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Abbreviation

ACE Allen-Cahn equation

BB Bounceback boundary condition

BC Boundary condition

CHE Cahn-Hillard equation

CO Convective outlet

CS Carnahan-Starling

EDM Exact difference forcing scheme

EOS Equation of state

GA Genetic algorithm

GDL Gas diffusion layer

LB Lattice Boltzmann

LBE Lattice Boltzmann equation

LBM Lattice Boltzmann method

MCMP-FE multicomponent multiphase –Free energy method

MCMP-SC multicomponent multiphase –Shan and Chen method

MD Molecular Dynamics

NO Neumann outlet

NS Navier Stokes

NWF Non-wetting fluid

PEMFC Proton/Polymer exchange membrane fuel cell

PF Phase field

PI Pressure inlet

PO Pressure outlet

PR Peng Robinson

PSO Particle swarm optimization

SCMP-FE Single component multiphase –Free energy method
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SCMP-SC Single component multiphase –Shan and Chen method

TOSFP topology optimization for steady-state forward problem

TOTFP topology optimization for transient-state forward problem

VI Velocity inlet

VO Velocity outlet

WF Wetting fluid

WGS Wettability Gradient Surface

Operator

〈a,b〉 Inner product between vectors a and b

‖a‖1 The L1 norm of a

‖a‖2 The L2 norm of a

1{i<0} Indicator function whose value is unity when the underlying condition is satisfied, for e.g.
i < 0

Symbols

α Nature of a computational node: fluid (α = 1) or solid (α = 0)

αv Constant of proportionality in the theoretical relation for migration velocity

χ A function to designated any quantities of interest, used for BC nomenclature exclusively

Λ Collision operator

f̊ f̊ = {f̊0, f̊1, f̊2, f̊3, f̊4, f̊5, f̊6, f̊7, f̊8}, collectively represents the adjoint-state (corresponding to LBM)
variables

f f = {f0, f1, f2, f3, f4, f5, f6, f7, f8}, collectively represents the LBM state variable for D2Q9

F Entirety of the LBM problem along with the boundary conditions

Cdrop Center of gravity of the droplet (in the context of the droplet motion on a WGS)

D Ds ∪Df; The entire domain

Df Solid domain

Ds Fluid domain

J The cost function for the optimisation problem

L The Lagrange function

P Residue of the boundaries in the LBM problem

R Residue of the LBM problem

f̊ Probability distribution function for the adjoint-state model

F Force term which could be incorporated using multiple strategies

H Notation for different LBM models used.

Ilbm Iteration number for LBM, also it indicates LBM time as ∆t = 1 t.s.
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Iopt Iteration number for optimization solvers

S Saturation in the fluid domain Df

X Cost function along the boundaries

Y Cost function along the domain

ν Kinematic viscosity of the fluid

Nx Total number of nodes or length of domain in x-direction

Ny Total number of nodes or length of domain in y-direction

ω (∆t)τ−1

φ The porosity of the domain; used only in the topology optimization context

Ψ Level-set variable; used for describing the solid using ‘α’

ψ Pseduopotential function, which is function of density of fluid

ρ Density of fluid

ρw Fictitious solid wall density, also known as pseudo-density

τ The relaxation time: τ = 3ν + 0.5

Bo Bond number

Ca Capillary number

θdy Dynamic contact angle

θstat Static contact angle, also represented by θ if the context is clear

Re Reynolds number

Υ Represents the wettability profile of a surface

e Particle velocity in LBM

F p Interparticular force for the pseudopotential model

r Location vector: rx î + ry ĵ for a two dimensional domain in Cartesian co-ordinates

umig Analytically obtained migration velocity

V mig Numerically obtained migration velocity

es Speed of sound in LBM framework

f Probability distribution function used in LBM

G Interaction strength; used for calculation of interparticular force

M µNWF
µWF

, Dynamic viscosity ratio; where µ is the dynamic viscosity

p Pressure of the fluid

Tc Critical temperature, corresponds to critical point (with pressure pc)
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Résumé

L’origine de cette thèse est liée à la problématique de la gestion thermofluidique des piles à com-
bustible à membrane d’échange de protons. Cette problématique est étudiée au sein du LTeN à
Nantes Université depuis de nombreuses années. Ce type de pile à combustible est considéré comme
une technologie prometteuse dans le cadre de la décarbonation, notamment pour des application
de mobilité, mais plusieurs verrous scientifiques restent à lever pour fiabiliser et améliorer ses per-
formances, et donc contribuer à son essor. L’un des défis est de parvenir à un équilibre hydrique
dans les couches de diffusion de gaz de la pile à combustible. L’eau libérée après la réaction de
l’H2 contribue à hydrater la membrane (en maintenant sa résistivité protonique au minimum),
mais si l’eau excédentaire n’est pas évacuée, celle-ci empêche l’approvisionnement en gaz réactifs
(H2 et O2) des couches catalytiques, interrompant ainsi la réaction de la pile à combustible. Il
s’agit donc de gérer efficacement l’apport de gaz d’une part, et l’évacuation de l’eau liquide d’autre
part, tout en assurant la continuité électrique. Actuellement, cette problématique est gérée par
l’utilisation d’un milieu poreux généralement non structuré – appelé couche de diffusion des gaz
ou gaz diffusion layer (GDL). Le poreux est le plus souvent un feutre ou un tissu de carbone dont
les caractéristiques classiques sont les suivantes : une épaisseur de l’ordre de plusieurs centaines
de micromètre, une porosité supérieur à 80 %, une répartition de taille de pores allant du mi-
cron à quelques dizaines de microns et des diamètres de brin de l’ordre du micron. Un traitement
hydrophobe est souvent utilisé afin d’éviter l’imbibition totale de la GDL, la phase liquide circu-
lant ainsi à travers les zones moins hydrophobes ou à pores plus larges. Une manière originale
de tenter une réponse à cette problématique de gestion fluidique consiste à poser la question de
la définition de la structure poreuse permettant un écoulement optimal de ces fluides. Il s’agit
donc d’un problème d’allocation optimale de la matière (structure de la GDL) afin d’optimiser un
écoulement diphasique (réactifs gazeux et eau liquide) pour des conditions aux limites particulières
(entrées fluidiques opposées) et sous contraintes (porosité et continuité de la phase solide). Ce type
de problème d’optimisation topologique structurel est très complexe ; il n’a, à notre connaissance, ja-
mais été traité dans la littérature et nécessite le développement de nouveaux outils de modélisation
et d’optimisation. Le développement d’une telle méthode d’optimisation topologique appliquée aux
écoulements diphasiques en milieu poreux est donc un objectif à long terme et les différents travaux
développés au cours de cette thèse y contribuent.

Toute résolution d’un problème optimisation nécessite de choisir en premier lieu le modèle (en
l’occurence ici un modèle physique) pour simuler les phénomènes physique en question. Dans
notre cas, la simulation numérique des écoulements multiphasiques et interfaciaux peut être di-
visée en deux catégories : les modèles d’approche de “haut en bas” ‘top to bottom) et ceux de “bas
en haut” (bottom up). Dans la première catégorie, nous avons les modèles macroscopiques qui
couplent généralement les équations de Navier–Stokes avec les méthodes de suivi des interfaces.
Les méthodes les plus utilisés parmi celles-ci sont les VOF (volume of fluid) et le suivi de lignes de
niveaux (level-set). Dans la seconde catégorie, les forces d’interaction sont prescrites, permettant de
dériver les paramètres macroscopiques. La dynamique moléculaire et les méthodes mésoscopiques
comme le modèle de Van der Waal et la méthode de lattice Boltzmann (LBM) font partie de cette
seconde catégorie.

Le modèle LBM multiphasique le plus utilisé, à savoir le modèle pseudopotentiel, présente une
interface diffuse ne nécessitant pas la résolution d’une équation de suivi de l’interface. L’interface
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de ce modèle est le résultat des forces interparticulaires, c’est-à-dire mésoscopiques. Le modèle
pseudopotentiel est connu pour sa simplicité de mise en œuvre et son efficacité car il ne nécessite pas
la résolution de l’équation de continuité comme dans le cas des équations de Navier–Stokes. Ainsi,
les données des nœuds voisins ne sont nécessaires que pour le calcul des forces interparticulaires.
Cela nous permet de tirer parti de l’algorithme par ailleurs hautement parallélisable, en exécutant
les codes sur des cartes GPU à l’aide de l’interface CUDA, le problème de transport résolu étant non-
linéaire uniquement à l’échelle locale. En fonction du problème à résoudre, il est ainsi possible
d’accélérer la résoluton jusqu’à 50 fois par rapport à un programme en langage C exécuté sur un seul
processeur. La LBM est donc très adaptée à la parallélisation de type GPU, c’est-à-dire à l’exécution
simultanée d’un grand nombre de threads. Bien que le manuscrit n’aborde pas l’aspect du codage,
il joue un rôle important dans le choix du modèle LBM approprié pour l’optimisation. En résumé,
nous avons choisi le modèle pseudopotentiel multiphase à composante unique (single component
multiphase – SCMP-SC) développé initiallement Par Shan and Chen pour modéliser la physique. Ce
modèle et le solveur rapide associé contituent la première “brique” de l’algorithme d’optimisation.

Dans le chapitre 2, diverses extensions ou modifications du modèle SCMP-SC (telles que le
modèle multi-range, les différents schémas de forçage, l’intégration d’une équation d’état réaliste
(equation of state – EOS), la discrétisation d’ordre supérieur du pseudopotentiel, etc.) ont été présen-
tées et testées. Au final, nous avons choisi d’utiliser l’EOS de Carnahan-Starling (CS-EOS) ainsi que
le schéma de forçage de la méthode des différences exactes (exact difference method – EDM) pour une
plus grande stabilité du solveur et des vitesses parasites (spurious currents) plus faibles. Les valeurs
des paramètres fixés à la fois a priori et a posteriori, les simulations physiques aident à comparer les
performances des différentes modifications/extensions. En résumé, le modèle à plages multiples as-
socié au schéma de forçage CS-EOS–EDM donne les meilleurs résultats, avec des courants parasites
relativement faibles, ce qui se reflète dans la stabilité du problème direct. Les résultats concer-
nant la loi de Laplace, les courbes de co-existance liquide-vapeur et la corrélation entre l’angle de
contact statique (θstat) et la pseudo-densité (ρw) pour le mur sont cohérents et permettent ainsi de
valider notre modèle direct. Ces valeurs de paramètres sont ensuite utilisées pour modéliser des
phénomènes plus complexes.

Le problème de l’ascension capillaire, tant en instationnaire (loi de Washburn) qu’en stationnaire
(loi de Jurin) est ainsi résolu (par rapport à une hauteur capillaire air-eau réelle, via les similitudes
des nombres sans dimension). Nous observons par ailleurs l’effet de la compressibilité de la phase
vapeur pour le SCMP-SC qui a été atténué en augmentant la viscosité cinématique de la vapeur
de 40 %. Nous observons également des oscillations capillaires dans le comportement dynamique
de la colonne de liquide, comme précédemment rapporté dans la littérature. Ces oscillations (avec
l’augmentation du diamètre du tube) augmentent à la fois en amplitude (par rapport à la hauteur
de Jurin) et en fréquence, ce qui constitue un indicateur de la présence d’effets inertiels.

La dynamique d’une gouttelette sur une surface horizontale idéale à gradient de mouillabilité a
aussi été testée (wettability gradient surface – WGS). Dans le cas d’un faible gradient, il est fait état
dans la littérature d’une vitesse asymptotique constante atteinte par la goutte. Ici, avec de très petits
gradients de mouillabilité, nous obtenons une corrélation linéaire entre la vitesse de migration à
l’asymptote et le gradient du cosinus de l’angle de contact statique, et, de plus, la constante de
proportionnalité résultante est en bonne adéquation avec la valeur théorique αv = 0.33 obtenue
dans [1].

Ces différents résultats montrent ainsi la capacité du solveur développé à capturer des phénomè-
nes non linéaires et dynamiques et valident par la même l’outil numérique développé.

Ces résultats ayant été obtenus dans le cadre de conditions aux limites “simples” (périodiques
ou murs imperméables – bounce-back), la suite des travaux a concerné l’implémentation des condi-
tions aux limites en pression et en vitesse pour des géométries ouvertes. Alors que ces conditions
aux limites sont bien définies pour les modèles macroscopiques, et relativement uniques – excep-
tion faites de leur discrétisation –, leurs déclinaisons à l’échelle mésoscopiques sont beaucoup plus
nombreuses, et leur stabilité peu documentée. Les principaux cas d’étude ont été le tube droit (pour
le drainage et l’imbibition), la goutte dans un écoulement vapeur en canal, le tube en escalier et
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le tube à trajectoire privilégiée. Les conditions de Neumann et convective ont été testées pour les
sorties et celles de Zou and He et Ladd pour les entrées. Les résultats obtenus pour les simula-
tions susmentionnés ne sont plus fiables quand l’interface atteint la frontière en sortie. En fait, une
pluralité d’artefacts numériques a été observée, et ce, principalement lorsque l’interface a atteint le
voisinage de la frontière, ou l’a traversée. De plus, une évaporation de la phase liquide a été ob-
servée au niveau des fronts interfaciaux exposés aux sorties (uniquement dans la phase initiale de
la simulation). Des comparaisons ont été menées avec le logiciel libre OpenLB, sans plus de succès.
Malgré la simplicité apparente de l’implémentation de ces conditions aux limites, au moment de la
rédaction de cette thèse, nous n’avons toujours pas réussi à reproduire les résultats de [2] et [3].

L’outil développé a par la suite été utilisé pour des simulations d’écoulements en milieux poreux
plus réalistes. Les résultats s’avèrent fiables et stables pour des structures poreuses simples et pour
des écoulements à nombre capillaire élevés. Dans le cas du drainage – pour lequel un débit est
imposé – nous avons observé une évolution linéaire de la saturation, à l’exception de phénomènes
transitoires tels que les sauts de Haines. Pour des nombres capillaires plus faibles (Ca ≤ 10−3),
nous observons le phénomène de condensation en sortie, l’effondrement des bulles de vapeur, et
l’instabilité du schéma numérique. Conscients des limites du schéma SCMP-SC actuel, nous avons
répété le même cas de test en utilisant le schéma MCMP-SC (multi-component multi-phase) pour
log |Ca| = −4.25, et avons finalement obtenu le résultat souhaité, similaire aux résultats publiés. Ces
limitations du schéma SCMP-SC ont modifié l’objectif initial d’optimisation de la GDL, fonctionnant
dans le régime de digitations capillaires avec des conditions aux limites en pression et débit, pour se
recentrer sur un cas plus académique : un milieu poreux avec des conditions aux limites périodiques
et de non glissement.

Le chapitre 3 est dédié à l’optimisation topologique en monophasique. Le modèle du chapitre
précédent, c’est-à-dire le modèle SCMP, est utilisé en tant que modèle direct. Le modèle mono-
phasique est obtenu à partir du modèle diphasique en annulant quelques termes bien choisis, la
structure du modèle direct monophasique étant exactement celle du modèle diphasique du chapitre
précédent. La fonction courbe de niveau (level-set) est utilisée pour la ségrégation entre la phase
solide et la phase fluide. À l’interface entre ces deux phases, la condition de rebond (bounce-back)
est appliquée. Dans les problèmes d’optimisation traités, il s’agit de minimiser une fonctionnelle en
jouant sur la topologie du milieu, c’est-à-dire, in fine, sur la courbe de niveau. L’espace paramétrique
de contrôle de la courbe de niveau étant bâtie sur la discrétisation du modèle direct, sa dimension ne
permet pas l’utilisation de la méthode des différences finies pour le calcul du gradient de la fonction
de coût. En revanche, la méthode de l’état adjoint permet le calcul du gradient à l’unique condition
de résoudre un unique problème additionnel : le problème de l’état adjoint. Cet état adjoint est
obtenu en cherchant le point selle du Lagrangien, cette fonctionnelle augmentée comprenant la
fonctionnelle de coût à laquelle sont rajoutées les contraintes : toutes les équations du modèle d’état,
les conditions aux limites, les conditions initiales, etc. Une difficulté relative aux schémas LBM est
le grand nombre d’équations de transport couplées (par ex. pour le schéma D2Q9, neuf équations
de transports sont couplées en plus desquelles il convient d’ajouter trois équations sur chaque nœud
frontière). Le calcul des états adjoints sur un modèle LBM est loin d’être trivial, l’une des difficultés
étant le calcul des dérivées de la fonction à l’équilibre, une autre difficulté étant le calcul des états
adjoints aux frontières. L’actualisation de la fonction courbe de niveaux est faite selon un algorithme
de descente à gradient de type plus grande pente, suivant les travaux antérieurs de ??, en ne suivant
pas la méthodologie plus classique pour laquelle la courbe de niveau est elle-même advectée. Deux
cas tests sont mis en œuvre pour tester la méthodologie déployée. Le premier est un distributeur
pour lequel il s’agit d’obtenir une topologie telle que les débits en sorties soient aussi proches que
possible les unes des autres, une contrainte de porosité étant de plus appliquée. Le second cas est
un coude pour lequel il s’agit d’obtenir une topologie telle que la perte de charge soit minimale.
Ces deux cas tests réalisés avec succès ont permis de valider l’ensemble de l’approche : l’algorithme
itératif global, le modèle LBM direct, le modèle LBM adjoint, la stratégie de réactualisation de la
fonction courbe de niveau, etc.

Le chapitre 4 traite de l’optimisation de la distribution spatiale de mouillabilité. Les cas pra-
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tiques où l’on souhaite déplacer des gouttes sont relativement nombreux, allant de l’amélioration de
la condensation à la micro-fluidique. Comme évoqué au chapitre 2, une distribution non homogène
de mouillabilité peut induire le déplacement d’une goutte de liquide sur une paroi plane sous l’effet
du déséquilibre des forces capillaires, de la partie la plus hydrophobe vers la partie la plus hy-
drophile de la plaque. La question posée est ainsi la suivante : pour un fluide donné (propriétés
thermophysiques, taille de goutte) et des conditions opératoires fixées (longueur du déplacement,
plage de mouillabilité), quelle est la distribution spatiale optimale de la mouillabilité permettant à
la goutte de se déplacer le plus rapidement, sachant que, tant théoriquement qu’expérimentalement,
les surfaces dites à gradient de mouillabilité sont plus précisément à gradient constant ? Le modèle
SCMP-SC présenté et développé précédemment est ainsi utilisé pour simuler le déplacement de la
goutte liquide. Le paramètre de contrôle permettant de faire varier la mouillabilité est la densité du
solide, propriété fictive qui permet – théoriquement – de varier continûment, de superhydrophobe
(θcontact = 180 avec ρsolide = ρvapeur) à superhydrophile (θcontact = 0 avec ρsolide = ρliquide). La fonc-
tion de coût à minimiser est le temps final nécessaire pour que le centre de gravité de la goutte
atteigne l’emplacement cible ; minimiser celle-ci revient à maximiser la vitesse moyenne. Pour plus
de simplicité, le gradient de la fonction de coût par rapport à la variable de contrôle a été évalué
par différences finies. Afin d’éviter au maximum les problèmes de minima locaux, une stratégie
d’approche multi-échelle a été utilisée : le profil initial de mouillabilité est initialement discrétisé en
2 segments (i = 1 ; 3 degrés de liberté). Une fois le profil optimal à l’itération i identifié (2i+1 degrés
de liberté) celui-ci est discrétisé plus finement (itération i+1, 2i+1 + 1) et le processus d’optimisation
est alors relancé, jusqu’à convergence spatiale. Concernant le pas de descente pour l’actualisation
de la variable de contrôle, une méthode simple de recherche linéaire par dichotomie est utilisée.
Au préalable, plusieurs profils analytiques de mouillabilité ont été testés (linéaire, quadratique, cu-
bique) et la conclusion globale est que le profil quadratique convexe Υqcv est le plus performant ;
le profil linéaire ayant été retenu comme profil initial pour l’optimisation. Les principaux résultats
sont les suivants. Pour les rapports de déplacement faibles, L/D = 3,2, le profil optimal n’est pas
monotone en espace, ce qui est relativement contre intuitif. En effet, une rediminution subite de la
mouillabité devrait freiner voire stopper la goutte, ce qui n’est pas le cas ici. La vitesse moyenne de
la goutte est ainsi augmentée de 69 % par rapport au profil linéaire. Par ailleurs, afin de maximiser
l’effet du gradient de mouillabilité et donc les effets capillaires, la zone de variation de la mouilla-
bilité se retrouve diminuée jusqu’à être nulle sous les positions initiale et finale. De plus, afin de
contrer l’étalement de la goutte sur la partie hydrophile, et donc l’augmentation de la friction, le
gradient est plus important dans la partie hydrophile, expliquant ainsi les performances du profil
quadratique convexe. Finalement pour les plus grandes plaques (L/D >= 6.4) la solution optimale se
rapproche du profil quadratique. Ainsi, d’un point de vue pratique, ce dernier semble être un profil
générique acceptable, même si, pour chaque configuration, l’optimisation a permis une amélioration
par rapport à celui-ci. L’ensemble de ces résultats a été publié dans le journal Physics of fluids.

Le chapitre 5 est une extension du chapitre 3 en ce sens qu’il traite de l’optimisation topologique
en multiphasique plutôt qu’en monophasique. La plupart des outils numériques déployés dans le
chapitre 3 peuvent être repris, mais le modèle direct étant celui du chapitre 2, l’état adjoint associé
doit, lui aussi, être calculé formellement. Dans le calcul de l’état adjoint, il s’agit de calculer les
dérivées de multiples fonctions composées. Par exemple, la fonction à l’équilibre prend maintenant
en compte les forces inter-particulaires, localement mais aussi dans l’entourage direct, ces forces
étant elle-mêmes fonctions de la pression, celle-ci étant définie à l’aide de l’équation d’état réaliste
de Carnahan-Starling. Le développement formel de l’état adjoint a été effectué ; ce travail ardu
n’a, selon notre connaissance, jamais été publié. Le calcul du gradient a été effectué pour deux
situations distinctes : en premier lieu dans le cadre de l’optimisation topologique de la structure du
milieu poreux (allocation optimale de la matière) ; en second lieu dans le cadre de l’optimisation
de la mouillabilité du milieu (allocation optimale d’une propriété spatiale). L’implémentation des
états adjoints et des gradients a débuté dans le cadre de cette thèse mais, à l’heure où nous écrivons
ces lignes, les gradients n’ont pu être validés par comparaison avec les différences finies, même si les
ordres de grandeur sont similaires. Il est difficile de dire si l’erreur – puisque visiblement il y en a
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une – vient du travail formel du calcul analytique des dérivées, ou si elle vient de l’implémentation
numérique. Les développements mathématiques donnés dans ce chapitre et les développements
numériques associés appellent donc un nouveau travail de lecture approfondie, tant sur le plan
mathématique que numérique. Nous considérons ainsi ce chapitre comme une ouverture et un
appel à de nouveaux travaux.
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Chapter 1
The big picture

The optimization of systems and processes is an exercise that is carried out by an expert taking into
account ones experience and domain knowledge. This process is manual, tedious and the results
are subjective i.e. even though the improvements registered in the processes/systems are objective,
it becomes difficult to ascertain/replicate an objective manner to obtain the optimized results. Here
we explore a mathematical approach to different physical problems by utilizing optimization al-
gorithms. The physical problems under consideration belongs to a sub-class of multiphase flows
specifically the interfacial flows. These flows involve fluids (liquid and its vapor or gas) that are
immiscible and compressible. With the advent of computers and exponential increase of disposable
computation power, both the numerical modeling (of the physical problem) and its associated op-
timization studies have become feasible. Modeling the physical problem is an important process,
which has led to the reduction in cost of research while drastically increasing the amount of data
generated. This data obtained can now be fed into an optimization algorithm for performing an
optimization study.

How are interfacial flows/fluids modeled?

Interfacial flow is a generic term which include a wide spectrum of flows consisting of two or more
phases and/or components. Such flows most notably includes immiscible liquids flows, liquid-
gas flows among others. Each of these flows have a variety of applications for example oil-water
emulsions, atomization process and so on. Interfacial flow through porous media is also one im-
portant field of research with application in the field of petroleum extraction, gas-diffusion layer
in fuel cells, diffusion of reactants in porous catalyst and so on. It has thus become important to
model/replicate these flows and understand their behavior. This is accomplished by models/methods
which are based on the governing equation (GE) used for describing the flows. Hence these models
are crudely classified by the scale at which the GE describes the flows: microscopic, mesoscopic and
macroscopic methods.

Conventionally the macroscopic hydrodynamic models are the most extensively utilized. This is
because different macroscopic quantities of systems are of interest. This simulations are generally
performed by iteratively solving the discretized form of the Navier-Stokes (NS) equations which are
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given as:

∂ρ

∂t
+∇ · (ρU ) = 0 (1.1)

∂ρu

∂t
+∇ · (ρuU ) = −

∂p

∂x
+∇ · (µ∇u) + SMx (1.2)

∂ρv

∂t
+∇ · (ρvU ) = −

∂p

∂y
+∇ · (µ∇v) + SMy (1.3)

∂ρw

∂t
+∇ · (ρwU ) = −

∂p

∂z
+∇ · (µ∇w) + SMz (1.4)

∂ρi

∂t
+∇ · (ρiU ) = −p∇ · (U ) +∇ · (k∇T ) +Φ + Si (1.5)

where u,v,w are the velocity components, i is the total energy, SMx,SMy ,SMz are the momentum
source terms, Si is an energy source term, U is the velocity vector, k is thermal conductivity, p is
pressure, Φ is the dissipation function and µ is the dynamic viscosity. The above set of partial dif-
ferential equations (PDE) is for a compressible Newtonian fluid. And it can be observed that the
number of unknowns are greater than the number of equations. This is also known as the closure
problem, which necessitates the use of additional equations of state or hypothesis/postulation re-
garding the state for obtaining a solution. Also the presence of non-linear terms in the momentum
and energy conservation equations makes obtaining analytical solutions only possible for certain
initial and boundary conditions along with certain assumptions (required for simplifying the initial
set of equation). The popular methods/models for interfacial flows/fluids simulations are level-set
(LS) [4–7] and volume of fluid (VOF) [8, 9] based on NS equation which require interface tracking,
It is observed that these methods are complicated and resource intensive in nature as they require
separate interface tracking/construction calculations, apart form solving different set of equations
for each individual phase in the flow. This methods describe the dynamic evolutions of few large
interface, while the information of numerous tiny-dispersive interfaces is often missed. Some other
methods do not require interface tracking/capturing, examples of these methods are the discrete
element method [10], algebraic slip model [11] and the Eulerian-Eulerian multiphase model [12].
Now a for porous media simulation the pore network model (PNM) [13, 14] is popular (both for
single and multiple phases). Here we simplify the pore structure and thus we have a computation-
ally cheap method. The accuracy of the method depends on the extend of geometry simplification
including the exclusion of the smaller pores. Another interesting family of upcoming models for
multiphase simulations is the smoothed particle hydrodynamics (SPH) [15–17], while this group of
models are computationally expensive they are known for their accuracy.

Conversely, we have molecular dynamics (MD) methods where location and velocities of each
microscopic particle is of interest to reproduce the behavior of a particular system. At that scale
the macroscopic properties like temperature, viscosity, pressure are not defined. The interactions
i.e. collisions between particles are considered to be perfectly elastic, i.e., reversible in nature and
the equations describing them are simple to implement. The disadvantage of this method is that it
could be used for only understanding phenomena at small scales as it is very resource intensive, also
extraordinary amount detail/resolution is not necessary for capturing a macroscopic phenomenon.
Ref.[18] is an example of using MD along with multiphase Monte Carlo simulation to simulate CO2
intercalations in different clay structures. In between the macro and the micro we have the meso-
scopic scale, where models like dissipative particle dynamics (DPD) [19] and lattice Boltzmann
method (LBM) borrows the advantages from methods of both micro and macroscale. These models
accounts for microscopic interactions between particles in a statistical manner, thereby intrinsically
generating fluid-fluid and fluid-solid interfaces. The LB equation i.e. Eq.(2.12) is linear in nature
because of which the implementation becomes easier. As in MD simulations the microscopic sys-
tems are assumed to be reversible in nature but it successfully reproduces the non-linearity and or
irreversibility of the macroscopic system. This method is inherently parallel, as during the com-
putationally intensive part of the iteration (collision process) no data transfer is required, thereby
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Chapter 1. The big picture

allowing for a speed-up. This makes lattice Boltzmann method a favorable choice for a multiphase
simulation and especially for topology optimization, where the physical simulation has to be per-
formed repeatedly. Further detail regarding the various multiphase models in LBM is found in
chapter 2. Now while we delineate different methods, we have outliers, like blend of methods i.e.
they use some aspects from the other models/methods for e.g. LBM-VOF [20, 21] or LS-VOF [22],
also multi-scale simulations [23, 24] both categories of hybrid models will not further elaborated
as this is beyond the scope of the thesis. Next, we discuss the various processes/systems where we
intend to utilize optimization.

What are the different problems of interest?

The context for the selection of the topic of the thesis was a research interest (of the local team at
LTEN, Nantes Université) in proton exchange membrane fuel cell (PEMFC). The PEMFC owing to
zero emission, high efficiency and power density is a potential alternative for conventional engines.
Though feasible, the technology has issues with respect to cost and durability, thus making its com-
mercialization difficult. Some of the major hurdles in the way are due to lack of choice/cheap cata-
lysts allowing the PEMFC to operate at room temperature, durability and the water management in
the fuel cell. This work was initially focused on the water management aspect of the fuel cell. The
PEMFC as depicted in Fig.(1.1) has a membrane sandwiched between two catalytic layers which are
in turn connected (on the either side) to the corresponding electrodes and gas channels via the Gas
Diffusion Layer (GDL). The functions of a GDL are to allow for: diffusion of gas and drainage of
product water, along with electrical and thermal conductivity. Liquid water is formed in the cata-
lyst layer (on the oxygen side) and it flows toward the gas flow channels being driven by capillary
pressure in opposition to gas diffusion. To prevent choking the gas supply to the catalyst, excess
water need to be drained out. At the same time care should be taken to avoid the dehydration of the
membrane, as this causes increase in proton resistance, thereby increasing also the heat loss. Thus
maximum power output can only be achieved if the necessary balance is maintained.

Generally, the strategy is for the GDL to be coated with hydrophobic material (for e.g. PTFE)
either fully or partially to prevent excessive water logging [25]. Though making the surface hy-
drophobic decreases the water accumulation in the GDL, it does not always corresponds to low
impact on the gas diffusion/supply. This is because both the amount and the distribution of water
in the porous structure are important [26]. One other strategy is to define the water removal path-
ways in a GDL, thus ensuring a steady gas supply. In general, hybrid (hydrophilic and hydrophobic)
arrangements were shown to have better performance [26]. Similarly [27] performs a review on
the scientific strategies for the GDL. Though both these and other strategies are in part effective (as
they are undertaken by experts with an engineering and subjective approach), more needs to be un-
derstood so as to predict an optimum topology (including the structure of the porous media itself)
or an optimum distribution of surface properties for a given topology. This requires an objective
mathematical approach which is applicable to the fluid problem at hand.

The optimization algorithm intended to be used is a general method and hence is not limited to
the fuel cell, but can be used in similar systems. Another utilization case is to optimize energy sys-
tems, especially those having a phase change during the heat transfer like for e.g. a vapor chambers
(VC; the VC is a planar heat pipe) and heat pipes [30–32]. These are efficient cooling devices used
in HVAC systems and also in consumer electronics. Their efficiency depend on the performance of
the internal wicking structure which regulates the flow of the coolant towards the hot region. It is
here, where the heat is absorbed during the phase change of the coolant and the evaporated coolant
is convected towards the cold region. Here again the wick structure and its wettability profile are
good candidates for optimization. Figure 1.2 shows the schematic visualizations for both vapor
chambers and heat pipes. Another field of interest is the wettability gradient surface (WGS) which
in turn could be used in micro-systems like the lab-on-chip (LOC) and other heat exchanging sur-
faces like the condenser and the evaporator. A detailed commentary on its importance along with
its subsequent optimization can be found in chapter 4.
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Figure 1.1: Axis-symmetric schematic view of a PEMFC

Figure 1.2: Schematic diagrams of vapour chamber (from [28]) and heat pipe (from [29])
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Chapter 1. The big picture

What are optimization algorithms?

An optimization algorithm refers to the mathematical procedure/treatment which reflects certain
strategies to arrive towards an ideal/optimal system or an efficient process. Optimization or mathe-
matical programming is a broad subject engulfing a variety of applications from logistics to machine
learning and numerical simulation. The optimization algorithms can be categorized in two ways: the
former is the gradient free optimization methods and later is the gradient based optimization. The
gradient free optimization also known as zero-order optimization consists of deterministic methods
like simplex [33, 34] or stochastic methods like particle swarm optimization (PSO) [35] and genetic
algorithm (GA) [36]. A recent example of genetic algorithm [37] was utilized for performing the
topology optimization. These methods are put to use when the cost function gradients are difficult
to compute or does not exists [38]. Conversely the gradient optimization requires the cost func-
tion gradient which is further classified into first, intermediate (between 1st and 2nd) and second
order methods. We utilize only the first order gradient methods in the thesis. Further information
regarding the different gradient optimizers i.e. methods or algorithm is detailed in chapter 3.

When optimization is applied to obtain change in the geometric aspect of the system depending
on the parameter set (after the geometry is parameterized) it becomes possible for categorizing op-
timization into three groups: size optimization, shape optimization and topology optimization [39,
40]. Figure 1.3 visualizes the parameter set (in orange) for each kind of optimization. In size opti-
mization [41] the parameter set has usually a single variable which if optimized gives us the min-
imum of the cost function. In shape optimization [42] the parameter set is the topology of the
surface which could be modified to minimize the cost function. The topology optimization on the
other hand has the most extensive parameter-set i.e. equivalent of the number of the individual
nodes/elements of the mesh (used for modeling the physical problem) in the region of interest. This
provides it with sufficient degree of freedom to create holes, structures (when starting from no ini-
tial solid structures). Essentially it becomes a material allocation problem [40]. We discuss a brief
history of topology optimization in chapter 3, after which we perform a state of the art for topology
optimization in interfacial flows in chapter 5.
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Objectives and contribution of this thesis

Here the primary objective is to modify the flow characteristics by adjusting/ tweaking the capil-
lary forces. This necessitates the development an optimization tool for topology optimization in
interfacial flows such that we are:

1. Finding an optimum porous media or wick structure (which has a homogeneous wettability
profile) such that the relevant cost function is minimized.

2. Finding an optimum wettability profile for a particular topology (porous media or wick struc-
ture) such that the objective function is minimized.

Briefly, the contributions of this thesis are:

1. Using multiscale optimizer for discovering optimized wettability profiles of a horizontal plate
(for droplet motion on the plate) i.e. a WGS.

2. Developing wettability optimizer, using adjoint-state model for SCMP-SC.

3. Developing topology optimizer, using adjoint-state model for SCMP-SC.

Overview of the thesis

In chapter 2, we began by discussing the different facets of LBM methods (including the boundary
conditions). Next we explore different multiphase LBM models families. After which we provide a
detailed description of the SCMP-SC model used along with its modifications and extension. This
discussion is completed by detailing the parameters used in the SCMP-SC model. The proposed
model undergoes the process of validation before it could be deemed fit for use in an optimiza-
tion algorithm. Multiple test/benchmark simulations are attempted such as the: Laplace rule,
droplet moving on a flat plate, capillary simulation, simulations with open boundaries (normal
tube, stepped tube, droplet flowing through a channel, preferential pathways and finally the porous
media simulations). The results of each tests are discussed and conclusions (pertaining to the com-
petence of the LBM model, the nature of the optimization problem feasible for SCMP-SC and etc. . . )
are drawn.

Chapter 3 is commenced by a brief introduction to topology optimization history, followed by a
discussion regarding different components (i.e. adjoint-state, level-set, gradient descent optimizer
and etc. . . ) used in the gradient based topology optimization. Next we present the LBM govern-
ing equation and derive the adjoint-state governing equation, initial conditions and later also the
boundary conditions (from the LBM boundary conditions). Finally we demonstrate topology op-
timization for single phase flow problem by applying it to a 90◦ pipe bend. After discussing the
results we conclude this chapter. This chapter is only a prelude for chapter 5.

In chapter 4 we diverge from the topology optimization narrative and only focus on optimization
of wettability profiles for droplet motion on WGS. After describing the problem and commenting
on the state of the art for efforts in optimization of a WGS, we describe our optimization strategy
i.e. the multiscale method, the definition of the objective function and etc. . . . Next we set constraint
values using the pre-optimization study. This aids in reducing the search area for the minimum
cost function. Next we perform the multiscale optimization and retrieve some optimized profiles.
This result are further discussed and analyzed using the post-optimization studies. Finally various
implications of this study are discussed and then we draw a few conclusions.

In chapter 5 we return back to the topology optimization narrative. Here after discussing the
state of the art for topology optimization in interfacial flows, we derive the adjoint-state model for
the SCMP-SC (for topology optimization). Next we develop an adjoint-state model for wettability
profile optimization. Finally, we draw our conclusion.

Ultimately, we reiterate the relevant bits of the narrative and highlight our conclusions of the
thesis.
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Lattice Boltzmann Method (LBM) is amongst the recent advances in CFD with successful im-
plementation in disciplines requiring simulation of multiphase flows [43] (for e.g. biology[44],
pharmacy, oil and gas industry[45]), reacting flows (chemical industry) and flows around com-
plex geometry like porous media[46, 47]. LBM tries to reproduce a particular phenomenon at a
macroscopic scale by considering particles interactions at mesoscopic scale, rather than solving the
relevant (macroscopic) governing partial differential equations. The mesoscopic particle interaction
is governed by the Boltzmann equation. The Chapmann-Enskog theory/analysis [48] demonstrates
that under certain assumptions one recovers the Navier-Stokes equations which implies that the
lattice Boltzmann method is competent in replicating/modeling real world fluid/flow systems.

Lattice Boltzmann method first appeared in the 80’s as the successor of Lattice Gas Automata
(LGA) method. LGA could also be used for hydrodynamic simulations, but this method generated a
lot of numerical noise. This meant that large amounts of time and space averaging was required for
obtaining a proper macroscopic flow field [49]. This was one of the major factors leading to the loss
of interest in further development of LGA after LBM was proposed and implemented successfully.
Nevertheless, LBM and LGA have a similar hydrodynamic behavior. So, LBM is noise free apart
from being inherently parallel in nature, easy to numerically implement also the scheme generally
used is an explicit one (having a decent accuracy) which makes it a strong contender for multiphase
simulation. The lattice Boltzmann method operates in a mesoscopic realm and hence we would
utilize different frameworks for units, as is detailed in appendix C.

