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Titre: Test et estimation multiple de moyennes en grande dimension avec applications à l’apprentissage
automatique.
Mots clés: Grande dimension (effective), estimation multiple de moyennes, test de proximité, vitesse
minimax, kernel mean embedding, self-attention.

Résumé: Nous étudions dans cette thèse
l’influence de la grande dimension dans des
problèmes de test et d’estimation. Notre anal-
yse porte sur la dépendance en la dimension de
la vitesse de séparation d’un test de proximité et
du risque quadratique de l’estimation multiples
de vecteurs. Nous complétons les résultats ex-
istants en étudiant ces dépendances dans le cas
de distributions non isotropes. Pour de telles dis-
tributions, le rôle de la dimension est alors joué
par des notions de dimension effective définies
à partir de la covariance des distributions. Ce
cadre permet d’englober des données de dimen-
sion infinie comme le kernel mean embedding,
outil de machine learning que nous chercherons
à estimer. À l’aide de cette analyse, nous
construisons des méthodes d’estimation simul-
tanée de vecteurs moyennes de différentes dis-
tributions à partir d’échantillons indépendants de
chacune. Ces estimateurs ont de meilleures per-
formances théorique et pratique relativement aux

moyennes empiriques, en particulier dans des situ-
ations défavorables où la dimension (effective) est
grande. Ces méthodes utilisent explicitement ou
implicitement la relative facilité du test par rap-
port à l’estimation. Elles reposent sur la construc-
tion d’estimateurs de distances et de moments de
la covariance pour lesquels nous fournissons des
bornes de concentration non asymptotiques. Un
intérêt particulier est porté à l’étude de données
bornées pour lesquels une analyse spécifique est
nécessaire. Nos méthodes sont accompagnées
d’une analyse minimax justifiant leur optimalité.
Dans une dernière partie, nous proposons une in-
terprétation du mécanisme d’attention utilisé dans
les réseaux de neurones Transformers comme un
problème d’estimation multiple de vecteurs. Dans
un cadre simplifié, ce mécanisme partage des idées
similaires avec nos approches et nous mettons en
évidence son effet de débruitage en grande dimen-
sion.

Title: High dimensional multiple means estimation and testing with applications to machine learning.
Keywords: High (effective) dimension, multiple mean estimation, closeness testing, minimax rate,
kernel mean embedding, self-attention.

Abstract: In this thesis, we study the influence
of high dimension in testing and estimation prob-
lems. We analyze the dimension dependence of
the separation rate of a closeness test and of the
quadratic risk of multiple vector estimation. We
complement existing results by studying these de-
pendencies in the case of non-isotropic distribu-
tions. For such distributions, the role of dimen-
sion is played by notions of effective dimension
defined from the covariance of the distributions.
This framework covers infinite-dimensional data
such as kernel mean embedding, a machine learn-
ing tool we will be seeking to estimate. Using this
analysis, we construct methods for simultaneously
estimating mean vectors of different distributions
from independent samples of each. These esti-
mators perform better theoretically and practically

than the empirical mean in unfavorable situations
where the (effective) dimension is large. These
methods make explicit or implicit use of the rel-
ative ease of testing compared with estimation.
They are based on the construction of estimators
of distances and moments of covariance, for which
we provide non-asymptotic concentration bounds.
Particular interest is given to the study of bounded
data, for which a specific analysis is required. Our
methods are accompanied by a minimax analysis
justifying their optimality. In a final section, we
propose an interpretation of the attention mech-
anism used in Transformer neural networks as a
multiple vector estimation problem. In a sim-
plified framework, this mechanism shares similar
ideas with our approaches, and we highlight its
denoising effect in high dimension.
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tout en étant là au besoin. C’est une chance de vous avoir comme parents.

Alice, merci pour ton soutien constant. Cette thèse te doit énormément. Tu peux dire au revoir

aujourd’hui à cette colocataire parfois envahissante. Je suis impatient de la suite de nos aventures.

vi





Contents

I Introduction (English) 2

I.1 Estimation and testing in high dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 3

I.2 A high-dimensional tool: the Kernel Mean Embedding . . . . . . . . . . . . . . . . . . 8

I.3 Effective dimension . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

I.4 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

II Introduction (Français) 21
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I Introduction (English)

The analysis of large-scale data is a major current challenge in statistical and machine learning research.

Modern methods have access to and seek to process increasingly complex data (signals, texts, images,

videos, etc.). Although in some fields, this increase in data complexity comes with an increase in the

quantity of data, in others the number of data items is limited, and taking this complexity into account

becomes essential. A small amount of data, relative to its size, generally causes a loss of performance

known as the curse of dimensionality. This term, introduced by Bellman (1966), covers a wide range of

phenomena, some of which we will present below (see also Giraud, 2021).

In parallel with this loss of performance, small-dimensional intuitions are no longer necessarily relevant in

large dimensions, and some a priori more strange methods can become interesting. A fundamental and well-

known example of this type of phenomenon is the inadmissibility of the empirical mean in high dimension:

Stein (1956) shows that to estimate the mean vector of a Gaussian distribution, the empirical mean is not

efficient and exhibits a better estimator (James and Stein, 1961). This estimator, while having the same

rate of convergence in sample size as the empirical mean, outperforms it thanks to a weaker dependence

of its error on dimension. This example illustrates the need to include in the analysis of a problem not only

dependence on sample size, but also on the size or complexity of the space. To capture this dependence,

a non-asymptotic problem analysis is required. On the minimax side, the analysis of Pinsker (1980) shows,

for example, that the James-Stein estimator is optimal for a fixed sample size, and for the dimension of

the space tending to infinity. For testing problems, we find this consideration of dimension in the minimax

analysis of the signal detection problem of Baraud (2002) and Blanchard et al. (2018) for example. To

control the error of our methods and capture the effects of high dimensionality, we will use in this manuscript

concentration inequalities to obtain non-asymptotic bounds.

Even if the data originally belong to a high-dimensional ambient space, it has been observed that

they often actually live in lower-dimensional subspaces (vector subspace, submanifold, small numbers of

clusters. . . ), which makes the methods work. Although a data distribution is supported throughout the

space, some directions may be uninformative and just consist of noise. The difficulty of the problem is then

no longer characterized by the ambient dimension, but by notions of effective dimensions. These quantities,

justified by minimax analysis, take into account the covariance structure of the data and quantify the degrees

of freedom of a distribution. For example, we would like to say that a variable distributed on a straight

line immersed in a high-dimensional ambient space is only of dimension one. These notions are particularly

useful for analyzing functional data which, although in an infinite-dimensional space, may have a small,

finite effective dimension. For example, commonly used kernel methods inject data into a functional Hilbert

space (more precisely, a RKHS). In this case, the error of a method depends on the effective dimension

of the distribution. The notion of effective dimension makes it possible to analyze problems of finite and

infinite dimension simultaneously, and thus blurs the difference between parametric and non-parametric.

In this thesis, we will seek to understand the effects of high dimensionality on testing and estimation

problems, with a view to potentially improving these methods. This thesis consists of four works:

� the paper ”High-Dimensional Multi-Task Averaging and Application to Kernel Mean Embedding” in

collaboration with Hannah Marienwald and Gilles Blanchard published at AISTATS, (2021);

� the chapter ”Nonasymptotic One- and Two-Sample Tests in High dimension with Unknown Co-

variance Structure” in collaboration with Gilles Blanchard of Foundations of Modern Statistics:

Festschrift in Honor of Vladimir Spokoiny, which is a collection of original research paper, (2023);

� the preprint ”Estimation of multiple mean vectors in high dimension” in collaboration with Hannah

Marienwald and Gilles Blanchard, (2024);

� some first results on an analysis of the self-attention mechanism in high dimension in collaboration

with Gilles Blanchard.
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Main problems of the thesis: The primary issue addressed in this thesis is the simultaneous estimation

of mean vectors in high dimensions. We aim to estimate mean vectors, denoted as µk, corresponding to

various distributions Pk, all defined over a common Hilbert space H. This problem combines classical

statistical questions related to high-dimensional mean estimation, dating back to Stein (1956), with more

recent concerns in multi-task learning (MTL) (Bonilla et al., 2007; Micchelli and Pontil, 2004), where the

goal is to simultaneously perform multiple independent tasks that share similarities. Our specific task here

involves estimating mean vectors, which can be viewed as a simplified version of more complex problems

such as regression, classification, covariance estimation, or distribution estimation. In our case, where

the tasks focus on estimating mean vectors, the problem is referred to as multi-task averaging (MTA)

(Feldman et al., 2014). This problem becomes more concrete when the vectors in question are the kernel

mean embeddings (KME) of distributions. KMEs, known for their numerous properties, are central to

kernel methods, and our goal is to improve their estimation within the MTL framework, where multiple

embeddings are estimated simultaneously.

Our approach begins by considering the case of isotropic Gaussian distributions, Pk = N (µk, σ
2Id), and

homogeneous samples, Nk = N . In this scenario, the minimax estimation error for the mean is achieved by

the empirical mean and is of order σ2d/N (in quadratic norm). It is well known that in high dimensions,

this estimation error is significantly larger than the testing error—i.e., the smallest distance between two

means at which they can be distinguished—which is of order σ2
√
d/N . We thus propose to test pairwise

equality between the vectors µk to detect closed means and then estimate each one using a shrinkage

estimator towards the selected empirical means. The intuition is that shrinkage will reduce the variance of

the estimation at the cost of introducing a bias. In our case, we expect this bias to be smaller than the

variance in high dimensions (
√
d ≤ d). Consequently, the improvement offered by this estimation will be

notable in high-dimensional settings, where estimation is particularly challenging. This phenomenon recalls

the paradox of Stein (1956), in which empirical means are shrunk toward a reference point to improve their

quadratic risk.

A significant portion of this thesis is devoted to justifying this intuition, constructing a method, and

extending it to non-Gaussian, non-isotropic data, and non-homogeneous samples. These extensions are

necessary for dealing with the case of KMEs, where data reside in an infinite-dimensional functional space.

For such distributions, the critical parameter of dimension is replaced by a notion of effective dimension,

which will be constructed from the covariances of the distributions. This concept plays a key role in our

study of the separation rate for proximity tests of means in non-isotropic distributions, allowing us to

generalize the phenomenon observed in the isotropic Gaussian case to the KME setting and, more broadly,

to bounded distributions.

In the remainder of this introduction, we present some of the key concepts related to our problem

that were briefly mentioned above. In Section I.1.1, we introduce the estimator from James and Stein

(1961), one of the most famous shrinkage estimators in high dimensions, and connect its construction to

various ideas that will be used in our methods. Then, in Section I.1.2, we present the notion of separation

rate for proximity tests and examine the influence of dimensionality on this rate in the case of isotropic

Gaussian distributions. In Section I.2, we introduce the KME of a distribution and some of its applications.

This high-dimensional object, widely used in machine learning, greatly motivates our problem and leads us

to consider notions of effective dimension. These notions, along with several examples, are presented in

Section I.3. Finally, in Section I.4, we provide a more detailed presentation of the various contributions of

this thesis.

I.1 Estimation and testing in high dimensions

Estimation and testing problems, central to this thesis, have already been studied in terms of high di-

mensionality. Its effect on these problems has been highlighted in particular in the classical framework of

3



isotropic Gaussian distributions. In this section, we first present the Stein’s paradox (Stein, 1956) related

to vector estimation and its link with more modern problems and methods. We then present results on

test separation rate, for which Baraud (2002) was the first to take into account the influence of dimension.

These works are in fact the starting point for the various questions posed in this thesis.

I.1.1 Estimating a vector: Stein’s paradox

Stein’s paradox is a typical example of the counter-intuitive phenomena of high dimensionality. Consider

a sample (Xi)1≤i≤N of random vectors in Rd with a Gaussian distribution denoted N (µ, σ2Id) where the

variance σ2 is known and the mean vector µ ∈ Rd is unknown. The aim is to estimate this vector µ while

minimizing the squared risk for the Euclidean distance. Let Gd =
{
N (µ, σ2Id)

⊗N : µ ∈ Rd
}

the set of

distributions of Gaussian N -samples with fixed isotropic covariance, then the minimax estimation error of

the vector µ is:

inf
µ̂

sup
P∈Gd

E
[
∥µ̂− µ∥2

]
= d

σ2

N
. (I.1)

We can see the influence of dimension on the estimation error: the error increases with the dimension of

the space. The empirical mean X̄N = 1
N

∑N
k=1Xk achieves exactly this error and is therefore a minimax

estimator of µ on this set of distributions. However, Stein (1956) shows that the empirical mean is

inadmissible, more precisely that there are strictly better estimators in the sense of quadratic risk. A better

estimator is, for example, the James-Stein estimator (James and Stein, 1961), which contracts the empirical

mean to a reference point, traditionally 0. We will consider here its alternative version with a positive part,

defined by

µJS+ =

(
1− σ2

N

d− 2∥∥X̄N

∥∥2
)

+

X̄N , (I.2)

and which has a squared error for the estimation of µ strictly better than the empirical mean (Baranchik,

1964). For a dimension d ≥ 2:

E
[∥∥µJS+ − µ

∥∥2] ≤ d σ2

N
min

(
τ

1 + τ
+

4

d
, 1

)
where τ = τ(µ) =

N∥µ∥2

dσ2
, (I.3)

(see e.g. Lemma 3.8 of Tsybakov, 2008 for this bound). The improvement over the empirical mean is

greater in higher dimensions, i.e. when d ≫ N . Indeed, in this case, the variance of the empirical mean

(Eq.(I.1)) becomes very high and the shrinkage towards 0 becomes more efficient. The variance is reduced

by adding a bias symbolized by the τ factor. At a fixed ∥µ∥2, the τ factor decreases with dimension and

increases with sample size. Inversely, the improvement is weaker as N grows: we then leave the high-

dimensional framework and the shrinkage loses its interest. In all cases, however, the James-Stein estimator

remains strictly better.

The James-Stein estimator is minimax on the class of Gd distributions, but also on the subset of

Gaussian distributions with means close to 0. Let τ > 0, and define

Pd(τ) =
{
N (µ, σ2Id)

⊗N : ∥µ∥2 ≤ τd σ2
N

}
,

then Pinsker (1980) shows that the minimax risk on this class verifies

lim
d→∞

inf
µ̂

sup
P∈Pd(τ)

∥µ̂− µ∥2

dσ2
N

=
τ

1 + τ
, where σ2

N =
σ2

N
. (I.4)

The estimator µJS+ reaches the minimax bound asymptotically in the dimension and obviously without

knowing τ . In this model, the possible estimation error is still O(N−1), but the gain is in the dimension

dependence. The James-Stein estimator adapts to many contexts, such as a non-isotropic covariance (Bock,
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1975), notions of risk different from quadratic risk (Berger, 1976) and can be constructed with a different

shrinkage and variance estimation (Baranchik, 1970; Lehmann and Casella, 2006). More recently, Muandet

et al. (2014) adapt it to estimate Kernel Mean Embeddings of distributions (see Section I.2).

Below we present different interpretations of the James-Stein estimator and how classical methods or

ideas lead to consider it. Our aim is to introduce the reader to different ideas that are applicable to the

estimation of the vector µ, but which we will later use in broader frameworks.

Oracle interpretation: The James-Stein estimator can be seen as the result of estimating the weight

of the best shrinkage estimator towards 0. Consider the estimator µ̂ω = ωX̄N where ω ∈ [0, 1] and look

for the estimator of this form minimizing the quadratic risk:

min
ω∈[0,1]

E
[
∥µ̂ω − µ∥2

]
= min
ω∈[0,1]

[
ω2dσ2

N + (1− ω)2∥µ∥2
]

= dσ2
N

τ(µ)

1 + τ(µ)

The optimal weight is ω∗ = 1 − dσ2
N

∥µ∥2+dσ2
N
. By knowing the norm of µ, we can improve its estimation,

which seems quite natural. As this is unknown, the James-Stein estimator directly estimates ∥µ∥2 +dσ2
N by

∥X̄N∥2, which leads us to consider (I.3) after injecting this estimator into the oracle weight formula. The

James-Stein estimator will keep its performance close to that of the oracle estimator, thanks to the fact

that estimating a distance (an one-dimensional quantity) in high dimension is much easier than estimating

a vector. The induced error will be negligible relative to the gain.

Test interpretation: The choice of the shrinkage of the James-Stein estimator can be related to the

testing problem:

(H0) : µ = 0 , (H1) : µ ̸= 0 .

The statistic P = dσ2
N/∥X̄N∥2 is super-uniform under (H0) (trivially by Markov’s inequality as E

[
P−1

]
=

1) and can be used to test these hypotheses. As under (H0), the vector µ should be estimated by 0, the

James-Stein estimator uses the test statistic P to quantify the contraction towards 0:

µ̂JS+ =

(
1− d− 2

d
P

)
+

µ̂NE.

The test is used to construct the estimator. This view can be found in Casella (1985), which considers a

shrinkage of each coordinate towards the mean of the coordinates and relates this James-Stein type esti-

mator to the problem of testing whether the coordinates of µ are all equal.

Regularization interpretation: Gruber (1998) links James-Stein type estimators and ridge type estima-

tors, which are other shrinkage estimators. Thus, the James-Stein estimator µ̂JS =

(
1− σ2

N
d−2

∥X̄N∥2
)
X̄N ,

(Eq.(II.3) without the positive part), is the solution to the ridge regression problem

µ̂JS = Arg Min
ν∈Rd

1

N

N∑
i=1

∥Xi − ν∥2 + λ∥ν∥2

for λ =
(d−2)σ2

N

∥X̄N∥2−(d−2)σ2
N

. To avoid choosing λ, we can also consider regularization by the norm. This

produces a James-Stein-type estimator:(
1− σ̂√

N

√
d

∥X̄N∥

)
+

X̄N = Arg Min
ν∈Rd

√√√√ 1

N

N∑
i=1

∥Xi − ν∥2 +
1√
N
∥ν∥,

where σ̂2 = 1
d(N−1)

∑N
i=1

∥∥Xi − X̄N

∥∥2 is an unbiased estimator of σ2. This estimator beats the empirical

mean for means close to 0, (τ(µ) < 1) but is not minimax. However, this example illustrates that with
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a simple penalization by the norm, without any additional parameter, we find a shrinkage close to that of

the James-Stein estimator, as well as the presence of the positive part. Note also that this regularization

naturally estimates the variance by the empirical variance.

Bayesian interpretation: The works of Efron and Morris (1972, 1973, 1976) interpret the James-Stein

estimator as an empirical Bayes problem. For example, assuming that each of the coordinates of µ is drawn

independently according to the same normal distribution µi ∼ Q = N (0, τσ2), the Bayes estimator of the

vector µ is then a shrinkage estimator ωX̄N with ω = 1
1+τ . Marginally Xi ∼ N (0, (1 + τ)σ2Id), so we can

estimate 1 + τ by ∥X̄N∥2/(dσ2
N ) which again leads to the James-Stein estimator. More recently Brown

and Greenshtein (2009), have reconsidered this approach for an arbitrary Q distribution. A more detailed

discussion is given in Section V.7.1.

Multi-task interpretation: The estimation of each of the coordinates of the vector µ can be consid-

ered as a multi-task problem (Baxter, 1997; Caruana, 1997). Multi-task learning seeks to solve different

problems simultaneously (regression, estimation, . . . ) for datasets with different distributions. To this end,

the multiple task approach makes use of similarities between distributions (common structure, identical

noise, . . . ). Here, our tasks would be to estimate each of the coordinates by minimizing the compound risk,

i.e. the average of the errors of each estimator. This is equivalent to minimizing the squared error of the

vector of estimators. The James-Stein estimator finally uses the fact that the data from all tasks have the

same noise σ2 to estimate it efficiently and build a shrinkage estimator for each coordinate. The problem

of estimating different averages is known as multi-task averaging. The link between this problem and the

James-Stein estimator is considered, for example, by Feldman et al. (2014) or Duan and Wang (2023).

These last two interpretations see the James-Stein estimator as the joint estimation of real quantities

(the coordinates). A natural question to ask is whether it can be adapted to simultaneously estimate

different vectors from noisy samples of each. This problem reduces to the James-Stein framework if we

assume that the noises in each sample are isotropic Gaussian. However, if the noises are different, unknown,

non-isotropic or even non-Gaussian, it is not obvious how to construct a James-Stein type estimator, and

although partial answers can be found in the literature, the problem has not been considered as a whole.

Among the questions raised is how the different degrees of freedom of the problem interact, i.e. the size

of samples, their dimension and the number of vectors to be estimated. We will consider this problem in

Sections III and Section V.

I.1.2 Vector separation distance

The influence of dimension on test performance was highlighted by Baraud (2002) in his non-asymptotic

analysis of test separation rate in the Gaussian framework. The separation distance or separation rate of a

test defined by Ingster (1982) in the asymptotic framework and adapted to the non-asymptotic framework

by Baraud (2002) permits a minimax analysis of testing problems. In a general framework, for a distance

γ between distributions and a set of hypotheses H0 and alternatives H1, we define the separation distance

of hypothesis sets for α ∈ (0, 1) as :

δ∗α = inf

{
δ ≥ 0

∣∣∣∃ test T : sup
P∈H0

P(T = 1) + sup
P∈H1:γ(P,H0)≥δ

P(T = 0) ≤ α

}
. (I.5)

It is important to note that the separation distance depends strongly on the chosen distance γ between

the distributions. Intuitively, the separation distance is the minimum distance between hypotheses and

alternatives for which a test exists whose sum of type I and II errors is controlled by α. This notion is

equivalent to the sample complexity of the problem. For a test, sample complexity is the minimum number
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of data items for which the sum of type I and type II errors is controlled by α for alternatives at a fixed δ

distance. These notions can be deduced from each other by elementary operations.

Remark I.1. Definition (I.5) is different from the original ones, Baraud (2002) and Ingster (1982)

consider rather the minimal distance of alternatives to hypotheses for which there is a test of type I

error exactly α and type II error controlled. However, the two definitions coexist in the literature.

Let us consider the problem of signal detection with Gaussian noise. Let (Xi)1≤i≤n be a sample of

Gaussian vectors with distribution N (µ, σ2Id) and the test problem:

(H0(η)) : ∥µ∥ ≤ η, against (H1(η)) : ∥µ∥ > η, (I.6)

where η ≥ 0. In the classical case where η = 0 we refer to Baraud (2002) and in the case η > 0, known

as relevant or precise hypothesis testing, to Blanchard et al. (2018). These works are distinguished by

their non-asymptotic analyses of the role of the dimension. Indeed, in the non-parametric framework, the

analyses focus instead on the dependence of rate on sample size and the influence of regularity. For a

detailed analysis, readers may refer to Ingster and Suslina (1998).

In this model of Gaussian distributions with fixed variances, we can choose as distance γ between the

distributions the Euclidean distance between the mean vectors: γ
(
N (µ, σ2Id),N (ν, σ2Id)

)
= ∥µ− ν∥.

With this distance γ, the optimal separation distance for the test problem (I.6) is the minimum distance

δ∗ for which a test is able to differentiate between the distributions with means in the ball of radius η and

those outside the ball of radius η + δ∗. For η = 0, Baraud (2002) analyzes the dimension dependence of

this separation rate and gives the following rate:

δ∗α(η = 0) = Θα

(
d

1/4σN

)
, (I.7)

where σ2
N = σ2/N and Θα indicates lower and upper bounds depending only on α. This non-asymptotic

analysis highlights the relative ease of the test compared with estimation. The minimum error of detection

is σNd
1/4 for the test versus σN

√
d (Eq.(I.1)) for the estimation. In other words, a test is able to ensure

that the vector µ is σNd
1/4 close to a reference point (here 0), whereas an estimator of µ is only guaranteed

to be σN
√
d close to the true vector µ.

For non-zero η, Blanchard et al. (2018) have demonstrated the existence of two regimes. When η

is small, the test error is still (II.7), whereas for η large the test becomes easier and the error loses its

dimension dependence. More precisely:

δ∗α(η) = Θα

(
σN max

(
1,min

(
d

1/4,
√
d
σN
η

)))
. (I.8)

Intuitively, as η grows, one direction becomes predominant and the problem becomes one-dimensional.

More generally, testing whether µ ∈ C where C is a convex set is always easier than estimating µ. Denoting

δ∗(C) the test separation distance for the convex set C, we have

δ∗α(C) = Oα

(
inf
µ̂

sup
P∈H0∪H1

E[∥µ̂− µ∥]
)

= Oα

(
σN
√
d
)
. (I.9)

The first inequality is true in all generality (using as test statistic the distance of an estimator µ̂ to the

convex C) and the second in our framework of isotropic Gaussian distributions. This limiting case is reached

for C an orthant (C = [−∞, 0]d) and in this case the test error is the same as the estimation error (Theo-

rem 3.6. of Blanchard et al., 2018 or Juditsky and Nemirovski, 2002 in a nonparametric framework).

The appearance of dimension in the separation rate or estimation error is closely linked to the finite-

dimensional isotropic Gaussian model. However, this paradigm does not apply to some modern tools. For

example, this is the case for the Kernel Mean Embedding (KME), a vector of a functional space that can

be used to characterize distributions. In the next section, we present what a KME is, its interest in machine

learning and its links with high-dimensional testing and estimation problems.
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I.2 A high-dimensional tool: the Kernel Mean Embedding

The Kernel Mean Embedding (KME) is a machine learning tool introduced by Smola et al. (2007) and is

intrinsically linked to kernel methods and Reproducing Kernel Hilbert Spaces (RKHS). The principle behind

kernel methods (Aizerman, 1964) is to inject the data under study into a higher dimensional space and

then apply a classical algorithm (typically a regularized linear method). The strength of these methods is

that the change of space is only done by replacing the Euclidean scalar product by the scalar product of the

Hilbert space defined by a kernel κ. A method that uses only scalar products on the data is thus very easy

to adapt, as is the case with many methods such as support vector machine (Boser et al., 1992; Cortes and

Vapnik, 1995), ridge regression (Cristianini and Shawe-Taylor, 2000; Hoerl and Kennard, 1970; Saunders

et al., 1998) or principal component analysis (Hotelling, 1933; Pearson, 1901; Schölkopf et al., 1998).

To a distribution Q on the initial space, a distribution P on the RKHS is associated which is the

pushforward measure of Q by the injection map into the RKHS. The KME of the distribution can simply be

defined as the expectation of the P distribution and is, under weak assumptions, a vector of the RKHS. The

KME of a distribution is therefore directly related to the RKHS and therefore to the choice of kernel κ. By

choosing a right kernel, the KME can fully characterize the distribution and, among other things, induce an

easy-to-calculate distance between distributions called Maximum Mean Discrepancy (MMD) (Borgwardt

et al., 2006). This distance is simply the distance between the KMEs of the distributions in the RKHS.

This property opens the way to numerous applications such as the two-sample test (Gretton et al., 2012),

goodness-of-fit test (Chwialkowski et al., 2016), supervised (Muandet et al., 2012; Szabó et al., 2016)

or unsupervised distributional learning (Jegelka et al., 2009). The MMD distance is also used to build

generative models (Dziugaite et al., 2015; Li et al., 2017; Li et al., 2015).

In this section we present the construction of the KME of a distribution, followed by its estimation and

its use in two-sample tests. A more complete overview can be found in Muandet et al. (2017).

I.2.1 Constructing the KME and the MMD distance

Kernel methods are built from kernel functions. Let us denote X the data space, a function κ : X ×X → R
is a positive definite kernel if it is symmetrical (κ(x, y) = κ(y, x)) and if for any integer n, weights

a1, . . . , an ∈ R and points x1, . . . , xn ∈ X :
n∑

i,j=1

aiajκ(xi, xj) ≥ 0 .

In particular, this property implies that the diagonal of κ is positive (κ(x, x) ≥ 0 for any point x). Kernel

functions are stable by sum, dilatation, multiplication and passage to the limit, making them easy to

construct. The following are the most classic kernels:

� κ(x, y) = 1x=y defines the trivial kernel;

� if X ⊂ Rd, then exp
(
−∥x−y∥2

2

h2

)
and exp

(
−∥x−y∥2

h

)
where h > 0 define the Gaussian and Laplace

kernels respectively;

� if ϕ : X → H is an injection of X into a Hilbert space H, the scalar product ⟨ϕ(·), ϕ(·)⟩H defines a

positive definite kernel. If X is a Hilbert space, then its scalar product is one.

Kernel functions are built for a wide range of data, from text (Joulin et al., 2017) to sequences,

particularly in bioinformatics (Gusfield, 1997), which can be extended for trees and graphs (see Gärtner,

2003 or Shawe-Taylor and Cristianini, 2004 for an overview), for image analysis (Zhang et al., 2007) and

also in topological data analysis for persistence diagrams (Carriere et al., 2017).

The purpose of kernels is to define a scalar product in a larger space: from a positive definite kernel, it

is indeed possible to construct a Hilbert space for which this kernel defines a scalar product.
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Proposition I.2. Let κ : X × X → R a positive definite kernel. Consider the vector space

H0 = Vect(κ(x, ·) : x ∈ X ) ⊂ RX ,

with scalar product ⟨·, ·⟩H defined by

⟨κ(x, ·), κ(y, ·)⟩H := κ(x, y) for x, y ∈ X (I.10)

and extended by linearity. Then H the completed of H0 is a Hilbert space for the scalar product (I.10),

extended by taking the limit. In particular, κ is a reproducing kernel for H:

⟨h, κ(x, ·)⟩H = h(x), ∀h ∈ H, x ∈ X , (reproducing property).

The kernel induces an injection ϕ between the data space X and the RKHS H defined for x ∈ X by

ϕ(x) = κ(x, ·) , and for y ∈ X ⟨ϕ(x), ϕ(y)⟩H = κ(x, y) .

As announced, the kernel κ enables the direct calculation of scalar products between the embeddings of

two data items in the RKHS. Moreover, H is the only RKHS for which κ is a reproducing kernel (Moore-

Aronszajn Theorem, Aronszajn, 1950). However, for a given kernel, it is possible to construct several Hilbert

spaces for which this kernel does define a scalar product, but is not reproducing. For example, the kernel

given by κ(x, y) = xy for x, y ∈ R defines a scalar product on any line of Rd for an arbitrary d dimension

(H = {xν, x ∈ R} for some ν ∈ Rd).
The kernel associates to a point of X an image in the RKHS by the injection ϕ which can be generalized

to the distributions on X by the KME.

Definition I.3 (KME). Let Q be a distribution on X and κ a positive definite kernel, the Kernel

Mean Embedding (KME) of the distribution Q in the RKHS H associated with κ is

µQ = EX∼Q[κ(X, ·)] . (I.11)

If EX∼Q

[√
κ(X,X)

]
< ∞ then Q is an integrable measure in the Bochner sense in H and µQ ∈ H is

well defined.

The KME existence condition is easily verified by considering a bounded kernel (e.g. the trivial, Gaussian,

Laplace kernels). Thanks to the reproducing property of the kernel, for any function h of H, we have

EX∼Q[h(X)] = ⟨h, µQ⟩H. This property will be particularly useful for estimating distances between KMEs.

An important question was for which kernels this distance between KMEs induces a distance between

distributions, i.e. for which kernels the function Q 7→ µQ is injective. Kernels verifying this property are

called characteristics. Intuitively, the function class of the RKHS H must be rich enough for the KME

to characterize the distribution. For example, for a compact X space, the kernel is characteristic if the

RKHS H is dense in continuous bounded functions (Steinwart, 2001). Here are a few more examples of

characteristic kernels for different spaces.

� The trivial kernel 1x=y is characteristic when X is finite (Borgwardt et al., 2006).

� The exponential kernel κ(x, y) = exp(⟨x, y⟩) is characteristic when X is a compact set of Rd. The

KME is then the moment-generating function µQ(x) = EX∼Q[exp(⟨x,X⟩)] .

� The Gaussian and Laplace kernels are characteristic on Rd (Fukumizu et al., 2007).

� More generally for a translation-invariant kernel on Rd (κ(x, y) = K(x−y)), the KME relates to the

characteristic function of the distribution. It is then characteristic if its Fourier transform support is

equal to Rd (Sriperumbudur et al., 2011, 2008, 2010).
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For a characteristic kernel, the distance between the KMEs of two distributions therefore induces a distance

between the distributions. This distance is known as the Maximum Mean Discrepancy (MMD) (Gretton

et al., 2012).

Definition I.4 (MMD). Let κ : X × X → R a characteristic kernel and H its associated RKHS, the

MMD distance between two distributions P and Q of X is defined by:

MMD(P,Q) = ∥µP − µQ∥H .

where µP and µQ are the respective KMEs of P and Q.

This distance can be seen as an integrable probability metric (Müller, 1997) on the RKHS H. Indeed:

∥µP − µQ∥H = sup
h∈H:∥h∥H≤1

⟨h, µP − µQ⟩ = sup
h∈H:∥h∥H≤1

(∫
X
hdP−

∫
X
hdQ

)
.

So if H contains the bounded functions, the MMD distance dominates the distance in total variation, and

for X = R, if it contains the indicator functions
{
1(−∞,t)

}
t∈R, it dominates the Kolmogorov distance.

The MMD distance is equivalent to the energy distance (Sejdinovic et al., 2013) and relates to the optimal

transport distances: it is the limit of the Sinkhorn divergence (Genevay et al., 2018). Compared with these

distances, a strength of the MMD distance and the KME in general is the relative ease of their estimations.

I.2.2 Estimation

Let Q and P be two distributions on X known only via two samples {Xi}1≤i≤N and {Yj}1≤j≤M of the

distributions Q and P respectively. We present here classical estimators of the KME µQ and of the MMD

distance between Q and P.
The KME of the Q distribution can be seen as the expectation of the random vector Zi = κ(Xi, ·)

(where Xi ∼ Q) in the Hilbert space H. So the KME µQ = E[Z1] can be estimated by the classical

empirical mean:

µ̂Q(·) =
1

N

N∑
i=1

κ(Xi, ·) =
1

N

N∑
i=1

Zi .

When the kernel κ is bounded, then the random vector Z is also bounded in H and it is possible to use

the concentration tools associated with bounded random variables to control deviations. Thus, using the

inequality of McDiarmid et al. (1989), for all u ≥ 0, with probability 1− e−u:

∥µ̂Q − µQ∥H ≤
L√
N

(
1 +
√

2u
)
, (I.12)

where L2 ≥ supx∈X κ(x, x) is a bound on the diagonal of the kernel. Such an assumption is verified by

the usual kernels (trivial, Gaussian, Laplace). Note that a reproducing kernel bounded on the diagonal is

then bounded everywhere, since for any x, y ∈ X

|κ(x, y)| = |⟨κ(x, ·), κ(y, ·)⟩H| ≤ ∥κ(x, ·)∥H∥κ(y, ·)∥H =
√
κ(x, x)κ(y, y), .

Estimating the KMEs of Q and P distributions can provide an estimator of their MMD distance by

calculating the distance between them in the RKHS directly (although there are better estimators, see

below). However, the use of KMEs is not summed up to define the MMD distance. Its estimation is

needed, for example, for distribution regression problems where we seek to make a prediction from a sample

(see for example Oliva et al., 2013 or Szabó et al., 2016). In causal inference, the KME of conditional

laws is used as a proxy before regression (Mastouri et al., 2021; Singh et al., 2019). In these cases, full

estimation of the KME is required.
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The MMD distance between two distributions Q and P can be estimated without estimating their

respective KMEs. Its most classic unbiased estimator ( for the squared distance) is constructed using

U-statistics:

M̂MD
2
(Q,P) :=

1

N(N − 1)

N∑
i ̸=j=1

κ(Xi, Xj)−
2

NM

N∑
i=1

M∑
j=1

κ(Xi, Yj) +
1

M(M − 1)

N∑
i̸=j=1

κ(Yi, Yj) .

(I.13)

This estimator can be considered naturally after noticing that ∥µQ∥2H = E[⟨Z,Z ′⟩H] = E[κ(X,X ′)] where

X,X ′ are independent and from Q distribution. Each of the terms of (I.13) estimates with no bias each of

the terms of the development of the distance ∥µQ − µP∥2H. Deviations from this distance estimator can be

controlled using concentration inequalities on U -statistics from Hoeffding (1963) (see also Gretton et al.,

2012 in the KME framework). For all u ≥ 0, with probability at least 1− e−u:∣∣∣∣M̂MD
2
(Q,P)− ∥µQ − µP∥2

∣∣∣∣ ≤ L2√
min(N,M)

√
8u . (I.14)

These estimators of KME and MMD distance are optimal in sample size (Tolstikhin et al., 2017;

Tolstikhin et al., 2016). In particular, the rate in the sample size does not depend on the dimension.

However, in both cases, the rates given by the concentration bounds (I.12) and (I.14) do not take into

account the covariance structure of the distribution or the dimension of the space. The terms related

to these parameters are actually bounded by the bound L on the kernel. As the deviations are both in

O(L/
√
N), the variance terms are actually ”hidden” in the bound L on the kernel. To take their effects into

account, we will need more precise concentration inequalities, of Bernstein type for example. More generally,

the analysis of high-dimensional vector or distance estimation is used to be done under the assumption that

the distributions are sub-Gaussian (e.g. Hsu et al., 2012; Koltchinskii and Lounici, 2017). However this

framework, while including bounded distributions, does not capture the influence of these parameters on

deviations by a direct application of existing results (see discussion in Section IV.2.4). To capture them,

throughout the thesis, with the aim of building procedures adapted to KMEs, we will consider the framework

of bounded data in a Hilbert space. Phenomena in estimation and testing comparable to those presented

previously in Section II.1 will be observed.

I.2.3 Two-sample tests

The two-sample test consists in testing the equality of two distributions for only observed threw samples of

each. Formally, for P and Q, two distributions on the space X , we seek to test

(H0) : P = Q , against (H1) : P ̸= Q . (I.15)

from two samples of each distribution. In one dimension, the historical tests for this problem are the

Chi-squared test in the discrete framework (Pearson, 1900) and the Kolmogorov-Smirnov test in the con-

tinuous framework (Kolmogorov, 1933). These tests are based respectively on empirical estimators of the

Chi-squared divergence and the Kolmogorov distance between P and Q. The Kolmogorov-Smirnov test

generalizes to high dimension (Bickel, 1969; Friedman and Rafsky, 1979), but has the disadvantage of a

high algorithmic cost. Instead of considering these discrepancies, the kernel test proposed by Gretton et al.

(2012) chooses to compare distributions using the MMD distance between P and Q. In this framework,

the test (I.15) can be rewritten as a vector equality test in the RKHS:

(H0) : ∥µP − µQ∥H = 0 , against (H1) : ∥µP − µQ∥H ̸= 0 . (I.16)

Thanks to its flexibility (adaptable to the context by the choice of kernel) and the simplicity of MMD

distance estimation (see Section I.2.2), this test has been widely broadcast. The question of its optimality
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in the sense of the separation distance (I.5) is still being studied today. The original test, based on the

U-statistic (I.13), is optimal for distributions with Hölder densities on Rd and for the distance L2 between

densities. However, the kernel chosen to construct such a minimax test must depend on the regularity

parameter of these densities and then, in all generality, the test is sub-optimal (Balasubramanian et al.,

2021). However, Schrab et al. (2023) construct a minimax and adaptive version of this test on Rd by

aggregating a family of tests based on several kernels. To obtain a minimax test on spaces different of Rd,
Hagrass et al. (2022) use a regularization of the MMD distance by the covariance with a kernel adapted to

the data. The separation distance of this test is then measured in terms of the Hellinger distance.

In the analyses cited, the test separation distance is evaluated using distances between distributions

(L2 distance between densities, Hellinger distance, Chi-squared divergence, . . . ). To relate these distances

to the MMD distance, assumptions of regularity on the densities are required, and then the optimal rate

in the sample size depends on the dimension. For example, Li and Yuan (2019) show that the separation

distance for the L2 norm between densities is Θ(N−4s/(4s+d)) where d is the dimension of the space, s the

Sobolev regularity of the densities and N the sample sizes. The dependence on dimension is similar to that

of nonparametric estimation rate. However, this dependence disappears when the test separation distance is

considered directly in terms of the MMD distance between the distributions. In this case, the test separation

distance is the separation distance of the vectors in the RKHS H and the same rate Θ(N−1/2) is found.

Drawing a parallel with the Gaussian case, we might ask what influence the dimension of the space has on

this separation distance, and whether it is possible to recover the form (I.8). The role of dimension for the

separation distance, but also for the test error, will actually be played by a notion of effective dimension

that we define in the next section.

I.3 Effective dimension

As already mentioned, analyzing and learning information from high-dimensional data is often possible

because the data actually has a simpler structure. For example, the data may lie in a lower-dimensional

subspace, in a manifold or can be clusters into a small number of balls. So the dimension of the ambient

space of the distribution is not necessarily a critical quantity for quantifying the difficulty of a task. Instead,

this role is played by notions of effective or intrinsic dimension of a distribution. These effective dimensions

of a distribution P will depend on the considered problem and those we will consider will be constructed

from its covariance operator (Baker, 1973). In what follows, we shall consider P to be a distribution on a

Hilbert space H. Examples will be given for H = Rd and H a RKHS.

Definition I.5 (Covariance operator). Let P be a distribution on a Hilbert space H such that

E
[
∥X∥2H

]
<∞, then its covariance operator is defined by

Σ(P) :


H → H ,

y 7→ E
[
⟨y,X⟩HX

]
−
〈
y,E

[
X
]〉

HE
[
X
]
.

where X is a random variable of distribution P.

On Rd, for the canonical scalar product, the covariance operator is just the covariance matrix of the

distribution: if µ = E[X], then Σ(P) = E
[
(X − µ)(X − µ)T

]
.

An infinite dimension distribution is for example the injection of a distribution into an RKHS H. We can

then consider the covariance operator of the push-forward distribution. Let X ∼ Q be a random variable

on X and P be the distribution of κ(X, ·) on H. The covariance operator is well defined when E[κ(X,X)]

is finite (e.g. for bounded κ) and, in this case, for all h ∈ H:

Σ(P)h = E
[
⟨h, κ(X, ·)⟩Hκ(X, ·)

]
− ⟨h, µQ⟩HµQ(·) , (I.17)
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where µQ is the KME (Definition I.3) of the distribution Q. In particular, the covariance operator verifies

for all h, h′ ∈ H :

⟨h′,Σ(P)h⟩H = E[h(X)h′(X)]− E[h(X)]E[h(X ′)] = Cov[h(X), h′(X)]

This identity is sometimes used as a definition of the operator. The operator Σ(P) is bounded (hence

continuous), positive and self-adjoint. Please note that we are considering here the centered version of the

covariance operator. In fact, it is the moments of this operator that are used in our methods and that

we sometimes have to estimate (see Section I.4.5). In kernel methods, its non-centered version is also

used, in particular for tests of independence and conditional independence (Doran et al., 2014; Gretton

et al., 2005). However, the centered version has recently been used for kernel principal component analysis

(Sriperumbudur and Sterge, 2022) and two-sample tests (Hagrass et al., 2022; Li and Yuan, 2019). We

will not, however, be interested in its estimation, but rather use it as a theoretical tool to define a notion

of effective dimension. We will, however, need to estimate some of these moments (see Section I.4.5), for

which we will provide estimators.

The notions of effective dimension that we will consider are expressed in terms of Schatten norms of the

covariance operator of the distribution. The following definition introduces the three effective dimensions

that will be considered in this manuscript.

Definition I.6 (Effective dimension). Let P be a distribution on a Hilbert space H and Σ := Σ(P) its

covariance operator. We will call effective dimensions the following quantities:

de(P) =
Tr Σ

∥Σ∥op
, d∗(P) =

Tr Σ2

∥Σ|2op
, d•(P) =

(Tr Σ)2

Tr Σ2
, (I.18)

where Tr denotes the trace and ∥·∥op the operator norm.

Remark I.7. We sometimes express effective dimensions in terms of Schatten norms of the covariance:

for p ∈ N∗ the p-Schatten norm is defined by ∥Σ∥pp := Tr(Σp), if this quantity exists. For p ≥ p′, the

Schatten norms satisfy ∥Σ∥p ≤ ∥Σ∥p′ .

According to the previous remark, the effective dimensions are well defined if the covariance operator

Σ is of trace class, i.e. of finite trace. Indeed, for (ek)k∈N an orthonormal basis of H, we have :

Tr Σ =

+∞∑
k=0

⟨ek,Σek⟩H =

+∞∑
k=0

(
E
[
⟨ek, X⟩2H

]
− ⟨ek,E[X]⟩2H

)
= E

[∥∥X∥∥2H]− ∥∥E[X]
∥∥2
H <∞ .

The last quantity is bounded by assumption and using Jensen’s inequality.

In the random matrix literature, de is sometimes called the intrinsic dimension (Hsu et al., 2012; Tropp

et al., 2015) or effective rank (Koltchinskii and Lounici, 2016), and d∗ is known as the numerical rank or

stable rank of Σ (Rudelson and Vershynin, 2007; Tropp et al., 2015).

These three notions of effective dimension give a quantification of the distribution’s degrees of freedom.

If the distribution P is isotropic, i.e. whose covariance is Σ(P) = σ2Id, where d is the dimension of the

ambient space, then all these notions of effective dimension are equal to d. More generally, we have the

following inequalities between effective dimensions:

d ≥ d•(P) ≥ de(P) ≥ d∗(P) . (I.19)

The following problems give very simple situations in which each of the dimensions of Eq.(I.18) are involved.

� The dimension de characterizes estimation problems. For example, if we want to estimate the

expectation of a distribution from an observation X ∼ P, the squared error of the estimation is :

E
[
∥X − µ∥2

]
= σ2de ,

where µ = E[X] and σ2 = ∥Σ|op. We find the form (I.1).
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� The dimension d∗ is more relevant to test problems. For example, to detect that the expectation µ

of a distribution is close to 0, the distance ∥µ∥2 can be estimated by ⟨X,X ′⟩ where X and X ′ are

two independent observations. Then :

E[⟨X,X ′⟩] = ∥µ∥2 , and Var[⟨X,X ′⟩] ≥ σ4d∗

where σ2 = ∥Σ|op. Roughly speaking, we recover that the test error is
√
d versus d for the estimation,

but with different dimensions.

� The dimension d• is less natural to interpret, but comes into play in Section V, where we will use

tests to improve vector estimation. It can be seen as the ratio of the estimation error to the test

error:

√
d• =

de√
d∗
≃

E
[
∥X − µ∥2

]
√

Var[⟨X,X ′⟩]
.

In the following examples, we calculate the effective dimensions of different distributions.

Example I.8 (Support of smaller dimension). Suppose that the distribution P is supported in a vector

subspace of dimension p. Then

de(P) ≤ p.

Suppose now that H is of finite dimension d and consider P̃ the distribution P noised by addition of

an independent and isotropic noise of covariance ε2Id. Then

de
(
P̃
)
≤ p+ d

ε2

∥Σ(P)∥op
.

If the noise is low enough (ε2 ≪ d−1∥Σ(P)∥op ), the effective dimension captures that the distribution

Q is a noisy version of a lower-dimensional support distribution.

Example I.9 (Discrete RKHS). Consider H the RKHS associated with the trivial kernel κ(x, y) =

1{x = y} defined on the discrete space X = {x1, . . . , xm}. Let Q =
∑m
i=1 piδxi

be a distribution on X
and P the distribution of the pushfroward of Q into H. The effective dimension de of P is then lower

and upper bounded by :

1

2

1− ∥p∥22
∥p∥∞(1− ∥p∥∞)

≤ de(P) ≤ 1− ∥p∥22
∥p∥∞(1− ∥p∥∞)

where p ∈ [0, 1]m is the probability vector of Q. In this case, the notion of effective dimension is

interpreted as a normalized version of the Gini-Simpson index (Simpson, 1949). The Gini-Simpson

index is 1 − |p∥22 and measures whether a population is diverse. In our framework, a diversified

population (limiting case pi ≃ m−1) will have a large effective dimension (de ≃ m).

Example I.10 (Translation kernel). Consider H the RKHS associated with a translation kernel

κh(x, y) := K((x− y)/h) where h > 0, the bandwidth of the kernel, is a fixed parameter and

x, y ∈ X = Rd. Let Q be a distribution on Rd with density f with respect to the Lebesgue mea-

sure and Ph the distribution of the pushforward of Q into H. Assuming K and f are enough regular,

for small bandwith, the effective dimension relates to the L2 norm of the density. Indeed, as the

bandwidth h tends to 0 :

d•(Ph) ∼
h→0

K(0)2

hd∥K∥2L2∥f∥2L2

.
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A diffuse distribution (∥f∥2L2 small) will have a larger effective dimension in the RKHS than a concen-

trated distribution. For example, ifK is a Gaussian kernel and Q ∼ N (µ, σ2Id) a Gaussian distribution,

then the effective dimension depends on the ratio between the variance and the bandwidth:

d•(Ph) ∼
h→0

(
8σ2

h2

)d/2

, moreover d•(Ph) −→
h→∞

d . (I.20)

In this Gaussian case, we explicitly find that the effective dimension will be greater for a distribution

with high variance.

These effective dimensions also relate to the notion of local covariance dimension (Dasgupta and

Freund, 2008) defined from the eigenvalues σ2
1 ≥ . . . ≥ σ2

d of the covariance Σ. For example, Verma et al.

(2009) define that a distribution P is of covariance dimension (p, ε) if the p largest eigenvalues represent a

proportion (1− ε) of the covariance trace:

p∑
i=1

σ2
i ≥ (1− ε) Tr Σ .

This notion can also be defined locally, by assuming that this condition is verified not for the covariance

but for the covariances of the distributions restricted to each ball of a given radius. Note that for a fixed

ε > 0, a distribution P has covariance dimension (de, ε) for effective dimensions of the order of the ambient

dimension (de ≳ (1 − ε)d) or close to 1 (de ≲ (1 + ε)). More generally, P is of covariance dimension

(de, εde) for some εde ≤ (1− 1
de )(1− de−1

d−1 ).

On a more geometric side, for a probability measure, some notions of dimension will be defined from

the evolution of a ball measure with its radius. Roughly speaking, the distribution Q will be of dimension

d if the probability of any ball Sr of radius r > 0 is proportional to the volume of a d-dimensional ball, i.e.

if we have P(Sr) < Crd for some constant C (for radius r bounded or going to 0, depending on the case).

These notions are strongly linked to the Hausdorff (1918) and Assouad (1979) dimensions, generalized

to distributions for example by the pointwise dimension (Young, 1982), the information dimension (Isham,

1993), the doubling dimension (see Heinonen, 2001) or by the notion of maximally homogeneous distribution

(Kpotufe, 2011). If the distribution has a density on a sub-vector space, these dimensions will coincide with

the dimension of this space, just like the dimensions we are considering (see Example II.8). However, these

notions will diverge for discrete distributions. For such distributions and small radii, the ball measures will

no longer evolve with the radius, giving a dimension equal to 0. Conversely, dimensions (I.18) will consider

the structure of the values taken by the distribution in the ambient space. For example, for an uniform

distribution on an orthonormal family of vectors (ek):

de

(
1

n

n∑
k=1

δek

)
= n− 1 .

For a discrete distribution on a line, de will be equal to 1.

I.4 Contributions

A recurrent objective in this thesis is to make the bridge between high-dimensional phenomena studied for

isotropic Gaussian data and current modern tools such as the KME presented above. The central problem

we consider is the simultaneous estimation of mean vectors, which can be KMEs of different distributions.

This problem can be considered as a multi-task learning instance, or even transfer learning where the user

seeks to estimate this new vector with the help of estimators from other objects, or even federated learning

where the distributed data may have variations in their distributions and only a vector can be transmitted.
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We will consider it here in the most general way, seeing these vectors as elements of a Hilbert space whose

observations are perturbed by Gaussian or bounded noise.

We therefore consider this problem in Section III and propose a method using a Stein-type effect where

the improvement in estimation increases with dimension. Guarantees are given under homogeneity assump-

tions between the different distributions. For KMEs, high dimension then means high effective dimension.

This method is based on tests and takes advantage of the relative ease of detection compared with estima-

tion. In Section IV we generalize this testing phenomenon to non-isotropic data and in particular to KMEs.

This work, although independent, also helps to extend our multiple vector estimation to heterogeneous data

presented in Section V. In this section we propose two methods, one based on these tests and the other

on an empirical risk minimization. The combination of the samples improves the estimation of each mean,

particularly when the distributions have a common structure. We have observed that this phenomenon is

indirectly present in the self-attention mechanism used in Transformers (Vaswani et al., 2017). In Sec-

tion VI, we thus show that self-attention works as a denoising of high-dimensional data and that we find

comparable behaviors in high dimension to those considered in the previous sections.

These contributions are detailed in this section.

I.4.1 Multiple estimation of mean vectors for homogeneous data

Section III is a work in collaboration with Gilles Blanchard and Hannah Marienwald (Marienwald et al.,

2021) and focuses on the simultaneous estimation of mean vectors for different distributions. Consider the

model: {
X

(k)
• := (X

(k)
i )1≤i≤Nk

i.i.d.∼ Pk, k ∈ JBK;
(X

(1)
• , . . . , X

(B)
• ) independent.

(I.21)

the objective is to estimate the mean vector µk = E
[
X

(k)
1

]
of each distribution Pk for which a sample

X
(k)
• is provided. This problem can be seen as a multi-task problem where each task is to estimate a vector

µk. This vector can be, for example, the KME of a distributions Pk for which we have at our disposal a

sample X
(k)
• already immersed in the RKHS. For a given sample, we construct a shrinkage estimator of

its empirical mean towards a reference point. This reference point will not be chosen arbitrarily as for the

James-Stein’s estimator, but from the other samples. The aim is to use the relative ease in high dimension

of the test compared with estimation to find a reference point close to the true mean.

For isotropic Gaussian data and homogeneous samples, Nk = N and Pk = N (µk, σ
2Id), we estimate

for each mean a set of τ -neighbors V̂i = {j : Tij = 1, j ∈ JBK} where Tij is a test for the hypotheses:

(H0,ij) : ∥µi − µj∥2 ≤ τσ2
Nd, against (H1,ij) : ∥µi − µj∥2 > τσ2

Nd. (I.22)

where σ2
N = σ2/N . The aim of these tests is to find samples whose means are close to the target mean

with respect to the estimation error (dσ2
N ). The estimator considered for µi is a shrinkage estimator of the

empirical mean to the average of the empirical means selected by the tests:

µ̂i = γµ̂NEi +
1− γ
|V̂i|

∑
j∈V̂i

µ̂NEj , (I.23)

where µ̂NEj is the empirical mean over sample j and γ ∈ (0, 1) a parameter to be fixed. The test error,

in squared norm, for isotropic Gaussian distributions is of the order of σ2
N

√
d, so we expect to be able

to construct tests such that the selected neighbors are at a distance from the true mean µi of at most

τσ2
Nd+ σ2

N

√
d (see Section I.1.2). Thus in Section III:

� We construct tests such that the bias added by this shrinkage is of order smaller than the estimation

error of the empirical mean, and we show theoretically and experimentally that our method improves

the estimation relatively to the empirical mean.
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� The data are assumed to be isotropic Gaussian or bounded in order to apply our method to the

estimation of KMEs. In both cases, we make an assumption of sample homogeneity: sample sizes

and variances are assumed to be of the same order. This assumption justifies our symmetrical use

of the means selected by the tests in (I.23).

This section can be seen as an introduction to Section V where the method is generalized to non-

homogeneous samples. However, the method presented in Section III retains an independent interest by

proposing a simple, low algorithmic cost approach with finer-grained theoretical guarantees. In particular,

our bounds take into account the data dependency between test and estimate that we set aside in Section V.3

(see, for example, Theorem III.2).

I.4.2 One- or two-sample high-dimensional tests with unknown covariance struc-
ture

The method proposed in Section III is based on the analysis in the isotropic Gaussian framework of the

separation distance (I.8). In order to generalize this method, we are interested in the two-sample means

proximity test problem:

(H0(η)) : ∥µ− ν∥ ≤ η, against (H1(η, δ)) : ∥µ− ν∥ > η + δ. (I.24)

where µ and ν are the respective mean vectors of P and Q distributions known via i.i.d. samples {Xi}1≤i≤n
and {Yi}1≤i≤m. This problem is a generalization of the signal detection problem (I.6): it can be reduced

by formally assuming that m = +∞ or that Q is a Dirac distribution. When µ and ν are KMEs, this

test can be used to test the proximity of two distributions in term of MMD distance. In this form, the

separation distance is the smallest distance δα for which there is a test such that the sum of type I and

II errors are controlled by a given α ∈ (0, 1). The important point in our analysis is that the covariances

of each distribution are not assumed to be known and are potentially different. Our contributions are as

follows:

� We perform a minimax analysis of the test (II.24) and give a lower bound on the separation distance

for Gaussian data. We find the two regimes of Blanchard et al. (2018) (Eq.(I.8)) but where the

dimension of the space is replaced by a notion of effective dimension of the problem.

� We construct tests reaching this lower bound for Gaussian and bounded data in a Hilbert space. Our

tests are constructed from U -statistics of the form (I.13) and estimators of its quantiles. Concen-

tration inequalities are given for all these estimators in the Gaussian and bounded framework.

This work has been done in collaboration with Gilles Blanchard (Blanchard and Fermanian, 2023).

I.4.3 Generalization of multiple mean estimation and minimaximality

Section V is based on these two previous parts and has been done in collaboration with Gilles Blanchard and

Hannah Marienwald (Blanchard et al., 2024). We again consider the model (I.21), but no longer assume

any homogeneity between the distributions. The sample sizes are different, as are the covariances of the

distributions, which are assumed to be unknown. To decide whether to aggregate two estimators, we need

to take into account both the proximity of their means and the ratio of their variances. Hence, even if all

samples have the same mean, the estimators of those with a smaller variance should be preferred. For this

purpose, we consider as estimator a convex combination of empirical means

µ̂ω =

B∑
k=1

ωkµ̂
NE
k , (I.25)
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where µ̂NEk is the empirical mean of sample k and ω is a weight vector in the simplex SB (i.e.
∑B
k=1 ωk = 1

and ωk ≥ 0). This form of estimator is more general than the one considered in Section III (the estimator

(I.23) is reduced to (I.25) by taking γ = ω1 and ωk = (1− γ)1k∈V̂1
|V̂1|−1). Our aim is still to improve the

estimation of each mean relatively to the naive estimation by the empirical mean. To this end, we propose

two methods for estimating optimal ω weights.

The first method presented in Section V.3 is based on tests and is an adaptation of the method in

Section III in the heterogeneous case. To estimate the mean µ1, our first step is to select (relatively) close

means with (relatively) smaller variances. We will try to estimate:

Vτ =
{
k ∈ JBK : ∥µk − µ1∥2 ≤ τσ2

1d
e(P1)

}
, et W(ς) =

{
k : σ2

k

(
d∗(Pk)

)1/2 ≤ ςσ2
1

(
d∗(P1)

)1/2}
(I.26)

where τ, ς > 0 are fixed parameters and σ2
k = ∥Σk∥op/Nk. In words, Vτ contains the distributions whose

means are close to µ1 up to the estimation error and W(ς) contains distributions whose test errors are not

bigger than that of the P1 distribution. The set W(ς) is used to exclude means that could be selected from

the tests for Vτ but whose means could actually be too far from µ1. These sets are estimated using tests.

The second step consists in estimating weights ω given by an oracle minimization of the theoretical risk.

The weight ωk assigned to the estimator µ̂NEk will decrease with its estimation error σ2
kd

e(Pk).

This approach differs from the first method presented by the non-symmetry of the relationship ”being

a τ -neighbor”. The estimator of a sample with large variance and/or small size will have more neighbors

and be more shrunk than the one of a large sample. The method will more improve the estimation for the

samples with less initial information, but will not deteriorate the estimation for the others.

We give non-asymptotic bounds on the error of this method and on its various stages. We propose

estimates of Vτ and W(ς) that can be replaced by other estimators if required. This improves estimation

in particular when the test error is small relative to the estimation error, i.e. when the effective dimension√
d• = de/

√
d∗ is large (for P1).

A weakness of the two test approaches (homogeneous and heterogeneous) is the need to choose the

parameters τ and ς. We therefore propose a second method that uses ideas from the Q-aggregation of Lecué

and Rigollet (2014). Instead of selecting neighbors using tests, we estimate some weights by minimizing an

estimator of an upper bound of the quadratic risk R1(ω) := E
[
∥µ̂ω − µ1∥2

]
. This estimator is made up

of two terms, the first L̂1(ω) is an estimator of the risk R1(ω) and the second Q̂1(ω) is an estimator of

the deviations of
∣∣∣L̂1(ω)−R1(ω)

∣∣∣. Our estimator is then µ̂ω̂ where

ω̂ ∈ Arg Min
ω∈SB

(
L̂1(ω) + Q̂1(ω)

)
.

The term Q̂1 is derived from concentration inequalities and involves the covariances of the distributions.

Weighting by Q̂1 the minimization will impose a form of sparsity on the vector ω̂ in the same way as a ℓ1
penalty, but taking into account the dimensionality of the different samples. We interpret these as tests

implicitly performed by this regularization.

We construct such estimators and give bounds on the mean square error of the estimator µ̂ω̂. We find

in these bounds the same rate of convergence O((d•)−1/2) as in the test approach. The Q-aggregation has

the advantage, however, of being adaptive in τ and ς. In practice, the two methods achieve comparable

results.

Intuition. Our aim is to choose estimator that upper bounds the true risk, i.e. such that with high

probability:

R1(ω) ≤ L̂1(ω) + Q̂1(ω) +O(
√
d∗) ≤ R1(ω) +O(

√
d∗), ∀ω ∈ SB .
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Indeed, we expect deviations in distance estimation to be of the order of
√
d∗. The parallel can be

drawn with the deviation of a Gaussian vector Z ∼ N (µ,Σ). Suppose we want to estimate a ”close”

upper bound of R = E
[
∥Z − ν∥2

]
for a vector ν ∈ Rd. Then for all u ≥ 0, with probability 1− e−u :

E
[
∥Z − ν∥2

]
≤ ∥Z − ν∥2 + 2σ2

√
(d∗ + 2(µ− ν)TΣ(µ− ν))u

where σ2 = ∥Σ∥op and d∗ = d∗
(
N (µ,Σ)

)
is the effective dimension of the Gaussian distribution (see

Lemma V.40). In this case, ∥Z − ν∥2 would be our estimator L̂1 and Q̂1 would be an estimator of√
(µ− ν)TΣ(µ− ν). The deviation of the order of

√
d∗ is clearly present.

The errors of these two methods are studied under a high (effective) dimensional point of view. As with

the James-Stein estimator (see Section I.1.1), the improvement lies in the dimensional dependence of the

rate of convergence. In Section V.5, we perform a minimax analysis of the problem and give lower bounds

for the optimal improvement possible for one sample and in average over the samples. We then discuss the

optimality of our two methods.

I.4.4 Effect of denoising of self-attention mechanism

Section VI presents some preliminary works in collaboration with Gilles Blanchard on the attention mecha-

nism. This mechanism is used in the Transformer neural networks (Vaswani et al., 2017) widely used today,

particularly for text or image data generation tasks. In these cases, the inputs of the neural network are

no longer a single point, but a set of points that can be the words of a sentence or text, or the encodings

of sub-parts of an image. To process this type of data, Transformers add additional layers to the neural

network, known as attention layers, which seek to consider the points not individually, but as a whole. The

intuition is very simple: to translate a word in a sentence, it is important to take its context into account.

Formally, for points X1, . . . , XN , the attention first constructs N new points:

aQ,K(Xi) :=

N∑
j=1

ωijXj where (ωij)j = Softmax
((
⟨QXi,KXj⟩

)
j

)
∈ SN , (I.27)

where SN is still the simplex and Q and K are matrices learned during the neural network training. We

assume here that these matrices are fixed, so we place ourselves after the training and seek to understand

the action of attention on the data. By comparing this form with (II.25), we propose to interpret the

attention mechanism as a form of multiple vector estimation. We thus assume that the points Xi are noisy

observatoins of vectors µi, and we ask whether the new points aQ,K(Xi) would be less noisy compared to

the original points Xi, i.e. whether for 1 ≤ i ≤ N :

E
[
∥aQ,K(Xi)− µi∥2

]
< E

[
∥Xi − µi∥2

]
.

for the dimension tending to infinity. An improvement is expected when vectors µi have a simpler structure

which can be learned through the other points. We analyze this question in a simplified framework where the

random vectors Xi have a Gaussian isotropic distribution and where the matrices Q and K are proportional

to the identity (Q = K = Id/
√
h). In this case we study the values of the parameter h for which the

self-attention mechanism is not degenerate (i.e. aQ,K(Xi) ̸= Xi and aQ,K(Xi) different from the mean of

the data). For such parameters, we exhibit certain structures of the points µi for which a denoising effect

actually occurs (support of smaller dimension or small covering number for a certain radius). Based on this

analysis of the effect of dimension, we propose a slightly modified version of the weights ω of (I.27) for

which we obtain theoretically and on simulated data a denoising effect for a wider spectrum of parameter

h (h ≃ d for the original methods versus
√
d ≲ h ≲ d for our modified versions).
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An important assumption in our analysis is that the vectors µi have the same norm. For such vectors, the

weights given by scalar products are the same as those given by the squared norm (Softmax((⟨µi, µj⟩)j) =

Softmax
(

(−∥µi − µj∥2/2)j

)
). Since we also assume that Q and K are proportional to the identity, we

can interpret ⟨QXi,KXj⟩ as an estimator of the Euclidean distance between µi and µj (up to an additive

and a factor 1/2). As for i = j, this estimator is biased, our modified attention weights just remove this

bias in two different ways (see Definition VI.7).

The assumption that the vectors µi are on the sphere is justified for us by the second stage of attention,

which consists in combining the initial points with aQ,K(Xi) and constructing for 1 ≤ i ≤ N :

AQ,K,V (Xi) :=
Xi + V aQ,K(Xi)

∥Xi + V aQ,K(Xi)∥
, . (I.28)

for a matrix V also learned by the neural network. Thus the self attention associates to each point a

normalized vector. Although the form (I.28) is frequently employed to study self-attention, the normalization

step is often neglected. In our model, these vectors AQ,K,V (Xi) can be interpreted as (matrix) contraction

estimators from Xi to aQ,K(Xi) and relate to empirical Bayes estimators (Brown and Greenshtein, 2009)

for certain V matrices (see discussion in Section VI.1.1). For the moment, however, our analysis focuses

on aQ,K(Xi) with the intuition that a denoising of aQ,K(Xi) would denoise AQ,K,V (Xi). These results,

although restricted to simplified versions of the attention mechanism in an isotropic Gaussian framework,

highlight a new phenomenon and raise many new questions.

I.4.5 Concentration inequalities

These various works repeatedly use estimators of distance between vectors and of moments of the covariance

of distributions. These estimates are controlled by concentration bounds that may be of interest indepen-

dently of the problems we consider. In particular, these bounds pay close attention to the role of (effective)

dimension in deviations. In addition to Gaussian and bounded distributions, we also consider heavy-tailed

distributions where only a finite fourth-order moment is assumed. For this type of data, ”median of means”

estimators are considered (see Lugosi and Mendelson, 2019a for example). Table 1 points to the various

results disseminated in the thesis.

Target quantity Gaussian setting Bounded setting Heavy-tailed setting

∥µ− ν∥2 Proposition IV.6 Proposition IV.9 Proposition V.33
Tr Σ Proposition V.26 Proposition V.29 Proposition V.34
∥Σ∥op Proposition IV.10 Proposition IV.11 -√
Tr Σ2 Proposition IV.12 Proposition IV.13 Proposition V.34

(µ− ν)TΣ(µ− ν) Proposition V.37 Proposition V.38 -

Table 1: Survey of different concentration results: µ and Σ are respectively the mean and the covariance
of a distribution and ν the possibly unknown mean of another distribution.
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II Introduction (Français)

Un enjeu actuel et important de la recherche en statistique et machine learning est l’analyse de données

de grande dimension. Les méthodes modernes ont accès et cherchent à traiter des données de plus en plus

complexes (signals, textes, images, vidéos. . .). Bien que dans certains domaines cette complexification des

données s’accompagne d’une augmentation de leur quantité, dans d’autres, le nombre de données est limité

et la prise en compte de cette complexité devient essentielle. Ainsi un faible nombre de données relativement

à leur dimension cause en général une perte de performance connue sous le terme général de malédiction ou

fléau de la dimension. Cette appellation introduite par Bellman (1966) (curse of dimensionality) regroupe

de nombreux phénomènes dont nous présenterons certains (voir aussi Giraud, 2021).

En parallèle de cette perte de performance, les intuitions de la petite dimension ne sont plus forcément

pertinentes en grande dimension, et certaines méthodes a priori plus saugrenues peuvent devenir intéressantes.

Un exemple fondamental et bien connu de ce type de phénomène est l’inadmissibilité de la moyenne empi-

rique en grande dimension : Stein (1956) montre que pour estimer le vecteur moyenne d’une distribution

gaussienne, la moyenne empirique n’est pas efficace et exhibe un meilleur estimateur (James et Stein,

1961). Cet estimateur, tout en ayant la même vitesse de convergence en la taille de l’échantillon que la

moyenne empirique, le surpasse grâce à une dépendance plus faible de son erreur en la dimension. Cet

exemple illustre la nécessité d’inclure dans l’analyse d’un problème non plus seulement la dépendance en la

taille de l’échantillon mais aussi en la taille ou complexité de l’espace. Une possibilité pour capturer cette

dépendance est de procéder à une analyse non asymptotique des problèmes. Du côté minimax, l’analyse de

Pinsker (1980) montre par exemple que l’estimateur de James-Stein est optimal à taille d’échantillon fixé

mais pour la dimension de l’espace tendant vers l’infini. Pour les problèmes de tests, on retrouve cette prise

en compte de la dimension dans l’analyse minimax du problème de détection de signal de Baraud (2002)

et Blanchard et al. (2018) par exemple. Pour contrôler l’erreur de nos méthodes et capturer les effets de

la grande dimension, nous utiliserons dans ce manuscrit des inégalités de concentration pour obtenir des

bornes non asymptotiques.

Bien que les données appartiennent à l’origine à un espace ambiant de grande dimension, il a été constaté

qu’elles vivent souvent en réalité dans des sous-espaces de plus petite dimension (sous-espace vectoriel,

sous-variété, petit nombre de clusters. . .), ce qui permet aux méthodes de fonctionner. La distribution des

données peut ainsi être à support dans tout l’espace, mais avoir certaines directions non informatives et

juste constituées de bruit. La difficulté du problème n’est alors plus caractérisée par la dimension ambiante

mais par des notions de dimensions effectives. Ces quantités, justifiées par l’analyse minimax, prennent

en compte la structure de covariance des données et quantifient les degrés de libertés d’une distribution.

