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Université de Bordeaux Rapporteur

M. Robert MCMEEKING
Professeur, Department of Mechanical Engineering, University of
California, Santa Barbara Examinateur

M. Martin GENET
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Abstract

This work is concerned with the development, calibration, and numerical implementation
of a novel fully explicit isotropic, rate-independent, elasto-plastic model for porous metallic
materials. The microstructure is assumed to consist of a random, with uniform probabil-
ity, distribution of randomly oriented spheroidal voids of the same shape. The proposed
model is based on earlier homogenization estimates that use a Linear Comparison Compos-
ite (LCC) theory. The resulting expressions exhibit the simplicity of the well known Gurson
model and, thus, their numerical implementation in a finite element code is straightforward.
To assess the accuracy of the analytical model, we carry out detailed finite-strain, three-
dimensional finite element (FE) simulations of representative volume elements (RVEs) with
the corresponding microstructures. Proper parameter calibration of the model leads to fairly
accurate agreement of the analytical predictions with the corresponding FE average stresses
and porosity evolution. We show, both analytically and numerically, that the initial aspect
ratio of the voids has a significant effect on the homogenized effective response of the porous
material leading to extremely soft responses for flat oblate voids (e.g., aspect ratio less than
0.5) especially at high stress triaxialities.

Next, we examine the computational issues related to the numerical implementation of
rate-independent constitutive models that lead to softening behavior. It is shown analytically
that elastic-plastic models based on “local” continuum formulations that do not incorporate
a characteristic length scale may lead to loss of ellipticity of the governing partial differen-
tial equations (PDEs) and mesh-dependent numerical solutions. To remedy the associated
numerical problems, we propose an implicit non-local version of the porous model developed
in this work which is based on the introduction of a non-local porosity variable determined
from the solution of an additional PDE. We show both analytically and numerically that
the regularized version of the model allows for preservation of the elliptic properties of the
governing equations yielding mesh-independent, converged solutions in the post-bifurcation
regime. The bifurcation point (i.e., strain-to-localization) is found to be highly dependent on
the micro-void’s shape, with very flat voids (e.g., aspect ratio less than 0.3) leading to lower
localization strains. The material length introduced by the non-local formulation is found
to have minimal effect on the predicted bifurcation point, only affecting the post-bifurcation
gradient of the macroscopic stress-strain curve and the size of the highly strained zone in
the structure.

In the last part of this study, both the local and the non-local versions of the model
are efficiently implemented in a commercial finite element code (ABAQUS). The models are
used for the numerical solution of boundary value problems (BVPs) related to forming and
ductile fracture processes under both quasi-static and dynamic conditions. In particular, the
industrially relevant problems of Hole expansion (HET) and Charpy impact (CVN) test, the
cup-and-cone fracture phenomenon as well as ductile fracture of a specimen with complex
geometry and comparison with corresponding experimental results are analyzed in detail.
Numerical predictions in all cases indicate that ductility is an increasing function of the void
shape parameter and materials comprising flat oblate voids of low aspect ratio exhibit early
macroscopic crack initiation and propagation compared to materials with spherical/almost
spherical voids. Finally, the model’s capability to reproduce experimental results with suf-
ficient accuracy suggests that it can be utilized to provide predictions with only a small
amount of parameters that may be calibrated from either micromechanics calculations or
experimental data.
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Résumé

Ce travail porte sur le développement, la calibration et l’implémentation numérique d’un
nouveau modèle élastoplastique entièrement explicite, isotrope et indépendant du taux de
déformation pour les matériaux métalliques poreux. La microstructure est supposée être con-
stituée d’une distribution aléatoire de vides sphéroïdaux de même forme, orientés de manière
aléatoire et avec une probabilité uniforme. Le modèle proposé est basé sur des estimations
d’homogénéisation antérieures qui utilisent une théorie de comparaison composite linéaire
(LCC). Pour évaluer l’exactitude du modèle analytique, nous réalisons des simulations élé-
ments finis tridimensionnelles à grandes déformations d’éléments de volume représentatifs
(RVE) avec les microstructures correspondantes. Une calibration appropriée des paramètres
du modèle conduit à un accord assez précis des prédictions analytiques avec les contraintes
moyennes éléments finis et l’évolution de la porosité. Nous montrons, à la fois analytique-
ment et numériquement, que le rapport d’aspect initial des vides a un effet significatif sur
la réponse effective homogénéisée du matériau poreux, entraînant des réponses extrêmement
souples pour les vides très oblates, surtout à des triaxialités de contraintes élevées.

Ensuite, nous examinons les problèmes computationnels liés à l’implémentation numérique
de modèles constitutifs indépendants du taux de déformation qui conduisent à un comporte-
ment d’adoucissement. Il est démontré analytiquement que les modèles élastoplastiques basés
sur des formulations continues “locales” peuvent entraîner une perte d’ellipticité des équa-
tions aux dérivées partielles (EDP) et des solutions numériques dépendantes du maillage.
Pour remédier les problèmes numériques associés, nous proposons une version implicite non
locale du nouveau modèle poreux, basée sur l’introduction d’une variable de porosité non
locale déterminée à partir de la solution d’une EDP supplémentaire. Nous montrons à la fois
analytiquement et numériquement que la version régularisée du modèle permet de préserver
les propriétés elliptiques des équations du problème, produisant des solutions convergentes
indépendantes du maillage dans le régime post-bifurcation. Le point de bifurcation s’avère
être fortement dépendant de la forme des micro-vides, avec des vides très plats (par exemple,
un rapport d’aspect inférieur à 0,3) entraînant des déformations à la localisation plus faibles.
Il est constaté que la longueur matérielle introduite par la formulation non locale a un effet
minimal sur le point de bifurcation prédit, affectant uniquement le gradient post-bifurcation
de la courbe contrainte-déformation macroscopique et la taille de la zone fortement déformée
dans la structure.

Dans la dernière partie de cette étude, les versions locale et non locale du modèle sont
efficacement implémentées dans un code commercial d’éléments finis (ABAQUS) et utilisés
pour la solution numérique de problèmes de valeurs limites liés aux processus de formage
et de rupture ductile. En particulier, les problèmes de test d’expansion de trou (TET) et
de test d’impact Charpy (essai Charpy), le phénomène de rupture “cup-and-cone” ainsi que
la rupture ductile d’un spécimen à géométrie complexe et la comparaison avec les résultats
expérimentaux correspondants sont analysés en détail. Les prédictions numériques indiquent
que la ductilité est une fonction croissante du paramètre de forme des vides, et les matériaux
composés de vides oblates de faible rapport d’aspect présentent une initiation et une prop-
agation macroscopiques de fissures prématurées par rapport aux matériaux avec des vides
sphériques ou presque sphériques. Enfin, la capacité du modèle à reproduire les résultats
expérimentaux avec une précision suffisante suggère qu’il peut être utilisé pour fournir des
prédictions avec seulement un petit nombre de paramètres qui peuvent être calibrés à partir
de calculs micromécaniques ou de données expérimentales.
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CHAPTER 1

Introduction

1.1 Modeling of porous elasto-plasticity

The problem of ductile fracture of metallic materials is closely related to the distribution
and evolution of voids in the underlying microstructure. The presence of these voids can be
attributed either to manufacturing induced defects, interface decohesion between the matrix
and dispersed secondary particles or particle breakage during deformation. The mechanisms
driving the process may vary significantly depending on the loading conditions and the local
stress states developed (Noell et al., 2018), however the most prominent ones involve the
growth, nucleation, and coalescence of voids (Pardoen and Hutchinson, 2000; Benzerga and
Leblond, 2010; Benzerga et al., 2016).

The action of the mechanism of void nucleation, growth, and coalescence during ductile
fracture is rather complex taking place prior, after or simultaneously with the localization
of deformation into “shear bands” (Tekoğlu et al., 2015). From a physical perspective, shear
bands can emerge in clean single crystals, polycrystalline materials, non-porous materials,
or porous metals due to excessive localization of deformation in narrow zones as a result
of different mechanisms acting at various length scales. In porous metallic materials shear
bands may appear either due to growth of voids which leads to softening of the material and
localization of deformation or the emergence of shear bands and growth and coalescence of
voids may happen simultaneously. One possibility is that microvoids that exist in a number
of polycrystalline metals act as nucleation sites for new voids driven by the deformation of
the material. This procedure gives rise to local softening due to the growth and coalescence
mechanism which in turn leads to localization of deformation into shear bands that engulf
the aforementioned voids. Alternatively, especially in the cases where voids exist at multi-
ple scales in the material, microvoids nucleate, grow and coalesce usually in the ligaments
between larger voids while, at the same time, this procedure also marks the initiation of
localization of deformation in the ligament area.

Perhaps, the most well-known constitutive model for the description of the macroscopic
behavior of porous ductile materials is that of Gurson (Gurson, 1977), which was derived
using a combination of limit analysis and homogenization by considering a spherical void
embedded into a rigid-plastic von Mises matrix while assuming that the void may change
its size but not its shape during plastic deformation. Despite the model’s inability to yield
accurate predictions for shear dominated stress states due to its restrictive assumptions,
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the simplicity of the model’s formulation and the versatility regarding its computational
implementation have made it very attractive and several extensions have been proposed
over the years. Phenomenological modifications to account for void nucleation and criteria
for void coalescence were proposed soon after (Chu and Needleman, 1980; Tvergaard and
Needleman, 1984), while modifications to include dependence on the third invariant J3 of
the stress deviator in order to account for shear failure effects were later proposed by several
authors (Nahshon and Hutchinson, 2008; Zhou et al., 2014a; Dæhli et al., 2018; He et al.,
2021; Rousselier, 2022; Khan et al., 2023). Concerning the latter, such dependencies on
physical grounds stem from the fact that in real materials, voids are not spherical but they
may rather have irregular shapes, and this void shape effect can play a detrimental role
in the predictions of ductile fracture. For example, finite element calculations conducted
by Tvergaard (2009), Nielsen and Tvergaard (2011), and Nielsen et al. (2012) indicate that
void shape changes or void rotations can reduce the load-carrying capacity of the material
in shear-dominated loadings without increase in porosity due the interaction of flattened,
crack-like neighboring voids (Anderson et al. (1990)).

In this regard, various models have been proposed in the literature that assume more
general void shapes and/or void rotation. Among others, notable references are the mod-
els proposed by Leblond and co-workers (Gologanu et al., 1993, 1994, 1997) for spheroidal
voids and Madou and Leblond (Madou and Leblond, 2012a,b) for general ellipsoidal voids.
These models, which were also derived through a limit analysis approach on appropriately
selected representative cells by using kinematically admissible velocity fields, serve as exten-
sions to the Gurson model that incorporate void shape effects. However, even though these
models take into account more general void shapes and their evolution, they do not assess
void rotation in a seamless manner. Another more rigorous class of homogenization models
for porous materials was proposed by Kailasam et al. (1997) and Kailasam and Ponte Cas-
tañeda (1998) in the general context of viscoplasticity. These were developed based on the
variational principles initially presented in the works of Ponte Castañeda (1991) and Willis
(1991) on homogenization of nonlinear composites providing an upper bound for the effective
yield function of the porous material using a linear comparison composite (LCC) methodol-
ogy. Even though in these models void rotation due to plastic deformation is accounted for,
bounds derived with this methodology were found to be very stiff in the case of materials
with an isotropic matrix and spherical voids subjected to large hydrostatic loadings (Michel
and Suquet, 1992). Modifications to existing models (e.g., Danas and Aravas (2012)) and
improved (but more complex) models derived using similar principles (Danas et al., 2008b;
Danas and Ponte Castañeda, 2009a,b; Agoras and Ponte Castañeda, 2013) were later pro-
posed in an effort to amend these issues. Moreover, expressions from those homogenization
models were directly borrowed in the limit analysis based models mentioned previously to
include void orientation changes (Madou et al., 2013; Morin et al., 2017).

The aforementioned models share some common characteristics: i) they assume a first or-
der effect of void shape and/or void orientation evolution (put in other words: on anisotropy
induced due to void shape changes) on the related mechanisms that lead to ductile fracture
and ii) they consider microstructures comprising uniform or via composite sphere/ellipsoidal
assemblage type distributions of ellipsoidal voids that all have the same orientation (uni-
directional microstructures). More often than not, the initial microstructure is assumed
to comprise spherical voids to start off with an initially isotropic response. Nevertheless,
metallic materials usually contain an initial distribution of non-spherical, irregularly shaped
pores (Noell et al., 2020; Wang et al., 2021; Limodin et al., 2023). In some cases pores may
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have rather flat shapes that can be even considered microcracks and are randomly oriented
in space (Meynard et al., 2022). Yet, the response of these materials remains fairly isotropic
in the early stages of deformation implying that those shapes are distributed with a rather
random orientation. Examples from microstructures of metallic materials with distributions
of irregularly shaped nano- and microvoids can be seen in Fig. 1.1.

Figure 1.1 – Microstructures of metallic materials containing voids with irregular shapes: (a) High-
angle annular dark-field scanning transmission electron microscopy image highlighting nanovoid
distribution in Cu material (Noell et al., 2020) (b) Void distribution from two-dimensional charac-
terization of LFC A319 Al-Si alloy (Wang et al., 2021), (c) 3D rendering of pores cluster in the LFC
A319 Al-Si alloy (Wang et al., 2021).

In this view, earlier numerical and theoretical homogenization studies in elasticity (Gatt
et al., 2005; Anoukou et al., 2018; Zerhouni et al., 2021) as well as limit analysis approaches
for rigid-perfectly plastic materials (Vincent and Monerie, 2008; Shen et al., 2011) suggest
that, the macroscopic properties of porous materials can be quite different, at the same
porosity levels, for microstructures that consist of randomly orientated voids with different
initial shapes. Such observations imply that initial void shape alone could potentially have
important effects on the effective behavior and porosity evolution of the porous material
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and consequently on its overall ductility. A more realistic modeling approach would need to
consider voids which are not necessarily all aligned in the same direction but are randomly
oriented in the matrix. One way to investigate this effect would be a potential extension of the
model proposed in Kailasam et al. (1997), Danas and Ponte Castañeda (2009a) or Danas and
Aravas (2012) for the inclusion of multiple (but finite) void families with the same shape but
different orientations; in that case the general theory presented by Kailasam (Kailasam and
Ponte Castañeda, 1998) in the context of nonlinear homogenization for multiple-phase com-
posites with “particulate” microstructures could be used. Application of such an approach
is computationally inefficient in practice, since it would lead to a considerable increase of
the underlying microstructural variables (porosity, void shape, and orientation evolution)
that would need to be kept track of. The aim of this work is to showcase a computationally
feasible way of addressing such randomly oriented void distributions accepting a certain level
of calibration in the final model.

1.2 Computational issues and regularization schemes

A well-known problem in the computational implementation of rate-independent plasticity
models that can lead to softening material response (such as porous plasticity or continuum
damage models) is that finite element (FE) solutions depend on the mesh size and thus
they are unreliable. The mathematical reason for this behavior is the loss of ellipticity of
the governing partial differential equations (PDEs), which allows for the development of
non-smooth solutions, such as shear bands of zero thickness. Since spatially discontinuous
velocity gradients can develop only across characteristic surfaces (or curves in 2D) and elliptic
problems have no real characteristics, all solutions of elliptic problems are smooth functions
(e.g., see Zauderer (2006), p. 135); even when non-smooth boundary conditions are used, the
elliptic operators smooth out the solution in the interior of the problem domain. In elliptic
problems, “shear bands” can still initiate at imperfections, appear as highly strained regions
of finite width in a smooth solution, and can be accurately represented by finite element
solutions, which converge as the mesh is refined.

When ellipticity is lost, spatially discontinuous velocity gradients (i.e., shear bands of zero
thickness) may appear in the solution. In such cases, the predicted thickness of the shear
band in finite element solutions reduces as the mesh is refined, but is limited by the element
size; as the mesh is refined, the finite element solution does its best in trying to reduce the
predicted thickness of the shear band, but it can never reproduce a discontinuous velocity
gradient and capture a zero-thickness shear band, unless special elements are designed or
the element boundaries are perfectly aligned with the direction of the shear band (Jiràsek,
2000). As a consequence, the finite element solutions become mesh-size dependent. This
difficulty of capturing non-smooth solutions is not limited to the finite element method and
it would appear in any numerical method used to discretize the problem. To overcome the
numerical difficulties associated with loss of ellipticity, the problem must be “regularized”.

In Fluid Mechanics, regularization is often used to modify the formulation of ill-posed
problems by introducing neglected physical effects like surface tension, viscosity, compress-
ibility, strain gradients, etc., which have usually a small effect in the solution, but can become
important under certain circumstances. Joseph and Saut (1990) presented several examples
of ill-posed problems that are “Hadamard unstable”1 and arise in problems involving inter-

1Joseph and Saut (1990) characterize a problem as “Hadamard unstable to short waves”, when the growth
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faces, oil recovery, granular media, and viscoelastic fluids, which are regularized in different
ways.

In Solid Mechanics, several “non-local” plasticity theories either of the integral or gradi-
ent type have been introduced to regularize problems involving rate-independent softening
materials (Bažant et al., 1984; Bažant and Pijaudier-Cabot, 1988; Aifantis, 1984, 1987). For
instance, in the context of continnum damage mechanics, Pijaudier-Cabot and Bažant (1987)
proposed to replace the local variable used to describe damage at any point in the continuum
with a non-local one defined as the corresponding spatial average over a representative vol-
ume centered at the material point. In the context of porous plasticity modeling, an integral
non-local version of the Gurson’s model has been proposed to be used to achieve “damage
delocalization” and alleviate the mesh dependence of the FE solutions (Leblond et al., 1994b;
Needleman and Tvergaard, 1998; Enakoutsa et al., 2007; Enakoutsa, 2014). In this case, the
authors suggest the introduction of a non-local porosity variable whose evolution is calcu-
lated directly from a convolution integral of its local counterpart with an associated weight
function. However, as pointed out by several authors (Peerlings et al., 1996, 2001, 2002;
Enakoutsa et al., 2007), direct use of integral non-local formulations can lead to question-
able spatial interactions between material points in the vicinity highly concave geometries
(such as notches or cracks).

Coleman and Hodgdon (1985) and Aifantis (1987, 1999) used a gradient version of the
von Mises yield criterion in which the flow stress of the material is a function of the equivalent
plastic strain ε̄p and its Laplacian ∇2ε̄p. According to Aifantis (1992), the gradient terms
account for underlying dislocation mechanisms at the microscale and provide a means of
communication between the various scales in the macroscopic constitutive equations. These
models are referred to as “explicit”, since they directly modify the yield condition; the yield
function becomes a partial differential equation (PDE) and the corresponding plastic load-
ing/unloading criteria become more involved. Also, additional boundary conditions for ε̄p
are required on the boundary of the plastic zone. All these complicate the numerical imple-
mentation of such models. In finite element solutions, the yield criterion (a PDE) is enforced
in a weak sense over the plastic zone and the numerical implementation of the corresponding
plastic loading/unloading criteria is not straightforward (Mühlhaus and Alfantis, 1991; de
Borst et al., 1995; Ramaswamy and Aravas, 1998a,b). The implications associated with the
boundary conditions on the moving elastic-plastic boundary in this class of models have been
discussed by Peerlings (2007). The governing equations of explicit gradient plasticity model
are elliptic, unless the stresses become of the same order as the elastic modulus, which is not
possible in metallic materials (Benallal and Tvergaard, 1995).

Another class of gradient plasticity models has been put forth by Peerlings et al. (1995,
1996), Geers et al. (2001), and Engelen et al. (2003), who used the von Mises yield crite-
rion in which the flow stress depends on a non-local equivalent plastic strain ep, which is
defined in terms of the usual local equivalent plastic strain ε̄p from the solution of a mod-
ified Helmholtz type PDE and appropriate boundary conditions. In this class of models,
the yield function remains an algebraic equation and depends on both the local (ε̄p) and
non-local (ep) equivalent plastic strains. Such models are known as “implicit”, since the alge-
braic yield function is enhanced by the non-local quantity ep, which is defined implicitly in
terms of ε̄p from the solution of the modified Helmholtz equation. The modified Helmholtz
equation is solved over the entire domain Ω of the problem (as opposed to the plastic zone

rate of a harmonic perturbation tends to infinity as the wavelength tends to zero (or the wavenumber tends
to infinity) at any fixed time.
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Ωp only) and the required additional boundary conditions are now defined on the external
boundary ∂Ω of the elastoplastic body; this avoids the aforementioned difficulties associated
with the moving boundary of the plastic zone. A major advantage of the implicit non-local
models is that they can be easily implemented in traditional finite element codes (such as
ABAQUS) by taking advantage of the similarity between the modified Helmholtz and the
heat transfer equations (Azinpour et al., 2018; Seupel et al., 2018; Papadioti et al., 2019;
Aravas and Papadioti, 2021).

Non-local models based on energetic and thermodynamic considerations have also been
proposed in the literature. For instance, another general class of gradient plasticity models
has been also introduced by Fleck and Hutchinson (1993, 1997, 2001) and Gurtin and co-
workers (Gurtin, 2003; Gurtin and Anand, 2005; Gurtin et al., 2010). These models are based
on the principle of virtual power, include plastic strain gradients and higher-order stresses
in the expression for the internal power, and fit within the framework laid down by Mindlin
(Mindlin, 1964; Mindlin and Eshel, 1968). However, the finite element implementation of
this class of models is more involved. Forest (2009) used a systematic formal procedure
known as “micromorphic approach” and presented a thorough thermodynamically consistent
unifying framework that covers several classes of gradient elastoviscoplasticity and damage
models and is based on the introduction of additional “micromorphic” internal degrees of
freedom associated with selected internal variables in the standard constitutive model. The
commonly used explicit and implicit non-local plasticity and damage models can be retrieved
as special cases of the micromorphic formulation. More recently, Abatour and Forest (2023)
presented an interesting extension of micromorphic strain gradient plasticity models, which
incorporates the effects of the gradient of saturating variables instead of the gradient of ε̄p,
which is increasing monotonically during plastic flow.

In all non-local plasticity theories (integral or gradient based), dimensional consistency
requires the introduction of one or more “characteristic lengths” `i. The `i’s are related to
the material microstructure (grain size in a polycrystal, void size or spacing in a porous
medium etc.) and are small compared to the size of the problem domain. Since the `i’s
are small, the non-local terms have a negligible influence on solutions with moderate spatial
gradients; however, the additional non-local terms can affect the solution substantially in
regions of large spatial gradients, such as shear bands and strong geometrical imperfections
or features (such as holes, corners, material interfaces etc.). The presence of higher-order
spatial gradients in the non-local terms of the constitutive model require additional boundary
conditions and always affect the mathematical character of the problem (even when they
have a small influence on solutions with slow spatial variations); for example, the additional
gradient terms may retain ellipticity and eliminate discontinuous solutions. The additional
terms that involve the higher-order derivatives and the small `i’s in the non-local models can
be thought of as perturbations to the corresponding local models. Since the `i’s multiply
the terms with the highest spatial derivatives, the limit `i → 0 leads to differential equations
of lower order than the original; this is commonly referred to as a singular perturbation
problem and involves boundary layers, i.e., regions in which rapid changes occur in the value
of a variable in the problem (e.g., see Van Dyke (1975) or Bush (1992)).

1.3 Scope of the study
The present study is concerned with the formulation and numerical application of a new
fully explicit elastic-plastic model for porous materials with random microstructures. The
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ultimate goal is to develop fully explicit and easy to implement models that (a) can be used
both for the investigation of void shape effects on the macroscopic behavior of porous metallic
materials and for the simulation of forming and ductile fracture problems in structures and
(b) are free from the computational issues related to softening material behavior. The
research framework adopted in the work follows a three-step approach graphically depicted
in Fig. 1.2 which consists of:

Homogeneous
Material with

Microstructural
Variables

Figure 1.2 – Graphical representation summarizing the research framework of the present disserta-
tion.

• Formulation of the constitutive equations for the analytical homogenization-based
model that incorporates void shape effects in an efficient manner.

• Calibration of the analytical model through comparison with Numerical Representative
Volume Element (RVE) calculations and the use of a small set of parameters.

• Numerical implementation into commercial finite-element (FE) codes, solution of in-
dustrially relevant structural problems, and comparison with available experimental
results.

In this thesis, we propose a new rate-independent, elastic-plastic model for porous metals
with initially random void shape orientations distributed randomly and isotropically in space.
The model can be used to describe the effective response of metallic materials with a von
Mises matrix; possible extensions to include dependence on the third invariant J3 of the
deviatoric stress can be easily incorporated in a heuristic manner for example along the lines
described in Benzerga and Leblond (2010). The model takes an explicit form similar to
that of Gurson, but it incorporates spheroidal voids, albeit randomly oriented, seamlessly
through homogenization. This is achieved by the equivalence between projection into the
space of isotropic fourth-order tensors and integral orientation averaging (Gatt et al. (2005);
Moakher and Norris (2006)), leading to an overall isotropic elastic-plastic behavior. To keep
the model simple with a minimum set of microstructural variables, all families of voids are
assumed to have the same shape described by a single aspect ratio, which does not evolve
with deformation but rather remains constant and acts as a parameter for the model. The
idea for assuming a distribution of spheroids instead of general ellipsoids is twofold. Firstly,
the spheroidal voids cover the interesting special case of flat random oblate voids (spheroids
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with aspect ratio w → 0), which in the limit of vanishing porosity correspond to random
cracks (Willis, 1977; Vincent, 2006), and can have a detrimental impact on the load-carrying
capacity of the material. Secondly, in the calculation of the so-called “microstructural”
tensors for general ellipsoids that appear in the constitutive equations (see for example
Aravas and Ponte Castañeda (2004)), elliptic integrals of the first and second kind need
to be evaluated numerically, whereas, in the case of spheroidal voids, explicit analytical
expressions can be obtained. This allows for a straightforward implementation of the model
in finite element codes by using a methodology similar to that of the original Gurson model.

Next, we carry out detailed numerical RVE homogenization FE calculations on unit cells
containing randomly oriented and distributed spheroidal voids which are used to calibrate the
analytical homogenization model proposed. In order to assess the validity of the analytical
model with respect to local micromechanics calculations we compare a broad range of possible
microstructural configurations by considering voids of various shapes and initial volume
fractions loaded under different macroscopic stress states. Based on the findings of previous
studies (Cao et al., 2015; Mbiakop et al., 2015a), we propose a simple interpolation between
quadratic and exponential dependence of porosity evolution on the hydrostatic stress to be
used in the analytical model. This allows for very good agreement with average RVE response
to be achieved using only a few parameters. Also, in order to overcome the known numerical
issues related to loss of ellipticity in problems where localization is present, we propose
and implement an implicit gradient version of the porous model. An implicit formulation
is preferred due to the aforementioned advantages of this class of regularization models
concerning their numerical implementation in existing commercial FE codes (Azinpour et al.,
2018; Seupel et al., 2018; Papadioti et al., 2019; Aravas and Papadioti, 2021). We show, both
analytically and numerically, that the implicit non-local porous plasticity model retains the
ellipticity of the governing equations allowing for converged solutions to be possible in the
post bifurcation regime, provided that a fine enough spatial discretization is used.

In the last part of this work, we use the porous models to solve boundary value (structural)
problems of industrial relevance such as the Hole Expansion Test (HET), the Charpy V-notch
test, cup-and-cone fracture and ductile fracture of complex specimen used in the first Sandia
Fracture Challenge (SFC). The main purpose is to identify the effect of each parameter on
the macroscopic response as well as to address the accuracy of the new model in predicting
forming and ductile fracture processes observed experimentally. Calculations show that
ductility is an increasing function of the void shape parameter w, with microstructures of
flat oblate voids with low aspect ratio exhibiting early macroscopic crack initiation and
loss of stress-carrying capacity. Also, good qualitative and quantitative agreement between
simulations and experimental results indicates that the model can be used to make numerical
predictions with reasonable computational cost and using only a few parameters that need
to be calibrated.

1.4 Structure of the thesis
Following this introduction, the outline of the thesis organization is discussed next:

In Chapter 2 we present the main assumptions regarding material microstructure and the
formulation of the new porous elastic-plastic model. In particular, we first review the nec-
essary homogenization background and give explicit estimates for the linear and nonlinear
behavior of two-phase porous composites with aligned microstructures. Then, we prove ana-
lytically the equivalence between integral orientation averaging and projection into the space
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of isotropic fourth-order tensors and also discuss useful properties of projection tensors. This
equivalence is then used to derive estimates for isotropic porous materials, with randomly
oriented voids, by using the results from the homogenized response of composites compris-
ing a single family of unidirectional voids. The elastic and plastic constitutive behaviors are
treated separately and are later combined in order to yield the total elastic-plastic response.
Yield surfaces as predicted by the analytical model are shown for various microstructural
configurations indicating a strong dependence of plasticity on the void shape.

We present next in Chapter 3 the results of the numerical RVE homogenization frame-
work that was used in order to assess the new analytical model. First, we discuss a general
methodology for the application of periodic boundary conditions and constant macroscopic
stress ratio loading for multi-axial stress states; principal loading with constant stress tri-
axiality and Lode angle is given as a special case. Then, we showcase the results from FE
calculations regarding the average response of 3D unit cells containing randomly distributed
and oriented spheroidal voids of various shapes and initial volume fractions in a von Mises
matrix. These results are subsequently used to calibrate the analytical model by introducing
a small number of parameters. Using the calibrated model we examine the effect of the void
shape parameter on the evolution of microstructure for different average loading conditions
and microstructural configurations.

In Chapter 4 we discuss in detail the computational issues related to the FE imple-
mentation of rate-independent constitutive models with softening and propose a regularized
version of the model developed in Chapter 2. Specifically, we make a review of the non-local
regularization methods proposed in the literature and give the general definition of non-local
fields as the weighted averages of their corresponding local counterparts. We then derive the
modified Helmholtz PDE that defines the non-local porosity and re-write the constitutive
equations of the porous model in the context of an implicit gradient plasticity approach. We
analyze in detail the mathematical character of both the local and non-local problems and
show analytically that use of the non-local formulation preserves ellipticity. The analytical
predictions are also verified numerically using Rice’s localization analysis under plane strain
conditions where we find that the use of the non-local model leads to converged solutions in
the post bifurcation regime. In the context of this analysis, the effect of void aspect ratio on
localization is also investigated.

Finally, in Chapter 5, we use the models developed in this work in order to numerically
solve a series of BVPs under both quasi-static and dynamic conditions using the ABAQUS
FE software. First, we discuss the details of the numerical implementation concerning the
non-local model. We present the strong and weak forms of the implicit non-local elastic-
plastic model which serve as the basis for numerical implementation using the FE method.
We then introduce the necessary interpolations for the displacement and non-local porosity
fields (which is now an additional degree of freedom in the model) and derive the correspond-
ing residuals. A simple algorithm for the numerical integration of the non-local constitutive
equations is proposed and an efficient implementation procedure for the non-local model us-
ing ABAQUS FE software is described. We use the local porous plasticity model to simulate
the HET, which is used for steel formability characterization, especially in steel industry.
Then we use the non-local model to simulate problems where strain localization conditions
develop such as the cup-and-cone fracture of cylindrical specimens under tensile loading, the
Charpy V-notch test and the ductile fracture of the geometrically non-conventional fracture
specimen used in the first SFC.

Standard notation is used throughout. Boldface symbols denote tensors the orders of
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which are indicated by the context. All tensor components are written with respect to a fixed
Cartesian coordinate system with base vectors ei (i = 1, 2, 3), and the summation convention
is used for repeated Latin indices, unless otherwise indicated. Let a, b be vectors, A, B
second-order tensors, C, D fourth-order tensors and EEE, FFF eighth-order tensors. The following
products are used in the text: (a b)ij = ai bj, A : B = Aij Bij, (A·B)ij = Aik Bkj, (A B)ijkl =
Aij Bkl, (C : A)ij = CijklAkl, (A : C)ij = Akl Cklij, (C : D)ijkl = Cijpq Dpqkl, C :: D =
CijklDijkl, (CD)ijklpqrs = CijklDpqrs (EEE :: C)ijkl = Eijklpqrs Cpqrs, (C :: EEE)ijkl = Cpqrs Epqrsijkl,
and (EEE :: FFF)ijklpqrs = Eijklmnyz Emnyzpqrs. The inverse C−1 of a fourth-order tensor C that
has the “minor” symmetries Cijkl = Cjikl = Cijlk is defined so that C : C−1 = C−1 : C = I,
where I is the symmetric fourth-order identity tensor with Cartesian components Iijkl =
(δik δjl + δil δjk)/2, δij being the Kronecker delta.
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CHAPTER 2

Description of the Homogenization-Based Model

Chapter summary: In this chapter, the constitutive formulation of the new rate-independent,
isotropic elastic-plastic model for porous materials with random microstructures is described.
First, a review of the homogenization estimates for linear and nonlinear porous composites
with aligned microstructures which serve as a basis for the new model is presented. Then,
the equivalence between orientation averaging and projection of fourth-order tensors into
isotropic space is discussed in detail. Elasticity and plasticity are treated separately following
a decoupled homogenization approach and are then combined in order to yield the total
effective, elastic-plastic response. Instantaneous yield surfaces as predicted by the fully
analytical model for various microstructures are presented and the implications of the void
shape parameter on the macroscopic plastic response of the porous material are discussed.
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2.1 Homgenization: General results for aligned porous
microstructures

In this section we describe briefly the main features of the homogenization framework upon
which the newly proposed model is based on. In particular, we give a summary of estimates
for the linear-elastic and nonlinear porous materials comprising a random, with uniform
probability, distribution of aligned voids which are all characterized by the same shape and
orientation descriptors. The results given in the following are due to the energetic variational
approaches proposed by several authors (e.g., Hashin and Shtrikman (1962b), Willis (1977),
Ponte Castañeda (1991), Ponte Castañeda and Willis (1995)) in order to derive estimates
and/or bounds for the effective behavior of multiple-phase composite materials.

2.1.1 Effective constitutive equations
Consider the general case of a representative volume element occupying volume V with
boundary ∂V characterizing a two-phase composite material which comprises a matrix (phase
1) with a single family of randomly distributed inclusions (phase 2). The matrix occupies
the region V(1) while the inclusions occupy V(2) so that V ≡ V(1) ∪ V(2). The random
microstructure is described by the binary indicator functions χ(r)(x) (r = 1, 2) which take
the value 1 if x ∈ V(r) and 0 otherwise. For the remainder of this section, the notation
〈�〉, 〈�〉(r) is used to denote volume averages of a field over V and V(r) respectively. Further
assuming that the behavior of the constituents is characterized by the convex stress potentials
u∗(r)(σ∗) (r = 1, 2), the local constitutive relation (i.e., the constitutive relation at the scale
of the material heterogeneities) reads

D∗ =
∂u∗

∂σ∗
(x,σ∗), u∗(x,σ∗) =

2∑
r=0

χ(r)(x)u∗(r)(σ∗) (2.1)

where a superscript “*” is used to refer to quantities defined at the microscale. Under the
hypothesis of seperation of length scales and using Hill-Mandel’s lemma (Hill, 1963; Mandel,
1966) the effective behavior of the composite material can be defined in a “variational setting”,
using the principle of minimum complementary potential energy, as:

D =
∂uhom

∂σ
(σ), uhom(σ) = inf

σ∗ ∈S(σ)
〈u∗(x,σ∗)〉 = inf

σ∗ ∈S(σ)

2∑
r=0

c(r)〈u∗(r)(σ∗)〉(r) (2.2)

S(σ) = {σ∗ : ∇ · σ∗ = 0 in V , 〈σ∗〉 = σ} (2.3)

where uhom,D, and σ are the effective stress potential, rate-of-deformation tensor and stress
tensor of the composite material respectively, S(σ) is the set of statically admissible stresses
that are compatible with the average stress field, and c(r) ≡ 〈χ(r)(x)〉 are the volume fractions
of the constituents.

In the following, attention is limited to porous materials with “ellipsoidal microstructures”
in the sense of Willis (1977). For this class of microstructures, the ellipsoidal inclusions
(voids) occupy regions which are defined by all points x which are solution to the following
quadratic equation:

VZ : |Z−T · x| − 1 ≤ 0, Z = w1n
(1)n(1) + w2n

(2)n(2) + n(3)n(3) (2.4)
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where Z is a second-order tensor which characterizes the shape and orientation of the voids
and their spatial distribution through the aspect ratios wα (α = 1, 2) and orientation vectors
n(i) (i = 1, 2, 3). Also, by assuming in this case that statistical homogeneity, and no long-
range order (e.g., see Willis (1977)) hold, the two-point correlation functions of the voids’
centers spatial distribution depend only on the relative distance between phases and are of
the form

p(rs)(x− x′) = p(rs)(|Z−T · (x− x′)|) (2.5)
with p(rs) expressing the probability of finding phase r at x and simultaneously phase s at x′.
A generalization of this concept was later proposed by Ponte Castañeda (Ponte Castañeda
and Willis, 1995) who postulated that the shape and orientation of the inclusions can be
selected independently of the “shapes” and “orientations” of the spatial correlations of their
centers. For porous materials, the stress potential for the vacuous phase is u∗(2) = 0 so that
the variational formulation (2.2)–(2.3) reduces to:

D =
∂uhom

∂σ
(σ), uhom(σ) = (1− f) inf

σ∗ ∈S(σ)
〈u∗(σ∗)〉(1) (2.6)

S(σ) = {σ∗ : ∇ · σ∗ = 0 in V , σ∗ · n = 0 on ∂V(2), 〈σ∗〉 = σ} (2.7)

where f = c(2) and 1− f = c(1) are the volume fractions of the voids (porosity) and matrix
material respectively while for simplicity u∗(1) ≡ u∗ denotes the stress potential of the matrix
material.

