
HAL Id: tel-04743729
https://theses.hal.science/tel-04743729v1

Submitted on 18 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Variétés de dimension quatre admettant des fibrations
Yibo Zhang

To cite this version:
Yibo Zhang. Variétés de dimension quatre admettant des fibrations. Topologie algébrique [math.AT].
Université Grenoble Alpes [2020-..], 2024. Français. �NNT : 2024GRALM013�. �tel-04743729�

https://theses.hal.science/tel-04743729v1
https://hal.archives-ouvertes.fr


THÈSE 
Pour obtenir le grade de 

DOCTEUR DE L’UNIVERSITÉ GRENOBLE ALPES

École doctorale : MSTII - Mathématiques, Sciences et technologies de l'information, Informatique
Spécialité : Mathématiques
Unité de recherche : Institut Fourier

Variétés de dimension quatre admettant des fibrations

Manifolds of dimension four admitting fibrations

Présentée par :

Yibo ZHANG
Direction de thèse :

Louis FUNAR
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES

Directeur de thèse

Greg MCSHANE
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE ALPES

Co-directeur de thèse

 

Rapporteurs :
STEPAN OREVKOV
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE TOULOUSE
JUAN SOUTO
DIRECTEUR DE RECHERCHE, CNRS BRETAGNE ET PAYS DE LA LOIRE

Thèse soutenue publiquement le 5 avril 2024, devant le jury composé de :
ATHANASE PAPADOPOULOS,
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALSACE

Président

LOUIS FUNAR,
DIRECTEUR DE RECHERCHE, CNRS DELEGATION ALPES

Directeur de thèse

GREG MCSHANE,
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE 
ALPES

Co-directeur de thèse

STEPAN OREVKOV,
PROFESSEUR DES UNIVERSITES, UNIVERSITE DE TOULOUSE

Rapporteur

JUAN SOUTO,
DIRECTEUR DE RECHERCHE, CNRS BRETAGNE ET PAYS DE LA 
LOIRE

Rapporteur

DELPHINE MOUSSARD,
MAITRESSE DE CONFERENCES HDR, AIX-MARSEILLE 
UNIVERSITE

Examinatrice

PHILIPPE EYSSIDIEUX,
PROFESSEUR DES UNIVERSITES, UNIVERSITE GRENOBLE 
ALPES

Examinateur



Variétés de Dimension Quatre Admettant Des Fibrations
Manifolds of Dimension Four Admitting Fibrations

Yibo Zhang
Institut Fourier, UMR 5582, Laboratoire de Mathématiques

Université Grenoble Alpes, CS 40700, 38058 Grenoble cedex 9, France
email: yibo.zhang@univ-grenoble-alpes.fr

Résumé

Cette thèse présente des résultats de finitude et de rigidité pour les variétés de dimension
4 admettant des fibrations. Tout d’abord, nous étudions la fibration du tore sur la 2-sphère,
à savoir une fibration dont la fibre générique est le tore. Le type des singularités est défini
comme étant le multi-ensemble des classes de conjugaison des monodromies de fibres autour
des fibres singulières. Nous montrons que, si deux fibrations de tore sur S2 ont le même
type des singularités, alors leurs monodromies globales sont Hurwitz-équivalentes après avoir
effectué des sommes directes avec une certaine fibration de Lefschetz du tore. Cette fibration
supplémentaire du tore de Lefschetz est universelle lorsque le type des singularités est "simple".

Deuxièmement, nous étudions la fibration holomorphe, à savoir une variété complexe de
dimension 2 se projetant sur une surface de Riemann de manière holomorphe. L’application
classifiante d’une fibration holomorphe après suppression des fibres singulières, lorsqu’elle n’est
pas isotriviale, est une carte holomorphe non constante F : B ! Mh. Ici B est une surface
hyperbolique de type (g, n), Mh est l’espace de modules des surfaces de Riemann fermées de
genre h et l’image F (B) est appelée une courbe holomorphe dans Mh. Nous montrons que,
lorsque tous les monodromies périphériques sont d’ordre infini, la carte holomorphe est une im-
mersion quasi-isométrique dont les paramètres ne dépendent que de g, n, h et de la systole de
B. Lorsque les monodromies périphériques satisfont également une condition supplémentaire,
nous trouvons un relèvement qui plonge quasi-isométriquement un polygone fondamental de
la surface hyperbolique B dans l’espace de Teichmüller. De plus, nous améliorons le théorème
de finitude de Parshin-Arakelov, en démontrant qu’il n’existe qu’un nombre fini d’homomor-
phismes de monodromie induits par des courbes holomorphes de type (g, n) dans Mh où la
systole est bornée loin de 0, à une équivalence près.

Abstract

This thesis presents finiteness and rigidity results for 4-manifolds admitting fibrations.
First, we study the torus fibration over the 2-sphere, namely, a fibration whose generic fibre
is the torus. The type of singularities is defined to be the multi-set of conjugacy classes of
fibre monodromies around singular fibres. We show that, if two torus fibrations over S2 have
the same type of singularities, then their global monodromies are Hurwitz equivalent after
performing direct sums with a certain torus Lefschetz fibration. This additional torus Lefschetz
fibration is universal when the type of singularities is “simple”.

Second, we study the holomorphic fibration, namely, a 2-dimensional complex manifold
projecting into a Riemann surface holomorphically. The classifying map of a holomorphic fi-
bration after removing singular fibres, when it is non-isotrivial, is a non-constant holomorphic
map F : B ! Mh. Here B is a hyperbolic surface of type (g, n), Mh is the moduli space
of closed Riemann surfaces of genus h and the image F (B) is called a holomorphic curve in
Mh. We show that, when all peripheral monodromies are of infinite order, the holomorphic
map is a quasi-isometric immersion with parameters depending only on g, n, h and the sys-
tole of B. When peripheral monodromies also satisfy an additional condition, we find a lift
quasi-isometrically embedding a fundamental polygon of the hyperbolic surface B into the
Teichmüller space. Besides, we improve the Parshin-Arakelov finiteness theorem, by proving
that there are only finitely many monodromy homomorphisms induced by holomorphic curves
of type (g, n) in Mh where systole is bounded away from 0, up to equivalence.
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Chapitre 1

Introduction

A 4-dimensional manifold admitting a fibration is fibred by surfaces, with a finite number of
the fibres permitted to have singularities. Precisely, let M4 be a closed, oriented 4-manifold and B
be a closed, oriented surface of genus g. A fibration of M4 over B is a continuous map f :M4 ! B
for which there exists some finite set S := {p1, . . . , pn} ⊂ B, called the branch set, so that the
restriction of f to M ′ :=M4 \ f−1(S) is a locally trivial fibration over B′ := B \ S. This fibration
is called a genus-h fibration when the generic fibre is a closed, oriented surface of genus h.

Let Σh be a closed, oriented smooth surface of genus h ≥ 2. The Teichmüller space of Σh,
denoted by Th, is the set of isotopy classes of complex structures on Σh. This space has a complex
structure which is induced by an embedding Th ↪! C3h−3, due to Bers and Maskit (see [Ber70]
and [Mas70]). The Teichmüller distance on Th is the minimum dilatation of a quasiconformal
diffeomorphism between two marked Riemann surfaces compatible with the markings, denoted by
dT in the sequel (see Subsection 3.1.1 for the precise definition).

The mapping class group of Σh, denoted by Modh, consists of all orientation-preserving diffeo-
morphisms of Σh up to isotopy. This group acts properly discontinuously on Th and the quotient
space, denoted by Mh, is called the moduli space. Each mapping class in Modh is a holomorphic
automorphism of Th and an isometry for the Teichmüller distance.

Choose a base point t ∈ B′. The locally trivial fibration f |M ′ determines the monodromy
homomorphism Φf,t : π1(B

′, t)! Modh by identifying f−1(t) with Σh. Let Σg,n be an n-punctured
oriented surface of genus g and s ∈ Σg,n be a fixed point. By identifying (B′, t) with (Σg,n, s) via a
homeomorphism, we obtain a homomorphism in Hom(π1(Σg,n, s),Modh). Different choices of the
base point t ∈ B′ and the homeomorphism (B′, t) ∼= (Σg,n, s) do not change the corresponding
class MO(M4, f, B) = MO(M ′, f, B′) of the monodromy homomorphism in

Mg,n,h := Modg,n \Hom(π1(Σg,n, s),Modh)/Modh

where Modg,n := Mod(Σg,n) acts on the source by diffeomorphism and Modh acts on the target
by conjugation. We write Mn =M0,n,1.

Consider the case g = 0 then f : M4 ! B = S2 is a genus-h fibration over the 2-sphere. We
choose homotopy classes of loops γ1, . . . , γn ⊂ S2 based at t such that each loop γj goes around
some branch point pi exactly once clockwise and the fundamental group π1(S2 \ S, t) is generated
by γ1, . . . , γn with the relation γ1 · · · γn = 1. The monodromy ϕj := Φf,t(γj) is called the fibre mo-
nodromy around the singular fibre f−1(pj), which satisfies ϕ1 · · ·ϕn = 1. The n-tuple (ϕ1, . . . , ϕn)
in Modh is called the global monodromy of f . Thus MO(M4, f,S2) ∈ M0,n,h is uniquely deter-
mined by t, γ1, . . . , γn and (ϕ1, . . . , ϕn). However, dragging the base point t amounts to changing
(ϕ1, . . . , ϕn) by a diagonal (or simultaneous) conjugacy. Also a different choice of homotopy classes
of γ1, . . . , γn may change (ϕ1, . . . , ϕn) by a sequence of elementary transformations (or Hurwitz
moves ; see Subsection 2.1.1 for more details) :

(. . . , ϕiϕi+1ϕ
−1
i , ϕi, . . .)

Li:=R−1
i −−−−−− (. . . , ϕi, ϕi+1, . . .)

Ri−−! (. . . , ϕi+1, ϕ
−1
i+1ϕiϕi+1, . . .), 1 ≤ i ≤ n− 1

so that the resulting tuple is called Hurwitz equivalent to the global monodromy (ϕ1, . . . , ϕn). The
fundamental group π1(S2 \ S, t) is isomorphic to Fn−1 and the orbit space M0,n,h also has the
following group-theoretic interpretation. There is a left action of Aut(Fn) on Hom(Fn,Modh) by
precomposition with the inverse. Suppose that {α1, α2, . . . , αn} is a generating set of Fn. Artin’s
representation embeds the braid group Bn on n strands as a subgroup of Aut(Fn). The subset
Hom(Fn/⟨α1 · · ·αn⟩,Modh) of Hom(Fn,Modh) is Bn-invariant and identified with Hom(π1(S2 \
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S),Modh), which inherits the action of Bn. We therefore have

M0,n,h = Bn\Hom(Fn−1,Modh)/Modh .

The Bn action induces an action of the sphere braid group Bn(S2) on Hom(Fn−1,Modh)/Modh
coming from the natural mapping class group action on this set.

The element MO(M4, f, B) ∈ Mg,n,h is an apparent invariant of the fibration in topology.
Therefore the study of genus-h fibrations by means of their monodromy addresses two independent
questions.
Question 1.0.1. How does an element in Mg,n,h limit the corresponding genus-h fibration ?
Question 1.0.2. How do we characterise or classify elements in Mg,n,h ?

A Lefschetz fibration is the simplest fibration, which is a smooth fibration and contains only
one singularity in each singular fibre, each singularity admitting complex local coordinates (z1, z2)
compatible with the orientation of M4 such that the fibration is locally given by f(z1, z2) =
z21 + z22 . Lefschetz fibrations become very interesting because of Gompf’s observation [Gom04] and
Donaldson’s result [Don99] which conclude that the study of Lefschetz fibrations is essentially
equivalent to the study of symplectic manifolds. If one relaxes the orientation requirement for
Lefschetz fibrations, the fibrations are achiral Lefschetz fibrations. It was noted by Gompf and
Stipsicz that many 4-manifolds admit achiral Lefschetz fibrations, see [GS99, Section 8.4]. Etnyre
and Fuller [EF06] showed that any smooth, closed, oriented 4-manifold, after surgery a framed
circle, admits an achiral Lefschetz fibration over the 2-sphere.

In this thesis, we are mostly concerned with two different objects. The first object is the
torus fibration, namely, a fibration whose generic fibre is the torus. The second object is the
holomorphic fibration, namely, a 2-dimensional complex manifold projecting into a Riemann surface
holomorphically.

1.1 Torus fibrations over the 2-sphere
Inspired by the classification of torus Lefschetz fibrations given by Moishezon and Livné [Moi77],

Matsumoto’s study on the global monodromies of torus achiral Lefschetz fibrations [Mat85] and
Auroux’s stabilisation for higher genus Lefschetz fibrations [Aur05], we first study torus fibrations
over S2 and use the type of singularities to classify global monodromies, up to stabilisation.

The mapping class group Mod1 = Mod(T2) of torus is isomorphic to SL(2,Z). We will denote
a multi-set by [x1, x2, x2, x3, x3, x3, . . .] and denote the conjugacy class of an element g in a group
G by ClG(g) (or Cl(g) if we do not specify G).

Definition. Let f : M4 ! S2 be a torus fibration over S2 with n branch points and (ϕ1, . . . , ϕn)
be a global monodromy of f . The type (of singularities) of f is defined to be the multi-set

O(f) = [ClSL(2,Z)(ϕ1), . . . , ClSL(2,Z)(ϕn)],

which does not depend on the choice of its global monodromy.

For a torus Lefschetz fibration, the type of singularities depends only on the number of branch
points, every ϕi being a positive Dehn twist around some simple loop. In this case, answers to
both Question 1.0.1 and Question 1.0.2 are given by Moishezon and Livné : On the one hand,
an orbit in Mn, if it does correspond to a torus Lefschetz fibration, determines the unique one
up to fibre-preserving diffeomorphism (see Part II, Lemma 7a in [Moi77]). On the other hand, for
torus Lefschetz fibrations with the same number of branch points, the action of Bn on the set of
their monodromy homomorphisms is transitive (see Part II, Lemma 8 in [Moi77]). This result was
generalized by Orevkov (see [Ore04]).

For a torus achiral Lefschetz fibration, we say that the orientation is still preserved for a type
I+1 singular fibre but not for a type I−1 singular fibre. In this case, the global monodromy was first
investigated by Matsumoto in [Mat85] (see also [GS99, Section 8.4]). An inspirational result in
his study introduces a representative of the global monodromy using elementary transformations
which is, however, not unique. In particular, one cannot readily classify those torus achiral Lefschetz
fibrations (or their corresponding elements in Mn) whose singular fibres of type I+1 and I−1 occur
in pairs.

In general, it is extremely difficult to classify the orbits in Mn. An algebraic understanding of
Mn is related the study of Wiegold (see [Lub11]) who conjectured that

|Out(Fn−1)\Epi(Fn−1, G)/Aut(G)| = 1
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for any finite simple group G and n ≥ 4, where Epi(Fn−1, G) denotes the set of epimorphisms
Fn−1 ! G. For the study of its extension to surface groups, we refer to [FL18, Theorem 1.4].

As in [Aur05 ; CLP15 ; Sam20], we discuss the stable equivalence of algebraic objects by relating
them to the direct sum construction. When the 2-sphere is replaced by an arbitrary surface, another
notion of stabilisation corresponds to pinching a hole (see [CLP16 ; FP23]). For more interesting
problems on the orbit space Mn and its variations, not related to the concept of stabilisation, we
refer to [Aur06 ; Aur15].

Global monodromies with stabilisation
Suppose that f1 : M1 ! S2 and f2 : M2 ! S2 are two torus fibrations. Choosing a pair of 2-

disks D1, D2 ⊂ S2 that do not contain any branch points of f1, f2 respectively, gluing M1\f−1
1 (D1)

and M2 \ f−1
2 (D2) along some orientation reversing fibrewise homeomorphism β : ∂f−1

1 (D1) !
∂f−1

2 (D2), we obtain a fibre-connected sum M1 ⊕β M2 between M1 and M2. The fibration f of
M1⊕βM2 piecing together f1 and f2 is again a torus fibration over S2, called a direct sum between
f1 and f2 and written as f = f1⊕f2 if we do not specify β. In [Aur05] Auroux introduced the direct
sum between a fibration and a fixed standard fibration, called stabilisation. He then proceeded to
give a classification of genus g ≥ 2 Lefschetz fibrations, up to stabilisation.

Definition. A conjugacy class of SL(2,Z) which either corresponds to elements of trace 0,±1,±3

or else contains
[
1 1
0 1

]
,
[
1 −1
0 1

]
,
[
−1 1
0 −1

]
or

[
−1 −1
0 −1

]
is called simple.

The following result is a rather general extension of Auroux’s stable classification in genus 1
but for arbitrary singularities :

Theorem A. Let O be a multi-set of conjugacy classes of SL(2,Z). There exists a torus Lefschetz
fibration fLO over S2 depending only on the non-simple conjugacy classes occurring in O that has
the following property : for i = 1, 2,

- let fi be a torus fibration over S2 with O(fi) = O ;
- let f̃i be a direct sum between fi and fLO ;
- let (g(i)1 , . . . , g

(i)
n ) be a global monodromy of f̃i.

Then (g
(1)
1 , . . . , g

(1)
n ) and (g

(2)
1 , . . . , g

(2)
n ) are Hurwitz equivalent i.e. one can transform (g

(1)
1 , . . . , g

(1)
n )

into (g
(2)
1 , . . . , g

(2)
n ) using a finite sequence of elementary transformations.

In Theorem A, the choices of direct sums f̃1, f̃2, base points and loops for the global mono-
dromies are far from unique. As such, we adopt the following convention : we will use the double
plural to highlight the unlimited objects, say all global monodromies of all direct sums.

Theorem A shows that, in particular, given a torus fibration f over S2, all global monodromies of
all direct sums f⊕fLO(f) are pairwise Hurwitz equivalent. The additional fibration fLO in Theorem A
can be replaced by a torus fibration with fewer branch points but which is not a Lefschetz fibration
(see Theorem 2.1.12 for a more detailed reformulation). In both cases, the number of branch points
in the additional fibration depends on the number of non-simple elements in O. In particular, we
have the following results :

Theorem B. There exists a torus Lefschetz fibration fL12 over S2 with 12 branch points such that,
for any multi-set O of simple conjugacy classes of SL(2,Z) corresponding to elements of trace 0,±1
or ±2, all global monodromies of all direct sums f ⊕ fL12 with f a torus fibration over S2 satisfying
O(f) = O are pairwise Hurwitz equivalent.

Theorem C. There exists a torus Lefschetz fibration fL60 over S2 with 60 branch points such that,
for any multi-set O of simple conjugacy classes of SL(2,Z), all global monodromies of all direct
sums f ⊕ fL60 with f a torus fibration over S2 satisfying O(f) = O are pairwise Hurwitz equivalent.

In Theorem B each of −2,−1, 0, 1 and 2 might occur as the trace of some element in O. We
emphasise that the “or” is always inclusive in this paper. The fibration fL12 in Theorem B can be
replaced by a non-Lefschetz fibration with only 6 branch points and the fibration fL60 in Theorem
C can be replaced by a fibration with only 19 branch points.

The stated Hurwitz equivalence in Theorem A, Theorem B and Theorem C is obtained with a
specific normal form (see Theorem 2.1.12) which satisfies a remarkable property, called swappability
(see Subsection 2.2.1). The normal form is computable : one can compute the finite sequence of
elementary transformations with algorithms (see Section 2.5).
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The Hurwitz equivalence fails without stabilisation or with an unreasonable stabilisation, see
Subsection 2.4.1. The following theorem compares the (unstable) Hurwitz equivalence and the
stable equivalence between global monodromies of torus achiral Lefschetz fibrations.

Theorem D. For torus achiral Lefshetz fibrations with p singular fibres of type I+1 and q singular
fibres of type I−1 , we have the following statements.

(i) After performing direct sums with fL12, all global monodromies are Hurwitz equivalent.
(ii) If p ̸= q, then all global monodromies are Hurwitz equivalent.
(iii) If p = q ≥ 1, then the global monodromies have infinitely many Hurwitz equivalent classes

and there exists an explicit combinatorial classification.

As a consequence of Theorem B, we partially extend Kas’ classification of elliptic surfaces up
to diffeomorphism [Kas77] to a stable classification of their global monodromies. Elliptic surfaces
over CP1 are proper holomorphic maps f : S ! CP1 between a complex surface S and CP1 such
that the generic fibre is an elliptic curve. An elliptic surface is certainly a torus fibration whose
singular fibres were classified by Kodaira in [Kod64 ; Kod66] ; the fibre monodromies are described
in [Mir89].

Corollary A. Let f1 : S1 ! CP1 and f2 : S2 ! CP1 be elliptic surfaces without multiple singular
fibres, without singular fibres of type Iv or I∗v , v ≥ 2 in Kodaira’s classification. Suppose that
O(f1) = O(f2). Then, all global monodromies of all direct sums f1 ⊕ fL12 and f2 ⊕ fL12 are pairwise
Hurwitz equivalent.

Fibre-preserving homeomorphisms
An element in Mn does not provide all the data about the fibration. In most cases, a torus

fibration cannot be determined by its monodromy in any way. Additional restrictions and data on
the local models at singularities are essential.

One remarkable encoding for the local model comes from King’s classification in [Kin78 ; Kin97]
of isolated singularities and the local study of singularities by Church and Timourian in [CT72 ;
CT74], using this we study the so-called singular fibrations.

Roughly speaking by singular fibration we mean a smooth fibration with only finitely many
singularities each having a “nice” neighbourhood (see Subsection 2.2.3 for a precise definition).
Each singularity is then characterised by a local Milnor fibre which is a sub-surface of the generic
fibre, a binding link K and an open book decomposition. Singular fibrations have been studied in
[Loo71 ; Fun11 ; Fun22]. The local properties of their singularities are related to the corresponding
fibred knots (see e.g. [BZ03]).

As an improvement of Proposition 2.1 in [Fun22] as well as a consequence of Theorem C and
the swappability of the corresponding normal form, we have the following stable classification of
singular fibrations based on the type of singularities up to fibre-preserving homeomorphism :

Corollary B. Let f1 : M1 ! S2 and f2 : M2 ! S2 be torus singular fibrations with a single
singularity in each singular fibre and with O(f1) = O(f2). Suppose that each local Milnor fibre of
singularities in f1 and f2 is either

- a surface of genus 0 with ≤ 2 boundary components, or
- a surface of genus 1 with only 1 boundary component.

Let f̃1 = f1 ⊕ fL60 : M̃1 ! S2 and f̃2 = f2 ⊕ fL60 : M̃2 ! S2 be direct sums. Then (M̃1, f̃1) and
(M̃2, f̃2) are fibre-preserving homeomorphic.

1.2 Holomorphic fibrations and their classifying maps
Siebert and Tian [ST05] proved that any genus-2 Lefschetz fibration without reducible fibres and

satisfying a mild condition is holomorphic. They also conjectured in [ST99] that all hyperelliptic
Lefschetz fibrations without reducible fibres are holomorphic. One may then require that a fibration
is holomorphic, i.e., the total space M4 =: C is a 2-dimensional complex manifold, B is a Riemann
surface of type (g, n) and f : C ! B is a holomorphic map. By the complex version of the
preimage theorem, each generic fibre f−1(b) =: Cb is a complex submanifold of C and hence a
Riemann surface. As before, we suppose that the generic fibre is a closed surface of genus h. When
the branch set S = ∅, the holomorphic fibration is further called a genus-h holomorphic family.
Therefore, removing singular fibres of a holomorphic fibration, we obtain a holomorphic family of
closed Riemann surfaces of genus h over a Riemann surface B′ := B \S of type (g, n+ |S|). Fixing
the marking on some fibre Ct with t ∈ B′, one may consider a marking on f : C ′ := C\f−1(S)! B′
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such that each fibre Cb is a marked Riemann surface of genus h and this marking is compatible with
the localisation. We have thus associated with the marked family the unique canonical classifying
map CM(C ′, f, B′) : B′ !Mh. It is well-known [Gro62 ; Ear73] that these classifying maps are
holomorphic and each could be the classifying map of at most

#Hom(π1(B, t),Aut(Ct)) ≤ (2g + n)84(h−1)

many non-isotrivial non-isomorphic holomorphic families, due to Hurwitz’s 84(g − 1) theorem.
Here, a holomorphic family C/B is isotrivial if the fibres are all biholomorphic, i.e. Cb1

∼= Cb2

for b1, b2 ∈ B. Two holomorphic families C/B and C ′/B over B are isomorphic if there exists a
biholomorphic map between C and C ′ that preserves fibrations.

Therefore the study of holomorphic families of Riemann surfaces is equivalent to the study
of holomorphic curves in the moduli space of Riemann surfaces. We would always suppose that
2g − 2 + n > 0 and h ≥ 2 and consider the holomorphic map F : B ! Mh from a hyperbolic
surface of type (g, n) to the moduli space of closed Riemann surfaces of genus h.

A holomorphic disc in Th is the image of a holomorphic map F̃ : H2 ! Th from the upper half
plane H2 ⊂ C to the Teichmüller space. The hyperbolic plane is endowed with the usual complex
structure making it biholomorphic to the open unit disc. Passing to the quotient we obtain a map
F̊ : H2 !Mh to the moduli space. Let Γ ≤ Stab(F̊ ) := {ϕ ∈ Aut(H2) | F̊ ◦ϕ = F̊} be a lattice and
set B := Γ\H2. Suppose that B is an oriented surface of genus g with n cusps (without boundary).
The image of the quotient map F : B !Mh is then a holomorphic curve of type (g, n) in Mh.

We use dB to denote the hyperbolic distance on B. The systole of B, denoted by sys(B), is
the length of the shortest essential (i.e. non-contractible and non-peripheral) closed curve. A cusp
region of B, usually denoted by U , is the neighbourhood of a cusp bounded by a horocycle of
length 2.

As in [IS88, p.212] and [Moi77, p.176], a holomorphic map F : B ! Mh induces a group
homomorphism F∗ : π1(B, t) ! Modh which is called a monodromy homomorphism of F (see
Subsection 3.1.2 for the definition). We emphasise that there exists a holomorphic family f : C ! B
such that F = CM(C, f,B) and F∗ is exactly a monodromy homomorphism of f : C ! B. We
write MO(F ) = MO(C, f,B) for convenience. The image F∗([γ]) along a based loop γ ⊂ B that
goes once or several times around a cusp, clockwise or counterclockwise, is called a peripheral
monodromy of the cusp.

As B and Th are complex manifolds, both of them are endowed with intrinsic Kobayashi pseudo-
norms, which need not be positive definite, as follows.

Definition 1.2.1. Let X be a complex manifold. The Kobayashi pseudo-norm KobX : TX ! R≥0

onX is defined by KobX(x, v) = infϕ{1/c} for x ∈ X and v ∈ TxX, where the infimum is taken over
all holomorphic maps ϕ from the unit disc in C to X satisfying ϕ(0) = x and (dϕ)0(∂/∂z) = c · v.

A smooth manifold X with a pseudo-norm TX ∋ (x, v) 7! K(x, v) is also endowed with a
pseudo-distance dX,K : X ×X ! R given by the formula

dX,K(x1, x2) = inf
γ

∫ 1

0

K(γ(t), γ̇(t))dt

where the infimum is taken over all piecewise smooth paths joining x1 to x2. The pseudo-distance
dX,Kob induced by KobX is called the Kobayashi distance on X. If KobX is a norm, i.e. it vanishes
only at 0 ∈ TX, then X is said to be Kobayashi hyperbolic.

Both H2 and Th are Kobayashi hyperbolic. In fact, the Kobayashi (pseudo-)norm on H2 coincides
with the norm of the Poincaré Riemannian metric or half the hyperbolic metric. The Kobayashi
distance on H2 coincides with half the hyperbolic distance, i.e.

KobH2(z, v) =
1

2

|dz(v)|
Im(z)

and dH2,Kob(z1, z2) = tanh−1 |z1 − z2|
|z1 − z2|

=
1

2
dH2(z1, z2)

for z, z1, z2 ∈ H2 and v ∈ TzH2 (see [Aba89, Proposition 2.3.4]). On the other hand, the Kobayashi
(pseudo-)norm KobT on Th is a Finsler metric and the Kobayashi distance on Th coincides with
the Teichmüller distance (see [Roy71, Theorem 3]), i.e. dT ,Kob = dT .

Definition 1.2.2. Let F : B !Mh be a holomorphic map whose lift is F̃ : H2 ! Th.

- The distance dF̃ on H2 is induced by the pullback pseudo-norm F̃ ∗ KobT .
- The distance dF on B is defined by

dF (b1, b2) = inf{dF̃ (b̃1, b̃2) | b̃1 ∈ H2 is a lift of b1, b̃2 ∈ H2 is a lift of b2}.
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- The Teichmüller distance dM on Mh is defined by

dM(q1, q2) = inf{dT (q̃1, q̃2) | q̃1 ∈ Th is a lift of q1, q̃2 ∈ Th is a lift of q2}.

To discuss the rigidity of F : B ! Mh and F̃ : H2 ! Th, we recall the basic definition of a
quasi-isometric embedding and define an extra notion of rigidity for F : B !Mh.

Definition 1.2.3. Let (X1, d1) and (X2, d2) be metric spaces. Given λ ≥ 1 and ϵ ≥ 0, a map
f : X1 ! X2 is called a (λ, ϵ)-quasi-isometric embedding if

d1(x, y)/λ− ϵ ≤ d2(f(x), f(y)) ≤ λd1(x, y) + ϵ

for all x, y ∈ X1. In particular, when f is a (1, 0)-quasi-isometric embedding, we say that f is an
isometric embedding.

Definition 1.2.4. Given λ ≥ 1 and ϵ ≥ 0, a holomorphic map F : B ! Mh is called a (λ, ϵ)-
quasi-isometric immersion if

(1/2)dB(b1, b2)/λ− ϵ ≤ dF (b1, b2) ≤ (λ/2)dB(b1, b2) + ϵ

for all b1, b2 ∈ B. In this case, we say that F (B) is quasi-isometrically immersed. In particular,
when F is a (1, 0)-quasi-isometric immersion, we say that F is an isometric immersion and F (B)
is isometrically immersed.

Just as a quasi-isometric embedding needs not be an embedding, so a quasi-isometric immersion
needs not be an immersion in the usual sense. However, an isometric immersion is indeed an
immersion.

A holomorphic map f : X1 ! X2 between complex manifolds is distance-decreasing for the
intrinsic Kobayashi distances, namely dX1,Kob(x, y) ≥ dX2,Kob(f(x), f(y)) (see, e.g., [Aba89, Pro-
position 2.3.1]). In particular, the holomorphic map F : B !Mh and its lift F̃ : H2 ! Th satisfy
the following inequalities :

1

2
dB

(
b1, b2

)
≥ dF

(
b1, b2

)
≥ dM

(
F (b1), F (b2)

)
,

1

2
dH2

(
b̃1, b̃2

)
≥ dF̃

(
b̃1, b̃2

)
≥ dT

(
F̃ (b̃1), F̃ (b̃2)

)
.

As a consequence, each peripheral monodromy must be either reducible or of finite order (see
Corollary 3.1.4). In particular, if a peripheral monodromy ϕ is of infinite order, then a power ϕµ
is a multi-twist.

An isometrically immersed curve F (B) ⊂ Mh is known as a Teichmüller curve. The first
non-trivial cases were discovered by Veech ([Vee89]) and all Teichmüller curves in M2 and M3

are almost well-understood ([McM05 ; McM06] and [LN14 ; McM23, Theorem 5.5]). In Mh with
h ≥ 5, Teichmüller curves are elusive and the only known primitive case was given in [BM10].

Quasi-isometric rigidity for holomorphic curves
Every isometric immersion from B to Mh is either holomorphic or anti-holomorphic (see

[Ant17]). However, a holomorphic map needs not be an isometric immersion. The following theorem
shows that a weaker statement still holds.

Theorem E. Given (g, n), h and ϵ with 2g − 2 + n > 0, h ≥ 2 and ϵ > 0, there exists a constant
K = K(g, n, h, ϵ) that depends only on g, n, h, ϵ and satisfies the following statement. Let B be
an oriented hyperbolic surface of type (g, n) with sys(B) ≥ ϵ and cusp regions U1, . . . , Un ⊂ B.
Let F : B ! Mh be a non-constant holomorphic map with a monodromy homomorphism F∗ ∈
Hom(π1(B, t),Modh).

(i) For each i = 1, . . . , n, if a peripheral monodromy of the i-th cusp is of infinite order, then
F |Ui

: (Ui, (1/2)dB)! (Mh, dM) is a (1,K)-quasi-isometric embedding.
(ii) If all peripheral monodromies are of infinite order, then F is a (1,K)-quasi-isometric im-

mersion.

Given a monodromy homomorphism F∗, if a peripheral monodromy of a fixed cusp is of infinite
order, then all peripheral monodromies of this cusp are of infinite order. Therefore, the hypothesis
in Theorem E - (ii) can be checked for only one peripheral monodromy of each cusp.
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This result is optimal. On the one hand, there exists a holomorphic curve in Mh that is quasi-
isometrically but not isometrically immersed, see Example 3.4.2. On the other hand, if peripheral
monodromies of the i-th cusp are of finite order, then F |Ui

: (Ui, (1/2)dB)! (Mh, dM) needs not
be a quasi-isometric embedding. Example 3.4.5 shows such a possibility, when F (Ui) is located in
the thick part of Mh.

Mh

Figure 1.1 – A cartoon of a holomorphic curve
in Mh. Each cusp neighbourhood of the ho-
lomorphic curve almost keeps the hyperbolic
structure along the Teichmüller metric, unless
the peripheral monodromy is of finite order.

t

κ

κ

γ

Ui Uj

t

γ

Ui Uj

Figure 1.2 – Different geodesic segments joi-
ning the boundaries of two given cusp regions
Ui and Uj , each providing a pair of peripheral
monodromies (ϕi, ϕj).

Quasi-isometric rigidity for fundamental domains

If the holomorphic map F : B ! Mh is an isometric immersion, then the lift F̃ : H2 ! Th
is a complex geodesic for the intrinsic Kobayashi norms. Teichmüller’s uniqueness theorem (see,
e.g., [FM11, Theorems 11.8 and 11.9]) shows that any two points of the Teichmüller space Th are
joined by a unique real geodesic. Therefore, the lift F̃ : (H2, (1/2)dH2) ! (Th, dT ) is an isometric
embedding.

If the holomorphic map F : B ! Mh is a quasi-isometric immersion, in general, the lift
F̃ : (H2, (1/2)dH2)! (Th, dT ) fails to be a quasi-isometric embedding.

We now aim to obtain a hyperbolic polygon D ⊂ H2, i.e. a fundamental domain of B bounded
by geodesic segments, such that F̃

∣∣∣
D

: (D, (1/2)dH2) ! (Th, dT ) is a quasi-isometric embedding.
Given a holomorphic map F : B !Mh and a monodromy homomorphism F∗ : π1(B, t)! Modh,
we start with a suitable condition on the monodromy.

Definition 1.2.5 (disjointed mapping classes). Let ϕ1 and ϕ2 ∈ Modh be reducible mapping
classes. Suppose that there exist positive integers µ1, µ2 and multi-curves α1 = {α1,1, . . . , α1,m1

},
α2 = {α2,1, . . . , α2,m2

} such that ϕµ1

1 , ϕµ2

2 are multi-twists along α1, α2,

ϕµ1

1 = T r1,1
α1,1

◦ · · · ◦ T r1,m1
α1,m1

, ϕµ2

2 = T r2,1
α2,1

◦ · · · ◦ T r2,m1
α2,m1

with ri,j ∈ Z \ {0}, for i = 1, 2 and j = 1, . . . ,mi. We say that ϕ1 and ϕ2 are disjointed if pairs of
curves in α1 and α2 are disjoint or coincide.

Definition 1.2.6 (disjointed peripheral monodromies). Let Ui, Uj be cusp regions of the hyper-
bolic surface B, i ̸= j, endowed with a geodesic segment κ joining ∂Ui to ∂Uj . Set {t0} = ∂Ui ∩ κ.
and take an arbitrary path γ joining t to t0 (see Figure 1.2). The loop along γ ∪ ∂Ui based at t
that goes once around Ui clockwise is denoted by γi and its monodromy is denoted by ϕi. The
loop along γ ∪ κ ∪ ∂Uj based at t that goes once around Uj clockwise is denoted by γj and its
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monodromy is denoted by ϕj . We say that peripheral monodromies of Ui and Uj are disjointed
along κ if ϕi and ϕj are reducible and disjointed.

A pair of disjointed mapping classes after a simultaneous conjugacy is again disjointed. There-
fore, a pair of peripheral monodromies being disjointed along κ is independent of the choice of the
path γ. However, a different choice of κ changes the peripheral monodromies by a non-simultaneous
conjugacy.

Theorem F. Given (g, n), h and ϵ with 2g − 2 + n > 0, h ≥ 2 and ϵ > 0, there exists a constant
K = K(g, n, h, ϵ) that depends only on g, n, h, ϵ and satisfies the following statement. Let B = Γ\H2

be an oriented hyperbolic surface of type (g, n) with sys(B) ≥ ϵ and cusp regions U1, . . . , Un ⊂ B.
Let D ⊂ H2 be a fundamental convex polygon of B with exactly n ideal points. Let F : B !Mh be
a non-constant holomorphic map with a monodromy homomorphism F∗ ∈ Hom(π1(B, t),Modh).
If

- peripheral monodromies of all cusps are of infinite order,
- for each i ̸= j, i = 1, . . . , n and j = 1, . . . , n, there exists a geodesic segment κi,j ⊂ B joining
∂Ui to ∂Uj with a lift κ̃i,j ⊂ D such that peripheral monodromies of Ui and Uj are not
disjointed along κi,j,

then F̃
∣∣∣
D

: (D, (1/2)dH2)! (Th, dT ) is a (2,K + diam(D))-quasi-isometric embedding.

When (g, n) = (0, n), recall that one can describe the monodromy homomorphism F∗ : π1(B, t)!
Modh by a global monodromy which is an n-tuple (ϕ1, . . . , ϕn) in Modh such that ϕ1 · · ·ϕn = 1.
Therefore, there exists a fundamental polygon D ⊂ H2 of B and segments κi,j ⊂ B together with
lifts κ̃i,j ⊂ D that satisfy the following equivalence : the peripheral monodromies of Ui and Uj are
disjointed along κi,j if and only if ϕi and ϕj are disjointed. Hence, the existence of a fundamental
polygon D as in Theorem F such that F̃

∣∣∣
D

is a quasi-isometric embedding is equivalent to the
existence of a tuple being Hurwitz equivalent to (ϕ1, . . . , ϕn) whose components are of infinite order
and pairwise non-disjointed.

The second hypothesis of Theorem F sometimes is a mild condition. In particular, a holomorphic
curve of type (0, n), n ≥ 3 in M2 with each peripheral monodromy the Dehn twist along a non-
separating closed curve (i.e. the image of the classifying map of a genus-2 Lefschetz fibration without
reducible fibres) must have a quasi-isometrically embedded fundamental polygon (see Subsection
3.4.3).

Finiteness result for holomorphic curves
The geometric Shafarevich conjecture, now known as the Parshin-Arakelov finiteness (see

[Par68 ; Ara72 ; IS88]), claims that there are only finitely many non-isotrivial non-isomorphic ho-
lomorphic families of Riemann surfaces of genus h over a given base space B (assuming h ≥ 2 and
B hyperbolic).

The finiteness of holomorphic families corresponds to the finiteness of monodromy homomor-
phisms up to conjugacy. On the one hand, a class of homomorphisms in

Mh(B, t) := Hom(π1(B, t),Modh)/Modh

determines the topology of C/B. On the other hand, non-isotrivial holomorphic families over B
having the same class of monodromy homomorphism in Mh(B, t) are isomorphic (see Rigidity
Theorem in [IS88]).

We aim to analyse holomorphic families over homeomorphic but non-biholomorphic Riemann
surfaces, comparing their monodromy homomorphisms. Two holomorphic fibrations, even if non-
holomorphic, correspond to the same class in Mg,n,h if and only if they are isomorphic after
removing singular fibres. The set Mg,n,h is infinite. Moreover, at least for certain g, n and h ≥ 3,
there exist infinitely many symplectic Lefschetz fibrations with pairwise non-homeomorphic total
spaces (see [FS04]). Therefore, the subset of classes realised by symplectic Lefschetz fibrations is
also infinite. However in [Cap02] Caporaso proved that there is a uniform, i.e. independent of B,
bound for the number of classes in Mg,n,h, that can be realised by a genus-h holomorphic fibration
over a Riemann surface B of type (g, 0) having n branch points, see also [Hei04 ; Del16]. The
following theorem is an algebraic improvement of the Parshin-Arakelov finiteness, which improves
Corollary 2 in [Shi97].
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Theorem G. Given (g, n), h and ϵ with 2g − 2 + n > 0, h ≥ 2 and ϵ > 0, then the subset{
MO(C, f,B)

∣∣∣∣∣B is a Riemann surface of type (g, n) with sys(B) ≥ ϵ

f : C ! B is a non-isotrivial genus-h holomorphic family over B

}
⊂Mg,n,h

is finite.

Remark 1.2.7. The MO(C, f,B) in Theorem G can be replaced with either MO(CM(C, f,B))
or MO(F ) where F : B ! Mh is a non-constant holomorphic map, due to the many-to-one
correspondence between holomorphic families and their classifying maps.

The following finiteness result is an immediate consequence of the above theorem.

Corollary 1.2.8 (Theorem 6.5 in [Shi14]). Given (g, n) and h with 2g − 2 + n > 0 and h ≥ 2,
there are only finitely many Teichmüller curves of type (g, n) in Mh.

Two holomorphic curves F1 : B1 ! Mh and F2 : B2 ! Mh are called homotopic if B1, B2

are of the same type (g, n) and there exist orientation preserving diffeomorphisms f1 : Σg,n ! B1,
f2 : Σg,n ! B2 such that F1 ◦ f1, F2 ◦ f2 are homotopic. Theorem G implies that there are only
finitely many holomorphic curves of type (g, n) in Mh up to homotopy, when hyperbolic systoles
are bounded away from 0.

1.3 Outline of the thesis
The thesis is roughly a combination of the author’s papers [Zha23] and [Zha24].
We investigate torus fibrations in Chapter 2. Section 2.1 presents the main technique used

for the study of torus fibrations over the 2-sphere and more detailed statements of our results
for global monodromies of torus fibrations up to fibre sum stabilisation. In particular, Subsection
2.1.1 introduces the elementary transformation of global monodromies and some preliminaries.
Subsection 2.1.2 provides a new technique in the study of global monodromies. The additional
torus Lefschetz fibration used in the stabilisation is precisely given in Subsection 2.1.3. Subsection
2.1.4 claims that every stabled global monodromy can be transformed into a certain normal form,
which implies Theorem A.

Section 2.2 introduces the so-called swappability of the normal form from a stable global mo-
nodromy. This property allows us to investigate fibre-preserving homeomorphisms between torus
fibrations in Subsection 2.2.2. Subsection 2.2.3 introduces singular fibrations using a remarkable
encoding for the local model of singularities introduced by King, and illustrates Corollary B.

Moishezon and Livné [Moi77] introduced some inspirational results for tuples in PSL(2,Z). Our
study of global monodromies strongly relies on two different extensions of their studies which we
leave in Section 2.3.

Section 2.4 shows that the stabilisation used for global monodromies of torus fibrations has
a great effect on the Hurwitz equivalence. In particular, Subsection 2.4.2 compares the stable
classification and the unstable classification of achiral Lefschetz fibrations. All Hurwitz equivalences
occurring in Theorem A, Theorem B and Theorem C are computable and the computability is
discussed in Section 2.5.

We investigate holomorphic fibrations in Chapter 3. Subsections 3.1.1 and 3.1.2 introduces the
main notions needed for studying the Teichmüller space and monodromies of a holomorphic map F :
B !Mh. Subsection 3.1.3 presents some condition on the monodromy, which partially describes
a Teichmüller curve and is used to prove Corollary 1.2.8. Subsection 3.1.4 revisits Mumford’s
compactness of thick moduli spaces and provides some tools that we will need later.

Subsection 3.1.5 revisits the complex structure on Th and provides the irreducibility of F : B !
Mh. Using this irreducibility, we provide an auxiliary result, i.e. Theorem 3.2.1, which claims that
each non-constant holomorphic curve has a non-empty intersection with a certain thick part of the
moduli space. The proof of Theorem G relies on this result and can also be found in Section 3.2.

