole GPU, SM subpartitions, issue slots, and ten-
sor cores). Our experiments, on representative workloads, suggest that increased GPU
memory capacity helps enhance throughput and GPU utilization from a high level.
However, our results also suggest that a plateau has been reached, eliminating the
push for bigger batch sizes. Furthermore, we observe that the tensor cores, which are
the GPU cores delivering the highest raw computational power, are kept idle most of
the time, and the evaluated ML training workloads are now constrained by kernels not
using tensor cores. Thus, our results suggest that the current GPU paradigm is reach-
ing a saturation point and motivates further research into programmable architectures
to sustainably accelerate ML training workloads.
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1.2.3 Energy evaluation of data movement in the GPU architecture

Finally, we investigate the energy efficiency of modern GPUs. While peak GPU perfor-
mance drastically improved with recent architectural innovations, GPUs still consume
a considerable amount of energy. Hence, identifying energy bottlenecks in the GPU
architecture is crucial to designing more energy-efficient architectures in the future.
However, because of the complexity and proprietary nature of modern GPU architec-
tures, providing a detailed breakdown of the GPU energy consumption is not trivial,
particularly when it comes to moving and storing data. The goal of this chapter is to
estimate a lower bound for the energy consumed by data movement and storage in
modern GPU architectures. To this end, we propose a basic GPU energy model along
with a new profiling methodology to calibrate the model. This methodology leverages
specific microbenchmarks and performance counters to evaluate the energy consump-
tion of specific memory accesses in the GPU architecture. We implement this method-
ology on an NVIDIA A100 GPU and challenge the consistency of the calibration results
by cross-validating with modified microbenchmarks with additional instructions. Fi-
nally, using the calibrated model, we evaluate the breakdown of energy consumption
for workloads of increasing complexity, up to a training iteration of ResNet-50 with
different software optimizations. Previous works have identified data movement as a
major bottleneck in modern Von Neumann architectures both for execution time [18]
and CPU energy consumption [74]. Our proposed methodology provides a way to
easily evaluate the energy consumption of data movement in the GPU architecture for
any application. Our results support the claims of the state-of-the-art and suggest that
data movement is also responsible for most of GPUs’ energy consumption, represent-
ing up to 84% of the dynamic energy consumption of the GPU. This further motivates
the push for newer architectures that try to reduce the length of the data path (e.g.,
processing in-memory/near memory, vectorized architectures).

1.3 Thesis outline

We structure this thesis around six chapters. In each chapter, we give specific context
and motivation for the contribution and describe related works from the literature. In
Chapter 2, we introduce relevant background about ML inference and training execu-
tion flow on GPUs, and existing profiling tools from the ML frameworks and GPU ven-
dors. In Chapter 3, we present our first contribution, which proposes to deconstruct
the runtime execution of an example ML framework (TensorFlow) for inference and
analyze its interaction with the GPU architecture. In Chapter 4, we present our second
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contribution, which proposes a methodology to evaluate the utilization of the com-
puting resources of the GPU architecture at multiple levels of abstraction during ML
training. In Chapter 5, we present our third contribution, which proposes a methodol-
ogy to evaluate the energy consumption of the data movement and storage in modern
GPU architectures during and provide a detailed energy breakdown of an example ML
model training workload. Finally, in Chapter 6, we conclude this thesis by summariz-
ing the main contributions and discussing future research directions.
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In this chapter, we introduce the main concepts and technologies that are used in
this thesis. We start by presenting the basics of Machine Learning (ML) inference and
training, and the software frameworks that support the development, implementation,
training, and deployment of ML models. Then, we introduce the Graphics Processing
Unit (GPU) architecture and programming model, as it is the main accelerator studied
in this thesis. Finally, we present the profiling tools that ML and GPU developers use
to analyze the performance of their applications.

2.1 ML inference and training execution flow

Artificial Intelligence (AI) is a broad domain that aims to develop systems to perform
tasks that usually require human intelligence by mimicking human cognitive functions
(e.g., visual perception, speech recognition, language translation, decision-making).
Machine Learning (ML) (a subcategory of AI) is focused on building ML models using
statistical algorithms and adjustable parameters (i.e., weights and biases). Tweaking
these parameters allows the model to learn from data (i.e., training), to then make
predictions or take decisions that are not explicitly programmed (i.e., inference).

2.1.1 ML models

ML models are composed of millions of parameters (even trillions [52]). These parame-
ters are tunable and allow to capture knowledge within the model (i.e., training) which
is used as a base for the model to give prediction when prompted with new unseen
data (i.e., inference). The parameters of the model are organized within different lay-
ers, that host operations with varying shapes and sizes. The layers and operations are
chosen by the developer of the ML model targetting a specific application (i.e., Deep
Learning (DL) models).

For example, Convolutional Neural Networks (CNNs) are composed of many con-
volution layers, which capture features from 2D data by adjusting the parameters of
the filters of the convolution operation. Convolution operations are usually performed
using matrix multiplications (and accumulation), which are ubiquitous operations in
numerous types of layers composing ML models.
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2.1.2 ML inference and training

The ML inference process consists of feeding the input data (e.g., a picture) to an ML
model with previously-trained parameters for it to predict an output (e.g., the object
identified in the picture). The ML training process is significantly more computation-
ally expensive than inference. It consists of feeding the ML model with a huge amount
of labeled data from a dataset (e.g., a bank of pictures labeled with their description),
in multiple iterations (i.e., epochs), and adjusting the model’s parameters to learn the
patterns in the data. This training process is done in two main steps: forward pass and
backward pass. During the forward pass, similarly to the inference process, input data
is fed to the model (typically in batches) for which the model predicts an output. Then,
the error between the predicted output and the ground truth (i.e., the label of the input
data) is calculated using a loss function. During the backward pass, the error is back-
propagated through the model, and its parameters are adjusted using optimization
algorithms (e.g., SGD, Adam). This backward pass is also known as backpropagation
with gradient descent. An epoch ends when the model has seen all the training data.
Epochs are repeated until the model converges to a satisfactory level of accuracy (i.e.,
the error is minimized). Fig. 2.1 illustrates these processes.

Figure 2.1: Training vs. inference

2.1.3 ML frameworks

ML frameworks are software tools that facilitate the development, training, and de-
ployment of ML models. While many ML frameworks and libraries exist (e.g., MXNet,
SciKit-learn, MLKit, Keras, TensorRT, ONNX), the most popular include TensorFlow
(TF) [2] and PyTorch (PT) [121], which are open-source and maintained by Google and
Meta, respectively. These frameworks provide Application Programming Interfaces
(APIs), typically in Python, to describe ML models and orchestrate their inference and
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training processes. ML frameworks also provide a set of pre-implemented ML algo-
rithms and models. For example, using TensorFlow, one can implement a pre-trained
image classification model (e.g., ResNet-50) using a single line of Python code:

tf.keras.applications.ResNet50(weights='imagenet')

ML frameworks are designed to be hardware-agnostic, meaning that the same code
must run efficiently on a plethora of devices (e.g., Central Processing Units (CPUs),
GPUs, Tensor Processing Units (TPUs)). To achieve this, ML frameworks rely on
hardware-specific libraries (e.g., cuDNN [34] for NVIDIA GPUs) to link the high-level
Python code to the lower-level hardware-specific code.

ML frameworks runtimes can follow different modes of execution, such as eager
execution, graph execution, or compiled execution (see Fig. 2.2).

• Eager execution is the default execution mode in TensorFlow and PyTorch. It is an
imperative interface where operations from the ML model are executed immedi-
ately as they are called from Python. This execution flow enables fast debugging
with immediate run-time errors. Therefore, eager execution is most useful in the
development phase of ML models. However, it is restricted to operation-level
optimizations, which limits its performance.

• Graph execution extends the optimization scope by transforming the Python
code into a graph of operations, which it optimizes before execution [86]. There-
fore, graph execution is useful in the deployment or training phases as it achieves
higher performance at the expense of easy debugging. However, the composabil-
ity of the graph is limited to the same interface as eager execution, which limits
the optimization scope.

• Just-In-Time (JIT) compiled execution is a mode of execution where the built
graph is compiled into machine code before execution. Hence, the executed ac-
celerator code is not limited to the same interface as eager and graph execution,
which removes the overhead of dispatching the Python’s operations and enables
more aggressive optimizations (e.g., device-specific). This mode usually achieves
the highest performance, however, the compilation time can be significant and
needs to be amortized during execution. For example, XLA is an open-source
compiler [129] that can be used as a backend for multiple ML frameworks and is
the default backend for TensorFlow.

• Ahead-Of-Time (AOT) compilation is different from JIT as it compiles the graph
into machine code before execution. In this mode, all of the optimizations are
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done at design and compile time and built into the executable. This mode is
useful for deployment as it removes the compilation overhead at runtime and
includes the ML framework runtime into the executable along with the model’s
graph. As a result, it is less flexible than all the other modes of execution and pro-
duces bigger executables. For example, TensorFlow Lite [143] is a framework that
uses AOT compilation to deploy ML models on mobile and embedded devices.

Python code Python code Python code Python code

Eager runtime

Build & optimize
graph Build graph Build graph

XLA compiler XLA compiler

Graph runtime

Vendor-specific
libraries

Vendor-specific
libraries

OBJOBJOBJOBJ

TF API TF API

GraphDef HLO HLO

Py TF API Py TF API Py TF API Py TF API

Eager execution Graph execution XLA execution XLA AOT

Execution time

Design/compile time

One op Many ops Many ops Many ops

One op One op

Figure 2.2: TensorFlow modes of execution

2.2 GPU architecture and programming model

The general-purpose CPU architecture is heavily optimized to reduce the latency of
single threads (e.g., using tricks such as branch prediction, and out-of-order execution
to reduce the latency of long-latency operations such as memory accesses). In con-
trast, the GPU architecture is designed to sacrifice single-thread performance, having
a simpler execution pipeline but executing thousands of threads in parallel (i.e., Single
Instruction Multiple Threads (SIMT)) to achieve high compute throughput on data-
parallel workloads (e.g., Single Instruction Multiple Data (SIMD)). Fig. 2.3 illustrates
the high-level architectural difference between CPUs and GPUs. However, a GPU is a
programmable accelerator and needs a CPU to manage its computing tasks. Together
they form a host/device pair (CPU-GPU tandem). In this section, we first present the
GPU CUDA programming model and how GPUs execute code. Then, we present the
GPU architecture through its execution model and memory hierarchy. In addition,
we illustrate some of the key concepts using the examples of the NVIDIA V100 and
A100 GPUs, which implement the Volta and Ampere architectures, respectively. We
only describe NVIDIA GPUs, as they are the main accelerators studied in this thesis.
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However, the concepts presented here are general and similar in other GPU vendor
implementations (e.g., AMD, Intel).

CPU

CORE 0 CORE 1

CORE 2 CORE 3

GPU

SM 0 SM 1

SM 2 SM 3

SM N-1 SM N

32 cores 32 cores

32 cores 32 cores

32 cores 32 cores

Figure 2.3: CPU/GPU architecture comparison

2.2.1 Programming model for NVIDIA GPUs: CUDA

To execute code on GPU devices, NVIDIA exposes a programming platform and mo-
del called Compute Unified Device Architecture (CUDA). CUDA provides a program-
ming language that extends C++ to program several software abstractions to allow the
execution of GPU functions called kernels in multiple streams.

A kernel is a CUDA function callable from the CPU that runs on the GPU. When
developing a kernel, the programmer must describe the behavior of both the CPU and
GPU in the source code. Listing 2.1 presents example snippets of both CPU and GPU
code. The GPU code (i.e., kernel code) expresses the behavior of one thread. This
thread is then replicated thousands of times to execute the same code on different data
(i.e., SIMD execution model) when it is invoked (or launched) from the CPU code. The
CPU code also manages the CPU-GPU memory exchanges (e.g., using MemcpyH2D

to transfer from host to device and MemcpyD2H for the reverse operation). It is also
possible to specify the stream on which to run the kernel.

Figure 2.4: CUDA Streams

Streams is a CUDA programming model feature where different work can be sub-
mitted to multiple queues and processed independently by the GPU. As illustrated in
Fig. 2.4, the use of streams enables concurrency between data transfer and kernel ex-
ecution. CUDA defines a stream as a sequence of operations executing sequentially in
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the order as issued from the host CPU. However, operations issued in separate streams
can be executed concurrently and can overlap. In concrete, CUDA exposes the follow-
ing operations as independent tasks that can operate concurrently with one another:
computation on the host, computation on the device (i.e., kernel execution), memory
transfers from the host to the device (i.e., H2D copy, MemcpyH2D), memory transfers
from the device to the host (i.e., D2H copy, MemcpyD2H), memory transfers within the
memory of a given device and among devices (i.e., D2D copy, MemcpyD2D).

1 // Device code (kernel definition)
2 __global__ void VecAdd(float* A, float* B, float* C) {
3 int i = threadIdx.x;
4 C[i] = A[i] + B[i];
5 }
6
7 // Host code (launches the kernel)
8 int main() {
9 int T = 24;

10 size_t size = T * sizeof(float);
11
12 // Allocate input vectors h_A and h_B in host memory
13 float* h_A = (float*)malloc(size);
14 float* h_B = (float*)malloc(size);
15 float* h_C = (float*)malloc(size);
16
17 // Initialize input vectors
18 ...
19
20 // Allocate vectors in device memory
21 float* d_A; cudaMalloc(&d_A, size);
22 float* d_B; cudaMalloc(&d_B, size);
23 float* d_C; cudaMalloc(&d_C, size);
24
25 // Copy vectors from host memory to device memory
26 cudaMemcpy(d_A, h_A, size, cudaMemcpyHostToDevice);
27 cudaMemcpy(d_B, h_B, size, cudaMemcpyHostToDevice);
28
29 // Invoke kernel
30 int threadsPerBlock = 12;
31 int blocksPerGrid = 2;
32 VecAdd<<<blocksPerGrid, threadsPerBlock>>>(d_A, d_B, d_C, T);
33
34 // Copy result from device memory to host memory
35 // h_C contains the result in host memory
36 cudaMemcpy(h_C, d_C, size, cudaMemcpyDeviceToHost);
37
38 // Free device memory
39 cudaFree(d_A); cudaFree(d_B); cudaFree(d_C);
40 // Free host memory
41 ...
42 }

Listing 2.1: Example snippet (CPU and GPU code) defining and launching a CUDA kernel
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To simplify development, CUDA provides a set of software abstractions to the pro-
grammer to manage the execution of the kernel (see Fig. 2.5). During execution, when
the GPU kernel is invoked, all the application threads are launched to the GPU for
execution in a grid. Threads of the grid are further organized into thread blocks. The
number of thread blocks in a grid and the number of threads in a block are specified by
the programmer in the CPU code as the kernel dimensions. These software abstractions
bring regularity to the kernel execution, enabling automatic scalability of the kernel to
GPUs with different compute capabilities. This regularity of the software abstractions
is matched in the hardware abstractions of the GPU architecture. This formalism is
crucial to exploit the parallelism potential of SIMT execution model.

Grid

Thread block

Thread

Thread block Thread block Other
thread
blocks

Figure 2.5: CUDA software abstractions

2.2.2 GPU execution model

From a hardware perspective, when a kernel is launched, the thread blocks of its grid
are distributed and queued by a thread block scheduler to the GPU’s multiple cores,
called Streaming Multiprocessors (SMs). The number of SMs in a GPU is fixed depend-
ing on the GPU model and its architecture design depends on the compute capabili-
ties [41]. Hence, when the number of thread blocks outnumbers the SMs, the thread
block scheduler queues the additional thread blocks for execution when SMs are avail-
able again (i.e., dynamic scheduling). This mechanism is key to the automatic scalability
of the GPU architecture and helps keep the SMs busy and the GPU utilization high.

Thread blocks issued to an SM are automatically sent to one of the Streaming Mul-
tiprocessor Sub-Partitions (SMSPs) where threads are gathered into warps (i.e., groups
of 32 threads) by a warp scheduler. A warp can be seen as a list of SIMD instructions,
duplicated to 32 threads, which have to be executed in the SMSP’s execution units. SM-
SPs host multiple execution units that can execute different types of instructions (e.g.,
integer, floating-point, load/store, special functions, tensor operations).

While the dynamic scheduling of thread blocks and the warp scheduling are en-
tirely performed by the hardware, the programmer has to dimension the kernel ac-
cordingly. For example, the programmer has to dimension the kernel (i.e., grid and
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thread blocks size) around the fixed warp size constraint to maximize the theoretical
occupancy (i.e., maximum number of active warps per SM) relatively to the device limit
(i.e., maximum number of resident warps per SM) [39].

Instructions within a warp are executed sequentially and in lockstep, meaning that
all threads in a warp execute the same instruction at the same time (i.e., SIMT execu-
tion model). In the case of a divergent branch (e.g., an if statement), divergent threads
are masked to disable their execution (i.e., predicated execution). Despite the sequential
execution of instructions within the same warp, the warp scheduler can interleave the
execution of instructions from different warp to hide the latency of long-latency oper-
ations (e.g., memory accesses). This mechanism is called fine-grain multithreading.

A given GPU model can host a maximum number of resident warps per SM. How-
ever, at kernel launch, this number can be further limited depending on the kernel’s
dimensions (i.e., theoretical occupancy). The distribution of thread blocks to the SMSPs
balances the total occupancy of the GPU. At the level of an SMSP, its assigned warps
are called active warps. At every cycle, out of all active warps in the SMSP, some can be
stalled (i.e., cannot issue instructions to the execution units). Warps can be stalled for
various reasons, such as waiting for an instruction to be fetched from memory, avail-
able execution units (i.e., the pipeline is busy), dependencies on previous memory or
compute instructions or a thread synchronization barrier. Warps that are not stalled
are called eligible warps and are candidates for issuing instructions. At every cycle, the
warp scheduler chooses a selected warp out of the eligible warps from which to issue
one instruction to the SMSP’s execution units. Hence, for example, if a GPU has 2 SMs
and each SM has 4 SMSPs, the warp scheduler can issue 8 instructions at every cycle.
This hierarchy of occupancy is illustrated in Fig. 2.6.
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Selected warps
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Warp execution

Cycle
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Figure 2.6: Warp scheduling and reasons for stalled warps

For example, the NVIDIA V100 and A100 GPUs have respectively 80 SMs and 108
SMs (see Fig. 2.7), with 4 SMSPs per SM. Both GPUs can host a maximum of 64 warps
per SM (i.e., 2048 threads) and have 64 FP32 execution units per SMSP (among other
execution units such as integer, load/store, special functions, and tensor cores).
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(a) Full GPU architecture

(b) Streaming Multiprocessor (SM) architecture

Figure 2.7: NVIDIA A100 architecture
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2.2.3 GPU memory hierarchy

During kernel execution, threads may access data from multiple addressable memory
spaces. A thread has access to a set of registers and its local memory. These memory
spaces are typically used to store the thread’s local variables and intermediate results.
While the registers are fast, they are limited in size. Local memory, which is slower,
is used when the register space is exhausted (i.e., register spilling). Multiple threads
in a thread block can share data using fast shared memory. All threads executing in the
GPU can read and write data to and from the global memory, and read data from the
constant memory and textures memory. The global memory is the largest memory space
and is typically used to store the kernel’s input and output data. Global, constant, and
texture memories can also be accessed by the host (i.e., CPU) through the PCI-Express
bus linking it to the GPU.