It should be noted that, the problem of estimating the effective behavior of two-phase
(linear or nonlinear) composites is equivalent to that of estimating the function uhom given by
(2.2)2 (or (2.6)2 for porous materials). Computation of this function exactly is not a trivial
task, and would require, in general, intensive full-field numerical calculations assuming that
the exact location of the phases in the RVE is known. In most of the cases however, the
microstructure is not fully deterministic, and thus, the exact location of the phases in the
RVE is not known. In what follows, we give a concise review of approximate results for
the estimation of effective linear-elastic and nonlinear behavior of porous materials which
serve as the homogenization background for the new porous elastic-plastic constitutive model
developed in this work.

2.1.2 Linear-elastic estimates of the Hashin-Shtrikman type
In this subsection, we consider the special case of a porous material with an isotropic matrix
which is characterized by a quadratic stress potential:

u∗(σ∗) =
1

2
σ∗ : Mm : σ∗, Mm =

1

2µm
K+

1

3κm
J , J =

1

3
δ δ, K = I−J (2.8)

where Mm is the fourth-order compliance tensor of the matrix material, (µm, κm) are the
corresponding shear and bulk modulus, I is the symmetric fourth-order identity tensor
defined in the Introduction, (K,J ) are the deviatoric and hydrostatic fourth-order identity
tensors, and δ is the second-order identity tensor (Kronecker delta). In view of equation
(2.8)1, the constitutive relation (2.1)1 implies that the local behavior of such material is
linear. From the linearity of the problem it follows then that, the effective behavior of the
porous material will also be linear so that it can be characterized from a macroscopic stress
potential of the form:

uhom(σ; q) =
1

2
σ : Mw(q) : σ (2.9)
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where Mw is the fourth-order effective compliance tensor of the porous material and q is
a vector of internal variables who now incorporate microstructural information (in some
average sense) in the macroscopic behavior. A lower bound for uhom in the context of linear
elasticity has been derived by Willis in Willis (1982). In that work, a generalization (see
Willis (1977)) of the classical Hashin-Shtrikman variational principles (Hashin and Shtrikman
(1962b)) was used to derive bounds and estimates for “particulate” composites, i.e., for
composites containing N different types (families) of inclusions distributed randomly and
with ellipsoidal symmetry in a well defined matrix. In the special case of a porous material,
this expression simplifies to (Aravas and Ponte Castañeda, 2004; Danas, 2008)1:

Mw(µm, κm, νm, f, wα,n
(i)) = Mm(µm, κm) +

f

(1− f)µm
Q−1(νm, wa,n

(i)), (2.10)

with νm = (3κm − 2µm)/(6κm + 2µm) being the matrix Poisson’s ratio. In (2.10), Q is a
fourth-order “microstructural” tensor related directly to the well-known Eshelby–Hill tensor
(Eshelby, 1957; Hill, 1963) and has both the major (Qijkl = Qklij) and minor symmetries
(Qijkl = Qjikl = Qijlk = Qjilk). It then follows that Mw is also symmetric, possessing
both the minor and the major symmetries (i.e.,Mw

ijkl =Mw
jikl =Mw

ijlk andMw
ijkl =Mw

klij

respectively). The microstructural tensor Q depends both on the aspect ratios wα (α = 1, 2)
and orientation vectors n(i) (i = 1, 2, 3) of the voids and is defined as (see p. 26 in Danas
(2008))

Q(νm, wa,n
(i)) =

1

4π det(Z)

∫
|ξ|=1

Lm −Lm : H(ξ) : Lm

|Z−1 · ξ|3 dξ, Hijkl(ξ) = [
(
Lmipkqξpξq

)−1
ξjξl](ij)(kl)

(2.11)
where Lm = (Mm)−1 is the fourth-order elasticity tensor of the matrix material and the
parentheses in (2.11)2 denote the symmetric part over the appropriate indices. Notice that
integration in (2.11)1 is carried out on the surface of unit sphere defined by equation ξ2

1 +
ξ2

2 + ξ2
3 = 1. In the general case of ellipsoidal voids (i.e., for w1 6= w2), calculation of the

components of Q tensor can only be done in a semi-analytical manner since it involves the
numerical evaluation of elliptic integrals of the first and second kind. In the case of spheroidal
voids (i.e., for w1 = w2 = w), which is the focus of the present work, these expressions
simplify considerably becoming fully analytical and explicit. Analytical expressions for the
components of Q tensor for both general ellipsoids and spheroidal voids are summarized for
the reader’s convenience in Appendix A.

2.1.3 Estimation of the effective non-linear behavior
Consider now the case of a porous material whose matrix is characterized by a nonlinear
stress potential of the form:

u∗(σ∗) = ψ(σ∗e) σ∗e =

√
3

2
s∗ : s∗ (2.12)

where σ∗e is the equivalent von Mises stress and s∗ = σ∗ − (trσ∗/3)δ is the deviatoric stress
tensor. In principle, various expressions can be selected for the explicit definition of ψ. In

1A general expression for the effective compliance tensor of an N -phase composite is given by Willis (see
Willis (1982), p. 671).
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the context of metallic materials, an incompressible, convex power law potential is usually
employed to describe the local constitutive behavior of the matrix which, for the general
case of viscoplasticity, reads:

ψ(σ∗e) =
ε̇0σy
N + 1

(
σ∗e
σy

)N+1

(2.13)

where ε̇0, σy are a reference strain rate and the matrix flow stress respectively and N is
the non-linearity exponent (which is the inverse of the strain-rate sensitivity parameter
M = 1/N). Expression (2.13) describes a wide variety of behaviors with the limiting cases
being linearly-viscous behavior (for N = 1) and rate-independent plasticity (as N → ∞),
which is the case in this work. In view of last equation, the stress potential characterizing
the matrix behavior is a homogeneous function of degree N + 1 in σ∗. By making use of the
latter property, it can be shown (e.g., Danas (2008)) that the homogenized stress potential
characterizing the porous material will be of the form

uhom(σ; q) =
ε̇0σy
N + 1

(
Σhom(σ; q)

σy

)N+1

(2.14)

where Σhom is an effective equivalent stress and q is a vector of internal variables who again
incorporate microstructural information (in some average sense) in the macroscopic behavior.
It should be noted at this point that in the original works of Ponte Castañeda (1991) and
Kailasam et al. (1997) the assumption was made that in the limit of N → ∞ the material
behaves as perfectly plastic. In expressions (2.13) and (2.14), the initial yield stress of the
matrix σ0 is heuristically replaced with a non-constant flow stress σy in order to take into
account possible strain hardening of the matrix material. This is done approximately here
since the homogenization process was originally carried out for a matrix with no hardening.
However, from a number of recent studies (e.g., see Danas and Aravas (2012), Cao et al.
(2015), Papadioti et al. (2016), Cheng et al. (2017)), this approximation was shown to deliver
fairly accurate results and thus is adopted in here as well.

Considering now the limiting case of rate-independent plasticity, expression (2.14) be-
comes:

uhom(σ; q) =

{
0, if Σhom ≤ σy

∞ otherwise
(2.15)

which implies that the effective yield function for the porous material with the unidirectional
porous microstructure is defined as:

Φw(σ,q) = Σhom(σ; q)− σy (2.16)

Determination of the macroscopic behavior of the porous material requires the explicit cal-
culation of uhom or in the case of rate-independent plasticity, of the effective equivalent stress
Σhom. However, albeit the general form of the nonlinear stress potential is given by (2.12),
determination of the precise expression requires the solution of the variational problem (2.6)-
(2.7) which is very difficult to solve. This is attributed to the fact that a system of nonlinear
partial differential equations with randomly oscillating coefficients would need to be solved
in this case (Ponte Castañeda (2002a)).

In order to calculate approximate bounds or estimates for the nonlinear effective stress
potential uhom, the variational procedures proposed by Ponte Castañeda (Ponte Castañeda,
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1991, 1996) can be used. These methods are based on the utilization of a “linear comparison
composite” (LCC) with the same microstructure as the nonlinear composite and are in
the spirit of the general “comparison medium” variational principles proposed earlier by
Talbot and Willis Talbot and Willis (1985). The common goal of these methods is to
replace the original optimization problem (2.6)–(2.7) with respect to the stress σ∗ (which
is rather difficult to solve) with an equivalent optimization problem for the phases of the
LCC. As pointed out in Mbiakop et al. (2015b), the advantage of this procedure lies in
the fact that, instead of trying to find an optimal stress field which needs to satisfy certain
boundary conditions and constrains (imposed by (2.7)), one needs to solve an unconstrained
optimization problem for the moduli of the LCC. A brief outline of the method is given in
the following2.

First notice that the nonlinear stress potential u∗(σ∗) for the matrix material can be
re-written in terms of a linear stress potential u∗L characterizing the matrix in the LCC:

u∗(σ∗) = u∗L(σ∗,ML) + [u∗(σ∗)− u∗L(σ∗,ML)] (2.17)

where ML = ML(x) is the fourth-order compliance tensor of the yet unspecified LCC in
respect to which the optimization will take place and the subscript “L” is used to denote
quantities associated with the LCC. Substitution of (2.17) into (2.6)2 yields

uhom(σ; q) = (1− f) inf
σ∗ ∈S(σ)

〈u∗(σ∗)〉(1)

= (1− f) inf
σ∗ ∈S(σ)

〈u∗L(σ∗,ML) + [u∗(σ∗)− u∗L(σ∗,ML)]〉(1)

≥ uhomL (σ,ML; q) + (1− f) inf
σ∗ ∈S(σ)

〈u∗(σ∗)− u∗L(σ∗,ML)〉(1) (2.18)

with
uhomL (σ,ML; q) = (1− f) inf

σ∗ ∈S(σ)
〈u∗L(σ∗,ML)〉(1) (2.19)

being the homogenized stress potential for the porous LCC. The variational problem (2.19)
corresponds to a linear material and thus any available linear homogenization technique can
be used for its evaluation. The inequality in (2.18) suggests that the expression on the
right-hand side is, in general, a lower bound for the effective stress potential of the original
nonlinear composite. However, this problem is still difficult to solve since it still requires the
optimization of the nonlinear stress potential with respect to the stress field. Following Ponte
Castañeda (2002a) and more recently Mbiakop et al. (2015b), by relaxing the constraint σ∗ ∈
S(σ) with the more broad one of constant stress fields (i.e., σ∗ ∈ {σ : σ∗(x) = σ̂ = ct}),
the second term in (2.18) can be simplified as:

inf
σ∗ ∈S(σ)

〈u∗(σ∗)− u∗L(σ∗,ML)〉(1) ≥ inf
σ̂

[u∗(σ̂)− u∗L(σ̂,ML)] =

= − sup
σ̂

[u∗L(σ̂,ML)− u∗(σ̂)]

≡ −v(ML) (2.20)

where v(ML) can be thought of as an “error function” in the sense that it serves as a measure
of the nonlinearity of the real porous material. Substitution of (2.20) into (2.18) now yields:

uhom(σ; q) ≥ uhomL (σ,ML; q)− (1− f)v(ML) (2.21)
2In the derivations, use is made of the properties infx ∈A[f(x) + g(x)] ≥ infx ∈A f(x) + infx ∈A g(x) ,

infx ∈A f(−x) = − supx ∈A f(x) and A ⊆ B ⇒ infx ∈A f(x) ≥ infx ∈B f(x)
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Remark 1. As explained in Ponte Castañeda (1991), the character of the result on the
right-hand side of (2.21) depends on the character of the result used for the determination of
uhomL (σ,ML; q). More specifically, if uhomL is a bound then the right-hand side of (2.21) will
retain its bound character for the nonlinear effective stress potential. On the other hand, if
an estimate is used for uhomL , then the right-hand side of (2.21) will serve as an estimate for
the effective potential of the nonlinear material.

It should be noted that, due to the convexity of the assumed nonlinear local potential
u∗(σ∗), the homogenized stress potential uhom(σ; q) will also be convex3. Thus, it is desired
that the right-hand side of (2.21) is also convex (Ponte Castañeda, 1991). The convexity
of this expression ultimately depends on the convexity of u∗L(σ̂,ML) which is associated
with the selection of the linear comparison composite. As pointed out in Idiart and Ponte
Castañeda (2007) the additional constraint for convexity is the positive-definitiveness of the
fourth-order compliance tensorML. In this regard, themost optimal lower bound from (2.21)
can be obtained by taking the supremum over all positive-definite fourth-order compliance
tensors ML, i.e.,

uhom(σ; q) ≥ uhom− (σ; q) ≡ sup
ML(x)>0

{uhomL (σ,ML; q)− (1− f)v(ML)} (2.22)

In order to get explicit expressions for uhom− (σ; q), a specific choice has to be made for the
stress potential u∗L and the compliance tensor ML characterizing the matrix of the LCC.
The “original” variatiational (VAR) method (also known as the “secant method”) presented in
Ponte Castañeda (1991) proposes the LCC matrix to be taken as linear-elastic and isotropic
being characterized by a quadratic stress potential, i.e.,

u∗L,V AR(σ∗,ML) =
1

2
σ∗ : ML : σ∗, ML(x) ≡ML =

1

2µL
K +

1

3κL
J , (2.23)

where µL, κL are the shear and bulk modulus of the LCC respectively. Another option would
be to use a Taylor-like expansion of the stress potential of the matrix material of the nonlinear
composite around a reference stress state as proposed in the so-called “second-order” (SOM)
method (also known as the “tangent method”) (Ponte Castañeda, 1996). The stress potential
characterizing the matrix material in this case is given as

u∗L,SOM(σ∗, σ̌∗,ML) = u∗(σ̌∗) +
∂u∗(σ̌∗)

∂σ∗
: (σ∗ − σ̌∗) +

1

2
(σ∗ − σ̌∗) : ML : (σ∗ − σ̌∗),

(2.24)

ML(x) ≡ML =
1

2λL
E +

1

2µL
F +

1

3κL
J , E =

3

2(σ̌∗eq)
2
š∗š∗, F = K− E (2.25)

where u∗(σ∗) is the stress potential in the nonlinear matrix, σ̌∗, is a reference stress tensor,
λL is an additional modulus associated with the LCC and (E ,F) are projection tensors.
As mentioned in Ponte Castañeda (1996) (see also Danas (2008)), equations (2.24)–(2.25)
can be identified with a thermo-elastic and anisotropic matrix material for the LCC. In any
case, since the matrix material in the actual composite is assumed to be incompressible, the
limit κL → ∞ (or equivalently νm,L = 1/2) has to be considered in either approach. By

3This can be readily proved by starting from the definition of a convex function and taking into account
that equation (2.6)2 holds (e.g., see Appendix A in Ponte Castañeda and Willis (1988)).
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choosing the LCC proposed in (2.23) it follows from the results presented in Section 2.1.2
that the bound (2.10) can be used for uhomL and a fully explicit expression for the yield
function of the porous material can be derived. It is worth mentioning that although use of
the LCC proposed by the SOM method can generally lead to more accurate description of
the effective response, the resulting formulation is more complicated; the solution of a set of
nonlinear equations is required for the determination of the effective stress potential and the
corresponding yield function is not explicit in this case (Danas et al., 2008a; Danas, 2008).

Finally, substituting all the involved expressions and carrying out the relevant optimiza-
tions in (2.22), one can get to the following result for the effective homogenized stress Σhom

V AR

(Kailasam et al., 1997; Aravas and Ponte Castañeda, 2004):

Σhom
V AR =

√
σ : mw : σ

1− f , mw =
3

2
K +

3f

1− fQ
−1(1/2, wa,n

(i)) (2.26)

and the corresponding yield criterion can be written as

σ : mw : σ

1− f − σ2
y = 0, (2.27)

where mw is the fourth-order plastic compliance tensor for the the porous material with
unidirectional microstructure. Notice that Q in (2.26)2 is evaluated for a Poisson’s ratio
νm = 1/2 accounting for the incompressibility of the LCC. It is important to emphasize
that, the tensors Mw and mw which describe the elastic and plastic behaviors of the porous
material are in general anisotropic except for the special case of spherical voids. This is due
to the fact that, the microstructure assumed in this case comprises a random distribution of
voids which are all characterized by the same shape and orientation.

2.2 Equivalence between orientation averaging and isotr-
opic projection

In order to reduce the complexity of material models or to fit a given data set to the known
symmetry of the material at hand, “projections” between spaces of material symmetry can be
employed (Moakher and Norris, 2006). For instance, the Euclidean projection (i.e., distance
based on the Euclidean norm) has been employed to reduce material symmetry in the context
of elasticity (Gazis et al., 1963) or to fit rock data to particular material symmetries in
the context of geomechanics (Arts et al., 2005; Helbig, 1996). On the other hand, in the
context of mechanics of composites, various authors (Gatt et al., 2005; Vincent and Monerie,
2008; Shen et al., 2011) have proposed the use of orientational averaging techniques; these
make use of estimates for the effective behavior of composites with lower material symmetry
(e.g., orthotropic, transversely isotropic etc.) to derive estimates for isotropic composites.
Such a procedure allows for the transition from a material with “aligned” constituents to a
material whose constituents are distributed with random orientations. As it is proved in the
following, an equivalence exists between the projection of tensors of lower symmetry into
isotropic space and orientation averaging, allowing for efficient implementation of such an
approach. In particular, we show that the projection operation in the isotropic space, which
is used in Section 2.3, is equivalent to averaging over all possible orientations, provided the
fourth-order tensor to be projected possess the minor symmetries. The proof is as follows.
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Let A′κ1κ2···κn be the components of a nth-order tensor of even rank with respect to a
local coordinate system (e.g., a system which is defined by the orientation vectors n(i) of
the principal axes of the voids) and Aλ1λ2···λn the components of the tensor with respect to
a global (fixed) coordinate system. Then, the components with respect to the fixed system
can be related to the components of the local system through the corresponding direction
cosines Qκiλi , i.e.,

Aκ1κ2···κn = Qκ1λ1Qκ2λ2 · · ·QκnλnA
′
λ1λ2···λn . (2.28)

The direction cosines Qκiλi can be expressed in terms of three Euler angles (θ, φ, ψ), so
that the orientation average of a tensor can be calculated as an average over (θ, φ, ψ) (e.g.,
Andrews (2004))4:

〈Aκ1κ2···κn〉 =
1

8 π2

∫ 2π

ψ=0

[∫ 2π

φ=0

(∫ π

θ=0

Qκ1λ1Qκ2λ2 · · ·Qκnλn sin θ dθ

)
dφ

]
dψ︸ ︷︷ ︸

=Iκ1κ2···κn|λ1λ2···λn≡I
(n)

A′λ1λ2···λn ,

(2.29)
where I(n) is the rotational average of the direction cosines and can be thought of as an
orientation averaging operator acting on an nth-order tensor. By making use of Weyl’s the-
orem (Weyl, 1946), it can be shown that I(n) can be expressed as the sum of Qn linearly
independent isotropic tensors of order n, i.e., it will be of the form (Andrews and Thiruna-
machandran, 1977)

I(n) =
⌊
f (n)

⌋
1×Qn

[
M (n)

]
Qn×Qn

{
g(n)
}

Qn×1

, Qn =

n/2∑
r=0

n!(3r − n+ 1)

(n− 2r)!r!(r + 1)!
, (2.30)

where
{
f (n)

}
and

{
g(n)
}
are sets containing the components of linearly independent tensors

of order n with respect to the fixed and the material coordinate systems respectively and[
M (n)

]
is a coefficients matrix which can be calculated as

[
M (n)

]
Qn×Qn

=
[
S(n)

]−1

Qn×Qn

,
[
S(n)

]
Qn×Qn

=
{
f (n)

}
Qn×1

⌊
f (n)

⌋
1×Qn

=
{
g(n)
}

Qn×1

⌊
g(n)
⌋

1×Qn
, (2.31)

under the assumption that
[
S(n)

]
is invertible. For even ranked tensors, each element

of the aforementioned sets is a product of Kronecker deltas comprising n/2 factors (i.e.,
they are of the form δκ1κ2 · · · δκn−1κn). In the special case of fourth-order tensors (i.e.,
n = 4, {κ1, κ2, κ3, κ4} → {i, j, k, l}, {λ1, λ2, λ3, λ4} → {p, q, r, s}), it follows from (2.30)2

that Q4 = 3 and the expressions for the quantities
{
f (n)

}
,
{
g(n)
}

and
[
S(n)

]
read

{
f (4)
}

3×1

=


δijδkl

δikδjl

δilδjk

 ,
{
g(4)
}

3×1

=


δpqδrs

δprδqs

δpsδqr

 ,
[
S(4)

]
3×3

=

9 3 3

3 9 3

3 3 9

 (2.32)

4The angles φ and θ define the location of one of the global axes with respect to the local system and the
angle ψ defines the orientation of the other two global axes. Averaging is carried out over a unit sphere, to
cover all possible (φ, θ) orientations, and over ψ.
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From (2.30)–(2.32), after some lengthy but straightforward calculations, one ends up with
the following expression

I(4) ≡ Iijklpqrs = Oijklpqrs + Saijklpqrs, (2.33)

OOO ≡ ProjProjProj{K,J }, Saijklpqrs =
1

12
(δilδjk − δikδjl)(δpsδqr − δprδqs), (2.34)

where the eighth-order “isotropic projection tensor” ProjProjProj{K,J } is defined as (Gatt et al., 2005)

ProjProjProj{K,J } ≡
1

K :: KKK +
1

J :: J J J =
1

5
KK + J J , (2.35)

Substitution of (2.33) into (2.29) yields

〈Aijkl〉 = IijklpqrsA′pqrs = OijklpqrsA′pqrs + SaijklpqrsA′pqrs. (2.36)

If the fourth-order tensor A possesses the minor symmetries, using (2.34)2 one can show
that the second term in (2.36) vanishes, so that

〈Aijkl〉 = OijklpqrsA′pqrs, (2.37)

i.e., orientation averaging of A equals its projection on the space of fourth-order symmetric
isotropic tensors.

Remark 2. It can be proved that the following identities hold between the fourth-order
projection tensor I,J and K

K :: K = 5, J :: J = 1, K :: J = J :: K = 0,

I :: I = 6, I :: K = K :: I = 5, I :: J = J :: I = 1.

which imply also that

ProjProjProj{K,J } :: ProjProjProj{K,J } = ProjProjProj{K,J }, (2.38)

ProjProjProj{K,J } ::
(
ProjProjProj{K,J } :: A

)
= ProjProjProj{K,J } :: A, (2.39)

for all fourth-order tensors A that possess major and minor symmetries. In addition, the last
two relations are satisfied by all “projection operators” (e.g., see Meyer (2000), p. 386) and
state the fact that the projection of a projection equals the original projection; all projection
operators are “idempotent”, i.e., they can be applied multiple times without changing the
result beyond the initial application.

Remark 3. In general, given a fourth-order tensor A of arbitrary material symmetry, the
definition of projection consists in finding the tensor Asym of a particular symmetry which
minimizes a distance function (norm) between A and Asym. Examples of such distance
functions include the Euclidean (or Frobenius), log-Euclidean and Riemannian norms defined
respectively as:

dE(A1,A2) = ||A1 −A2||, (2.40)
dLE(A1,A2) = || log(A1)− log(A2)||, (2.41)

dR(A1,A2) = || log(A−1/2
2 : A2 : A−1/2

1 )||, (2.42)
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where A1,A2 are two forth-order tensors. For the sake of simplicity, in this work we make
use of the eighth-order isotropic projection tensor defined in (2.35) which is based on the
minimization of the Euclidean norm (2.40). An alternative approach would be to use an
isotropic projection tensor based on either the log-Euclidean or the Riemmanian norms
given by (2.41) and (2.42) respectively, which are also known to be invariant to inversion.
For instance, using the log-Euclidean norm, it can be shown that the corresponding projected
moduli would be given as (e.g. see (Moakher and Norris, 2006), p. 29)

3κLE = exp[tr(Jipqr(logA)pqrj)], 2µLE = exp[
1

5
tr(Kipqr(logA)pqrj)]. (2.43)

Notice, however, that in this case the calculations could become more involved since the
logarithm of a fourth-order tensor is required in the evaluation of the corresponding projected
moduli in expressions (2.43).

2.3 The local “Isotropic Projection” model
In the following, we describe the main ingredients of the proposed analytical model. Since
metallic materials are of interest in this work, the small elastic strain hypothesis holds and
an additive decomposition of the Eulerian total rate-of-deformation tensor D into an elastic
and a plastic part is adopted:

D = De + Dp (2.44)

Since only monotonic loading paths are considered in the study, the constitutive equations
for the elastic and plastic behavior are treated in a decoupled manner (Aravas and Ponte
Castañeda, 2004; Danas and Aravas, 2012; Cao et al., 2015; Cheng et al., 2017; Papadioti
et al., 2019; Aravas and Papadioti, 2021) and are later combined in order to yield the total
homogenized elastic-plastic response of the porous material.

2.3.1 Microstructure description
We consider porous metals with random microstructures that contain Nfam families of ran-
domly distributed ellipsoidal voids of different shapes and orientations embedded in an
isotropic elasto-plastic matrix (to be defined explicitly later). We follow the definitions
introduced in Anoukou et al. (2018): each family contains voids with the same aspect ratios
and orientation but possibly different sizes, e.g., polydisperse microstructures (Lopez-Pamies
et al., 2013). The features of the vacuous phase can be described by the following set of
microstructural variables (see Fig. 2.1):

• The current void volume fraction or (Eulerian) porosity f = Vv/V , where Vv denotes
the current volume occupied by the voids and V the total current volume of the spec-
imen. The volume fraction of the matrix is 1− f .

• Two aspect ratios that characterize the shape of the ellipsoidal voids for each void
family: wI

1 = a3/a1 and wI
2 = a3/a2 with I = 1, · · · , Nfam.

• A set of three mutually orthogonal unit vectors that define the orientation of the
principal axes in the ellipsoidal voids of each void family: {n(1)

I ,n
(2)
I ,n

(3)
I } with I =

1, · · · , Nfam.
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It has been shown recently that such microstructures may be directly realized by the use of
3D-printers (Zerhouni et al., 2019; Tarantino et al., 2019; Hooshmand-Ahoor et al., 2022).

We consider the geometries described above as idealized microstructures for low-porosity
metallic materials. Actual metallic materials do not have such regular quadric pore shapes
(Limodin et al., 2023); nevertheless, over the last fifty years, such idealized geometries have
been used extensively to adequately account for the main effects of porosity on ductile frac-
ture (Gurson, 1977; Tvergaard and Needleman, 1984; Kailasam and Ponte Castañeda, 1998;
Danas and Ponte Castañeda, 2009a; Madou and Leblond, 2012a; Danas and Aravas, 2012;
Morin et al., 2016). These involve the first order porosity effect as well as the local average
pore-induced morphological anisotropy due to random grain distributions and precipitates.
An ellipsoidal void should be regarded as a locally orthotropic soft heterogeneity, which de-
scribes the average response over a neighborhood of voided regions. Any attempt to connect
the actual local microstructure of a real material with such idealized void shape distributions
is irrelevant. A local pore description requires a practically unattainable meshing effort and
extremely heavy numerical simulations that would not even allow for large strains at the
macroscopic scale. In turn, the idealized average ellipsoidal voids allow for the development
of simple models that can be calibrated and used to address boundary value problems at the
scale of structural components (Danas and Aravas, 2012; Morin et al., 2017).

A priori, the linear comparison composite (LCC) homogenization models proposed by
Ponte Castañeda and co-workers (Ponte Castañeda, 1991, 1996, 2002a) may deal with such
ideal microstructures and any number Nfam of families (see for instance Papadioti et al.
(2016)), owing mainly to the corresponding linear composite estimates they depend on
(Willis, 1981).

Figure 2.1 – Illustration of porous microstructures consisting of Nfam randomly oriented and ran-
domly distributed spheroidal voids (shown in red). The aspect ratio is w = 0.3 in the oblate and
w = 5 in the prolate voids.

Using the same viewpoint, we simplify further the microstructure descriptors in an at-
tempt to propose a fully analytical and explicit, isotropic model. The simplifications intro-
duced are as follows.

• All void families have the same shape, i.e., wI
1 = w1 and wI

2 = w2 (for all I =
1, · · · , Nfam), but not the same orientation.
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• All voids are assumed spheroidal, i.e., w1 = w2 = w, so that the semi-axes become
a1 = a2 = a. The cases of w = 1, w > 1, and w < 1 correspond to spherical, prolate,
and oblate spheroidal voids respectively. This additional specification allows for the
development of a fully explicit model of the Gurson type, since the Eshelby–Hill tensors
(Eshelby (1957); Hill (1963)) involved in the homogenization estimates can now be
determined analytically as described in Appendix A. The special cases w1 = a3/a1 = 1
and w2 6= 1 (or w1 6= 1 and w2 = a3/a2 = 1) also correspond to spheroidal voids rotated
by 90◦ about e1 (or e2) and are therefore included by default in the formulation. Note
that the approach discussed in this work can be easily generalized to consider ellipsoidal
voids (i.e., w1 6= w2); in this case however, as discussed in Section 2.1.2, computation of
the Eshelby–Hill tensors is more involved requiring the numerical evaluation of elliptic
integrals.

• We consider a spatially uniform (isotropic) random distribution of orientations of the
spheroidal voids leading to an overall isotropic elasto-plastic response of the porous
material. In the analytical treatment of the model presented in Section 2.3, an infinite
number of orientations is considered by taking advantage of the equivalence between
an integral orientation average and projection into isotropic space as discussed in Sec-
tion 2.2. In the numerical microstructure generation of a representative volume ele-
ment, a finite number Nfam of families with random orientations is used (see Anoukou
et al. (2018)). The number of voids deemed sufficient for a fairly isotropic average
RVE response is decided by simulating RVEs with progressively more voids until the
response does not change in the three principal directions beyond a small percentage.
This important point is discussed in more detail in Section 3.3.1.

A representation of such random porous (or more generally particulate) microstructures with
oblate (i.e., w = 0.3) and prolate (i.e., w = 5) voids is shown in Fig. 2.1.

Remark 4. It should be noted at this point that, for the sake of deriving a fully explicit and
computationally efficient analytical homogenization model, only microstructures with statis-
tically uniform distribution of voids will be considered. Clustering effects at microstructural
level, such as the ones discussed in the work of Bilger et al. (2007) and more recently Holte
et al. (2023), will not be taken into account. However, the present model can account for
such effects at a macroscopic level in an average sense since non-uniform initial porosity
distributions can be readily implemented in codes used for structural calculations (see for
instance Srivastava et al. (2014)).

2.3.2 Elasticity
The homogenized elastic behavior of the porous material is described by a hypoelastic con-
stitutive equation of the form

De = M :
∇
σ, M =

1

2µ
K +

1

3κ
J , J =

1

3
δ δ, K = I −J , (2.45)

where,
∇
σ is the co-rotational Jaumann derivative of the Cauchy stress σ. In turn, M is

the fourth-order isotropic incremental elastic compliance tensor, and (κ, µ) are the effective
incremental elastic bulk and shear moduli of the porous material with an infinite number
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of randomly oriented pore families (Nfam →∞), which all have the same aspect ratio w, as
discussed in the previous section.

Specifically, the incremental elastic moduli (κ, µ) (and thus M) are calculated using
the methodology of Gatt et al. (2005) (see also Anoukou et al. (2018)), who proposed the
use of an “isotropic projection” of the well-known anisotropic Hashin and Shtrikman (1963)
estimates, and take the final compact and explicit form

1

3κ
=

1

3
Mw

iijj and
1

2µ
=

1

5

(
Mw

ijij −
1

3κ

)
. (2.46)

In this expression, Mw is the effective compliance tensor defined in (2.10) corresponding
to a single family of unidirectional ellipsoidal voids, (µm, κm) are the shear modulus and
bulk modulus of the matrix, νm = (3κm − 2µm)/(6κm + 2µm) is the matrix Poisson ratio,
and Q is the fourth-order “microstructural” tensor (generally anisotropic) defined in (2.11).
In order to obtain the final expression (2.46) we identify M with the isotropic projection
ProjProjProj{K,J } :: Mw of Mw, i.e.,

M = ProjProjProj{K,J } :: Mw = Mw :: ProjProjProj{K,J } ≡
1

2µ
K +

1

3κ
J , (2.47)

leading to (κ, µ) defined in (2.46). This final result is obtained by direct algebraic manip-
ulations and the use of the identities between the fourth-order hydrostatic and deviatoric
tensor given in Remark 2.

Based on the discussion of Section 2.2, since the effective compliance tensorMw possesses
the “minor” symmetriesMw

ijkl =Mw
jikl =Mw

ijlk =Mw
jilk, the isotropic projection operation

is equivalent to orientational averaging over all directions of Mw. Therefore, the effective
elastic shear and bulk moduli (κ, µ) of the isotropic porous material resulting from the
isotropic projection (2.47) of Mw are independent of the orientation vectors n(i) and depend
only on the elastic properties of the matrix (µm, κm), on porosity f , and on the void aspect
ratio w, as expected.

Figure 2.2 shows the variation of the effective elastic moduli (µ, κ), determined from
(2.46), with the aspect ratio w of the spheroidal voids and the bulk modulus κm of the
matrix. All moduli in Fig. 2.2 are normalized with the shear modulus µm of the matrix
material; the horizontal axes are in a logarithmic scale.

Figure 2.2a shows the effect of the aspect ratio w on the normalized effective shear µ/µm
and bulk κ/µm moduli of the porous material for a matrix with a ratio of bulk to shear
modulus κm/µm = 2.17 (corresponding to a Poisson’s ratio of νm = 0.3). There is a significant
drop in both the effective shear and bulk moduli for values of w < 0.1 (i.e., for penny
shaped voids), whereas the stiffest response corresponds to spherical voids (w = 1). In
the limit w → 0 for fixed porosity, both the effective shear and bulk moduli (µ, κ) become
asymptotically zero. This may be interpreted by observing that, in the limiting case of
w → 0 with finite porosity, the porous material reaches a laminated type microstructure
(with random orientations) and a plane of voided material may span the entire volume
leading to zero resistance to deformation. These results are in agreement with the earlier
numerical and theoretical homogenization studies of Gatt et al. (2005) and Anoukou et al.
(2018).

The effect of the matrix bulk modulus κm on the effective elastic properties is shown in
Fig. 2.2b for three different oblate void shapes at a fixed porosity value f = 3%. Both the
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Figure 2.2 – Variation of the effective elastic shear and bulk moduli (µ, κ) with (a) the aspect ratio
w of the spheroidal voids for νm = 0.3 and for porosities 1%, 3% and 5%, and (b) the bulk modulus
κm of the matrix material for a porosity of 3% and for aspect ratios w = 0.01, 0.10, and 0.50. All
moduli are normalized with the shear modulus µm of the matrix material, and a logarithmic scale
is used on the horizontal axes. Note the different scales used on the vertical axes in Fig. 2.2b.

effective shear and bulk moduli (µ, κ) increase with increasing κm. However, the effective bulk
modulus κ is much more sensitive to κm compared to the effective bulk modulus µ (note the
different scales used on the vertical axes in Fig. 2.2b). For a fixed value of porosity (f = 3% in
Fig. 2.2b), when κm takes large values, i.e., as the matrix approaches the incompressible limit,
the effective bulk modulus κ defined in (2.46) reaches a finite value, which is an increasing
function of w. In other words, as the aspect ratio w of the voids increases, the compressibility
of the composite decreases. The limiting case in which both w → 0 and f → 0 corresponds
to a compressible cracked material and can be treated by using similar methods as the ones
presented in the works of Willis (Willis, 1977, 1980c, 1981); the details of such calculation
are not discussed here and are left for future work. Qualitatively similar results to those of
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Fig. 2.2b were found to hold for prolate voids (i.e., for w > 1), the only difference being that
the effects of κm on the effective elastic moduli (µ, κ) remained the same with increasing w
and are not presented here for brevity.

Finally, it is noted that this work deals with monotonic loads and thus porosity evolution
during elastic loads is ignored since it is negligible. Nevertheless, possible extension of this
model in the case of cyclic loads requires to consider porosity evolution in the elasticity
regime. This may be added in the present model in a straightforward manner following the
works of Cheng et al. (2017) or more recently Remmal and Leblond (2024).

2.3.3 Plasticity and evolution of microstructure
In this section, we extend the previous ideas of void orientational averaging in the context
of plasticity. In previous works, a form of orientational averaging was used by Vincent and
Monerie (2008) and Shen et al. (2011) to derive the yield criterion for the case of a rigid-
perfectly plastic porous material comprising randomly oriented and distributed spheroidal
voids. These models are based on a limit analysis approach and were found to be fairly
accurate when compared to numerical yield surface estimates, but have not been as yet used
to predict porosity evolution in the material.

The present study is based on utilizing estimates for the effective response of porous mate-
rials with aligned microstructures as generated using the “secant” variational method (Ponte
Castañeda, 1991) along with the isotropic projection technique in order to derive explicit
estimates for the effective plastic response of an isotropic composite with the microstruc-
ture described in Section 2.3.1. Calculation of porosity evolution is then a straightforward
operation.