For our rigidity results, we first investigate a holomorphic hyperbolic cusp region in Mh in
Subsection 3.3.1. We emphasise that a mapping class of infinite order changes a marked hyperbolic
surface slightly in (Th, dT ) only if the mapping class is a multi-twist along small closed geodesics
on the hyperbolic surface. This fact implies that a holomorphic hyperbolic cusp region in Mh is
affected by a “force” from the cusp, which partially shows the quasi-isometric embedding in Theorem
E - (i). Theorem 3.2.1 pulls the holomorphic curve as well as each holomorphic hyperbolic cusp
region using another “force” from the thick part of the moduli space, hence we prove Theorem E in
Subsection 3.3.2. The proof of Theorem F appears in Subsection 3.3.3. Finally, Section 3.4 provides
some examples and an application on genus-2 Lefschetz fibrations.
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Chapitre 2

Stable classification of torus
fibrations over the 2-sphere

2.1 Connected sums and Hurwitz equivalence

2.1.1 Elementary transformations
We first define the elementary transformations. Throughout this subsection, G is an arbitrary

group and Z(G) is the center of G. An n-tuple in G is a sequence (g1, . . . , gn) of elements in G, each
gi is called a component of the tuple. Let TG,n be the set of n-tuples (g1, . . . , gn) in G satisfying
g1 · · · gn ∈ Z(G).

Definition 2.1.1. For 1 ≤ i ≤ n− 1, the elementary transformations (or Hurwitz moves) Ri is a
bijection on the set of n-tuples in G defined by :

Ri(g1, . . . , gn) = (g1, . . . , gi−1, gi+1, g
−1
i+1gigi+1, gi+2, . . . , gn).

Both Ri and its inverse R−1
i are elementary transformations. A pair of tuples (g1, . . . , gn) and

(h1, . . . , hn) which can be transformed into each other by a finite sequence of elementary transfor-
mations are called Hurwitz equivalent, written as :

(g1, . . . , gn) ∼ (h1, . . . , hn).

We emphasise that the set of all n-tuples in G can also be interpreted as Hom(Fn, G) and the
subset TG,n is invariant under the elementary transformations.

Lemma 2.1.2. For (g1, . . . , gn) ∈ TG,n and any 1 ≤ k ≤ n, the tuple (g1, . . . , gn) is Hurwitz
equivalent to (gk, gk+1, . . . , gn, g1, g2, . . . , gk−1).

Proof. Applying Rn−1 ◦ . . . ◦R1 on the n-tuple (g1, . . . , gn) we get (g2, . . . , gn, g1).

Let • denote the concatenation of tuples : (g1, . . . , gn) • (h1, . . . , hm) = (g1, . . . , gn, h1, . . . , hm).
The power of a tuple corresponds to a repeated concatenation with itself. The symbol

∏
represents

the concatenation of a family of tuples.

Lemma 2.1.3. Let (g1, . . . , gn, h1, . . . , hm, gn+1, . . . , gn+n′) be an (n+m+n′)-tuple in G satisfying
hi · · ·hm ∈ Z(G). For 0 ≤ k ≤ n+ n′, this (n+m+ n′)-tuple is Hurwitz equivalent to

(g1, . . . , gk, h1, . . . , hm, gk+1, . . . , gn+n′). (2.1)

In particular, let (g1,1, . . . , g1,n1
), (g2,1, . . . , g2,n2

), . . ., (gk,1, . . . , gk,nk
) be tuples in G satisfying

gj,1 · · · gj,nj ∈ Z(G) for each of j = 1, . . . , k. Then their concatenations in any order are pairwise
Hurwitz equivalent.

Proof. Applying Rn+m−1 ◦ . . . ◦ Rn if n′ > 0 and applying R−1
n+1 ◦ . . . ◦ R−1

n+m if n > 0 on the
(n + m + n′)-tuple we transform the tuple into (g1, . . . , gn+1, h1, . . . , hm, gn+2, . . . , gn+n′) and
(g1, . . . , gn−1, h1, . . . , hm, gn, . . . , gn+n′) respectively.

Lemma 2.1.4. Let (g1, . . . , gn) be an n-tuple in G satisfying gi = gjh with some 1 ≤ i < j ≤ n
and h in Z(G). Then (g1, . . . , gn) ∼ (g1, . . . , gi−1, gj , gi+1, . . . , gj−1, gi, gj+1, . . . , gn).
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Proof. Applying R−1
j−1 ◦ . . . ◦R

−1
i+1 ◦Ri . . . ◦Rj−1 on (g1, . . . , gn) we get the tuple

(g1, . . . , gi−1, gj , gig
−1
j gi+1gjg

−1
i , . . . , gig

−1
j gj−1gjg

−1
i , gi, gj+1, . . . , gn),

which is equal to (g1, . . . , gi−1, gj , gi+1, . . . , gj−1, gi, gj+1, . . . , gn), as desired.

Definition 2.1.5. An n-tuple in G is said to contain a generating set if its components form a
generating set of the group G.

For instance, the modular group PSL(2,Z) = SL(2,Z)/{+I,−I} has the presentation

PSL(2,Z) = ⟨a, b | a3 = b2 = 1⟩;

both (a2b, ba2, a2b, ba2, a2b, ba2) and (ba, ab, ba, ab, ba, ab) contain generating sets.

Lemma 2.1.6. Suppose that (g1, . . . , gn) and (h1, . . . , hm) are tuples in G such that (h1, . . . , hm)
contains a generating set. Let Q be an arbitrary element in G. If there exists a sub-tuple of
(g1, . . . , gn), say (gl, . . . , gr) with 1 ≤ l ≤ r ≤ n, such that

∏r
i=l gi ∈ Z(G), then the concate-

nation (g1, . . . , gn) • (h1, . . . , hm) is Hurwitz equivalent to

(g1, . . . , gl−1, Q
−1glQ, . . . , Q

−1grQ, gr+1, . . . , gn) • (h1, . . . , hm).

Proof. We express a given element Q in G as q1 · · · qu such that qi ∈ {h1, h−1
1 , . . . , hm, h

−1
m },

i = 1, . . . , u. The lemma follows from Lemma 2.1.3 and the following substitutions via elementary
transformations for each of j = 1, . . . ,m :

(g1, . . . , gl, . . . , gr, . . . , gn) • (h1, . . . , hj , . . . , hm)

! (g1, . . . , gl−1, gr+1, . . . , gn, h1, . . . , hj−1, gl, . . . , gr, hj , . . . , hm)

! (g1, . . . , gl−1, gr+1, . . . , gn, h1, . . . , hj , h
−1
j glhj , . . . , h

−1
j grhj , hj+1, . . . , hm)

! (g1, . . . , gl−1, h
−1
j glhj , . . . , h

−1
j grhj , gr+1, . . . , gn) • (h1, . . . , hj , . . . , hm);

(g1, . . . , gl, . . . , gr, . . . , gn) • (h1, . . . , hj , . . . , hm)

! (g1, . . . , gl−1, gr+1, . . . , gn, h1, . . . , hj , gl, . . . , gr, hj+1, . . . , hm)

! (g1, . . . , gl−1, gr+1, . . . , gn, h1, . . . , hj−1, hjglh
−1
j , . . . , hjgrh

−1
j , hj , . . . , hm)

! (g1, . . . , gl−1, hjglh
−1
j , . . . , hjgrh

−1
j , gr+1, . . . , gn) • (h1, . . . , hj , . . . , hm).

2.1.2 Contraction and restoration on tuple
In this subsection, we introduce the notions of contraction and restoration on tuples. We move

on to a procedure that involves a series of operations, including contractions, restorations, and
elementary transformations. The procedure behaves like a self-consistent machine, maintaining
data about the given tuple and operations. Our study repeatedly utilises this procedure. To make
it clear and easy to visualise, thus we start with the following definition.

Definition 2.1.7. An iterated tuple of height 0 in G is an element g ∈ G ; for h ≥ 1, an iterated
tuple of height h in G is a tuple whose components are iterated tuples of height smaller than h
such that at least one component is of height h− 1.

Take g ∈ G and H = (H1, . . . ,Hn) an iterated tuple of height h ≥ 1. The evaluation on an
iterated tuple is defined by ev(g) = g and ev(H) =

∏n
i=1 ev(Hi). With v ∈ G, using the notation

gv = v−1gv we define Hv as

Hv = (H1, . . . ,Hn)
v = (Hv

1 , . . . ,H
v
n).

The elementary transformation Ri acts on the set of iterated tuples with n ≥ i+1 components
by taking the conjugation of each element in Hi with ev(Hi+1) and swapping the positions, to wit

Ri(H1, . . . ,Hn) = (H1, . . . ,Hi−1, Hi+1, H
ev(Hi+1)
i , Hi+2, . . . ,Hn).

Given an n-tuple (g1, . . . , gn) in G, we keep hold of the following data :
- (h1, . . . , hm) : an tuple in G ;
- (H1, . . . ,Hm) : an iterated tuple in G such that (ev(H1), . . . , ev(Hm)) = (h1, . . . , hm) ;
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- F : an ordered list such that each element is either
- a pair (µ, σ) with µ ∈ Z and σ an elementary transformation on (iterated) µ-tuples, or
- a pair of integers (l, r) with 1 ≤ l < r.

At the beginning, both (h1, . . . , hm) and (H1, . . . ,Hm) are copies of (g1, . . . , gn), the ordered
list F is empty. We apply the following operations successively on the data.

(i) Elementary transformation : Apply an elementary transformation, say Rϵ
i with 1 ≤ i ≤

m − 1 and ϵ = ±1, on the m-tuple (h1, . . . , hm) and the iterated m-tuple (H1, . . . ,Hm).
Append (m,Rϵ

i) to F .
(ii) Contraction : For a pair of integers 1 ≤ l < r ≤ n, we replace the tuple (h1, . . . , hm) with

(h1, . . . , hl−1, hl · · ·hr, hr+1, . . . , hm)

and replace the iterated tuple (H1, . . . ,Hm) with

(H1, . . . ,Hl−1, (Hl, . . . ,Hr), Hr+1, . . . ,Hm).

Append (l, r) to F .
(iii) Restoration : Take the last pair of the form (l, r) in F , still denoted by (l, r). Let F ′ be the

sub-list of F which consists of the elements after (l, r). Remove (l, r) and all the elements
after (l, r) from F .
Set k = l and m′ = m+ (r− l). We consider each pair (µ, σ) = (m,Rϵ

i) in F ′ with the order.

- If 1 ≤ i ≤ k − 2, then append (m′, Rϵ
i) to F .

- If k + 1 ≤ i ≤ m, then append (m′, Rϵ
i+(r−l)) to F .

- If σ = Rk−1, then append the pairs (m′, Rk−1), . . . , (m
′, Rk−1+(r−l)) to F and replace

k with k − 1.

In this case, the elementary transformation σ acts on an iterated m-tuple of the form
(H1, . . . ,Hk−1, (H′

1, . . . ,H′
r−l+1),Hk+1, . . . ,Hm) via

(. . . ,Hk−1, (H′
1, . . . ,H′

r−l+1), . . .)
Rk−1
−−−! (. . . , (H′

1, . . . ,H′
r−l+1),H

ev(H′
1,...,H

′
r−l+1)

k−1 , . . .).

The new pairs (m′, Rk−1), . . . , (m
′, Rk−1+(r−l)) in F act on an iterated m′-tuple of the

form (H1, . . . ,Hk−1,H′
1, . . . ,H′

r−l+1,Hk+1, . . . ,Hm) via

(. . . ,Hk−1,H′
1, . . . ,H′

r−l+1, . . .)
Rk−1
−−−!(. . . ,H′

1,H
ev(H′

1)
k−1 ,H′

2 . . . ,H′
r−l+1, . . .)

Rk−−!(. . . ,H′
1,H′

2,H
ev(H′

1)ev(H
′
2)

k−1 ,H′
3 . . . ,H′

r−l+1, . . .)

! . . .

Rk−1+(r−k)
−−−−−−−−!(. . . ,H′

1, . . . ,H′
r−l+1,H

ev(H′
1)···ev(H

′
r−l+1)

k−1 , . . .).

- If σ = Rk, then append the pairs (m′, Rk+(r−l)), . . . , (m
′, Rk) to F and replace k with

k + 1.
- If σ = R−1

k−1, then append the pairs (m′, R−1
k−1), . . . , (m

′, R−1
k−1+(r−l)) to F and replace

k with k − 1.
- If σ = R−1

k , then append the pairs (m′, R−1
k+(r−l)), . . . , (m

′, R−1
k ) to F and replace k

with k + 1.

Finally, suppose that Hk = (H ′
1, . . . ,H

′
r−l+1). We replace (h1, . . . , hm) with

(h1, . . . , hk−1, ev(H
′
1), . . . , ev(H

′
r−l+1), hk+1, . . . , hm)

and replace (H1, . . . ,Hm) with

(H1, . . . ,Hk−1, H
′
1, . . . ,H

′
r−l+1, Hk+1, . . . ,Hm).

Note that above operations can be applied in any order, possibly each appears many times
and different operations may alternate with each other. However, we apply operations only finitely
many times. The following lemma shows the main property of these operations.

Lemma 2.1.8. If m = n, then (h1, . . . , hm) coincides with the resulting tuple of (g1, . . . , gn) after
applying all elementary transformations σ occurring in F with the order.
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Proof. Let (l, r) be the last pair of integers in F which indicates the last contraction operation
and replaces hl, . . . , hr with hl · · ·hr. The product exactly corresponds to the k-th component of
the m-tuple after each of the subsequent elementary transformations, where k is introduced in
the restoration operation. Therefore, the restoration cancels the contraction and constructs the
corresponding elementary transformations on the m′-tuple. We conclude the lemma by induction.

A direct application of the above operations requires us to maintain a lot of data, which would
be a massive and tedious project. To simplify the application, our usage only focuses on the
replacement

(h1, . . . , hm) 99K (h1, . . . , hl−1, hl · · ·hr, hr+1, . . . , hm)

of the contraction ; when applying the restoration, we enumerate all possible patterns of the cor-
responding contraction instead. Therefore, the iterated tuple (H1, . . . ,Hm) and the ordered list F
never appear in the argument.

More delicate operations for tuples in the modular group and their properties will be introduced
in Proposition 2.3.10 and Proposition 2.3.29. We need the following definition in the sequel :

Definition 2.1.9. Let (g1, . . . , gn) and (h1, . . . , hm) be tuples in G with n ≥ m. The tuple
(g1, . . . , gn) is said to be an (h1, . . . , hm)-expansion (or an expansion of (h1, . . . , hm)) if there exist
integers 0 = i0 < i1 < i2 < . . . < lm = n such that gij−1+1 · · · gij = hj for each of j = 1, . . . ,m.

Suppose that (g1, . . . , gn) is an expansion of (h1, . . . , hm). Then the associated contraction
operations consist of m contractions that replace (g1, . . . , gn) with (h1, . . . , hm).

2.1.3 Direct sums of fibrations and their global monodromies
Recall that the type O(f) of singularities of a torus fibration f is a multi-set of fibre mono-

dromies counted with multiplicity. Let f1 : M1 ! S2, f2 : M2 ! S2 be torus fibrations, possibly
with different numbers of singular fibres. Let f1 ⊕ f2 be a direct sum of f1 and f2. The global
monodromy of f1 ⊕ f2 depends on the fibre-connected sum M1 ⊕β M2, the base point p on S2 and
the set of generators for the fundamental group π1(S2 \B). To be precise, a global monodromy of
f1 ⊕ f2 is a concatenation of two sub-tuples, say

(ψ−1
1 ϕ1,1ψ1, . . . , ψ

−1
1 ϕ1,n1ψ1) • (ψ−1

2 ϕ2,1ψ2, . . . , ψ
−1
2 ϕ2,n2ψ2),

such that (ϕ1,1, . . . , ϕ1,n1
) and (ϕ2,1, . . . , ϕ2,n2

) are global monodromies of f1 and f2 respectively,
ψ1, ψ2 ∈ SL(2,Z) and at least one of ψ1, ψ2 is 1. In general, global monodromies of different direct
sums or of the same direct sum but with different base points are not Hurwitz equivalent.

For any n-tuple (ϕ1, . . . , ϕn) in SL(2,Z) with ϕ1 · · ·ϕn = 1, we use f(ϕ1,...,ϕn) to denote a torus
fibration that has a global monodromy equal to (ϕ1, . . . , ϕn), if it exists. We use the notation
fL(ϕ1,...,ϕn)

for such a fibration that is also a Lefschetz fibration. Lemma 2.1.10 will point out that
we can always work with such a Lefschetz fibration up to expansion. Let us first recall some facts
about SL(2,Z) and Lefschetz fibrations.

Set A =

[
0 −1
1 1

]
and B =

[
−1 −2
1 1

]
∈ SL(2,Z). Let L = −ABA =

[
1 0
1 1

]
and R = −AB =[

1 1
0 1

]
. The conjugacy classes of SL(2,Z) have been described using the geometry of continued

fractions (see [Ser85 ; Kar13 ; Mos16]). They are classified according to the trace, which is conjugacy
invariant, as follows.

(0) For trace 0, there are two conjugacy classes represented by B and −B.
For nonzero trace, the conjugacy classes come in opposite pairs, represented by a matrix M and
its opposite −M with tr(M) > 0 and tr(−M) < 0.

(1) For trace 1, there are two conjugacy classes represented by A and −A2.
For trace −1, there are two conjugacy classes represented by −A and A2.

(2) For trace 2, there is a Z-indexed families of conjugacy classes represented by Lr with r ∈ Z.
For trace −2, there is a Z-indexed families of conjugacy classes represented by −Lr with
r ∈ Z.

(3) For trace 3, there is only one conjugacy class represented by LR.
For trace −3, there is only one conjugacy class represented by −LR.

16



(≥ 3) In general, for trace of absolute value ≥ 3, the words of the form ±Rj1Lk1Rj2Lk2 · · ·RjmLkm

with m ≥ 1, j1, . . . , jm, k1, . . . , km ≥ 1 represent all conjugacy classes. Conversely, different
words of this form up to cyclic conjugacy belong to different conjugacy classes.

Recall that the fibre monodromies of torus Lefschetz fibrations are conjugates of L.
For convenience, we set qL = −A2B and pL = −BA2, which are conjugates of L.

Lemma 2.1.10. Let (ϕ1, . . . , ϕn) be an n-tuple in SL(2,Z) with ϕ1 · · ·ϕn = 1. There exists a torus
Lefschetz fibration fL, one of whose global monodromy is an expansion of (ϕ1, . . . , ϕn).

Proof. It suffices to show that the semigroup generated by qL and pL is exactly SL(2,Z). It follows
from that qLpL = A and qLpLqL = B whose inverses are A5 and B3 respectively.

Now we describe the following tuples with respect to a multi-set O of fibre monodromies. Their
induced fibrations fTO,0

, fTO,1
, fTO,2

and fTO will stabilise torus fibrations.

Definition 2.1.11. Suppose that O is a multi-set of conjugacy classes of SL(2,Z).
1) We define TO,0 as (qL, pL,A2, qL, pL,A2).
2) We define TO,1 as an empty tuple if there does not exist a conjugacy class of trace ±3 in O,

otherwise
TO,1 = (B,B,B,B) • (−A2BAB,BA,−ABA)3.

3) We define TO,2 as the concatenation of the following tuples.
i) If the conjugacy class represented by ϵLr with r ≥ 2 and ϵ ∈ {1,−1} occurs m ≥ 1

times in O, take m copies of
(L, . . . , L, L−r)︸ ︷︷ ︸
r+1 components

.

ii) If the conjugacy class represented by ϵR2 with r ≥ 2 and ϵ ∈ {1,−1} occurs m ≥ 1
times in O, take m copies of

(R, . . . , R,R−r)︸ ︷︷ ︸
r+1 components

.

iii) Suppose that a conjugacy class of elements with |trace| ≥ 4 is represented by

ϵRj1Lk1Rj2Lk2 · · ·RjmLkm

with ϵ = {1,−1}, m ≥ 1, j1, . . . , jm, k1, . . . , km ≥ 1. If the conjugacy class occurs m ≥ 1
times in O, take m copies of

(
R, . . . , R︸ ︷︷ ︸

j1 components

,

k1 components︷ ︸︸ ︷
L, . . . , L , . . . , R, . . . , R︸ ︷︷ ︸

jm components

,

km components︷ ︸︸ ︷
L, . . . , L , (Rj1Lk1 · · ·RjmLkm)−1

)
.

Eventually, we define TO as TO,0 • TO,1 • TO,2.

2.1.4 Hurwitz equivalence of global monodromies
If two global monodromies of torus fibrations are Hurwitz equivalent, then they must have the

same number of branch points and the same type of singularities. The following theorem shows
that the global monodromies of torus fibrations with the same type of singularities become Hurwitz
equivalent up to fibre sum stabilisations.

Theorem 2.1.12. Given a torus fibration, let O be the type of singularities. Suppose that f0 is
one of the following :

i) a torus fibration, one of whose global monodromy is (h1, . . . , hm) = TO ;
ii) a torus Lefschetz fibration, one of whose global monodromy (h1, . . . , hm) is a TO-expansion.

Then all global monodromies of all direct sums f⊕f0 are Hurwitz equivalent for all torus fibrations
f with O(f) = O. Moreover, these global monodromies have a specific normal form determined by
O and (h1, . . . , hm) as follows :

(g1, . . . , gl) •
∏
i

(ϕi,1, . . . , ϕi,ni)

where g1 · · · gl = I, (g1, . . . , gl) is the sub-tuple of (h1, . . . , hm) either equal to TO,0 or corresponding
to TO,0, ϕi,1 · · ·ϕi,ni

= ±I for each i and each (ϕi,1, . . . , ϕi,ni
) is either
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- a tuple of the form (X,Y ) with XY = ±I, or
- a tuple of ±A, ±A2, ±B, ±qL, ±L, ±pL, ±qL−1, ±L−1, ±pL−1, except for at most 1 component.

Remark 2.1.13. Theorem 2.1.12 and Lemma 2.1.10 imply the main result Theorem A. Let H12 =
(qL, pL)6 and

H60 = (qL, pL)6 • (qL, pL, qL)4 • (qL,L, qL, pL, qL, pL, qL, pL, qL, pL,L,L)3

be tuples in SL(2,Z). Theorem B and C again follow from Theorem 2.1.12, where the torus Lefschetz
fibrations fL12 and fL60 are fLH12

and fLH60
respectively.

Remark 2.1.14. The normal form given in Theorem 2.1.12, though its precise form is not given,
satisfies a remarkable property, called swappability. We explain the swappability in Subsection 2.2.1
but as a consequence, we have Proposition 2.1.15.

Let ι : SL(2,Z)! PSL(2,Z) be the natural group homomorphism.

Proposition 2.1.15. For i = 1, 2, let
∏

j(ϕ
(i)
j,1, . . . , ϕ

(i)
j,nj

) be a tuple in SL(2,Z) such that

ϕ
(i)
j,1 · · ·ϕ

(i)
j,nj

= ±I

for each j and each sub-tuple (ϕ
(i)
j,1, . . . , ϕ

(i)
j,nj

) is either
- a tuple of the form (X,Y ) with XY = ±I, or
- a tuple of ±A, ±A2, ±B, ±qL, ±L, ±pL, ±qL−1, ±L−1, ±pL−1, except for at most 1 component.

Let (g1, . . . , gl) be a tuple in SL(2,Z) that is either equal to TO,0 or a TO,0 expansion. Suppose that

[Cl(ϕ
(1)
j,1), . . . , Cl(ϕ

(1)
j,nj

) | j] = [Cl(ϕ
(2)
j,1), . . . , Cl(ϕ

(2)
j,nj

) | j]

and ∏
j

(ι(ϕ
(1)
j,1), . . . , ι(ϕ

(1)
j,nj

)) =
∏
j

(ι(ϕ
(2)
j,1), . . . , ι(ϕ

(2)
j,nj

)).

Then,
(g1, . . . , gl) •

∏
j

(ϕ
(1)
j,1 , . . . , ϕ

(1)
j,nj

) ∼ (g1, . . . , gl) •
∏
j

(ϕ
(2)
j,1 , . . . , ϕ

(2)
j,nj

).

We need a deeper understanding of tuples in PSL(2,Z). Set a = ι(A), b = ι(B). Recall that
PSL(2,Z) is generated by a and b with the relation a3 = b2 = 1. Some other elements are marked
as follows :

s0 = a2b, s1 = aba, s2 = ba2, t0 = ba, t1 = a2ba2, t2 = ab

Here ι(L) = s1, ι(R) = t2, ι(qL) = s0 and ι(pL) = s2. We further emphasise that siti = 1 for
i = 0, 1, 2. Elements s0, s1, s2 are conjugate to each other and t0, t1, t2 are conjugate to each
other.

Elements in S = {a, a2, b, s0, s1, s2, t0, t1, t2} are called “short” and elements in

S2 = S ∪ {bab, ba2b, a2ba, aba2, a2bab, ababa, baba2, ba2ba, a2ba2ba2, aba2b}

are called “almost short”.
The following improves and extends Theorem 3.6 in [Mat85], which divides the tuples of ele-

ments in PSL(2,Z) conjugate to a, a2, b, s0 or t0 into two categories and, for tuples in the second
category, presents the normal forms.

Theorem 2.1.16. Let g1, . . . , gn ∈ PSL(2,Z) be conjugates of a, a2, b, aba or a2ba2 satisfying
g1 · · · gn = 1. Suppose that pa of them are conjugates of a, qa of them are conjugates of a2, nb of
them are conjugates of b, p of them are conjugates of s0 and q of them are conjugates of t0 with
pa, qa, nb, p, q ≥ 0 and pa + qa + nb + p+ q = n. Then,

1. if p = q, |pa − qa| ≡ 0 (mod 3) and nb is even, then the n-tuple (g1, . . . , gn) is Hurwitz
equivalenet to

(k1, k
−1
1 , . . . , kn′ , k−1

n′ , l1, l1, l1, . . . , ln′′ , ln′′ , ln′′)

with n′ + n′′ = n, ki, lj ∈ G and l3j = 1, i = 1, . . . , n′, j = 1, . . . , n′′ ;
2. otherwise, the n-tuple (g1, . . . , gn) is Hurwitz equivalent to the concatenation of

(s0, s2, s0, s2, s0, s2)
⌊max{p−q,0}/6⌋ • (t0, t2, t0, t2, t0, t2)⌊max{q−p,0}/6⌋ • (s0, t0)min{p,q} •

(a, a2)min{pa,qa} • (b, b)⌊nb/2⌋ • (a, a, a)⌊max{pa−qa,0}/3⌋ • (a2, a2, a2)⌊max{qa−pa,0}/3⌋
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and at most one of the following tuples :

(a2, s0, s2), (a, t2, t0), (a, s0, s0, s2, s0), (a
2, t0, t2, t0, t0), (b, s0, s2, s0), (b, t0, t2, t0),

(a, b, s2), (a
2, b, t0), (a, t2, t0, b, t0, t2, t0), (a

2, s0, s2, b, s0, s2, s0),

(a, a, s0, s2), (a
2, a2, t2, t0), (a

2, a2, s0, s0, s2, s0), (a, a, t0, t2, t0, t0),

(a2, a2, b, s2), (a, a, b, t0), (a
2, a2, t2, t0, b, t0, t2, t0), (a, a, s0, s2, b, s0, s2, s0).

The resulting n-tuple is called the normal form of (g1, . . . , gn)

As a supplement, we have Theorem 2.1.17 and its modification.

Theorem 2.1.17. Let g1, . . . , gn ∈ PSL(2,Z) be conjugates of a, a2, b, s0, t0 or ababa satisfying
g1 · · · gn = 1. Suppose that m of them are conjugates of ababa. Take

F13 = (b, b, b, b, a2bab, t0, s1, a
2bab, t0, s1, a

2bab, t0, s1).

Then (g1, . . . , gn) • F13 is Hurwitz equivalent to

(h1, . . . , hn−m−3−2µ) • (a2bab, ba2ba)(m+3−µ)/2 • (a2bab, t0, s1)µ

where
- each component of (h1, . . . , hn−m−3−2µ) is conjugate to one of a, a2, b, s0, t0 ;
- µ = 3−m if m ≤ 3 and µ = (m+ 1) mod 2 otherwise.

Theorem 2.1.18 (A modification of Theorem 2.1.17). Let g1, . . . , gn ∈ PSL(2,Z) be conjugates of
a, a2, b, s0, t0 or ababa satisfying g1 · · · gn = 1. Suppose that m of them are conjugates of ababa.
Take

F13 = (b, b, b, b, a2bab, t0, s1, a
2bab, t0, s1, a

2bab, t0, s1).

Let FL be an F13-expansion of conjugates of s0, written as

(u1,1, . . . , u1,k1
, u2,1, . . . , u2,k2

, . . . , u13,1, . . . , u13,k13
),

such that ui,1 · · ·ui,ki
is equal to the i-th component of F13 for each of i = 1, . . . , 13. Then

(g1, . . . , gn) • FL is Hurwitz equivalent to

(h1, . . . , hn′) • (a2bab, ba2ba)(m−3+µ)/2 •
3−µ∏
i=1

(u3i+2,1, . . . , u3i+2,k3i+2
, ba2ba)

•
3∏

i=3−µ+1

(u3i+2,1, . . . , u3i+2,k3i+2
, u3i+3,1, . . . , u3i+3,k3i+3

, u3i+4,1, . . . , u3i+4,k3i+4
)

where :
- each component of (h1, . . . , hn′) is conjugate to one of a, a2, b, s0, t0 ;
- µ = 3−m if m ≤ 3 and µ = (m+ 1) mod 2 otherwise.

The proof of Theorem 2.1.12 relies on Theorem 2.1.16, Theorem 2.1.17 and the above modifi-
cation of Theorem 2.1.17. We will prove Theorem 2.1.16, 2.1.17 and 2.1.18 in Section 2.3.

Proof of Theorem 2.1.12. Suppose that (h1, . . . , hm) = TO if f0 is as in i), or (h1, . . . , hm) is a
TO-expansion if f0 is as in ii), which is a global monodromy of f0. We write it as a concatenation
either

- of all the following tuples, or
- of the following tuples labelled (1), (2) and (4).

The list of tuples is as follows.
(1) The tuple (h1,1, . . . , h1,m1

) is either (qL, pL,A2) or a (qL, pL,A2)-expansion of conjugates of L.
(2) The tuple (h2,1, . . . , h2,m2) is either (qL, pL,A2) or a (qL, pL,A2)-expansion of conjugates of L,

which may be different from (h1,1, . . . , h1,m1
).

(3) The tuple (h3,1, . . . , h3,m3
) is either TO,1 or a TO,1-expansion of conjugates of L.

(4) The tuple (h4,1, . . . , h4,m4
) is either TO,2 or a TO,2-expansion of conjugates of L.
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Step 1. We first show that any global monodromy of a direct sum f ⊕ f0 can be transformed
into

(ϕ1, . . . , ϕn) • (h1, . . . , hm)

where (ϕ1, . . . , ϕn) is a global monodromy of f .
Given a base point p of f ⊕ f0, a global monodromy of the direct sum with respect to p is the

concatenation
(ψ−1

1 ϕ1ψ1, . . . , ψ
−1
1 ϕnψ1) •

∏
i∈I

(ψ−1
2 hi,1ψ2, . . . , ψ

−1
2 hi,mi

ψ2)

with the tuple (ϕ1, . . . , ϕn) a global monodromy of f , elements ψ1, ψ2 ∈ SL(2,Z) and the index
set I either {1, 2, 3, 4} or {1, 2, 4}. Each tuple in the concatenation has the product of components
equal to ±I and both of the tuples (ψ−1

2 h1,1ψ2, . . . , ψ
−1
2 h1,m1

ψ2) and (ψ−1
2 h2,1ψ2, . . . , ψ

−1
2 h2,m2

ψ2)
contain generating sets. By Lemma 2.1.6, we can eliminate all the ψ1, ψ2 in the global monodromy
using elementary transformations. Rewrite the resulting tuple as

(ϕ1, . . . , ϕn) • (g1, . . . , gl) • (h3,1, . . . , h3,m3
)[3∈I] • (h4,1, . . . , h4,m4

)

where [3 ∈ I] = 1 if 3 ∈ I and [3 ∈ I] = 0 if 3 ̸∈ I, such that (g1, . . . , gl) is either TO,0 or a
TO,0-expansion of conjugates of L.

Step 2. We show that the above resulting tuple is Hurwitz equivalent to

(φ1, . . . , φn′) • (g1, . . . , gl) • (h3,1, . . . , h3,m3
)[3∈I] • (h′4,1, . . . , h′4,m4

)

such that
- (φ1, . . . , φn′) is a tuple of elements in simple conjugacy classes such that φ1 · · ·φn′ = ±I ;
- (h′4,1, . . . , h

′
4,m4

) depends only on (h4,1, . . . , h4,m4
) and components of (ϕ1, . . . , ϕn) in non-

simple conjugacy classes.
If (h4,1, . . . , h4,m4) is a TO,2-expansion, then using contractions on (h4,1, . . . , h4,m4) as in Subsection
2.1.2 we replace (h4,1, . . . , h4,m4) with TO,2. The definition of TO,2 states that it is the concatenation
of several sub-tuples. These sub-tuples are in one-to-one correspondence with the singular fibres
of f whose fibre monodromies belong to non-simple conjugacy classes and they are further in one-
to-one correspondence with the components of (ϕ1, . . . , ϕn) excluding those of trace 0, ±1, ±3 or
conjugate to ±L, ±R.

Suppose that there exists an (r+1)-sub-tuple of the form (L, . . . , L, L−r) in TO,2 with r ≥ 2. We
take the corresponding component, say ϕi, which is equal to ϵh−1Lrh with ϵ = ±1 and h ∈ SL(2,Z).
Since (g1, . . . , gl) contains a generating set, by Lemma 2.1.6, we replace the (r+1)-sub-tuple with

(h−1Lh, . . . , h−1Lh, h−1L−rh).

By Lemma 2.1.3, we further replace ϕi with (h−1Lh, . . . , h−1Lh) and replace the above (r + 1)-
sub-tuple with (ϵh−1Lrh, h−1L−rh). Again by Lemma 2.1.6, the pair (ϵh−1Lrh, h−1L−rh) can be
transformed into (ϵLr, Lr).

We have similar arguments for sub-tuples of the form (R, . . . , R,R−r) or of the form

(R, . . . , R, L, . . . , L, . . . , R, . . . , R, L, . . . , L, (R . . . RL . . . L . . . R . . . RL . . . L)−1)

as in Definition 2.1.11. For the restoration, according to each component in TO,2, we rewrite the
corresponding component as a sub-tuple. Notice that if such a component belongs to some simple
conjugacy class, then it is replaced by a sub-tuple of conjugates of L. Hence the resulting tuple is
as desired.

We will not modify (h′4,1, . . . , h
′
4,m4

) anymore.
Step 3. Suppose that n+ components of (φ1, . . . , φn′) are of trace 3 and n− components

of (φ1, . . . , φn′) are of trace −3. If n+ + n− = 0, then take (φ′
1, . . . , φ

′
n′′) = (φ1, . . . , φn′) and

skip the step. Otherwise, [3 ∈ I] = 1. We further show that, by elementary transformations,
(φ1, . . . , φn′) • (g1, . . . , gl) • (h3,1, . . . , h3,m3

) can be transformed into

(φ′
1, . . . , φ

′
n′′) • (g1, . . . , gl) • (h̄1, . . . , h̄m̄)

such that
- (φ′

1, . . . , φ
′
n′′) is a tuple of elements either of trace 0,±1 or conjugate to ±L or ±R,

- (h̄1, . . . , h̄m̄) depends only on n+, n− and (h3,1, . . . , h3,m3
).
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If (h3,1, . . . , h3,m3) is an expansion of TO,1, then using contractions on (h3,1, . . . , h3,m3) as in Sub-
section 2.1.2 we replace it with TO,1. By applying Theorem 2.1.17 to (ι(φ1), . . . , ι(φn′)) • F13, the
tuple is transformed into

(φ′
1, . . . , φ

′
n′′) • (g1, . . . , gl) •

k∏
i=1

(ψi,0, ψi,1) • (−A2BAB,BA,−ABA)µ

such that each of ι(φ′
i), i = 1, . . . , n′′ is conjugate to a, a2, b, s0 or t0, ι(ψi,0) = a2bab, ι(ψi,1) = ba2ba

and µ ≤ 3. The number µ is determined by n+ + n−, which further separates the cases.
Then, the restoration operations apply on the tuple. Some components of (φ′

1, . . . , φ
′
n′′) are

replaced by sub-tuples of elements conjugate to L, while keeping each component conjugate to
some preimage of a, a2, b, s0 or t0. The remaining components that might be modified by the
restoration are exactly the components of the last µ sub-triples and the last 3 − µ components
denoted by ψi,0. By Theorem 2.1.18 they are replaced by certain sub-tuples of (h3,1, . . . , h3,m3).

The remaining components of
∏k

i=1(ψi,0, ψi,1) are of trace ±3 and they are either ±A2BAB
or ±BA2BA. To restrict their dependencies only on n+ and n−, we have to show that their signs
can be rearranged to certain positions, but this follows from Proposition 2.1.15.

Step 4. We conclude the proof of Theorem 2.1.12 by showing that (φ′
1, . . . , φ

′
n′′) • (g1, . . . , gl)

is Hurwitz equivalent to (φ′′
1 , . . . , φ

′′
n′′) • (g1, . . . , gl) such that (φ′′

1 , . . . , φ
′′
n′′) depends only on the

multi-set O.
Applying Theorem 2.1.16 to (ι(φ′

1), . . . , ι(φ
′
n′′)), we transform the tuple (φ′

1, . . . , φ
′
n′′) into a

new tuple, denoted by (φ′′
1 , . . . , φ

′′
n′′). For the first case in Theorem 2.1.16, as (g1, . . . , gl) contains

a generating set, applying Lemma 2.1.6 we further transform the concatenation into a resulting
tuple, denoted by (φ′′

1 , . . . , φ
′′
n′′) • (g1, . . . , gl), satisfying

(ι(φ′′
1), . . . , ι(φ

′′
n′′)) = (s0, t0)

µ1 • (a, a2)µ2 • (b, b)µ3 • (a, a, a)µ4 • (a2, a2, a2)µ5

with µ1, . . . , µ5 determined by O. The theorem follows from Proposition 2.1.15.

Remark 2.1.19. Alternatively, instead of using Proposition 2.1.15, one may apply the substitutions

(ϵ1A
2BAB, ϵ2BA

2BA) • (g1, . . . , gl) −! (ϵ1BA
2BA, ϵ2B

2A2BAB−1) • (g1, . . . , gl)
= (ϵ1BA

2BA, ϵ2A
2BAB) • (g1, . . . , gl) −! (ϵ2A

2BAB, ϵ1BA
2BA) • (g1, . . . , gl).

at the end of Step 3 and

(τ1A
2B, τ2BA

2, τ3A
2B) ! (τ2BA

2, τ1ABA, τ3A
2B) ! (τ2BA

2, τ3A
2B, τ1BA

2).

at the end of Step 4, where ϵ1, ϵ2, τ1, τ2, τ3 ∈ {−I,+I} are arbitrary. They appeared in an earlier
version of this paper.

We end with the proof of Corollary A.

Proof of Corollary A. The fibre monodromy of a singular fibre distinguishes the type in the Ko-
daira classification. The corollary follows from Theorem B.

2.2 Swappability and local models

2.2.1 Swappability of the normal form
This subsection introduces the notion of swappability for a tuple in SL(2,Z) with a stabilisation.

Definition 2.2.1. Let (ϕ1, . . . , ϕn) and (g1, . . . , gl) be tuples in SL(2,Z). Suppose that, for any
abelian group G and tuples (ϵ1, . . . , ϵn), (ϵ′1, . . . , ϵ

′
n), (σ1, . . . , σl) in G such that the following

multi-sets of conjugacy classes in G× SL(2,Z) coincide :

[Cl
(
(ϵ1, ϕ1)

)
, . . . , Cl

(
(ϵn, ϕn)

)
] = [Cl

(
(ϵ′1, ϕ1)

)
, . . . , Cl

(
(ϵ′n, ϕn)

)
],

we have(
(σ1, g1), . . . , (σl, gl)

)
•
(
(ϵ1, ϕi), . . . , (ϵn, ϕn)

)
∼

(
(σ1, g1), . . . , (σl, gl)

)
•
(
(ϵ′1, ϕi), . . . , (ϵ

′
n, ϕn)

)
.

In this case, we say that (ϕ1, . . . , ϕn) is (g1, . . . , gl)-stabilised swappable.
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Remark 2.2.2. The normal form given in Theorem 2.1.12 is an example of swappable tuples, which
is guaranteed by Proposition 2.2.3.

Proposition 2.2.3. Let
∏

i(ϕi,1, . . . , ϕi,ni
) be a tuple in SL(2,Z) such that ϕi,1 · · ·ϕi,ni

= ±I for
each i and each (ϕi,1, . . . , ϕi,ni

) is either
- a tuple of the form (X,Y ) with XY = ±I, or
- a tuple of ±A, ±A2, ±B, ±qL, ±L, ±pL, ±qL−1, ±L−1, ±pL−1, except for at most 1 component.

Let (g1, . . . , gl) be a tuple in SL(2,Z) either equal to TO,0 or a TO,0 expansion. Then the tuple∏
i(ϕi,1, . . . , ϕi,ni) is (g1, . . . , gl)-stabilised swappable.

Proof. We need only prove the proposition for the case (g1, . . . , gl) = TO,0.
Set (ϕ1, . . . , ϕn) =

∏
i(ϕi,1, . . . , ϕi,ni

) and consider the tuple(
(σ1, g1), . . . , (σl, gl)

)
•
(
(ϵ1, ϕi), . . . , (ϵn, ϕn)

)
in G× SL(2,Z). It suffices to show that, for any two components (ϵi, ϕi) and (ϵj , ϕj) such that ϕi
is conjugate to ϕj , one can interchange ϵi and ϵj using elementary transformations.

When ϕi = ϕj , the swapping follows from Lemma 2.1.4.
When ϕi ̸= ϕj but ϕi, ϕj belong to different sub-tuples, using Lemma 2.1.6 for the sub-tuple

containing (ϵi, ϕi), we transform the component (ϵi, ϕi) into (ϵi, ϕj). After swapping (ϵi, ϕj) and
(ϵj , ϕj), we apply Lemma 2.1.6 again to make other components unchanged.

When ϕ1 ̸= ϕj and ϕi, ϕj belong to a sub-tuple not of the form (X,Y ) with XY = ±I, we must
have ϕi conjugate to one of L, −L, L−1 and −L−1. Recall TO,0 = (qL, pL,A2)• (qL, pL,A2) and notice
that the (first) (qL, pL,A2) contains generating sets. If ϕi and ϕj are conjugate to ±L, then take Qi

and Qj be such that Q−1
i ϕiQi = ±L and Q−1

j ϕjQj = ±L, therefore QjQ
−1
i ϕiQiQ

−1
j = ϕj and

QiQ
−1
j ϕjQjQ

−1
i = ϕi. Using Lemma 2.1.6 and Lemma 2.1.4, we have the following substitutions

(. . . , (ϵi, ϕi), . . . , (ϵj , ϕj), . . .) • ((δ1, qL), (δ2, pL), . . . , (δ6, A
2))

−!(. . . , (ϵi, Q
−1
i ϕiQi), . . . , (ϵj , Q

−1
i ϕjQi), . . .) • ((δ1, qL), (δ2, pL), . . . , (δ6, A

2))

−!(. . . , (δ1, qL), . . . , (ϵj , Q
−1
i ϕjQi), . . .) • ((ϵi, Q−1

i ϕiQi), (δ2, pL), . . . , (δ6, A
2))

−!(. . . , (δ1, Qi
qLQ−1

i ), . . . , (ϵj , ϕj), . . .) • ((ϵi, Q−1
i ϕiQi), (δ2, pL), . . . , (δ6, A

2))

−!(. . . , (δ1, Q
−1
j Qi

qLQ−1
i Qj), . . . , (ϵj , Q

−1
j ϕjQj), . . .) • ((ϵi, Q−1

i ϕiQi), (δ2, pL), . . . , (δ6, A
2))

−!(. . . , (δ1, Q
−1
j Qi

qLQ−1
i Qj), . . . , (ϵi, Q

−1
i ϕiQi), . . .) • ((ϵj , Q−1

j ϕjQj), (δ2, pL), . . . , (δ6, A
2))

−!(. . . , (δ1, Qi
qLQ−1

i ), . . . , (ϵi, QjQ
−1
i ϕiQiQ

−1
j ), . . .) • ((ϵj , Q−1

j ϕjQj), (δ2, pL), . . . , (δ6, A
2))

−!(. . . , (δ1, qL), . . . , (ϵi, Q
−1
i QjQ

−1
i ϕiQiQ

−1
j Qi), . . .) • ((ϵj , Q−1

j ϕjQj), (δ2, pL), . . . , (δ6, A
2))

−!(. . . , (ϵj , Q
−1
j ϕjQj), . . . , (ϵi, Q

−1
i QjQ

−1
i ϕiQiQ

−1
j Qi), . . .) • ((δ1, qL), (δ2, pL), . . . , (δ6, A

2))

−!(. . . , (ϵj , QiQ
−1
j ϕjQjQ

−1
i ), . . . , (ϵi, QjQ

−1
i ϕiQiQ

−1
j ), . . .) • ((δ1, qL), (δ2, pL), . . . , (δ6, A

2))

=(. . . , (ϵj , ϕi), . . . , (ϵi, ϕj), . . .) • ((δ1, qL), (δ2, pL), . . . , (δ6, A
2)).