These software abstractions are mapped to the GPU memory hierarchy (illustrated
in Fig. 2.8). The largest memory space is the device main memory, Dynamic Random
Access Memory (DRAM), typically organized in multiple banks of DDR or HBM tech-
nology. The DRAM hosts the local, global, constant, and texture memory spaces. As
the DRAM is slow, GPUs have multiple levels of hardware-managed cache memory to re-
duce the latency of memory accesses by exploiting data locality automatically, without
programmer intervention. These levels of cache memory are increasingly smaller and
faster, because closer to the execution units. Shared memory, like the lower levels of
cache memory, is local to the SM. However, this memory has to be explicitly addressed
by the programmer in software for threads within the same thread block to share data.

GPU (device)

Grid

Thread block Thread block

Thread

registers

local
memory

shared memory

Threadlocal
memory Threadlocal

memory

shared memory

Threadlocal
memory

               Global memory

               Constant & Texture memories
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CPU
(host)

Off-chip & cached On-chip & non-cached

Figure 2.8: GPU architecture memory hierarchy (software abstractions)
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2.3 ML and GPU profiling tools

Optimization of any software or hardware system requires a deep understanding of
its behavior. Profiling tools (or profilers) are used to analyze the performance of these
systems and identify bottlenecks. A profiler runs alongside the profiled application,
collecting performance data (e.g., execution time, call stack, memory usage) to expose
insights to the developer that would be hidden in normal execution. These insights
are usually exposed through a report or a visualization tool. Profilers are only used
during the development phase as they introduce overheads, affecting the application’s
performance. Profiling tools try to minimize this overhead by either using sampling
techniques or giving the user control over the number of collected data points. In gen-
eral, the more detailed the profiling data, the higher the overhead. In this section, we
present vendor-provided profiling tools for ML models and GPU kernel development.
These tools, along with related works presented in each chapter, constitute the starting
point for the thesis work.

2.3.1 ML profiling

Popular ML frameworks provide profiling tools to analyze the performance of ML
models (e.g., TensorFlow Profiler [148], PyTorch Profiler [124]). These tools expose
APIs to the developer to instrument the high-level code of the ML model with specific
annotations. The tools also provide some automatic instrumentation and graphical
user interfaces to visualize the performance of the model either at design time or at
runtime. For example, TensorFlow Profiler provides a graphical interface called Ten-
sorBoard [142] This tool can help analyze the composition of the model at design time
(e.g., graph visualization), or identify performance bottlenecks at runtime (e.g., input
pipeline performance, global memory usage). Using the TensorFlow Profiler can intro-
duce overheads (e.g., memory usage, execution time). Execution time overhead was
measured around 2% when training a small image classification model on a GPU [36].

TensorFlow and PyTorch profilers provide time traces of the execution of the model
(see Fig. 2.9). These traces are saved in the Chrome Tracing format [59], originally de-
signed for performance profiling for web and Android applications [37]. This format
is JSON-based and can be visualized using the Chromium’s built-in tracing tool (i.e.,
chrome://tracing). On these traces, ML profilers annotate timestamps for software
events from the ML model execution (e.g., kernel launches, memory transfers). In ad-
dition, profilers also interact with hardware-specific profiling tools, such as NVIDIA’s
CUPTI [111] to expose additional GPU metrics (e.g., occupancy, memory usage).

chrome://tracing
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Figure 2.9: Typical trace from an ML profiling tool

2.3.2 GPU kernels profiling

GPU vendors provide profiling tools to analyze the performance of GPU kernels. These
tools give the developer access to performance counters, which are hardware metrics that
are collected by the GPU during kernel execution. On top of gathering the counters,
these tools can also provide analyses and visualizations of the performance data to
give more insights to the developer. For example, NVIDIA provides multiple profiling
tools for its GPUs:

• Nsight Systems [116] is a system-level performance analysis tool. It enables the
developer to analyze host-device interactions, such as memory transfers, kernel
launches, and synchronization primitives. It allows the developer to tackle opti-
mization for CPU-bound and communication-bound workloads.

• Nsight Compute (replacing NVIDIA Visual Profiler [42]) is a kernel-level perfor-
mance analysis tool. This profiling tool is accessible through either a graphical
user interface [114] or a command-line interface (ncu) [115]. It is built on top
of NVIDIA CUDA Profiling Tools Interface (CUPTI) [111], which is a low-level
interface to access the GPU’s performance counters. Nsight Compute provides a
simpler interface to access the performance counters and can also provide addi-
tional metrics and analyses, composed of the raw performance counters. It allows
the developer to tackle GPU kernel optimization by providing insights on the
GPU architecture runtime behavior when executing such kernel (see Fig. 2.10).
For example, Nsight Compute can provide insights on reasons for issue stalls by
sampling the GPU pipeline state.
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Similarly to ML profiling tools, GPU profiling tools can introduce overheads. Previ-
ous works show that CUPTI adds 1µs overhead when profiling CPU-GPU data trans-
fers and 3µs for each kernel launch [58]. In addition, when profiling using Nsight
Compute, these overheads can be dramatically higher. Due to the limited number of
hardware counters available on the GPU, Nsight Compute has to replay kernels mul-
tiple times to gather all required metrics (i.e., kernel replay [40]). Optionally, instead
of replaying the kernels multiple times, Nsight Compute can replay the complete ap-
plication to gather all required metrics (i.e., application replay). However, application
replay is only possible when the number of kernels in the application is determinis-
tic and constant between runs. The number of replays increases with the number of
metrics (see Fig. 2.11). Hence, the introduced time overhead depends on the number
of gathered metrics. When using kernel replay, additional time and memory overhead
are added because the kernel state has to be saved and restored between replays.

Figure 2.10: NVIDIA Nsight Compute interface showing a “Speed-of-Light” kernel analysis

Figure 2.11: Illustrated example of the difference between (a) regular execution of a GPU kernel
and (b) profiled execution of a GPU kernel with kernel replay [40].
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3.1 Context and motivation

Developing Machine Learning (ML) models from scratch is not a trivial task. The mod-
els have to be composed of hundreds of operations, on multidimensional data and
have to run efficiently on a plethora of devices. As described in Chapter 1, open-source
ML frameworks, such as TensorFlow [2], PyTorch [121] or MXNet [31], are major cata-
lysts of the recent explosion in the number of new ML models and applications. These
ML frameworks facilitate the development and deployment of ML models by provid-
ing high-level interfaces (typically in Python) to describe the models and orchestrate
their execution on different devices. The high abstraction of ML frameworks greatly
enables application developers to focus on the functionality of ML models without
worrying about low-level implementation details. This way, they automatically dis-
tribute the model execution across CPUs (i.e., the host) and available accelerators (i.e.,
the devices that have to be controlled by the host), such as GPUs.

Because of their central role in the development and deployment of ML models,
ML frameworks can have a major impact on the overall performance of the ML appli-
cation. However, on the flip side, their high abstraction level results in a big disparity
in performance between the different frameworks [54] and their different modes of ex-
ecution. For example, TensorFlow can train Long Short-Term Memory (LSTM) models
5× faster than PyTorch [54]. In addition, such an abstraction obfuscates the run-time
execution of the model and complicates the understanding and identification of per-
formance bottlenecks.

For example, TensorFlow, one of the most popular ML frameworks, offers multiple
different modes of execution (e.g., eager execution, graph execution, XLA). The default
mode of execution, eager execution [5], is an imperative interface that executes oper-
ations immediately as they are called from Python. This enables fast debugging with
immediate run-time errors. However, it is restricted to operation-level optimizations,
which limits its performance compared to other modes of execution, as described in
Chapter 2. While eager execution is often used only in the development phase of ML
models, its performance is still key for developers to assess the validity of some design
choices and thus, to iterate quickly on the model development.

TensorFlow supports a wide range of hardware platforms (e.g., CPUs, GPUs, TPUs),
orchestrates the execution of models across multiple levels of abstraction, and provides
different optimizations and execution strategies (e.g., graph optimizations, memory
optimizations, kernel fusion). Due to this complexity, the TensorFlow codebase has
grown to more than 3 million lines of code, which is practically inaccessible to most
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users despite being open source [150]. As a result, users often operate TensorFlow as a
black box and cannot harness the full power of the framework. We believe this to be a
common trend in the community concerning modern ML frameworks.

Our main goal in this chapter is to demystify how a modern ML framework man-
ages code execution from a high-level programming language. To this end, we focus
on the TensorFlow eager execution, which remains somewhat of a mystery to many
users despite being the simplest mode of execution in TensorFlow.

In this chapter, we propose an analysis of the TensorFlow eager execution runtime
performance when running ML inference on a CPU-GPU tandem. We first describe
the main steps followed by TensorFlow to execute high-level Python code on a CPU-
GPU tandem. We analyze and describe how TensorFlow transforms high-level Python
code into execution kernel calls to the GPU and CPU, when memory is allocated, and
what triggers data transfers between CPU and GPU. From this description, we propose
new metrics to expose and analyze the performance overhead that ML framework’s
runtime can introduce. Finally, to evaluate the extent of this overhead, we demon-
strate a new in-depth profiling approach that focuses on the run-time execution of the
ML framework running inference of representative ML models. To implement this ap-
proach, we develop the TensorFlow eager runtime profiler, a tool that extends the profiling
tools provided by TensorFlow. We open source this tool in our GitLab repository [144].

3.2 TensorFlow eager execution

TensorFlow runtime is responsible for executing a user-defined model on a selected
device, such as a CPU or a GPU. For the user to be able to build ML models, TensorFlow
provides several APIs (e.g., JavaScript, C++, Java, etc.) that expose the TensorFlow
operations to the user to interact with the underlying C++ backend of TensorFlow. The
most complete, best documented, and most popular of them is the TensorFlow Python
API. As discussed in Chapter 2, the TensorFlow runtime can follow multiple execution
modes. In this chapter, we focus on the TensorFlow eager execution runtime.

TensorFlow eager execution is the default mode of execution of TensorFlow. It exe-
cutes operations immediately as they are called from the user-defined model in Python.
This behavior enables line-by-line debugging, which is not as straightforward when
operations are buried in an optimized graph (i.e., when using graph execution or JIT
compilation). TensorFlow eager execution follows the same specific steps to execute
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each operation. We group the steps in three different phases: enqueuing, dequeuing,
and kernel execution (illustrated as 1 , 2 , and 3 in Fig. 3.1, respectively).

TensorFlow eager execution can execute synchronously (SYNC) or asynchronously
(ASYNC). In the case of SYNC execution, the enqueuing and dequeuing phases are
merged into a single thread which is synchronized with the device kernel execution.
This single main thread starts with the call of an operation in Python, launches the
execution on the device, and waits for the return value before executing the next op-
eration. In the case of ASYNC execution, the enqueuing and dequeuing phases are
performed by separate threads, separated by a scheduling queue. The enqueuing thread
starts with the call of an operation in Python and pushes one or several computation
nodes in the scheduling queue. Asynchronously, the dequeuing thread pops the nodes
from the queue and manages their execution. A computation node is a software object
gathering all the information needed to call kernel execution on the target device (CPU
or GPU).

In this section, we provide a detailed description of these different execution phases
within the TensorFlow eager execution runtime when running on a CPU-GPU tandem.
We first describe how models are composed in Python using TensorFlow operations
(Section 3.2.1) and how TensorFlow keeps track of the execution context (Section 3.2.2).
Then, we detail the enqueuing (Section 3.2.3) and dequeuing (Section 3.2.4) threads and
how they orchestrate the execution of the TensorFlow operations. Finally, we illustrate
the complete process with a simple example (Section 3.2.5).

Figure 3.1: Eager execution of a TensorFlow operation
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3.2.1 TensorFlow operations

To compose a TensorFlow model in Python, the user chooses TensorFlow operations
(e.g., matmul, relu, etc.) as defined in the Python API [7]. TensorFlow operations
are linked to optimized kernels: CPU kernels for every operation, and CUDA kernels
for GPU-compatible operations. These kernels are accessible from the Python API via
wrapper functions, which are automatically generated for every registered operation
when building TensorFlow from source.

TensorFlow includes a very complete set of already registered operations but still
allows developers to add custom operations [145]. To register a new operation in Ten-
sorFlow, developers must (1) define its interface by specifying its inputs, outputs, and
attributes types and shapes in a C++ module, (2) implement a CPU OpKernel for the
operation, (3) implement a CUDA kernel if GPU compatibility is intended, and (4) link
the previously defined kernel(s) with the specific operation.

3.2.2 Execution context

When starting to execute the Python wrapper function of a given TensorFlow opera-
tion, the runtime has to know which mode of execution has to be used to run (e.g.,
eager or graph mode). This user-configurable parameter is stored in the execution con-
text, which is globally accessible from both the Python frontend and the C++ backend
of TensorFlow. The context is a collection of configuration parameters used by the run-
time to execute the Python wrapper functions, such as execution mode, device place-
ment policy (i.e., policy to use when running an operation on a device with inputs that
are not on that device), etc. The context is initialized at the start of the Python program
execution and is referred to whenever the runtime needs these configuration param-
eters to make choices during the execution. Most of the data stored in the context is
thread-local, which is important for the runtime to be thread-agnostic. Thus, multiple
TensorFlow programs can safely run in parallel.

3.2.3 Enqueuing: Python host program

Fig. 3.1 shows the main steps in the enqueuing thread 1 . The eager execution of an
operation starts with the canonicalization a of its inputs to the Tensor data type. At this
point, memory is allocated on the host to store the inputs after the conversion to ten-
sors. A Tensor is a multi-dimensional array defined by three parameters: a data type,
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a shape, and the actual values. However, the TensorFlow runtime does not directly
manipulate the Tensor data type but interacts with it through a TensorHandle b . A
TensorHandle represents a tensor (or a not-yet-computed FutureTensor) that lives (or
will live) on a device. A TensorHandle can provide the shape and type of the tensor
even if the actual value is yet to be computed. This mechanism allows the runtime to
race ahead and continue parsing Python operations without having to wait for the re-
sults of the computations. As a result, the main Python thread can run in parallel with
an execution thread (i.e., ASYNC execution) instead of stalling while the operation is
being executed (i.e., SYNC execution). In ASYNC execution, if the executed kernels
are sufficiently heavy to run, the Python thread can race ahead of the device execution
and keep the device utilization high by hiding its latency. However, when the runtime
needs a tensor value to take a decision (e.g., a data-dependent if-then-else statement), it
will stall until the required value becomes available (see Section 3.2.5 for an example).

After securing the inputs, the runtime gathers all the remaining information needed
for the operation to execute in an Op object c . The Op object includes the name of
the operation to run (as a string), pointers to the input data (i.e., encapsulated in a
TensorHandle), and operation-dependent attributes (e.g., if one of the inputs needs to
be transposed before the operation). Then, the runtime selects a device to execute the
operation according to the execution context (if a device is specified by the user) or
follows an internal heuristic to find the fastest available device. Based on the name of
the operation, the type and shape of its inputs, and the target device, the runtime also
selects the kernel (i.e., OpKernel) to execute d .

At this point, the runtime validates the placement of the inputs of the operation e .
If the inputs are not placed in the device targeted to execute the operation, the runtime
schedules the necessary data-transfer operations. In the case of ASYNC execution, the
runtime creates a specific node to handle data transfer that can be stored in a schedul-
ing queue. For example, in the case of a host to device data transfer action, which is
automatically inserted by the runtime, the input data corresponds to the input data
of the original operation (i.e., TensorHandle), the target device is the same as in the
operation, and the prompted OpKernel links to a CUDA MemcpyH2D call.

Once the input placement is verified and scheduled, the runtime schedules the op-
eration itself f . First, it creates a TensorHandle for the output of the operation, which
is a FutureTensor. This allows the runtime to schedule future operations taking this
output as an input without having to wait for the actual Tensor value (i.e., ASYNC
execution). Then, the runtime creates a second node object gathering the Op object, a
pointer to the selected device, and the selected OpKernel.
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In the case of SYNC execution, the runtime runs a node immediately and stalls
while waiting for a return value. In the case of ASYNC execution, the runtime will
insert the node in a scheduling queue and directly return control of the enqueuing
thread. This architecture enables a layer of parallelism between the enqueuing and de-
queuing threads, which TensorFlow uses to try to hide the latency of the main Python
thread (enqueuing) behind the executor thread (dequeuing).

3.2.4 Dequeuing: Executor thread

The nodes in the scheduling queue are dequeued by a separate executor thread follow-
ing the enqueuing order (i.e., First-In-First-Out (FIFO)). The executor thread stalls or
executes a queued node depending on whether the targeted device is busy or not.

The execution of a node consists of two main steps: the memory allocation of the
operation outputs g , and the call for kernel execution on the targeted device h . A
kernel describes the computations to perform and can also allocate memory for in-
termediate results when needed. TensorFlow includes a rich set of optimized kernels
implemented using external libraries such as Eigen [60] and cuDNN [34], in major part
for GPU devices. Eigen is a C++ template library for linear algebra that can generate
kernels for multiple input data types and target devices using the same codebase. This
library is particularly useful for complicated linear algebra operations, as it eliminates
the need to write optimized code for every supported data type, shape, and device.
cuDNN is a library developed by NVIDIA that provides GPU-accelerated primitives
for deep learning such as convolution, pooling, normalization, activation layers, and
tensor transformation.

As described in Chapter 2, the GPU programming model allows for asynchronous
execution of kernels through the use of CUDA streams. TensorFlow has a very spe-
cific design for using CUDA streams. There is a main compute stream, a main pair of
host_to_device and device_to_host streams, as well as a vector of device_to_device streams
(used when computations are distributed over multiple devices). The main compute
stream can handle transfers and computations. Secondary compute streams can be
used, however, they cannot perform computations concurrently with the main stream.
This single-compute-thread implementation simplifies the management of the GPU
device. It bets on the fact that streams do not provide a significant performance im-
provement when running large kernels on the GPU, assuming that the kernels occupy
most of the GPU’s resources.
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3.2.5 Illustration example

In Listing 3.1, we illustrate the most important execution steps of TensorFlow eager
runtime using a simple example. We consider the example to run in ASYNC mode on
a system with a local CPU host and a local CUDA-compatible GPU device.

1 import tensorflow as tf

2 import numpy as np

3

4 with tf.device("/GPU:0"):

5 x = np.random.randn(64, 64)

6 y = tf.constant(np.random.randn(64, 64))

7

8 z = tf.matmul(x, y, transpose_b=True)

9

10 output = tf.nn.relu(z)

11

12 print(output)

Listing 3.1: Example using a sequence of operations using the TensorFlow Python API

The gist of the example is a sequence of Python and TensorFlow operations that
creates a random matrix of size 64 × 64, creates a second random matrix of the same
size explicitly converted to a constant Tensor, performs matrix multiplication of the two
matrices, performs a ReLU activation on the resulting output, and prints the result.

We now describe in detail how TensorFlow executes the code. Line 1 imports the
TensorFlow package into the Python program. This import has the side effect of ini-
tializing the execution context which stores the configuration information needed by the
runtime. By default, the execution mode specified in the context is eager execution.
Line 2 imports the NumPy package, which is a popular Python package that offers
mathematical functions to work with multidimensional arrays and matrices. In the
example, it is used to create random inputs to feed the operations. Line 4 defines a
TensorFlow scope (delimited by the with statement) that we use to specify the device
on which we want to execute the operations (here, the GPU). Then, this information
is stored in the execution context and is referred to during the subsequent steps of
the process. Line 5 uses the NumPy package to initialize a Python variable, storing a
random matrix of shape 64 × 64 and of default data type (i.e., float64). Despite being
called in the TensorFlow scope, this operation is independent of TensorFlow and does
not invoke any TensorFlow runtime functionality.
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Line 6 executes in multiple steps. The first step executes the same operation as
Line 5: it creates a random matrix of shape 64 × 64 and of type float64. The second
step is a call to the TensorFlow operation tf.constant. The execution of this operation
is then taken up by the TensorFlow eager execution runtime. The runtime starts with
the canonicalization of the input to a Tensor a : it allocates host memory to store the
resulting Tensor and copies the actual data of the matrix to the Tensor. The type and
shape of the Tensor data follow the shape and type of the NumPy matrix: 64 × 64 and
float64. Then, the Tensor is linked to a TensorHandle b that lives in the CPU. The run-
time creates an Op object c which gathers: the operation name (i.e., EagerConst is the
tf.constant operation name), the newly created TensorHandle, and no attributes (the
operation does not have any). Next, the runtime selects the target device (i.e., GPU as
specified by the TensorFlow scope in Line 4 and stored in the execution context) and
the kernel to run (IdentityOp for executing tf.constant in the GPU) d . The runtime
validates the placement of the input e , which should also be in the GPU. However,
the input TensorHandle currently lives in CPU memory, so the runtime creates a Copy-
ToDevice node to execute the required data transfer and inserts it in the scheduling
queue. Then, the runtime moves to the node scheduling of the tf.constant operation
f : creating a TensorHandle for the output (linked to a FutureTensor and lives on the

GPU device) and the corresponding node object. Finally, the runtime inserts the node
in the queue before returning the control to Python.

