
HAL Id: tel-04746799
https://theses.hal.science/tel-04746799v1

Submitted on 21 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Constructive approaches to worst-case complexity
analyses of gradient methods for convex optimization :

contributions, new insights, and novel results
Baptiste Goujaud

To cite this version:
Baptiste Goujaud. Constructive approaches to worst-case complexity analyses of gradient methods
for convex optimization : contributions, new insights, and novel results. Optimization and Control
[math.OC]. Institut Polytechnique de Paris, 2024. English. �NNT : 2024IPPAX039�. �tel-04746799�

https://theses.hal.science/tel-04746799v1
https://hal.archives-ouvertes.fr

574

N
N

T
:2

02
4I

P
PA

X
03

9

Constructive approaches to worst-case
complexity analyses of gradient methods

for convex optimization: contributions,
new insights, and novel results

Thèse de doctorat de l’Institut Polytechnique de Paris
préparée à l’École polytechnique

École doctorale n◦574 École doctorale de mathématiques Hadamard (EDMH)
Spécialité de doctorat : Mathématiques appliquées et applications des mathématiques

Thèse présentée et soutenue à Palaiseau, le 5 avril 2024, par

BAPTISTE GOUJAUD

Composition du Jury :

Antonin Chambolle
Professeur, Université Paris Dauphine-PSL (CEREMADE) Rapporteur

Laurent Lessard
Professor, Northeastern University (Department of Mechanical &
Industrial Engineering (MIE)) Rapporteur

Andrea Simonetto
Professor, ENSTA (Unité de mathématiques appliquées (UMA)) Président / Examinateur

Hamza Fawzi
Professor, University of Cambridge (Department of Applied
Mathematics and Theoretical Physics (DAMTP)) Examinateur

Jelena Diakonikolas
Assistant Professor, University of Wisconsin-Madison (Department of
Statistics) Examinateur

Aymeric Dieuleveut
Professeur, Ecole Polytechnique (CMAP) Directeur de thèse

Adrien Taylor
Chargé de recherche, INRIA (SIERRA) Co-directeur de thèse

Abstract

In the current era marked by an unprecedented surge in available data and computational
prowess, the field of machine learning, and more specifically deep learning, has witnessed
an extraordinary evolution. Machine learning algorithms heavily rely on optimization
techniques to tune their parameters and enhance predictive accuracy. Among the myr-
iad of optimization approaches, the first-order optimization methods have emerged as
cornerstones, demonstrating a remarkable balance between efficacy and computational
efficiency. Crucially, the development of strong optimization theory is pivotal in unraveling
the full potential of first-order optimization. Theoretical underpinnings not only deepen
our understanding of optimization landscapes but also pave the way for the design of
novel algorithms. The momentum-based algorithms have proven their effectiveness by
significantly accelerating training procedures. The conceptual foundation provided by
optimization theory has enabled the formulation of momentum, turning theoretical insights
into a powerful and widely adopted practical optimization tool.

The role of this thesis is to pursue and accelerate the effort to develop a strong theoreti-
cal foundation of first-order optimization. We proved various results, exploiting the general
structures of the certificate proofs. (i) We used the link between quadratic optimization
and polynomial theory to explain empirically observed phenomena. (ii) We implemented a
Python package to support the Performance estimation framework. (iii) We wrote a tutorial
to explain how to derive natural proofs in optimization based on this framework. (iv)
We applied this methodology, with the help of our Python package, to derive a complete
first-order optimization theory on a very large class of functions. (v) We complemented
the theoretical Performance estimation framework to disprove the convergence of a specific
family of methods and applied it to the famous Heavy-ball method to provably disprove an
acceleration over the class of smooth and strongly convex functions.

Résumé

À l’heure actuelle, caractérisée par une croissance sans précédent des données disponibles
et des capacités computationnelles, le domaine de l’apprentissage automatique, et plus
particulièrement de l’apprentissage profond, a connu une évolution exceptionnelle. Les algo-
rithmes d’apprentissage automatique reposent largement sur des techniques d’optimisation
pour ajuster leurs paramètres et améliorer leurs prédictions. Parmi les différentes approches
d’optimisation, les méthodes du premier ordre ont émergé comme des fondements incon-
tournables, démontrant un équilibre notable entre rapidité et précision. Il est aujourd’hui
crucial de développer une théorie solide de l’optimisation du premier ordre pour en exploiter
pleinement le potentiel. Ces fondements théoriques approfondissent notre compréhension
des algorithmes d’optimisation actuels et ouvrent la voie à la création d’algorithmes inno-
vants. L’efficacité démontrée du concept de momentum dans l’accélération significative de
la convergence de problèmes réels témoigne de l’importance de la théorie de l’optimisation.
Cette théorie a permis la formulation du momentum, transformant des intuitions théoriques
en un outil d’optimisation pratique, largement adopté.

Cette thèse vise à poursuivre et accélérer les efforts visant à développer une base
théorique solide de l’optimisation du premier ordre. Nous avons présenté plusieurs ré-
sultats en exploitant les structures générales des certificats de preuves. (i) Le lien entre
l’optimisation quadratique et la théorie des polynômes a été utilisé pour expliquer des
phénomènes observés empiriquement. (ii) Un package Python a été mis en place pour
faciliter l’utilisation du framework d’estimation de performance. (iii) Un tutoriel détaillé
expliquant la dérivation de preuves naturelles en optimisation basée sur ce cadre a été
rédigé. (iv) En utilisant notre package Python, nous avons appliqué cette méthodologie
pour dériver une théorie complète de l’optimisation du premier ordre sur une vaste classe
de fonctions. (v) Le framework théorique d’estimation de performance a été étendu pour
réfuter la convergence d’une famille spécifique de méthodes, démontrant finalement la
non-accélération de la célèbre méthode “Heavy-ball” sur la classe des fonctions lisses et
fortement convexes.

Remerciements

Chaque rencontre, fortuite ou non, peut grandement impacter notre vie. Mon parcours et
le présent travail de recherche en sont une bonne illustration et auraient sans doute été
bien différents si je n’avais pas croisé la route de chacune des personnes citées ci-après.

Tout d’abord, j’ai une pensée pour le corps enseignant dans son ensemble qui m’a, petit
à petit, aiguillé jusqu’ici. Je remercie en particulier Madame De Peretti et Monsieur Imperor
qui ont parié sur moi et ont permis mon admission en classe préparatoire bien que mon
dossier de lycée ne fasse pas partie des meilleurs et n’ait retenu l’attention d’aucune école
parisienne. Au lycée Blaise Pascal d’Orsay, pourtant réputé pour son excellent niveau et ses
très bons résultats aux concours, je n’ai pas ressenti l’ambiance pesante et stressante qui
accompagne souvent les récits d’étudiants. Être admis dans cette classe aura sans doute été
l’une des meilleures choses qui pouvaient m’arriver.

Mon parcours m’a ensuite mené à l’Ecole Normale Supérieure de Cachan où Monsieur
Pascal, professeur du département de Mathématiques, a su me motiver et m’aider à définir
mon orientation, d’abord en me poussant vers l’agrégation, puis vers le MVA en dernière
année. Durant ces 4 années, j’ai également fait la connaissance de Ritavan, devenu l’un des
plus proches et avec lequel j’ai partagé un stage à Grenoble et beaucoup de bons moments.
J’honorerai bientôt ma promesse de venir le voir à Munich.

Me voici désormais pour une année au sein des équipes d’Apple, à Portland, où Bruno
et Louise m’ont accueilli à bras ouverts. À mes débuts là-bas, la programmation n’était
pas mon point fort mais Bruno, armé de sa bienveillance, a pris le temps de me former
et de m’accompagner tout au long de mon séjour. Bruno et sa femme sont des personnes
formidables et je garde les meilleurs souvenirs de chaque soirée passée en leur compagnie.

Mes pas me mènent ensuite à Montréal où Ioannis Mitliagkas me convertit à l’optimisation,
qui deviendra plus tard mon sujet de thèse, et où je retrouve Charles, un ancien ami de l’ENS.
Notre expatriation nous rapproche et me permet de rencontrer, par son biais, Léonard.
Je n’oublierai jamais les soirées passées ensemble à l’escalade ou au MILA, à jouer au
pingpong entre deux calculs sur tableau blanc en plein milieu de la nuit.

Tout ce périple m’amène finalement à la réalisation de la thèse vers laquelle on m’a
poussé toute ma scolarité, à croire que j’étais le seul à ne pas l’avoir envisagé comme une
étape incontournable de mon parcours.

Comme la classe préparatoire, vivre une thèse peut être une formidable aventure
ou une période difficile. J’ai là aussi eu la chance d’être parfaitement bien entouré et
conseillerais à chaque futur doctorant de bien choisir ses superviseurs : leur impact n’est
pas à négliger. Grâce à eux, j’ai pu travailler dans d’excellentes conditions, prélude essentiel
à la compréhension des fonctions quadratiques, et produire un travail, je l’espère, de qualité.
J’ai eu la chance d’être entouré des meilleurs superviseurs qu’un doctorant puisse rêver
d’avoir. J’adresse donc mes remerciements les plus sincères à Aymeric et Adrien pour leur
encadrement mais, surtout, pour le soutien constant qu’ils m’ont manifesté pendant toute

la durée de cette thèse.
J’ai également une pensée pour toutes les personnes du CMAP et plus particulièrement

pour l’équipe d’Aymeric, à commencer par ceux qui sont là depuis mes débuts : Margaux et
Constantin, mais aussi pour Rémi, Jean-Baptiste, Renaud, Mahmoud et Damien.

L’aventure de la thèse ne s’écrit pas seul. Je profite donc de ces quelques lignes pour
remercier également mes coauteurs Damien, Fabian, Céline, François et Julien sans lesquels
ce manuscrit ne serait pas ce qu’il est. Je terminerai mes remerciements professionnels
par les membres de mon jury et plus particulièrement par mes deux rapporteurs qui ont
accepté de me consacrer du temps et de me fournir de précieux retours.

Cette page de ma carrière se conclut avec une pensée chaleureuse pour mes amis de
longue date et ma famille. Il est difficile de résumer leur impact sur ma vie et sur mes choix
tant leur présence à mes côtés aura rythmé les trois dernières décennies (ou presque). Je
me contenterai donc d’un grand “merci pour tout”.

Enfin, merci à Caroline d’être à mes côtés au jour le jour, même lorsqu’elle m’entend
dériver sur la clôture algébrique de C avec Aymeric en visio à 4 heures du matin (bien que
je la soupçonne parfois d’envoyer Madison et Pumpkin s’interposer lorsque ce genre de
discussion dérive trop longtemps . . .).

v

Contents

0 Introduction 1
0.1 Oracles et performance des algorithmes . 3
0.2 Optimisation quadratique de premier ordre 8
0.3 Au-delà de l’optimisation quadratique . 9
0.4 Contributions . 10

1 Introduction 13
1.1 Oracles and algorithms performance . 15
1.2 Quadratic first-order optimization . 19
1.3 Beyond quadratic optimization . 20
1.4 Contributions . 21

vi

I Tools for unconstrained quadratic optimization 25

2 Quadratic minimization: from conjugate gradient to an adaptive Heavy-ball
method with Polyak step-sizes 26
2.1 Introduction . 28
2.2 Main theorem . 33
2.3 Numerical experiments . 36
2.4 Concluding remarks and discussion . 37

3 Super-Acceleration with Cyclical Step-sizes 38
3.1 Introduction . 40
3.2 Notation and Problem Setting . 41
3.3 Super-acceleration with Cyclical Step-sizes 41
3.4 A constructive Approach: Minimax Polynomials 44
3.5 Local Convergence for Non-Quadratic Functions 50
3.6 Experiments . 50
3.7 Conclusion . 51
3.A Relationship between first-order methods and polynomials 53
3.B Optimal methods for strongly convex and smooth quadratic objective . . . 55
3.C Minimax Polynomials and Equioscillation Property 59
3.D Cyclical step-sizes . 63
3.E Beyond quadratic objective: local convergence of cycling methods 80
3.F Experimental setup . 81
3.G Comparison with Oymak (2021) . 81

II Tools for optimization over non-parametric classes of functions 84

4 PEPIT: computer-assisted worst-case analyses of first-order optimization
methods in Python 85
4.1 Introduction . 87
4.2 PEPIT on a simple example . 88
4.3 PEPIT code structure and semidefinite formulation 94
4.4 PEPIT: general overview and content . 105
4.5 A few additional numerical examples . 109
4.6 Conclusion . 112

5 On Fundamental Proof Structures in First-Order Optimization 113
5.1 Introduction . 115
5.2 From explicit to implicit classes of functions 116
5.3 From explicit to implicit algorithms . 119
5.4 Proof structures in first-order optimization 119
5.5 Example: Gradient descent with exact line-search 122
5.6 Lyapunov with PEPs . 125
5.7 Conclusion . 126

6 Optimal first-order methods for convex functions with a quadratic upper
bound 128

vii

6.1 Introduction . 130
6.2 A few worst-case guarantees for minimizing QG+ convex functions 132
6.3 Discussion and concluding remarks . 137
6.A (Sub)gradient method on QG+-convex functions 142
6.B First-order lower bound . 147
6.C Main result: worst-case guarantee of proposed methods 148
6.D Summary of convergence results on QG+ convex and Lipschitz convex . . . 150
6.E Interpolation results for QG+ convex functions 151
6.F Convergence bound on other classes . 152
6.G Linear convergence guarantees under lower bound assumption 153

7 Counter-examples in first-order optimization: a constructive approach 156
7.1 Introduction . 158
7.2 Definitions and notations . 159
7.3 Searching for cycles . 161
7.4 Application to four different (SFOM)s . 164
7.5 Conclusions . 169

8 Provable non-accelerations of the heavy-ball method 171
8.1 Introduction . 173
8.2 Preliminary results on heavy-ball . 177
8.3 Non-acceleration of heavy-ball on Fµ,L via simple two-dimensional cycles . 182
8.4 General study of cycles for stationary first-order methods 187
8.5 Robustness of the roots-of-unity cycle . 195
8.6 No acceleration of (HB) under higher-order regularity assumptions 198
8.7 Concluding remarks . 201
8.A Auxiliary proofs from Section 8.2: Proof of Proposition 8.2.1 203
8.B Auxiliary proofs from Section 8.3 . 205
8.C Auxiliary proofs from Section 8.4: Proof of Lemma 8.4.12 216
8.D Auxiliary proofs from Section 8.5 . 217
8.E Auxiliary proofs from Section 8.6 . 220
8.F A summary of convergence rates on Fµ,L and Qµ,L 220

III Conclusion 222

9 Summary 223

10 A few open directions 225
10.1 Analysis of bilinear games via polynomials. 227
10.2 Non-quadratic PEP constraints. 228
10.3 HB on Fµ,L . 229
10.4 An interesting class between Fµ,L and Qµ,L? 235
10.5 An adaptive strategy for HB on Fµ,L? . 237
10.6 Distributed learning . 237

Bibliography 238

viii

0
Introduction

2

Contents

0.1 Oracles et performance des algorithmes . 3
0.2 Optimisation quadratique de premier ordre 8
0.3 Au-delà de l’optimisation quadratique . 9
0.4 Contributions . 10

0.1. Oracles et performance des algorithmes 3

Dans cette thèse, nous nous intéressons aux problèmes d’optimisation de la forme

f? , min
x∈Rd

f(x), (OPT)

où l’on suppose que la fonction à valeur réelle f : Rd → R ∪ {+∞} (propre, i.e., non iden-
tiquement égale à +∞) possède un ensemble de minimiseurs globaux, noté X?, compacte
non vide.

Bien que l’optimisation soit un vieux problème (Cauchy, 1847), elle a trouvé de nom-
breuses applications au fil du temps. En effet, de nombreux problèmes pratiques peuvent
être réduits sous la forme (OPT). L’apprentissage automatique et la vision par ordinateur
sont des exemples de domaines ayant récemment suscité beaucoup d’intérêt (voir Krenn
et al., 2022, Figure 1) et reposant fortement sur l’optimisation.

Par conséquent, comprendre les algorithmes d’optimisation existants et en développer
de nouveaux est devenu un défi majeur. La théorie de l’optimisation a déjà connu des succès
dans le passé, notamment en introduisant des méthodes telles que la descente de gradient
(GD) (Cauchy, 1847) ou des méthodes basées sur le momentum telles que les méthodes
Heavy-ball (HB) (Polyak, 1963) et Fast Gradient (FGM) (Nesterov, 1983). Fait intéressant,
étant si efficaces, ces méthodes sont même utilisées bien au-delà de leur domaine de
convergence théorique, par exemple dans l’apprentissage profond.

Cette introduction décrit les notions clés utilisées dans les chapitres suivants ainsi que
l’organisation des différentes parties. La partie I traite de l’optimisation quadratique tandis
que nous nous concentrons sur l’optimisation non quadratique dans la partie II. Ces deux
parties utilisent des outils différents. Nous décrivons brièvement les deux contextes dans la
section 0.2 et la section 0.3. Enfin, nous résumons nos contributions dans la section 0.4.

0.1 Oracles et performance des algorithmes

Les propriétés de convergence de l’optimisation de premier ordre sont généralement
étudiées à travers des analyses de pire cas sous le modèle de la boîte noire (Nemirovskii
and Yudin, 1983a).

Optimisation en boîte noire et oracles. Le modèle en boîte noire suppose que la procé-
dure n’a pas accès à une description analytique complète de la fonction objectif, mais
seulement à des informations discrètes partielles fournies par ce qu’on appelle des oracles.
En d’autres termes, un algorithme propose un premier point (ou itéré) x0 ∈ Rd et interroge
un oracle O qui renvoie O(x0). À partir de ces informations, l’algorithme choisit l’itéré
suivant, et ainsi de suite. Les exemples les plus classiques d’oracles sont les oracles d’ordre
n définis comme O(x) , (f(x),∇f(x), · · · ,∇nf(x)), en particulier les oracles d’ordre zéro,
un ou deux.

Comment choisir un oracle? Plus l’ordre de l’oracle est élevé, plus nous obtenons
d’informations. Il semble donc naturel de considérer un oracle d’ordre élevé lorsque c’est
possible. Les méthodes du second ordre sont connues pour converger rapidement, du moins
localement. Cependant, les hessiennes peuvent être difficiles ou coûteuses à calculer, voire
simplement inexistantes. Par exemple, en l’optimisation à grande échelle, les hessiennes
sont trop volumineuses pour être correctement manipulées (par exemple, inversées) et
parfois même pour être stockées en mémoire.

0.1. Oracles et performance des algorithmes 4

D’autre part, un oracle d’ordre zéro est généralement bon marché et donc pratique pour
les problèmes à grande échelle. Ils sont également utilisés pour optimiser des fonctions non
différentiables et des fonctions définies sur un ensemble discret, rencontrés par exemple lors
de l’optimisation des hyperparamètres des modèles d’apprentissage automatique (Bergstra
et al., 2011).

Par conséquent, il est nécessaire de trouver un compromis entre l’efficacité d’un oracle
et son coût. Les modèles différentiables de grande dimension sont souvent bien adaptés
aux oracles de premier ordre, surtout lorsque le modèle bénéficie d’une structure de
graphe, adaptée pour appliquer une règle de dérivation des composées implémentée
dynamiquement (Rumelhart et al., 1986).

En raison du succès pratique des méthodes de premier ordre dans des applications
à grande échelle telles que l’apprentissage profond, leurs analyses pour minimiser de
telles fonctions dans le modèle en boîte noire (voir par exemple (Nemirovskii and Yudin,
1983a; Polyak, 1987; Nesterov, 2003)) attirent beaucoup d’attention et sont au centre de
cette thèse. Notez cependant que, dans certaines situations, d’autres oracles peuvent être
considérés, tels que les oracles de gradient inexact (voir De Klerk et al. (2020)), les oracles
de gradient stochastique (voir (Robbins and Monro, 1951)), ou les oracles proximaux
(voir Rockafellar (1976); Combettes and Pesquet (2011); Chambolle and Pock (2011)).

Méthodes classiques du premier ordre. L’un des premiers algorithmes introduits est la
méthode de descente de gradient (GD), définie comme

xt+1 = xt − γ∇f(xt). (GD)

GD consiste à se déplacer dans la direction la plus raide localement. Il s’agit donc d’un
algorithme glouton, se déplaçant toujours orthogonalement aux ensembles de niveaux
visités. La figure 0.1 montre que cette procédure peut être très lente dans certains cas. Cela
est dû aux oscillations des itérations. Des mouvements plus uniformes accélèrent cette
procédure. C’est l’idée principale derrière les méthodes basées sur le momentum telles que
les méthodes Heavy-ball (HB) et Fast Gradient (FGM), définies comme suit:

xt+1 = xt − γ∇f(xt) + β(xt − xt−1) (HB)

xt+1 = xt − γ∇f (xt + β(xt − xt−1)) + β(xt − xt−1) (FGM)

Ces trois algorithmes sont les plus mentionnés dans cette thèse.

Performance des algorithmes et régularité. Un algorithme d’optimisation peut être vu
comme un décideur, devant produire l’itéré suivant en fonction de toutes les informations
obtenues jusqu’à présent de l’oracle. En d’autres termes, après chaque appel à l’oracle, nous
obtenons une connaissance locale de la fonction objectif. En conséquence, nous réduisons
l’ensemble des fonctions possibles compatibles avec les informations obtenues à chaque
étape. Notre objectif ultime est de trouver approximativement le minimiseur de la fonction
objectif aussi rapidement que possible. Cependant, sans contrainte sur la fonction, la
connaissance locale fournie par l’oracle n’est pas suffisante pour effectuer cette tâche avec
précision. En effet, on peut facilement se convaincre que si aucune hypothèse n’est faite
sur f , quelles que soient les valeurs et les gradients de f sur un ensemble fini de points,
ses minimiseurs peuvent toujours être ailleurs et la valeur minimale de f peut toujours
être inférieure à la plus petite observée. Par conséquent, si l’on attend un résultat d’un

0.1. Oracles et performance des algorithmes 5

algorithme, nous avons besoin d’une connaissance de régularité sur la fonction objectif, qui
étend les connaissances locales fournies par l’oracle à tout l’espace.

Figure 0.1: Comparaison de la vitesse de convergence de la descente de gradient et de
Heavy-ball sur une fonction objectif quadratique. La méthode de descente de gradient
(courbe rouge) oscille tandis que la méthode Heavy-ball (courbe bleue) effectue des
mouvements plus réguliers.

Classes de fonctions. Pour rendre l’optimisation possible, nous supposons que f ∈ F
pour certaines classes de fonctions F . Cette hypothèse de régularité doit apporter des
informations globales qui étendent la connaissance locale fournie par l’oracle. À titre
d’exemple, une classe classique de fonctions est la classe des fonctions de gradients L-
Lipschitz (ou L-lisses), définie comme

{f | ∀x, y, ‖∇f(x)−∇f(y)‖ 6 L‖x− y‖} .

Si nous supposons que cette relation est vérifiée, alors tout gradient observé localement
contribue à contrôler tous les autres non observés. Remarquez que des valeurs de L plus
petites sont plus restrictives, c’est-à-dire qu’elles correspondent à une hypothèse plus forte,
apportant plus de connaissance, dans le sens où les bornes obtenues sur les gradients sont
plus restrictives. Les principales classes que nous étudions dans cette thèse sont

QΛ ,
{
x→ 1

2(x− x?)TH(x− x?) | Sp(H) ∈ Λ
}
, (1)

Fµ,L , {f | ∀x, y, f(x) > f(y) + 〈∇f(y), x− y〉+ µ
2‖x− y‖

2 (2)

et f(x) 6 f(y) + 〈∇f(y), x− y〉+ L
2 ‖x− y‖

2},
QG+(L) , {f | ∀x, y, f(x) 6 f? + L

2 ‖x− x?‖
2}, (3)

où Λ est un sous-ensemble de R>0 et −∞ 6 µ 6 max(µ, 0) 6 L 6 +∞. En particulier

• lorsque µ > 0, Fµ,L est l’ensemble des fonctions µ-fortement convexes L-lisses,

• lorsque µ = 0, Fµ,L = F0,L est l’ensemble des fonctions convexes L-lisses,

• lorsque µ = −L, Fµ,L = F−L,L est l’ensemble des fonctions L-lisses,

• lorsque µ > 0 et L = +∞, Fµ,L = Fµ,+∞ est l’ensemble des fonctions µ-fortement
convexes,

• lorsque µ = 0 et L = +∞, Fµ,L = F0,+∞ est l’ensemble des fonctions convexes
propres et fermées.

0.1. Oracles et performance des algorithmes 6

Types d’analyse de performance. Soit f une fonction. Étant donné un budget de calcul,
nous pouvons comparer la performance de 2 algorithmes d’optimisation sur cette fonction
objective f . Maintenant, étant donné une classe de fonctions F , comment pouvons-nous
comparer deux algorithmes? Dans de rares cas, nous trouvons un algorithme qui est meilleur
que tous les autres sur chaque fonction de la classe F . C’est le cas de certains algorithmes
tels que celui que nous proposons dans le chapitre 2. Cependant, la plupart du temps,
un algorithme donné est meilleur qu’un autre sur une fonction spécifique, et pire sur une
autre fonction. Nous devons donc définir une métrique. De nombreux types d’analyse sont
utilisés en théorie de l’optimisation, parmi lesquels les 2 suivants:

1. L’analyse de pire cas (voir Nemirovskii (1992, 1994)) consiste à définir la performance
d’un algorithme sur une classe comme étant sa pire performance sur les fonctions de
cette classe. Bien que l’analyse du pire cas soit largement utilisée pour expliquer la
performance de nombreuses méthodes d’optimisation (voir par exemple, Nesterov,
1983), elle peut parfois être non représentative de la complexité observée lorsque le
problème du pire cas n’est jamais rencontré en pratique.

2. L’analyse de cas moyen (voir Borgwardt (1977, 1980)) surmonte ce problème en
moyennant la performance d’un algorithme sur toutes les fonctions de la classe
d’intérêt. Bien que moins étudiée, l’analyse du cas moyen a récemment été employée
dans l’optimisation quadratique (voir par exemple Pedregosa and Scieur (2020);
Scieur and Pedregosa (2020); Cunha et al. (2022)). Cependant, ce type d’analyse
dépend de la distribution de probabilité sur les problèmes, qui est choisie arbitraire-
ment.

L’analyse de pire cas est la plus courante, la première analyse généralement effectuée pour
tenter d’expliquer la complexité observée, et celle sur laquelle nous nous concentrons dans
cette thèse.

Bornes supérieures en pire cas. En l’analyse de pire cas, une borne supérieure est donc
une garantie qui s’applique à chaque fonction de la classe étudiée. Par exemple, dans cette
thèse, nous prouvons les résultats suivants:

1. Soit µ1 < L1 < µ2 < L2 des nombres réels positifs avec L1 − µ1 = L2 − µ2. Nous
prouvons dans le corrolaire 3.3.2 qu’une version de (HB) vérifie

∀f ∈ Q[µ1,L1]∪[µ2,L2], d(xt,X?) 6
(√ρ2 −R2 −

√
ρ2 − 1√

1−R2

)t(
1+t

√
ρ2 − 1

ρ2 −R2

)
d(x0,X?)

pour t pair, où ρ = L2+µ1

L2−µ1
et R = µ2−L1

L2−µ1
.

2. Nous prouvons dans le théorème 6.2.4 qu’une version de (HB) vérifie

∀f ∈ QG+(L) ∩ F0,+∞, f(xt)− f? 6
L

2

1

t+ 1
d(x0,X?)2

pour tout t.

Bornes inférieures en pire cas. D’autre part, une borne inférieure est valide dès qu’une
fonction de la classe empêche l’algorithme de performer plus rapidement que cette borne.
Par exemple, dans cette thèse, nous prouvons les résultats suivants:

0.1. Oracles et performance des algorithmes 7

1. Soit µ1 < L1 < µ2 < L2 des nombres réels positifs avec L1 − µ1 = L2 − µ2. Nous
prouvons dans le corrolaire 3.3.2 que pour tout algorithme de premier ordre

∃f ∈ Q[µ1,L1]∪[µ2,L2], d(xt,X?) >
(√ρ2 −R2 −

√
ρ2 − 1√

1−R2

)t(
1+t

√
ρ2 − 1

ρ2 −R2

)
d(x0,X?)

pour t pair, où ρ = L2+µ1

L2−µ1
et R = µ2−L1

L2−µ1
.

2. Nous prouvons dans le théorème 6.2.4 que pour tout algorithme de premier ordre

∃f ∈ QG+(L) ∩ F0,+∞, f(xt)− f? >
L

2

1

t+ 1
d(x0,X?)2

pour tout t.

3. Soit 0 < µ < L < +∞. Nous prouvons dans le théorème 8.3.6 que pour toute version
stationnaire de (HB),

∃f ∈ Fµ,L, ‖xt − x?‖ >
(

1− Cκ
1 + Cκ

)t
‖x0 − x?‖

pour tout t.

Garanties optimales en pire cas. Une garantie optimale est à la fois une borne supérieure
et une borne inférieure. Les résultats du corrolaire 3.3.2 et du théorème 6.2.4 fournissent
donc des garanties optimales. Le chapitre 5 aborde le problème mathématique de trouver
la garantie optimale vérifiée par un algorithme sur une classe donnée. À titre d’exemple, ce
problème sur (GD) peut être formulé comme suit

∣∣∣∣∣∣∣∣∣∣
maximiser
f∈F ,d>1

(xt)t6T∈(Rd)
T+1

f(xT)− f?

sous contrainte

{
d(x0,X?) 6 1,

xt+1 = xt − γ∇f(xt).

(P)

Approches constructives. Ces dernières années, deux principales approches ont été
proposées pour automatiser la recherche de bornes supérieures, inférieures ou optimales
en analyse de pire cas. Le formalisme des Contraintes Quadratiques Intégrales (IQC)
(voir Lessard et al. (2016); Lessard (2022)) se concentre principalement sur la recherche de
bornes supérieures, tandis que le formalisme des Problèmes d’Estimation de Performance
(PEP) (voir Drori and Teboulle (2014); Taylor et al. (2017c); Drori and Taylor (2020)) con-
sidère le problème (P) et cherche donc des bornes optimales (en résolvant exactement (P))
ou des bornes inférieures (en trouvant un point acceptable pour (P)). Les approches IQC
et PEP ont rencontré plusieurs succès dans la conception de certaines méthodes (voir par
exemple Van Scoy et al. (2017); Cyrus et al. (2018); Taylor and Drori (2022)), et ont été
combinées dans Taylor et al. (2018a). Le chapitre 5 décrit l’approche PEP pour aborder ce
problème et offre une liste non exhaustive des contributions de la littérature PEP sur la
structure de preuve des analyses en pire cas en optimisation.

0.2. Optimisation quadratique de premier ordre 8

0.2 Optimisation quadratique de premier ordre

Une classe d’intérêt est celle des fonctions convexes quadratiques Q. Résoudre (OPT)
sur Q permet de résoudre des régressions linéaires. De plus, toute fonction deux fois
différentiable peut être approximée comme une fonction quadratique autour de ses points
optimaux. Ainsi, étudier le comportement d’une méthode sur les fonctions quadratiques
fournit de bonnes indications sur le comportement asymptotique de cette méthode sur
toute fonction deux fois différentiable. Un bon exemple en est la méthode Heavy-ball,
historiquement dérivée sur Q (Polyak, 1963), elle est maintenant utilisée sur des classes
beaucoup plus larges, achevant de bons résultats pratiques.

Formellement, nous pouvons définir F comme F (x) , 1
2(x− x?)TH(x− x?) +F? où H

est la matrice Hessienne constante de F . Son gradient en x est donc ∇F (x) = H(x− x?).
Cette paramétrisation de Q par la matrice Hessienne H aide à exprimer les algorithmes
classiques de manière simple. Par exemple:

1. Une itération de (GD) s’écrit xt+1 − x? = (I − γH)(xt − x?),

2. Une itération de (HB) s’écrit xt+1 − x? = (I − γH)(xt − x?) + β(xt − xt−1),

3. Une itération de (FGM) s’écrit xt+1 − x? = (I − γH)(xt − x? + β(xt − xt−1)).

De plus, (P) peut être écrit sous la forme

∣∣∣∣∣∣∣∣∣∣∣

maximiser
d>1,H∈S+

d

(xt)t6T∈(Rd)
T+1

1
2(xT − x?)TH(xT − x?)

sous contrainte

{
d(x0,X?) 6 1,

xt+1 − x? = (I − γH)(xt − x?).

Pour étudier les propriétés de convergence de (GD), nous composons les itérations pour
obtenir xt − x? = (I − γH)t(x0 − x?) et réduisons l’étude des propriétés de convergence
de (GD) à l’étude de la matrice (I − γH)t. Polyak (1964) procède de manière similaire

pour étudier les méthodes de momentum. Par exemple, en définissant Xt ,

(
xt
xt−1

)
, (HB)

vérifie Xt+1 = MXt avec M ,

(
(1 + β)I − γH −βI

I 0

)
. L’étude de (HB) se réduit à

l’étude de la matrice M , permettant d’établir la convergence (voir la figure 8.1 dans le
chapitre 8).

Plus généralement, toute méthode dont l’itération est de forme très générique xt =

x0 −
∑t−1
i=0 γ

(t)
i ∇f(xi), comme suggéré dans (Nemirovskii, 1992, 1994), peut également

être explicitement écrite sous la forme ∀t > 0, xt − x? = Pt(H)(x0 − x?) pour un polynôme
Pt. Cette connexion forte entre l’optimisation quadratique et la théorie des polynômes,
d’abord décrite dans Fischer (2011), est détaillée et utilisée dans les chapitres 2 et 3.

Organisation de la partie I sur l’optimisation quadratique. Dans le chapitre 2, nous
utilisons la théorie des polynômes pour dériver une alternative à la méthode du gradient
conjugué sous la forme d’une itération de type Heavy-ball en utilisant le pas de Polyak.
Puis, dans le chapitre 3, toujours en utilisant la théorie des polynômes, nous montrons que

0.3. Au-delà de l’optimisation quadratique 9

la méthode Heavy-ball avec un pas cyclique est optimale dans le pire des cas sur la classe
des fonctions quadratiques dont les valeurs propres sont dans l’union de 2 intervalles. Cette
méthode est activement utilisée en pratique et s’est avérée efficace dans des problèmes
complexes. le chapitre 3 apporte la première analyse de cette méthode. Enfin, tandis que le
chapitre 8 se concentre sur le comportement de (HB) sur une classe plus large de fonctions,
les résultats sur les quadratiques sont rappelés et utilisés pour prouver que le comportement
de convergence connu de (HB) est spécifique à la classe des fonctions quadratiques.

0.3 Au-delà de l’optimisation quadratique

Contrairement au cas spécifique de Q, les classes de fonctions ne possèdent généralement
pas de représentation paramétrique intrinsèque. Au lieu de cela, elles sont définies comme
des ensembles de fonctions vérifiant certaines inégalités. Des exemples typiques de telles
restrictions, mentionnées précédemment, sont:

• fonctions convexes: (voir par exemple Rockafellar (1997, §4), Nesterov (2003, Definition
2.1.1)) ∀x, y ∈ Rd, f(y) > f(x) + 〈∇f(x), y − x〉,

• fonctions fortement convexes: (voir par exemple Nesterov (2003, Definition 2.1.2))
∀x, y ∈ Rd, f(y) > f(x) + 〈∇f(x), y − x〉+ µ

2‖y − x‖
2,

• fonctions lisses: (voir par exemple Nesterov (2003, eq. 1.2.3)) ∀x, y ∈ Rd, ‖∇f(x)−
∇f(y)‖ 6 L‖x− y‖,

• fonctions Lipschitziennes: (voir par exemple Rockafellar (1997, §10)) ∀x, y ∈ Rd, |f(x)−
f(y)| 6 L‖x− y‖.

Combiner certaines de ces inégalités peut conduire à des inégalités plus fortes. Par exemple,
une fonction à la fois convexe et L-lisse vérifie (voir Nesterov, 2003, Theorem 2.1.5)

∀x, y ∈ Rd, f(y) > f(x) + 〈∇f(x), y − x〉+ 1
2L‖∇f(y)−∇f(x)‖2. (4)

Étant donné une classe de fonctions et un algorithme, nous pouvons dériver une
garantie dans le pire des cas de l’algorithme sur la classe de fonctions. Par exemple, (GD)
sur des fonctions convexes L-lisses vérifie

‖xt+1 − x?‖2 =‖xt − x?‖2 − 2
L 〈∇f(xt), xt − x?〉︸ ︷︷ ︸
>f(xt)−f?+

1
2L‖∇f(xt)‖2

+ 1
L2 ‖∇f(xt)‖2

6‖xt − x?‖2 − 2
L(f(xt)− f?).

En sommant pour t de 0 à un certain T , la sommation télescopique donne

‖xT+1 − x?‖2 6 ‖x0 − x?‖2 − 2
L

T∑
t=0

(f(xt)− f?),

prouvant en particulier que mint∈J0,T K f(xt)− f? 6 L
2
‖x0−x?‖2
T+1 .

Cette courte démonstration soulève plusieurs questions: Est-ce que la garantie obtenue
est optimale? Ou pouvons-nous trouver une garantie plus forte pour le même algorithme
sur la même classe? En particulier, nous avons utilisé (4) au lieu des inégalités classiques

0.4. Contributions 10

des fonctions lisses et fortement convexes. Un autre argument fonctionnerait-il sans
elle? Quelles inégalités devrions-nous considérer dans des cas plus généraux? Comment
devons-nous les organiser dans une preuve complexe?

Les réponses à ces questions résident dans la reformulation de (P) sous une forme
traitable. Ce domaine de travail, communément appelé estimation de performance et
initié par Drori and Teboulle (2014); Taylor et al. (2017c), a été utilisé au cours des
dernières années pour dériver des certificats d’optimisation et a été développé pour d’autres
applications telles que la recherche de fonctions de Lyapunov (Taylor et al., 2018a) ou la
conception de nouveaux algorithmes (Drori and Taylor, 2020). Une introduction détaillée
à ce cadre peut être trouvée dans (Taylor, 2020).

Organisation de la partie II au-delà de l’optimisation quadratique. Dans le chapitre 4,
nous décrivons un package Python que nous avons développé pour faciliter largement
l’utilisation de ce cadre et automatiser la recherche de certificats numériques et de leurs
preuves. Dans le chapitre 5, nous expliquons la structure générale de ces preuves. Dans le
chapitre 6, nous utilisons à la fois le package Python et les connaissances théoriques décrits
dans le chapitre 5 pour dériver une théorie complète de l’optimisation du premier ordre sur
une large classe de fonctions. Enfin, dans les chapitres 7 et 8, nous complétons l’utilisation
habituelle de l’estimation de performance en l’étendant à la recherche de cycles dans la
séquence des itérations produites par un algorithme, réfutant sa convergence. De plus,
nous l’appliquons à certaines instances de (HB), prouvant sa non-accélération sur Fµ,L.

0.4 Contributions

Dans la partie I, nous nous concentrons sur l’optimisation quadratique. Plus précisé-
ment, nous utilisons l’équivalence mentionnée ci-dessus entre l’optimisation quadratique
et la théorie des polynômes telle que proposée dans Fischer (2011) pour aborder deux
problèmes:

Dans le chapitre 2, nous concevons un algorithme de type Heavy-ball, ajusté avec des
pas de Polyak, qui est optimal instance par instance sur Q0,+∞, c’est-à-dire qu’il minimise
‖xt − x?‖ pour tout t et toute fonction quadratique convexe. Il est intéressant de noter
que le pas de Polyak est connu comme étant optimal en une étape pour (GD) sur les
fonctions convexes quadratiques, et (HB) est connu pour accélérer par rapport à (GD) sur
les fonctions convexes quadratiques. Nous montrons que la stratégie optimale à adopter
sur Q0,+∞ consiste à combiner les deux approches avec un paramètre de momentum bien
choisi.

Dans le chapitre 3, nous établissons un lien théorique entre deux observations em-
piriques. D’une part, (Loshchilov and Hutter, 2017; Smith, 2017) ont montré des résultats
de pointe d’une stratégie de pas cyclique de (HB) sur différents benchmarks d’apprentissage
profond. D’autre part, (Sagun et al., 2017; Papyan, 2018; Ghorbani et al., 2019; Papyan,
2019) ont étudié empiriquement les propriétés des hessiennes des réseaux neuronaux
profonds montrant que leur spectre se situe le plus souvent dans l’union de deux intervalles.
Sur la base de cette dernière observation, nous fournissons une condition nécessaire et
suffisante que doit vérifier un algorithme pour être optimal dans le pire des cas sur QΛ, et
en particulier, nous montrons que l’algorithme optimal dans le pire des cas lorsque Λ est
une union de 2 intervalles de même longueur est (HB) avec une stratégie de pas cyclique.

0.4. Contributions 11

Dans la partie II, nous nous concentrons sur l’optimisation sur de grandes classes de
fonctions, au-delà du cas quadratique. Notre travail est principalement basé sur un
cadre théorique proposé dans Drori and Teboulle (2014); Drori (2014); Taylor et al.
(2017c,a) pour étudier l’optimisation sur différentes classes. Nous facilitons son utilisation
en fournissant un package Python et un tutoriel résumant quelques-uns des points forts
essentiels et des connaissances théoriques fournies par ces outils. Nous développons
également des garanties de non-convergence basées sur ce cadre.

Dans le chapitre 4, nous décrivons le package Python PEPIT que nous avons implémenté.
Ce package rend l’utilisation des PEPs très facile et naturelle. Il peut être vu comme une
version open source étendue en PYTHON du package MATLAB PESTO (Taylor et al., 2017b).

Plus qu’une simple automatisation de la recherche de preuves numériques de garanties
en optimisation, le cadre offert par les PEPs apporte beaucoup de connaissances sur la
structure de ces preuves. Dans le chapitre 5, nous passons en revue la dérivation classique
de cet outil (Drori and Teboulle, 2014; Drori, 2014; Taylor et al., 2017c,a) et détaillons les
conséquences que nous apprenons sur la structure de preuve à partir de l’approche PEP,
comme par exemple l’ensemble minimal d’inégalités à utiliser et la bonne manière de les
combiner. Nous passons également en revue les techniques pour trouver des fonctions de
Lyapunov (Lessard et al., 2016; Taylor et al., 2018a). Enfin, ce cadre a été utilisé et étendu
pour concevoir de nouveaux algorithmes optimaux dans le pire des cas (voir Drori and
Teboulle, 2014; Kim and Fessler, 2016, 2021; Sundararajan et al., 2020; Park and Ryu, 2022;
Das Gupta et al., 2023; Jang et al., 2023; Barré et al., 2023). Nous revoyons l’approche
proposée dans (Drori and Taylor, 2020), inspirée des travaux de Nemirovskii (Nemirovskii,
1982; Nemirovskii and Yudin, 1983b) pour concevoir initialement des méthodes accélérées.
Malheureusement, ces travaux sont difficiles à trouver, nous nous référons donc à la
revue (Narkiss and Zibulevsky, 2005). Il est intéressant de noter que cette approche est
compatible avec la recherche de fonctions de Lyapunov.

Dans le chapitre 6, nous étudions une classe particulière de fonctions non lisses:
QG+(L) ∩ F0,+∞. Dans ce chapitre, nous dérivons des garanties optimales dans le pire
des cas de variantes de (GD) et (HB) ainsi que la borne inférieure du premier ordre de
cette classe, montrant que (HB) est optimal dans le pire des cas pour cette classe de
fonctions. Nous décrivons également une version de cet algorithme basé sur le procédé
de line-search qui atteint la même garantie sans connaissance des paramètres du problème.
Nous étendons également ce résultat à d’autres classes de fonctions non lisses.

Dans le chapitre 7, nous décrivons une approche basée sur les PEPs pour automatiser la
recherche de cycles des méthodes du premier ordre stationnaires. Cette approche permet
de prouver la non-convergence d’un algorithme et est donc complémentaire à l’approche
PEP classique.

Dans le chapitre 8, nous améliorons l’approche précédente pour la simplifier, et tirons
des conclusions sur la forme générique des cycles. En particulier, nous prouvons la non-
accélération de (HB) sur Fµ,L, un problème ouvert depuis très longtemps.

Principales apparitions des algorithmes.

• (GD) est étudié dans les chapitres 4, 6 et 7,

• (HB) est étudié dans les chapitres 2, 3, 6, 7 et 8,

0.4. Contributions 12

• (FGM) et la méthode Three operator splitting(TOS) sont étudiés dans le chapitre 7.

Apparitions des classes de fonctions.

• QΛ est étudiée dans les chapitres 2, 3 et 8,

• Fµ,L est étudiée dans les chapitres 4, 7, et 8,

• QG+(L) est étudiée dans le chapitre 6.

Publications. Cette thèse est basée sur les articles suivants:

Chapitre Article Conférence / Journal Atelier /
Conférences

invitées

Blogpost

2 Minimisation quadratique: du gradient
conjugué à une méthode de type

Heavy-ball adaptative avec des pas de
Polyak (2022d)

En processus d’évaluation OPT22

3 Super-accélération avec des pas cycliques
(2022b)

AISTATS22 MLOpt Cyclical Step-sizes
(2022)

4 PEPit: analyses assistées par ordinateur
des pires cas des méthodes d’optimisation

du premier ordre en Python (2022a)

MPC TRADEOPT22,
ICCOPT22,

LOL22

5 Sur les structures de preuve
fondamentales en optimisation du premier

ordre (2023b)

CDC23

6 Méthodes optimales du premier ordre
pour les fonctions convexes avec une

borne supérieure quadratique (2022c)

En processus d’évaluation

7 Contre-exemples en optimisation du
premier ordre: une approche constructive

(2023a)

CDC23, L-CSS FoCM23,
SIAMOP23

8 Non-accélérations prouvables de la
méthode Heavy-ball (2023c)

En processus d’évaluation

Nous avons créé l’organisation GitHub PerformanceEstimation contenant à la fois PESTO
et PEPit, ainsi que des exercices introductifs aux PEPs et le site web du workshop que nous
avons organisé sur ce sujet.

J’ai également eu l’occasion de collaborer, avant et pendant ma thèse, sur les arti-
cles Goujaud et al. (2017); Aljundi et al. (2019); Guille-Escuret et al. (2021, 2022);
Ferbach et al. (2023) qui ne sont pas abordés dans cette thèse.

https://opt-ml.org/oldopt/opt22/
https://aistats.org/aistats2022/
https://mtl-mlopt.github.io
https://link.springer.com/journal/12532
https://trade-opt-itn.eu/workshop.html
https://iccopt2022.lehigh.edu
https://conferences.cirm-math.fr/2551.html
https://cdc2023.ieeecss.org
https://cdc2023.ieeecss.org
http://ieee-cssletters.dei.unipd.it/index.php
https://focm2023.pages.math.cnrs.fr
https://www.siam.org/conferences/cm/conference/op23
https://github.com/PerformanceEstimation/
https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://pepit.readthedocs.io
https://github.com/PerformanceEstimation/Learning-Performance-Estimation
https://performanceestimation.github.io/PEP-talks/february_2023/

1
Introduction

14

Contents

1.1 Oracles and algorithms performance . 15
1.2 Quadratic first-order optimization . 19
1.3 Beyond quadratic optimization . 20
1.4 Contributions . 21

1.1. Oracles and algorithms performance 15

In this thesis, we consider optimization problems of the generic form

f? , min
x∈Rd

f(x), (OPT)

where the scalar-valued function f : Rd → R ∪ {+∞} (proper, i.e., non-identically equals
to +∞) is assumed to have a non-empty compact set of global minimizers denoted by X?.

While optimization is an old problem (Cauchy, 1847), it has found many applications
over time. Indeed, many practical problems can be reduced into the form (OPT). Machine
Learning and Computer Vision are examples of fields recently receiving a lot of interest (see
Krenn et al., 2022, Figure 1) and heavily relying on optimization.

Therefore, understanding existing optimization algorithms and developing new ones
has become a major challenge. The theory of optimization has already been successful
in the past, in particular by introducing methods such as Gradient descent (GD) (Cauchy,
1847) or momentum-based methods such as the Heavy-ball (HB) (Polyak, 1963) and Fast
Gradient (FGM) (Nesterov, 1983) methods. Interestingly, being so efficient, those methods
are even used far beyond their domain of theoretical convergence, e.g. in Deep Learning.

This introduction describes the key notions that are used in the following chapters as
well as the organisations of the different parts. Part I deals with quadratic optimization
while we focus on non-quadratic optimization in Part II. Those two parts use different tools.
We briefly describe the two settings in Section 1.2 and Section 1.3. Finally, we summarize
our contributions in Section 1.4.

1.1 Oracles and algorithms performance

Convergence properties of first-order optimization are typically analyzed through worst-case
analyzes under the black-box model (Nemirovskii and Yudin, 1983a).

Black box optimization and oracles. The black-box model assumes the procedure does
not have access to a full analytical description of the objective function, but rather only to
partial descriptive discrete pieces of information queried to the so-called oracles. In words,
an algorithm proposes a first point (or iterate) x0 ∈ Rd and queries information from the
oracle O that sends O(x0) back. Based on this knowledge, the algorithm chooses the next
iterate, and so on. The most classical examples of oracles are the nth order oracles defined
as O(x) , (f(x),∇f(x), · · · ,∇nf(x)), especially zeroth, first and second orders oracles.

How to choose an oracle? The higher the order of the oracle is, the more information
we get. Therefore, it seems natural to consider a high order oracle when possible. Second
order methods are known to converge fast, at least locally. However, hessians may be hard
or costly to compute, and sometimes simply does not exist. For instance, in large-scale
optimization, hessians are too large to be handled properly, manipulated (e.g. inverted)
and sometimes even to be stored in memory.

On the other hand, a zeroth order oracle is usually cheap and therefore convenient
for large scale problems. They are also used to optimize non-differentiable functions
and functions defined on a discrete set, encountered for example in hyperparameter
optimization of machine learning models (Bergstra et al., 2011).

Therefore, a trade-off must be found between the efficiency of an oracle and its cost.
High dimensional differentiable models are often well adapted for first-order oracle, espe-

1.1. Oracles and algorithms performance 16

cially when the model benefits from a graphical structure, suitable to apply a dynamically
implemented chain rule (Rumelhart et al., 1986).

Due to the practical success of first-order methods in large-scale applications such as
deep learning, their analyses for minimizing such functions in the black-box model (see
e.g., (Nemirovskii and Yudin, 1983a; Polyak, 1987; Nesterov, 2003)) occupy a great deal
of attention and is the main focus of this thesis. Note however that, in certain situations,
other oracles can be considered, such as inexact gradient oracles (see De Klerk et al.
(2020)), stochastic gradient oracles (see (Robbins and Monro, 1951)), or proximal oracles
(see Rockafellar (1976); Combettes and Pesquet (2011); Chambolle and Pock (2011)).

Classical first-order methods. One of the first ever introduced algorithms is the Gradient
descent (GD) method defined as

xt+1 = xt − γ∇f(xt). (GD)

GD consists of moving along the locally steepest direction. This is therefore a greedy
algorithm, always moving orthogonally to the last visited level sets. Figure 1.1 shows that
this procedure can be very slow in some cases. This is due to the back-and-forth moves
of the iterates. More consistent updates accelerate this procedure. This is the main idea
behind momentum-based methods such as the Heavy-ball (HB) and Fast Gradient (FGM)
methods defined as follows:

xt+1 = xt − γ∇f(xt) + β(xt − xt−1) (HB)

xt+1 = xt − γ∇f (xt + β(xt − xt−1)) + β(xt − xt−1) (FGM)

Figure 1.1: Comparison of the convergence speed of Gradient descent and Heavy-ball on a
quadratic objective function. The Gradient descent method (red curve) oscillates while the
Heavy-ball method (blue curve) makes more consistent moves.

Those three algorithms are the most mentioned in this thesis.

Algorithm performance and regularity. An optimization algorithm can be seen as a
decision maker, that must output the next iterate, based on all the information it got from
the oracle so far. In other words, after each oracle call, we obtain a local piece of knowledge
about the objective function. Consequently, we reduce the set of possible functions that are
compatible with the information gained at each step. Our ultimate goal is to approximately

1.1. Oracles and algorithms performance 17

find the minimizer of the objective function as fast as possible. However, without constraint
on the function, local oracle knowledge is not sufficient to accurately perform this task.
Indeed, one can easily convince oneself that if no assumption is made on f , whatever the
values and gradients of f are on a finite set of points, its minimizers may still be anywhere
else and the minimal value of f can still be any value smaller than the smallest observed
one. Therefore, if we expect some result from an algorithm, we need some regularity
knowledge about the objective function, that extends the local ones provided by the oracle
up to the entire space.

Classes of functions. To make optimization possible, we assume f ∈ F for some set of
functions F . This regularity assumption must bring some global information spreading the
local knowledge provided by the oracle. As an example, a classical class of functions is the
class of L-gradient-Lipschitz (or L-smooth) functions, defined as

{f | ∀x, y, ‖∇f(x)−∇f(y)‖ 6 L‖x− y‖} .

If we assume that this relation holds, then any locally observed gradient contributes to
control all the other unseen ones. Note that smaller L are more restrictive, that is, it
corresponds to a stronger assumption, that brings more knowledge, in the sense that the
bounds obtained on the gradients are tighter. The main classes we study in this thesis are

QΛ ,
{
x→ 1

2(x− x?)TH(x− x?) | Sp(H) ∈ Λ
}
, (1.1)

Fµ,L , {f | ∀x, y, f(x) > f(y) + 〈∇f(y), x− y〉+ µ
2‖x− y‖

2 (1.2)

and f(x) 6 f(y) + 〈∇f(y), x− y〉+ L
2 ‖x− y‖

2},
QG+(L) , {f | ∀x, y, f(x) 6 f? + L

2 ‖x− x?‖
2}, (1.3)

where Λ is a subset of R>0 and −∞ 6 µ 6 max(µ, 0) 6 L 6 +∞. In particular

• when µ > 0, Fµ,L is the set of L-smooth µ-strongly convex functions,

• when µ = 0, Fµ,L = F0,L is the set of L-smooth convex functions,

• when µ = −L, Fµ,L = F−L,L is the set of L-smooth functions,

• when µ > 0 and L = +∞, Fµ,L = Fµ,+∞ is the set of µ-strongly convex functions,

• when µ = 0 and L = +∞, Fµ,L = F0,+∞ is the set of closed convex proper functions.

Types of performance analysis. Let f be a function. Given a budget of computation, we
can compare the performance of 2 optimization algorithms over this objective function f .
Now, given a class of functions F , how can we compare two algorithms? In some rare cases,
we find an algorithm that is better than all the others on every function of the class F . This
is the case for some algorithms such as the one we propose in Chapter 2. However, most of
the time, a given algorithm is better than another one on a specific function, and worse on
another function. We therefore need to set a metric. Many types of analysis are used in
optimization theory, among which the 2 following:

1. The worst-case analysis (see Nemirovskii (1992, 1994)) consists in defining the
performance of an algorithm over a class as its worst performance over the functions of
this class. Although the worst-case analysis is heavily used to explain the performance

1.1. Oracles and algorithms performance 18

of many optimization methods (see e.g., Nesterov, 1983), it can sometimes be
unrepresentative of the observed complexity when the worst-case problem is never
encountered in practice.