2.1. Boltzmann equation

The Boltzmann equation describes the evolution of a single particle distribution function as a gas
relaxes towards an equilibrium state from an initial perturbation. The single particle (probability)
distribution function is denoted as f (r,e, t) and is defined such that f (r,e, t) d3r d3e is the probability
to find a particle which at time t are located in the phase space control element d3r d3e about a
location r (here the location is defined by using a vector r = rx î+ry ĵ+rzk̂) and having a velocity e [50].
The distribution function f has 6 DOF (i.e. the Cartesian co-ordinates x,y,z with the corresponding
velocity components u,v,w) and also varies with time. Thus total/absolute change in time of this
function can be expressed as:

df
dt

= e
∂f

∂r
+a

∂f

∂e
+
∂f

∂t
(2.1)

where a is acceleration of the fluid. This change corresponds to the collisions (and hence the ex-
change of momentum) between the constituent particles of the gas amongst themselves and also
with its surrounding. This change represented by Boltzmann in the form of a collision operator (Λ).
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Hence the Boltzmann equation can be written in a general form as:

e
∂f

∂r
+a

∂f

∂e
+
∂f

∂t
= Λ (2.2)

2.1.1. Discretization for obtaining LBM

The lattice Boltzmann equation (LBE) is obtained by discretizing the Boltzmann equation in space
and in velocity (both direction and magnitude). The velocity discretization is such that individual
particle site is connected to its neighboring particle sites, in a manner ensuring isotropy of moments.
The nomenclature to specify a particular velocity discretization is DxQy where x is the spatial di-
mension (1, 2, 3) of the problem and y is the number of velocity directions considered including the
zero velocity. Generally used two dimensional velocity discretizations are D2Q4, D2Q5 and D2Q9.
The most popular stencil for realizing advection problems in 2D is the D2Q9 stencil, due to higher
degree of isotropy as compared to D2Q4 and D2Q5.

e0

e1

e2

e3

e4

e5e6

e7 e8

Figure 2.1: D2Q9 stencil

After discretizing eq. (2.2), LBE can be given in a general form for the ith direction as:

fi(r +∆r, t +∆t)− fi(r, t) = Λi +Fi (2.3)

where Fi is an external force term acting on the fluid. Since the distribution function is now only
dependent on r and t for a particular velocity direction, therefore it is known as velocity distribution
function denoted as f (r, t). Also LBE is the discretized form of the Boltzmann equation and hence
the macroscopic values can now be retrieved as:

Definition 2.1.1.

ρ =
∑
i

fi (2.4)

ρu =
∑
i

eifi (2.5)

Please note that these macroscopic quantities are recovered in the mesoscopic realm and hence are
quantified in lattice Boltzmann units (as discussed in appendix C).

The D2Q9 stencil was used for all the simulations. Generally for LBM a structured grid is used
along with finite difference method (FDM) for mesh discretization. Note that there is an additional
velocity discretization. In other words the total computational mesh is the number of velocity direc-
tions (i.e. 9) times the actual geometry mesh. For simplicity, consider the lattice spacing ∆rx = 1 l.u.
(lattice unit), ∆ry = 1 l.u. and time stepping(∆t) to be 1 t.s. (lattice Boltzmann time). Thus the lattice
speed e is 1 l.u./t.s. and the velocity of sound (es) for D2Q9 is given as:

es =
‖e1‖√

3
=

1
√

3
= 0.577 l.u./t.s. (2.6)
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The location/distance vector for the D2Q9 stencil is given as:

|ri | =


0 l.u. ∀ i ∈ [0]

1 l.u. ∀ i ∈ [1,2,3,4]
√

2 l.u. ∀ i ∈ [5,6,7,8]

(2.7)

The lattice Boltzmann method is implemented in steps sequentially starting from collision,
where we solve for an ith direction:

f
pc
i (r, t) = f (k)

i (r, t) +Λ
(k)
i +F (k)

i (2.8)

where k represents the current LBM iteration and ‘pc’ represents intermediary time which (has no
physical sense but rather) indicates that the computational process of an iteration has not been
completed. After this we stream the data to the new location (r+∆r) for the new time (t+∆t) which
represented by next iteration k + 1. This is represented by (for an ith direction):

f
(k+1)
i (r +∆r, t +∆t) = f pc

i (r, t) (2.9)

Later the iteration is completed by implementing the boundary conditions applicable and ultimately
by computing macroscopic variables by using eq. (2.4) and eq. (2.5). In the following subsections, we
discuss regarding these components of the LBM implementation and later provide an algorithm al-
gorithm 1 for a multiphase LBM code of our choice.

2.1.2. Collision operator

For defining the manner of change in distribution function with respect to (w.r.t) time due to colli-
sion it is worth noting that:

• Boltzmann only took into account binary collisions, since for a dilute gas the probability of
ternary or higher order collision occurring is negligible.

• Velocity of the particles was assumed not dependent on its position.

Thus the R.H.S. of eq. (2.2) is expressed as a binary collision operator which is given as[50]:

Λ =
(
∂f

∂t

)
coll

=
∫
dΩo

∫
de2 σh(Ωo)|e1 − e2|(f̆1f̆2 − f1f2) (2.10)

where 1 and 2 represents interacting particles in no particular order, Ωo is the scattering angle of the
binary collision, σh is the differential cross-section of this collision, while f̆ and f are distribution
function after and before collision and are numbered w.r.t the corresponding velocities. Here the
collision operator is integrated for all possible values of e2 for a fixed value of e1. Thus the Boltz-
mann equation essentially became an integro-differential equation which was non-linear in nature.
This complicates the process to numerically solve the equation. Hence it is approximated using dif-
ferent collision operators like the BGK/SRT [51], MRT [52, 53] and TRT [54] amongst others. Also
entropic lattice Boltzmann models [55] provides an alternative paradigm which reorganizes the re-
laxation collision operator. These models are used sparingly due to their complexity. Further we
only elaborate on the approximations used for simulations referred to in the thesis.

2.1.2.a. Single relaxation time (SRT) model

This scheme employs a linear term to approximate the collision operator. It was proposed by [51]
and has thereafter been popular for simulations due to its simplicity as it uses a single relaxation
time (τ) parameter. The collision operator is given as:

ΛBGK = −
f − f eq

τ
(2.11)
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Chapter 2. Interfacial flows with LBM

where f eq denotes the equilibrium distribution function. Substituting ΛBGK and ω = (∆t)τ−1 in
eq. (2.3) and rearranging the equation yields:

fi(r +∆r, t +∆t) = ωf eq
i (r, t) + (1−ω)fi(r, t) +Fi (2.12)

which is the standard equation for the SRT model also known as the LBGK model.
Meanwhile, for a two dimensional advection-diffusion problem it can be derived that:

f
eq
i = wiρ

(
1 +

ei ·u
e2
s

+
(ei ·u)2

2e4
s
− (u)2

2e2
s

)
(2.13)

where the weight function (wi) is dependent on ei and can be given as:

wi =


4/9 ∀ i ∈ [0]

1/9 ∀ i ∈ [1,2,3,4]

1/36 ∀ i ∈ [5,6,7,8]

(2.14)

The equilibrium distribution function is essentially a truncated Hermite expansion of the Maxwellian
equilibrium distribution [56].

Also for hydrodynamic simulations on D2Q9, the relation between the kinematic viscosity (ν)
and the relaxation time can be given as:

ν =
∆x2

3∆t
(τ − 0.5) (2.15)

As previous mentioned ∆rx = ∆ry = ∆t = 1 and ω =
∆t
τ

. Thus, we can rephrase the same equation as

shown below:
τ = 3ν + 0.5 (2.16)

It is worth noting that the scheme loses stability, when τ→ 0.5. The relaxation time is the numerical
equivalent of any diffusivity coefficient for the corresponding transport equation for example: heat
diffusivity coefficient and viscosity for heat conduction and fluid flow respectively. For the errors
to be negligible while using the formulation of LBM with BGK approximation, the macroscopic
velocity u defined for the simulation should very small as compared to the lattice speed of sound
es. The macroscopic velocity should be chosen such that for a particular geometric configuration the
velocity at all points in the domain is well below es.

2.1.2.b. Multiple relaxation time (MRT) model

Here collision occurs in the moment space and not in the distribution function space. The uses of
this model increases stability and can be tuned also for greater accuracy. This collision operator
allows for independent adjustment of bulk and kinematic viscosity [57]. This model slightly slower
than BGK but is more accurate. The collision operator is given by:

ΛMRT = −M−1S(m−meq) (2.17)

where m = M · f , meq = M · f eq and for D2Q9

M =



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2
4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 0 0 0 0
0 0 0 0 0 1 −1 1 −1


and

S = diag
[
ω1 ω2 ω3 ω4 ω5 ω6 ω7 ω8 ω9

]
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2.1. Boltzmann equation

The matrix S in this case is a 9× 9 diagonal relaxation matrix in which ω8 and ω9 are related to the
kinematic viscosity as shown in eq. (2.15), while ω2 is related to the bulk viscosity of the fluid. It is
also required that ω1 = ω4 = ω6 and ω5 = ω7. Hence we can tune ω1, ω2, ω3, ω5 and ω8 for greater
accuracy and stability. For all the simulations using this collision operator we specify S as:

S = diag
[
1.0 0.7 0.7 1.0 1.7 1.0 1.7 1.0 1.0

]
This values were determined by trail and error such minimum spurious currents were generated in
the droplet simulation. Also, the f eq term in eq. (2.17) is described by eq. (2.13). Substituting ΛMRT
and rearranging the equation yields:

fi(r +∆r, t +∆t) = fi(r, t)−M−1S(m−meq) +Fi (2.18)

It is to be noted that the use of ΛMRT might modify the structure/formulation of F depending on
the force incorporation method used.

2.1.3. Streaming

This step of the LBM algorithm involves purely the transfer of data. In an otherwise inherently par-
allel calculation or code especially for single phase LBM, this step creates bottlenecks and is hence
often decoupled from the computationally intensive collision step. As we perform this step/process
after the collision but the time-step calculation remains (i.e. the current streaming step and the
application of the boundary conditions), it is a common practice to refer to this processes/steps
as happening in post-collision time. These processes are tagged as ‘pc’ i.e. post-collision. Here
the post-collision values/data are rearranged/streamed to the neighboring nodes in the direction of
the particle velocity components. The implementation (in two dimensions) differs depending on
whether one is finding the correct location i.e. the destination to write data, where (r +∆r) for the
ith velocity component is given as:

(rx +∆ri,x)
∣∣∣
t=z+∆t

= (rx
∣∣∣
t=z

+ ei,x +Nx) mod (Nx) (2.19)

(ry +∆ri,y)
∣∣∣
t=z+∆t

= (ry
∣∣∣
t=z

+ ei,y +Ny) mod (Ny) (2.20)

(at time t = z), OR, whether one is finding the source location to read from the data, where (r +∆r)
for the ith velocity component is given as:

(rx +∆ri,x)
∣∣∣
t=z

= (rx
∣∣∣
t=z+∆t

− ei,x +Nx) mod (Nx) (2.21)

(ry +∆ri,y)
∣∣∣
t=z

= (ry
∣∣∣
t=z+∆t

− ei,y +Ny) mod (Ny) (2.22)

where ei,x and ei,y are the x and y components of the ith particle velocity, ∆ri,x and ∆ri,y are the cor-
responding changes to the location vector (for the ith direction) and where the domain length along
the x and y direction are the Nx and Ny and the domain size is given as Nx ×Ny . The difference be-
tween the two implementations of streaming (as shown schematically in fig. 2.2) is that writing data
at one location is computationally cheaper even though the same process is accomplished. By de-
fault both these implementation enforces periodicity in the domain, more about which is discussed
later in section 2.1.4.a.

2.1.4. Boundary conditions (BC)

The boundary conditions for LBM are generally simple for numerical implementations but are at
the same time not straight forward, as the implementation focuses on the mesoscopic scale details.
The goal of a boundary condition is to find the unknown distribution function along the directions
which are extending inward into the fluid region form the domain or solid boundaries.

There are various different methods for applying each type of boundary condition and hence
an exhaustive listing is not possible. Comparative studies [58, 59] have been performed for outlet
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Chapter 2. Interfacial flows with LBM

Figure 2.2: Implementation difference in the streaming process for LBM

west
south

east

north

f1

f5

f8 f2 f5f6

f3

f6

f7

f4f7 f8

Figure 2.3: Unknown distribution functions at boundaries

boundary conditions for multiphase flows, which is the primary focus of this work. In all the bound-
ary conditions that were employed for simulations were wall (bounceback), velocity inlet, pressure
outlet, Neumann conditions and periodic boundary conditions. It is to be noted that while using any
of the open boundary conditions like extrapolation boundary conditions (EBC), Neumann bound-
ary condition (NBC), convective boundary condition (CBC) or Zou and He (ZH) for pseudopotential
model we require ghost nodes for finding ∇ψ in the interparticle force formulation i.e. eq. (2.65).

2.1.4.a. Periodic BC

The implementation of this boundary condition requires that the distribution functions exiting from
one boundary be fed as an input on the opposite boundary. Thus for a 2D domain if we have only
periodic boundaries, then the domain would be interconnected like a torus. The periodic boundary
conditions on the western and eastern boundaries (refer fig. 2.3) are given as:

fi(rx = 1, ry , t +∆t) = f pc
i (rx =Nx, ry , t) ∀ i ∈ [1,5,8] (2.23)

and

fi(rx =Nx, ry , t +∆t) = f pc
i (rx = 1, ry , t) ∀ i ∈ [3,6,7] (2.24)

Thus the fluid exiting form east would enter through the west and vice-versa. Hence mass and
momentum is always conserved.
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2.1. Boltzmann equation

2.1.4.b. Ghost nodes

This are special set of nodes required in the Shan and Chen multiphase paradigm (this model is
described later in section 2.2.3) for satisfying the requirement of neighboring nodes. These neigh-
boring nodes are used for constructing a gradient of pseudopotential (∇rψ). Generally one ghost
node layer is sufficient until and unless the multirange model is used. This has an effect of break-
ing the periodicity of the domain. Hence it is useful for implementing open boundary conditions
amongst other things. For Shan and Chen multiphase model is sufficient to only copy the density of
the adjacent layer i.e. no collision or streaming steps are required for these nodes. If we had ghost
nodes present on the east boundary (refer fig. 2.3) then, we could write:

ρ(rx =Nx, ry) = ρ(rx =Nx − 1, ry) (2.25)

Ghost node is also used amongst other multiphase LBM models. Some methods require stream-
ing of probability distribution function also. For SCMP-SC model this streaming is not required.
Also when used in tandem with open boundary a force imbalance (normal to the boundary) at the
boundary by using information from the penultimate layer rather than the ultimate layer (which is
adjacent to the Ghost nodes/layer). Thus for the eastern boundary (refer fig. 2.3) we write:

ρ(rx =Nx, ry) = ρ(rx =Nx − 2, ry) (2.26)

Generally though, this force imbalance is negligible unless the interface touches the boundary. The
literature [3, 58], also suggests ghost node (for those adjacent to the outflow boundary) treatment
which is dependent on the outflow boundary formulation, where the data is streamed into the ghost
node.

2.1.4.c. Wall BC

Here, the wall boundary condition for LBM is categorized on the basis of the mesh type on which
the boundary condition is applied i.e. using Lagrangian or Eulerian mesh [48]. One can specify con-
ditions for curved wall [60], moving wall [61] and deformable/soft wall [62, 63] (for e.g. Immersed
boundary condition). Here we only detail about fullway and halfway bounceback BC.

2.1.4.c.1. Simple Bounceback (BB)

The BB is the simplest implementation of a no-slip wall. Two different variants of the BB condi-
tions have been utilized for the simulations i.e. the fullway BB and the halfway BB (refer fig. 2.4). It
is to be noted that the position of the wall for both this variants are approximately midway between
the solid and the fluid node. The exact location of the wall depends on relaxation time in the case of
ΛBGK and this limitation could be circumvented by the use of ΛMRT or ΛTRT [48]. The bounceback
is second order accurate for the straight boundaries and at low Reynolds number. For both variants
used here the staircase effect is observed for the inclined and the curved boundaries.

The fullway BB allows for information to be streamed into the solid nodes where BB is applied
for all the velocity direction. Hence this can be used for walls of any orientation and the BB is
implemented as (on solid nodes) and for new time step (t +∆t):

fi(rx, ry , t +∆t) = fī(rx, ry , t +∆t) ∀ i ∈ [0,1,2,3,4,5,6,7,8] (2.27)

where ī = [0̄, 1̄, 2̄, 3̄, 4̄, 5̄, 6̄, 7̄, 8̄] = [0,3,4,1,2,7,8,5,6]. And this data is then streamed to the fluid
domain at the next iteration.

The halfway BB on the other hand allows no information to be streamed into the solid nodes,
performing BB only for the velocity directions from the solid. This allows BB to be applied to
very thin or a zero node thick solid wall. This is a direction based boundary condition but can
be implemented in the streaming step in a general fashion using if statements to check whether
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Chapter 2. Interfacial flows with LBM

Figure 2.4: Data streaming for halfway and fullway BB. (Schematic diagram)

each link ends up on solid or fluid nodes [48], which is used in the code. The more traditional
implementation for a wall on the east (on fluid nodes) and for new time step (t +∆t):

fi(rx, ry , t +∆t) = f pc
ī

(rx, ry , t) ∀ i ∈ [3,6,7] (2.28)

where f pc
i is the distribution function post collision (but before streaming). Thus we can notice that

time it takes for particle information to return to bulk is ∆t and 2∆t for halfway and fullway BB
respectively. Hence halfway BB is said to have higher temporal accuracy.

2.1.4.d. Open BC

Many different schemes have been proposed for the closure of equations in LBM. The list mentioned
here is by no means extensive. Only a fraction of this proposed solutions are applicable and for a
multiphase simulation. For multiphase LBM models generally, ghost node layers are required in
tandem with open boundaries.

2.1.4.d.1. Ladd velocity BC

The Ladd velocity [64] boundary condition is a simple modification to the standard BB boundary
condition. For this boundary condition, the density and the velocity of the fluid at the boundary is
required. The modification or rather a correction term accounts for the momentum gained by the
fluid in the vicinity of the boundary. For a velocity inlet at the north (refer fig. 2.3), on the top-most
layer of fluid nodes:

fi(rx, ry , t +∆t) = f pc
ī

(rx, ry , t)− 2wīρ(rx, ry , t)
u(rx, ry , t) · eī

e2
s

∀ i ∈ [4,8,7] (2.29)

2.1.4.d.2. Zou and He (ZH)

This boundary condition was proposed by [65] and has been thereafter used widely. Here, the
equality of the non-equilibrium part of the distribution functions normal to the boundary is as-
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2.1. Boltzmann equation

sumed while solving for the unknown distribution functions apart from eq. (2.4) and eq. (2.5). The
final set of equations is arrived upon by algebraic manipulation. Thus for the velocity inlet at the
north (refer fig. 2.3) we specify ux, uy and find ρ and other unknown distribution functions as:

ρ =
f0 + f1 + f3 + 2(f2 + f5 + f6)

1 +uy
(2.30)

f4 = f2 −
2
3
ρuy (2.31)

f8 = f6 −
1
2

(f1 − f3)− 1
6
ρuy +

1
2
ρux (2.32)

f7 = f5 +
1
2

(f1 − f3)− 1
6
ρuy −

1
2
ρux (2.33)

Similarly for the pressure inlet at north we would specify ux = 0 (if value is unknown), ρ and later
use eq. (2.30) for finding uy . It is to be noted that the values to be specified in either case are
constants. This may make it unfavorable for use when mass flux across the boundary is multiphase
in nature especially for single component multiphase flows defined by a single distribution function.

Due to the above mentioned limitation, generally this boundary condition is not used as a pres-
sure outlet when multiphase flow exit is expected.

2.1.4.d.3. Extrapolation scheme (EBC)

This method of specifying the boundary condition is dependent on the boundary normal. Here
the unknown distribution functions at the outlet boundary is given by performing extrapolation
upstream. Hence an outlet to the south (refer fig. 2.3) is given as:

fi(rx, ry = 1) = 2fi(rx, ry = 2)− fi(rx, ry = 3) ∀ i ∈ [2,5,6] (2.34)

This method was observed to least accurately simulate the exit for the droplet in a channel [58] and
a stable result has not been yet obtained for our study.

2.1.4.d.4. Neumann boundary condition (NBC)

This boundary condition requires that no change should be observed in the quantities of interest
as mass flux occurs across the boundary. In other words no significant effects in the domain should
occur due to the presence of the boundary itself. This in mathematical form is given by:

∂χ
∂n

= 0 (2.35)

where χ represents the relevant quantity; in our case mostly (but not solely) f , n is the normal to
the boundary. This equation is simply discretized (for the southern outlet refer fig. 2.3) and the
distribution function values at the new time step (t +∆t) are given by:

fi(rx, ry = 1, t +∆t) = fi(rx, ry = 2, t +∆t) ∀ i ∈ [0,1,2,3,4,5,6,7,8] (2.36)

2.1.4.d.5. Convective boundary condition (CBC)

Here we utilize a convective equation to approximate the quantities of interest, rather than sim-
ply setting the directional derivatives to be zero as in eq. (2.35). This makes it computationally
expensive as compared to the NBC but overall produces better results [58, 59]. In mathematical
form this is given by:

∂χ
∂t

+U · ∂χ
∂n

= 0 (2.37)
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where U is the velocity of fluid. For a southern boundary (refer fig. 2.3) for all quantities of interest
the above equation can be discretized as follows:

fi(rx, ry = 1, t +∆t) =
fi(rx, ry = 1, t) +λfi(rx, ry = 2, t +∆t)

1 +λ
∀ i ∈ [0,1,2,3,4,5,6,7,8] (2.38)

where λ = U (t + ∆t) · ∆t/∆x. The CBC has there variants depending on how the value for U is
considered. For the southern boundary we can specify these choices for velocity as:

U = uavg =

∑
rx
uy(rx, ry = 2)

N
(2.39)

U = ulocal = uy(rx, ry = 2) (2.40)

U = umax = max
rx

[uy(rx, ry = 2)] (2.41)

where N is number of fluid nodes considered. Thus, we will used CBC-A, CBC-L and CBC-M
to indicate each variant. The advection term can also been discretized according to second-order
implicit finite difference [3]. The same discretization is also applicable for Neumann BC.

2.2. Multiphase LBM models

Multiphase models based on LBM can be in general categorized into four major groups: color-
gradient models, free energy models, phase field LB models and pseudo-potential models [66]. Few
models exists which does not fit into the classification of the four model families in multiphase
LBM like for example free surface [67] model and others. Here rather than an exhaustive analysis,
we describe in brief one example model for three multiphase LBM model families. Few detailed
references for multiphase LBM models are [48, 67–71]. By default, we assume the D2Q9 schema.

2.2.1. Color gradient model

The Colour-Gradient model uses a two component which was proposed by Rothmann and Keller
[72], and it was 1st introduced by Gunstensen et al.[73] for simulation of immiscible binary fluids
based on a 2d hexagonal lattice. Later modification allow for variation of density and viscosity. The
two immiscible fluids are labeled as red and blue, where each is assigned a distribution function
i.e. f red

i and f blue
i . The total distribution function is given as fi = f red

i + f blue
i , where both sets of

distribution functions are updated using the solver. The process for the sake of algorithm is sub-
divided into two steps i.e. collision and streaming. The equation for collision is given as:

f
κ,pc
i (r, t) = f κi (r, t) +Λκ

i ∀ κ ∈ [red, blue] (2.42)

Now, for the streaming step the equation is given as:

f κi (r +∆r, t +∆t) = f κ,†i (r, t) (2.43)

where f κ,†i is obtained in an intermediate step known as the recoloring step. This recoloring operator
for the κth component is given as:

f κ,†i =
ρκ

ρ
f

pc
i + β

ρredρblue

ρ2 f
eq
i (ρ,u = 0)cos(λi) (2.44)

where f pc
i =

∑
κ f

κ,pc
i , β is a constant (which is used for adjusting the interface thickness) whose

value lies between 0 and 1, the total density is ρ =
∑
κ ρ

κ and the total momentum is ρu =
∑
κ
∑
i f

κ
i ei

. For this model, the collision operator is constructed from two sub-operators such that:

Λκ
i = Λ

κ,1
i +Λ

κ,2
i (2.45)
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where Λκ,1
i is the standard collision operator like for e.g. BGK (as defined previously in section 2.1.2).

The equilibrium distribution function of f κ,eq
i is given as:

f
κ,eq
i = ρκ

(
Ci +wi

(
ei ·u
e2
s

+
(ei ·u)2

2e4
s
− u

2

2e2
s

))
(2.46)

where density definition for each component remains unchanged and the coefficients (Ci) are pro-
vided as [74] (for components with identical densities we can substitute Ci = wi). If the relaxation
time (τ) of each component is different, then the τ at the interface is determined using an interpola-
tion scheme as mentioned in [74]. The second collision sub-operator is more complex with different
suggestions existing in the literature. An example formulation is [73]:

Λ
κ,2
i =

Aκ

2
|o|(2 · cos2 (λi)− 1) (2.47)

where Aκ effects the interfacial tension and λi is the angle between the color gradient o(r, t) and the

velocity direction ei . Also we have cos(λi) =
ei ·o
|ei | · |o|

where the color gradient is calculated as:

o(r, t) =
∑
i

ei
∑
j

[f red
j (r + ei∆t, t)− f blue

j (r + ei∆t, t)] (2.48)

Another formulation [75] for Λκ,2
i is suggested as the correct collision operator and is given as:

Λ
κ,2
i =

Aκ

2
|o|

[
wi

(ei ·o)2

|o|2
−Bi

]
(2.49)

where the Bi is constant and is given as:

Bi =


− 4

27 ∀ i ∈ [0]
2

27 ∀ i ∈ [1,2,3,4]
5

108 ∀ i ∈ [5,6,7,8]

(2.50)

This formulation allows for correct reproduction of terms corresponding to the interfacial tension
in the NS equations.

2.2.2. Phase field model

The phase field (PF) model utilizes an additional parameter for recognition of different phases and to
capture the interface dynamics via the use of Cahn-Hillard equation (CHE) or Allen-Cahn equation
(ACE) (local and non-local) [76]. With CHE one obtains a sharp interface while with ACE a diffused
interface is observed. For the thesis, instead of a detailed description of all various PF models, we
elaborate on the model where ACE is used [77]. This model is intended to be used for immiscible and
incompressible fluids. As mentioned previously, apart from the NS equations the model additionally
utilizes the AC equation. This equation provides us with the evolution of the interface and is given
as:

∂ϕ

∂t
+∇ · (ϕu) = ∇ ·M

(
∇ϕ −

1− 4(ϕ −ϕ0)2

ξ
n

)
(2.51)

where ϕ is the phase field, M is the mobility, ξ is the interfacial width, µ is the dynamic viscosity,
ϕ0 represents the location of the interface and n = ∇ϕ/ |∇ϕ| is the unit normal vector. Here after dis-
cretization according to LBM (i.e. finite difference discretization + velocity direction discretization),
the ACE is given as:

hi(r + ei∆t, t +∆t) = hi(r, t) +
h̃

eq
i (r, t)− hi(r, t)
τϕ + 1/2

+Fϕ,i(r, t) (2.52)
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where the force is formulated as:

Fϕ,i = ∆t
[1− 4(ϕ −ϕ0)2]

ξ
wiei ·n (2.53)

and h is the phase field distribution function, τϕ is the corresponding relaxation time (which in turn
is related to the mobility ,M, as M = τϕe2

s∆t) and the modified equilibrium distribution function is
given as:

h̃
eq
i = heq

i −
Fϕ,i

2
(2.54)

where we could write the equilibrium phase-field distribution function (heq
i ) as:

h
eq
i = wiϕ

[
1 +

ei ·u
e2
s

+
(e ·u)2

2e4
s
− u2

2e2
s

]
(2.55)

The phase field is thus obtained as:
ϕ =

∑
i

hi (2.56)

after which the density at fluid node η is calculated using the interpolation :

ρ(η) = ρL +
ϕ(η)−ϕL

ρH − ρL
(2.57)

where H and L represents the heavy and light phases. While the first probability distribution func-
tion (PDF) was used for modeling the phases, the second PDF is used for modeling the hydrody-
namics. The second PDF is given as:

gi(r + ei∆t, t +∆t) = gi(r, t) +Λi +Fi (2.58)

where Λ, as before is the collision operator utilizing the relaxation time ( related to kinematic vis-
cosity of fluid i.e. ν = τe2

s∆t). Here it also possible to vary τ for the heavy and light fluids based on
interpolation between the relaxation times of each fluid or alternatively between the viscosities of
each fluid. The formulation for the BGK and MRT collision operators are given as:

ΛBGK,i =
gi − g̃

eq
i

τ + 0.5
(2.59)

and
ΛMRT,i = M−1SM(gi − g̃

eq
i ) (2.60)

where the modified equilibrium distribution is given as:

g̃
eq
i = geq

i −
Fi
2

(2.61)

The equilibrium distribution for the PDF modeling the hydrodynamics is given as:

g
eq
i = wi

[
p

ρe2
s

+
ei ·u
e2
s

+
(ei ·u)2

2e4
s
− u

2

2e2
s

]
(2.62)

Also the hydrodynamic forcing term is given as:

Fi = wi
ei · FT

ρe2
s

∆t (2.63)

where the total force for this model is given as:

FT = F σ + F body + F pr + F µ (2.64)

Here in the above equation F σ represents the surface tension force, F body represents the body forces
in the simulation, F pr represents the pressure force and F µ represents the viscous force in the sim-
ulation. The formulation for these forces are detailed in [77].
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vapour

liquid

solid

Figure 2.5: Interparticular forces between adjacent nodes.

2.2.3. Pseudopotential model

The pseudopotential LB method uses interparticle potential to mimic fluid particle interactions.
This leads to a spontaneous separation of fluid phases or components, without resorting to any
techniques to track or capture interfaces. The interparticle potential formulation will result to a
non-ideal pressure tensor, which is different from that in the free-energy LB method [66]. Also for
this method, momentum at a point/node is modified to account for the effect of the interparticular
force. Thus, local momentum is not conserved but the global momentum always remains conserved.
The pseudopotential model due to its simplicity, is amongst the popular LBM based multiphase
method.

2.2.3.a. Single component model (SCMP-SC)

The pseudopotential/Shan and Chen model [78] introduces phase separation intrinsically by using
interparticular forces which is modeled on pseudopotential or effective mass (ψ). The pseudopoten-
tial function at a point is in turn dependent on the local density. Due to this, high density fluid at
a site/node would translate into a stronger attractive force (assuming G < 0) on all adjacent nodes.
Thus the mutual interaction force between a pair of two adjacent nodes each having higher density
fluid would be greater than if one of those nodes had lower density fluid (as indicated in fig. 2.5),
where thickness of line is used to depict the force intensity). The least interaction force would be
observed if both nodes had lower density fluid. As a result, the regions of higher densities would be
strongly attracted to each other as compared to regions of lower density which leads into segrega-
tion or phase separation. Thus no additional function is required for plotting/capturing or tracking
the interface, which can be directly visualized by plotting density field during the post-processing.

The downside of the progressive nature of intensity of force would be that, the interface is ob-
served to be diffused rather than being sharp. Thus, if exact location of the interface is required,
then additional computation would be required. Also, the local scope of the interparticular force
means that momentum is not conserved locally though it is conserved globally.

The continuous form of the interparticular force at a location/node η is given as [79–81]:

F p = −Gψ∇rψ = −G
∇rψ2

2
(2.65)

where G is a constant and ψ is the pseudopotential. The discretized version of the eq. (2.65) for the
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fluid-fluid interactions is given by:

F p(η) = −Gψ(η)
∑
i

ϑi=η+∆tei∈Df

|ϑi−η|≤
√

2

wfr,iψ(ϑi)ei (2.66)

where wfr,i is the forcing weight function depended on ei . and is equal to the initial weight function
(wi), G is a numerical quantity called interaction strength which is defined as T = −1/G, where T
is numerical temperature. The standard equation for describing the relation between density based
pseudopotential and pressure corresponding to eq. (2.65) is given by:

p = ρe2
s +

Gc0ψ
2

2
(2.67)

There have been other works for e.g. [81, 82] discussing different interparticle force formulations
and their performances. For this work we use a slightly modified version of pressure equation given
as:

p = ρe2
s +

Ge2
sψ

2

2
(2.68)

This change in equation merely alters the location of the critical point, but the nature of the equation
remains the same. Rewriting this equation we obtain:

ψ =

√
2(p − ρe2

s )

Ge2
s

(2.69)

In the original SC model, the formulation of the pseudopotential function is defined as:

ψ = ρ0

(
1− exp

(
−ρ
ρ0

))
(2.70)

from which the value for pressure is later obtained by using eq. (2.67). Other common forms of the
pseudopotential function are:

ψ = ρ (2.71)

and

ψ = ψ0exp
(
−ρ0

ρ

)
(2.72)

The original Shan and Chen model [78] used what is known as the velocity shift force scheme. Here
instead of treating the interparticle force as an external force it is indirectly incorporated by the
modifying/shifting the velocity as given by eq. (2.5). Thus forming what is known as the equilibrium
velocity. For a local fluid node η it is formulated as:

ueq = u+
FT(η)
ωρ

(2.73)

where ω = (∆t)τ−1 is the relaxation frequency, FT is the total force which is elaborated in sec-
tion 2.3.6. The physical velocity up is obtained as:

up = u+
FT(η)

2ρ
(2.74)

Now, the equilibrium velocity is to be substituted in the distribution function given by eq. (2.13).
Thus for ΛBGK we obtain eq. (2.12) with Fi = 0 in the final equation.

26



2.2. Multiphase LBM models

2.2.3.b. Multi-component model (MCMP-SC)

The Shan and Chen LB model could also be used for simulating multi-components flows [79]. The
original model has a density ratio of order 1. Each component has its own viscosity and hence
relaxation time i.e. τ1 and τ2. The formulation is the interparticular force remains the same (as
compared to SCMP-SC) for each component, with the only exception that the other component
influence is also considered. The total interparticular force for a component at η is:

F p,κ(η) = −ψκ(η)
∑
i

ϑi=η+∆tei∈Df

|ϑi−η|≤
√

2

wfr,i [Gκκψκ(ϑi) +Gκκ̄ψκ̄(ϑi)]ei ∀ κ ∈ [1,2], ∀ κ̄ ∈ [2,1] (2.75)

where Gκ,κ̄ and Gκ,κ represent the interaction strength for between different components and in-
teraction strength for the same component. Here a positive value of interaction strength models
repulsive forces and the conversely a negative value represents attractive forces. Now for the κth

component, the pseudopotential ψκ was originally defined by eq. (2.70), the equilibrium distribu-
tion function f eq

i,κ is given by eq. (2.13). The velocity remains common for both the components and
thus becomes another coupling point between the two components after the interaction force:

u =
∑
κ(

∑
i eifi,κ)∑
κ ρκ

(2.76)

where equilibrium velocity is defined as:

ueq = u+
∑
κ F T ,κτκ∑
κ ρκ

(2.77)

and meanwhile the physical velocity is defined as:

up = u+
∑
κ F T ,κ/2∑
κ ρκ

(2.78)

Thus we have the similar LBM equations for both components which is given as:

f κi (r + ei∆t,∆t) = f κi (r, t) +Λκ
i ∀ κ ∈ [1,2] (2.79)

here Fi,κ = 0 for the velocity shift scheme. Finally, the relation between the pressure and the pseu-
dopotential is given as:

p =
∑
κ∈[1,2]

(
ρκ
3

+
Gκκψ

2
κ

6
+
Gκκ̄ψκψκ̄

6

)
(2.80)

The following section 2.3 discusses the improvements which are applicable to the SCMP-SC and
by extension these could also be utilized for an MCMP-SC. Multi-component multiphase (MCMP-
SC) model suggested by [83] using PR EOS with the velocity shift forcing scheme was able to obtain

a high density ratio by controlling the force ratio
|F 1,1 max|
|F 1,2 max|

, where 1 represents the heavier phase. It

was observed that as the ratio increased the density ratio also increased up to the order of 103. The
MCMP model suggested by [84] for simulating realistic flows, incorporated certain modifications to
improve the method like use of PR EOS with modified Guo formulation as given by [85], to increase
the density ratio and improve thermodynamic consistency. They achieved a density ratio of about
1000 and viscosity ratio of about 16.15, which corresponds to the air-water system in real life.

Multiphase LBM generally exhibits a diffused interface being devoid of the interface tracking
equations. In the case of the pseudopotential method [86], this interface is directly a result of the
interparticle forces. These forces are present both between each fluid particles and between fluid
and solid particles. Among all the major multiphase LBM models (color gradient, phase field, free
energy and pseudopotential), the pseudopotential method is used the most commonly [48]. It is
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Chapter 2. Interfacial flows with LBM

known for its efficiency and simplicity, as it generally does not employ the Poisson equation for
pressure. These factors play a significant role in the our selection of this method. We choose the
SCMP-SC with intent of utilizing it for modeling physics which would later be fed as an input
to a optimization algorithm. The optimizer, requires multiple reruns of the physical simulation
(hereafter also referred to as the forward problem) which all the more underlines the requirement
of a lightweight solver.

2.3. Modification/Extension for the SCMP-SC

The original Shan and Chan model, suffers from some deficiencies in modeling two-phase fluid
flow such as the relatively large spurious current, low density and kinematic viscosity ratios, ther-
modynamic inconsistency, coupling effect between the EOS and surface tension, and dependence of
surface tension and density ratio on the viscosity [84].These limitations may have insignificant effect
on the two-phase flow inside porous media due to the dominate role of surface tension. A number of
improvements to the model have been proposed and can be divided into two categories: those that
modify the force calculation, such as increasing the order of isotropy or modifying the equation of
state , and those that improve the incorporation of the force term into the equilibrium distribution
functions [85].

The former modification includes the multirange models, models using different equation of
state. The multirange model considers the nearest and the next nearest layer of nodes for proper
resolution of force (with the appropriate weight function) and results into decoupling the equation
of state and the surface tension [87]. Similar method was proposed by [88], wherein just as before
two layer of nodes was used for forcing with different values of interaction strength for each layer
(G1 and G2). This method seems to provide flexibility for adjusting the values of interaction poten-
tial i.e. density ratio and surface tension independently. Also this model has lower spurious current.
Shan and Chen models were tested by [80] by using different equation of state. The equation of state
was used to define the value for pressure which later on defined the value of the pseudopotential
function. The Peng-Robinson EOS was found to have the least spurious current and the maximum
density ratio of the order of 103.