Line 8 follows a very similar process as Line 6 but with four key differences. First,
the tf.matmul operation takes x and y as inputs. While y is already a Tensor, x is still a
NumPy array. Hence, when converting the inputs to Tensors a , the runtime prompts
a tf.constant operation scheduling to ensure the conversion of x and its placement
on the GPU. This tf.constant operation also triggers the creation of a TensorHandle
b which lives on the GPU device. Second, the tf.matmul Op object c includes the
transpose_b attribute, which is passed as an argument to the device kernel when
executing the node. Third, the runtime selects the GPU as the execution device and
chooses an OpKernel d that is linked to a CUDA kernel, from the cuDNN library,
named volta_dgemm_128x64_tn. Fourth, as the two TensorHandles linked to the
inputs already live in the GPU device, the runtime does not need to prompt any data
transfer (i.e., no CopyToDevice node is created).

Line 10 launches the execution of the tf.nn.relu operation, which follows the same
process as the previous operation but with some simplifications. As its input is already
a Tensor and lives on the GPU device, the runtime skips the conversion to Tensor a
and the CopyToDevice node when validating the placement of the input e . This oper-
ation is linked to a GPU kernel named Relu_GPU_DT_DOUBLE_DT_DOUBLE_kernel.
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Line 12 calls the Python print function on the Tensor z. This function is over-
loaded by TensorFlow: when the print function is called on a Tensor, the runtime
uses the corresponding TensorHandle to know where the data is located. In this case,
the data is a FutureTensor in the GPU. Accordingly, the runtime needs to copy the
value of the Tensor z from the GPU to the CPU and convert it to a Python printable
data type (i.e., NumPy array), which is then printed by Python. However, to execute
this operation TensorFlow needs the actual value of the Tensor, which is only produced
after the execution of the tf.nn.relu operation. As a result, the enqueuing thread stalls
and waits for the value of the Tensor z to be produced.

In parallel with the enqueuing thread, the executor thread (i.e., dequeuing thread)
has been processing the nodes in the scheduling queue. For each node, the executor
thread allocates GPU memory for the output g and calls the corresponding GPU ker-
nels f . Once all nodes have been dequeued and executed on the GPU device, the
numerical value of the Tensor z is stored in the GPU memory. Thus, the enqueuing
thread is notified that the value of z is available and resumes processing Line 12. It
sends a Memcpy command to copy the data from the GPU to the host, storing it as a
printable data type (i.e., NumPy array). Finally, the Python interpreter prints the value
of z in the user’s console.

3.3 Analysis

In this section, we present our approach to estimating the runtime performance over-
head of TensorFlow eager execution using a target CPU-GPU tandem. We leverage
TensorFlow profiling capabilities to analyze TensorFlow eager execution on a given
workload. From this analysis, we extract three key metrics: the share of the execu-
tion time spent in CPU or GPU kernel execution, the distribution of the execution time
across the different phases of eager execution for each operation, and the scheduling
queue utilization over time.

3.3.1 TensorFlow profiling capabilities

As described in Chapter 2, TensorFlow offers a profiling tool to analyze the perfor-
mance of a model (i.e., TensorFlow Profiler [149]). This profiler collects performance
data to help understand hardware resource utilization and identify performance bot-
tlenecks in the model. It collects profiling data sent by the TensorFlow runtime (e.g.,
the execution time of operations and functions of the runtime) and device metrics (e.g.,
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kernel execution times, memory usage) recovered using the NVIDIA CUDA Profiling
Tools Interface (CUPTI) [111]. Based on the collected data, TensorFlow offers different
visualization tools (i.e., TensorBoard [142]) to gain insight into the input pipeline of the
executed model, the distribution of TensorFlow operations between host and device,
statistics about GPU and CPU kernels, memory profiling, and training statistics.

These tools provided by the profiler focus on helping developers build their models
and help them debug performance for inference and training. However, these tools do
not provide metrics to understand and analyze the inner mechanisms of the Tensor-
Flow runtime. This makes the user unaware of the performance overhead introduced
by the framework itself, and the optimization choices made by the runtime. Thus,
in this section, we propose to extend the profiler with new analysis metrics to gain a
further understanding of how the framework optimizes and schedules the execution
of operations. Fortunately, the data gathered by the profiler are saved in local JSON
files during execution. Therefore, we can leverage these data to provide new metrics
and analysis to highlight how the framework optimizes and schedules the execution
of operations. We open source these extensions [144] and hope to help average users
harness the full power of the TensorFlow eager runtime.

3.3.2 Time spent in kernel execution

For a TensorFlow program to achieve high performance, the time spent executing CPU
and GPU kernels, which correspond to the real operations in the ML model, should
dominate the total execution time. In practice, however, an ML runtime also needs to
execute other enabling tasks such as parsing the Python code, copying data between
CPU and GPU, etc.

Our first analysis goal is to provide insight into how execution time is divided
between kernel execution and the rest, which we consider to be the overhead of the
runtime (annotated “Runtime Overhead” on Fig. 3.2). To this end, we evaluate the dis-
tribution of execution time by parsing the data gathered by the TensorFlow profiling
tool. We distribute the profiled events between three categories: CPU kernel execution,
GPU kernel execution, and the rest of the execution. Additionally, when executing on a
CPU-GPU tandem, the CPU and GPU kernel execution times can overlap, which is the
best-case scenario regarding computing resource utilization (like in Fig. 3.2b). Thus,
we also track how often this happens.
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Figure 3.2: Phases of TensorFlow eager execution (ASYNC)

3.3.3 Time distribution across eager execution phases

The TensorFlow eager execution of an operation (described in Section 3.2) can be di-
vided into three major phases as shown in Fig. 3.1: enqueuing 1 , dequeuing 2 , and
kernel execution 3 . Fig. 3.2 illustrates the phases for two different scenarios: (a) CPU-
only execution, and (b) CPU-GPU tandem execution.

First, the TensorFlow runtime handles the groundwork of execution: collecting in-
put data and attributes for the operation, selecting a device on which to execute and a
corresponding kernel, and packaging everything into a node. This node will be either:
executed directly by the executor thread (i.e., dequeuing thread), stalling the enqueu-
ing thread (SYNC mode); or, queued for later execution, releasing control of the en-
queuing thread (ASYNC mode). The enqueuing and dequeuing threads are both run-
ning on the host. We define this part of the execution as the enqueuing ( 1 in Fig. 3.2).

Second, as soon as a node is placed in the queue, the executor thread handles the
last steps before the kernel execution: allocating memory for the output, instantiating
the kernel to execute, and calling the kernel execution on the targeted device. We define
this second phase of the operation execution as the dequeuing ( 2 in Fig. 3.2).

In the case of CPU kernel execution, both dequeuing and CPU kernel execution are
performed by the executor thread. However, we separate CPU kernel execution time
( 3a in Fig. 3.2a) from the rest of the dequeuing ( 2 in Fig. 3.2a).

Finally, the executor thread issues the corresponding kernel(s) to the targeted de-
vice for execution ( 3a and 3b in Fig. 3.2a and 3.2b, respectively). As our host/device
execution target is a CPU-GPU tandem, this third phase of the execution corresponds
to GPU kernel execution, for most of the operations. However, some operations have
only a CPU kernel (see Section 3.2.1). In such case, the execution corresponds to CPU
kernel execution time. Thanks to the stream mechanism (described in Section 3.2.4), data
transfers between CPU and GPU can occur while a GPU kernel is executed.
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The time spent enqueuing and dequeuing has to be shorter than the kernel exe-
cution to take advantage of the latency hiding mechanisms described in Section 3.2.
Thus, we also analyze the distribution of the execution times of each phase.

3.3.4 Utilization of the scheduling queue

As described in Section 3.2, TensorFlow eager execution includes a mechanism to hide
node execution scheduling time: the scheduling queue. The last part of our analysis fo-
cuses on the utilization of this scheduling queue. To this end, we study the dequeuing
phase and the kernel execution phase with two different metrics: scheduling queue uti-
lization over time, and the distributions of the execution time between phases, when
the scheduling queue is empty or not empty (i.e., loaded with at least one node).

To profile the utilization of the scheduling queue over time, we use the rest of the
profiling events (not sorted as kernel execution) at our disposal and distribute them
in two new categories: enqueuing events and dequeuing events. We use these two
categories to deduce the utilization of the scheduling queue over time. We assume
that a node is in the queue from the end of the enqueuing phase until the beginning
of the dequeuing phase. With this assumption, we can recreate the scheduling queue
utilization over time.

The role of the scheduling queue is to hide the node execution scheduling time.
Thus, we cross-analyze this queue utilization with kernel execution timings and de-
queuing timings. We consider three scenarios:

1. When CPU or GPU kernels are executing, the scheduling time is masked regard-
less of the utilization of the scheduling queue (annotated “kernel exec.” time in
Fig. 3.3). This is the ideal scenario.

2. When the executor thread is active (i.e., the thread is dequeuing a node from the
scheduling queue), the scheduling time is masked regardless of the scheduling
queue utilization (annotated “Runtime overhead: dequeuing node” in Fig. 3.3).
While this case is less ideal (and still considered runtime overhead), it still shows
that the scheduling queue is being used.

3. When the executor thread is stalling, waiting for the enqueuing thread to insert
a node in the queue (annotated “Runtime overhead” in Fig. 3.3), the scheduling
queue is underutilized (i.e., the dequeuing thread is starved).
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3.4 Results

In this section, we use the approach from Section 3.3 to analyze TensorFlow eager ex-
ecution on three inference workloads: two Convolutional Neural Networks (CNNs)
(i.e., LeNet-5 and ResNet-50) and a Transformer-based model (i.e., BERT). The two
CNNs are tried-and-tested models in the research community and are mainly used for
image classification tasks. The BERT model, more recent, is one of the first Transformer-
based models and represents a baseline for Natural Language Processing (NLP) tasks.

3.4.1 Experimental setup

To perform our analysis of the TensorFlow eager execution runtime, we used a CPU-
GPU tandem (i.e., two Intel Cascade Lake 6248 with a total of 40 cores and 192GB of
RAM, paired with an NVIDIA V100 with 32GB of dedicated RAM). We use Tensor-
Flow [2] v2.8.0 as the target framework for our experiments.

The LeNet-5 model is recreated using TensorFlow, following the 1989 paper from
LeCun et al. [88]. We use the ResNet-50 pre-trained model from the TensorFlow API
Keras Applications [146], which follows the architecture described by He et al. [63].
The BERT pre-trained model is retrieved from the HuggingFace library [16] and fol-
lows the architecture described by Devlin et al. [50]. We execute the inference in the
pre-trained models on TensorFlow with three representative batch sizes (one, medium,
and high) chosen experimentally for each model and according to the memory restric-
tions of the hardware. For each experiment, we run the inference once with the same
batch size before profiling the execution. This enables us to compare our workloads
with already cached OpKernels, avoiding irregularities (e.g., red_zone_checker
kernel checks) in the execution time due to kernel instantiations.
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3.4.2 Kernel execution time

We evaluate the share of the execution time dedicated to CPU and GPU kernel execu-
tion running on both our CPU-only target and our CPU-GPU tandem. We also evaluate
the execution time per item (i.e., execution time divided by batch size) using the same
workloads on the same platforms.

Fig. 3.4 (top) shows the execution time distribution (between CPU kernel execution,
GPU kernel execution, and the rest) for LeNet-5 (a), ResNet-50 (b), and BERT (c). We
make three observations. First, all the workloads show an increase in kernel execution
share when increasing the batch size, both when executing on CPU-only and on CPU-
GPU tandem. For example, on a CPU-GPU tandem, the LeNet-5 kernel execution time
increases from 5% to 24% for a batch size of 1 and 8192 images (28×28 black and white),
respectively; the ResNet-50 kernel execution time increases from 7% to 75% for a batch
size of 1 and 128 images (224 × 224 RGB), respectively; and the BERT kernel execu-
tion time increases from 5% to 22% for a batch size of 1 and 2048 sentences (512 tokens
long), respectively. Second, the execution time of the CPU kernels becomes negligible
when running on a CPU-GPU tandem. We observe that 3% of the execution time is
spent in CPU kernel execution on average. In addition, the concurrent execution time
between CPU and GPU kernel executions, which we include as part of the GPU kernel
execution time in the figure, represents less than 1% of the total execution time. This
shows that TensorFlow manages to use the GPU for most of the kernel execution when
computing on large batch sizes. However, for small batch sizes, we can see that CPU
kernel execution time can be higher than GPU kernel execution time. Finally, the over-
head of the framework (i.e., Other in Fig. 3.4) is considerable across all the workloads
when using small batch sizes. It represents 95% of the execution time when running
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LeNet-5 on a CPU-GPU tandem with a single image. For the remaining workloads ex-
ecuting on a CPU-GPU tandem, it represents more than half of the execution time. The
only exception being the ResNet-50 with a batch size of 128 images, where the frame-
work overhead is reduced to 23% of the total execution time. We see two main reasons
for explaining this behavior. The first reason is that, when using a CPU-GPU tandem,
operations executed on the GPU are executed faster, compared to only executing on
a CPU target, thanks to the acceleration provided by the GPU device. This results in
less GPU kernel computing time, leading the framework scheduling to be dominant.
This fact is coupled with the second reason, which is intrinsic to how eager execution
works. Eager execution has to schedule every operation one by one. Hence, for the
latency of the framework to be negligible for one operation, its enqueuing time has to
be significantly shorter than the execution time of its kernel.

Fig. 3.4 (bottom) shows the execution time per item, for LeNet-5 (a), ResNet-50
(b), and BERT (c). We observe that the execution time per item drastically reduces
as the batch size increases. For example, the execution time per sentence of BERT
becomes 37× and 2019× faster when increasing the batch size from 1 to 2048, running
on a CPU-only and CPU-GPU tandem, respectively. LeNet-5 and ResNet-50 follow the
same trend, exhibiting performance improvements per image of 7000× and 100× when
increasing their respective batch sizes.

3.4.3 Time distribution between eager execution phases

We evaluate the distribution of the execution times of the different execution phases in
the eager execution of all the operations of each workload.

Fig. 3.5 shows the distribution of the operations execution time between enqueu-
ing time, dequeuing time, GPU execution time, and CPU execution time for LeNet-5
(a), ResNet-50 (b), and BERT (c). Each distribution includes a marker to indicate the
minimum, mean, and maximum values. We make three observations.

First, the enqueuing, dequeuing, and CPU execution times are largely independent
of the batch size. We observe that the average enqueuing latency is around 0.1ms for
each of our workloads. Although increasing the batch size induces larger kernels to
run, this does not affect on the time needed to enqueue and dequeue the operations to
and from the scheduling queue. Moreover, this batch size increase does not affect CPU
kernel execution time. GPUs are more optimized to run highly dimensional computa-
tions. Hence, TensorFlow seems to map to GPU kernels most of the operations whose
computational complexity is affected by the batch size.
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Second, the GPU execution time increases with the batch size. LeNet-5 goes from
an average of 6µs to 180µs of GPU execution time when increasing the batch size from
1 to 8192 images. The average GPU execution time of ResNet-50 goes from 12µs to
500µs when increasing the batch size from 1 to 128 images. Finally, BERT goes from an
average of 6µs to 200µs when increasing the batch size from 1 to 2048 sentences. This
supports our previous observations, as larger batch sizes induce larger kernel runs,
which results in relatively more GPU execution time. This is consistent with previous
observations from the state-of-the-art [81, 82].

Third, the enqueuing time is shorter than the dequeuing time, independently of the
batch size. Throughout all the workloads, the average dequeuing time is around 2×
the average enqueuing time.
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Figure 3.6: Execution time distribution with respect to the utilization of the scheduling queue

3.4.4 Utilization of the scheduling queue

We study the utilization of the scheduling queue and the corresponding execution time
distribution across five categories: GPU kernel execution time, CPU kernel execution
time, dequeuing time, memory transfer time, and waiting time (i.e., rest of the execu-
tion). When several categories apply simultaneously, we prioritize the first category in
this list. For example, we classify the concurrent time of GPU kernel execution and de-
queuing as GPU kernel execution time. Fig. 3.6 shows the execution time distribution
with respect to the utilization of the scheduling queue for LeNet-5 (a), ResNet-50 (b),
and BERT (c). We make three observations.

First, the utilization of the scheduling queue of the CNN workloads increases when
increasing the batch size. The ResNet-50 goes from 8ms of queue utilization time to
around 25ms (3.1×) when increasing the batch size from 1 to 128. The LeNet-5 queue
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utilization also grows 3× when increasing the batch size from 1 to 8192. In contrast,
the utilization of the queue is minimally affected by the batch size in the case of BERT.

Second, the scheduling queue is empty during most of the execution time. BERT
exhibits an empty queue for 72% of its execution time in all batch sizes. ResNet-50 has
an empty queue for 86% (58%) of the time for a batch size of 1 (128) images.

Third, the waiting time represents a lower portion of the total execution time when
increasing the batch size. BERT and ResNet-50 spend 10% and 31% less time waiting
when increasing their batch sizes from 1 to 2048 and 128, respectively. However, we
observe an exception with LeNet-5: when the queue is loaded, the time spent waiting
for a node to be enqueued represents 64% for a batch size of 1 and 82% for a batch size
of 8192 images.
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Figure 3.7: Utilization of the scheduling queue over time for LeNet-5 (a), ResNet-50 (b), and
BERT (c) inference on a CPU-GPU tandem



44 Chapter 3. A Deep Dive into Modern ML Frameworks

To further understand the observed behaviors, Fig. 3.7 shows the utilization of the
scheduling queue for LeNet-5 (a), ResNet-50 (b), and BERT (c) inference on a CPU-GPU
tandem. We add annotations to the figures to indicate when the enqueuing thread is
waiting for values to be computed and to show the data transfer timings. We make
two additional observations.

First, the LeNet-5 execution spends a considerable amount of time on data transfers,
which can explain the previously described behavior of spending a lot of time waiting
when the queue is loaded. Indeed, when subtracting the data transfer time from the
waiting time, the remaining waiting time represents 64% with a batch size of 1 and
only 28% with a batch size of 8192 images.

Second, workloads spend most of the time waiting for values to be computed. This
limits the opportunities for the host program to advance enqueuing in parallel with
kernel executions. The zoomed part on Fig. 3.7c shows that the dequeuing thread emp-
ties the queue while the enqueuing thread waits for a value to be computed. Overall,
while BERT uses the queue more than the two tested CNNs, the queue seems to be
under-utilized most of the time during inference.

3.5 Related works

To the best of our knowledge, this work is the first to provide a detailed description
and analysis of the TensorFlow eager execution runtime. In this section, we identify
two areas of related works that are relevant to our contributions.