Par exemple on aimerait dire qu’une variable distribuée sur une droite plongée dans un espace ambiant de

grande dimension n’est en réalité que de dimension 1. Ces notions sont particulièrement utiles pour analyser

des données fonctionnelles qui bien que dans un espace de dimension infinie peuvent avoir une dimension

effective finie et faible. Par exemple les méthodes à noyaux, couramment utilisées, injectent les données

dans un espace de Hilbert fonctionnel (un RKHS plus précisément). Dans ce cas, l’erreur d’une méthode

dépend de la dimension effective de la distribution des plongement des données dans le RKHS. Cette notion

permet d’analyser simultanément des problèmes de dimension finie et infinie et floute ainsi la différence

entre le paramétrique et le non paramétrique.

Dans cette thèse, nous chercherons à comprendre les effets de la grande dimension sur des problèmes

de tests et d’estimation en vue de potentiellement améliorer ces méthodes. Cette thèse est constituée de

quatre travaux :

� l’article ”High-Dimensional Multi-Task Averaging and Application to Kernel Mean Embedding” en

collaboration avec Hannah Marienwald et Gilles Blanchard publié à AISTATS, (2021) ;

� le chapitre ”Nonasymptotic One- and Two-Sample Tests in High dimension with Unknown Covariance
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Structure” en collaboration avec Gilles Blanchard de Foundations of Modern Statistics : Festschrift

in Honor of Vladimir Spokoiny, (2023) ;

� le preprint ”Estimation of multiple mean vectors in high dimension” en collaboration avec Hannah

Marienwald et Gilles Blanchard, (2024) ;

� des premiers résultats sur une analyse du mécanisme de self-attention en grande dimension en colla-

boration avec Gilles Blanchard.

Aperçu des problématiques : Le problème principal considéré dans cette thèse est l’estimation si-

multanée de vecteurs moyennes en grande dimension. Nous cherchons à estimer des vecteurs moyennes

notés µk de différentes distributions Pk définies sur un même espace de Hilbert H. Ce problème mèle les

questions statistiques classiques liées à l’estimation d’une moyenne en grande dimension datant de Stein

(1956) et celles plus récentes de multi task learning (MTL) (Bonilla et al., 2007 ; Micchelli et Pontil, 2004)

où l’objectif est d’effectuer simultanément plusieurs tâches indépendantes mais ayant des similarités. Notre

tâche ici est l’estimation d’un vecteur moyenne qui peut être vue comme une version idéalisée de problèmes

plus complexes comme de la régression, classification, estimation de covariance, de distribution. . . Dans

notre cas où les tâches consistent à estimer un vecteur moyenne, on parle alors de multi task averaging

(MTA) (Feldman et al., 2014). Ce problème devient plus concret lorque ces vecteurs sont les kernel mean

embeddings (KME) de distributions. Cet outil aux nombreuses propriétés est central dans les méthodes à

noyaux et nous chercherons à améliorer son estimation dans le cadre MTL où plusieurs d’entre eux sont

estimés simultanément.

Le point de départ de nos approches vient cependant du cas de distributions gaussiennes isotropes,

Pk = N (µk, σ
2Id), et d’échantillons homogènes, Nk = N . Dans ce cas, l’erreur minimax d’estimation

d’une moyenne est atteinte par la moyenne empirique et est d’ordre σ2d/N (en norme quadratique). Il est

connu qu’en grande dimension cette erreur d’estimation est bien plus importante que l’erreur de test, la

plus petite distance entre deux moyennes pour laquelle il est possible de les distinguer, qui est de l’ordre

de σ2
√
d/N . Nous proposons donc de tester l’égalité entre les vecteurs µk deux à deux pour détecter

les moyennes proches et ensuiter estimer chacune d’entre elles par un estimateur de contraction vers les

moyennes empiriques ainsi sélectionnées. L’intuition est que la contraction réduira la variance de l’estimation

au prix de l’ajout d’un biais. Dans notre cas, on s’attend à un biais d’ordre inférieur à la variance en grande

dimension (
√
d ≪ d). L’amélioration donnée par cet estimateur sera ainsi notable en grande dimension

où l’estimation est particulièrement difficile. Ce phénomène rappelle ainsi le paradoxe de Stein (1956) qui

contracte la moyenne empirique vers un point de référence pour améliorer son risque quadratique.

Une importante partie de cette thèse est dédiée à la justification de cette intuition, la construction

d’une méthode et sa généralisation à des données non gaussiennes, non isotropes et des échantillons non

homogènes. Cette étude est nécessaire pour pouvoir traiter le cas des KMEs où les données sont dans un

espace fonctionnel de dimension infinie. Pour de telles distributions, le paramètre critique de la dimension est

remplacée par une notion de dimension effective qui sera construite à partir des covariance des distribution.

Cette notion interviendra dans notre étude de la vitesse de séparation de tests de proximité de moyennes

pour des distributions non isotropes, permettant de généraliser le phénomène connu du cas isotrope gaussien

au cadre KME et, plus généralement, pour des distributions bornées.

Dans la suite de cette introduction nous présentons certaines des notions liées à notre problème que

nous venons d’évoquer ci-dessus. En Section II.1.1, nous présentons l’estimateur de James et Stein (1961),

un des plus célèbre estimateurs de contraction en grande dimension et relions sa construction à différentes

idées qui seront utilisées dans nos méthodes. Nous présentons ensuite en Section II.1.2 la notion de vitesse de

séparation de tests de proximité et l’influence de la dimension dans cette vitesse dans le cas de distributions

gaussiennes isotropes. En Section II.2, nous introduisons le KME d’une distribution et certaines de ses

applications. Cet objet de grande dimension, très utilisé en machine learning, motive grandement notre

problème et nous amène à devoir considérer des notions de dimension effective. Ces notions sont présentées
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en Section II.3 accompagnées de différents exemples. En Section II.4 nous présentons plus en détail les

différentes contributions de la thèse.

II.1 Estimation et test en grande dimension

Les problèmes d’estimation et de test, centraux dans cette thèse, ont déjà été étudiés sous l’axe de la

grande dimension. Son effet pour ces problèmes a été mis en valeur en particulier dans le cadre classique

de distributions gaussiennes isotropes. Nous présentons donc dans cette section, dans un premier temps, le

paradoxe de Stein (1956) lié à l’estimation d’un vecteur et son lien avec des problématiques et des méthodes

plus modernes. Puis nous présenterons des résultats sur la vitesse de séparation de test pour lesquels Baraud

(2002) est le premier à avoir pris en compte l’influence de la dimension. Ces travaux sont finalement le

point de départ des différentes questions posées dans cette thèse.

II.1.1 Estimation d’un vecteur : le paradoxe de Stein

Le paradoxe de Stein est un exemple typique des phénomènes contre-intuitifs de la grande dimension.

Considérons un échantillon (Xi)1≤i≤N de vecteurs aléatoires dans Rd de loi gaussienne notée N (µ, σ2Id)

où la variance σ2 est connue et le vecteur moyenne µ ∈ Rd est inconnu. L’objectif est d’estimer ce vecteur

µ en minimisant le risque quadratique pour la distance euclidienne. Soit Gd =
{
N (µ, σ2Id)

⊗N : µ ∈ Rd
}

l’ensemble des distributions de N -échantillons gaussiens à covariance isotrope fixée, l’erreur minimax d’es-

timation du vecteur µ est alors :

inf
µ̂

sup
P∈Gd

E
[
∥µ̂− µ∥2

]
= d

σ2

N
. (II.1)

On constate l’influence de la dimension sur l’erreur d’estimation : l’erreur augmente avec la dimension de l’es-

pace. La moyenne empirique X̄N = 1
N

∑N
k=1Xk atteint exactement cette erreur et est donc un estimateur

minimax de µ sur cet ensemble de distributions. Cependant Stein (1956) montre que la moyenne empirique

est inadmissible, plus précisément qu’il existe des estimateurs strictement meilleurs au sens du risque qua-

dratique. Un meilleur estimateur est par exemple l’estimateur de James-Stein (James et Stein, 1961) qui

contracte la moyenne empirique vers un point de référence, traditionnellement 0. Nous considérerons plutôt

ici sa version avec partie positive, définie par

µJS+ =

(
1− σ2

N

d− 2∥∥X̄N

∥∥2
)

+

X̄N , (II.2)

et qui a une erreur quadratique pour l’estimation de µ strictement meilleure que la moyenne empirique

(Baranchik, 1964). Pour une dimension d ≥ 2 :

E
[∥∥µJS+ − µ

∥∥2] ≤ d σ2

N
min

(
τ

1 + τ
+

4

d
, 1

)
où τ = τ(µ) =

N∥µ∥2

dσ2
, (II.3)

(voir par exemple Lemme 3.8 de Tsybakov, 2008 pour cette borne). L’amélioration par rapport à la moyenne

empirique est plus importante en grande dimension, c’est-à-dire lorsque d ≫ N . En effet, dans ce cas, la

variance de la moyenne empirique (Eq.(II.1)) devient très mauvaise et la contraction vers 0 en devient plus

efficace. La variance est réduite en ajoutant un biais symbolisé par le facteur τ . À ∥µ∥2 fixé, le facteur

τ décrôıt avec la dimension et augmente avec la taille de l’échantillon. À l’inverse, l’amélioration est plus

faible lorsque N grandit : on sort alors du cadre de la grande dimension et la contraction perd de son

intérèt. Cependant dans tous les cas, l’estimateur de James-Stein reste strictement meilleur.

L’estimateur de James-Stein est minimax sur la classe de distributions Gd mais l’est aussi sur le sous

ensemble des distributions gaussiennes de moyennes proches de 0. Soit τ > 0, posons

Pd(τ) =
{
N (µ, σ2Id)

⊗N : ∥µ∥2 ≤ τd σ2
N

}
,

23



alors Pinsker (1980) montre que le risque minimax sur cette classe vérifie

lim
d→∞

inf
µ̂

sup
P∈Pd(τ)

E
[
∥µ̂− µ∥2

]
dσ2

N

=
τ

1 + τ
, où σ2

N =
σ2

N
. (II.4)

L’estimateur µJS+ atteint la borne minimax asymptotiquement en la dimension et évidemment sans

connâıtre τ . Dans ce modèle, l’erreur d’estimation possible est bien toujours en O(N−1) mais le gain se

fait au niveau de la dépendance en la dimension. L’estimateur de James-Stein s’adapte à de nombreux

contextes par exemple à une covariance non isotrope (Bock, 1975), des notions de risque différentes du

risque quadratique (Berger, 1976) et peut se construire avec une contraction différente et en estimant la

variance (Baranchik, 1970 ; Lehmann et Casella, 2006). Plus récemment, Muandet et al. (2014) l’adaptent

pour estimer des Kernel Mean Embeddings de distributions (voir Section II.2).

Nous présentons ci-dessous différentes interprétations de l’estimateur de James-Stein et comment des

méthodes ou idées classiques mènent à le considérer. Notre objectif est de présenter au lecteur ou à la

lectrice différentes idées applicables à l’estimation du vecteur µ mais que nous utiliserons par la suite dans

des cadres plus larges.

Interprétation oracle : L’estimateur de James-Stein peut être vu comme issu de l’estimation du poids

du meilleur estimateur de contraction vers 0. Considérons l’estimateur µ̂ω = ωX̄N où ω ∈ [0, 1] et cherchons

l’estimateur de cette forme minimisant le risque quadratique :

min
ω∈[0,1]

E
[
∥µ̂ω − µ∥2

]
= min
ω∈[0,1]

[
ω2dσ2

N + (1− ω)2∥µ∥2
]

= dσ2
N

τ(µ)

1 + τ(µ)

Le poids optimal est ω∗ = 1 − dσ2
N

∥µ∥2+dσ2
N
. En connaissant la norme de µ on peut améliorer son estima-

tion ce qui semble assez naturel. Celle-ci étant inconnue l’estimateur de James-Stein estime directement

∥µ∥2 + dσ2
N par ∥X̄N∥2 ce qui amène à considérer (II.3) après avoir injecté cet estimateur dans la formule

du poids oracle. L’estimateur de James-Stein va garder des performances proches de celles de l’estimateur

oracle grâce au fait que l’estimation d’une distance (quantité unidimensionnelle) en grande dimension est

bien plus facile que celle d’un vecteur. L’erreur induite va être négligeable relativement au gain.

Interprétation test : Le choix de la contraction de l’estimateur de James-Stein peut être relié au

problème de test :

(H0) : µ = 0 , (H1) : µ ̸= 0 .

La statistique P = dσ2
N/∥X̄N∥2 est super-uniforme sous (H0) (trivialement par l’inégalité de Markov car

E
[
P−1

]
= 1) et peut être utilisée pour tester ces deux hypothèses. Comme sous (H0), le vecteur µ devrait

être estimé par 0, l’estimateur de James-Stein utilise la statistique de test P pour quantifier la contraction

vers 0 :

µ̂JS+ =

(
1− d− 2

d
P

)
+

µ̂NE.

Le test permet de construire l’estimateur. Cette vision se retrouve dans Casella (1985) qui considère

une contraction de chaque coordonnée vers la moyenne des coordonnées et relie cet estimateur de type

James-Stein au problème de tester si les coordonnées de µ sont toutes égales.

Interprétation régularisation : Gruber (1998) lie les estimateurs de type James-Stein et les esti-

mateurs de type ridge qui sont d’autres estimateurs de contraction. Ainsi l’estimateur de James-Stein

µ̂JS =

(
1− σ2

N
d−2

∥X̄N∥2
)
X̄N , (Eq.(II.3) sans la partie positive), est solution du problème de régression
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ridge

µ̂JS = Arg Min
ν∈Rd

1

N

N∑
i=1

∥Xi − ν∥2 + λ∥ν∥2

pour λ =
(d−2)σ2

N

∥X̄N∥2−(d−2)σ2
N

. Pour éviter le choix de λ, on peut aussi envisager une régularisation par la norme.

On obtient alors un estimateur de type James-Stein :

(
1− σ̂√

N

√
d

∥X̄N∥

)
+

X̄N = Arg Min
ν∈Rd

√√√√ 1

N

N∑
i=1

∥Xi − ν∥2 +
1√
N
∥ν∥,

où σ̂2 = 1
d(N−1)

∑N
i=1

∥∥Xi − X̄N

∥∥2 est un estimateur de σ2. Cet estimateur bat la moyenne empirique pour

des moyennes proche de 0, (τ(µ) < 1) mais n’est pas minimax. Cependant cet exemple illustre qu’avec

une simple pénalisation par la norme, sans paramètre supplémentaire, on retrouve une contraction proche

de celle de l’estimateur de James-Stein ainsi que la présence de la partie positive. On peut aussi remarquer

que cette régularisation estime naturellement la variance par la variance empirique.

Interprétation bayésienne : Les travaux de Efron et Morris (1972, 1973, 1976) interprètent l’estima-

teur de James-Stein comme un problème de Bayes empirique. Par exemple en supposant que chacune des

coordonnées de µ est tirée indépendamment selon une même loi normale µi ∼ Q = N (0, τσ2), l’estima-

teur de Bayes du vecteur µ est alors un estimateur de contraction ωX̄N avec ω = 1
1+τ . Marginalement

Xi ∼ N (0, (1 + τ)σ2Id), donc on peut ainsi estimer 1 + τ par ∥X̄N∥2/(dσ2
N ) ce qui mène encore à l’esti-

mateur de James-Stein. Plus récemment Brown et Greenshtein (2009), ont reconsidéré cette approche pour

une loi Q arbitraire. Une plus ample discussion est donnée en Section V.7.1.

Interprétation tâches multiples : L’estimation de chacune des coordonnées du vecteur µ peut être

considérée comme un problème de tâches multiples (Baxter, 1997 ; Caruana, 1997). L’apprentissage de

multiples tâches cherche à résoudre différents problèmes simultanément (régression, estimation, . . .) pour

des jeux de données de différentes distributions. Pour cela, l’approche tâche multiple utilise des similarités

entre les distributions (structure commune, bruit identique,. . .). Ici nos tâches seraient d’estimer chacune

des coordonnées en minimisant le risque composé (ou compound risk), c’est-à-dire la moyenne des erreurs

de chaque estimateur. Ceci est bien équivalent à minimiser l’erreur quadratique du vecteur des estimateurs.

L’estimateur de James-Stein utilise finalement que les données de toutes les tâches ont le même bruit σ2

pour l’estimer efficacement et construire un estimateur de contraction pour chaque coordonnée. Le problème

d’estimer différentes moyennes est connu sous le nom de multi-task averaging. Le lien de ce problème avec

l’estimateur de James-Stein est considéré par exemple par Feldman et al. (2014) ou Duan et Wang (2023).

Ces deux dernières interprétations voient l’estimateur de James-Stein comme l’estimation jointe de

quantités réelles (les coordonnées). Une question naturelle à se poser est s’il est possible de l’adapter pour

estimer simultanément différents vecteurs à partir d’échantillons bruités de chacun. Ce problème se ramène

au cadre de James-Stein si l’on suppose que les bruits de chaque échantillon sont gaussiens isotropes.

Cependant si les bruits sont différents, inconnus, non isotropes ou même non gaussiens, il n’est pas évident

de construire un estimateur de type James-Stein et bien que des réponses partielles se trouvent dans la

littérature, le problème n’a pas été considéré dans son ensemble. Parmi les questions soulevées, on peut se

demander comment vont interagir les différents degrés de libertés du problème i.e. le nombre de données,

leur dimension et le nombre de vecteurs à estimer. Nous considèrerons ce problème dans les Sections III et

Section V.
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II.1.2 Distance de séparation de vecteurs

L’influence de la dimension dans les performances d’un test a été mise en valeur par Baraud (2002) dans

son analyse non asymptotique de la vitesse de séparation de tests dans le cadre gaussien. La distance ou

vitesse de séparation d’un test définie par Ingster (1982) dans le cadre asymptotique et adaptée au cadre

non asymptotique par Baraud (2002) permet une analyse minimax des problèmes de test. Dans un cadre

général, pour une distance γ entre les distributions et un ensemble d’hypothèses H0 et d’alternatives H1,

nous définissons la distance de séparation des ensembles d’hypothèses pour α ∈ (0, 1) comme :

δ∗α = inf

{
δ ≥ 0

∣∣∣∃ test T : sup
P∈H0

P(T = 1) + sup
P∈H1:γ(P,H0)≥δ

P(T = 0) ≤ α

}
. (II.5)

Il est important de remarquer que la distance de séparation dépend fortement de la distance γ choisie

entre les distributions. Intuitivement la distance de séparation optimale est la distance minimale entre

les hypothèses et les alternatives pour laquelle un test existe dont la somme des erreurs de type I et II est

contrôlée par α. Cette notion est équivalente à la complexité d’échantillon (sample complexity) du problème.

Pour un test la complexité d’échantillon est le nombre minimal de données pour lesquelles la somme des

erreurs de type I et II sont contrôlées par α pour des alternatives à une distance δ fixée. Ces notions se

déduisent l’une de l’autre par des opérations élémentaires.

Remarque II.1. La définition (II.5) est différente des originales, Baraud (2002) et Ingster (1982)

considèrent plutôt la distance minimale des alternatives aux hypothèses pour lesquelles il existe un

test d’erreur de type I exactement α et d’erreur de type II contrôlée. Les deux définitions cohabitent

cependant dans la littérature.

Considérons le problème de détection de signal avec bruit gaussien. Soit (Xi)1≤i≤n un échantillon de

vecteurs gaussiens de loi N (µ, σ2Id) et le problème de test :

(H0(η)) : ∥µ∥ ≤ η, contre (H1(η)) : ∥µ∥ > η, (II.6)

où η ≥ 0. Dans le cas classique où η = 0 nous nous référons à Baraud (2002) et dans le cas η > 0,

connu sous le nom de test d’hypothèses pertinentes ou précises, à Blanchard et al. (2018). Ces travaux

se distinguent par leurs analyses non asymptotiques du rôle de la dimension. En effet dans le cadre non

paramétrique, les analyses se concentrent plutôt sur la dépendance de la vitesse en la taille de l’échantillon

et l’influence de la régularité. Pour une analyse détaillée, les lecteurs peuvent se référer à Ingster et Suslina

(1998).

Dans ce modèle de distributions gaussiennes à variances fixées, nous pouvons choisir comme distance

γ entre les distributions la distance euclidienne entre les vecteurs moyennes γ
(
N (µ, σ2Id),N (ν, σ2Id)

)
=

∥µ− ν∥. Avec cette distance γ, la distance de séparation optimale pour le problème de test (II.6) est la

distance minimale δ∗ pour laquelle un test est capable de différencier les distributions de moyennes dans la

boule de rayon η et celles en dehors de la boule de rayon η + δ∗. Pour η = 0, Baraud (2002) analyse la

dépendance en la dimension de cette vitesse de séparation et donne la vitesse :

δ∗α(η = 0) = Θα

(
d

1/4σN

)
, (II.7)

où σ2
N = σ2/N et Θα indique des bornes inférieures et supérieures dépendant seulement de α. Cette analyse

non asymptotique met en lumière la relative facilité du test par rapport à l’estimation. L’erreur minimale de

détection est de σNd
1/4 pour le test contre σN

√
d (Eq.(II.1)) pour l’estimation. Autrement dit un test est

capable d’assurer que le vecteur µ est proche à σNd
1/4 d’un point de référence (ici 0) alors qu’un estimateur

de µ n’est assuré que d’être à une distance σN
√
d du vrai vecteur µ.
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Pour η non nul, Blanchard et al. (2018) ont mis en évidence l’existence de deux régimes. Lorsque η est

petit, l’erreur de test est bien (II.7), alors que pour η grand le test devient plus facile et l’erreur perd sa

dépendance en la dimension. Plus précisément :

δ∗α(η) = Θα

(
σN max

(
1,min

(
d

1/4,
√
d
σN
η

)))
. (II.8)

Intuitivement, lorsque η grandit, une direction devient prépondérante et le problème se ramène à un problème

unidimensionnel. Plus généralement, tester si µ ∈ C où C est un convexe est toujours plus facile que d’estimer

µ. En notant δ∗(C) la distance de séparation du test pour le convexe C, on a

δ∗α(C) = Oα

(
inf
µ̂

sup
P∈H0∪H1

E[∥µ̂− µ∥]
)

= Oα

(
σN
√
d
)
. (II.9)

La première inégalité étant vraie en toute généralité (en utilisant comme statistique de test la distance d’un

estimateur µ̂ au convexe C) et la seconde dans notre cadre de distributions gaussiennes isotropes. Ce cas

limite est atteint pour C un orthant (C = [−∞, 0]d) et dans ce cas l’erreur de test est la même que l’erreur

d’estimation (Théorème 3.6. de Blanchard et al., 2018 ou Juditsky et Nemirovski, 2002 dans un cadre non

paramétrique).

L’apparition de la dimension dans la vitesse de séparation ou l’erreur d’estimation est très liée au modèle

gaussien isotrope en dimension finie. Cependant certains outils modernes sortent de ce paradigme. C’est

le cas par exemple du Kernel Mean Embedding (KME), vecteur d’un espace fonctionnel qui va permettre

de caractériser des distributions. Nous présentons donc dans la prochaine section ce qu’est un KME, son

intérêt en machine learning et ses liens avec les problèmes de tests et d’estimation en grande dimension.

II.2 Un outil de grande dimension : le Kernel Mean Embedding

Le Kernel Mean Embedding (KME) est un outil de machine learning introduit par Smola et al. (2007) et

intrinsèquement lié aux méthodes à noyaux et aux espaces de Hilbert à noyaux reproduisants (Reproducing

Kernel Hilbert Space - RKHS). Le principe des méthodes à noyaux (Aizerman, 1964) est d’injecter les

données étudiées dans un espace de plus grande dimension et d’appliquer ensuite un algorithme classique

(typiquement une méthode linéaire régularisée). La force de ces méthodes est que le changement d’espace

se traduit seulement par le remplacement du produit scalaire euclidien par le produit scalaire de l’espace de

Hilbert défini par un noyau κ. Une méthode qui n’utilise que des produits scalaires sur les données s’adapte

ainsi très facilement, c’est le cas de nombreuses méthodes comme le support vector machine (Boser et al.,

1992 ; Cortes et Vapnik, 1995), la régression ridge (Cristianini et Shawe-Taylor, 2000 ; Hoerl et Kennard,

1970 ; Saunders et al., 1998) ou l’analyse par composantes principales (Hotelling, 1933 ; Pearson, 1901 ;

Schölkopf et al., 1998).

À une distribution Q sur l’espace initial on associe une distribution P sur le RKHS qui est la mesure

image, ou push-forward, de Q via l’injection dans le RKHS. Le KME de la distribution peut simplement se

définir comme l’espérance de la distribution P et, sous de faibles hypothèses, est un vecteur du RKHS. Si le

noyau est bien choisi, le KME caractérise totalement la distribution et entre autre induit une distance facile

à calculer entre des distributions appelée Maximum Mean Discrepancy (MMD) (Borgwardt et al., 2006).

Cette distance est simplement la distance entre les KMEs des distributions. Cette propriété ouvre la voie à

de nombreuses applications comme par exemple du two sample test (Gretton et al., 2012), goodness-of-fit

test (Chwialkowski et al., 2016), de l’apprentissage multi-instance ou de distributions à la fois supervisé

(Muandet et al., 2012 ; Szabó et al., 2016) aussi bien que non supervisé (Jegelka et al., 2009). On peut

aussi relever l’utilisation du MMD pour la construction de modèles génératifs (Dziugaite et al., 2015 ; Li

et al., 2017 ; Li et al., 2015).
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Dans cette section nous présenterons la construction du KME d’une distribution puis son estimation et

son utilisation dans les tests à deux échantillons. Un panorama plus complet peut être trouvé dans Muandet

et al. (2017).

II.2.1 Construction du KME et de la distance MMD

Les méthodes à noyaux sont construites à partir de fonctions noyaux. Notons X l’espace de nos données,

une fonction κ : X ×X → R est un noyau défini positif si elle est symétrique (κ(x, y) = κ(y, x)) et si pour

tout entier n, tous poids a1, . . . , an ∈ R et tous points x1, . . . , xn ∈ X :

n∑
i,j=1

aiajκ(xi, xj) ≥ 0 .

Cette propriété induit en particulier que la diagonale de κ est positive (κ(x, x) ≥ 0 pour tout point x). Les

fonctions noyaux sont stables par somme, dilatation, multiplication et passage à la limite ce qui les rend

assez faciles à construire. Les noyaux suivants sont les plus classiques :

� κ(x, y) = 1x=y définit le noyau trivial ;

� si X ⊂ Rd, alors exp
(
−∥x−y∥2

2

h2

)
et exp

(
−∥x−y∥2

h

)
où h > 0 définissent respectivement les noyaux

gaussien et de Laplace ;

� si ϕ : X → H est une injection de X dans un espace de Hilbert H, le produit scalaire ⟨ϕ(·), ϕ(·)⟩H
définit un noyau défini positif. Si X est un espace de Hilbert, son produit scalaire en est donc un.

Des fonctions noyaux sont construites pour des données très variées comme des textes (Joulin et al., 2017),

des suites, arbres ou graphes (voir Gärtner, 2003 ou Shawe-Taylor et Cristianini, 2004 pour un panorama)

utilisés dans ces cas en particulier en bioinformatique (Gusfield, 1997), pour des images (Zhang et al., 2007)

et aussi pour des diagrammes de persistance en analyse topologique de données (Carriere et al., 2017).

L’objectif des noyaux est de définir un produit scalaire dans un espace plus grand : à partir d’un noyau

défini positif, il est en effet possible de construire un espace de Hilbert pour lequel ce noyau définit un

produit scalaire.

Proposition II.2. Soit κ : X × X → R un noyau défini positif. Soit l’espace vectoriel

H0 = Vect(κ(x, ·) : x ∈ X ) ⊂ RX ,

muni du produit scalaire ⟨·, ·⟩H défini par

⟨κ(x, ·), κ(y, ·)⟩H := κ(x, y) pour x, y ∈ X (II.10)

et étendu par linéarité. Alors H le complété de H0 est un espace de Hilbert pour le produit scalaire

(II.10), étendu par passage à la limite. En particulier κ est un noyau reproduisant pour H :

⟨h, κ(x, ·)⟩H = h(x), ∀h ∈ H, x ∈ X , (propriété reproduisante).

Le noyau induit une injection ϕ entre l’espace des données X et le RKHS H définie pour x ∈ X par

ϕ(x) = κ(x, ·) , et pour y ∈ X ⟨ϕ(x), ϕ(y)⟩H = κ(x, y) .

Comme annoncé, le noyau κ permet de calculer directement les produits scalaires entre les représentants

de deux données dans le RKHS. D’autre part, H est l’unique RKHS dont κ est le noyau reproduisant

(Théorème de Moore-Aronszajn, Aronszajn, 1950). Cependant pour un noyau donné, il est possible de

construire plusieurs espaces de Hilbert pour lesquels ce noyau définit bien un produit scalaire mais n’est pas
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reproduisant. Par exemple, le noyau donné par κ(x, y) = xy pour x, y ∈ R définit un produit scalaire sur

n’importe quelle droite de Rd pour une dimension d arbitraire (H = {xν, x ∈ R} pour un certain ν ∈ Rd).
Le noyau associe aux points de X des images dans le RKHS par l’injection ϕ qui se généralise aux

distributions sur X par le KME.

Définition II.3 (KME). Soit Q une distribution sur X et κ un noyau défini positif, le Kernel Mean

Embedding (KME) de la distribution Q dans le RKHS H associé à κ est

µQ = EX∼Q[κ(X, ·)] . (II.11)

Si EX∼Q

[√
κ(X,X)

]
< ∞ alors Q est une mesure intégrable au sens de Bochner dans H et µQ ∈ H

est bien défini.

La condition d’existence du KME est facilement vérifiée en considérant un noyau borné (par exemple

le noyau trivial, gaussien, de Laplace . . .). Grâce à la propriété reproduisante du noyau, pour toute fonction

h de H, on a EX∼Q[h(X)] = ⟨h, µQ⟩H. Cette propriété va être en particulier très utile pour estimer des

distances entre KME. Une question importante a été de savoir pour quels noyaux cette distance entre KME

induit bien une distance entre les distributions, c’est à dire pour quels noyaux la fonction Q 7→ µQ est bien

injective. Les noyaux vérifiant cette propriété sont dits caractéristiques. Intuitivement il faut que la classe

de fonction du RKHS H soit assez riche pour que le KME caractérise la distribution. Par exemple, pour un

espace X compact, le noyau est caractéristique si le RKHS H est dense dans les fonctions continues bornées

(Steinwart, 2001). Voici quelques autres exemples de noyaux caractéristiques pour différents espaces.

� Le noyau trivial 1x=y est caractéristique lorsque X est fini (Borgwardt et al., 2006).

� Le noyau exponentiel κ(x, y) = exp(⟨x, y⟩) est caractéristique pour X compact de Rd. Le KME est

alors la fonction génératrice des moments µQ(x) = EX∼Q[exp(⟨x,X⟩)] .

� Les noyaux gaussien et de Laplace sont caractéristiques sur Rd (Fukumizu et al., 2007).

� Plus généralement pour un noyau invariant par translation sur Rd (κ(x, y) = K(x− y)), le KME se

relie à la fonction caractéristique de la distribution. Il est alors caractéristique si sa transformée de

Fourier est à support égal à tout Rd (Sriperumbudur et al., 2011, 2008, 2010).

Pour un noyau caractéristique, la distance entre les KME de deux distributions induit donc une distance

entre les distributions. Cette distance est connue sous le nom de maximum mean discrepancy (MMD)

(Gretton et al., 2012).

Définition II.4 (MMD). Soit κ : X × X → R un noyau caractéristique et H son RKHS associé, la

distance MMD entre P et Q distributions de X est définie par :

MMD(P,Q) = ∥µP − µQ∥H .

où µP et µQ sont les KMEs de P et Q.

Cette distance peut se voir comme une métrique intégrable de probabilités (Müller, 1997) sur le RKHS

H. En effet :

∥µP − µQ∥H = sup
h∈H:∥h∥H≤1

⟨h, µP − µQ⟩ = sup
h∈H:∥h∥H≤1

(∫
X
hdP−

∫
X
hdQ

)
.

Ainsi si H contient les fonctions bornées, elle domine la distance en variation totale, et pour X = R, si elle
contient les fonctions indicatrices

{
1(−∞,t)

}
t∈R elle domine la distance de Kolmogorov. La distance MMD

est équivalente à la distance énergie (Sejdinovic et al., 2013) et se relie aux distances de transport optimal :

elle est la limite de la divergence Sinkhorn (Genevay et al., 2018). Par rapport à ces distances, une force de

la distance MMD et du KME en général est la relative facilité de leurs estimations.
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II.2.2 Estimation

Soient Q et P deux distributions sur X connues seulement via deux échantillons {Xi}1≤i≤N et {Yj}1≤j≤M
des distributions Q et P respectivement. Nous présentons ici des estimateurs classiques du KME µQ et de

la distance MMD entre Q et P.
Le KME de la distribution Q peut se voir comme l’espérance du vecteur aléatoire Zi = κ(Xi, ·) (où

Xi ∼ Q) dans l’espace de Hilbert H. Ainsi le KME µQ = E[Z1] peut s’estimer par la moyenne empirique

classique :

µ̂Q(·) =
1

N

N∑
i=1

κ(Xi, ·) =
1

N

N∑
i=1

Zi .

Lorsque le noyau κ est borné, le vecteur aléatoire Z est alors lui aussi borné dans H et il est possible

d’utiliser les outils de concentration liés aux variables aléatoires bornées pour contrôler les déviations. Ainsi

en utilisant l’inégalité de McDiarmid et al. (1989), pour tout u ≥ 0, avec probabilité 1− e−u :

∥µ̂Q − µQ∥H ≤
L√
N

(
1 +
√

2u
)
, (II.12)

où L2 ≥ supx∈X κ(x, x) est une borne sur la diagonale du noyau. Une telle hypothèse est vérifiée par les

noyaux usuels (trivial-Gaussien-de Laplace). On peut remarquer d’ailleurs qu’un noyau reproduisant borné

sur la diagonale est alors borné partout, en effet pour tout x, y ∈ X

|κ(x, y)| = |⟨κ(x, ·), κ(y, ·)⟩H| ≤ ∥κ(x, ·)∥H∥κ(y, ·)∥H =
√
κ(x, x)κ(y, y) .

L’estimation de KMEs de distributions Q et P peut permettre d’estimer leur distance MMD en calcu-

lant directement leur distance dans le RKHS (bien qu’il y ait mieux comme estimateur, voir ci-dessous).

Cependant l’utilisation du KME ne se résume pas à la définition de la distance MMD. Son estimation est

par exemple nécessaire pour des problèmes de distribution régression où l’on cherche à faire une prédiction

à partir d’un échantillon (voir par exemple Oliva et al., 2013 ou Szabó et al., 2016). En inférence causale,

le KME de lois conditionnelles est utilisé comme proxy avant de procéder à une régression (Mastouri et al.,

2021 ; Singh et al., 2019). Dans ces cas l’estimation complète du KME est nécessaire.

La distance MMD entre deux distributions Q et P peut s’estimer sans directement estimer les KMEs

respectifs. Un estimateur non biaisé (de la distance au carré) le plus classique se construit à l’aide de

U-statistiques :

M̂MD
2
(Q,P) :=

1

N(N − 1)

N∑
i ̸=j=1

κ(Xi, Xj)−
2

NM

N∑
i=1

M∑
j=1

κ(Xi, Yj) +
1

M(M − 1)

N∑
i̸=j=1

κ(Yi, Yj) .

(II.13)

Cet estimateur se considère naturellement après avoir remarqué que ∥µQ∥2H = E[⟨Z,Z ′⟩H] = E[κ(X,X ′)]

où X,X ′ sont indépendants de loi Q. Chacun des termes de (II.13) estime sans biais chacun des termes

du développement de la distance ∥µQ − µP∥2H. Les déviations de cet estimateur de la distance peuvent

se contrôler à l’aide des inégalités de concentration sur les U -statistiques de Hoeffding (1963) (voir aussi

Gretton et al., 2012 dans le cadre KME). Pour tout u ≥ 0, avec probabilité 1− e−u :∣∣∣∣M̂MD
2
(Q,P)− ∥µQ − µP∥2

∣∣∣∣ ≤ L2√
min(N,M)

√
8u . (II.14)

Ces estimateurs du KME et de la distance MMD sont optimaux en la taille de l’échantillon (Tolstikhin

et al., 2017 ; Tolstikhin et al., 2016). Cependant, dans les deux cas, les vitesses données par les bornes de

concentration (II.12) et (II.14) ne prennent pas en compte la structure de covariance de la distribution ou
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la dimension de l’espace. Les termes liés à ces paramètres sont en réalité bornés par la borne L sur le noyau.

Pour pouvoir prendre en compte leurs effets nous aurons besoin d’inégalités de concentration plus précises,

de type Bernstein par exemple. Plus généralement, l’analyse de l’estimation de vecteurs ou de distance en

grande dimension se fait plutôt sous l’hypothèse que les distributions sont sous-gaussiennes (Hsu et al.,

2012 ; Koltchinskii et Lounici, 2017 par exemple). Ce cadre, bien qu’englobant des distributions bornées,

ne permet cependant pas de capturer l’influence de ces paramètres sur les déviations par une application

directe de résultats existants (voir discussion en Section IV.2.4). Pour les capturer, tout au long de la thèse,

en ayant comme objectif de construire des procédures adaptées à des KMEs, nous considèrerons le cadre

de données bornées dans un espace de Hilbert. Des phénomènes en estimation et en test comparables à

ceux présentés précédemment en Section II.1 seront constatés.

II.2.3 Tests à deux échantillons

Le test à deux échantillons consiste à tester l’égalité de deux distributions à partir d’échantillons de chacune

d’entre elles. Formellement pour P et Q, deux distributions sur l’espace X , on cherche à tester

(H0) : P = Q , contre (H1) : P ̸= Q . (II.15)

à partir de deux échantillons de chacune des lois. En une dimension, les tests historiques pour ce problème

sont les tests du Khi-deux dans le cadre discret (Pearson, 1900) et le test de Kolmogorov-Smirnov dans le

cadre continu (Kolmogorov, 1933). Ces tests sont construits respectivement sur des estimateurs empiriques

de la divergence du Khi-deux et de la distance de Kolmogorov entre P et Q. En grande dimension, le test de

Kolmogorov-Smirnov se généralise (Bickel, 1969 ; Friedman et Rafsky, 1979) mais a le désavantage d’avoir

un important coût algorithmique. Au lieu de considérer ces divergences, le test à noyau proposé par Gretton

et al. (2012) choisit de comparer les distributions à l’aide la distance MMD entre P et Q. Dans ce cadre le

test (II.15) se réécrit comme un test d’égalité de vecteurs dans le RKHS :

(H0) : ∥µP − µQ∥H = 0 , contre (H1) : ∥µP − µQ∥H ̸= 0 . (II.16)

Grâce à sa flexibilité (adaptable au contexte par le choix du noyau) et la simplicité de l’estimation de la

distance MMD (voir Section II.2.2), ce test a été largement diffusé. La question de son optimalité au sens

de la distance de séparation (II.5) est encore étudiée aujourd’hui. Le test original, construit à partir de la

U-statistique (II.13), est optimal pour des distributions à densités höldériennes sur Rd et pour la distance

L2 entre les densités. Cependant, le noyau choisi pour construire un tel test minimax doit dépendre du

paramètre de régularité de ces densités et en toute généralité le test est sous optimal (Balasubramanian

et al., 2021). Schrab et al. (2023) construisent cependant une version minimax et adaptative de ce test

sur Rd en aggrégeant une famille de tests basés sur plusieurs noyaux. Pour avoir un test minimax sur des

espaces différents de Rd, Hagrass et al. (2022) utilisent une régularisation de la distance MMD par la

covariance avec un noyau adapté aux données. La distance de séparation de ce test est alors mesurée en

terme de distance de Hellinger.

Dans les analyses citées, la distance de séparation du test est évaluée à l’aide de distances entre les

distributions (distance L2 entre les densités, Hellinger, divergence du Khi-deux, . . .). Pour relier ces distances

à la distance MMD, des hypothèses de régularité sur les densités sont nécessaires et les vitesses optimales

en la taille de l’échantillon dépendent alors de la dimension. Par exemple Li et Yuan (2019) montrent que la

distance de séparation pour la norme L2 entre les densités est en Θ(N−4s/(4s+d)) où d est la dimension de

l’espace, s la régularité de Sobolev des densités et N la taille des échantillons. On retrouve une dépendance

en la dimension semblable à celle de la vitesse d’estimation non paramétrique. Cette dépendance disparâıt

cependant lorsque la distance de séparation du test est considérée directement en terme de distance MMD

entre les distributions. Dans ce cas, la distance de séparation du test est la distance de séparation des

vecteurs dans le RKHS H et on retrouve d’ailleurs la même vitesse en Θ(N−1/2). En faisant le parallèle
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avec le cas gaussien on peut se demander quelle est l’influence de la dimension de l’espace sur cette distance

de séparation et s’il est possible de retrouver une forme (II.8). Le rôle de la dimension pour la distance de

séparation, mais aussi pour l’erreur de test, va être en réalité joué par une notion de dimension effective

que nous définissons dans la section suivante.

II.3 Dimension effective

Comme nous l’avons déjà évoqué, analyser et apprendre de l’information de données de grande dimension

est souvent possible car les données possèdent en réalité une structure plus simple. Ainsi la dimension

de l’espace dans lequel vit une distribution n’est pas forcément une quantité critique pour quantifier la

difficulté d’une tâche. Ce rôle est plutôt joué par des notions de dimension effective ou intrinsèque d’une

distribution. Ces dimensions intrinsèques d’une distribution P dépendent du problème considéré et celles

que nous considèrerons seront construites à partir de son opérateur de covariance (Baker, 1973). Dans toute

la suite on considèrera que P est une distribution sur un espace de Hilbert H. Des exemples seront donnés

pour H = Rd et H un RKHS.

Définition II.5 (Opérateur de covariance). Soit P une distribution sur un espace de Hilbert H telle

que E
[
∥X∥2H

]
<∞, son opérateur de covariance est alors défini par

Σ(P) :

{
H → H ,
y 7→ E

[
⟨y,X⟩HX

]
−
〈
y,E

[
X
]〉

HE
[
X
]
.

où X est une variable aléatoire de loi P.

Sur Rd, pour le produit scalaire canonique, l’opérateur de covariance est seulement la matrice de

covariance de la distribution : si µ = E[X], alors Σ(P) = E
[
(X − µ)(X − µ)T

]
.

En dimension infinie, on peut considérer l’opérateur de covariance de l’injection d’une distribution dans

un RKHS H. Soit X ∼ Q une variable aléatoire sur X et P la distribution de κ(X, ·) sur H. L’opérateur
de covariance est bien défini lorsque E[κ(X,X)] est finie (par exemple pour κ borné) et, dans ce cas, pour

tout h ∈ H :

Σ(P)h = E
[
⟨h, κ(X, ·)⟩Hκ(X, ·)

]
− ⟨h, µQ⟩HµQ(·) , (II.17)

où µQ est le KME (Definition II.3) de la distribution Q. En particulier l’opérateur de covariance vérifie pour

tout h, h′ ∈ H :

⟨h′,Σ(P)h⟩H = E[h(X)h′(X)]− E[h(X)]E[h(X ′)] = Cov[h(X), h′(X)]

Cette identité est parfois utilisée comme définition de l’opérateur. L’opérateur Σ(P) est borné (donc continu),

positif et auto-adjoint. Nous faisons remarquer au lecteur que nous considérons ici la version centrée de

l’opérateur de covariance. En effet ce sont les moments de cet opérateur qui interviennent dans nos méthodes

et que nous aurons parfois à estimer (voir Section II.4.5). Dans les méthodes noyaux sa version non centrée

est aussi utilisée, en particulier pour des tests d’indépendances et d’indépendance conditionnelle (Doran

et al., 2014 ; Gretton et al., 2005). On peut cependant relever l’utilisation récente de la version centrée pour

de l’analyse à composante principale à noyaux (Sriperumbudur et Sterge, 2022) et pour des two samples

tests (Hagrass et al., 2022 ; Li et Yuan, 2019). Nous ne nous intéresserons cependant pas à son estimation

mais l’utiliserons plutôt comme un outil théorique pour définir justement une notion de dimension effective.

Nous aurons cependant besoin d’estimer certains de ces moments (voir Section II.4.5) pour lesquels nous

fournirons des estimateurs.

Les notions de dimension effective que nous considèrerons s’expriment en fonction de normes de Schatten

de l’opérateur de covariance de la distribution. La définition suivante introduit les trois dimensions effectives

qui seront considérées dans ce manuscrit.
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Définition II.6 (Dimension effective). Soit P une distribution sur un espace de HilbertH et Σ := Σ(P)

son opérateur de covariance. On appellera dimensions effectives les quantités suivantes :

de(P) =
Tr Σ

∥Σ∥op
, d∗(P) =

Tr Σ2

∥Σ∥2op
, d•(P) =

(Tr Σ)2

Tr Σ2
, (II.18)

où Tr désigne la trace et ∥·∥op la norme opérateur.

Remarque II.7. Nous exprimerons parfois les dimensions effectives en fonction des normes de Schat-

ten de la covariance, pour p ∈ N∗ la norme p-Schatten est définie par ∥Σ∥pp := Tr(Σp), si cette quantité

existe. Pour p ≥ p′, les normes de Schatten vérifient ∥Σ∥p ≤ ∥Σ∥p′ .

D’après la remarque précédente, les dimension effectives sont bien définies si l’opérateur de covariance

Σ est de classe trace, c’est-à-dire de trace finie. En effet pour (ek)k∈N une base orthonormée de H, on a :

Tr Σ =

+∞∑
k=0

⟨ek,Σek⟩H =

+∞∑
k=0

(
E
[
⟨ek, X⟩2H

]
− ⟨ek,E[X]⟩2H

)
= E

[∥∥X∥∥2H]− ∥∥E[X]
∥∥2
H <∞ .

La dernière quantité est bien bornée par hypothèse et en utilisant l’inégalité de Jensen.

Dans la littérature des matrices aléatoires, de est parfois appelée la dimension intrinsèque (Hsu et al.,

2012 ; Tropp et al., 2015) ou rang effectif (Koltchinskii et Lounici, 2016), et d∗ est connue sous le nom de

rang numérique ou rang stable de Σ (Rudelson et Vershynin, 2007 ; Tropp et al., 2015).

Ces trois notions de dimension effective donnent une quantification des degrés de libertés de la distribu-

tion. Si la distribution P est isotrope, c’est à dire dont la covariance est Σ(P) = σ2Id, où d est la dimension

de l’espace ambiant, alors toutes ces notions de dimension effective sont égales à d. Plus généralement on

a les inégalités suivantes entre les dimensions effectives :

d ≥ d•(P) ≥ de(P) ≥ d∗(P) . (II.19)

Les problèmes suivants donnent des situations très simples dans lesquelles chacune des dimensions de

Eq.(II.18) interviennent.

� La dimension de caractérise plutôt les problèmes d’estimation. Par exemple si on cherche à estimer

l’espérance d’une distribution à partir d’une observation X ∼ P, l’erreur quadratique d’estimation

est alors :

E
[
∥X − µ∥2

]
= σ2de ,

où µ = E[X] et σ2 = ∥Σ∥op. On retrouve la forme (II.1).

� La dimension d∗ intervient plutôt dans les problèmes de test. Par exemple pour détecter l’espérance

µ d’une distribution est proche de 0, la distance ∥µ∥2 peut être estimée par ⟨X,X ′⟩ où X et X ′

sont deux observations indépendantes. Alors :

E[⟨X,X ′⟩] = ∥µ∥2 , et Var[⟨X,X ′⟩] ≥ σ4d∗

où σ2 = ∥Σ∥op. On retrouve grossièrement que l’erreur de test est en
√
d contre d pour l’estimation

mais avec des dimensions différentes.

� La dimension d• est moins naturelle à interpréter mais intervient dans le Chapitre V dans lequel nous

utiliserons des tests pour améliorer l’estimation de vecteurs. Elle peut être vue comme le rapport de

l’erreur d’estimation sur l’erreur de test :

√
d• =

de√
d∗
≃

E
[
∥X − µ∥2

]
√

Var[⟨X,X ′⟩]
.
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Dans les exemples suivants nous calculons des dimensions effective de différentes distributions.

Exemple II.8 (Support de plus petite dimension). Supposons que P est à support dans un sous espace

vectoriel de dimension p. Alors

de(P) ≤ p.

Supposons maintenant que H est de dimension finie d et considérons P̃ la distribution P bruitée par

addition d’un bruit indépendant et isotrope de covariance ε2Id. Alors

de
(
P̃
)
≤ p+ d

ε2

∥Σ(P)∥op
.

Si le bruit est assez faible (ε2 ≪ d−1∥Σ(P)∥op ), la dimension effective capture que la distribution Q
est une version bruitée d’une distribution de support de plus petite dimension.

Exemple II.9 (RKHS discret). Considérons H le RKHS associé au noyau trivial κ(x, y) = 1{x = y}
défini sur l’espace discret X = {x1, . . . , xm}. Soit Q =

∑m
i=1 piδxi

une distribution sur X et P la

distribution du plongement de Q dans H. La dimension effective de de P est alors encadrée par :

1

2

1− ∥p∥22
∥p∥∞(1− ∥p∥∞)

≤ de(P) ≤ 1− ∥p∥22
∥p∥∞(1− ∥p∥∞)

où p ∈ [0, 1]m est le vecteur de probabilités de Q. Dans ce cas la notion de dimension effective s’in-

terprète comme une version renormalisé de l’indice de Gini-Simpson (Simpson, 1949). L’indice de

Gini-Simpson est 1−∥p∥22 et mesure si une population est diversifiée. Dans notre cadre une population

diversifiée (cas limite pi ≃ m−1) aura une grande dimension effective (de ≃ m).

Exemple II.10 (Noyau de translation). Considérons H le RKHS associé à un noyau de translation

κh(x, y) := K((x− y)/h) où h > 0, la fenêtre ou bandwidth du noyau, est un paramètre fixé et

x, y ∈ X = Rd. Soit Q une distribution sur Rd à densité f par rapport à la mesure de Lebesgue et Ph
la distribution du plongement de Q dans H. En supposant K et f assez régulières, pour des petites

fenêtres, la dimension effective se relie à la norme L2 de la densité. En effet lorsque le bandwidth h

tend vers 0 :

d•(Ph) ∼
h→0

K(0)2

hd∥K∥2L2∥f∥2L2

.

Une distribution diffuse (∥f∥2L2 petite) aura une dimension effective plus grande dans le RKHS qu’une

distribution concentrée. Par exemple si K est un noyau gaussien et Q ∼ N (µ, σ2Id) une loi gaussienne,

la dimension effective dépend alors du ratio entre la variance et la fenêtre :

d•(Ph) ∼
h→0

(
8σ2

h2

)d/2

, de plus d•(Ph) −→
h→∞

d . (II.20)

Dans ce cas gaussien, on retrouve explicitement que la dimension effective sera plus grande pour une

distribution de grande variance.

Ces dimensions effectives se relient aussi à la notion de dimension de covariance locale (Dasgupta et

Freund, 2008) définie à partir des valeurs propres σ2
1 ≥ . . . ≥ σ2

d de la covariance Σ. Par exemple, Verma

et al. (2009) définissent qu’une distribution P est de dimension de covariance (p, ε) si les p plus grandes

valeurs propres représentent une proportion (1− ε) de la trace de la covariance :

p∑
i=1

σ2
i ≥ (1− ε) Tr Σ .
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Cette notion peut aussi se définir localement, en supposant cette condition vérifiée non plus pour la co-

variance mais pour les covariance des distributions restreintes à chaque boule d’un certain rayon. On peut

remarquer que pour ε > 0 fixé, une distribution P est de dimension de covariance (de, ε) pour des dimen-

sion effectives de l’ordre de la dimension ambiante (de ≳ (1 − ε)d) ou proches de 1 (de ≲ (1 + ε)). Plus

généralement, P est de dimension de covariance (de, εde) pour εde ≤ (1− 1
de )(1− de−1

d−1 ).

D’un côté plus géométrique, pour une mesure de probabilité, certaines notions de dimension vont se

définir en fonction de l’évolution avec le rayon de la mesure des boules. Grossièrement, une distribution Q
sera de dimension d si la probabilité de toute boule Sr de rayon r > 0 est dominée par le volume par le

volume d’une boulde d-dimensionnelle, c’est-à-dire si on a P(Br) < Crd pour une certaine constante C

(selon les cas pour r borné ou tendant vers 0). Ces notions sont fortement liées aux dimensions de Hausdorff

(1918) et de Assouad (1979), généralisées aux distributions par exemple par la pointwise dimension (Young,

1982), l’information dimension (Isham, 1993), la doubling dimension (voir Heinonen, 2001) ou par la notion

de distribution maximalement homogène (Kpotufe, 2011). Si la distribution est à densité sur un sous espace

vectoriel, ces dimensions vont cöıncider avec la dimension de cet espace tout comme les dimensions que

nous considérons (voir Exemple II.8). Cependant, ces notions vont diverger pour des distributions discrètes.

Pour de telles distributions et des rayons assez petits, les mesures des boules ne vont plus évoluer avec

le rayon ce qui donne une dimension égale à 0. À l’inverse, les dimensions (II.18) vont bien considérer la

structure des valeurs prises par la distribution dans l’espace. Par exemple pour une distribution uniforme

sur une famille orthonormée de vecteurs (ek)1≤k≤n :

de

(
1

n

n∑
k=1

δek

)
= n− 1 .

Pour une distribution discrète sur une droite, les dimensions seront de 1.

II.4 Contributions

Un objectif récurrent dans cette thèse est de faire le pont entre les phénomènes de grande dimension

étudié pour des données gaussiennes isotropiques avec les outils modernes actuels comme le KME présenté

précédemment. Le problème central que nous considérons est l’estimation simultanée de vecteurs moyennes,

pouvant être justement des KMEs de différentes distributions. Ce problème peut être considéré comme une

question d’apprentissage multi-tâche, voire aussi d’apprentissage par transfert où l’utilisateur cherche à

estimer ce nouveau vecteur en s’aidant d’estimations d’autres objets ou même d’apprentissage fédéré où les

données distribuées peuvent avoir des variations dans leurs distributions et que seul un vecteur peut être

transmis. Nous le considérerons ici de manière la plus générale en voyant ces vecteurs comme des éléments

d’un espace de Hilbert dont les observations sont perturbées par un bruit Gaussien ou borné.

Nous considérons ce problème en Section III et proposons une méthode utilisant un effet de type

Stein où l’amélioration de l’estimation augmente avec la dimension. Les garanties sont données sous des

hypothèses d’homogénéité entre les différentes distributions. Pour les KMEs, la grande dimension signifie

alors une grande dimension effective. Cette méthode est construite à partir de tests et utilise la relative

facilité de détection relativement à l’estimation. En Section IV nous généralisons ce phénomène de test à des

données non isotropiques et en particulier aux KMEs. Ce travail, bien qu’indépendant, permet aussi d’étendre

notre estimation multiple de vecteurs à des données hétérogènes en Section V. Dans cette section nous

proposons deux méthodes, l’une reposant sur des tests et l’autre sur la minimisation du risque empirique.

Fondamentalement la combinaison des échantillons permet de débruiter l’estimation de chaque moyenne en

particulier lorsque les distributions ont une structure commune. On constate que ce phénomène se retrouve

indirectement dans le mécanisme de self-attention utilisé dans les Transformers (Vaswani et al., 2017). En

Section VI, nous montrons ainsi que la self attention fonctionne comme un débruitage de données de grande
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dimension et qu’on retrouve des comportements comparables en grande dimension à ceux considérés dans

les précédentes sections.

Ces différentes contributions sont détaillées dans cette section.

II.4.1 Estimation multiple de vecteurs moyennes pour des données homogènes

La Section III est un travail en collaboration avec Gilles Blanchard et Hannah Marienwald (Marienwald

et al., 2021) et s’intéresse à l’estimation simultanée des vecteurs moyennes de différentes distributions.

Considérons le modèle : {
X

(k)
• := (X

(k)
i )1≤i≤Nk

i.i.d.∼ Pk, k ∈ JBK;
(X

(1)
• , . . . , X

(B)
• ) indépendants.

(II.21)

l’objectif est d’estimer le vecteur moyenne µk = E
[
X

(k)
1

]
de chacune des distributions Pk pour lesquelles

un échantillon X
(k)
• est à disposition. Pour un échantillon donné, nous construisons un estimateur de

contraction de sa moyenne empirique vers un point de référence. Ce point de référence ne va cependant

pas être choisi arbitrairement mais à partir des autres échantillons. L’objectif va être d’utiliser la relative

facilité du test par rapport à l’estimation en grande dimension pour trouver un point de référence proche

de la vraie moyenne.

Pour des données Gaussiennes isotropes et des échantillons homogènes, Nk = N et Pk = N (µk, σ
2Id),

nous estimons pour chaque moyenne un ensemble de τ -voisins V̂i = {j : Tij = 1, j ∈ JBK} où Tij est un

test pour les hypothèses :

(H0,ij) : ∥µi − µj∥2 ≤ τσ2
Nd, contre (H1,ij) : ∥µi − µj∥2 > τσ2

Nd. (II.22)

où σ2
N = σ2/N . Le but de ces tests est de trouver des échantillons dont les moyennes sont proches de la

moyenne cible relativement à l’erreur d’estimation (dσ2
N ). L’estimateur considéré pour µi est une contraction

de la moyenne empirique vers la moyenne des moyennes empiriques sélectionnées par les tests

µ̂i = γµ̂NEi +
1− γ
|V̂i|

∑
j∈V̂i

µ̂NEj , (II.23)

où µ̂NEj est la moyenne empirique sur l’échantillon j et γ ∈ (0, 1) un paramètre à fixer. L’erreur de test, en

norme au carré, pour des distributions Gaussiennes isotropes, est de l’ordre de σ2
N

√
d, on s’attend donc à

pouvoir construire des tests tels que les voisins sélectionnés soient à une distance de la vraie moyenne µi
d’au plus τσ2

Nd+ σ2
N

√
d (voir Section II.1.2). Ainsi en Section III :

� Nous construisons des tests tel que le biais ajouté par cette contraction est d’ordre plus petit que

l’erreur d’estimation de la moyenne empirique et nous montrons théoriquement et expérimentalement

que notre méthode améliore l’estimation relativement à la moyenne empirique.

� Les données sont supposées Gaussiennes isotropes ou bornées dans le but d’appliquer notre méthode

à l’estimation de KMEs. Dans ces deux cadres, nous faisons une hypothèse d’homogénéité des

échantillons : les tailles et variances des échantillons sont supposées du même ordre. Cette hypothèse

justifie notre utilisation symétrique des moyennes sélectionnées par les tests dans (II.23).

Cette section peut être considérée comme une introduction à la Section V où la méthode est généralisée à

des échantillons non homogènes. Cependant la méthode présentée en Section III garde un intérêt indépendant

en proposant une approche simple, peu coûteuse algorithmiquement et dont les garanties théoriques sont

plus fines. En particulier nos bornes prennent en compte la dépendance des données entre test et estimation

qui nous mettons de côté en Section V.3 (voir par exemple Théorème III.2).
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II.4.2 Tests à un ou deux échantillons en grande dimension avec une structure
de covariance inconnue

La méthode proposée en Section III repose sur l’analyse dans le cadre isotrope gaussien de la distance de

séparation (II.8). Dans le but de généraliser cette méthode, nous nous sommes intéressés au problème de

test à deux échantillons de proximité de moyennes

(H0(η)) : ∥µ− ν∥ ≤ η, contre (H1(η, δ)) : ∥µ− ν∥ > η + δ. (II.24)

où µ et ν sont les vecteurs moyennes respectifs de distributions P et Q connues via des échantillons i.i.d.

{Xi}1≤i≤n et {Yi}1≤i≤m. Ce problème est une généralisation du problème de détection de signal (II.6) :

on peut s’y ramener en supposant formellement que m = +∞ ou que Q est une distribution Dirac. Lorsque

µ et ν sont des KMEs ce test permet de tester la proximité de deux distributions. Sous cette forme, la

distance de séparation est la plus petite distance δα pour laquelle il existe un test tel que la somme des

erreurs de type I et II soient contrôlées par α ∈ (0, 1) donné. Le point important dans notre analyse est

que les covariances de chaque distribution ne sont pas supposées connues et qu’elles sont potentiellement

différentes. Nos contributions sont les suivantes :

� Nous procédons à une analyse minimax du test (II.24) et donnons une borne inférieure à la distance

de séparation pour des données gaussiennes. Nous retrouvons les deux régimes de Blanchard et al.

(2018) (Eq.(II.8)) mais où la dimension de l’espace est remplacée par une notion de dimension

effective du problème.

� Nous construisons des tests atteignant cette borne inférieure pour des données gaussiennes et bornées

dans un espace de Hilbert. Nos tests sont construits à partir de la U -statistique de la forme (II.13) et

d’estimateurs de ses quantiles. Des inégalités de concentration sont données pour tous ces estimateurs

dans le cadre gaussien et borné.

Ce travail a été fait en collaboration avec Gilles Blanchard (Blanchard et Fermanian, 2023).

II.4.3 Généralisation de l’estimation multiple de moyennes et minimaximalité

La Section V s’appuie sur ces deux précédentes parties et a été faite en collaboration avec Gilles Blanchard

et Hannah Marienwald (Blanchard et al., 2024). Nous considérons à nouveau le modèle (II.21) mais ne

supposons plus aucune homogénéité entre les distributions. Les tailles d’échantillons sont différentes ainsi

que les covariances des distributions supposées inconnues. Pour choisir d’aggréger deux estimateurs, il faudra

prendre en compte à la fois la proximité des moyennes mais aussi le rapport des variances. Même si tous les

échantillons ont la même moyenne, ceux avec une petite variance auront tout intérêt à être privilégiés. Pour

cela nous nous considérons donc comme estimateur des combinaisons convexe des moyennes empiriques

µ̂ω =

B∑
k=1

ωkµ̂
NE
k , , (II.25)

où µ̂NEk est la moyenne empirique de l’échantillon k et ω est un vecteur de poids dans le simplexe SB (i.e.∑B
k=1 ωk = 1 et ωk ≥ 0). Cette forme d’estimateur est plus générale que celle considérée en Section III

(l’estimateur (II.23) se ramène à (II.25) en prenant γ = ω1 et ωk = (1 − γ)1k∈V̂1
|V̂1|−1). Notre but

est toujours d’améliorer l’estimation de chaque moyenne relativement à l’estimation näıve par la moyenne

empirique. Pour cela nous proposons deux méthodes pour estimer des poids ω optimaux.

La première méthode présentée en Section V.3 repose sur des tests et est une adaptation de la méthode

de la Section III dans le cas hétérogène. Pour estimer la moyenne µ1, notre première étape consiste à
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sélectionner des moyennes (relativement) proches et de variances (relativement) plus faible. Nous cherche-

rons à estimer :

Vτ =
{
k ∈ JBK : ∥µk − µ1∥2 ≤ τσ2

1d
e(P1)

}
, et W(ς) =

{
k : σ2

k

(
d∗(Pk)

)1/2 ≤ ςσ2
1

(
d∗(P1)

)1/2}
(II.26)

où τ, ς > 0 sont des paramètres fixes et σ2
k = ∥Σk∥op/Nk. En mots, Vτ contient les distribution de moyennes

proches relativement à l’erreur d’estimation de µ1 et W(ς) contient les distributions d’erreur de tests plus

faibles que celle de la distribution P1. L’ensemble W(ς) permet d’exclure des moyennes qui pourraient être

sélectionnées des tests pour Vτ mais dont les moyennes seraient en réalité trop loin de µ1. Ces ensembles

sont estimés à l’aide de tests. La seconde étape consiste à estimer des poids ω donnés par une minimisation

oracle du risque théorique. Le poids ωk attribué à l’estimateur µ̂NEk va décrôıtre avec son erreur d’estimation

σ2
kd

e(Pk).

Cette approche diffère de la première méthode présentée par la non symétrie de la relation ”être un

τ -voisin”. L’estimateur d’un échantillon de grande variance et/ou de petite taille aura plus de voisins et

sera plus contracté qu’un échantillon de grande taille. La méthode améliorera plus les échantillons ayant

peu d’informations initialement mais ne détériorera pas l’estimation pour les autres.

Nous donnons des bornes non asymptotiques sur l’erreur de cette méthode et sur ses différents étapes.

Nous proposons des estimations de Vτ et W(ς) qui peuvent être remplacés par d’autres estimateurs si

besoin. Cette améliore l’estimation en particulier lorsque l’erreur de test est faible relativement à l’erreur

d’estimation, c’est-à-dire lorsque la dimension effective
√
d• = de/

√
d∗ est grande (pour P1).

Un point faible des deux approches tests (homogènes et hétérogènes) est la nécessité de choisir les

paramètres τ et ς. Nous proposons donc une seconde méthode qui utilise des idées de la Q-aggrégation

de Lecué et Rigollet (2014). Au lieu de sélectionner par des tests les voisins, nous estimons les poids en

minimisant un estimateur d’une borne supérieure du risque quadratique R1(ω) := E
[
∥µ̂ω − µ1∥2

]
. Cet

estimateur est constitué de deux termes, le premier terme L̂1(ω) est un estimateur de R1(ω) et le second

Q̂1(ω) un estimateur des déviations de
∣∣∣L̂1(ω)−R1(ω)

∣∣∣. Notre estimateur est alors µ̂ω̂ où

ω̂ ∈ Arg Min
ω∈SB

(
L̂1(ω) + Q̂1(ω)

)
.

Le terme Q̂1 est tiré d’inégalités de concentration et fait intervenir les covariances des distributions. La

pondération par Q̂1 va imposer une forme de sparsité au vecteur ω̂ comme pourrait le faire une pénalisation

ℓ1 mais qui prend en compte la dimensionalité des différents échantillons. Nous l’interprétons comme des

tests implicitement effectué par cette régularisation.

Nous construisons de tels estimateurs et donnons des bornes sur l’erreur quadratique moyenne de

l’estimateur µ̂ω̂. Nous retrouvons d’ailleurs dans ces bornes la même vitesse de convergence que l’approche

test en O((d•)−1/2). La Q-aggrégation a l’avantage cependant d’être adaptative en τ et ς. En pratique, les

deux méthodes obtiennent des résultats comparables.

Intuition. Notre objectif est de choisir des estimateurs pour avoir une borne sur le vrai risque, c’est-

à-dire que le risque soit borné avec grande probabilité :

R1(ω) ≤ L̂1(ω) + Q̂1(ω) +O(
√
d∗) ≤ R1(ω) +O(

√
d∗), ∀ω ∈ SB .

On s’attend en effet à ce que les déviations de l’estimation d’une distance soit de l’ordre de
√
d∗. On

peut faire le parallèle avec la déviation d’un vecteur Gaussien Z ∼ N (µ,Σ). Supposons qu’on veuille

estimer R = E
[
∥Z − ν∥2

]
pour un vecteur ν ∈ Rd. Alors pour tout u ≥ 0, avec probabilité 1− e−u :

E
[
∥Z − ν∥2

]
≤ ∥Z − ν∥2 + 2σ2

√
(d∗ + 2(µ− ν)TΣ(µ− ν))u
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où σ2 = ∥Σ∥op et d∗ = d∗
(
N (µ,Σ)

)
est la dimension effective de la loi gaussienne (voir Lemme V.40).

Dans ce cas ∥Z − ν∥2 serait notre estimateur L̂1 et Q̂1 serait un estimateur de
√

(µ− ν)TΣ(µ− ν).

On retrouve bien la déviation de l’ordre de
√
d∗.

Les erreurs de ces deux méthodes sont étudiées sous un l’axe de grande dimension (effective). Tout

comme l’estimateur de James-Stein (voir Section II.1.1), l’amélioration se fait au niveau de la dépendance

en la dimension de la vitesse de convergence. En Section V.5, nous faisons une analyse minimax du problème

et donnons des bornes inférieures pour l’amélioration optimale possible pour un échantillon et en moyenne

sur les tous les échantillons. Nous discutons de l’optimalité de nos deux méthodes.

II.4.4 Effet de débruitage de la self-attention

La Section VI présente des travaux préliminaires en collaboration avec Gilles Blanchard sur le mécanisme

d’attention. Ce mécanisme est utilisé dans les réseaux de neurones Transformers (Vaswani et al., 2017)

très utilisés aujourd’hui en particulier pour des tâches de génération de données de texte ou d’image. Dans

ces cas, les entrées du réseau de neurones ne sont plus un point mais un ensemble de points pouvant être

les mots d’une phrase ou d’un texte ou bien les encodement de sous parties d’une image. Pour traiter ce

type de données, les Transformers ajoutent des couches supplémentaires dans le réseau de neurone dites

d’attention qui vont chercher à considérer non plus les points individuellement mais dans leur globalité.

L’intuition est très simple : pour traduire un mot d’une phrase il est important de prendre en compte son

contexte. Formellement, pour des points X1, . . . , XN , l’attention construit dans une première étape N

nouveaux points :

aQ,K(Xi) :=

N∑
j=1

ωijXj où (ωij)j = Softmax
((
⟨QXi,KXj⟩

)
j

)
∈ SN , (II.27)

où SN est le toujours le simplexe et Q et K sont des matrices apprises durant l’entrâınement du réseau

de neurone. Nous supposons ici que ces matrices sont fixes, nous plaçons donc après l’apprentissage et

cherchons à comprendre l’action de l’attention sur les données. En comparant cette forme avec (II.25),

nous proposons d’interpréter le mécanisme d’attention comme une forme d’estimation multiple de vecteurs.