If ϕi and ϕj are conjugate to ±L−1, then using the contraction on ((δ2, pL), (δ3, A
2)) we have a

similar sequence of substitutions.
When ϕi ̸= ϕj and ϕi, ϕj form a sub-tuple of the form (X,Y ) with XY = ±I, there exists

Q ∈ SL(2,Z) such that Q−1ϕiQ = ϕj and therefore Q−1ϕjQ = ϕi. By Lemma 2.1.6, the sub-tuple
((ϵi, ϕi), (ϵj , ϕj)) can be transformed into ((ϵi, Q

−1ϕiQ), (ϵj , Q
−1ϕjQ)).

As a consequence, we prove Proposition 2.1.15.

Proof of Proposition 2.1.15. Let G = {1,−1} be the group under multiplication. We define

SL(2,Z) ∋ ϕ 7! ♯(ϕ) = (ϵ, ψ) ∈ G× SL(2,Z)

such that trace(ψ) ≥ 0, ϵ = sgn(trace(ϕ)) if trace(ϕ) ̸= 0 and ϵ = 1 otherwise. This map is
well-defined, injective and conjugacy-preserving, but not a group homomorphism.

Consider the tuple∏
j

((ϵ
(1)
j,1 , ψ

(1)
j,1 ), . . . , (ϵ

(1)
j,nj

, ψ
(1)
j,nj

)) =
∏
j

(♯(ϕ
(1)
j,1), . . . , ♯(ϕ

(1)
j,nj

))
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and the tuple ∏
j

((ϵ
(2)
j,1 , ψ

(2)
j,1 ), . . . , (ϵ

(2)
j,nj

, ψ
(2)
j,nj

)) =
∏
j

(♯(ϕ
(2)
j,1), . . . , ♯(ϕ

(2)
j,nj

))

in ×SL(2,Z). Their components present the same conjugacy classes counted with multiplicity and
ψ
(1)
j,k = ψ

(2)
j,k for all j and k. Besides, each sub-tuple of

∏
j(ψ

(1)
j,1 , . . . , ψ

(1)
j,nj

) is either a tuple of the
form (X,Y ) with XY = ±I or a tuple of A, −A2, ±B, qL, L, pL, qL−1, L−1 and pL−1. This proposition
follows from Proposition 2.2.3.

2.2.2 Fibre-preserving homeomorphisms : from local to global
This subsection investigates fibre-preserving homeomorphisms between torus fibrations. We

start with the following definitions.

Definition 2.2.4. Suppose that f : M ! S2 is a torus fibration and pj ∈ S2 is a branch point.
The singular fibre f−1(pj) may be locally symmetric in the following sense. Let U ⊂ S2 be any
sufficiently small neighbourhood of pj and p ∈ ∂U be an arbitrary point. Identifying f−1(p) with T2,
we use ϕj ∈ Mod(T2) to denote the monodromy along ∂U at p. Let ψ ∈ Mod(T2) be an arbitrary
mapping class class such that ψϕj = ϕjψ. We suppose that there exists a (self-)homeomorphism
ΨM : f−1(U) ! f−1(U) such that f ◦ ΨM = f and ΨM |f−1(p) represents ψ. In this case, we say
that the singular fibre f−1(p) is locally symmetric.

In particular, all singular fibres of a torus Lefschetz fibration are locally symmetric.

Definition 2.2.5. Suppose that f1 : M1 ! S2 and f2 : M2 ! S2 are torus fibrations with
branch sets B1 = {p(1)j } and B2 = {p(2)j }. We say that the singular fibres f−1

1 (p
(1)
j ) and f−1

2 (p
(2)
j )

are locally fibre-preserving homeomorphic if, for any sufficiently small neighbourhood U (1)
j of p(1)j ,

there exist homeomorphisms ΨS,j : U
(1)
j ! S2 and ΨM,j : f

−1
1 (U

(1)
j )! f−1

2 (ΨS,j(U
(1)
j )) such that

f2 ◦ΨM,j = ΨS,j ◦f1. We further say that (M1, f1) and (M2, f2) are fibre-preserving homeomorphic
if there exist homeomorphisms ΨS : S2 ! S2 and ΨM :M1 !M2 such that f2 ◦ΨM = ΨS ◦ f1.

Definition 2.2.6. A locally fibre-preserving homeomorphism (ΨS,j ,ΨM,j) as above may be compa-
tible with given global monodromies (ϕ(1)1 , . . . , ϕ

(1)
n ) of f1 and (ϕ

(2)
1 , . . . , ϕ

(2)
n ) of f2, in the following

sense. Recall that the global monodromy is determined by a base point p(i) and a collection of
loops γ(i)1 , . . . , γ

(i)
n based at p(i) such that γ(i)j is exactly the boundary of a neighbourhood of

p
(i)
j , say γ

(i)
j = ∂D

(i)
j , for i = 1, 2. Without loss of generality, assume that U (1)

j ⊂ D
(1)
j and

ΨS,j(U
(1)
j ) ⊂ D

(2)
j . Let β(i)

j be an arbitrary path in D
(i)
j joining p(i) to some point on ∂D

(i)
j , for

i = 1, 2. The locally fibre-preserving homeomorphism (ΨM,j ,ΨS,j) is pushed forward to a homeo-
morphism ψ ∈ Homeo(T2) between the generic fibres at base points. We say that (ΨM,j ,ΨS,j) is
compatible with the global monodromies if [ψ]ϕ(1)j = ϕ

(2)
j [ψ].

The compatibility does not depend on the choice of β(i)
j , for i = 1, 2. Indeed, for a different

choice of (β(1)
j , β

(2)
j ), then [ψ] is replaced by (ϕ

(2)
j )k2 [ψ](ϕ

(1)
j )k1 for some k1, k2 ∈ Z. It is easy to

check that (
(ϕ

(2)
j )k2 [ψ](ϕ

(1)
j )k1

)
ϕ
(1)
j = ϕ

(2)
j

(
(ϕ

(2)
j )k2 [ψ](ϕ

(1)
j )k1

)
.

Besides, the compatibility does not depend on the choice of global monodromies. Indeed, a different
pair of global monodromies replaces ϕ(1)j and ϕ

(2)
j with Q−1

1 ϕ
(1)
j Q1 and Q−1

2 ϕ
(2)
j Q2, respectively.

The set of all possibilities for [ψ] is{(
Q−1

2 ϕ
(2)
j Q2

)k2

Q−1
2 [ψ]Q1

(
Q−1

1 ϕ
(1)
j Q1

)k1

∣∣∣∣k1, k2 ∈ Z
}
.

It is easy to check that((
Q−1

2 ϕ
(2)
j Q2

)k2
Q−1

2 [ψ]Q1

(
Q−1

1 ϕ
(1)
j Q1

)k1
)
Q−1

1 ϕ
(1)
j Q1

=Q−1
2 ϕ

(2)
j Q2

((
Q−1

2 ϕ
(2)
j Q2

)k2
Q−1

2 [ψ]Q1

(
Q−1

1 ϕ
(1)
j Q1

)k1
)
.

Theorem 2.2.7. Let f1 : M1 ! S2 and f2 : M2 ! S2 be torus fibrations with branch sets
B1 = {p(1)j } and B2 = {p(2)j }, |B1| = n = |B2|, with global monodromies (ϕ

(1)
1 , . . . , ϕ

(1)
n ) and
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(ϕ
(2)
1 , . . . , ϕ

(2)
n ) such that each singular fibre is locally symmetric. Suppose that, for each j, there

exists a locally fibre-preserving homeomorphism between f−1
1 (p

(1)
j ) and f−1

2 (p
(2)
j ) compatible with

the given global monodromies. Let f̃1 = f1 ⊕ fLO(f1)
: M̃1 ! S2 and f̃2 = f2 ⊕ fLO(f2)

: M̃2 ! S2 be

direct sums. Then (M̃1, f̃1) and (M̃2, f̃2) are fibre-preserving homeomorphic.

Remark 2.2.8. The one-to-one correspondence between singular fibres via locally fibre-preserving
homeomorphisms in the hypothesis of Theorem 2.2.7 implies that O(f1) = O(f2).

The following definition first appeared in Part II, Definition 4 in [Moi77].

Definition 2.2.9. Suppose that f : M ! S2 is a torus fibration with branch set B = {pj}. Let
α : S1 ! Homeo0(T2) be a closed curve in the group of homeomorphisms of T2 isotopic to the
identity. Let D ⊂ S2 \ B be a disc. Identify ∂D with S1 and f−1(D) with D × T2, then α defines
a canonical homeomorphism

α̃ : f−1(∂D)! ∂(D × T2).

Denote MD,α =M \ f−1(D) ∪α̃ (D× T2) and let fD,α :MD,α ! S2 be the map which is equal to
f on M \ f−1(D) and equal to the projection D × T2 ! D on D × T2. Thus the map fD,α is a
torus fibration, called the α-twisting of M at D.

Lemma 2.2.10. Let f : M ! S2 be a torus fibration and fD,α be an α-twisting of f for some
α : S1 ! Homeo0(T2) and disc D ⊂ S2. Suppose that f has surjective monodromy homomorphisms.
Then f and fD,α are fibre-preserving homeomorphic.

Proof. See Proposition 2.1 in [Fun22].

Proof of Theorem 2.2.7. By Theorem 2.1.12, we suppose that (M̃1, f̃1) and (M̃2, f̃2) have the same
branch set B = {p1, . . . , pl+m}. Taking the base point p ∈ S2 \ B and loops γ1, . . . , γl+m based
at p, we further suppose that the global monodromies of (M̃1, f̃1) and (M̃2, f̃2) determined by p,
γ1, . . . , γl+m coincide, say

(g1, . . . , gl) • (ϕ1, . . . , ϕm).

Since the compatibility of a locally fibre-preserving homeomorphism does not depend on the
global monodromy, we may assume that there exists the permutation σ ∈ Sm such that

- f̃−1
1 (pj) and f̃−1

2 (pj) are locally fibre-preserving homeomorphic compatible with the global
monodromies, for j = 1, . . . , l ;

- f̃−1
1 (pj) and f̃−1

2 (pl+σ(j−l)) are locally fibre-preserving homeomorphic compatible with the
global monodromies, for j = l + 1, . . . , l +m.

Let G = Zϵ1 + . . .+ Zϵl+m be the free group of rank l +m. Consider the tuples(
(ϵ1, g1), . . . , (ϵl, gl), (ϵl+1, ϕ1), . . . , (ϵl+m, ϕm)

)
,(

(ϵ1, g1), . . . , (ϵl, gl), (ϵl+σ(1), ϕ1), . . . , (ϵl+σ(m), ϕm)
)

in G×SL(2,Z). The swappability of the global monodromy implies that one tuple can be transfor-
med into the other by elementary transformations. Thus, using a fibre-preserving homeomorphism,
we may suppose that σ is the identical permutation.

Consider the locally fibre-preserving homeomorphisms ΨS,j : U
(1)
j ! U

(2)
j , ΨM,j : f̃

−1
1 (U

(1)
j )!

f̃−1
2 (U

(2)
j ) with sufficiently small neighbourhoods U (i)

j of pj , for j = 1, . . . , l + m and i = 1, 2.
They extend to locally fibre-preserving homeomorphisms Ψ′

S,j : U
(1)
j ∪ β(1)

j ! U
(2)
j ∪ β(2)

j , Ψ′
M,j :

f̃−1
1 (U

(1)
j ∪ β

(1)
j ) ! f̃−1

2 (U
(2)
j ∪ β

(2)
j ) where, for i = 1, 2, β(i)

j is a path joining p to some point
d
(i)
j ∈ ∂U

(i)
j such that β(i)

1 , . . . , β
(i)
l+m, U (i)

1 , . . . , U
(i)
l+m are disjoint away from p and d(i)1 , . . . , d

(i)
l+m.

The mapping class represented by φj = Ψ′
M,j |f̃−1

1 (p) satisfies [φj ]gj = gj [φj ] if j = 1, . . . , l or

[φj ]ϕj−l = ϕj−l[φj ] otherwise. All singular fibres are locally symmetric. Set Γi =
⋃

j U
(i)
j ∩ β(i)

j for
i = 1, 2. Therefore we obtain a fibre-preserving homeomorphism ΨS : Γ1 ! Γ2, ΨM : f̃−1

1 (Γ1) !

f̃−1
2 (Γ2). One may further assume that Γ1 = Γ = Γ2 without loss of generality.

It remains to prove that f̃1 |Γ and f̃2 |Γ extend to the unique torus fibration over the comple-
mentary disc of Γ within S2, up to fibre-preserving homeomorphism, but this follows from Lemma
2.2.10.
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2.2.3 Singular fibrations and singularities
This subsection introduces singular fibrations and illustrates Corollary B.
Let f :M4 ! S2 be a smooth map between a connected closed oriented 4-manifold M4 and the

2-sphere with finitely many critical points, with generic fibre F 2. Church and Timourian proved
that each singularity p of f is cone-like, i.e. the singularity p admits a cone neighbourhood in
the singular fibre V = f−1(f(p)) ; see [CT74, Lemma 2.1 and (Lemma) 2.4] and also see [Fun11,
p.835-836].

Isolated singularities are separated. In fact, there exist arbitrarily small adapted neighbourhoods
of cone-like singularities, as introduced by King in [Kin78, p.396]. An adapted neighbourhood around
a singularity p ∈M4 is a compact neighbourhood Z4 ⊂M4 satisfying the following :

1) The restriction f |Z4 : Z4 ! D2 is a proper map onto a disk D2 ⊂ S2 ;
2) The fibre f−1(x) is transversal to ∂Z4 for each x ∈ int(D2) and E = f−1(S1) ∩ Z4 ⊂ ∂Z4 ;
3) Set V = f−1(f(p)) and K = V ∩ ∂Z4. Then N(K) = f−1(D2

0) ∩ ∂Z4 is a tubular neighbou-
rhood of K within ∂Z4 endowed with a trivialization θ : N(K) ! K × D2

0 induced by f ,
where D2

0 ⊂ D2 is a sufficiently small disk containing f(p).
4) The composition fK = r ◦f : ∂Z4 \K ! D2 ! S1 is a locally trivial fibration over S1, where

r is the radical projection ;
5) The data (∂Z4,K, fK , θ) is an open book decomposition.

It is equivalent to the date (fZ ,Φ) satisfying the following :
1) The map fZ : Z4 ! D2 is proper and induced by f . Set V = f−1

Z (fZ(p)), K = V ∩ ∂Z4 and
E3 = f−1

Z (S1) ⊂ ∂Z4. Then the restriction fZ : E3 ! S1 is a fibration with fibre F 2
p .

2) The flow Φ on Z4 is continuous along directions parallel to D2 such that
i) f(Φ(z, d)) = f(z) + d for z ∈ Z4 and d ∈ D2 when both sides are within Z4 ;
ii) the mapping (x, t) 7! Φ(x,−tfZ(x)) is a homeomorphism from E3 × [0, 1) to Z4 \ V ;
iii) there exists a vanishing compact subset A ⊂ E3 such that x 7! Φ(x,−fZ(x)) induces a

homeomorphism from E3 \ A to V \ p and sends A to p.
King proved that, for the fibration of a manifold Mm in dimension m ̸= 4, 5, one can always find

adapted neighbourhoods for singularities diffeomorphic to the m-disk. In dimension 4, however,
adapted neighbourhoods can only be supposed to be contractible. We call a singularity regular if
it admits an arbitrarily small adapted neighbourhood which is diffeomorphic to the 4-disk.

Definition 2.2.11. A smooth map f :M4 ! S2 between a connected closed oriented 4-manifold
and the 2-sphere is a singular fibration if it has only finitely many critical points, all of them being
regular.

The binding K ⊂ ∂Z4 of an open book decomposition is a fibered link. Each fibre of fK is a
surface that has the boundary K and is homotopic to the local Milnor fibre F 2

p . It is proved in
[Kin78, Theorem 1] that the local mapping torus E3 and the vanishing compact subset A ⊂ E3 up
to isotopy form a complete invariant of the adapted neighbourhood up to fibre-preserving homeo-
morphism. In particular, if a singular fibre contains only one singularity and the fibre monodromy
is given, then the singular fibre is determined by the isotopy class of local Milnor fibre, up to
fibre-preserving homeomorphism.

In general, there could be many singularities in a singular fibre, say p1, . . . , pn. The horizontal
homeomorphisms given by disjoint adapted neighbourhoods reveal that the local Milnor fibres
F 2
p1
, . . . , F 2

pn
are disjoint compact subsurfaces embedded in the generic fibre F 2 of the fibration.

The fibre monodromy around the singular fibre is a mapping class of the generic fibre F 2, denoted
by ϕf−1(f(pi)). The inclusions ιi : F 2

pi
↪! F induce the homomorphisms Mod(F 2

pi
) ! Mod(F 2)

which send the local monodromies ϕF 2
pi

of the mapping tori E3 ! S1 to mapping classes of the
generic fibre. Therefore

ϕf−1(f(pi)) = ι1,∗(ϕF 2
p1
) ◦ . . . ◦ ιn,∗(ϕF 2

pn
), (2.2)

which does not depend on the order. Furthermore, the following should be well-known.

Lemma 2.2.12. In a singular fibration f : M4 ! S2, each local Milnor fibre of an adapted
neighbourhood diffeomorphic to the 4-disk is connected with a non-empty boundary.

Proof. Suppose that p is a singularity of the singular fibration f : M4 ! S2. If we assume that
the binding link K of a singularity is vacuous, the adapted neighbourhood implies a locally trivial
fibre bundle S3 ! S1, which is a contradiction. Since the completion of the local Milnor fibre has a
non-empty boundary, the reduced cohomology group H̃2(F 2

p ) is trivial. We use Alexander duality
and obtain that H̃0(S

3 \ F 2
p ) is trivial. Hence F 2

p is connected.
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Definition 2.2.13. A continuous map g1 : X1 ! Y1 is locally topologically equivalent at x1 ∈ X1

to a continuous map g2 : X2 ! Y2 at x2 ∈ X2 if there exist sufficiently small open neighbourhoods
U1 of x1, U2 of x2, V1 of g1(x1), V2 of g2(x2) and homeomorphisms α : U1 ! U2, β : V1 ! V2 such
that β ◦ g1 |U1

= g2 ◦ α |U1
.

A point at which f fails to be locally topologically equivalent to the projection R4 ! R2 is called
a branch point, which is necessarily a singularity. Church and Lamotke have shown that a local
Milnor fibre is diffeomorphic to the 2-disk if and only if the associated singularity is not a branch
point ; see [CL75, Proposition p.151]. We conclude that, up to fibre-preserving homeomorphism,
one may assume that a torus singular fibration has no local Milnor fibre of genus 0 with only 1
boundary component.

Local Milnor fibre of genus zero

When the local Milnor fibre F 2
p is a genus zero surface with r ≥ 2 boundary components,

then E3 ∼= ∂Z4 \K is the mapping torus of some mapping class ϕF 2
p

that is identical on boundary,
denoted by MϕF2

p
. The group of mapping classes identical on the boundary, denoted by Mod∗(F 2

p ),
is generated by Dehn twists along the following loops ; see [Waj99].

- Loops δi,j , 2 ≤ i < j ≤ r, that each separates two boundary components from the others.
- Peripheral loops α2, . . . , αr, that are parallel to the latter r − 1 boundary components.

The peripheral loops are mutually disjoint and they keep away from the loops δi,j . Therefore, ϕF 2
p

is the composition of the product of (positive and negative) Dehn twists along peripheral loops
and a mapping class φF 2

p
generated by the Dehn twists along the rest loops, denoted by

ϕF 2
p
= (

r∏
i=2

Tui
αi
)φF 2

p

with u2, . . . , ur ∈ Z. The following shows a necessary property for local Milnor fibres of genus zero
in a fibration f :M4 ! S2.

Lemma 2.2.14. Let f : M4 ! S2 be a smooth map between a connected closed oriented 4-
manifold M4 and the 2-sphere. Let p ∈M4 be an isolated singularity. Given a contractible adapted
neighbourhood of p, if the local Milnor fibre F 2

p is a genus zero surface with r ≥ 2 boundary

components and the local monodromy is given by ϕF 2
p
=

r∏
i=2

Tui
αi

with u2, . . . , ur ∈ Z, then ui = ±1,

i = 2, . . . , r.

Proof. The first homology group of F 2
p is isomorphic to Zr−1 and generated by the cycles around

boundary components, but excluding the first component. Therefore, ϕF 2
p ,∗ = idH1(F 2

p ,Z) and the
homology group H1(MϕF2

p
,Z) = H1(F

2
p ,Z)⋊ϕF2

p
,∗ ⟨[γ]⟩ is isomorphic to Zr, where γ is the closed

curve in the mapping torus induced by a fixed point on the first boundary component of F 2
p .

We write H1(MϕF2
p
,Z) = ⟨a2, . . . , ar, t⟩. The boundary ∂Z4 of the adapted neighbourhood

is the union of the mapping torus MϕF2
p

and r more solid tori, which is a homology 3-sphere.
The inclusion mapping the connected components of the intersection to the mapping torus derives
from (positive or negative) powers of the Dehn twist along peripheral loops, which are denoted by
Tu1
α1
, . . . , Tur

αr
respectively. By Mayer-Vietoris we have

H2(∂Z
4,Z) −! H1(T2,Z)r τ

−−! H1(MϕF2
p
,Z)⊕H1(S

1 ×D1)r −! H1(∂Z
4,Z)

where τ is an isomorphism. After the choice of the natural basis, the corresponding (2r) × (2r)-
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matrix is given by

A =



−1 0 1 u2
−1 0 1 u3
−1 0 1 u4
· ·
· ·
· ·
−1 0 · · · 1 ur
0 1 0 1 0 1 0 1 · · · 0 1
1 0

1 0
1 0

1 0
·

·
·

1 0


satisfying det(A) = ±1. It follows that u2 · · ·ur = ±1.

In particular, we have the following consequence.

Corollary 2.2.15. Let f : M4 ! S2 be a smooth map between a connected closed oriented 4-
manifold and the 2-sphere. Given a contractible adapted neighbourhood of a singularity, if the local
Milnor fibre is a genus zero surface with exactly two boundary components, the local monodromy
is either a positive or a negative Dehn twist.

Proof. In this case, the local Milnor fibre F 2
p is an annulus whose mapping class group is generated

by the Dehn twist along the unique peripheral loop. By Lemma 2.2.14 we have u2 = ±1. Hence
ϕF 2

p
is either the positive or the negative Dehn twist.

Local Milnor fibre of genus one

We consider the case when the local Milnor fibre for a contractible adapted neighbourhood of
a cone-like singularity in f : M4 ! S2 is a torus with r ≥ 1 disks removed, say F 2

p = T2 \ (D1 ⊔
. . .⊔Dr). Again, let ϕF 2

p
∈ Mod(F 2

p ) be the local monodromy. By the Mayer–Vietoris sequence on
∂Z4 we have

H2(∂Z
4,Z) −! H1(T2,Z)r −! H1(MϕF2

p
,Z)⊕H1(S

1 ×D1,Z)r −! H1(∂Z
4,Z).

Since the boundary ∂Z4 is a homology 3-sphere,H1(MϕF2
p
,Z) is isomorphic to Zr.

Now we compute the homology group H1(MϕF2
p
,Z) of the mapping torus. Write MϕF2

p
as the

union of A = F 2
p × I1 and B = F 2

p × I2 and take the inclusion maps i : A∩B ↪! A, j : A∩B ↪! B,
k : A ↪!MϕF2

p
and l : B ↪!MϕF2

p
. By Mayer–Vietoris we have

−!H1(A ∩B,Z) (i∗,j∗)
−−−−! H1(A,Z)⊕H1(B,Z)

k∗−l∗−−−−! H1(MϕF2
p
,Z) ∂∗−!

H0(A ∩B,Z) (i∗,j∗)
−−−−! H0(A,Z)⊕H0(B,Z)

k∗−l∗−−−−! H0(MϕF2
p
,Z) −! 0.

Notice that im∂∗ is isomorphic to ker(H0(A ∩B,Z) (i∗,j∗)
−−−−! H0(A,Z)⊕H0(B,Z)) ≃ Z. To ensure

that H1(MϕF2
p
,Z) is isomorphic to Zr, we require that ker∂∗ ≃ Zr−1 and therefore

im(H1(A ∩B,Z) (i∗,j∗)
−−−−! H1(A,Z)⊕H1(B,Z)) ≃ Z3+r.

Lemma 2.2.16. Let f :M4 ! S2 be a smooth map between a connected closed oriented 4-manifold
M4 and the 2-sphere. Let p be a singularity of f with a contractible adapted neighbourhood. Suppose
that the local Milnor fibre F 2

p is a torus with a disk removed and consider the inclusion ι : F 2
p ↪! T2.

Then the binding link K ⊂ ∂Z4 ∼= S3 is either the trefoil knot or the figure-eight knot. Furthermore,
the local monodromy ϕF 2

p
induces a mapping class of the torus ι∗(ϕF 2

p
) ∈ Mod(T2) ≃ SL(2,Z) which

is conjugate to one of [
0 −1
1 1

]
,

[
1 1
−1 0

]
,

[
2 1
1 1

]
.
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Proof. We only prove the assertion of the local monodromy and a complete proof has been intro-
duced by Burde and Zieschang (see Proposition 5.14 in [BZ03]).

The mapping class group of F 2
p is generated by the Dehn twists along two intersecting loops α, β

and the Dehn twist along the peripheral loop δ. With a careful arrangement, the peripheral loop is
away from the others and therefore the local monodromy is the composition ϕF 2

p
= Tu

δ ◦ φF 2
p

with
u ∈ Z and φF 2

p
generated by the Dehn twists along α, β. Thus, along the inclusion ι : F 2

p ↪! T2, the
pushforward ι∗(ϕF 2

p
) is equal to the pushforward ι∗(φF 2

p
). Fix the isomorphism between Mod(T2)

and SL(2,Z) such that the induced homomorphism Mod(F 2
p )! SL(2,Z) sends Tα (resp. Tβ) to[

1 0
1 1

]
(resp.

[
1 −1
0 1

]
).

Suppose that ι∗(ϕF 2
p
) ∈ Mod(T2) is expressed by A =

[
a b
c d

]
∈ SL(2,Z)

We take the basis of the homology group H1(F
2
p ) consisting of the cycles which are parallel

with α and β, which further determines the bases of H1(A,Z), H1(B,Z) and H1(A ∩ B,Z). The
pushforward ϕF 2

p ,∗ : H1(F
2
p ,Z)! H1(F

2
p ,Z) is again expressed by A. The homomorphism H1(A∩

B,Z) (i∗,j∗)
−−−−! H1(A,Z)⊕H1(B,Z) is an isomorphism whose corresponding 4×4-matrix is given by[

I A
I I

]
.

satisfying det(I −A) = ±1. Hence a+ d = 1 or 3.

Conversely, we do have a connected closed oriented 4-manifold M4 with a singular fibration
f : M4 ! S2 that has the singularities as desired. Both the trefoil knot and the figure-eight knot
are defined by the links of polynomial maps R4 ! R2 with an isolated critical point at 0. An
explicit realisation of the trefoil knot was first given by Brauner (see [Bra28]) who constructs a
complex polynomial

(fBrauner : C2 ! C) : (u, v) 7! u2 − v3.

Perron found the first realisation of the figure-eight knot in [Per82].
We end with the proof of Corollary B.

Proof of Corollary B. Without loss of generality, we assume that there does not exist any local
Milnor fibre of genus 0 with only 1 boundary components. By Corollary 2.2.15 and Lemma 2.2.16,
the type of singularities O(f1) = O(f2) consists of simple conjugacy classes of SL(2,Z).

All singular fibres are locally symmetric. If the local Milnor fibre is an annulus, then a mapping
class that commutes with the fibre monodromy preserves this annulus up to isotopy. If the local
Milnor fibre is a torus with a disc removed, then no mapping class changes the local Milnor fibre
up to isotopy.

Any pair of singular fibres with conjugate fibre monodromies has local Milnor fibres compatible
with their fibre monodromies, so they have the same local Milnor fibre up to isotopy. Therefore,
there exists a local fibre-preserving homeomorphism compatible with their fibre monodromies.

The corollary follows from Theorem C and Theorem 2.2.7.

2.3 Theorem of R. Livné, complement and extension
In this section, G is the modular group PSL(2,Z) ≃ Z/2Z ∗ Z/3Z, which we represent as

⟨a, b | a3 = b2 = 1⟩. Each element in G has the unique reduced form as a word in {a, a2, b} where
b’s and powers of a appear alternatively. The length of an element g ∈ G is defined as the length
of its reduced form, denoted by l(g).

Recall that elements in

S = {a, a2, b, s0 = a2b, s1 = aba, s2 = ba2, t0 = ba, t1 = a2ba2, t2 = ab} ⊂ G

are “short” ; the rest conjugates of short elements in G are called “ long”, which are expressed by
Q−1aϵQ, Q−1bQ or Q−1aϵbaϵQ with ϵ = 1, 2 and l(Q) ≥ 1. The following diagram shows all
conjugates of short elements and their conjugates with a, a2 and b.
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a a2 b a2b aba ba2 ba a2ba2 ab

a

Q−1aQ

b

a

Q−1a2Q

b

b

Q−1bQ

a

a a

a

b

Q−1abaQ

b

a a

a

b

Q−1a2ba2Q

b

Note that there are nice circuits along s0, s1, s2 and t0, t1, t2. In fact, we will see a lot of
symmetric properties on them. For convenience, the subscripts are regarded as elements in Z/3Z
and represented by 0, 1, 2 without further explanations.

Recall that elements in

S2 = S ∪ {bab, ba2b, a2ba, aba2, a2bab, ababa, baba2, ba2ba, a2ba2ba2, aba2b}

are “almost short” ; the rest conjugates of almost short elements in G are called “almost long”,
which are expressed by

Q−1baϵbQ,Q−1aϵbaϵQ,Q−1aϵba−ϵQ or Q−1aϵbaϵbaϵQ

with ϵ = 1, 2 and l(Q) ≥ 1. The almost short elements correspond to six conjugacy classes of G,
five of which have been illustrated and the following is the last one.

a2bab ababa baba2

ba2ba a2ba2ba2 aba2b

Q−1ababaQ

Q−1a2ba2ba2Q

a a

a

a a

a
b b

b

b

Recall that elementary transformations Ri, 1 ≤ i ≤ n− 1 on n-tuples in G send (g1, . . . gn) to
(g1, . . . , gi−1, gi+1, g

−1
i+1gigi+1, gi+2, . . . , gn) respectively. The inverse of Ri is given by R−1

i sending
(g1, . . . , gn) to (g1, . . . , gi−1, gigi+1g

−1
i , gi, gi+2, . . . , gn). Both Ri and R−1

i are called elementary
transformations. Especially, we will neither apply Ri if gi = 1 nor apply R−1

i if gi+1 = 1, but use
R−1

i and Ri instead respectively to avoid troubles.
Elementary transformations introduce many elegant substitutions for pairs of short elements.

Here we list some substitutions in the following graphs for readers unfamiliar with them.

(s0, s2)

(s1, s0)

(s2, s1) (si, a) (a, si+1)

(si, a
2) (a2, si−1)

(s0, b) (b, s2)

(s2, b) (b, s0)

(ti, a) (a, ti+1)

(ti, a
2) (a2, ti−1)

(t0, b) (b, t2)

(t2, b) (b, t0)

(t2, t0)

(t0, t1)

(t1, t2)(si, ti+1) (ti+1, si−1)

(si, ti−1) (ti+1, si)

Definition 2.3.1. An n-tuple (g1, . . . , gn) in G is said to be inverse-free if, applying any finite
sequence of elementary transformations, the resulting n-tuple satisfies the following requirements :

- it contains no adjacent elements which are mutually inverse ;
- it contains no sub-triple of the form (h, h, h) with h3 = 1.

For instance, (s1, t1), (a, a2), (b, b), (a, a, a) and their concatenations are not inverse-free.

Theorem 2.3.2 (Livné). Let g1, . . . , gn be conjugates of s1 such that g1 · · · gn = 1. Then, the
n-tuple (g1, . . . , gn) is Hurwitz equivalent to an n-tuple (h1, . . . , hn) with each hi short (i.e. the
component hi is equal to one of s0, s1 and s2).
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Moishezon showed a proof of Theorem 2.3.2 and introduced the following complement in
[Moi77].

Theorem 2.3.3 (Moishezon). Let h1, . . . , hn be such that each of hi, i = 1, . . . , n, is equal to one
of s0, s1 and s2 satisfying h1 · · ·hn = 1. Then, n ≡ 0 (mod 6) and the n-tuple (h1, . . . , hn) is
Hurwitz equivalent to (s0, s2)

n/2.

In this section, We first extend the above theorems for (g1, . . . , gn) with each gi conjugate to
some short element, then we show a similar result for (g1, . . . , gn) when each gi is conjugate to
some almost short element.

2.3.1 Tuples of short elements
Recall the set of short elements is S = {a, a2, b, s0, s1, s2, t0, t1, t2}. We first show that an

inverse-free tuple of short elements cannot contain both si and tj for any (i, j) ∈ (Z/3Z)2.

Proposition 2.3.4. Let g1, . . . , gn be short satisfying at most one of them is equal to one of a, a2,
b and g1 · · · gn = 1. Suppose that (g1, . . . , gn) is inverse-free. Then, either each of gi, i = 1, . . . , n
is equal to one of a, a2, b, s0, s1, s2 or each of gi, i = 1, . . . , n is equal to one of a, a2, b, t0, t1, t2.

Proof. Assume that at least one of g1, . . . , gn is conjugate to s0 and at least one of g1, . . . , gn
is conjugate to t0. The substitution of (sk, tk+1), (tk+1, sk−1) and the substitution of (sk, tk−1),
(tk+1, sk) imply that (g1, . . . , gn) can be transformed by elementary transformations into (h1, . . . , hn)
with p, q ≥ 1, p+q ∈ {n−1, n} such that h1 ∈ {a, a2, b, s0, s1, s2}, hi ∈ {s0, s1, s2} for i = 2, . . . , n−q
and hi ∈ {t0, t1, t2} for i = n − q + 1, . . . , n. Let A be the set of elements in {h1, . . . , hn},
As = A∩ {s0, s1, s2} and At = A∩ {t0, t1, t2}. The inverse-freeness requires that sj and tj cannot
appear together in A.

Assume that |As| = 1 = |At|. Then the product h1 · · ·hn is expressed by h̃suj t
v
k with h̃ ∈

{1, a, a2, b}, u, v ≥ 1 and j ̸= k. To ensure that (g1, . . . , gn) is inverse-free, the product must be
one of the following forms with u, v ≥ 1.

h̃ = 1 ⇒ su0 t
v
1 = (a2b)u(a2ba2)v,

su0 t
v
2 = (a2b)u(ab)v,

su1 t
v
0 = (aba)u(ba)v,

su1 t
v
2 = (aba)u(ab)v,

su2 t
v
0 = (ba2)u(ba)v,

su2 t
v
1 = (ba2)u(a2ba2)v.

h̃ = a ⇒ asu0 t
v
1 = a(a2b)u(a2ba2)v = b(a2b)u−1(a2ba2)v,

asu1 t
v
2 = a(aba)u(ab)v,

asu2 t
v
0 = a(baa)u(ba)v.

h̃ = a2 ⇒ a2su0 t
v
2 = a2(a2b)u(ab)v,

a2su1 t
v
0 = a2(aba)u(ba)v = ba(aba)u−1(ba)v,

a2su2 t
v
1 = a2(ba2)u(a2ba2)v.

h̃ = b ⇒ bsu0 t
v
1 = b(a2b)u(a2ba2b)v,

bsu1 t
v
0 = b(aba)u(ba)v,

bsu1 t
v
2 = b(aba)u(ab)v,

bsu2 t
v
1 = b(ba2)u(a2ba2)v = a2(ba2)u−1(a2ba2)v.

However, each of them cannot express 1, which contradicts the fact that h1 · · ·hn = g1 · · · gn = 1.
Assume that |As| = 1 and |At| = 2. Pairs of the form (tj , tj+1) never appear since the substi-

tutions of (t0, t1), (t1, t2) and (t2, t0) imply a contradiction with the inverse-freeness. If h̃ ̸= 1, then
the tuple (h1, . . . , hn) is expressed by (h̃) • (sj)u • (tj−1)

v • (tj+1)
w with h̃ ∈ {a, a2, b}, u, v, w ≥ 1

and some j. The substitution of (a, sk), (sk−1, a) and the substitution of (a2, sk), (sk+1, a
2) reveal

that h̃ = b. However, the substitution of (b, s0), (s2, b), the substitution of (b, s2), (s0, b) and the
following substitutions

(b) • (s1)u • (t0)v • (t2)w −! (b) • (t0)w • (s1)u • (t0)v −! (b) • (t2)v • (t0)w • (s1)u
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further conclude that h̃ = 1. Thus, g1 · · · gn = h1 · · ·hn is expressed by su0 t
v
2t

w
1 , su1 tv0tw2 or su2 tv1tw0

each of which cannot express 1, which is a contradiction.
We have a similar argument for the case where |As| = 2 and |At| = 1. Hence either none of

g1, . . . , gn is conjugate to s0 or none of g1, . . . , gn is conjugate to t0. We finish the prove of the
proposition.

As an immediate consequence, we have Lemma 2.3.5.

Lemma 2.3.5. Let g1, . . . , gn be equal to s0, s1, s2, t0, t1 or t2 satisfying g1 · · · gn = 1. Suppose that
(g1, . . . , gn) is inverse-free. Then, n ≡ 0 (mod 6) and the n-tuple (g1, . . . , gn) is Hurwitz equivalent
to either (s0, s2)

n/2 or (t0, t2)
n/2.

Proof. By Proposition 2.3.4, either each gi is equal to one of s0, s1, s2, or each gi is equal to one
of t0, t1, t2. By Theorem 2.3.3, the n-tuple can be transformed by elementary transformations into
either (s0, s2, s0, s2, s0, s2)

n/6 or (t0, t2, t0, t2, t0, t2)
n/6.

Note that s0s2s0s2s0s2 = t0t2t0t2t0t2 = 1 and in fact sextuples with alternative si’s and sj ’s
(resp. ti’s and tj ’s) can be transformed into each other by elementary transformations. In general,
we will show the reduced form of the product for a tuple with alternative powers of s0 and s2 (resp.
powers of t0 and t2). We will only prove Proposition 2.3.6 but omit the proof of Proposition 2.3.7,
which is quite similar. The idea comes from Moishezon (see [Moi77, p.181-187]) but with a slight
modification and a more subtle analysis.

Proposition 2.3.6. Let (g1, . . . , gn) be a tuple of s0, s2 with n ≥ 1 and take µ, ν ≥ 1. Let T be
the set of tuples of s0, s2 obtained from (g1, . . . , gn) by elementary transformations. Suppose that
each tuple in T satisfies the following requirements :

i) it starts with at least µ s2 ;
ii) it ends with at least ν s0 ;
iii) it contains no consecutive sub-tuples of the form (s0, s2)

3.
Then, the reduced form of g1 · · · gn is given by (ba2)µ−1bRb(a2b)ν−1 with some R ∈ G.

Proposition 2.3.7. Let (g1, . . . , gn) be a tuple of t0, t2 with n ≥ 1 and take µ, ν ≥ 1. Let T be
the set of tuples of t0, t2 obtained from (g1, . . . , gn) by elementary transformations. Suppose that
each tuple in T satisfies the following requirements :

i) it starts with at least µ t0 ;
ii) it ends with at least ν t2 ;
iii) it contains no consecutive sub-tuples of the form (t0, t2)

3.
Then, the reduced form of g1 · · · gn is given by (ba)µ−1bRb(ab)ν−1 with some R ∈ G.

Proof of Proposition 2.3.6. Using elementary transformations on (g1, . . . , gn) we can get different
resulting tuples in {s0, s2}, which form the set T . Suppose that (h1, . . . , hn) is the maximal among
them according to the lexicographical order given by s0 < s2. We write (h1, . . . , hn) in the following
form

(h1, . . . , hn) =

N∏
i=1

(s2)
ui • (s0)vi

with
∑N

i=1(ui + vi) = n, where u1 ≥ µ, vN ≥ ν and ui > 0, vi > 0 for all i = 1, . . . , N .
Claim 1 : ui ≥ 2, i = 2, 3, . . . , N .
Claim 2 : v1 ≥ 2.
Claim 3 : For i ∈ {1, 2, . . . , N − 2}, if vi = 1 then vi+1 > 1.
Claim 4 : For i ∈ {2, 3, . . . , N − 1}, if vi = 1 then ui ≥ 3 and ui+1 ≥ 3.
Claim 1 relies on the maximality of (h1, . . . , hn). Claim 2 uses the first hypothesis. The third

hypothesis guarantees both Claim 3 and 4. Now, set Yi = (s0)
vi • (s2)ui+1 for i = 1, . . . , N − 1, say

it to be of the second type if vi ≥ 2, the first type if vi = 1. Claim 2 shows that Y1 is of the second
type and Claim 3 reveals that there is no adjacent pair in the first type. Hence, we are able to find
sub-tuples Z1, . . . , ZM of (h1, . . . , hn) such that each Zj , j = 1, . . . ,M , is either

- equal to some Yi of the second type with i ∈ {1, . . . , N − 1}, or
- the concatenation Yi • Yi+1 with i ∈ {1, . . . , N − 2} where Yi+1 is of the first type

and we can write (h1, . . . , hn) in the form

(h1, . . . , hn) = (s2)
u1 •

M∏
j=1

Zj • svN0 .
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For j = 1, . . . ,M , if Zj is equal to some Yi of the second type, then the product of components
of Zj has the reduced form a2Rja

2 with some Rj ∈ G. Indeed, Zj = (s0)
vi • (s2)ui+1 with vi ≥ 2

and ui+1 ≥ 2, the product of whose components is equal to (a2b)vi−1a(ba2)ui+1−1. If Zj = Yi•Yi+1,
i ∈ {1, . . . , N − 2}, then the product of its components is given by

svi0 s
ui+1

2 s
vi+1

0 s
ui+2

2 = (a2b)vi−1a(ba2)ui+1−2a2(ba2)ui+2−2

with vi+1 = 1, ui+1 ≥ 3, ui+2 ≥ 3 and vi ≥ 2, which also has the reduced form a2Rja
2 with some

Rj ∈ G. Hence, g1 · · · gn = h1 · · ·hn has the form

(ba2)u1

M∏
j=1

(a2Rja
2)(a2b)vN

with Rj ∈ G, j = 1, . . . ,M where each of a2Rja
2 is reduced.

2.3.2 Conjugates of short elements and tuples
Suppose that (g1, . . . , gn) is an n-tuple with each gi conjugate to some short element (i.e. the

component gi is conjugate to a, a2, b or s1, t1). In this subsection we show that, in the vast majority
of cases, by successive application of elementary transformations the n-tuple can be transformed
into an n-tuple of short elements.

Lemma 2.3.8. Let g1, g2, h, Q′ ∈ G be such that h = g1g2. Then both

(Q′−1h−1g1hQ
′, Q′−1h−1g2hQ

′) and (Q′−1hg1h
−1Q′, Q′−1hg2h

−1Q′)

are Hurwitz equivalent to (Q′−1g1Q
′, Q′−1g2Q

′).