On the one hand, there have been efforts around providing ML profiling platforms.
However, these works are either dedicated to specific workloads [58] or evaluate the
framework overhead without analyzing the execution of the runtime in detail [90, 91].
Our work is complementary to these contributions, as it provides a clear description
of an ML framework mechanism. The new insights can be used on top of the ones
provided by current profiling platforms.

On the other hand, popular ML frameworks provide specific profiling tools for de-
velopers to analyze the performance of their model [100, 124, 149], and optimize the
performance from a high level. However, these tools combine application-level analy-
sis with low-level information, which is often difficult to interpret by an average user.
They do not include an accessible analysis of the performance of the inner mechanism
of their specific frameworks. In this chapter, we aim to bridge this gap and provide
new accessible insights on the TensorFlow framework runtime.
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3.6 Concluding thoughts and summary

In this chapter, we provide a detailed analysis of the TensorFlow eager execution run-
time, we have reviewed the key concerns applicable to any execution mode (e.g.,
hiding the framework latency, maximizing utilization of the accelerator). Hence, the
principles demonstrated through our analysis can also be applied to other execution
modes. While variations exist between these different modes, the foundational con-
cepts remain consistent. For example, different decisions could be made regarding
which parts of the execution plan are resolved at design time instead of run time, or
regarding the scope of the optimizations. However, the main optimization objectives
will remain the same: the ML framework has to be as little invasive as possible regard-
ing the execution time and execute faster to help maximize the utilization of the device
(here, the GPU).

To this end, in this first chapter, we provide a detailed description of the Tensor-
Flow eager execution runtime and propose new metrics to analyze its performance
overhead. This contribution is presented in three main parts.

First, in section 3.2, we describe the main steps followed by the TensorFlow eager
execution runtime to run code on a CPU-GPU tandem. We show how the runtime can
leverage a scheduling queue to parallelize some of the long-running operations needed
to run inference on a CPU-GPU tandem. We also use a simple illustrative example to
show this mechanism in action.

Second, in section 3.3, we identify potential bottlenecks in the TensorFlow eager
execution runtime and propose new metrics to analyze the performance overhead of
the ML framework. These metrics help identify the time spent executing kernels, the
distribution of the execution time between the main phases of the runtime execution,
and the effectiveness of the scheduling queue to hide the runtime overhead.

Finally, in section 3.4, we use our described approach to conduct in-depth profiling
of the inference process of two CNNs (LeNet-5 and ResNet-50) and a Transformer-
based model (BERT) for different batch sizes. Our results show that the runtime over-
head of the ML framework is reduced considerably when operating with larger CPU
and GPU kernels. However, we also show that the overhead could become signifi-
cant when GPU kernel execution is not long enough to hide the framework’s runtime
latency. We believe that this work highlights the need to better understand ML frame-
work’s bottlenecks.
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4.1 Context and motivation

In the previous chapter, we presented a deep dive into how modern Machine Learning
(ML) frameworks execute the inference process of ML models. While inference is the
most frequent use case for users of ML applications, training is the main application
driving the evolution of modern ML accelerators. Although extensive research is con-
ducted in new specialized accelerator design [126], Graphics Processing Units (GPUs)
remain the prevailing architecture when it comes to training ML models. As mentioned
in Chapter 1, the GPU architecture has evolved over the years to improve latency and
throughput for different types of workloads. For example, NVIDIA added a cache
hierarchy to the Fermi architecture in 2010 [108], (enabling hardware-automated data
reuse) and tensor cores to the Volta architecture in 2017 [109] (accelerating matrix mul-
tiplications [141]). However, throughput and latency improvements can be achieved
through brute-force approaches. For example, increasing the number of cores or the
memory bandwidth can improve the overall performance of the GPU (i.e., scaling up).
Such scaling up can lead to a less well-balanced use of the computing resources across
the architecture (e.g., underutilized cores). Thus, wasting area/cost and inducing en-
ergy overheads.

Designing more compute-efficient ML accelerators relies on an accurate under-
standing of how efficiently ML training workloads use the computing resources of
modern architectures, such as GPUs. However, the design of modern GPUs is intri-
cate and proprietary. In addition, as detailed in Chapter 3, the interactions between
GPUs and ML frameworks rely on complex runtimes and optimized closed-source li-
braries [34]. This makes gathering performance metrics tedious as it requires using
multiple profiling tools across different abstraction layers to get a complete picture of
the execution. Hence, design decisions are often based on high-level or low-level metrics.
On the one hand, high-level metrics (e.g., GPU utilization) can be misleading because
they may not reflect the utilization of the internal components of the GPU architecture.
On the other hand, low-level metrics (e.g., tensor cores utilization) cannot capture the
efficiency of the host/device interactions happening at a higher level.

Using ML frameworks profilers, such as the TensorFlow Profiler [148], we can mea-
sure the GPU utilization and the throughput of the training process. GPU utilization
is defined as the proportion of time the GPU is actively used (i.e., using GPU kernels)
during training time. One could argue that a higher GPU utilization is desirable, as
it signifies that the training process can consistently harness the acceleration potential
of the GPU architecture. In practice, however, certain training processes can attain
shorter training times by compromising GPU utilization. As an illustration, let’s con-
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sider one training loop of ResNet-50 running on a CPU-GPU tandem. Fig. 4.1a shows
the GPU utilization and throughput when training ResNet-50 on the NVIDIA A100
GPU with different batch sizes, using Full Precision (FP) and Mixed Precision (MP)
training. Here, we can observe that while FP achieves better GPU utilization with
small batch sizes compared to MP, this difference gets lower when using large batches.
Looking at throughput (normalized by highest achieved value), we can observe that
while FP saturates throughput around 64 images per batch, MP scales much better
and achieves higher throughput for large batches. Fig. 4.1b shows the relative gains
in GPU utilization and throughput when using MP over FP for the same training loop
and batch sizes. This second representation of the results makes it easier to see the
relative gains that MP brings to GPU utilization and throughput. For GPU utilization,
relative gains are always negative, down to around −15% for batch sizes of 16 and 32
images. However, looking at throughput, positive gains start to appear when using
MP above 16 images per batch and rise to +39% for batches of 512 images. Hence, this
shows that some software optimizations (e.g., MP) can sacrifice some GPU utilization
to achieve far better throughput.
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Figure 4.1: GPU utilization and throughput training ResNet-50 with different batch sizes.

Our main goal in this chapter is to evaluate how efficiently ML training workloads
use the computing resources of modern GPUs.

To this end, we propose a multi-level analysis of GPU computing resource utiliza-
tion for ML training workloads. We first describe an ideal reference execution of a
GPU-accelerated ML training loop and identify relevant metrics that can be measured
using existing profiling tools. Then, we propose a methodology that combines traces
from these profiling tools to evaluate the utilization of the GPU computing resources
at different levels of abstraction. This methodology circumvents the limitations of the
state-of-the-art by gathering coarse-grain and fine-grain metrics to propose a multi-
level view of GPU utilization. Hence, this methodology allows for new insights into
the execution of ML training on modern GPU architectures. Thus, we implement this
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methodology on two modern GPUs (i.e., NVIDIA V100 and A100). Finally, we ana-
lyze the impact of different software optimizations (e.g., mixed-precision, various ML
frameworks, and execution modes) on throughput, memory usage, and multi-level
utilization of the GPU resources.

Figure 4.2: Multi-level utilization of the GPU computing resources

4.2 Efficient ML training loop execution on GPU

In this section, we describe a reference execution as an ideal GPU-accelerated ML train-
ing loop execution. We analyze the execution at different levels of hardware abstraction
(i.e., GPU, Streaming Multiprocessor (SM) and Tensor Core (TC)). For each abstraction
level, we identify metrics that can be measured to evaluate the utilization of the GPU
computing resources. Fig. 4.2 illustrates (a) the different abstraction levels considered
in our analysis and (b) the boundaries of the utilization for each level.

GPU level. As defined by the ML framework profilers [122, 124, 148], GPU utilization
is the ratio time executing GPU kernels over the total execution time. The time during
which no kernel is being executed is the ML framework overhead. At runtime, for each
GPU-compatible operation that has to be executed, the ML framework has to launch
one or multiple kernels on the GPU. Before launching the kernels, the framework
needs to execute other enabling tasks on the CPU, such as parsing the Python code,
copying data between CPU and GPU, compiling the kernels (i.e., Just-In-Time (JIT)
compilation), launching the kernels, synchronizing the GPU, etc. While the CPU can
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also execute kernel operations for the ML model, we show in Chapter 3 that, when
a GPU is available, the CPU is mainly used to run these enabling tasks. Hence, all
CPU time not hidden by the GPU execution time can be considered as ML framework
overhead. Ideally, this setup time would be entirely hidden by the parallel execution of
previously launched GPU kernels. However, in practice, the setup time creates bubbles
of GPU inactivity (see Fig. 4.3a), reducing GPU utilization.

(a)

(b)

Figure 4.3: (a) Typical eager execution trace; (b) CPU and GPU events are listed in the ML
profiler trace file; GPU’s performance counters are listed in the GPU profiler report

GPU utilization can increase either by extending kernel execution time or reducing
the ML framework overhead. In practice, a common and easy way to extend the kernel
execution time without changing the model is to increase the batch size of the training
workload. While changing the batch size can impact how fast the model converges
during training, this can be mitigated by adjusting the learning rate accordingly [134].

However, an increased batch size results in GPU kernels operating on larger data.
Thus, the available GPU memory limits the maximum batch size that can be used. Typ-
ically, increasing the batch size has a negligible impact on the framework overhead as
the same number of kernels are launched. Reducing the ML framework’s overhead
can be done using more optimized modes of execution than eager (e.g., JIT compile).
As described in Chapter 2, these modes leave the flexibility and debugging straightfor-
wardness of Python [62] (e.g., line-by-line debugging, high-level code interpretation)
to enable high-level code transformations or optimizations across multiple operations
of the model (e.g., dead code elimination, constant folding, arithmetic simplification,
kernel fusion).
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As shown in Section 4.1, GPU utilization alone can be misleading when it comes
to evaluating performance, as it only shows how well the setup time is hidden by
the execution of GPU kernels. Throughput, defined as the number of input samples
processed per second, is a better metric to compare different workloads, but it lacks
specificity in pinpointing performance bottlenecks. By looking at GPU utilization to-
gether with the achieved throughput, we can compare the performance of different
workloads from a high-level perspective. However, this high-level analysis does not
provide insights into the utilization of the inner computing resources of the GPU archi-
tecture. Hence, metrics have to be gathered at a finer granularity, using performance
counters for events happening at the microarchitectural level.

SM level. When a GPU kernel is launched, its threads are grouped in thread blocks
and automatically distributed across multiple SMs by the thread block scheduler. The
scheduler keeps SM busy by distributing the thread blocks evenly (i.e., load balanc-
ing). However, during the beginning and end of the execution, some SMs may run
out of thread blocks to execute. This can lead to SM underutilization [120]. At a given
cycle, we consider an SM as active if it has at least one warp to execute (i.e., a set of
32 threads executing the same instruction). SMs of modern NVIDIA GPUs are com-
posed of four subpartitions. For finer granularity, we choose to evaluate utilization at
Streaming Multiprocessor Sub-Partition (SMSP) level. We define SMSP active utiliza-
tion as the number of active SMSP cycles over the total number of elapsed cycles on the
GPU. Hence, the difference between GPU utilization and SMSP active utilization eval-
uates the ability of the GPU schedulers (thread block scheduler and warp scheduler)
to effectively parallelize threads across SMSPs.

An active SMSP does not necessarily imply that warp instructions are being issued.
Indeed, the warp scheduler (internal to the SMSP) can stall the issuing of a warp in-
struction for different reasons (e.g., waiting for data to be fetched from memory, or
waiting for a dependent instruction to finish execution). A cycle during which the
warp scheduler is stalled (i.e., cannot issue any instruction to the GPU cores) is called
stall cycle. Otherwise, the cycle is called issue cycle (i.e., the warp scheduler issues an
instruction to the GPU cores). We define the SMSP issue slot utilization as the ratio of
issue cycles over the total number of elapsed cycles on the SMSP. In modern GPUs,
each SMSP can issue one warp instruction per active cycle. Hence, the SMSP active
utilization is an upper bound for the SMSP issue slot utilization (see Fig. 4.2b).

Tensor core level. Tensor cores (TC) are specialized GPU cores designed to accelerate
matrix multiplications. As a result, peak GPU FLOPS performance can only be ach-
ieved through the use of tensor cores. For example, the NVIDIA A100 can achieve
19.5 TFLOPS executing FP32 operations with classic FP32 cores, but when using ten-
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sor cores, it can achieve 156 TFLOPS (and up to 312 TFLOPS when exploiting spar-
sity [104]).

Ideally, maximizing the tensor core utilization relies on three conditions. First, the
number of TC active cycles should dominate the total number of active SMSP cycles
(i.e., SMSP active utilization). As tensor cores are part of the SMSP, SMSP active utiliza-
tion is an upper bound for TC active utilization. Second, the number of TC instructions
should dominate the total number of issued instructions (i.e., SMSP issue slot utiliza-
tion). As tensor cores are also limited to one instruction per cycle, TC active utilization
is an upper bound for TC issue slot utilization. Finally, the issued TC instructions
should achieve peak throughput of the tensor cores. Due to the latency and instruction
bandwidth of the tensor cores, this last condition is frequently not met [141].

4.3 Proposed profiling methodology

In this section, we describe our profiling approach to evaluate the utilization of GPU
computing resources at different abstraction levels. We first describe the scope of our
profiling analysis and give insights into the expected profiling overhead. Then, we
detail how to gather the previously described metrics using existing profiling tools.
Finally, we propose a systematic methodology to combine the gathered metrics from
the different profiling tools to analyze the execution of the ML training workload.

4.3.1 Profiling scope

Training an ML model can take hours or even days, depending on the complexity of
the model and the size of the training dataset. While the first few iterations might have
bigger variations in the operations to execute (i.e., due to initialization steps in the soft-
ware), the greater proportion of the training is more stable and comprises thousands
of identical iterations where the ML model is trained on different batches of data from
the training dataset (see Chapter 2).

Thus, profiling the complete training workload is impractical due to the profiling
overhead added by the profiling tools. For example, as described in Chapter 2, when
gathering low-level metrics using NVIDIA Nsight Compute [114], kernels might have
to be executed multiple times to gather all the required metrics (i.e., kernel replay).
To circumvent this, we limit our scope to a single iteration. To select the target it-
eration, we preliminary run multiple iterations of the training workload. From this
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preliminary run, we select the first iteration with a stable execution time, thus ignoring
the iterations that include initialization overheads. These overheads are negligible in
comparison with the overall training time and do not reflect the characteristics of an
average training iteration.

Before starting the training, the ML framework could also execute data preprocess-
ing steps on the Central Processing Unit (CPU) (see Fig. 4.3a). As we are interested in
the efficiency of the GPU architecture, we ignore these steps. This way, our profiling
scope still includes the CPU time spent orchestrating the GPU execution (i.e., the GPU
utilization is not always at 100%), in addition to the GPU kernel execution time itself.

4.3.2 Gathering high-level and low-level metrics

We gather high-level metrics from ML framework profilers and low-level metrics from
the GPU kernel profiler. The ML framework profilers (i.e., TensorFlow Profiler [148] or
PyTorch Profiler [124]) provide the list of events as JSON files that we parse to gather
our metrics of interest. We list the selected high-level metrics at the top of Table 4.1.
Instead, the GPU kernel profiler (i.e., NVIDIA Nsight Compute [114]) provides a report
file that lists all the executed kernels during the profiled iteration along with the values
of the GPU performance counters. Hence, we aggregate the low-level metrics from
the different kernels to evaluate the utilization of the GPU computing resources. For
example, SMSP elapsed cycles are the sum of the cycles elapsed at the SMSP level for
all the kernels. We list the selected low-level metrics at the bottom of Table 4.1.

Note that the tensor core metrics that we gather only cover two of the three condi-
tions required to achieve peak tensor core utilization (described in Section 4.3). This
limitation is because the GPU profiler only provides the total number of instructions
that have been issued to the tensor cores, without distinguishing between their differ-
ent types and achieved FLOPS. Hence, we evaluate tensor core utilization between two
bounds: (1) the ratio of tensor core instructions over the number of issued instructions
(i.e., TC issue slot utilization), and (2) the ratio of active tensor core cycles over the
amount of active SMSP cycles (i.e., TC active utilization).

4.3.3 Coherent integration of traces

Analyzing the profiled metrics for the complete training iteration is straightforward
using the selected metrics. In fact, by matching the GPU kernel execution time (i.e.,
high-level metric) with the SMSP elapsed cycles (i.e., low-level metric), we can eval-
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uate the lower-level utilization of the GPU computing resources (i.e., SMSP and TC
utilization) relative to the high-level utilization (i.e., GPU utilization). However, when
it comes to analyzing the profiled metrics at a finer granularity of ML model architec-
tures (e.g., per layer type), linking the high-level and low-level metrics becomes more
challenging. On the one hand, the ML framework profiler does not gather the low-
level metrics from the GPU performance counters for each kernel. On the other hand,
the GPU kernel profiler cannot provide neither kernel timings, nor any information re-
garding the ML framework runtime. Hence, GPU kernels have to be matched between
both profiler traces (i.e., ML profiler trace and GPU profiler report).

Previous works have done this matching by running a second tracer tool in parallel
with the ML profiler [91]. This approach relies on manually implementing support for
a tracing library (e.g., CUPTI [111]) with the target application. This allows to observe
the profiling results in real-time but may introduce additional overheads on the pro-
filed system. In contrast, our approach leverages existing profiling tools (i.e., Nsight
Compute [114]) and can be performed without any adaptation to the target applica-
tion. We propose to match the GPU kernels offline, after the gathering of the profiling
traces. This is done by comparing kernel metrics that are common between both pro-
filing tools (e.g., kernel name, block and thread dimensions, kernel duration, memory
usage, etc.). Based on these metrics, we establish a correlation matrix between the
kernels from the ML profiler trace and the kernels from the GPU profiler report. We
then use this correlation matrix to identify the corresponding kernels and combine both
high-level and low-level metrics. Hence, instead of matching kernels only using times-
tamps (which can be rendered useless in the case of kernel replay [40]), this approach
provides a stronger matching between the kernels as it verifies multiple execution pa-
rameters for each kernel.

In addition to matching the kernels between the two traces, we also programmati-
cally analyze the ML profiler trace to identify the different layers of the ML model and
annotate the kernels accordingly. This allows us to group the kernels by layer type and
evaluate the utilization of the GPU computing resources at a finer granularity.

