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Abstract

The development of quantum computing relies on the unpleasant predicament
that a quantum system should be freely controllable but also very long-lived,
two often conflicting requirements. A promising path to overcome this diffi-
culty lies in continuous-variable qubits encoded in Schrödinger cat states of
a quantum harmonic oscillator. These so-called cat qubits, once stabilized
with engineered two-photon dissipation or Kerr Hamiltonians, can exhibit an
exponentially small sensitivity to bit-flip noise channels. This bias in noise is
in turn highly beneficial for quantum error correction since it reduces experi-
mental overheads by requiring that only phase-flip errors should be corrected
for. However, towards the realization of error-corrected cat qubits, several
orders of magnitudes in gate and readout fidelities are still required.

In this thesis, using precise mathematical analyses of the dynamics of cat
qubits, we identify opportunities to improve their control and to achieve or-
ders of magnitude improvements in error protection or gate fidelities. First,
we study in detail the energy spectrum of Kerr cat qubits, and show how
it limits the scaling of protection against bit-flip errors in the presence of
thermal-induced leakage. From this study, a novel cat qubit confinement
scheme is devised based on the combination of engineered dissipation and of
a two-photon exchange Hamiltonian. We show how this scheme outperforms
existing proposals in terms of gate fidelities while retaining the key exponen-
tial suppression of errors. Second, we focus on dissipative Zeno gates and
survey the role of the buffer mode into the gate process. From this insight,
we devise several designs of high-fidelity Zeno gates, either based on feeding
information leaked to the environment back into the system of interest, or
based on reducing the amount of leaked information in the first place. Fi-
nally, we introduce a numerical method to differentiate through a Lindblad
master equation with a constant memory cost, based on the reverse time inte-
gration of an adjoint state. We then demonstrate it for the optimal control of
transmon readout, and show readout fidelity improvements with interpretable
pulses. The method is completely generic, has a low numerical overhead, and
can be applied to a range of problems where dissipation is key to the process
being optimized.

Throughout this thesis, a particular attention has been devoted to propos-
ing schemes that are experimentally viable with the toolbox of modern su-
perconducting circuits. In addition, more than providing concrete proposals
to improve upon existing cat qubit operations and stabilization methods, we
hope that this thesis can provide new insights into research on cat qubits,
namely regarding their stabilization and the role of the buffer mode into the
bigger picture.
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Chapter 1

From superconducting circuits to
protected cat qubits

In this introductory chapter, we review the invention of protected cat
qubits, from the early development of quantum physics to the growth of
superconducting circuits and how they gave rise to continuous-variable
quantum information.

Contents
1.1 Quantum computation . . . . . . . . . . . . . . . . . . 1

1.2 Superconducting quantum circuits . . . . . . . . . . . 4

1.2.1 Quantum LC resonators . . . . . . . . . . . . . . . . . 4

1.2.2 Artificial atoms . . . . . . . . . . . . . . . . . . . . . . 6

1.2.3 Light-matter interaction . . . . . . . . . . . . . . . . . 9

1.2.4 The bosonic shift in paradigm . . . . . . . . . . . . . . 10

1.3 Cat qubits . . . . . . . . . . . . . . . . . . . . . . . . . . 12

1.3.1 Encoding a cat qubit in an oscillator . . . . . . . . . . 12

1.3.2 Shifted Fock basis . . . . . . . . . . . . . . . . . . . . 16

1.3.3 Concatenating into error-correcting codes . . . . . . . 18

1.4 Protecting cat qubits from decoherence and leakage 19

1.4.1 Hamiltonian protection: Kerr cat qubits . . . . . . . . 20

1.4.2 Dissipative protection: dissipative cat qubits . . . . . . 24

1.4.3 Engineering gates on protected qubits . . . . . . . . . 30

1.5 Outline and Contributions . . . . . . . . . . . . . . . . 35

1.1 Quantum computation

The study of physics is one of the most ancient and fundamental human en-
deavors, dating back to the earliest civilizations. From the first attempts to
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understand the movements of celestial bodies to the modern development of
particle accelerators, physics strives to uncover the mysteries of the universe
and to comprehend the fundamental laws that govern it. Early classical me-
chanics provided the first glimpses into the workings of the physical world,
but as our tools for observing the universe grew more advanced, so too did
our understanding of the universe itself. The development of relativity theory
and quantum mechanics in the early twentieth century marked a paradigm
shift in our understanding of the physical world. These theories revealed a
universe that was far more complex, subtle, and counter-intuitive than pre-
viously imagined, and they challenged our fundamental assumptions about
reality itself. In particular, quantum mechanics posed a significant obstacle
to our intuition regarding the universe’s nature. The theory revealed that
at the most fundamental level, the world is inherently probabilistic and that
objects may simultaneously exist in several states. Moreover, the act of ob-
serving a quantum system can fundamentally alter its state, resulting in a
profound change in our perception of the observer’s role in shaping reality.

But quantum mechanics is not just a theoretical construct aimed at de-
scribing the nature of the universe; its insights have also given rise to nu-
merous applications, ranging from improved sensors and imaging technology
to cryptography and quantum communication. In particular, one exciting
application of quantum mechanics is the development of quantum comput-
ers, first proposed by Richard Feynman in the early 1980s [Feynman 1982].
Feynman recognized that classical computers would struggle to simulate quan-
tum systems, and proposed a device that was specifically designed to simu-
late these systems much more efficiently. Feynman’s work inspired a wave
of research into quantum computation, and in particular the development
of quantum algorithms that are exponentially faster than their deterministic
classical counterparts [Deutsch 1985, Shor 1994]. While a quantum computer
that can outperform any classical computer on a useful application has yet
to be demonstrated, the last decade has seen tremendous progress on this
endeavor [Arute et al. 2019].

Such speed-ups in information processing directly arise from entanglement,
a fundamental property of quantum mechanics that allows for the creation
of complex, highly correlated states between two or more quantum systems.
One of the most remarkable yet simple application of entanglement is quan-
tum teleportation [Bennett et al. 1993], a quantum communication protocol
that relies on the creation of an entangled state between two distant quantum
objects. The protocol involves a sender and a receiver, who are located at
different locations and who each possess one of the two entangled objects.
The sender performs a measurement on their quantum object and sends the
measurement result to the receiver via a classical communication channel.
Depending on this information, the receiver decides whether to perform an
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operation on their quantum object or not, which can effectively teleport the
initial state of the sender’s system to that of the receiver. Indeed, the sender’s
measurement in an appropriate basis will collapse the entangled system in a
given state, unknown to the receiver. Hence, classical information is required
for the receiver to know which state he is left with, without himself mea-
suring and collapsing its own quantum object. Quantum teleportation thus
harnesses the fundamental principles of quantum computation, ranging from
the creation of intricate entangled states, to the conservation of these states
while subject to noise during classical processing steps, and to the precise
readout and manipulation of quantum objects with maximum accuracy.

This protocol not only finds practical application in modern quantum in-
formation processing, but also underlines a pivotal aspect of ongoing research
in quantum computing: the demand for high-fidelity control and minimum
decoherence [Preskill 1998, Knill 2005]. High-fidelity control pertains to the
precision with which quantum states are manipulated and measured, and is
vital for ensuring accurate and dependable quantum operations. Conversely,
decoherence is a fundamental limitation of quantum systems, which occurs
when a quantum state becomes entangled with its environment leading the
eventual destruction of the quantum state. Minimizing decoherence is there-
fore critical for maintaining the integrity of quantum states and preventing
errors in quantum computations [Pellizzari et al. 1995]. It is thus fundamen-
tally challenging to operate a quantum device without introducing noise — i.e.
any interaction with the environment that may prompt decoherence —, and
doing so requires careful engineering and design to achieve balance between
the two conflicting requirements.

Superconducting circuits are one of a few highly promising platforms that
can achieve this intricate balance [Nakamura et al. 1999, Vion et al. 2002,
Koch et al. 2007]. By harnessing the remarkable feature of superconductivity
to conduct electric current without any resistance, these circuits can explore
and manipulate quantum phenomena at macroscopic scales for extended pe-
riods of time. In addition, superconducting circuits can be easily fabricated
using established microfabrication techniques, enabling the integration of com-
plex circuitry on a chip. Their compatibility with classical electronics and
well-developed control and measurement techniques also facilitates seamless
interfacing with conventional computational systems, thus promoting the hy-
bridization of quantum and classical computing. These factors, combined with
the rapid advancements in materials science, device fabrication, and system
integration, have pushed superconducting circuits to the forefront of research
in quantum computation.

In the rest of this introduction, we first present a short review of supercon-
ducting circuits from the LC resonator to the non-linear control enabled by
Josephson junctions. Next, we discuss how bosonic qubits have been giving
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rise to a shift in paradigm in the field of quantum information by encoding
in continuous-variable systems instead of discrete ones. We then move on to
the introduction of cat qubits and to the promise of low-overhead quantum
computation they offer. Finally, we review how cat qubits can be protected
with engineered Hamiltonians or dissipation, and how to engineer a universal
gate set with either of these two approaches.

1.2 Superconducting quantum circuits

The advent of superconducting circuits has opened up new possibilities for
studying and manipulating quantum states at a macroscopic level, bridging
the gap between microscopic quantum phenomena and the observable macro-
scopic world. After quantization into lumped-elements and into normal elec-
tromagnetic modes, these circuits exhibit discrete energy levels and coherent
dynamics, characteristic of quantum systems. In this section, we introduce
LC resonators as a means to confine and store energy in the form of quantized
electromagnetic fields, transmon artificial atoms as robust and controllable
two-level quantum systems, and their light-matter-like interaction. For an
in-depth review, we refer to [Blais et al. 2021, Vool & Devoret 2017].

1.2.1 Quantum LC resonators

The quantum LC resonator plays a crucial role in superconducting circuits,
providing a means to confine and store energy in the form of quantized elec-
tromagnetic fields. With lumped elements, an LC oscillator consists of an
inductor with inductance L and a capacitor with capacitance C in parallel,
as represented in Figure 1.1(a). In the classical regime, the dynamics of the
resonator can be described by the Hamiltonian

H =
Q2

2C
+

Φ2

2L
, (1.1)

where Φ(t) =
∫ t

0
V (t′)dt′ is the magnetic flux related to the integral of the

voltage across the dipole, V (t). Its corresponding canonical momentum is the
charge, Q(t) = CΦ̇(t) =

∫ t

0
I(t′)dt′ given by the integral of the current, I(t).

This Hamiltonian directly highlights the mechanical analogy between the LC
resonator and a mass-spring oscillator of position coordinate Φ, momentum
Q and mass C, and where the two Hamiltonian terms correspond to kinetic
and potential energies respectively.

To quantize the system, we promote the canonical variables Φ and Q to
quantum operators, Φ and Q, respectively. These conjugate operators satisfy
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L C
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y(a) (b)

Figure 1.1: (a) Lumped-element model of a LC resonator with inductance L
and capacitance C. (b) Harmonic oscillator potential with resonant frequency
ωr. Figure adapted from [Blais et al. 2021].

the canonical commutation relation, [Φ,Q] = iℏ, that enforces the uncer-
tainty principle, where ℏ is the reduced Planck constant. Next, we move
into the diagonal basis of the Hamiltonian by introducing the annihilation
and creation operators, a and a† respectively, which satisfy the commuta-
tion relation [a,a†] = ℏ. By making the substitution Φ = Φzpf(a + a†) and
Q = iQzpf(a

† − a) into the Hamiltonian, we can rewrite it in terms of ladder
operators according to

H = ℏωr

(
a†a+

1

2

)
(1.2)

where ωr = 1/
√
LC is the resonant frequency of the LC resonator. Here,

Φzpf =
√

ℏZr/2 and Qzpf =
√
ℏ/2Zr denote the characteristic magnitude

of zero-point fluctuations of the flux and charge, where Zr =
√
L/C is the

characteristic impedance of the circuit. This quantized Hamiltonian reveals
the discrete nature of the energy spectrum, with the ladder operator a†a
representing the number operator that counts the excitation quanta or photons
of frequency ωr in the oscillator. The eigenstates of this Hamiltonian thus
satisfy a†a |n⟩ = n |n⟩ for n ≥ 0, and are known as Fock or number states. We
can thus identify the creation and annihilation operators a† and a as operators
that induce transitions between energy levels, and satisfy the ladder relations,
a |n⟩ = √

n |n− 1⟩ and a† |n⟩ =
√
n+ 1 |n+ 1⟩. Figure 1.1(b) represents the

harmonic potential described by (1.2) with equidistant energy levels.

Experimentally, LC resonators can be engineered using different geome-
tries, such as 2D stripline resonators or 3D cavities, providing flexibility in
the design and performance of superconducting circuits. 2D stripline res-
onators consist of a planar conductor sandwiched between two ground planes
a few tens of micrometers apart, forming a transmission line structure. By
carefully designing the dimensions and materials of the stripline, the induc-
tance and capacitance can be controlled, allowing for precise tuning of the
resonant frequency and impedance. On the other hand, 3D resonators utilize
three-dimensional structures such as hollow microwave cavities made of alu-
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minum to confine the electromagnetic field. These cavities provide additional
degrees of freedom in shaping the field distribution and can be tailored for spe-
cific applications. The choice between 2D stripline resonators and 3D cavities
depends on factors like desired frequency range, coupling strength to other
components, scalability, and fabrication constraints. Both approaches offer
unique advantages and have been extensively employed in the design and im-
plementation of superconducting circuits for diverse quantum computing and
quantum information processing tasks.

1.2.2 Artificial atoms

Non-linearity plays a pivotal role in probing non-classical behavior in super-
conducting circuits. Indeed, the ground state of an LC resonator is classical; it
is a gaussian-like distribution of number states obtained after thermalization
with the environment. As such, only other gaussian states can be prepared by
using linear and quadratic Hamiltonians in the ladder operators which are the
standard control tools of quantum optics. Hence the introduction of Joseph-
son junctions [Josephson 1962] was crucial for the success of superconducting
circuits by enabling large non-linearities to be engineered.

A Josephson junction typically consists of two superconducting electrodes
separated by a thin insulating barrier as depicted in Figure 1.2(a), forming a
weak link for the flow of Cooper pairs. The behavior of Josephson junctions
arises from the Josephson effect, which is described by the phase difference φ
between the superconducting order parameters on either side of the junction.
The Josephson effect gives rise to two distinct phenomena: the Direct Current
(DC) Josephson effect, where a supercurrent flows across the junction in the
absence of a voltage bias, and the AC Josephson effect, where an oscillating
supercurrent is induced by an applied voltage. The dynamics of Josephson
junctions are elegantly described by the Josephson equations, which connect
the phase difference φ across the junction to the supercurrent according to

I = Ic sin(φ) (1.3)

where Ic is the critical current of the junction. Voltage across the weak link
is also related to the junction phase difference through the second Josephson
relation, according to

dφ

dt
=

2π

Φ0

V (t) (1.4)

where Φ0 = h/2e is the magnetic flux quantum. Together, these relations de-
scribe the relation between current and voltage across a junction, and hence
the introduction of Josephson junctions into regular electronic circuits be-
comes evident [Vion et al. 2002, Wallraff et al. 2004].
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Figure 1.2: (a) Schematic of a Josephson junction, with superconducting elec-
trodes (light blue) separated by a thin insulating barrier (grey). (b) Lumped-
element model of a fixed-frequency transmon, where the crossed-out square
represents a junction with Josephson energy EJ , shunted by a large gate ca-
pacitance CS. The superconducting island is shown in light blue. (c) Cosine
potential of a transmon qubit with its lower three eigenstates of decreas-
ing transition frequency (|g⟩, |e⟩ and |f⟩). Panels (b) and (c) are adapted
from [Blais et al. 2021].

Certainly the most prominent circuit of modern quantum de-
vices is that of the transmon qubit [Koch et al. 2007, Blais et al. 2007,
Clarke & Wilhelm 2008], as represented in Figure 1.2(b) with lumped ele-
ments. The transmon qubit architecture involves shunting the Josephson
junction with a large capacitance, resulting in a highly anharmonic energy
spectrum. This anharmonicity is crucial for achieving long coherence times
and suppressing certain types of errors. The transmon Hamiltonian can be
derived by considering the charge degree of freedom of the Josephson junction.
The charge on the junction is described by the operator n, which commutes
with the Hamiltonian and represents the number of Cooper pairs transferred
across the junction. The transmon Hamiltonian then reads

H = 4EC(n− ng)
2 − EJ cos(φ) (1.5)

where EC is the charging energy associated with the capacitance, ng is the
offset charge induced by external sources, EJ = Φ0Ic/2π is the Josephson
energy related to the junction’s critical current, and φ is the phase difference
across the junction. The cosine potential of this Hamiltonian is represented
in Figure 1.2(c). By providing a non-quadratic potential compared to regular
oscillators, transmons feature unevenly spaced energy levels (i.e. non-zero an-
harmonicity) which allows for the precise control of isolated two-level systems.

One of the notable advantages of the transmon qubit is its remarkable
resilience against charge noise. Charge noise can cause fluctuations in the
offset charge ng and thus poses a significant challenge in superconducting
qubits. However, the transmon qubit is exponentially protected against charge
noise thanks to its large shunting capacitance, which significantly reduces the
charging energy EC ∝ 1/CS compared to the Josephson energy EJ , effectively



8 Chapter 1. From superconducting circuits to protected . . .

placing the transmon qubit in a "soft" charging regime. In this regime, the
qubit states are spread out in charge space, making them less susceptible to
charge noise-induced variations in ng. As a result, transmon qubits exhibit
enhanced coherence times on the order of tens of microseconds or even longer,
contributing to their suitability for quantum information processing tasks.
The downside of this regime is a reduction in qubit anharmonicity, which
however scales only with a weak power law with the energy ratio according to
α ∼ (EJ/EC)

−1/2.

The experimental realization of transmon qubits has been achieved with
great success, demonstrating their feasibility and robustness against charge
noise [Schreier et al. 2008, Paik et al. 2011]. Moreover, transmon qubits have
shown remarkable compatibility with established superconducting circuit tech-
nology, allowing for the integration of multiple qubits and the implementation
of various quantum operations. They have been employed in a wide range of
applications, including the realization of multi-qubit systems, quantum gates,
and quantum error correction [Arute et al. 2019, AI 2023, Kim et al. 2023].
The combination of their anharmonic energy spectrum, long coherence times,
and scalability positions transmon qubits as promising candidates for the de-
velopment of large-scale, fault-tolerant quantum computers. Still, reaching
this degree of performance requires further improvements in the control of
such qubits. Chapter 4 is thus dedicated to the design of an optimal readout
protocol for transmons using a novel method of quantum optimal control.

In addition to the widely studied transmon qubit, several other super-
conducting qubit architectures have gained attention for their unique char-
acteristics and potential applications in quantum information processing.
One such qubit is the fluxonium qubit [Manucharyan et al. 2009], which uti-
lizes a superconducting loop shunted by a large inductance made of Joseph-
son junctions in series, also referred to as superinductance. The fluxonium
qubit operates in the regime where the Josephson energy dominates, re-
sulting in a highly anharmonic energy spectrum. This anharmonicity en-
ables long coherence times and robustness against certain types of noise,
making the fluxonium qubit promising for applications requiring high fi-
delity quantum operations. Another intriguing qubit design is the zero-
pi qubit [Douçot & Vidal 2002, Ioffe & Feigel’man 2002, Kitaev 2006], which
utilizes Josephson junctions with unconventional phase relationships. This
qubit exploits the presence of a pi-phase shift in the Josephson junction to
create a non-trivial energy spectrum with protected states against noise and
environmental fluctuations. The zero-pi qubit offers unique properties for
quantum information processing, such as tunable qubit frequency and reduced
sensitivity to charge noise. These alternative superconducting qubit architec-
tures provide a rich landscape for exploring diverse quantum phenomena and
expanding the capabilities of quantum technologies.
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(a) (b)

Figure 1.3: (a) Schematic of a transmon qubit (red) capacitively cou-
pled to a 1D transmission-line resonator (blue). (b) Lumped-element cir-
cuit of a LC resonator capacitively coupled to a transmon. Figure adapted
from [Blais et al. 2021].

1.2.3 Light-matter interaction

In superconducting quantum circuits, the interaction between transmon qubits
and LC resonators plays a crucial role in enabling efficient information transfer
and manipulation. This light-matter interaction [Haroche & Raimond 2006]
arises from the coupling between the quantized electromagnetic field in the
resonator and the discrete energy levels of the transmon qubit. In this section,
we will explore the general intuition behind this interaction and provide a short
mathematical derivation of the Hamiltonians involved.

The transmon having a relatively large size (a few hundreds of microns),
it can be naturally coupled to LC resonators through capacitive coupling as
represented on Figure 1.3. In this case, derivation of the full lumped-element
circuit Hamiltonian leads to

H = 4EC(n+ nr)
2 − EJ cos(φ) + ℏωra

†a (1.6)

where n and φ are conjugate variables for the transmon, a is the annihilation
operator on the resonator, and nr ∝ i(a† − a) is the charge operator on the
resonator. Here, we have assumed that only a single mode of the resonator
couples to the transmon, i.e. that of closest frequency to the transmon. Note
here that compared to the Hamiltonian of the free transmon (1.5), the role of
the offset charge ng is played by the charge bias of the resonator which leads
to the charge-charge coupling of both modes.

Introducing creation and annihilation operators for the transmon, q† and
q respectively with [q, q†] = ℏ, it is possible to diagonalize the free trans-
mon Hamiltonian and to obtain the following reduced model of the two-mode
system

H/ℏ ≈ ωra
†a+ ωqq

†q − 1
2ℏEC q†2q2 − g(q† − q)(a† − a) (1.7)
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where the first two terms are the harmonic components of the resonator and
transmon, and the third term denotes the transmon anharmonicity (with a
negative energy contribution). The last term is the coupling between both
modes with typical amplitude g which is directly proportional to the capacitive
coupling Cg between both modes (see Figure 1.3). In practice, this coupling is
typically much smaller than the system frequencies (in the gigahertz range),
|g| ≪ ωr, ωq, such that we can assume the rotating wave approximation and
arrive at a more practically-relevant Hamiltonian,

H/ℏ ≈ ωra
†a+ ωqq

†q − 1
2ℏEC q†2q2 + g(q†a+ qa†). (1.8)

At this point, by restricting the transmon to its two lowest en-
ergy eigenstates, one obtains the well-known Jaynes-Cummings Hamilto-
nian [Jaynes & Cummings 1963] with coupling of the form g(σ+a + σ−a†)
where σ± are Pauli operators, that describes the light-matter interaction of
electromagnetic waves (here, the resonator) with atoms (here, the transmon).

Another instructive derivation is to diagonalize the linear part of this
Hamiltonian through a Bogoliubov transformation, in the regime where the
detuning between both modes ∆ ≡ ωq − ωr is large compared to their cou-
pling g. This so-called dispersive regime is most commonly used with super-
conducting circuits because the transmon and resonator are weakly entangled,
which allows the qubit to be in a well-defined quantum state. The Bogoliubov
transformation reads Udisp = exp

[
Λ(a†q − aq†)

]
where Λ = arctan(2λ) and

λ ≡ g/∆ ≪ 1. This yields

U †
dispHUdisp/ℏ ≈ ω̃ra

†a+ ω̃qq
†q −Kaa

†2a2 −Kqq
†2q2 − χaba

†aq†q (1.9)

where ω̃r and ω̃q are the dressed frequencies of either mode, Ka = O(λ4)
and Kq = O(1) are self-Kerr nonlinearities and χab = O(λ2) is a cross-Kerr
interaction. Here, we have also neglected several rotating terms. This expres-
sion emphasizes how both modes are now dressed by the other one, resulting
in a pair of slightly hybridized modes that interact through the cross-Kerr
interaction. This interaction is used for the preparation, control and read-
out of transmon qubits. For instance, populating the resonator would probe a
transmon state-dependent frequency shift that can be measured through weak
measurement of the resonator, a process hence called dispersive readout. In
addition, we will also see in Section 1.4.1 how the self-Kerr term on the res-
onator is an essential ingredient for the Hamiltonian stabilization of so-called
Kerr cat qubits.

1.2.4 The bosonic shift in paradigm

Discrete variable qubits such as the transmon are at the cornerstone of quan-
tum computing proposals with superconducting circuits [Arute et al. 2019].
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They are small, highly reproducible, and allow fast and standard control
through their light-matter coupling to resonators as we have previously dis-
cussed. However, their discrete nature renders them susceptible to a variety of
noise sources that significantly hinder their performance. The discrete noise
manifests itself in the form of fluctuations in the energy levels, thermal excita-
tions, and photon loss, to name a few. These noise sources can induce direct
errors and leakage away from the two-level subspace of the qubit, posing signif-
icant challenges to error correction and fault-tolerant quantum computation.
Therefore, one may want to draw inspiration from classically bistable systems,
such as flip-flops in computer memories or more simply retraction mechanisms
in ballpoint pens, that use noise-insensitive macroscopic variables (transistor
states in a flip-flop, or the cam position of a ballpoint pen) to achieve this
bistability.

Continuous variable (or bosonic) qubits thus represent a departure from
the discrete nature of their predecessors. They exploit macroscopic states to
improve resilience to noise and enable embedded error correction strategies.
The non-linear interactions provided by superconducting circuits are then es-
sential to create and manipulate non-trivial macroscopic states that transcend
the limitations imposed by the standard gaussian Hamiltonians of quantum
optics. These qubits rely on continuous-variable modes, typically defined by
quadrature operators, to encode and process quantum information.

Among the various continuous variable qubits, Gottesman-Kitaev-Preskill
(GKP) qubits have garnered significant attention [Gottesman et al. 2001].
GKP qubits leverage the principle of error correction through bosonic codes,
where information is encoded in the position and momentum quadratures of
the continuous-variable modes. These grid-like qubits were designed to be op-
timally resilient against the main source of decoherence of resonators, photon
loss, allowing for error detection and correction schemes that can significantly
extend coherence times. GKP qubits have been experimentally realized in su-
perconducting circuits [Campagne-Ibarcq et al. 2020, Sivak et al. 2023] and
trapped ions [De Neeve et al. 2022] with great success, demonstrating their
promise for practical quantum computation. They are however difficult to
stabilize and control, and multi-GKP qubit experiments have yet to be demon-
strated.

Binomial codes are another intriguing class of continuous variable
qubits [Michael et al. 2016]. They employ non-linearity to create non-classical
states that are tailored to protect against photon loss, thermal noise or de-
phasing in resonators up to a given polynomial order, thanks to the structure
of the encoding states in the number basis. They are also attractive candi-
dates for error-resilient quantum information processing [Hu et al. 2019], but
similarly have yet to demonstrate extensive stabilization and control of multi-
qubit chips.
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Finally, perhaps one of the simplest yet most fascinating continuous-
variable codes are that of cat qubits, about which this thesis is dedicated.
The cat qubit encoding [Cochrane et al. 1999] is characterized by superposi-
tions of classical (i.e. coherent) states that are highly delocalized in different
sides of the oscillator phase space. These states, akin to Schrödinger’s famous
cat, exhibit remarkable resilience against local noise and offer the potential for
low-overhead fault-tolerant quantum computation. It is usually claimed that
cat qubits offer an exponential bias in one of two qubit noise channels, thus
significantly reducing the experimental complexity of error correction. This
thesis will discuss how this claim may or may not be valid depending on the
setup, and in particular depending on the cat qubit stabilization mechanism
employed.

In essence, the transition from discrete variable qubits to continuous vari-
able qubits marks a pivotal shift in the way of engineering superconducting
qubits. The light-matter coupling between discrete qubits and resonators ini-
tially developed for qubit control can now be utilized for rapid preparation and
control of non-gaussian states in quantum harmonic oscillators. Resonators
are then at the core of the quantum information processor and bring several
advantages with them, among which longer intrinsic lifetimes.

1.3 Cat qubits

Now that we have introduced superconducting circuits and how bosonic
qubits have emerged from this flourishing subfield of quantum informa-
tion, this section will be dedicated to cat qubits, from their physical en-
coding in a quantum harmonic oscillator to how they are concatenated
into error correcting codes. Some of the ideas developed in this section
were first stated in [Cochrane et al. 1999, Ralph et al. 2003] and later re-
vived with a series of recent publications, mainly [Mirrahimi et al. 2014,
Guillaud & Mirrahimi 2019, Chamberland et al. 2022]. From here on out and
for the rest of this thesis, we assume ℏ ≡ 1.

1.3.1 Encoding a cat qubit in an oscillator

A quantum harmonic oscillator is an infinite-dimensional system with equidis-
tant energy levels. The first step in defining a bosonic qubit is to restrict the
large Hilbert space to a two-dimensional subspace, which is referred to as
the ’codespace’. The codespace of cat qubits is spanned by two-component
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Figure 1.4: Encoding a cat qubit in a quantum harmonic oscillator. Compu-
tational states on the Z axis of the Bloch sphere are approximately coherent
states delocalized on either side of phase space, hence providing an exponen-
tially small probability of bit-flip errors.

Schrödinger cat states [Cochrane et al. 1999, Ralph et al. 2003], according to

|0L⟩ = 1√
2

(∣∣C+
α

〉
+
∣∣C−

α

〉)
= |α⟩+O(e−2|α|2)

|1L⟩ = 1√
2

(∣∣C+
α

〉
−
∣∣C−

α

〉)
= |−α⟩+O(e−2|α|2)

(1.10)

where |±α⟩ are coherent states of the oscillator, i.e. eigenstates of the anni-
hilation operator, a |±α⟩ = ±α |±α⟩, characterized by their uniform gaussian
distribution in phase space centered on ±α. Here, |C±

α ⟩ = (|α⟩ ± |−α⟩)/N±
are the even and odd parity cat states, and N± =

√
2(1± e−2|α|2) are normal-

ization constants. A schematic of the encoding is represented on Figure 1.4.
Note that other variants of this encoding exist, most notably four-legged cat
qubits [Mirrahimi et al. 2014] that make use of four coherent states instead of
two, or pair cat codes [Albert et al. 2019] encoded in two oscillators instead
of one. They are however more difficult to stabilize and are not the subject
of this thesis.

The logical code words |0L⟩ and |1L⟩ of cat qubits (1.10) are therefore lo-
calized on opposite sides of phase space, up to exponentially small corrections.
This often leads to the claim that cat qubits are exponentially biased in noise,
since local noise cannot bring one logical state to the other under a stabiliza-
tion mechanism. This exponentially biased noise is particularly attractive for
low-overhead quantum error correcting codes, as later discussed. Note that
this is only true under the assumption of local noise — i.e. noise that may
be decomposed as small oscillator displacements in the short time regime —,
and most importantly, assuming that the stabilization indeed suppresses any
leakage out of the codespace also in a local manner. Chapter 2 will provide a
more detailed discussion of this matter.
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While this definition is sufficient to describe a qubit, it is often impractical.
Indeed, any local noise that the harmonic oscillator may be subject to will
induce leakage in the system. At any point in time, it is then important to be
able to answer the following question: what is the computational state of the
qubit if the oscillator is measured? This question is definitely not trivial since
a given state may be close to a computational state (in the sense of phase
space distance) and yet not overlap with the codespace. As such, a complete
definition of a bosonic qubit should always include a map from the infinite-
dimensional oscillator to the two-dimensional codespace. Such a map is not
unique, and thus should further be consistent with the readout procedure in
order to capture the same dynamics between theory and experiments.

Mathematically, this qubit-defining map corresponds to a set of three ob-
servables (Jx,Jy,Jz) that uniquely determine the three axes of the Bloch
sphere. They are such that ⟨σi⟩ = Tr[Jiρ] for i = x, y, z where σi is
a Pauli operator, and ρ the density matrix of the full oscillator. They
should further match the codespace definition, such that Tr[Jz |0L⟩⟨0L|] = 1,
Tr[Jz |1L⟩⟨1L|] = −1 and similarly for the other two axes. The simplest oper-
ators that match these criteria are codespace projectors that read

JP
x = |+L⟩⟨+L| − |−L⟩⟨−L|

JP
y = |+iL⟩⟨+iL| − |−iL⟩⟨−iL|

JP
z = |0L⟩⟨0L| − |1L⟩⟨1L|

(1.11)

While this definition can be practical for numerical simulation, it may lead to
large mismatches between theory and experiment due to the specific readout
procedure. For instance, it may be difficult to tell two states apart if they
share the same support in phase space.

For cat qubits, computational states on the x-axis of the Bloch sphere are
Schrödinger cat states |±L⟩ ≡ |C±

α ⟩ with even and odd parity in the number of
photons respectively. The extension of this definition to the entire oscillator
thus naturally arises through the parity operator

Jx = exp
(
iπa†a

)
=

∞∑
n=0

(−1)n |n⟩⟨n| (1.12)

where a is the annihilation operator on the cat qubit mode, and |n⟩ is the n-th
Fock state. This operator indeed verifies that Tr[Jx |±L⟩⟨±L|] = ±1 and that
Tr[Jxρ] ∈ [−1, 1] for any ρ. It further is an invariant of any parity-preserving
dynamics, such as two-photon dissipation and Kerr cat Hamiltonians that will
later be introduced.

For the other two axes, the extension of codespace projectors is not as
straightforward. Since computational states along the z-axis are defined on
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opposite sides of phase space, one might be tempted to define Jz ≡ sign(x)
where x = (a+a†)/

√
2 is the position quadrature. In this case, any population

within the positive (negative) half-plane of phase space would contribute posi-
tively (negatively) to the expectation value. However, this definition does not
match the cat qubit codespace as defined in (1.10) due to exponentially small
populations in the opposite side of phase space (required for state normaliza-
tion). For this reason, this thesis uses the invariants of two-photon dissipation
as Jz and Jy operators. They are defined according to [Mirrahimi et al. 2014]

Jz = J+− + J †
+−, Jy = iJ+− − iJ †

+− (1.13)

where (α ∈ R for simplicity)

J+− =

√
2α2

sinh(2α2)

∞∑
q=−∞

(−1)q

2q + 1
Iq(α

2)J
(q)
+− (1.14)

with Iq is the modified Bessel function of the first kind, and

J
(q)
+− =


(a†a− 1)!!

(a†a+ 2q)!!
J++a

2q+1 q ≥ 0

J++a
†(2|q|−1) (a†a)!!

(a†a+ 2|q| − 1)!!
q < 0

(1.15)

with n!! = (n− 2)!!n the double factorial. While the exact definition of these
operators does not matter, the important feature is that Jz is a very good
approximation of the sign(x) observable in the limit of large α. In addition, it
continuously extends the codespace projectors, such that Tr[Jz |0L⟩⟨0L|] = 1
and Tr[Jz |1L⟩⟨1L|] = −1. The expectation value of Jz as defined in (1.13) on
a coherent state |β⟩ is shown on Figure 1.5. As α is increased, the separation
between both sides of phase space becomes sharper, showing the convergence
towards the sign observable.

While the above definition arises from two-photon dissipation dy-
namics [Mirrahimi et al. 2014], we emphasize that it can still be used
in other contexts for which physical readout cannot distinguish between
states that are close together in phase space (e.g. beamsplitter readout
of [Frattini et al. 2022]), and more generally any single-shot readout proce-
dure. For higher precision and many-shot readout schemes (e.g. dispersive
readout, or the buffer-based readout of [Réglade et al. 2023]), definitions that
take into account leakage out of the cat qubit codespace could also be brought
into play, such as the one of (1.11).

As a final remark, let us highlight the following property of the J operators.
From (1.15), we can see that Jz strictly projects the positive parity subspace
to the negative one, and vice versa. As such, it swaps the parity of any state
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Figure 1.5: Expectation value of the Jz observable in phase space on a
coherent state |β⟩ for two values of |α|2. As α is increased, Jz approaches
sign(x). Figure adapted from [Mirrahimi et al. 2014].

and thus of the |+L⟩ and |−L⟩ states. This is much alike the σz operator for
a qubit, but would further apply to any state in the oscillator. Similarly, Jx

performs a rotation in phase space of angle π, thus also performing a swap of
|0L⟩ with |1L⟩, i.e. an X gate with a σx operator. Again, this would apply to
any state close to the codespace.

1.3.2 Shifted Fock basis

Now that we have introduced the cat qubit encoding, this section re-
views a very handy tool for cat qubit analysis that will be used repeat-
edly in this thesis. The Shifted Fock Basis (SFB) was first introduced
in [Chamberland et al. 2022] and provides an alternative basis of states for
a quantum oscillator that not only can represent cat qubit dynamics particu-
larly efficiently but also provide intuition. We refer to the original paper for a
full review to the method, but this short section provides the minimuml ele-
ments required for the comprehension of the derivations performed throughout
the thesis.

The SFB splits the main properties of a cat qubit in two separate modes:
a qubit mode that represents the logical cat qubit state, and a gauge mode
that represents leakage away from the computational subspace (1.10). More
precisely, let us define the non-orthonormal basis states

|±, n⟩ ≡ 1√
2

[
D(α)± (−1)nD(−α)

]
|n⟩ (1.16)

where |n⟩ is the n-th Fock state, and D(α) = exp
(
αa† − α∗a

)
is the displace-

ment operator that displaces any state in phase space without deformation,
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and such that D(α) |0⟩ = |α⟩. Firstly, for n = 0, these states match the
cat qubit computational basis states, namely |±, 0⟩ ∝ |±⟩L. Second, the set
of such states S = {|±, n⟩}±,n spans the full Hilbert space. They however
do not define a basis of states since they are not orthonormal. Intuitively,
this can be understood by noting that the number of |±, n⟩ states is doubled
compared to the regular Fock basis due to the introduction of the ± mode1.
Although these states do not rigorously define an orthonormal basis, any two
states in a separate ± branch are exactly orthogonal due to their opposite
parity in the number of photons. In addition, the first shifted Fock states are
approximately orthonormal in the limit of |α| ≫ 1. To rigorously treat this
basis, it can be orthornormalized for instance with a Gram-Schmidt process,
but we again refer to the original publication for details.

The SFB is particularly interesting for its compactness, since it can rep-
resent any state that is locally close to the codespace with only a few basis
states. Indeed, defining the truncated basis SN = {|±, n⟩}±,n≤N , we have
that the cat qubit codespace is contained in S0, or that a codespace state
that suffered leakage due to a thermal photon entering the cavity, a† |±⟩L, is
contained in S1. More generally, it is straightforward to show that a†N |±⟩L
is contained in SN such that the size of the truncated SFB grows favorably
with local leakage.

Another interesting property of the SFB is how it transforms the annihi-
lation operator a. Indeed, acting on the basis states of (1.16) yields

a |±, n⟩ = √
n |∓, n− 1⟩+ α |∓, n⟩

= σz ⊗ (ã+ α) |±, n⟩ (1.17)

where we have defined two new operators σz and ã such that σz |±, n⟩ = |∓, n⟩
and ã |±, n⟩ =

√
n |±, n− 1⟩ in analogy to a qubit and quantum oscillator

mode. From (1.17) we infer the mapping of the annihilation operator from
the Fock to the shifted Fock basis, which reads

a → σz ⊗ (ã+ α). (1.18)

Again, this mapping is only valid in the limit of small shifted Fock excitation
numbers because of the non-orthonormalization of the basis. It is however
very helpful for understanding the intimate dynamics of cat qubit gates and
for the numerical analysis of phase-flip errors.