The latter modifications include the use of forcing schemes Guo forcing scheme, the exact dif-
ference method (EDM) and so on. The original forcing scheme (velocity shift scheme) causes the
surface tension to be dependent on kinematic viscosity. It has been shown recently that while the
Guo forcing scheme recovers the Navier-Stokes equations correctly, while the EDM introduces an
error into the pressure tensor, proportional to the square of the forcing term [85]. Also in paper [85]
they perform a third order analysis on the pressure tensor in the Pseudopotential method, thereby
arriving upon an improved Guo force scheme. Only relevant modifications (i.e. those that have used
or is proposed to be used) are elaborated below.

2.3.1. Different equation of states (EOS)

The models employing the standard equation of state are stable only for low density ratios of the
O(102). To obtain higher density ratio and lower spurious current the use of realistic equation of
state for e.g. Van der Waal, CS and PR and others was suggested by ref.[80, 89]. As mentioned previ-
ously in the original Shan and Chen formulation the pressure is obtained from the pseudopotential
which is described as a function of density of the fluid. Conversely, for the realistic equation of state
the pseudopotential function is obtained from pressure of the fluid which is described by an equa-
tion of state (i.e. a function of density). One additional thing to note here is that use of equation of
states breaks the previous linkage T = −1/G. Generally, this changes the meaning and significance
of temperature (T ) as it would now arise from EOS itself, while G now becomes an independently
tuned parameter.

28



2.3. Modification/Extension for the SCMP-SC

2.3.1.a. Peng-Robinson (PR) EOS

Here, a realistic equation of state is used for defining pressure and then eq. (2.69) is used for obtain-
ing pseudopotential. PR EOS enables parameters (for e.g. pressure and temperature) to be defined
in terms of critical properties and acentric factor of the fluids. Pressure is given as:

p =
ρRT

1− bρ
−

aρ2α

1 + 2bρ − b2ρ2 (2.81)

where α =
(
1 + (0.37464 + 1.54226ζ − 0.26992ζ2)

(
1−

√
T
Tc

))2

, a =
0.45724R2T 2

c

pc
, b =

0.0778RTc
pc

and

ζ = Pitzer’s acentric factor.

2.3.1.b. Carnahan-Starling (CS) EOS

Here the pressure is defined using CS formulation, and pseudopotential function can be obtained
as previously using eq. (2.69). Pressure is given as:

p = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1− bρ/4)3 − aρ2 (2.82)

where a =
0.4963R2T 2

c

pc
and b =

0.18727RTc
pc

. It is to be noted that for a particular value of b the

diffused interface thickness can be controlled by value of a as demonstrated by [90]. Also that
sharper interface would decrease the stability.

2.3.2. Different forcing schemes

The standard forcing scheme for the Shan and Chen model is known as the velocity shift scheme as
the velocity used for the equilibrium particle distribution function is shifted by adding the impact
of the interparticular force. Popular forcing schemes like Guo, EDM amongst others have been
compared with the original force scheme in studies such as [91] and found to have lower spurious
current and better overall performance. The only drawback of these forcing schemes (as compared
to the original) is that these exhibit a lower stability for lower temperatures.

2.3.2.a. Guo forcing scheme

This forcing scheme was proposed by [92]. Here the velocity/momentum is modified to account
for the effects of the interparticle forces. For this scheme we modify the velocity recovered from
eq. (2.5). The physical velocity would still be given by eq. (2.74). The velocity up is then used for
computing the equilibrium distribution function by using the eq. (2.13), which would then in turn
be used for solving the lattice Boltzmann equation. This formulation requires an explicit addition
of force in the LBE and hence for ΛBGK we obtain eq. (2.12) as the final equation. Here, Fi is the
interaction force term distributed along the nine directions by the formulation given by Guo[93, 94]:

Fi = Fguo,i =
(
1− 1

2τ

)(ei −up
e2
s

+
ei ·up
e4
s

ei

)
wiFT∆t (2.83)

Now for ΛMRT the final equation is given by eq. (2.18) where Fi is given as [94]:

Fi = Ωi −
1
2

M−1SM(Ωi) (2.84)

where Ωi =
(
ei −up
e2
s

+
ei ·up
e4
s

ei

)
wiFT∆t.
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2.3.2.b. Exact difference method (EDM) forcing scheme

This forcing scheme was introduced by [89] to properly represent the affect of the body forces of any
nature. This forcing scheme is simple to implement with different Λ, such that the final equations
with ΛBGK and ΛMRT are eq. (2.12) and eq. (2.18) respectively where:

Fi = Fedm,i = ∆fi = f eq
i (ρ,u+∆u)− f eq

i (ρ,u) (2.85)

with ∆u = FT∆t/ρ. Here the physical velocity is again described by eq. (2.74). This forcing scheme
has been observed to remove relaxation time (τ) dependence of surface tension (σ ) for the SRT model
[91]. Also in this study it was observed to have a smaller density ratio limit as compared to Shan
and Chen forcing scheme along with CS EOS. Finally we conclude this subsection with a nifty little
table (table 2.1) detailing the different types of velocities used in the LBM algorithm along with the
relevant forcing terms for each of the forcing scheme discussed in this thesis.

Forcing scheme f eq velocity (ueq) Real velocity (up) Forcing term (Fi)

Velocity shift
∑
i fiei
ρ + FTτ

ρ

∑
i fiei
ρ + FT∆t

2ρ 0

EDM
∑
i fiei
ρ

∑
i fiei
ρ + FT∆t

2ρ f
eq
i (ρ,u+∆u)− f eq

i (ρ,u)

Guo
∑
i fiei
ρ + FT∆t

2ρ

∑
i fiei
ρ + FT∆t

2ρ

(
1− 1

2τ

)( ei−up
e2
s

+
ei ·up
e4
s
ei
)
wiFT∆t

Table 2.1: Corresponding velocities (equilibrium and physical) and force terms (for SRT collision
operator) for each of the forcing schemes (from [91])

2.3.3. Multirange model

In nature it is common to observe both a strong and weak force in fluid particle interactions. The
original SCMP-SC model only takes into account the attractive forces. While this allows for the
separations of the two phases and formation of the interface, the model faces significant challenges
for simulating multi-droplet scenarios [95]. This problem is specific to SCMP-SC as for MCMP-SC no
unphysical mass transfer was reported. This problem can be addressed by adding a repulsive force.
Sbragaglia’s work [88] is one of the defining papers regarding this topic but this deals primarily
with spatial discretization of the interparticular force. A few studies [96, 97] succeeded in modeling
multi-droplet simulations using multirange model with SCMP-SC featuring attractive and repulsive
forces. Thus using the latter formulation we obtain that the total fluid-fluid interparticle force can
be sub-divided as follows:

F p = F p,attract + F p,repel (2.86)

where the attractive force (G1 < 0) at location η is given as:

F p,attract(η) = −G1ψ(η)
∑
i

ϑi=η+∆tei∈Df

|ϑi−η|≤
√

2

w1,iψ(ϑi)ei (2.87)

and the repulsive force (G2 > 0) at location η is obtained as:

F p,repel(η) = −G2ψ(η)
∑
i

ϑi=η+∆tei∈Df

|ϑi−η|≤ 2
√

2

w2,iψ(ϑi)ei (2.88)

where G1 and G2 are the corresponding interaction strengths for each of the force components. The
corresponding forcing weight functions for the attractive component:

w1,i =

1/9 ∀ i ∈ [1,2,3,4]

1/36 ∀ i ∈ [5,6,7,8]
(2.89)
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Figure 2.6: Adjacent nodes for multirange model

Finally the weight function for the repulsive component of force:

w2,i =



4/63 ∀ i ∈ [1,2,3,4]

4/135 ∀ i ∈ [5,6,7,8]

1/180 ∀ i ∈ [9,10,11,12]

2/945 ∀ i ∈ [13,14,15,16,17,18,19,20]

1/15120 ∀ i ∈ [21,22,23,24]

(2.90)

The fig. 2.6 displays the numbering, and the relative impact (by size and darkness of circular glyphs)
in a two layered neighborhood of the location denoted by ‘0’ i.e. the location η.

2.3.4. Dependency of relaxation time (τ) w.r.t fluid density

It is common practice to use the same relaxation time i.e. kinematic viscosity while modeling flows
of compressible and multiphasic nature. It is only in LBM turbulence models that we computed
the final relaxation time locally. For multiphasic flows, this would mean that the dynamic viscosity
ratio (M) equals the density ratio. The results obtained from this arrangement is satisfactory for
flows where viscous effects are negligible. To capture viscous effects it is helpful to have a kinematic
viscosity ratio for vapor and liquid. If the liquid is more viscous (kinematically) than vapor, then
this echos the natural phenomenon. Conversely, from the stability viewpoint it better to keep vapor
kinematic viscosity (νvap) greater than the liquid viscosity (νliq). The latter viewpoint is applicable
only in scenarios where viscous effects are negligible. At any rate, we will end up with two relax-
ation times τliq and τvap for liquid and vapor respectively. Now due to diffused interface we have a
continuum of densities and hence the final relaxation time at η is interpolated as:

τ(η) = τliq + (τvap − τliq)
ρ(η)− ρliq

ρvap − ρliq
(2.91)
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2.3.5. Higher order discretization of pseudopotential (ψ)

An alternative method [98], suggests a modification of the pseudopotential such that the new con-
tinuous form of the interparticular force is given as:

F p = −βGψ∇rψ −
1− β

2
G∇rψ2 (2.92)

where β is a weighting factor as selected in [81]. Hence the modified interparticular force in the
discretized form is given as:

F p(η) = −G
∑
i

ϑi=η+∆tei∈Df

|ϑi−η|≤
√

2

wfr,i

[
βψ(η)ψ(ϑi) +

1− β
2

ψ2(ϑi)
]
ei (2.93)

The higher order discretization increases overall the stability of the simulation by reducing the spu-
rious current. Thus allows for operating over a wider temperature range. Section 2.4.2.a gives us in-
sight of the relative performance of multirange and higher-order-discretization-of-pseudopotential
models.

2.3.6. Total force

In the context of this thesis, the effective force or the external force (FT) is the amalgamation of
body forces (F body), fluid-fluid interaction forces (F p) and fluid-solid interaction forces (F s). Thus,
the total force on a node (as shown in fig. 2.5) can be given as:

FT = F body + F p + F s (2.94)

It is this effective force which is later incorporated into the LBM formulation via forcing schemes (as
previously mentioned in section 2.3.2).

2.3.6.a. Gravitational forces

Body forces (like gravity) on the fluid node are also considered while finding the total force acting
on the fluid. Gravitational force is defined as:

F gr = ggrρ (2.95)

To amplify the buoyant forces, one could imagine that the gravitational pull would be negligible for
the lighter/vapor phase. This is accomplished by using the formulation

F gr = ggr(ρ − ρvap) (2.96)

for gravitational force.

2.3.6.b. Wettability for SCMP-SC

Similarly, the formulation used for simulating fluid-solid interaction, i.e., adhesion for the ith direc-
tion is given by:

F s,i(η) = −wfr,iGadψ(η)ei (2.97)

where wfr,i is the same weight function as in eq. (2.66), and Gad is the numerical parameter control-
ling adhesion. A different suggestion [99] is that we substitute Gad = Gψ such that the fluid-solid
interaction force on a fluid node η could be given as:

F s(η) = −Gψ(η)
∑
i

ϑi=η+∆tei∈Ds

|ϑi−η|≤
√

2

wfr,iψ(ϑi)ei (2.98)
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whereDs is node in the solid domain. Here the pseudopotential at ϑi at the fluid-solid boundary (Γsf)
is a function of a fictitious density ρw. Hereafter ρw would also be referred to as pseudo-density. The
advantage of this substitution is that we adjust the contact angle between 0◦ and 180◦ by varying
the pseudo-density form ρliq and ρvap. This causes the process to be intuitive rather than varying
arbitrarily the value of Gad.

2.4. Setting up of simulation model

Here we detail the process of choosing different parameter values which are a required for different
simulation cases. Currently the parameter values can be segregated into two groups: values which
are evident before any simulation i.e. a priori and values which are post-processed after benchmark
simulations i.e. a posteriori. This benchmark simulation include the simulation for Laplace law (to
obtain surface tension), contact angle simulation on a flat plate for satisfying the Young equation.
This physical quantities aid in the non-dimensionalization process.

2.4.1. Parameter values fixed a priori

Performance of both the CS and the PR EOS used along with EDM forcing using both ΛBGK and
ΛMRT was compared in [100]. This study concluded that spurious current is generally lower for CS
EOS, though greater density ratio was obtained for PR EOS. Thus we chose to utilize CS EOS, EDM
forcing and ΛMRT. The parameters for ΛMRT remains the same unless specified otherwise.

• H1 → This SCMP-SC models [91] uses Carnahan-Starling (CS) EOS where we assign the con-
stant values as G = −1, a = 1, b = 4 and R = 1. Therefore, the critical temperature (Tc) is
0.09433 units and the critical pressure (pc) is 0.004416295 units. Also, the EDM forcing
scheme is used along with ΛMRT. Please note that the idea here is not to model a specific
fluid based on the value of constants for CS EOS, rather to model a similar system based on
equating the relevant non-dimensional numbers from the real world and the LBM system.

• H2→ Here in addition to H1, we utilize multirange model for improved spatial discretization
of force with constants g1 = −1.4 and g2 = 0.7.

• H3 → In addition to H1, here we utilize higher order discretization for ∇rψ with a constant
β = 1.2.

• H4 → This model [78, 99] of SCMP-SC is a open source LBM solver (OpenLB) model which
uses eq. (2.72) for pressure, and eq. (2.68) for pseudopotential along with Guo forcing scheme.
Here the value of the constants are ψ0 = 4 and ρ0 = 200 m.u./l.u.2. Now, the densities are ρliq =
524 m.u./l.u.2 and ρvap = 85 m.u./l.u.2 (obtained a posteriori). Here we use the interaction
potential G = −120 and the critical point is represented by an interaction strength of Gc =
−92.5. Also the surface tension for this model is σ = 14.3 units (obtained a posteriori).

• H5 → Again this model [79, 92] of MCMP-SC is an OpenLB model. Here the Guo forcing
scheme is used with the pseudopotential given by ψκ = ρκ. For simulating two immiscible
fluids, we fix Gκκ̄ > 0 and Gκκ = 0. Here the density ratio for the standard model is nearly
unity. For OpenLB solid-fluid interaction is controlled by using Gadh,κ.

• H6→ This model is a clone of H4, with the only differences being that it uses the EDM forcing
scheme and that it was coded in-house.

2.4.2. Parameter values obtained a posteriori

The modeling of the benchmark test are instrumental in defining parameter values which are the
byproduct of the force balance at the mesoscopic scale. This would be evident only after bench-
mark simulations, in other words, we obtain this results/parameter values after simulations. Later
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Nomenclature Model description Source
H1 CS EOS + EDM forcing − [91] In-house
H2 H1 + Multirange model In-house
H3 H1 + Higher order ∇rψ discretization In-house
H4 OpenLB SCMP-SC − [78, 99] + Guo forcing OpenLB
H5 OpenLB MCMP-SC − [79] + Guo forcing OpenLB
H6 [99] + EDM forcing In-house

Table 2.2: Scheme nomenclature for different models

Algorithm 1: General flow of a SCMP-SC algorithm

Input: Physical state: ρ(0) & u(0), fluid-fluid interface along with geometry: D ∈ Df
⋃
Ds and

wettability: ρw ∈ Ds

Initialize f (0)
i = f eq

i ∀ i and compute for the fluid domain (Df).
while (‖ρ(z) − ρ(z−1)‖1 ≥ γc AND k ≤ kmax; where γc is a constant.) do

Compute pressure (p(k)), pseudopotential (ψ(k)) and forces (F (k)
p , F (k)

s , F (k)
body) using

eq. (2.82), eq. (2.69), eq. (2.66), eq. (2.98) and eq. (2.96) respectively
Compute the equilibrium distribution function f eq and perform collision i.e. to solve the
RHS of eq. (2.18)
Perform streaming i.e. the RHS of eq. (2.18) is copied at the LHS of the same equation.
Perform bounceback for walls
Compute for open boundaries and later for ghost nodes.
Update the macroscopic variables like density (ρ(k+1)) and velocity (u(k+1))
if (k mod ς = 0; where ς is an constant.) then

Writing data to files
Storing density at z i.e. ρ(z)

Increment z by 1 i.e. z← z+ 1.
k← k + 1

return Macroscopic parameters like ρ(†), p(†) and u(†)

these parameter values are used for comparing LBM simulation with the real world. Some of the
benchmark simulations are:

2.4.2.a. Coexistence curve

The coexistence curve are obtained from Maxwell’s equations which provides theoretical densities
(stable/equilibrium) densities for liquid and its vapor such that the overall pressure remains con-
sistent across the fluids. The Maxwell’s construction/equation can be stated as [99]:∫ Vm,vap

Vm,liq

p dVm = p0(Vm,vap −Vm,liq) (2.99)

where Vm is the molar volumes, p0 is a constant pressure and p is the pressure defined by the
equation of state. Thus here we find the pressure of the fluids (at one particular temperature) such
that the above eq. (2.99) is validated i.e. the area under the p-V curve is equal to the rectangular area
(as defined by the RHS), hence this is also known as the equal area rule. Thus we recover from the
molar volumes the theoretical densities for one temperature. By repeating this process for different
temperature one recovers the coexistence curve.

Now after obtaining the analytical curve, we utilize this result to validate our model. For the
simulation, a straight/flat vapor-liquid interface with the domain saturation being 50% is modeled.
The domain size here is Nx ×Ny = 201× 201 and all the boundaries are periodic in nature. For the
reduction of the computational time, we initiate the simulation with theoretical/analytical density
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values and a sharp interface. The density is referred from [91]. As the computation progresses, the
diffused interface formation is completed. This is also accompanied by minor fluctuations of density
value (adhering to conservation of mass) until equilibrium values are attained for the particular
configuration. It is these values of densities at t = tf which are then plotted along with the analytical
values. Figure 2.7 (a-b) shows the comparison for between the analytical and numerical density
values for CS EOS for models H1, H2 and H3. It is also observed from these two figures that the
vapor density (ρvap) is sensitive to changes in the model parameters for H2 and H3.

For all for the six sub-figures the curves colored blue represent the results of the model H1. For
model H2 a near fit is observed for g2 = 0.7 and an almost perfect match/fit is observed for H3
where β = 1.2. Another minor observation is that unlike H3, the curves retrieved for H2 exhibit
a deviation in the shape of the curve at lower temperatures. Now, concerning fig. 2.7(c,d) which
plot the spurious currents (which exists primarily in the vicinity of the interface) across different
temperatures, we observe that for the current setup that, H2 performs consistently better having
lower spurious current as compared toH1. On the other hand,H3 registers higher spurious currents
with only few exceptions as compared to H1. This also reflects in the stability of the algorithm as
the maximum density ratio for H3 is just shy of 200, against a maximum density ratio of above 600
for H2. So overall it becomes a practical decision to adopt model H2 for most of the simulations.

2.4.2.b. Surface tension/Laplace law

The simulation consists of a liquid droplet having a fixed radius suspended (i.e. without considering
the gravitational forces) in the vapor or lighter fluid. For a stationary case the surface tension would
balance with the pressure difference between the inside and the outside of the droplet. The relation
between surface tension and pressure difference is provided by Laplace law. This law states that the
pressure difference is inversely proportional to the radius of the droplet (in two dimensions) with
the constant of proportionality being the surface tension itself.

The fig. 2.8.a and the fig. 2.8.b are the simulation results for the case where the liquid droplet
with radius 22 l.u. is placed in domain of size 201 × 201. The domain is periodic on all sides. The
first figure is the velocity profile exhibiting the direction and magnitude of spurious current. For
any multiphase solver we observe the spurious currents primarily at the fluid-fluid interface. These
current have a tendency to influence/adulterate the velocity field and hence care should be taken to
minimize these currents such that its order of magnitude is lower than the fluid flow velocity. The
second figure is a pressure profile through the centerline of the domain, the wild fluctuation as seen
in the profile corresponds to the diffused interface which is not a physical result. Similar results
have been obtained by [93] and is to be the feature of the model. This . The pressure difference (∆p)
is calculated by considering the pressures at the midpoint of the centerline and at a point in the
bulk of the surrounding phase. fig. 2.8.c depicts that the surface tension can be found by obtaining
the slope for a plot of ∆p values against the inverse of the corresponding droplet radius value. The
surface tension (σ ) for this scheme is 5.59× 10−3 units.

2.4.2.c. Contact angle simulations for SCMP-SC

Here the case to be simulated is a liquid drop over a surface. the wettability of a surface depends
upon the balance of the adhesive forces (between the solid and liquid particles) and the cohesive
forces (in the liquid particles itself). the wetting of the surface can be measured in terms of the
contact angle (θ) formed by the liquid droplet on the surface at the vapor-liquid-solid interface.
when cohesive force decreases and is less than adhesive force the contact angle is less 90◦ and it
tends to 0◦ and such a surface (w.r.t water) is known as hydrophilic surface. the vice-versa is also
true, thus as the adhesion force decreases contact angle goes above 90◦ and tends to 180◦ and such
a surface (w.r.t water) is known as hydrophobic surface.

Figure 2.9 depicts eight cases of observed contact angle of simulation with halfway BB (HBB).
The domain sizes for these simulations were Nx ×Ny = 301 × 101. For this simulations the domain
is periodic on the east and the west boundaries but having wall on the top and the bottom. The
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Figure 2.7: Coexistence curve for Carnahan-Starling EOS − simulating flat interface. (a), (c) and
(d) are the coexistence curve, maximum absolute spurious current and density ratio respectively
for Multirange model (H2). Similarly (b), (d) and (f) are the coexistence curve, maximum absolute
spurious current and density ratio respectively for higher order ψ discretization (H3)
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Figure 2.8: Suspended Droplet for Laplace law (T /Tc = 0.825, H1)

initialization of liquid as a semicircle is on the bottom wall at the center of the domain. The effect
of gravity is minimal for this simulations with ggr = 10−7. As mentioned before, ρw is adjusted be-
tween ρvap (i.e. 180◦) and ρliq (i.e. 0◦) to achieve required contact angle. The contact angles were
measured using the contact angle plugin of ImageJ software. Figure 2.10 plots the variation of θ

versus normalized density
(
ρ∗w =

ρw − ρvap

ρliq − ρvap

)
. The nature of this model is such that studying the be-

havior of a liquid droplet on a surface with varying adhesion strength is possible with relative ease.
Figure 2.10 shows the correlation between the static contact angle and pseudo-density of the wall.
A linear correlation is observed across models (H1, H2 and H3) and across different temperatures
with a deviation in slope observed for T /Tc = 0.95.
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Figure 2.9: Contact angles for T /Tc = 0.825. (H2)
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Figure 2.10: Contact angle (θ = θstat) for different ρ∗w values at different temperatures.

From the next section onward, we perform validation studies for the SCMP-SC LBM solver so as
to strengthen our case for utilization later in the optimization model/algorithm.

2.5. Wettability gradient surface (WGS)

A surface with variable wettability has been observed to propel/deform a droplet. Such surfaces are
also known as wettability gradient surfaces (WGS). Figure 2.11 depicts the motion of a droplet under
the influence of the linear wettability gradient. The streamlines are colored according to velocity
intensity. Since the domain is periodic with a layer of solid nodes for modeling a flat surface/plate;
the vapor is observed forming a boundary layer on both sides of the plate. Also at Ilbm = 46000
t.s., we observe vortices in the droplet which are spurious currents in the proximity of an interface.
These numerical artifacts seldom affect the phenomenon under consideration. Figure 2.13 illustrates
motion of droplets on plates having wettability gradients of different form. Here is domain size is
Nx ×Ny = 601 × 101 with a plate length (L) of 580 l.u. and L/D ratio of 7.25. The gradient of
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2.5. Wettability gradient surface (WGS)

wettability only spans half the length of this plate. This section is a precursor for the chapter 4,
which deals with the question of the optimum form i.e. distribution of the wettability gradient. A
detailed discussion on the topic is availed therein. The following section 2.5.1, is used for validation
of LBM for modeling droplet motion on a horizontal surface.

Moving Droplet: 5000 t.s.

(a) Ilbm = 5000 t.s.

Moving Droplet: 8000 t.s.

(b) Ilbm = 8000 t.s.Moving Droplet: 11000 t.s.

(c) Ilbm = 11000 t.s.

Moving Droplet: 21000 t.s.

(d) Ilbm = 21000 t.s.Moving Droplet: 32000 t.s.

(e) Ilbm = 32000 t.s.

Moving Droplet: 46000 t.s.

(f) Ilbm = 46000 t.s.
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Figure 2.11: Droplet movement due to linear density gradient for T /Tc = 0.825. (H2)
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Figure 2.12: Rate of change of wettability for droplet movement (fig. 2.13) for T /Tc = 0.75
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Hydrophilic wettability Gradient of wettability
t = 0 t.s.

Moving Droplet: 1000 t.s.

Ilbm = 1000 t.s.
Moving Droplet: 6000 t.s.
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Moving Droplet: 11000 t.s.
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Figure 2.13: Comparative droplet movement for linear and quadratic (convex and concave) wetta-
bility gradient for T /Tc = 0.75. (H2). Refer fig. 2.12.
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2.5.1. Asymptotic velocity of droplet
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Figure 2.14: (a)Velocity approaches asymptotic values for low intensity gradients. (b)Correlation
between asymptotic velocity i.e. migration velocity (V mig) and intensity of the wettability gradient
on a WGS (at T /Tc = 0.875). Using model H1

Generally, as a droplet is propelled on a WGS, its velocity (udrop) varies in accordance with the local
gradient of wettability (under the belly of the droplet). For wettability gradient of low intensity,
udrop approaches an asymptotic value, i.e. a constant droplet velocity is observed for significant
duration of the droplet journey. This is also known as migration velocity (umig) of the droplet and is
expressed as [1, 101]:

umig = αv
σh0

νliqρliq

(
dcos(θstat)

drx

)
(2.100)

where h0 is the initial height of the droplet and αv is the constant of proportionality. Figure 2.14a
depicts the velocity of the droplet for low intensity gradients, after the initial fluctuation the velocity
reaches an asymptotic value before peaking finally as the leading edge of the droplet touches the
edge of the plate. Now it is observed [101] that the numerically obtained migration velocity (V mig) is
linearly proportional to the intensity of the wettability gradient. Please note the difference between
two quantities V mig and umig; where the former quantity is numerically obtained the later quantity
is analytically defined. For a simulation on the small plate (i.e. domain size isNx×Ny = 276×101 and
length of plate (L) is 256 l.u.), the droplet size is such that L/D = 4.51, while the surface tension of the
liquid is σ = 0.003. The Bond number of the simulation is Bo= 2ggrD

2∆ρ/(4σ ) = 0.018294 with the
corresponding density ratio being ρliq/ρvap = 7.35 at temperature T /Tc = 0.875, the forward problem
successfully reproduces the linearity for hydrophilic wettability distributions, as shown in fig. 2.14b
(all values in fig. 2.14 are mentioned in LBM units). Also the constant of proportionality αv = 0.28
was recovered for hydrophilic wettability distributions against an αv = 0.33 obtained in [1]. As
mentioned before we will utilize the wettability gradient surface as subject of our optimization
studies.

2.6. Capillary tube

The capillary tube simulations can be considered to be an important precursor to simulating flow
in an unsaturated porous media. This is because similar mechanisms are at work dictating the
steady and dynamic behavior of fluids for both these systems. When modeling a real world case
using LBM, the parameters are selected such that relevant non-dimensional numbers (like for e.g.
Reynolds number, Bond number, capillary number, Weber number and etc.) of both the real world
and LBM flow systems are the same. Thus rather than simulating/modeling a real world fluids like
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air, water an equivalent flow is modeled. For this simulation, if the effect of gravity is required to
be incorporated its strength can be determined by using the Bond number correlation. In other
words this correlation is utilized for determining the appropriate gravitational strength/constant
for a particular set of magnitudes of radius (R), contact angle (θ) and surface tension (σ ) such that a
similar system is obtained. The Bond number (Bo) is given as:

Bo =
2(ρliq − ρvap)R2ggr

σ cosθ2 (2.101)

Now the Laplace law can be given as: ∆p = σ cosθ/R and the hydrostatic pressure difference between
top and bottom of a column of incompressible liquid is given as: ∆p = ∆ρhg. Equating both relations
we obtain:

h =
σ cosθ

(ρliq − ρvap)Rggr
(2.102)

From eq. (2.101) and eq. (2.102), it follows that the bond number for this case can be given as

Bo = 2
R

hcosθ
(2.103)

For e.g. a water-air system having a slit/capillary of radius 0.001 m, also for the tube we have a
wetting surface with a contact angle θreal = 0◦, we know that ρliq = 103 kg/m3, ρvap ≈ 1 kg/m3,
with a surface tension of σ = 0.07213 N/m. Using eq. (2.102) and eq. (2.103), the height of capillary
rise for the real world is calculated to be 0.00736 m, and the corresponding Bond number is Bo =
2/7.36. Similarly for (the LBM system) a capillary radius of 20 l.u., the gravity constant is estimated
to be 3.l6×10−6 units. It is to be noted that unlike the real world simulation where we have a
superhydrophilic capillary tube surfaces (i.e. completely wetting surface), for the LBM simulation
the inner surfaces of the capillary are partially wetting (where θ = 48◦), this detail is captured by
taking into account the contact angle for the Bond number formulation. This would also mean
that the shape of the meniscus (in the LBM simulation) would differ from the real world. Now
for θ = 48◦ at T /Tc = 0.825 (where ρliq = 0.293 units, ρvap = 0.02343 units and surface tension is
σ = 0.0056 units), we estimate the capillary height (h) to be 221 l.u..

For H2, the domain size for simulation is Nx ×Ny = 1001 × 500, with periodic and wall BC.
Due to the periodic boundary condition, if the wettability of the capillary tube is the same on the
outer and inner sides of the tube or rather slit (due to the 2D nature of the simulation), then the
simulation is equivalent of having two capillary tubes/slits (one having actual tube diameter and
the other having a very large diameter being bounded by the outer sides of the tube/slit). Thus, we
have contributions of competing capillary tube as illustrated by fig. 2.15a. To reduce the influence
of the outer tube, we fix the wettability of the outermost layer of the tube to be almost 90◦ but
slight leaning on the hydrophilic side. Also here the kinematic viscosities are the same for both the
phase i.e. νliq = νvap = 0.1666 units, in other words the dynamic viscosity ratio here would equal the
density ratio. After simulation we obtain the height of the column to be 255 l.u., where a 15% error
is obtained due to the compressibility of the vapor phase [68]. As compression of a viscous fluid is
more tedious, to test the hypothesis (of the compressibility of the vapor) we increase the viscosity
of the vapor such that νvap = 140

100νliq = 0.23324 units. Here eq. (2.91) is used for defining the local
relaxation time. The column height obtained after simulation is 232 l.u., which represents a 5%
error. The model also captures the dynamics of the rise of the capillary column. As the capillary
tube is placed in a wetting fluid (i.e. the liquid) it is propelled to rise by the capillary forces of the
tube. As the height of the column increases the gravity provides the resistance to the increase in
the column height. The column height is stabilized when both the driving and resisting force are
balanced. We divulge into the details later in the following subsections.

2.6.1. Washburn without gravity

In August 1920, Edward W. Washburn, submits a seminal paper [102] discussing the liquid pen-
etration in capillaries and porous media. The Washburn equation describes the dynamics at the
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Figure 2.15: (a)Capillary simulation domain, final interface with the influence of two capillary; (b)
Height of the column, after adjusting vapor viscosity. (T /Tc = 0.825, H2)
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Figure 2.16: Simulation domain for Washburn validation

capillary interface/front. Here, after gravity is neglected [103], the equation is written as:

d
dt

[
rx

drx
dt

]
=

2σ cosθ
ρliqd

−
12νliqrx
d2

[
drx
dt

]
(2.104)

where d is distance between the two plates, L is the maximum length of travel possible in the capil-
lary i.e. the length/height of the capillary tube. For a system where the density ratio is not huge, the
influence of the lighter phase cannot be neglected and Washburn equation can be solved to obtain
[103]:

(ρvap(L− rx) + ρliqrx)r̈x + (ρliq − ρvap)(ṙx)2 =
2σ cosθ

d
− 12ṙx
d2 (rxµliq +µvap(L− rx)) (2.105)

If we neglect gravity, inertial forces and vapor viscosity then: [2, 103]:

dσcos(θ) = 6rxνρ
drx
dt

(2.106)

After integration we obtain:
dσcos(θ)

3νρ
(t − 0) = r2

x (t)− r2
x (0) (2.107)

Thus rearranging eq. (2.107) we obtain rx(t) as:

rx(t) =

√
dσcos(θ)

3νρ
t + r2

x (0) (2.108)
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Figure 2.17: Front evolution for Washburn test case when ρliq/ρvap = 12 and νvap/νliq = 1.4 (T /Tc =
0.825)(H2)

ForH2, the simulation domain is illustrated by fig. 2.16, with a domain size ofNx×Ny = 401×51,
having a distance between parallel plates of (d = 41 l.u.). Both the analytical equation i.e. eq. (2.105)
and eq. (2.108) are used for comparison with the numerical results as shown in fig. 2.17. Here the
gravitational constant is ggr = 0, the liquid kinematic viscosity νliq = 0.1666 units, while again the
vapor viscosity is given as νvap = 140

100νliq. For T /Tc = 0.825, the surface tension is σ = 5.6 × 10−3.
Now eq. (2.108), predicts a sudden propagation of the interface as it comes under the influence
of the capillary forces of the tube. On the other hand, eq. (2.105) predicts a latency and hence
a smaller velocity of the interface/front. As the density ratio is of the order of O(101), the viscous
terms of the vapor when taken into account predicts a lower velocity. The progression of front in the
simulation is delayed as an interface along with meniscus is formed. After which the front marches
faster than eq. (2.105) (i.e. curve labeled as analytical washburn) to catch on to eq. (2.108) (i.e. curve
labeled as analytical without inertia). This explanation is also supported by the graph indicating the
interface velocity. For the numerical velocity, due to discretization sharp fluctuations are observed,
two attempts have been made to mitigate an eyesore: the former consists of smoothing the numerical
data using a moving point average and the latter consists of fitting a curve which could be latter used
for velocity calculation. And we observe a reasonable convergence among these curves.

2.6.2. Inertial capillarity

Another interesting phenomenon observed by Washburn was that (as seen in fig. 2.17b), the velocity
peaks when liquid is introduced to the capillary tube (especially with thin edges) even under the
influence of gravity. This inertial component would dissipate during the initial rise of the column.
It is possible to observe this inertial motion (in form of capillary oscillations) of the liquid column as
shown by Quéré [104], if the viscosity of the liquid is low and the final column height is sufficiently
small. More specifically, this behavior is predicted to occur when [104]:

µliq <<
ggrρ

3/2
liq R

5/2

σ1/2
(2.109)

For H3, we utilize the same parameters as the normal capillary tube i.e. Nx ×Ny = 1001 × 500,
ggr = 3.16 × 10−6 units, θstat = 48◦, ρliq = 0.293 units and ρliq = 0.02343 units. Here the kinematic
viscosity of the liquid is decreased where νliq = 0.0555 units and the vapor viscosity is given as
νvap = 140

100νliq. Only the tube diameter or slit width (d) is varied from 80 l.u. to 200 l.u.. Figure 2.18
depicts interfacial position evolution corresponding to tube diameter, where height (h∗) is normal-
ized w.r.t Jurin height (i.e. final height of liquid in a capillary column as t→∞). As is evident from
fig. 2.18, with increase in the radius of the capillary tube one observes an increase in the number of
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Figure 2.18: Non-linear fluctuations in the height of the liquid column in capillary tube due to
inertia(T /Tc = 0.825, model H3)

peaks (primary, secondary, tertiary and so on) with a simultaneous increase in the amplitude of the
oscillations. Also as explained before the initial decrease in the column height is due to simultane-
ous interface and meniscus formation. This simulation is only possible due to the transient nature
of the LBM solver.

2.7. Open boundaries

When we apply the open boundaries for the multiphase simulation the primary challenge lies in
the boundary permitting the passage of the interface. The following simulations reveal the difficul-
ties of incorporating open boundaries for SCMP-SC. Generally the inlet only injects fluid of a single
phase, thereby making its implementation easy. Conversely, the outlet will during the course of the
simulation encounter an interface and this causes unphysical results (Here unphysical effects/results
refers to the deviation of the model results apart from the natural physical phenomenon. This might
be caused due to the limitation of the model/algorithms, errors in code implementation and other-
wise). Recently, at least two study [3] and [2] has been successful in incorporating these boundaries
(the former velocity inlet and convective outlet and the latter uses Neumann outlet) for SCMP-SC
which was coupled to thermal equations for studying phase change (i.e. boiling). Unfortunately,
this success could not be replicated as of writing this thesis. To verify our results we also cross check
our results using an open source lattice Boltzmann software (OpenLB) [105, 106]. It is a C++ pro-
gram/library which for modeling LBM model for different case like: interfacial flows, heat transfer,
turbulence, particle transport and so no. Later we encapsulate the comparisons of the results (i.e.
those from OpenLB and the code developed in-house) in tables.

2.7.1. Normal tube

The normal tube simulation consists of a thin vertical tube with the inlet at top (north) and the outlet
at the bottom (south). Flow through a tube can be categorized into two types which are drainage
and imbibition. For drainage the non-wetting fluid (NWF) is invading (or is being injected into) a
domain saturated by a wetting fluid (WF). Conversely, for imbibition the wetting fluid is invading a
domain saturated by a non-wetting fluid. Unless specified otherwise the velocity and the pressure
BC employs the ZH BC. Also no gravitational forces are applied for this study.
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Chapter 2. Interfacial flows with LBM

2.7.1.a. Velocity inlet - Neumann outlet (VI-BB-NO)

For H1, we simulate on a domain size of Nx ×Ny = 90 × 301 and the tube radius is 30 l.u.. The
initial length of the liquid column is 30 l.u. (starting from the velocity inlet (VI) to the liquid-
vapor interface). It is to be noted that at time t = 0, we only initialize the VI with the constant
inlet velocity. Simultaneously the velocity of all fluids farther in the domain are initialized to null
velocity (this manner of initialization has been employed by default for simulations with velocity
inlets, unless otherwise specified). This means that (in this case) the liquid injected will push the
rest of the available liquid column. For a wide range of input velocities (uy,in) ranging from 10−1 to
10−7l.u./t.s., we obtain the corresponding saturation (S ) profiles. The saturation profiles are then
plotted against normalized time. These saturation profiles are linear, as can be deciphered from
table 2.4 and fig. 2.19a. Here non-dimensional or normalized time is defined as t/ t̃, which is similar

to I ∗lbm. The normalization is done using theoretical time which is defined as t̃ =
∆(ry)

uy,in
. For liquid

velocities such that, uy,in ≤ 10−4 l.u./t.s., stalling is observed in the latter part of the simulation, as
the liquid interface reaches the vicinity of Neumann outlet.