4.4 Experimental setup

Workloads. We choose three well-known supervised Deep Learning (DL) workloads
(i.e., ResNet-50, BERT, and DLRM) from the MLPerf training benchmark suite [95],
which is a widely used benchmark suite for DL training workloads. These models
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Table 4.1: High-level (top) and low-level (bottom) metrics

Name Description

Total execution time Total duration of the traced iteration
GPU kernel exec. time Aggregate duration of all the GPU events
GPU utilization GPU kernel exec. time / Total execution time
Achieved throughput Batch size / Total execution time

SMSP elapsed cycles Elapsed GPU cycles counted at SMSP level
SMSP active cycles SMSP cycles with at least 1 warp active
SMSP active utilization SMSP active cycles / SMSP elapsed cycles
SMSP issue cycles SMSP cycles with an instruction issued
SMSP issue slot utilization SMSP issue cycles / SMSP elapsed cycles
TC active cycles SMSP cycles with at least 1 active tensor core
TC active utilization TC active cycles / SMSP elapsed cycles
TC issue cycles Number of tensor core instructions issued
TC issue slot utilization TC issue cycles / SMSP elapsed cycles

are representative of common ML model architectures such as Convolutional Neu-
ral Network (CNN), Transformer-based, and recommendation models, respectively.
ResNet-50 [63] and BERT [50], introduced in Chapter 3, are tried-and-tested models in
the research community and are used for image classification and Natural Language
Processing (NLP) tasks, respectively. DLRM [103] is a state-of-the-art model developed
by Meta (Facebook) that is used as a personalization and recommendation system for
applications such as search ranking, feed ranking, ads/video/content recommenda-
tion, etc. We use PyTorch (PT) and TensorFlow (TF) as reference ML frameworks, due
to their maturity. ResNet-50 (PT), BERT (PT and TF), and DLRM (TF) implementa-
tions are downloaded from the NVIDIA repository [107]. DLRM (PT) implementation
is downloaded from the MLPerf Training benchmarks reference models. ResNet-50
(TF) implementation is provided directly inside the TensorFlow library [158]. All of
the training parameters are chosen following the MLPerf Training benchmarks rules
to ensure a fair comparison between the workloads. Our results show less than 1%
standard deviation in execution time across three runs, for each workload.

Software optimizations. We use PyTorch and TensorFlow with two different execution
modes: eager execution and JIT compilation. For eager execution, we use the respec-
tive default eager execution runtimes of both ML frameworks. For JIT compilation, we
use XLA JIT for TensorFlow workloads and the TorchScript JIT backend for PyTorch
workloads (i.e., the respective default JIT compilation backends). We run each mode
using both FP and MP [123, 147].

GPUs. We use NVIDIA V100 and A100 GPUs, from Volta (2017) and Ampere (2020)
architectures, respectively. The GPUs are paired each with an AMD Milan EPYC 7543
CPU with 32 cores and a 2.8 GHz clock. Despite both of these GPU architectures being
equipped with tensor cores, the V100’s tensor cores can only execute half-precision
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matrix-multiplications. Hence, the full precision workloads we run on the V100 GPU
will not be able to take advantage of tensor cores. Table 4.2 lists the main GPU features.

Profiling tools. We use TensorFlow Profiler [148] and PyTorch Profiler [124] to gather
high-level metrics and NVIDIA Nsight Compute [114] to gather low-level metrics. As
described in Section 4.3.1, we profile one training iteration for each workload. We select
the iteration when the training is in a steady state, without any one-time initialization
overhead (e.g., data preprocessing, data loading, model initialization).

Table 4.2: Main GPU features

NVIDIA A100 NVIDIA V100

Architecture Ampere Volta
SMSPs 432 320
DRAM Memory 80 GiB 32 GiB
Tensor Cores (Peak TFLOPS) 432 (312) 640 (125)

4.5 Results

In this section, we measure and analyze GPU compute efficiency from two perspec-
tives. First, from a high-level analysis, we analyze performance vs. memory utilization
(4.5.1). Then, leveraging the proposed profiling methodology that combines multiple
tools, we analyze the compute resource utilization (4.5.2). Finally, we draw some general
implications and insights considering both analyses (4.5.3).

4.5.1 Overall performance vs. memory utilization

Here, we evaluate the raw performance of the workloads by measuring training through-
put and the allocated GPU memory. These two metrics can easily be obtained using
the high-level profiling tools provided by the ML frameworks. We use these metrics
to characterize the tested workloads and to understand the trade-offs between perfor-
mance and memory utilization. We compare the performance of the workloads across
different batch sizes, ML frameworks, and execution modes.

GPU memory & Batch size. We evaluate raw performance by measuring training
throughput, defined as the amount of processed items per second. We use this metric
as it is commonly used by industry and research-leading benchmarks. For example,
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participants (i.e., companies or research labs) submit their training time (inversely pro-
portional to throughput) results for reference ML models to MLPerf [95] to showcase
the performance of their hardware/software stack.

Fig. 4.4 shows the normalized throughput of running ResNet-50, BERT, and DLRM
with various batch sizes (annotated on the markers) and ML framework options. Fig. 4.4
also shows the corresponding GPU memory allocated (x-axis) for a given batch size,
using both the NVIDIA A100 and V100 GPUs. For clarity, only batch sizes using ≥ 5%
of the respective GPU memory are shown (i.e., ≥ 4 GB for the A100 and ≥ 1.6 GB for
the V100). In this chapter, we mainly comment on a subset of the tested workloads
as an illustration (i.e., ResNet-50 using the A100 Fig. 4.4a and using the V100 4.4b).
However, while the other workloads follow a similar trend, we comment on the major
differences between them.

We can observe that both the amount of GPU memory allocated and the throughput
increase with growing batch sizes. For example, training ResNet-50 using the A100 (see
Fig. 4.4a), transitioning from batches of 128 to 2048 images, TF XLA JIT with mixed
precision achieves a 3.8× increase in throughput, while also allocating around 15×
more GPU memory. However, while the GPU memory allocated grows linearly with
the batch size, throughput saturates when approaching the biggest batch sizes. For the
same example, going from the second biggest batch size (1024) to the biggest batch size
(2048) only increases throughput by 3% for mixed precision and 1% for full precision,
while still doubling (1.98×) the allocated GPU memory.

When using the V100 (see Fig. 4.4b), which has less memory capacity than the A100
(i.e., 32GB vs. 80GB, respectively), this throughput saturation is not as drastic. In com-
parison to the A100, using TF XLA JIT with the V100 still achieves a 58% increase in
throughput when using full precision, going from the penultimate to the last batch
size (128 to 256 images). Even when using mixed precision, the increase in throughput
is still 40% going from the penultimate to the last batch size. These observations for
ResNet-50 are consistent across all tested workloads. These results suggest that the
addition of more memory capacity between the two GPU generations (V100 to A100)
enables the A100 to saturate throughput, eliminating any bottleneck due to limited
GPU memory.

Key takeaway 1. The A100 provides enough memory to saturate throughput, eliminating
utilization gaps caused by limited memory capacity and the push for larger batch sizes.
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Figure 4.4: Normalized throughput vs. GPU memory usage for ResNet-50, BERT, and DLRM
on the NVIDIA A100 and V100 GPUs with different software optimizations. Batch size is an-
notated on the markers.
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ML framework execution modes. We compare memory usage and throughput across
eager execution (i.e., default execution) and JIT compilation for both TF and PT. Fig. 4.4
shows different marker shapes for eager execution (round markers) and JIT compila-
tion (square markers).

We make three observations. First, TF XLA JIT allocates less GPU memory than
TF eager for the same batch size, which increases throughput (as discussed in our first
takeaway). For example, running a TF eager execution requires 65% of the A100’s
memory for a batch size of 512, whereas XLA JIT only requires 48% of the memory for
the same batch size. As a result, XLA JIT can fit larger batches within the GPU memory.
Second, XLA JIT can achieve 8× (25×) higher throughput than TF eager execution in
the A100 (V100). Finally, this reduction in memory usage and increase in throughput is
not as drastic when comparing PT eager and PT TorchScript JIT. In fact, PT TorchScript
JIT requires more memory for a given batch size and achieves higher throughput only
for large batch sizes, compared to PT eager execution.

When comparing precision modes, we can make two observations. First, mixed
precision (markers with gray outline) consistently uses around 50% of the memory al-
located by full precision (markers with blue outline). This enables to fit larger batches
in the same amount of memory, which increases throughput compared to full preci-
sion. In addition, mixed precision provides a boost in throughput for the same re-
spective batch sizes as full precision. For example, using PT, mixed precision achieves
around 1.5× the throughput of full precision for the same batch sizes using the A100,
and 2× using the V100. This boost in throughput is highest when using TF XLA JIT
on the A100 with the biggest batch sizes (i.e., 1024 and 2048), reaching 4.2×. These
observations are consistent across all tested workloads.

Key takeaway 2. JIT compilation and mixed precision increase throughput by fitting larger
batch sizes in GPU memory.

When comparing ML frameworks, we observe that PT eager execution uses less
memory and achieves better throughput than TF eager, particularly with large batch
sizes. For example, using full precision with a batch size of 512, PT eager achieves
1.3× the throughput of TF eager and uses 12% less memory. However, when using
JIT compilation, TF XLA JIT outperforms every other mode of execution, achieving
the best throughput across all batch sizes and using less memory. For example, using
full precision with a batch size of 512, TF XLA JIT achieves 5.8× the throughput of PT
TorchScript JIT and uses 17% less memory. While TF XLA JIT outperforms PT Torch-
Script JIT for ResNet-50 and DLRM, PT TorchScript JIT outperforms TF XLA JIT for
BERT (see Fig. 4.4c and Fig. 4.4d).
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Key takeaway 3. Generally, TF XLA JIT significantly outperforms PT TorchScript JIT in
both throughput and memory.

While the high-level results presented here provide insights into the performance
and memory utilization of the evaluated workloads, they do not provide a detailed
view of the GPU compute resource utilization. Next, we delve deeper into GPU com-
pute resource utilization using the profiling methodology proposed in Section 4.3.

4.5.2 GPU compute resource utilization

Here, we evaluate the utilization of the GPU’s compute resources as GPU utilization,
SMSP utilization, and TC utilization, as described in Section 4.3. Fig. 4.5 shows the
GPU resource utilization at each level for a ResNet-50 TF eager mixed precision run
on the A100 (Fig. 4.5a) and V100 (Fig. 4.5b). We use this run as an illustration of the
measured utilization at different levels of the GPU hardware abstraction for different
batch sizes. Instead, Fig. 4.6 shows the utilization results for all ML models but only
for the batch size achieving the highest throughput in the A100 GPU.
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Figure 4.5: Multi-level utilization vs. GPU memory usage. TensorFlow eager execution of a
mixed precision ResNet-50 across various batch sizes on (a) A100 and (b) V100

GPU utilization. We compare GPU utilization across all of our workloads for different
batch sizes. In Fig. 4.5, as the batch size increases (annotated on the markers), we ob-
serve that GPU active utilization also increases, reaching a maximum of 95% and 91%
for the A100 and V100, respectively. While SMSP active utilization follows a similar
trend as GPU active utilization, SMSP issue slot utilization saturates at around 40% for
the A100 and 35% for the V100. Looking at TC active and issue slot utilization, we also
observe an increase with growing batch sizes, but for the A100 it always remains below
15% and 5%, respectively. For the V100, TC utilization is marginally higher, remaining
below 20% and 10%, for active and issue slot utilization, respectively. We observed this
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link between the increase in batch size and the increase in GPU utilization, as well as
the saturations, for all of our workloads.

In Fig. 4.6, we can observe that BERT using TF eager execution achieves the lowest
GPU utilization, which still tops at 76% using full precision and 78% using mixed pre-
cision. In general, PT achieves a slightly (2 to 6%) higher GPU utilization than TF, with
the only exception being BERT using JIT compilation with mixed precision, where TF
only achieves a 1% higher GPU utilization.

Despite this higher GPU utilization, TF generally achieves higher throughput. For
example, DLRM full precision achieves 99.3% GPU utilization with PT eager compared
to 87.4% with TF eager, but TF eager achieves 4.4× higher throughput than PT eager.
Furthermore, for the only workload where TF achieves higher GPU utilization than
PT (BERT JIT mixed precision), PT achieves higher throughput. Hence, we observe no
correlation between GPU utilization and throughput across the evaluated workloads
and take our analysis one level deeper, looking at SMSP active utilization.

Key takeaway 4. Higher GPU utilization does not correlate with higher throughput.

SMSP active utilization. Fig. 4.5 shows that SMSP active utilization follows the same
trend as GPU utilization across different batch sizes for ResNet-50 TF eager with full
precision. We observed the same behavior for all tested workloads. However, as dis-
cussed in Section 4.3, GPU utilization is an upper bound for SMSP active utilization.
We observe that SMSP active utilization is consistently 1% to 15% lower than GPU
utilization. The highest differences between GPU utilization and SMSP active utiliza-
tion are observed when training BERT with TensorFlow. Similarly to GPU utilization,
we observe no correlation between SMSP active utilization and achieved throughput
across workloads.

Key takeaway 5. SMSP active utilization mirrors GPU utilization across batch sizes, stay-
ing 1% to 15% lower.

SMSP issue slot utilization. We compare issue slot utilization across all of our work-
loads for different batch sizes. Fig. 4.5 shows that SMSP issue slot utilization follows
the same trend as GPU and SMSP active utilization: increasing with the increase of
batch size. We observed the same behavior for all the workloads. However, Fig. 4.6
shows that average SMSP issue slot utilization generally stays below 40%, even for
the biggest batch sizes. We observe two exceptions with PyTorch training of BERT
and DLRM using full precision, where it approaches a maximum of 54%. Once again,
we observe no direct correlation between SMSP issue slot utilization and throughput
across the evaluated workloads.
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To better understand SMSP issue slot utilization, we profile this metric for each
kernel and show the distribution in Fig. 4.7. In Fig. 4.7, we only show the ResNet-50
model using mixed precision XLA JIT compilation, for multiple batch sizes, for the
A100 (Fig. 4.7a) and V100 (Fig. 4.7b) GPUs. Other workloads show similar trends.
Average SMSP issue slot utilization (dotted line on Fig. 4.7) follows the same trend as
seen in Fig. 4.5, and saturates near 40%. However, data distribution (violin plots and
vertical bars in Fig. 4.7) shows maximum SMSP issue slot utilization ranging between
50% and 80%, generally increasing with batch size.
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For example, Fig. 4.7 shows a maximum value of issue slot utilization of 50% when
using no batches, compared to 80% when using a batch size of 2048 for this workload
running on the A100. We also observe that although the average (and maximum) value
is very similar for both GPUs, the A100 includes a higher population of kernels with
an SMSP issue slot utilization above 60%. Despite this, the average remains low due to
the majority of kernels saturating near 40%.

Key takeaway 6. The average SMSP issue slot utilization increases with the batch size, but
it seldom exceeds 40%.
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Figure 4.7: Distribution of SMSP issue slot utilization for all kernels of ResNet-50 using XLA
JIT with mixed precision for multiple batch sizes on (a) A100 and (b) V100 GPUs

TC active and issue slot utilization. We compare tensor core utilization across all
workloads for different batch sizes using two metrics: TC active utilization and TC
issue slot utilization. Fig. 4.5 shows an increase in both metrics as the batch size in-
creases for ResNet-50 using TF eager execution with full precision. We observed the
same behavior for all the workloads. However, Fig. 4.6 shows that tensor cores are
active for less than 35% of the total execution time.

Furthermore, less than 5% of the total execution cycles are spent issuing TC in-
structions. It is worth noting that training BERT and DLRM using PyTorch with full
precision achieves a particularly low TC active and issue slot utilization (less than 1%).
At the same time, training BERT with PyTorch using eager execution with mixed pre-
cision shows the peak TC active utilization, reaching nearly 35%. Similarly to the pre-
vious metrics, we observe no direct correlation between TC utilization and throughput
across the evaluated workloads. Hence, we delve deeper into the distribution of TC
issue slot utilization to gain more insights.

Fig. 4.8 shows the SMSP and TC utilization distributions for all kernels in the TF
eager workloads, aggregated by layer. We observe that only convolution (i.e., Conv2D)
and fully connected (i.e., MatMul) layers achieve TC issue slot utilization above 3%.
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On the one hand, average TC active utilization can reach nearly 80% for pure MatMul
operations, but it is limited to around 50% for Conv2D layers. On the other hand, the
average TC issue slot utilization tops at 10%, with some kernels achieving 15% at peak.
For reference, Fig. 4.8 also includes per-layer distributions of SMSP active and issue
slot utilization. In contrast, the average SMSP active utilization is between 90% and
100% for the same layer types and the average SMSP issue slot utilization is between
25% and 40%. Hence, TC utilization does not seem to dominate the overall SMSP
utilization, even for layers that use tensor cores extensively.
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Figure 4.8: Per-layer SMSP and TC utilization distributions (showing only layers with over 3%
average TC issue slot utilization)

To better understand how this relatively low issue rate of tensor core instructions
impacts performance, Fig. 4.9 shows the cumulative percentage of GPU execution
time as a function of TC issue slot utilization, for the eager workloads on TensorFlow
(Fig. 4.9a) and PyTorch (Fig. 4.9b). Here, we observe that the kernels that do not issue
any tensor core instructions (i.e., 0% on the x-axis) amount from 30% (training BERT
with PyTorch using mixed precision) to 95% (training BERT with PyTorch using full
precision) of the total A100 training time, depending on the workload. Furthermore,
for both ML frameworks, kernels with less than 12% of TC issue slot utilization repre-
sent more than 99% of the total GPU kernel execution time of all workloads.

As previously observed in Fig. 4.6, BERT and DLRM using PyTorch with full pre-
cision achieve a particularly low TC issue slot utilization. This observation is also
reflected in Fig. 4.9 where kernels with less than 2% of TC issue slot utilization repre-
sent more than 99% of the total GPU kernel execution time for these workloads. De-
spite these low utilization rates, the increased use of tensor cores when using mixed
precision seems to be correlated with a significant increase in training throughput, as
shown in Fig. 4.6. However, in Fig. 4.9, we observe that even the workloads benefiting
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the most from tensor cores are now limited by the execution time of kernels that do not
use tensor cores (Amdahl’s law at play).

Key takeaway 7. The majority of the kernels do not use tensor cores. Kernels that use tensor
cores more extensively amount to a small proportion of the total GPU execution time.
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Figure 4.9: Cumulative distribution of kernels’ TC issue slot utilization for eager workloads
(A100 GPU). Batch size is chosen based on the best throughput value for each workload

4.5.3 Implications and Insights

To achieve sustainable performance improvements within ML training workloads, it is
important to maintain a balanced utilization of key architectural resources. GPUs have
increased their memory capacity in recent generations, enabling enhanced through-
put and higher utilization through the support of larger batch sizes. However, our
experiments on representative workloads suggest a plateau has been reached, and the
additional memory in the A100 no longer leads to enhanced utilization ratios.

We also show that modern GPUs can achieve impressive acceleration but typically
operate below 50% of their instruction-issuing potential. Furthermore, we observe that
the tensor cores, which are the instructions delivering the highest raw computational
power, are kept idle most of the time, and the evaluated ML training workloads are
now constrained by kernels not using tensor cores. Thus, our results suggest that the
current GPU paradigm is reaching a saturation point, and motivate further research
into programmable architectures to sustainably accelerate ML training workloads.

4.6 Related works

To the best of our knowledge, no other studies have analyzed the computing efficiency
of GPU execution of multiple ML workloads as thoroughly as we have in this paper.
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In this section, we identify and detail two categories of the related works. Table 4.3
presents a summary of the different metrics covered by the related works.

On the one hand, profiling tools are provided by GPU manufacturers and ML
frameworks. However, those are usually intended to analyze specific aspects of the
hardware or software stack of ML applications. NVIDIA provides several profiling in-
terfaces [110],[113],[114] for developers to evaluate GPU performance bottlenecks. ML
frameworks provide specific profiling tools for developers to evaluate the performance
of ML models [124, 148]. In this chapter, we gather metrics using both NVIDIA Nsight
Compute [114] and ML frameworks profilers [124, 148]. When using application re-
play to gather a number of metrics, Nsight Compute [114] can match kernels between
different runs by comparing their names. However, Nsight Compute can only perform
this matching between its own reports and cannot match kernels from other profiling
tools. Here, we implement a similar technique to match kernels between profiling
tools. As described in Section 4.3, this approach relies on the identification of common
metrics between the tools and the establishment of a correlation matrix.