In the following section, we dive into how the physical encoding of cat
qubits we have now presented through the oscillator encoding and through
the SFB can be concatenated into low-overhead error correcting codes.

1This argument is only provided for intuition and has no mathematical ground since the
Hilbert space is infinite dimensional.
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1.3.3 Concatenating into error-correcting codes

In quantum information, the errors suffered by qubits can be decomposed in
two types: bit-flip errors (flip along the Z axis) and phase-flip errors (flip along
the X axis). Quantum error correction offers a solution to these algorithm-
breaking error rates through information redundancy [Knill et al. 2000]. By
embedding a number of physical qubits in an error-correcting code, the er-
ror rate of a reduced number of qubits (called logical qubits) is suppressed
with the size of the code, but only if the physical error rates are below
a given error threshold. A common error-correcting code is the surface
code [Fowler et al. 2012] which is an optimal two-dimensional code for lo-
cal and unbiased errors corrected with local measurements. It has been ex-
tensively studied in the context of transmon-based quantum computers. By
encoding logical qubits in the manifold defined by stabilizer measurements,
the surface code offers robustness to local noise and enables the detection and
correction of errors through a series of syndrome measurements.

In this context, one particularly attractive feature of cat qubits is their
noise bias. Thanks to the non-local phase space encoding, the probability
of bit-flip errors is greatly reduced compared to a discrete encoding into the
|0/1⟩ basis states of the oscillator. With the appropriate stabilization scheme
with respect to the noise channels, this bias even grows exponentially with
the mean number of photons in the oscillator which is also the cat size |α|2.
Therefore, this drastically reduces the experimental overhead of quantum error
correction. This limit is particularly evident for cat qubits concatenated with
a repetition code [Guillaud & Mirrahimi 2019]. In this case, logical qubits
are formed only by a one-dimensional line of cat qubits instead of, for most
error-correcting codes, a two-dimensional grid of qubits. This quadratic gain
in qubit number could eventually be exploited for low-overhead quantum com-
putation [Gouzien et al. 2023].

While the repetition code offers a straightforward and efficient method of
protecting information, other error-correcting codes can also be employed with
cat qubits to achieve better performance in certain scenarios. One notable
example is the rectangular surface code, which can capitalize on the noise
bias of the cat states to enhance the error correction capabilities further.
Another interesting error-correcting code that can be forward-concatenated
with cat qubits is the XZZX code [Ataides et al. 2021], which is specifically
tailored to biased-noise qubits. The XZZX code is based on a different set
of local stabilizers that feature an error-correction threshold that grows with
the noise bias. By adapting the error correction strategy to the specific noise
characteristics of cat qubits, the XZZX code can enhance the overall error
correction performance and eventually reduce the overhead associated with
error correction.
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To ensure the preservation of the noise bias during operation of the device,
it is crucial that any logical operation is only built with physical gates that
preserve the noise bias, or bias-preserving gates. Through careful engineering,
such gates are designed to suppress the introduction of certain errors that
convert phase-flip errors into bit-flip errors during gate processes, thereby
preserving the advantage of the noise bias. In this case, the error-correcting
code can be universal (any quantum algorithm is implementable with the
available gate set) and fault-tolerant (errors do not build up throughout the
operation of the device).

In [Guillaud & Mirrahimi 2019], a set of bias-preserving physical opera-
tions is proposed for universal and fault-tolerent quantum computation with
cat qubits. This set is composed of Pauli X, Z(θ) rotations, CNOT and Tof-
foli gates, in addition to the preparation and measurement of cat states along
the X axis, i.e. of |±L⟩. Such a gate set allows for forward concatenation with
various logical error-correcting codes such as ones previously mentioned. For
this reason, these are the gates that will be mainly studied in this thesis. Their
physical implementation then depends on the underlying qubit confinement
mechanism.

In the following section, we introduce the two main variants of cat qubit
confinement schemes, based on either the Kerr Hamiltonian or engineered
two-photon dissipation.

1.4 Protecting cat qubits from decoherence and
leakage

In the previous section, we have seen how encoding information in cat states
is interesting with regard to the noise bias and to the reduction in hard-
ware overhead. However, this promise may only hold if one can maintain
the information within the cat codespace, and protect it against decoher-
ence. The two main variants of cat qubit confinement are thus introduced
in the following section. We will also discuss the standard gate designs for
each scheme. The results discussed in this section are mainly developed
in [Mirrahimi et al. 2014, Puri et al. 2017] for confinement mechanisms, and
[Guillaud & Mirrahimi 2019, Puri et al. 2020] for gates.
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1.4.1 Hamiltonian protection: Kerr cat qubits

1.4.1.1 Kerr cat Hamiltonian

In Section 1.2.3, we have seen how the Kerr effect is inherent to supercon-
ducting circuits with any non-linearity. While it is often employed as a source
of anharmonicity to isolate lower energy levels of a qubit, it can also be at
the base of a cat qubit confinement scheme [Puri et al. 2017]. Indeed, the
Hamiltonian

HKerr = −K(a†2 − α∗2)(a2 − α2) (1.19)

features a degenerate ground subspace of dimension 2, corresponding to the
cat qubit codespace span{|±α⟩}. This degeneracy is a first essential condition
that ensures no dephasing between computational states is induced by the
Hamiltonian.

Studying its eigenspectrum (see Figure 1.6(a)) also shows that this ground
subspace is gapped away from excited states by an energy of the order
of Egap ∼ 4Kα2. This second feature is required to protect the ground
subspace from undesired leakage to excited eigenstates. Indeed, the adia-
batic theorem guarantees that any weak and slowly-varying (compared to the
energy gap) spurious Hamiltonian will only cause exponentially small leak-
age [Nenciu 1993]. Note that this is only true of such Hamiltonians. For
instance, dissipative-like decoherence sources are not comprised in this protec-
tion. Furthermore, there is no engineered process that ensures reconvergence
of the state of the oscillator to the stabilized cat qubit subspace after popula-
tion leakage. As such, we favor the terminology of "confinement" rather than
the more commonly used "stabilization" to refer to this protection scheme.
The conditions required for exponential suppression of bit-flip errors in Kerr
cat qubits are further detailed in Chapter 2.

At this point, it is instructive to make use of the SFB that we previously
introduced in Section 1.3.2. Reinserting the change of basis formula a →
σz ⊗ (ã+ α) into (1.19) yields

HKerr = −KI ⊗ (ã†2ã2 + 2α∗ã†ã2 + 2αã†2ã+ 4|α|2ã†ã) . (1.20)

We can first note that this Hamiltonian acts with the identity on the qubit
mode, such that no decoherence is induced by it. Second, in the limit of
|α| → ∞, we can move into the rotating frame of the term in ã†ã and perform
a Rotating Wave Approximation (RWA) on the term 2α∗ã†ã2+h.c. to obtain
the approximate Hamiltonian

HKerr ≈ −Kã†2ã2 − 4|α|2Kã†ã . (1.21)

From now on, we do not explicitly write the identity on the qubit mode. The
Kerr Hamiltonian thus represents two slightly anharmonic quantum oscillators
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Figure 1.6: (a) Eigenspectrum of the Kerr cat Hamiltonian, separated in two
branches of even and odd parity eigenstates. The degenerate ground subspace
is gapped away from excited states by an energy approximately Egap ∼ 4α2K.
(b) Semi-classical potential associated to the Kerr cat Hamiltonian. Red dots
represent the two stable points of the quasi-potential.

with natural frequencies (or energy gaps) 4|α|2K, which are centered on ±α.
In other words, the Kerr Hamiltonian is a double well potential with two wells
that are infinitely separated in the large |α| limit.

1.4.1.2 Engineering with a SNAIL

Remarkably, the Hamiltonian of (1.19) can be rewritten as

HKerr = −Ka†2a2 + ε2a
†2 + ε∗2a

2 − |ε2|2/K (1.22)

where ε2 = Kα2 is the amplitude of a two-photon pump. This Hamilto-
nian thus mainly features two terms: a self-Kerr non-linearity and a two-
photon pump that exchanges pairs of photons of the oscillator with the in-
put line. We have seen in Section 1.2 that Kerr non-linearities are inherent
to Josephson junction circuits. On the contrary, the two-photon pump can
be engineered with three-wave mixing for instance with a Superconducting
Nonlinear Asymmetric Inductive eLement (SNAIL) [Frattini et al. 2017] as
demonstrated in [Grimm et al. 2020, Frattini et al. 2022]. A SNAIL is made
of a small Josephson junction of energy αEJ (α < 1) in parallel with a short
array of Josephson junctions (n = 3 junctions in the original paper) of energy
EJ , as is depicted in Figure 1.7(a). This closed inductive loop can then be
flux biased with an external flux φext. The resulting inductive energy of this
circuit reads

USNAIL(φ) = −αEJ cos(φ)− nEJ cos

(
φ− φext

n

)
(1.23)

Such a potential features a single global minimum φmin for n ≥ 2. Taylor
expanding around this minimum numerically indeed yields three- and four-
wave mixing terms that can be tuned through n, α and φext.
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(a) (b)

Figure 1.7: (a) Lumped-element circuit of a SNAIL with n = 3, used to engi-
neer Kerr cat qubits. Figure adapted from [Frattini et al. 2017]. (b) Lumped-
element circuit of an ATS, used to engineer dissipative cat qubits. Figure
adapted from [Lescanne et al. 2020b].

1.4.1.3 Semiclassical analysis

Now that we have shown how to engineer Kerr cat qubits, let us turn to
their semiclassical analysis to obtain further intuition on why they can yield
protected qubits. A two-photon driven Kerr nonlinear oscillator subject to
single-photon loss is governed by the following master equation,

dρ

dt
= −i[HKerr,ρ] + κD[a]ρ (1.24)

where D[L]ρ = LρL† − {L†L,ρ}/2 is the dissipation superoperator. The
semiclassical output field of the oscillator, a = ⟨a⟩, is then governed by the
Heisenberg picture master equation,

ȧ = i[HKerr, a] + κD†[a]a

= 2iKa∗a2 − 2iε2a
∗ − κa/2

(1.25)

Further writing a = x + iy and separating real and imaginary values yields
the semiclassical equations of motion

ẋ = −2Ky(x2 + y2)− 2ε2y − κx/2

ẏ = +2Kx(x2 + y2)− 2ε2x− κy/2
(1.26)

Finally, we get the semiclassical Hamiltonian H and semiclassical dis-
sipative potential V by identifying with Hamilton’s equations of mo-
tions [Hamilton 1833], ẋ = −∂yH − ∂xV and ẏ = ∂xH − ∂yV . They read

H(x, y) =
K

2
(x2 + y2)2 − ε2(x

2 − y2) (1.27a)

V(x, y) = κ

4
(x2 + y2) (1.27b)
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Note that both of these equations could have been obtained directly
from (1.24). Interestingly, we have thus identified two different semiclassical
potentials. The first is pictured in Figure 1.6(b), and features two potential
wells with degenerate global minimums in x = ±α = ±

√
ε2/K and y = 0 (for

ε2 ∈ R) corresponding to the cat codespace. This corroborates our previous
study of the Kerr Hamiltonian in the SFB. Since it is a Hamiltonian semiclas-
sical potential, any initial condition (x0, y0) will follow equipotential curves
(i.e. H(x(t), y(t)) = H(x0, y0) for all t ≥ 0, as depicted in Figure 1.6(b))
and thus never fall at the bottom of either potential well. This emphasizes
the non-stabilizing aspect of Kerr cat qubits that we previously discussed.
The second semiclassical potential is dissipative, quadratic, and with a single
global minimum in x = y = 0. In this case, the dynamics is contracting
and will ensure that the state eventually falls in a potential minimum. The
combination of these two potentials results in non-trivial dynamics described
by the equations of motion of (1.26). In particular, in the limit of κ ≪ K
(as desired to preserve cat qubit parity information for longer timescales), the
global dynamics still features two degenerate steady states.

We now solve the three steady states of the equations of motion of (1.26)
such that ẋ = ẏ = 0. A first trivial but unstable solution is obtained for
x = y = 0. To simplify the derivation of the stable solutions, we introduce
the radius R given by R2 = x2 + y2, as well as the polar angle θ given by
θ = tan−1(y/x) . Rearranging the equations of motion, we find

x = −4(ε2 +KR2)y/κ

y = −4(ε2 −KR2)x/κ
(1.28)

Since x ̸= 0 or y ̸= 0, we can always reinsert the first equation of (1.28)
into the second, or the second equation into the first, and divide by y or x
respectively, which yields κ2 = 16(ε22 −K2R4). Further rearranging yields

R2 =
ε2
K

√
1− (κ/4ε2)2 (1.29)

For κ ≥ 4ε2, the only steady state solution is the trivial one at x = y = 0. For
κ < 4ε2 instead, there are two stable steady state solutions with a non-zero
radius. Note that in the limit of κ = 0, we retrieve the known result that
R =

√
ε2/K. We now square both equations of (1.28) and sum them to get

x2 + y2 =
16(K2R4 + ε22)

κ21
(x2 + y2)− 32KR2ε2

κ21
(x2 − y2) (1.30)

Rearranging yields

x2 − y2 = R2 cos(2θ) =
KR4

ε2
(1.31)
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Finally, we find from (1.28) that if x > 0, then y < 0 and inversely, that
if x < 0, then y > 0. This yields two stable steady state solutions to the
equations of motion (1.26), denoted (R, θ0) and (R, θ1) in polar coordinates,
where the angles read respectively

θ0 = −1
2
cos−1

√
1− (κ/4ε2)2

θ1 = π − 1
2
cos−1

√
1− (κ/4ε2)2

(1.32)

Finally, in the limit of κ ≪ ε2, we can expand these equations to first order
in δ = κ/8ε2 and find

R = R0

(
1− δ2 +O(δ4)

)
θ0 = −δ +O(δ3)

θ1 = π − δ +O(δ3)

(1.33)

where R0 ≡
√
ε2/K. Interestingly, this shows a rescaling of the cat qubit

size and angle dependent on a spurious dissipative process, here the rate of
single-photon loss. In Chapter 2, we will examine how purely quantum dissi-
pative processes, such as thermal noise in the oscillator, can limit the bit-flip
protection of Kerr cat qubits.

1.4.2 Dissipative protection: dissipative cat qubits

1.4.2.1 Two-photon dissipation

In the dissipative stabilization of cat qubits, a harmonic oscillator exchanges
pairs of photons with its environment both through a driven dissipation pro-
cess and a two-photon pump [Mirrahimi et al. 2014]. The Lindblad master
equation that governs this oscillator is

dρ

dt
= κ2D[a2 − α2]ρ

= [ε2a
†2 − ε∗2a

2,ρ] + κ2D[a2]ρ
(1.34)

where D[L]ρ = LρL†−{L†L,ρ}/2 is the dissipation superoperator, a denotes
the annihilation operator of the cat qubit mode, κ2 the rate of two-photon
dissipation, α the cat qubit amplitude and ε2 = κ2α

2/2 is the two-photon
pumping amplitude. With the first equality of (1.34), it is clear that |±α⟩ are
steady states of the dynamics. Furthermore, since the Lindblad equation is
contracting, one can show that any initial state ρ0 converges asymptotically
towards

ρ∞ = c++

∣∣C+
α

〉〈
C+
α

∣∣+ c+−
∣∣C+

α

〉〈
C−
α

∣∣+ c−+

∣∣C−
α

〉〈
C+
α

∣∣+ c−−
∣∣C−

α

〉〈
C−
α

∣∣ (1.35)
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where the coefficients c±± = Tr[J±±ρ0] are uniquely determined by the ini-
tial condition and by the two-photon dissipation invariants previously intro-
duced [Mirrahimi et al. 2014]. In particular, the final state is not necessarily
pure. Because of this exponentially fast asymptotic convergence, we do allow
ourselves to use the terminology of "stabilization" in this case, in the sense of
dynamical systems theory [Bellman 1953].

The second equality of (1.34) emphasizes the two-way process that can en-
gineer such a stabilization. Pairs of photons are lost the environment through
two-photon dissipation while pairs of photons are pumped back into the sys-
tem. This achieves an intricate equilibrium where only a subset of states
are stabilized, but also highlights how purity of the initial state may not be
preserved by the dissipative dynamics.

Again, it is instructive to write out (1.34) in the SFB. Performing the
change of variable a → σz ⊗ (ã+ α) yields

dρ

dt
= κ2D[ã2 + 2αã]ρ (1.36)

which again acts with the identity on the qubit mode since it is parity pre-
serving dynamics. Furthermore, taking the large cat limit, |α| → ∞, or
equivalently the limit of low-leakage limit,

〈
ã†ã

〉
≪ 1, we can neglect the

second-order term in ã2. This yields the simplified model

dρ

dt
= κconfD[ã]ρ (1.37)

where κconf = 4|α|2κ2 is a local confinement rate. This is the master equation
describing a lossy quantum harmonic oscillator in the rotating frame, which
converges to the vacuum in a typical timescale 1/κconf . Of course, here, it
instead describes the exponential convergence towards both coherent states
|±α⟩ of the cat codespace.

1.4.2.2 Reservoir engineering with a buffer mode

To engineer the unusual dissipation of (1.34), an ancillary buffer mode — not
necessarily harmonic — is often introduced to mediate the exchange of photon
pairs between the oscillator and its environment, as depicted in Figure 1.8.
This results in a two-mode Lindblad master equation,

dρ

dt
= −i [HAB,ρ] + κbD[b]ρ (1.38)

where HAB = g2(a
2 − α2)b† + h.c. is a driven two-to-one photon exchange

Hamiltonian with b the annihilation operator of the ancillary buffer mode.
In this context, the cat qubit mode a is sometimes also referred to as the
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Dissipation

Drive

Figure 1.8: Schematic of a cat qubit mode a stabilized by a two-to-one
photon exchange with buffer mode b, mediated by a nonlinear circuit element
(middle) and a pump at the appropriate differential frequency. The buffer
mode is driven and dissipates photons to the environment.

memory mode. Note that, similarly as before with the two-photon pump, this
interaction Hamiltonian can be rewritten as

HAB = g2a
2b† + g∗2a

†2b+ εbb
† + ε∗bb (1.39)

where εb = −α2g2. The cat state amplitude α can thus be tuned dynamically
through the drive on the buffer mode.

In the limit of κb ≫ g2, this additional mode can be adiabatically elimi-
nated to retrieve the single-mode model of (1.34) with a typical two-photon
loss rate κ2 ≡ 4g22/κb [Azouit et al. 2017, Forni et al. 2018]. This follows the
general recipe of adiabatic elimination for bi-partite systems, with an interac-
tion Hamiltonian of the form gLb† + g∗L†b and a strong single-mode dissipa-
tion on the buffer. Such a setup results in an effective dissipation in D[L] on
the initial subsystem.

While the buffer mode was initially introduced to engineer two-photon
dissipation and often ignored in subsequent studies, this thesis will recon-
sider its role in the overall cat qubit implementation. Indeed, purity of
the memory mode can be lost through buffer mode damping, such that
it is interesting to understand how the buffer is brought out of equilib-
rium when controlling the memory. In addition, the buffer provides iner-
tia in the system that can be leveraged to improve physical gate designs
on cat qubits, as further discussed in Chapter 3. Recent experiments such
as [Réglade et al. 2023, Marquet et al. 2023] step away from the adiabatic
elimination regime (characterized by κb ≫ g2) to increase the effective rates
of cat confinement. In this case, one cannot assume the single-mode model
of (1.34) and non-trivial dynamics between both modes can be observed.
In [Réglade et al. 2023], we also demonstrate how to leverage the buffer mode
to perform a full tomography readout of the memory mode. Such a design gets
rid of the readout resonator and transmon of previous experiments that was



1.4. Protecting cat qubits from decoherence and leakage 27

solely used for state readout at the final stage. This new setup is highly ad-
vantageous to avoid unwanted transmon ionization [Shillito et al. 2022] that
eventually limits the bit-flip lifetime of cat qubits.

1.4.2.3 Engineering with an ATS

The two-to-one photon exchange of (1.38) was first demonstrated
in [Leghtas et al. 2015] with the use of a Josephson junction coupler between
memory and buffer modes. Because this setup featured large spurious self-Kerr
terms, Ref. [Lescanne et al. 2020b] introduced a new Kerr-free superconduct-
ing dipole to mediate this interaction.

The Asymmetrically Threaded SQUID (ATS) is composed of two Joseph-
son junctions of equal energy EJ (in the ideal case) shunted by a large in-
ductance of energy EL. It is represented in Figure 1.7(b). Similarly to a
Superconducting Quantum Interference Device (SQUID), this setup allows
for two closed magnetic loops that each can be threaded through an external
flux. The resulting inductive potential of this dipole reads

UATS(φ) =
1

2
ELφ

2 − EJ cos(φ+ φext,1)− EJ cos(φ− φext,2) (1.40)

Rearranging the cosine, we get

UATS(φ) =
1

2
ELφ

2 − 2EJ cos(φΣ) cos(φ+ φ∆) (1.41)

where the sum and differential external fluxes were defined as φΣ = (φext,1 +
φext,2)/2 and φ∆ = (φext,1 − φext,2)/2. When biasing the ATS at the asym-
metric flux point

φΣ = π/2 + ε(t)

φ∆ = π/2
(1.42)

where ε(t) is an additional radiofrequency pump, and expanding the potential
to first order in |ε(t)|, we get

UATS(φ) =
1

2
ELφ

2 − 2EJε(t) sin(φ) . (1.43)

From this sine potential, one can get odd powers of annihilation operators
which are required for the two-to-one photon exchange of (1.38). Indeed, for
a circuit with both a memory mode a and buffer b participating in the ATS,
and Taylor expanding the sine in powers of the flux, we get

UATS(φ) =
1

2
ELφ

2 − 2EJε(t)(φ− 1

6
φ3 +O(φ5)) (1.44)
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where φ = φzpf,a(a + a†) + φzpf,b(b + b†). In particular, by pumping at the
differential frequency ωp = 2ωa − ωb where ωa/b are the memory and buffer
mode frequencies respectively, the cubic flux term yields the two-to-one photon
exchange Hamiltonian after a RWA.

In recent experiments, one of the main challenge is to achieve a large cat
qubit confinement rate, which requires a large two-to-one photon coupling
g2 in the first place. To do so, the flux of the memory mode should have a
large participation ratio into the total flux, φzpf,a, crossing the ATS. However,
this also implies that higher-order nonlinear terms of the ATS — often detri-
mental to the overall protection — could become significant when probed with
additional drives and pumps. In [Marquet et al. 2023], an autoparametric res-
onance was engineered in which 2ωa ≈ ωb by design such that no additional
pump was required to make the coupling resonant. For the same two-to-one
photon coupling, this allows a smaller participation ratio and thus a smaller
Purcell decay rate. With this setup, the largest two-to-one photon coupling
to date was achieved, with g2/2π ≈ 6MHz.

1.4.2.4 Semiclassical analysis

Similarly to our analysis of Kerr cat qubits, this section tackles the semi-
classical analysis of dissipative cat qubits taking into consideration the buffer
mode [Réglade et al. 2023]. Starting from (1.38), we write down the Heisen-
berg picture master equation on the classical fields a = ⟨a⟩ and b = ⟨b⟩. This
yields

ȧ = −2ig2a
∗b (1.45a)

ḃ = −ig2(a2 − α2)− κb
2
b (1.45b)

where we have taken g2, α ∈ R for simplicity. The first thing we can note
from these equations is that we can retrieve the adiabatic elimination result
in the limit where the b mode dynamics is much faster than that of the a
mode. Indeed, setting db/dt = 0 and reinserting the steady state solution
b = −2ig2(a

2 − α2)/κb in (1.45a) yields the single-mode equation,

ȧ = −4g22
κb
a∗(a2 − α2) . (1.46)

This is indeed the master equation corresponding to two-photon dissipation
with rate κ2 = 4g22/κb. In addition, the dissipative semi-classical potential
corresponding to this equation of motion, obtained as before from dx/dt =
−∂xV(x, y) and dy/dt = −∂yV(x, y), reads

V(x, y) = κ2
4
(x2 + y2)2 − κ2α

2

2
(x2 − y2) (1.47)



1.4. Protecting cat qubits from decoherence and leakage 29

We recognize here the same semiclassical potential as in (1.27a) for Kerr cat
qubits, but this time dissipative instead of Hamiltonian. As such, any initial
condition (x0, y0) that is not a fixed point of the dynamics would verify that
V(x(t), y(t)) < V(x0, y0) for t > t0, hence ensuring the asymptotic convergence
towards stable minimums of the potential.

Coming back to (1.45), three fixed points of the dynamics can be iden-
tified on the two-mode system. The first is unstable and reads (a, b) =
(0, 2ig2α

2/κb). Indeed, plugging the corresponding classical states of this fixed
point in the full master equation of (1.38) shows that it is not a steady state.
This is a direct consequence of the uncertainty principle, since the state can-
not be localized on a single point of phase space. The other two fixed points
are, as expected, (a, b) = (±α, 0). Counter-intuitively, note that the b mode
is exactly in vacuum even though it is actively driven to maintain the steady
state population in the memory. Linearizing the equations of motion (1.45)
around these two fixed points yields

˙̃a = ∓2ig2αb (1.48a)

ḃ = ∓2ig2αã−
κb
2
b (1.48b)

where ã = a∓ α. Defining the two-mode variable X = [ã, b]T , we can rewrite
these equations as

iẊ(t) = AX(t) (1.49)

where

A =

(
0 ±2g2α

±2g2α −iκb/2

)
(1.50)

of which the solution is X(t) = e−itAX(0). The local convergence rate towards
fixed points of the dynamics, often referred to as confinement rate, is thus
given by the eigenvalue of largest imaginary part of A. To determine this
confinement rate, there are three possible regimes of interest depending on the
ratio between buffer mode dissipation and rate of two-to-one photon exchange.

• Overdamped regime, κb/2 > 4αg2. This first regime overlaps with the
adiabatic elimination regime of κb ≫ g2. The eigenvalues of A are then
given by λ± = −iκb(1 ±

√
1− (8αg2/κb)2)/4, and the corresponding

confinement rate by κconf = 2| Im[λ−]|. In particular, in the limit where
κb ≫ g2, we retrieve the familiar confinement rate

κconf = 16α2g22/κb = 4α2κ2 (1.51)

where κ2 = 4g22/κb, as we showed with our previous SFB analysis.
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Figure 1.9: Confinement rate κconf of a dissipative cat qubit as a function of
the buffer mode dissipation rate κb. The maximal confinement rate κ∗conf =
4αg2 is obtained at the critical regime for κb = 8αg2. The red line is obtained
from semiclassical analysis. Blue lines are obtained from exact diagonalization
of the Liouvillian.

• Critical regime, κb/2 = 4αg2. At the critical regime, the eigenvalues of
A are degenerate and given by λ± = −iκb/2. This yields the maximal
possible confinement rate κ∗conf = 4αg2 for a fixed value of the two-to-one
photon exchange rate g2.

• Underdamped regime, κb/2 < 4αg2. Finally, the underdamped regime
is characterized by damped oscillations when the solution reconverges
to the system steady states. In this case, the eigenvalues of A read
λ± = −iκb(1±i

√
1− (8αg2/κb)2)/4. The confinement rate is then given

by their shared imaginary part, and reads κconf = 2| Im[λ±]| = κb/2.

Figure 1.9 shows the confinement rate for these three regimes as a function
of the buffer mode dissipation κb. The underdamped regime (left) thus shows
a linear increase of the confinement rate with κb, and the overdamped regime
(right) a 1/κb dependence. Since the buffer mode dissipation can be tuned
through capacitive coupling to the transmission line, the ideal experimental
regime is likely that of the critical regime which maximizes confinement rate
of the memory. As a final remark, note that this semiclassical analysis breaks
down for α = 0, for which one of the steady states of two-photon dissipation
is purely quantum.

In the following section, we turn to the methods of gate engineering for
both Kerr and dissipative cat qubits.

1.4.3 Engineering gates on protected qubits

For quantum computation with cat qubits, a set of physical gates has to be
devised and tailored to the available hardware. This set should be universal at
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Figure 1.10: Overall scheme for achieving fault-tolerant universal quan-
tum computation using cat qubits in a repetition code. Physical and bias-
preserving gates are depicted on the left-hand side. Fault-tolerant log-
ical operations acting on the repetition cat qubits (right-hand side) are
built out of these operations, as depicted by the arrows. Figure borrowed
from [Guillaud & Mirrahimi 2019].

the logical level, such that when these physical gates are forward-concatenated
with an error-correcting code, the available logical operations can carry out
any quantum algorithm. Since cat qubits are highly biased towards phase-
flip errors, all physical gates should further be bias-preserving, which means
that no phase-flip error should be converted into a bit-flip error during the
operation of the device. This would otherwise break fault-tolerance of the
error-correcting code that features no bit value redundancy at the logical
level.

In [Guillaud & Mirrahimi 2019], such a set of bias-preserving physical op-
erations is proposed for universal quantum computation with cat qubits. This
set is comprised of only four gates — Pauli X, Z rotation, CNOT and Toffoli
—, in addition to the preparation and measurement of cat states in the |±⟩L
computational basis. This scheme is represented in Figure 1.10 together with
the fault-tolerant logical operations it can achieve. In this section, we go over
the current proposals for the design of the four physical gates with Kerr and
dissipative cat qubits, following [Mirrahimi et al. 2014], [Puri et al. 2020], and
[Guillaud & Mirrahimi 2019]. Reference [Chamberland et al. 2022] also pro-
vides an extensive review of gate designs in the dissipative case with the
introduction of analytic formulas for gate errors.
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1.4.3.1 Pauli X

The Pauli X gate corresponds to a swap of |0⟩ ≈ |α⟩ and |1⟩ ≈ |−α⟩. This
can be achieved with a π-phase delay on the oscillator, or equivalently, with a
cat qubit codespace rotation in phase space for some time T = π/∆, where ∆
is a frequency detuning with respect to the cat-qubit frame. This exchanges
the two computational basis states, as illustrated in Figure 1.11. From a
complementary viewpoint, the engineered dynamics should confine the cat
qubit codespace with (1.19) (Kerr) or (1.34) (dissipative), but in a frame
that rotates at the detuned frequency. Working this back to cat-qubit frame,
we see that we must engineer the dynamics of

Kerr:
dρ

dt
= −i[∆a†a,ρ] + i[K(a†2 − α∗2e2i∆t)(a2 − α2e−2i∆t),ρ]

Dissipative:
dρ

dt
= −i[∆a†a,ρ] + κ2D[a2 − α2e−2i∆t]ρ

(1.52)
Since these master equations preserves photon parity, no phase errors are
induced by this gate design.

While the implementation of both terms of these two equations is well-
established, one can in principle choose to engineer only one of the two terms.
If only the cat confinement term is kept, the cat state is pulled by the time-
varying setpoint of the Kerr Hamiltonian or two-photon dissipation, incurring
negligible leakage and bit-flips for a sufficiently slow codespace rotation. Note
in particular that for an adiabatic codespace deformation, the Kerr Hamilto-
nian implementation would benefit from the adiabatic theorem and achieve
exponentially low leakage during the process. This is not true of two-photon
dissipation.

With the detuning Hamiltonian alone, the rotation is performed exactly,
but the confining effect of the Kerr Hamiltonian or two-photon dissipation is
turned off during the gate. For fast-enough gates however, the design is still
bias-preserving under local errors, and codespace leakage can be suppressed
after the gate in the dissipative case.

1.4.3.2 Z(θ) rotations

Cat-qubit Z(θ) rotations require the accumulation of a different phase on the
|α⟩ and |−α⟩ components of the codespace. Since this exact evolution is not
directly accessible with simple experimental means, the standard proposal is
an approximate one based on the adiabatic theorem for Kerr cat qubits, or
the Zeno effect for dissipative cat qubits.

The combination of a small drive displacing the state in phase-space and
of the confinement scheme pulling the state back to the codespace induces
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Figure 1.11: Codespace deformation. (a) Idling cat qubit, with fixed points
of the confinement in ±α (red diamonds). (b) Codespace deformation during
an X gate. The confinement fixed points are rotated along the red circle. The
cat qubit is "pulled" towards these fixed points for sufficiently slow rotations.
Figure adapted from [Guillaud & Mirrahimi 2019].

an effective phase-shift inside a slightly deformed codespace, and hence the
desired gate. The master equation to be engineered takes the standard form,

Kerr:
dρ

dt
= −i[HZ(t),ρ] + i[K(a†2 − α∗2)(a2 − α2),ρ] (1.53a)

Dissipative:
dρ

dt
= −i[HZ(t),ρ] + κ2D[a2 − α2]ρ (1.53b)

where

HZ(t) = εZ(t)a
† + ε∗Z(t)a (1.54)

is a single-photon drive and where the gate angle reads θ = 4
∫
Re[αεZ ]dt.

Contrary to the case of the X gate, it is here essential to keep the confine-
ment on during the operation. Otherwise, a standard displacement would be
induced without any particular gate induced. Once again, it is instructive to
plug in the SFB change of basis formula. This yields (for α, εZ ∈ R),

HZ(t) = εZ(t)σz ⊗ (2α + ã† + ã) (1.55)

from which we can identify two terms. The first term in 2αεZ(t)σz is propor-
tional to the Pauli operator and thus engineers the required gate. The second
in σz ⊗ (ã+ ã†) is a spurious leakage term that induces codespace excitations
correlated with Pauli Z errors on the qubit. Chapter 3 explores solutions to
mitigate the negative effects of this spurious term.



34 Chapter 1. From superconducting circuits to protected . . .

1.4.3.3 CNOT and Toffoli

By definition, a CNOT gate is a Pauli X gate on a target qubit conditioned
on the state of a control qubit along its Z axis, or equivalently, a Pauli Z
gate on a control qubit conditioned on the state of a target qubit along its X
axis. Therefore, the standard design of CNOT gates for cat qubits involves a
combination of the X and Z(π) gate implementations, and of their respective
issues. From the viewpoint of the X gate, the dynamics of (1.52) should be
applied conditionally on the computational state of a control qubit. This can
be achieved with the two-mode master equation

Kerr:
dρ

dt
= −i[HCX ,ρ] + i[HKerr,C ,ρ] + i[HKerr,T (t),ρ] (1.56a)

Dissipative:
dρ

dt
= −i[HCX ,ρ] + κ2D[LC ]ρ+ κ2D[LT (t)]ρ (1.56b)

where HKerr,C = −K(a†2
C − α∗2)(a2

C − α2), and LC ≡ a2
C − α2 are the stan-

dard Kerr Hamiltonian and two-photon dissipation on the control qubit. On
the target qubit, HKerr,T ≡ −KL†

T (t)LT (t) is a time-dependent Kerr-based
Hamiltonian, and LT (t) a time-dependent two-photon dissipation that reads

LT (t) ≡ a2
T − α

2
(aC + α) +

α

2
(aC − α)e−2i∆t . (1.57)

Finally, the coupling Hamiltonian reads

HCX ≡ εCX(a
†
C + aC − 2α)(a†

TaT − np). (1.58)

Here aC/T denote the control and target qubit modes respectively, np is any
even integer close to |α|2, and εCX(t) = ∆(t)/4α. Similarly to the X gate,
Hamiltonian (1.58) may be dropped to ease experimental requirements as
long as the time-dependent fixed points of the cat confinement in (1.56) ro-
tates slowly enough to adiabatically pull the state. Alternatively, the target
qubit confinement of (1.56) can also be dropped, in which case the Hamilto-
nian (1.58) alone induces the intended target qubit rotation, but at the cost
of turning off target qubit confinement temporarily during the gate.

The viewpoint of the Z gate clarifies the impact of conditioning on the
control qubit. The link is most direct when the target confinement of (1.56) is
dropped, as proposed in Chapter 2. Indeed, Hamiltonian (1.58) together with
confinement on the control qubit amounts to the same dynamics as for the
Z(θ) rotation; the only difference being that the drive amplitude εZ is now
conditioned on the photon number in the target qubit state. In some way,
one can identify εZ ∼ εCX(a

†
TaT − np). This achieves the required gate since

the control qubit undergoes an even number of Z(π) gates for all even Fock
states of the target qubit, and respectively an odd number of Z(π) gates for
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all odd Fock states, hence refocusing on the even and odd cat codespaces at
the end of the CNOT gate.

For Toffoli gates, the discussion is very similar to that of the CNOT gate,
but a second control mode should be added to the equations to engineer, sym-
metrically to the first control mode. We refer to [Guillaud & Mirrahimi 2019]
for further details.

1.4.3.4 Gate errors

During each of these gates, there are two main effects that induce phase
errors. The first is spontaneous emission of photons from the oscillator, with
dissipation operator κaD[a]. This causes phase errors linearly in time and in
|α|2 independently of the ongoing gate, and also results in correlated errors
for multi-qubit gates [Chamberland et al. 2022]. Indeed, plugging in the SFB
into this dissipator and neglecting second-order terms yields

κaD[a] ≈ κa|α|2D[σz] . (1.59)

This directly highlights the loss of phase information induced by single-photon
losses on the cat qubit, with a rate ΓZ ≈ κa|α|2. This source of decoherence
can only be mitigated by increasing oscillator lifetime or by changing the
overall qubit encoding. Single-photon losses thus motivate the need for faster
gate operations (increasing overall fidelities) and limit the benefits granted by
increasing |α|2 (providing an optimal working point).

Phase errors are also induced directly by gate processes, but only on modes
for which parity-switching dynamics is engineered. In particular, target qubits
of multi-qubit gates do not suffer from such errors, and hence most of the
dynamics of interest occurs on control qubits. Consequently, Z(θ) rotation
gates provide much of the important physics, and strategies to mitigate cat
qubit gate errors can all be understood within the scope of this single-qubit
gate. Therefore, this thesis often begins with the design of Z(θ) gates before
generalizing.

1.5 Outline and Contributions

In this introductory chapter, we have outlined some of the key elements in
the path towards quantum computation with protected cat qubits. Starting
from the early development of quantum physics (1900s), quantum computa-
tion was imagined by Richard Feynman only much later in the century (1982).
We then reviewed progress in superconducting circuits (1990s) and their typ-
ical models and Hamiltonians. Continuous-variable qubits were then theo-
rized as a promising path towards fault-tolerance (2001), from which the idea
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of passively protecting a cat qubit with dissipation arose several years later
(2014). This approach being actively pursued experimentally, another variety
of cat qubit protection based on the Kerr effect was invented (2017). Finally,
we discussed the current proposals for bias-preserving operations with both
kinds of protected cat qubits, and their path towards fault-tolerant quantum
computation (2019).

Regrettably, both dissipative and Kerr cat qubits suffer from respective
limitations, namely the low-order scaling of gate fidelities and a noise bias
limited by thermal-induced leakage. The goal of this thesis will thus be to
design new ways of controlling protected cat qubits in order to get rid of these
limitations. This manuscript is organized as follows.