Nous supposons ainsi que les points Xi sont des versions bruitées de vecteurs µi ayant une structure plus

simple et nous nous demandons si les nouveaux points aQ,K(Xi) seraient moins bruités par rapport aux

points originaux Xi, c’est-à-dire si pour 1 ≤ i ≤ N :

E
[
∥aQ,K(Xi)− µi∥2

]
< E

[
∥Xi − µi∥2

]
.

pour la dimension tendant vers l’infini. Nous analysons cette question dans un cadre simplifié où les vecteurs

Xi sont gaussiens isotropes et où les matrices Q et K sont proportionnelles à l’identité (Q = K = Id/
√
h)

et dans ce cas nous étudions les valeurs du paramètres h pour lesquelles le mécanisme de self-attention

n’est pas dégénéré (i.e. aQ,K(Xi) ̸= Xi et aQ,K(Xi) différent de la moyenne des données). Pour un tel

paramètre nous exhibons certaines structures des moyennes µi pour lesquelles il y a effectivement débruitage

(support de plus petite dimension ou petit nombre de couverture pour un certain rayon). À partir de cette

analyse de l’effet de la dimension, nous proposons une version légèrement modifée des poids ω de (II.27)

pour lesquels nous obtenons théoriquement et sur des données simulées un effet de débruitage pour un plus

large spectre de paramètre h (h ≃ d pour les méthodes originales contre
√
d ≲ h ≲ d pour notre version

modifiée).

Une hypothèse important de notre analyse est que les vecteurs µi sont de même norme. Dans ce cas,

on peut remarquer que les poids donnés par des produits scalaires sont les mêmes que ceux donnés par la

norme carré (Softmax((⟨µi, µj⟩)j) = Softmax
(

(−∥µi − µj∥2/2)j

)
). Comme nous supposons de plus que

les matrices Q et K sont proportionnelles à l’identité, nous pouvons interpréter ⟨QXi,KXj⟩ comme un
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estimateur de la distance euclidienne entre µi et µj (à constante additive près et facteur 1/2). Comme pour

i = j, cet estimateur est biaisé, notre modification des poids d’attention va juste enlever ce biais.

L’hypothèse que les vecteurs µi soient sur la phère est justifée pour nous par la seconde étape de

l’attention qui consiste à combiner les points initiaux avec aQ,K(Xi) et construire pour 1 ≤ i ≤ N :

AQ,K,V (Xi) :=
Xi + V aQ,K(Xi)

∥Xi + V aQ,K(Xi)∥
.

pour une matrice V apprise aussi par le réseau de neurone. Ainsi à la sortie de la self attention, à chaque

point est bien associé un vecteur normalisé. C’est d’ailleurs sous cette forme que la self attention est

plutôt étudiée bien que la normalisation soit parfois négligée. Dans notre modèle, les vecteurs AQ,K,V (Xi)

peuvent s’interpréter comme des estimateurs de contraction (matricielle) de Xi vers aQ,K(Xi) et se relient

aux estimateurs de type empirical Bayes (Brown et Greenshtein, 2009) pour certaines matrices V (voir

discussion en Section VI.1.1). Notre analyse se concentre cependant pour l’instant sur aQ,K(Xi). Ces

résultats bien que restreints à des versions simplifiées du mécanisme d’attention dans un cadre gaussien

isotrope mettent en lumière un phénomène, à notre connaissance, méconnu et aménent de nombreuses

nouvelles questions.

II.4.5 Inégalités de concentration

Ces différents travaux utilisent de façon répétée des estimateurs de distance entre les vecteurs et de moments

de la covariance des distributions. Ces estimations sont contrôlées par des bornes de concentration pouvant

être d’un intérêt indépendamment des problèmes que nous considérons. En particulier ces bornes portent une

grande attention au rôle de la dimension (effective) dans les déviations. En dehors des données gaussiennes

et bornées, nous considérons aussi des distributions à queues lourdes où seul un moment d’ordre quatre

fini est supposé. Pour ce type de données des estimateurs de type ”median of means” sont considérés (voir

Lugosi et Mendelson, 2019a par exemple). La Table 2 pointe vers les différents résultats disséminés dans la

thèse.

Quantité estimée Cadre Gaussien Cadre borné Cadre queues-lourdes

∥µ− ν∥2 Proposition IV.6 Proposition IV.9 Proposition V.33
Tr Σ Proposition V.26 Proposition V.29 Proposition V.34
∥Σ∥op Proposition IV.10 Proposition IV.11 -√
Tr Σ2 Proposition IV.12 Proposition IV.13 Proposition V.34

(µ− ν)TΣ(µ− ν) Proposition V.37 Proposition V.38 -

Table 2 : Recensement des différents résultats de concentration : µ et Σ sont respectivement la
moyenne et covariance d’une distribution et ν la moyenne potentiellement inconnue d’une autre.
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III High dimensional multi-task averaging

In this section, we propose an improved estimator for the multi-task averaging problem, whose goal is the

joint estimation of the means of multiple distributions using separate, independent data sets. The naive

approach is to take the empirical mean of each data set individually, whereas the proposed method exploits

similarities between tasks, without any related information being known in advance. First, for each data set,

similar or neighboring means are determined from the data by multiple testing. Then each naive estimator

is shrunk towards the local average of its neighbors. We prove theoretically that this approach provides a

reduction in mean squared error. This improvement can be significant when the dimension of the input

space is large, demonstrating a “blessing of dimensionality” phenomenon. An application of this approach

is the estimation of multiple kernel mean embeddings, which plays an important role in many modern

applications. The theoretical results are verified on artificial and real world data.
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III.1 Introduction

The estimation of means from i.i.d. data is arguably one of the oldest and most classical problems in

statistics. In this work we consider the problem of estimating multiple means µ1, . . . , µB of probability

distributions P1, . . . ,PB , over a common space X = Rd (or possibly a real Hilbert space H). We assume

that for each individual distribution Pi, we observe an i.i.d. data set X
(i)
• of size Ni, and that these data

sets have been collected independently from each other.
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In the rest of the section, we will call each such data set X
(i)
• a bag. Mathematically, our model is thus{

X
(i)
• := (X

(i)
k )1≤k≤Ni

i.i.d.∼ Pi, 1 ≤ i ≤ B;

(X
(1)
• , . . . , X

(B)
• ) independent,

(III.1)

where P1, . . . ,PB are square integrable distributions on Rd which we call tasks, and our goal is the estimation

of their means

µi := EX∼Pi
[X] ∈ Rd, 1 ≤ i ≤ B. (III.2)

Given an estimate µ̂i of µi, we will be interested in its squared error ∥µ̂i − µi∥2, and aim at controlling it

either with high probability or in average (mean squared error, MSE):

MSE(i, µ̂i) := E
[
∥µ̂i − µi∥2

]
;

this error can be considered either individually for each task Pi or averaged over all tasks.

This problem is also known as multi-task averaging (MTA) (Feldman et al., 2014), an instance of the

multi-task learning (MTL) problem. Prior work on MTL showed that learning multiple tasks jointly yields

better performance compared to individual single task solutions (Caruana, 1997; Evgeniou et al., 2005;

Feldman et al., 2014).

In this chapter we adapt the idea of joint estimation to the multi-task averaging problem and will show

that we can take advantage of some unknown structure in the set of tasks to improve the estimation. Here,

by individual estimation we mean that our natural baseline is the naive estimator (NE) given by the simple

empirical mean:

µ̂NE
i :=

1

Ni

Ni∑
k=1

X
(i)
k ; MSE(i, µ̂NE

i ) =
1

Ni
Tr Σi, (III.3)

where Σi is the covariance matrix of Pi.
Our motivation for considering this setting is the growing number of large databases taking the above

form, where independent bags corresponding to different but conceptually similar distributions are available;

for example, one can think of i as an index for a large number of individuals, for each of which a number

of observations (assumed to be sampled from an individual-specific distribution) are available, say medical

records, or online activity information collected by some governmental or corporate mass spying device.

While estimating means in such databases is of interest of its own, a particularly important motivation

to consider this setting is that of Kernel Mean Embedding (KME), a technique enjoying sustained attention

in the statistical and machine learning community since its introduction in the seminal paper of Smola et al.

(2007); see Section II.2.

The core principle of KME is to represent the distribution PZ of a random variable Z via the mean of

X = ϕ(Z), where ϕ is a rich enough feature mapping from the input space Z to a (reproducing kernel)

Hilbert space H. In practice, it is assumed that we have an i.i.d. bag (Zk)1≤k≤N from P, which is used

to estimate its KME. Here we are interested again in the situation where a large number of independent

data sets from different distributions are available, and we want to estimate their KMEs jointly. This is,

therefore, an instance of the model (III.1), once we set X := H and X
(i)
k := ϕ(Z

(i)
k ).

III.1.1 Relation to Previous Work

The fact that the naive estimator (III.3) can be improved upon when multiple, real-valued means are to

be estimated simultaneously, has a long history in mathematical statistics. More precisely, let us introduce

the following isotropic Gaussian setting:

Pi = N (µi, Id); Ni = N, 1 ≤ i ≤ B, (GI)
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on which we will come back in the sequel.

As shown in Stein (1956), for B = 1 with d ≥ 3 the naive estimator is inadmissible, i.e. there exists a

strictly better estimator, with a lower MSE for any true mean vector µ1. An explicit example of a better

estimator is given by the celebrated James-Stein estimator (JSE) (James and Stein, 1961), which shrinks

adaptively the naive estimator towards 0, or more generally, towards an a priori fixed vector ν0.

The MTA problem was introduced by Feldman et al. (2014), who proposed an approach which regu-

larizes the estimation such that similar tasks shall have similar means as well. However, they assumed the

pairwise task similarity to be given, which is unfeasible in most practical applications. In addition to our

own approach, we will also introduce a variation of theirs, suitable for the KME framework, that estimates

the task similarity instead of assuming it to be known. Mart́ınez-Rego and Pontil (2013) proposed a method

based on spectral clustering of the tasks and applying Feldman et al. (2014)’s method separately on each

cluster, but without theoretical analysis.

Variations of the JSE can be shown to yield possible improvements over the NE in more general

situations as well (see Fathi et al., 2020 for recent results in non-Gaussian settings). This has also been

exploited for KME in Muandet et al. (2016), where a Stein-type estimator in kernel space was shown to

generally improve over naive KME estimation. To the best of our knowledge, no shrinkage estimator for

KME explicitly designed for or taking advantage of the MTA setting exists.

In the remainder of this work we will proceed as follows. Section III.2 introduces the basic idea of the

approach and starts with a general discussion. We will expose in Section III.3 a theoretical analysis proving

that the presented method improves upon the naive estimation in terms of squared error, possibly by a large

factor. The general theoretical results will be discussed explicitly for the Gaussian setting (Section III.3.3)

and in the KME framework (Section III.3.4). The approach is then tested for the KME setting on artificial

and real world data in Section III.4. All proofs are found in the Sections III.6.1 to III.6.6, Section III.6.7

gives a detailed description of the estimators compared in the experiments, and Section III.6.8 presents

additional numerical results in the Gaussian setting.

III.2 Method

The basic idea of our approach is to improve the estimation of a mean of a task by basing its estimation

not on its own bag alone, but concatenating the samples from all bags it is sufficiently similar to. Since in

most practical applications task similarity is not known, we will propose a statistical test that assesses task

relatedness based on the given data.

III.2.1 Overview of the Approach

In the remainder of the section we will use the notation JnK := {1, . . . , n}. For convenience of exposition,

assume the (GI) setting. In this case, the naive estimators all have the same MSE, σ2 := d/N . Fix a

particular task (reindexed i = 0) with mean µ0 that we wish to estimate, and assume for now we are given

the side information that for some constant τ > 0, it holds ∆2
0i := ∥µ0 − µi∥2 ≤ τσ2 for some “neighbor

tasks” i ∈ JV K (a subset of the larger set of B tasks within range τσ2 to µ0, reindexed for convenience).

Consider the estimator µ̃0 obtained by a simple average of neighbor naive estimators, µ̃0 = 1
V+1

∑V
i=0 µ̂

NE
i .

We can bound via usual bias-variance decomposition, independence of the bags and convexity of the squared

norm:

MSE(0, µ̃0) =

∥∥∥∥ 1

V + 1

V∑
i=1

(µ0 − µi)
∥∥∥∥2 +

σ2

V + 1
≤ σ2 (1 + V τ)

V + 1
. (III.4)

Thus, the above bound guarantees that µ̃0 improves over µ̂NE
0 whenever τ < 1, and leads to a relative

improvement of order max(τ, V −1).
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In practice, we don’t have any a priori side information on the configuration of the means. A simple

idea is, therefore, to estimate the quantities ∆2
0i from the data by an estimator ∆̂2

0i and select only those

bags for which ∆̂2
0i ≤ τ̃σ2. This is in a nutshell the principle of our proposed method.

The deceptive simplicity of the above idea might be met with some deserved skepticism. One might

expect that the typical estimation error of ∆̂2
0i would be of the same order as the MSE of the naive

estimators. Consequently, we could at best guarantee with high probability a bound of ∆2
0i ≲ σ2 for the

estimated neighbor tasks, i.e. τ ≈ 1, which does not lead to any substantial theoretical improvement when

using (III.4). The reason why the above criticism is pessimistic, even in the worst case, is the role of the

dimension d. From high-dimensional statistics, it is known that the rate of testing for ∆2
0i = 0, i.e. the

minimum ρ2 such that a statistical test can detect ∆2
0i ≥ ρ2 with probability close to 1, is faster than the

rate of estimation, ρ2 ≃
√
d/N = σ2/

√
d (see e.g. Baraud, 2002; Blanchard et al., 2018). Thus, we can

reliably determine neighbor tasks with τ ≈ 1/
√
d. Based on (III.4), we can hope again for an improvement

of order up to O(1/
√
d) over NE, which is significant even for a moderately large dimension. In the rest

of the section, we develop the idea sketched here more precisely and illustrate its consequences on KME

by numerical experiments. The message we want to convey is that the curse of higher dimensional data

with its effect on MSE can be to a limit mitigated by a relative blessing because we can take advantage of

neighboring tasks more efficiently.

III.2.2 Proposed Approach

Denote σ2
i = MSE(i, µ̂NE

i ), i ∈ JBK. Introduce the following notation: ∆ij := ∥µi − µj∥. In general, our

approach assumes that we have at hand a family of tests (Tij)1≤i,j≤B for the null hypotheses H0
ij : ∆2

ij >

τσ2
i against the alternatives H

1
ij : ∆2

ij ≤ τ ′σ2
i , for 0 ≤ τ ′ < τ . The exact form of the tests will be discussed

later for specific settings.

We denote the set of detected neighbors of task i ∈ JBK as Vi := {j : Tij = 1, j ∈ JBK}; we can safely

assume Tii = 1 so that that i ∈ Vi always holds and |Vi| ≥ 1. We will also denote V ∗
i = Vi \ {i}. For

γ ∈ [0, 1], define the modified estimator

µ̃i := γµ̂NE
i +

(1− γ)

|Vi|
∑
j∈Vi

µ̂NE
j , (III.5)

which can be interpreted as a local shrinkage estimator pulling the naive estimator towards the simple

average of its neighbors.

III.3 Theoretical results

We will assume that the naive estimators defined by (III.3) satisfy

max
i∈JBK

MSE(i, µ̂NE
i ) ≤ σ2. (III.6)

Define the notation

G(τ) :=
{

(i, j) ∈ JBK2 : ∆2
ij ≤ τσ2

}
; G(τ) :=

{
(i, j) ∈ JBK2 : ∆2

ij ≥ τσ2
}
,

and two following events:

A(τ) :=
{

max
(i,j)∈G(τ)

Tij = 1
}

; B(τ ′) :=
{

min
(i,j)∈G(τ ′)

Tij = 0
}

;

so P[A(τ)] is the collective false positive rate of the tests (or family-wise error rate) while P[B(τ ′)] is the

collective false negative rate to detect ∆2
ij ≤ τ ′σ2 (family-wise Type II error rate).
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III.3.1 A General Result under Independence of Estimators and Tests

We start with a result assuming that the tests (Tij)(i,j)∈JBK2 and the estimators (µ̂NE
i )i∈JBK are independent.

This can be achieved for instance by splitting the original bags into two.

Theorem III.1. Assume model (III.1) holds as well as (III.2), and that (III.6) holds. Furthermore,

assume that there exists a family of tests (Tij)(i,j)∈JBK2 that is independent of (X
(i)
• )i∈JBK. For a fixed

constant τ > 0, consider the family of estimators (µ̃i)i∈JBK defined by (III.5) with respective parameters

γi :=
τ |V ∗

i |
(1 + τ)|V ∗

i |+ 1
. (III.7)

Then, conditionally to the event Ac(τ), it holds

∀i ∈ JBK : MSE(i, µ̃i) ≤
(

τ |V ∗
i |+ 1

(1 + τ)|V ∗
i |+ 1

)
σ2. (III.8)

Let N denote the covering number of the set of means {µj , j ∈ JBK} by balls of radius
√
τ ′σ/2. Then,

conditionally to the events Ac(τ) and Bc(τ ′) (for τ ′ < τ), it holds

1

B

B∑
i=1

MSE(i, µ̃i) ≤
(

τ

1 + τ
+
N
B

1

1 + τ

)
σ2. (III.9)

The proof can be found in Section III.6. In a nutshell, conditional to the favorable event Ac(τ), and

because the tests are independent of the estimators, we can use the argument leading to (III.4), extended

to take into account the shrinkage factor γ, and optimize the value of γ to obtain (III.7), (III.8). If Bc(τ ′)

is satisfied as well, we can deduce (III.9) directly from (III.8).

Discussion.

� The factor in the individual MSE bound (III.8) is strictly less than 1 as soon as |Vi| > 1. As the

number of neighbors |Vi| grows, the factor is larger than but approaches τ/(1 + τ). Therefore, there

is a general trade-off between τ and the number of neighbors in a neighborhood of radius
√
τσ.

Nevertheless, in order to aim at possibly significant improvement over naive estimation, a small value

of τ should be taken.

� The factor in the averaged MSE bound (III.9) is also always smaller than 1 (as expected from the

individual MSE bound). It has a nice interpretation in terms of the ratio N/B: if N ≪ B, the

improvement factor will be very close to τ/(1 + τ). Thus, we collectively can improve over the naive

estimation wrt MSE as soon as the set of means has a small covering number (at scale
√
τ ′σ/2)

in comparison to its cardinality. This condition can be met in different structural low complexity

situations, e.g. clustered means, means being sparse vectors, set of means on a low-dimensional

manifold. Note that the method does not need information about said structure in advance and is

in this sense adaptive to it.

III.3.2 Using the Same Data for Tests and Estimation

We now present a general result in the case where the estimators and tests are not assumed to be independent

(e.g. computed from the same data.) To this end we introduce the following additional events:

C(τ) :
{

max
i ̸=j
|⟨µ̂NE

i − µi, µ̂NE
j − µj⟩| > τσ2

}
; C ′(τ) :

{
max
i
∥µ̂NE

i − µi∥2 > σ2 + τσ2
}
.
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Theorem III.2. Assume that there exists a family of tests (Tij)(i,j)∈JBK2 . For a given τ > 0 consider

the family of estimators (µ̃i)i∈JBK defined by (III.5) with respective parameters

γi :=
τ

1 + τ
. (III.10)

Then, for τ ′ ≥ τ , with probability greater than 1− P[A(τ) ∪B(τ ′) ∪ C(τ) ∪ C ′(τ)], it holds

∀i ∈ JBK : ∥µ̃i − µi∥2 ≤ 2σ2

(
τ +

τ + |Vi|−1

1 + τ

)
. (III.11)

Let N denote the covering number of the set of means {µj , j ∈ JBK} by balls of radius
√
τ ′σ/2. Then,

with the same probability as above, it holds

1

B

B∑
i=1

∥µ̃i − µi∥2 ≤ 2σ2

(
τ +

τ

1 + τ
+
N
B

1

1 + τ

)
. (III.12)

The interpretation of the above result is similar to that of Theorem III.1, with the caveat that the factor

in the MSE bound is not always bounded by 1 as earlier; but the qualitative behaviour when τ is small,

which is the relevant regime, is the same as previously described.

III.3.3 The Gaussian Setting

In view of the previous results, the crucial point is whether there exists a family of tests such that the events

A(τ), B(τ ′), C(τ), C ′(τ) have small probability, for a value of τ significantly smaller than 1, and τ ′ of the

same order as τ (up to an absolute numerical constant). This is what we establish now in the Gaussian

setting.

Proposition III.3. Assume (GI) is satisfied. For a fixed α ∈ (0, 1), define the tests

Tij = 1
{∥∥µ̂NE

i − µ̂NE
j

∥∥2 ≤ ζd/N}, (III.13)

with ζ :=
(√

2 + τ − 4
√
δ
)2

, where we put δ := (2 logB + logα−1)/d.

Then, provided τ ≥ max(Cδ,
√
Cδ) (with C = 103), it holds P[A(τ)] ≤ α, P[B(τ ′)] ≤ α with

τ ′ = τ/3, P[C(τ)] ≤ 2α and P[C ′(τ)] ≤ α .

The above result is significant in combination with Theorems III.1 and III.2 when δ is small, which is the

case if log(B)/d is small. The message is the following: in a high-dimensional setting, provided B ≪ ed,

we can reach a large improvement compared to the naive estimators, if the set of means exhibits structure,

as witnessed by a small covering number at scale d
1
4

√
(logB)/N . The best-case scenario is when all the

means are tightly clustered around a few values, so that N is small but B is large, then the improvement

in the MSE is by a factor of order
√

(logB)/d.

III.3.4 Methodology and Theory in the Kernel Mean Embedding Framework

We recall that the principle of KME posits a reproducing kernel k on an input space Z, corresponding to

a feature mapping Φ : Z → H, where H is a Hilbert space, with k(z, z′) = ⟨ϕ(z), ϕ(z′)⟩. The feature

mapping ϕ can be extended to probability distributions P on Z, via ϕ(P) := EZ∼P[ϕ(Z)], provided this

expectation exists, which can be guaranteed for instance if ϕ is bounded. This gives rise to an extended

kernel on probability distributions via k(P,Q) := ⟨ϕ(P), ϕ(Q)⟩ = E(Z,Z′)∼P⊗Q[k(Z,Z ′)].

As explained in the introduction, if we have a large number of distributions (Pi)i∈JBK for each of which

an independent bag (Z
(i)
k )1≤k≤Ni

is available, and we wish to collectively estimate their KMEs, this is an
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instance of the model (III.1)-(III.2) under the transformation X
(i)
k := ϕ(Z

(i)
k ). The distributions Pi are

replaced by their image distribution through ϕ s.t. µi = ϕ(Pi) and the naive estimators are µ̂NE
i = ϕ(P̂i),

where P̂i is the empirical measure associated to bag Z
(i)
• . We will make the assumption that the kernel is

bounded, supz∈Z k(z, z) =
∑
z∈Z∥ϕ(z)∥2 ≤ L2, resulting in the following “bounded setting”:

∀i ∈ JBK : Ni = N and
∥∥X(i)

k

∥∥ ≤ L,Pi − a.s., k ∈ JNK. (BS)

(note in particular that we still assume that all bags have the same size for the theoretical results.)

As always for kernel-based methods, elements of the Hilbert space H are an abstraction which are

never explicitly represented in practice; instead, norms and scalar products between elements, that can be

written as linear combinations of sample points, can be computed by straightforward formulas using the

kernel. In this perspective, a central object is the inter-task Gram matrix K defined as Kij := k(Pi,Pj) =

⟨µi, µj⟩, (i, j) ∈ JBK2. In the framework of inference on distributions, the distributions Pi act as (latent)

training points and the matrix K as the usual kernel Gram matrix for kernel inference. In contrast to what is

assumed in standard kernel inference, K is not directly observed but approximated by K̂ s.t. K̂ij := ⟨µ̂i, µ̂j⟩,
for some estimators (µ̂i)i∈JBK of the true KMEs. The following elementary proposition links the quality of

approximation of the means with the corresponding inter-task Gram matrix:

Proposition III.4. Assume the model (III.1)-(III.2) under the assumption
∥∥X(i)

k

∥∥ ≤ L for all k, i.

Let µ̂i be estimators of µi bounded by L, and the matrices K and K̂ defined as the Gram matrices of

(µi)i∈JBK and (µ̂i)i∈JBK, respectively. Then∥∥∥ 1

B
(K − K̂)

∥∥∥2
Fr.
≤ 4L2

B

∑
i∈JBK

∥µi − µ̂i∥2, (III.14)

where ∥K∥Fr. := Tr(KKT )
1
2 is the Frobenius norm.

This result further illustrates the interest of improving the task-averaged squared error.

In order to apply our general results Theorems III.1 and III.2, we must again find suitable values

of τ (as small as possible) and τ ′ (as close to τ as possible) so that the probability of the events

A(τ), B(τ ′), C(τ), C ′(τ) is small, in the setting (BS). In that context, the role of the dimension d will be

played by the effective dimension Tr Σ/∥Σ∥op, where Σ is the covariance operator for the variable X. More

precisely, since this quantity can change from one source distribution to the the other, we will make the

following assumption: there exists de > 0 such that

∀i ∈ JBK : de∥Σi∥op ≤ Tr Σi ≤ Nσ2. (III.15)

Observe that in view of (III.3), the upper bound above is merely a reformulation of (III.6) and, therefore,

not a new assumption; the lower bound is.

We consider tests based on the unbiased estimate of the maximum mean discrepancy (MMD; note that

the MMD between tasks i and j is exactly ∆2
ij):

Uij =
1

N(N − 1)

N∑
k,ℓ=1
k ̸=ℓ

(〈
X

(i)
k , X

(i)
ℓ

〉
+
〈
X

(j)
k , X

(j)
ℓ

〉)
− 2

N2

N∑
k,ℓ=1

〈
X

(i)
k , X

(j)
ℓ

〉
.

Proposition III.5. Consider model (III.1), the bounded setting (BS) and assume (III.15) holds.

Define

r(t) := 5

(√(
1

de
+

L

Nσ

)
t+

Lt

Nσ

)
, (III.16)
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and

τmin(t) := r(t) max
(√

2, r(t)
)
. (III.17)

For a fixed t ≥ 1, define the tests Tij for i, j in JBK2

Tij := 1
{
Uij < τσ2/2

}
. (III.18)

Then, provided τ ≥ 144τmin(t) , it holds

P[A(τ) ∪B(τ/4) ∪ C(τ/7) ∪ C ′(τ/48)] ≤ 14B2e−t .

The quantity r(t) above (taking t = log(14B2α−1), where 1 − α is the target probability) plays a

role analogous to δ in the Gaussian setting (Proposition III.3). As the bag size N becomes sufficiently

large, we expect σ = O(N− 1
2 ) and, therefore, σN = O(N

1
2 ). Hence, provided N is large enough, the

quantity r(t) is mainly of the order
√

log(B)/de. Like in the Gaussian case, this factor determines the

potential improvement with respect to the naive estimator, which can be very significant if the effective

data dimensionality de is large.

From a technical point of view, capturing precisely the role of the effective dimension required us to

establish concentration inequalities for deviations of sums of bounded vector-valued variables improving

over the classical vectorial Bernstein’s inequality of Pinelis and Sakhanenko (1986). We believe this result

(see Corollary III.10) to be of interest of its own and to have potential other applications.

III.4 Experiments and evaluation

We validate our theoretical results in the KME setting1 on both synthetic as well as real world data. The

neighboring kernel means are determined from the tests as described in Eq. (III.18). More specifically, in

practice we use the modification that (i) we adapt the formula for possibly unequal bag sizes, and (ii) in

each test Tij we replace σ2 by the task-dependent unbiased estimate

M̂SE(i, µ̂NE
i ) :=

1

2N2
i (Ni − 1)

·
Ni∑
k ̸=ℓ

k(Z
(i)
k , Z

(i)
k )− 2k(Z

(i)
k , Z

(i)
ℓ ) + k(Z

(i)
ℓ , Z

(i)
ℓ ). (III.19)

We analyze three different variations of our method which we call similarity test based (STB) approaches.

STB-0 corresponds to Eq. (III.5) with γ = 0. STB weight uses model optimization to find a suitable value

for γ, whereas STB theory sets γ as defined in Eq. (III.7). However, here we replaced τ with c · τ , where
c > 0 is a multiplicative constant, to allow for more flexibility.

We compare their performances to the naive estimation, NE, and the regularized shrinkage estimator,

R-KMSE, (Muandet et al., 2016) which also estimates the KME of each bag separately but shrinks it towards

zero. Furthermore, we modified the multi-task averaging approach presented in Feldman et al. (2014) such

that it can be used for the estimation of kernel mean embeddings. Similar to our idea, this method shrinks

the estimation towards related tasks. However, they require the task similarity to be known. Therefore,

we test two options: MTA const assumes constant similarity for each bag; MTA stb uses the proposed test

from Eq. (III.18) to assess the bags for their similarity. See Section III.6.7 for a detailed description of the

tested methods.

In the presented results, each considered method has up to two tuning parameters that, in our experi-

ments, are picked in order to optimize averaged test error. Therefore, the reported results can be understood

as close to “oracle” performance – the best potential of each method when parameters are close to optimal

tuning. While this can be considered unrealistic for practice, a closely related situation can occur in the

setting where the user wishes to use the method on test bags of size N , and has at hand a limited number

1In the Gaussian setting, we report numerical results in the Section III.6.8.
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of training bags of much larger size N ′ ≫ N . From each such training bag, one can subsample N points,

use the method for estimation of the means of all bags of size N (incl. subsampled bags), and monitor the

error with respect to the means of the full training bags (of size N ′, used as a ground truth proxy). This

allows a reasonable calibration of the tuning parameters.

III.4.1 Synthetic Data

The toy data consists of multiple, two-dimensional Gaussian distributed bags Z
(i)
• with fixed means but

randomly rotated covariance matrices, i.e.

Z
(i)
• ∼ N

(
0, R(θi)ΣR(θi)

T
)

= Pi , θi ∼ U(−π/4, π/4),

where the covariance matrix Σ = diag(1, 10) is rotated using rotation matrix R(θi) according to angle θi.

The different estimators are evaluated using the unbiased, squared MMD between the estimation µ̃i and

µi as loss. Since µi is unknown, it must be approximated by another (naive) estimation µ̂NE
i (Y

(i)
• ) based

on independent test bags Y
(i)
• from the same distribution as Z

(i)
• , with |Y (i)

• | = 1000. The test bag Y
(i)
•

has much larger size than the training bag Z
(i)
• , as a consequence the estimator µ̂NE

i (Y
(i)
• ) has a lower

MSE than all considered estimators based on Z
(i)
• , and can be used as a proxy for the true µi.

2 In order

to guarantee comparability, all methods use a Gaussian RBF with the kernel width fixed to the average

feature-wise standard deviation of the data. Optimal values for the model parameter, e.g. ζ and γ for STB

weight, are selected such that they minimize the estimation error averaged over 100 trials. Once the values

for the parameters are fixed, another 200 trials of data are generated to estimate the final generalization

error. Different experimental setups were tested:

(a) Different Bag Sizes B = 50 and Ni ∈ [10, 300] for all i ∈ JBK,
(b) Different Number of Bags B ∈ [10, 300] and Ni = 50 for all i ∈ JBK,
(c) Imbalanced Bags B = 50 and N1 = 10, . . . , N50 = 300,

(d) Clustered Bags Ni, B = 50 for all i ∈ JBK but the Gaussian distributions are no longer centered

around 0. Instead, each ten bags form a cluster with the cluster centers equally spaced on a circle.

The radius of the circle is varied between 0 and 5, to model different degrees of overlap between

clusters.

The results for the experiments on the synthetic data can be found in Figure 1(a) to (d). The es-

timation of the KME becomes more accurate as the bag size per bag increases. Nevertheless, all of the

tested methods provide an increase in estimation performance over the naive estimation, although, the

improvement for larger bag sizes decreases for R-KMSE and MTA const. As expected, methods that use the

local neighborhood of the KME yield lower estimation error when the number of available bags increases.

Interestingly, this decrease seems to converge towards a capping value, which might reflect the intrinsic

dimensionality of the data as indicated by Theorems III.1 and III.2 combined with Proposition III.5. Al-

though we assumed equal bag sizes in the theoretical results, the proposed approaches provide accurate

estimations also for the imbalanced setting. Figure 1(c) shows that the improvement is most significant

for bags with few samples, which is consistent with results on other multi-task learning problems (see e.g.

Feldman et al., 2014). However, when the KME of a bag with many samples is shrunk towards a neighbor

with few samples, the estimation can be deteriorated (compare results on (a) with those on (c) for large

bag sizes). A similar effect can be seen in the results on the clustered setting. When the bags overlap,

a bag from a different cluster might be considered as neighbor which leads to a stronger estimation bias.

When the tasks have similar centers or are strictly separated, the methods show similar performance to

what is shown in Figure 1(b).

2Additionally, the estimation of the squared loss is unbiased if the diagonal entries of the Gram matrix will
be included for Z

(i)
• but excluded for Y

(i)
• .
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To summarize, NE and R-KMSE give worst performances because they estimate the kernel means sep-

arately. Even though MTA const assumes all tasks to be related, it improves the estimation performance

even when the bags are not similar. However, the methods that derive the task similarity from the local

neighborhood achieve most accurate KME estimations in all of the tested scenarios, especially STB weight

and STB theory.

(a) Different Bag Sizes (b) Different Number of Bags
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Figure 1: Decrease in KME estimation error compared to NE in percent on experimental setups (a)
to (d). Higher is better. STB-0, STB weight and STB theory give similar results so that their results
might be printed on top of each other.

III.4.2 Real World Data

We test our methods on a remote sensing data set. The AOD-MISR1 data set is a collection of 800 bags

with each 100 samples. The samples correspond to randomly selected pixels from a MISR satellite, where

each instance is formed by 12 reflectances from three MISR cameras.3 It can be used to predict the aerosol

optical depth (AOD) which poses an important problem in climate research (Wang et al., 2011).

The data is standardized such that each of the features has unit standard deviation and is centered

around zero. In each out of the 100 trials, we randomly subsample 20 samples from each bag, on which

the KME estimation is based. This estimation is then compared to the naive estimation on the complete

bag. Cross-validation, with 400 bags for training and testing, is used to optimize for the model parameters

of each approach and then estimate its error. Again, all methods use a Gaussian RBF with the kernel width

fixed to one. The results are shown in Table 3.

Again, all of the methods provide a more accurate estimation of the KME than the naive approach. The

estimations given by STB-0 are similar to those of NE, because STB-0 considers very few bags as neighbors.

This lets us conclude that the bags are rather isolated than overlapping. MTA stb, STB weight and STB

3We only use 12 out of 16 features because the remaining four are constant per bag.
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Table 3: Decrease in KME estimation error compared to NE in percent on the AOD-MISR1 data.

METHOD % METHOD % METHOD %

R-KMSE 8.83 MTA const 13.92 STB theory 21.83
STB-0 1.43 MTA stb 17.17 STB weight 22.73

theory might give better estimations because they allow for more flexible shrinkage. Again, STB weight

and STB theory are outperforming the remaining methods.

III.5 Conclusion

In this section we proposed an improved estimator for the multi-task averaging problem. The estimation is

improved by shrinking the naive estimation towards the average of its neighboring means. The neighbors

of a task are found by multiple testing so that task similarities must not be known a priori. Provided

that appropriate tests exist, we proved that the introduced shrinkage approach yields a lower mean squared

error for each task individually and also on average. We show that there exists a family of statistical

tests suitable for isotropic Gaussian distributed data or for means that lie in a reproducing kernel Hilbert

space. Theoretical analysis shows that this improvement can be especially significant when the (effective)

dimension of the data is large, using the property that the typical detection radius of the tests is much

better than the standard estimation error in high dimension. This property is particularly important for

the estimation of multiple kernel mean embeddings (KME) which is an interesting application relevant for

the statistical and machine learning community. The proposed estimator and the theoretical results can

naturally be translated to the KME framework.

We tested different variations of the presented approach on synthetic and real world data and compared

its performance to other state-of-the-art methods. In all of the conducted experiments, the proposed

shrinkage estimators yield the most accurate estimations.

Since the estimation of a KME is often only an intermediate step for solving a final task, as for example

in distributional regression (Szabó et al., 2016), further effort must be made to assess whether the improved

estimation of the KME also leads to a better final prediction performance. Furthermore, the results on the

imbalanced toy data sets have shown that the shrinkage estimator particularly improves the estimation of

small bags. However, when the KME of a bag with many samples is shrunk towards a neighbor with low

bag size, its estimation might be distorted. Therefore, we develop in following sections a similarity test and

a weighting scheme that take the bag size into account. From a theoretical perspective, we also investigate

in Section V if the improvement factor with respect to the naive estimates is optimal in a suitable minimax

sense.

III.6 Appendix of Section III

III.6.1 Proof of Theorem III.1

We argue conditional to the tests, below expectations are taken with respect to the samples (X
(b)
• )b∈JBK

only. Assume the event Ac(τ) holds, implying for all i:

j ∈ Vi ⇒ ∆2
ij ≤ τσ2. (III.20)

Take i = 1 without loss of generality, and denote V = V1, V
∗ = V1 \ {1}, and v = |V1|. We also put

η = 1−γ. We use an argument similar to that leading to (III.4) using independence of the bags, triangular
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inequality and (III.20):

MSE(1, µ̃1) = E

[∥∥∥∥(1− η)(µ̂NE
1 − µ1) +

η

v

∑
j∈V

(µ̂NE
i − µ1)

∥∥∥∥2
]

=
η2

v2

(∥∥∥∥ ∑
i∈V ∗

(µi − µ1)

∥∥∥∥2 +
∑
i∈V ∗

E
[∥∥µi − µ̂NE

i

∥∥2])
+ (1− η(1− v−1))2E

[∥∥µ̂NE
1 − µ1

∥∥2]
≤ σ2

(η2
v2
(
(v − 1)2τ + (v − 1)

)
+ (1− η(1− v−1))2

)
= σ2

(
η2(1− v−1)

(
(1− v−1)τ + 1

)
− 2η(1− v−1) + 1

)
.

The optimal value of γ = 1− η is given by (III.7) and gives rise to (III.8).

Assume additionally that Bc(τ ′) holds. Let ε :=
√
τ ′σ/2 and let C := {x1, . . . , xN } be an ε-covering of

the set of means. Let π(i) be the index of the element of C closest to µi, and Nk := {b ∈ JBK : π(b) = k},
i ∈ JN K. By the triangular inequality, for any i ∈ JN K, b ∈ Ni one has |Vb| ≥

∣∣Nπ(i)∣∣. Hence averag-

ing (III.8) over i we get

1

B

B∑
b=1

MSE(b, µ̃b) ≤
σ2

B

∑
i∈JBK

τ(|Nπ(i)| − 1) + 1

1 + (1 + τ)(|Nπ(i)| − 1)

=
σ2

B

∑
k∈JN K

|Nk|(τ(|Nk| − 1) + 1)

1 + (1 + τ)(|Nk| − 1)
.

The above take the form
∑
k f(|Nk|), and it is straightforward to check that f is convex. Since it holds

1 ≤ |Nk| ≤ B −N + 1 for all k, and
∑
k∈JN K|Nk| = B, the maximum of the above expression is attained

for an extremal point of this convex domain, i.e., by symmetry, N1 = B −N + 1 and Nk = 1 for k ≥ 2.

Therefore

1

B

B∑
b=1

MSE(b, µ̃b) ≤
σ2

B

(
(N − 1) +

(B −N + 1)((B −N )τ + 1)

(B −N )(1 + τ) + 1

)
=
σ2

B

(
N +

(B −N )2τ

(B −N )(1 + τ) + 1

)
≤ σ2

(
τ

τ + 1
+
N
B

1

τ + 1

)
.

III.6.2 Proof of Theorem III.2

We follow the same general line as in theorem III.1. Assume the event Ac(τ) ∩ Bc(τ ′) ∩ Cc(τ) ∩ C ′c(τ)

holds. Take i = 1 without loss of generality, and denote V = V1, V
∗ = V1 \ {1}, and v = |V1|. We still

put η = 1− γ. Then

∥µ̃1 − µ1∥2 =

∥∥∥∥(1− η)(µ̂NE
1 − µ1) +

η

v

∑
j∈V

(µ̂NE
j − µ1)

∥∥∥∥2

≤ 2

∥∥∥∥(1− η(1− v−1))(µ̂NE
1 − µ1) +

η

v

∑
j∈V ∗

(µ̂NE
j − µj)

∥∥∥∥2 +
η2

v2

∥∥∥∥ ∑
j∈V ∗

µj − µ1

∥∥∥∥2
.

52



Let us upper bound the different terms. Because j ∈ V , we know that ∆j1 ≤ τσ2, so by the triangular

inequality
η

v

∥∥∥∥ ∑
j∈V ∗

µj − µ1

∥∥∥∥ ≤ η

v

∑
j∈V ∗

∥∆ij∥ ≤ η(1− v−1)
√
τσ.

Let us develop the other term :∥∥∥∥(1− η(1− v−1))(µ̂NE
1 − µ1) +

η

v

∑
j∈V ∗

(µ̂NE
j − µj)

∥∥∥∥2
= (1− η(1− v−1))2∥µ̂NE

1 − µ1∥2 +
2η(1− η(1− v−1))

v

∑
j∈V ∗

⟨µ̂NE
1 − µ1, µ̂

NE
j − µj⟩

+
η2

v2

∑
j ̸=k∈V ∗

⟨µ̂NE
j − µj , µ̂NE

k − µk⟩+
η2

v2

∑
j∈V ∗

∥µ̂NE
j − µj∥2

≤ σ2
[
(1− η(1− v−1))2(1 + τ) + 2η(1− η(1− v−1))(1− v−1)τ

+ η2(1− v−1)2τ + η2v−1(1− v−1)(1 + τ)
]
.

Let us associate the two expressions, we obtain that :

∥µ̃1 − µ1∥2 ≤ 2σ2
[
τ + 1− 2(1− v−1)η + (1− v−1)(1 + τ)η2

]
.

The expression is minimal when η = (1+τ)−1. By the same arguments about using covering numbers as in

the proof of Theorem III.1, we obtain that with probability greater than 1−P[A(τ) ∪B(τ ′) ∪ C(τ) ∪ C ′(τ)]

:

1

B

∑
i∈JBK

∥µ̃i − µi∥2 ≤
2σ2

B

∑
i∈JBK

τ +
τ + |Vi|−1

1 + τ

≤ 2σ2

(
τ +

τ

1 + τ
+
N
B

1

1 + τ

)
.

III.6.3 Proof of Proposition III.3

Recall that we assume the (GI) model. We first consider the behavior of a single test

Tij = 1
{∥∥µ̂NE

i − µ̂NE
j

∥∥2 ≤ ζσ2
}
,

where σ2 := d/N , we also put ∆2 = ∆2
ij for short. The random variable Z := µ̂NE

i − µ̂NE
j is distributed

as N (µi − µj , 2n−1Id) by independence of the bags. From classical concentration results for chi-squared

variables recalled as Proposition III.6 in Section III.6.5, for any α ∈ (0, 1) either of the inequalities below

hold with probability 1− α:

√
∆2 + 2σ2 − 4σ

√
logα−1

d
≤ ∥Z∥ ≤

√
∆2 + 2σ2 + 2σ

√
logα−1

d
. (III.21)

Put δ := (logα−1)/d for short.

We start with analyzing Type I error: if ∆2 ≥ τσ2, then the above lower bound implies ∥Z∥2 ≥
σ2
(√

2 + τ − 4
√
δ
)2
, so Tij = 0 if we choose ζ :=

(√
2 + τ − 4

√
δ
)2
. By union bound over (i, j) ∈ JBK2,

with this choice we guarantee that P[A(τ)] ≤ α if we replace α by αB2 (i.e. take δ = (2 logB+logα−1)/d).

This establishes the bound on family-wise type I error.
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We now analyze type II error: assume now that we have picked ζ :=
(√

2 + τ − 4
√
δ
)2
, with τ ≥

max(Cδ,
√
Cδ), C = 1000, and assume ∆2 ≤ τ ′σ2. Then assuming the upper bound in (III.21) is

satisfied, we ensure Tij = 1 provided

√
τ ′ + 2 ≤

√
τ + 2− 6

√
δ.

Note that the condition on τ ensures that the above right-hand-side is positive. Taking squares and further

bounding, a sufficient condition for the above is τ ′ ≤ τ − 12
√

(2 + τ)δ. Using the condition on τ , it holds

12
√

(2 + τ)δ ≤ 12
√

3C−1τ ≤ 2

3
τ,

hence τ ′ ≤ τ/3 is a sufficient condition. This ensures, by the union bound, that P[B(τ ′)] ≤ α when

replacing δ by δ′ = (2 logB + logα−1)/d as above.

We now turn to controlling the probability of the events C(τ) and C ′(τ). For fixed i, j put X1 =

µ̂NE
i − µi, X2 = µ̂NE

j − µj . Under the (GI) model, X1, X2 are independent N (0, N−1Id). Applying the

result of Proposition III.7, we obtain that for α ∈ (0, 1), we have probability at least 1− 2α:

|⟨Xi, Xj⟩| ≤ σ2
(√

2δ + δ
)
,

where we have put δ := (logα−1)/d as previously. As soon as τ ≥ max(Cδ,
√
Cδ), (C ≥ 1) we obtain

|⟨Xi, Xj⟩| ≤ 3τσ2/
√
C on the above event, implying that the event C(τ) is a fortiori satisfied for C = 103.

From estimate (III.24) in Proposition III.6, we have with probability at least 1− α:

∥X1∥ ≤ σ2
(
1 +
√

2δ
)
≤ σ2

(
1 + 2τC−1

)
,

under the same condition on τ as above. As previously, by the union bound the above estimates are true

simultaneously for all i, j with the indicated probabilities if we replace δ by δ′ = (2 logB+ logα−1)/d, and

C ′(τ) is satisfied when taking C = 103.

III.6.4 Results in the Bounded Setting (for KME Estimation)

Proof of Proposition III.4∥∥(K − K̂)
∥∥2
Fr.

=
∑

(i,j)∈JBK2
(⟨µi, µj⟩ − ⟨µ̂i, µ̂j⟩)2

=
∑

(i,j)∈JBK2
(⟨µi − µ̂i, µj⟩+ ⟨µ̂i, µj − µ̂j⟩)2

≤ 2
∑

(i,j)∈JBK2
(⟨µi − µ̂i, µj⟩2 + ⟨µ̂i, µj − µ̂j⟩2)

≤ 2L2
∑

(i,j)∈JBK2
(∥µi − µ̂j∥2 + ∥µj − µ̂j∥2)

≤ 4L2B
∑
i∈JBK

∥µi − µ̂j∥2.

Proof of Proposition III.5 Recall the notation

r(t) = 5

(√(
1

de
+

L

Nσ

)
t+

Lt

Nσ

)
, (III.22)
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and

τmin(t) := r(t) max
(√

2, r(t)
)
. (III.23)

Introduce the notation q(t) := σr(t); ξ(t) := σ2τmin(t) = q(t) max(
√

2σ, q(t)). Let i, j ∈ JBK2 be

fixed and t ≥ 1. We put τ = λ2τmin(t) with λ ≥ 12.

Suppose that ∥∆ij∥2 > τσ2 = λ2τminσ
2 = λ2ξ(t). We use the concentration inequality (III.40) for

bounded variables, proved in Section III.6.6, and obtain that with probability greater than 1 − 8e−t, and

using the definition of ξ(t):

Uij ≥ ∥∆ij∥2 − 2∥∆ij∥q(t)− 8
√

2σ2q(t)− 32q2(t) ≥ ∥∆ij∥
(
∥∆ij∥ − 2q(t)

)
− 40ξ(t) .

(To be more precise, (III.40) proves the above estimate for the value of q(t) defined by (III.37), the value

of q(t) defined in the present proof is an upper bound for it, so the above also holds.)

Observe ∥∆ij∥ ≥ λ
√
ξ(t) ≥ 12

√
ξ(t) ≥ 2q(t). By monotonicity in ∥∆ij∥ under that condition, it

holds ∥∆ij∥
(
∥∆ij∥ − 2q(t)

)
≥
√
λξ(t)(λ

√
ξ(t)− 2q(t)) ≥ λ(λ− 2)ξ(t). That leads to

Uij ≥ (λ2 − 2λ− 40)ξ(t) ≥ (λ2/2)ξ(t) = (τ/2)σ2,

where we have used that λ2 − 2λ− 40 ≥ λ2/2 for λ ≥ 12. So

P
[
∥∆ij∥2 > τσ2 and Ti = 1

]
≤ 8e−t.

Suppose now ∥∆ij∥2 < (τ/4)σ2 = (λ2/4)ξ(t). Then, according to the concentration ineqality (III.39),

with probability greater than 1− 8e−t, it holds

Uij ≤ ∥∆ij∥2 + 2∥∆∥q(t) + 2
√

2σ2q(t) + 11q2(t)

≤
(
λ2/4 + λ+ 13

)
ξ(t)

≤ (λ2/2)ξ(t) = (τ/2)σ2.

We have used that λ2/4 + λ+ 13 ≤ λ2/2 for λ ≥ 12. So

P
[
∥∆ij∥2 < τσ2/4 and Ti = 0

]
≤ 2e−t.

An union bound over (i, j) ∈ JBK2 gives that

P[A(τ) ∪B(τ/4)] ≤ 8B2e−t .

Remarking that

σ2τ/7 ≥ 20q(t) max(q(t),
√

2σ2) and σ2τ/48 ≥ 3q(t) max(q(t),
√

2σ2) ≥ 2q(t)
√

2σ2 + q2(t)

and using the concentration inequalities (III.30) and (III.36) gives

P[C(τ/7)] ≤ 6(B2 −B)e−t , and P[C ′(τ/48)] ≤ Be−t .

III.6.5 Concentration Results in the Gaussian Setting

Proposition III.6. Let Z be a normal N (µ, σ2Id) random variable in Rd. Then for any t ≥ 0:

P
[
∥Z∥ ≥

√
∥µ∥2 + σ2d+ σ

√
2t

]
≤ e−t , (III.24)

and

P
[
∥Z∥ ≤

√
∥µ∥2 + σ2d− 2σ

√
2t

]
≤ e−t. (III.25)
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Proof. The stated inequalities are direct consequences of classical deviation inequalities for (noncentral)

χ2 variables. Put λ := ∥µ∥2, then for the upper deviation bound, Lemma 8.1 of Birgé (2001) states

that

P
[
∥Z∥2 ≥ λ+ dσ2 + 2

√
(2λ+ dσ2)σ2t+ 2σ2t

]
≤ e−t ,

and we have

λ+ dσ2 + 2
√

(2λ+ dσ2)σ2t+ 2σ2t ≤
(√

λ+ dσ2 + σ
√

2t
)2
,

implying (III.24). For the lower deviation bound, Lemma 8.1 of Birgé (2001) states that

P
[
∥Z∥2 ≤ λ+ dσ2 − 2

√
(2λ+ dσ2)σ2t

]
≤ e−t ,

and we have(
λ+ dσ2 − 2

√
(2λ+ dσ2)σ2t

)
+
≥
√
λ+ dσ2

(√
λ+ dσ2 − 2σ

√
2t
)
+
≥
(√

λ+ dσ2 − 2σ
√

2t
)2
+
,

leading to (III.25).

Proposition III.7. Let X1, X2 be independent N (0, σ2Id) variables in dimension d. Then for any

t ≥ 0:

P
[
⟨X1, X2⟩ ≥ σ2

(√
2dt+ t

)]
≤ e−t. (III.26)

Proof. Without loss of generality assume σ2 = 1. For two independent one-dimensional Gaussian

variables G1, G2, one has for any λ ∈ [0, 1]:

E[expλG1G2] = E[E[expλG1G2|G2]] = E
[
exp

λ2

2
G2

2

]
=

1√
1− λ2

,

so that

logE[expλ⟨X1, X2⟩] =
d

2
(− log(1− λ2)) ≤ d

2

λ2

(1− λ)
.

Applying Lemma 8.2 of Birgé (2001) gives (III.26).

III.6.6 Concentration Results in the Bounded Setting

Studying concentration in the kernel setting means having concentration results of bounded variables taking

values in a separable Hilbert space. Recall that k(x, y) = ⟨ϕ(z), ϕ(z′)⟩H for all z,z′ in H, so that if k is

bounded by L2, then the map ϕ is bounded by L. To obtain concentration results, we will use Talagrand’s

inequality.

Theorem III.8 (Talagrand’s inequality). Let Xs
1 , ..., X

s
N be iid real random variables indexed by s ∈ S

where S is a countable index set, and L be a positive constant such that:

E[Xs
k] = 0 , and |Xs

k| ≤ L a.s. ∀k ∈ JNK, s ∈ S .

Let us note Z = sups∈S
∑N
k=1X

s
k, then for all t ≥ 0 :

P
[
Z − E[Z] ≥ 2

√
(2v + 16LE[Z])t+ 2Lt

]
≤ e−t;

P
[
−Z + E[Z] ≥ 2

√
(4v + 32LE[Z])t+ 4Lt

]
≤ e−t,

where v = sups∈S
∑N
k=1 E

[
(Xs

k)2
]
.
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Talagrand’s inequality appeared originally in Talagrand, 1996, with the above form (using additional

symmetrization and contraction arguments from Ledoux and Talagrand, 1991) appearing in Massart, 2000.

The constants in the upper deviation bound have been improved by Rio, 2002 and Bousquet, 2002, however

no such improvement is available for lower devations as far as we know. The above version is taken

from Massart, 2007 p. 169–170, (5.45) and (5.46) combined with (5.47) there.

Because a Hilbertian norm can be viewed as a supremum, we can use Talagrand’s inequality to obtain

a concentration inequality for the norm of the sum of bounded Hilbert-valued random variables.

Proposition III.9. Let (Zk)1≤k≤N be i.i.d. random variables taking values in a separable Hilbert

space H, whose norm is bounded by L a.s. Let µ and Σ denote their common mean and covariance

operator. Let

V =

∥∥∥∥∥ 1

N

N∑
k=1

Zk

∥∥∥∥∥, and Vc =

∥∥∥∥∥ 1

N

N∑
k=1

Zk − µ

∥∥∥∥∥.
Then for any t ≥ 0:

P
[
V 2 ≥ ∥µ∥2 + (E[Vc] + qΣ(t))

2
+ 2∥µ∥qΣ(t)

]
≤ 2e−t , (III.27)

and

P
[
V 2 ≤ ∥µ∥2 + (E[Vc]− 2qΣ(t))

2
+ − 2∥µ∥qΣ(t)

]
≤ 2e−t , (III.28)

where

qΣ(t) = 2

√√√√(2∥Σ∥op
N

+ 16L

√
Tr Σ

N3/2

)
t+

2L

N
t. (III.29)

Proof. Let us denote q(t) for qΣ(t) for this proof. We start with bounding the deviations of Vc. Observe

that

Vc = sup
∥u∥H=1

1

N

N∑
k=1

⟨u, Zk − µ⟩,

where the supremum can be restricted to u in a dense countable subset S of the unit sphere, since

H is separable. We can therefore apply Talagrand’s inequality with Xu
k := N−1⟨u, Zk − µ⟩; it holds

|Xu
k | ≤ L/N , and note that since Σ = E[(Z − µ)⊗ (Z − µ)∗], it holds

E
[
(Xu

k )2
]

= N−2E
[
⟨u, Zk − µ⟩2

]
= N−2⟨u,Σu⟩,

so that supu∈S
∑N
k=1 E

[
(Xu

k )2
]

= N−1∥Σ∥op. Furthermore, E[Vc] ≤ N− 1
2

√
Tr Σ by Jensen’s inequality,

which we use to further bound the deviation term by q(t).

By Theorem III.8, with probability greater than 1− e−t for t ≥ 0, it holds

Vc ≤ E[Vc] + q(t) , (III.30)

and with probability greater than 1− e−t,

Vc ≥ E[Vc]− 2q(t) . (III.31)

We turn to bounding the deviations of V 2 − ∥µ∥2. Observe

V 2 − ∥µ∥2 = V 2
c +

2

N

N∑
k=1

⟨Zk − µ, µ⟩. (III.32)
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Using Bernstein’s inequality for the variables Wi = ⟨Zi − µ, µ⟩, satifying E[Wi] = 0, E
[
W 2
i

]
=

⟨µ,Σµ⟩ ≤ ∥Σ∥op∥µ∥
2
, and |Wi| ≤ L∥µ∥, we have that with probability greater than 1 − e−t, for

t ≥ 0 :

1

N

N∑
i=1

⟨Zi − µ, µ⟩ ≤ ∥µ∥

√2∥Σ∥opt
N

+
4Lt

3N

 ≤ ∥µ∥q(t) . (III.33)

Combining inequality (III.33) with (III.32) and (III.30) gives that with probability greater than 1−2e−t

:

V 2 − ∥µ∥2 ≤ (E[Vc] + q(t))
2

+ 2∥µ∥q(t) ,

and, combining (III.33), (III.32) and (III.31), we have with probability greater than 1− 2e−t :

V 2 − ∥µ∥2 ≥ (E[Vc]− 2q(t))
2
+ − 2∥µ∥q(t) .

Corollary III.10. Using the setting and notation of Proposition III.9, we have

−2qΣ(1) +

√
Tr Σ

N
≤ E[Vc] ≤

√
Tr Σ

N
.

As a consequence, for any t > 0,

P

[
V 2 ≥ ∥µ∥2 +

(√
Tr Σ

N
+ qΣ(t)

)2

+ 2∥µ∥qΣ(t)

]
≤ 2e−t , (III.34)

and for any t ≥ 1,

P

[
V 2 ≤ ∥µ∥2 +

(√
Tr Σ

N
− 4qΣ(t)

)2

+

− 2∥µ∥qΣ(t)

]
≤ 2e−t , (III.35)

Remark. To the expert reader, we want to point out that the above concentration estimates are

sharper than the Bernstein’s concentration inequality for vector random variables due to Pinelis and Sakha-

nenko (1986) (Corollary 1 there) and which has found many uses in the recent literature on kernel methods.

The reason is that in Pinelis and Sakhanenko’s result, which concerns deviations of the centered process

Vc, the deviation term (in factor of t) for Vc is proportional to
√

Tr Σ/N . The inequality of Pinelis and

Sakhanenko also only bounds upper deviations.

In contrast, in the above result, the term
√

Tr Σ/N = E
[
∥Vc∥2

] 1
2 appears with constant 1, and the

main deviation term (in factor of t) only involves
√
∥Σ∥op/N , which is better by a factor of 1/

√
de. We

also obtain the informative lower deviation bound (III.35).

To summarize, Pinelis and Sakhanenko (1986)’s inequality controls the upper deviations of Vc from

zero in terms of a factor of its expectation, while the above concentration inequalities control the two-sided

deviations of V 2
c from its expectation, which is Tr Σ/N , in terms of a factor of its typical deviation, which

is ∥Σ∥op/N .

This improvement makes the above bound first-order correct and mimic more closely the Gaussian chi-

squared deviation phenomenon of Proposition III.6. This sharpness (and the fact that we get a control for

two-sided deviations) is crucial in order to be able to capture the behavior of the effective dimension, see in

particular Proposition III.12 below for the analysis of the MMD U-statistic, for which the exact cancellation

of the first order terms is paramount.
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Proof. The upper bound of the mean of Vc is given directly by Jensen’s inequality. For the lower

bound, we can rewrite Talagrand’s inequality (III.30) equivalently under the following form: there

exists ξ, an exponential random variable of parameter 1, such that almost surely

Vc ≤ E[Vc] + qΣ(ξ) = E[Vc] + α
√
ξ + βξ,

where α and β are given by (III.29). Taking the square and then the mean gives :

E
[
V 2
c

]
≤ E

[(
E[Vc] + α

√
ξ + βξ

)2]
≤ E

[(
E[Vc] + (α+ β)

√
ξ
)2

+ 2(α+ β)E[Vc]ξ + (α+ β)2ξ2
]
.

We can use now the concavity of the function ξ 7→
(
E[Vc] + (α+ β)

√
ξ
)2

and Jensen’s inequality,

obtaining

E
[
V 2
c

]
≤ (E[Vc] + (α+ β))

2
+ 2(α+ β)E[Vc] + 2(α+ β)2 ≤ (E[Vc] + 2(α+ β))

2
.

Because E
[
V 2
c

]
= Tr Σ/N , and (α+ β) = qΣ(1) by definition, we obtain that

E[Vc] ≥
√

Tr Σ

N
− 2qΣ(1).

If t ≥ 1, it holds q(t) ≥ q(1) and we can plug in the above estimates for E[Vc] into (III.27) and (III.28)

to obtain (III.34) and (III.35), respectively (note that the condition t ≥ 1 is only needed for the lower

devation bound).

Proposition III.11. Let (Xk)1≤k≤N
i.i.d.∼ X and (Yk)1≤k≤N

i.i.d.∼ Y be independent families of centered

random variables bounded by L in a separable Hilbert space H. Let ΣX and ΣY be their respective

covariance operators, σ2 and de such that

max(Tr ΣX ,Tr ΣY )/N ≤ σ2 ; min

(
Tr ΣX
∥ΣX∥op

,
Tr ΣY
∥ΣY ∥op

)
≥ de.

Then for any t ≥ 0:

P

[〈
1

N

N∑
k=1

Xk,
1

N

N∑
k=1

Yk

〉
≥ 20q(t) max(σ, q(t))

]
≤ 6e−t, (III.36)

where

q(t) = 2

√√√√(4σ2

de
+ 16L

√
2σ2

N

)
t+

2L

N
t. (III.37)

Proof. Let us remark that〈
1

N

N∑
k=1

Xk,
1

N

N∑
k=1

Yk

〉
=

1

2N2

∥∥∥∥∥
N∑
k=1

Xk + Yk

∥∥∥∥∥
2

−

∥∥∥∥∥
N∑
k=1

Xk

∥∥∥∥∥
2

−

∥∥∥∥∥
N∑
k=1

Yk

∥∥∥∥∥
2
 .

So, by Corollary III.10, with probability greater than 1−6e−t, for t ≥ 1, and using (a−b)2+ ≥ a2−2ab:

2

〈
1

N

N∑
k=1

Xk,
1

N

N∑
k=1

Yk

〉
≤

(√
Tr ΣX + Tr ΣY

N
+ q(t)

)2

−

(√
Tr ΣX
N

− 4q(t)

)2

+

−

(√
Tr ΣY
N

− 4q(t)

)2

+

≤ q(t)(19σ + q(t)) ≤ 20q(t) max(σ, q(t)).
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Proposition III.12. Let (Xk)1≤i≤N
i.i.d.∼ X and (Yk)1≤i≤N

i.i.d.∼ Y be independent families of random

variables bounded by L in H. Let µx,ΣX and µY ,ΣY denote their respective means and covariance

operators. Let U the statistic defined as

U =
1

N(N − 1)

N∑
k,ℓ=1
k ̸=ℓ

⟨Xk, Xℓ⟩H −
2

N2

N∑
k,ℓ=1

⟨Xk, Yℓ⟩H +
1

N(N − 1)

N∑
k,ℓ=1
k ̸=ℓ

⟨Yk, Yℓ⟩H. (III.38)

Then for any t ≥ 1, N ≥ 2:

P
[
U ≥ ∥µX − µY ∥2 + 2∥µX − µY ∥q(t) + 2

√
2σ2q(t) + 11q2(t)

]
≤ 8e−t, (III.39)

and

P
[
U ≤ ∥µX − µY ∥2 − 2∥µX − µY ∥q(t)− 8

√
2σ2q(t)− 32q2(t)

]
≤ 8e−t, (III.40)

where q(t) is given by (III.37).

Proof. Observe that

U =

∥∥∥∥∥ 1

N

N∑
k=1

Xk −
1

N

N∑
k=1

Yk

∥∥∥∥∥
2

+
1

N − 1

∥∥∥∥∥ 1

N

N∑
k=1

Xk

∥∥∥∥∥
2

+

∥∥∥∥∥ 1

N

N∑
k=1

Yk

∥∥∥∥∥
2

− 1

N

N∑
k=1

∥Xk∥2 −
1

N

N∑
k=1

∥Yk∥2


=:

∥∥∥∥∥ 1

N

N∑
k=1

Xk −
1

N

N∑
k=1

Yk

∥∥∥∥∥
2

+
1

N − 1
H .

Using now the upper bound of Bernstein’s inequality, since E
[
∥X∥2

]
= ∥µX∥2+Tr ΣX , with probability

greater than 1− e−t it holds:

1

N

N∑
k=1

∥Xk∥2 ≥ Tr ΣX + ∥µX∥2 −
√

2L2σ2t− 2L2t

3N
.

So using (III.34) (twice), with probability greater than 1− 6e−t :

H ≤∥µX∥2 + 2∥µX∥q(t) +

(√
Tr ΣX
N

+ q(t)

)2

+ ∥µY ∥2 + 2∥µY ∥q(t) +

(√
Tr ΣY
N

+ q(t)

)2

− Tr ΣX − ∥µX∥2 +
√

2L2σ2t+
2L2t

3N
− Tr ΣY − ∥µY ∥2 +

√
2L2σ2t+

2L2t

3N

≤− (N − 1)/N
(

Tr ΣX + Tr ΣY

)
+ 4Lq(t) + 4

√
σ2q(t) + 2q2(t) + 2

√
2L2σ2t+

4L2t

3N

≤− (N − 1)/N
(

Tr ΣX + Tr ΣY

)
+ (2 + 4N)q2(t) .

Using again (III.34), and N ≥ 2, with probability greater than 1− 8e−t :

U ≤ ∥µX − µY ∥2 + 2∥µX − µY ∥q(t) +

(√
Tr ΣX + Tr ΣY

N
+ q(t)

)2

− Tr ΣX + Tr ΣY
N

+ 10q2(t)

≤ ∥µX − µY ∥2 + 2∥µX − µY ∥q(t) + 2
√

2σ2q(t) + 11q2(t) ,

which is (III.39).

We proceed similarly for lower deviations of U : using again Bernstein’s inequality and (III.35),

with probability greater than 1− 6e−t, and using (a− b)2+ ≥ a2 − 2ab:

H ≥ ∥µX∥2 − 2∥µX∥q(t) +

(√
Tr ΣX
N

− 4q(t)

)2

+

+ ∥µY ∥2 − 2∥µY ∥q(t) +

(√
Tr ΣY
N

− 4q(t)

)2

+

− Tr ΣX − ∥µX∥2 −
√

2L2σ2t− 2L2t

3N
− Tr ΣY − ∥µY ∥2 −

√
2L2σ2t− 2L2t

3N

≥ −(N − 1)/N(Tr ΣX + Tr ΣY )− 16Nq2(t) ,
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which implies, using again (III.35), and N ≥ 2, that with probability greater than 1− 8e−t it holds:

U ≥ ∥µX − µY ∥2 − 2∥µX − µY ∥q(t) +

(√
Tr ΣX + Tr ΣY

N
− 4q(t)

)2

+

− Tr ΣX + Tr ΣY
N

− 16q2(t)

≥ ∥µX − µY ∥2 − 2∥µX − µY ∥q(t)− 8
√

2σ2q(t)− 32q2(t) ,

which is (III.40).

III.6.7 Details on the Tested Methods in the Numerical Experiments

In the following, the methods that are tested in the experiments are described in more detail. Recall, that

Vi := {j : Tij = 1, j ∈ JBK} and let Tij be defined as in Eq (III.18), i.e. Vi holds the neighboring kernel

means of bag i. All of the methods give KME estimations of the form

µ̃i :=
∑
j∈JBK

ωij · µ̂NE
j ,

where the definition of the weighting wij depends on the applied method.

1. NE considers each bag individually. Therefore, the weighting is simply

ωij =

{
1, for i = j

0, otherwise.

2. R-KMSE was proposed by Muandet et al. (2016). It estimates each KME individually but shrinks it

towards 0. The amount of shrinkage depends on the data and is defined as

ωij =

{
1− λ

1+λ , for i = j

0, otherwise

where

λ =
ϱ− ρ

(1/Nb − 1)ϱ+ (Nb − 1)ρ

with ϱ = 1/Ni

∑Ni

k=1 k(Z
(i)
k , Z

(i)
k ) and ρ = 1/N2

i

∑Ni

k,ℓ=1 k(Z
(i)
k , Z

(i)
ℓ ).

3. STB-0 is described in Eq. (III.5) with γ set to 0, i.e.

ωij =

{
1

|Vi| , for j ∈ Vi
0, otherwise.

4. STB theory is defined by Eq. (III.5). It uses the optimal value for γ as described in Eq. (III.7)

that was proven to be optimal. Here, τ is replaced by its empirical counterpart ζ and another

multiplicative constant c > 0 was added to allow for more flexibility. Its specific value must be found

using model optimization.

ωij =


γ + 1−γi

|Vi| , for i = j
1−γi
|Vi| , for i ̸= j, j ∈ Vi

0, otherwise

with

γi =
c · ζ · (|Vi| − 1)

(1 + c · ζ) · (|Vi| − 1) + 1
.
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5. STB weight is also described by Eq. (III.5) but the optimal value of γ is found by model optimization

ωij =


γ + 1−γ

|Vi| , for i = j
1−γ
|Vi| , for i ̸= j, j ∈ Vi
0, otherwise.

6. MTA const is based on a multi-task averaging approach described in Feldman et al. (2014) which

we translated to the KME framework as

ωij =

((
I +

γ

B
D · L(A)

)−1
)
ij

. (III.41)

Here, D = diag
(
(Ei)i∈JBK

)
as defined in Eq. (III.19) and L(A) denotes the graph Laplacian of

task-similarity matrix A. For MTA const the similarity is assumed to be constant, i.e. A = a · (11T )

with a = 1
B(B−1)

∑
i,j∈JBK

∥∥µ̂NE
i − µ̂NE

j

∥∥2
H. Again, the optimal value for γ must be found using

model optimization.

7. MTA stb is defined as in Eq. (III.41). In contrast to MTA const, the similarity matrix A is defined

as

Aij =

{
1, for j ∈ Vi
0, otherwise.

The methods STB-0, STB weight, STB theory and MTA stb use all the similarity test defined by Tij
which depends on ζ. Nevertheless, the optimal value for ζ is found by model optimization for each method

individually.

III.6.8 Numerical Results in the Gaussian Setting

In this section we report numerical comparisons of the proposed approaches in the idealized Gaussian

setting (GI). In that setting, since the tests and proposed estimates only depend on the naive estimators,

we can reduce each bag to its naive estimator, in other words we can assume N = 1 (only one observation

per bag). We consider the following models for the means (µi)i∈JBK (in each case the number of bags is

B = 2000):

� Model UNIF: ambient dimension d = 1000, the means (µi)i∈JBK are distributed uniformly over the

lower-dimensional cube [−20, 20]d
′
, d′ = 10 (the remaining coordinates are set to 0).

� Model CLUSTER: ambient dimension d = 1000, the means are clustered in 20 clusters of centers

(mi)i∈J10K, drawn as N (0, Id), in each cluster the means are drawn as Gaussians N (mi, 0.1 ∗ Id),

� Model SPHERE: ambient dimension d = 1000, the 6 first coordinates of the means are distributed

uniformly on the sphere of radius 50 in R6, the rest are set to 0.

