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“Scientific revolutions are more often driven by new tools than by new concepts.”

- Thomas Kuhn, from “The Structure of Scientific Revolutions” [1]
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General introduction

Over the past decades, the methods and tools of machine learning (ML) have led to
remarkable technological advances that now impact many aspects of our lives. Automated
image and speech recognition, the creation of large language models and the control of
autonomous vehicles are just a few examples of real-world applications of ML. Moreover,
the rapid development of this field is beginning to have a huge influence on the way we
conduct research in various fields of science [2].
ML is a broad term describing the use of statistical methods and numerical algorithms to
solve problems without explicit instructions. The ability of this diverse range of algorithms
and approaches to recognise patterns in data, suggest optimal solutions, as well as to
predict and control the evolution of complex dynamical systems, makes ML particularly
suitable for research purposes [3, 4]. The development of ML-based methodologies for
scientific applications is very timely given the increasing amount of data being collected
in fields such as biology, neuroscience, astronomy and physics [5–7]. Recently, this has
resulted in the emergence of data-driven methods specifically designed to control, predict,
and interpret the dynamics of complex systems in these diverse areas of science [8, 9].
Current applications of ML in optics and photonics are numerous, ranging from reverse
engineering of novel photonic structures, optical sensing [10], to active control and opti-
misation of mode-locked lasers [11–13]. Significant progress in these areas has been made
through the use of genetic search algorithms and deep learning strategies enabling the de-
velopment of model-free approaches to control and predict the dynamics of optical systems
with many degrees of freedom (control parameters) [14]1.
At the same time, there is growing interest in developing data-driven methods that allow us
to extract interpretable and generalisable models that provide a deeper understanding of
the underlying physics [15], as opposed to implementing model-free approaches. The ability
of these novel data-driven methods to complement conventional theoretical approaches in
interpretation of the physics and provide model-based control strategies has the potential
to open up many opportunities and applications in the field of nonlinear fiber optics,
especially in highly nonlinear and chaotic propagation regimes.
In this thesis we present the application of data-driven approaches (based on both super-
vised and unsupervised learning) to different scenarios of nonlinear dynamics in optical
fibres. The aim of this thesis is to demonstrate how these emerging data-driven techniques
can be applied to the field of nonlinear fibre optics to improve our understanding of the
physics underlying various propagation regimes and even make discoveries based on dy-
namical data.

1An overview of the state-of-the-art ML techniques in fiber optics is presented in Section 1.5 of Chapter 1.
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2 CONTENTS

Thesis outline

This thesis is organised as follows. In Chapter 1 we first present the background theory on
optical pulse propagation in fibers. We derive the differential equation models governing
the propagation and describe various fundamental phenomena arising under variety of
conditions. In the end of Chapter 1 we also present an overview of the state-of-the-art
data-driven methods in nonlinear fiber optics.
In Chapter 2 we focus on one of the recently proposed data-driven techniques, called
the sparse identification of nonlinear dynamics (SINDy) [16], that enables to extract the
governing differential equation models directly from dynamical data. We then present the
first application of this technique to the fundamental process of four-wave mixing in optical
fibers. In particular, we focus on the ability of SINDy to extract underlying differential
equation models in nonlinear fiber optics from noisy dynamical data.
Chapter 3 presents another data-driven technique designed to identify the dominant phys-
ical interactions in local spatio-temporal regions [17] that we apply to the analysis of
noise-driven modulation instability (MI) dynamics in fibers.
Finally, in Chapter 4 we describe the fully unsupervised approach [18] to the data-driven
dominant balance technique presented in Chapter 3. We then apply this automated data-
driven dominant balance search algorithm to study the dominant physical regimes in
various scenarios of optical pulse propagation in fibers.



1
Introduction to optical pulse

propagation in fibres

In this chapter, we describe the underlying physical principles governing the propagation
of optical pulses in a fibre. We derive the basic equations describing the nonlinear and
dispersive processes that play a major role in the dynamics. We then describe a number
of fundamental effects and phenomena of nonlinear fibre optics such as the Kerr effect, the
modulation instability, optical solitons and the Raman scattering.

1.1/ Optical pulse propagation in fibres

The dynamics of optical waves in non-magnetic media without charges and with zero
current density can be described by the following set of Maxwell’s equations, which are
written here using the Gaussian unit system [19]

∇ · D = 0, (1.1a)

∇ · B = 0, (1.1b)

∇ × B = 1
c

∂D
∂t

, (1.1c)

∇ × E = −1
c

∂B
∂t
, (1.1d)

where ∇ stands for the nabla operator x̂(∂/∂x) + ŷ(∂/∂y) + ẑ(∂/∂z) with x̂, ŷ, ẑ being
the unit vectors along x, y, z directions, respectively, (·) and (×) denote the dot and cross
products, and c is the speed of light in vacuum. Vectors E = E(r, t)1 and B = B(r, t)
are the electric and magnetic field, respectively, and D = D(r, t) is the displacement field
vector that satisfies the constitutive relation

D = E + 4πP, (1.2)
where P = P(r, t) is the induced polarisation. Now, taking the curl of equation 1.1d and
then substituting Eq. 1.1c into it, yields

∇2E − ∇(∇ · E) − 1
c2
∂2

∂t2
E − 4π

c2
∂2

∂t2
P = 0. (1.3)

Equation 1.3 is a rather general wave equation that is usually presented in a simplified
form after making approximations specific to the particular optical problem [20].
1r is the radius vector x̂x+ ŷy + ẑz.

3



4 CHAPTER 1. OPTICAL PULSE PROPAGATION IN FIBRES: INTRODUCTION

1.1.1/ Induced polarization

The induced polarisation is linked to the electric field vector by the following law

P = ΥE, (1.4)

where Υ is, in general, some nonlinear and nonlocal operator [21]. The calculation of P may
require a quantum-mechanical approach to accurately account for the optical response of a
medium in the vicinity of resonances [22]. For example, the polarisation can be expressed
in terms of a dipole moment operator using the density matrix formalism [23].
Far from atomic resonances, the following general relation can be used to link P and E

P(r, t) =
∫ t

−∞
dt′χ(1)(t− t′) · E(r, t′) +

∫ t

−∞
dt′
∫ t

−∞
dt′′χ(2)(t− t′, t− t′′) : E(r, t′)E(r, t′′) +

∫ t

−∞
dt′
∫ t

−∞
dt′′

∫ t

−∞
dt′′′χ(3)(t− t′, t− t′′, t− t′′′)

...E(r, t′)E(r, t′′)E(r, t′′′) + . . . ,

(1.5)

where χ(i) are tensor terms obtained from the expansion of the electric susceptibility.
Note that Eq. 1.5 was obtained when neglecting the nonlocal response of the polarization
to the external field, but taking into account its nonlinear nature. Spatial dispersion
effects, however, may play an essential role near the interface between different media
and in the confined volumes, where the electric susceptibility may also depend on spatial
variables [24–26].
The first integral term in Eq. 1.5 describes the linear component of the polarisation PL,
while the higher-order terms represent the nonlinear part of the polarisation PNL. The sec-
ond order nonlinearity describes such effects as second harmonic generation, sum-frequency
generation, and optical rectification. The third order susceptibility χ(3) is responsible for
various phenomena, including self-phase modulation, third harmonic generation and four
wave mixing (FWM).
In optical fibres made of silica, the second order effects χ(2) can be neglected due to the
centro-symmetry of its structure. Thus, the second integral in Eq. 1.5 can be omitted.
The main contribution to the nonlinear part of the polarisation comes from the third-
order nonlinearity, since higher-order effects associated with higher-order tensor terms
χ(4), χ(5), . . . are usually much weaker. The linear part of the polarisation satisfies the
following constitutive relation for the linear part of the field displacement vector

DL = E + 4πPL = ε · E, (1.6)

where ε is the dielectric permittivity of a medium.
Equation 1.3 can now be rewritten as follows

∇2E − 1
c2
∂2

∂t2
E − 4π

c2
∂2

∂t2
PL = 4π

c2
∂2

∂t2
PNL, (1.7)

where PNL only accounts for third-order nonlinear effects represented by the tensor χ(3).
Note that the second term in Eq. 1.3 was neglected in Eq. 1.7 as ε is assumed to be
independent of r [27], so with the use of Eqs. 1.1a and 1.6 one gets

∇ · D = ε∇ · E = 0. (1.8)
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1.1.2/ Scalar model of the nonlinear pulse propagation

As in many problems in optics, a complete description of the propagation of a vector field in
a medium is a rather cumbersome task, so that simplified scalar models are usually used to
simulate the dynamics. To derive such a model in the case of optical pulse propagation in a
fibre, it is necessary to introduce additional assumptions about the structure of the optical
field. First, we can assume that the optical field maintains its direction of polarisation
throughout the propagation. Second, the propagating optical field is considered to be
quasi-monochromatic that implies that its spectral width ∆ω ≪ ω0 with ω0 being the
carrier frequency of a pulse. In isotropic media (such as silica), using the slowly varying
pulse approximation, the field of a monochromatic beam propagating along the z-axis as
well as the associated polarisation components can be written in the following way

E = 1
2 x̂ [E(r, t) exp(−iω0t) + c.c.] , (1.9a)

PL = 1
2 x̂ [PL(r, t) exp(−iω0t) + c.c.] , (1.9b)

PNL = 1
2 x̂ [PNL(r, t) exp(−iω0t) + c.c.] , (1.9c)

where we separated the rapidly varying parts of electric field2 and polarisation components
by introducing the slowly varying functions E(r, t), PL(r, t), PNL(r, t) with respect to the
optical period. The above approximations allow us to significantly simplify the structure
of the polarisation components. First, due to the isotropic properties of silica both χ(1)

and χ(3) tensors can be represented by single components χ(1)
xx and χ

(3)
xxxx, repectively,

describing the corresponding linear and nonlinear response of the medium to the incident
field linearly polarised along x̂. Next, substituting Eq. 1.9 into Eq. 1.5, assuming the
instantaneous nonlinear response3 and neglecting third harmonic generation process, yields
the following result for the polarisation components

PL(r, t) =
∫ ∞

−∞
dt′χ(1)

xx (t− t′)E(r, t′) exp [iω0(t− t′)] =

1
2π

∫ ∞

−∞
dωχ̃(1)

xx (ω)Ẽ(r, ω − ω0) exp [−i(ω − ω0)t],
(1.10)

where the tilde over the variable E denotes the Fourier transform

Ẽ(r, ω) =
∫ ∞

−∞
dtE(r, t) exp (iωt) = F [E(r, t)], (1.11)

and
PNL ≈ 3

4χ
(3)
xxxx|E(r, t)|2E(r, t) = εNLE(r, t). (1.12)

Solution of Eq. 1.7 can be found by considering its right-hand-side as a small perturbation.
In other words, the nonlinear contribution to the total polarisation is assumed to be much
smaller than the contribution from the linear part of polarisation. This assumption is
justified due to relatively small changes of refractive index induced by nonlinearity [22].
On this basis, to find a first-order perturbation theory solution of Eq. 1.7 for the moment
2In the above equation, c.c. stands for the complex conjugate
3Mathematically this corresponds to expressing the time varying part of χ(3) as delta functions δ(t− t′).
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we can neglect the dependence of PNL on the field intensity |E(r, t)|2 and consider εNL
as a constant term. Finally, by substituting Eqs. 1.9, 1.10, 1.12 into Eq. 1.7 and taking
the Fourier transform of both sides of it, we find that the Fourier transform of the field
Ẽ(r, ω − ω0) satisfies the Helmholtz equation [22]

∇2Ẽ + ε(ω)ω
2

c2 Ẽ = 0, (1.13)

where ε(ω) = 1 + 4πχ(1)
xx + εNL. The solution of Eq. 1.13 can be found via method of

separation of variables assuming a solution of the form

Ẽ(r, t) = F (x, y)Ã(z, ω − ω0) exp(iβ0z), (1.14)

where Ã(z, ω − ω0) is the slowly varying function of z, F (x, y) is the transverse modal
distribution, and β0 is the wave number at ω0. Substitution of Eq. 1.14 into the Helmholtz
equation (see Eq. 1.13) gives

1
F

(
∂2F

∂x2 + ∂2F

∂y2

)
+ ε(ω)ω

2

c2 = β2
0 − 2iβ0

1
Ã

∂Ã

∂z
− 1
Ã

∂2Ã

∂z2 = β̃2. (1.15)

As the left-hand side part only depends on the spatial variables x and y and the right-
hand side part only depends on the spatial variable z, we can put both sides to be equal
to some constant value β̃2 (β̃ is the wavenumber to be defiend later). As Ã is the slowly
varying function of z, we can neglect the second-order derivative term ∂2Ã/∂z2, since
∂2Ã/∂z2 ≪ Ã. Therefore, F (x, y) and Ã(z, ω − ω0) satisfy the following set of equations

∂2F

∂x2 + ∂2F

∂y2 +
[
ε(ω)ω

2

c2 − β̃2
]
F = 0, (1.16a)

2iβ0
∂Ã

∂z
+
(
β̃2 − β2

0

)
Ã = 0. (1.16b)

Further solution requires the perturbation theory approach. First, the dielectric constant
can be represented as

ε = (n+ ∆n)2 ≈ n2 + 2n∆n, (1.17)
with ∆n being a small perturbation

∆n = n2|E|2 + i
cα

2ω , (1.18)

where α is the parameter describing the linear losses4. The dependence of the refractive
index on the field intensity is known as the optical Kerr effect, which plays a central role in
nonlinear optics. The zeroth order perturbation theory solution of Eq. 1.16a can be found
by setting ∆n = 0 which allows to obtain the approximation of the modal distribution
F (x, y) and the wavenumber β(ω). Then, the first order perturbation theory solution
yields

β̃(ω) = β(ω) + ∆β(ω), (1.19)
where

∆β(ω) = ω2n(ω)
c2β(ω)

∫ ∞

−∞

∫ ∞

−∞
dxdy∆n(ω)|F (x, y)|2∫ ∞

−∞

∫ ∞

−∞
dxdy|F (x, y)|2

. (1.20)

4Note that to keep our notation similar to that used in the literature, we sometimes define the same
symbols to mean different things in different chapters. Whenever this is the case, it will be associated
with a footnote.
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1.1.3/ Chromatic dispersion

The dependence of the refractive index on the frequency n(ω) [or equivalently of the
dielectric permittivity ε(ω)] is known as the chromatic dispersion. At the fundamental
level, the chromatic dispersion arises from the oscillations of bound electrons under the
effect of the incident field [19]. In optical fibres, chromatic dispersion plays a major
role in optical pulse propagation, as it causes different spectral components to propagate
at different phase velocities. Mathematically, chromatic dispersion in optical fibres is
accounted for by β(ω) (see Eqs. 1.16, 1.19). With the use of approximation β̃(ω)2 − β2

0 ≈
2β0[β̃(ω) − β0], Eq. 1.16b can be written in the following form

∂Ã

∂z
= i
[
β(ω) + ∆β(ω) − β0

]
Ã, (1.21)

clearly illustrating how the propagating spectral components acquire a phase shift that
depends on the material dispersion [through β(ω)] and the intensity [through ∆β(ω)]. To
solve the Eq. 1.21, we must obtain the exact functional form of β(ω), which is quite a
difficult task. In this case, it is common to expand β(ω) in a Taylor series with respect to
the frequency ω0

β(ω) = n(ω)ω
c

= β0 + (ω − ω0)β1 + 1
2(ω − ω0)2β2 + 1

6(ω − ω0)3β3 + . . . , (1.22)

with β0 = β(ω0) and

βm = dmβ

dωm

∣∣∣∣
ω=ω0

, m = 1, 2, 3, . . . . (1.23)

The parameters β1 and β2 from the Taylor expansion are linked to the refractive index in
the following way

β1 = 1
υg

= ng
c

= 1
c

(
n+ ω

dn

dω

)
, (1.24a)

β2 = 1
c

(
2dn
dω

+ ω
d2n

dω2

)
, (1.24b)

and have the direct physical connection with the group velocity υg and the group velocity
dispersion (GVD) governed by the β2 parameter and responsible for pulse broadening.
The effect of higher-order dispersion is usually comparably smaller than that of the GVD.
However, higher-order terms have to be included in the vicinity of zero-dispersion wave-
length (the spectral region where the GVD contribution vanishes) and for ultrashort pulses
(see Section 1.4). For example, the term proportional to the β3 coefficient in Eq. 1.22 is
called the third order dispersion (TOD).
At the moment we neglect the contributions related to the higher-order dispersion. This
assumption is justified for optical pulses with a spectral width ∆ω ≪ ω0. It is important to
note that although chromatic dispersion can be introduced into the propagation equation
independently of nonlinearity, nonlinear effects in optical fibres manifest themselves quite
differently depending on the sign of the GVD parameter. It is common to distinguish
two different regimes of the optical pulse propagation: the normal dispersion regime when
β2 > 0 and the anomalous dispersion regime when β2 < 0. Of particular interest is the
anomalous dispersion regime, where the red-shifted spectral components travel faster than
the blue-shifted. This effect is known to lead to the propagation scenario in which a balance
between chromatic dispersion and nonlinearity can support soliton propagation [22]. This
point will be discussed in detail in Section 1.2.3
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1.1.4/ Nonlinear Schrödinger equation

The propagation equation can be written in the time domain by taking the inverse Fourier
transform of Eq. 1.21 in the form

A(z, t) = 1
2π

∫ ∞

−∞
dωÃ(z, ω − ω0) exp −i(ω − ω0)t = F−1[Ã(z, ω − ω0)]. (1.25)

For the ∆β(ω) term in the right-hand side of Eq. 1.16b we can perform a similar expansion
as in Eq. 1.19

∆β(ω) = ∆β0 + (ω − ω0)∆β1 + 1
2(ω − ω0)2∆β2 + 1

6(ω − ω0)3∆β3 + . . . (1.26)

and keep only the zeroth-order term that accounts for the fibre loss and nonlinearity, such
that ∆β ≈ ∆β0. This yields5

∂A

∂z
+ β1

∂A

∂t
+ i

β2
2
∂2A

∂t2
= i∆β0A. (1.27)

Finally, assuming that the transverse field distribution F (x, y) does not vary much over
the pulse bandwidth, using β(ω) ≈ n(ω)ω/c and neglecting the fibre losses, we get

∂A

∂z
+ β1

∂A

∂t
+ i

β2
2
∂2A

∂t2
= iγ(ω0)|A|2A, (1.28)

where γ(ω0) is the nonlinearity parameter, defined as

γ(ω0) = n2(ω0)ω0
cAeff

, (1.29)

with

Aeff =

(∫ ∞

−∞

∫ ∞

−∞
dxdy|F (x, y)|2

)2

∫ ∞

−∞

∫ ∞

−∞
dxdy|F (x, y)|4

. (1.30)

Equation 1.28 can be written in the reference frame associated with the group velocity of
the optical pulse. Using the following transformation

T = t− z/υg = t− zβ1, (1.31)

one gets

i
∂A

∂z
− β2

2
∂2A

∂T 2 + γ|A|2A = 0. (1.32)

Equation 1.32 is referred to as the nonlinear Schrödinger equation (NLSE) because of its
similarity to the quantum-mechanical Schrödinger equation with a nonlinear potential.
This particular mathematical form of NLSE appears in various fields of nonlinear science
and describes the nonlinear wave dynamics in hydrodynamical systems, Bose-Einstein
condensates, and plasma.

5Note that these last steps are equivalent to inserting the ansatz E = 1
2 x̂
[
F (x, y)A(z, t) exp(iβ0z− iω0t) +

c.c.
]

into the Eq. 1.7 and introducing the same assumptions as described.
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1.2/ NLSE propagation regimes

The NLSE introduced in Section 1.1 supports different propagation regimes depending
on the properties of input optical pulse (in particular, initial pulse width T0 and the
peak power P0)6, as well as the fibre parameters β2 and γ. In order to characterise
these different propagation regimes, it is common to introduce two length scales indicating
typical propagation distances at which nonlinearity and GVD dominate the dynamics

LD = T 2
0

|β2|
, (1.33a)

LNL = 1
γP0

, (1.33b)

where LD and LNL are called the dispersion and nonlinear lengths, respectively. An
important physical quantity is the ratio of the introduced characteristic lengths

LD
LNL

= γP0T
2
0

|β2|
(1.34)

connecting all four parameters T0, P0, γ, and β2 together. The specific limiting cases when
LD/LNL ≪ 1 and LD/LNL ≫ 1 will be discussed in the following sections.

1.2.1/ Dispersive propagation

The dispersion-dominated regime occurs when LD/LNL ≪ 1, which leads to a negligibly
small relative contribution of nonlinearity. Mathematically, this regime can be studied by
setting γ = 0 in Eq. 1.32, which yields the following simplified equation

i
∂A

∂z
− β2

2
∂2A

∂T 2 = 0, (1.35)

with a similar mathematical structure to the paraxial wave equation governing the diffrac-
tion of continous wave light in one of its transverse directions [19]. The solution of Eq. 1.35
can be readily found using the Fourier-transform method

Ã(z, ω) = Ã(0, ω) exp
(
i
β2
2 ω

2z

)
, (1.36)

A(z, T ) = 1
2π

∫ ∞

−∞
dωÃ(0, ω) exp

(
i
β2
2 ω

2z − iωT

)
. (1.37)

It can be seen from Eq. 1.36 that in the absence of the nonlinearity, the second order
dispersion does not affect the pulse spectrum. At the same time, from Eq. 1.37 it is evident
how the GVD leads to the time domain pulse broadening and phase modulation, while
allowing an initially symmetric optical pulse to preserve symmetry [21]. Specifically, the
pulse broadening arises due to the time delay in the arrival of different spectral components.
In the normal dispersion regime (β2 > 0), the red components travel faster than blue
components, and vice versa in the anomalous dispersion regime (β2 < 0). These effects,
however, can be compensated by nonlinearity, as will be shown in the following sections.
6Pulse width definition will be given in Section 1.2.3
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1.2.2/ Self-phase modulation

Another limiting case LD/LNL ≫ 1 corresponds to optical pulse propagation dominated by
nonlinearity, with GVD contribution being comparably small. This regime is associated
with the phenomenon called self-phase modulation (SPM) [22] resulting in the spectral
broadening of the input pulse7. Following a similar approach as in Section 1.2.1, we can
now neglect the β2 term in Eq. 1.32

i
∂A

∂z
+ γ|A|2A = 0. (1.38)

Next, by substituting the following ansatz A(z, T ) = |A(z, T )| exp(iϕNL) in Eq. 1.38, one
can find that the pulse temporal amplitude does not change during the propagation and
the general solution reads as

A(z, T ) = A(0, T ) exp (iϕNL), (1.39)

with
ϕNL(z, T ) = γ|A(0, T )|2z, (1.40)

where ϕNL denotes the nonlinear phase acquired during the propagation. Thus, the SPM
leads to the intensity-dependent phase shift that increases with distance. At the same
time, the time dependence of ϕNL leads to spectral changes of the input pulse throughout
its evolution. Specifically, the instantaneous optical frequency varies across the pulse with

δω(T ) = −∂ϕNL(z, T )
∂T

= −γ ∂|A(0, T )|2
∂T

z, (1.41)

defining the frequency difference with respect to the central frequency ω0. Thus, from
Eq. 1.41, we can see that the SPM leads to spectral broadening of the pulse as new
spectral components are generated continuously during propagation8.

1.2.3/ Temporal fibre solitons

In the limiting cases discussed above, the simplified structure of the evolution equation
allows to derive analytical solutions for the propagation of specific input pulses. A partic-
ular example is the input unchirped Gaussian pulse

A(0, T ) =
√
P0 exp

(
− T 2

2T 2
0

)
, (1.42)

for which the solution of the evolution equation can be written in an explicit analytical
form when considering the isolated action of GVD or SPM effects [22]9. Contrary to that,
in the case when the GVD and SPM effects become comparable (i.e. for LD/LNL ∼ 1),
both effects have to be considered simultaneously. The combined action of GVD and
SPM leads to qualitatively different propagation regimes. In this case, it still possible to
study the pulse propagation using approximate analytical and semi-analytical methods for
specific initial conditions. Alternatively, the NLSE evolution of an arbitrary input pulse
7This effect is known to be a temporal analog of the spatial self-focusing effect in noninear optics.
8The dependence of δω on time is called frequency chirp.
9In the above formula T0 stands for the half-width at 1/e intensity level and linked to the full width at
half maximum through the following relation TFWHM = 2(ln 2)1/2T0 ≈ 1.665T0.
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(see Eq. 1.32) for given fibre parameters can be studied numerically using the split-step
Fourier method [28].
It is instructive to first consider some special analytical solutions of the NLSE and their
properties. The NLSE has infinitely many exact solutions, while more complex solutions
can be expressed as a nonlinear superposition of simpler solutions [21]. The inverse scat-
tering transform method developed by Zakharov and Shabat in 1972 [29] allows to find and
construct the exact analytical solutions of the NLSE. Another important theoretical result
is that the NLSE admits soliton solutions [30]. In nonlinear fibre optics, temporal solitons
are pulse-like solutions arising due to the interaction of dispersive and nonlinear effects,
which allows these pulses to propagate over long distances without distortion under certain
conditions [31]. Such solutions of Eq. 1.32 can be found via inverse scattering transform
method. In the anomalous dispersion regime the first-order soliton solution reads as10

A(z, T ) =
√
P0 sech (T/T0) exp (iγP0z/2), (1.43)

where sech stands for the hyperbolic secant function. This solution is also called the funda-
mental soliton [22] because its shape and spectrum remain unchanged during propagation
due to the full compensation of the two chirp contributions arising from the GVD (for
β2 < 0) and SPM effects.
The soliton-like solutions in optical fibres can be characterised using the parameter N
called the soliton number

N2 = LD
LNL

= γP0T
2
0

|β2|
. (1.44)

In particular, the propagation of the fundamental soliton (see Eq. 1.43) can be supported
for such a combination of fibre parameters β2 and γ, peak power P0 and temporal duration
T0 of the input sech pulse that N = 1.
For input sech pulses satisfying the condition N = 2, 3, 4, . . . in Eq. 1.44, one can ob-
serve the propagation of higher-order solitons that exhibit recurrent periodic temporal
and spectral evolution. For some of the higher-order solitons it is still possible to find
the closed-form analytical solutions, however their mathematical structure becomes more
cumbersome [22]. An important characteristic of all higher-order solitons is the soliton
period z0, which gives the propagation distance at which the higher-order soliton recovers
its original shape

z0 = π

2LD = π

2
T 2

0
|β2|

. (1.45)

10“Dark soliton” solutions can also be supported in the normal dispersion regime (β2 > 0).
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1.3/ Modulation instability

Another important phenomenon arising due to the interplay between the dispersive and
nonlinear effects is the modulation instability (MI) [32, 33]11. The MI has been actively
studied since the 1960s in diverse fields, including hydrodynamics [34], Bose-Einstein con-
densates, plasmas [35], and nonlinear fibre optics. In the context of the optical fibre
propagation, the MI of the NLSE describes the instability of the continuous wave injected
into an optical fibre in the presence of small initial perturbations that experience expo-
nential growth at the expense of a strong input wave. Specifically, the MI is observed in
the anomalous dispersion regime (β2 < 0) and leads to the breakup of a continuous wave
into a sequence of ultrashort pulses in the presence of a small periodic perturbation [36]
or noise [37].