In Chapter 2, we provide a detailed analysis of the reason why Kerr-based
confinement shows a bounded scaling in noise bias in the presence of thermal
noise. We then introduce a novel confinement mechanism based on a two-
photon exchange from the memory to an ancillary mode, and show how it can
be combined in a highly efficient manner with dissipative cat qubits. Such a
combined confinement mechanism displays improved single- and multi-qubit
gate fidelities while retaining the advantageous scaling of bit-flip errors. It
can further be implemented in a superconducting circuit setup with minimal
overhead.

In Chapter 3, we dive into the intricate interactions between memory and
buffer mode, and describe the role of the buffer mode in the making of gate
errors during Zeno gates. From this insight, we devise four separate designs of
high-fidelity gates for dissipative cat qubits. Two of these designs are based on
feeding information leaked out of the buffer mode back into the memory. The
two other designs rely on high-order Hamiltonian or dissipative engineering
such that no information is lost to the environment in the first place. For all of
these designs, we go over specific implementations in superconducting circuits,
and how eventual spurious terms could limit viability of the proposals.

In Chapter 4, we introduce a novel method to differentiate through a Lind-
blad master equation with a constant memory cost, based on the reverse time
integration of an adjoint state master equation. Such a tool is useful in many
contexts such as parameter fitting, state tomography or quantum optimal
control. In the context of this thesis, it could be used for the optimization
of gate or readout processes with cat qubits. To be more general, we demon-
strate it in the context of transmon readout. By performing a gradient descent
on the readout pulse within a transmon-resonator-filter model, we show how
pulse shaping can improve readout fidelities compared to standard readout
protocols. It also provides interpretable pulses, and learns how to fuse opera-
tions together within a protocol where dissipation is key to the process being
optimized.
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Chapter 5 then concludes this thesis. Throughout the manuscript, we
briefly mention some other contributions. Namely, we have provided some
theoretical support on the work of [Ruiz et al. 2023] in which a detuned
Kerr cat qubit at specific working points is studied for the multiplicity of
its spectral degeneracies, we helped devise the transmon-free readout pro-
tocol of [Réglade et al. 2023] that was then experimentally demonstrated,
and we co-developed the open-source library dynamiqs that provides end-
to-end differentiable solvers of quantum differential equations, available at
github.com/dynamiqs/dynamiqs.

https://github.com/dynamiqs/dynamiqs




Chapter 2

Combined confinement of cat
qubits

This chapter covers the work that was published in [Gautier et al. 2022]
regarding hybrid confinement schemes for the protection of cat qubits.
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2.1 Introduction

In the previous chapter, we reviewed the two main approaches that have been
proposed in order to confine a cat qubit to its two-dimensional codespace. The
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first approach is based on engineered two-photon dissipation which attracts
any initial state towards the cat qubit manifold [Mirrahimi et al. 2014], and
the second on a Hamiltonian confinement with two-photon driving and a Kerr
nonlinearity [Puri et al. 2017]. In this case, confinement is ensured by the
degenerate ground eigenspace of the Hamiltonian and by its spectral gap to
the rest of the spectrum.

The dissipative confinement approach benefits from the advantage that
the states in the cat qubit manifold correspond to the only steady states
of the dissipative mechanism. Any potential leakage outside the code space
is therefore suppressed actively and any undesired perturbation to the ideal
dynamics lead only to bit-flip and/or phase-flip errors in the code space.
Furthermore, as discussed in [Cohen 2017] and experimentally demonstrated
in [Lescanne et al. 2020b], the associated bit-flip errors are exponentially sup-
pressed with the oscillator mean number of photons. The main inconvenience
of this approach is currently the limited performance of the physical gates,
which leads to challenging requirements for the ratio between engineered
two-photon dissipation and spurious relaxation rates in order to reach fault-
tolerance thresholds.

With Kerr-based confinement, gate performances can be improved through
the application of superadiabatic pulse designs that take advantage of the
purely Hamiltonian evolution to suppress gate-induced leakage out of the code
space [Xu et al. 2022a]. However, in the absence of dissipative stabilization of
the cat qubit manifold, leakage induced by perturbations different from quasi-
static Hamiltonians — e.g. from thermal excitation or photon dephasing —
is not countered. As shown in [Putterman et al. 2021] and further argued in
this chapter, this leakage can in turn lead to significant bit-flip errors that
are not exponentially suppressed with the number of photons, or at least not
within the usual range of parameters.

The authors of [Putterman et al. 2021] proposed a promising approach to
remedy this problem and to ensure the suppression of bit-flips. This approach
consists in the addition of a colored relaxation to compensate for the leakage
out of the cat manifold. Through this addition, the bit-flip suppression would
be re-established for Kerr cat qubits, but to reach the same level of perfor-
mance as in the case of the two-photon dissipation, one would need a careful
hardware engineering of the bath beyond the Purcell filters that are routinely
used in superconducting devices.

It is tempting to think that by combining the two mechanisms of two-
photon dissipation and Kerr Hamiltonian confinement, we might benefit from
the best of both worlds. This idea is valid but it comes with some important
limitations. First, the realization of the bias-preserving operations would re-
quire the combination of the engineered Hamiltonians and dissipators as laid
out in [Guillaud & Mirrahimi 2019] and [Puri et al. 2020]. This is a daunting
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experimental task which could lead to unanticipated roadblocks. Second, as
it will become clear in the following analysis, in order to re-establish a simi-
lar level of bit-flip suppression to the purely dissipative mechanism, the Kerr
strength cannot surpass the two-photon decay rate. This significantly reduces
the interest of the Kerr confinement in performing fast and high-fidelity gates.

To overcome this difficulty, we introduce an alternative cat qubit confine-
ment Hamiltonian that does not suffer from the limitations of Kerr confine-
ment, and which can be combined with a dissipative protection mechanism.
While our focus here is on bosonic cat qubits, the idea is rather general. In-
deed, the protection of quantum information generally relies on either a Hamil-
tonian gap, where the information is encoded in a degenerate eigenspace of an
engineered Hamiltonian, or a dissipative mechanism, usually based on reser-
voir engineering or feedback control. We show that the combination of these
two techniques is not straightforward. More precisely, for such combinations
one cannot simply rely on the energy gap but it is also needed to carefully
engineer the spectrum of excited energy levels. We therefore hope that similar
methods could be replicated on other quantum information devices.

The purpose of the present chapter is thus to propose a highly efficient
scheme for combined Hamiltonian and dissipative cat qubit confinement, and
to analyze its performance compared to other schemes. Section 2.2 first in-
vestigates the exponential suppression of bit-flip errors for two existing con-
finement schemes: two-photon dissipation and Kerr confinement. Section 2.3
introduces the Two-Photon Exchange (TPE) Hamiltonian, a nonlinear cou-
pling between a resonator and a two-level buffer system that features uni-
formly spectral gaps, and shows that it is an ideal candidate for combination
with a two-photon dissipative stabilization. In Section 2.4, the performance
of single-qubit Z gates and a two-qubit CNOT gates under such a combined
confinement is studied, and gate fidelity improvements by factors of up to 400
compared to standard designs are shown without compromising bit-flip pro-
tection. Finally, Section 2.5 presents a proposal for the experimental realiza-
tion of this combined TPE and two-photon dissipation confinement scheme,
and investigates the influence of various experimental imperfections on the
scheme’s performance. We conclude in Section 2.6.

2.2 Cat confinement and bit-flip suppression

2.2.1 Confinement and decoherence

Let us consider a quantum harmonic oscillator under some cat qubit confine-
ment scheme and typical decoherence effects. The master equation governing
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the evolution of the oscillator is given by

dρ

dt
= Lconfρ+ κ−D[a]ρ+ κ+D[a†]ρ+ κϕD[a†a]ρ . (2.1)

Here D[L]ρ = LρL†−{L†L,ρ}/2 is the dissipation super-operator associated
to channel L, applied with pure dephasing rate κϕ, single-photon relaxation
and excitation rates κ− = κ1(1 + nth) and κ+ = κ1nth, with nth the average
number of thermal photons. The superoperator Lconf denotes a confinement
scheme, i.e. a super-operator with a two-dimensional steady state manifold
equal to the cat qubit codespace.

For dissipative cat qubits, the confinement scheme takes the form of a
two-photon driven dissipation Lconf = κ2D[a2 − α2] where the bare confine-
ment rate is the two-photon dissipation rate κ2 [Mirrahimi et al. 2014]. This
confinement scheme is an asymptotic stabilization scheme in the sense of dy-
namical systems theory, meaning that any initial state will asymptotically
converge to the cat qubit manifold. The stabilization is furthermore exponen-
tial since any initial state in a close neighborhood of the cat qubit manifold will
converge exponentially fast to a steady state in this manifold. In the limit
κ2 ≫ κ1, the typical time scale of this convergence is given by a re-scaled
confinement rate κconf = 4|α|2κ2 [Azouit et al. 2016].

For Kerr cat qubits, the confinement scheme is instead an energy-
conserving superoperator Lconf = −i[HKerr, ·] where HKerr = −K(a†2 −
α∗2)(a2 − α2) with Kerr non-linearity K [Puri et al. 2017]. This Hamiltonian
features an exactly degenerate ground eigenspace given by the cat qubit man-
ifold, which is gapped from other eigenstates with an energy approximately
given by 4|α|2K in the limit of large α, as shown in Figure 2.1(a). This energy
gap protects the qubit from spurious weak and slowly varying Hamiltonian
perturbations, as the perturbed eigenspace will remain very close to the cat
qubit manifold. However, when the state leaks out, no process ensures its
asymptotic convergence back to the cat qubit manifold.

The excited eigenstates of the Kerr Hamiltonian can be separated into
two branches of even and odd photon number parities, which asymptotically
converge towards |C+

α ⟩ and |C−
α ⟩ respectively under two-photon dissipation.

Since modifying the phase between even and odd cat states corresponds to
bit-flips, we would ideally want these two excited branches to be degener-
ate like the cat states. However, the Kerr Hamiltonian excited eigenstates
are all non-degenerate, with energy level spacing between consecutive energy
levels increasing with the excitation number, as shown on Figure 2.1(a). Al-
though each spacing can be suppressed exponentially with the mean number
of photons |α|2, this suppression only kicks in at |α|2 ≳ 4n for the n-th
pair of excited states [Puri et al. 2017, Putterman et al. 2021]. As discussed
in [Putterman et al. 2021] and further argued here, this fact has major con-
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Figure 2.1: (a) Energy spectrum of the Kerr Hamiltonian separated in two
branches of even and odd parity eigenstates. The ground eigenspace is the
cat qubit codespace, gapped from excited eigenstates by an energy |e±1 −e0| ≈
4|α|2K. Leakage out of the codespace at rate κl = κ1nth + |α|2κϕ readily
brings the system towards a superposition of all excited states |ϕ±

n ⟩, where
even and odd excited eigenstates dephase at rate δn = |e−n − e+n |. (b) Bit-flip
error rate of an idle cat qubit confined with a Kerr Hamiltonian (blue, g ≡ K)
or with two-photon dissipation (green, g ≡ κ2), in units of g. The cat qubit
is subject to single-photon loss with rate κ1 = 10−3g (crosses, solid lines),
with additional thermal noise κ1nth = 10−5g (diamonds, dashed lines) or pure
dephasing κϕ = 10−5g (circles, dotted lines). Markers indicate numerical data,
lines indicate analytical fits.

sequences on the effective bit-flip suppression for such a confinement.

2.2.2 Bit-flip suppression

In Figure 2.1(b), the bit-flip error rates of idling dissipative cat qubits and
idling Kerr cat qubits are presented in the presence of various noise processes.
While markers show simulation data at large idling times, lines show an-
alytical predictions as detailed in Section 2.2.3. For κϕ = nth = 0, both
schemes feature an exponential bit-flip error suppression, proportional to
κ1|α|2 exp(−4|α|2). In the presence of thermal or dephasing noise, dissipa-
tive cat qubits retain an exponential error bias with exponential suppression
proportional to κl exp(−2|α|2) where κl = κ1nth + |α|2κϕ is the leakage rate
out of the cat qubit manifold.

Kerr cat qubits on the other hand feature an approximately constant bit-
flip error rate given by the leakage rate κl. The predictions fit simulation data
very closely, and we now detail the physical process of Kerr-induced bit-flip
errors behind the models used here. Thermal and dephasing noise induce
leakage out of the codespace at a rate denoted by κl, which is a priori small
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compared to the Kerr nonlinearity, κl ≪ K. This leakage is slow but, in the
absence of any mechanism attracting it back to the cat qubit manifold, over
a time t it deforms a state initially in the cat qubit manifold into a new state
that is about κlt-removed from the steady state manifold. This new state has
a finite overlap with all excited eigenstates of the Kerr Hamiltonian (denoted
as |ϕ±

n ⟩) which form an orthogonal basis of the Hilbert space. Let us consider
the n-th pair of Kerr eigenstates. These two eigenstates dephase at a rate
given by their energy level spacing δn = e−n − e+n . Since they are by definition
eigenstates of even and odd parities, some dephasing of phase angle π will
result in an effective bit-flip error.

With respect to the above discussion, single-photon loss is in fact a confine-
ment mechanism attracting the leaked state back to the cat qubit manifold
at the rate κ1. However, as κ1 ≪ K, the system will potentially undergo
bit-flip errors before this reconvergence to the code space. In Section 2.2.3,
this model is detailed and, over a time t short compared to rate of leakage,
κlt ≪ 1, and short compared to the rate of reconvergence, κ1t ≪ 1, it yields
the following bit-flip error probability,

pX(t) = κlt
∑
n>0

λn

[
1− sin(δnt)

δnt

]
. (2.2)

Here λn =
∑

± | ⟨ϕ±
n |α, 1⟩ |2/2 where |α, 1⟩ is the first displaced Fock state

D̂(α) |n̂ = 1⟩, i.e. the state obtained at first order under thermal excitation
or photon dephasing when starting at |α⟩ in the cat qubit codespace. In this
sense, κlλn represents the rate at which each pair of Kerr excited eigenstates
is populated by codespace leakage. In addition, the right-hand side bracket
of Equation (2.2) represents how the dephasing of the even and odd parity
eigenstates, accumulated over time t before getting back to the codespace,
translates to bit-flip errors. This bracket vanishes for small time or energy
level spacing δnt ≪ 1 and equals 1 for large time or energy level spacing
δnt≫ 1, as expected.

With this analytical formula, we can put some numbers on bit-flip error
probabilities under Kerr confinement by looking at Figure 2.2 in which pan-
els (a) and (b) show respectively δn and λn with respect to |α|2 for the first
pairs of Kerr eigenstates, while panel (c) shows each term of Equation (2.2)
with respect to time for |α|2 = 4, 8 and 12. Together, these figures show
how the various eigenstates contribute to bit-flip errors via Equation (2.2)
for each mean number of photons and each time. Note thus that accord-
ing to Figure 2.2(b), a distribution over all Kerr eigenstates is induced by a
single thermal photon or dephasing perturbation. In turn, the associated δn
increases with n and features two regimes as a function of α (constant, then
exponentially suppressed) as shown on Figure 2.2(a); a log-scale version of the
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Figure 2.2: (a) Energy level spacing between even and odd parity eigen-
states of the Kerr Hamiltonian δn = |e−n − e+n |. Dashed lines represent the
threshold δn = κconf , below which eigenstates benefit from the additional
two-photon dissipation scheme. (b) Overlap between the n-th pair of ex-
cited Kerr eigenstates and a cat qubit state deformed by thermal or dephas-
ing noise, λn =

∑
± | ⟨ϕ±

n |α, 1⟩ |2/2. Dashed lines represent the threshold
κlλn = κl exp(−c|α|2) under which exponential suppression of bit-flip errors is
retrieved with suppression exponent c. (c) Individual terms of the sum of (2.2)
with respect to time. The solid black line represents the sum of all terms. The
dashed black line represents pX(t)/κlt extracted from a numerical simulation
of Kerr confinement with single-photon loss κ1 = 10−3K and thermal noise
nth = 10−2.

latter is also shown in Figure 2.3 for better readability. The overall bit-flip
rate results from the combination of these two effects.

For instance, at |α|2 = 12 and considering a typical time t ∼ 10/K, Fig-
ure 2.2(c) shows that the n = 3 pair of excited Kerr eigenstates contributes
the most to the sum of Equation (2.2). Indeed, we find that δ3t ≈ 5.2, thus
contributing to a bit-flip error dominated by κltλ3 with λ3 ≈ 1.7 · 10−3. In
comparison, the dissipative cat qubit error probability is also proportional to
κlt but with an exponential prefactor exp(−2|α|2) ≈ 4 · 10−11. Terms with
lower n indices contribute less to Kerr-induced bit-flip errors because the δn
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are well inside the exponentially suppressed regime, e.g. for the second pair of
excited states, 1− sinc(δ2t) ≈ 2.5 ·10−4. On the other hand, terms with larger
n indices contribute with 1−sinc(δnt) ≈ 1 even at shorter time scales, but with
smaller effect since λn decreases exponentially with n [Putterman et al. 2021].
The study of [Putterman et al. 2021] shows that at very large values of |α|2
(well above the average photon numbers considered here) one can hope to re-
trieve an approximate exponential suppression given by pX ∝ exp(−0.94|α|2)
which is still less significant than the prefactor exp(−2|α|2) achieved for dissi-
pative cat qubits and with all values of |α|2. Note furthermore that, working
at very large values of |α|2 induces significant phase-flip errors and can lead
to several other unanticipated difficulties [Chamberland et al. 2022].

2.2.3 Estimating bit-flip errors for an idling qubit

In this section, we consider an idling cat qubit subject to one of the con-
finement schemes discussed previously, and derive a simplified model for the
estimation of bit-flip errors that leads to Equation (2.2).

2.2.3.1 General Framework

Let us consider a quantum harmonic oscillator initialized in the pure state

ρ(t = 0) = |0L⟩⟨0L| = |α⟩⟨α|+O(e−2|α|2) . (2.3)

Following the definition of Chapter 1, the bit-flip error probability after an
idling time t is given by

pX(t) = (1− Tr[Jzρ(t)]) /2 (2.4)

To compute this bit-flip error probability, let us estimate ρ(t) at any given
time, and then reinsert it in the above formula. In order to simplify the
analytical derivation of ρ(t), we will neglect the exponential corrections of
Equation (2.3) and assume that the initial state is coherent. Any resulting
bit-flip estimation will thus be correct up to this exponential correction. By
symmetry, we can then treat the case in which the system is initialized in the
|1L⟩ logical state.

As previously, we assume that the system is subject to a cat qubit confine-
ment scheme and to usual decoherence effects such as single-photon relaxation,
thermal excitation and pure dephasing,

dρ

dt
= Lconfρ+ κ−D[a]ρ+ κ+D[a†]ρ+ κϕD[a†a]ρ (2.5)

where Lconf is a confinement superoperator with confinement rate g, while
κ− = κ1(1 + nth) and κ+ = κ1nth are the single-photon relaxation rates, nth
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the average number of thermal photons at the resonator frequency and κϕ is
the pure dephasing noise rate. At all times, let us separate the density matrix
in two according to

ρ(t) = (1− εl(t)) |α⟩⟨α|+ ρl(t). (2.6)

Thus, ρl is the part of the density matrix that represents population leaked
outside the coherent subspace |α⟩⟨α|. It is such that Tr[ρl(t)] = εl(t). Sup-
pose decoherence rates are small compared to the confinement amplitude,
κ+, κ−, κϕ ≪ g, and the time of evolution is short compared to the time scale
of population leakage out of the coherent state, κlt≪ 1 where κl = κ++|α|2κϕ
is the leakage rate. In this limit, leakage is small and |εl(t)| ≪ 1. We first
differentiate Equation (2.6) with respect to time, and second reinsert Equa-
tion (2.6) in Equation (2.5), to obtain the two following equations

dρ

dt
= −ε̇l |α⟩⟨α|+

dρl

dt
(2.7)

and
dρ

dt
= Lconfρl + κ−D[a] |α⟩⟨α|+ κ+D[a†] |α⟩⟨α|+ κϕD[a†a] |α⟩⟨α|+O(ε2l )

= Lconfρl + κl(|α, 1⟩⟨α, 1| − |α⟩⟨α|)− α

2
(κ1 + κϕ) (|α, 1⟩⟨α|+ |α⟩⟨α, 1|)

− |α|2κϕ (|α, 2⟩⟨α|+ |α⟩⟨α, 2|) +O(ε2l )

(2.8)

where |α, n⟩ = D(α)(a†)n |0⟩ is the n-th displaced Fock state, and where
we have used that Lconf |α⟩⟨α| = 0 by definition. At this point, we project
Equations (2.7) and (2.8) inside the |α⟩⟨α| subspace, which yields

ε̇l = κl − ⟨α| Lconfρl |α⟩ . (2.9)

We have thus found the true rate of leakage outside of the codespace, ε̇l,
which is bounded by κl. In particular, for a purely Hamiltonian confinement
mechanism, we have Hconf |±α⟩ = 0 by definition such that

⟨α| Lconfρl |α⟩ = −i ⟨α| (Hconfρl − ρlHconf) |α⟩ = 0 . (2.10)

Therefore, Equation (2.9) simplifies to ε̇l = κl. For a purely Hamiltonian
confinement, all leakage out of the codespace due to dissipative noise builds
up and never reconverges back to the codespace. Projecting Equations (2.7)
and (2.8) outside of the |α⟩⟨α| subspace further yields the master equation on
the leaked density matrix. For a purely Hamiltonian confinement, it reduces
to
dρl

dt
= −i[Hconf ,ρl] + κl |α, 1⟩⟨α, 1|

− α

2
(κ1 + κϕ) (|α, 1⟩⟨α|+ |α⟩⟨α, 1|)− |α|2κϕ (|α, 2⟩⟨α|+ |α⟩⟨α, 2|) .

(2.11)
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2.2.3.2 Kerr Confinement

We now consider a Kerr Hamiltonian confinement such that Hconf = HKerr,
and assume the dynamics of Equation (2.11). To investigate the associated
evolution of ρl, we expand quantum operators into the Kerr Hamiltonian
eigenbasis with eigenstates {|ϕ±

n ⟩}∞n=0 and eigenenergies {e±n }∞n=0. This basis
has a degenerate ground eigenspace of energy e±0 = 0 such that

∣∣ϕ±
0

〉
= |C±

α ⟩ is
a cat qubit basis state. All other eigenstates are separated in two branches of
even and odd parities with 0 < e−n − e+n ≪ e±n+1− e±n . However, e−n − e+n grows
unbounded in n. These energy level spacings δn = |e−n − e+n | are represented
in vertical axis logarithmic scale on Figure 2.3. The expansion thus yields

|α⟩ = (N+

∣∣ϕ+
0

〉
+N−

∣∣ϕ−
0

〉
)/2 (2.12a)

|α, 1⟩ =
∑
n>0

(
λ+n
∣∣ϕ+

n

〉
+ λ−n

∣∣ϕ−
n

〉)
(2.12b)

ρl(t) =
∑
n,m

∑
s,r=±

τ srnm(t) |ϕs
n⟩⟨ϕr

m| (2.12c)

where N± =
√

2(1± e−2|α|2) and τ srnm is the quantity to be investigated. The
λ±n coefficients are defined by (2.12b) and are real-valued for α real. Rein-
jecting in Equation (2.11) and projecting onto the |ϕs

n⟩⟨ϕr
m| density matrix

element yields (for n+m > 0)

d

dt
τ srnm = −iτ srnm(esn − erm) + κsrnm (2.13)

where κsrnm is the rate at which the corresponding density matrix coefficient is
populated, and given by κsrnn = κlλ

s
nλ

r
n for n = m. We can solve each equation

individually for null initial conditions, yielding

τ ssnn(t) = (λsn)
2 κl t (2.14a)

τ srnm(t) = iκsrnm
e−i(esn−erm)t − 1

esn − erm
. (2.14b)

In this Kerr eigenbasis expansion of ρl, the dominating terms are the diagonal
terms τ ssnn and the terms τ ss̄nn where s̄ = −s. All other terms are much smaller
due to their 1/(esn − erm) dependence and we therefore neglect them. The
density matrix ρl is thus almost block diagonal in the Kerr eigenbasis, with
blocks of the form[

τ++
nn (t) τ+−

nn (t)
τ−+
nn (t) τ−−

nn (t)

]
= κlt

[
(λ+n )

2 λ+nλ
−
n

eiδnt−1
iδnt

λ−nλ
+
n

e−iδnt−1
−iδnt

(λ−n )
2

]
(2.15)

where δn = e−n − e+n > 0. After idling time T ∼ 1/δn, coherences of this
diagonal block have flipped sign thus inducing bit flip. The bit-flip error is
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Figure 2.3: Energy level spacing between even and odd parity eigenstates
of the Kerr Hamiltonian δn = |e−n − e+n |. Similar plot as in Figure 2.2(a) but
with a logarithmic scale on the vertical axis.

then given by

pX(t) =
1

2

(
1− Tr

[
Ĵzρ
])

=
1

2

(
1− (1− κlt) Tr

[
Ĵz |α⟩⟨α|

]
− Tr

[
Ĵzρl

])
=

1

2

(
κlt− Tr

[
Ĵzρl

]
+O

(
e−2α2

))
≈ 1

2
κlt−

1

2

∑
n>0

(
τ−+
nn (t)

〈
ϕ+
n

∣∣ Ĵ+−
∣∣ϕ−

n

〉
+ h.c.

)
≈ 1

2
κlt−

1

2

∑
n>0

(
τ−+
nn (t) + h.c.

)
≈ 1

2
κlt
∑
n>0

(
(λ+n )

2 + (λ−n )
2 − 2λ+nλ

−
n

sin(δnt)

δnt

)
≈ κlt

∑
n>0

λn

(
1− sin(δnt)

δnt

)

(2.16)

where λn = [(λ+n )
2 + (λ−n )

2] /2 is the value used and shown in the previous
section. In this derivation, three different assumptions were made. The first
is that Tr[Ĵz |α⟩⟨α|] = 1, which is valid up to corrections of order exp(−2|α|2).
The other two are that ⟨ϕ−

n | Ĵ−+ |ϕ+
n ⟩ = 1 and that (λ+n )

2 + (λ−n )
2 = 2λ+nλ

−
n .

These two assumptions are valid in the limit of large α, and would otherwise
only result in an additional prefactor in front of the sine term which does not
change the overall estimation.

We have thus obtained the previously used analytical formula from Equa-
tion (2.2). In the following section, we move on to the discussion of combined
Kerr and two-photon dissipation confinement, and investigate whether it is
possible to retrieve the exponential suppression with Kerr cat qubits.
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2.2.4 Combined Kerr and two-photon dissipation con-
finement

In order to better protect a Kerr cat qubit against thermal and dephasing
noise while still benefiting from its excellent performance for gate engineer-
ing [Xu et al. 2022a], it is interesting to consider combining it with a dissipa-
tive confinement scheme. In this thesis, we only consider using a two-photon
dissipation scheme, but our conclusions hold also for other schemes such as
the colored dissipation introduced in [Putterman et al. 2021].

In order to recover the exponential suppression of bit-flip errors, the dis-
sipative stabilization rate should be larger than any significant Kerr-induced
dephasing between odd and even photon number subspaces. If this is verified,
then leakage out of the cat qubit manifold will reconverge faster towards its
initial state thanks to dissipation than it will dephase towards the other side of
phase space due to Kerr effects. To make this argument clearer, let us assume
a target exponential suppression of bit-flips given by Γbit−flip ∝ exp(−c|α|2)
with c ∼ 1. Then all eigenstates with λn above the corresponding dashed line
on Figure 2.2(b) could contribute to more bit-flip errors than the targeted
exponential. To avoid these contributions, those eigenstates should dephase
at a rate δn smaller than the dissipative confinement rate used to reconverge
the state. For instance, at |α|2 = 12, the n ≤ 5 eigenstates are above the
line exp(−|α|2), and their largest degeneracy is δ5 ≈ 20K. Therefore, the
dissipative confinement rate should be κconf = 4|α|2κ2 ≫ 20K, or equiva-
lently, κ2 ≫ 0.42K. This reasoning holds for any value of α and any target
exponential rate. This explains how to set a lower bound on the ratio κ2/K.

Conversely, we may start with an upper bound on κ2/K, e.g. from the
motivation of sufficiently maintaining the advantages of Kerr Hamiltonian
confinement towards implementing gates. Consider for instance that we limit
ourselves to κ2 ≤ 0.1K (e.g. as proposed in [Puri et al. 2020]). Then Kerr-
induced dephasing will be avoided only for the eigenstates below the dashed
line K/κ2 = 10 on Figure 2.2(a). At |α|2 = 12, these states read n ≤ 3.
Eigenstates with n > 3 will each contribute to bit-flip errors with a rate κlλn.
Figure 2.2(b) indicates that λ4 ≈ 2 · 10−4, so we have to expect a bit-flip rate
Γbit−flip ≳ 2 · 10−4κl.

Figure 2.4 shows the actual bit-flip rate when combining Kerr and dis-
sipative confinement schemes. In these simulations, the cat qubit is idling
and the amplitude of the Kerr Hamiltonian is varied. The resonator is sub-
ject to single-photon loss at rate κ1 = 10−3κ2 with either thermal excitations
at rate κ1nth = 10−5κ2 (diamonds) or pure dephasing at rate κϕ = 10−5κ2
(circles). The noise rates considered here and in the rest of this work are
within one order of magnitude of already achieved noise rates, both for
Kerr [Grimm et al. 2020] and dissipative cat qubits [Touzard et al. 2018], and
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Figure 2.4: Bit-flip error rate of an idle cat qubit confined by a combined
Kerr and two-photon dissipation for increasing cat sizes. The cat qubit is
subject to single-photon loss of amplitude κ1 = 10−3κ2, with additional ther-
mal excitation κ1nth = 10−5κ2 (diamonds, dashed lines) or pure dephasing
κϕ = 10−5κ2 (circles, dotted lines). At low enough K, the exponential bit-
flip suppression is restored. Markers indicate numerical simulation data, lines
represent Equation (2.17).

are expected to be in a feasible range for the next generation of cat qubit ex-
periments. In this Figure, each plot shows a different number of photons
|α|2 = 4, 6, 8. In the K/κ2 ≪ 1 regime, the dissipative cat qubit regime is
retrieved with a clear exponential suppression at rate exp(−2|α|2). In the
opposite regime of K/κ2 ≫ 1, the Kerr cat qubit regime is retrieved. Be-
tween these two regimes, a smooth transition occurs. The analytical predic-
tions represented with dashed and dotted lines in this figure follow directly
from Equation (2.2) evaluated at the Kerr excited level characteristic lifetime
t = 1/κconf , giving

Γbit−flip = κ1|α|2 exp
(
−4|α|2

)
+ κl exp

(
−2|α|2

)
+ κl

∑
n>0

λn

[
1− sin(δn/κconf)

δn/κconf

]
.

(2.17)

The first two terms are the contribution of two-photon dissipation, whose
induced bit-flip errors are exponentially suppressed in |α|2, while the third
term is inherited from the trade-off between Kerr dephasing and dissipative
confinement.

The purely dissipative stabilization scheme is ideal for an idling qubit un-
der Markovian noise, as shown here, but Hamiltonian confinement will show
its benefits as we add gates or small Hamiltonian perturbations. From this per-
spective, an ideal working point for the combined confinement scheme would
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be the largest value of K for which the dissipative exponential suppression
remains intact. For the |α|2 values shown here and as further argued in the
following section, this corresponds approximately to K/κ2 ∼ 0.3. Unfortu-
nately, at this working point the Kerr non-linearity turns out to be too small
to provide any practical advantage over a purely dissipative scheme. As we
have tried to explain, the deterioration of bit-flip protection for larger K val-
ues is partly inherited from the increasing energy level spacing δn between
even and odd photon number eigenstates of the Kerr Hamiltonian. Indeed, to
avoid bit-flips, the dissipative stabilization scheme has to counter the increas-
ing dephasing rates associated to δn, for any eigenstate n having significant
overlap with a slightly deformed/displaced cat state.

In the following section, we introduce a new cat qubit confinement Hamil-
tonian that is Kerr-like, but that features bounded energy level spacing be-
tween even and odd photon number eigenstates. We observe that this new
confinement scheme is indeed much more compatible with a dissipative sta-
bilization. It is furthermore very similar in experimental implementation to
two-photon dissipation, thus opening the door to a natural combination of
Hamiltonian and dissipative cat qubit confinement.

2.3 Combined confinement with two-photon ex-
change

2.3.1 The two-photon exchange Hamiltonian

Two-photon dissipation can be engineered by coupling the cat qubit res-
onator with a two-photon exchange Hamiltonian g2(a

2b† + a†2b) to a low-
Q buffer mode, that is a resonator b undergoing strong single-photon
loss [Leghtas et al. 2015]. When single-photon relaxation κb of the buffer
mode is large compared to the two-photon exchange rate, the buffer mode can
be adiabatically eliminated thus resulting in two-photon dissipation κ2D[a2]
on the cat qubit mode, with rate κ2 = 4g22/κb [Azouit et al. 2017]. To engineer
the additional −α2 term of the two-photon dissipator, one can drive the buffer
mode at its resonance with Hamiltonian −α2g2(b+ b†), leading effectively to
a two-photon drive on the cat qubit mode.

Instead of coupling the cat qubit resonator to a low-Q buffer mode, it is
interesting to consider what would happen using a high-Q and highly anhar-
monic buffer mode. Considering only the two lowest energy levels of the buffer
mode, the Two-Photon Exchange (TPE) Hamiltonian resulting from such a
setup reads

HTPE = g2(a
2 − α2)σ+ + g∗2(a

†2 − α∗2)σ− (2.18)
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Figure 2.5: (a) Energy spectrum of the TPE Hamiltonian separated in two
branches of even (left) and odd (right) parity eigenstates. The zero-energy
eigenspace is the cat qubit manifold, gapped from the rest of the spectrum
by an energy |E±

1 − E0| ≈ 2|α|g2. The spectrum is symmetric with respect
to the zero-energy point. (b) Schematic of a combined TPE and two-photon
dissipation confinement scheme. The cat qubit resonator (blue) is coupled
to both a low-Q buffer mode (green) and an anharmonic high-Q buffer mode
(red) through an element that exchanges pairs of photons of the cat qubit
mode with single photons from either buffer mode.

where σ± are the lowering and raising operators of the two-level buffer
system. The TPE Hamiltonian features an exactly degenerate zero-energy
eigenspace given by the cat qubit codespace with the buffer in its ground
state, span{

∣∣Φ+
0

〉
= |C+

α ⟩ |g⟩ ,
∣∣Φ−

0

〉
= |C−

α ⟩ |g⟩}. It also preserves the photon
number parity in the cat qubit resonator, such that its eigen-spectrum can be
separated in two branches of even and odd parities. Solving the eigenvalue
equation HTPE |Φ±

n ⟩ = E±
n |Φ±

n ⟩, the other eigenstates of the TPE Hamilto-
nian are found to be∣∣Φ±

n

〉
=

1√
2

(∣∣ϕ±
n

〉
|g⟩+

∣∣ψ±
n

〉
|e⟩
)
, E±

n /g2 =
√

|e±n |/K∣∣Φ±
−n

〉
=

1√
2

(∣∣ϕ±
n

〉
|g⟩ −

∣∣ψ±
n

〉
|e⟩
)
, E±

−n/g2 = −
√

|e±n |/K
(2.19)

where {|ϕ±
n ⟩}∞n=0 are excited eigenstates of the Kerr Hamiltonian HKerr =

−K(a†2 − α∗2)(a2 − α2) associated to eigenvalues e±n , thus HKerr |ϕ±
n ⟩ =

e±n |ϕ±
n ⟩. Furthermore, {|ψ±

n ⟩}∞n=1 are eigenstates of the reversed Kerr Hamil-
tonian H ′

Kerr = −K(a2−α2)(a†2−α∗2) such that H ′
Kerr |ψ±

n ⟩ = e±n |ψ±
n ⟩, with

the same eigenvalues. Eigenstates of these two Hamiltonians are linked by the
relation |ψ±

n ⟩ = (a2−α2) |ϕ±
n ⟩ /

√
e±n . The spectrum of the TPE Hamiltonian,

depicted on Figure 2.5(a) for |α|2 = 8, is thus closely related to the Kerr
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spectrum through (2.19).
First and foremost, the TPE Hamiltonian thus inherits an energy gap

of approximately 2|α|g2 between the cat space and the rest of the spec-
trum. As such, it can be used for Hamiltonian cat qubit confinement. In
the notations of Equation (2.1), the TPE confinement super-operator reads
Lconf = −i[HTPE, ·] with confinement rate g ≡ g2. While in our analysis and
simulations we consider the buffer mode to be a two-level system, in prac-
tice, it can be realized using a sufficiently anharmonic mode. As shown in
Section 2.5, this anharmonicity should be large enough compared to the TPE
Hamiltonian gap to avoid the appearance of spurious eigenstates inside the
gap.

Second, like for the Kerr Hamiltonian, excited eigenstates of even and
odd photon number parity have different energies, with each spacing closing
exponentially at sufficiently large |α|. This contributes to bit-flip errors via
the same mechanism as the Kerr Hamiltonian, i.e. with an expression similar
to (2.2). However, unlike the Kerr Hamiltonian, the associated energy gaps
∆n =

√
e−n −

√
e+n for the TPE Hamiltonian remain uniformly bounded, as

shown on Figure 2.6(a). This can be understood as a direct consequence of
the square root: denoting e±n = ēn ± δn/2 and considering ēn ≫ δn to expand
the square root, we get ∆n/g2 ≈ δn/2

√
K|ēn|; thus δn/K increasing more

slowly than
√

|ēn|/K is sufficient to keep ∆n bounded. Figure 2.6(b) then
shows the associated relative overlap between a cat qubit state deformed by
leakage and the n-th pair of TPE eigenstates. It features a similar profile as
with in Kerr Hamiltonian case.

2.3.2 Combined TPE and two-photon dissipation

The boundedness of ∆n has major consequences when considering the combi-
nation of Hamiltonian confinement with two-photon dissipative confinement,
allowing us to fully benefit from the advantages of both schemes. Indeed,
consider the bit-flip rate estimation

Γbit−flip = κ1|α|2 exp
(
−4|α|2

)
+ κl exp

(
−2|α|2

)
+ κl

∑
n̸=0

Λn

[
1− sin(∆n/κconf)

∆n/κconf

] (2.20)

which is the equivalent of (2.17) for TPE confinement. Similarly, κlΛn is the
rate at which pairs of TPE eigenstates are populated by codespace leakage,
where Λn =

∑
± | ⟨Φ±

n |α, 1⟩ |2/2 = λn/2. Indeed, these overlaps are exactly
half of their Kerr equivalents but they are twice as many due to the symmetry
of the TPE energy spectrum (see Section 2.2.3).
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Figure 2.6: (a) Energy level spacing between even and odd parity eigen-
states of the TPE Hamiltonian, ∆n = E−

n − E+
n . Dashed lines represent

the threshold ∆n = κconf , below which eigenstates benefit from the addi-
tional two-photon dissipation scheme. (b) Overlap between the n-th pair of
excited TPE eigenstates and a cat qubit state deformed by thermal or de-
phasing noise, Λn =

∑
± | ⟨Φ±

n |α, 1⟩ |2/2. Dashed lines represent the threshold
κlΛn = κl exp(−c|α|2)under which exponential suppression of bit-flip errors
is retrieved with suppression exponent c. (c) Individual terms of the sum of
(2.20) with respect to time. The solid black line represents the sum of all
terms. The dashed black line represents pX(t)/κlt extracted from a numeri-
cal simulation of TPE confinement with single-photon loss κ1 = 10−3g2 and
thermal noise nth = 10−2.