On the other hand, previous works from the literature have also leveraged these
existing profiling tools to provide analyses on ML workloads. Some directly use these
tools to analyze ML workloads. For example, Verma et al. [151] propose a high-level
performance study (using the Roofline model [153]) of the MLPerf Training bench-
mark suite [95] and compare it to DAWNBench [38] and DeepBench [102], two other
ML benchmark suites. Others develop meta-tools that can identify bottlenecks by do-
ing some automatic post-processing of the data reported by a single profiler [130, 159,
160], or aggregated data from multiple profilers [58, 91]. While most of these related
works evaluate performance through metrics like throughput and latency, some works
also evaluate GPU utilization from a high-level view [58, 91, 151], as described in Sec-
tion 4.3. For example, Li et al. [91] proposed a profiling methodology to analyze the
execution of ML inference on GPUs. This methodology is also based on leveraging
multiple profiling tools to provide measurements at different levels of abstraction (i.e.,
model-level, layer-level, kernel-level). However, to the best of our knowledge, this
is the first work to propose a finer-grain analysis of GPU utilization and systemati-
cally evaluate GPU resource utilization at multiple levels and across multiple training
workloads, ML frameworks, and execution modes.
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Table 4.3: Comparison to related works

Solution High-level metrics Low-level metrics Multi-level metrics

[110] GPU freq. & temp. Perf. counters ✗
[113] GPU freq. & temp. (via [110]) ✗ ✗
[114] ✗ Perf. counters (via [110]) ✗
[124, 148] Total exec. time, per-kernel

exec. time, GPU utilization,
throughput, DRAM usage, etc.

✗ ✗

[151] Arithmetic and bandwidth in-
tensity (based on [153])

✗ ✗

[160] ✗ Instruction execution and
memory depencies (based
on [111])

✗

[130] ✗ Instruction Per Cycle, instruc-
tion stall reasons, warp effi-
ciency

✗

[159] ✗ Program Counter (PC) sam-
pling (based on [111])

✓ Calling context (re-
constructed) to blame
application variables or
functions

[58] Execution time (total), GPU
utilization

✗ ✗

[91] Execution time (total, per-
layer, per-kernel), DRAM us-
age, arithmetic and bandwidth
intensity (based on [153])

DRAM reads/writes, kernel
flops

✓ Low-level metrics
aggregated by model,
layer or kernel

Ours Execution time (total, per-
kernel, per-kernel), GPU uti-
lization, throughput, DRAM
usage (via [148] or [124])

SMSP elapsed, active, issue cy-
cles and TC active, issue cycles

✓ Multi-level utiliza-
tion (global, per-layer
and per-kernel) (see Ta-
ble 4.1)
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4.7 Summary

In this chapter, we present a multi-level analysis of GPU computing resource utiliza-
tion for ML training workloads. To this end, we propose a methodology that combines
traces from existing profiling tools to compare the execution of various workloads and
identify useful new insights.

First, in section 4.2, we describe an ideal reference execution of a GPU-accelerated
ML training loop. With this reference, we identify relevant metrics that can be mea-
sured at different levels of abstraction, using multiple existing profiling tools. Second,
in section 4.3, we propose a systematic methodology that combines traces from these
profiling tools. This methodology allows us to evaluate the utilization of the GPU com-
puting resources at different levels of abstraction: GPU level, SMSP level, and TC level.
For the SMSP and TC levels, we focus on evaluating both the utilization of the GPU
cycles and the utilization of the instruction issue slots. This allows us to evaluate if
the computing resources are used often and if they are kept as busy as possible. Fi-
nally, implementing this methodology on two modern GPUs (i.e., NVIDIA V100 and
A100), we analyze the impact of different software optimizations (i.e., full vs. mixed
precision, eager vs. JIT compilation) using two ML frameworks (i.e., TF and PT) for
various batch sizes, in section 4.5. While this study focuses on NVIDIA GPUs, the ap-
proach does apply to other GPU brands that give access to their performance counters.
For example, AMD GPU performance counters can be easily accessed using the AMD
GPUPerf API [9]. The proposed analysis methodology also has potential to improve
performance prediction models for GPU-accelerated workloads [19], which could ben-
efit from using new metrics such as multi-level utilization of the GPU resources.

We provide our analysis in two parts, providing new insights summarized through
seven key takeaways. In the first part of our analysis, we focus on high-level metrics,
such as throughput and memory usage. This allows us to evaluate the impact of dif-
ferent software optimizations on the overall performance of the GPU with different
workloads. From this high-level analysis, we show that the A100 GPU saturates the
throughput for all workloads, thanks to its larger memory, while the V100 GPU does
not. We also show the high impact of software optimizations such as mixed-precision
training and JIT compilation on the throughput and memory usage. In the second part
of our analysis, we leverage the systematic methodology proposed in section 4.3 to
evaluate the multi-level utilization of the GPU resources. From this analysis, we show
that high utilization is typically achieved at the GPU level and SMSP level. Yet, the
average SMSP issue slot utilization remains below 50%, with tensor core instructions
reaching less than 5.2% of the issuing opportunities. We believe this work highlights
the need for advanced profiling to unravel GPU limitations.
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5.1 Context and motivation

In the previous chapter, we provide a new methodology to profile and analyze the per-
formance of Machine Learning (ML) training on modern GPUs. In this analysis, we
observe the impact of the architecture changes between the V100 (i.e., Volta architec-
ture) and the A100 (i.e., Ampere architecture) on performance for ML training. But as
the peak performance increases generation over generation, so does the Thermal De-
sign Power (TDP). For example, the A100 has an increased TDP of 400W, compared to
the V100’s 300W, while the TDP of the upcoming NVIDIA Blackwell B200 is estimated
at 1000W.

Despite this increase in performance and power consumption, the demand for com-
puting power continues to grow. As we described in Chapter 2, the training of ML
application is a major contribution to this demand. Furthermore, these higher compu-
tation requirements drive the design of future accelerators, GPUs included. Designing
more powerful accelerators relies on a deep understanding of performance bottlenecks
of current accelerators, such as GPUs (we propose profiling methodologies for perfor-
mance in Chapters 3 and 4). However, analyzing performance is not sufficient if we
want to design future accelerators to be energy-efficient, it is crucial to understand en-
ergy bottlenecks as well. GPU manufacturer-provided profiling tools do not offer a
straightforward solution to evaluate energy bottlenecks or any energy consumption
breakdown. In addition, the proprietary and complex design of modern GPUs makes
it difficult to estimate such an energy breakdown using publicly available tools.

Estimating energy consumption breakdowns of a workload running on a given
GPU can be done using different approaches. One approach that architecture design-
ers have resorted to is to use simulators that use models of the GPU architecture to
estimate its energy consumption [30, 73, 89]. However, the simulation approach can
be time-consuming for heavy workloads. Another approach is to run the workload on
the real GPU, measure its power consumption, and use similar models to attribute the
power consumption to different components of the GPU. Both approaches are very de-
pendent on the accuracy of the model and research around providing accurate power
models for GPUs has been active in the past decade.

Researchers have proposed different techniques to establish power models for GPUs.
All these techniques consist of running characterized workloads on the GPU and mea-
suring the power consumption, then using these measurements to calibrate a model.
The characterized workloads can be typical GPU benchmarks [27, 65, 140], i.e., kernels
that are known to be representative of real-world GPU workloads; or microbench-
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marks [71, 96, 141], i.e., small programs that target specific components of the microar-
chitecture to evaluate their performance or power consumption.

However, previously proposed techniques and power models have limitations that
make them unsuitable for estimating the energy bottlenecks of modern GPUs. For
example, some of these approaches are either: being performed on older GPU archi-
tectures [64, 94, 101], which have evolved substantially in the last year (see Chapter 2);
relying on external power measurement tools [13, 17, 64, 94, 101], which is impractical
when the GPU is not physically accessible (e.g., cloud server); analyzing PTX assembly
code [6, 20, 27, 61, 94, 97, 106], which is not applicable when using vendors-provided
precompiled libraries (e.g., cuDNN [34]); using Deep Learning (DL) models to predict
power consumption [20, 61, 97, 98, 135, 154] which obfuscates the power consumption
details of the GPU component behind trained weights; ignoring crucial kernel param-
eters that can influence the energy consumption per memory transaction [17] (i.e., type
of transaction, kernel dimensions, access pattern); ignoring memory operations alto-
gether [13]; or, focusing on the software abstractions of the GPU memory hierarchy [8],
which do not provide a detailed breakdown of the energy consumption at the microar-
chitectural level. We detail these limitations further in Section 5.3.

Our main goal in this chapter is to address the shortcomings of the state-of-the-art
by providing an energy model and a calibration method to estimate a breakdown of
the energy consumption of data movement in modern GPU architectures.

As previous works point to memory as one of the main contributors to power con-
sumption in modern GPUs [73], we focus on modeling data movement and storage.
However, unlike previous works, the proposed model details different components of
the memory hierarchy (e.g., shared memory, L1, L2, DRAM) and allows us to eval-
uate their energy consumption independently. In the next sections, we first describe
a basic energy model for modern GPUs, building from the existing literature [64, 68]
(Section 5.4) and focusing on data movement and storage. Then, we propose a method-
ology to calibrate this model using microbenchmarks (targeting different levels of the
memory hierarchy) and using performance counters as a safety check for the calibra-
tion results (Section 5.5). Based on performance counters and internal power sensors
(included in modern GPUs), our method uses the microbenchmarks to stress the dif-
ferent levels of the memory hierarchy with a varying number of threads to evaluate the
minimum amount of energy consumed (i.e., lower bound) by a given memory access.
We implement our methodology on the NVIDIA A100 GPU using its internal power
sensor (Section 5.6). Finally, we evaluate energy consumption breakdowns for multi-
ple workloads of increasing complexity, up to a training of the ResNet50 ML model
(Section 5.7).
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5.2 Background

5.2.1 GPU cache hierarchy

As mentioned in Chapter 2, modern GPUs have cached memories to reduce the la-
tency (and energy consumption) of memory accesses (i.e., LOADs or STOREs). Mod-
ern GPUs’ memory hierarchy is composed of several levels of data cache: L1 cache
(private to each Streaming Multiprocessor (SM)) and L2 cache (common to multiple
SMs). Both L1 and L2 caches are managed by the hardware and are used to cache data
from the DRAM (i.e., global memory or main memory). Beyond the main memory,
data transfers between the host CPU and the GPU device are managed by software,
outside the execution of GPU kernels. While these communications could also involve
energy overhead (e.g., due to page faults), we do not address the storage layers in this
contribution and focus on data movement within the GPU architecture (i.e., through
the DRAM and data caches).
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Figure 5.1: NVIDIA A100 DRAM and data caches hierarchy
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Accesses to these hardware caches are tagged as HIT or MISS depending on whether
the data targeted by a given access is present in the cache or not. When a MISS occurs,
the data is fetched from the next level of the memory hierarchy (e.g., L1 cache to L2
cache, L2 cache to DRAM). These hardware-managed caches are complemented by
software-managed caches (e.g., texture cache, constant cache, shared memory) from
(to) which a programmer can explicitly load (store) data. Each access to a memory
preloads a complete cache line to be accessed by the threads before the next access re-
places it. The cache line size is known as the access granularity of the memory. The
minimum access granularity for the NVIDIA A100 GPU is 32 bytes (i.e., a sector). In
this chapter, the proposed methodology covers both types of data caches (hardware-
managed and software-managed), along with the DRAM.

ld.global.u64 ...

LOAD access

L1 tag stage

L2 tag stage

Store sector
to L1 cache

return data
from sector

Retrieve sector
from DRAM

Store sector
to L2 cache

MISS

MISS
HIT

HIT

Figure 5.2: NVIDIA A100 LOAD memory access process flow
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5.2.2 GPU performance counters and internal power sensors

As mentioned in Chapter 5.2, NVIDIA GPUs provide access to a set of performance
counters through the NVIDIA Nsight Compute (ncu) profiling tool [114]. Performance
counters are exposed to the user through a set of metrics. A limited number of metrics
can be requested during a profiling run before the GPU driver has to replay kernels
multiple times to gather all needed performance counters, adding profiling overhead
(i.e., kernel replay). In this chapter, we select specific metrics to evaluate the number
of memory transactions at each level of the GPU memory hierarchy. Modern NVIDIA
GPUs also provide access to an internal power sensor using the NVIDIA Management
Library (NVML). Limitations of such sensors were detailed in previous works [23]
and evaluated against external power sensors [13, 23]. These works show that the
error introduced by using the internal power sensor can be minimized with basic post-
processing techniques, making it a reliable source of power measurements. We build
upon the previous works to collect power measurements and provide more details on
our methodology in Section 5.5.

5.3 Related work

Numerous GPU power models were proposed in previous works, some of which use
microbenchmarks to calibrate their models [8, 13, 17, 61, 64] and/or provide estimates
for either the total GPU power consumption [6, 20, 61, 94, 97, 135, 154] or a detailed
power breakdown [6, 24, 64, 101, 127, 138]. In this section, we discuss the limitations
of these works and how our methodology addresses them. We identify seven main
limitations in the existing literature.

Application-based energy breakdown. Some works base their energy breakdown on
different execution phases of ML applications. For example, showing the energy con-
sumed by running a specific layer of an ML model [127] or predicting the energy con-
sumption based on the architecture of the ML model [24, 138]. While these breakdowns
and predictions are of great value for ML developers to optimize their applications,
they do not provide detailed insights on the energy consumption of inner components
in the GPU architecture. In contrast, in this chapter, we propose a technique to evaluate
energy breakdowns based on hardware performance counters, and show the energy
consumption of specific GPU memory accesses.

Dated GPU architectures. Some works rely on dated GPU architectures [64, 94, 101].
While the proposed methodologies are using similar approaches to ours (e.g., mi-
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crobenchmarks, performance counters), they are not directly applicable to modern
GPUs with hardware-managed cache hierarchies. In contrast, we base our energy mo-
del on modern GPU architectures. We implement and test our methodology on an
NVIDIA A100 GPU, from the Ampere generation (2020), which includes hardware-
managed cache hierarchies.

Ignore memory operations. Some works evaluate the energy cost for compute instruc-
tions but ignore memory instructions altogether [13] (i.e., only evaluating the energy
consumption of compute operations). Similarly, some works focus only on the soft-
ware abstractions of the GPU memory hierarchy [8], without distinguishing between
the physical implementations. This can lead to inaccurate evaluations if performed on
modern GPUs, which include hardware-managed cache hierarchies. In this chapter,
we propose a complementary contribution to these works by characterizing the energy
consumption of transactions across the different levels of the GPU memory hierarchy.

Ignore crucial kernel parameters. Some works ignore crucial kernel parameters which
can lead to overestimations of the energy of memory transactions [17] (i.e., type of
transaction, kernel dimensions, access pattern). Our microbenchmark-based method-
ology takes into account the aforementioned kernel parameters to provide a tight lower-
bound estimation of the energy consumption of memory transactions. We give a de-
tailed description of the methodology and its design choices in Section 5.5.

Require access to PTX code. Some works rely on analyzing the PTX assembly code of
GPU benchmarks [6, 20, 27, 94, 97, 106] or microbenchmarks [61]. These approaches
are not applicable when the PTX code of the targeted GPU workloads is not accessible,
which is the case in vendors-provided precompiled libraries often used by ML appli-
cations (e.g., cuDNN [34] is used by TensorFlow [2] and PyTorch [121]). In contrast,
our methodology does not rely on the PTX code of the targeted GPU workloads but
uses performance counters as input to the energy model.

DL-based models. Some works rely on using DL-based models [20, 61, 97, 98, 135,
154] trained to infer power predictions based on performance counter values. While
these models can provide accurate power predictions, using DL models obfuscates the
power consumption details of the GPU component behind trained weights. Hence,
these models cannot provide a detailed power breakdown of the GPU architecture. We
propose a more simple and interpretable energy model, which can provide a detailed
power breakdown of the GPU energy consumption.

Require physical access. Some works [13, 17, 64, 94, 101] use external power mea-
surement tools [15], building testbeds to measure the power consumption of the GPU.
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This makes the methodology less relevant when physical access to the GPU device is
not available (e.g., in a cloud server). Furthermore, previous works have compared
the internal power sensor readings to external power measurements [13, 23], showing
that the error introduced by the internal power sensor can be made negligible with us-
ing simple post-processing of the power measurements. While we base our calibration
methodology on the GPU’s internal power sensor and performance counters, to make
it relevant even without physical access to the GPU device, the methodology still is
applicable using external power measurement tools.

5.4 Energy model of GPU data movement

In this section, we propose an energy model to characterize the energy consumption
of data movement in the GPU memory hierarchy, noted EMEMORY. We first provide
background on the different high-level components of the GPU energy model, previ-
ously described in the literature. Then, we enrich the model with more details on data
movement and storage, based on our analysis of modern GPU architectures. The pro-
posed analytical energy model covers both software-addressed memory spaces and
hardware-managed caches. Finally, we discuss the influence of parallelized transac-
tions on the energy consumption of the memory hierarchy.

5.4.1 Background on GPU energy models

The energy consumption of a GPU running a kernel can be divided between static and
dynamic energy components:

ETOTAL = ESTATIC + EDYNAMIC. (5.1)

The static energy is the part of the total energy consumed by the GPU, which is
constant (i.e., independent of the kernel being executed). This static energy component
is specific to a given GPU model and influenced by the temperature, the voltage, and
the frequency of the GPU. The dynamic energy is the additional energy (i.e., on top of
the static energy) consumed by the GPU when it is executing a kernel. This dynamic
energy component has been modeled in the past as the sum of the energy consumed
by the memory (EMEMORY) and the energy consumed by the SMs (ECOMPUTE) [64, 68]:

EDYNAMIC = EMEMORY + ECOMPUTE. (5.2)
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Static energy (ESTATIC) and compute energy (ECOMPUTE) have been modeled further
in the past [13, 64]. However, in this chapter, we focus on providing a tight lower-
bound estimation of the energy consumed in data movement and storage (EMEMORY).

5.4.2 Analytical energy model

Energy spent by moving data across the GPU cache hierarchy is the sum of energy
spent loading (storing) data from (to) the different memory levels. Hence,

EMEMORY =
∑

MEM
EMEM. (5.3)

We define the energy spent by reading data from a given memory level (EMEM) as
the number of accesses (noted #accesses) multiplied by the typical energy cost of one
access to this memory level (noted εMEM). However, accessing a given memory level
also requires the activation of the inner components of this memory level (e.g., clock
tree), which we evaluate as an offset energy (noted ∆EMEM). In Section 5.5, we propose
a methodology to identify and isolate the energy cost of one HIT access from the offset
energy using linear regression:

EMEM = #accesses × εMEM + ∆EMEM. (5.4)

In the case of hardware-managed data caches (L1 to LLC), a MISS will be matched to
either a HIT at a lower cache level or access to the main memory. Hence, for hardware-
managed data caches, we restrict the count of the number of accesses only to HIT
accesses (i.e., when the data actually moves from one level to another). During such
cache accesses, data moves from one level to the registers, to be processed by the cores
when executing further compute instructions.

5.4.3 Influence of parallel accesses

GPUs are intended to achieve better energy efficiency in two ways: by accessing a
given memory using multiple threads at a time (i.e., parallel accesses) and/or by amor-
tizing the energy cost of loading a cache line with subsequent memory accesses (i.e.,
coalescence). Hence, the energy cost of one memory access (noted ε) to a given memory
level is influenced by three parameters: the number of threads accessing the memory
at a time (noted NT ), the coalescence of the accesses and the access granularity of the
memory (i.e., size of the cache line, noted C) [70]. Ideally, memory operations are sub-
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sequent and fully coalesced and the number of accesses can be defined as the number
of entire cache lines that a given amount of threads will load:

#accesses =
⌈

NT

C

⌉
× C. (5.5)

In this case, better energy efficiency per access can only be achieved by having
enough threads to occupy all memory ports in parallel, capitalizing even more on the
energy cost of activation of the memory,

ε = EMEM − ∆EMEM⌈
NT

C

⌉
× C

. (5.6)

In Section 5.5, we increase the number of threads when accessing a memory level to
find the lower limit of Eq. 5.6.