2. The average-case analysis (see Borgwardt (1977, 1980)) overcomes this issue by
averaging the performance of an algorithm over all functions of the class of interest.
While less studied, the average-case analysis has recently been employed in quadratic
optimization (see e.g. Pedregosa and Scieur (2020); Scieur and Pedregosa (2020);
Cunha et al. (2022)). However, this type of analysis depends on the probability
distribution over the problems, that is arbitrarily chosen.

The worst-case analysis is the most common one, the first analysis that is usually made to
tentatively explain the observed complexity, and the one we focus this thesis on.

Worst-case upper bounds. In worst-case analysis, an upper bound is therefore a guaran-
tee that holds on every single function of the studied class. As examples, in this thesis, we
prove the following:

1. Let µ1 < L1 < µ2 < L2 for positive real numbers with L1 − µ1 = L2 − µ2. We prove
in Corollary 3.3.2 that a version of (HB) verifies

∀f ∈ Q[µ1,L1]∪[µ2,L2], d(xt,X?) 6
(√ρ2 −R2 −

√
ρ2 − 1√

1−R2

)t(
1+t

√
ρ2 − 1

ρ2 −R2

)
d(x0,X?)

for t even, where ρ = L2+µ1

L2−µ1
and R = µ2−L1

L2−µ1
.

2. We prove in Theorem 6.2.4 that a version of (HB) verifies

∀f ∈ QG+(L) ∩ F0,+∞, f(xt)− f? 6
L

2

1

t+ 1
d(x0,X?)2

for all t.

Worst-case lower bounds. On the other hand, a lower bound is effective as soon as one
function of the class prevents the algorithm to perform faster than this bound. As examples,
in this thesis, we prove the following:

1. Let µ1 < L1 < µ2 < L2 for positive real numbers with L1 − µ1 = L2 − µ2. We prove
in Corollary 3.3.2 that for any first-order algorithm

∃f ∈ Q[µ1,L1]∪[µ2,L2], d(xt,X?) >
(√ρ2 −R2 −

√
ρ2 − 1√

1−R2

)t(
1+t

√
ρ2 − 1

ρ2 −R2

)
d(x0,X?)

for t even, where ρ = L2+µ1

L2−µ1
and R = µ2−L1

L2−µ1
.

2. We prove in Theorem 6.2.4 that for any first-order algorithm

∃f ∈ QG+(L) ∩ F0,+∞, f(xt)− f? >
L

2

1

t+ 1
d(x0,X?)2

for all t.

3. Let 0 < µ < L < +∞. We prove in Theorem 8.3.6 that for any stationary version
of (HB),

∃f ∈ Fµ,L, ‖xt − x?‖ >
(

1− Cκ
1 + Cκ

)t
‖x0 − x?‖

for all t.

1.2. Quadratic first-order optimization 19

Worst-case tight guarantees. A tight guarantee is both an upper bound and a lower
bound. Corollary 3.3.2 and Theorem 6.2.4 therefore provide tight guarantees. Chapter 5
discusses the mathematical problem of finding the tight guarantee verified by an algorithm
on a class. As an example, this problem on (GD) can be written as

∣∣∣∣∣∣∣∣∣∣
maximize
f∈F ,d>1

(xt)t6T∈(Rd)
T+1

f(xT)− f?

subject to

{
d(x0,X?) 6 1,

xt+1 = xt − γ∇f(xt).

(P)

Constructive approaches. In recent years, two main approaches have been proposed to
automate the search for upper, lower or tight worst-case bounds. The Integral Quadratic
Constraints (IQC) formalism (see Lessard et al. (2016); Lessard (2022)) primarily focuses
on searching for upper bounds, while the Performance Estimation Problems (PEP) formalism
(see Drori and Teboulle (2014); Taylor et al. (2017c); Drori and Taylor (2020)) considers
the problem (P) and therefore searches for tight bounds (by solving exactly (P)) or lower
bounds (by finding a feasible point to (P)). Both the IQC approach and the PEP approach
have encountered several success in the design of some methods (see e.g. Van Scoy et al.
(2017); Cyrus et al. (2018); Taylor and Drori (2022)), and have been combined in Taylor
et al. (2018a). Chapter 5 describes the PEP approach to tackle this problem and provides
a non-exhaustive list of insights the PEP literature contains on the proof structure of
worst-case analyzes in optimization.

1.2 Quadratic first-order optimization

One particular class of interest is the class of quadratic convex functions Q. Solving (OPT)
over Q enables us to find the solutions to linear regressions. Moreover, any twice dif-
ferentiable function can be approximated as a quadratic function around its optimizers.
Therefore, studying the behavior of a method on quadratic functions provides good insights
on the asymptotic behavior of this method on any twice differentiable functions. A good
example of this is the Heavy-ball method, historically derived on Q (Polyak, 1963), it is
now used on much larger classes, showing good practical results.

Formally, we can define F as F (x) , 1
2(x−x?)TH(x−x?) +F? where H is the constant

Hessian matrix of F . Its gradient at x is therefore∇F (x) = H(x−x?). This parametrization
of Q by the hessian matrix H helps express the classical algorithms in a simple way. For
example:

1. (GD)’s update verifies xt+1 − x? = (I − γH)(xt − x?),

2. (HB)’s update verifies xt+1 − x? = (I − γH)(xt − x?) + β(xt − xt−1),

3. (FGM)’s update verifies xt+1 − x? = (I − γH)(xt − x? + β(xt − xt−1)).

Then, (P) writes as

1.3. Beyond quadratic optimization 20

∣∣∣∣∣∣∣∣∣∣∣

maximize
d>1,H∈S+

d

(xt)t6T∈(Rd)
T+1

1
2(xT − x?)TH(xT − x?)

subject to

{
d(x0,X?) 6 1,

xt+1 − x? = (I − γH)(xt − x?).

To study (GD)’s convergence properties, we unroll the updates as xt − x? = (I −
γH)t(x0−x?) and reduce the study of (GD)’s convergence properties to the study of the ma-
trix (I−γH)t. Polyak (1964) proceeds similarly to study momentum methods. For example,

by defining Xt ,

(
xt
xt−1

)
, (HB) verifies Xt+1 = MXt with M ,

(
(1 + β)I − γH −βI

I 0

)
.

The study of (HB) reduces to the study of the matrix M , allowing to establish the conver-
gence (see Figure 8.1 in Chapter 8).

More generally, any method whose update is of the very generic form xt = x0 −∑t−1
i=0 γ

(t)
i ∇f(xi), as suggested in (Nemirovskii, 1992, 1994), can also be explicitly written

as ∀t > 0, xt − x? = Pt(H)(x0 − x?) for some polynomial Pt. This strong connection
between quadratic optimization and polynomials theory, first described in Fischer (2011),
is detailed and used in Chapters 2 and 3.

Organisation of Part I on quadratic optimization. In Chapter 2, we use polynomials
theory to derive an alternative to the conjugate gradient method under the form of a
Heavy-ball update using the Polyak step-size. Then, in Chapter 3, still using polynomials
theory, we show that the Heavy-ball method with cycling step-size is worst-case optimal on
the class of quadratic functions in which eigenvalues lie in the union of 2 intervals. This
method is actively used in practice and has been proven efficient in complex problems.
Chapter 3 brings the first analysis of this method. Finally, while Chapter 8 focuses on the
behavior of (HB) on a larger class of functions, results on quadratic are recalled and used
to prove that the known convergence behavior of (HB) is specific to the class of quadratic
functions.

1.3 Beyond quadratic optimization

Unlike the specific case of Q, classes of functions typically do not inherently possess a
parametric representation. Instead, they are defined as sets of functions verifying some
inequalities. Typical examples of such restrictions, that have been mentioned above, are:

• convexity: (see e.g., Rockafellar (1997, §4), Nesterov (2003, Definition 2.1.1)) ∀x, y ∈
Rd, f(y) > f(x) + 〈∇f(x), y − x〉,

• strong convexity: (see e.g., Nesterov (2003, Definition 2.1.2)) ∀x, y ∈ Rd, f(y) >
f(x) + 〈∇f(x), y − x〉+ µ

2‖y − x‖
2,

• smoothness: (see e.g., Nesterov (2003, eq. 1.2.3)) ∀x, y ∈ Rd, ‖∇f(x) − ∇f(y)‖ 6
L‖x− y‖,

• Lipschitz continuity: (see e.g., Rockafellar (1997, §10)) ∀x, y ∈ Rd, |f(x) − f(y)| 6
L‖x− y‖.

1.4. Contributions 21

Combining some inequalities can lead to stronger ones. As an example, a function that is
both convex and L-smooth verifies (see Nesterov, 2003, Theorem 2.1.5)

∀x, y ∈ Rd, f(y) > f(x) + 〈∇f(x), y − x〉+ 1
2L‖∇f(y)−∇f(x)‖2. (1.4)

Given a class of functions and an algorithm, we can derive a worst-case guarantee of the
algorithm over the class of functions. For example, (GD) over L-smooth convex functions
verifies

‖xt+1 − x?‖2 =‖xt − x?‖2 − 2
L 〈∇f(xt), xt − x?〉︸ ︷︷ ︸
>f(xt)−f?+

1
2L‖∇f(xt)‖2

+ 1
L2 ‖∇f(xt)‖2

6‖xt − x?‖2 − 2
L(f(xt)− f?).

Summing over t from 0 to some T , the telescopic summation gives

‖xT+1 − x?‖2 6 ‖x0 − x?‖2 − 2
L

T∑
t=0

(f(xt)− f?),

proving in particular that mint∈J0,T K f(xt)− f? 6 L
2
‖x0−x?‖2
T+1 .

This short proof raises quite a few questions: Is the obtained guarantee optimal? Or
can we find a tighter one for the same algorithm on the same class? In particular, we
used (1.4) instead of the classical smoothness and strong convexity inequalities. Would
another proof work without it? Which inequalities should we consider in more general
cases? How should we arrange them in a complex proof?

The answers to those questions resides in the rewriting of (P) in a tractable form.
This line of work, commonly referred to as Performance estimation and initiated by Drori
and Teboulle (2014); Taylor et al. (2017c), has been used over the past years to derive
optimization certificates and has been developed for further applications such as finding
Lyapunov functions (Taylor et al., 2018a) or designing new algorithms (Drori and Taylor,
2020). A gentle introduction to this framework can be found in (Taylor, 2020).

Organisation of Part II beyond quadratic optimization. In Chapter 4, we describe a
Python package we developed to largely ease the use of this framework and automate the
search for numerical certificates and their proofs. In Chapter 5, we explain the general
structure of those proofs. In Chapter 6, we use both the Python package and theoretical
insights described in Chapter 5 to derive a complete theory of first-order optimization over
a large class of functions. Finally, in Chapters 7 and 8, we complement the Performance
estimation usual use-case by extending it to the search of cycles in the sequence of iterates
produced by an algorithm, disproving its convergence. Moreover, we apply it to some
instances of (HB), proving its non-acceleration over Fµ,L.

1.4 Contributions

In Part I, we focus on quadratic optimization. More precisely, we use the equivalence
mentioned above between quadratic optimization and polynomial theory as proposed
in Fischer (2011) to tackle two problems:

1.4. Contributions 22

In Chapter 2, we design a Heavy-ball-like algorithm, tuned with Polyak step-sizes, that is
instance-wise optimal on Q0,+∞, that is it minimizes ‖xt − x?‖ for all t and every quadratic
convex function. Interestingly, Polyak step-size is well-known as optimal 1-step tuning
for (GD) on quadratic convex functions, and (HB) is known to accelerate over (GD) on
quadratic convex functions. We show that the optimal strategy to adopt on Q0,+∞ consists
in combining the two approaches with the right momentum.

In Chapter 3, we make a theoretical bridge between two empirical observations. On
the one hand, (Loshchilov and Hutter, 2017; Smith, 2017) showed state-of-the-art results
of a cycling step-sizes strategy of (HB) on different deep learning benchmarks. On the
other hand, (Sagun et al., 2017; Papyan, 2018; Ghorbani et al., 2019; Papyan, 2019)
have empirically studied properties of the Hessians of deep neural networks showing their
spectrum most often lie in the union of two intervals. Based on this last observation, we
provide a necessary and sufficient condition that an algorithm must verify to be worst-case
optimal on QΛ, and in particular, exhibit that the worst-case optimal algorithm when Λ is a
union of 2 intervals of the same length is (HB) with a cycling step-size strategy.

In Part II, we focus on optimization on large classes of functions, beyond the quadratic
case. Our work is mainly based on a theoretical framework proposed in Drori and Teboulle
(2014); Drori (2014); Taylor et al. (2017c,a) to study optimization over different classes.
We ease its usage by providing a Python package and a tutorial summarizing a few of
the essential strengths and insights provided by the frameworks. We also build upon this
framework to develop non-convergence guarantees.

In Chapter 4, we describe the python package PEPIT that we implemented. This
package makes the use of the PEP framework very user-friendly. It can be seen as an
extended open source PYTHON version of the MATLAB package PESTO (Taylor et al., 2017b).

More than simply automating the search for numerical proofs of optimization guar-
antees, the PEP framework brings a lot of insights about the structure of those proofs.
In Chapter 5, we review the classical PEP derivation (Drori and Teboulle, 2014; Drori,
2014; Taylor et al., 2017c,a) and detail the consequences we learn on proof structure from
the PEP approach, such as the minimal set of inequalities to be used and the right way to
combine them. We also review techniques to find Lyapunov functions (Lessard et al., 2016;
Taylor et al., 2018a). Finally, this framework has been used and extended to design new
worst-case optimal algorithms (see Drori and Teboulle, 2014; Kim and Fessler, 2016, 2021;
Sundararajan et al., 2020; Park and Ryu, 2022; Das Gupta et al., 2023; Jang et al., 2023;
Barré et al., 2023). We review the approach proposed in (Drori and Taylor, 2020), inspired
by Nemirovskii works (Nemirovskii, 1982; Nemirovskii and Yudin, 1983b) to originally
design accelerated methods. Unfortunately, those works are difficult to find, so we refer to
the review (Narkiss and Zibulevsky, 2005). Interestingly, this approach is compatible with
the search for Lyapunov functions.

In Chapter 6, we study a particular class of non-smooth functions: QG+(L) ∩ F0,+∞.
In this chapter, we derive tight worst-case guarantees of variants of (GD) and (HB) as well
as the first-order lower bound of this class, showing that (HB) is worst-case optimal for this
class of functions. We also describe a line-search parameter-free version of this algorithm
achieving the same guarantee. We also extend this result to other classes of non-smooth
functions.

In Chapter 7, we describe a PEP-based approach to automate the search for cycles of
first-order stationary methods. This approach can enable to prove the non-convergence of

1.4. Contributions 23

an algorithm and is therefore complementary to the classical PEP approach.
In Chapter 8, we improve the previous approach to simplify it, and draw conclusions

about the generic form of the cycles. In particular, we prove the non-acceleration of (HB)
on Fµ,L, a very long-term open problem.

Main algorithms appearances.

• (GD) is studied in Chapters 4, 6 and 7,

• (HB) is studied in Chapters 2, 3 and 6 to 8,

• (FGM) and the Three operator splitting(TOS) method are studied in Chapter 7.

Class of functions appearances.

• QΛ is studied in Chapters 2, 3 and 8,

• Fµ,L is studied in Chapters 4, 7 and 8,

• QG+(L) is studied in Chapter 6.

Publications. This thesis is based on the following papers:

Chapter Paper Conference / Journal Workshop /
Invited talks

Blogpost

2 Quadratic minimization: from conjugate
gradient to an adaptive Heavy-ball

method with Polyak step-sizes (2022d)

Under review OPT22

3 Super-acceleration with cyclical step-sizes
(2022b)

AISTATS22 MLOpt Cyclical Step-sizes
(2022)

4 PEPit: computer-assisted worst-case
analyses of first-order optimization

methods in Python (2022a)

MPC TRADEOPT22,
ICCOPT22,

LOL22

5 On Fundamental Proof Structures in
First-Order Optimization (2023b)

CDC23

6 Optimal first-order methods for convex
functions with a quadratic upper bound

(2022c)

Under review

7 Counter-examples in first-order
optimization: a constructive approach

(2023a)

CDC23, L-CSS FoCM23,
SIAMOP23

8 Provable non-accelerations of the
Heavy-ball method (2023c)

Under review

We created the GitHub organization PerformanceEstimation containing both PESTO
and PEPit, but also introductory exercises to PEPs and the website of the workshop we
organized around this topic.

https://opt-ml.org/oldopt/opt22/
https://aistats.org/aistats2022/
https://mtl-mlopt.github.io
https://link.springer.com/journal/12532
https://trade-opt-itn.eu/workshop.html
https://iccopt2022.lehigh.edu
https://conferences.cirm-math.fr/2551.html
https://cdc2023.ieeecss.org
https://cdc2023.ieeecss.org
http://ieee-cssletters.dei.unipd.it/index.php
https://focm2023.pages.math.cnrs.fr
https://www.siam.org/conferences/cm/conference/op23
https://github.com/PerformanceEstimation/
https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://pepit.readthedocs.io
https://github.com/PerformanceEstimation/Learning-Performance-Estimation
https://performanceestimation.github.io/PEP-talks/february_2023/

1.4. Contributions 24

I have also had the opportunity to collaborate, both prior to and during my PhD, on
the papers Goujaud et al. (2017); Aljundi et al. (2019); Guille-Escuret et al. (2021, 2022);
Ferbach et al. (2023) which are not discussed in this thesis.

Part I

Tools for unconstrained quadratic
optimization

25

2
Quadratic minimization: from conjugate

gradient to an adaptive Heavy-ball method
with Polyak step-sizes

In this work, we propose an adaptive variation on the classical Heavy-ball method for
convex quadratic minimization. The adaptivity crucially relies on so-called “Polyak step-
sizes”, which consists of using the knowledge of the optimal value of the optimization
problem at hand instead of problem parameters such as a few eigenvalues of the Hessian
of the problem. This method happens to also be equivalent to a variation of the classical
conjugate gradient method, and thereby inherits many of its attractive features, including
its finite-time convergence, instance optimality, and its worst-case convergence rates.

The classical gradient method with Polyak step-sizes is known to behave very well in
situations in which it can be used, and the question of whether incorporating momentum
in this method is possible and can improve the method itself appeared to be open. We
provide a definitive answer to this question for minimizing convex quadratic functions, an
arguably necessary first step for developing such methods in more general setups.

This chapter is based on our work “Quadratic minimization: from conjugate gradient to
an adaptive Heavy-ball method with Polyak step-sizes” (co-authored with A. Taylor, and A.
Dieuleveut), currently under review.

27

Contents

2.1 Introduction . 28
2.1.1 Preliminary material . 30
2.1.2 Related works . 33

2.2 Main theorem . 33
2.3 Numerical experiments . 36
2.4 Concluding remarks and discussion . 37

2.1. Introduction 28

2.1 Introduction

Consider the convex quadratic minimization problem in the form

min
x∈Rd

{
f(x) ,

1

2
〈x, Hx〉+ 〈h, x〉 , 1

2
〈x− x?, H(x− x?)〉+ f?

}
(2.1)

where H < 0 is a symmetric positive semi-definite matrix, and we denote f? the minimum
value of f . In the context of large-scale optimization (i.e. d� 1), we are often interested
in using first-order iterative methods for solving equation (2.1). There are many known
and celebrated iterative methods for solving such quadratic problems, including conjugate
gradient, Heavy-ball methods (a.k.a., Polyak momentum), Chebyshev methods, and Gra-
dient descent. Each of those methods having different specifications, the choice of the
method largely depends on the application at hand. In particular, a typical drawback of
momentum-based methods is that they generally require the knowledge of some problem
parameters (such as extreme values of the spectrum of H). This problem is typically not as
critical for simpler Gradient descent schemes with no momentum, although it generally
still requires some knowledge on problem parameters if we want to avoid using linesearch-
based strategies. This limitation motivates the search for adaptive strategies, fixing step-size
using past observations about the problem at hand. In the context of (sub)gradient descent,
a famous adaptive strategy is the so-called Polyak step-size, which relies on the knowledge
of the optimal value f?:

xt+1 = xt − γt∇f(xt), with γt =
f(xt)− f?
‖∇f(xt)‖2

. (2.2)

Polyak steps were originally proposed in Polyak (1987) for nonsmooth convex minimization;
it is also discussed in Boyd et al. (2003) and a few variants are proposed by, e.g., Barré et al.
(2020); Loizou et al. (2021); Gower et al. (2022) including for stochastic minimization.
In terms of speed, this strategy (and variants) enjoy similar theoretical convergence
properties as those for Gradient descent. This method appears to perform quite well in
applications where f? can be efficiently estimated—see, e.g., Hazan and Kakade (2019)
for an adaptation of the method for estimating it online. Therefore, a remaining open
question in this context is whether the performances of this method can be improved by
incorporating momentum in it. A first answer to this question was provided by Barré
et al. (2020), although it is not clear that it can match the same convergence properties as
optimal first-order methods.
In this work, we answer this question for the class of quadratic problems. In short, it turns
out that the following conjugate gradient-like iterative procedure

xt+1 = arg min
x

{
‖x− x?‖2 s.t. x ∈ x0 + span{∇f(x0),∇f(x1), . . . ,∇f(xt)}

}
, (2.3)

can be rewritten exactly as a Heavy-ball type method whose parameters are chosen adap-
tively using the value of f?. This might come as a surprise, as the iteration equation (2.3)
might seem impractical due to its formulation relying on the knowledge of x?. More
precisely, equation (2.3) is exactly equivalent to:

xt+1 = xt − (1 +mt)ht∇f(xt) +mt(xt − xt−1), (2.4)

2.1. Introduction 29

with parameters

∀t > 0, ht ,
2(f(xt)− f?)
‖∇f(xt)‖2

, (2.5)

m0 , 0 and ∀t > 1, mt ,
−(f(xt)− f?)〈∇f(xt),∇f(xt−1)〉

(f(xt−1)− f?)‖∇f(xt)‖2 + (f(xt)− f?)〈∇f(xt),∇f(xt−1)〉
.

In equation (2.4), mt corresponds to the momentum coefficient and ht to a step-size. With
the tuning of equation (2.5), this step-size is twice the Polyak step-size in equation (2.2).
This Heavy-ball momentum method with Polyak step-sizes is summarized in Algorithm 1
and illustrated in Figure 2.1. Due to its equivalence with equation (2.3), the Heavy-ball
method equation (2.4) inherits nice advantageous properties of conjugate gradient-type
methods, including:

(i) finite-time convergence: the problem equation (2.1) is solved exactly after at most d
iterations,

(ii) instance optimality: for all H < 0, no first-order method satisfying xt+1 ∈ x0 +

span{∇f(x0), . . . ,∇f(xt)} results in a smaller ‖xt − x?‖,
(iii) it inherits optimal worst-case convergence rates on quadratic functions.

Of course, a few of those points needs to be nuanced in practice due to finite precision
arithmetic. The equivalence between equation (2.3) and equation (2.4) is formally stated
in the following theorem.

Theorem 2.1.1. Let (xt)t∈N be the sequence defined by the recursion equation (2.3), namely
such that for any t, xt+1 is the Euclidean projection of x? onto the affine subspace x0 +

span{∇f(x0),∇f(x1), . . . ,∇f(xt)}. Then (xt)t∈N is the sequence generated by Algorithm 1.

Algorithm 1 Adaptive Heavy-ball algorithm

Input T and f : x 7→ f(x) , 1
2〈x− x?, H(x− x?)〉+ f?

Initialize x0 ∈ Rd, m0 = 0

for t = 0 · · ·T − 1 do
ht = 2(f(xt)−f?)

‖∇f(xt)‖2
xt+1 = xt − (1 +mt)ht∇f(xt) +mt(xt − xt−1)

mt+1 = −(f(xt+1)−f?)〈∇f(xt+1),∇f(xt)〉
(f(xt)−f?)‖∇f(xt+1)‖2+(f(xt+1)−f?)〈∇f(xt+1),∇f(xt)〉

end
Result: xT

Theorem 2.1.1 turns out to be a particular case of a more general result stating that
the iterates of any conjugate gradient-type method described with a polynomial Q as

xt+1 = argminx {〈x− x?, Q(H)(x− x?)〉 s.t. x ∈ x0 + span{∇f(x0), . . . ,∇f(xt)}} ,
(Q-minimization)

are equivalently written in terms of an adaptive Heavy-ball iteration. In particular, equa-
tion (2.3) corresponds to equation (Q-minimization) with Q(x) = 1. Similarly, classical
conjugate gradient method corresponds to equation (Q-minimization) with Q(x) = x (this
fact is quite famous, see, e.g., Nocedal and Wright (1999)). In Section 2.2, we provide the
adaptive Heavy-ball iteration equivalent to (Q-minimization). The key point of this work is
that the equivalent Heavy-ball reformulation of equation (2.3) can be written in terms of
f?, thereby obtaining a momentum-based Polyak step-size.

2.1. Introduction 30

Figure 2.1: Comparison in semi-log scale over 50 iterations of different first-order methods
applied on a 25-dimensional quadratic objective with condition number 10. GD with
constant step-size, GD with Polyak step-size and GD with variant of Polyak step-size
refer to the GD method tuned respectively with the step-size γ = 2/(L+ µ), γt = (f(xt)−
f?)/‖∇f(xt)‖2 and γt = 2(f(xt) − f?)/‖∇f(xt)‖2. HB with constant tuning is the HB
method tuned with constant parameters γt = (2/(

√
L+
√
µ))2 and mt = ((

√
L−√µ)(

√
L+

√
µ))2 while HB with Polyak step-size based tuning refers to Algorithm 1.

Notations. We denote 4 the order between symmetric matrices; SpH the spectrum of
the matrix H, namely its set of eigenvalues; Rd[X] the set of polynomials with degree at
most d.

2.1.1 Preliminary material

Worst-case optimality. Solving equation (2.1) is a very important problem and several
methods have been proposed to achieve this goal. They are compared with each other
through notions of performance. This consists of evaluating the precision of an algorithm
over the functions of a given class after a given number T of iterations. The main framework
is worst-case analysis and the precision is the value of a given metric, e.g. the distance of the
last iterate to the optimizer ‖xT − x?‖, the function value of the last iterate f(xT)− f(x?),
or its gradient norm ‖∇f(xT)‖. The worst-case analysis framework consists of finding
the guarantees of a method that hold for each and every function of a given class, as for
instance the class of L-smooth µ-strongly convex quadratic functions described as quadratic
functions verifying µI 4 H 4 LI for given 0 < µ 6 L. The Gradient descent (GD)
method characterized by the update

xt+1 = xt − γt∇f(xt) (2.6)

therefore verifies ‖xt − x?‖ = O((L−µL+µ)t) on all such functions for γt = 2
L+µ . Thanks to a

relationship with polynomial analysis, Golub and Varga (1961) proved that the Chebyshev

2.1. Introduction 31

method, described as

xt+1 = xt − γt∇f(xt) +mt(xt − xt−1), (2.7)

for a well chosen tuning of the parameters γt andmt (mt = (
√
L−√µ√
L+
√
µ

)2 1+((
√
L−√µ)/(

√
L+
√
µ))2(t−1)

1+((
√
L−√µ)/(

√
L+
√
µ))2(t+1)

,

γt = 2
L+µ(1 +mt)), is worst-case optimal on this class of function, achieving the guarantee

‖xt − x?‖ = O((
√
L−√µ√
L+
√
µ

)t) (often referred to as “acceleration”). Methods based on this two-

term recursion are called “Heavy-ball” or “Polyak momentum” (Polyak, 1964). In particular,
the stationary regime of the Chebyshev method is the Heavy-ball (HB) method tuned with

mt = (
√
L−√µ√
L+
√
µ

)2 and γt = 2
L+µ(1 +mt) = (2√

L+
√
µ

)2 and achieves the worst-case guarantee

‖xt − x?‖ = O(t(1−
√
κ

1+
√
κ

)t), close to the optimal one achieved by the Chebyshev method.
Note that equation (2.7) is another formulation of equation (2.4) where γt = (1 +mt)ht.
In all the aforementioned tuning, ht has the same value: ht = 2

L+µ (see Section 2.4 for
more detailed discussion on this).

Span of gradients and Krylov subspaces. All methods described above can be defined
using a recursion:

xt = x0 −
t−1∑
i=0

γ
(t)
i ∇f(xi) (2.8)

for some sequence (γ
(t)
i)i∈J0,t−1K as suggested in (Nemirovskii, 1992, 1994). Note that the

recursion equation (2.8) can also be explicitly written as xt = x0 − H
∑t−1
i=0 γ

(t)
i xi, and

therefore, xt−x0 ∈ Hspan({xi}i∈J0,t−1K). We deduce by recursion that xt−x0 ∈ HKt(H,x0)

where Kt(H,x0) , span({H ix0}i∈J0,t−1K) is called order-t Krylov subspace generated by H
and x0. This creates a link between first-order algorithms and polynomials, summarized
in the following lemma (which is implicitly used in Golub and Varga (1961) and formally
stated, e.g., in (Goujaud et al., 2022b, Proposition 4.1)).

Lemma 2.1.2. Let f be quadratic convex (2.1). The iterates xt satisfy

xt ∈ x0 + span{∇f(x0), . . . ,∇f(xt−1)} , (2.9)

where x0 is the initial approximation of x?, if and only if there exists a sequence of polynomials
(Pt)t∈N, each of degree at most 1 more than the highest degree of all previous polynomials and
P0 of degree 0 (hence the degree of Pt is at most t), such that

∀ t, xt − x? = Pt(H)(x0 − x?), Pt(0) = 1 . (2.10)

Similar to the way we use this technique below, this lemma has already been extensively
used to design methods; see, e.g., d’Aspremont et al. (2021, Chapter 1) or the blog post
by Pedregosa (2021b) for gentle introductions to this technique. For instance, we can
use this technique for optimizing the step-size of the gradient method, or to derive the
Chebyshev method, which optimizes the worst-case on the class of smooth and strongly
convex quadratic functions (see Fischer, 2011). More recently, Goujaud et al. (2022b)
used it to derive a method which can take advantage of a possible gap in the spectrum
of H. This approach has also been used for other applications such as accelerated gossip
algorithms (Berthier et al., 2020).

2.1. Introduction 32

Adaptive methods. In Lemma 2.1.2, while Pt(H) is a polynomial evaluated on the matrix
H, its scalar coefficients might or might not depend on H. If they depend on H, we say that
the associated method is adaptive. Non-adaptive methods suffer from two main drawbacks:
(i) they use the same parameters for all the functions within the class of problems, not
taking advantage of the observed quantities; (ii) the underlying parameters must scale with
the function class parameters, and therefore depends on the values of L and µ, which are
generally difficult to estimate (and actually do not correspond to first-order information,
as they rely on the Hessian of the function at hand). Ultimately, adaptive methods aim at
solving those issues by choosing parameters (step-size, momentum, etc.) on the fly.

Polyak steps. It is straightforward that a Gradient descent update verifies on any convex
function f that ‖xt+1 − x?‖2 6 ‖xt − x?‖2 − 2γt(f − f?) + γ2

t ‖∇f(xt)‖2. Polyak (1987)
argues that, based on this inequality, the best guaranteed progression is then achieved for
γt = f(xt)−f?

‖∇f(xt)‖2 . This choice is called “Polyak step-size” and has been studied intensively
even recently Loizou et al. (2021); Gower et al. (2022).

Other variants of the latter have been proposed. For instance (Barré et al., 2020,
Variant 1) suggested the step-size γt = 2 f(xt)−f?

‖∇f(xt)‖2 . This also optimizes the exact progress
of one Gradient descent update over quadratics realizing a projection of xt − x? over the
orthogonal subspace of ∇f(xt).

Therefore, the Polyak step-size strategy applied to the Gradient descent method achieves
the same worst-case guarantee of the well tuned fixed step-size Gradient descent method,
while not relying on Hessian information. Moreover, due to its adaptivity to each function,
and since generic functions do not look like worst-cases, the Polyak step-size strategy
applied to the Gradient descent method performs very well in practice (See Figure 2.1
and (Barré et al., 2020, Figure 1)), sometimes even beating the well tuned non-adaptive
Heavy-ball method even if the worst-case guarantees are sorted in a different order.

Instance-optimality. While optimal worst-case method of the form of equation (2.8)
have been found with predetermined parameters, it would be better to find a method under
the form of equation (2.8) that is optimal (for some performance metric), not only on
worst-case analysis, but on each function individually, taking advantage of the adaptivity of
the parameters. The well-known conjugate gradient method achieves this goal when the
performance metric is the function value of the last iterate. The MinRes method attacks the
problem minimizing the gradient norm of the last iterate.

Contributions. In this work we derive iterative methods of the form of equation (2.8)
(which iterates lie in the span of previously observed gradients) that are instance-optimal
for a variety of performance metrics. All those methods updates are variations of the
Heavy-ball two-term recursion equation (2.7) with only parameters γt and mt changing
from one method to another. Finally, we show (see Theorem 2.1.1) that for a well-chosen
yet classical performance metric, this associated method Algorithm 1 is not relying on
second-order information at all (not even L and µ). Instead, it uses a classical variant of
the Polyak step-size 2(f(xt)−f?)

‖∇f(xt)‖2 , providing an answer to the question “Can we accelerate
methods with Polyak step-size?”.

2.2. Main theorem 33

2.1.2 Related works

Polyak step-sizes were proposed in (Polyak, 1987). Despite the dependency on f?, the
Polyak step-size is more studied theoretically and used in practice due to its efficiency
when applied to real-world problems. Recent works (e.g. Loizou et al., 2021; D’Orazio
et al., 2021) argue that this dependency is not a practical issue for many problems which
we can assume verify f? = 0 (see Section 2.3). A few variants of the Polyak step-size
strategy were proposed by Barré et al. (2020), including a version incorporating a Nesterov-
type momentum Nesterov (1983), achieving a worst-case guarantee of ‖xt − x?‖2 =

O((1 − 2(µ/L)2/3)2t) over the class of (non-necessarily quadratic) L-smooth µ-strongly
convex functions, thereby improving over previous works on adaptive first-order methods.
However, the proposed method does not allow to remove the dependency on L and does not
achieve the black-box complexity of smooth strongly convex minimization Nesterov (2003).
In (Loizou et al., 2021), the authors study the stochastic Polyak step-size, whereas (D’Orazio
et al., 2021) applies it to Mirror descent.

Many alternative adaptive methods have been proposed in the past. Among them, let
us mention (Barzilai and Borwein, 1988) which introduced the so-called Barzilai-Borwein
step-size rule, and the more recent (Malitsky and Mishchenko, 2020) which developed a
step-size policy that adapts to the local geometry with convergence guarantees beyond
quadratic minimization.

2.2 Main theorem

This section states and proves Theorem 2.1.1. In short, given a certain function f (charac-
terized by H and x? here) and a starting point x0, we search for an iterative procedure,
possibly adaptive, verifying the polynomial-based expression equation (2.10) such that
xt converges as fast as possible to x? for some predefined performance metric. Most
classical ways to measure the performance of such optimization schemes include the dis-
tance to optimum ‖xt − x?‖2, the function accuracy gap f(xt)− f?, the squared gradient
norm ‖∇f(xt)‖2, and linear combinations of the former. Let us abstract those notions
by denoting the performance measure of choice by 〈xt − x?, Q(H)(xt − x?)〉 (with Q a
predefined polynomial that is positive on R>0). Then, we consider the iterative scheme
given by (Q-minimization).

xt+1 = argminx {〈x− x?, Q(H)(x− x?)〉 s.t. x ∈ x0 + span{∇f(x0), . . . ,∇f(xt)}} ,
(Q-minimization)

The next theorem provides an explicit instance-optimal method to solve equation (Q-
minimization).

Theorem 2.2.1 (Main). The unique solution to equation (Q-minimization) is given by the
Heavy-ball procedure

xt+1 = xt − (1 +mt)ht∇f(xt) +mt(xt − xt−1) (2.11)

where  ht = 〈xt−x?, HQ(H)(xt−x?)〉
〈xt−x?, H2Q(H)(xt−x?)〉 ;

mt = −btht
1+btht

, with bt = 〈xt−x?, H2Q(H)(xt−1−x?)〉
〈xt−1−x?, HQ(H)(xt−1−x?)〉 .

(2.12)

2.2. Main theorem 34

Remark that setting Q(X) = X leads to a nice expression of the conjugate gradient
method (see Polyak, 1987, Section 3.2.2). Indeed, setting Q(X) = X corresponds to
optimally minimizing the excess loss f(xt)− f?.

As already known, the conjugate gradient method requires the knowledge of H (or
a Hessian vector product) to proceed. This is also a priori the case for all other choices
of Q(·). In the case of Q(X) = 1, which corresponds to minimizing the distance to the
optimum (see equation (2.3)), we can use an alternate writing making use of f?: ht = 2(f(xt)−f?)

‖∇f(xt)‖2

mt = −btht
1+btht

, with bt = 〈∇f(xt),∇f(xt−1)〉
2(f(xt−1)−f?) .

(2.13)

Proof.

Designing methods from the polynomial point of view. As suggested by Lemma 2.1.2,
we look for an iterative method that can be expressed in the form xt−x? = Pt(H)(x0−x?),
where Pt is a tth degree polynomial with Pt(0) = 1. Furthermore, as we look for an instance-
optimal method, the latter polynomial must be instance-specific, and the coefficients of Pt
should depend on H (and should describe the iterative procedure (Q-minimization)).

Recalling that H is real symmetric matrix, we denote by λ ∈ Sp(H) its eigenvalues and
by vλ the associated orthonormal basis of eigenvectors, leading to H =

∑
λ∈Sp(H) λvλv

T
λ .

The quantity to be minimized can now be written as:

〈xt − x?, Q(H)(xt − x?)〉 = 〈x0 − x?, Pt(H)TQ(H)Pt(H)(x0 − x?)〉 (2.14)

=
∑

λ∈Sp(H)

Q(λ)Pt(λ)2〈x0 − x?, vλ〉2 (2.15)

=

∫
λ∈R+

Pt(λ)2 dλQ(λ) (2.16)

with λQ the discrete measure
∑
λ∈Sp(H)Q(λ)〈x0 − x?, vλ〉2 δλ (we sometimes use the short-

hand notation
∫
P 2
t dλQ for equation (2.16) in what follows). It is clear that equation (2.16)

is 0 if and only if Pt(λ) = 0 for all λ ∈ Sp(H). As a consequence, we conclude that (i)
choosing the right sequence of polynomials leads to convergence in exactly |Sp(H)| iter-
ations, and (ii) 〈P (1), P (2)〉Q ,

∫
P (1)P (2) dλQ is an inner product on R|Sp(H)|−1[X]. We

therefore want to solve  minimize
Pt∈Rt[X]

‖Pt‖2Q
subject to Pt(0) = 1

(2.17)

for any t 6 |Sp(H)| − 1 where ‖P‖2Q , 〈P, P 〉Q =
∫
P 2 dλQ denotes the underlying norm

of the inner product 〈·, ·〉Q. For t > |Sp(H)|, we consider instead Pt as a multiple of the
polynomial

∏
λ∈Sp(H)(X − λ) in X. The next steps are somewhat standard and follow

a classical pattern for solving equation (2.17) (see, e.g. Berthier et al. (2020) and the
references therein).

From minimal norm to orthogonality. The solution to equation (2.17) is the projection
of the polynomial 0 over the affine space {P ∈ Rt[X] | P (0) = 1} with respect to the
inner product 〈·, ·〉Q. A necessary and sufficient condition for P to be the solution of
problem equation (2.17) is therefore to verify 〈0−P,∆P 〉Q = 0 for any ∆P in the vectorial

2.2. Main theorem 35

subspace {P ∈ Rt[X] | P (0) = 0} = XRt−1[X]. Hence Pt solves problem equation (2.17)
iff

〈Pt, XR〉Q = 0,∀R ∈ Rt−1[X]. (2.18)

Note however, that for any (P,R) ∈ R[X]2,

〈P,XR〉Q =

∫
λ∈R+

P (λ) · λR(λ) dλQ(λ)

=

∫
λ∈R+

P (λ) ·R(λ) dλXQ(λ)

, 〈P,R〉XQ

with dλXQ(λ) , λdλQ(λ) =
∑

λ∈Sp(H)

λQ(λ)〈x0 − x?, vλ〉2 δλ. Using the latter inner product,

the condition for Pt to be the solution to problem equation (2.17) becomes:

Pt ∈ Rt−1[X]⊥XQ (2.19)

Hence, (Pt)t∈N is a family of orthogonal polynomials for the inner product 〈·, ·〉XQ.

From orthogonality to recursion. We now focus on finding an explicit expression for
the polynomials Pt. As for all families of orthogonal polynomials, (Pt)t∈N can be obtained
through a two-term recursion of the form:

Pt+1(X) = (atX + bt)Pt(X) + ctPt−1(X), for some (at, bt, ct) ∈ R3, (2.20)

which is easy to verify by induction. Our goal is to find at, bt and ct. First, notice that
(atX + bt)Pt(X) + ctPt−1(X) is orthogonal to Rt−2[X] independently of the values of at,
bt and ct. Those three coefficients can be found via the following three conditions: (i)
〈Pt+1, Pt〉XQ = 0, (ii) 〈Pt+1, Pt−1〉XQ = 0, and (iii) Pt+1(0) = 1.

More precisely, it is clear that at 6= 0 for Pt+1 to be of degree t+ 1. Therefore, one can
factorize by at. Reparametrizing equation (2.20), one can write

Pt+1(X) =
(ãt −X)Pt(X) + b̃tPt−1(X)

c̃t
, with (ãt, b̃t, c̃t) ∈ R3.

Moreover, evaluation at X = 0 gives ãt+b̃t
c̃t

= 1, thereby enforcing c̃t = ãt + b̃t. It
remains to verify the two orthogonality conditions (independent of c̃t):

ãt〈Pt, Pt〉XQ +b̃t〈Pt−1, Pt〉XQ = 〈XPt(X), Pt(X)〉XQ,
ãt〈Pt, Pt−1〉XQ +b̃t〈Pt−1, Pt−1〉XQ = 〈XPt(X), Pt−1(X)〉XQ.

Note that this system of equations is decoupled since 〈Pt−1, Pt〉XQ = 0, and we finally
arrive to

Pt+1(X) =
(ãt −X)Pt(X) + b̃tPt−1(X)

ãt + b̃t
, (2.21)

with  ãt =
〈XPt(X),Pt(X)〉XQ

〈Pt,Pt〉XQ ,

b̃t =
〈XPt(X),Pt−1(X)〉XQ
〈Pt−1,Pt−1〉XQ .

(2.22)

2.3. Numerical experiments 36

From a polynomial recursion to an iterative optimization method. For reaching the
final desired result, we simply multiply equation (2.21) (evaluated in H) by x0 − x?:

xt+1 − x? =
ãt(xt − x?)−H(xt − x?) + b̃t(xt−1 − x?)

ãt + b̃t
,

= xt − x? −
1

ãt + b̃t
∇f(xt) +

−b̃t
ãt + b̃t

(xt − xt−1),

thereby reaching the desired

xt+1 = xt − (1 +mt)ht∇f(xt) +mt(xt − xt−1) (2.23)

with (1 +mt)ht =
1

ãt + b̃t
and mt =

−b̃t
ãt + b̃t

, hence, ht =
1

ãt
and mt =

−b̃tht
1 + b̃tht

.

(2.24)
From equations (2.23) and (2.24), we recognize a Heavy-ball method with some variable
step-size ht and momentum term mt corresponding to the theorem statement, thereby
concluding the proof. �

Remark 2.2.2 (Step-size parametrization.). While the γt plays a different role in equa-
tion (2.7) and equation (2.6), they both usually are called “step-size” by default. But we
noticed that both in the Chebyshev method and the Heavy-ball method (optimally tuned),
ht = γt

1+mt
is exactly 2

L+µ , value of the optimal step-size for Gradient descent. In equation (2.5),
we notice again that the value of ht is the optimal step-size for a single step of Gradient descent.
For this reason, we believe that the natural parametrization of the Heavy-ball methods should
be xt+1 = xt − (1 + mt)ht∇f(xt) + mt(xt − xt−1) and that ht should be referred to as the
“natural” step-size. Indeed, when one thinks of the Heavy-ball method with Polyak step-sizes,
they would set γt to the Polyak step-size, not ht = γt

1+mt
. We therefore provide a novel view on

what should be tested.

2.3 Numerical experiments

In this section, we compare Gradient descent, Heavy-ball, and conjugate gradient method
in an adaptive setting or not. Figure 2.2 shows the performance of all these methods
on a quadratic objective with known minimal value f?. The hessian of this quadratic
objective has been generated from a sequence of eigenvalues with geometric increase, and
a random orthogonal transformation. The difference between Figure 2.1 and Figure 2.2 is
the dimension of the problem as well as the condition number of the objective function. Due
to finite precision arithmetic, the finite-time convergence is not visible when the condition
number is too large. However, both figures show that our method and the conjugate
gradient algorithm behave similarly and faster than the other methods. The code can be
found on this GitHub repository.

https://github.com/bgoujaud/Heavy-ball_polyak_steps

2.4. Concluding remarks and discussion 37

(a) Comparison of distances to optimum (b) Comparison of excess losses

Figure 2.2: Comparison in semi-log scale over 2000 iterations of different first-order
methods applied on a 1000-dimensional quadratic objective with condition number 105.
GD with constant step-size, GD with Polyak step-size and GD with variant of Polyak
step-size refer to the GD method tuned respectively with the step-size γ = 2/(L + µ),
γt = (f(xt)−f?)/‖∇f(xt)‖2 and γt = 2(f(xt)−f?)/‖∇f(xt)‖2. HB with constant tuning
is the HB method tuned with constant parameters γt = (2/(

√
L+
√
µ))2 and mt = ((

√
L−

√
µ)(
√
L+
√
µ))2 while HB with Polyak step-size based tuning refers to Algorithm 1.

2.4 Concluding remarks and discussion

Polyak step-sizes are known for their general good working performances when the optimal
value to the optimization problem at hand is known. Whether Polyak step-sizes can be
used together with momentum for obtaining accelerated first-order methods appears to
be an open question (Barré et al., 2020), which we answer in the simpler case of convex
quadratic minimization. In this context, we argue that not only this tuning works well, but
also it pops up naturally when investigating instance-optimal first-order iterative methods.
Furthermore, we believe it is a necessary step for being able to understand more general
optimization settings beyond quadratics. As our method does not seem to work well beyond
quadratics, we leave further investigations on this topic for future work.

Among our competitors, we note that the celebrated conjugate gradient (CG) method is
another instance-optimal algorithm for quadratics. Whereas our method minimizes the dis-
tance to the solution at each iteration, CG is instance-optimal for minimizing function values
at each iteration. Perhaps interestingly, the two methods appeared to behave similarly in
our numerical experiments. That being said, the main practical differences between the two
methods are that CG Heavy-ball-like formulation naturally relies on higher order informa-
tion while Polyak step-sizes do require knowledge of f?. In typical optimization problems,
this value is not known. However, there are a few settings where this value is actually well-
known, typically when f? = 0 generically (in machine learning, this setting is known as the
“interpolation” regime; an alternative could be to use Polyak-steps as a competitor to Min-
Res). Finally, let us mention that a few generalizations of CG, often referred to as nonlinear
conjugate gradient, were studied in the literature (see, e.g., (Bonnans et al., 2006; Nocedal
and Wright, 1999; Hager and Zhang, 2006)). A compelling direction for future research
would involve expanding our proposed method to a class of non-quadratic objectives.

3
Super-Acceleration with Cyclical Step-sizes

We develop a convergence-rate analysis of momentum with cyclical step-sizes. We show
that under some assumption on the spectral gap of Hessians in machine learning, cyclical
step-sizes are provably faster than constant step-sizes. More precisely, we develop a conver-
gence rate analysis for quadratic objectives that provides optimal parameters and shows
that cyclical learning rates can improve upon traditional lower complexity bounds. We
further propose a systematic approach to design optimal first-order methods for quadratic
minimization with a given spectral structure. Finally, we provide a local convergence
rate analysis beyond quadratic minimization for the proposed methods and illustrate our
findings through benchmarks on least squares and logistic regression problems.

This chapter is based on our work “Super-Acceleration with Cyclical Step-sizes” (co-
authored with D. Scieur, A. Dieuleveut, A. Taylor, and F. Pedregosa), published at AISTATS,
2022. We also wrote a blogpost (see Goujaud and Pedregosa (2022)) for a friendly
introduction to this work.

39

Contents

3.1 Introduction . 40
3.2 Notation and Problem Setting . 41
3.3 Super-acceleration with Cyclical Step-sizes 41

3.3.1 Optimal algorithm . 43
3.3.2 Comparison with Polyak Heavy-ball 44

3.4 A constructive Approach: Minimax Polynomials 44
3.4.1 First-Order Methods on Quadratics and Polynomials 45
3.4.2 Generalization to Longer Cycles . 46
3.4.3 Cyclical Heavy-ball and (Non-)asymptotic Rates of Convergence . . . 47
3.4.4 Best Achievables Worst-case Guarantees on CΛ 49

3.5 Local Convergence for Non-Quadratic Functions 50
3.6 Experiments . 50
3.7 Conclusion . 51
3.A Relationship between first-order methods and polynomials 53
3.B Optimal methods for strongly convex and smooth quadratic objective . . . 55

3.B.1 Chebyshev semi-iterative method . 56
3.B.2 Polyak Heavy-ball method . 58

3.C Minimax Polynomials and Equioscillation Property 59
3.D Cyclical step-sizes . 63

3.D.1 Derivation of optimal algorithm with K = 2 alternating step-sizes . . 63
3.D.2 Derivation of Heavy-ball with K step-sizes cycle 67
3.D.3 Example: alternating step-sizes (K = 2) 72
3.D.4 Example: 3 cycling step-sizes . 77

3.E Beyond quadratic objective: local convergence of cycling methods 80
3.F Experimental setup . 81
3.G Comparison with Oymak (2021) . 81

3.1. Introduction 40

Algorithm 2
Cyclical Heavy-ball HBK(h0, . . . , hK−1;m)

Input: Initialization x0, momentum m ∈ (0, 1), step-sizes {h0, . . . , hK−1}
x1 = x0 −

h0

1 +m
∇f(x0)

for t = 1, 2, . . . do

xt+1 = xt − hmod(t,K)∇f(xt) +m(xt − xt−1)

end

3.1 Introduction

One of the most iconic methods in first-order optimization is Gradient descent with momen-
tum, also known as the Heavy-ball method (Polyak, 1964). This method enjoys widespread
popularity both in its original formulation and in a stochastic variant that replaces the
gradient by a stochastic estimate, a method that is behind many of the recent breakthroughs
in deep learning (Sutskever et al., 2013).

A variant of the stochastic Heavy-ball where the step-sizes are chosen in cyclical order
has recently come to the forefront of machine learning research, showing state-of-the-art
results on different deep learning benchmarks (Loshchilov and Hutter, 2017; Smith, 2017).
Inspired by this empirical success, we aim to study the convergence of the Heavy-ball
algorithm where step-sizes h0, h1, . . . are not fixed or decreasing but instead chosen in
cyclical order, as in Algorithm 2.

The Heavy-ball method with constant step-sizes enjoys a mature theory, where it is
known for example to achieve optimal black-box worst-case complexity of quadratic convex
optimization (Nemirovskii, 1992). In stark contrast, little is known about the convergence
of the above variant with cyclical step-sizes. Our main motivating question is

Do cyclical step-sizes improve
convergence of Heavy-ball?

Our main contribution provides a positive answer to this question and, more impor-
tantly, quantifies the speedup under different assumptions. In particular, we show that for
quadratic problems, whenever Hessian’s spectrum belongs to two or more disjoint intervals,
the Heavy-ball method with cyclical step-sizes achieves a faster worst-case convergence
rate. Recent works have shown that this assumption on the spectrum is quite natural
and occurs in many machine learning problems, including deep neural networks (Sagun
et al., 2017; Papyan, 2018; Ghorbani et al., 2019; Papyan, 2019). The concurrent work of
Oymak (2021) analyzes Gradient descent (without momentum, see extended comparison
in Appendix 3.G) under this assumption. More precisely, we list our main contributions
below.

• In sections 3.3 and 3.4, we provide a tight convergence rate analysis of the cyclical
Heavy-ball method (Theorems 3.3.1 and 3.3.2 for two step-sizes, and Theorem 3.4.8 for
the general case). This analysis highlights a regime under which this method achieves a
faster worst-case rate than the accelerated rate of Heavy-ball, a phenomenon we refer to
as super-acceleration. Theorem 3.5.1 extends the (local) convergence rate analysis results
to non-quadratic objectives.

3.2. Notation and Problem Setting 41

• As a byproduct of the convergence-rate analysis, we obtain an explicit expression for the
optimal parameters in in the case of cycles of length two (Algorithm 3) and an implicit
expression in terms of a system of K equations in the general case.

• Section 3.6 presents numerical benchmarks illustrating the improved convergence of
the cyclical approach on 4 problems involving quadratic and logistic losses on both
synthetic and a handwritten digits recognition dataset.

• Finally, we conclude in Section 3.7 with a discussion of this work’s limitations.

3.2 Notation and Problem Setting
Throughout the paper (except in Section 3.5), we consider the problem of minimizing a
quadratic function:

min
x∈Rd

f(x) , with f ∈ CΛ, (OPT)

where CΛ is the class of quadratic functions with Hessian matrix H and whose Hessian
spectrum Sp(H) is localized in Λ ⊆ [µ,L] ⊆ R>0:

CΛ ,
{
f(x) = (x− x∗)>H2 (x− x∗) + f∗, Sp(H) ⊆ Λ

}
The condition Λ ⊆ [µ,L] implies all quadratic functions under consideration are L-

smooth and µ-strongly convex. For this function class, we define κ, the (inverse) condition
number, and ρ, the ratio between the center of Λ and its radius, as

κ ,
µ

L
, ρ ,

L+ µ

L− µ
=

(
1 + κ

1− κ

)
. (3.1)

Finally, for a method solving (OPT) that generates a sequence of iterates {xt}, we define
its worst-case rate rt and its asymptotic rate factor τ as

rt , sup
x0∈Rd, f∈CΛ

‖xt − x∗‖
‖x0 − x∗‖

, 1− τ , lim sup
t→∞

t
√
rt . (3.2)

3.3 Super-acceleration with Cyclical Step-sizes
In this section we develop one of our main contributions, a convergence rate analysis of
the cyclical Heavy-ball method with cycles of length 2. This analysis crucially depends on
the location of the Hessian’s eigenvalues; we assume that these are contained in a set Λ

that is the union of 2 intervals of the same size

Λ = [µ1, L1] ∪ [µ2, L2] , L1 − µ1 = L2 − µ2 . (3.3)

By symmetry, this set is alternatively described by

µ , µ1, L , L2 and R ,
µ2 −L1

L2 − µ1
, (3.4)

where R is the relative length of the gap µ2 −L1 with respect to the diameter L2 − µ1 (see
Figure 3.1). This parametrization is convenient since the relative gap plays a crucial role
in our convergence analysis. Our results allow R = 0, therefore recovering the classical
setting of Hessian eigenvalues contained in an interval.

3.3. Super-acceleration with Cyclical Step-sizes 42

Figure 3.1: Hessian eigenvalue histogram for a quadratic objective on MNIST. The outlier
eigenvalue at L2 generates a non-zero relative gap R = 0.77. In this case, the 2-cycle
Heavy-ball method has a faster asymptotic rate than the single-cycle one (see Section
3.3.2).