Contrarily to the Kerr case, the last bracket can now be made small uni-
formly for all n by taking κconf ≫ g2. This criterion recasts into g2/κ2 ≪ 4|α|2.
Concretely, whereas we have argued that an exponential suppression of bit-
flip errors at a rate exp(−|α|2) and for |α|2 = 12 requires κ2 ≫ 0.42K for a
Kerr confinement (see Section 2.2.4), the same kind of computation leads to
a requirement of κ2 ≫ .014g2 in the case of TPE confinement.

These arguments are validated by numerical simulations. Figure 2.7 shows
the bit-flip rate associated to the combined TPE and two-photon dissipation
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Figure 2.7: Bit-flip error rate of an idle cat qubit confined by a combined
TPE Hamiltonian and two-photon dissipation scheme for increasing cat sizes.
The cat qubit is subject to single-photon loss of amplitude κ1 = 10−3κ2, with
additional thermal excitations κ1nth = 10−5κ2 (diamonds, dashed lines) or
pure dephasing κϕ = 10−5κ2 (circles, dotted lines). The exponential bit-flip
suppression is restored at low enough g2, an order of magnitude earlier than
for the Kerr Hamiltonian. Markers indicate numerical simulation data, lines
represent the formula (2.20).

confinement schemes. Similarly to the combined Kerr scheme shown in Fig-
ure 2.4, the cat qubit is idling and the amplitude of the TPE confinement is
varied. The same noise parameters and number of photons are used. The
markers indicate numerical simulation data, the analytical predictions repre-
sented with dashed and dotted lines correspond to (2.20), which appear to
match quite well. Qualitatively, the plots resemble Figure 2.4 of the Kerr
Hamiltonian. For g2/κ2 ≪ 1, the purely dissipative cat qubit regime is re-
trieved with a clear exponential suppression at rate exp(−2|α|2). In the op-
posite regime of g2/κ2 ≫ 1, the TPE cat qubit regime is retrieved. Between
these two regimes, a smooth transition occurs. Quantitatively however, the
transitions occur at much larger g2/κ2 values, as the horizontal scale on Fig-
ure 2.7 is shifted to the left by more than one order of magnitude.

Another way to look at the data is presented in Figure 2.8. The verti-
cal axis represents the exponential suppression factor γ such that Γbit−flip ∝
exp(−γ|α|2), for an exponential fit over the range 2 ≤ |α|2 ≤ 12. This ex-
ponential suppression factor is evaluated as a function of g2/κ2 and K/κ2
respectively for the TPE and Kerr Hamiltonian confinements. Both cases
are thus simulated in combination with dissipative confinement, and with
the same error channels as on the previous figures. For both combined Kerr
and combined TPE confinement, a smooth transition is observed from the
γ ≥ 2 regime (purely dissipative confinement) to the γ → 0 regime (bit-flip
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Figure 2.8: Exponential suppression factor of bit-flip errors γ, such that
Γbit−flip ∝ exp(−γ|α|2), for an idle cat qubit confined with a combined dis-
sipative and Hamiltonian scheme, for either a TPE Hamiltonian (red) or a
Kerr Hamiltonian (dark blue). The γ value is computed from an exponen-
tial fit over the range 2 ≤ |α|2 ≤ 12. The cat qubit is subject to single-
photon loss of amplitude κ1 = 10−3κ2, in addition with thermal excitations
κ1nth = 10−5κ2 (diamonds) or pure dephasing κϕ = 10−5κ2 (circles). Dashed
lines show the approximate boundary of the γ ≥ 2 exponential suppression
regime, at g2/κ2 = 10 and K/κ2 = 0.3 respectively.

of order κl induced by strong Hamiltonian contribution in Equations (2.17)
and (2.20)). Working points which maximize the Hamiltonian confinement
without compromising the bit-flip protection can be identified just before this
transition starts, respectively at g2/κ2 ≈ 10 and K/κ2 ≈ 0.3. As already
discussed, the Kerr Hamiltonian working point is significantly lower than the
TPE one due to the worse scaling of its energy level spacing.

Note that the Hamiltonian gaps of the Kerr and TPE Hamiltonian scale as
4|α|2 and 2|α| respectively. At the working points computed here, this implies
that the TPE Hamiltonian gap is still 5 to 10 times larger than the Kerr one
for a mean number of photon 2 ≤ |α|2 ≤ 12. This should enable us to truly
benefit from the combination of both confinement strategies, namely retaining
the exponential bit-flip suppression induced by the dissipative stabilization,
with a TPE Hamiltonian strong enough to drastically improve the speed of
quantum gates. Simulations in the following sections further indicate that gate
performances put K and g2 on an equal footing instead of the Hamiltonian
gaps, thus further favoring the TPE confinement scheme.

Before ending this section, we must say a few words about the experi-
mental implementation of the TPE confinement. The TPE Hamiltonian is
also interesting in this respect. Its similarity to the two-photon dissipation
indicates that they can be engineered simultaneously and through simple mod-
ifications of the dissipative setup [Lescanne et al. 2020b]. Figure 2.5(b) shows
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a schematic of a cat qubit with both types of confinement schemes. The res-
onator that encodes the cat qubit (blue) is coupled to a low-Q buffer (green)
and to a nonlinear high-Q buffer (red) through a two photon exchanger. A
single element can be used to engineer the two TPE couplings, with the low-Q
and high-Q buffers, thus inducing a combined dissipative-conservative confine-
ment which has the benefit of protecting against leakage from the code space
due to thermal and dephasing noise, but also against spurious Hamiltonians
with energy scales small compared to the TPE energy gap.

In the following sections, bias-preserving single-qubit Z gates and two-
qubit CNOT gates with combined confinement schemes are investigated at
the working points identified on Figure 2.8. The Hamiltonian confinements
will then show their benefits in rejecting the non-ideal terms present in the gate
Hamiltonians, while the dissipative confinement maintains protection against
perturbation channels like κ1 and κϕ. Note that the addition of a buffer mode
into the system leads to additional noise sources for TPE Hamiltonian con-
finement. The effect of these sources is thoroughly investigated in Section 2.5,
confirming that our conclusions should still hold under realistic conditions.

2.4 Engineering gates under combined confine-
ment

In quantum computing architectures with biased-noise qubits, it is es-
sential that the error bias is conserved throughout the operation of
the device. A quantum gate with cat qubits should therefore preserve
the exponential suppression of bit-flip errors. In this section, we fo-
cus on the bias-preserving realization of single-qubit Z gates and two-
qubit CNOT gates [Guillaud & Mirrahimi 2019, Puri et al. 2020]. Similarly
to [Guillaud & Mirrahimi 2019], the proposed CNOT gate can be extended
to a three qubit CCNOT (Toffoli) gate which together with appropriate state
preparation and measurements provide the building blocks of a hardware-
efficient fault-tolerant universal quantum computer based on repetition cat
qubits [Guillaud & Mirrahimi 2019, Chamberland et al. 2022]. Single-qubit
X gates of angle π are also required for universality but are trivial to imple-
ment either in software, by commuting the Pauli gate with the circuit, or in
hardware, with a half-period delay on the oscillator.

2.4.1 Zeno Z gate

In this section, we focus on the case of single-qubit Z gate with a combined dis-
sipative and Hamiltonian confinement. Section 2.4.2 introduces a new design
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for the CNOT gate under such combined confinement. The addition of a Kerr
or TPE confinement compared to fully dissipative cat qubits offers the per-
spective of improved gate speed, while the two-photon dissipation stabilizes
the code manifold and protects it from leakage-induced bit-flip errors.

2.4.1.1 Master equation

Similarly to [Mirrahimi et al. 2014, Puri et al. 2017] and the experimental re-
alizations of [Touzard et al. 2018, Grimm et al. 2020], a rotation around the Z
axis of the cat qubit can be performed via the application of a resonant drive
on the cat qubit resonator. Indeed, taken alone this would displace the cat in
phase space, but adding it to a confinement process essentially induces a phase
accumulation between the different regions of phase space where the state re-
mains confined, thus essentially between |α⟩ ≈ |0L⟩ and |−α⟩ ≈ |1L⟩. In an
appropriate rotating frame, the system is therefore subject to the following
master equation during the gate,

dρ

dt
= −i

[
εZ(t)a

† + ε∗Z(t)a,ρ
]
− ig [Hconf ,ρ] + κ2D[a2 − α2]ρ , (2.21)

where gHconf ≡ −KHKerr or gHconf ≡ g2HTPE for combined Kerr and com-
bined TPE confinements respectively. Furthermore εZ(t) denotes the complex
amplitude of the resonant drive that can be slowly varying in time, turning
on and off the logical Z rotation.

A fully dissipative gate is retrieved at g = 0. This situation can be ana-
lyzed with Zeno dynamics at various orders of the small parameter |εZ/κ2|.
The state always remains |εZ/κ2|-close to the cat qubit subspace and, as ar-
gued in [Guillaud & Mirrahimi 2019], the bit-flip errors remain exponentially
suppressed during the gate. At first order, the εZ drive induces an effective
Zeno dynamics that rotates the state of the qubit around its Z axis of the
Bloch sphere at a speed given by 4Re(α∗εZ(t)) [Mirrahimi et al. 2014], thus
performing the gate. At the second order, it leads to effective phase decoher-
ence D[σz], in other words phase-flip errors. These so-called non-adiabatic
errors thus scale as Tε2Z/κ2 ∝ 1/(Tκ2) since εZ ∝ 1/T where T is the gate
time. However, typical decoherence channels on the cat qubit resonator, like
the dissipation channels with κ1 and nth described in the simulations of Sec-
tions 2.2 and 2.3, induce direct phase errors, which scale linearly with the gate
time. The trade-off between these two effects yields an optimal gate time at
which gate fidelity is maximal [Chamberland et al. 2022].

A fully Hamiltonian gate is instead retrieved at κ2 = 0. This situation
can be analyzed from the viewpoint of an adiabatically varying Hamiltonian.
Taking advantage of the Hamiltonian gap, the adiabatic theorem ensures that
transitions outside the cat qubit subspace can be suppressed exponentially
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in the gate time [Nenciu 1993], if the Hamiltonian varies smoothly enough.
Since the evolution is purely Hamiltonian, this implies that gate-induced er-
rors can be suppressed exponentially in T . The prefactors of these errors can
be further improved drastically by using superadiabatic pulse designs as pro-
posed in [Xu et al. 2022a]. It thus seems that gates can be performed orders
of magnitudes faster with Hamiltonian confinement than with a fully dissi-
pative confinement scheme, for which non-adiabatic errors scale linearly in
1/T . However, as we have shown in the previous sections, a fully Hamilto-
nian confinement does not preserve the error bias of cat qubits under typical
dissipation channels, and is therefore irrelevant on its own.

2.4.1.2 Gate errors

With a combined dissipative and Hamiltonian confinement, the phase-flip per-
formance of Z gates can be improved without compromising bit-flip errors.
From a general viewpoint, the phase flip error probability of a Z gate can be
modeled as

pZ = κ1|α|2T + pNA
Z (2.22)

where the first term is identical to the idling qubit and represents errors due to
the dominant dissipation channel, namely single-photon loss in the resonator
mode, while pNA

Z corresponds to “non-adiabatic” phase errors induced by the
gate operation. For a Z gate with combined Kerr and two-photon dissipation,
the gate-induced phase-flip error probability is derived in Section 2.4.1.3, as-
suming a constant Hamiltonian drive throughout the gate and neglecting fast
transients when switching it on and off. The gate-induced phase-flip error is
then given by

pNA
Z =

1

1 + 4K2

κ2
2

θ2

16|α|4κ2T
(2.23)

where θ is the angle of the Z gate. This expression contains the domi-
nant error, which is closer to the fully dissipative case than to the purely
Hamiltonian case, with a linear scaling in 1/T . Compared to the model
of [Chamberland et al. 2022] for fully dissipative gates, this equation features
an additional prefactor that is tunable through the ratio between Kerr non-
linearity and dissipative confinement rate. Consequently, non-adiabatic phase
errors are suppressed quadratically with the addition of a Kerr confinement
Hamiltonian compared to the fully dissipative design. One should bear in
mind though that this additional confinement, in presence of noise mecha-
nisms such as thermal excitation and photon dephasing, induces additional
bit-flip errors as discussed in previous sections, which are kept in check up
to the working point provided in Figure 2.8. For larger Hamiltonian confine-
ment rates than this working point, phase errors can be further reduced at
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the cost of an increase in bit-flip errors. In this case, an optimization could
be performed at the level of the logical quantum error correcting code to find
an optimal working point.

For the combined TPE and two-photon dissipation confinement, the gate-
induced phase-flip error probabilities are numerically fitted with

pNA
Z =

1

1 +
4g22
κ2
2

θ2

16|α|4κ2T
+

θ2

32|α|4g22T 2
. (2.24)

The first term is similar to the combined Kerr gate, with a quadratic sup-
pression of non-adiabatic phase errors in the ratio between Hamiltonian and
dissipative confinement rates. The second term appears to be specific to the
TPE confinement and decreases quadratically in g2T independently of κ2, as
long as g2 ≳ κ2.

2.4.1.3 Analytical derivation of gate errors

In this section, we derive the phase-flip error probability caused by the oper-
ation of a Z gate under combined Hamiltonian and dissipative confinement,
as discussed in the previous section. More precisely, we calculate first-order
phase errors for the combined Kerr scheme. The calculation for the combined
TPE scheme appear to be more complex and require higher order derivations.
In this case, we only provide the formula that has been used to analytically
fit the numerical results of the main text.

The master equation that describes a Z gate with a combined Kerr and
dissipative confinement scheme reads

dρ

dt
= −iεZ

[
a+ a†,ρ

]
+iK

[
(a†2 − α∗2)(a2 − α2),ρ

]
+κ2D[a2−α2]ρ (2.25)

For the purpose of the following analysis, we move into the SFB using the
change of basis definition, a → σz ⊗ (ã+α), where σz is the Pauli Z operator
of the logical qubit and ã the photon annihilation operator of the gauge mode.
The master equation therefore reads

dρ

dt
= −iεZ [σz(ã+ ã† + 2Re[α],ρ] + κ2D[ã2 + 2αã]ρ

+ iK[ã†2ã2 + 2α∗ã†ã2 + 2αã†2ã+ 4|α|2ã†ã,ρ]
(2.26)

Like in [Chamberland et al. 2022], in the limit of large |α|, we can keep only
the terms of order |α|2 and neglect all terms of order α or 1. This leading-order
approximation is found to be valid for the estimation of phase-flip errors, which
are the dominating errors for cat qubit Z gates. Furthermore, we move into
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the rotating frame with the ideal Z gate Hamiltonian HZ,ideal = 2Re[α]εZσz.
The master equation, thus describing the remaining error, is then given by:

dρ

dt
= iKconf [ã

†ã,ρ] + κconfD[ã]ρ− iεZ(t)
[
σz(ã+ ã†),ρ

]
(2.27)

where Kconf = 4|α|2K and κconf = 4|α|2κ2. It is now desired to adiabatically
eliminate the gauge mode and keep only the effective dynamics on the qubit
mode. To do so, we could use the generic and mathematically grounded
approach of [Azouit et al. 2017]. Here, for simplicity, we write the Langevin
equations in the Heisenberg picture of (2.27). For the logical qubit part, it
reads dσz/dt = 0, while for the gauge mode it reads

dã

dt
= −iεZ(t)σz + iKconfã− 1

2
κconfã . (2.28)

The solution to this equation is given by

ã(t) = ã(0)e−( 1
2
κconf−iKconf)t − iσz

∫ t

0

e−( 1
2
κconf−iKconf)(t−t′)εZ(t

′)dt′ (2.29)

The first term vanishes at a rate κconf before the drive is applied. If εZ(t)
varies sufficiently slowly or jumps between constant values on which it stays
sufficiently long compared to κconf , then the gauge mode follows the dynamics
of the drive up to negligible transients. In this case, (2.29) simplifies to

ã(t) =
iεZ(t)

iKconf − κconf/2
σz (2.30)

and the gauge mode dissipation of (2.27) results in equivalent σz dissipation,
i.e.

κconfD[ã(t)] = κconf
εZ(t)

2

K2
conf + κ2conf/4

D[σz] (2.31)

From a more physical viewpoint, any displacement out of the code subspace
will result in equivalent dephasing of the qubit due to two-photon dissipation
bringing the state back in the cat qubit manifold with a phase error. This effect
is mitigated with the additional Kerr Hamiltonian as it limits the displacement
amplitude of the gauge mode.

We have thus derived an instantaneous dephasing term on the qubit mode.
The total phase-flip error probability on the qubit after a Z(π) gate is thus
simply given by the integral of the dephasing rate over the gate time, and
reads

pNA
Z =

1

1 + 4K2/κ22

ε2ZT

|α|2κ2
(2.32)

where ε2Z = 1/T
∫ T

0
εZ(t)

2dt is average squared amplitude of the drive over
gate time T . This is the same result as in [Chamberland et al. 2022], with the
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additional prefactor involvingK/κ2 which can be used to reduce non-adiabatic
phase errors thanks to the Kerr confinement.

Taking into account the single-photon loss of the cat qubit resonator with
rate κ1, and assuming a constant drive εZ(t) = θ/4Re(α)T during the gate,
thus discarding the short transients in (2.30) when switching the gate Hamil-
tonian on and off, the total phase error for the Z gate with angle θ is given
by

pZ = κ1|α|2T +
1

1 + 4K2/κ22

θ2

16|α|4Tκ2
(2.33)

In the case of the combined TPE confinement, the phase-flip error proba-
bility is well fitted with the formula

pZ = κ1|α|2T +
1

1 + 4g22/κ
2
2

θ2

16|α|4Tκ2
+

θ2

32|α|4T 2g22
. (2.34)

In this formula, the first contribution due to photon loss is the same gate-
independent contribution as for all other confinement schemes. The second
contribution is similar to the term found for the combined Kerr confinement.
The third contribution is however new and specific to the TPE Hamiltonian,
where the Z gate Hamiltonian induces hybridization of the codespace with a
high-Q buffer state. We leave the derivation of this fitting formula for future
work.

2.4.1.4 Numerical analysis

In Figure 2.9(a), these gate-induced phase errors are represented for three con-
finement schemes: a two-photon dissipation scheme (in green), a combined
Kerr and two-photon dissipation scheme at the working point K/κ2 = 0.3
(in dark blue) and a combined TPE and two-photon dissipation scheme at
the working point g2/κ2 = 10 (in red). We remind that, as shown in Fig-
ure 2.8, these working points correspond to maximal Hamiltonian confine-
ment strengths at which the bit-flip errors remain suppressed with a rate of
order exp(−2|α|2) for 2 ≤ |α|2 ≤ 12. The mean number of photons is fixed
at |α|2 = 8 and the gate time varies along the horizontal axis. Markers show
numerical data, while lines show analytical fits as given by Equations (2.23)
and (2.24).

For the gate with a fully dissipative confinement, we find similar results
as in the literature [Guillaud & Mirrahimi 2019, Chamberland et al. 2022,
Xu et al. 2022a] with non-adiabatic errors suppressed linearly in the gate time.
For the combined Kerr and dissipative confinement, almost no gain in per-
formance is found compared to the dissipative one because of the low Kerr
working point at K/κ2 = 0.3. The model of (2.23) predicts a reduction by a
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Figure 2.9: (a) Gate-induced phase errors for a Z gate at |α|2 = 8 with
different confinement schemes: two-photon dissipation (green), combined Kerr
and two-photon dissipation at K/κ2 = 0.3 (dark blue), and combined TPE
and two-photon dissipation at g2/κ2 = 10 (red). (b) Total phase errors for
the same Z gates, assuming single-photon loss at rate κ1 = 10−3κ2, thermal
noise nth = 10−2 and pure dephasing κϕ = 10−5κ2. The combination of TPE
and dissipative confinement allows us to win almost one order of magnitude
on the phase error, and operates optimally almost one order of magnitude
faster. For both plots, a constant Hamiltonian drive εZ is used and gate times
are in units of 1/κ2. Markers indicate numerical data, dashed lines indicate
analytical fits.

factor of about 1.36 on non-adiabatic errors. On the other hand, the combined
TPE and dissipative confinement shows a significant gain in performance with
a factor of about 400 compared to the fully dissipative confinement, in the
limit of large gate times.

Figure 2.9(b) shows the complete phase-flip error probability in the pres-
ence of the other noise sources on the cat qubit resonator, and in particular
with single-photon losses at rate κ1 = 10−3κ2. In this case, the optimal phase-
flip error probability for Z gate drops from p∗Z ≈ 2% in the fully dissipative
scheme to p∗Z ≈ 0.3% in the combined TPE and dissipative scheme. The
optimal gate time T ∗ that minimizes phase errors is also much smaller with
the combined TPE scheme than with the fully dissipative one, hence leading
to faster gate designs. For lower values of κ1/κ2, the performance gain com-
pared to fully dissipative gates is expected to increase, up to the factor of 400
characterizing the non-adiabaticity error.

In Figure 2.10, we further explore different working points for the combined
TPE and dissipative confinement, at increasing g2/κ2 values. Plot (a) shows
non-adiabatic phase flip errors while plot (b) shows the corresponding bit-flip
errors, with same noise sources as in the Figure 2.9(b). As expected, non-
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Figure 2.10: (a) Gate-induced phase errors for a Z gate at |α|2 = 8 for a
combined TPE and two-photon dissipation confinement, at varying confine-
ment ratios of g2/κ2. Diamonds indicate a constant gate Hamiltonian drive,
while circles indicate a gaussian-type gate Hamiltonian drive with first order
superadiabatic correction, as in [Xu et al. 2022a]. Lines indicate the analyt-
ical fit (2.24) in the constant drive regime. Gate times are in units of 1/κ2.
(b) Total bit-flip errors for a Z gate under the same confinement schemes, with
single-photon loss at rate κ1 = 10−3κ2, thermal noise nth = 10−2 and pure
dephasing κϕ = 10−5κ2. Markers indicate numerical data, and dotted lines
indicate exponential fits for 2 ≤ |α|2 ≤ 12; the corresponding exponential
suppression factors are the values γ represented on Figure 2.8.

adiabatic phase flip errors are suppressed quadratically with g2/κ2, while the
exponential suppression of bit-flip errors is continuously degraded from γ ≥ 2
as g2/κ2 increases above the working point. The dotted lines on plot (b) follow
the values of γ shown in Figure 2.8. To find the optimal error rate on the
logical level, an optimization on the level of the quantum error correcting code
should be performed.

Figure 2.10(a) also shows Z gate simulations with a superadiabatic pulse
design (carved out circles). The applied drive amplitude is an adaptation
of [Xu et al. 2022a] to the TPE Hamiltonian confinement and reads εZ(t) ∝
ΩG(t) + Ω̈G(t)/E

2
1 where ΩG is a second-order gaussian pulse and E1 is the

TPE Hamiltonian gap. The simulations show that such drive designs can
further improve the performance of Z gates, but their benefits especially show
up beyond the working point g2/κ2 = 10. In other words, the presence of
the necessary dissipative confinement in order to counter bit flips induced
by κ1, nth and κϕ processes, appears to limit the benefits of superadiabatic
drives in this setting. Whether the compatibility of combined confinement
with superadiabatic drives can be improved, remains a question for future
research.
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2.4.2 CNOT gate

The two-qubit CNOT gate is one of the most elementary entangling gates
and holds a major role in the operation of a quantum computer. In error
correcting codes, it is used to map the error syndromes on ancilla qubits
that are subsequently measured. The success of an error correction process is
therefore mainly limited by the infidelity of CNOT gates. Indeed, the effective
logical error probability is more sensitive to physical CNOT fidelity than to
any other component of the error correcting code, such as ancilla preparation
or measurement [Fowler et al. 2012]. It is therefore crucial to engineer CNOT
gates that can reach fidelities well above the error correction threshold. In this
section, we first review the proposals on the design of CNOT gates for confined
cat qubits. We then provide a new proposal that can achieve fast gate speeds,
with drastically improved phase fidelity compared to dissipative schemes, and
without compromising the bit-flip protection like fully Hamiltonian schemes.

2.4.2.1 Gate engineering through code deformation

For dissipative cat qubits, CNOT gates can be engineered through a
slow variation of the dissipative confinement parameters, such that the
target cat qubit manifold experiences a slow rotation in the harmonic
oscillator phase space conditionally on the state of the control cat
qubit [Guillaud & Mirrahimi 2019]. Once the conditional rotation reaches an
angle π, the rotated and original cat qubit manifolds are again superimposed,
but with a logical X-rotation between the states that they encode. More con-
cretely, this process is effectively described by the time-dependent Lindblad
operators

L
(C)
2 = a2

C − α2 , (2.35a)

L
(T)
2 (t) = a2

T − α2 +
α

2
(e2iφ(t) − 1)(aC − α) (2.35b)

where aC/T are the annihilation operators of the control and target cat qubit
resonators, φ(t) = πt/T is the rotation angle of the target cat qubit codespace
in the harmonic oscillator phase space, and T is the gate time. Indeed, at fixed
t, the steady state of these dissipators is a four-dimensional subspace spanned
by the coherent states |α⟩C ⊗ |±α⟩T and |−α⟩C ⊗

∣∣±αeiφ(t)〉
T
. Assuming that

the state of the system follows exactly the steady state subspace throughout
the gate, a state |α⟩C ⊗ |±α⟩T ≈ |0L⟩C ⊗ |0/1L⟩T would thus not move, while
a state |−α⟩C ⊗ |±α⟩T ≈ |1L⟩C ⊗ |0/1L⟩T would have moved after time T
to |−α⟩C ⊗ |∓α⟩T ≈ |1L⟩C ⊗ |1/0L⟩T, effectively achieving a CNOT gate.
However, such an assumption is only fulfilled in the limit of infinitely slow
gates. In realistic conditions, the state of the harmonic oscillator lags behind
the stabilized manifold, inducing errors.
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To effectively reduce these errors, a so-called feedforward Hamiltonian can
be added throughout the gate. This approach, which can be seen as a shortcut
to adiabaticity for open quantum systems [Alipour et al. 2020], drives the
oscillator state in such a way as to maintain it within the time-dependent
dissipators steady state manifold, hence suppressing non-adiabatic errors. In
its ideal form, a feedforward Hamiltonian for the cat qubit CNOT gate would
read

HCX,ideal = φ̇ |1L⟩⟨1L|C ⊗ a†
TaT +Hs , (2.36)

where the first term makes the target qubit rotate conditionally on the con-
trol being in the |1L⟩C logical state, and Hs with Hs |1L⟩C = Hs |0L⟩C = 0
allows an arbitrary Hamiltonian when the control qubit is outside the code
space [Guillaud & Mirrahimi 2019, Chamberland et al. 2022]. To approach
such ideal feedforward Hamiltonian with realistic Hamiltonians, an approxi-
mate version is proposed [Guillaud & Mirrahimi 2019, Puri et al. 2020]

HCX = −εCX(aC + a†
C − 2Re(α))(a†

TaT − |α|2). (2.37)

where εCX = φ̇/4Re(α). Indeed, at least for large α, the left-hand side bracket
approximately evaluates to 0 if the control qubit is in the |α⟩C state, and to
−4Re(α) if the control qubit is in the |−α⟩C state (to see this, consider e.g.
the mean value of the quadrature operator aC + a†

C). This Hamiltonian can
further be engineered through a four-wave mixing element coupled to cat
qubit resonators as demonstrated in [Touzard et al. 2019]. The similarity of
the Hamiltonian acting on the control qubit with the Z gate Hamiltonian is
no coincidence. Indeed, in a dual viewpoint the CNOT gate corresponds to a
Z rotation of the control qubit, conditioned on the logical phase of the target
qubit. Since logical phase here corresponds to photon-number parity of the
cat qubit, this dual viewpoint is clearly visible in HCX.

For Kerr cat qubits [Puri et al. 2020], the CNOT gate can be realized
through the slowly varying Hamiltonian

H = −KL
(C)†
2 L

(C)
2 −KL

(T)†
2 (t)L

(T)
2 (t) +HCX . (2.38)

The first two terms feature a time-dependent four-dimensional subspace of
ground states following the same evolution as for the dissipatively con-
fined gate, and the third term is the feedforward Hamiltonian designed to
drive the oscillator state along with this time-dependent steady state man-
ifold. In this case, the adiabaticity condition ensuring accurate gate oper-
ation reads φ̇ ≪ 4|α|2K where the right-hand side is the Kerr Hamilto-
nian gap [Puri et al. 2020]. For a fully Hamiltonian-based gate with suf-
ficiently smooth variation of εCX , this should ensure exponential suppres-
sion of gate-induced errors as a function of the gate time, like for the Z
gate. Its scaling can be further improved by using superadiabatic pulse de-
signs as proposed in [Xu et al. 2022a], adding a feedforward Hamiltonian term
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H
(sa)
CX ∝ ε̇CX i(aC − a†

C)(a
†
TaT − |α|2). The exponential suppression of non-

adiabatic errors in the gate time is a drastic improvement from the linear
scalings observed both for purely dissipative gates, and for Kerr-based CNOT
gates with discontinuous on/off operation of εCX . Fully Hamiltonian gates
are however limited by the same effects as discussed in previous sections, i.e.
the important rate of bit-flip errors induced by thermal and dephasing noise.

2.4.2.2 Target stabilization-free gate protocol

Like for the Z gate, engineering CNOT gates with a combined Hamiltonian
and two-photon dissipation confinement thus arises as a promising approach
to combine the best of both worlds. However, at first glance, such a scheme
appears experimentally very challenging due to the large number of Hamil-
tonians and dissipators that need to be engineered. For a combined Kerr
and two-photon dissipation CNOT gate for instance, control and target qubit
should be coupled through various mixing terms that engineer the target qubit
Kerr confinement as a function of the control qubit, and also to a common
buffer mode to engineer the target qubit two-photon dissipation term as de-
pending on the control qubit. With the additional feedforward Hamiltonian,
Kerr nonlinearities on each mode, and various single and two-photon drives
that appear in Hamiltonian (2.38), this leads to a daunting experimental task.

To avoid the above complexities in engineering various Hamiltonians
and dissipators, we consider a much simpler scheme where the confinement
is turned off on the target cat qubit during the operation of the CNOT
gate [Puri et al. 2019]. This is motivated by the fact that the feedforward
Hamiltonian approximately preserves the coherent states composing the tar-
get cat qubit, by making them rotate in phase space by an angle that depends
on the rather well-defined quadrature value of the control qubit, and it also
rigorously preserves the phase of the target qubit (as it preserves photon num-
ber). During a fast gate, the main gate-induced imperfections thus take place
on the control qubit, where the feedforward drive takes a similar form as for
the Z gate. Leaving the target qubit unprotected only for the short gate time
is therefore not too detrimental. Indeed, local leakage will be corrected as
soon as the gate ends and confinement is turned back on, well before signif-
icant bit-flips can be induced. Regarding performance, it is not even clear
how much could be gained by leaving on a coupled combined confinement
scheme. In absence of an efficient design for TPE-type Hamiltonian confine-
ment, with the typical parameters of the present work, gate performances are
in fact improved when switching off κ2 on the target qubit.

For a combined TPE and dissipative confinement scheme, the master equa-
tion describing the evolution of the system during the CNOT gate with our
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Figure 2.11: (a) Circuit schematic of a CNOT gate using a combined TPE
Hamiltonian and two-photon dissipation confinement on both qubits. The
control qubit resonator is connected to the target qubit resonator through a
nonlinear coupler that engineers the feedforward Hamiltonian of (2.37). Dur-
ing the CNOT gate, both Hamiltonian and dissipative confinements are turned
off on the target qubit by turning off the pump of the TPE element. (b) Am-
plitudes of the different dissipation and Hamiltonian terms during the CNOT
gate. While the TPE confinement of the control qubit is essential during the
gate, it can be turned off during the idling time. Keeping it on can however be
useful for compensating spurious Hamiltonian perturbations. For the feedfor-
ward Hamiltonian, it is possible to benefit from superadiabatic pulse designs
to further accelerate gates [Xu et al. 2022a].

proposal is thus given by

dρ

dt
= −i [HCX,ρ]− i

[
H

(C)
TPE,ρ

]
+ κ2D[L

(C)
2 ]ρ (2.39)

where H
(C)
TPE = g2(a

2
C − α2)σ+ + h.c.. A schematic of such a CNOT imple-

mentation is shown in Figure 2.11. This proposal should greatly simplify the
experimental design of CNOT gates as the only coupling term that remains
between control and target qubits is the feedforward Hamiltonian, experimen-
tally demonstrated in [Touzard et al. 2019]. We next quantify the associated
bit-flip and phase-flip errors.

2.4.2.3 Numerical analysis

In Figure 2.12, we plot the performance of CNOT gates with three differ-
ent confinement schemes. The first one is the fully dissipative scheme with
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Figure 2.12: (a) Non-adiabatic phase errors of a CNOT gate at |α|2 = 4, with
different confinement schemes: two-photon dissipation (green), combined Kerr
and two-photon dissipation at K/κ2 = 0.3 (dark blue), and combined TPE
and two-photon dissipation at g2/κ2 = 10 (red). For this last scheme, the
confinement is turned off on the target cat qubit during the gate. (b) Phase
errors of a CNOT gate for the same confinement schemes, with single-photon
loss at rate κ1 = 10−3κ2, thermal noise nth = 10−2 and pure dephasing κϕ =
10−5κ2 on both control and target qubits. Full markers show total phase error,
empty markers show the breakdown of phase errors for the combined TPE
scheme. (c) Total bit-flip errors of a CNOT gate for the same confinement
schemes, with noise rates as in plot (b), and at gate time T = 1/κ2. For
all plots, a constant gate Hamiltonian drive is used, and markers indicate
numerical data. Dashed lines indicate analytical fits, and solid lines indicate
numerical fits of exponential suppression.

both a control dissipator and a time-dependent target dissipator as proposed
in Ref. [Guillaud & Mirrahimi 2019] (green), the second one is the combined
Kerr Hamiltonian and two-photon dissipation acting on both control and tar-
get qubits as proposed in Ref. [Puri et al. 2020] but at the working point
K/κ2 = 0.3 (dark blue), and the third one is the combined TPE and two-
photon dissipation scheme as described by Equation (2.39) at the working
point g2/κ2 = 10 (red).



2.4. Engineering gates under combined confinement 71

Similarly to the Z gate, Figure 2.12(a) first compares the ‘non-adiabatic’
phase errors, induced by the gate operation itself in absence of any per-
turbations on the two qubits. As explained above, the gate only affects
the phase of the control qubit. We recall that the operating points have
been selected in Section 2.3 to anticipate reasonable protection against typ-
ical error sources. Like for the Z gate, the combined TPE scheme clearly
outperforms the other two, up to a factor about 100. For the three con-
finement schemes, non-adiabatic errors are fitted by the following formulas:

(Two-Photon Dissipation Confinement)

pNA
Z =

π2

64|α|2κ2T
(2.40)

(Combined Kerr and Two-Photon Dissipation Confinement)

pNA
Z =

1

1 + 4K2

κ2
2

π2

64|α|2κ2T
(2.41)

(Combined TPE and Two-Photon Dissipation Confinement)

pNA
Z =

1

1 +
4g22
κ2
2

π2

16|α|2κ2T
+

π2

32|α|2g22T 2
. (2.42)

The first two formulas can be derived following the SFB approach introduced
in [Chamberland et al. 2022], similarly to the case of Z gates (Section 2.4.1.3),
while the third one is numerically fitted and valid as long as g2 ≳ κ2. Its an-
alytical derivation is left for future work.

All three formulas scale as |α|−2 while their Z gate equivalents scale as
|α|−4. This comes from the fact that the feedforward Hamiltonian (âC + â†C)
acting on the control qubit like for the Z gate, is here multiplied by an
amplitude that scales with the variance of the photon number in the tar-
get qubit state. It can be explicitly computed in the SFB as explained
in [Chamberland et al. 2022]. Furthermore, the constant prefactor in the first
term of Equation (2.42) involves 1/16 instead of 1/64 as in Equation (2.40)
or Equation (2.41). This is an indirect effect of turning off the target two-
photon dissipation, which lets HCX induce more entanglement of the control
qubit phase information with target qubit leakage. At first glance, keeping
two-photon dissipation on the target qubit may thus seem beneficial to gain
this prefactor. However, keeping this dissipation would also introduce addi-
tional channels for control qubit phase dissipation, reducing the benefits of its
Hamiltonian confinement towards performing fast gates. As such, compared to
the purely dissipative scheme, the quadratic prefactor in g2/κ2 largely com-
pensates the constant prefactor with the settings and working point of our
proposal.
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In Figure 2.12(b), the total phase-flip error probability of CNOT gates
with the same three confinement schemes are shown in the presence of typical
noise sources. Similarly to [Guillaud & Mirrahimi 2019], the latter induces
phase-flip errors not only on the control qubit, but also on the target qubit,
and correlated between control and target qubit. The figure hence shows the
breakdown of those errors. Solely the control qubit undergoes non-adiabatic
errors and the formulas are the same as in [Guillaud & Mirrahimi 2019] for
purely dissipative confinement:

pZc = κ1|α|2T + pNA
Z

pZt = pZcZt =
1

2
κ1|α|2T ,

(2.43)

up to the expression of pNA
Z . The optimal phase-flip error probability pZc

remains independent of α when using (2.42) instead of (2.40). For a realistic
single-photon loss rate of κ1 = 10−3κ2, this optimum is about p∗Zc

≈ 0.8% for
our scheme, to be compared with p∗Zc

≈ 5% in the dissipative scheme. Like in
the Z gate simulations, this optimal gate fidelity is furthermore obtained at
a typical gate time about 5 times faster for the combined TPE scheme. The
working point selection for the combined Kerr and dissipative confinement,
appears to make it barely better than purely dissipative confinement in terms
of reducing non-adiabatic and hence total phase flip error. Once again, for
lower values of κ1/κ2, further performance gains can be expected compared
to fully dissipative gates, up to the factor of about 100 gained on the non-
adiabaticity error at large gate times.

In Figure 2.12(c), total bit flip error probabilities for the same three con-
finement schemes are shown in the presence of the same noise sources as in plot
(b). As expected from the working point selection, all three CNOT designs
are bias-preserving with an exponential error suppression factor greater than
2. In particular, as the gate is fast enough, turning off the confinement of the
target cat qubit during the operation does not have a significant impact on
the bit-flip suppression. Dotted lines show exponential numerical fits of these
bit-flip error probabilities. The exponential suppression factors are given by
γ ≈ 2.17 (fully dissipative scheme), γ ≈ 2.05 (combined Kerr), and γ ≈ 2.03
(combined TPE).