Proof. Using R−2
1 , we transform

(Q′−1h−1g1hQ
′, Q′−1h−1g2hQ

′)

into (Q′−1g1Q
′, Q′−1g−1

1 hQ′). The result is equal to (Q′−1g1Q
′, Q′−1g2Q

′) as g−1
1 h = g2. Similarly

(Q′−1hg1h
−1Q′, Q′−1hg2h

−1Q′)

can be transformed into (Q′−1g1Q
′, Q′−1g2Q

′) by applying R2
1.

Lemma 2.3.9. Let ϵ = ±1 and suppose that (τ1, τ2) is equal to one of

{(aϵbaϵ, a−ϵ), (a−ϵ, aϵbaϵ), (ba−ϵ, a−ϵ), (a−ϵ, a−ϵb), (aϵ, baϵ), (aϵb, aϵ)}.

Let (g1, g2) = (Q−1τ1Q,Q
−1τ2Q) be a pair in G with Q ∈ G and suppose that Q−1τ1τ2Q is short.

Then (g1, g2) is Hurwitz equivalent to a pair of short elements.

Proof. When τ1τ2 = aϵb, since Q−1aϵbQ is short, Q is either (aϵb)kaζ or (ba−ϵ)laζ with k, l ≥ 0 and
ζ = 0, 1, 2. If Q = aζ , then both Q−1τ1Q and Q−1τ2Q are short. The result follows from Lemma
2.3.8. When τ1τ2 = baϵ or τ1τ2 = aϵbaϵ, the proof is similar.

We introduce the following operations and their restorations on an n-tuple (g1, . . . , gn) of ele-
ments in G conjugate to some short elements.

- Operation 1 : For i ∈ {1, . . . , n − 1}, suppose that the reduced forms of gi and gi+1 are
expressed by Q−1

i τiQi and Q−1
i+1τi+1Qi+1 with τi, τi+1 ∈ S, Qi, Qi+1 ∈ G such that Qi =

Qi+1, (τi, τi+1) is listed in Table 2.1 and either Qi = 1 or τiτi+1 = 1 or both τi, τi+1 are
powers of a. Then, the operation is a contraction as in Subsection 2.1.2 that replaces (gi, gi+1)
with gigi+1.

- Operation 2 : For i ∈ {1, . . . , n}, suppose that gi = 1. The operation moves the identical
component to the rightmost position via elementary transformations, removes it and reduces
(g1, . . . , gn) to an (n− 1)-tuple.

Operation 1 is a contraction, whose restoration is introduced in Subsection 2.1.1. The restoration
of Operation 2 will simply add an identical element on the right side of the tuple. The following
proposition shows that, if we use the technique introduced in Subsection 2.1.1 carefully, the resulting
tuple is under control.
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gi

gi · gi+1 gi+1
a a2 b a2b aba ba2 ba a2ba2 ab

a a2 1 b aba ba2 a2b
a2 1 a ab ba a2ba2 b
b 1 a2 a
a2b a2ba2 a2 a 1
aba ab a 1
ba2 b ba a 1
ba ba2 b 1 a2

a2ba2 a2b 1 a2

ab aba a 1 a2

Table 2.1 – Some pairs (gi, gi+1) of short elements and the products gigi+1.

Proposition 2.3.10. Let (g1, . . . , gn) be an inverse-free n-tuple of elements in G conjugate to
some short elements such that g1 · · · gn = 1. Suppose that we first apply the following operations
successively on (g1, . . . , gn) :

i) the elementary transformation Ri, but avoiding that gi is short and g−1
i−1gigi+1 is long ;

ii) the elementary transformation R−1
i , but avoiding that gi+1 is short and gigi+1g

−1
i is long ;

iii) Operation 1 ;
iv) Operation 2 ;

then apply restorations of Operation 1 and 2 in the reverse order. If all components in the resulting
tuple before restorations are short, then the initial tuple is Hurwitz equivalent to the resulting tuple
after restorations and further Hurwitz equivalent to a tuple of short elements.

Proof. Lemma 2.1.8 shows that the initial tuple is Hurwitz equivalent to the resulting tuple after
all operations and restorations. We suppose that each component is short in the tuple before
restorations.

Operation 1 may combine Q−1τiQ and Q−1τjQ into Q−1τiτjQ with Q ∈ G and τi, τj ∈ S. By
elementary transformations, the product is sent to a conjugate of the form P−1Q−1τiτjQP with
some P ∈ G. To restore the operation, it is further rewritten as a pair

(P−1Q−1τiQP,P
−1Q−1τjQP ).

Suppose that P−1Q−1τiτjQP is short and (τi, τj) is listed in Table 2.1.
When τiτj ∈ {a, a2}, the elementQP must be a power of a. It is not true that both P−1Q−1τiQP

and P−1Q−1τjQP are short in general, as a conjugate of b with a power of a may be long. We list
all exceptional possibilities of (P−1Q−1τiQP,P

−1Q−1τjQP ) as below.

(ba2, aba2), (aba, a2ba), (ba, a2ba), (a2ba2, aba2), (a2ba, a2b), (aba2, aba), (aba2, ab), (a2ba, a2ba2).

However, each of them can be transformed into a pair of short elements by at most two elementary
transformations.

When τiτj = b, the element QP must be a power of b. A conjugate of a or a2 with a power
of b may be long. The exceptional possibilities of (P−1Q−1τiQP,P

−1Q−1τjQP ) that one of the
components is long are listed as below.

(bab, ba2), (ba2b, ba), (a2b, bab), (ab, ba2b).

Again, each of them can be transformed into a pair of short elements by an elementary transfor-
mation.

When τiτj = 1, we get P = 1. Assume that one of Q−1τiQ and Q−1τjQ is long, the inverse-
freeness of (g1, . . . , gn) implies that τi and τj are powers of a and Q is not a power of a. Due to the
hypothesis that elementary transformations never make short elements long, after all restorations,
Q−1τiτjQ (as an additional identical element) will become a sub-tuple (h1, · · · , hm) with m ≥ 2
such that h1, . . . , hm are conjugate to the powers of a simultaneously. It contradicts the inverse-
freeness. Thus, both Q−1τiQ and Q−1τjQ are short.

The remaining cases shown in Table 2.1 are covered by Lemma 2.3.9. Hence, by successive
application of elementary transformations, each of the components of the resulting tuple is short.

33



Definition 2.3.11. The S-complexity of an element g ∈ G conjugate to some element in S is
defined as f(g) such that

f(g) =

{
l(Q) if g = Q−1wQ is long with w ∈ {aϵ, b, aϵbaϵ|ϵ = 1, 2} and Q ∈ G ;
0 if g is short.

Definition 2.3.12. Let (g1, . . . , gn) be an n-tuple in G such that each of gi, i = 1, . . . , n,
is conjugate to some element in S. A sequence of elementary transformations (Rϵ1

i1
, . . . , Rϵm

im
),

ϵ1, . . . , ϵm ∈ {1,−1}, is said to make the sum of S-complexities of (g1, . . . , gn) strictly-smaller if,
for each m′ < m, the composition R

ϵm′
im′ ◦ · · · ◦ Rϵ1

i1
transforms (g1, . . . , gn) into a tuple with the

same sum of S-complexities but Rϵm
im

◦ · · · ◦Rϵ1
i1

transforms (g1, . . . , gn) into a tuple with a smaller
sum of S-complexities.

A sequence of elementary transformations that makes the sum of S-complexities strictly-smaller
never makes short elements long, as described in Proposition 2.3.10 i) and ii).

Let (g1, . . . , gn) be an n-tuple in G. For i = 1, . . . , n− 1, suppose that the reduced forms of gi
and gi+1 are expressed by t

(i)
ki
. . . t

(i)
1 and t̃

(i)
1 . . . t̃

(i)
li

with ki = l(gi), li = l(gi+1), t
(i)
j ∈ {a, a2, b},

j = 1, . . . , ki and t̃(i)j ∈ {a, a2, b}, j = 1, . . . , li. The reduced form of gigi+1 is then either

t
(i)
ki
. . . t

(i)
mi+1rit̃

(i)
mi+1 . . . t̃

(i)
li

or t(i)ki
. . . t

(i)
mi+1ri or rit̃

(i)
mi+1 . . . t̃

(i)
li

where ri ∈ G, l(ri) ≤ 1 and 0 ≤ mi ≤ ki, li.

Lemma 2.3.13. Let (g1, . . . , gn) be an n-tuple in G such that each of gi, i = 1, . . . , n, is conjugate
to some element in S and g1 · · · gn = 1. Let mi be the same as above and set m0 = mn = 0 for
convenience. Suppose that
(1) there is no pair of adjacent components gi, gi+1 of the reduced forms Q−1τiQ, Q−1τi+1Q

with Q ∈ G and (τi, τi+1) in Table 2.1 such that either Qi = 1 or τiτi+1 = 1 or both τi, τi+1

are powers of a.
(2) there is no sequence of elementary transformations that makes

∑
i f(gi) strictly-smaller.

Then m0, . . . ,mn have the following properties.
(a) For i = 1, . . . , n− 1, mi ≤ l(gi)+1

2 and mi ≤ l(gi+1)+1
2 .

(b) For i = 1, . . . , n, mi−1 +mi ≥ l(gi) only if the reduced form of gi is Q−1
i aϵiQi with ϵi = 1, 2,

Qi ∈ G and l(Qi) ≥ 0.
(c) If mi−1 +mi ≤ l(gi) for each of i = 1, . . . , n, then n = 0.

Proof. (a) When both gi and gi+1 are short, since (gi, gi+1) does not figure in Table 2.1, we check
all possibilities and get that mi ≤ l(gi)+1

2 , l(gi+1)+1
2 .

When gi ∈ S but gi+1 ̸∈ S, say gi+1 = Q−1
i aϵiQi or Q−1

i bQi or Q−1
i aϵibaϵiQi with ϵi = 1, 2

and l(Qi) ≥ 1, therefore l(gi) ≤ 3 ≤ l(gi+1). Assume that mi >
l(gi)+1

2 , then mi = l(gi) and
l(gi) ≥ 2. If l(gi) = mi = 2, as gi+1 is long, then l(gigi+1g

−1
i ) ≤ l(gi+1) − 2, contradicting the

hypothesis (2). If l(gi) = mi = l(gi+1) = 3, then the pair (gi, gi+1) is either (s1, a2ba) or (t1, aba2),
which can be transformed into a pair of short elements by R2

1, contradicting the hypothesis (2)
If l(gi) = mi = 3 but l(gi+1) ≥ 5, then again l(gigi+1g

−1
i ) ≤ l(gi+1) − 2, a contradiction. Hence

mi ≤ l(gi)+1
2 ≤ l(gi+1)+1

2 .
When gi ̸∈ S but gi+1 ∈ S, there is a similar argument.
When both gi and gi+1 are long, suppose that their reduced forms are

Q−1
i wiQi and Q−1

i+1wi+1Qi+1

with wi, wi+1 ∈ {a, a2, b, aba, a2ba2}. Assume that l(Qi) ≤ l(Qi+1) without loss of generality.
Assume that mi > min{ l(gi)+1

2 , l(gi+1)+1
2 }. Therefore Qi+1 ends with Qi. Write Qi+1 = Q̃Qi+1 and

(gi, gi+1) = (Q−1
i wiQi, Q

−1
i Q̃−1wi+1Q̃Qi).

Suppose that l(Q̃) = 0. We further assume that l(wi) ≤ l(wi+1) without loss of generality. Since
mi > l(Qi)+

l(wi)+1
2 , wiwi+1 ̸= 1 and one of wi, wi+1 is not a power of a, the pair (wi, wi+1) must

be either (a, a2ba2) or (a2, aba). Therefore, l(gigi+1g
−1
i ) ≤ l(gi+1)−2, contradicting the hypothesis

(2).
Suppose that the element Q̃ is of length at least 1. Therefore l(wi) ≤ 3 ≤ l(Q̃−1wi+1Q̃) andmi >

l(gi)+1
2 . If l(wi) = 1, thenmi > l(Qi)+1 and l(gigi+1g

−1
i ) ≤ l(gi+1)−2, contradicting the hypothesis
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(2). If l(wi) = 3 and l(Q̃−1wi+1Q̃) = 3, then (wi, Q̃
−1wi+1Q̃) is either (s1, a

2ba) or (t1, aba
2) and

therefore (gi, gi+1) can be transformed into either (Q−1
i a2bQi, Q

−1
i bQi) or (Q−1

i abQi, Q
−1
i bQi) by

R2
1, contradicting the hypothesis (2). If l(wi) = 3 and l(Q̃−1wi+1Q̃) ≥ 5, then mi ≥ l(Qi) + 3 and

l(gigi+1g
−1
i ) ≤ l(gi+1)− 2, contradicting the hypothesis (2).

(b) Suppose that mi−1 +mi ≥ l(gi) for some i = 1, . . . , n− 1.
Suppose that gi ∈ S. If gi is of length 2 (i.e. the element gi is one of s0, s2, t0 and t2), then

mi−1 = mi = 1. Therefore, one of gi−1, gi+1 is equal to b, contradicting Table 2.1. If gi = b, then
one of gi−1 and gi+1 is long starting and ending with b. Therefore, either l(g−1

i gi−1gi) < l(gi−1) or
l(gigi+1g

−1
i ) < l(gi+1), contradicting the hypothesis (2). If gi = aϵibaϵi with ϵi = 1, 2, then one of

mi−1 and mi is equal to 2 and thus one of gi−1, gi+1 is long. It is impossible as long elements are
of length at least 3.

Suppose that gi is long. If gi = Q−1
i bQi, then either gi−1 = bQi or gi+1 = Q−1

i b, but thus either
gi−1gig

−1
i−1 = bQi(Q

−1
i bQi)Q

−1
i b = b or g−1

i+1gigi+1 = bQi(Q
−1
i bQi)Q

−1
i b = b. If gi = Q−1

i aϵibaϵiQi

with ϵi = 1, 2, then either mi−1 = l(Q−1
i aϵib) or mi = l(baϵiQi). It implies that either gi−1 =

ba−ϵiQi or gi+1 = Q−1
i a−ϵib, thus either gi−1gig

−1
i−1 = a2ϵib or g−1

i+1gigi+1 = ba2ϵi . Both cases
contradict the hypothesis (2).

We conclude that either gi = aϵi or gi = Q−1
i aϵiQi.

(c) Assume that n ≥ 1.
By (2), when mi−1+mi = l(gi), then gi = Q−1

i aϵiQi with ϵi = 1, 2 and l(Qi) ≥ 0. If gi = aϵi is
short and assume that mi−1 = 0, mi = 1 without loss of generality, then gi+1 is either aϵibaϵi or a
long element starting with aϵi . If gi = Q−1

i aϵiQi is long and mi−1 = l(Qi), to avoid l(gi−1gig
−1
i−1) <

l(gi) then gi−1 must be longer thanQ−1
i , contradicting the hypothesis thatmi−1 = l(Qi). Therefore,

neither mi−1 nor mi is equal to l(Qi) and in particular, mi−1 +mi < l(gi).
The proof of (2) and the above observation show that there is no possibility to fully reduce gi

or gi+1 in the product gigi+1 and mi−1 +mi < l(gi) if gi ̸= aϵi . They imply a contradiction that
g1 · · · gn ̸= 1.

Now we introduce the main result in this subsection.

Theorem 2.3.14. Let g1, . . . , gn be such that each of them is conjugate to some element in S and
g1 · · · gn = 1. Then, the n-tuple (g1, . . . , gn) is Hurwitz equivalent to either

- (h1, . . . , hµ) • (s0, t0)mst • (a, a2)ma • (b, b)mb • (a, a, a)n0 • (a2, a2, a2)n1 with µ > 0, mst, ma,
mb, n0, n1 ≥ 0, µ+2(mst+ma+mb)+3(n0+n1) = n such that (h1, . . . , hµ) is an inverse-free
µ-tuple of short elements, or

- (k1, k
−1
1 , . . . , ks, k

−1
s , l1, l1, l1, . . . , lt, lt, lt) with s, t ≥ 0, 2s+3t = n, k1, . . . , ks ∈ G, l1, . . . , lt ∈

G and l3j = 1 for each j = 1, . . . , t.

Proof. We first attempt to make the tuple inverse-free. Applying any finite sequence of elementary
transformations to (g1, . . . , gn), if we get a pair of mutually inverse elements or a triple of the
form (l, l, l) with l ∈ G and l3 = 1, then we move it to the rightmost position via elementary
transformations and the resulting tuple is the concatenation of a shorter tuple and either a pair or
a triple. By induction on the length, we suppose that the n-tuple (g1, . . . , gn) is transformed into
the concatenation of (h1, . . . , hµ) and (k1, k

−1
1 , . . . , ks, k

−1
s , l1, l1, l1, . . . , lt, lt, lt) with µ, s, t ≥ 0,

µ+ 2s+ 3t = n such that l3j = 1 for each j = 1, . . . , t where (h1, . . . , hµ) is inverse-free.
We will always use the notation mi to indicate the length of the reduced part in hihi+1 for

i = 1, . . . , µ− 1 and set m0 = mµ = 0 as before.
To prove the theorem for (h1, . . . , hµ), we use induction on

(
µ,

µ∑
i=1

f(hi), l(h1), . . . , l(hµ)
)

and apply the following operations on (h1, . . . , hµ). If there exists a pair of adjacent components
which has the reduced form (Q−1τiQ,Q

−1τjQ) with Q ∈ G, (τi, τj) in Table 2.1 such that either
Q = 1 or τiτj = 1 or both τi, τj are powers of a, then we replace them with their product and
reduce (h1, . . . , hµ) to a (µ−1)-tuple. If there exists an identical component, then we move it to the
rightmost position and remove it. If there exists a proper sequence of elementary transformations
that can make

∑
i f(hi) strictly-smaller, then we apply it.

When each of the above operations fails, the resulting tuple, still denoted by (h1, . . . , hµ),
satisfies all hypotheses in Lemma 2.3.13. Suppose that µ ≥ 1 and there exists some i = 2, . . . , µ−1
such that hi = Q−1

i aϵiQ with ϵi = 1, 2, l(Qi) ≥ 0 and mi−1 = mi = l(Qi) + 1. Then, either
- (hi−1, hi) = (aϵibaϵi , aϵi), or
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- the previous component hi−1 is long and l(hi−1) ≥ l(hi).
In the second case, we first assume that l(hi−1) = l(hi). Then hi−1 = Q−1

i aϵiQi = hi, which
is a contradiction. Hence, l(hi−1) > l(hi) and, to avoid l(h−1

i hi−1hi) < l(hi−1), we claim that
hi−1 must end with aϵiQi and start with Q−1

i a−ϵi . In both cases, l(h−1
i hi−1hi) ≤ l(hi−1) and we

are able to reduce (h1, . . . , hµ) to an n-tuple, say (h̃1, . . . , h̃µ), such that
∑

j f(hj) =
∑

j f(h̃j),
l(hj) = l(h̃j) for 1 ≤ j < i − 1 but l(h̃i−1) = l(hi) < l(hi−1) via the elementary transformation
Ri−1.

The induction does not stop unless µ is equal to 0. Due to Proposition 2.3.10, by restoring the
operations and applying more elementary transformations, we get a resulting µ-tuple of short ele-
ments that can be obtained from the original (h1, . . . , hµ) via elementary transformations directly.
Hence, the n-tuple (g1, . . . , gn) can be transformed into

(h′1, . . . , h
′
µ, k1, k

−1
1 , . . . , ks, k

−1
s , l1, l1, l1, . . . , lt, lt, lt)

with µ, s, t ≥ 0, µ + 2s + 3t = n, l3j = 1 for each j = 1, . . . , t such that each of h′i, i = 1, . . . , µ is
short and (h′1, . . . , h

′
µ) is inverse-free.

Suppose that µ > 0. There is always a pair (h′i, h
′
j) of components with 1 ≤ i ̸= j ≤ µ that is a

generating set of G. By Lemma 2.1.6, each pair of the form (k, k−1) = (Q−1wQ,Q−1w−1Q) with
Q ∈ G, w,w−1 ∈ {a, a2, b, s0} in the resulting tuple can be transformed into (w,w−1). There is
a similar argument for each triple (l, l, l) with l3 = 1. Hence, by elementary transformations, the
n-tuple can be transformed into a tuple of short elements.

Theorem 2.3.14 is surprising. In fact, there are infinitely many pairs (gs, gt) in G up to Hurwitz
equivalence such that gsgt = 1 and gs, gt are conjugates of s0 and t0 respectively. However, all
triples (ga, gb, gs) that gagbgs = 1 and ga, gb, gs are conjugates of a, b, s0 respectively, are mutually
Hurwitz equivalent. In particular, for any Q ∈ G, we have

(Q−1aQ,Q−1aba2Q,Q−1abaQ) ∼ (a, b, s2).

2.3.3 Classification of tuples up to Hurwitz equivalence
Given g1, . . . , gn and h1, . . . , hn ∈ G conjugate to elements in S such that g1 · · · gn = h1 · · ·hn =

1, suppose that the n-tuples (g1, . . . , gn) and (h1, . . . , hn) have the same number of components
in each conjugacy class. In this subsection, we show that (g1, . . . , gn) is Hurwitz equivalent to
(h1, . . . , hn) in most cases. In particular, we introduce a normal form for tuples of elements conju-
gate to some short elements that only depends on the numbers of components in every conjugacy
classes.

The following theorem is a partial result, which interprets the projective global monodromy
of an achiral Lefschetz fibration. Matsumoto presented a slightly different theorem in [Mat85,
Theorem 3.6].

Theorem 2.3.15. Let g1, . . . , gn ∈ G be such that p of them are conjugates of s0, q = n − p of
them are conjugates of t0 and g1 · · · gn = 1. Then,

1. if p > q, then p − q ≡ 0 (mod 6) and the n-tuple (g1, . . . , gn) is Hurwitz equivalent to
(s0, s2)

(p−q)/2 • (s0, t0)q ;
2. if p < q, then q − p ≡ 0 (mod 6) and the n-tuple (g1, . . . , gn) is Hurwitz equivalent to

(t0, t2)
(q−p)/2 • (s0, t0)p ;

3. if p = q, then the n-tuple (g1, . . . , gn) is Hurwitz equivalent to (k1, k
−1
1 , . . . , kp, k

−1
p ) where

each of kj, j = 1, . . . , p, is conjugate to s0.

Proof. Theorem 2.3.14 reveals that, by elementary transformations, the n-tuple can be transformed
into either (k1, k

−1
1 , . . . , ks, k

−1
s ) with s = p = q or (h1, . . . , hµ) • (s0, t0)mst with µ > 0, mst ≥ 0,

µ+ 2mst = n such that (h1, . . . , hµ) is an inverse-free µ-tuple of short elements. On the latter, by
Lemma 2.3.5, we get µ ≡ 0 (mod 6) and (h1, . . . , hµ) can be transformed into either (s0, s2)

µ/2 or
(t0, t2)

µ/2 by elementary transformations. Hence, mst = min{p, q} and µ = |p− q|.

In general, we have Theorem 2.1.16, whose proof will be given at the end.

Lemma 2.3.16. Let g1, . . . , gn be a2, s0, s1 or s2 such that only one of them is equal to a2 and
g1 · · · gn = 1. Then, n ≡ 3 (mod 6) and the n-tuple (g1, . . . , gn) is Hurwitz equivalent to

(a2, s0, s2) • (s0, s2)(n−3)/2.
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Proof. Since a cyclic permutation of an n-tuple in G can be obtained by a finite sequence of
elementary transformations as in Lemma 2.1.2, we may assume that g1 = a2 without loss of
generality. Since g1 · · · gn = 1, then n ≥ 3. If n = 3, then the pair (g1g2, g3) must be equal to (tj , sj)
with some j and therefore (g1, g2, g3) is given by (a2, sj+1, sj) as atj = sj+1. Otherwise, n ≥ 4.
We replace g1 and g2 with their product, which is one of t0, t1 and t2. The n-tuple (g1, . . . , gn) is
replaced by an (n− 1)-tuple whose first component belongs to {t0, t1, t2} and the rest components
are s0, s1 or s2. By Theorem 2.3.15, (n − 1) − 2 ≡ 0 (mod 6) and the (n − 1)-tuple can be
transformed into (s0, s2)

(n−3)/2 • (s0, t0) by successive application of elementary transformations.
We note that the original n-tuple (g1, . . . , gn) must be inverse-free and, after combining s0 and t0
into 1 and removing it, we make the result an inverse-free tuple of short elements. By Proposition
2.3.10, it implies a sequence of elementary transformations sending the n-tuple (g1, . . . , gn) into
(s0, a

2, s1) • (s0, s2)(n−3)/2. In any case, the substitutions of (s0, s2), (s1, s0) and (s2, s1) transform
the n-tuple (g1, . . . , gn) into (a2, s0, s2) • (s0, s2)(n−3)/2.

The following lemma can be proved similarly and we omit the details.

Lemma 2.3.17. Let g1, . . . , gn be a, t0, t1 or t2 such that only one of them is equal to a and
g1 · · · gn = 1. Then, n ≡ 3 (mod 6) and the n-tuple (g1, . . . , gn) is Hurwitz equivalent to

(a, t2, t0) • (t0, t2)(n−3)/2.

Lemma 2.3.18. Let g1, . . . , gn be b, s0, s1 or s2 such that only one of them is equal to b and
g1 · · · gn = 1. Then, n ≡ 4 (mod 6) and the n-tuple (g1, . . . , gn) is Hurwitz equivalent to

(b, s0, s2, s0) • (s0, s2)(n−4)/2.

Proof. Without loss of generality, we assume that all the n-tuple in {b, s0, s1, s2} resulting from
the successive application of elementary transformations on (g1, . . . , gn) contain no consecutive
sub-tuples of the form (s0, s2)

3.
Take the n-tuple in {b, s0, s1, s2} that starts with b and contains the minimal number of com-

ponents equal to s1 among all resulting tuples that we can get using elementary transformations
on (g1, . . . , gn), still denoted by (g1, . . . , gn). We write it as

(b) •
( n0∏

j=1

(s2)
u0,j • (s0)v0,j

)
•
( µ∏

i=1

(s1)
λi •

( ni∏
j=1

(s2)
ui,j • (s0)vi,j

))
with µ ≥ 0, λ1, . . . , λµ ≥ 1, n0, nµ ≥ 0, n1, . . . , nµ−1 ≥ 1 and ui,j , vi,j ≥ 0 for i = 0, . . . , µ,
j = 1, . . . , ni where ui,j ≥ 1 for j > 1 and vi,j ≥ 1 for j < ni. The minimality further requires that
ui,1 ≥ 1 for i = 1, . . . , µ and vi,ni ≥ 1 for i = 0, . . . , µ− 1.

Assume that (g1, . . . , gn) does not start with (b, s2) or (b) • (s0)v0,1 • (s2, s0), nor end with s0 or
(s2, s0)•(s2)uµ,nµ . Then, u0,1 = vµ,nµ

= 0, either n0 ≤ 1 or u0,2 ≥ 2 and either nµ ≤ 1 or vµ,nµ−1 ≥
2. Applying Proposition 2.3.6 with the above restrictions, we obtain that the reduced form of
g1 · · · gn is not equal to 1, which is a contradiction. Hence, using the substitution of (s0, s2, s0)
and (s2, s0, s2) and a cyclic permutation if necessary, the n-tuple is transformed into an n-tuple in
{b, s0, s1, s2}, still denoted by (g1, . . . , gn), such that (g1, g2) is equal to either (b, s2) or (s0, b). We
combine g1 and g2 into their product and replace (g1, . . . , gn) with an (n−1)-tuple in {a2, s0, s1, s2}
starting with a2. By Lemma 2.3.16 we get n − 1 ≡ 3 (mod 6) and, by successive application of
elementary transformations, the (n− 1)-tuple can be transformed into (a2, s0, s2) • (s0, s2)(n−4)/2.
By Proposition 2.3.10, we obtain an n-tuple of the form either (b, s2, s0, s2) • (s0, s2)

(n−4)/2 or
(s0, b, s0, s2) • (s0, s2)(n−4)/2 from (g1, . . . , gn) using elementary transformations. The substitution
of (s0, s2, s0) and (s2, s0, s2) completes the proof.

Again, the following lemma is similar and we omit the proof.

Lemma 2.3.19. Let g1, . . . , gn be b, t0, t1 or t2 such that only one of them is equal to b and
g1 · · · gn = 1. Then, n ≡ 4 (mod 6) and the n-tuple (g1, . . . , gn) is Hurwitz equivalent to

(b, t0, t2, t0) • (t0, t2)(n−4)/2.

Lemma 2.3.20. Let g1, . . . , gn be a, s0, s1 or s2 such that only one of them is equal to a and
g1 · · · gn = 1. Then, n ≡ 5 (mod 6) and the n-tuple (g1, . . . , gn) is Hurwitz equivalent to

(a, s0, s0, s2, s0) • (s0, s2)(n−5)/2.
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Proof. Without loss of generality, we assume that each n-tuple in {a, s0, s1, s2} that results from
the successive application of elementary transformations on (g1, . . . , gn) contains no consecutive
sub-tuples of the form (s0, s2)

3.
Take the n-tuple in {a, s0, s1, s2} that starts with a and contains the minimal number of com-

ponents equal to s1 among all resulting tuples that we can get using elementary transformations
on (g1, . . . , gn), still denoted by (g1, . . . , gn). Assume that

(g1, g2) ̸= (a, s0), (gn, g1) ̸= (s2, a) and (gn, g1, g2) ̸= (s1, a, s1).

Then, the n-tuple (g1, . . . , gn) is written as

(a) •
( n0∏

j=1

(s2)
u0,j • (s0)v0,j

)
•
( µ∏

i=1

(s1)
λi •

( ni∏
j=1

(s2)
ui,j • (s0)vi,j

))
with µ ≥ 0, λ1, . . . , λµ ≥ 1, n0, nµ ≥ 0 but n0 + nµ ≥ 1, n1, . . . , nµ−1 ≥ 1 and ui,j , vi,j ≥ 1 for
i = 0, . . . , µ, j = 1, . . . , ni. Applying Proposition 2.3.6, we notice that the reduced form of g1 · · · gn
is not equal to 1, which is a contradiction. Hence, one of the above requirements cannot be fulfilled.

If either (g1, g2) = (a, s0) or (gn, g1) = (s2, a), using a cyclic permutation if necessary, then the
pair (g1, g2) is equal to either (a, s0) or (s2, a). We combine g1 and g2 into a single b and replace
(g1, . . . , gn) with an (n−1)-tuple in {b, s0, s1, s2} starting with the only b. By Lemma 2.3.18, we get
n−1 ≡ 4 (mod 6) and there exists a finite sequence of elementary transformations that transforms
the (n− 1)-tuple into (b, s0, s2, s0) • (s0, s2)(n−5)/2. Proposition 2.3.10 implies that (g1, . . . , gn) can
be transformed by elementary transformations into either

(a, s0, s0, s2, s0) • (s0, s2)(n−5)/2 or (s2, a, s0, s2, s0) • (s0, s2)(n−5)/2.

If (gn, g1, g2) = (s1, a, s1), by a cyclic permutation and an elementary transformation, then the
n-tuple can be transformed into (s1, s0, a, g3, . . . , gn−1). We combine s1 and s0 into a, further
combine a and a into a single a2 and replace the n-tuple with an (n − 2)-tuple in {a2, s0, s1, s2}
starting with the only a2. By Lemma 2.3.16, we get n − 2 ≡ 3 (mod 6) and the (n − 2)-tuple
can be transformed by elementary transformations into (a2, s0, s2)• (s0, s2)(n−5)/2. By Proposition
2.3.10, the n-tuple (g1, . . . , gn) can be transformed into (sj+1, sj , a, s0, s2) • (s0, s2)

(n−5)/2 with
some j. The substitutions of (s0, s2), (s1, s0), (s2, s1) and the substitution of (s0, s2, s0), (s2, s0, s2)
conclude the lemma.

Once again, the following lemma is similar and we omit the proof.

Lemma 2.3.21. Let g1, . . . , gn be a2, t0, t1 or t2 such that only one of them is equal to a2 and
g1 · · · gn = 1. Then, n ≡ 5 (mod 6) and the n-tuple (g1, . . . , gn) is Hurwitz equivalent to

(a2, t0, t2, t0, t0) • (t0, t2)(n−5)/2.

Proof of Theorem 2.1.16. By Theorem 2.3.14, we are able to transform (g1, . . . , gn) into either

(k1, k
−1
1 , . . . , ks, k

−1
s , l1, l1, l1, . . . , lt, lt, lt)

with s, t ≥ 0, 2s+ 3t = n and l3j = 1 for each j = 1, . . . , t, or

(h1, . . . , hµ) • (s0, t0)mst • (a, a2)ma • (b, b)mb • (a, a, a)n0 • (a2, a2, a2)n1

with µ > 0, mst, ma, mb, n0, n1 ≥ 0, µ+2(mst+ma+mb)+3(n0+n1) = n such that (h1, . . . , hµ)
is an inverse-free µ-tuple of short elements. The former case just so happens to be the first case of
Theorem 2.1.16, therefore we consider only the latter and suppose that µ > 0. As (h1, . . . , hµ) is
inverse-free, it contains at most two a’s, at most two a2’s, at most one b and it does not contain
both a and a2. Let A be the set of elements in (h1, . . . , hµ). Let Ia and Ib be the numbers of
components conjugate to some power of a and b respectively. Take As = A ∩ {s0, s1, s2} and
At = A ∩ {t0, t1, t2}.

Step 1. Suppose that Ia+ Ib ≤ 1. Proposition 2.3.4 shows that either As or At is empty. Thus,
by Lemma 2.3.5, 2.3.20, 2.3.17, 2.3.16, 2.3.21, 2.3.18 and 2.3.19, by elementary transformations the
inverse-free tuple (h1, . . . , hµ) can be transformed into one of the following partial normal forms.

- (s0, s2, s0, s2, s0, s2)
µ/6, (t0, t2, t0, t2, t0, t2)µ/6 where µ ≡ 0 (mod 6) ;

- (a2, s0, s2) • (s0, s2)(µ−3)/2, (a, t2, t0) • (t0, t2)(µ−3)/2 where µ ≡ 3 (mod 6) ;
- (b, s0, s2, s0) • (s0, s2)(µ−4)/2, (b, t0, t2, t0) • (t0, t2)(µ−4)/2 where µ ≡ 4 (mod 6) ;
- (a, s0, s0, s2, s0) • (s0, s2)(µ−5)/2, (a2, t0, t2, t0, t0) • (t0, t2)(µ−5)/2 where µ ≡ 5 (mod 6).
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Step 2. Suppose that Ia = 1 = Ib and aϵ ∈ A with ϵ = ±1. It is clear that µ ≥ 3.
If there exists an element h′ ∈ A equal to one of baϵ, aϵb, a−ϵba−ϵ then, using elementary

transformations, we place aϵ and h′ in adjacent positions that form a pair (aϵ, h′). The pair is further
replaced by the product aϵh′ and we replace (h1, . . . , hµ) with a (µ− 1)-tuple, say (y1, . . . , yµ−1).
Each of y1, . . . , yµ−1 is short, one of them is equal to b and each of the rest is neither a power
of a nor b. By Theorem 2.3.14, Proposition 2.3.4 and Lemma 2.3.18, 2.3.19, the (µ − 1)-tuple
(y1, . . . , yµ−1) can be transformed into either

(b, s0, s2, s0) • (s0, s2, s0, s2, s0, s2)u • (s0, t0)v or (b, t0, t2, t0) • (t0, t2, t0, t2, t0, t2)u • (s0, t0)v

with u, v ≥ 0 and 5 + 6u+ 2v = µ. Proposition 2.3.10 shows that (h1, . . . , hµ) can be transformed
into one of them with exactly one of the following adjustments : replace an s0 (resp. s2, t0, t2)
with (a, t2) (resp. (a, t1), (a2, s1), (a2, s0)). The substitutions

(b, a, t2, s2, s0)! (b, t2, s2, a, s0)! (b, a, t0, s0, s0)! (b, a, s0) • (t0, s0)! (a, b, s2) • (s0, t0),
(b, s0, a, t1, s0)! (b, s0, t0, a, s0)! (b, a, s0) • (s0, t0)! (a, b, s2) • (s0, t0),
(b, s0, s2, a, t2)! (b, s2, s1, a, t2)! (b, s2, s1, t1, a)! (b, s2, s0, t0, a)! (a, b, s2) • (s0, t0),
(b, s0, s2, s0) • (a, t2, s2, s0, s2, s0, s2)! (b, s0, s2, a, t2) • (s0, s2, s0, s2, s0, s2),
(b, s0, s2, s0) • (s0, a, t1, s0, s2, s0, s2)! (s0, b, s0, a, t1) • (s0, s2, s0, s2, s0, s2),
(b, s0, s2, s0) • (a, t2, t0)! (b, s0, s2, s0) • (t0, a, t2)! (b, s0, s2, a, t2) • (s0, t0)

and their symmetrical manners further transform the resulting µ-tuple into one of the following
partial normal forms.

- (a, b, s2) • (s0, s2, s0, s2, s0, s2)u • (s0, t0)v+1 with u, v ≥ 0 ;
- (a, t2, t0) • (b, t0, t2, t0) • (t0, t2, t0, t2, t0, t2)u • (s0, t0)v−1 with u ≥ 0 and v ≥ 1 ;
- (a2, b, t0) • (t0, t2, t0, t2, t0, t2)u • (s0, t0)v+1 with u, v ≥ 0 ;
- (a2, s0, s2) • (b, s0, s2, s0) • (s0, s2, s0, s2, s0, s2)u • (s0, t0)v−1 with u ≥ 0 and v ≥ 1.
Otherwise, one of As and At is empty. If there exists an element h′ ∈ A equal to either ba−ϵ

or a−ϵb then, using elementary transformations, we place aϵ and h′ in adjacent positions such that
their product is equal to b. The pair is further replaced by a single b. Therefore, the resulting (µ−1)-
tuple has exactly two different components conjugate to b and the rest are either conjugates of s0
or conjugates of t0. Applying Theorem 2.3.14, we have shown in Step 1 that such an (µ− 1)-tuple
can be transformed by elementary transformations into either (s0, s2, s0, s2, s0, s2)(µ−3)/6 • (b, b) or
(t0, t2, t0, t2, t0, t2)

(µ−3)/6 • (b, b). Proposition 2.3.10 implies that (h1, . . . , hµ) can be transformed
into a concatenation of either (s0, s2)(µ−3)/2 or (t0, t2)(µ−3)/2 and one of the following triples, which
can be further transformed into a result consistent with the previous case.

(a, s0, b), (a
2, t2, b), (s2, a, b), (t0, a

2, b), (b, a, s0), (b, a
2, t2), (b, s2, a), (b, t0, a

2).

Step 3. We consider the last case left in Step 2 where A = {aϵ, b, aϵbaϵ} and Ia = 1.
In fact, we have µ ≥ 4. By elementary transformations we place aϵ and two different aϵbaϵ’s

in adjacent positions that form a triple of the form (aϵbaϵ, aϵ, aϵbaϵ). The triple can be further
transformed into (aϵbaϵ, a−ϵb, aϵ). We combine the first two components into aϵ and then rewrite
the triple as a single a−ϵ. The resulting (µ− 2)-tuple is composed of a−ϵ, b and several aϵbaϵ. Step
2 has shown that such a tuple can be transformed by elementary transformations into either

(a, t2, t0) • (b, t0, t2, t0) • (t0, t2, t0, t2, t0, t2)u or (a2, s0, s2) • (b, s0, s2, s0) • (s0, s2, s0, s2, s0, s2)u

with u ≥ 0. By Proposition 2.3.10, elementary transformations can transform (h1, . . . , hµ) into
either

(tj , tj+1, a
2, t2, t0) • (b, t0, t2, t0) • (t0, t2, t0, t2, t0, t2)u

or (sj , sj−1, a, s0, s2) • (b, s0, s2, s0) • (s0, s2, s0, s2, s0, s2)u

that can be further transformed into the result in Step 2 using the substitutions :

(tj , tj+1, a
2, t2, t0) • (b, t0, t2, t0)! (a2, t2, t0, t2, t0) • (t0, t2, t0, b)! (a2, b, t0) • (t0, t2, t0, t2, t0, t2),

(sj , sj−1, a, s0, s2) • (b, s0, s2, s0)! (a, s0, s2, s0, s2) • (s0, s2, s0, b)! (a, b, s2) • (s0, s2, s0, s2, s0, s2).

Step 4. Suppose that Ia = 2.
We place the powers of a in adjacent positions and replace them with their product. The

resulting (µ − 1)-tuple contains exactly one power of a and can be transformed by elementary
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transformation into one of the eight partial normal forms introduced in Step 1 and 2. By Proposition
2.3.10, one can simply rewrite the powers of a as pairs of powers of a and obtain eight more partial
normal forms. Replacing the inverse-free tuple (h1, . . . , hµ) of short elements by a partial normal
form in the resulting tuple of the elementary transformations on (g1, . . . , gn), we finish the proof
of the theorem.

2.3.4 Conjugates of almost short elements and tuples
Suppose that (g1, . . . , gn) is an n-tuple with each gi conjugate to some almost short element

(i.e. the component gi is conjugate to either a, a2, b, s1, t1 or ababa). In this subsection, we first
show that by successive application of elementary transformations the n-tuple can be transformed
into

m∏
i=1

(Q−1
i τi,1Qi, . . . , Q

−1
i τi,ni

Qi)

with m ≥ 1,
∑m

i=1 ni = n, Qi ∈ G, τi,j ∈ S2 such that τi,1 · · · τi,ni = 1 for i = 1, . . . ,m and
j = 1, . . . , ni. For the concatenation of (g1, . . . , gn) and a fixed tuple, we further show a result
extremely similar to Theorem 2.1.16.

The first part of this subsection follows a similar line as in Subsection 2.3.2. Proposition 2.3.29
is an analog to Proposition 2.3.10. Lemmata 2.3.22, 2.3.23, 2.3.24, 2.3.25, 2.3.26, 2.3.27 and 2.3.28,
which have technicalities referring to Lemma 2.3.9, will be used to prove Proposition 2.3.29.

gi

gi+1 a a2 b a2b aba ba2 ba a2ba2 ab bab ba2b a2ba aba2 a2bab ababa baba2 ba2ba a2ba2ba2 aba2b

a a2 1 ab b a2ba aba2 aba ba2 a2b ba a2ba2 bab
a2 1 a a2b ab ba a2ba2 a2ba aba2 b aba ba2 ba2b
b ba ba2 1 ba2b a2 a bab ab a2b aba2 a2ba
a2b a2ba a2ba2 a2 a 1 b ab ba2 aba
aba aba2 ab a 1 aba2b a2 a2b ba2

ba2 b ba ba2b bab a baba2 1 a2 aba a2b
ba ba2 b bab 1 ba2ba a2 ba2b a ab a2ba2

a2ba2 a2b a2ba a2bab 1 a2 a ba ab
ab aba aba2 a 1 a2 a2b b a2ba2 ba
bab ba b ba2 ba2b 1 a
ba2b ba2 ba b 1 bab a2

a2ba a2ba2 a2b a2 a 1 a2ba2ba2 b aba2

aba2 ab aba a2 a ababa 1 a2ba b
a2bab a2ba a2b a2ba2 a2 a2ba2ba2 1
ababa aba ab aba2 aba2b 1
baba2 bab ba2 ba b ba2ba 1
ba2ba ba2b ba2 ba b 1 baba2

a2ba2ba2 a2b a2ba2 a2ba 1 a2bab
aba2b aba2 aba ab a 1 ababa

Table 2.2 – Some pairs (gi, gi+1) of almost short elements and the products gigi+1.

We introduce some pairs of almost short elements in Table 2.2 as in Subsection 2.3.2. Broadly
speaking, each pair of almost short elements in Table 2.2 behaves well under the contraction
operation introduced in Subsection 2.1.2, which is explained in lemmata 2.3.23, 2.3.24, 2.3.25,
2.3.26, 2.3.27 and 2.3.28. Besides, each pair of almost short elements not in Table 2.2 satisfies
the inequality mi ≤ min{ l(gi)+1

2 , l(gi+1)+1
2 } which is the first step for Lemma 2.3.32 (a). (See

Lemma 2.3.13 for the precise definition of mi.) Furthermore, Table 2.2 has to fulfil some irregular
requirements which appear in the proofs of Lemma 2.3.32 and Theorem 2.3.33. Unfortunately,
we do not have high conviction in sifting out the pairs of almost short elements. What is worse,
Theorem 2.3.33 needs a patch based on Lemma 2.3.22 which considers a triple of almost short
elements.