2.3.3.1 Yield function

For the determination of the yield function, the concept of isotropic projection, which was
used in the description of the elastic constitutive equations, is now employed in a similar
manner by making use of the nonlinear estimate given in Section 2.1.3. More specifically,
in this work, we propose a Gurson-type yield function, which however is obtained by use
of the LCC homogenization method and in particular of the estimates for porous materials
originally proposed in Kailasam et al. (1997). The Hashin-Shtrikman character of these
estimates implies that interaction between the randomly oriented voids is accounted for in
the sense of one- and two-point correlation functions. In this regard, it was shown in earlier
studies that such estimates are sufficiently accurate for porosities up to 15 − 20% (see for
instance Lopez-Pamies et al. (2013), Papadioti et al. (2016), Anoukou et al. (2018), Luo et al.
(2023)), which is more than sufficient for the purposes of the present study. The derivation
of the yield criterion for the new model is described in the following.

First recall that the yield criterion for the porous material with unidirectional voids based
on the “secant” variational method can be written in the explicit form (2.27), i.e.,

σ : mw : σ

1− f − σ2
y = 0, (2.48)

where mw is the effective microstructural fourth-order tensor (anisotropic and compressible
in general) defined in (2.26) and σy is the yield stress of the matrix, which can in general be
a function of the accumulated plastic strain ε̄p of the matrix phase (i.e., σy = σy(ε̄

p)). It is
worth noting that when the matrix includes no voids (i.e., for f = 0), the above criterion
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becomes identically that of J2 von Mises plasticity. In the present model, the effective
compliance tensor mw is proposed to be replaced by its isotropic projection m , which reads

m = ProjProjProj{K,J } :: mw =
1

2mK
K +

1

3mJ
J . (2.49)

By performing the algebra, in accordance to the elastic case, one obtains two homogenized
coefficients (mK,mJ ) that characterize the effective plastic response of the material and are
given as

1

3mJ (f, w)
=

mw
ijkl Jijkl

Jmnpq Jmnpq
=

1

3
mw
iijj, (2.50)

1

2mK(f, w)
=

mw
ijklKijkl

Kmnpq Kmnpq
=

1

5

(
mw
ijij −

1

3mJ

)
. (2.51)

Using equation (2.49) for the projected effective compliance tensor, the yield criterion
(2.48) may be written directly in terms of the von Mises equivalent stress and the hydrostatic
stress to take the form

1

1− f

(
σ2
e

3mK
+

p2

mJ

)
− σ2

y = 0. (2.52)

Since the latter result is derived from the corresponding estimate of the “secant” variational
method, the new estimate for the present isotropic projection model inherits the significantly
stiff response for the nonlinear behavior in the case of isotropic matrix and hydrostatic stress
states when compared to numerical calculations of representative volume elements (RVEs)
(Michel and Suquet, 1992). To improve upon this behavior, following Danas and Aravas
(2012) and Mbiakop et al. (2015b), we introduce the correction factor q2

J in the second term
(hydrostatic part) of (2.52) and the yield criterion takes the form

1

3mK

(
σe
σy

)2

+ q2
J

4

9mJ

(
3 p

2σy

)2

− (1− f) = 0, qJ =
1− f√
f ln 1

f

. (2.53)

The value of the correction factor qJ in (2.53)2 is determined so that the exact results of the
“Composite Sphere and Cylinder Assemblages” (CSA & CCA) of Hashin and of the original
Gurson (Gurson, 1977) model can be recovered for the special case of spherical (w = 1) and
cylindrical voids with circular cross-section (w → ∞) respectively, when the stress state is
purely hydrostatic (see Danas et al. (2008a), Danas and Aravas (2012), and Mbiakop et al.
(2015a)) Specifically, in the case of spherical voids, one has (Bele et al., 2017)

mK(f) =
1− f

3 + 2 f
, mJ (f) =

4(1− f)

9 f
. (2.54)

and for purely hydrostatic loading (i.e., for σe = 0), the required hydrostatic stress for
yielding is

|p|
σy

=
2

3
ln

1

f
, (2.55)

a value consistent with the corresponding prediction of the Gurson model and the rigorous
bound of Ponte Castañeda (2012). Expression (2.53) is expected to give fairly accurate
results at high stress triaxialities and moderate to high porosities. At low porosities and
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for spherical voids, earlier studies (Cao et al., 2015) have found that porosity f exhibits an
exponential dependence on the hydrostatic stress p. To obtain such a dependence, one may
consider the Taylor expansion of coshx and ignore higher order terms, i.e.,

cosh

(
3 p

2σy

)
= 1 +

1

2

(
3 p

2σy

)2

+O

[(
3 p

2σy

)4
]

or
(

3 p

2σy

)2

∼= 2

[
cosh

(
3 p

2σy

)
− 1

]
.

(2.56)
Finally, driven by numerical results and the fact that porosity, even if it starts at low

values, may eventually evolve to larger ones, we substitute the quadratic hydrostatic stress
term in (2.53)1 by a linear combination of (3 p/(2σy))

2 and the right-hand-side of (2.56)2 to
arrive at the following final form of the yield criterion:

1

3mK(f, w)

(
σe
σy

)2

+

+
4

9mJ (f, w)

[
(1− α(f, w)) q2

J (f)

(
3 p

2σy

)2

+ 2α(f, w)

(
cosh

3 p

2σy
− 1

)]
− (1− f) = 0.

(2.57)

The corresponding fully explicit isotropic yield function for the porous material then reads

Φ(σe, p, ε̄
p, f, w) =

1

3mK(f, w)

(
σe
σy

)2

+

+
4

9mJ (f, w)

[
(1− α(f, w)) q2

J (f)

(
3 p

2σy

)2

+ 2α(f, w)

(
cosh

3 p

2σy
− 1

)]
−

− (1− f). (2.58)

This combination of terms allows to have a fairly accurate description at small, moderate,
and larger porosities, which is necessary in high stress triaxiality loads where porosity can
evolve significantly during the deformation process.

In the case of spherical voids (w = 1), when α = 0, the proposed yield criterion reduces
to that of the MVAR (Modified VARariational) model of Danas and Aravas (2012), whereas,
for α = 1, to that of the GVAR (Gurson VARiational) model of Cao et al. (2015) (which
coincides with that of the original Gurson’s model (Gurson, 1977)). It should be noted that,
these two models take into account the evolution of porosity as well as the evolution of
the aspect ratios and the orientations of the voids. Therefore, even when they are initially
isotropic, they eventually develop a deformation-induced anisotropy, in general. To keep the
proposed new model sufficiently accurate and, at the same time, as simple a possible, we
consider only the evolution of the porosity and assume that change of the void aspect ratio
w has a negligible effect, so that the model is always isotropic; i.e., we adopt a formulation
similar to the Gurson model, which is now enriched with an additional microstructural
parameter, the fixed aspect ratio w of the voids.

Finally, the interpolation function α(f, w) in (2.58) is introduced to allow for a better
calibration of the proposed model with corresponding finite element (FE) representative
volume element (RVE) simulations conducted in Section 3.2. In particular, α should be
chosen so that:
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Figure 2.3 – Variation of the proposed interpolation function α with parameters A,B for a mi-
crostructure comprising flat oblate (w = 0.1) and spherical voids (i.e., w = 1) at two different poros-
ity levels, f = 1%, 10%. In both cases the minimum porosity parameter is taken as fmin = 0.5%.

• α = 1 when f is lower than a prescribed minimum porosity fmin, thus leading to a
“cosh” type response in the hydrostatic limit, similar to that of the Gurson model.
Cao et al. (2015) have shown that, when the voids are initially spherical, the “cosh”
functional form is more accurate for porosities less than 1%.

• α = 0 as f → 1. The rate at which α goes to zero for larger porosities depends on the
aspect ratio w and in general is slower as w → 0, i.e., for small values of w, the weight
of the “cosh” term is larger than that of the quadratic term in (2.58).

In view of the above, we propose the following exponential expression for α, i.e.,

α(f, w) =

{
1, f < fmin,

e−
fmin
k(w)

(f−fmin), f ≥ fmin,
and k(w) = Aw +B, (2.59)

Parameter fmin defines the minimum void volume fraction above which porosity evolution
is considered to exhibit a quadratic dependence on the hydrostatic stress. Parameters A
and B are related to the rate of exponential decay k, i.e., the rate of transition between
exponential and quadratic dependence on the hydrostatic stress. In this work, a good fit
with FE calculations was found if this rate was assumed to exhibit a linear dependence on
the aspect ratio w.

To better illustrate the effect of parameters A,B on the interpolation function α, contours
of the latter are presented in Fig. 2.3 for both spherical (i.e., w = 1) and oblate voids with
an aspect ratio w = 0.1 for a fixed value of fmin = 0.5%. Contours of α are shown at
different porosity levels to also examine the variation of α as porosity evolves. In the case
of oblate voids with a low aspect ratio, it can be seen that α appears to be more sensitive
to parameter B than A, especially for higher porosity values. Lower values of B lead to
substantial reduction of α inducing a strongly quadratic dependence of porosity evolution
on hydrostatic stress. The effect of parameter B remains essentially the same for the case
of spherical voids. However, in this case there is also increased sensitivity on parameter A
as well. Selection of lower negative values of A can lead to substantial reduction of α even
at relatively lower porosity levels. Such qualitative analysis can serve as an indicator on the
choice of these parameters.
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In all subsequent calculations the values of A = −8.6 × 10−4, B = 1.06 × 10−3 and
fmin = 0.5% are used. For these values, the predictions of the proposed model are found to
best fit the corresponding numerical FE calculations for the stress and porosity evolution
presented in Section 3.3.2. In general, α(f, w) can be used as a calibration function to fit
numerical or experimental data.

Remark 5. It should be pointed out that, in the case of spherical voids (i.e., for w = 1)
and α 6= 1, the predictions of the new isotropic projection model will generally be different
than those of the corresponding original Gurson’s model (except for purely hydrostatic stress
states). This is due to the existence of the interpolation parameter α in the yield function
(2.58) which in turn affects porosity evolution through the associated flow rule (see equations
(2.60) and (2.63) below).

Remark 6. The yield condition (2.58) can be written alternatively in terms of an “effective
stress” Σ, such that

Φ(σ, ε̄p, f, w) = Σ(σe, p, f, w)− σy(ε̄p) = 0,

where Σ is now defined implicitly from the condition

1

3mK

(σe
Σ

)2

+
4

9mJ

[
(1− α) q2

J

(
3 p

2 Σ

)2

+ 2α

(
cosh

3 p

2 Σ
− 1

)]
− (1− f) = 0.

This form of the yield condition is convenient, when a viscoplastic (rate-dependent) version
of the model is of interest. In such a case, the flow stress σy depends on both ε̄p and the
plastic strain-rate ˙̄εp and an “overstress” can be defined in terms of the effective stress Σ.
An alternative and perhaps more rigorous way to include rate-dependency is the use of the
corresponding viscoplastic LCC estimates (Danas, 2008; Danas et al., 2008b). This, however,
is beyond the scope of the present study.

Remark 7. We remark here that an alternative realistic modeling approach would be to
extend the models of Kailasam et al. (1997), Danas and Ponte Castañeda (2009a) or Danas
and Aravas (2012) and consider a finite number of void families with the same shape but
different orientations. In such a case, the general homogenization theory of Kailasam and
Ponte Castañeda (1998) for multiple-phase composites could be used. This, however, would
lead to a large number of microstructural variables, along with corresponding evolution
equations, and would render the model unnecessarily complicated and difficult to implement
numerically or calibrate in real-life applications. As will be discussed in Section 3.2, the
proposed isotropic model, with the appropriate choice of the fitting parameters A,B, and
fmin in the interpolation function α(f, w), is able to reproduce very well the results of detailed
unit cell FE simulations.

Figure 2.4 shows the variation of the effective plastic coefficients mK and mJ with the
void aspect ratio w for three values of porosity (f = 1%, 3%, 5%). Note the different scales
used on the vertical axes. In Section 2.3.3.2 that follows, it is shown that the deviatoric and
volumetric parts of the plastic deformation rate Dp are inversely proportional tomK andmJ ,
respectively (eqns (2.60)–(2.61) below). The results shown in Fig. 2.4 indicate that a porous
material whose microstructure consists of isotropically distributed and randomly orientated
oblate voids with low aspect ratios (w ≤ 0.1) would exhibit a much softer plastic response
compared to porous materials with spherical or prolate voids. It is also interesting to note
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Figure 2.4 – Variation of the normalized effective plastic coefficients with void aspect ratio w (loga-
rithmic scale) at three different porosity levels (f = 1%, 3%, 5%). Note the different scales used on
the vertical axes.

that the effective plastic coefficient mJ associated with the hydrostatic response appears to
be more sensitive to the shape of the voids compared to the effective plastic shear coefficient
mK, especially at lower porosity levels. This implies that, for low values of porosity, the void
shape affects strongly the plastic dilatational behavior of the material and, consequently, the
corresponding porosity evolution during plastic deformation.

2.3.3.2 Flow rule and evolution equations

The plastic part of the rate-of-deformation tensor is given by the associated flow rule (“nor-
mality”), i.e.,

Dp = λ̇N, N ≡ ∂Φ

∂σ
=

3

2σe

∂Φ

∂σe
s +

1

3

∂Φ

∂p
δ, (2.60)

where λ̇ ≥ 0 is the “plastic multiplier”, which vanishes when the response is elastic and is
determined from the “consistency condition” Φ̇ = 0 during plastic flow. The derivatives
∂Φ/∂σe and ∂Φ/∂p are calculated from (2.58):

∂Φ

∂σe
=

2

3mK

σe
σ2
y

,
∂Φ

∂p
=

4

3mJ

1

σy

[
(1− α)q2

J
3 p

2σy
+ α sinh

(
3 p

2σy

)]
. (2.61)

In the present model, two variables evolve during plastic flow: i) the accumulated plastic
strain ε̄p upon which depends the yield stress of the matrix σy and ii) the porosity f . The
first is an internal variable serving to characterize the plastic state in the matrix phase, and
the second is a microstructural variable that characterizes the void volume fraction in the
porous material.

For the evolution of ε̄p, we consider that the macroscopic plastic power σ : Dp in the
porous material is dissipated entirely in the plastic deformation of the matrix and equals the
microscopic plastic power (1− f)σy ˙̄εp, which leads to (Tvergaard and Needleman, 1984)

˙̄εp =
σ : Dp

(1− f)σy(ε̄p)
= λ̇

σ : N

(1− f)σy(ε̄p)
≡ λ̇ gε̄p . (2.62)
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The porosity evolution in the plastic regime is derived from mass conservation by ignoring
the contribution of elasticity and taking into account the plastic incompressibility of the
matrix material, such that

ḟ = (1− f)Dp
kk = λ̇(1− f)Nkk ≡ λ̇ gf . (2.63)

2.3.4 The local elastic-plastic tangent modulus

In the present section, we determine the local elasto-plastic tangent modulus Lloc, which is
a fourth-order tensor that relates the Jaumann (or co-rotational) rate of the Cauchy stress
∇
σ to the total rate-of-deformation tensor D.

During plastic flow, De = D −Dp = D − λ̇L : N and the elastic constitutive equation
(2.45)1 becomes

∇
σ= L : De = L : D− λ̇L : N, L = M−1 = 2µK + 3κJ (2.64)

where µ and κ are defined in (2.46). The consistency condition Φ̇ = 0 is written as

Φ̇ =
∂Φ

∂σ
:
∇
σ +

∂Φ

∂ε̄p
˙̄εp +

∂Φ

∂f
ḟ = N : (L : D− λ̇L : N) + λ̇

∂Φ

∂ε̄p
gε̄p + λ̇

∂Φ

∂f
gf = 0

where (2.64)1, (2.62), and (2.63) have been taken into account and the derivatives ∂Φ/∂ε̄p

and ∂Φ/∂f can be calculated from (2.58). The last equation yields

λ̇ =
1

Lloc
N : L : D, where Lloc = N : L : N+H loc with H loc = −

(
∂Φ

∂ε̄p
gε̄p +

∂Φ

∂f
gf

)
.

(2.65)
The sign of the effective “hardening modulus” H loc of the local model determines whether
the porous material is hardening (H loc > 0) or softening (H loc < 0) at the given stress state
and internal and microstructural variables. Substitution of (2.65) in (2.64)1 yields the local
elasto-plastic tangent modulus Lloc, which reads

∇
σ= Lloc : D, Lloc = L− 1

Lloc
(L : N)(L : N). (2.66)

Note that Lloc has both the minor (Lloc
ijkl = Lloc

jikl = Lloc
ijlk) and major (Lloc

ijkl = Lloc
klij) symme-

tries.
At this point, it useful to make a comment regarding the qualitative behavior of the

hardening modulus H loc. For a hardening matrix material and during plastic flow the yield
surface increases in size with increasing equivalent plastic strain (i.e., ∂Φ/∂ε̄p < 0) and
gε̄p > 0 holds. Also, in porous metals, for loadings where the hydrostatic component of the
stress is positive, porosity increases (i.e., gf > 0); the yield surface shrinks with increasing
porosity implying that ∂Φ/∂f > 0 (see p. 6 in Aravas and Papadioti (2021)). Based on
these observations, equation (2.65)3 implies that in the case of the local model, the hardening
modulus H loc is in general a decreasing function of porosity and may become negative during
loading. This result is important in the discussion of the mathematical character of the
governing equations which is presented in Section 4.3.
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2.4 Analytical yield surfaces
To illustrate the effect of the void shape on the plastic behavior of the porous material,
instantaneous yield curves on the normalized “meridonial” p−σe plane are shown in Figs 2.5–
2.8. Since the isotropic yield function is independent of the Lode parameter (Danas et al.,
2008b), only the results for the first quadrant are presented on the p− σe plane.

For later reference, we define the stress triaxiality and Lode angle5 as

XΣ =
p

σe
, θ =

1

3
arcsin

(
−27

2

det s

σ3
e

)
, s = σ − pδ (2.67)

and the strain triaxiality as

XE =
Em
Eeq

, Em =
Ekk
3
, Eeq =

√
2

3
Ed : Ed (2.68)

where Em, Eeq are norms associated with the hydrostatic and deviatoric (Ed) parts of the
logarithmic strain tensor E.

Figure 2.5a shows the effect of the void shape on the effective yield curves for two different
porosity values, f = 1% and 5%, and three different aspect ratios, w = 0.01, 0.10, and 1.
Therein, we observe that as the aspect ratio w decreases from 1 to 0.01 (i.e., as voids change
from spherical to flat penny shaped ones), the yield surfaces shrink significantly, especially
at stress states near the “hydrostatic” point (the point on the curve corresponding to σe = 0
on the hydrostatic stress axis). It should be also noted that, as the aspect ratio w decreases
from 1 to 0.01, the hydrostatic point decreases faster than the corresponding “shear” point
(the point on the curve corresponding to p = 0 on the σe-axis). Also, for a fixed value of the
aspect ratio w, the yield surface shrinks with increasing porosity, as expected.

Figure 2.5b shows the effects of stress triaxiality on the normalized volumetric plastic
strain-rate Nkk = Dp

kk/λ̇ = ∂Φ/∂p, which is proportional to ḟ and controls the evolution of
porosity during plastic flow (see (2.60) and (2.63)). As the aspect ratio w decreases, the cor-
responding value for Nkk increases significantly for higher stress triaxialities, with the effect
being more pronounced at higher porosities. This implies that, during plastic deformation
and especially at high stress triaxiality conditions, porosity is expected to increase rapidly
for microstructures consisting of flat oblate voids. Such effects are less important for prolate
voids (w > 1) and are not shown here for brevity.

Figure 2.6 shows the normalized hydrostatic p/σy and shear σe/σy points, respectively,
as a function of the void aspect ratio w at three different porosity values f = 1%, 3%, and
5%. As w decreases, both the hydrostatic and shear points decrease rapidly, with the former
being more sensitive to the void shape changes. Once again, this behavior confirms the
non-trivial dependence of the plastic response on the void shape parameter.

Figure 2.7 showcases the paramount differences between microstructures with spherical
and oblate voids. More specifically, we show the yield curves for a random distribution of (a)
oblate voids (w = 0.05) with f = 1%, (b) spherical voids at a low porosity of f = 2.6%, and
(c) spherical voids at a high porosity of f = 7.7%. In cases (b) and (c) with spherical voids,
the values of porosity were chosen so that the corresponding yield surfaces have the same

5It should be noted here that alternative definitions for θ can be found in the literature (see for instance
Danas et al. (2008b) and Danas and Ponte Castañeda (2009a)) and any of them can be adopted, as long as
consistency is kept in subsequent calculations.
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Figure 2.5 – (a) Yield curves on the normalized p − σe plane. (b) Influence of void aspect ratio w
on the variation of normalized volumetric plastic strain-rate Nkk; results are shown for porosities
f = 1% (solid lines) and f = 5% (dashed lines).

hydrostatic (f = 7.7%) and shear points (f = 2.6%) as the yield surface of the microstructure
comprising oblate voids with f = 1%. Comparison of the results for microstructures (a) and
(b) shows that the response of a material whose microstructure consists of oblate voids is
much more compliant than that with spherical voids, especially for stress states in which the
hydrostatic component dominates (p � σe). On the other hand, comparison of the results
for microstructures (a) and (c) shows that a material comprising a random distribution of
oblate voids with f = 1% and w = 0.05 exhibits fairly similar behavior with a material
consisting of spherical voids with approximately eight times higher porosity, i.e., f = 7.7%
and w = 1. Such results are indicative of the fact that, even at low porosities, the existence
of flat voids (the shape of which deviates considerably from spherical) can have a detrimental
effect on the effective plastic response of the porous material.

We conclude this section with a parametric analysis of the effects of function k(w), used
in (2.59) to define the interpolation parameter α(f, w), on the predictions of the model.
Figure 2.8 shows the influence of k on the shape and size of the yield surface and on the
volumetric plastic strain-rate Nkk. For demonstration purposes, fixed values for the void
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Figure 2.6 – Normalized (a) “hydrostatic” and (b) “shear” points as functions of the aspect ratio w
(logarithmic scale) at three different porosity levels (f = 1%, 3%, and 5%).

Figure 2.7 – Yield curves on the normalized p− σe plane for a random distribution of oblate voids
(w = 0.05) with f = 1%, spherical voids at a low porosity of f = 2.6% and spherical voids at a high
porosity of f = 7.7%.

aspect ratio (w = 0.10) and porosity (f = 5%) are used. As the value of k increases,
the hydrostatic point moves “outwards”, thus making the response stiffer for stress states
with p � σe, whereas the material response in shear is marginally affected (Fig. 2.8a).
Accordingly, the corresponding values of Nkk decrease as k increases, and this leads to
reduced porosity growth, especially at higher stress triaxialities. We also note that the
parameter k(w) does not affect the hydrostatic point when w = 1 (spherical voids). Also,
in this special case of spherical voids (w = 1) and purely hydrostatic stress states (i.e.,
for σe = 0), the model recovers the Gurson hydrostatic point irrespective of the value of
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Figure 2.8 – Influence of parameter k on (a) the yield curve on the normalized p−σe plane and (b)
the variation of the normalized volumetric plastic strain-rate Nkk with stress triaxiality XΣ.

k(w = 1) and α. Nonetheless, the rate at which the yield curve approaches that point is
obviously affected by α (see discussion in Mbiakop et al. (2015b)).

2.5 Concluding remarks
In this chapter, the isotropic projection approach has been employed in conjunction with
Hashin-Shtrikmann type estimates for porous materials with unidirectional microstructures
to derive estimates for the effective elastic-plastic response of porous material with randomly
oriented voids. In order to derive a fully explicit and computationally efficient model, only
spheroidal voids are considered, which are all characterized by the same shape parameter,
the aspect ratio w, but different orientations. Microstructural changes are assumed to be
characterized by the matrix equivalent plastic strain and porosity evolution while the effect
of void shape evolution to the macroscopic response is assumed negligible. Also, a simple
interpolation is used based on past numerical studies (Cao et al., 2015; Mbiakop et al.,
2015a,b) to accurately capture porosity evolution for both low and high initial porosity
microstructures. These assumptions result in a formulation that possesses the advantages of
the isotropic Gurson’s model while incorporating at the same time critical void shape effects
through homogenization.

Examination of the various parameters in the analytical model gives rise to interesting
implications for the effective response of materials with the proposed microstructure. Over-
all, the effect of initial void shape is found to be stronger than that of void volume fraction.
In particular, the effect of oblate voids (i.e., voids with aspect ratios w < 1) is indicated to
be much stronger on both the elastic and the plastic response of porous materials compared
to spherical or prolate voids (i.e., voids with w ≥ 1). Microstructures comprising penny-
shaped microvoids of low aspect ratios (w ≤ 0.5) are expected to exhibit highly compliant
homogenized responses, especially at high stress triaxiality states. This is also indicated by
the instantaneous yield curves as predicted by the analytical model for various microstruc-
tures where the hydrostatic point is found to be more sensitive to the aspect ratio parameter
compared to the corresponding shear point.



CHAPTER 3

Numerical Homogenization and Model Assessment

Chapter summary: This chapter deals with the assessment of the fully analytical model
presented previously through the use of a numerical RVE homogenization framework. First,
a general methodology for the implementation of periodic boundary conditions and loading
under constant, predefined, macroscopic stress ratios is presented. Then, we discuss the
results from numerical FE calculations of 3D representative unit cells which comprise ran-
dom distributions of randomly oriented spheroidal voids at different initial porosities and
are loaded under different combinations of average stress triaxiality and Lode angle. The
analytical model is subsequently aligned with the predictions for the average RVE response
through the use of a small number of fitting parameters. The calibrated analytical homoge-
nization model is utilized to examine the evolution of microstructure by assuming different
void shapes and average stress states.
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3.1 Loading of 3D RVEs under periodic boundary condi-
tions

In the context of analytical model assessment through numerical homogenization, it is de-
sirable to carry out finite element calculations on Representative Volume Elements (RVEs)
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which are loaded in such a way so that some predefined ratios of the components of the aver-
age stress tensor remain constant throughout the loading program. The way to achieve this
condition is by no means trivial since, in the case of RVEs with periodic B.C., this requires
the applied displacement fields that drive the solution to be defined in a special manner. A
methodology for the implementation of such complex loading conditions has been discussed
for the special case of principal loading by several authors in the literature (see for example
the works of Barsoum and Faleskog (2007), Dunand and Mohr (2014) or Mbiakop et al.
(2015b)). Herein, we present a methodology which generalizes the techniques presented usu-
ally in the literature to loadings that may include all the components of the average stress
tensor and consider triaxial loading as a special case. In what follows, a superposed “ˆ” is
used to denote vector or matrix representations of tensors whose corresponding ranks are
indicated by the context.

3.1.1 Application of periodic boundary conditions

In this section, the application of the periodic boundary conditions which are necessary for
the unit cell calculations presented in Section 3.2 is discussed. A more detailed description
of the properties of periodic stress and strain fields can be found in Michel et al. (1999).
Let us consider a cubic RVE with edge size Li, i = 1, 2, 3 as the one shown in Fig. 3.1. The
definition of periodicity implies that the displacement field u(X) can be written in terms of
a periodic displacement ū(X) with zero mean strain in the RVE (Suquet (1987)) as:

Figure 3.1 – Schematic representation of the cubic cell and depiction of corner nodes.
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u(X) = (F− δ) ·X + ū(X),

∫
VRV E

(∇ū + ū∇)dV = 0 (3.1)

where X is a position vector of a material point in the undeformed configuration, F is the
average (macroscopic) applied deformation gradient, and VRV E is the volume of the RVE.
Since ū(X) is periodic it follows that it takes the same values on opposite sides of the RVE,
i.e., the following conditions hold

ū(L1, X2, X3) = ū(0, X2, X3), ū(X1, L2, X3) = ū(X1, 0, X3), ū(X1, X2, L3) = ū(X1, X2, 0)
(3.2)

In order to eliminate rigid body motions and rotations about each of the axes shown in
Fig. 3.1, the following constraints are applied in finite element calculations:

uC0 ≡ u(0) = 0 and uC1
2 = uC1

3 = uC2
3 = 0 (3.3)

In view of the conditions (3.2), by substracting the nodal displacements on opposite boundary
sides we can arrive to the following kinematic constraints for the corner nodes of the cubic
cell:

u(L1, 0, 0)− u(0) = (F− δ) · (L1e1) or uC1 = L1(F− δ) · e1 (3.4)
u(0, L2, 0)− u(0) = (F− δ) · (L2e2) or uC2 = L2(F− δ) · e2 (3.5)
u(0, 0, L3)− u(0) = (F− δ) · (L3e3) or uC3 = L3(F− δ) · e3 (3.6)

where the notation uC1,uC2,uC3 is used to indicate the applied displacement fields at the
corner nodes of the cell. Equations (3.4)–(3.6) establish a relation between the average
applied deformation gradient F and the applied corner displacement fields. Writing now the
constraints for all nodes lying at the same position in opposite sides of the cube, and by
accounting for the periodicity of ū(X), we arrive at:

u(L1, X2, X3)− u(0, X2, X3) = (F− δ) · (L1e1) = uC1 (3.7)
u(X1, L2, X3)− u(X1, 0, X3) = (F− δ) · (L2e2) = uC2 (3.8)
u(X1, X2, L3)− u(X1, X2, 0) = (F− δ) · (L3e3) = uC3 (3.9)

Relations (3.7)–(3.9) show that the linear periodic constraints for all nodes located at the
same position of opposite sides of the cubic RVE can be written in terms of the applied
displacement fields at the three corner nodes (i.e., uC1,uC2,uC3). In a finite element setting,
given F, one only needs to impose boundary conditions for the aforementioned corner nodes
C1, C2, C3 and the origin node C0; periodicity conditions for each “opposite” node is then
enforced through the linear constraints defined by equations (3.7)–(3.9).

For later reference it should be noted that, for the derivation of the constraints which
are necessary to impose the desired constant macroscopic stress state loading, it is useful to
express the average applied rate-of-deformation tensor D in terms the applied displacement
fields at the corner nodes. This can be done by using equations (3.4)–(3.6) to write F in
terms of the displacement fields uC1,uC2,uC3, so that the applied rate-of-deformation tensor
D can then be given as:

D =
1

2
(L + LT ), L = Ḟ · F−1 (3.10)
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3.1.2 Nonlinear constraints for stress ratio control
Consider that loading is applied to the RVE in a manner so that the components of the
average stress tensor follow the proportional history:

σ11 = σn1, σ22 = σn2, σ33 = σn3

σ12 = σs1, σ13 = σs2, σ23 = σs3 (3.11)

where ni, si, i = 1, 2, 3 denote the ratios of macroscopic stress components and σ could be
any of the six independent stress components σij. This identification of σ implies that in the
most general loading case only five stress ratios will be independent since one stress ratio
will always be equal to unity depending on the choice of σ. Let Σ̂, D̂ denote the reduced
(six-dimensional) vectors of the average stress and rate-of-deformation tensors σ,D. The
components of Σ̂, D̂ with respect to a base spanned by the vectors {eI}, I = 1, · · · , 6 can
be written as:

{
Σ̂
}

eI
6×1

≡



Σ̂1

Σ̂2

Σ̂3

Σ̂4

Σ̂5

Σ̂6


=



σ11

σ22

σ33

σ12

σ13

σ23


= σ



n1

n2

n3

s1

s2

s3


and

{
D̂
}

eI
6×1

≡



D̂1

D̂2

D̂3

D̂4

D̂5

D̂6


=



D11

D22

D33

2D12

2D13

2D23


(3.12)

where using (3.10), one can derive explicit expressions for the components of D̂ in terms of
the nodal velocities of the corner nodes:{
U̇
}

6×1

=
[
Q
]

6×6

{
D̂
}

6×1

or
{
D̂
}

6×1

=
[
Q
]

6×6

−1{
U̇
}

6×1

{
U̇
}

6×1

≡



U̇1

U̇2

U̇3

U̇4

U̇5

U̇6


=



u̇C1
1

u̇C2
1

u̇C2
2

u̇C3
1

u̇C3
2

u̇C3
3


,
[
Q
]

6×6

=



L1 + U1 0 0 0 0 0

0 L2 + U2 0 0 0 0

0 0 L3 + U3 0 0 0

U4 0 0 L2 + U2 0 0

U5 0 0 U6 L3 + U3 0

0 U6 0 U6 0 L3 + U3


(3.13)

The average stress vector Σ̂ can be written equivalently in terms of a “generalized force”
vector P̂ reading:

VRV EΣ̂ = L̄ · P̂ or VRV E
{

Σ̂
}

6×1

=
[
L̄
]

6×6

{
P̂
}

6×1

(3.14)

with L̄ being an arbitrary matrix with dimensions of length and VRV E being the volume of
the RVE. Let ∆ be the vector of “generalized displacemenets” conjugate to P̂, i.e.,

Ẇ = P̂ · ∆̇ =
⌊
P̂
⌋

1×6

{
∆̇
}

6×1

, b∆c
1×6

= b∆1 ∆2 ∆3 ∆4 ∆5 ∆6c (3.15)
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The components of ∆ can be identified as the degrees of freedom of two fictitious nodes in
the model. We introduce at this point an auxiliary orthonormal base spanned by the vectors
{a(I)}, I = 1, · · · , 6 which are defined in such a way so that Σ̂ is aligned with {a(1)} as follows:

For n2
1 + n2

2 6= 0:

{
a(1)
}

6×1

=
1

Π1



n1

n2

n3

s3

s2

s3


,
{

a(2)
}

6×1

=
1

Π2



−n2

n1

0

0

0

0


,
{

a(3)
}

6×1

=
1

Π3



−n1n3

−n2n3

n2
1 + n2

2

0

0

0



{
a(4)
}

6×1

=
1

Π4



−n1s1

−n2s1

−n3s1
3∑
i=1

n2
i

0

0


,
{

a(5)
}

6×1

=
1

Π5



−n1s2

−n2s2

−n3s2

−s1s2
3∑
i=1

n2
i + s2

1

0


,
{

a(5)
}

6×1

=
1

Π6



−n1s3

−n2s3

−n3s3

−s1s3

−s2s3
3∑
i=1

n2
i + s2

1 + s2
2


(3.16)

where the corresponding coefficents ΠI (I = 1, · · · , 6) are given as:

Π1 =

√√√√ 3∑
i=1

(
n2
i + s2

i

)
, Π2 =

√
n2

1 + n2
2, Π3 =

√√√√(n2
1 + n2

2)
3∑
i=1

n2
i

Π4 =

√√√√ 3∑
i=1

n2
i

(
3∑
i=1

n2
i + s2

1

)
, Π5 =

√√√√( 3∑
i=1

n2
i + s2

1

)(
3∑
i=1

n2
i + s2

1 + s2
2

)

Π6 =

√√√√( 3∑
i=1

n2
i + s2

1 + s2
2

)(
3∑
i=1

(
n2
i + s2

i

))
(3.17)

For n1 = n2 = 0 and n2
3 + s2

1 6= 0:{
a(2)
}

=
{

e1

}
,
{

a(3)
}

=
{

e2

}
,
{

a(1)
}
,
{

a(4)
}
,
{

a(5)
}
,
{

a(6)
}

from (3.16) (3.18)

For n1 = n2 = n3 = s1 = 0 and s2
2 + s2

3 6= 0:{
a(2)
}

=
{

e1

}
,
{

a(3)
}

=
{

e2

}
,
{

a(4)
}

=
{

e3

}
,
{

a(5)
}

=
{

e4

}
,{

a(1)
}
,
{

a(6)
}

from (3.16) (3.19)

The vectors Σ̂, D̂, P̂,∆ can then be expressed in the new base as:

Σ̂ = Σ̂′1

{
a(1)
}
, D̂ =

6∑
I=1

D̂′I

{
a(I)
}
, P̂ =

6∑
I=1

P̂ ′
{

a(I)
}
, ∆ =

6∑
I=1

∆′I

{
a(I)
}

(3.20)
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where{
Σ̂′
}

6×1

=
[
C
]

6×6

T{
Σ̂
}

6×1

,
{
D̂′
}

6×1

=
[
C
]

6×6

T{
D̂
}

6×1

,
{
P̂ ′
}

6×1

=
[
C
]

6×6

T{
P̂
}

6×1

,
{

∆′
}

6×1

=
[
C
]

6×6

T{
∆
}

6×1

,

(3.21)[
C
]

6×6

=

[{
a(1)
}

6×1

{
a(2)
}

6×1

{
a(3)
}

6×1

{
a(4)
}

6×1

{
a(5)
}

6×1

{
a(6)
}

6×1

]
(3.22)

Loading at constant stress ratios can then be achieved by enforcing the following conditions:

∆′1 = ∆̄′ = known and Σ̂′2 = Σ̂′3 = Σ̂′4 = Σ̂′5 = Σ̂′6 = 0 (3.23)

which lead to the expressions (3.11) for the desired average stress aspect ratios. In view
of expressions (3.14), (3.13) and (3.20), coupling of the components of ∆ with the physical
degrees of freedom that drive the solution can be achieved by comparing the total work rate
on the RVE (= VRV Eσ : D = VRV EΣ̂ · D̂) with (3.15), yielding:{

∆̇′
}

6×1

=
[
C
]

6×6

T[
L̄
]

6×6

[
Q
]

6×6

−1{
U̇
}

6×1

or
{
U̇
}

6×1

=
[
Q
]

6×6

[
L̄
]

6×6

−1[
C
]

6×6

{
∆̇′
}

6×1

(3.24)

Equation (3.24)2 defines a set of nonlinear kinematic constraints associating the degrees of
freedom of the nodes related to the application of the periodic boundary conditions with the
degrees of freedom of two fictitious nodes. Satisfaction of this constraint at every increment
of the numerical solution ensures that the loading follows the desired proportional history
defined by the stress ratios in (3.11). In the special case of principal loading, the desired
constant stress state can be established through two stress invariants, namely the average
stress triaxiality XΣ and Lode angle θ as follows. Using equations (3.11), it can be shown
that the average stress triaxiality and Lode angle can be given as functions of the stress
ratios:

XΣ =
p

σe
=

A1(ni, si)

3A2(ni, si)
, θ =

1

3
arcsin

(
−27

2

det(s)

σ3
e

)
=

1

3
arcsin

(
− A3(ni, si)

2 [A2(ni, si)]
3

)
(3.25)

A1 = n1 + n2 + n3,

A2 =
√
n2

1 + n2
2 + n2

3 − (n1n2 + n1n3 + n2n3) + 3 (s2
1 + s2

2 + s2
3)

A3 = 2
(
n2

1 + n2
2 + n2

3

)
− 3{

(
n2

1 + n2n3

)
(n2 + n3)− n1

(
n2

2 − 4n2n3 + n2
3

)
,

+ 3
[
(n2 − 2n3) s2

1 + (n3 − 2n2) s2
2 + (n2 + n3) s2

3 + 6s1s2s3 + n1

(
s2

1 + s2
2 − 2s2

3

)]
}

(3.26)

For principal loading (i.e., for si = 0, i = 1, 2, 3), equations (3.25) can be used to express
any of the two remaining independent stress ratios nα as functions of the average stress
triaxiality and Lode angle, i.e., a relation of the following form can be written:

nα = nα(XΣ, θ) (3.27)

where α = 2, 3 if σ ≡ σ1, α = 1, 3 if σ ≡ σ2, and α = 1, 2 if σ ≡ σ3, with σi, i = 1, 2, 3
denoting the principal stresses. One can also show that in this case, the principal stresses
can be given explicitly as functions of stress triaxiality and Lode angle as:

σi
σe

=
2

3
cos θi +XΣ, θi = θ + (5− 4i)

π

6
, i = 1, 2, 3 (3.28)
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Since the average stress triaxility and Lode angle can be used as measures that characterize
the type of the applied macroscopic loading, equations (3.25) and (3.28) show that specific
choice for the stress ratios nα corresponds to a specific macroscopic loading stress state and
vice versa.