2.5 Towards experimental realization

2.5.1 Superconducting circuit implementation

The exponential suppression of bit-flips in dissipative cat qubits was experi-
mentally demonstrated in [Lescanne et al. 2020b] using superconducting cir-
cuits as a physical platform. In this experiment the cat qubit resonator was
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Figure 2.13: Superconducting circuit schematic of a combined TPE and two-
photon dissipation confinement. The cat qubit resonator (blue) is capacitively
coupled to an ATS (black) that mediates two-photon exchanges both with its
self high-Q mode (red) and with a low-Q buffer mode (green). The ATS is DC-
biased at the normalized flux (0,π) working point and pumped at frequencies
2ωa−ωh and 2ωa−ωl, where ωa, ωh and ωl are the resonant frequencies of the
cat qubit resonator, high-Q buffer and low-Q buffer respectively. To ensure
the anharmonicity of the ATS mode (red), the ATS junctions are designed
to admit slightly different Josephson energies. In addition, both buffers are
resonantly driven to control the cat qubit mean number of photons.

coupled to a low-Q buffer mode with a two-photon exchange Hamiltonian,
resulting in an effective two-photon dissipation on the cat qubit resonator.
The two-photon exchange Hamiltonian was engineered with an ATS, a non-
linear coupling element made up of two (ideally) identical junctions shunted
by a large inductance. Threading both loops of the ATS at normalized DC
flux biases of 0 and π magnetic flux quanta respectively allows to keep only
the odd parity mixing terms of the participating modes. Then flux pumping
the ATS at frequency 2ωa − ωb, where ωa/b are respectively the cat qubit and
buffer resonator frequencies, creates the required two-photon exchange cou-
pling. Finally, in [Lescanne et al. 2020b], not only did the ATS implement the
two-photon exchange coupling but it also hosted the low-Q buffer mode.

The combined TPE and dissipative confinement scheme proposed in this
thesis can be implemented with minor modifications of this experimental
setup. A superconducting circuit schematic of a setup implementing the con-
finement is represented in Figure 2.13. Similarly to [Lescanne et al. 2020b],
the cat qubit resonator (in blue) is capacitively coupled to the ATS (in black
and red) which is DC-biased at the same working point of 0 and π. The ATS
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is further coupled to a linear resonator (in green) which will serve as the low-Q
buffer for two-photon dissipation engineering. This leaves the self-mode of the
ATS open for other purposes and we use it as the high-Q buffer mode of the
device. Thus, instead of having a qubit as the high-Q buffer, this implementa-
tion proposes to use a sufficiently anharmonic oscillator mode. In simulations
shown later in this Section, we observe that performance degradation remains
moderate even with a fully harmonic mode as high-Q buffer, but this option
would require further analysis if it were to be considered. Note also that other
circuit QED implementations of the TPE Hamiltonian at α = 0 were proposed
in [Felicetti et al. 2018a, Felicetti et al. 2018b].

To make the high-Q buffer mode anharmonic in this implementation
scheme, it is sufficient that the ATS junction energies are designed to be
not identical. Note that even in [Lescanne et al. 2020b] these junctions were
not perfectly identical and the amount of asymmetry in that setup might be
sufficient to ensure the buffer mode to be anharmonic enough for the design
of the present thesis. The circuit Hamiltonian engineered with such a setup
reads

H = ωaa
†a+ ωhb

†
hbh + ωlb

†
lbl − 2EJ

[
ε(t) sin(φ) + ηc̃os(φ)

]
(2.44)

where a, bh and bl are the hybridized modes corresponding to the cat qubit
resonator, high-Q and low-Q buffers respectively with ωa, ωh and ωl their
corresponding resonance frequencies, and where c̃os(φ) = cos(φ) + φ2/2.
The total phase across the ATS dipole element reads φ = φa(a + a†) +
φh(bh + b†h) + φl(bl + b†l ). The energy EJ is the average of the two junction
energies, EJ = (EJ,1 + EJ,2)/2, and η is the asymmetry of the junctions,
η = (EJ,1 − EJ,2)/(EJ,1 + EJ,2). Finally, ε(t) is a Radiofrequency (RF) flux
pumped at two frequencies 2ωa − ωh and 2ωa − ωl with respective amplitudes
εh and εl.

In Section 2.5.3, we show that this Hamiltonian, after an RWA and adding
resonant drives on both buffer modes, reduces to

H = g2,l(a
2 − α2)b†l + g2,h(a

2 − α2)b†h + h.c.

− χhhb
†2
h b2h − χllb

†2
l b2l − χaaâ

†2a2

− χaha
†ab†hbh − χala

†ab†lbl − χlhb
†
lblb

†
hbh

(2.45)

where TPE amplitudes are given by g2,x = EJφ
2
aφxεx/2, and where self Kerr

and cross Kerr terms are given by χxx = ηEJφ
4
x/2 and χxy = ηEJφ

2
xφ

2
y with

x, y = a, h or l. The parameters can be chosen in such a way that χhh strongly
dominates all the other coupling terms and that |g2,l| and |g2,h| strongly dom-
inate all the remaining terms. In this manner, the dominant Hamiltonian to
be considered is

H0 = g2,l(a
2 − α2)b†l + g2,h(a

2 − α2)b†h + h.c.− χhhb
†2
h b2h (2.46)
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and all other self-Kerr and cross-Kerr terms can be considered as perturbations
to this dynamics. All these perturbation terms are parity preserving but they
could in principle induce bit-flip errors on the cat qubit. However, thanks
to the combined Hamiltonian and dissipative confinement, it is sufficient to
have the amplitude of these terms small compared to the confinement rate
to exponentially suppress their effects. This suppression is facilitated for all
the coupling terms, because both buffer modes would nominally be in their
ground state for an idling qubit with no further noise.

The fast decay of the low-Q buffer mode at a rate κb,l, together with
the first term of Equation (2.46) yields effectively the two-photon dissipation
κ2D[a2 − α2] on the cat qubit resonator. The effective rate κ2 is given by
4g22,l/κb,l in the limit of g2,l/κb,l ≪ 1. The second term is the TPE Hamiltonian
term. Note that the ratio of TPE to two-photon dissipation confinement rates
can actively be tuned through the RF flux amplitudes εh and εl. Finally, the
third term of Equation (2.46) is the Kerr nonlinearity on the buffer mode that
is essential to make it anharmonic. This Kerr nonlinearity should be large
compared to the TPE Hamiltonian gap, to ensure that terms associated to
higher excitations of the high-Q buffer would rotate at a much faster rate than
the TPE Hamiltonian contribution, and thus be rejected through RWA.

In summary, the typical orders of magnitude necessary for the design are
given by

χah, χaa, χal ≪ g2,h, g2,l ≪ χhh (2.47)

which, by noting that φa, φl < φh, implies

ηφ2
hφ

2
a ≪ εhφhφ

2
a, εlφlφ

2
a ≪ ηφ4

h. (2.48)

By design one can choose φh sufficiently large with respect to φl and φa,
and next tune the junction asymmetry η to fulfill the above requirements. An
example of a set of experimental parameters that can fulfill these requirements
is given by φh = 0.2, φa = 0.04, φl = 0.08, η = 1%, εh = 0.02, εl =
0.05. With these parameters, the condition of Equation (2.48) reads 6.4 ·
10−7 ≪ 64 ·10−7 ≪ 160 ·10−7. Further assuming an average Josephson energy
of EJ/2π = 80 GHz would yield two-photon exchange rates at g2,l/2π =
g2,h/2π = 250 kHz.

2.5.2 Spurious terms

In this section, we attempt to numerically characterize the impact of spurious
Hamiltonian and Lindblad terms related to the high-Q buffer in the TPE
confinement. In particular, in Figure 2.14, we investigate a Z gate where we
estimate the probability of phase-flip errors at a fixed mean number of photons
|α|2 = 8 (top) and bit-flip errors at a fixed gate time T = 1/κ2 (bottom).
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Figure 2.14: Characterization of the spurious contributions induced by the
high-Q buffer mode for a Z gate. Non-adiabatic phase-flip error probability
for |α|2 = 8 (top) and bit-flip error probability at T = 1/κ2 (bottom). In all
plots, reference Z gate simulations for two confinement schemes are shown: the
fully dissipative confinement (dashed black lines) and the combined TPE and
dissipative confinement at the working point g2,h/κ2 = 10. Other simulations
are the same as for the combined confinement reference, with additional terms
as typically resulting from an experimental realization. (a) The buffer mode is
modeled as an anharmonic oscillator, with Hamiltonian ωb,hb

†
hbh − χhhb

†2
h b2h.

(b) Assuming a perfect two-level buffer, relaxation is considered as a Lindblad
term κb,hD[σ−]. (c) Thermal excitation is added to the the situation of plot
(b), thus relaxation is now modeled by the Lindbladian κb,h(1+nth,h)D[σ−]+
κb,hnth,hD[σ+], for a fixed relaxation rate κb,h/g2,h = 10−2. (d) Pure dephasing
relaxation is added to the situation of plot (b), modeled by a Lindbladian
κb,hD[σ−] + κϕ,hD[σz], with a fixed single-photon relaxation rate κb,h/g2,h =
10−2.

The first effect investigated in Figure 2.14(a) is the impact of having an
oscillator mode of finite anharmonicity as a buffer, instead of a strict two-level
system. Considering a Kerr-type non-linearity for this buffer mode, thus with
Hamiltonian −χhhb

†2b2h, we vary the Kerr strength χhh to make the mode
more or less anharmonic. This Kerr strength should be large compared to
all other frequencies in the system, in order to prevent transitions to higher
excited states of the buffer mode. This is demonstrated in panel (a) since only
large enough Kerr strengths compared to g2 yield phase errors as good as the
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reference simulation in solid black lines (where the buffer mode is assumed
to be a qubit). Note however that reasonable phase-flip performances are
obtained even with perfectly harmonic buffer modes and that the bit-flip error
probability is unaffected, thanks to two-photon dissipation. The option of a
harmonic buffer mode would require more careful analysis though, since the
corresponding confinement Hamiltonian appears to have a high-dimensional
0-energy eigenspace.

The second effect, investigated in Figure 2.14(b), is high-Q buffer relax-
ation i.e. finite lifetime of the qubit. This is taken into account in simulations
with an additional Lindblad term κb,hD[σ−]. For large single-photon loss rates
κb,h ≫ g2,h, the high-Q mode in fact becomes low-Q and induces a new two-
photon dissipation channel just like bl, leading to an additional two photon
dissipation rate κ̃2 = 4g22,h/κb,h. For κb,h ≃ g2,h, we can expect the buffer
to combine high-Q and low-Q effects. This only shows up as an increase of
phase-flip error probabilities during the gate, yet still much better than the
performance reached for the fully dissipative gate. In the associated figure,
we find that κb,h/g2,h ≤ 0.1 is enough to obtain performances similar to the
reference one.

The third effect investigated, in Figure 2.14(c) is relaxation of the buffer
mode in a non-zero temperature environment, corresponding to a Lindbladian
κb,h(1+nth,h)D[σ−]+κb,hnth,hD[σ+]. Thermal excitation induces jumps from
|g⟩ to |e⟩ which translate to the cat qubit resonator as excitation of the form
(a2 − α2)†. Such excitation has a similar effect as direct thermal excitation
of the cat qubit mode already considered in the main text. As far as g2,h
is fixed below the working point shown in Figure 2.8, the induced leakage is
compensated by the two-photon dissipation. Therefore the exponential bit-flip
suppression is maintained even though the error probability is increased by a
constant factor. This is shown in the bottom plot of Figure 2.14(c). There
only remains an indirect effect on phase-flips due to larger leakage during the
gate operation.

Finally, the fourth effect, investigated in Figure 2.14(d), is pure dephasing
of the buffer mode, corresponding to a Lindbladian κb,hD[σ−] + κϕ,hD[σz].
For the values investigated in this figure, i.e. up to κϕ,h/g2,h = 0.01, pure
dephasing on the buffer mode has no impact on either phase-flip or bit-flip
errors during Z gates.

2.5.3 Circuit Hamiltonian derivation

In this section, we derive the Hamiltonian for the superconducting circuit
implementation shown in (2.45). Its equivalent circuit is shown in Figure 2.15
with an ATS acting as a high-Q buffer, capacitively coupled to the cat qubit
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Figure 2.15: Equivalent circuit diagram of the experimental proposal of
Figure 2.13. The cat qubit LC resonator (blue) is capacitively coupled to
the ATS circuit element (red), itself capacitively coupled to the low-Q buffer
LC resonator (green). The high-Q buffer is the self-mode of the ATS, made
of two Josephson junctions (nonlinear inductance represented by a cross &
associated capacitor) and an inductance in parallel, and threaded with two
flux biases φext,1 and φext,2. Not shown here: the low-Q buffer resonator is
capacitively coupled to a dissipative bath.

resonator and to the buffer resonator. The full Hamiltonian of this circuit
reads

H = ωa,0a
†a+ωh,0b

†
hbh +ωl,0b

†
lbl −EJ,1 cos(φ+ φext,1)−EJ,2 cos(φ− φext,2)

(2.49)
where a, bh and bl are slightly hybridized modes corresponding to the cat
qubit, high-Q buffer and low-Q buffer modes respectively, with corresponding
mode frequencies ωa,0, ωh,0 and ωl,0. EJ,1 and EJ,2 denote the junction energies
of the ATS, and φext,1 and φext,2 are the tunable flux biases in each ATS loop
as shown in Figure 2.15. The total phase φ across the ATS inductance is
given by φ = φa(a

† + a) + φh(b
†
h + bh) + φl(b

†
l + bl) where φa, φh and φl are

the participation ratios of the three modes, deduced from Kirchhoff’s laws and
the modes hybridization. The corresponding Hamiltonian can be rewritten as

H = ωa,0a
†a+ ωh,0b

†
hbh + ωl,0b

†
lbl

− 2EJ [cos(φΣ) cos(φ+ φ∆) + η sin(φΣ) sin(φ+ φ∆)]
(2.50)

where φΣ = (φext,1+φext,2)/2 and φ∆ = (φext,1−φext,2)/2 are the average and
difference of the two flux biases, EJ = (EJ,1 + EJ,2)/2 is the average junction
energy, and η = (EJ,1 − EJ,2)/(EJ,1 + EJ,2) is the junction asymmetry. Our
working point considers the ATS to be DC biased at the flux bias point defined
by

φΣ =
π

2
+ ε(t), φ∆ =

π

2
(2.51)
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with two additional RF fluxes applied on φΣ such that ε(t) = ε1 cos(ωp,1t) +
ε2 cos(ωp,2t). This bias point is chosen such that only odd powers of φ are
turned on for η = 0. The Hamiltonian now reads

H = ωa,0a
†a+ ωh,0b

†
hbh + ωl,0b

†
lbl − 2EJ

[
ε(t) sin(φ) + η cos(φ)

]
(2.52)

where we have assumed |ε(t)| ≪ 1. By expanding the cosine and sine terms
up to fourth order and absorbing the quadratic terms of the cosine in the
mode frequencies, the Hamiltonian becomes

H = ωaa
†a+ ωhb

†
hbh + ωlb

†
lbl − 2EJ

[
ε(t)φ− ε(t)φ3/6 + ηφ4/24

]
(2.53)

We can move to a displaced frame for the three modes to absorb the linear
term −2EJε(t)φ in the above Hamiltonian. Assuming single-photon decay
rates κa, κb,h and κb,l, the displacements are given by

ξx =
∑
k=1,2

−iEJφxεk
i(ωx − ωp,k) + κx/2

e−iωp,kt, x = a, h, l. (2.54)

The Hamiltonian in the displaced frame is given by

H̃ = ωaa
†a+ ωhb

†
hbh + ωlb

†
lbl + EJ

[
ε(t)φ̃3/3− ηφ̃4/12

]
. (2.55)

Here,

φ̃ = φa(a
† + a) + φh(b

†
h + bh) + φl(b

†
l + bl)

+ s1e
−iωp,1t + s∗1e

iωp,1t + s2e
−iωp,2t + s∗2e

iωp,2t
(2.56)

with
sk =

∑
x=a,h,l

iEJεkφ
2
x

i(ωx − ωp,k) + κx/2
, k = 1, 2. (2.57)

Finally, we consider the addition of resonant microwave drives on the buffer
modes with amplitudes ζh(t) = ζhe

−iωht and ζl(t) = ζle
−iωlt. The Hamiltonian

becomes

H̃ = ωaa
†a+ ωhb

†
hbh + ωlb

†
lbl + [ζh(t)b

†
h + h.c.] + [ζl(t)b

†
l + h.c.]

+ EJ

[
ε(t)φ̃3/3− ηφ̃4/12

] (2.58)

We set the pumping frequencies at ωp,1 = 2ω̃a− ω̃h and ωp,2 = 2ω̃a− ω̃l where
ω̃x are AC stark shifted frequencies, i.e. including the effects of powers of φ̃
on the actual mode frequencies. By going to the rotating frame of each mode,
and performing a RWA, we obtain the effective Hamiltonian

H̃ = g2,h(a
2 − α2)b†h + g2,l(a

2 − α2)b†l + h.c.

− χhh(b
†
h)

2b2h − χll(b
†
l )

2b2l − χaa(a
†)2a2

− χaha
†ab†hbh − χala

†ab†lbl − χlhb
†
lblb

†
hbh

(2.59)
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Figure 2.16: Bit-flip error probability of an idling qubit for a combined TPE
and dissipative confinement with single-photon loss κ1 = 10−3 and thermal
noise nth = 10−2. The left panel shows numerical simulations without the
TPE Hamiltonian and with a single low-Q buffer mode, while the right panel
shows numerical simulations with the TPE Hamiltonian and two buffer modes.
In both panels, colored lines show different values of g2,l and κb,l but at fixed
effective two-photon dissipation, κ2,eff = 4g22,l/κb,l, computed using the adia-
batic elimination formula valid at g2,l ≪ κb,l. Black diamonds show reference
simulations with the low-Q buffer mode completely eliminated according to
this adiabatic elimination formula, thus actually corresponding to two-photon
dissipation κ2D[a2 − α2]. The black line is a numerical fit of the black dia-
monds with exponential ratio exp(−2|α|2).

where the resonant drive amplitudes were set as ζh = −α2g2,h and ζl = −α2g2,l.
The various coupling strengths in this Hamiltonian are given by

g2,h = EJφ
2
aφh (ε1/2− ηs1)

g2,l = EJφ
2
aφl (ε2/2− ηs2)

χxx = ηEJφ
4
x/2

χxy = ηEJφ
2
xφ

2
y

(2.60)

with x, y = a, h, l and x ̸= y.
Assuming the Hamiltonian of Equation (2.59) with a strong single-photon

dissipation on the low-Q buffer mode, κb,lD[bl], it is possible to adiabatically
eliminate the buffer mode to obtain an effective two-photon dissipation of
amplitude κ2,eff = 4g22,l/κb,l in the limit of κb,l ≫ g2,l. Figure 2.16 show-
cases a numerical simulation to validate this adiabatic elimination. On the
left panel, the usual dissipative cat qubit situation [Lescanne et al. 2020b,
Touzard et al. 2018] with a single buffer mode is shown. On the right panel,
a dissipative cat qubit with the additional TPE confinement at g2,h/κ2 = 10,
and thus with two buffer modes, is shown. In both panels, a reference simu-
lation is shown in black where the Hamiltonian coupling to the low-Q buffer
mode is replaced by the dissipation with κ2,eff resulting from the adiabatic
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elimination formula. Colored lines then show the results of the full system,
including the low-Q buffer mode, for increasing values of κb,l/g2,l at a fixed
effective two-photon dissipation rate κ2,eff . As can be seen, in both cases the
bit-flip error is efficiently suppressed, with a rate tending towards the adia-
batic elimination formula once κb,l/g2,l reaches values about 20 to 40.

2.6 Conclusion

Bosonic encoding and biased-noise qubits have been gaining a lot of atten-
tion for their promise of hardware-efficient fault-tolerance. Along these lines,
cat qubits have been investigated with a particular interest and following two
confinement approaches: first, a two-photon driven dissipative stabilization
scheme and second a two-photon driven Kerr Hamiltonian confinement. In
this chapter, we have proposed a new confinement design that benefits from
the advantages of both dissipative and Hamiltonian approaches. This design,
combining the previously known driven dissipative scheme with a Hamilto-
nian confinement using a TPE Hamiltonian, provides a robust exponential
suppression of bit-flip errors with the cat size together with enhanced gate
performances, both in speed and fidelity.

Furthermore, this proposal is implementable with only minor modifications
of known experimental designs of dissipative cat qubits. We expect that this
approach can further reduce the hardware overhead for fault-tolerence with
cat qubits. Additional mathematical analysis of these combined confinement
schemes and numerical studies of three-qubit Toffoli gates, which are essential
for universal quantum computation with repetition cat qubits, will be subject
of forthcoming research work.





Chapter 3

Designing high-fidelity Zeno gates

This chapter covers the work that was published in [Gautier et al. 2023b],
proposing shortcuts for Zeno gate designs of dissipative cat qubits.
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3.1 Introduction

The promise of quantum computing relies on the unpleasant predicament
that a quantum system should be freely controllable but also very long-
lived, two often conflicting requirements. Dissipative cat qubits are no
exception to this rule. Thanks to their autonomous bit-flip protection
and dynamical phase-flip protection once concatenated with a repetition
code [Guillaud & Mirrahimi 2019], they are long-lived qubits. However, their
controllability will likely be one of the main limitations towards achiev-
ing error correction below threshold [Shor 1996]. Indeed, current gate pro-
posals with cat qubits feature a poor scaling with the relevant experimen-
tal parameters that may limit their pratical use, and the few experimen-
tal implementations of such gates have yet to demonstrate high-fidelity
gates [Touzard et al. 2018, Réglade et al. 2023]. In this aim, several propos-
als have been put forward during the last two years to improve the fidelity
of cat-qubit gates — e.g. [Xu et al. 2022a, Xu et al. 2022b] or Chapter 2,
with respective benefits and feasibility strongly depending on the particular
experimental setup envisioned.

The present work pursues with these research efforts, proposing alterna-
tives whose performance is competitive at least in some contexts, and which
may sometimes be naturally combined with these other strategies. This chap-
ter thus introduce four new designs for Z(θ), CNOT and Toffoli gates on
dissipatively stabilized cat qubits to help mitigate the incoherent phase errors
induced by those gates.

To answer this limitation, our main approach is to reduce the logical in-
formation which the two-photon dissipation carries away to the environment
under Zeno driving and which induces phase-flip backaction. Our first two
designs maintain the same Zeno drives and interaction with the buffer mode
mediating two-photon dissipation, but they feed information back from the
buffer state to the cat-qubit system before it can leak out to the environment.
With this principle, we were able to improve gate fidelities by up to two orders
of magnitude with realistic experimental parameters. Our other two designs
instead modify the Zeno gate drive, to avoid pushing any information from
the cat qubit to the dissipative buffer in the first place. One solution, based on
locally flat Hamiltonians, promises a polynomial improvement in the scaling
of gate errors with the cat size. Our final design demonstrates exponentially
small Z(θ) gate errors with a tailored dissipation to an ancillary qubit. While
its generalization to CNOT gates is beyond the current state of the art, it
provides a new way to leverage dissipation for gate engineering.

This Chapter is organized as follows. We begin in Section 3.2 by pro-
viding a new perspective on the origin of gate errors using the buffer mode.
Section 3.3 gives a short summary of the different gate error mitigation de-
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signs introduced in this chapter, and each design is then detailed separately
in Section 3.4. Finally, Section 3.5 explores the experimental realization of
these designs and their main limitations. We conclude in Section 3.6.

3.2 Zeno gate errors

In Chapter 1 and then in Chapter 2, we reviewed the standard way of engi-
neering gates with dissipative cat qubits, based on the Zeno effect. By weakly
driving the cat qubit mode while monitoring it through a two-photon dissi-
pative process, one can navigate the computational space and engineer gates.
However, such gate designs induce gate errors that scale only linearly with the
relevant parameters, here the two-photon dissipation rate and the gate time.
In this section, we provide a new perspective on the origin of these gate errors
by considering the buffer mode into the derivation. This will provide intuition
for the following sections to find gate designs that can mitigate these large
gate errors.

Let us consider the full Hamiltonian engineered for Z(θ) gates in the pres-
ence of the buffer mode,

H = HAB +HZ . (3.1)

where HAB = g2(a
2−α2)b†+h.c. is a two-to-one photon exchange Hamiltonan

between memory and buffer, and HZ = εZa
†+ε∗Za a gate drive. Together with

the high damping rate of the buffer, the first term mediates the two-photon
dissipation while the second term drives the required gate. Let us move into
the SFB as introduced in [Chamberland et al. 2022] (see also Section 1.3.2 for
a short review). This change of basis reads

a → σz ⊗ (ã+ α) (3.2)

and effectively represents a displaced oscillator where the displacement is con-
ditional on σz, the Pauli operator corresponding to the cat qubit logical state.
This change of basis is non-orthonormal and approaches degeneracy at high
Fock states, but it is sufficiently close to a regular change of coordinates for
states close to |±α⟩, and thus adequate for our investigation of local errors in
the short time limit. Then, ã is a gauge mode that models a local oscillator
around the |±α⟩ coherent states; in particular, ã in vacuum is equivalent to
being perfectly inside the cat-qubit encoding space. With this definition, the
Hamiltonian (3.1) reads (α ∈ R)

H̃ = g2(ã
2 + 2αã)b† + εZσz(ã

† + α) + h.c. (3.3)

The ideal Hamiltonian that implements the Z(θ) rotation of the qubit (and
nothing else) now appears as the term (αεZσz + h.c.). In the following, we
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move into the rotating frame of this Pauli Hamiltonian to simplify the analysis.
In addition, in the limit of a small Zeno drive, the effective displacements on
the gauge mode ã and on the buffer mode b are small, such that we can neglect
the second-order term ã2b†+h.c.. The corresponding Hamiltonian thus reads

H̃ ′ ≈ 2αg2ãb
† + εZσzã

† + h.c. (3.4)

Writing the master equation with the Hamiltonian of (3.4) and in the Heisen-
berg picture [Breuer et al. 2007] for both ã and b yields a set of coupled
equations,

˙̃a = −2iαg2b− iεZσz (3.5a)

ḃ = −2iαg2ã− κbb/2 (3.5b)

Decoupling these equations gives the second-order differential equations

¨̃a+ 1
2
κb ˙̃a+ ν2ã = − i

2
κbεZσz − iε̇Zσz (3.6a)

b̈+ 1
2
κbḃ+ ν2b = −νεZσz (3.6b)

where ν ≡ 2αg2, and we have used that dσz/dt = 0 since σz commutes with
(3.4). Finally, making the inverse change of basis on the cat qubit mode, i.e.
σz ⊗ (ã+ α) → a yields

ä+ 1
2
κbȧ+ ν2a = ν2ασz − i

2
κbεZ − iε̇Z (3.7a)

b̈+ 1
2
κbḃ+ ν2b = −νεZσz (3.7b)

Both the cat qubit and buffer mode are thus described by a damped harmonic
oscillator equation with natural frequency ν and damping rate κb/2. These
oscillators are further driven out of equilibrium by the εZ drive.

On the cat qubit mode, we naturally find that equilibrium is given by
aeq = ασz when εZ = 0, which corresponds to the computational states
of cat qubits up to exponentially small corrections that were neglected by
introducing the SFB. We also find that, for εZ > 0, the mode is displaced
along the ⟨Im(a)⟩ quadrature independently of σz, as expected.

On the buffer mode, it is quite interesting to note that the right-hand side
term is proportional to σz, such that the buffer mode is displaced in opposite
directions depending on the computational state of the cat qubit mode. In
other words, the equilibrium position for the buffer mode is beq = −εZ/νσz

and more importantly, b ∝ σz at all times. Because the buffer mode is largely
damped, the environment obtains information about the state of the cat qubit
mode through this effect. As a consequence, measurement of the bit value by
the environment dissolves the information contained in the superposition of
these bit states, and thus induces phase errors. In fact, it is simple to re-derive
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Figure 3.1: (a) Cat qubit mode a stabilized by a two-to-one photon exchange
with buffer mode b, mediated by a nonlinear circuit element (middle). The
gate drive, by displacing the cat mode, induces a small splitting of the buffer
mode conditioned on the cat state. Information is then lost to the environment
through the high damping rate of the buffer, hence inducing incoherent gate
errors. (b) Average displacement of the buffer (color, left scale) and cat mode
(black, right scale) before, during and after a Zeno Z(π) gate of duration
T , with a cat mode initialized in |0L/1L⟩ ≈ |±α⟩ and buffer initialized in
vacuum. Markers show numerical data obtained from integration of the full
master equation. Lines show (3.7).

the well-known result of the Z(θ) gate non-adiabatic error rate by replacing
b with beq in the dissipator of (1.38) and integrating over the gate duration.
This yields

pZ = p
(0)
Z ≡ θ2

16|α|4T
κb
4g22

(3.8)

which is the same result as in [Chamberland et al. 2022] with κ2 ≡ 4g22/κb.
Figure 3.1(b) shows the average displacement of the buffer mode along

the ⟨Re(b)⟩ quadrature before, during, and after a Z(π) gate of duration T .
Depending on the initial state of the cat qubit mode, either |0L⟩ (blue) or
|1L⟩ (yellow), the buffer mode is displaced in one direction or the other. In
fact, we observe the dynamics of a damped oscillator with equilibrium position
beq = ±εZ/ν for 0 < t < T and beq = 0 for t > T , in excellent agreement with
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Table 3.1: Comparison of different designs of Z(θ) gates for dissipative cat
qubits. All designs but the last one can be generalized to two- and three-
qubit CNOT and Toffoli gates. For the second and last designs, σ+ denotes a
Pauli creation operator on some ancillary qubit. HAB and HZ are defined in
Equations (1.38) and (1.54) respectively, and aθ = sin(θ/2)a+ i cos(θ/2)α. In
the last column, pZ denotes the probability of gate errors over a single Z(π)
gate of duration T .

Hamiltonian H Dissipator D Gate Errors

Mirrahimi 2014,
Guillaud 2019 HAB +HZ κbD[b] p

(0)
Z ≡ π2

16|α|4T
κb
4g22

Chapter 2 HAB +HZ +HTPE with
HTPE ≡ g′2(a

2 − α2)σ+ + h.c.
κbD[b] pZ = 1

1 + (2g′2/κ2)
2p

(0)
Z

Section 3.4.1 HAB +HZ
κbD[b]

(photodetected)
pZ ≳ (1− η)p

(0)
Z

(detection efficiency η)

Section 3.4.2 HAB +HZ κabD[ab]
pZ = µ p

(0)
Z

with µ ≳ 0.02

Section 3.4.3
HAB +HZ,N with

HZ,N ∝∑N
n=0 cn(a+ a†)2n+1 κbD[b]

pZ = ν|α|−2Np
(0)
Z

with ν ∼ 1

Section 3.4.4 HAB
κbD[b]

κZD[aθσ+]
pZ = e−κZ |α|2T

our analysis based on the approximate model (3.7). The displacement of the
cat qubit mode is also shown in black and is independent of the initial state,
as expected.

This derivation is meant to provide intuition to the reader about the origin
of gate errors. With this intuition in mind, the following sections will introduce
multiple gate designs to reduce the errors induced by cat qubit Zeno dynamics,
beginning with a summary.

3.3 Summary of gate designs

With the analysis of the previous section in mind, we understand that the loss
of phase information during gates is due to the conditional displacement of
the buffer mode which is then measured by the environment. This is indeed
the only non-unitary channel, hence how quantum information can be lost.
Compared to a system with no ancillary buffer in which the information would
be directly lost to the environment, the delay provided by the buffer mode
can be exploited to reduce gate-induced phase errors without tampering with
the ongoing gate.
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In this chapter, we introduce two methods that rely on kicking back qubit
information that has been transferred into the buffer mode, and two methods
that rely on the reduction of information transfer to the buffer mode in the
first place. They are all summarized in Table 3.1 along with the regular Zeno-
based gate of [Mirrahimi et al. 2014] and the combined confinement method of
Chapter 2. Although the table only tackles these methods in the scope of the
Z(θ) gate, they can be generalized to multi-qubit gates and aim to represent
a wide range of ideas for the mitigation of dissipative cat qubit gate errors.
Furthermore, some of these ideas can in principle be combined to attain even
higher fidelities.

3.3.1 Buffer photodetection with classical feedback

In the first method, detailed in Section 3.4.1, the principle is to retrieve the in-
formation leaking out by directly measuring the field coming out of the buffer
mode, instead of letting it get lost to the environment. An appropriate feed-
back action can then restore this information back into the cat qubit system.
The measurement is a photon counter, free of bit value information contained
in the field quadratures. The feedback action corresponds to additional Pauli
Z gates performed either in software, or through a modification of the gate
drive amplitude and/or duration. Alternatively, one can pursue a heralded
gate. An immediate limitation of this technique is detector efficiency which
will directly limit the proportion of information loss which we can counter
with respect to (3.8). Despite this limitation, this method could become vi-
able with the rapid improvement in circuit-integrated photodetectors, and is
in any case instructive for the following design.

3.3.2 Cat-buffer autonomous feedback

A second method based on the buffer information is presented in Section 3.4.2.
The idea is again that feedback on the cat qubit photon-number parity is
applied after detection of a buffer mode photon. However, instead of actually
applying a measurement and action, this loop is now applied autonomously
thanks to a tailored dissipation operator. This tailored dissipation takes the
form D[ab] such that any time the buffer loses a photon to the environment
— and by doing so swaps the cat qubit parity, as we showed in Section 3.2
—, a second parity-switch is applied on the cat qubit through the loss of a
single cavity photon. With this autonomous feedback, “detection efficiency”
is in principle perfect and a parameter-independent improvement in fidelity
of about two orders of magnitude is numerically demonstrated. This design
can further be generalized to any multi-qubit CnX gate with no additional
multi-qubit interactions. The residual phase errors with this design are due
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to second-order effects that cause imperfections in the applied feedback, and
thermal noise in the buffer.

3.3.3 Locally flat Hamiltonian

This third method is the first of a second strategy which consists in minimiz-
ing the amount of computational information transferred from the memory
to the buffer mode by the gate process. Doing so, the environment cannot in
turn receive information by measuring buffer output photons, so qubit coher-
ence is preserved. This gate design is presented in Section 3.4.3. It introduces
drive Hamiltonians of the form H = f(x) where x = a + a† is the real field
quadrature operator on the cat qubit mode, and such that f(x) describes a
quasi-potential that is locally flat around x = ±α but with different mean
values f(α) ̸= f(−α). The first condition ensures that the drive Hamiltonian
is approximately constant over the x-eigenstates spanned by each computa-
tional state |±α⟩, such that it induces almost no dynamics on them and they
stay inside the codespace throughout the gate. The second condition ensures
that each computational state picks up a different phase, hence a rotation
about the Z axis. Such Hamiltonians can be engineered with various orders
of odd polynomials in x, and, in the limit of a polynomial of infinite order,
f(x) would essentially become the sign function; then exponentially low gate
errors in |α|2 are demonstrated, only limited by the finite overlap of coherent
states |α⟩ and |−α⟩.

3.3.4 Discrete jump

Section 3.4.4 introduces a cat qubit gate design based on a tailored ‘discrete’
dissipation. Concretely, through interaction with an ancillary qubit mode,
exactly a single photon is subtracted from the system and the cat state is
mapped onto the same state with a gate applied, and so in a discrete manner.
Furthermore, for the specific angle θ = π, the system stays exactly within its
codespace during gates, so no information is transmitted to the environment,
opening the door to exponentially low gate errors.

The main limitation of this gate design lies in the introduced ancillary
qubit. Indeed, ancillary qubit relaxation would result in additional Z(θ) ro-
tations for Z(θ) gates, or additional Z(π) rotations for CZ gates. In the case
of CNOT or Toffoli gates, it would induce X gate errors, thus killing the error
bias. While the dissipator to be engineered for the Z(θ) and CZ gates is fea-
sible with current state of the art experiments, a viable way to engineer the
required CNOT and Toffoli dissipators thus remains to be found.
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3.3.5 Combined dissipation and two-photon exchange
Hamiltonian

Finally, the combined two-photon exchange Hamiltonian and two-photon dis-
sipation method introduced in Chapter 2 can also yield high-fidelity gates.
Indeed, thanks to the additional two-photon exchange Hamiltonian confine-
ment, the effective displacement of the cat qubit mode during a gate is greatly
reduced such that less information is transmitted to the buffer mode and thus
to the environment. This provides a very simple design for gate error mitiga-
tion, especially considering the similarity between this Hamiltonian and the
one required for the usual dissipative confinement. This design is not further
treated in this chapter, and we refer to Chapter 2 for more details.

3.3.6 Combining designs

As a final remark to this summary, let us note that the gate designs introduced
here can be combined together to further improve gate fidelities. As an exam-
ple, it could be highly favorable to engineer a dissipative cat qubit with the
correlated dissipator in D[ab], together with a locally flat Hamiltonian to drive
gates, plus possibly an optimized activation profile like in [Xu et al. 2022a].
We however treat each design separately for clarity.

3.4 Gate designs

In this section, we go over each gate design introduced in this chapter individ-
ually, and provide details on their actual implementations, performance and
possible limitations.

3.4.1 Buffer photodetection with classical feedback

3.4.1.1 Design principle

Consider the model of (1.38) with a photodetector measuring the output field
of the buffer mode. It is governed by a stochastic master equation (SME) that
reads [Steck 2007]

dρ = −i [HAB +HZ ,ρ] dt+ κbDη[b]ρ dt+ J [b]ρ dNη (3.9)

where HAB denotes two-photon exchange between cat and buffer modes, HZ

the drive Hamiltonian,

Dη[b]ρ = D[b]ρ− η(bρb† − ⟨b†b⟩ρ) (3.10)
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is a corrected dissipation that accounts for the backaction of no-detection
events, and

J [b]ρ =
bρb†

⟨b†b⟩ − ρ (3.11)

is a stochastic jump process that accounts for detection events. Here, η ∈ [0, 1]
is the detector efficiency and dNη denotes a stochastic counting process such
that it is unity with probability ⟨dNη⟩ = ηκb⟨b†b⟩dt and zero otherwise. Like
the non-stochastic master equation, the SME of (3.9) features the cat qubit
codespace with the buffer in vacuum as its only subspace of steady states. If
the system steers away from these steady states — a process otherwise known
as ‘codespace leakage’ which is in particular induced during gates — then the
buffer mode will get populated through the two-photon exchange interaction
and it will output photons to the detector through its large damping rate.
During this process, the detector may click, depending on the average buffer
mode population and on detection efficiency.

An alternate explanation to this process is found from the viewpoint of
four-wave mixing, as represented in Figure 3.2(a). Indeed, during the dynam-
ics, it is possible for 1 photon of the gate drive and 1 photon of the cavity
(both at frequency ωa) to be converted into 1 photon of the buffer (at fre-
quency ωb) and 1 photon of the microwave pump (at frequency 2ωa − ωb).
Since this buffer photon is then emitted to the environment, the cat qubit
cavity is effectively subject to single-photon dissipation events, thus inducing
exact parity swaps on the memory.