Lemma 2.3.22. Let (τ1, τ2, τ2) be a triple of the form

(a−ϵbaϵb, baϵb, baϵba−ϵ) or (ba−ϵbaϵ, aϵ, aϵba−ϵb)

with ϵ = ±1. Set (g1, g2, g3) = (Q−1τ1Q,Q
−1τ2Q,Q

−1τ3Q) with Q ∈ G and suppose that Q−1τ1τ2τ3Q ∈
S2. Then (g1, g2, g3) is Hurwitz equivalent to a triple of almost short elements.

Proof. We only consider the triple (τ1, τ2, τ2) = (a−ϵbaϵb, baϵb, baϵba−ϵ).
Since Q−1τ1τ2τ3Q = Q−1aϵQ is almost short, Q is one of 1, a±ϵ, b and a±ϵb. In the case that

Q = b, the triple (g1, g2, g3) = (ba−ϵbaϵ, aϵ, aϵba−ϵb) is already of almost short elements. In the
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cases that Q = aϵ or aϵb, the lemma follows from the following substitutions.

(a−ϵτ1a
ϵ, a−ϵτ2a

ϵ, a−ϵτ3a
ϵ) = (aϵbaϵbaϵ, a−ϵbaϵbaϵ, a−ϵbaϵb)

R1−−! (a−ϵbaϵbaϵ, a−ϵba−ϵba−ϵba−ϵbaϵ, a−ϵbaϵb)

R2−−! (a−ϵbaϵbaϵ, a−ϵbaϵb, baϵba−ϵ)
R1−−! (a−ϵbaϵb, baϵb, baϵba−ϵ).

(ba−ϵτ1a
ϵb, ba−ϵτ2a

ϵb, ba−ϵτ3a
ϵb) = (baϵbaϵbaϵb, ba−ϵbaϵbaϵb, ba−ϵbaϵ)

R2−−! (baϵbaϵbaϵb, ba−ϵbaϵ, aϵ)

R1−−! (ba−ϵbaϵ, a−ϵba−ϵba−ϵ, aϵ)
R2−−! (ba−ϵbaϵ, aϵ, aϵba−ϵb).

For the rest two cases, the approach is similar.

Lemma 2.3.23. Let (τ1, τ2) be a pair of almost short elements in Table 2.2 such that τ1τ2 is a
power of a. Set (g1, g2) = (Q−1τ1Q,Q

−1τ2Q) with Q ∈ G and suppose that Q−1τ1τ2Q is almost
short. Then (g1, g2) is Hurwitz equivalent to a pair of almost short elements.

Proof. The pair (τ1, τ2) must be one of

(a−ϵ, a−ϵ),

(b, baϵ), (aϵb, b), (a−ϵba−ϵ, aϵba−ϵ), (a−ϵbaϵ, a−ϵba−ϵ), (baϵ, a−ϵbaϵ), (aϵba−ϵ, aϵb),

(a−ϵb, ba−ϵ), (aϵbaϵ, a−ϵb), (ba−ϵ, aϵbaϵ),

(aϵba−ϵb, baϵb), (baϵb, ba−ϵbaϵ)

and Q ∈ {1, aϵ, a−ϵ, b, aϵb, a−ϵb} with ϵ = ±1. Now we fix ϵ = ±1.
When (τ1, τ2) = (a−ϵ, a−ϵ), the pair (g1, g2) is a pair of almost short elements. When one of

g1, g2 is conjugate to b and the other one is conjugate to aϵb, either (g1, g2) is a pair of almost
short elements or (g1, g2) is equal to one of (aϵb, ba−ϵbaϵb), (baϵba−ϵb, baϵ), (ba−ϵbaϵb, ba−ϵba−ϵb)
and (ba−ϵba−ϵb, baϵba−ϵb). In this case, the substitutions given by the following graph show that
(g1, g2) can be transformed into a pair of almost short elements via elementary transformations.

(b, aϵb) (aϵb, ba−ϵbaϵb) (ba−ϵbaϵb, ba−ϵba−ϵb)

(baϵ, b) (baϵba−ϵb, baϵ) (ba−ϵba−ϵb, baϵba−ϵb)

R1 R1

R1

R1R1

R1

When both of g1, g2 are conjugate to a−ϵb, either (g1, g2) is a pair of almost short elements or
(g1, g2) is one of (baϵbaϵb, ba−ϵ), (a−ϵb, baϵbaϵb) which can be transformed into (ba−ϵ, a−ϵb) via
R1, R−1

1 respectively. When one of g1, g2 is conjugate to aϵ and the other one is conjugate to
a−ϵba−ϵba−ϵ, either (g1, g2) is a pair of almost short elements or (g1, g2) is one of

(ba−ϵbaϵ, a−ϵbaϵbaϵ), (aϵbaϵba−ϵ, aϵba−ϵb),

(a−ϵbaϵbaϵ, a−ϵba−ϵba−ϵ), (a−ϵba−ϵba−ϵ, aϵbaϵba−ϵ),

(baϵbaϵba−ϵb, baϵba−ϵ), (a−ϵbaϵb, ba−ϵbaϵbaϵb),

(ba−ϵba−ϵba−ϵb, baϵbaϵba−ϵb), (ba−ϵbaϵbaϵb, ba−ϵba−ϵba−ϵb).

In this case, the following graphs show that (g1, g2) can be transformed into a pair of almost short
elements via elementary transformations.

(baϵb, ba−ϵbaϵ)

(aϵba−ϵb, baϵb)

(ba−ϵbaϵ, a−ϵbaϵbaϵ) (a−ϵbaϵbaϵ, a−ϵba−ϵba−ϵ)

(aϵbaϵba−ϵ, aϵba−ϵb) (a−ϵba−ϵba−ϵ, aϵbaϵba−ϵ)

R1 R1

R1

R1R1

R1

(baϵba−ϵ, aϵ)

(aϵ, a−ϵbaϵb)

(baϵbaϵba−ϵb, baϵba−ϵ) (ba−ϵba−ϵba−ϵb, baϵbaϵba−ϵb)

(a−ϵbaϵb, ba−ϵbaϵbaϵb) (ba−ϵbaϵbaϵb, ba−ϵba−ϵba−ϵb)

R1 R1

R1

R1R1

R1
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Lemma 2.3.24. Let (τ1, τ2) be a pair of almost short elements in Table 2.2 such that τ1τ2 = b.
Set (g1, g2) = (Q−1τ1Q,Q

−1τ2Q) with Q ∈ G and suppose that Q−1τ1τ2Q is almost short. Then
(g1, g2) is Hurwitz equivalent to a pair of almost short elements.

Proof. The pair (τ1, τ2) must be one of

(aϵ, a−ϵb), (ba−ϵ, aϵ), (a−ϵb, baϵb), (baϵb, ba−ϵ), (baϵba−ϵ, aϵba−ϵ), (a−ϵbaϵ, a−ϵbaϵb)

with ϵ = ±1 and Q ∈ {1, a, a2, b, ba, ba2}. The lemma follows from the following graphs with
ϵ = ±1.

(a−ϵb, aϵ)

(aϵ, aϵbaϵ) (aϵbaϵ, a−ϵbaϵbaϵ)

(a−ϵbaϵbaϵ, a−ϵb)

R1

R1

R1

R1

(aϵbaϵbaϵ, a−ϵbaϵ)

(a−ϵbaϵ, a−ϵba−ϵba−ϵ) (a−ϵba−ϵba−ϵ, aϵbaϵba−ϵba−ϵ)

(aϵbaϵba−ϵba−ϵ, aϵbaϵbaϵ)

R1

R1

R1

R1

(b, baϵba−ϵ)

(aϵba−ϵb, b)

(baϵba−ϵ, aϵba−ϵbaϵba−ϵ)

(aϵba−ϵbaϵba−ϵ, aϵba−ϵb)

R1

R1

R1

R1

(ba−ϵbaϵ, a−ϵbaϵ)

(a−ϵbaϵ, a−ϵbaϵb) (a−ϵbaϵb, a−ϵbaϵb)

(ba−ϵbaϵb, ba−ϵbaϵ)

R1

R1

R1

R1

Lemma 2.3.25. Let (τ1, τ2) be a pair of almost short elements in Table 2.2 such that τ1τ2 = baϵb
with ϵ = ±1. Set (g1, g2) = (Q−1τ1Q,Q

−1τ2Q) with Q ∈ G and suppose that Q−1τ1τ2Q is almost
short. Then (g1, g2) is Hurwitz equivalent to a pair of almost short elements.

Proof. The pair (τ1, τ2) must be one of

(aϵ, a−ϵbaϵb), (baϵba−ϵ, aϵ), (b, aϵb), (baϵ, b), (ba−ϵ, a−ϵb), (ba−ϵb, ba−ϵb)

with ϵ = ±1 and Q ∈ {1, b, baϵ, ba−ϵ, baϵb, ba−ϵb}. The lemma follows from the following graphs.

(baϵb, ba−ϵbaϵ) (ba−ϵbaϵ, a−ϵbaϵbaϵ) (a−ϵbaϵbaϵ, a−ϵba−ϵba−ϵ)

(aϵba−ϵb, baϵb) (aϵbaϵba−ϵ, aϵba−ϵb) (a−ϵba−ϵba−ϵ, aϵbaϵba−ϵ)

R1 R1

R1

R1R1

R1

(aϵ, a−ϵbaϵb) (a−ϵbaϵb, ba−ϵbaϵbaϵb) (ba−ϵbaϵbaϵb, ba−ϵba−ϵba−ϵb)

(baϵba−ϵ, aϵ) (baϵbaϵba−ϵb, baϵba−ϵ) (ba−ϵba−ϵba−ϵb, baϵbaϵba−ϵb)

R1 R1

R1

R1R1

R1

(b, aϵb) (aϵb, ba−ϵbaϵb) (ba−ϵbaϵb, ba−ϵba−ϵb)

(baϵ, b) (baϵba−ϵb, baϵ) (ba−ϵba−ϵb, baϵba−ϵb)

R1 R1

R1

R1R1

R1

(ba−ϵ, a−ϵb) (a−ϵb, baϵbaϵb)

(baϵbaϵb, ba−ϵ)

R1

R1R1

Lemma 2.3.26. Let (τ1, τ2) be a pair of almost short elements in Table 2.2 such that τ1τ2 = a−ϵbaϵ

with ϵ = ±1. Set (g1, g2) = (Q−1τ1Q,Q
−1τ2Q) with Q ∈ G and suppose that Q−1τ1τ2Q is almost

short. Then (g1, g2) is Hurwitz equivalent to a pair of almost short elements.

Proof. The pair (τ1, τ2) must be one of

(aϵ, aϵbaϵ), (a−ϵ, baϵ), (a−ϵba−ϵ, a−ϵ), (a−ϵb, aϵ)

(b, ba−ϵbaϵ), (a−ϵbaϵb, b), (a−ϵba−ϵba−ϵ, aϵba−ϵ), (aϵba−ϵ, aϵbaϵbaϵ)

with ϵ = ±1 and Q ∈ {1, aϵ, a−ϵ, a−ϵb, a−ϵbaϵ, a−ϵba−ϵ}. The lemma follows from the following
graphs.
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(aϵ, aϵbaϵ) (aϵbaϵ, a−ϵbaϵbaϵ)

(a−ϵb, aϵ) (a−ϵbaϵbaϵ, a−ϵb)

R1

R1

R1

R1

(aϵ, ba−ϵ) (ba−ϵ, aϵbaϵba−ϵ)

(aϵbaϵ, aϵ) (aϵbaϵba−ϵ, aϵbaϵ)

R1

R1

R1

R1

(aϵba−ϵ, aϵba−ϵb) (aϵba−ϵb, baϵba−ϵb)

(baϵba−ϵ, aϵba−ϵ) (baϵba−ϵb, baϵba−ϵ)

R1

R1

R1

R1

(b, ba−ϵbaϵ) (ba−ϵbaϵ, a−ϵbaϵba−ϵbaϵ)

(a−ϵbaϵb, b) (a−ϵbaϵba−ϵbaϵ, a−ϵbaϵb)

R1

R1

R1

R1

(a−ϵbaϵ, a−ϵba−ϵba−ϵ) (a−ϵba−ϵba−ϵ, aϵbaϵba−ϵba−ϵ)

(aϵbaϵbaϵ, a−ϵbaϵ) (aϵbaϵba−ϵba−ϵ, aϵbaϵbaϵ)

R1

R1

R1

R1

Lemma 2.3.27. Let (τ1, τ2) be a pair of almost short elements in Table 2.2 such that τ1τ2 is one of
aϵb, baϵ and a−ϵba−ϵ with ϵ = ±1. Set (g1, g2) = (Q−1τ1Q,Q

−1τ2Q) with Q ∈ G and suppose that
Q−1τ1τ2Q is almost short. Then (g1, g2) is Hurwitz equivalent to a pair of almost short elements.

Proof. Since Q−1τ1τ2Q is almost short, the element Q is either (τ1τ2)kaζ or (τ1τ2)−laζ with k, l ≥ 0
and ζ = 0, 1, 2. When Q = aζ , the only exceptional cases that at least one of Q−1τ1Q, Q−1τ2Q is
not almost short is that (τ1, τ2) is equal to one of

(b, baϵb), (baϵb, b), (a−ϵb, ba−ϵb), (ba−ϵb, ba−ϵ)

with ϵ = ±1, where both (a−ϵτ1a
ϵ, a−ϵτ2a

ϵ) and (aϵτ1a
−ϵ, aϵτ2a

−ϵ) can be transformed into pairs
of almost short elements by applying either R1 or R−1

1 . In general, Lemma 2.3.8 shows that (g1, g2)
can be transformed into a pair of almost short elements.

Lemma 2.3.28. Let (τ1, τ2) be a pair of almost short elements in Table 2.2 such that τ1τ2 is almost
short and conjugate to ababa. Set (g1, g2) = (Q−1τ1Q,Q

−1τ2Q) with Q ∈ G and suppose that
Q−1τ1τ2Q is almost short. Then (g1, g2) is Hurwitz equivalent to a pair of almost short elements.

Proof. Since τ1τ2 is almost short and conjugate to ababa, it must be one of a−ϵbaϵb, ba−ϵbaϵ and
aϵbaϵbaϵ with ϵ = ±1. When τ1τ2 = a−ϵbaϵb, since Q−1τ1τ2Q is almost short, the element Q is
either (a−ϵbaϵb)kaζ or (a−ϵbaϵb)k(aϵb)aζ with k ∈ Z and ζ = 0, 1, 2. Lemma 2.3.8 induces that it
suffices to suppose that

Q ∈ {1, aϵ, a−ϵ, a−ϵb, a−ϵbaϵ, a−ϵba−ϵ}.

Besides, (τ1, τ2) is one of

(a−ϵba−ϵ, a−ϵb), (a−ϵba−ϵba−ϵ, aϵba−ϵb).

Each possible (g1, g2) is either a pair of almost short elements or transformed into a pair of almost
short elements by R±1

1 . When τ1τ2 = ba−ϵbaϵ or aϵbaϵbaϵ we have similar arguments.

We introduce the following operations and their restorations on an n-tuple (g1, . . . , gn) of ele-
ments in G that are conjugate to some almost short element.

- Operation 1 : For i ∈ {1, . . . , n − 1}, suppose that gi = Q−1τiQ and gi+1 = Q−1τi+1Q with
Q ∈ G and (τi, τi+1) listed in Table 2.2. Then, the operation is a contraction as in Subsection
2.1.2 that replaces (gi, gi+1) with gigi+1.

- Operation 1′ : For i ∈ {1, . . . , n − 2}, suppose that gi = Q−1τiQ, gi+1 = Q−1τi+1Q and
gi+2 = Q−1τi+2Q with Q ∈ G and (τi, τi+1, τi+2) equal to either

(a2bab, bab, baba2) or (aba2b, ba2b, ba2ba).

Then, the operation is a contraction as in Subsection 2.1.2 that replaces (gi, gi+1, gi+2) with
gigi+1gi+2.
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- Operation 2 : For i ∈ {1, . . . , n}, suppose that gi = 1. The operation moves the identical
component to the rightmost position via elementary transformations, removes it and reduces
(g1, . . . , gn) to an (n− 1)-tuple.

Operation 1 and 1′ are contractions, whose restorations are introduced in Subsection 2.1.1. The
restoration of Operation 2 will simply add an identical element on the right side of the tuple.

Proposition 2.3.29. Let (g1, . . . , gn) be an n-tuple of elements in G which are conjugate to some
almost short element such that g1 · · · gn = 1. Suppose that we apply the following operations suc-
cessively on (g1, . . . , gn) :

i) elementary transformations ;
ii) Operation 1 ;
iii) Operation 1′ ;
iv) Operation 2 ;

then apply the restorations of Operation 1, 1′ and 2 in the reverse order. If each component in the
resulting tuple before restorations are almost short, then the initial tuple is Hurwitz equivalent to
the following tuples :

a) the resulting tuple after restorations ;
b) the concatenation of some tuples of the form (Q−1τ1Q,Q

−1τ2Q, . . . , Q
−1τmQ) with m ≥ 1,

Q ∈ G and τ1, . . . , τm ∈ S2 such that τ1 · · · τm = 1.

We emphasise that Proposition 2.3.29 does not require an inverse-free tuple (g1, . . . , gn) in G
as in Proposition 2.3.10. Besides, an elementary transformation is allowed to transform a pair into
such that has a bigger sum of S2-complexities. That is why we cannot transform it into a tuple of
almost short elements but get a concatenation of several tuples of almost short elements each with
a diagonal conjugacy.

Proof. Lemma 2.1.8 shows that the initial tuple is Hurwitz equivalent to the resulting tuple after
all operations and restorations. We suppose that each component is almost short in the tuple before
restorations.

We revisit the introduced operations. Operation 1 may combine Q−1τiQ and Q−1τjQ into
Q−1τiτjQ with Q ∈ G and τi, τj ∈ S2. By elementary transformations, the product becomes a
conjugate of the form P−1Q−1τiτjQP with some P ∈ G. To restore the operation, we further
rewrite it as (P−1Q−1τiQP,P

−1Q−1τjQP ). Operation 1′ is similar.
If Operation 2 has never been used, the proposition follows from lemmata 2.3.23, 2.3.24, 2.3.25,

2.3.26, 2.3.27, 2.3.28 and 2.3.22. In general, suppose that P−1Q−1τiτjQP = 1. Then P = 1 and
the restoration replaces the identical element with (Q−1τiQ,Q

−1τjQ). We consider the remaining
restorations on (τi, τj) instead.

Definition 2.3.30. The S2-complexity of an element g conjugate to some element in S2 is defined
as f2(g) such that

f2(g) =


l(Q)

if g = Q−1wQ is almost long
with Q ∈ G and w ∈ {baϵb, aϵba−ϵ, aϵbaϵ, aϵbaϵbaϵ|ϵ = 1, 2} ;

1/2 if g ∈ {ababa, a2ba2ba2} ;
0 otherwise.

Definition 2.3.31. Let (g1, . . . , gn) be an n-tuple in G such that each of gi, i = 1, . . . , n, is conju-
gate to some element in S2. A sequence of elementary transformations (Rϵ1

i1
, . . . , Rϵm

im
), ϵ1, . . . , ϵm ∈

{1,−1}, is said to make the sum of S2-complexities of (g1, . . . , gn) smaller if Rϵm
im

◦ · · · ◦Rϵ1
i1

trans-
forms (g1, . . . , gn) into a tuple with a smaller sum of S2-complexities.

Lemma 2.3.32. Let (g1, . . . , gn) be an n-tuple in G such that each of gi, i = 1, . . . , n, is conjugate
to some element in S2 and g1 · · · gn = 1. Let mi be the same as in Lemma 2.3.13 and set m0 =
mn = 0 for convenience. Suppose that
(1) there is no pair of adjacent components gi, gi+1 of the reduced forms Q−1τiQ, Q−1τi+1Q

with Q ∈ G and (τi, τi+1) in Table 2.2,
(2) there is no sequence of elementary transformations that makes

∑
i f2(gi) smaller.

Then mi, i = 0, . . . , n have the following properties.
(a) For i = 1, . . . , n− 1, mi ≤ l(gi)+1

2 and mi ≤ l(gi+1)+1
2 .

(b) For i = 1, . . . , n, mi−1 + mi ≥ l(gi) only if the reduced form of gi is either Q−1
i aϵiQi or

Q−1
i aϵibaϵibaϵiQi with ϵi = 1, 2, Qi ∈ G and l(Qi) ≥ 0.

(c) If mi−1 +mi ≤ l(gi) for each of i = 1, . . . , n, then n = 0.
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Proof. (a) When both gi and gi+1 are almost short, since (gi, gi+1) does not figure in Table 2.2,
we check all possibilities and get that mi ≤ l(gi)+1

2 , l(gi+1)+1
2 .

When gi ∈ S2 but gi+1 ̸∈ S2, we have concluded that gi+1 = Q−1wQ with

w ∈ {baϵb, aϵba−ϵ, aϵbaϵ, aϵbaϵbaϵ|ϵ = 1, 2}

and Q ∈ G such that l(Q) ≥ 1. In particular, l(gi+1) ≥ 5 ≥ l(gi). Assume that mi >
l(gi)+1

2 .
Suppose that l(gi) = 2. Then mi = 2 and the symmetry of gi+1 implies the contradiction
l(gigi+1g

−1
i ) ≤ l(gi+1) − 2. Suppose that l(gi) = 3. Then mi = 3. The symmetry of gi+1 and the

fact that l(w) ≥ 3 imply the contradiction l(gigi+1g
−1
i ) ≤ l(gi+1)−2. Suppose that l(gi) = 4. Then

gi = aϵiba−ϵib or baϵiba−ϵi with ϵi ∈ {1, 2}. Therefore mi = 3 or 4. If l(Q) = 1 and gi = aϵiba−ϵb,
then mi = 4 and l(gigi+1g

−1
i ) ≤ l(gi+1) − 2, contradicting the hypothesis (2). If l(Q) = 1 and

gi = baϵiba−ϵi , then gi+1 = aϵibaϵi+1ba−ϵi with ϵi+1 ∈ {1, 2} and l(gigi+1g
−1
i ) ≤ l(gi+1) − 2,

contradicting the hypothesis (2). If l(Q) ≥ 2, then we again get l(gigi+1g
−1
i ) < l(gi+1), contradic-

ting the hypothesis (2). Suppose that l(gi) = 5 and then mi = 4 or 5. As gi = aϵibaϵibaϵi , mi must
be 5. Therefore, if l(Q) ≥ 2 then we get the contradiction l(gigi+1g

−1
i ) < l(gi+1). If l(Q) = 1 then

gi+1 must be a−ϵba−ϵbaϵ but the following substitution makes the sum of S2-complexities smaller
and induces a contradiction.

(gi, gi+1) = (aϵibaϵibaϵi , a−ϵba−ϵbaϵ) −! (a−ϵba−ϵbaϵ, a−ϵbaϵb) −! (a−ϵbaϵb, ba−ϵb).

We have a similar argument when gi+1 is almost short but gi not.
When both gi and gi+1 are almost long, suppose that their reduced forms are Q−1

i wiQi and
Q−1

i+1wi+1Qi+1 and assume that without loss of generality l(Qi) ≤ l(Qi+1). Assume that mi >

min{ l(gi)+1
2 , l(gi+1)+1

2 }. Therefore Qi+1 must end with Qi. Write Qi+1 = Q̃Qi and

(gi, gi+1) = (Q−1
i wiQi, Q

−1
i Q̃−1wi+1Q̃Q̃i).

Suppose that l(Q̃) = 0. The assumption on mi contradicts Table 2.2. Suppose that l(Q̃) ≥ 1.
Therefore l(wi) ≤ 5 ≤ l(Q̃−1wi+1Q̃) and mi >

l(gi)+1
2 . If l(wi) = 3 then mi > l(Qi) + 3 and

l(gigi+1g
−1
i ) ≤ l(gi+1) − 2, contradicting the hypothesis (2). If l(wi) = 5 and l(Q̃−1wi+1Q̃) = 5,

then

(gi, gi+1) = (Q−1
i wiQi, Q

−1
i Q̃−1wi+1Q̃Qi) = (Q−1

i aϵibaϵibaϵiQi, Q
−1
i a−ϵiba−ϵibaϵiQi)

whose sum of S2-complexities can be smaller using elementary transformations. If l(wi) = 5 and
l(Q̃−1wi+1Q̃) ≥ 7, then l(gigi+1g

−1
i ) ≤ l(gi+1)− 2, contradicting the hypothesis (2).

(b) Suppose that mi−1 +mi ≥ l(gi) for some i = 1, . . . , n− 1.
Suppose that gi ∈ S2. If gi = b then either mi−1 = 0, mi = 1 or mi−1 = 1, mi = 0. Therefore

either gi−1 ends with b or gi+1 starts with b. Table 2.2 shows that either gi−1 or gi+1 is almost
long, starts and ends with b. Hence it implies the contradiction either l(gigi+1g

−1
i ) < l(gi+1) or

l(g−1
i gi−1gi) < l(gi−1). If l(gi) = 2, then one of gi−1, gi+1 must be b, which is impossible based

on Table 2.2. If l(gi) = 4, then either gi−1 = aϵi−1b or gi+1 = baϵi+1 with ϵi−1, ϵi+1 ∈ {1, 2},
which is impossible based on Table 2.2. If l(gi) = 3 and gi = aϵibaϵi with ϵi ∈ {1, 2}, then
either gi−1 = ba−ϵi or gi+1 = a−ϵib. If l(gi) = 3 and gi = aϵiba−ϵi with ϵi ∈ {1, 2}, then either
gi−1 = ba−ϵi or gi+1 = aϵib. Both are impossible again based on Table 2.2. There are only two
possibilities left : either gi is conjugate to a power of a or gi = aϵibaϵibaϵi .

When gi is almost long, gi is one of

Q−1baϵibQ,Q−1aϵiba−ϵiQ,Q−1aϵibaϵiQ,Q−1aϵibaϵibaϵiQ

with ϵi ∈ {1, 2}, Q ∈ G and l(Q) ≥ 1. If gi = Q−1aϵibaϵiQ or gi = Q−1aϵiba−ϵiQ then either
gi+1 = Q−1a−ϵib or gi+1 = Q−1aϵib. Therefore g−1

i+1gigi+1 ∈ {Q−1ba2ϵiQ,Q−1bQ} which is a
contradiction.

We conclude that gi is either Q−1
i aϵiQi or Q−1

i aϵibaϵibaϵiQi with ϵi = 1, 2 and l(Qi) ≥ 0.
(c) We assume that n ≥ 1 and suppose that mi−1 +mi = l(gi) for some 2 ≤ i ≤ n− 1. By (2),

gi is either Q−1
i aϵiQi or Q−1

i aϵibaϵibaϵiQi with ϵi = 1, 2 and l(Qi) ≥ 0.
If gi = aϵi and suppose that mi−1 = 0, mi = 1, then gi+1 is either one of aϵibaϵibaϵi , aϵiba−ϵib,

a−ϵiba−ϵiba−ϵi or an almost long element starting with aϵi and ending with a−ϵi . However, gi+1 can-
not be a−ϵiba−ϵiba−ϵi since the elementary transformation R−1

i makes the sum of S2-complexities
smaller.

If gi = Q−1
i aϵiQi with l(Qi) ≥ 1, then either gi−1 = Qi or gi+1 = Q−1

i , which implies the
contradiction either gi−1gig

−1
i−1 = aϵi or g−1

i+1gigi+1 = aϵi .

45



If gi = Q−1aϵibaϵibaϵiQ with l(Q) ≥ 0, then either gi−1 = ba−ϵiQ or gi+1 = Q−1a−ϵib.
Therefore Table 2.2 denies the case of Q = 1 and, when Q ̸= 1, either gi−1gig

−1
i−1 = aϵiba2ϵib or

g−1
i+1gigi+1 = ba2ϵibaϵi , which is a contradiction.

The assertion (b) and the above observation show that mi−1 + mi < l(gi) if gi ̸= aϵi . They
further imply a contradiction that g1 · · · gn ̸= 1.

Now we state the main result in this subsection.

Theorem 2.3.33. Let g1, . . . , gn be such that each of them is conjugate to some element in S2

and g1 · · · gn = 1. Then, the n-tuple (g1, . . . , gn) is Hurwitz equivalent to
m∏
i=1

(Q−1
i τi,1Qi, . . . , Q

−1
i τi,ni

Qi)

with m ≥ 1,
∑m

i=1 ni = n, Qi ∈ G and τi,j ∈ S2 such that τi,1 · · · τi,ni
= 1 for i = 1, . . . ,m and

j = 1, . . . , ni.

Proof. We will always use the notation mi to indicate the length of the reduced part in hihi+1 for
i = 1, . . . , µ− 1 and set m0 = mµ = 0 as before. To prove the theorem for (g1, . . . , gn), we use the
induction on (

n,

n∑
i=1

f2(gi), l(g1), . . . , l(gn)
)
.

and apply the following operations : If there exists a pair of adjacent components of the form
(Q−1τ1Q,Q

−1τ2Q) with Q ∈ G and (τ1, τ2) in Table 2.2, then we replace it with the product
Q−1τ1τ2Q and reduce (g1, . . . , gn) to an (n − 1)-tuple. If there exists a triple of consecutive com-
ponents of the form

(Q−1a−ϵbaϵbQ,Q−1baϵbQ,Q−1baϵba−ϵQ)

with Q ∈ G, ϵ = ±1 as introduced in Operation 1′, then we replace it with Q−1aϵQ and reduce
(g1, . . . , gn) to an (n − 2)-tuple. If there exists an identical component, then we move it to the
rightmost position and remove it. If there exists a sequence of elementary transformations that
makes

∑
i f2(hi) smaller, then we apply it.

When each of the above operations fails, the resulting tuple, still denoted by (g1, . . . , gn),
satisfies all hypotheses in Lemma 2.3.32. Suppose that n ≥ 1 and there exists some i = 2, . . . , n−1
such that mi−1 +mi > l(gi).

When gi = aϵi with ϵi = 1, 2, Table 2.2 reveals that either gi−1 is one of ba−ϵibaϵi , a−ϵiba−ϵiba−ϵi ,
aϵibaϵibaϵi , or gi−1 is an almost long element starting with a−ϵi and ending with aϵi . Meanwhile,
either gi+1 is one of aϵiba−ϵib, a−ϵiba−ϵiba−ϵi , aϵibaϵibaϵi , or gi+1 is an almost long element starting
with aϵi and ending with a−ϵi . The triple (gi−1, gi, gi+1) cannot be (ba−ϵibaϵi , aϵi , aϵiba−ϵib) due
to Operation 1′. Therefore, either (gi−1, gi) can be transformed into (g̃i−1, g̃i) = (aϵi , a−ϵigi−1a

ϵ)
with f2(gi−1) ≥ f2(g̃i) but l(g̃i−1) < l(gi−1).

When gi = baϵib with ϵi = 1, 2, Table 2.2 reveals that either gi−1 = a−ϵibaϵib or gi−1 is
almost long starting with ba−ϵi and ending with aϵib. Meanwhile, either gi+1 = baϵba−ϵi or
gi+1 is almost long starting with baϵ and ending with a−ϵb. The triple (gi−1, gi, gi+1) cannot be
(a−ϵibaϵib, baϵib, baϵba−ϵi) due to Operation 1′. Therefore, (gi−1, gi, gi+1) can be transformed into
(g̃i−1, g̃i, g̃i+1) with f2(gi−1) + f2(gi) + f2(gi+1) ≥ f2(g̃i−1) + f2(g̃i) + f2(g̃i+1), l(gi−1) ≥ l(g̃i−1),
l(gi) ≥ l(g̃i), l(gi+1) ≥ l(g̃i+1) but either l(g̃i−1) < l(gi−1) or l(g̃i+1) < l(gi+1).

When gi = Q−1
i aϵiQ with ϵi = 1, 2, l(Qi) ≥ 2, we have mi−1 = mi = l(Qi) + 1 and l(gi−1) >

l(gi). To avoid l(g−1
i gi−1gi) < l(gi−1), gi−1 must end with aϵiQi and start with Q−1

i a−ϵi . In this
case, l(g−1

i gi−1gi) = l(gi−1) and, using the elementary transformation Ri−1, we are able to reduce
(g1, . . . , gn) to a new n-tuple, say (g̃1, . . . , g̃n), such that

∑
j f2(gj) =

∑
j f2(g̃j), l(gj) = l(g̃j) for

1 ≤ j ≤ n and j ̸∈ {i− 1, i} but l(g̃i−1) = l(gi) < l(gi−1) = l(g̃i).
When gi = Q−1

i aϵibaϵibaϵiQi with ϵi = 1, 2, Qi ∈ G and l(Qi) ≥ 0, then mi−1 = mi = l(Qi)+3.
If l(gi−1) = l(gi) = l(gi+1), then

(gi−1, gi, gi+1) = (Q−1
i aϵibaϵiba−ϵiQi, Q

−1
i aϵibaϵibaϵiQi, Q

−1
i a−ϵibaϵibaϵiQi)

that can be transformed into a triple with a smaller sum of S2-complexities via the following
substitution.

(gi−1, gi, gi+1) −! (Q−1
i aϵibaϵibaϵiQi, Q

−1
i a−ϵibaϵibaϵiQi, Q

−1
i a−ϵibaϵibaϵiQi)

−! (Q−1
i a−ϵibaϵibaϵiQi, Q

−1
i a−ϵiba−ϵiba−ϵiba−ϵibaϵiQi, Q

−1
i a−ϵibaϵibaϵiQi)

−! (Q−1
i a−ϵibaϵibaϵiQi, Q

−1
i a−ϵibaϵibaϵiQi, Q

−1
i a−ϵibaϵibQi).
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If l(gi−1) = l(gi) < l(gi+1), then gi+1 = Q−1
i a−ϵibaϵiwa−ϵibaϵiQi with the word w starts and ends

with b. Therefore, by elementary transformations the triple can be transformed into

(Q−1
i aϵibwba−ϵiQ, gi−1, gi)

with a smaller sum of S2-complexities, which induces a contradiction. If l(gi−1) > l(gi) then again
using the elementary transformation Ri−1 we are able to reduce (g1, . . . , gn) to a new n-tuple, say
(g̃1, . . . , g̃n), such that

∑
j f2(gj) =

∑
j f2(g̃j), l(gj) = l(g̃j) for 1 ≤ j ≤ n and j ̸∈ {i − 1, i} but

l(g̃i−1) = l(gi) < l(gi−1) = l(g̃i).
The induction does not stop unless n is equal to 0. Due to Proposition 2.3.29, by restoring

operations and applying more elementary transformations, we get a resulting n-tuple of almost
short elements that can be obtained from the original (g1, . . . , gn) via elementary transformations
directly.

Corollary 2.3.34. Let g1, . . . , gn be such that each of them is conjugate to some element in
S2 and g1 · · · gn = 1. Let (g′1, . . . , g

′
m) be a tuple containing a generating set. Then, the tuple

(g1, . . . , gn) • (g′1, . . . , g′m) is Hurwitz equivalent to (h1, . . . , hn) • (g′1, . . . , g′m) where (h1, . . . , hn) is
an n-tuple of almost short elements.

Proof. The corollary follows from Theorem 2.3.33 and Lemma 2.1.6.

Recall that F13 = (b, b)2 • (a2bab, t0, s1)
3. Theorem 2.1.17 and Theorem 2.1.18 show that we

are able to construct the normal form of (g1, . . . , gn) • F13 that depends only on the number of
components in each conjugacy class as in Theorem 2.1.16. We prove them using the following.

Theorem 2.3.35. Let g1, . . . , gn ∈ PSL(2,Z) be conjugates of a, a2, b, aba, a2ba2 or ababa
satisfying g1 · · · gn = 1. Suppose that m of them are conjugates of ababa. Let (v1, . . . , vc) be a tuple
containing a generating set, and let (v′1, . . . , v′c′) be a (b, b, b, b)-expanding tuple whose components
are conjugate to a, a2, b, s0 or t0. Then,

(g1, . . . , gn) • (v′1, . . . , v′c′) • (v1, . . . , vc)

is Hurwitz equivalent to

(h1, . . . , hn′) • (a2bab, ba2ba)(m−3+µ)/2 • (v1, . . . , vc)

where all components of (h1, . . . , hn′) are conjugate to a, a2, b, s0, t0, ababa and only 3 − µ of
them are conjugate to ababa, where µ = 3−m if m ≤ 3 and µ = (m+ 1) mod 2 otherwise.

Proof. We assume that (v′1, . . . , v
′
c′) = (b, b, b, b) without loss of generality. Rewrite (g1, . . . , gn) •

(b, b, b, b) • (v1, . . . , vc) as

(h1, . . . , hk) • (b, b) • (v1, . . . , vc) • (a2bab, ba2ba)l,

with (h1, . . . , hk) = (g1, . . . , gn, b, b) containing at least one component conjugate to b, with k =
n+ 2 and l = 0. Following Corollary 2.3.34, we transform (h1, . . . , hk) into a tuple of almost short
elements that contains at least one component of the form either b, a2ba or aba2.

We first apply the following inductions on k when m− 2l > 3.
Suppose that there exist two components, say hi and hj with i ̸= j, such that both of them are

conjugate to ababa and hihj = 1. We move hi and hj to the rightmost positions. Since (v1, . . . , vc)
contains a generating set, by Lemma 2.1.6, they are further transformed into a pair of the form
(a2bab, ba2ba) by elementary transformations on (g1, . . . , gn)• (b, b)• (v1, . . . , vc). Therefore, we get
the following tuple

(h̃1, . . . , h̃k−2) • (b, b) • (v1, . . . , vc) • (a2bab, ba2ba)l+1

where (h̃1, . . . , h̃k−2) is further transformed into a tuple of almost short elements.
Suppose that with a pair

(τb, τababa) ∈

{
(b, a2bab), (b, ba2ba), (b, baba2), (b, aba2b),

(aba2, ababa), (aba2, a2ba2ba2), (aba2, baba2), (aba2, aba2b),
(a2ba, ababa), (a2ba, a2ba2ba2), (a2ba, a2bab), (a2ba, ba2ba)

}

there exist some components of the form τb and at least two components of the form τababa. Using
elementary transformations we gather them together and obtain a pair of mutually inverse elements
via the following substitution.

(τb, τababa, τababa) −! (τ−1
ababa, b, τababa) −! (τ−1

ababa, τababa, τ
−1
abababτababa).
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The pair of mutually inverse elements is further moved to the rightmost position and transformed
into (a2bab, ba2ba). The resulting tuple again has the expression with a lower k.

Once the above induction stops but m − 2l > 3, there is at most one almost short element
conjugate to ababa, say τabab, that appears more than once in (h1, . . . , hk). Take a proper τb ∈
{b, a2ba, aba2} such that (τb, τababa) belongs to the above set of pairs. Transform the extra pair
(b, b) into (τb, τb) with the help of (v1, . . . , vc). Again we gather all components of the form τababa
in (h1, . . . , hk) together with an additional τb using elementary transformations and apply the
following substitutions.

(τb, τababa, . . . , τababa) −! (τ−1
ababa, b, τababa, . . . , τababa) −! (τ−1

ababa, . . . , τ
−1
ababa, b, τababa, . . . , τababa).

We make all mutually inverse elements within the above resulting tuple pairs of the form (a2bab, ba2ba)
and move them to the rightmost positions. By elementary transformations the tuple (g1, . . . , gn) •
(v′1, . . . , v

′
c′) • (v1, . . . , vc) has been finally transformed into

(h1, . . . , hk) • (v1, . . . , vc) • (a2bab, ba2ba)m
′/2

where (h1, . . . , hk) is a tuple of almost short elements containing at most three components conju-
gate to ababa and m−m′ ≤ 3.

Proof of Theorem 2.1.17 and Theorem 2.1.18. We only prove Theorem 2.1.17 while the proof of
Theorem 2.1.18 is similar. Since (a2bab, t0, s1) contains a generating set, Theorem 2.3.35 has shown
that the concatenation (g1, . . . , gn) • F13 can be transformed into

(h1, . . . , hn′) • (a2bab, ba2ba)(m−3+µ)/2 • (a2bab, t0, s1)3

where µ is determined by m, only 3 − µ components of (h1, . . . , hn′) are conjugate to ababa and
the rest are conjugates of a, a2, b, s0 or t0.

Consider each of i = 1, 2, 3 in turn. Let hα be the first component in (h1, . . . , hn′) conjugate to
ababa. Since the first triple of the form (a2bab, t0, s1) within the concatenation contains a genearting
set, by Lemma 2.1.6 we can transform (h1, . . . , hn′) into a tuple with a simultaneous conjugation
such that hα = ba2ba Therefore we are able to make the α-th component in (h1, . . . , hn′) and the
first component in the triple a pair of the form (a2bab, ba2ba). Hence (h1, . . . , hn′)•(a2bab, t0, s1)4−i

is transformed into (h′1, . . . , h
′
n′′) • (a2bab, t0, s1)3−i • (a2bab, ba2ba) with n′′ = n′ + 1.

2.4 Stable vs. unstable classifications of torus fibrations

2.4.1 Hurwitz equivalence fails without stabilisation
We give some examples of global monodromies which are Hurwitz equivalent up to stabilisation,

as in Theorem B and Theorem C, but fail to be Hurwitz equivalent. This illustrates why it is
necessary to consider fibrations up to the fibre-connected sum.

Example 2.4.1. Let f1 be an achiral Lefschetz fibration which has a global monodromy of the
form (−A2B,−BA,−A2B,−BA) and let f2 be an achiral Lefschetz fibration which has a global
monodromy of the form (−A2B,−BA,−ABA,A2BA2). Though f1 and f2 have the same type of
singularities, these two global monodromies are not Hurwitz equivalent.

Proof. Indeed, the following graph shows all resulting tuples in PSL(2,Z) from (s0, t0, s0, t0) using
elementary transformations.

(s0, t0, t0, s0)

(s0, s0, t0, t0) (t0, t0, s0, s0)

(t0, s0, s0, t0)

(s0, t0, s0, t0) (t0, s0, t0, s0)

R±1
3 R±1

1

R±1
1 R±1

3

R±1
2 R±1

2

R±1
1

R±1
3

R±1
1

R±1
3

R±1
2

R±1
2

In particular, one cannot transform (s0, t0, s0, t0) into (s0, t0, s1, t1).
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Example 2.4.2. Let (b, b, a2bab, ba2ba) and (aba2, a2ba, a2bab, baba2) be tuples in PSL(2,Z). We
claim that for arbitrary positive integer N ,

(b, b, a2bab, ba2ba) • (b, b)N

cannot be transformed into
(aba2, a2ba, a2bab, baba2) • (b, b)N

by elementary transformations.

Proof. Assume that (b, b, a2bab, ba2ba) • (b, b)N can be transformed into (aba2, a2ba, a2bab, baba2) •
(b, b)N by elementary transformations for some N . Then there exists an element g ∈ PSL(2,Z)
which is a product of b, a2bab and ba2ba such that aba2 = g−1bg, which implies b = (ga)−1b(ga).
Therefore, the element g is either a2 or ba2, but the number of occurrences of the letter a in g
modulo 3 is equal to 0, which is a contradiction.

2.4.2 Unstable classification of achiral Lefschetz fibrations
We consider torus achiral Lefschetz fibrations having fixed cardinality of branch sets |B| = n ≥

1. A singular fibre is of type I+1 if its fibre monodromy is conjugate to L = −ABA =

[
1 0
1 1

]
and

a singular fibre is of type I−1 if its fibre monodromy is conjugate to R = −AB =

[
1 1
0 1

]
.

By Theorem B, global monodromies of a pair of torus achiral Lefschetz fibrations are Hurwitz
equivalent after performing direct sums with fL12 if and only if they have the same type of singu-
larities. However, the Hurwitz equivalence between global monodromies is more difficult to state,
especially when singular fibres of type I+1 and I−1 occur in pairs. In this subsection, we enumerate
all possible Hurwitz equivalent classes of global monodromies of torus achiral Lefschetz fibrations,
without stabilisation. This will prove Theorem D.

By a rooted tree we mean a directed tree in which a specific vertex is called the root, such that
each directed edge indicates the parent-child relationship between two vertices. A rooted forest is
a disjoint union of several rooted trees. In general, given a (directed) graph Γ, we always use V (Γ)
to denote the set of vertices.

Definition 2.4.3. Given a rooted forest T and a non-negative integer k, we define Ω(T, k) to be
the set of formal sums

∑
v∈V (T )mv · v over vertices with mv ≥ 0 and

∑
mv = k such that any two

vertices v1 ̸= v2 with mv1 ≥ 1, mv2 ≥ 1 have no ancestor-descendant relationship (i.e. there does
not exist a directed path joining v1 to v2).