� Model SPARSE: ambient dimension d = 50, the means are 2-sparse vectors with two random

coordinates distributed as Unif[0, 20].

In each case, we first select the parameter for the tests (parameter ζ in (III.13) ) from the oracle STB-0

performance. This value is held fixed and the shrinkage parameter in methods MTA stb, STB theory, STB

weight is again determined as its “oracle” value by minimization over the squared error, as done in the

KME experiments.

For comparison, we also display the results of the classical positive-part James-Stein estimator (JS+,

Baranchik, 1970), which is a shrinkage estimator applied separately on each bag. It has no tuning parameter.
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Table 4: Decrease in averaged squared estimation error compared to NE in percent on the Gaussian
data (higher is better). Averaged results over 20 trials. Standard error of one given trial is of order
5.10−3.

JS+ MTA const MTA stb STB-0 STB theory STB weight

UNIF 0.439 0.427 0.653 0.796 0.813 0.813
CLUSTER 0.495 0.508 0.979 0.980 0.980 0.980
SPHERE 0.285 0.285 0.745 0.894 0.898 0.898
SPARSE 0.224 0.162 0.367 0.402 0.441 0.443
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IV Nonasymptotic one-and two-sample tests in high dimen-
sion with unknown covariance structure

Let X = (Xi)1≤i≤n be an i.i.d. sample of square-integrable variables in Rd, with common expectation

µ and covariance matrix Σ, both unknown. We consider the problem of testing if µ is η-close to zero,

i.e. ∥µ∥ ≤ η against ∥µ∥ ≥ (η + δ); we also tackle the more general two-sample mean closeness (also

known as relevant difference) testing problem. The aim of this work is to obtain nonasymptotic upper

and lower bounds on the minimal separation distance δ such that we can control both the Type I and

Type II errors at a given level. The main technical tools are concentration inequalities, first for a suitable

estimator of ∥µ∥2 used a test statistic, and secondly for estimating the operator and Frobenius norms

of Σ coming into the quantiles of said test statistic. These properties are obtained for Gaussian and

bounded distributions. A particular attention is given to the dependence in the pseudo-dimension d∗ of

the distribution, defined as d∗ := ∥Σ∥22/∥Σ∥
2
∞. In particular, for η = 0, the minimum separation distance

is Θ(d
1/4
∗
√
∥Σ∥∞/n), in contrast with the minimax estimation distance for µ, which is Θ(d

1/2
e

√
∥Σ∥∞/n)

(where de := ∥Σ∥1/∥Σ∥∞). This generalizes a phenomenon spelled out in particular by Baraud (2002).
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IV.1 Introduction

We consider the following fundamental signal detection problem: given an i.i.d. sample X = (Xi)1≤i≤n
from a square integrable distribution PX on Rd (or possibly a separable Hilbert space, under some conditions

which will be discussed later) with µ = E[X1], test the hypothesis of “η-closeness to zero” of the mean:

(H0(η)) : ∥µ∥ ≤ η, against (H1(η, δ)) : ∥µ∥ > η + δ. (IV.1)

In fact, we consider the following more general two-sample mean closeness testing problem: for X =

(Xi)1≤i≤n and Y = (Yi)1≤i≤m two independent samples of i.i.d. variables with distributions PX ,PY on
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Rd with respective means µ and ν, test the hypothesis of η-closeness (or similarity) of the two means,

(H0(η)) : ∥µ− ν∥ ≤ η, against (H1(η, δ)) : ∥µ− ν∥ > η + δ. (IV.2)

Observe that we can always formally subsume setting (IV.1) into setting (IV.2), by letting m go to infinity

and/or assuming (if needed) that the covariance of Y1 is zero. Therefore, in the contribution section we

will concentrate mainly on setting (IV.2).

The problem (IV.1) (and numerous extensions thereof) has been a long-time subject of attention in

mathematical statistics. For the zero mean test problem, i.e. η = 0, the celebrated works of Ingster (1982,

1993) in the Gaussian white noise model are seminal. In the case η > 0, the problems (IV.1)-(IV.2) are

known as testing for precise hypotheses, relevant hypotheses or relevant differences (Berger and Delampady,

1987); this setting has found applications in particular in biostatistics for bioequivalence testing (see e.g.

Wellek, 2002). (See next sections for a more detailed discussion of related literature.) In this work, we will

consider the situation where the involved distributions are either Gaussian or of bounded norm (and hence

sub-Gaussian), but with unknown covariance matrix acting as a nuisance parameter.

We are interested in finding bounds on the separation distance δ, i.e. a bound on the minimum value

of δ such that there exists a test with both Type I and Type II error rates bounded by a “small” prescribed

quantity. Our interest here is more on the constructive side, so that we will concentrate on feasible

procedures that are in particular adaptive to the covariances of the involved distributions. A matching lower

bound (for any fixed covariance structure) will be provided in the Gaussian setting. We emphasize that our

focus is on finite sample (i.e. nonasymptotic) results, as will be discussed below.

IV.1.1 Relation to white noise model in nonparametric statistics

In the isotropic Gaussian case (white noise) with known variance , and for η = 0, the signal detection

problem (IV.1) has been studied in much generality, in particular in the infinite-dimensional setting where

Rd is replaced by a separable Hilbert space. In this situation, due to the fact that the white noise model

on an infinite-dimensional Hilbert space cannot be represented by a random variable taking values in that

space, the canonical model which is considered instead is the Gaussian sequence model for the coordinates

of each of the observations in an orthonormal basis (in fact the Gaussian sequence model with known

variance is usually considered with a single observation of the sequence):

X(i) = µ(i) + σε(i), i ∈ N>0, (IV.3)

where (ε(i))i≥1 is an i.i.d. standard normal sequence. This fundamental model in nonparametric statistics

allows to represent in a clean way many functional spaces of interest for the signal µ through geometrical

properties of its expansion coefficients (µ(i))i≥1 in a suitable basis. Since in that infinite-dimensional

setting the alternative ∥µ∥2 > δ2 is “too big” and gives rise to trivial separation rates, the usual focus

is on considering restricted alternatives of the form
{
µ ∈ F ; ∥µ∥ ≥ δ2

}
, for a given nonparametric set F .

Classical alternatives of interest include in particular ℓ2 ellipsoids (corresponding to Hilbert norms of different

strengths), ℓp bodies, and Besov bodies. Interpreted in functional spaces, these alternatives correspond

respectively to balls in Sobolev spaces (typically when considering Fourier basis coefficient expansions) or

in Besov spaces (for suitable wavelet basis coefficient expansions).

The literature on these topics is profound and extensive, see e.g. Ingster and Suslina (2012) for a

comprehensive overview. The case of certain classes of ℓ2-ellipsoids appears to have been studied first

by Ingster (1982) and Ermakov (1991), then a remarkable series of works of Ingster (1993) and Ingster

and Suslina (1998) established minimax testing rates for general ℓ2 ellipsoids as well as other alternatives.

V. Spokoiny’s contribution is prominent in this body of literature, in particular for dealing with the case of

Besov bodies (Lepski and Spokoiny, 1999) as well as considering the problem of statistical adaptivity over

a family of alternatives (Spokoiny, 1996).
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This very limited overview of the topic of testing in the white noise model is meant to contrast with the

setting considered here. On the one hand, we will not consider a particular form of alternative; on the other

hand, we assume that the observations can truly be represented as elements in a possibly infinite-dimensional

separable Hilbert space. Under the Gaussian assumption, this means that the covariance operator Σ of the

noise process is assumed to have a finite trace, which also prevents the triviality problem mentioned above

for the white Gaussian noise setting. If we represent the observation coordinates in a diagonalizing basis of

Σ, our setting in the Gaussian setting amounts to the Gaussian sequence model (IV.3) wherein the constant

parameter σ is replaced by a square integrable sequence (σ(i))i≥1. Note that formally normalizing the i-th

observation coordinate by σ(i) would give rise again to model (IV.3), however the separation distance would

then be measured in the weak norm
∥∥Σ1/2µ

∥∥.
IV.1.2 Relation to “modern” and high-dimensional statistics

Since we only consider test separation distance without a specific alternative, the setup we consider can

be considered as less elaborate, at least in the sense of asymptotic theory, than the settings with various

non-parametric alternatives discussed above. On the other hand, our focus is specifically on the following

points:

1. Finite-sample analysis;

2. Non-Gaussian data (we will only consider bounded data here);

3. Robustness to misspecification (here under the form of the relaxed composite null ∥µ∥2 ≤ η2, also

called relevant hypothesis testing).

These features have been rightly identified by V. Spokoiny as the defining features of “modern” approach

to statistics (Spokoiny, 2012; Spokoiny and Dickhaus, 2015). The problem of testing a null hypothesis

defined as a neighborhood rather than an exact match has been tackled under different settings in the

statistics literature, especially for the two-sample testing case. For example, motivated by bioequivalence

testing between populations, Munk and Czado (1998) consider the problem of testing closeness of two real

distributions as measured in Mallows distance, Dette and Munk (1998) that of closeness in L2 distance of

two nonparametric (Hölder regular) regression functions; Dette et al. (2020a), the closeness in supremum

norm distance of two mean functions in a Banach functional data setting; Dette et al. (2020b), the closeness

in L2 distance of the functional mean of time series. In all cases, the underlying principle is to estimate

the target distance — as will be also case in this section — and the data is not always assumed to be

Gaussian, but the corresponding analysis based on Gaussian asymptotic theory. To estimate the quantiles

of the test statistic, Dette and Munk (1998) choose to estimate the variance, Dette et al. (2020b) use a

self-normalized procedure and give asymptotic bounds; Dette et al. (2020a) propose a bootstrap approach

and obtain an asymptotic convergence of the test statistic. Our approach is a direct estimation of the

variance with nonasymptotic guarantees.

Taking the above aspects into account in the theory, in particular non-asymptotic analysis, is motivated

by a large number of high-dimensional applications, where it appears that relying on traditional asymptotic

of Gaussian parametric or non-parametric theory can possibly be problematic if done without care. Finite

sample theory allows to delineate more precisely in which situations traditional approximations still can be

relied upon, and to study non-standard asymptotics, in particular when key parameters, such as dimen-

sionality, can themselves depend on the sample size n. It is also of use when considering multiple testing

scenarios, where multiplicity has to be taken into account precisely.

Another fruitful modern insight is that high-dimensional statistical models tend to blur the line between

parametric and non-parametric point of views. Precise non-asymptotic results in a finite-dimensional setting,

but where the role of key model parameters (in particular, dimensionality or effective dimensionality) is

precisely analyzed, can provide key theoretical components for analyzing non-parametric settings. In the
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signal testing framework considered here, this way of thinking has in particular been pioneered by Baraud

(2002), who obtained sharp non-asymptotic results for the problem (IV.1) in the case η = 0, and for

the finite-dimensional counterpart of the white noise model (IV.3), i.e. the isotropic setting Σ = σ2Id
in dimension d. Baraud further demonstrated that this result provided a valuable and versatile tool to

analyze models of typical interest in high-dimensional statistics (such as sparse alternatives) as well as

non-parametric alternatives (such as those mentioned in the previous section). A key insight from Baraud’s

work is that the minimum separation distance in that setting is O(d1/4σ/
√
n), in contrast with minimax

estimation distance for µ, which is Θ(d1/2σ/
√
n): the testing separation distance is smaller than the minimax

estimation error by a factor d1/4.

Analyzing precisely the role of dimensionality (ambient or effective) in minimax testing separation rates

and the difference with minimax estimation rates has been a subject of interest in recent literature in various

settings, highlighting similar related phenomena. For instance, Lam-Weil et al. (2022) consider the problem

of testing equality of two high-dimensional multinomial distributions and study the minimum ℓ1 separation

distance in a vicinity of a reference distribution π (which implicitly determines a notion of local effective

dimensionality). Since this model has bounded data, our analysis could be applied in that setting, however

it concerns separation in ℓ2 distance (the separation in ℓ1 distance exhibits considerably more involved

behavior). Ostrovskii et al. (2020) consider a different type of two-sample testing problem, in a regression

context, where the goal is to determine which one of the two distributions has a given (known to the user)

regression vector. They give a sharp bound on the minimum separation distance between the two regression

vectors including the role of the dimension, also exhibiting a difference with estimation rates.

Coming back to our model, the results of Baraud (2002) provide a sharp answer, but only in the case

η = 0 and for isotropic Gaussian (white noise) data with known variance. Still in the Gaussian isotropic case,

the minimum separation rates for any value of η ≥ 0 were precisely characterized by Blanchard et al. (2018).

We also consider the Gaussian setting in the present work, but analyze the generalized situation where the

covariance matrix Σ can be arbitrary (and unknown). In this situation, the role of the dimensionality

d is played by proxy quantities depending on Σ, sometimes called effective dimensionality or effective

rank. For the signal testing problem however, it turns out that the proxy dimensionalities for testing and

estimation differ. Namely, for η = 0, we find that the minimax separation distance is O(d
1/4
∗
√
∥Σ∥∞/n),

where d∗ := ∥Σ∥22/∥Σ∥
2
∞, while the minimax estimation distance for µ is Θ(d

1/2
e

√
∥Σ∥∞/n), where de :=

∥Σ∥1/∥Σ∥∞. (Notice that d∗ ≤ de ≤ d in general, while these quantities are all equal in the isotropic

setting.) Furthermore, we also study the estimation of key quantities ∥Σ∥1/2∞ and ∥Σ∥2 determining the

proxy dimensionality and the testing threshold4.

A crucial mathematical tool in high-dimensional statistics is to obtain sharp concentration inequalities

for quadratic forms of random vectors. These are closely related to technical tools used in the present

work. An important point in such inequalities is to quantify as precisely as possible up to which point

quadratic forms of non-Gaussian vectors can mimic the Gaussian behavior (i.e. that of central and non-

central weighted chi-squared statistics). This topic has received a good deal of attention in the recent years

and V. Spokoiny also made substantial contributions to that area (Spokoiny and Dickhaus, 2015; Spokoiny

and Zhilova, 2013). In the present work, we derive from scratch the needed concentration inequalities; we

discuss in more detail the relation to V. Spokoiny’s own work and to related literature in Section IV.2.4.

IV.1.3 Relation to machine learning and kernel mean embeddings of distribu-
tions

An application setting which motivated us to consider in detail the case of bounded data is that of testing

of the data distribution via kernel mean embedding (KME) methods, a principle which has garnered a lot

4With the notation ∥Σ∥p we mean p-Schatten norm. We will freely use in this section the equivalent notation

∥Σ∥∞ = ∥Σ∥op, ∥Σ∥1 = Tr(Σ), ∥Σ∥22 = Tr(Σ2).
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of attention in the machine literature since the seminal paper of Smola et al. (2007). It has been advocated

in particular for two-sample (Gretton et al., 2012) and goodness-of-fit (Chwialkowski et al., 2016) testing;

see Section II.2.

We describe the KME principle briefly. Assume Z is a random variable with distribution PZ taking

values in the measurable space Z, and that one has at hand a fixed mapping Φ : Z → H, where H is a

separable Hilbert space. To this mapping is associated a reproducing kernel Hilbert space (RKHS) H′ with

kernel k(z, z′) := ⟨Φ(z),Φ(z′)⟩.

Assuming the variable X = Φ(Z) is Bochner integrable5 (which is the case in particular when the

mapping Φ is bounded), the kernel mean embedding of PZ is defined as Φ(PZ) := E[Φ(Z)] ∈ H (using a

rather natural overload of notation for Φ). The maximum mean discrepancy (MMD) between distributions

P,Q in the domain of definition of Φ is defined as the semimetric

MMDk(P,Q) := ∥Φ(P)− Φ(Q)∥.

Since MMDk(P,Q) > 0 implies P ̸= Q, this principle can be used for simple goodness-of-fit testing (testing

for PZ = P0 for some known distribution P0, given an i.i.d. sample from PZ) and two-sample testing (testing

for PZ = PZ′ , given two independent i.i.d. samples from PZ and PZ′); in each case, the test statistic is

a suitable estimator of MMDk(PZ ,P0), resp. MMDk(PZ ,PZ′) from the observed data. More generally

one may want to test the relaxed null hypothesis MMDk(P,Q) ≤ η and analyze the power of the test in

terms of the MMD separation itself. This is indeed a particular case of (IV.1)-(IV.2), when considering

the Hilbert-valued variable X = Φ(Z) and, for two-sample testing, Y = Φ(Z ′).

A common situation is when Φ is bounded in norm by some constant L, or equivalently in terms of the

kernel, supz∈Z k(z, z) ≤ L2. This ensures in particular that Φ is defined on all distributions. Analyzing our

original setting with norm-bounded but potentially infinite-dimensional data is therefore suited to this case.

Gretton et al. (2012) derive the asymptotic distribution of the (suitably renormalized) MMD test

statistic, which is identical to the one we use below (once interpreted in the KME setting). Unsurprisingly,

a Gaussian limiting behavior is identified. Our study analyzes this behavior from a non-asymptotic point of

view; this can be particularly of interest for situation where the mapping Φ (or equivalently the associated

kernel) is to depend on the sample size, or when performing a large number of such tests in parallel: in this

case uniformly valid nonasymptotic bounds are a a valuable tool for further analysis. See Section III for such

a multiple test scenario in the context of multiple task averaging. Multiple tests can also be aggregated to

test a global hypothesis, see Fromont et al. (2012) in the context of two-sample testing based on the KME

approach.

In our study, the power of the test is investigated for alternatives of the form (IV.1)-(IV.2), which,

interpreted in the KME setting, correspond to MMDk(P,Q) ≥ η + δ. The power of KME-based tests

(in the goodness-of-fit case) was also investigated by Balasubramanian et al. (2021), but for alternatives

measured in a χ2 distance separation, more precisely, of the form
{
Q ∈ F ;χ2(P0,Q) ≥ δ

}
, where F is

a nonparametric set of distributions whose density with respect to P0 is approximated at a given rate by

functions in the RKHS H′ associated to k, in the sense of interpolation with L2(P0). This is close in spirit

to nonparametric points of view discussed in Section IV.1.1, in the sense that χ2-separation alone is too

weak to get nontrivial separation rates and one has to additionally consider intersection with nonparametric

sets of interest. Again, because we choose to analyze alternatives measured in MMDk-separation itself, the

results we obtain in this setting have a different nature.

5that is, the real random variable ∥Φ(Z)∥ is integrable, which guarantees that the integral of Φ(Z) is
well-defined in a strong sense as an element of the Hilbert space; see e.g. Cohn (1980).
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IV.1.4 Overview of contributions

The main contribution of this section is to give upper bounds on the optimal (minmax) testing separation

distance for problems (IV.1) and (IV.2) over classes of probability distributions with fixed covariance matrix

Σ for sample X, as well as S for sample Y in the two-sample case. The covariance structures are considered

as nuisance parameters and we investigate precisely how they influence the testing separation distance.

Let P be a family of distributions for the two samples (we consider the Gaussian setting and the bounded

setting), and PΣ,S the subsets of distributions of P with Cov[X1] = Σ, and Cov[Y1] = S (in the two-sample

case). Consider the sets of distributions

H0(η,Σ, S) := {P ∈ PΣ,S |P satisfies H0(η)} ,
Aδ(η,Σ, S) := {P ∈ PΣ,S |P satisfies H1(η, δ)} ,

then the optimal separation distance is, for α ∈ (0, 1):

δ∗(α,Σ, S, η) = inf

{
δ ≥ 0

∣∣∣∃ test T : sup
P∈H0

P(T = 1) + sup
P∈Aδ

P(T = 0) ≤ α
}
. (IV.4)

In the Gaussian setting, we establish that δ∗ is upper bounded up to a constant factor via

δ∗(α,Σ, S, η) ≲ σκα max

(
1,min

(
d

1
4
∗ , d

1
2
∗
σκα
η

))
, (IV.5)

(Theorem IV.7) where κα :=
√
− log(α), and, in the one-sample case, σ2 := ∥Σ∥op/n is a scalar vari-

ance factor and d∗ := Tr Σ2/∥Σ∥2op a notion of effective dimension. In the two-sample case, we obtain

also (IV.5), with σ2 := ∥Mm,n∥op, and d∗ := TrM2
m,n/σ

4, whereMm,n := (Σ/n+S/m) (Theorem IV.8).

In the one-sample case, this result can be formulated equivalently in terms of sample complexity n∗ needed

to detect at given error level α and separation distance δ for problem (IV.1):

n∗(α,Σ, S, η) ≲ ∥Σ∥opκαδ
−1 max

(
δ−1, d

1
2
∗ (max(δ, η))

−1
)
. (IV.6)

This result is established first when assuming that Σ, S are known, then we show that it holds as well

when they are unknown (under some mild assumptions on the sample size, see Corollary IV.14 for an explicit

statement in the one-sample case and condition (IV.27) there). Matching minimax lower bounds are given

for one and two-sample problems in the Gaussian setting. In the bounded setting, we derive upper bounds

only, which take the same flavor as (IV.5) under some mild assumptions on the sample sizes.

IV.1.5 Organization of the section

We present in Section IV.2 our main results. In order to cover both the Gaussian and bounded settings under

the same umbrella, we start in Section IV.2.1 by a generic result: assuming some suitable concentration

for an estimate U of the squared signal norm ∥µ∥2 holds (Assumption IV.1), as well as for estimators of

its quantiles (Assumption IV.2), for the problems (IV.1) and (IV.2) we propose in Theorem IV.3 sufficient

conditions on δ such that we can control the Type I and Type II errors of a test T based on U . In the

following sections, the Gaussian setting and the bounded setting are considered separately. In Section IV.2.2,

we give concentration results for U to fulfill Assumption IV.1. In Section IV.2.3 we give results to fulfill

Assumption IV.2, which are related to the estimation of ∥Σ∥1/2∞ and ∥Σ∥2. The proofs of the corresponding
results are found in Sections IV.3.1 to IV.3.6, respectively.

IV.2 Main results

We will build a test for the model (IV.2) based on an estimator U of the distance ∥µ − ν∥2, typically
a modified U-statistic as defined below. We will first consider a general point of view to deduce bounds
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on the separation rate when U satisfies certain concentration properties; this will then apply both to the

Gaussian and bounded settings.

IV.2.1 A general result to upper bound separation rates

As mentioned earlier, from now on we concentrate primarily on the two-sample setting, being understood

that upper bounds for the one-sample setting can be deduced readily. In order to define a general framework

encompassing as particular cases the more specific settings considered below, in this section we will assume

a generic statistical model P for the distribution of the samples X and Y, which we recall we always assume

to be independent and i.i.d. with respective squared integrable marginal distributions PX ,PY . We will thus

use without comment the fact that a distribution P ∈ P equivalently specifies the marginal distributions PX
and PY of the samples. We will consider the covariance matrices Σ, S of PX ,PY as nuisance parameters

influencing the optimal separation distance, and define the sub-models

PΣ,S = {P ∈ P : Cov[PX ] = Σ,Cov[PY ] = S};

PΣ is defined in an analogous way for the one-sample setting.

The first property we require is a form of 2-sided concentration of U around the target quantity:

Assumption IV.1. For any (Σ, S) and distribution P ∈ PΣ,S; for any given α ∈ (0, 1) there exist

q1 = q1(Σ, S, α), q2 = q2(Σ, S, α) in R+ such that:

P
[∣∣U − ∥µ− ν∥2∣∣ ≥ ∥µ− ν∥q1 + q2

]
≤ α . (IV.7)

Additionally, we will consider the situation where the quantities q1, q2 (which are necessary to find a

suitable testing threshold) are not known but must also be estimated from the data; this is the case if the

covariance matrices (Σ, S) are unknown. This leads us to our second assumption:

Assumption IV.2. Suppose Assumption IV.1 holds, with the notation introduced therein. For any

α ∈ (0, 1) there exist two estimators Q̂1 = Q̂1(α) and Q̂2 = Q̂2(α) in R+ such that, for any (Σ, S)

and distribution P ∈ PΣ,S:

P
[∣∣∣q1(Σ, S, α)− Q̂1(α)

∣∣∣ ≥ 1

2
q1(Σ, S, α)

]
≤ α , (IV.8)

P
[∣∣∣q2(Σ, S, α)− Q̂2(α)

∣∣∣ ≥ 1

2
q2(Σ, S, α)

]
≤ α . (IV.9)

(In the “oracle” case where the covariances Σ, S are assumed to be known, of course Assumption IV.2 is

trivially satisfied taking Q̂1 = q1, Q̂2 = q2.) The following generic result transforms the above assumptions

into an estimate of the separation distance for setting (IV.2).

Theorem IV.3. Let P be a statistical model for setting (IV.2), and U be a statistic. Let Assump-

tions IV.1 and IV.2 be granted. Given η ≥ 0 and α ∈ (0, 1), let T be the test defined by

T = 1
{
U − η2 > 2ηQ̂1(α) + 2Q̂2(α)

}
. (IV.10)

Then for any (Σ, S), provided

δ > 2q1 + min
(
2
√
q2, 2η

−1q2
)
, (IV.11)

it holds, for any distribution P ∈ PΣ,S:

P[T = 1] ≤ 3α , if P satisfies (H0(η));

P[T = 0] ≤ 3α , if P satisfies (H1(η, δ)).
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IV.2.2 Concentration properties of the test statistic

The rest of this section is dedicated to establishing the validity of Assumptions IV.1 and IV.2 for the

following statistic U(X,Y):

U(X,Y) :=
1

n(n− 1)

n∑
i,j=1
i ̸=j

⟨Xi, Xj⟩+
1

m(m− 1)

m∑
i,j=1
i ̸=j

⟨Yi, Yj⟩ −
2

nm

n∑
i=1

m∑
j=1

⟨Xi, Yj⟩ . (IV.12)

Observe that provided expectations µ, ν exist, U(X,Y) is an unbiased estimator of ∥µ− ν∥2. In the KME

setting as described in Section IV.1.3, inner products are replaced by kernel evaluations and the above

statistic is the standard unbiased estimate of the squared MMD between PX and PY . As announced

previously, we will concentrate on the following two settings:

Definition IV.4 (Gaussian setting). The samples X and Y are i.i.d. Gaussian in Rd of marginal

distributions PX = N (µ,Σ) and PY = N (ν, S), respectively.

In the Gaussian setting, we will assume a finite ambient dimension d for technical reasons: our proofs

rely on the Gauss-Lipschitz concentration inequality, which applies in finite dimension. As will appear clearly

however, all our results to come are dimension-free in the sense that d never enters the picture, instead

only norms of Σ, S come into play. We surmise that our results would apply as well in the same form in

the Hilbert-valued setting provided Tr(Σ) and Tr(S) are finite, but did not try to write down a precise

approximation argument to this end.

Definition IV.5 (Bounded setting). The samples X and Y are i.i.d. in a separable Hilbert space H
with norm bounded by L > 0. The covariance operators for the marginal sample distributions are

denoted Σ and S, respectively; observe that they have finite trace by the boundedness assumption.

Propositions IV.6 and IV.9 give concentration bounds for the statistic U , ensuring Assumption IV.1 in

the two above settings.

Proposition IV.6. Assume the Gaussian setting holds and n,m ≥ 2. Then with probability at least

1− α, ∣∣U − ∥µ− ν∥2∣∣ ≤ ∥µ− ν∥q1 + q2 , (IV.13)

where U is defined in (IV.12) and

q1(Σ, S, α) =

√
2

(
∥Σ∥op
n

+
∥S∥op
m

)
u(α) , (IV.14)

q2(Σ, S, α) = 32

(√
Tr Σ2

n
+

√
TrS2

m

)
u(α) . (IV.15)

where u(α) := − logα+ log 8.

Let us simplify somewhat the above expression when plugged into Theorem IV.3 in the case of signal

detection (IV.1). We also give a matching lower bound (up to constant factor) for the optimal separation

distance.

Theorem IV.7. Consider the signal detection problem (IV.1) and assume the Gaussian setting with

covariance matrix Σ. Then the minimum separation distance δ∗ given by (IV.4) so that the type I and

II errors for problem (IV.1) are less that α ∈ (0, 1) for all P ∈ PΣ is upper bounded by

δ∗(α,Σ, η) ≲ σn
√
umax

(
1,min

(
d

1
4
∗ ,
√
d∗u ·

σn
η

))
, (IV.16)
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where u(α) := − logα+ log 60. If d∗ ≥ 3, then it is lower bounded by

δ∗(α,Σ, η) ≥ σn

√
1− α

12
max

(
1,min

(
d

1
4
∗ ,
√
d∗(1− α) · σn

η

))
, (IV.17)

where σ2
n := ∥Σ∥op/n, and d∗ := Tr Σ2/∥Σ∥2op. (The symbol ≲ indicates inequality up to a numerical

factor).

Observe that it holds d∗ ≤ de, where de = Tr Σ/σ2 is the “effective dimensionality” coming into play

for signal estimation rates (namely E
[
∥X − µ∥2

]1/2
= σ

√
de/n, where X is the empirical mean). In the

finite d-dimensional case with Σ = Id, it holds d = de = d∗, and the separation (IV.16) has been shown

to be optimal in the Gaussian setting for η = 0 by Baraud (2002) and for any η ≥ 0 by Blanchard et al.

(2018). It exhibits a continuous transition between the signal detection setting (η = 0, δ∗ ≃ d1/4σ/
√
n)

and the hyperplane testing setting (which is equivalent to the 1-dimensional setting by rotational invariance;

η →∞, δ∗ ≃ σ/
√
n). In that particular situation, we observe that the signal separation distance is smaller

by a factor d1/4 than the signal estimation error, a phenomenon typical of high-dimensional statistics. In

the more general setting studied here where Σ can be arbitrary, this difference between rates can be all the

more marked, since in addition d∗ can be much smaller than de.

We obtain a similar result for the two-sample problem:

Theorem IV.8. Consider the two-sample mean problem (IV.2) and assume the Gaussian setting with

covariance matrices Σ, S. Then the minimum separation distance δ∗ so that the type I and II errors

for problem (IV.2) is less than α ∈ (0, 1) for all P ∈ PΣ,S is upper bounded by

δ∗(α,Σ, S, η) ≲ σn,m
√
umax

(
1,min

(
d

1
4
∗ ,
√
d∗u ·

σn,m
η

))
, (IV.18)

where u := − logα+ log 60. If d∗ ≥ 3, then it is lower bounded by

δ∗(α,Σ, S, η) ≥ σn,m

√
1− α

48
max

(
1,min

(
d

1
4
∗ ,
√
d∗(1− α) · σn,m

η

))
, (IV.19)

where σ2
n,m := ∥Mn,m∥op, and d∗ := TrM2

n,m/σ
4
n,m, for Mn,m := Σ/n+S/m. (The symbol ≲ indicates

inequality up to a numerical factor).

Here the effective dimension d∗ depends on the two covariance matrices Σ and S, weighted by the size

of the samples.

Remark. As mentioned in the introduction, by letting m go to infinity in the two-sample case, we

recover the bounds of the one sample case (up to a constant factor). It is worth examining if the converse

holds, i.e. if there is an argument to reduce the two-sample problem to the simpler one-sample case (this

would simplify some technical aspects of the proofs, somewhat). For the upper bounds on the minimum

separation distance, this is the case in some specific situations: for equal sample sizes n = m, the two-

sample case can be reduced to the one-sample problem setting by pairing the samples and considering the

single sample (Xi−Yi)1≤i≤n, and one can recover this way in essence the two-sample result. If Σ = S, and

for general sample sizes, we can also reduce to the single sample with size min(m,n), (Xi−Yi)1≤i≤min(m,n),

and recover again the two-sample result up to a numerical factor. However a reduction argument in the

general case has eluded us. Concerning the lower bound, the argument for the two-sample case indeed

hinges on a reduction the one-sample case, by considering the sub-models where one of the two sample

means is known, see Section IV.3.4.

We now turn to the bounded setting.
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Proposition IV.9. Assume the bounded setting holds and n,m ≥ 2. Then with probability at least

1− α, ∣∣U − ∥µ− ν∥2∣∣ ≤ ∥µ− ν∥q1 + q2 , (IV.20)

where U is defined in (IV.12) and

q1(Σ, S, α) = 2

√
2

(
∥Σ∥op
n

+
∥S∥op
m

)
u+

4Lu

3(n ∧m)
,

q2(Σ, S, α) = 614

(√
Tr Σ2

n
+

√
TrS2

m

)
u+ 3708

L2u2

(n ∧m)2
,

with u(α) = − logα+ log 2.

Thus, in the bounded setting we can guarantee that the behavior of the test is qualitatively the same

as in the Gaussian setting (see e.g. Theorem IV.7) — and this from a non-asymptotic point view, provided

n ∧m ≥ uL2/σ2, where σ2 = ∥Σ∥op.
A special case of interest is when the data lies on the sphere of radius L, i.e. ∥Xi∥ = ∥Yj∥ = L a.s. In

this case L2 = Tr Σ and the above condition can be rewritten n∧m ≥ ude. This situation is met in particular

in the KME setting, see Section IV.1.3, when using a translation-invariant kernel k(z, z′) = k◦(z − z′), in
which case L2 = k◦(0).

IV.2.3 Quantile estimation

Since we are considering the case where Σ, S can be arbitrary in this work, it is natural to assume that

these are not known in advance. We study next the estimation of the quantities q1 and q2, in both settings

(bounded and Gaussian), in order to check Assumption IV.2 for our generic theorem. If we can grant that

assumption, Theorem IV.3 guarantees that the separation distance remains qualitatively the same as in the

“oracle” situation where they are known. To simplify the exposition, in this section we will present results

for the one-sample problem only; similar results, although slightly more technical, can be obtained for the

two-sample problem. Thus, we need to have estimators of ∥Σ∥op and Tr Σ2 — more precisely, of their

square root.

For q1, we will use the empirical covariance operator Σ̂ := Σ̂(X):

Σ̂(X) =
1

n

n∑
i=1

(Xi − µ̂)(Xi − µ̂)T , (IV.21)

where µ̂ := µ̂(X) is the empirical mean of the sample X.

Proposition IV.10 (Gaussian setting). Assume X = (Xi)1≤i≤n are i.i.d. Gaussian vectors of co-

variance Σ. For u ≥ 0, with probability at least 1− 3e−u:∣∣∣∥∥Σ̂
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣ ≤ 3
√

2∥Σ∥
1
2
op

(√
de
n

+

√
u

n

)
, (IV.22)

where Σ̂ is defined in (IV.21) and de = Tr Σ/∥Σ∥op.

Proposition IV.11 (Bounded setting). Assume that X = (Xi)1≤i≤n are i.i.d. bounded in norm by L

and with covariance Σ. For u ≥ 0, with probability at least 1− 2e−u:∣∣∣∥∥Σ̂
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣ ≤ 4L

(
2

√
de
n

+

√
2u

n
+

u

3n

)
(IV.23)

where Σ̂ is defined in (IV.21) and de = Tr Σ/∥Σ∥op.
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These concentration bounds are not sharp in an asymptotic sense, where the main term for the scaling of

the deviations is expected to follow that of asymptotic normality for eigenvalues of the empirical covariance

operators, as in the classical results of Anderson (2003), but they are largely sufficient for our purposes (see

Corollary IV.14 below). Some refined related nonasymptotic bounds can be found in the recent literature.

In particular, Koltchinskii and Lounici (2017) derive nonasymptotic results for controlling
∥∥Σ̂ − Σ

∥∥ in

the Gaussian setting, and in the centered case where µ = 0 is known. In fact, in essence the result of

our technical Proposition IV.23 in the proof section (which is like Proposition IV.11 but in the centered

case) can be deduced from the results of Koltchinskii and Lounici (2017) by elementary arguments. We

decided to include a standalone proof here; while we do rely on the estimates of Koltchinskii and Lounici

(2017) (or rather on the improved version of van Handel, 2017) for the expectation of the difference, we

derive an upper bound on the deviation by a rather direct application of the Gauss-Lipschitz concentration.

While Koltchinskii and Lounici (2017) also rely on such arguments, their proofs are much more involved,

for the reason that they study the norm or the difference while we only are interested in the difference of

the (root) norms here. Finally, we also mention very recent results of Jirak and Wahl (2018) for sharp

nonasymptotic control of spectral quantities related to Σ, which could also potentially be applied here,

though it seems at first glance that a logarithmic dependence in the dimension could enter into play.

For the bounded setting (Proposition IV.11), the bound (IV.23) could presumably be improved to have√
∥Σ∥op instead of L for the main terms. The results of Theorem 9 of Koltchinskii and Lounici (2017)

under a sub-Gaussian assumption do not seem to be able to imply Proposition IV.11, see the more detailed

discussion below in Section IV.2.4.

Turning now to q2, we will estimate
√

Tr Σ2 using the following statistic T̂ := T̂ (X), which is an

unbiased estimator of Tr Σ2:

T̂ (X) :=
1

4n(n− 1)(n− 2)(n− 3)

∑
i ̸=j ̸=k ̸=l

⟨Xi −Xk, Xj −Xl⟩2 . (IV.24)

Proposition IV.12 (Gaussian setting). Assume X = (Xi)1≤i≤n are i.i.d. Gaussian vectors of co-

variance Σ and n ≥ 4. Then for all u ≥ 0:

P

[∣∣∣√T̂ −√Tr Σ2
∣∣∣ ≥ 30

√
Tr Σ2

n
u2

]
≤ e4e−u , (IV.25)

where T̂ is defined in (IV.24).

Proposition IV.13 (Bounded setting). Assume that X = (Xi)1≤i≤n are i.i.d. bounded in norm by L

and with covariance Σ and n ≥ 4. Then for all u ≥ 0:

P
[∣∣∣√T̂ −√Tr Σ2

∣∣∣ ≥ 12L2

√
u

n

]
≤ 2e−u . (IV.26)

where T̂ is defined in (IV.24).

Thanks to these concentration results, we can construct estimators of q1(Σ, α) and q2(Σ, α) satisfying

Assumption IV.2. In the Gaussian setting, we give the following explicit corollary of Propositions IV.10

and IV.12; the proof is straightforward and omitted.

Corollary IV.14 (Gaussian setting). Consider the signal detection problem (IV.1) and assume the

Gaussian setting holds. Let α ∈ (0, 1), u = u(α) = − logα + log 8, and Q̂1(α) and Q̂2(α) be the

statistics defined by

Q̂1(α) =

√
2
∥∥Σ̂(X)

∥∥
op

n
u , Q̂2(u) = 32

√
T̂ (X)

n
u ,
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where Σ̂ is defined in (IV.21) and T̂ in (IV.24). Then for any Σ, provided

n ≳ max
(
de(Σ), u, u4

)
, (IV.27)

(we recall de(Σ) = Tr Σ/∥Σ∥op), then it holds, for any distribution P ∈ PΣ:

P
[∣∣∣Q̂1(α)− q1(Σ, α)

∣∣∣ ≤ q1(Σ, α)/2
]
≤ α,

P
[∣∣∣Q̂2(α)− q2(Σ, α)

∣∣∣ ≤ q2(Σ, α)/2
]
≤ α,

where q1, q2 are as defined in (IV.14),(IV.15) (with m =∞).

The condition (IV.27) for n is needed to grant Assumption IV.2: it ensures that the deviations of the

estimators ∥Σ̂∥1/2op and T̂ coming from Proposition IV.10 and IV.12 are smaller than their target quantities

∥Σ∥1/2op /2 and (Tr Σ2)1/2/2, respectively. The requirement that the size of the sample is larger than the

effective dimension de appears mild.

For the bounded setting and the signal detection problem (IV.1), estimators Q̂1 and Q̂2 satisfying

Assumption IV.2 can also be constructed in a similar way from Propositions IV.11 and IV.13 (details

omitted). In the bounded setting, the quantiles q1 and q2 of U are composed of two terms, the first (and

larger) one gives the dependence in the covariance of the distribution, the second depends on the bound L.

This additional term will have to be taken into account, and the condition on n analogous to (IV.27) will

involve L. In general this will not be a problem since L or an upper bound on L is supposed to be known,

as is the case for instance in the kernel setting (see the concluding discusssion in the previous section).

Finally, for the two-sample test problem (IV.2), comparable results can be obtained using the estimators

Σ̂(Y) and T̂ (Y); we omit the details.

IV.2.4 Concluding remarks

A technical discussion point: Gaussian, sub-Gaussian, and bounded vectors. The

utility of our systematic distinction between the Gaussian and bounded case can be disputed in the light

of recent concentration literature (see e.g. Hsu et al., 2012; Koltchinskii and Lounici, 2017 and further

references therein) deriving results holding for sub-Gaussian random vectors, a seemingly more general

setting emcompassing both the Gaussian and bounded settings as particular cases (since bounded variables

are sub-Gaussian by Hoeffding’s inequality).

This point deserves a specific discussion. The sub-Gaussianity assumption for a vector variable X

(assumed centered for simplicity here) often takes the following form: for any unit vector u, denoting

Xu = ⟨X,u⟩, it is assumed that ∥Xu∥ψ2
≤ C

√
Var[Xu] (where ∥.∥ψ2

is the Orlicz ψ2-norm); or equivalently

in terms of Laplace transform,

log(E[expλ(Xu)]) ≤ (C ′)2λ2Var[Xu]/2 for all λ ≥ 0. (IV.28)

A key point is that the factors C or C ′ in those definitions should be independent of u, and they gen-

erally appear as global factors in the derived deviation inequalities. If the only information we have

is that ∥X∥ is bounded a.s. by L, we see that the factors C or C ′ should be taken of the order of

sup∥u∥=1(L/
√

Var[Xu]) = L∥Σ−1∥1/2op , which is not acceptable in a high-dimensional setting, and in par-

ticular for the application to KME described in Section IV.1.3, where one might expect that ∥Σ−1∥op can

get arbitrarily large or even infinite.

Some works (such as Spokoiny and Zhilova, 2013 and the appendix of Spokoiny and Dickhaus, 2015)

consider settings going beyond sub-Gaussianity, i.e. when (IV.28) is only required to hold for λ ≤ M−1.

This allows in principle for more general variables, e.g. chi-squared type statistics or variables admitting

Berstein- or Bennett-type control of their Laplace transform, while making the constant C ′ in (IV.28)
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controlled by a fixed numerical constant. Under this assumption the “first-order” terms are of the correct

order, i.e. typically only depend on the variance Σ. Unfortunately, the value of M comes up into additional

terms, and since its value has to be independent of u, in the bounded setting the uniformity with respect

to u means that M should be again taken of the order of ∥Σ−1∥1/2op .

To summarize, despite our best efforts we were not able to derive from existing general results, working

under the (possibly extended) sub-Gaussian assumption, a concentration in the bounded setting that would

not involve ∥Σ−1∥op, and this is the reason why we treated it separately with tools specific to bounded

variables such as the Bousquet-Talagrand inequality. It would be of course of notable interest to obtain re-

sults under a general sub-Gaussian assumption sup∥u∥=1∥Xu∥ψ2
≤ L, and control deviations only involving

various norms of Σ for the main terms, possibly L for smaller-order terms, but not depending on ∥Σ−1∥op.

Perspectives. We finally list a few items for future developments.

� It would be interesting to obtain a version of Proposition (IV.11) where the main term does not

involve the bound L.

� A recent trend of research developed “robust” exponential concentration bounds for estimators of

scalars and vectors with minimal moments assumptions (see e.g. Lugosi and Mendelson, 2019a for

a survey of recent advances). It seems a very interesting question to study if such robust procedures

can be pushed to the testing setting and enjoy similar nonasymptotic controls to the Gaussian

and bounded settings under much relaxed distributional assumptions. Preliminary calculations seem

to indicate that the “median-of-means” (MoM) approach can be applied to U-statistics without

particular problems and that Assumption IV.1 can be granted for MoM versions of U-statistics under

the assumption of existing moments of order 4, and presumably Assumption IV.2 under moments of

order 8.

� We have analyzed here quantile estimation by direct estimation of unknown quantities coming into

the quantile bounds. In practice, quantile estimation by some form of resampling procedure would

be often sharper and preferred. V. Spokoiny also made notable recent contributions to this topic

(Naumov et al., 2019; Spokoiny and Zhilova, 2015). In the setting of two-sample testing where the

null hypothesis is strict equality, it is possible to obtain tests with exact nonasymptotic level based on

permutation tests and variations thereof; see Fromont et al. (2012) for such approaches for testing

equality of distributions based on the KME methodology, and Kim et al. (2020) for recent broad

results on minimax optimality for the power of permutation-based tests. Estimating quantiles via

bootstrap procedures is also an interesting direction to pursue in setting, in the case where the null

hypothesis is based on closeness rather than equality of signals, so that exact permutation tests do

not apply; Dette et al. (2020a) recently proposed nonstandard bootstrap procedures to tackle this

issue.

� Lower bounds establishing the optimality of the separation rates appearing have been established in

the Gaussian case in Theorem IV.7. It would be nice find such a lower bound in the bounded case.

IV.3 Proofs for Section IV

The proofs of some of the technical results, first stated without justification along the text, can be found in

Section IV.3.7. We first state a standard technical lemma which we will use several times in the following

proofs.

Lemma IV.15. Let a ∈ R+ and b ∈ R, then

−min

(√
b,
|b|
a

)
≤
√

(a2 + b)+ − a ≤ min

(√
|b|, |b|

2a

)
. (IV.29)
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IV.3.1 Proof of Theorem IV.3

Let us denote D := ∥µ− ν∥. Under (H0) we have D ≤ η and thus:

EH0
[T ] = PH0

[
U − η2 > 2ηQ̂1 + 2Q̂2

]
≤ PH0

[
U > D2 +Dq1 + q2

]
+ PH0

[∣∣∣q1 − Q̂1

∣∣∣ > q1/2
]

+ PH0

[∣∣∣q2 − Q̂2

∣∣∣ > q2/2
]

≤ 3α ,

where we have used Assumptions IV.1 and IV.2.

We will prove below that under (H1), we have

PH1

[
D2 −Dq1(u)− q2(u) ≤ η2 + η2Q̂1 + 2Q̂2

]
≤ 2α , (IV.30)

which entails:

PH1 [T = 0] = PH1

[
U − η2 ≤ 2ηQ̂1 + 2Q̂2

]
≤ PH1

[
U ≤ D2 −Dq1 − q2

]
+ PH1

[
D2 −Dq1 − q2 ≤ η2 + η2Q̂1 + 2Q̂2

]
≤ 3α ,

and the proof is complete. We now prove inequality (IV.30). Let us first solve the following quadratic

inequality in Z ≥ 0:

Z2 − Zq1 − q2 ≥ η2 + 3ηq1 + 3q2 . (IV.31)

The equation is satisfied when

Z ≥
q1 +

√
(2η + 3q1)2 + 16q2

2
;

furthermore, by Lemma IV.15 and the assumed inequality (IV.11), we have that

q1 +
√

(2η + 3q1)2 + 16q2
2

≤ η + 2q1 + min

(
2
√
q2,

2q2
η

)
≤ η + δ .

Under (H1), D ≥ η + δ, so D satisfies equation (IV.31). We conclude by remarking that, using Assump-

tion IV.2:

PH1

[
D2 −Dq1(u)− q2(u) ≤ η2 + η2Q̂1 + 2Q̂2

]
≤ P[H1]η2 + η2Q̂1 + 2Q̂2 ≥ η2 + 3ηq1 + 3q2

≤ 2α .

IV.3.2 Proof of Propositions IV.6 and IV.9

As much for the Gaussian case as for the bounded case, we will give concentration bounds for the statistic

U defined in (IV.12), by decomposing the statistic in four parts. Let us define:

UX :=
1

n(n− 1)

n∑
i,j=1
i ̸=j

⟨Xi − µ,Xj − µ⟩ , UY :=
1

m(m− 1)

m∑
i,j=1
i̸=j

⟨Yi − ν, Yj − ν⟩ ,

UX,Y :=
1

nm

n∑
i=1

m∑
j=1

⟨Xi − µ, Yj − ν⟩, U∗ :=

〈
1

n

n∑
i=1

(Xi − µ)− 1

m

m∑
j=1

(Yj − ν), µ− ν

〉
.

We have that

U = ∥µ− ν∥2 − 2U∗ + UX + UY − 2UX,Y . (IV.32)
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Gaussian setting. We first need some results on Gaussian variables. The first result is a decoupling

theorem of Vershynin (2018).

Proposition IV.16 (Vershynin, 2018, Theorem 6.1.1). Let X1, . . . , Xn be independent centered and

weakly (i.e. Pettis) integrable vectors in a Hilbert space, (aij)1≤i,j≤n a family of real numbers and

F : R 7→ R a convex function. Then

E

F(∑
i̸=j

aij⟨Xi, Xj⟩

) ≤ E

F(4
∑
i,j

aij
〈
Xi, X

′
j

〉),
where (X ′

i) is an independent copy of (Xi).

The following lemma is standard; see e.g. Birgé (2001), Lemma 8.2.

Lemma IV.17. Let X a real random variable such that for all 0 < t < b−1:

log
(
E
[
etX
])
≤ (at)2

1− bt
,

where a and b are two positive constants. Then, for all t ≥ 0:

P
[
X ≥ 2a

√
t+ bt

]
≤ e−t .

Proposition IV.18. Let X and Y be two independent Gaussian vectors following the distributions

N (0,Σ) and N (0, S) respectively. Then for t < (∥S∥op∥Σ∥op)−1/2:

logE[exp(t⟨X,Y ⟩)] ≤ t2 Tr(SΣ)

2(1− t
√
∥S∥op∥Σ∥op)

.

Using Lemma IV.17, for all u ≥ 0:

P
[
⟨X,Y ⟩ ≥

√
2 Tr(SΣ)u+

√
∥S∥op∥Σ∥opu

]
≤ e−u.

We can now prove Proposition IV.6. The samples X and Y have respective distributions N (µ,Σ) and

N (ν, S). We will obtain a concentration inequality for U using its decomposition (IV.32).

Let us first find concentration inequalities for UX and UY. Using decoupling (see Proposition IV.16) we

have for all t < (4∥Σ∥op)−1:

E[exp(tn(n− 1)UX)] ≤ E

[
exp

(
4t

〈 n∑
i=1

Xi − µ,
n∑
i=1

X ′
i − µ

〉)]
,

where X ′
i are independent copies of the Xis. Then using Proposition IV.18, it holds with probability at

least 1− 2e−u:

n(n− 1)|UX| ≤ 4n
(√

2 Tr Σ2u+ ∥Σ∥opu
)
. (IV.33)

The same method works for UY. The concentration of UX,Y is directly obtained using Proposition IV.18.

Finally U∗ is a centered 1-dimensional Gaussian with variance (µ − ν)T
(
Σ
n + S

m

)
(µ − ν) and we use the

classical bound P
[
|N | ≥ σ

√
2t
]
≤ 2e−t for N ∼ N (0, σ2). Thus we obtain that with probability at least

1− 8e−u: ∣∣U − ∥µ− ν∥2∣∣ ≤ 4

n− 1

(√
2 Tr Σ2u+ ∥Σ∥opu

)
+

4

m− 1

(√
2 TrS2u+ ∥S∥opu

)
+

4√
nm

(√
2 Tr ΣSu+ (∥Σ∥op∥S∥op)

1
2u
)

+

√
2(µ− ν)T

(
Σ

n
+
S

m

)
(µ− ν)u .
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We conclude by upper bounding the operator norms ∥Σ∥op and ∥S∥op by
√

Tr Σ2 and
√

TrS2 and for the

third term we use that

(2 Tr(ΣS))
1
2 ≤ (4 Tr Σ2 TrS2)

1
4 ≤ (Tr Σ2)

1
2 + (TrS2)

1
2 .

We finally use (n− 1)−1 ≤ 2n−1 for n ≥ 2 and similarly for m. It is easy to check that the fourth term is

upper bounded by q1 defined in (IV.14). It just remains to use that u ≥ 1 to get u ≥
√
u and (IV.13).

Bounded setting. The concentration of U is obtained in the bounded setting using a concentration

inequality for degenerate U-statistics of Houdré and Reynaud-Bouret (2003). We present here a somewhat

simplified version suited for our purpose6.

Theorem IV.19 (Houdré and Reynaud-Bouret, 2003, Theorem 3.4). Let T1, . . . , TN be independent

random variables on a probability space (Ω,F ,P) with values in a Borel space (T ,G). Let

UN =

N∑
i=2

i−1∑
j=1

gi,j(Ti, Tj) ,

where gi,j : T × T → R are measurable Borelian functions satisfying

E[gi,j(Ti, Tj)|Ti] = E[gi,j(Ti, Tj)|Tj ] = 0 .

Let us suppose that the following quantities are finite

A := sup
t,t′,i,j

|gi,j(t, t′)| ,

B2 := max

sup
t,i

(
i−1∑
j=1

E[gi,j(t, Tj)
2]

)
, sup
t,j

(
n∑

i=j+1

E[gi,j(Ti, t)
2]

) ,

C2 :=

N∑
i=2

i−1∑
j=1

E[gi,j(Ti, Tj)
2] .

Then for all u > 0:

P

[
UN ≥ 4C(

√
2u+ 2

√
2u) + 202Bu3/2 + 196Au2

]
≤ 2.77e−u . (IV.34)

Let us prove Proposition IV.9. We recall that we suppose here that the samples X and Y are both

bounded by L. To obtain a deviation inequality for the statistic U , we consider separately the statistics

UX + UY − 2UX,Y and then U∗.

Using Theorem IV.19 withN = n+m, Ti := Xi−µ for 1 ≤ i ≤ n and Ti = Yi−ν for n+1 ≤ i ≤ n+m,

T = {u : ∥u∥ ≤ 4L2} and

gij(·, ·) =


1

n(n−1) ⟨·, ·⟩, if 1 ≤ i, j ≤ n,
1

m(m−1) ⟨·, ·⟩, if n+ 1 ≤ i, j ≤ n+m,

− 1
nm ⟨·, ·⟩, otherwise,

we get that with probability greater than 1− 5.54e−u:

|UX + UY − 2UX,Y|/2 ≤ 307

(√
Tr Σ2

n
+

√
TrS2

m

)
u+ 1854L2u2 . (IV.35)

6In the original result the u deviation term involves an additional constant D and we simply use D ≤ C
here.
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To obtain the above, we have upper bounded A,B,C by:

A ≤ 8L2

(n ∧m)2
, B2 ≤ 8L2

(n ∧m)2

(
∥Σ∥op
n

+
∥S∥op
m

)
, C2 =

3

2

(
Tr Σ2

n
+

TrS2

m

)
;

then, using that 2
√
ab ≤ a+ b and that ∥Σ∥op ≤

√
Tr Σ2, we get (IV.35).

For U∗, we use Bernstein’s inequality (i.e. combining Lemmas IV.32 and IV.17) to get that with

probability at least 1− 2e−u, it holds:

|U∗| ≤ ∥µ− ν∥

(√
2

(
∥Σ∥op
n

+
∥S∥op
m

)
u+

2Lu

3n ∧m

)
. (IV.36)

Combining (IV.35) and (IV.36), we obtain the claim of Proposition IV.9.

IV.3.3 Proof of Theorem IV.7

The upper bound is directly obtained using Theorem IV.3. Assumption IV.1 is satisfied as a consequence of

Proposition IV.6. We do not consider estimation of nuisance parameters related to the covariance matrix Σ

which is assumed to be fixed and known for this result; thus Assumption IV.2 is trivially satisfied by taking

Q̂1 = q1(Σ, α), Q̂2 = q2(Σ, α).

Let us now prove the lower bound (IV.17). The following proof is an adaptation to the non-isotropic

Gaussian setting of the proof of Theorem 5.1 in Blanchard et al. (2018). Let α ∈ (0, 1), ans Σ be a positive

semidefinite matrix. Without loss of generality, we can assume that Σ is diagonal: Σ = diag(λ1, . . . , λd)

with λ1 ≥ . . . ≥ λd > 0. Let us denote Pµ,Σ the distribution of N (µ,Σ) for µ ∈ Rd and introduce the

Gaussian mixture distribution:

QnΣ :=
1

2d−1

∑
m∈M

P⊗n
m,Σ, (IV.37)

where

M =
{

(λ1v1h, . . . , λd−1vd−1h, η)| v ∈ {−1, 1}d−1
}
.

We take h2 := (η+δ)2−η2
TrΣ2−λ2

d
. Then, for all m ∈M,

∥m∥d =
√
η2 + (Tr Σ2 − λ2d)h2 = η + δ .

Let ν = (0, . . . , η), it holds

sup
P∈H0

P⊗n(ϕ = 1) + sup
P∈Aδ

P⊗n(ϕ = 0) ≥ P⊗n
ν,Σ(ϕ = 1) + QnΣ(ϕ = 0)

≥ 1− 1

2

∥∥∥P⊗n
ν,Σ −QnΣ

∥∥∥
TV

≥ 1− 1

2

∫
Rd×n

(
dQnΣ
dP⊗n

ν,Σ

)2

dP⊗n
ν,Σ − 1

 1
2

. (IV.38)

see for instance Baraud (2002). For a tensor product of Gaussian distributions with fixed, equal covariance,

the empirical mean is a sufficient statistic because the Radon-Nikodym derivative of a tensor product of

Gaussian measures w.r.t. the Lebesgue measure can be written for x1, . . . , xn ∈ Rd as

dP⊗n
m,Σ

dλ⊗n
(x1, . . . , xn) = ϕm,Σ/n(x̄)FΣ(x1, . . . , xn) ,
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where x̄ is the mean of the xis, ϕm,Σ/n is the p.d.f. of a normal N (m,Σ/n) variable, and FΣ is a function

of (x1, . . . , xn) which only depends on Σ. Therefore

dQnΣ
dP⊗n

ν,Σ

(x1, . . . , xn) =
dQ1

Σ/n

dPν,Σ/n
(x̄),

and thus ∫
Rd×n

(
dQnΣ
dP⊗n

ν,Σ

)2

dP⊗n
ν,Σ =

∫
Rd

(
dQ1

Σ/n

dPν,Σ/n

)2

dPν,Σ/n .

Thus the problem boils down to studying a single Gaussian vector of covariance Σ/n; for the following we

will assume n = 1 and replace at the end Σ by Σ/n. Let us compute the densities Fν and Q of these two

distributions. For x ∈ Rd:

Fν(x) =
(
det Σ(2π)d

)− 1
2 exp

(
− 1

2λd
(xd − η)2

) d−1∏
i=1

exp

(
− x2i

2λi

)
,

and

Q(x) =
(
det Σ(2π)d

)− 1
2 exp

(
− 1

2λd
(xd − η)2

)
× 1

2d−1

∑
vi∈{−1,1}
1≤i≤d−1

d−1∏
i=1

exp

(
− 1

2λi
(xi − hλivi)2

)

=
(
det Σ(2π)d

)− 1
2 exp

(
− 1

2λd
(xd − η)2 − h2

2

d−1∑
i=1

λi

)
×
d−1∏
i=1

exp

(
− x2i

2λi

)
cosh(hxi) .

Using that E
[
cosh2(aZ)

]
= exp(a2σ2) cosh(a2σ2) when Z ∼ N (0, σ2), we have that

∫
Rd

Q(x)2

Fν(x)
dx =

(
det Σ(2π)d

)− 1
2 exp

(
− h2

d−1∑
i=1

λi

)∫
R

exp

(
− 1

2λd
(xd − η)2

)
dxd

×
d−1∏
i=1

∫
R

cosh2(hxi) exp

(
− x2i

2λi

)
dxi

= exp

(
− h2

d−1∑
i=1

λi

) d−1∏
i=1

exp(h2λi) cosh(h2λi)

=

d−1∏
i=1

cosh(h2λi).

By Taylor expansion, we obtain the bound

h2λi ≤ 1⇒ cosh(h2λi) ≤ 1 +
e

2
λ2ih

4 .

From this and the definition of h we deduce:

log

d−1∏
i=1

cosh(h2λi) ≤
e

2
(Tr Σ2 − λ2d)h4 =

e

2(Tr Σ2 − λ2d)
(
(η + δ)2 − η2

)2
.

The end of the proof follows the same steps as the proof of Theorem 5.1 of Blanchard et al., 2018. That

leads us to the final result: if

δ ≤
√
∥Σ∥op

√
d∗ − 1s+ η2 − η where s :=

√
2

e
log(1 + 4(1− α)2) ,
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and

d∗ ≥ 1 +
2

e
ln(5), i.e. d∗ ≥ 3 ,

then using (IV.38)

sup
P∈H0

P[ϕ = 1] + sup
P∈Aδ

P[ϕ = 0] > α .

It follows

δ∗ ≥
√
∥Σ∥op

√
d∗ − 1s+ η2 − η

≥ 2−
3
2 min

(√
s∥Σ∥op(d∗ − 1)

1
4 , s∥Σ∥op

(d∗ − 1)
1
2

η

)
,

and we obtain the inequality corresponding to the second part of the maximum in the right-hand side of

(IV.17) by using that s ≥ (1− α) and that d∗ − 1 ≥ 2d∗/3 because d∗ ≥ 3.

Let us prove now that δ∗ ≳
√
∥Σ∥op. Let us consider the eigenvector e1 associated to the maximum

eigenvalue ∥Σ∥op. Then Pηe1,Σ ∈ H0 and P(η+δ)e1,Σ ∈ Aδ. Let us denote λ1 = ∥Σ∥op/n, we have:∫
Rd

(
dP⊗n

(η+δ)e1,Σ

dP⊗n
ηe1,Σ

)2

dP⊗n
ηe1,Σ

=

∫
Rd

(
dP(η+δ)e1,Σ/n

dPηe1,Σ/n

)2

dPηe1,Σ/n

=
e−δ

2/λ1

√
λ12π

∫
R

exp

(
− (x− η)2

2λ1

)
exp

(
2δ(x− η)

λ1

)
dx

= exp

(
3δ2

λ1

)
.

If δ ≤
√

λ1

3 log(1 + 4(1− α)2), then using (IV.38)

sup
P∈H0

P[ϕ = 1] + sup
P∈Aδ

P[ϕ = 0] > α .

It follows that:

δ∗ ≥
√
∥Σ/n∥op(1− α).

IV.3.4 Proof of Theorem IV.8

This proof is similar to the proof of Theorem IV.7, so some details will be skipped. As in the one-sample

case the upper bound is directly obtained using Theorem IV.3 and Proposition IV.6. We just additionally

use the following upper bounds:

√
Tr Σ2

n
+

√
TrS2

m
≤
√

2

√
Tr Σ2

n2
+

TrS2

m2
≤
√

2

√
Tr

(
Σ

n
+
S

m

)2

;

∥Σ∥op
n

+
∥S∥op
m

≤ 2 max

(
∥Σ∥op
n

,
∥S∥op
m

)
≤ 2

∥∥∥∥Σ

n
+
S

m

∥∥∥∥
op

,

where the last inequality holds because Σ, S are both positive semidefinite.

The lower bound in the two-sample case is a direct consequence of the one-sample case, by reduction

to the case where one of the two sample means is known, say equal to zero. More specifically, let Σ and S

be two symmetric positive semidefinite matrices, we consider again the distribution QnΣ defined in (IV.37).

Then ∫
Rd×(n+m)

(
dQnΣ ⊗ P⊗m

0,S

dP⊗n
ν,Σ ⊗ P⊗m

0,S

)2

dP⊗n
ν,Σ ⊗ P⊗m

0,S =

∫
Rd×n

(
dQnΣ
dP⊗n

ν,Σ

)2

dP⊗n
ν,Σ .
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Then using the previous results of the proof of Theorem IV.7 we obtain that

δ∗(α) ≥
(
n−1

√
Tr Σ2 − λ2ds+ η2

) 1
2

− η, (IV.39)

with s =
√

2
e log(1 + 4(1− α)2). By the same token we obtain that

δ∗(α) ≥
(
m−1

√
TrS2 − ℓ2ds+ η2

) 1
2

− η, (IV.40)

where ℓd is the smallest eigenvalue of the matrix S. Because d∗ ≥ 3, it holds

max
(
n−2

(
Tr Σ2 − λ2d

)
,m−2

(
TrS2 − ℓ2d

))
≥ 2

3
max

(
n−2 Tr Σ2,m−2 TrS2

) 1
2

≥ 1

6
Tr

(
Σ

n
+
S

m

)2

,

and by combining (IV.39) and (IV.40), we obtain that

δ∗(α) ≥ (2
√

12)−1σmin

(
√
sd

1
4
∗ , s

σd
1
2
∗

η

)
,

where σ = ∥Σ/n+ S/m∥op. We obtain (IV.19) using again that s ≥ 1− α.
The last part of the lower bound is obtained as in the one-sample case using first the distributions

P⊗n
(η+δ)e1,Σ

⊗P⊗m
0,S and P⊗n

ηe1,Σ
⊗P⊗m

0,S where e1 is still the eigenvector associated to the biggest eigenvalue of

Σ. We obtain that δ∗(α) ≳ ∥Σ/n∥1/2op . By the same token, we obtain that δ∗(α) ≳ ∥S/m∥1/2op and conclude

the proof using that 2 max(∥Σ/n∥op, ∥S/m∥op) ≥ ∥Σ/n+ S/m∥op.

IV.3.5 Proof of Propositions IV.10 and IV.11

We want to obtain a concentration inequality for the estimator
√
∥Σ̂∥op. To this end, we will first study

the following:

Σ̃ :=
1

n

n∑
i=1

(Xi − µ)(Xi − µ)T , (IV.41)

where µ is the true mean of the sample X. Then we have:∥∥Σ̂− Σ̃
∥∥
op

=
∥∥−(µ− µ̂)(µ− µ̂)T

∥∥
op

= ∥µ− µ̂∥2 . (IV.42)

Gaussian setting. The concentration of ∥Σ̃∥1/2op is a consequence of the classical Lipschitz Gaussian

concentration property (see e.g. Theorem 3.4 in Massart, 2003).

Theorem IV.20 (Gaussian Lipschitz concentration). Let X = (x1, . . . , xd) be a vector of i.i.d. stan-

dard Gaussian variables, and f : Rd 7→ R be a L-Lipschitz function with respect to the Euclidean norm.

Then for all t ≥ 0:

P[f(X)− E[f(X)] ≥ t] ≤ e−
t2

2L2 . (IV.43)

The following corollary is a direct consequence of that theorem (we provide a proof in Section IV.3.7),

which will be used to control the term in (IV.42).

Corollary IV.21. Let X a random Gaussian vector of distribution N (µ,Σ). Then for all u ≥ 0:

P
[
∥X∥ ≥

√
∥µ∥2 + Tr Σ +

√
2∥Σ∥opu

]
≤ e−u . (IV.44)
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We will use the results of Koltchinskii and Lounici (2017) giving an upper bound of the expectation

of the operator norm of the deviations of Σ̃ from its expectation. The constants come from the improved

version given by van Handel (2017).

Theorem IV.22 (van Handel, 2017). Let X = (Xi)1≤i≤n a sample of independent Gaussian vectors

of distribution N (0,Σ), then

E
[∥∥Σ̃− Σ

∥∥
op

]
≤ ∥Σ∥op

(
(2 +

√
2)

√
de
n

+ 2
de
n

)
, (IV.45)

where de = Tr Σ/∥Σ∥op and Σ̃ is defined in equation (IV.41).

We can now prove a concentration inequality for ∥Σ̃∥1/2op .

Proposition IV.23. Let X = (Xi)1≤i≤n a sample of independent N (µ,Σ) Gaussian vectors, then for

u ≥ 0, with probability at least 1− 2e−u:

∣∣∣∥∥Σ̃
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣ ≤ 2

√
2 Tr Σ

n
+

√
2u∥Σ∥op

n
, (IV.46)

where Σ̃ is defined in (IV.41).

Remark IV.24. In (IV.46), the lower and upper bounds have been brought together, but the lower

bound is in fact slightly better than the upper bound. This is due to the lower bound of the expectation

where Tr Σ can be replaced by ∥Σ∥op, see (IV.49) below.

Proof. We remark that ∥∥Σ̃
∥∥ 1

2

op
= sup

∥u∥d=1

√
utΣ̃u

= sup
∥u∥d=1

1√
n

(
n∑
i=1

⟨u,Xi − µ⟩2
) 1

2

= sup
∥u∥d=1

sup
∥v∥n=1

1√
n

n∑
i=1

⟨u,Xi − µ⟩vi

dist∼ sup
∥u∥d=1

sup
∥v∥n=1

1√
n

n∑
i=1

〈
u,Σ

1
2 gi
〉
vi ,

where (gi)i=1...n are i.i.d. standard Gaussian vectors and ∥ · ∥p for p ∈ N is defined as the Euclidean

norm in Rp. Let u and v be unit vectors in Rd and Rn respectively and fu,v : Rd×n → R:

fu,v(y) :=
1√
n

n∑
i=1

〈
u,Σ

1
2 yi
〉
vi , y ∈ Rd×n .

These functions are Lipschitz: indeed for all z, y ∈ Rd×n we have:

fu,v(y)− fu,v(z) =
1√
n

n∑
i=1

〈
u,Σ

1
2 (yi − zi)

〉
vi ≤

1√
n

n∑
i=1

∥Σ∥
1
2
op∥yi − zi∥d|vi|

≤ ∥Σ∥
1
2
op√
n

√√√√ n∑
i=1

∥yi − zi∥2d =
∥Σ∥

1
2
op√
n
∥y − z∥d×n . (IV.47)

84



A supremum of Lipschitz functions is Lipschitz, thus we can use the Gaussian Lipschitz concentration

(Theorem IV.20), and get for all x ≥ 0:

P

∥∥Σ̃
∥∥ 1

2

op
− E

[∥∥Σ̃
∥∥ 1

2

op

]
≥

√
2x∥Σ∥op

n

 ≤ e−x , (IV.48)

with the same control for lower deviations.

It remains to upper bound
∣∣∣E[∥Σ̃∥1/2op

]
− ∥Σ∥1/2op

∣∣∣. For one direction, using Jensen’s and triangular

inequalities and inequality (IV.29), we get:

E
[∥∥Σ̃

∥∥ 1
2

op

]
− ∥Σ∥

1
2
op ≤

√
∥Σ∥op + E

[∥∥Σ̃− Σ
∥∥
op

]
−
√
∥Σ∥op

≤ min

√E
[∥∥Σ̃− Σ

∥∥
op

]
,
E
[∥∥Σ̃− Σ

∥∥
op

]
2
√
∥Σ∥op


≤ 2

√
2 Tr Σ

n
.

For the last inequality, we have used Theorem IV.22 for the expectation and then the fact that

min
((
a
√
x+ bx

)1/2
, (a
√
x+ bx)/2

)
≤ max(

√
a+ b, (a+ b)/2)

√
x

where a = 2 +
√

2, b = 2 and x = de/n. This is achieved by treating cases x ≤ 1 and x ≥ 1 separately.