Figure 3.2: Asymptotic rate of cyclical (K = 2) Heavy-ball in terms of its step-sizes
h0, h1 across 3 different values of the relative gap R. In the left plot, the relative gap is zero,
and so the step-sizes with the smallest rate coincide (h0 = h1). For non-zero values of R
(center and right), the optimal method instead alternates between two different step-sizes.
In all plots the momentum parameter m is set according to Algorithm 3.

Through a correspondence between optimization methods and polynomials (see Section
3.4), we can derive a worst-case analysis for the cyclical Heavy-ball method. The outcome
of this analysis is in the following theorem, that provides the asymptotic convergence rate
of Algorithm 2 for cycles of length two. All proofs of results in this section can be found in
Appendix 3.D.3.

Theorem 3.3.1 (Rate factor of HB2(h0, h1;m)). Let f ∈ CΛ and consider the cyclical Heavy-
ball method with step-sizes h0, h1 and momentum parameter m. The asymptotic rate factor of

3.3. Super-acceleration with Cyclical Step-sizes 43

Algorithm 2 with cycles of length two is

1− τ =


√
m if σ∗ 6 1,
√
m
(
σ∗ +

√
σ2
∗ − 1

) 1
2 if σ∗ ∈

(
1, 1+m2

2m

)
,

> 1 (no convergence) if σ∗ > 1+m2

2m ,

with σ∗ = max
λ∈
{
µ1,L1,µ2,L2,(1+m)

h0+h1
2h0h1

}
∩Λ

|σ2(λ)|

and σ2(λ) = 2

(
1 +m− λh0

2
√
m

)(
1 +m− λh1

2
√
m

)
− 1 .

3.3.1 Optimal algorithm

The previous theorem gives the convergence rate for all triplets (h0, h1,m). This allows us
for instance to map out the associated convergence rate for every pair of step-sizes. As we
illustrate in Figure 3.2, as we increase the relative gap (R), the optimal step-sizes become
further apart.

Another application of the previous theorem is to find the parameters that minimize
the asymptotic convergence rate. Although the process rather tedious and relegated
to Appendix 3.D.3, the resulting momentum (m) and step-size parameters (h0, h1) are
remarkably simple, and given by the expressions

m =

(√
ρ2 −R2 −

√
ρ2 − 1√

1−R2

)2

(3.5)

h0 =
1 +m

L1
h1 =

1 +m

µ2
. (3.6)

Being one of our main contributions, this algorithm is also described in pseudocode in
Algorithm 3. By construction, this method has an asymptotically optimal convergence rate
which we detail in the next Corollary:

Algorithm 3 Cyclical (K = 2) Heavy-ball with optimal parameters
Input: Initial iterate x0, µ1 < L1 6 µ2 < L2 (where L1 − µ1 = L2 − µ2)
Set: ρ = L2+µ1

L2−µ1
, R = µ2−L1

L2−µ1
,

m =

(√
ρ2−R2−

√
ρ2−1√

1−R2

)2

x1 = x0 − 1
L1
∇f(x0)

for t = 1, 2, . . . do

ht = 1+m
L1

(if t is even), ht = 1+m
µ2

(if t is odd)

xt+1 = xt − ht∇f(xt) +m(xt − xt−1)

end

Corollary 3.3.2. The non-asymptotic and asymptotic worst-case rates rAlg. 2
t and 1− τAlg. 2

of Algorithm 3 over CΛ for even iteration number t are

rAlg. 2
t =

(√
ρ2−R2−

√
ρ2−1√

1−R2

)t(
1 + t

√
ρ2−1
ρ2−R2

)
,

1− τAlg. 2 =

√
ρ2 −R2 −

√
ρ2 − 1

√
1−R2

.

3.4. A constructive Approach: Minimax Polynomials 44

Note that this result also holds if we swap the 2 step-sizes in Algorithm 3.

Eigengap and accelerated cyclical step-sizes While Corollary 3.3.2 focuses on the
optimal tuning of Algorithm 3, Theorem 3.D.1 provides general convergence analysis for
non-optimal parameters. In the case of the existence of an eigengap, a range of cyclical step-
sizes leads to an accelerated convergence rate (compared to the optimal constant step-size
strategy) and therefore, an inexact parameters search can lead to such an acceleration.

3.3.2 Comparison with Polyak Heavy-ball

In the absence of eigenvalue gap (R = 0 and Λ = [µ,L]), Algorithm 3 reduces to Polyak
Heavy-ball (PHB) (Polyak, 1964), whose worst-case rate is detailed in Appendix 3.B. Since
the asymptotic rate of Algorithm 3 is monotonically decreasing in R, the convergence
rate of the cyclical variant is always better than PHB. Furthermore, in the ill-conditioned
regime (small κ), the comparison is particularly simple: the optimal 2-cycle algorithm has
a
√

1−R2 relative improvement over PHB, as provided by the next proposition. A more
thorough comparison for different support sets Λ is discussed in Table 3.1.

Proposition 3.3.3. Let R ∈ [0, 1). The rate factors of respectively Algorithm 3 and PHB verify

1− τAlg. 2 =
κ→0

1− 2
√
κ√

1−R2
+ o(
√
κ) , (3.7)

1− τPHB =
κ→0

1− 2
√
κ+ o(

√
κ) .

Relative gap R Set Λ Rate factor τ Speedup τ/τPHB

R ∈ [0, 1) [µ, µ+ 1−R
2 (L− µ)] ∪ [L− 1−R

2 (L− µ), L] 2
√
κ√

1−R2
(1−R2)−

1
2

R = 1−
√
κ/2 [µ, µ+

√
µL
4] ∪ [L−

√
µL
4 , L] 2 4

√
κ κ−

1
4

R = 1− 2γκ [µ, (1 + γ)µ] ∪ [L− γµ, L] indep. of κ O(κ−
1
2)

Table 3.1: Case study of the convergence of Algorithm 3 as a function of R, in the regime
κ → 0. The first line corresponds to the regime where R is independent of κ, and we
observe a constant gain w.r.t. PHB. The second line considers a setting in which R depends
on
√
κ, that is, the two intervals in Λ are relatively small. The asymptotic rate reads

(1− 2 4
√
κ)t, improving over the (1− 2

√
κ)t rate of Polyak Heavy-ball, unimprovable when

R = 0. Finally, in the third line, R depends on κ, the two intervals in Λ are so small that
the convergence becomes O(1), i.e., is independent of κ.

3.4 A constructive Approach: Minimax Polynomials

This section presents a generic framework that allows designing optimal momentum and
step-size cycles for given sets Λ and cycle length K.

3.4. A constructive Approach: Minimax Polynomials 45

We first recall classical results that link optimal first-order methods on quadratics and
Chebyshev polynomials. Then, we generalize the approach by showing that optimal meth-
ods can be viewed as combinations of Chebyshev polynomials, and minimax polynomials
σΛ
K of degree K over the set Λ. Finally, we show how to recover the step-size schedule

from σΛ
K and present the general algorithm (Algorithm 4).

3.4.1 First-Order Methods on Quadratics and Polynomials

A key property that we will use extensively in the analysis is the following link between
first-order methods and polynomials.

Proposition 3.4.1. Let f ∈ CΛ. The iterates xt satisfy

xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)} , (3.8)

where x0 is the initial approximation of x∗, if and only if there exists a sequence of polynomials
(Pt)t∈N, each of degree at most 1 more than the highest degree of all previous polynomials and
P0 of degree 0 (hence the degree of Pt is at most t), such that

∀ t xt − x∗ = Pt(H)(x0 − x∗), Pt(0) = 1 . (3.9)

Example 3.4.2 (Gradient descent). Consider the Gradient descent algorithm with fixed
step-size h, applied to problem (OPT). Then, after unrolling the update, we have

xt+1−x∗ = xt−x∗ − h∇f(xt)

= xt−x∗ − hH(xt − x∗)
= (I − hH)t+1(x0 − x∗) . (3.10)

In this case, the polynomial associated to Gradient descent is Pt(λ) = (1− hλ)t.

The above proposition can be used to obtain worst-case rates for first-order methods by
bounding their associated polynomials. Indeed, using the Cauchy-Schwartz inequality in
(3.9) leads to

‖xt − x∗‖ 6 sup
λ∈Λ
|Pt(λ)| ‖x0 − x∗‖

=⇒ rt = sup
λ∈Λ
|Pt(λ)|, where Pt(0) = 1 . (3.11)

Therefore, finding the algorithm with the fastest worst-case rate can be equivalently framed
as the problem of finding the polynomial with smallest value on the eigenvalue support
Λ, subject to the normalization condition Pt(0) = 1. Such polynomials are referred to as
minimax. Throughout the paper, we use this polynomial-based approach to find methods
with optimal rates.

An important property of minimax polynomials is their equioscillation on Λ (see Theorem
3.C.1 and its proof for a formal statement).

Definition 3.4.3. (Equioscillation) A polynomial Pt of degree t equioscillates on Λ if it verifies
Pt(0) = 1 and there exist λ0 < λ1 < . . . < λt ∈ Λ such that

Pt(λi) = (−1)i max
λ∈Λ
|Pt(Λ)| . (3.12)

3.4. A constructive Approach: Minimax Polynomials 46

Example 3.4.4 (Λ is an interval). The t-th order Chebyshev polynomials of the first kind
Tt satisfy the equioscillation property on [−1, 1]. It follows that minimax polynomials on
Λ = [µ,L] can be obtained by composing the Chebyshev polynomial Tt with the linear
transformation σΛ

1 :

Tt
(
σΛ

1 (λ)
)

Tt
(
σΛ

1 (0)
) = arg min

P∈Rt[X],P (0)=1
sup
λ∈Λ
|P (λ)| , (3.13)

with σΛ
1 (λ) =

L+ µ

L− µ
− 2

L− µ
λ ,

where σΛ
1 maps the interval [µ, L] to [−1, 1]. The optimization method associated with this

minimax polynomial is the Chebyshev semi-terative method (Flanders and Shortley, 1950;
Golub and Varga, 1961), described also in Appendix 3.B.1. This method achieves the lower
complexity bound for smooth strongly convex quadratic minimization (Nemirovskii, 1994,
Chapter 12) or (Nemirovskii, 1992; Nesterov, 2003).

The next proposition provides the main results in this subsection, which is key for
obtaining Algorithm 3. It characterizes the even degree minimax polynomial in the setting
of Section 3.3, that is, when Λ is the union of 2 intervals of same size. In this case, the
minimax solution is also based on Chebyshev polynomials, but composed with a degree-two
polynomial σΛ

2 .

Proposition 3.4.5. Let Λ = [µ1, L1] ∪ [µ2, L2] be an union of two intervals of the same
size (L1 − µ1 = L2 − µ2) and let m,h0, h1 be as defined in Algorithm 3. Then the minimax
polynomial (solution to (3.12)) is, for all t = 2n, n ∈ N+

0 ,

Tn
(
σΛ

2 (λ)
)

Tn
(
σΛ

2 (0)
) = arg min

P∈Rt[X],
P (0)=1

sup
λ∈Λ
|P (λ)| ,

with σΛ
2 (λ) =

1

2m
(1 +m− λh0) (1 +m− λh1)− 1 .

3.4.2 Generalization to Longer Cycles

The polynomial in Example 3.4.4 uses a linear link function σΛ
1 to map Λ to [−1, 1]. In

Proposition 3.4.5, we see that a degree two link function σΛ
2 can be used to find the minimax

polynomial when Λ is the union of two intervals. This section generalizes this approach
and considers higher-order polynomials for σK .

We start with the following parametrization, with an arbitrary polynomial σK of degree
K,

Pt(λ;σK) ,
Tn (σK(λ))

Tn (σK(0))
, ∀t = Kn, n ∈ N+

0 . (3.14)

As we will see in the next subsection, this parametrization allows considering cycles of
step-sizes. Our goal now is to find the σK that obtains the fastest convergence rate possible.
The next proposition quantifies its impact on the asymptotic rate and its proof can be found
in Subsection 3.D.1.

3.4. A constructive Approach: Minimax Polynomials 47

Proposition 3.4.6. For a given σK such that supλ∈Λ|σK(λ)| = 1, the asymptotic rate factor
τσK of the method associated to the polynomial (3.14) is

1− τσK = lim
t→∞

t

√
sup
λ∈Λ
|Pt(λ;σK)| =

(
σ0 −

√
σ2

0 − 1

) 1
K

,

with σ0 , σK(0) . (3.15)

For a fixed K, the asymptotic rate (3.15) is a decreasing function of σ0. This motivates
the introduction of the “optimal” degree K polynomial σΛ

K as the one that solves

σΛ
K , arg max

σ∈RK [X]
σ(0) s.t. sup

λ∈Λ
|σ(λ)| 6 1 . (3.16)

Using the above definition, we recover the σΛ
1 and σΛ

2 from Example 3.4.4 and Proposition
3.4.5.

Finding the polynomial. Finding an exact and explicit solution for the general K and Λ

case is unfortunately out of reach, as it involves solving a system of K non-linear equations.
Here we describe an approximate approach. Let σΛ

K(x) =
∑K
i=0 σix

i. We propose to
discretize Λ into N different points {λj}, then solve the linear problem

max
σi

σ0 s.t. −1 6
∑K
i=0 σiλ

i
j 6 1, ∀j = 1, . . . , N . (3.17)

To check the optimality, it suffices to verify that the polynomial σΛ
K satisfies the equioscilla-

tion property (Definition 3.4.3), as depicted in Figure 3.3.

Remark 3.4.7 (Relationship between optimal and minimax polynomials). For later refer-
ence, we note that the optimal polynomial σΛ

K is equivalent to finding a minimax polynomial
on Λ and to rescale it. More precisely, σΛ

K is optimal if and only if σΛ
K/σ

Λ
K(0) is minimax.

3.4.3 Cyclical Heavy-ball and (Non-)asymptotic Rates of Convergence

We now describe the link between σΛ
K and Algorithm 4. Using the recurrence for Chebyshev

polynomials of the first kind in (3.14), we have ∀t = Kn, n ∈ N+
0 ,

Tn+1(σΛ
K(λ))

Tn+1(σΛ
K(0))

= 2σΛ
K(λ)

[
Tn(σΛ

K(λ))

Tn(σΛ
K(0))

] [
Tn(σΛ

K(0))

Tn+1(σΛ
K(0))

]
︸ ︷︷ ︸

=an

−
[
Tn−1(σΛ

K(λ))

Tn−1(σΛ
K(0))

] [
Tn−1(σΛ

K(0))

Tn+1(σΛ
K(0))

]
︸ ︷︷ ︸

=bn

.

It still remains to find an algorithm associated with this polynomial. To obtain one
in the form of Algorithm 2, one can use the stationary behavior of the recurrence. From
(Scieur and Pedregosa, 2020), the coefficients an and bn converge as n→∞ to their fixed
points a∞ and b∞. We therefore consider here an asymptotic polynomial P̄t(λ;σΛ

K), whose
recurrence satisfies

P̄t(λ;σΛ
K) = 2a∞σ

Λ
K(λ)P̄t−K(λ;σΛ

K)− b∞P̄t−2K(λ;σΛ
K) . (3.18)

3.4. A constructive Approach: Minimax Polynomials 48

Figure 3.3: Examples of optimal polynomials σΛ
K from (3.16), all of them verifying the

equioscillation property (Definition 3.4.3). The “?” symbol highlights the degree of σΛ
K that

achieves the best asymptotic rate τσ
Λ
K in (3.15) amongst all K (see Section 3.4.4). (Left)

When Λ is a unique interval, all 3 polynomials are equivalently optimal τσ
Λ
1 =τσ

Λ
2 =τσ

Λ
3 .

(Center) When Λ is the union of two intervals of the same size, the degree 2 polynomial is
optimal τσ

Λ
2 >τσ

Λ
3 >τσ

Λ
1 . This is expected given the result in Proposition 3.4.5. (Right)

When Λ is the union of two unbalanced intervals, the degree 3 polynomial instead achieves
the best asymptotic rate τσ

Λ
3 >τσ

Λ
2 >τσ

Λ
1 (see Section 3.4.4).

Similarly to K = 1, where this limit recursion corresponds to PHB, this recursion corre-
sponds to an instance of Algorithm 4 (see Proposition 3.4.9 below), further motivating the
cyclical Heavy-ball algorithm.

The following theorem is the main result of this section and characterizes the conver-
gence rate of Algorithm 2 for arbitrary momentum and step-size sequence {hi}i∈J1,KK.

Theorem 3.4.8. With an arbitrary momentum m and an arbitrary sequence of step-sizes
{hi} , the worst-case convergence rate 1− τ of Algorithm 2 on CΛ is

√
m if σ∗ 6 1

√
m
(
σ∗ +

√
σ2
∗ − 1

)K−1

if σ∗ ∈
(

1,
1 +mK

2 (
√
m)

K

)
> 1 (no convergence) if σ∗ >

1 +mK

2 (
√
m)

K
,

(3.19)

where σ∗ , sup
λ∈Λ
|σ(λ; {hi},m)|, σ(λ; {hi},m) is the K-degree polynomial

σ(λ; {hi},m) ,
1

2
Tr (M1M2 . . .MK) , (3.20)

and Mi =

[
1+m−hK−iλ√

m
−1

1 0

]
.

By optimizing over these parameters, we obtain the Algorithm 4, a method associ-
ated to (3.18), whose rate is described in Proposition 3.4.9. All proofs can be found in
Appendix 3.D.2.

Proposition 3.4.9. Let σ(λ; {hi},m) be the polynomial defined by (3.20), and σΛ
K be the

optimal link function of degree K defined by (3.16). If the momentum m and the sequence of
step-sizes {hi} satisfy

σ(λ; {hi},m) = σΛ
K(λ) , (3.21)

3.4. A constructive Approach: Minimax Polynomials 49

Algorithm 4 Cyclical (arbitrary K) heavy-ball with optimal parameters
Input: Eigenvalue localization Λ, cycle length K, initialization x0.
Preprocessing:

1. Find the polynomial σΛ
K such that it satisfies (3.16).

2. Set step-sizes {hi}i=0,...,K−1 and momentum m that satisfy resp. equations (3.21)
and (3.22).

Set x1 = x0 −
h0

1 +m
∇f(x0)

for t = 1, 2, . . . do
xt+1 = xt − hmod(t,K)∇f(xt) +m(xt − xt−1)

end

then 1) the parameters are optimal, in the sense that they minimize the asymptotic rate factor
from Theorem 3.4.8, 2) the optimal momentum parameter is

m =
(
σ0 −

√
σ2

0 − 1
)2/K

, where σ0 = σΛ
K(0) , (3.22)

3) the iterates from Algo. 4 with parameters {hi} and m form a polynomial with recur-
rence (3.18), and 4) Algorithm 4 achieves the worst-case rate rAlg. 3

t and the asymptotic rate
factor 1− τAlg. 3

rAlg. 3
t = O

(
t

(
σ0 −

√
σ2

0 − 1

)t/K)
, (3.23)

1− τAlg. 3 =

(
σ0 −

√
σ2

0 − 1

)1/K

.

Solving the system (3.21) The system is constructed by identification of the coefficients
in both polynomials σΛ

K and σ(λ; {hi},m), which can be solved using a naive grid-search for
instance. We are not aware of any efficient algorithm to solve this system exactly, although
it is possible to use iterative methods such as steepest descent or Newton’s method.

3.4.4 Best Achievables Worst-case Guarantees on CΛ

This section discusses the (asymptotic) optimality of Algorithm 4. In Section 3.4.2, the
polynomial Pt(· ;σΛ

K) was written as a composition of Chebyshev polynomials with σΛ
K ,

defined in (3.16). The best K is chosen as follows: we solve (3.16) for several values of
K, then pick the smallest K among the minimizers of (3.15). However, following such
steps does not guarantee that the polynomial PΛ

t,K is minimax, as it is not guaranteed to
minimize the worst-case rate supλ∈Λ |Pt(λ)| (see (3.11)).

We give here an optimality certificate, linked to a generalized version of equioscillation.
In short, if we can find K non overlapping intervals (more formally, whose interiors are
disjoint) Λi in Λ such that σΛ

K(Λi) = [−1, 1] then PΛ
t,K is minimax for t = nK, n ∈ N+

0 . The
precise result is in Theorem 3.C.2. A direct consequence is the asymptotic optimality of
Algorithm 4.

We note that σΛ
K might not exist for a given Λ. A complete characterization of the set Λ

for which σΛ
K exists is out of the scope of this paper. A partial answer is given in (Fischer,

2011) when Λ is the union of two intervals but the general case remains open.

3.5. Local Convergence for Non-Quadratic Functions 50

3.5 Local Convergence for Non-Quadratic Functions

When f is twice-differentiable, we show local convergence rates of Algorithm 2 (see proof
in Section 3.E). As with Polyak heavy-ball acceleration, these results are local, as the only
known convergence results for Polyak heavy-ball beyond quadratic objectives do not lead
to an acceleration with respect to Gradient descent without momentum (See Ghadimi et al.,
2015, Theorem 4). Moreover, it is possible to find pathological counter-examples and a
specific initialization for which the method does not converge globally. Lessard et al. (2016,
Figure 7) provides such a counter-example. Note the latest is not twice differentiable,
but that a twice differentiable counter-example can be derived from the latest, using for
instance convolutions.

Theorem 3.5.1 (Local convergence). Let f : Rd 7→ R be a twice continuously differentiable
function, x∗ a local minimizer, and H be the Hessian of f at x∗ with Sp(H) ⊆ Λ. Let xt
denote the result of running Algorithm 2 with parameters h1, h2, · · · , hK ,m, and let 1− τ be
the linear convergence rate on the quadratic objective (OPT). Then we have

∀ε > 0,∃ open set Vε : x0, x∗ ∈ Vε
=⇒ ‖xt − x∗‖ = O((1− τ + ε)t)‖x0 − x∗‖. (3.24)

where ‖ · ‖ denotes the Euclidean norm.
In short, when Algorithm 2 is guaranteed to converge at rate 1 − τ on (OPT), then

the convergence rate on a nonlinear functions can be arbitrary close to 1− τ when x0 is
sufficiently close to x∗.

3.6 Experiments

In this section we present an empirical comparison of the cyclical heavy-ball method for
different length cycles across 4 different problems. We consider two different problems,
quadratic and logistic regression, each applied on two datasets, the MNIST handwritten
digits (Le Cun et al., 2010) and a synthetic dataset. The results of these experiments,
together with a histogram of the Hessian’s eigenvalues are presented in Figure 3.4 (see
caption for a discussion).

Dataset description. The MNIST dataset consists of a data matrix A with 60000

images of handwritten digits each one with 28 × 28 = 784 pixels. The synthetic dataset
is generated according to a spiked covariance model (Johnstone, 2001), which has been
shown to be an accurate model of covariance matrices arising for instance in spectral
clustering (Couillet and Benaych-Georges, 2016) and deep networks (Pennington and
Worah, 2017; Granziol et al., 2020). In this model, the data matrix A = XZ is generated
from a m × n random Gaussian matrix X and an m ×m deterministic matrix Z. In our
case, we take n = 1000,m = 1200 and Z is the identity where the first three entries
are multiplied by 100 (this will lead to three outlier eigenvalues). We also generate an
n-dimensional target vector b as b = Ax or b = sign(Ax) for the quadratic and logistic
problem respectively.

Objective function For each dataset, we consider a quadratic and a logistic regression
problem, leading to 4 different problems. All problems are of the form minx∈Rp

1
n

∑n
i=1 `(A

>
i x, bi)+

λ‖x‖2, where ` is a quadratic or logistic loss, A is the data matrix and b are the target
values. We set the regularization parameter to λ = 10−3‖A‖2. For logistic regression, since

3.7. Conclusion 51

Figure 3.4: Hessian Eigenvalue histogram (top row) and Benchmarks (bottom row). The top
row shows the Hessian eigenvalue histogram at optimum for the 4 considered problems,
together with the interval boundaries µ1 < L1 < µ2 < L2 for the two-interval split of the
eigenvalue support described in Section 3.3. In all cases, there’s a non-zero gap radius
R. This is shown in the bottom row, where we compare the suboptimality in terms of
gradient norm as a function of the number of iterations. As predicted by the theory, the
non-zero gap radius translates into a faster convergence of the cyclical approach, compared
to PHB in all cases. The improvement is observed on both quadratic and logistic regression
problems, even through the theory for the latter is limited to local convergence.

guarantees only hold at a neighborhood of the solution (even for the 1-cycle algorithm),
we initialize the first iterate as the result of 100 iteration of Gradient descent. In the case
of logistic regression, the Hessian eigenvalues are computed at the optimum.

3.7 Conclusion

This work is motivated by two recent observations from the optimization practice of
machine learning. First, cyclical step-sizes have been shown to enjoy excellent empirical
convergence (Loshchilov and Hutter, 2017; Smith, 2017). Second, spectral gaps are
pervasive in the Hessian spectrum of deep learning models (Sagun et al., 2017; Papyan,
2018; Ghorbani et al., 2019; Papyan, 2019). Based on the simpler context of quadratic
convex minimization, we develop a convergence-rate analysis and optimal parameters for
the heavy-ball method with cyclical step-sizes. This analysis highlights the regimes under
which cyclical step-sizes have faster rates than classical accelerated methods. Finally, we
illustrate these findings through numerical benchmarks.

Main Limitations. In Section 3.3 we gave explicit formulas for the optimal parameters in
the case of the 2-cycle heavy-ball algorithm. These formulas depend not only on extremal
eigenvalues—as is usual for accelerated methods—but also on the spectral gap R. The gap
can sometimes be estimated after computing the top eigenvalues (e.g. top-2 eigenvalue for
MNIST). However, in general, there is no guarantee on how many eigenvalues are needed to
estimate it and it must sometimes be seen as hyperparameter. Note Theorem 3.3.1 provides
a convergence analysis also for non-optimal parameters, which would give accelerated

3.7. Conclusion 52

convergence rates when doing a coarse grid-search over parameters as it is often done in
empirical works.

Another limitation is the fact global convergence results rely heavily on the quadratic
assumption which is quite different from our motivation, namely optimizing neural net-
works. Even if we provide local convergence guarantee in Section 3.5, we are not able to
estimate the size of the optimum neighborhood for which Theorem 3.5.1 holds.

Another limitation regards long cycles. For cycles longer than 2, we gave an implicit
formula to set the optimal parameters (Proposition 3.4.9). This involves solving a set
of non-linear equations whose complexity increases with the cycle length. That being
said, cyclical step-sizes might significantly enhance convergence speeds both in terms
of worst-case rates and empirically, and this work advocates that new tuning practices
involving different cycle lengths might be relevant.

3.A. Relationship between first-order methods and polynomials 53

Organization of the appendix

The appendix contains all proofs that were not presented in the main core of the paper. We
also detail all examples, and provide some complementary elements.

Section 3.A details the existing link between first-order methods and family of “residual
polynomials”. This term refers in all the appendix to the polynomials which value in 0 is 1.

In Section 3.B, we recall some well known optimal methods for L-smooth µ-strongly
convex quadratic minimization (i.e., when the spectrum is contained in a single interval
Λ = [µ,L]). Its purpose is exclusively to recall well-known foundation of optimization that
are those algorithms and their construction.

In Section 3.C, we recall the polynomial formulation of the optimal method design
problem, as well as a fundamental property, called “equioscillation”, to characterize the
solution of this problem.

In Appendix 3.D, we provide all proofs related to cyclic step-sizes. In particular,

• In Subsection 3.D.1, we derive the optimal algorithm in a case where Λ is the union of
2 intervals of the same size (See (3.3)). This leads to the use of alternating step-sizes.
The resulting algorithm has a stationary form which is Algorithm 3.

• Therefore, in Subsection 3.D.2, we study the Heavy-ball with cycling step-sizes
(Algorithm 2).

• In Subsection 3.D.3 and Subsection 3.D.4, we use our results to design methods with
cycles of lengths K = 2 and K = 3. For those cases, we provide a more elegant
formulation of the results.

In Section 3.E, we provide a proof of Theorem 3.5.1 (local behavior beyond quadratics)
and in Section 3.F, we provide some information about the code we used for the experiments
in quadratic and non quadratic settings.

Finally, in Section 3.G we discuss similarities and differences with Oymak (2021).

3.A Relationship between first-order methods and
polynomials

In this section we prove some results on the relationship between polynomials and first-
order methods for quadratic minimization, which is the starting point for our theoretical
framework. This relationship is classical and was exploited by Rutishauser (1959); Ne-
mirovskii (1992, 1994)), to name a few. The following proposition makes this relationship
precise:

Proposition 3.4.1. Let f ∈ CΛ. The iterates xt satisfy

xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)} , (3.8)

where x0 is the initial approximation of x∗, if and only if there exists a sequence of polynomials
(Pt)t∈N, each of degree at most 1 more than the highest degree of all previous polynomials and
P0 of degree 0 (hence the degree of Pt is at most t), such that

∀ t xt − x∗ = Pt(H)(x0 − x∗), Pt(0) = 1 . (3.9)

3.A. Relationship between first-order methods and polynomials 54

Proof. We successively prove both directions of the equivalence.
(=⇒) Given a first-order method, we can find a sequence of polynomials (Pt)t∈N such that,

for a given quadratic function f of Hessian H and a given starting point x0, the iterates xt
verify

xt − x∗ = Pt(H)(x0 − x∗).

Moreover, The polynomials sequence (Pt)t∈N verifies the relations

deg(Pt+1) 6 max
k6t

deg(Pk) + 1 and Pt(0) = 1.

We proceed by induction:

Initial case. Let t = 0. Then for any first-order method we have the trivial relationship

x0 − x∗ = P0(H)(x0 − x∗) with P0 = 1.

This proves the implication for t = 0, as P0 is a degree 0 polynomial satisfying P0(0) = 1.

Recursion. Let t ∈ N. We assume the following statement true,

∀ k 6 t, xk − x∗ = Pk(H)(x0 − x∗) with Pk(0) = 1.

We now prove this statement is also true for t+1. Since xt+1 ∈ x0+span{∇f(x0), . . . ,∇f(xt)},
there exists a family (γt+1,k)k∈J0,tK such that

xt+1 = x0 − γt+1,0∇f(x0)− · · · − γt+1,t∇f(xt). (3.25)

Then, by the induction hypothesis we have:

xt+1 − x∗ = x0 − x∗ − γt+1,0H(x0 − x∗)− · · · − γt+1,tH(xt − x∗)
= x0 − x∗ − γt+1,0HP0(H)(x0 − x∗)− · · · − γt+1,tHPt(H)(x0 − x∗)
, Pt+1(H)(x0 − x∗) .

We observe that the latest polynomial has a degree at most 1 plus the highest degree of
(Pk)k6t and that Pt+1(0) = 1 (since Pt+1 is defined as 1 plus some polynomial multiple of
the polynomial X), which concludes the proof.

(⇐=): From a family of polynomials (Pt)t∈N, with

deg(Pt+1) 6 max
k6t

deg(Pk) + 1 and Pt(0) = 1, (3.26)

we can obtain a first-order method such that, for any quadratic f (and its Hessian H) and
any starting point x0, we verify

∀t ∈ N, xt − x∗ = Pt(H)(x0 − x∗).

Let the sequence (Pt)t∈N verifies (3.26) for all t ∈ N. Let

d = max
t′6t

deg(Pt′).

3.B. Optimal methods for strongly convex and smooth quadratic objective 55

A gap in the sequence of degrees would stand in contradiction with our assumptions.
Since, there is no gap in degree, for any d′ 6 d there exists t′ 6 t such that deg(Pt′) = d′,

and therefore Span((Pk)k6t) = Rd[X].
Moreover, we know Pt+1 has a degree at most d + 1 and Pt+1(0) = 1, so 1−Pt+1(X)

X ∈
Rd[X].

This proves the existence of (γt+1,k)k∈J0,tK such that

1− Pt+1(X)

X
= γt+1,0P0(X) + · · ·+ γt+1,tPt(X). (3.27)

Then, defining
xt+1 = x0 − γt+1,0∇f(x0)− · · · − γt+1,t∇f(xt) , (3.28)

we have

xt+1 − x∗ = x0 − x∗ −H (γt+1,0(x0 − x∗) + · · ·+ γt+1,t(xt − x∗)) (3.29)

= (1−X (γt+1,0P0(X) + · · ·+ γt+1,tPt(X))) (H)(x0 − x∗) (3.30)

= Pt+1(H)(x0 − x∗) . (3.31)

Defining xt for all t according to (3.28) gives an algorithm that has as associated residual
polynomials (Pt)t∈N. �

The above proposition can be used to obtain worst-case rates for first-order methods by
bounding their associated polynomials. Indeed, using the Cauchy-Schwartz inequality in
(3.9) leads to

‖xt − x∗‖ 6 sup
λ∈Λ
|Pt(λ)| ‖x0 − x∗‖ =⇒ rt = sup

λ∈Λ
|Pt(λ)|, where P (0) = 1 . (3.32)

Therefore, finding the algorithm with the fastest worst-case rate can be equivalently framed
as the problem of finding the residual polynomial with smallest value on the eigenvalue
support Λ.

Then, finding the fastest algorithm is equivalent of finding, for each t > 0, the poly-
nomial of degree t that reaches the smallest infinite norm on the set Λ. Therefore we
introduce the notion of minimax polynomial (Definition 3.A.1) over a set Λ as the one that
reaches the smallest maximal value over Λ among a set of polynomial of fixed degree and
P (0) = 1.

Definition 3.A.1 (Minimax polynomial of degree t over Λ). For any, t > 0, and any
relatively compact (i.e. bounded) set Λ ⊂ R, the minimax polynomial of degree t over Λ,
written ZΛ

t , is defined as

ZΛ
t , argmin

P∈Rt[X]
sup
λ∈Λ
|P (λ)|, subject to P (0) = 1 . (3.33)

3.B Optimal methods for strongly convex and smooth
quadratic objective

In this section, for sake of completness, we revisit some classical methods, described in
e.g. (Polyak, 1964; Goh, 2017; Pedregosa, 2020, 2021a), that are optimal when the
Hessian eigenvalues are contained in a single interval of the form Λ = [µ,L]. To make this
setup explicit, we will denote the optimal polynomials σΛ

1 and ZΛ
t (respectively defined

in Equation (3.16) and Equation (3.33)) by σ[µ,L]
1 , and Z [µ,L]

t .

3.B. Optimal methods for strongly convex and smooth quadratic objective 56

As mentioned in Example 3.4.4, the minimax polynomial Z [µ,L]
t is

Z
[µ,L]
t (λ) =

Tt(σ
[µ,L]
1 (λ))

Tt(σ
[µ,L]
1 (0))

,

where Tt denotes the tth Chebyshev polynomial (See e.g. Chebyshev (1853)) and σ[µ,L]
1

the affine function σ(λ) , L+µ
L−µ −

2
L−µλ that maps [µ,L] onto [−1, 1]. This can be seen a

consequence of the more general equioscillation discussed in Appendix 3.C. The next section
presents one method which has Z [µ,L]

t as associated residual polynomial. This method is
known as the Chebyshev semi-iterative method.

3.B.1 Chebyshev semi-iterative method

The algorithm follows the three terms pattern from Equation (3.13) to iteratively form
ZΛ

1 , . . . , Z
Λ
t .

Algorithm 5 Chebyshev semi-iterative method (Golub and Varga, 1961)
Input: x0

Initialize: ω0 = 2

x1 = x0 − 2
L+µ∇f(x0)

for t = 1, . . . do

ωt+1 =
(
1− 1

4

(
1−κ
1+κ

)2
ωt
)−1

xt+1 = xt − 2
L+µωt∇f(xt) + (ωt − 1)(xt − xt−1)

end

Theorem 3.B.1. The iterates produced by the Chebyshev semi-iterative method verify

xt − x∗ =
Tt(σ

[µ,L]
1 (H))

Tt(σ
[µ,L]
1 (0))

(x0 − x∗) for all t ∈ N. (3.34)

Furthermore, this method enjoys a worst-case rate of the form

‖xt − x∗‖ 6
1

Tt(σ
[µ,L]
1 (0))

‖x0 − x∗‖ = O

(1−
√
κ

1 +
√
κ

)t . (3.35)

Proof. Consider first an algorithm whose iterates verify (3.34). Then using the Cauchy-
Schwartz inequality and known bounds of Chebyshev polynomials, we can show the
following rate

‖xt − x∗‖ 6
sup

λ∈[µ,L]
|Tt(σ[µ,L]

1 (λ))|

Tt(σ
[µ,L]
1 (0))

‖x0 − x∗‖

=
1

Tt
(

1+κ
1−κ

)‖x0 − x∗‖ since sup
x∈[−1,1]

|Tt(x)| = 1

6 2

(
1−
√
κ

1 +
√
κ

)t
‖x0 − x∗‖ sinceTt(x) >

(
x+
√
x2 − 1

)t
2

, ∀x /∈ (−1, 1) .

It remains to prove that Algorithm 5 is the one that achieves the property (3.34). Using
the recursion verified by Chebyshev polynomials

Tt+1(x) = 2xTt(x)− Tt−1(x), (3.36)

3.B. Optimal methods for strongly convex and smooth quadratic objective 57

we have

xt+1 − x∗ =
Tt+1(σ

[µ,L]
1 (H))

Tt+1(σ
[µ,L]
1 (0))

(x0 − x∗)

=
2σ

[µ,L]
1 (H)Tt(σ

[µ,L]
1 (H))(x0 − x∗)− Tt−1(σ

[µ,L]
1 (H))(x0 − x∗)

Tt+1(σ
[µ,L]
1 (0))

=
2σ

[µ,L]
1 (H)Tt(σ

[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

(xt − x∗)−
Tt−1(σ

[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

(xt−1 − x∗)

=
2σ

[µ,L]
1 (0)Tt(σ

[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

(
I − 2

L+ µ
H

)
(xt − x∗)−

Tt−1(σ
[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

(xt−1 − x∗) .

Let’s introduce ωt ,
2σ

[µ,L]
1 (0)Tt(σ

[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

. Then ω0 = 2 and by Chebyshev recursion (Equa-

tion (3.36)), ωt − 1 =
Tt−1(σ

[µ,L]
1 (0))

Tt+1(σ
[µ,L]
1 (0))

. With this notation we can write the above identity

more compactly as

xt+1 − x∗ = ωt

(
I − 2

L+ µ
H

)
(xt − x∗)− (ωt − 1)(xt−1 − x∗)

= xt −
2

L+ µ
ωt∇f(xt) + (ωt − 1)(xt − xt−1) .

It remains to find a recursion on ωt to make its use tractable. Using one more time the
Chebyshev recursion Equation (3.36),

ω−1
t =

Tt+1(σ
[µ,L]
1 (0))

2σ
[µ,L]
1 (0)Tt(σ

[µ,L]
1 (0))

=
2σ

[µ,L]
1 (0)Tt(σ

[µ,L]
1 (0))− Tt−1(σ

[µ,L]
1 (0))

2σ
[µ,L]
1 (0)Tt(σ

[µ,L]
1 (0))

= 1− 1

4σ
[µ,L]
1 (0)2

2σ
[µ,L]
1 (0)Tt−1(σ

[µ,L]
1 (0))

Tt(σ
[µ,L]
1 (0))

= 1− 1

4σ
[µ,L]
1 (0)2

ωt−1,

which can finally be written as

ωt+1 =
1

1− 1
4

(
1−κ
1+κ

)2
ωt

,

and we recognize the Chebyshev semi-iterative method described in Algorithm 5. �
This method, unlike the Polyak Heavy-ball (PHB) method, uses a different step-size

and momentum at each iteration. However, both are related, as taking the limit of ωt as

t→∞ in Algorithm 5 we obtain ω∞ = 1 +m with m =
(

1−
√
κ

1+
√
κ

)2
. This correspond to the

parameters of PHB.
We note that this is only one way to construct a method that has the Chebsyshev polyno-

mial as residual polynomial at every iteration. However, it is possible to construct a different
update that have the Chebyshev polynomial at fixed iteration, see for instance (Young,
1953; Agarwal et al., 2021) for one such alterative that does not require momentum.

3.B. Optimal methods for strongly convex and smooth quadratic objective 58

3.B.2 Polyak Heavy-ball method

Algorithm 6 Polyak Heavy-ball
Input: x0

Set: m =
(

1−
√
κ

1+
√
κ

)2
and h = 2(1+m)

L+µ .

x1 = x0 − h
1+m∇f(x0)

for t = 1, . . . do
xt+1 = xt − h∇f(xt) +m(xt − xt−1)

end

Theorem 3.B.2. The iterates of the Heavy-ball algorithm verify

xt − x∗ = Pt(H)(x0 − x∗) for all t ∈ N,

with Pt defined as

Pt(λ) ,
(√
m
)t [2m

1 +m
Tt(σ

[µ,L]
1 (λ)) +

1−m
1 +m

Ut(σ
[µ,L]
1 (λ))

]
. (3.37)

Furthermore, this method enjoys a worst-case rate of the form

‖xt − x∗‖ = O

t(√κ− 1√
κ+ 1

)t . (3.38)

Proof. From the update defined in Algorithm 6, we identify

P0(λ) = 1

P1(λ) = 1− h

1 +m
λ

Pt+1(λ) = (1 +m− hλ)Pt(λ)−mPt−1(λ).

Introducing P̃t , Pt

(
√
m)

t , we have

P̃0(λ) = 1

P̃1(λ) =
1 +m− hλ
(1 +m)

√
m

=
2

1 +m
σ

[µ,L]
1 (λ)

P̃t+1(λ) =
(1 +m− hλ)√

m
P̃t(λ)− P̃t−1(λ)

= 2σ
[µ,L]
1 (λ)P̃t(λ)− P̃t−1(λ).

This is a second order recurrence, with 2 initializations. It allows us to identify uniquely
the family

P̃t(λ) =
2m

1 +m
Tt(σ

[µ,L]
1 (λ)) +

1−m
1 +m

Ut(σ
[µ,L]
1 (λ)). (3.39)

where Ut denotes the Chebyshev polynomial of the second kind of degree t. While both
Tt and Ut verify the same recursion as P̃t and T0 = U0 = P̃0 = 1, the difference between
T and U comes when T1(X) = X and U1(X) = 2X. This is how P̃t ends being a linear
combination of the Tt and Ut. Finally,

Pt(λ) =
(√
m
)t [2m

1 +m
Tt(σ

[µ,L]
1 (λ)) +

1−m
1 +m

Ut(σ
[µ,L]
1 (λ))

]
. (3.40)

3.C. Minimax Polynomials and Equioscillation Property 59

Since by definition σ[µ,L]
1 ([µ,L]) = [−1, 1], Tt(σ

[µ,L]
1 (λ)) 6 1 and Ut(σ

[µ,L]
1 (λ)) 6 t+ 1,∀t ∈

N. Hence, ∀λ ∈ [µ,L],

Pt(λ) 6
(√
m
)t [

1 +
1−m
1 +m

t

]
6 (2
√
κt+ 1)

(
1−
√
κ

1 +
√
κ

)t
(3.41)

and

‖xt − x∗‖ = O

t(√κ− 1√
κ+ 1

)t . (3.42)

�

3.C Minimax Polynomials and Equioscillation Property

Section 3.B dealt with optimal methods when Λ = [µ,L]. Those methods could be derived
since the minimax polynomial (Definition 3.A.1) Z [µ,L]

t is known.
In this section we consider the problem of finding minimax polynomials in a more

general setting. We provide a characterization of the minimax polynomial defined in
definition 3.A.1. For the sake of simplicity, we actually focus on the polynomial σΛ

t solution
of (3.16). We can easily adapt the result to ZΛ

t leveraging Remark 3.4.7. We prove the
following theorem.

Theorem 3.C.1. Let PK be a degree K polynomial verifying PK(Λ) ⊂ [−1, 1]. Then PK
is the unique solution σΛ

K of equation (3.16) if and only if there exists a sorted family

(λi)i∈J0,KK ∈
(
Λ
)K+1

(where Λ is the closure of Λ) such that ∀i ∈ J0,KK, PK(λi) = (−1)i.

The following proof is technical and requires to introduce several new notations. Hence
we first briefly describe the intuition before giving the actual complete proof.

(⇐=): Assume PK “oscillates” K + 1 times between 1 and −1. Since PK has a degree
K, it is completely determined by its values on those K + 1 points, using the Lagrange
interpolation representation. We prove that PK is optimal because any other polynomial
QK , having different values on those K + 1 points would achieve a smaller value QK(0) at
0.

(=⇒): We prove this by contradiction. We assume that PK doesn’t oscillate K + 1

times between 1 and −1, and prove that PK(0) is not optimal. To do so, we build a small
perturbation εQK such that PK + εQK is a polynomial of degree K, which values on Λ are
all in [−1; 1], and with an higher value at 0.

(Uniqueness) We reuse the Lagrange interpolation representation to justify that 2
optimal polynomials must “oscillate” on the same points, therefore are equal.

Proof. We prove successively both directions:
(⇐=): Assume ∃λ0 < λ1 < · · · < λK such that

∀i ∈ J0,KK, PK(λi) = (−1)i and PK(Λ) ⊂ [−1, 1]. (3.43)

We aim to prove that PK is the unique solution σΛ
K of equation (3.16), that is for any other

polynomial QK of degree K verifying QK(Λ) ⊂ [−1, 1], PK(0) > QK(0).
We introduce such a polynomial QK of degree K and bounded in absolute value by 1

on Λ. Let’s define, for all i ∈ J0, KK,

vi , QK(λi) ∈ [−1, 1]. (3.44)

3.C. Minimax Polynomials and Equioscillation Property 60

These K+1 values characterize QK (of degree K), and we can decompose it over Lagrange
interpolation polynomials. We have

QK =
K∑
i=0

viLλi where Lλi(X) ,
∏
j 6=i

X − λj
λi − λj

. (3.45)

The value at 0 can be computed as

QK(0) =
K∑
i=0

viLλi(0) =
K∑
i=0

vi
∏
j 6=i

λj
λj − λi

. (3.46)

Maximizing this linear function of (vi)i∈J0,KK over the `∞ ballB∞(1) , {(vi)i∈J0,KK, ∀i,−1 6

vi 6 1} leads to, for v∗ , arg minv∈B∞(1)

∑K
i=0 vi

∏
j 6=i

λj
λj−λi ,

v∗i = sgn

∏
j 6=i

λj
λj − λi

 = (−1)i. (3.47)

where sgn is the sign function (which maps 0 to 0, R<0 to −1, and R>0 to 1). Finally,

PK(0) > QK(0) (3.48)

which concludes the proof.
(=⇒): Assume PK alternates s < K + 1 times between −1 and 1 on Λ. We want to show

that PK is not optimal in the sense described above. To do so, we construct a perturbation of
PK that increases its value in 0 while still satisfying the constraint PK(Λ) ⊂ [−1, 1].

Let’s define

λ
(1)
0 < · · · < λ

(ν0)
0 < λ

(1)
1 < · · · < λ

(ν1)
1 < · · · < λ

(1)
s−1 < · · · < λ

(νs−1)
s−1 (3.49)

such that

PK(λ
(j)
i) = (−1)i and ∀λ ∈ Λ,

(
∃(i, j)|λ = λ

(j)
i or |PK(λ)| < 1

)
. (3.50)

In short,
(
λ

(j)
i

)
(i,j)

describes all the extremal points of PK in Λ. The indices change

when the sign changes, while the exponents are used to express the possible consecutive
repetitions of the same value (−1 or 1).

Set (ri)i∈J0,sK as any set of positive numbers satisfying:

0 < r0 < inf(Λ) < λ
(1)
0 < λ

(ν0)
0 < r1 < · · · < rs < λ

(1)
s−1 < λ

(νs−1)
s−1 < sup(Λ) < rs. (3.51)

By definition, each interval [ri, ri+1], i ∈ J0, s − 1K, contains λ(j)
i for all j, but no other

extremal points of PK in Λ. Hence, PK([ri, ri+1] ∩ Λ) doesn’t contain (−1)i+1. Since,⋃
i<s,i even[ri, ri+1] ∩Λ is compact, and by continuity of PK , PK

(⋃
i<s,i even[ri, ri+1] ∩ Λ

)
is

compact. Therefore,

∃ε−1 > 0|PK

 ⋃
i<s,i even

[ri, ri+1] ∩ Λ

 ⊂ [−1 + ε−1, 1]. (3.52)

Similarly, we obtain

∃ε1 > 0|PK

 ⋃
i<s,i odd

[ri, ri+1] ∩ Λ

 ⊂ [−1, 1− ε1]. (3.53)

3.C. Minimax Polynomials and Equioscillation Property 61

We are now equipped to build the aforementioned perturbation. Let

QK(X) ,
∏

i∈J0,s−1K

(ri −X). (3.54)

Note that QK has a degree s 6 K and satisfies

QK

 ⋃
i<s,i even

[ri, ri+1] ∩ Λ

 ⊂ R− and QK

 ⋃
i<s,i odd

[ri, ri+1] ∩ Λ

 ⊂ R+. (3.55)

Moreover, those sets are compact , by continuity of QK , and consequently bounded. We
can therefore choose a small enough ε > 0 such that

εminQK

 ⋃
i<s,i even

[ri, ri+1] ∩ Λ

 > −ε−1 and εmaxQK

 ⋃
i<s,i odd

[ri, ri+1] ∩ Λ

 < ε1.

This leads to
(PK + εQK)(Λ) ⊂ [−1, 1]. (3.56)

And as by definition, QK(0) > 0,

(PK + εQK)(0) > PK(0). (3.57)

Finally (PK + εQK) ∈ RK [X]. This proves that PK is not optimal.
(Uniqueness) Here, we prove that the optimal polynomial is necessarily unique. To do so,

we introduce 2 optimal polynomials and show there must actually be identical.
Let PK an optimal polynomial and (λi)i∈J0,KK ∈ ΛK+1 a family on which PK interpolates

alternatively 1 and −1. Let any other feasible polynomial QK and (vi)i∈J0,KK its values on
(λi)i∈J0,KK:

QK =
K∑
i=0

viLλi . (3.58)

We have showed in the first point of this proof that the optimal values of vi are alternatively
1 and −1. Consequently, if QK is also optimal,

QK(λi) = PK(λi) (3.59)

for all i ∈ J0,KK, which characterizes polynomials of degree K. Then

QK = PK (3.60)

which shows that the optimal polynomial is unique. �
We now give the formal statement and the proof of the second result, used in Subsec-

tion 3.4.4.

Theorem 3.C.2. Tn(σK) is optimal for all n if and only if σK verifies the equioscillation
property (Definition 3.4.3, hence σK = σΛ

K by Theorem 3.C.1) and Λ = σ−1
K ([−1, 1]), i.e. the

inverse mapping σ−1
K transforms the interval [−1, 1] into exactly Λ.

Before providing the proof, we first highlight that the property

∀λ ∈ Λ, σK(λ) ∈ [−1, 1] (3.61)

3.C. Minimax Polynomials and Equioscillation Property 62

can equivalently be written
Λ ⊂ σ−1

K ([−1, 1]). (3.62)

In other words, we are interested in the case where the reverse inclusion holds as well.
This means that

σK(λ) ∈ [−1, 1]⇒ λ ∈ Λ. (3.63)

This corresponds to a stronger form of optimality of σK: it “fully” uses the available
assumption related to Λ, in the sense that no point can be added to Λ without breaking
the condition σK(Λ) ⊂ [−1; 1]. For example, on Figure 3.3, σΛ

3 does not satisfy the later
property on the center graph, but satisfies it on the right graph. Here, we show that under
this condition, Tn(σK) = Tn(σΛ

K) is optimal (in the sense of (3.16)) for all n ∈ N.
In Section 3.4.4, we give another view of this condition for Tn(σK) to be optimal for all

n. We can decompose Λ as the union of K intervals Λi such that they have disjoint interiors
and they are all mapped to [−1, 1] by σK . Hence, σK maps Λ to [−1, 1] exactly K times.

Proof. From Theorem 3.C.1, Tn(σK) is optimal for all n if and only if, for all n, there exist
a sorted family of (λi)i∈J0,nKK such that, Tn(σK(λi)) = (−1)i.

Let n ∈ N. We observe that by definition of Tn,

Tn(σK(λ)) = ±1 if and only if ∃j ∈ J0, nK|σK(λ) = cos
jπ

n
. (3.64)

We successively treat both directions: (⇐=) we assume σK oscillates and Λ = σ−1
K ([−1, 1]).

We aim to prove that Tn(σK) is optimal for all n ∈ N.
By equioscillation property, we know that there exists λ′i such that

σK(λ′i) = (−1)i. (3.65)

By the intermediate value theorem, we know that for any i ∈ J0;KK, between the pair
λ′i, λ

′
i+1, there exist sorted (µji)ni<j<(n+1)i such that for all j ∈ Jni+ 1; (n+ 1)i− 1K,

σK(µji) = cos
jπ

n
. (3.66)

We identify λni = λ′i and λj = µjbj/nc for all j not multiple of n. Then, for all ` ∈ J0, nKK:

Tn(σK(λ`)) = (−1)`. (3.67)

By Theorem 3.C.1, we conclude that Tn(σK) is optimal for all n ∈ N.
(=⇒) We assume Tn(σK) is optimal for all n ∈ N. Clearly, σK is optimal (n = 1), and

then equioscillates. We prove that moreover

Λ = σ−1
K ([−1, 1]). (3.68)

On the one hand, for any j ∈ J0, nK, there exist at most K different λ that verifies
σK(λ) = cos jπn since σK has a degree K and is not constant. Therefore, there exist at most
(n + 1)K different λ such that ∃j ∈ J0, nK|σK(λ) = cos jπn , and by Eq.(3.64), there thus
exist at most (n+ 1)K different λ such that Tn(σK(λ) = ±1.

On the other hand, the optimality of Tn(σK) implies the existence of at least nK + 1

such λ in Λ.
Hence all but at most K − 1 values λ such that σK(λ) ∈ {cos jπn , j ∈ J0, nK} belong to Λ.

3.D. Cyclical step-sizes 63

This holds for all n. Therefore for n large enough, all x such that σ(x) ∈ [−1, 1] are as
close as we want to some λ ∈ Λ. Since Λ is a closed set, then all x such that σ(x) ∈ [−1, 1]

are actually in Λ.
We conclude

Λ ⊃ σ−1
K ([−1, 1]). (3.69)

�

3.D Cyclical step-sizes

In this appendix, we provide an analysis of momentum methods with cyclical step-sizes
and derive some non-asymptotically optimal variants.

3.D.1 Derivation of optimal algorithm with K = 2 alternating step-sizes

In this section, we consider the case where Λ is the union of 2 intervals of same size, as
described in Section 3.3.

We start by introducing the following algorithm, and we will prove later that this
algorithm is optimal (Theorem 3.D.1)

Algorithm 7 Optimal momentum method with alternating step-sizes (K = 2)
Input: Initialization x0, µ1 < L1 < µ2 < L2 (where L1 − µ1 = L2 − µ2)
Set: ρ = L2+µ1

L2−µ1
, R = µ2−L1

L2−µ1
, c =

√
ρ2−R2

1−R2

ω0 = 2

x1 = x0 − 1
L1
∇f(x0)

for t = 1, 2, . . . do

ωt =

(
1− 1

4c2
ωt−1

)−1

ht = ωt
L1

(if t is even), ht = ωt
µ2

(if t is odd)

xt+1 = xt − ht∇f(xt) + (ωt − 1)(xt − xt−1)

end

Theorem 3.D.1. Let f ∈ CΛ and x0 ∈ Rd. Assume Λ defined as in (3.3). The iterates of
Algorithm 7 verifies the condition

x2n − x∗ =
Tn(σΛ

2 (H))

Tn(σΛ
2 (0))

(x0 − x∗) (3.70)

and this is the optimal convergence rate over CΛ.