To elaborate we plot fig. 2.19b which depicts the velocity field for uy = 10−6l.u./t.s. and the
fig. 2.19c which is the corresponding centerline velocity at Ilbm = 2 × 107t.s.. The velocity field
is analyzed by dividing it into four regions. The region I includes the velocity inlet and up to
20 nodes below, where acceleration of the liquid (up to 10−4l.u./t.s.) from the corners of the VI is
observed. Also in this region the liquid dissipates this additional energy as the liquid proceeds
into the next region. The region II is the core of the liquid body and it moves with the velocity
of 1.35 × 10−6l.u./t.s.. This slight increase in velocity can be attributed to the development of the
boundary layer. Also, we observe that region III the order of magnitude of spurious current is
10−5 l.u./t.s.. Though this is an order of magnitude greater than the inlet velocity it has practically
no influence as observed previously in fig. 2.19a. In the region IV, non-physical vapor velocity
predominately observed adjacent to the interfacial region and nearly null velocity (≈ 10−10) at the
outlet. The few irregularities observed are summarized as:

1. Initial reverse flow or rather evaporation (numerical artifact) is observed (especially < 10−3 l.u./t.s.)
and this has been linked to the presence of the outlet.

2. Compressibility of liquid is though to be dominant for lower velocities (< 10−3 l.u./t.s.) hence
the liquid interface is halted ahead of the outlet.

3. Effect of the boundary conditions on the interface shape and hence the saturation profile (as
the interface touches the boundary).

Conversely, for the same configuration, when vapor is pushing/invading liquid being the non-
wetting phase i.e. draining the liquid, the initial vapor domain/column collapses. Now for im-
bibition in tube we require the pressure inlet, currently this lies beyond the scope of the thesis. At
any rate this configuration i.e. velocity inlet-bounceback-Neumann outlet (VI-BB-NO), allows for
injection of liquid i.e. drainage, for injection of vapor, the vapor column collapses, refer table 2.6.
Now to compare this result with OpenLB library is not possible as the Neumann BC is not presently
available in OpenLB.

2.7.1.b. Velocity inlet - pressure outlet (VI-BB-PO)

The major issue with having a pressure boundary as an outlet boundary, is that for LBM the pressure
of the fluid is linked invariably to its density. Thus a prescription of pressure at the outlet boundary
will inadvertently arrest the flow of fluids without the prescribed density (in the multiphase sce-
nario). ForH4, while modeling the drainage test case, the domain size is given asNx×Ny = 32×300,
where the tube radius is 30 l.u.. Running the simulation for different input velocity (uy,in) ranging
from 10−1 l.u./t.s. to 10−5 l.u./t.s. the meniscus displacement and thereby the liquid saturation, also
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Figure 2.19: Drainage in normal tube; VI-BB-NO configuration (H1)
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|uy | (t̃ = ∆ry / |uy |)(t.s.) Actual time(t.s.)
10−1 2.7× 103 2.4× 10−3

10−2 2.7× 104 2.5× 104

10−3 2.7× 105 2.65× 10−5

10−4 2.7× 106 −
10−5 2.7× 107 −

Table 2.3: LBM time for complete saturation (where t̃ is theoretical time)– Drainage in the normal
tube (VI-BB-PO). (H4)

|uy | (t̃ = ∆ry / |uy |)(t.s.) Actual time(t.s.)
10−1 2.7× 10−3 2.4× 10−3

10−2 2.7× 10−4 2.5× 10−4

10−3 2.7× 10−5 2.5× 10−5

10−4 2.7× 10−6 2.52× 10−6

10−5 2.7× 10−7 −
10−6 2.7× 10−8 −
10−7 2.7× 10−9 −

Table 2.4: LBM time for complete saturation – Drainage in the normal tube (VI-BB-NO). (H1)

the mass conservation are obtained during drainage. Figure 2.21 indicates the conservation of mass
for case with uy,in = 10−3 l.u./t.s.. The conservation of mass is defined as difference in flux (∆Q)

equals the change in mass of a system over time (
∑
D

∆ρ
∆t ). From the graph it is evident that mass is

not conserved at the initial phase of the simulation and also finally when the interface reaches the
outlet boundary. Figure 2.20 shows the evolution of liquid saturation (non-wetting fluid). It can
be seen that for velocities higher than 10−4 l.u./t.s. the liquid will completely fill the tube, but as
the inlet velocity decrease the liquid movement will get slower so that for an inlet velocity of 10−4

l.u./t.s. the liquid saturation will only reach 40 %.

Now, we notice especially for the inlet velocity of 10−5 l.u./t.s. the initial liquid domain will
collapse although at the beginning of the simulation the pressure at the inlet is higher than the
outlet pressure. For uy,in = 10−1 l.u./t.s., the saturation curve is not linear. In fact for this case we
observe a strong fluctuation of the inlet pressure, which is not the case for lower velocities where it
remains constant at Pin = 25.6 units. As for the previous configuration, we compare the actual time
(t) to reach complete tube saturation with the theoretical time to form non-dimensional time, (see
table 2.3). Here the meniscus movement is slightly faster than the theoretical speed. It is observed
that the that the liquid velocity is slightly higher than the input velocity. Also the vapor and liquid
phase are not moving at the same velocity. On the other hand, when we perform the drainage test
case with vapor pushing liquid (vapor is the non-wetting phase) the initial vapor domain/column
will collapse.
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Figure 2.21: Mass conservation for normal tube (mass conservation(%) v/s Ilbm); uy,in = 10−3

l.u./t.s.. (VI-BB-PO) (H4)

2.7.1.c. Pressure inlet - pressure outlet (PI-BB-PO)

For H4, and the same geometry as in section 2.7.1.b with different boundary conditions. Here we
have pressure boundaries at the north and the south. The pressure boundary in LBM is implemented
by fixing the density at the boundary. Discretionary values are attributed as the density at the
inlet/outlet nodes, and by tuning the value of this density we control the value of the pressure and
possibly the flow direction. Two cases are deliberated on:

1. When liquid pushes vapor: The liquid is present at the inlet where the pressure is fixed by
setting pin = p(ρliq) and the outlet pressure (vapor outlet) will be modified i.e. pout = p(ρvap +
k). Here, the liquid is the NWF. Thus if k = 0, then both the liquid and the vapor pressure
satisfies the Young-Laplace rule, in other words, the interface would proceed to south in the
direction of the outlet. The tube will be completely filled as the interface reaches the outlet
at Ilbm = 21 × 103 t.s.. If k = 6.6

100ρavg, (where ρavg = 0.5(ρvap + ρliq)), such that pin < pout, then
the interface would still proceed towards southern outlet. The tube would be saturated within
Ilbm = 14 × 103 t.s., which was unexpected. Now if k = − 6.6

100ρavg, such that pin > pout, then
the interface would proceed towards southwards as excepted. Only exception being that here
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OpenLB

LBM boundaries
Drainage in tube Imbibition in tube

ℵ > 1 ℵ < 1 ℵ < 1 ℵ > 1
VI-BB-NO − − − −
VI-BB-PO Pass. Good sat-

uration but high
vapour velocity

Fail. Vapour col-
umn collapse

Pass. Not of in-
terest

Fail. Not of inter-
est

PI-BB-PO Pass. Liquid
invades by de-
fault [Pin(ρliq) >
Pout(ρvap)]. For
Pin(ρliq +k) > Pout
this behavior is
reproduced.

Fail. Vapor front
withdraws by
default[Pin(ρvap) <
Pout(ρliq)]. For
[Pin(ρvap + k) >
Pout] this be-
havior is re-
produced. For
[Pin(ρvap − k) <
Pout] the vapor
invades.

Pass. (similar to
Capillary)

Pass? For
[Pin(ρliq − k) <
Pout] the liquid
front withdraws.

Periodic-BB Not possible Not possible Pass. (Capillary) Pass
Here, ℵ = ρnwet

ρwet
and k > 0 such that k causes significant change in pressure value.

VI : velocity inlet (Zou and He) PI/PO : pressure inlet/outlet (Zou and He)
BB : bounceback for walls NO : Neumann outlet CO : convective outlet

Table 2.5: Possibilities with OpenLB SCMP-SC– H4

the interface velocity is the smallest with a stall, preventing complete filling of the tube.The
evolution of the saturation curve for these three k values is shown on fig. 2.22a.

2. When vapor pushes liquid: Now the pressure of the vapor boundary will be fixed as pin =
p(ρvap) and the liquid boundary pressure will be modified i.e. pout = p(ρliq + k). Here the
liquid is the WF. Now if k = 0, then both the liquid and the vapor pressures satisfies the
Young-Laplace rule, however the initial vapor column collapses very quickly i.e. the vapor
front withdraws back to the PI. When k = 6.6

100ρavg, then pin < pout i.e. again the vapor domain
will quickly collapse. Figure 2.22b shows that at the beginning of the simulation the mass is
not conserved so this configuration cannot be adopted later for our study. Now if k = − 6.6

100ρavg,
such that pin > pout then the vapor front moves in the direction of the southern PO. The velocity
of the vapor front increases as it transverses towards the PO. A complete drainage is achieved
at Ilbm = 34× 103 t.s..The corresponding mass conservation plot fig. 2.22c.

As these numerical experiments had shown, SCMP-SC is not the best tool to study imbibition.
The code is very sensitive to the WF/NWF configuration and for the pressure condition at the bound-
aries. For liquid pushing vapor the meniscus seems to move in the expected direction, but when
vapor pushes liquid or when modifying pressure at the boundaries, we retrieve unexpected results.
A possible explanation could be the phase change phenomenon observed at the interface (without
thermal excitation, other words this is a numerical artifact). Please note that it is possible to have a
change in phase in the pseudopotential model, but this is the case only when non-equilibrium val-
ues are proposed for either or all of the phases/components/fluids. This readjusting of the density
values is usually accomplished only in the beginning of the simulation. For our case we already fed
the code the equilibrium values of the density and also the phase change we talk of only happens in
the presence of an outlet. Meanwhile, an explanation for vapor column collapsing would be that
the vapor isn’t developing enough momentum to push liquid (due to compressibility). Thus, now
we have a better idea of what can be expected with SCMP-SC for drainage and also when simulating
imbibition in a porous media with open boundaries.
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Figure 2.22: (a) Normalized saturation profile; (b) Mass conservation for vapor pushing liquid–
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H4 model)
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In-house CUDA code

LBM boundaries
Drainage in tube Imbibition in tube

ℵ > 1 ℵ < 1 ℵ < 1 ℵ > 1
VI-BB-NO Pass. Good sat-

uration but high
vapour velocity

Fail. Vapour col-
umn collapses

Pass. Not of in-
terest

Fail. Not of inter-
est

VI-BB-PO Pass. Good sat-
uration but high
vapour velocity

Fail Pass. Not of in-
terest

Fail. Not of inter-
est

PI-BB-PO Work in progress Work in progress Work in progress Work in progress
Periodic-BB Not possible Not possible Pass. (Capillary) Pass

Here, ℵ = ρnw
ρw

and k > 0 such that k causes significant change in pressure value.

VI : velocity inlet (Zou and He) PI/PO : pressure inlet/outlet (Zou and He)
BB : bounceback for walls NO : Neumann outlet CO : convective outlet

Table 2.6: Possibilities with in-house SCMP LBM solver – H1

2.7.2. Drop channel flow

Here we take a closer look at the effects of the Neumann outlet boundary on the interface (in a mul-
tiphase simulation). Hereafter unless specified otherwise the second order discretization is used for
Neumann outlet. In this simulation we push a droplet towards the outlet. This is also a bench-
mark case used for testing different multiphase outlet behaviors [58]. For H2, the domain size is
Nx ×Ny = 91 × 301, where the tube diameter is 81 l.u.. The (Ladd’s) VI lies in the north and the
NO lies in the south. The initial droplet position was at the one third of the total length from the
south. With an inlet velocity of 10−2 l.u./t.s., the vapor is injected pushing the droplet. Certain
abnormalities are observed during the course of the simulation fig. 2.23:

1. A larger velocity is observed in the vapor ahead of droplet (i.e. towards the outlet) rather than
in the rear. This could be partly due to initial pressure waves (which is commonly observed)
which could influence the NO.

2. As soon as the droplet partially crosses the outlet boundary, this creates pressure waves (i.e.
density fluctuations) also the droplet cannot fully travel through the outlet.

3. Reverse flow/filling is obtained at the outlet with an increase in saturation in spite of the vapor
flux into the domain. This again hints to the compressibility of the vapor phase.

2.7.3. Stepped tube

During an liquid injection into an unsaturated porous media, the liquid and its interface can en-
counter a gradient in the pore diameter either smooth or sudden/sharp. Here we stack pores of
different diameter on top of each other and pass a flow through this circuit. This simulation at-
tempts to capture/understand the pressure fluctuations (at the inlet) when the interface moves to
a larger pore and then a smaller pore. This simple test is interesting as we are able to distinguish
what is the impact of discovering pores of different sizes. Usually in any normal porous media we
observed a cumulative efforts as multiple pore discoveries are made as the liquid front is simultane-
ously introduced to these pores. Here for H2 the domain size is Nx ×Ny = 91× 300 and also having
open boundaries i.e. (Ladd’s) VI and NO boundary conditions. The inlet velocity is 10−4 l.u./t.s.
i.e. Reinlet = 2.4 × 10−3 and log |Ca| = −4.0. Also the viscosity ratio is log |M | = 1.1. We observe from
the fig. 2.24c that as the interface moves into the larger pore initially there is a minor increase (in
pressure) which is followed by a decrease of pressure as the liquid eases into the larger pore. Also,
it can be seen that pinning of liquid to the sides of the tube reduces pressure instantly (which is ob-
served three times as the interface transverses the larger tube). As the interface moves to the smaller
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(a) Ilbm = 100 t.s. (b) Ilbm = 7500 t.s. (c) Ilbm = 34300 t.s. (d) Ilbm = 60000 t.s.

Figure 2.23: Droplet in a channel, model H2 and T /Tc = 0.825

pore the pressure spikes until sufficient pressure is buildup for pore invasion/breakthrough. The
ratio of the diameters from the inlet to the outlet is 2 : 4 : 1. The mass conservation curve for the
stepped tube is depicted in fig. 2.24a. We observe reserve flow or more appropriately evaporation
due to the outlet presence. Also the unphysical effects, as discussed previously are observed as the
liquid interface comes into contact with the Neumann outlet. Thus we ignore the simulation results
before the interface reaches the vicinity of the outlet.

2.7.4. Preferred path

For the previous stepped tube simulation we have looked at the behavior of the liquid as it goes
sequentially through larger and smaller pores. Liquid invading a porous media uses the least re-
sistant path. Often the liquid comes across a better route simultaneously and hence liquid flow
direction/path in a porous media can change real time. This simulation is a proof of this concept.
If we use the pore network model for this simulation then (as explained before), we would only
observe the final steady path but not the transient change. For H2, the domain size is given by
Nx ×Ny = 201 × 301, the ratio of the inlet, channel, larger and smaller pore radii are 4 : 2 : 8 : 1.
Here the model has (Ladd’s) VI and NO boundary conditions. The inlet velocity is 10−5 l.u./t.s.
i.e. Reinlet = 2.4 × 10−3 and log |Ca| = −4.0. Also the viscosity ratio is log |M | = 1.1. Here the liquid
interface comes simultaneously in contact with the larger and shorter pores. After the initial evap-
oration, the interface is such that the channel towards the smaller pore is partially invaded while
the opposing channel (towards the larger pore) is mostly emptied. This is reflected by an initial
decrease in saturation and also a deviation from mass conservation. As we proceed further the in-
terface reaches the smallest pore first (being pinned on to the smaller pore interface) and later as
the interface passes through the top corner of the channel (i.e. a small increase of cross-section of
the pipe) we observe a minor Haines jump. The liquid front again achieves pinning at the smallest
pore entry. As the breakthrough pressure is significant the liquid further invades towards the larger
pore. When the liquid flows into the larger pore, this also cause backflow (i.e. Haines jump) in the
channels. Now the flow is solely towards the larger pore. As discussed previously we again observe
the second minor bump as the liquid enters the larger pore and this can be attributed to the change
of radius of curvature of the interface. We observe reverse flow or more appropriately evaporation
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(c) Inlet pressure (at centerline) and saturation (S ) for
stepped tube.
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Figure 2.24: Stepped tube and preferential pathway simulations, H2 model and T /Tc = 0.825
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2.8. Porous medium

(a) Ilbm = 2000 t.s.
(b) Ilbm = 20000 t.s. (c) Ilbm = 32000 t.s. (d) Ilbm = 114000 t.s.

Figure 2.25: Preferred path – H5

due to the outlet presence. This is also observed in the mass conservation fig. 2.24b where there is
a rapid initial decrease of mass. Also we observe a small fluctuation corresponding to the change
of flow pattern. Later as the interface reaches the Neumann outlet we observe unphysical effects,
hence thereafter the simulation results are ignored.

Here forH5, the NWF is the heavier one (i.e. the liquid), with a static contact angle of θstat = 180◦,
and open boundary conditions used are ZH VI and PO. At the initial time t = 0 the NWF and
WF are at the same height, after which evaporation due to the influence of the outlet boundary
is observed in the initial phase of the simulation. This relation was discovered when (to satisfy
curiosity) the simulation was attempted without an outlet, no evaporation was observed (all this
while keeping other parameters untouched). Thus the evaporation pushes back the NWF in the the
channel towards the large tube (i.e. it remains partially invaded, see fig. 2.25a). After the initial
deviation the NWF starts pushing the WF. As the NWF in the channel towards the small pore did
not experience a significant evaporation, it will reach the smallest pore first (fig. 2.25b). Given that
the liquid pressure is less than the smallest pore breakthrough pressure, the NWF cannot penetrate
the smaller tube (pore) and the pressure will increase (A to B fig. 2.26). Once the NWF reaches the
largest pore on the right side, and knowing that the liquid pressure is higher than the right side
breakthrough pressure, the NWF will exit the channel towards the small pore and be redirected to
enter inside the larger diameter pore/tube and forms a drop (fig. 2.25c). As the diameter of this
drop increase, the pressure will decrease (B to C to D fig. 2.26), until it reaches the corresponding
capillary pressure when the diameter of the drop is equal to the tube diameter(fig. 2.25d).

2.8. Porous medium

Porous media simulations have played an important role in understanding the behavior of different
fluids in wetting and non-wetting pores (having possibly variable cross-section). Also depending
on a few simulation parameters phenomenon such capillary and viscous fingering, Haines jump
amongst others could be explored. Few example of porous media are sponge, GDL, soil, rock
amongst others. Such cases have be modeled for different scenarios, for example: different LBM
models have been used for GDL simulation [107], modeling flow in porous asphalt [2] and carbon
dioxide storage in/of rocks [108]. Now the flow patterns observed when a non-wetting fluid in-
vades a porous media saturated by wetting fluid can be differentiated into different flows regimes
(as shown in fig. 2.27) based on the capillary number and viscosity ratio [109]. The capillary number
(Ca) can be given as:

Ca =
uNWFνNWFρNWF

σcos(θstat)
(2.110)
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Figure 2.26: Preferred path : Pressure variation measured at a point on the centerline and in prox-
imity to the VI – H5

where uNWF and νNWF are mean velocity and kinematic viscosity of the non-wetting invading fluid.
Now, the viscosity ratio (M) is given as:

M =
µNWF

µWF
=
νNWFρNWF

νWFρWF
(2.111)

where µWF is the dynamic viscosity of the wetting fluid.
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Figure 2.27: Unsaturated porous media flow regimes [110] as discovered by Lenormand

Now for the porous media simulation, we use the homogeneous porous media domain from [110]
as shown in fig. 2.31. Here the domain size is Nx ×Ny = 1853× 1045, we have zero gravity, inlet on
the west and the outlet on the east. Here for modeling and comparing answers we use two of our
models H1 and H2, where for the latter model the vapor kinematic viscosity is 40% greater than the
liquid viscosity. Thus the (logarithm of the) dynamic viscosity ratio for H1 is log|M | = 1.1, while
for H2 the value is log|M |=0.9545. The simulation occurs at temperature T /Tc = 0.825 and pore
wall density is ρw = 0.05 units, i.e. the non-dimensional density is ρ∗w = 0.1. For the inlet velocity
(of the non-wetting liquid phase) ux = 10−3 l.u./t.s., we observe the stable displacement regime for
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(a) Ilbm = 104t.s. (b) Ilbm = 29× 104t.s.

(c) Ilbm = 55× 104t.s. (d) Ilbm = 106t.s.

Figure 2.28: Homogeneous porous media simulation(log|Ca| = −2, log(M) = 0.9 and H2).

both the models H1 and H2. Figure 2.28 depicts results for model H2, this is similar to H1 results
and fig. 2.30a plots the inlet pressure at the centerline and the saturation profile. The saturation
profile is linear as expected, the only minor deviation is noticed as the liquid front almost reaches
the end of the porous medium. We also notice a spike in pinlet after 40% of the simulation time
has elapsed, followed by a steeper rate of increase in the pressure. Now when the inlet velocity is
ux = 10−4 l.u./t.s., we have results for model H2. Figure 2.29 depicts the various stages of saturation
for H2 simulation. Also the fig. 2.30b, likewise plots the saturation curve and the inlet pressure at
the centerline. Like before we observe a linear saturation profile except at the final phase of the
simulation. Again we also observe a spike in inlet pressure after 40% of simulation time has elapsed
and this is followed by a steeper rate of increase in the pressure. At this Ca number (log|Ca| = −3)
we are in the crossover region (see fig. 2.27) and further decreasing the velocity would push us into
the capillary fingering region. We began observing capillary fingers for this simulations, though at
the later stage (of the simulation) the liquid front is more or less stably displaced. Also we observe
collapsing of bubbles, when its resolution decreases below a particular value. Comparatively, the
H1 model performs poorly. Up unto this point of writing the thesis, there are certain issues with the
simulation results of H1 using the NBC, which are:

1. Random density fluctuations or rather pressure waves are observed in the region adjacent
to the outlet as highlighted in the fig. 2.31. This fluctuations seem to resonate till liquid is
condensed near the outlet.

2. Initial evaporation/phase change as observed in other open boundary simulation i.e. some of
the liquid is sucked out by the outlet, but a small quantity remains before the inlet injects
additional liquid. The reason for this phenomenon is unknown.

3. Another interesting point observed in most of our porous media simulations, is a strange/unphysical
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(a) Ilbm = 7× 104t.s. (b) Ilbm = 1.21× 106t.s.

(c) Ilbm = 1.81× 106t.s. (d) Ilbm = 2.90× 106t.s.

(e) Ilbm = 3.50× 106t.s. (f) Ilbm = 4.46× 106t.s.

(g) Ilbm = 6.52× 106t.s. (h) Ilbm = 8.01× 106t.s.

(i) Ilbm = 9.99× 106t.s.

Figure 2.29: Homogeneous porous media simulation (log|Ca| = −3, log(M) = 0.9 and H2)
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Figure 2.30: Inlet pressure (at the centerline) and the saturation curve (S ) for interfacial flow in the
homogeneous porous media (H2, T /Tc = 0.825)

Figure 2.31: Density profile for homogeneous porous media (log(|Ca|)= −3.02 and log(M)= 1.077)
(H1 model)(T /Tc = 0.825)

filling/collapse of small vapor bubbles/gaps. Similar observations was made in [111], though
not discussed in the paper it seems evident from the phase distribution images provided. One
possible reason could be the collapse of the vapor bubbles. To illustrate this point a bubble
simulation is performed for a bubble radius below a certain threshold radius value. Density
and pressure are plotted for a point (approximately at the center of the bubble) versus time
as shown in fig. 2.32). As can be observed the density shoots up at a point (in time), as the
collapse is completed. This is followed by minor fluctuations after which only a single phase
exists.

4. Also, stability could not be achieved for simulations with lower capillary numbers where ux =
−10−4 l.u./t.s. for both NBC and CBC-L.
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Figure 2.32: Density and pressure fluctuations at the center of the bubble, during the collapse of a
vapor bubble

2.8.1. Graded porous simulations

This work has been carried out in collaboration with DHBW, Germany. Also excerpts of the work
(carried separately to the thesis) has been presented before at 235th ECS meeting, Dallas, May 2019.
The extent of work of the author of this thesis pertains to use of LBM models to model this porous
media.

Context: The GDL of the fuel cell could be manufactured by a new process i.e. electro-spinning [112]
The given a finer level of control on the pore sizes of the GDL making it possible to have more
compact and continuous structure. Here the porous media is made from hydrophobic material
(θstat = 130◦), which register better performance for the GDL. To better understand this counter-
intuitive behavior both experimental and numerical results were explored. Here the GDL (i.e. a
porous media) has two sections. The section of the porous media with smaller pores and smaller
fiber diameter is injected with water. The latter section is adjacent to the outlet and has larger pores
and larger fiber diameter. The result of the full morphology model predicted a sudden flooding in
the GDL when the interface jumps to the latter section. This is a deviation from experimental results
which display a continuous and a consistent thickness of water as shown in fig. 2.33. In other words,
no sudden flooding is observed but rather a consistent saturation in the latter section of porous me-
dia allowing for a continuous flow circuit (as the liquid passes through the outlet). This discrepancy
(between experimental and numerical results) was due to higher capillary pressure (in the smaller
pores section) being applied as the injection pressure at the entry/breakthrough point into the lat-
ter section. As the morphology model lacks further analysis, this high pressure liquid saturates the
GDL with immediate effect. Thus a transient solver is required for modeling the physics of the fluids
in the porous media, this is where LBM comes into the picture. For LBM simulation a 2D plane was
extracted form the center of the simulation as shown in fig. 2.34.

As highlighted previously due to different unresolved issues (as of writing this thesis) for simula-
tion regarding model H1, we refrain from further discussing the results of the SCMP-SC for porous
media simulation. The MCMP-SC is a veteran of the porous media simulations. For H5, the simu-
lation is performed for log |Ca| = −4.25 and log(M) = 0 on a domain size of Nx ×Ny = 1028 × 1226.
After the initial evaporation, the liquid is gradually injected in the former section (smaller pores
with smaller fiber diameters). The liquid forms finger like structures as it proceeds along different
pathways. As the liquid crosses the entry/breakthrough point (roughly at the center of this plane),
minor redistribution of the fluids (i.e. local saturation change) occurs and is predominantly local in
nature. In other words, the effect of the pressure gradients due to discovery of larger pores and/or
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(a) Experimentally measuring the satu-
ration for both sections

(b) Full morphology model results

Figure 2.33: Discrepancy between experimental and numerical results (Results presented at 235th

ECS meeting, Dallas, May 2019).

Figure 2.34: 2D slice of the initial 3D geometry for Graded porous media

larger porous media is most evident across the length/shape of the liquid finger/stream which passes
through the entry point. This is in contrast to our initial expectation of drying out i.e. a reduction of
saturation of the former section would follow the discovery of the latter section (i.e. larger pores and
larger fiber diameters). Saturation profile is linear as excepted with constant velocity inlet. Here the
outlet boundary used (pressure boundary: pressure is fixed by fixing liquid density of the flow at the
outlet) does not allow for the flow of the liquid (with the other/different density) across the outlet,
and hence we observe flooding in the porous media. Since we are only interested in the simulation
till the first contact with the outlet boundary is established, we ignore the eventual flooding that
comes after.

2.9. Conclusion

This chapters explores theoretically different LBM multiphase models and further in the chapter we
examine the validity of our model in different circumstances. These results will have implications
on the design and setup of our problem when we prepare the optimization tools which is the final
goal of this work. The conclusion can be summarized as:

1. In the view of having a robust and light-weight algorithm for modeling the physics for an
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(a) Ilbm = 105 (b) Ilbm = 5× 105

(c) Ilbm = 8× 105 (d) Ilbm = 10.5× 105

optimizer, we choose SCMP-SC model.

2. The models performs as expected for modeling cases with periodic boundaries and wall bound-
aries i.e. Laplace law, asymptotic velocity of droplet on plate and washburn simulation.

3. For modeling cases with open boundaries, the simulation model performs decently until such
a time when the interface is exposed or arrives at any boundaries. Use of pressure inlet/outlet
should be discouraged for SCMP-SC.

4. For modeling flow in porous media using SCMP-SC, cases in conjunction with open bound-
aries gives fairly unpredictable results (especially for low capillary number (< 10−3) flows).
Meanwhile, MCMP-SC is up to task for such simulations, as it does not suffer from the same
limitations as SCMP-SC.

Hence, for optimization algorithms using SCMP-SC, trustworthy results can be obtained for config-
urations without open boundaries and also for porous media with higher capillary number flows.
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(e) Ilbm = 17× 105 (f) Ilbm = 20× 105

(g) Ilbm = 26.5× 105

Figure 2.35: Saturation profile for phase (Φ)= 2 in graded porous media when log |Ca| = −4.25,
log |M | = 0 (H5)
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The origin of topology optimization is generally traced back to ref.[113] who published their
work in 1988. Their paper was regarding topology optimization applied to structural design. Start-
ing from the initial set of optimization studies (utilizing the topology optimization algorithm) being
applied to mechanical design problems the scope of the studies have now expanded to include [114]
problems in the field of: fluid flows [115], acoustics [116], electro-magnetics [117], optics [118] and
etc. Presently, topology optimization for structural problems have been made available in com-
mercial computational mechanics software like for e.g. COMSOL, Ansys, Altair. The initial study
used the homogenization method [119] where a unit cell is used to represent the shape of the solid
domain. Later different methods [114] were developed for the same purpose like density meth-
ods (both the rational approximation of material properties i.e. RAMP [120] and the simplified
isotropic material with penalization i.e. SIMP [121]), level-set function (LSF) [122], topological
derivatives [123, 124] and phase field [125, 126]. Currently the most common methods for material
interpolation or representation of the solid domain are SIMP and LSF. Another point of distinction is
the nature of the adjoint-state model derivation: continuous [127] or discrete [128, 129]. We utilize
the continuous equations (discrete only in the velocity discretization to accommodate for the LBM
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boundaries) for derivation of the adjoint-state model and also use the LSF for solid domain repre-
sentation. For fluid flow problems, the first topology optimization study was conducted in 2003 for
the Stokes flow [130] by modeling the Navier-Stokes equations. Later topology optimization studies
were carried out for turbulent flows [131], non-Newtonian flows [132], forced and natural convec-
tion [133–135], species transport and reactive flows [136, 137], porous media flows [138] among
others. For a more rigorous review of topology optimization as applied on fluid flows the readers
are directed to ref.[115].

For this chapter we include a simple validation study as this aspect has been thoroughly cov-
ered before by the team in LTEN ([40, 136, 139]). We only utilize this chapter to explain different
concepts regarding topology optimization. The outline of the chapter is as follows: the following
section 3.1 elaborates on different components required for topology optimization, section 3.2 de-
scribes the optimization model (which includes the derivation of the adjoint-state problem) and
section 3.3 expounds on the result of the numerical simulation. And Section 3.4 finally spells out
the conclusions.

3.1. Components of gradient optimization

An optimization process consists of finding a minimum for the objective/cost function for a physi-
cal/real state. Before diving into details, we briefly touch upon the algorithm used for optimization.
Here the real state of the system is modeled using the single phase lattice Boltzmann model. The
fluid modeled here is a compressible fluid. We use the level-set function for describing the struc-
tures (i.e. solid wall or obstructions) in the flow (i.e. in the real state). Next important computation
step in the optimization algorithm is the adjoint-state. The adjoint-state equations are derived from
the real state (using the Lagrange equations) and the computation time required for both these states
are the same. Next computational step is the computation of the gradient using the data from the
physical state and adjoint-state. The use of the adjoint-state speeds up the computation of the gra-
dient while the only drawback being the complexity it brings to the table. The next computational
step is to determine the step size (i.e. the line-search algorithm) to be used while applying a gradi-
ent (it is optional but helps in speeding up the process). Finally we apply the gradient (of the cost
function) and check for convergence, if convergence is not achieved then we repeat the process. The
following algorithm 3 (at page 72) is a topology optimization algorithm used for the computation.

A generic representation of the topology optimization problem is described as:

min J (Ψ ,f) subject to F (Ψ ,f) = 0, (3.1)

where f = {f0, f1, f2, f3, f4, f5, f6, f7, f8} as before represents the probability distribution function (for
the LBM solver), Ψ represents the design variables or control parameters (more specifically it is the
level-set variable), J is the cost function or the objective function and F represent the real state (i.e.
LBM equations along with their boundary conditions).

3.1.1. Lagrange function

The Lagrange function is the amalgamation of the cost function, real state, adjoint-state and the con-
straints to form a single equation. This allows for the use of zero constraint optimization algorithms
which are less tedious to compute. The general form of the problem now becomes:

L(Ψ ,f, f̊) = J (Ψ ,f) + 〈f̊,F (Ψ ,f)〉 (3.2)

where f̊ is the Lagrange multiplier and it also represents the adjoint-state variables. Also here f̊ =
{f̊0, f̊1, f̊2, f̊3, f̊4, f̊5, f̊6, f̊7, f̊8}. For optimization we require the minimum of the lagrange function and
hence its stationary point. Using directional derivative we can write:

L′ =
∂L
∂f̊

f̊′ +
∂L
∂f

f′ +
∂L
∂Ψ

Ψ ′ = 0 (3.3)
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where L′ , f̊′ , f′ and Ψ ′ are arbitrary variations in the directions of L, f̊, f and Ψ respectively. Ex-
panding the terms in eq. (3.2):

L(Ψ ,f, f̊) = J +
8∑
i=0

〈
Ri , f̊i

〉
D×T +

∑
β={in,out,bb}

3∑
i=1

〈
Pβ(i), f̊β(i)

〉
Γβ ×T

(3.4)

where R and P are the residue of LBM equations and their boundary conditions respectively, and f̊
is the corresponding adjoint-state distribution function (similar to the LBM distribution function f ).
The cost function can be viewed as one acting on the domain (Y ) and also on the boundary (X ).

Definition 3.1.1. The following L2 spaces are associated with their corresponding inner prod-
ucts. ∫ tf

t=0

∫
D
UV dr dt = 〈U ,V〉D ×T (3.5)∫
D
UV dr = 〈U ,V〉D (3.6)∫ tf

0
UV dt = 〈U ,V〉T (3.7)∫ tf

0

∫
Γin

UV dr dt = 〈U ,V〉Γin ×T (3.8)∫
Γin

UV dr = 〈U ,V〉Γin
(3.9)∫ tf

0

∫
Γout

UV dr dt = 〈U ,V〉Γout ×T (3.10)∫
Γout

UV dr = 〈U ,V〉Γout
(3.11)∫ tf

0

∫
Γbb

UV dr dt = 〈U ,V〉Γbb ×T (3.12)∫
Γbb

UV dr = 〈U ,V〉Γbb
(3.13)

From the point of view of the physical LBM solver (i.e. forward problem), if we are only in-
terested in the state F at t = tf (i.e. if the intermediary transient phenomenon does not play a
significant role for the optimization analysis), then the cost function would be required only for the
final state. We then apply consistently this cost function throughout adjoint-state time (t̊) for the
adjoint-state modeling. The idea of the adjoint-state and its time are addressed later in section 3.1.2
and paragraph 3.2.2.a.2 respectively. For our convenience we label this method as TOSFP i.e. topol-
ogy optimization for steady-state forward problem. Conversely, if the transient phenomenon is of
importance then the cost function is required to be determined for all LBM iterations or at least at
specific time intervals during the simulations. Also we require to store the LBM simulation data for
all or at specific time intervals. In the latter case, while the computational expense is reduced, care
should be taken that this time interval is sufficient for capturing the desired phenomenon. Using
this stored information the corresponding adjoint-state is then modeled after which the gradient is
computed. Similarly we label this method as TOTFP i.e. topology optimization for transient-state
forward problem.

For optimization problems which are dependent on the cost function at the final state, i.e. TOSFP.
The general form of the cost function is expanded as:

J = JD +JΓ = 〈Y ,1〉D

∣∣∣∣∣∣
t=tf

+
∑

β={in,out,bb}
〈Xβ ,1〉Γβ

∣∣∣∣∣∣
t=tf

(3.14)
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where JD is the cost function applicable on the domain (here D represents the domain) for e.g.
porosity constraint and JΓ is the cost function to be applied on the boundaries (here Γ represents
the boundaries) for e.g. pressure and flux constraints. Hence the Lagrange function (for this category
of optimization problems) can be further expanded as:

L(Ψ ,f, f̊) = 〈Y ,1〉D

∣∣∣∣∣∣
t=tf

+
8∑
i=0

〈
Ri , f̊i

〉
D×T +

∑
β={in,out,bb}

 3∑
i=1

〈
Pβ(i), f̊β(i)

〉
Γβ ×T

+ 〈Xβ ,1〉Γβ

 (3.15)

As previously mentioned, optimization requires the stationary point of the Lagrange function,
for which directional derivative is used, hence:

L′ =
∑
j

∂L
∂f̊j

f̊ ′j︸     ︷︷     ︸
aA1

+
∑
j

∂L
∂fj

f ′j︸     ︷︷     ︸
aA2

+
∂L
∂Ψ

Ψ ′︸ ︷︷ ︸
aA3

= 0 (3.16)

where f̊ ′j , f ′j and Ψ ′ are arbitrary variations in the directions of f̊j , fj and Ψ respectively. Now in
eq. (3.16), aA1 = 0 retrieves the forward problem, aA2 = 0 retrieves the equation for the adjoint-state
while aA3 = 0 retrieves the gradient for optimization.