Definition 2.4.4. For n = p + q with p ≥ 0, q ≥ 0, we define HomaL
p,q(Fn−1,SL(2,Z)) to be the

set consisting of all monodromy homomorphisms of torus achiral Lefschetz fibrations f :M ! S2

with O(f) = [I+1 , . . . , I
+
1︸ ︷︷ ︸

p components

, I−1 , . . . , I
−
1︸ ︷︷ ︸

q components

].

Theorem 2.4.5. Let n, p and q be arbitrary integers such that n ≥ 1, p ≥ 0, q ≥ 0 and p+ q = n.
- If p ̸= q, then the set Bn\HomaL

p,q(Fn−1,SL(2,Z)) is a singleton.
- If p = q, then there exists a one-to-one correspondence :

Bn\HomaL
p,q(Fn−1,SL(2,Z)) !

{pt.} ⊔
( p−1⊔

k=0

Ω(T∞, k)
)
⊔
( p−1⊔

k=0

Ω(T∞, k)
)
⊔
( p−1⊔

k=0

Ω(T∞, k)
)
⊔ Ω(T∞ ⊔ T∞ ⊔ T∞, p)

where T∞ is the rooted complete infinite binary tree.

Recall that each matrix g with non-zero trace in SL(2,Z) is uniquely expressed by ϵQ with
ϵ = ±I and Q a word in {A,A2, B} in which B’s and powers of A appear alternatively. The length
of an element g ∈ SL(2,Z) is defined as the length of the word Q, denoted by l(g). Here we list all
possibilities for fibre monodromies of a torus achiral Lefschetz fibration :

−A2B,−ABA,−BA2 and ϵPABAQ,

−BA,A2BA2,−AB and ϵPA2BA2Q
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where P , Q are words in {A,A2, B} in which B’s and powers of A appear alternatively, PQ = ±I,
ϵ = ±I is uniquely determined by l(Q) such that the trace is equal to +2.

Let g1 and g2 be matrices in SL(2,Z). Suppose that g1 and g2 are expressed by ϵtk . . . t1 and
ϵ̃t̃1 . . . t̃l, respectively, with ϵ, ϵ̃ ∈ {I,−I}, k = l(g1), l = l(g2), tj ∈ {A,A2, B}, j = 1, . . . , k and
t̃j ∈ {A,A2, B}, j = 1, . . . , l. The product g1g2 is either

τtk . . . tmrt̃m+1 . . . t̃l or τtk . . . tmr or τrt̃m+1 . . . t̃l

for some τ = τ(g1, g2) ∈ {I,−I}, r = r(g1, g2) ∈ G such that l(r) ≤ 1 and 0 ≤ m = m(g1, g2) ≤ k, l.
Let Q = BAk1BAk2 · · ·BAkmBλ be a matrix in SL(2,Z) with m ≥ 0, k1, . . . , km ∈ {1, 2} and

λ ∈ {0, 1}. We introduce the suffix tree TQ which is a rooted binary tree with infinitely many
vertices, whose each vertex is labelled with a pair of inverse elements in SL(2,Z). Set

Q̃ = BλA3−kmB · · ·A3−k2BA3−k1B

so that Q̃Q = ±I and let ϵ = ±I be such that trace(ϵQ̃ABAQ) = 2. The root of TQ is labelled
with the pair

(ϵQ̃ABAQ,−ϵQ̃A2BA2Q)

and the suffix tree TQ is defined by the following form iteratively, where each directed edge indicates
the parent-child relationship between a vertex and the root of a suffix tree.

(ϵQ̃ABAQ,−ϵQ̃A2BA2Q)

TBAQ TBA2Q

All conjugates of L and R occur in pairs. They are in one-to-one correspondence with the
vertices in the following infinite directed graph Γ, where each directed edge again indicates the
parent-child relationship between a vertex and the root of a suffix tree.

(−A2B,−BA) (−ABA,A2BA2) (−BA2,−AB)

TBA2 TB TBA

The vertices labelled by (−A2B,−BA), (−ABA,A2BA2) or (−BA2,−AB) are called excep-
tional. The components of these labels project to short elements in PSL(2,Z), as in Section 2.3.

Let (g1, . . . , gn) be a global monodromy of torus achiral Lefschetz fibrations, which is an n-tuple
of elements conjugate to either L or R. The complexity of this tuple is defined to be

cxty(g1, . . . , gn) :=
∑
i

cxty(gi), cxty(gi) =

{
l(Q) if gi = ϵQ̃ABAQ or gi = ϵQ̃A2BA2Q

0 otherwise
.

Lemma 2.4.6. Let (e1, e−1
1 ), (e2, e−1

2 ) ∈ V (Γ) be distinct vertices.
(a) If there exists an ancestor-descendant relationship between (e1, e

−1
1 ) and (e2, e

−1
2 ), then by a

sequence of elementary transformations the quadruple

(e1, e
−1
1 , e2, e

−1
2 )

can be transformed into a quadruple of the form

(e′1, e
′−1
1 , e′2, e

′−1
2 )

such that cxty(e1, e−1
1 , e2, e

−1
2 ) > cxty(e′1, e

′−1
1 , e′2, e

′−1
2 ).

(b) If one of (e1, e
−1
1 ), (e2, e

−1
2 ) is not exceptional and they have no ancestor-descendant rela-

tionship, then m(g1, g2) ≤ min{ l(g1)
2 , l(g2)2 } for any g1, g2 ∈ {e1, e−1

1 , e2, e
−1
2 } unless g1g2 = I.

Proof. (a) We first assume that (e1, e
−1
1 ) is exceptional. Then (e2, e

−1
2 ) cannot be exceptional and

we suppose that (e2, e
−1
2 ) = (ϵ2P2ABAQ2,−ϵ2P2A

2BA2Q2).
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When (e1, e
−1
1 ) = (−A2B,−BA) the pair (e2, e

−1
2 ) is a vertex of either TB or TBA. If it is a

vertex of TB , then both words P2ABAQ2 and P2A
2BA2Q2 end with AB and start with BA. The-

refore the following sequence transforms (e1, e
−1
1 , e2, e

−1
2 ) into a desired quadruple with a smaller

complexity.

(−A2B,−BA, e2, e−1
2 ) −! (−A2B, e2, e

−1
2 ,−BA) −! (−A2B,−BA,A2Be2BA,A

2Be−1
2 BA).

Otherwise, (e2, e−1
2 ) is a vertex of TBA and then both P2ABAQ2 and P2A

2BA2Q2 end with ABA
and start with A2BA. Therefore, the following substitution is desired.

(−A2B,−BA, e2, e−1
2 ) −! (e2, e

−1
2 ,−A2B,−BA) −! (−A2B,−BA,BAe2A2B,BAe−1

2 A2B).

When (e1, e
−1
1 ) = (−ABA,A2BA2) or (e1, e

−1
1 ) = (−BA2,−AB), we have similar arguments.

Now we assume that both (e1, e
−1
1 ) and (e2, e

−1
2 ) are unexceptional. Suppose that (ei, e

−1
i ) =

(ϵiPiABAQi,−ϵiPiA
2BA2Qi), for i = 1, 2. Then Q2 is extended from Q1 by a product of finitely

many but at least one BA or BA2 on the left, say

Q2 =
( µ∏
i=1

BAri
)
Q1

with µ ≥ 1 and ri ∈ {1, 2}, for each i = 1, . . . , µ. Therefore, the following substitution is desired
for the case rµ = 1.(

e1, e
−1
1 , e2, e

−1
2

)
=

(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1, ϵ2P2ABAQ2,−ϵ2P2A
2BA2Q2

)
=

(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1,

ϵ2P1(

1∏
i=µ

A3−riB)ABA(

µ∏
i=1

BAri)Q1,−ϵ2P1(

1∏
i=µ

A3−riB)A2BA2(

µ∏
i=1

BAri)Q1

)
!

(
ϵ1P1ABAQ1,

ϵ2P1(

1∏
i=µ

A3−riB)ABA(

µ∏
i=1

BAri)Q1,−ϵ2P1(

1∏
i=µ

A3−riB)A2BA2(

µ∏
i=1

BAri)Q1,

− ϵ1P1A
2BA2Q1

)
!

(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1,

ϵ2P1A(

1∏
i=µ−1

A3−riB)ABA(

µ−1∏
i=1

BAri)A2Q1,−ϵ2P1A(

1∏
i=µ−1

A3−riB)A2BA2(

µ−1∏
i=1

BAri)A2Q1

)
.

Besides, the following substitution is desired for the case rµ = 2.(
e1, e

−1
1 , e2, e

−1
2

)
=

(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1, ϵ2P2ABAQ2,−ϵ2P2A
2BA2Q2

)
=

(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1,

ϵ2P1(

1∏
i=µ

A3−riB)ABA(

µ∏
i=1

BAri)Q1,−ϵ2P1(

1∏
i=µ

A3−riB)A2BA2(

µ∏
i=1

BAri)Q1

)
!

(
ϵ2P1(

1∏
i=µ

A3−riB)ABA(

µ∏
i=1

BAri)Q1,−ϵ2P1(

1∏
i=µ

A3−riB)A2BA2(

µ∏
i=1

BAri)Q1,

ϵ1P1ABAQ1,−ϵ1P1A
2BA2Q1

)
!

(
ϵ1P1ABAQ1,−ϵ1P1A

2BA2Q1,

ϵ2P1A
2(

1∏
i=µ−1

A3−riB)ABA(

µ−1∏
i=1

BAri)AQ1,−ϵ2P1A
2(

1∏
i=µ−1

A3−riB)A2BA2(

µ−1∏
i=1

BAri)AQ1

)
.

(b) When one of (e1, e−1
1 ) and (e2, e

−1
2 ) is exceptional, the other belongs to the unique sub-tree

either TBA2 , TB or TBA. Therefore, m(g1, g2) ≤ 1 unless g1g2 = I. When (e1, e
−1
1 ) and (e2, e

−1
2 )

belong to different sub-trees of TBA2 , TB and TBA, again we have m(g1, g2) ≤ 1 unless g1g2 = I.
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Now we assume that (e1, e
−1
1 ) and (e2, e

−1
2 ) are vertices of the same sub-tree either TBA2 , TB

or TBA. Let (ϵPABAQ,−ϵPA2BA2Q) be the lowest common ancestor of (e1, e−1
1 ) and (e2, e

−1
2 ).

Therefore, there exist the reduced forms of e1, e−1
1 , e2 and e−1

2 such that

(ei, e
−1
i ) = (ϵiP (A

3−riB)ωi(BA
ri)Q,−ϵiP (A3−riB)ω−1

i (BAri)Q)

with ri ∈ {1, 2}, ϵi = ±I, ωi ∈ SL(2,Z) and r1 ̸= r2, for i = 1, 2. Hence, m(g1, g2) ≤ l(Q) + 1
unless g1g1 = I.

Suppose that a tuple of the form (e1, e
−1
1 , . . . , ep, e

−1
p ) in SL(2,Z) is a global monodromy of

torus achiral Lefschetz fibrations. One can write it as a formal sum
∑

v∈V (Γ)mv · v such that∑
mv = p. By Lemma 2.1.3, different tuples which can be written as the same formal sum are

Hurwitz equivalent.

Lemma 2.4.7. Let
∑

v∈V (Γ)mv · v be a formal sum over vertices of Γ. Let (e1, e
−1
1 , . . . , ep, e

−1
p )

be a (2p)-tuple in SL(2,Z) expressed by
∑

v∈V (Γ)mv · v. Suppose that there exist distinct vertices
v1, v1 such that mv1 ≥ 1, mv2 ≥ 1 and there exists an ancestor-descendant relationship between v1
and v2. Then, by a sequence of elementary transformations the (2p)-tuple can be transformed into
a tuple of the form (e′1, e

′−1
1 , . . . , e′p, e

′−1
p ) with a smaller complexity.

Proof. The lemma follows from Lemma 2.4.6 (a).

On the other hand, we have the following lemma.

Lemma 2.4.8. Let
∑

v∈V (Γ)mv · v be a formal sum over vertices of Γ. Let (e1, e
−1
1 , . . . , ep, e

−1
p )

be a (2p)-tuple in SL(2,Z) expressed by
∑

v∈V (Γ)mv · v. Suppose that any two distinct vertices v1,
v2 with v1 ≥ 1, v2 ≥ 1 have no ancestor-descendant relationship. Then, either

(i) there exist at least two distinct exceptional vertices with mv ≥ 1, or
(ii) there exists at most one of the three exceptional vertices satisfying mv ≥ 1.

In Case (i), all components of the (2p)-tuple are short (i.e. cxty(ei) = 0 for i = 1, . . . , p) and
by a sequence of elementary transformations the (2p)-tuple can be transformed into

(−A2B,−BA) • (−ABA,A2BA2)p−1.

In Case (ii), the tuple (e1, e
−1
1 , . . . , ep, e

−1
p ) is minimal according to the complexity among tuples

obtained from (e1, e
−1
1 , . . . , ep, e

−1
p ) using a sequence of elementary transformations. Besides, all

minimal tuples according to the complexity among them of the form (e′1, e
′−1
1 , . . . , e′p, e

′−1
p ) are

expressed by the formal sum
∑

v∈V (Γ)mv · v.

Proof. As in Case (i), when there exist at least two distinct exceptional vertices occurring in the
product form, by an elementary transformation, the corresponding quadruple can be transformed
into

(−A2B,−BA,−ABA,A2BA2).

Besides, the resulting quadruple contains a generating set of SL(2,Z). Therefore, by Lemma 2.1.6,
the (2p)-tuple can be transformed into (−A2B,−BA) • (−ABA,A2BA2)p−1, as desired.

In Case (ii), we assume that there exists a sequence of elementary transformations that trans-
forms (e1, e

−1
1 , . . . , ep, e

−1
p ) into a new tuple with a smaller complexity or a new tuple of the form

(e′1, e
′−1
1 , . . . , e′p, e

′−1
p ) with the same complexity but expressed by a different formal sum of ver-

tices in V (Γ). Therefore, there exists at least one component of the new tuple, say Q−1ωQ, where
ω is equal to some component of (e1, e−1

1 , . . . , ep, e
−1
p ) and Q is a product of e1, . . . , ep and their

inverses, such that cxty(Q−1ωQ) < cxty(ω). It contradicts Lemma 2.4.6 (b).

Proof of Theorem 2.4.5. Since each component g ∈ SL(2,Z) in a global monodromy of torus achiral
Lefschetz fibrations is uniquely determined by ι(g) ∈ PSL(2,Z), by Theorem 2.3.15, torus achiral
Lefschetz fibrations of type O = [I+1 , . . . , I

+
1︸ ︷︷ ︸

p components

, I−1 , . . . , I
−
1︸ ︷︷ ︸

q components

] have pairwise Hurwitz equivalent global

monodromies when p ̸= q.
When p = q, each global monodromy is Hurwitz equivalent to a tuple in SL(2,Z) of the form

(e1, e
−1
1 , . . . , ep, e

−1
p )

and hence can be written as a formal sum
∑

v∈V (Γ)mv · v. We enumerate all possible formal sums
of vertices that express minimal tuples according to the complexity among all Hurwitz equivalent
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tuples. By Lemma 2.4.7, there is no ancestor-descendant relationship between any two distinct
vertices in such a formal sum of vertices.

If there are at least two distinct exceptional vertices v1 and v2 such that mv1 ≥ 1 and mv2 ≥ 1,
by Case (i) in Lemma 2.4.8, then all possible formal sums like this are associated with the same
tuple up to Hurwitz equivalence.

If there exists the unique exceptional vertex v occurring in the formal sum, then other vertices
belong to the same sub-tree T that is either TBA2 , TB or TBA. Therefore, by Case (ii) in Lemma
2.4.8, all possible formal sums are in one-to-one correspondence with elements in Ω(T, p−mv).

Otherwise, there is no exceptional vertex in the formal sum. Again by Case (ii) in Lemma
2.4.8, all possible formal sums are in one-to-one correspondence with elements in Ω(TBA2 ⊔ TB ⊔
TBA, p).

2.5 Computability of Theorem A
We have included this section to demonstrate that all Hurwitz equivalences occurring in our

results (including Theorem A, Theorem B, Theorem C) are computable. For Theorem A, an algo-
rithm exists to provide a sequence of elementary transformations that transforms one tuple to the
other. Its time complexity is

O
(
n5 + n3

∑
i∈{1,2}

n∑
j=1

l(g
(i)
j ) + n

( ∑
i∈{1,2}

n∑
j=1

l(g
(i)
j )

)2)
.

We implement the algorithm in C++ and make our code available on GitHub : https://github.c
om/AHdoc/monodromy_normalisation.

The main goal is to analyse the computability of Theorem 2.1.16. In particular, in Theorem
2.3.14, we need an algorithm to make a tuple inverse-free by elementary transformations, but we
cannot use Theorem 2.1.16 directly.

Step 1. Suppose that (g1, . . . , gn) is a tuple in PSL(2,Z) whose components are conjugate to
short elements. Recall that Theorem 2.3.14 shortens the tuple by removing some pairs of the form
(x, x−1) and triples of the form (l, l, l) with l3 = 1 ; the resulting tuple is an inverse-free tuple of short
elements. The proof uses an induction on an inverse-free tuple, within which one operation seeks
to make the sum of S-complexities strictly-smaller by a sequence of elementary transformations.
In fact, it is sufficient to check all transformations of the form (Ri)

t with t ∈ {−2,−1,+1,+2}.
However, if we throw out the inverse-freeness, the induction still works well and ends with µ = 0,

but the restoration operations (see Subsection 2.1.2) cannot result in a tuple of short elements.
Indeed, a pair of long elements of the form (x, x−1) could have been combined into a single 1, which
was a contradiction in Proposition 2.3.10. Therefore, restorations result in a tuple (h1, . . . , hm) that
probably contains sub-pairs (hi, hi+1) = (x, x−1) or/and sub-triples (hi, hi+1, hi+2) = (l, l, l) with
l3 = 1. Using cyclic permutations, we move these pairs and triples, if exist, to the rightmost
positions. Hence, we get a tuple of short elements, still denoted by (h1, . . . , hm).

Proposition 2.3.10 asks us to handle each restoration (h1h2) 99K (h1, h2) carefully. We repeat
the search for (Ri)

t with t ∈ {−2,−1,+1,+2} that makes f(hi) + f(hi+1) strictly-smaller. In
conclusion, Step 1 calls the following procedure.

1: procedure Shorten((g1, . . . , gn))
2: (h1, . . . , hm) (g1, . . . , gn), (k1, . . . , kl) empty tuple
3: while True do ▷ see Subsection 2.3.2
4: if ∃i s.t. Operation 1 is available on (h1, . . . , hm) for i then
5: combine (hi, hi+1) into hihi+1

6: else if ∃i s.t. hi = 1 then
7: (h1, . . . , hm) (1, h1, . . . , hi−1, hi+1, . . . , hm) ▷ via a cyclic permutation
8: else if ∃i and t ∈ {−2,−1,+1,+2} s.t. (Ri)

t makes
∑

j f(hj) strictly-smaller then
9: (h1, . . . , hm) (Ri)

t(h1, . . . , hm)
10: else if ∃i s.t. Ri keeps

∑
j f(hj) unchanged but makes l(hi) smaller then

11: (h1, . . . , hm) Ri(h1, . . . , hm)
12: else
13: break while
14: end if
15: end while
16: while ∃ a restoration on hi = h̃1h̃2 do
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17: (h1, . . . , hm) (h1, . . . , hi−1, h̃1, h̃2, hi+1, . . . , hm)
18: while True do
19: if ∃t ∈ {−2,−1,+1,+2} s.t. (Ri)

t makes
∑

j f(hj) strictly-smaller then
20: (h1, . . . , hm) (Ri)

t(h1, . . . , hm)
21: else
22: break while
23: end if
24: end while
25: end while
26: while ∃i s.t. hihi+1 = 1 do
27: (k1, . . . , kl) (hi, hi+1) • (k1, . . . , kl), (h1, . . . , hm) (h1, . . . , hi−1, hi+2 . . . , hm)
28: end while
29: while ∃i s.t. hi = hi+1 = hi+2 and hihi+1hi+2 = 1 do
30: (k1, . . . , kl) (hi, hi+1, hi+2) • (k1, . . . , kl), (h1, . . . , hm) (h1, . . . , hi−1, hi+3, . . . , hm)
31: end while
32: return (h1, . . . , hm) and (k1, . . . , hl)
33: end procedure

The input of SHORTEN is an arbitrary tuple (g1, . . . , gn) in PSL(2,Z) of conjugates of short
elements. The output is the concatenation of a tuple (h1, . . . , hm) of short elements and some pairs
of the form (x, x−1) and some triples of the form (l, l, l), l3 = 1, say (h1, . . . , hm) • (k1, . . . , kl). In
general, the tuple (h1, . . . , hm) is not inverse-free. Therefore the difficulty is inherited to the next
step.

Time complexity : A step of the induction in SHORTEN either decreases
∑

i f(hi) or decreases
the number of the pairs (i, j) such that 1 ≤ i < j ≤ m but l(hi) > l(hj). Therefore, the time
complexity of SHORTEN((g1, . . . , gn)) is O((n2 +

∑
i l(gi))n

∑
i l(gi)).

Step 2. The tuple (h1, . . . , hm) of short elements probably has two components (resp. three
components) that form a tuple of mutually inverse elements (resp. a triple of the form (l, l, l) with
l3 = 1). In this case, we move these components to the rightmost positions using cyclic permutations
so that (h1, . . . , hm) is transformed into the concatenation of a shorter tuple, still denoted by
(h1, . . . , hm), and a pair (resp. a triple). However, cyclic permutations do not keep components of
(h1, . . . , hm) short. We end up with this reduction in an extra call on SHORTEN((h1, . . . , hm))
and then repeat it.

Time complexity : Using two/three cyclic permutations, we transform a tuple of short elements
into a tuple, denoted by (h1, . . . , hm), such that

∑
i l(hi) = O(m). Therefore, the above reduction

is O(m(m2 +m)m2) = O(m5).
From now on, we can assume that (h1, . . . , hm) contains at most 2 components equal to a, at

most 2 components equal to a2, at most 1 component equal to b and a, a2 cannot appear together
within this tuple. We mark a tuple of short elements with ca components equal to a, ca2 components
equal to a2 and cb components equal to b with the signature [ca, ca2 , cb]. The following diagram
shows a method to simplify such a tuple into a tuple of signature [ca, ca2 , cb] with ca + ca2 + cb ≤ 1
(c.f. Step 2, Step 3 and Step 4 in the proof of Theorem 2.1.16).

[2, 0, 0] [0, 1, 0]
(a, a) 99K a2

[0, 2, 0] [1, 0, 0]
(a2, a2) 99K a

[1, 0, 1][0, 2, 1]

[0, 0, 2]

[0, 1, 1][2, 0, 1]

[0, 0, 1] [0, 0, 0]

(a2, a2) 99K a

(a, a) 99K a2

(a, s0) 99K b or
(s2, a) 99K b

(a, t0) 99K s1 or
(a, t1) 99K s2 or
(a, t2) 99K s0

(a2, t2) 99K b or
(t0, a

2) 99K b (a2, s0) 99K t2
or (a2, s1) 99K t0
or (a2, s2) 99K t1

(s1, a, s1)! (s1, s0, a)
99K (a, a) 99K a2

(t1, a, t1)! (t1, t2, a
2)

99K (a2, a2) 99K a

(b, b) 99K b

In the diagram, a reduction from a tuple of signature [ca, ca2 , cb] to a tuple of signature
[c′a, c

′
a2 , c′b] is a directed edge endowed with some elementary transformations and contractions
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on a pair or a triple. The reduction starts with cyclic permutations that create a sub-pair or a
sub-triple with which the edge is first endowed. It ends with a call on SHORTEN.

Signature [0, 0, 2] is the only exception that does not satisfy the hypotheses on the tuple.
However, with at most 4 contractions, any tuple of short elements satisfying hypotheses can be
transformed into a tuple of signature [ca, ca2 , cb] with ca + ca2 + cb ≤ 1. Indeed, if a tuple of
signature [1, 0, 1] has to be aimed at a tuple of signature [0, 1, 1], then it is a tuple of a, b, s1 and it
is transformed into a tuple of a2, b, s0, s1, s2 of signature [0, 1, 1], which is further transformed into
a tuple of signature [0, 0, 1].

Time complexity : Both cyclic permutation and contraction are linear. We have shown that a
cyclic permutation on a tuple of short elements results in a tuple such that

∑
i l(hi) = O(m). The

simplification along the diagram calls SHORTEN at most 4 times, therefore its time complexity is
O((m2 +m)m2) = O(m4).

From now on, we can further assume that (h1, . . . , hm) contains at most 1 component equal
to either a, a2 or b. Proposition 2.3.4 claims that, if (h1, . . . , hm) is inverse-free, then it is either
a tuple of a, a2, b, s0, s1, s2 or a tuple of a, a2, b, t0, t1, t2. The proof is a rearrangement of s0, s1, s2
and t0, t1, t2. To introduce a similar reduction, we provide the following procedure.

1: procedure st-Rearrangement((κ1, . . . , κl))
2: if ∃i s.t. κi ∈ {a, a2, b} then
3: (κ1, . . . , κl) (κi, κi+1, . . . , κl, κ1, . . . , κi−1) ▷ via a cyclic permutation
4: end if
5: while ∃i s.t. κi ∈ {t0, t1, t2} and κi+1 ∈ {s0, s1, s2} do
6: if (κi, κi+1) ∈ {(t0, s0), (t1, s1), (t2, s2)} then
7: return (κ1, . . . , κi−1, κi+2, . . . , κl)
8: else if (κi, κi+1) ∈ {(t0, s1), (t1, s2), (t2, s0)} then
9: (κ1, . . . , κl) R−1

i (κ1, . . . , κl)
10: else if (κi, κi+1) ∈ {(t0, s2), (t1, s0), (t2, s1)} then
11: (κ1, . . . , κl) Ri(κ1, . . . , κl)
12: end if
13: end while
14: if ∃i < j s.t. (κi, κj) ∈ {(s0, t0), (s1, t1), (s2, t2)} then
15: return (κ1, . . . , κi−1, κ

κj

i+1, . . . , κ
κj

j−1, κj+1, . . . , κl)
16: else if ∃i < j < k s.t. (κi, κj , κk) ∈ {(s0, t1, t2), (s1, t2, t0), (s2, t0, t1)} then
17: (κ1, . . . , κl) (R2)

2(κi, κj , κk, κ
κiκjκk

1 , . . . , κ
κjκk

i+1 , . . . , κ
κk
j+1, . . . , κk+1, . . .)

18: return (κ3, . . . , κl)
19: else if ∃i < j < k s.t. (κi, κj , κk) ∈ {(s2, s1, t0), (s0, s2, t1), (s1, s0, t2)} then
20: (κ1, . . . , κl) (R2)

−1(κi, κj , κk, κ
κiκjκk

1 , . . . , κ
κjκk

i+1 , . . . , κ
κk
j+1, . . . , κk+1, . . .)

21: return (κ3, . . . , κm)
22: else
23: return (κ1, . . . , κm)
24: end if
25: end procedure

The input of ST-REARRANGEMENT is a tuple of short elements, say (κ1, . . . , κl), that
contains at most 1 component equal to a, a2 or b. The output is either a tuple of short elements
of length l, meaning that (κ1, . . . , κl) is inverse-free, or a tuple (κ̃1, . . . , κ̃l−2) of length l− 2, mea-
ning that (κ1, . . . , κl) can be transformed into (κ̃1, . . . , κ̃l−2) • (si, ti) with some i by elementary
transformations.

We call ST-REARRANGEMENT and SHORTEN with (h1, . . . , hm) repeatedly unless the tuple
is inverse-free. In conclusion, Step 2 calls a procedure, named as INVERSE-FREE, whose input
is a tuple (h1, . . . , hm) of short elements and output is an inverse-free tuple (κ1, . . . , κl) of short
elements such that at most 1 component is equal to a, a2 or b.

Time complexity : The procedure ST-REARRANGEMENT decreases the length of the tuple and
transform a tuple of short elements into a tuple, denoted by (κ1, . . . , κl), such that

∑
i l(κi) = O(l).

The time complexity of ST-REARRANGEMENT is O(l4).
Meanwhile, SHORTEN transforms the tuple back to a tuple of short elements. In conclusion, the

time complexity of INVERSE-FREE(h1, . . . , hm) is O(m5+m4+m(m4+((m2+m)m2))) = O(m5).
Step 3. To slightly improve the complement to Theorem of R. Livné introduced in [Moi77,

p.180-187] to a tuple of a, b, s0, s1, s2 that at most 1 component is equal to a or b, we first introduce
the following procedure named as MOISHEZON (c.f. Proposition 2.3.6).

1: procedure MOISHEZON((κ1, . . . , κl))

55



2: if ∃i s.t. κi ∈ {a, b} then
3: (κ1, . . . , κl) (κi, κi+1, . . . , κl, κ1, . . . , κi−1) ▷ via a cyclic permutation
4: end if
5: while True do
6: if ∃i s.t. (κi, κi+1) = (s1, s0) then ▷ decrease # of s1
7: (κ1, . . . , κl) Ri(κ1, . . . , κl)
8: else if ∃i s.t. (κi, κi+1) = (s2, s1) then ▷ decrease # of s1
9: (κ1, . . . , κl) R−1

i (κ1, . . . , κl)
10: else if ∃i s.t. (κi, κi+1, κi+2) = (s0, s2, s0) then ▷ Claim 1
11: (κ1, . . . , κl) (κ1, . . . , κi−1, s2, s0, s2, κi+3, . . . , κl)
12: else if ∃i+ 1 < j s.t. (κi, . . . , κj+1) = (s1, s2, . . . , s2, s0, s2) then ▷ Claim 2
13: (κ1, . . . , κl) (κ1, . . . , κi−1, s1, s0, s2, s0 . . . , s0, κj+2, . . . , κl)
14: else if ∃i+ 2 < j s.t (κi−1, . . . , κj+1) = (s2, s0, s2, . . . , s2, s0, s2) then ▷ Claim 3
15: (κ1, . . . , κl) (κ1, . . . , κi−2, s2, s0, s2, s0, s2, s0, . . . , s0, κj+2, . . . , κl)
16: (κ1, . . . , κl) (κ1, . . . , κi−2, s0, . . . , s0, κj+2, . . . , κl)
17: else if ∃i s.t. (κi, . . . , κi+5) = (s0, s2, s2, s0, s2, s2) then ▷ Claim 4
18: (κ1, . . . , κl) (κ1, . . . , κi−1, κi+6, . . . , κl)
19: else if ∃i s.t. (κi, . . . , κi+5) = (s2, s2, s0, s2, s2, s0) then ▷ Claim 4
20: (κ1, . . . , κl) (κ1, . . . , κi−1, κi+6, . . . , κl)
21: else
22: break while
23: end if
24: end while
25: end procedure

The input of MOISHEZON is an inverse-free tuple (κ1, . . . , κl) of a, b, s0, s1, s2 that at most 1
component is equal to a or b. The output, denoted by (κ′1, . . . , κ

′
l′), is again a tuple of a, b, s0, s1, s2

and shows that (κ1, . . . , κl) can be transformed into the concatenation of (κ′1, . . . , κ′l′) and some
sextuples of the form (s0, s2, s0, s2, s0, s2) by elementary transformations. If (κ1, . . . , κl) is a tuple
of s0, s1, s2, then l′ = 0 ; otherwise, by Lemma 2.3.18 and Lemma 2.3.20, either

- (κ′1, κ
′
2) = (a, s0) or (κ′l, κ

′
1) = (s2, a) or (κ′l, κ

′
1, κ

′
2) = (s1, a, s1), or

- (κ′1, . . . , κ
′
l) starts with (b, s2) or (b) • (s0)v0,1 • (s2, s0) with v0,1 ≥ 1, or

- (κ′2, . . . , κ
′
l, κ

′
1) ends with (s0, b) or (s2, s0) • (s2)uµ,nµ • (b) with uµ,nµ

≥ 1.
By elementary transformations and at most 2 contractions, the tuple (κ′1, . . . , κ

′
l′) is further trans-

formed into a tuple of a, a2, b, s0, s1, s2 that at most 1 component is equal to a, a2 or b.
Time complexity : The procedure MOISHEZON((κ1, . . . , κl)) is looping, seeks the minimal

number of components equal to s1 and seeks the minimal according to the lexicographical order
given by s0 < s2. Therefore, the number of times that the loop loops is related to the number of
reverse pairs, i.e. i < j but κi > κj according to the lexicographical order, which is O(l2). The time
complexity of MOISHEZON is O(l5).

In Step 3, we consider an inverse-free tuple (κ1, . . . , κl) of short elements that contains at most
1 component equal to a, a2 or b. Let A be the set of elements in (κ1, . . . , κl). We follow the diagram
below to reduce the tuple using elementary transformations and at most 3 contractions.

A =
{a, s0, s1, s2}

·
MOISHEZON

A =
{a2, s0, s1, s2}

(s1, a, s1)! (s1, s0, a)
99K (a, a) 99K a2 A =

{s0, s1, s2}(a2, si) 99K ti−1,
INVERSE-FREE

A =
{b, s0, s1, s2}

(a, s0) 99K b (s2, a) 99K b

·
MOISHEZON

(b, s2) 99K a2 (s0, b) 99K a2

(s0, s2, s0, s2, s0, s2)
ms

MOISHEZON

A symmetric procedure, named as MOISHEZON−1, can handle a tuple of a2, b, t0, t1, t2 that
at most 1 component is equal to a2 or b. Therefore, we have a symmetric diagram for the rest of
the cases.
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Time complexity : In conclusion, Step 3 contracts the tuple at most 3 times, calls MOISHEZON
several times and calls INVERSE-FREE at most once. Its time complexity is O(l5).

Step 4. We have shown that by elementary transformations and at most 7 contractions, the
initial tuple (g1, . . . , gn) is transformed into a concatenation of the following tuples.

(s1, t1)
Q, (t1, s1)

Q, (a, a2)Q, (a2, a)Q, (b, b)Q, (a, a, a)Q, (a2, a2, a2)Q,

(s0, s2, s0, s2, s0, s2), (t0, t2, t0, t2, t0, t2)

where Q ∈ PSL(2,Z) is arbitrary, such that (s0, s2, s0, s2, s0, s2) and (t0, t2, t0, t2, t0, t2) cannot
appear at the same time. By Lemma 2.1.3, the concatenation can be transformed into such with a
desired order by elementary transformations. Besides, a pair of the form (x, x−1) can be transformed
into (x−1, x) by an elementary transformation. Therefore, we handle each restoration carefully and
obtain

(h1, . . . , hm)• (s0, s2)3ms • (t0, t2)3mt •
mst∏
i=1

(s1, t1)
Xi •

ma∏
i=1

(a, a2)Yi •
mb∏
i=1

(b, b)Zi •
∏
ϵ=±1

nϵ∏
i=1

(aϵ, aϵ, aϵ)Pϵ,i

with msmt = 0, Xi, Yi, Zi, Pϵ,i ∈ PSL(2,Z), which is Hurwitz equivalent to the initial tuple.
The tuple (h1, . . . , hm), called the exceptional part of the resulting tuple, is a tuple of short

elements. In fact, if p = q, |pa− qa| ≡ 0 (mod 3) and nb is even in Theorem 2.1.16, the exceptional
part does not exist anymore, i.e. m = 0, thus we have already finished the computation. Otherwise,
the exceptional tuple (h1, . . . , hm) contains a generating set ; by Lemma 2.1.6, we obtain

(h1, . . . , hm) • (s0, s2)3ms • (t0, t2)3mt • (s1, t1)mst • (a, a2)ma • (b, b)mb • (a, a, a)n1 • (a2, a2, a2)n−1 .

With a slight adjustment using cyclic permutations, we may further assume that n1n−1 = 0.
The length of the exceptional tuple is bounded by a constant. In fact, we claim that the

exceptional tuple (h1, . . . , hm) satisfies m ≤ 13 without further discussion. The proof of Theorem
2.1.16 has revealed that a partial normal form can be transformed into the desired normal form
by cyclic transformations and elementary transformations that keep each component short. The
whole computation ends with a brute-force search.

Time complexity : The brute-force search is O(1) as the length of the exceptional tuple is boun-
ded by a constant. The time complexity of Step 4 is O(n

∑
i l(gi)+n

3+1). Hence, the computation
of Theorem 2.1.16 has the time complexity O(n5 + n3

∑
i l(gi) + n(

∑
i l(gi))

2).
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Chapitre 3

Holomorphic fibrations and
holomorphic curves in the moduli
space

3.1 Teichmüller theory
We fix non-negative integers g, n and h with 2g − 2 + n > 0 and h ≥ 2 once and for all.

3.1.1 Teichmüller space
Let Σg,n be an oriented smooth surface of genus g with n punctures without boundary. The

geometric intersection number of two closed curves γ1 and γ2, denoted by ι(γ1, γ2), is the minimum
cardinality of ν1 ∩ ν2 for all closed curves ν1, ν2 such that γi is homotopic to νi, for i = 1, 2.

We say that a set of closed curves {γ1, . . . , γk} fills up the surface Σg,n if, for any non-
contractible non-peripherial closed curve ν, ι(ν, γi) ≥ 1 for some i. A set of disjoint simple closed
curves on Σg,n is called a multi-curve. By convention, we define the product γ1 · γ2 of two oriented
paths as their concatenation and the inverse γ−1 of an oriented path is the same path with the
opposite orientation.

The Teichmüller space Tg,n consists of all marked Riemann surfaces of type (g, n), i.e. equiva-
lent pairs (X, fX) where X is a Riemann surface and fX : Σg,n ! X is an orientation preserving
diffeomorphism. Two pairs (X, fX), (Y, fY ) are equivalent if fY ◦ f−1

X : X ! Y is isotopic to a
biholomorphism. Based on the uniformization of Riemann surfaces, each equivalent class is re-
presented by a marked hyperbolic surface. Then a mapping class [ϕ] ∈ Modg,n acts on Tg,n by
[ϕ] · [(X, fX)] = [(X, fX ◦ ϕ−1)]. The mapping class group acts properly discontinuously on the
Teichmüller space and the quotient space is called the moduli space, denoted by Mg,n.

For any two points [(X, fX)], [(Y, fY )] ∈ Tg,n, we define the Teichmüller distance dT by

dT ([(X, fX)], [(Y, fY )]) =
1

2
log inf

ϕ
{K(ϕ)}. (3.1)

Here, the infimum is taken over all quasiconformal diffeomorphisms ϕ : X ! Y homotopic to
fY ◦ f−1

X , i.e. all quasiconformal diffeomorphisms respecting the markings. Moreover, K(ϕ) ≥ 1
denotes dilatation of ϕ.

The geodesic length function Lγ([(X, fX)]) assigns to each closed curve γ ⊂ Σg,n the length of
the unique geodesic homotopic to fX(γ) on the hyperbolic representative X of [(X, fX)] ∈ Tg,n.
The length of a closed curve γ on a hyperbolic surface X is denoted by lX(γ). The next lemma is
due to Wolpert.

Lemma 3.1.1 ([Wol79]). Consider two points in Tg,n that are represented by the marked hyperbolic
surfaces (X, fX) and (Y, fY ). Set K = exp

(
2dT ([(X, fX)], [(Y, fY )])

)
. Then, the geodesic length

function is distorted by a factor of at most K, i.e.

1

K
Lγ([(X, fX)]) ≤ Lγ([(Y, fY )]) ≤ KLγ([(X, fX)])

for any closed curve γ ⊂ Σg,n.
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Recall the classification of mapping classes due to Bers ([Ber78]). Let φ ∈ Modh be a mapping
class. The translation distance of φ is defined by

τ(φ) = inf
[(X,fX)]∈Th

dT ([(X, fX)], φ · [(X, fX)]).

Then τ(φ) = 0 and the infimum is attained if and only if φ is periodic. Also τ(φ) is positive and
the infimum is attained if and only if φ is pseudo-Anosov. Eventually, τ(φ) is not attained if and
only if φ is reducible and of infinite order. Furthermore, if τ(φ) = 0 and τ(φ) is not attained,
then then there exists µ ∈ Z≥1 bounded above by a constant determined by h such that ϕµ is a
multi-twist.

3.1.2 Monodromy homomorphisms
Suppose that B = Γ\H2 is a hyperbolic surface of type (g, n) with some lattice Γ ≤ Aut(H2).

Consider a holomorphic map F : B !Mh and the lift F̃ : H2 ! Th. We introduce the induced
monodromy homomorphisms.

Firstly, the map F̃ : H2 ! Th induces a group homomorphism FΓ : Γ ! Modh such that
F̃ ◦ ϕ = FΓ(ϕ) ◦ F̃ , for every ϕ ∈ Γ. When F (t) has non-identical automorphisms (i.e. F (t) is
symmetric) for some t ∈ B, the homomorphism FΓ is not necessarily unique. There are at most
(2g + n)84(h−1) many possibilities of such a homomorphism FΓ.

Secondly, fixing a base point t ∈ B and lifting it to some t̃ ∈ H2, we obtain a standard group
isomorphism ρt,t̃ : π1(B, t) ! Γ as follows. A loop γ ⊂ B based at t is lifted to the path in H2

joining t̃ and ρt,t̃([γ]) · t̃.
Eventually, F∗ := FΓ ◦ ρt,t̃ ∈ Hom(π1(B, t),Modh) is called a monodromy homomorphism of F .

A different choice of t̃ may change the monodromy homomorphism by a conjugacy.
The monodromy homomorphism enables us to reformulate and slightly improve the most impor-

tant property of the holomorphic map F , say being distance-decreasing for the intrinsic Kobayashi
distances, as follows.

Proposition 3.1.2. Let γ ⊂ B be a loop based at t. Then (1/2)lB(γ) ≥ dT

(
F̃ (t̃), F∗([γ]) · F̃ (t̃)

)
.

Proof. By definition, we get

1

2
lB(γ) =

1

2
dH2

(
t̃, ρt,t̃([γ])(t̃)

)
≥ dT

(
F̃ (t̃), F̃ ◦ ρt,t̃([γi])(t̃)

)
= dT

(
F̃ (t̃),

(
FΓ ◦ ρt,t̃([γ])

)
◦ F̃ (t̃)

)
= dT

(
F̃ (t̃), F∗([γ]) · F̃ (t̃)

)
.

Proposition 3.1.3. Let γ ⊂ B be a loop based at t and γ′ ⊂ B be a free loop homotopic to γ.
Then (1/2)lB(γ

′) ≥ τ(F∗([γ])).

Proof. Let H : [0, 1] × [0, 1] ! B be the homotopy between γ and γ′ such that H(0, ·) = γ(·),
H(0, 0) = H(0, 1) = t and H(1, ·) = γ′(·). Based on the path H(·, 0) joining t to t′ := H(1, 0), we
obtain a lift of t′, denoted by t̃′. Consider the new monodromy homomorphism F ′

∗ = FΓ ◦ ρt′,t̃′ :
π1(B, t

′)! Modh. Since F ′
∗([γ

′]) = F∗([γ]) =: ϕ, by Proposition 3.1.2, we have

1

2
lB(γ

′) ≥ dT

(
F̃ (t̃′), F ′

∗([γ
′]) · F̃ (t̃′)

)
≥ τ(ϕ).

Corollary 3.1.4. Each peripheral monodromy ϕ satisfies τ(ϕ) = 0.

Proof. The corollary follows from Proposition 3.1.3.

3.1.3 Essentially purely pseudo-Anosov monodromy
We introduce the following hypothesis on the monodromy homomorphism (see also [Rei06]).

Definition 3.1.5. Let B be an oriented hyperbolic surface of type (g, n) and F : B ! Mh

be a holomorphic map. We say that a monodromy homomorphism F∗ : π1(B, t) ! Modh of F
is essentially purely pseudo-Anosov if for each non-trivial non-peripheral class [γ] ∈ π1(B, t) the
image F∗([γ]) is pseudo-Anosov.
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Isometrically immersed holomorphic curves are specific examples whose monodromy homomor-
phisms are essentially purely pseudo-Anosov. In fact, as mentioned in [EM11], every closed geodesic
in Mh is the unique loop of minimal length in its homotopy class. We include a proof for the sake
of completeness.

Theorem 3.1.6. Each monodromy homomorphism of a Teichmüller curve is essentially purely
pseudo-Anosov.