Proof.
We begin by showing the optimality of the algorithm. Using Proposition 3.D.2, the

polynomial in (3.70) equioscillates on Λ, which makes it optimal by Theorem 3.C.1. By
optimal, this means this is the optimal convergence rate any first-order algorithm can reach

3.D. Cyclical step-sizes 64

(See (3.11)). We invite the reader to read Appendix 3.D.3, where we study in details the
properties of the alternating steps sizes strategy (i.e., K = 2).

As in Appendix 3.B.1, we derive here the constructive approach that leads us to this
algorithm.

We now start showing that the iterates of Algorithm 7 follow (3.70). From equa-
tion (3.70), projecting onto the eigenspace of eigenvalue λ,

x2n − x∗ =
Tn(σΛ

2 (λ))

Tn(σΛ
2 (0))

(x0 − x∗). (3.71)

Then, we find a recursion definition for the subsequence (x2n)n∈N. Let n > 1.

x2(n+1) − x∗ =
Tn+1(σΛ

2 (λ))

Tn+1(σΛ
2 (0))

(x0 − x∗), (3.72)

=
2σΛ

2 (λ)Tn(σΛ
2 (λ))− Tn−1(σΛ

2 (λ))

Tn+1(σΛ
2 (0))

(x0 − x∗), (3.73)

=
2σΛ

2 (λ)Tn(σΛ
2 (0))

Tn+1(σΛ
2 (0))

(x2n − x∗)−
Tn−1(σΛ

2 (0))

Tn+1(σΛ
2 (0))

(x2(n−1) − x∗). (3.74)

Note that if σΛ
2 (λ) were a degree 1 polynomial in λ, then we would recognize a momentum

update. Here, σΛ
2 (λ) is actually a degree 2 polynomial in λ. We will then try to identify 2

steps of momentum. From here, let

c ,
1

2

((
σK(0) +

√
σK(0)2 − 1

)1/2

+

(
σK(0)−

√
σK(0)2 − 1

)1/2
)

=

√
σK(0) + 1

2
(3.75)

be the unique positive real number c verifying T2(c) = 2c2 − 1 = σK(0). We end up with

x2(n+1) − x∗ =
2σΛ

2 (λ)T2n(c)

T2(n+1)(c)
(x2n − x∗)−

T2(n−1)(c)

T2(n+1)(c)
(x2(n−1) − x∗). (3.76)

Note, the above equation suggests to introduce the sequence zl , Tl(c)(xl − x∗). Indeed,
the above equality simplifies

z2(n+1) = 2σΛ
2 (λ) z2n − z2(n−1). (3.77)

Let’s look for two steps of the cyclical Heavy-ball method that are together equivalent to
(3.76). We look for an algorithm of the form

∀n > 0, xn+1 = xn − hn∇f(xn) +
Tn−1(c)

Tn+1(c)
(xn − xn−1) , (3.78)

i.e, projecting again onto the eigenspace of eigenvalue λ, we obtain

∀n > 0, xn+1 − x∗ =

(
1 +

Tn−1(c)

Tn+1(c)
− hnλ

)
(xn − x∗)−

Tn−1(c)

Tn+1(c)
(xn−1 − x∗) . (3.79)

Here we introduce the notation

ωl ,
(

1 +
Tl−1(c)

Tl+1(c)

)
= 2c

Tl(c)

Tl+1(c)
, (3.80)

and the change of variable

h̃l ,
hl
ωl
. (3.81)

3.D. Cyclical step-sizes 65

We rewrite (3.79) in terms of the sequence z and using the sequence h̃,

∀n > 0, zn+1 = Tn+1(c)

(
1 +

Tn−1(c)

Tn+1(c)
− hnλ

)
(xn − x∗)− zn−1 (3.82)

=
(
2cTn(c)(1− h̃nλ)

)
(xn − x∗)− zn−1 (3.83)

=
(
2c(1− h̃nλ)

)
zn − zn−1. (3.84)

We now need to find the right sequence h̃n such that we recover equation (3.77). Combining
the 2 following

z2n+1 =
(
2c(1− h̃2nλ)

)
z2n − z2n−1 (3.85)

z2n+2 =
(
2c(1− h̃2n+1λ)

)
z2n+1 − z2n (3.86)

by isolating the odd index in the second equation and plugging it in the first one, we get

z2n+2 =

(
4c2(1− h̃2nλ)(1− h̃2n+1λ)− 1− 2c(1− h̃2n+1λ)

2c(1− h̃2n−1λ)

)
z2n −

2c(1− h̃2n+1λ)

2c(1− h̃2n−1λ)
z2n−2.

(3.87)
We need to identify

2σΛ
2 (λ) = 4c2(1− h̃2nλ)(1− h̃2n+1λ)− 1− 2c(1− h̃2n+1λ)

2c(1− h̃2n−1λ)
, (3.88)

1 =
2c(1− h̃2n+1λ)

2c(1− h̃2n−1λ)
. (3.89)

Hence, we conclude from the second equation that h̃2n+1 = h̃2n−1 = h̃1 is independent of
n. And the first equation then becomes

2σΛ
2 (λ) = 4c2(1− h̃2nλ)(1− h̃1λ)− 2 (3.90)

leading also to h̃2n independent of n. We observe an alternating strategy of the “pseudo-
step-sizes” h̃0 and h̃1. Finally, we must fix them to

σΛ
2 (λ) = 2c2(1− h̃0λ)(1− h̃1λ)− 1. (3.91)

Note this is possible because the equation above is valid for λ = 0 for any choice of h̃0 and
h̃1 and the polynomial σΛ

2 + 1 can be defined by its value in 0 and its roots that are exactly
1
h̃0

and 1
h̃1

. And from (3.155), those values are µ2 and L1, which gives the values h̃0 = 1
L1

and h̃1 = 1
µ2

.

We now sum up what we have so far. Setting c, h̃0 and h̃1 as described above, the
iterations

∀n > 1, xn+1 = xn −
(

1 +
Tn−1(c)

Tn+1(c)

)
h̃mod(n,2)∇f(xn) +

Tn−1(c)

Tn+1(c)
(xn − xn−1) (3.92)

lead to the recursion (3.77).

3.D. Cyclical step-sizes 66

Let define x1 = x0 − h̃0∇f(x0), and from the above

x2 = x1 −
(

1 +
1

2c2 − 1

)
h̃1λ(x1 − x∗) +

1

2c2 − 1
(x1 − x0) (3.93)

x2 − x∗ =
2c2

σΛ
2 (0)

(
1− h̃1λ

)
(x1 − x∗)−

1

σΛ
2 (0)

(x0 − x∗) (3.94)

=
2c2

σΛ
2 (0)

(
1− h̃1λ

) (
1− h̃0λ

)
(x0 − x∗)−

1

σΛ
2 (0)

(x0 − x∗) (3.95)

=
σΛ

2 (λ)

σΛ
2 (0)

(x0 − x∗) (3.96)

z2 = σΛ
2 (λ). (3.97)

Finally, the sequence z2n is defined by

z0 = 1, (3.98)

z1 = σΛ
2 (λ), (3.99)

z2(n+1) = 2σΛ
2 (λ) z2n − z2(n−1). (3.100)

which defines exactly Tn(σΛ
2 (λ)). We conclude x2n − x∗ =

Tn(σΛ
2 (λ))

Tn(σΛ
2 (0))

(x0 − x∗).
We sum up the algorithm used to reach the above equality:

x1 = x0 − h̃0∇f(x0), (3.101)

∀n > 0, xn+1 = xn − ωnh̃n∇f(xn) + (ωn − 1) (xn − xn−1) . (3.102)

with ωn =
(
1 + Tn−1(c)

Tn+1(c)

)
= 2cTn(c)

Tn+1(c) . Note the recursion

ω−1
n =

Tn+1(c)

2cTn(c)
(3.103)

=
2cTn(c)− Tn−1(c)

2cTn(c)
(3.104)

= 1− Tn−1(c)

2cTn(c)
(3.105)

= 1− 1

4c2

2cTn−1(c)

Tn(c)
(3.106)

= 1− 1

4c2
ωn−1. (3.107)

Finally, the sequence ω can be computed online using the recursion

ωn =
1

1− 1
4c2
ωn−1

(3.108)

with ω0 = 2. �
In this appendix, as well as in Appendix 3.B, we end up with some equality of the form

‖xt − x∗‖ =
Tn(σK(H))

Tn(σK(0))
‖x0 − x∗‖ . (3.109)

The next theorem explains how to derive the rate factor from it.

3.D. Cyclical step-sizes 67

Proposition 3.4.6. For a given σK such that supλ∈Λ|σK(λ)| = 1, the asymptotic rate factor
τσK of the method associated to the polynomial (3.14) is

1− τσK = lim
t→∞

t

√
sup
λ∈Λ
|Pt(λ;σK)| =

(
σ0 −

√
σ2

0 − 1

) 1
K

,

with σ0 , σK(0) . (3.15)

Proof. We observe that the rate factor of the method is upper bounded by

t

√
sup
λ∈Λ
|ZΛ
t (λ)| = t

√√√√sup
λ∈Λ

∣∣∣∣∣Tt/K
(
σΛ
K(λ)

)
Tt/K (σ0)

∣∣∣∣∣ = t

√
1

|Tt/K (σ0) |
if sup
λ∈Λ
|σK(λ)| = 1. (3.110)

Since σ0 > 1, and by using the explicit formula of Chebyshev polynomials, we have that

Tt/K (σ0) =

(
σ0 +

√
σ2

0 − 1

)t/K
+

(
σ0 −

√
σ2

0 − 1

)t/K
2

∼
t→∞

(
σ0 +

√
σ2

0 − 1

)t/K
2

.

(3.111)
Taking the limit gives

lim
t→∞

t

√
1

|Tt/K (σ0) |
=

 1

σ0 +
√
σ2

0 − 1

 1
K

=

(
σ0 −

√
σ2

0 − 1

) 1
K

. (3.112)

�

3.D.2 Derivation of Heavy-ball with K step-sizes cycle

In this section, we consider heavy-ball algorithm with a cycle of K different step-sizes. For
convenience, we restate Algorithm 2.

Algorithm 8
Cyclical Heavy-ball HBK(h0, . . . , hK−1;m)

Input: Initialization x0, momentum m ∈ (0, 1), step-sizes {h0, . . . , hK−1}
x1 = x0 −

h0

1 +m
∇f(x0)

for t = 1, 2, . . . do

xt+1 = xt − hmod(t,K)∇f(xt) +m(xt − xt−1)

end

We first recall the convergence theorem 3.4.8 stated in Section 3.4.3.

Theorem 3.4.8. With an arbitrary momentum m and an arbitrary sequence of step-sizes
{hi} , the worst-case convergence rate 1− τ of Algorithm 2 on CΛ is

√
m if σ∗ 6 1

√
m
(
σ∗ +

√
σ2
∗ − 1

)K−1

if σ∗ ∈
(

1,
1 +mK

2 (
√
m)

K

)
> 1 (no convergence) if σ∗ >

1 +mK

2 (
√
m)

K
,

(3.19)

3.D. Cyclical step-sizes 68

where σ∗ , sup
λ∈Λ
|σ(λ; {hi},m)|, σ(λ; {hi},m) is the K-degree polynomial

σ(λ; {hi},m) ,
1

2
Tr (M1M2 . . .MK) , (3.20)

and Mi =

[
1+m−hK−iλ√

m
−1

1 0

]
.

Proof. Note a first trick. Let’s define x−1 , x0 −
h0

1 +m
∇f(x0). This way, xt+1 =

xt − hmod(t,K)∇f(xt) +m(xt − xt−1) holds for any t > 0 (including t = 0).
Now, let’s introduce the polynomials Pt defined by Proposition 3.4.1 as xt − x∗ =

Pt(H)(x0 − x∗). From now, in order to highlight the K-cyclic behavior, we introduce the
indexation t = nK + r, with r ∈ J0,K − 1K.

We verify the following:

P−1(λ) = 1− h0λ

1 +m
, (3.113)

P0(λ) = 1, (3.114)

∀n > 0, r ∈ J0,K − 1K, PnK+r+1(λ) = (1 +m− hrλ)PnK+r(λ)−mPnK+r−1(λ).

(3.115)

In order to get rid of the last occurrence of m in equation above, we introduce P̃t(λ) ,
1

(
√
m)

tPt(λ).

This way, the above can be written

P̃−1(λ) =
√
m

(
1− h0λ

1 +m

)
=

2m

1 +m
σ0(λ), (3.116)

P̃0(λ) = 1, (3.117)

∀n > 0, r ∈ J0,K − 1K, P̃nK+r+1(λ) =
1 +m− hrλ√

m
P̃nK+r(λ)− P̃nK+r−1(λ). (3.118)

In the following, we want to determine a formulation for the polynomials P̃nK . In order
to do so, we introduce the following operator:

A(λ) ,

1 +m− hK−1λ√
m

−1

1 0

 · · ·
1 +m− h0λ√

m
−1

1 0

 , (a(λ) b(λ)

c(λ) d(λ)

)
(3.119)

as well as the scalar valued function

σ(λ; {hi},m) ,
1

2
Tr(A(λ)) . (3.120)

This operator comes naturally in(
P̃(n+1)K(λ)

P̃(n+1)K−1(λ)

)
=

1 +m− hK−1λ√
m

−1

1 0

(P̃(n+1)K−1(λ)

P̃(n+1)K−2(λ)

)
(3.121)

=

1 +m− hK−1λ√
m

−1

1 0

 · · ·
1 +m− h0λ√

m
−1

1 0

(P̃nK(λ)

P̃nK−1(λ)

)

(3.122)

= A(λ)

(
P̃nK(λ)

P̃nK−1(λ)

)
. (3.123)

3.D. Cyclical step-sizes 69

Looking K steps at a time makes the analysis much easier as the process applying K
steps is then homogeneous (we apply A and A doesn’t depend on the index of the iterate).

P̃(n+1)K(λ) = a(λ)P̃nK(λ) + b(λ)P̃nK−1(λ), (3.124)

P̃(n+1)K−1(λ) = c(λ)P̃nK(λ) + d(λ)P̃nK−1(λ). (3.125)

Combining the two above equations (First one with incremented n + b(λ) times the
second one - d(λ) times the first one) leads to

P̃(n+2)K(λ) = (a(λ) + d(λ))P̃(n+1)K(λ)− (a(λ)d(λ)− b(λ)c(λ))P̃nK(λ) (3.126)

= 2σ(λ; {hi},m)P̃(n+1)K(λ)− P̃nK(λ) (3.127)

where the second inequality is deduced after we recognize

a(λ) + d(λ) = Tr(A(λ)) = 2σ(λ; {hi},m) (3.128)

and
a(λ)d(λ)− b(λ)c(λ) = Det(A(λ)) = 1 (3.129)

(A(λ) is the product of matrices of determinant 1).
In equation (3.127) we recognize the recursion verified by e.g. (Tn(σ(λ; {hi},m)))n∈N,

or (Un(σ(λ; {hi},m)))n∈N, where Tn (resp. Un) denotes the first (resp. second) type
Chebyshev polynomial of degree n.

Moreover we verify the initialization

P̃0(λ) = 1, (3.130)

P̃K(λ) = a(λ)P̃0(λ) + b(λ)P̃−1(λ) (3.131)

= a(λ) + b(λ)
m

1 +m

1 +m− h0λ√
m

. (3.132)

We also notice that

Un(σ(λ; {hi},m)) +

(
b(λ)

m

1 +m

1 +m− h0λ√
m

− d(λ)

)
Un−1(σ(λ; {hi},m)) (3.133)

verifies the same recursion of order 2 than P̃Kn as well as the same 2 initial terms.
Finally, we conclude

P̃nK(λ) = Un(σ(λ; {hi},m)) +

(
b(λ)

m

1 +m

1 +m− h0λ√
m

− d(λ)

)
Un−1(σ(λ; {hi},m))

(3.134)
and

PnK(λ) =
(√
m
)nK

P̃nK(λ) . (3.135)

Now we have the full expression of the polynomials associated to algorithm 2. Then we
can study it’s convergence rate.

Note for any r ∈ J0,K − 1K, we can have a similar expression of the form

PnK+r(λ) =
(√
m
)nK (

Q1
r(λ)Un(σ(λ; {hi},m)) +Q2

r(λ)Un−1(σ(λ; {hi},m))
)

(3.136)

with Q1
r and Q2

r some fixed polynomials. This is the consequence of the fact that all
sequences P̃nK+r(λ) verify the same recursion formula. Only initialization are different.

3.D. Cyclical step-sizes 70

In order to study the factor rate of this algorithm, let’s first introduce M an upper bound
of all the |Qir|. For instance, let M defined as follow.

M = max
r∈J0,K−1K,i∈{1,2}

sup
λ∈Λ
|Qir(λ)|. (3.137)

Then,

‖xt − x∗‖ 6 sup
λ∈Λ
|Pt(λ)|‖x0 − x∗‖ (3.138)

6M
(√
m
)t(

sup
λ∈Λ
|Un(σ(λ; {hi},m))|+ sup

λ∈Λ
|Un−1(σ(λ; {hi},m))|

)
‖x0 − x∗‖,

(3.139)

with n = b tK c.
Set σsup , sup

λ∈Λ
|σ(λ; {hi},m)|. The worst-case rate verifies

If σsup 6 1, then rt 6M
(√
m
)t

(n+ 1 + n) = O
(
t
(√
m
)t)

. (3.140)

If σsup > 1, then rt = O
((√

m
)t (

σsup +
√
σ2

sup − 1
)n)

. (3.141)

The first case analysis comes from the fact that Un is bounded by n+ 1 on [−1, 1], while
the second cases analysis comes from the fact that Un(x) grows exponentially fast in n at a
rate x+

√
x2 − 1 when x is outside of [−1, 1].

Then the factor rate verifies

If σsup 6 1, 1− τ =
√
m. (3.142)

If σsup > 1, 1− τ =
√
m
(
σsup +

√
σ2

sup − 1
)1/K

. (3.143)

It remains to notice that
√
m
(
σsup +

√
σ2

sup − 1
)1/K

< 1 is equivalent to σsup <
1+mk

2(
√
m)

k .

�
From this factor rate analysis, we can state Proposition 3.4.9 of Section 3.4.3.

Proposition 3.4.9. Let σ(λ; {hi},m) be the polynomial defined by (3.20), and σΛ
K be the

optimal link function of degree K defined by (3.16). If the momentum m and the sequence of
step-sizes {hi} satisfy

σ(λ; {hi},m) = σΛ
K(λ) , (3.21)

then 1) the parameters are optimal, in the sense that they minimize the asymptotic rate factor
from Theorem 3.4.8, 2) the optimal momentum parameter is

m =
(
σ0 −

√
σ2

0 − 1
)2/K

, where σ0 = σΛ
K(0) , (3.22)

3) the iterates from Algo. 4 with parameters {hi} and m form a polynomial with recur-
rence (3.18), and 4) Algorithm 4 achieves the worst-case rate rAlg. 3

t and the asymptotic rate
factor 1− τAlg. 3

rAlg. 3
t = O

(
t

(
σ0 −

√
σ2

0 − 1

)t/K)
, (3.23)

1− τAlg. 3 =

(
σ0 −

√
σ2

0 − 1

)1/K

.

3.D. Cyclical step-sizes 71

Proof. For now we don’t assume assumption 3.21 yet. Set σ0 , σ(0; {hi},m). Then, by
definition (3.20) of σ(λ; {hi},m),

σ0 =
1

2
Tr

[1+m√
m
−1

1 0

]K = TK

(
1 +m

2
√
m

)
=

1 +mK

2 (
√
m)

K
. (3.144)

Hence, reversing this equality,

√
m =

(
σ0 −

√
σ2

0 − 1

) 1
K

. (3.145)

From Theorem 3.4.8, we therefore know

If σsup 6 1, 1− τ =

(
σ0 −

√
σ2

0 − 1

) 1
K

. (3.146)

If σsup > 1, 1− τ =

(
σ0 −

√
σ2

0 − 1

) 1
K (

σsup +
√
σ2

sup − 1
)1/K

. (3.147)

But, one can check that

(
σ0 −

√
σ2

0 − 1

) 1
K (

σsup +
√
σ2

sup − 1
)1/K

>

 σ0

σsup
−

√√√√(σ0

σsup

)2

− 1


1
K

(3.148)

which shows that a tuning generating the polynomial σ(λ;{hi},m)
σsup

would lead to a better
convergence rate. Hence, we should look for polynomials σ(λ; {hi},m) verifying σsup 6 1.
And then,

1− τ =
√
m =

(
σ0 −

√
σ2

0 − 1

) 1
K

. (3.149)

which explain we aim at maximizing σ0 subject to σsup 6 1 ((3.16)).
Finally, we proved 1): if σ(λ; {hi},m) = σΛ

K(λ), then the tuning is optimal in the sense
that this is the one that minimizes the asymptotic rate factor among all K steps-sizes based
tuning.

From now, we assume
σ(λ; {hi},m) = σΛ

K(λ). (3.150)

Therefore,
σ0 = σΛ

K(0) (3.151)

and 2) is already proven above.
3) follows directly from the definition of σΛ

K(λ).
Finally, since σsup 6 1, we know

1− τ =
√
m =

(
σ0 −

√
σ2

0 − 1

)1/K

(3.152)

which proves part of 4).
To prove the expression of the worst-case rate rt, we need to apply the intermediate

result (3.140) instead of Theorem 3.4.8.
�

3.D. Cyclical step-sizes 72

3.D.3 Example: alternating step-sizes (K = 2)

Proposition 3.D.2. The strategy with 2 step-sizes is optimal on the union of two intervals if
and only if they have the same length.

Proof. This is a direct consequence of Theorem 3.C.2, which implies σΛ
2 (µ1) = σΛ

2 (L2) = 1

and σΛ
2 (µ2) = σΛ

2 (L1) = −1.
This is feasible if and only if L2 − µ2 = L1 − µ1 since σΛ

2 is a degree 2 polynomial.
Indeed, set σΛ

2 (x) = a(x − b)2 + c. Then, σΛ
2 (µ1) = σΛ

2 (L2) implies a(µ1 − b)2 + c =

a(L2 − b)2 + c, then |µ1 − b| = |L2 − b| and finally b = µ1+L2

2 . Similarly, σΛ
2 (µ2) = σΛ

2 (L1)

implies b = µ2+L1

2 .
We conclude µ1+L2

2 = µ2+L1

2 , and L2 − µ2 = L1 − µ1. �

Proposition 3.4.5. Let Λ = [µ1, L1] ∪ [µ2, L2] be an union of two intervals of the same
size (L1 − µ1 = L2 − µ2) and let m,h0, h1 be as defined in Algorithm 3. Then the minimax
polynomial (solution to (3.12)) is, for all t = 2n, n ∈ N+

0 ,

Tn
(
σΛ

2 (λ)
)

Tn
(
σΛ

2 (0)
) = arg min

P∈Rt[X],
P (0)=1

sup
λ∈Λ
|P (λ)| ,

with σΛ
2 (λ) =

1

2m
(1 +m− λh0) (1 +m− λh1)− 1 .

Proof. From Theorem 3.C.2,

σΛ
2 (µ1) = 1, (3.153)

σΛ
2 (L1) = −1, (3.154)

σΛ
2 (µ2) = −1, (3.155)

σΛ
2 (L2) = 1, (3.156)

and this implies that
Tn(σΛ

2 (λ))
Tn(σΛ

2 (0))
is optimal.

In particular, L1 and µ2 are roots of σΛ
2 + 1. Therefore, we know there exists a

constant c such that σΛ
2 (λ) = c(1− λ

L1
)(1− λ

µ2
)− 1. Moreover, evaluating this in µ1 gives

σΛ
2 (µ1) = c(1− µ1

L1
)(1− µ1

µ2
)− 1 = 1, so

c =
2

(1− µ1

L1
)(1− µ1

µ2
)

(3.157)

=
2L1µ2

(L1 − µ1)(µ2 − µ1)
(3.158)

= 2

(
µ1+L2

2

)2
−R2

(
L2−µ1

2

)2

1−R2

4 (L2 − µ1)2
(3.159)

= 2
ρ2 −R2

1−R2
. (3.160)

Then,

σΛ
2 (λ) = 2

ρ2 −R2

1−R2
(1− λ

L1
)(1− λ

µ2
)− 1 (3.161)

3.D. Cyclical step-sizes 73

which can be written

σΛ
2 (λ) = 2

(
1 +m

2
√
m

)2 (
1− λ

L1

)(
1− λ

µ2

)
− 1 (3.162)

with
(

1+m
2
√
m

)2
= ρ2−R2

1−R2 . Finally, m =

(√
ρ2−R2−

√
ρ2−1√

1−R2

)2

. �

Theorem 3.3.1 (Rate factor of HB2(h0, h1;m)). Let f ∈ CΛ and consider the cyclical Heavy-
ball method with step-sizes h0, h1 and momentum parameter m. The asymptotic rate factor of
Algorithm 2 with cycles of length two is

1− τ =


√
m if σ∗ 6 1,
√
m
(
σ∗ +

√
σ2
∗ − 1

) 1
2 if σ∗ ∈

(
1, 1+m2

2m

)
,

> 1 (no convergence) if σ∗ > 1+m2

2m ,

with σ∗ = max
λ∈
{
µ1,L1,µ2,L2,(1+m)

h0+h1
2h0h1

}
∩Λ

|σ2(λ)|

and σ2(λ) = 2

(
1 +m− λh0

2
√
m

)(
1 +m− λh1

2
√
m

)
− 1 .

Proof. From Theorem 3.4.8 applied to K = 2, we immediately have the above result with

σsup = sup
λ∈Λ

∣∣∣∣2(1 +m− λh0

2
√
m

)(
1 +m− λh1

2
√
m

)
− 1

∣∣∣∣ .
To conclude the proof, we need to prove that the optimal value of |σΛ

2 | can only be reached
on
{
µ1,L1,µ2,L2, (1 +m)h0+h1

2h0h1

}
. Indeed, σΛ

2 being convex, its maximal value can only

be reached on {µ1,L2}. Its minimal value is reached on (1 +m)h0+h1
2h0h1

. Therefore, over Λ,
the minimal value of σΛ

2 is reached on (1 +m)h0+h1
2h0h1

if the latest belongs to Λ. Otherwise,
its minimal value is reached to the closest point in Λ to (1 + m)h0+h1

2h0h1
, namely, it can be

any point of {µ1,L1,µ2,L2}. �

Proposition 3.D.3 (Residual polynomial in the robust region). Assuming σΛ
2 (λ) > −1, ∀λ ∈

Λ, the residual polynomial associated with the cyclical heavy-ball algorithm is

P2n(λ) = mn

[
2m

1 +m
T2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh1

2
√
m

))

+
1−m
1 +m

U2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh1

2
√
m

))]
. (3.163)

Remark 3.D.4. The assumption σ2(λ) > −1, ∀λ ∈ Λ is verified in the robust region, and is
useful here because the term

(
1+m−λh0

2
√
m

) (
1+m−λh1

2
√
m

)
is equal to 1+σ2(λ)

2 and must be positive
to make the above expression well-defined. Otherwise the result can hold replacing the square
root with some complex number, but it brings no value when we derive the convergence rate
from it.

Proof. This proof reuses elements of the proof of Theorem (3.4.8), especially Equation
(3.127). For sake of completeness and simplicity, we prove this result again directly in the
special case K = 2.

3.D. Cyclical step-sizes 74

We first recall the recursion of Algorithm 2 for K = 2. For sake of simplicity, we directly
projet it onto the eigenspace associated to the eigenvalue λ of the Hessian of the objective
function.

x2n+1 − x∗ = (1 +m− h0λ)(x2n − x∗)−m(x2n−1 − x∗).
x2n+2 − x∗ = (1 +m− h1λ)(x2n+1 − x∗)−m(x2n − x∗).

(3.164)

Identifying xt − x∗ = Pt(λ)(x0 − x∗) and Pt(λ) = (
√
m)

t
P̃t(λ),

P̃2n+1(λ) = 1+m−h0λ√
m

P̃2n(λ)− P̃2n−1(λ),

P̃2n+2(λ) = 1+m−h1λ√
m

P̃2n+1(λ)− P̃2n(λ).
(3.165)

Multiplying the first equation by 1+m−h1λ√
m

and replacing 1+m−h1λ√
m

P̃2n+1(λ) and 1+m−h1λ√
m

P̃2n−1(λ)

accordingly to the second equation leads to

P̃2n+2(λ) + P̃2n(λ) =
1 +m− h0λ√

m

1 +m− h1λ√
m

P̃2n(λ)−
(
P̃2n(λ) + P̃2n−2(λ)

)
(3.166)

which can be written as in equation (3.127)

P̃2n+2(λ) =

(
1 +m− h0λ√

m

1 +m− h1λ√
m

− 2

)
P̃2n(λ)− P̃2n−2(λ). (3.167)

Moreover,
x1 − x∗ = (1− h0

1+mλ)(x0 − x∗),
x2 − x∗ = (1 +m− h1λ)(x1 − x∗)−m(x0 − x∗),

(3.168)

leading to the initialization

P̃1(λ) = 1√
m

(1− h0
1+mλ)P̃0(λ),

P̃2(λ) = 1+m−h1λ√
m

P̃1(λ)− P̃0(λ).
(3.169)

hence,

P̃2(λ) =

(
1

1 +m

1 +m− h0λ√
m

1 +m− h1λ√
m

− 1

)
(3.170)

and recall
P̃0(λ) = 1. (3.171)

It remains to notice that

2m

1 +m
T2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

))

+
1−m
1 +m

U2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

))
(3.172)

verifies the same recursion as well as the same initialization for n = 0 and n = 1. This
allows us to identify the 2 sequences of polynomials

P̃2n(λ) =
2m

1 +m
T2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

))

+
1−m
1 +m

U2n

(√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

))
(3.173)

which concludes the proof.
�

3.D. Cyclical step-sizes 75

Corollary 3.3.2. The non-asymptotic and asymptotic worst-case rates rAlg. 2
t and 1− τAlg. 2

of Algorithm 3 over CΛ for even iteration number t are

rAlg. 2
t =

(√
ρ2−R2−

√
ρ2−1√

1−R2

)t(
1 + t

√
ρ2−1
ρ2−R2

)
,

1− τAlg. 2 =

√
ρ2 −R2 −

√
ρ2 − 1

√
1−R2

.

Proof. From Proposition 3.4.5, Algorithm 3’s parameter make σ(λ; {hi},m) = σΛ
2 . In

particular, by definition,

−1 6 2

(
1 +m− λh0

2
√
m

)(
1 +m− λh1

2
√
m

)
− 1 6 1. (3.174)

and then

0 6

√(
1 +m− λh0

2
√
m

)(
1 +m− λh0

2
√
m

)
6 1. (3.175)

And we know that ∀x 6 1, Tn(x) 6 1 and Un(x) 6 n+ 1.
Therefore, using optimal parameters, and from Proposition 3.D.3

P̃2n(λ) 6
2m

1 +m
+ (2n+ 1)

1−m
1 +m

= 1 + 2n
1−m
1 +m

. (3.176)

And the worst-case rate is then upper bounded

rt =

(
1 + t

1−m
1 +m

) (√
m
)t (3.177)

for all t even.
It remains to plug m expression into the above to conclude. �
Note that in the proof above, all the expressions are symmetric in (h0, h1), which implies

that swapping those 2 step-sizes doesn’t impact this statement.

Remark 3.D.5. The previous statement provides the convergence rate of Algorithm 3. It does
not state that this is the optimal way to tune Algorithm 2, but comparing the obtained rate to
the one of Algorithm 7 does. Another way to derive the optimal parameters, is to start from the
result of Theorem 3.3.1 applied on a 2 step-sizes strategy, or from the result of Proposition 3.D.3.
This leads to minimizing m under the constraints that ζ(λ) ,

(
1+m−λh0

2
√
m

) (
1+m−λh1

2
√
m

)
has

values between 0 and 1 on Λ = [µ1, L1] ∪ [µ2, L2]. By symmetry of Λ and the convex
parabola ζ, we know that optimal parameters verify ζ(L1) = ζ(µ2) = 0. And therefore,
ζ(µ1) = ζ(L2) = 1 maximizes the range of allowed m. This way we recover the tuning of
Algorithm 3. Note that ζ is related to σ(Λ)

2 through the relation σ(Λ)
2 = 2ζ − 1, and therefore

the 4 mentioned equalities are equivalent to the equioscillation property.

The next theorem sums up the results of Proposition 3.3.3 and Table 3.1.

Theorem 3.D.6 (Asymptotic speedup of HB with alternating step-sizes).

1. Let R ∈ [0, 1) be a fixed number, then
√
m =

κ→0
1− 2

√
κ√

1−R2
+ o(
√
κ).

2. Let

R(κ) =
κ→0

1−
√
κ

2
+ o(
√
κ), i.e., Λ ≈ [µ, µ+

√
µL

4
] ∪ [L−

√
µL

4
, L],

then
√
m =

κ→0
1− 2 4

√
κ+ o(4

√
κ), therefore leasing to a new square root acceleration.

3.D. Cyclical step-sizes 76

3. Let
R(κ) =

κ→0
1− 2γκ+ o(κ), i.e., Λ ≈ [µ, (1 + γ)µ] ∪ [L− γµ, L],

then
√
m =

κ→0

√
1 +

1

γ
−
√

1

γ
+ o(κ), therefore leading to a constant complexity.

This is summed up in the Table 3.2.

Relative gap R Set Λ Rate factor τ Speedup τ/τPHB

R ∈ [0, 1) [µ, µ+ 1−R
2 (L− µ)] ∪ [L− 1−R

2 (L− µ), L] 2
√
κ√

1−R2
(1−R2)−

1
2

R = 1−
√
κ/2 [µ, µ+

√
µL
4] ∪ [L−

√
µL
4 , L] 2 4

√
κ κ−

1
4

R = 1− 2γκ [µ, (1 + γ)µ] ∪ [L− γµ, L] indep. of κ O(κ−
1
2)

Table 3.2: Case study of the convergence of Algorithm 3 as a function of R, in the regime
where κ→ 0. The first line corresponds to a situation where R is independent of κ, and
we observe a constant gain w.r.t. heavy-ball. The second line study a setting in which
R depends on

√
κ, meaning the two intervals in Λ are relatively small. The asymptotic

rate reads (1 − 2 4
√
κ)t, beating the (1 − 2

√
κ)t lower bound. Finally, in the third line, R

depends on κ, the two intervals in Λ are so small that the convergence becomes O(1), i.e.,
is independent of κ.

Proof.

1. Let R ∈ [0, 1). The momentum m satisfies

√
m =

κ→0

√
1 +O(κ)−R2 −

√
4κ+O(κ2)√

1−R2

=
κ→0

√
1−R2 +O(κ)− 2

√
κ+O(κ)√

1−R2

=
κ→0

1− 2
√
κ√

1−R2
+O(κ).

2. Let R(κ) =
κ→0

1−
√
κ

2
+ o(
√
κ). The momentum m verifies

√
m =

√√√√(1+κ
1−κ

)2
−R2

1−R2
−

√√√√(1+κ
1−κ

)2
− 1

1−R2

=

√√√√(1+κ
1−κ

)2
− 1

1−R2
+ 1−

√√√√(1+κ
1−κ

)2
− 1

1−R2
.

We first focus on (
1+κ
1−κ

)2
− 1

1−R2
=
κ→0

4κ+O(κ2)√
κ+ o(

√
κ)

=
κ→0

4
√
κ+ o(

√
κ).

3.D. Cyclical step-sizes 77

Then,

√
m =

√√√√(1+κ
1−κ

)2
− 1

1−R2
+ 1−

√√√√(1+κ
1−κ

)2
− 1

1−R2

=
κ→0

√
1 + 4

√
κ+ o(

√
κ)−

√
4
√
κ+ o(

√
κ)

=
κ→0

1 + 2
√
κ+ o(

√
κ)− 2 4

√
κ+ o(4

√
κ)

=
κ→0

1− 2 4
√
κ+ o(4

√
κ).

3. Let R(κ) =
κ→0

1− 2γκ+ o(κ). The momentum m verifies

√
m =

√√√√(1+κ
1−κ

)2
−R2

1−R2
−

√√√√(1+κ
1−κ

)2
− 1

1−R2

=

√√√√(1+κ
1−κ

)2
− 1

1−R2
+ 1−

√√√√(1+κ
1−κ

)2
− 1

1−R2
.

We first focus on (
1+κ
1−κ

)2
− 1

1−R2
=
κ→0

4κ+O(κ2)

4γκ+ o(κ)
=
κ→0

1

γ
+ o(κ).

Then,

√
m =

√√√√(1+κ
1−κ

)2
− 1

1−R2
+ 1−

√√√√(1+κ
1−κ

)2
− 1

1−R2

=
κ→0

√
1 +

1

γ
+ o(κ)−

√
1

γ
+ o(κ)

=
κ→0

√
1 +

1

γ
−
√

1

γ
+ o(κ).

�

3.D.4 Example: 3 cycling step-sizes

Proposition 3.D.7. The strategy with 3 step-sizes is optimal on the union of two intervals if
and only if they are of the form[

µ, µ+ (L− µ)

(
1

2
− R

2
+

1−R2

4

)]
∪
[
L− (L− µ)

(
1

2
− R

2
− 1−R2

4

)
, L

]
,

for some R ∈ [0, 1].

Proof. From Theorem 3.C.2, we know that Tn(σ3) is optimal for all n if and only if, Λ is the
union of 3 different intervals that are mapped on [−1, 1]. Since, we are looking for Λ being
the union of 2 intervals, we know 2 of the 3 intervals Λ is composed of share an extremity.
Recall Λ = [µ1, L1] ∪ [µ2, L2]. By symmetry, we can assume without loss of generality that

3.D. Cyclical step-sizes 78

[µ1, L1] is mapped to [−1, 1] twice, and [µ2, L2] once. Let’s then introduce x ∈ (µ1, L1) and
say:

σ3(µ1) = 1, (3.178)

σ3(x) = −1, (3.179)

σ3(L1) = 1, (3.180)

σ3(µ2) = 1, (3.181)

σ3(L2) = −1. (3.182)

Note we also know that x is a local minima of σ3, leading to σ′3(x) = 0. We now know 3
roots of σ3 + 1 and 3 roots of σ3 − 1, leading to:

σ3(λ)− 1 = c(λ− µ1)(λ− L1)(λ− µ2), (3.183)

σ3(λ) + 1 = c(λ− x)2(λ− L2), (3.184)

for some non-zero constant c. Here, we want to remove the dependency in x or c. Using
the two equalities above,

(λ− x)2(λ− L2)− (λ− µ1)(λ− L1)(λ− µ2) =
2

c
. (3.185)

Matching the coefficients of the above polynomial leads to

2x+ L2 = µ1 + L1 + µ2 (3.186)

and (3.187)

2xL2 + x2 = µ1L1 + µ1µ2 + L1µ2. (3.188)

We plug the expression of x we get from the first equality into the second one,

L2(µ1 + L1 + µ2 − L2) +

(
µ1 + L1 + µ2 − L2

2

)2

= µ1L1 + µ1µ2 + L1µ2. (3.189)

From here, for simplicity, we define

ri ,
Li − µi
L2 − µ1

, for i ∈ {1, 2} . (3.190)

Replacing L1 and µ2 by their expression using µ1, L2, r1 and r2 leads to

r1 = 2
√
r2 − r2. (3.191)

The reciprocal holds and we can find x using Equation (3.186) or (3.188). Note if
Equation (3.191) holds, we can directly express σ3 as the unique polynomial verifying

σ3(µ1) = 1, (3.192)

σ3(L1) = 1, (3.193)

σ3(µ2) = 1, (3.194)

σ3(L2) = −1. (3.195)

We can therefore conclude

σ3(λ) = 1− 2
(λ− µ1)(λ− L1)(λ− µ2)

(L2 − µ1)(L2 − L1)(L2 − µ2)
. (3.196)

3.D. Cyclical step-sizes 79

From the new notations r1, r2, µ = µ1, L = L2, we know Tn(σΛ
3) is optimal for all n if

and only if
Λ = [µ, µ+ r1(L− µ)] ∪ [L− r2(L− µ), L]. (3.197)

Let R be
R =

µ2 − L1

L2 − µ1
(3.198)

as in the 2 step-sizes setting. Here, we have R = 1− r1− r2 and we assume r1 = 2
√
r2− r2.

Combining those 2 equalities gives:

r1 =
1

2
− R

2
+

1−R2

4
, (3.199)

r2 =
1

2
− R

2
− 1−R2

4
, (3.200)

leading to the desired result, i.e.,

Λ = [µ, µ+ (L− µ)(
1

2
− R

2
+

1−R2

4
)] ∪ [L− (L− µ)(

1

2
− R

2
− 1−R2

4
), L].

�

Theorem 3.D.8 (Asymptotic speedup of heavy-ball when cycling over 3 step-sizes). Let
R ∈ [0, 1) be a fixed number, then

√
m =

κ→0
1− 2

√
κ

√
1−R2/9

1−R2
+ o(
√
κ). (3.201)

Proof. From Equation (3.145),

√
m =

(
σ

(Λ)
3 (0)−

√
σ

(Λ)
3 (0)2 − 1

) 1
3

with σ
(Λ)
3 (0) = 1 + 2

µ1L1µ2

(L2 − µ1)(L2 − L1)(L2 − µ2)
.

Using the previous notations,

µ = µ1, (3.202)

L = L2, (3.203)

κ =
µ

L
, (3.204)

ri ,
Li − µi
L2 − µ1

, for i ∈ {1, 2} , (3.205)

3.E. Beyond quadratic objective: local convergence of cycling methods 80

we can write σ(Λ)
3 as

σ
(Λ)
3 (0) = 1 + 2

µ1L1µ2

(L2 − µ1)(L2 − L1)(L2 − µ2)
, (3.206)

= 1 + 2
κ(κ+ r1(1− κ))(1− r2(1− κ))

(1− κ)3(1− r1)r2
, (3.207)

=
κ→0

1 + 2κ
r1(1− r2)

(1− r1)r2,
(3.208)

= 1 + 2κ

(
1
2 −

R
2 + 1−R2

4

) (
1
2 + R

2 −
1−R2

4

)
(

1
2 + R

2 + 1−R2

4

) (
1
2 −

R
2 −

1−R2

4

) , (3.209)

= 1 + 2κ
9− 10R2 +R4

1− 2R2 +R4
, (3.210)

= 1 + 2κ

(
1−R2

) (
9−R2

)
(1−R2)2 , (3.211)

= 1 + 2κ
9−R2

1−R2
. (3.212)

Then introducing briefly ε , κ9−R2

1−R2 →
κ→0

0,

√
m =

(
σ

(Λ)
3 (0)−

√
σ

(Λ)
3 (0)2 − 1

) 1
3

, (3.213)

=
(
1 + 2ε−

√
1 + 4ε+ 4ε2 − 1

) 1
3 , (3.214)

=
κ→0

1− 2

3

√
ε+ o(

√
ε). (3.215)

Plugging ε expression into the latest gives

√
m =

κ→0
1− 2

√
κ

√
1−R2/9

1−R2
+ o(
√
κ). (3.216)

�

3.E Beyond quadratic objective: local convergence of
cycling methods

In this section, we prove a result of local convergence of the cyclical heavy-ball method out
of quadratic setting. We first recall the Theorem 3.5.1 stated in Section 3.5:

Theorem 3.5.1 (Local convergence). Let f : Rd 7→ R be a twice continuously differentiable
function, x∗ a local minimizer, and H be the Hessian of f at x∗ with Sp(H) ⊆ Λ. Let xt
denote the result of running Algorithm 2 with parameters h1, h2, · · · , hK ,m, and let 1− τ be
the linear convergence rate on the quadratic objective (OPT). Then we have

∀ε > 0,∃ open set Vε : x0, x∗ ∈ Vε
=⇒ ‖xt − x∗‖ = O((1− τ + ε)t)‖x0 − x∗‖. (3.24)

Proof. For any k multiple of K, consider Sk the operator applying k steps of cycling

3.F. Experimental setup 81

Heavy-ball on the iterates xt and xt−1 (note since k is a multiple of K, Algorithm 2 consists
in repeating the operator Sk). Namely Sk is an operator on R2d verifying Sk((xt, xt−1)) =

(xt+k, xt+k−1). This operator is a composition of gradients of f and affine functions, and so
it is continuously differentiable.

Applying the mean value theorem along each coordinate of Sk, we have that there
exists a matrix-valued function M(v1, v2) for all v1, v2 in the domain of Sk such that

Sk(v1)− Sk(v2) = M(v1, v2)(v1 − v2) , (3.217)

where the ith rows of M(v1, v2) is the gradient of the ith output of Sk evaluated at a vector
on the segment between v1 and v2.

M(v1, v2) =



∇(Sk)1(w1)T

...
∇(Sk)i(wi)

T

...
∇(Sk)2d(w2d)

T


where ∀i ∈ J1, 2dK,


(Sk)i denotes the ith coordinate of Sk.

wi is a point on the segment [v1, v2].

(3.218)
By continuity of those gradients, taking v1 and v2 sufficiently close to (x∗, x∗), M(v1, v2)

can be chosen arbitrarily close to the Jacobian of Sk in (x∗, x∗) denoted by JS∗k .
Since by assumption the algorithm converges on the quadratic form induced by H at

the rate 1− τ , we conclude that the spectral radius of JS∗k is upper bounded by 1− τ .
From the previous point, we can find a small enough neighborhood of (x∗, x∗) such

that M(v1, v2) has a spectral radius arbitrarily close to 1− τ , in particular smaller than 1.
Furthermore, it’s known for any ε > 0, there exists an operator norm ‖.‖ such that

‖M(v1, v2)‖ < 1− τ + ε. (see e.g. (Bertsekas, 1997, Proposition A.15)).
Hence, for any ε > 0, there exists a neighborhood V of (x∗, x∗) and an operator norm

‖.‖ as described above such that Sk is a (1− τ + ε)-contraction on V for the norm ‖.‖.
This leads to convergence to the only fixed point (x∗, x∗) with a convergence rate

smaller than any 1− τ + ε.
Moreover, the first step of the Algorithm 2 is continuous with respect to x0. Hence, for

any V ∈ R2d neighborhood of (x∗, x∗), there exists W ∈ Rd a neighborhood of x∗, such
that

x0 ∈W =⇒ (x1, x0) ∈ V. (3.219)

Finally, for any ε > 0, there exists W a neighborhood of x∗ such that the Algorithm 2
converges to x∗ with a rate smaller than 1− τ + ε.

�

3.F Experimental setup

Benchmarks we run using a Google colab public instance with a single CPU. Producing the
results of Figure 3.4 took 50 minutes with this setup. The code to reproduce this figure is
attached with the supplementary material in the jupyter notebook benchmarks.ipynb .

3.G Comparison with Oymak (2021)

The work of Oymak (2021) also exploits cyclical step-sizes for when the spectral structure
of the Hessian contains a gap. This work appeared concurrently to the first version of this

3.G. Comparison with Oymak (2021) 82

manuscript and takes a somewhat different stand for exploiting this particular spectral
structure. We summarize the main differences in the table below.

Oymak (2021) This work

Algorithm Gradient descent Heavy-ball-type (optimal al-
gorithm)

Cycle length K K is a function of the spectral as-
sumptions

K is a choice

Structure of the
cycle

η+, . . . , η+︸ ︷︷ ︸
K−1 times

, η− (Oymak, 2021, Def-

inition 1)

(h0, . . . , hK−1) (See Algo-
rithm 2)

Optimal among
chosen scheme

Not proven / discussed Yes

Spectral assump-
tion

Bimodal (2 intervals) Any number of intervals

Spectral assump-
tion in bimodal
case

Rate depends on L2
µ2

and L1
µ1

Rate depends on L2−µ2 and
L1 − µ1

Typical appli-
cation case in
bimodal

Very strong assumption on L1 − µ1

and very weak assumption on L2 −
µ2.

Weak assumption on both
L2 − µ2 and L1 − µ1, more
in line with empirical obser-
vations (Papyan, 2018; Ghor-
bani et al., 2019).

Spectrum is a sin-
gle interval

Does not recover original rate Recovers rate and optimal
method

Convergence be-
yond quadratic ob-
jectives

Yes (with extra assumptions) Local convergence

We emphasize the following points.

• While we provide Theorem 3.4.8 which described the convergence rate of any cycling
heavy-ball (for any cycle), Oymak (2021) only studied Gradient descent method
(without momentum) for a particular cycle (for which cycle length is not a parameter,
but fixed by the eigenvalues).

• Moreover, our Theorem 3.4.9 provides the optimal cycle to use for any choice of a
cycle length, while optimality is not discussed in Oymak (2021) and the cycle uses
only two different step-sizes, which is somewhat arbitrary.

3.G. Comparison with Oymak (2021) 83

• Furthermore, our work highlights acceleration under assumptions that seem more
aligned with empirical observation: Oymak (2021) shows that L1 − µ1 needs to be
very small for his strategy to be worthwhile, while this is not really the case in our
experiments (see Figure 3.1)

• Finally, in the general case in which we cannot assume any gap in the spectrum, we
naturally recover the classical optimal method and rate. This is not the case in Oymak
(2021) which is suboptimal in this setup.

In this work, we focus on quadratic minimization and give some local convergence
guarantee beyond quadratics. On the other hand, Oymak (2021) provides guarantee
beyond this setup, at the cost of very restrictive assumptions.

Part II

Tools for optimization over
non-parametric classes of functions

84

4
PEPIT: computer-assisted worst-case

analyses of first-order optimization
methods in Python

PEPIT is a PYTHON package aiming at simplifying the access to worst-case analyses of a large
family of first-order optimization methods possibly involving gradient, projection, proximal,
or linear optimization oracles, along with their approximate, or Bregman variants.

In short, PEPIT is a package enabling computer-assisted worst-case analyses of first-
order optimization methods. The key underlying idea is to cast the problem of performing
a worst-case analysis, often referred to as a performance estimation problem (PEP), as a
semidefinite program (SDP) which can be solved numerically. To do that, the package users
are only required to write first-order methods nearly as they would have implemented
them. The package then takes care of the SDP modeling parts, and the worst-case analysis
is performed numerically via a standard solver.

This chapter is based on our work “PEPIT: computer-assisted worst-case analyses of
first-order optimization methods in Python” (co-authored with C. Moucer, F. Glineur, J.
Hendrickx, A. Taylor, and A. Dieuleveut), currently under review.

86

Contents

4.1 Introduction . 87
4.2 PEPIT on a simple example . 88

4.2.1 A performance estimation problem for the gradient method 89
4.2.2 Code . 91

4.3 PEPIT code structure and semidefinite formulation 94
4.3.1 Semidefinite formulation . 95
4.3.2 Base PEPIT objects . 95
4.3.3 Main PEPIT simplifying abstractions and aliases 97
4.3.4 The objective function of the PEP: performance metrics 100
4.3.5 Formulating and solving the PEP . 101
4.3.6 Post-processing . 102

4.4 PEPIT: general overview and content . 105
4.5 A few additional numerical examples . 109

4.5.1 Analysis of an accelerated gradient method 109
4.5.2 Analysis of an accelerated Douglas-Rachford splitting 110
4.5.3 Analysis of point-SAGA . 111

4.6 Conclusion . 112

4.1. Introduction 87

4.1 Introduction

Due to their low cost per iteration, first-order optimization methods became a major tool
in the modern numerical optimization toolkit. Those methods are particularly well suited
when targeting only low to medium accuracy solutions, and play a central role in many
fields of applications that include machine learning and signal processing. Their simplicity
further allows both occasional and expert users to use them. On the contrary, when it
comes to their analyses (usually based on worst-case scenarios), they are mostly reserved
for expert users. The main goal of this work is to allow simpler and reproducible access to
worst-case analyses for first-order methods.

PEPIT is a PYTHON package enabling computer-assisted worst-case analysis of a large
family of first-order optimization methods. After being provided with a first-order method
and a standard problem class, the package reformulates the problem of performing a
worst-case analysis as a semidefinite program (SDP). This technique is commonly referred
to as performance estimation problems (PEPs) and was introduced by Drori and Teboulle
(2014); Drori (2014). The package uses PEPs as formalized by Taylor et al. (2017c,a).

In short, performing a worst-case analysis of a first-order algorithm usually relies on four
main ingredients: a first-order algorithm (to be analyzed), a class of problems (containing
the assumptions on the function to be minimized), a performance measure (measuring
the quality of the output of the algorithm under consideration; for convenience here we
assume that the algorithm aims at minimizing this performance measure and our analysis
aims at finding a worst-case guarantee on it), and an initial condition (measuring the
quality of the initial iterate). Performing the worst-case analysis (i.e., computing worst-case
scenarios) corresponds to maximizing the performance measure of the algorithm on the
class of problems, under a constraint induced by the initial condition. It turns out that such
optimization problems can often be solved using SDPs in the context of first-order methods.

PEPs provide a principled approach to worst-case analyses but usually rely on potentially
tedious semidefinite programming (SDP) modeling and coding steps. The PEPIT package
eases access to the methodology by automatically handling the modeling part, thereby
limiting the amount of time spent on this tedious task and the risk of introducing coding
mistakes in the process. In short, this work allows users to (i) write their first-order
algorithms nearly as they would have implemented them, (ii) let PEPIT (a) perform the
modeling and coding steps, and (b) perform the worst-case analysis numerically using
tools for semidefinite programming in PYTHON MOSEK (2019); Diamond and Boyd (2016);
O’Donoghue et al. (2016).

As a result, the package enables users to easily obtain worst-case analyses for most of
the standard first-order methods, classes of problems, performance measures, and initial
conditions. This is useful to numerically verify existing convergence guarantees, as well as
to ease the development of new analyses and methods. To this end, the toolbox contains
tools for analyzing classical scenarios of the first-order literature: standard problem classes
(such as convex functions, smooth convex functions, Lipschitz convex functions, etc.) and
algorithmic operations (such as gradient, proximal, or linear optimization oracles, etc.).
Finally, the package contains more than 75 examples and is designed in an open fashion,
allowing users to easily add new ingredients (such as their own problem classes, oracles,
or algorithms as examples).

4.2. PEPIT on a simple example 88

Organization of the paper. This paper is organized as follows. First, Section 4.2 ex-
emplifies the PEP approach on a very simple example, namely computing a worst-case
contraction factor for Gradient descent, and shows how to code this example in PEPIT.
Section 4.3 provides details on the semidefinite programs that can be formulated through
the package along with the relationship between those formulations and the coding steps.
Then, Section 4.4 provides a roadmap through the package. Finally, Section 4.5 provides
three additional numerical examples (including a composite minimization problem and a
stochastic one), and some concluding remarks and perspectives are drawn in Section 4.6.