During a Z(θ) gate, we thus have the following situation. First, if no buffer
photons are detected during the process, the system follows the dynamics of
the no-jump deterministic equation, i.e. (3.9) with dNη = 0. During the gate,
modes a and b get entangled, but after the gate, b asymptotically relaxes back
to vacuum under the no-detection backaction. The cat qubit then gets back
to a pure state in which its phase information has been perfectly preserved
(in addition to the bit value, which is exponentially protected).

Alternatively, one or several buffer photons can be detected during the
process. This time, the system also follows the no-detection dynamics, up
until the first detection event, at which point it is projected according to
ρ → bρb†. This corresponds to a phase jump of approximately π, with
the exact angle depending on jump time and gate parameters. This can
be roughly understood by recalling the analysis of Section 3.2, where for an
approximate model and in absence of photodetector, we observed that b(t) in
the Heisenberg picture is proportional to σz. After a detection-induced jump,
we can thus perform classical feedback on the qubit to correct for this π phase
shift, hence improving gate fidelities.
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Figure 3.2: (a) Four-wave mixing process showing single cavity photons
converted upwards into buffer photons when the gate drive is on. They are
then measured by a photodetector on the buffer output. (b) Rabi oscillations
with a photodetector on the buffer mode output. The system is initialized in
|+⟩L ⊗ |0⟩ and a constant single-photon drive (1.54) is turned on at t = 0.
Parity of the cat qubit mode is monitored against time for η = 0 (no detector)
and η = 1 (perfect detector) both for a no-jump trajectory and a single-jump
trajectory. In this numerical simulation, ΩZ ≡ 4αεZ = π/g2, κb = 8g2 and
|α|2 = 8. (c) Total probability of at least one jump to occur during a Z(π)
gate, for |α|2 = 8.

3.4.1.2 Measurement strategy

The choice of a photodetector on b — instead of e.g. homodyne or heterodyne
detection — is motivated as follows. If η = 1, then no information is lost
to the environment and the combined qubit-buffer state remains pure at all
times, such that the final cat-qubit state is pure. However, this does not
automatically imply that we would be able to perfectly restore the qubit state
before measurement; indeed, like in a standard perfect measurement, if the
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detections contain information about the qubit state, then the complementary
qubit information is scrambled by back-action. According to the analysis of
Section 3.2, the buffer real quadrature contains information about the qubit
being in |0L⟩ or |1L⟩, and thus measuring this quadrature would necessarily
induce qubit phase decoherence. Therefore, we choose to measure the energy
(photon number) of the buffer, which erases this qubit logical information
from detection results and hence should imply preservation of the qubit phase
(and bit value) for η = 1. In other words, by measuring the photon number,
we prevent that the environment would induce detrimental backaction due to
measuring the real quadrature of the buffer.

This picture is in fact exact. Both the Hamiltonian HAB + HZ and the
dissipation in D[b] commute with a joint x-axis conjugation of both phase
spaces. On the output channel b this conjugation involves a minus sign,
which a quadrature measurement could in principle detect, but when mea-
suring b†b this sign strictly disappears from the equations. Then the output
signal contains zero information about the logical bit value of the cat qubit;
hence, for η = 1, the phase information of the cat qubit must be perfectly
preserved. More details on this invariance of the master equation under joint
phase conjugation can be found in Appendix A.

3.4.1.3 Jump and no-jump trajectories

Before discussing the full performance of the design with classical feedback,
we examine jump and no-jump trajectories of the scheme separately.

Figure 3.2(a) shows a numerical simulation of Z-axis Rabi oscillations both
for a zero-photon-detected trajectory (solid blue) and for a single-photon-
detected trajectory (dashed blue), as well as for the standard Zeno gate
(black). To evaluate the qubit σx expectation value when the system is not
exactly in codespace, we take the photon-number parity of mode a. For the
standard Zeno design, gate errors accumulate over time as shown by the de-
creasing amplitude of oscillations. For the photodetection design however, the
qubit phase converges to an indeterminacy of order 10−3 (not visible) — re-
flecting the steady state entanglement of a and b modes during gate operation
(see Figure 3.1(b)) —, and then keeps oscillating without loss. The single-
jump trajectory clearly shows a full dephasing of angle ≃ π after the detection
event at a random time t = tJ , and further keeps oscillating without phase
loss. Figure 3.2(b) shows the probability that a detection event occurs during
a Z(π) gate, as a function of gate time and assuming an ideal photodetector.
This jump probability is evaluated as pJ = 1 − exp

(
−
∫
⟨dNη⟩(t)

)
. The low

jump probability ensures that trajectories with more than 2 or 3 detection
events will be extremely rare.

The perfect preservation of cat qubit phase by gate operation holds after
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Figure 3.3: (a) Time-evolution of the parity during a Z(π) gate with an ideal
photodetector on the buffer mode output (η = 1) and without (η = 0). Only
the no-detection trajectory is shown. The system is initialized in |+⟩L⊗|0⟩ and
a single-photon drive (1.54) is on for 0 < t < T . For t > T , the buffer mode
reconverges to vacuum as it disentangles from the cat qubit mode. The dashed
gray horizontal line shows (3.8). In this numerical simulation, T = 4/g2,
κb = 8g2 and |α|2 = 8. (b) Input angle θin = 4α

∫
εZdt, such that an exact

Z(π) gate is produced after infinite-time reconvergence to the buffer mode
vacuum.

full disentanglement of the memory and buffer modes, which includes a re-
convergence phase to the cat-qubit codespace after the gate drive has been
turned off while still monitoring b with the photodetector. This is illustrated
on Figure 3.3(a), for two time-dependent shapes of single-photon drives. For
t ∈ [0, T ] i.e. while the gate drive is on, the build-up of a π-angle Rabi oscil-
lation is observed, with better phase precision in presence of a photodetector
(η = 1, blue) than without detector (η = 0, black). Also, as already observed
in [Xu et al. 2022a], the gaussian-like time-dependent drive offers significantly
better performance because the system mode is closer to its drive-less steady
state at the end of the gate. For t > T , the single-photon drive is turned
off and the reconvergence begins. In absence of a photodetector, the qubit
phase remains perfectly constant during reconvergence since photon-number
parity is conserved by the two-photon dissipation dynamics. This is shown
on Figure 3.3(a) for the black curves. In contrast, when keeping the photode-
tector on the b mode for t > T , the SME does not preserve photon-number
parity due to the non-linear backaction terms featured in (3.11), and there-
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fore it is indeed possible to further improve the phase precision as the modes
progressively disentangle. The oscillations observed during this reconvergence
are due to the damped harmonic oscillator behavior of the mode, as shown in
(3.7b).

For η = 1, in principle there is no limit to phase precision after full disen-
tanglement. To check this, we have adjusted the drive amplitude numerically
to perform an ideal Z(π) gate at t → ∞, as shown in Figure 3.3(a). Then,
we have checked that the same drive amplitude indeed performs rotations of
the same angle whichever the initial cat qubit state. Figure 3.3(b) shows the
typical small correction to be applied on the drive amplitude for trajectories
without measurement detections.

3.4.1.4 Design performance

We now describe the performance of the full design with buffer mode pho-
todetection and classical feedback. To quantify this, we simulate the following
master equation,

dρ = −i [HAB +HZ ,ρ] dt+ κbDη[b]ρ dt+ J [Z(π)b]ρ dNη (3.12)

which is the same as (3.9) but with a jump operator in Z(π)b that indicates
a Pauli correction on the memory mode for every buffer photon detected.
Note that this stochastic master equation does not correspond to any phys-
ical model. We only introduce it to explain and quantify the idea behind
the design. The actual feedback should be applied separately from the pho-
todetection, for instance in software before any non-Clifford gate or with a
subsequent Z(kπ) gate where k is the number of detected photons. Alterna-
tively, erasure errors can be included in the model, in which case qubits with
at least one buffer photon detected during gates are discarded. Hence, with
this plethora of possible feedback strategies, we limit our study to (3.12).

The Z(π) gate performance achieved after a finite time with this design
is shown on Figure 3.4(a). The curves result from an average over several
realizations for which the photodetector may have clicked at different times,
and the drive is optimized for the zero-detection trajectory to achieve an ideal
gate after full reconvergence to the codespace. For this feedback scheme, the
gate fidelity is limited by finite detection efficiency as shown by the linear
scaling of dashed blue lines that correspond to η = 0.5 and η = 0.9. For the
ideal photodetector η = 1, gate fidelities scale with a high-order polynomial
in the gate time. In principle, towards ultimate precision, one could perform
an ideal feedback of angle ϕ(tJ) ≈ π that depends on the exact jump time,
and obtain an error-less gate. This is discussed further in Section 3.4.1.6.

Generalization of the design to multi-qubit CNOT and Toffoli gates is quite
straightforward. Considering only the simpler scheme of [Gautier et al. 2022]
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Figure 3.4: Phase errors of Z(π) and CNOT gates for the standard Zeno
design (η = 0, black) and with a photodetector on the buffer mode output
of the cat qubits (blue). The figure shows an average over every possible
stochastic trajectory for the photodetection design of (3.12). Gate drives
are Hamiltonians (1.54) and (1.58) with gaussian time-dependence. Dashed
gray lines show analytical gate errors [Chamberland et al. 2022]. In these
numerical simulations, κb = 8g2 and |α|2 = 8.

for which target mode stabilization is turned off during the gate process, pho-
todetection should be performed on the buffer mode output of the control
qubit(s) only. The numerical performance of this design for the CNOT gate is
shown on Figure 3.4(b). Here, feedback is also assumed to be perfectly applied
following every buffer mode photodetection, according to (3.12). Similarly to
the single-qubit gate, we find several orders of magnitude fidelity improvement
in the ideal photodetector case, and otherwise a fidelity improvement limited
by detection efficiency. In the next section, we discuss non-ideal photodetec-
tors in more details.

3.4.1.5 Non-ideal photodetector

A realistic photodetector is never ideal and features a finite detection effi-
ciency η. In this case, only part of the information lost to the environment is
retrieved, and the resulting gate features dynamics in between the two regimes
η = 0 and η = 1. A lower bound on the error is then given by

pZ ≳ (1− η) p
(0)
Z , (3.13)

where p(0)Z is the phase error of the regular Zeno gate, for instance as given by
(3.8) for the Z(θ) gate. Indeed, a fraction (1−η) of the state would behave as in
the absence of a photodetector. We denote this as approximate because, when
the photodetector does click, we can herald a successful detection trajectory
if such heralding is compatible with the rest of the architecture.
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without reconvergence (Tc = 0). Markers show numerical integration of the
SME with classical feedback. Solid lines show (3.13), with a linear scaling
with 1− η. In this numerical simulation, κb = 8g2.

Figure 3.5 shows the numerical scaling of phase errors of a Z(π) gate
against the detection inefficiency 1 − η in log-log scale. We indeed find a
linear scaling (+1 slope in log scale) with the amount of information lost to
the environment according to (3.13), that eventually saturates for large enough
detection efficiencies. This saturation results from the imperfect reconvergence
to the codespace, as previously discussed.

In practice, a non-ideal photodetector does not only feature a non-unity
detection efficiency, it may also have a finite dark count rate (the detector
clicks without any photon measured) and a finite uncertainty on the detec-
tion time. The former would result in the erroneous application of a π-angle
feedback at the dark count rate similar to thermal photons in the buffer mode
(see Section 3.5.2). The latter has no impact on the design fidelity as a
Z(π) correction gate is applied independently of the detection time. In any
case, both of these effects are widely negligible compared to detection inef-
ficiency, which even with state of the art photodetectors is typically in the
η = 0.1—0.5 range. With the rapid improvement in photodetector efficien-
cies [Albertinale et al. 2021, Dassonneville et al. 2020, Lescanne et al. 2020a],
we may however expect this gate design to become viable in the coming years
(see also Figure 3.14(a). The design can also inspire other feedback methods
in which feedback is hardware-efficient or made autonomously, such as the one
introduced in the following section.
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3.4.1.6 Ideal feedback action

In this section, we discuss the ideal feedback action to be applied assuming
a perfect photodetector with detection efficiency η = 1 and instantaneous
feedback. Such an ideal feedback can in principle yield error-less gates. Indeed,
if η = 1 and the measurement does not probe the computational state, then
no information is lost to the environment and the combined qubit-buffer state
remains pure at all times, such that the final cat-qubit state is pure. An
appropriate feedback action can thus retrieve the desired angle of rotation.

Figure 3.6 shows the profiles of optimal feedback angles π + δ(tJ) upon
photon detection, as a function of detection time tJ , for a targeted Z(π) gate.
The mean photon population of the buffer mode is also shown as a function of
time, which is proportional to the instantaneous photodetection probability
⟨dNη⟩. Note that close to t = T in the middle plot, the angle δ diverges to
negative values, but ⟨b†b⟩ ≪ 1 at this time such that it is excessively unlikely
to ever have to perform this feedback action.

To perform this classical feedback upon detection of buffer photons, mul-
tiple solutions exist. The first and most straightforward is to actually add
this Z(π + δ) gate to the actuation, which would occasionally increase the
gate time depending on the input gate angle θ and detection time tJ . For
instance, if a photon is detected at the beginning of a Z(0.9π) gate, then a
shorter Z(−0.1π+ δ) gate should be performed instead, while if it is detected



100 Chapter 3. Designing high-fidelity Zeno gates

towards the end then a longer Z(1.9π+ δ) gate would be realized. While this
happens only for photon-detected trajectories, and thus with low probability,
it causes unpredictable gate times.

As a second option, the feedback could adjust the final Z(θ) gate up to
an integer multiple of π (similarly, adjust the CNOT gate up to an integer
number of Z(π) on the control qubit). The remaining gate Z(nπ) is a Pauli
gate, which either a specific hardware operation can implement or the software
can keep track of by adapting remaining computer operations until the next
non-Clifford gate is reached.

For CNOT gates, the output of the target buffer mode should in principle
also be monitored due to the reconvergence phase in which the target mode
undergoes significant dynamics. Importantly, the effect of this monitoring —
whatever the detection results — is only on the phase of the control qubit.
Indeed, the bit degrees of freedom remain exponentially protected on both
qubits; and since no operator ever couples to the bit-value information of
the target qubit (unlike the control qubit, for which a + a† is sensitive to
the bit value), it means that its bit-value information can never leak out
in this perfectly monitored scheme, and hence no phase-blurring backaction
can happen on the target qubit. We have indeed verified numerically that,
for η = 1 and no buffer photons detected, an ideal CNOT gate is retrieved
after an infinite time reconvergence by adjusting a Z(δ) gate on the control
qubit with δ ≪ 1. A detection on the control qubit buffer output at time
tJ requires an additional Z(π + δ(tJ)) gate, as for the previously discussed
Z(θ) gate scheme. In contrast, a detection event on the output of the target
buffer mode still requires corrections of order δ only. This is consistent with
a first-order Heisenberg picture analysis as in Section 3.2, for which bC is
proportional to σz,C while bT does not carry any qubit information.

3.4.2 Cat-buffer autonomous feedback

3.4.2.1 Design principle

This second gate design, inspired by the previous one, introduces a correlated
dissipator to remove entropy from the system instead of the standard single-
photon dissipation on the buffer mode. The corresponding master equation
to be engineered on the cavity-buffer system then reads

dρ

dt
= −i [HAB +HZ ,ρ] + κabD[ab]ρ (3.14)

with the main addition of a two-mode dissipation operator that was recently
realized in [Gertler et al. 2023] in the context of pair-cat codes stabiliza-
tion [Albert et al. 2019]. The main idea behind this peculiar dissipation arises
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from the photodetector scheme of the previous section. When the cat-qubit
leaks out of its codespace under the gate drive, the buffer mode is populated
through the HAB interaction, then inducing an eventual phase-flip on the cav-
ity mode as explained in Section 3.2. The correlated dissipation thus ensures
that whenever the buffer mode loses a photon (hence inducing a Z(π) error on
the logical cat qubit), a direct photon loss on the cavity mode is also produced
thus switching the cat qubit parity a second time and correcting for the error
autonomously.

Mathematically, this can be understood using the
SFB [Chamberland et al. 2022] transformation as defined in (3.2), which
yields

κabD[ab] → κabD[σz(ã+ α)b]

= |α|2κabD[σzb] +O
(
|ã†ã|1/2

) (3.15)

where the second line approximation holds since |ã†ã| ≪ 1 in the limit of a
small amount of leakage. Keeping only the leading order term in (3.15), and
taking κb ≡ |α|2κab, it is possible to perform the same gate error derivation as
in Section 3.2. This yields the exact same resulting set of equations on a and
b, but with a different dissipation operator in σzb ∝ σ2

z = I where I is the
identity on the two-level cat qubit mode; i.e. the environment does not receive
any information about the qubit state, as required. We emphasize once again
that this derivation is only first-order and that non-linear effects have been
neglected, for instance with terms in ã2b† + h.c. that may eventually limit
gate performances.

To engineer the correlated dissipation (3.14), an ancillary low-Q reser-
voir mode r can be introduced into the setup [Gertler et al. 2023]. By
engineering four-wave mixing between those three modes and a classical
pump, it is then possible to enable Hamiltonian interaction of the form
gababr

† + g∗aba
†b†r. Together with a large reservoir damping of the form

κrD[r] and in the limit of κr ≫ gab, it is possible to eliminate the fast dynam-
ics of the reservoir mode. On the reduced system of the cat and buffer modes,
the required correlated dissipator is then obtained, with typical amplitude
κab = 4g2ab/κr [Azouit et al. 2017].

In the limit of κab|α|2 ≫ g2, it is further possible to eliminate the
fast dynamics of the buffer mode to obtain an effective single-mode mas-
ter equation on the cat qubit. Using the effective operator formalism
of [Reiter & Sørensen 2012] yields the following dynamics on the cat qubit
mode,

dρ

dt
=

4g22
κab

D
[
a(a†a)−1(a2 − α2)

]
ρ (3.16)

where (a†a)−1 is the pseudo-inverse of the photon number operator and de-
scribes the effective difference in dynamics undergone during transient buffer
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excitation. This master equation indeed describes a parity-switching stabi-
lization of the cat mode, but it differs from the master equation targeted
in [Xu et al. 2022b] which instead reads D[(c1a + c2a

†)(a2 − α2)] for non-
squeezed cat states, with appropriate coefficients c1/2. However, both describe
a similar dynamics and autonomous correction principle. More details on this
model reduction can be found in Section 3.4.2.5.

3.4.2.2 Parity-switching dynamics

This dissipation with D[ab] is activated more generally when the cat-qubit
leaks out of its codespace, triggering a reaction of its buffer. The effect will
be beneficial whenever the leakage source is associated to parity-switching.
For standard cat qubits, this is mainly the case for the user-induced Zeno
dynamics as just discussed (for Z(θ) gates, on the control qubit of CNOT
gates, or other similar gates). It can also occur by thermal excitation of the
cat mode, of the form D[a†]. In contrast, leakage that preserves the photon-
number parity would then induce phase errors by following the same process.
This is for instance true of pure dephasing, of the form D[a†a]. However,
the amplitude of such effects is often negligible compared to other sources of
phase errors such as gates and finite resonator lifetime.

The recent preprint of [Xu et al. 2022b] also explores how single-photon
losses, of the form D[a], can induce parity-switching leakage on a squeezed
cat qubit. Indeed, while the annihilation operator leaves the coherent states
constituting regular cats in place, it does induce leakage on squeezed coherent
states [Schlegel et al. 2022]. As such, similarly to [Xu et al. 2022b], the corre-
lated dissipator introduced in our work performs an autonomous correction of
single-photon annihilation on squeezed cats, to first order; a better correction
would be obtained with dissipation in D[S(a)b] where S(a) is the squeezed
annihilation operator, featuring the squeezed coherent state as an eigenstate.

One of the main limitations of such approaches stems from thermal noise
in the buffer mode, since any buffer excitation would decay by triggering a
phase flip on the cat qubit. This effect is further discussed in Section 3.5.2.

3.4.2.3 Design performance

Let us now focus on the performance of this gate design, starting with the
single-qubit Z(θ) gate. Figure 3.7 shows the errors induced by a Z(θ) gate for
the regular Zeno gate (black) and for the correlated dissipator design of (3.14)
(blue) for both phase-flip and bit-flip errors. Following our previous analysis,
the comparison between both designs is made at fixed κb = |α|2κab = 8g2 in
order to keep the same damping rate. Left-side plots show the scaling with
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Figure 3.7: Gate errors of a Z(π) gate with the autonomous feedback design
of (3.14) at κab/|α|2 = 8g2 (blue) and with the regular Zeno design at κb = 8g2
(black). Left: fixed cat size, |α|2 = 8. Right: fixed gate time, T = 10/g2.
Gate errors are evaluated at t = T or after full reconvergence to the steady
state (Tc = ∞). While the cat qubit is entangled with its buffer and leaks
out of codespace, the logical phase value is evaluated with photon-number
parity on a and the logical bit value is evaluated with two-photon dissipation
invariant, see Chapter 1.

the gate time, while the right-side is plotted against cat size. For phase-
flip errors, an improvement by a constant factor of about µ ≈ 0.02 is found,
independent of both gate time and cat size, and limited by second-order effects
as discussed previously. In the regime of short gate times, the gate drive is
large in amplitude, and so the buffer is largely entangled with the cat mode
at the end of the gate. For this reason, a reconvergence time is required to
reach the constant fidelity gain of µ. In other words, the buffer has not had
enough time to lose its excitations to the environment, and so the correlated
dissipator has not yet corrected for the coherent errors that occurred during
the gate.

The correlated dissipator of (3.14) can raise concerns about bit-flip errors
since it would, by itself, stabilize the vacuum state in both resonators. Hence,
the bottom plots of Figure 3.7 investigate this bit-flip error and shows that the
exponential scaling in |α|2 is preserved, although slightly degraded from that
of the regular Zeno gate. This is likely due to the additional leakage induced
by the correlated dissipator. Indeed, whenever the buffer mode is populated,
the cat mode is pushed towards its own vacuum state, at a rate proportional to
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Figure 3.8: Gate errors of a CNOT gate with the autonomous feedback
design of (3.14) at κab/|α|2 = 8g2 (blue) and with the regular Zeno design
at κb = 8g2 (black). Left: fixed cat size, |α|2 = 8. Right: fixed gate time,
T = 10/g2. Gate errors are evaluated at t = T or after full reconvergence to
the steady state (Tc = ∞). Dashed gray lines show analytical CNOT gate
errors [Chamberland et al. 2022].

the buffer population. When stopping operation before reconvergence (solid
blue curve), the bit-flip rate looks artificially reduced for very short gate times,
as the buffer had no time to dissipate yet.

3.4.2.4 Multi-qubit gates

For CNOT and Toffoli gates, the gate drive is parity-preserving on target
qubit. As explained for the buffer photodetection gate design, in principle
then detecting all buffer relaxations would induce a combination of phase cor-
rections on the control qubit; to first order however, this comes down to only
requiring the correlated dissipation on control qubits. Figure 3.8 investigates
the performance of such a setup for two-qubit CNOT gates. The correlated
dissipator of (3.14) is activated on the control qubit, and the drive Hamilto-
nian of (1.58) is switched on. Here, the performance is very similar to that of
the single-qubit Z(θ) gate, with a phase fidelity improvement of 1/µ ≈ 50 in
the best case scenario. This is obtained at large gate times when the drive is
small compared to the damping rate, εCX ≪ κab|α|2.

3.4.2.5 Adiabatic elimination of the buffer mode

In this section, we derive the result presented in Section 3.4.2.1 on the adia-
batic elimination of the buffer mode in the presence of a correlated dissipator.
The two-mode master equation is initially given by

dρ

dt
= −i [HAB,ρ] + κabD[ab]ρ. (3.17)
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This equation describes an exchange term between cat and buffer modes, as
well as a strong correlated dissipation. Here, the fast dynamics corresponds
to the deexcitation of the buffer mode thanks to the dissipation term, while
the slow dynamics is that of the exchange Hamiltonian. The goal is thus to
adiabatically eliminate the fast dynamics when the buffer is excited, and to
derive an effective single-mode equation for the A mode. Taking the notations
of [Reiter & Sørensen 2012], we have

V+ = g2(a
2 − α2)b†

V− = g∗2(a
†2 − α∗2)b

(3.18)

which are perturbative (de-)excitations of the system, L =
√
κabab is the

jump operator from excited to ground subspaces, and Hg = He = 0 are the
block diagonal Hamiltonians in the ground and excited subspaces. In addition,
the non-hermitian Hamiltonian in the excited subspace reads

HNH = − i

2
κaba

†ab†b . (3.19)

Therefore, the effective single-mode dynamics reads

dρ

dt
= −i[Heff ,ρ] +D[Leff ]ρ (3.20)

where Heff ∝ H−1
NH +H†−1

NH = 0, and

Leff = L (HNH)
−1 V+ =

2ig2√
κab

a(a†a)−1(a2 − α2) (3.21)

This describes a parity-switching jump operator with cat qubit steady states.
In the semi-classical limit, a(a†a)−1 ∼ α−1, such that the effective two-photon
dissipation rate is indeed given by κ2 ≡ 4g22/α

2κab.

3.4.3 Locally flat Hamiltonian

3.4.3.1 Intuition

Quantum states feature a dispersion in position and momentum in their phase-
space representation, with an equal variance in the case of coherent states. A
single-photon drive, such as the gate drive of (1.54), thus acts differently along
this dispersion and according to the specific position and momentum values
of the state. This induces a phase-space displacement that can be frozen by a
continuous measurement, such as the one of two-photon dissipation. This is
the so-called Zeno effect.
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From the wavefunction perspective, a coherent state is gaussian in po-
sition representation1 and, for a real coherent amplitude, reads ψ(x) ∝
exp[−(x− ⟨x⟩)2/2]. Since the Zeno drive of (1.54) reads HZ(x) = εZx
in this same representation, the time-evolution of the wavefunction under
HZ can be trivially obtained as after some time t, the wavefunction reads
ψ(x, t) ∝ exp[−ixεZt]ψ(x). This corresponds to a position-dependent phase
shift, and therefore a displacement along the momentum axis p. However,
two-photon dissipation prevents this displacement, and only the average phase
shift exp[−i⟨x⟩εZt] remains, thus driving a cat qubit Z(θ) gate together with a
logical phase blurring reflecting the variance of exp[−ixεZt] over each coherent
state.

From this viewpoint, one way to improve the precision of the Z(θ) gate
is to use a drive Hamiltonian with little dispersion over each coherent state.
Moreover, this property should be robust to all effects which the cat-qubit
is meant to cover, i.e. most prominently local displacements in phase space.
Conversely, such a Hamiltonian would induce almost no displacement of the
coherent states, nor deformation of any kind. Hence the phase gate could
be implemented without relying on two-photon dissipation, and the evolution
can be purely unitary which is another way to see that the gate would induce
no phase losses.

3.4.3.2 Design principle

In this sense, an ideal2 drive Hamiltonian for single-qubit Z(θ) gates reads

HZ,∞ ≡ εZsign(x) (3.22)

where sign denotes the sign function and x = a+a†. This Hamiltonian yields
a global phase difference for each half-plane of phase space, and thus engineers
the required gate without any phase loss while being robust to any local error
— e.g. small displacements or distortions of cat states. It is represented in
thin black lines on Figure 3.9(a), together with the position representation of
a superposition cat state in the background. Figure 3.9(b) and Figure 3.9(c)
show the phase errors induced by such a single-qubit Z(π) gate with the
Hamiltonian of (3.22) in black lines, both for varying gate time (left) and
varying cat size (right). We indeed find that this Hamiltonian provides phase
errors that scale exponentially in the cat size, and that are drastically smaller
than with the regular Zeno Hamiltonian of (1.54), represented in yellow lines.

1Here we use the mathematical equivalence with a mechanical harmonic oscillator, to
call position x and momentum p the real and imaginary quadratures of the electromagnetic
mode.

2This drive Hamiltonian is ideal up to exponentially small corrections, due to the or-
thonormalization of the computational basis — two coherent states are never exactly or-
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Figure 3.9: (a) Position distribution of locally flat drive Hamiltonians of
(3.22) and (3.23) that minimize the variance over the quantum fluctuations
of cat states. (b, c) Gate phase errors for a Z(π) gate with a locally flat
drive Hamiltonian at (b) fixed cat size, |α|2 = 8, and (c) fixed gate time,
T = 10/g2. In these simulations, κb = 8g2. Lines show numerical fits of the
form pZ ∝ T−1|α|−2(2+N) (color) and pZ ∝ T−1 exp(−2|α|2) (black). Markers
show numerical data.

The Hamiltonian of (3.22) is highly non-linear in x and is therefore not
accessible for state-of-the-art superconducting circuits, nor for other quantum
computation platforms. It can however be approximated. Let us define the
set of Hamiltonians

HZ,N ≡ εZ

N∑
n=0

cnx
2n+1 (3.23)

for N ≥ 0, where cn are constants to be determined. These Hamiltonians
have an odd distribution in position space. With the proper definition of
cn, they can approximate the sign Hamiltonian of (3.22) locally around each
cat qubit coherent state, even if the approximation cannot be global. The
optimal cn constants should therefore minimize the gate errors induced by
the combination of two-photon dissipation and drive during a given gate.
Loosely speaking, these errors scale with the amount of non-flatness of the
drive Hamiltonian of (3.23) — a perfectly flat drive Hamiltonian would not

thogonal — or in other words, to the gaussian tails of coherent states that cross the x = 0
line in their phase space distributions.
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displace the state and would thus result in an error-free gate. Therefore, we
minimize the variance of the Hamiltonian across a single coherent state, given
by

VN ({cn}) ≡
1√
2π

∫ ∞

−∞
HZ,N(x)

2e−
1
2
(x−2α)2dx, (3.24)

under the constraint of a fixed angle of gate rotation,

1√
2π

∫ ∞

−∞
HZ,N(x)e

− 1
2
(x−2α)2dx =

θ

2T
(3.25)

where HZ,N(x) is the position distribution of Hamiltonian (3.23). This op-
timization problem is solved numerically using a Lagrange multiplier which
is differentiated analytically and then minimized through matrix inversion.
More details on this minimization can be found in Section 3.4.3.6.

Figure 3.9(a) shows the first five of these Hamiltonians in colored lines,
as determined by the previously-described minimization process. While the
N = 0 corresponds to the regular Zeno Hamiltonian of (1.54) with a linear
distribution, the N > 0 Hamiltonians show locally flat distributions around
both coherent states, with increasing flatness as N grows.

3.4.3.3 Results

The performance of these Hamiltonians is then evaluated for the single-qubit
Z(π) gate in Figure 3.9(b) and Figure 3.9(c), with the gate phase error as a
function of gate time and cat size respectively. The first plot shows a constant
improvement in phase fidelity of the gate as N increases, while the scaling with
the gate time stays linear. The second plot however shows an improved scaling
of phase errors with the cat size as N grows. Although we lack an analytical
derivation of phase errors for this set of drive Hamiltonians, a numerical fit
of the form pZ ∝ |α|−2(2+N) is performed as highlighted by the colored lines,
and matches the numerical simulations particularly well in the large cat size
limit. We attribute this scaling to the fact that, as both coherent states come
further apart in phase space, the variance minimization process can achieve
flatter distributions with each additional degree of freedom provided by the
increasing N .

3.4.3.4 Multi-qubit gates

Generalization of this single-qubit gate design to multi-qubit gates is quite
straightforward. Similarly as for the regular Zeno gate, the single-qubit drive
of (3.23) should be multiplied by a phase-space rotation on the target qubit,
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Figure 3.10: Gate-induced control phase errors for a CNOT gate with a
locally flat drive Hamiltonian as in (3.26). Left: fixed cat size, |α|2 = 8.
Right: fixed gate time T = 10/g2. Dissipative stabilization is acting on the
control qubit only, with κb = 8g2. Lines show numerical fits of the form
pZC

∝ T−1|α|−2N (color) and pZC
∝ T−1 exp(−2|α|2) (black). Markers show

numerical data.

which yields

HCX,N ≡ εCX

(
N∑

n=0

cnx
2n+1
C

)
⊗
(
a†
TaT − np

)
(3.26)

where xC = aC+a†
C , the aC/T are annihilation operators on control and target

qubits respectively, np is any even integer close to |α|2. Together with a static
two-photon dissipation on the control qubit, and optionally with the correlated
two-photon dissipation on the target qubit [Guillaud & Mirrahimi 2019], this
process achieves a CNOT gate.

Figure 3.10 investigates the phase errors induced by this two-qubit gate
design on the control qubit, both against gate time (left) and cat size (right).
Similar conclusions as for the single-qubit Z(θ) gate are reached. Gate errors
scale linearly with time, and numerically we fit these errors according to pZC

∝
|α|−2(1+N). The |α|2 difference in scaling compared to the single-qubit gate
is due to the target qubit term in the drive Hamiltonian (3.26). Indeed, the
operator a†

TaT −np induces a different (integer) number of Z(π) gates on the
control qubit for each Fock state of the target qubit, and the dispersion on
this number increases with α (see [Chamberland et al. 2022] for details).

3.4.3.5 Engineering with an ATS

Overall, the high-order Hamiltonians introduced in this section can greatly
improve the performance of dissipative cat qubit gates, at the cost of addi-
tional difficulties to engineer the required Hamiltonians. Let us however note
that high-order non-linearities are always present in superconducting circuits,
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even if they are often neglected due to their low amplitudes. Since the cn co-
efficients scale as cn ∝ |α|−2n, even moderate superconducting non-linearities
could be enough to engineer these Hamiltonians, and so especially in the large
cat size limit.

To illustrate this possibility, let us consider a realistic set of parameters
for the current experimental proposal of dissipative cat qubits based on the
ATS [Lescanne et al. 2020b, Berdou et al. 2022]. The ATS is a nonlinear cir-
cuit element made of a SQUID shunted by an inductance, which creates two
flux loops that are then threaded at 0 and π flux bias respectively. The ideal
Hamiltonian resulting from this setup reads

H = ωaa
†a+ ωbb

†b− 2EJε(t) sin
(
φa(a+ a†) + φb(b+ b†)

)
(3.27)

for an ATS coupled capacitively to both the cat qubit and buffer modes. Here,
the ε(t) term corresponds to a differential flux drive that can be frequency
tuned to make specific terms in the sine Hamiltonian resonant. Also, φa/b

denote the energy participation of each mode into the ATS. Typically, it is
desired to engineer φa as large as possible to create strong two-to-one photon
exchange rates, bearing in mind that a large φa also induces increased high-
order non-linear effects and increased single-photon losses by coupling to the
buffer transmission line.

For concreteness, let us assume that we want to implement a Z(π) gate as
in (3.23) with N = 2 (i.e. up to 5-th order Hamiltonian terms), with a gate
time T = 500 ns and for a cat of size |α|2 = 8. In this case, the global drive
Hamiltonian amplitude to be engineered reads εZ/2π = 1/8αT ≈ 88KHz, and
the polynomial coefficients of order 1, 3 and 5 read c0 ≈ 0.66, c1 ≈ −0.055
and c2 ≈ 0.0021 respectively. To make each of these coefficients match the
ATS Hamiltonian terms, the following identities should be met,

εZc0 = 2EJε0φa +O(φ3
a) (3.28a)

εZc1 = 2EJε1φ
3
a/3! +O(φ5

a) (3.28b)
εZc2 = 2EJε2φ

5
a/5! +O(φ7

a) (3.28c)

where εk ≪ 1 are the flux drives amplitudes such that ε(t) =∑
k εk cos((2k + 1)ωat). The right-hand side terms simply result from a Tay-

lor expansion of the sine up to 5-th order in φa/b ≪ 1. Further assum-
ing realistic experimental parameters of εk = 0.01, φa = 0.1 and EJ/2π =
90GHz [Lescanne et al. 2020b], we find that the right-hand side terms of
(3.28) are at least 10 times larger than required by the left-hand side side
terms. In other words, the achievable experimental parameters are 10 times
larger than the actual drive amplitudes to be engineered. This gives some
leeway to either implement even higher-order gate designs, or to release ex-
perimental constraints. In addition, for the same parameters, a factor of
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|α|4 = 64 improvement in gate fidelities can be expected, making the design
particularly attractive.

As a final remark, one may also seek to engineer such nonlinear terms
e.g. with time-dependent schemes and rotating wave approximation, or by
involving auxiliary systems. Although, such attempts should keep in mind the
utmost importance of preserving the noise bias throughout gate operation.

3.4.3.6 Optimal drive Hamiltonians

In Section 3.4.3.2, we define drive Hamiltonians with odd-power polynomials
of the position operator x. For cat qubit gate engineering, it is required that
these high-order drives are locally flat around both cat qubit coherent com-
ponents. Mathematically, this corresponds to a minimization of the variance
over one coherent state, defined by

VN ({cn}) ≡
1√
2π

∫ ∞

−∞
HZ,N(x)

2e−
1
2
(x−2α)2dx, (3.29)

under the constraint of a fixed mean value of the drive over this coherent state,
defined by

EN ({cn}) ≡
1√
2π

∫ ∞

−∞
HZ,N(x)e

− 1
2
(x−2α)2dx (3.30)

where HZ,N(x) = εZ
∑N

n=0 cnx
2n+1 is the potential to be optimized, with N+1

constants to be determined.
To perform this constrained minimization problem, we use Lagrange mul-

tipliers, and define the Lagrangian function as

LN ({cn}, λ) = VN ({cn})− λ (EN ({cn})− ε0) (3.31)

where λ is a Lagrange multiplier, and ε0 is the fixed mean value of EN . Thanks
to the simple form of (3.29) and (3.30), it is quite simple to find the global min-
imum of this Lagrangian function exactly. Differentiating (3.31) with respect
to all N + 2 variables yields

∂LN

∂ck
= 2

N∑
n=0

I2(n+k+1)cn − λI2k+1

∂LN

∂λ
= 1−

N∑
n=0

I2n+1cn

(3.32)

where we have defined

Ik ≡
1√
2π

∫ ∞

−∞
xke−

1
2
(x−2α)2dx . (3.33)
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Through an integration by parts, a recurrence relation can be obtained for Ik.
It reads

Ik+1 = 2αIk + kIk−1 , (3.34)

with I0(α) = 1 and I1(α) = 2α. As such, Ik is a k-th order polynomial in
α. Then, the global minimum of (3.31) is such that ∂LN/∂ck = 0 for all k,
and ∂LN/∂λ = 0. This corresponds to a linear set of equations in ck and λ,
and can therefore be rewritten as a problem of the form Ax = y where A is a
matrix of the Ik integrals, x = (c0, · · · , cN , λ) and y = (0, 0, · · · , 0,−1). Such
a system is easily solved numerically through matrix inversion, thus yielding
the solution of the initial problem.

3.4.4 Discrete jump

For this final design, we shift away from the Zeno effect that has for now
been the common basis for all physical cat gate implementations with a Z
component. This section introduces discrete gates that rely on a dissipative
coupling to an ancillary mode. We begin with single-qubit Z(θ) gates, and
generalize to CZ and CNOT gates afterwards.