Proof. Let F : B !Mh be a holomorphic isometric immersion and F̃ : H2 ! Th be a lift of F
which is an isometric embedding. Fixing t ∈ B and lifting it to t̃ ∈ H2, we take a monodromy
homomorphism F∗ = FΓ ◦ ρt,t̃ ∈ Hom(π1(B, t),Modh).

Let γ ⊂ B be a non-trivial non-peripheral loop based at t. Suppose that γ′ ⊂ B is a closed
geodesic homotopic to γ. Consider the homotopy H : [0, 1] × [0, 1] ! B such that H(0, ·) = γ(·),
H(0, 0) = H(0, 1) = t and H(1, ·) = γ′(·). Based on the path H(·, 0) joining t to some t′ ∈ Γ′, we
obtain a monodromy homomorphism F ′

∗ = FΓ ◦ ρt′,t̃′ ∈ Hom(π1(B, t
′),Modh) such that F∗([γ]) =

F ′
∗([γ

′]) =: ϕ. By Proposition 3.1.2, we get

N

2
lB(γ

′) =
1

2
dH2

(
t̃′, ρt′,t̃′([γ

′])N (t̃′)
)
= dT

(
F̃ (t̃′), ϕN · F̃ (t̃′)

)
,

for any integer N ≥ 1.
We claim that τ(ϕ) = dT

(
F̃ (t̃′), ϕ · F̃ (t̃′)

)
= 1

2 lB(γ
′). Indeed, assume that there exists q̃ ∈

Th such that dT
(
q̃, ϕ · q̃

)
< dT

(
F̃ (t̃′), ϕ · F̃ (t̃′)

)
. Suppose that N is large enough such that

N
(
dT

(
F̃ (t̃′), ϕ · F̃ (t̃′)

)
− dT

(
q̃, ϕ · q̃

))
> 2dT

(
F̃ (t̃′), q̃

)
. Therefore, we get

N

2
lB(γ

′) = dT

(
F̃ (t̃′), ϕN · F̃ (t̃′)

)
≤ dT

(
F̃ (t̃′), q̃

)
+ dT

(
q̃, ϕN · q̃

)
+ dT

(
ϕN · q̃, ϕN · F̃ (t̃′)

)
≤ 2dT

(
F̃ (t̃′), q̃

)
+NdT

(
q̃, ϕ · q̃

)
< NdT

(
F̃ (t̃′), ϕ · F̃ (t̃′)

)
=
N

2
lB(γ

′),

a contradiction. Hence, the translation distance of the monodromy along any non-trivial non-
peripheral loop is positive.

The following proposition shows that being essentially purely pseudo-Anosov is a sufficiently
strong hypothesis on the monodromy homomorphism of a holomorphic map.

Proposition 3.1.7. Let B = Γ\H2 be an oriented hyperbolic surface of type (g, n). Let F : B !
Mh be a holomorphic map with an essentially purely pseudo-Anosov monodromy homomorphism
F∗ ∈ Hom(π1(B, t),Modh). Then

(i) F is non-constant ;
(ii) the monodromy homomorphism is injective ;
(iii) each peripheral monodromy is of infinite order ;
(iv) peripheral monodromies of any two cusps are not disjoint along any geodesic segment κ

between the boundaries of their cusp regions ;
(v) sys(B) ≥ 2 log 2/(12h− 12).

Proof. For (i), we notice that there exists at least one non-trivial non-peripheral element in π1(B, t).
For (ii), it suffices to show that each peripheral element cannot be represented by the identity. Take
the group presentation

π1(B, t) = ⟨a1, b1, . . . , ag, bg, c1, . . . , cn |
∏
i

[ai, bi]
∏
j

cj = 1⟩.

with loops a1, . . . , ag, b1, . . . , bg,c1, . . . , cn at t. Consider a positive power of a peripheral generating
loop, say crj with j = 1, . . . , n. When g ≥ 1 and n ≥ 1, then [crj , a1] ̸= 1 is non-peripheral. When
n ≥ 2, take j′ ̸= j and then [crj , cj′ ] ̸= 1 is non-peripheral. In both cases, we get F∗(c

r
j) ̸= 1. For

(iii), a peripheral monodromy ϕ must be of infinite order due to the injectivity of the monodromy
homomorphism.

For (iv), let U1, U2 be two distinct cusp regions of B linked by a geodesic segment κ. Set
t0 = ∂U1 ∩ κ and take an arbitrary path γ joining t to t0. The loop along γ ∪ ∂U1 based at t that
goes once around U1 clockwise is denoted by γ1 and its monodromy is denoted by ϕ1. The loop
along γ∪κ∪∂U2 based at t that goes once around U2 clockwise is denoted by γ2 and its monodromy
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is denoted by ϕ2. By Corollary 3.1.4, some power ϕµ1

1 is the multi-twist along a multi-curve α1

and some power ϕµ2

2 is the multi-twist along a multi-curve α2. Assume that α1 ∪ α2 is a set of
disjoint simple closed curves. We notice that γ2µ1

1 ·γ2µ2

2 is non-peripheral of which the monodromy
is reducible, which is a contradiction. The parameters 2 in γ2µ1

1 · γ2µ2

2 cannot be replaced with 1.
Indeed, when (g, n) = (0, 3) and µ1 = µ2 = 1, γ1 · γ2 is peripheral but γ21 · γ22 not.

For (v), consider an essential closed geodesic γ ⊂ B. Then there exists a loop γ′ based at t
homotopic to γ, which is non-trivial and non-peripheral. By Proposition 3.1.3, we have (1/2)lB(γ) ≥
τ(F∗([γ

′])). Penner proved in [Pen91, p.444] the inequality τ(ϕ) ≥ log 2/(12h−12), for any pseudo-
Anosov mapping class ϕ ∈ Modh (see also [FM11, Theorem 14.10]). Thus, sys(B) ≥ 2 log 2/(12h−
12).

We can apply Theorem E - (ii) and Theorem F to a holomorphic map F : B ! Mh with
an essentially purely pseudo-Anosov monodromy homomorphism. Then F is a quasi-isometric
immersion with parameters depending only on (g, n) and h. In addition, the lift F̃ : H2 ! Th
restricted to any fundamental convex polygon D with exactly n ideal points is a quasi-isometric
embedding.

Moreover, by Theorem G, there are only finitely many essentially purely pseudo-Anosov mo-
nodromy homomorphisms induced by Teichmüller curves of type (g, n) in Mh, up to equivalence.
When n = 0, this finiteness is a consequence of Bowditch’s result [Bow09] which shows that there
are only finitely many conjugacy classes of purely pseudo-Anosov surface subgroups of Modh of
genus g (see also [Bow17 ; DF09]). In conclusion,

Conjecture 3.1.8. There are only finitely many conjugacy classes of essentially purely pseudo-
Anosov subgroups of Modh isomorphic to the fundamental group of Σg,n.

We end with the proof of Corollary 1.2.8 as a consequence of the Rigidity Theorem in [IS88].

Proof of Corollary 1.2.8. This comes from Theorem 3.1.6, Proposition 3.1.7 and Theorem G.

3.1.4 Mumford’s compactness
Let ϵ > 0 be an arbitrary real number. For the Teichmüller metric, the moduli space Mg,n

has an infinite diameter. In [Mum71], however, Mumford introduced that the ϵ-thick part of the
moduli space that consists of hyperbolic surfaces X with sys(X) ≥ ϵ is compact.

Let T ≥ϵ
g,n be the set of equivalent classes of marked hyperbolic surfaces whose systole is bounded

below by ϵ. The action of Modg,n on Tg,n preserves the systole and therefore we take the quotient
space of the thick part, denoted by M≥ϵ

g,n. We have Mumford’s compactness.

Theorem 3.1.9 (Mumford). The ϵ-thick part M≥ϵ
g,n of the moduli space Mg,n is a compact subset.

Form now on, we fix a base point [(X0, fX0
)] in Tg,n that is represented by a marked complete

hyperbolic surface (X0, fX0
). We fix a base point s ∈ Σg,n and fix the oriented loops

γ1,1, γ1,2, . . . , γg,1, γg,2, γ
′
1, . . . , γ

′
n ⊂ Σg.n

at s as in Figure 3.1.

s

γ1,1
γ1,2 γ2,2 γ3,2

γ2,1 γ3,1

γ′1 γ′2 γ′3 γ′4

Σ3,4

π1(Σ3,4, s) =
3∏

i=1

[[γi,1], [γi,2]]
4∏

j=1

[γ′j ] = 1

Figure 3.1 – The standard loops of Σ3,4 generate the fundamental group π1(Σg,n, s).

Loops γi,j and γ′k, for i = 1, . . . , g, j = 1, 2 and k = 1, . . . , n, are called the standard loops of
Σg,n. They meet the following conditions.

i. ι(γi,1, γi,2) = 1, for each i, but the intersection number of any other two distinct loops is 0 ;
ii. γ′j goes round the j-th puncture exactly once clockwise, for each j ;
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iii. the fundamental group π1(Σg,n, s) is generated by classes of these loops with the relation

g∏
i=1

[[γi,1], [γi,2]]

n∏
j=1

[γ′j ] = 1.

In contrast, a collection of loops yγi,1, yγi,2 pγ′j ⊂ Σg,n, for i = 1, . . . , g, j = 1, . . . , n, based at
some point ps ∈ Σg,n satisfying conditions i, ii, iii implies an orientation preserving diffeomorphism
ϕ : Σg,n ! Σg,n such that ϕ(s) = ps and each ϕ(γi,1) (resp. ϕ(γi,2), ϕ(γj)) is homotopic to yγi,1

(resp. yγi,2, pγ′j) relative to ps.
Set t0 = fX0

(s) ∈ X0. The set {[fX0
(γ)] | γ is a standard loop} forms a generating set of

π1(X0, t0) such that the length of each fX0
(γ) is determined by (g, n). In other words, there exists

a constant N(g, n) that depends only on (g, n) such that

lX0
(fX0

(γ)) ≤ N(g, n)

for each standard loop γ of Σg,n. We further notice the following lemma.

Lemma 3.1.10. Suppose that (Y, fY ) is a marked hyperbolic surface and ψ : X0 ! Y is a K-
quasiconformal diffeomorphism. Then there exists an orientation preserving diffeomorphism f ′Y :
Σg,n ! Y such that, for each standard loop γ, the image f ′Y (γ) ⊂ Y is homotopic to a loop of
length bounded above by N ′(g, n,K) relative to f ′Y (s), where N ′(g, n,K) depends only on g, n and
K.

Proof. We present 2g + n+ [n = 0] free loops on Σg,n where [n = 0] = 1 if n = 0 and [n = 0] = 0
if n ̸= 0, denoted by δ0, . . . , δ2g+n−1+[n=0], that form a set of closed curves filling up the surface
Σg,n.

- When n = 0, set

δ0 = γ−1
g,2, δ1 = γ1,1 · γ−1

g,2 · γ
−1
g,1 · γg,2,

δ2i = γ−1
i,2 , δ2i+1 = γi+1,1 · γ−1

i,2 · γ−1
i,1 · γi,2, for i = 1, . . . , g − 1,

δ2g = [γ1,1, γ1,2].

- When g = 0, set

δ0 = γ′
−1
1 · γ′−1

g ,

δj = γ′
−1
j+1 · γ′

−1
j , for j = 1, . . . , n− 1.

- When g ≥ 1 and n ≥ 1, set

δ0 = γ1,1 · γ′
−1
n ,

δ2i−1 = γ−1
i,2 , δ2i = γi+1,1 · γ−1

i,2 · γ−1
i,1 · γi,2, for i = 1, . . . , g − 1,

δ2g−1 = γ−1
g,2, δ2g = γ′

−1
1 · γ−1

g,2 · γ
−1
g,1 · γg,2,

δ2g+j = γ′
−1
j+1 · γ′

−1
j , for j = 1, . . . , n− 1.

Let ∆Y be the union of geodesics homotopic to every ψ ◦ fX0
(δi). By Wolpert’s Lemma,

lY (∆Y ) =

2g+n−1+[n=0]∑
i=0

Lδi([(Y, fY )]) ≤ e2K
2g+n−1+[n=0]∑

i=0

Lδi([(X0, fX0)]) ≤ 4(2g+n)e2K ·N(g, n).

Let tY ∈ ∆Y be an arbitrary point. Therefore, there exists loops yγi,1,yγi,2 and xγ′j at tY on Y , for
i = 1, . . . , g and j = 1, . . . , n, that satisfy conditions i, ii and iii, whose lengths are bounded above
by

4 · 4(2g + n)e2KN(g, n) =: N ′.

We conclude that there exists a diffeomorphism f ′Y sending s ∈ Σg,n to tY such that, for each
standard loop γ, the homotopy class of f ′Y (γ) relative to tY is represented by a loop of length
bounded above by N ′.
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We aim at addressing the following question : given a hyperbolic surface X of type (g, n), does
there exist an orientation preserving diffeomorphism f ′X : Σg,n ! X whose image of each standard
loop is homotopic to a loop of short length relative to f ′X(s) ?

Consider a non-trivial mapping class [ϕ] represented by a diffeomorphism ϕ : Σg,n ! Σg,n.
Then, the marked hyperbolic surfaces (X, fX) and (X, fX ◦ ϕ−1) are the same hyperbolic sur-
face with different markings. Therefore, they possess desired diffeomorphisms for this question
simultaneously. Using Mumford’s compactness of M≥ϵ

g,n, we get the following theorem.

Theorem 3.1.11. There exists a constant N ′′ = N ′′(g, n, ϵ) that depends only on (g, n), ϵ and sa-
tisfies the following statement. Given an arbitrary hyperbolic surface Y of type (g, n) with sys(Y ) ≥
ϵ, there exists an orientation preserving diffeomorphism f ′Y : Σg,n ! Y such that the image f ′Y (γ)
of each standard loop γ ⊂ Σg,n is homotopic to a loop of length bounded above by N ′′ relative to
f ′Y (s).

Proof. By Mumford’s compactness, the moduli space M≥ϵ
g,n is compact and therefore there exists

a lift U ⊂ Tg,n of M≥ϵ
g,n containing [X0, fX0

] whose diameter for the Teichmüller metric is bounded
by a constant D = D(g, n, ϵ) > 0 that depends only on (g, n) and ϵ. Suppose that fY is an
arbitrary marking of Y so that [(Y, fY )] ∈ T ≥ϵ

g,n . Then, there exists an orientation preserving
diffeomorphism ϕ : Σg,n ! Σg,n with [(Y, fY ◦ϕ−1)] ∈ U . Moreover, there exists aK-quasiconformal
diffeomorphism ψ : X0 ! Y homotopic to (fY ◦ ϕ−1) ◦ f−1

X0
, where e2K ≤ D. Let f ′Y : Σg,n ! Y

be the diffeomorphism as in the previous lemma and take N ′′ = N ′(g, n,K). Therefore, for each
standard loop γ on Σg,n, the image f ′Y (γ) is homotopic to a loop of length bounded above by N ′′

relative to f ′Y (s).

3.1.5 Bers-Maskit slice
The following proposition is the most technical step in our study on the Parshin-Arakelov

finiteness, known as the irreducibility of holomorphic curves in the moduli space. It first appeared
in [IS88] as part of the proof of the Parshin-Arakelov finiteness. Shiga later formally formulated
this result in [Shi97]. For the case of n = 0, the irreducibility is a consequence of [DW07, Theorem
5.7] and is also proved using the maximum principle for subharmonic functions [McM00, Theorem
3.1]).

Proposition 3.1.12. Let B be an oriented hyperbolic surface of type (g, n) and F : B ! Mh

be a non-constant holomorphic map. Suppose that F∗ : π1(B, t) ! Modh is a monodromy homo-
morphism induced by F with t ∈ B. Then there does not exist a set of non-homotopic disjoint
simple closed curves {α1, . . . , αh′} on Σh such that the set of homotopy classes {[α1], . . . , [αh′ ]} is
preserved by F∗(g) for each g ∈ π1(B, t).

This subsection revisits Kleinian groups and the analytic structure of Teichmüller spaces that
were first introduced by Bers ([Ber70]) and Maskit ([Mas70]). We include a proof of Proposition
3.1.12 at the end.

Projective linear group. By convention, we use Ĉ to denote the Riemann sphere and the
upper (resp. lower) half plane is expressed by U (resp. L) ⊂ C ⊂ Ĉ, where H2 = U . The matrix
group PSL(2,C) acts on Ĉ via Möbius transformations. An element 1 ̸= g ∈ PSL(2,C) is called
parabolic if tr2(g) = 4, elliptic if tr2(g) ∈ (0, 4) ⊂ R and loxodromic in all other cases. A loxodromic
or elliptic element g ∈ PSL(2,C) is diagonalizable and conjugate to a transformations z ! λgz
with |λg| ≥ 1, where λg is called the multiplier.

The matrix group PSL(2,R) is regarded as the largest subgroup of PSL(2,C) that fixes the
upper half plane U . The natural embedding takes hyperbolic, parabolic and elliptic elements into
loxodromic, parabolic and elliptic elements, respectively. Therefore, the multiplier λg of any hy-
perbolic element g ∈ PSL(2,R) is real and positive such that the translation length of g is exactly
log λg. We always suppose that a Fuchsian group Γ ≤ PSL(2,R) is finitely generated and of the
first type.

Let G be an arbitrary subgroup of PSL(2,C). The limit set Λ(G) is the closure of the set of fixed
points of parabolic and loxodromic elements of G. Besides, Λ(G) is also the set of accumulation
points of orbits Gz = {g(z) | g ∈ G}.

Kleinian group. A Kleinian group G is a discrete subgroup of PSL(2,C) that acts disconti-
nuously on some open subset of Ĉ. We always suppose that a Kleinian group is finitely generated
and non-elementary, i.e. Λ(G) has more than two points. The subset Ω(G) = Ĉ\Λ(G) is the largest
open set on which G acts discontinuously. If there exists a simply-connected component ∆ of Ω(G)
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that is invariant under G, then G is called a B-group. A B-group for which Ω(G) = ∆ is simply
connected is called a totally degenerate group.

If G is a B-group with some invariant simply-connected component ∆ ⊂ Ω(G) ⊂ Ĉ, then
there exists a conformal bijection w∆ : U ! ∆ (or w∆ : L ! ∆) so that w−1Gw ≤ PSL(2,R) ≤
PSL(2,C) is a Fuchsian group isomorphic to G, called the Fuchsian equivalent of G. The isomor-
phism G ∋ g 7! w−1gw ∈ w−1Gw is denoted by χw∆ . If χw∆ sends a parabolic element g ∈ G to
a hyperbolic element, then g is called accidental parabolic under the group isomorphism.

Lemma 3.1.13. Let G be a B-group with exactly one invariant simply-connected component ∆ of
Ĉ \ Λ(G). If there is no accidental parabolic element under χw∆

, then G is totally degenerate.

Proof. See the corollary to Proposition 7 in [Ber70] or Theorem 4 in [Mas70].

Quasi-Fuchsian group. A quasi-Fuchsian group G ≤ PSL(2,C) is a Kleinian group such that
there exists an invariant (directed) Jordan curve C ⊂ Ĉ, which implies a pair of Fuchsian groups
(GL, GU ). Suppose that ∆L, ∆U are connected components of Ĉ\C and consider the corresponding
conformal bijections wL : L! ∆L, wU : U ! ∆U . Therefore, (GL, GU ) = (χwL(U), χwU (U)).

Bounded quadratic differentials. Let Γ ≤ PSL(2,R) be a Fuchsian group. In [Ber70], Bers
introduced the finite-dimensional complex Banach space B2(L,Γ) of bounded quadratic differentials
for Γ in the lower half plane L, i.e. holomorphic functions ϕ : L ! C such that |(Im(z)2ϕ(z)| is
bounded and ϕ(g(z))g′(z)2 = ϕ(z) for each g ∈ Γ.

For each ϕ ∈ B2(L,Γ), there exists a conformal Schwarzian antiderivative of ϕ, denoted by
wϕ : L! Ĉ. Therefore, the following group homomorphism sends Γ to a Kleinian group Γϕ.

Γ ∋ g 7! Ξϕ(g) := wϕgw
−1
ϕ ∈ wϕΓw

−1
ϕ =: Γϕ ≤ PSL(2,C).

Lemma 3.1.14 (Lemma 2 in [Ber70]). Let Γ ≤ PSL(2,R) be a Fuchsian group. Then, for any
g ∈ Γ, the function ϕ 7! trace2(Ξϕ(g)) is holomorphic defined in B2(L,Γ).

We define T (Γ) ⊂ B2(L,Γ), now known as the Bers-Maskit slice, as the set of ϕ ∈ B2(L,Γ)
such that wϕ admits a quasiconformal extension to all of Ĉ, denoted by ŵϕ : Ĉ ! Ĉ. For any
ϕ ∈ T (Γ), the Kleinian group Γϕ is a quasi-Fuchsian group with invariant Jordan curve wϕ(∂U),
which implies a pair of Fuchsian groups (ΓL

ϕ ,Γ
U
ϕ ) but one is exactly Γ. By convention, we suppose

that Γ = ΓL
ϕ and call ΓU

ϕ the upper equivalent of Γϕ. There exists a natural isomorphism between
Fuchsian groups Γ = ΓL

ϕ and ΓU
ϕ , denoted by Ξ̂ϕ, which further induces a quasiconformal map of

U .

Lemma 3.1.15. Given a Fuchsian group Γ, we have the following statements.

(i) The Bers-Maskit slice T (Γ) is bounded in B2(L,Γ).
(ii) For any ϕ ∈ T (Γ), then Ξγ : Γ! Γϕ is an isomorphism to a Kleinian group.
(iii) For any ϕ ∈ ∂T (Γ), then Γϕ is a B-group that contains precisely one invariant component

∆, which is called a boundary group.

Proof. Assertion (i) comes from the famous Nehari–Kraus’s theorem. Assertion (ii) comes from
Theorem 5 in [Ber70]. Assertion (iii) comes from Theorem 8 in [Ber70] where the invariant com-
ponent ∆ is hence simply-connected and χw(Γϕ) is a Fuchsian equivalent of the boundary group,
for some conformal bijection w : U ! ∆.

Bers embedding of Teichmüller space. Suppose that the base point [(X0, fX0
)] ∈ Th has

the hyperbolic representative (X0, fX0) where X0 is induced by a Fuchsian group Γ0 ≤ PSL(2,R).
Teichmüller space Th is interpreted as the space of equivalent classes of quasiconformal maps of
U = H2 compatible with Γ0, where two quasiconformal maps are equivalent if they coincide on the
boundary up to pre-composition by Möbius transformations.

Given a quasiconformal map w : U ! U , Teichmüller space Th can be identified with T (Γ0) by
taking the Schwarzian derivative ϕ of a natural extension ŵ of w. In fact, the quasiconformal map
induced by Ξ̂ϕ is equivalent to w. The analytic structure on Th = T (Γ0) comes from the Banach
space B2(L,Γ0) and it is a bounded domain of a finite-dimensional complex Banach space.

Lemma 3.1.16 (Abikoff’s lemma). Take ϕ ∈ ∂T (Γ0) such that the boundary group Γϕ is totally
degenerate and let g ∈ Γϕ be a loxodromic element. If there exist a sequence {ϕn} in T (Γ0) that
converges to ϕ as n!∞ and some hyperbolic g0 ∈ Γ0 such that gn := Ξϕn(g0) ∈ Γϕn ≤ PSL(2,C)
converges to g as n ! ∞, then Lf−1

X0
(γ0)

(ϕn) is unbounded, where γ0 ⊂ X0 is an arbitrary closed
curve corresponding to g0

64



Proof. See Theorem 2 in [Abi76] and use the fact that Lf−1
X0

(γ0)
(ϕn) = λΞ̂ϕn (g0)

.

Now we prove Proposition 3.1.12.

Proof of Proposition 3.1.12. Consider the non-constant holomorphic map F : B !Mh. Let ∆ ⊂ C
be the unit disc and suppose that ι : ∆ ! B is a universal covering whose cover transformation
group is π1(B, t). Therefore, F induces the non-constant holomorphic map of the unit disc ∆ to
Th, denoted by F̃ : ∆! Th.

For each g ∈ π1(B, t) and αi, we have

Lαi(F̃ (g(0))) = LF∗(g)(αi)(F̃ (0)) ≤ max{Lαj
(F̃ (0)) | j = 1, . . . , h′}.

Since F̃ (∆) ⊂ Th = T (Γ0) ⊂ B2(L,Γ0) is bounded, Fatou’s theorem concerning holomorphic
maps on the unit disc states that for almost all ζ ∈ ∂∆, the holomorphic map F̃ converges to some
point q ∈ T (Γ0) non-tangentially. Since the cover transformation group π1(B, t) is of divergence
type, there exists a sequence of transformations gζ,j ∈ π1(B, t) such that gζ,j(z0) converges to ζ
non-tangentially and F̃ (gζ,j(z0)) converges to q as j ! ∞, for every z0 ∈ ∆ (see Theorem XI 20
in [Tsu75]).

We claim that the image limit q ∈ ∂T (Γ0). Indeed, the monodromy F∗(gζ,j) ∈ Modh along gζ,j
is a transformation on Th = T (Γ0), which is isometric and holomorphic. These transformations
converge to a holomorphic map A : Th ! Th. Since z0 is arbitrary, if q ∈ Th then A, as the limit of
a sequence of isometries, cannot be constant, which is a contradiction.

By Lemma 3.1.13 and Lemma 3.1.15 - (iii), if a boundary group Γq, for q ∈ ∂T (Γ0), has no
accidenal parabolic element, then Γq is totally degenerate. However, by Lemma 3.1.14 and Lemma
3.1.15 - (i), the bounded holomorphic map

∆ ∋ z 7! trace2(ΞF̃ (z)(g))

cannot have non-tangential limits that is equal to 4 almost everywhere on ∂T (Γ0), for each hyper-
bolic transformation g ∈ Γ0. Besides, Γ0 is finitely generated and therefore countable. Hence, for
almost all possible non-tangential image limits q ∈ ∂T (Γ0) of F̃ , boundary groups Γq are totally
degenerate.

Let ζ ∈ ∂∆ be a boundary point and gζ,j ∈ π1(B, t) be a sequence of transformations such that
gζ,j(0) =: zj ∈ ∆ converges to ζ ∈ ∂∆ non-tangentially, F̃ (zj) converges to q ∈ ∂T (Γ0) as j !∞,
the boundary group Γq ≤ PSL(2,C) is totally degenerate and has no accidental parabolic element
under Ξ−1

q : Γq ! Γ0. Let g0 ∈ Γ0 be hyperbolic and corresponding to fX0
(αi) ⊂ X0. By Lemma

3.1.15 - (ii), transformations ΞF̃ (zj)
(g0) must converge to a loxodromic element Ξq(g0). By Lemma

3.1.16, we get
Lαi

(F̃ (zj))!∞ as j !∞,

a contradiction.

3.2 Uniform boundedness for Parshin-Arakelov finiteness
Parshin-Arakelov finiteness investigates non-isotrivial holomorphic families of Riemann surfaces

over a Riemann surface of finite type. Suppose that B is an oriented hyperbolic surface of type
(g, n). A holomorphic family C/B that comes from a holomorphic map F : B ! Mh is non-
isotrivial if and only of F is non-constant. Parshin-Arakelov finiteness claims that there are only
finitely many non-isotrivial non-isomorphic families of closed Riemann surfaces of genus h over B.
This also means that there are only finitely many non-constant holomorphic maps F : B !Mh.

Fix ϵ > 0. In this section, however, we investigate a non-constant holomorphic map F : B !Mh

where B is an arbitrary, not fixed, oriented hyperbolic surface of type (g, n) with sys(B) ≥ ϵ. In
particular, we prove Theorem G from the introduction.

Theorem 3.2.1. There exist a constant N ′′ = N ′′(g, n, ϵ) depending only on (g, n), ϵ and a com-
pact subset K′ = K′(g, n, h, ϵ) ⊂ Mh depending only on (g, n), h, ϵ that satisfy the following state-
ment. Let B be an oriented hyperbolic surface of type (g, n) such that sys(B) ≥ ϵ and F : B !Mh

be a non-constant holomorphic map. Then, there exists an orientation preserving diffeomorphism
f ′B : Σg,n ! B such that

(i) f ′B sends the base point s ∈ Σg,n to t′B ∈ B such that F (t′B) ∈ K′ ;
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(ii) the image f ′B(γ) ⊂ B of each standard loop γ ⊂ Σg,n is homotopic to a loop relative to t′B of
length bounded above by N ′′.

Theorem 3.2.1 is a continuation of Theorem 3.1.11, in which the constant N ′′(g, n, ϵ) and the
orientation preserving diffeomorphism f ′B are inherited. We start with a well-known lemma on
closed hyperbolic surface, based on which we then prove that sys(F (t′B)) is bounded. The proof of
Theorem 3.2.1 proceeds similarly to the proof of [McM00, Theorem 3.1].

Lemma 3.2.2 (Corollary 13.7 in [FM11]). There exists a constant τh > 0 depending only on h
such that on any closed oriented hyperbolic surface X of genus h, if {α1, . . . , αh′} is the set of
closed geodesics of length smaller than τh, then ι(αi, αj) = 0 and h′ ≤ 3h− 3.

Proof of Theorem 3.2.1. We aim to show that sys(F (t′B)) ≥ τh/N
′′3h−3 and therefore take K′ =

M≥τh/N
′′3h−3

h , which is a compact subset by Mumford’s compactness. Suppose that F (t′B) has
a hyperbolic representative (X, fX) and assume that sys(X) < τh/N

′′3h−3. By Lemma 3.2.2, let
α1, . . . , αh′ be closed geodesics on X of length smaller than τh, with h′ ≤ 3h− 3.

By Wolpert’s Lemma, images under f−1
X of the shortest several of α1, . . . , αh′ form a set of

homotopy classes on Σh that is preserved by F∗(g) ∈ Modh for each g ∈ π1(B, t
′
B). This contradicts

with Proposition 3.1.12.

Now, we provide the uniform boundedness for Parshin-Arakelov finiteness.

Theorem 3.2.3. The subset{
MO(F )

∣∣∣∣∣B is an oriented hyperbolic surface of type (g, n) such that sys(B) ≥ ϵ

F : B !Mh is a non-constant holomorphic map

}
∈Mg,n,h

is finite, where the finiteness depends only on g, n, h and ϵ.

Proof. Let F̃ : H2 ! Th be the lift of F . Consider a monodroy homomorphism F∗ = FΓ ◦ ρt,t̃ ∈
Hom(π1(B, t),Modh). By Theorem 3.1.11 and Theorem 3.2.1, there exists an orientation preserving
diffeomorphism f ′B : Σg,n ! B such that f ′B(s) = t′B and, for each standand loop γ ⊂ Σg,n, there
exists a loop γB ⊂ B homotopic to f ′B(γ) relative to t′B such that lB(γB) ≤ N ′′ = N ′′(g, n, ϵ).
Besides, we have a compact subset K′ = K′(g, n, h, ϵ) ⊂ Mh such that F (t′B) ∈ K′.

When t = t′B , it suffices to show that there are only finitely many possibilities of F∗([γB ]) ∈
Modh for each standard loop γ. Since K′ is compact, it has a bounded lift K̃′ ⊂ Th containing F̃ (t̃).
For each standard loop γ ⊂ Γg,n, by Proposition 3.1.2, the mapping class g := F∗([γB ]) ∈ Modh
has to be such that dT (F̃ (t̃), g · F̃ (t̃)) ≤ N ′′/2. As the Teichmüller metric is proper, the subset
B(K̃′, N ′′/2) is again compact. Since the mapping class group Modh acts properly discontinuously
on Th, there are only finitely many choices of g.

In general, there exists an orientation preserving diffeomorphism f : Σg,n ! B such that
f(s) = t and f is homotopic to f ′B . Let H : [0, 1] × Σg,n ! B be the homotopy such that
H(0, ·) = f(·) and H(1, ·) = f ′B(·). The path H(·, s) joining t to t′B induces a new monodromy
homomorphism F ′

∗ ∈ Hom(π1(B, t
′
B),Modh) such that F∗([f(γ)]) = F ′

∗([f
′
B(γ)]) for each standard

loop γ. Hence, there are only finitely many possibilities of F∗ ◦ f∗.

3.3 Quasi-isometric rigidity of holomorphic curves
Suppose that B is a hyperbolic surface of type (g, n) and F : B !Mh is a holomorphic map.

In this section, we introduce the rigidity result, which claims that the holomorphic curve F (B) is
very similar to a Teichmüller curve.

3.3.1 From cusp region to end of moduli space
The moduli space Mh has only one end, meaning that for any compact set, there is exactly

one unbounded component of the complement. In this subsection, we consider a hyperbolic cusp
region U , i.e. the neighbourhood of a cusp bounded by a horocycle of length 2. Then we investigate
a non-constant map F : U !Mh that is distance-decreasing for 1/2 of the hyperbolic distance dU
on U and the Teichmüller distance dM on Mh.

The Dehn twist along a closed curve α ⊂ Σh, denoted by τα, is a diffeomorphism of Σh and
represents a mapping class Tα ∈ Modh. Let α = {α1, . . . , αm} be a multi-curve, then a multi-twist
along α is a product of the form T = T r1

α1
◦ · · · ◦ T rm

αm
∈ Modh with each ri ∈ Z \ {0}. In particular,

a power of positive or negative Dehn twist is a multi-twist in our discussion.
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Lemma 3.3.1. Let γ̃1, γ̃2 ⊂ H2 be disjoint geodesics and k ≥ 3 be an integer. Suppose that ϕ is
a hyperbolic isometry along γ̃1 whose translation length is equal to l such that γ̃2 ∩ ϕ(γ̃2) = ∅. Let
p̃1, p̃2 ∈ H2 be arbitrary points partitioned by both γ̃2 and ϕk(γ̃2). Then dH2(p̃1, p̃2) ≥ l.

Proof. Take the (unique) geodesic segment βi perpendicular to both γ̃1 and ϕi(γ̃2), for i = 1, 2. The
hyperbolic plane is separated by γ̃1, γ̃2, ϕ(γ̃2), ϕ2(γ̃2), ϕk(γ̃2) and β1, β2 into 8 pieces. Therefore,
the geodesic segment joining p̃1 to p̃2 goes cross β1 and β2. Hence the distance between p̃1 and p̃2
is at least the distance between β1 and β2, which is equal to l.

Lemma 3.3.2 (Lemma 4.2 in [Iva92], cf. Exposé 6, Section VII in [FLP12]). Let τ = τ r1α1
◦· · ·◦τ rmαm

be a multi-twist diffeomorphism along α = {α1, . . . , αm}. Then for all closed curves γ1, γ2 ⊂ Σh,
we have

ι(τ(γ1), γ2) ≥
m∑
i=1

(|ri| − 2) ι(γ1, αi) ι(γ2, αi)− ι(γ1, γ2).

In particular, for any multi-twist diffeomorphism τ along α and closed curve γ intersecting α
at least once, we have ι(τ3(γ), γ) ≥

∑m
i=1(|3ri| − 2) ι(γ, αi)

2 ≥ 1. The following lemma is inspired
by this observation.

Lemma 3.3.3. Let T = T r1
α1
◦· · ·◦T rm

αm
∈ Modh be a multi-twist along α = {α1, . . . , αm} and γ ⊂ Σh

be a simple closed curve such that ι(α, γ) :=
∑

i |rm| ι(α, γ) ≥ 1. Then, given [(X, fX)] ∈ Th, we
have

Lγ([(X, fX)]) + Lγ(T
4 · [(X, fX)]) ≥ 1

3
Lαi

([(X, fX)])

for all i = 1, . . . ,m.

Proof. Without loss of generality, we assume that (X, fX) is a hyperbolic representative of the
given [(X, fX)]. Suppose that T is represented by a multi-twist diffeomorphism τ . We have

Lγ(T
4 · [(X, fX)]) = Lτ−4(γ)([(X, fX)])

since T · [(X, fX)] = [(X, fX ◦ τ−1)].
Consider a universal covering ι : H2 ! X such that the horizontal geodesic γ̃1 ⊂ H2 is a lift of

the (unique) geodesic homotopic to fX(γ) ⊂ X (see Figure 3.2). We suppose that γ̃1 is oriented
toward the left. Proceeding from 0 ∈ H2, the first lift of some fX(αu) that intersects γ̃1 is denoted
by α̃1 and the second lift of some fX(αv) is denoted by α̃2. Going along the opposite direction,
the first lift of some fX(αx) is denoted by α̃−1 and the second lift of some fX(αy) is denoted by
α̃−2. Suppose that α̃1 and α̃−1 are oriented upward.

Fix i = 1, . . . ,m. Without loss of generality, we further assume that u = i.
The closed geodesic homotopic to fX(αu) ⊂ X is interpreted by a hyperbolic isometry ϕ1 ∈

Isom(H2) of which α̃1 is the axis, whose translation length is Lαu
([(X, fX)]). Therefore, the twist

T ru
αu

is interpreted by ϕru1 acting on the left. Similarly, the closed geodesic homotopic to fX(αx) ⊂ X
is interpreted by a hyperbolic isometry ϕ−1 ∈ Isom(H2) of which α̃−1 is the axis, whose translation
length is Lαx

([(X, fX)]). Therefore, the twist T rx
αx

is interpreted by ϕ−rx
−1 acting on the right.

γ̃2

p̃γ̃1

α̃1

α̃2

α̃−1

α̃−2

γ̃1

α̃1

α̃2

α̃−1

α̃−2

γ̃2

γ̃3

Figure 3.2 – Lifts of γ and T 4(γ) given a multi-twist T along α.
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Suppose that the twists within T along αu and αx have the same direction. Without lose of
generality, we assume that ru > 0 and rx > 0. There exists a lift γ̃2 of the (unique) geodesic
homotopic to fX(τ−4(γ)) ⊂ X which connects two boundary points partitioned by both ϕ4ru1 (α̃2)
and ϕ−4rx

−1 (α̃−2). Let p̃ ∈ H2 be the intersection γ̃1 ∩ γ̃2. Let ψ1, ψ2 be hyperbolic isometries along
γ̃1, γ̃2 corresponding to fX(γ), fX(τ−4(γ)) respectively. Therefore,

3
(
Lγ([(X, fX)]) + Lγ(T

4 · [(X, fX)])
)
= 3

(
Lγ([(X, fX)]) + Lτ−4(γ)([(X, fX)])

)
= dH2(p̃, ψ3

1(p̃)) + dH2(p̃, ψ3
2(p̃)).

Meanwhile, ψ3
1(p̃) and ψ3

2(p̃) are partitioned by both α̃2 and ϕ4ru1 (α̃2). The desired inequality
follows from Lemma 3.3.1.

Suppose that twists within T along αu and αx have different directions. Without loss of gene-
rality, we assume that ru > 0 and rx < 0. In this case, we have ι(α, γ) ≥ 2. Take the lift γ̃2 of
the geodesic homotopic to fX(τ−4(γ)) ⊂ X which connects two boundary points partitioned by
both ϕ4ru1 (α̃2) and ϕ−4rx

−1 (α̃−2). Note that γ̃2 does not intersect γ̃1. The geodesic γ̃3 = ϕ−1
1 (γ̃2) is

another lift of the geodesic homotopic to fX(τ−4(γ)), which connects two boundary points that
are partitioned by ϕ4ru−1

1 (α̃2) and ϕ−1
1 (α̃−1). Hence γ̃3 intersects γ̃1, where the intersection is de-

noted by p̃. Let ψ1, ψ3 be hyperbolic isometries along γ̃1, γ̃3 corresponding to fX(γ), fX(τ−4(γ))
respectively. Therefore, ψ3

1(p̃) and ψ3
3(p̃) are partitioned by both α̃2 and ϕ4ru−1

1 (α̃2). Again, the
desired inequality follows from Lemma 3.3.1.

The multi-twist of a hyperbolic surface that provides a very slight deformation of the hyperbolic
structure should be along a set of very short closed geodesics. We formulate this property in
Proposition 3.3.4 and Proposition 3.3.6, which should be well-known.

Proposition 3.3.4. Given µ ∈ Z>0, there exists a constant lmax = lmax(h, µ) that depends only
on h and µ such that, for any multi-twist T = T r1

α1
◦ · · · ◦ T rm

αm
∈ Modh along α = {α1, . . . , αm}

and [(X, fX)] ∈ Th, if
dT ([(X, fX)], T · [(X, fX)]) ≤ 2µ

then
Lαi([(X, fX)]) ≤ lmax

for all i = 1, . . . ,m.

Proof. Without loss of generality, we assume that (X, fX) is a hyperbolic representative of the
given [(X, fX)]. There exists a geodesic pants decomposition PX = {γi} of X with each lX(γi)
bounded above by Bers’ constant (cf. Theoem 12.8 in [FM11]). More precisely, lX(γi) ≤ 21(h− 1)
for each γi ∈ PX . Suppose that αX,i ⊂ X is the (unique) geodesic homotopic to fX(αi), for each
αi ∈ α, and set αX = {αX,i | i = 1, . . . ,m}. There are two cases to consider for all i = 1, . . . ,m.
Case 1 : αX,i ∈ PX . Then, Lαi

([(X, fX)]) = lX(αX,i) ≤ 21(h− 1).
Case 2 : αX,i ̸∈ PX . Then, there exists a simple closed curve γ ⊂ Σh such that ι(α, γ) ≥ 1 and
Lγ([(X, fX)]) ≤ 21(h− 1). By Wolpert’s Lemma,

Lγ(T
4 · [(X, fX)]) ≤ exp {2 · dT ([(X, fX)], T 4 · [(X, fX)])} · Lγ([(X, fX)]) ≤ e16µ · Lγ([(X, fX)]).

Hence, by Lemma 3.3.3, we get

Lαi([(X, fX)]) ≤ 3
(
Lγ([(X, fX)]) + Lγ(T

4 · [(X, fX)])
)

≤ 3Lγ([(X, fX)])(1 + e16µ) ≤ 63(h− 1)(1 + e16µ) =: lmax(h, µ).

We shall consider Fenchel-Nielsen coordinates for Th associated with a pants decomposition P
of Σh. Let P = {Ci} be a set of closed curves on Σh. The length parameter of Ci is denoted by
li = LCi

([(X, fX)]). However, the twist parameter θi is chosen to be proportional along Ci so that a
positive Dehn twist along Ci changes the twist parameter by adding 2π. For [(X, fX)], [(X ′, fX′)] ∈
Th, the Fenchel-Neilsen distance with respect to P is defined by

dFN,P([(X, fX)], [(X ′, fX′)]) = sup
i

max{| log li − log l′i|, |liθi − l′iθ
′
i|}

where [(X, fX)], [(X ′, fX′)] have Fenchel-Nielsen coordinates c = (li, θi)i and c′ = (l′i, θ
′
i)i respec-

tively. Fenchel-Nielsen distance is introduced and investigated in [ALPSS11]. In fact, we have the
following quasi-isometric relation between Fenchel-Nielsen distance and Teichmüller distance.
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Proposition 3.3.5. Let [(X, fX)], [(X ′, fX′)] ∈ Th be arbitrary and P = {Ci} be a pants de-
composition of Σh such that [(X, fX)], [(X ′, fX′)] have Fenchel-Nielsen coordinates c = (li, θi)i,
c′ = (l′i, θ

′
i)i respectively. Suppose that, for some constants N1, N2 > 0, we have li, l′i ≤ N1 for all

i = 1, 2, . . . and dFN,P([(X, fX)], [(X ′, fX′)]) ≤ N2. Then,

dT ([(X, fX)], [(X ′, fX′)]) ≤ dFN,P([(X, fX)], [(X ′, fX′)]) ·N3(N1, N2)

and
dFN,P([(X, fX)], [(X ′, fX′)]) ≤ dT ([(X, fX)], [(X ′, fX′)]) ·N4(N1)

where the constant N3(N1, N2) depends on N1 and N2, the constant N4(N1) depends only on N1.

Proof. The first inequality comes from Proposition 8.4 in [ALPSS11] and the second inequality
comes from Corollary 8.8 in [ALPSS11]).

We improve Proposition 3.3.4 using Proposition 3.3.5.

Proposition 3.3.6. Given µ ∈ Z>0, there exists a constant K1 = K1(h, µ) that depends only on
h and µ such that, for any multi-twist T = T r1

α1
◦ · · · ◦ T rm

αm
∈ Modh along α = {α1, . . . , αm} and

[(X, fX)] ∈ Th, if
dT ([(X, fX)], T · [(X, fX)]) ≤ 2µ

then
Lαi

([(X, fX)]) ≤ K1dT ([(X, fX)], T · [(X, fX)])

for all i = 1, . . . ,m.