1.3.1/ Linear stability analysis

Let us first consider the propagation of a continuous wave in an optical fibre in the absence
of perturbations. For the input continuous wave, the steady-state solution of Eq. 1.32 reads
as12

Ā =
√
P0 exp (iϕNL), (1.46)

where P0 is the power of the incident continuous wave and ϕNL = γP0z (see Eq. 1.40).
Linear stability analysis consists in study of the effect of a small perturbation on the
steady-state solution. First, the perturbed solution can be written as

A = (
√
P0 + a) exp (iϕNL), (1.47)

where a = a(z, T ) is a small, complex-valued function. Inserting Eq. 1.47 into the NLSE
(see Eq. 1.32), yields

i
∂a

∂z
− β2

2
∂2a

∂T 2 + γP0(a+ a∗) = 0, (1.48)

where only the linear terms with respect to a were retained due to the smallness of the
perturbation (|a|2 ≪ P0). Next, searching for the general solution for a in the following
form

a(z, T ) = u exp
[
i(Kz − ΩT )

]
+ υ exp

[
− i(Kz − ΩT )

]
, (1.49)

where K and Ω represent the wavenumber and frequency of the perturbation, respectively,
Eq. 1.48 can be converted to the set of two linear equations for variables u and υ [22].
Using standard methods for solving the set of linear equations for u and υ, it can be shown
that nontrivial solutions exist only if the following dispersion relation is satisfied

K = ±1
2 |β2Ω|

[
Ω2 + sgn(β2)Ω2

c

]1/2
, (1.50)

where sgn(β2) = ±1 is the sign function and Ωc = 4γP0/|β2|. Finally, by substituting
Eq. 1.50 into the general solution for a (see Eq. 1.49), it becomes obvious that the stability
of the injected continuous wave is determined by the sign of the GVD parameter β2. In the
normal dispersion regime (β2 > 0), the wave number K is real for every Ω, which makes
the solution stable with respect to small perturbations. The opposite is observed in the
anomalous dispersion regime (β2 < 0), where K becomes imaginary for |Ω| < Ωc, leading
to an exponential growth of the perturbation with z. This process results in spontaneous
temporal modulation of the input continuous wave and is called the MI.
11Also called the Benjamin-Feir or Bespalov-Talanov instability.
12See Section 1.2.2.
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1.3.2/ Modulation instability gain

In order to characterise the development of MI, we can introduce the MI gain for |Ω| < Ωc,
which has the physical meaning of the growth rate of the perturbation with frequency Ω

g(Ω) = 2 Im(K) = |β2Ω|
(
Ω2
c − Ω2

)1/2
, (1.51)

where Im stands for the imaginary part. It can be seen from Eq. 1.51 that g(Ω) is sym-
metric with respect to Ω = 0 with g(Ω = 0) = 0. Moreover, it is straightforward to find
the spectral positions corresponding to the maximum amplification

Ωmax = ± Ωc√
2

= ±
(2γP0

|β2|

)1/2
, (1.52)

at which the MI gain reaches its peak value

gmax = g(Ωmax) = 2γP0. (1.53)

Figure 1.1 shows the shape of MI gain spectrum curve plotted against Ω/Ωmax over the
range |Ω| < Ωc.

-21/2 -1 0 1 21/2

Ω/Ωmax

g

gmax

Figure 1.1: The MI gain spectrum plotted as a function of Ω/Ωmax (see Eq. 1.51). The
black dashed vertical lines indicate the position corresponding to the maximum MI gain
gmax = g(Ωmax) = 2γP0 (highlighted by the blue dashed line).

The linear stability analysis results presented above describe only the initial stage of the MI
propagation. Later MI dynamics leads to the emergence of localised ultrashort structures
exhibiting temporal and/or spatial periodicity [21,36]. A complete theoretical description
of the dynamics of MI under certain initial conditions requires the use of rather complex
approaches of mathematical physics and statistics [38–42]. These aspects will be discussed
in Chapter 3 of this thesis.
An interpretation of the MI dynamics in optical fibres can be found by considering the
four-wave mixing (FWM) process with the phase-matching condition satisfied through the
SPM [22]. The FWM is one of the third-order nonlinear parametric effects (characterised
by χ(3) susceptibility) describing the interaction of four optical field components with
different frequencies (equivalent to the interaction of four photons in quantum-mechanics).
In the most general case, the manifestation of the FWM process requires conservation
of energy (matching of the frequencies) and fulfilment of the phase-matching condition
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(matching of the wave vectors) for all four interacting components. However, the special
case describing the interaction of a single intense pump optical field (at frequency ω0)
with two weak frequency sidebands (at frequencies ω1 and ω2) is of particular interest
for optical fibres13. In this case, when the phase-matching condition is satisfied, two
symmetric sidebands with a frequency shift Ωs with respect to ω0

Ωs = ω0 − ω1 = ω2 − ω0. (1.54)

can be enhanced at the expense of a strong pump. It can be shown that in the anomalous
dispersion regime the phase-matching condition for the degenerate FWM process occurs
when Ωs = (2γP0/|β2|) with P0 being here the input pump power. This frequency shift,
in fact, coincides with the spectral position of the maximum MI gain obtained from the
linear stability analysis (see Eq. 1.52). Indeed, a strong pump wave at frequency ω0
transfers its energy most efficiently to the symmetric sidebands at ω0 ± Ωs as a result
of the FWM process phase-matched by the SPM. This result highlights the idea of the
frequency domain MI interpretation through the degenerate FWM process [22].
FWM is a central nonlinear process in optical fibre propagation, and in many areas of
nonlinear science. The underlying theoretical background of FWM dynamics will be dis-
cussed later in Chapter 2.

1.3.3/ Noise-driven modulation instability

Isolated propagation of the pump wave in the anomalous dispersion regime of an optical
fibre can also lead to MI in the presence of random noise perturbations. This phenomenon
is known as spontaneous (or noise-driven) MI and was shown to lead to the random
formation of localized and periodic spatio-temporal structures [43,44].
In the most general case, the NLSE in the anomalous dispersion regime (also refered to as
the one-dimensional focusing NLSE in the MI literature) and the initial conditions leading
to the MI can be written in the following dimensionless form

i
∂ψ

∂ξ
+ ∂2ψ

∂τ2 + |ψ|2ψ = 0, (1.55)

with
ψ(ξ = 0, τ) = 1 + ϵ(τ), (1.56)

where the dimensionless propagation distance, time and field envelope are defined as
ξ = z/LNL, τ = T/

√
|β2|LNL/2, and ψ(ξ, τ) = A(z, T )/

√
P0, respectively, while ϵ(τ)

represents the imposed perturbation14. It is known that in the case of small periodic
perturbations the solution of Eq. 1.56 can be written in an analytical form [36]. The
situation turns out to be more complicated when ϵ(τ) is considered to consist of localized
perturbations [45] or random noise [46]. The appearance of the random localized nonlin-
ear structures can be studied by introducing the concept of the solitonic gas [47] and by
analyzing the statistics of extreme events [44,48].
13This process is refered to as the degenerate FWM under the undepleted pump approximation.
14The normalisation in Eq. 1.55 is slightly different from that commonly appearing in the literature which

uses a factor 1/2 before the second-order derivative term (see Eq. 2.1). For consistency with the literature
and our own publications, we use the form in Eq. 1.55 here and in Chapters 3 and 4, and the normalisation
in Eq 2.1 in Chapter 2 in the context of FWM dynamics.
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In optical fibre systems MI occurs even in the presence of an uncorrelated random noise
process. For the given initial conditions (see Eq. 1.56) the noise-driven MI governed by
Eq. 1.55 can be simulated numerically via split-step Fourier method and using the one-
photon-per-mode noise model to mimic the experimental conditions [49].

1.3.4/ Solitons on finite background

The NLSE possesses many analytical solution associated with MI dynamics [50]. Among
them is the family of solutions known as the solitons on finite background (SFB). These
solutions include the Akhmediev breather (AB), the Peregrine soliton (PS) [34] and
Kuznetsov-Ma soliton (KM) [35] and can be written in the analytical form

ψ(ξ, τ) =
[
1 + 2(1 − 2a) cosh (bξ) + ib sinh (bξ)√

2a cos(ωmτ) − cosh(bξ)

]
exp(iξ), (1.57)

where the physical behaviour of the solution is governed by a single parameter a through
the arguments b = [8a(1 − 2a)]1/2 and ωm = [2(1 − 2a)]1/2. For example, with a = 1/2,
ωm = b = 0 and we get a rational solution, known as the PS, doubly localised in ξ and
τ [34]. For a < 1/2, ωm and b are real-valued, and we obtain the τ -periodic AB solution,
with ωm and b taking the physical meaning of modulation frequency and exponential
growth rate, respectively. Finally, when a > 1/2, ωm and b become imaginary and we
obtain the ξ-periodic KM solution. Figure 1.2 illustrates spatio-temporal properties of
SFB solutions.

Figure 1.2: Spatio-temporal properties of solitons on finite background (see Eq. 1.57). (a)
Akhmediev breather (AB). (b) Peregrine soliton (PS). (c) Kuznetsov-Ma soliton (KM).

These various SFB structures can be excited in a controlled way by coherent modula-
tion of the input signal (e.g. a modulated continuous wave) and they can also emerge
spontaneously during MI driven by random noise (technical or quantum noise). Many
experiments since 2010 have observed a wide class of these SFB structures [51–53].
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1.4/ Generalised nonlinear Schrödinger equation

As can be seen from the previous sections, the NLSE in its classical form (see Eq. 1.32)
can be used to describe the fundamental nonlinear and dispersive effects arising in optical
fibre propagation. The major nonlinear fibre optics phenomena discussed earlier in this
chapter certainly do not exhaust the variety of NLSE propagation scenarios. Additional
examples of normal dispersion propagation, including the optical wave breaking and the
formation of Riemann wave shocks, will be provided later in Chapter 4.
The derivation of Eq. 1.32 presented in Section 1.1 was based on several simplifying as-
sumptions allowing to neglect the higher-order dispersion and nonlinear contributions
in the propagation equation model. These assumptions, however, lead to notable dis-
crepancies between numerical simulations and experiments for optical pulses as short as
T0 < 5 ps [22, 54]. Therefore, the higher-order dispersive and nonlinear effects have to be
taken into account when studying the ultrashort pulse propagation. In such regimes, the
temporal evolution of A(z, T ) can be modeled using the generalised NLSE [55]

i
∂A

∂z
+iα2A+

∑
m≥2

im

m!βm
∂mA

∂Tm
+γ

(
1 + i

γ1
γ

∂

∂T

)[
A(z, T )

∫ ∞

−∞
dT ′R(T ′)|A(z, T−T ′)|2

]
= 0,

(1.58)
that additionally takes into account the effects of fibre losses through the linear loss pa-
rameter α, higher-order dispersion terms (with m denoting the order of the Taylor series
expansion of the chromatic dispersion), the self-steepening effect (proportional to the pa-
rameter γ1/γ)15 arising due to the dispersion of the nonlinear coefficient (see Eq. 1.26),
and finally, the instantaneous and delayed Raman contributions. Under certain conditions,
the combined action of dispersive and nonlinear effects inherent in the generalised NLSE
can lead to the supercontinuum (SC) generation process, which consists in the extreme
spectral broadening of the input narrow laser spectral profile [22, 54]. The SC has found
many applications in science and engineering and is still an area of extensive research and
development [54].
Let us now consider the structure of the generalised NLSE in more detail. The second term
in Eq. 1.58 (responsible for the losses in a fibre) has to be included to mimic experimental
conditions, although its physical effect on ultrashort pulse propagation is trivial in most
cases16. In contrast, higher-order dispersion effects (third term in Eq. 1.58) now begin to
play an important role in ultrafast dynamics even away from zero-dispersion wavelengths.
The isolated action of the TOD on the soliton propagation can be studied via perturbation
theory and is known to lead to a linear shift of the soliton peak δT (z) with respect to z [22]

δT (z) =
(
β3/6T 2

0

)
z = δ3 (z/LD) . (1.59)

Another important perturbation theory result is that higher-order dispersion effects lead
to the emission of nonsolitonic radiation (analogous to Cherenkov radiation in particle
physics) [56]. This phenomenon results in the energy transfer from solitons to narrowband
resonances, the position of which can be obtained from phase-matching conditions. This
effect becomes particularly noticeable in the presence of ejected Raman solitons (see Sec-
tions 1.4.1-1.4.2), whose perturbation leads to the efficient generation of dispersive waves
with shorter wavelength (with respect to that of the solitons) [57].
15To leading order parameter γ1/γ can be approximated by ω−1

0 , where γ = γ(ω0) and γ1 = (dγ/dω)ω=ω016Note also that for short optical fibres this effect is usually neglected.
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1.4.1/ Raman scattering

The integral term in Eq. 1.58 accounts for the Raman effect that is known to result in
the energy transfer from high to low frequency components of the optical pulse (intrapulse
Raman scattering) [22]. This particular higher-order nonlinear effect turns out to be the
most crucial in the ultrafast soliton dynamics and SC generation in optical fibres.
The Raman effect in optical fibres originates from the scattering of photons on the vibra-
tional modes of silica induced by the optical field [22]. Both the instantaneous (electronic)
and delayed (nuclear) Raman contributions can be taken into account by introducing the
following analytical model of the full Raman response function [58]

R(T ) = (1 − fR)δ(T ) + fRhR(T ) = (1 − fR)δ(T ) + fR
τ2

1 + τ2
2

τ1τ2
2

exp (−T/τ2) sin (T/τ1)θ(T ),

(1.60)
where θ(T ) is the Heaviside step function, fR is called the Raman fraction, while τ1 and τ2
are the fit parameters. The particular form of temporal Raman response function hR(T )
was inspired by the problem of damped harmonic oscillator17 and is shown in Fig. 1.3.
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Figure 1.3: Analytical approximation of the temporal Raman response function hR(T )
(see Eq. 1.60) plotted for τ1 = 12.2 fs and τ1 = 16 fs.

Typical values of the parameters τ1, τ2 and fR for silica can be estimated from experiments
and are 12.2 fs, 16 fs and 0.18, respectively. In practice, it is common to use the exper-
imentally obtained Raman response function to more accurately account for the Raman
contribution [59], which, however, does not qualitatively change the observed physics.
The isolated effect of Raman scattering was as well studied via perturbation theory ap-
proaches [22, 60]. It was found that it leads to a large temporal shift of the soliton peak,
the appearance of small-amplitude temporal oscillatory tails, and a shift of the central
frequency of the pulse towards longer wavelengths. This soliton self-frequency shift ωR
is the most noticeable effect of the delayed Raman contribution and can be expressed as
dωR/dz ∝ |β2|/T 4

0 [61].
Finally, it should be noted that the effect of self-steepening on the propagation of higher-
order solitons is similar to that of intrapulse Raman scattering, although the latter tends
to dominate the dynamics in most propagation scenarios.
17Note that the functional form of hR is defined in such a way that

∫∞
−∞ dThR(T ) = 1.
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1.4.2/ Soliton fission

Even when acting separately, the Raman effect, higher-order dispersion, as well as self-
steepening can substantially perturb the higher-order soliton propagation and lead to its
compression and to the phenomenon called the soliton fission [22]. Soliton fission consists
in the breakup of the higher-order soliton into a series of fundamental solitons and plays
the major role in the development of the SC from ultrashort input pulses [54].
The breakup of an input higher-order soliton (of order N > 1) into fundamental solitons
begins after the fission distance Lfiss that corresponds to the maximum compression point
of the injected soliton [62]18. The explicit expressions for the peak powers and widths of
the fundamental solitons of the form Aj(z, T ) =

√
Pj sech(T/Tj) ejected during the fission

process can be found using the inverse scattering transform method [63]

Pj = P0
(2N − 2j + 1)2

N2 , Tj = T0
2N − 2j + 1 , (1.61)

where j = 1, . . . , N and N represents the soliton number of the input soliton. The soliton
fission process induced by the TOD and in the presence of TOD and Raman effect will be
discussed in detail in Chapter 4.
The later propagation stage is associated with further spectral broadening emerging from
the interaction of leading dispersive and nonlinear processes that result in rich and complex
dynamics. Unlike the NLSE, Eq. 1.58 is generally non-integrable, thus numerical simula-
tions have to be performed to study the SC generation process. The numerical integration
scheme in this case can be as well implemented in the framework of the split-step Fourier
method [22]. Specifically, the solution of the linear propagation step can be performed in
the frequency domain, while the nonlinear step can be performed using the Runge-Kutta
integration rule [54,55,57].
To accurately model the SC generation process, it is necessary to account for all terms in
Eq. 1.58 with higher order dispersion expanded up to 12th order in some cases. At the
same time, the physics underlying the development of SC from ultrashort pulses can be
well interpreted when considering a simplified form of the generalised NLSE. In particular,
we write here the generalised NLSE in the dimensionless form that additionally accounts
for the TOD and Raman effects

i
∂ψ

∂ξ
+ ∂2ψ

∂τ2 + iδ
∂3ψ

∂τ3 + |ψ|2ψ + ρψ (hR ∗ |ψ|2) = 0, (1.62)

where the dimensionless variables correspond to ψ = A
√
γLD, ξ = z(1 − fR)/LD,

τ = T
√

2(1 − fR)/T0. The TOD and Raman effects are included here through the di-
mensionless parameters δ =

√
2(1 − fR)β3/3T0|β2| and ρ = fR/(1 − fR), the operator (∗)

stands for the convolution. This particular dimensionless form of the generalised NLSE
will be used in the subsequent analysis in Chapter 4.

18The fission distance can be well approximated as Lfiss ≈ LD/N .
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1.5/ Machine learning methods in fibre optics: Overview

As was noted in the general introduction to this thesis, nowadays, methods and tools of
ML have a tremendous impact on how we conduct research in various fields of science [2].
The rapid growth of the scientific community’s interest in ML approaches in recent decades
is driven by the power of ML to perform classification, pattern recognition, optimisation
and prediction of the complex system dynamics, as well as many other tasks that are at
the heart of the scientific method [3, 4]. These developments have quickly penetrated the
fields of optics and photonics, where ML algorithms have found practical applications in
the design of optical components and new photonic materials [11], in imaging and sensing
applications, to name only a few [13,64].
A particularly intriguing direction for the application of ML approaches has been found
in the field of ultrafast photonics, where optical systems require systematic control and
optimisation [14]. One of the major directions in this domain is the optimization of
ultrafast fibre lasers, where the dynamics is governed by a complex interplay between
nonlinear, dispersive and dissipative processes [65]. The need for ML algorithms arises
naturally due to the number of control parameters (degrees of freedom) in such systems
that have to be optimised simultaneously to reach the desired dynamical regime [66],
as well as the sensitivity of the optical circuits to noise [67]. In a particular example
of fibre lasers, one can reach qualitatively different dynamical regimes (e.g. continuous
wave, mode-locking, noise-like pulse generation etc.) by controlling the polarization, pump
power, spectral filters and losses [68,69]. In this case, conventional greedy search algorithms
over the available system parameters become computationally expensive for optimization
purposes. Contrary to that, ML search algorithms, including genetic and evolutionary
algorithms, turn out to be an efficient solution to establish the desired operational regime
of ultrafast optical fibre systems [70–72]. In particular, the real-time optimisation and
self-tuning of the fibre laser can be implemented using a feedback loop via a genetic
algorithm [73], which results in a remarkable improvement over linear parameter tuning.
Another novel application of ML in the field of ultrafast nonlinear fibre optics is the
prediction of nonlinear dynamics and pattern identification from noisy and incomplete
measurements. It was shown that the use of neural networks can enable us to find a
link between the local intensity maxima of the chaotic temporal field and features of the
noisy broadband spectra [74], a fact that immediately found applications in the analysis
of noisy SC generation [75] and noise-driven MI [76]. More recently it was demonstrated
how the pre-trained feed-forward neural networks can be efficiently used to speed-up the
integration of the generalised NLSE to simulate the SC generation process [77].
The application of search algorithms and neural networks to optimise, control and pre-
dict the ultrafast dynamics of optical fibres has resulted in significant progress in the
field [14]. At the same time, the model-free approaches mentioned above usually provide
us with black-box type models and solutions that are mostly applicable over the range of
parameters used in the training process, which significantly limits their generalisability.
In contrast, several qualitatively different ML approaches have recently been proposed to
discover underlying physical principles and hidden low-dimensional dynamical patterns di-
rectly from data [16,17,78–81]. In particular, these novel data-driven methods are able to
automatically discover governing differential equation models, identify dominant physical
processes, and perform model-based prediction and control of the state of physical systems
by analysing dynamical data (e.g., spatio-temporal evolution) [8].
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1.5.1/ State-of-the-art data-driven methods in fibre optics

We would now like to focus on data-driven methods that are designed to aid in the physical
interpretation of dynamics and even potentially make data-driven discoveries. A compre-
hensive overview of data-driven methods for science and engineering, as well as practical
implementation examples, are presented in the book “Data-driven science & engineering”
by Steven L. Brunton and J. Nathan Kutz [82], and we describe specific details of tech-
niques relevant to this thesis in the following chapters. Currently, the applications of such
methods in the field of nonlinear fibre optics are rather scarce, in contrast to the model-
free approaches discussed in Section 1.5. Nevertheless, it is conceivable that these novel
data-driven techniques and algorithms will soon become one of the central methodologies
for optimisation, control and discovery in complex fibre optics systems [14].
The goal of this branch of ML approaches can be either to extract interpretable and
generalisable models from data (e.g., differential equation models) or to develop data-
driven algorithms that can complement conventional theoretical analysis [82]. In ML,
it is common to distinguish two main classes of algorithms known as supervised and
unsupervised learning [3]. Supervised learning algorithms require the labeled data input.
This implies that examples of the desired model output for a particular input are already
given in the training dataset. In unsupervised learning algorithms, no training labels are
given, so the algorithm itself must find patterns in the data to determine how to cluster and
classify new data. Supervised learning is usually associated with regression-like problems,
while unsupervised learning is associated with the clustering and dimensionality reduction
techniques.
Figure 1.4 gives an overview of several supervised and unsupervised data-driven techniques
that have already been applied to the field of nonlinear fibre optics.

Data-driven 
discovery in 
 fiber optics
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Figure 1.4: Several supervised and unsupervised data-driven methods and their applica-
tions in fibre optics.
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The emerging applications of supervised data-driven techniques in the field of nonlinear
fibre optics enable the self-tuning of ultrafast fibre lasers via deep learning with model
predictive control [83]. This provides a data-driven alternative to the optimization methods
for fibre lasers discussed in Section 1.5. The ability of this approach to robustly predict the
birefringence and future state of the laser allows the high performance of a mode-locked
fibre laser to be maintained even in the presence of chaotic perturbations in the cavity.
Another data-driven strategy aiming at prediction of chaotic extreme pulses in a Kerr
resonator based on the precursor-driven ML and reservoir computing has recently been
demonstrated [84,85].
One of the important practical applications of novel data-driven techniques consists in the
inverse design of various optical fibre systems. Even though the concept of inverse design
is not very recent [86] and has been extensively explored in photonics applications [87], it
has been only recently shown to be enhanced via deep-learning and specifically tailored
for the optical fibre systems [88–90].
While supervised data-driven approaches are proving to be very successful in a variety
of practical applications, the generalisability of unsupervised techniques can be very use-
ful in the exploration of the physical principles underlying the dynamics. For example,
dynamics-mode decomposition [79] and reduced-order modeling [82] can be exploited to re-
trieve low-dimensional modes of NLSE dynamics in different propagation scenarios [91,92].
Singular value decomposition combined with the sparse sensing turns out to be valuable
in classification of birefringence in mode-locked fibre lasers [67].
Recently, a novel approach has been proposed to identify local dominant physical processes
directly from dynamical data in the framework of unsupervised clustering [17, 18, 93–95].
The ability to automatically separate regions of spatio-temporal field evolution where cer-
tain dispersive and nonlinear effects dominate the propagation is crucial to understanding
complex NLSE dynamics and can accomplish conventional theoretical methods. This par-
ticular data-driven approach called the data-driven dominant balance [17] will be one of
the central topics of this thesis. In Chapters 3 and 4 for the first time we apply this tech-
nique to various nonlinear fibre optics propagation scenarios, including noise-driven MI,
optical wave breaking and soliton fission induced by TOD and Raman effects. We provide
a detailed algorithmic framework, physical interpretation of the method, and discuss its
possible future applications.
An even more general and ambitious approach in data-driven science is the discovery of dif-
ferential equation models from data [16,78,96–98]. The capability to extract interpretable
dynamical models from numerical data and experimental measurements is at the forefront
of modern science and has the potential to impact various fields also outside of physics, in-
cluding neuroscience, biology, and geosciences [82]. In this regard, the developed numerical
methods and the availability of experimental data in nonlinear fibre optics make this field
an ideal testbed for this novel approach. Moreover, data-driven discovery of interpretable
and generalisable models can be very promising in certain regimes of nonlinear fibre optics
propagation where the governing differential equations are only partially known. In this
thesis we focus on one of the recently proposed technique called the sparse identification of
nonlinear dynamics (SINDy) [16]. The first application of SINDy in the field of nonlinear
fibre optics is presented in Chapter 2, where we demonstrate how the differential equation
model of the FWM dynamics can be directly extracted from dynamical data.





2
Data-driven discovery of

four-wave mixing dynamics in
nonlinear fibre optics

2.1/ Introduction

As highlighted in Section 1.5 of Chapter 1, machine learning (ML) techniques based on
statistical approaches and numerical algorithms have proven to be a powerful tool for
analysis and prediction of dynamics of complex systems in various areas of science. From
a fundamental point of view, it is of particular interest to use data-driven approaches to
study nonlinear systems when the structure of the underlying differential equation models
can be partially or even completely unknown. Specifically, a number of inverse-problem-
like algorithms have recently been developed to identify the underlying mathematical
structure of differential equation models governing the system dynamics based only on
analysis of data generated by the system [16, 78, 80, 99, 100]. The particular approach
known as the sparse identification of nonlinear dynamics (SINDy) developed by Steven L.
Brunton, Joshua L. Proctor and J. Nathan Kutz has already found extensive use in various
fields, including mechanics, hydrodynamics and plasma physics [16]. Its implementations
in optics, however, have been more limited, but it has found applications in the field of
telecommunication networks [101].
The SINDy algorithm is based on the well-known observation that the dynamics of many
physical systems can be described by a set of coupled differential equations, with the
right-hand side (RHS) part consisting of only a few terms. This sparsity of the RHS in the
equation space allows SINDy to discover forms of the governing differential equations by
analyzing data series. Built on various numerical strategies, SINDy provides an algorithmic
approach to determine the active RHS terms from a wide library of potential candidate
functions for both systems of ordinary and partial differential equations [96,102–104]. The
feasibility of SINDy was demonstrated on several canonical physical models manifesting
nonlinear and chaotic dynamics, including the Lorenz system, the case of a fluid wake
behind a cylinder and a nonlinear pendulum [16].
In this chapter, the SINDy technique is applied to the canonical problem of optical four
wave mixing (FWM) in the nonlinear Schrödinger equation (NLSE) system [22,105–107].
These dynamics can be described by the coupled differential equations for the relative
amplitude and phase of frequency components evolving with distance in an optical fi-
bre [108, 109]. Being the dominant process in various physical systems, including cold

23
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atoms, plasma physics and hydrodynamics [50, 110–112] FWM is one of the key physical
effects that can be used to assess the validity of the SINDy algorithm. It is also of interest
to test the performance of SINDy in the case of noisy data, which is an important step
towards the identification of differential equation models from experimental data [103,113].