To summarize the procedure, in a finite element setting, the condition (3.23)1 is enforced
on a fictitious node and the periodic B.C.s are enforced at each increment of the solution
through (3.24)2; this implies that the desired stress ratios defined by (3.11) are kept constant
throughout the loading program. In the general case of multi-axial proportional loading, the
nonlinear constraints (3.24)2 will be functions of all stress ratios. In the special case of
principal loading, the nonlinear constraints (3.24)2 can defined as a functions of the desired
constant average stress triaxiality XΣ and Lode angle θ based on their functional dependence
concisely expressed by (3.27).

3.2 Unit cell calculations

Concerning validation techniques at the material (constitutive) level, the numerical periodic
homogenization method may be used as a test-bed to assess the predictions of analytical
homogenization models. The methodology used in this study for the case of a two-phase,
porous material can be summarized as follows. A suitably chosen RVE containing randomly
oriented and distributed with uniform probability spheroidal voids of predefined initial vol-
ume fraction is loaded and periodic boundary conditions are applied. The finite element
method is used to determine the local1 displacement, strain, and stress fields in the RVE.
The local fields are then used to calculate the corresponding average fields. The fitting pa-
rameters A,B, and fmin used in the interpolation function α in (2.59), are then adjusted to
align the predictions of the analytical model with the average numerical results.

In this work, cubic unit cells with side lengths L1 = L2 = L3 = 1 and initial volume
V0 = L1 L2 L3 = 1 are filled with uniform distributions of randomly oriented voids of the same
spheroidal shapes and initial porosities as shown in Fig. 3.2. The unit cells are subjected to
constant average stress triaxiality XΣ and Lode angle θ under periodic boundary conditions,
using the procedure described in Section 3.1. Using as an indicator both previous numerical
results (Danas and Aravas, 2012; Cao et al., 2015; Anoukou et al., 2018; Zerhouni et al., 2021)
and the results presented in Section 2.4, only oblate and spherical voids (i.e., w ≤ 1) are
considered in the RVE calculations, since prolate voids exhibit substantially weaker effects
on the effective response. The geometry of the unit cells is generated using the Random
Sequential Adsorption (RSA) method discussed in Anoukou et al. (2018). Therein, ellipsoidal
voids (or inclusions in the general case) of the same or different size are sequentially added in
the unit cell imposing a non-overlapping condition based on distance evaluation of quadric
objects of general shape. When the desired volume fraction (porosity) is reached, periodic
images of any “incomplete” voids at the cube boundaries are added.

In all numerical calculations, the matrix material is assumed to be isotropic with Young’s
modulus E = 300σ0, Poisson’s ratio ν = 0.3, and a flow stress following power law isotropic

1It should be recalled that in the context of homogenization theory, these are the fields that develop
at the scale of the various heterogeneities as opposed to the (measurable) fields at the scale of the applied
macroscopic loads.
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Figure 3.2 – Cubic unit cells used in the numerical homogenization calculations containing randomly
oriented and distributed oblate voids of various shapes at an initial volume fraction (a) f0 = 1%
and (b) f0 = 5%.

hardening2 of the form

σy(ε̄
p) = σ0

(
1 +

ε̄p

ε0

)1/n

, (3.29)

is used, where n ≥ 1 is the hardening exponent and ε0 = σ0/E. A hardening exponent of
n = 10 is used in all numerical homogenization calculations. The average porosity in the
unit cell is calculated using the corresponding average deformation gradient as

f =
Vv

V =
det F− Vm/V0

det F
, det F =

V
V0

, V = Vm + Vv, (3.30)

where F is the average deformation gradient, Vm is the current matrix volume, Vv the current
volume of the voids, and V the current total volume of the RVE.

3.2.1 Computational aspects of RVE simulations
The FE calculations are carried out using the commercial finite element program ABAQUS/S-
tandard (Abaqus, 2021). The power-law isotropic hardening model for the matrix material is

2Any other hardening law including kinematic hardening as discussed in Cheng et al. (2017) may be used
if required. This is however beyond the scope of the present study.
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implemented via a User HARDening (UHARD) user-subroutine provided by ABAQUS/Stan-
dard. Loading under constant stress triaxiality and Lode angle is achieved by employing the
time-dependent nonlinear constraint (3.24)2, which is enforced at every increment using the
Multiple Point Constraint (MPC) user-subroutine provided by ABAQUS/Standard.

All meshes are generated with the mesh generation program NETGEN3 (https://
ngsolve.org). Ten-node quadratic tetrahedral hybrid elements with constant pressure are
used in the simulations (C3D10H in ABAQUS/Standard). Mesh convergence studies (con-
cerning both local and average fields) of microstructures with oblate voids show that the
number of required elements vary from 8.5×105 to 1.5×106, depending on the initial poros-
ity and, more importantly, on the void shape; as the value of the aspect ratio w decreases,
the number of required elements increases. It is worth noting that, in the case of spherical
voids (w = 1), convergence of the effective behavior can be achieved with mesh densities in
the range of 2× 105 elements, depending on the value of the initial porosity; these numbers
are much smaller than the number of elements required for oblate voids with an aspect ratio
w = 0.3 for the same initial volume fractions.

The simulations are carried out using parallel computing (20 cpus per simulation) on a
high-performance computing (HPC) cluster; for oblate voids with low aspect ratios (w ≤ 0.5),
the average computation time per simulation ranges from 24 to 48 hours depending on the
mesh density. A python script was then used for post-processing of the results in order to
calculate the average fields of interest. It should be pointed-out that simulations for w ≤ 0.2
could not be performed, mainly due to significant meshing quality problems. Also, based on
the computational times required for w = 0.3, we expect very high computational times to
be required for such calculations.

3.3 RVE calculations and model calibration

3.3.1 RVE determination and convergence study
It has become clear from previous (e.g., Suquet (1987), Kanit et al. (2003)) and more re-
cent numerical homogenization studies (Lopez-Pamies et al., 2013; Benhizia et al., 2014; El
Moumen et al., 2014, 2015a,b; Bensaada et al., 2022; Luo et al., 2023) on porous and particle-
reinforced materials that determination of an appropriate RVE requires to investigate the
convergence of the average material behavior with respect to a number of parameters in
the RVE. In porous materials, these include the number of voids, different realizations of
the same microstructures (i.e., different spatial distribution of voids with the same shape
and volume fraction), and, for the model considered in this work, examination of the RVE’s
isotropy. To this end, a systematic investigation for the determination of RVE characteristics
is carried out. Unit cell calculations are performed at a constant stress triaxiality XΣ = 1,
since moderate to high triaxialities are of interest. Dependence on the Lode parameter (or
equivalently the third invariant J3 of the deviatoric stress) is examined through variation of
the Lode angle θ. Results for oblate microstructures with an aspect ratio w = 0.3 are pre-
sented in the following. Due to severe mesh distortion issues with progressing deformation,
the calculations were terminated at moderate average strain levels in this case.

Figure 3.3 shows results of the convergence analysis for different number of voids Np.
Cross-plots for the average von Mises stress and porosity as functions of Lode angle θ (in

3Alternatively, it is also possible to use the open-source, 3D mesh generation software GMSH (https:
//gmsh.info), as discussed recently in Luo et al. (2023).

https://ngsolve.org
https://ngsolve.org
https://gmsh.info
https://gmsh.info
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Figure 3.3 – Cross-plots of average normalized von Mises stress σeq/σ0 and porosity f as functions
of Lode angle θ for w = 0.3 and for three different number of voids (Np = 30, 60, and 90), at an
initial porosity level (a) f0 = 1% and (b) f0 = 5%.

degrees) at strain levels Eeq = 0.5% and 7% are presented for microstructures comprising
three different void numbers (Np = 30, 60, and 90). Note that the vertical axes do not
start at the value of zero. A Lode angle range of ∆θ = 120◦ (as opposed to 60◦) was
intentionally scanned in these series of calculations, to verify the validity of the material
isotropy hypothesis of the unit cells. It can be seen from Fig. 3.3a that, for a low initial
porosity f0 = 1%, the scatter in the prediction of the overall porosity evolution is small
at all strain levels, leading to an almost identical behavior for the average von Mises stress
for all microstructures. A qualitatively similar response is observed for the higher initial
porosity of f0 = 5% (Fig. 3.3b). Very good agreement can be observed in the results for
the microstructures comprising Np = 30 and Np = 60 voids, while a small deviation exists
for the microstructures with Np = 90 voids; this difference is more pronounced at the larger
average strain of Eeq = 7%.

The dependence of the results on the Lode angle is rather weak, at least for the range
of strains considered. Examination of the predictions for the effective von Mises stress as
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Figure 3.4 – Contour plots of local (a) equivalent plastic strain (ε̄p∗) and (b) stress triaxiality (X∗Σ)
fields corresponding to a loading with average stress triaxiality XΣ = 1 and Lode angle θ = −30◦.
Distributions for two microstructures, one comprising random oblate voids with aspect ratio w = 0.3
and another comprising spherical voids (i.e., w = 1) are shown. The initial void volume fraction is
f0 = 5% in both cases.

a function of the Lode angle 4 reveals that for all microstructures considered, there exists
approximately a 60◦ symmetry with respect to θ = 30◦ with maximum differences between
corresponding points being less than 2%; this indicates that the unit cells can be considered,
to within this approximation, as close to isotropic and be used for a fair comparison with the
analytical model. Also, the results depicted in Fig. 3.3 show that a distribution of Np = 30
voids provides sufficient convergence of the effective behavior. For computational efficiency,
all subsequent unit cell calculations are carried out with a number of Np = 30 voids.

Figure 3.4 depicts the distributions of the local equivalent plastic strain (ε̄p∗) and stress
triaxiality (X∗Σ) fields that develop at the scale of the voids corresponding to a loading with

4Recall that a relation of the form σe = σe(θ) describes the corresponding yield curve on the so-called
Π-plane (Danas et al., 2008b).
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Figure 3.5 – Cross-plots of average normalized von Mises stress σeq/σ0 and porosity f as functions
of Lode angle θ for three different cell realizations at an initial porosity level (a) f0 = 1% and (b)
f0 = 5%.

an average stress triaxiality XΣ = 1 and a Lode angle θ = −30◦. The results for two different
microstructures are shown, one with oblate voids of aspect ratio w = 0.3 and another with
spherical voids (i.e., w = 1). As one can see from Fig. 3.4a, plastic strains concentrate
mostly in the ligaments between the voids in the microstructure comprising oblate voids
with the corresponding distribution being more diffuse in the microstructure with spherical
voids. Also, the highest plastic strains develop at the free surfaces of the voids and are
much higher in the case of oblate voids compared to spherical ones. Regions of high and low
stress triaxiality appear to form in the case of oblate voids as shown in Fig. 3.4b; relatively
high local stress triaxiality conditions (X∗Σ ≥ 1.4) develop at the region in front of the high
curvature side of the voids while lower local stress triaxialities (in the range ofX∗Σ = 0.3−0.6)
develop at the areas surrounding the low curvature (more flat) side of the voids’ surfaces.
Overall, lower local stress triaxiality conditions with more diffuse distribution are observed
in the microstructure with spherical voids.
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Figure 3.5 shows the results from the convergence analysis with respect to three different
realizations of the same microstructure comprising Np = 30 voids. The RSA algorithm is
used to generate multiple random microstructures with a given initial porosity, void shape,
and number of voids, but with different spatial position of the voids in the matrix material.
Again, we present cross-plots for the average von-Mises stress and porosity as functions of
the Lode angle at different levels of straining. The range of θ ∈ [−30◦, 30◦] was examined in
this series of calculations. In the case of an initial porosity f0 = 1%, Fig. 3.5a shows a good
agreement among the predictions of the three realizations at the strain levels considered.
A similar behavior is observed at the higher initial porosity of f0 = 5% (Fig. 3.5b). Once
again, there exists only a weak variation of the effective behavior with the Lode angle.

Based on these results, it is reasonable to assume that the Lode parameter has a weak
effect on the effective plastic response of a porous material especially at the smaller values
of w considered here. Therefore, plasticity is assumed to be independent of the Lode angle
in the present analytical model.

Remark 8. Nevertheless, if deemed absolutely necessary, extension of the present model
to include Lode angle-dependence could be employed through various approaches. One
possibility would be to include in the evolution equation of porosity (2.63) an additional
term that depends on the third invariant of the stress deviator, as suggested by Nahshon
and Hutchinson (2008). Another approach could be the introduction of an additional, Lode
angle-dependent, shear-induced damage variable along with a corresponding evolution law
as proposed by Zhou et al. (2014a). Also, in the spirit of the model proposed by Bai and
Wierzbicki (2008), a Lode angle dependent factor could be introduced directly into the yield
function. Finally, one could of course bring the proposed isotropic projection approach in
more elaborate homogenization methods (e.g., Danas and Ponte Castañeda (2009a), Agoras
and Ponte Castañeda (2014), Song and Ponte Castañeda (2018)), which naturally include
dependence on the Lode parameter.

3.3.2 Fitting between the homogenization model and average RVE
response

Alignment of the analytical model with the average RVE response is achieved through vari-
ation of the fitting parameters A,B and fmin of the interpolation function α in (2.59). In
particular, we calibrate directly those parameters by repeatedly carrying out calculations
with the analytical model using the same material parameters and loading conditions as in
the RVE simulations until adequate agreement is found with the average RVE predictions.
We find that the evolution of the average von Mises stress and porosity, as predicted by the
analytical model, for different values of the void aspect ratio w and initial porosities, fits
well the average RVE response for A = −8.6 × 10−4, B = 1.06 × 10−3 and fmin = 0.5%
in equation (2.59). It should be mentioned however that this comparison is not exhaustive;
more rigorous fitting techniques (e.g., statistical methods such as regression analysis) or even
machine learning approaches could be utilized, depending on data availability.

To illustrate the variation in the effective response with the aspect ratio w, results are
presented for two different microstructures: one consisting of oblate voids with aspect ratio
w = 0.3 and another with spherical voids (w = 1) for two different initial porosities, f0 = 1%
and f0 = 5%. Figures 3.6a-d show the comparison between numerical homogenization results
and the predictions of the analytical model for an initial porosity of f0 = 1% and a triaxiality
XΣ = 1. The shaded areas in Fig. 3.6 indicate fluctuations of the effective behavior from
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Figure 3.6 – Comparison of average RVE response with the corresponding predictions of the ho-
mogenization model for an initial porosity f0 = 1% at a constant stress triaxiality XΣ = 1. The
shaded areas indicate the scatter of the RVE response over different Lode angles θ ∈ [−30◦, 30◦].

the unit cell calculations with respect to different values of the Lode angle in the range
θ ∈ [−30◦, 30◦]; blue color corresponds to oblate voids with an aspect ratio w = 0.3 and red
color corresponds to spherical voids (w = 1). The black dashed curve corresponds to the
predictions of the proposed analytical model, which does not have any dependence on the
Lode angle. It is observed that the average hydrostatic strain shown in Fig. 3.6b as well as
the porosity evolution shown in Fig. 3.6d are higher in the case of voids with an aspect ratio
of w = 0.3 compared to a microstructure with spherical voids. The effect of higher porosity
in the former case is reflected in the corresponding average stress-strain response (Fig. 3.6a);
this effect is weak though, due to the overall small porosity levels developed. It is also
interesting to emphasize that the numerical and analytical results for the equivalent plastic
strain in the matrix coincide and are independent of the assumed void shape (Fig. 3.6c).

Comparisons between numerical and analytical homogenization results were also carried
out for microstructures with an initial volume fraction f0 = 5% as shown in Figs. 3.7a-d.
The same values for the fitting parameters A,B and fmin as in the case of the lower initial
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Figure 3.7 – Comparison of average RVE response with the corresponding predictions of the ho-
mogenization model for an initial porosity f0 = 5% at a constant stress triaxiality XΣ = 1. The
shaded areas indicate the scatter of the RVE response over different Lode angles θ ∈ [−30◦, 30◦].

porosity were used in the analytical model. As it can be seen the effective stress-strain
response is more compliant due to the higher initial porosity assumed in this case. Overall,
the analytical model is in good agreement with the corresponding average RVE behavior
and similar qualitative observations can be made as in the case of f0 = 1%. Such results
verify the validity of the proposed calibrated model for microstructures with low to moderate
initial volume fractions.

Remark 9. Due to approximations introduced during the meshing of the voided unit cells,
the resulting numerical meshed initial porosity is slightly higher (f0

∼= 0.0104) for oblate voids
and slightly lower (f ∼= 0.0098) for spherical voids than the prescribed value of f0 = 0.010.

For both the low and high initial porosities considered in these calculations we observe
that the largest fluctuations in the scatter of the effective RVE response with respect to the
Lode angle appear in the porosity evolution of initially spherical voids. This dependence
on the Lode angle, although weak overall, becomes more important with progressing defor-
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mation, which was known from previous studies such as Danas et al. (2008b) and Danas
and Ponte Castañeda (2012). This may be attributed to the fact that, although both mi-
crostructures are initially isotropic, their evolution in the case of finite deformations is rather
different. In the case of w = 1, the initially spherical voids change their shape in the same
average way. This leads to deformation-induced anisotropic effective behavior at higher
strains. On the other hand, in the case of randomly oriented spheroids, the voids are not
expected to all evolve in the same manner, since deformation of each void will ultimately
depend on its relative orientation with respect to the applied load. In this latter case, the
microstructure is able to retain fairly well its initial isotropy, even at larger strains, showing
less sensitivity to the Lode angle parameter.

Overall good agreement is achieved on average between the numerical and analytical
results, both for oblate and spherical voids, up to the strain levels attained. This study
shows that the proposed analytical model, together with the appropriate choice of the fitting
parameters in the interpolation function introduced in (2.59), can capture well the stress and
porosity evolution, when compared to full-field numerical results from RVE calculations. In
any case, this comparison is not meant to be exhaustive, but it can be used to gain intuition
on the effect of the void shape upon the effective response of the porous material.

3.4 Model predictions: Evolution of microstructure

In order to investigate the predictions of the new model, material point (constitutive) cal-
culations for various microstructural configurations and different stress states (defined by
the stress triaxiality parameter) are carried out. We consider three different microstructures
consisting of spherical voids (i.e., w = 1) and oblate voids with aspect ratios w = 0.3 and
w = 0.1 respectively at constant low (XΣ = 1/3) and high (XΣ = 3) stress triaxiality. The
matrix material is characterized by a Young’s modulus E = 300σ0 and a Poisson’s ratio
ν = 0.3 in all calculations. Also, for comparison purposes, the same calculations are re-
peated using the well-known “Gurson–Tvergaard–Needleman” (GTN) model (Gurson, 1977;
Chu and Needleman, 1980; Tvergaard and Needleman, 1984) with a yield function of the
form:

ΦGTN(σe, p, ε̄
p, f) =

(
σe

σy(ε̄p)

)2

+ 2 f q1 cosh

(
3 q2

2

p

σy(ε̄p)

)
− (1 + q3 f

2), (3.31)

where (q1, q2, q3) are calibration parameters. For q1 = q2 = q3 = 1, equation (3.31) reduces to
the original Gurson’s yield function. Following Tvergaard (1981), we use the values q1 = 1.5,
q2 = 1, and q3 = q2

1 = 2.25 in subsequent calculations. We recall that the GTN model,
originating from a modification of the Gurson model, is valid for spherical voids that remain
spherical at finite strains. We show that the aspect ratio w can be viewed as a calibration
parameter for the newly proposed homogenization model, similar to the aforementioned
(q1, q2, q3) calibration parameters in the GTN model. In this set of calculations, σe and p
are increased in proportion according to the desired stress triaxiality, and the solution is
developed incrementally.

Figures 3.8a,b show the stress-strain response and the corresponding porosity evolution
for the three different microstructures with w = 0.1, 0.3, and 1, and triaxialities XΣ = 1/3
and 3. At very high stress triaxiality XΣ = 3, the effective response appears very sensitive
to w and the material becomes gradually softer for lower values of the aspect ratio. Porosity
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Figure 3.8 – Results from microstructural evolution calculations regarding the effective elastic-plastic
response as predicted by the proposed homogenization model showcasing the effect of the aspect
ratio parameter. Plots of (a) the normalized von Mises stress σe/σ0, (b) porosity f , (c) equivalent
plastic strain ε̄p, and (d) strain triaxiality XE are shown for different values of the aspect ratio w
both at low and high stress triaxialities. The dashed black line corresponds to the predictions of
the isotropic GTN model with q1 = 1.5, q2 = 1, and q3 = q2

1 = 2.25.

evolves rapidly to extremely large values for all w, and increases faster at lower strain levels
for oblate voids with smaller aspect ratios. On the other hand, at a stress triaxiality of
XΣ = 1/3, the response appears almost insensitive to the aspect ratio for spherical and
oblate voids with an aspect ratio w = 0.3, whereas a fast increase of porosity is predicted for
w = 0.1. The latter leads to a substantial drop in the corresponding stress-strain response
as shown in Fig. 3.8a. This observation suggests that the initial void shape alone is a
predominant variable and can induce local softening even at loads with a small hydrostatic
component. This effect is highly nonlinear with respect to w and tends to become stronger
for w < 0.5.

Figures 3.8c,d show the evolution of the equivalent plastic strain and strain triaxiality.
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Figure 3.9 – Results from microstructural evolution calculations regarding the effective elastic-plastic
response as predicted by the proposed model showcasing the effect of initial porosity. Plots of (a)
the normalized von Mises stress σe/σ0 and (b) porosity f are shown for different values of initial
porosity f0 at a high stress triaxiality XΣ = 3. Solid lines correspond to an aspect ratio of w = 0.1
and dashed lines with same color correspond to respective initial porosity with w = 1.

For a stress triaxiality of XΣ = 3, the aspect ratio w does affect the accumulated plastic
strain in the matrix, whereas this effect becomes stronger for lower values of w. Also, strain
triaxiality reaches higher values at lower overall strains as the void aspect ratio decreases,
thus indicating that very high dilatational strains develop for microstructures containing flat
oblate voids. At a low stress triaxiality of XΣ = 1/3, the aspect ratio does not affect the
equivalent plastic strain in the matrix, whereby higher strain triaxiality is only obtained for
the case of w = 0.1, which is consistent with the corresponding porosity evolution shown in
Fig. 3.8b.

It is also interesting to note that the predictions of the GTN model are very close to
those of the proposed new model with w = 0.3 in the case of the high triaxiality XΣ = 3.
In turn, at the lower triaxiality of XΣ = 1/3, the GTN predictions are close to those of the
proposed model with w = 1. This indicates that the proposed new model is able to reproduce
such results with a variation of only one parameter (the aspect ratio w) that nevertheless
incorporates a physical meaning related to the microstructure.

Figures 3.9a,b showcase the effect of initial porosity on the stress-strain response and
porosity evolution for the three different initial porosity distributions f0 = 0.05%, 0.1%,
and 1% at a stress triaxiality XΣ = 3. Solid lines correspond to microstructures comprising
oblate voids with an aspect ratio w = 0.1; for reference, microstructures with the same
initial volume fractions of spherical voids (i.e., with w = 1) are also shown with dashed
lines of corresponding color. It can be seen in all cases that for initial porosities 0.05%
and 0.1% porosity evolution is relatively the same while a substantial increase in the rate
of porosity evolution is observed for an initial porosity f0 = 1%. As expected, softening
response initiates at lower strain levels for very flat oblate voids when compared to spherical
voids at the same initial void volume fraction; also, for strain levels above 5%, porosity grows
to substantially higher values at corresponding strains and initial porosities for voids with
w = 0.1. It is interesting to also note that, up to relatively small strains of 2.5%, the effective
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response of a material with a microstructure consisting of penny-shaped voids with w = 0.1
exhibits similar behavior with a material comprising spherical voids that had 20 times more
initial volume fraction in the matrix; this indicates once again the strong effect of the shape
parameter in accelerating porosity evolution relative to the initial porosity content.

3.5 Concluding remarks
In the present chapter we employed the numerical 3D RVE homogenization approach as
a test bed in order to assess the predictions of the new analytical homogenization model
proposed in this study. The modified RSA algorithm of Anoukou et al. (2018) was used
to generate unit cells comprising randomly distributed and randomly orientated spheroidal
voids of various shapes and initial volume fraction in a von Mises matrix. The cells were
loaded at different constant macroscopic stress states under periodic boundary conditions
and a convergence study with respect to the number of voids, microstructural realizations and
isotropy was carried out. These results from micromechanics calculations were subsequently
used to calibrate the analytical model by using a small number of fitting parameters.

The convergence analysis has shown that unit cells with as low as 30 randomly oriented
and distributed spheroidal voids are enough to be used as RVEs for the microstructures
assumed in this work, exhibiting an effective response sufficiently close to isotropic. Exami-
nation of the fields at the level of the voids reveals that higher local plastic strains and stress
triaxialities develop in microstructures that consist of low aspect ratio oblate voids compared
to ones with almost spherical or spherical voids. Moreover, variation of the effective RVE
behavior with the Lode angle was found to be small and thus such a dependence was also
neglected in the analytical model. Spherical voids are found to exhibit a higher sensitivity
to the Lode angle parameter compared to oblate voids. In any case, if deemed necessary, J3

dependence can be incorporated either by using more general LCC homogenization estimates
or, more easily, through simple heuristic modifications of the present constitutive equations.
Using the calibrated model, we have also investigated the effects of microstructural configu-
rations and stress states on the effective response and evolution of microstructure. Material
point calculations verify the strong effect of the initial void shape parameter on the effective
response; lower aspect ratios lead to increased porosity evolution and softening at both lower
and higher stress triaxiality states. Also, the effect of initial porosity content is found to be
weaker compared to that of the shape of the microvoids.
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CHAPTER 4

Mathematical Issues and Regularization Methods

Chapter summary: In this chapter the computational issues related to the FE implemen-
tation of rate-independent constitutive models with softening are discussed in detail and a
regularized version of the new isotropic model is proposed. First, a review of the various
non-local regularization methods proposed in the context of solid mechanics is given followed
by the general definition of a non-local field. Subsequently, we focus our attention to the
implicit non-local (gradient) formulation used in this work, which results in an additional
PDE for the non-local porosity variable. The constitutive equations presented in Chapter 2
are then modified accordingly resulting in a regularized formulation. The mathematical
character of both local and non-local problems is then analyzed in detail. The effects of the
non-local formulation on strain localization and post-bifurcation response are numerically
investigated using the well-known Rice’s localization analysis (Rice, 1976) under plane strain
conditions.
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4.1 Introduction to non-local theories

A well-known problem in the finite element implementation of rate-independent constitutive
models that can lead to softening behavior is the mesh-dependency of the corresponding
numerical solutions. For instance, as it is pointed out in Pijaudier-Cabot and Bažant (1987),
implementation of damage and crack propagation simulations using standard continuum
mechanics models results in unrealistic failure predictions in the sense that the corresponding
material fails immediately slightly after peak load with zero energy dissipation and with
deformation localized in a zone of zero width.

From a mechanics perspective, softening behavior suggests a form of material instability
and is closely related to strain localization phenomena that can appear, under certain con-
ditions, within a structure. The term “localization” in the sense of Rice (1976) refers to the
emergence of regions of specific size where all further deformation of the structure tends to
concentrate (i.e., localize) regardless of the fact that the loading program may remain unal-
tered. Classical examples of localization phenomena in metals include the formation of‘shear
bands or the process of void nucleation, growth and coalescence in ductile fracture with their
interaction critically affecting the final failure mode of the structure (Tekoğlu et al., 2015).

This ill-posed behavior is common to all such models (e.g., porous plasticity, continuum
damage models etc.) that are based on classical or local continuum mechanics formulations
and do not incorporate a characteristic length scale (see p. 517 in Jiràsek and Bažant
(2002)). Local models neglect long-range material point interactions assuming that the
fields at any material point of the body depend solely on the loading history at that specific
point. Deformation history of the material at any time is then characterized by the current
values of the internal variables of the model, excluding higher order gradients that would
incorporate non-local effects. In practice, local continuum models are sufficiently accurate
to be used in problems where the strain distribution remains smooth (even if it becomes
non-homogeneous) and no discontinuities are present.

The mathematical reason for this behavior is the loss of ellipticity of the governing partial
differential equations (PDEs), which allows for the development of non-smooth solutions,
such as shear bands of zero thickness. Since spatially discontinuous velocity gradients can
develop only across characteristic surfaces (or curves in 2D) and elliptic problems have
no real characteristics, all solutions of elliptic problems are smooth functions (e.g., see p.
135 in Zauderer (2006)); even when non-smooth boundary conditions are used, the elliptic
operators smooth out the solution in the interior of the problem domain. In elliptic problems,
shear bands can still initiate at imperfections and appear as highly strained regions of finite
width in a smooth solution and can be accurately represented by finite element numerical
calculations, which converge as the mesh is refined.

In order to overcome the numerical difficulties associated with loss of ellipticity, the
governing equations need to be “regularized”. In solid mechanics, a solution to overcoming the
aforementioned difficulties can be achieved by enhancing the classical models so as to include
long-range interactions at all material points. The non-local effects can be incorporated
either through differential operators (non-local models of the gradient type) or through
(weighted) spatial averaged fields (non-local models of the integral type). Based on the type
of enrichment, non-local theories can be classified into two major groups:

• Theories that enhance the kinematic equations, in the sense that they incorporate
higher order gradients or non-local averages of the strain field. For instance, the
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models proposed by Fleck and co-workers (Fleck and Hutchinson, 1993; Fleck et al.,
1994; Fleck and Hutchinson, 1997, 2001), Leblond and co-workers (Bergheau et al.,
2014), and Gurtin and co-workers (Gurtin, 2003; Gurtin and Anand, 2005; Gurtin
et al., 2010) which fit into the fraimwork laid down in the works of Mindlin (Mindlin,
1964; Mindlin and Eshel, 1968) fall in this category.

• Theories that enhance the constitutive equations by considering gradients or non-local
averages of the internal variables. Examples of models that fall in this class include the
ones proposed by Aifantis (Aifantis, 1984, 1987, 1992, 1999), Bažant and co-workers
(Bažant et al., 1984; Bažant and Pijaudier-Cabot, 1988), Leblond et al. (1994a), Needle-
man and Tvergaard (1998), Peerlings and co-workers (Peerlings et al., 1995, 1996),
Geers et al. (2001), Engelen et al. (2003), and more recently Enakoutsa (2014), Papa-
dioti et al. (2019), Aravas and Papadioti (2021).

Several of these non-local models can be recovered by using a more rigorous thermodynamic
framework as shown in the work of Forest (2009), based on the ideas of a “micromorphic”
medium which was first introduced by Eringen and Suhubl (Eringen and Suhubl, 1964a,b).
In the case of gradient non-local theories belonging to the second group, these can be further
classified into explicit or implicit depending on how the higher order gradients of the internal
variables are introduced in the formulation. In explicit gradient models, gradients of one or
more internal variables enter directly the formulation, for instance in the yield function. In
implicit gradient models, higher order gradients are introduced through the definition of one
or more non-local fields which satisfy the so-called modified Helmholtz partial differential
equation, as will be shown in Section 4.2.

In the following, the general definition of a non-local field is given. Let a(x) be a local field
that may represent any quantity of the problem that is meaningful to define a corresponding
non-local quantity (i.e., it may refer to strain or any other scalar, vector or tensor internal
variable). Then, the corresponding weighted spatial average or non-local average anl(x), of
the field a(x) is defined as (Pijaudier-Cabot and Bažant, 1987; Bažant and Pijaudier-Cabot,
1988):

anl(x) =
1

W (x)

∫
V
g(x,y)a(y)dV(y) with W (x) =

∫
V
g(x,y)dV(y) (4.1)

where g(x,y) is a properly selected weight function and y is the position vector of the
infinitesimal material volume dV(y). The weight function g is usually of the Gaussian type
and can be stated in the general form (see p. 10 in Rolshoven (2003)):

g(x,y) =
1

cG
exp

(
− |x− y|2

2`2

)
where cG =


(2π)1/2` for 1D
2π`2 for 2D
(2π)3/2`3 for 3D

(4.2)

with ` being a constant with dimensions of length which is referred to as the “characteristic
length”. It should be noted here that, the normalizing factor W in (4.1)2 is defined in such
a way so that as ` → 0 or for a homogeneous local field variable, the non-local formulation
reduces to the local one. Non-local models that fit in the formalism defined by (4.1) are
considered strongly non-local in the sense that the non-local variable is calculated using
information from all material points included in the domain V of integration.
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It should be noted that the characteristic length ` is a calibration parameter introduced
by the non-local formulation and is identified with reference to a microstructural dimension
(e.g., several times the grain size in a polycrystal material or the void spacing in a voided
material). In the context of continuum damage mechanics, various calibration methods
have been proposed in the literature for the estimation of the characteristic material length.
For instance, energetic approaches (Bažant and Pijaudier-Cabot, 1989), inverse calibration
based on experimental or numerical structural results (Bellégo et al., 2003; Jiràsek et al.,
2004; Iacono et al., 2006) and more recently the use of surface roughness experimental
measurements for quasi-brittle materials (Xenos et al., 2015) have been proposed.

4.2 The implicit non-local Isotropic Projection model

4.2.1 Definition of the non-local porosity
The ideas of Peerlings and co-workers (Peerlings et al., 1995, 1996), Geers et al. (2001), and
Engelen et al. (2003) are used to define the “non-local” porosity field fnl(x) in terms of the
“local” porosity field f(x). At any given material point with current position x, the non-local
porosity fnl(x) is defined as the average value of the local porosity f(x) over a sphere ΩR(x)
of radius R centered at x:

fnl(x) ≡ 1

V

∫
ΩR(x)

f(y) dV(y), (4.3)

where V = 4π R3/3 is the volume of ΩR. The radius R can be identified with a microstruc-
tural dimension (e.g., a few times the average grain size in a metal). The expression used in
(4.3) to define the non-local porosity is different from the corresponding definition (4.1) in
that i) it involves a volume integral in the neighborhood of the point under consideration (as
opposed to an integral over the whole body) and ii) the weight function used in (4.3) equals
unity (i.e., a volume average is calculated locally instead of a weighted-average). However,
this definition proves useful for establishing a physical interpretation of the “characteristic
length” that naturally appears in the formulation as will be discussed in the following. It
is shown next that the non-local porosity defined in (4.3) satisfies the so-called modified
Helmholtz equation to a first approximation.

If f(y) is a smooth function of position, use of a Taylor series expansion around x in
(4.3) yields

fnl(x) = f(x) +
1

V
∂f(x)

∂xi

∫
ΩR(x)

(yi − xi) dV(y)+

+
1

2!V
∂2f(x)

∂xi ∂xj

∫
ΩR(x)

(yi − xi) (yj − xj) dV(y)+

+
1

3!V
∂3f(x)

∂xi ∂xj ∂xk

∫
ΩR(x)

(yi − xi) (yj − xj) (yk − xk) dV(y)+

+
1

4!V
∂4f(x)

∂xi ∂xj ∂xk ∂xq

∫
ΩR(x)

(yi − xi) (yj − xj) (yk − xk) (yq − xq) dV(y) + · · · ,

(4.4)
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where the summation convention is used on repeated Latin indices. Let (r, θ, φ) be spherical
coordinates with origin at x. Then, dV = r2 sin θ dr dθ dφ and

y1 − x1 = r cosφ sin θ, y2 − x2 = r sinφ sin θ, y3 − x3 = r cos θ, (4.5)∫
ΩR(x)

A(r, θ, φ) dV =

2π∫
φ=0


π∫

θ=0

 R∫
r=0

A(r, θ, φ) r2 dr

 sin θ dθ

 dφ, (4.6)

where A(r, θ, φ) is an arbitrary function. Substitution of (4.5) and (4.6) into (4.4) and a
lengthy but straightforward evaluation of the integrals lead to the following expression (see
also Mühlhaus and Alfantis (1991)):

fnl(x) = f(x) + `2∇2f(x) +O(`4∇4f), (4.7)

where
` =

R√
10

= 0.316R or R = `
√

10 = 3.162 ` .