Related works. The PEPIT package relies on performance estimation problems as formal-
ized in Taylor et al. (2017a). It also contains some improvements and generalizations to
other problem and algorithmic classes such as monotone and nonexpansive operators Ryu
et al. (2020); Lieder (2021), quadratic optimization Bousselmi et al. (2023), stochastic
methods and verification of potential (or Lyapunov/energy) functions Hu et al. (2018);
Fazlyab et al. (2018); Taylor and Bach (2019) as inspired by the related control-theoretic
IQC framework Lessard et al. (2016). The package also contains numerous examples; e.g.,
recent analyses and developments from Kim and Fessler (2016); Van Scoy et al. (2017);
Gu and Yang (2020); Kim and Fessler (2021); Kim (2021); Lieder (2021); Gannot (2021);
Taylor and Drori (2022); Abbaszadehpeivasti et al. (2021); Gorbunov et al. (2022). The
package can be seen as an extended open source PYTHON version of the MATLAB package
PESTO Taylor et al. (2017b) on various aspects such as its documentation, its coding style
and its access through standard open interfaces (such as pip), PEPIT is more professional
than PESTO.

Dependencies The package heavily builds on existing software for solving semidefinite
programs, including CVXPY Diamond and Boyd (2016), SCS O’Donoghue et al. (2016),
and MOSEK MOSEK (2019).

4.2 PEPIT on a simple example

In this section, we illustrate the use of the package for studying the worst-case properties
of a standard scenario: Gradient descent for minimizing a smooth strongly convex function.
The goal of this elementary example is twofold. First, we want to provide the base
mathematical steps enabling the use of semidefinite programming for performing worst-
case analyses, together with a corresponding PEPIT code. Second, we want to highlight the
main ingredients that can be generalized to other problem setups (e.g., Theorem 4.2.1 below
providing “interpolation conditions” for the class of smooth strongly convex functions),
allowing us to analyze more algorithms under different assumptions (which are listed in
Section 4.4).

For this example, we consider the convex optimization problem

min
x∈Rd

f(x), (4.1)

where f is L-smooth and µ-strongly convex (notation f ∈ Fµ,L(Rd), or f ∈ Fµ,L when d is
unspecified). So we assume f to satisfy

• (L-smoothness) ∀x, y ∈ Rd we have that

f(x) 6 f(y) + 〈∇f(y);x− y〉+
L

2
‖x− y‖22,

4.2. PEPIT on a simple example 89

• (µ-strong convexity) ∀x, y ∈ Rd we have that

f(x) > f(y) + 〈∇f(y);x− y〉+
µ

2
‖x− y‖22.

Our goal for the rest of this section is to show how to compute the smallest possible τ(µ,L, γ)

(often referred to as the “contraction factor”) such that

‖x1 − y1‖22 6 τ(µ,L, γ)‖x0 − y0‖22, (4.2)

is valid for all f ∈ Fµ,L and all x0, y0 ∈ Rd when x1 and y1 are obtained from gradient
steps from respectively x0 and y0. That is, x1 = x0 − γ∇f(x0) and y1 = y0 − γ∇f(y0).
First, we show that the problem of computing τ(µ,L, γ) can be framed as a semidefinite
program (SDP), and then illustrate how to use PEPIT for computing it without going into
the SDP modeling details.

4.2.1 A performance estimation problem for the gradient method

It is relatively straightforward to establish that the smallest possible τ(µ,L, γ) for which (4.2)
is valid can be computed as the worst-case value of ‖x1 − y1‖22 when ‖x0 − y0‖22 6 1. That
is, we compute τ(µ,L, γ) as the optimal value to the following optimization problem:

τ(µ,L, γ) = max
f,d

x0,x1∈Rd
y0,y1∈Rd

‖x1 − y1‖22

s.t. d ∈ N, f ∈ Fµ,L(Rd),
‖x0 − y0‖22 6 1,

x1 = x0 − γ∇f(x0),

y1 = y0 − γ∇f(y0).

(4.3)

As written in (4.3), this problem involves an infinite-dimensional variable f . Our first
step towards formulating (4.3) as an SDP consists of reformulating it by sampling f (i.e.,
evaluating its function value and gradient) at the two points where its gradient is evaluated:

τ(µ,L, γ) = max
d,fx0 ,fy0

x0,x1,gx0∈R
d

y0,y1,gy0∈R
d

‖x1 − y1‖22

s.t. d ∈ N,
‖x0 − y0‖22 6 1,

∃f ∈ Fµ,L(Rd) :

{
f(x0) = fx0 ∇f(x0) = gx0

f(y0) = fy0 ∇f(y0) = gy0

x1 = x0 − γgx0 ,

y1 = y0 − γgy0 ,

(4.4)

where we replaced the variable f by its discrete version, which we constrain to be “inter-
polable” (or “extendable”) by a smooth strongly convex function over Rd. To arrive at a
tractable problem, we use the following interpolation (or extension) result.

4.2. PEPIT on a simple example 90

Theorem 4.2.1. (Taylor et al., 2017c, Theorem 4) Let I be an index set and S = {(xi, gi, fi)}i∈I
be such that xi, gi ∈ Rd and fi ∈ R for all i ∈ I. There exists a function F ∈ Fµ,L(Rd) such
that fi = F (xi) and gi = ∇F (xi) (for all i ∈ I) if and only if for all i, j ∈ I we have

fi > fj + 〈gj ;xi − xj〉+ 1
2L‖gj − gi‖

2
2 + µL

2(L−µ)‖xi − xj −
1
L(gi − gj)‖22. (4.5)

Using Theorem 4.2.1, we can formulate the problem of computing τ(µ,L, γ) as a
(nonconvex) quadratic problem:

max
d,fx0 ,fy0
x0,gx0∈R

d

y0,gy0∈R
d

‖(x0 − γgx0)− (y0 − γgy0)‖22

s.t. d ∈ N,
‖x0 − y0‖22 6 1,

fy0 > fx0 + 〈gx0 ; y0 − x0〉+ 1
2L‖gy0 − gx0‖22

+ µL
2(L−µ)‖x0 − y0 − 1

L(gx0 − gy0)‖22,

fx0 > fy0 + 〈gy0 ;x0 − y0〉+ 1
2L‖gy0 − gx0‖22

+ µL
2(L−µ)‖x0 − y0 − 1

L(gx0 − gy0)‖22.

(4.6)

Relying on a standard trick from semidefinite programming, one can convexify this problem
using a Gram representation of the variable (this is due to maximization over d). That is,
we formulate the problem using a positive semidefinite matrix G < 0 defined as

G ,

 ‖x0 − y0‖22 〈x0 − y0; gx0〉 〈x0 − y0; gy0〉
〈x0 − y0; gx0〉 ‖gx0‖22 〈gx0 ; gy0〉
〈x0 − y0; gy0〉 〈gx0 ; gy0〉 ‖gy0‖22

 < 0. (4.7)

Using this change of variable, we arrive to

max
fx0 ,fy0 ,G

G1,1 − 2γ(G1,2 −G1,3) + γ2(G2,2 +G3,3 − 2G2,3)

s.t. G < 0,

G1,1 6 1,

fy0 > fx0 + 1
L−µ

(
µL
2 G1,1 − LG1,2 + µG1,3 + 1

2G2,2 −G2,3 + 1
2G3,3

)
,

fx0 > fy0 + 1
L−µ

(
µL
2 G1,1 − µG1,2 + LG1,3 + 1

2G2,2 −G2,3 + 1
2G3,3

)
,

(4.8)

which can be solved numerically using standard tools, see, e.g., Diamond and Boyd
(2016); MOSEK (2019); O’Donoghue et al. (2016). Using numerical and/or symbolical
computations, one can then easily arrive at τ(µ,L, γ) = max{(1 − Lγ)2, (1 − µγ)2} and
hence that

‖x1 − y1‖22 6 max{(1− Lγ)2, (1− µγ)2}‖x0 − y0‖22, (4.9)

for all d ∈ N, f ∈ Fµ,L(Rd) and x0, y0 ∈ Rd when x1, y1 ∈ Rd are generated from gradient
steps from respectively x0 and y0. In the next section, we show how to perform this
analysis using PEPIT, which automates the sampling and SDP-modeling procedures. In
more complex settings where more functions need to be sampled and/or more iterates
have to be taken into account, avoiding those steps allows to largely limits the probability
of making a mistake in the process of performing the worst-case analysis (numerically)
while allowing to spare a significant amount of time in the process.

4.2. PEPIT on a simple example 91

Remark 4.2.2 (Important ingredients for the SDP reformulations). To understand what
PEPIT can do, it is crucial to understand which elements allowed to cast the worst-case analysis
as such a semidefinite program (which is what we refer to as the “modeling” of the problem).
In short, the SDP reformulation of the worst-case computation problem was made possible due
to 4 main ingredients (see, e.g., (Taylor et al., 2017a, Section 2.2)):

1. the algorithmic steps can be expressed linearly in terms of the iterates and gradient
values (i.e., step-sizes do not depend on the function at hand),

2. the class of functions has “interpolation condition” 1 that are linear in G and the function
values,

3. the performance measure is linear (or convex piecewise linear) in G and the function
values,

4. the initial condition is linear in G and the function values.

Those ingredients allow the use of PEPs much beyond the simple setup of this section. That
is, PEPs apply for performing worst-case analyses involving a variety of first-order oracles,
initial conditions, performance measures, and problem classes (see Section 4.3 for the general
modeling of the problem, and Section 4.4 for a non-exhaustive list of cases that are covered).

4.2.2 Code

In the previous section, we introduced the PEP and SDP modeling steps for computing a
tight worst-case contraction factor for Gradient descent in the form (4.2). Although this
particular SDP (4.8) might be solved analytically, many optimization methods lead to larger
SDPs with more complicated structures. In general, we can reasonably only hope to solve
them numerically. In the following lines, we describe how to use PEPIT for computing a
contraction factor without explicitly going into the modeling steps. Compared to previous
section, we allow ourselves to perform n ∈ N iterations and compute the smallest possible
value of τ(µ,L, γ, n) such that

‖xn − yn‖22 6 τ(µ,L, γ, n)‖x0 − y0‖22, (4.10)

where xn and yn are computed from n iterations of Gradient descent with step-size γ
starting from respectively x0 and y0. As illustrated in the previous section for the case
n = 1, computing the smallest possible such τ(µ,L, γ, n) is equivalent to computing the
worst-case value of ‖xn − yn‖22 under the constraint that ‖x0 − y0‖22 6 1 (note that we
naturally have that τ(µ,L, γ, n) 6 (τ(µ,L, γ, 1))n). This is what we do in the following
lines using PEPIT.

Imports. Before going into the example, we have to include the right PYTHON imports.
For this example, it is necessary to perform two imports.

1 from PEPit import PEP

2 from PEPit.functions import\

3 SmoothStronglyConvexFunction

1Interpolation conditions characterize the existence of a function (that has particular function values
and gradients at given points) in the considered class by a list of constraints on those gradients, points, and
function values. Such interpolation theorems (see, e.g., Theorem 4.2.1) have been obtained in the literature
for various problem classes, see, e.g., Taylor et al. (2017c,a); Ryu et al. (2020).

4.2. PEPIT on a simple example 92

Initialization of PEPIT. First, we set the stage by initializing a PEP object. This object
allows manipulating the forthcoming ingredients of the PEP, such as functions and iterates.

4 problem = PEP()

For the sake of the example, let us pick some simple values for the problem class and
algorithmic parameters, for which we perform the worst-case analysis.

5 L = 1. # Smoothness parameter

6 mu = .1 # Strong convexity parameter

7 gamma = 1. / L # Step-size

8 n = 1 # Number of iterations

Specifying the problem class. Second, we specify our working assumptions on the
function to be optimized and instantiate a corresponding object. Here, the minimization
problem at hand was of the form (4.1) with a smooth strongly convex function.

9 # Declare an L-smooth mu-strongly convex function

10 # named "func"

11 func = problem.declare_function(

12 SmoothStronglyConvexFunction,

13 mu=mu, # Strong convexity param.

14 L=L) # Smoothness param.

Algorithm initialization. Third, we can instantiate the starting points for the two gradi-
ent methods that we will run, and specify an initial condition on those points. To this end,
two starting points x0 and y0 are introduced, one for each trajectory, and a bound on the
initial distance between those points is specified as ‖x0 − y0‖2 6 1.

15 # Declare two starting points

16 x_0 = problem.set_initial_point()

17 y_0 = problem.set_initial_point()

18

19 # Initial condition ||x_0 - y_0||^2 <= 1

20 problem.set_initial_condition((x_0 - y_0) ** 2 <= 1)

Algorithm implementation. In this fourth step, we specify the algorithm in a natural
format. In this example, we simply use the iterates (which are PEPIT objects) as if we had
to implement Gradient descent in practice using a simple loop.

21 # Initialize the algorithm

22 x = x_0

23 y = y_0

24 # Run n steps of the GD method for the two sequences

25 for _ in range(n):

26 # Replace x and y with their next iterate

27 x = x - gamma * func.gradient(x) # call to f’(x)

28 y = y - gamma * func.gradient(y) # call to f’(y)

4.2. PEPIT on a simple example 93

Setting up a performance measure. It is crucial for the worst-case analysis to specify
the metric for which we wish to compute a worst-case performance. In this example, we
wish to compute the worst-case value of ‖xn − yn‖2, which we specify as follows.

29 # Set the performance metric to the distance

30 # ||x_n - y_n||^2

31 problem.set_performance_metric((x-y)**2)

Solving the PEP. The last natural stage in the process is to solve the corresponding PEP.
This is done via the following line, which will ask PEPIT to perform the modeling steps and
to call an appropriate SDP solver (which should be installed beforehand) to perform the
worst-case analysis.

32 # Solve the PEP

33 pepit_tau = problem.solve()

Output. Running these pieces of code (see PEPit/examples/ for the complete example)
for some specific values of the parameters n = 1, L = 1, µ = .1 and γ = 1, one obtains the
following output.

1 (PEPit) Setting up the problem: size of the Gram matrix: 4x4

2 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s)

3 (PEPit) Setting up the problem: Adding initial conditions

4 and general constraints ...

5 (PEPit) Setting up the problem: initial conditions and general constraints

6 (1 constraint(s) added)

7 (PEPit) Setting up the problem: interpolation conditions for 1 function(s)

8 Function 1 : Adding 2 scalar constraint(s) ...

9 Function 1 : 2 scalar constraint(s) added

10 (PEPit) Setting up the problem: additional constraints for 0 function(s)

11 (PEPit) Compiling SDP

12 (PEPit) Calling SDP solver

13 (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK);

14 optimal value: 0.8100000029203449

15 (PEPit) Primal feasibility check:

16 The solver found a Gram matrix that is positive semi-definite

17 up to an error of 1.896548260018477e-09

18 All the primal scalar constraints are verified

19 up to an error of 3.042855638898251e-09

20 (PEPit) Dual feasibility check:

21 The solver found a residual matrix that is positive semi-definite

22 All the dual scalar values associated with inequality constraints

23 are nonnegative

24 (PEPit) The worst-case guarantee proof is perfectly reconstituted

25 up to an error of 4.0078754315331366e-08

26 (PEPit) Final upper bound (dual): 0.8100000036427537

27 and lower bound (primal example): 0.8100000029203449

28 (PEPit) Duality gap: absolute: 7.224087994472939e-10

29 and relative: 8.918627121515396e-10

Note that the size of the SDP is larger than that of Section 4.2 (4× 4 instead of 3× 3

in (4.7)) because the modeling step is done in a slightly more generic way, which might

https://pepit.readthedocs.io/en/latest/examples/k.html#contraction-rate-of-gradient-descent

4.3. PEPIT code structure and semidefinite formulation 94

not be exploiting all specificities of the problem at hand (see formulation in Section 4.3.1).
For more complete examples of worst-case analyses using PEPIT, see Section 4.5.

It is also possible to run the code for different values of the parameters, as exemplified in
Figure 4.1. This simple example allows us to observe that numerical values obtained from
PEPIT match the worst-case guarantee (4.1a), and to optimize the step-size numerically in
Figure 4.1b.

10 20 30 40

100

10−110−1

10−2

10−3

10−4

Iteration count n

W
or

st
-c

as
e
‖x
n
−
y
n
‖2 2

‖x
0
−
y
0
‖2 2

(a) Worst-case guarantee and theoretical
tight bound as a function of the iteration
count n for γ = 1

L .

0 0.5 1 1.5 2

1

0.25

0.5

0.75

1

Step-size γ

(b) Worst-case guarantee and theoretical
tight bound as a function of the step-size
γ, at iteration n = 5.

Figure 4.1: Comparison: worst-case guarantee from PEPIT (plain blue) and theoretical
tight worst-case bound (4.9) for Gradient descent in terms of ‖xn−yn‖

2
2

‖x0−y0‖22
(dashed red).

Problem parameters fixed to µ = 0.1 and L = 1.

4.3 PEPIT code structure and semidefinite formulation

This section provides the general semidefinite program (SDP) that is formulated by the pack-
age, as well as its relationship with the code. As already underlined, PEPIT precisely aims
at providing simple ways to model performance estimation problems (PEPs) by abstracting
the coding of those SDPs. Then, PEPIT passes the SDP either (i) to CVXPY Diamond and
Boyd (2016), thereby benefiting from all SDP solvers that are interfaced with it (such
as O’Donoghue et al. (2016); MOSEK (2019)), or (ii) directly to MOSEK MOSEK (2019).

Before going into the implementation details of PEPit, note that executing the codes
from Section 3.2 to 3.5 requires the following imports.

1 # For Section 3.2 to Section 3.5

2 import PEPit

3 import PEPit.functions

4

5 # For Section 3.3 and Section 3.5 we also need:

6 from PEPit.functions import\

7 ConvexFunction,\

8 ConvexIndicatorFunction,\

9 SmoothConvexFunction

10

4.3. PEPIT code structure and semidefinite formulation 95

11 # For the examples of Section 3.3:

12 from PEPit.primitive_steps import\

13 proximal_step,\

14 linear_optimization_step,\

15 inexact_gradient_step

4.3.1 Semidefinite formulation

The package formulates SDPs of the form

max
τ∈R,G∈Snp ,H∈Rnh

τ

s.t. G < 0

τ − Tr (AiG)− aTi H − αi 6 0 ∀i ∈ I1[
Tr (Bj,k,iG) + bTj,k,iH + βj,k,i

]
16j,k6ni

< 0 ∀i ∈ I2,

(4.11)

with nh, np ∈ N, some index sets I1 and I2 in N, and sets of problem parameters
{(Ai, ai, αi)}i∈I1 , and {(Bj,k,i, bj,k,i, βj,k,i)}16j,k6ni,i∈I2 (ni ∈ N>0 for all i ∈ I2) of ap-
propriate dimensions, which are constructed from the algorithm and the class of problems
at hand (and hence all depend on the parameters of the algorithm and of those of the class
of problems) for computing appropriate worst-case scenarios.

Formulating such an SDP is usually cumbersome and relatively error-prone, and the
role of PEPIT is to generate all those parameters in a user-friendly way. That is, PEPIT

parses more natural mathematical object descriptions fed by the user. For doing that, the
problem is described not in terms of the SDP variables (G,H) but rather in terms of another
couple (P,H) with the following structure:

P , [p1, p2, . . . , pnp], H , [h1, h2 . . . , hnh], (4.12)

for some {pi}16i6np ⊂ Rd for some d ∈ N, and {hi}16i6nh ⊂ R. Hence P ∈ Rd×np and
H ∈ Rnh . The relationship with (4.11) is that G can be constructed without loss of
generality as G , P TP < 0.

4.3.2 Base PEPIT objects

Using previous notations, PEPIT allows the user to formulate the problem in terms of (P,H)

instead of (G,H), which turns out much more natural for describing many algorithms and
problem classes. The base working procedure is as follows, which we detail in the next
lines:

• each pi corresponds to a base PEPIT.POINT object (referred to as a leaf element).
Such objects can be added and subtracted together, and scaled by real values for
forming new objects PEPIT.POINT (which are then combinations of leaf elements).
PEPIT.POINT objects can be understood as elements of Rd, the space of iterates/gra-
dients.

• Each hi corresponds to a base PEPIT.EXPRESSION object (referred to as a leaf element).
Such objects can be added and subtracted together, but also scaled by real values for
forming new objects PEPIT.EXPRESSION (which are combinations of leaf elements).

4.3. PEPIT code structure and semidefinite formulation 96

PEPIT.EXPRESSION objects can be understood as elements of R, such as, for instance,
(scalar) function values.

• It is possible to compute dot products of PEPIT.POINT objects (e.g., pTi pj for some
1 6 i, j 6 np), resulting in PEPIT.EXPRESSION objects.

• Comparing two PEPIT.EXPRESSION objects with an operator in {=,6,>} leads to a
PEPIT.CONSTRAINT object. Similarly, PEPIT.EXPRESSION can be gathered in arrays to
form PEPIT.PSD_MATRIX objects for formulating semidefinite constraints.

Example 4.3.1. Following up on the notations from Section 4.2 for describing one iteration
of Gradient descent, a possibility is to think of p1 as corresponding to some x0, of p2 as a
corresponding gradient gx0 , and of h1 as the corresponding function value fx0 . For a unit
step-size, one can form x1 = p1 − p2 as follows.

1 x_0 = PEPit.Point() # a leaf PEPit.Point (p_1)

2 g_x_0 = PEPit.Point() # a leaf PEPit.Point (p_2)

3 # a leaf PEPit.Expression (h_1):

4 f_x_0 = PEPit.Expression()

5

6 x_1 = x_0 - g_x_0 # x_1 is a PEPit.Point

7 g_x_1 = PEPit.Point() # a leaf PEPit.Point (p_3)

8 # a leaf PEPit.Expression (h_2):

9 f_x_1 = PEPit.Expression()

It is important to note that each call to PEPIT.POINT() increments np (dimension G in (4.11)).
Similarly, PEPIT.EXPRESSION() increments nh. It is cheaper to solve a problem with as few
leaf points and leaf expressions as possible.

For formulating the objective, initial conditions, and interpolation constraints, we use
PEPIT.EXPRESSION objects, which we compare together for forming PEPIT.CONSTRAINT

objects. For instance, interpolation conditions for convex functions can be formulated via
PEPIT.CONSTRAINT objects:

10 # this is a PEPit.Expression object:

11 expr = f_x_0 + g_x_0 * (x_1 - x_0)

12 # those are two PEPit.Constraint objects:

13 cons_1 = (f_x_0 + g_x_0 * (x_1 - x_0) <= f_x_1)

14 cons_2 = (f_x_1 + g_x_1 * (x_0 - x_1) <= f_x_0)

Once all required points, expressions, and constraints are associated with a PEP (as
in the example of Section 4.2.2 or in the following lines), PEPIT takes care of formulat-
ing the appropriate index sets I1, and I2 as well as all problem parameters for (4.11):
{(Ai, ai, αi)}i∈I1 , and {(Bj,k,i, bj,k,i, βj,k,i)}16j,k6ni,i∈I2 for feeding (4.11) to SDP solvers Di-
amond and Boyd (2016); O’Donoghue et al. (2016); MOSEK (2019). As we can see,
specifying constraints in this form is relatively appealing, due to its similarity with natural
mathematical statements. However, specifying a large number of such constraints remains
relatively cumbersome. Therefore, PEPIT relies on a few additional structures and aliases
that allow generating blocks of constraints in an abstract way.

4.3. PEPIT code structure and semidefinite formulation 97

4.3.3 Main PEPIT simplifying abstractions and aliases

Two key abstractions appearing in PEPIT are the functions (which can also be manipulated
algebraically) and oracles (or primitive steps, which are simple routines). In both cases,
those structures were thought for being able to easily add new types of functions and
oracles, as a user.

PEPIT functions. Among the most important building blocks simplifying the formulation
of the constraints in (4.11), PEPIT.FUNCTION objects are particularly important. They
allow generating large numbers of constraints by remaining close to clean mathematical
statements. Their most important characteristics are as follows:

• PEPIT.FUNCTION() creates a new leaf function,

• each leaf function contains a list of triplet {(xi, gi, fi)}i which corresponds to the
sampled version of the function in the form (points, gradients, function values), as
presented in Section 4.2.

• Each PEPIT.FUNCTION object F is featured with a F.ADD_POINT(TRIPLET) method,
which adds a triplet to the list of samples associated to F. By relying on appropriate
abstractions (exemplified later), the users are expected to almost never use this
method explicitly.

• Each PEPIT.FUNCTION object F contains a F.ADD_CLASS_CONSTRAINTS() method
that generate the list of interpolation PEPIT.CONSTRAINT associated to the sampled
version of F. This method is never explicitly used by the user but allows PEPIT

to translate the mathematical statements (description of the function) to actual
constraints.

• Each PEPIT.FUNCTION can also be scaled by scalar values and added or subtracted to
other PEPIT.FUNCTION for creating new PEPIT.FUNCTION objects.

Functions are also featured with a number of aliases that allow to easily create specific
PEPIT.POINT and PEPIT.EXPRESSION objects associated with the function (such as accessing
the gradient/value at a specific point, or accessing an optimal point of a function).

Example 4.3.2 (Base operations with functions). This example shows that we can manipu-
late functions to create new functions.

1 f = PEPit.Function() # a leaf PEPit.Function

2 h = PEPit.Function() # a leaf PEPit.Function

3 F = 2 * f + h # a PEPit.Function

We can also call base function operations on functions that are constructed by combining leaf
functions.

4 x = PEPit.Point() # this is p_1

5 g_x = PEPit.Point() # this is p_2

6 f_x = PEPit.Expression() # this is h_1

7

8 F.add_point((x, g_x, f_x))

9 # internally creates p_3, and h_2

4.3. PEPIT code structure and semidefinite formulation 98

10 # and adds one point to the list of f,

11 # and one to the list of h so that

12 # the weighted sums of gradients and

13 # function values at x are correct.

However, for simplifying the usage of PEPIT, one should essentially avoid directly using the
method ADD_POINT, and rather rely on more readable statements. In that regard, the following
piece of code is equivalent to the previous one but relies on more readable operations.

1 f = PEPit.Function() # a leaf PEPit.Function

2 h = PEPit.Function() # a leaf PEPit.Function

3 F = 2 * f + h # a PEPit.Function

4

5 x = PEPit.Point() # this is p_1 (arbitrary point)

6

7 g_x = F.gradient(x) # g_x is the gradient of F at x

8 f_x = F(x) # f_x is F(x)

Once the functions are features with the appropriate list of points corresponding to their
sample versions, those objects will be used to generate the list of interpolation constraints
(and the corresponding weight matrices). For creating a class that features a new type of
interpolation conditions, it suffices to create a new class that inherits PEPIT.FUNCTION and
implements the operation ADD_CLASS_CONSTRAINTS with the appropriate interpolation con-
straints (see https://github.com/PerformanceEstimation/PEPit/tree/master/
PEPit/functions for examples).

Let us now mention an important class of convenient abstraction that belongs to the
heart of PEPIT’s philosophy.

PEPIT primitive steps (or oracles). PEPIT primitive steps (or oracles) are essentially
simple aliases defining notational shortcuts for some algorithmic operations, rendering
them closer to their mathematical abstractions. They generally consist of the appropriate
creations (and constraining) of points and expressions, for instance by adding appropriate
triplets to sampled versions of the functions under consideration. Let us provide a few
examples.

Example 4.3.3 (Proximal operators.). In this example, we provide two ways to use proximal
operators within PEPIT. The first one uses the base PEPIT methods for doing this, and the
second one relies on the more readable PROXIMAL_STEP that is provided as a primitive step
of PEPIT. Those two ways are computationally equivalent, though different in terms of
readability. Let us recall that the proximal operation (with unit step-size) associated to f is
given by

x1 = proxf (x0) , argminx

{
f(x) + 1

2‖x− x0‖2
}
.

For any (closed, proper) convex function f , this operation is well-defined and amounts to an
implicit subgradient operation:

x1 = x0 − g1,

with g1 ∈ ∂f(x1).

https://github.com/PerformanceEstimation/PEPit/tree/master/PEPit/functions
https://github.com/PerformanceEstimation/PEPit/tree/master/PEPit/functions

4.3. PEPIT code structure and semidefinite formulation 99

1 # f is a (closed, proper) convex function

2 f = PEPit.functions.ConvexFunction()

3 x0 = PEPit.Point() # is a point

4

5 # how to construct x_1 = prox_f (x_0)?

6 # (i) initiate some g1 and f1

7 g1 = PEPit.Point()

8 f1 = PEPit.Expression()

9

10 # (ii) form x1 using x0 and g1

11 x1 = x0 - g1

12

13 # (iii) constrain g1 to be a subgradient of f at x1

14 f.add_point((x1, g1, f1))

Equivalently, using PROXIMAL_STEP, we have:

1 # f is a (closed, proper) convex function

2 f = PEPit.functions.ConvexFunction()

3 x0 = PEPit.Point() # is a point

4

5 x1, g1, f1 = proximal_step(x0, f, gamma=1)

6 # note: gamma is a step-size, set to 1 in the example.

Example 4.3.4 (Linear optimization oracles.). This operation is at the core of the Frank-
Wolfe (a.k.a. conditional gradient) method, and consists in, given a (closed, convex) domain K
(whose indicator function is denoted by iK) and a search direction d0, in computing a solution
to

x1 ∈ argminx d
T
0 x+ iK(x),

which is mathematically equivalent to writing −d0 ∈ ∂iK(x1). In PEPIT, this can also easily
be coded as follows.

1 # ind is a (closed) convex indicator function

2 ind = PEPit.functions.ConvexIndicatorFunction()

3 d0 = PEPit.Point()

4

5 # how to construct a solution to min_x d0*x + ind(x) ?

6 # (i) initiate a new point and an expression

7 x1 = PEPit.Point()

8 f1 = PEPit.Expression()

9

10 # (ii) Constrain -d0 to be a subgradient

11 # of the indicator at x1

12 ind.add_point((x1, -d0, f1))

Using abstraction again, this code is equivalent to

1 # ind is a (closed) convex indicator function

4.3. PEPIT code structure and semidefinite formulation 100

2 ind = PEPit.functions.ConvexIndicatorFunction()

3 d0 = PEPit.Point()

4

5 # how to construct a solution to min_x d0*x + ind(x) ?

6 x1, _, f1 = linear_optimization_step(d0, ind)

Example 4.3.5 (Using approximate gradients.). Another standard operation in first-order
optimization consists in using approximate gradient values. For instance, for computing some
x1 using a gradient iteration (with unit step-size) with an approximate gradient d̃0 ≈ ∇f(x0)

for some appropriate function f :
x1 = x0 − d̃0,

with d̃0 being an ε approximation to ∇f(x0) in the following sense: ‖d̃0 − ∇f(x0)‖ 6
ε‖∇f(x0)‖, say with ε = 0.1.

1 # f is a 1-smooth convex function

2 f = PEPit.functions.SmoothConvexFunction(L=1)

3 x0 = PEPit.Point()

4 epsilon = .1

5

6 # how to construct a x1?

7 # (i) initiate a d0 and the gradient of x0

8 g0 = f.gradient(x0)

9 d0 = PEPit.Point()

10 f.add_constraint((d0 - g0) ** 2 <= epsilon * g0 ** 2)

11

12 x1 = x0 - d0

This can equivalently be done using INEXACT_GRADIENT_STEP, as follows.

1 # f is a 1-smooth convex function

2 f = PEPit.functions.SmoothConvexFunction(L=1)

3 x0 = PEPit.Point()

4

5 # how to construct a x1?

6 from PEPit.primitive_steps\

7 import inexact_gradient_step

8

9 x1, d0, _ = inexact_gradient_step(x0, f, gamma=1,

10 epsilon=.1,

11 notion=’relative’)

To conclude this section, PEPIT’s philosophy is to contain many abstract routines that
can be associated with simple mathematical statements. Taken separately, those routines
are relatively simple and can easily be created or modified by the users.

4.3.4 The objective function of the PEP: performance metrics

A key point that we did not mention so far concerns the objective function of (4.11). It
is handled by what is referred to as performance metrics in PEPIT. In the SDP formula-

4.3. PEPIT code structure and semidefinite formulation 101

tion (4.11), they correspond to the index set I1 and the set of parameters {(Ai, ai, αi)}i∈I1 ,
and they are handled by calling the SET_PERFORMANCE_METRIC method (which takes a
PEPIT.EXPRESSION as sole argument) associate to a PEP object. By introducing the variable
τ in (4.11), the objective of the PEP corresponds to the minimum value of all specified
performance metrics.

Example 4.3.6. This example shows how to specify an objective function (a.k.a. performance
metric) within PEPIT.

1 problem = PEPit.PEP()

2

3 p1 = PEPit.Point()

4 p2 = PEPit.Point()

5 h1 = PEPit.Expression()

6

7 # set the PEP objective as the minimum value among

8 # ||p1||^2, ||p2||^2, and h1.

9 problem.set_performance_metric(p1**2)

10 problem.set_performance_metric(p2**2)

11 problem.set_performance_metric(h1)

4.3.5 Formulating and solving the PEP

As a final stage for formulating (4.11), we need to gather all functions and constraints
together and reformulate in terms of (4.11). For doing that, PEPIT relies on the PEP object
(as provided in Section 4.2.2) as follows:

1 problem = PEPit.PEP()

which is used for centralizing all the information about the PEP at hand. In particular,
it is a good practice to avoid using PEPIT.POINT() directly, and to rather use PROB-
LEM.SET_INITIAL_POINT(). Similarly, new functions should be declared through the PEP
object using the DECLARE_FUNCTION method:

1 # declares a convex (closed, proper) function h

2 h = problem.declare_function(ConvexFunction)

3

4 # declares a convex (closed) indicator ind

5 ind = problem.declare_function(ConvexIndicatorFunction)

6

7 # declares a 1-smooth convex function f

8 f = problem.declare_function(SmoothConvexFunction,

9 L=1)

For modeling (4.11), we gather all PEPIT.CONSTRAINT objects that are associated with
PROBLEM through the different abstractions used in the code. For instance, the PEPIT.PEP
object PROBLEM will call the ADD_CLASS_CONSTRAINTS method of all functions involved
in the PEP. Once this is done, PEPIT generates all appropriate matrices and index sets for
framing the problem as an SDP in the form (4.11), and passes it to either CVXPY Diamond

4.3. PEPIT code structure and semidefinite formulation 102

and Boyd (2016) or directly to MOSEK MOSEK (2019), before performing a few post-
processing steps.

4.3.6 Post-processing

Once the PEP is solved numerically, we need to manipulate its output, either for constructing
proofs (on the dual PEP side), or counter-examples (on the primal PEP side).

Dual reconstructions. Dual values associated with the different constraints play an
important role, as they allow us to construct mathematical proofs.

In the following, we assume that func has been defined as a Function used in the PEP,
that constraints_list has been defined as a list of Constraint objects involved in the PEP and
that the PEP has been solved through the PEP.SOLVE() method.

One of the important features of PEPit is to autonomously deal with interpolation con-
straints for the different functions involved in the PEP. This way, the attribute list_of_class_constraints
enables to access the list of Constraint objects encoding the interpolation constraints of
func.

Besides, each dual value can be accessed through the EVAL_DUAL() method of the
associated Constraint object:

1 for constraint in func.list_of_class_constraints:

2 dual_value = constraint.eval_dual()

3 print(dual_value)

Moreover, to ease the reconstruction of the proof, and avoid mistakes by associating a
constraint to the wrong dual value, a user can name a constraint through the SET_NAME()
method and access it later on through the GET_NAME() method. Note it is the responsibility
of the user to set a name to the constraints to be able to recover it later.

1 for constraint in constraints_list:

2 constraint_name = constraint.get_name()

3 dual_value = constraint.eval_dual()

4 print(constraint_name, dual_value)

Since PEPit deals with interpolation constraints without any intervention from the user
side, a short description of each of those constraints is set by default, based on Points’names
and func’s name which can also be set through a SET_NAME method.

Finally, a user can also obtain all the dual values associated with the interpolation
constraints of a function at once, using the GET_CLASS_CONSTRAINTS_DUALS method as

1 # assuming func has been defined

2 # as a Function object involved in the PEP

3 # and that the PEP has been solved.

4

5 tables = func.get_class_constraints_duals()

This method returns a dictionary whose values are pandas.DataFrames, offering great
readability. Completing the example of Section 4.2.2 (this time for 2 steps) with this
feature, we obtain the following code:

1 import numpy as np

4.3. PEPIT code structure and semidefinite formulation 103

2

3 from PEPit import PEP

4 from PEPit.functions import\

5 SmoothStronglyConvexFunction

6

7 # We set the parameter of the problem

8 # Here we study the contraction of 1 step

9 # of the GD method with step 1/L on the class of

10 # L=1 smooth and mu=.1 strongly convex functions.

11

12 L = 1. # Smoothness parameter

13 mu = .1 # Strong convexity parameter

14 gamma = 1. / L # Step-size

15 n = 2 # Number of iterations

16

17 # Instantiate the PEP object

18 problem = PEP()

19

20 # Declare an L-smooth mu-strongly convex function

21 # named "func"

22 func = problem.declare_function(

23 SmoothStronglyConvexFunction,

24 mu=mu, # Strong convexity param.

25 L=L, # Smoothness param.

26 name="f") # Name

27

28 # Declare two starting points

29 x_0 = problem.set_initial_point(name="x_0")

30 y_0 = problem.set_initial_point(name="y_0")

31

32 # Initial condition ||x_0 - y_0||^2 <= 1

33 problem.set_initial_condition((x_0 - y_0) ** 2 <= 1)

34

35 # Initialize the algorithm

36 x = x_0

37 y = y_0

38 # Run n steps of the GD method for the two sequences

39 for i in range(n):

40

41 # Replace x and y with their next iterates

42 x = x - gamma * func.gradient(x) # call to f’(x)

43 x.set_name("x_{}".format(i+1))

44

45 y = y - gamma * func.gradient(y) # call to f’(y)

46 y.set_name("y_{}".format(i+1))

47

48 # Set the performance metric to the distance

4.3. PEPIT code structure and semidefinite formulation 104

49 # ||x_n - y_n||^2

50 problem.set_performance_metric((x-y)**2)

51

52 # Solve the PEP

53 pepit_tau = problem.solve()

54

55 # By linearly combining the interpolation constraints

56 # with the right coefficients, we can prove

57 # ||x_n - y_n||^2 <= pepit_tau ||x_0 - y_0||^2

58 # The coefficient we need are the dual values

59 # of the interpolation constraints of func.

60 tables = func.get_class_constraints_duals()

61

62 # A user can display the dictionary as is,

63 # or can access one specific table by their name.

64 # Those names are intuitive, yet to be known,

65 # for example by displaying the keys of tables.

66 # Here we use the only key of this dictionary.

67 table = tables["smoothness_strong_convexity"]

68

69 print("\nDual values associated with"

70 " interpolation constraints:")

71 print(table.astype(dtype=np.float16))

Running this code outputs the following message:

1 (PEPit) Setting up the problem: size of the Gram matrix: 6x6

2 (PEPit) Setting up the problem: performance measure is the minimum of 1 element(s)

3 (PEPit) Setting up the problem: Adding initial conditions

4 and general constraints ...

5 (PEPit) Setting up the problem: initial conditions and general constraints

6 (1 constraint(s) added)

7 (PEPit) Setting up the problem: interpolation conditions for 1 function(s)

8 Function 1 : Adding 12 scalar constraint(s) ...

9 Function 1 : 12 scalar constraint(s) added

10 (PEPit) Setting up the problem: additional constraints for 0 function(s)

11 (PEPit) Compiling SDP

12 (PEPit) Calling SDP solver

13 (PEPit) Solver status: optimal (wrapper:cvxpy, solver: MOSEK);

14 optimal value: 0.6561000087150534

15 (PEPit) Primal feasibility check:

16 The solver found a Gram matrix that is positive semi-definite

17 up to an error of 2.584803430062655e-09

18 All the primal scalar constraints are verified

19 up to an error of 4.590572921792102e-09

20 (PEPit) Dual feasibility check:

21 The solver found a residual matrix that is positive semi-definite

22 All the dual scalar values associated with inequality constraints

23 are nonnegative up to an error of 3.8932973849815053e-10

24 (PEPit) The worst-case guarantee proof is perfectly reconstituted

25 up to an error of 1.349705540942825e-07

4.4. PEPIT: general overview and content 105

26 (PEPit) Final upper bound (dual): 0.6561000067100656

27 and lower bound (primal example): 0.6561000087150534

28 (PEPit) Duality gap: absolute: -2.004987731396568e-09

29 and relative: -3.055917855150253e-09

30

31 Dual values associated with interpolation constraints:

32 IC_f x_0 y_0 x_1 y_1

33 x_0 0.000000 1.458008 0.000000 0.000000

34 y_0 1.458008 0.000000 0.000000 0.000000

35 x_1 -0.000000 0.000000 0.000000 1.799805

36 y_1 0.000000 -0.000000 1.799805 0.000000

Primal reconstructions. In order to construct an example of a problem on which the algorithm
behaves as badly as possible, all PEPIT.POINT, all PEPIT.EXPRESSION and all PEPIT.CONSTRAINT ob-
jects can be conveniently evaluated through the EVAL() method. Moreover, their NAME attribute can
help to sort them. PEPIT also offers the possibility to search for simpler, potentially low-dimensional
problem instances via the trace norm Recht et al. (2010) or the logdet Fazel et al. (2003) heuristics
(aiming at finding low-rank feasible matrices G for the problem (4.11) while keeping the same
objective value). Those post-processing steps can be accessed via the option of the SOLVE method
(see https://pepit.readthedocs.io/en/latest/api/main_modules.html#pep). Ex-
amples of such usages can be found in the documentation at https://pepit.readthedocs.
io/en/latest/examples/j.html.

4.4 PEPIT: general overview and content

In this section, we go back to the mathematical content of the toolbox and describe the various
choices of (i) elementary oracles used in algorithms, (ii) problem or function classes, (iii) perfor-
mance measures, and (iv) initial conditions, that are naturally handled by PEPIT. PEPIT also allows
studying methods for monotone inclusions and fixed point problems, but we do not cover them in
this summary. In the optimization setting, the minimization problem under consideration has the
form

F? , min
x∈Rd

{
F (x) ≡

K∑
i=1

fi(x)

}
, (4.13)

for some K ∈ N and where each fi is assumed to belong to some class of functions denoted by Fi,
encoding our working assumptions on fi. We further assume the algorithms to gather information
about the functions {fi}i only via black-box oracles such as gradient or proximal evaluations.

Black-box oracles. The base black-box optimization oracles/operations available in PEPIT are
the following:

• (sub)gradient steps,

• proximal and projection steps,

• linear optimization (or conditional) steps.

PEPIT also allows for their slightly more general approximate/inexact and Bregman (or mirror)
versions. Those oracles might be combined with a few other operations, such as exact line-search
procedures, as detailed in Table 4.1.

Problem classes. A few base classes of functions are readily available within the package
(see Table 4.2 for further details) such as:

https://pepit.readthedocs.io/en/latest/api/main_modules.html#pep
https://pepit.readthedocs.io/en/latest/examples/j.html
https://pepit.readthedocs.io/en/latest/examples/j.html

4.4. PEPIT: general overview and content 106

Table 4.1: Main base primitive steps (oracles) included in PEPIT. Appropriate references
are provided in the corresponding documentation. Some oracles are overlapping and
are present for promoting a better readability of the code and for numerical efficiency.
Variations around the present oracles can be added at will. For each oracle, x+ denotes the
output of the oracles; the other elements are either input of the oracles or intermediary
optimization variables.

Oracle name Description Tightness

Subgradient step x+ = x− γg with g ∈ ∂f(x) 4

Epsilon-subgradient
step

x+ = x− γg with g ∈ ∂εf(x) 4

Inexact gradient step x+ = x− γg with g ≈ε ∇f(x)

for some notion “≈ε” of approxi-
mation.

4

Exact line-search step x+ = arg min
z∈x+span{di,i∈J1,T K}

f(z) 6

Proximal step x+ =

arg min
z

{
γf(z) + 1

2‖z − x‖
2
} 4

Inexact proximal step x+ ≈ε
arg min

z

{
γf(z) + 1

2‖z − x‖
2
}

for some notion “≈ε” of approxi-
mation.

4

Bregman gradient step x+ =

arg min
z

[
〈∇f(x); z − x〉+ 1

γDh(z;x)
]4

Bregman proximal step x+ = arg min
z

[
f(z) + 1

γDh(z;x)
]

4

Linear optimization step x+ = arg min
z | ind(z)=0

〈dir; z〉 4

• convex functions within different classes of assumptions possibly involving bounded gradi-
ents (Lipschitz functions), bounded domains, smoothness, and/or strong convexity. Those
assumptions might be combined when compatible.

• Convex indicator functions, possibly with a bounded domain.

• Smooth nonconvex functions.

• Convex and quadratically upper bounded functions.

• Quadratic functions.

Beyond the pure optimization setting, PEPIT also allows using operators (see Table 4.3) within
different classes of assumptions (namely: nonexpansive, Lipschitz, cocoercive, maximally monotone,

https://pepit.readthedocs.io/en/latest/api/steps.html
https://pepit.readthedocs.io/en/latest/api/steps.html#epsilon-subgradient-step
https://pepit.readthedocs.io/en/latest/api/steps.html#epsilon-subgradient-step
https://pepit.readthedocs.io/en/latest/api/steps.html#inexact-gradient-step
https://pepit.readthedocs.io/en/latest/api/steps.html#exact-line-search-step
https://pepit.readthedocs.io/en/latest/api/steps.html#proximal-step
https://pepit.readthedocs.io/en/latest/api/steps.html#inexact-proximal-step
https://pepit.readthedocs.io/en/latest/api/steps.html#bregman-gradient-step
https://pepit.readthedocs.io/en/latest/api/steps.html#bregman-proximal-step
https://pepit.readthedocs.io/en/latest/api/steps.html#linear-optimization-step

4.4. PEPIT: general overview and content 107

and strongly monotone operators) for studying first-order methods for monotone inclusions and
variational inequalities.

Table 4.2: Some base function classes included in PEPIT, detailed in the documentation.
Default functional classes within PEPIT. Some classes are overlapping and are present only
to promote a better readability of the code.

Function class name Tightness

Convex (closed, proper) functions 4

Convex (closed, proper) Lipschitz-continuous functions 4

Convex (closed, proper) indicator functions 4

Convex support functions 4

Smooth strongly convex functions 4

Smooth convex functions 4

Smooth (possibly nonconvex) functions 4

Smooth convex Lipschitz functions 4

Strongly convex functions 4

Convex quadratically upper-bounded functions 4

Restricted secant inequality and error bound 4

Smooth strongly convex quadratic functions 4

Smooth convex function by block 6

Performance measures and initial conditions. An important degree of freedom of the
package is to allow a large panel of performance measures and initial conditions. Essentially,
everything that can be expressed linearly (or slightly beyond) in function values and quadratically
in gradient/iterates (i.e., linear in the Gram representation of Section 4.2) might be considered.
Following the notation of Section 4.2.2 (and denoting by x? an optimal point of F), typical examples
of initial conditions include:

• ‖x0 − x?‖22 6 1,

• ‖∇F (x0)‖22 6 1 (when F is differentiable, otherwise similar criterion involving some subgra-
dient of F might be used),

• F (x0)− F (x?) 6 1,

• any linear combination of the above (see, e.g., examples in the potential functions folder of
the package).

https://pepit.readthedocs.io/en/latest/api/functions.html
https://pepit.readthedocs.io/en/latest/api/functions.html#convex
https://pepit.readthedocs.io/en/latest/api/functions.html#convex-and-lipschitz-continuous
https://pepit.readthedocs.io/en/latest/api/functions.html#convex-indicator
https://pepit.readthedocs.io/en/latest/api/functions.html#convex-support-functions
https://pepit.readthedocs.io/en/latest/api/functions.html#strongly-convex-and-smooth
https://pepit.readthedocs.io/en/latest/api/functions.html#convex-and-smooth
https://pepit.readthedocs.io/en/latest/api/functions.html#smooth
https://pepit.readthedocs.io/en/latest/api/functions.html#smooth-convex-and-lipschitz-continuous
https://pepit.readthedocs.io/en/latest/api/functions.html#strongly-convex
https://pepit.readthedocs.io/en/latest/api/functions.html#convex-and-quadratically-upper-bounded
https://pepit.readthedocs.io/en/latest/api/functions.html#restricted-secant-inequality-and-error-bound
https://pepit.readthedocs.io/en/latest/api/functions.html#strongly-convex-and-smooth-quadratic
https://pepit.readthedocs.io/en/latest/api/functions.html#convex-and-smooth-by-block

4.4. PEPIT: general overview and content 108

Table 4.3: Base operator classes within PEPIT, detailed in the documentation. Some classes
are overlapping and are present only to promote a better readability of the code. Note
that, for some classes, the associated constraints might not be tight, meaning that the
methodology might only be able to generate upper-bound on the worst-case behaviors.

Operator class name Tightness

Monotone (maximally) 4

Strongly monotone (maximally) 4

Cocoercive 4

Lipschitz continuous 4

Negative comonotone 4

Cocoercive and strongly monotone 6

Lipschitz continuous and strongly monotone 6

Non-expansive 4

Linear 4

Symmetric Linear 4

Skew-symmetric Linear 4

Similarly, typical examples of performance measures (see Table 4.4 for examples) include: ‖xn−x?‖22,
‖∇F (xn)‖22 (when F is differentiable), F (xn)−F (x?), or linear combinations and minimum values
of the above,
e.g. min06i6n ‖∇F (xi)‖22 (when F is differentiable).

Examples. PEPIT contains about 75 examples that can readily be used, instantiating the different
sets of black-box oracles, problem classes, and initial condition/performance measures. Those
examples can be found in the folder PEPIT/EXAMPLES/.

Contributing. PEPIT is designed to allow users to easily contribute to add features to the
package. Classes of functions (or operators) as well as black-box oracles can be implemented by
following the contributing guidelines from the documentation. We also welcome any new example
for analyzing a method/setting that is not already present in the toolbox.

https://pepit.readthedocs.io/en/latest/api/operators.html
https://pepit.readthedocs.io/en/latest/api/operators.html#monotone
https://pepit.readthedocs.io/en/latest/api/operators.html#strongly-monotone
https://pepit.readthedocs.io/en/latest/api/operators.html#cocoercive
https://pepit.readthedocs.io/en/latest/api/operators.html#lipschitz-continuous
https://pepit.readthedocs.io/en/latest/api/operators.html#negatively-comonotone
https://pepit.readthedocs.io/en/latest/api/operators.html#cocoercive-and-strongly-monotone
https://pepit.readthedocs.io/en/latest/api/operators.html#strongly-monotone-and-lipschitz-continuous
https://pepit.readthedocs.io/en/latest/api/operators.html#nonexpansive
https://pepit.readthedocs.io/en/latest/api/operators.html#linear-operator
https://pepit.readthedocs.io/en/latest/api/operators.html#symmetric-linear-operator
https://pepit.readthedocs.io/en/latest/api/operators.html#skew-symmetric-linear-operator
https://pepit.readthedocs.io/en/latest/contributing.html

4.5. A few additional numerical examples 109

Table 4.4: Examples of common performance measures. This topic is discussed extensively
in excellent references that include Nemirovskii (1992, 1994); see also (Taylor et al., 2018b,
Tables 1–3) for examples in the context of (proximal) Gradient descent. Considering
appropriate performance measures is key for the analyses, and is particularly exploited
when looking for appropriate Lyapunov functions, see, e.g., the related Lessard et al.
(2016); Taylor and Bach (2019); Taylor et al. (2018a).

Performance measure Description

Distance ‖xn − x?‖22

Gradient norm ‖∇F (xn)‖22

Function value F (xn)− F (x?)

Contraction ‖xn − yn‖22

Lyapunov functions a(F (xn)− F (x?)) +

xn − x?
∇F (xn)


>

(P ⊗ Id)

xn − x?
∇F (xn)



4.5 A few additional numerical examples

The following section provides a few additional numerical worst-case analyses obtained through
PEPIT; namely an accelerated gradient method Nesterov (2003), an accelerated Douglas-Rachford
splitting Patrinos et al. (2014), and point-SAGA Defazio (2016) (a proximal method for finite-sum
minimization).

4.5.1 Analysis of an accelerated gradient method

For this example, we focus again on the problem of minimizing a L-smooth µ-strongly convex
function (problem (4.13) with F ∈ Fµ,L). We consider a classical accelerated gradient method with
constant momentum Nesterov (1983, 2003). It can be described as follows for t ∈ {0, ..., n − 1}
with y0 = x0:

xt+1 = yt − α∇F (yt),

yt+1 = xt+1 + β(xt+1 − xt),
(4.14)

with κ = µ
L , α = 1

L and β = 1−√κ
1+
√
κ

. We decide to compute the smallest possible τ(n,L, µ) such that
the guarantee

F (xn)− F? 6 τ(n,L, µ)
(
F (x0)− F (x?) +

µ

2
‖x0 − x?‖22

)
,

holds for all d ∈ N, F ∈ Fµ,L, x0, xn, x? ∈ Rd where xn is an output of the accelerated gradient
method (4.14) and x? is the minimizer of F . In this setting, τ(n,L, µ) can be computed as the
worst-case value of F (xn) − F? (the performance metric) when F (x0) − F? + µ

2 ‖x0 − x?‖
2
2 6 1

(initial condition). As a reference, we compare the output of PEPIT to the following worst-case
guarantee (d’Aspremont et al., 2021, Corollary 4.15):

F (xn)− F? 6
(

1−
√
µ

L

)n (
F (x0)− F? +

µ

2
‖x0 − x?‖22

)
. (4.15)

4.5. A few additional numerical examples 110

A comparison between the output of PEPIT and (4.15) is presented in Figure 4.2a, where we
see that (4.15) could be slightly improved to better match the worst-case behavior of the algo-
rithm. The corresponding code can be found in accelerated_gradient_strongly_convex.py from the
PEPit/examples/unconstrained_convex_minimization/ directory.

4.5.2 Analysis of an accelerated Douglas-Rachford splitting

In this section, we provide a simple PEPIT example for studying an accelerated Douglas-Rachford
splitting method. This method was introduced in Patrinos et al. (2014) where a worst-case analysis
is provided for quadratic minimization. We perform a worst-case analysis numerically for a slightly
more general setting:

F? , min
x
{F (x) ≡ f1(x) + f2(x)},

where f1 is closed proper and convex, and f2 is µ-strongly convex and L-smooth. This section
focuses on the following accelerated Douglas-Rachford splitting method, described in (Patrinos
et al., 2014, Section 4):

xt = proxαf2(ut),

yt = proxαf1(2xt − ut),
wt+1 = ut + θ(yt − xt),

ut+1 =

{
wt+1 + t−1

t+2 (wt+1 − wt) if t > 1,

wt+1 otherwise,

where prox denotes the usual proximal operator, available in PEPIT through the operation PROXI-
MAL_STEP, as exemplified below. Note that we only show the algorithm description here, the full
PEPIT code for this example can be found in the file accelerated_douglas_rachford_splitting.py from
the directory
PEPit/examples/composite_convex_minimization/.