For the other direction, a reformulation of (IV.48) is that there exists a random variable g ∼ Exp(1)

such that: ∥∥Σ̃
∥∥ 1

2

op
≤ E

[∥∥Σ̃
∥∥ 1

2

op

]
+

√
2g∥Σ∥op

n
.

Taking the square then the expectation and then applying Jensen’s inequality to the concave function

x 7→ (a+ b
√
x)2 (a, b ≥ 0), we obtain:

∥Σ∥op ≤ E
[∥∥Σ̃

∥∥
op

]
≤ Eg

(E[∥∥Σ̃
∥∥ 1

2

op

]
+

√
2g∥Σ∥op

n

)2


≤

(
E
[∥∥Σ̃

∥∥ 1
2

op

]
+

√
2∥Σ∥op
n

)2

,

and thus

E
[∥∥Σ̃

∥∥ 1
2

op

]
− ∥Σ∥

1
2
op ≥ −

√
2∥Σ∥op
n

≥ −2

√
2 Tr Σ

n
. (IV.49)

Proof of Proposition IV.10. It holds∣∣∣∥∥Σ̂
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣ ≤ ∣∣∣∥∥Σ̃
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣+
∥∥Σ̂− Σ̃

∥∥ 1
2

op
.

Then, from (IV.42):

∥Σ̂− Σ̃∥
1
2
op ≤ ∥µ− µ̂∥ .

According to Proposition IV.23 and Corollary IV.21, we obtain that for u ≥ 0, with probability at least

1− 3e−u: ∣∣∣∥∥Σ̂
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣ ≤ 2

√
2 Tr Σ

n
+

√
2u∥Σ∥op

n
+

√
Tr Σ

n
+

√
2u∥Σ∥op

n
.
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So, for u ≥ 0, with probability at least 1− 3e−u:∣∣∣∥∥Σ̂
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣ ≤ 3

√
2 Tr Σ

n
+ 2

√
2u∥Σ∥op

n
.

Bounded setting. We first recall the following concentration result for bounded random vectors in

the formulation of Bousquet (2002).

Theorem IV.25 (Talagrand-Bousquet inequality). Assume (Xi)1≤i≤n are i.i.d. with marginal dis-

tribution P. Let F be a countable set of functions from X to R and assume that all functions f in F
are P-measurable, square-integrable, bounded by M and satisfy E[f ] = 0. Then we denote

Z = sup
f∈F

n∑
i=1

f(Xi).

Let σ be a positive real number such that σ2 ≥ supf∈F Var[f(X1)]. Then for all u ≥ 0, ε > 0 we have:

P
[
Z ≥ E[Z](1 + ε) +

√
2unσ2 +

Mu

3
(1 + ε−1)

]
≤ e−u.

The following corollary is a direct consequence of Theorem IV.25. Some refinement of this result

in the same vein (including two-sided deviation control in the uncentered case) have been presented in

Section III.6.6 (Proposition III.9 and Corollary III.10).

Corollary IV.26. Let Xi for i = 1, . . . , n i.i.d. random vectors bounded by L with expectation µ,

covariance Σ in a separable Hilbert space H. Then for u ≥ 0, with probability at least 1− e−u:∥∥∥∥∥ 1

n

n∑
i=1

Xi − µ

∥∥∥∥∥ ≤ 2

√
Tr Σ

n
+

√
2∥Σ∥opu

n
+

4Lu

3n
.

Lemma IV.27. Let Xi for i = 1, . . . , n i.i.d. random vectors bounded by L with expectation µ,

covariance Σ in a separable Hilbert space H. Then

E
[∥∥Σ̃− Σ

∥∥
op

]
≤
√

E[∥X1 − µ∥4]

n
, (IV.50)

where Σ̃ is defined in (IV.41).

Remark IV.28. Using the boundedness of the variables we can upper bound this variance:

E
[
∥X1 − µ∥4

]
≤ 4L2 Tr Σ.

Proposition IV.29. Let (Xi)1≤i≤n be i.i.d. random vectors in a separable Hilbert space H, with norm

bounded by L and covariance Σ, then for any for u ≥ 1, with probability at least 1− e−u:

∥∥Σ̃− Σ
∥∥
op
≤ 2

√
E[∥X1 − µ∥4]

n
+ L

√
2∥Σ∥opu

n
+

8L2u

3n
, (IV.51)

where Σ̃ is defined in (IV.41).

Proof. We denote in this proof Zi := Xi − µ for 1 ≤ i ≤ n. Let us first remark that if B1 is the unit

ball of H, then:

∥∥Σ̃− Σ
∥∥
op

= sup
u,v∈B1

1

n

n∑
i=1

〈
v,
(
ZiZ

T
i − Σ

)
u
〉

=: sup
u,v∈B1

1

n

n∑
i=1

fu,v(Xi) .
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Since the variables Xi have norm bounded by L, it can be assumed equivalently that they take their

values in BL = LB1, and it holds supx∈BL
supu,v∈B1

fu,v(x) ≤ 8L2. Furthermore, since (u, v) 7→
fu,v(x) is continuous, and the Hilbert space H is separable, the uncountable set B1 can be replaced

by a countable dense subset. Thus we can apply Theorem IV.25, and obtain that with probability at

least 1− e−x:

∥∥Σ̃− Σ
∥∥
op
≤ 2E

[
∥Σ̃− Σ∥op

]
+ L

√
2∥Σ∥opx

n
+

16L2x

3n
,

where we have used for the variance term:

sup
u,v∈B1

E
[〈
v,
(
ZiZ

T
i − Σ

)
u
〉2] ≤ sup

u,v∈B1

E
[
⟨v, Zi⟩2⟨Zi, u⟩2

]
≤ 4nL2∥Σ∥op .

We conclude using the upper bound of the expectation from Lemma IV.27.

Proof of Proposition IV.11. As in the Gaussian case, we have:∣∣∣∥∥Σ̂
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣ ≤ ∣∣∣∥∥Σ̃
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣+
∥∥Σ̂− Σ̃

∥∥ 1
2

op
.

From Lemma IV.15 and Proposition IV.29, we have with probability at least 1− e−u:

∣∣∣∥∥Σ̃
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣ ≤ 4L

√
Tr Σ

n∥Σ∥op
+

√
16

3

L2u

n
,

where we have used that: √
Var[∥Z1∥2]

n
≤ 2L

√
Tr Σ√
n

.

Using ∥∥Σ̂− Σ̃
∥∥ 1

2

op
≤ ∥µ− µ̂∥ ,

and according to Corollary IV.26, we obtain that for u ≥ 0, with probability at least 1− 2e−u:

∣∣∣∥∥Σ̂
∥∥ 1

2

op
− ∥Σ∥

1
2
op

∣∣∣ ≤ (4L

√
Tr Σ

n∥Σ∥op
+

√
16

3

L2u

n

)

+

(
2

√
Tr Σ

n
+

√
2∥Σ∥opu

n
+

4Lu

3n

)

≤ 8L

√
Tr Σ

n∥Σ∥op
+ 4L

(√
2u

n
+

u

3n

)
,

where we have used for the last inequality that ∥Σ∥op ≤ 4L2.

IV.3.6 Proof of Propositions IV.12 and IV.13

From a sample X = (Xi)1≤i≤n of i.i.d. random vectors, we want to estimate Tr Σ2 where Σ is their

common covariance matrix. The statistic T̂ defined in (IV.24) is an unbiased estimator of Tr Σ2. This

statistic is also invariant by translation.

If we denote Sn the set of permutations of {1, . . . , n}, T̂ can be rewritten as:

T̂ =
1

n!

∑
σ∈Sn

1

⌊n/4⌋

⌊n/4⌋∑
i=1

1

4

〈
Xσ(4i) −Xσ(4i−2), Xσ(4i−1) −Xσ(4i−3)

〉2
; (IV.52)
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namely by symmetry, all the 4-tuples appear the same number of times in the right-hand side, so we just

need to divide by the number of terms to obtain the identity (IV.52). We will use this decomposition to

obtain a concentration of the statistic T̂ for the Gaussian case and the bounded case, since the inner sum

for each fixed permutation is a sum of ⌊n/4⌋ i.i.d. terms.

Gaussian setting. Because the statistic is invariant by translation we can assume without loss of

generality that µ = 0. To obtain a deviation inequality for T̂ 1/2, we will first find a concentration inequality

for T̂ and then use Lemma IV.15. We obtain concentration via control of moments of T̂ , so we first need

some upper bounds on Gaussian moments. The following lemma is proved in Section IV.3.7.

Lemma IV.30. Let Zi :=
〈
X1
i −X3

i , X
2
i −X4

i

〉2
/4, where Xj

i for i = 1, . . . ,m and 1 ≤ j ≤ 4 are

i.i.d. Gaussian random vectors N (0,Σ). Then for all q ∈ N:

E

( 1

m

m∑
i=1

Zi − Tr Σ2

)2q
 ≤ (4

√
2ϕq2

Tr Σ2

√
m

)2q

, (IV.53)

where ϕ = (1 +
√

5)/2 is the golden ratio.

We deduce from this lemma a concentration inequality for T̂ .

Proposition IV.31. Let (Xi)1≤i≤n, n ≥ 4 be i.i.d. random vectors with distribution N (µ,Σ). Then

for all u ≥ 0:

P
[∣∣∣T̂ − Tr Σ2

∣∣∣ ≥ 30
u2 Tr Σ2

√
n

]
≤ e4e−u , (IV.54)

where T̂ is defined in (IV.24).

Proof. Using Lemma IV.30, (IV.52) and the convexity of the function x 7→ x2q, we can upper bound

the moments of T̂ :

E
[(
T̂ − Tr Σ2

)2q] ≤ (4
√

2ϕq2
Tr Σ2√
⌊n/4⌋

)2q

. (IV.55)

Let t ≥ 0 and q ∈ N, then by Markov’s inequality

P
[∣∣T̂ − Tr Σ2

∣∣ ≥ t] ≤ t−2qE
[(
T̂ − Tr Σ2

)2q]
. (IV.56)

Let us choose q as:

q =

 e−1

2
√
ϕ2

1
4

t
1
2

(
Tr Σ2√
⌊n/4⌋

)− 1
2

 ,
so that (IV.55), (IV.56) entail

P
[∣∣T̂ − Tr Σ2

∣∣ ≥ t] ≤ e−4q .

Let us now take

t =
e2
√

2ϕ

4
u2

Tr Σ2√
⌊n/4⌋

≤ 30
u2 Tr Σ2

√
n

,

where we have used that ⌊n/4⌋ ≥ n/7 for n ≥ 4; we obtain that for all u ≥ 0:

P
[∣∣T̂ − Tr Σ2

∣∣ ≥ 30
u2 Tr Σ2

√
n

]
≤ e4e−u .

Proposition IV.12 directly follows from Proposition IV.31 and Lemma IV.15.
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Bounded setting. As in the Gaussian case, we first obtain a concentration inequality for T̂ and then

using Lemma IV.15, we obtain one for T̂ 1/2. We will need the following classical Bernstein’s inequality

(see for instance Vershynin, 2018, Exercise 2.8.5 for the version below) which gives an upper bound on the

Laplace transform of the sum of bounded random variables.

Lemma IV.32 (Bernstein’s inequality). Let (Xi)1≤i≤m be i.i.d. real centered random variables

bounded by B such that

E
[
X2

1

]
≤ σ2 .

Then for all t < 3/B:

log
(
E
[
et

∑
Xi
])
≤ 1

2

mσ2t2

1−Bt/3
.

Via Bernstein’s inequality we obtain the following result.

Proposition IV.33. Let (Xi)1 ≤i≤n, n ≥ 4 be i.i.d. Hilbert-valued random variables with norm

bounded by L and covariance Σ, and T̂ defined by (IV.24). Then for all t ≥ 0:

P

[∣∣∣T̂ − Tr Σ2
∣∣∣ ≥ 8L2

√
Tr Σ2t

n
+

10L4t

n

]
≤ 2e−t . (IV.57)

where T̂ is defined in (IV.24).

Proof. Let X, X ′, Y , Y ′ be i.i.d. Hilbert-valued random vectors of expectation µ, covariance Σ and

with norm bounded by L, and Z := ⟨X − Y,X ′ − Y ′⟩2/4. Then it holds 0 ≤ Z ≤ 4L4, E[Z] = Tr Σ2

and

|Z − E[Z]| ≤ 4L4;

Var[Z] ≤ 4L4E[Z] = 4L4 Tr Σ2.

Now using the convexity of the exponential function, (IV.52) and then Lemma IV.32, we can upper

bound the Laplace transform of T̂ as follows:

log
(
E
[
etT̂
])
≤ 1

2⌊n/4⌋
4L4 Tr Σ2t2

1− 4L4t/(3⌊n/4⌋)
,

for all t such that the right-hand sise is well defined, i.e. the denominator is strictly positive. Now

using Lemma IV.17, and ⌊n/4⌋ ≥ n/7 for n ≥ 4, for all t ≥ 0 it holds

P

[∣∣∣T̂ − Tr Σ2
∣∣∣ ≥ 8L2

√
Tr Σ2t

n
+

10L4t

n

]
≤ 2e−t . (IV.58)

Proof of Proposition IV.13. Assuming the event entering into (IV.58) holds, we will use the

inequalities of Lemma IV.15:

√
T̂ −
√

Tr Σ2 ≤

√
Tr Σ2 + 8L2

√
Tr Σ2t

n
−
√

Tr Σ2 +

√
10L4t

n

≤ 4L2

√
t

n
+ L2

√
10t

n
≤ 8L2

√
t

n
.
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For the other side, we proceed analogously:

√
T̂ −
√

Tr Σ2 ≥

√√√√(Tr Σ2 − 8L2

√
Tr Σ2t

n

)
+

−
√

Tr Σ2 −
√

10L4t

n

≥ −8L2

√
t

n
− L2

√
10t

n
≥ −12L2

√
t

n
.

IV.3.7 Additional proofs

Proof of Lemma IV.15. This Lemma completes the Lemma 6.1.3 of Blanchard et al. (2018). This

is its complete proof.

Let a in R+, it is well known that for b ≥ −a2:

a−
√
|b| ≤

√
a2 + b ≤ a+

√
|b| .

On the other hand, suppose that b ≥ 0, the Taylor expansion of the function b 7→
√
a2 + b− a gives that

there exists c ∈ (0, b) such that: √
a2 + b− a =

b

2
√
a2 + c

≤ b

2a
.

Suppose now that 0 ≥ b ≥ −a2, then√
a2 + b ≥ a+

b

a
⇔ b ≥ 2b+

b2

a2
⇔ b ≥ −a2 .

The equation (IV.29) is still true when b < −a2 because then:

−a ≥ −
√
|b| ≥ −|b|

a
.

Proof of Proposition IV.18. Let g be a standard Gaussian random vector in Rd, and UTDU be

the singular value decomposition of the matrix S1/2ΣS1/2 where D = diag(λ, . . . , λd). Then we have the

following equalities in distribution

Y TΣY
dist∼ gTS

1
2 ΣS

1
2 g

dist∼ gTUTDUg
dist∼ gTDg .

The last equality is a consequence of the invariance by rotation of Gaussian vectors. Then for t <

1/
√
∥Σ∥op∥S∥op:

E
[
et⟨X,Y ⟩

]
= E

[
e

t2∥Σ
1
2 Y ∥2
2

]
= E

[
e

t2gT Dg
2

]
= E

[
exp

(
t2

2

d∑
i=1

λig
2
i

)]
.

Using the independence of the coordinates and that − log(1 − x) = log
(

1 + x
1−x

)
≤ x

1−x ≤
x

1−
√
x
for

x < 1, we obtain:

log
(
E
[
et⟨X,Y ⟩

])
=

d∑
i=1

−1

2
log
(
1− t2λi

)
≤

d∑
i=1

1

2

t2λi
1− t2λi

≤ 1

2

t2 Tr(S
1
2 ΣS

1
2 )

1− t∥S 1
2 ΣS

1
2 ∥

1
2
op

.

We conclude using that Tr(S
1
2 ΣS

1
2 ) = Tr(ΣS) and that ∥S 1

2 ΣS
1
2 ∥op ≤ ∥S∥op∥Σ∥op.

90



Proof of Corollary IV.21. We use the representation X
dist∼ (Σ

1
2 g + µ), where g is a standard

Gaussian random variable. We then have

∥X∥ dist∼ ∥Σ 1
2 g + µ∥ = f(g) ,

where for y ∈ Rd:
f(y) =

∥∥Σ
1
2 y + µ

∥∥ .
This function f is Lipschitz with constant ∥Σ 1

2 ∥op. We conclude using Theorem IV.20 and Jensen’s

inequality:

E
[
∥X∥

]
≤
√
∥µ∥2 + Tr Σ .

Proof of Corollary IV.26. We apply Theorem IV.25, with ε = 1 and the set of functions F =

{fu}∥u∥H=1 where fu : x ∈ H 7→ ⟨x, u⟩H for u ∈ H. We can find a countable subset of the unit sphere

because H is separable. Then

Z = sup
∥u∥H=1

n∑
i=1

⟨Xi − µ, u⟩H =

∥∥∥∥ n∑
i=1

Xi − µ
∥∥∥∥
H
.

We conclude using that for all u in the unit sphere of H, Var[⟨Xi − µ, u⟩H] ≤ ∥Σ∥op and |⟨Xi − µ, u⟩H| ≤
2L a.s. We use Jensen’s inequality to upper bound the expectation: E[Z] ≤ (nTr Σ)

1
2 .

Proof of Lemma IV.27. We upper bound the operator norm with the Frobenius norm. We denote

in this proof Zi := Xi − µ. It holds:

E
[∥∥Σ− Σ̃

∥∥
op

]
≤ E

[√
Tr
(
Σ− Σ̃

)2]

≤

E
[

Tr

(
1

n2

(∑
i

(ZiZ
T
i )2 +

∑
i ̸=j

ZiZ
T
i ZjZ

T
j

)
− Σ̃Σ− ΣΣ̃ + Σ2

)] 1
2

=

(
E
[
∥Z∥4

]
n

− Tr Σ2

n

) 1
2

≤
√

E[∥Z∥4]

n
≤ 2L

√
Tr Σ√
n

.

Proof Lemma IV.30. First let us remark that ifX andX ′ are independentN (0,Σ) Gaussian vectors,

then

⟨X,X ′⟩ dist∼
d∑
i=1

λigig
′
i ,

where gi and g
′
i are independent standard Gaussian random variables and the λis are the eigenvalues of Σ.

Then for q ∈ N, recalling E
[
g2qi
]

= (2q!)/(2qq!),

E
[
⟨X,X ′⟩2q

]
=

∑
p1+...+pd=q

(
2q

2p1, . . . , 2pd

) d∏
i=1

(λi)
2pi

(
(2pi)!

2pipi!

)2

≤ (2q)!
∑

p1+...+pd=q

d∏
i=1

(λ2i )
pi

≤ (2q)!(Tr Σ2)q,
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where we have used (2p)! ≤ 22pp!2. Using this bound, we upper bound the moments of the Zi-s:∣∣E[Zqi ]
∣∣ = 2−2qE

[〈
X1
i −X3

i , X
2
i −X4

i

〉2q] ≤ (2q)!(Tr Σ2)q .

We now upper bound the moments of Zi − Tr Σ. Let Z ′
i be an independent copy of Zi, then since

E[Z ′
i] = Tr Σ2, by Jensen’s inequality

E
[(
Zi − Tr Σ2

)2q] ≤ E
[
(Zi − Z ′

i)
2q
]
≤ 22qE

[
Z2q
i

]
≤ (4q)!(2 Tr Σ2)2q .

For the odd moments we use that the function (·)2q+1 is increasing:

−(Tr Σ2)2q+1 ≤ E
[(
Zi − Tr Σ2

)2q+1
]
≤ E

[
Z2q+1
i

]
≤ (4q + 2)!(Tr Σ2)2q+1 ,

so for all q ≥ 0: ∣∣∣E[(Zi − Tr Σ2
)q]∣∣∣ ≤ (2q)!(2 Tr Σ2)q . (IV.59)

It remains to upper bound the moments of the sum:

E

( 1

m

m∑
i=1

Z2
i − Tr Σ2

)2q
 =

1

m2q

∑
p1+...+pm=2q

pi ̸=1

(
2q

p1, . . . , pm

) m∏
i=1

E
[(
Zi − Tr Σ2

)pi]

≤ 1

m2q

∑
p1+...+pm=2q

pi ̸=1

(2q)!

p1! . . . pm!

m∏
i=1

(2pi)!(2 Tr Σ2)pi

≤ (2q)!

(
2 Tr Σ2

m

)2q

(2q)2q
∑

p1+...+pm=2q
pi ̸=1

1.

Let us count the number of terms in this last sum. Consider first that we have k non-null terms (pi1 , . . . , pik).

Their sum is equal to 2q but because these terms are strictly greater than 1, we also have that (pi1 − 2) +

. . . + (pik − 2) = 2q − 2k, where all terms of this sum are nonnegative. The number of k-partitions of

2q − 2k is
(
(2q−2k)+(k−1)

k−1

)
=
(
2q−k−1
k−1

)
and then the number of terms in the sum is equal to:

m∑
k=0

(
m

k

)(
2q − k − 1

k − 1

)
=

m∧q∑
k=0

(
m

k

)(
2q − k − 1

k − 1

)

≤ mq

q∑
k=0

(
2q − k − 1

k − 1

)
= mqF (2q − 1) ≤ mqϕ2q ,

where F (·) is the Fibonacci sequence and ϕ = (1+
√

5)/2 is the golden ratio. So using that (2q)! ≤ (2q)qqq

we obtain that

E

( 1

m

m∑
i=1

Zi − Tr Σ2

)2q
 ≤ (2ϕ2)q

(
Tr Σ2

√
m

)2q

(2q)4q. (IV.60)
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V Estimation of multiple mean vectors in high dimension with
full heterogeneity

In Section III, to estimate numerous multi-dimensional means of various probability distributions, we assume

that the distributions are homogeneous. Formally we have assumed that the risks of each empirical mean

are upper bounded by a known quantity (Eq.(III.6)) and that their effective dimension are of same order

(Eq.(III.15)). However, this assumption prevents us from considering cases where some bags have high

size or small variance relative to the others and could really improve their estimation.

For this purpose, in this section, the estimators are formed through convex combinations of the empirical

means with weights depending of their covariance structure and their sample size. We introduce two

strategies to find appropriate data-dependent convex combination weights: a first one employing a testing

procedure to identify neighbouring means with low variance, which results in a closed-form plug-in formula

for the weights, and a second one determining weights via minimization of an upper confidence bound on

the quadratic risk. We evaluate the improvement in quadratic risk offered by our methods compared to

the empirical means. Our analysis focuses on a dimensional asymptotics perspective, showing that our

methods asymptotically approach an oracle (minimax) improvement as the effective dimension of the data

increases. We demonstrate the efficacy of our methods in estimating multiple kernel mean embeddings

through experiments on both simulated and real-world datasets.
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V.1 Introduction

We study the problem of jointly estimating multiple vector means µ1, . . . , µB of distinct probability distribu-

tions P1, . . . ,PB over Rd (an extension to Hilbert spaces is also discussed). The estimation of the means is

based on a family of independent sample sets, X
(1)
• , . . . , X

(B)
• , where eachX

(k)
• with k ∈ JBK := {1, . . . , B}

comprises of Nk samples drawn i.i.d. from Pk. Formally, the joint model is{
X

(k)
• := (X

(k)
i )1≤i≤Nk

i.i.d.∼ Pk, k ∈ JBK;
(X

(1)
• , . . . , X

(B)
• ) independent.

(V.1)

The distributions are assumed to be at least square-integrable. We refer to a set of samples X
(k)
• as bag

and to Pk as task, in line with the domain of multi-task learning. Our aim is to define estimators µ̂k and

analyse the risk given by the expected squared distance to the true means µk.

Evident candidates are empirical means taken separately for each bag, which we call naive estimators.

The question we want to tackle is whether it is possible to improve over these individual naive estimators

by exploiting similarities between tasks. We propose and study particular estimators µ̂k formed by a convex

combination of naive estimators of “related” tasks. We insist that absolutely no information about the

underlying similarity or task structure is assumed to be known a priori. Roughly speaking, we measure

relatedness between tasks by estimating the distance between their means.

The goal is to analyse the relative risk of the proposed estimators, i.e., the ratio of their risk to that

of the corresponding naive estimator. The following questions will guide our estimator construction and

analysis:

(a) what would be the ideal “oracle” convex combination estimator, if some additional a priori information

about task relatedness were known?

(b) can an empirical estimator approach the oracle relative risk from the data only, in a suitable asymp-

totical sense?

(c) is the oracle relative risk minimax optimal in a suitable asymptotical sense?

Because we focus on the relative risk, the usual asymptotics of the sample size going to infinity is not the

most relevant one (though we will assume that the sample sizes are “large enough”). Rather, we will focus

on high-dimensional asymptotics where the dimension grows large. More precisely, we mean a notion of

effective dimension rather than ambient space dimension: the effective dimension of a task will be defined

from spectral quantities related to its covariance matrix, as is common in high-dimensional statistics.
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Motivations for this work. The framework under examination is motivated by scenarios involving

large volumes of high-dimensional data. These scenarios typically involve the categorization of independent

samples into homogeneous units that may exhibit differences but also varying degrees of similarity. Examples

include medical or educational records sourced from different institutions, or purchase histories organised

by individual clients on an internet platform. This framework also intersects with the concepts of federated

and personalised machine learning (McAuley, 2022; Tan et al., 2022). An application of particular interest

within this framework is that of kernel mean embeddings of distributions (Muandet et al., 2017). This

involves estimating means of distributions after a formal mapping of the data into a Hilbert space. Notably,

in this context, one anticipates that the effective dimensionality of the mapped data will be high.

Relation to previous work. The problem of estimating multiple means has a long and rich history

in statistics, starting in particular with the seminal work of Stein on the eponymous paradox and the James-

Stein estimator (James and Stein, 1961), continued with the empirical Bayes point of view on the latter

(Efron and Morris, 1972), up to modern considerations on the topic (Brown and Greenshtein, 2009; Jiang

and Zhang, 2009). The topic of “multitask learning” also provides a more recent angle on the problem

(Duan and Wang, 2023; Feldman et al., 2014). We defer a detailed discussion to Section V.7, but stress

that most previous works analysed the compound (or cumulated) risk over all tasks and its behaviour in the

asymptotics B →∞, in a one- or fixed-dimensional setting. By contrast, we will be interested in analyzing

the individual risk separately for each task, and in “high dimensional” asymptotics.

We start with a description of the considered setting in Section V.2. Sections V.3 and V.4 introduce two

approaches to form convex combination estimators of the means, provide bounds on their relative risks, and

a comparison of the two. A minimax analysis for suitable distribution classes is conducted in Section V.5.

Finally, experiments on artificial and true data are presented in Section V.6. All proofs are provided in

Section V.9, wherein Section V.9.1 contains a list of the used notation for the reader’s convenience.

V.2 Setting and notation

V.2.1 Loss and risk

We consider the squared norm loss and expected risk

Lk(µ̂k) := ∥µ̂k − µk∥2 ; Rk(µ̂k) := E[Lk(µ̂k)]. (V.2)

of an estimator µ̂k for µk. The empirical mean µ̂NEk := 1
Ni

∑Ni

i=1X
(i)
k , called the naive estimator, serves as a

reference. Due to the unbiasedness of the naive estimator, its variance is equal to its risk. More specifically,

let the naive risk be denoted by

s2k := Rk(µ̂NEk ) =
Tr Σk
Nk

, (V.3)

where Σk is the covariance of task k. Then any estimator µ̂k is analysed in terms of its relative risk to the

naive — lower is better :
Rk(µ̂k)

s2k
. (V.4)

In contrast to the compound decision setting, our goal is to analyse the relative risk for each task

separately. For this reason, the focus is on a specific task, say k = 1 and R1(µ̂1)/s21 without loss of

generality. In Section V.5.2 the relative risk averaged over tasks 1
B

∑B
k=1Rk(µ̂k)/s2k is considered.

V.2.2 High-dimensional asymptotics

Observe from (V.3) that the naive risk s21 decreases at the parametric rate O(N−1
1 ). We expect the risk

of a competing estimator µ̂1 to follow the same trend. As a consequence, the role of the sample size will
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cancel out in the relative risk. In order to state meaningful results, it is necessary to obtain sharp estimates

of the other factors in the rate.

To this end, we shift the perspective from a standard asymptotic view point, N1 → ∞, to high-

dimensional asymptotics, emphasizing the behaviour of the risks as the dimensionality grows. There are

different possible definitions of effective dimensionality of a distribution, generally linked to the spectral

decay of the covariance matrix and ratios of its Schatten norms. The following ones will be relevant to our

analysis:

d•k :=
(Tr Σk)2

Tr Σ2
k

, dek :=
Tr Σk
∥Σk∥∞

. (V.5)

Observe that in the isotropic setting Σk ∝ Id, the effective dimensions d•k and dek coincide with the

ambient dimension d, as one would expect. In all cases it holds 1 ≤
√
d•k ≤ dek ≤ d•k ≤ d. In random

matrix literature, de is sometimes called intrinsic dimension (Hsu et al., 2012; Tropp et al., 2015) or

effective rank (Koltchinskii and Lounici, 2016), and (de)2/d• is known as the numerical or stable rank of Σ

(Rudelson and Vershynin, 2007; Tropp et al., 2015). Most notably, we uncover a “blessing of dimensionality”

phenomenon: in a nutshell, we will show that the relative risks of our estimators asymptotically approach

a suitable notion of oracle relative risk as the (effective) dimensionality increases.

V.2.3 Distributional assumptions

For our theoretical analysis, we consider the following different possible distributional assumptions:

Assumption V.1 (GS, Gaussian setting). For all k ∈ JBK, the distribution Pk is N (µk,Σk).

Assumption V.2 (BS, Bounded setting). For all k ∈ JBK, Pk has support in the ball of radius M

centred at 0.

The (BS) setting is of particular interest for the application to kernel mean embeddings, for which

the assumption of a bounded kernel is very common. All results for (BS) are presented in Rd but can be

extended to a separable Hilbert space (up to adequate adaptation of notation).

Section V.9.4 covers another distributional assumption: heavy-tailed distributions with finite fourth

moment. These results only hold for some of the proposed estimators (the testing approach, introduced in

Section V.3) and are, thus, not discussed further elsewhere.

V.2.4 Simplifying settings

At times we will discuss unrealistic but simplifying settings to help with the exposition or to illuminate our

theoretical findings.

Setting (ECSS, Equal Covariance and Sample Sizes). For all k ∈ JBK, Σk = Σ and Nk = N , which

implies that s2k, d
•
k, d

e
k do not depend on k.

Setting (KC, Known Covariances). For all k ∈ JBK, Σk is known. Consequently, all derived quantities

Tr Σk,Tr Σ2
k, d

•
k, d

e
k, s

2
k are also known.

We will first derive the estimators assuming known covariances (KC) but later provide estimates for

covariance-related quantities if those are unknown. If the covariances and sample sizes are homogeneous

(ECSS) the risks are more transparent and interpretable which will help to illuminate our theoretical

findings. We insist that the final algorithms neither assume (KC) nor (ECSS).
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V.2.5 Naive estimator aggregation

As announced earlier, without loss of generality we focus on estimating task k = 1. Furthermore, we focus

on estimators which can be written as convex combinations (aggregation) of naive estimators. Let SB
denote the (B − 1)-dimensional simplex, and ω = (ω1, . . . , ωB) ∈ SB be a weight vector, then

µ̂ω :=
∑
k∈JBK

ωkµ̂
NE
k s.t.

∑
k∈JBK

ωk = 1 and ∀k ∈ JBK : ωk ≥ 0, (V.6)

whose loss and risk will be abbreviated as L1(ω) and R1(ω), respectively. While the weight vector ω may

be data-dependent later, for the present considerations we assume that the weights are deterministic. In

this case, using independence of the naive estimators and the notation ∆k := µk − µ1, we restate the risk

R1(ω) by its bias-variance decomposition for a fixed ω as

R1(ω) =

∥∥∥∥ ∑
k∈JBK

ωk(µk − µ1)

∥∥∥∥2 +
∑
k∈JBK

ω2
ks

2
k =

∑
k,k′∈JBK

ωkωk′⟨∆k,∆k′⟩+
∑
k∈JBK

ω2
ks

2
k , (V.7)

where the first term corresponds to the (squared) bias and the second to the variance. Intuitively, we want

to give higher weights to tasks that are close (small task bias ∥∆k∥) and can be accurately estimated (small

naive risk s2k). At a first glance, we could set as a goal to find suitable weights ω that minimise (V.7); this,

however, would require full knowledge of the Gram matrix (⟨∆k,∆k′⟩)k,k′∈JBK, in addition to the naive

risks s2k. Estimation of the full Gram matrix, accurate enough to approach exact minimization of (V.7),

appears unattainable if the number of tasks B is large and the Gram matrix becomes high-dimensional,

which is the scenario we are interested in. For this reason, we will consider optimizing the risk given more

limited information, which includes a subset of neighbouring tasks close to the target in relative sense but

not their exact position. We define the oracle risk as the minimiser of the worst-case risk of (V.7) as if this

partial information was known to the oracle.

We will consider two strategies to approach that oracle programme from data. In Section V.3 we

aggregate only means close to the target which are identified by a test procedure. Minimization of an upper

bound of the risk yields their weights. In Section V.4 we minimise directly an upper confidence bound

of the aggregate risk (V.7) but have to take into account that the means that are further away induce a

large uncertainty on the bias term. In both cases, we compare the obtained relative risk to that of the

oracle. Additionally, we study the minimax risk under the oracle information in Section V.5 and whether

the proposed estimators match it.

V.3 A testing approach

A low-risk aggregation estimator (V.6) combines naive estimations that — at best — provide a reduction

in variance but add only a small bias, cf. (V.7). Our first approach explicitly controls the bias. We aim

at identifying a subset of neighbour tasks whose means are sufficiently close to the target task. We then

restrict the support of the weights to that subset and form a convex combination of neighbouring naive

estimations. This approach and its analysis generalise ideas introduced in Marienwald et al. (2021). Let us

first introduce some additional notation.

Definition V.3 (τ -neighbouring tasks). Recall the notation ∆k = µk − µ1. For a fixed τ > 0, let

Vτ ⊆ JBK denote the set of all τ -neighbouring tasks (of task 1) as:

Vτ :=
{
k ∈ JBK : ∥∆k∥2 ≤ τs21

}
. (V.8)

For τ = 0, for the sake of later notational coherence we define V0 := {1} which deviates from (V.8)

as V0 does not contain any other tasks k ̸= 1 even if ∆k = 0.
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Note that this notion of τ -neighbourhood is relative to the naive risk of task 1, and that 1 ∈ Vτ always

holds.

Definition V.4 (Relative aggregated variance ν). For a subset U ⊆ JBK of tasks, define their relative

aggregated variance (to that of task 1) as:

ν(U) :=
s2(U)

s21
, with s2(U) :=

(∑
k∈U

1

s2k

)−1

. (V.9)

Observe that s2(U) is the variance of the optimal convex combination of unbiased, independent esti-

mators that have different variances s2k — a classical problem of statistics. The quantity ν(U) is, again,

relative to the naive risk of task 1.

The quantity τ can be seen as the worst-case relative bias of a convex combination of their naive

estimators for the goal of estimating µ1, while ν(Vτ ) is a best-case relative variance (i.e., all the tasks in Vτ
would in fact have mean µ1). We introduce the following auxiliary function, which will capture an optimal

trade-off between these two quantities. It provides a common reference value for the relative risks of our

estimators and is of fundamental importance for the remainder of this manuscript.

Definition V.5. Define the function B : R× [0, 1]→ [0, 1] as

B(τ, ν) :=

(
τ

1 + τ

)
+

(
1

1 + τ

)(
ν

1 + τ(1− ν)

)
. (V.10)

Observe that B(0, ν) = ν, B(τ, 0) = τ
1+τ , and B is increasing in both of its variables.

In the next section, we derive a form of optimal or “oracle” weights for combining naive estimators of

tasks belonging to any given subset V ⊆ Vτ , and identify B as a bound on its relative risk. The follow-

ing sections (V.3.2 to V.3.4) are concerned with approximating the oracle bound by estimating unknown

quantities and using a plug-in principle.

V.3.1 Oracle procedure

For a fixed τ > 0, assume an oracle provides a set of neighbours V with the guarantee that V ⊆ Vτ holds.

We restrict our attention to convex combinations of naive estimators only in set V , i.e., estimators µ̂ω as

in (V.6) with ω ∈ SV , the set of convex weights of support included in V . Using the Cauchy-Schwartz

inequality in (V.7) (with ∆1 = 0), for such aggregated estimators we obtain the risk bound

R1(ω) ≤ τs21(1− ω1)2 +
∑
k∈V

ω2
ks

2
k, for all ω ∈ SV , (V.11)

which can be optimised for ω. A bound on the oracle relative risk is presented next.

Lemma V.6. Let τ > 0 be fixed. For all V ⊆ Vτ , the weights ω∗
V ∈ SV that minimise (V.11) yield

the bound
R1(ω∗

V )

s21
≤ B(τ, ν(V )). (V.12)

The oracle weights ω∗
V are given by:

ω∗
V,k(τ, s) = (1− λ)1{k = 1}+ λ

s2(V )

s2k
, where λ :=

1

1 + τ(1− ν(V ))
. (V.13)
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It holds B(τ, ν(V )) ∈ [ τ
1+τ , 1], i.e., this bound cannot be better than τ

1+τ . We will call τ
1+τ best

potential improvement (that can be guaranteed by the oracle bound). The bound on the relative risk

depends on the relative neighbourhood size τ and the relative aggregated variance ν(V ). Because B
increases in both variables, small τ and ν(V ) are beneficial. This coincides with what we noted from the

bias-variance decomposition (V.7). If τ is fixed, it is of advantage to consider as many τ -neighbours as

possible so that ν(V ) decreases, i.e., to take V = Vτ . On the other hand, reducing the neighbourhood

size τ reduces the bias but also leads to a smaller set of neighbours, ergo, a larger relative aggregated

variance ν(Vτ ). Thus, there is a trade-off between both quantities. We may aim at a relative risk close to

minτ>0 B(τ, Vτ ) but for the remainder of this section we assume τ > 0 fixed beforehand.

The following observations enable additional insight into the involved quantities:

(a) B(0, ν(V )) = ν(V ), i.e., when τ ↘ 0, which implies that all tasks in V have the same mean, the

bound is given by the relative aggregated variance, as should be expected from the remark following

Definition V.4.

(b) B(τ, 0) = τ
1+τ , the best potential improvement is reached when s2(V ) ↘ 0. This happens if at

least one of the τ -neighbouring means is known with perfect precision and it becomes a “reference

point”. This scenario is comparable to the classical James-Stein setting, for which the origin is such

a reference point and the James-Stein estimate improves most if the target is close to the origin (see

Section I.1.1 for a detailed discussion). However, s2(V )↘ 0 also happens when τ -neighbours have

a non-zero variance, but their number grows large.

(c) B(τ, ν(V )) remains unchanged if we replace a group of neighbours V \ {1} by a single τ -neighbour

with variance s2(V \ {1}).

In (ECSS) setting, the oracle bound (V.12) is similar to the one obtained with the method of Section III

(see Eq.(III.8)).

V.3.2 From an oracle to an empirical procedure

In practice, the oracle information about the relative neighbours is unavailable. However, we can hope to

approach the oracle setting by estimating the set of τ -neighbours Vτ and their risks s2k. We will assume

that such estimates are independent of the samples used to compute (µ̂NEk )k∈JBK. (To this end, one might

resort to sample splitting.) The independence assumption of estimates is emphasised by a tilde notation:

(Ṽ , s̃2).

The simplest is to plug in such estimates into the oracle formula (V.13). The next proposition quantifies

how the relative risk of the plug-in procedure can be bounded, provided the estimation error is.

Proposition V.7. Let τ > 0 be fixed. Assume Ṽ ⊆ JBK, s̃2 = (s̃2k)k∈JBK ∈ RB+ are possibly random

but independent of the samples in model (V.1). Let V ∗ be some deterministic reference set, such that

1 ∈ V ∗. Let (Ṽ , s̃2) be plugged in for (V, s2) into (V.13), giving rise to weight vector ω̃. Conditionally

to the event {
V ∗ ⊆ Ṽ ⊆ Vτ ,∣∣s̃2k − s2k∣∣ ≤ ηs2k, for all k ∈ Ṽ , and some η ∈ [0, 1),

(V.14)

it holds
R1(ω̃)

s21
≤
(

1 + η

1− η

)
B
(
τ, ν(Ṽ )

)
≤
(

1 + η

1− η

)
B
(
τ, ν(V ∗)

)
. (V.15)

Comparing the oracle relative risk bound (V.12) with that of the empirical procedure (V.15), note

first the requirement that all estimated neighbours are τ -neighbours (Ṽ ⊆ Vτ ); secondly, the oracle risk is

deteriorated by two factors: the excess factor (1 + η)/(1 − η) ≥ 1 which quantifies what we lose due to
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estimation of the neighbours’ risks; and the replacement of the set of true neighbours by the smaller set V ∗,

under the requirement that V ∗ ⊆ Ṽ holds. To summarise, we expect the risk of the empirical procedure

to be close to the oracle risk if (1) the relative estimation error η for naive risks is small, and (2) we can

guarantee the “sandwiching” property V ∗ ⊆ Ṽ ⊆ Vτ , with V
∗ as large as possible; typically we would be

satisfied with V ∗ = V(1−ε)τ for a small ε.

The next sections will introduce such estimates and the fulfillment of event (V.14) under certain

conditions, starting with the estimation of neighbour tasks.

V.3.3 Finding neighbours (known covariances)

For now let us assume (KC); we will generalise to unknown covariances in the next section. Accordingly,

the naive risks s2k are known, so that η = 0 in the context of (V.15), and we focus on the estimation of

the set of neighbours. We assume that we are doing so using independent “tilde” data (X̃
(k)
• )k∈JBK which

are drawn from (V.1) but independent of (X
(k)
• )k∈JBK (e.g., using sample splitting). For clarity X

(k)
• and

X̃
(k)
• are assumed to be of the same size Nk. Given the first requirement Ṽ ⊆ Vτ , it is natural to think

of Ṽ as the output of a multiple test procedure (for which the null hypothesis for task k is not being a

τ -neighbour, i.e., ∥∆k∥ > τs21).

Our approach is based on results for two-sample mean vector testing of Section IV. Assume Nk ≥ 2

for all k ∈ JBK. For k ∈ JBK \ {1}, we form an unbiased estimator for ∥∆k∥2 based on the U-statistics

Ũk :=
∑

ℓ∈{1,k}

Nℓ∑
i,j=1
i ̸=j

〈
X̃

(ℓ)
i , X̃

(ℓ)
j

〉
Nℓ(Nℓ − 1)

− 2

N1∑
i=1

Nk∑
j=1

〈
X̃

(1)
i , X̃

(k)
j

〉
N1Nk

. (V.16)

The following proposition is a direct consequence of Proposition IV.6:

Proposition V.8. Assume (GS), (KC) hold and let α ∈ (0, 1), τ > 0 be fixed. Let T̃
(τ)
k be given by

T̃
(τ)
k := 1

{
Ũk ≤ τs21

}
. (V.17)

Put for k ∈ JBK

τkmin := 32

(
1√
d•1

+
s2k/s

2
1√

d•k

)
log(8α−1) , (V.18)

then it holds:

if ∥µ1 − µk∥2 > τ+k s
2
1 : P

[
T̃

(τ)
k = 1

]
≤ α; (V.19)

if ∥µ1 − µk∥2 ≤ τ−k s
2
1 : P

[
T̃

(τ)
k = 0

]
≤ α. (V.20)

where τ±k =
(√

τ ±
√
τkmin

)2
+
.

Equations (V.19)-(V.20) can be understood as controls of the type I/II error level for the test of

∥∆k∥2 > τ+k s
2
1 versus the alternative ∥∆k∥2 ≤ τ−k s

2
1. It is possible to make the original null hypothesis

∥∆k∥2 > τs21 appear through notation translation (
√
τ ←

√
τ−k ,

√
τ+k ←

√
τ , if we assume additionally

τ ≥ τkmin). We prefer to keep the above more symmetric form, also because the rejection set (V.17) has a

simple form, used in practice.

The test is able to identify mean differences very accurately relative to the target threshold τs21 if

τ ≫ τkmin. Formula (V.18) highlights the crucial role of the effective dimensionality for this minimal

threshold of reliable detection. In the simplified (ECSS) setting, this threshold is simply of order 1/
√
d•1.
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This reflects the known phenomenon that testing is more reliable than estimation in high dimensions;

distances that can be detected might be of smaller order than the typical estimation error. For fixed τ and

increasing dimension, the inconclusive gap between the null and the alternative vanishes with increasing

dimension — a desirable property given the sandwiching property that we aim for (see (V.14)).

In general non-(ECSS) configurations, we still want to keep τkmin small of order 1/
√
d•1. In view of the

second term in (V.18), this suggests to only consider tasks with s2k/
√
d•k ≤ ςs21/

√
d•1 for some constant

ς ≥ 1. To this aim, denote the set of tasks satisfying this criterion as

W(ς) :=

{
k ∈ JBK :

s2k√
d•k
≤ ς s21√

d•1

}
=

{
k ∈ JBK :

∥Σk∥2
Nk

≤ ς
∥Σ1∥2
N1

}
, (V.21)

and correspondingly the set of whittled down neighbours as

Vτ,ς := Vτ ∩W(ς). (V.22)

Note that since we are under (KC), the set W(ς) is assumed to be fully known for now. (We will consider

estimating it in the next section.) Then the following corollary makes the obtained sandwiching property

explicit:

Corollary V.9. Let ς ≥ 1 be fixed. Assume (GS) and (KC) hold and let α ∈ (0, 1). Then, defining

Ṽτ,ς :=
{
k ∈ JBK : T̃

(τ)
k = 1

}
∩W(ς)

(where T̃
(τ)
k is as in (V.17)), with probability at least 1− α it holds

Vτ−,ς ⊆ Ṽτ,ς ⊆ Vτ+ , (V.23)

where τ± :=
(√
τ ±

√
ςτ◦min

)2
+
, τ◦min := 64 log(8Bα−1)/

√
d•1.

The sandwiching property (V.23) provides a direct link to Proposition V.7. More specifically, Corol-

lary V.9 together with Proposition V.7 guarantee with high probability that the bound on the relative risk of

the plug-in estimate µ̂ω̃ of (V.13) using the estimated set of neighbours Ṽτ,ς is bounded by B
(
τ+, ν(Vτ−,ς)

)
(recall η = 0 for now because of (KC), and Ṽ0 := {1}). Furthermore, for fixed τ , if d•1/(logB)2 →∞ then

τ◦min vanishes and it holds τ− ≈ τ ≈ τ+. Under (ECSS), we can simply take ς = 1 and have Vτ−,ς = Vτ− ,

ensuring a relative risk very close to the oracle B
(
τ, ν(Vτ )

)
. In a general context, there is an additional

trade-off through the choice of the constant ς. In both cases, closeness to the oracle relative risk improves

with increasing effective dimensionality.

V.3.4 Unknown covariances

In a realistic setting the covariances are unknown, especially in high dimensions. In this section, we

estimate all quantities relevant for the fulfilment of Proposition V.7, using the same independent “tilde”

data (X̃
(k)
• )k∈JBK as in the previous section. For simplicity we assume that the sizes Nk of the “tilde”

samples are the same as that of the main sample, as we would get by equal-size splitting. Observe that

it is not necessary to estimate the full covariance matrices Σk, but only scalar quantities related to their

Schatten norms. In particular, in the Gaussian setting we have the following result for the natural unbiased

estimators of s2k:

Proposition V.10. Let s̃2k := 1
Nk(Nk−1)

∑Nk

i=1

∥∥X̃(k)
i − µ̃NEk

∥∥2, where µ̃NEk := N−1
k

∑Nk

i=1 X̃
(k)
i , and let

α ∈ (0, 1). Assume (GS) holds. Then with probability at least 1− α:

∀k ∈ JBK :
∣∣s̃2k − s2k∣∣ ≤

(
4
√

2
log(2Bα−1)√

d•kNk

)
s2k. (V.24)
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When Nk ≳ log2(2Bα−1) for all k, the estimation of s2k has relative accuracy of order 1/
√
d•k with

probability (1−α). This finding can be used for the fulfillment of the second requirement of condition (V.14).

It also allows to preserve the qualitative results of Proposition V.8 (up to numerical factors) for test (V.17)

wherein s̃21 is plugged in for s21. Finally, we also replace ∥Σk∥2 in the definition (V.21) of setW(ς) by suitable

estimators; Proposition V.28 gives the details. It provides a quantitatively precise version of the sandwiching

property analogous to (V.23) with all unknown quantities are replaced by their proposed estimators.

We combine the obtained results in an illustrative example. It shows a fully empirical algorithm that

approximates the (whittled down) oracle B(τ, Vτ,ς) (numerical constants are made explicit for concreteness

but not meant to be sharp):

Proposition V.11. Assume (GS) holds. Let α ∈ (0, 1/3). Consider the following plug-in versions of

the quantities appearing in (V.17), (V.21):

W̃(ς) :=

{
k ∈ JBK :

Z̃
(2)
k

Nk
≤ ς Z̃

(2)
1

N1

}
, ˜̃T (τ)

k := 1
{
Ũk ≤ τ s̃2k

}
, (V.25)

where s̃2k as in Prop. V.10, and Z̃
(2)
k estimates ∥Σk∥2 as defined in (V.56). Define the set of estimated

τ -neighbours ˜̃V τ,ς :=
{
k ∈ W̃(ς) : ˜̃T (τ)

k = 1
}
. (V.26)

Assume Nk ≥ a(4 + log(2Bα−1))4 for all k ∈ JBK, for a big enough numerical constant a (a = 4400

works). For fixed τ > 0, ς ≥ 1, consider the weights ω̃♯ obtained by the modified plug-in
( ˜̃V τ̃ ,3ς , s̃2) for

(V, s2) in (V.13), where

τ̃ :=

1 +
1

60

√
d̃•1

(√τ +
√

6ςτ̃◦min

)2
; τ̃◦min :=

32
(

log(8Bα−1)
)√

d̃•1

;

√
d̃•1 :=

N1s̃
2
1

Z̃
(2)
1

. (V.27)

Then with probability at least 1− 3α over the draw of the “tilde” sample (X̃
(k)
• )k∈JBK, it holds

R1(ω̃♯)

s21
≤

(
1 +

1

10
√

mink d•k

)(
1 +

30
√
ς log(8Bα−1)

(d•1)
1
4
√
τ

)2

B
(
τ, ν(Vτ,ς)

)
,

where the expected risk is with respect to the main sample (X
(k)
• )k∈JBK.

V.3.5 Discussion

To summarise, for fixed values of τ, ς, B, (Nk)k∈JBK, the bound on the relative risk of ω̃♯ becomes arbitrarily

close to the oracle bound in the high-dimensional asymptotics d•1 → ∞. We stress that this applies for

fixed sample sizes Nk, provided Nk ≳ log4B. Consequently, the fully empirical procedure is (with high

probability) not worse than the naive estimator up to a risk factor very close to 1 (since the oracle bound

B is always less than 1), and potentially performs much better if there are many true τ -neighbouring

tasks (again, as reflected by the oracle factor). The conclusion still holds true if τ, ς, B, (Nk) vary with d•1
(τ → 0 and/or B →∞ being the most interesting situations) provided ς log(B)/

√
d•1 = o(τ) holds and as

Nk ≳ log4B as before.

Beyond the Gaussian setting. The results presented above hold under the Gaussian distributional

assumptions (GS). However, the required components — specifically, concentration of estimators for dis-

tances between two means and for Schatten norms of the covariances — can be extended with appropriate

modifications to the bounded (BS) and heavy-tailed (HT) distributional settings. Detailed results are

presented in in Section V.9.4 and show the qualitative robustness of our approach beyond the Gaussian

setting.
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Beyond the testing approach. The testing approach has two flaws: first, the theoretical necessity

to partition the data entails a certain loss of efficiency, such as a reduction by a factor of 1/2 when the data is

equally split. This consideration has been disregarded in the preceding discussion, where the oracle risk was

restricted to the main sample. Second, the issue of parameter selection of τ and ς persists. As previously

elucidated, the oracle relative risk B exhibits a bias-variance trade-off: the aggregated variance decreases

with an increase in the number of τ -neighbours, consequently, with the worst-case relative bias τ . Ideally,

parameters should be adaptively chosen to strive for optimal oracle improvement minτ≥0,ς≥1 B
(
τ, ν(Vτ,ς)

)
.

The next section introduces an alternative approach pursuing this objective. Additionally, Section V.5

analyses whether the derived bounds are optimal.

V.4 A “Q-aggregation” approach

In this section, we propose an alternative approach for forming the weights of the convex combination

estimator (V.6). The weights are found by direct minimization of an upper confidence bound of the risk

R1(ω), i.e.,

ω̂ ∈ arg min
ω∈SB

(
L̂1(ω) + uQ̂1(ω)

)
, (V.28)

where L̂1(ω) is an unbiased estimate of the risk. The idea of this scheme bears resemblance to Q-

aggregation (Lecué and Rigollet, 2014), because the objective function will be a quadratic function of ω.

The objective aims at taking into account all individual distances between the bags, rather than selecting

those less than a fixed threshold as in the testing approach. The penalization term Q̂1(ω) shall be a high

probability upper bound on the difference between estimated and true loss (L̂1(ω) − L1(ω)). Observe

that the penalization term also depends on the weight vector, since giving more weight to tasks that are

further away from the target (large ∥∆k∥) will result in a larger variability of the risk estimate L̂1(ω). The

parameter u is a calibration constant. Compared to the testing approach, one advantage is that it is not

necessary to choose the parameters τ and ς. Furthermore no sample splitting is needed. On the other hand,

the procedure is more computationally demanding since there is no closed form solution to (V.28). Instead,

a solution ω̂ can be obtained by exponentiated gradient descent on the simplex (Kivinen and Warmuth,

1997).

We present specific choices for L̂1(ω), Q̂1(ω) and an analysis of the relative risk of the resulting Q-

aggregation estimator for (GS) in Section V.4.1 and for (BS) thereafter. In contrast to Lecué and Rigollet

(2014), we focus on the effect of the dimension rather than that of the sample size which provides a novel

analysis.

V.4.1 Gaussian setting

Under assumption (GS) we propose to use the following estimates to form the Q-aggregation estimator:

L̂1(ω) =

∥∥∥∥ B∑
k=2

ωk(µ̂NEi − µ̂NE1 )

∥∥∥∥2 + (2ω1 − 1)ŝ21 , (V.29)

ŝ21 :=
1

N1(N1 − 1)

N1∑
i=1

∥∥∥X(1)
i − µ̂

NE
1

∥∥∥2 , (V.30)

Q̂1(ω) :=

B∑
k=2

ωk

√
q̂k
N1

, where q̂k :=
1

N1 − 1

N1∑
i=1

〈
µ̂NE1 − µ̂NEk , X

(1)
i − µ̂

NE
1

〉2
. (V.31)

It can be checked easily that ŝ21 is an unbiased estimator of the naive risk s21, and that the estimator L̂1(ω)

is an unbiased estimate of the conditional risk E
[
L̂1(ω)−L1(ω)

∣∣X(k)
• , k ≥ 2

]
= 0. With these choices we

establish the following result for the average risk of the Q-aggregation estimator:
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Proposition V.12. Assume (GS) holds, and let u0 ∈ R+ be fixed such that log(17B) ≤ u0 ≤
(N1 − 1)/2. With L̂1(ω) and Q̂1(ω) as defined in (V.29),(V.31), let

ω̂ ∈ arg min
ω∈SB

(
L̂1(ω) + 16

√
u0 Q̂1(ω)

)
. (V.32)

Then it holds:

R1(ω̂)

s21
≤ 1

s21
min
ω∈SB

[
R1(ω)(1 + CBe−u0/2) + CQ1(ω)

√
u0

]
+ C

u0√
d•1
, (V.33)

where C > 0 is an absolute constant, and (recalling ∆k = µk − µ1)

Q1(ω) :=

B∑
k=2

ωk

√
qk
N1

, with qk := ∆T
k Σ1∆k +

Tr Σ1Σk
Nk

. (V.34)

The above bound (V.33) has the form of an “oracle inequality” relating the relative risk of the Q-

aggregation approach to the minimum of the attainable relative risk of any aggregation estimator with fixed

weight ω but with a penalization term Q1(ω). The extra additive term (outside the minimum) vanishes in

high effective dimension, but indicates that the relative risk bound cannot be better than O(logB/
√
d•1).

We also emphasise the requirement logB ≲ N1 implicit in the condition on the calibration parameter u0.

The effect of the penalization term Q1(ω) on the oracle bound (V.33) might appear obscure: depending on

the weights ω, the penalization might outweigh the main risk term R1(ω). It is noteworthy that this term

penalises tasks with distant means (term ∆T
k Σ1∆k) or with high variance (term Tr Σ1Σk/Nk). To provide

further clarification, we present the following corollary which bounds the relative risk of the Q-aggregation

method in terms of the relative risk of the oracle testing approach B(τ, ν):

Corollary V.13. Assume (GS) holds. Let u0 ∈ R+ be fixed, such that log 17B ≤ u0 ≤ (N1 − 1)/2,

and ω̂ as defined in (V.32). Then it holds:

R1(ω̂)

s21
≤
(

1 + CBe−u0/2
)

inf
τ≥0
ς≥1

[
B
(
τ, ν(Vτ,ς)

)
+ Cς

√
u0
de1

]
. (V.35)

where C > 0 is an absolute constant, B(·, ·), ν(·) are as defined in (V.10), (V.9) and Vτ,ς as in (V.21)-

(V.22).

As a simple illustration, assume the tasks satisfy (ECSS) and have equal means (µk = µ1 for k ∈
JBK), but the estimator does not have this information. The oracle merges all tasks and has relative risk

infτ,ς B
(
τ, ν(Vτ,ς)

)
= B−1 for τ → 0, ς = 1. For u0 = log 17B, the relative risk of the Q-aggregation

method (V.35) becomes

R1(ω̂)

s21
≤ C max

{
1

B
,

√
logB

de1

}
,

where C ≈ 1 if de1 and B are large. We observe again a blessing of dimensionality; the best improvement

is obtained when de1 is high (de1 ≥ B2 logB ensures a relative risk bound of order 1/B, which is the best

improvement even if the information of equal means had been known).

The standard James-Stein problem (Section I.1.1) can be cast as a particular limiting case of our

general setting (V.1) with only two bags, the second of which with known mean equal to 0 and serving as

a reference point:

Assumption V.14 (JS, James-Stein setting). B = 2, µ2 = 0, formally N2 =∞ and s22 = 0.

In the (JS) setting, the Q-aggregation method exhibits the same asymptotic behaviour as the James-

Stein estimator µ̂JS+ without knowing the covariance Σ. Corollary V.15 is deduced from Proposition V.12.
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Corollary V.15. Assume (JS) and (GS), let N1 ≥ 7, (N1 − 1)/2 ≥ u0 ≥ 3, and ω̂ as defined in

(V.32). Then:
R1(ω̂)

s2
≤ ∥µ1∥2

s21 + ∥µ1∥2
(

1 + Ce−u0/2
)

+ C

√
u0
de
, (V.36)

where C > 0 is some absolute constant.

The first term is, up to the multiplicative factor, Stein’s error τ/(1 + τ) with τ =
∥∥µ2

∥∥/s2. In the

dimensional asymptotic de → ∞, assume u0→∞ such that u0 = o(de) and suppose the mean satisfies

∥µ∥2 ≤ τs2, then the estimator attains the Pinsker bound (II.4):

lim
de→∞

sup
µ1,s1:

∥µ1∥2≤τs21

R1(ω̂)

s21
≤ τ

1 + τ
.

V.4.2 Comparison with the testing approach

Let us compare the bounds obtained for the test method (Proposition V.11) to that for the Q-aggregation

approach (Corollary V.13), in high-dimensional asymptotics d•1, d
e
1 →∞. We start with an analysis of the

conditions on the other parameters {τ, ς, B, (Nk)k∈JBK} under which the obtained bounds guarantee that

the relative risk of either method is bounded by the oracle bound B
(
τ, ν(Vτ,ς)

)
up to a factor asymptotically

converging to 1, a property which we call “oracle-consistency” for short.

Recall from Section V.3.5 that the relative risk of the test method is oracle-consistent (as d•1 → ∞),

provided ς log(B)/
√
d•1 = o(τ) and Nk ≳ log4B hold. Aside from these conditions the parameters

τ, ς, B, (Nk) can vary with d•1. On the other hand, (V.35) shows that the Q-aggregation method is oracle-

consistent (as de1 → ∞) with respect to any (τ, ς) provided that N1 ≳ log(Bde1), and ς
√

log(Bde1)/de1 =

o(τ) (taking u0 = 2 logBde1). The additive terms in (V.35) are then negligible compared to B(τ, ν), due

to B(τ, .) ≥ τ/(1 + τ). Note also that it does not require any condition on Nk for k ̸= 1.

If d•1 and de1 are of the same order (e.g. in the isotropic setting), the above parameter conditions

for consistency of either method are very similar with only minor differences. One such difference is that

the test method is guaranteed to be oracle-consistent even if B, τ, ς, (Nk) are fixed, i.e., must not change

as d•1 → ∞; while we require N1 → ∞ (though only at a logarithmic rate in B, d•1) to warrant oracle

consistency of the aggregation estimator. If de1 is of order
√
d•1 (for example, for a slow power decrease of

the eigenvalues λi of the covariance, λi = i−α for 1 ≤ i ≤ d and α ∈ (1/2, 1)), then the oracle consistency

conditions for the Q-aggregation method are narrower.

Still, one has to keep in mind that oracle-consistency for the testing approach only holds for the specific

parameters (τ, ς) that must be provided by the user, while the Q-aggregation method is oracle consistent

with respect to any choice (τ, ς) satisfying the delineated conditions. In other words, the relative risk of the

Q-aggregation method qualitatively enjoys the same asymptotic guarantees as the testing approach with

optimally selected τ and ς subject to the above conditions. This and the fact that the Q-aggregation does

not use data splitting is a strong argument in its favour. On the other hand, the testing method has the

advantage of being more flexible and easily adapts to non-Gaussian distributions, e.g., bounded or heavy-

tailed distributions (see Section V.9.4). With a modification of the penalization term, the Q-aggregation

method can also be applied to bounded distributions, as shown next, but it currently does not accommodate

heavy-tailed data distributions.

V.4.3 Bounded setting

Our results for the Q-aggregation estimator can be extended to the bounded setting (BS) where the data

lie in a ball of radius M centred in 0. A precise value for M is often known. For example, if the data

lies in a reproducing kernel Hilbert space associated with a bounded kernel, M2 will be the bound on the
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kernel. The methodology we propose for (BS) closely resembles the one outlined for the Gaussian setting.

It utilises the same estimates, (V.29)-(V.30)-(V.31), for the risk estimation and its deviations. In order to

compensate the lack of regularity of bounded compared to Gaussian data, an additional penalization term

Q̂BS(ω) is introduced, which depends on M .

Proposition V.16. Assume (BS). Let u0 ∈ R+ with 2 logN1 + log(B) ≤ u0 ≤ N1, and

ω̂ ∈ arg min
ω∈SB

(
L̂1(ω) + 4

√
2u0Q̂1(ω) + C0u0Q̂

BS
1 (ω)

)
, (V.37)

where L̂1, Q̂1 are defined in (V.29), (V.31) resp., C0 > 1424 works, and

Q̂BS
1 (ω) =

M

N1

B∑
i=2

ωi
∥∥µ̂NEi − µ̂NE1 ∥∥ . (V.38)

Assume Nk ≥ (d•k)β for some β > 0 and all k ∈ JBK, then:

R1(ω̂)

s21
≤ min
τ>0,ς≥1

(
B
(
τ, ν(Vτ,ς)

)
+ Cςε

)
+ Cϕ1ε , ε := max

{√
u0
de1
,

u0
(d•1)β/2

}
, (V.39)

where B(·, ·), ν(·) are as defined in (V.10), (V.9), Vτ,ς as in (V.21)-(V.22), C an absolute constant,

and ϕ1 := M2/Tr Σ1.

The quantity β reflects the trade-off between the requirement on the number of samples and the rate

of convergence to the oracle bound. A bound similar to that in the Gaussian case will only be obtained

if a stricter condition on the bag sizes is met (Nk ≳ d•k instead of N1 ≳ logB as in Corollary V.13). In

contrast to (V.35), there is no multiplicative constant in front of the bound, however, the additive term

now involves the quantity ϕ1 (see Section V.10 for a discussion of this quantity in the framework of kernel

mean embedding (KME) estimation with a bounded kernel, which is our primary motivation for analyzing

the bounded setting).

V.5 Minimax results

This section explores if the oracle relative risk upper bound B(τ, ν(Vτ )) as defined in (V.12), which has

been utilised as benchmark in previous sections, is optimal in a minimax sense. As before, we will first

examine the estimation of a single mean. Subsequently, we extend the analysis to the compound relative

risks averaged over tasks.

Our aim is to establish minimax bounds matching the upper bounds over distribution classes that are as

restrictive as possible. Since a minimax lower bound on a distribution class also applies to every superclass

containing it, bounds on restrictive classes are more insightful. To achieve this, we narrow down the

distribution classes by fixing as many parameters as possible to arbitrary values. As employed throughout

this manuscript, we will adopt a high-dimensional asymptotics viewpoint and focus on minimax statements

as the effective dimension grows large.

V.5.1 Single task relative risk

We derive a lower minimax bound for a class of distributions that closely match the assumptions proposed

to introduce the oracle bound (V.12): a known subset of τ -neighbours V in arbitrary position, all other

parameters (sample sizes, covariances, . . . ) being fixed. We additionally assume that all task covariance

matrices are proportional to each other (”aligned”), which appears to be the least favourable setting.

Definition V.17. Let τ ∈ R+;B, V ∈ N>0 with B ≥ V , s2 = (s21, . . . , s
2
B) ∈ RB+, (Nk)k∈JBK ∈

NB>0, and Σ a symmetric positive definite matrix of size d with Tr Σ = 1 be fixed. We denote by

Psingle(τ, V,Σ, s
2) the set of joint distributions for tasks following model (V.1) such that:
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(i) The total number of bags is B and the number of samples per bag is given by (Nk)k∈JBK.

(Omitted from the distribution class notation for simplicity.)

(ii) (GS) holds.

(iii) The task covariances are given by Σk = Nks
2
kΣ (i.e., all tasks have covariances proportional to

Σ and the naive risks are specified by the vector s2).

(iv) The mean vectors (µk)k∈JBK can vary freely subject to:

∥µ1 − µk∥2 ≤ τs21, k ∈ JV K.

A minimax lower bound, as by Proposition V.18 below, over that model holds over any larger model;

for instance, the model where Σ1 is arbitrarily fixed and the other covariances may vary freely provided that

the naive risks still match the prescribed s2.

Proposition V.18. It holds

inf
µ̂1

sup
Q∈Psingle(τ,V,Σ,s2)

R1(Q, µ̂1)

s21
≥ B

(
τ, ν(JV K)

)
− ε
(
de(Σ)

)
,

where B is defined in (V.12), ν in (V.9), the infimum is over all estimators µ̂1 for µ1, and R1(Q, µ̂1)

indicates its risk (V.2) under distribution Q. The function ε(t) is independent of any parameters and

satisfies ε(t) = O((log t)/t) as t→∞.

This minimax lower bound can be compared with the upper bounds obtained for the testing and Q-

aggregation methods, Proposition V.11 and Corollary V.13, resp. In the case of (ECSS) (so that Vτ,ς = Vτ
for any ς ≥ 1 and we can ignore the role of ς), the lower and upper bounds match. This shows that the

oracle relative risk B(τ, ν(Vτ )) is indeed minimax in the sense of high-dimensional asymptotics, provided

that log(B) = o(de1). Furthermore, the Q-aggregation method is asymptotically minimax adaptive over the

parameter τ > 0. This can be seen as a generalization of classical results on the James-Stein estimator

(see Section I.1.1). Observe also that for the upper and lower bounds the dimension-dependent remainder

terms do not depend on other parameters, which makes the dimensional asymptotics uniform with respect

to those parameters.

If (ECSS) does not hold, there can be a discrepancy between the minimax lower bound and the obtained

upper bounds due to the exclusion of high variance tasks in the latter (Vτ against Vτ,ς). An unfavourable

regime illustrating this gap is the following: suppose there are many tasks that are τ -neighbours of the

target (τ being fixed independently of the dimension but V ≈ d•1) with significantly higher variances

though (ς = s2k/s
2
1 ≈ V 1/2 for all 2 ≤ k ≤ V ). In that scenario, the upper bounds of Proposition V.11

and Corollary V.13 do not guarantee convergence to B(τ, ν(Vτ )) ≈ τ/(1 + τ), since the remainder terms

ς/
√
d•1 (resp. ς/

√
de1) do not converge to zero for high-dimensional asymptotics. This gap can amount

to an arbitrary large factor since τ can be arbitrarily small. However, the scenario where a target task is

surrounded by numerous neighbours with significantly higher variance can only arise for a small proportion

of the tasks. This implies that this concern is alleviated when evaluating the relative risk averaged across

all tasks, as shown next.

V.5.2 Compound relative risk

We define the compound relative risk as the relative risk averaged over all tasks. As we only studied upper

bounds for a single task so far, we first derive new upper bounds for the compound relative risk. We then

proceed to derive minimax bounds on restrictive distribution classes under which the task means exhibit a

certain clustering or covering structure.
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Definition V.19. Let µ = (µk)k∈JBK be a collection of vectors of Rd, J ∈ N>0, and C a J-partition

of JBK (i.e., C = (Cj)j∈JJK with C1 ⊔ . . . ⊔ CJ = JBK). The diameters of the partition C applied to µ

are defined as:

diam(C,µ) =

(
max
k,ℓ∈Cj

∥µk − µℓ∥
)
j∈JJK

∈ RJ+. (V.40)

We shall refer to parts as “groups” rather than clusters, because the partitioning can in principle be

arbitrary. However, the intuition is that the set of vectors µ exhibits more structure if it can be partitioned

into a limited number of groups with small diameter. For instance, if it is strongly clustered, or supported

on a set of small metric entropy such as a low-dimensional manifold. The compound relative risk of the

Q-aggregation approach can then be upper bounded as follows:

Proposition V.20. Assume (GS) holds, and let u0 ∈ R+ such that log 17B ≤ u0 ≤ (minkNk − 1)/2.