Equation (4.7) shows that the quantity `2∇2f is, to leading order, a measure of the difference
between the local value f and the neighborhood average fnl. Also, equation (4.7) implies
that

`2∇2fnl(x) = `2∇2f(x) +O(`4∇4f). (4.8)

Combination of (4.8) and (4.7) leads to

fnl(x)− `2∇2fnl(x) = f(x) +O(`4∇4f). (4.9)

If terms of order `4∇4f or smaller are ignored, equations (4.7) and (4.9) can be thought of
as PDEs that define fnl(x) in terms of f(x) and vice versa. In the following, the assumption
is made that terms of O(`4∇4f) are negligible. It is also assumed that the normal derivative
of the non-local porosity ∂fnl/∂n vanishes on the boundary of the elastoplastic body. Then,
the non-local porosity field fnl(x) can be determined in terms of the local quantity f(x) by
the following boundary value problem (BVP):

fnl − `2∇2fnl = f in Ω (4.10)
∂fnl

∂n
≡ n · ∇fnl = 0 on ∂Ω, (4.11)

where Ω is the domain occupied by the elastoplastic body in the deformed configuration, ∂Ω
its boundary, and n the unit outward normal vector to ∂Ω. Equation (4.10) is sometimes
referred to as the modified Helmholtz equation.

It is emphasized that the BVP (4.10)–(4.11) is solved in the entire problem domain Ω
of the elastoplastic body and not just inside the plastic zone; i.e., the BVP (4.10)–(4.11)
defines the non-local porosity fnl(x) everywhere in Ω and not just inside the plastic zone
(Peerlings et al., 2001; Engelen et al., 2003). Also, the homogeneous boundary condition
(4.11) guarantees that the “total values” of fnl and f in Ω coincide, i.e.,∫

Ω

fnl dΩ =

∫
Ω

f dΩ. (4.12)
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It should be noted that more general, non-homogeneous Neumann boundary conditions can
be used, in which the flux ∂fnl/∂n in (4.11) can take non-zero values on the boundary ∂Ω. If
the physical problem is such that it is acceptable, Dirichlet boundary conditions could also
be considered. The form of the boundary conditions in (4.11) however does not affect the
mathematical character of the problem.

In the non-local constitutive model presented in the following section, the non-local
porosity fnl(x) is defined from the solution of the BVP (4.10)–(4.11), as opposed to equation
(4.3). The derivation of (4.10) clearly shows that the non-local porosity fnl(x) defined by the
BVP (4.10)–(4.11) is essentially the average value of the local porosity f(x) over a sphere
of radius R =

√
10 ` = 3.16 ` ∼= 3 ` centered at x. Obviously, this interpretation breaks

down for material points near the boundary ∂Ω, where part of the material sphere of radius
R centered at the point under consideration lies outside the domain Ω occupied by the
elastoplastic body. Also, as pointed out by Huerta and Pijaudier-Cabot (1994), in regions of
very steep gradients, where terms O(`4∇4f) may not be negligible, the above interpretation
is not valid.

In the case of two dimensional problems, similar calculations lead to the conclusion that
the non-local porosity fnl(x) in (4.10) is essentially the average value of the local porosity f
over a circle of radius R = 2

√
2 ` = 2.83 ` ∼= 3 ` centered at x.

Remark 10. The modified Helmholtz equation (4.10) has also been derived by Forest (2009)
using his micromorphic approach. In particular, if the free energy density is assumed to be a
quadratic function of the “relative porosity” f−fnl and the gradient of the non-local porosity
∇fnl, the generalized balance of micromomentum in isotropic materials leads to the modified
Helmholtz equation (4.10) (see p. 119 in Forest (2009)).

4.2.2 Non-local formulation of the Isotropic Projection model
In the implicit non-local (gradient) version of the Isotropic Projection model, following Ar-
avas and Papadioti (2021), it is proposed that the local porosity f be replaced with its
non-local counterpart fnl in the calculation of the incremental effective elastic moduli (κ, µ),
the plastic coefficients (mK,mJ ) as well as in the homogenized yield function Φ. In this
case, the non-local porosity fnl is calculated in terms of the local porosity f from the cou-
pled solution of the BVP (4.10)–(4.11) along with the usual static (or dynamic) equilibrium
equations. The formulation is outlined in the following.

The homogenized elastic behavior of the porous material is still described by a hypoelastic
constitutive equation of the form (2.45) with the difference that the fourth-order isotropic
effective elastic compliance tensor M now depends on the non-local porosity fnl instead of
the local f , i.e.,

De = M :
∇
σ, M =

1

2µ
K+

1

3κ
J ,

1

3κ
=

1

3
Mw

iijj and
1

2µ
=

1

5

(
Mw

ijij−
1

3κ

)
(4.13)

where

Mw(µm, κm, νm, f
nl, w,n(i)) =

1

2µm
K +

1

3κm
J +

fnl

(1− fnl)µm
Q−1(νm, w,n

(i)), (4.14)

The yield function of the non-local model is now also defined explicitly by substituting
the local porosity f with the corresponding non-local porosity fnl in equations (2.50)–(2.51)
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and (2.58), i.e.,

Φ(σe, p, ε̄
p,fnl, w) =

1

3mK(fnl, w)

(
σe
σy

)2

+

+
4

9mJ (fnl, w)

[
(1− α(fnl, w)) q2

J (fnl)

(
3 p

2σy

)2

+ 2α(fnl, w)

(
cosh

3 p

2σy
− 1

)]
−

− (1− fnl). (4.15)

with

1

3mJ (fnl, w)
=

1

3
mw
iijj,

1

2mK(fnl, w)
=

1

5

(
mw
ijij −

1

3mJ

)
, qJ (fnl) =

1− fnl√
fnl ln 1

fnl

.

(4.16)
As is the case in the corresponding local model, the effective homogenized coefficients
(mK,mJ ) result from the isotropic projection of the microstructural fourth-order tensor
mw which is now assumed to depend on the non-local porosity fnl, i.e.,

mw(fnl, w) =
3

2
K +

3fnl

1− fnl
Q−1(1/2, w), (4.17)

The plastic part of the rate-of-deformation tensor Dp in the non-local model is given by an
associated flow rule as in (2.60)

Dp = λ̇N, N ≡ ∂Φ

∂σ
=

3

2σe

∂Φ

∂σe
s +

1

3

∂Φ

∂p
δ, (4.18)

The derivatives ∂Φ/∂σe and ∂Φ/∂p are calculated from (4.15) and now depend on the non-
local porosity fnl:

∂Φ

∂σe
=

2

3mK(fnl, w)

σe
σ2
y

,
∂Φ

∂p
=

4

3mJ (fnl, w)

1

σy

[
(1− α)q2

J (fnl, w)
3 p

2σy
+ α sinh

(
3 p

2σy

)]
.

(4.19)
As in the local model, only two variables evolve during plastic flow in the non-local model;
the accumulated plastic strain ε̄p and the local porosity f . The corresponding evolution
equations are of the same form as (2.62) and (2.63) the only difference being that the local
porosity f is substituted with its non-local counterpart fnl in the right-hand side of the
aforementioned expressions, i.e.,

˙̄εp =
σ : Dp

(1− fnl)σy(ε̄p)
= λ̇

σ : N

(1− fnl)σy(ε̄p)
≡ λ̇ gε̄p . (4.20)

ḟ = (1− fnl)Dp
kk = λ̇(1− fnl)Nkk ≡ λ̇ gf . (4.21)

The “plastic multiplier”, λ̇ ≥ 0 of the implicit non-local model is determined from the “con-
sistency condition” Φ̇ = 0 by using expression (4.15) instead of (2.58); as will be seen in
the upcoming sections, this difference ultimately affects the mathematical character of the
governing equations in the non-local formulation.
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4.2.3 The non-local elastic-plastic tangent modulus

In the case of the non-local model, the consistency condition Φ̇ = 0 is written using (4.15)
as

Φ̇ =
∂Φ

∂σ
:
∇
σ +

∂Φ

∂ε̄p
˙̄εp +

∂Φ

∂fnl
ḟnl = N : (L : D− λ̇L : N) + λ̇

∂Φ

∂ε̄p
gε̄p +

∂Φ

∂fnl
ḟnl = 0

where (2.64)1 and (2.62) have been taken into account. Last equation yields

λ̇ =
1

Lnl

(
N : L : D +

∂Φ

∂fnl
ḟnl

)
, where Lnl = N : L : N +Hnl with Hnl = − ∂Φ

∂ε̄p
gε̄p .

(4.22)
where the derivatives ∂Φ/∂ε̄p and ∂Φ/∂fnl can be calculated from (4.15). Substitution of
(4.22)1 in equation (2.64)1 yields the elasto-plastic tangent modulus Lnl for the non-local
model, which reads

∇
σ= Lnl : D + Aḟnl, Lnl = L− 1

Lnl
(L : N)(L : N), A = − 1

Lnl

∂Φ

∂fnl
L : N. (4.23)

Also, expression (4.22)1 for the plastic multiplier can be substituted in the evolution equa-
tions (4.20)3 and (4.21)3 (i.e., in ˙̄εp = λ̇gε̄p and ḟ = λ̇gf ) yielding

˙̄εp = Cnl : D +Mḟnl where Cnl =
gε̄p

Lnl
L : N, M =

gε̄p

Lnl

∂Φ

∂fnl
. (4.24)

ḟ = Bnl : D +Kḟnl where Bnl =
gf
Lnl

L : N, K =
gf
Lnl

∂Φ

∂fnl
. (4.25)

Using equations (2.65)3 and (4.22)3, the hardening modulus Hnl of the non-local model can
be written in terms of the corresponding hardening modulus of the local model H loc as

Hnl = H loc +
∂Φ

∂f
gf . (4.26)

where ∂Φ/∂f > 0 and ∂Φ/∂ε̄p < 0 as mentioned in Subsection 2.3.4. Examination of
equations (4.22)3 and (4.26) leads to two results which will be useful in the discussion of the
mathematical character of the governing equations in the case of the non-local formulation;
the former implies that during plastic loading (i.e., when gε̄p > 0) for a material with a strain
hardening matrix, the hardening modulus of the corresponding non-local model is always
positive. The latter shows that the hardening modulus Hnl is always larger than that of
the associated local model H loc for loading programs where the local porosity increases (i.e.,
when gf > 0).

4.3 Mathematical character of the governing equations
In this section we examine the mathematical character of the incremental (or rate) quasi-
static elastic-plastic problem for the local and implicit non-local isotropic projection models.
The mathematical character of the problem determines whether the solution can have spatial
discontinuities. For example, in second order PDEs, continuous weak solutions may have dis-
continuous first derivatives across characteristic surfaces (or curves in two dimensions) (e.g.,
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see p. 347 in Zauderer (2006)). Elliptic equations have no real characteristics. Therefore, in
elliptic problems, any boundary data discontinuities must be confined to the boundary and
the interior solutions are smooth; this excludes, for example, the formation of “shear bands”
with zero thickness in elliptic problems. We note that all quasi-static problems of infinitesi-
mal linear elastostatics have smooth solutions, since the corresponding governing equations
are known to be elliptic (e.g., see p. 128 in Fraeijs de Veubeke (1979)). When the material
deforms plastically, the equations may lose ellipticity and become hyperbolic; in such cases,
the development of weak solutions with discontinuous gradients becomes possible.

4.3.1 The local problem
We consider the velocity field v as the primary unknown of the quasi-static elastoplastic
incremental problem. Let v(x, t) and σ(x, t) be the Eulerian description of the velocity and
stress fields respectively, where x is position of a material point in the deformed configuration
and t is a time-like parameter. The corresponding primary equations are the incremental
equilibrium equations, which, in the absence of body forces, can be written in the form (e.g.,
see Appendix A in Aravas and Papadioti (2021))

∂σ̇ij
∂xj
− ∂σiq
∂xp

∂vp
∂xq

= 0 or
∂

∂xj

(
∇
σ ij + Bijpq

∂vp
∂xq

)
− ∂σiq
∂xp

∂vp
∂xq

= 0, (4.27)

where
Bijpq(σ) =

1

2
(−σip δjq + σiq δjp + δip σjq − δiq σjp) = Bjipq = −Bijqp. (4.28)

The B-terms in (4.27)2 are of order stress, are due to the rotational effects in the stress rate,
and appear when the material derivative σ̇ in (4.27)1 is written in terms of the Jaumann
derivative

∇
σ.

In continuing plastic flow, the Jaumann stress rate
∇
σ is defined in terms of the spatial

gradient of the velocity field v by equation (2.66)1:

∇
σ ij = Lloc

ijpqDpq = Lloc
ijpq

∂vp
∂xq

, (4.29)

where the symmetry Lloc
ijpq = Lloc

ijqp has been taken into account. Substitution of the last
equation into the incremental equilibrium equations (4.27)2 yields the governing equations
of the rate problem in terms of the velocity field v:(

Lloc
ijpq + Bijpq

) ∂2vp
∂xj ∂xq︸ ︷︷ ︸

principal part

+

[
∂

∂xj

(
Lloc
ijpq + Bijpq

)
− ∂σiq
∂xp

]
∂vp
∂xq

= 0. (4.30)

Equations (4.30) define a linear second order system of PDEs for the velocity field v 1. The
principal part of the equations involves the terms of the highest derivatives of v (second
order) and can be written in matrix form as[

P̂
]

3×3

{v}
3×1

= {0}
3×1

, where P̂ip =
(
Lloc
jipq + Bjipq

) ∂2

∂xj ∂xq
. (4.31)

1The possible non-linearity in the constitutive equation due to neutral loading or elastic unloading is not
considered here. This is equivalent to using the “linear comparison solid” introduced by Hill (1958).
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To form the matrix symbol [Λpr] of the principal part of the system, the partial derivatives
∂/∂xp are replaced by the Fourier variables i ξp in the operator matrix [P̂], where i =

√
−1

is the imaginary unit (e.g., see p. 215 in Joseph and Saut (1990) and p. 43 in Renardy
and Rogers (2004)). This leads to the following matrix with quadratic entries in the real
variables ξp:

[Λpr]
3×3

≡ − [P]
3×3

, where Pip =
(
Lloc
jipq + Bjipq

)
ξj ξq. (4.32)

The system of equations is elliptic when the determinant of [Λpr] is non-zero for all real
ξ; this means that the system of PDEs has no real characteristic surfaces and the solution
cannot have discontinuous spatial derivatives (e.g., see p. 135 in Zauderer (2006)). Ellipticity
is lost when det[Λpr] = 0, i.e., when

det
[(
Lloc
jipq + Bjipq

)
ξj ξq

]
= 0 for some real vector ξ 6= 0. (4.33)

The loss of ellipticity condition (4.33) can be written in the equivalent form

det
[
nj
(
Lloc
jipq + Bjipq

)
nq
]
≡ det

[
n ·
(
Lloc + B

)
· n
]

= 0 for some unit vectorn (4.34)

where Lloc is defined in (2.66)2 and B is defined in (4.28).
It should be noted that in elastic-plastic problems of metallic materials, the governing

incremental equations are initially elliptic, and ellipticity is first lost at the earliest stage
of deformation history at which (4.34) is satisfied. As discussed at the end of Section 2.3.4
since the hardening modulus H loc of the local model is a decreasing function of porosity it
reduces gradually as the material deforms plastically and porosity increases. The elastic-
plastic tangent moduli Lloc

ijkl also change, and at some stage of the deformation history an
n may exist so that (4.34) is satisfied and ellipticity is lost. Rice (1976) showed that, when
condition (4.34) is satisfied for some unit vector n, the corresponding value of the hardening
modulus is (see also Appendix B in Aravas and Papadioti (2021))

H loc = −N : Lloc : N + [n · (L : N)] · [n · (L + B) · n)]−1 · [n · (L : N)]. (4.35)

The right hand side of (4.35) defines the value of the hardening modulus H loc when ellipticity
of the governing equations is lost. Determination of the orientation n that maximizes the
right hand side of (4.35) defines the “critical” value H loc

cr of the hardening modulus, i.e., the
maximum possible value of the hardening modulus H loc at which ellipticity is lost for the
first time (Rudnicki and Rice, 1975; Stören and Rice, 1975; Bigoni and Hueckel, 1991). Rice
(1976) used (4.35) to prove that, if the following three conditions are satisfied:

i. Lloc is of the form (2.66)2 (“normality”),

ii. the incremental elasticity tensor L is isotropic (equation (2.64)2), and

iii. the rotational effects in the stress rate are neglected (B = 0 in (4.34) and (4.35)),

then the critical hardening modulus is non-positive, i.e.,

H loc
cr ≤ 0. (4.36)

Therefore, in such a case, the condition H loc > 0 guarantees the ellipticity of the problem
and eliminates the possibility of shear bands.
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Remark 11. When (4.34) is satisfied for some n and ellipticity is lost, the vector n is
normal to the corresponding characteristic surface (or curve in 2D). That is, the characteristic
surfaces φ(x) = 0 of the problem are such that the functions φ(x) satisfy the equation
det[(Lloc

jipq + Bjipq) ∂φ∂xj
∂φ
∂xq

] = 0.

Remark 12. If rotational effects in the stress rate are neglected in the constitutive equation,
i.e., if we replace

∇
σ with σ̇ in (2.66)1, the loss of ellipticity condition takes the form of

equation (4.34) with B = 0.

Remark 13. When the incremental behavior of the material point under consideration is
elastic, Lloc is replaced by the elasticity tensorL in (4.34), and the loss of ellipticity condition
becomes

det [nj (Ljipq + Bjipq)nq] ≡ det [n · (L + B) · n] = 0. (4.37)

Since L is positive definite, it can be readily shown that det[nj Ljipq nq] > 0 ∀ n, and since
B is of order σ, (4.37) is satisfied only if the stresses become of order elastic modulus, which
can never happen in metallic materials. Therefore, when the incremental response of the
material point under consideration is elastic, the equations are always elliptic.

Remark 14. Rice (1976) considered a homogeneously and quasi-statically deforming elastic-
plastic solid and determined the conditions under which a bifurcation in the form of a planar
shear band can develop (continuous velocity field with a jump in the spatial velocity gradient
∂vi/∂xj across the band). He concluded that condition (4.34) (i.e., loss of ellipticity) is a
necessary condition for such a bifurcation to be possible. This conclusion is consistent
with the general mathematical result that discontinuous weak solutions are not possible in
elliptic problems, which are known to always have smooth solutions. The aforementioned
detailed analysis of planar shear bands does not require additional necessary conditions
apart from the general condition of loss of ellipticity, which is known to be required for
the development of general discontinuous weak solutions. It should be emphasized that
condition (4.34) is not sufficient for plastic flow localization. For example, Santisi d’Avila
et al. (2016) considered an infinite layered non-linear hyperelastic solid under axial plane
strain compression along the lamination direction and showed that there exist homogenized
post-bifurcated equilibrium paths with no localization of deformation for macroscopic strains
well above the one corresponding to loss of ellipticity.

4.3.2 The implicit non-local problem
The primary unknowns of the quasi-static incremental problem are now the velocity field
v(x, t) and the material derivative of the non-local porosity field ḟnl(x, t). The corresponding
primary equations are the incremental form of the equilibrium equations and the equation
that results when the material time derivative of the modified Helmholtz equation (4.10) is
taken. These equations are (e.g., see Appendix A in Aravas and Papadioti (2021))

∂

∂xj

(
∇
σ ij + Bijpq

∂vp
∂xq

)
− ∂σiq
∂xp

∂vp
∂xq

= 0, (4.38)

ḟnl − `2

(
∇2ḟnl − ∂fnl

∂xi
∇2vi − 2

∂2fnl

∂xi ∂xj

∂vi
∂xj

)
= ḟ , (4.39)

where B is defined in (4.28).
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The Jaumann derivative of stress
∇
σ and the material derivative of the local porosity field

ḟ in the non-local model are defined in terms of the primary unknowns (v, ḟnl) in equations
(4.23) and (4.25), which can be written as

∇
σ ij = Lnl

ijpqDpq + Aij ḟ
nl = Lnl

ijpq

∂vp
∂xq

+ Aij ḟ
nl, A = − 1

Lnl

∂Φ

∂fnl
L : N

ḟ = Bnl
ij Dij +Kḟnl = Bnl

ij

∂vi
∂xj

+
gf
Lnl

∂Φ

∂fnl
ḟnl, Bnl =

gf
Lnl

L : N.

where the symmetries Lnl
ijpq = Lnl

ijqp andBnl
ij = Bnl

ji have been taken into account. Substitution
of the last two constitutive equations into (4.38) and (4.39) yields the governing equations
of the incremental problem for (v, ḟnl):

(
Lnl
ijpq + Bijpq

) ∂2vp
∂xj ∂xq︸ ︷︷ ︸

principal part

+

[
∂

∂xj

(
Lnl
ijpq + Bijpq

)
− ∂σiq
∂xp

]
∂vp
∂xq

+
∂

∂xj

(
Aij ḟ

nl
)

= 0, (4.40)

(
`2 ∂f

nl

∂xi

)
∂2vi
∂xj∂xj

− `2 ∂2ḟnl

∂xj∂xj︸ ︷︷ ︸
principal part

−
(
Bnl
ij − 2 `2 ∂2fnl

∂xi ∂xj

)
∂vi
∂xj

+

(
1− gf

Lnl

∂Φ

∂fnl

)
ḟnl = 0.

(4.41)

Equations (4.40) and (4.41) define a linear second order system of PDEs for v(x, t) and
ḟnl(x, t). The principal part of the equations involves the terms with the highest derivatives
(second order) of v and ḟnl, and can be written in matrix form as

[
P̂nl
]

3×3

{0}
3×1

`2 brc
1×3

d̂ −`2 d̂
1×1



{v}
3×1

ḟnl

1×1

 =

 {0}3×1

0
1×1

 , (4.42)

where ri = ∂fnl/∂xi and the following operators have been defined:

P̂ nl
ip =

(
Lnl
jipq + Bjipq

) ∂2

∂xj ∂xq
, d̂ = ∇2 =

∂2

∂xj∂xj
. (4.43)

To form the corresponding matrix symbol [Λpr] of the principal part of the system, the
partial derivatives ∂/∂xp are replaced by the Fourier variables i ξp in the operator matrix.
This leads to the following matrix with quadratic entries in the real variables ξp:

[Λpr]
4×4

=

 −
[
Pnl
]

3×3

{0}
3×1

−`2 brc
1×3

d `2 d
1×1

 , where P nl
ip =

(
Lnl
jipq + Bjipq

)
ξj ξq, d = ξj ξj = |ξ|2 .

(4.44)
The system of equations is elliptic when the determinant of [Λpr] is non-zero for all real
ξ; this means that the system of PDEs has no real characteristic surfaces and the solution
cannot have discontinuous spatial derivatives. Ellipticity is lost when det [Λpr] = 0, i.e.,
when

det [Λpr] = −`2 d det
[
Pnl
]

= −`2 |ξ|2 det
[(
Lnl
jipq + Bjipq

)
ξj ξq

]
= 0 (4.45)
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for some real vector ξ 6= 0. The loss of ellipticity condition (4.45) can be written in the
equivalent form

det
[
nj
(
Lnl
jipq + Bjipq

)
nq
]

= 0 for some unit vector n, (4.46)

whereLnl andB are defined in (4.23)2 and (4.28) respectively. The loss of ellipticity condition
(4.46) for the implicit non-local model has the same form as the corresponding condition
(4.34) for the local model. In fact, (4.46) results from (4.34) if the substitution Lloc → Lnl

is made in (4.34). Since the expression (4.23)2 for Lnl is obtained from the corresponding
expression (2.66)2 for Lloc when the substitution H loc → Hnl is made in (2.66)2, we conclude
that the loss of ellipticity condition (4.46) of the implicit non-local problem is obtained from
the corresponding expression (4.34) of the local problem when the substitution H loc → Hnl

is made. Therefore, when, at some loading stage, condition (4.46) is satisfied for some unit
vector n, the corresponding value of the non-local hardening modulus Hnl is defined by an
equation similar to (4.35):

Hnl = −N : Lnl : N + [n · (L : N)] · [n · (L + B) · n)]−1 · [n · (L : N)]. (4.47)

Also, when the three conditions stated in Subsection 4.3.1 are satisfied (with Lloc replaced by
Lnl), the critical hardening modulus in the implicit non-local problem can never be positive,
i.e.,

Hnl
cr ≤ 0. (4.48)

The above discussion makes it clear that in general use of a rate-independent implicit non-
local model does not always guarantee the ellipticity of the mathematical problem; the charac-
ter of the equations depends on the value of Hnl. In particular, when Hnl > 0, the equations
are elliptic, the solution is smooth, and the formation of shear bands with zero thickness is
excluded. However, when Hnl < 0, it is possible that the problem loses ellipticity and the
solution may not be smooth. Since the new porous model is isotropic, plasticity is char-
acterized by an associated flow rule, and the model focuses on porous metallic materials
(which means that ||L|| � ||B|| so that the B terms can be considered negligible), the
three conditions stated in Subsection 4.3.1 are satisfied and the critical hardening modulus
is non-positive in this case. Thus, in the case of the implicit gradient model presented in
Sections 4.2.2–4.2.3 for which the non-local hardening modulus Hnl is always positive, the
governing equations remain elliptic, and the non-local formulation regularizes the problem
in this case.

As will be shown in Section 4.4, the development of non-smooth solutions is responsible
for the mesh dependence in finite element calculations when the local isotropic projection
model is used. Use of the corresponding gradient formulation preserves ellipticity and allows
for convergence of the results as the finite element mesh is refined. Also, it is should be noted
here that the material length scale ` does not enter the loss of ellipticity condition (4.46);
the value of ` does affect the solution but does not influence the mathematical character of
the problem.

4.4 Plastic flow localization under plane strain conditions
A well-known problem in the finite element implementation of rate-independent local plas-
ticity models with softening is that numerical solutions depend on the mesh size, when the
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material enters the softening region (i.e., when H loc < 0). As already discussed, such dif-
ficulties are related to loss of ellipticity, which allows for the development of solutions with
discontinuities across the characteristic surfaces (or curves in 2D) of the problem. In finite
element solutions, as the mesh is refined, the thickness of the predicted shear band reduces,
but is limited by the element size. In other words, as the mesh is refined, the finite ele-
ment solution does its best, the width of the predicted shear band reduces, but it can never
capture a zero-thickness shear band, unless special elements are designed or the element
boundaries are perfectly aligned with the direction of the shear band (e.g., Jiràsek (2000)).
As a consequence, the finite element solutions appear to be mesh-size dependent. It should
be noted that this difficulty is not limited to the finite element method; it appears in all nu-
merical methods that discretize the problem. To overcome this difficulty and regularize the
problem, non-local models can be used to restore ellipticity, provided the hardening modulus
Hnl in the rate-independent implicit non-local model is always greater than the critical value
defined by the minimum value of the right hand side of equation (4.47).

In the special case where the conditions stated in Section 4.3.1 are satisfied and the
non-local hardening modulus Hnl remains positive (which is the case in the implicit gradient
porous plasticity model proposed in Section 4.2.2), the corresponding mathematical problem
is always elliptic and the solution is smooth. In such cases, intensely strained regions can
still develop at some imperfection, but these highly strained regions have finite width and
appear as zones of high spatial strain-gradients in the smooth solution. The width of the
intensely strained regions scales with the material parameter ` of the non-local model. When
the finite element mesh is fine enough, i.e., the element size in the intensely strained zone is
smaller than `, the numerical solution converges to the correct smooth solution.

All the above are demonstrated in the numerical examples that follow. The problem of
plastic flow localization under plane strain tension is solved using the finite element method.
The solution for the local model shows strong mesh dependence. However, when the non-
local model is used, the problem remains elliptic and the numerical solution converges to
the correct smooth solution as the mesh is refined. It is also shown that the value of the
characteristic length ` does not influence the deformation level at which localization first
becomes possible (i.e., the bifurcation point) but only the (finite) width of the highly strained
region, at least for the material parameters and microstructural configurations considered in
these calculations.

4.4.1 Description of the problem
In this section, the quasi-static problem of plastic flow localization under plane strain condi-
tions is examined. Both the local and implicit non-local isotropic projection models are used
and the effect of the regularized model is investigated. The models were implemented using
User MATerial (UMAT) subroutines provided by ABAQUS/Standard2. Due to symmetry,
only one quarter of the specimen is used in the finite element calculations and doubly sym-
metric solutions are obtained. The matrix material is characterized by a Young’s modulus
E = 1000 σ0, a Poisson’s ratio ν = 0.3 and the flow stress is assumed to follow a power law
of the form (3.29). An initial porosity of f0 = 5% is assumed in all cases.

Figure 4.1 shows a schematic representation of one quarter of the specimen along with
the geometric boundary conditions imposed. The right side of the specimen is traction free

2The procedure used for the efficient implementation of implicit non-local models in ABAQUS is described
in more detail in Section 5.3.
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and the top side is subjected to a prescribed displacement δ. The length of the one quarter
of the specimen is L = 2W , where W is the corresponding width. To trigger the initiation
of non-uniform deformation, an imperfection in the material properties is introduced over a
small square region of side d = 0.10W at the center of the specimen, as shown (with red
color) in Fig. 4.1; the flow stress σ0 is replaced by 0.99σ0 in the imperfect region. The meshes

Figure 4.1 – Schematic representation of one quarter of the plane strain tension specimen.

used consist of 4-node linear, plane strain CPE4H (local model) and CPE4HT (non-local
model) coupled temperature-displacement hybrid elements with constant pressure provided
by ABAQUS/Standard. The elements are square and equally spaced in the undeformed
configuration. Three different meshes are used with number of elements 20×40, 40×80 and
80× 160, where the first and second numbers denote the number of elements in the W and
L directions respectively. The corresponding initial size of the square elements is e = W/20,
e = W/40 and e = W/80 respectively.

The critical strain at which localization is first possible is determined by using the
methodology of Rice and co-workers (Rudnicki and Rice, 1975; Rice, 1976). For plane strain
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problems, it can be shown that the conditions (4.34) or (4.46) for plastic flow localization in
a shear band can be written in the following form3

det [nj (Ljipq + Bjipq)nq] ≡ C = C11C22 − C21C12 = 0 (4.49)

C11 = L1111n
2
1 + σ12n1n2 +

(
L1212 −

σ11 − σ22

2

)
n2

2 (4.50)

C22 =

(
L1212 +

σ11 − σ22

2

)
n2

1 + L2222n
2
2 + σ12n1n2 (4.51)

C12 = −σ12n
2
1 +

(
L1122 + L1212 +

σ11 − σ22

2

)
n1n2 (4.52)

C21 = −σ12n
2
2 +

(
L2211 + L1212 −

σ11 − σ22

2

)
n1n2 (4.53)

where Lijkl are the components of the appropriate fourth-order elastic-plastic tangent mod-
ulus with respect to the global coordinate system, i.e., Lijkl = Lloc

ijkl for the local model and
Lijkl = Lnl

ijkl for the non-local model. Determination of the critical strain for localization is
carried out using a semi-analytical approach as follows. Let (e1, e2) be the unit vectors defin-
ing the global coordinate system in the plane of loading and e2 the corresponding direction
of loading. Constitutive calculations using a single finite element loaded in tension under
plane strain conditions are performed incrementally in ABAQUS/Standard module. At each
stage of deformation, within UMAT and after the integration of the constitutive equations is
completed, the unit vector n is written in the form n(ψ) = cosψe1 +sinψe2, where ψ defines
the orientation of the band with respect to axis e1. The quantity C = C11C22 − C21C12 is
determined by scanning the range 0◦ ≤ ψ ≤ 90◦ and its minimum and maximum values Cmin
and Cmax in that range of ψ are found. The value of Cmin is initially positive and decreases
with increasing logarithmic axial strain E2; if, at some stage of deformation, a change of sign
of Cmin is detected and the condition CminCmax < 0 also holds, the corresponding value of
E2 defines the strain Ecr

2 at which localization is first possible and the value of ψ defines the
corresponding orientation of the shear band.

4.4.2 Solution using the local model
In this section, the results regarding the predictions of the local model are discussed in
detail. To showcase the numerical issues related with the use of a non-regularized model
when softening behavior is present, a mesh convergence analysis is first carried out. Also, the
effect of void shape and hardening of the matrix material (i.e., the effect of microstructural
components) to the critical strain for localization is investigated.

Figure 4.2 shows the results for the mesh convergence analysis, where a microstructure
with an aspect ratio w = 0.1 is assumed. Particularly, on the left part of Fig. 4.2 the
calculated normalized “load-extension” curves for the three different meshes in the local
model are presented. The dashed line corresponds to the uniform solution when there is no
imperfection, and the dark circle on the curve indicates the point of the predicted localization
initiation from the loss of ellipticity condition (4.49). Fig. 4.2 also shows the contours of
plastic zones (in red) as predicted by the three meshes at a macroscopic axial logarithmic
strain E2 = 0.10 (where the whole specimen is shown for visualization purposes). As it can

3for σ22 = σ12 = 0 the following expressions reduce to those found in the works of Aravas and co-workers
(Aravas and Ponte Castañeda, 2004; Aravas and Papadioti, 2021).
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be seen, the numerical solutions for the three different discretizations agree initially; but,
after the shear band is formed, the “load-extension” curves and the predicted width of the
shear band become mesh-dependent. Loss of ellipticity allows for discontinuous solutions
(shear bands) and, as the mesh is refined, the finite element solution tends to reproduce the
“zero thickness” of the shear band.

Figure 4.2 – Variation of the normalized total force per unit out-of-plane thickness F2/(σ0W ) with
macroscopic axial logarithmic strain E2 = ln

(
1 + u2

L

)
(left) and plastic zones (in red) for the local

model with an aspect ratio w = 0.1 at a strain E2 = 0.10 (right). Whole specimen is shown.

Figure 4.3 – Variation of (a) critical axial logarithmic strain for localization Ecr2 and (b) shear
band orientation angle ψ with respect to the aspect ratio of the voids w for two different hardening
exponents.

The effect of the shape of the voids and matrix hardening on the critical strain to local-
ization and the corresponding shear band orientation are shown in Figure 4.3. Again, based
on previous numerical results only oblate voids are considered (i.e., w ≤ 1). Figure 4.3a
shows that the critical strain to localization is an increasing function of the aspect ratio of



80 Mathematical Issues and Regularization Methods

the voids; the critical strain at which localization is first possible is substantially higher for
microstructures that consist of almost spherical or spherical voids (0.5 ≤ w ≤ 1) compared
to those that consist of oblate voids with lower aspect ratios (i.e., for w ≤ 0.5). A possible in-
terpretation for this behavior is that, microstructures comprising penny-shaped oblate voids
lead to significantly higher rates of porosity evolution and thus softening behavior occurs at
lower strain levels promoting earlier strain localization. In this regard, the void aspect ratio
w can be viewed as parameter in the model that controls the bifurcation point at which the
solution switches to a highly localized, non-homogeneous strain distribution pattern. Also,
it should be noted that critical localization strains for a material with increased hardening
capacity (i.e., for n = 5) are higher compared to those for a material with less matrix hard-
ening (i.e., for n = 10) for corresponding void shapes. This is due to the fact that, matrix
hardening acts as a competitive mechanism to softening due to porosity evolution implying
that higher hardening capacity leads to delayed onset of strain localization.

Figure 4.3b presents the variation of the predicted shear band orientation (which is de-
fined by the angle ψ) with respect to the void aspect ratio parameter. For the microstructural
configurations examined, the angle ψ is a decreasing function of void aspect ratio with possi-
ble orientations falling in the range ψ ∈ [48◦, 55◦]. Materials with microstructures consisting
of very flat oblate voids (w ≤ 0.3) exhibit a higher sensitivity with more inclined bands while
microstructures comprising voids of higher aspect ratios show less sensitivity and less steep
bands with respect to the e1 direction.

4.4.3 Solution using the non-local model
Calculations were repeated using the implicit gradient isotropic projection model and the
results are discussed in the following. Figure 4.4 shows the results for the mesh convergence

Figure 4.4 – Variation of the normalized total force per unit out-of-plane thickness F2/(σ0W ) with
macroscopic axial logarithmic strain E2 = ln

(
1 + u2

L

)
for the non-local model with ` = 0.05W . A

value of w = 0.1 is used in the calculations.

analysis, where again a microstructure with an aspect ratio w = 0.1 is assumed and the char-
acteristic length is taken to be ` = 0.05W . The corresponding normalized “load-extension”
curves for the three different meshes using the implicit non-local model are presented on the
left part of Fig. 4.4. The dashed line corresponds to the uniform solution when there is no
imperfection. The right part of Fig. 4.4 also shows the contours of plastic zones (in red) while
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Fig. 4.5 depicts the equivalent plastic strain and non-local porosity distributions in the three
meshes at a macroscopic axial logarithmic strain E2 = 0.10. In this case, the equations are
always elliptic and the solution is continuous at all deformation levels. The condition (4.49)
does not predict the occurrence of localization in the case of the implicit gradient model. It
is evident from Figs. 4.4 and 4.5 that, as the finite element mesh is refined, the numerical
solution becomes mesh-independent and converges. The initial size e of the square elements
becomes a smaller fraction of the material parameter ` as the finite element mesh is refined:
e = ` (in 20× 40), e = `/2 (in 40× 80), and e = `/4 (in 80× 160).