3.1.2. Adjoint-state method

The adjoint-state method is considered an efficient manner for computing the sensitivities/gradients
and is hence used in different applications for example weather forecast modeling and optimization
modeling among others. For explaining why the adjoint-state method is required, we first discuss
the crude procedure for obtaining the gradient of the cost function. The procedure being discussed
is illustrated using a fluid flow problem which employs a 3×3 optimization mesh as shown in fig. 3.1.
We start with an initial condition where we have no solid domain (Ds; i.e. no solid in the domainD),
the velocity inlet is at the western boundary and pressure outlet is at the eastern boundary. Thus we
obtain a flow as indicated by the streamlines (the flow field is imaginary and used only for purpose
of illustration) being modeled by a physical solver (like LBM). In a topology optimization problem
the state of each individual node is defined by the value of the level-set function (or by porosity
value for the SIMP method) at the corresponding node. Thus the state/nature of each node (α) is
registered as an independent variable. For the problem at hand the state/nature of the node can only
vary between two states i.e. a fluid node or a solid node. Thus for any cost function we can obtain its
gradient by individually varying the state/nature of all the nodes and simultaneous measuring the
change in the cost function (as shown in fig. 3.1). This individual changes are used for constructing
the total/final gradient of the cost function as:

∇Ψ J =
[

dJ
dΨ1

dJ
dΨ2

dJ
dΨ3

dJ
dΨ4

dJ
dΨ5

dJ
dΨ6

dJ
dΨ7

dJ
dΨ8

dJ
dΨ9

]T
(3.17)

where for a node η of the cost function (using finite difference for obtaining optimization gradient,
LBM solver for modeling the physical state and level-set of defining the solid boundaries) would be
obtained as:

dJ
dΨη

=
〈
∇J ,Ψ ′η

〉
D = lim

ε→0

J (f,Ψ + εΨ ′η)−J (f,Ψ )

ε
(3.18)

where Ψ ′η is the direction of perturbation ε. Thus for computing the RHS of eq. (3.18) we need
the cost function at the initial state and also later at the perturbed state. Thus for computing the
cost function gradient, we would for this case need to solve the forward model 9 additional times. In
other words the computational expense of gradient/sensitivity calculation for topology optimization
is related to the mesh size. This computational expense is avoided by the use of the adjoint-state
method where the computational time is equivalent to the time for solving the forward model, i.e.
we effectively solve the forward problem only one additional time irrespective of the mesh size.
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Figure 3.1: 3× 3 mesh demonstrating the need for adjoint-state model

Now that we have established the need for the adjoint-state method, we discuss regarding its
implementation. If the physical state is defined by the LBM solver and the solid domain is repre-
sented by the level-set function, then the cost function now becomes a function of f and Ψ . Thus
the change in cost function differentiation w.r.t the control parameter is given as:

dJ
dΨ

=
∂J
∂Ψ

+
∂J
∂f

df
dΨ

(3.19)

This is similar to eq. (3.17) which represents the gradient in a vector format. Here the derivative df
dΨ

is computationally expensive (i.e. mesh dependent as mentioned previously). Thus the goal of the
adjoint-state method is to circumnavigate the use of this term. This is accomplished by the usage of
the Lagrange equation. Using eq. (3.2), we can write:

dL
dΨ

=
∂J
∂Ψ

+
∂J
∂f

df
dΨ

+
〈∂F
∂Ψ

+
∂F
∂f

df
dΨ

, f̊
〉

= 0 (3.20)

It is to be noted that we utilize ordinary differentiation only for explanation, instead we use direc-
tional derivatives–as mentioned before–for the derivation of the adjoint-state model. Thus we could
essentially rewrite this equation as:

dL
dΨ

=
∂J
∂Ψ

+ f̊
∂F
∂Ψ

+
(
∂J
∂f

+ f̊
∂F
∂f

)
df
dΨ

(3.21)

Now the adjoint-state problem is to determine/compute f̊ (i.e. the adjoint-state variable) such
that we obtain:

∂J
∂f

+ f̊
∂F
∂f

= 0 (3.22)
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3.1. Components of gradient optimization

This allows us to neglect the computational expensive derivative thereby increasing the efficiency
of the optimization algorithm. Another manner of describing the adjoint-state problem is in terms
of sensitivities of the model output w.r.t to the input parameters. Using this terminology we know
that the crude manner of obtaining the sensitivity would be to individually vary input parameters
and record the corresponding change in the output parameter. Meanwhile, the adjoint-state method
allows us to obtain the sensitivity using one set of input parameters and the corresponding set of
output parameters.

3.1.3. Level-set function

The level-set function (Ψ ) is utilized for topology optimization in two distinct manners as shown in
fig. 3.2. The former (which is also the standard usage) method employs an equation for the level-set
function (LSF). Here the zero contour of the LSF is tracked as Ψ is advected through out the domain.
Here re-initialization of the LSF across the domain is necessary. This is because the performance of
the LSF is best in the neighborhood of the optimum curvature/shape. The latter method (which
is employed for this thesis) utilizes the zero contour of the level set as a measure for nature–solid
or fluid–of the node. The nature of a node is represented by α–which is the fluidness/solidness of
the node. Here the LSF is updated at each individual node (by application of the gradient of cost
function) which may (or may not) switch the nature of the node. In other words these nodes are inde-
pendent parameters. Here no re-initialization is necessary for the LSF. From a physical perspective
α is discrete and can only hold two values, hence for a node (η) at a location (r) the relationship is
given as:

αphy(r) =
{

0 if Ψ (r) < 0 (solid node) i.e. η ∈ Ds
1 if Ψ (r) > 0 (fluid node) i.e. η ∈ Df

(3.23)

For optimization a pragmatic approach is elected by providing a smooth mapping between α and
Ψ :

α(Ψ ) =
1
2

+
1
π

arctan
Ψ

ε1
(3.24)

The derivative of the continuous function α w.r.t Ψ :

α′(Ψ ) = ∂Ψ [α] =
ε1

π(ε2
1 +Ψ 2)

(3.25)

As can been seen from fig. 3.3 the discrete nature of α can be reproduced when ε1→ 0 while still
having a finite value for α′(Ψ ) (for ε1 , 0). The continuous nature of α makes it possible for non-
zero (pseudo-)velocity at the solid nodes on the solid-fluid boundary (Γsf). This is translated into
a non-zero gradient for the corresponding solid nodes. This facilitates the removal of solid nodes
if the gradient requires so. Previously [40], the LSF was artificially capped such that Ψ = {n1| n1 ∈
R and − 1 < n1 < 1}. This limit on the LSF have been removed to register the changes/gradients
completely. The purpose of capping the LSF value was to allow for use of a smaller gradient step
size (ξ) as the LSF value remains in the vicinity of the zero-contour.

3.1.4. Line search algorithm

The line search algorithm determines the step size of the gradient (of the cost function) to be ap-
plied while updating the control parameters for the optimization. The methods/algorithm utilized
are broadly classified into exact and inexact line search. Examples of the exact line search are the di-
chotomy method, secant method, quadratic interpolation, Newton-Raphson method and etc. While
all these methods aid in reaching close to the minimum of the cost function, some other meth-
ods/optimizers (like for example BFGS and LBFGS; optimizers will be explored in the following
subsection) could be satisfied by a less precise guess of the step size. This is accomplished by using
the inexact line search algorithm. Here instead it would suffice that certain conditions/rules should
be satisfied. These rules depend on the method/algorithm in use for e.g. Goldstein rules which
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Chapter 3. Topology optimization in monophasic fluids

Figure 3.2: The manner of evolution/update in the level-set (LSF): a comparison between the use of
LSF for registering optimization change and the standard LSF method (from [40]).
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Figure 3.3: Plot of continuous version of α and α′

determines the outermost bounds (i.e. maximum and minimum) for the gradient step size (ξ). In
this thesis we use the dichotomy line search also known as the bisection method. Here we halve or
double the step size if the application of the gradient of the cost function (∇J ) on the control pa-
rameters results in increasing or decreasing the cost function respectively (please note that for cases
where we want to maximize a cost function, we convert it to a minimization problem by multiply-
ing the cost function value by -1). This process is repeated until we determine the step size which
breaks the trends of increasing and decreasing of the cost function respectively. This entire process
is written in algorithm 2 at page 71.

3.1.5. Optimizers

As is evident, obtaining the (optimization) gradient (∇J ) is only a part of the optimization process.
The next step involves the application of this gradient to the control parameters so as to obtain or
arrive at the new (iterative) state. In short, each optimizer represents a strategy to effect change and
thus march in the direction of the optimized set of control parameters which for our case is the topol-
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3.2. Optimization model

Algorithm 2: The bisection/dichotomy algorithm

Input: Physical state: F & gradient of cost function (∇J )
Initialize gradient step size ξ(0)

Define the maximum multiple of 2 to be applied on ξ i.e. kmax

Calculate the cost function J (?) from state F (?) provided as the input.
Compute J (0) from F (0) obtained from Π(0) = Π(?) − ξ(0)∇J ; where Π = control parameter
if (J (0) < J (?)) then

ξ(1)← 2ξ(0) (doubling the step size)
do

Compute J (k) from F (k) obtained from Π(k) = Π(?) − ξ(k)∇J
if (J (k) < J (k−1)) then

ξ(k+1)← 2ξ(k)

else
ξ(k+1)← ξ(k)/2

Increment k by 1 i.e. k← k + 1.
while (J (k) < J (k−1) AND k < kmax AND |J (k) −J (k−1)| > γc; where γc is a constant.);

else
ξ(1)← ξ(0)/2 (halving the step size)
do

Compute J (k) from F (k) obtained from Π(k) = Π(?) − ξ(k)∇J
if (J (k) < J (?)) then

ξ(k+1)← 2ξ(k)

else
ξ(k+1)← ξ(k)/2

k← k + 1.
while (J (k) ≤ J (?) AND k < kmax);

if (k == kmax AND J (†) ≥ J (?)) then
ξ(†) = 0

return Gradient step size (ξ(†))

ogy (T ), i.e. the structure of the wall/solid domain (Ds) or material allocation of the solid nodes in
the domain (D). The Newton method is a 2nd order optimizer, which requires the computation of the
Hessian (∇2J ) for each optimization iteration. Though it uses few optimization iterations, the time
taken and computational expense per optimization iteration is huge. If we instead approximate the
computation of the Hessian then we would arrive at the quasi-Newton methods like Gauss-Newton,
Davidon-Fletcher-Powell (DFP), Broyden-Fletcher-Goldfarb-Shanno (BFGS) and limited BFGS, i.e.
LBFGS. These only decrease the computation expense by a margin, further reduction is possible by
using first order methods like steepest/gradient descent (GD) and conjugate gradient (CG), amongst
others. Though they greatly increase the amount of optimization iteration required these methods
are popular due to a lower threshold of required computational resources. In this thesis, we utilize
the simplest optimizer which is the gradient descent due to its pragmatic requirements. Hence the
new state (i.e. next optimization iteration represented by k + 1) is obtained by tweaking the control
parameters (i.e. the Ψ for the topology optimization) at the current state (i.e. k):

Ψ (k+1) = Ψ (k) − ξ(k)∇J (k) (3.26)

where ξ is the step size while using gradient descent optimizer.

3.2. Optimization model

Here we are using the adjoint-state model for single phase fluid flow LBM solver that has been
previously derived [40]. The only difference is that we derive the adjoint-state model for a com-
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Chapter 3. Topology optimization in monophasic fluids

Algorithm 3: General flow for a topology optimization algorithm

Input: Initial topology: T (0) (i.e. the geometry: D ∈ Df
⋃
Ds) obtained from Ψ (0) (which is

the control variable), the objective or cost function: J
Initialize Boltzmann variables f (0)

i = f eq
i ∀ i for the fluid domain (Df).

Initialize adjoint-state variables f̊ (0)
i = 0 ∀ i for the fluid domain (Df).

while (‖Ψ (z) −Ψ (z−1)‖1 ≥ γc AND z ≤ zmax; where γc is a constant.) do
Compute the Boltzmann variables f (z) from which we obtain the physical state F (k)

Compute the cost function J (z)

Compute the Adjoint-state variables f̊
(z)

i.e. the adjoint-state f̊(z)

Calculate the gradient of the cost function (∇Ψ J (z)) using F (z) and f̊(z)

Compute the gradient step size (ξ(z)) using a line search algorithm (optional)
Apply the gradient using an optimizer (in this case, the gradient descent optimizer) to
obtain Ψ (z+1) and hence T (z+1)

Increment z by 1 i.e. z← z+ 1.

return Optimized topology: T (†)← Ψ (†)

pressible flow. As such the main purpose is to validate our methodology and explain the manner
of derivation–This will later aid in the novel derivation of adjoint-state models for the multiphase
pseudopotential LBM model.

3.2.1. Forward (LBM) problem

Here we reiterate the major equations used in the LBM solver and present it in the form palatable
for the optimization discourse. The semi-discretized set of Boltzmann equations reads:

Ri(f,Ψ ) =
∂fi
∂t

+ ei · ∇fi +
1
τ

(
fi − f

eq
i

)
= 0 ∀ i ∈ [0,1,2,3,4,5,6,7,8] (3.27)

rewriting the equilibrium distribution function as a function of the level-set we obtain:

f
eq
i (f,Ψ ) = wiρ

(
1 + 3αei ·u+ 4.5α (ei ·u)2 − 1.5αu2

)
, (3.28)

where u is the velocity defined using eq. (2.4) and eq. (2.5), f are the Boltzmann variables, while the
α is a function of the level-set variable i.e. Ψ . Here for demonstrating the derivation of the adjoint-
state boundary equation on all four sides i.e. the north, the east, the west and the south, we fix an
inlet at the western boundary and exhibit the outlet boundary at the northern, the eastern and the
southern boundaries. In other words, the outlet could be at any boundary or multiple boundaries.
The same equations and methodology are applicable for any configuration with an inlet at west and
any number of outlets. The partitioned boundary for a configuration with walls, inlet and outlet is
denoted by Γ = Γin ⊕ Γout ⊕ Γbb. The equation for boundaries are:

1. The inlet: (e.g. on the West boundary)
Pin(1) = P1 = −f3 + f1 − 2

3ρux
Pin(2) = P5 = −f7 + f5 − 1

6ρux −
1
2 (f4 − f2)

Pin(3) = P8 = −f6 + f8 − 1
6ρux + 1

2 (f4 − f2)
(3.29)

where:

ρ =
f0 + f2 + f4 + 2(f3 + f6 + f7)

1−ux
(3.30)

2. The outlet: For the pressure boundary condition in LBM ρ on the boundary is constant. Now
for the eastern boundary.

Pout(1) = P3 = −f1 + f3 + 2
3ρux

Pout(2) = P7 = −f5 + f7 + 1
6ρux + 1

2 (f4 − f2)
Pout(3) = P6 = −f8 + f6 + 1

6ρux −
1
2 (f4 − f2)

(3.31)
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3.2. Optimization model

where:

ux = −1 +
f0 + f2 + f4 + 2(f1 + f5 + f8)

ρ
(3.32)

On the North boundary


Pout(1) = P4 = −f2 + f4 + 2

3ρuy
Pout(2) = P7 = −f5 + f7 + 1

6ρuy + 1
2 (f3 − f1)

Pout(3) = P8 = −f6 + f8 + 1
6ρuy −

1
2 (f3 − f1)

(3.33)

where:

uy = −1 +
f0 + f1 + f3 + 2(f2 + f5 + f6)

ρ
(3.34)

On the South boundary


Pout(1) = P2 = −f4 + f2 − 2

3ρuy
Pout(2) = P5 = −f7 + f5 − 1

6ρuy −
1
2 (f3 − f1)

Pout(3) = P6 = −f8 + f6 − 1
6ρuy + 1

2 (f3 − f1)
(3.35)

where:

uy = 1−
f0 + f1 + f3 + 2(f4 + f7 + f8)

ρ
(3.36)

3. The wall (bounce-back) condition: (e.g. on the South boundary)


Pbb(1) = P2 = f2 − f4
Pbb(2) = P5 = f5 − f7
Pbb(3) = P6 = f6 − f8

(3.37)

3.2.2. Derivation of the adjoint-state model

From eq. (3.16) we know that the adjoint-state model can be obtained as:

(aA2) = 0 =
∑
j

〈
∂Y

∂fj
f ′j ,1

〉
D

∣∣∣∣∣
t=tf︸                    ︷︷                    ︸

A1

+
∑
i

〈∑
j

∂Ri
∂fj

f ′j , f̊i

〉
D×T︸                          ︷︷                          ︸

A2

+
∑
β


3∑
i=1

〈∑
j

∂Pβ(i)

∂fj
f ′j , f̊β(i)

〉
Γβ ×T︸                                ︷︷                                ︸

A3

+
∑
j

〈
∂Xβ
∂fj

f ′j ,1
〉
Γβ

∣∣∣∣∣
t=tf︸                     ︷︷                     ︸

A4


(3.38)

The terms A1 and A4 comes from the derivation of the cost function which is acting in the do-
main and on the boundaries respectively. The A2 term is related to the lattice Boltzmann equation,
which is applicable in the entire domain. The A3 term is derived form the boundary condition equa-
tion. Here it is observed that these terms are applicable to (or exist in) different phase spaces and
hence for the gradient of Lagrange to be zero, it should be zero for each of these phase spaces.
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3.2.2.a. Adjoint-state equation

Developing first the A2 term:

(A2) =
∑
i

〈∑
j

∂Ri
∂fj

f ′j , f̊i

〉
D×T

=

〈∑
i

∂f ′i
∂t
, f̊i

〉
D×T︸                 ︷︷                 ︸

B1

+
〈∑

i

ei · ∇f ′i , f̊i
〉
D×T︸                     ︷︷                     ︸

B2

+
〈∑

i

τ−1f ′i , f̊i

〉
D×T

−
〈∑

i

∑
j

τ−1∂f
eq
i

∂fj
f ′j , f̊i

〉
D×T︸                                ︷︷                                ︸

B3

(3.39)

Using the three properties as mentioned before in ref. [139]:

Property 3.2.1. Integration by parts of the temporal operator (for a variable f and its arbitrary
variation f ′): 〈∂f ′

∂t
, f̊

〉
T

=
〈
−
∂f̊

∂t
, f ′

〉
T

+
[
f̊ f ′

]t=tf
t=0

(3.40)

Property 3.2.2. Green’s theorem for the spatial gradient ∀ i:〈
ei · ∇f ′i , f̊i

〉
D

=
〈
− ei · ∇f̊i , f ′i

〉
D

+
〈
ei ·nf̊i , f ′i

〉
Γ

(3.41)

Property 3.2.3. Permutation of indices:

8∑
i=0

8∑
j=0

f̊i
∂f

eq
i

∂fj
f ′j =

8∑
i=0

8∑
j=0

f̊j
∂f

eq
j

∂fi
f ′i (3.42)

Now the term B1 can be further expanded by using integration by parts, while the term B2 can be
developed by using Green’s theorem. Now the term B3 can be rearranged by permutation of indices.
The objective of this expansion of the term A2 is to obtain a final equation where the common factor,
i.e. f ′i , is segregated from the remainder of the equation. Thus the expanded version:

(A2) = −
〈∑

i

∂f̊i
∂t
,f ′i

〉
D×T

+
[∑

i

〈
f̊i , f

′
i

〉
D

]t=tf
t=0︸                ︷︷                ︸

C1

−
∑
i

〈
ei · ∇f̊i , f ′i

〉
D×T +

∑
β

〈∑
i

ei ·nf̊i , f ′i

〉
Γβ ×T︸                          ︷︷                          ︸

C2

+
〈∑

i

τ−1f ′i , f̊i

〉
D×T

−
〈∑

i

∑
j

τ−1
∂f

eq
j

∂fi
f ′i , f̊j

〉
D×T

(3.43)

The term C2 is to be applied on all the boundaries, while the term C1 is to be used for setting the
initial conditions for adjoint-state problem. The adjoint-state equation is obtained from all terms
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3.2. Optimization model

existing in the phase space that involve D×T , i.e. excluding C1 and C2. Gathering the remaining
terms and equating it’s sum to zero:

∑
i

〈
−
∂f̊i
∂t
− ei · ∇f̊i + τ−1f̊i − τ−1

∑
j

∂f
eq
j

∂fi
f̊j , f

′
i

〉
D×T

= 0 ∀ f ′i (3.44)

One way to get this equality is to choose:

−
∂f̊i
∂t
− ei · ∇f̊i + τ−1f̊i − τ−1

∑
j

∂f
eq
j

∂fi
f̊j = 0 ∀ r ∈ D, ∀ t ∈ (0, tf ), ∀ i (3.45)

Thus the adjoint-state equation can be rewritten as:

−
∂f̊i
∂t
− ei · ∇f̊i +

f̊i − f̊
eq
i

τ
= 0 ∀ r ∈ D, ∀ t ∈ (0, tf ), ∀ i (3.46)

3.2.2.a.1. Adjoint-state equilibrium

From eq. (3.46) we can write the adjoint-state equilibrium distribution formulation as:

f̊
eq
i =

∑
j

∂f
eq
j

∂fi
f̊j (3.47)

f̊
eq
i =

∑
j

wj ∂ρ∂fi + 3wjα
∂ρej ·u
∂fi

+ 4.5wjα
∂ρ

(
ej ·u

)2

∂fi
− 1.5wjα

∂ρu2

∂fi

 f̊j (3.48)

f̊
eq
i =

∑
j

wj∑
k

∂fk
∂fi

+ 3wjα
∑
k

∂fkej · ek
∂fi

+4.5wjα
∂
∂fi


(∑

k fkej · ek
)2∑

k fk

− 1.5wjα
∂
∂fi

[
(
∑
k fkek)

2∑
k fk

] f̊j (3.49)

f̊
eq
i =

∑
j

wj + 3wjαej · ei=k + 4.5wjα

2ej · ei=k(
∑
k fkej · ek)∑

k fk
−

(
∑
k fkej · ek)2

(
∑
k fk)2


−1.5wjα

[
2ei=k(

∑
k fkek)∑

k fk
−

(
∑
k fkek)

2

(
∑
k fk)2

])
f̊i (3.50)

Thus we can write:

f̊
eq
i =

∑
j

wj f̊j
(
1 + 3αej · ei + 4.5α[2(ej · ei)(ej ·u)− (ej ·u)2]− 1.5α[2eiu− (u)2]

)
(3.51)

This provides us with the adjoint-state equilibrium function.

3.2.2.a.2. Going back in time and space

The adjoint-state equation can be written in the same form as eq. (3.27), provided the following
changes are made:

t̊ = tf − t and e̊i = −ei (3.52)
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In other words, essentially we regress in time and advection (for f ) as we iteratively solve for adjoint-
state starting form the result at tf of the forward problem. The discussion of time is of lesser im-
portance as the problem on hand is an optimization problem, where only the final iteration data is
important.

Doing so, the adjoint-state eq. (3.46) is rewritten as:

∂f̊i
∂t̊

+ e̊i · ∇f̊i +
f̊i − f̊

eq
i

τ
= 0 ∀r ∈ D, ∀t ∈ (tf ,0), ∀i (3.53)

and the initial condition (at t̊ = 0) is well defined, and the boundary conditions are given for entrant
directions e̊i ·n < 0, i.e. for ei ·n > 0.

3.2.2.a.3. Adjoint-state initial condition

The initial condition inside the domain is obtained from the terms A1 and C1 and equating the
sum of these terms to zero:

(C1) + (A1) =
[∑

i

〈
f̊i , f

′
i

〉
D

]t=tf
t=0

+
〈∑

j

∂Y

∂fj
, f ′j

〉
D

∣∣∣∣∣
t=tf

=
∑
i

〈∂Y
∂fi

+ f̊i , f
′
i

〉
D

∣∣∣∣∣
t=tf

− 0
∣∣∣∣∣
t=0

= 0 ∀ f ′i (3.54)

which is satisfied if:

f̊i(tf ) = −
∂Y

∂fi
∀ r ∈ D, ∀ f ′i , ∀ i (3.55)

The eq. (3.55) is used for transient-state analysis i.e. TOTFP method. For the current analysis (which
uses a TOSFP method), as mentioned previously, we repeatedly apply the cost function differentia-
tion (during the adjoint-state time). In other words, the term A1 is placed on eq. (3.53) where the
time integral is ignored as it is no longer of importance. Thus we can rewrite eq. (3.53) as:

∂f̊i
∂t̊

+ e̊i · ∇f̊i +
f̊i − f̊

eq
i

τ
+
∑
j

∂Y

∂fj
= 0 ∀ r ∈ D, ∀ f ′i , ∀ i (3.56)

This is equivalent to applying a constant cost function across the adjoint-state time interval. In
other words, the effect of the initial condition is augmented and this term could also be portrayed
as a source term rather than an initial condition.

3.2.2.b. Wall (BB) boundary condition

The adjoint-state wall (bounceback) condition can be given by gathering all related terms in A3 and
A4 and also the term C2 and equating the sum of all these terms to zero:

3∑
i=1

〈∑
j

∂Pbb(i)

∂fj
f ′j , f̊bb(i)

〉
Γbb ×T︸                                    ︷︷                                    ︸

D1

+
∑
i

〈
ei ·nf̊i , f ′i

〉
Γbb ×T︸                      ︷︷                      ︸

D2

+
∑
j

〈∂Xbb

∂fj
, f ′j

〉
Γbb

∣∣∣∣∣
t=tf︸                      ︷︷                      ︸

D3

= 0 (3.57)

Hence for BB condition on a wall located in the south given by eq. (3.37). The expansion gives
(we take only the integrants within integrals):

(D1) = 〈f ′2 − f
′

4 , f̊2〉Γbb ×T + 〈f ′5 − f
′

7 , f̊5〉Γbb ×T + 〈f ′6 − f
′

8 , f̊6〉Γbb ×T (3.58)

(D2) = 〈−f ′5 f̊5 − f
′

2 f̊2 − f
′

6 f̊6 + f ′7 f̊7 + f ′4 f̊4 + f ′8 f̊8,1〉Γbb ×T (3.59)
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and

(D3) =
∑
j

〈∂Xbb

∂fj
, f ′j

〉
Γbb

∣∣∣∣∣
t=tf

(3.60)

Combining all terms and rearranging equation we get:

〈f ′2 − f
′

4 − f
′

2 , f̊2〉Γbb ×T + 〈f ′5 − f
′

7 − f
′

5 , f̊5〉Γbb ×T + 〈f ′6 − f
′

8 − f
′

6 , f̊6〉Γbb ×T
+ 〈f ′7 , f̊7〉Γbb ×T + 〈f ′4 , f̊4〉Γbb ×T + 〈f ′8 , f̊8〉Γbb ×T

+
∑
j

〈∂Xbb

∂fj
, f ′j

〉
Γbb

= 0 (3.61)

〈−f ′4 , f̊2〉Γbb ×T + 〈−f ′7 , f̊5〉Γbb ×T + 〈−f ′8 , f̊6〉Γbb ×T + 〈f ′7 , f̊7〉Γbb ×T

+ 〈f ′4 , f̊4〉Γbb ×T + 〈f ′8 , f̊8〉Γbb ×T +
∑
j

〈∂Xbb

∂fj
, f ′j

〉
Γbb

= 0 (3.62)

rearranging terms and accumulating the remaining irrelevant terms in a dummy function Θ:

〈f ′7 , f̊7−f̊5〉Γbb ×T +〈f ′4 , f̊4−f̊2〉Γbb ×T +〈f ′8 , f̊8−f̊6〉Γbb ×T +
〈∂Xbb

∂f7
f ′7 +

∂Xbb

∂f4
f ′4 +

∂Xbb

∂f8
f ′8 ,1

〉
Γbb

∣∣∣∣∣
t=tf

+Θ = 0

(3.63)
As before, we note that inner product in the phase space Γbb acts as an initial condition for the wall
boundary for a TOTFP problem. For the current state case, we can ignore the temporal aspect and
hence write all the terms of eq. (3.63) in the phase space Γbb. Thus we can write the equation as:〈

f ′7 , f̊7 − f̊5 +
∂Xbb

∂f7

〉
Γbb

+
〈
f ′4 , f̊4 − f̊2 +

∂Xbb

∂f4

〉
Γbb

+
〈
f ′8 , f̊8 − f̊6 +

∂Xbb

∂f8

〉
Γbb

+Θ = 0 (3.64)

Note here that the three terms gives the three unknowns f̊4, f̊7, f̊8 for the adjoint-state problem, so
this will give P̊4, P̊7 and P̊8. Since this is to be satisfied ∀f ′ , this gives:

P̊bb(1) = P̊4 = f̊2 − f̊4 −
∂Xbb

∂f4
= 0

P̊bb(2) = P̊7 = f̊5 − f̊7 −
∂Xbb

∂f7
= 0

P̊bb(3) = P̊8 = f̊6 − f̊8 −
∂Xbb

∂f8
= 0

(3.65)

3.2.2.c. Inflow adjoint-state

The inflow boundary condition for the adjoint-state is given gathering all relevant inlet boundary
terms, and equating this to zero:

∑
j

〈
∂Xin

∂fj
, f ′j

〉
Γin

∣∣∣∣∣
t=tf︸                     ︷︷                     ︸

E1

+
3∑
i=1

〈∑
j

∂Pin(i)

∂fj
f ′j , f̊in(i)

〉
Γin ×T︸                                  ︷︷                                  ︸

E2

+
∑
i

〈
ei ·nf̊i , f ′i

〉
Γin︸                ︷︷                ︸

E3

= 0 (3.66)

Hence for inflow condition on a boundary located in west given by eq. (3.29). The expansion
gives (again we work only with the integrants):

(E1) =
∑
j

〈
∂Xin

∂fj
, f ′j

〉
Γin

∣∣∣∣∣
t=tf

(3.67)
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(E2) =
〈
− f ′3 + f ′1 −

2ux
3(1−ux)

(f ′0 + f ′2 + f ′4 + 2(f ′3 + f ′6 + f ′7 )), f̊1

〉
Γin ×T

+
〈
− f ′7 + f ′5 −

f ′4 − f
′

2

2
− ux

6(1−ux)
(f ′0 + f ′2 + f ′4 + 2(f ′3 + f ′6 + f ′7 )), f̊5

〉
Γin ×T

+
〈
− f ′6 + f ′8 +

f ′4 − f
′

2

2
− ux

6(1−ux)
(f ′0 + f ′2 + f ′4 + 2(f ′3 + f ′6 + f ′7 )), f̊8

〉
Γin ×T

(3.68)

and

(E3) =
〈
− f ′1 f̊1 − f

′
5 f̊5 − f

′
8 f̊8 + f ′3 f̊3 + f ′6 f̊6 + f ′7 f̊7,1

〉
Γin ×T

(3.69)

thus E2 becomes:

(E2) =
〈
− 2ux

3(1−ux)
f ′0 + f ′1 −

2ux
3(1−ux)

f ′2 −
[
1 +

4ux
3(1−ux)

]
f ′3

− 2ux
3(1−ux)

f ′4 −
4ux

3(1−ux)
f ′6 −

4ux
3(1−ux)

f ′7 , f̊1

〉
Γin ×T

+
〈
− ux

6(1−ux)
f ′0 −

[
ux

6(1−ux)
− 1

2

]
f ′2 −

ux
3(1−ux)

f ′3

−
[

ux
6(1−ux)

+
1
2

]
f ′4 + f ′5 −

ux
3(1−ux)

f ′6 −
[
1 +

ux
3(1−ux)

]
f ′7 , f̊5

〉
Γin ×T

+
〈
− ux

6(1−ux)
f ′0 −

[
ux

6(1−ux)
+

1
2

]
f ′2 −

ux
3(1−ux)

f ′3 −
[

ux
6(1−ux)

− 1
2

]
f ′4

−
[
1 +

ux
3(1−ux)

]
f ′6 −

ux
3(1−ux)

f ′7 + f ′8 , f̊8

〉
Γin ×T

(3.70)

Now adding the three terms E1, E2 and E3 and factorizing w.r.t f ′ we obtain an equation of which
we elaborate only the relevant terms. The remainder of terms are accumulated in a dummy function
Θ. Thus we write:

(E1) + (E2) + (E3) =
〈
f ′3 , f̊3 −

[
1 +

4ux
3(1−ux)

]
f̊1 −

ux
3(1−ux)

f̊5 −
ux

3(1−ux)
f̊8

〉
Γin ×T

+
〈
f ′6 , f̊6 −

4ux
3(1−ux)

f̊1 −
ux

3(1−ux)
f̊5 −

[
1 +

ux
3(1−ux)

]
f̊8

〉
Γin ×T

+
〈
f ′7 , f̊7 −

4ux
3(1−ux)

f̊1 −
[
1 +

ux
3(1−ux)

]
f̊5 −

ux
3(1−ux)

f̊8

〉
Γin ×T

+
〈
f ′3 ,

∂Xin

∂f3

〉
Γin

+
〈
f ′6 ,

∂Xin

∂f6

〉
Γin

+
〈
f ′7 ,

∂Xin

∂f7

〉
Γin

+Θ = 0 (3.71)

As before, we note that inner product in the phase space Γin acts as an initial condition for the inlet
boundary for a TOTFP problem. For the current state case, we can ignore the temporal aspect and
hence write all the terms of eq. (3.71) in the phase space Γin. Since this is satisfied ∀f ′ , this finally
gives us the adjoint-state inflow boundary condition for unknowns f̊3, f̊6, f̊7 as:

P̊in(1) = P̊3 = f̊3 +
∂Xin

∂f3
− f̊1 −

ux
3(1−ux)

(4f̊1 + f̊5 + f̊8)

P̊in(2) = P̊6 = f̊6 +
∂Xin

∂f6
− f̊8 −

ux
3(1−ux)

(4f̊1 + f̊5 + f̊8)

P̊in(3) = P̊7 = f̊7 +
∂Xin

∂f7
− f̊5 −

ux
3(1−ux)

(4f̊1 + f̊5 + f̊8)

(3.72)
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3.2.2.d. Outflow adjoint-state

The outflow boundary condition for the adjoint-state is given gathering all related terms, and zero-
ing this sum:

∑
%


∑
j

〈
∂Xout

∂fj
, f ′j

〉
Γout

∣∣∣∣∣
t=tf︸                       ︷︷                       ︸

F1

+
3∑
i=1

〈∑
j

∂Pout(i)

∂fj
f ′j , f̊out(i)

〉
Γout ×T︸                                      ︷︷                                      ︸

F2

+
∑
i

〈
ei ·nf̊i , f ′i

〉
Γout ×T︸                       ︷︷                       ︸

F3


= 0

(3.73)
As we see, F1 which comes form A1 is given at tf only, while the others are for all t. If we were

considering the current problem there would be of time. In other words, we can combine all terms
in the phase space Γout. This gives the outflow condition for the adjoint-state at steady state.

1. On the eastern boundary, outflow condition is given by eq. (3.31). The expansion thus is given
as (again we work only with the integrants):

(F1)east =
∑
j

〈
f ′j ,

∂Xout,east

∂fj

〉
Γout ,east

(3.74)

(F3)east =
〈
f̊1f
′

1 − f̊3f
′

3 + f̊5f
′

5 − f̊6f
′

6 − f̊7f
′

7 + f̊8f
′

8 ,1
〉
Γout ,east

(3.75)

(F2)east =
〈
f̊3,−f ′1 + f ′3 +

2ρ
3

[
0 +

f ′0 + f ′2 + f ′4 + 2(f ′1 + f ′5 + f ′8 )
ρ

]〉
Γout ,east

+
〈
f̊6,−f ′8 + f ′6 −

f ′4 − f
′

2

2
+
ρ

6

[
0 +

f ′0 + f ′2 + f ′4 + 2(f ′1 + f ′5 + f ′8 )
ρ

]〉
Γout ,east

+
〈
f̊7,−f ′5 + f ′7 +

f ′4 − f
′

2

2
+
ρ

6

[
0 +

f ′0 + f ′2 + f ′4 + 2(f ′1 + f ′5 + f ′8 )
ρ

]〉
Γout ,east

(3.76)

Now adding the terms F1east, F2east and F3east and factorizing w.r.t f ′ we obtain an equation
of which we elaborate only the relevant terms. The remainder of terms are accumulated in a
dummy function Θ. Thus we write:

(F1)east + (F2)east + (F3)east =
〈
f ′1 , f̊1 +

∂Xout,east

∂f1
− f̊3 +

1
3

(4f̊3 + f̊6 + f̊7)
〉
Γout ,east

+
〈
f ′5 , f̊5 +

∂Xout,east

∂f5
− f̊7 +

1
3

(4f̊3 + f̊6 + f̊7)
〉
Γout ,east

+
〈
f ′8 , f̊8 +

∂Xout,east

∂f8
− f̊6 +

1
3

(4f̊3 + f̊6 + f̊7)
〉
Γout ,east

+Θ = 0 (3.77)

Since this is satisfied ∀f ′ , this finally gives the adjoint-state outflow boundary condition for
unknowns f̊1, f̊5, f̊8 as:

P̊out(1) = P̊1 = f̊1 +
∂Xout,east

∂f1
− f̊3 +

1
3

(4f̊3 + f̊6 + f̊7)

P̊out(2) = P̊5 = f̊5 +
∂Xout,east

∂f5
− f̊7 +

1
3

(4f̊3 + f̊6 + f̊7)

P̊out(3) = P̊8 = f̊8 +
∂Xout,east

∂f8
− f̊6 +

1
3

(4f̊3 + f̊6 + f̊7)

(3.78)
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2. On the northern boundary, the outflow condition is given by eq. (3.33). The expansion is given
as:

(F1)north =
∑
j

〈
f ′j ,

∂Xout,north

∂fj

〉
Γout ,north

(3.79)

(F3)north =
〈
f̊2f
′

2 − f̊4f
′

4 + f̊5f
′

5 + f̊6f
′

6 − f̊7f
′

7 − f̊8f
′

8 ,1
〉
Γout ,north

(3.80)

(F2)north =
〈
f̊4,−f ′2 + f ′4 +

2ρ
3

[
0 +

f ′0 + f ′1 + f ′3 + 2(f ′2 + f ′5 + f ′6 )
ρ

]〉
Γout ,north

+
〈
f̊7,−f ′5 + f ′7 +

f ′3 − f
′

1
2

+
ρ

6

[
0 +

f ′0 + f ′1 + f ′3 + 2(f ′2 + f ′5 + f ′6 )
ρ

]〉
Γout ,north

+
〈
f̊8,−f ′6 + f ′8 −

f ′3 − f
′

1
2

+
ρ

6

[
0 +

f ′0 + f ′1 + f ′3 + 2(f ′2 + f ′5 + f ′6 )
ρ

]〉
Γout ,north

(3.81)

Thus we can similarly obtain the final adjoint-state outflow boundary condition for unknown
f̊2, f̊5, f̊6 as: 

P̊out(1) = P̊2 = f̊2 +
∂Xout,north

∂f2
− f̊4 +

1
3

(4f̊4 + f̊7 + f̊8)

P̊out(2) = P̊5 = f̊5 +
∂Xout,north

∂f5
− f̊7 +

1
3

(4f̊4 + f̊7 + f̊8)

P̊out(3) = P̊6 = f̊6 +
∂Xout,north

∂f6
− f̊8 +

1
3

(4f̊4 + f̊7 + f̊8)

(3.82)

3. On the southern boundary, outflow condition is given by eq. (3.35). The expansion is given as:

(F1)south =
∑
j

〈
f ′j ,

∂Xout,south

∂fj

〉
Γout ,south

(3.83)

(F3)south =
〈
− f̊2f ′2 + f̊4f

′
4 − f̊5f

′
5 − f̊6f

′
6 + f̊7f

′
7 + f̊8f

′
8 ,1

〉
Γout ,south

(3.84)

(F2)south =
〈
f̊2,−f ′4 + f ′2 −

2ρ
3

[
0−

f ′0 + f ′1 + f ′3 + 2(f ′4 + f ′7 + f ′8 )
ρ

]〉
Γout ,south

+
〈
f̊5,−f ′7 + f ′5 −

f ′3 − f
′

1
2
−
ρ

6

[
0−

f ′0 + f ′1 + f ′3 + 2(f ′4 + f ′7 + f ′8 )
ρ

]〉
Γout ,south

+
〈
f̊6,−f ′8 + f ′6 +

f ′3 − f
′

1
2
−
ρ

6

[
0−

f ′0 + f ′1 + f ′3 + 2(f ′4 + f ′7 + f ′8 )
ρ

]〉
Γout ,south

(3.85)

Thus we can similarly obtain the final adjoint-state outflow boundary condition for unknown
f̊4, f̊7, f̊8 as: 

P̊out(1) = P̊4 = f̊4 +
∂Xout,south

∂f4
− f̊2 +

1
3

(4f̊2 + f̊5 + f̊6)

P̊out(2) = P̊7 = f̊7 +
∂Xout,south

∂f7
− f̊5 +

1
3

(4f̊2 + f̊5 + f̊6)

P̊out(3) = P̊8 = f̊8 +
∂Xout,south

∂f8
− f̊6 +

1
3

(4f̊2 + f̊5 + f̊6)

(3.86)

The few sets of equations eq. (3.72), eq. (3.78), eq. (3.82) and eq. (3.86) provides the adjoint-state
boundary conditions.
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3.3. The 90◦ pipe bend

3.2.3. Updating the control parameter i.e. the level-set Ψ

Now the level set function for the next iteration is obtained by eq. (3.26) [136] being defined by
the gradient descent algorithm. Here the gradient descent step size (ξ) used is: ξ = ε2 × ξs where
ε2 ∈ Z>0 (it is a positive integer), ξs = 10−2 is a constant. Here ‘ε2’ refers to an implementation
detail, where we incrementally augment (i.e. addition by unity) this quantity until be observe a
change in the solid domain. In other words, to ensure that such a change occurs the same gradient is
applied sequentially ε2 times. Unlike SIMP, the level-set requires a change such that level-set value
crosses the zero-contour. Hence the solid configuration remains unchanged unless the aforemen-
tioned change is registered for at least a single node. This becomes important as it is not possible
to compute a different gradient for the same configuration. Now that we have discussed regarding
other terms in eq. (3.26) the only remaining term to expand upon is the gradient of the cost function
(∇J ). As mentioned previously, the term (aA3) gives us the expression for computing the gradient.