2.2/ Degenerate four wave mixing in optical fibres

In this section, we present two different formalisms to describe degenerate FWM dynamics
in an optical fibre: the coupled amplitude equations and the Hamiltonian model. The
derived models will be used in further analysis of the FWM dynamics via SINDy algorithm.
In addition, we discuss in detail the phase space representation of the FWM dynamics.

2.2.1/ Hamiltonian formalism

The degenerate FWM in optical fibres was briefly discussed in Section 1.3.2, where it was
linked to modulation instability (MI) dynamics. A starting point in the description of
FWM dynamics is the NLSE that we write here in the following dimensionless form

i
∂A

∂ξ
+ 1

2
∂2A

∂τ2 + |A|2A = 0, (2.1)

where ξ = z/LNL, τ = T/
√

|β2|LNL, and A(ξ, τ) = A(z, T )/
√
P0

1. Degenerate FWM
describes the interaction of three optical components with distinct frequencies and can be
studied by inserting the following ansatz into Eq. 2.1

A(ξ, τ) = A0(ξ) +A1(ξ) exp(iΩτ) +A−1(ξ) exp(−iΩτ), (2.2)

where A0(ξ) is the field at the pump frequency and A±1(ξ) are frequency sidebands detuned
by ±Ω. This yields the following set of coupled complex amplitude equations that describe
the energy exchange between three discrete frequency components2

−idA0
dξ

=
(
|A0|2 + 2

[
|A−1|2 + |A1|2

])
A0 + 2A−1A1A

∗
0, (2.3a)

−idA−1
dξ

=
(

−1
2Ω2 + |A−1|2 + 2

[
|A0|2 + |A1|2

])
A−1 +A∗

1A
2
0, (2.3b)

−idA1
dξ

=
(

−1
2Ω2 + |A1|2 + 2

[
|A−1|2 + |A0|2

])
A1 +A∗

−1A
2
0, (2.3c)

Equations 2.3 describe the dynamical energy exchange between the pump A0 and two
equidistant sidebands A±1. At the same time, solving the NLSE numerically with the
initial conditions of this form (see Eq. 2.2) results in cascaded FWM process, where addi-
tional spectral lines are generated at the expense of the pump [114]. The full mathemati-
cal description of the cascaded FWM turns out to be rather cumbersome, but restricting
the analysis to only three interacting spectral components results in rather simple “ideal
FWM” model that captures the essential physics of the system.
1This particular dimensionless form of the NLSE is used throughout this chapter.
2The normalised frequency used in this chapter is defined as Ω = ω

√
|β2|LNL.
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The set of governing Eqs. 2.3 can be simplified by describing the FWM dynamics using
the Hamiltonian formalism. As was demonstrated in [108,109], the Hamiltonian of Eq. 2.3
can be written in terms of two real-valued physical variables, namely, the relative sideband
intensity η and phase ϕ

H(η, ϕ) = 2η(1 − η) cosϕ+ (Ω2 + 1)η − 3
2η

2, (2.4)

where

η = |A0(ξ)|2
P0

= |A0(ξ)|2
|A−1(ξ)|2 + |A0(ξ)|2 + |A1(ξ)|2 , (2.5a)

ϕ = arg
[
A−1(ξ)

]
− 2 arg

[
A0(ξ)

]
+ arg

[
A1(ξ)

]
. (2.5b)

Using the relations dη/dξ = ∂H/∂ϕ and dϕ/dξ = −∂H/∂η, the dynamics of degenerate
FWM can be described by the set of only two self-consistent equations

dη

dξ
= −2η

([
1 − η

]2 − κ2
)1/2

sinϕ, (2.6a)

dϕ

dξ
= −

(
Ω2 + 1

)
+ 3η − 2 1 + 2η2 − 3η − κ2([

1 − η
]2 − κ2

)1/2 cosϕ, (2.6b)

where κ = κ(ξ) = (|A−1(ξ)|2 − |A1(ξ)|2)/P0 describes the asymmetry between the side-
bands. Variable κ along with H(η, ϕ) are known to be the system’s invariants implying
that these quantities are conserved throughout the propagation. Assuming the case of the
equal sidebands (κ = 0) one can further simplify the set of governing equations

dη

dξ
= 2η (η − 1) sinϕ, (2.7a)

dϕ

dξ
= −

(
Ω2 + 1

)
− 2 cosϕ+ 3η + 4η cosϕ. (2.7b)

This is equivalent to setting A−1(ξ) = A1(ξ) in Eq. 2.3 resulting in

− i
dA0
dξ

=
(
|A0|2 + 4|A1|2

)
A0 + 2A2

1A
∗
0, (2.8a)

− i
dA1
dξ

=
(

−1
2Ω2 + 3|A1|2 + 2|A0|2

)
A1 +A∗

1A
2
0. (2.8b)

An advantage of the Hamiltonian formulation presented here is that it better captures the
physical aspects of the degenerate FWM dynamics when compared to the NLSE and the
coupled amplitude equations. The Hamiltonian model can provide additional information
about the separation of the dynamics into different regimes and can help derive simple
analytical expressions for the initial conditions leading to stationary solutions [108, 109].
Moreover, it can be quite helpful in any attempts to observe the well-known Fermi-Pasta-
Ulam-Tsingou periodic recurrence [21,115] under laboratory conditions [116–118]. Indeed,
another advantage of Eqs. 2.7 is that the physical variables η and ϕ can readily be measured
experimentally [119]. The state-of-the-art experimental setups enabling the observation
of ideal FWM dynamics and the Fermi-Pasta-Ulam-Tsingou recurrence in the MI are pre-
sented in the PhD theses of Guillaume Vanderhegen [120] and Anastasiia Sheveleva [121].
We refer readers to these theses also for an extensive literature review covering both the-
oretical and experimental works on the topic.
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2.2.2/ Phase space representation of dynamics

Equations 2.7 can be solved numerically for given initial conditions (η0, ϕ0) and sideband
detuning Ω. In the case, when |A±1| ≪ |A0| the phase-matching condition corresponding
to the maximum FWM gain is Ω =

√
2. This value is used in the following simulations

in this chapter. Figure 2.1 shows the intensity evolution of |A(ξ, τ)|2 for two different sets
of initial conditions: (a) η0 = 0.95 and ϕ0 = 0, (b) η0 = 0.95 and ϕ0 = π. It can be
seen that the interaction of three optical field components associated with the degenerate
FWM results in the existence of two different dynamical regimes [see Figs. 2.1(a) and (b)].
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Figure 2.1: Spatio-temporal dynamics of degenerate FWM represented by |A(ξ, τ)|2 for
the initial relative amplitude η0 = 0.95 and different initial relative phases: (a) ϕ0 = 0,
(b) ϕ0 = π. The influence of the initial phase shift results in the transverse phase shift
apparent in (b). (c) and (d) show the corresponding dynamics of η(ξ) and ϕ(ξ) as the
functions of propagation distance ξ. (e) displays the associated phase space dynamics.
Red curves in subfigures (c-e) show the dynamics associated with initial condition ϕ0 = 0
[subfigure (a)] and the blue curves with initial condition ϕ0 = π [subfigure (b)]. The green
curve in (e) represents the trajectory of the system’s separatrix (see text). The vertical
axis in (e) shows the range of η ∈ [0, 1], while angles ϕ are shown around the circle.

In both situations we can observe the periodic spatio-temporal evolution, however the
initial conditions corresponding to the π phase shift between the pump and the sidebands
[Fig. 2.1(b)] result in the transverse phase shift in the recurrence pattern. Figures 2.1(c)
and (d) show the spatial evolution of the relative intensity η and phase ϕ for two sets of
initial conditions (red curves: η0 = 0.95 and ϕ0 = 0, blue curves: η0 = 0.95 and ϕ0 = π).
This clearly illustrates the periodic energy exchange between the pump and the sidebands
occurring during the propagation of the optical field.
Using the same color code, Fig. 2.1(e) shows the corresponding phase space portraits of
the two trajectories in the η(ξ) − ϕ(ξ) polar coordinates. Note that this is fully consistent
with the phase space representation of the dynamics used in various fields of physics.
Recurrence patterns become apparent here as the FWM dynamics forms closed trajectories
in the associated phase space. In terms of the two new variables η(ξ) and ϕ(ξ), the
dynamics is analogous to a one-dimensional nonlinear oscillator, and its phase space is
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divided into two dynamical regions via separatrix - the homoclinic trajectory obtained for
(η0, ϕ0) → (1,±π/2) [108] [green curve in Fig. 2.1(e)].
To better illustrate distinct dynamical regimes arising in the FWM dynamics, Fig. 2.2(a)
shows phase space trajectories corresponding to 6 different sets of initial conditions. The
trajectories on the RHS of the separatrix were obtained by numerically solving Eqs. 2.7
for η0 = 0.8, 0.9, 0.95 with ϕ = 0 (red curves). It can be seen how the periodic trajectories
approach the separatrix orbit as the initial relative amplitude η0 increases. The trajectories
on the left-hand side (LHS) of the separatrix were obtained for η0 = 0.4, 0.8, 0.95 with
ϕ = π (blue curves). Two ensembles of the phase space trajectories show quite different
spatio-temporal dynamics, as we highlighted in Figs. 2.1(a) and (b). Specifically, the LHS
trajectories show the transverse phase shift in the recurrence pattern.
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Figure 2.2: (a) Phase space trajectories of the ideal FWM dynamics obtained for different
initial conditions. The degenerate FWM process described by the Hamiltonian model leads
to spatio-temporal dynamics demonstrating the well-known Fermi-Pasta-Ulam-Tsingou
recurrence patterns. Red lines represent the RHS trajectories obtained for initial conditions
η0 = 0.8, 0.9, 0.95 with ϕ = 0. Blue lines represent the LHS trajectories obtained for initial
conditions η0 = 0.4, 0.8, 0.95 with ϕ = π. The black rectangular and purple circular points
indicate the phase space position of the stationary solution of the Hamiltonian system for
Ω =

√
2 (see text). The black-dashed line shows the separatrix orbit. (b) Spatio-temporal

dynamics of the separatrix represented by |A(ξ, τ)|2. The dynamics were obtained for the
initial relative amplitude η0 = 1 − ϵ with ϵ = 10−5 and initial relative phase ϕ0 = π/2.

Another important dynamical aspect is the existence of stationary solutions in the degen-
erate FWM model, which can also be seen in Fig. 2.2(a). The black rectangular point on
the RHS corresponds to one of the eigensolutions of the Hamiltonian system (see Eq. 2.7).
In particular, for Ω =

√
2 considered here, the initial conditions ηe = (3+Ω2)/7 = 5/7 and

ϕe = 0 lead to the stationary solution of the system, where the dynamics do not experience
any spatial dependence. Thus, the corresponding phase space dynamics are represented
by the fixed point on the RHS part with respect to the separatrix. The fixed point at the
origin of the phase space (highlighted in purple) corresponds to another eigensolution of
the Hamiltonian system with ηe = 0 [109]. Finally, Fig. 2.2(b) shows the spatio-temporal
dynamics of the separatrix obtained for (η0, ϕ0) = (1 − ϵ,±π/2) with ϵ = 10−5 [108]. In
fact, in the more general case of NLSE dynamics, the trajectory of the separatrix is related



28 CHAPTER 2. DATA-DRIVEN DISCOVERY OF FWM DYNAMICS IN FIBRES

to the Akhmediev breather (AB) solution [21].
The degenerate FWM process described by the Hamiltonian model leads to spatio-
temporal dynamics demonstrating the well-known Fermi-Pasta-Ulam-Tsingou recurrence
patterns. We can see from the above that these dynamics are very sensitive to the initial
conditions and experience different physical regimes depending on the choice of initial con-
ditions. In this regard, the degenerate FWM model can be an ideal testbed for the SINDy
algorithm, which is specifically designed to study nonlinear systems. So far, we have only
considered the ideal FWM dynamics in the absence of noise, which is usually present in
experiments. Evaluating the validity of SINDy on noisy dynamical data is crucial for the
further development of the algorithm and especially for its practical applications. The
application of SINDy to noisy degenerate FWM dynamics is presented in Section 2.4.
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2.3/ Methodology of SINDy

In this section, the methodology of SINDy is outlined [16]. In particular, we focus on
the fundamentals of symbolic regression and sparse sensing and how they can be used to
extract the form of governing differential equations from data. The construction of the
candidate nonlinear functions, optimization methods and some aspects of overfitting of
the returned differential equation models are also discussed.

2.3.1/ Extracting differential equation models from data

The starting point of SINDy is the fact that the dynamics of many physical systems can
be described by a set of coupled differential equations of the form

d

dζ
x(ζ) = f

[
x(ζ)

]
, (2.9)

where f is the vector field function governing the evolution of the state vector x =[
x1(ζ);x2(ζ); ...;xn(ζ)

]
with respect to the variable ζ. The state vector x thus contains n

elements associated with physical variables involved in the dynamics (e.g., displacement,
angle, temperature, amplitude, phase, etc.). The variable ζ is usually associated with time
or a propagation coordinate, defined in relation to the considered physical problem.
In most cases, given that a form of the vector field function f is known, one can directly
integrate Eqs. 2.9 to predict the evolution of the state vector x. However, for many complex
physical systems, the structure of f might be unknown (or partially unknown), so that
one only has an access to observations of the evolution of physical variables obtained from
experiments. These measured data representing, for example, the spatial (or temporal)
evolution of the state vector can be written in the following matrix form

X =


xT (ζ1)
xT (ζ2)
...

xT (ζm)

 =


x1(ζ1) x2(ζ1) . . . xn(ζ1)
x1(ζ2) x2(ζ2) . . . xn(ζ2)
...

...
. . .

...
x1(ζm) x2(ζm) . . . xn(ζm)

 , (2.10)

sampling n physical variables at m discrete values of ζ. The dimensionality n of the
state vector is linked to the considered physical system and/or experimental conditions.
In addition, the dataset may contain multiple matrices (see Eq. 2.10) corresponding to
various initial conditions of a state vector x(ζ = 0) =

[
x1(ζ = 0);x2(ζ = 0); ...;xn(ζ = 0)

]
.

From Eq. 2.10 we can directly estimate the matrix of derivatives by means of numerical
differentiation

Ẋ =


ẋT (ζ1)
ẋT (ζ2)
...

ẋT (ζm)

 =


ẋ1(ζ1) ẋ2(ζ1) . . . ẋn(ζ1)
ẋ1(ζ2) ẋ2(ζ2) . . . ẋn(ζ2)
...

...
. . .

...
ẋ1(ζm) ẋ2(ζm) . . . ẋn(ζm)

 , (2.11)

where the dot stands for derivative with respect to ζ. Equation 2.11 thus represents the
LHS of Eq. 2.9. The problem of extracting the form of differential equations from data
consists in finding the best suitable RHS functions in Eq. 2.9 that acts on the state vector
x to balance the equality.
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2.3.2/ Library of candidate functions

To find the best suitable functional representation of f , we can construct a large library
of candidate functions Θ. Based on physical knowledge, among these candidates can be
polynomial, periodic and any other possible functions of variables x1(ζ), x2(ζ), . . . , xn(ζ).
Mathematically, a library of candidate functions can be represented in the matrix form
Θ(X) = [θ1(X), θ2(X), . . . , θp(X)] with dimensionsm×p with p being the total number of
candidate RHS functions acting on the columns of X. Then, the matrix of derivatives 2.11
can be estimated in the following way

Ẋ = Θ(X)C, (2.12)

where matrix C =
[
c1, c2, ..., cn

]
of dimensions p× n is a row vector of coefficients stand-

ing before the corresponding candidate terms in library Θ. Equation 2.12 introduces a
regression problem that can be solved to find the best approximation of the matrix C.
After solving the regression problem for C, one can directly construct the set of differential
equations approximating the evolution of the physical variables

ẋk(ζ) = fk
[
x(ζ)

]
= Θ(xT )ck, (2.13)

with Θ(xT ) denoting a vector of symbolic functions of the state vector elements. Equa-
tions 2.10-2.13 introduce a framework to extract the differential equation models from data
via solving a regression problem. In [122] the power of a similar approach was demon-
strated on the example of coupled Rössler oscillators. However, solving the conventional
regression problem results in an output model that includes all the candidate terms in
Θ (the output coefficient matrix is dense) which limits the physical interpretability of
the results. To overcome this limitation, the SINDy algorithm proposed in [16] utilizes
a sparsity promoting criterion when solving the regression problem to return sparse and
physically-interpretable models from data.

2.3.3/ Sparse regression problem

The motivation for formulating the search for differential equation models best representing
the dynamics within the framework of the sparse regression problem is based on the well-
known observation that many physical systems can be described by differential equations
with a small number of RHS terms [16]. In other words, the vector field f in Eq. 2.9 is
usually sparse in the equation space.
Therefore, SINDy searches for a solution to the regression problem (see Eq. 2.12) that
provides a good fit to the input data while keeping the smallest number of terms in the
RHS part. Algorithmically, a sparse approximation of ck in Eq. 2.13 can be found by
employing the least absolute shrinkage and selection operator (LASSO) regression [123]

ck = arg min
c′

k

∥∥∥Ẋ:k − Θ(X)c′
k

∥∥∥
2

+ α
∥∥c′

k

∥∥
1 , (2.14)

where Ẋ:k is the k-th column of Ẋ and α denotes the LASSO l1 hyperparameter3. The
notation ∥.∥2 and ∥.∥1 stands for the l2 and l1 norms of a matrix, respectively.
3Note that hereafter the variable α denotes the LASSO l1 hyperparameter (not to be confused with the
linear loss coefficient introduced in Chapter 1).
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2.3.4/ Optimization methods

In order to increase the robustness of the algorithm, the sequential thresholded least
squares (STLS) algorithm was implemented in the original SINDy paper [16], and this
was shown to outperform the conventional LASSO regression. Algorithm 1 shows the
main steps of STLS optimization that uses a regression while iteratively discarding the
terms with coefficients smaller than a given threshold λt.

Algorithm 1 Sequential thresholded least squares optimization for the SINDy algorithm
- Estimate the LHS matrix Ẋ
- Initialize candidate RHS functions Θ
- Initialize the hyperparameter α2 and the threshold value λt
- Initialize a number of iterations iters needed for convergence
- Allocate a matrix of coefficients C

Perform an initial guess for C using the least squares approximation
for i = 1, ..., iters do

1. Find indices ki of coefficients in C above the threshold: ki = (abs(C) ≥ λt)
2. Threshold the remaining coefficients C[∼ ki] = 0
3. Update C via regression C[ki] = arg min

C′

∥∥∥Ẋ − Θ(X)[ki]C′
∥∥∥

2
+ α2 ∥C′∥2

end for
Return C

To perform the initial guess for coefficient matrix C, one can use the least squares solution

C = (ΘTΘ)−1ΘT Ẋ. (2.15)

Next, the algorithm sequentially thresholds the library terms with coefficients smaller than
a given threshold λt and updates the matrix of coefficients C via ridge regression with the
hyperparameter α2. The output of the SINDy algorithm via STLS contains a sparse
matrix of coefficients C that is subsequently used to construct the differential equation
model approximating the dynamics

ẋ(ζ) = f
[
x(ζ)

]
= CT [Θ(xT (ζ))

]T
. (2.16)

The SINDy algorithm with STLS identifies differential equations for each element of the
state vector x, while trying to keep the minimum number of the RHS terms required for
the convergence.
Note that there are many different optimization methods employed in the framework of
SINDy algorithm that are based on l1 and l2 norms [102, 103, 113]. The development
of SINDy continues extending the approach for the boundary value problems [124], as
well as enhancing the technique via deep generative modeling [125] and reinforcement
learning [126].
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2.4/ Results

The following section presents the results of applying the SINDy technique to the case of
ideal FWM dynamics in an optical fibre, discussed in detail in Section 2.2. The technique is
first applied to the Hamiltonian FWM model (see Eq. 2.7) in the ideal noise-free case. The
performance of SINDy is then evaluated for input noisy data that mimics the experimental
conditions. Next, the results of applying SINDy to coupled amplitude equations (see
Eqs. 2.8) are presented.

2.4.1/ Sparse identification of ideal FWM dynamics

The main steps involved in the application of the SINDy algorithm to ideal FWM dynamics
represented by the Hamiltonian model are highlighted in Fig. 2.3.
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4. Results

In this section we present the results of sparse indentification of FWM dynamics via SINDy
algorithm. To this end, using Eqs. 6a and 6b we numerically simulate 20 trajectories for
both variables � and � corresponding to the various sets of initial conditions (�0, �0) re-
sulting in the dynamics on both sides of the separatrix. We consider the both: ideal case
of noise-free dynamics, as well as the spatial trajectories data generated with the imposi-
tion of the Gaussian noise with different standard deviations up to � = 2 × 10−2. The

│═══════════════════════════════════════════│
│RHS candidates│   x0'   │    x1'   │
╞══════════════╪═════════════╪══════════════╡
│ 1           │ 0.000000000 │ -2.999999304 │
├──────────────┼─────────────┼──────────────┤
│ x0          │ 0.000000000 │  2.999998855 │
├──────────────┼─────────────┼──────────────┤
│ x1          │ 0.000000000 │  0.000000000 │
├──────────────┼─────────────┼──────────────┤
│ x0^2        │ 0.000000000 │  0.000000000 │
├──────────────┼─────────────┼──────────────┤
│ x0x1        │ 0.000000000 │  0.000000000 │

   
...

│ sin(x1)     │ 0.000000000 │  0.000000000 │
├──────────────┼─────────────┼──────────────┤
│ cos(x1)     │ 0.000000000 │ -1.999997466 │
├──────────────┼─────────────┼──────────────┤
│ sin(x0)     │ 0.000000000 │  0.000000000 │

   ...

│ x0 sin(x0)   │ 0.000000000 │ 0.000000000 │
├──────────────┼─────────────┼──────────────┤
│ x0 sin(x1)   │-1.999998381 │ 0.000000000 │
├──────────────┼─────────────┼──────────────┤
│ x0 cos(x1)   │ 0.000000000 │ 3.999996344 │
├──────────────┼─────────────┼──────────────┤
│ x1 sin(x0)   │ 0.000000000 │ 0.000000000 │

   ...

│ x0^2 sin(x1) │ 1.999998092 │ 0.000000000 │
├──────────────┼─────────────┼──────────────┤
│ x1^2 cos(x0) │ 0.000000000 │ 0.000000000 │

   ...

╘══════════════╧═════════════╧══════════════╛

(a) Studied model

(b) Spatial evolution of the state vector

(c) Estimation of the derivative matrix
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4. Results

In this section we present the results of sparse indentification of FWM dynamics via SINDy
algorithm. To this end, using Eqs. 6a and 6b we numerically simulate 20 trajectories for
both variables � and � corresponding to the various sets of initial conditions (�0, �0) re-
sulting in the dynamics on both sides of the separatrix. We consider the both: ideal case
of noise-free dynamics, as well as the spatial trajectories data generated with the imposi-
tion of the Gaussian noise with different standard deviations up to � = 2 × 10−2. The
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Figure 2.3: Flowchart of the SINDy algorithm applied to the Hamiltonian model of ideal
FWM dynamics in an optical fibre. (a) shows the considered ideal FWM system in Hamil-
tonian formalism. (b) Multiple state vectors representing the η(ξ) and ϕ(ξ) trajectories
for different initial conditions. (c) Estimated derivative matrices. (d) A library of RHS
candidate functions (the red rectangles highlight those associated with the ideal FWM
system). (e) SINDy algorithm output showing the sparse coefficients estiamted for each
candidate function where variables x0 and x1 correspond to η and ϕ respectively. The
only nonzero returned coefficients for both variables are highlighted in red and blue. The
threshold hyperparameter λt = 0.5 was used here as an input to the STLS optimizer (see
the text for details).
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Figure 2.3(a) shows the considered Hamiltonian model (see Eq. 2.7) the dynamics of
which is simulated numerically for various initial conditions (η0, ϕ0) spanning the phase
space. The input data to the SINDy algorithm contains multiple trajectories for η and ϕ
representing the spatial evolution of the state vector [see Fig. 2.3(b)]. We then numerically
estimate matrices of derivatives representing the LHS part of Eq. 2.12 [see Fig. 2.3(c)].
In the next step, the RHS part is assumed to be unknown and we construct a large library
of RHS candidate terms. For the example given here, the library consists of η and ϕ polyno-
mials and their combinations (up to the third order): 1, η, ϕ, η2, ηϕ, . . . , ηϕ2, η3, ϕ3, trigono-
metric functions of both variables: sin η, sinϕ, cos η, cosϕ, and combinations of polynomials
and trigonometric functions: η sin η, η sinϕ, ϕ cos η, . . . , η2 sin η, ϕ2 sinϕ, . . . , ϕ3 cosϕ form-
ing a total of 32 RHS candidate functions [see subfigure (d)]. The specific choice of RHS
functions is based on the expected evolution of the system exhibiting the characteristic
periodic Fermi-Pasta-Ulam-Tsingou recurrence dynamics [21,22,115].
The output of the SINDy algorithm is shown in Fig. 2.3(e), displaying the obtained coeffi-
cients associated with different RHS terms of the retrieved differential equation model for
both variables η and ϕ. The input data contained 20 amplitude and phase trajectories η(ξ)
and ϕ(ξ) experiencing the dynamics on both side of the system’s separatrix. These trajec-
tories correspond to 20 different initial conditions (η0, ϕ0) randomly distributed throughout
the phase space, such that η0 ∈ [0, 1] and ϕ ∈ [0, 2π]. Specifically, the black rectangular
dots in Fig. 2.4(c) show the initial conditions (η0, ϕ0) used to construct the input dataset
for the SINDy algorithm.
To obtain the above results, Eq. 2.7 was solved numerically using the standard odeint
from the SciPy library [127] with a spatial grid of 12000 points spanning from ξ = 0 to
ξ = 12, which results in trajectories for η and ϕ typically containing 1 to 4 dynamical
cycles depending on initial conditions.
Applying the SINDy algorithm with STLS optimization to these generated noise-free data,
results in the output differential equation model with only a small number of active RHS
terms from the library shown in Fig. 2.3(d). The algorithm successfully identifies the
Hamiltonian FWM model (see Eq. 2.7) with 6 active RHS terms: 2 out of 32 RHS terms
turn out to be active for η̇ and 4 out of 32 RHS terms turn out to be active for ϕ̇ [as
shown in Fig. 2.3(d) and (e)]. Moreover, from Fig. 2.3(e) we can see that the returned
coefficients are correct within an accuracy of ∼ 10−6.
For completeness, Fig. 2.4 shows the dynamics of the ideal FWM process reconstructed
using SINDy. The performance of the returned model is assessed for two different trajec-
tories corresponding to the initial conditions η0 = 0.95, ϕ0 = 0 and η0 = 0.95, ϕ0 = π
(highlighted in red and blue, respectively)4 exhibiting dynamics on different sides of the
system’s separatrix [shown by the black-dashed line in Fig. 2.4(c)]. Figures 2.4 (a) and (b)
show the comparison of the ideal FWM dynamic simulated numerical using Eq. 2.7 (solid
curves) with the model returned by SINDy (circles).
In the noise-free case, the excellent agreement between the retrieved and the ideal Hamil-
tonian models is perhaps not surprising in view of SINDy’s well-established capability to
analyse chaotic systems such as the Lorenz model [16]. Nevertheless, this example high-
lights several important details of sparse identification of nonlinear dynamical systems.