1 # Compute n steps of

2 # An accelerated Douglas-Rachford splitting

3 for t in range(n):

4 x[t], _, _ = proximal_step(u[t], func2, alpha)

5 y, _, fy = proximal_step(2*x[t] - u[t],

6 func1, alpha)

7 w[t+1] = u[t] + theta * (y-x[t])

8 if t >= 1:

9 u[t+1] = w[t+1] + (t-1)/(t+2) * (w[t+1]-w[t])

10 else:

11 u[t+1] = w[t+1]

When f2 is a L-smooth µ-strongly convex quadratic function, the following worst-case guarantee
is provided by (Patrinos et al., 2014, Theorem 5):

F (yn)− F? 6
2‖w0 − w?‖22
αθ(n+ 3)2

, (4.16)

when θ = 1−αL
1+αL and α < 1

L . A numerical worst-case guarantee for the case L = 1, µ = 0.01,
α = 0.9, θ = 1−αL

1+αL is provided on Figure 4.2b for a few different values of N , where we use (4.16)
as a reference for comparison. For each of those values, PEPIT computed a tight (up to numerical
precision) worst-case value for which we are not aware of any proven analytical worst-case guarantee
beyond the quadratic setting. We see that PEPIT provides an improvement over this guarantee,
even when the problem under consideration is not quadratic.

https://pepit.readthedocs.io/en/latest/_modules/PEPit/examples/unconstrained_convex_minimization/accelerated_gradient_strongly_convex.html#wc_accelerated_gradient_strongly_convex
https://pepit.readthedocs.io/en/latest/examples/a.html
https://pepit.readthedocs.io/en/latest/_modules/PEPit/examples/composite_convex_minimization/accelerated_douglas_rachford_splitting.html#wc_accelerated_douglas_rachford_splitting
https://pepit.readthedocs.io/en/latest/examples/b.html

4.5. A few additional numerical examples 111

4.5.3 Analysis of point-SAGA

In this section, we use PEPIT for studying point-SAGA Defazio (2016), a stochastic algorithm for
finite sum minimization:

F? , min
x

{
F (x) ≡ 1

n

n∑
i=1

fi(x)

}
,

where f1, . . . , fn are L-smooth and µ-strongly convex functions with a proximal operator available
for each of them. At each iteration t, point-SAGA picks jt ∈ {1, . . . , n} uniformly at random and
performs the following updates (a superscript is used for denoting iteration numbers; the subscript
is used for referring to the function fjt chosen uniformly at random):

z
(t)
jt

= x(t) + γ

(
g
(t)
jt
− 1

n

∑
i

g
(t)
i

)
,

x
(t+1)
jt

= proxγfjt

(
z
(t)
jt

)
,

g
(t+1)
jt

=
1

γ

(
z
(t)
jt
− x(t+1)

jt

)
,

where γ =

√
(n−1)2+4nLµ

2Ln − (1− 1
n)

2L is the step-size. In this example, we use a Lyapunov (or potential
/ energy) function V (x) = 1

Lµ
1
n

∑
i6n ‖∇fi(x)−∇fi(x?)‖22 + ‖x− x?‖22, and compute the smallest

τ(n,L, µ) such that the guarantee

Ejt
[
V
(
x
(t+1)
jt

)]
6 τ(n,L, µ)V (x(t)),

holds for all d ∈ N, fi ∈ Fµ,L(Rd) (for all i = 1, . . . , n), x(t) ∈ Rd where x(t+1)
jt

is the (random)
output generated by point-SAGA, and the expectation is taken over the randomness of jt. The
following simple worst-case guarantee is provided in (Defazio, 2016, Theorem 5) and is used as a
reference:

Ejt [V (x
(t+1)
jt

)] 6
1

1 + µγ
V (x(t)). (4.17)

We compare (4.17) to PEPIT’s tight (up to numerical precision) output in Figure 4.2c. We see that
the worst-case guarantee (4.17) can be slightly improved, although pretty accurate, particularly for
large values of the condition number. The corresponding PEPIT code of this example can be found
in the file point_saga.py from the directory
PEPit/examples/stochastic_and_randomized_convex_minimization/.

https://pepit.readthedocs.io/en/latest/_modules/PEPit/examples/stochastic_and_randomized_convex_minimization/point_saga.html#wc_point_saga
https://pepit.readthedocs.io/en/latest/examples/d.html

4.6. Conclusion 112

20 40 60

100

10−1

10−2

10−3

10−4

Iteration count

W
or

st
-c

as
e

gu
ar

an
te

e

(a) Accelerated gradient
method: strong convexity
parameter fixed to µ = 0.1.
Worst-case guarantee on
F (xn)− F? as a function of n.

100 101 102

101

100

10−110−1

10−2

10−3

Iteration count (log scale)

(b) Accelerated Douglas-
Rachford splitting with
parameter α = 0.9 and
µ = 0.1. Worst-case guarantee
on F (yn) − F? as a function
of n.

101 102 103 104 105

1.05

1

0.95

0.9

0.85

Condition number

(c) Point-SAGA: n = 5 func-
tions. Worst-case guarantee on
Ejt [V (x

(t+1)
jt

] as a function of
the condition number κ = L

µ .

Figure 4.2: Comparisons between (numerical) worst-case bounds from PEPIT (plain
lines) VS. reference established worst-case guarantees (dashed lines) for three different
optimization methods. For simplicity, we fixed smoothness constants to L = 1.

4.6 Conclusion

The PEPIT package, briefly described in this paper, aims at providing simplified access to worst-case
analyses of first-order optimization methods in PYTHON. For doing that, it implements the perfor-
mance estimation approach while allowing to avoid the possibly heavy semidefinite programming
modeling steps. The first version of the package already contains about 75 examples of first-order
methods that can be analyzed through this framework. Those examples allow either reproducing or
tightening, numerically, known worst-case analyses or provide new ones depending on the particular
method and problem class at hand.

Overall, we believe that this package allows quick (in)validations of proofs (a step towards
reproducible theory) which should help both the development and the review process in optimiza-
tion. We also argue that this is a nice pedagogical tool for learning algorithms together with their
worst-case properties just by playing with them. Possible extensions under consideration for future
versions include an option for searching for Lyapunov (or potential/energy) functions Taylor and
Bach (2019); Taylor et al. (2018a); Upadhyaya et al. (2023), for disproving convergence Goujaud
et al. (2023a), as well as a numerical proof assistant, and to incorporate recent extensions of
PEP/IQCs to distributed and decentralized optimization Sundararajan et al. (2020); Colla and
Hendrickx (2021).

5
On Fundamental Proof Structures in

First-Order Optimization

First-order optimization methods have attracted a lot of attention due to their practical success in
many applications, including in machine learning. Obtaining convergence guarantees and worst-case
performance certificates for first-order methods has become crucial for understanding ingredients
underlying efficient methods and for developing new ones. However, obtaining, verifying, and
proving such guarantees is often a tedious task. Therefore, a few approaches were proposed
for rendering this task more systematic, and even partially automated. In addition to helping
researchers find convergence proofs, these tools provide insights on the general structures of such
proofs. We aim to present those structures, explaining how to build convergence guarantees for
first-order optimization methods.

This chapter is based on our tutorial “On Fundamental Proof Structures in First-Order Optimiza-
tion” (co-authored with A. Dieuleveut, and A. Taylor), presented at CDC 2023.

114

Contents
5.1 Introduction . 115
5.2 From explicit to implicit classes of functions . 116

5.2.1 Convex quadratic optimization . 116
5.2.2 Infinite-dimensional spaces of functions 117

5.3 From explicit to implicit algorithms . 119
5.4 Proof structures in first-order optimization . 119

5.4.1 Obtaining proofs with PEPs . 119
5.4.2 Understanding proofs with PEPs . 120

5.5 Example: Gradient descent with exact line-search 122
5.6 Lyapunov with PEPs . 125
5.7 Conclusion . 126

5.1. Introduction 115

5.1 Introduction

In recent years, there has been a significant surge in the interest surrounding first-order optimization
methods, primarily driven by their remarkable efficiency on a number of applications, notably within
the field of machine learning (see e.g., Bottou and Bousquet (2007)). Theoretical foundations for
those methods played a crucial role in this success, e.g., by enabling the development of momentum-
type methods (see e.g., Polyak (1963); Nesterov (1983)). Formally, we consider the optimization
problem

x? , arg min
x∈Rd

f(x) (OPT)

where f belongs to a set F (often referred to as a “class of functions”, e.g., the set of convex
functions, the set of strongly convex and smooth functions, or the set of quadratic convex func-
tions, etc.). Classical first-order optimization methods for solving this problem include Gradient
descent (GD) Cauchy (1847), Nesterov accelerated gradient method (NAG) Nesterov (1983), and the
heavy-ball method (HB) Polyak (1963).

In this context, a key question is to obtain a priori performance guarantees for an iterative
algorithm A (i.e., A is a rule for generating sequences of approximations (xt)t6T to the minimizers
of a certain function f) when the function f to be minimized belongs to a set F . The most
popular framework for such analyses of optimization algorithms is that of worst-case analyses, see,
e.g., Nesterov (1983); Dvurechensky et al. (2021); Bubeck (2015); d’Aspremont et al. (2021);
Chambolle and Pock (2016). Given an algorithm A, the worst-case analysis framework consists in
finding guarantees that hold for every function of the class.

In other words, we aim at evaluating the worst-case accuracy of A over the functions of the
class F after a given number of iterations T . For doing so, there are many different possible notions
of accuracy (or performance) which we denote by P (f, (xt)t6T) and that we aim at minimizing.
Letting xT be the output of an algorithm, common examples of such metrics include the distance of
the last iterate to an optimum ‖xT−x?‖, the function value accuracy of the last iterate f(xT)−f(x?),
or its gradient norm ‖∇f(xT)‖. Usually, xT can be arbitrarily bad just by choosing x0 arbitrarily
far away from the optimizer x?. Therefore, we usually need to assume x0 to be not too bad, such
as x0 ∈ N (x?) where N (x?) can be any fixed set (that we call a “neighborhood” of the optimizer
x?) and depends on x?. Common examples of such neighborhood are balls around the optimizer
{x|‖x− x?‖ 6 R} or the set {x|f(x)− f? 6 R}.

The smallest upper bound on P (f, (xt)t6T) that holds for any dimension d > 1, for any
function f ∈ F , for any starting point x0 ∈ N (x?) ⊂ Rd, and for any (xt)t6T generated by A
applied on f from x0, is the optimal value to the problem of computing the worst-case:

∣∣∣∣∣∣∣∣∣
maximize
f∈F,d>1

(xt)t6T∈(Rd)T+1

P (f, (xt)t6T)

subject to
{

x0 ∈ N (x?)

(xt)t6T = A(f, T, x0)

(P)

In the black-box model, iterative algorithms gather information about f through so-called oracles,
which we denote by O(f). Classical oracles used in first-order optimization are gradient evaluations
O(f)(x) = ∇f(x) and approximate gradients O(f)(x) ≈ ∇f(x) (e.g., stochastic gradients), but also
proximal operators (see, e.g. Combettes and Pesquet (2011)), etc. At step t ∈ J1, T K, A collects
oracles on the previous iterates (O(f)(xs))s6t−1 and outputs xt based on those information through
the update function At as xt = At((xs,O(f)(xs))s<t).

Notation. For readability purposes, all notation used throughout this paper are summarized as
follows.

Outline. In Section 5.2, we discuss two ways of characterizing classes of functions and detail the
main cases for which we can solve (P). In Section 5.3, we discuss an alternative way of describing

5.2. From explicit to implicit classes of functions 116

Notation Corresponding object

F Class of functions (generic form)
f Objective function
x? Optimal point
x0 Initial iterate
O(f) Generic oracle applied on f
A Algorithm (generic form)
(xt)t6T Sequence of iterates generated by A, i.e. (xt)t6T = A(f, T, x0)

(At)16t6T Update function of the algorithm A, i.e. ∀t, xt = At((xs,Of (xs))s<t)

T Total number of iterations
t Current iteration index
Fµ,L Class of L-smooth and µ-strongly convex functions (0 6 µ 6 L)
Qµ,L Class of L-smooth and µ-strongly convex quadratic functions (0 6 µ 6 L)
(Vt)t Lyapunov sequence
F,G Linearization variables (after SDP lifting)
P (f, (xt)t6T) Performance metric

the algorithm A simplifying the resolution of (P). Section 5.4 outlines a systematic approach for
acquiring proofs of worst-case performance certificates and delves into their underlying structures.
We further elaborate on how this structure can be exploited for extending the applicability range
of the worst-case guarantees. Among others, we show how the properties of these proofs allow
building algorithms. Finally, Section 5.6 provides a natural approach for discovering Lyapunov
sequences.

5.2 From explicit to implicit classes of functions

This section describes two ways of specifying a class of functions as part of the worst-case analysis
of a given algorithm. We describe two different methods to approach and solve (P) depending on
the ways F is specified. More specifically, we focus on two specific classes of functions to illustrate
our explanations, namely L-smooth µ-strongly convex quadratic functions (notation Qµ,L) and
L-smooth µ-strongly convex functions (notation Fµ,L).

5.2.1 Convex quadratic optimization

First-order optimization methods were extensively studied in the context of minimizing quadratic
convex functions. Such functions can be described explicitly as

f(x) ,
1

2
(x− x?)TH(x− x?) + f?, (5.1)

where H is the symmetric positive semi-definite Hessian of f , x? its optimizer and f? its mini-
mal value. This expression allows to explicitly compute the gradient ∇f(x) = H(x − x?), and
first-order optimization methods can be expressed through polynomials due to the following
property (e.g., (Goujaud et al., 2022b, Prop.4.1)).

Proposition 5.2.1. Let f ∈ Q0,∞ and x0 ∈ Rd. It holds that

xt+1 ∈ x0 + span{∇f(x0), . . . ,∇f(xt)} , (5.2)

if and only if there exists a sequence of polynomials (Pt)t∈N, each of degree at most 1 more than
the highest degree of all previous polynomials and P0 of degree 0 (hence the degree of Pt is at most

5.2. From explicit to implicit classes of functions 117

t), such that
∀ t xt − x? = Pt(H)(x0 − x?), Pt(0) = 1 . (5.3)

In this context, (P) can be solved by solving a polynomial problem of the form maxH ‖Pt(H)‖
where H is a symmetric matrix verifying some conditions (e.g. µI 4 H 4 LI when f ∈ Qµ,L).
This link between first-order algorithms and polynomials has been used by Golub and Varga
(1961) for discovering the Chebyshev method and by Polyak (1963) for the “heavy-ball” method,
still used nowadays far beyond quadratic optimization (e.g. in stochastic optimization of neural
networks Sutskever et al. (2013)). This property has also been exploited more recently for obtaining
new algorithms with provable guarantees on quadratic functions (see e.g., Fischer (2011); Scieur
(2018); d’Aspremont et al. (2021); Pedregosa and Scieur (2020); Scieur and Pedregosa (2020);
Berthier et al. (2020); Goujaud et al. (2022b,d); Cunha et al. (2022)).

5.2.2 Infinite-dimensional spaces of functions

As opposed to previous sections, many classes of functions are described implicitly as regions
of infinite-dimensional spaces of functions. In other words, such functions are defined by sets
of inequalities. This section deals with the analyses of such classes. This is due to the fact the
set of all functions of the class are not described by a finite number of parameters, but rather
by constraints (inequalities). Studying (P) for classes that are defined implicitly through sets
of constraints appears to be much less natural. In this situation, (P) is often referred to as a
performance estimation problem (PEP) Drori and Teboulle (2014); Taylor et al. (2017c,a). This tool
primarily relies on two crucial components: interpolation conditions and SDP lifting.

Interpolation conditions. We remark that the description of the algorithm and the objective
of (P) both only depend on the oracle values of f on the iterates (xt)t6T . We introduce the
variables (Ot)t6T . The constraint f ∈ F must be replaced by the constraint that there exists
at least one element f ∈ F such that (O(f)(xt))t6T = (Ot)t6T (Ot is a reachable value for
O(f)(xt), when f ∈ F). As an example, ft and gt are potential values of respectively f(xt)

and ∇f(xt). Formally, we define the equivalence relation ∼(P) as f1 ∼(P) f2 if and only if
∀t ∈ J0, T K ∪ {?},O(f1)(xt) = O(f2)(xt). Since the only information A gathers on f is the oracle
outputs at the iterates xt, two functions coming from the same equivalence class both produce
feasible points of (P) with the same objective value. In other words, those two functions are
undistinguishable using only the information available to A. We can therefore rewrite (P) in terms
of (Ot)t6T ∈ F/ ∼(P) instead of f ∈ F , so that the set of optimization variables now lives in finite
dimension. This constraint is referred to as interpolation conditions.

Example 5.2.2 (First-order algorithm on Fµ,L). Let L > µ > 0 two positive real numbers. A
function f is L-smooth and µ-strongly convex when f is continuously differentiable and verifies
the two inequalities:

f(x) 6 f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2, (5.4)

f(x) > f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2, (5.5)

for all x, y and where ∇f denotes the gradient of f .
Studying a first-order algorithm (i.e. an algorithm based on the oracle O(f) , (∇f, f)) on

the class Fµ,L appears to be challenging at first sight due to the infinite number of parameters
needed for describing Fµ,L. However, (Taylor et al., 2017c, Theorem 4) provides interpolation
conditions for the class Fµ,L of L-smooth µ-strongly convex functions and enables an exact study

5.2. From explicit to implicit classes of functions 118

of the worst-case of several algorithms on this class of functions:

∀i, j, fi >fj + 〈gj , xi − xj〉+ 1
2L‖gi − gj‖

2 (IC)

+ µ
2(1−µ/L)‖xi −

1
Lgi − xj + 1

Lgj‖
2.

Indeed, in this case, (P) can be written in finite dimension as∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
d>1,(xt)t6T∈(Rd)T+1,x?∈Rd,

(gt,ft)t6T∈(Rd×R)T+1

P ((xt, gt, ft)t6T)

s.t.


x0 ∈ N (x?)

∀t 6 T, xt = At((xs,Of (xs))s<t)

∀i, j, fi > fj + 〈gj , xi − xj〉+ 1
2L‖gi − gj‖

2

+ µ
2(1−µ/L)‖xi −

1
Lgi − xj + 1

Lgj‖
2.

SDP lifting. In many cases (see, e.g, Example 5.2.2, and (Taylor et al., 2017a, Theorem 3.5)),
interpolation conditions are written in terms of quadratic and bilinear expressions of xt and gt and
linear expressions of ft. Because of the quadratic dependency in xt and gt, this problem is generally
non-convex. SDP lifting can convexify this problem if all other parts of this problem also contain only
quadratic expressions of xt and gt. For example, classical choices for P (f, (xt)t6T) are ‖xT − x?‖2,
f(xT) − f(x?), or ‖∇f(xT)‖2. Similarly, a classical choice for x0 ∈ N (x?) is ‖x0 − x?‖2 6 R2 for
some radius R > 0. Finally, the updates (At)t of the algorithm A are often of the form

xt = At((xs,∇f(xs), f(xs))s6t−1) = x0 −
t−1∑
s=0

γ(t)s ∇f(xs) (5.6)

for some sequence of scalars (γ
(t)
s)s∈J0,t−1K. Substituting xt for t > 1 in the problem by their

corresponding expressions given by (5.6) preserves the above observation: the dependency of (P)
in (xt, gt)t6T is exclusively quadratic. Actually, in this specific case, all occurrences of (xt)t>1 have
been replaced by linear combinations of x0 and (gt)t6T . SDP lifting consists in introducing the
Gram matrix G of (x0 − x?, (gt)t6T). This way, all quadratic expressions of (xt, gt)t6T are linear
combinations of the entries of G. We also introduce the vector F storing the values (ft − f?)t6T .

Finally (P) is rewritten with linear objective and constraints only as well as an SDP constraint
G < 0. ∣∣∣∣∣∣∣∣

maximize
F,G<0

〈F, vP 〉+ 〈G,MP 〉

subject to

{
〈F, vI〉+ 〈G,MI〉 6 R2

∀k,
〈
F, v

(k)
F

〉
+
〈
G,M

(k)
F

〉
6 0

Vectors (vP , vI , (v
(k)
F)k) and matrices (MP ,MI , (M

(k)
F)k) are constants depending on the algorithm

A, the class F , and the performance metric P under consideration. More specifically, indices P , I
and F respectively correspond to the performance metric, the initialization constraint and the class
interpolation conditions. The algorithm is directly encoded in the fact that G does not contain inner
product with (xt)t>1. As an example, to express ‖xT − x?‖2 in terms of G, one needs to actually
choose M with 〈G,M〉 = ‖x0 − x? −

∑T−1
s=0 γ

(T)
s ∇f(xs)‖2.

Key conditions. The above procedure generally works under the following conditions:

• A is a first-order algorithm whose updates (At)t can be expressed linearly in terms of observed
gradients;

• The interpolation constraints of the class of functions F are known and expressible linearly
in F and G;

• The performance metric as well as the initial condition are also expressible linearly in terms
of F and G.

5.3. From explicit to implicit algorithms 119

Many pairs of function class and algorithm meet the right conditions and have been studied
using the PEP framework. Tools in Matlab Taylor et al. (2017b) and Python Goujaud et al. (2022a)
have been implemented to automate this task and provide worst-case guarantees. Many examples
of usages are listed in the corresponding documentations.

5.3 From explicit to implicit algorithms

So far, we only considered explicit algorithms of the form (5.6). Note that, just as for classes of
functions, algorithms can be expressed implicitly via sets of (in)equalities. This is the case for
line-search based algorithms. Indeed, the step-size associated with line-search is not uniform over
the problem class, therefore algorithms containing line-search update cannot be written as (5.6),
and therefore do not meet the key conditions mentioned in the previous section. A relaxation of
the Gradient descent with exact line-search has been proposed in De Klerk et al. (2017). Since this
algorithm cannot be written as (5.6) with pre-determined γ(t)s , we cannot specify (xt)t>1 in terms
of x0 and (gt)t6T . Therefore, all vectors (xt, gt)t6T must be considered as linearly independent. For
this problem, G is the Gram matrix of all (xt, gt)t6T .

Therefore, the algorithm is not totally encoded in vP ,MP , vI ,MI , vF and MF anymore and
must be specified by new constraints. In particular, the updates of Gradient descent with line-search
verify that

〈gt+1, gt〉 = 0 (5.7)

〈gt+1, xt+1 − xt〉 = 0 (5.8)

As for all the other elements of (P), those constraints only involve quadratic terms of (xt, gt)t6T

and can therefore be expressed linearly in terms of G, parametrized by the vectors (v
(l)
A)l and

matrices (M
(l)
A)l. This time, (P) writes∣∣∣∣∣∣∣∣∣∣∣

maximize
F,G<0

〈F, vP 〉+ 〈G,MP 〉

subject to


〈F, vI〉+ 〈G,MI〉 6 R2

∀k,
〈
F, v

(k)
F

〉
+
〈
G,M

(k)
F

〉
6 0

∀l,
〈
F, v

(l)
A

〉
+
〈
G,M

(l)
A

〉
6 0

(PEP-primal)

5.4 Proof structures in first-order optimization

There is an extensive literature on first-order optimization, offering a broad range of possibly
advanced worst-case guarantees and their associated proofs. In the previous sections, we saw
conditions under which the problem of computing worst-case guarantees was tractable. In this
section, we detail how to obtain proofs from PEPs and what we can conclude on the general
structure of proofs in first-order optimization.

5.4.1 Obtaining proofs with PEPs

Thanks to interpolation conditions and SDP lifting, (P) rewrites as a convex optimization problem.
We consider the dual of the problem. Let’s then introduce the Lagrangian multipliers τ , (λ

(k)
F)k,

(λ
(l)
A)l associated to the constraints of (PEP-primal).∣∣∣∣∣∣∣∣∣∣∣

maximize
F,G<0

〈F, vP 〉+ 〈G,MP 〉

subject to


〈F, vI〉+ 〈G,MI〉 6 R2 : τ

∀k,
〈
F, v

(k)
F

〉
+
〈
G,M

(k)
F

〉
6 0 : λ

(k)
F

∀l,
〈
F, v

(l)
A

〉
+
〈
G,M

(l)
A

〉
6 0 : λ

(l)
A

5.4. Proof structures in first-order optimization 120

The Lagrangian then writes

L , 〈F, vP 〉+ 〈G,MP 〉 − τ
[
〈F, vI〉+ 〈G,MI〉 −R2

]
−
∑
k

λ
(k)
F

[〈
F, v

(k)
F

〉
+
〈
G,M

(k)
F

〉]
−
∑
l

λ
(l)
A

[〈
F, v

(l)
A

〉
+
〈
G,M

(l)
A

〉]
=τR2 +

〈
F, vP − τvI −

∑
k

λ
(k)
F v

(k)
F −

∑
l

λ
(l)
A v

(l)
A

〉

+

〈
G,MP − τMI −

∑
k

λ
(k)
F M

(k)
F −

∑
l

λ
(l)
AM

(l)
A

〉

The dual is obtained by maximizing over the primal variables:∣∣∣∣∣∣∣∣
minimize
τ,λ

(k)
F ,λ

(l)
A >0

τR2

s.t.

{
vP − τvI −

∑
k λ

(k)
F v

(k)
F −

∑
l λ

(l)
A v

(l)
A = 0

MP − τMI −
∑
k λ

(k)
F M

(k)
F −

∑
l λ

(l)
AM

(l)
A 4 0

(PEP-dual)

For any feasible primal F,G and feasible dual τ, (λ(k)F)k, (λ
(l)
A)l, we know the objective of the dual is

larger than the Lagrangian value, that is:

〈F, vP 〉+ 〈G,MP 〉︸ ︷︷ ︸
Performance metric

−τ [〈F, vI〉+ 〈G,MI〉]︸ ︷︷ ︸
Initialization

6
∑
k

λ
(k)
F

[〈
F, v

(k)
F

〉
+
〈
G,M

(k)
F

〉]
︸ ︷︷ ︸

Class constraint

+
∑
l

λ
(l)
A

[〈
F, v

(l)
A

〉
+
〈
G,M

(l)
A

〉]
︸ ︷︷ ︸

Algorithm constraint

6 0. (Generic proof)

In words, the proof of a worst-case guarantee is obtained by linearly combining all available
constraints, with coefficients that are the dual variables of the PEP. Indeed, the difference between
the performance metric and τ times the initialization measure of proximity to the optimizer is
decomposed as the sum of three terms. The two first ones respectively correspond to the values
that are enforced to be negative by the class of functions and the algorithm. The third one is called
the residual and is the opposite of a sum of squares of iterates and gradients. An example of full
derivation of such a proof is provided in Section 5.5.

Remark 5.4.1 (No duality gap). There generally exists a feasible point G,F with G � 0, i.e. verifying
the Slater’s condition (see Slater (1950)), therefore guaranteeing strong duality of the convex reformu-
lation of (P). To ensure this, one needs to carefully remove iterates xt from the basis of G when xt is
completely identified from other vectors. For instance, leaving x1 in the basis of G with the constraint
‖x1 − (x0 − γg0)‖2 = 0 instead of replacing x1 by x0 − γg0 everywhere, creates an empty interior and
can break strong duality. Each time there is no feasible G with G � 0, we conclude that there is a linear
relationship between elements of the basis G is the Gram matrix of. Therefore, maximally reducing the
dimension of G ensures strong duality.

5.4.2 Understanding proofs with PEPs

Obtaining dual feasible points provides valuable insights into essential aspects pertaining to both
the class of functions under consideration and the algorithm employed to achieve the associated
worst-case guarantee.

5.4. Proof structures in first-order optimization 121

Extension to broader sets of algorithms. Drori and Taylor (2020) exploit these insights to
design worst-case optimal algorithms. The authors’ key observation is that (Generic proof) does
not rely on all constraints to hold, but rather only on a linear combination of them. There-
fore, if instead of assuming that, ∀l,

〈
F, v

(l)
A

〉
+
〈
G,M

(l)
A

〉
6 0, we can simply assume that∑

l λ
(l)
A

[〈
F, v

(l)
A

〉
+
〈
G,M

(l)
A

〉]
6 0, therefore relaxing a lot of assumptions about the algorithm

and then generalizing the proof to all the algorithms verifying the remaining assumption. This was
applied to the impractical algorithm (GFOM) described as follow:

∀t, xt+1 = arg min
x∈x0+span{∇f(x0),··· ,∇f(xt)}

f(x), (GFOM)

greedily minimizing the objective value in the affine space of all the observed directions. For
some classes of functions, this algorithm is worst-case optimal. This is the case, for instance, for
the class of quadratic convex functions on which (GFOM) is equivalent to the so-called conjugate
gradient method. This is also the case for the class of L-smooth convex functions, allowing to find
a broad range of worst-case optimal algorithms on this class, including the so-called optimized
gradient method (OGM) Drori (2017); Drori and Taylor (2020). Generating such worst-case optimal
algorithms works as follow:

1. We note that (GFOM) verifies the following orthogonality constraints:

∀t,
{

∀s < t, 〈gt, gs〉 = 0,

∀s 6 t, 〈gt, xs − x0〉 = 0.
(5.9)

Note that following those constraints does not necessarily imply that (PEP-primal)’s primal
variables optimal values describe (GFOM). Nevertheless, a sufficient condition on the class F
under consideration for that to happen is that F is contraction-preserving (see (Drori and
Taylor, 2020, Definition 3)), which happens to be the case for Fµ,L for example.

2. We call the corresponding dual variables (βt,s)s<t and (γt,s)s6t and collect their optimal
values (β?t,s)s<t and (γ?t,s)s6t: it happens that those values can be obtained in closed-form.

3. We group all the constraints as in (5.9), and conclude that the worst-case guarantee
of (GFOM), as well as the corresponding proof, would hold if

∀t,

〈
gt,

t−1∑
s=0

βt,sgs +
t∑

s=0

γt,s(xs − x0)

〉
6 0. (5.10)

4. When γt,t 6= 0, we conclude that, in particular, the algorithm described by the iteration

∀t, xt = x0 −
t−1∑
s=0

γt,s
γt,t

(xs − x0) +
βt,s
γt,t

gs (5.11)

annihilates the vector in the right-hand position of the inner product. Therefore, the worst-
case guarantee of (GFOM) also applies to A, using the exact same proof.

This method has more recently been used in (Goujaud et al., 2022c, Th.2.4-Cor.2.5) to derive
the worst-case optimal algorithm

xt =
t

t+ 1
xt−1 +

1

t+ 1
x0 −

1

t+ 1

t−1∑
s=0

1

L
gs (HB)

under the class of convex and L-quadratically upper bounded (L-QG+) functions.
Extension to broader classes of functions. Interestingly, (HB) was studied several years ago

in Ghadimi et al. (2015) on the class F0,L of L-smooth convex functions, itself included in the class
of L-QG+ convex functions. On the other hand, the obtained guarantee was not better on F0,L

than the one obtained on the class of L-QG+ convex functions. This shows that the guarantee

5.5. Example: Gradient descent with exact line-search 122

obtained on F0,L can be obtained using only the interpolation constraints of the class of L-QG+

convex functions, which is a subset of the set of interpolation constraints of F0,L. In general,
for a given class and a given algorithm, when λ

(k)
F = 0 in (Generic proof), we conclude that the

corresponding constraint has not been used. This allows to discard all the useless constraints and
the result naturally holds on a larger class of functions.

Fewer class constraints allows new algorithms. Most of the time, we study a family of classes
of functions, parametrized by some value L. A classical example of this is the class of L-smooth
convex functions F0,L. The underlying interpolation constraints

〈
F, v

(k)
F (L)

〉
+
〈
G,M

(k)
F (L)

〉
6 0

then depend on L. We generally derive and study an algorithm on F0,L, and obtain a guarantee
that holds for any L such that 〈F, vP (L)〉+ 〈G,MP (L)〉 − τ(L) [〈F, vI(L)〉+ 〈G,MI(L)〉] 6 0. The
underlying algorithm can (and usually does) therefore depend on this value that is sometimes
hard to access in practice. Using line-search steps is a way to get rid of the dependence on L

(there exists for instance line-search version of OGM and (HB) that do not involve L), but an exact
line-search step is often not available neither. On the other hand, backtracking line-search have been
proposed Armijo (1966) to replace the class parameter L by any surrogate value L̂ that validates all
the inequalities that are used. Indeed, we know that for any L,

〈F, vP (L)〉+ 〈G,MP (L)〉︸ ︷︷ ︸
Performance metric

−τ(L) [〈F, vI(L)〉+ 〈G,MI(L)〉]︸ ︷︷ ︸
Initialization

6
∑
j

λ(j)
[〈
F, v(j)(L)

〉
+
〈
G,M (j)(L)

〉]
︸ ︷︷ ︸

Constraint

6 0 (5.12)

Therefore, even if we do not have access to L, being able to find some L̂ in an online manner
such that all the surrogate constraints

〈
F, v

(k)
F (L̂)

〉
+
〈
G,M

(k)
F (L̂)

〉
6 0 hold, allows tuning the

algorithm online with this L̂ and obtain the guarantee〈
F, vP (L̂)

〉
+
〈
G,MP (L̂)

〉
− τ(L̂)

[〈
F, vI(L̂)

〉
+
〈
G,MI(L̂)

〉]
6 0.

We would like to apply bisection search to find such L̂, and all we need for that is being able to
verify the constraints

〈
F, v

(k)
F (L̂)

〉
+
〈
G,M

(k)
F (L̂)

〉
6 0 online. Note however that some constraints

may involve the optimizer x? or the minimal value f? and are then not verifiable. The authors
of (d’Aspremont et al., 2021, Remark 4.9) and Park and Ryu (2021) discuss this issue. They
note that we only need to verify constraint that actually involve L and that the ones that are
problematic are the ones that involve both L and an unknown value. They conclude that, if the
dual values associated with these problematic constraints are set to 0, they are not used, and then
we can proceed to backtracking line-search. They also enforce it by removing those inequalities (or
lowering them) and searching for methods that holds on this larger class of functions (verifying less
inequalities) in order to be able to apply backtracking line-search to get rid of the requirement of
knowledge of the parameter class.

5.5 Example: Gradient descent with exact line-search

For sake of better comprehension of the formal reasoning made in Subsection 5.2.2 and Sections 5.3
and 5.4, we detail in this section the development of a proof of convergence guarantee of the
form (Generic proof) on an example: the Gradient descent method with exact line-search, defined
as

∀t ∈ J1, T K, xt = arg min
x∈xt−1+span{∇f(xt−1)}

f(x). (GDLS)

More precisely, we chose to consider the function value as performance metric, and therefore seek
for a guarantee of the form

f(x1)− f? 6 τ(f0 − f?), (5.13)

5.5. Example: Gradient descent with exact line-search 123

with an appropriate τ . Note this problem has been solved in (De Klerk et al., 2017, Theorem 1.2).
Here we detail how to find such a guarantee and its proof in a very systematic way, relying on the
framework presented in the present tutorial.

The problem can therefore be summarized as follow:

• The objective function belongs to the class Fµ,L of L-smooth µ-strongly convex functions, i.e.
verifies the interpolation constraints (IC),

• We have access to the oracle Of (x) verifying:

– Of (x) ∈ x+ span {∇f(x)},

–
〈
∇f

(
Of (x)

)
,∇f(x)

〉
= 0,

• The algorithm A iteratively computes the update xt = At((xs,Of (xs))s<t) , Of (xt−1),

• We study exactly one step of this algorithm. That is, we want a guarantee on x1 given x0.

• The performance metric that we use is the function value f(x1)− f?.

• The neighborhood N (x?) we assume x0 belongs to is also define by the function value as{
x | f(x)− f? 6 R2

}
for some positive R.

In summary, the problem (P) writes

∣∣∣∣∣∣∣∣∣
maximize
f∈Fµ,L,d>1

(x?,x0,x1)∈(Rd)3

f(x1)− f?

subject to
{

f(x0)− f? 6 R2

(xt)t61 = GDLS(f, T = 1, x0)

(5.14)

GDLS’s update is defined through an optimization problem. Implementing it into the PEP
framework is not straightforward. Instead, we replace the strict definition of the update by first-
order optimality conditions of the line search procedure:

〈∇f(x1),∇f(x0)〉= 0,

〈∇f(x1), x1 − x0〉= 0.

Note the second one is verified because x1 − x0 is colinear with g0 and therefore those 2
conditions seem redundant. However, removing the proper definition of (GDLS) makes x1 − x0 and
g0 non-necessarily colinear anymore, and the two orthogonality conditions are complementary.

Note furthermore that, replacing the actual definition of (GDLS) by some conditions the latter
verifies leads to a guarantee that holds over all the algorithms that verify those conditions. This is
therefore possibly a relaxation, but the result still holds. Moreover, in this special case, and because
we used the two orthogonality conditions and not just one, replacing the definition of (GDLS) by
those conditions is tight. This technical assertion is based on the fact the class Fµ,L is contraction-
preserving. This reasoning is detailed in Drori and Taylor (2020).

Expressing the constraints of the algorithm and the class, we obtain∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

maximize
d>1,(x?,x0,x1))∈(Rd)3,

(g0,g1)∈(Rd)2, (f?,f0,f1)∈R3

f(x1)− f?

s.t.



f(x0)− f? 6 R2

〈∇f(x1),∇f(x0)〉 = 0,

〈∇f(x1), x1 − x0〉 = 0.

∀i, j, fi > fj + 〈gj , xi − xj〉+ 1
2L‖gi − gj‖

2

+ µ
2(1−µ/L)‖xi −

1
Lgi − xj + 1

Lgj‖
2.

5.5. Example: Gradient descent with exact line-search 124

Using SDP lifting, we can formulate this problem as a semi-definite program of the form (PEP-primal)
using the variables

F = (f?, f0, f1)>

G = (x?, x0, g0, x1, g1)>(x?, x0, g0, x1, g1).

We therefore set the parameters of (Generic proof) to the following values:

vP = (−1, 0, 1)>, MP = 05,

vI = (−1, 1, 0)>, MI = 05,

v
(?,0)
F =

(
−1

1

0

)
, M

(?,0)
F =

1

2(1− κ)


µ −µ 1 0 0

−µ µ −1 0 0

1 −1 1
L

0 0

0 0 0 0 0

0 0 0 0 0

 ,

v
(?,1)
F =

(
−1

0

1

)
, M

(?,1)
F =

1

2(1− κ)


µ 0 0 −µ 1

0 0 0 0 0

0 0 0 0 0

−µ 0 0 µ −1

1 0 0 −1 1
L

 ,

v
(0,?)
F =

(
1

−1

0

)
, M

(0,?)
F =

1

2(1− κ)


µ −µ κ 0 0

−µ µ −κ 0 0

κ −κ 1
L

0 0

0 0 0 0 0

0 0 0 0 0

 ,

v
(0,1)
F =

(
0

−1

1

)
, M

(0,1)
F =

1

2(1− κ)


0 0 0 0 0

0 µ −κ −µ 1

0 −κ 1
L

κ − 1
L

0 −µ κ µ −1

0 1 − 1
L
−1 1

L

 ,

v
(1,?)
F =

(
1

0

−1

)
, M

(1,?)
F =

1

2(1− κ)


µ 0 0 −µ κ

0 0 0 0 0

0 0 0 0 0

−µ 0 0 µ −κ
κ 0 0 −κ 1

L

 ,

v
(1,0)
F =

(
0

1

−1

)
, M

(1,0)
F =

1

2(1− κ)


0 0 0 0 0

0 µ −1 −µ κ

0 −1 1
L

1 − 1
L

0 −µ 1 µ −κ
0 κ − 1

L
−κ 1

L

 ,

v
(1)
A =

(
0

0

0

)
, M

(1)
A =

1

2


0 0 0 0 0

0 0 0 0 0

0 0 0 0 1

0 0 0 0 0

0 0 1 0 0

 ,

v
(2)
A =

(
0

0

0

)
, M

(2)
A =

1

2


0 0 0 0 0

0 0 0 0 −1

0 0 0 0 0

0 0 0 0 1

0 −1 0 1 0

 .

Solving this SDP, we find the rate τ =
(
L−µ
L+µ

)2
.

Moreover, the corresponding dual values are

5.6. Lyapunov with PEPs 125

λ?,0F = 2µ(L−µ)
(L+µ)2 , λ?,1F = 2µ

L+µ ,

λ0,?
F = 0, λ0,1

F = L−µ
L+µ ,

λ1,?
F = 0, λ1,0

F = 0,

λ1
A = 2

L+µ , λ2
A = 1.

Plugging those values in (Generic proof) builds a proof of convergence of (GDLS) with

the guarantee f(x1)− f? 6
(
L−µ
L+µ

)2
(f0 − f?).

f(x1)− f? −
(
L− µ
L+ µ

)2

(f(x0)− f?)

6

2µ(L−µ)
(L+µ)2

(
f(x0)− f? + 〈∇f(x0), x? − x0〉+ 1

2L‖∇f(x0)‖2 + µ
2(1−µ/L)‖x? − x0 + 1

L∇f(x0)‖2
)

+ 2µ
L+µ

(
f(x1)− f? + 〈∇f(x1), x? − x1〉+ 1

2L‖∇f(x1)‖2 + µ
2(1−µ/L)‖x? − x1 + 1

L∇f(x1)‖2
)

+L−µ
L+µ

(
f(x1)− f(x0) + 〈∇f(x1), x0 − x1〉+ 1

2L‖∇f(x0)−∇f(x1)‖2 + µ
2(1−µ/L)‖x0 − 1

L∇f(x0)− x1 + 1
L∇f(x1)‖2

)

+ 2
L+µ 〈∇f(x1),∇f(x0)〉

+ 〈∇f(x1), x1 − x0〉

6 0.

The first inequality holds independently on the chosen class. It simply results from
terms rearrangement. By subtracting the LHS from the RHS, one would find a semi-
definite positive quadratic form of the variables x0, x1,∇f(x0) and ∇f(x1). The second
inequality precisely uses the (in)equalities that are specific to the chosen class and algo-
rithm. Note that the two algorithm constraints can be replaced by the sole constraint〈
∇f(x1), x1 − x0 + 2

L+µ∇f(x0)
〉

= 0 (as discussed in De Klerk et al. (2017)), showing that

this guarantee also holds on the Gradient descent method with fixed steps-size 2
L+µ .

5.6 Lyapunov with PEPs

We saw in Subsection 5.4.1 that worst-case proofs essentially writes as (Generic proof):

〈F, vP 〉+ 〈G,MP 〉︸ ︷︷ ︸
Performance metric

−τ [〈F, vI〉+ 〈G,MI〉]︸ ︷︷ ︸
Initialization

6
∑
j

λ(j)
[〈
F, v(j)

〉
+
〈
G,M (j)

〉]
︸ ︷︷ ︸

Constraint

6 0. (5.15)

Namely, the right linear combination of the available constraints upper bounds the
difference between the performance metric and τ times the initial value. Sometimes those
proofs can be relatively complicated and a simpler one can be desirable. In particular, this
is the case when the algorithm under consideration is run for a few iterations. Lyapunov
analyses typically allows reducing the worst-case analyses of T iterations to that of a single
iteration, and therefore reducing the complexity of the proof.

5.7. Conclusion 126

For example, for (NAG), described as follow

λt+1 = 1
2 +

√
1
4 + λ2

t

yt = xt + λt−1
λt+1

(xt − xt−1),

xt+1 = yt − 1
L∇f(yt).

(NAG)

on F0,L, we often use the sequence

Vt = λ2
t (ft − f?) +

L

2
‖λt(xt − x?) + (1− λt)(xt−1 − x?)‖2 (5.16)

providing a worst-case convergence guarantee f(xT)− f? = O(1/T 2). In general, a direct
way to find such a sequence is to consider

Vt = [〈F, vI〉+ 〈G,MI〉]︸ ︷︷ ︸
Initialization

+
∑

j | only involves
values observed

before step t

λ(j)
[〈
F, v(j)

〉
+
〈
G,M (j)

〉]
︸ ︷︷ ︸

Constraint

. (5.17)

Applying this method on (NAG) provides the sequence of complete potential functions

Vt = λ2
t (ft − f?) +

L

2
‖λt(xt − x?) + (1− λt)(xt−1 − x?)‖2

+
1

2L

t−1∑
s=1

[λ2
s+1‖∇f(xs+1)‖2 + λs+1‖∇f(ys)‖

+ λ2
s‖∇f(ys)−∇f(xs)‖2]

that allows for free (using the same inequalities as for proving that (5.16) is decreasing) to
also conclude that mint6T ‖∇f(xt)‖2 = O(1/T 3), as shown in (Monteiro and Svaiter, 2013,
Theorem 5.2.d) and experimentally evidenced using PEPs in (Taylor et al., 2017c, Table 4).

Note that the cumulatively summed up constraints involve both class constraints and
algorithm constraints. Therefore, this technique can be applied directly on (GFOM) while
looking for an optimal algorithm, its rate, the corresponding proof and a sequence of
potential functions at the same time.

5.7 Conclusion

Summary not only is the performance estimation problem (PEP) framework a powerful
tool to automate the search of guarantees, but also it allows exhibiting general structure
of proofs. Understanding this structure enables to generalize results onto larger class of
functions or onto a class of methods, but also to find new optimization methods and study
their convergence properties. Finally, it also enables to understand how to build a Lyapunov
sequence of functions.

Open research directions all this framework relies on two major assumptions: the class
constraints are known and homogeneous in ‖x‖2 and ‖∇f(x)‖2 and f(x), and the method’s
update is a linear combination of previous iterates and observed oracle calls. Therefore,
two interesting questions arise: can we automate the search of the interpolation conditions?

5.7. Conclusion 127

And, how can we generalize this framework to non homogeneous class of functions or
to non linear methods such as adaptive step-size based methods? A few works already
investigate this direction for some specific methods. In particular, Barré et al. (2020)
studies a variant of the Heavy-ball method Polyak (1963) using Polyak step-sizes, also
discussed in (Barré, 2021, Chapter 4). On the other hand, Gupta et al. (2023) uses PEP
techniques to provide worst-case guarantees on several variants of non-linear conjugate
gradient methods.

6
Optimal first-order methods for convex

functions with a quadratic upper bound

We analyze worst-case convergence guarantees of first-order optimization methods over
a function class extending that of smooth and convex functions. This class contains
convex functions that admit a simple quadratic upper bound. Its study is motivated by its
stability under minor perturbations. We provide a thorough analysis of first-order methods,
including worst-case convergence guarantees for several methods, and demonstrate that
some of them achieve the optimal worst-case guarantee over the class. We support our
analysis by numerical validation of worst-case guarantees using performance estimation
problems. A few observations can be drawn from this analysis, particularly regarding
the optimality (resp. and adaptivity) of the Heavy-ball method (resp. Heavy-ball with
line-search). Finally, we show how our analysis can be leveraged to obtain convergence
guarantees over more complex classes of functions. Overall, this study brings insights
into the choice of function classes over which standard first-order methods have working
worst-case guarantees.

This chapter is based on our work “Optimal first-order methods for convex functions
with a quadratic upper bound” (co-authored with A. Taylor, and A. Dieuleveut), currently
under review.

129

Contents

6.1 Introduction . 130
6.2 A few worst-case guarantees for minimizing QG+ convex functions 132

6.2.1 (Sub)gradient method on QG+ convex functions 132
6.2.2 First-order lower bound . 134
6.2.3 Two methods with optimal last iterate guarantee 134
6.2.4 Extension/interpolation results for QG+ convex functions 136

6.3 Discussion and concluding remarks . 137
6.3.1 Optimality of HB algorithm . 137
6.3.2 Adaptivity of HB line-search algorithm 3 138
6.3.3 Leveraging our analysis to obtain convergence bounds on other classes139

6.A (Sub)gradient method on QG+-convex functions 142
6.A.1 Convergence of subgradient method with fixed step-size at Polyak-

Rupert averaged iterate . 142
6.A.2 Convergence limitation of the subgradient method in last iterate . . 143
6.A.3 A new tuning prescription . 145

6.B First-order lower bound . 147
6.B.1 Proof of Theorem 2.3 . 147
6.B.2 Lower bound proof without span assumption 147

6.C Main result: worst-case guarantee of proposed methods 148
6.D Summary of convergence results on QG+ convex and Lipschitz convex . . . 150
6.E Interpolation results for QG+ convex functions 151
6.F Convergence bound on other classes . 152
6.G Linear convergence guarantees under lower bound assumption 153

6.1. Introduction 130

6.1 Introduction
In this paper, we consider the problem of minimizing a convex (closed proper) function

f? , min
x∈Rd

f(x), (6.1)

where f : Rd → R is assumed to have a non-empty compact set of global minimizers
denoted by X? (which is necessarily convex). Convergence properties of first-order opti-
mization are typically analyzed through worst-case analyses under the black-box model (Ne-
mirovskii and Yudin, 1983a). In this formalism, nontrivial guarantees are obtained by
assuming the function to be minimized to satisfy certain regularity conditions. In particular,
it is common to assume Lipschitz continuity of the gradients of f (also often referred to as
smoothness of f) as well as (strong) convexity of f . First-order methods and their analyses
for minimizing such functions in the black-box model occupied a great deal of attention,
see, e.g., (Nemirovskii and Yudin, 1983a; Polyak, 1987; Nesterov, 2003).

Due to the practical success of first-order methods in large-scale applications, and
particularly when aiming for only low to medium accuracy solutions (Bottou and Bousquet
(2007) motivate this goal for machine learning), a few trends emerged in the first-order
optimization literature. Among them, a particular focus concerned the question of under-
standing minimal working assumptions under which one could design efficient first-order
methods. In other words, many authors looked for weaker/alternate versions to the stan-
dard smoothness and strong convexity-type assumptions, still allowing to obtain suitable
working guarantees for standard first-order methods.
Relaxations of strong convexity-type assumptions. Convexity alone is not sufficient to
a priori guarantee “fast” convergence of usual first-order methods. On the other hand,
strong convexity allows to obtain faster (geometric) rates but is a very strong condition.
Therefore, many authors studied conditions in between convexity and strong convexity,
aiming to obtain faster rates under relatively generic assumptions. In particular, different
authors considered the restricted secant inequality (Zhang and Yin, 2013; Guille-Escuret
et al., 2022), the error bound (Luo and Tseng, 1993), Łojasiewicz-type inequalities (Polyak,
1963), and many more (Hazan et al., 2015; Kurdyka, 1998; Liu and Wright, 2015; Gong
and Ye, 2014; Necoara et al., 2019; Hardt et al., 2018; Abbaszadehpeivasti et al., 2023).
Relations between these assumptions were treated at length in (Bolte et al., 2017; Zhang,
2017b). Among those, one of the weakest relaxation is the so-called (lower) quadratic
growth, see (Bonnans and Ioffe, 1995; Ioffe, 1994; Anitescu, 2000). Recently, those notions
turned out to be useful, e.g. for studying proximal gradient methods, see (Cui et al., 2017;
Drusvyatskiy and Lewis, 2018; Drusvyatskiy and Ioffe, 2015; Peng et al., 2020; Zhang,
2017a; Chieu et al., 2021). In the rest of the paper, we focus on (non strongly) convex
functions.

Relaxations of smoothness-type assumptions. Generalization of smoothness assump-
tions were less investigated in the literature. Still, a few such relaxations have emerged,
including the relative smoothness, see (Bauschke et al., 2017; Lu et al., 2018; Dragomir
et al., 2021; Hanzely et al., 2021), restricted smoothness (Agarwal et al., 2012) and re-
stricted Lipschitz-continuous gradient (Zhang and Yin, 2013). In this work, we consider
instead the set of convex functions satisfying the (upper) quadratic growth condition, as
follows.

6.1. Introduction 131

Definition 6.1.1. A function f is L-quadratically upper bounded (denoted L-QG+) if for all
x ∈ Rd:

f(x)− f? 6
L

2
d(x,X?)2,

where d(x,X?) = minx?∈X? ‖x− x?‖2. We denote the set of such functions by QG+(L), and
by QG+ when L is left unspecified.

This assumption is weaker than smoothness. First, any L-smooth function (i.e. with
L-Lipschitz gradient) also belongs to QG+(L). On the other hand,
1. Some functions do belong to QG+ while not being smooth for any value of L. In

particular QG+ contains all Lipschitz non-smooth convex functions which are twice
differentiable at all their optimal points. Let us mention a few rules for obtaining
(not necessarily smooth) QG+ functions: (i) any function that can be written as x 7→
h(x>Mx), where h is convex Lipschitz continuous and M is a positive semidefinite
matrix, or (ii) x 7→ h(N(x)), where h is convex and smooth (or QG+) and N is a norm
(e.g. N = ‖ · ‖2, N = ‖ · ‖1 or N = ‖ · ‖∞).

2. Some functions belong to QG+(LQ) while being smooth only for some LS � LQ (see
e.g., Eq.(3) and Proposition 4.6 in (Guille-Escuret et al., 2021).) Consequently, even
though the worst-case convergence rate over the class of QG+(L) functions cannot
improve on the rate for L-smooth functions, it is possible for a given smooth function
that the guarantee provided by the rate on the QG+ class is actually better than the one
resulting from the rate as a smooth function.
More generally, the latter example is related to condition continuity, introduced by Guille-

Escuret et al. (2021, Definition 4.9). Condition continuity is a property of function classes,
defined by the fact that a minor modification of the gradient of the function, at any point
away from the optimum, cannot strongly affect the class parameter L. This is a desirable
property for first-order methods for which the output typically continuously depends on the
gradients of the functions minimized: if the function is slightly perturbed away from the
optimum, the tuning and convergence guarantees of the algorithm should not be affected.
The QG+ class satisfies condition continuity, while the class of smooth convex functions
does not: a minor perturbation of an L-smooth function (thus L-QG+) can be LQ-QG+

and LS-smooth, with LS � LQ. This also motivates studying QG+.
Contributions and organization of the paper. The rest of the paper is organized in

two main sections. First, in Section 6.2, we analyze a few first-order methods, namely the
subgradient method and the Heavy-ball method with and without a line-search. We provide
worst-case complexity bounds on the convergence rates as well as corresponding lower
complexity bounds. We also provide a lower complexity bound for minimizing convex
functions in QG+ via first-order methods. Finally, we provide interpolation/extensions
results for this class of problems, which allows exploring/deriving all previous results
in a principled way (using performance estimation problems Drori and Teboulle (2014);
Taylor et al. (2017c)). We summarize those results in Table 6.1, together with precise
references to the corresponding statements. Secondly, we review the main consequences of
our analysis in Section 6.3. More specifically, we underline the facts that (a) the Heavy-ball
Algorithm 10 and 11 are optimal on this class of functions, furthermore, (b) Algorithm 11 is
adaptive: it achieves the optimal convergence rate for both Lipschitz-continuous functions
and QG+ functions without requiring knowledge of any class parameter. Then, we describe
how our theory can be exploited for automatically obtaining convergence rates for different

6.2. A few worst-case guarantees for minimizing QG+ convex functions 132

Table 6.1: Summary of the worst-case guarantees obtained after n iterations of a few
different first-order methods on the class of L-QG+ convex functions, which are obtained
in Section 6.2 and Section 6.A. Two main methods are studied, namely the (sub)gradient
and the Heavy-ball methods. Some guarantees concern the worst-case function value
accuracy at the last iterate. The term “average” in the third column refers to the function
value on the Polyak-Rupert averaged iterate. All the provided bounds are proportional to
R2 = d(x0,X?)2, where x0 denotes the starting point of the methods.