(aA3) =
∂L
∂Ψ

Ψ ′ = Ψ ′

〈∂Y∂Ψ ,∂Ψ [α]
〉
D

∣∣∣∣∣
t=tf

+
∑
i

〈
∂Ri
∂Ψ

∂Ψ [α], f̊i

〉
D×T


+
∑
β

Ψ ′

 3∑
i=1
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For the optimization problem of interest, generally both the cost function at boundary (X ) and the
boundary residue (P ) are explicitly independent of the design variable α. Even in the LBM residue
(R) the design variable only appears in the equilibrium distribution function. Thus we obtain:

∂L
∂Ψ

Ψ ′ = 〈∇Ψ J ,Ψ ′〉D ×T = −
〈
∂Ψ [α]Ψ ′ ,

∑
i

wi f̊iρ
1
τ

(
3ei ·u+

9
2

(ei ·u)2 − 3
2

(u)2
)
−
∂Y

∂Ψ

∣∣∣∣∣
t=tf

〉
D×T

(3.88)
As can be noted in eq. (3.88), the gradient is non-zero only for the fluid nodes. This means that it
would not be possible for removal of a solid node once it has been placed by the algorithm even
when evolution of the gradient would cause this to be a desirable solution. This can be partially
mitigated by application of an interpolation of gradients from the neighboring fluid nodes. This
means that the solid can now only be eaten away from its boundary nodes.

From current analysis, we can write eq. (3.88) in the phase space D. Hence we obtain:

〈∇Ψ J ,Ψ ′〉D = −
〈
Ψ ′ ,∂Ψ [α]

∑
i

wi f̊iρ
1
τ

(
3ei ·u+

9
2

(ei ·u)2 − 3
2

(u)2
)
−
∂Y

∂Ψ
∂Ψ [α]

〉
D

(3.89)

This provides with the equation for the gradient of the cost function (∇J ) with respect to the level-
set Ψ .

3.3. The 90
◦
pipe bend

This is a case of a monophasic compressible flow passing through a hollow component/part/pipe
which is connecting two perpendicularly oriented pipes. Here the flow is a laminar flow and hence
the regular single phase LBM model and its associated adjoint-state model (as derived in section 3.2)
are employed for the optimization algorithm. The objective for this benchmark case is to ensure
minimum losses due to pressure drop for 90◦ pipe bend as the porosity of the component is reduced
gradually to the desired minimum value (φmin). It is to be noted that the problem at hand is a
TOSFP.

3.3.1. Setting up parameter values

Initial starting point is the region of interest i.e. the optimization domain (as highlighted in the
fig. 3.4) having 100% porosity. Now, in the vicinity of both the boundaries (inlet and outlet) we
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Algorithm 4: General algorithmic flow of a adjoint-state monophasic LBM for monophasic
fluids (TOSFP)

Input: Physical state: f, ρ & u, fluid-fluid interface along with geometry: D ∈ Df
⋃
Ds and

cost function: J
Initialize f̊ (0)

i = 0 ∀ i
while (‖f̊ (z)

1 − f̊
(z−1)

1 ‖1 ≥ γc AND k ≤ kmax; where γc is a constant.) do
Compute the equilibrium distribution function f̊ eq and perform adjoint-state collision
i.e. to solve eq. (3.53)
Perform streaming
Perform adjoint-state bounceback for walls
Compute for open adjoint-state boundaries and later for ghost nodes.
if (k mod ς = 0; where ς is an constant.) then

Writing data to files
Storing f̊1 at z i.e. ρ(z)

Increment z by 1 i.e. z← z+ 1.
k← k + 1

return Adjoint-state parameters f̊(†)

Optimization domainNon-optimization domain

NInlet

OutIet

Figure 3.4: Initial solid structure and demarcation of the domain for the 90◦ pipe bend optimization

have non-optimization zones. This prevents the code from adding solid obstructions in this region,
which in turn, avoids sealing/clogging of the boundary and rapid increase in inlet pressure–due
to intermediary solid structures in the non-optimization zone. Here the domain size is Nx ×Ny =
150× 150 with the boundaries on the west and the north such that the domain is symmetrical w.r.t
the axis passing from the north-west corner to the south-east corner. The inlet boundary lies on
the western frontier with a constant velocity initialization across the width of the inlet. The inlet
diameter/width is 30 l.u., the inlet velocity uy = 10−2 l.u./t.s. and kinematic viscosity is ν = 0.1666
units, hence the Reynold number is Reinlet = 1.8, i.e. it is in the Stokes flow regime. The outlet
boundary lies on the northern frontier and a constant pressure outlet condition is imposed here.
In regards to the optimization algorithm we use a gradient-descent optimizer and (refrain from
using a line search algorithm, rather) a constant value is utilized for the optimization step size. The
complete algorithm for a topology optimization was specified previously i.e. algorithm 3.
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3.3. The 90◦ pipe bend

3.3.2. Cost function definition

Two constraints or objective/cost functions are required for achieving our final goal: pressure and
porosity constraints. The former (i.e. pressure) constraint keeps a check on the pressure losses as the
flow circuit is established through/around different obstacles or solid structures. For our case, it is
helpful in keeping the main artery of the flow circuit squeaky clean, as obstacles in the center of flow
pathway would raise the frictional/viscous losses. For the standard LBM model describing a laminar
monophasic flow the EOS used is that for ideal gas, which is further simplified (in accordance with
the model parameters) such that pressure is defined as a function of density:

p = ρ
RT
M

=
ρ

3
(3.90)

Previously [40], our local team at LTeN used an exponential function for the pressure constraint,
given as:

Xp = λp∆pmax exp
(

∆p

∆pmax

)
(3.91)

where λp is the weight of the pressure constraint, ∆pmax is the maximum permissible pressure dif-
ference. For our case we define the pressure loss as:

∆p =

1
3

∫
Γin

∑
i

fi dr − 1
3

∫
Γout

∑
i

fi dr

 (3.92)

Conversely, the simplest possible cost function is utilized, as this would suffice for our purpose:

Xp = λp∆p (3.93)

By the nature of the constraint it could be understood that it is to be applied only at the boundaries.
And to be more specific only on the inlet boundary as the outlet pressure and hence by extension
the density of fluid at outlet is fixed. This is accomplished for the LBM model using the ZH pressure
outlet boundary, where the outlet boundary pressure is fixed by fixing the density. Now as this a
TOSFP method, (as mentioned before) we apply the cost function differentiation like a source term.
As the pressure constraint is only a function of the Boltzmann variable f, hence its contribution is
only in the adjoint-state solver (and at the boundaries). Hence differentiating w.r.t the Boltzmann
variables we obtain: ∑

j

∂Xin

∂fj
=

∑
j

∂Xp
∂fj

=
λp
3

(3.94)

Meanwhile the latter (porosity) constraint enables us to add material to the domain of interest
until the minimum permissible porosity is attained. In absence of the porosity constraint, addition
or deduction of material is a slower or not possible. For our case, we require the porosity constraint
as no other cost function is present for assisting material allocation i.e. it accelerates the process.
This constraint is applied throughout the domain of interest. Previously [40], an exponential func-
tion was used to describe the porosity constraint:

Yφ = αλφφmin exp
(
φ

φmin

)
(3.95)

where φ here represents the porosity value varying between 0 and 1, φmin is the minimum permis-
sible porosity and λφ is the weight for the porosity constraint. For our simulation we use a simpler
quadratic function given as:

Yφ = αλφ(φ−φmin)2 (3.96)

This constraint is only the function of the level-set function Ψ and hence its contribution is only
at the final stage of computing the gradient of the cost function. Here the differentiation w.r.t the
level-set variable is given as:

∂Y

∂Ψ
=
∂Yφ
∂Ψ

= λφ(φ−φmin)2α′ (3.97)
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The weights for pressure and porosity constraints used while optimization are λp = 100 and λφ = 0.1
respectively.

3.3.3. Result and discussions

The initial condition for the topology optimization algorithm (, as stated previously) is 100% perme-
ability/porosity. With the progression of each iteration the code deposits/allocates materials–solid
nodes are depicted using black nodes. The allocation of material is predominately in regions of null
or minuscule velocities. In other words, the code begins with depositing material in regions/corners
further away from the open boundaries i.e. the north-west and south-east corners. After this the
allocation continues more or less along the axis of symmetry. For the current simulation, the mag-
nitude of gradient is influenced significantly by the constraint of porosity. Now as optimization
iterations progress (as is evident from the graph) we observe a general decrease in the cost function
value. Also the general trend of L1, L2 and L∞ norms of the gradient of the cost function is to de-
crease till a stable value is reached. Figure 3.5 depicts various stages of material allocation during
the optimization process. As internal pathways becomes narrower the flow intensity is dispersed
to a lesser extent. The optimization process is halted when the mean gradient value is below i.e.
‖∇Ψ J ‖1
ND

≤ 10−7 (where ND = Nx ×Ny). The stopping point coincides with porosity of the compo-

nent reaching φmin = 50.
If we compare our result to those in literature,(for e.g. [130, 140])–with the caveat that the min-

imum porosity threshold for these cases in literature is lower than 50%–then we observe certain
similarities. In the first study [130], Stokes flow through the component was modeled using Navier-
Stokes equations with finite element discretization with 104 nodes. After optimization they ob-
tained (i.e. fig. 3.6b) a straight pathways/walls between gently curved walls (especially the outer
wall) near the inlet boundary allowing for the smooth transition in the direction for a Stokes flow. In
the second study [140], again utilized finite element discretization of NS equations with 6561 nodes
and 12800 triangular elements. After optimization, a more smoother transition with a continuous
and gently curved wall resembling a quarter of a torus (i.e. fig. 3.6a) was obtained. Meanwhile, if
we extrapolate the behavior of the optimization code, further deposition of material would occur
primarily in two regions. The first location would be at the inner wall (referring to fig. 3.6c) where
the concave curvature/dip of the pathway/wall allows for the a region of minuscule velocity (refer-
ring to fig. 3.5f). The second location would be at the outer wall (again referring to fig. 3.6c) where
similar concave dips especially near the boundaries corresponds to region of minuscule velocity.

3.4. Conclusion

Here we discuss regarding different constituent components of the optimization algorithms. For
topology representation we utilize the level-set function, to calculate the gradient of cost function
we use the adjoint-state model and to register changes/updates using the gradient (∇J ) we use the
gradient-descent algorithm. After we derive the adjoint-state problem using the real world gov-
erning equation i.e. the lattice Boltzmann model for compressible flows, we also introduce the
concept of the adjoint-state time. We also demonstrate adjoint-state boundary conditions for all
four directions i.e. the north, the east, the south and the west. Lastly we conclude the chapter
by demonstrating the competence of the adjoint-state based gradient topology optimizer. Here the
main observation for the 90◦ pipe-bend case is that regions of low velocity are ideal regions for
material allocation.
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Figure 3.5: (a)-(f) Evolution of the flow domain en-route optimization (solid node depicted by black
and gray nodes); (g)-(h) Corresponding norms of the gradient of the cost function and the evolution
of the cost function (J ), porosity (φ) and pressure difference (∆p)
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(a) Optimized domain [140] for 90◦

pipe bend using the shape opti-
mization

(b) Optimized domain [130] for
90◦ pipe bend–rotated 90◦ counter-
clockwise

(c) Optimized domain (inhouse
code result) for 90◦ pipe bend–
rotated 90◦ counter-clockwise

Figure 3.6: Comparison of the results of a shape optimization algorithm [140] with that of the
topology optimization algorithms for monophasic flow in a 90◦ pipe bend case.
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In the previous chapter, after discussing the foundational aspects of the adjoint-based optimiza-
tion solver, we deviate temporarily to using a finite difference optimization solver. As this is the first
multiphase optimizer, the results herein are used for later validating the multiphase adjoint-based
optimizer. The excerpts from this chapter was published in Physics of fluid [141].

4.1. Introduction

In nature, droplet movement on a still surface occurs mainly due to air currents or gravity (in case
of an inclined surface). Recently, unexpected directional motion (without external energy sup-
ply) of a liquid droplet on the Araucaria leaf [142] was reported and later this phenomenon has
been reproduced numerically [143]. Meanwhile, in a controlled environment, the droplet motion
is possible due to either active or passive methods of generating a wettability gradient [144]. Sur-
faces employed specifically for this purpose are in literature called as wettability gradient surfaces
(WGS). Active methods include temperature gradients [145] (first documented in the seminal work
of Marangoni [146]), mechanical vibrations [147], electrostatic potential, etc., while passive tech-
niques require surface chemical treatments or alteration of surface topography [148, 149]. A realistic
surface is non-ideal as surface roughness due to topographical imperfections is commonplace. Also
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a bare surface gathers dirt or residue being exposed to chemical reactions (including corrosion) or
deposits due to phenomenon such as evaporation over a period of time. This degrades the perfor-
mance of WGS with the passage of time as the droplet motion could be inhibited due to pinning
defects.

WGS have multiple applications where droplet transport is required. These surfaces could be
used for orienting the direction of a moving droplet [150]. It could also function as pump in micro-
scale devices. One major application for a WGS is the lab-on-a-chip (LOC) device which handles
fluids even at submicroscopic scale [151]. LOCs have further applications in nano technology, bio-
engineering, sensors, etc. Liquid transport plays an important role in heat transfer process especially
during phase change [152]. In condensation processes, hybrid wettability surfaces improved perfor-
mances allowing droplet condensation on hydrophobic places whereas droplets are drained toward
hydrophilic places and removed due to gravity [153, 154]; the use of a WGS could then prevent the
formation of a liquid film. Also these surfaces could be useful for self-cleaning, where the droplet
picks up dirt as it is propelled forward; few inclined hydrophobic surfaces have already been used
for this purpose [155, 156].

This phenomenon of a wettability gradient initially theoretically studied [101, 157] has been ex-
perimentally verified for chemical surface treatments and thermal gradients on an inclined plate [158].
Various theoretical explanations have been put forward providing for different analytical formula-
tions for droplet velocity [159, 160] assuming steady state motion. Numerical simulations have on
the other hand been used to investigate situations which are difficult to recreate in an experimental
setup. Spatial and temporal fluctuations [161] of the wettability, wettability gradients induced by
chemical reactions [162], various wettability distribution profiles [163] and droplet spreading [164]
on patterned surfaces, to mention a few studies, have all been explored via numerical modeling to
promote/influence droplet motion.

The numerical simulations for a droplet on a surface could be divided into two categories: in
the former category the contact angle is prescribed and the fluid behavior (pressure, velocity, etc.)
for different configurations are obtained a posteriori. In the latter category the interaction forces
are prescribed and both the contact angle and fluid behavior are obtained after numerical solving.
While the former category includes macroscopic models, most often coupling Navier-Stokes equa-
tions with an interface tracking methods, like Volume of fluid (VOF) [144] or level set (LS), the latter
category includes molecular dynamics and mesoscopic methods like Van der Waal model [165] or
the lattice Boltzmann model (LBM) [86]. For additional details, regarding selection of solver for
physical simulation (in an optimizer), refer to section 2.2. Hereafter physical simulation will also be
referred to as the forward problem.

So, even if the motion of a droplet submitted to a wettability gradient is a well documented
phenomenon, both experimentally and numerically, the question of the optimization of this dis-
placement remains untreated. Indeed, from the performed bibliography survey, it appears that
wettability gradient has always been assumed to be constant, i.e. the wettability distribution is re-
stricted to the linear profile, and the main result is, the steeper the gradient, the greater the mean
velocity [1, 101]. Now the wettability cannot vary indefinitely, i.e. this property is bounded, from
superhydrophobicity to superhydrophilicity. Consequently, the steeper the gradient, the shorter
the displacement length of the droplet. The significance of the study lies in resolving the conflict
between the spread of a bounded property (wettability) and the displacement length to achieve
highest mean velocity. In other words, for a droplet to seamlessly travel the desired length, the
question of the optimal wettability profile seems to have no trivial solutions, and, to the best knowl-
edge of the authors, this has not been addressed yet. Note that, in the field of optimization applied
on multiphase flow, an adjoint-state gradient-based shape optimizer demonstrated its competency
of propelling a droplet with a variation of surface tension, such an optimizer being based on an
approximated two-phase Stokes equations with no solid-fluid interaction [166, 167]. Another shape
optimizer has been employed on the surface topography in order to control the droplet shape, with-
out motion [168].

The implication of the current study is that increasing the mean velocity of droplets using spe-
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cific WGS would improve, for example, the flow rate of LOC device or the performances of con-
densers. From an optimization and historical point of view, this problem loosely resembles the
brachistochrone problem. The objective of the brachistochrone problem was to find the optimal ge-
ometrical path which would be covered by a sliding bead starting from rest at a given location (with
gravity and without friction) in order to reach the final location in the shortest time interval [169].
The analytical approaches proposed by five different mathematicians found that a cycloid, rather
than a simple constant step is the best shape for the task. So, for a given gravitational potential, i.e.
a starting height and a final height, optimization analytical process identified an optimal structure
profile. An innovation of this article is the manner of approaching the problem, i.e. similar to the
brachistochrone problem, one searches for the best shape or profile of wettability distribution for
a WGS. The only difference is that a numerical optimization algorithm is used here rather than an
analytical approach (if at all one exists).

In the context of the article the forward problem consists of a droplet resting on a horizontal sur-
face which is a WGS. No pinning effect (i.e. no contact angle hysteresis) on the interface between the
droplet and the solid is assumed (i.e. the surface is assumed ideal for the simulation). The optimiza-
tion process is for finding the optimum wettability distribution profile so that the droplets moves
as quickly as possible to a desired location. The simulation is performed in two dimensions of space
while the wettability evolves in one dimension. Although three-dimensional (3D) effects are not
taken into account in this paper, such a geometric assumption seems not to affect the mean veloc-
ity of the droplet, referring to 2D/3D literature comparison [144], whereas it allows for substantial
computational benefits.

Section 4.2 describes the methodology of optimization. In this section, we discuss the cost func-
tion of the optimization problem, we then elaborate on the forward problem model, we build the
parameterization of the control variable, and set-up the optimizer. Section 4.3 gives the performance
of several wettability distributions defined by some simple analytical function, and section 4.4 gives
some results of optimization. Ultimately, section 4.5 presents the conclusions of this chapter.

4.2. Optimization problem set-up

4.2.1. Cost function definition

The objective of the study is to maximize the droplet velocity on a flat plate by adjusting the dis-
tribution of wettability. The mean velocity is computed when the droplet reaches a certain desired
location (C̃drop). Here locations and droplet positions are indicated in terms of the droplet center of
gravity (denoted as Cdrop). The droplet center of gravity is computed as:

Cdrop(t) =

∫
Df

(ρ(r, t)− ρvap)rx dr∫
Df

(ρ(r, t)− ρvap) dr
, (4.1)

where, rx is the x-component of location vector i.e. r for a 2D domain such that the droplet moves
along the x-axis on the xy-plane, ρ is the density at r and at time t, ρvap is the density of the vapor
and Df is the fluid domain restriction.

Mathematically, maximization of the mean velocity consists in maximizing the following cost
function:

J =
Cdrop|t=tf −Cdrop|t=0

tf
, (4.2)

where the final time tf is the time given a posteriori when |Cdrop − C̃drop| reaches a very small user-
defined value.

4.2.2. Lattice Boltzmann method

The forward problem uses model H1. Now as mentioned previously in section 2.3.6.b, the formula-
tion of the solid-fluid inter-particular force F s enables the quantification of wettability in terms of
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Figure 4.1: (a-d) LBM simulation for droplet motion on a linear wettability profile flat plate at
T /Tc = 0.75;(model H1). (e) illustrates the domain schematics; (f) Correlation between static contact
angle (θstat) and pseudo-density of the solid plate

the fictitious density of (adjacent) solid nodes. This density, denoted as ρw, is referred to as pseudo-
density [99]. Varying the pseudo-density from ρliq to ρvap, a contact angle between 0◦ and 180◦ can
be obtained. This mapping allows for a correlation between the static contact angle θstat and the
pseudo-density. Figure 4.1 depicts the correlation between θstat and the normalized pseudo-density(
ρ∗w = (ρw − ρvap)/(ρliq − ρvap)

)
. This correlation is consistent across different temperatures T (which

is specified relative to the critical point temperature Tc). The static contact angle is unknown a pri-
ori and is obtained after the simulation of a droplet resting on a flat horizontal plate with constant
wettability. This approach is different from macroscopic methods where contact angle is directly
prescribed. As such, LBM is apt for such optimization studies.

The variation of the pseudo-density (wettability) along the length of the plate causes droplet
motion which is successfully captured by LBM due to its transient nature. Figure 4.1 illustrates
the droplet motion, where Ilbm is the iteration number i.e. time in the LBM paradigm. Also the
fluid streamlines are shaded according to the fluid velocity. The droplet motion occurs for a linear
wettability distribution (denoted hereafter as Υlin), and no pinning effects. Small vortices can be
observed in the vicinity of the droplet interface; these are the spurious currents. As the droplet
travels forward, a continuous flux of vapor can be observed along with the formation of its boundary
layer on the top and the bottom of the flat plate. This vapor flux is an artifact caused by the use of
periodic boundary conditions. Both these artifacts have negligible impact on the droplet velocity
and shape, hence these are ignored. The forward problem validation for droplet motion on a plate
is detailed in section 2.5.1.

4.2.3. Parameterization of control variables

The space-dependent pseudo-density is the control variable which is tweaked to maximize the mean
velocity of the droplet. Its physical interpretation was given above in section 4.2.2. This pseudo-
density being continuous, a discrete counterpart version is used for the optimization algorithm. As
far as this paper is concerned, the discretization is performed using the n linear Lagrange basis
functions Lm(rx). This originates from the optimization domain having n nodes uniformly spaced
one from the other (so using q = n − 1 elements, all of equal length). The relationship between the
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continuous control variable, ρw(rx), and the discrete one, ρw is:

ρw,m = ρw(rxm ); ρw(rx) =
n∑

m=1

Lm(rx)ρw,m. (4.3)

4.2.4. Optimizer

Gradient based steepest descent optimizer [170] is used for arriving at an optimum solution. For a
given parameterization, the update step is given as:

ρw
(k+1) = ρw

(k) − ξ(k) ∇J (ρw
(k)). (4.4)

In eq. (4.4), superscripts denote the iteration count, ∇J is the cost function gradient (i.e. it
gathers partial derivatives of the cost function with respect to each parameter ρw,m, where m =
1, . . . ,n); the finite difference method is used to compute the cost function gradient. Eventually, ξ is
a positive scalar value that minimizes J (ρw

(k+1)); a dichotomy strategy is used to do so.
From experience it becomes apparent that, performing the optimization with a small number

of elements (q ≤ 8) in the parameterization process inhibits attaining a WGS with high droplet
velocities due to lack of resolution of the control variable. On the contrary, beginning the opti-
mization process with a large number of elements (q ≥ 128) leads the optimizer to quickly reach
local minima only, but far away from the global one. Thus we follow the multiscale parameteriza-
tion described in [171]. The optimization process consists in maximizing the cost function eq. (4.2)
for a small number of elements q using the update eq. (4.4), until stabilization of the control vari-
able, then double the number of elements, and repeat the whole process until global stabilization
is reached. Algorithm 5 describes schematically this multiscale optimization algorithm. Note that
the control variables is allowed to fluctuate within the predetermined limits (further explanation in
section 4.2.5).

Algorithm 5: General flow of a multiscale optimization algorithm

Input: Pseudo-density state ρw
(0) ∈ Ds

Initialize f , ρ and u for the fluid domain (Df).
Choose appropriate initial optimization element number: q(0)

while (q(z) ≤ qmax) do
while (‖ρw

(k) −ρw
(k+1)‖1 ≥ γc; where γc is a constant.) do

Compute the Boltzmann variables f solving eq. (2.3)
Compute the cost function J i.e. eq. (4.2)
Compute the gradient (∇J ) using finite difference
Compute the gradient step size (ξ) using dichotomy line search algorithm
Update the pseudo-density using eq. (4.4)

Update element number: q(z+1) = 2q(z)

return Optimum wettability distribution ρw
(†)

4.2.5. Forward problem setup

The range of the non-dimensional pseudo-density is limited such that ρ∗w ∈ [0.152,0.742]. Thus su-
perhydrophobic and superhydrophilic regions are avoided. The artificial limit is placed to ensure
stability of simulation where density ratio is high (ρliq/ρvap > 10). Table 4.1 describes the geometric
parameters like the plate sizes along with the corresponding domain sizes and also the value of the
constraints, i.e. C̃drop. These parameters have been chosen in order to ensure stability of simula-
tions. Table 4.2 details liquid and vapor densities as well as surface tension, all of these physical
properties being obtained for the CS EOS at different temperatures, see eq. (2.82). Periodic bound-
ary conditions are used to ensure domain inter-connectivity. For a temperature value of T /Tc = 0.75
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the corresponding density ratio is ρliq/ρvap ≈ 30. The Bond number (Bo = ggravD
2∆ρ/(4σ ) , where D

is the droplet diameter) of the simulations lies in the range given as Bo ∈ [0.001424,0.02279]. The
corresponding range of mean capillary number (Caavg = νliqρliqJ /σ , where J is the cost function,
i.e. the mean droplet velocity) for simulations lies in the range such that Caavg ∈ [0.0236,0.0456].
In the lattice Boltzmann paradigm as the simulation occurs in the mesoscopic scale, the unit system
used differs from the real world. Hence the correlation between the two different systems is usually
expressed in terms of the relevant non-dimensional numbers.

Many factors influence the motion of the droplet on a surface. The current study proposes a novel
manner of attaining the optimum wettability distribution. As such this article lacks an analysis on
the complete list of parameters. In the current context, the influence of the size of the droplet
(relative to surface area/size) on the optimization results is looked into. In the following sections,
results of different simulations are discussed.

Table 4.1: Domain size, plate length and objective used for simulations.

Plate length (l.u.) Domain size C̃drop (l.u.)
small plate 256 277× 101 189
medium plate 512 533× 101 417
large plate 1024 1045× 201 844

Table 4.2: Fluid densities and surface tension(σ ) at different temperatures for the LBM model (sim-
ulation results)

ρliq ρvap σ
T /Tc = 0.75 0.333 0.011 0.0090417
T /Tc = 0.80 0.306 0.0193 0.0063263
T /Tc = 0.85 0.2777 0.03 0.0040333

4.3. Prior to optimization

Three groups of simulations were performed for this research paper. The first group of simulations
are only forward LBM simulations, without any optimization algorithm coupled to them. This study,
which precedes the optimization studies in section 4.4, and which is the context of this preliminary
results section, is done to ascertain values for the optimization constraints, and narrow down the
region of search for our optimization study.

Five different wettability profiles corresponding to curves which are monotonous in nature are
tested on the medium sized plate, see fig. 4.2a. The equations of these curves can been obtained
from the appendix B. The objectives here are twofold: to find a good initial wettability profile for
a suitable starting point, and also to find appropriate values for constraints C̃drop and I max

lbm (this
latter is a maximum time constraint in the forward LBM simulation). Figure 4.2b provides us with
the evolution of the droplet center of gravity as the simulation proceeds. It is apparent that the
relative performance of each profile Υ is dependent on C∗drop = Cdrop/L. Below in eq. (4.5), the order
of performance (in terms of cost function value) is mentioned at three points in the simulation:

if C∗drop =


0.3 then J (Υcca) > J (Υqca) > J (Υlin) > J (Υqcv) > J (Υccv).

0.4 then J (Υqca) > J (Υcca) > J (Υlin) > J (Υqcv) > J (Υccv).

0.6 then J (Υlin) > J (Υqca) > J (Υqcv) > J (Υcca) > J (Υccv).

(4.5)

Moreover, the final center of gravity (Cdrop|t=tf ) for each droplet is different though the leading
edge of all the droplets arrive at the end of the plate. This difference can be explained by the differ-
ence in the droplet curvature which in turn is due to the spatial wettability distribution under the
belly of the droplet. Now, considering the final center of gravity of the droplet for each individual
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Figure 4.2: Prior to optimization study: performance of wettability profiles for a medium sized plate
where L/D = 6.4 and T /Tc = 0.75; (model H1).

wettability profile, with no time constraint, i.e. C∗drop = C∗drop

∣∣∣
t=tf

, then the order of performance is:

J (Υqcv) > J (Υlin) > J (Υqca) > J (Υccv) > J (Υcca). (4.6)

This means that, for this given objective, the highest mean droplet velocity is for the quadratic
convex wettability profile Υqcv. It appears that even with very simple wettability profiles, the defini-
tion of the best one is sensitive to the objective function definition. So, further in the article (for the
optimization process) , C̃drop is chosen such that this objective can be reached with the constant gra-
dient wettability profile Υlin. The value of the constraint for each plate sizes is given in table 4.1. The
maximum iteration number I max

lbm is fixed in a similar manner. The linear (Υlin) and the quadratic
convex (Υqcv) profiles, will be used hereafter as initial guesses.

4.4. Results and discussion

Three sets of optimization simulations are performed to understand how the optimizer behaves in
different situations. To begin with, section 4.4.1 presents an optimization test based on the multi-
scale approach in which the parameterization is progressively refined. As the resolution increases,
the route taken by the optimizer to the optimal WGS is examined. Next, section 4.4.2 discusses
the study on the dependency of the obtained solutions on the initial wettability profile. Lastly, in
section 4.4.3, different plate length to droplet diameter L/D ratio are used for testing the sensitiv-
ity of the optimized profiles with respect to both these parameters. Section 4.4.5 then presents the
applicability of obtained optimal wettability profiles.

4.4.1. Progressive refinement of the parameterization

For the small plate (L/D = 3.2), the route embarked on by the multiscale optimization algorithm is
illustrated in fig. 4.3. The successive wettability profiles are obtained after attaining convergence for
each respective optimization scale. The initial linear wettability profile, Υlin, is firstly updated after
performing optimization at the first scale, on the 2-elements parameterization, to obtain Υ10. Con-
sidering the proximity of Υ10 and Υqcv, relative to Υlin, it can be said that the optimizer approaches
in the direction of Υqcv. Now, optimization at the next scale (with the 4-elements parameterization)
gives Υ11. It is observed that a significant region under the final drop position (FDP) has a constant
pseudo-density i.e. no wettability gradient (NWG) region. Also, a reduction of slope is observed
for the region under the initial drop position (IDP). This causes a sharper distribution of wettability
in the intermediate region (IR) of the plate, which increases the mean droplet velocity. Here the

93



Chapter 4. The droplet race: optimizing a wettability gradient surface (WGS)

0 5 10 15 20 25 30 35 40
opt

0.007

0.008

0.009

0.010

0.011

0.012

0.013

2 4 8 16 32 64 128

lin

10

11

12

13

14

15

16

Linear initialization

(a) Increase of cost function (J ) en-route a multiscale
optimization

0.0 0.2 0.4 0.6 0.8 1.0
r *
x

0.2

0.3

0.4

0.5

0.6

0.7

* final drop...
for 128 elements

initial drop...
for 128 elements

lin :  linear initialization
20 :  direct 128-element
10 :  2-element
11 :  4-element
12 :  8-element
13 :  16-element
14 :  32-element
15 :  64-element
16 :  128-element

(b) Intermediate results in a multiscale optimization
alongside the direct 128 element optimization

Figure 4.3: Route/path taken by the multiscale optimization algorithm. The small plate is consid-
ered (L/D = 3.2) with T /Tc = 0.75; (model H1).

optimizer deviates from Υqcv. Note that both IDP and FDP are defined w.r.t Υ16, these regions being
shaded in fig. 4.3b. Optimization on the 8-elements parameterization gives Υ12, where the major
change observed is that now, even a fraction of the region under the IDP is a NWG region. Also
a bump is observed at the leading edge (LE) of the drop at the IDP, with a peak and valley fur-
ther along in the IR. Optimization on the 16-elements parameterization gives Υ13, where the major
change observed is that the peak is shifted to the LE of the IDP. Also the valley profile is modified
in the IR of the plate. Optimization on the 32-elements parameterization converges without any
additional major modification. Optimization on the 64-elements parameterization gives Υ15, where
the modifications observed were a surge in the peak at the IDP and smoothening of the valley in
the IR. The 128-element optimization converges without any additional modification. On the other
hand, for an optimization performed directly starting from Υlin and having a parameterization of
128-elements, the cost function of the resulting profile i.e. Υ20 is J (Υ20) = 0.009 l.u./t.s.. Interesting
and non obvious features which appear (while using multiscale optimization) are: Firstly, no wetta-
bility gradient is required under most of the initial and final location of the droplet to displace the
droplet quickly. So, the overall pull-off potential of the WGS is concentrated in the IR having opti-
mal impact on the velocity. Secondly, the optimal (wettability profile) solution is non monotonous,
which is counter-intuitive. Although for Υ16 the first peak is followed by a deep valley, which ought
to cause a local deceleration. This profile is slated to obtain the highest mean droplet velocity. In
fact, without this small region defined by the wettability decrease, it would not be possible to reach
the performance obtained by the optimizer. Finally, the multiscale feature of the optimization pro-
cess is very useful, improving the performance by 69 % w.r.t the initial profile i.e. Υlin. Conversely
the performance improvement for optimization only using 128-elements parameterization is 17%
w.r.t Υlin.

4.4.2. Sensitivity to the initial wettability profile

The objective of such a study is to check whether or not a single global minimum is reached. For
that purpose, different initial wettability profiles have been tested with the multiscale optimizer,
namely Υlin (with q(0) = 2), Υqcv (with q(0) = 8) and Υccv (with q(0) = 8). These simulation have used
the smallest plate, with L = 256 l.u. and L/D = 3.2. Multiscale optimization results are reported
in fig. 4.4. The resulting profiles have the same mean droplet velocity, i.e. J (Υ16) = J (Υ21) =
J (Υ22) ≈ 0.0127 l.u./t.s., but the obtained wettability profiles can be categorized into two groups.
The former group is composed of both Υ16 and Υ21, where the first peak is observed at the LE of
the IDP, followed by a valley in the IR of the plate. Also similar to Υ16, Υ21 has no requirement of
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Figure 4.4: Comparing final results for different wettability profile initialization for multiscale op-
timization for small plate with L/D = 3.2 and T /Tc = 0.75; (model H1).

wettability distribution for significant regions of IDP and FDP in order to propel the droplet to full
displacement. On the contrary, for Υ22, a linear wettability slope starting from the beginning of the
plate and including the IDP along with most of the IR of the plate is observed. Though the three
obtained profiles are identical at the ending part of the plate (from the latter part of the IR to the
FDP), taking all into account, it is observed that optimization result is dependent on the shape of
the initial wettability profile. This illustrates the dilemma of the non unicity of solution and also
the sensitivity of the solution to the initial guess.

Two additional tests are performed to evaluate the cost function for certain non-trivial curves.
As a first example, the curve Υ23 uses the maximum wettability distribution in the IR along with a
fraction of the IDP and the FDP. The obtained corresponding cost function value is much less than
for optimized solutions, since J (Υ23) = 0.009 l.u./t.s.. The decrease in performance is attributed to
the absence of the peak at the LE of the IDP. As a second example, the curve Υ24 is obtained as Υ22
is trimmed to a wettability distribution with two linear slopes. The obtained corresponding cost
function value is again much less than for optimized solutions, since J (Υ24) = 0.008 l.u./t.s.. Here,
the decrease in performance is attributed to the variation of the slope, as compared to Υ22 (especially
in the latter part of the IR and also the FDP).