Proof. As in Proposition 3.3.4, we assume that (X, fX) is a hyperbolic representative of the given
[(X, fX)] and let αX be the set of geodesics on X homotopic to fX(αi) for every αi ∈ α. Therefore,
there exists a(nother) geodesic pants decomposition PX = {γi} of X such that

- αX ⊆ PX ;
- lX(γ) ≤ Bers(αX) for each γ ∈ PX , where Bers(αX) is a variation of Bers’ constant that

depends only on h and lengths of every geodesics in αX , therefore depends only on h and µ.
Set Ci = f−1

X (γi) and then P = {Ci} is a pants decomposition of Σ such that LCi
([(X, fX)]) ≤

Bers(αX), for each Ci. By Wolpert’s Lemma, we further have

LCi(T · [(X, fX)]) ≤ exp {2 · dT ([(X, fX)], T · [(X, fX)])} · LCi([X, fX ]) ≤ e4µ Bers(αX).

Therefore, by Proposition 3.3.5, there exists a constant K1 depending only on Bers(αX) and
e4µ Bers(αX) such that

Lαi
([(X, fX)]) ≤ 1

2π
dFN,P([(X, fX)], T · [(X, fX)]) ≤ K1dT ([(X, fX)], T · [(X, fX)])

for all i = 1, . . . ,m.

From now on, we consider a hyperbolic cusp region U and a non-constant map F : U !Mh

that is distance-decreasing for (1/2)dU on U and dM on Mh.
Suppose that U = ⟨g⟩\B with B ⊂ H2 a horoball and g ∈ Aut(H2) a parabolic isometry.

Therefore, the map F can be lifted to a map F̃ : B ! Th. Let ϕ ∈ Modh be such that, given a
generating loop γ ⊂ U based at p ∈ U and a lift p̃ ∈ B of p, one can lift F (γ) to a path joining
F̃ (p̃) to ϕ · F̃ (p̃). This mapping class ϕ should satisfy the inequality ϵ/2 ≥ dT (F̃ (p̃), ϕ · F̃ (p̃)), where
0 < ϵ ≤ 2 and the horocycle Hϵ ⊂ U of length ϵ contains p. Such a mapping class is called the
monodromy of F .

We suppose that a power ϕµ is exactly a multi-twist T along α. Each point p ∈ U determines
the unique horocycle Hε ⊂ U such that p ∈ Hε. Each lift p̃ ∈ B of p determines the geodesic length
l = Lα1(F̃ (p̃)). We associate the length amount ϵ and the length amount l to show that F is a
quasi-isometric embedding.

Theorem 3.3.7. Given ϵ > 0, there exists K2 = K2(h, µ, ϵ) that depends only on h, µ, ϵ and
satisfies the following statement. Suppose that sys(F (pmax)) ≥ ϵ for some pmax ∈ ∂U . Then, we
have

1

2
dU (p1, p2) ≥ dM(F (p1), F (p2)) ≥

1

2
dU (p1, p2)−K2

for any pair of points (p1, p2) in U .

69



Proof. Let pmax ∈ ∂U and p ∈ Hε ⊂ U be arbitrary with ε ≤ 2. Take a lift p̃max ∈ B of pmax

and a lift p̃ ∈ B of p such that dM(F (pmax), F (p)) = dT (F̃ (p̃max), F̃ (p̃)). For convenience, we set
qmax = F (pmax), q = F (p), q̃max = F̃ (p̃max) and q̃ = F̃ (p̃). By Wolpert’s Lemma, Proposition 3.3.6
and the triangle inequality in (U, dU ), we have

dM(q, qmax) = dT (q̃, q̃max) ≥
1

2
log

Lα1
(q̃max)

Lα1
(q̃)

≥ 1

2
log

sys(q̃max)

K1(h, µ)dT (q̃, T · q̃)
≥ 1

2
log

sys(qmax)

K1(h, µ)µϵ/2
=

1

2

{
log

sys(qmax)

K1(h, µ)µ
+ log

2

ϵ

}
≥ 1

2
dU (p, pmax)−K ′

2

where K ′
2 = 1− (1/2) log sys(qmax) + (1/2) logK1(h, µ)µ.

In general, let p1, p2 ∈ U be arbitrary. Set q1 = F (p1), q2 = F (p2) and take the corresponding
horocycles Hε1 ∋ p1, Hε2 ∋ p2. Using the above inequality and triangle inequalities in both (U, dU )
and (Mh, dM), we conclude that

1

2
dU (p1, p2) ≥ dM(q1, q2)

≥ |dM(q1, qmax)− dM(q2, qmax)|

≥ 1

2
|dU (p1, pmax)− dU (p2, pmax)| −K ′

2

≥ 1

2
max

{(
log

2

ε1
− 2

)
−

(
log

2

ε2
+ 2

)
,
(
log

2

ε2
− 2

)
−
(
log

2

ε1
+ 2

)}
−K ′

2

=
1

2
max

{
log

ε1
ε2
, log

ε2
ε1

}
− 2−K ′

2

≥ 1

2
(dU (p1, p2)− 2)− 2−K ′

2 =
1

2
dU (p1, p2)− 3−K ′

2.

3.3.2 Proof of Theorem E
Consider an oriented hyperbolic surface B of type (g, n), which has n cusps. Let Ui be the cusp

region of the i-th cusp, which is of area 2 and bounded by a horocycle of length 2, for i = 1, . . . , n.
The complement is a compact hyperbolic surface with boundary, denoted by Bcp ⊂ B.

The proof of Theorem E - (i) is made up of two lemmata. The first lemma claims that the
holomorphic map restricted to a cusp region Ui is a quasi-isometric embedding whose parameters
depend not only on (g, n), h and sys(B) but also on sys(F (b)) for an arbitrary point b ∈ Bcp.
The second lemma claims that sys(F (b)) is bounded uniformly for b ∈ Bcp. Theorem E - (ii) is
a consequence of Theorem E - (i) due to the fact that diam(Bcp) has an upper bound based on
sys(B).

Lemma 3.3.8. Given ϵ > 0, there exists a constant K3 = K3(g, n, h, ϵ) that depends only on
(g, n), h, ϵ and satisfies the following statement. Let B be an oriented hyperbolic surface of type
(g, n) and F : B ! Mh be a non-constant holomorphic map with a monodromy homomorphism
F∗ ∈ Hom(π1(B, t),Modh) such that a peripheral monodromy of the i-th cusp is of infinite order,
for some i = 1, . . . , n. Suppose that sys(B) ≥ ϵ and sys(F (b)) ≥ ϵ for some b ∈ Bcp. Then, we have

1

2
dB(p1, p2) ≥ dM(F (p1), F (p2)) ≥

1

2
dB(p1, p2)−K3

for each pair of points (p1, p2) ∈ Ui × Ui.

Proof. Since F is holomorphic, it is automatically distance-decreasing for (1/2)dB on B and dM
on Mh. Now regard the hyperbolic surface B as the union of the compact region Bcp and n
more disjoint cusp regions U1, . . . , Un each bounded by a horocycle of length 2. Select an arbitrary
boundary point pmax,i ∈ ∂Ui and let diam (Bcp) be the diameter of Bcp.

A peripheral monodromy of the i-th cusp, denoted by ϕ, is reducible, of infinite order and has
no pseudo-Anosov reduced component. Therefore, some power ϕµ is identical on each component,
where µ is bounded above by a constant determined by h. Hence, ϕµ is a multi-twist.

Suppose that sys(F (b)) ≥ ϵ for some b ∈ Bcp. Let (p1, p2) be a pair of points in Ui. By Theo-
rem 3.3.7, the difference between dM(F (p1), F (p2)) and (1/2)dB(p1, p2) is bounded by a constant
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depending only on h, µ and a lower bound of sys(F (pmax,i)). By Mumford’s compactness, the dia-
meter diam (Bcp) is bounded by a constant determined by (g, n) and ϵ. Wolpert’s Lemma then
shows a mutual dependence between sys(F (b)) and sys(F (pmax,i)). Hence, the unique parameter
used in the desired inequality depends only on (g, n), h and ϵ.

Lemma 3.3.9. Given ϵ > 0, there exists a constant K4 = K4(g, n, h, ϵ) that depends only on
(g, n), h, ϵ and satisfies the following statement. Let B be an oriented hyperbolic surface of type
(g, n) such that sys(B) ≥ ϵ and F : B !Mh be a non-constant holomorphic map. Then, for any
p ∈ Bcp, we have

sys(F (p)) ≥ K4.

Proof. One can derive this from Theorem 3.2.1 and Wolpert’s Lemma.

3.3.3 Proof of Theorem F
It remains to investigate a pair of points in distinct cusp regions. Theorem F comes from the

following lemma.

Lemma 3.3.10. Given ϵ > 0, there exists a constant K5 = K5(g, n, h, ϵ) that depends only on
(g, n), h, ϵ and satisfies the following statement. Let B be an oriented hyperbolic surface of type
(g, n) such that sys(B) ≥ ϵ and D ⊂ H2 be a fundamental convex polygon of B with exactly n ideal
points. Let F : B !Mh be a non-constant holomorphic map with a monodromy homomorphism
F∗ ∈ Hom(π1(B, t),Modh). For some i ̸= j, i = 1, . . . , n and j = 1, . . . , n, if peripheral mono-
dromies of the i-th and the j-th cusps are of infinite order and they are not disjointed along some
geodesic segment κi,j ⊂ B having a lift κ̃i,j ⊂ D, then we have

1

2
dH2(p̃1, p̃2) ≥ dT (F̃ (p̃1), F̃ (p̃2)) ≥

1

4
dH2(p̃1, p̃2)−K5 − lB(κi,j)

for each pair of points (p1, p2) ∈ Ui × Uj, where p̃1 ∈ D is a lift of p1 and p̃2 ∈ D is a lift of p2.

Proof. Without loss of generality, we assume that i = 1 and j = 2. Suppose that p1 ∈ Hϵ1 ⊂ U1

where Hϵ1 is the horocycle of length 0 < ϵ1 ≤ 2 within the cusp region U1. Suppose that p2 ∈
Hϵ2 ⊂ U2 where Hϵ2 is the horocycle of length 0 < ϵ2 ≤ 2 within the cusp region U2.

Consider the peripheral monodromies ϕ1 and ϕ2 associated to κ. Therefore, some power ϕµ1

1 is
a multi-twist along a multi-curve α1 and some power ϕµ2

2 is a multi-twist along a multi-curve α2,
where both µ1 and µ2 are bounded above by a constant determined by h. There exist α1 ∈ α1 and
α2 ∈ α2 such that ι(α1, α2) ≥ 1.

Take q1 = F (p1), q2 = F (p2) ∈ Mh and set q̃1 = F̃ (p̃1), q̃2 = F̃ (p̃2) ∈ Th. By Proposition 3.3.6,
since dT (q̃1, ϕ

µ1

1 · q̃1) ≤ µ1 · ϵ1 ≤ 2µ1 and dT (q̃2, ϕ
µ2

2 · q̃2) ≤ µ2 · ϵ2 ≤ 2µ2 we have

Lα1(q̃1) ≤ K1(h, µ1) · dT (q̃1, ϕµ1

1 · q̃1) ≤ K1(h, µ1) · µ1 · ϵ1,
Lα2(q̃2) ≤ K1(h, µ2) · dT (q̃2, ϕµ2

2 · q̃2) ≤ K1(h, µ2) · µ2 · ϵ2.

Besides, since ι(α1, α2) ≥ 1, we have

sinh
(Lα1

(q̃1)

2

)
sinh

(Lα2
(q̃1)

2

)
≥ 1 and sinh

(Lα1
(q̃2)

2

)
sinh

(Lα2
(q̃2)

2

)
≥ 1

which implies that Lα1(q̃2) ≥ 2 arcsinh 1
sinhK1(h,µ2)·µ2

and Lα2(q̃1) ≥ 2 arcsinh 1
sinhK1(h,µ1)·µ1

. The-
refore, by Wolpert’s Lemma, we have

dH2(p̃1, p̃2) ≥ 2dT (F̃ (p̃1), F̃ (p̃2)) = 2dT (q̃1, q̃2) ≥
1

2
log

Lα1(q̃2)

Lα1(q̃1)
+

1

2
log

Lα2(q̃1)

Lα2(q̃2)

≥ 1

2

(
log

2

ϵ1
+ log

2

ϵ2

)
−K5,1,2(h, µ1, µ2)−K5,2,1(h, µ1, µ2)

where

K5,1,2(h, µ1, µ2) =
1

2
log

K1(h, µ1) · µ1

arcsinh 1
sinhK1(h,µ2)·µ2

,

K5,2,1(h, µ1, µ2) =
1

2
log

K1(h, µ2) · µ2

arcsinh 1
sinhK1(h,µ1)·µ1

.
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Using triangle inequality in (H2, dH2) and the fact that D is convex and bounded by geodesic
segments, we conclude that

dH2(p̃1, p̃2) ≥ 2dT (q̃1, q̃2) ≥
1

2
dH2(p̃1, p̃2)−

1

2
diam(B̃cp ∩D)−K5,1,2(h, µ1, µ2)−K5,2,1(h, µ1, µ2)

where B̃cp ⊂ H2 is the lift of Bcp ⊂ B.

3.4 Examples and applications
This section is intended to provide several examples, remarks concerning and consequences of

Theorem E and Theorem F. We focus on holomorphic curves in M2. Let γ1, γ2, γ3, γ4, γ5 and τ, σ
be closed curves on Σ2 represented in Figure 3.3 and Figure 3.4.

γ1

γ2

γ3

γ4

γ5

Figure 3.3 – Five closed curves on Σ2 along
which the Dehn twists generate Mod2. We
have chosen their orientations for later use.

σ

τ

Figure 3.4 – Another pair of closed curves
on Σ2.

It is well-known (cf. [Bir75, Theorem 4.8] and [Aur03, Figure 1]) that Mod2 is generated by the
five Dehn twists Tγ1

, Tγ2
, Tγ3

, Tγ4
, Tγ5

and admits the following presentation :

Mod2 =

〈
Tγ1

, . . . , Tγ5

∣∣∣∣∣∣∣∣
Tγi

◦ Tγj
= Tγj

◦ Tγi
if |i− j| > 1 ;

Tγi ◦ Tγj ◦ Tγi = Tγj ◦ Tγi ◦ Tγj if |i− j| = 1 ;
Tγ1 ◦ Tγ2 ◦ Tγ3 ◦ Tγ4 ◦ T 2

γ5
◦ Tγ4 ◦ Tγ3 ◦ Tγ2 ◦ Tγ1 = I is central ;

I2 = 1 ; (Tγ1
◦ Tγ2

◦ Tγ3
◦ Tγ4

◦ Tγ5
)6 = 1

〉
.

One can check that I = (Tγ1
◦ Tγ2

◦ Tγ3
◦ Tγ4

)5.

3.4.1 Quasi-isometrically but non-isometrically immersed curves
Theorem E provides a sufficient condition on the monodromy homomorphism for a holomor-

phic map F : B ! Mh to be a quasi-isometric immersion. On the other hand, the monodromy
homomorphism of an isometric immersion F : B !Mh is essentially purely pseudo-Anosov (see
Definition 3.1.5 and Theorem 3.1.6). Therefore, we present a criterion for a holomorphic curve to
be quasi-isometrically but not isometrically immersed.

Criterion 3.4.1. Let B be an oriented hyperbolic surface of type (g, n) and F : B ! Mh be a
non-constant holomorphic map. Suppose that (a) the monodromy homomorphism is not essentially
purely pseudo-Anosov, (b) all peripheral monodromies are of infinite order. Then, the holomorphic
curve F (B) ⊂ Mh is quasi-isometrically but not isometrically immersed.

In the rest of this subsection, we construct a quasi-isometrically but not isometrically immersed
holomorphic curve F (B) ⊂ M2 of type (0, 6). In addition, there exists a desired fundamental
polygon D as in Theorem F such that F̃

∣∣∣
D

is a quasi-isometric embedding.

Example 3.4.2. Set B = C \ {−2,−1, 0, 1, 2} and

C ′ =

{(
[X0 : X1], [Y0 : Y1], b

)
∈ CP 1 × CP 1 ×B

∣∣∣∣∣X
6
0Y

2
1 =(X1 +X0b)(X1 −X0b)(X1 +X0)

(X1 + 2X0)(X1 −X0)(X1 − 2X0)Y
2
0

}
.
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Let π′ : C ′ ! B be a holomorphic map with π′([X0 : X1], [Y0 : Y1], t) = t. Then, each fibre π′−1(b)
is a double cover of CP 1 via π′−1(b) ∋ ([X0 : X1], [Y0 : Y1], t) 7! [X0 : X1] ∈ CP 1 with branch
points

P1 = [1 : b], P2 = [1 : 2], P3 = [1 : 1], P4 = [1 : −1], P5 = [1 : −2], P6 = [1 : −b] and ∞ = [0 : 1].

Therefore, the resolution at [0 : 1] for every t ∈ B is a holomorphic family C/B of Riemann surfaces
of genus 2, say π : C ! B, which is non-isotrivial.

Proposition 3.4.3. The classifying map of the holomorphic family C/B in Example 3.4.2 is a
quasi-isometric but not-isometric immersion. Moreover, the lift of the classifying map restricted to
some fundamental polygon is a quasi-isometric embedding.

Proof. The baseB is a Riemann surface of type (0, 6). To illustrate the monodromy homomorphism,
we fix the base point t := 3 ∈ B and investigate generic fibres at b ∈ Γ ⊂ B where Γ is shown in
Figure 3.5. In fact, the resolution of π′−1(t) is the union of two copies of a single-valued branch
that are glued along the boundary, where the boundary consists of three connected components.
Figure 3.6 shows a piecewise correspondence between the algebraic curve π−1(t) and the topological
surface Σ2.

−2 −1 0 1 2 t = 3

Γ ⊂ B

Figure 3.5 – The subset Γ ⊂
B at each point of which the
fibre is generic.

P6

P5

P4

P3

P2

P1

Σ2

P6

P5

P4

P3

P2

P1

CP 1

P6

P5

P4

P3

P2

P1

CP 1

Figure 3.6 – A piecewise correspondence between two copies of the
single-valued branch at t = 3 and Σ2.

When b ∈ Γ is approaching one of −2, −1, 0, 1 and 2, there exist several closed curves on the
generic fibre each joining two distinct branch points and vanishing when b takes the limit. These
closed curves are called vanishing cycles. Figure 3.7 tells us what the pair of branch points is for
each vanishing cycle. The peripheral monodromy is not the product of Dehn twists along vanishing
cycles, but the product of their squares. One may compare its action on a transverse arc to the
standard picture of a Dehn twist and a squared Dehn twist (see Figure 3.8).
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b

X1

P1

P2

P3

P4

P5

P6

−2 −1 0 1 2

Figure 3.7 – Deformation of the branch
points.

P P

P P

Q Q Q

Q

Q

Q Q

P P P

P

P

Q Q

Figure 3.8 – A pair of branch points rota-
ted clockwise and the squared Dehn twist.

To identify the vanishing cycles, we deform the algebraic curve π−1(b) along Γ and maintain the
correspondence with Σ2. This deformation and all vanishing cycles at −2, −1, 0, 1, 2 are depicted
in Figure 3.9.

We need the following.

Lemma 3.4.4. Let γ1, γ2 ⊂ Σ2 be two closed curves on the (oriented) closed surface of genus 2
such that ι(γ1, γ2) = 1. Consider a path, denoted by γ1△γ2, starting from some p ∈ γ1 \γ2, moving
along γ1 to the intersection, turning right, moving along γ2 back to the intersection, turning left
and moving along γ1 back to p. Then, we have

Tγ1△γ2
= T−1

γ2
◦ Tγ1

◦ Tγ2
.

Proof of Lemma 3.4.4. This comes from the fact that γ1△γ2 is homotopic to T−1
γ2

(γ1).

We return to the proof of Proposition 3.4.3. The monodromy homomorphism F∗ : π1(B, t) !
Mod2 is expressed as a sextuple, denoted by (ϕ∞, ϕ−2, ϕ−1, ϕ0, ϕ1, ϕ2), where ϕ∞, ϕ−2, ϕ−1, ϕ0,
ϕ1 and ϕ2 are peripheral monodromies at ∞, −2, −1, 0, 1 and 2. Using ϕ1/22 , ϕ1/21 , ϕ1/20 , ϕ1/2−1 and
ϕ
1/2
−2 to denote half peripheral monodromies at 2, 1, 0, −1 and −2 respectively, so that

ϕ
1/2
2 =Tγ1

◦ Tγ5
,

ϕ
1/2
1 =Tγ1△γ2

◦ Tγ5△γ4
= T−1

γ2
◦ Tγ1

◦ Tγ2
◦ T−1

γ4
◦ Tγ5

◦ Tγ4
,

ϕ
1/2
0 =T(γ1△γ2)△(γ5△γ4△γ3)

=T−1
γ3

◦ T−1
γ4

◦ T−1
γ5

◦ Tγ4
◦ Tγ3

◦ T−1
γ2

◦ Tγ1
◦ Tγ2

◦ T−1
γ3

◦ T−1
γ4

◦ Tγ5
◦ Tγ4

◦ Tγ3
,

ϕ
1/2
−1 =Tγ1△γ2△γ3 ◦ Tγ5△γ4△γ3 = T−1

γ3
◦ T−1

γ2
◦ Tγ1 ◦ Tγ2 ◦ Tγ3 ◦ T−1

γ3
◦ T−1

γ4
◦ Tγ5 ◦ Tγ4 ◦ Tγ3 ,

ϕ
1/2
−2 =Tγ1△γ2△γ3△γ4

◦ Tγ4△γ3△γ2△γ1

=T−1
γ4

◦ T−1
γ3

◦ T−1
γ2

◦ Tγ1 ◦ Tγ2 ◦ Tγ3 ◦ Tγ4 ◦ T−1
γ2

◦ T−1
γ3

◦ T−1
γ4

◦ Tγ5
◦ Tγ4

◦ Tγ3
◦ Tγ2

,

we observe that
T 2
τ ◦ (ϕ1/2−2 )

2 ◦ (ϕ1/2−1 )
2 ◦ (ϕ1/20 )2 ◦ (ϕ1/21 )2 ◦ (ϕ1/22 )2 = 1

and
(ϕ

1/2
2 )2 ◦ (ϕ1/21 )2 ◦ (ϕ1/22 )2 ◦ (ϕ1/21 )2 ◦ T 4

γ2
◦ T 4

γ4
◦ T−2

σ = 1

where τ and σ are given in Figure 3.4. Therefore, the peripheral monodromy at ∞ is again a
multi-twist and there exists an essential closed curve on which the monodromy is a multi-twist.
Hence, the holomorphic family C/B induces a quasi-isometrically but not isometrically immersed
holomorphic curve.

The global monodromy (ϕ∞, ϕ−2, ϕ−1, ϕ0, ϕ1, ϕ2) is a tuple in Mod2 whose components are of
infinite order and pairwise intersecting. Hence, the lift of the classifying map restricted to some
fundamental polygon, say F̃

∣∣∣
D

: D ! T2, is a quasi-isometric embedding.
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−2 −1 0 1 2

−2 −1 0 1 2

t = 3

vanishing
cycle(s)

single-
valued
branch

P1

P1
P1

P1

P1

P2

P2
P2P2P2

P3

P4

P3

P3P3

P3

P4

P4 P5

P5

P5

P4

P4

P5P5 P6

P6

P6

P6

P6

Figure 3.9 – Deformation of the generic fibre along Γ is illustrated by the deformation of the
single-valued branch, due to the correspondence between two copies of single-valued branch and
Σ2. One can further point out the vanishing cycle(s) at 2, 1, 0, −1 and −2 respectively.

3.4.2 Non quasi-isometrically embedded cusp regions
In this subsection, we provide a holomorphic curve of type (0, 8) in M2 for which a cusp region

is not quasi-isometrically embedded. In fact, the corresponding peripheral monodromy is of finite
order and therefore this holomorphic curve does not satisfy the hypothesis of Theorem E - (i).

Example 3.4.5. Set B = C \ {−1,−1/2,−1/3, 0, 1/3, 1/2, 1} and

C =

(
[X0 : X1], [Y0 : Y1], b

)
∈ CP 1 × CP 1 ×B

∣∣∣∣∣∣∣
X5

0Y
2
1 =(X1 − (3b+ 2)X0)(X1 − bX0)

(X1 + (3b− 2)X0)(X1 + bX0)

(X1 −X0)Y
2
0

 .

Let π : C ! B be a holomorphic map with π([X0 : X1], [Y0 : Y1], t) = t. Then, each fibre π−1(b) is
a double cover of CP 1 via π−1(b) ∋ ([X0 : X1], [Y0 : Y1], t) 7! [X0 : X1] ∈ CP 1 with branch points

P1 = [1 : 3b+ 2], P2 = [1 : b], P3 = [1 : 1], P4 = [1 : −b], P5 = [1 : −3b+ 2] and ∞ = [0 : 1].

Therefore, C/B is a holomorphic family of Riemann surfaces of genus 2, say π : C ! B, which is
non-isotrivial.

Proposition 3.4.6. The classifying map F : B !M2 of the holomorphic family C/B in Example
3.4.5 satisfies the following properties :
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- Peripheral monodromies at ∞ are of order 2.
- The restriction of F to the cusp region at ∞ lies in a thick part of M2.

Proof. The baseB is a Riemann surface of type (0, 8). To illustrate the monodromy homomorphism,
we fix the base point t := 2 ∈ B and investigate generic fibres at b ∈ Γ ⊂ B where Γ is given in
Figure 3.10.

−1 − 1
2

− 1
3

1
3

1
20 1 t = 2

Γ ⊂ B

Figure 3.10 – The subset Γ ⊂ B of generic positions we are looking at.

Figure 3.11 shows a piecewise correspondence between Ct := π−1(t) and the topological surface
Σ2. Therefore, the monodromy homomorphism F∗ : π1(B, t) ! Mod2 is expressed as an octuple,
denoted by (ϕ∞, ϕ−1, ϕ−1/2, ϕ−1/3, ϕ0, ϕ1/3, ϕ1/2, ϕ1), where ϕ∞, ϕ−1, ϕ−1/2, ϕ−1/3, ϕ0, ϕ1/3, ϕ1/2
and ϕ1 are peripheral monodromies at ∞, −1, −1/2, −1/3, 0, 1/3, 1/2 and 1.

P5

P4

P3

P2

P1

∞

Σ2

P5

P4

P3

P2

P1

CP 1

P5

P4

P3

P2

P1

∞ ∞
CP 1

Figure 3.11 – A piecewise correspondence between Ct and Σ2.

The half peripheral monodromies are given by the following.

ϕ
1/2
1 = Tγ3

◦ Tγ5
,

ϕ
1/2
1/2 = Tγ3△(γ5△γ4) = T−1

γ4
◦ T−1

γ5
◦ Tγ4

◦ Tγ3
◦ T−1

γ4
◦ Tγ5

◦ Tγ4
,

ϕ
1/3
1/3 = Tγ5△γ4

= T−1
γ4

◦ Tγ5
◦ Tγ4

,

ϕ
1/2
0 = Tγ3△γ4 ◦ T(γ5△γ4)△(γ3△γ2)

= T−1
γ4

◦ Tγ3
◦ Tγ4

◦ T−1
γ2

◦ T−1
γ3

◦ Tγ2
◦ T−1

γ4
◦ Tγ5

◦ Tγ4
◦ T−1

γ2
◦ Tγ3

◦ Tγ2
,

ϕ
1/2
−1/3 = Tγ3△γ2

= T−1
γ2

◦ Tγ3
◦ Tγ2

,

ϕ
1/2
−1/2 = T(γ3△γ4)△γ2) = T−1

γ2
◦ T−1

γ4
◦ Tγ3

◦ Tγ4
◦ Tγ2

,

ϕ
1/2
−1 = Tγ2 ◦ Tγ4 .

We observe that (ϕ
1/2
−1 )

2 ◦ (ϕ1/2−1/2)
2 ◦ (ϕ1/2−1/3)

2 ◦ (ϕ1/20 )2 ◦ (ϕ1/21/3)
2 ◦ (ϕ1/21/2)

2 ◦ (ϕ1/21 )2 is of order 2.
Fix an orientation preserving diffeomorphism ft : Σ2 ! Ct marking Ct and endow each Cb :=

π−1(b) with the marking fb along Γ, for b ∈ Γ. We take a sufficiently large N > 0. To see that the
restriction of F to the cusp region at ∞ lies in a thick part of M2, it suffices to show that sys(Cb)
is bounded away from 0, for b ∈ R≥N . From now on, we consider only generic positions b ∈ R≥N

and generic fibres Cb at b ∈ R≥N .
Half the hyperbolic distance on Cb is equal to the Kobayashi distance on Cb. Recall that the

Kobayashi pseudo-norm on TCb is defined by KobCb
(x, v) = infϕ{1/c} for x ∈ Cb and v ∈ TxCb,

where the infimum is taken over all holomorphic maps ϕ : ∆ ! Cb satisfying ϕ(0) = x and
(dϕ)0(∂/∂z) = c · v. In order to obtain a very coarse estimation of KobCb

, we make the following
restrictions on ϕ : (i) ϕ(∆) lies in a single-valued branch, which is a subset of the affine chart C ;
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(ii) ϕ : ∆ ! C is the composition of a linear map and a translation, meaning that ϕ(∆) ⊂ C is
also a disc away from P1, . . . , P5.

The branch points P1, . . . , P5 are colinear. We observe that each ratio

ri,j,k,l(b) :=
dR2(Pi, Pj)

dR2(Pk, Pl)

of euclidean distances converges as b!∞, for i ̸= j and k ̸= l. Set

rmin := (1/2) min
i,j,k,l

{ lim
b!∞

ri,j,k,l(b)} and rmax := (1/2) max
i,j,k,l

{ lim
b!∞

ri,j,k,l(b)}.

Therefore, for each i ∈ {2, 3, 4, 5}, there exists a closed curve βi lying in a single-valued branch
and homotopic to fb(γi) such that lR2(βi) ≤ 12rmax + ϵ and dR2(x, Pj) ≥ rmin − ϵ for all x ∈ βi
and j ∈ {1, 2, 3, 4, 5}, where ϵ > 0 is sufficiently small and determined by N (see Figure 3.12).

P1

P2

P4

P3

P5

β2

β5

C

P1

P2

P4

P3

P5

β3

C

P1

P2

P4

P3

P5

β4

C

Figure 3.12 – Closed curves homotopic to fb(γ2), . . . , fb(γ5) with bounded Kobayashi lengths.

Each of β2, β3, β4 and β5 has the hyperbolic length

lCb
(βi) = 2 ·

∫ 1

0

KobCb
(βi(t), β̇i(t))dt ≤ 2 ·

∫ 1

0

1

minj{dR2(βi(t), Pj)}/|β̇i(t)|
dt

≤ 2

rmin − ϵ

∫ 1

0

|β̇i(t)|dt =
2lR2(βi)

rmin − ϵ
≤ 2(12rmax + ϵ)

rmin − ϵ
.

Hence Lγ2
(Cb), Lγ3

(Cb), Lγ4
(Cb) and Lγ5

(Cb) are uniformly bounded from above. We conclude
that sys(Cb) is bounded away from 0.

3.4.3 Holomorphic genus-2 Lefschetz fibrations
Holomorphic genus-2 Lefschetz fibrations over a punctured sphere are quite well-understood by

works of Siebert and Tian [ST05] as well as Chakiris [Cha83] and Smith [Smi99] (cf. also [Sal14]). In
particular, there are only finitely many explicit possibilities for the global monodromies of genus-2
Lefschetz fibrations without reducible fibres (i.e. without separating vanishing cycles) up to Hurwitz
moves. By convention, we use • to denote the concatenation of tuples : (ϕ1, . . . , ϕk)• (ψ1, . . . , ψl) =
(ϕ1, . . . , ϕk, ψ1, . . . , ψl). The power of a tuple corresponds to a repeated concatenation with itself.
The symbol

∏
represents the concatenation of a family of tuples.

Proposition 3.4.7. Given n ≥ 3, let B be an oriented hyperbolic surface of type (0, n) and
F : B ! M2 be a holomorphic map with a global monodromy (ϕ1, . . . , ϕn). Suppose each ϕi is
the Dehn twist along a non-separating closed curve. Then the global monodromy has the following
properties :
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(i) Using a finite sequence of Hurwitz moves, one can transform (ϕ1, . . . , ϕn) into the concate-
nation of tuples Ap

1 • A
q
2 • Ar

3 where p, q, r are non-negative integers and

A1 = (Tγ1
, Tγ2

, Tγ3
, Tγ4

, Tγ5
, Tγ5

, Tγ4
, Tγ3

, Tγ2
, Tγ1

)2,

A2 = (Tγ1 , Tγ2 , Tγ3 , Tγ4)
5, A3 = (Tγ1 , Tγ2 , Tγ3 , Tγ4 , Tγ5)

6.

(ii) Using a finite sequence of Hurwitz moves, one can transform (ϕ1, . . . , . . .n) into a tuple of
Dehn twists along pairwise intersecting closed curves.

Proposition 3.4.7 - (i) is Theorem B in [Cha83] and the holomorphic map F : B !M2 is the
classifying map of a holomorphic genus-2 Lefschetz fibration without separating vanishing cycles.
In this case, by Proposition 3.4.7 - (ii), all hypotheses of Theorem F hold for a specific fundamental
polygon D and we have the following corollary.

Corollary 3.4.8. Let B = Γ\H2 be an oriented hyperbolic surface of type (0, n), n ≥ 3. Let
F : B !M2 be the classifying map of a holomorphic genus-2 Lefschetz fibration without separating
vanishing cycles. Then, there exists a fundamental polygon D of B such that F̃

∣∣∣
D

: (D, (1/2)dH2)!

(T2, dT ) is a (2,K + diam(D))-quasi-isometric embedding, where K = K(0, n, 2, sys(B)) as in
Theorem F.

For positive integer l, recall that Hurwitz moves acting on a l-tuple (ϕ1, . . . , ϕk) are given by

(. . . , ϕi ◦ ϕi+1 ◦ ϕ−1
i , ϕi, . . .)

Li −[ (. . . , ϕi, ϕi+1, . . .)
Ri7−−! (. . . , ϕi+1, ϕ

−1
i+1 ◦ ϕi ◦ ϕi+1, . . .).

We consider a closed curve δ ⊂ Σ2 and use
−!
δ to denote an orientation of δ. The algebraic inter-

section number of two oriented closed curves
−!
δ1 and

−!
δ2 , denoted by ι̂(

−!
δ1 ,
−!
δ2), is defined as the sum

of the indices of the intersection points of
−!
δ1 and

−!
δ2 , where an intersection point is of index +1

when the orientation of the intersection agrees with the orientation of Σg,n and is −1 otherwise.
Note that ι̂(

−!
δ1 ,
−!
δ2) ̸= 0 only if ι(δ1, δ2) ̸= 0.

Let Ωl be the set of l-tuples (g1, . . . , gl) where each gi is a positive Dehn twist in Mod2, ♯Ωl be
the set of l-tuples (

−!
δ1 , . . . ,

−!
δl ) where each

−!
δi is an orientation of some closed curve δi ⊂ Σ2. There is

a natural map ♮ : ♯Ωl ! Ωl sending (
−!
δ1 , . . . ,

−!
δl ) to (Tδ1 , . . . , Tδl). We define the matrix of algebraic

intersections M̂ = M̂(
−!
δ1 , . . . ,

−!
δl ) ∈ Rl×l on every element in ♯Ωl by setting M̂i,j = ι̂(

−!
δi ,
−!
δj ).

The maps ♯Li and ♯Ri on ♯Ωl induced by the Hurwitz moves Li and Ri are defined as follows.

(. . . , Tδi(
−−!
δi+1),

−!
δi , . . .)

♯Li −− [ (. . . ,
−!
δi ,
−−!
δi+1, . . .)

♯Ri7−−! (. . . ,
−−!
δi+1, T

−1
δi+1

(
−!
δi ), . . .).

We also have the maps ♭Li and ♭Ri on Rl×l defined by

M̂ ′ = (m′
j,k)

♭Li −− [ M̂ = (mj,k)
♭Ri7−−! M̂ ′′ = (m′′

j,k)

such that m′
i,i = m′

i+1,i+1 = m′′
i,i = m′′

i+1,i+1 = 0, m′
i,i+1 = mi+1,i = m′′

i,i+1, m′
i+1,i = mi,i+1 =

m′′
i+1,i and, for j, k ̸∈ {i, i+ 1}, that m′

j,k = mj,k = m′′
j,k,

m′
i,k = mi+1,k +mi+1,imi,k, m

′
i+1,k = mi,k ,m

′
j,i = mj,i+1 −mi,i+1mj,i, m

′
j,i+1 = mj,i,

m′′
i,k = mi+1,k, m

′′
i+1,k = mi,k −mi,i+1mi+1,k, m

′′
j,i = mj,i+1, m

′′
j,i+1 = mj,i +mi+1,imj,i+1.

Suppose that q is a sequence of Hurwitz moves. We use ♯q to denote the sequence of corresponding
maps on ♯Ωl and use ♭q to denote the sequence of corresponding maps on Rl×l.

Proposition 3.4.9. Let (g1, . . . , gl) ∈ Ωl be a tuple of positive Dehn twists in Mod2 where gi = Tδi
for i = 1, . . . , l. Let q be a sequence of Hurwitz moves. Suppose that (

−!
δ1 , . . . ,

−!
δl ) ∈ ♯Ωl is a lift of

(g1, . . . , gl) and (
−!
δ′1 , . . . ,

−!
δ′l ) ∈

♯Ωl is a lift of the resulting tuple q · (g1, . . . , gl). Then

♭q · M̂(
−!
δ1 , . . . ,

−!
δl ) = M̂(

−!
δ′1 , . . . ,

−!
δ′l ).

Proof. It suffices to show that the following diagram is commutative.

Ωl Ωl Ωl

♯Ωl
♯Ωl

♯Ωl

Rl×l Rl×l Rl×l

Ri

♯Ri

Li

♯Li

♭Ri
♭Li

M̂ M̂ M̂

♮ ♮ ♮
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On the one hand, we have TTδi
(δi+1) = Tδi ◦ Tδi+1 ◦ T−1

δi
and TT−1

δi+1
(δi)

= T−1
δi+1

◦ Tδi ◦ Tδi+1 (see,

e.g., [FM11, Fact 3.7]). On the other hand, the algebraic intersection is well-defined on homology
classes and we have

[Tδi(
−−!
δi+1)] = [

−−!
δi+1] + ι̂(

−−!
δi+1,

−!
δi ) · [

−!
δi ], [T−1

δi+1
(
−!
δi )] = [

−!
δi ]− ι̂(

−!
δi ,
−−!
δi+1) · [

−−!
δi+1]

for i = 1, . . . , l − 1 (see, e.g., [FM11, Proposition 6.3]).

We prove Proposition 3.4.7 - (ii) by starting with Lemma 3.4.10 with a computer-assisted proof.

Lemma 3.4.10. For i = 1, 2, 3, there exists a finite sequence of Hurwitz moves qi that satisfies
the following statement. Suppose that Ai is transformed by qi into a tuple of Dehn twists, denoted
by (Tδi,1 , . . . , Tδi,li ). Then the algebraic intersection between each two of δi,1, . . . , δi,li and γ1 is
non-zero.

Proof. We consider the sequence of Hurwitz moves qi below and show that the resulting li-tuple
(Tδi,1 , . . . , Tδi,li ) = qi · Ai satisfies the desired properties. Applying qi to the (li + 1)-tuple Ai •
{Tγ1}, we obtain a (li + 1)-tuple of the form (Tδi,1 , . . . , Tδi,li , Tγ1) since each component in qi

is neither Lli nor Rli . Suppose that (
−!
δ1 , . . . ,

−−!
δli+1) ∈ ♯Ωli is the lift of Ai • {Tγ1} where the

orientations of −!γ1, . . . ,−!γ5 are shown in Figure 3.3. Consider the matrix of algebraic intersections
M̂ = M̂(

−!
δ1 , . . . ,

−−!
δli+1) and apply ♭qi to M̂ . By Proposition 3.4.9, it suffices to verify that ♭qi · M̂

has non-zero off-diagonal entries.

q1 = (L2, R7, R10, R11, L8, R6, L16, L9, L10, R11, R4, L16, L3, R18, R19, L10, R13, R17, R18, L17,

L4, R19, R16, L12, L13, R11, R14, R3, R15, L5, L6, R5, L1, L12, R19, R4, L6, R9, L8, R4,

L7, L8, R5, R6, R14, R5, R4, L11, R15, R14, R4, R15, R9, L13, L10, R11, L7, L12, R4, R18,

R3, L10, R16, L15, R13, R12, R12, L2, R16, R9, L11, L4, R19, R14, L15, R2, R6, L1, R2, L8,

R12, R16, L17, L18),

q2 = (R14, R3, L5, R4, R3, L15, L5, L17, L19, L10, R16, L6, R11, R9, L15, L12, L10, L1, L6, L13,

R14, R13, L9, L15, L17, L10, L8, L14, L6, R18, L19, L18, L5, L13, R6, L12, L15, R10, R4, R13,

L8, L18, R9, R4, L7, L16, R3, R9, R11, L16, R5, R3, R6, R2),

q3 = (L9, L17, L11, L3, L15, L4, R25, R26, R25, L16, R4, L20, L19, L15, L16, L16, L8, R24, L1, L27,

L7, R9, L10, L9, L12, L18, R17, L4, R5, R16, R23, L26, L25, R8, R1, R7, R7, R3, L14, R2,

R9, R18, L20, R23, R5, R4, R22, R13, L15, L4, L20, L2, L24, R6, R6, L1, L21, L5, R23, L24,

L22, L23, L19, L17, L6, L9, L15, L23, L29, R21, L29, L7, R24, R15, R22, L29, R7, L21, L4, L22,

R6, R25, R20, L2, L24, L22, R6, L19, R9, R1, L26, R5, L4, R12, L10, R7, R18, L10, R27, L5,

R11, L3, L6, R23, R8, L9, R4, R2, R1, R27, R28, L29, L9, L19, L12, L11, R1, R17, R28, L29,

R27, L28, L27, L16, R3, L7, L29, L28, R15, R17, L13, R18, L26, R7, L8, R1, L21, L20, R16, R25,

L8, L2, R21).

In the proof of Lemma 3.4.10 the matrix ♭qi · M̂ is hard to obtain manually but can be quickly
solved by a computer. We implement these computations in Python and make our code available
on GitHub : https://github.com/AHdoc/HurwitzMoves_to_AlgIntersections.

Proof of Theorem 3.4.7 - (ii). By Proposition 3.4.7 - (i) and Lemma 3.4.10, using a sequence of
Hurwitz moves, one can always transform a global monodromy into the concatenation of sub-tuples

Au • (Tδ1,1 , . . . , Tδ1,l1 )
p′−1 • (Tδ2,1 , . . . , Tδ2,l2 )

q′−1 • (Tδ3,1 , . . . , Tδ3,l3 )
r′−1

with some u ∈ {1, 2, 3} and non-negative integers p′, q′, r′ such that p′+ q′+ r′− 3 = p+ q+ r− 1,
ι̂(γ1, δi,j) ̸= 0 for i = 1, 2, 3, j = 1, . . . , li and ι̂(δi,j , δi,k) ̸= 0 for i = 1, 2, 3, 1 ≤ j ̸= k ≤ li.
By Lemma 3.3.2, making N sufficiently large such that N − 2 > ι(δi,j , δi′,j′) for all i = 1, 2, 3,
i′ = 1, 2, 3, 1 ≤ j ≤ li, 1 ≤ j′ ≤ li′ , we have

ι(TN
γ1
(δi,j), δi′,j′) ≥ (N − 2) ι(γ1, δi,j) ι(γ1, δi′,j′)− ι(δi,j , δi′,j′) ≥ 1.
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Since Tδi,1 · · ·Tδi,li is central for i = 1, 2, 3, one can further transform the global monodromy into

Au •
p′∏

j=1

(TT jN
γ1

(δ1,1)
, . . . , TT jN

γ1
(δ1,l1 )

) •
p′+q′∏

j=p′+1

(TT jN
γ1

(δ2,1)
, . . . , TT jN

γ1
(δ2,l2 )

)

•
p′+q′+r′∏

j=p′+q′+1

(TT jN
γ1

(δ3,1)
, . . . , TT jN

γ1
(δ3,l3 )

).

Applying Lemma 3.4.10 again, we replace Au with (Tδu,1 , . . . , Tδu,lu
), as desired.
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