For k ∈ JBK, define L̂k(ω), Q̂k(ω) analogously to (V.29),(V.31) and

ω̂k ∈ arg min
ω∈SB

(
L̂k(ω) + 16

√
u0 Q̂k(ω)

)
. (V.41)

Then it holds:

1

B

B∑
k=1

Rk(ω̂k)

s2k
≤
(

1 + CBe−u0/2
)

min
C

(
L∗(s,C, diam(C,µ)

)
+ C

u0
mink∈JBK(d

e
k)1/2

)
, (V.42)

where the minimum is taken over all partitions C of JBK, C is an absolute constant, and for ζ ∈ RJ+:

L∗(s,C, ζ) :=
1

B

J∑
j=1

∑
k∈Cj

B(τj,k, νj,k), τj,k :=
ζ2j
s2k
, νj,k :=

s2(Cj)
s2k

, (V.43)

and B is defined in (V.12).

Similarly to the estimation of a single mean, the bound on the compound relative risk depends on the

maximum distance between tasks of the same group relative to the naive risk of each task, and on the

relative aggregated variances (V.9) in each group. Remarkably, the compound relative risk bound does not

involve any “whittling down” of high-variance tasks as in the single task bound (V.22), and holds under

arbitrary inhomogeneity of the tasks and sample sizes.

The quantity L∗ equates to an oracle compound relative risk and is minimax under high-dimensional

asymptotics. To show this, we extend the single task model V.21 to a joint distribution class such that the

tasks are divided into inhomogeneous groups.

Definition V.21. Let B ∈ N>0, s
2 = (s21, . . . , s

2
B) ∈ RB+, (Nk)k∈JBK ∈ NB>0, and Σ a symmetric

positive definite matrix of size d with Tr Σ = 1 be fixed.

Let J ∈ N>0, C be a J-partition of JBK and ζ ∈ RJ+. We define Pmult(C, ζ,Σ, s) as the set of tasks

according to model (V.1) with:

(i)-(iii) as in Definition V.17;

(iv) The mean vectors µ = (µk)k∈JBK can vary freely subject to

µ ∈
{
µ ∈ Rd×B : diam(C,µ) ≤ ζ (coordinate-wise inequality)

}
.

In words, Pmult(C, ζ,Σ, s) is the set of Gaussian tasks with fixed, aligned covariances and naive risks

prescribed by the vector s, such that the groups of mean vectors given by partition C have diameters

bounded by the respective entries of vector ζ.
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Proposition V.22. Let s ∈ RB+, J ∈ N>0, C a J-partition of JBK and ζ ∈ RJ+ be fixed. It holds

lim
de→∞

sup
Σ:

de(Σ)=de

inf
µ̂

sup
Q∈Pmult(C,ζ,Σ,s)

1

B

B∑
k=1

Rk(Q, µ̂k)

s2k
≥ L∗(s,C, ζ/2), (V.44)

where the infimum is over all joint estimators µ̂ = (µ̂1, . . . , µ̂B).

In particular, since it holds L∗(s,C, ζ/2) ≥ L∗(s,C, ζ)/4, the upper bound matches the lower minimax

bound up to a fixed constant factor in a dimensional asymptotics sense (by choosing u0 = log 17B and

provided that logB/(mink(dek)−1/2) = o(L∗)). Moreover, (V.42) shows that the Q-aggregation estimator

is (up to that constant factor) asymptotically minimax adaptive with respect to the choice of grouping C
of the task means, the corresponding group diameters, and the bag variances.

As in the single task case, the minimax bound L∗ only depends on the bag sizes through the naive risks

s: bags with large variance and many samples are statistically equivalent to bags with low variance and few

samples. Similarly, the improvement only depends on the relative aggregated variance of each group, not

on the number of bags. Proposition V.23 gives an interpretable upper bound for L∗:

Proposition V.23. Let s ∈ RB+, J ∈ N>0, C a J-partition of JBK and ζ ∈ RJ+, it holds:

L∗(s,C, ζ) ≤
J∑
j=1

|Cj |
B
· τ̄j + |Cj |−1

τ̄j + 1
, τ j :=

ζ2j

s2(Cj)
, s2(Cj) :=

 1

|Cj |
∑
k∈Cj

s−2
k

−1

, (V.45)

implying in particular:

L∗(s,C, ζ) ≤ min

(
1,

τ̄∗
1 + τ̄∗

+
J

B

)
, τ̄∗ :=

J∑
j=1

|Cj |
B
τ j . (V.46)

If all risks and diameters are equal, s2k = s2 and ζ2j = ζ2 for all k ∈ JBK and j ∈ JJK, then the bound

of (V.46) is sharp up to a factor at most 2.7.

Bound (V.46) elucidates that the compound oracle relative risk L∗ is small when (i) there are few

groups relative to the number of bags (i.e., J/B small); and (ii) groups have on average a small squared

diameter relative to the harmonic mean of the naive risks of its constituent tasks.

Eq. (V.42) implies that the compound risk is upper bounded by L∗ for any valid partitioning. As

an illustrative example we consider the (ECSS) setting and C as a
√
τs-covering of µ for a given τ .

Then τ̄∗ = τ and the number of groups J is the covering number N(µ,
√
τs). This highlights that the

Q-aggregation strategy will be very effective to reduce the compound risk if the set of true means can be

covered by a relatively small number of balls, in comparison to the total number of tasks, with a radius

significantly smaller than the standard deviation of the naive estimates.

This bound takes a form akin to the findings presented in Section III (Theorem III.1 and III.2)where

only the (ECSS) setting is examined and where is used a testing strategy comparable to that of the

previous section. The parameter of these tests, though, has to be fixed by the user. In contrast, the

Q-aggregation approach attains the oracle trade-off between the “bias” term τ/(1 + τ) and the “variance”

term N(µ,
√
τs)/B without the need to specify τ .

Finally, observe that the first term τ/(1+τ) resembles the best potential improvement and is reminiscent

of the oracle improvement factor of the James-Stein estimator, which can be conceived as a special case;

see Section I.1.1 for additional details.
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V.6 Application: estimation of multiple Kernel Mean Embeddings

We emphasise that our discussion and theoretical results include the case when X is a reproducing kernel

Hilbert space (RKHS), in which case the mean corresponds to a kernel mean embedding (KME) (Muandet

et al., 2017; Smola et al., 2007). Let Z be a measurable space enriched with a reproducing kernel

κ : Z × Z → R and its corresponding RKHS H. The kernel mean embedding µPZ
∈ H of distribution

PZ on Z and its empirical (naive) estimation µ̂PZ
, which is based on the samples (Zn)1≤n≤NZ

∼ PZ , are
defined as

µPZ
=

∫
Z
κ(z, ·) dPZ(z) , µ̂PZ

=
1

NZ

NZ∑
n=1

κ(Zn, ·). (V.47)

The estimation of multiple KMEs is an instance of model (V.1) once we identify X = H and X
(i)
k =

κ(Z
(i)
k , ·) for a bounded reproducing kernel κ; this allows a direct application of our theoretical results for

the bounded setting.

For characteristic kernels the map from P to µP is injective and contains information about all moments

of P, so that µP provides a unique representation of P. Thus, KMEs can naturally be used to define a

metric on probability distributions. Let P,Q denote distributions and their KMEs µP, µQ respectively. The

maximum mean discrepancy (MMD) expresses the distance between µP and µQ in H

MMD2(µP, µQ) = ∥µP − µQ∥2H ,

M̂MD
2
(µP, µQ) =

N∑
n ̸=n′=1

κ(Zn, Zn′)

N(N − 1)
− 2

N∑
n=1

M∑
m=1

κ(Zn, Ym)

NM
+

M∑
m̸=m′

κ(Ym, Ym′)

M(M − 1)
,

where M̂MD
2
denotes an unbiased estimate based on the samples (Zn)1≤n≤N ∼ P and (Ym)1≤m≤M ∼ Q.

For characteristic kernels it holds that MMD2(µP, µQ) = 0 iff P = Q (Gretton et al., 2012), which enables

a large range of possible applications.

V.6.1 Motivation and Related Work

KMEs are employed for a variety of statistical tests, e.g., two-sample tests (Gretton et al., 2012), goodness-

of-fit tests (Chwialkowski et al., 2016), and tests on statistical independence based on the Hilbert Schmidt

independence criterion (Gretton et al., 2007). It also finds application in machine learning, e.g., for unsuper-

vised (Jegelka et al., 2009) or supervised distributional learning (Muandet et al., 2012; Szabó et al., 2016),

density estimation (Muandet et al., 2014), as part of the optimization criterion of the learning (Brehmer

and Cranmer, 2020; Fakoor et al., 2020), and so on. Due to the wide variety of kernel functions, kernel

mean embeddings can in general be used on various data types and for structured data. See Muandet et al.

(2017) for an in-depth overview on KMEs and their applications.

The success of applying the KME or the MMD resp. relies heavily on the ability to accurately estimate

the kernel mean based on sample data. The naive empirical estimator (V.47) was recently superseded

by a James-Stein-like estimator (Muandet et al., 2014). They showed that this estimator is admissible

and consistent for a suitable choice of shrinkage. Other single KME estimation strategies were proposed

since then, e.g., non-linear shrinkage (Muandet et al., 2016), an empirical Bayesian approach (Filippi et al.,

2016), and more robust estimations based on marginalised corrupted data (Xia et al., 2022), or a MOM

approach (Lerasle et al., 2019). To the best of our knowledge, there is no prior work on the improved

estimation of multiple kernel mean embeddings except for Marienwald et al. (2021).

V.6.2 Description of the Experiments

We evaluate the estimation of multiple kernel mean embeddings on artificial and real-world data.
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Methods: We only sketch the best performing methods here. A complete list and detailed description

of the tested methods can be found in Suection V.11, where we also provide pseudocode that demonstrates

how the methods can be implemented in practice. More specifically, we found that methods based on

Q-aggregation benefit from restricting the support of the weights from ω ∈ SB to ω ∈ SV . However, the

neighbouring test merely functions as a safeguard here with a much larger value for τ (cf. (V.8)) than that

used for the testing approaches. We referred to methods, that are based on the testing procedure which finds

neighbours for the construction of the convex combination as in Cor. V.9, as similarity test-based (STB). The

approaches differ in their weighting schemes for these neighbours. STB opt calculates the oracle weights

(V.13) where the aggregated variances are replaced by their empirical estimations. STB orth performs

constrained risk minimization and posits an orthogonality assumption,
〈
µ̂NEj − µ̂NEi , µ̂NEj′ − µ̂NEi

〉
= 0 for all

j ̸= j′, which might be unrealistic in practice but yields a closed-form solution for the weights. Finally,

STB egd minimises the Q-aggregation objective (V.37) and applies exponentiated gradient descent on the

simplex (Kivinen and Warmuth, 1997) to approximate the solution.

We compare their performances to the naive estimation (NE), and we modify the multitask-averaging

approach from Feldman et al. (2014) (MTA const) so that it is applicable to the estimation of KMEs. It

assumes a constant similarity across tasks. Some more results of our previously proposed approach, STB

weight (Section III) which was not designed to handle inhomogenous data, and of the regularised kernel

mean shrinkage estimator R-KMSE, proposed in Muandet et al. (2016), that shrinks the estimation towards

the origin and is performed separately on each bag can be found in Blanchard et al. (2024) with a discussion

on the computational complexity of all approaches and on the choice of default parameter which have been

found by cross-validation.

Experimental Metric: In the kernel case, the true KME µ is unknown even for synthesised data.

We use a (naive) estimation based on an independent sample of the same distribution as approximation.

Because this proxy is computed on a very large sample, it can be assumed to have low risk and to be more

accurate than the estimation performed by any method on much smaller bags. The squared MMD between

the (proxy) true KME µi of bag i ∈ JBK and its estimation µ̂mi , of form (V.6), performed by method m with

weights ωm
i· is then used as error measure

M̂MD
2
(µi, µ̂

m
i ) =

∑
j,j′∈JBK

ωm
ijω

m
ij′

Nj∑
n=1

Nj′∑
n′=1

κ(Z
(j)
n , Z

(j′)
n′ )

NjNj′
−
∑
j∈JBK

2ωm
ij

Nj∑
n=1

Mi∑
m=1

κ(Z
(j)
n , Y

(i)
m )

NjMi

+

Mi∑
m̸=m′

κ(Y
(i)
m , Y

(i)
m′ )

Mi(Mi − 1)
, (V.48)

where Yi, Zi ∼ Pi independent with |Yi| = Mi ≫ Ni = |Zi| for all i ∈ JBK, so that Yi can be used

to calculate the proxy and Zi for the estimation. Each method is validated on the same data to guaran-

tee comparability. This estimation error is averaged over multiple trials MMD
2
(µi, µ̂

m
i ) and its decrease

compared to the naive estimation µ̂NE is reported for all experiments((
MMD

2
(µi, µ̂

NE
i )−MMD

2
(µi, µ̂

m
i )
)
/ MMD

2
(µi, µ̂

NE
i )
)
· 100 [%].

Artificial Gaussian Data: The toy data sets are Gaussian distributed in R2 with fixed means and

randomly rotated covariance matrices. For i ∈ JBK and B = 50

Z
(i)
• , Y

(i)
• ∼ N

(
mi, R(θi)ΣR(θi)

T
)

= Pi , θi ∼ U
(
−π

4
,
π

4

)
,

where the rotation matrix R(θi) rotates the matrix Σ = diag(1, 10) according to angle θi. We generate

|Y (i)
• | = 1000 data for the “proxy truth”. A Gaussian RBF kernel, with a kernel width set to the average
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Figure 2: Decrease in average quadratic estimation error compared to NE in percent on Gaussian data
settings (a) and (b) resp. Higher is better. The hashed histogram bars in (b) show the bag sizes for
the bags 1 to 50, which vary between 10 and 300 (right axis).

feature-wise standard deviation of the data, maps the data from the two-dimensional input space to the

infinite dimensional RKHS. Two setups are tested:

(a) Clustered Bags: Ni = 50 for all i ∈ JBK. In the input space, each ten bags form a cluster where the

cluster centres (= mi) lie equally spaced on a circle. The radius of that circle varies between 0 and

3, which creates different amount of overlap between the clusters.

(b) Imbalanced Bags: mi = 0 for all i ∈ JBK. The bags Z
(i)
• are highly imbalanced, i.e. Ni ∈ [10, 300].

Because the tasks only vary in the rotation of their covariance matrices, we know that their KMEs

lie on a low dimensional manifold in the RKHS. Because of the different bag sizes, the individual

KMEs have different estimation accuracies.

The experiments are repeated for 100 trials; the results of the methods with default parameter choices

are shown in Fig. 2.

All methods provide an improvement over NE, which is most significant for bags with few samples. This

was already observed in other multi-task learning problems, e.g., see Marienwald et al. (2021) or Feldman

et al. (2014). The constant similarity assumption of MTA const leads to an inadequate estimation for large

radii or large bags. Namely, a KME with large bag size is shrunk to the grand empirical mean of all bags even

though it includes high-variance (low sample size) or distant bags. This impairs the improvement. This effect

is alleviated by the proposed STB approaches, that define the shrinkage according to the variance of and the

distances between the KMEs. They show high performance for the tested settings. For 0.5 < radius < 2,

the similarity test might mistake a bag of another cluster for a neighbour due to the strong overlap between

the clusters, which explains the slight performance dip. All the proposed methods provide similarly accurate

results. Despite its unrealistic orthogonality assumption, STB orth performs best on the artificial data.

Flow Cytometry Data: Flow cytometry is fundamental to biomedical research and clinical practice.

It provides a multiparametric, single-cell analysis of a suspension or sample. The flow cytometer analyses
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Figure 3: Decrease in estimation error compared to NE in percent on the flow cytometry data. Higher
is better. The number next to the boxplot quantifies the median, which is also depicted as a line. The
mean is visualised as a circle. From left to right: results on individual cell types 1, 2, 3, 4, 7, 8, 9, and
all cell types taken jointly.

the size, shape and internal complexity of cells and can detect the presence and amount of different

fluorochromes (which in turn reveal insights about the presence of proteins or structures within the cell).

These characteristics might then be used to classify the cells into different populations. Applications are

vast, but well-known examples are differential blood count, or immunophenotyping of leukemia or in HIV

infections (Adan et al., 2017; McKinnon, 2018).

The data set we use corresponds to the T-cell panel of the Human ImmunoPhenotyping Consortium

(Finak et al., 2016). Seven laboratories were asked to perform a flow cytometry analysis of three replicates

of blood samples of three patients. All laboratories were asked to follow the same experimental protocol

and used the same seven markers to characterise the cells (d = 7). Based on the observed characteristics

the cells were then classified into ten different populations or cell types. We use this structure (laboratory,

replicate, patient, cell type) to divide the data into bags. We excluded bags with less than 1000 data points,

which leads to 424 bags in total. Each data point Z
(i)
n ∈ R7 in a bag i corresponds to one cell. As the

number of cells varies, the bags are highly imbalanced. We use a Gaussian RBF kernel with kernel width of

950 to map the cell features to a RKHS. The kernel choice and width are in accordance with Dussap et al.

(2023). The (proxy) true KME is approximated by a naive estimation based on Y
(i)
• with |Y (i)

• | = 1000

(bags with more samples are capped). The sizes of the bags that are used for the estimation are chosen

proportional to the bag sizes of the original input data, Ni ∈ [7, 125], to mimic a realistic setting. In each

one of the 100 trials, a subset of samples Z
(i)
• with |Z(i)

• | = Ni is drawn randomly from Y
(i)
• , on which

the methods perform their estimation. We conducted experiments on each cell type separately so that

B ∈ [43, 62], and on all cell types jointly (B = 424). Cell types 5, 6 and 10, for which B < 7, are excluded

for the separate but included in the joint analysis.

The results are depicted in Fig. 3. On average, all methods provide an improvement over NE. For some

trials, MTA const gives worse estimations than NE (negative improvement), see e.g., cell type 1. When

all cell types are considered jointly, its performance drops significantly. The STB approaches give more

accurate estimations than MTA const and provide an improvement of ≈ 50% for all cell types. STB egd

gives the most accurate and stable estimations across the different settings but also has high computational
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complexity.

In summary, our presented methods provide an improvement over the naive estimation and over other

state-of-the-art methods. Although R-KMSE or MTA const give more accurate estimations than the sample

average, the provided improvements vary whether a shrinkage towards a common reference point or the

grand mean resp. complies with the underlying data. In contrast, our proposed methods identify inhomoge-

neous task similarities and are applicable to imbalanced data sets (which, therefore, surpass our previously

introduced method STB weight). While STB egd provides in most cases the highest improvement with

least variance, it also requires the most computational complexity. STB orth provides a good trade-off.

V.7 Relation and comparison to previous work

We review related literature grouped along two axes: the first is rooted in statistics, compound decision

rules and the empirical Bayes point of view, and secondly a more recent one related to multitask learning.

We first emphasise again the seminal importance of the James-Stein (JS) estimator (James and Stein, 1961)

for a single vector mean, which can be seen as a particular setting of model (V.1). Historically important is

the realization that the sample average µ̂NEi := 1
Ni

∑Ni

k=1X
(i)
k , despite being MLE (in the Gaussian model)

and BLUE, is inadmissible and dominated by the shrinkage-based JS estimator. Pinsker (1980) should be

credited for an early “dimensional asymptotics” point of view, analysing the minimax risk if the mean vector

belongs to a ball of Rd as a by-product of his celebrated minimax analysis of estimators in Sobolev ball

models (see, e.g., Nussbaum, 1996 for a discussion). The risk of the JS estimator is asymptotically close

to that minimax in the isotropic Gaussian model if d → ∞, as well as adaptive to the radius of the ball

(Beran, 1996); see more details in Section I.1.1.

V.7.1 Empirical Bayes and compound decision point of view

The celebrated series of works by Efron and Morris (1972, 1973, 1976) advocated for an interpretation of

the JS estimator as a compound decision problem and an empirical Bayes point of view (Robbins, 1951,

1964; Zhang, 2003): the problem of estimating a single mean vector in RB with standard Gaussian noise

is better seen as B-many estimations of one-dimensional means observed with independent observation

noise (which in model (V.1) corresponds to B > 1 means in dimension d = 1). The authors compare

the performance of the JS estimator to that of a Bayesian model, i.e., the means are themselves drawn

from a centred Gaussian prior. The Bayes rule under the fully Gaussian model (prior and observations)

is solely determined by the prior variance, which is usually unknown, hence, called “oracle” in the present

discussion. The JS estimator can then be interpreted as being empirically Bayes as it replaces the oracle

(prior) variance with an empirically estimated counterpart. The compound risk is shown to converge to the

oracle Bayes risk, as B grows.

Efron and Morris (1976) generalised this analysis to the multidimensional case which is an instance of

model (V.1) for arbitrary d and Gaussian task distributions with identical covariances. They proposed a

multidimensional version of the JS estimator. Similarly to the one-dimensional case, this is interpreted as an

empirical Bayes procedure with a multidimensional Gaussian prior, whose unknown covariance is replaced by

an empirically estimated counterpart. If (d+ 2)/B → 0, then the risk of the multidimensional JS estimator

approaches that of the oracle Bayes rule.

The nonparametric empirical Bayes estimator developed by Brown and Greenshtein (2009) (see also

Jiang and Zhang, 2009 for a closely related, independent work) is in the same line of thought, but considers

a completely arbitrary prior on the means (in dimension d = 1). In that situation, the oracle Bayes procedure

can be expressed in terms of the marginal, nonparametric mixture density of the observations across tasks

and of its derivative (to establish this, Gaussian partial integration is used, thus, relying heavily on the

assumption of isotropic Gaussian tasks). The proposed estimator replaces the true density with a kernel

density estimate (while Jiang and Zhang, 2009 adopt a Generalised Maximum Likelihood Empirical Bayes
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estimator to estimate the prior). For a Gaussian kernel and as B →∞, this estimator approaches the oracle

Bayes rule.

Similar to our approach, George (1986) proposed a weighted combination of shrinkage estimators, e.g.,

multiple JS estimators. The weights are assumed to be known but can adapt to the data to some extent.

He showed that an aggregation of Bayes rules is again Bayes on a mixture prior where the weights naturally

translate to prior probabilities.

We emphasise the following key differences of this important line of work to the present one:

(a) The above approaches focus on the compound risk, while we analyse the risk of each individual task.

The compound relative risk, analysed in Section V.5.2, is a different quantity from the ratio between

compound risk and oracle Bayes risk.

(b) In the empirical Bayes framework, the focus lies on asymptotics as the number of independent tasks

B grows large, while ours is on the growing (effective) dimension. Consequently, the choice of

“oracle” reference for analyzing risk ratios differs between the two perspectives. Within the empirical

Bayes paradigm, the compound oracle Bayes risk serves as the reference. We adopt a task-specific

oracle improvement relative to the naive estimator. Thus, the theoretical outcomes derived from

these divergent approaches are not readily comparable.

Concerning the role of the dimension, consistency with the oracle Bayes reference requires d/B → 0

for the parametric approach of Efron and Morris (1976) and presumably an even more stringent condi-

tion for the nonparametric approaches of Brown and Greenshtein (2009) or Jiang and Zhang (2009).

In fact they only considered the case d = 1, but since both works rely on metric entropy estimates

on appropriate function spaces, one would expect those to suffer of the curse of dimensionality.

Consistency with the oracle, as considered here, requires roughly polylog(B)/d → 0, thereby ac-

commodating a broader spectrum of regimes. For instance, when B = Θ(dα) for arbitrary α > 0,

our approach ensures consistency with our oracle improvement, yet fails to achieve consistency with

the oracle Bayes with a Gaussian prior if α ≤ 1. Conversely, the regime where B → ∞ while d

remains fixed, which is pertinent to empirical Bayes analyses, does not yield meaningful results in

our framework (though, allowing the dimension to increase at an arbitrary small power of B remains

viable).

In summary, our perspective is tailored towards high-dimensional scenarios, with possibly non-isotropic

covariance structures, whereas the empirical Bayes methodology is not inherently designed for such

settings. Moreover, we emphasise the minimax property of our oracle improvement across suitable

models as the dimension grows.

(c) We allow non-Gaussian data.

(d) We allow strong task heterogeneity (e.g., the covariances are not shared across tasks).

V.7.2 Multitask learning point of view

Feldman et al. (2014) viewed the many means estimation problem (V.1) as a multi-task learning problem

(Caruana, 1997; Zhang and Yang, 2021), which gave rise to the term multi-task averaging. Also inspired

by the JS estimator, the proposed approach extends the empirical compound risk minimization with a

regularization term that favours the alignment of mean estimations for “related” tasks. The notion of “task

relatedness” is encoded as a similarity matrix considered as a priori information. In absence of specific

information, the similarities are taken constant across tasks and the method reduces to shrinkage towards

the grand mean. The theoretical analysis focused mainly on the low-dimensional setting and the oracle

weights when B = 2. Their data-driven similarity estimation yielded inconclusive results. Mart́ınez-Rego

and Pontil (2013) mitigated the default constant similarities in the absence of information by first clustering
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the tasks into different groups and then applying the approach of Feldman et al. (2014) on each cluster

separately; but a theoretical analysis of this approach was not conducted. In our work, we also propose to

assimilate estimators of related tasks and thereby define an appropriate shrinkage direction. We eliminate

the disadvantage of both approaches, i.e., constant or known similarities, by estimating them solely based

on the available data. We also extend significantly our preliminary work (Section III) which was limited to

the testing approach unfit for heterogeneous tasks, and with less precise theoretical results.

Recent work of Duan and Wang (2023) considers a general multi-task learning setting which includes

the multiple mean estimation problem as a special case. Comparable to that of Feldman et al. (2014), their

estimators are determined by compound empirical risk minimization with a regularization term measuring

alignment to a predetermined model of task relatedness, e.g., the means form K clusters or are close to a

linear subspace of dimension K. The proposed estimators depend on the considered task relatedness and

on K. Once interpreted in terms of relative squared risk, the theoretical bounds obtained by Duan and

Wang (2023) are not bounded by a constant but can grow as O(K2) in the worst case where the fit to

the posited task relatedness is poor. For the relative risk to be significantly less than O(1), the bounds

require the condition δ ≲ s1/K, where δ represents closeness to the model (cluster radius resp. distance

to linear subspace). By contrast, in our analysis we do not posit a particular task relatedness or value

of K to define the estimators; those are adaptive to the most advantageous grouping model, including

cluster number and size, describing the structure of the true parameters (see Section V.5). Our relative

risk bounds are worst-case bounded (and even bounded close to 1), and show a significant improvement in

favourable cases even for the number of groups K growing with the number of tasks B. On the other hand,

our approach won’t result in a significant risk improvement if the task means belong to a low-dimensional

subspace but are very far apart from each other. Still, using the covering complexity point of view discussed

in Section V.5, an improvement can be shown if the tasks increase in number and are drawn, say, from a

fixed a priori distribution having a low-dimensional support while the ambient dimension grows.

V.8 Conclusion

Considering the estimation of multiple mean vectors in high dimensions from independent samples, we

focused on estimators formed as convex combinations of empirical averages of each sample. We pro-

posed a test-then-aggregate method generalizing the approach of Marienwald et al. (2021), and a direct

Q-aggregation approach where the weights are found by minimization of an adequate objective. From a

theoretical perspective, we established asymptotic convergence to an oracle risk in an appropriate “dimen-

sional asymptotics” sense, as the effective dimensionality grows. This oracle risk was proved to be exactly

minimax under certain homogeneity conditions for the single-task risk, and minimax up to a fixed factor

for the compound relative risk (without homogeneity conditions). One advantage of the Q-aggregation

method is its theoretical adaptivity with respect to parameters that have to be user-provided for the testing

approach. We demonstrated the efficacy of the proposed methods on showcase experiments for estimating

multiple kernel mean embeddings on controlled artificial datasets and real-world flow cytometry data.

Future investigations will aim to address the discrepancy between the lower and upper bounds for the

single mean estimation in extremely inhomogeneous cases (we suspect the minimax lower bound could be

too conservative in such a case because it does not take into account the problem of neighbour detection).

Another important open direction is the integration in the multiple-mean estimation setting of recent

advances on single-mean estimation in high dimension, achieving sub-Gaussian performance even under

heavy-tailed distributions or samples that were adversarially corrupted, e.g., the median of means estimator

(Lugosi and Mendelson, 2019b, 2020, see Fathi et al., 2020; Lugosi and Mendelson, 2019a for an overview),

or efficiently computable estimators (e.g., Cheng et al., 2019; Depersin and Lecué, 2022). Finally, a

significant future avenue is to extend our approach from mean estimation to more general high-dimensional

multi-task learning problems such as those considered by Duan and Wang (2023).
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V.9 Proofs for Section V

V.9.1 Nomenclature

B number of tasks, Sec. V.1
B(τ, ν) oracle risk, (V.10)
(BS) bounded assumption, Sec. V.2.3
C J-partition of JBK, Def. V.19
d ambient dimension, Sec. V.1
d•k effective dimension, (V.5)
dek effective dimension, (V.5)
diam(C,µ) diameter of partition C of µ, (V.40)
∆k difference between µk and µ1, Sec. V.2.5
(ECSS) equal covariances and sample sizes, Sec. V.2.3
η relative estimation error of s2k, (V.14)
(GS) Gaussian assumption, Sec. V.2.3
(HT) heavy-tailed assumption, Sup. V.9.4
J nr. of parts of the partition, Def. V.19
k index of task, Sec. V.1
(KC) known covariances, Sec. V.2.3
Lk(µ̂) loss of estimator µ̂, (V.2)
Lk(ω) loss of aggregation estimator µ̂ω, (V.2.5)

L̂k(ω) estimator for cond. risk, (V.29), Sec. V.1
L∗(s,C, ζ) compound oracle risk, (V.43)
M radius of ball in which the bounded data lies, Sec. V.4.3
µk expectation of distribution k
µ̂k estimator of µk
µ̂NEk naive estimation (empirical average) of µk, Sec. V.1
µ̂ω aggregation estimator, (V.6)
JnK integers 1 to n, Sec. V.1
Nk number of samples (bag size) of task k, Sec. V.1
∥a∥ canonical norm of vector a, Sec. V.2
∥Σ∥p Schatten norm of matrix Σ, Sec. V.2.2

∥Σ∥∞ operator norm of matrix Σ, Sec. V.2.2
ν(U) relative aggregated variance, (V.9)
ω aggregation weights, (V.6)
Pk k-th task (probability distribution), Sec. V.1
Pmult(C, ζ,Σ, s) class of distributions, Def. V.21
Psingle(τ, V,Σ, s

2) class of distributions, Def. V.17

Q̂1(ω) prob. upper bound on (L̂1(ω)− L1(ω)), (V.31)

Q̂BS
1 (ω) additional penalization for (BS), (V.38)

Rk(µ̂) risk of estimator µ̂, (V.2)
Rk(ω) risk of aggregation estimator µ̂ω, (V.2.5)
s2(U) harmonic mean of the risks of the tasks in U(V.9)
SB (B − 1)-dimensional simplex, Sec. V.2.5
s2k naive risk, (V.3)
SV set of convex weights of support incl. in V , Sec. V.2.5
ς threshold for W(ς), (V.21)
Σk covariance matrix of k-th task, Sec. V.2

T̃
(τ)

k , ˜̃T (τ)

k empirical similarity test on independent copy data, (V.17)-(V.25)
τ, τkmin, τ

◦
min, τ

± thresholds for similarity test, (V.8)-(V.18)-(V.23)-(V.23)
τ/1+τ best potential improvement

Ũk unbiased estimator for ∥∆k∥2, (V.16)
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Ṽ estimation of Vτ , (V.14)
Vτ τ -neighbouring tasks, (V.8)
Vτ,ς trimmed Vτ , (V.22)

V ∗ subset of Ṽ , (V.14)
W(ς) set of tasks with bounded variance, (V.21)
ϕk ratio of the radius M with the covariance trace Tr Σk,

X
(k)
• k-th bag, (V.1)

X̃
(k)
• independent copy of k-th bag, Sec. V.3.2

ζ bound on the diameter of the J-partition, Def. V.21

V.9.2 Proofs for Section V.3.1 and Section V.3.2

Proof of Lemma V.6 The weights ω∗ are obtained by minimizing the upper bound (V.11) using KKT

conditions, for instance. However, to verify the bound (V.12), it suffices to substitute the weights (V.13)

into (V.11). Let us denote ν = s2(V )
s21

, from (V.12):

R1(ω∗)

s21
≤ τ(1− ω∗

1)2 +
∑
k∈V

(ω∗
k)2

s2k
s21

= τλ2(1− ν)2 + (1− λ)2 + 2λ(1− λ)ν + λ2ν.

By substituting λ with its value from Equation (V.13), we obtain:

R1(ω∗)

s21
≤ τ(1− ν)2 + τ2(1− ν)2 + 2τ(1− ν)ν + ν

(1 + τ(1− ν))2

=
τ(1− ν)((1− ν) + τ(1− ν) + ν) + ν(τ(1− ν) + 1)

(1 + τ(1− ν))2

=
τ(1− ν) + ν

1 + τ(1− ν)
= B(τ, ν) = B

(
τ,
s2(V )

s21

)
.

Thus, the inequality holds as claimed.

Proof of Proposition V.7 Recall that we assume the following event holds:{
1 ∈ V ∗ ⊆ Ṽ ⊆ Vτ ,∣∣s̃2k − s2k∣∣ ≤ ηs2k, for all k ∈ Ṽ , (V.14)

for quantities Ṽ , s̃ which are considered as nonrandom for this proof (e.g., they are computed from an

independent sample and we argue conditionally to that sample). Denote

R1(Ṽ ,ω) := τs21(1− ω1)2 +
∑
k∈Ṽ

ω2
ks

2
k

the risk upper bound from (V.11) wherein we used the index set Ṽ . Due to the first Ṽ ⊂ Vτ the same

argument leading up to (V.11), it holds R1(ω) ≤ R1(Ṽ ,ω) for all ω ∈ SṼ . Denoting now

R̃1(Ṽ ,ω) := τ s̃21(1− ω1)2 +
∑
k∈Ṽ

ω2
ks̃

2
k

the plug-in version of R1(Ṽ ,ω), we have, putting εk :=
∣∣s2k − s̃2k∣∣:

∀ω ∈ SṼ :
∣∣∣R1(Ṽ ,ω)− R̃1(Ṽ ,ω)

∣∣∣ ≤ τε1(1− ω1)2 +
∑
k∈Ṽ

ω2
kεk ≤

(
max
k∈Ṽ

εk
s2k

)
R1(Ṽ ,ω),
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which entails, from the second part of event (V.14):

(1− η)R1(Ṽ ,ω) ≤ R̃1(Ṽ ,ω) ≤ (1 + η)R1(Ṽ ,ω)

Since ω̃ is a minimiser of R̃1(Ṽ ,ω), it holds for any other ω ∈ SṼ :

R1(ω̃) ≤ R1(Ṽ , ω̃) ≤ (1− η)−1R̃1(Ṽ , ω̃) ≤ (1− η)−1R̃1(Ṽ ,ω) ≤
(

1 + η

1− η

)
R1(Ṽ ,ω).

Minimizing the latter inequality over ω yields (from Lemma V.6):

R1(ω̃)

s21
≤
(

1 + η

1− η

)
B
(
τ, ν(Ṽ )

)
≤
(

1 + η

1− η

)
B
(
τ, ν(V ∗)

)
,

due to V ∗ ⊆ Ṽ and the monotonicity properties of ν, B.

V.9.3 Proofs for Section V.3.3

We start with a generic result linking concentration of the test statistic to the properties of the associated

test. It will allow to handle different distributional settings as particular cases.

We recall that Ũk is the test U-statistic given by (V.16) using independent “tilde” data.

Assumption V.24 (TSC, Test Statistic Concentration). Assume that for all k ∈ JBK and α ∈ (0, 1),

there exists qk(α):

P
[∣∣∣Ũk − ∥∆k∥2

∣∣∣ ≥ ∥∆k∥qk(α) + c20q
2
k(α)

]
≤ α . (V.49)

where c0 ≥ 2 is a numerical constant.

Put uα := log(8/α), it is established that:

� The assumption is satisfied under (GS) for q2k(α) = 2
(

∥Σ1∥2

N1
+

∥Σk∥2

Nk

)
uα and c0 = 4. (Proposi-

tion IV.6 )

� The assumption is satisfied under (BS) for q2k(α) = 16
(

∥Σ1∥2

N1
+

∥Σk∥2

Nk

)
uα + 4

M2u2
α

N2
1∧N2

k
and c0 = 31.

(Proposition IV.9)

� The assumption is satisfied under (HT) for q2k(α) = 16
(

∥Σ1∥2

N1
+ ∥Σi∥2

Ni

)
uα and c0 = 2 but for

α ≥ 8e−N1∧Ni . (Proposition V.33).

Proposition V.25. Grant assumption (TSC) and let α ∈ (0, 1), τ > 0 be fixed. Let T̃k be given by

T̃k := 1
{
Ũk ≤ τs21

}
. (V.50)

Define τkmin := 2c20s
−2
1 q2k(α), then it holds:

if ∥µ1 − µk∥ > (
√
τ +

√
τkmin)s1 : P

[
T̃k = 1

]
≤ α; (V.51)

if ∥µ1 − µk∥ ≤ (
√
τ −

√
τkmin)s1 : P

[
T̃k = 0

]
≤ α. (V.52)

Proof of Prop. V.25 We assume for the rest of the proof that∣∣∣Ũk − ∥∆k∥2
∣∣∣ ≤ ∥∆k∥qk(α) + c20q

2
k(α)
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holds, which according to Assumption (TSC) is the case with probability at least 1−α. Using q2k(α)s−2
1 =

τminc
−2
0 /2 and putting x := ∥∆k∥√

τs1
, the above inequality entails∣∣∣∣∣ Ũkτs21 − x2

∣∣∣∣∣ ≤ x
√
τmin

2τ
c−1
0 +

τmin

2τ
≤ x ετ

2
√

2
+
ε2τ
2
, (V.53)

where we have used c0 ≥ 2 and where ετ :=
√
τmin/τ . This entails

τ−1s−2
1 (Ũk − τs21) ≤ x2 + x

ετ

2
√

2
+
ε2τ
2
− 1.

Assuming ετ ≤ 1, the largest root of the quadratic polynomial on the right-hand-side above is lower bounded

as

x+ = − ετ

4
√

2
+

√
1− 15

32
ε2τ ≥ 1− ετ ,

using
√

1− a ≥ 1 −
√
a for a ∈ [0, 1]. Thus, 0 ≤ x ≤ 1 − ετ is a sufficient condition ensuring T̃k = 1,

implying (V.52) since (1− ετ )2τ =
(√
τ −√τmin

)2
. (The case ετ > 1 is trivial since the statement is void

in that configuration.)

Similarly, (V.53) entails

τ−1s−2
1 (Ũk − τs21) ≥ x2 − x ετ

2
√

2
− ε2τ

2
− 1;

the largest root of the quadratic polynomial on the right-hand-side above is upper bounded as

x′+ =
ετ

4
√

2
+

√
1 +

17

32
ε2τ ≤ 1 + ετ ,

using
√

1 + a ≤ 1 +
√
a. Thus, x > 1 + ετ is a sufficient condition ensuring T̃k = 0, implying (V.51) since

(1 + ετ )2τ =
(√
τ +
√
τmin

)2
.

Proof of Prop. V.8. Proposition IV.6 states that under (GS) it holds with probability at least 1−α
that ∣∣∣Ũk − ∥∆k∥2

∣∣∣ ≤ ∥∆k∥q′k
√
uα + 16q2kuα, (V.54)

where

q2k = 2

(
∥Σ1∥2
N1

+
∥Σk∥2
Nk

)
= 2s21

(
1√
d•1

+
s2k/s

2
1√

d•k

)
,

and

(q′k)2 := 2

(
∥Σ1∥∞
N1

+
∥Σk∥∞
Nk

)
;

since ∥Σ∥∞ ≤ ∥Σ∥2, we have q′k ≤ qk, so that assumption (V.49) is satisfied with c0 = 4. The claim is

then a consequence of Proposition V.25.

Proof of Cor. V.9. For any k ∈ Ṽ , we have k ∈ W(c), and since ς ≥ 1, it holds (with the notation

used in Proposition V.8, but using α/B in place of α)

τ
(k)
min = 64(uα + logB)

(
1√
d•1

+
s2k

s21
√
d•k

)
≤ τ◦min

2
+
ςτ◦min

2
≤ ςτ◦min,

and the result is a direct consequence of Proposition V.8 (combined with a union bound over k ∈ JBK).
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V.9.4 Proofs for Section V.3.4: estimating Schatten norms and plug-in estimates

We will be concentrating one one bag at a time and for this reason omit the task index k in the next results.

Thus, we assume X̃1, . . . , X̃N (with N ≥ 4) are i.i.d. data points in Rd with expectation µ and known

covariance matrix Σ. We start with estimators for the Schatten norms ∥Σ∥p, p = 1, 2.

We can use the natural unbiased estimator for any fixed ∥Σ∥1 = Tr Σ,

Z̃(1) :=
1

N − 1

N∑
i=1

∥X̃i − µ̃∥2 =
1

2N(N − 1)

∑
i ̸=j

∥∥∥X̃i − X̃j

∥∥∥2, (V.55)

where µ̃ = N−1
∑N
i=1 X̃i is the empirical mean of the (sub-)sample.

Gaussian setting We have the following error control in the Gaussian setting:

Proposition V.26. Assume (GS) holds. For u ≥ 1, if N ≥ 2

P

[∣∣∣Z̃(1) − Tr Σ
∣∣∣ ≥ 4

√
2 Tr Σ2

N
u

]
≤ 2e−u .

Proof of Proposition V.26 Let X = (X̃1− µ̃, . . . , X̃N − µ̃) ∈ RdN . Then X is a centred Gaussian

vector with covariance matrix Σ := Γ ⊗ Σ where Γ = IN − 1
N 1N1TN ∈ RN×N , 1N = (1, . . . , 1) ∈ RN

and ⊗ denotes the Kronecker product. Note that it holds Tr Γ = (N − 1),Σ2 = Γ2 ⊗ Σ2 = Γ ⊗ Σ2,

TrΣ = Tr Γ Tr Σ = (N − 1) Tr Σ, and Tr(Σ2) = (N − 1) Tr Σ2. Then, according to Lemma V.40, for

u ≥ 1, with probability greater than 1− 2e−u:

∥X∥22 ≤ TrΣ + 2
√

TrΣ2u+ 2∥Σ∥∞u ≤ (N − 1) Tr Σ + 4
√

(N − 1) Tr Σ2u ,

∥X∥22 ≥ TrΣ− 2
√

TrΣ2u ≥ (N − 1) Tr Σ− 2
√

(N − 1) Tr Σ2u .

We have used that
√
u ≤ u for u ≥ 1. We conclude by remarking that ∥X∥22 = (N − 1)Z̃(1).

As in Section IV, we can estimate ∥Σ∥2 =
√

Tr Σ2 using the following U-statistic, which is an unbiased

estimator of Tr Σ2:

(Z̃(2))2 :=
1

4N(N − 1)(N − 2)(N − 3)

∑
i ̸=j ̸=k ̸=l

⟨Xi −Xk, Xj −Xl⟩2 . (V.56)

Proposition V.27 restate the concentration bound of Z̃(2) given in Proposition IV.12.

Proposition V.27. Assume (GS) holds and N ≥ 4. Then for all u ≥ 0:

P

[∣∣∣Z̃(2) −
√

Tr Σ2
∣∣∣ ≥ 30

√
Tr Σ2

N
u2

]
≤ e4e−u . (V.57)

Proof of Proposition V.10 Proposition V.10 is a consequence of the above Proposition V.26, using

the union bound over k ∈ JBK.
Propositions V.26 and V.27 can now be used to handle the plug-in versions of the quantities considered

in Section V.3.3 when covariances are unknown:

Proposition V.28. Assume (GS) holds, let c ≥ 1 be a fixed number and let α ∈ (0, 1). Assume that

we have estimates Z̃
(1)
1 for ∥Σ1∥1 and Z̃

(2)
k for ∥Σk∥2, k ∈ JBK, (depending on the independent “tilde”

data only) such that with probability 1− α it holds simultaneously for some constants η1, η2 ∈ (0, 1):∣∣∣Z̃(1)
1 − ∥Σ1∥1

∣∣∣ ≤ η1∥Σ1∥1; (V.58)∣∣∣Z̃(2)
k − ∥Σk∥2

∣∣∣ ≤ η2∥Σk∥2, for all k ∈ JBK. (V.59)
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Consider the following plug-in versions of the quantities appearing in (V.17), (V.21):

W̃(ς) :=

{
k ∈ JBK :

Z̃
(2)
k

Nk
≤ ς Z̃

(2)
1

N1

}
, ˜̃T (τ)

k := 1

{
Ũk ≤ τ

Z̃
(1)
1

N1

}
. (V.60)

Then, defining ˜̃V τ,ς :=

{
k ∈ W̃(ς) : ˜̃T (τ)

k = 1

}
,

with probability at least 1− 3α (with respect to the “tilde” data) it holds

Vτ−,ς/β ⊆ ˜̃V τ,ς ⊆ Vτ+,ςβ , (V.61)

where τ± := (1± η1)
(√
τ ±

√
τ◦min

)2
+
, (with τ◦min = 64(log 8Bα−1)/

√
d•1),

and β := (1 + η2)/(1− η2).

Proof. Assume that (V.58)-(V.59) are satisfied. Then W(ς/β) ⊆ W̃(ς) ⊆W(βς), with β := (1 + η2)/(1−

η2). Furthermore, recalling T̃
(τ)
k := 1

{
Ũk ≤ τs21

}
, then we have T̃

((1−η1)τ)
k ≤ ˜̃T (τ)

k ≤ T̃
((1+η1)τ)
k ;

therefore {
k ∈W(ς/β) : T̃

((1−η1)τ)
k = 1

}
=: Ṽ− ⊆ ˜̃V ⊆ Ṽ+ :=

{
k ∈W(βς) : T̃

((1+η1)τ)
k = 1

}
.

We can apply Corollary V.9 separately to Ṽ−, Ṽ+ and get that with probability 1− 3α (accounting for

the union bound together with event (V.58)-(V.59)), (V.61) holds..

Proof of Prop. V.11. From Proposition V.26 with u = log(4Bα−1) and a union bound over tasks,

with probability at least 1− α/2 it holds

∀k ∈ JBK :
∣∣∣Z̃(1)
k − ∥Σk∥1

∣∣∣ ≤ ∥Σk∥2√32 log(4Bα−1)√
Nk

≤ 1√
a
∥Σk∥2, (V.62)

where for the last inequality we used the assumption Nk ≥ a(4 + log(2Bα−1))4 ≥ a(4 + log 6)2(4 +

log(2Bα−1))2 ≥ 32a(log(4Bα−1))2 (also using α ≤ 1/3 in that estimate).

Similarly, from Proposition V.27 with u = (4 + log(2Bα−1)), with probability at least 1−α/2 it holds

∀k ∈ JBK :
∣∣∣Z̃(2)
k − ∥Σk∥2

∣∣∣ ≤ 30∥Σ∥2
(4 + log(2Bα−1))2√

Nk
≤ 30√

a
∥Σk∥2. (V.63)

Therefore, conditions (V.58)-(V.59) are satisfied simultaneously with probability 1− α, with η1 = 1√
a

1√
d•1

and η2 = 30√
a
(with a ≥ 4400).

We apply Proposition V.28, but using the the values (τ̃ , 3c) given by (V.27) in place of (τ, ς). As a

result we get with high probability the sandwiching property (V.61),

Vτ̃−,ς ⊆ ˜̃V τ̃ ,3ς ⊆ Vτ̃+ , (V.64)

denoting τ̃± the formula for τ± of Proposition V.28 where we replace (τ, ς) by (τ̃ , 3ς). We proceed to get

bounds for τ̃± = (1± η1)(
√
τ̃ ±

√
3ςτ◦min)2.

Let us start with bounding the estimation error of d•1 by d̃•1: it holds√
d̃•1 =

N1s̃
2
1

Z̃
(2)
1

=
Z̃

(1)
1

Z̃
(2)
1

≤ 1 + η1
1− η2

√
d•1 ≤ 2

√
d•1,
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where the last inequality holds if a ≥ 4400. We deduce

τ̃◦min =
32 log(8Bα−1)√

d̃•1

≥ 1

2
· 32 log(8Bα−1)√

d•1
= τ◦min/2,

as defined in Proposition V.28. Furthermore, we have for η1 = 1√
ad•1
≤ 1√

a
and a ≥ 4400:

1

1− η1
= 1 +

η1
1− η1

≤ 1 +
1/
√
a

1− 1/
√
a

1√
d•1
≤ 1 +

1

60
√
d•1
.

Using the previous estimates we obtain

τ̃ :=

1 +
1

60

√
d̃•1

(√τ +
√

6ςτ̃◦min

)2
≥ 1

1− η1

(√
τ +

√
3ςτ◦min

)2
.

It follows :

τ̃− = (1− η1)
(√
τ̃ −

√
3ςτ◦min

)2 ≥ τ.
Now to get an upper bound on τ̃+, similarly to above we have√

d̃•1 ≥
1− η1
1 + η2

d•1 ≥
√
d•1
2

,

and thus τ̃◦min ≤ 2τ◦min; it follows

τ̃+ = (1 + η1)
(√
τ̃ +

√
3ςτ◦min

)2 ≤ (1 +
1

66
√
d•1

)(
1 +

1

30
√
d•1

)
(
√
τ + 3

√
3ςτ◦min)2

= ξτ,

where ξ := (1 + 1/(30
√
d•1))(1 + 1/(66

√
d•1))(1 + 3

√
3ςτ◦min/τ)2.

With these estimates in hand the sandwiching property (V.64) implies

Vτ,ς ⊆ ˜̃V τ̃ ,3ς ⊆ Vξτ .
We use this property to apply Proposition (V.7) as earlier, and obtain

R1(ω̃)

s21
≤
(

1 + η

1− η

)
B(ξτ, ν(Vτ,ς)) ≤

(
1 +

1

25
√

mink d•k

)
ξB(τ, ν(Vτ,ς)).

Elementary estimates lead to(
1 +

1

25
√

mink d•k

)
ξ ≤

(
1 +

1

10
√

mink d•k

)(
1 +

30
√
ς log(8Bα−1)

(d•1)
1
4
√
τ

)2

.

Bounded setting Proposition V.29 and Proposition V.30 give concentration bounds for Z̃(1) and Z̃(2)

in bounded setting.

Proposition V.29. Assume (BS) holds. For u ≥ 1, if N ≥ 2

P

[∣∣∣Z̃(1) − Tr Σ
∣∣∣ ≥ 2

√
2

Var[∥X1 − µ∥2]

N
u+ 32

M2u

N

]
≤ 4e−u .

123



Proof. Let us first remark that:

Z̃(1) =
1

N − 1

N∑
i=1

∥∥∥X̃i − µ
∥∥∥2 − N∥µ̃− µ∥2

N − 1

Using Bernstein’s inequality (Lemma V.42), with probability greater than 1− 2e−u:∣∣∣∣∣
N∑
i=1

∥∥∥X̃i − µ
∥∥∥2 −N Tr Σ

∣∣∣∣∣ ≤√2NVar[∥X1 − µ∥2]u+ 8M2u .

Using McDiarmid’s inequality (Boucheron et al., 2004; McDiarmid, 1998), for f(x1, . . . , xN ) = ∥N−1
∑N
i=1(xi−

µ)∥, with probability greater than 1− 2e−u:

− 4M2

N
≤ ∥µ̃− µ∥2 − Tr Σ

N
≤

(
E[∥µ̃− µ∥] +

√
2M2u

N

)2

− Tr Σ

N

≤
(
E[∥µ̃− µ∥]2 − Tr Σ

N

)
+ 2E[∥µ̃− µ∥]

√
2M2u

N
+

2M2u

N
≤ 8

M2u

N
,

where we have used successively Jensen’s inequality, that Tr Σ ≤ 4M2 and u ≥ 1. It only stays to use

that (N − 1)−1 ≤ 2N−1 for N ≥ 2 and a triangle inequality to conclude the proof, with probability at

least 1− 4e−u: ∣∣∣Z̃(1) − Tr Σ
∣∣∣ ≤ √2NVar[∥X1 − µ∥2]u

N − 1
+

8M2u

N − 1
+

8M2u

N − 1

≤ 2

√
2

Var[∥X1 − µ∥2]

N
u+ 32

M2u

N
.

Similarly as in the Gaussian setting, we can estimate ∥Σ∥2 using the U-statistic (V.56). Proposition V.30

is a restatement of Proposition IV.13.

Proposition V.30 (Blanchard and Fermanian, 2023, Prop. 13). Assume (BS) holds and N ≥ 4.

Then for all u ≥ 0:

P
[∣∣∣Z̃(2) −

√
Tr Σ2

∣∣∣ ≥ 12M2

√
u

N

]
≤ 2e−u . (V.65)

Thanks to these concentration results, we are able to give a bound on the estimation error of the test

method for bounded data on the model of Proposition V.11.

Proposition V.31. Assume (BS) holds. Let α ∈ (0, 1/3). Consider the set of estimated τ -neighbours˜̃V τ,ς defined in (V.26), assume Nk ≥ aϕ2
kd

•
k log(8Bα−1) for all k ∈ JBK, for a big enough constant a

(a = 576 works), and where ϕk := M2/(Tr Σk).

For fixed τ > 0, ς ≥ 1, consider the weights ω̃♯ obtained by the modified plug-in
( ˜̃V τ̃ ,3ς , s̃2) for

(V, s2) in (V.13), where

τ̃ :=

1 +
1

2

√
d̃•1

(√τ +
√

6τ̃◦min

)2
; τ̃◦min :=

80c20ς
(

log(8Bα−1)
)√

d̃•1

;

√
d̃•1 :=

N1s̃
2
1

Z̃
(2)
1

. (V.66)

and c0 = 31. Then with probability at least 1− 3α over the draw of the “tilde” sample (X̃
(k)
• )k∈JBK, it

holds

R1(ω̃♯)

s21
≤

(
1 +

4√
mink d•k

)(
1 +

900
√
ς log(8Bα−1)

(d•1)
1
4
√
τ

)2

B
(
τ, ν(Vτ,ς)

)
,

where the expected risk is with respect to the main sample (X
(k)
• )k∈JBK.
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Proof of Prop. V.31. From Proposition V.29 with u = log(8Bα−1) and a union bound over tasks,

with probability at least 1− α/2 it holds

∀k ∈ JBK :
∣∣∣Z̃(1)
k − ∥Σk∥1

∣∣∣ ≤ 2

√
2
∥Σk∥1M2u

Nk
+ 32

M2u

Nk
≤ 1

3
∥Σk∥2 (V.67)

where for the last inequality we used the assumption Nk ≥ 64aϕ2
kd

•
k log(8Bα−1). Similarly, from Proposi-

tion V.30 with u = log(4Bα−1), with probability at least 1− α/2 it holds

∀k ∈ JBK :
∣∣∣Z̃(2)
k − ∥Σk∥2

∣∣∣ ≤ 12M2

√
u

N
≤ 1

6
∥Σk∥2. (V.68)

Therefore, as in the Gaussian case (see proof of Proposition V.11), with η2 = 1/6 and β = (1 + η2)/(1−
η2) ≤ 3:

W̃ς ⊆W3ς

Let τ◦min = 80c20ςu(d•1)−1/2, one can check that τ◦min ≥ τkmin for all k ∈ Vτ,ς . Indeed, in bounded setting:

τkmin ≤ 2c20

(
16u

1 + ς√
d•1

+ 4u2s−2
1

(
ϕ1s

2
1

N1
+

ϕks
2
k

Nk

))
≤ 2c20

(
32ςu√
d•1

+ 4u
1 + ς

d•1

)
≤ 80c20ςu√

d•1

where we have used that ς ≥ 1, the assumption on Nk and the expression of τkmin given by Proposition V.25.

We apply Proposition V.25 to τ̃ defined in (V.66), then with high probability:

Vτ̃−,ς ⊆ ˜̃V τ̃ ,3ς ⊆ Vτ̃+ , (V.69)

where τ̃± = (1± η1)
(√

τ̃ ±
√
τ◦min

)
. We proceed to get bounds for τ̃±.

Let us start with bounding the estimation error of d•1 by d̃•1: it holds√
d̃•1 =

N1s̃
2
1

Z̃
(2)
1

=
Z̃

(1)
1

Z̃
(2)
1

≤ 1 + η1
1− η2

√
d•1 ≤ 2

√
d•1,

where η1 = (d•1)−1/2/3 ≤ 1/3. We deduce

τ̃◦min =
80c20ςu√

d̃•1

≥ 1

2
· 80c20ςu√

d•1
= τ◦min/2,

Furthermore, as η1 ≤ 1/3:
1

1− η1
= 1 +

η1
1− η1

≤ 1 +
1

2
√
d•1
.

Using the previous estimates we obtain

τ̃ :=

1 +
1

2

√
d̃•1

(√τ +
√

6ςτ̃◦min

)2
≥ 1

1− η1

(√
τ +

√
3ςτ◦min

)2
.

It follows :

τ̃− = (1− η1)
(√
τ̃ −

√
3ςτ◦min

)2 ≥ τ.
Now to get an upper bound on τ̃+, similarly to above we have√

d̃•1 ≥
1− η1
1 + η2

d•1 ≥
√
d•1
2

,
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and thus τ̃◦min ≤ 2τ◦min; it follows

τ̃+ = (1 + η1)
(√
τ̃ +

√
3ςτ◦min

)2 ≤ (1 +
1

3
√
d•1

)(
1 +

1√
d•1

)
(
√
τ + 3

√
3ςτ◦min)2

= ξτ,

where ξ := (1 + 1/(3
√
d•1))(1 + 1/

√
d•1)(1 + 3

√
3ςτ◦min/τ)2.

With these estimates in hand the sandwiching property (V.69) implies

Vτ,ς ⊆ ˜̃V τ̃ ,3ς ⊆ Vξτ .
We use this property to apply Proposition (V.7) as earlier, and obtain

R1(ω̃)

s21
≤
(

1 + η

1− η

)
B(ξτ, ν(Vτ,ς)) ≤

(
1 +

1

2
√

mink d•k

)
ξB(τ, ν(Vτ,ς)).

Elementary estimates lead to(
1 +

1

2
√

mink d•k

)
ξ ≤

(
1 +

4√
mink d•k

)(
1 +

900
√
ς log(8Bα−1)

(d•1)
1
4
√
τ

)2

.

Heavy-tailed setting Similarly as in Sup. V.9.4 and V.9.4, we provide in this section estimators of

∥∆k∥2, ∥Σk∥1 and ∥Σk∥2 but for heavy-tailed data. These estimators can be directly used to estimate the

neighbours Vτ,ς and the oracle weights to then apply the testing approach in this setting.

Assumption V.32 (HT, Heavy-tailed setting). For all k ∈ JBK, Pk has a finite fourth moment.

Consider a statistic T (N ;x1, . . . xN ) in R, the Median of Blocks statistics MOBb(T ) for b a divisor of

N is defined by the median of the statistics T a, 1 ≤ a ≤ b built from a b-partition of x1, . . . xN :

MOBk(T ) := Median(T a, 1 ≤ a ≤ b)

where T a = T (N/b;xaN/b+1, . . . x(a+1)N/b). If b does not divide N , it suffices to partition the sample into

sub-samples of size ⌊N/b⌋ and ⌈N/b⌉. If the original estimator is constructed from different samples (e.g.,

(V.16)), each sample is partitioned into b subsamples.

Proposition V.33. Assume (HT) holds, let 0 ≤ u ≤ N and b = ⌈u⌉, let U(X
(1)
• , X

(k)
• ) the estimator

of ∥∆k∥2 defined in (V.16), then, with probability greater than 1− e−u/8:∣∣∣MOBb(U(X
(1)
• , X

(k)
• ))− ∥∆k∥2

∣∣∣ ≤ 4

√
∆T
k

(
Σ1

N1
+

Σk
Nk

)
∆ku+ 4

(
∥Σ1∥2
N1

+
∥Σk∥2
Nk

)
u . (V.70)

In the kernel setting, the statistic U(X
(1)
• , X

(k)
• ) is an estimator of the MMD distance between P1 and

Pk. (Lerasle et al., 2019 proposed a different robust estimator of this quantity called MONK, but we focus

here on the MOB estimator, which has the advantage to be easier to compute and to study.)

Proposition V.34. Assume (HT) holds, let 0 ≤ u ≤ N/4 and b = ⌈u⌉ :

P

[∣∣∣MOBb(Z
(1))− Tr Σ

∣∣∣ ≥ C√Var[∥X1 − µ∥2]u

N
+ C

√
Tr Σ2u

N

]
≤ e−u/8 ,

P

[∣∣∣∣√MOBb(Z(2))−
√

Tr Σ2

∣∣∣∣ ≥ C
√
MXu

N

]
≤ e−u/8 ,

where Z(1) is defined in (V.55), Z(2) in (V.56), C > 0 is an absolute constant andMX = E
[
∥X1 − µ∥4

]
.
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Proposition V.33 and Proposition V.34 are different consequences of Lemma V.35 below. Some more

refined concentration bounds can be derived for MOB-type statistics (see, e.g., Devroye et al., 2016;

Minsker, 2019), but the present results are sufficient to show that in the (HT) setting suitable statistics

satisfy Assumption (TSC) and (V.58)-(V.59).

Proof of Proposition V.33. According to Lemma V.35, we only need compute the variances of the

statistics Ũa,

Var
[
Ũk

]
= 4

√
∆T
k

(
Σ1

N1
+

Σk
Nk

)
∆k + 2 Tr

(
Σ1

N1
+

Σk
Nk

)2

+ 2

(
∥Σ1∥2

N2
1 (N1 − 1)

+
∥Σi∥2

N2
i (Ni − 1)

)

≤ 4

√
∆T
k

(
Σ1

N1
+

Σi
Ni

)
∆k + 4

(
∥Σ1∥2
N1

+
∥Σk∥2
Nk

)
=: ṽ(N1, Ni)

We apply Lemma V.35 with N = N1 +Ni and v(N/u) := ṽ(N1/u,Nk/u).

Proof of Proposition V.34.

For Z(1) the concentration bound is deduced directly from the variance:

Var
[
Z(1)

]
=

Var
[
∥X − µ∥2

]
N

+
2∥Σ∥22

N(N − 1)
.

For Z(2) we can first assume w.l.g. than X is centred. Then Z(2) can be developed as:

(Z(2))2 =
1

N (2)

∑
i ̸=j

⟨Xi, Xj⟩2 −
2

N (3)

∑
i ̸=j ̸=k

⟨Xi, Xj⟩⟨Xi, Xk⟩ −
1

N (4)

∑
i̸=j ̸=k ̸=q

⟨Xi, Xj⟩⟨Xk, Xq⟩ .

where n(p) = n(n− 1) . . . (n− p+ 1) for n ≥ p ∈ N. Let us first compute Var
[
(Z(2))2

]
:

Var
[
(Z(2))2

]
≤ 2

N (2)
E
[
⟨X,X ′⟩4

]
+

4(N − 2)

N (2)
E
[(
XTΣX

)2]
+

4

N (3)

(
(3!)M2

X + 2(N − 3) Tr Σ4
)

+
4!

N (4)
M2
X

≤ C ∥Σ∥
2
∞MX

N
+ C

M2
X

N2

where C > 0 is some absolute constant. Then according to Lemma V.35, for u ≤ N/4, with probability

grater than 1− e−u/8: ∣∣∣MOBb((Z
(2))2)− Tr Σ2

∣∣∣ ≤ C∥Σ∥∞√MXu

N
+ C

MXu

N
, (V.71)

Using that
∣∣∣√(a2 + b)+ − a

∣∣∣ ≤ min
(√
|b|, ba

)
for a ∈ R+ and b ∈ R, (see, e.g., Lemma 15 of Blanchard

and Fermanian, 2023), assuming (V.71), then

∣∣∣MOBb(Z
(2))−

√
Tr Σ2

∣∣∣ ≤ max
ε∈{−1,1}

∣∣∣∣∣∣
√

Tr Σ2 + εC∥Σ∥∞

√
MXu

N
−
√

Tr Σ2

∣∣∣∣∣∣+ C

√
MXu

N

≤ C ∥Σ∥∞√
Tr Σ2

√
MXu

N
+ C

√
MXu

N
≤ C

√
MXu

N
.

Lemma V.35. Let T (N ;x1, . . . xN ) a statistic build from N i.i.d. random variables such that for all

N ≥ N0:

E[T (N ;X1, . . . , XN )] = E[T ], Var[T (N ;X1, . . . , XN )] ≤ v(N),
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where v : R+ → R+ is nonincreasing. Let 1 ≤ u ≤ N/(N0 + 1) and b = ⌈u⌉, then

P

[
|MOBb(T )− E[T ]| ≥

√
4v

(
N

4u

)]
≤ e−u/8 .

Proof of Lemma V.35.

First assume that b|N . Let us denote Ta := T (N/b;x(a−1)N/b+1, . . . xaN/b) for a ∈ JbK. Then for all

a ∈ JbK, by Markov’s inequality:

P
[
|Ta − E[T ]| ≥

√
4v(N/k)

]
≤ 1

4
. (V.72)

Then, |MOBb(T )− E[T ]| ≥
√

4v(N/b) implies that at least b/2 of Ta satisfies

|Ta − E[T ]| ≥
√

4v(N/b) .

By independence of the Ta and Hoeffding’s inequality:

P
[
|MOBb(T )− E[T ]| >

√
4v(N/b)

]
≤ P

[
Bin

(
b,

1

4

)
≥ b

2

]
≤ e−b/8 ,

where Bin denotes the Binomial distribution. Because u ≤ b ≤ u + 1 and v is a noninccreasing function,

we can conclude:

e−b/8 ≤ e−u/8 , v

(
N

b

)
≤ v
(

N

u+ 1

)
≤ v
(
N

4u

)
.

If b ∤ N , equation (V.72) is still verified with v
(⌊
N
b

⌋)
instead of v

(
N
b

)
and:⌊

N

⌈u⌉

⌋
≥ N

⌈u⌉
− 1 ≥ N

2⌈u⌉
if ⌈u⌉ ≤ N/2⌊

N

⌈u⌉

⌋
= 1 ≥ N

2⌈u⌉
if N ≥ ⌈u⌉ > N/2 .

We conclude using that ⌈u⌉ ≤ (u+ 1) ≤ 2u for u ≥ 1.

V.9.5 Proofs for Section V.4

Proof of Proposition V.12 Let ω̂ ∈ arg minω∈SB

(
L̂1(ω) + 16

√
u0Q̂1(ω)

)
. Denote X−1 =

(X
(k)
• )k ̸=1 the observed bag data except for the first bag, which corresponds to the target task.

First step : bound in conditional probability. As a first step, we obtain a high-probability

bound for L1(ω̂). For x ≥ 1, define the event A(x):

A(x) :=



√
qk ≤ c1(x)

√
q̂k + C

s21
de1

√
N1x, 2 ≤ k ≤ B, (a)√

q̂k ≤
(

1 +
√

2x
N1−1

)(√
qk +

s41
d•1
N1 +

s21
de1

√
2N1x

)
, 2 ≤ k ≤ B, (b)∣∣ŝ21 − s21∣∣ ≤ C s21√

d•1N1

x , (c)

∥µ̂NE1 − µ1∥2 ≤ s21 + C
s21√
d•1
x , (d)

|⟨µ̂NEk − µ1, µ̂
NE
1 − µ1⟩| ≤

√
2 qk

N1
x, 2 ≤ k ≤ B, (e)


where qk = (µ̂NEk −µ1)TΣ1(µ̂NEk −µ1) and c1(x) =

√
e exp(x/(N1− 1)). For the whole proof, the notation

C will denote an absolute numeric constant whose value can change between lines. The probability of the

event A conditionally to X (−1) is bounded as:

P
[
Ac(x, y)|X (−1)

]
≤ (6B + 4)e−x. (V.73)
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We combine a union bound with estimates for each individual bound: bounds (a) and (b) are consequences

of Proposition V.37 with ν = µ̂NEk . For (a), we have used that
√
qk ≤

√
qk + Tr Σ2

1/N1. Bound (c) is a

rewriting of Proposition V.26. Bound (d) is a consequence of Lemma V.40 with X = µ̂NE1 − µ1, µ = 0,

Σ = Σ1/N1; bounding
√
x by x, and ∥Σ1∥∞ by

√
Tr Σ2

1. Finally (e) is deduced from Lemma V.39 with

X = ⟨µ̂NEk − µ1, µ̂
NE
1 − µ1⟩, m = 0 and σ2 = qk.

From now on, assume that event A(x) holds. Then,

L1(ω̂) =

∥∥∥∥ B∑
k=1

ω̂k(µ̂NEk − µ̂NE1 ) + (µ̂NE1 − µ1)

∥∥∥∥2

=

∥∥∥∥ B∑
k=2

ω̂k(µ̂NEk − µ̂NE1 )

∥∥∥∥2 + 2

B∑
k=2

ω̂k
〈
µ̂NEk − µ̂NE1 , µ̂NE1 − µ1

〉
+
∥∥µ̂NE1 − µ1

∥∥2
=

∥∥∥∥ B∑
k=2

ω̂k(µ̂NEk − µ̂NE1 )

∥∥∥∥2 + 2

B∑
k=2

ω̂k
〈
µ̂NEk − µ1, µ̂

NE
1 − µ1

〉
+ (2ω̂1 − 1)∥µ̂NE1 − µ1∥2

= L̂1(ω̂) + 2

B∑
k=2

ω̂k
〈
µ̂NEk − µ1, µ̂

NE
1 − µ1

〉
+ (2ω̂1 − 1)

(
∥µ̂NE1 − µ1∥2 − s21

)
+ (2ω̂1 − 1)

(
s21 − ŝ21

)
Using (e) and then (a) for the second term, (d) for the third and (c) for the last, we get:

L1(ω̂) ≤ L̂1(ω̂) + 2c1(x)
√

2x

B∑
k=2

ω̂k

√
q̂k
N1

+ Cs21

(
x√
d•1

+
x

de1

)

≤

(
1 ∨ c1(x)

√
2x

8
√
u0

)
min
ω∈SB

(
L̂1(ω) + 16

√
u0

B∑
k=2

ωk

√
q̂k
N1

)
+ Cs21

x√
d•1
. (V.74)

The appearance of the minimum is a consequence of the definition of ω̂.