3.4.4.1 Design principle

Consider the following master equation with the buffer mode adiabatically
eliminated,

dρ

dt
= κ2D[a2 − α2]ρ+ κZD[aθσ+]ρ (3.35)

where σ+ denotes the creation operator of an ancillary qubit mode, and

aθ = cos(θ/2)α + i sin(θ/2)a (3.36)

is a modified annihilation operator such that aπ = ia, and aθ |±α⟩ =
exp(±iθ/2) |±α⟩. From this identity, it is immediate to verify that project-
ing any cat qubit state with aθ achieves a Z(θ) rotation of this state, up
to exponentially small corrections in |α|2 to account for state normalization.
Furthermore, assuming that this ancillary mode is initialized in its ground
state |g⟩ and does not suffer from errors, the correlated dissipator in aθσ+

engineers the loss of exactly one aθ photon from the cat mode, after which
nothing more can happen with this dissipation. This can thus be seen as a
kind of photon blockade technique, which can further be made error-resilient
by, for instance, sending the additional photon to the meta-stable level of a
three-level Λ-system or into an infinite transmission line.

For the particular value θ = π, (3.35) induces the loss of exactly one a
photon. Since the logical |±L⟩ cat states feature even and odd photon-number
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parities respectively and the logical bit value is exponentially protected un-
der such losses thanks to the two-photon dissipation, this peculiar dissipator
results in a Pauli Z(π) gate on the cat qubit mode after infinite time evolution.

To estimate gate fidelities at finite times analytically, let us assume that
the complete system is initialized in ρ(0) = ρA,0 ⊗ |g⟩⟨g| with ρA,0 the initial
density matrix on the cat mode. The full system density matrix at time t can
then be separated along the diagonal matrix elements of the ancillary mode
according to ρ = ρg ⊗ |g⟩⟨g| + ρe ⊗ |e⟩⟨e| (the correlated dissipator of (3.35)
does not induce diagonal to off-diagonal transitions). Inserting this expression
in (3.35) thus yields

dρg

dt
= κ2D[a2 − α2]ρg −

1

2
κZ

{
a†
θaθ,ρg

}
(3.37a)

dρe

dt
= κ2D[a2 − α2]ρe + κZaθρga

†
θ (3.37b)

where ρg(0) = ρA,0 and ρe(0) = 0. Let us first discuss these coupled equations
without the {a†

θaθ, · } term of (3.37a), which will be shown to be the main
limitation of the design. As can be seen from the right-hand side term in
(3.37b), a transfer of population is made from |g⟩ to |e⟩ at rate κZ |α|2. Upon
this population transfer, a single aθ projection of the cat mode is performed
thanks to the aθρga

†
θ term, thus achieving the required gate. The minimal

gate-induced phase errors that can be achieved at finite time thus come down
to the fraction of states which have not undergone the jump from |g⟩ to |e⟩,
and read

pZ = exp
(
−|α|2κZt

)
(3.38)

where t is the time of evolution under the correlated dissipator. The phase
error would thus decrease exponentially with |α|2 and with the effective gate
time κZt.

Let us now consider the effect of the right-hand side term of (3.37a).
For the particular case θ = π, since aπ = ia and thus a†

πaπ = a†a,
this term remains a parity-preserving operator. Therefore, the evolution with
(3.37a) and (3.37b) perfectly preserves the phase of the logical qubit, up to
inducing the desired phase-flip gate from ρg to ρe. Besides this, the last term of
(3.37a) acts much like a dispersive dissipation D[a†a], inducing noisy rotation
of the cat-qubit out of its codespace. As long as ακZ ≪ 4|α|2κ2, this effect is
countered by the two-photon dissipation. Since the mean energies of even and
odd cats are exponentially close, the induced logical bit-flip is exponentially
small in |α|2. Up to an upper bound on κZ/α, the exponentially scaling phase
gate thus indeed holds.

For gate angles θ ̸= π, to consider the effect of the last term in (3.37a) we
write out

a†
θaθ = cos2 (θ/2) |α|2 + sin2 (θ/2)a†a− i sin(θ)(a† − a)/2. (3.39)
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The second line of this operator would induce parity-switching leakage from
the cat codespace, and therefore parity errors at a rate proportional to sin2(θ)
once brought back to the codespace by two-photon dissipation. The gate fi-
delities obtained from this scheme are still competitive with other gate designs,
and particularly in the limit of κZ ≪ κ2; see simulation results below. This
can be understood as the last term in (3.37a) has an effect roughly similar to
a Hamiltonian in i sin(θ)(a†−a). Hence, much like the analysis of Section 3.2,
it induces phase errors at a rate proportional to κ2Z/κ2, while the phase gate
happens at rate κZ .

3.4.4.2 Qutrit design

But in fact, we can do better and retrieve for any θ the same performance
as the θ = π case with a slightly more involved gate design. Consider the
following master equation,

dρ

dt
= κ2D[a2 − α2]ρ+ κZD[aθ |e⟩⟨g|]
+ κZD[aθ+π |f⟩⟨g|] + κ′ZD[aπ |e⟩⟨f |]

(3.40)

where |g⟩, |e⟩ and |f⟩ denote the three lowest energy levels of a qutrit, for
instance that of a transmon. This master equation now involves three popu-
lation transfers. The first is the same as in (3.35) and performs a Z(θ) gate
with a |g⟩ to |e⟩ transfer. The other two terms also describe a Z(θ) gate, but
made in two steps by first transferring to |f⟩ and then to |e⟩. The main goal
of adding these two terms is to cancel out parity-switching dynamics in the
|g⟩⟨g| subspace. Indeed, we now have that

a†
θaθ + a†

θ+πaθ+π ∝ cos2(θ/2)|α|2 + sin2(θ/2)a†a. (3.41)

In the |f⟩⟨f | subspace, the dynamics is also parity-preserving since a Z(π) gate
is performed. In other words, two paths have been constructed which both feed
into the same final state with the required Z rotation angle of θ, and whose
interference cancels the parity-switching term in (3.39). This scheme would
mainly be limited by qutrit characteristics, to be specified from experimental
implementation, and by the requirement that both paths should feature the
same rate of dissipation. In the following, we focus on the qubit-enabled Z(π)
gate, and also compare qubit- and qutrit-enabled Z(θ) gate designs.

3.4.4.3 Results

First, we investigate Z(π) gates. Figure 3.11 shows the phase errors induced
by this discrete Z(π) gate without any additional error processes on the cat
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or ancillary modes. On plot (a), phase errors are shown in semi-log scale as a
function of time for varying κZ/κ2, and fixed |α|2 = 4 or 8 in the master equa-
tion (3.35). For each value of κZ/κ2, both numerical simulations (solid) and
the minimal gate error formula of (3.38) (dashed) are shown. We retrieve that,
in the limit of κZ ≪ κ2, the expected formula fits numerical simulations per-
fectly and exponentially small gate errors are achieved. As κZ is increased, we
find a deviation from the optimal gate errors due to the competition with two-
photon dissipation, as the cat significantly leaves the codespace of intended
size |α|2 during the gate, getting drawn closer to the vacuum. An exponential
scaling with time is maintained, although with a smaller exponential rate, as
discussed in the previous subsection.

In Figure 3.11(c), we extract this exponential scaling rate from a linear fit
of γ(t) = − ln(pZ(t)), which yields γZ such that pZ(t) ∼ exp(−γZt) for suffi-
ciently large time values. This exponential rate is then plotted as a function
of κZ/κ2 for varying values of |α|2, and also compared to the ideal rate of
(3.38) given by γZ = |α|2κZ . Again, a transition from the optimal gate error
regime to a sub-optimal regime is found as κZ/κ2 is increased. In addition,
the point of transition scales as α, which would confirm the limit of validity
of the optimal regime given by ακZ ≪ 4|α|2κ2, or equivalently, κZ/κ2 ≪ 4α.

The effect of κZ/κ2 on bit-flip errors is investigated on Figure 3.12(b). In
this particular simulation, a relatively large gate time is fixed at T = 10/κ2 to
ensure the relevance of the study. We find that bit errors are indeed suppressed
exponentially according to pX ∝ exp(−2|α|2) for all values of κZ investigated,
thus preserving the error bias of cat qubits. However, as the effective cat size
is reduced by the κZ term of (3.37a) during the gate time, the prefactor of
this exponential increases linearly with κZ/κ2.

The main side-process limiting the fidelity of discrete gates would be an-
cillary mode lifetime. Since the gate is based on a transition from the ground
to the excited state of the ancilla that will serve as a photon blocker, any
unwanted transition between these two ancillary states will perturb the gate
process. Figure 3.12 investigates finite qubit lifetimes for the two-level ancil-
lary mode. Here, a discrete Z(π) gate is simulated numerically in the presence
of single-photon losses on the ancillary qubit of the form κqD[σ−], with varying
values of κq/κ2. An analytical fit is further shown for each numerical simu-
lation, which reads pZ(t) = κqt + exp(−|α|2κZt) and matches each line very
well. Indeed, ancillary mode losses induce unwanted |e⟩ → |g⟩ transitions at
a constant rate which are followed exponentially quickly by a |g⟩ → |e⟩ tran-
sition of the discrete gate correlated dissipator, inducing a second phase-flip
and hence cancelling the Z(π) gate. Thermal excitations of the ancillary mode
would have a similar effect by activating the |g⟩ → |e⟩ transition without a
cat mode parity switch, but in a cold environment such excitations have a
much smaller rate than qubit decay.
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Figure 3.11: (a,b) Gate-induced phase and bit errors of a discrete Z(π)
gate as in (3.35) for multiple values of κZ/κ2. Left: fixed cat size, |α|2 =
8. Right: fixed gate time, T = 10/κ2. In the left plot, dashed lines show
pZ = exp(−|α|2κZt). (c) Exponential rate γZ obtained from a linear fit of
γ(t) = − ln(pZ(t)) ∝ γZt. Dashed lines show γZ = |α|2κZ .

While this linear increase of phase errors may appear limiting for the
usefulness of the gate design, we remind that finite lifetime of the cat oscillator
also induce phase errors that scale linearly in time, according to pZ = |α|2κ1t
where κ1 is the rate of single-photon losses. Those losses are inevitable without
changing the overall cat qubit encoding. In contrast, for the ancilla, while a
transmon-like qubit would yield a simple gate implementation, the particular
gate design is compatible with more specific quantum systems. There is no
requirement for the protection of the |g⟩+ |e⟩ ↔ |g⟩−|e⟩ transition, since only
the diagonal elements are used by the gate design. As such, any ancilla system
that can robustly implement a single transition from |g⟩ to |e⟩ would suffice
for better gate protection. One can think of a three-level Λ system with two
meta-stable ground states [Kumar et al. 2016, Vepsäläinen et al. 2019], or a
system where the ancilla state would escape away (but never back to |g⟩) after
reaching |e⟩.

Figure 3.13 investigates other gate angles, θ ̸= π, both with the ancillary
two-level system design of (3.35) (left), and with the three-level system de-
sign of (3.40) that cancels out parity-switching in the |g⟩⟨g| subspace through
interference (right). In the first scheme, the phase errors first scale exponen-
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Figure 3.12: Gate-induced phase errors of a discrete Z(π) gate as in (3.35)
with additional single-photon losses of the form κqD[σ−] on the ancillary
qubit. Dashed lines show pZ = κqt + exp(−|α|2κZt). The cat size is fixed at
|α|2 = 8 and κZ/κ2 = 1.

tially until they hit a plateau corresponding to the parity-switching leakage of
(3.39). This plateau scales according to sin2(θ). With the qutrit scheme, the
exponential scaling of phase errors is also observed but for longer time scales,
thus confirming that parity-switching dynamics is canceled out. A plateau
is still hit after some time t but at lower phase errors than for the previous
two-level system scheme. This new limitation is explained by the fact that, if
the state is initially not coherent or with a different coherent state amplitude
than α, aθ does not map exactly onto a Z(θ) gate. Since the |g⟩⟨g| subspace
dynamics induces such incoherent fluctuations, gate fidelities are limited by
this effect. For sufficiently small values of κZ/κ2, the state however stays in-
side the codespace at all times and the exponential scaling of gate errors is
maintained for longer time scales.

3.4.4.4 Multi-qubit gates

Regarding multi-qubit gates, the single-qubit discrete method of (3.35) can
be generalized but not necessarily in a trivial manner. For CZ gates, consider
the two-qubit operator,

LCZ = −a1(a2 − α) + α(a2 + α) (3.42)

where a1/2 are the annihilation operators on each mode involved. This op-
erator is such that LCZ |±α⟩1 |α⟩2 = 4α |±α⟩1 |α⟩2 and LCZ |±α⟩1 |−α⟩2 =
±4α |±α⟩1 |α⟩2 which thus meets the CZ gate requirements. Note in partic-
ular the inter-exchangeability of a1 and a2 in this operator, which shows the
CZ gate symmetry. By engineering a dissipation of the form D[LCZσ+], an
exponentially scaling CZ(π) gate can be achieved. It would however suffer
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Figure 3.13: Gate-induced phase errors of a discrete Z(π/3), with the designs
of (3.35) using an ancillary two-level system (left) and of (3.40) using an
ancillary three-level system (right). Dashed lines show pZ = exp(−|α|2κZt).
Insets show the gate transitions between ancillary states for either design.

from the same issues as qubit-enabled Z(θ) gates due to the |g⟩⟨g| parity-
switching dynamics, since L†

CZLCZ contains parity-switching terms both in
a1 or a2. Similarly as for single-qubit Z(θ) rotations, it is possible to cancel
out these terms through interference by instead using four operators similar
to LCZ and a higher-dimensional ancillary system.

For CNOT gates, consider the two-qubit operator,

LCX = αI ⊗ P+ + a⊗ P− (3.43)

where the first and second modes in this outer product are control and target
qubits respectively, where I is the oscillator identity, and P± = (eiπa

†a± 1)/2
are projectors on the even and odd parity subspaces of the target mode re-
spectively. Similarly as for the single-mode method, engineering a correlated
dissipator with an ancillary qubit mode of the form D[LCXσ+] would achieve
a discrete CNOT gate, up to exponentially small corrections. However, the
projection operators P± are highly non-local, and therefore this scheme is
of questionable use. First, such operators are not currently implementable
with superconducting circuits, although there is a path towards them as high-
impedance operators [Cohen 2017]. Second, if one assumes access to such
“next-generation” operators, then for fairness one should view as relatively
easy too the options of e.g. Section 3.4.3. Third, engineering non-local op-
erators in a cat-qubit context is a Pandora’s box, as it introduces artificial
operators against which the exponential bit-flip protection is not designed to
work.

Other designs may take inspiration from the Zeno implementation of the
CNOT gate, i.e. inducing, in superposition, n − np discrete Z(θ) gates on
the control qubit conditional on Fock state n in the target qubit. In the
Zeno Hamiltonian implementation, this indeed remains compatible with ex-
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ponential bit-flip protection. Generalizing this to a jump operator appears to
require a complicated ancilla system. For instance, if we would rely on n−np

ancilla jumps to perform the right number of Z(θ) gates, then Fock-number
information would leak out to the environment unless specific erasure actions
are taken to impeach detecting the number of jumps. In absence of concrete
insight on realistic experimental building blocks associated to such ancilla, we
leave this for future research.

Barring the experimental difficulty of realizing an operator like LCX , the
effect of unwanted |g⟩ ↔ |e⟩ transitions of the ancillary mode that monitors
the gate warrants a caveat. Indeed, an unwanted transition would mean ap-
plying the CNOT gate possibly an even number of times, which would by
definition involve both phase-flip and bit-flip errors. In the traditional model,
bit-flip errors remain exponentially suppressed even for CNOT gates, thanks
to a smart use of the available continuous phase space which we lose with this
design. On the upside, the particular use of the ancillary qubit in this dis-
crete gate opens the door to specific designs reducing ancilla-induced errors,
as discussed above for the Z(θ) gate.

3.5 Robustness to noise

In the previous section, we studied gate designs with simplified master equa-
tion models in order to capture the key elements of each proposal. However,
actual experimental setups feature various sources of errors that could in prin-
ciple hinder gate performances. In this section, we study a more complete
model of errors to demonstrate that our proposals hold even under realistic
noise processes. We begin with a set of standard error sources, and then move
on to the specific case of thermal noise in the buffer mode for the first two
gate designs.

3.5.1 On the impact of noise and spurious Hamiltonians

Let us consider the master equation

dρ

dt
= L0ρ− i [Hs,ρ] + κa(1 + nth,a)D[a]ρ

+ κanth,aD[a†]ρ+ κϕ,aD[a†a]ρ
(3.44)

where L0 denotes the Liouvillian to be engineered on the system — varied
from one gate design to the next — which typically contains two-to-one photon
exchange, buffer mode dissipation and a gate drive on the memory mode, and

Hs = −Kaa
†2a2 + χaba

†ab†b−Kbb
†2b2 (3.45)
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Figure 3.14: Phase errors during a Z(π) gate under a complete model of noise
for each gate design introduced in the main text. Each design is compared
to the standard Zeno gate (black). In all panels, |α|2 = 4 and energies are
set to g2/2π = 1MHz, Ka/2π = 1kHz, Kb/2π = 810 kHz, χab/2π = 65 kHz,
κa/2π = 53Hz, nth,a = 10% and κϕ,a/2π = 10Hz. For panels (a), (c) and (d),
κb/2π = 8MHz. For panel (b), κab/2π = 2MHz.

is a spurious Hamiltonian with Kerr and cross-Kerr terms on the memory and
buffer modes. These terms typically result from the residual cosine potential
in the full circuit Hamiltonian, but in practice, they can be small compared to
two-photon dissipation when the system is engineered with an Asymmetrically
Threaded SQUID at the appropriate flux bias point [Lescanne et al. 2020b].
Our master equation model also includes single-photon losses, thermal photons
and pure dephasing on the memory mode with respective rates κa, nth,a and
κϕ,a. Note that we do not include thermal photons on the buffer mode in this
model as they are discussed separately in Section 3.5.2.

To study these noise processes, we consider specific values for each term
mainly extracted from Refs. [Lescanne et al. 2020b, Réglade et al. 2023]. The
two-to-one photon exchange coupling is g2/2π = 1MHz and combined with
a buffer mode dissipation at κb/2π = 8MHz which yields an effective two-
photon dissipation rate κ2/2π = 500 kHz. Kerr and cross-Kerr energies are
Ka/2π = 1kHz, Kb/2π = 810 kHz and χab/2π = 65 kHz. Single-photon loss
is κa/2π = 53Hz corresponding to T1 = 3ms in the memory mode, which is
typical in current experiments with high-Q superconducting resonators. Note
that lower cavity lifetimes could also be investigated, but would limit the po-
tential gain in gate fidelity of our proposals compared to standard Zeno gates
as phase errors would be dominated by single-photon losses in this regime. Fi-
nally, thermal noise and pure dephasing are nth,a = 10% and κϕ,a/2π = 10Hz.

In Figure 3.14, gate errors under this noise model are shown for each gate
design from the main text. Each time, the performance is compared to the
standard Zeno gate for a Z(π) gate, shown in black lines. In all panels, phase
errors eventually converge to a linear dependence in the large gate time regime
in which single-photon losses dominate. In addition, there is systematically
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an optimal gate time which minimizes gate errors and that represents the
optimal trade-off between gate-induced and single-photon loss errors.

For the photodetection design in panel (a), we vary the photodetection
efficiency from a perfect photodetector η = 1 to a non-ideal one at η = 0.5,
demonstrating again the linear dependence with detection inefficiency as dis-
cussed in the main text. Panel (b) shows the performance of the autonomous
feedback design with κab/2π = 2MHz and κb = 0. In panel (c), we show the
locally flat Hamiltonian design for increasing number of odd drive terms from
N = 1 to N = 4 each time gaining in optimal gate fidelity and gate time.
Finally, panel (d) shows performances of the discrete jump design where the
optimal gate fidelity depends on the ratio of κZ to κ2 and on the actual error
model studied.

3.5.2 Thermal noise in the buffer mode

In this second subsection, we discuss the role of thermal noise in the buffer
mode for the first two designs based on the feedback of information introduced
in the main text. Since these two schemes use the buffer mode population to
detect potential phase-flips induced on the memory mode, it is quite natural
that one of their main limitations should come from spurious population in
the buffer.

3.5.2.1 Photodetection

For the photodetection scheme of Section 3.4.1, the feedback action to apply
is a Z(π) gate after every buffer photon detection. Therefore, the rate of
thermal photons is directly linked to the rate of phase information loss on
the cat state, assuming that the feedback action is perfect. From the point
of view of the SFB, one can adiabatically eliminate the gauge mode in (3.12)
and average out the stochastic terms. This leads to a simplified model in the
absence of a gate drive,

dρ

dt
= κbη(1+nth,b)D[bσz]ρ+κb(1−η)(1+nth,b)D[b]ρ+κbnth,bD[b†]ρ (3.46)

Here, the beamsplitter interaction between gauge and buffer modes is elim-
inated compared to the fast dynamics on the buffer. In particular, notice
the correlated dissipation in D[bσz] which arises from the idealized classical
feedback action on the memory mode. From this master equation, we easily
compute the average expectation value of the σx operator by going to the
Heisenberg picture, which reads

⟨σx⟩(t) = ⟨σx⟩(t = 0)× exp(−γt) (3.47)
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Figure 3.15: (Left) Photon-number parity of an idling cat state under
the photodetection and classical feedback design of Section 3.4.1 with ther-
mal noise in the buffer mode nth,b = 2%. Parity is averaged over 1000
stochastic trajectories, and fitted with an exponential decay at rate γ =
2ηκbnth,b(1 + nth,b). In this simulation, κb/g2 = 8, |α|2 = 8 and η = 1.
(Right) Photon-number parity of an idling cat state under the autonomous
feedback of Section 3.4.2 with thermal noise in the reservoir mode nth,r = 2%.
Parity is fitted with an exponential decay at rate γ = 2

√
g2κabnth,r. In this

simulation, κab|α|2/g2 = 8 and |α|2 = 8.

where γ = 2ηκbnth,b(1+nth,b) rate of parity information loss in the presence of
thermal noise in the buffer. Note that the classical feedback action is always
optional, and typically it should only be turned on during gates. To know
whether the gate design is beneficial in practice, this rate should be compared
to the rate of single-photon losses κa which is the usual dominating source of
loss of parity information.

On the left panel of Figure 3.15, we show the parity of an idling cat state
initialized in |±L⟩ as obtained from numerical integration of the full stochastic
master equation (i.e. including two-photon coupling, buffer mode dissipation
and thermal noise in the buffer). The solution is averaged over 1000 stochastic
trajectories, and we find a very good fit with the simplified model as described
above.

3.5.2.2 Autonomous feedback

For the feedback design of Section 3.4.2, the feedback action is this time
performed autonomously through a correlated dissipation operator in D[ab].
Buffer excitations would then also result in spurious parity swaps on the cat
mode. However, with this design, the buffer mode is a priori a high-Q mode
since the correlated dissipation is engineered through a third reservoir mode r
as discussed in the main text, with a three mode coupling of the form g(abr†+
h.c.). Therefore, the main limitation of this design does not come from buffer
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mode excitations, but rather from thermal noise in the reservoir mode in
the form κrnth,rD[r†]. From adiabatic elimination of this reservoir with the
formalism of [Azouit et al. 2017, Forni et al. 2018], we derive an effective rate
of correlated excitations. The effective master equation on the memory and
buffer modes for an idling cat qubit thus reads

dρ

dt
= −i[HAB,ρ] + κab(1 + nth,r)D[ab]ρ+ κabnth,rD[a†b†]ρ (3.48)

where a new term in D[a†b†] appears compared to the ideal master equa-
tion. This dissipation creates correlated excitations on the memory and buffer
modes. If these correlated excitations are dissipated through the D[ab] term,
then the parity is swapped back to its original value and no phase information
is lost. However, the correlated excitation can also undergo partial two-photon
Rabi oscillations through the HAB term and then eventually dissipate away.
In this case, the parity is not strictly preserved by the dynamics and phase
information is lost to the environment.

On the right panel of Figure 3.15, we show the parity of an idling cat state
initialized in |±L⟩ as obtained from the numerical integration of (3.48). We
indeed find that the parity information decays exponentially with a rate γ.
For all values of g2, κab and nth,r we investigated, this rate seems to fit the
formula γ = 2

√
g2κabnth,r. In particular, turning off either two-to-one photon

coupling or thermal noise on the reservoir mode suppresses this effect.

3.6 Conclusion

We have introduced four new designs of dissipative cat qubit gates that
can help reduce gate-induced phase errors, and therefore help reach error-
correction thresholds. Upon the observation that incoherent gate errors result
from the entanglement between the cat qubit and its buffer mode, we have
devised two designs meant to take advantage of the buffer memory in the
system. The first one is based on the photodetection of the buffer mode out-
put, and thus on the retrieval of information that can then be classically fed
back. The precision of this scheme is only limited by the photodetector effi-
ciency. The second one relies on an autonomous error correcting scheme for
which first-order gate-induced parity errors are automatically corrected for as
buffer photons exit the resonator. In particular, this second design is read-
ily implementable with superconducting circuits and achieves a reduction of
up to two orders of magnitude in gate errors. The same setup can also be
used with squeezed cat states for the autonomous correction of single-photon
losses [Xu et al. 2022b], currently one of the main limiting factors of bosonic
qubits.
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We have also described two drastically different gate designs. By engi-
neering higher-order drive Hamiltonians that feature locally flat energy po-
tentials in position representation, spurious effects on the cat qubit mode can
be avoided and an improvement in gate error fidelities is achieved. We believe
that such Hamiltonians could also be used for other purposes, such as cat
state preparation. Finally, we have explored how to engineer cat qubit gates
without the Zeno effect, and introduced dissipation-based gate engineering.
By coupling the cat mode to an ancillary nonlinear mode that monitors the
ongoing gate, a discrete π-phase gate is realized. This method can circumvent
the usual linear gate time scaling of Zeno-based gates and achieve exponen-
tially scaling gate fidelities, and associated CNOT gate designs are therefore
our subject of ongoing investigation.

We hope that this chapter has been able to provide its readers intuition
about the design of cat qubit gates. While we have explored many paths
towards high-fidelity gates, we believe that further improvements can still
be achieved, in particular for multi-mode encodings of cat qubits. Finally,
while these gate designs have been particularly focused on dissipative cat
qubits, they should also inspire the design of superadiabatic operations on
any bosonic or dissipatively-stabilized system. In particular, most tailored
dissipation operators often rely on a highly damped buffer mode together
with adiabatic elimination. We have thus described for the first time how the
dynamics of this buffer mode can be taken advantage of.



Chapter 4

Optimal control of transmon
readout

This chapter covers work in preparation for publication that was mainly
pursued while visiting the group of Alexandre Blais in Sherbrooke,
Canada [Gautier et al. 2023a].
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4.1 Introduction

In Chapter 3, we introduced new designs for the high-fidelity control of a
dissipative cat qubit that leveraged Hamiltonians or dissipative mechanisms
tailored to the quantum system. This chapter will also be dedicated to high-
fidelity control of a quantum system, but this time through pulse engineering
and in a much more general setup. Superconducting circuits are controlled
with microwaves pulses that are sent to the chip through transmission lines.
These pulses are produced by mixing a control field arising from an Arbitrary
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Waveform Generator (AWG) and a carrier field of fixed frequency, both being
readily controllable from the laboratory. A question that then naturally arises
is: what are the optimal pulses that can achieve fast and high-fidelity quantum
operations?

Quantum optimal control [Peirce et al. 1988, Werschnik & Gross 2007]
seeks to answer this question, through analytical formulations when the prob-
lem allows it [Marte et al. 1991, Motzoi et al. 2009], and otherwise through
numerical investigation [Krotov 1995]. For the latter, a recent but popular
method is Gradient Ascent Pulse Engineering (GRAPE) [Khaneja et al. 2005]
which consists in iterating over a set of discretized pulses through a gradient-
based classical optimization algorithm. The method thus relies on the ability
to compute gradients of a given cost function — e.g. the fidelity of a quantum
gate, or the overlap to some objective state — with respect to the discrete
pulse. For closed quantum systems, this can be achieved by back-propagating
the Schrödinger equation with Trotter expansions of short-time propagators.
For open quantum systems, a similar back-propagation can be performed
on the vectorized Lindblad master equation [Schulte-Herbrüggen et al. 2011],
or under certain conditions, directly on the time-ordered Magnus expan-
sion [Boutin et al. 2017]. However, these methods suffer from several pitfalls:
they can only be implemented with a small subset of cost functions, their gra-
dients are estimated only to low-order in the Trotter expansion which limits
the convergence of the gradient descent algorithm, and they are not always
suited to large open quantum systems due to memory or speed requirements.

To overcome some of these issues, one solution is to delegate gradient
computations to a problem-agnostic routine such as that of automatic dif-
ferentiation [Jirari 2009, Leung et al. 2017, Abdelhafez et al. 2019]. Through
successive applications of the chain rule, automatic differentiation can dif-
ferentiate through any numerical problem that can be expressed with stan-
dard linear algebra operations, and has thus seen tremendous use in machine
learning [Baydin et al. 2018]. While very promising for quantum optimal con-
trol, it still suffers from one major bottleneck: memory usage. Indeed, back-
propagating through the complete time integration of a Lindblad master equa-
tion requires storing a density matrix at every numerical time step, and thus
a memory cost in O(nN2) where n is the number of time steps, and N the
Hilbert space size. For large open quantum systems (N ≳ 100) or problems
that require many integration steps (n ≳ 1000), this memory cost can quickly
limit the utility of these methods.

In this chapter, we introduce a new method to differentiate through a
Lindblad master equation with a constant memory cost in O(N2), which
is based on the reverse time integration of an adjoint state master equa-
tion [Pontryagin et al. 1962]. This method is also numerically fast, with a
time cost only about twice that of automatic differentiation-based methods,
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and it is completely agnostic to the model or to the cost functions considered.
This makes this method extremely promising for many practical problems in
quantum optimal control, but also for parameter fitting, state tomography, or
any application requiring gradients.

We then demonstrate how this method applies to the optimization of trans-
mon readout [Koch et al. 2007, Mallet et al. 2009], currently one the bottle-
necks of transmon-based quantum computers [Swiadek et al. 2023]. By con-
sidering a complete experimental model including the transmon, its readout
resonator and a driven Purcell filter, we show that pulse shaping improves
readout fidelity and readout time by up to 25% compared to standard read-
out pulses on the experimental setup we selected. By including shelving pulses
on the transmon to probe higher-level state transitions, we show even greater
improvements with readout times up to twice as fast as standard methods.
In addition, the optimal control algorithm discovers interpretable pulses, e.g.
pulses that fuse several operations efficiently, or take into account the stark
shift. Because transmon readout is a complex problem involving multiple
modes, a large Hilbert space, and a strong dissipative process that is key
to the operation to optimize, it is a prime example of a problem that was
previously inaccessible with standard optimal control tools but that we can
thoroughly study with our novel adjoint state method.

The chapter is organized in two main sections. After a short review of
automatic differentiation-based optimal control, Section 4.2 covers the adjoint
state method for open quantum systems. In particular, we derive the main
equations used for the numerical computation of gradients in constant memory
cost. Section 4.3 then discusses the optimization of transmon readout, first
with an overview of the physical model, of the optimal control process, and
then showcasing the numerical results. We conclude in Section 4.4.

4.2 Adjoint state quantum optimal control

Consider a generic quantum optimal control problem for which we want to
find a set of parameters that minimize some cost function C. The cost func-
tion is in general function of the problem parameters θ = (θ1, · · · , θm) and of
the density matrix of the system at a discrete set of times ρ(ti), such that C ≡
C(θ,ρ(t0), ...,ρ(tn)). For gradient-based optimization, it is required to com-
pute the derivative of the cost function with respect to each parameter, dC/dθ.
A standard optimization algorithm such as Adam [Kingma & Ba 2014] or
Stochastic Gradient Descent [Robbins & Monro 1951] can then be employed
to find a global minimum of the parameter landscape, or at least a good local
minimum. In the following, we quickly review how automatic differentiation
can be used to compute these gradients, before moving on to adjoint state



128 Chapter 4. Optimal control of transmon readout

quantum optimal control.

4.2.1 Automatic differentiation

Automatic differentiation is a family of techniques designed to compute partial
derivatives of a numeric function defined in a computer program. It is dif-
ferent from numerical differentiation (evaluation of derivatives through finite
difference approximations) or symbolic differentiation (propagation of analyt-
ical derivative formulas) in that only the numerical value of the derivative is
obtained, but as accurately and efficiently as the original function evaluation.

Automatic differentiation features two main modes of operation: forward
mode and reverse mode. While both are based on a repeated application of
the chain rule, they differ in the direction in which it is applied (starting from
the inputs or from the outputs). Importantly, this implies a different scaling
with the number of inputs and outputs of the relevant function f : Rm → Rp.
Indeed, forward mode automatic differentiation is equivalent in memory and
time to O(m) function evaluations, whereas reverse mode automatic differen-
tiation is equivalent to O(p) function evaluations. Because quantum optimal
control usually features many parameters (m ≫ 1) and only a single cost
function (p = 1), the latter mode is well suited to the problematic at hand
and will be our focus from now on. For a detailed review of both modes, see
[Baydin et al. 2018].

To illustrate how reverse mode automatic differentiation works,
let us consider the example f(θ1, θ2) = sin(θ1) + θ1

√
θ2, borrowed

from [Leung et al. 2017]. Its computational graph is represented in Figure 4.1.
In this graph, each node represents an elementary operation, and each arrow
an intermediate value wi with i ∈ [0, 6] that is used by a computer to numer-
ically evaluate the function for a given set of inputs. This list of intermediate
values is shown in the table below Figure 4.1 and is referred to as an evalua-
tion trace. A forward pass then refers to a single evaluation of the function f .
In the example of Figure 4.1, starting from the numerical value of both pa-
rameter (θ1, θ2), the forward pass will subsequently evaluate all intermediate
values w0, w1, w2, · · · , until the final output is reached, y ≡ f(θ1, θ2) = w6.

The backward pass is then carried out to evaluate gradients. In this pass,
an adjoint is associated to each intermediate variable wi, and represents the
sensitivity of the final output y to a change in wi. It is defined as

w̄i =
∂y

∂wi

. (4.1)

Importantly, the chain rule yields simple relations between these adjoint in-
termediate values which are directly linked to the elementary operations from
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Forward pass
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√
w2 =

√
θ2
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√
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Backward pass
w̄0 = w̄4
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∂w0
= w̄4 cos(w0) = cos(θ1)
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∂w1
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√
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√
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w̄3 = w̄5
∂w5

∂w3
= w̄5w1 = θ1
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∂w4
= w̄6 · 1 = 1

w̄5 = w̄6
∂w6

∂w5
= w̄6 · 1 = 1

w̄6 = 1 (seed)

Figure 4.1: Computational graph of f(θ1, θ2) = sin(θ1)+θ1
√
θ2 and schematic

of reverse mode automatic differentiation. (a) In the forward pass, operations
are performed successively starting from the parameters (θ1, θ2). (b) In the
backward pass, the graph is back-propagated starting from the final node. A
single pass is needed to compute the gradient with respect to all parameters.
The table shows the intermediate values wi and w̄i that are used in the com-
putation. Figure and table inspired from [Baydin et al. 2018].

the computational graph. As such, the backward pass will iterate successively
over these adjoint states, up until the gradient with respect to all parameters
is computed. In the example of Figure 4.1, we thus get,

w̄6 =
∂y

∂w6

=
∂w6

∂w6

= 1, (4.2)

which is the seed of the reverse-mode differentiation, followed by

w̄5 =
∂y

∂w5

=
∂y

∂w6

∂w6

∂w5

= w̄6 · 1 = 1, (4.3)

w̄3 =
∂y

∂w3

=
∂y

∂w5

∂w5

∂w3

= w̄5 · w1 = θ1, (4.4)
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and finally,

w̄2 =
∂y

∂w2

=
∂y

∂w3

∂w3

∂w2

= w̄3 ·
1

2
√
w2

=
θ1

2
√
θ2
, (4.5)

which is also the gradient with respect to θ2 since w2 = θ2. Hence, following
a similar approach for the upper part of the graph, the gradient with respect
to all input parameters can be computed efficiently, with the same computa-
tional cost as the initial function evaluation and in a single pass. Importantly,
forward pass intermediate values should be kept in memory for the backward
pass, as they may be used in gradient evaluations. For instance, this was the
case in (4.4) in which the w1 value was required. In general, any intermediate
value involved in a multiplicative operation will need to be stored in memory.
We can already see how this could be problematic for problems involving large
amounts of matrix multiplications.

Coming back to quantum optimal control, automatic differentiation can
be a powerful tool for computing gradients with respect to arbitrary cost func-
tions. For many problems of interest, the cost function is straightforwardly
defined from the density matrix at some given time, and/or from the param-
eters. Since the density matrix is itself a function of the parameters, through

ρ(t) = T exp

(∫ t

t0

Lθ(s)ds

)
ρ(t0) (4.6)

where T is the time-ordering operator, and Lθ is the parametrized Liouvil-
lian, it is possible to obtain the gradients dC/dθ using reverse mode auto-
matic differentiation [Leung et al. 2017]. While this has seen many applica-
tions, the main limitation of the method comes from memory requirements
since reverse-mode automatic differentiation requires storage of all interme-
diate values during the forward pass. Here, intermediate values are density
matrices so this memory requirement can quickly blow up for large quantum
systems, as pointed out in [Lu et al. 2023]. Concretely, for a Hilbert space of
size N = 1000, and n = 2000 numerical Liouvillian evaluations, the sole stor-
age of all density matrices in double floating point precision already represents
29.5 Gb of memory. This is more than most modern GPUs or CPU RAM ca-
pacities, and does not even take into account other objects that should be
also stored (e.g. Hamiltonians, jump operators and so on). To overcome this
limitation, the following section introduces the adjoint state method for open
quantum systems.

4.2.2 Adjoint state method

The adjoint state method is a numerical method used to compute gradients
that was first introduced in [Pontryagin et al. 1962] and has seen applications
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in several fields of science and engineering that rely on partial differential
equations. It is based on the back-propagation of an adjoint state, a dual
representation of the original state. In this section, we derive the adjoint
state method for open quantum systems.