4Note that these trajectories were not used in the input dataset.
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Figure 2.4: Comparison of ideal FWM dynamics with the model reconstructed by SINDy
algorithm based on the analysis of the noise-free dynamical data. (a) Trajectories of η(ξ)
and ϕ(ξ) obtained for initial conditions η0 = 0.95, ϕ0 = 0 from the output SINDy model
(circles) and the Hamiltonian FWM model (solid line). (b) Trajectories of η(ξ) and ϕ(ξ)
obtained for initial conditions η0 = 0.95, ϕ0 = π from the output SINDy model (circles)
and the Hamiltonian FWM model (solid line). Using the same color code (c) shows the two
trajectories plotted in η − ϕ polar coordinates. The black squares represent the randomly
chosen initial conditions in the phase space that were used to produce the input dataset.
The ξ-evolution and phase space plots use red and blue colored lines for the dynamics in
the right and left parts of the separatrix, respectively (the separatrix is shown as a black
dashed line). Note that the phase space trajectories reconstructed using SINDy are not
shown here, since they are indistinguishable from the ideal FWM dynamics in this case.

An important result here is that we clearly see how the technique can work well when
the RHS candidate function library contains periodic and more complex functions, and
not just simple polynomials. This is an important result because even though the SINDy
algorithm allows inclusion of any functions in the candidate library Θ, the identification
of the simplest and accurate models from data is still a challenge [102].
It can also be seen from the results that in the case of complex dynamical systems that can
exhibit different physical regimes, it is essential to use an input dataset containing many
evolutions of the state vector corresponding to different initial conditions. This allows
SINDy to explore different states of the dynamical system. Additional analysis shows
that for the ideal FWM model studied here in the noise-free case, SINDy can successfully
extract the model coefficients with essentially the same accuracy even for an input dataset
of only 5 trajectories for η(ξ) and ϕ(ξ).
We also observed that including fewer trajectories in the input dataset leads to unreliable
identification of active RHS terms, sometimes due to overfitting or obtaining oversimplified
models. Indeed, including too few trajectories in this case may not allow the algorithm to
fully explore the dynamics on both sides of the system’s separatrix. As an example, we can
consider an input dataset containing only trajectories corresponding to initial conditions
leading to stationary solutions of the Hamiltonian system [see black rectangular and purple
points in Fig. 2.2(a)]. In this case, the SINDy algorithm’s search for the simplest differential
equation models that reflect evolution is likely to result in oversimplified models that ignore
the dynamics of some state vector variables [96].
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2.4.2/ Discovery of the ideal FWM model from noisy data

A more rigorous test involves discovering the underlying models from noisy data, as this
paves the way for applying the technique to experimental measurements. The challenge,
however, lies in the fact that sparse regression is potentially sensitive to noise, which
requires adapting SINDy for this case [100, 113, 128]. One approach to address this is
by applying the SINDy algorithm separately to random subsets (“bootstraps”) of a given
input dataset, resulting in several different returned models, each associated with its own
terms and coefficients [113]. Statistical analysis of these different output models then
allows us to estimate the mean values and uncertainties of the sparse coefficients.
In our analysis of the FWM dynamical data with noise, we employ a similar approach.
However, instead of analyzing bootstrap samples from a single dataset [113], we consider an
ensemble of input data based on scanning over different initial conditions. This approach is
more typical for experiments in optics, where large datasets [119] can readily be measured.
Specifically, we treat 2000 simulated trajectories for random initial conditions (η0, ϕ0) on
both sides of the separatrix, and after computing each trajectory, we impose random
multiplicative Gaussian noise with a relative noise factor δ (expressed in percentage) on
the computed trajectories. We then combine the trajectories into 100 sets of 20, which are
separately analyzed by SINDy, yielding 100 output models, each with their own terms and
coefficients. Therefore, we can estimate the uncertainty in the model terms coefficients.
Figure 2.5(a) shows an example of η(ξ) and ϕ(ξ) trajectories for δ = 2.5% to illustrate the
level of noise on the data.

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 10 12

0

4

4

5 6 7 8 9 10 11 12 13 14 15 160
20
40
60
80
100

Number of determined RHS terms

O
ut
pu
tm
od
el
s

(a) (b)

(c)

Table 2. Comparison of the ideal FWM system with the models determined by
SINDy at different levels of the Gaussian noise for a training data set restricted
on the left side with respect to the separatrix orbit

Known rhs terms (true coefficients) � = 0 � = 10−3 � = 2.5 × 10−3 � = 5 × 10−3

� sin � (−2) −2.000 −1.999 −2.001 −1.989

�2 sin � (2) 2.000 1.998 2.001 1.985

−(Ω2 + 1) (−3) −3.000 −3.000 −2.999 −2.998

cos � (−2) −2.000 −2.000 −1.999 −1.995

� (3) 3.000 2.999 2.998 2.994

� cos � (4) 4.000 3.999 3.997 3.989

Table 3. Comparison of the ideal FWM system with the models determined by
SINDy at different levels of the Gaussian noise for a training data set restricted
on the right side with respect to the separatrix orbit

Known rhs terms (true coefficients) � = 0 � = 10−3 � = 2.5 × 10−3 � = 5 × 10−3

� sin � (−2) −2.000 −2.003 −2.001 −1.807

�2 sin � (2) 2.000 2.004 2.001 1.826

−(Ω2 + 1) (−3) −3.000 −2.709 −2.591 −3.623

cos � (−2) −2.000 −1.997 −2.004 −1.995

� (3) 3.000 2.598 2.402 3.767

� cos � (4) 4.000 3.997 4.001 3.976

Table 4. Comparison of the ideal FWM system with the models determined by
SINDy at different levels of the Gaussian noise for a training data set restricted
on the right side with respect to the separatrix orbit

RHS terms coefs. vals. estimated mean estimated error

�2 sin � −2 −1.9992 ±1.3 × 10−3

� sin � 2 1.9989 ±1.7 × 10−3

� cos � 4 3.9991 ±2.0 × 10−3

1 −3 −2.9998 ±0.9 × 10−3

� 3 2.9997 ±1.7 × 10−3

cos � −2 −1.9996 ±1.1 × 10−3

Figure 2.5: (a) shows an example of input η(ξ) and ϕ(ξ) trajectories corresponding to
initial conditions η0 = 0.87, ϕ = 1.2 with imposed δ = 2.5% Gaussian noise. (b) Histogram
displaying the number of active RHS terms in the output SINDy models. (c) shows the
computed mean and standard deviation for each of the non-zero coefficients of the 6-term
models. The threshold value for the STLS optimiser in this case was chosen to be λt = 0.5.
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For each set of 20 trajectories, SINDy returns a differential equation model with a number
of active RHS terms. To interpret the results, the histogram in Fig. 2.5(b) shows the
number of active RHS terms detected for 100 output models. In this case, 95 out of 100
models contain only 6 active RHS terms, while up to 12 active RHS terms were found
for the remaining 5 models. Models with a higher number of terms are rare and have
non-identical active RHS terms, so we can expect these models to be associated with
overfitting. In contrast, models containing only 6 terms were found to have similar active
RHS terms while their coefficients may differ slightly. In addition to being the most
frequently returned model in this case, it contains the fewest number of terms, making it
the preferred model from a physical point of view.
In Fig. 2.5(c) we list the estimated mean and standard deviation for each of the active
RHS terms. Comparison with the expected values from the Hamiltonian model shows that
all the estimated mean values of the returned coefficients are within 1 standard deviation,
while their standard deviations are of the order of ∼ 10−3.
To further assess the performance, we can now propagate the identified mean model and
compare the predicted evolution with the ideal FWM dynamics (see Fig. 2.6). For this
test, we chose initial conditions η0 = 0.63, ϕ = π/3 [subfigure (a)] and η0 = 0.58, ϕ =
π/3 [subfigure (b)], resulting in two trajectories lying close to the separatrix, but on the
opposite sides of it. The red solid curves in all plots show the dynamics of the ideal
FWM process for the given initial conditions, while the blue dashed curves represent the
dynamics reconstructed by the SINDy model with the mean values of coefficients. In this
case the results are again visually indistinguishable.

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 10 12

0
4

4

0.4
0.5
0.6
0.7
0.8
0.9
1.0

0 2 4 6 8 10 12

0

(a) (b) (c)

0

6

3
22

3

5
6

7
6

4
3 3

2

5
3

11
6

0
0.2
0.4
0.6
0.8
1

separatrix orbit ideal FWM SINDy

random trajectories (3 interval)

Figure 2.6: Comparison of the ideal FWM dynamics (red solid curves) with the mean
SINDy model reconstructed from the input η(ξ) and ϕ(ξ) trajectories with imposed δ =
2.5% Gaussian noise (blue dashed curves): (a) for initial conditions η0 = 0.63, ϕ = π/3
and (b) η0 = 0.58, ϕ = π/3. The grey curves show the trajectories η(ξ) and ϕ(ξ) obtained
while randomly sampling the coefficients of the retrieved mean SINDy model over a range
of 3 standard deviations. (c) displays the corresponding results plotted in phase space
(the separatrix is shown as a black dashed line).

Since the coefficients of the identified mean model have statistical uncertainty limits, we
can validate the results by predicting the trajectories η(ξ) and ϕ(ξ) while randomly varying
the model coefficients within 3 standard deviations. This result is represented by ensembles
of gray curves in Fig. 2.6 and illustrates the mean model uncertainty intervals.
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The results presented in Figs. 2.7 and 2.8 show the same statistical analysis performed on
the input 100 sets of 20 trajectories for η(ξ) and ϕ(ξ), but this time with imposed δ = 5%
Gaussian noise.
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Table 5. Comparison of the ideal FWM system with the models determined by
SINDy at different levels of the Gaussian noise for a training data set restricted
on the right side with respect to the separatrix orbit

rhs coefficients true values estimated mean estimated std

�1 −2 −1.99782 ±2.77 × 10−3

�2 2 1.99707 ±3.82 × 10−3

�3 4 3.99501 ±4.88 × 10−3

�4 −3 −2.99892 ±1.54 × 10−3

�5 3 2.99725 ±3.38 × 10−3

�6 −2 −1.99768 ±2.43 × 10−3

Table 6. Comparison of the ideal FWM system with the models determined by
SINDy at different levels of the Gaussian noise for a training data set restricted
on the right side with respect to the separatrix orbit

RHS terms coefs. vals. estimated mean estimated error

�2 sin � −2 −1.9978 ±2.8 × 10−3

� sin � 2 1.9971 ±3.8 × 10−3

� cos � 4 3.9950 ±4.9 × 10−3

1 −3 −2.9989 ±1.5 × 10−3

� 3 2.9973 ±3.4 × 10−3

cos � −2 −1.9977 ±2.4 × 10−3

and

��

��
= �� = �3� cos � + �4 + �5� + �6 cos �, (14b)

Figure 2.7: (a) shows an example of input η(ξ) and ϕ(ξ) trajectories corresponding to
initial conditions η0 = 0.84, ϕ = 1.16 with imposed δ = 5% Gaussian noise. (b) Histogram
displaying the number of active RHS terms in the output SINDy models. (c) shows the
computed mean and standard deviation for each of the non-zero coefficients of the 6-term
models. The threshold value for the STLS optimiser in this case was chosen to be λt = 0.5.
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Figure 2.8: Comparison of ideal FWM dynamics (red solid curves) with the mean SINDy
model reconstructed from the input η(ξ) and ϕ(ξ) trajectories with imposed δ = 5%
Gaussian noise (blue dashed curves): (a) for initial conditions η0 = 0.63, ϕ = π/3 and
(b) η0 = 0.58, ϕ = π/3. The grey curves show the trajectories η(ξ) and ϕ(ξ) obtained
by randomly sampling the coefficients of the retrieved SINDy model over a range of 3
standard deviations. (c) displays the corresponding results plotted in phase space (the
separatrix is shown as a black dashed line).
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As expected, at higher noise levels [see Figs. 2.7(a) and (b)] we get a much wider range of
returned models, shown in the histogram in Fig. 2.7(b). Indeed, different output models
contain up to 16 active RHS terms, but at the same time we can again observe a clear peak
corresponding to a model with 6 active RHS terms (the same sparsity pattern was identified
for 35 out of 100 output models). The table in Fig. 2.7(c) displays the results of statistical
analysis of these 35 models output SINDy models. The resulting mean coefficient values
still accurately describe the ideal FWM model, and the standard deviations are still at
∼ 10−3, but about twice as large as in the case of δ = 2.5% noise level.
This larger uncertainty associated with the returned sparse coefficients is highlighted in
Fig. 2.8, where we again plot an ensemble of grey curves corresponding to the model pre-
dictions when randomly varying the model coefficients within their 3 standard deviations.
Despite this larger uncertainty limits, the mean SINDy model still provides a good fit to
the ideal FWM dynamics.
At even higher noise levels, reliable model identification becomes more difficult. Our
analysis shows that at δ = 7.5% the 6-terms model is still identified most frequently,
but the accuracy of the mean coefficient values is ∼ 10−2 compared to the ideal FWM
dynamics. While the technique can still lead us to physically consistent results in the case
of moderately to highly noisy data, it becomes clear that the noise level is crucial when
trying to identify parsimonious models from data.
Another interesting detail that was observed when analysing SINDy output models is that,
at different noise levels, the overfitted models with more than 6 active RHS terms usually
contain sparse coefficients with large values of standard deviation (in some cases exceeding
the mean values of the corresponding coefficients). Finally, for the input data with imposed
δ = 10% Gaussian noise, the histogram representing the number of active RHS terms in
the output models becomes almost uniform, so that reliable model identification is not
possible in this case. These results motivate the development of robust SINDy algorithms
for identification of parsimonious differential equation models from data in high-noise
regimes [113,129].

2.4.3/ Application of SINDy to coupled amplitude equations

Another important aspect that determines the success of the SINDy algorithm is the choice
of the right coordinates and physical variables when representing the dynamics [102]. In-
deed, the FWM process considered here has a relatively simple structure in the Hamil-
tonian formalism, involving only 6 active RHS terms. The SINDy algorithm can also be
applied directly to the set of coupled amplitude equations (see Eq. 2.8). By expanding
the complex field amplitudes into real and imaginary parts: A0(ξ) = a0(ξ) + ib0(ξ) and
A1(ξ) = A−1(ξ) = a1(ξ) + ib1(ξ), Eq. 2.8 can be written in the following way

da0
dξ

= −
(
a2

0 + b2
0 + 2a2

1 + 6b2
1

)
b0 − 4a0a1b1, (2.17a)

db0
dξ

=
(
a2

0 + b2
0 + 6a2

1 + 2b2
1

)
a0 + 4b0a1b1, (2.17b)

da1
dξ

= Ω2

2 b1 −
(
a2

0 + 3
[
b2

0 + a2
1 + b2

1

])
b1 − 2a0b0a1, (2.17c)

db1
dξ

= −Ω2

2 a1 +
(
b2

0 + 3
[
a2

0 + a2
1 + b2

1

])
a1 + 2a0b0b1, (2.17d)
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which yields 4 coupled differential equations over real-valued functions with a total of 22
active RHS terms. Coupled amplitude equations are, of course, very common in physics
and can be used in the description of various phenomena.
In order to apply SINDy to this system, we first construct a library of RHS candidate
functions Θ. A reasonable choice of RHS candidate functions here are polynomials of
the involved variables 1, a0, b0, a1, b1, ..., a

2
0, a0b0, a0a1, ....b

3
1a1, b

4
1, which we extend here to

fourth order, giving a total of 70 RHS candidate terms. Obviously, this represents a much
more complex scenario compared to the Hamiltonian system with only 6 active terms and
a library of 32 RHS candidates. Using a similar approach as described earlier, we first
apply SINDy to noise-free data. In this case, SINDy successfully identified all the correct
dynamical terms with an accuracy of approximately ∼ 10−5, without any overfitting.
It has to be noted, however, that a larger number of candidate terms in the system increases
the impact of noise. In particular, achieving an accuracy of the order of ∼ 10−3 for the
22 terms coefficients was possible only when the noise level was reduced by an order of
magnitude (δ = 0.25%) compared to the results for the Hamiltonian system. Table 2.1 lists
the results of the SINDy algorithm model identification for the case of δ = 1% imposed
Gaussian noise using the same statistical approach as before. We again simulate 100 sets
of 20 trajectories for random initial conditions [a0(ξ = 0), b0(ξ = 0), a1(ξ = 0), b1(ξ =
0)], impose Gaussian noise on the resulting trajectories, and use this data as input to
SINDy. The algorithm successfully returns the correct model, identifying exactly 22 RHS
terms, but the accuracy of the mean coefficient is noticeably lower than in the case of the
Hamiltonian system5.
Figure 2.9 shows a comparison between ideal FWM dynamics and the one reconstructed
by SINDy using the mean values of the returned coefficients (see Table 2.1). The red
solid curves represent the result obtained by numerically solving the Hamiltonian model
equations (see Eq. 2.7) for initial conditions η0 = 0.63, ϕ = π/3. The blue dashed curves
are reconstructed from the predicted evolutions of variables a0(ξ), b0(ξ), a1(ξ), b1(ξ) by
evaluating η(ξ) = |a0(ξ) + ib0(ξ)|2 and ϕ(ξ) = 2 arg

[
a1(ξ) + ib1(ξ)

]
− 2 arg

[
a0(ξ) + ib0(ξ)

]
.
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Figure 2.9: Comparison of ideal FWM dynamics (red solid curves) with the mean SINDy
model reconstructed from the input η(ξ) = |a0(ξ) + ib0(ξ)|2 and ϕ(ξ) = 2 arg

[
a1(ξ) +

ib1(ξ)
]

− 2 arg
[
a0(ξ) + ib0(ξ)

]
trajectories with imposed δ = 1% Gaussian noise (blue

dashed curves) for initial conditions η0 = 0.63, ϕ = π/3.

5For simplicity, we do not show the estimated standard deviations here, which are typically of the order
of 10−3 to 10−2 in this case.
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Table 2.1: Application of SINDy to the coupled amplitude equations (see Eqs. 2.17) with
a δ = 1% Gaussian noise imposed on input data. First and second columns show the RHS
terms and correct values of coefficients of the model (see Eqs. 2.17), respectively. Last 4
columns display mean values of the coefficients for active RHS terms identified through
the statistical analysis of 100 returned SINDy models (see text). Only the identified active
RHS terms are shown.

Active RHS terms True coefficients ȧ0 ḃ0 ȧ1 ḃ1

a1 −1 – – – −0.9180
b1 1 – – 0.9135 –
... ... ... ... ... ...
a3

0 1 – 0.9995 – –
a2

0b0 −1 −0.9995 – – –
a2

0a1 3 – – – 2.9341
a2

0b1 −1 – – −0.9474 –
a0b

2
0 1 – 0.9991 – –

a0b0a1 −2 – – −1.9842 –
a0b0b1 2 – – – 1.9846
a0a

2
1 6 – 5.9971 – –

a0a1b1 −4 −3.9972 – – –
a0b

2
1 2 – 1.9994 – –

b3
0 −1 −0.9993 – – –

b2
0a1 1 – – – 0.9498
b2

0b1 −3 – – −2.9309 –
b0a

2
1 −2 −1.9997 – – –

b0a1b1 4 – 3.9975 – –
b0b

2
1 −6 −5.9964 – – –

a3
1 3 – – – 2.9139

a2
1b1 −3 – – −2.9094 –
a1b

2
1 3 – – – 2.9145

b3
1 −3 – – −2.9085 –

... ... ... ... ... ...

Inaccuracy in the returned coefficients leads to a discrepancy between the ideal FWM
dynamics and the dynamics predicted by SINDy for large propagation distances. While
the amplitude modulation depth is recovered with reasonable accuracy, there is a clear
discrepancy in the periodicity of the amplitude and phase trajectories due to the poor
estimation of the coefficients of the linear terms proportional to Ω2/2 (see Eq. 2.17).
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2.5/ Summary, discussion & conclusion

There are several conclusions to be drawn from the results presented in this chapter.
Firstly, we have shown using numerical simulations that data-driven discovery using sparse
regression (SINDy algorithm) can successfully identify the governing differential equation
model of ideal nonlinear FWM in optical fibres. The fact that this is possible in noise-
free conditions is expected based on earlier studies [16], but our results also show that
the SINDy algorithm yields successful results at noise levels of 5%, which are likely to be
recorded in experiments. This result is particularly valuable because FWM is a central
process not only in nonlinear optics but also in many other domains of physics, thus, the
ability to SINDy correctly reconstruct these dynamics is an important validation step for
the technique.
Secondly, we have discussed a convenient means of interpreting the results of SINDy in the
presence of noise through the analysis of an ensemble of input dynamical data for different
initial conditions. This approach involves inspection of a histogram distribution of the
number of terms associated with multiple returned models, followed by computation of
mean and uncertainty in the associated term coefficients. This allows us to readily compute
the potential predictive accuracy of the models returned, by computation of the model’s
dynamics within the uncertainty limits. We anticipate that this approach to visualising
model uncertainty may prove highly useful in determining the validity ranges of SINDy
models derived from experimental measurements. Our results suggest that exploring the
dynamics occurring under different initial conditions is essential for reliable identification
of governing models, since many nonlinear physical systems can exhibit different dynam-
ical regimes depending on the choice of initial conditions. In this regard, there are of
course many improvements that one can consider such as combining an ensemble over
initial conditions with internal data bootstrapping within each dataset. In addition, our
analysis here has not implemented any specific preprocessing step to improve the numeri-
cal calculation of derivatives, and this is also a natural area of future work [130].
Finally, as a general conclusion, it is clear that sparse regression using SINDy promises
to be a very powerful technique amongst the toolbox of methods available to researchers
in nonlinear optics. Of course, the overall objective is to be able to analyse a partially-
understood system with the aim of determining a governing model, and in this case a key
element is the need to develop strategies to distinguish between different models that may
be returned. We anticipate that the results presented here may point to further research
in this direction and represent another advance in demonstrating the feasibility of data-
driven discovery in nonlinear optics.





3
Data-driven dominant balance

analysis of modulation
instability

3.1/ Introduction

Being highly sensitive to initial and boundary conditions, nonlinear physical systems may
exhibit different dynamical regimes during their evolution. In certain cases, it is possible to
observe distinct stages of this evolution where a particular physical process (or interplay
of processes) dominates the dynamics. The ability to separate these dynamical regions
is essential, not only for purposes of qualitative interpretation of the dynamics, but also
because mathematically, it allows one to significantly simplify the form of governing differ-
ential equations in each region. These reduced models can then be used to derive analytical
solutions, optimize the numerical schemes and deepen the understanding of the underly-
ing physics. Over the years, the use of conventional scaling analysis [131,132], asymptotic
analysis [133], linear stability analysis [22], and perturbation theory methods [56,60] have
helped uncover dominant physical mechanisms sometimes hidden due to the cumbersome
structure of the generalised governing differential equations. In this regard, it is of great
interest to develop data-driven techniques that are designed to complement conventional
methods with the help of machine learning (ML) tools.
From a dynamical point of view, a dominant balance regime can be interpreted as a sit-
uation where only a subset of terms of the full differential equation model governs the
dynamics at a given stage of the propagation (or equally, in some local region of the dy-
namics) [17, 134]. Recently, it has been suggested that the problem of identifying local
dynamical regions can be solved using unsupervised clustering [17, 93]. The goal of any
clustering algorithm can be to detect groups (clusters) of similar samples in the data or to
determine the distribution of the data in the input data space [3]. The fundamental prob-
lem behind the data-driven search for dominant balances is to find a suitable parameter
space in which clustering can be performed most efficiently.
In many areas of science where the dynamics of a system can be described by differential
equation models, the dimensions of the desired parameter space can be related to the terms
of the governing differential equation [17,18,93,94]. In other words, the cluster search can
be performed in the “equation space”, where each axis corresponds to a particular term in
the governing differential equation. The identified clusters can subsequently be found to be
dominated by the interaction of certain physical processes through “ad hoc” analyses based
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on physical intuition [93] or through additional model selection algorithms [17,18,94].
Unsupervised dominant balance identification has been proven to be especially relevant
when applied to the dynamics of nonlinear or chaotic systems, where the observed evolution
is sometimes not well understood due to the complex interplay of several leading effects. In
this case, ML algorithms can substantially enrich the conventional theoretical analysis by
providing the data-driven interpretation of the physics. The data-driven dominant balance
technique has been previously applied to a wide range of problems in the fields of geophysics
and ocean sciences [93,135], active particle systems [136], turbulence and neuroscience [17,
18]. Moreover, the first application of the dominant balance technique to the field of
nonlinear optics was also presented [17], where the dynamics of the supercontinuum (SC)
generation process was analysed. The dominant balance algorithm was shown to correctly
identify the ejection of the soliton driven by the balance between nonlinear and dispersive
effects, as well as the appearance of the broad dispersive waves due to the higher-order
dispersion. However, the algorithm implemented in [17] did not appear to be able to isolate
the effect of Raman scattering on the initial stage of propagation. Trying to understand
this observation and to apply the dominant balance approach to diverse propagation cases
in optical fibres was one of the initial motivations of this thesis.
In nonlinear optics, the nonlinear Schrödinger equation (NLSE) is a fundamental model
describing, with a given degree of approximation, a wide class of nonlinear field propaga-
tion scenarios in optical fibres [22]. As was highlighted in Chapter 1, the NLSE is known
to be a fully integrable system, and its exact solutions can be constructed using the inverse
scattering transform method [29]. This fact has given rise to a plethora of theoretical works
studying the appearing periodic and localized solitonic structures as well as their interac-
tions [36,40,45,46,137,138]. These findings were followed by the development of numerical
simulation schemes [139] and experimental works that resulted in the first observations of
the predicted nonlinear structures in optical fibres and water tanks [51, 52, 140–144]. De-
spite this great progress, the field remains to be an active area of fundamental theoretical
and experimental research. One of the open problems that attracts a lot of attention
is the spatio-temporal evolution of noise-driven modulation instability (MI), where the
initial growth of the frequency sidebands is driven by small field perturbations [36] (see
Section 1.3 of Chapter 1). It is just recently that the concept of “integrable turbulence”
was introduced [38, 39, 145–147] enabling the theoretical investigation of the nonlinear
stage [47] and statistics of random field in noise-driven MI [48].
Being well aware of the increasing number of papers focused on the rigorous physical de-
scription of MI and the development of new techniques to deepen the understanding of the
emergence of localised nonlinear structures, in this chapter, we describe a fundamentally
new approach to analyse the MI of the NLSE. First, the dominant balance approach is
applied to interpret known analytic solutions. In particular, we consider the solitons on
finite background (SFB) solutions associated with the MI dynamics (see Section 1.3.4 of
Chapter 1). For these spatio-temporal dynamics, it is shown how the dominant balance
approach can distinguish background regions of dominant nonlinear propagation from re-
gions where nonlinearity and dispersion interact to drive localization. This is especially
important in showing how data-driven dominant balance can provide complementary in-
sights into the dynamics. Following the results found for the analytical SFB solutions,
numerical simulations are used subsequently to study the more complex propagation case
of noise-driven chaotic MI.
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3.2/ Methodology of data-driven dominant balance

The concept of the data-driven dominant balance search that we present here aims to
automate the identification of key interacting physical processes associated with different
spatio-temporal (or similarly spatio-spectral)1 regions of evolution. The particular ap-
proach developed by Jared L. Callaham, James V. Koch, Bingni W. Brunton, J. Nathan
Kutz and Steven L. Brunton first introduced the unsupervised ML learning framework
for the dominant balance identification. Recently, slightly different strategies have been
proposed to fully automate this unsupervised search for dominant balance regimes [18,95].
Based on these works, below we show the most general framework of the data-driven dom-
inant balance algorithm. This is outlined in flowchart form in Fig. 3.1.