Method Step-sizes (γt)06t6n−1 Iterate Upper bound Lower bound

Subgradient (Sec. 6.2.1)

1
L (Alg. 9) Average L

2
R2

n+1 (Th. 6.2.1) L
2
R2

n+1 (Rem. 6.A.1)

γt (Alg. 9) Last × LR2

2 Lγn−1 (Th. 6.2.2)

∼ 1
2L
√
t

(Alg. 14) Last ∼ LR2

4
√
n

(Conj. 6.A.3) ∼ LR2

4
√
n

(Th. 6.2.2)

Heavy-ball (Sec. 6.2.3)
1
L

1
t+2 (Alg. 10) Last L

2
R2

n+1 (Th. 6.3.3) L
2
R2

n+1

line-search (Alg. 11) Last L
2
R2

n+1 (Th. 6.3.3) L
2
R2

n+1

First-order (Sec. 6.2.2) Any Any - L
2
R2

n+1 (Th. 6.2.3)

classes of functions. Lastly (in Section 6.G), we discuss results that can be obtained
when restricting the class to functions satisfying additional assumptions (a relaxation of
strong-convexity).

Notation and background results. For problem (6.1), the set X? of minimizers of f is
closed and convex (f is proper closed and convex by assumption). Therefore, there exists a
unique projection πX? onto X?, verifying: ‖x−πX?(x)‖2 = d(x,X?). We use the classical ∂f
for denoting the subdifferential of the function f . Namely, the subdifferential of f at x ∈ Rd

is the set of all subgradients of f at x: ∂f(x) = {g|∀y ∈ Rd, f(y) > f(x) + 〈g|y − x〉}. Note
that 0 ∈ ∂f(x)⇔ x ∈ X?; moreover, if f ∈ QG+, then for all x ∈ X?, ∂f(x) = {0}.

6.2 A few worst-case guarantees for minimizing QG+ convex
functions

In this section, we provide the main technical results of this paper, summarized in Table 6.1.
In Subsection 6.2.1, we study the behavior of a (sub)gradient method on convex QG+

functions. A lower complexity bound on the convergence of any first-order method is pro-
vided in Subsection 6.2.2. In Subsection 6.2.3, we introduce the Heavy-ball method under
consideration and prove its worst-case optimality. Finally, we discuss how interpolation
conditions were used for obtaining these results in Subsection 6.2.4.

6.2.1 (Sub)gradient method on QG+ convex functions

In this subsection, we consider Algorithm 9: the subgradient method, for n iterations and a
sequence of step-sizes (γt)06t6n−1. The following result provides a convergence guarantee
for the averaged function value accuracy throughout the iterative procedure.

6.2. A few worst-case guarantees for minimizing QG+ convex functions 133

Theorem 6.2.1. (Convergence of Algorithm 9 in average) Let f be an L-QG+ convex
function. Applying (sub)gradient method on f with step-size γ , 1

L leads to the following
guarantee:

1

n+ 1

n∑
k=0

(f(xk)− f?) 6
L

2

1

n+ 1
d(x0,X?)2. (6.2)

Algorithm 9 Subgradient method
Input: x0, (γt)06t6n

for k = 1 . . . n do
Query gk−1 ∈ ∂f(xk−1);
xk ← xk−1 − γk−1gk−1

Output: (xt)06t6n

Sketch of proof. The proof consists in proving that at
each step f(xk)− f? 6 L

2 d(xk,X?)2 − L
2 d(xk+1,X?)2

and recognizing a telescopic sum on the right hand
side. See Appendix 6.A. �

By convexity of f , this result automatically
implies a convergence guarantee for the Polyak-
Ruppert (PR) averaging (Polyak and Juditsky, 1992; Ruppert, 1988), x̄n = 1

n+1

∑n
k=0 xk

with the same convergence rate. For L-smooth convex functions, the same worst-case
convergence rate is achieved by both the PR averaging and the last iterate. It is therefore
natural to wonder if the subgradient method verifies the same convergence guarantee
for the last iterate, on QG+ convex functions. For L-smooth convex functions, Drori and
Teboulle (2014, Theorem 3.2) provide the following lower bound on the convergence of
Algorithm 9: for any n and any constant sequence of step-sizes γk = γ ∈ [0, 2/L], there
exists an L-smooth convex function f and a starting point x0 s.t.

f(xn)− f? > max

(
L

2

1

1 + 2nLγ
,
L

2
(1− Lγ)2n

)
d(x0,X?)2. (6.3)

Drori and Teboulle (2014, Theorem 3.1) also provide a corresponding worst-case guarantee
of the form f(xn) − f? 6 L

2
1

1+2nLγd(x0,X?)2 for when γ ∈ (0, 1
L), which ensures conver-

gence in function value accuracy with a constant step-size rule γk = γ ∈ (0, 1
L) at a rate

O(1/n).
Here we provide a stricter lower bound for the convergence of the function value for the

last iterate: contrary to what happens for smooth convex functions, subgradient methods
with constant step-sizes cannot be guaranteed to converge on QG+ convex functions.

Theorem 6.2.2. (Lower bound for Algorithm 9 - final iterate). Let n ∈ N. For any
sequence (γi)06i6n−1 > 0 and any ε > 0, there exists an L-QG+ convex function f that
verifies, after n iterations of Algorithm 9 with step-sizes (γi)06i6n−1,

f(xn)− f? >
L

2
Lγn−1d(x0,X?)2 − ε. (6.4)

Sketch of proof. The proof consists in finding a function defined on R3 such that all the
iterates except the last one are very close to each other. As QG+ convex functions might
not be differentiable, subgradients might vary very quickly. Therefore, the last iterate might
be far away from the others, although all the previous iterates are clustered. A complete
proof is provided in Appendix 6.A. �

As a result, it is necessary to enforce γn → 0 for ensuring convergence of Algorithm 9
on all problem instances. On the other hand, a similar lower bound to (6.3) (using the
same Huber function as that used for the class of smooth convex functions, see (Drori
and Teboulle, 2014), or (Taylor et al., 2017c, Section 4)) and modifying x0 to account for
varying step-sizes (we use x0 = 1 + 2

∑n−1
k=0 Lγk), one can obtain:

f(xn)− f? >
L

2

1

1 + 2
∑n−1
k=0 Lγk

d(x0,X?)2. (6.5)

6.2. A few worst-case guarantees for minimizing QG+ convex functions 134

Consequently the worst-case convergence is slower than O(1/n) as soon as γk → 0.
Overall, the convergence is provably worse for the last iterate over the QG+(L)-class
than over the class of L-smooth convex functions, even though guarantees match for the
PR-averaged iterate. Actually, the lower bound is at least the maximum of the RHSs of
Equations (6.4) and (6.5). In Section 6.A, we introduce and analyze Algorithm 14, that
corresponds to Algorithm 9 with a specific sequence of step-sizes such that Equations (6.4)
and (6.5) are equal. This results in a decaying sequence of step-sizes scaling as O(1/

√
n).

The next section is devoted to a lower complexity bound on the convergence in function
accuracy for any black-box first-order method.

6.2.2 First-order lower bound

The next theorem guarantees that no black-box first-order method can beat a O(1/n)

worst-case guarantee in function values uniformly on the set of QG+ convex functions.

Theorem 6.2.3. (Lower complexity bound) Let n ∈ N. There exist some d ∈ N and some
convex L-QG+ function f of input space Rd such that: for any sequence (xk)06k6n satisfying
xk−x0 ∈ span {g0, g1, g2, . . . , gk−1} for all k 6 n with gi ∈ ∂f(xi) (i = 0, . . . , k−1), we have:

f(xn)− f? >
L

2

1

n+ 1
d(x0,X?)2.

Sketch of proof. The proof consists in noticing that the function x 7→ L
2 ‖x‖

2
∞ explores

one new dimension per step and that this new dimension is independent of the way the
next point in the sequence is chosen. (Note that a similar function is used in Drori and
Teboulle (2016, Appendix A) to obtain lower bounds of gradient methods.) Therefore,
choosing d = n + 1 explores that there exists one unseen dimension after n iterations.
This methodology is common to prove lower bounds in first-order optimization, see,
e.g., (Nemirovskii, 1994; Nesterov, 2003; Bubeck, 2015). We refer to Appendix 6.B.1 for
the complete proof. The above result is also generalized in Appendix 6.B.2 to account for
any sequence generated by a black-box first-order (possibly without the span assumption
as in, e.g., (Nemirovskii, 1994, Chapter 12) for quadratic minimization). �

One can conclude from Theorem 6.2.3 that no black-box first-order method can enjoy
a worst-case guarantee better than f(xn) − f? 6 L

2
1

n+1d(x0,X?)2 uniformly on all d ∈ N,
all f : Rd → R that is convex and L-QG+ and all x0 ∈ Rd. This entails that Algorithm 9,
with constant step-size 1/L and PR averaging, is worst-case optimal for decreasing function
values on the class of QG+ and convex functions. In the next section, we introduce two
alternate methods that also achieve this optimal bound, this time without PR averaging.
As we see in the sequel, those further developments allow achieving this optimal bound
without explicitly using the knowledge of the constant L.

6.2.3 Two methods with optimal last iterate guarantee

Algorithm 10 Heavy-ball method for QG+ convex
Input: x0, L
for k = 1 . . . n do

Pick gk−1 from ∂f(xk−1)

xk ← k
k+1xk−1 + 1

k+1x0 − 1
k+1

∑k−1
i=0

1
Lgi

Output: xn

In this section, we introduce Algo-
rithm 10 and Algorithm 11 which
both achieve the optimal conver-
gence guarantee for the last iterate
(see Theorem 6.2.3). The first of

6.2. A few worst-case guarantees for minimizing QG+ convex functions 135

those two methods explicitly relies
on the knowledge of the class parameter L for performing its updates, whereas the sec-
ond variant allows avoiding using any knowledge on L. Note that the update rule from
Algorithm 10 can equivalently be expressed as:

xk ← xk−1 −
1

L

1

k + 1
gk−1 +

k − 1

k + 1
(xk−1 − xk−2) (6.6)

Algorithm 11 Heavy-ball method with line-search
for QG+ convex
Input: x0, v0 ← 0

for k = 1 . . . n do
yk ← k

k+1xk−1 + 1
k+1x0

Pick gk−1 ∈ ∂f(xk−1) such that 〈gk−1, vk−1〉 = 0.
vk ← vk−1 + gk−1

αk ← arg minα f (yk + αvk)

xk ← yk + αkvk
Output: xn

where gk−1 ∈ ∂f(xk−1). This formu-
lation corresponds to the Heavy-ball
method, as defined in (Ghadimi et al.,
2015, Theorem 2) and for which au-
thors provided a O(1/n) guarantee
for L-smooth convex functions.

Algorithm 11 takes a similar form,
but relies on an exact line-search pro-
cedure, avoiding to use any knowl-
edge on L. Both methods share the
same worst-case guarantee, match-
ing the lower bound result from Theorem 6.2.3. The following theorem provides a necessary
condition for an algorithm to share this same worst-case guarantee.

Theorem 6.2.4. (Main result: sufficient condition for being worst-case optimal). Let
A be an iterative first-order method that verifies, for all convex QG+(L) function f , and
starting points x0,〈

gk, xk −
[k

k + 1
xk−1 +

1

k + 1
x0 −

1

k + 1

k−1∑
i=0

1

L
gi
]〉
6 0. (6.7)

for some sequence (gi)i∈N of subgradients gi ∈ ∂f(xi), and where (xi)i∈N are the iterates of A.
Then, the output xn of A achieves the worst-case guarantee:

f(xn)− f? 6
L

2

1

n+ 1
d(x0,X?)2.

Sketch of proof. The proof is based on a Lyapunov analysis; for k > 0, we define the
sequence k(f(xk−1)− f?) + L

2 ‖x0− πX?(x0)−
∑k−1
i=0

1
Lgi‖

2 and show it is a decreasing. See
Appendix 6.C for a complete and detailed proof. �

Inequality (6.7) is clearly satisfied for Algorithm 10 by ensuring the right hand side
of the inner product being identically 0. For Algorithm 11, the right hand side of the
inner product in (6.7) is colinear to the search direction

∑k−1
i=0 gi. First-order optimality

conditions of the exact line-search procedure enforces the inner product in (6.7) to be
identically 0. The next corollary follows.

Corollary 6.2.5. Let n ∈ N, d ∈ N, f be a convex QG+ function, and x0 ∈ Rd. Also, let xn be
the output of either Algorithm 10 or Algorithm 11, we have: f(xn)− f? 6 L

2
1

n+1d(x0,X?)2.

In the next section, we discuss how such worst-case analyses were obtained in a
principled way, through so-called performance estimation problems (PEPs). An important
ingredient to use this methodology is to develop interpolation (a.k.a. extension) results for
the convex QG+ class.

6.2. A few worst-case guarantees for minimizing QG+ convex functions 136

6.2.4 Extension/interpolation results for QG+ convex functions

The problem of interpolating/extending within a class of functions can be stated as follows.
Given a set of triplet (xi, gi, fi)i∈I ⊂ Rd × Rd × R for some d ∈ N and some index set I,
the question of interest is that of recovering a function f in a prescribed class of convex
functions F satisfying

fi = f(xi) and gi ∈ ∂f(xi) for all i ∈ I.

A similar problem, often referred to as convex integration, consists in finding such functions
by only specifying some subgradients but no function values; see (Rockafellar, 1997); for
the case where F is the class of (closed and proper) convex functions, this problem was
also treated at length in (Lambert et al., 2004). Motivated by applications to performance
estimation problems (see below), this problem was studied in (Taylor et al., 2017c) for the
cases where F is the class of closed proper (possibly strongly) convex (possibly smooth)
functions. In this case, it is possible to obtain simple necessary and sufficient conditions
for the set (xi, gi, fi)i∈I to be interpolable; we refer to those conditions as interpolation
conditions. Such conditions take the form of a set of inequalities on (xi, gi, fi)i∈I , and
sometimes allow to conveniently deal with discrete versions of functions within a certain
class F (for which we have interpolation conditions at our disposal). There exists a few
classes of functions, typical for the analysis of first-order methods, for which such conditions
exist, see, e.g., (Taylor et al., 2017a, Theorem 3.3–3.6, Theorem 3.10). The next theorem
provides interpolation conditions for the class of convex QG+ functions.

Theorem 6.2.6. (Interpolation conditions) Let (xi, gi, fi)i∈I a family of elements in Rd ×
Rd × R. Set I? the (assumed) non-empty subset of I of the indices of elements (xi, gi, fi)

verifying gi = 0.
Then, there exists a QG+(L) and convex function f interpolating those points (i.e. such that
∀i ∈ I, f(xi) = fi and gi ∈ ∂f(xi)) if and only if

∀i ∈ I, ∀j ∈ I, fi > fj + 〈gj , xi − xj〉 (6.8)

∀i ∈ I?,∀j ∈ I, fi > fj + 〈gj , xi − xj〉+
1

2L
‖gj‖2. (6.9)

Sketch of proof. The proof is derived in two steps. First we notice that (6.8) corresponds to
the convexity of the function, and we prove (6.9) combining the 2 inequalities respectively
corresponding to convexity and L-QG+ assumptions. Reciprocally, we explicitly build a
L-QG+ convex function from (6.8) and (6.9). See Appendix 6.E for a detailed proof. �

Application to Performance estimation problems (PEPs). PEPs were introduced
by Drori and Teboulle (2014) for developing new analyses of first-order methods; see
also (Drori, 2014; Kim and Fessler, 2016) for the first works on this topic. PEPs were
later formalized using the concept of convex interpolation by (Taylor et al., 2017c,a).
PEPs formulate the search for worst-case guarantees as infinite dimensional optimization
problems over the considered class of functions, e.g.,

Worst-case
(
Alg. 9, n = 1, γ = 1

L , convex QG+(L)
)
, max
f ∈ QG+(L) convex
x1 ∈ x0 − 1

L
∂f(x0)

f(x1)− f?
d(x0,X?)2

,

6.3. Discussion and concluding remarks 137

for the case of 1-step subgradient descent. In order to numerically solve those problems, it
is needed to transform them into a finite dimensional problem. To that end, interpolation
conditions play a crucial role, by allowing to reduce the optimization over the (infinite
dimensional) class of functions to an optimization over a constrained set of vectors, thus
finite dimensional problem.

Consequently, Theorem 6.2.6 allows us to use the PEP framework to study the class of
QG+(L) convex functions. Therefore, we obtained and verified all the results of this work
thanks to the different programming tools that have recently been developed for easing
the access to the PEP framework (see the packages (Taylor et al., 2017b; Goujaud et al.,
2022a)). For each algorithm studied in this paper, PEPs also provided the associated tight
bound. Finally, PEPs also guided us to prove the lower bound of Theorem 6.2.3 thanks to
the study of the greedy first-order method (GFOM) from (Drori and Taylor, 2020).

6.3 Discussion and concluding remarks
In this section, we discuss a few takeaways of the results. The messages of this section
include optimality and adaptivity results for Heavy-ball with a line-search, a discussion on
the applicability of this functional class beyond its simple use, as well as a few words on
the limitations of considering this simple class of convex functions.

6.3.1 Optimality of HB algorithm

An ever-recurring question in the field of optimization is the convergence of HB methods
on smooth and strongly convex functions. On the one hand, HB is optimal (in the sense
that it achieves the optimal worst-case guarantee) for convex quadratic objectives and can
then be seen as a variant of Chebyshev iterative method (Flanders and Shortley, 1950;
Lanczos, 1952; Young, 1953). Even with a simple (constant) tuning of the step-size and
momentum parameters, it is optimal (i.e., achieving rates O(1/n2) for L-smooth convex
quadratics, and (1−O(

√
µ/L))n if the problem is also µ-strongly convex.).

On the other hand, the method does not generalize well to (non quadratic) smooth
strongly convex functions: Lessard et al. (2016, Figure 7) built a function for which the
Heavy-ball method, tuned with the same dependence to L and µ than for the quadratic
case, fails to converge. More generally, while other sets of hyper-parameters allow to
obtain convergence for the class of smooth and (strongly) convex (Ghadimi et al., 2015),
Heavy-ball was never showed to accelerate w.r.t. the Gradient descent method, and the
possibility to obtain such an acceleration remains an open question to the best of our
knowledge. Simultaneously, Nesterov’s accelerated gradient method (Nesterov, 1983) does
achieve such an acceleration.

In summary, while for quadratic convex problems it has the optimal worst-case guaran-
tee, Heavy-ball is believed not to satisfy this property for smooth and (strongly) convex
functions. Interestingly, Corollary 6.2.5 shows that Heavy-ball is optimal (with rate O(1/n))
over the (larger) class QG+ convex.

This observation questions the existence of intermediary classes (smaller than QG+

convex and containing quadratic functions), over which Heavy-ball would achieve aO(1/n2)

convergence guarantee. In the next section, we discuss the adaptivity of the method.

6.3. Discussion and concluding remarks 138

6.3.2 Adaptivity of HB line-search algorithm 3

The search for adaptive and parameter free methods is a major challenge in optimization
as the regularity of the function (both in terms of class and class-parameter L) is often
unknown. In the rest of the section, we discuss the fact that Algorithm 11 provides a
parameter-free and adaptive method for QG+(L) and M -Lipschitz functions. Those results
are summarized in Table 6.2.

Table 6.2: Optimality of the proposed methods over the set of QG+ convex functions
and M -Lipschitz convex functions. ELS: Exact Line-Search. X indicates optimality among
the class and × the contrary. All counter examples are given in App. 6.D. †: constants
resulting in optimal convergence rates depend on the class, thus for example heavy-ball
with step-size constant

(t+2) is not adaptive as it does not achieve the optimal rate for both classes
with the same constant. ‡: up to a log factor.

Method Function class Parameter free

Algorithm Step-sizes (γt)06t6n−1 Iterate QG+(L) convex M -Lipschitz convex

Subgradient (Alg. 9) constant† Average X (Thm. 6.2.1) × (Thm. 6.D.1) ×

Subgradient (Alg. 14) constant†/
√
t Average × (6.5) X‡ (Nesterov, 2003, Sec. 3.2.3) ×

Subgradient (Alg. 15) ELS Average × (Thm. 6.D.2) × (Thm. 6.D.2) X

Subgradient (Alg. 15) ELS Last × (Thm. 6.D.2) × (Thm. 6.D.2) X

Heavy-ball (Alg. 10) constant†/(t+ 2) Last X (Cor. 6.2.5) X (Drori and Taylor, 2020, , Cor. 3) ×

Heavy-ball (Alg. 11) ELS Last X (Cor. 6.2.5) X (Drori and Taylor, 2020, , Cor. 4) X

Non-convergence of the line-search version of Algorithm 9. While the line-search
version of Algorithm 10 (i.e. Algorithm 11) allows to get rid of the knowledge of L
without degrading the convergence guarantee for the latest iterate, this is not the case for
subgradient method. In fact subgradient with line-search Algorithm 15 does not converge,
even when looking at the PR averaged iterate (see Theorem 6.D.2). It thus destroys the
guarantee given in Theorem 6.2.1 for Algorithm 9 with constant step-size 1/L.

Algorithm 9 is not adaptive to the class of Lipschitz functions. While Algorithm 9
with averaging and constant step-size 1/L is optimal for the class QG+(L) convex, for any
sequence of constant step-sizes, neither the average nor the last iterate of Algorithm 9
converge over the class of M -Lipschitz functions (see Theorem 6.D.1). On the other hand,
to obtain a nearly (up to a log factor) optimal convergence rate O(log(n)/

√
n), one can use

γt = constant/
√
t for t ∈ {1, . . . , n}, but such a sequence degrades the converge for QG+

as proved by the lower bound Theorem 6.2.2.
Adaptivity of HB line-search (Algorithm 11). While Algorithm 11 requires to perform

exact line-search steps, its first advantage over Algorithm 10 is not requiring the knowledge
of the class parameter L. Algorithm 11 is thus adaptive to the class parameter L. This is
analogous of SSEP-based subgradient method presented in Drori and Taylor (2020, Corollary
3) and its line-search version (See Drori and Taylor, 2020, Corollary 4) that are both
optimal on the class of Lipschitz continuous and convex functions. The first one requires
the knowledge of the parameter class M , the distance of the starting point to optimum
d(x0,X?) as well as the number of performed steps, while the second one replaces this

6.3. Discussion and concluding remarks 139

knowledge by exact line-search steps. Moreover, we note that SSEP-based subgradient
method and Algorithm 10 are very similar to each other. Indeed, their respective update
steps can be written as xk ← k

k+1xk−1 + 1
k+1x0 − d(x0,X?)

M
√
N+1

1
k+1

∑k−1
i=0 gi and xk ← k

k+1xk−1 +
1

k+1x0 − 1
L

1
k+1

∑k−1
i=0 gi.

Remarkably, only the two constants in front of 1
k+1

∑k−1
i=0 gi differ between the two meth-

ods. Thus, their two line-search versions are identical. We conclude from Corollary 6.2.5
and Drori and Taylor (2020, Corollary 4) that Algorithm 11 is optimal on the classes of
Lipschitz convex functions and on the classes of QG+ convex functions. One can run this
algorithm without knowing the type of conditions that are verified by the objective function
and still benefit from a guarantee of optimality. This is a significant argument in favor of
Algorithm 11.

6.3.3 Leveraging our analysis to obtain convergence bounds on other
classes

One of the major limitations of the QG+ class is that all functions within the class must
be twice differentiable at the set of optimal points. This typically excludes some Lipschitz
functions, as for example x 7→ ‖x‖1 or problems involving Lasso regularization. In this
section, we show that our Section 6.2 can be leveraged to automatically obtain rates on
more complete classes of functions, that combine the limitations of the Lipschitz convex
and QG+ convex classes.
To introduce these classes, we denote h a generic function defined on R+ and verifying:
h(0) = 0, h is strictly increasing and h is concave. We consider the class of functions with h
relative growth.

Definition 6.3.1. A function f is h-relatively upper bounded (denoted h-RG+) if for all
x ∈ Rd:

f(x)− f? 6 h
(
d(x,X?)2

)
.

We denote the set of such functions by RG+(h), and by RG+ when h is left unspecified.

These classes enable to cover the QG+ classes, the Lipschitz convex classes, and more.

Remark 6.3.2. (Examples) These three examples of functions h satisfy the required assump-
tions:
1. When h is the linear function h : z 7→ Lz

2 , then simply RG+(h) = QG+(L).
2. When h : z 7→M

√
z, then simply RG+(h)∩{convex} = {M -Lipschitz continuous convex}.

3. When h : z 7→M
√
z + Lz

2 a broader class containing the limitations of both previous ones.

In the following, we consider the class of h-RG+ and convex functions. We then
propose Algorithm 12, which consists in applying Algorithm 10 (with the update written
as in Equation (6.6)) to the QG+ convex function h−1 ◦ (f − f?). We obtain the following
convergence rate.

Theorem 6.3.3. Let f an h − RG+ convex function, and x0 any starting point. Then
Algorithm 12 verifies f(xn)− f? 6 h

(
d(x0,X?)2

n+1

)
. In the examples of Remark 6.3.2, this gives:

1. When h is the linear function h : z 7→ Lz
2 (f is L-QG+ convex), then f(xn) − f? 6

L
2
d(x0,X?)2

n+1 .

6.3. Discussion and concluding remarks 140

Algorithm 12 Heavy-ball method for h-RG+

convex functions
Input: x0, h, f?
for k = 1 . . . n do

Choose gk−1 from ∂f(xk−1)

γk−1 = 1
2(k+1)

1
h′◦h−1(f(xk−1)−f?)

xk←xk−1− γk−1gk−1 + k−1
k+1 (xk−1 − xk−2)

Output: xn

Algorithm 13 Heavy-ball method for Lips-
chitz continuous convex functions
Input: x0, M , f?
for k = 1 . . . n do

Choose gk−1 from ∂f(xk−1)

γk−1 = 1
k+1

f(xk−1)−f?
M2

xk←xk−1− γk−1gk−1 + k−1
k+1 (xk−1 − xk−2)

Output: xn

2. When h is the function h : z 7→M
√
z (f is M -Lip. convex), then f(xn)− f? 6M d(x0,X?)√

n+1
.

3. When h is the function h : z 7→M
√
z + Lz

2 , then f(xn)− f? 6M d(x0,X?)√
n+1

+ L
2
d(x0,X?)2

n+1 .

Sketch of proof. The proof consists in inverting h and applying one of the results on the
QG+ convex functions h−1 (f − f?). For a detailed proof, see Appendix 6.F. �

We also observe that for h : z 7→ Lz
2 , Algorithm 12 is exactly Algorithm 10 and we

recover the worst-case guarantee provided in Theorem 6.3.3. Similarly, when considering
h : z 7→ M

√
z, Algorithm 12 is written as Algorithm 13 and we recover the worst-case

guarantee provided in (Drori and Taylor, 2020, Cor. 3). However, in this case the algorithm
is different: the latest requires the knowledge of d(x0,X?), while Algorithm 13 requires the
knowledge of f?. In this sense, the two proposed methods are complementary.

Finally, we emphasize the fact that in practice, a lot of machine learning models requires
to minimize non-smooth functions that are neither Lipschitz continuous nor QG+ (e.g.
least-square regressions with lasso penalization of TV-L2 model widely used in computer
vision). These functions can be tackled using the flexible function h(z) = M

√
z + L

2 z Then,
applying Theorem 6.3.3 leads to the guarantee given in the third point of Theorem 6.3.3
obtained with Algorithm 12 where γk−1 ← 1

k+1
1
L

[
1− 1/

√
1 + 2L

M2 (f(xk−1)− f?)
]
.

Extension with additional constraint. In Section 6.G, we provide geometric con-
vergence guarantees when the functions are also assumed satisfy a relaxation of strong
convexity, QG−.

List of potential applications. The QG+ class, and its extension to h − RG+ offer a
flexibility that allows to tackle several non-smooth machine learning problems, including
for example RELU activation, L1 or TV regularization. As an example, the classical TV-L2

denoising problem, which combines a term with quadratic growth with a non-smooth (even
at the optimum) term, is neither Lipschitz nor smooth, but belongs to our class h−RG+,
with h : z 7→M

√
z + Lz

2 (Remark 6.3.2-3).
Limitations. As specific methods have often been designed for those applications, our

approach does not bring a systematic improvement. Yet, we believe it paves the way for
adaptive methods that could do so. Remark that our Algorithm 11 is adaptive and optimal
for both the class of QG+(L) functions, and the class of M -Lipschitz continuous ones.
Extending our analysis to obtain an adaptive algorithm for h − RG+, which is left as an
open direction, would allow to efficiently tackle TV-L2 type of problems in a parameter-free
way.

Conclusion. In this paper, we thoroughly analyze the class of convex QG+ functions.
This function class relaxes the smoothness assumption and is motivated by the fact that
QG+ satisfies condition continuity, a desirable property for analyzing first-order methods.

6.3. Discussion and concluding remarks 141

We analyze several such methods, and provide tight worst-case guarantees for them. Three
methods achieve the optimal convergence rate over the class. Our analysis is supported
by the derivation of interpolation conditions allowing to verify all the results numerically.
In particular, we observe that a heavy-ball algorithm results in acceleration (w.r.t. the
subgradient method), attaining the lower complexity bound for this class, a surprising
result with respect to the smooth case. Moreover, using line-search, we obtain a parameter-
free algorithm which is adaptive to the class parameter in QG+, and to the function
class, as it also achieves the optimal rate for Lipschitz functions, a strongly desirable
property in practice. Finally, we leverage our results to obtain convergence bounds for
more complex classes of functions, combining the difficulties of the QG+ and the Lipschitz
classes. Overall, this work participates to the trend of questioning the relevance of the most
classical assumptions used in the analysis of first-order optimization methods. While our
results are not intended to provide a definitive answer to this question, it goes one step
further by providing an in-depth analysis for a more stable class of functions. Providing a
similar analysis while relaxing convexity is a major open challenge.

6.A. (Sub)gradient method on QG+-convex functions 142

Organisation of the appendix

This appendix contains the proofs of the theorems stated in the main core of the paper. We
also state a conjecture and bring some evidence about its statement. This appendix also
contains discussions and extended results.

Appendix 6.A details the results on the subgradient method. Appendix 6.A.1 contains
the proof of Theorem 6.2.1, Appendix 6.A.2 contains the proof of Theorem 6.2.2 and
Appendix 6.A.3 contains a conjecture that does not appear in the main core of the paper.
This appendix also contains some evidence supporting this conjecture.

Appendix 6.B contains the proofs for lower bounds on the class QG+ convex. Ap-
pendix 6.B.1 contains the proofs of Theorem 6.2.3 stating the lower bound under the
classical assumption that the difference between the iterates lies into the span of ob-
served gradients. Appendix 6.B.2 extends the latter results without the aforementioned
assumption.

Appendix 6.C contains the proof of Theorem 6.2.4, the main result of the paper,
stating that all first-order algorithm verifying a given identity, also enjoys an upper bound
guarantee.

Appendix 6.D contains the proofs of all the claims that figure in Table 6.2 that are not
already made elsewhere in this work or in others.

Appendix 6.E contains the proof of Theorem 6.2.6, essential to use the PEP framework.
Appendix 6.F contains all the proofs and discussions related to the extended class of

the RG+ convex functions
Finally, Appendix 6.G contains linear convergence result under an additional assumption

similar to the classical quadratic growth assumption. This result is not presented in the
main core in the paper, since it is a bit out of the scope of the main message. However, we
thought it was worth mentioning it here.

6.A (Sub)gradient method on QG+-convex functions

In this appendix, we provide the proof of Theorems 6.2.1 and 6.2.2 stating respectively
an upper bound result on the subgradient method with fixed step-size 1/L on the Polyak-
Rupert averaged iterate, and a lower bound result on the subgradient method on the last
iterate. Finally, based on this lower bound, we suggest a specific tuning of the subgradient
method for QG+ convex functions. A conjecture is formulated on the worst-case bound
achieved by this method with the prescribed tuning, as well as evidence obtained through
the PEP framework.

6.A.1 Convergence of subgradient method with fixed step-size at
Polyak-Rupert averaged iterate

In section 6.2.1, we state the following theorem about a worst-case upper bound of
Algorithm 9 on the class of QG+-convex functions. In this section, we provide the proof of
this theorem.

Theorem 6.2.1. (Convergence of Algorithm 9 in average) Let f be an L-QG+ convex
function. Applying (sub)gradient method on f with step-size γ , 1

L leads to the following

6.A. (Sub)gradient method on QG+-convex functions 143

guarantee:
1

n+ 1

n∑
k=0

(f(xk)− f?) 6
L

2

1

n+ 1
d(x0,X?)2. (6.2)

Proof. Let k ∈ [0, n]. We have

d(xk+1,X?)2 = ‖xk+1 − πX?(xk+1)‖2

6 ‖xk+1 − πX?(xk)‖2

= ‖xk − γgk − πX?(xk)‖2, with gk ∈ ∂f(xk)

= ‖xk − πX?(xk)‖2 − 2γ 〈xk − πX?(xk), gk〉+ γ2‖gk‖2

Eq. (6.9)
6 ‖xk − πX?(xk)‖2 − 2γ

(
f(xk)− f? +

1

2L
‖gk‖2

)
+ γ2‖gk‖2

= d(xk,X?)2 − 2γ (f(xk)− f?)− γ
(

1

L
− γ

)
‖gk‖2

γ= 1
L= d(xk,X?)2 − 2

L
(f(xk)− f?)

By reordering the terms and summing over k:

n∑
k=0

(f(xk)− f?) 6
L

2
d(x0,X?)2 (6.10)

which leads to the desired results.
�

Remark 6.A.1. From Theorem 6.2.1, we conclude

min
06k6n

f(xk)− f? 6
L

2

1

n+ 1
d(x0,X?)2

f

(
1

n+ 1

n∑
k=0

xk

)
− f?

(by convexity)
6

L

2

1

n+ 1
d(x0,X?)2.

Remark 6.A.2. Note that this bound is tight not only for QG+ convex functions, but also for
smooth convex functions.

Indeed, we consider the real Huber function defined as

f(x) =

{
L
2 x

2 if |x| 6 1

L|x| − L
2 if |x| > 1

(6.11)

This function is L-smooth convex and often used to find lower bounds (See e.g. Drori
and Teboulle, 2014; Taylor et al., 2017c; Kim and Fessler, 2016). Moreover, starting from
x0 = n+ 1, GD with γ = 1

L leads exactly to xk = n+ 1− k for all k 6 n, hence f(xk)− f? =

L
(
n+ 1

2 − k
)

and
∑n
k=0(f(xk)− f?) = L

∑n
k=0 n+ 1

2 − k = L
2 (n+ 1)2 = L

2 d(x0,X?)2.

6.A.2 Convergence limitation of the subgradient method in last iterate

In this section, we prove Theorem 6.2.2 stating a lower bound guarantee on the convergence
of the subgradient method. This proof is by far the most technical of this paper due to the
amount of newly introduced notations.

6.A. (Sub)gradient method on QG+-convex functions 144

Theorem 6.2.2. (Lower bound for Algorithm 9 - final iterate). Let n ∈ N. For any
sequence (γi)06i6n−1 > 0 and any ε > 0, there exists an L-QG+ convex function f that
verifies, after n iterations of Algorithm 9 with step-sizes (γi)06i6n−1,

f(xn)− f? >
L

2
Lγn−1d(x0,X?)2 − ε. (6.4)

Proof. Let η > 0.
We introduce the following notations:

• δ ,
(

η
√

3
1+Lγn−2

)1/2

• Huber function

hδ(x) =


L
2 x

2 if x 6 δ

Lδx− L
2 δ

2 if x > δ
(6.12)

• For i ∈ [|0, n− 1|], define ξi , δ
(
1 +

∑n−2
k=i Lγi

)
.

• λ = Lη
(1+Lγn−2)(1+η2+ξ2

0)
.

Based on those notations, we define the 3-dimensional function

f(x) = max

[
L

2

(
x(1) − 1 + |x(2)|

√
3
)
, hδ

(
x(3)

)
,
λ

2
‖x‖22

]
. (6.13)

f is convex as maximum of 3 convex functions.
Moreover, we note that X? = {0} and f? = 0.
And each of the three components defining f is smaller that L

2 ‖x‖
2
2. Indeed,

L

2

(
x(1) − 1 + |x(2)|

√
3
)

=
L

2

(x(1)
)2
−
(
x(1) − 1

2

)2

+
(
x(2)

)2
−
(
x(2) −

√
3

2

)2


6
L

2

((
x(1)

)2
+
(
x(2)

)2
)

6
L

2
‖x‖22 (6.14)

hδ
(
x(3)

)
6
L

2
(x(3))2

6
L

2
‖x‖22 (6.15)

λ 6
Lη

2η
=
L

2
6 L, hence

λ

2
‖x‖22 6

L

2
‖x‖22 (6.16)

Therefore, f is also QG+(L).

We choose to start the GD algorithm at x0 ,
(
1 η ξ0

)>
.

We claim that after i (0 6 i 6 n− 1) steps of GD, xi =
(
1 η ξi

)>
.

This can be proven by induction. Indeed, by definition, this is true for i = 0. We now
assume this property is true for some i < n− 1 and want to prove it for i+ 1.

From the 3 remarks

hδ(ξi) >
L

2

(
1− 1 + |η|

√
3
)

(6.17)

hδ(ξi) >
λ

2
‖xi‖22 (6.18)

ξi > δ, (6.19)

6.A. (Sub)gradient method on QG+-convex functions 145

we conclude that ∇f(xi) =
(
0 0 Lδ

)>
.

Hence xi+1 = xi −
(
0 0 Lγiδ

)>
=
(
1 η ξi+1

)>
.

Finally, from the 2 remarks

L

2
(1− 1 + |η|

√
3) > hδ(ξn−1) (6.20)

L

2
(1− 1 + |η|

√
3) >

λ

2
‖xn−1‖22, (6.21)

we conclude that ∇f(xn−1) = L
2

(
1
√

3 0
)>

, leading to

xn = xn−1 − γn−1
L

2

(
1
√

3 0
)>

=
(
1− Lγn−1

2 η − Lγn−1

√
3

2 δ
)>

.

We compute the two quantities

‖x0‖2 = 1 + η2 + ξ2
0 (6.22)

f(xn) >
L

2

(
1− Lγn−1

2
− 1 + |η − Lγn−1

√
3

2
|
√

3

)

=
L

2

(
−Lγn−1

2
+

(
Lγn−1

√
3

2
− η

)
√

3

)

=
L

2

(
Lγn−1 − η

√
3
)

(6.23)

Finally,

f(xn)− f?
d(x0,X?)2

>
L

2

Lγn−1 − η
√

3

1 + η2 + ξ2
0

=
L

2

Lγn−1 − η
√

3

1 + η2 + δ2
(
1 +

∑n−2
k=i Lγi

)2

=
L

2

Lγn−1 − η
√

3

1 + η2 + η
√

3
1+Lγn−2

(
1 +

∑n−2
k=i Lγi

)2

−→
η→0

L

2
Lγn−1. (6.24)

Hence, for any ε > 0, we can find η > 0 sufficiently small such that f reaches the claim
of the Theorem.

�

6.A.3 A new tuning prescription

Theorem 6.2.2 provides a lower bound on the last iterate value of the subgradient method
on the class of QG+ convex functions. Moreover, a new analysis of the subgradient method
on the Huber function (6.12), starting at x0 = 1 + 2

∑n−1
k=0 Lγk provides another lower

bound.
Combining those 2 results, we know that whatever (γi)06i6n−1 > 0 is, there exists f an

L−QG+ convex function as well as a starting point x0 such that

f(xn)− f? > max

(
L

2

1

1 + 2
∑n−1
k=0 Lγk

,
L

2
Lγn−1

)
d(x0,X?)2. (6.25)

6.A. (Sub)gradient method on QG+-convex functions 146

Algorithm 14 GD with decreasing step-sizes
Input: x0, L
u0 = 1;
for k=1 . . . n do

uk ← uk−1

2 +
√(uk−1

2

)2
+ 2;

γk−1 ← 1
Luk

;
Pick gk−1 ∈ ∂f(xk−1);
xk ← xk−1 − γk−1gk−1

Output: xn

Naturally, we propose the sequence of
(γi)06i6n−1 > 0 that verifies for all n,
L
2

1

1+2
∑n−1

k=0
Lγk

= L
2Lγn−1 (for each index

n > 1). This is summarized in Algorithm 14.
We note that un ∼ 2

√
n and γn−1 ∼ 1

2L
√
n

.
The lower bound (6.25) for this method be-
comes f(xn) − f? > L

2Lγn−1d(x0,X?)2 ∼
L

4
√
n
d(x0,X?)2. We conjecture that this

bound is actually reached by the proposed
method 14.

Conjecture 6.A.3. (Convergence of GD with decreasing step-sizes) The algorithm 14
verifies the following bound on every L−QG+ convex function f :

f(xn)− f? 6
L

2un
d(x0,X?)2. (6.26)

where un is the sequence used in 14, defined by

u0 = 1 (6.27)

uk =
uk−1

2
+

√(
uk−1

2

)2

+ 2, for every k ∈ J1, nK. (6.28)

and verifying
un ∼ 2

√
n. (6.29)

This conjecture is supported by the Figure 6.1 that has been built using the PEP
framework. This figure represents the worst-case guarantee of Algorithm 14 as a function
of the number of iterations. The conjecture (red curve) follows exactly the numerical
worst-case guarantee provided by the PEPs (blue curve) and the equivalent sequence
(green curve) is very close to the 2 previous ones.

Figure 6.1: Verification of Conjecture 6.A.3 using PEPs

6.B. First-order lower bound 147

6.B First-order lower bound

In this section, we prove the lower bound of first-order methods on QG+ convex functions.
In the first subsection, we assume that the iterates of the first-order algorithm must stay

in the span of the past observed gradients.
In the second subsection, we release this assumption and still prove the same lower

bound. This proof is a bit more technical, hence the reason why we provide the two proofs.

6.B.1 Proof of Theorem 2.3

The following theorem brings a lower bound over all first-order methods verifying that all
the iterates lie into the span of the previously observed gradients.

Theorem 6.2.3. (Lower complexity bound) Let n ∈ N. There exist some d ∈ N and some
convex L-QG+ function f of input space Rd such that: for any sequence (xk)06k6n satisfying
xk−x0 ∈ span {g0, g1, g2, . . . , gk−1} for all k 6 n with gi ∈ ∂f(xi) (i = 0, . . . , k−1), we have:

f(xn)− f? >
L

2

1

n+ 1
d(x0,X?)2.

Proof. Consider f(x) , L
2 ‖x‖

2
∞ defined on Rn+1 and x0 = ~1.

After k steps, the oracle can “choose” to return a vector that lies in the first k + 1

dimension of the input space, leading to f(xn)− f? > f(x0)− f? = L
2 = L

2
1

n+1d(x0,X?)2.
�

Remark 6.B.1. Note that by considering instead x0 =
(
1 1− ε/n 1− 2ε/n . . . 1− ε

)>
,

one ends up with f(xn)− f? > L
2

1−ε
n+1d(x0,X?)2 whatever the oracle “chooses” to return.

6.B.2 Lower bound proof without span assumption

In this section we release the span assumption and prove that the previously shown lower
bound still holds. This proof is a bit more technical than the one of Theorem 6.2.3 proven
in Appendix 6.B.1.

Theorem 6.B.2 (Lower bound of first-order algorithm without span assumption). Let A a
first-order algorithm. Then, for any n > 0, there exists d a positive integer, f a L−QG+ convex
function of input space Rd and a starting point x0 such that f(xn)− f? > L

2
1

n+1d(x0,X?)2.

Proof. Let E =
{
v ∈ Rn+1|∀i ∈ J1, n+ 1K, |vi| = 1

}
the set of the 2n+1 vectors of Rn+1 which

all coordinates are ±1.
For each v ∈ E , we introduce fv(x) , L

2 ‖x− v‖
2
∞ defined on Rn+1.

First note that all those functions are L − QG+ convex. We will prove that not only
there exists a starting point x0 and a L − QG+ convex function such that f(xn) − f? >
L
2

1
n+1d(x0,X?)2, but also that there exists a starting point x0 and a function among the fv

we introduced above such that the latest holds.
To proceed, we need to show that the algorithm A cannot know the right v after only n

iterations and therefore, cannot guarantee f(xn)−f? 6 L
2 . Taking x0 = ~0, ‖x0−x?‖2 = n+1

whatever x? is (among E), hence the result.
In order to prove that the algorithm cannot know the solution after n iterations, we

keep track of all the remaining possibilities across time.

6.C. Main result: worst-case guarantee of proposed methods 148

We denote by Ek the remaining possibilities after k steps of the algorithm. In particular,
E0 = E .

At each step k, A guesses xk based on all the previous information, summarized in Ek,
and the oracle provides f(xk) and a subgradient gk ∈ ∂f(xk).

Let vk ∈ arg maxv∈Ek ‖xk − vk‖∞. We consider the case where the oracle behaves like
if the objective function to minimize was fvk . Moreover, in the case where fvk is not
differentiable in xk, we ask that the oracle returns a subgradient co-linear to a vector
belonging to the canonical basis (which is always possible).

Considering i such that gk is co-linear to ei, we obtain Ek+1 = {v ∈ Ek| 〈v, ei〉 = 〈vk, ei〉},
reducing by half the number of remaining elements at each step (except when the algorithm
badly guesses and receive twice the same direction, in which case one of the steps is useless).

After n steps, En contains 2 elements, and the algorithm A must guess based on nothing.
Again, we consider the further one to the last guess as the right solution, and obtain the
lower bound provided by the Theorem.

�

6.C Main result: worst-case guarantee of proposed methods

In this section, we prove Theorem 6.2.4, the main result of this paper, stating that all
the sequences of iterates verifying a certain property enjoy an upper bound guarantee
corresponding to the lower bound presented in Theorem 6.2.3 and proved in Section 6.B.
Then, we prove Corollary 6.2.5 which provides 2 algorithms verifying the assumptions of
Theorem 6.2.4.

Theorem 6.2.4. (Main result: sufficient condition for being worst-case optimal). Let
A be an iterative first-order method that verifies, for all convex QG+(L) function f , and
starting points x0,

〈
gk, xk −

[k

k + 1
xk−1 +

1

k + 1
x0 −

1

k + 1

k−1∑
i=0

1

L
gi
]〉
6 0. (6.7)

for some sequence (gi)i∈N of subgradients gi ∈ ∂f(xi), and where (xi)i∈N are the iterates of A.
Then, the output xn of A achieves the worst-case guarantee:

f(xn)− f? 6
L

2

1

n+ 1
d(x0,X?)2.

Proof. This proof relies on the Lyapunov function

Vn , n(f(xn−1)− f?) +
L

2

∥∥∥∥∥x0 − πX?(x0)−
n−1∑
i=0

1

L
gi

∥∥∥∥∥
2

. (6.30)

For all k, we verify

6.C. Main result: worst-case guarantee of proposed methods 149

Vk+1 − Vk =

(k + 1)(f(xk)− f?) +
L

2

∥∥∥∥∥x0 − πX?(x0)−
k∑
i=0

1

L
gi

∥∥∥∥∥
2


−

k(f(xk−1)− f?) +
L

2

∥∥∥∥∥x0 − πX?(x0)−
k−1∑
i=0

1

L
gi

∥∥∥∥∥
2


= (f(xk)− f?) + k(f(xk)− f(xk−1))

+
L

2

[
− 2

L

〈
gk, x0 − πX?(x0)−

k−1∑
i=0

1

L
gi

〉
+

1

L2
‖gk‖2

]

=

(
f(xk)− f? +

1

2L
‖gk‖2

)
+ k(f(xk)− f(xk−1))

−
〈
gk, x0 − πX?(x0)−

k−1∑
i=0

1

L
gi

〉
(6.8, 6.9)

6 〈gk, xk − πX?(x0)〉+ k 〈gk, xk − xk−1〉 −
〈
gk, x0 − πX?(x0)−

k−1∑
i=0

1

L
gi

〉

=

〈
gk, xk − πX?(x0) + k(xk − xk−1)−

(
x0 − πX?(x0)−

k−1∑
i=0

1

L
gi

)〉

=

〈
gk, (k + 1)xk − kxk−1 − x0 +

k−1∑
i=0

1

L
gi

〉

The assumption therefore concludes ∀k, Vk+1 6 Vk. Finally,

(N + 1)(f(xN)− f?) +
L

2

∥∥∥∥∥x0 − πX?(x0)−
N∑
i=0

1

L
gi

∥∥∥∥∥
2

= Vn+1 6 V0 =
L

2
‖x0 − x∗‖2.

In particular, f(xN)− f? 6 L
2

1
N+1‖x0 − x∗‖2.

�

Corollary 6.2.5. Let n ∈ N, d ∈ N, f be a convex QG+ function, and x0 ∈ Rd. Also, let xn be
the output of either Algorithm 10 or Algorithm 11, we have: f(xn)− f? 6 L

2
1

n+1d(x0,X?)2.

Proof.

Algorithm 10: First note that the update of Algorithm 10 cancels the RHS of the inner
product in Equation (6.7), therefore verifying the assumption of Theorem 6.2.4 achieving
the optimal convergence guarantee on the class of convex QG+ functions.

Algorithm 11: Let’s first prove that this algorithm is well-defined. By the assumption
that X? =

{
x ∈ Rd | f(x) = f? = miny∈Rd f(y)

}
is compact, and not empty, we can con-

sider x? any of its element, and R > 0 sufficiently large so that the open ball B(x?, R)

centered in x? and of radius R contains X?. With those notations, any point x on the
sphere S(x?, R) does not belong to X?, therefore verifies f(x) > f?. By continuity of
convex functions and compactness of the sphere, f reaches a minimum m > f? on the
sphere S(x?, R). Given this, for any x such that ‖x − x?‖ > R, we have f(x) − f? >
‖x−x?‖

R

(
f
(
x? + R

‖x−x?‖(x− x?)
)
− f?

)
> ‖x−x?‖R m. This shows in particular that f is coer-

cive, i.e. lim‖x‖→∞ f(x) =∞.
Therefore, each line-search step is well-defined as f necessarily admits a minimum on

6.D. Summary of convergence results on QG+ convex and Lipschitz convex 150

every affine line. From the existence of such a minimum, it is well known that their
exists a subgradient to this optimum that is orthogonal to the search direction and this is
what Algorithm 11 uses.
Recall that the line-search returns the updates xk = k

k+1xk−1 + 1
k+1x0− α?

k+1

∑k−1
i=0 gi. where

α? is the optimal parameter of the line-search. Therefore, the RHS of the inner product
in Equation (6.7) can be written (α? − 1

L) 1
k+1

∑k−1
i=0 gi and gk is chosen by the algorithm

to be orthogonal to 1
k+1

∑k−1
i=0 gi, therefore canceling the inner product and verifying the

assumption and conclusion of Theorem 6.2.4. �

6.D Summary of convergence results on QG+ convex and
Lipschitz convex

In this section, we state and prove the 2 results of Table 6.2 that are not already proven
elsewhere.

Table 6.2: Optimality of the proposed methods over the set of QG+ convex functions and
M -Lipschitz convex functions. ELS: Exact Line-Search. X indicates optimality among
the class and × the contrary. All counter examples are given in App. 6.D. †: constants
resulting in optimal convergence rates depend on the class, thus for example Heavy-ball
with step-size constant

(t+2) is not adaptive as it does not achieve the optimal rate for both classes
with the same constant. ‡: up to a log factor.

Method Function class Parameter free

Algorithm Step-sizes (γt)06t6n−1 Iterate QG+(L) convex M -Lipschitz convex

Subgradient (Alg. 9) constant† Average X (Thm. 6.2.1) × (Thm. 6.D.1) ×

Subgradient (Alg. 14) constant†/
√
t Average × (6.5) X‡ (Nesterov, 2003, Sec. 3.2.3) ×

Subgradient (Alg. 15) ELS Average × (Thm. 6.D.2) × (Thm. 6.D.2) X

Subgradient (Alg. 15) ELS Last × (Thm. 6.D.2) × (Thm. 6.D.2) X

Heavy-ball (Alg. 10) constant†/(t+ 2) Last X (Cor. 6.2.5) X (Drori and Taylor, 2020, , Cor. 3) ×

Heavy-ball (Alg. 11) ELS Last X (Cor. 6.2.5) X (Drori and Taylor, 2020, , Cor. 4) X

We first state Theorem 6.D.1.

Theorem 6.D.1. For any M > 0 and any γ > 0, the subgradient method 9 with constant
step-size γ cannot be guaranteed to converge to optimum on all the M -Lipschitz continuous
convex functions, both in last iterate and in Polyak-Rupert averaged iterate.

Proof. First we note that f , z 7→ M |z| is M -Lipschitz continuous and convex. Let
γ > 0. We consider x0 = 3

4Mγ the starting point of the subgradient method with constant
step-size γ. We verify that x1 = −1

4Mγ and that the sequence (xt)t cycles back to 3
4Mγ.

Therefore, the sequence itself does not converge and the sequence of the PR averaged
iterates converges to 1

4Mγ, while the optimum value would be 0. �
Then, one could wonder whether performing exact line search steps on the subgradient

method (Algorithm 15.) leads to convergence on Lipschitz continuous convex or QG+

convex function. We now prove Theorem 6.D.2 stating that the subgradient method

6.E. Interpolation results for QG+ convex functions 151

with exact line search does not converge for all functions neither of the class of Lipschitz
continuous convex functions nor of the class of QG+ convex functions, neither in last
iterate nor in Polyak-Rupert averaged iterate.

Theorem 6.D.2. There exists a QG+ convex function fQG and a Lipschitz continuous convex
function fLip such that, the iterates ((xn)

fQG
n)n and ((xn)

fLip
n)n obtained by Algorithm 15,

verify the 2 guarantees

f(xn)− f? >
L

6
‖x0 − x?‖2. (6.31)

f(x̄n)− f? >
L

6
‖x0 − x?‖2. (6.32)

where x̄n denotes the Polyak-Rupert averaged iterate obtained from the sequence (xn)n.

Algorithm 15 Subgradient method with line-search
Input: x0, v0 ← 0

for k = 1 . . . n do
Pick gk−1 ∈ ∂f(xk−1).
αk ← arg minα f (xk−1 − αgk−1)

xk ← xk−1 − αkgk−1

Output: xn

Proof. Considering fLip(z) =

M‖x‖∞ and fQG(z) = L
2 ‖x‖

2
∞ de-

fined on R3, the iterates of Algo-
rithm 15 can be cycling between
the four points (1, 1, 1), (1,−1, 1),
(−1, 1, 1) and (−1,−1, 1). Therefore,
the aforementioned statement. �

6.E Interpolation results for QG+ convex functions

The interpolation conditions of a given class represent the key ingredient to use the PEP
framework on this class. Theorem 6.2.6 provides the interpolation conditions for the classes
of QG+ convex functions. In this section, we recall this result and prove it.

Theorem 6.2.6. (Interpolation conditions) Let (xi, gi, fi)i∈I a family of elements in Rd ×
Rd × R. Set I? the (assumed) non-empty subset of I of the indices of elements (xi, gi, fi)

verifying gi = 0.
Then, there exists a QG+(L) and convex function f interpolating those points (i.e. such

that ∀i ∈ I, f(xi) = fi and gi ∈ ∂f(xi)) if and only if

∀i ∈ I, ∀j ∈ I, fi > fj + 〈gj , xi − xj〉 (6.8)

∀i ∈ I?,∀j ∈ I, fi > fj + 〈gj , xi − xj〉+
1

2L
‖gj‖2. (6.9)

Proof.
We prove the two implications one by one.

⇒: Assume there exists such a convex-QG+ function f that interpolates (xi, gi, fi)i∈I .
Equation (6.8) follows immediately from convexity. Let’s prove equation (6.9). Let
i ∈ I?,∀j ∈ I and x ∈ Rd. We have:

fj + 〈gj , x− xj〉
CVX
6 f(x)

QG+

6 min
z∈Rd

f(z) +
L

2
d(x,X?)2 6 fi +

L

2
‖x− xi‖2.