Second step : conditional bound in expectation. We can now deduce, from the previous step,

a bound in expectation conditionally to all samples expect the first one. For any fixed ω ∈ SB , we first

want to compare L̂1(ω) to its conditional expectation E
[
L̂1(ω)

∣∣X (−1)
]
which is equal to the conditional

expectation of the loss L1:

E
[
L̂1(ω)

∣∣X (−1)
]

=

∥∥∥∥ B∑
k=2

ωk(µ̂NEk − µ1)

∥∥∥∥2 + ω2
1s

2
1 = E

[
L1(ω)

∣∣X (−1)
]
.

For any fixed ω ∈ SB , as x ≥ 1:

L̂1(ω) =

∥∥∥∥ B∑
k=2

ωk(µ̂NEk − µ̂NE1 )

∥∥∥∥2 + (2ω1 − 1)ŝ21

=

∥∥∥∥ B∑
k=2

ωk(µ̂NEk − µ1) + (1− ω1)(µ1 − µ̂NE1 )

∥∥∥∥2 + (2ω1 − 1)ŝ21

= E
[
L1(ω)|X (−1)

]
+ 2(1− ω1)

B∑
k=2

ωk
〈
µ̂NEk − µ1, µ1 − µ̂NE1

〉
+ (1− ω1)2

(
∥µ̂NE1 − µ1∥2 − s21

)
+ (2ω1 − 1)(ŝ21 − s21)

≤ E
[
L1(ω)|X (−1)

]
+ 2
√

2x

B∑
k=2

ωk

√
qk
N1

+ C
s21x√
d•1
, (V.75)
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using (c), (d), (e) again. From (b), for all k ∈ JBK, and using again x ≥ 1:

√
q̂k ≤

(
1 +

√
2x

N1 − 1

)(√
qk +

s41
d•1
N1 +

s21
de1

√
2N1x

)

≤
(

1 +

√
2x

N1 − 1

)
√
qk + C

(√
x+

x√
N1 − 1

)√
N1

d•1
s21. (V.76)

Then, plugging (V.75) and (V.76) into (V.74) , for all ω ∈ SB , as x ≥ 1:

L1(ω̂) ≤

(
1 ∨ c1(x)

√
2x

8
√
u0

)[
E
[
L1(ω)|X (−1)

]
+

(
2
√

2x+ 16
√
u0

(
1 +

√
2x

N1 − 1

)) B∑
k=2

ωk

√
qk
N1

+
Cs21√
d•1

(
x+ C

√
u0

(√
x+

x√
N1 − 1

))]
.

By rearranging the terms and using that u0 ≤ N1 − 1 and x ≥ 1:

L1(ω̂) ≤

(
1 ∨ c1(x)

√
2x

8
√
u0

)[
E
[
L1(ω)|X (−1)

]
+ C

(√
u0 +

√
x
) B∑
k=2

ωk

√
qk
N1

+
Cs21√
d•1

(
√
u0x+ x)

]
=: ψ(x)P (x)

where ψ(x) := 1 ∨ c1(x)
√
2x

8
√
u0

and P is a degree 2 polynomial in
√
x with coefficients that are constant

conditionally to X (−1). We will denote the shifted version of ψ and P by ψs and Ps, for v ≥ 0:

ψs(v) := ψ(v + log(6B + 4)) , Ps(v) = P (v + log(6B + 4)) . (V.77)

Both notations will be used depending on the case for the sake of readability. So for all v ≥ 0

P
[
L1(ω̂) ≥ ψs(v)Ps(v)|X (−1)

]
≤ e−v.

thanks to (V.73) after taking x = v + log(6B + 4) ≥ 1. Then there exists a random variable ξ following

an exponential distribution of parameter 1 conditionally to X (−1), such that L1(ω̂) ≤ ψs(ξ)Ps(ξ) almost

surely. Let us first simplify the expression of ψ, recalling that by assumption (N1−1)/2 ≥ u0 ≥ log(17B) ≥
1/2 + log(6B + 4) ≥ 1/2 + log(10) ≥ 5/2, then for x ≤ u0:

√
2c1(x) ≤

√
2 exp

(
1

2
+

u0
N1 − 1

)
≤
√

2 exp

(
1

2
+

1

2

)
≤
√

2e ≤ 8.

Thus, for x ≤ u0, ψ(x) = 1. For x ≥ u0, it holds c1(x) ≥
√
e ≥ 1, so that:

ψ(x) ≤ c1(x)
√
x

√
u0

≤ exp

(
1

2
+
x− u0
N1 − 1

+
u0

N1 − 1

)√
x

u0

≤ e exp

(
x− log(6B + 4)

5

)√
x

u0
. (V.78)
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We can now bound the conditional expectation E
[
L1(ω̂)|X (−1)

]
separating the values before and after u0:

E
[
L1(ω̂)|X (−1)

]
≤ E

[
ψs(ξ)Ps(ξ)|X (−1)

]
= E

[
ψs(ξ)Ps(ξ)(1ξ+log(6B+4)≤u0

+ 1ξ+log(6B+4)>u0
)|X (−1)

]
≤ Ps(u0 − log(6B + 4)) + E

[
ψs(ξ)Ps(ξ)1ξ+log(6B+4)>u0

|X (−1)
]

≤ P (u0) + E

e exp(ξ/5)

√
ξ + log(6B + 4)

u0
Ps(ξ)1ξ+log(6B+4)>u0

|X (−1)

 . (V.79)

We have used that P (and Ps) is increasing on R+ (P is a polynomial with positive coefficients) and the

bound (V.78). The second term in (V.79) can be upper bounded using Lemma V.36, as
√
ξ + log(6B + 4)Ps(ξ)

can be seen as a polynomial of degree 3 evaluated in
√
ξ + log(6B + 4). We apply (V.82) to this polyno-

mial with a = log(6B + 4), δ = u0 − log(6B + 4), ρ = 1/5, d = 3 and γ = 1/2. As a ≥ log(10) ≥ 2 and

δ ≥ 1/2, the condition required by Lemma V.82 is satisfied: (δ+a)(1−ρ) ≥ 2 ≥ 3/2 = γd. Then it holds:

E

exp(ξ/5)

√
ξ + log(6B + 4)

u0
Ps(ξ)1ξ+log(6B+4)>u0

|X (−1)


≤ C

√
u0
u0
Ps(u0 − log(6B + 4))e−(4/5)(u0−log(6B+4)) ≤ CP (u0)Be−u0/2 . (V.80)

Combining (V.79) and (V.80) and replacing P (u0) by its value, we obtain:

E
[
L1(ω̂)|X (−1)

]
≤ E

[
L1(ω)|X (−1)

]
(1 + CBe−u0/2) + C

√
u0

B∑
k=2

ωk

√
qk
N1

+ Cs21
u0√
d•1
.

Third step : unconditional bound. We now simply take the expectation with respect to X (−1).

From the previous bound, using Jensen’s inequality, for all ω ∈ SB :

E[L1(ω̂)] ≤ E[L1(ω)](1 + CBe−u0/2) + C
√
u0

B∑
k=2

ωk

√
E[qk]

N1
+ Cs21

u0√
d•1
.

We obtain (V.33) as E[qk] = qk.

Lemma V.36. Let ξ ∼ E(1) be an exponential random variable, and ρ, a, δ be positive real numbers.

Then for all p ≥ 0 such that p < (δ + a)(1− ρ), it holds:

E
[
(ξ + a)peρξ1ξ≥δ

]
≤
(

1− ρ− p

a+ δ

)−1

(δ + a)pe−δ(1−ρ) . (V.81)

Let P a polynomial of degree d and γ > 0 such that γd < (δ + a)(1− ρ), then:

E
[
P ((ξ + a)γ)eρξ1ξ≥δ

]
≤
(

1− ρ− dγ

a+ δ

)−1

P ((δ + a)γ)e−δ(1−ρ) . (V.82)

Proof. As p < (δ + a)(1− ρ), then p < (δ + a)(1− ρ− ε) for all ε < 1− ρ− p/(a + δ). The function

x 7→ F (x) := (x + a)pe(ρ−(1−ε))x on R+ attains its maximum in x∗ := p(1− ρ− ε)−1 − a and then

decreases to 0. As x∗ < δ, we have F (x) ≤ F (δ) for all x ≥ δ, thus:

E
[
(ξ + a)peρξ1ξ≥δ

]
= E

[
F (ξ)e(1−ε)ξ1ξ≥δ

]
≤ F (δ)E

[
e(1−ε)ξ1ξ≥δ

]
= (δ + a)pe−(1−ρ)δε−1 .

As the inequality is true for all ε < 1 − ρ − p/(a + δ) we get (V.81). Equation (V.82) is obtained by

applying (V.81) to each of the monomials of degree k ≤ d as kγ ≤ dγ < (δ+a)(1−ρ), upper bounding

the first factor and summing.
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Proofs of Corollary V.15 and Corollary V.13

Proof of Corollary V.15 According to Proposition V.12, for B = 2, µ2 = 0 and Σ2 = 0; for all

ω1 ∈ (0, 1):

R1(ω̂) ≤
(
(1− ω1)2∥µ1∥2 + ω1s

2
1 + 2(1− ω1)η

)
(1 + Ce−u0/2) + Cs21

√
u0
de1
, ,

where η = C ∥µ1∥s1√
de1

√
u0. Let us choose ω1 = min

(
∥µ1∥2+η
∥µ1∥2+s21

, 1
)
. Then if η ≤ s21:

R1(ω̂) ≤ (1 + Ce−u0/2)
∥µ1∥2s21 + 2s21η − η2

∥µ1∥2 + s21
+ Cs21

√
u0
de1

≤ (1 + Ce−u0/2)
∥µ1∥2s21
∥µ1∥2 + s21

+ Cs21

√
u0
de1

2∥µ1∥s1
∥µ1∥2 + s21

+ Cs21

√
u0
de1

≤ (1 + Ce−u0/2)
∥µ1∥2s21
∥µ1∥2 + s21

+ Cs21

√
u0
de1
,

where we have used that 2ab ≤ a2 + b2. Otherwise, if η ≥ s21:

R1(ω̂) ≤ s21(1 + Ce−u0/2) + Cs21

√
u0
de1

≤ (1 + Ce−u0/2)
∥µ1∥2s21
∥µ1∥2 + s21

+ (1 + Ce−u0/2)
s41

∥µ1∥2 + s21
+ Cs21

√
u0
de1
.

We conclude using that s21 ≤ C
∥µ1∥2

de1
u0 in this case.

Proof of Corollary V.13. Let τ ≥ 0, ς ≥ 1 be fixed. Let k be an element of Vτ,ς = W(ς) ∩ Vτ
with k ̸= 1. We start by upper bounding qk, with qk defined in (V.34). Since k ∈ W(ς), it holds

Tr Σ2
k ≤ ς2

N2
k

N2
1

Tr Σ2
1, so that

Tr Σ1Σk ≤
1

2

(
Nk
N1

Tr Σ2
1 +

N1

Nk
Tr Σ2

k

)
≤ 1 + ς2

2

Nk
N1

Tr Σ2
1

≤ Nk
N1

(1 + ς2)(Tr Σ1)2

2d•1

= NkN1
ς2s41
d•1

.

Since k ∈ Vτ , it holds
∆T
k Σ1∆k

N1
≤
∥Σ1∥∞
N1

∥∆k∥2 ≤
Tr Σ1

N1

1

de1
τs21 =

τs41
de1

.

Joining these estimates, we get

qk
N1
≤ ∆T

k Σ1∆k

N1
+

Tr Σ1Σk
N1Nk

≤ s41
(
τ

de1
+
ς2

d•1

)
.

Therefore, for ω a vector of the simplex SB having support in W (ς) ∩ Vτ , using de1 ≤ d•1 it holds

Q1(ω) =
∑
k≥2

ωk

√
qk
N1
≤ (1− ω1)

√
τ + ς2

s21√
de1
. (V.83)
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We now choose the weight vector ω∗ = ω∗
Vτ,c

given by the oracle weights of (V.13), for the set V = Vτ,ς .

From Lemma V.6, this gives rise to R1(ω∗) ≤ B(τ, ν), where ν = ν(Vτ,ς); furthermore we have the explicit

expression

(1− ω∗
1) = λ(1− ν), where λ =

1

1 + τ(1− ν)
,

so that it holds (since ν ∈ [0, 1])

(1− ω∗
1)
√
τ =

(1− ν)
√
τ

1 + τ(1− ν)
≤ max

(
τ(1− ν)

1 + τ(1− ν)
,

√
τ(1− ν)

1 +
√
τ(1− ν)

)
≤ 1.

Plugging this into (V.83), we get Q1(ω∗) ≤ 2ςs21/
√
de1, then (V.35) since the obtained estimate holds for

any τ ≥ 0, ς ≥ 1.

Proof of Proposition V.16 We follow the same general canvas as in the proof of Proposition V.12.

First step : bound in conditional probability. Let us recall the definitions of QBS(ω) and q̂k:

Q̂BS(ω) :=
M

N1

B∑
k=2

ωk∥µ̂NEk − µ̂NE1 ∥, q̂k =
1

N1 − 1

N1∑
p=1

〈
µ̂NEk − µ̂NE1 , X(1)

p − µ̂NE1
〉2
.

We will need the following quantity q̂′k which is close to q̂k but easier to control:

q̂′k =
1

N1 − 1

N1∑
p=1

〈
µ̂NEk − µ1, X

(1)
p − µ̂NE1

〉2
.

The estimated weight vector ω̂ for the estimation of µ1 is chosen as

ω̂ ∈ Arg Min
ω∈SB

(
L̂1(ω) + 4

√
2u0Q̂1(ω) + 1424u0Q̂(ω)BS

)
.

Let u := u0 − logB, and define the events:

A1 =

{
∥µ̂NEk − µ1∥Σ1 ≤ 2

√
q̂′k + 711

∥µ̂NEk − µ1∥M√
N1

(u+ logB), 2 ≤ k ≤ B
}
,

A2 =

{∣∣∥µ̂NE1 − µ1∥2 − ŝ21
∣∣ ≤ C s21√

d•1
u+ C

M2

N2
1

u2

}
,

and

A3 =

{〈
µ̂NEk − µ1, µ̂

NE
1 − µ1

〉
≤
√

2
u+ logB

N1
∥µ̂NEk −µ1∥Σ1 +

2∥µ̂NEk − µ1∥M
3N1

(u+logB), 2 ≤ k ≤ B

}
,

where we recall that for ν a vector and Σ an operator, ∥ν∥2Σ := ⟨ν,Σν⟩. For i ∈ {1, 3}, P
[
Ai|X (−1)

]
≥

1 − e−u and P
[
A2|X (−1)

]
≥ 1 − 2e−u because of Proposition V.38 for A1, Lemma V.42 for A3 and for

A2, because ∥µ̂NE1 − µ1∥2 − ŝ21 is a U-statistic:

∥µ̂NE1 − µ1∥2 − ŝ21 =
1

N1(N1 − 1)

N1∑
ℓ̸=p=1

〈
X

(1)
ℓ − µ1, X

(1)
p − µ1

〉
, (V.84)

the concentration is a direct consequence of Houdré and Reynaud-Bouret (2003) (or see Proposition IV.9).

Then the event A = A1 ∩A2 ∩A3 conditionally to X (−1) is of probability greater than 1− 4e−u.

The differences between respectively q̂k and q̂′k for k ∈ JBK can be bounded independently of k :∣∣∣∣√q̂k −√q̂′k∣∣∣∣ ≤
√√√√ 1

N1(N1 − 1)

N1∑
p=1

⟨µ̂NE1 − µ1, Xp − µ̂NE1 ⟩
2

=: ∆q. (V.85)
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Assume A, then:

L1(ω̂) = L̂1(ω̂) + 2

B∑
k=2

ω̂k
〈
µ̂NEk − µ1, µ̂

NE
1 − µ1

〉
+ (2ω̂1 − 1)

(
∥µ̂NE1 − µ1∥2 − ŝ21

)
≤ L̂1(ω̂) + 2

B∑
k=2

ω̂k

(√
2
u+ logB

N1
∥µ̂NEk − µ1∥Σ1 +

2∥µ̂NEk − µ1∥M
3N1

(u+ logB)

)

+
Cs21√
d•1
u+

CM2

N2
1

u2,

where we have used the events A2 and A3. Then using the event A1, the bound (V.85) and a triangle

inequality we get:

L1(ω̂) ≤ L̂1(ω̂) + 4
√

logB + u

B∑
k=2

ω̂k

√
2q̂k
N1

+ 1424(logB + u)

B∑
k=2

ω̂k
M∥µ̂NEk − µ̂NE1 ∥

N1

+ C
∆q√
N1

√
logB + u+ C

∥µ̂NE1 − µ1∥M
N1

(logB + u) +
Cs21√
d•1
u+

CM2

N2
1

u2.

Using the choice of ω̂, conditionally to A:

L1(ω̂) ≤ min
ω∈SB

(
L̂1(ω) + 4

√
2u0Q̂(ω) + 1424u0Q̂

BS(ω)
)

+ C
∆q√
N1

√
logB + u+ C

∥µ̂NE1 − µ1∥M
N1

(logB + u) +
Cs21√
d•1
u+

CM2

N2
1

u2.

Second and third steps: bound in expectation. Let us bound some expectation using Jensen’s

inequality:

E
[√

q̂′k

]
≤

√
∥µk − µ1∥2Σ1

+
Tr(Σ1Σk)

Nk
, E[∆q] ≤ M

√
Tr Σ1

N1
+

√
Tr Σ2

1√
N1

. (V.86)

The expectation of
√
q̂k can be bounded using that

√
q̂k ≤

√
q̂′k + ∆q. We can now bound the risk. Let

ω ∈ SB :

R1(ω̂) ≤ E[L1(ω̂)1A] +M2P[Ac]

≤ L1(ω) + 4
√

2u0

B∑
k=2

ωk
E
[√

q̂k

]
√
N1

+ 1424u0

B∑
k=2

ωk
M(∥µk − µ1∥+ s1 + sk)

N1

+ C
E[∆q]√
N1

√
logB + u+ C

s1M

N1
(logB + u) + C

s21√
d•1
u+ C

M2

N2
1

u2 + 3M2e−u

Because u ≥ 2 logN1, the last term is upper bounded by the previous one. Using (V.86) and by bringing

together the terms:

R1(ω̂) ≤ R1(ω) + 4
√

2(logB + u)Q(ω) + 1424(logB + u)

B∑
k=2

ωk
M(∥µk − µ1∥+ sk)

N1

+ C
s21√
d•1

(u+
√

logB + u) + C
Ms1
N1

(logB + u) + C
M2

N2
1

u2 , (V.87)

where Q is defined in (V.34). Let τ, ς > 0 and ω∗ = ω∗
Vτ,ς

be defined as in (V.13). Then as in the proof

of Corollary V.13:

R1(ω∗) = s21B(τ, ν(Vτ,ς)) , Q(ω∗) ≤ C

√
1 + ς2

de1
s21. (V.88)
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Up to bound the third term in the upper bound (V.87), let us bound s2k for k ∈ Vτ,ς . On the one hand:

s2k =
Tr Σk
Nk

≤ 4M2

Nk
= 4 Tr Σ1

ϕ1

Nk
= 4s21

ϕ1N1

Nk
.

On the other hand, as k ∈ Vτ,ς ⊂W(ς):

s2k =
Tr Σk
Nk

=
√
d•k

√
Tr Σ2

k

Nk
≤
√
d•kς

√
Tr Σ2

1

N1
= s21ς

√
d•k
d•1
.

Combining these two bounds:

s2k ≤ 4s21 min

(
ϕ1N1

Nk
, ς

√
d•k
d•1

)
.

As we assume Nk ≥ (d•k)β , for k ∈ Vτ,ς :

s2k ≤ 4s21 min

(
ϕ1N1

(d•k)β
, ς

√
d•k
d•1

)
≤ 4s21 max

d≥1
min

(
ϕ1N1

dβ
, ς

√
d

d•1

)
= 4s21(ϕ1N1)

1
1+2β

(
ς√
d•1

) 2β
1+2β

.

We can now bound the third term in (V.87). As ω∗
k = 0 for k /∈ Vτ,ς :

B∑
k=2

ω∗
k

M(∥µk − µ1∥+ sk)

N1
≤ M

N1
(1− ω∗

1)

√τs1 + 2s1(ϕ1N1)
1

2(1+2β)

(
ς√
d•1

) β
1+2β


≤ s21

(1− ω∗
1)

√
τϕ1

N1
+ 2ϕ

1+β
1+2β

1

(
ς

N1

√
d•1

) β
1+2β

 .

As N1 ≥ (d•1)β and (1− ω∗
1)
√
τ ≤ 1 (by definition of ω∗

1), we get:

B∑
k=2

ω∗
k

M(∥µk − µ1∥+ sk)

N1
≤ 2s21

 √
ϕ1

(d•1)β/2
+

ϕ
1+β
1+2β

1 ς
β

1+2β

(d•1)β/2

. (V.89)

Injecting the bounds (V.88) and (V.89) into (V.87) leads to:

R1(ω̂)

s21
≤ min
τ>0,ς>0

B(τ, ν(Vτ,ς)) + Cς

√
u0
de1

+ Cu0
ϕ

1+β
1+2β

1 ς
β

1+2β

(d•1)β/2


+ Cu0

√
ϕ1

(d•1)β/2
+ C

√
u0
de1

+ C
u0√
d•1

+ C
u0
√
ϕ1√
N1

+ C
ϕ1u

2

N1

≤ min
τ>0,ς>0

B(τ, ν(Vτ,ς)) + Cς

√
u0
de1

+ Cu0
ϕ

1+β
1+2β

1 ς
β

1+2β

(d•1)β/2

+ C

√
u0
de1

+ C
u0ϕ1

(d•1)β/2
.

As ϕ
1+β
1+2β

1 ς
β

1+2β ≤ max(ϕ1, ς) ≤ ϕ1 + ς, we obtain:

R1(ω̂)

s21
≤ min
τ>0,ς>0

(
B(τ, ν(Vτ,ς)) + Cς max

(√
u0
de1
,

u0
(d•1)β/2

))
+ C

√
u0
de1

+ C
u0ϕ1

(d•1)β/2
.

135



V.9.6 Concentration inequalities

Concentration for q̂. Consider first the Gaussian setting (GS).

Proposition V.37. Let X1, . . . , XN i.i.d. Gaussian random vectors of distribution N (µ1,Σ1) and

ν ∈ Rd. Let q̂ = 1
N−1

∑N
k=1⟨µ̂NE1 − ν,Xk − µ̂NE1 ⟩

2
, then for all x ≥ 0:

P

[√
q̂ ≥

(
1 +

√
2x

N − 1

)(√
∥µ1 − ν∥2Σ1

+
Tr Σ2

1

N
+ ∥Σ1∥∞

√
2x

N

)]
≤ 2e−x , (V.90)

and

P

[√
q̂ ≤ e−1/2−x/(N−1)

(√
∥µ1 − ν∥2Σ1

+
Tr Σ2

1

N
− 2∥Σ1∥∞

√
2x

N

)]
≤ 2e−x , (V.91)

where ∥µ1 − ν∥2Σ1
= (µ1 − ν)TΣ1(µ1 − ν).

Proof. Let us consider the random vector Z ∈ RN with Zk = ⟨µ̂NE1 − ν,Xk − µ̂NE1 ⟩, then q̂ = ∥Z∥2N/(N−
1), where ∥·∥N is the Euclidian norm in RN . Conditionally to µ̂NE1 , Z is a Gaussian vector of distribution

N (0, e(µ̂NE1 )Γ), where e(µ̂NE1 ) = (µ̂NE1 −ν)TΣ1(µ̂NE1 −ν) and Γ = IN−1N1TN/N with 1N = (1, . . . , 1) ∈ RN .

The eigenvalues of Γ are 1 with multiplicity N−1 and 0. So ∥Z∥2/e(µ̂NE1 ) has a χ2(N−1) distribution.

Then conditionally to µ̂NE1 :

q̂ =
∥Z∥2

N − 1
∼ e(µ̂NE1 )

N − 1
χ2(N − 1) .

Then according to Lemma V.40 and Lemma V.41, for all x ≥ 0:

P

[√
q̂

e(µ̂NE1 )
≥ 1 +

√
2x

N − 1

∣∣∣µ̂NE1
]
≤ e−x , P

[√
q̂

e(µ̂NE1 )
≤ e−1/2e−x/(N−1)

∣∣∣µ̂NE1
]
≤ e−x.

Let g = Σ
1/2
1 (µ̂NE − ν) ∼ N (Σ

1/2
1 (µ1 − ν),Σ2

1/N), as ∥g∥2 = e(µ̂NE1 ), from Lemma V.40 with Σ
1/2
1 (µ1 −

ν)→ µ and Σ2
1/N → Σ, we get that for all x ≥ 0:

P

[√
e(µ̂NE1 ) ≥

√
(µ1 − ν)TΣ1(µ1 − ν) +

Tr Σ2
1

N
+ ∥Σ1∥∞

√
2x

N

]
≤ e−x ,

P

[√
e(µ̂NE1 ) ≤

√
(µ1 − ν)TΣ1(µ1 − ν) +

Tr Σ2
1

N
− 2∥Σ1∥∞

√
2x

N

]
≤ e−x .

We have used that for all µ ∈ Rd, Σ ∈ Rd×d and x ≥ 0:(√
∥µ∥2 + Tr Σ +

√
2∥Σ∥∞x

)2
≥
(
∥µ∥2 + Tr Σ

)
+ 2
√

(Tr Σ2 + 2µTΣµ)x+ 2∥Σ∥∞x ,(√
∥µ∥2 + Tr Σ− 2

√
2∥Σ∥∞x

)2
+
≤
((
∥µ∥2 + Tr Σ

)
− 2
√

(Tr Σ2 + 2µTΣµ)x

)
+

,

as (a− b)2+ ≤ (a2 − ab)+ for a, b > 0.

Equations (V.90) and (V.91) are obtained by combining these concentration inequalities.

In the bounded setting (BS), Proposition V.38 gives a concentration bound for q̂′, which is a slightly

different statistic from q̂ because we consider µ1 − ν known for q̂′.

Proposition V.38. Assume (BS), let ν ∈ Rd and q̂′ = 1
N−1

∑N
k=1⟨µ1 − ν,Xk − µ̂NE1 ⟩

2
. Then for all

u ≥ 1:

P
[
2
√
q̂′ ≤

√
(µ1 − ν)Σ1(µ1 − ν)− 711

∥µ1 − ν∥M√
N − 1

u

]
≤ e−u.
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Proof. Let us first denote δ := µ1 − ν and Z ′ :=
√
q̂′. We are going to use Talagrand’s inequality

(Theorem V.43). So let us first rewrite Z ′:

Z ′ = sup
∥v∥N=1

1√
N − 1

N∑
k=1

vk
〈
δ,Xk − µ̂NE1

〉
= sup

∥v∥N=1

1√
N − 1

N∑
k=1

⟨δ,Xk − µ1⟩

(
vk −

1

N

N∑
q=1

vq

)
.

Let T = {v ∈ RN , ∥v∥N = 1} (or a countable dense subset) and define for v ∈ T :

Xv
k :=

1√
N − 1

⟨δ,Xk − µ1⟩

(
vk −

1

N

N∑
q=1

vq

)
,

then:

|Xv
k | ≤

2∥δ∥M√
N − 1

, sup
v∈T

N∑
k=1

E
[
(Xv

k )2
]
≤ δTΣδ

N − 1
≤ 4∥δ∥2M2

N − 1
.

Using Theorem V.43, with probability greater than 1− e−u, u ≥ 1:

Z ′ ≥ E[Z ′](1− ε)− C(ε)
∥δ∥M√
N − 1

u ,

where C(ε) = 8(2 + ε−1) for some ε > 0. We just need to lower bound E[Z ′] by
√
E[(Z ′)2] =

√
δTΣ1δ.

For that, using again Talagrand’s inequality, it exists an exponential random variable ξ ∼ E(1) such

that:

Z ′ ≤ E[Z ′](1 + ε) + C(ε)
∥δ∥M√
N − 1

ξ

Then:

E
[
(Z ′)2

]
≤ E

[(
E[Z ′](1 + ε) + C(ε)

∥δ∥M√
N − 1

ξ

)2
]

≤
(
E[Z ′](1 + ε) +

√
2C(ε)

∥δ∥M√
N − 1

)2

,

and we get that (1 + ε)E[Z ′] ≥
√
E[(Z ′)2] −

√
2C(ε) ∥δ∥M√

N−1
. Putting together the two bounds, we get

a first lower bound for Z ′: for u ≥ 1 and probability greater than 1− e−u:

Z ′ ≥
√
δTΣ1δ

1− ε
1 + ε

− C(ε)

(√
2

1− ε
1 + ε

+ 1

)
∥δ∥M√
N − 1

u . (V.92)

Let us choose ε = 1/3 to conclude.

Classical concentration inequalities for Gaussian random variables.

Lemma V.39. Let X ∼ N (m,σ2), then for all x ≥ 0:

P
[
|X −m| ≥

√
2σ2x

]
≤ 2e−x

Proof. It is a direct consequence of the Chernoff bound (Chernoff, 1952).
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Lemma V.40. [Concentration of Gaussian vectors] Let X ∼ N (µ,Σ), then for all x ≥ 0:

P
[
∥X∥2 ≥

(
∥µ∥2 + Tr Σ

)
+ 2
√

(Tr Σ2 + 2µTΣµ)x+ 2∥Σ∥∞x
]
≤ e−x ,

P
[
∥X∥2 ≤

(
∥µ∥2 + Tr Σ

)
− 2
√

(Tr Σ2 + 2µTΣµ)x

]
≤ e−x ,

The above is a reformulation of Lemma 2 in Laurent et al. (2012) and can be seen as a consequence

of combining the arguments of Lemma 1 of Laurent and Massart (2000) and Lemma 8.1 of Birgé (2001).

Lemma V.41. [Lower bound for χ2] Let Z ∼ χ2(n), then for all x ≥ 0:

P
[
Z ≤ ne−(1+2x/n)

]
≤ e−x .

Moreover, for all x ≥ 0:

P
[
Z ≤ ne−2(

√
x/n+x/n)

]
≤ e−x .

Proof. Let δ ∈ (0, 1), λ ∈ R+:

P[Z ≤ nδ] = P
[
e−λZ ≥ e−nλδ

]
≤ E

[
e−λZ

]
enλδ = exp

(
−n

2
(log(1 + 2λ)− 2λδ)

)
where the inequality is due to Markov. Fix λ = (−1 + δ−1)/2 > 0, then:

P[Z ≤ nδ] ≤ exp
(
−n

2
(− log(δ) + δ − 1)

)
≤ exp

(
−n

2
(− log(δ)− 1)

)
Let us choose δ = exp(−1− 2x/n) to obtain the first concentration bound. For the second one, we

can choose δ = exp
(
−2
√
x/n− 2x/n

)
and then:

− log(δ) + δ − 1 = 2
√
x/n+ 2x/n+ exp

(
−2
√
x/n− 2x/n

)
− 1 ≥ 2x/n .

The inequality is trivially verified for 2
√
x/n ≥ 1 and otherwise we can use that −u−u2/2 ≥ log(1−u)

with u = 2
√
x/n.

Classical concentration inequalities for bounded random variables.

Lemma V.42. [Bernstein’s concentration inequality] Let X1, . . . , XN i.i.d. real centred random vari-

ables bounded by M such that E
[
X2

1

]
≤ σ2, then for all x ≥ 0:

P

[
N∑
i=1

Xi ≥
√

2Nσ2x+
2Mx

3

]
≤ e−x

Proof. See for instance Vershynin (2018), Exercise 2.8.5.

Theorem V.43. [Talagrand’s inequality] Let Xt
1, ..., X

t
n independant random variables indexed by

t ∈ T (T countable) in R and L > 0 such that for all t ∈ T , i ≤ n,

E
[
Xt
i

]
= 0 , |Xt

i | ≤ L (V.93)

Let

Z := sup
t∈T

n∑
i=1

Xt
i , σ2 = sup

t∈T

n∑
i=1

E
[
(Xt

i )
2
]

then for all x ≥ 0 and ε ∈ (0, 1):

P
[
Z ≥ E[Z](1 + ε) + 2

√
2σ2x+ 2Lx(1 + 8ε−1)

]
≤ e−x (V.94)

P
[
Z ≤ E[Z](1− ε)− 2

√
4σ2x− 4Lx(1 + 8ε−1)

]
≤ e−x (V.95)

Proof. See for instance Massart (2000).
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V.9.7 Proofs for Section V.5

Proof of Proposition V.18 This proof follows the same scheme as the Pinsker’s bound (Pinsker,

1980 or see Tsybakov, 2008 for a recent version).

The proof is provided for V = B but can be directly adapted for V < B by assuming µk independent

of µ1 for k > V when constructing the distribution Q (V.97).

Let us first restrict ourselves to the case where µ1 is in a ball around 0:

inf
µ̂1

sup
µi∈B(µ1,

√
τs1)

R1(µ̂1) ≥ inf
µ̂1

sup
µ1∈B(0,

√
βs1)

µi∈B(µ1,
√
τs1)

R1(µ̂1).

Then the infimum over the estimators is now attained for an estimator µ̂1 bounded by 2
√
βs1. Indeed, any

estimator µ̂ further perform less well than the deterministic estimator µ̂ = 0. If ∥µ̂∥ > 2
√
βs1:

∥µ̂− µ1∥ ≥ ∥µ̂∥ − ∥µ1∥ >
√
βs1 > ∥0− µ1∥ . (V.96)

We introduce now the probability measure Q:

µ1
Q∼ N (0, αβs21Σ) , µ2 = . . . = µB = µ◦

Q∼ N (µ1, ατs
2
1Σ) , (V.97)

where β > 0 and α ∈ (0, 1). Let A be the event {∥µ1∥2 ≤ βs21, ∥µ◦ − µ1∥2 ≤ τs21} and EQ denote the

expectation over the distribution Q, then:

inf
µ̂1

sup
µi∈B(µ1,τs1)

R1(µ̂1) ≥ inf
µ̂1:∥µ̂1∥≤2

√
βs1

sup
µ1∈B(0,

√
βs1)

µi∈B(µ1,
√
τs1)

R1(µ̂1) (V.98)

≥ inf
µ̂1:∥µ̂1∥≤2

√
βs1

1

Q(A)

∫
A

R1(µ̂1)dQ(ν, µ1, . . . , µB)

≥ inf
µ̂1

EQ[R1(µ̂1)]− sup
µ̂1:∥µ̂1∥≤2

√
βs1

EQ[R1(µ̂1)1Ac ]

=: I − r ,

Let us now bound I and r.

Lower bound for I : The first infimum (term I) is attained for µ̂1 = E
[
µ1|X(1)

• , . . . , X
(B)
•

]
. Let us

calculate µ̂1.

E
[
µ1|µ◦, X

(1)
• , . . . , X

(B)
•

]
= E

[
µ1|µ◦, X

(1)
•

]
=
(
(αβ)−1 + 1 + (ατ)−1

)−1
(
µ̂NE1 +

1

ατ
µ◦

)
,

E
[
µ◦|µ1, X

(1)
• , . . . , X

(B)
•

]
=
(
(ατ)−1 + ∥ρ∥2

)−1

(
1

ατ
µ1 +

B∑
k=2

ρ2kµ̂
NE
k

)

where ρ = (s1/sk)k ̸=1 and ∥ρ∥2 =
∑B
k=2 ρ

2
k. Combining these two expressions we get:

E
[
µ1|X(1)

• , . . . , X
(B)
•

]
=
(
(αβ)−1 + 1 + (ατ)−1

)−1

×

(
µ̂NE1 +

1

ατ

(
(ατ)−1 + ∥ρ∥2

)−1

(
1

ατ
E
[
µ1|X(1)

• , . . . , X
(B)
•

]
+

B∑
k=2

ρ2kµ̂
NE
k

))
,

and then:

E
[
µ1|X(1)

• , . . . , X
(B)
•

]
=

(
(αβ)−1 + 1 +

∥ρ∥2

1 + ατ∥ρ∥2

)−1
(
µ̂NE1 +

1

1 + ατ∥ρ∥2
B∑
k=2

ρ2kµ̂
NE
k

)
,
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Let us first notice that:

E
[
µ1|X(·)

•

]
− µ1 =

(
(αβ)−1 + 1 +

∥ρ∥2

1 + ατ∥ρ∥2

)−1

×

[
(µ̂NE1 − µ1) +

1

1 + ατ∥ρ∥2
B∑
k=2

ρ2k(µ̂NEk − µ◦) +
∥ρ∥2

1 + ατ∥ρ∥2
(µ◦ − µ1)− 1

αβ
µ1

]
Using that µ̂NE1 − µ1, µ̂

NE
k − µ◦ (for k ̸= 1), µ◦ − µ1 and µ1 are pairwise independent we get that:

E
[
∥µ̂1 − µ1∥2

]
s21

=

(
(αβ)−1 + 1 +

∥ρ∥2

1 + ατ∥ρ∥2

)−2

×

[
1 +

1

(1 + ατ∥ρ∥2)2

B∑
k=2

ρ4kρ
−2
k +

ατ∥ρ∥4

(1 + ατ∥ρ∥2)2
+

1

αβ

]
After simplification:

I = s21

(
(αβ)−1 + 1 +

∥ρ∥2

1 + ατ∥ρ∥2

)−1

(V.99)

Upper bound for r: Using the triangle and Cauchy-Schwartz inequalities we have:

r = sup
µ̂1:∥µ̂1∥≤2

√
βs1

E
[
∥µ̂1(X

(k)
• , k ∈ JBK)− µ1∥21Ac

]
(V.100)

≤ E
[
2
(
4βs21 + ∥µ1∥2

)
1Ac

]
≤ 8βs21P[Ac] + 2

√
E[∥µ1∥4]P[Ac]

≤ 2s21

(
4β +

√
3αβ

)√
P[Ac] ≤ 20βs21

√
P[Ac]

It stays to show the exponential decrease of P[Ac]. Let ξ ∼ N (0,Σ):

P
[
∥µ1∥2 ≥ βs21

]
= P

[
∥µ◦ − µ1∥2 ≥ τs21

]
= P

[
∥ξ∥2 ≥ α−1

]
≤ exp

(
−d

e
1

2

(√
2

α
− 1− 1

))
.

This follows from the concentration of the norm of Gaussian vectors (Lemma V.40). By union bound we

get that:

r ≤ 30s21β exp

(
−d

e
1

4

(√
2

α
− 1− 1

))
.

Conclusion :

The lower bound finally obtained is :

inf
µ̂1

sup
µi∈B(µ1,τs1)

R1(µ̂1)

s21
≥
(

(αβ)−1 + 1 +
∥ρ∥2

1 + ατ∥ρ∥2

)−1

− 30β exp

(
−d

e
1

4

(√
2

α
− 1− 1

))
,

where α ∈ (0, 1) and β ∈ R+ are two free parameters. We can choose β = de1/ log de1 and α = 2
1+(1+8β−1)2 ,

then:

β exp

(
−d

e
1

4

(√
2

α
− 1− 1

))
= β exp

(
−2de1

β

)
=

1

de1 log de1(
(αβ)−1 + 1 +

∥ρ∥2

1 + ατ∥ρ∥2

)−1

−
(

1 +
∥ρ∥2

1 + ατ∥ρ∥2

)−1

≥ −(αβ)−1 ≥ −41
log de1
de1

.
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and (
1 +

∥ρ∥2

1 + ατ∥ρ∥2

)−1

−
(

1 +
∥ρ∥2

1 + τ∥ρ∥2

)−1

= −(1− α)
τ∥ρ∥2

1 + τ∥ρ∥2

∥ρ∥2

1+ατ∥ρ∥2

1 + ∥ρ∥2

1+ατ∥ρ∥2

1

1 + ∥ρ∥2

1+τ∥ρ∥2

≥ −(1− α) ≥ −40
log de1
de1

where we recall ∥ρ∥2 =
∑B
i=1

s21
s2i
− 1 = (ν(Vτ ))

−1 − 1. Hence:(
1 +

∥ρ∥2

1 + τ∥ρ∥2

)−1

= B(τ, ν(Vτ ))

By combining these three inequalities, we get that:

inf
µ̂1

sup
µi∈B(µ1,τs1)

R1(µ̂1)

s21
≥ B(τ, ν(Vτ ))− 111

log de1
de1

Proof of Proposition V.20 Let C be a fixed J-partition of the means (µk)k∈JBK and denote

ζ = diam(C). Let us focus first on a specific group j ∈ JJK and task k ∈ Cj . Denote τj,k = ζ2j /s
2
k and

νj,k = s2(Cj)/s2k. Consider the vector of oracle weights ω∗
k given by (V.13), wherein the target task 1 is

replaced by k everywhere, and the subset of neighbouring tasks is taken as Cj ⊆ Vτj,k . Lemma V.6 then

states Rk(ω∗
k)/s2k ≤ B(τj,k, νj,k). As a consequence, according to Proposition V.12, it holds

Rk(ω̂k)

s2k
≤ (1 + CBe−u0)

(
B(τj,k, νj,k) + C

√
u0
Qk(ω∗

k)

s2k

)
+ C

u0√
d•1
.

The rest of the proof is dedicated to bounding the terms Qk(ω∗
k)s−1

k (and their sum over k ∈ Cj). Denote
ω∗
k,ℓ the ℓ-th component of ω∗

k. It holds

Qk(ω∗
k)

s2k
= s−2

k

∑
ℓ∈Cj\{k}

ω∗
k,ℓ

√
(µℓ − µk)TΣk(µℓ − µk)

Nk
+

Tr ΣℓΣk
NℓNk

≤ s−2
k

∑
ℓ∈Cj\{k}

ω∗
k,ℓ

∥Σk∥1/2∞√
Nk

√
ζ2j + s2ℓ

≤ 1√
dek

(
(1− ω∗

k,k)
√
τj,k +

νj,ksk
1 + τj,k(1− νj,k)

∑
ℓ∈Cj\{k}

s−1
ℓ

)

≤ 1√
dek

(
(1− ω∗

k,k)
√
τj,k + νj,ksk

∑
ℓ∈Cj

s−1
ℓ

)
, (V.101)

where we have used: ∥µℓ − µk∥ ≤ ζj as tasks k and ℓ are in the group Cj ; (∥Σk∥∞/Nk)1/2 = sk/
√
dek;

and the explicit expression (V.13) for the oracle weights ω∗
k,ℓ for group Cj . For the first term of (V.101),

for all k ∈ Cj we have:

(1− ω∗
k,k)
√
τj,k =

1− νj,k
1 + τj,k(1− νj,k)

√
τj,k ≤

√
τj,k

1 + τj,k
≤ 1 .

For the second term of (V.101), introduce the vector ρ := (s−1
ℓ )ℓ∈Cj and observe that νj,k = ρ2k/∥ρ∥

2
2,

thus, when summing over k ∈ Cj :∑
k∈Cj

(
νj,ksk

∑
ℓ∈Cj

s−1
ℓ

)
=
∑
k∈Cj

ρk
∥ρ∥1
∥ρ∥22

=
∥ρ∥21
∥ρ∥22

≤ |Cj |.
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We deduce from the above estimates: ∑
k∈Cj

Qk(ω∗
k)

s2k
≤ 2|C|j

mink(dek)1/2
,

implying

1

B

B∑
k=1

Q(ω∗
k)

s2k
≤ 2

mink(dek)1/2
.

Therefore for any J-partition C, since d•k ≥ dek:

1

B

B∑
k=1

Rk(ω̂k)

s2k
≤
(

1 + CBe−u0

)(
1

B

J∑
j=1

∑
j∈Cj

B(τj,k, νj,k) + C ′ u0
mink∈JBK(d

e
k)1/2

)
.

Proof of Proposition V.22 The proof follows the same steps as the proof of Proposition V.18.

Let C a J-partition of JBK, ζ ∈ RJ+ and Σ a definite positive matrix in Rd×d. W.l.g. we can assume that

Tr Σ = 1. In a first time, we are going to lower bound the minimax risk for the estimation of µ1 that we

can assume to be in the cluster 1 (1 ∈ C1).

If for j ∈ JJK the means of Cj are in a ball of radius ζj/2, then two means are at a distance at most ζj :

inf
µ̂1

sup
P∈Pmult(C,ζ,Σ,s2)

R1(µ̂1) ≥ inf
µ̂1

sup
∃ν1,...,νJ∈Rd

µk∈B(νj ,ζj/2),∀k∈Cj

R1(µ̂1).

For simplicity, the supremum over the vectors means µk is used to denote the supremum over the Gaussian

distributions Pk = N (µk, s
2
kΣ).

We can restrict ourself in the case where the centres νj are in a ball around 0 of radius
√
β:

inf
µ̂1

sup
∃ν1,...νJ∈Rd

µk∈B(νj ,ζj/2),∀k∈Cj

R1(µ̂1) ≥ inf
µ̂1

sup
∃ν1,...νJ∈B(0,

√
β)

µk∈B(νj ,ζj/2),∀k∈Cj

R1(µ̂1)

Let α ∈ (0, 1), β > 0, we introduce now the probability measure Q = Q(α, β) on (Rd)B+J such that a

random vector (ν1, . . . , νJ , µ1, . . . , µB) ∈ (Rd)B+J follows the distribution Q if:

νj
Q∼ N (0, αβΣ) for k ∈ JN K, µk

Q∼ N (νj , α
ζ2j
4

Σ) for k ∈ Cj .

Hence, considering the events Hj := {∥νj∥2 ≤ β, ∥µk − νj∥2 ≤ ζ2j /4, k ∈ Cj}, H := ∩Jj=1Hj , as in the

equations (V.98):

inf
µ̂1

sup
P∈Pmult(C,ζ,Σ,s2)

R1(µ̂1) ≥ inf
µ̂1

EQ[R1(µ̂1)|H].

The distribution Q can be decomposed into a product of J probability measure: Q =
⊗J

j=1 Qj where Qj
is the distribution of (νj , (µk)k∈Cj

). By independence, the Bayes estimator of µ1 only consider the means

of C1 and following equations (V.98) we get:

inf
µ̂1

sup
P∈Pmult(C,ζ,Σ,s2)

R1(µ̂1) ≥ inf
µ̂1

EQ1 [R1(µ̂1)|H1] ≥ 1

Q(H1)
(I1 − r1) ,

where

I1 := inf
µ̂1

EQ1
[R1(µ̂1)] , r1 := sup

µ̂1:∥µ̂1∥≤2
√
β+ζ1

EQ
[
R1(µ̂1)1Hc

1

]
(V.102)
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We have used that the infimum is attained for an estimator µ̂1 bounded by 2
√
β+ζ1, because the estimator

µ̂ = 0 beats the estimators outside that ball (as in (V.96)).

Lower bound for I1 : The infimum is attained for µ̂1 = E
[
µ1|X(k)

• k ∈ C1
]
. Let us calculate µ̂1. We

will denote in the rest of the proof ζ̃j := ζj/2:

E
[
µ1|ν1, X(k)

• k ∈ C1
]

= E
[
µ1|ν1, X(1)

•

]
=

αζ̃21

s21 + αζ̃21
µ̂NE1 +

s21

s21 + αζ̃21
ν1 ,

E
[
ν1|X(k)

• k ∈ C1
]

=

(
(αβ)−1 +

∑
i∈C1

(
αζ̃21 + s2k

)−1
)−1 ∑

k∈C1

1

αζ̃21 + s2k
µ̂NEk

Combining these two expressions:

E
[
µ1|X(k)

• k ∈ C1
]

=

αζ̃21

s21 + αζ̃21
µ̂NE1 +

s21

s21 + αζ̃21

(
(αβ)−1 +

∑
k∈C1

(
αζ̃21 + s2k

)−1
)−1 ∑

k∈C1

1

αζ̃21 + s2k
µ̂NEk

Let κ1 :=

(
(αβ)−1 +

∑
k∈C1

(
αζ̃21 + s2k

)−1
)−1

, we can first notice that:

E
[
µ1|X(·)

•

]
− µ1 =

[
αζ̃21

s21 + αζ̃21
+

κ1s
2
1

(s21 + αζ̃1)2

]
(µ̂NE1 − µ1)

+
κ1s

2
1

s21 + αζ̃21

∑
k∈C1\{1}

1

αζ̃21 + s2k
(µ̂NEk − ν1)

− s21

s21 + αζ̃21

(
1− κ1s

2
1

s21 + αζ̃21

)
(µ1 − ν1)− κ1s

2
1

s21 + αζ̃21

1

αβ
ν1 .

Using that µ̂NEk − ν1 for k ∈ C1\{1}, µ̂NE1 − µ1, µ1 − ν1 and ν1 are pairwise independent we get that:

E
[
∥µ̂1 − µ1∥2

]
=

[
αζ̃21

s21 + αζ̃21
+

κ1s
2
1

(s21 + αζ̃1)2

]2
s21 +

κ21s
4
1

(s21 + αζ̃21 )2

∑
k∈C1\{1}

1

αζ̃21 + s2k

+
s41

(s21 + αζ̃21 )2

(
1− κ1s

2
1

s21 + αζ̃21

)2

αζ̃21 +
κ21s

4
1

(s21 + αζ̃21 )2

1

αβ
.

After simplification:

I1
s21

=
αζ̃21

s21 + αζ̃21
+

κ1s
2
1

(s21 + αζ̃21 )2
(V.103)

Upper bound for r1 : By the same arguments of equations (V.100):

sup
µ̂1:∥µ̂1∥≤2

√
β+ζ1

E
[
∥µ̂1(X

(k)
• , k ∈ C1)− µ1∥21Hc

1

]
≤ 20(β + ζ21 )

√
P[Hc

1 ]

From Lemma V.40, for all k ∈ C1:

P
[
∥ν1∥2 ≥ β

]
= P

[
∥µk − ν1∥2 ≥ ζ21/2

]
≤ exp

(
−d

e

2

(√
2

α
− 1− 1

))
,

and by union bound we get that :

r1 ≤ 20(β + ζ21 )
√
|C1|+ 1 exp

(
−d

e

4

(√
2

α
− 1− 1

))
.
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where de = Tr Σ/∥Σ∥∞.

Compound bound We recall that Q =
⊗J

j=1 Qj where Qj is the distribution of (νj , µk for k ∈ Cj).
Then let µ̂ = (µ̂k)k∈JBK ∈ (Rd)B be an estimator of the vectors (µk)k∈JBK:

inf
µ̂

sup
P∈Pmult(C,ζ,Σ,s2)

1

B

B∑
k=1

Rk(µ̂k)

s2k
≥ inf

µ̂

1

Q(H)

∫
H

1

B

B∑
k=1

Rk(µ̂k)

s2k
dQ(ν1, . . . , νN , µ1, . . . , µB)

= inf
µ̂

1

B

J∑
j=1

∑
k∈Cj

Q(H−j)

Q(H)

∫
Hj

Rk(µ̂k)

s2k
dQj(νj , (µℓ)ℓ∈Cj

)

where we recall Hj = {∥νj∥2 ≤ β, ∥µk − νj∥2 ≤ ζ̃2j ,∀k ∈ Cj}, H =
⋂J
j=1Hj and H−j =

⋂
ℓ ̸=j Hℓ. Using

that Q(H−j)/Q(H) = Qj(Hj)
−1 ≥ 1 and that the infimum over estimators µ̂ of the sum is the sum of

the infimum over estimators µ̂k, we get that:

inf
µ̂

sup
P∈Pmult(C,ζ,Σ,s2)

1

B

B∑
k=1

Rk(µ̂k)

s2k
≥ 1

B

J∑
j=1

∑
k∈Cj

(Ik − rk)

≥ 1

B

J∑
j=1

∑
k∈Cj

αζ̃2j

s2k + αζ̃2j
+

κjs
2
k

(s2k + αζ̃2j )2
− 20

B

 J∑
j=1

|Cj |3/2
β + ζ̃2j
s2(Cj)

 exp(−dec(α)) (V.104)

where κj =

(
(αβ)−1 +

∑
k∈Cj

(
αζ̃2j + s2k

)−1
)−1

and c(α) =
(√

2
α − 1− 1

)
/4 .

Conclusion :

Let de →∞ in (V.104), then:

lim
de→∞

inf
µ̂

sup
P∈Pmult(C,ζ,Σ,s2)

1

B

B∑
k=1

Rk(µ̂k)

s2k
≥ 1

B

J∑
j=1

∑
k∈Cj

αζ̃2j

s2k + αζ̃2j
+

κjs
2
k

(s2k + αζ̃2j )2

Let α→ 1 and β →∞, then:

lim
de→∞

inf
µ̂

sup
P∈Pmult(C,ζ,Σ,s2)

1

B

B∑
k=1

Rk(µ̂k)

s2k
≥ 1

B

J∑
j=1

∑
k∈Cj

ζ̃2j

s2k + ζ̃2j
+

s2k

s2k + ζ̃2j

1∑
ℓ∈Cj

s2k+ζ̃
2
j

s2ℓ+ζ̃j
2

(V.105)

We conclude by remarking that for all j ∈ JJK:

∑
ℓ∈Cj

s2k + ζ̃2j

s2ℓ + ζ̃2j
= 1 +

∑
ℓ∈Cj\{k}

s2k + ζ̃2j

s2ℓ + ζ̃2j
≤ 1 +

∑
ℓ∈Cj\{k}

s2k + ζ̃2j
s2ℓ

Then:

1

B

J∑
j=1

∑
k∈Cj

ζ̃2j

s2k + ζ̃2j
+

s2k

s2k + ζ̃2j

1∑
ℓ∈Cj

s2k+ζ̃
2
j

s2ℓ+ζ̃j
2

≥ 1

B

J∑
j=1

∑
k∈Cj

ζ̃2j

s2k + ζ̃2j
+

s2k

s2k + ζ̃2j

1

1 +
∑
ℓ∈Cj\{k}

s2k+ζ̃
2
j

s2ℓ

= L∗(s,C, ζ/2).
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Proof of Proposition V.23 We start with the following elementary bounds on the function B (for

τ ≥ 0, ν ∈ [0, 1])

B(τ, ν) ≤ τ + ν

1 + τ
≤ max

(
1,

τ

1 + τ
+ ν

)
. (V.106)

Now consider the quantity Aj := |Cj |−1∑
k∈Cj

B(τj,k, νj,k). Observe that
∑
k∈Cj

νj,k = 1 and τj,k =

νj,kBj , where Bj := ζ2j /s
2(Cj). Thus

Aj := |Cj |−1
∑
k∈Cj

B(Bjνj,k, νj,k) ≤ (Bj + 1)|Cj |−1
∑
k∈Cj

νj,k
1 +Bjνj,k

.

where we have used the first inequality in (V.106). By concavity of t 7→ t/(1 + t) we conclude to

Aj ≤
Bj |Cj |−1 + |Cj |−1

1 +Bj |Cj |−1
=
τ̄j + |Cj |−1

1 + τ̄j
,

and thus to (V.45) by summation over j ∈ JJK. Now using the second inequality in (V.106), we obtain

∑
j∈JJK

|Cj |
B

τ̄j + |Cj |−1

1 + τ̄j
≤
∑
j∈JJK

|Cj |
B

min

(
1,

τ̄j
1 + τ̄j

+ |Cj |−1

)
≤ min

(
1,

τ̄∗
1 + τ̄∗

+
J

B

)
,

where we have used the second inequality in (V.106) and the biconcave character of the function (x, y) 7→
min(1, y + x/(1 + x)); thus establishing (V.46). Assume now that all risks and the diameters are equal,

i.e. s2k = s2 and ζj = ζ for k ∈ JBK and j ∈ JJK. Then for all j ∈ JJK and k ∈ JBK, s2(Cj) = s2,

τ j,k = ζ2/s2 = τ and νj,k = |Cj |−1. Using the elementary bound

B(τ, ν) ≥ τ

1 + τ
+

ν

(1 + τ)2
,

we thus have in this case

L∗(s,C, ζ) =
1

B

J∑
j=1

∑
k∈Cj

B(τj,k, νj,k) =
1

B

J∑
j=1

∑
k∈Cj

B
(
τ , |Cj |−1

)
≥ 1

B

J∑
j=1

∑
k∈Cj

(
τ

1 + τ
+
|Cj |−1

(1 + τ)2

)

=
τ

1 + τ
+
J

B

1

(1 + τ)2
, (V.107)

Finally, since for τ ≥ 0, ν ∈ [0, 1]:

τ

1 + τ
+

ν

(1 + τ)2
≥ max

(
τ

1 + τ
,

1

(1 + τ)2

(
τ

1 + τ
+ ν

))
≥ max

(
τ

1 + τ
,

1

(1 + τ)2

)
min

(
1,

τ

1 + τ
+ ν

)
≥ 0.38 min

(
1,

τ

1 + τ
+ ν

)
,

we conclude that in the case of equal risks and diameters the upper bound (V.46) and the lower bound (V.107)

differ by a factor at most 1/0.38 ≤ 2.7.
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V.10 About the constant in the translation-invariant kernel setting

In this section, we investigate the distribution-dependent constant ϕ = M2/(Tr Σ) in the (BS) setting

(i.e., for data bounded in norm by the constant M). This constant comes into play in the risk bounds

for our methods, in relation to sufficient sample sizes, see e.g. Props. V.31, V.16. Rewriting Tr Σ =

E
[
∥X − E[X]∥2

]
yields a direct interpretation of ϕ, namely it is the ratio between the known bound on

∥X∥ and the “variance” of X; in other words, ϕ is all the bigger as the variable X is more concentrated

in relation to the size of its support.

We are interested in an understanding more detailed than this simple observation in the situation of

kernel mean embedding (KME), which was our primary motivation for investigating the (BS) setting.

Namely, in that situation the user might choose between different kernels and their associated Hilbert space

mappings, in particular choosing or tuning the “kernel bandwidth”. Even if kernels under consideration are

all bounded by the same constant, different kernels may give rise to different constants ϕ for the same

underlying data distribution.

We look into this issue under the following general conditions:

(K1) the original data takes values in Z = Rℓ, and the data whose means we wish to estimate have

been obtained via a Hilbert space mapping X = Φκ(Z), Φκ : Rℓ → H, associated to the kernel

κ(z, z′) = ⟨Φκ(z),Φκ(z′)⟩.

(K2) κ is a translation-invariant kernel on Rℓ, of the form κ(z, z′) = F (z − z′), where F : Rℓ → R, with
M2 := F (0).

(K3) For any u ∈ Rℓ, the function λ 7→ F (λu) is nonincreasing on R+. Furthermore, there exist constants

h > 0, c ≤ 1 such that

F (u) ≤M2

(
1− c∥u∥

2

h2

)
, for all u ∈ Rℓ s.t. 0 ≤ ∥u∥ ≤ h. (V.108)

Observe that (K1)-(K2) imply that the mapped data X satisfies (BS); as for (K3), it means that the kernel

is locally upper bounded by a strongly concave function in a neighbourhood of 0 of size h. The latter

quantity can therefore interpreted as a proxy bandwidth for the kernel; and if F1 satisfies (V.108) for h = 1

then the rescaled kernel function Fh(u) := F1(u/h) satisfies (V.108) for the bandwidth parameter h > 0.

The classical Gaussian, exponential, and Matérn kernels, for example, satisfy such conditions.

Proposition V.44. Assume (K1)-(K2)-(K3) hold, and that the distribution P of the original data Z

in Rℓ satisfies the following norm moment condition for some p ≥ 1, C > 0:

E
[
ξ2p
]

E[ξp]
2 ≤ C, where ξ := ∥Z − E[Z]∥. (V.109)

Then it holds

ϕ =
M2

E
[
∥X − E[X]∥2

] ≤ 4.2
2
p+2pC

c
max

(
1,

h

2E[∥Z − E[Z]∥p]
1
p

)2

.

Assume p = 2 to simplify (we allowed for other values of p in the moment condition (V.109) mainly with

the possible value p = 1 in mind, which makes the condition weaker; the discussion below can be readily

adapted to other values of p). This result shows that, provided the bandwidth parameter h is chosen of the

order of σZ := E
[
∥Z − E[Z]∥2

] 1
2

or smaller, the constant ϕ for the mapped data is bounded independently

of h. The bound depends on (1) the strong concavity parameter c of the upper bound on the (unit scaled)

kernel function in a neighbourhood of the origin, and (2) the norm moment ratio (V.109) of the original
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data distribution. Since E
[
ξ4
]
≤ E

[
ξ2
]
∥ξ∥2L∞ , in the case where the original data is itself bounded in

norm by a constant R, (V.109) holds with C = (R/σZ)2. Thus, if the original X data is bounded, the

distribution of the mapped data Z under the above conditions “inherits” the constant ϕ from that of the

original data, up to factors. However, the norm moment condition is much milder than a boundedness

condition and can also accommodate unbounded distributions with heavy tails of the original data.

Proof of Proposition V.44.

For Z,Z ′ ∼ P independent, denote D := ∥Z − Z ′∥, θ := min
(

hp

E[Dp] ,
1
2

)
, and tp := θE[Dp] =

min
(
hp, E[D

p]
2

)
, it holds

∥E[Φκ(Z)]∥2/M2 = M−2E[⟨Φκ(Z),Φκ(Z ′)⟩]
= M−2E[F (Z − Z ′)]

≤ 1− c t
2

h2
P[Dp > tp]

≤ 1− cE[Dp]
2
p

h2
θ

2
p (1− θ)2E[Dp]

2

E[D2p]

≤
E
[
∥Φκ(Z)∥2

]
M2

− c

4
min

(
1,

E[Dp]
2
p

2
2
ph2

)
E[Dp]

2

E[D2p]
,

where the first inequality stems from (K3); the second comes from the Paley-Zygmund inequality; and we

used θ ≤ 1
2 for the third. Since E

[
∥Φκ(Z)∥2

]
−∥E[Φκ(Z)]∥2 = E

[
∥X∥2

]
−∥E[X]∥2 = E

[
∥X − E[X]∥2

]
,

we deduce

M2

E
[
∥X − E[X]∥2

] ≤ 4.2
2
p

c
max

(
1,

h

∥D∥Lp(P )

)2(
E
[
D2p

]
E[Dp]

2

)
.

Finally, note that

E
[
D2p

]
= E

[
∥Z − Z ′∥2p

]
≤ E

[
(∥Z − E[Z]∥+ ∥Z ′ − E[Z ′]∥)2p

]
≤ 22pE

[
∥Z − E[Z]∥2p

]
,

and by Jensen’s inequality

E[∥Z − E[Z]∥p] = E
[
∥Z − E[Z ′]∥p

]
≤ E

[
∥Z − Z ′∥p

]
= E[Dp].

(Observe that the equality E
[
∥Z − Z ′∥2

]
= 2E

[
∥Z − E[Z]∥2

]
holds, so the constants in the first, resp.

second inequality above can be improved for the special cases p = 1, resp. p = 2.)

V.11 Description of the tested methods

The tested methods propose KME estimations of the form

µ̂mi :=
∑
j∈JBK

ωm
ij · µ̂NEj ,

where the definition of the weighting ωm
ij depends on the applied method m.

V.11.1 State-of-the-Art Approaches

(i) NE considers each bag individually.

ωNE
ij =

{
1, for i = j

0, otherwise.
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(ii) R-KMSE (Muandet et al., 2016) estimates each KME individually but shrinks it towards 0. The

amount of shrinkage is data dependent

ωR-KMSE
ij =

{
1− λi

1+λi
, for i = j

0, otherwise

where

λi =
ϱi − ρi

(1/Ni − 1)ϱi + (Ni − 1)ρi

with ϱi = 1/Ni

∑Ni

n=1 κ(Z
(i)
n , Z

(i)
n ) and ρi = 1/N2

i

∑Ni

n,n′=1 κ(Z
(i)
n , Z

(i)
n′ ).

(iii) MTA const (Feldman et al., 2014) was initially proposed for the estimation for multiple real means.

We adapted the approach such that it can be applied to the estimation of multiple kernel means

ωMTA const
ij =

((
I +

γ

B
Ŝ · L(A)

)−1
)
ij

. (V.110)

Here, Ŝ = diag
(
(ŝ2i )i∈JBK

)
, as defined in (V.3), can be estimated as

ŝ2i =
1

2N2
i (Ni − 1)

Ni∑
n ̸=n′

κ
(
Z(i)
n , Z(i)

n

)
− 2κ

(
Z(i)
n , Z

(i)
n′

)
+ κ
(
Z

(i)
n′ , Z

(i)
n′

)
, (V.111)

which corresponds to (V.30), and L(A) denotes the graph Laplacian of task-similarity matrix A. For

MTA const the similarity is assumed to be constant, i.e., A = a · (11T ) with

a =
1

B(B − 1)

∑
i,j∈JBK

∥∥µ̂NEi − µ̂NEj ∥∥2H.
The optimal value for model parameter γ may be found using model optimization. As default value

we propose γ = 1.

V.11.2 AGG Approaches

The aggregation approaches form a convex combination of possibly all bags whose weights are found directly

by minimization of quantities related to the squared risk.

(iv) AGG orth is based on the constraint optimization problem

ωi· = argmin
wi·

E

∥∥∥∥∥∥
∑
j∈JBK

wij µ̂
NE
j − µi

∥∥∥∥∥∥
2

H

 s.t.
∑
j∈JBK

ωij = 1 , ∀i, j ∈ JBK : ωij ≥ 0.

Using Lagrangian multipliers the optimal solution can be derived as

ωi· ≃
(
S + Λ(i)

)(−1)

1 (V.112)

where S = diag
(
(s2i )i∈JBK

)
and Λ(i) ∈ RB×B with Λ

(i)
j,j′ = ⟨µj − µi, µj′ − µi⟩H. Central assumption

of AGG orth is Λ
(i)
j,j′ = ⟨µj − µi, µj′ − µi⟩H = 0 for all j ̸= j′ such that Λ(i) becomes a diagonal

matrix with Λ(i) = diag

((
∥µj − µi∥2H

)
j∈JBK

)
. An unbiased estimation of ∥µj − µi∥2H is given by

(V.16) which in the kernel setting translates to

ˆMMD
2
(µi, µj) =

Ni∑
n ̸=n′

κ(Z
(i)
n , Z

(i)
n′ )

Ni(Ni − 1)
+

Nj∑
m ̸=m′

κ(Z
(j)
m , Z

(j)
m′ )

Nj(Nj − 1)

− 2

Ni∑
n=1

Nj∑
m=1

κ(Z
(i)
n , Z

(j)
m )

NiNj
. (V.113)
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Eq. (V.112) reduces to

ωAGG orth
ij =

1

ŝ2j + γ · ˆMMD
2
(µi, µj)

.

We add a multiplicative constant γ for more flexibility, whose value is either found by model opti-

mization or γ = 13 taken as default. If the distances between bags is inhomogeneous, e.g., the data

set contains close but also far distant unrelated bags, higher values of γ might be advisable. Finally

the weights are normalised such that they sum to one.

(v) AGG egd is based on Q-Aggregation and resembles (V.37)

ω
AGG egd
i· = argmin

wi·

L̂i + cqQ̂i + c1
∑
j∈JBK

wij

√
TrΣ2

j

Nj
+ c2

∑
j∈JBK

w2
ij

√
TrΣ2

j

Nj

,
L̂i =

∥∥∥∥∥∥
∑
j∈JBK

wij
(
µ̂NEj − µ̂NEi

)∥∥∥∥∥∥
2

H

+ s2i (2wii − 1) , Q̂i =
∑
j∈JBK

wij

√
∆̂T
j Σi∆̂j

Ni
,

such that
∑
j∈JBK ωij = 1 and ∀i, j ∈ JBK : ωij ≥ 0. There is no instantiation of Q̂BS. It is required

for the theoretical results to hold on bounded data which is less regularised than Gaussian data. In

practice, we add two regularization terms instead. The c1 term favours sparse results whereas the

c2 regularization leads to diffuse, small weights. Their effect can be compared to that of ℓ1- and

ℓ2-regularization respectively. Distant means are penalised by the cq term.

The optimization over the probability simplex is done by exponentiated gradient descent (Kivinen

and Warmuth, 1997) with gradient

∇ωAGG egd
i· = 2

(
Λ(i) + c2 diag(ϑ)

)
ωi· + 2Si· + cqϱ

(i) + c1ϑ,

where Si· denotes the i-th column of matrix S = diag((s2i )i∈JBK), ϑ and ϱ(i) are B-dimensional

vectors and defined as ϑj =
√

TrΣ2
j/Nj and ϱ

(i)
j =

√
∆̂T

j Σi∆̂j/Ni. We propose the following estimators

for these terms: ŝ2i is estimated as shown in (V.111). Matrix Λ̌(i) is a biased estimator of Λ(i) with

Λ̌
(i)
j,j′ = ⟨µ̂NEj − µ̂NEi , µ̂NEj′ − µ̂NEi ⟩ that can be computed as

Λ̌
(i)
j,j′ =



0, for i = j, or i = j′, or i = j = j′

1
NjNj′

∑Nj
m

∑Nj′
m′ κ(Z

(j)
m ,Z

(j′)
m′ )

− 1
NjNi

∑Nj
m

∑Ni
n κ(Z(j)

m ,Z(i)
n )

− 1
NiNj′

∑Ni
n

∑Nj′
m′ κ(Z

(i)
n ,Z

(j′)
m′ )

+ 1
NiNi

∑Ni
n

∑Ni
n′ κ(Z

(i)
n ,Z

(i)
n′ )

, otherwise.
(V.114)

Vector ϑ is based on TrΣ2
j . Let X1, X2, X3, X4 denote independent copies, then

Σ = E[(X − E(X))(X − E(X))
T

] =
1

2
E[(X1 −X2)(X1 −X2)

T
]

such that

Σ2 =
1

4
E[(X1 −X2)(X1 −X2)

T
(X3 −X4)(X3 −X4)

T
].

By linearity of the trace, we then have

Tr(Σ2) =
1

4
E
[
Tr
(

(X1 −X2)(X1 −X2)
T

(X3 −X4)(X3 −X4)
T
)]

=
1

4
E[(X1 −X2)

T
(X3 −X4) · (X3 −X4)

T
(X1 −X2)]

= E[⟨X1, X3⟩2 − ⟨X1, X3⟩⟨X2, X3⟩ − ⟨X1, X3⟩⟨X1, X4⟩+ ⟨X1, X3⟩⟨X2, X4⟩].
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For Ni ≥ 4 an unbiased estimation for Tr(Σ2
i ) is then given by

1

Ni(Ni − 1)

Ni∑
n1 ̸=n2

κ(Z(i)
n1
, Z(i)

n2
)
2

− 2

Ni(Ni − 1)(Ni − 2)

Ni∑
n1 ̸=n2 ̸=n3

κ(Z(i)
n1
, Z(i)

n2
)κ(Z(i)

n1
, Z(i)

n3
)

+
1

Ni(Ni − 1)(Ni − 2)(Ni − 3)

Ni∑
n1 ̸=n2 ̸=n3 ̸=n4

κ(Z(i)
n1
, Z(i)

n2
)κ(Z(i)

n3
, Z(i)

n4
),

and we recover (V.56). However this estimator has computational complexity O(N4
i ) and is infeasible

in practice. Instead, we propose in Algorithm 1 a subsampling strategy that gives an approximation

which operates in O(Ni).