Input data

B. Partition of the equation space dynamics

C. Dominant balance identification

Dominant balance search algorithm

A. Data preprocessing

- estimation of differential equation terms

- equation space representation of dynamics

- scaling / standardisation of data

e.g. spatio-temporal dynamics
from numerical simulations

unsupervised learning framework

model selection algorithms

physical intuition &

expert knowledge

D. Representation of the dominant balance models           
in the original domain

Input parameters

Input parameters

e.g. number of clusters

e.g. regularisation parameters 
for model selection

Figure 3.1: A flowchart of the general framework for implementing the dominant balance
search algorithms.
1From now on in this chapter we refer to the analysis of spatio-temporal dynamics, although the same can
be applied to the analysis of spatio-spectral domain.
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The first step of the algorithm consists in loading dynamical data, which in our case rep-
resent the spatio-temporal evolution2 of the field ψ(ξ, τ). The input dynamical data can
be real or complex-valued and obtained from numerical simulations or from experimental
measurements. In optics, the field ψ(ξ, τ) is complex-valued. The next steps of the domi-
nant balance algorithm involve data preprocessing steps, an unsupervised clustering step
that helps to partition the dynamical data into clusters and the dominant balance search
steps, where each of the identified clusters are associated with particular dominating in-
teracting physical processes (see flowchart steps A, B and C in Fig. 3.1). In the last step
(see flowchart D in Fig. 3.1) the identified dominant balance models are mapped back to
the original spatio-temporal domain for direct comparison with the input data. In the
following subsections we describe each step of the dominant balance algorithm in detail.

3.2.1/ Equation space representation of dynamics

As discussed in the introduction to this chapter, in order to isolate the dominant physical
regimes, it is important to perform the clustering of the dynamics in the appropriate
parameter space. The novelty of the data-driven dominant balance approach consists in
the unsupervised analysis of the equation space the axes of which are associated with
the terms of the governing equation [17, 93]. This choice of the parameter space is not
unique, but it was shown to be quite efficient in separation of distinct dynamical regimes.
Below we elaborate on the proposed concept of equation space with a focus on the physical
interpretation of equation space dynamics.
First, we write the general equation describing the spatio-temporal dynamics in the fol-
lowing form:

K∑
k=1

fk(ψ,ψξ, ψτ ..., ψ2, ψψξ, ψψτ , ..., ψξξ, ψττ , ...) = 0, (3.1)

where fk represents a variety of functions of the field ψ and its derivatives. K stands here
for the total number of differential equation terms involved in the dynamics. The general
form of a governing equation (see Eq. 3.1) emphasizes the balance relation that has to
be satisfied throughout the spatio-temporal domain. Namely, in all the local dynamical
regions the terms of the governing equation must sum to zero.
It is important to mention that in the framework of the dominant balance search, there
could be different ways of representing the dynamics. For example, one can consider the
integral or integro-differential form of the governing equation that satisfy the balance re-
lation. The particular choice of the parameter space may vary from one physical problem
to another. However, the equation space representation we discuss here is quite advanta-
geous since the dominant balance of a few terms in the governing equation has a relatively
simple geometric interpretation, as will be shown in the following sections.
As was pointed out in [17], the dominant balance of a subset of S out of K terms of
the governing equation, which takes place in some local region of the dynamics, can be
represented by a cluster (or group of dynamical points) in the equation space that has a
significantly reduced variance with respect to the other K − S terms. In other words, in
this local region S leading terms will dominate the dynamics, while the contribution of
the remaining K − S terms can be neglected.
2Here we use ξ and τ to represent some spatial and temporal variables, respectively, which will be defined
later.



3.2. METHODOLOGY OF DATA-DRIVEN DOMINANT BALANCE 47

The spatial and temporal distribution of the field ψ(ξ, τ) can be described by the matrix
ψ(ξ1, τ1) ψ(ξ1, τ2) . . . ψ(ξ1, τM )
ψ(ξ2, τ1) ψ(ξ2, τ2) . . . ψ(ξ2, τM )

...
...

. . .
...

ψ(ξN , τ1) ψ(ξN , τ2) . . . ψ(ξN , τM )

 , (3.2)

where we introduce the discretization of the spatio-temporal domain with N and M being
the total number of points in ξ and τ , respectively. The “equation space” representation
mentioned above consists in mapping the spatio-temporal dynamics (see Eq. 3.2) into
the parameter space where each axis is associated with one of K terms of the governing
equation (see Eq. 3.1). For this, we introduce the equation space matrix

Λ =



f1[ψ(ξ1, τ1)] f2[ψ(ξ1, τ1)] . . . fK [ψ(ξ1, τ1)]
f1[ψ(ξ1, τ2)] f2[ψ(ξ1, τ2)] . . . fK [ψ(ξ1, τ2)]

...
...

. . .
...

f1[ψ(ξ1, τM )] f2[ψ(ξ1, τM )] . . . fK [ψ(ξ1, τM )]
f1[ψ(ξ2, τ1)] f2[ψ(ξ2, τ1)] . . . fK [ψ(ξ2, τ1)]

...
...

. . .
...

f1[ψ(ξN , τM )] f2[ψ(ξN , τM )] . . . fK [ψ(ξN , τM )]


, (3.3)

with dimensions NM × K. Note that the elements of the equation space matrix can
be directly estimated from the field distribution ψ(ξ, τ) via numerical differentiation3. An
important property of Λ is that the sum of all elements in each row must be approximately
zero (note that when the data are obtained from numerical modelling, errors may occur
not only in the numerical solution of differential equation, but also in the estimation of
the derivatives). The above aspects are accounted for in the first step of the dominant
balance search algorithm (see step A of the flowchart in Fig. 3.1).
In the next step, the columns of matrix Λ (i.e. the input features) are used as an input to
the unsupervised clustering algorithm in order to retrieve patterns in equation space data
(see block diagram B in Fig. 3.1). Specifically, the goal of this next step is to separate the
equation space dynamics into distinct clusters (groups of dynamical points) representing
different dynamical regimes. A detailed graphical illustration of these first steps of the
algorithm will be given in Section 3.2.3.

3.2.2/ Gaussian mixture model framework

The problem of identifying clusters (groups of dynamical points) in the equation space that
represent distinct dynamical regimes can be addressed by various unsupervised clustering
techniques. This includes the use of K-means clustering [93], DBSCAN [18] and Gaussian
mixture modeling (GMM) [149]. The power of the unsupervised search for the dominant
balances was demonstrated on a number of canonical problems in the fields of turbulence
and geophysical fluid dynamics, such as the turbulent boundary layer problem and the
oceanic barotropic vorticity [17, 18, 93]. It is worth noting that considering these exam-
ples using different clustering and model selection strategies yielded qualitatively similar
results. Indeed, this emphasizes the possibility of implementing various approaches to the
3For this purpose we use the findiff Python library allowing accurate derivative estimation [148].
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dominant balance identification problem that can be specifically tailored for the applica-
tion purposes.
Indeed, having a variety of existing unsupervised clustering algorithms, it is of great in-
terest to explore various strategies for retrieving the hidden dynamical regimes from the
equation space data. One approach that has been shown to perform well in the task of
identifying dominant balances is based on the GMM clustering, where learnt models can
be used to extract physical insights.
Unsupervised cluster analysis using GMM provides an initial partition of the equation
space into separate regions by means of training probabilistic models that assume the data
is composed of a mixture of Gaussian distributions with different mean and covariance.
In the general case, a multivariate Gaussian distribution of the K-dimensional vector x is
given by [3]

N (x|µ,Σ) = 1
(2π)K/2

1
|Σ|1/2 exp

[
−1

2(x − µ)TΣ−1(x − µ)
]
, (3.4)

where µ is a mean vector, Σ is a K×K covariance matrix, and |Σ| denotes the determinant
of Σ. Then, a mixture of Gaussians can be represented in the following way4

nc∑
i=1

πiN (x|µi,Σi), (3.5)

where N (x|µi,Σi) is associated with one of the nc GMM components with its own mix-
ing coefficient πi, mean vector µi, and covariance matrix Σi. In our case, the vector x
represents the rows of the matrix Λ, which are related to the notion of “observations” in
ML. In what follows, we model the equation space dynamics Λ as a superposition of the
GMM components (see Eq. 3.5). The motivation for using GMM clustering in particular
is based on the idea that the learnt covariance structure of GMM clusters can be useful
for the physical interpretation of the results [17].
In the context of the partition of equation space into the distinct dynamical regimes (see
flowchart B in Fig. 3.1), we can now use the GMM clustering with nc components to model
the equation space distribution. In this case, the covariance matrix corresponding to the
i-th component of the learnt GMM model that describes the equation space dynamics has
the following structure

Σi =


Σf1[ψ(ξ,τ)] Σf1[ψ(ξ,τ)];f2[ψ(ξ,τ)] . . . Σf1[ψ(ξ,τ)];fK [ψ(ξ,τ)]

Σf2[ψ(ξ,τ)];f1[ψ(ξ,τ)] Σf2[ψ(ξ,τ)] . . . Σf2[ψ(ξ,τ)];fK [ψ(ξ,τ)]
...

...
. . .

...

ΣfK [ψ(ξ,τ)];f1[ψ(ξ,τ)] ΣfK [ψ(ξ,τ)];f2[ψ(ξ,τ)] . . . ΣfK [ψ(ξ,τ)]

 , (3.6)

where the diagonal elements Σfk[ψ(ξ,τ)] have the meaning of the variance of the chosen
Gaussian component with respect to the particular axis in the equation space (or, equiv-
alently, with respect to the particular term fk of the differential equation). Off-diagonal
elements of a covariance matrix describe the correlation between the differential equation
4The estimation of the mentioned statistical moments of Gaussian distributions, as well as the GMM
clustering are standard and are algorithmically implemented in many programming languages. For this
reason, we do not show the details of their computation, but rather focus on their physical interpretation
in the context of the dominant balance approach.
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terms in the chosen component and define the orientation of the corresponding cluster in
the equation space (note that the covariance matrix Σi is symmetric).
The information embedded in the structure of the covariance matrix of the GMM compo-
nents turns out to be very valuable for the interpretation of the dominant physical models.
In statistical terms, the covariance matrix of a multivariate Gaussian distribution is equiv-
alent to the concept of variance in the one-dimensional case. A larger variance in a certain
direction means that this direction has a greater influence on the results and vice versa. In
the context of the equation space dynamics, if some diagonal elements in one of the GMM
clusters have near-zero entries and the other terms have almost no correlation with them,
it can be assumed that the influence of the corresponding terms of the differential equa-
tion is negligible for these dynamics. In other words, the dynamics associated with this
cluster will be approximately dominated by differential equation terms with significantly
non-zero covariance matrix elements. This can be very instructive in the manual recogni-
tion of dominant balances as well as in the implementation of model selection algorithms.
An illustrative example of analysing the covariance structure of the GMM components is
given in the following section when considering the Peregrine soliton (PS) dynamics (see
Section 3.2.3).
The particular GMM algorithm that is employed in this thesis is the GaussianMixture
from the Python package scikit-learn [150], as implemented in [149]. This algorithm is
designed to softly partition the data into a given number of nc regions, each of which is
associated with a multivariate Gaussian distribution. The nc is, thus, a hyperparameter to
be selected depending on the governing equation structure. As there are no guarantees that
one of the GMM clusters will fully capture the dynamics corresponding to the particular
dominant balance regime, the hyperparameter nc should normally be selected to be higher
than the number of potential dominant balances. All the identified clusters can be grouped
together in the next step of the algorithm to form the final dominant balance models (see
block diagram C in Fig. 3.1).
In addition, despite the fact that the feature scaling is not mandatory when performing the
GMM clustering on a dataset, it is generally a good practice to use standardisation in such
cases. Indeed, the GMM implementation mentioned above uses the K-means strategies
to set the starting values of the expectation-maximization algorithm and, thus, can be
sensitive to feature scaling. To better partition the equation space into subsets of dynamic
points, we use standardisation of the Λ matrix before clustering. The process consists of
rescaling each feature so that its standard deviation is equal to 1 and its mean is 0 (see
StandardScaler of sklearn.preprocessing [150]).
Finally, it is important to mention that, in general, the assumption that the input data will
follow a GMM distribution is not justified. In our case, the input data are assumed to be
generated as a mixture of Gaussians with zero kurtosis and skewness. As it is not always
the case with the equation space dynamics, there is still some ambiguity in the selection
of the initial number of GMM clusters nc. In our analysis, we simply choose a number
of clusters greater than the number of expected dominant balances, typically nc ≤ 2K
to avoid overfitting, while visually controlling that the dynamics of the equation space is
sufficiently partitioned. Of course, there are various strategies that can be implemented,
such as using Bayesian inference criterion [3] or special clustering algorithms with physical
constraints. And this naturally opens up directions for future developments.
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3.2.3/ GMM clustering analysis of the Peregrine soliton dynamics

To better illustrate the idea of the dominant balance search, below we consider an ex-
ample of the Peregrine soliton (PS) dynamics in optical fibres which is analysed in the
corresponding equation space via unsupervised GMM clustering. These dynamics are gov-
erned by the NLSE that we write here in the following dimensionless form (see Eq. 1.55)

i ψξ + ψττ + |ψ|2ψ = 0, (3.7)

where ξ = z/LNL, τ = T/
√

|β2|LNL/2, and ψ(ξ, τ) = A(z, T )/
√
P0 (see Section 1.3 of

Chapter 1). The PS corresponds to the SFB family of NLSE solutions (see Eq. 1.57 in
Chapter 1). In the limit a → 0.5 the solution of Eq. 1.57 can be written as a linear
combination of a constant plane wave background and rational solitonic solution

ψps =
(

1 − 4 1 + 2iξ
1 + 4τ2 + 4ξ2

)
exp(iξ), (3.8)

Figure 3.2(a) shows the intensity map representing the spatio-temporal dynamics of the
PS (see Eq. 3.8).

Figure 3.2: Unsupervised GMM clustering applied to the equation space dynamics of
the PS. (a) Spatio-temporal dynamics represented by |ψ(ξ, τ)|2. (b) Equation space dy-
namics of the PS plotted in coordinates associated with real components of NLSE terms
iψξ, ψττ , ψ|ψ|2. (c-i) shows the four identified GMM clusters in the equation space rep-
resented by different colors. Note that yellow and light blue clusters (clusters C2 and C3,
respectively) are not visually distinguishable due to their low variance and close overlap
with the green cluster (cluster C1). In (d), using identical color code, the identified GMM
clusters are mapped back to the original spatio-temporal domain. (e) displays the co-
variance matrices of the four identified GMM clusters. In (c-ii) one of the projections of
clustered equation space is shown using the same color code.
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Following the dominant balance search algorithm, we first represent the spatio-temporal
NLSE dynamics in the associated equation space {i ψξ, ψττ , |ψ|2ψ}. Next we perform the
GMM clustering and separate the equation space into nc = 4 clusters exceeding the number
of expected dominant balances (with K = 3, we consider 3 potential dominant balances,
associated with dispersive {i ψξ, ψττ}, nonlinear {i ψξ, |ψ|2ψ} and full NLSE propagation
{i ψξ, ψττ , |ψ|2ψ}).
Figure 3.2(c) shows the resulting equation space dynamics separated into four clusters,
each associated with its own multivariate Gaussian distribution [note that yellow and
light blue clusters (clusters C2 and C3, respectively) are not visually distinguishable due
to their low variance and close overlap with the green cluster (cluster C1)]. We mention also
that here we only show the real parts of the differential equation terms when representing
the equation space dynamics, but similar results are found for the imaginary parts. In
Fig. 3.2(b) we see how these four identified equation space clusters partition the spatio-
temporal map into distinct regions when mapped back to the original domain (highlighted
in green, yellow, light blue, and red, respectively).
As mentioned in Section 3.2.2, the most important parameter of the returned GMM clus-
ters is their covariance structure that can already guide us through the identification of
dominant balance models. Figure 3.2(e) shows the learnt covariance matrices for each of
the identified clusters, and we can readily distinguish some patterns in their structure. For
example, one can point out the similarity in the covariance structure of the clusters C1, C2
and C3, where we have a strong correlation between the propagation and Kerr nonlinear
terms {i ψξ, |ψ|2ψ}. In the equation space [see Fig. 3.2(c)], these 3 clusters (highlighted
in green, yellow, and light blue, respectively) are closely packed together and constrained
in the same direction of the equation space. From this, one would expect them to belong
to the same dynamical regime (or the same dominant balance). It can also be observed
that the covariance structure of these 3 clusters does not show a significant contribution of
the second order dispersion, so that they most likely belong to a dominant balance model
associated with the dominance of nonlinearity.
A qualitatively different covariance structure is observed for the cluster C4 (colored red),
where we see the clear presence of the second order dispersion as well, so one would expect
this particular cluster to be associated with the full NLSE dynamics. Indeed, when we
look at the equation space again, we see that the cluster mentioned above is spread all
over equation space without having a reduced variance with respect to any direction. As
an additional remark, note that in the above example the initial number of clusters can be
chosen arbitrarily, as discussed earlier. For simplicity of this illustrative example, nc = 4
is chosen here.
We can see from this example how the learnt covariance structure of the GMM clusters can
help us in finding different dynamical regimes in the evolution. At this stage, the expert
knowledge can be used to perform the identification of the dominant balance models (see
block diagram C in Fig. 3.1). This consists in manually grouping the identified clusters
together, for example, based on their covariance structure to form the final dominant
balance models [93]. However, this would require “a priori” knowledge and/or intuition
about the different dynamical regimes in the considered system.
Inspection of the covariance structure of the clusters can assist in model identification, but
there will still be some ambiguity in the procedure. For example, from Fig. 3.2(d), we can
see that different GMM clusters can represent the dynamical patterns at quite different
scales. Specifically, the scale of the covariance matrices for clusters C1, C2 and C3 are
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several orders of magnitude smaller compared to that of cluster C4 [see the colorbars in
Fig. 3.2(d)]. This means that the dynamics captured by some clusters can be much less
important globally.
Another difficulty is that in certain cases it may not be clear how to assign a GMM cluster
to a particular dominant balance based on its covariance structure. In particular, since
the returned covariance matrices are dense, it is necessary to introduce certain criteria
to assign a given cluster to a particular dominant balance model. All this motivates the
development of algorithmic model selection strategies that can replace the use of human
intuition in the task of identifying dominant physical interactions. In the following section
we discuss one of the initially proposed approaches based on the sparse principal component
analysis (SPCA) [17].

3.2.4/ Model selection: Sparse principal component analysis

SPCA extends conventional principal component analysis by introducing a sparsity crite-
rion for the input features [151]. Conventional principal component analysis describes an
orthogonal projection of the input data onto a linear space with lower dimensions, max-
imising the variance of the projected input data [3]. The principal component analysis
technique is consistent with clustering methods based on the expectation-maximisation
algorithm, such as GMM, and can be directly applied to the equation space data to iden-
tify lower-dimensional patterns represented by directions of maximum variance [8].
However, it is difficult to directly use principal component analysis to perform the domi-
nant balance model selection because the obtained GMM covariance matrices are usually
dense. This is essentially the same problem encountered when trying to manually assign
a GMM cluster to a particular dominant balance based on its covariance structure, as dis-
cussed in Section 3.2.3. To overcome this difficulty, it was proposed to take into account
only the sparse approximation corresponding to the first principal component, which con-
tains most of the variance in each GMM cluster [17]. The SPCA may label features with
small variances as insignificant. If a GMM cluster has entries in the covariance matrix
that are close to zero for a particular term of the differential equation, that term can be
automatically discarded using SPCA. This can be done by solving this problem in the
framework of the least absolute shrinkage and selection operator (LASSO) regression [123]
on the principal axes. The SPCA thus returns a sparse and interpretable model that can
capture the leading terms governing the dynamics in each GMM cluster.
The implementation of the SPCA for the dominant balance model selection, however,
introduces an additional hyperparameter α, known as the LASSO l1 regularisation hyper-
parameter. As in various ML tasks, the hyperparameter α balances descriptiveness and
sparsity of the identified models. Specifically, for very low values of α, one gets the dom-
inant balance models that include all the differential equation terms. Contrary to that,
for higher values of α the dynamics captured by a cluster will be represented by sparse
dominant balance models that select just a few dominating terms. Finally, for really high
α values, we eventually get “empty” models, where all the equation terms are neglected.
From this, we can see that the algorithm requires an optimization step that finds the best
hyperparameter value αopt to distinguish the sparse and interpretable dynamical models
without loss of the descriptiveness.
Algorithm 2 shown below lists the main steps of the dominant balance model selection
procedure implemented in the framework of SPCA [149].
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Algorithm 2 Dominant balance model selection algorithm via SPCA
- Initialize a vector of the LASSO regression hyperparameters αp
- Allocate a zero vector of reconstruction errors ϵp

I. Construct the regularization path
for each of the LASSO regression hyperparameter αp do

for each GMM cluster Ci do
1. Extract an array Λi corresponding to a subset of equation space matrix Λ
associated with the cluster Ci
2. Initialize a SPCA model with a given αp and prescribed number of principal
components to compute
3. Perform the SPCA with the array Λi as an input data
4. Label the active terms identified via SPCA
5. Extract the feature array Λr associated with inactive terms from the SPCA
6. Compute the reconstruction error for αp: ϵp = ϵp + ∥Λr∥F

end for
end for
II. Find the optimal value αopt by analysing the Pareto-type curve of the reconstruction
error ϵ against α
III. For selected αopt group the GMM clusters with the same active terms to form the
final dominant balance models

The GMM clusters obtained in the previous step are used as the input to the model
selection algorithm. Each cluster Ci, where i ∈ [1, nc], is associated with an array Λi

representing a subset of the equation space matrix Λ. The hyperparameter α is optimised
with respect to the reconstruction error estimated as the Frobenius norm of inactive terms
in a given cluster (see Eq. 3.10).
In the first step, we initialize a vector of LASSO regression hyperparameters αp over which
the optimization is performed. Typically, we select α ∈ [αmin, αmax] with αmin = 10−2 and
αmax = 103 found empirically, separated by 100 log-equidistant points. Now we can
construct the regularization path to select the αopt. For every αp we loop through all the
identified clusters and accumulate the reconstruction error of inactive terms. To this end,
the SPCA is performed sequentially for each of the GMM clusters Ci. The optimisation
task to be addressed is a principal component analysis problem with a l1 penalty [150]

Âi(α), B̂i(α) = arg min
A,B

1
2∥Λ̃T

i −AB∥2
F + α∥A∥1, s.t∥Bi:∥2 ≤ 1, (3.9)

where Λ̃i represents the absolute matrix of the original equation space matrix Λ with
the subtracted column-wise mean, Λ̃T

i is a singular value decomposition (see SparsePCA
in [150] for details). The SPCA automatically labels active and inactive terms in each
cluster at a given αp. From this, one can compute the reconstruction error for cluster Ci:
ϵ = ∥Λr∥F , where Λr is a subset of Λi representing a feature array of inactive terms in
cluster Ci found via SPCA with a given αp. The notation ∥.∥F stands for the Frobenius
norm

∥A∥F =
∑
i,j

√
|Aij |2. (3.10)

Finally, the reconstruction error associated with a particular input αp can be computed
simply as a sum of reconstruction errors over all the GMM clusters (throughout the entire
equation space). This entire procedure is shown in Algorithm 2(I).
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As the output of the Algorithm 2(I), we get the α−path represented as the reconstruction
error ϵ against α. This forms the Pareto-type curve balancing sparsity and model accuracy.
The selection of αopt can be made by inspecting the obtained curve. For values of α close
to αmin, the reconstruction error is usually relatively small, as most of the terms are used
to describe the dynamics in each cluster. As we move towards higher α, SPCA starts to
neglect the terms with small variance in the equation space (equivalently, with near zero
entries in the covariance matrix) resulting in a slow increase of ϵ.
At some point, the reconstruction error starts to grow rapidly, leading to an inflection of
the curve. Physically it means that at higher values of α, SPCA eventually gets rid of the
differential equation terms playing essential role in the dynamics. Based on this, to select
αopt one may look at values of α just before the rapid growth of the reconstruction error
[see step (II) of Algorithm 2]. The clusters with the same sparse structure (with the same
identified active terms) can be grouped together and form final dominant balance models.
Let us now come back to the PS example and perform the dominant balance model selec-
tion using the SPCA algorithm (see Fig. 3.3)5.

Figure 3.3: Model selection algorithm implemented in the framework of the SPCA illus-
trated on the PS example. (a) spatio-temporal dynamics represented by |ψ(ξ, τ)|2. (b)
the identified on the first step four GMM clusters mapped to the original spatio-temporal
domain (the same color code is used here as in Fig. 3.2). (c) shows the dominant balance
regions found via the SPCA model selection algorithm. The two returned dominant bal-
ance models (blue and orange) are shown in subfigure (e). (d) using identical color code,
shows one of the projections of the identified dominant balance clusters in the equation
space. (e) displays the computed α−path via SPCA model selection algorithm with the
highlighted value of αopt.