Figure 4.4d depicts the location of the center of gravity with respect to time, transient velocity
being simply the local slope of this curve. Analyzing the Υlin performances, one can recover the
classical result: for constant gradient, when the droplet reaches the hydrophilic region, it tends to
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Figure 4.5: Comparing final results for different droplet diameters (L/D = 5.12, L/D = 6.4 and
L/D = 8.5333) initializations for multiscale optimization with medium plate for T /Tc = 0.75, (model
H1)

spread, increasing the contact surface with the solid, and consequently, slows down. Variable wetta-
bility gradient profiles, like all the optimization results succeed in preventing this trend, maintain-
ing a higher final velocity

4.4.3. Sensitivity to relative droplet and plate sizes

Two series of tests are performed, both dealing with dependency of the optimized solutions to dif-
ferent plate and droplet sizes.

The first series of test considers different droplet diameters but with a constant plate size. The
medium sized plate has been chosen, and the initial wettability profile is chosen to be the quadratic
convex one, Υqcv. Optimization results are presented in fig. 4.5b. Optimized profiles Υ1, Υ2 and Υ3
correspond to L/D ratio equal to 8.53, 6.4 and 5.12, respectively. It can be observed from Υ21, Υ1,
Υ2 and Υ3 that, as the L/D ratio increases, the obtained profile has lesser bumps and gets progres-
sively smoothened, approaching the initial convex quadratic profile Υqcv. An explanation for this
observation could be that, for lower L/D ratio, a large force – due to a steep bump (large wettability
gradient) at the LE of the IDP – is necessary to overcome the inertia of a static droplet. Also, bumps
of similar magnitude helps to further maintain the momentum of the droplet at the later stage. The
decrease in the volume of liquid drop to be transported causes these bumps to be superfluous.
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Figure 4.6: Comparing final results for different plate size (small, medium and large) configuration
for multiscale optimization with L/D = 6.4 parameter for T /Tc = 0.75 (model H1)

The second series of test considers different plate sizes but with a constant ratio L/D = 6.4. The
initial wettability profile is chosen to be the quadratic convex one, Υqcv. It is here to be pointed out
that for a maximum number of elements qmax = 128, the minimum optimization element length is
L/qmax = 2 l.u.,4 l.u. and 8 l.u. for the small, medium and large plates, respectively. Optimization
results are presented in fig. 4.6b, where profiles Υ4, Υ2 and Υ5 correspond to the small, the medium
and the large plate sizes respectively. It is observed that, as the plate size increases, more refined
features with defined peaks, dips and valleys are obtained. Table 4.4 depicts the results of a post
optimization study where the performance of Υ2, Υ4 and Υ5 are evaluated. The performance of
Υ2 and Υ5 are consistent (it differs slightly for the long plate) and Υ4 performs the worst overall.
Hence, the medium plate is pragmatic choice for computing the optimization gradient (∇J ) i.e. its
resolution is sufficient, while saving in computational expense.

4.4.4. Sensitivity to temperature and viscosity ratios

The third series of test considers the influence of the temperature for a medium plate size and
constant ratio L/D = 6.4. Again the initial wettability profile is chosen to be the quadratic convex
(Υqcv). One recurring theme which is observed is that as the temperature decrease, the parameters
become more sensitive and hence one observes sharper (i.e. of greater amplitude) peaks, valleys
and dips. This is further reflected in the post optimization study table 4.5, where the final profile
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Figure 4.7: Comparing final results for different temperature (T /Tc = 0.75, T /Tc = 0.8 and T /Tc =
0.85) initialization configuration for multiscale optimization for a medium sized plate. (model H1)

obtained at each of the temperatures are cross-checked for robustness. The overall best performance
is observed for Υ2 wettability profile. The only outlier to this phenomenon occurs at T /Tc = 0.85 for
Υ6. The increasing sensitivity for decreasing temperature was excepted as due to higher velocity at
lower temperature due to lower resistance due to higher density ratio.

The fourth series of test considers the influence of kinematic viscosity relative for each phase for
constant temperature (T /Tc = 0.75), medium plate and constant ratio (L/D = 6.4). Here, the initial
wettability profile is chosen to be quadratic convex (Υqcv). Only minute changes are observed be-
tween the wettability profiles and accordingly minor changes are also observed in the performance
of the three curves. When the liquid (kinematic) viscosity is lower than the vapor viscosity one
observes Υ9 where the amplitude of features is lower as compared to Υ2. Also one observes more
sensitivity for optimization parameters when the liquid kinematic viscosity is higher. As is evident
from the post optimization study table 4.6 the changes in the relative viscosities does not influence
majorly the optimization problem.

4.4.5. Applicability of optimization results

The results obtained thus far are for some given prescribed sizes of both a droplet and a plate.
The question that arises is how a droplet of a given size behaves when being subject to a profile
that has been optimized specifically for a another droplet size. Such a cross-check test somehow
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Figure 4.8: Comparing final results for different initialization configuration for multiscale optimiza-
tion concerning dynamic viscosity ratio (M) parameter for a medium sized plate; (T /Tc = 0.75 and
model H1).

evaluates the robustness of obtained optimized wettability profiles. This robustness evaluation is
of first importance because, though in some controlled applications, e.g. LOC, the droplet sizes are
monodisperse (i.e. the variation around the mean droplet size is very small), in other applications,
for example in condensation, the droplet sizes are polydisperse (i.e. the variation around the mean
droplet size is high). It has thus to be checked whether an optimal profile that has been obtained for
a certain droplet size would be appropriate for another droplet size.

Table 4.3 gives the computed mean velocity for the three optimal profiles Υ1, Υ2 and Υ3 and for
the three L/D ratio. Firstly, it is seen that, for a given L/D ratio, the highest mean velocity is the
one obtained with the profile obtained specifically for this L/D ratio, which is not a surprise (these
results correspond to cells filled in green in this table). Secondly, for a given L/D ratio, the use of
other profiles yields either to lower mean velocity (cells filled in orange in the table) or, worse, to a
droplet that never reaches the other end of the plate (cells filled in red in this table). The reasons
why the droplet does not reach its destination is either that it is stuck in between two wettability
peaks, or that the wettability gradient is too low at its IDP, avoiding any motion right from the be-
ginning. From this result, one conclusion is that, for the specific problem of sequential displacement
of droplets with size ranging from Dmin to Dmax (i.e. assuming no merging of droplets), optimiza-
tion of the wettability profile must be performed for the smallest one in order to avoid pining of
droplets. Now considering merger of droplets, this is a possibility for a droplet diameter (such that)
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D < Dmin. In these cases, the most probable region for smaller droplets to get pinned is where
the local wettability gradient is null or the local direction of the wettability gradient is against the
direction of the droplet motion. Hence these regions, would be hot-spots for droplet merger.

Table 4.3 also gives the computed mean velocity for the quadratic convex wettability profile. It is
seen that the droplet reaches its destination in all cases. Moreover, though the gain of use of optimal
profile is not much for large L/D ratio (the gain is 7 % when using Υ1 instead of using Υlin), this gain
is very high for low L/D ratio (the gain is ≈ 44 % when using Υ3 instead of using Υlin). Note that,
comparing the performance of Υqcv and Υlin (from table 4.3) for all of the sampled droplet sizes, it
is observed that Υqcv is consistently better for small displacements.

Table 4.3: Post optimization study: cost function (J ) for medium sized plate with different L/D at
T /Tc = 0.75, (fig. 4.5b)

Curves L/D = 8.53 L/D = 6.4 L/D = 5.12
Υqcv 0.0029 (+0.2% 1) 0.0038 (+0.3%) 0.0045 (+4%)
Υ1 0.0032 (+7%) 0.0042 0.0048
Υ2 ×2 0.0046 (+21%) 0.0051
Υ3 × × 0.0062 (+44%)

1 : Performance comparison w.r.t Υlin.
2 : Droplet does NOT reach the end of plate, hence C̃drop is out of reach.

Table 4.4: Post optimization study: cost function (J ) for different sized plate with L/D = 6.4 at
T /Tc = 0.75, (fig. 4.6b)

Curves L = 256 L = 512 L = 1024
Υ4 0.0049 0.0042 0.0034
Υ2 0.0054 0.0046 0.0037
Υ5 0.0054 0.0047 0.0039

Table 4.5: Post optimization study: cost function (J ) for different temperature (T ) with L/D = 6.4,
(fig. 4.7b)

Curves T /Tc = 0.75 T /Tc = 0.8 T /Tc = 0.85
Υ6 0.0040 0.0028 0.0021
Υ2 0.0046 0.0032 0.0020
Υ7 0.0042 0.0031 0.0019

Table 4.6: Post optimization study: cost function (J ) for different kinematic viscosity ratio (νliq/νvap)
with L/D = 6.4, (fig. 4.8b)

Curves νliq/νvap = 1.4285 νliq/νvap = 1.0 νliq/νvap = 0.699
Υ8 0.0049 0.0046 0.0039
Υ2 0.0048 0.0046 0.0038
Υ9 0.0047 0.0044 0.0038

4.5. Conclusion

Optimization of the wettability gradient surface has been performed in order to increase the mean
velocity of a droplet. In order to do so, the pseudo-density (i.e. the control variable) has been tuned;
which within the Shan and Chen framework corresponds to locally adjusting the contact angle on
the plate (i.e. an ideal surface, without pinning defects or contact angle hysteresis). The major
conclusions are summarized as follows:
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4.5. Conclusion

1. It has been found that the multiscale approach is necessary in order to converge to some opti-
mal robust solutions.

2. For large expected displacements, the proposed quadratic convex wettability profile appears
to be a good candidate. On the other hand, for small expected displacements, optimizing the
wettability profile is of prime importance as it allows an increase of up to 69 % of the mean
velocity when compared to the use of a classical linear wettability profile.

3. Optimization results exhibit some non trivial features. At first, no wettability gradient is
needed under most of the initial and the final droplet locations, allowing to focus the potential
of the wettability tuning on a smaller area, enhancing its effect. Another interesting feature is
the existence of some non monotonous optimal profiles. Indeed, starting with a steep initial
profile allows to quickly overcome the inertia, this being followed by an unexpected decrease
of the wettability which does not result in a pinning droplet.

4. Multiscale optimization when performed on the medium plate size provides us with results
i.e. curves that have sufficient resolution. This curves replicate the performance of the higher
resolution (large plate size with same L/D ratio) curves for the most part. Hence a pragmatic
trade-off in precision can be made for a reasonable computational effort.

5. The changes to viscosity ratio (between the fluids), causes minor changes to the wettability
profile. The prediction of the optimization model improves with the increase in the sensitivity
of the system i.e. for low temperatures (or higher density ratio) and for higher liquid viscosity.

Conclusions of this numerical work will be vetted in the future by experimental means, having
in mind that many industrial applications could benefit from this, for example lab-on-a-chip. The
optimization algorithm could greatly benefit from the development of an adjoint solver, for effi-
ciently solving real world problems. Previously, we introduced an adjoint solver for a single phase
problem. In the following chapter, we extend this adjoint solver to address the multiphase problem.
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Now we return back to the topology optimization discourse and intent to demonstrate the deriva-
tion of adjoint-state model for the interfacial flows/fluids. As compared to structural and single
phase flow topology optimization, applications in this field are nascent. We here discuss some of
these interesting optimization studies. The first example of topology optimization for interfacial
flows (as far as the author is aware) is recorded in ref.[172] which was published in 2017. Here a
diffused interface is modeled using the coupled NS and Cahn-Hillard equations (from commercial
tool COMSOL Multiphysics). The solid domain is represented using the level-set method. The op-
timization algorithm predicts the optimal topology (for different initial conditions) such that maxi-
mum capillary force is generated. The next study [173] discusses the distribution of three materials
(each with different properties) for maximum and quick absorption of liquid in a diaper like porous
structure. To simplify the problem and to avoid the re-meshing of the diaper due to its eventual
expansion as it soaks the liquid the assumption is that the diaper is already at its final expanded
state. The interfacial flow is modeled using the Richard’s equation which is used for describing im-
bibition. The next study [174] demonstrates topology optimization for transient diphasic problem
(i.e. TOTFP) for e.g. dam break problem and Rayleigh-Taylor’s instability. The interfacial problems
is modeled by the laminar NS equations with LSF being seamlessly integrated using VOF method.
Here the flow is controlled by pseudo-rigid domain (this domain is used for implementing topol-
ogy optimization and) which is assigned by the intensity of the Darcy force. Recently a topological
optimization study for diphasic flow boiling [175] was published. Here the mixture model (from
the commercial tool ANSYS Fluent) is used for multiphase simulation, while the homogenization
method is used for construction of the solid domain/structure (where the rest of the components of
the optimization code are implemented in MATLAB). The objective of this study is to optimize heat
sinks for diphasic boiling. The results for diphasic boiling are then compared to monophasic flow
with heating. For the monophasic heating, (the same implementation of the diphasic boiling is used
except that) the vapor phase is absent as the boiling point is set to a unattainably high temperature.
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Finally we present some other optimization studies which are related to our field but which do
not employ topology optimization. For vapor chambers, there are two published optimization stud-
ies for grooved evaporator and condenser wicking structures [176, 177] by the same research team
in 2020. While the grooved condenser wick structure design is simplified to an Area-to-point (AP)
constructal optimization problem, the grooved evaporator wick structure design is simplified to an
Area-to-line (AL) constructal optimization problem. Later (in 2022), they publish a integrated topol-
ogy optimization study [178] for vapor chambers working on both evaporator and condenser. The
micro-channels or wick structures are build using generative topology optimization with a bifurca-
tion rule. Hierarchical capillary flow channels are produced which minimize global resistance for
AP and AL flow problems.

Here we demonstrate first the adjoint-state model (in section 5.1) for changing the porous me-
dia structure i.e. topology optimization. Later, we discuss the possibility of another optimization
variable/parameter i.e. wettability and develop an adjoint-state model in section 5.2.

5.1. Multiphase topology optimization

For this class of problems in topology optimization, the design variable remains same as previously,
i.e., the level-set function (Ψ ). Here in topology optimization for interfacial flows, the objective is
to generate a porous media/wick structure or network of solid nodes. The solid structure should
it be such that minimizes a cost function in the context of the unsaturated/multiphase flow. The
preliminary (for this thesis) objective is to increase the capillary force generated by modifying a
solid structure (of homogeneous wettability) of the porous media/wick. The Lagrange function is
again described by eq. (3.15). Due to unresolved issues regarding the boundary conditions for the
interfacial flows, we downscale our problem such that, we in this thesis, utilizes solely the periodic
boundary conditions. Hence we neglect the residue of the boundary condition (P = 0) and the cost
functions exists exclusively in the domain (Y ). The semi-discretized (discretized only in velocity)
residue of the LBM governing differential equation for SCMP-SC (model H1) is given as:

Ri(f,Ψ ) =
∂fi
∂t

+ ei · ∇r fi +ai · ∇e fi +
1
τ

(
fi − f

eq
i

)
= 0 ∀ i ∈ [0, . . . ,8] (5.1)

Using the Exact difference method (EDM) forcing scheme [89] we rewrite the above continuous
equation as:

Ri(f,Ψ ) =
∂fi
∂t

+ ei · ∇r fi −Fedm,i +
1
τ

(
fi − f

eq
i

)
= 0 ∀ i ∈ [0, . . . ,8] (5.2)

Now, EDM forcing term (from eq. (2.85)) can be expanded as:

Fedm,i = ̂f eq,+
i − f̂ eq

i (5.3)

where f̂ eq = f̂ eq(ρ,u) = f eq(f,Ψ ), ̂f eq,+ = f̂ eq(ρ,u+∆u) and ∆u = FT∆t/ρ. For the scope of this thesis
(as mentioned previously), the fluid-fluid interparticular force (F p), solid-fluid interparticular force
(F s) and gravitational body force (F body = ρggrav) constitute the external force (FT).

5.1.1. Derivation of adjoint-state model

Here we describe the process for deriving the adjoint-state model for the SCMP-SC. As explained
previously, the (aA2) term in eq. (3.16) gives us the adjoint-state model:

(aA2) =
∑
j

∂L
∂fj

f ′j = 0 =
∑
j

〈
∂Y

∂fj
f ′j ,1

〉
D

∣∣∣∣∣
t=tf︸                    ︷︷                    ︸

bB1

+
∑
i

〈∑
j

∂Ri
∂fj

f ′j , f̊i

〉
D×T︸                          ︷︷                          ︸

bB2

(5.4)
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Let us first develop the bB2 term:

(bB2) =
∑
i

〈∑
j

∂Ri
∂fj

f ′j , f̊i

〉
D×T

=

〈∑
i

∂f ′i
∂t
, f̊i

〉
D×T︸                 ︷︷                 ︸

bC1

+
〈∑

i

ei · ∇f ′i , f̊i
〉
D×T︸                     ︷︷                     ︸

bC2

+
〈∑

i

τ−1f ′i , f̊i

〉
D×T

−
〈∑

i

∑
j

τ−1∂f
eq
i

∂fj
f ′j , f̊i

〉
D×T︸                                ︷︷                                ︸

bC3

−
〈∑

i

∑
j

∂̂f eq,+
i

∂fj
f ′j , f̊i

〉
D×T︸                              ︷︷                              ︸

bC4

+
〈∑

i

∑
j

∂f̂ eq
i

∂fj
f ′j , f̊i

〉
D×T︸                            ︷︷                            ︸

bC5

(5.5)

The terms bC1 is expanded using integration by parts, while the term bC2 is resolved using the
Green’s theorem. Now the terms bC3, bC4 and bC5 (can be essentially be treated in the same manner
as this are f eq and) can be rearranged by permutation of indices. The objective of this expansion of
the term bB2 is to obtain a final equation where the common factor i.e. f ′i is segregated from the
remainder of the equation. Thus the expanded version:

(bB2) = −
〈∑

i

∂f̊i
∂t
,f ′i

〉
D×T

+
[〈∑

i

f̊i , f
′
i

〉
D

]t=tf
t=0︸                 ︷︷                 ︸

bD1

−
〈∑

i

ei · ∇f̊i , f ′i

〉
D×T

+
∑
β

〈∑
i

ei ·nf̊i , f ′i

〉
Γβ ×T︸                          ︷︷                          ︸

bD2

+
〈∑

i

τ−1f ′i , f̊i

〉
D×T

−
〈∑

i

∑
j

τ−1
∂f

eq
j

∂fi
f ′i , f̊j

〉
D×T

−
〈∑

i

∑
j

∂̂f eq,+
j

∂fi
f ′i , f̊j

〉
D×T

+
〈∑

i

∑
j

∂f̂ eq
j

∂fi
f ′i , f̊j

〉
D×T

(5.6)

As before bD1 = 0 gives us the initial condition, while the term bD2 is applied to all boundary
conditions. Gathering all terms existing in the phase space D×T , we write:

∑
i

〈
−
∂f̊i
∂t
− ei · ∇f̊i + τ−1f̊i − τ−1

∑
j

∂f
eq
j

∂fi
f̊j −

∑
j

∂̂f eq,+
j

∂fi
f̊j +

∑
j

∂f
eq
j

∂fi
f̊j , f

′
i

〉
D×T

= 0 ∀f ′i (5.7)

One way to get this equality is to choose:

−
∂f̊i
∂t
−ei ·∇f̊i +τ−1f̊i −τ−1

∑
j

∂f
eq
j

∂fi
f̊j −

∑
j

∂̂f eq,+
j

∂fi
f̊j +

∑
j

∂f
eq
j

∂fi
f̊j = 0 ∀r ∈ D, ∀t ∈ (0, tf ), ∀i (5.8)

This can be rewritten as:

∂f̊i
∂t̊

+ e̊i · ∇f̊i +
f̊i − f̊

eq
i

τ
− F̊edm,i = 0 ∀r ∈ D, ∀t ∈ (0, tf ), ∀i (5.9)

This is the adjoint-state equation for the SCMP-SC model (i.e. H1).
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5.1.2. Adjoint EDM forcing

Previously we already defined the adjoint-state equilibrium distribution function (see paragraph
3.2.2.a.1). Thus the only additional part which requires a derivation is the EDM forcing scheme.
The EDM forcing for adjoint-state is essentially difference of the two corresponding equilibrium
terms differentiated by the Boltzmann variable and given as:

F̊edm,i =
∑
j

∂̂f eq,+
j

∂fi
f̊j −

∑
j

∂f
eq
j

∂fi
f̊j (5.10)

From eq. (3.51) we can write:

F̊edm,i =
∑
j

∂̂f eq,+
j

∂fi
f̊j − f̊

eq
i (5.11)

Recalling that the adjoint equilibrium (f̊ eq) is given as eq. (3.51). We can expand the unresolved
term in the R.H.S. as:

F̊edm,i = −f̊ eq
i +

∑
j

wj f̊j
∂
∂fi

ρ+ 3αρej ·u+ 3αej · FT +
4.5α
ρ

∑
k

fkekej + ej · FT


2

− 1.5α
ρ

∑
k

fkek + FT


2

(5.12)

F̊edm,i = −f̊ eq
i +

∑
j

wj f̊j

(
∂
∑
k fk

∂fi
+ 3α

∂ej ·
∑
k fkek

∂fi
+ 3α

∂ej · FT

∂fi

+4.5α
∂
∂fi

(
∑
k fkek · ej )2∑

k fk
+ 2× 4.5α

∂
∂fi

(
∑
k fkek · ej )(ej · FT)∑

k fk
+ 4.5α

∂
∂fi

(ej · FT)2∑
k fk

−1.5α
∂
∂fi

(
∑
k fkek)

2∑
k fk

− 2× 1.5α
∂
∂fi

∑
k fkek · FT∑

k fk
− 1.5α

∂
∂fi

(FT)2∑
k fk

)
(5.13)

F̊edm,i = −f̊ eq
i +

∑
j

wj f̊j
(
1 + 3αej · ei + 3αej ·∂fi [FT]

+4.5α[2(ej · ei)(ej ·u)− (ej ·u)2] + 2× 4.5α
[

(
∑
k fkek · ej )(ej ·∂fi [FT])∑

k fk
+ (ej · FT)

∂
∂fi

(
∑
k fkek · ej )∑

k fk

]
+4.5α

2(ej · FT)(ej ·∂fi [FT])∑
k fk

−
(ej · FT)2

(
∑
k fk)2


−1.5α[2ei ·u− (u)2]− 2× 1.5α

[∑
k fkek ·∂fi [FT]∑

k fk
+ FT ·

∂
∂fi

∑
k fkek∑
k fk

]
−1.5α

[
2FT∂fi [FT]∑

k fk
−

F 2
T

(
∑
k fk)2

])
(5.14)
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F̊edm,i = −f̊ eq
i +

∑
j

wj f̊j
(
1 + 3αej · ei + 3αej ·∂fi [FT]

+4.5α[2(ej · ei)(ej ·u)− (ej ·u)2] + 2× 4.5α
[
(u · ej )(ej ·∂fi [FT]) + (ej · FT)

[
(ei · ej )∑

k fk
−

(
∑
k fkek · ej )

(
∑
k fk)2

]]
+4.5α

2(ej · FT)(ej ·∂fi [FT])

ρ
−

(ej · FT)2

ρ2


−1.5α[2ei ·u− (u)2]− 2× 1.5α

[
u ·∂fi [FT] + FT ·

[
ei∑
k fk
−

∑
k fkek

(
∑
k fk)2

]]
−1.5α

[
2FT∂fi [FT]

ρ
−
F 2

T

ρ2

])
(5.15)

Thus we can write:

F̊edm,i = −f̊ eq
i +

∑
j

wj f̊j
(
1 + 3αej · ei + 3αej ·∂fi [FT]

+4.5α[2(ej · ei)(ej ·u)− (ej ·u)2] + 2× 4.5α
[
(u · ej )(ej ·∂fi [FT]) +

ej · FT

ρ

[
(ei · ej )− (u · ej )

]]
+4.5α

2(ej · FT)(ej ·∂fi [FT])

ρ
−

(ej · FT)2

ρ2


−1.5α[2ei ·u− (u)2]− 2× 1.5α

[
u ·∂fi [FT] +

FT

ρ
· [ei −u]

]
−1.5α

[
2FT∂fi [FT]

ρ
−
F 2

T

ρ2

])
(5.16)

Removing common terms form both f̊ eq, we end up with:

F̊edm,i =
∑
j

wj f̊j

(
3αej ·∂fi [FT] + 2× 4.5α

[
(u · ej )(ej ·∂fi [FT]) +

ej · FT

ρ

[
(ei · ej )− (u · ej )

]]

+4.5α

2(ej · FT)(ej ·∂fi [FT])

ρ
−

(ej · FT)2

ρ2

− 2× 1.5α
[
u ·∂fi [FT] +

FT

ρ
· [ei −u]

]
− 1.5α

[
2FT∂fi [FT]

ρ
−
F 2

T

ρ2

]
(5.17)

5.1.2.a. Differentiation of composite force

From eq. (2.65) we can rewrite the continuous form of fluid-fluid force as:

F p = −G∇ψ2/2 (5.18)

and likewise the continuous form of solid-solid interparticular force

F s = −Gψ∇ψsolid (5.19)

where ψsolid = ψ(ϑ)
∣∣∣
ϑ∈Ds

. Also the gravitational body force in this case is given as :

F body = ggravρ (5.20)

Now as described previously, the total force is expanded as FT = F p + F s + F body. Hence, the differ-
entiation of the source FT with respect to the state parameter fi is given here:

∂fi [FT] =
∂FT

∂fi
=
∂(F p + F s + F body)

∂fi
= −G∇

[
ψ
∂ψ

∂fi

]
−G

[
∂ψ

∂fi

]
∇ψsolid + ggrav (5.21)
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Now, the pseudopotential ψ is given as:

ψ =

√
2(peos − ρe2

s )

Ge2
s

(5.22)

Hence the differentiation of the pseudopotential is:

∂fi [ψ] =
∂ψ

∂fi
=

(
2peos − 2ρe2

s

Ge2
s

)−0.5 (
e−2
s G

−1∂peos

∂fi
−G−1

)
(5.23)

where G is the continuous version of G. Also, where the pressure equation is given as:

peos = ρRT
1 + bρ/4 + (bρ/4)2 − (bρ/4)3

(1− bρ/4)3 − aρ2 (5.24)

Hence its differentiation w.r.t. the state parameter fi is given as:

∂peos

∂fi
= −2aρ+RT

1 + 2bρ/4 + 3(bρ/4)2 − 4(bρ/4)3

(1− bρ/4)3

+ (3RT )
bρ/4 + (bρ/4)2 + (bρ/4)3 − (bρ/4)4

(1− bρ/4)4 (5.25)

5.1.3. Gradient calculation

The gradient calculation follows the same pattern as before. As mentioned previously, bA3 gives
us the expression for computing the optimization gradient. Both the cost function (J ) and the
boundary residue (P ) are independent of the design variable α. Thus we obtain:

(bA3) =
∂L
∂Ψ

Ψ ′ = 〈∇Ψ J ,Ψ ′〉D ×T =
〈
Ψ ′ ,α′

∂Y

∂α

∣∣∣∣∣
t=tf︸       ︷︷       ︸

bE1

+α′
∑
i

∂Ri
∂α

f̊i︸         ︷︷         ︸
bE2

〉
D×T

(5.26)

Now the term bE1 depends on the cost function acting in the domain of interest is a function of the
design variable (and this is most likely the case). Likewise in the term bE2 the design variable only
appears in the LBM residue (R) where the equilibrium distribution function, i.e. in the collision
term and the EDM forcing term. Hence for the SRT model we can expand bE2 for each node as:

(bE2) =
∑
i

wi f̊iρ
[
1− 1

τ

](
3ei ·u+ 4.5(ei ·u)2 − 1.5(u)2

)
−
∑
i

wi f̊iρ

3ei ·
[
u+

FT

ρ

]
+ 4.5

(
ei ·

[
u+

FT

ρ

])2

− 1.5
[
u+

FT

ρ

]2 (5.27)

The gradient is then used for updating the level set function using the eq. (3.26).

5.2. Topology trait optimization – wettability optimization

For this class of problems we propose to utilize the wettability profile of the topology as a control
parameter for optimization. To draw a distinction between modifying the topological structure and
modifying its properties/traits we label this algorithm as topology trait optimization. While it is the
case for some properties to act across the structure, here we are limited to the surface of the structure
as wettability is a surface property. As mentioned in chapter 4, SCMP-SC allows us to quantify
wettability in terms of the pseudo-density (of the solid nodes). Hence the design variable here is
pseudo-density. The objective is to have the best distribution of contact angle or more precisely the
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wettability such that it corresponds to the minimum of a cost function. The Lagrange function for
this problem is given as:

L(ρw,f, f̊) = J +
8∑
i=0

〈
Ri , f̊i

〉
D×T +

∑
β={in,out,bb}

 3∑
i=1

〈
Pβ(i), f̊β(i)

〉
Γβ ×T

 (5.28)

Thus the stationary point can be found as:

L′ =
∑
j

∂L
∂f̊j

f̊ ′j︸     ︷︷     ︸
bF1

+
∑
j

∂L
∂fj

f ′j︸     ︷︷     ︸
bF2

+
∂L
∂ρw

ρ′w︸  ︷︷  ︸
bF3

= 0 (5.29)

5.2.1. Derivation of the adjoint-state model

As the simulation model (described by the LBM residue R) remains the same, the adjoint-state
model (described by the term bF2) also remains unchanged. Hence we refrain from repeating the
same derivation. The only changes required to obtain the new optimization algorithm is a difference
in the calculation of the gradient of the cost function and a difference update step.

5.2.2. Gradient calculation

Here the variable for optimization is different than the previous case. This will change the charac-
teristic of the gradient that will be found. Below are some observations regarding this optimization
algorithm:

• Unlike the previous (topology optimization) problems where we would like to see the gradient
on all nodes (even on the solid nodes as it could be interesting for removing some solid), in
this case we would only be interested to observe the gradient in the solid node. This is because
here we deal with a solid property or actually with a perceived attribution of the property to
the solid via the pseudo-density.

• Ideally in this case we would want the dynamics of the fluid domain dictating the change in
the nature of the solid and hence somehow connecting with the cost function gradient in the
fluid. More specifically, we intend to modify only the strength of the fluid-solid interactions
between the neighboring fluid-solid node pair. For a fluid node this would be a fraction of its
total interparticular force components.

• Thus the only manner of connecting the physical solution for the fluids to the solids would
be therefore to consider (from the point of view of the solid node) that the gradient of cost
function at a local solid node depends on the contributions/effects of the surrounding fluid
nodes. Thus gradient would be non-zero only at Γs i.e. only the boundary nodes thus having
surface contact angle (θ(ρw)) defined.

• For the current case as the variables does not remain the same (i.e. ρw instead of α) the mean-
ing of the gradient also changes. In other words if the gradient of the cost function previously
decided the solidness, now it decides the strength of the solid-fluid interaction force and hence
the contact angle (which is a byproduct).

For the purpose of the derivation of the cost function gradient in this context, let us define:

• Df the domain where fluid stands (either in liquid or vapor state);

• Ds the domain where solid stands;

• D which is the full domain gathering both fluid and solid domains, ieDf∪Ds =D andDf∩Ds =
∅;
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5.2. Topology trait optimization – wettability optimization

• DFf is the restriction of Df which stands just next to the solid part:

DFf =
{
η ∈ Df | ∃ ϑ ∈ Ds such that |η −ϑ| ≤

√
2
}

• DFf is the complement of DFf in Df;

• DFs is the restriction of Ds which stands just next to the fluid part:

DFs =
{
η ∈ Ds | ∃ ϑ ∈ Df such that |η −ϑ| ≤

√
2
}

• DFs is the complement of DFs in Ds;

• DF is the domain on the solid-fluid interface: DF =DFf ∪D
F
s .

The control variable is the wettability of the solid phase confined next to the fluid phase ρw :
DFs →R. There is no much constraint on the regularity of this control variable except that it should
be finite. Thus, a natural space that can be chosen when extracting the cost function gradient is DFs
space which is a L2 space.

Definition 5.2.1. The following L2 spaces are associated with their corresponding inner prod-
ucts. ∫

DFf
UV dr = 〈U ,V〉DFf

(5.30)∫ tf

t=0

∫
DFf
UV dr dt = 〈U ,V〉DFf ×T

(5.31)∫
DFs
UV dr = 〈U ,V〉DFs

(5.32)∫ tf

0

∫
DFs
UV dr dt = 〈U ,V〉DFs ×T

(5.33)

The wettability control variable ρw is involved in the forward model Ri via the force FT which

is in turn involved in the forcing term F̊edm,i via ̂f
eq,+
j . Thus the only source terms that is explicit

functions of the wettability:

F s = F s(η ∈ D
F
f ) = −Gψ(η)

∑
k

ϑk=η+∆tek∈D
F
s

|ϑk−η|≤
√

2

wkψ(ϑk)ek (5.34)

We use the notation F s = F s(η ∈ D
F
f ) because the quantity F s depends on ρw, which is calculated

for all η ∈ DFf , also involves locations in the vicinity of η, i.e. for ϑ ∈ DFs , if the condition |ϑk−η| ≤
√

2
is satisfied.

In the process of cost function gradient extraction, we use the following:

∂L
∂ρw

ρ′w = 〈∇ρw
J ,ρ′w〉DFs ×T

=
∑
i

〈 ∂Ri
∂ρw

ρ′w, f̊i

〉
DFf ×T

∀ρw ∈ DFs ×T (5.35)

The differentiation of ̂f eq,+j with respect to the control variable ρw gives:

∂Rj
∂ρw

= − ∂
∂ρw

̂f
eq,+
j (5.36)
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Unlike the 1st optimization test case, α(Ψ ) is not a variable of optimization and hence we ignore
this variable henceforth.

∂
∂ρw

̂f
eq,+
j = wj

(
3ej ·∂ρw

[FT] +
9
2

(
(ej ·u)

(
2ej ·∂ρw

[FT]
)

+2
(
ej ·

FT

ρ

)(
ej ·∂ρw

[FT]
))
− 3

2

(
2u ·∂ρw

[FT] + 2
FT

ρ
∂ρw

[FT]
))

(5.37)

The differentiation of FT wrt ρw is:

∂ρw
[FT] =

∂FT

∂ρw
(η ∈ DFf ) = −Gψ(η)

∑
k

ϑk=η+∆tek∈D
F
s

|ϑk−η|≤
√

2

wk∂ρw
[ψ(ϑk)]ek (5.38)

where only for the force component do we have the ψ depending on the ρw:

∂ρw
[ψ] =

∂ψ

∂ρw
=

(
2peos − 2ρe2

s

Ge2
s

)−0.5 (
e−2
s G

−1∂peos

∂ρw
−G−1

)
(5.39)

where

∂peos

∂ρw
= −2aρw +RT

1 + 2bρw/4 + 3(bρw/4)2 − 4(bρw/4)3

(1− bρw/4)3

− 3RT
bρw/4 + (bρw/4)2 + (bρw/4)3 − (bρw/4)4

(1− bρw/4)4 (5.40)

We replace the discrete summation in forcing terms by its continuous counterpart (the wide tilde
over the quantity designs the continuous quantity), in order to perform later on a permutation of
integrals for further simplification:

F s ≈ F̃ s = −Gψ(η)
∫

ϑ∈DFs
|ϑ−η|≤

√
2

ψ(ϑ)e dϑ (5.41)

Now total force (FT) consists of body force (F b) and fluid-solid particle force (F s). Now as body force
is independent of ρw, the differentiation leaves with the derivative of the Shan and Chen particular
force (F s). Hence we can write:

∂FT

∂ρw
≈

�∂FT

∂ρw
= −Gψ(η)

∫
ϑ∈DFs
|ϑ−η|≤

√
2

∂ρw
[ψ(ϑ)]e dϑ (5.42)

Inserting this latter equation (5.42) into the differentiated equation (5.36) involved in (5.35), we
have ∀ρ′w ∈ DFs :

〈∇̃ρw
J ,ρ′w〉DFs

= −
∫ tf

t=0

∑
j

∫
η∈DF

wj f̊j

(
3ej + 9ej

(
ej ·u+

ej · FT

ρ

)
− 3

(
u+

FT

ρ

))
·

∂F̃T

∂ρw
ρ′w dη dt

(5.43)

After developing and factorization of the derivative term, we get:

〈∇̃ρw
J ,ρ′w〉DFs

= −
∫ tf

t=0

∑
j

∫
η∈DF

wj f̊j

(
3ej + 9ej

(
ej ·u+

ej · FT

ρ

)
− 3

(
u+

FT

ρ

))
·

−Gψ(η)
∫

ϑ∈DFs
|ϑ−η|≤

√
2

∂ρw
[ψ(ϑ)]ρ′we dϑ

 dη dt

(5.44)
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Now the condition on |ϑ − η| is applied on the other integral and we write:

〈∇̃ρw
J ,ρ′w〉DFs

= −
∫ tf

t=0

∑
j

∫
η∈DF

|ϑ−η|≤
√

2

wj f̊j

(
3ej + 9ej

(
ej ·u+

ej · FT

ρ

)
− 3

(
u+

FT

ρ

))
·

(
−Gψ(η)

∫
ϑ∈DFs

∂ρw
[ψ(ϑ)]ρ′we dϑ

)
dη dt

(5.45)

We further restrict of the integral to the neighboring fluid domain can be applied:

〈∇̃ρw
J ,ρ′w〉DFs

= −
∫ tf

t=0

∑
j

∫
η∈DFf
|ϑ−η|≤

√
2

wj f̊j

(
3ej + 9ej

(
ej ·u+

ej · FT

ρ

)
− 3

(
u+

FT

ρ

))
·

(
−Gψ(η)

∫
ϑ∈DFs

∂ρw
[ψ(ϑ)]ρ′we dϑ

)
dη dt

(5.46)

This is possible as only nodes would contribute to the fluid-solid interaction force and hence every-
where else in the domain it (the gradient) is zero. Next we modify the order the integral symbols:

〈∇̃ρw
J ,ρ′w〉DFs

=
∫ tf

t=0

∑
j

∫
ϑ∈DFs

G∂ρw
[ψ(ϑ)]ρ′w

∫
η∈DFf
|ϑ−η|≤

√
2

wj f̊j (η)
(
3ej + 9ej

(
ej ·u(η) +

ej · FT(η)

ρ(η)

)

−3
(
u(η) +

FT(η)
ρ(η)

))
· (ψ(η)e) dη dϑ dt

(5.47)

Finally, we permute of locations (symbols) between η and ϑ.