Algorithm 1 Approximation of estimation of Tr(Σ2
i )

Require: data Z
(i)
• , bag size Ni, number of repetitions r

1: # initialise

2: t1 ← 0
3: t2 ← 0
4: t3 ← 0
5: # first term can be calculated directly in linear time

6: t1 ←
∑Ni

n,n′ k(Z
(i)
n , Z

(i)
n′ )2 −

∑Ni
n k(Z

(i)
n , Z

(i)
n )2

7: # other terms are approximated in r iterations

8: for 1 to r do
9: # select four distinct samples

10: n1, n2, n3, n4 ← randint(1, Ni, 4)
11: # approximate second and third term

12: t2 ← t2 + κ(Z
(i)
n1 , Z

(i)
n2 ) · κ(Z

(i)
n1 , Z

(i)
n3 )

13: t3 ← t3 + κ(Z
(i)
n1 , Z

(i)
n2 ) · κ(Z

(i)
n3 , Z

(i)
n4 )

14: end for
15: # normalise and add

16: trSi ← t1/(Ni(Ni − 1))− 2t2/r + t3/r
17: return trSi

For the vector ϱ(i) we need an estimation of ∆̂T
j Σi∆̂j for which we propose a biased estimate

dSd
(i)
j =

1

Ni − 1

Ni∑
n=1

 1

Nj

Nj∑
m=1

κ(Z(i)
n , Z(j)

m )− 1

Ni

Ni∑
n′=1

κ(Z(i)
n , Z

(i)
n′ )

2

− Ni
Ni − 1

 1

NiNj

Ni∑
n=1

Nj∑
m=1

κ(Z(i)
n , Z(j)

m )− 1

NiNi

Ni∑
n=1

Ni∑
n′=1

κ(Z(i)
n , Z

(i)
n′ )

2

(V.115)

Note that estimator dSd
(1)
j is a rewriting of q̂j (V.31) in the kernel setting. For translation invariant
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kernels we obtain a less biased estimate

dSd
(i)
j =

1

Ni − 1

Ni∑
n=1

 1

Nj

Nj∑
m=1

κ(Z(i)
n , Z(j)

m )− 1

Ni − 2

Ni∑
n′=1

κ(Z(i)
n , Z

(i)
n′ )

2

− Ni
Ni − 1

 1

NiNj

Ni∑
n=1

Nj∑
m=1

κ(Z(i)
n , Z(j)

m )− 1

Ni(Ni − 2)

Ni∑
n=1

Ni∑
n′=1

κ(Z(i)
n , Z

(i)
n′ )

2

.

Its computational complexity is in O(Ni
2).

The final procedure of AGG egd is shown in Algorithm 2. We suggest cq = 1.4, c1 = 1, c2 = 4 and

Algorithm 2 AGG egd

Require: matrix Λ̌(i) (Eq. (V.114)), vectors trS (Alg. 1), dSd(i) (Eq. (V.115)), (ŝj)j∈JBK
(Eq. (V.111)), model parameters cq, c1, c2, learning rate η, maximum nr. of iterations
tmax

1: # initialise

2: ϑ̃j ← (trSj)
1/2/Nj , ∀j ∈ JBK

3: ϱ̌
(i)
j ← (dSd

(i)
j /Ni)

1/2
, ∀j ∈ JBK

4: ω
(0)
i· ← 1

5: # until maximum nr. of iterations or convergence

6: while t ≤ tmax and
(
ω
(t−1)
i − ω(t)

i

)2
> 10−8 do

7: # compute gradient

8: ∇ω(t−1)
i· ← 2

(
Λ̌(i) + c2 diag(ϑ̃)

)
ω
(t−1)
i· + 2Ŝi· + cqϱ̌

(i) + c1ϑ̃

9: # perform exponentiated gradient descent

10: ω
(t)
i· ← ω

(t−1)
i· · exp {−η(t) · ∇ω(t−1)

i· }
11: # normalise

12: ω
(t)
i· ←

ω
(t)
i·

1Tω
(t)
i·

13: end while
14: # estimated optimal weight vector for bag i

15: return ω
(t)
i·

r = 100, tmax = 500, η(t) = 50/(1 + (t/B)) as default parameter values.

V.11.3 STB Approaches

The similarity test based approaches shrink the estimation only towards neighbouring means. Neighbors

are found as described in Cor. V.9,

Wi =
{
j ∈ JBK :

√
Tr(Σ2

j )/Nj ≤ 5 ·
√

Tr(Σ2
i )/Ni

}
Vi =

{
j ∈Wi : ∥µi − µj∥2H ≤ τ · s

2
i

}
. (V.116)

In practice the quantities are estimated. Alg. 1 provides an approximation of Tr(Σ2
i ). Eq. (V.111) shows

an unbiased estimate for s2i and (V.113) for ∥µi − µj∥2H.
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(vi) STB weight (Section III) assigns a uniform weight to all neighbours except for ωii which is higher

ωSTB weight
ij =


γ + 1−γ

|Vi| , for i = j
1−γ
|Vi| , for i ̸= j, j ∈ Vi
0, otherwise.

We recall that STB weight was proposed for balanced bags and under independence of test and

data. The optimal values of τ and γ are found by model optimization or τ = 2.2, γ = 0.2 taken as

default. Larger values of τ allow higher distances between µi and its neighbours, thus, potentially

increase the number of neighbours and the bias of the estimation. Higher γ values put emphasis on

µi, i.e., ωii > ωij for i ̸= j, and the solution reduces to NE for γ = 1.

(vii) STB opt corresponds to Lemma V.6 and minimizes an upper bound on the risk

ωSTB opt
i· = argmin

wi·

τs2i (1− wii)2 +
∑
j∈Vi

w2
ijs

2
j

,
such that

∑
j∈JBK ωij = 1 and ∀i, j ∈ JBK. ωij ≥ 0. Using Lagrangian multipliers the optimal

solution is (cf. (V.13))

ωSTB opt
ij =


λiνi + (1− λi), for i = j

λiνj , for i ̸= j, j ∈ Vi
0, otherwise.

where νj := s−2
j /

∑
j′∈Vi

s−2
j′ and λi := (1 + γτ(1− νi))(−1). An unbiased estimator for s2i is given

in (V.111). The additional multiplicative constant γ allows for more flexibility and tends to put

emphasis on ωii. Model optimization can be used to find suitable values for τ and γ. Otherwise, we

recommend τ = 2.2, γ = 0.2 as default values.

(viii) STB orth performs the similarity test and applies AGG orth on neighbouring means

ωSTB orth
ij =

{
ωAGG orth
ij , for j ∈ Vi

0, otherwise.

The similarity test merely functions as a safeguard here and excludes high distant neighbours and

does not play such a central role as for the other STB methods. Therefore, τ can be fixed to a large

value, e.g., τ := 5. Even though ωAGG orth
ij is reduced when ∥µi − µj∥2H is high, AGG orth does not

perform well when there are many high distant neighbours. Their weights accumulate and reduce

the weights of important bags because of the normalization step. The similarity test alleviates this

problem.

Either model optimization can be used to find suitable values for τ and γ, or their default values

τ := 5, γ = 3 can be chosen. Note that, compared to STB weight and STB opt, τ is larger which

highlights the fact that here the similarity test only excludes distant bags. Because of this safeguard,

γ, which penalises large distances, can be reduced (γ = 2.2 vs γ = 13 for AGG orth).

(ix) STB egd performs the similarity test and applies AGG egd on neighbouring means

ω
STB egd
ij =

{
ωAGG egd
ij , for j ∈ Vi

0, otherwise.

Analogous to the discussion of STB orth the similarity test functions as a safeguard to exclude high

distant neighbours. It can also be seen as another instrument to replace Q̂BS (see also discussion
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of AGG egd). STB egd relies on several model parameters. We recommend to set r = 100, tmax =

500, η(t) = 50/(1 + (t/B)) and τ := 5, cq = 1, c1 = 1, c2 = 5 as default. Compared to the default

values of AGG egd, diffuse weights should be favoured whereas regularization based on the distances

(cq) or sparse weights (c1) become less important because of the preselection of neighbouring means.

153



VI A high dimensional analysis of attention

We present in this section some first results on the self-attention mechanism used recently in the Trans-

formers neural networks. We propose to interpret the self-attention mechanism as a procedure of noise

reduction of the data embeddings and link it to the previous considerations about multi-task averaging and

multiple means estimation. For this purpose, we assume that the inputs of the attention mechanism are

noisy observations of some underlying true vectors, belonging to a sphere and having a lower dimensional

structure (small covering or belonging to a smaller dimensional subspace). Then we show that, in high

dimension, for simplified forms of attention, the points built by the attention are better estimators of these

vectors than the original points. Thanks to these considerations, we propose a modification of the attention

which are more robust, more flexible and similar performance on toy data.
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VI.1 Introduction

The attention mechanism (Bahdanau et al., 2014), popularized by the Transformers architecture (Vaswani

et al., 2017), has drawn considerable attention thanks to its high performance in numerous domain such

as natural language processing (Brown et al., 2020; Devlin et al., 2019) or computer vision (Dosovitskiy

et al., 2020). Among its applications, it is impossible not to mention the chatbot ChatGPT (OpenAI et al.,

2024), which seems poised to have a significant impact on our societies.

A self attention block takes as input a set of N points X1, . . . , XN in Rd, for instance each point can

be the embedding of a token like a word of a sentence or a sub-zone of an image. For each of them, a new

point as(Xi) is constructed as a convex combinaison of all the points:

as(Xi) =

N∑
j=1

ωijXj , where ωi· = Softmax(s(Xi, X·)) ∈ SN , (VI.1)

where the function s : Rd × Rd → R will be called a similarity function and has been learned during

the training. For v ∈ RN , the softmax operation is defined as Softmax(v)i = evi/
(∑N

j=1 e
vj
)
and the

resulting vector belongs to the simplex SN =
{
ω ∈ [0, 1]N :

∑N
j=1 ωj = 1

}
. The similarity function s is

interpreted as a notion of distance between the points learned by the neural network, which permits to mix

up each point with similar points. In natural language processing, this distance is easy to interpret as it has

been observed that the learned similarity functions associates words of the sentence with similar meanings

(Vaswani et al., 2017). The commonly chosen similarity function so is a scalar product between a key

and query value so(x, y) := ⟨Qx,Ky⟩ for some matrices Q,K ∈ Rd×d learned during the training phase.
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Another one that we will also consider is the quadratic distance between the query and key values known

as L2-attention (Kim et al., 2021). This similarity function is defined by sL2(x, y) := −∥Qx−Ky∥22/2.
These new points as(Xi) are then combined with the original ones Xi by a linear combination and a

normalization, the resulting points are then:

As,V (Xi) :=
Xi + V as(Xi)

∥Xi + V as(Xi)∥
, for 1 ≤ i ≤ N , (VI.2)

for some learned matrix V ∈ Rd×d. One interpretation is that this operation combines the own information

of the point with some context information derived from the others. Similarly as for the ResNets which

have been linked to ordinary differential equations (Chen et al., 2018), a flow map can be derived from

(VI.2) by omitting the normalization and permit to analyze dynamically the attention (Geshkovski et al.,

2024; Sander et al., 2022). However this normalization is essential in practice to avoid a divergence of the

points and begins to be also considered theoretically (see Geshkovski et al., 2023 for a dynamical point of

view).

Thus, we propose in this section to assume that the points Xi are noisy observations of some true

embedding µi belonging to a sphere. Then the attention operators as or As,V can be seen as multiple vector

estimators of these true embeddings µi. By analogy with the previous model (III.1), we will sometimes

call the vectors µi the ”means” of the vectors Xi. We show that in high dimension, if the set of these

means have some underlying structure, the self attention operator has a denoising effect on the points Xi

individually and in average. We consider simplified versions of attention where the matrices Q and K are

equal and proportional to identity (Q = K = Id/
√
h for some scale h > 0). We then study the dependence

in the dimension d of the scale h to avoid degenerate case and to get an improvement of the estimation of

the true embeddings or means µi-s.

Remark VI.1. We point out that in practice the attention operations are performed separately on

subgroups of coordinates with different learned similarity functions. Each subgroup is called a head

and the whole is referred as multi-head attention. We will however focus here on the single head case.

VI.1.1 Discussion of the model

Before considering the cases of Transformers, it is important to notice that the main task of a neural

network is to learn a good representation of the data. A multilayer perceptron in its simpler form (L

layer of same width p) can be summarised as a function fθ parameterized by θ = (WL, . . . ,W 1) ∈
Rdout×p × (Rp×p)L−2 × Rp×din and defined for an input x ∈ Rdin by:

fθ(x) = WLr(WL−1r(. . . r(W 1x))) ∈ Rdout ,

where r is some non-linear function applied coordinates by coordinates (e.g. the ReLU function defined by

r(x) = max(x, 0) for x ∈ R). We can rewrite the function fθ as fθ(x) = WLΦ(x) where Φ is the output

of the first L− 1 layers. With this notation, the neural network can be condensed in two part, first it learns

a representation Φ of the data x and then realizes a linear regression in this feature space. Thus, we recover

the idea of kernel methods but with a learned kernel. Equivalence has besides been proven between them

in an infinite width regime and for a specific initialisation (NTK regime see Jacot et al., 2018). We can

also note that the transfer learning methods, which use the first layers of previous neural network for a new

task, reuse in fact the representation learned by the first network.

In a Transformer, the input is a set of vectorsX1, . . . , XN which have dependencies (words of a sentence,

parts of an image,. . . ). The block of attention permits to the neural network to learn a representation of

each points depending of the others by combining their representations. To model this, we suppose that

the high dimensional points Xi are noisy observations of some true representations µi but with independent
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noise corruption. The points Xi belong to a high dimensional space but we will suppose the vectors µi to

have a lower dimensional structure. The self attention operation permits to simplify the representation of

the data by recovering this underlying structure.

A first link with vectors estimation appears by supposing the noise to be Gaussian (i.e. Xi ∼ N (µi,Σ))

and that the vectors µi are drawn from a common unknown distribution. Then the Bayes estimator of µi
is:

E[µi|Xi] = Xi + Σ
∇g(Xi)

g(Xi)
, (VI.3)

where g is the marginal density of the distribution of X1 (Brown, 1971). From this identity, Brown and

Greenshtein (2009) propose to estimate µi by replacing g by its kernel density estimator ĝh from the

sample X1, . . . , XN . Using a Gaussian kernel, then ĝh(x) = CN,h
∑N
j=1 e

−∥x−Xj∥2/(2h) and after injecting

it into (VI.3), we get an estimator µ̂i close to the attention vector with the L2 similarity function (for

Q = K = Id/
√
h):

µ̂i = Xi + Σ
∇ĝh(Xi)

ĝh(Xi)
=

(
Id −

Σ

h

)
Xi +

Σ

h
asL2 (Xi) . (VI.4)

This estimator is a shrinkage estimator (with a matricial factor) of the vector Xi to the reference point

asL2 (Xi) built from the other observations. Up to a normalization and a matrix multiplication, we recover

the formula of the normalized step of attention AsL2 ,V for some specific matrix V :

AsL2 ,V (Xi) =
(Id − Σ/h)−1µ̂i
∥(Id − Σ/h)−1µ̂i∥

Σ=σ2Id=
µ̂i
∥µ̂i∥

, (VI.5)

where the first equality is satisfied for V = (hΣ−1 − Id)
−1 and the second for Σ = σ2Id. This last

equation justifies one main assumption of this work: as the outputs of the self attention are normalized in

a Transformer, we consider that only the directions of the vectors matter in the learned representation and

then suppose that the true representations µi-s are of same norm. Under these conditions we can wonder

if the attention operator as improves the estimation of these vectors for each point, i.e.

E
[
∥as(X1)− µ1∥2

]
< E

[
∥X1 − µ1∥2

]
= dσ2 ,

or in average:

1

N

N∑
i=1

E
[
∥as(Xi)− µi∥2

]
< dσ2 .

We choose to focus on as and not As,V to avoid to make additional assumptions on V . In fact, considering

that the neural network only learns in this phase a representation of the data to apply a linear regression,

two representations are equivalent up to a linear transform. Then, in view of (VI.5), for some matrix

V depending on the covariance Σ, As,V will then be an estimator of µi or of a dilatation of this vector

with error smaller than an estimator using only Xi. Such a matrix could have been learned in the training

phase. Although these questions are fundamental to a deeper analysis, we elude them for the moment by

concentrating on as(Xi) and showing that it is a better estimator of µi than Xi.

Notation: For some quantities ad and bd depending of the dimension, ad = O(bd) and ad = o(bd)

denotes respectively that the ratio ad/bd is upper bounded or goes to 0 as the dimension increases; ad =

Ω(bd) and ad = ω(bd) are respectively equivalent to bd = O(ad) and bd = o(ad); ad = Θ(bd) means that

the ratio ad/bd is lower and upper bounded. The notation C denotes constants independent of d and N

whose values can differ between equations.
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VI.2 Theoretical results

In Section VI.2.1, we study the effect of high dimension denoising of the self attention mechanism for dif-

ferent classical similarity functions. In Section VI.2.2 we propose two slightly modified versions of attention

which are more flexible and robust and achieve a denoising effect similar to the originals.

VI.2.1 Denoising by attention

As announced, we suppose that each point Xi is a noisy observation of an underlying mean µi ∈ Sd−1(R)

where Sd−1(R) is the d-dimensional sphere of radius R of Rd. Formally, we suppose that

Xi ∼ N (µi, σ
2Id), ∥µi∥2 = R 1 ≤ i ≤ N. (VI.6)

We point out that we assume the true means of same norm but not on the unit sphere. Indeed as we are

interested in the high dimensional behavior of the self attention (d→∞), we need to suppose the squared

radius R2 and the quadratic risk σ2d of same order to avoid trivial cases. Indeed if R2 ≪ dσ2 the signal is

indistinguishable from the noise or conversely if R2 ≫ dσ2, there is no noise to reduce. That leads us to

the following assumption.

Assumption VI.2. R2 = Θ(σ2d) i.e. there exists a constant CR > 0 such that C−1
R ≤ R2/dσ2 ≤ CR.

As we only want that the ratio R2/σ2d is lower and upper bounded as the dimension increases, we

could have also assumed that R2 is fixed and that the noise σ2 goes to 0 when the dimension increases.

We find however more natural to consider the noise σ2 fixed.

Since the means µi are on the sphere, we can remark that the scalar products between them behave

as the quadratic distance, indeed ⟨µi, µj⟩ = R2 − ∥µi − µj∥2/2. Then for any h > 0, the softmax weights

of the scalar product and of the quadratic distance are the same:

Softmax

[(
⟨µ1, µi⟩

h

)
i

]
= Softmax

[(
−∥µi − µ1∥2

2h

)
i

]
.

However this equality is not anymore verified if the vectors µi are replaced by their noisy observations Xi.

This consideration leads us to consider as similarity functions the scalar product and the squared norm. We

will also consider the projected similarity function sp which is the scalar product of the vectors projected

on the sphere and which gives the same weights after the softmax as the quadratic distance between them.

We will observe similar behavior for these three functions. So, in this section, we consider the following

similarity functions.

Definition VI.3. For all x, y ∈ Rd, we consider the similarity functions:

so(x, y) = ⟨x, y⟩, (original) ,

sL2(x, y) = −∥x− y∥
2

2
, (L2) ,

sp(x, y) =

〈
Rx

∥x∥
,
Ry

∥y∥

〉
, (projected) .

For s a similarity function and a scale h > 0, we will denote in the rest of this section as(Xi) the

attention points (VI.1) associated to the similarity function s/h which are then defined for 1 ≤ i ≤ N by:

as(Xi) := as,h(Xi) =

N∑
j=1

ωs,hij Xj where
(
ωs,hij

)
j

= Softmax

((
s(Xi, Xj)

h

)
j

)
∈ SN . (VI.7)

We will sometimes omit the dependence in h or s for the attention as,h or the weights ωs,h. For these

similarity functions, Lemma VI.4 gives the right rate for the scale h in the dimension such that the weights

of the self attention are not trivial.
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Lemma VI.4. Let s be either so, sL2 or sp and suppose Assumption VI.2 satisfied. Then, if h = o(d),

for 1 ≤ i ≤ N :

ωs,hii
a.s.−→
d→∞

1 ,

where ω is defined in (VI.1). Conversely, if d = o(h), then for 1 ≤ i, j ≤ N :∣∣∣∣ωs,hij − 1

N

∣∣∣∣ a.s.−→
d→∞

0 .

In the first regime (h = o(d)) all the weights of the self attention tend to be given to the point itself.

Then the transformation converges to the identity and does not use any similarity between the points.

Inversely, for a large scaling h, a same weight is given to all the points but nothing is learned either. Only

an empirical mean is done without trying to exclude different points in the convex combination. Hence, for

these similarity functions, a right regime to consider is h = Θ(d). For this scaling, we observe that if the

means µi belong to a lower dimensional space, the resulting points are brought closer to this subspace.

Proposition VI.5. Let s be either so or sL2 , there exists an absolute constant C1 > 0 such that for

d ≥ logN , if R satisfies Assumption VI.2 with constant C1 and h ≥ C1dσ
2, then for 1 ≤ i ≤ N :

E
[
δ2(as(Xi),M)

]
E[δ2(Xi,M)]

≤ C max

(
1

N
,

logN√
d−m

)
, (VI.8)

where δ(x,M) := infy∈M∥x− y∥ denotes the Euclidean distance of a point x to the subspace M and

C is an absolute constant.

This result is verified for h = Ω(d), but is only relevant for h = Θ(d). Indeed, if h = ω(d), as presented

in Lemma VI.4, the attention points a(Xi) tend to be the empirical mean and then directly the noise would

be reduced by a factor N−1. However the empirical mean can be far from the means µi as soon as the

vectors µi are different. Effectively, Proposition VI.5 only considers the noise in the orthogonal of the set

of means. So an important remaining question is to know if the resulting points as(Xi) get really closer

to their means µi. In fact, for the similarity functions of Definition VI.3 we did not manage to exhibit a

theoretical bound for the improvement in high dimension in all generality. However, in Proposition VI.6,

we present that in some cases, the attention cannot lead to an improvement. This situation happens for

example when all the means are distributed among orthogonal directions such as the canonical basis.

Proposition VI.6. Let s be either so or sL2 , there exists some means µ1, . . . , µN on the sphere R Sd
and an absolute constant C1 > 0 such that for d ≥ logN , if R satisfies Assumption VI.2 with constant

C1, then for all h ≥ C1dσ
2 and 1 ≤ i ≤ N :

E
[
∥as(Xi)− µi∥2

]
E
[
∥Xi − µi∥2

] ≥ c
(

1− C max

(
1

N
,

1

d
,

logN√
d

))
(VI.9)

for some absolute constants C, c > 0.

To interpret this result correctly, it is important to keep in mind that we are analyzing the error under a

dimensional asymptotic point of view. Although the constant c may be less than 1 in the bound (VI.9), it

does not depend on either d or N . Thus, even for a number of data N tending to infinity with the dimension

(under the weak condition logN ≤ d), we have exhibited a situation where the improvement remains lower

bounded by a constant. In practice this constant c seems to be higher than 1 as no improvement is observed

in our experiments (see Figure 6).

This impossibility is due to the limitation on the scale h. As h = Θ(d) = Θ(R2), the attention cannot

succeed in excluding the points whose means are far from the target one. The condition h = Θ(d), needed

to avoid trivial cases (Lemma VI.4), is in fact due to a form of bias in the weights. To resolve this problem,

we propose in next section two slightly modified similarity functions for which a wider field of scale h is

possible while avoiding these trivial cases.
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VI.2.2 Debiased attention

We have observed in Lemma VI.4 that the scale h needs to be proportional to the space dimension for

the similarity functions so, sL2 and sp. This phenomenon is caused by a form of ”bias” of the diagonal

weights. Indeed, the similarity functions considered can be seen as estimators of the distance between the

true means µi, for j ̸= i:

E[so(Xi, Xj)− so(Xi, Xi)] = E[sL2(Xi, Xj)− sL2(Xi, Xj)] = −∥µi − µj∥2/2− dσ2 .

It is indeed completely equivalent to consider the similarity function s̃(x, y) := s(x, y) − s(x, x) for some

similarity function s as the weights given by each of them are the same (Softmax[(s(Xi, Xj)/h)j ] =

Softmax[(s̃(Xi, Xj)/h)j ]). As the non-diagonal weights will be proportional to e
−dσ2/h, choosing h = Θ(d)

is mandatory to avoid the trivial cases (we recover Lemma VI.4). To avoid this bias, we propose two slightly

modified similarity functions such that s(Xi, Xj) − s(Xi, Xi) is an unbiased estimator of the distance

between µi and µj .

Definition VI.7. The functions sm, sdb : Rd × Rd → R are respectively the modified and debiased

similarity functions and are defined by:

sm(x, y) = sdb(x, y) = ⟨x, y⟩ for x ̸= y ∈ Rd ,
sm(x, x) = R2 , sdb(x, x) = ∥x∥2 − dσ2 for x ∈ Rd .

The similarity functions sm and sdb only differ from so by their value on the diagonal. Our intuition is

as so(Xi, Xi) approximates ∥µi∥2 = R2 with a bias of dσ2, we can either substract this bias (like in sdb)

or just replace this value by its known true value R2 (like in sm). Hence, for all i, j:

E[sm(Xi, Xj)− sm(Xi, Xi)] = E[sdb(Xi, Xj)− sdb(Xi, Xj)] = −∥µi − µj∥2/2 .

For these similarity functions, the self attention improves the estimation for a wider range of h. Effectively,

we observe a noise reduction of the means µi if these are covered by a small number of balls. We show in

this case that for each point and in average over all the points, the points as(Xi) are closer to the mean

µi than the initial point Xi.

Proposition VI.8. Let s be either sm or sdb and h = Chσ
2dβ for β ≥ 1/2, there exists an absolute

constant C1 > 0 such that for d ≥ logN , if R satisfies Assumption VI.2 with constant C1 and if

Ch > C1, then for 1 ≤ i ≤ N :

E
[
∥a(Xi)− µi∥2

]
E
[
∥Xi − µi∥2

] ≤ C max

(
1

Vi
,

logN

d1−β

)
, (VI.10)

where Vi =
∑N
j=1 e

−∥∆ij∥2/(2h) ≥ 1 and ∆ij = µi − µj. Under the same conditions, if Nh is the

covering number of the set of the means {µi}i∈JNK by balls of radius
√
h, then:

1

N

N∑
i=1

E
[
∥a(Xi)− µi∥2

]
E
[
∥Xi − µi∥2

] ≤ C max

(
Nh
N
,

1 + logNh
d1−β

,

√
logN

d

)
. (VI.11)

The quantity C denotes an absolute constant possibly different between lines.

These bounds illustrate that the proposed modified similarity functions are more flexible as h can be

taken down to Θ(
√
d) and still induce a potential noise reduction. As the bound decreases only if h = o(d),

we get that h can take a value between Θ(
√
d) and Θ(d).The improvement depends on a trade-off between
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the bias induced by a large scale h and the variance reduction induced by a high number of close means

(Vi high or Nh small). If all the vectors µi are equal, we get an improvement up to 1
N (for d large enough)

as an empirical mean. Inversely, in a worst case where all the means are isolated for instance at a distance

R ≃
√
d, then the scale h needs to be of order Θ(d) for having a covering number smaller than N . Then

the second term of the maximum will be greater than 1 and the bound does not predict any improvement.

This worst case is similar as the one considered in Proposition VI.6. This higher flexibility is observed in

the following experiments.

VI.3 Experiments

In this section we validate the observations made in the theoretical part on synthetic data. The points

considered are Gaussian random vectors with means on the sphere R Sd:

Xi ∼ N (µi, σ
2Id) , ∥µi∥ = R , 1 ≤ i ≤ N.

For all the experiments, the radius will be fixed to R =
√
d and the noise will be equal to σ2 = 0.5 such that

an improvement is possible as the noise is smaller than the radius R > σ
√
d. We consider three different

settings for the distribution of the means. In a first one, the means are clustered into Nmean groups, in

a second one, the means are still clustered but belong to a m dimensional subspace and the last one is

the negative setting of Proposition VI.6 which defeats the first methods. In this last setting the means

are equally distributed between each directions. Let Pd be the projection on the sphere Sd−1, the settings

considered for the means are the following :

1. Clustered setting: The means are clustered around Nmean points δj . The repartition between the

clusters is uniform. Formally: µi = RPd

(
δJi + εi

)
where Ji ∼ U(JNmeanK), εi ∼ N (0, σ2

meanId)

with σ2
mean > 0 and δj ∼ N (0, Id) for i ∈ JNK and j ∈ JNmeanK.

2. Low dimensional setting: Same setting as the clustered setting but the means belong to a m-

dimensional subspaceM.

3. Worst setting: The means are separated into d clusters of size ⌊N/d⌋ or ⌈N/d⌉ and for a cluster

k, each mean of the cluster is equal to Rek where (ek)1≤≤d is the canonical basis of Rd.

The parameters Nmean, σ
2
mean for the clustered setting will be fixed and independent of the ambient dimen-

sion d. We will call original, L2, modified and debiased the respective self attention methods induced by

the similarity function so, sL2 , sm and sdb, i.e. for s one of these functions and for 1 ≤ i ≤ N :

as(Xi) =

N∑
j=1

ωijXj where ωij =
es(Xi,Xj)/h∑N
ℓ=1 e

s(Xi,Xℓ)/h
, (VI.12)

for some scale h. The last method called projected method, is the original method applied to the points

projected on the sphere, i.e. for 1 ≤ i ≤ N :

asp(Xi) =

N∑
j=1

ωij
RXj

∥Xj∥
where ωij =

esp(Xi,Xj)/h∑N
ℓ=1 e

sp(Xi,Xℓ)/h
. (VI.13)

We evaluate the efficiency of these five methods by computing the ratios of the quadratic distance to

the true means of the projected points after attention and the projected points before. Knowing that the

means are on the sphere, we consider that the reference estimator of a vector µi with one observation is the
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Figure 4: Relative risk R̄ in the clustered setting in function of the dimension for the different
methods and for different scales h = σ2dβ for β ∈ {0.25, 0.5, 0.75, 1, 1.25} in function of the space
dimension with N = 100, σ2

mean = 0.1, σ2 = 0.5 and Nmean = 4. Lower is better.

projection on the sphere of this observation. For each similarity functions s and a N sample of observations

and means (X•, µ•), we compute:

R̂s,d(X•, µ•) :=
1

N

N∑
i=1

∥RPd(as(Xi))− µi∥2

∥RPd(Xi)− µi∥2
.

As E
[
∥RPd(Xi)− µi∥2

]
≃ E

[
∥Xi − µi∥2

]
≃ dσ2 (see Lemma VI.12), this measure of performance is

similar to the ones considered in the theoretical results. We repeat this operation M times for each

dimensions d and average the improvements R̄s,d = 1
M

∑M
ℓ=1 R̂s(Xℓ

•, µ
ℓ
•) and call this quantity the relative

risk of a similarity function s for a dimension d.

Figure 4 presents the average risk R̄ for the different methods in the clustered setting. As expected by

Lemma VI.4, for h = o(d) the relative risk tends to 1 for the original, L2 and projected similarity functions

as the attention operator converge to the identity. An improvement is only obtained for a scale h = Θ(d).

For higher scale, the attention is worse than the simple individual point projection as it tends to an empirical

mean of all points. For similarity functions sdb and sm, we effectively get a stable improvement with the

dimension for a scale h between
√
d and d. For a smaller scale, no more improvement is obtained and for

higher, the estimation is worsen than simple projection as was the case for the original so and sL2 attention.

For the low dimensional setting, we group the improvements given by the original and L2 on one side

and the debiased and modified on the other as they give similar results. In addition to the relative risk R̄s,
we evaluate in this setting the relative distance to the subspace computed as the ratio of the distance to

the subspaceM before and after attention:

δ̂2s(X•, µ•) :=
1

N

N∑
i=1

δ2(RPd(as(Xi)),M)

δ2(RPd(Xi),M)
,
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Figure 5: Relative risk R̄ (upper row) and relative distance to the subspace (lower row) in the low
dimensional setting in function of the dimension for the different methods and for different scales
h = σ2dβ for β ∈ {0.25, 0.5, 0.75, 1, 1.25} in function of the space dimension with m = d/2, N = 100,
σ2
mean = 0.1, σ2 = 0.5 and Nmean = 4. Lower is better.

where δ(x) = miny∈M∥x− y∥ as defined in Proposition VI.5. We can observe in Figure 5 that for the

original, L2 and projected similarity functions, we recover the three regimes h = o(d), h = Θ(d) and

h = ω(d) where we get respectively no improvement, a sensible improvement both in the distance to the

means and to the subspace and only an improvement in distance of the subspace M. For the debiased

and modified attention, for any scale h, the attention brings the points towards the lower dimensional

subspace. The estimations of the means are improved again for
√
d ≤ h ≤ d. We can remark that the

scale h = Θ(
√
d) is a bit smaller, and the relative risk get close to 1 with the dimension. We point out

that in this setting the dimension of the subspaceM grows with the ambient dimension (dimM = d/2).

Figure 6: Relative risk R̄ in the worst setting in function of the dimension for the different methods
and for different scales h = σ2dβ for β ∈ {0.25, 0.5, 0.75, 1, 1.25} in function of the space dimension
with N = 500 and σ2 = 0.5. The vertical line indicates N = d. Lower is better.

The so-called worst setting (Figure 6) makes all methods fail for h = Ω(d). This is a problem for
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the original, L2 and projected methods as an improvement is only possible for h = Θ(d) as witnessed in

previous experiments (Figure 4 and Figure 5). However for the debiased and modified methods, for a scale

h of smaller order, improvements are possible and in these cases the estimation is not worsened and is even

still improved for lower dimension (d ≤ N). These results illustrate the greater flexibility of these slightly

modified similarity functions.

To sum up, we have evaluated the denoising effect of the attention by comparing the quadratic distances

of the projected points to their means before and after the attention operation.

� For the original, L2 and projected similarity functions, we have observed a lack of robustness of the

methods. The scale h needs to be of order Θ(d) to obtain a denoising effect in some cases, but in

others, with this scale, the observations are deteriorated.

� For the modified and debiased similarity functions, a whole range of scales h provides sensible im-

provements and, in bad cases where the means are far from each others, the observations are preserved

contrary to the other similarity functions.

VI.4 Conclusion

We have analyzed the attention mechanism as a multiple estimation of vectors and have shown theoretically

and experimentally that simplified versions of the self attention mechanism has a denoising effect on these

vectors. This effect is noticeable when the true means have a structure and we have considered the case

where they belong to a low dimensional subspace or can be covered by a small number of balls. A rough

interpretation of this effect is that the attention mechanism extract from the set of points some underlying

true information which can be parameterized by less than Nd parameters. Our simplified attention functions

are only dependent of one real parameter h and we exhibit different behavior of the attention in function of

this parameter. Thanks to this analysis, we proposed two natural modified similarity functions more flexible

and with better performance on synthetic data.

These first results need to be further explored in more general cases. Indeed we have only considered

some simplified form of attention, neglected the learning phase and modeled the embedding by independent

Gaussian vectors which is debatable. To take them into account, we could adopt the in-context modelization

as some recent works have done to study attention (Garg et al., 2022) and hence, suppose that the means

are themselves drawn from an underlying distribution. This would fit with the empirical Bayes interpretation

(Brown and Greenshtein, 2009, see Section VI.1.1). In this model, we expect that the attention would learn

a similarity function adapted to the distribution.

On the experimental part, the effect of our modified versions of attention on Transformer should be

investigated. Since a larger range of values is possible for the scale, we expect a faster learning phase. Our

versions can also be adapted to general query and key matrices and in that case, the attention would not

used the Euclidean distance but a distance defined by these matrices. With this different geometry, or with

a non isotropic noise, we can expect the appearance of a notion of effective dimension.

VI.5 Proofs for Section VI

VI.5.1 Proof of Lemma VI.4

The proof is made for each of the different similarity functions. We begin y the result for small scale h

and continue by the second part of the result. In each cases the weights are controlled by concentration

inequalities. In this proof, εi := Xi − µi for all 1 ≤ i ≤ N .

Case h = o(d) : To show the convergence of the weights, we will show in each case that the difference

(s(Xi, Xi)− s(Xi, Xj))/h decreases to minus infinity for all i, j. Hence the diagonal weights ωii converge
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to 1.

Proof for s = so : According to Lemma 8.1 of Birgé (2001), using an union bound, for all t ≥ 0, with

probability at least 1−Ne−t:

∥Xi∥2 ≥ dσ2 +R2 − 2σ
√

(2R2 + σ2)t , for 1 ≤ i ≤ N. (VI.14)

Moreover, for all i ̸= j :

⟨Xi, Xj⟩ = ⟨µi, µj⟩+ ⟨εi, µj⟩+ ⟨εj , µi⟩+ ⟨εi, εj⟩ .

Then according to Proposition III.7 and the concentration of a normal random variable, for all t ≥ 0, with

probability at least 1− 3N(N − 1)e−t, for all 1 ≤ i, j ≤ N :

⟨Xi, Xj⟩ ≤ ⟨µi, µj⟩+ 2Rσ
√

2t+ σ2
√

2dt+ σ2t ≤ R2 + Cσ
√

(R2 + σ2d)t+ σ2t , (VI.15)

for some absolute constant C > 0. Then after combining these two bounds, we get a lower bound on ωii
for all 1 ≤ i ≤ N . With probability at least 1− 3N2e−t:

ωii =
e∥Xi∥2/h

e∥Xi∥2/h +
∑
j ̸=i e

⟨Xi,Xj⟩/h
≥
(

1 + (N − 1) exp
[(
−dσ2 + Cσ

√
(R2 + σ2d)t+ σ2t

)
/h
])−1

≥ 1− (N − 1) exp
[(
−dσ2 + Cσ

√
(R2 + σ2d)t+ σ2t

)
/h
]
.

The second term goes to 0 as d→∞. Then for all ε ∈ (0, 1),

P
[

max
1≤i≤N

|ωii − 1| ≥ ε
]
≤ 3N2e−tε

where tε > 0 is solution of

(N − 1) exp
[(
−dσ2 + Cσ

√
(R2 + σ2d)tε + σ2tε

)
/h
]

= ε .

Quantity tε is well defined for d large enough as by assumption R2 = Θ(d) and h = o(d). In particular

tε = Ω(d) and we can conclude using Borel-Cantelli Lemma.

Proof for s = sL2 : According to Lemma 8.1 of Birgé (2001), using an union bound, for all t ≥ 0, with

probability at least 1−N2e−t:

∥Xi −Xj∥2 ≥ 2dσ2 − Cσ
√

(R2 + σ2d)t , for 1 ≤ i ̸= j ≤ N, (VI.16)

for some absolute constant C > 0. We have lower bounded ∥µi − µj∥2 by 0 and upper bounded by CR2.

Then with probability at least 1−N2e−t, for all 1 ≤ i ≤ N .:

ωii =

1 +
∑
j ̸=i

e−∥Xi−Xj∥2/2h

−1

≥
(

1 + (N − 1) exp
[(
−dσ2 + Cσ

√
(R2 + σ2d)t

)
/h
])−1

≥ 1− (N − 1) exp
[(
−dσ2 + Cσ

√
(R2 + σ2d)t

)
/h
]
.

Similarly as the previous case we get the almost sure convergence using by instance Borel-Cantelli Lemma.

Proof for s = sp : Let us denote δ(t) := σ
√

(R2 + σ2d)t for all t ≥ 0. Then combining concentration

bounds (VI.14) and (VI.15), with probability greater than 1− 3N2e−t, for all 1 ≤ i, j ≤ N :

⟨Xi, Xj⟩
∥Xi∥∥Xj∥

≤ R2 + δ(t) + σ2t

∥Xi∥∥Xj∥
≤ R2 + Cδ(t) + σ2t

dσ2 +R2 − Cδ(t)
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for some absolute constant C > 0 and t smaller than d (otherwise the bound vanishes). Then we can lower

bound the diagonal weights ωii, with probability greater than 1− 3N2e−t, for all 1 ≤ i ≤ N :

ωii =
eR

2/h

eR2/h +
∑
j ̸=i e

R2

h

⟨Xi,Xj⟩
∥Xi∥∥Xj∥

≥
(

1 + (N − 1) exp

(
−R

2

h

dσ2 − δ(t)− σ2t

dσ2 +R2 − δ(t)

))−1

.

For t/d small enough, the right term goes to 1 as the dimension increases. Indeed for λ > 0 small enough,

δ(λd) < dσ2 and by assumption R2/h goes to infinity. We conclude similarly as the previous cases.

Case d = o(h) : To prove the convergence of the weights to 1/N , for all similarity functions, we will

show that for all pairs of points (Xi, Xj), the scaled similarity between them s(Xi, Xj)/h goes to 0.

Proof for s = so : According to (VI.14), with probability greater than 1−Ne−t, for all 1 ≤ i, j ≤ N :∣∣∣∣ ⟨Xi, Xj⟩
h

∣∣∣∣ ≤ ∥Xi∥∥Xj∥
h

≤ dσ2 +R2 + δ(t) + Cσ2t

h
−→
d→∞

0 ,

where δ(t) := σ
√

(R2 + σ2d)t. Then, for all 1 ≤ i, j ≤ N :

ωij ≤
1

N
exp

(
2
dσ2 +R2 + δ(t) + Cσ2t

h

)
,

and then:

ωij ≤
1

N
+

1

N

(
exp

(
2
dσ2 +R2 + δ(t) + Cσ2t

h

)
− 1

)
.

As the vector (ωij)j belongs to the simplex SN , we can deduce from the upper bound above on the weights

the following lower bound. With probability greater than 1−Ne−t, for all 1 ≤ i, j ≤ N :

ωij = 1−
∑
ℓ ̸=j

ωiℓ ≥
(

1− N − 1

N

)
− N − 1

N

(
exp

(
2
dσ2 +R2 + δ(t) + Cσ2t

h

)
− 1

)

≥ 1

N
−
(

exp

(
2
dσ2 +R2 + δ(t) + Cσ2t

h

)
− 1

)
.

By inverting the bound, the get that

P
[
max
ij

∣∣∣∣ωij − 1

N

∣∣∣∣ > ε

]
≤ Ne−tε

where we can show that tε = Ω(h). We conclude again by Borel-Cantelli lemma.

Proof for s = sL2 : using again (VI.16), with probability at least 1−N2e−t:

∥Xi −Xj∥2 ≥ 2dσ2 − Cσ
√

(R2 + σ2d)t , for 1 ≤ i ̸= j ≤ N .

We get, with probability at least 1−N2e−t, that for all 1 ≤ i, j ≤ N :

ωij ≤
1

N
exp

(
2dσ2 − Cσ

√
(R2 + σ2d)t

h

)
.

Similarly as for the similarity function so, using that the weights are in the simplex, we get a high probability

lower bound on them. With probability at least 1−N2e−t, that for all 1 ≤ i, j ≤ N :

ωij = 1−
∑
ℓ ̸=j

ωiℓ ≥
1

N
−

(
exp

(
2dσ2 − Cσ

√
(R2 + σ2d)t

h

)
− 1

)
.
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We deduce from this last concentration inequality that almost sure convergence of the weights to 1/N .

Proof for s = sp : This case is the simplest as the weights can be bounded without concentration

inequality. Indeed, for all 1 ≤ i, j ≤ N :∣∣∣∣R2

h
sp(Xi, Xj)

∣∣∣∣ ≤ R2

h
−→
d→∞

0 ,

as R2 = Θ(d) and d = o(h). Then for all 1 ≤ i, j ≤ N , ωij −→
d→∞

N−1.

VI.5.2 Proofs of Proposition VI.5, Proposition VI.6 and Proposition VI.8

Let us first make a general assumption on the similarity functions.

Assumption VI.9. Let X ∼ N (µ, σ2Id) and Y ∼ N (ν, σ2Id) be two independent Gaussian vectors,

then for all t ≥ 0:

P
[∣∣∣s(X,Y )− s(X,X) + ∥µ− ν∥2/2

∣∣∣ ≥ γ(t)
]
≤ e−t (VI.17)

for some non-negative function γ : R+ → R+.

In particular, we will show in Lemma VI.11 that so, sL2 and sp satisfy this assumption. This assumption

allows us to state a general result.

Lemma VI.10. Let s be a similarity function satisfying Assumption VI.9. Assume Assumption VI.2

satisfied for a constant C1 > 0, then for all t ≥ 0, with probability greater than 1− e−t:

∥a(X1)− µ1∥2 ≤ e4γ(tN )/h

(
dσ2

1 + V1
+ 2h log

(
N

1 + V1

))
+ Cσ2

(√
dtN + tN

)
(VI.18)

here V1 =
∑N
i=2 e

−∥∆i∥2/(2h), tN = t+ 2(1 + logN) and C > 0 an absolute constant.

Proof. Using Lemma 8.1 of Birgé (2001), Proposition III.7 and Assumption VI.9, after an union bound,

with probability greater than 1− 3N2e−t :

∀i, ∥Xi − µ1∥2 ≤ dσ2 + ∥∆i∥2 + δ(t) , (VI.19)

∀i, j, ⟨Xi − µ1, Xj − µ1⟩ ≤ ⟨∆i,∆j⟩+ δ(t) , (VI.20)

∀i,
∣∣∣∣s(Xi, X1)− s(X1, X1) +

∥∆i∥2

2

∣∣∣∣ ≤ γ(t) . (VI.21)

where ∆i := µ1 − µi and δ(t) = Cσ
√

(R2 + σ2d)t + σ2t ≤ Cσ2
(√

dt+ t
)

for some absolute constant

C (independent of d and N). Assuming these events are satisfied, we can now bound the quadratic

distance between a(X1) and µ1:

∥a(X1)− µ1∥2 =

N∑
i=1

ω2
i ∥Xi − µ1∥2 +

∑
i ̸=j

ωiωj⟨Xi − µ1, Xj − µ1⟩

≤
N∑
i=1

ω2
i (dσ2 + ∥∆i∥2) +

∑
i ̸=j

ωiωj⟨∆i,∆j⟩+ δ(t)

= dσ2
N∑
i=1

ω2
i +

∥∥∥∥∥
N∑
i=1

ωi∆i

∥∥∥∥∥
2

+ δ(t) ≤ dσ2
N∑
i=1

ω2
i +

N∑
i=1

ωi∥∆i∥2 + δ(t) , (VI.22)
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where ωi = exp(s(Xi,X1)/h)∑N
j=1 exp(s(Xj ,X1)/h)

. We have used the bounds (VI.19) and (VI.20) in the first inequality

and the convexity of the squared norm for the last. Using (VI.21), we can bound the weights. For

i ̸= 1:

ωi = exp
(

(s(Xi, X1)− s(X1, X1))/h
)(

1 +

N∑
j=2

exp
(

(s(Xi, X1)− s(X1, X1)/h)
))−1

≤ exp
(
− ∥∆i∥2/(2h) + γ(t)/h

)(
1 +

N∑
j=2

exp
(
− ∥∆j∥2/(2h)− γ(t)/h

))−1

≤ e2γ(t)/h e−∥∆i∥2/(2h)∑N
j=1 e

−∥∆j∥2/(2h)
.

We have used for the last inequality that 1 ≥ e−∥∆1∥2/(2h)e−γ(t)/h. Similarly for the weight ω1 :

ω1 =

(
1 +

N∑
j=2

exp((s(Xi, X1)− s(X1, X1)/h))

)−1

≤

1 +

N∑
j=2

exp
(
−∥∆j∥2/(2h)− γ(t)/h

)−1

≤ eγ(t)/h e−∥∆1∥2/(2h)∑N
j=1 e

−∥∆j∥2/(2h)
.

We recall that Vi :=
∑
j ̸=i e

−∥∆j∥2/(2h). Injecting the bounds of ω into (VI.22), we get:

∥a(X1)− µ1∥2 ≤ dσ2e4γ(t)/h
N∑
i=1

e−∥∆i∥2/h

(1 + V1)2
+ e2γ(t)/h

∑N
i=2 e

−∥∆i∥2/(2h)∥∆i∥2

1 + V1
+ δ(t)

≤ e4γ(t)/h dσ2

1 + V1
+ e2γ(t)/h

N

1 + V1

2h

N

N∑
i=2

f(ui) + δ(t) , (VI.23)

where f : x 7→ x log(x−1) and ui := e−∥∆i∥2/(2h) for the second term. For the first term, we have

bounded e−∥∆i∥2/h by e−∥∆i∥2/(2h). Using the concavity of f and that u1 = 1 and f(u1) = 0, we can

bound the second term of (VI.23):

1

N

N∑
i=2

f(ui) =
1

N

N∑
i=1

f(ui) ≤ f

(
1

N

N∑
i=1

ui

)
= f

(
1 + V1
N

)
=

1 + V1
N

log

(
N

1 + V1

)
.

Combining this bound with (VI.23), we get that with probability at least 1− e−t:

∥a(X1)− µ1∥2 ≤ e4γ(t̃N )/h

(
dσ2

1 + V1
+ 2h log

(
N

1 + V1

))
+ Cσ2

(√
dt̃N + t̃N

)
,

where t̃N = t+ log(3N2) ≤ t+ 2(1 + logN) = tN .

Proof of Proposition VI.5 Let us first compute E
[
δ2(X1,M)

]
. By invariance by rotation of a

Gaussian noise, we can assume that for all 1 ≤ i ≤ N , the points Xi can be rewritten as:

Xi = XM
i + ξi ,

where XM
i is Gaussian vector in M and ξi is a Gaussian vector in the orthogonal of M of distribution

N (0, σ2Id−m) (when restriced to the orthogonal ofM). Then for 1 ≤ i ≤ N :

E
[
δ2(Xi,M)

]
= E

[
∥ξi∥2

]
= σ2(d−m) .
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Let us now consider E
[
δ2(as(X1),M)

]
. With the same notation, the distance of as(X1) to the subspace

M is the norm of its orthogonal part, which is:

δ2(as(X1),M) =

∥∥∥∥∥∥
N∑
j=1

ωjξj

∥∥∥∥∥∥
2

,

where ωj := ωs1j . Similarly as in the proof of Lemma VI.10, from Lemma 8.1 of Birgé (2001), Proposi-

tion III.7 and Lemma VI.11, after an union bound, with probability greater than 1− 3N2e−t :

∀i, ∥ξi∥2 ≤ (d−m)σ2 + δ(t) , (VI.24)

∀i, j, ⟨ξi, ξj⟩ ≤ δ(t) , (VI.25)

∀i,
∣∣∣∣s(Xi, X1)− s(X1, X1) +

∥∆i∥2

2

∣∣∣∣ ≤ γ(t) . (VI.26)

where ∆i := µ1 − µi and δ(t) = Cσ2
√

(d−m)t + σ2t for some absolute constant C > 0 and for γ(t)

defined in Lemma VI.11. Then, assuming these events satisfied, we get:∥∥∥∥∥∥
N∑
j=1

ωjξj

∥∥∥∥∥∥
2

=

N∑
i=1

ω2
i ∥ξi∥

2
+
∑
i̸=j

ωiωj⟨ξi, ξj⟩ ≤ (d−m)σ2
N∑
i=1

ω2
i + δ(t) (VI.27)

Using the inequality of proof of Lemma VI.10 combining with ∥∆i∥2 ≤ 4R2 ≤ 4C1dσ
2 ≤ 4h, we get that

for i ̸= 1:

ωi ≤ e2
γ(t)/h e−∥∆i∥2/(2h)∑N

j=1 e
−∥∆j∥2/(2h)

≤ e2γ(t)/h e
2

N
.

Similarly for the weight ω1 :

ω1 ≤ eγ(t)/h
e−∥∆1∥2/(2h)∑N
j=1 e

−∥∆j∥2/(2h)
≤ e2γ(t)/h e

2

N
.

After injecting into (VI.27), we obtain that there exists an exponential random variable ξ ∼ E(1) such that

almost surely:

δ2(as(X1),M) ≤ C (d−m)σ2

N
e4γ(ξ+log 3N2)/h + Cσ2

√
(d−m)(ξ + 1 + logN) . (VI.28)

According to Lemma VI.11 for s be either so or sL2 , as R2 ≤ C1dσ
2 we have:

γ(ξ + log 3N2)

h
≤ dσ2

h
+
C max(1,

√
C1)σ2

√
d(ξ + 1 + logN) + Cσ2(ξ + 1 + logN)

h

≤ CC−1
1

(
1 +

max(1,
√
C1)√

d

√
ξ +

ξ

d
+

√
1 + logN

d
+

1 + logN

d

)
(VI.29)

≤ CC−1
1

(
1 +

max(1,
√
C1)√

d

√
ξ +

ξ

d

)
(VI.30)

using that h ≥ C1dσ
2 for (VI.29) and that d ≥ logN for (VI.30). Then for C1 large enough (C1 ≥ C),

the expectation E
[
e4γ(ξ+log 3N2)/h

]
is finite and upper bounded for all d. Then taking the expectation of

(VI.28) we conclude the proof.
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Proof of Proposition VI.6 In this proof the constant C can differ between equations and can

depend of C1. Let us partition the set JNK into d subsets C1, . . . , Cd of size ⌈N/d⌉ or ⌊N/d⌋. For i ∈ Ck,
let µi := Rek where (e1, . . . , ed) is an orthonormal basis of Rd. Then for ∆i := µi − µ1, we have:

⟨∆i,∆j⟩ =


0 if i ∈ C1 or j ∈ C1,
2R2 if i, j ∈ Ck for k ̸= 1,

R2 otherwise.

Then, similarly as the previous proofs, with probability greater than 1− 3N2e−t :

∀i, ∥Xi − µ1∥2 ≥ dσ2 + ∥∆i∥2 − δ(t) , (VI.31)

∀i, j, ⟨Xi − µ1, Xj − µ1⟩ ≥ ⟨∆i,∆j⟩ − δ(t) , (VI.32)

∀i,
∣∣∣∣s(Xi, X1)− s(X1, X1) +

∥∆i∥2

2

∣∣∣∣ ≤ γ(t) . (VI.33)

where δ(t) = Cσ
√

(R2 + σ2d)t+σ2t ≤ Cσ2
(√

dt+ t
)
for some constant C depending of C1 and for γ(t)

defined in Lemma VI.11. Assuming these events are satisfied and that 1 ∈ C1, we have

∥as(X1)− µ1∥2 =

N∑
i=1

ω2
i ∥Xi − µ1∥2 +

∑
i ̸=j

ωiωj⟨Xi − µ1, Xj − µ1⟩

≥
N∑
i=1

ω2
i (dσ2 + ∥∆i∥2) +

∑
i ̸=j

ωiωj⟨∆i,∆j⟩ − δ(t)

≥
∑
i/∈C1

ω2
i (0 + 2R2) +

∑
i̸=j /∈C1

ωiωjR
2 − δ(t) = R2

∑
i/∈C1

ωi

2

− δ(t) , (VI.34)

where ωi = ωsi1. The first inequality is obtained using bounds (VI.31) and (VI.32) and the second by

replacing ⟨∆i,∆j⟩ by its value. Using now (VI.33), we get for i /∈ C1:

ωi ≥ e−2γ(t)/h e−∥∆i∥2/(2h)∑N
j=1 e

−∥∆j∥2/(2h)
≥ e−2γ(t)/h e

−2

N
.

We have used that ∥∆i∥2 ≤ 4R2 ≤ 4h by assumption. By combining the two previous bounds and replacing

t by tN = t+ log(3N2) into (VI.34), with probability at least 1− e−t we get:

∥as(X1)− µ1∥2 ≥ CR2e−4γ(tN )/h

(
(N − |C1|)

C

N

)2

− δ(tN )

≥ CR2e−4γ(tN )/h

(
1− 1

N
− 1

d

)2

+

− δ(tN ) ,

where we have used that |C1| ≤ N
d + 1 and where (·)+ denotes the positive part. Using Eq.(VI.30), we get

that for C1 large enough:
γ(t+ log 3N2)

h
≤ C

(
1 +
√
t+ t

)
.

Then, for ξ ∼ E(1) an exponential random variable, we have:

E
[
∥as(X1)− µ1∥2

]
≥ CR2E

[
e−C(1+

√
ξ+ξ)

](
1− 1

N
− 1

d

)2

+

− Cσ2E
[√

d(ξ + log 3N2) + ξ + log 3N2
]

≥ CC−1
1 dσ2

(
1− 1

N
− 1

d

)2

+

− Cσ2
√
d(1 + logN) .
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We have used that logN ≤
√
d logN .

Proof of Proposition VI.8 According to Lemma VI.11, the similarity functions sm and sdb verify

Assumption VI.9 for γ satisfying for t ≥ 0:

γ(t+ C(1 + logN)) = C max(1,
√
C1)σ2

√
d(t+ C(1 + logN)) + Cσ2(t+ C(1 + logN))

≤ γ(t) + C max(1,
√
C1)
√
d(1 + logN) .

as
√
a+ b ≤

√
a+
√
b and d ≥ logN . Moreover, using that h ≥ C1σ

2
√
d:

γ(t)

h
≤ CC−1

1

(
max(1,

√
C1)
√
t+

t√
d

)
,

and then, for C1 large enough (C1 ≥ C/
√
d), E

[
e4γ(ξ)/h

]
is upper bounded for ξ ∼ E(1) an exponential

random variable. From here, in this proof, the notation C denotes a constant depending potentially of C1.

By combining these bounds with Lemma VI.10, we get that for 1 ≤ i ≤ N :

E
[
∥a(Xi)− µi∥2

]
≤ E

[
e4γ(ξ)/h

]
eC

σ2√
d log N/h

(
dσ2

1 + Vi
+ 2h log

(
N

1 + Vi

))
+ Cσ2

√
d logN

≤ C
(

dσ2

1 + Vi
+ 2h log

(
N

1 + Vi

))
+ Cσ2

√
d logN .

for Vi =
∑N
j=1
j ̸=i

e−∥∆ij∥2/(2h). We have bounded again logN by
√
d logN . As Vi ≥ 0 and h > σ2

√
d logN ,

we get the individual bound:

E
[
∥a(Xi)− µi∥2

]
≤ C

(
dσ2

1 + Vi
+ h logN

)
.

The Nh balls induce a partition C1 ⊔ . . . ⊔ CNh
= JNK of the means such that for i, j ∈ Ck, ∥∆ij∥ ≤ 2

√
h.

Then for i ∈ Ck, Vi ≥ (|Ck| − 1)e−2. Hence

1

N

N∑
i=1

(
dσ2

1 + Vi
+ 2h log

(
N

1 + Vi

))
≤ 1

N

Nh∑
k=1

|Ck|
[
dσ2

|Ck|
e2 + 2h log

(
N

1 + |Ck|e−2

)]

≤ C

[
dσ2Nh

N
+ h+ h

Nh∑
k=1

|Ck|
N

log

(
N

|Ck|

)]

≤ C
[
dσ2Nh

N
+ h+ h logNh

]
, (VI.35)

using the concavity of the function x 7→ x log x−1 for the last inequality.

Lemma VI.11. Assume R2/dσ2 ≤ CR, then the similarity functions so, sL2 satisfy Assumption VI.9

for γ(t) = dσ2 + δ(t) and the similarity functions sm and sdb satisfy it for γ(t) = δ(t) where for t ≥ 0:

δ(t) = C max(1, CR)σ2
√
d(t+ 1) + Cσ2(t+ 1)

where C is an absolute constant.

Proof. Let us recall that for all x, y ∈ Rd:

so(x, y) = ⟨x, y⟩ , sL2(x, y) = −∥x− y∥
2

2
;

sm(x, y) = ⟨x, y⟩ for x ̸= y, and sm(x, x) = R2 :

sdb(x, y) = ⟨x, y⟩ for x ̸= y, and sdb(x, x) = ∥x∥2 − dσ2 .
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Using the concentration bounds on squared norm and scalar product of Gaussian random vectors

(Birgé, 2001 and Proposition III.7) we get the following deviations. These concentration bonds are

obtained by direct applications of these results or by combining them using union bounds. Let t ≥ 0,

each inequality is true with probability at least 1− e−t:∣∣∣∣so(X,Y )− so(X,X) +
∥µ− ν∥2

2

∣∣∣∣ =
∣∣∣⟨X,Y ⟩ − ∥X∥2 +R2 − ⟨µ, ν⟩

∣∣∣ ≤ dσ2 + δ(t) ;∣∣∣∣sL2(X,Y )− sL2(X,X) +
∥µ− ν∥2

2

∣∣∣∣ =

∣∣∣∣− ∥X − Y ∥22
+
∥µ− ν∥2

2

∣∣∣∣ ≤ dσ2 + δ(t) ;∣∣∣∣sm(X,Y )− sm(X,X) +
∥µ− ν∥2

2

∣∣∣∣ =
∣∣∣⟨X,Y ⟩ − ⟨µ, ν⟩∣∣∣ ≤ δ(t) ;∣∣∣∣sdb(X,Y )− sdb(X,X) +

∥µ− ν∥2

2

∣∣∣∣ =

∣∣∣∣⟨X,Y ⟩ − ∥X∥2 + dσ2 +R2 − ⟨µ, ν⟩
∣∣∣∣ ≤ δ(t) ;

where δ(t) = Cσ
(√

(R2 + dσ2)(t+ 1) + σ(t+ 1
)

for some absolute constant C. The deviation δ is a

polynomial of t+ 1 and not of t due to the use of union bounds. We conclude by upper bounding R2

by CRdσ
2.

VI.5.3 Estimation on the sphere

The following lemma lower bounds the distance of a projected point to its mean. We observe that the risk

of this estimator is of same order of the distance without projection.

Lemma VI.12. Let d ≥ 2, µ ∈ Rd, such that ∥µ∥ = R and X ∼ N (µ, σ2Id). Assume that R2 ≥ σ2d,

then:

E

[∥∥∥∥ RX∥X∥ − µ
∥∥∥∥2
]
≥ C(d− 1)σ2, (VI.36)

for some constant C ≥ 0.1.

Proof. Let us first remark that: ∥∥∥∥ RX∥X∥ − µ
∥∥∥∥2 = 2R2 − 2R

〈
X

∥X∥
, µ

〉
.

Let us denote ε := X − µ ∼ N (0, σ2Id). It exists a random variable Z2 such that Z2/σ2 ∼ χ2(d− 1),

is independent of ⟨ε, µ⟩ and ∥ε∥2 = Z2 + ⟨ε, µ⟩2/R2. Then:〈
X

∥X∥
, µ

〉
=

R2 + ⟨ε, µ⟩√
Z2 + ⟨ε,µ⟩2

R2 + 2⟨ε, µ⟩+R2

.

As the function f : x 7→ R2+x√
Z2+x2/R2+2x+R2

is concave, then by Jensen’s inequality conditionally to Z2:

E
[〈

X

∥X∥
, µ

〉]
= E

[
E
[
f(⟨ε, µ⟩)|Z2

]]
≤ E

[
f(E

[
⟨ε, µ⟩|Z2

]
)
]

= E[f(E[⟨ε, µ⟩])] = E[f(0)] = E
[

R2

√
R2 + Z2

]
.

Using that for all z > 0:

1− 1√
1 + z

≥ z

2(1 + z)
,
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and that it exists a random variable ξ ∼ E(1) such that almost surely Z2 ≥ (d − 1)σ2e−(1+ξ/(d−1))

(Lemma V.41), we get:

E

[
2R2

(
1− 1√

1 + Z2/R2

)]
≥ E

[
Z2

1 + Z2/R2

]
≥ σ2(d− 1)E

[
e−(1+ξ/(d−1))

1 + (d− 1)σ2/R2e−(1+ξ/(d−1))

]
≥ σ2(d− 1)E

[
e−(1+ξ/(d−1))

1 + e−(1+ξ/(d−1))

]
≥ σ2(d− 1)E

[
e−(1+ξ/(d−1))

1 + e−1

]
We have used that by assumption R2 ≥ σ2d ≥ σ2(d− 1). We conclude by integrating.

E
[
e−(1+ξ/(d−1))

1 + e−1

]
=

1

1 + (d− 1)−1

1

e+ 1
≥ 1

2

1

e+ 1
≥ 0.1
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VII Conclusion and future directions

Taking as starting point the classical analysis of the influence of dimension for Gaussian isotropic data, we

have studied closeness testing, multiple means estimation and the attention mechanism on a high dimen-

sional framework and proposed new methods adapted to this setting.

Closeness testing: In Section IV, we recovered the phase transition of the separation rate of the test

already known for isotropic distributions. This separation rate evolves with the targeted proximity: for a

small distance, the test is harder than for a large one with an error ranging from Θ(
√
d∗) to Θ(1). The upper

bound on the separation rate is obtained by building tests based on estimators of covariance moments for

which we provide non-asymptotic bounds. Our test are build for Gaussian or bounded data which permits

to evaluate the separation rate of a two sample test in term of MMD distance. These mathematical results

were also a first step to be able to consider the multi task averaging problem for heterogeneous distributions.

Multiple means estimation: The non-asymptotic quantification of the (effective) dimensional depen-

dencies of test errors have enabled us to build better estimators than empirical means for multiple means

estimation. We adapted our first method (Section III), fit to homogeneous distributions, to highly hetere-

geneous distributions with guarantees outside the framework of finite-dimensional isotropic Gaussian data.

The average improvement depends of the unknown structure of the set of means, e.g. the possible im-

provement is high if the set is covered by a small number of balls. This estimation improvement is obtained

by aggregating the empirical mean of each sample with the empirical means of samples with closed mean

and relatively smaller test error. This last constraint is unnecessary for homogeneous distributions but is

crucial to consider heterogeneous distributions as in Section V. In this setting, we had to take into account

both that the coordinates are no longer independent and that the different distributions can have different

covariance structure and then different effective dimensions. These methods select these samples explicitly

by testing or implicitly by minimizing a penalized empirical risk. The simplicity of the multitask averaging

problem relatively to a general multitask problem allowed us to obtain a sharp control of the improvement.

This noise reduction is limited at (d•)
−1/2

=
√
d∗/de which is roughly the ratio of the estimation error and

the test error. Moreover, we show that our Q-aggregation method does not deteriorate the estimation even

in a worst case where the means are far from each others as our upper bounds on the improvement is upper

bounded by 1 when the dimension goes to infinity (B(τ, ν) ≤ 1). We adapted all our methods to bounded

distributions to be able to apply them to the estimation of multiple kernel mean embeddings.

Self-attention: These considerations about denoising empirical means have led us to study the self

attention mechanism as a problem of multiple mean estimation. With this new point of view, we have

exhibited a noise reduction effect of this operation in high dimension and have proposed some modifications

which make it more robust in our simplified setting of Gaussian distributions. This analysis has been made

by reducing the attention matrices to an unique real parameter h for which we study the dependence in the

dimension. For classical attention mechanisms the scale h needs to be of order Θ(d), but with this scale

in some worst cases, the attention can deteriorate the observations. Our modifications of the attention are

more robust as they accept a wider range of scale h while supporting these worst cases.

These different works leave us with many unanswered questions and potential future developments.

� Improvement of the minimax bound. For the separation rate of the closeness testing and for

the minimax risk of multiple means estimation, a gap remains between upper and lower bounds

for bounded data. Indeed, for now, our upper bounds in the bounded setting are compared with

Gaussian lower bounds and only match with some assumption on the maximum norm of the data

or on the sample size (ϕ needs to be controlled for instance in Proposition V.16). We think that
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these conditions are not caused by our methods but are intrinsic of the problem and that a specific

minimax analysis of the bounded setting could justify them. The gap between the lower and upper

bounds is also present in Gaussian setting for the problem of multiple means estimation. This gap

is located in two quantities, the additive term logB/
√
d• and the set of neighbors W(ς) appearing

in the upper bound and not in the lower bounds (comparing Corollary V.13 and Proposition V.18).

We interpret logB/
√
d• as the error of the detection of the closed means and W(ς) as the error

induced by the covariance heterogeneity of the distributions. The term logB/
√
d• appears indeed

in the homogeneous setting (see Proposition III.3) contrary to W(ς) only present in the methods

of Section V. In fact, in our actual lower bounds, the closed means are assumed known and the

distributions are supposed to share a common covariance structure (see Definition V.17). We think

that taking them into account in the minimax analysis could fill this gap.

� Generalization of the multiple means estimation. One other open question is the extension of

our approach to problems more general than mean vectors estimation. In particular, we are interested

to consider problems of regression and understand how to adapt our approaches such that they could

apply for such problems with high dimensional data. One possibility would be to adapt our methods

in order to apply them to the embeddings of the data and hope to denoise them before the regression.

In case of a distribution regression problem, the embeddings could be the kernel mean embedding

of the distributions which fits with our bounded setting. In this case and more generally when the

outputs are high dimensional vectors, an other possibility could be to combine directly the regressors

of each bags, which comes close to an expert aggregation problem.

� Extension of the denoising analysis of the self attention: Our new interpretation of this central

mechanism of the Transformers have been justified in this thesis in an artificial Gaussian model with

simplified forms of attention, but leaves us with many unanswered questions. It would be interesting

to understand whether this phenomenon extends to a general form of attention, if in this case an

other data structure is captured by the attention mechanism, and whether a notion of effective

dimension is relevant when the noise is not isotropic. For such a non-isotropic noise, we expect that

the attention matrices, used in the general form of attention, will learn its covariance and use it to

denoise the sample. Some recent results in others simplified form of attention have already point

to this direction (Zhang et al., 2024). The linked question is to know if our attention modifications

can be exported to this more general setting. For a general couple of matrices (Q,K), the debiased

similarity function can be adapted by substracting the trace of the matrix but an adaptation is less

evident for the ”modified” similarity function. Another question is to include in our analysis the

multi-head attention used in practice and which apply the attention mechanism to subgroups of the

vectors coordinates. One possibility is that this mechanism may capture the block structure of the

means or of the covariance. Furthermore, the modifications of attention that have been proposed

require to be tested in a neural network and with real data to observe if the wider range of scale can

really improve the network on performance or maybe on training time.
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