Figures 3.3(a) and (b), respectively, show the spatio-temporal dynamics of the PS and the
5Note that we reproduce some elements of Fig 3.2 here in order to more fully explain the procedure.
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corresponding spatio-temporal cluster map separated into local regions associated with
four identified GMM clusters [see Fig. 3.2(c)]. Next, the four identified GMM clusters
are used as the input to the SPCA model selection algorithm to compute the α−path
shown in Fig. 3.3(e). We can see that the obtained curve shows a “staircase” growth
with increasing α. In fact, each of these “stairs” corresponds to different models with
increasing sparsity. We can directly see that the reconstruction error ϵ experiences a jump
after α ≈ 30 and starts to grow rapidly. On this basis, one can set αopt = 10, which
corresponds to the sparsest model with a relatively low reconstruction error that appears
just before the inflection point.
After setting αopt = 10, the algorithm returns two dominant balance models [see
Fig. 3.3(c)]. The first model, represented by the blue region in Fig. 3.3(c), describes
the dominant balance between propagation and nonlinear Kerr terms {iψξ, |ψ|2ψ} and is
associated with the plane wave background. We can now see how the three GMM clusters
(green, yellow and light blue) were grouped together to form the nonlinear dominant bal-
ance model [see the comparison of Figs. 3.3(c) and (d)]. This demonstrates the robustness
of the algorithm with respect to the redundant clusters that represent essentially the same
dynamical regime.
In the illustrative example considered here, grouping these three clusters together can be
quite straightforward based on their orientation and close overlap in the equation space [see
Fig. 3.2(d)]. This result is consistent with the previously discussed idea of the covariance
structure of the returned GMM clusters. Indeed, these clusters have quite similar structure
of the covariance matrices with near zero entries with respect to the dispersive term [see
Fig. 3.2(e)]. That is in contrast with the cluster C4 that shows a clear correlation between
all the terms in its covariance matrix. We can see how this cluster was subsequently
assigned to the full NLSE dominant balance [orange region in Fig. 3.3(c)] that separates
the localised solitonic structure from the background. The physical interpretation of the
identified local dominant balance models for the SFB and noise-driven MI dynamics will
be discussed in detail in Section 3.3.
Before discussing the physical aspects of the returned dominant balance models, it is
instructive to take another look at the equation space dynamics. Figure 3.3(d) shows one
of the projections of the NLSE equation space, where the dynamical points are plotted
in Re(iψξ) − Re(ψττ ) coordinates. The equation space initially separated into four GMM
clusters now contains only two dominant balance regions (orange and blue, respectively).
The results shown clearly illustrate the geometric interpretation of the dominant balance.
We can see how the nonlinear dominant balance cluster (blue) is restricted in the equation
space to have near zero variance with respect to the dispersive term ψττ . In other words,
the dynamical points associated with the dominant nonlinear regime are approximately
confined with respect to the direction i ψξ + |ψ|2ψ ≈ 0 in the three-dimensional equation
space. Contrary to that, the full NLSE dynamics [see orange dominant balance cluster in
Fig. 3.3(d)] is associated with dynamical points distributed on a plane in the equation space
with no reduced variance with respect to any directions. This is because geometrically the
full NLSE (i ψξ +ψττ + |ψ|2ψ = 0) represents a plane in the corresponding equation space.
While being quite intuitive in the case of the NLSE with only three differential equation
terms, the dominant balance equation space interpretation is quite complex in the case
of the generalised NLSE. The aspects of the generalised NLSE dynamics analysed with
dominant balance approach are presented in Chapter 4 of this thesis.
The dominant balance model selection via SPCA finalizes the dominant balance search
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algorithm (see Fig. 3.1). It is important to emphasise that the proposed approach is quite
different from an alternative method such as global thresholding. In a simplistic manner,
one can try to establish local dominant balance regions by imposing a hard threshold
on differential equation terms (i.e. when the absolute contribution of a term is below
the threshold, it is neglected). The aim of the data-driven dominant balance approach
presented here is to find dominant physical models based on the local relative importance
of differential equation terms. In many physical systems, the scale of significance varies
locally across the domain, so the threshold approach will not work. As will be shown in
Section 3.3 the presented dominant balance algorithm searches for spatio-temporal regions
of similar dynamical regimes, while accounting for the local relative importance of terms.
In the simplest cases, where the scale of dynamics does not change significantly across the
domain, the thresholding approach is, in fact, a limiting case of the proposed algorithm.
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3.3/ Results

In this section, the data-driven dominant balance approach is used to analyse various
aspects of the MI of NLSE. The approach is first applied to the analytical SFB solutions
describing various localised and periodic structures associated with MI propagation (see
Section 1.3 in Chapter 1). The dominant balance search algorithm is then applied to the
case of chaotic noise-driven MI dynamics.

3.3.1/ Dominant balance analysis of SFB dynamics

The SFB (see Eq. 1.57) describe a broad family of exact NLSE solutions that are intimately
related to MI dynamics. The MI in optical fibres is also associated with the emergence
of various complex localised structures that have been explored in many previous studies,
including higher-order NLSE solutions [152], collisions of breathers and solitons [138], ghost
interactions [142], etc. The data-driven dominant balance approach, utilized alongside
established methods like the inverse scattering transform [39, 139, 153], can enrich our
understanding and representation of the complex MI dynamics.
We first provide an interpretation of the dominant balance analysis of the Peregrine soliton
(PS) dynamics performed in Section 3.2. Figure 3.4(a-i) again shows the spatio-temporal
dynamics of PS represented by |ψ(ξ, τ)|2, while Fig. 3.4(a-ii) shows two dominant balance
models identified in the spatio-temporal domain: the one associated with the dominant
balance between propagation and nonlinear Kerr terms {iψξ, |ψ|2ψ} (blue) and the one
associated with the full NLSE dynamics (orange). From the comparison of Figs. 3.4(a-i)
and 3.4(a-ii), it becomes apparent that strong spatio-temporal localization around (ξ =
0, τ = 0) emerges due to the combined effects of nonlinearity and dispersion within the
NLSE (orange region). In fact, this is the full NLSE dynamics that drives the spatio-
temporal compression. In contrast, the surrounding low intensity region is found to be
dominated by nonlinearity (blue). This result demonstrates well how the dominant balance
technique can successfully separate two distinct physical regimes involved in dynamics.
It is instructive to also look at the results of the dominant balance identification in the
associated equation space. Figure 3.4(b) shows the equation space dynamics divided into
two groups of dynamical points associated with nonlinear and full NLSE dominant balance
models (blue and orange, respectively)6. From the projections shown in Figs. 3.4(b-ii)
and (b-iii), we can directly see how these found dominant balance models are distributed
in the equation space. The nonlinear dominant balance (blue) is confined in the equation
space with almost zero variance with respect to the second-order dispersion [it lies on the
line Re[ψττ ] ≈ 0 in Fig. 3.4(b-iii)]. At the same time, this blue cluster forms a straight
line with a non-zero slope, showing the correlation between iψξ and |ψ|2ψ in Fig. 3.4(b-ii).
Although not explicitly shown in Figs. 3.4(b-ii) and (b-iii), we can recognise that the blue
cluster is quite dense and contains more dynamical points than the orange cluster [see
Fig. 3.4(a-ii)]. Contrary to that, the dynamical points assigned to the orange cluster (full
NLSE dynamics) are scattered throughout the equation space without having a reduced
variance with respect to any directions. It can also be noted that these dynamical points
are much less dense, resulting in fewer points in the spatio-temporal map [see Fig. 3.4(a-
ii)].
6Note that the initial GMM clustering step of the dominant balance search algorithm is not shown here.
Figure 3.4(b) only displays the final dominant balance models identified in the equation space.
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(a) (b) (c)Dominant balances

Figure 3.4: Application of the dominant balance approach to the PS dynamics.
(a-i) Spatio-temporal dynamics represented by |ψ(ξ, τ)|2. (a-ii) Segmented spatio-
temporal map showing two identified dominant balance regions: dominated by nonlinearity
(blue) and associated with the full NLSE dynamics (orange). (b) using the same color
code plots the identified dominant balance models in the equation space coordinates asso-
ciated: (i) with real components {iψξ, ψττ , ψ|ψ|2}; (ii) with real components {ψ|ψ|2, iψξ};
(iii) with real components {ψ|ψ|2, ψττ}. In (c), using identical color code, (i) shows the
intensity profile at ξ = 0; (ii) shows the individual contributions of the NLSE terms at
ξ = 0 (see text for details).

To further illustrate the results, Fig. 3.4(c-i) additionally shows the temporal envelope
of the PS at ξ = 0, where the colors represent the two dominant balance regions as
before. At this point of maximum compression of the PS (at ξ = 0), the terms of the
differential equation iψξ, ψττ , and |ψ|2ψ are real-valued functions of τ and can be directly
plotted together to illustrate their relative contributions [see Fig. 3.4(c-ii)]7. We can clearly
see from Fig. 3.4(c-i) that the relative contributions of differential equation terms vary
significantly across τ . Specifically, in the central part of the temporal envelope, all NLSE
terms contribute comparably to the dynamics driving the localization of the PS. Contrary
to that, the temporal wings of the PS see the contribution of propagation and nonlinear
terms, while the second-order dispersion contribution is effectively zero. We see how this
particular region of the temporal envelope is “balanced” by iψξ and |ψ|2ψ terms, leading
to the dominance of nonlinearity in the background (blue region).

7Note that by definition all three contributions must sum to zero at each temporal point as long as the
equation iψξ + ψττ + |ψ|2ψ = 0 is satisfied.



3.3. RESULTS 59

Next, we consider the spatio-temporal dynamics of the Akhmediev breather (AB) (another
exact analytic SFB solution) that is known to be associated with the initial stage of the
MI propagation (see Section 1.3 in Chapter 1). Setting the parameter of the SFB solution
to be a < 1/2 in Eq. 1.57 results in the τ -periodic spatio-temporal dynamics with ωm and
b playing the role of modulation frequency and exponential growth rate, respectively.
Figure 3.5(a-i) shows the spatio-temporal AB dynamics obtained for a = 1/4 (see Eq. 1.57),
while Fig. 3.5(a-ii) again shows the two identified dominant balance models in the spatio-
temporal domain as before. The blue regions indicating the dominance of nonlinearity are
clearly separated, as it was in the case of PS dynamics considered earlier. At the same
time, we also see how the contribution of all NLSE terms (orange) leads to the spatio-
temporal localisation of the AB. Figures 3.5 (c-i) and (c-ii) again display the relative
contributions of the NLSE terms at ξ = 0. This clearly illustrates the role of different
NLSE terms in driving the dynamics. In the case of the AB solution, it is particularly
interesting how the dynamics of the lower amplitude regions between the localised peaks
is associated with the balance between all the NLSE terms.

(a) (b) (c)Dominant balances

Figure 3.5: Application of the dominant balance approach to the AB dynamics.
(a-i) Spatio-temporal dynamics represented by |ψ(ξ, τ)|2. (a-ii) Color segmentation of
the spatio-temporal map showing two identified dominant balance regions: dominated by
nonlinear and propagation terms (blue) and associated with full NLSE dynamics (orange).
(b) using the same color scheme plots the identified dominant balance models in the
equation space coordinates associated: (i) with real components {iψξ, ψττ , ψ|ψ|2}; (ii)
with real components {ψ|ψ|2, iψξ}; (iii) with real components {ψ|ψ|2, ψττ}. In (c), using
identical color code, (i) shows the intensity profile at ξ = 0; (ii) shows the individual
contributions of the NLSE terms at ξ = 0, as indicated in the legend of Fig. 3.4.
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Finally, we consider the spatio-temporal dynamics of Kuznetsov-Ma soliton (KM) [see
Fig. 1.2(c)] representing the ξ-periodic SFB solution that can be obtained by setting a >
1/2 in Eq. 1.57. The results of the dominant balance analysis of the KM dynamics obtained
for a = 1 are presented in Fig. 3.6 and have similar interpretation. From the comparison of
Figs. 3.6 and 3.5, it can be seen how the dominant balance approach can readily distinguish
the difference in the periodicity of AB and KM solutions.

(a) (b) (c)Dominant balances

Figure 3.6: Application of the dominant balance approach to the KM dynamics.
(a-i) Spatio-temporal dynamics represented by |ψ(ξ, τ)|2. (a-ii) Color segmentation of
the spatio-temporal map showing two identified dominant balance regions: dominated by
nonlinear and propagation terms (blue) and associated with full NLSE dynamics (orange).
(b) using the same color scheme plots the identified dominant balance models in the
equation space coordinates associated: (i) with real components {iψξ, ψττ , ψ|ψ|2}; (ii)
with real components {ψ|ψ|2, iψξ}; (iii) with real components {ψ|ψ|2, ψττ}. In (c), using
identical color code, (i) shows the intensity profile at ξ = 0; (ii) shows the individual
contributs of the NLSE terms at ξ = 0, as indicated in the legend of Fig. 3.4.

The ability of the dominant balance algorithm to clearly separate the spatio-temporal
dynamics of the SFB is crucial for any further attempts to apply the technique to the
case of the noise-driven MI (see Section 3.3.2). The identified dominant balance dynamics
of the SFB are somewhat expected from the structure of the analytical solutions. Yet it
clearly illustrates the capacity of the data-driven dominant balance approach to account
for the local relative contributions of the differential equation terms. Specifically, we can
see how the two physical processes occurring at different dynamical scales (namely, the
soliton localization and the plane wave background) can be readily identified.
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3.3.2/ Dominant balance analysis of noise-driven MI

We now proceed to apply the dominant balance approach to interpret the more complex
dynamics of noise-driven MI. For this purpose, the NLSE is solved numerically using the
split-step Fourier method for a continuous wave input with a superimposed broadband low-
level noise. In particular, the common optical one-photon-per-mode noise model is used
here [54]. The chaotic MI dynamics can be observed for almost any class of random am-
plitude and/or phase fluctuations [22] (see Section 1.3), however the one-photon-per-mode
noise model is known to yield the MI propagation that reproduce well the experiments [49].
Figures 3.7 (a) and (b) show the results of the numerical simulations for both the spatio-
temporal and spatio-spectral domains [43].

Dominant balances

A

B

C

Figure 3.7: (a) Spatio-temporal evolution of noise-driven MI represented by |ψ(ξ, τ)|2.
(b) Corresponding spectral dynamics. (c) Results of a dominant balance analysis that
automatically identifies distinct regions of dominant balance in the spatio-temporal do-
main. The same color code is used here as in the previous figures in this section. Labels A,
B, and C indicate several characteristic localized structures arising in the MI propagation
(see text for details).

The results show how an injected continuous wave with superimposed random noise evolves
into a series of localised structures in the spatio-temporal domain around ξ ∼ 10. The
initial stage of the propagation is associated with the formation of the characteristic MI
sidebands centered at Ω = ±1 in the spectral domain. This dynamics leads to the emer-
gence of the AB characterized by a temporal periodicity of ∆τ ≈ 2π. The later propa-
gation is associated with the spontaneous emergence of various localised structures with
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both temporal (transverse) and spatial (longitudinal) periodicity. The propagation is plot-
ted up to ξ = 120. We can also see how the described temporal evolution is reflected in
the frequency domain with chaotic broadening and narrowing of the spectrum. In fact,
the random appearance of high-intensity ultrashort temporal peaks is associated with the
broadening of the spectrum in such a way that a decrease in the temporal duration of
localised peaks leads to an increase in the spectral bandwidth.
Figure 3.7(c) shows the results of the dominant balance approach applied to the spatio-
temporal dynamics shown in Fig. 3.7(a). Again two different dominant balance models are
identified by the algorithm: the one associated with the dominant nonlinear propagation
(blue regions) and the one corresponding to the full NLSE dynamics (orange regions).
This analysis enables us to identify the emerging localised structures that can be compared
with the analytical SFB solutions analysed in Section 3.3.1. In particular, the dominant
balance approach effectively identifies the AB structures with the temporal period of ∆τ ≈
2π [for example, at ξ ≈ 11 and ξ ≈ 38, see labels A and B in Figure 3.7(c)]. It also
reveals various ξ-periodic and PS-like rogue wave structures, such as the distinct feature in
Fig. 3.7(c) at ξ ≈ 93 [see label C]. Moreover, we can again see how the dominant balance
approach associates the low intensity background region with the nonlinear dominant
balance (for example, in the initial stage of the propagation ξ < 10). This visualization
method distinctly highlights the well-known “nonlinear” stage of the MI associated with
exponential gain derived from the linear stability analysis (see Section 1.3), and before
any recurrence is observed [145,153].
This result is particularly valuable because it demonstrates the ability of dominant balance
to provide sometimes seemingly counterintuitive insights into the observed physics. Indeed,
from a naive point of view one may assume that nonlinearity (blue dominant balance
model) should dominate in spatio-temporal regions of relatively high intensity. Yet we see
how the nonlinearity dominates the regions of relatively low intensity. This emphasizes
the necessity to evaluate the relative contributions of dispersion and nonlinearity when
interpreting NLSE dynamics. In particular, the absence of τ -structure in a plane wave
background means that it practically does not see the dispersion, allowing only nonlinear
self-focusing to dominate the background’s evolution. The interaction between dispersion
and nonlinearity begins only after the development of temporal structure from this initial
nonlinear stage (ξ > 10).
Finally, from the algorithmic side, we can clearly see that by using the unsupervised GMM
clustering along with the SPCA model selection procedure on the equation space dynam-
ics instead of a simple threshold-based approaches, this technique can accurately identify
evolving localised structures even in low-intensity regions. This result demonstrates the
potential extension of this method to automatically detect emerging rogue wave struc-
tures [154].
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3.4/ Summary, discussion & conclusion

These results clearly demonstrate the power of the dominant balance approach in study-
ing the interaction between dispersion and nonlinearity in the context of MI dynamics.
The combination of unsupervised GMM clustering, which can find hidden patterns in the
equation space dynamics, and the SPCA model selection algorithm, which returns sparse,
physically-interpretable models, can reveal dominant physical interactions even within
turbulent NLSE dynamics. The algorithm can automate the process of finding dominant
balance models in many complex optical systems and could, for example, be extended in
the future to study the dynamics of ultrafast fibre lasers (see Section 1.5). Furthermore,
it can be used to simplify complex numerical integration schemes by introducing adaptive
simplified numerical strategies in local dominant balance regions.
However, there are challenges to be addressed before these further developments. First
of all, the GMM + SPCA approach described above still requires some degree of expert
supervision. In some cases it can be quite unclear how to select an optimal value of the
l1 regression hyperparameter α (see Section 3.2.4), especially with increasing number of
differential equation terms K and GMM clusters nc. Moreover, introducing a general α
for all GMM clusters can be challenging as the algorithm tends to return almost “empty”
dominant balance models for clusters with smaller values of the covariance matrix. As a
result, the algorithm may partially ignore the local importance of the differential equation
terms. Recently, it was proposed to perform the SPCA selection algorithm for each of the
GMM clusters separately [136]. This may lead to better dominant balance model selection
procedure, however at the expense of computational cost. Moreover, this approach again
increases the degree of expert “supervision” over the results of analyses.
The results shown in this chapter were obtained by relying on physical intuition and
theoretical knowledge when tuning the hyperparameters. To automatically select the best-
fitting dominant balance models, a greedy search over a discrete number of GMM clusters
nc and continuous l1 sparsity parameters α must be performed. This would result in a
significant increase in computational complexity close to those corresponding to “black
box” ML models, but may possibly eliminate the expert supervision in the dominant
balance search. Finally, in order to perform such a search, it is necessary to introduce
some metrics that can assess the performance of the retrieved dominant balance models.
Some of the above issues will be addressed in Chapter 4 of this thesis.





4
Automated unsupervised

identification of dominant
physical processes in optical

fibre pulse propagation

4.1/ Introduction

In this chapter, a fully unsupervised technique for dominant balance search is implemented
to study various propagation scenarios in nonlinear fibre optics. In what follows, we first
present an extension of the dominant balance search algorithm described in Chapter 3
that automates the model selection procedure. Then, the illustrative examples of both
normal and anomalous dispersion regime optical pulse propagation are considered. In
addition to identifying the dominant balance in the spatio-temporal domain, as has been
done in previously published works, we demonstrate how the dominant balance maps to
the corresponding spectral domain.

4.2/ Combinatorial model selection algorithm

As discussed in Chapter 3, the originally proposed dominant balance search algorithm [17]
based on the combination of Gaussian mixture modeling (GMM) clustering and sparse
principal component analysis (SPCA) model selection still requires a degree of expert su-
pervision when tuning the hyperparameters (see Section 3.4). This may potentially limit
the exploratory power of the approach. In machine learning (ML), SPCA turns out to
be particularly relevant for problems in which the number of variables is comparable or
even exceeds the number of observations [123]. In our case, the number of spatio-temporal
points (observations) is much larger than the number of differential equation terms (vari-
ables) K ≪ NM . Indeed, as was highlighted in Chapter 2, most physical systems can
be described by differential equation models with just a few active terms, so that K is
usually a small number. This motivates the idea of implementing a “combinatorial” search
algorithm1 that involves the use of specific criteria that can help to select the best local
dominant balance model from a list of all possible candidate models.
1Combinatorial approaches typically involve finding an optimal solution from a finite (discrete) set of
problem solutions [3].

65
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Recently such an approach was proposed by Bryan E. Kaiser, Juan A. Saenz, Maike
Sonnewald, and Daniel Livescu [18], where it was shown that the SPCA model selection
procedure can be effectively replaced with a specific combinatorial search over candidate
dominant balance models. In other words, for each local dynamical region associated with
a GMM cluster, it is possible to select the best suitable dominant balance from the finite
number of candidate dominant balance models. Consequently, this can potentially replace
the SPCA model selection algorithm that requires tuning the continuous l1 hyperparameter
α (see Section 3.2.4).
Based on physical considerations, in what follows we restrict ourselves to the analysis of
dynamics outside the steady-state regime and assume that the propagation term iψξ is
always active. Given that a dominant balance of just one term is not useful [18], the number
of candidate dominant balance models equals to 2K−1 −1. To illustrate this, Fig. 4.1 shows
the dominant balance candidate models for the nonlinear Schrödinger equation (NLSE)
and generalised NLSE models with K = 4 and 5 differential equation terms describing the
propagation of ultrashort optical pulses in fibres (see Section 1.4). For example, in the case
of NLSE with K = 3 we have only 3 candidate dominant balance models, while in the case
of generalised NLSE with third order dispersion (TOD) and integral Raman terms we get a
total of 15 candidate dominant balance models. From this, one can directly estimate that
the complexity of the combinatorial search is O(2K). Despite this, for relatively small
K, the total number of candidate models remains small enough that the “best-fitting”
dominant balance model can be efficiently identified. Specifically, the time complexity
analysis reported in [18] showed that the combinatorial model selection algorithm can be
successfully applied to governing differential equation with K ≤ 8 terms.

Letter 4

here is: iψξ + ψττ + iδψτττ + |ψ|2ψ + ρψ (hR ∗ |ψ|2) = 0. The
transformation to dimensional coordinates uses: ψ = A

√
γLD,

ξ = z(1 − fR)/LD, τ = t
√

2(1 − fR)/T0. The third-order dis-
persion parameter δ =

√
2(1 − fR)β3/3T0|β2|, and the Raman

response function hR is the standard two-timescale model of
fused silica [12]. The operator ∗ represents convolution. We take
δ = 0.05 and ρ = fR/(1 − fR) and Raman fraction fR = 0.34.
We use hyperbolic secant initial conditions corresponding to
a higher-order N = 2 soliton, which with our normalisation
corresponds to ψ(0, τ) = N sech[τ/

√
2(1 − fR)]. These are con-

ditions well-known to lead to soliton fission dynamics [10].
The results in Figs 2(a) and (b) again show the usual tempo-

ral and spectral evolution while Figs 2(c)-(e) show the results
of the dominant balance analysis. Note that with more than
3 terms in the governing equation it is not possible to show a
multi-dimensional cluster plot and Fig. 2(c) shows only three
illustrative projections. The soliton fission process is very rich,
and five different models are returned from the dominant bal-
ance algorithm: where only the second-order dispersive and
propagation terms contribute (gray); where only the nonlin-
ear and propagation terms contribute (dark blue); where both
second- and third-order dispersive terms and propagation term
contribute (light blue); where the three NLSE terms and the
Raman term contribute (green); and where all terms contribute
(brown). Note that because of their low intensity when plotted
on a linear scale, the temporal and spectral signatures of the
dispersive wave components (light blue) in the output profiles
above Figs 2(a) and (b) are scaled by the factors shown.

These results again illustrate the power of automated dom-
inant balance analysis, as we can readily associate different el-
ements of the temporal and spectral evolution with distinct
combinations of physical processes. For example, from Figs 2(d)
and (e) we see clearly how the ejection of the dispersive wave at
the onset of soliton fission around ξ ∼ 0.7 is dominated by sec-
ond and third-order dispersion (light blue) in both the temporal
and spectral domains. This is of course fully consistent with the
known phasematching condition for dispersive wave generation
involving β2 and β3 [12]. We also see how the dominance of
these two dispersive terms recurs around ξ ∼ 1.2 and ξ ∼ 2,
with additional light blue regions apparent in the temporal field
structure. This is associated with the well-known periodicity in
the temporal and spectral evolution of the evolving soliton, and
associated dispersive wave generation [18, 19].

We also see how the central temporal structure consists of two
localised soliton structures (green and brown) upon a broader
dispersion-dominated background (gray). Here, dominant bal-
ance indicates that both soliton pulses experience the Raman
effect, and the higher amplitude soliton also experiences third-
order dispersion leading to the accelerating temporal trajectory.
The narrow temporal duration of the accelerating soliton results
in it dominating the spectral balance map (brown), although we
can also see signatures associated with the lower-amplitude soli-
ton (green). Of course, the basic soliton dynamics of this process
have been extensively studied using simulations over a range of
parameters [10], but the dominant balance analysis directly adds
new insights such as the fact that the two soliton structures are
not dominated by the same physical effects. We can see that the
higher-amplitude soliton (brown) is dominated by all the effects,
while the contribution of third-order dispersion is negligible for
the lower-amplitude soliton (green).