Let us consider the adjoint state of the density matrix,

ϕ(t) ≡ dC

dρ(t)
(4.7)

where C is the previously introduced cost function, and ρ the density matrix.
This adjoint state is an instantaneous representation of the sensitivity of the
cost function with respect to the density matrix. For open quantum systems,
the density matrix is solution to a master equation,

dρ

dt
= Lρ ≡ −i[H ,ρ] +

∑
k

D[Lk]ρ, (4.8)

where H is the system Hamiltonian, Lk are jump operators, and D[L]ρ =
LρL† − {L†L,ρ}/2. It is then possible to show (see Section 4.2.3) that the
adjoint state is subject to an analogous master equation,

dϕ

dt
= −L†ϕ ≡ −i[H ,ϕ]−

∑
k

D†[Lk]ϕ, (4.9)

where D†[L]ϕ = L†ρL− {L†L,ρ}/2. The adjoint master equation (4.9) can
thus be integrated numerically over the time interval of interest [t0, tn] from an
initial condition at the final time, ϕ(tn) ≡ dC/dρ(tn) = ∂C/∂ρ(tn), where the
second equality stands if the cost function is an explicit function of the final
density matrix. This initial condition can either be computed analytically if
possible, and otherwise through automatic differentiation. Notice in particular
the overall minus sign in (4.9) which will ensure contracting dynamics in
reverse time, and thus numerical stability of the solution. Gradients with
respect to the problem parameters are then given by

dC

dθ
=
∂C

∂θ
−
∫ t0

tn

∂θ Tr
[
ϕ†(t)L(t, θ)ρ(t)

]
dt , (4.10)

as we also derive in Section 4.2.3. Therefore, the gradients required for optimal
control can be computed immediately from the knowledge of both the adjoint
state and density matrix at all times.

A typical optimization loop is represented in Figure 4.2(a). From an initial
set of parameters (here, a sequence of pulses), a forward pass that consists of
solving the master equation once over the full integration time is performed.
From the density matrices computed, the cost function corresponding to the
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Solve Master eq.
Forward Pass

Solve Master &
Adjoint equations 

in reverse time

Backward PassUpdate Parameters
Compute

Cost Function

(a)

(b)

C

Figure 4.2: Adjoint state quantum optimal control. (a) Optimization loop.
Gradients are computed during the backward pass, and fed to a gradient-
descent algorithm that computes the parameter updates. (b) Schematic of
the forward and backward passes. The master equation is integrated and
checkpointed for several time points (dark blue). In the backward pass (dashed
lines), the density matrix is recomputed in reverse time (light blue) together
with the adjoint state (green) and with the gradients (red). When a checkpoint
is reached, the density matrix is restored to its forward time trajectory, and
the adjoint state updated with the corresponding cost function gradient.

initial set of parameters is obtained. Then, the optimization goes through a
backward pass during which both the master and adjoint equations are inte-
grated in reverse time and simultaneously [Chen et al. 2018]. Equation (4.10)
then yields the full gradients which are fed to the optimization algorithm to
iterate over the parameters.

More precisely, Figure 4.2(b) shows a schematic of both the forward and
backward passes. During the forward time integration of the master equation
(dark blue lines), several solutions are saved to compute the final cost function



4.2. Adjoint state quantum optimal control 133

and as checkpoints for the backward pass1. During the backward pass, both
the master (light blue) and adjoint state (green) equations are integrated in
reverse time. The adjoint state is regularly updated by the partial derivative
of the cost function with respect to the checkpointed density matrix to account
for specific dependencies of the cost function. Finally, the integrand of (4.10)
is evaluated at every time step through one of two ways. Either the partial gra-
dient ∂θL(t, θ) is computed analytically and substituted inside the equation,
or more generally, it can be computed from automatic differentiation of the ad-
joint equation integration by noting that ∂θ Tr

[
ϕ†Lρ

]
= −Tr

[
∂θ(dϕ/dt)

†ρ
]
.

We utilize the latter method.

The full optimization loop features a time cost equivalent to the integra-
tion of four master equations, and a O(nc ×N2) memory footprint where N
is the Hilbert space dimension and nc the number of time points involved in
the cost function definition. For a large class of problems, either only the final
density matrix is needed and nc = 1, or the cost function can be partially
computed on the fly when time t = ti is reached in which case the cost re-
duces to O(N2). Our method thus features a reduction of multiple orders of
magnitude in memory compared to standard automatic differentiation meth-
ods for which the density matrix has to be saved at every numerical time
step [Leung et al. 2017], a major bottleneck of the approach [Lu et al. 2023].

In practice, this whole optimization scheme is implemented in PyTorch
for its automatic differentiation capabilities and GPU support. We are able
to run optimization problems for open quantum system with hundreds of
parameters and arbitrary cost functions, for Hilbert space dimensions of up
to N ≲ 5, 000 while keeping memory requirements within GPU capacity. In
the following subsection, we derive the adjoint state method equations (4.9)
and (4.10) for open quantum systems. We then demonstrate this method
for the optimization of transmon readout, a notoriously difficult problem to
simulate numerically.

4.2.3 Derivation of adjoint state method equations

4.2.3.1 Adjoint state master equation

We will now prove that the adjoint state follows the differential equation
(4.9), following a similar derivation as in [Chen et al. 2018]. Starting from

1The reverse time master equation features expanding dynamics, which may induce
divergence during numerical integration. Checkpointing on the time scale of the largest
dissipation operator stabilizes the numerical integration.
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the master equation (4.8), we can write that for an ε≪ 1 change in time,

ρ(t+ ε) = ρ(t) +

∫ t+ε

t

L(τ, θ)ρ(τ)dτ

= ρ(t) + εL(t, θ)ρ(t) +O(ε2)

(4.11)

Using the chain rule and the definition of the adjoint state, we then find

ϕ(t) =
dC

dρ(t)
=

dC

dρ(t+ ε)

dρ(t+ ε)

dρ(t)
= ϕ(t+ ε)

(
1 + εL(t, θ) +O(ε2)

)
(4.12)

The proof of (4.9) follows from the definition of the derivative,

dϕ(t)

dt
= lim

ε→0

ϕ(t+ ε)− ϕ(t)

ε
= − lim

ε→0

(
ϕ(t+ ε)L(t, θ) +O(ε2)

)
= −ϕ(t)L(t, θ)

(4.13)

or equivalently, using that the adjoint state is hermitian, ϕ† = dC/dρ† =
dC/dρ = ϕ, we get the required result,

dϕ(t)

dt
= −L†(t, θ)ϕ(t). (4.14)

4.2.3.2 Gradients

To derive an explicit expression for dC/dθ, we also follow [Chen et al. 2018]
and introduce an augmented density matrix ρaug(t) = [ρ(t), θ(t)]T which in-
cludes a second block row with time-dependent parameters. In practice, pa-
rameters are constant throughout the integration, but this fictitious time-
dependence will allow us to isolate the sensitivity of the cost function to
parameter changes at every point in time. The augmented density matrix
follows the differential equation,

dρaug(t)

dt
= Laug(t, θ)ρaug(t) =

(
L(t, θ)ρ(t)

0

)
(4.15)

We can also introduce the augmented adjoint state, ϕaug(t) = [ϕ(t), dC/dθ],
where the parameter sensitivity dC/dθ also has a fictitious time-dependence.
We then follow a similar derivation as in the previous section. The main
difference comes in the application of the chain rule of (4.12) which now yields

ϕaug(t) =
dC

dρaug(t)
=

dC

dρaug(t+ ε)

dρaug(t+ ε)

dρaug(t)

= ϕaug(t+ ε) + εϕaug(t+ ε)

(
L(t, θ) ∂θL(t, θ)ρ(t)

0 0

) (4.16)
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where ∂θ denotes the partial derivative with respect to θ. Similarly as before,
we can rearrange this expression, reinsert it in the definition of the derivative
and take the limit of ε → 0. Then, selecting only the second element of the
resulting differential equation yields,

d

dt

(
dC

dθ

)
= −∂θ Tr

[
ϕ†(t)L(t, θ)ρ(t)

]
. (4.17)

We have thus obtained a straightforward differential equation on the param-
eter sensitivity. Integrating this equation from t = 0 to T , with the initial
condition that dC/dθ(T ) = ∂C/∂θ yields,

dC

dθ
=
∂C

∂θ
−
∫ 0

T

∂θ Tr
[(
L†(t, θ)ϕ†(t)

)
ρ(t)

]
dt (4.18)

which is (4.10). We can also get the derivative of the loss function with respect
to the integration time T from a simple application of the chain rule,

dC

dT
=

dC

dρ(T )

dρ(T )

dT
= Tr

[
ϕ†(T )L(T, θ)ρ(T )

]
. (4.19)

Finally, between (4.9), (4.18) and (4.19), we get the gradients of the loss
function with respect to all relevant objects involved in the computation.

4.3 Optimal control of transmon readout

Now that we have introduced the adjoint state method for open quantum
systems, let us look into how it can be employed for the optimization of
transmon readout pulses.

4.3.1 Transmon-resonator-filter model

Consider the following model of a transmon coupled to a resonator and Purcell
filter (ℏ = 1), as depicted in Figure 4.3,

H(t) = 4ECnt − EJ cos(φt) + ωra
†a+ ωff

†f

− ignt(a− a†)− J(a− a†)(f − f †)

+ Ωtnt sin(ωd,tt)− iΩf (f − f †) sin(ωd,f t) .

(4.20)

The first two terms denote the free transmon Hamiltonian with charging en-
ergy EC , Josephson energy EJ , and with nt and φt the charge and phase
operators. Resonator and filter modes are denoted by a and f , with respec-
tive frequencies ωr and ωf . These three modes are capacitively coupled in
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g J κ

ωq ωr ωf

Figure 4.3: Lumped-element circuit of a transmon-resonator-filter model.
The transmon (green) and readout resonator (blue) are capacitively coupled
with coupling g. The resonator is itself capacitively coupled to a Purcell filter
(dark blue) with coupling J ≪ g. This filter is damped and driven through a
transmission line.

series with coupling strengths g ≫ J , and the full system can be driven either
through the transmon at frequency ωd,t and amplitude Ωt, or through the
Purcell filter at frequency ωd,f and amplitude Ωf . Our model also includes
transmon relaxation with rate κt and the engineered filter loss with rate κf
through which readout is performed. This is a standard model for dispersive
readout of a transmon [Sete et al. 2015], where the weak dispersive coupling
to the readout resonator — obtained e.g. after a Schrieffer-Wolff transforma-
tion of (4.20) — can probe the transmon through a state-dependent frequency
shift, and where the Purcell filter is introduced to shield the transmon from
Purcell decay [Purcell 1946]. Readout is then performed through heterodyne
measurement of the filter.

For the numerical simulation of this model, we first diagonalize the free
transmon Hamiltonian and identify the lowest energy eigenstates. We also
diagonalize the resonator-filter subsystem yielding two normal modes, each
directly coupled to the transmon. Finally, we assume the Rotating Wave
Approximation (RWA) on all couplings and drives. This allows for larger
numerical time steps by eliminating fast oscillating dynamics, which even-
tually simplifies master equation integration. However, this also implies
that some non-standard dynamics are not fully captured, such as transmon
chaos [Cohen et al. 2022] or ionization [Shillito et al. 2022]. In an effort to
avoid those regimes, we will intentionally limit resonator populations below
the critical photon number of the system [Blais et al. 2021]. Note that this
RWA is not required for the adjoint state method, and is here only to simplify
the numerical endeavor.

In the rest of this chapter, we fix model parameters to demonstrate
the effectiveness of the optimal control method on a given system. Un-
less stated otherwise, we use EJ/EC = 51, EC/2π = 315MHz, correspond-
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ing to a bare transmon frequency ωt/2π = 6GHz and to an anharmonicity
α/2π = −349MHz. Resonator and filter frequencies are ωr/2π = 7.2GHz
and ωf/2π = 7.21GHz and couplings g/2π = 150MHz and J/2π = 30MHz.
This yields a transmon-resonator detuning of ∆/2π = 1.2GHz and a crit-
ical photon number n̄crit = (∆/2g)2 = 16. Finally, the filter loss rate is
κf/2π = 30MHz and the transmon relaxation rate κt/2π = 8kHz corre-
sponding to T1 = 1/κt = 20µs.

4.3.2 Dispersive readout metrics

Dispersive readout is a widespread superconducting circuit readout technique
based on the dispersive coupling of a qubit to a resonator. By neglecting
the filter in the model of (4.20) and reducing the transmon to a two-level
system, this coupling takes the form χσza

†a and highlights the transmon
state-dependent frequency shift on the resonator that can be leveraged for
readout. Therefore, a weak state-dependent rotation in phase space is induced
when the resonator is not in vacuum. Then, standard heterodyne detection
of the resonator can be used to distinguish between either states.

To maximize the fidelity of a dispersive readout, there are mainly two
criteria to optimize. First, in order to minimize the impact of transmon decay
and eventual thermalization, the readout sequence should be fast. In the limit
of a fast readout compared to the transmon lifetime, the fidelity error induced
by this effect grows linearly in time according to εa,0 ∝ τm/T1 where τm is the
readout integration time and T1 the transmon lifetime. Second, the readout
contrast should be large. Defining the average field value in the filter as
βe/g = Tr

[
fρg/e

]
where ρg/e is the density matrix obtained after initialization

in the transmon |g/e⟩ state, this means that the |βe−βg| distance should stay
as large as possible for as long as possible. To quantify this second criteria,
the standard scale is Signal-to-Noise Ratio (SNR), defined as

SNR2(τm) =

∣∣∣⟨M (τm)⟩e − ⟨M(τm)⟩g
∣∣∣2

⟨M 2
N(τm)⟩e + ⟨M 2

N(τm)⟩g
(4.21)

where M (τm) =
∫ τm
0

(wxVx(t) + wpVp(t))dt is the measurement signal, with
tunable weighting functions wx/p and quadrature signals Vx/p that include
the average quadrature field value and a white-noise contributions from the
uncertainty principle. Also, M 2

N = (M − ⟨M⟩)2 is the measurement noise
operator that takes into account added noise and intrinsic vacuum noise. One
can further show that with optimal weighting functions, the following simpli-
fied formula for the SNR holds [Bultink et al. 2018],

SNR(τm) =

√
2ηκf

∫ τm

0

|βe(t)− βg(t)|2dt (4.22)
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where η is the measurement efficiency, κf the Purcell filter decay rate. Indeed,
the measurement signal scales linearly with the integral of |βe − βg|2, while
the measurement noise scales only as the square root of the same integral,
hence the overall square root scaling. Thanks to its robustness and simplicity
to numerical evaluation, the rest of this work will use this formula for SNR
computations.

Coming back to readout fidelity, it can be expressed in a straight-
forward manner from the two quantities we have introduced, i.e. trans-
mon lifetime and SNR. Again assuming a simplified gaussian model, we
have [Gambetta et al. 2007, Swiadek et al. 2023],

εa(τm) = 1−Fg,e = (P (g|e) + P (e|g)) /2

≳
1

2

(
1− erf

(
SNR(τm)

2

))
+
τm
2T1

(4.23)

where εa is the assignment error, Fg,e the readout fidelity, and P (i|j) the
probability of measurement state |i⟩ knowing that |j⟩ was prepared. The
assignment error is thus the key metric to minimize when optimizing readout.
In the rest of this work, we will assume the formula of the second line when
evaluating assignment errors numerically.

4.3.3 Optimizing readout

For the numerical optimization of readout pulses, the process was the follow-
ing. We first fix the readout integration time τm, and discretize the pulse in
time steps of τ0 = 1ns. The pulse amplitude at each time step thus yields a
set of N = ⌈τm/τ0⌉ complex-valued parameters Ωj. This discrete pulse is then
fed to a gaussian filter Fg of bandwidth ωbw/2π = 425.4MHz to replicate a
realistic AWG [Motzoi et al. 2011]. The resulting pulse then reads

Ω(t) = Fg

[
N−1∑
j=0

ΩjΠj(t, τ0)

]
(4.24)

with the rectangle function

Πj(t, τ0) ≡ Θ(t− jτ0)−Θ(t− (j + 1)τ0), (4.25)

where Θ is the Heaviside unit step function. The pulse carrier frequency
ωd is also parameterized, but fixed throughout the [0, τm] time interval. Us-
ing this continuous pulse, the three-mode open quantum system model with
Hamiltonian (4.20) is integrated over the readout time. We then evaluate a
cost function tailored to the optimization problem. The main contribution



4.3. Optimal control of transmon readout 139

to this cost function is the SNR of (4.22), which is straightforward to evalu-
ate from the integrated density matrix at evenly spaced time points sampled
throughout the evolution. Other smaller contributions to the cost function
include penalties for large photon populations in both resonator and filter
modes, penalties for pulse amplitudes above a certain ceiling (here, 200MHz),
or population in excited transmon states. Finally, the gradient of this cost
function with respect to each parameter is evaluated using the adjoint state
method introduced in Section 4.2.

This whole process represents a single iteration of the optimization.
In practice, several hundred iterations are performed and parameters
are iterated over at each epoch using an Adam gradient descent algo-
rithm [Kingma & Ba 2014]. The seed parameters at the first epoch are either
randomly sampled, or taken from a known working pulses (e.g. a flat readout
pulse). Once the optimizer has converged, we perform a final run of the opti-
mized pulses with a larger Hilbert space and a smaller numerical time step in
order to validate results. This validation run is meant to speed up the overall
optimization by allowing faster iterations, yet still provide an accurate final
result. In the following section, we show these validated results for several
optimization runs, and demonstrate improved readout compared to standard
pulses.

4.3.4 Results

Figure 4.4 shows both the SNR and the assignment error against the inte-
gration time of readout for various reference and optimized pulse sequences.
Let us first discuss the reference pulses, plotted in light and dark blue color,
before moving on to the optimized pulses. The first reference corresponds to
a flat pulse (including a 2 ns pulse ramp-up and ramp-down) with amplitude
fixed at |Ωf,0|/2π = 70MHz, and the second to a two-step pulse with a strong
initial drive at |Ωf,1|/2π = 160MHz for the first 4 ns (designed to rapidly
populate the resonator [Walter et al. 2017]), followed by the same flat pulse
as before. These two pulse envelopes are shown in Figure 4.5(a). The |Ωf,0|
amplitude is chosen such that the resonator reaches a population n̄ = n̄crit

in its steady state. In addition, the carrier frequency of these pulses is fixed
at the dressed frequency of the lowest normal mode in the resonator-Purcell
filter subsystem.

As the integration time increases, we find that both references feature an
increasing SNR and a decreasing assignment error up until the transmon T1
limit is reached (materialized by the solid black line). The minimuml assign-
ment error is obtained at τm ≃ 80 ns and τm ≃ 65 ns respectively for the
flat and two-step pulses. This is similar performance to state-of-the-art read-
out experiments [Walter et al. 2017, Sunada et al. 2022, Swiadek et al. 2023],
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Figure 4.4: Optimizing transmon readout with the adjoint state method.
Signal-to-noise ratio (top) and assignment error (bottom) against readout in-
tegration time for various reference and optimized pulses. Flat and two-step
results are fitted with (4.26). Optimized pulses are shown in red/green. Hol-
low markers show optimized pulses with the addition of a transmon drive of
optimized frequency at ωd,t ≈ ωr (red) and ωd,t ≈ ωef (green). For all pulses,
the assignment error is limited by transmon lifetime errors (black line).

as expected from our choice of experimental parameters. We further pro-
vide a fit of the SNR, shown in solid lines, according to the analytical for-
mula [Didier et al. 2015],

SNR(τm) = α
√
2ηκ

(√
τm −√

τm,0

)
(4.26)

where α = 2|Ωf sin(2ϕ)|/κf is the effective resonator displacement in the
steady state, with ϕ = arctan(2χ/κf ) and χ the dispersive shift obtained from
exact diagonalization of (4.20). This formula shows a square root dependence
of the SNR with the integration time in the τm → ∞ limit, as expected from
(4.22). Furthermore, the term √

τm,0 corresponds to an initial delay for the
resonator to populate. It is numerically fitted, and we find τm,0 ≃ 19 ns for
the flat pulse, and τm,0 ≃ 13 ns for the two-step pulse. We find an excellent
agreement between (4.26) and the numerical simulations.

Let us now compare these two reference pulses to optimized pulses. Red
markers in Figure 4.4 show the SNR and assignment error for an optimized
pulse. We find a modest improvement compared to the previously discussed
two-step pulse, suggesting that this strategy is already almost optimal if only a
drive on the filter is available. Indeed, the dispersive coupling being bounded,
the speed at which the ρf,g/e states in the resonator separate is bound, and
it is likely that one can only improve readout by decreasing the delay for the
resonator to populate, τm,0. Figure 4.5(b) shows the optimized pulse for the
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Figure 4.5: Example of various reference and optimized pulses for a 40 ns
readout. Solid and dashed lines show the real and imaginary parts of (4.24)
respectively. (a) Flat (dark blue) and two-step (light blue) pulses. (b) Opti-
mized readout pulse. (c) Optimized readout pulses with a transmon drive at
ωd,t ≈ ωr. (d) Optimized readout pulses with a transmon drive at ωd,t ≈ ωef .

40 ns run. A two-step-like shape can be recognized, with a strong drive for
t ≲ 5 ns and a smaller drive for the rest of the sequence. We attribute small
oscillations throughout the pulse to a gauge degree of freedom of the optimizer
(the state is free to rotate in phase space).

We then study the optimization of two other readout strategies, both in-
volving an additional drive on the transmon. The first strategy, shown in
hollow red markers, involves a transmon drive at the frequency of the read-
out resonator, ωd,t ≈ ωr and is meant to reproduce the cloaking mechanism
of [Lledó et al. 2022, Muñoz-Arias et al. 2023] for which the resonator popu-
lation can be controlled independently of the transmon. While the cloaking
mechanism is not retrieved here, simulations still show improvements com-
pared to reference pulses, with the optimal assignement error obtained at
τm ≃ 60 ns. The pulses for the 40 ns run are shown in Figure 4.5(c) for com-
pleteness, although we currently are lacking an interpretation of what the
optimizer is converging towards.

The second strategy, shown in hollow green markers, involves a trans-
mon drive at the frequency of the |e⟩-|f⟩ transmon transition. This time,
the optimizer finds a pulse sequence that populates the |f⟩ state of the
transmon to probe a larger dispersive coupling χfg than the standard shift
χeg [Chen et al. 2023]. Here, a clear improvement both in SNR and assign-
ment error is demonstrated, with the optimal assignment error achieved at
τm ≃ 35 ns, almost twice as fast the best reference pulse and with an error
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Figure 4.6: Phase space distance in the Purcell filter mode between |g⟩ and
|e⟩ transmon states against time, for a 40 ns readout and for various reference
and optimized pulses. The SNR is the integral of this quantity, up to some
multiplicative factor.

about twice as low. In addition, Figure 4.5(d) shows the corresponding pulses,
again for the 40 ns pulse sequence. On the filter side, the pulse is very similar
to that of the optimized sequence of panel (b) with a two-step-like pulse. On
the transmon side however, the optimizer converges towards a short π-pulse
of the |e⟩-|f⟩ transition at the beginning of the sequence, followed by no drive
for the rest of readout. There are a few remarkable things to note. First, the
π-pulse uses a DRAG-like sequence [Motzoi et al. 2009], with a drive on both
quadratures to eliminate leakage to other transmon states. We find a fidelity
in excess of 99% on this π-pulse achieved in less than 10 ns and while the
filter is also being driven. Second, this π-pulse is performed at the same time
as the resonator is populated, such that the optimizer is fusing operations
together instead of doing them sequentially, a crucial time gain. And finally,
the frequency of this π-pulse being also optimized, we find that the optimizer
is taking into account the stark shift induced by the large drive on the Purcell
filter. Overall, this optimized pulse is extremely promising and suggests that
further experimental improvements on readout fidelities can still be achieved.
As a final remark, note that this readout strategy is not a Quantum Non De-
molition (QND) measurement, but that QND-ness could be retrieved with a
subsequent |f⟩-|e⟩ transition that could be requested within the optimization
scheme.

To complete this results section, we show in Figure 4.6 the effective dis-
tance |βe − βg|2 in the Purcell filter against time for the previously discussed
readout schemes. The quantity being optimized is thus the integral of these
curves, up to a constant prefactor. In all cases, the distance is approximately
zero in the beginning of readout, and then increases in an oscillating pattern.
There are a few things to note on this figure. First, optimized distances begin
ramping up sooner than non-optimized distances. Second, the oscillations of
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optimized distances are flattened out by the optimizer, such as to keep the
largest distance at all times. This confirms that, while the dispersive coupling
is bound by the experimental setup, carrying out pulse engineering on readout
pulses can still provide improvements on readout contrasts.

4.4 Conclusion

In this chapter, we introduced the adjoint state method for open quantum sys-
tems, which allows for the computation of gradients of an arbitrary function
with respect to any number of parameters in a constant O(N2) memory cost,
with N the Hilbert space size. This method is completely general, adaptable
to any open quantum system, and enables applications in optimal control,
experimental calibration or state tomography. The method is based on the
introduction of the adjoint state of the density matrix, which represents the
sensitivity of the function of interest to changes in the density matrix. By
solving the adjoint state master equation in the backward pass, and simul-
taneously recomputing the solution to the master equation in reverse time,
the memory cost of the method can be largely reduced compared to standard
automatic differentiation.

To make this method widely available without the overhead of re-
implementing it, we have been developing a library aimed at providing end-
to-end differentiable solvers of quantum differential equations. The dynamiqs
library is open-source and available at github.com/dynamiqs/dynamiqs. It
provides solvers for Schrödinger, master and stochastic master equations with
various numerical integration methods. It also supports batching over many
initial states or Hamiltonians and is GPU-enabled. While still under active
development, the library can already serve as a basis for similar applications
as demonstrated in this work.

Here, we demonstrated how the adjoint state method applies to the opti-
mization of transmon readout, a complex problem involving multiples modes
and inherent dissipation. Through pulse engineering, we have been able to
demonstrate improvements in readout fidelity on a complete readout setup
that includes a many-level transmon, a readout resonator and a Purcell filter.
We have also explored different readout strategies, with additional drives on
the transmon meant to achieve cloaking or shelving. In particular, the shelv-
ing strategy shows a two-fold improvement in readout time and in readout
fidelity on the specific experimental parameters we consider. The gradient de-
scent optimization further found interpretable pulses that would suggest these
pulses are robust to parameter drifts, and can be applied to other experimental
setups.

https://github.com/dynamiqs/dynamiqs




Chapter 5

Conclusions and perspectives

Since 2012, several research groups have been working towards engineering
cat qubits in superconducting circuits thanks to their promise of hardware-
efficient, fault-tolerant and universal quantum computation. This began with
a proposal for the autonomous correction of cat qubit errors in a superconduct-
ing cavity [Leghtas et al. 2013], shortly followed by the seminal paper on their
stabilization with engineered two-photon dissipation [Mirrahimi et al. 2014].
The paper also featured proposals for single- and multi-qubit gate imple-
mentations and opened the way to universal quantum computation with cat
states. In 2014, the first experiment of dissipative stabilization was put to-
gether in a transmon-based device [Leghtas et al. 2015]. Single-qubit Rabi
oscillations were then shown in a similar device [Touzard et al. 2018], al-
though evidence of the promised exponential noise bias had yet to be pre-
sented. With the invention of the Asymmetrically Threaded SQUID (ATS) in
2019 [Lescanne et al. 2020b], the Leghtas group was eventually able to engi-
neer the large non-linearity required for dissipative stabilization of cat qubits
but at a Kerr-free point. This allowed for the first demonstration of expo-
nential noise bias, with a lifetime saturating at about 10ms. Recently, with
the invention of a transmon-free readout protocol [Réglade et al. 2023], we
were able to enhance this lifetime by up to 10 s with no apparent satura-
tion, and to demonstrate the first bias-preserving gate on cat qubits. This is
indeed a crucial step towards quantum computation with cat qubits as laid
out in [Guillaud & Mirrahimi 2019], with not only the integrated protection
of bit-flip errors, but also with an outer error-correction code for phase-flip
errors.

Concurrently to this work on dissipative cat qubits, an alternative con-
finement mechanism was invented [Puri et al. 2017] and pursued. Using the
inherent Kerr non-linearity of superconducting circuits and an additional two-
photon drive, Kerr cat qubits manifested similar properties as their dissipative
counterparts but arguably with lighter circuit designs. This path was also car-
ried out, with theoretical proposals for bias-preserving gates and correction
of phase-flip errors [Puri et al. 2020], as well as several experimental demon-
strations [Grimm et al. 2020, Frattini et al. 2022]. However, for the reasons
we thoroughly detailed in Chapter 2, Kerr cat qubits suffer from thermal-
induced leakage that limits the scaling of their noise bias. This likely explains
that experimental works have not yet been able to measure an exponential
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noise bias with Kerr cat qubits, and suggests that more advanced stabilization
protocols should be devised.

One such protocol was presented in this thesis, with a Hamiltonian con-
finement scheme based on a two-to-one photon exchange between a cavity and
a buffer mode. While this scheme is qualitatively similar to Kerr Hamiltonian
confinement, it is better suited to being combined with two-photon dissipation
to retrieve the exponential noise scaling thanks to its bounded energy spec-
trum degeneracies, and implementation similarities to the dissipative scheme.
We were thus able to demonstrate single- and two-qubit gates with improved
fidelities while retaining the essential exponential suppression of bit-flip er-
rors. We also showed a viable path towards the experimental realization of
such protocols, with a thorough study of the various spurious effects that
could limit the viability of the proposal.

In the coming years, it is expected that research on cat qubits will move to-
wards multi-qubit studies, with the eventual realization of an error-correction
code hosting a fully protected qubit with minimal hardware. But this objec-
tive would require some key advances to be achieved. First, two-qubit gates
on cat qubits have yet to be demonstrated. While the theoretical proposal
of [Guillaud & Mirrahimi 2019] yields a fully protected and bias-preserving
CNOT gate, this thesis introduced an alternative approach to simplify the
experimental CNOT apparatus by turning off target qubit stabilization dur-
ing the gate. For a fast enough gate performed in a low-leakage system, this
proposal also preserves the noise bias at the cost of a subsequent idling time
to refocus leakage. Second, all single- and multi- qubit gates should feature
fidelity errors below the threshold of the error-correction code. In this regard,
standard gate designs based on the Zeno effect scale according to the square
root of the main source of dissipation. This is likely to limit experimental
advances towards threshold-compatible gates, and hence why Chapter 3 was
fully dedicated to the design of high-fidelity Zeno gates for dissipative cat
qubits.

Indeed, this thesis introduced four new designs of dissipative cat qubit
gates that can be engineered with standard superconducting circuit tools. By
noting that errors during Zeno gates are a result of entanglement between the
cat qubit memory and its highly damped buffer mode, we have devised two
gate designs based on retrieving the information leaked out to the environ-
ment. The first relied on an integrated photodetection apparatus, and the
second on reservoir engineering such that information feedback was made au-
tonomously. Then, we also presented two gate designs whose objectives were
to minimize the information leaked out the environment altogether. This time,
we showed how precise Hamiltonian engineering can yield high-fidelity gates
while limiting the impact of second-order Zeno effects, but also presented how
to circumvent the linear Zeno scaling altogether through dissipation-based
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gate engineering.

Perhaps the most significant contribution of this work on Zeno gates
was not the specific gate designs, but how the buffer mode was reconsid-
ered into the big picture. Indeed, this ancillary mode was first introduced
in [Leghtas et al. 2015] to mediate the two-to-one photon exchange coupling
and eventually engineer the sought after two-photon dissipation through reser-
voir engineering. In the limit of a large damping of the buffer, its adiabatic
elimination could be carried out to leave only the mode of interest: the mem-
ory. However, we now realize that non-trivial dynamics can take place between
both cavities, which can be leveraged for gate engineering, but also for readout
as we showed in [Réglade et al. 2023]. More than actual operations, it is likely
that lowering the buffer mode damping rate could also be beneficial towards
the realization of a cat qubit error-correction code by increasing effective con-
finement rates. In this case, it is ever more important to include the buffer
mode in experiment models, since conditions for adiabatic elimination are not
anymore met.

Towards the realization of an error-correction code for cat qubits, another
important aspect lies in the optimization of experimental processes. Because
error correction features a tipping point below which logical errors scale ex-
ponentially in the code distance, it is of utmost importance to exploit the
full capabilities of every experimental apparatus. In Chapter 4 of this thesis,
we introduced the adjoint state method for open quantum systems for the
numerical optimization of any controllable operation on any quantum device.
Through the adjoint state of the density matrix, the method makes it possi-
ble to compute the gradient of an arbitrary cost function in constant memory
cost. This opens the way to a plethora of optimal control problems that were
previously inaccessible, such as transmon readout as was demonstrated in this
thesis. For this precise application in which dissipation is key to the problem
statement, we have shown interpretable pulses that improved upon standard
readout protocols by up to a factor two in speed. We however expect that the
method will see applications in many quantum devices.

The adjoint state method is particularly relevant for the study of
continuous-variable systems due to the inherent large dimension of their
Hilbert spaces. For instance, there is little analytic intuition into the con-
trol of GKP grid states, especially with regards to multi-qubit operations,
such that the ability to perform optimal control on such systems would be
highly beneficial. In the context of cat qubits, one specific application to the
adjoint state method that arose recently was the optimization of the readout
pulse of [Réglade et al. 2023]. Indeed, the transmon-free readout protocol in-
volved different pulses on memory and buffer, chained together with varying
durations and amplitudes. While the short length of the protocol was key
to minimize dissipation and maximize readout contrast, the precise controls
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were chosen through trial and error due to a lack of analytical results. We
can thus expect sizeable improvements from using the adjoint state method
in this context.

In the broader sense, this thesis has been trying to improve upon the
physical implementation of cat qubits, through more involved stabilization
protocols, new gate designs, or even through the optimal control of operating
pulses. While it is certain that progress has been made in this regard, we
have also realized how improving these aspects often involves more complex
experimental apparatuses and non-standard engineering. However, with the
rapid progress of superconducting circuits, and in particular with how well
experimental physicists can now handle the specificities of circuit Hamiltoni-
ans, we can expect that the proposals presented in this thesis may fall within
standard control within the coming years. If so, we have analyzed and quan-
tified the possible gains that could be realized with such designs. In the quest
towards fault-tolerant quantum computation with cat states, it is likely that
at least some of these complexities will be overcome.

More than cat qubit analysis, several conclusions of our study can be
generalized in the context of reservoir engineering. First, these systems should
be studied as a whole by considering the buffer mode used for dissipation
engineering from start to finish. We have shown how non-trivial effects can
arise from interaction with this buffer, and how it can be leveraged for gate
or readout improvements. Stabilization mechanisms can then be adapted to
one requirement or the other. Second, a strong robustness to leakage can
be expected from reservoir engineering, as shown from our study of cat qubit
confinement mechanisms. This result should generally hold for a large range of
systems, since entropy is extracted from the mode of interest and transferred
to the reservoir and into the environment.
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Appendix A

Invariance under joint phase
conjugation

In this appendix, we show how the Lindblad master equation of a Z(θ) gate is
invariant under a joint x-axis phase conjugation of the cat and buffer modes.

A.1 Phase conjugation superoperator

An x-axis phase conjugation consists in flipping the sign of quadrature x
while keeping quadrature p unchanged [Cerf & Iblisdir 2001]. While this is
an unphysical transformation — it does not preserve commutation relations
—, it can be understood as a time-reversal operator. It is also a stan-
dard example of a superoperator which is positive but not completely pos-
itive [Wolf & Cirac 2008]. In our case, the symmetry of the master equation
by joint phase conjugation implies that the logical bit information of the cat
qubit (encoded in the x-axis) is also encoded in the x-axis of the buffer mode,
and so in an exact manner.

Let us first define the x-axis phase conjugation superoperator on a single
mode, which we denote as C. By definition, this superoperator is such that
C |x⟩⟨x| = |−x⟩⟨−x| and C |p⟩⟨p| = |p⟩⟨p| where |x⟩ and |p⟩ are quadrature
eigenstates. By linearity, the identities Cx = −x and Cp = p directly follow
since x =

∫
dx · x |x⟩⟨x| and p =

∫
dp · p |p⟩⟨p|. More generally, we have that

Cf(x) = f(−x) for any function f . Reinserting |x⟩ =
∫
dp e−ipx |p⟩ in this

identity, we have that∫
dxf(x)

∫∫
dpdp′e−i(p−p′)x · C |p⟩⟨p′|

=

∫
dxf(x)

∫∫
dpdp′ei(p−p′)x · |p⟩⟨p′|

(A.1)

Rearranging the integrals and denoting f̃(p) the Fourier transform of
f(x), (A.1) reads ∫∫

dpdp′f̃(p− p′) · (C |p⟩⟨p′| − |p′⟩⟨p|) = 0 (A.2)
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Since this equation holds for any function f̃ , then we have that C |p⟩⟨p′| =
|p′⟩⟨p|, and similarly for the other quadrature, C |x⟩⟨x′| = |−x′⟩⟨−x|. In par-
ticular, notice the transposition in both of these relations, which accounts for
the time-reversal property of the conjugation.

Before moving on, there is a last identity that will be useful for our up-
coming derivation. For any density matrix ρ, we have

C(xρ) = C
(∫∫

dxdx′xρ(x, x′) |x⟩⟨x′|
)

=

∫∫
dxdx′xρ(x, x′) |−x′⟩⟨−x|

=

∫∫
dx′dx(−x′)ρ(−x′,−x) |x⟩⟨x′|

= −C(ρ)x .

(A.3)

Using that C2 yields the identity superoperator, we directly get the converse
identity, C(ρx) = −xC(ρ). Similarly for the other quadrature, we have that
C(pρ) = C(ρ)p and C(ρp) = pC(ρ).

A.2 Master equation invariance

Our goal is now to show that the joint phase conjugation of the cat and buffer
modes is a symmetry of the Z(θ) gate dynamics. This involves showing that
the joint phase conjugation superoperator CAB = CA ⊗CB commutes with the
Lindblad superoperator L, where

L = LZ + LAB + L1,A + L1,B (A.4)

where LZ = −i[HZ , · ], LAB = −i[HAB, · ], L1,A = κaD[a] and L1,B =
κbD[b]. By linearity, it is sufficient to show the commutation relation for each
term in the Lindblad superoperator. For the single-mode cavity drive with
Hamiltonian HZ = εZxa, we get

C(LZ(ρ)) = −iεZC(xaρ− ρxa)

= −iεZ (−C(ρ)xa + xaC(ρ))
= LZ(C(ρ)) .

(A.5)

For the two-photon exchange term, the Hamiltonian reads HAB = g2(a
2 −

α2)b† + h.c.. Rewriting the Hamiltonian in terms of quadrature operators
yields

HAB/g2 = (x2
a − p2

a)
xb

4
+ (paxa + xapa)

pb

4
− α2xb . (A.6)
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Since this Hamiltonian features only terms with an odd number of quadrature
x and even number of quadrature p operators, using the identities (A.3) and
the related ones yields an overall minus sign and a transposition, from which
we infer

C(LAB(ρ)) = LAB(C(ρ)) . (A.7)

Finally, for the single-photon loss operators on either mode L1 = D[x + ip],
and again using the (A.3) identities,

C
(
L1(ρ)

)
= C

(
(x+ ip) · ρ · (x− ip)

)
− C

(
(x2 + p2) · ρ

)
/2− C

(
ρ · (x2 + p2)

)
/2

= (x+ ip) · C(ρ) · (x− ip)

− C(ρ) · (x2 + p2)/2− (x2 + p2) · C(ρ)/2
= L1(C(ρ))

(A.8)

By linearity, the required result is shown, CL−LC = 0. It shows the invariance
of the Z(θ) gate master equation under a joint x-axis phase conjugation of
both cat and buffer modes.
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