5.5 Methodology

In this section, we describe a 3-step methodology to evaluate a lower bound for the
energy consumption of data movement and storage in the GPU memory hierarchy
(illustrated in Fig. 5.3), based on the proposed energy model in Section 5.4.

First, we identify important parameters of the device, such as the sizes of the dif-
ferent cache levels and the performance counters that count the number of accesses
at each cache level (5.5.1). Second, we calibrate the energy model using microbench-
marks using the previously identified parameters (5.5.2). We describe the design of the
microbenchmarks, the considerations regarding access granularity and kernel dimen-
sions, the gathering of performance counters and power measurements, and the use of
linear regression to identify the energy cost of each memory access. Finally, we eval-
uate the energy breakdown for new applications, using the calibrated energy model
(5.5.3). We demonstrate this methodology through an example implementation (5.6)
and results on different workloads (5.7).

5.5.1 Parameter identification phase

Calibrating the proposed energy model relies on two specific sets of parameters, spe-
cific to the target GPU model. The first input parameter is the list of performance
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Figure 5.3: Different phases of the methodology: (1) parameters identification, (2) calibration,
and (3) evaluation

counters that count the number of accesses at each cache level (along with the propor-
tion of HITs and MISSes). This parameter is needed as a safety check to ensure that the
microbenchmarks are targeting the right cache level during the calibration phase. The
second parameter is the list of sizes of each GPU cache level. The size of the targeted
GPU cache is needed as a direct input for the microbenchmarks when calibrating the
energy model. The sizes of the GPU caches are typically shared by the manufacturer in
the GPU documentation (e.g., NVIDIA’s whitepapers [104, 109]). However, the sizes
of the GPU caches can also be identified by evaluating the hit/miss rate of the cache
over a range of array sizes [66, 96].

For example, Fig. 5.4 shows the miss rate of the A100 GPU L1 and L2 caches over
a range of array sizes. L1 cache miss rate increases as the array size passes 150kB and
misses 100% of the time for an array size of 190kB. L2 cache miss rate increases as
the array size reaches 15MB and misses 100% of the time for an array size of 22MB.
NVIDIA’s whitepaper [104] states that shared memory and L1 cache share a config-
urable 192kB memory space. L2 cache is 40MB, divided into 2 partitions of 20MB each.
The results of this evaluation are consistent with the manufacturer’s documentation.
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Figure 5.4: Miss rate of the L1 and L2 caches of the A100 GPU, over a range of array sizes
between 1 kB and 1 GB

5.5.2 Calibration phase

Once the parameters of the device are identified, we calibrate the energy model by
running the microbenchmarks on the target GPU, sweeping the number of memory
accesses while gathering the performance counters and power measurements, for each
memory level. We detail this calibration phase by describing the general objective
of the microbenchmarks (1) and the considerations for the access granularity and the
dimensions of the kernel (2). Then, we describe how we gather performance counters
(3) and power measurements (4). Finally, we explain how we use linear regression to
identify the energy cost of each memory access (5).

5.5.2.1 Microbenchmarks

We divide the proposed microbenchmarks into two codebases (written in CUDA with
inline PTX assembly code): one for LOAD operations and one for STORE operations.
A simplified version of the LOAD microbenchmark is shown in Listing 5.1. Both mi-
crobenchmarks are based on the pointer-chasing algorithm used in previous works [17,
96], which consists of a loop that iterates over an array of pointers, each pointing to an-
other element of the array, separated by a given stride. The objective of the microbench-
marks is to perform a large number of memory transactions on an array of 64-bit un-
signed integers (i.e., uint64_t), the size of the array is chosen to fit on the targeted
cache level according to the identified parameters (see Fig. 5.4). Using pointer-chasing
allows for a higher ratio of memory transactions versus other instructions when exe-
cuting the microbenchmarks.

Listing 5.1 shows a typical microbenchmark containing two loops: a warm-up loop
and a measurement loop. The warm-up loop (lines 13 to 17) is used to move the pointer-
chasing addresses from the GPU global memory to the targeted cache. During the ex-
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1 __global__ void load(uint64_t *array) {
2 // Get thread ID and block ID
3 uint64_t tid = threadIdx.x;
4 uint64_t bid = blockIdx.x;
5 // Compute thread start address
6 uint64_t *start = array + tid + (bid * SUBTAB_SIZE / sizeof(

uint64_t));
7

8 asm volatile(
9 [...] // Init registers

10 "{.reg .pred %p;\n"
11 ".reg .u64 %tmp;\n"
12 "mov.u64 %tmp, %0;\n\n"
13 // Warm-up loop
14 "$warmup:\n"
15 "ld.global.u64 %tmp, [%tmp];\n"
16 "setp.ne.u64 %p, %tmp, %0;\n"
17 "@%p bra $warmup;\n"
18 // Measurement loop
19 [...] // Reset counter and address
20 "\n$measurement:\n"
21 "ld.global.u64 %tmp, [%tmp];\n" // 1st LOAD
22 [...] // unrolling X more LOADs
23 "setp.ne.u64 %p, %tmp, %0;\n"
24 "@%p bra $measurement;\n" // for SIZE/STRIDE
25 "add.u32 %k, %k, 1;\n"
26 "setp.lt.u32 %p, %k, %1;\n"
27 "@%p bra $measurement;\n" // for N_ITER
28 "}" : "+l"(start)
29 : "n"(N_ITER)
30 );
31 }

Listing 5.1: Simplified LOAD microbenchmark kernel code

ecution of this loop, all memory accesses to the targeted cache level will be tagged as
MISSes, as the data is not yet present in the cache. The microbenchmark of Listing 5.1
is designed to target hardware-managed caches (e.g., L1, L2 for the NVIDIA A100).
However, it can easily be adapted to target other memory spaces (e.g., shared mem-
ory) by manually programming the filling of the targeted memory space instead of the
warm-up loop. In the case of the DRAM, the warm-up loop is not needed as the data
is already in the DRAM memory and the microbenchmark can directly start with the
measurement loop.

The measurement loop (lines 18 to 27 in Listing 5.1) follows the same data move-
ment pattern as the warm-up loop. However, we unroll some iterations from the mea-
surement loop to increase the ratio of memory instructions per iteration. This helps



84 Chapter 5. Analyzing GPU Energy Consumption in Data Movement and Storage

to reduce the contribution of other instructions (e.g., updating loop counters, checking
loop conditions) to the total energy consumption. In addition, we still execute multiple
iterations of the measurement loop to increase the duration of the microbenchmark, re-
ducing the contribution of possible ramp-up and ramp-down of the power consump-
tion of the GPU. Thanks to the warm-up loop, all memory accesses to the targeted
cache level should be tagged as HITs during the execution of the measurement loop.

Thus, for each measurement point, we execute the microbenchmarks twice: once
with only the warm-up loop, and once with both the warm-up and measurement
loops. Then, we isolate the energy consumption and performance counter values of
the measurement loop by subtracting the corresponding values of the warm-up loop.

5.5.2.2 Access granularity and kernel dimensions

Ideally, optimized kernels should exploit the cache line locality by accessing the mem-
ory in a coalesced and parallel way across multiple threads. Hence, using a single
thread at a time to access memory can lead to overestimation of energy consumption
per access. The proposed methodology assumes such ideal memory usage and is de-
signed to assess a lower bound energy consumption for memory accesses. As mentioned
in Section 5.4.3, to evaluate this lower bound, we have to take into account two effects:
multiple threads accessing the same cache line in parallel and/or each thread accessing
the elements of the cache line in a subsequent coalesced way.

Different memory levels can have different access granularities. For example, the
granularity of the A100’s L2 cache can be configured to 32, 64, or 128 bytes. This
must be taken into account to prevent the generation of undesired HITs when tar-
geting hardware-managed caches. To have consistently-strided accesses, we set the
minimum stride of the pointer-chasing algorithm to the access granularity size of the
targeted memory level. For example, the A100 GPU has a LOAD access granularity
of 32 bytes (i.e., a sector, 4 uint64_t elements). Hence, we run the microbenchmarks
with a stride of 32 bytes to access the array.
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Figure 5.5: Thread accesses of the microbenchmarks for different numbers of threads per block,
adapting the stride accordingly

However, with this stride, using only 1 thread per thread block would underuse the
sector, loading only a fraction of the accessed elements (see Fig. 5.5a). As each LOAD
operation of one thread will trigger a different memory access, this could lead to an
unrealistically high energy consumption per access. Typically, multiple GPU threads
should access the same sector at the same time (in our case, 4 threads to access a sec-
tor of 32 bytes to amortize the energy cost of accessing a sector, see Fig. 5.5b). Past
this point, increasing the number of threads per block (see Fig. 5.5c) could still help re-
duce the energy consumption per memory transaction for two reasons: (1) it provides
greater opportunities to parallelize memory transactions, thereby using multiple mem-
ory ports and reducing the execution time of the microbenchmark, and (2) it facilitates
leveraging the fixed energy cost of using the targeted cache level (i.e., activating the
necessary components to access the cache level).

The increase in the number of parallel accesses can also be achieved by increasing
the number of thread blocks, leading to a further reduction in energy consumption per
memory transaction. From a practical point of view, using more threads also increases
the dynamic energy of the GPU, ultimately increasing the signal-to-noise ratio of the
power measurements. Hence, in our experiments, we sweep the number of blocks and
the number of threads per block until we reach a low saturation point for the energy
per access. This evaluates the lower bound of the energy consumption of memory
transactions.



86 Chapter 5. Analyzing GPU Energy Consumption in Data Movement and Storage

5.5.2.3 Performance counters

The theoretical number of accesses during one iteration of the microbenchmarks is the
array size divided by the stride size and the number of threads executed. Practically,
we evaluate it using the following formula:

#accesses = arraysize × #blocks × #threadsperblock
stride × access granularity

. (5.7)

As described in Section 5.4.3, the total energy spent increases linearly with the number
of accesses but also hides a static offset energy resulting from the activation of auxiliary
components (e.g., memory controllers, SMs, etc.). Hence, we evaluate the total energy
for multiple amounts of memory accesses and use linear regression to separate this
energy offset from the energy cost of each memory transaction. For each measurement
point, we run the profiling once and use the performance counters as a safety check
to ensure that two conditions are met. First, we verify that the memory accesses are
performed on the targeted memory level, by checking that the hit rate of the target
cache level is 100% during the measurement loop. Second, we verify that the counted
number of memory accesses is consistent with Eq. 5.7. Any difference in the evaluated
number could indicate changes in the microarchitecture. Thus, parameters would have
to be changed accordingly.

5.5.2.4 Power measurements

We manually add delays in the CPU code before and after the execution of the kernel
to ensure we measure the static power consumption of the GPU during a period of
inactivity (i.e., idle). While we use the internal power sensor of the GPU in our im-
plementation of the methodology, external power tools could also be used with this
alignment technique using delays.

In Fig. 5.6, we show a typical power trace of the A100 GPU, using base clock (1065
MHz), executing a kernel that is representative of the proposed microbenchmarks in its
power consumption (i.e., multiply-add operations on a vector with millions of values),
during 10 seconds. The power trace is annotated with markers (t0 to t5), separating
the different phases of execution.

1. Between t0 and t1, no kernel is executing and no memory is allocated on the
GPU, the GPU is in a sleep state (≃ 55 W for the A100).

2. Between t1 and t2, the memory is allocated on the GPU global memory and
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the GPU enters an idle state. During this phase, we measure the static power
consumption of the GPU.

3. Between t2 and t3, during the 10s of kernel execution, the power consumption of
the GPU increases depending on the kernel’s load. During this phase, we identify
the energy consumption above the idle power level as the dynamic energy (i.e.,
green zone in Fig. 5.6). We identify the rest of the energy consumption as the
static energy (i.e., red zone in Fig. 5.6). When executing the microbenchmarks, the
duration of this phase can be influenced by increasing or decreasing the number
of iterations executed during the measurement loop.

4. Kernel execution ends at t3, and the GPU returns to an idle state.

5. Finally, at t4, the memory is deallocated and the GPU goes back to a sleep state
until the end of the run at t5.

Experimentally, we use the NVIDIA Management Library (NVML) to collect power
measurements from the GPU and run each measurement point multiple times (at least
3). Using base clock, we observe no difference in power consumption between the
sleep and idle phases. However, this is not the case when using boost clock, where we
observe a rise in the idle phase to around 80W and a cooldown phase at t4, where the
power gradually lowers down to the power value observed in the sleep phase. Hence,
we lock the GPU clock at base clock (1065 MHz) to help prevent power fluctuations
that can arise from thermal throttling or changes in power modes.
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Figure 5.6: Power trace of a 10s kernel execution on the A100 GPU with base clock, annotated
with markers

5.5.3 Evaluation phase

Once the energy consumption per memory access is isolated for each level of the mem-
ory hierarchy, the calibrated energy model can be used to provide energy breakdowns
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for new applications. To this end, the new application has to be profiled with the same
tools used during the calibration phase. However, while the calibration phase needs
multiple runs of profiling (i.e., for n_accesses and for n_runs in Fig. 5.3), the
evaluation phase only needs two runs, one for each profiling tool (i.e., NCU profiling
and energy profiling). Our calibration methodology provides a lower-bound evalua-
tion of the energy consumption and covers only the energy consumption of the data
movement and storage. Hence, the measured dynamic energy will be higher than
the sum of the energy consumption of the different memory levels. This difference
includes the energy of the compute instructions (i.e., ECOMPUTE in Section 5.4) and ad-
ditional energy from memory accesses exceeding the lower bound. In Section 5.7, we
identify this difference as the remaining component of the dynamic energy (i.e., “Dyn.
(rest)” in Figs. 5.11 and 5.12).

5.6 Implementation

In this section, we use the methodology described in Section 5.5 to calibrate the pro-
posed energy model for the NVIDIA A100 GPU. We present the calibration results
for the L1 cache, L2 cache, DRAM, and shared memory. Then, we challenge the con-
sistency of our calibration results by evaluating the energy consumption of a DIV in-
struction using the same methodology.

5.6.1 Experimental setup

We use the NVIDIA CUDA Toolkit 12.1 to compile our microbenchmarks and run our
experiments on a cloud server equipped with A100 paired with AMD EPYC 7343. We
use the NVIDIA Management Library (NVML) to read the internal power sensor mea-
surements and lock the clock frequency of the GPU to 1065 MHz (i.e., base clock). We
use NVIDIA Nsight Compute CLI (ncu) to read the performance counters. We calibrate
the energy model for the L1 cache, L2 cache, DRAM, and shared memory, using only
the LOAD microbenchmark. We consider the energy of a STORE access energy con-
sumption as the same as a LOAD access to a given memory. This respects our lower
bound assumption, as the energy consumption of a STORE access is usually higher
than a LOAD access [117]. For each measurement point, we run at least 3 iterations
(i.e., n_runs=3 in Fig. 5.3) and report the average energy consumption, standard de-
viation, and minimum/maximum values.
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5.6.2 Parameter identification

According to the manufacturer’s whitepaper [104], the A100 GPU is equipped with 108
SMs (each with 4 Streaming Multiprocessor Sub-Partitions (SMSPs)), 80GiB of HBM2
memory, 40MiB of L2 cache, and 192 kiB of combined shared memory and L1 cache.
In Section 5.5, we show that MISSes can occur with smaller array sizes than the cache
size. Hence, we choose the array sizes for our microbenchmarks small enough to fit
in the targeted cache: 150 kB for the L1 cache, 250 kB for the L2 cache, and 50 MB for
the DRAM. For shared memory, we use a 48 kB array size, as it is the maximum static
allocation size per block on the A100 GPU [105].

5.6.3 Calibration

Fig. 5.7 shows the total energy consumption of the A100 GPU when running the LOAD
microbenchmark with a varying number of memory accesses, targeting the L1 cache
(i.e., 150 kB array size), using (a) one thread per block and (b) 1024 threads per block.
We observe that the energy consumption increases linearly with the number of mem-
ory accesses. We use linear regression to calibrate the energy model and evaluate the
energy consumption of each memory access. Linear regressions achieved r-squared
scores of 0.96 and 0.99 for 1 and 1024 threads per block, respectively. The standard
deviation of our measurements shows a maximum value of around 6J, which is accept-
able with respect to the total energy consumption. Thus, we observe a higher precision
of the calibration when using a higher number of threads per block.
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Figure 5.7: Calibration traces of the L1 cache LOAD microbenchmark with (a) one thread per
block, (b) 1024 threads per block

Using the slope of the linear fit, we can estimate the energy consumption of each
memory access, which is around 1600 pJ for the L1 cache using one thread per block
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and 107 pJ for 1024 threads per block. As described in Section 5.5, the energy con-
sumption of one memory access can vary depending on the number of threads per
block. Hence, we repeat this calibration process for the L1 and L2 caches using mul-
tiple threads per block, up to 1024 threads per block (i.e., the maximum number of
threads per block on the A100 GPU for 1D grids [105]). We present the results of this
calibration in Fig. 5.8a, along with the L2 cache calibration in Fig. 5.8b. We can see that
below 4 threads per block, the evaluated energy per access is similar (nearly 1600 pJ).
With a low number of threads per block, we observe high signal-to-noise, hence the
variation of the projections for the L2 cache (ranging between 8490 and 4260 pJ). As
mentioned in Section 5.5.2.2, due to the access granularity, using less than 4 threads
per block the proposed microbenchmark will always prompt the same number of sec-
tor accesses. When increasing the number of threads per block, we observe a plateau
in the evaluated energy consumption of each memory access decreasing to around 107
pJ for L1 and 378 pJ for L2. These results show that ignoring multithreaded memory
accesses leads to near 15× overevaluated energy per access (from 1600 to 107 pJ). We
consider the lower bound of the energy consumption (i.e., 107 pJ for L1, 378 pJ for L2).

Figure 5.8: L1 (a) and L2 (b) cache LOAD calibration results

We repeat this calibration process for DRAM and shared memory (i.e., 50 MB and 48
kB array size, respectively) using multiple threads per block. We present the calibration
results in Fig. 5.9, showing the projection of the energy consumption of each memory
access for different numbers of threads per block.

Similarly to the L1 cache calibration, we observe that the energy consumption per
access decreases when increasing the number of threads per block, for all memory lev-
els. This shows the importance of considering the number of threads per block when
evaluating the energy consumption of memory accesses on modern GPUs. We also
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Figure 5.9: L1, L2, DRAM and shared memory calibration results

confirm that a saturation point is reached for the energy consumption of each memory
access for all memory levels. This supports our lower-bound evaluation. Hence, we
evaluate the lower bound of the energy consumption of one access at a given memory
level by taking the minimum value across all evaluated numbers of threads per block.
Hence, we evaluate the minimum energy consumption of a sector access (i.e., 32 bytes)
to the shared memory, L1 cache, L2 cache, and DRAM to be: 82.1, 107, 368 and 2090 pJ,
respectively. The difference in power consumption between L1 and shared memory
(located on the same physical memory) can be explained by the difference in how the
memory is addressed (i.e., shared memory is directly addressed, L1 cache has a tag
stage checking if the data is present in the cache).

5.6.4 Cross-validation of the calibration results

The DRAM memory of the A100 uses HBM2 technology. Previous works estimate
HBM2 memory energy consumption at 500 pJ per 32B access [117]. Using the proposed
calibration methodology, we evaluate A100 DRAM energy consumption per access
around 2090 pJ. Taking into account the additional hardware overhead of the DRAM
and cache controllers, we consider this value to be consistent with the literature.