There are several major conclusions to be drawn from this
work. Firstly, the examples considered for the cases of optical

wavebreaking and soliton fission (as well as the examples in the
Supplementary Information) very clearly illustrate the power
of dominant balance analysis to directly identify how different
physical processes contribute to different stages of nonlinear and
dispersive propagation. We stress specifically that, in contrast
to previous studies of dominant balance in optics [6, 11], our
approach is completely unsupervised, opening the pathway to
a fully automated method to yield “intuitive” understanding
of the underlying physics. Of course such a method does not
replace human intuition completely, but it can provide very
useful complementary information to stimulate new ways of
thinking about seemingly well-known phenomena. We can
readily anticipate many interesting further applications of this
technique, not only in nonlinear fiber optics, but in all optical
systems where dynamics are described by differential equation
models. Moreover, the ability to identify local regions of a field
dominated only by a subset of physical effects may open up
new analytical studies using approximate perturbative methods.
And finally, the analysis of propagation dynamics in terms of
term-by-term contributions in the underlying equation space is
a further interesting area of future study.
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Fig. S2. (a) temporal and (b) spectral intensity evolution maps for perturbed fundamental soli-
ton dynamics with N = 1.5. Both maps are normalised to a maximum intensity of unity and
use the same logarithmic intensity scale. We also plot output temporal and spectral profiles
on a linear scale. (c) plots equation space terms to illustrate the clustering seen in the different
projections. (d) and (e) plot the dominant balance regions for comparison with the intensity
evolution maps. The color code used in the spectral dominant balance plot corresponds to the
Fourier transforms of the temporal terms shown in the legend.

C. Third-order dispersion-induced soliton fission
Finally, we consider the case of higher-order soliton dynamics in the presence of only the third-
order dispersion in the focusing regime i ψξ + ψττ + iδψτττ + |ψ|2ψ = 0. The results show similar
general features to the case of soliton fission considered in the main manuscript, but the absence
of Raman scattering allows the role of dispersive perturbation to be examined separately. The
initial condition here correspond to a hyperbolic secant input pulse ψ(0, τ) = N sech(τ/

√
2)

with N = 3. Third-order dispersion is included through the dimensionless parameter δ =√
2β3/3T0|β2| ≈ 0.06 (comparable to the value in the main manuscript given that fR = 0 in this

case.)
Figures S3(a) and (b) plot the temporal and spectrral evolution respectively, showing typical

soliton fission characteristics. The temporal dominant balance map in Fig. S3(d) shows that
the initial stage of the propagation is associated with temporal compression, and is primarily
governed by the nonlinearity because of the higher value of N associated with the injected
higher-order soliton (dark blue). After ξ ∼ 0.1 the contribution of third-order dispersion becomes
significant and drives the soliton fission at ξ ∼ 0.4 accompanied by clear ejection of the dispersive
wave. Here the red regions show comparable contribution from all terms across the temporal
centre of the pulse, while the clear dominance of only the linear terms (light blue) is clear in the
ejected dispersive wave properties in both the time and frequency domains.

5

Fig. S1. (a) temporal and (b) spectral intensity evolution maps for Riemann wave initial condi-
tions. Both maps are normalised to a maximum intensity of unity and use the same logarithmic
intensity scale. We also plot output temporal and spectral profiles on a linear scale. (c) plots
equation space terms to illustrate the clustering seen in the different projections. (d) and (e)
plot the dominant balance regions for comparison with the intensity evolution maps. The color
code used in the spectral dominant balance plot corresponds to the Fourier transforms of the
temporal terms shown in the legend.

evolution dynamics are associated with strong temporal steepening in the initial propagation
(up to ξ ∼ 0.1 after which the evolution of the steepened leading edge and central portion of the
temporal profile remain governed by the full NLSE, with this sitting upon a broader dispersive
background. This is contrast to the case of optical wavebreaking in the main manuscript (Fig. 1)
where the initial evolution is dominated by the nonlinear term.

B. Perturbed fundamental soliton propagation
A further instructive example is the well-known case of propagation of an optical soliton, with
normalised NLSE: i ψξ + ψττ + |ψ|2ψ = 0. The sign change in the dispersive term compared
to the NLSE used in the case of the Riemann wave above is because these dynamics are in the
anomalous dispersion regime. In addition, to illustrate the dynamics more generally, we show
the results for an the initial condition of ψ(0, τ) = N sech(τ/

√
2) where N = 1.5. This will also

allow us to see the effect of soliton perturbation. The results showing evolution and dominant
balance maps are shown in Fig. S2.

For this case, the evolution plots in Figs S1(a) and (b) show the expected dynamics for a
perturbed soliton as it undergoes oscillatory temporal and spectral evolution, and shedding
energy from the central temporal structure into dispersive continuum radiation [8]. The plots in
Figs S1(d) and (e) show how this is manifested in terms of dominant balance in both temporal and
spectral domains respectively with the full NLSE driving evolution across the central temporal
component and dispersion dominating the wings. In contrast, the role of isolated dispersion
does not appear dominant in the frequency domain map; we see the centre of the spectrum is
dominated only by nonlinearity (the NLSE dispersion operator in the frequency domain does not
act on the spectral centre because of its ν2 dependence) whereas the wings of the spectrum show
full NLSE contribution.

4

Figure 4.1: Candidate dominant balance models corresponding to the NLSE and the
generalised NLSE propagation models with K = 4 and 5 differential equation terms (see
Section 1.4). In each candidate dominant balance model, the colored boxes indicate active
terms, while white boxes indicate inactive terms.
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4.2.1/ Dominant balance search criteria

In this section we summarise the approach proposed in [18] that is based on the combina-
torial search for the dominant balance model that best describes the dynamics in a given
spatio-temporal region. To this end, we need to find the subset of S out of K terms of
the governing differential equation that best describes the local dynamics, while assuming
the contribution of the remaining D = K − S terms negligible. To do that, one needs to
formulate criteria of the dominant balance search. In [18] it was proposed to introduce
two principal criteria describing the “best” local dominant balance:

1. The magnitude gap between the selected subset of S dominant terms and the subset
of D remaining terms Γ must be maximised;

2. The magnitude gap within the selected subset of S dominant terms Ω must be
minimised;

Now we proceed to define these criteria via a computable metric [18]. To this end, we first
introduce the normalised equation space matrix Λ̂, each row of which Λ̂j: is normalised
with respect to the smallest non-zero value in the corresponding row:

Λ̂j: = |Λj:|
mink∈F(|Λjk|)

, (4.1)

where j ∈ [1, ..., NM ], F = {1, ...,K}, and mink∈F(|Λjk|) , 0. According to the normal-
isation, for each element of the normalised equation space matrix condition Λ̂jk ≥ 1 is
satisfied. Next, for each of the candidate dominant balances, we can specify a subset of
the selected terms sj ⊆ Λ̂j: of length S and a subset of remaining terms dj ⊂ Λ̂j: of length
D at each spatio-temporal point.
The order of magnitude metric M describing the degree of dominance of a given subset of
terms can be defined as follows, taking into account the aforementioned dominant balance
criteria [18]

Mj = Γj
1 + Ωj

∈ [0, 1], (4.2)

computed at each point of the spatio-temporal map ψ(ξn, τm), i.e. for each row of Λ̂,
where

Ωj = log10[max(sj)] − log10[min(sj)] ∈ [0,∞), (4.3)

and

Γj =


log10[min(sj) − max(dj)]
log10[min(sj) + max(dj)]

, if min(sj) > max(dj)

0, if min(sj) ≤ max(dj)
, (4.4)

with additional floor condition Γ = 0 for Γ < 0.
Figure 4.2 shows the behaviour of the introduced order of magnitude metrics. First of all,
we can see how the introduced metric Γ (blue dashed curve) accounts for the dominant
balance criteria (1). As the gap in magnitude between the smallest selected min(sj) and
the largest neglected max(dj) terms increases, Γj grows rapidly, reaching Γj ≈ 0.91 for
an order-of-magnitude gap. In particular, Γ is essentially 1 for a gap of two orders of
magnitude.
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Figure 4.2: The black solid, blue dashed, red dashed and green dashed lines plot the order
of magnitude M , Γ, Ω, and (1 + Ω)−1 metrics, respectively (see Eqs. 4.2-4.4), computed
for fixed max(dj) = 1 and max(sj) = 100 as a function of min(sj). These metrics are
proposed in [18] to identify the “best performing” local dominant balance models.

At the same time, the differential equation terms of the selected dominant subset sj should
contribute comparably to the local dynamics. To this end, Γ is balanced by Ω that accounts
for the dominant balance criteria (2), minimizing the order of magnitude difference in the
selected subset. Red dashed curve plots Ω against min(sj) for max(sj) = 100. It can
be seen that Ωj decreases linearly on the logarithmic scale as the magnitude gap in the
selected subset decreases. This emphasizes the order of magnitude nature of this metric.
More specifically, Ω = 2 for a gap of two orders of magnitude and Ω → 0 as the standard
deviation in the selected subset tends to 0.
Finally, the black curve in Fig. 4.2 plots Mj = Γj/(1 + Ωj) against min(sj). As both
the Γj → 1 and Ωj → 0, Mj → 1 maximizing the score for a given dominant balance.
As Γj decreases and/or Ωj increases, the full propagation model (which accounts for the
contribution of all terms in a differential equation) will be more favoured, as there will be
no clear dominance of a certain subset of terms.
Algorithm 3 presents the main steps of the combinatorial model selection algorithm that
can be applied to the identified GMM clusters (see Section 3.2.2).

Algorithm 3 Combinatorial dominant balance model selection algorithm
- Initialize candidate dominant balance models (total of 2K−1 − 1 models)
- Compute the normalised equation space matrix Λ̂ (see Eq. 4.1)

I. Clusterwise combinatorial model selection
for each GMM cluster Ci do

1. Extract the array Λ̂i, representing a subset of Λ̂ associated with the cluster Ci
for each candidate dominant balance model p do

2. Compute Γpj , Ωp
j and Mp

j at each spatio-temporal point of Λ̂i, j ∈ [1, ..., NM ]
(see Eqs. 4.2, 4.3, 4.4)
3. Estimate the cluster-averaged metric Mp

Ci
= N−1

i

∑Ni
j Mp

j

end for
4. Assign a cluster Ci to the dominant balance p with the highest Mp

Ci
score

end for
II. Group the GMM clusters assigned to the same dominant balance together
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For each of the GMM clusters Ci one can compute the cluster-averaged score associated
with a candidate dominant balance p. If we denote Λ̂i a subset array of Λ̂ corresponding
to the cluster Ci with Ni elements, then the cluster-averaged score M with respect to
candidate dominant balance p can be computed as Mp

Ci
= N−1

i

∑Ni
j Mp

j . Based on this,
each of the identified GMM cluster can be assigned to the dominant balance p from the
list of candidate models (see Fig. 4.1) that obtained the highest Mp

Ci
. Finally, clusters

assigned to the same candidate dominant balance can be grouped together to form the
final dominant balance models.
The order of magnitude metric M [18] is certainly not unique and could be defined differ-
ently, however Eqs. 4.2-4.4 introduce a simple and physically-consistent algebraic frame-
work for evaluating the success of the dominant balance search. With this, one can directly
select the “best performing” local dominant balance model. For example, in the case of
NLSE, the algorithm requires computing the order of magnitude metric M 3 times for
each of the candidate dominant balances: dispersive {iψξ, ψττ}, nonlinear {iψξ, |ψ|2ψ},
and full NLSE {iψξ, ψττ , |ψ|2ψ} (see Fig. 4.1). The candidate dominant balance model
that obtains the highest M can then be chosen to best represent the local dynamics.

4.2.2/ Riemann wave propagation example

To provide an illustrative example of the dominant balance approach involving the GMM
clustering and combinatorial model selection algorithm, below we consider an example of
Riemann wave propagation in an optical fibre [155]2. These dynamics are governed by the
NLSE in the normal dispersion regime iψξ −ψττ + |ψ|2ψ = 0 with specific initial condition
corresponding to the Riemann wave

ψ(0, τ) = N exp (−τ2/4 − iϕ), (4.5a)

ϕ =
√

2N
∫ τ

−∞
exp (−τ ′2/4) dτ ′ =

√
2πN [(1 + erf(τ/2)], (4.5b)

where the input Gaussian pulse has an imposed chirp profile that is dependent on the
pulse amplitude. Note that a different NLSE normalization is used here when compared
to that used in Chapter 3. The dimensionless variables are defined as ξ = z/LD, and
τ = t

√
2/T0, and ψ = A

√
γLD. The notation erf stands for the error function and

N =
√
LD/LNL ≈ 5.84 was used in the simulations.

Figure 4.3(a) shows the spatio-temporal evolution of the input chirped Gaussian pulse
(see Eq. 4.5) in the normal dispersion regime in an optical fibre leading to the envelope
steepening and formation of the optical shock. The physical aspects of Riemann wave
propagation along with an interpretation of the dominant balance analysis are given in
Section 4.3.1; here we only use this example to illustrate the dominant balance algorithm.
Following the steps of the dominant balance algorithm (see Fig. 3.1 in Chapter 3), we
first represent the dynamics in the associated equation space, and then perform the GMM
clustering. The results of the GMM cluster analysis in the equation space are presented
in Fig. 4.3(c), where we set nc = 10 for the initial number of GMM clusters. Figure 4.3(b)
shows the identified GMM clusters mapped back onto the original domain segmenting the
spatio-temporal map. Note that the GMM clusters in Fig. 4.3 are displayed in different
2Note that in this section we present the analysis of the dominant balance procedure in detail and we do
not place a strong emphasis on physical interpretation. We present summary results of the Riemann wave
case again in Section 4.3.1 where we also discuss the physics in more detail.
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colors for better visualisation, but are not yet assigned to any of the candidate dominant
balance models. The white region in Fig. 4.3(b) indicates the low intensity region of the
spatio-temporal map (below −30 dB in this case) which is not taken into account by the
algorithm.

Figure 4.3: The unsupervised GMM clustering applied to the equation space dynamics of
Riemann wave propagation. (a) Normalized spatio-temporal dynamics |ψ(ξ, τ)|2 plotted in
dB. (b) The 10 identified GMM equation space clusters (represented by different colors)
mapped onto the spatio-temporal domain. (c-i) using the same color code, shows the
identified GMM clusters in the equation space plotted in coordinates associated with real
parts of NLSE terms {iψξ, ψττ , ψ|ψ|2}. Note that several clusters might not be well visually
distinguishable due to their low variance and close overlap. In (c-ii) one of the projections
of the segmented equation space is shown using the same color code. (d) displays the
covariance matrices of the 10 identified GMM clusters.

As for the case of the PS dynamics (see Section 3.2.3), we can start by looking at the learnt
covariance matrices of the GMM clusters [see Fig. 4.3(d)]. From this, one can directly see
the dynamical patterns hidden in their structure. For example, clusters C4, C5, C7 and
C9 (red, violet, pink and yellow, respectively) have a very similar covariance structure,
showing a strong correlation between the propagation and dispersion terms {iψξ, ψττ}.
At the same time, the covariance matrices have almost zero entries with respect to the
nonlinear Kerr term. We can also see how these clusters are closely grouped in the equation
space being restricted to a line with almost zero variance with respect to the Kerr term
[red, violet, pink, and yellow clusters, respectively in Fig. 4.3(c)].
Clusters C2, C3, C6, and C10 (orange, green, brown and light blue, respectively) show
quite different dynamics, having a non-zero covariance between all terms in the NLSE. It
can be seen how these clusters are also grouped together, while being orientated differently
in the equation space showing no reduced variance with respect to any of the directions.
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From the presented analysis, we can already gain some intuition regarding dominant bal-
ance models in the dynamics. In particular, clusters C4, C5, C7 and C9 (red, violet, pink
and yellow, respectively) are likely to be associated with the dominant balance between the
propagation term and the second-order dispersion. Clusters C2, C3, C6 and C10 (orange,
green, brown and light blue, respectively) can be attributed to the full NLSE dynamics
based on their covariance structure.
Indeed, we can try to identify some dynamical patterns in the resulting GMM clusters “by
ey”, however there will still be some uncertainty in it. For example, it is not clear whether
cluster C8 should be associated with the dispersive or full NLSE dynamics based on its
covariance structure. This uncertainty can be removed by implementing a model selection
procedure at this step.
Figure 4.4 shows the results of the dominant balance analysis via combinatorial model
selection algorithm (see Algorithm 3) for the Riemann wave propagation scenario.

Figure 4.4: Combinatorial model selection algorithm applied to the GMM clusters identi-
fied for the case of Riemann wave propagation. (a) Normalized spatio-temporal dynamics
represented by |ψ(ξ, τ)|2 (plotted in dB). (b) the 10 identified GMM equation space clus-
ters (represented by different colors) mapped onto the spatio-temporal domain. (c) shows
the dominant balance regions identified via combinatorial model selection algorithm (see
Algorithm 3). The two dominant balance models are identified: the dispersive dominant
balance between the propagation and dispersion terms {iψξ, ψττ} (grey) and the full NLSE
propagation model, where all the three terms {iψξ, ψττ , ψ|ψ|2} contribute comparably (or-
ange). Bottom panel in subfigure (b) shows the identified equation space GMM clusters
(see Fig. 4.3). Bottom panel in subfigure (c) using the same color code shows the identified
groups of dynamical points associated with two dominant balance models plotted in the
equation space (grey and orange, respectively).
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From the bottom panels in Figs. 4.4(b) and (c) we can directly see how the algorithm
automatically assigns different GMM clusters to the candidate dominant balance models.
In particular, two dominant balance models were identified: dispersive dominant balance
model {iψξ, ψττ} (grey) and the full NLSE dominant balance model {iψξ, ψττ , |ψ|2ψ} (or-
ange). The full NLSE dominant balance model is formed from clusters C2, C3, C6 and
C10, while the remaining clusters are associated with the dominant balance between the
propagation term and the second-order dispersion.
These results are consistent with the analysis of the GMM clusters covariance matrices.
Indeed, we see how clusters C4, C5, C7 and C9 share similar covariance structure with
almost zero correlation with respect to the Kerr nonlinearity. If we now look at Fig. 4.4(e),
we can see a clear separation of the equation space dynamics into two distinct dynamical
groups (grey and orange, respectively). This indicates the presence of two distinct physical
regimes in the dynamics, which were successfully identified by the algorithm.
Although not strongly visually distinct, there is also a group of white dynamical points near
the origin of the equation space in Fig. 4.4(e). These points correspond to the dynamics in
the low-intensity region of the spatio-temporal map (below −30 dB) that were discarded.
Figure 4.4(c) shows the projections of the identified dominant balances to the original
spatio-temporal domain. Together with the results of the dominant balance analysis, we
can now see how we can interpret the observed physics. Specifically, the dominant balance
analysis shows a clear separation of the dynamics into two regimes: (i) the leading edge
of the pulse experiences the action of both nonlinearity and second order dispersion, and
(ii) the broad lower-intensity background appearing at the later stage of the propagation
is associated with the dispersive {iψξ, ψττ} dominant balance.

4.2.3/ Uncertainties in the dominant balance models

As pointed out in the original work [17], the idea of a dominant balance in the presence of
multiple physical processes is not necessarily well-defined outside of limiting asymptotic
regimes. In fact, it is clear that all the terms of a governing model may have a non-
zero contributions across the entire spatio-temporal domain. In [17], the “uncertainty”
of identified dominant balance models was discussed from the perspective of the results
returned by the GMM algorithm which is known to be a probabilistic clustering method.
An alternative approach was proposed in [18], where the computed order of magnitude
metric M averaged across the domain was used to estimate how well a particular dominant
balance model represents the associated local dynamics. In what follows, considering the
case of the Riemann wave propagation, we discuss how this uncertainty can be estimated
using the dominant balance criteria introduced in this chapter.
The uncertainty of the dominant balance models is expected to be higher for GMM clusters
located near a “border” dividing one dynamical regime from another (in the equation space
or equivalently in the spatio-temporal domain). Therefore, in the considered example of
Riemann wave propagation (see Fig. 4.4), special attention should be paid when associating
the clusters C1, C8 and C10 with specific dominant balance models. Cluster C1, however,
does not play a significant role in the dynamics as it has a relatively low variance in the
equation space and is describing the low-intensity region of the propagation3. In principle,
in certain cases, we can neglect the dynamics associated with cluster C1 by introducing an
additional variance threshold. This is effectively embedded in the SPCA model selection
3Equivalently, it is centred near the origin of the equation space.
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algorithm [17]. Indeed, as we select higher values of the l1 regression hyperparameter,
the SPCA algorithm will tend to neglect the dynamics of the cluster C1 due to its small
variance (several orders of magnitude smaller than for the most of the remaining clusters).
In other words, the SPCA model selection algorithm will tend to return “empt” models
for GMM clusters with relatively small variance as one increases the α hyperparameter.
In some specific propagation scenarios, GMM clusters with such “near-zero” dynamics are,
indeed, not physically important and, thus, can be omitted. Nevertheless, it is sometimes
undesirable to neglect the dynamics in substantially non-zero intensity regions, especially
when the evolution involves dynamics at different scales. The combinatorial model se-
lection algorithm, on the other hand, does not neglect GMM clusters with relatively low
variance. This ensures that the dynamical information is not lost while the variance thresh-
old can be set in the later step if necessary.
Unlike the C1 cluster, the C8 cluster has a rather large variance and must be accounted for.
We can assess the accuracy of a given dominant balance model when describing the local
dynamics based on the proposed metric M . This allows us to evaluate the efficiency of the
dominant balance algorithm. The outputs of the combinatorial model selection algorithm
for 4 GMM clusters C1, C5, C8, and C10 are shown in Table 4.1.

Table 4.1: Output of the combinatorial model selection algorithm (see Algorithm 3) show-
ing the averaged order-of-magnitudeM metrics for 4 selected GMM equation space clusters
learnt for the Riemann wave propagation example (columns 2–4). Columns 5 and 6 show
the order of magnitude estimation of the associated covariance matrices and the number
of dynamical points for each of the 4 selected GMM clusters, respectively.

GMM clusters M
nonl
Ci

M
disp
Ci

M
nlse
Ci

O
[
tr(ΣCi)/3

]
Ni

C1 0.00 0.66 0.58 ∼ 10−5 82373
C5 0.00 1.00 0.26 ∼ 10−1 63257
C8 0.00 0.85 0.50 ∼ 10−1 47770
C10 0.00 0.10 0.67 ∼ 10−3 61687

Here, the second, third and fourth columns display the computed averaged order of mag-
nitude metrics M for each of the candidate dominant balances (Mnonl

Ci
, Mdisp

Ci
and M

nlse
Ci

stand for nonlinear, dispersive and full NLSE dominant balance models, respectively). The
last two columns show the estimation of the order of magnitude of the covariance matrices
O
[
tr(ΣCi)/3

]
and the number of dynamical points Ni in each cluster Ci.4

We see how different GMM clusters receive different scores for belonging to one or another
dominant balance model (see columns 2–4 of Table 4.1). None of the clusters are domi-
nantly nonlinear. With high accuracy, the dynamics of clusters C5 and C8 are dispersion-
dominated, and their variances in equation space are relatively large (see column 5 of
Table 4.1). In contrast, the C10 cluster is dominated by the full NLSE, but its equation
space variance is smaller. Finally, for the C1 cluster, the estimates of Mdisp

Ci
and M

nlse
Ci

are quite close to each other, with M
disp
Ci

being slightly higher. Again we see that the C1
cluster is the least important from the dynamical point of view due to its low variance. For
more detailed analysis we can display the full spatio-temporal map showing the calculated
M scores for all the GMM clusters (see Fig. 4.5).
4Notation tr(A) stands for the trace of a matrix A), i.e. the sum of its diagonal elements.
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Figure 4.5: Estimation of the local dominant balance models uncertainty. (a) Normalized
spatio-temporal dynamics |ψ(ξ, τ)|2 plotted in dB. (b) Spatio-temporal distribution of the
order of magnitude score computed for the identified dominant balance models. (c) shows
the dominant balance regions found via combinatorial model selection algorithm (see text
for details).

It can be seen how the M score drops significantly near the boundary between the two
dominant balance regions. The broad descending edge of the pulse, appearing at ξ > 0.1
and obtaining high M scores, clearly indicates the dominance of dispersion in this spatio-
temporal region.

4.2.4/ Dominant balance search in spatio-spectral domain

The dynamics of ultrashort pulse propagation governed by the generalised NLSE (see
Section 1.4 in Chapter 1) can be as well studied in the spatio-spectral domain. In principle,
one can numerically solve the generalised NLSE directly in the frequency domain [156]
and then follow the same steps of the dominant balance search algorithm (see Fig. 3.1).
At the same time, it can be quite instructive to consider the dominant balance models
simultaneously in the spatio-temporal and spatio-spectral domains. To this end, we can
solve the generalised NLSE in the spatio-temporal domain and then compute the Fourier
transform of each of the time-domain terms, while ensuring that all the estimated terms
sum to zero across the spatio-spectral domain

F
[

K∑
k=1

fk(ψ,ψξ, ψτ ..., ψ2, ψψξ, ψψτ , ..., ψξξ, ψττ , ...)
]

= 0. (4.6)

In practice, errors can accumulate during numerical simulations and when estimating
derivatives. Here we emphasize that, in fact, any possible dynamical model can be used
as input to the dominant balance search algorithm under the condition that the model
terms satisfy the equality (see Eq. 3.1). This emphasises the strength of the approach, as
it turns out to be applicable to many models in different areas of science.
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4.3/ Dominant balance analysis of optical pulse propa-
gation scenarios

In this section, the described dominant balance search algorithm (see Section 4.2.1) is ap-
plied to various scenarios of pulse propagation in normal and anomalous dispersion regimes
of optical fibres. For all the considered examples, we provide a physical interpretation of
the results of dominant balance analysis in both the spatio-temporal and spatial-spectral
domains.

4.3.1/ Riemann wave propagation

We begin by discussing the dynamics of the Riemann wave example considered in Sec-
tion 4.2.2 and the physics revealed by the dominant balance search algorithm for this case.
The initial conditions leading to the Riemann wave dynamics in optical fibre (see Eq. 4.5)
are shown in Fig. 4.6(a). With the given input field, the initial stage of the propagation
can be well described by the inviscid Burger’s equation that we write here using the in-
troduced dimensionless variables (see Section 4.2.2)

∂|ψ|
∂ξ

± 3
√

2|ψ|∂|ψ|
∂τ

= 0. (4.7)

Equation 4.7 is known to govern the propagation in which the input chirped pulse ex-
periences the envelope steepening that leads to the formation of the characteristic shock
associated with the so-called gradient catastrophe that occurs at distance ξs [155]. Us-
ing the method of characteristics, from Eq. 4.7 one can find the characteristic lines τdl

representing the energy flow directions [157]. For the case of the Gaussian input pulse
considered here (see Eq. 4.5a), we get [155]

τdl
(ξ, τ) = τl ± 3

√
2N exp (−τ2

l /4)ξ. (4.8)
Figure 4.6(b) shows the characteristic lines governed by Eq. 4.8. The position of the
shock ξs corresponds to the intersection of the characteristic lines and can be computed
analytically using a simple formula. In the case of the Gaussian input pulse (see Eq. 4.5a),
ξs =

√
e/(3N) ≈ 0.094 for N ≈ 5.84 considered here [green dashed line in Fig. 4.6(b)].