Figure 4.5 – Contours (a) of equivalent plastic strain ε̄p and (b) of local porosity for the three meshes
at macroscopic axial strain E2 = 0.10, for the non-local model. Whole specimen is shown.

Figure 4.6 shows the “load-extension” curves for the 80 × 160 mesh in the non-local
model for three different values of the characteristic length ` (` = 0, 01W , ` = 0, 05W and
` = 0, 1W ). The black dashed line corresponds to the uniform solution when there is no
imperfection. These calculations correspond to a microstructure comprising oblate voids
with aspect ratio w = 0.1 and an initial porosity of f0 = 5%. For this particular case it can
be seen that the solutions up to the bifurcation point are essentially the same and indepen-
dent of the value of `. The choice of the characteristic length, however, affects the solution
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Figure 4.6 – Variation of the normalized “load-extension” curves for the non-local model with the
80 × 160 mesh for different values of the characteristic length `. A value of w = 0.1 is used in the
calculations.

Figure 4.7 – Distribution of the equivalent plastic strain at an axial strain E2 = 0.10 for different
values of the characteristic length `. A value of w = 0.1 is used in the calculations.

in the post-bifurcation regime; as the value of the characteristic length decreases the slope
of the post-bifurcation branch becomes steeper and the width of the corresponding highly
strained region reduces, as shown in Fig. 4.7. This numerical result is in agreement with the
theoretical analysis of the non-local problem’s mathematical character which was discussed
in Section 4.3.2. In particular, the characteristic length enters the modified Helmholtz PDE
(4.10) multiplying the term of the Laplacian of the non-local porosity. In the post-bifurcation
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regime, the fields are highly non-homogeneous and the Laplacian term could affect the so-
lution depending on the value of the characteristic length `. Also, this observation can be
used as a guide for the calibration of ` based on available experimental results; For instance,
for a specific material, numerical simulations can be carried out for various values of the
characteristic length until a value that closely fits the experimental stress-strain curves is
found. This value of ` can then be considered as a parameter for the non-local model which
can be used make predictions in structural calculations of the material at hand.

4.5 Concluding remarks
In this chapter, we discuss in detail the computational issues related to the numerical imple-
mentation of rate-independent constitutive models that may lead to softening as well as the
available regularization solutions proposed in the literature. The mathematical reason for
these numerical problems is related to loss of ellipticity of the governing equations. In view
of its computational attractiveness, we propose an implicit non-local version of the isotropic
projection model developed in this work in order to amend these issues. The formulation
remains largely the same with the local version, the main difference being the substitution of
the local porosity with its non-local counterpart in the constitutive equations; the non-local
porosity is now an additional field variable that is defined by the solution of a modified
Helmholtz BVP along with the classical equilibrium equations. Also, a characteristic length
is introduced in the formulation and acts as a “localization limiter” to the problem.

Detailed analysis shows that the mathematical character of the problem’s governing equa-
tions ultimately depends on the value of the material’s effective hardening modulus. In
general, if the hardening modulus becomes lower than a critical value, the governing equa-
tions lose ellipticity and numerical solutions depend on spatial discretization. Conversely,
if the hardening modulus remains higher than a critical value during the loading program,
equations remain elliptic and solutions are mesh-independent provided that a fine enough
mesh is used. For metallic, isotropic materials obeying an associated flow rule (i.e., “normal-
ity”), the critical value of the hardening modulus is found to be non-positive. In contrast
to the local formulation where the hardening modulus may become negative during load-
ing, the hardening modulus of the corresponding non-local isotropic projection model is
always positive preserving thus the elliptic properties of the problem. Rice’s localization
analysis is then used to investigate the effect of the non-local formulation on the problem of
plane strain localization. Numerical examples indicate that the non-local model allows for
mesh-independent solutions to be obtained in the post-bifurcation regime as the element size
becomes smaller than the value of the material’s characteristic length. The void shape pa-
rameter is also found to strongly affect the theoretically predicted critical localization strain;
microstructures comprising very flat voids of low aspect ratios (w ≤ 0.5) result in lower
critical strains compared to microstructures with almost spherical or spherical voids. We
also comment on the possibility of using a simple hybrid numerical-experimental approach
in order to calibrate the characteristic length appearing in the non-local formulation.
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CHAPTER 5

Numerical Implementation and Simulation of Struc-
tural Problems

Chapter summary: In this chapter the local and non-local models developed in this work are
used for the numerical solution of various BVPs related to forming processes and ductile frac-
ture phenomena. First, we discuss the details related to the numerical implementation of the
non-local model. In particular, the strong and weak formulations of the non-local problem
are presented, the FE approximation is introduced, and the corresponding residuals for the
mechanical and the non-local porosity BVPs are derived. Also, we present an algorithm for
the numerical integration of the non-local constitutive equations which is necessary for the
solution of the discretized global equations. Attention is focused on the numerical implemen-
tation in the ABAQUS commercial FE software. Next, the industrially relevant problems
of the Hole Expansion Test (HET) and Charpy V-notch (CVN) test, the phenomenon of
cup-and-cone fracture of round bars and the ductile fracture of the specimen proposed in
the first Sandia Fracture Challenge (SFC) are simulated using both ABAQUS/Standard and
ABAQUS/Explicit. The main purpose of these simulations is (a) to identify the effects and
establish a connection between the models’ parameters and the the predicted structural be-
havior and (b) to assess the capability of the models to qualitatively and/or quantitatively
capture experimental observations.
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5.8.1 Simulation of the first SFC’s fracture specimen . . . . . . . . . . . 115

5.9 Concluding remarks . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.1 Variational formulation of the implicit non-local BVP
Consider a continuum body which in the reference configuration B0 at t = t0 occupies
volume V0 bounded by a surface ∂V0 with a mass density ρ0. Let also the body be subjected
to external body forces per unit mass b(x, t), known surface (traction) forces t̂ on part ∂Vt
of its surface and known displacements û on its remaining surface ∂Vu1 The balance of linear
momentum with respect to the current configuration (i.e., Eulerian description) leads to the
following set of partial differential equations:

∇ · σ + ρb = ρü or
∂σij
∂xj

+ ρbi = ρüi in V (5.1)

where u(x, t), σ(x, t), and ρ are the displacement field, stress field and mass density with
respect to the deformed configuration. In the context of the implicit gradient formulation
proposed in Chapter 4, the non-local porosity field fnl(x, t) is defined through the solution
of the modified Helmholtz equation

fnl − `2∇2fnl = f in V (5.2)

Furthermore, kinematic (or compatibility) relations read

D ≡ Ls =
1

2

(
v∇ + ∇v

)
or Dij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
(5.3)

W ≡ La =
1

2

(
v∇−∇v

)
or Wij =

1

2

(
∂vi
∂xj
− ∂vj
∂xi

)
(5.4)

where L, D and W are the velocity gradient, total rate-of-deformation, and spin tensors
respectively and the superscripts “s” and “a” denote the symmetric and skew-symmetric
parts of a tensor.

Under the assumption of small elastic strains (as is the case for metallic materials), the
constitutive behavior for the non-local model is described by the additive decomposition of
the total rate-of-deformation tensor (2.44), the yield condition using (4.15) and the evolution
equations for the equivalent plastic strain and the local porosity (4.24)–(4.25), which are
recalled here for brevity,

D = De + Dp (5.5)

De = M :
∇
σ, M =

1

2µ
K +

1

3κ
J , (µ, κ) = fcn(µm, κm, νm, f

nl, w) (5.6)

Dp = λ̇N, N ≡ ∂Φ

∂σ
=

3

2σe

∂Φ

∂σe
s +

1

3

∂Φ

∂p
δ, (5.7)

Φ(σe, p, ε̄
p, fnl, w) = 0 (5.8)

˙̄εp = Cnl : D +Mḟnl, ḟ = Bnl : D +Kḟnl (5.9)

1Recall that ∂Vt ∪ ∂Vu = ∂VV while ∂Vt ∩ ∂Vu = ∅.
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The BVP is completed with the addition of boundary conditions. For the mechanical prob-
lem, both displacement and traction boundary conditions on the corresponding parts of
the total boundary can be prescribed while Neumann boundary conditions on the external
boundary ∂V for the non-local porosity fnl are assumed:

u = û = known, on ∂Vu (5.10)

t = σ · n = t̂ = known, on ∂Vt (5.11)

∇fnl · n = 0 or
∂fnl

∂n
= 0 on ∂V (5.12)

The field equations (5.1), (5.2) along with the kinematic equations (5.3), (5.4), the constitu-
tive equations (5.5)–(5.9), and the boundary conditions (5.10)–(5.12) suggest the Eulerian
strong form of the implicit gradient isotropic projection model. The coupled BVP is non-
linear and is solved numerically using the finite element method. Implementation into FE
commercial codes (e.g., ABAQUS, FeniCS etc.) requires first the problem to be restated in
a variational form as discussed in the following.

The primary unknowns of the problem are the displacement field u(x, t) and the non-
local porosity field fnl(x, t). The variational formulation of the problem can be stated as
follows:
Find u(x, t) ∈ H2 satisfying (5.10) and fnl(x, t) ∈ H2 such that for all υ?,v? ∈ L2 satisfying
the homogeneous B.C.’s υ? = 0,v? = 0 on ∂Vu and for all f ?, γ? ∈ L2:∫

V(t)

(∇ · σ + ρb− ρa) · υ?dV +

∫
∂Vt(t)

(σ · n− t̂) · v?dS = 0 (5.13)∫
V(t)

(fnl − `2∇2fnl − f)f ?dV +

∫
∂V(t)

(∇fnl · n)γ?dS = 0 (5.14)

where Hk denotes the space of functions with square-integrable derivatives through order k,
L2 denotes the space of square-integrable functions, and υ?,v?, f ?, γ? are test functions. In-
tegration by parts and use of the Gauss theorem leads to the following equivalent variational
statement:
Find u(x, t) ∈ H2 satisfying (5.10) and fnl(x, t) ∈ H1 such that for all υ? ∈ H1 satisfying
the homogeneous B.C. υ? = 0 on ∂Vu and for all f ? ∈ H1:

Wu(u, f
nl) =

∫
V(t)

ρb · υ?dV +

∫
∂Vt(t)

t̂ · υ?dS −
∫
V(t)

σ : D?dV −
∫
V (t)

ρü · υ?dV = 0

(5.15)

Wf (u, f
nl) =

∫
V(t)

[
(fnl − f)f ? + `2∇fnl ·∇f ?

]
dV = 0 (5.16)

where σ = σ(u, fnl), f = f(u, fnl) and D? = (υ?∇ + ∇υ?)/2. Equations (5.15), (5.16)
suggest the weak formulation of the coupled BVP, which can now be used to introduce the
finite element approximation.

5.2 Finite element approximation
In the context of the finite element method, the continuous domain of solution V is dis-
cretized into finite elements and the primary unknown fields of the problem, u and fnl, are
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approximated within each element using appropriately selected shape functions; the origi-
nal BVP is reduced to the solution of an algebraic system of nonlinear equations which are
solved incrementally for the nodal displacements and nodal values of the non-local porosity.
In every element at every time instant, one can write the following interpolations:{

u(x)
}

M×1

=
[
Nu(x)

]
M×n

{
de
}

n×1

,
{
ü(x)

}
M×1

=
[
Nu(x)

]
M×n

{
d̈e
}

n×1

,
{
υ?(x)

}
M×1

=
[
Nu(x)

]
M×n

{
de

?
}

n×1

(5.17)

fnl(x) = bNf (x)c
1×n

{
de
}

n×1

, f ?(x) = bNf (x)c
1×n

{
de

?
}

n×1

(5.18)

so that {
D(x)

}
N×1

=
[
Bu(x)

]
N×n

{
de
}

n×1

,
{
D?(x)

}
N×1

=
[
Bu(x)

]
N×n

{
de

?
}

n×1

(5.19){
∇fnl(x)

}
M×1

=
[
Bf (x)

]
M×n

{
de
}

n×1

,
{
∇f ?(x)

}
M×1

=
[
Bf (x)

]
M×n

{
de

?
}

n×1

(5.20)

where M = 1, N = 1, for one-dimensional problems, M = 2, N = 4 for two-dimensional,
M = 3, N = 6 for three-dimensional problems and n is the number of the total nodal un-
knowns of the element. In the latter expressions, [Nu(x)], bNf (x)c denote the matrices of
the shape functions, [Bu(x)], [Bf (x)] are the matrices of the shape functions’ spatial deriva-
tives, and

{
de
}
,
{
d̈e
}
,
{
de

?
}
denote the vectors of nodal unknowns, nodal accelerations and

virtual nodal unknowns respectively.
Introducing now the vector bX?c of global virtual unknowns, the matrix mappings of the

rest of the quantities in the weak formulation, i.e.,

σ →
{
σ
}

N×1

, t̂→
{
t̂
}

M×1

, b→
{
b
}

M×1

(5.21)

and substituting (5.17)–(5.20) and (5.21) into (5.15)–(5.16), one arrives at the following
expressions:

Wu = bX?c
1×NT

NELEM

A
e=1

{∫
Ve

[
Nu

]
n×M

T{
b
}

M×1

dV +

∫
∂Ve

[
Nu

]
n×M

T{
t̂
}

M×1

dS −
∫
Ve

[
Bu

]
n×M

T{
σ
}

N×1

dV−

−
∫
Ve

ρ[Nu

]
n×M

T[
Nu

]
M×n

dV

{de}
n×1

}
= 0 (5.22)

Wf = bX?c
1×NT

NELEM

A
e=1

{∫
Ve

[bNfc
1×n

{
de
}

n×1

− f

{Nf

}
n×1

+ `2
[
Bf

]
n×M

T[
Bf

]
M×n

{
de
}

n×1

]
dV
}

= 0 (5.23)

where NT denotes the total number of nodal degrees of freedom in the model, NELEM
the total number of elements in the mesh, and “Ae” denotes the assembly operator. Since
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expressions (5.22), (5.23) hold ∀ bX?c, then we arrive at the following discretized problem

{
Ru

}
NT×1

=

NELEM

A
e=1

{{
f eext

}
n×1

−
{
f eint

}
n×1

−
[
me
]

n×n

{
de
}

n×1

}
=
{

0
}

NT×1

(5.24)

{
Rf

}
NT×1

=

NELEM

A
e=1

{
ref

}
n×1

=
{

0
}

NT×1

(5.25)

with[
me
]

n×n

=

∫
Ve
ρ
[
Nu

]
n×M

T[
Nu

]
M×n

dV (5.26)

{
f eext

}
n×1

=

∫
Ve

[
Nu

]
n×M

T{
b
}

M×1

dV +

∫
∂Ve

[
Nu

]
n×M

T{
t̂
}

M×1

dS,
{
f eint

}
n×1

=

∫
Ve

[
Bu

]
n×N

T{
σ
}

N×1

dV (5.27)

{
ref

}
n×1

=

∫
Ve

[{Nf

}
n×1

bNfc
1×n

+ `2
[
Bf

]
n×M

T[
Bf

]
M×n

{de}
n×1

− f
{
Nf

}
n×1

]
dV (5.28)

where [me] is the element mass matrix,
{
f eext

}
,
{
f eint

}
are the vectors of the element “ex-

ternal” and “internal” forces respectively and
{
ref

}
is the element residual vector for the

modified Helmholtz problem. Equations (5.24)–(5.25) are sets of nonlinear equations for the
global nodal unknowns of the problem. If an implicit scheme is used, these equations are
solved in each increment using an iterative algorithm (e.g., Newton-Raphson) until specific
convergence criteria are met; in this case, the integration scheme implemented is uncon-
dionally stable but it involves high computational costs, especially for models with a large
number of degrees of freedom. In explicit integration schemes, no iterations or Jacobians are
required but such methods are only conditionally stable. They allow however for the solution
of various classes of highly nonlinear problems (i.e., contact problems, forming processes, im-
pact, crack propagation etc.) where implicit methods usually fail to provide a solution due
to severe convergence issues of the iterative scheme.

It should be noted that the values of stresses and internal variables are required for the
solution of equations (5.24)–(5.25) in each increment; these are provided from the numer-
ical integration of the constitutive equations at the local Gauss integration points of each
finite element. In the following we propose an algorithm for the numerical integration of
the constitutive equations which is implemented in the general-purpose finite element code
ABAQUS .

5.2.1 Numerical integration of the non-local constitutive equations
In the context of finite element analysis, the solution of the corresponding BVP is developed
incrementally and the constitutive equations that model the problem have to be integrated
numerically at the local Gauss integration points of each finite element. The method of
“rotation neutralized” description of the spatial equations (see p. 290 in Simo and Hughes
(1998)) is used herein which is proved to ensure the material frame indifference of the con-
stitutive equations. The involved equations result in a form similar to infinitesimal theory,
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allowing for easy computational implementation. The numerical integration of the constitu-
tive equations is similar to that used for the Gurson model and is based on the methodology
of Aravas (1987). An outline is given in the following.

During a time interval [tn, tn+1] the deformation gradient, stresses, set of state variables,
and the value of the non-local porosity (Fn, σn, qn, fnl

n ) at the beginning of the increment
(i.e., at time tn) as well as the deformation gradient and non-local porosity (Fn+1, fnl

n+1) at
the end of the increment (i.e., at time tn+1) are known and the problem is to determine the
solution (σn+1, qn+1) at the end of the time increment. In addition, if an implicit scheme is
used for the solution of the global problem, the “element Jacobians” ∂σ/∂E, ∂σ/∂fnl, ∂f/∂E
and ∂f/∂fnl at the end of the time increment need to be calculated. These derivatives are
necessary for the evaluation of the global problem’s Jacobian for the determination of the
correction to the global nodal unknowns.

Let F be the deformation gradient, which is defined relative to the configuration at the
beginning of the time increment under consideration. Then, the time variation of F during
the corresponding time increment [tn, tn+1] can be written as:

F(t) = ∆F(t) · Fn = R(t) ·U(t) · Fn , t ∈ [tn, tn+1] (5.29)

where R(t), U(t) are the rotation and stretch tensors of the right polar decomposition
associated with ∆F(t). Also, the velocity gradient tensor L can be written in terms of F as:

L(t) = Ḟ(t) · F−1(t) (5.30)

Using (5.30) and (5.29), one can now write the rate-of-deformation D(t) and spin W(t)
tensors as the symmetric and skew-symmetric parts of the velocity gradient, i.e.,

D(t) ≡ [Ḟ(t) · F−1(t)](s) = [∆Ḟ(t) ·∆F−1(t)](s)

W(t) ≡ [Ḟ(t) · F−1(t)](a) = [∆Ḟ(t) ·∆F−1(t)](a) (5.31)

where the superscripts “s” and “a” denote the symmetric and anti-symmetric part of a tensor
respectively. If the assumption that the Lagrangian triad associated with ∆F(t) (i.e., the
eigenvectors of U(t)) remains constant in the time interval [tn, tn+1] is adopted then, it can
be proved that D(t) and W(t) can be given in terms of the logarithmic strain Eln(t) ≡ E(t):

D(t) = R(t) · Ė(t) ·RT (t) and W(t) = Ṙ(t) ·RT (t) (5.32)

where E(t) = lnU(t) is defined relative to the configuration at time tn. Moreover we can
define the “rotation neutralized” version of the Cauchy stress as (Nagtegaal and Veldpaus,
1984):

σ̂(t) = RT (t) · σ(t) ·R(t) and n̂(i)(t) = RT · n(i)(t) (5.33)

Using now (5.32) and (5.33) one can readily show that the Jaumman stress rate is related
to the material derivative of the rotation neutralized stress σ̂ by the expression:

∇
σ (t) = R(t) · ˙̂σ(t) ·RT (t) (5.34)

It should be noted here that at the start of the increment (t = tn), the following relations
hold:

Fn = Rn = Un = δ , σ̂n = σn and En = 0 (5.35)
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whereas at the end of the increment (t = tn+1) one has:

∆Fn+1 = Fn+1 · Fn = Rn+1 ·Un+1 = known, Un+1 =
3∑
i=1

λ
(∆F)
i N

(∆F)
i N

(∆F)
i = known

Rn+1 = ∆Fn+1 ·U−1
n+1 = known, En+1 = ln Un+1 = known (5.36)

where λ(∆F)
i , N

(∆F)
i correspond to the eigenvalues and eigenvectors of ∆F respectively. Tak-

ing into account the mathematical isotropy of the yield function Φ, it follows that N, gε̄p and
gf are also isotropic functions of their arguments, i.e., they are such that:

N(R · σ ·RT , f ;w) = R ·N(σ, f ;w) ·RT (5.37)
gε̄p(R · σ ·RT , ε̄p, f ;w) = gε̄p(σ, ε̄

p, f ;w) (5.38)
gf (R · σ ·RT , ε̄p, f ;w) = gf (σ, ε̄

p, f ;w) (5.39)

In view of the above, the non-local elastic-plastic constitutive equations (2.44), (4.15),
(4.18)1, (2.64), (4.20) and (4.21) can be written as:

Ė = Ėe + Ėp (5.40)

Ėp = λ̇N(σ̂, fnl, w) = λ̇N̂ (5.41)
˙̂σ = L̂ : Ė− L̂ : Ėp (5.42)

˙̄εp =
σ̂ : Ėp

(1− fnl)σy(ε̄p)
(5.43)

ḟ = (1− fnl)Ėp
kk (5.44)

Φ(σ̂, fnl, ε̄p, w) = 0 (5.45)

where L̂ijkl = RmiRnjRpkRqlLmnpq. The constitutive equations (5.40)–(5.45) are now in
the rotation-neutralized form and only contain standard material derivatives. This allows
for simple numerical schemes to be used for their integration. In the following we use a
combination of simple forward and backward Euler schemes to integrate the constitutive
equations2 The procedure is outlined below:

In particular, equation (5.40) can be integrated exactly yielding:

∆E = ∆Ee + ∆Ep (5.46)

where the notation ∆( ) = ( )n+1 − ( )n is used. A backward Euler scheme is used for the
integration of the flow rule (5.41) and the resulting incremental equation can be written in
terms of two scalar quantities ∆εm and ∆εeq:

∆Ep = ∆λN̂n+1 =
1

3
∆λ

∂Φ

∂p̂

∣∣∣∣
n+1

δ + ∆λ
∂Φ

∂σ̂e

∣∣∣∣
n+1

n̂n+1 =
1

3
∆εmδ + ∆εeqn̂n+1 (5.47)

∆εm = ∆λ
∂Φ

∂p̂

∣∣∣∣
n+1

, ∆εeq = ∆λ
∂Φ

∂σ̂e

∣∣∣∣
n+1

, n̂n+1 =
3

2σ̂e|n+1

ŝn+1 =
3

2σ̂ee
se = ne (5.48)

2In general numerical integration algorithms such as the midpoint rule or other Runge-Kutta methods
(e.g., see Cao et al. (2015)) could be used for the integration of the constitutive equations.
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where the derivatives ∂Φ/∂p̂ and ∂Φ/∂σ̂e at the end of the increment can be calculated
from equations (4.19). A forward Euler scheme is employed for the numerical integration of
elasticity equation (5.42):

σ̂n+1 = σn + Ln : ∆E−Ln : ∆Ep =
2

3
σ̂e|n+1n̂n+1 + p̂n+1δ (5.49)

p̂n+1 = pe − κ∆εm, σ̂e|n+1 = σee − 3µ∆εeq (5.50)

where the fact that σ̂n = σn and L̂n = Ln was taken into account. In equations (5.48)3

and (5.49)–(5.50) se, pe, and σee denote the deviatoric stress tensor, hydrostatic stress, and
von Mises equivalent stress respectively related to the standard “elastic predictor” tensor
σe = σn + Ln : ∆E. Finally, a backward Euler scheme is employed for the numerical
integration of the evolution equations (5.43), (5.44) for the equivalent plastic strain and the
local porosity:

ε̄pn+1 = ε̄pn + ∆ε̄p, ∆ε̄p =
σ̂n+1 : ∆Ep

(1− fnl
n+1)σy|n+1

=
p̂n+1∆εm + σ̂e|n+1∆εeq

(1− fnl
n+1)σy|n+1

(5.51)

fn+1 = fn + ∆f, ∆f = (1− fnl
n+1)∆Ep

kk = (1− fnl
n+1)∆εm (5.52)

The primary unknowns are ∆εm,∆εeq and the yield criterion (5.45) along with equations
(5.48)1 and (5.48)2:

F1(∆εm,∆εeq) ≡ Φ(σ̂e|n+1, p̂n+1, f
nl
n+1, ε̄

p
n+1, w) = 0 (5.53)

F2(∆εm,∆εeq) ≡ ∆εm
∂Φ

∂σ̂e

∣∣∣∣
n+1

−∆εeq
∂Φ

∂p̂

∣∣∣∣
n+1

= 0 (5.54)

are considered as the basic equations, where σ̂e|n+1, p̂n+1, fn+1, ε̄
p
n+1 are given in terms of

∆εm,∆εeq from equations (5.50), (5.51) and (5.52). Equations (5.53)–(5.54) constitute a
system of nonlinear equations for ∆εm,∆εeq which is solved using Newton’s method. After
∆εm,∆εeq are determined, the stress tensor, the equivalent plastic strain and local porosity
can be calculated at the end of the increment using equations (5.49)–(5.52).

Remark 15. Alternatively, the implicit numerical integration algorithm proposed recently
by Bouby et al. (2023) in the context of Generalized Standard Materials (GSM) could be used.
This would require though the introduction of the “Lagrangian porosity” as an additional
microstructural variable. In this work, the proposed integration procedure model is efficiently
implemented in the general-purpose finite element code ABAQUS.

5.3 An efficient implementation using ABAQUS
Computational implementation of the implicit gradient isotropic projection model using the
finite element method would, in principle, require coding both the numerical integration
algorithm for the constitutive equations and the discretized equations (5.24)–(5.28) for the
determination of the nodal unknowns. In ABAQUS/Standard and ABAQUS/Explicit, this
can be done directly by using the User ELement UEL and VUEL user-subroutines respec-
tively which allow to create “custom elements” with additional degrees of freedom in order
to simulate complex coupled problems and/or multi-physics phenomena. In practice, the
writing of such user-subroutines requires considerable expertise and extensive testing prior
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to their use in “real-world” problems. Also, multiple such subroutines might need to be de-
veloped if different element types of different interpolation order (i.e., linear, quadratic etc.)
are to be considered.

An alternative, more efficient methodology for the implementation of implicit gradient
plasticity mechanical models for both quasi-static and dynamic problems using ABAQUS
has been recently utilized by several authors (Azinpour et al., 2018; Seupel et al., 2018;
Papadioti et al., 2019; Aravas and Papadioti, 2021). The approach is based on the utilization
of an analogy between the BVP (4.10)–(4.11) for the non-local porosity field and the heat
transfer BVP allowing the use of the built-in coupled temperature-displacement analysis
option for the solution of the non-local problem. However, it should be noted that when
there is more than one non-local variables in the model (e.g., as in Tuhami et al. (2022)),
the corresponding numerical implementation is not as simple, because the thermomechanical
analogy cannot be used for the additional non-local variables. In this case, the development
of user-defined elements cannot be avoided. This thermomechanical analogy has been also
used extensively for the solution of transient stress-diffusion problems in the finite element
modeling of hydrogen embrittlement in metals (Oh et al., 2010; Moriconi et al., 2014; Barrera
et al., 2016; Charles et al., 2021) as well as for the implementation of phase field fracture
models (Azinpour et al., 2018; Wu and Huang, 2020; Navidtehrani et al., 2021).

Since only one non-local variable is introduced in the present formulation, this alternative
approach is employed in this work for the implementation of the gradient isotropic projection
model using both the implicit (i.e., ABAQUS/Standard) and explicit (i.e., ABAQUS/Explicit)
capabilities of ABAQUS FE code. The necessary variable identifications and assumptions
in each case are discussed in the following sections.

5.3.1 Implementation in ABAQUS/Standard
In the case of quasi-static problems, the non-local model can be introduced through a
UMAT user-subroutine along with the input file command *COUPLED TEMPERATURE-
DISPLACEMENT and ABAQUS/Standard solver can be used to obtain a solution. The
steady-state heat transfer BVP for an isotropic material which is solved by ABAQUS in a
body with current volume V bounded by a surface ∂V reads

k∇2T + r (∆E, T ) = 0, in V (5.55)
k∇T · n = q̂, on ∂V (5.56)

where T is the temperature, k is the thermal conductivity, r the thermal power per unit
volume provided by a heat source in V , q̂ the prescribed thermal power per unit area entering
V through ∂V , and ∆E a strain increment properly defined in terms of nodal displacements
(see ABAQUS manuals and Hughes and Winget (1980)). Comparison of the heat transfer
BVP (5.55)–(5.56) with the BVP (4.10)–(4.11) for the non-local problem shows that, the non-
local porosity field fnl can be identified with the temperature field in the coupled thermal-
mechanical analysis provided that the following correspondence is used3:

T ↔ fnl, k ↔ `2, r (∆E(u), T )↔ f
(
u, fnl

)
− fnl, q̂ ↔ 0, (5.57)

It should be noted that the characteristic length ` is defined for an analysis in the pre-
processing stage with the *CONDUCTIVITY input file command (i.e., ` =

√
k). During

3The modified Helmholtz equation can be written in the form `2∇2fnl + (f − fnl) = 0, which is similar
to the steady-state heat transfer equation (5.55).



94 Numerical Implementation and Simulation of Structural Problems

a time interval [tn, tn+1] the non-local porosity at the beginning of the increment and its
variation (fnl

n ,∆f
nl) are given through the variables “TEMP” and “DTEMP” respectively

and the thermal power term r can be provided after the integration of the constitutive
equations through variable “RPL”.

For the solution of the global coupled “thermal-mechanical” problem, ABAQUS/Standard
uses the Newton-Raphson iterative method and Jacobians need to be calculated at every
increment. For this purpose, the quantities

1

J

∂∆τ

∂∆E
,

1

J

∂∆τ

∂∆T
,

∂r

∂∆E
,

∂r

∂∆T
, (DDSDDE, DDSDDT, DRPLDE, DRPLDT in UMAT)

(5.58)
are calculated and stored in UMAT at the end of every increment, where τ is the Kirchoff
stress tensor (i.e., τ = Jσ) and J = det F. The derivatives in (5.58) can be approximated to
first order by using the expressions derived for the tangent modulus in Section 4.2.3. Using
expressions (4.23)1 and (4.25)1 we have that:

∇
τ= J

(
Lnl + σδ

)
: D + JAḟnl or ∆τ ≈ J

(
Lnl + σδ

)
: ∆E + JA ∆fnl (5.59)

ḟ = Bnl : D +Kḟnl or ∆f ≈ Bnl : ∆E +K ∆fnl (5.60)

In view of equations (5.59), (5.60), the “element Jacobians” (5.58) can be calculated at the
end of the increment as:

1

J

∂∆τ

∂∆E
=
∂σn+1

∂En+1

+ σn+1δ ≈ Lnl
n+1 + σn+1δ,

1

J

∂∆τ

∂∆T
≡ 1

J

∂∆τ

∂∆fnl
=
∂σn+1

∂fnl
n+1

≈ An+1

(5.61)
∂r

∂∆E
≡ ∂fn+1

∂∆En+1

= Bnl
n+1,

∂r

∂∆T
≡ ∂r

∂∆fnl
=
∂fn+1

∂fnl
n+1

− 1 ≈ Kn+1 − 1 (5.62)

Such an approximation for the Jacobians is first order accurate as ∆t = tn+1 − tn → 0 (i.e.,
for small time increments). It should be mentioned however that such an approximation only
affects the quadratic rate of convergence of the global Newton-Raphson iterations but not
the accuracy of the results. A methodology for the derivation of more accurate expressions
for these quantities based on the backward Euler scheme proposed for the integration of the
constitutive equations is outlined in Appendix B.

5.3.2 Implementation in ABAQUS/Explicit
In the case of dynamic problems or quasi-static problems that cannot be solved using an
implicit scheme due to convergence issues of the global Newton-Raphson method, the non-
local model can be alternatively implemented through user-subroutines VUMAT and VD-
FLUX (or VHETVAL) along with the input file command *DYNAMIC TEMPERATURE-
DISPLACEMENT and the ABAQUS/Explicit solver can be used to obtain a solution. The
transient heat transfer BVP for an isotropic material which is solved by ABAQUS in a body
with current volume V bounded by a surface ∂V reads

k∇2T + r (∆E, T ) = ρcṪ , in V (5.63)
k∇T · n = q̂, on ∂V (5.64)

where c is the specific heat which is defined during the pre-processing stage using the *SPE-
CIFIC HEAT input file command in ABAQUS. Again, comparing the transient heat transfer
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BVP (5.63)–(5.64) with the BVP for the non-local porosity field we have that the identi-
fications (5.57) still hold with the additional requirement that ρcṪ → 0; this implies that,
the values of the current density ρ and the specific heat c must be such so that the term
on right hand side of (5.63) becomes negligible. Notice that the numerical stability of the
solution in this case is proportional to the product ρc. Following Papadioti et al. (2019) and
Aravas and Papadioti (2021) the value of c should be chosen so that the following criterion
is satisfied at all integration points of all elements throughout an analysis:

ρc
∆fnl

∆t
≤ TOL, TOL ∼ O(10−4) (5.65)

During a time interval [tn, tn+1] the non-local porosity at the beginning and at the end of the
increment (fnl

n , f
nl
n+1) are given through the variables “tempOld” and “tempNew” respectively

and the thermal power term r can be calculated after the integration of the constitutive
equations. However, r cannot be provided through the VUMAT subroutine and has to be
defined as a “non-uniform body force” (BFNU option in the *DFLUX input file command
of ABAQUS/Explicit) through the VDFLUX subroutine. Also, no element Jacobians such
as the ones in (5.58) need to be calculated in ABAQUS/Explicit since no iterations are
performed for the determination of the global solution at each increment.

If the ABAQUS/Explicit solver is used for the solution of quasi-static non-local problems
that cannot be solved with ABAQUS/Implicit due to convergence issues (i.e., contact prob-
lems, forming processes, impact problems, fracture etc.) the user should make sure that,
in addition to the criterion (5.65), the kinetic energy EK in the model is only a small frac-
tion (in practice no more than 5%) of the corresponding strain energy Estr throughout the
analysis. These energies are calculated by ABAQUS/Explicit for the whole model (variables
ALLKE and ALLSE) and are given as (see energy balance section in (Abaqus, 2021)):

EK =

∫
V

1

2
ρv · vdV , Estr =

∫ τ

0

∫
V

(σ ·D dV) dτ (5.66)

Remark 16. When ABAQUS/Explicit solver is used, since the integration scheme is only
conditionally stable, an initial stable time increment estimate ∆teststable is calculated and used
for the solution of the dynamic equations. This stable time increment can be chosen to be
fixed or allowed to adjust during the solution. In principle, the stability limit for the explicit
integration operator (with no damping) is given in terms of the highest frequency of the
system. An approximate upper bound to the stability limit can be obtained from the so-
called Courant–Friedrichs–Lewy (CFL) condition and is related to the smallest transit time
of a dilatational wave across any of the elements in the mesh (see also the documentation of
Abaqus (2021)), i.e.,

∆teststable ≈
Lemin
vd

, vd =

√
E

ρ0

(5.67)

where Lemin is a characteristic dimension of the smallest element in the finite element mesh
and vd is the dilatational wave speed which can be defined in terms of the materials elastic
properties and mass density. Last equation shows that, the time increment used is directly
proportional to the square root of the material’s mass density. If a solution in the natural
(true) time scale of the problem is required and the true mass density of the material is used,
equation (5.67) suggests that very small time increments should be used to maintain stability;
for large models with fine spatial discretizations, this can lead to significant computational
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costs. For a given elastic stiffness, larger time increments can be achieved by using the
mass scaling technique which is equivalent to artificially increasing the mass density of the
material. For quasi-static problems, the mass density can be safely increased without loss
of accuracy as long as the kinetic energy in the model remains small compared to the strain
energy. However, for truly dynamic problems where inertial terms could potentially be
important, mass scaling should be used with caution to avoid erroneous results.

5.4 Material properties used in numerical calculations
The material parameters used in the numerical simulations described in this chapter, unless
otherwise specified, are summarized in Table 5.1. These values do not correspond to any
particular material but are typical values found in the literature for commonly used structural
steels. The value for the initial mass density ρ0 needs to be defined in all problems used

Table 5.1 – Matrix material properties used in the numerical calculations.

Property Symbol Value Units
Young’s modulus E 207 GPa

Poisson’s ratio ν 0.3 -
Initial yield strength σ0 250 MPa

Hardening exponent n 10 -
Initial mass density ρ0 7850 kg

m3

Specific heat c 4× 10−9 m3 s
kg K

in ABAQUS/Explicit and corresponds to the typical density for structural steels, i.e., ρ0 =
7850 kg/m3. The value of c shown in Table 5.1 was chosen so that the criterion (5.65) is
satisfied at the integration points of all elements in the corresponding finite element mesh.
Hardening in the matrix material, unless otherwise stated, is assumed to be described by
an isotropic hardening power law of the form (3.29). Also, in the ductile fracture problems
examined in this work, the criterion for macroscopic crack initiation is based on a critical
value of the non-local porosity. In what follows, a representative value for the critical porosity
to failure fF is selected from the literature (e.g., see Skallerud and Zhang (1997) or more
recently Aravas and Papadioti (2021)).