To challenge the consistency of our results, we use a modified version of the LOAD
microbenchmark, with a supplemental DIV instruction after each memory access (i.e.,
LOAD+DIV), and perform the same calibration. We select the DIV instruction as it
consumes significant energy compared to other compute instructions [13], making it
simpler to isolate from the noise of the measurements. We evaluate the difference in
energy consumption between the LOAD calibration and the LOAD+DIV calibration for
the L1, L2, and DRAM memory levels. We present the results in Fig. 5.10.
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Figure 5.10: DIV instruction energy evaluation based on the difference with the LOAD calibra-
tion results (L1, L2, and DRAM)

We observe some variations in the evaluated energy consumption of the DIV in-
struction when using a small number of threads per block (i.e., with the highest signal-
to-noise ratio). Above 8 threads per block, we observe that the energy consumption of
the DIV instruction is consistent at around 2 nJ per instruction. This value is consistent
with the literature, as the energy consumption of an unsigned division instruction was
evaluated around 3.9 nJ on the previous generation of NVIDIA GPUs [13].

5.7 Evaluation of complete applications

We use the calibrated energy model to evaluate energy breakdowns for two real-world
applications with increasing complexity: (1) a matrix multiplication (MatMul), vary-
ing the sizes of the multiplied matrices, and (2) a training iteration of a deep learning
model (i.e., ResNet-50), using TensorFlow with different software optimizations. We
perform 10 runs for each application and report less than 1% of standard deviation.

5.7.1 Matrix multiplication

We use a reference MatMul implementation from the NVIDIA CUDA samples (which
does not use the tensor cores [106]). We evaluate the energy consumption for multiple
square matrix sizes (from 512 to 4096) and show the breakdowns in Fig. 5.11.
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Figure 5.11: Energy breakdown of MatMul for multiple sizes

We observe that while the energy consumed during the execution of the kernel in-
creases with the size of the matrices, it is dominated by the static energy consumption
of the GPU (i.e., > 50%). When ignoring the static energy consumption, we observe
that a major part of the energy is consumed by moving data across the memory hi-
erarchy (i.e., > 50% of the dynamic energy), with the shared memory being the most
energy-consuming memory component.

The largest tested matrix multiplication (i.e., 4096 × 4096) has an arithmetic inten-
sity of 1365 FLOPS/byte, which makes it compute-bound for the A100 GPU (i.e., arith-
metic intensity ≫ 1 FLOP/byte). Nevertheless, we observe that the energy consump-
tion of data movement is still significant, representing around 30% of the total energy
consumption of the kernel. This simple example shows the significant energy con-
sumed in data movement and storage in the A100, even for a lower-bound evaluation
of compute-bound workloads.

5.7.2 ResNet-50 training iteration

We use a reference implementation of ResNet-50 from the TensorFlow model gar-
den [158] and evaluate the breakdown of the energy consumption of one training it-
eration using the A100 GPU. Similarly to Chapter 4, to select the training iteration,
we run the training loop for a few iterations and select the first iteration with a stable
execution time. Thus, avoiding the warm-up phase of the training loop and profiling a
representative iteration of the rest of the training process. We run the training iteration
comparing multiple software optimizations (i.e., full precision (FP32) vs. mixed pre-
cision (FP16), and eager execution vs. Just-In-Time (JIT) compilation using XLA) with
batches of 512 images. We present the results of this evaluation in Fig. 5.12.
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Figure 5.12: Energy breakdown and throughput of ResNet50 using multiple software opti-
mizations, executed using TensorFlow

We make four observations from these results. First, the kernel’s static energy is
around 40% of its total energy consumption, regardless of the software optimization
used. Second, data movement is the most energy-consuming component, representing
the majority of the dynamic energy consumption (i.e., between 60% and 84%), except
for the Mixed Precision (MP) eager execution (i.e., only 29%). Third, both of the tested
software optimizations reduce the energy consumption of the kernel, showing a poten-
tial drop of 90 J going from full-precision eager to mixed-precision XLA JIT compila-
tion. However, these optimizations influence the energy consumption breakdown dif-
ferently. On the one hand, going from full-precision to mixed-precision greatly reduces
the energy of data movement and storage. When using eager execution it represents a
drop from 80% to 29% of the dynamic energy, and a drop from 83% to 60% when using
XLA JIT compilation. On the other hand, XLA JIT compilation increases the propor-
tion of memory energy consumption. It represents an increase from 29% to 60% of the
dynamic energy consumption with mixed-precision, and from 80% to 84% when using
full precision. Finally, we observe that DRAM greatly dominates the energy consump-
tion of the memory hierarchy (above 70%). In contrast, the L2 cache represents between
2% and 8% of the total energy consumption. The L1 cache is negligible, representing
less than 1% of the total energy consumption, except for the MP XLA JIT compilation,
where it represents around 5%. Shared memory is also negligible, representing less
than 2% of the total energy consumption for all tested configurations.

While the proposed methodology evaluates a lower bound of the data movement
and storage energy, our results show that it still represents a significant part of the to-
tal energy consumption of the GPU, even for compute-bound workloads. On the one
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hand, the calibration results highlight the importance of exploiting data locality when
aiming for energy-efficient GPU applications. On the other hand, the energy break-
down results show that even a well-optimized deep learning model, exploiting data
locality and reduced precision, is still dominated by the energy consumption of data
movement. These results suggest that the long data paths of modern GPU architectures
represent a significant energy bottleneck.

5.8 Summary

To conclude, this chapter addresses the limitations of existing methodologies to esti-
mate an energy consumption breakdown for data movement and storage in modern
GPUs. We propose an energy model along with a calibration methodology that can be
used to estimate the energy per access to different levels of the GPU memory hierarchy.

First, in section 5.4, we present the energy model based on previous works [64,
68]. The model goes further into detailing the energy consumption of modern GPUs’
memory hierarchy and takes into account parallel accesses to the memories, estimating
a lower bound of the energy consumed by each memory access.

Second, in section 5.5, we propose a calibration methodology for the model using
microbenchmarks. We describe the design choices of the microbenchmarks and the
performance counters used as a sanity check for the calibration process. We also ex-
plain how to use the internal power sensor of the GPU with the proposed methodology.

Third, in section 5.6, we implement the proposed methodology, estimating the
lower bound energy consumption of memory accesses on an NVIDIA A100 GPU. Our
implementation evaluates the energy consumption of accesses to shared memory, L1
cache, L2 cache, and DRAM memory. While our implementation is restricted to an
NVIDIA GPU, the general concepts can apply to other GPU brands that provide ac-
cess to performance counters of their architecture. Furthermore, while we use an inter-
nal power sensor in our specific implementation, the methodology is also applicable
using external power measurement tools [15]. For example, AMD GPU performance
counters can be easily accessed using the AMD GPUPerf API [9] and the AMD GPU
driver exposes power measurements to standard Linux tools (i.e., hwmon sysfs in-
terface [78]).

We also challenge the calibration results by adding complexity to our microbench-
marks and adding DIV instructions to our LOAD microbenchmark. With this change,
we reiterate the calibration process and compare the results with the original microben-
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chark. With this comparison, we observe that the difference between the two calibra-
tions is nearly constant, validating the consistency of our methodology.

Finally, in section 5.7, we evaluate the energy breakdowns for increasingly complex
GPU workloads. We first evaluate the energy consumption of a matrix multiplica-
tion kernel with varying matrix sizes, showing that the majority (> 50%) of the en-
ergy consumption of the GPU comes from its static power consumption. Furthermore,
data movement across the memory hierarchy remains the dominant part of the GPU
dynamic energy consumption, even for the compute-bound workload that this size
matrix multiplication represents. Our last evaluation is the energy consumption of a
training iteration of a Machine Learning model (i.e., ResNet-50) with different software
optimizations. While software optimizations can lower the total energy consumption,
we show that data movement remains the dominant part of the GPU dynamic energy
consumption, with DRAM accesses being the main contributor (up to 84%).
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In summary, this thesis tackles performance analysis of the GPU architecture for
ML workloads. Going top-down from the application level to the microarchitecture
level, this thesis provides new methodologies and insights to understand the limita-
tions of the current GPU architecture for both ML inference and training workloads.
The provided analyses focus on evaluating how efficiently these workloads utilize the
GPU resources and how the energy is spent in the GPU architecture.

In this chapter, we summarize the main contributions and findings, provide direc-
tions for future work, and finalize this thesis with some concluding remarks.

6.1 Summary of key contributions and findings

This thesis provides new methodologies to analyze the performance and energy of
the GPU architecture running ML workloads. In this section, we summarize the three
main contributions and findings of this thesis.

6.1.1 Analysis of ML frameworks runtime for ML inference

The first contribution of this thesis is an in-depth analysis of the TensorFlow eager
execution runtime for ML inference on a Central Processing Unit (CPU)-GPU tandem.
We provide a detailed description of the main steps followed by the TensorFlow eager
execution runtime to run code on the CPU and GPU. With this description, we identify
important metrics to analyze the overhead of the ML framework’s runtime.

In addition, we propose a new approach to conduct an in-depth performance anal-
ysis of the inference process of three ML models (i.e., LeNet-5, ResNet-50, and BERT)
for different batch sizes. The results of this analysis show that the runtime overhead
of the TensorFlow eager execution is reduced considerably when operating with larger
GPU kernels. However, this overhead could become significant when GPU kernel exe-
cution is not long enough to hide the ML framework’s runtime latency, thus decreasing
the proportion of total time when the GPU is in use. This work highlights the need to
better identify bottlenecks in the runtime execution of ML frameworks.

This work resulted in a contribution to an international conference paper: Paul De-
lestrac, Lionel Torres, and David Novo. “Demystifying the TensorFlow Eager Execu-
tion of Deep Learning Inference on a CPU-GPU Tandem”. In: 25th Euromicro Conference
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on Digital System Design (DSD). 2022. The source code and data used in this work are
available on GitLab [144].

6.1.2 Multi-level analysis of GPU utilization for ML training

The second contribution of this thesis focuses on the analysis of the utilization of GPU
computing resources for ML training workloads. From a description of an ideal GPU-
accelerated ML training process, we identify relevant performance metrics across dif-
ferent levels of abstractions of the GPU architecture. We propose a new methodology
to produce a coherent integration of the traces from multiple profiling tools.

We compare the execution of multiple ML training workloads to the ideal process
and present our findings with seven key takeaways. We show that high utilization is
typically achieved when looking at the GPU as a whole. However, our results show
that the average instruction issue slot utilization remains below 50%, with tensor core
instructions reaching less than 5.2%. This work highlights the need for advanced pro-
filing to unravel the limitations of the GPU architecture for ML training workloads.

This work resulted in a contribution to an international conference paper: Paul
Delestrac et al. “Multi-level Analysis of GPU Utilization in ML Training Workloads”.
In: 28th IEEE International Conference on Design, Automation & Test in Europe (DATE).
2024. The source code and the data used in this work are open-source and available on
GitLab [99].

In addition, we plan to submit an extended version of this work to the ACM Trans-
actions on Architecture and Code Optimization (TACO) journal in the coming months.
This extension will include a new methodology to gather detailed power traces of GPU
kernels for ML training workloads. This addition to the second contribution of the the-
sis is still a work in progress.

6.1.3 Energy breakdown of data movement in the GPU architecture

The third contribution of this thesis tackles the evaluation of the energy of data move-
ment and storage in modern GPU architectures. We establish a basic energy model for
the GPU architecture that focuses on the energy consumed by memory accesses. We
propose a methodology to calibrate the proposed energy model by evaluating a lower
bound of the energy consumed by memory accesses. The proposed methodology
uses specific microbenchmarks, and performance counters, and leverages the internal
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power sensor available in modern GPUs. We implement the proposed methodology
and calibrate the energy model for an example GPU (i.e., NVIDIA A100), identifying
the energy consumption of accesses to shared memory, L1 cache, L2 cache, and DRAM
memory. We challenge the consistency of the calibration results by cross-validating
with modified microbenchmarks to which we add additional compute instructions.

Finally, using the calibrated energy model, we evaluate breakdowns of the energy
consumption for increasingly complex GPU workloads, up to a training iteration of an
ML model (i.e., ResNet-50) with different software optimizations. While the proposed
methodology evaluates a lower bound of the energy of data movement and storage,
our results show that it still represents a significant part of the total energy consumed
by the GPU, even for compute-bound workloads. On the one hand, the calibration
results highlight the importance of exploiting data locality when aiming for energy-
efficient GPU applications. On the other hand, the energy breakdown results show
that even a well-optimized deep learning model, exploiting data locality and reduced
precision, is still dominated by the energy consumption of data movement (up to 84%),
with DRAM accesses being the main contributor.

This work resulted in a contribution to an international conference paper: Paul De-
lestrac et al. “Analyzing GPU Energy Consumption in Data Movement and Storage”.
In: 35th IEEE International Conference on Application-specific Systems, Architectures and
Processors (ASAP). 2024. The source code and data used in this work are open-source
and available on GitLab [4].

6.2 Future work

In this section, we provide some directions for future work based on the contributions
and findings of this thesis.

6.2.1 Profiling methodologies for GPU-accelerated ML workloads

In this thesis, we propose new methodologies to analyze the execution of ML work-
loads on the GPU architecture. With the implementation of these profiling method-
ologies, we extract new insights that could not be obtained with traditional profiling
tools. The results we present are a first step towards a more comprehensive profiling
workflow for ML workloads. Here, we give directions for future work in this area:
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ML frameworks runtime. While profiling tools provided by ML frameworks are use-
ful for ML model development, we show in Chapter 3 that they do not provide a com-
plete view of the runtime execution of the ML framework. Advanced profiling tools
that can provide insights into the runtime execution of ML frameworks, such as the
proposed TensorFlow eager runtime profiler [47, 144], could help improve both the
ML models and the ML frameworks runtime. While the proposed profiler is limited
to TensorFlow eager execution for inference, future work could extend this profiling
methodology to training workloads, other runtime execution modes, and other ML
frameworks.

GPU architecture metrics. In Chapter 4, we show the limits of existing profiling tools
to provide a precise view of the GPU architecture utilization for ML training work-
loads. We propose a new methodology to integrate multiple profiling tools to analyze
the GPU architecture utilization. Future work could extend this methodology to pro-
vide insights on additional metrics.

For example, Nsight Compute provides an estimation of the instruction issue stall
reasons using sampling. This sampling methodology is limited to a small number of
samples gathered from a small proportion of the GPU’s Streaming Multiprocessors
(SMs). Using assembly code instrumentation or simulation may provide paths for
other profiling approaches which could result in a more precise view of the instruc-
tion issue stall reasons across the GPU architecture.

Another example would be to integrate power and energy analyses into the profil-
ing methodology to compare the energy efficiency of different ML training workloads.
To provide further insights energy consumption values could be provided at the ker-
nel level. On the one hand, this could be measured using multiple power traces of a
given workload to gather enough samples to provide a reliable energy evaluation. On
the other hand, such energy value could be evaluated using a calibrated energy model,
as proposed in Chapter 5 for data movement energy and in related work for compute
energy [13]. This would also provide insights into how the energy is spent in the GPU
architecture when running such kernels.

Other metrics could also be explored, specific to components inside the GPU ar-
chitecture. For example, for a more memory-focused analysis, the methodology from
Chapter 4 could be extended to monitor the memory controller modes. Thus, pro-
viding more fine-grained insights into the utilization of a specific component of the
architecture during execution.
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6.2.2 Software optimizations

While this is not explored in this thesis, we believe that the proposed profiling method-
ologies and new metrics could be used as guidance for software optimizations. In
Chapters 4 and 5, we show that Just-In-Time (JIT) compilation can help achieve higher
GPU utilization and lower energy consumption. Recent efforts on domain-specific
compilers, such as Multi-Level Intermediate Representation (MLIR) [87], have shown
promising results when used to optimize the execution of ML workloads. Hence, fu-
ture work could use metrics such as the instruction issue slot utilization and the energy
breakdown when exploring software optimizations with such compilers.

6.2.3 Beyond the GPU architecture

While software optimizations can help reach the high-performance potential of the
modern GPU architecture, we show in this thesis (see Chapters 4 and 5) that this
paradigm is reaching a saturation point. The scientific community has been exploring
new architectures that could better serve ML workloads for years. Here, we give an
overview of some of the architectures explored in the literature. Finally, we conclude
this thesis by describing our first efforts to develop a vector accelerator in collaboration
with international research groups from imec, KTH, and EPFL.

State-of-the-art ML accelerator architectures. In Chapter 5, we show that data move-
ment remains the dominant part of the GPU dynamic energy consumption. Recent
approaches try to build more efficient architectures by reducing the data movement
that has to occur during execution. For example, architectures such as Google’s Tensor
Processing Units (TPUs) [72] bet on systolic execution units to reduce reads and writes
to the main memory (i.e., systolic arrays [29, 33, 46, 53, 57, 112, 119]). Other architectures
aim to reduce the distance between compute and memory units (i.e., near-memory pro-
cessing architectures [67, 77, 84, 131]) or merge computation and memory units into a
common block (i.e., in-memory processing architectures [11, 12, 35, 92, 132, 157]).

First efforts on developing a vector accelerator. In conjunction with this thesis work,
we collaborate with international research groups from imec, KTH, and EPFL to ex-
plore the design of a vector accelerator. The first version of this design was published
as a journal article in 2022 [156], where the imec team proposed a Design Space Explo-
ration (DSE) framework for Convolutional Neural Network (CNN) mapping on tile-
based accelerators. This contribution explored the integration of Analog In-Memory
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Compute (AIMC) blocks with digital Vector Functional Units (VFUs) to build a hybrid
architecture through a template Tiled ANalog In-memory Accelerator (TANIA).

However, our recent efforts focus on exploring a fully digital version of the template
architecture presented in this paper. This new variant of the architecture leaves the
analog AIMC blocks behind and integrates Very Wide Registers (VWRs) in-between
the scratchpad memory units (SRAM) and the VFUs (illustrated in Fig. 6.1). VWRs
use wide memory interfaces to reduce the number of memory accesses, thus aiming to
reduce the energy consumption of the architecture [25].

LIRMM’s contribution to the early steps of this project is to provide a system-level
simulator that can be used to explore different configurations of the architecture (e.g.,
number of VFUs, VWRs, word width). We built the first version of this simulator in
early 2024 using the Structural Simulation Toolkit (SST) [137]. While this work has not
resulted in a publication yet, the collaboration between imec, KTH, EPFL, and LIRMM
is ongoing. We are confident that this research path will result in major contributions
to the community.
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Figure 6.1: All-digital implementation of the TANIA architecture template
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6.3 Concluding remarks

In this thesis, we provide new profiling methodologies, metrics, and insights on the
performance and energy consumption of GPU-accelerated ML inference and train-
ing workloads. First, we analyze an ML framework’s runtime execution for inference
workloads, using TensorFlow eager execution as a case study. We show that the run-
time overhead of the ML framework can become significant when the GPU kernel
execution is not long enough to hide the runtime latency. Second, we analyze the uti-
lization of the GPU computing resources for ML training workloads at multiple levels
of abstraction. Our results show that the average instruction issue slot and tensor core
utilization remain low, despite high GPU utilization reported by traditional profiling
tools. Finally, we evaluate the energy consumption of data movement in the GPU
architecture and show that data movement remains the dominant part of the GPU dy-
namic energy consumption for ML training workloads.

We believe our results uncover some of the limitations of the current GPU archi-
tectures and motivate the need for more advanced profiling to further unravel these
limitations. We hope that the methodologies and insights provided in this thesis will
help the community in building more efficient ML workloads and new architecture
paradigms to support them.
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