〈∇̃ρw
J ,ρ′w〉DFs

=
∫ tf

t=0

∑
j

∫
η∈DFs

G∂ρw
[ψ(η)]ρ′w

∫
ϑ∈DFf
|ϑ−η|≤

√
2

wj f̊j (ϑ)
(
3ej + 9ej

(
ej ·u(ϑ) +

ej · FT(ϑ)

ρ(ϑ)

)

−3
(
u(ϑ) +

FT(ϑ)
ρ(ϑ)

))
· (ψ(ϑ)e) dϑ dη dt (5.48)

This gives, for all η ∈ DFs :

∇̃ρw
J =

∫ tf

t=0

∑
j

G∂ρw
[ψ(η)]

∫
ϑ∈DFf
|ϑ−η|≤

√
2

wj f̊j

(
3ej + 9ej

(
ej ·u+

ej · FT

ρ

)
− 3

(
u+

FT

ρ

))
· (ψ(ϑ)e) dϑ dt

(5.49)
The discrete version of this gradient is the one we compute:

∇ρw
J

∣∣∣∣∣
r=η

=
∑
t

G∂ρw
[ψt(η)]

∑
j

∑
k

ϑk=η+∆tek∈D
F
f

|ϑk−η|≤
√

2

wj f̊
t
j (ϑk)

3ej + 9ej

ej ·ut(ϑk) +
ej · F tT(ϑk)

ρt(ϑk)



−3
(
ut(ϑk) +

F tT(ϑk)
ρt(ϑk)

))
·
(
ψt(ϑk)wkek

)
(5.50)
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Figure 5.1: Illustration: Contribution of the fluid-solid interaction force to a particular solid node
for obtaining the gradient of cost function (∇ρw

J )

∇ρw
J

∣∣∣∣∣
r=η

=
∑
t

G∂ρw
[ψt(η)]

∑
j

ej ·ek=−1

ϑk=η+∆tek∈D
F
f

|ϑk−η|≤
√

2

wj f̊
t
j (ϑk)

3ej + 9ej

ej ·ut(ϑk) +
ej · F tT(ϑk)

ρt(ϑk)



−3
(
ut(ϑk) +

F tT(ϑk)
ρt(ϑk)

))
·
(
ψt(ϑk)wkek

)
(5.51)

Thus we consider for a solid node η the fluid-solid contributions of all its neighboring fluid nodes
as shown in fig. 5.1. Finally we utilize this gradient for updating the wettability via the gradient
descent optimizer using eq. (4.4).

5.3. Conclusions

Here we demonstrate theoretical novelty by defining the new adjoint-state model for SCMP-SC for
topology optimization. We differentiate the interparticular force where the pressure is defined us-
ing the realistic Carnahan-Starling equation of state. After we explore the feasibility of developing
a wettability optimizer where the gradient is computed using the adjoint-state method for the op-
timization of wettability profile. One of the novelettes (in wettability optimization) is to obtain the
gradient value on solid node due to neighboring fluid nodes. Thereby the change in wettability
is coupled to physical changes/ behavior of the surrounding fluids. We spend significant amount
of time in the implementation of these adjoint-state models, but our results are currently deemed
unsatisfactory (as these could not be verified) at the time of writing this thesis.
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Chapter 6
Conclusion & perspectives

The context for the selection of the topic of the thesis was a research interest (of the local team
at LTEN, Nantes Université) in proton exchange membrane fuel cell. The fuel cell is deemed as a
promising technology though it poses certain challenges for a wider commercial adoption. One such
challenge is to achieve a water balance in the gas diffusion layers of the fuel cell. As water released
after consummation of H2 hydrates the membrane (keeping its proton resistivity at the minimum),
the efficiency of the cell is maintained high. If the excess water is not channeled out, it would choke
out the gas supply (H2 and O2) to the catalytic layers, hence shutting down the fuel cell reaction.
Thus the initial objective of the thesis was to design/modify the gas diffusion layer (GDL) based
on a mathematical tool (i.e. the topology optimization). In other words one is required to build
an optimization algorithm or an optimizer which is competent for suggesting designs based on an
objective function (i.e. the cost function).

Any optimizer requires a physical model for capturing the relevant phenomenon. The numerical
simulation for multiphase/interfacial flows could be divided into two categories: top-to-bottom ap-
proach model and bottom-to-top approach model. In the former category we have the macroscopic
models often coupling the Navier-Stokes equation and interface tracking methods the most widely
used among these models are the Volume of fluid (VOF) and the level set models. In the latter cate-
gory the interaction forces are prescribed from which we derive macroscopic parameters, common
methods are: molecular dynamics and mesoscopic methods like Van der Waal model and the lattice
Boltzmann method.

The most extensively used multiphase LBM model i.e. the pseudopotential model exhibits a dif-
fusive interface being devoid of the interface tracking equations. The interface of this model is a
result of the interparticular (i.e. mesoscopic) forces. The pseudopotential model is known for its
simplicity and efficiency as it does not employ the Poisson pressure equation. Thus the data from
the neighboring nodes is only required for calculation of interparticular forces. This allows us to
leverage the otherwise highly paralleizable algorithm, running the codes on NVIDIA GPU cards us-
ing the CUDA interface. Depending upon the problem at hand, one could accelerate the codes upward
of 50 times when compared to a C program running on a single processor. LBM is as such better
suited for GPU styled paralleization i.e. huge amount of threads running concurrently. Though the
thesis is silent on the coding aspect, it plays an important role in deciding the appropriate LBM
model for optimization. In summary we choose the single component multiphase pseudopotential
(SCMP-SC) model for modeling the physics which would later be fed as an input to the optimization
algorithm. It is commonplace for an optimizer to require multiple reruns of the physical simulation
(i.e. forward problem), which all the more underlines the requirement of a lightweight solver.

Further in chapter 2, various extension or modification to SCMP-SC (like multirange model,
forcing schemes, equation of state (EOS), higher order discretization of pseudopotential and etc)
are discussed. Here we choose the Carnahan-Starling (CS) EOS and exact difference method forc-
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ing scheme (EDM) for greater stability and lower spurious currents. The parameter values fixed
both a priori and a posteriori the physical simulations aid in comparing the performance of different
modification/extension. To summarize, the multirange model (H2) in addition with the CS EOS and
EDM forcing scheme performs consistently better having lower spurious currents which reflects in
the stability of the forward problem. The results regarding the Laplace law and the correlation be-
tween static contact angle (θstat) and pseudo-density (ρw) for the wall are consistent across different
models. These parameter values are further used for replicating/modeling complex phenomena i.e.
setup a simulation. After setting up the parameter values we demonstrate the motion of a droplet
on an ideal horizontal wettability gradient surface (WGS). The benchmark simulation for validating
the competence of SCMP-SC for modeling droplet motion is to model asymptotic velocity on a low
intensity WGS. Here very small hydrophilic wettability gradients we obtain a linear correlation be-
tween the migration/asymptotic velocity and the gradient of the cosine of the static contact angle as
indicted in eq. (2.100). Also the constant of proportionality αv = 0.28 (in eq. (2.100)) was recovered
for hydrophilic wettability distributions against a value of αv = 0.33 obtained in [1].

Next, we validate the rise of the liquid column in the capillary tube by measuring the error
(w.r.t a real world air-water capillary height, via dimensionless numbers) after the column attains
the Jurin height. Here we observe the compressibility of the vapor phase for the SCMP-SC, which
was mitigated by increasing the vapor kinematic viscosity by 40%. Now as the diameter of the
capillary tube increases (for a low viscous wetting fluid) then, we observe capillary oscillations in
the height of the liquid column. These oscillations (with increasing tube diameter) increases both in
amplitude (w.r.t the Jurin height) and frequency and is an indicator for the presence of an inertial
component of the initial acceleration of the meniscus when the wetting fluid interface is introduced
in the capillary tube. Thus we demonstrate the ability of the SCMP-SC solver/model to capture
non-linear or dynamic phenomenon.

After these simulations we started working with the open boundaries for the SCMP-SC model,
which were essential for modeling the GDL. The major cases modeled were the normal tube (for
drainage and imbibition), the droplet in a channel flow, the stepped tube and the preferred path-
way tube. We chose the continuum boundaries (Neumann and convective BCs) for the outlets and
used ZH and Ladd’s BCs for the velocity inlets. The results obtained for the aforementioned sim-
ulations/cases are trustworthy only till the interface makes its way towards the outlet boundary.
Unphysical effects (i.e. a plurality of numerical artifacts) were observed mostly as the interface
reached in the vicinity of the boundary or crossed the boundary. Apart from this evaporation of the
liquid phase was observed at the interfacial fronts exposed to the outlets (only in the initial phase
of the simulation). Many workarounds were attempted but to no avail. After a significant time
and effort, the SCMP-SC provided by OpenLB (i.e. H4) was employed to recreate these unphysical
effects. Now this was partially successful as the pressure ZH caused evaporation but an apples to
apples comparison was difficult due to lack of the Neumann BC and the instability of the convective
BC (both for the in-house and the OpenLB codes). At any rate, at the time of writing this thesis we
remain unsuccessful in replicating the results of ref. [2] and ref. [3].

The porous media simulations for SCMP-SC (H1) has its own challenges, apart from the un-
physical effects observed due to the outlet boundaries the porous media simulation turn out to be
trustworthy and stable for simple porous media structures and for higher capillary number flows.
For these flows we observed linear saturation curve barring phenomena such as the Haines jump.
For very low capillary numbers (Ca ≤ 10−3), we observe condensation of liquid droplet at the outlet,
collapse of the vapor bubbles and instability of the code. Realizing the limitations of the current
SCMP-SC algorithm, we repeated the same test case using MCMP-SC (i.e. H5) for log |Ca| = −4.25
and finally obtained the desired result similar to the experimental results. These limitations of
the SCMP-SC scaled down the initial objective (of the thesis) of the working on the GDL (porous
media–with the PEMFC operating in the capillary fingering regime (refer fig. 2.27)–with the open
boundary conditions) to working on an application where the open boundaries are not present (pe-
riodic boundaries) or are not relevant to the application.

In chapter 3, after a brief introduction, we began by exploring the concepts regarding the topol-
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ogy optimization algorithm, i.e. the adjoint-state method, level-set function, line search optimiza-
tion and the optimizers. Here the only difference as compared to ref. [40] is that we perform the
optimization for the compressible flow which remains essential having multiphase simulations in
mind. The level-set function (LSF) Ψ is used for representation of the solid domain (Ds), i.e.
wall boundaries. Here the LSF is not advected as is common for methods using LSF. But rather
it acts as a control variable which registers the cumulative change due to all the cost function
gradients calculated by an iterative optimization algorithm. In other words, the final level-set is
Ψ (†) = Ψ (0) − ξ(0)∇J (0) − · · · − ξ(nopt)∇J (nopt); where nopt is the optimization iteration number when
convergence is achieved, ξ is the step size used for a gradient of the cost function (i.e. ∇J ). Here the
gradient of cost function is calculated using the adjoint-state method. The adjoint-state equations
are approximately the mirror image of the governing equations of the model for which it is devel-
oped (in our case is the LBE). It enables us to compute the gradient with the computational expense
of the forward problem. Though it increases the mathematical complexity, its a worthwhile exer-
cise due to enormous speeding up of the optimization algorithm. Here we derive the adjoint-state
method using the Lagrange function. The Lagrange function allows us to accumulate the objec-
tive/cost function and the constraints (in our case, the only constraint is that the forward problem
should be satisfied) to form a kind of multi-objective zero constraint optimization problem. This
simplifies the mathematical treatment required for the optimization problem. The objective func-
tion as the name suggests is a mathematical articulation which represents an ideal/optimized sys-
tem for e.g. minimizing entropy would represent an optimized system/process. Once the gradient
of the cost function is obtained we use an optimization strategy, i.e. an optimizer in combination
with an optional line-search algorithm which should enable us to approach the desired minimum.
The optimization algorithm finally described in algorithm 3.

Next we derive the adjoint-state equations from the LBE. This also includes deriving adjoint-state
boundary conditions and initial conditions. As LBM is a naturally transient solver, its adjoint-state
model is also transient in nature. We discuss its implications by defining the concept of adjoint-state
time and also by delineating between forward problem where a transient phenomenon is of interest
(TOTFP) and also when only the final steady-state problem is of interest (TOSFP). The algorithm
for a TOSFP is later provided (algorithm 4). Lastly we conclude the chapter by demonstrating the
competence of the our optimization algorithm by applying it to a 90◦ pipe-bend case. This problem
is a TOSFP problem, where we apply competing components of the cost function i.e. a pressure
constraint (which prevents material allocation if the pressure difference were to increase) at the
inlet and a porosity constraint (which attempts to allocate material until the maximum porosity
defined is not achieved) all over the domain. We observe that material is allocated to the regions
with null or minuscule velocities and the directions of the allocation is along the axis of symmetry.

Now deviating from the discourse about topology optimization, in chapter 4, we make use of the
finite-difference based gradient optimization algorithm. The objective of this optimization problem
was to maximize the speed of the droplet (being propelled due to wettability gradient) on a flat
horizontal plate (i.e. a WGS). Here the strategy used for ensuring the robustness of the result is
to progressively refine the optimization mesh (by doubling the optimization elements/parameters)
when intermediary check for the convergence (of the results) is satisfied. This is the multiscale
parameterization as described in [171], which is different from the usual sense in which the term
multiscale is used. We also utilize dichotomy method for determining the step size (ξ)–i.e. the line
search algorithm–for the optimization gradient (∇J ). At any rate, we suggest an innovate manner of
looking into wettability as a control variable for a mathematical optimization algorithm (and) using
it conjointly with multiphase LBM solver. This is possible as the pseudopotential model (SCMP-
SC) allows for the quantification of wettability in terms of pseudo-density (i.e. the density of the
solid/wall). Here again we utilize the H1 model for the LBM solver.

The cost function employed for this problem computed the average velocity of the droplet based
on the center of gravity (CG) of the droplet. While the droplet CG aids in locating the droplet on the
flat plate (due motion only along the x-axis), it brings with it the limitation of not capturing the in-
formation of the curvature of the droplet. Meaning that droplets having different curvatures could
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Chapter 6. Conclusion & perspectives

have the same CG. One must be cognizant of this while determining the destination CG (i.e. the de-
sired CG, this value (C̃drop) is used for applying the constraint such that the droplet reaches the end
of the plate). Likewise a time constraint (I max

lbm ) is also applied to ensure that the simulation does
not run perpetually if the droplet is stuck and does not reach the desired CG. The value for these
constraints are determined after performing a pre-optimization study. Here the performance of five
different monotonous wettability profiles fig. 4.2a are analyzed, which also helps in ascertaining
good initial wettability profiles (i.e. starting points for the optimization algorithm). In summary we
determine that the linear (Υlin) and the quadratic convex (Υqcv) profiles are used for initial guesses.
Also the overall best performance (among the five different monotonous curves) is observed for the
Υqcv profile. Hence for the global optimum solution for the monotonous curves lies in the vicinity
of Υqcv.

After the determination of the constraint values we proceed with the optimization studies. For
the small plate, we demonstrate the competence of the multiscale parameterization (for L/D = 6.4
and density ratio of 30) by improving the average velocity of the droplet by 69%, as compared to
17% when computing gradient directly for the finest optimization mesh (i.e. with the most opti-
mization elements). We also observe that the algorithm introduces no wettability gradient (NWG)
zones/regions at the initial droplet position (IDP) and the final droplet position (FDP). This enables
to concentrate the pull-off potential of the WGS in the intermediate region (IR). Also a peak/surge
in wettability gradient is observed at the leading edge (LE) of the droplet at the IDP (with the local
wettability gradient spanning 10-20% into the IDP from the LE), which accelerates the droplet into
motion. This is followed by a steep decrease of wettability gradient (i.e. the local wettability gradi-
ent direction is contrary to droplet motion) which interestingly does not result in the pinning of the
droplet (due to droplet momentum). We also initiate the optimization using the quadratic convex
(Υqcv) and cubic convex (Υccv) to obtain similar results. Analyzing the performance of Υlin one can
recover the classical result: for constant gradient, when the droplet reaches the hydrophilic region,
it tends to spread, increasing the contact surface with the solid and consequently slowing down; the
optimized results succeed in preventing this trend, maintaining a higher final velocity.

Next, we vary the droplet size/diameter (D) for optimization studies with a medium plate such
that the L/D ratio of 5.12, 6.24 and 8.533 is obtained. Here we observe that the optimized final
curves were progressively smoothening with the increase in the L/D ratio. For the lower L/D ratio
we observe a peak at or near the LE when the droplet would be in the IDP i.e. a large force/jerk is
required for overcoming the inertia of the large droplet. Also bumps of similar magnitude helps to
maintain the momentum for the larger droplets. These results are obtained for individual droplet
diameter but in many instances we observe droplets having a range of diameters (Dmin to Dmax).
Thus we cross-check the performance of each curve for each droplet size and we observe that when
the droplet diameter is lower than the diameter for which the optimization results are obtained, then
the droplet does not reach the end of plate and gets stuck on the plate mostly where we have wet-
tability gradient in the direction contrary to the droplet motion or a no wettability gradient (NWG)
region. Hence this would also become hot-spots for droplet mergers (until such time when D > Dmin
is satisfied; where Dmin is diameter used for optimization) so as to finally observe motion. Hence
one should take care that in such instances when the diameter cannot be fixed, the optimization
should be carried out using the Dmin.

After this we present the results for the optimization with the same L/D ratio of 6.4 but with
the variation of the plate size i.e. small, medium and large for T /Tc = 0.75. Here it is observed
that as the plate size is increased the curve becomes more well defined with sharper bumps (peaks
and dips). This is despite the fact that the maximum element number remains same (qmax = 128)
i.e. minimum element size increase from 2 l.u. to 8 l.u.. We also perform a post-optimization study
which supports our previous observations. The performance of Υ2 and Υ5 is consistent for small
and medium plate sizes, while the Υ4 has the worst performance overall. Hence we can conclude
that multiscale optimization when performed on the medium plate size provides us with results i.e.
curves that have sufficient resolution. This curves replicate the performance of the higher resolution
(large plate size with same L/D ratio) curves for the most part. Hence a pragmatic trade-off in
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precision can be made for a reasonable computational effort.
Next we study the sensitivity of the optimization problem to the temperature and relative kine-

matic viscosity parameters, for a constant L/D ratio of 6.4 and medium plate. Here we observe that
with decreasing temperature T that the velocity of droplet increases due increased density ratio. In
other words with decreasing temperature the parameter/model sensitivity increases, which results
in better/improved prediction and competence of the optimization algorithm. Also in regards, to
the relative kinematic viscosity does not vary (to a large extent) the optimization results. In other
words this is not an optimization variable or the problem is invariant/independent w.r.t this vari-
able. This concludes the study, excerpts of which is published in the Physics of fluids journal.

In chapter 5, we demonstrate theoretical novelty by defining the new adjoint-state model for
SCMP-SC for topology optimization. Here we differentiate the interparticular force where the pres-
sure is defined using the realistic Carnahan-Starling equation of state. Next we explore the feasi-
bility of developing a wettability optimizer where the gradient is computed using the adjoint-state
method for the optimization of wettability profile. Another novelty (in the wettability optimiza-
tion) is that the gradient value on solid node is obtained due to neighboring fluid nodes. Thereby
the change in wettability is coupled to physical changes/ behavior of the surrounding fluids. We
spend significant amount of time in the implementation of these adjoint-state models, but our re-
sults are currently deemed unsatisfactory (as these could not be verified) at the time of writing this
thesis. This conclude the summary of the thesis.

Contribution of this thesis

Briefly, the contributions of this thesis are:

1. Using multiscale optimizer for discovering optimized wettability profiles of a horizontal plate
(for droplet motion on the plate) i.e. a WGS.

2. Developing wettability optimizer, using adjoint-state model for SCMP-SC.

3. Developing topology optimizer, using adjoint-state model for SCMP-SC.

What’s next?

The future research directions based on the results of the current thesis are:

• To validate the adjoint-state model results for both topology and wettability optimization

• To validate experimentally the results of the multiscale optimizer pertaining to the maximiza-
tion of the velocity of the droplet on a flat horizontal surface.

• To expand the simulation domain to 3D for applying topology optimization in porous media.
The current 2D simulations lack an assessment on fluid motion beyond a plane, which is es-
sential especially for optimization. An example of a limiting case would be if two points are
connected by the liquid phase in 2D (which would otherwise be modeled as a finger in 3D) to
form a continuous flow circuit, then, it would naturally be modeled as a barrier for the vapor
flow, which may not be the case in the 3D simulation.

• To apply topology optimization for heat exchanges with phase change. Work in this direction
has already commenced experimentally and numerically (using the phase-change model [3]
derived from the single component multiphase pseudopotential model).

• Working on implementing open boundary conditions for an SCMP-SC model and also includ-
ing an MCMP-SC model which are better suited for porous media simulations.
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Appendix A
LBM boundary conditions

A.1. Zou & He boundary condition

This boundary condition (BC) was originally suggested by [65] in 1996.

A.1.1. Velocity inlet BC

Let us assume a rectangular domain with the inlet at the west, as shown in fig. 2.3. So, we have 3
unknown distribution functions protruding inwards, i.e. f1, f5 and f8. It follows that the density at
those locations are unknown. In this case, the knowledge of the velocity at the inlet is required to
formulate expressions accordingly and find the unknowns. The first expressions are:

ρ =
∑
i

fi and u =
1
ρ

∑
i

eifi

The other expression is obtained by assuming bounceback is still correct for the non-equilibrium
part of the particle distribution, normal to the boundary. Hence, we obtain:

f1 − f
eq

1 = f3 − f
eq

3 (A.1)

f1 = f3 − f
eq

3 + f eq
1 (A.2)

Now, f
eq
i = wiρ(r, t)

(
1 +

ei ·u
e2
s

+
(ei ·u)2

2e4
s
− (u)2

2e2
s

)
(A.3)

therefore, f
eq

1 =
ρ

9

(
1 + 3ux +

9
2
u2
x −

3
2
u2
x

)
(A.4)

and f
eq

3 =
ρ

9

(
1− 3ux +

9
2
u2
x −

3
2
u2
x

)
(A.5)

Introducing eqs. (A.4) and (A.5) into eq. (A.2), we get:

f1 = f3 +
2
3
ρux (A.6)

The other equations can be expanded to obtain:

ρ = f0 + f1 + f2 + f3 + f4 + f5 + f6 + f7 + f8 (A.7)

ρux = f1 − f3 + f5 − f6 − f7 + f8 (A.8)

ρuy = f2 − f4 + f5 + f6 − f7 − f8 (A.9)
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A.1. Zou & He boundary condition

Putting eq. (A.6) into eq. (A.8), we get:

ρux = f3 +
2
3
ρux − f3 + f5 − f6 − f7 + f8

Rearranging we get:

f5 + f8 =
1
3
ρux + f6 + f7 (A.10)

Now, introducing eqs. (A.6) and (A.10) into eq. (A.7), we obtain:

ρ = f0 + f3 +
2
3
ρux + f2 + f3 + f4 + f6 + f7 +

1
3
ρux + f6 + f7

Thus,

ρ =
1

(1−ux)
(f0 + f2 + f4 + 2(f3 + f6 + f7)) (A.11)

Equation (A.9) can be rewritten as:

f5 − f8 = ρuy − f2 + f4 + f7 − f6 (A.12)

Summing eqs. (A.10) and (A.12) gives us:

2f5 = ρuy − f2 + f4 + f7 − f6 +
1
3
ρux + f6 + f7

Hence, rearranging we get:

f5 = f7 −
1
2

(f2 − f4) +
1
2
ρuy +

1
6
ρux (A.13)

Subtracting eq. (A.12) to eq. (A.10) gives us:

2f8 =
1
3
ρux + f6 + f7 − (ρuy − f2 + f4 + f7 − f6)

Hence, rearranging we get:

f8 = f6 +
1
2

(f2 − f4)− 1
2
ρuy +

1
6
ρux (A.14)

Thus we have found all unknowns using eqs. (A.6), (A.11), (A.13) and (A.14).

A.1.2. Pressure outlet BC

We can mention the inlet/outlet conditions in form of pressure if specific values of velocities at this
boundaries are not available. Assuming the pressure outlet boundary condition is applied to the
east boundary of the rectangular domain as shown in fig. 2.3. We obtain the density from pressure
values, and hence in this case, we have 5 unknowns, i.e. ux, uy , f3, f6 and f7. So, we would have to
assume a value for any one of the velocity components, and this depends on a case by case basis.
For this case, let us assume uy = 0. Equations (A.7) to (A.9) can be reused for deriving the boundary
conditions. The fourth and last expression is given in the same way assuming bounce-back for
normal distribution function directions. Therefore, we reproduce this equation:

f1 − f
eq

1 = f3 − f
eq

3

We finally obtain in the similar fashion:

f3 = f1 −
2
3
ρux (A.15)
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Appendix A. LBM boundary conditions

For, an ideal gas case (i.e. not multiphase scenario), the pressure is defined as p = e2
s ρ, and thus

we know the density. Equation (A.8) can be rewritten as:

f6 + f7 = f1 + f5 + f8 − ρux − f3 (A.16)

Introducing eq. (A.15) into this last equation, we get:

f6 + f7 =
(
f1 + f5 + f8 − ρux − f1 +

2
3
ρux

)
(A.17)

f6 + f7 =
(
f5 + f8 −

1
3
ρux

)
(A.18)

Substituting eqs. (A.15) and (A.18) into eq. (A.7), we obtain value for ux, as:

ρ = f0 + f1 + f2 + f1 −
2
3
ρux + f4 + f5 + f8 + f5 + f8 −

1
3
ρux

Rearranging, we obtain:

ux = −1 +
f0 + f2 + f4 + 2(f1 + f5 + f8)

ρ
(A.19)

Since, in our case uy = 0, eq. (A.9) can be rearranged and written as:

f6 − f7 = −f2 + f4 − f5 + f8 (A.20)

Thus, adding eq. (A.18) to eq. (A.20) gives us:

2f6 = f5 + f8 −
1
3
ρux − f2 + f4 − f5 + f8 (A.21)

Hence, rearranging we get:

f6 = f8 −
1
2

(f2 − f4)− 1
6
ρux (A.22)

Similarly, subtracting to eq. (A.18) eq. (A.20) gives us:

2f7 = f5 + f8 −
1
3
ρux + f2 − f4 + f5 − f8 (A.23)

Hence, rearranging we get:

f7 = f5 +
1
2

(f2 − f4)− 1
6
ρux (A.24)

Thus we have found all unknowns using assumption uy = 0, eqs. (A.15), (A.19), (A.22) and (A.24).
Now there are some special treatment mentioned for the Zou and He boundary condition at the cor-
ner nodes, but this has not been implemented in our codes.
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Appendix B
Standard interpolation equations for Υ

The equations described in fig. 4.2. Using the notations ρmax
w = ρ+ at r+

x , ρmin
w = ρ− at r−x , ∆ρ = ρ+−ρ−

and ∆rx = r+
x − r−x it is possible to write the interpolation equations as:

• Linear evolution (passes by both end points):

ρ1
w(rx) = ρ+ −

∆ρ

∆rx
(r+
x − rx)

• Quadratic convex (passes by both end points plus null derivative on r−x - no linear term):

ρ2,∪
w (rx) = ρ− +

∆ρ

∆r2
x

(r−x − rx)2

• Quadratic concave (passes by both end points plus null derivative on r+
x - no linear term):

ρ2,∩
w (rx) = ρ+ −

∆ρ

∆r2
x

(r+
x − rx)2

• Cubic convex (passes by both end points plus null derivative on r−x - no linear and quadratic
terms):

ρ3,∪
w (rx) = ρ− +

∆ρ

∆r3
x

(r−x − rx)3

• Quadratic concave (passes by both end points plus null derivative on r+
x - no linear and quadratic

terms):

ρ3,∩
w (rx) = ρ+ −

∆ρ

∆r3
x

(r+
x − rx)3
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Appendix C
The LBM framework

It is common for macroscopic methods to model the physics at the operational scale of the system.
This eliminates the process of (re)scaling the system, which is often the case while building an ex-
perimental prototype. It is a general practice to represent (relevant) physical quantities (pertaining
to the macroscopic phenomenon) in the framework of the metric system–here the exceptions arise
either due to an industrial standard (for e.g. inches in the piping industry) or due to regional pref-
erence (for e.g. pounds in the UK, gallons in the USA)–which is carried forward in most macroscopic
modeling paradigms.

Conversely, the lattice Boltzmann paradigm provides a mesoscopic description of the physics of
the system. This bottom-to-top approach breaks down the conventional manner of defining macro-
scopic quantities. An example of this is the definition of density of the fluid (ρ) which is essentially
in the LBM paradigm a sum of the particle/probability distribution function (f ) for all the relevant
velocity directions (or between relevant neighboring nodes). Though this definition gives us the
right sense of the quantity (i.e. density), its difference to the conventional definition i.e. mass per
unit volume is apparent. It is along these lines that one must consider that LBM models physics in a
different paradigm as compared to macroscopic models. This necessitates building a bridge connecting
the real and the mesoscopic worlds. This can be accomplished essentially in two ways: the former
requires usage of conversion factors and the latter requires usage of the dimensionless parameters.
Pragmatic choices for quantities used for conversion are time, length, velocity and density [48]. Once
the selection of the primary set of conversion factors is completed, other derived conversion factors
are retrieved using the relevant non-dimensional parameter formulations. In some of the cases (as
in thesis) we do not require a conversion factor as a direct mapping using relevant non-dimensional
parameter formulations is feasible.

Here we borrow from our source [48] an example, utilizing a non-dimensional parameter for-
mulation as a link between the real and the LBM worlds to provide a hands-on example.

Example C.0.1. Liquid glycerol with density ρliq = 1260 kg/m3 and kinematic viscosity νliq =
8.49× 10−4 m2/s is flowing in a vertical pipe of diameter d = 0.015 m in the gravitational field
where ggr = 9.81 m/s2. It is required to simulate an air bubble in the liquid with radius Rbub =
0.004 m and large density contrast, ρliq/ρvap >> 1. The Reynolds number is defined according
to the flow observed in the absence of the bubble.

Re =
Umaxd
νliq

=
ggrd

3

4νliq
= 11.5

The surface tension of glycerol in air at 20◦C is σ = 6.34×10−2 N/m resulting in Bo = 6.24. (Note
that the confinement xx := 2Rbub/d = 0.533 is also a relevant dimensionless parameter which can
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Type of units Description Nomenclature

Fundamental
Lattice length unit l.u.
Lattice mass unit m.u.
Lattice time unit t.s.

Derived Force, velocity & etc ‘units’

Table C.1: Nomenclature for LBM units in literature

be easily mapped to the lattice as it is merely the ratio of two length scales). How should the
problem of selection of different simulation parameters should be approached?

We start by setting dlbm = 30 l.u. and Rbub, lbm = 8 l.u. obeying the confinement scaling. The
Reynolds number Re = Relbm therefore restricts the ratio of gravity and viscosity:

ggr, lbm

ν2
liq, lbm

=
4Re

d3
lbm

= 1.7× 10−3

After, we choose ∆ρlbm = 1 and from the Bond number:

σlbm

ggr, lbm
=

2∆ρlbmR
2
bub

Bolbm
= 40.5

Thus we have one degree of freedom left because the choice of the three parameters ggr, lbm,
νliq, lbm and σlbm are restricted by two conditions. Now we can set the surface tension first:
σlbm = 0.06 (For the model in the thesis we obtain this value a posteriori and this value remains
fixed ). This gives ggr,lbm = 2.93 × 10−3 and therefore νliq, lbm = 1.31 and τlbm = 4.44. Addi-
tionally, we find that the maximum velocity Umax, lbm = 0.50 units. These parameters are not
acceptable and the velocity and viscosity have to be reduced to attain the desired result. Hence
we repeat this process iteratively until an acceptable set of values are arrived upon. Different
approaches can be utilized to balance the simulation parameters. Here, one only has to keep
in mind, the intrinsic limitation of each numerical method which make certain combinations
of dimensionless numbers (in this case: Re, Bo, xx) unfeasible if not impossible to access in a
simulation.

Throughout the manuscript we have utilized non-dimensional numbers like Reynolds number
(Re), Capillary number (Ca) and Bond number (Bo) for different simulations. Here, as previously
mentioned in chapter 2, we use a standard space and time resolution i.e. ∆x = ∆y = 1 l.u. and
∆t = 1 t.s.. Table C.1 provides us with the notations (for LBM units) used in literature. Here the
aim is not to rename all units, but rather we only make mention of the fundamental units and label
all other derived units as ‘units’. Thus in summary, a squared structured mesh with constant time
stepping and finite difference discretization along with an explicit solver was used for modeling the
physics of the interfacial flows in the LBM paradigm.
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Titre : Optimisation topologique en flux interfaciaux avec le modèle pseudopotential 

Mots clés :  optimisation topologique, écoulements multiphasiques, méthode de lattice Boltzmann, 
mouvement des gouttelettes, optimisation multi-échelle, modèle pseudopotential. 

Résumé :  L'optimisation des systèmes et des 
processus est un exercice qui s'effectue en 
tenant compte de l'expérience et des 
connaissances de chacun. Nous explorons ici 
une approche mathématique pour optimiser les 
problèmes physiques en utilisant divers 
algorithmes d'optimisation. Dans cette thèse, 
l'objectif préliminaire de l'optimiseur est de 
modifier les caractéristiques d'écoulement du 
système en ajustant les forces capillaires. Cet 
objectif peut être atteint en modifiant l'un des 
deux ensembles de paramètres : (a) en 
introduisant un matériau solide mouillant 
(paramètre de niveau) ou (b) en changeant la 
mouillabilité des surfaces solides existantes 
(paramètre de mouillabilité).   
Nous proposons que le premier ensemble de 
paramètres soit modifié à l'aide de l'algorithme 
d'optimisation topologique, où le gradient de la  

fonction de coût est obtenu en résolvant un 
modèle d'état adjoint pour le modèle mono-
composant multiphase de Shan et Chen 
(SCMP-SC). De même, nous proposons que 
ce dernier ensemble de paramètres soit 
modifié à l'aide de l'algorithme d'optimisation 
de la mouillabilité, où nous dérivons à nouveau 
un modèle d'état adjoint pour le modèle SCMP-
SC. Enfin, nous utilisons un algorithme 
d'optimisation multi-échelle, dans lequel nous 
calculons le gradient de la fonction de coût à 
l'aide de la différence finie. Nous avons réussi 
à démontrer la compétence de cet optimiseur 
pour maximiser la vitesse moyenne d'une 
gouttelette 2D jusqu'à 69%.  

 

Title : Topology optimization in interfacial flows using the pseudopotential model. 

Keywords : topology optimization, multiphase flows, lattice Boltzmann method, droplet motion, 
multiscale optimization, pseudopotential model. 

Abstract :  The optimization of systems and 
processes is an exercise that is carried out 
taking into account one’s experience and 
knowledge. Here we explore a mathematical 
approach to optimize physical problems by 
utilizing various optimization algorithms. In this 
thesis, the preliminary objective of the optimizer 
is to modify the flow characteristics of the 
system by tweaking the capillary forces. This 
could be accomplished by modifying either of 
the two sets of parameters: (a) by introducing a 
wetting solid material i.e. the level-set parameter 
or (b) by changing the wettability of the existing 
solid surfaces i.e. the wettability parameter.   
We propose that the former set of parameters 

could be modified using the topology 
optimization algorithm, where the gradient of the  

cost function is obtained by solving an adjoint-
state state model for the single component 
multiphase Shan and Chen (SCMP-SC) model. 
Similarly, we propose that the latter set of 
parameters are modified using the wettability 
optimization algorithm where we again derive an 
adjoint-state model for the SCMP-SC. Lastly, we 
utilize a multiscale optimization algorithm, where 
we compute the gradient of the cost function 
using the finite difference. We have succeeded 
in demonstrating the competence of this 
optimizer for maximizing the mean velocity of a 
2D droplet by up to 69%.  

 


	Acknowledgements
	Table of contents
	List of Figures
	List of Tables
	Nomenclature
	Résumé
	The big picture
	Interfacial flows with LBM
	Boltzmann equation
	Discretization for obtaining LBM
	Collision operator
	Single relaxation time (SRT) model
	Multiple relaxation time (MRT) model

	Streaming
	Boundary conditions (BC)
	Periodic BC
	Ghost nodes
	Wall BC
	Open BC


	Multiphase LBM models
	Color gradient model
	Phase field model
	Pseudopotential model
	Single component model (SCMP-SC)
	Multi-component model (MCMP-SC)


	Modification/Extension for the SCMP-SC
	Different equation of states (EOS)
	 Peng-Robinson (PR) EOS
	Carnahan-Starling (CS) EOS

	Different forcing schemes
	Guo forcing scheme
	Exact difference method (EDM) forcing scheme

	Multirange model
	Dependency of relaxation time () w.r.t fluid density
	Higher order discretization of pseudopotential ()
	Total force
	Gravitational forces
	Wettability for SCMP-SC


	Setting up of simulation model
	Parameter values fixed a priori
	Parameter values obtained a posteriori
	Coexistence curve
	Surface tension/Laplace law
	Contact angle simulations for SCMP-SC


	Wettability gradient surface (WGS)
	Asymptotic velocity of droplet

	Capillary tube
	Washburn without gravity
	Inertial capillarity

	Open boundaries
	Normal tube
	Velocity inlet - Neumann outlet (VI-BB-NO)
	Velocity inlet - pressure outlet (VI-BB-PO)
	Pressure inlet - pressure outlet (PI-BB-PO)

	Drop channel flow
	Stepped tube
	Preferred path

	Porous medium
	Graded porous simulations

	Conclusion

	Topology optimization in monophasic fluids
	Components of gradient optimization
	Lagrange function
	Adjoint-state method
	Level-set function
	Line search algorithm
	Optimizers

	Optimization model
	Forward (LBM) problem
	Derivation of the adjoint-state model
	Adjoint-state equation
	Wall (BB) boundary condition
	Inflow adjoint-state
	Outflow adjoint-state

	Updating the control parameter i.e. the level-set 

	The 90 pipe bend
	Setting up parameter values
	Cost function definition
	Result and discussions

	Conclusion

	The droplet race: optimizing a wettability gradient surface (WGS)
	Introduction
	Optimization problem set-up
	Cost function definition
	Lattice Boltzmann method
	Parameterization of control variables
	Optimizer
	Forward problem setup

	Prior to optimization
	Results and discussion
	Progressive refinement of the parameterization
	Sensitivity to the initial wettability profile
	Sensitivity to relative droplet and plate sizes
	Sensitivity to temperature and viscosity ratios
	Applicability of optimization results

	Conclusion

	Multiphase optimization
	Multiphase topology optimization
	Derivation of adjoint-state model
	Adjoint EDM forcing
	Differentiation of composite force

	Gradient calculation

	Topology trait optimization – wettability optimization
	Derivation of the adjoint-state model
	Gradient calculation

	Conclusions

	Conclusion & perspectives
	Appendix
	LBM boundary conditions
	Zou & He boundary condition
	Velocity inlet BC
	Pressure outlet BC


	Standard interpolation equations for 
	The LBM framework
	Bibliography