Proper normalization is used for all input properties related to both the mechanical
and the “thermal” problem which is used for the determination of the non-local porosity. In
particular, Young’s modulus E, initial yield stress σ0, initial mass density ρ0 and specific heat
c are normalized in the pre-processing stage and the corresponding normalized quantities are
defined as follows.

Ê =
E

Σnorm

, σ̂0 =
σ0

Σnorm

, ρ̂0 =
ρ0

(Σnorm t2norm)/L2
norm

, ĉ =
c

Lnorm/(Σnorm tnorm Tnorm)
(5.68)

where Σnorm, tnorm, Lnorm and Tnorm are normalizing parameters with dimensions of stress,
time, length and temperature respectively. The values of these parameters can be chosen
arbitrarily as long as a consistent unit system is used (e.g., SI units for all quantities).
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5.5 Simulation of the Hole Expansion Test
The Hole Expansion Test (HET) (ISO 16630:2017 (2017)) is a test used widely in the steel
industry for the determination of the local formability of a steel grade, using thin sheets of
standardized dimensions. For the test, a hole of predefined diameter is created in a circular
thin sheet specimen, which is then clamped between a die and a blank holder. Next, a conical
punch of 60◦ apex angle4 expands the initial hole until a through-thickness macroscopic crack
appears. The relative difference between the diameter after rupture and the initial diameter
of the specimen’s inner hole defines the Hole Expansion Ratio (HER), which serves as a
measure of the formability (or ductility) of the steel grade.

Figure 5.1 – (a) Simulation setup for the HET, which includes the rigid die, blank holder, and
conical punch, along with a magnification of the circular specimen showing the mesh density used.
(b) The deformed specimen at different stages of the forming process.

Combination of experimental and numerical approaches have been used in the recent
years in order to get a better understanding on the parameters affecting the HER as well
as the experimentally observed deformation behavior. In particular, numerical simulations
have been used to study the effect of anisotropy and material model calibration (Hashimoto
et al., 2010; Kuwabara et al., 2011; Lee et al., 2019) on deformation predictions, the effect of
hole-edge surface quality and microstructure on the HER (Paul et al., 2014; Barnwal et al.,
2020), and the effect of the constitutive model and hardening law on the thinning behavior
of sheet specimens (Kim et al., 2021). In what follows, the newly proposed porous plasticity
model is used to investigate the effect of different microstructural configurations (through

4Also a flat punch is used in other variations of the test.
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Figure 5.2 – Contours at the end of the analysis of (a) porosity f and (b) equivalent plastic strain
ε̄p for microstructures consisting of spherical voids (w = 1) and oblate voids with aspect ratio
w = 0.15.

the void shape parameter) on the deformation fields and damage that develop during the
HET.

The local porous model proposed in Section 2.3 has been implemented using a UMAT
user-subroutine provided by the ABAQUS/Standard module allowing to numerically sim-
ulate the HET boundary value problem. Although the problem can be treated as axisym-
metric, full three-dimensional simulations are intentionally performed, to demonstrate the
capabilities and computational efficiency of the proposed model. The setup used for the sim-
ulations is shown in Fig. 5.1a. The blank holder, die, and the conical punch are all modeled
as rigid bodies. The circular deformable specimen has an initial thickness t0, an inner radius
of Ri = 5 t0, and an outer radius Ro = 50 t0. To speed up the calculations, only one quarter
of the whole specimen is considered and symmetry conditions are imposed. The mesh used
consists of 104 720 eight-node hexahedral, hybrid elements with constant pressure (C3D8H
in ABAQUS/Standard) and 20 elements are used throughout the thickness of the specimen.
The effect of friction is not investigated here and frictionless contact is assumed between all
rigid surfaces and the deformable specimen.

Two different simulations of the HET are carried out; one with a microstructure consisting
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of spherical voids (w = 1) and another with very flat voids of aspect ratio w = 0.15. An
initial porosity of f0 = 1% is assumed in all cases. The simulation is carried out quasi-
statically in two steps. In the first step, which is used to simulate the clamping process,
a displacement of |ublankz | = 0.011 t0 is imposed on the reference node of the blank holder.
During the second step, the forming process is simulated by imposing a total displacement
of |upunchz | = 25 t0 on the reference node of the rigid punch. The deformed state of the thin
sheet during three different stages of the process is shown in 5.1b.

Figure 5.3 – (a) Distributions of the equivalent plastic strain ε̄p and porosity f at a cross-section of
the specimen at the end of the analysis for the case with aspect ratio w = 0.15. (b) Evolution of
the corresponding variables during the forming process for points A and B.

Figure 5.2 shows contours of porosity f and equivalent plastic strain ε̄p as predicted by
the proposed homogenization model, for the two different microstructures, at the end of the
corresponding simulations. Figure 5.2a shows that porosity evolution is substantially larger
when oblate voids with an aspect ratio w = 0.15 are considered, showcasing the strong
effect of void shape on material response. It should be also noted that the accumulated
plastic strain in the structure remains essentially the same for the two different microstruc-
tures considered (Fig. 5.2b). This rather interesting result is not trivial. It indicates that,
the equivalent plastic strain can remain insensitive to the underlying microstructural con-
figuration and, thus, it might not be a sufficient measure to solely characterize damage
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accumulation in a structure.
This can be further justified by examining the distributions of ε̄p and f at a cross section

of the specimen. Figure 5.3a shows contour plots of ε̄p and f at the end of the simulation
for the case with aspect ratio w = 0.15. Points A and B, denoted by the red dots in
the contours, are the locations of maximum porosity and equivalent plastic strain in the
specimen respectively. The highest value of the plastic strain at the end of the simulation is
located at the lower (inner) surface of the sheet. At that point, the specimen is in contact
with the rigid punch and a compressive stress state is developed. The maximum porosity,
however, appears at the upper right corner of the formed collar, which is under tension.
In turn, porosity progressively decreases as one moves closer to the inner surface. Also, as
shown in Fig. 5.3b, the evolution of ε̄p and f during the forming process is quite different at
points A and B. At A, porosity progressively increases to high values, while the equivalent
plastic strain also increases moderately. At B, however, although the equivalent plastic strain
progressively increases to higher values compared to point A, porosity rapidly decreases, since
the structure is under compression at that point.

It should be recalled that, in the context of porous plasticity modeling, porosity can be
viewed as a degradation (or damage) parameter for the structural load-carrying capacity. In
this sense, macroscopic cracks can be identified with the regions of accumulated porosity in
the structure. If a loss of stress-carrying capacity criterion was to be used in the model, based
on a critical value of the porosity (e.g., Aravas and Papadioti (2021)), then, the numerical
simulations predict that crack initiation would take place at the external diameter of the
formed collar where porosity takes its maximum value. This prediction of the proposed
model is qualitatively consistent with recent results from the experimental realization of the
HET (Barlo et al. (2022)).

Such observations verify that selection of the appropriate material model is critical in
structural problems involving ductile materials, where complex stress states develop. As
shown with this example, standard incompressible plasticity models (such as the von Mises
model) or damage models that only consider a critical value of the equivalent plastic strain in
the criteria for crack initiation should be used with caution, as they might lead to inaccurate
predictions. In case such models are utilized, either more information for the stress state
should be included in the definition of the critical strain to failure in a phenomenological sense
(e.g., Bai and Wierzbicki (2008)) or models that include more microstructural information
(such as the porosity in porous elastic-plastic models) should be alternatively considered.

5.6 Cup-and-cone fracture of a round bar
The cup-and-cone fracture pattern that can be experimentally observed in failure of cylin-
drical specimens under tensile loading suggests a complex crack propagation phenomenon
involving crack branching, which, in principle, is not easy to accurately simulate numerically.
In such specimens, macroscopic cracking usually initiates due to void nucleation and growth
mechanisms at the center of the bars driven by high stress triaxiality developing in the re-
gion. The crack initially propagates in its original plane and as it moves towards the free
surface of the specimen, an out-of-plane shift occurs resulting in the experimentally observed
slant fracture surface.

The problem was first numerically studied in detail in the work of Tvergaard and Needle-
man (1984) who used a local version of the modified Gurson’s model (GTN) in order to
identify the critical parameters affecting the final failure pattern and establish a connection
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with the experimentally observed results. The problem was later revisited by Scheider and
Brocks (2003) who used the cohesive element approach to predict crack propagation and
more recently by several authors (Leclerc et al., 2020; Aravas and Papadioti, 2021; Niko-
lakopoulos et al., 2021; Tuhami et al., 2022) who used implicit gradient porous plasticity
models or the extended finite element method (XFEM) coupled with cohesive zone models
to capture the change from flat to slant fracture patterns in both notched and un-notched
cylindrical tensile specimens.

Figure 5.4 – (a) Axisymmetric model for the simulation of the cup-and-cone fracture of a round bar
with initial radius R0 and (b) the three meshes used in the calculations.

The problem of necking and cup-and-cone failure of a cylindrical specimen with circu-
lar cross-section quasi-statically loaded axially in tension is studied using both the local
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and implicit non-local versions of the isotropic projection model. Due to convergence dif-
ficulties associated to modeling crack propagation using an implicit FEM solver, both the
local and the non-local model have been implemented in a VUMAT user-subroutine and
ABAQUS/Explicit is used to obtain a solution. The modeling approach used is shown in
Fig. 5.4a. Due to the cylindrical symmetry of the round bar, the problem is treated as
axisymmetric and only a “slice” in the first quadrant of the r − z plane is considered in the
simulation with z being the axis of symmetry of the cylinder. The specimen has an aspect
ratio L0/R0 = 2, where L0 is its initial length and R0 its initial radius. To promote necking,
following Aravas and Papadioti (2021), a small geometric imperfection of the form

R(z) = R0 − ξ R0 cos
πz

L0

(5.69)

is introduced, where R(z) is the perturbed radius of the specimen and ξ = 10−3. All points
on the midplane z = 0 are constrained to move only in the radial direction (i.e., uz(r, 0) ≡
u2(r, 0) = 0) and all points along the z-axis are constrained to have zero radial displacement
(i.e., the condition ur(0, z) ≡ u1(0, z) = 0 is enforced). The lateral cylindrical surface is
kept traction-free and the deformation is driven by a uniform prescribed end-displacement δ̂
which is applied incrementally in the z-direction. The values of the normalizing parameters
used in all calculations are summarized in Table 5.2.

Table 5.2 – Normalizing parameters used in the cup-and-cone fracture simulations.

Normalizing Property Symbol Value Units
Stress Σnorm 250 MPa

Length Lnorm 1× 10−3 m

Time tnorm 1 s

Temperature Tnorm 1 K

For the quasi-static simulations, three different meshes are used with 25× 100, 50× 200,
and 75 × 300 elements respectively as shown in Fig. 5.4b. In this notation, the first
and second numbers indicates the number of elements used in the radial and axial di-
rections r ≡ 1 and z ≡ 2 respectively All meshes consist of 4-node axisymmetric cou-
pled temperature-displacement elements with reduced integration and “hourglass control”
(CAX4RT in ABAQUS/Explicit). The material is assumed to fail locally when the non-
local porosity fnl reaches the critical value of fF = 0.15 and the element deletion technique
is employed to simulate crack propagation; when this value is reached at an integration
point, the material in the element is assumed to lose its load-carrying capacity, all stress
components are set to zero, and the element is removed from the mesh. The characteristic
length entering the non-local model is chosen as ` = 0.01R0 and an initial porosity f0 = 4%
is considered in all cases.

In order to investigate the effect of spatial discretization in the predictability of the cup-
and-cone failure pattern, a mesh convergence analysis is carried out using both the local
and non-local versions of the new porous plasticity model and the results are presented in
Figs. 5.5–5.7. The void shape parameter is set at w = 0.1 for this series of calculations.

Variation of the normalized macroscopic axial force F2/(σ0A0) with the macroscopic
logarithmic axial strain Ez ≡ E2 = ln (1 + u2/L0) are shown in Fig. 5.5a and 5.5b for the
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Figure 5.5 – Variation of the normalized total force F2/(σ0A0) with macroscopic axial logarithmic
strain E2 = ln

(
1 + u2

L0

)
for (a) the local model and (b) the non-local model with ` = 0.01R0

(A0 = πR2
0 is the undeformed cross-sectional area of the round bar).

local and non-local models respectively. The oscillations of the numerical solution in the early
stages are due to the explicit scheme used. As it can be seen, the load-deflection curves for
both models are qualitatively similar to the ones observed experimentally (see Tvergaard and
Needleman (1984)) involving a sharp load drop at the point when the initiation of the central
penny-shaped crack takes place. It should be noted that, the normalized force-displacement
curves corresponding to the non-local model show a sudden local increase, which takes place
just before the crack orientation changes from flat to slant which is followed by quick drop as
the crack propagates to the free surface. Also, the force-displacement curves exhibit no-mesh
dependency since they converge to a single solution as the mesh is refined.

Figures 5.6 and 5.7 show the distribution of the equivalent plastic strain ε̄p in a cross
section of the bar at two different axial strain levels (cases (a) and (b)) and after total fracture
has occurred (case (c)) as predicted by the local and implicit non-local models respectively.
At each strain level (denoted as (a)-(c) in the figures), contour plots are shown for each of the
three meshes used. Both the local and non-local models predict that a macroscopic penny
shaped crack will initially be formed at the center of the specimen where the plastic strains
and stress triaxiality attain their maximum values. However, the final way the cylindrical
specimen fails is different depending on whether a regularized model is used or not.

In the case of the local model, the crack remains on its plane (at z = 0) in the coarser
mesh while a cup-and-cone like fracture is predicted for the finest mesh with a 90◦ angle
turn followed by an approximately 45◦ turn of the crack until it meets the free surface; the
final failure pattern exhibits strong mesh dependency in this case. Conversely, if a non-local
formulation is used, the numerical solutions are mesh-independent; the crack initiates at
the center and when it grows at a distance approximately 0.47R0 it turns out of its plane
until it reaches the free surface, a pattern which is predicted by all three meshes. Such
results come to verify that, in such material models where softening is present, a regularized
formulation is necessary to be used in order to accurately capture the final failure mode of
the structure. It should be mentioned that the present calculations assume symmetry about
the mid-plane at z = 0, so that two symmetrical conical fracture surfaces are predicted; of
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Figure 5.6 – Contours of the equivalent plastic strain ε̄p in the round bar as predicted by the local
model. Results are shown for values of the macroscopic axial logarithmic strain (a) E2 = 0, 1629,
(b) E2 = 0, 1649 and (c) after a full macroscopic crack has been developed for all meshes. Whole
cross-section is shown.

course, in reality, one of the two predicted cracks prevails, giving the cup-and-cone fracture
observed in experiments.

The effect of the void shape on fracture was also examined by using the implicit non-local
model and the finest of the three meshes comprising 75 × 300 elements. Figure 5.8 shows
the variation of the normalized axial force with the normalized axial strain as predicted by
the model for three different values of the aspect ratio parameter w = 0.1, w = 0.2 and
w = 1. For comparison purposes, calculations are also carried out by using a non-local
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Figure 5.7 – Contours of the equivalent plastic strain ε̄p in the round bar as predicted by the
implicit non-local model. Results are shown for values of the macroscopic axial logarithmic strain
(a) E2 = 0, 1644, (b) E2 = 0, 1667 and (c) after a full macroscopic crack has been developed for all
meshes. Whole cross-section is shown.

version of the original Gurson’s model (i.e., for q1 = q2 = q3 = 1). The final failure patterns
are indicated with arrows for each case. As it can be seen, the strain at which the sudden
load-drop associated with the formation of the macroscopic penny shaped crack reduces for
lower values of the aspect ratio w. This can be explained based on the fact that lower values
of the aspect ratio (which would correspond to materials whose microstructures consist of
more flat oblate voids) promote significant porosity evolution; this effect is more pronounced
under high stress triaxiality conditions, such as the ones developing at the center of the neck
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Figure 5.8 – Variation of the normalized total force F2/(σ0A0) with macroscopic axial logarithmic
strain E2 = ln

(
1 + u2

L0

)
and final failure patterns as predicted by the non-local model for various

microstructural configurations. A value of ` = 0.01R0 is used in all calculations.

region. Again, it should be emphasized that, although both the new model with w = 1
and Gurson’s model assume microstructures with spherical micro voids, porosity evolution
is accelerated due the presence of the interpolation parameter α in the yield function of the
isotropic projection model (see (4.15)1); this results in lower macroscopic strain to fracture
compared to the original Gurson model. Also, a higher reduction in the cross sectional area
of the bar can be observed before the macroscopic crack forms as the aspect ratio of the
voids increases; the model predicts that the softening branch of the stress-strain curve is
driven by more severe necking for microstructures consisting of spherical voids compared to
those consisting of flat penny-shaped voids.

It is worth noting that the shape of the voids also affects the final fracture mode of the
bar; the cup-and-cone fracture is predicted for the calculations with w = 0.1 and w = 0.2
while the analysis with w = 1 and the Gurson’s model predict that the macroscopic crack
propagates in its plane until complete fracture occurs. A possible explanation for this result
is that the out-of-plane branching of the macroscopic crack is mostly dominated by shear
deformations which are characterized by lower stress triaxiality conditions. The original
Gurson’s model is known to work poorly under shear dominated conditions (Danas and
Aravas, 2012). Under such stress states, damage could be promoted by mechanisms other
than porosity evolution alone, such as interactions of neighboring voids due to void rotation
or void shape evolution. As discussed in Subsection 3.4, randomly distributed and oriented
voids with lower aspect ratio values can induce significant porosity evolution even under
low stress triaxiality conditions; although neither void rotation nor void shape evolution
are considered in the new model, incorporation of the initial void shape combined with the
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random voids’ orientations allow for such critical interactions to be taken into account in
an implicit manner. In contrast, voids with spherical shapes that do not change their shape
or rotate, lead only to moderate porosity evolution and do not perform well under shear
dominated stress states. Past experimental and numerical studies (e.g., Bao and Wierzbicki
(2004), Barsoum and Faleskog (2007), Dunand and Mohr (2011), Dunand and Mohr (2014))
give supporting evidence that the third invariant J3 of the stress tensor could be an important
parameter in order for more realistic predictions to be made regarding final fracture strains
and failure modes under shear dominated stress states. This could also be supported by the
results of the micromechanical calculations presented in Section 3.3.2, where it was found
that microstructures comprising spherical voids appear to be more sensitive to the Lode
angle θ compared to oblate voids of lower aspect ratios.

5.7 Simulation of the Charpy V-notch test

The Charpy V-notch (CVN) test (ISO 148-1:2016, 2016) for metallic materials is a mechanical
procedure used to determine (qualitatively or quantitatively) various properties related to
fracture behavior such as the impact absorbed energy, ductility, and the ductile-to-brittle
transition temperature (DBTT) of welded and non-welded materials. The experimental
setup involves metallic specimens with standarized dimensions and a pre-machined notch
(see Fig. 5.9a) being placed on the supports of a pendulum impact testing machine, as
shown in the schematic representation of Fig. 5.9b. The pendulum is left from a specific
height to swing through the specimen, which is positioned on the testing machine so that
the notch is across the point at which the center of the hammer strikes. The difference
in potential energy of the pendulum before and after the test is then used to measure the
absorbed energy of the material during fracture.

The CVN test has been numerically simulated throughout the years by several authors in
an effort to estimate the aforementioned fracture related properties and asses the predictabil-
ity of material models in comparison with experimental findings. In particular, the CVN test
was first numerically modeled by Norris (1979) and much later by Tanguy and co-workers
(Tanguy et al., 2005a,b; Bouchet et al., 2005) who tried to establish a computational frame-
work for predicting fracture related properties of Charpy specimens failing due to irridiated
embrittlement in nuclear reactors. Numerical approaches have also been used to investigate
specimen size and inertial effects on the absorbed energy and the DBTT (Benzerga et al.,
2002; DeSandre et al., 2004) as well as the effect of weld strength on fracture toughness
Tvergaard and Needleman (2005). Ductile fracture in these works was simulated using a
porous plasticity approach (a variation of Gurson’s model in most cases) with incorporation
of additional viscoplastic and/or thermal effects.

In this study, the new implicit gradient isotropic projection model is used to simulate
the dynamic Charpy V-notch under plane strain conditions, using the ABAQUS/Explicit
solver in conjunction with a VUMAT user-material subroutine. The goal is to investigate
the effect of the various model parameters (a) on the prediction of standard macroscopic
load-displacement curves and absorbed strain energy associated with the test and (b) on
the initiation and propagation of macroscopic cracking. The question of whether brittle or
ductile fracture takes place is not addressed here assuming a priori that ductile fracture takes
place and no thermal or strain rate effects were taken into account. Although important in
some cases of interest, such effects were neglected in this first approach to the numerical
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Figure 5.9 – (a) Machined Charpy V-notch specimens, (b) schematic representation of the ex-
perimental setup for the Charpy V-notch test, (c) plane strain model of the test with dimension
annotations and boundary conditions, and (d) simulation setup which includes the rigid hammer
and mesh used along with a magnification of the mesh density near the notch.

simulation of the problem and are left for future work.
Dimensions for the numerical model used in all simulations can be seen in Fig. 5.9c and

are taken as proposed in the ISO 148-1:2016 (2016) ISO standard. The specimen has overall
initial length L = 55mm, height H = 10mm, and thickness B = 10mm. The notch depth
is a = 2mm at an angle 2ψ = 45◦ with an initial radius r0 = 0.25mm. The specimen’s
supports are placed at a distance A = 40mm apart. Only half of the billet is modeled
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Figure 5.10 – (a) Variation of the normalized contact force |F2|/(σ0BR0) between the mass and the
specimen with the normalized vertical displacement of the mass |u2/H| after it hits the specimen and
(b) the absorbed strain energy per unit thickness Estr, for two different void shapes. Calculations
were also carried out using a non-local version of the original Gurson’s model (i.e., with q1 = q2 =
q3 = 1) for comparison purposes.

and symmetry boundary conditions are imposed. The numerical setup used for for the
simulations is presented in Fig. 5.9d. Following Aravas and Papadioti (2021), the pendulum
hammer is assumed to have a rounded tip of radius R = 2mm, a total mass m = 20 kg, and
is modeled as a rigid surface on the x1−x2 plane so that a contact problem has to be solved.
The mass per unit thickness used in the plane strain simulations for the half specimen is
m̄ = (m/B)/2 = 1 kg/mm. Frictionless contact is assumed between the rigid hammer and
the deformable specimen.

The mesh used consists of 4 732 4-node plane strain, coupled temperature-displacement
elements with reduced integration and “hourglass control” (CPE4RT in ABAQUS/Explicit).
A more focused mesh is used in the vicinity of the notch in order to accurately capture crack
propagation, as shown in the magnified region. The rigid hammer is assumed to hit the
specimen with an initial velocity vham2 = 5m/s and exert a force of Fg = m̄g = 9.81N/mm
due to gravity, where g = 9.81m/s2 is the acceleration of gravity constant; these conditions
are applied on the reference node defining the rigid surface, which is constrained to move
only in the vertical direction. To simulate crack propagation, the element deletion technique
offered by ABAQUS/Explicit is employed. The material is assumed to fail locally when the
non-local porosity at all integration points of an element takes the value fF = 0.15 and the
corresponding element is removed from the mesh. The normalizing parameters used are the
same as those in Section 5.6 and are given in Table 5.2. An initial porosity f0 = 0.5% is
considered in all cases and the characteristic length is taken as ` = 0.1r0 = 25µm (as in
Aravas and Papadioti (2021)). The total simulation time is t = 2.5ms.

Figure 5.10a shows the variation of the normalized contact force |F2|/(σ0BR0) between
the hammer and the specimen with the normalized vertical displacement of the hammer
|u2/H| after it hits the specimen. Two different values of the aspect ratio parameter are
considered, w = 0.2 and w = 1. For comparison purposes calculations are also carried out
using the original Gurson’s model (i.e., with q1 = q2 = q3 = 1). The load drop in the
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Figure 5.11 – Distribution of the normalized von Mises stress σe/σ0 in the deformed configuration
as predicted by (a) the implicit non-local isotropic projection model with w = 0.2, (b) the implicit
non-local isotropic projection model with w = 1, and (c) the implicit non-local Gurson’s model.
Results are shown at a normalized vertical displacement of the mass |u2/H| = 0.3 in all cases.
Whole specimen is shown.
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Figure 5.12 – Distribution of the stress triaxiality XΣ in the deformed configuration as predicted
by (a) the implicit non-local isotropic projection model with w = 0.2, (b) the implicit non-local
isotropic projection model with w = 1, and (c) the implicit non-local Gurson’s model. Results are
shown at a normalized vertical displacement of the mass |u2/H| = 0.3 in all cases. Whole specimen
is shown.
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Figure 5.13 – Distribution of the equivalent plastic strain ε̄p in the deformed configuration as
predicted by (a) the implicit non-local isotropic projection model with w = 0.2, (b) the implicit
non-local isotropic projection model with w = 1, and (c) the implicit non-local Gurson’s model.
Results are shown at a normalized vertical displacement of the mass |u2/H| = 0.3 in all cases.
Whole specimen is shown.
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normalized force-displacement curves is associated with the initiation and propagation of a
macroscopic crack at the root of the notch. It can be observed that, while the peak force
predicted by all models shows little sensitivity to the aspect ratio parameter, the normalized
displacement corresponding to crack initiation varies significantly depending the selection
of the void shape parameter; for the simulation where the microstructure is assumed to
comprise penny-shaped voids (i.e., for w = 0.2) crack initiates at a displacement value of
|u2/H| = 0.087 whereas the simulation where spherical voids are assumed predicts that a
macroscopic crack initiates at a displacement |u2/H| = 0.194. Gurson’s model predicts the
most delayed crack initiation strain at a normalized hammer displacement of |u2/H| = 0.306.
Again, the difference between the isotropic projection model with aspect ratio w = 1 and
Gurson’s model is due to the presence of the interpolation parameter α in (4.15).

Figure 5.10b depicts the strain energy per unit thickness absorbed by the specimen (as
calculated by equation (5.66)2 for the whole model by ABAQUS) as a function of the total
simulation time for two different values of the aspect ratio parameter, w = 0.2 and w = 1
and for the analysis using Gurson’s model. It is clear that, a material comprising micro-voids
with an aspect ratio w = 0.2 is able to absorb significantly less energy when compared to a
material consisting of spherical voids (i.e., simulation with w = 1 and Gurson’s model); mi-
crostructures that comprise flat oblate micro-voids whose shape significantly deviates from
spherical induce a less ductile macroscopic behavior. It should be noted that the corre-
sponding kinetic energy in the specimen was found to be negligible compared to the strain
energies shown in Fig. 5.10b for all simulations, i.e., inertial terms do not affect the solution
substantially indicating that the analysis is essentially quasi-static.

Figures 5.11–5.13 show the distributions of the normalized von Mises stress σe/σ0, equiv-
alent plastic strain ε̄p and stress triaxiality XΣ in the specimen as predicted by the non-local
isotropic projection model for w = 0.2, w = 1 and the Gurson’s model (shown in subfigures
(a), (b) and (c) respectively) at a normalized macroscopic displacement |u2/H| = 0.3. Al-
though only half of the specimen was considered in the calculations, the whole specimen is
shown for visualization purposes. We observe that at this moment the crack has propagated
by a distance 0.45H for the simulation with w = 0.2, a distance of 0.11H for the simulation
with w = 1 while Gurson’s model predicts that no macroscopic crack has formed yet. Due to
the substantial crack propagation for the model with w = 0.2, a highly stressed region exists
in the vicinity of the crack front while most of the specimen unloads elastically, as shown
in Fig. 5.11a. Stress distribution is more diffuse in the other two cases where little to no
cracking has occurred as depicted in Figs. 5.11b,c. Also, higher plastic strains develop in the
region of contact between the rigid hammer and the specimen for the simulation with w = 0.2
(Fig. 5.12a) while plasticity appears more concentrated to the notch area for the simulation
with w = 1 and Gurson’s model (Fig. 5.12b,c). This is also reflected to the deformed shape
of the notch which has the highest opening in the case of the Gurson’s model. Finally, high
stress triaxiality conditions (XΣ ≈ 3) concentrated in the vicinity of the propagating crack
front are predicted by the non-local model with w = 0.2 (Fig. 5.13a); a less intensive profile
for w = 1 (Fig. 5.13b) and a much more diffuse stress triaxiality distribution is predicted by
the Gurson’s model (Fig. 5.13c).

5.8 The first Sandia Fracture Challenge revisited
Over the course of the last decade, Sandia Laboratories has issued a number of “challenges”
(Boyce et al., 2014, 2016; Kramer et al., 2019) in order to investigate the capability of the
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Figure 5.14 – (a) Mechanical drawing with dimensions (inmm) for the first SFC’s fracture specimen,
(b) Machined specimen used in real-world experiments with annotations for the holes and indication
of the position of COD measurement points, and (c) Simulation setup for the first SFC specimen
which includes the rigid loading and fixed pins (shown in blue) and the mesh used in the calculations.

mechanics community to accurately forecast ductile fracture of structural components. This
is done through a blind, round-robin setup where mechanicians are tasked with predicting
the deformation and failure of a specimen with non-conventional geometry, utilizing provided
experimental calibration data. The philosophy of Sandia Fracture Challenges (SFCs) is the
intention of replicating real-world engineering conditions (such as limited time, budget and
information) under which the predictions have to be made as well as to asses the fidelity
of the whole stream of methods involved (i.e., physical assumptions, numerical tools and
calibration methods).

The first SFC (Boyce et al., 2014) was issued in May 2012 and a total of 13 international
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teams from various universities participated and conducted blind ductile fracture predictions
for the specimen presented in Fig. 5.14a,b. The scenario involved the prediction of crack ini-
tiation and propagation of this fracture specimen under quasi-static, room temperature test
conditions. Annotations A-E were adopted for later reference to the crack path observed
from both experiments and numerical simulations. Experimental data from four uniaxial
tension tests (engineering stress-strain curves), three compact tension tests under mode I
loading, and material information (such as chemical composition, heat treatment and lim-
ited microstructural information) were provided to all teams for model calibration purposes.
All specimens (including the challenge’s fracture specimen) were cut from the same heat
treated sheet made of a 15-5 PH precipitation hardened martensitic stainless steel. The
uniaxial tension tests from the four dog-bone specimens (which were cut in different orien-
tations relative to the rolling and transverse-to-rolling directions of the sheet) led to similar
engineering stress-strain curves, indicating that the material at hand could be considered
as approximately isotropic. Metallographic analysis reported a grain size in the range of
5− 20µm.

A total of 13 fracture specimens such as the one shown in Fig. 5.14b were used in exper-
iments at three different laboratories, ten at Sandia’s Mechanics and Materials laboratories
and three at University of Texas’ at Austin Materials laboratory. Two different crack paths
were observed, namely A-D-C-E and A-C-E. All specimens with dimensions within the pre-
defined machining tolerances failed following A-C-E ; failure along the A-D-C-E path was
primarily attributed to geometrical imperfections related to the machining process (Boyce
et al., 2014). A significant variety of numerical approaches was employed by the participants
(e.g., von Mises/Hill plasticity, porous plasticity models, damage models, and non-local
peridynamics among others). Although both crack paths were numerically predicted by the
teams depending on material parameter selection and consideration of geometrical imper-
fections, non of the participants were able to accurately reproduce the total experimental
force-COD (crack opening displacement) curves. Also, the largest deviations were observed
on the reported COD values at which the numerical models predicted the initiation of the
first and second macroscopic cracks.

5.8.1 Simulation of the first SFC’s fracture specimen

In order to investigate the capability of the new model proposed in this work to predict ductile
fracture in complex geometries and loading conditions, the non-local isotropic projection
model is used to simulate the first SFC’s fracture problem. Due to the problem involving
both contact and crack propagation, ABAQUS/Explicit solver along with a VUMAT user-
subroutine are used to obtain a solution. The finite element model used in the simulations
is shown in Fig. 5.14c. Both pins of the experimental setup are model as rigid shell surfaces.
The specimen has overall initial dimenensions L0 = W0 = 33.02mm, an initial measured
thickness t0 = 3.124mm, and a notch with initial radius Rnotch

0 = 1.27mm. Three holes
were machined in the vicinity of the notch, two small ones with an initial diameter Dsmall

0 =
1.778mm and a larger one with initial diameter Dlarge

0 = 3.048mm. The SCF specimen
used in the numerical simulations is designed based on nominal dimensions and geometrical
imperfections are not considered. All degrees of freedom of the bottom pin are constrained
while the top pin is allowed to only move in the vertical direction. The solution is then
driven by a constant vertical displacement ûtopy applied to the reference node of the top pin
and frictionless contact is assumed between the pins and the specimen.
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The mesh used consists of 175 062 eight-node hexahedral, coupled-temperature displace-
ment elements with reduced integration and “hourglass control” (C3D8RT in ABAQUS/Expli-
cit). A magnification of the mesh density used in the vicinity of the notch and the holes is
shown on the right part of Fig. 5.14c. Elements with initial dimensions 0.15×0.15×0.15mm
are used in that area and a total of 20 elements are used through the thickness.

Table 5.3 – Matrix material properties for the 15-5 martensitic stainless steel.

Property Symbol Value Units
Young’s modulus E 195 GPa

Poisson’s ratio ν 0.3 -
Initial yield strength σ0 1080 MPa

Hardening exponent m 0.55 -
Power Law Parameter B 540 MPa

Initial mass density ρ0 7850× 104 kg
m3

Specific heat c 2× 10−12 m3 s
kg K

Table 5.4 – Normalizing parameters used in the SFC simulations.

Normalizing Property Symbol Value Units
Stress Σnorm 1080 MPa

Length Lnorm 1 m

Time tnorm 1 s

Temperature Tnorm 1 K

The material parameters used in the numerical simulations are drawn from the work of
Nahshon et al. (2014) and are shown in Table 5.3. In that work, the hardening law was
determined utilizing an inverse fitting procedure based on the uniaxial tension test data
reading

σy = σ0 +B(ε̄p)m (5.70)

where B is a fitting parameter with dimensions of stress. In order to accelerate calculations,
mass scaling is used where the initial density in the model is increased by a factor of 104;
such an artificial increase in density was deemed to be acceptable since the kinetic energy
in all cases was found to be less than 1% of the corresponding strain energy developed
in the specimen, ensuring the quasi-static character of the solution. The corresponding
normalizing parameters are shown in Table 5.4. An initial porosity f0 = 0.5% is considered
in all simulations, the material is assumed to fail locally when the non-local porosity fnl

reaches the critical value of fF = 0.15, and the element deletion technique is employed to
simulate crack propagation; when this value is reached at an integration point, the material
in the element is assumed to lose its load-carrying capacity, all stress components are set
to zero, and the element is removed from the mesh. The characteristic length of the non-
local model is taken as ` ≈ 3.36d̄gr = 42µm where d̄gr = 12.5µm is the average grain size
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reported from the metallurgical analysis of the microstructure. The same calculations were
also realized for a higher (` ≈ 10.2d̄gr = 127µm) and a lower value (` ≈ 1.7d̄gr = 21µm)
of the regularization length and no significant difference was found in the predictions for
` ≤ 3.4d̄gr.
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Figure 5.15 – Force-COD curves for the SFC as predicted by the implicit gradient model for various
aspect ratio values. The shaded gray area denotes the range from the real-world experiments for
specimens that failed in the A-C-E path as reported in the “master paper” of the challenge (Boyce
et al. (2014)). A value of ` ≈ 3.36d̄gr = 42µm is used in the calculations (where d̄gr = 12.5µm is
the average grain size reported).

Figure 5.15 shows the force-COD curves as predicted by the implicit non-local model for
three different values of the aspect ratio parameter, w = 0.1, w = 0.2 and w = 1. The
reported force corresponds to the vertical component of the reaction force developed at the
reference node of the (top) loading pin while the reported COD to the vertical displacement
of the node at the top knife-edge point indicated in Figure 5.14b. The area shaded in gray
corresponds to the experimental range reported in Boyce et al. (2014) for the specimens that
failed following the A-C-E path. Sudden load drops in both the experimental and numerically
calculated curves are associated with crack propagation in the specimen. A summary of the
numerically and experimentally predicted force-displacement values for each crack is given
in Table 5.5. As it can be seen, the analysis with an aspect ratio w = 0.2 is the one that fits
better the experimental results giving the closest predictions regarding the force and COD
values of the first and second cracking events. The peak force is predicted relatively well in
all cases while the COD values associated with crack initiation appear to be very sensitive to
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the void shape parameter. Despite the strong non-linearity of the problem, the effect of the
aspect ratio parameter is clearly depicted; lower values of the aspect ratio (corresponding
to penny-shaped micro voids) lead to reduced fracture initiation COD while w values closer
to unity (i.e., corresponding to almost spherical micro voids) lead to higher fracture COD
values.

Table 5.5 – Force and correponding crack opening displacement values at the initiation of each crack
in the specimen.