Input field

Phase profile
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Figure 4.6: (a) Initial conditions corresponding to the Riemann wave propagation (see
Eq. 4.5). Blue solid line shows the normalized input field amplitude ψ(0, τ)/N . Red dashed
line shows the normalized phase profile ϕ(0, τ)/

√
2πN . (b) displays the characteristic

lines defined by Eq. 4.8 and representing the energy flow directions for the given initial
conditions (see text for details).
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Figures 4.7(a) and (b) show the results of the simulations of the NLSE for the Riemann
wave initial conditions (see Eq. 4.5) in both spatio-temporal and spatio-spectral domains.

(c)

(i)

    A: leading edge     B: dispersive background   

A

B

A

B

Figure 4.7: (a) spatio-temporal and (b) spatio-spectral intensity maps of Riemann wave
propagation (in both cases the maps are normalised to the maximum intensity and plot-
ted on the same logarithmic scale). The insets at the top show the corresponding output
intensity profiles on a linear scale where the colors represent the dominant balance re-
gions (see the inset frame in the top right corner of the figure). In (c) (i) shows the
spatio-temporal evolution dynamics in equation space divided into two identified domi-
nant balance regions. Two projections of the equation space are shown in subfigures (ii)
and (iii). (d) and (e) show the identified dominant balance models mapped onto the
original domains for comparison with the intensity evolution maps. The same color code
is used for the dominant balance models identified in the spatio-spectral domain, while
meaning the dominant balances between the Fourier transformed temporal terms shown
in the legend. (d) labels particular temporal features - A: the steepened pulse leading
edge; B: the dispersive background. White and green dashed horizontal lines in subfigures
(a) and (d) indicate the distance at which the shock occurs (ξs ≈ 0.094).

From Fig. 4.7(a) we can see that the initial stage of the evolution is associated with the
temporal steepening of the leading edge. At ξ = ξs this steepening leads to the formation
of the shock. Figures 4.7(d) and (e) show the results of the dominant balance analysis in
spatio-temporal and spatio-spectral domains, respectively. In the spatio-temporal domain
two different dynamical rigimes are identified: dispersive dominant balance {iψξ, ψττ}
(grey) and the full NLSE propagation model (orange). From Fig. 4.7(d) we can see how
the central part of the pulse and the leading edge remain dominated by the full NLSE
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dynamics throughout the propagation [see label A in Fig. 4.7(d)]. In fact, in both the
temporal and spectral domains the dynamics before the shock is primarily governed by
the NLSE5. Indeed, it is known that the shock develops in this case as the result of the
simultaneous action of both nonlinearity and dispersion [155].
The later stage of the evolution appearing at ξ > ξs shows the signatures of the dispersive
propagation [see label B in Fig. 4.7(d)]. While the central part of the pulse envelope and
the leading edge continue to be governed by the NLSE, we can also observe the formation
of the broad, low intensity background in both temporal and spectral domains. This
background is associated with the {iψξ, ψττ} dominant balance (grey). The output field
profiles plotted on the top of the Figs. 4.7(a) and (b) additionally illustrate the separation
between the dominant balance local regions.
As discussed in Section 4.2.2, the presence of two dominant dynamical regimes in the case
of Riemann wave propagation is apparent in the equation space representing the spatio-
temporal dynamics, where the two distinct dynamical regimes (represented in grey and
orange, respectively) are clearly separated [see Fig. 4.7(c)]. The equation space projections
shown in Figs. 4.7(c) (ii) and (iii) clearly show the difference in the orientations of the dy-
namical points associated with the dispersive and full NLSE balance models. Specifically,
the dynamical points associated with the dispersive dominant balance (grey) are oriented
in the equation space to have near-zero variance with respect to the nonlinear term |ψ|2ψ.
Note that the spatio-spectral field evolution contains an additional nonlinear dominant
balance {F (iψξ) ,F

(
|ψ|2ψ]

)
} in the vicinity of ν = 0 [blue region in Fig. 4.7(e)]. This

result is explained by the fact that the second-order dispersion is proportional to ν2 which
results in its negligible contribution in the local region around ν = 0.
We can see from these results how even at relatively high powers of the input pulse (N ≈
5.84) considered here, the initial dynamics is primarily dominated by the full NLSE. In
fact, it is the imposed chirp that makes the dispersive contribution to be comparable to
the nonlinearity. This dynamics should be qualitatively different from the optical wave
breaking propagation where the initial stage of the dynamics is known to be dominated
by the SPM (see Section 1.2.2 in Chapter 1).

4.3.2/ Optical wave breaking

Optical wave breaking dynamics are observed in the normal dispersion regime in the case
when the SPM dominates the group velocity dispersion (GVD) effect in the initial stage of
the propagation (LD ≫ LNL). Figures 4.8(a) and (b) show the results of the simulations
of the NLSE in the normal dispersion regime iψξ−ψττ +|ψ|2ψ = 0 for the initial conditions
corresponding to the input Gaussian pulse

ψ(0, τ) = N exp (−τ2/4), (4.9)

with N = T0
√
γP0/|β2| = 30. These initial conditions result in the optical wave breaking

dynamics in which the second-order dispersion is known to play an important role in
temporal pulse shaping at later stages of the propagation [22].

5Note that the dispersive dominant balance occupies the low intensity region in this initial stage and, thus,
does not play an important role in dynamics.
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Figure 4.8: (a) spatio-temporal and (b) spatio-spectral intensity maps of optical wave
breaking propagation (in both cases the maps are normalised to the maximum intensity
and plotted on the same logarithmic scale). The insets at the top show the corresponding
output intensity profiles on a linear scale where the colors represent the dominant bal-
ance regions (see the inset frame in the top right corner of the figure). In (c) (i) shows
the spatio-temporal evolution dynamics in equation space divided into three dominant
balance regions. Two projections of the equation space are shown in subfigures (ii) and
(iii). (d) and (e) show the identified dominant balance models mapped onto the original
domains for comparison with the intensity evolution maps. The same color code is used
for the dominant balance models identified in the spatio-spectral domain, while mean-
ing the dominant balances between the Fourier transformed temporal terms shown in the
legend. (d) shows labels for particular temporal features - A: low amplitude wings; B:
rising/descending edges; C: highest intensity central region.

Figures 4.8(d) and (e) show the results of the dominant balance analysis in the spatio-
temporal and spatio-spectral domains, respectively. Three local balance models are identi-
fied in this case: the dispersive dominant balance {iψξ, ψττ} (grey), the nonlinear dominant
balance {iψξ, |ψ|2ψ} (blue) and the full NLSE propagation model (orange). Figure 4.8(c)
shows the equation space dynamics corresponding to the spatio-temporal evolution. The
equation space projections shown in Figs. 4.8(c-ii) and (c-iii) again illustrate the geometric
interpretation of the dominant balance approach. In particular, we can see how two inter-
acting terms form a group of dynamical points falling on a line in the three-dimensional
equation space having a reduced variance with respect to the direction of the negligible
term (see the distribution of blue and grey dynamical points). In contrast, the full NLSE
dynamics is associated with a group of dynamical points in a plane that do not have a
reduced variance with respect to any axis of the equation space.
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We can see how the results of the dominant balance analysis provide insight into the physics
of optical wave breaking in both the spatio-temporal and spatio-spectral domains [see
Figs. 4.8(d) and (e)]. In particular, it becomes apparent from the analysis of the temporal
evolution that the regions of highest intensity are primarily dominated by nonlinearity [see
label C in Fig. 4.8(d)], while the steepening trailing edges see the effect of both dispersion
and nonlinearity [see label B in Fig. 4.8(d)]. On the later stage of propagation, the wave
breaking leads to the emergence of the smaller amplitude temporal wings. These wings
are found to be associated with the dispersive propagation [see label A in Fig. 4.8(d)].
Accordingly, the temporal dynamical regimes mentioned above are reflected in spectral
domain shown in Fig. 4.8(b). Specifically, the central part of the spatio-spectral evolution
is again associated with the nonlinear dominant balance (blue). It can also be seen that
the appearance of spectral sidelobes coincides with the spatio-spectral regions where the
dispersion dominates the propagation [see grey local regions in Fig. 4.8(e)]. An obvious
visual similarity between these temporal and spectral pictures is expected in optical wave
breaking propagation due to the approximately linear time-frequency mapping [158–160].
The dominant balance physics revealed in the case of optical wave breaking is indeed qual-
itatively different from the case of Riemann wave propagation (see Section 4.3.1). In the
optical wave breaking case, the injected unchirped high-power Gaussian pulse experience
a purely nonlinear propagation in the initial stage. This leads to the dominance of the
nonlinearity in both time and frequency domains up to ξ ≈ 0.02. It is only at the later
stage that the full NLSE dynamics starts to dominate the evolution of the trailing edges
of the flat-top pulse profiles.
To better illustrate the dominant balance search algorithm used in this chapter, in Ap-
pendix B we provide the Python code for the dominant balance analysis of the optical
wave breaking propagation scenario considered above.

4.3.3/ Perturbed fundamental soliton propagation

The two examples discussed in Sections 4.3.1 and 4.3.2 were related to the normal disper-
sion propagation regime. A further three propagation scenarios presented in the following
sections correspond to propagation in the anomalous dispersion regime.
The first example corresponds to the perturbed soliton propagation simulated numeri-
cally using the split-step Fourier method [22] for the following initial conditions ψ(0, τ) =
N sech(τ/

√
2) with N = 1.5. The simulation results and the corresponding dominant

balance analysis shown in Fig. 4.9 allow us to study the effect of soliton perturbation.
Figures 4.9(a) and (b) show the spatio-temporal and spatio-spectral dynamics of the per-
turbed soliton, while Figs. 4.9(d) and (e) present the results of the dominant balance
analysis for both domains. An oscillatory time evolution [see label A in Fig. 4.9(d)] leads
to spectral compressions and expansions that is followed by the energy transfer from the
oscillating time component to the dispersive low-amplitude background [see label B in
Fig. 4.9(d)] arising in the presence of a perturbation [22]. It can be seen from Fig. 4.9(d)
how the dominant balance algorithm separates this oscillating temporal part of the pulse
from the broad dispersive background. Specifically, the central part of the temporal pulse
envelope is associated with the full NLSE dynamics (orange), while the broad dispersive
background is associated with {iψξ, ψττ} dominant balance model (grey). This temporal
dynamics is directly reflected in the frequency domain, where the oscillating spectral wings
are also associated with the full NLSE dynamics [see Fig. 4.9(e)].
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Figure 4.9: (a) spatio-temporal and (b) spatio-spectral intensity maps of perturbed soli-
ton propagation (in both cases the maps are normalised to the maximum intensity and
plotted on the same logarithmic scale). The insets at the top show the corresponding
output intensity profiles on a linear scale where the colors represent the dominant balance
regions (see the inset frame in the top right corner of the figure). In (c) (i) shows the
spatio-temporal evolution dynamics in equation space divided into two dominant balance
regions. Two projections of the equation space are shown in subfigures (ii) and (iii). (d)
and (e) show the identified dominant balance models mapped onto the original domains
for comparison with the intensity evolution maps. The same color code is used for the
dominant balance models identified in the spatio-spectral domain, while meaning the dom-
inant balances between the Fourier transformed temporal terms shown in the legend. (d)
labels particular temporal features - A: the oscillating solitonic component; B: the disper-
sive background.

It is noticeable that the dispersive dominant balance is not present in the frequency domain,
while the central part of the pulse remain to be dominated by the nonlinearity (blue region).
Indeed, the second order dispersion contribution is small in the vicinity of ν = 0.
Finally, it should be noted that the equation space dynamics shown in Fig. 4.9(c) and
reconstructed from the spatio-temporal pulse evolution (Fig. 4.9(a)) does not show a clear
separation between the two dominant physical regimes in this case. Indeed, two groups of
the dynamical points (grey and orange) overlap closely, which may result in slightly higher
model uncertainty in this case.
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4.3.4/ Soliton fission induced by third-order dispersion

Let us now consider the higher-order soliton propagation in the presence of third order
dispersion (TOD). These dynamics is governed by the following generalised NLSE that
we write here using the same dimensionless variables as earlier in this secion

iψξ + ψττ + iδψτττ + |ψ|2ψ = 0, (4.10)

where the iδψτττ term accounts for the TOD effect. The following initial conditions
were used for the numerical simulations using the split-step Fourier method: ψ(0, τ) =
N sech(τ/

√
2) with N = 3 and δ =

√
2β3/3T0|β2| ≈ 0.06. Figure 4.10(a) shows the

evolution of the input hyperbolic secant pulse leading to the soliton fission in the presence
of the perturbation induced by TOD. Figure 4.10(b) shows the corresponding spectral
evolution.
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Figure 4.10: (a) spatio-temporal and (b) spatio-spectral intensity maps of the soliton
fission dynamics induced by the TOD (in both cases the maps are normalised to the max-
imum intensity and plotted on the same logarithmic scale). The insets at the top show
the corresponding output intensity profiles on a linear scale where the colors represent
the dominant balance regions (see the inset frame in the top right corner of the figure).
In (c) three projections of the equation space are shown in subfigures (i), (ii) and (iii).
(d) and (e) show the identified dominant balance models mapped onto the original do-
mains for comparison with the intensity evolution maps. The same color code is used for
the dominant balance models identified in the spatio-spectral domain, while meaning the
dominant balances between the Fourier transformed temporal terms shown in the legend.
(d) labels particular temporal features - A: initial pulse compression; B: soliton fission
dynamics induced by TOD; C: linear dispersive wave.
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WithK = 4 differential equation terms in Eq. 4.10, we have a total of 7 candidate dominant
balance models (see Fig. 4.1), while only 5 dominant balance models are identified by
the dominant balance search algorithm in this case. We can see from the results of the
dominant balance analysis presented in Figs. 4.10(d) and (e) that the initial stage of the
evolution is described by the nonlinear dominant balance model (blue region). Indeed,
for ξ < 0.2, the propagation is associated with higher-order soliton compression, which
leads to the appearance of a high-power temporal peak in the central part of the pulse [see
label A in Fig. 4.10(d)]. These temporal dynamics results in nonlinear dominant balance
governing the initial stage of the propagation in both the time and spectral domains.
At around ξ = 0.1 the contribution of the TOD becomes significant. The combined effect
of the NLSE and the TOD (red region) leads to the soliton fission at ξ ∼ 0.4 [see label B
in Fig. 4.10(d)]. The later dynamics shows the ejection of the dispersive wave [see label
C in Fig. 4.10(d)] that is associated with the {iψξ, ψττ , ψτττ} dominant balance in both
domains (light blue regions). This nonsolitonic radiation is, in fact, known to appear in
higher-order soliton propagation in the presence of TOD [56] (see Section 1.4). At the same
time, it can be seen how the full dynamics of the Eq. 4.10 drives the solitonic propagation
in the temporal domain resulting in the dominance of the full propagation model in the
spectral wings (red regions).
It is important to note that for the governing differential equation models with K > 3,
it is not possible to visually represent the multi-dimensional equation space dynamics.
Figure 4.10(c) shows three projections of the equation space highlighting the identified
dominant balance models in the spatio-temporal domain. This clearly demonstrates a
strong localization of the {iψξ, ψττ , ψτττ} dominant balance in the equation space (a group
of light blue dynamical points). The dominant balance between the second-order dispersion
and propagation terms {iψξ, ψττ} (grey), as well as the NLSE dominant balance (orange)
describe the dynamics in local regions of a relatively low intensity of the spatio-temporal
map. Moreover, the equation space clusters associated with these two dominant balances
have significantly smaller variance, and thus these dynamics are of least importance [see
Figure 4.10(c)]. Contrary to that, we see how the full propagation model (red regions)
has a relatively large variance and is represented by a group of dynamical points scattered
across the equation space.

4.3.5/ Soliton fission in the presence of TOD and Raman effects

As the final example we consider higher-order soliton propagation in the presence of both
third order dispersion (TOD) and Raman effects. The governing generalised NLSE in this
case is

iψξ + ψττ + iδψτττ + |ψ|2ψ + ρψ (hR ∗ |ψ|2) = 0, (4.11)

where the dimensionless variables correspond to ψ = A
√
γLD, ξ = z(1 − fR)/LD, τ =

t
√

2(1 − fR)/T0. The TOD and Raman effects are included through the dimensionless
parameters δ and ρ, and the operator (∗) stands here for the convolution. Figures 4.11(a)
and (b) show the results of the numerical simulations obtained for the input hyperbolic
secant pulse with N = 2, which is defined in the following way using the introduced
dimensionless variables: ψ(0, τ) = N sech[τ/

√
2(1 − fR)]. Dimensionless parameters δ =

0.05 and ρ = fR/(1 − fR) with Raman fraction fR = 0.34 were used in the simulations.
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Figure 4.11: (a) spatio-temporal and (b) spatio-spectral intensity maps of the soliton
fission dynamics in the presence of TOD and Raman effects (in both cases the maps are
normalised to the maximum intensity and plotted on the same logarithmic scale). The
insets at the top show the corresponding output intensity profiles on a linear scale where the
colors represent the dominant balance regions (see the inset frame in the top right corner
of the figure). In (c) three projections of the equation space are shown in subfigures (i),
(ii) and (iii). (d) and (e) show the identified dominant balance models mapped onto the
original domains for comparison with the intensity evolution maps. The same color code
is used for the dominant balance models identified in the spatio-spectral domain, while
meaning the dominant balances between the Fourier transformed temporal terms shown in
the legend. (d) labels particular temporal features - A: Raman soliton; B: Raman soliton
with TOD (all terms); C: dispersive (GVD) background; D: linear dispersive wave; E:
initial temporal pulse compression.

The above conditions are known to result in rich soliton fission dynamics [54]. Indeed, 5
dominant balance models (out of 15 candidate dominant balance models) are identified by
the algorithm in this case [see Fig. 4.11(c), (d) and (e)]. The initial stage of the propagation
that corresponds to the temporal pulse compression [see label E in Fig. 4.11(d)] is again
associated with the nonlinear dominant balance (blue region). We can directly see how
the soliton fission process, occurring at ξ ∼ 0.7, is governed by the full propagation model
with 5 active terms (brown region).
The soliton fission is followed by the ejection of the dispersive wave which is associated
with the {iψξ, ψττ , ψτττ} dominant balance [see label D in Fig. 4.11(d)] in both temporal
and spectral domains (light blue regions). This is essentially the same mechanism of the
dispersive wave generation that is observed in the case of the soliton fission induced in
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the presence of isolated TOD effect considered earlier. In addition to that, we can notice
two light blue regions located at ξ ∼ 1.2 and ξ ∼ 2 in the temporal domain. Interestingly,
the positions of these spots along with the one at ξ ∼ 0.7 correspond to the propagation
distances at which the phase matching condition for the dispersive wave generation is
satisfied [57,161].
At the later stage of the propagation we can observe the evolution of the two ejected
solitons in the temporal domain [see labels A and B in Fig. 4.11(d)]. It is peculiar that
the dominant balance algorithm suggests that these temporal structures are governed by
slightly different physical effects. The higher amplitude soliton is associated with the full
propagation model (brown), while the lower-amplitude soliton (green) practically does not
see the effect of TOD. From the physical point of view, this explains the acceleration
of the higher amplitude soliton arising due to the action of TOD. Narrow temporal
duration and high peak power of this temporal structure leads to the dominance of the
full propagation model (brown) in the spectral wings [see Fig. 4.11(e)]. The fact that
different propagation models are proposed here for the two ejected solitons clearly shows
the ability of the dominant balance search algorithm to provide the complementary insight
into the observed physics.
Finally, the inset plots on the top of the Figs. 4.11(a) and (b) show the output intensity
profiles on the linear scale. Note that due to the low relative amplitude of the dispersive
waves, their profiles are scaled by the factors shown. This demonstrates the ability of the
dominant balance search algorithm to capture the dynamical patterns at different scales.
Interestingly, the line profile of the output temporal field shows that the wings of the
accelerating soliton contain a strong dispersive contribution [see label C in Fig. 4.11(d)],
and indeed this aspect of the dominant balance analysis may shed new light on the well-
known ability of solitons to couple through dispersive interactions.



General conclusion and
perspectives

Data-driven methods and algorithms are an exciting area of recent development in machine
learning (ML) with great potential to fundamentally modify how research in physics is
conducted. In this thesis, we have shown the feasibility of data-driven methods to extract
interpretable physical models from data describing the complex nonlinear dynamics in
optical fiber propagation.
Firstly, we have demonstrated the possibility of data-driven discovery of governing differen-
tial equations from noisy dynamical data in nonlinear fiber optics. Specifically, the results
presented in Chapter 2 show that the sparse identification of nonlinear dynamics (SINDy)
algorithm can successfully retrieve the differential equation model describing ideal four
wave mixing (FWM) dynamics from data even at moderate noise levels, which are likely
to be obtainable in experiments. These results are especially valuable since FWM is a
central process not only in nonlinear optics, but also in many other domains of physics.
To successfully retrieve the physically-consistent FWM model from noisy dynamical data,
we proposed an approach to interpret the SINDy results by analyzing an ensemble of input
data series corresponding to different initial conditions. This approach involves examining
the histogram of the number of terms associated with multiple returned differential equa-
tions in order to select the parsimonious model describing the dynamics. We have also
demonstrated how this allows us to directly estimate the uncertainty limits of the returned
SINDy model by calculating the mean and variance in the associated term coefficients. We
expect that this approach will prove very useful in future attempts to extract governing
differential equation models from experimental measurements.
In addition to works focused on improving the robustness of the SINDy algorithm for
the case of noisy data, an important direction is the development of algorithms to find
coordinates where the dynamics have a sparse representation [102]. In particular, it can
be seen from the results of Chapter 2 that the SINDy algorithm is notably less efficient in
finding the dynamics of coupled amplitude equations compared to the Hamiltonian model,
which is more sparse in the equation space. For many dynamical systems in physics, the
coordinate systems in which the dynamics have a sparse representation may not be known
in advance. On this basis, we expect that the development of coordinate search algorithms
for sparse representations of the dynamics may also prove to be an important step towards
extracting models from experimental data.
Apart from finding differential equation models from experimental data, the SINDy algo-
rithm can be an excellent tool for finding reduced models in nonlinear optics from data
obtained by directly solving the Maxwell’s equations. For example, we anticipate the ap-
plication of the SINDy algorithm to finite-difference time-domain simulation data to help
interpret complex dynamics. The retrieved reduced models can then be used for optimiza-
tion and control.
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Next, we have demonstrated how the data-driven dominant balance approach can com-
plement conventional theoretical analysis by providing insights into the locally dominant
physics in optical fiber propagation. The results presented in Chapters 3 and 4 clearly
show the power of this approach to isolate local spatio-temporal and spatio-spectral re-
gions exhibiting nonlinear and dispersion-dominated dynamical regimes in a completely
unsupervised manner. In particular, we have shown how the combination of unsuper-
vised Gaussian mixture modeling (GMM) clustering along with a specific model selection
algorithm can help identify the dominant balance models in various propagation scenar-
ios, including noise-driven modulation instability, optical wave breaking, Riemann wave
shocks, perturbed fundamental soliton dynamics and soliton fission in the presence of
third-order dispersion and Raman scattering.
A natural direction for further development of the data-driven dominant balance approach
is to optimise both the clustering step and the model selection algorithm. The unsupervised
GMM clustering of equation space dynamics can be potentially improved by embedding a
Bayesian information criterion. In particular, this strategy can be used to set the initial
number of GMM clusters to best partition the equation space. It is also of interest to
propose any additional physical criteria to improve the efficiency of the dominant model
selection algorithm.
The data-driven dominant balance approach can potentially be applied to various complex
ultrafast optical systems where the spatio-temporal and spatio-spectral dynamics exhibit
different behaviour depending on control parameters. Specifically, we anticipate that this
approach can be used to interpret various dynamical regimes arising in fiber laser systems.
The ability of the data-driven dominant balance technique to separate different dynamical
regimes opens the way to a fully automated method to gain an “intuitive” understanding
of the underlying physics. We also expect that data-driven dominant balance can be used
in order to simplify numerical integration schemes. In particular, one can consider imple-
menting adaptive step strategies based on the returned local dominant balance models.
As a final remark, we would like to emphasize that data-driven methods are not intended to
replace existing conventional approaches to interpreting complex nonlinear dynamics and
making discoveries in nonlinear fiber optics. Rather, these novel ML approaches should
be viewed as complementary tools to help interpret observed dynamics.
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A
List of acronyms

FWM four wave mixing

NLSE nonlinear Schrödinger equation

GVD group velocity dispersion

TOD third order dispersion

SPM self-phase modulation

MI modulation instability

AB Akhmediev breather

PS Peregrine soliton

KM Kuznetsov-Ma soliton

SFB solitons on finite background

SC supercontinuum

ML machine learning

SINDy sparse identification of nonlinear dynamics

LHS left-hand side

RHS right-hand side

LASSO least absolute shrinkage and selection operator

STLS sequential thresholded least squares

GMM Gaussian mixture modeling

SPCA sparse principal component analysis
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B
Dominant balance analysis of

optical wave breaking dynamics:
Python code

To better illustrate the data-driven dominant balance search algorithm used in Chapter
4, we provide an example of the Python code used for the optical wave breaking example
presented in Section 4.3.2. The code is available from the repository:
https://github.com/AndreiErmolaev/Dominant-balance-analysis-of-optical-wave-breaking
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Meng, Christophe Finot, Goëry Genty, “Applications of Machine Learning to Ultra-
fast Nonlinear Dynamics,” International Conference on Photonics, IEEE Photonics
Society Malaysia Chapter, 8-10 August 2022.

8. John M. Dudley*, M. Mabed, Andrei V. Ermolaev, Coraline Lapre, Fanchao
Meng, Anastasiia Sheveleva, Christophe Finot, Goëry Genty, “Recent advances un-
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data with the aim of discovering interpretable and
generalizable models and developing methods that
can substantially accomplish and/or complement
conventional theoretical analysis. To this end, both
supervised and unsupervised learning methods will be
used to deepen understanding of ultrafast nonlinear
phenomena in fiber optics systems.

Titre : Méthodes basées sur les données pour l’analyse de la propagation non linéairedans les fibres optiques

Mots-clés : Optique non-linéaire fibrée, apprentissage automatique, découverte basée sur les données

Résumé :
Cette thèse vise à appliquer et à développer
les nouvelles méthodes d’apprentissage automatique
spécialement adaptées à l’analyse et à l’interprétation
des impulsions lors de leur propagation en un
seul passage dans une fibre optique, et sous
diverses conditions. En particulier, nous nous
concentrerons sur les approches de découverte de
modèles guidées par les données qui impliquent
l’utilisation de l’apprentissage automatique pour

analyser les données du système physique dans
le but de découvrir les modèles interprétables et
généralisables et de développer les méthodes qui
peuvent substantiellement accomplir et/ou compléter
l’analyse théorique conventionnelle. À cette fin, les
méthodes d’apprentissage supervisé et non supervisé
seront utilisées pour approfondir la compréhension
des phénomènes non linéaires ultrarapides dans les
systèmes de fibres optiques.
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