First Crack (A-C) Second Crack (C-E)
Force (kN) COD (mm) Force (kN) COD (mm)

Model (w = 0.1) 8.527 2.137 5.216 2.60

Model (w = 0.2) 8.405 3.254 5.557 4.95

Model (w = 1) 7.957 5.458 5.844 9.27

Experiments 7.832− 8.066 3.542− 4.115 5.132− 5.173 5.217− 5.933

Figures 5.16 and 5.17 show the distribution of the equivalent plastic strain ε̄p and stress
triaxiality XΣ in the vicinity of the notch area as the crack A-C-E propagates through the
specimen. The contour plots correspond to the simulation with an aspect ratio value of
w = 0.2. Initially, plastic deformation concentrates in the A-D and D-C ligaments but soon
a shift takes place and deformation begins to localize in the A-C ligament where necking
begins to take place as shown in Fig. 5.16a. Crack propagation starts at the middle of the
necking region on the opposite side of the notch at a COD=3.23mm, gradually propagating
towards the notch and finally to the lateral surfaces of the specimen. This can be explained
based on the stress triaxiality distribution shown in Fig. 5.17a; the highest triaxiality value
is attained at the interior of the A-C ligament leading to local high porosity evolution in the
region and the formation of an internal macroscopic crack. The A-C ligament is fully split
apart at a COD=3.56mm as shown in Fig. 5.16a. The abrupt drop in the force-COD curve
associated with the A-C crack takes place at an intermediate value of COD= 3.35mm.
This behavior is in close qualitative agreement with the one observed during the actual
experiment, where it was indicated that a subsurface crack has initially formed which later
propagated to the surface bridging the ligament A-C as mentioned in Boyce et al. (2014).

With continued loading, plastic deformation starts to concentrate at the free surface of
hole C where high stress triaxility conditions begin to develop promoting porosity growth,
as shown in Figs. 5.16c and 5.17c respectively. The second crack starts to propagate at a
COD=4.87mm and a corresponding gradual drop in the force-COD curve can be observed.
A more abrupt load drop related to the second crack was measured in the experiment. As
the crack propagates towards the back of the specimen to point E, plastic deformation is
distributed in a smooth manner while concentrated high stress triaxiality conditions develop
at the macroscopic crack’s front as shown in Figs. 5.16d and 5.17d respectively.

Driven by the analysis of this example problem, it worth emphasizing at this point the
value of porous or damage plasticity models that combine a solid theoretical background
able to account for key microstructural features with a reasonable amount of parameters
allowing practical implementation and calibration. For instance, simulation of the same
problem using variations of Gurson’s model (Nahshon et al., 2014; Zhou et al., 2014b) or
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Figure 5.16 – Contours of the equivalent plastic strain ε̄p as predicted by the implicit non-local
model (a) just before the initiation of the first crack in the A-C ligament (COD=3.23mm), (b)
after A-C crack has fully bridged (COD=3.56mm), (c) before the initiation of the second crack at
point C (COD=4.87mm), and (d) at the end of the analysis (COD=9.93mm). The results shown
correspond to the calculations with an aspect ratio w = 0.2.

damage plasticity models (Pack et al., 2014) by some of the original participants of the first
SFC required the calibration of a large number of parameters yielding similar or in some
cases worse predictions compared to the newly proposed porous plasticity model. On the
other hand, the isotropic projection model used to simulate this problem contains (other
than the initial porosity) only one, physically based, key parameter, the fixed aspect ratio
w whose effect on porosity evolution is clearly established.

5.9 Concluding remarks

In this chapter, we have thoroughly discussed the numerical implementation of the implicit
gradient isotropic projection model and used the models developed in this work for the solu-
tion of both quasi-static and dynamic BVPs. On the first part we presented the strong and
weak forms of the governing equations and discretized the problem using the FE approxima-
tion. A simple algorithm for the numerical integration of the constitutive equations was also
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Figure 5.17 – Contours of stress triaxiality XΣ at a cross-section z = +1.562mm of the specimen
as predicted by the implicit non-local model (a) just before the initiation of the first crack in the
A-C ligament (COD=3.23mm), (b) after A-C crack has fully bridged (COD=3.56mm), (c) before
the initiation of the second crack at point C (COD=4.87mm), and (d) at the end of the analysis
(COD=9.93mm). The results shown correspond to the calculations with an aspect ratio w = 0.2.

proposed. Then, attention is focused on describing an efficient implementation approach in
ABAQUS commercial FE software. This is based on a thermomechanical analogy recently
proposed by various authors (Azinpour et al., 2018; Seupel et al., 2018; Papadioti et al., 2019;
Aravas and Papadioti, 2021). The industrially relevant problems of the hole expansion test,
the Charpy V-notch test, the problem of cup-and-cone fracture of round bars and the ductile
fracture of the first SFC’s specimen were then analyzed using both ABAQUS/Standard and
ABAQUS/Explicit solvers.

Numerical simulations have led to important conclusions regarding the effects of the
model’s parameters on the macroscopic structural response. First, in all cases, we find that
porosity reaches much higher levels for materials comprising microstructures with low aspect
ratio oblate voids when compared to those that consist of spherical voids. Numerical results
were found to be in good qualitative agreement with a recent experimental realization of the
hole expansion test regarding the prediction of macroscopic crack initiation position. Also,
this problem highlights the necessity of using models that incorporate additional information
other than just the equivalent plastic strain, for accurate prediction of ductile fracture ini-
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tiation and propagation. Analysis of the cup-and-cone fracture phenomenon with both the
local and non-local models shows that, in problems were strain localization is present, a reg-
ularized formulation is necessary in order to accurately describe the final failure mode of the
structure. Another important observation is that macroscopic ductility of the material is an
increasing function of the void aspect ratio w; the new model predicts that microstructures
comprising penny-shaped voids exhibit reduced ductility, early macroscopic crack initiation,
and can absorb less energy before fracture occurs as indicated by the simulation of the
Charpy V-notch test. Finally, a good qualitative and quantitative agreement was found
between numerical and experimental results in the ductile fracture simulation of the first
SFC’s specimen. These results are promising, indicating that the new porous elastic-plastic
model can be used for structural calculations requiring only a small amount of parameters
to be calibrated from either numerical or experimental data.
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Conclusions

In this work, we propose a new rate-independent, elastic-plastic model for porous metallic
materials that consist of microstructures with randomly distributed and randomly oriented
spheroidal voids for the investigation of the initial void shape on the effective response of
the material. In the analytical model, we assume an infinite number of void families, which
are all characterized by the same shape but different orientations. The equivalence between
projection into the space of fourth-order isotropic tensors and orientation averaging is uti-
lized, resulting in a constitutive model that depends only on the shape of the voids and not
their orientations. To derive a sufficiently accurate model that is simple and computationally
efficient for engineering applications, we take into account porosity and matrix equivalent
plastic strain evolution and assume a negligible effect of the void shape evolution during
plastic flow, so that the model remains isotropic. In this manner, we are able to take into
account initial void shape effects with a single parameter (the void aspect ratio w) that
enters the formulation seamlessly though homogenization and characterizes the shape of the
randomly oriented voids in the matrix. The model is fully explicit, resembles closely the
Gurson model, and is easily implemented in standard finite element codes.

The accuracy of the analytical model is then assessed by a comparison with results from
numerical RVE homogenization simulations. Full-field finite element calculations are carried
out, using three-dimensional unit cells containing random distributions of spheroidal voids of
different volume fractions and shapes, under various combinations of average stress triaxiality
and Lode angle. The convergence of the effective behavior with respect to the number of
voids in the unit cell and different microstructural realizations is studied. We find that unit
cells with as low as thirty randomly distributed and randomly oriented voids are enough
to provide a behavior sufficiently close to isotropic and thus can be used as representative
volume elements for the type of microstructures considered in this work. Sensitivity of the
average RVE response with respect to the Lode angle (or equivalently to the third invariant
J3 of the deviatoric stress) is found to be relatively weak, especially at smaller values of the
aspect ratio w, and thus such a dependence is not included in the analytical model. Also,
examination of the local fields reveals that conditions of high stress triaxiality as well as
higher plastic strains develop in microstructures comprising flat oblate voids compared to
microstructures containing spherical voids. Good agreement between the average response
of the RVEs and the analytical model is achieved with the introduction of only a few fitting
parameters. It is also found that the average porosity evolution in unit cells containing
flat-shaped voids with a low aspect ratio is greater compared to those containing spherical
voids.
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After calibration, the model is used to investigate the effects of void shape on the homog-
enized elastic-plastic response of the porous material. Material point (constitutive) calcula-
tions are carried out and evolution of microstructure as predicted by the analytical model is
examined. Both high and moderate to low stress triaxiality stress states are considered as
well as various microstructures consisting of voids with different aspect ratios. In particular,
the model predicts rapid porosity evolution at low strain levels as the aspect ratio w takes
smaller values (i.e., as the voids become more flat) resulting in significant softening. At lower
stress triaxialities, a fast increase in porosity is observed for very flat penny-shaped voids
(w = 0.1). This indicates that, even for stress states with a small hydrostatic component,
the void shape effect can lead to overall softening. For low stress triaxialities, the equivalent
plastic strain appears to be independent of the void shape. It is also shown that the present
model can reproduce the response of the well-known Gurson–Tvergaard–Needleman (GTN)
model by adjusting the void aspect ratio parameter for a given stress triaxiality. The effect
of the initial porosity on the effective behavior is also found to be weaker compared to the
effect of the initial shape of the voids.

Next, we examine in detail the computational issues related to the FE implementation
of rate-independent constitutive models that can induce softening behavior as well as the
regularization solutions available in the literature. We show analytically that, the use of a
local porous plasticity model that does not include a characteristic length scale may lead
to loss of ellipticity of the governing BVP resulting in a pathological mesh-dependence of
the corresponding FE solutions. To regularize the problem, we propose an implicit non-
local version of the new porous model based on the introduction of a non-local porosity
variable. An implicit formulation is selected over an explicit one due to the associated
implementation-wise advantages of the former. The non-local porosity at any point in the
continuum can be interpreted as the volume average (surface average in 2D problems) of
its local counterpart over a sphere (circle in 2D problems) the radius of which is directly
related to the value of the characteristic length ` and is determined from the solution of an
additional BVP. By examining the mathematical character of the non-local problem we find
that the proposed isotropic implicit non-local model for porous metallic materials always
preserves the elliptic properties of the corresponding governing equations. We then apply
Rice’s localization analysis in the problem of plane strain tension and show numerically that
converged solutions in the post-bifurcation (i.e., softening) regime can be obtained by using
the new non-local model, provided that a sufficiently fine spatial discretization is used. The
value of the characteristic length is found to affect the slope of the post-bifurcation branch
as well as the thickness of the highly strained region in the structure. We also find that
the bifurcation point (i.e., the critical strain to localization) is an increasing function of the
microvoids’ aspect ratio parameter w; microstructures comprising very flat oblate exhibit
lower critical localization strains compared to microstructures with spherical voids.

We also discuss the details concerning the numerical implementation of the non-local
porous model using the finite element method. First, the strong and weak forms of the cor-
responding coupled BVP for the determination of the displacement field and the non-local
porosity are stated. The problem is then discretized using the finite element approximation
and the residuals of the problem are derived. Also, we propose a simple algorithm for the
numerical integration of the non-local constitutive equations. The described formulation is
general and can be implemented using either in-house or commercial FE softwares. Then,
we present an efficient implementation of the proposed non-local model using ABAQUS.
In particular, the non-local model is implemented using the UMAT and VUMAT user sub-
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routines of ABAQUS/Standard and ABAQUS/Explicit respectively by taking advantage of
a thermomechanical analogy between the modified Helmholtz BVP and the steady-state
heat transfer BVP. This approach allows us to take advantage of the built-in capabilities
of ABAQUS for the determination of the non-local porosity through appropriate variable
identifications.

In the last part of this study, we utilize the models developed in this work for the solution
of various BVPs using ABAQUS/Standard and ABAQUS/Explicit solvers under both quasi-
static and dynamic conditions. In particular, the industrially relevant problems of the Hole
Expansion (HET) and Charpy V-notch (CVN) test, the problem of cup-and-cone fracture of
cylindrical specimens loaded in tension and the ductile fracture of a geometrically complex
specimen used in the first Sandia Fracture Challenge (SFC) are numerically solved. The
main purpose of these simulations is (a) to identify the role and effects of the various model
parameters on the macroscopic structural response and (b) to investigate the capability
of the proposed models to accurately predict experimental observations. In all cases it
is found that porosity evolution is much higher for microstructures that consist of oblate
voids with low aspect ratio compared to those comprising spherical or almost spherical
voids. Consequently, the new model predicts that macroscopic ductility and the absorbed
strain energy is an increasing function of the aspect ratio parameter w; materials whose
microstructure comprises random distributions of penny-shaped microvoids (which in the
limiting case can be considered as microcracks), exhibit early macroscopic crack initiation
and reduced ductility. Also, the detailed analysis of the cup-and-cone fracture phenomenon
with both the local and non-local models verifies that a regularized formulation is necessary
to be considered in problems involving complex crack paths and strain localization in order
to accurately predict the final failure pattern of the structure. Finally, the new porous
model was able to closely reproduce the experimentally observed force-COD curves and the
corresponding macroscopic failure path of the SFC’s specimen by simply adjusting the value
of the void aspect ratio w. This indicates that the proposed model can be used to make
quantitative predictions with only a small number of parameters that can be calibrated from
either numerically or experimentally available data.

Perspectives
Several research directions could be proposed for future work. An immediate generalization
would be to consider a microstructure such as the one described in this work that comprises
randomly oriented and distributed ellipsoidal voids (i.e., voids characterized by two aspect
ratios w1 6= w2) instead of spheroidal voids. As already mentioned, the difference in this
case is that the calculation of the microstructural tensor Q would require the numerical
evaluation of elliptic integrals. Another direct extension consists in considering the limiting
case of cracks, i.e., voids with aspect ratio w → 0 together with porosity f → 0. An
analysis similar to that used by Willis (Willis, 1977, 1980c, 1981) could be used to derive
estimates for porous materials with randomly oriented cracks. Also, the proposed isotropic
projection approach could be used along with nonlinear estimates for porous microstructures
derived by more advanced homogenization methods such as the “second order” method of
Ponte Castañeda and co-workers (Ponte Castañeda, 1996, 2002a; Danas et al., 2008b). These
estimates would allow to incorporate a dependence on the third invariant of the stress tensor
J3 in the model at the expense of a more involved numerical implementation in a finite
element setting for the solution of structural problems.
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The present model may also be extended in the context of rate-dependent viscoplasticity,
either heuristically via the inclusion of strain-rate effects in the matrix flow stress (Papadioti
et al., 2019; Aravas and Papadioti, 2021) or by considering the viscoplastic version of the
LCC homogenization method (Idiart and Ponte Castañeda, 2007; Danas et al., 2008b). In the
last case one should be careful on how to include the interpolation function α introduced in
equation (2.59). In addition, given that the present porous model is very similar to Gurson’s
(and its variants), one could extent it in a straightforward manner to include terms related
to void nucleation such as those presented in Benzerga et al. (2016) and Lode-dependent
porosity evolution similar to that presented in Nahshon and Hutchinson (2008). Also, for
problems where thermal effects could be of interest, temperature dependence can be easily
incorporated in the model by assuming a temperature dependent matrix flow stress along
with an additional thermal contribution to the total rate-of-deformation decomposition in
equation (2.44) (e.g., see the works of Benzerga et al. (2002), Tvergaard and Needleman
(2005), and Tanguy et al. (2005a)).

The model could also be used to make predictions in various loading scenarios. For
instance, it would be of interest to use the proposed model (or its possible extensions)
to predict the ductile fracture of structures for shear dominated stress states under quasi-
static or dynamic conditions. The fracture of the Arcan specimen (e.g., see Galyon et al.
(2009), Ghahremaninezhad and Ravi-Chandar (2013)) or the dynamic shear tests discussed
in Peirs et al. (2012) and Jia et al. (2020) could be numerically simulated in this case and
comparison with experiments be carried out. Another interesting class of problems would be
ones involving cyclic loads. In these problems, the effects of elasticity and kinematic matrix
hardening on porosity evolution become important and should be taken into account in order
to capture the “porosity ratcheting” phenomenon (Cheng et al., 2017; Remmal and Leblond,
2024). It should be noted however that for cyclic loadings, the decoupled homogenization
scheme used in this work could potentially introduce errors, especially for high inclusion (or
void) volume fractions and low number of cycles and has to be used with caution in such
cases (Idiart and Lahellec, 2016; Cheng et al., 2017).
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APPENDIX A

Appendix A. Explicit expressions for the compo-
nents of Q as a function of void shape

In the general case of an isotropic matrix phase and ellipsoidal voids with semi-axes a1, a2, a3

(with a1 ≥ a2 ≥ a3), one may derive explicit expressions for the corresponding components
of the microstructural tensor Q with respect to a local system defined by the principal axes
of the ellipsoids (i.e., defined by the unit vectors n(i), i = 1, 2, 3). These expressions are
semi-analytical, involve the numerical computation of elliptic integrals, and can be found in
Mura (1987) . For the special case of spheroidal voids (where a1 = a2 = a and a3 6= a1, a2),
explicit analytical expressions were derived by Cao et al. (2015), but as functions of the semi-
axes defining the voids shape. Since the voids’ aspect ratio is the main parameter considered
in this work, a simple reformulation of the expressions presented in the aforementioned
works was carried out and the results are summarized below for both general ellipsoidal and
spheroidal voids.

The expressions for the components Qijkl given in the following are with respect to the lo-
cal coordinates system defined by the n(i)’s. The non-zero components of the microstructural
tensor are given as

Q1111(νm, w) =
1

2π(1− νm)

(
4π − 1

2
I1 − J11

)
, (A.1)

Q2222(νm, w) =
1

2π(1− νm)

(
4π − 1

2
I2 − J22

)
, (A.2)

Q3333(νm, w) =
1

2π(1− νm)

(
4π − 1

2
I3 − J33

)
, (A.3)

Q1112(νm, w) =
1

8π(1− νm)
[16π νm + (1− 4 ν)(I1 + I2)− J12] , (A.4)

Q1113(νm, w) =
1

8π(1− νm)
[16π νm + (1− 4 ν)(I1 + I3)− J13] , (A.5)

Q2233(νm, w) =
1

8π(1− νm)
[16π νm + (1− 4 ν)(I2 + I3)− J23] , (A.6)

Q1212(νm, w) = 1− 1

8π(1− νm)
[(1− 2 νm)(I1 + I2) + J12] , (A.7)

Q1313(νm, w) = 1− 1

8π(1− νm)
[(1− 2 νm)(I1 + I3) + J13] , (A.8)
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Q2323(νm, w) = 1− 1

8π(1− νm)
[(1− 2 νm)(I2 + I3) + J23] , (A.9)

where νm is the Poisson’s ratio of the matrix material and is set to νm = 1/2 for the plasticity
case. In the case of general ellipsoidal voids characterized by two aspect ratios (i.e., w1 =
a3/a1 and w2 = a3/a2) the coefficients Ii and Jij (i, j = 1, 2, 3) are given as:

• general ellipsoids (0 < w1 < 1 and w1 < w2):

I1 =
4πw2

1w2

(w2
2 − w2

1)
√

1− w2
1

[F (θ, k)− E(θ, k)] , (A.10)

I2 = 4π − I1 − I3, (A.11)

I3 =
4πw2

(1− w2
2)
√

1− w2
1

[√
1− w2

1

w2

− E(θ, k)

]
, (A.12)

J11 = 2π − 1

2

[
w2

2

w2
2 − w2

1

(I2 − I1) +
1

1− w2
1

(I3 − I1)

]
, (A.13)

J22 = 2π − 1

2

[
w2

1

w2
2 − w2

1

(I2 − I1) +
1

1− w2
2

(I2 − I3)

]
, (A.14)

J33 = 2π − 1

2

[
w2

1

1− w2
1

(I3 − I1) +
w2

2

1− w2
2

(I3 − I2)

]
, (A.15)

J12 =
w2

2 + w2
1

w2
2 − w2

1

(I2 − I1) , J13 =
1 + w2

1

1− w2
1

(I3 − I1) , J23 =
1 + w2

2

1− w2
2

(I3 − I2)

(A.16)

with

F (θ, k) =

∫ θ

0

1√
1− k2 sin2 φ

dφ, E(θ, k) =

∫ θ

0

√
1− k2 sin2 φdφ (A.17)

θ = sin−1

(√
1− w2

1

)
, k =

√
w2

2 − w2
1

w2

√
1− w2

1

(A.18)

In the above expressions, F (θ, k), E(θ, k) are elliptic integrals of the first and second kind
that need to be evaluated numerically for the determination of the components of Q. Details
on the numerical evaluation of these integrals can be found in Appendix A of Aravas and
Ponte Castañeda (2004).

In the special case of spheroidal voids, the model proposed in this work admits one aspect
ratio w = a3/a1 = a3/a2 = a3/a as the parameter that defines the void shape and the above
coefficients can be determined analytically as follows

• oblate voids (0 < w < 1):

I1 = I2 =
2 π w

(1− w2)3/2

[
cos−1(w)− w(1− w2)1/2

]
, I3 = 4π − 2 I2 (A.19)

J11 =
3

2

(
π − 1

4

I3 − I1

1− w2

)
, J22 = J11, J33 = 2π − w2

1− w2
(I3 − I1), (A.20)

J12 = 2π − 1

2

I3 − I1

1− w2
, J13 =

1 + w2

1− w2
(I3 − I1), J23 = J13 (A.21)
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• prolate voids (w > 1):

I1 = I2 =
2 π w

(w2 − 1)3/2

[
w(w2 − 1)1/2 − cosh−1(w)

]
, I3 = 4π − 2 I2 (A.22)

J11 =
3

2

(
π − 1

4

I2 − I3

w2 − 1

)
, J22 = J11, J33 = 2π − w2

w2 − 1
(I2 − I3), (A.23)

J12 = 2π − 1

2

I2 − I3

w2 − 1
, J13 =

w2 + 1

w2 − 1
(I2 − I3), J23 = J13 (A.24)

• spherical voids (w = 1):

I1 = I2 = I3 =
4π

3
, (A.25)

J11 = J22 = J33 =
6 π

5
, (A.26)

J12 = J13 = J23 =
8 π

5
. (A.27)

The remaining non-zero components are determined by using the minor and major symme-
tries of Q.
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Appendix B. Exact Jacobians for the non-local
problem

As mentioned in Section 5.3.1, if an implicit scheme is used for the solution of the discretized
global problem, the equilibrium equations and the equation for the non-local porosity are
written at the end of the increment resulting in sets of nonlinear equations for the global
unknowns. An iterative solution method is used in this case (such as the Newton-Raphson)
and the derivatives ∂σ/∂E, ∂σ/∂fnl, ∂f/∂E, and ∂f/∂fnl at the end of the increment need
to be provided for the calculation of the global Jacobian of the system. These quantities
depend on the algorithm used for the numerical integration of the constitutive equations and
in general will be different than the “tangent” expressions derived from the corresponding
rate (continuum) form of the equations.

Depending on the numerical integration scheme employed and the complexity of the
constitutive model, exact expressions for these quantities might be difficult to derive and
implement numerically. In this case, the exact derivatives are replaced by the corresponding
“tangent” ones which are usually easier to derive. It should be emphasized that approxima-
tion of these expressions affects only the quadratic convergence of the global problem and
not the accuracy of the results (Simo and Hughes, 1998). However, such approximations
can lead to convergence issues in highly nonlinear problems or if large time increments are
used. For this reason, we outline in the following the derivation of exact expressions for
the required derivatives based on the algorithm used for the numerical integration of the
constitutive equations in Section 5.2.1. These can be used instead of the “tangent” deriva-
tives (5.59)–(5.60) to achieve better rate of convergence in the iterative solution of the global
problem.

Starting from expression (5.49) and accounting for the isotropy of the effective fourth-
order elasticity tensor L of the porous material, the variation of the stress tensor σ̂ is given
as:

∂σ̂n+1 = Ln : ∂E− κ ∂∆εmδ − 2µ (∂∆εeq + ∆εeq∂n̂n+1) (B.1)

Using now equations (5.53) and (5.54) we have:

∂∆εm
∂Φ

∂σ̂e
−∆εm

(
∂2Φ

∂σ̂e∂p̂
∂p̂+

∂2Φ

∂σ̂2
e

∂σ̂e +
∂2Φ

∂σ̂e∂ε̄p
∂ε̄p +

∂2Φ

∂σ̂e∂fnl
∂fnl

)
−

− ∂∆εeq
∂Φ

∂p̂
−∆εeq

(
∂2Φ

∂p̂2
∂p̂+

∂2Φ

∂p̂∂σ̂e
∂σ̂e +

∂2Φ

∂p̂∂ε̄p
∂ε̄p +

∂2Φ

∂p̂∂fnl
∂fnl

)
= 0 (B.2)
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and
∂Φ

∂p̂
∂p̂+

∂Φ

∂σ̂e
∂ŝe +

∂Φ

∂ε̄p
∂ε̄p +

∂Φ

∂fnl
∂fnl = 0 (B.3)

The variations ∂p̂, ∂σ̂e, and ∂ε̄p can be calculated using equations (5.50)1, (5.50)2, and (5.51)
as

∂p̂ = κ δ : ∂E− κ ∂∆εm (B.4)
∂σ̂e = 2µ n̂n+1 : ∂E− 3µ ∂∆εeq (B.5)

∂ε̄p =
∂ε̄p

∂∆εm
∂∆εm +

∂ε̄p

∂∆εeq
∆εeq +

∂ε̄p

∂fnl
∂fnl (B.6)

Substituting relations (B.4)–(B.6) into (B.2)–(B.3) and carrying out the algebra we arrive
at the following system of equations for the variations ∂∆εm, ∂∆εeq

A11∂∆εm + A12∂∆εeq = (B11δ +B12n̂n+1) : E + C1∂f
nl (B.7)

A21∂∆εm + A22∂∆εeq = (B21δ +B22n̂n+1) : E + C2∂f
nl (B.8)

with the corresponding coefficients being given as

A11 =
∂Φ

∂σ̂e
+ ∆εm

(
∂2Φ

∂σ̂e∂ε̄p
∂ε̄p

∂∆εm
− κ ∂2Φ

∂σ̂e∂p̂

)
+ ∆εeq

(
κ
∂2Φ

∂p̂2
− ∂2Φ

∂p̂∂ε̄p
∂ε̄p

∂∆εm

)
, (B.9)

A12 = −∂Φ

∂p̂
+ ∆εm

(
∂2Φ

∂σ̂e∂ε̄p
∂ε̄p

∂∆εeq
− 3µ

∂2Φ

∂σ̂2
e

)
+ ∆εeq

(
3µ

∂2Φ

∂p̂∂σ̂e
− ∂2Φ

∂p̂∂ε̄p
∂ε̄p

∂∆εeq

)
,

(B.10)

A21 = κ
∂Φ

∂p̂
+
∂Φ

∂ε̄p
∂ε̄p

∂∆εm
, A22 = −3µ

∂Φ

∂σ̂e
+
∂Φ

∂ε̄p
∂ε̄p

∂∆εeq
, (B.11)

B11 = κ

(
∆εeq

∂2Φ

∂p̂2
−∆εm

∂2Φ

∂σ̂e∂p̂

)
, B12 = 2µ

(
∆εeq

∂2Φ

∂p̂∂σ̂e
−∆εm

∂2Φ

∂σ̂2
e

)
, (B.12)

B21 = −κ ∂Φ

∂p̂
, B22 = −2µ

∂Φ

∂σ̂e
(B.13)

C1 = ∆εeq

(
∂2Φ

∂p̂∂fnl
+

∂2Φ

∂p̂∂ε̄p
∂ε̄p

∂fnl

)
−∆εm

(
∂2Φ

∂σ̂e∂fnl
+

∂2Φ

∂σ̂e∂ε̄p
∂ε̄p

∂fnl

)
, (B.14)

C2 = −
(
∂Φ

∂ε̄p
∂ε̄p

∂fnl
+

∂Φ

∂fnl

)
(B.15)

The derivatives of the yield function appearing in the coefficients (B.9)–(B.15) can be calcu-
lated explicitly at the end of the increment by using equation (4.15). The system of equations
(B.7)–(B.8) can be solved analytically yielding the following expressions for the variations
∂∆εm, ∂∆εeq in terms of ∂E, ∂fnl:

∂∆εm = (apδδ + apnn̂n+1) : ∂E + apf∂f
nl (B.16)

∂∆εeq = (aqδδ + aqnn̂n+1) : ∂E + aqf∂f
nl (B.17)
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where

apδ =
1

∆
(A22B11 − A12B21) , apn =

1

∆
(A22B12 − A12B22) , apf =

1

∆
(A22C1 − A12C2) ,

(B.18)

aqδ =
1

∆
(A11B21 − A21B11) , aqn =

1

∆
(A11B22 − A21B12) , aqf =

1

∆
(A11C2 − A21C1) ,

(B.19)
∆ = A11A22 − A21A12 (B.20)

Also, using (5.48)3, the variation ∂n̂n+1 can be shown to be given as:

∂n̂n+1 =
3µ

σ̂ee

(
K− 2

3
n̂n+1n̂n+1

)
(B.21)

Substitution of expressions (B.16), (B.17), and (B.21) into equation (B.1) leads to

∂σ̂n+1 =

{
Ln − κ δ (apδδ + apnn̂n+1)−

− 2µ

[
n̂n+1 (aqδδ + aqnn̂n+1) +

(
1− σ̂e

σ̂ee

)(
K− 2

3
n̂n+1n̂n+1

)]}
: ∂E−

− (κ apfδ + 2µ aqf n̂n+1) ∂fnl (B.22)

Last equation implies that

∂σ̂n+1

∂En+1

= Ln − κ δ (apδδ + apnn̂n+1)−

− 2µ

[
n̂n+1 (aqδδ + aqnn̂n+1) +

(
1− σ̂e

σ̂ee

)(
K− 2

3
n̂n+1n̂n+1

)]
(B.23)

∂σ̂n+1

∂fnl
n+1

= −(κ apfδ + 2µ aqf n̂n+1) (B.24)

Similarly, by taking the variation of the local porosity at the end of the increment given by
equation (5.52) and using expressions (B.16) and (B.17), we arrive at the following expression

∂fn+1 =
[(

1− fnl
)

(apδδ + apnn̂n+1)
]

: ∂E +
[(
−∆εm +

(
1− fnl

)
apf
)]
∂fnl (B.25)

which implies that

∂fn+1

∂En+1

=
(
1− fnl

)
(apδδ + apnn̂n+1) (B.26)

∂fn+1

∂fnl
n+1

= −∆εm +
(
1− fnl

)
apf (B.27)
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Titre : Modélisation théorique et numérique des matériaux poreux

Mots clés : Métaux poreux, Homogénéisation, Théories non-locales, Simulations de formage, Simulations de rupture
ductile

Résumé : Ce travail porte sur le développement, la calibration
et l’implémentation numérique d’un nouveau modèle élastoplastique
entièrement explicite, isotrope et indépendant du taux de déformation pour
les matériaux métalliques poreux. La microstructure est supposée être
constituée d’une distribution aléatoire de vides sphéroı̈daux de même
forme, orientés de manière aléatoire et avec une probabilité uniforme.
Le modèle proposé est basé sur des estimations d’homogénéisation
antérieures qui utilisent une théorie de comparaison composite linéaire
(LCC). Pour évaluer l’exactitude du modèle analytique, nous réalisons
des simulations éléments finis tridimensionnelles à grandes déformations
d’éléments de volume représentatifs (RVE) avec les microstructures cor-
respondantes. Une calibration appropriée des paramètres du modèle
conduit à un accord assez précis des prédictions analytiques avec les
contraintes moyennes éléments finis et l’évolution de la porosité. Nous
montrons, à la fois analytiquement et numériquement, que le rapport d’as-
pect initial des vides a un effet significatif sur la réponse effective ho-
mogénéisée du matériau poreux, entraı̂nant des réponses extrêmement
souples pour les vides très oblates, surtout à des triaxialités de contraintes
élevées. Ensuite, nous examinons les problèmes computationnels liés à
l’implémentation numérique de modèles constitutifs indépendants du taux
de déformation qui conduisent à un comportement d’adoucissement. Il est
démontré analytiquement que les modèles élastoplastiques basés sur des
formulations continues “locales” peuvent entraı̂ner une perte d’ellipticité
des équations aux dérivées partielles (EDP) et des solutions numériques
dépendantes du maillage. Pour remédier les problèmes numériques as-
sociés, nous proposons une version implicite non locale du nouveau
modèle poreux, basée sur l’introduction d’une variable de porosité non
locale déterminée à partir de la solution d’une EDP supplémentaire.
Nous montrons à la fois analytiquement et numériquement que la ver-

sion régularisée du modèle permet de préserver les propriétés ellip-
tiques des équations du problème, produisant des solutions convergentes
indépendantes du maillage dans le régime post-bifurcation. Le point de
bifurcation s’avère être fortement dépendant de la forme des micro-vides,
avec des vides très plats (par exemple, un rapport d’aspect inférieur à 0,3)
entraı̂nant des déformations à la localisation plus faibles. Il est constaté
que la longueur matérielle introduite par la formulation non locale a un
effet minimal sur le point de bifurcation prédit, affectant uniquement le
gradient post-bifurcation de la courbe contrainte-déformation macrosco-
pique et la taille de la zone fortement déformée dans la structure. Dans la
dernière partie de cette étude, les versions locale et non locale du modèle
sont efficacement implémentées dans un code commercial d’éléments fi-
nis (ABAQUS) et utilisés pour la solution numérique de problèmes de va-
leurs limites liés aux processus de formage et de rupture ductile. En parti-
culier, les problèmes de test d’expansion de trou (TET) et de test d’impact
Charpy (essai Charpy), le phénomène de rupture “cup-and-cone” ainsi
que la rupture ductile d’un spécimen à géométrie complexe et la com-
paraison avec les résultats expérimentaux correspondants sont analysés
en détail. Les prédictions numériques indiquent que la ductilité est une
fonction croissante du paramètre de forme des vides, et les matériaux
composés de vides oblates de faible rapport d’aspect présentent une ini-
tiation et une propagation macroscopiques de fissures prématurées par
rapport aux matériaux avec des vides sphériques ou presque sphériques.
Enfin, la capacité du modèle à reproduire les résultats expérimentaux
avec une précision suffisante suggère qu’il peut être utilisé pour four-
nir des prédictions avec seulement un petit nombre de paramètres qui
peuvent être calibrés à partir de calculs micromécaniques ou de données
expérimentales.

Title : Porous materials: constitutive modeling and computational issues

Keywords : Porous metals, Homogenization, Non-local theories, Forming simulations, Ductile fracture simulations

Abstract : This work is concerned with the development, calibra-
tion, and numerical implementation of a novel fully explicit isotropic, rate-
independent, elasto-plastic model for porous metallic materials. The mi-
crostructure is assumed to consist of a random, with uniform probability,
distribution of randomly oriented spheroidal voids of the same shape. The
proposed model is based on earlier homogenization estimates that use
a Linear Comparison Composite (LCC) theory. The resulting expressions
exhibit the simplicity of the well known Gurson model and, thus, their nu-
merical implementation in a finite element code is straightforward. To as-
sess the accuracy of the analytical model, we carry out detailed finite-
strain, three-dimensional finite element (FE) simulations of representative
volume elements (RVEs) with the corresponding microstructures. Proper
parameter calibration of the model leads to fairly accurate agreement of
the analytical predictions with the corresponding FE average stresses and
porosity evolution. We show, both analytically and numerically, that the ini-
tial aspect ratio of the voids has a significant effect on the homogenized
effective response of the porous material leading to extremely soft res-
ponses for flat oblate voids (e.g., aspect ratio less than 0.5) especially at
high stress triaxialities. Next, we examine the computational issues related
to the numerical implementation of rate- independent constitutive models
that lead to softening behavior. It is shown analytically that elastic-plastic
models based on “local” continuum formulations that do not incorporate a
characteristic length scale may lead to loss of ellipticity of the governing
partial differential equations (PDEs) and mesh-dependent numerical solu-
tions. To remedy the associated numerical problems, we propose an im-
plicit non-local version of the porous model developed in this work which
is based on the introduction of a non-local porosity variable determined

from the solution of an additional PDE. We show both analytically and
numerically that the regularized version of the model allows for preser-
vation of the elliptic properties of the governing equations yielding mesh-
independent, converged solutions in the post-bifurcation regime. The bi-
furcation point (i.e., strain-to-localization) is found to be highly dependent
on the micro-void’s shape, with very flat voids (e.g., aspect ratio less than
0.3) leading to lower localization strains. The material length introduced
by the non-local formulation is found to have minimal effect on the pre-
dicted bifurcation point, only affecting the post-bifurcation gradient of the
macroscopic stress-strain curve and the size of the highly strained zone
in the structure. In the last part of this study, both the local and the non-
local versions of the model are efficiently implemented in a commercial
finite element code (ABAQUS). The models are used for the numerical
solution of boundary value problems (BVPs) related to forming and duc-
tile fracture processes under both quasi-static and dynamic conditions. In
particular, the industrially relevant problems of Hole expansion (HET) and
Charpy impact (CVN) test, the cup-and-cone fracture phenomenon as well
as ductile fracture of a specimen with complex geometry and comparison
with corresponding experimental results are analyzed in detail. Numeri-
cal predictions in all cases indicate that ductility is an increasing function
of the void shape parameter and materials comprising flat oblate voids of
low aspect ratio exhibit early macroscopic crack initiation and propagation
compared to materials with spherical/almost spherical voids. Finally, the
model’s capability to reproduce experimental results with sufficient accu-
racy suggests that it can be utilized to provide predictions with only a small
amount of parameters that may be calibrated from either micromechanics
calculations or experimental data.
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