Rewriting the previous equation for x = xi + 1
Lgj leads to equation (6.9).

6.F. Convergence bound on other classes 152

⇐: Let’s consider equations (6.8) and (6.9) are verified. Applying (6.8) with j ∈ I?

∀i ∈ I, ∀j ∈ I?, fi > fj (6.33)

In particular, ∀i ∈ I?,∀j ∈ I?, fi = fj . Hence, let’s introduce f? the common value
of all the fi for i ∈ I?. Let’s denote here X ? the convex hull of {xi}i∈I? . Finally let’s

introduce µ , 2 mini∈I\I?

(
fi−f?

d(xi,X ?)2

) QG+

6 L.

Let’s prove that the following function f is a solution:

f(x) = max

(
max
j∈I

(fj + 〈gj , x− xj〉) , f? +
µ

2
d (x,X ?)2

)
. (6.34)

- ∀i ∈ I, f(xi) = fi: For all i ∈ I, equation (6.8) shows maxj∈I (fj + 〈gj , xi − xj〉) 6
fi and the definition of µ leads to f? + µ

2d (xi,X ?)2 6 fi. Hence, for all i ∈ I,
f(xi) 6 fi. Moreover, from equation (6.34), f(x) > (fi + 〈gi, x− xi〉), hence
f(xi) > fi. Finally, we conclude ∀i ∈ I, f(xi) = fi.

- ∀i ∈ I, gi ∈ ∂f(xi): ∀i ∈ I, ∀x, f(x) > (fi + 〈gi, x− xi〉), and from the previous
point, we conclude ∀i ∈ I, ∀x, f(x) > (f(xi) + 〈gi, x− xi〉). Finally, ∀i ∈ I, gi ∈
∂f(xi).

- f is convex: f is defined as the maximum of convex functions, hence is convex.

- f is QG+: We aim at proving that ∀x ∈ Rd, f(x) 6 f? + L
2 d (x,X ?)2. Since it is

clear that ∀x ∈ Rd, f? + µ
2d (x,X ?)2 6 f? + L

2 d (x,X ?)2, it remains to prove that
∀x ∈ Rd, ∀j ∈ I, fj+〈gj , x− xj〉 6 f?+ L

2 d (x,X ?)2. The latest is also equivalent
to ∀x ∈ Rd, ∀j ∈ I, ∀x? ∈ X ?, fj + 〈gj , x− xj〉 6 f? + L

2 ‖x − x?‖
2. For j and

x? fixed, this expression is a quadratic form in x, optimized for x = x? + 1
Lgj .

Hence, we need to show ∀j ∈ I, ∀x? ∈ X ?, fj +
〈
gj , x? + 1

Lgj − xj
〉
6 f? +

L
2

∥∥∥x? + 1
Lgj − x?

∥∥∥2
, also rewritten ∀x? ∈ X ?, ∀j ∈ I, f? > fj + 〈gj , x? − xj〉 +

1
2L‖gj‖

2. Since X ? is the convex hull of {xi}i∈I? , the latter is obtained by a linear
combination (with non-negative weights) of equation 6.9 for different values of i.

�

6.F Convergence bound on other classes

In this section, we naturally extend the previous results to the class of h − RG+ (See.
Definition 6.3.1) convex functions.

Theorem 6.3.3. Let f an h − RG+ convex function, and x0 any starting point. Then
Algorithm 12 verifies f(xn)− f? 6 h

(
d(x0,X?)2

n+1

)
. In the examples of Remark 6.3.2, this gives:

1. When h is the linear function h : z 7→ Lz
2 (f is L-QG+ convex), then f(xn) − f? 6

L
2
d(x0,X?)2

n+1 .

2. When h is the function h : z 7→M
√
z (f is M -Lip. convex), then f(xn)− f? 6M d(x0,X?)√

n+1
.

3. When h is the function h : z 7→M
√
z + Lz

2 , then f(xn)− f? 6M d(x0,X?)√
n+1

+ L
2
d(x0,X?)2

n+1 .

Proof.
First note that since h is strictly increasing, h−1 is well-defined. Furthermore, Defi-

nition 6.3.1 can be expressed as h−1 (f(x)− f?) 6 d(x,X?)2. Therefore, h−1 (f − f?) is

6.G. Linear convergence guarantees under lower bound assumption 153

2−QG+. And we know by definition that h is increasing and concave, then h−1 is increasing
and convex. Since f is also convex, so is h−1 (f − f?).

We conclude that h−1 (f − f?) is 2 − QG+ and convex, and then we know that Algo-
rithm 10 applied on h−1 (f − f?) leads to

h−1 (f(xn)− f?) 6
d(x0,X?)2

n+ 1
.

It remains to compose the above by h and to notice that Equation 6.6 applied on
h−1 (f − f?) is exactly Algorithm 12.

�

6.G Linear convergence guarantees under lower bound
assumption

In all this section, we assume that f is convex and h− RG+ for a certain h. Moreover, we
consider that f verifies the following additional assumption (referred to as “Łojasiewicz
error bound inequality” in (Bolte et al., 2017)) for a given κ > 1:

Assumption 6.G.1. For all x ∈ Rd, f(x)− f? > h
(
d(x,X?)2

κ

)
.

Remark 6.G.2. When h is the linear function h : R 7→ LR
2 , then f is simply L−QG+ convex

as well as µ − QG−
(
where µ , L

κ

)
(See (Guille-Escuret et al., 2021) for the definition of

QG−).

We introduce the Algorithm 16 based on the restart idea studied in (Nemirovskii and
Nesterov, 1985; Nesterov, 2013; Iouditski and Nesterov, 2014).

Algorithm 16 Heavy-ball with restart
Input: x0, h, f?
for k = 1 . . . n do

Choose gk−1 from ∂f(xk−1)

l← k mod bκec − 1 (between 1 and bκec − 1).
xk ← xk−1 − 1

2(l+1)
1

h′◦h−1(f(xk−1)−f?)
gk−1 + l−1

l+1 (xk−1 − xk−2)

Output: xn

This algorithm comes with the linear convergence rate guarantee

Theorem 6.G.3. Algorithm 16 verifies for every n multiple of bκec − 1:

d(xn,X?)2 6
(

1− 1

κe

)n
d(x0,X?)2. (6.35)

6.G. Linear convergence guarantees under lower bound assumption 154

Proof.
From Theorem 6.3.3, running Algorithm 12 leads to the guarantee

f(xn)− f? 6 h
(
d (x0,X?)2

n+ 1

)
. (6.36)

From the additional assumption (6.G.1), we can upper bound the left hand size of the
above and write

h

(
d(xn,X?)2

κ

)
6 h

(
d (x0,X?)2

n+ 1

)
.

Hence,
d(xn,X?)2 6

κ

n+ 1
d(x0,X?)2.

The latest is a contraction guarantee. Indeed, for n sufficiently large, d(xn,X?)2 <

d(x0,X?)2. The average contraction factor is
(

κ
n+1

)1/n
and is minimized for n ≈ bκec − 1.

Choosing such a n leads to a contraction factor upper bounded by 1− 1
κe .

This corresponds to the convergence rate obtained by applying bκec − 1 steps of
Algorithm 12 and then restarting it. This is described as Algorithm 16.
bκec − 1 steps of Algorithm 12 therefore leads to a contraction factor of κ

bκec 6(
1− 1

κe

)bκec−1
. Thus applying the same algorithm restarted every bκec − 1 steps leads to a

contraction factor of
(
1− 1

κe

)q(bκec−1)
after q (bκec − 1) steps.

�

Corollary 6.G.4. Algorithm 16 verifies for every n,

f(xn)− f? 6 h
(
e

(
1− 1

κe

)n
d(x0,X?)2

)
. (6.37)

Proof.
Consider n = q (bκec − 1) + r, with 0 6 r < bκec − 1.
Combining Theorem 6.G.3 applied on q (bκec − 1) steps and Theorem 6.3.3 applied for

the latest r steps from starting point xq(bκec−1), we get

f(xn)− f?
Theorem 6.G.3
6 h

(
d(xq(bκec−1),X?)2

r + 1

)

Theorem 6.3.3
6 h


(
1− 1

κe

)q(bκec−1)
d(x0,X?)2

r + 1


6 h


(
1− 1

κe

)−r (
1− 1

κe

)n
d(x0,X?)2

r + 1


6 h

e
(
1− 1

κe

)n
d(x0,X?)2

r + 1


6 h

(
e

(
1− 1

κe

)n
d(x0,X?)2

)
�

6.G. Linear convergence guarantees under lower bound assumption 155

Example 6.G.5. (Logistic regression) The logistic objective function is strictly convex and
smooth. But it is not strongly convex. However, its square is still convex and is QG+ (not
necessarily smooth anymore), and is still not necessarily strongly convex, but is QG−. Therefore,
Theorem 6.G.3 provides a linear convergence guarantee for Algorithm 16.

Note that with smoothness and convexity only, the classical theory does not guarantee
linear convergence of Logistic regression. Indeed, a tighter analysis is required, using for
example self-concordance (see e.g. Bach, 2010; Marteau-Ferey et al., 2019).

7
Counter-examples in first-order

optimization: a constructive approach

While many approaches were developed for obtaining worst-case complexity bounds for
first-order optimization methods in the last years, there remain theoretical gaps in cases
where no such bound can be found. In such cases, it is often unclear whether no such
bound exists (e.g. because the algorithm might fail to systematically converge) or simply if
the current techniques do not allow finding them. In this work, we propose an approach to
automate the search for cyclic trajectories generated by first-order methods. This provides
a constructive approach to show that no appropriate complexity bound exists, thereby
complementing approaches providing sufficient conditions for convergence. Using this
tool, we provide ranges of parameters for which the famous Polyak heavy-ball, Nesterov
accelerated gradient, inexact Gradient descent, and three-operator splitting algorithms fail
to systematically converge, and show that it nicely complements existing tools searching
for Lyapunov functions.

This chapter is based on our work “Counter-examples in first-order optimization: a
constructive approach” (co-authored with A. Dieuleveut, and A. Taylor), published in L-CSS
and CDC 2023.

157

Contents

7.1 Introduction . 158
7.2 Definitions and notations . 159
7.3 Searching for cycles . 161

7.3.1 Motivation . 161
7.3.2 Approach . 162

7.4 Application to four different (SFOM)s . 164
7.4.1 Heavy-ball . 165
7.4.2 Nesterov accelerated gradient . 166
7.4.3 Inexact gradient method . 167
7.4.4 Three-operator splitting . 168

7.5 Conclusions . 169

7.1. Introduction 158

7.1 Introduction

In the last years, first-order optimization methods (or algorithms) have attracted a lot of
attention due to their practical success in many applications, including in machine learning
(see, e.g., Bottou and Bousquet (2007)). Theoretical foundations for those methods played
a crucial role in this success, e.g., by enabling the development of momentum-type methods
(see, e.g., Polyak (1963); Nesterov (1983)). Formally, we consider the optimization problem

x? , arg min
x∈Rd

f(x) (OPT)

for a function f belonging to a class of functions F (e.g., the set of convex functions, or
the set of strongly convex and smooth functions, etc.). Classical first-order optimization
methods for solving this problem include Gradient descent (GD), Nesterov accelerated
gradient method (NAG) Nesterov (1983), and the heavy-ball method (HB) Polyak (1963).
These families of algorithms are parametrized: for example, GD is parametrized by a
step-size γ and HB is parametrized by both a step-size γ and a momentum parameter β.
We generically denote by A any such method, for a specific choice of its parameters. For a
given class of function F and an algorithm A, we typically aim at answering the question

Does A converge on every function of F
to their respective minimum?

Common examples of function classes F include the set Fµ,L of µ-strongly convex
and L-smooth functions, and the set Qµ,L of µ-strongly convex and L-smooth quadratic
functions, for µ,L > 0.

This type of analysis, requiring results to hold on every function of a given class F
is commonly referred to as worst-case analysis and is the most popular paradigm for the
analysis of optimization algorithms, see, e.g., Nesterov (1983); Dvurechensky et al. (2021);
Bubeck (2015); d’Aspremont et al. (2021); Chambolle and Pock (2016). In this context,
a very successful technique for proving worst-case convergence consists in looking for a
decreasing sequence (called Lyapunov sequence Lyapunov and Fuller (1992); Kalman and
Bertram (1960a,b)) of expressions Vt of the iterates xt, i.e. such that

∀f ∈ F , ∀t, ∀xt, Vt+1((xs)s6t+1) 6 Vt((xs)s6t), (7.1)

where some quantity of interest is upper-bounded by VT ((xs)s6T) as T goes to infinity.
For instance, when studying GD with step-size 1/L on the class F0,L of L-smooth convex
functions, we prove that ∀f ∈ F0,L, (t+ 1)(f(xt+1)− f(x?)) + 1

2‖xt+1 − x?‖2 6 t(f(xt)−
f(x?)) + 1

2‖xt − x?‖
2. Therefore, Vt((xs)s6t) = t(f(xt) − f(x?)) + 1

2‖xt − x?‖
2 defines a

decreasing sequence, and f(xt)− f(x?) 6 Vt((xs)s6t)/t 6 V0(x0)/t, proving convergence
of this method on this class of functions.

Due to the simplicity of the underlying proofs, the Lyapunov approach is particularly
popular, e.g., for NAG Nesterov (1983); Beck and Teboulle (2009), and HB Ghadimi et al.
(2015). See Bansal and Gupta (2019); d’Aspremont et al. (2021) for surveys on this topic.

Necessary condition for worst-case convergence. While finding a decreasing Lya-
punov sequence guarantees convergence, not finding one does not guarantee anything:
there may still exist a Lyapunov sequence, that the current analysis was not able to cap-
ture, or the method could converge without the existence of such Lyapunov sequence.

7.2. Definitions and notations 159

Establishing that a method provably does not admit a worst-case convergence analysis is
therefore critical for avoiding spending an indefinite amount of time and effort searching
for a non-existent convergence guarantee. The existence of a cycle for the algorithm on a
particular function means that it diverges on that function: in other words, the absence
of cycle on all functions is a necessary condition for worst-case convergence. Moreover, a
cycle can be observed after only a finite number of steps of the algorithm, while observing
the divergence of a non-periodic sequence is difficult or impossible. Overall, this makes the
search for cycles a computationally practical way of proving divergence.

In order to discover cycles, we rely on computer-assisted worst-case analysis. Perfor-
mance estimation problems (PEP, (Drori and Teboulle, 2014; Taylor et al., 2017c)) provide
a systematic approach to obtain convergence guarantees, including the search for appropri-
ate Lyapunov arguments. Some packages (especially Pesto, (Taylor et al., 2017b) and
Pepit (Goujaud et al., 2022a)) automate these tasks. We formulate cycle discovery as a
minimization problem that can be cast in a PEP, and rely on the Pepit package to solve it.

Examples: We demonstrate the applicability of our method on several examples.
In particular, the case of HB illustrates the potential of our methodology. In fact, the
search for the step-size γ and momentum β parameters leading to the fastest worst-case
convergence over Fµ,L is still an open problem, and the existence of parameters resulting
in an accelerated rate remains a lingering question. Indeed, Lessard et al. (2016) exhibits
a smooth and strongly convex function on which HB cycles, for parameters γ and β

optimizing the worst-case guarantee on Qµ,L. On the other hand, Ghadimi et al. (2015)
obtains a worst-case convergence on Fµ,L for other parameters, but without acceleration.
Recently, Upadhyaya et al. (2023) proposes a very general procedure to find Lyapunov
sequences and extended the region of parameters γ and β HB provably converges on,
leveraging PEPs. However, outside this region of the parameter space, the question of the
convergence of the HB method remains open in the absence of a proof of divergence. For
this example, our approach demonstrates that a cycle exists for almost all parameters for
which no Lyapunov is known.

Summary of contributions: This paper proposes a systematic approach to prove that
no worst-case certificate of convergence can be obtained for a given algorithm A on a
class F . To do so, we establish the existence of a function in F over which A cycles. We
illustrate our approach by applying it to three famous first-order optimization algorithms,
namely HB, NAG, inexact gradient descent with relatively bounded error. We further
showcase the applicability of the approach to more general types of problems by studying
the three-operator splitting method for monotone inclusions. For each method, we describe
the set of parameters for which it is known to converge and the ones where we establish
the existence of a cycle. In the first three examples, our approach enables to fill the gap: we
show the existence of cycles for all parametrizations not known to result in convergence.

Organization: The rest of the paper is organized as follows. In Section 7.2, we
introduce the concept of a stationary algorithm and formally define a cycle. In Section 7.3,
we present our methodology to discover cycles, relying on PEP. Finally, in Section 7.4, we
provide the numerical results.

7.2 Definitions and notations

7.2. Definitions and notations 160

Notation Corresponding object

A Generic algorithm
A Update function of the algorithm A
(HB) Heavy-ball
(NAG) Nesterov accelerated gradient
(IGD) Inexact GD
(TOS) Three operator splitting
β, γ Algorithm parameters
(xt)t Sequence of iterates generated by A
x∗ Optimal point
V Lyapunov function
f Objective function
F Generic class of functions
Fµ,L Class of L-smooth and µ-strongly convex

functions
Qµ,L Class of L-smooth and µ-strongly convex

quadratic functions
` Order of the algorithm A
K Length of the considered cycle
O(f) Generic oracle applied on f
u, F,G Linearization variables (after SPD lifting)
d Dimension
sK Score

In this section, we consider a subclass of first-order methods, tailored for our analysis. It
is chosen to ensure the periodicity of an algorithm that cycles once (see Proposition 7.3.1).
The class reduces to “p-stationary canonical linear iterative optimization algorithms” (p-SCLI,
see (Arjevani et al., 2016, Definition 1)) when the dependency to the previous iterates and
gradients is linear which is a particular case of “fixed-step first-order methods” (FSFOM, see
in (Taylor et al., 2017c, Definition 4)). Here, we consider stationary first-order methods
(SFOM), whose iterates are defined as a fixed function of a given number of lastly observed
iterates, as well as output of some oracles called on those iterates. Examples of such
oracles include gradients, approximate gradients, function evaluations, proximal step, exact
line-search, Frank-Wolfe-type steps (see Taylor et al. (2017a); Goujaud et al. (2022a) for
lists of oracles that can be handled using PEPs). The oracles we use depend on the setting
under consideration.

Definition 7.2.1 (Stationary first-order method (SFOM)). A method A is called order-`
stationary first-order method if there exists a deterministic first-order oracle O(f) and a
function A such that the sequence generated on the function f verifies ∀t > `,

xt = A((xt−s,O(f)(xt−s))s∈J1,`K). (SFOM)

For any given function of interest f and any initialization (xt)t∈J0,`−1K, an order-`
(SFOM) A iteratively generates a sequence (xt)t∈N that we denote A(f, (xt)t∈J0,`−1K).

7.3. Searching for cycles 161

Definition 7.2.1 above is very similar to the definition of a general first-order method.
However, the key assumption here is that the operation A does not depend on the iteration
counter t: the algorithm is stationary. While this assumption is restrictive, many first-order
methods are of the form (SFOM), including (but not limited to): GD, HB Polyak (1963)
and NAG Nesterov (2003) with constant step-sizes. On the other hand, any strategy
involving decreasing step-size (e.g. for GD), or increasing momentum parameter (e.g. for
NAG on F0,L as in Nesterov (1983)) are not in the scope of this definition. Note that the
aforementioned examples use the first-order oracle O(f)(x) , (∇f(x), f(x)), although our
methodology applies beyond this simple setting, as previously discussed. As an example,
7.4.4 considers an algorithm relying on the resolvent (or proximal operation).

Stationarity is essential for being able to prove existence of a cyclical behavior in a finite
number of steps. Next, we define a cyclic sequence.

Definition 7.2.2 (Cycle). For any positive integer K > 2, a sequence (xt)t>0 is said to
be K-cyclic if ∀t > 0, xt = xt+K . A sequence x is said to be cyclic if there exists K > 2

such that x is K-cyclic.

For any given order-` (SFOM) A, and any function class F , we want to address the question

Does there exist a function f ∈ F and an
initialization (xt)t∈J0,`−1K such that
A(f, (xt)t∈J0,`−1K) is cyclic?

Example 7.2.3. In (Lessard et al., 2016, Equation 4.11), the authors answer positively
to this question by providing a cycle of length 3, on the class Fµ,L with (µ,L) = (1, 25),
and for A the heavy-ball method with step-size γ = (2√

L+
√
µ

)2 and momentum parameter

β = (
√
L−√µ√
L+
√
µ

)2. Those parameters are natural candidates, that correspond to the limit of the

step-size and momentum in Chebychev acceleration Flanders and Shortley (1950); Lanczos
(1952); Young (1953), and result in an acceleration for quadratic functions.

In Section 7.4, we extend this result to more parameters.

7.3 Searching for cycles

In this section, we show how to find cyclic trajectories.

7.3.1 Motivation

Finding diverging trajectories for an algorithm A might be challenging. We thus focus on
cycles, as they allow to focus on a finite sequences of iterates only. Indeed, for an SFOM,
once we observe the cycle to be repeated once, we can easily extrapolate: this same cycle
is repeated again and again. This statement is formalized in the following proposition.

Proposition 7.3.1. Let A be a order-` (SFOM), and (xt)t∈N be any sequence generated
by A. Then the sequence (xt)t∈N is cyclic if and only if there exists K > 2 such that

7.3. Searching for cycles 162

∀t ∈ J0, `− 1K, xt = xt+K .

Proof. Let A be a order-` (SFOM), and (xt)t∈N be any sequence generated by A. The
method A is cyclic if and only if there exists K > 2, such that the translated sequence
(x̃t)t∈N := (xt+K)t∈N, is identical to (xt)t∈N. Proposition 7.3.1 states that those two
sequences are identical if and only if their ` first terms are. It is clear that if the sequences
x and x̃ are identical, their ` first terms also are. Reciprocally, let’s assume that their
` first terms are identical and let’s introduce the function f and associated oracles O(f)

defined such that x = A(f, (xt)t∈J0,`−1K). Then ∀t > 0, xt = A((xt−s,O(f)(xt−s))s∈J1,`K). In
particular ∀t > 0

xt+K = A((xt+K−s,O(f)(xt+K−s))s∈J1,`K),

thereby reaching

x̃t = A((x̃t−s,O(f)(x̃t−s))s∈J1,`K).

Consequently, x̃ = A(f, (x̃t)t∈J0,`−1K), and since the ` first terms of x and x̃ are identical,
x̃ = A(f, (x̃t)t∈J0,`−1K) = A(f, (xt)t∈J0,`−1K) = x. �

7.3.2 Approach

We now present the approach used to search for cycles, based on performance estimation
problems (PEPs) Drori and Teboulle (2014); Taylor et al. (2017c). We consider an algorithm
A, a function f and initial points (xt)t∈J0,`−1K, and run A on f starting on (xt)t∈J0,`−1K. This
generates the sequence x = A(f, (xt)t∈J0,`−1K). For any positive integer K, we then define
the non-negative score

sK(A, f, (xt)t∈J0,`−1K) =
`−1∑
t=0

‖xt − xt+K‖2.

From Proposition 7.3.1, this score is identically zero if and only if A cycles on f when
starting from (xt)t∈J0,`−1K. This suggests that one can search for cycles of length K by
minimizing the score sK(A, f, (xt)t∈J0,`−1K) w.r.t. the function f and the initialization
(xt)t∈J0,`−1K.

Observe that fixed points of A, that correspond to cycles of length 1, also cancel this
score. Our goal is to search for cycles of length at least K > 2, that entail that the algorithm
diverges for a particular function and initialization. As any convergent algorithm must
admit the optimizer of f as fixed point, we have to exclude fixed points. To do so, we add
the constraint that the two first iterates are far from each other. In most cases of interest,
making this constraint can be done without loss of generality due to the homogeneity of
the underlying problems. We arrive to the following formulation:∣∣∣∣∣∣∣∣∣

minimize
d>1,f∈F ,x∈(Rd)

N

∑`−1
t=0 ‖xt − xt+K‖2

subject to

{
x = A(f, (xt)t∈J0,`−1K)

‖x1 − x0‖2 > 1.

(P)

As we see in the next sections, this problem can be used to answer the question of
interest by testing the nullity of the solution of (P).

7.3. Searching for cycles 163

As is, (P) looks intractable due to the minimization over the infinite-dimensional space
F and its non-convexity. This can be handled using the techniques proposed in Taylor et al.
(2017c,a), developed for PEP. It consists in reformulating (P) into a semi-definite program
(SDP) using interpolation / extension properties for the class F , together with SDP lifting.

Indeed, (P) does not fully depend on f , but only on O(f)(xt) where t ∈ J0;K +

` − 2K. By introducing the variables Ot , O(f)(xt), we can replace the constraint x =

A(f, (xt)t∈J0,`−1K) of (P) by
x` = A((x`−s,O`−s)s∈J1,`K),

...
xK+`−1 = A((xK+`−1−s,OK+`−1−s)s∈J1,`K),

and minimize over the finite dimensional variables (Ot)06t6K+`−2 instead of f , under the
constraint that there exists a function f ∈ F that interpolates those values, i.e. that verifies
O(f)(xt) = Ot for all t ∈ J0;K + `− 2K. For some classes F , those interpolation property
are equivalent to tractable inequalities, as in the following example.

Example 7.3.2 (L-smooth convex functions). If the oracles are only the gradients and the
function values of the objective function f , denoting fi , f(xi) and gi , ∇f(xi) (i.e. Oi ,
(gi, fi)), the interpolation conditions of F0,L are provided in Taylor et al. (2017c) as

∀i, j, fi > fj + 〈gj , xi − xj〉+ 1
2L‖gi − gj‖

2. (IC)

This function class is considered in three of the four examples under consideration in
the next section (HB, NAG, inexact GD). However, the methodology described in this paper
applies to many other classes beyond Fµ,L, see for instance (Goujaud et al., 2022a, Function
classes): an example of such a class is used in the fourth example of the following section.
Each class considered must be described by its interpolation conditions, similar to (IC).
Other examples of known interpolations conditions are provided in (Taylor et al., 2017a,
Th. 3.4-3.6), (Dragomir et al., 2021, Cor.1&2), (Guille-Escuret et al., 2022, Th.1) (Goujaud
et al., 2022c, Th. 2.6). The key ingredient for a class to enter the scope of this paper, is
that its interpolation conditions are expressed as a degree 2 polynomial in xt and Ot, and
that a given variable is not involved both in a monomial of degree 1 and one of degree 2,
as in (IC).

Then, the SDP lifting part consists in introducing a Gram matrix G (Taylor et al., 2017c,
Theorem 5) of vectors among xt and Ot that are involved in degree 2 monomials, so that
those quadratic expressions of xt and Ot are then expressed linearly in term of G < 0.
Thereby, the problem can be cast a standard SDP.

In the case where the oracle is Ot = (gt, ft), and the class of interest F is the class of
L-smooth convex functions F0,L, the objective and all the constraints of (P) are written
linearly in terms of (ft)t and quadratically in terms of (xt, gt)t. Therefore, we define G as
the Gram matrix of (xt, gt)t and F as a vector storing all the values ft leading to an SDP
reformulation of the problem. See, e.g., Taylor (2020) for a detailed derivation on a simple
example.

https://pepit.readthedocs.io/en/latest/api/functions_and_operators.html
https://pepit.readthedocs.io/en/latest/api/functions_and_operators.html

7.4. Application to four different (SFOM)s 164

Setting u , (G,F), (P) is generally rewritten, under above-mentioned key ingredients,
as ∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

minimize
u

〈u, vobj〉

subject to



〈u, v1〉 > 0

. . .

〈u, vn〉 > 0

〈u, vaff〉 > 1

u ∈ C.

(SDP-P)

The objective is linear, as well as the first n constraints. The affine constraint 〈u, vaff〉 > 1

enables to discard the trivial solution u = 0 and corresponds in (P) to the constraint
‖x1 − x0‖2 > 1. Finally, the constraint u ∈ C corresponds to the constraint G < 0. C is then
a closed convex semi-cone.

By definition, if there exists a feasible vector u such that the objective of (SDP-P) is
zero, then it describes a cycle. Moreover (SDP-P) is convex and efficiently solvable (due to
the existence of a Slater point (Taylor et al., 2017c, Theorem 6)).

In the next sections, we numerically apply this methodology through the Pepit python
package Goujaud et al. (2022a) which takes care about the tractable reformulations of (P)
into (SDP-P). (SDP-P) is then solved using through a standard solver MOSEK (2019) to
determine the infimum value of

〈
u, vobj

〉
over the feasible set of (SDP-P). The next theorem

allows to conclude about the existence of cycles.

Theorem 7.3.3. Assuming the infimum value of (P) to be 0, then there exists a cycle.

Proof. By equivalence between (P) and (SDP-P), we assume that there exists a sequence
of feasible vectors ui with 〈ui, vobj〉 → 0.

The constraint 〈ui, vaff〉 > 1, guarantees that none of the ui is equal to 0. Considering
any norm (all equivalent to each other in finite dimension) and projecting ui on the
associated sphere defines si , ui

‖ui‖ . The other n linear constraints still hold after the scaling
and si ∈ C since C is a semi-cone.

Moreover, the norms of all ui are lower bounded by the distance from 0 to the affine

hyperplan {w| 〈w, vaff〉 = 1}. Hence |
〈
si, vobj

〉
| = |〈ui,vobj〉|

‖ui‖ → 0.
Finally by compacity of the sphere, there exists a subsequent limit s of the sequence

(si)i and by continuity of the linear operator
〈
·, vobj

〉
,
〈
s, vobj

〉
= 0.

We conclude that s is a vector the objective reaches 0 on, that verifies all the constraints
of (SDP-P) but the affine one.

Note the affine constraint only aimed at discarding the trivial solution 0 in a linear way
(for solver purpose), and that s is not 0. Then s describes a cycle. �

7.4 Application to four different (SFOM)s

In this section we illustrate this methodology on four examples: heavy-ball (HB), Nesterov
accelerated gradient (NAG), Gradient descent (GD) with inexact gradients, and three-
operator splitting (TOS). For each, we apply the methodology proposed in Section 7.3. The
code is available in the public GitHub repository https://github.com/bgoujaud/

https://github.com/bgoujaud/cycles
https://github.com/bgoujaud/cycles
https://github.com/bgoujaud/cycles

7.4. Application to four different (SFOM)s 165

cycles. Since ingredients are the same as those of classical PEPs, we also use the python
package Pepit Goujaud et al. (2022a). We perform a grid search over the spaces of
parameters of interest Ω, described in the respective subsections. We compare the parameter
region where Lyapunov functions can be obtained with the region in which we establish
that the method cannot have a guaranteed worst-case convergence (due to the existence of
cycles). More precisely, in Figures 7.1 to 7.4 below, green regions correspond to parameter
choices for which the methods converge (existence of a Lyapunov function, found using
the technique described in Taylor et al. (2018a)). Conversely, in the red regions, our
methodology establishes that the method cycles on at least one function of F . In short, the
algorithms converge in the green regions and do not converge in the worst-case in the red
ones.

Note that some parameters for which the algorithm A admits a worst-case convergence
guarantee could theoretically exist outside the green region: indeed, in Taylor et al. (2018a),
the authors do not guarantee that they necessarily find convergence. Similarly, parameters
for which A does not admit a worst-case convergence guarantee could theoretically exist
outside the red region: indeed (P) is defined for a fixed cycle length K, and we therefore
run it several times with different values of K. Longer cycles are therefore not detected.
Moreover, the non-existence of cycles does not necessarily imply that the algorithm always
converges.

Interestingly, in practice, we observe on Figures 7.2 and 7.3 that the set Ω of parameters
of interest is completely filled by the union of those 2 regions and that it is almost the
case on Figure 7.1 (it may have been if we had searched for cycles of all lengths). As a
consequence, we fully characterize the tunings for which the algorithms admit a guaranteed
worst-case convergence. On the contrary, there remains a significant gap between the red
and the green regions in our last example, see Figure 7.4.

7.4.1 Heavy-ball

The HB algorithm, as introduced by Polyak (1963), corresponds to the following update,
for a step-size parameter γ and a momentum parameter β:

xt+1 = xt + β(xt − xt−1)− γ∇f(xt). (HB)

Therefore (HB) is an order-2 (SFOM).
Set ΩHB of parameters of interest: HB converges on the set Q0,L if and only if the

parameters γ, β verify 0 6 γ 6 2(1 + β)/L 6 4/L Polyak (1963). Note this condition
enforces −1 6 β 6 1. Moreover, we restrict to β > 0 as β < 0 is not an interesting setting
(slowing down convergence with respect to GD). Therefore, we limit our analysis to this
set of parameters.

Interpretation. The red area in Figure 7.1 shows parameters where cycles of length
K ∈ J2; 25K are found by our methodology. The red color intensity indicates the length of
the shortest cycle.

A striking observation is that the space ΩHB is almost filled by the union of the red
area and green one (where Lyapunov functions exist). Thereby, for almost all values of the
parameters, we have a definitive answer on the existence of a certificate of convergence in
the worst-case. That being said, there exists a small unfilled region in the top left corner
(see the zoom on Figure 7.1) In this region, we do not know how HB behaves, and whether
it accelerates. However, adding longer cycle length may enable to obtain cycles in that

https://github.com/bgoujaud/cycles
https://github.com/bgoujaud/cycles
https://github.com/bgoujaud/cycles

7.4. Application to four different (SFOM)s 166

Figure 7.1: Heavy-ball (HB). Green area: set of parameters (γ, β) ∈ ΩHB for which a
Lyapunov function has been found using the technique described in Taylor et al. (2018a);
Red area: set of parameters (γ, β) ∈ ΩHB for which solving (SDP-P) shows that (HB) cycles
on at least one function in F0,L.

area. Indeed we considered only cycles of length K 6 25, for computational reasons.
Recently, Goujaud et al. (2023c) computed the analytical region of cycles of (HB) showing
non-acceleration of the latter.

7.4.2 Nesterov accelerated gradient

NAG (also known as the fast gradient method) was introduced by Nesterov (2003) and cor-
responds to the following update, for a step-size parameter γ and a momentum parameter
β: {

yt = xt + β(xt − xt−1),

xt+1 = yt − γ∇f(yt).
(NAG)

(NAG) is also written as follows yt+1 = (1 + β)(yt − γ∇f(yt))− β(yt−1 − γ∇f(yt−1)), and
is therefore also an order-2 (SFOM).

Set ΩNAG of parameters of interest: As for HB, we consider the set of β and γ

for which (NAG) converges on Q0,L. This corresponds to considering all β, γ verifying
0 6 β 6 1 and 0 6 γ 6 2

L
1+β
1+2β .

Interpretation: (NAG) is known to converge, with an accelerated rate, on Fµ,L, for

the tuning (γ, β) = (1
L ,
√
L−√µ√
L+
√
µ

), that optimizes the convergence rate on Qµ,L. For this

reason, (NAG) is considered to be more “robust” than HB.
Figure 7.2 shows that (NAG) admits a Lyapunov function for almost any parameters

in ΩNAG. Moreover, our methodology does not detect any set of parameters at which a

7.4. Application to four different (SFOM)s 167

Figure 7.2: Nesterov Accelerated gradient (NAG). Green area: set of parameters (γ, β) ∈
ΩNAG for which a Lyapunov function has been found using the technique described in Taylor
et al. (2018a); Red area: set of parameters (γ, β) ∈ ΩNAG for which solving (SDP-P) shows
that (NAG) cycles on at least one function in F0,L.

cycle of length K ∈ J2; 25K exists, apart on the boundary {(γ, β), γ = 2
L

1+β
1+2β}. On the

boundary, cycles of length 2 are observed, whose existences are theoretically verified on
one-dimensional quadratic functions. This illustrates the robustness of our methodology
when very few cycles exist.

7.4.3 Inexact gradient method

Next, we consider the inexact gradient method, parameterized by γ and ε, and the update

Get O(xt) = dt such that ‖dt −∇f(xt)‖ 6 ε‖∇f(xt)‖,
xt+1 = xt − γdt.

(IGD)

(IGD) is thus an (SFOM) of order 1.
Set ΩIGD of parameters of interest: Since the exact gradient method converges

only for γ < 2
L , we only consider such steps-sizes. Moreover, ε > 1 allows dt = 0 and

thereby does not make much sense. This motivates considering the set ΩIGD = {(γ, ε) ∈
[0; 2

L]× [0, 1]}.
Interpretation: We search for cycles of length K ∈ J2; 25K and use color intensity to

show the minimal cycle length. (IGD) is known to converge for any γ 6 2
L(1+ε) (see De Klerk

et al. (2020); Gannot (2021)). Figure 7.3 shows that the complementary of this region
of convergence is completely filled by parameters allowing cycles, showing that no other
parameters values than the known ones allow obtaining worst-case convergence of (IGD).

7.4. Application to four different (SFOM)s 168

Figure 7.3: Inexact GD (IGD). Green area: set of parameters (γ, ε) ∈ ΩIGD for which a
Lyapunov function has been found using the technique described in Taylor et al. (2018a);
Red area: set of parameters (γ, ε) ∈ ΩIGD for which solving (SDP-P) shows that (IGD)
cycles on at least one function in F0,L.

7.4.4 Three-operator splitting

The three-operator splitting (TOS) method, introduced by Davis and Yin (2017), aims at
solving the inclusion problem 0 ∈ Ax + Bx + ∂f(x), where A is a monotone operator, B
is a co-coercive operator and ∂f denotes the differential of the smooth (strongly) convex
function f . It corresponds to the following update, for a step-size parameter γ, a smoothing
parameter α, and an update parameter β:

xt+1 = JαB(wt),

yt+1 = JαA
(
2xt+1 − wt − γ

β∇f(xt+1)
)
,

wt+1 = wt − β(xt+1 − yt+1),

(TOS)

where JO denotes the resolvent of the operator O, i.e. JO = (I +O)−1. Note that (TOS) is
therefore an order-1 (SFOM).

Set ΩTOS of parameters of interest: When considering A, B and ∇f to be linear
symmetric and co-diagonalizable operators, the set of convergence of (TOS) is ΩTOS ={

(γ, β) ∈
[
0, 2

L

]
× [0, 2]

}
, which we therefore consider.

Interpretation: We search for cycles of length K ∈ J2, 25K and use color intensity to
show the minimal cycle length. Interestingly, there is a gap between the green region and
the red ones. Unlike for (HB), it seems that increasing the length of the cycle does not help
covering this gap and shows that some algorithms might have no Lyapunov function while

7.5. Conclusions 169

Figure 7.4: Three-operator splitting (TOS). Green area: set of parameters (γ, β) ∈ ΩTOS

for which a Lyapunov function has been found using the technique described in Taylor
et al. (2018a); Red area: set of parameters (γ, β) ∈ ΩTOS for which solving (SDP-P) shows
that (TOS) cycles on at least a triplet of operators.

not cycling. Understanding the behavior of (TOS) in the grey region is therefore still an
open question.

7.5 Conclusions

Summary. This work proposes a systematic approach for finding counter-examples to
convergence of first-order methods, bringing a complementary tool to the existing system-
atic techniques for finding convergence guarantees (that include certifications through
the existence of Lyapunov functions). Our approach is based on now classical tools and
techniques used in the field of first-order optimization and a few existing packages Goujaud
et al. (2022a); Taylor et al. (2017b) allow for straightforward implementations of our
methodology.

Discussion and Future works. While our analysis complements the Lyapunov one, the
existence of a Lyapunov function or the existence of a cycle are not the only 2 options.

Indeed, the sequence of iterates produced by an algorithm on a given function may
diverge by (i) tending to infinity, (ii) simply growing unbounded, or even (iii) showing a
chaotic behavior, while staying in a compact set.

Being capable of detecting those three divergence cases is therefore an open but
interesting question.

An interesting example is A being GD with step-size 1 on the 1 + ρ-smooth and non-

7.5. Conclusions 170

convexe function fρ, such that fρ(x) is equal to:
ρ
3 |x|

3 + 1−ρ
2 x2 + (ρ−1)3

6ρ2 if |x| 6 1,

−ρ
3 |x|

3 + 1+ρ
2 x2 − 2ρ|x|+ (ρ−1)3+4ρ3

6ρ2 if 1 6 |x| 6 3
2 ,

1
2x

2 + ρ
4 |x|+

4(ρ−1)3+11ρ3

24ρ2 if 3
2 6 |x|,

for ρ ∈ [0, 4].
From any point in the interval (1,∞), the next iterate is in [−1, 0]. Similarly, starting

in the interval (−∞,−1), the second iterate is in [0, 1]. Those 2 intervals are stable
and, by symmetry of the function, the dynamics in those 2 intervals are themselves
symmetric. Note that for any x ∈ [0, 1], f ′(x) = ρx2 + (1 − ρ)x, leading to the dynamic
xt+1 = xt−1×∇fρ(xt) = ρxt(1−xt), known as logistic map. The behavior of this dynamic
is highly dependent on the value of ρ. On the first hand, for ρ < 3, A(fρ, x0) converges for
any x0. On the other hand, for almost all values of ρ close enough to 4, this dynamic is
chaotic. Note however, that for any ρ0 < 4, there exists ρ > ρ0 such that Gradient descent
with step-size 1 cycles on fρ.

Therefore, on the class {fρ, ρ ∈ [0, 4]} we have: functions over which A converges,
functions over which it diverges because it is chaotic, but also functions over which it cycles.
This example thus shows that those behaviors can co-exist, but does not provide an answer
to the open question.

8
Provable non-accelerations of the heavy-ball

method

In this work, we show that the Heavy-ball (HB) method provably does not reach an
accelerated convergence rate on smooth strongly convex problems. More specifically, we
show that for any condition number and any choice of algorithmic parameters, either
the worst-case convergence rate of HB on the class of L-smooth and µ-strongly convex
quadratic functions is not accelerated (that is, slower than 1 − O(κ)), or there exists an
L-smooth µ-strongly convex function and an initialization such that the method does not
converge.

To the best of our knowledge, this result closes a simple yet open question on one of
the most used and iconic first-order optimization technique.

Our approach builds on finding functions for which HB fails to converge and instead
cycles over finitely many iterates. We analytically describe all the parametrizations of HB

that exhibit this cycling behavior on a particular cycle shape, whose choice is supported
by a systematic and constructive approach to the study of cycling behaviors of first-order
methods. We show the robustness of our results to perturbations of the cycle and extend
them to classes of functions that also satisfy higher-order regularity conditions.

This chapter is based on our work “Provable non-accelerations of the heavy-ball method”
(co-authored with A. Taylor, and A. Dieuleveut), currently under review.

172

Contents

8.1 Introduction . 173
8.1.1 Related works . 174
8.1.2 Contributions . 175
8.1.3 Key concepts . 176

8.2 Preliminary results on heavy-ball . 177
8.2.1 Known behavior of the heavy-ball method on quadratics (Qµ,L) . . . 177
8.2.2 Known behaviors of the heavy-ball method on Fµ,L 180
8.2.3 Our approach to comprehensive behaviors of heavy-ball 181

8.3 Non-acceleration of heavy-ball on Fµ,L via simple two-dimensional cycles . 182
8.3.1 Studying a specific type of cycling behavior 183
8.3.2 Non-acceleration on Fµ,L . 185

8.4 General study of cycles for stationary first-order methods 187
8.4.1 Casting the existence of a cycle as a convex feasibility problem . . . 187
8.4.2 Building a symmetric feasible point from a given feasible point . . . 190
8.4.3 Numerical results on (HB) . 194

8.5 Robustness of the roots-of-unity cycle . 195
8.6 No acceleration of (HB) under higher-order regularity assumptions 198

8.6.1 Proof of Item 1 of Theorem 8.6.2 . 199
8.6.2 Proof of Item 2 of Theorem 8.6.2 . 200
8.6.3 Beyond third-order regularity . 201

8.7 Concluding remarks . 201
8.A Auxiliary proofs from Section 8.2: Proof of Proposition 8.2.1 203
8.B Auxiliary proofs from Section 8.3 . 205

8.B.1 Proof of Theorem 8.3.5 . 205
8.B.2 Analysis of Ω◦-Cycle(Fµ,L) . 207
8.B.3 Proof of Theorem 8.3.6 . 212

8.C Auxiliary proofs from Section 8.4: Proof of Lemma 8.4.12 216
8.D Auxiliary proofs from Section 8.5 . 217

8.D.1 Proof of Theorem 8.5.3 . 217
8.D.2 Discussion about the reduction made in the proof of Theorem 8.5.3 . 219

8.E Auxiliary proofs from Section 8.6 . 220
8.F A summary of convergence rates on Fµ,L and Qµ,L 220

8.1. Introduction 173

8.1 Introduction

In this paper, we consider the unconstrained minimization of a convex function f : Rd → R:

x? , arg min
x∈Rd

f(x), (OPT)

where f belongs to a given class of functions F (e.g., the set of convex quadratic functions,
or the set of strongly convex and smooth functions). First-order optimization methods
have recently attracted a lot of attention due to their generally low cost per iteration and
their practical success in many applications. They are particularly relevant in applications
not requiring very accurate solutions, such as in machine learning (see, e.g., Bottou and
Bousquet (2007)).

A major weakness of those methods is that their convergence speed is typically slow,
and crucially affected by the so-called conditioning of the function to be minimized (more
in the sequel). In this context, the theoretical foundations for first-order methods played a
crucial role in their success, among others by enabling the development of momentum-type
methods for mitigating the impact of the conditioning on the convergence rates. That is,
momentum-type methods usually behave much better both theoretically and practically as
compared to the vanilla Gradient descent (GD), which is probably the most well-known and
iconic first-order method. Momentum-type methods are usually classified in two categories
depending on how the momentum appears in the iterative update equations. As a reference,
the update rule for the vanilla Gradient descent (GD) method for solving (OPT) is

xt+1 = xt − γ∇f(xt), (GD)

for some step-size γ. In (Polyak, 1964), Polyak introduced the first momentum-type strategy,
the celebrated Heavy-ball (HB) update rule:

xt+1 = xt − γ∇f(xt) + β(xt − xt−1). (HB)

HB is notorious for being, among others, an optimal method for minimizing convex
quadratic functions, as its computational complexity matches that of the corresponding
lower complexity bounds (Nemirovskii, 1994). A few years later, Nesterov introduced
the accelerated gradient method (Nesterov, 1983) which consists in iterating

xt+1 = xt − γ∇f(xt + β(xt − xt−1)) + β(xt − xt−1), (NAG)

which is often referred to as Nesterov’s accelerated gradient (NAG).
In words, the Gradient descent update is complemented with a momentum term

β(xt − xt−1) being either applied after the gradient evaluation (for HB) or before it (for
NAG) at each iteration. As compared to the HB method, NAG is an optimal algorithm
on the class of smooth strongly convex functions f (i.e., beyond quadratics). Yet, HB is
known to be asymptotically twice faster than Nesterov on the class of quadratic functions.
Moreover, HB is among the most prevalent practical first-order optimization paradigms
used in optimization software (e.g., for machine learning): it works well in many situations,
though the question of its theoretical convergence speed is still open beyond quadratics.

Conditioning and its effects. This work primarily focuses on a particular classical set of
functions, namely the set of smooth and strongly convex functions (additional higher-order
regularity assumptions are considered later in Section 8.6). This set is very standard in the

8.1. Introduction 174

first-order optimization literature; see, e.g., Polyak (1987); Nemirovskii (1994); Nesterov
(2003).

Definition 8.1.1 (Set Fµ,L). Let 0 6 µ 6 L < ∞. A continuously differentiable function
f : Rd 7→ R is L-smooth and µ-strongly convex (notation f ∈ Fµ,L) if:

• (L-smoothness) for all x, y ∈ Rd, it holds that

f(x) 6 f(y) + 〈∇f(y), x− y〉+
L

2
‖x− y‖2,

• (µ-strong convexity) for all x, y ∈ Rd, it holds that

f(x) > f(y) + 〈∇f(y), x− y〉+
µ

2
‖x− y‖2.

In particular, twice differentiable L-smooth µ-strongly convex functions corresponds to
functions whose Hessian have bounded eigenvalues between µ and L (i.e., µ I 4 ∇2f(x) 4
LI, or Sp

(
∇2f(x)

)
⊆ [µ, L], for all x ∈ Rd). A particular subclass of Fµ,L is that of

quadratic functions (i.e., with constant Hessian).

Definition 8.1.2. Let 0 6 µ 6 L < ∞. A continuously differentiable function f(x) =

〈x, Hx〉+ 〈b, x〉+ c is an L-smooth µ-strongly convex quadratic function (notation f ∈ Qµ,L)
if and only if Sp (H) ⊆ [µ, L].

Those sets of functions are very standard for the analyses of first-order methods and
are characterized by the (inverse) condition number κ , µ

L . In this context, it is known
that GD converges exponentially fast both for minimizing functions in Qµ,L and Fµ,L.

More precisely, ‖xt − x?‖ 6
(

1−κ
1+κ

)t
‖x0 − x?‖ for suitable choices of the step-size γ. On

Qµ,L, an optimally-tuned HB has ‖xt − x?‖ 6 C
(

1−
√
κ

1+
√
κ

)t
‖x0 − x?‖ (for some C > 0) and

is therefore (much) faster for small values of κ. However, the optimal behavior of HB

beyond quadratics, on Fµ,L, is unknown to the best of our knowledge. Finally, NAG has
‖xt − x?‖ 6 C (1−

√
κ)
t/2 ‖x0 − x?‖ on Fµ,L but is suboptimal compared to HB when

working on Qµ,L, though much faster than GD.
In short, albeit generally good practical performances, it remains unclear for which

choices of (γ, β) (if any), HB allows obtaining fast convergence speeds on the standard
class of L-smooth µ-strongly convex problems. In this work, we answer this question
by proving that it is suboptimal for minimizing smooth strongly convex functions. More
precisely, we show that the only choices of (γ, β) for which HB is guaranteed to converge
on Fµ,L only marginally improve upon the convergence speed of Gradient descent.

8.1.1 Related works

As HB is one of the most widely used methods, understanding its worst-case convergence
rate on larger class of functions is a natural problem.

Behavior of HB on quadratics. The HB method was originally coined for optimizing
quadratic functions Polyak (1964). A classical approach to the analysis of (HB) on Qµ,L
consists in exploiting links between first-order methods and polynomials (see e.g. Fis-
cher (2011); Nemirovskii (1994) or d’Aspremont et al. (Chapter 2 of 2021) for a recent
introduction–for more recent exploitation of those links, see, e.g., Berthier et al. (2020);

8.1. Introduction 175

Pedregosa and Scieur (2020); Goujaud et al. (2022b,d); Kim et al. (2022)). In this context,

a standard choice of HB parameters is (γ?(Qµ,L), β?(Qµ,L)) = ((2√
L+
√
µ

)2, (
√
L−√µ√
L+
√
µ

)2) and

is often referred to as the optimal tuning for quadratics.

Behavior of HB beyond quadratics. The class of L-smooth and µ-strongly convex func-
tions (notation Fµ,L) is extensively studied in the first-order optimization literature (see,
e.g., (Polyak, 1987; Nesterov, 2003; Bubeck, 2015)), and is a natural candidate for explor-
ing the performance of HB beyond quadratics. Notable results on HB beyond quadratics
include the work of Ghadimi et al. (2015) who provide non-accelerated convergence
results of HB for a large set of parameters (γ, β) (more details in the subsequent sections).
Also, Lessard et al. (2016) provide a non-convergence result of HB (with the optimal
parameter choice for quadratics) on Fµ,L, based on a counter-example, i.e., some f ∈ Fµ,L
for which given a particular initialization, the HB algorithm cycles over a finite number
of values, without ever approaching the set of minimizers of f . Moreover, other attempts
were made to obtain an accelerated rate on HB on the class Fµ,L, without definitive
results Dobson et al. (2023); or on even larger class of functions (Goujaud et al., 2022c).

As a conclusion, despite the existence of both positive and negative convergence results
for HB on Fµ,L, the optimal tuning of HB on this specific class as well as its worst-case
convergence rate, remain unknown.

Erroneous convergence results on HB. A few recent works either claim or use the fact
that HB does converge with an accelerated convergence rate. For instance, Wang et al.
(2022) prove convergence of HB by implicitly assuming co-diagonalisation, and hence their
results is actually only valid in dimension one. This result is thereby complemented by this
work, which shows we cannot achieve acceleration as soon as the dimension is at least
two. Another example is that of Gupta et al. (2021, Corollary 22) whose proof relies on an
hypothetical accelerated convergence rate of HB.

Optimal methods on Fµ,L. Whereas convergence rates for HB were unclear on Fµ,L,
there exist alternative optimal methods (which are, however, slower than HB on Qµ,L) on
this class, commonly referred to as accelerated gradient methods, such as (NAG), see Nes-
terov (1983, 2003). Whereas the dependency w.r.t. κ is essentially optimal for NAG (whose
convergence rate is (1−

√
κ)1/2), it can be improved to (1−

√
κ) (see (Taylor and Drori,

2022) for the optimal algorithm and (Van Scoy et al., 2017) for its stationary version)
thereby matching the exact lower complexity bound for Fµ,L (Drori and Taylor, 2022)
(which is more technical than that for Qµ,L, whose lower bound on the rate is

(
1−
√
κ

1+
√
κ

)
which is thereby more often used).

8.1.2 Contributions

In this work, we show that the heavy-ball (HB) cannot attain an accelerated (worst-case)
convergence rate on the standard class of smooth strongly convex problems in general. We
further show that this result is stable to additional assumptions. In particular, it remains
true even under higher-order regularity assumptions, and for perturbed initial conditions
and gradient computations.

More precisely, in Section 8.2, we recall a few known results on HB, and set up a few key
concepts for building up the following sections, including those of cycling behaviors. Next,

8.1. Introduction 176

in Section 8.3, we show our main result on HB, namely that we cannot obtain accelerated
convergence guarantees for HB on standard classes of problems beyond quadratics. To
obtain that result, we analyze parameters resulting in a simple cycle shape.

Then, in Section 8.4 details we detail a constructive approach for finding counter-
examples to the convergence of HB, and more generally of any stationary first-order
method. We demonstrate that if a parametrization results in a cycle, then it also results in
a cycle having a very specific shape, and that numerically, this can be solved as a linear
problem. Then, in Section 8.5 we show that our non-acceleration results are stable to
small perturbations of the initial iterates, of the parameters and of the gradients. Finally, in
Section 8.6, we also show that adding additional natural regularity assumptions does not
result in acceleration either.

8.1.3 Key concepts

The following definition introduces the concept of asymptotic convergence rate and of
convergence rate of a method over a class of functions. Formally, this definition is necessary
because we are looking for negative results on the value of ρ throughout the paper.
Furthermore, momentum-type methods such as HB or NAG (contrary to GD) are not
monotone method (i.e., (‖xt − x?‖)t is not a decreasing sequence in general).

Definition 8.1.3 ((Asymptotic) convergence rate). Let F be a class of functions. We say
that a given first-order method has a worst-case asymptotic convergence rate ρ over F if for
all ε > 0, there exists T0 such that for all f ∈ F , x0 and T > T0, for (xt)t>0 the sequence of
iterates generated from x0 by running the method on the function f , we have

‖xT − x?‖ 6 (ρ+ ε)T ‖x0 − x?‖.

Informally, this means that ‖xT − x?‖ is (almost) of the order of ρT uniformly over
the class F . In the sequel, we may refer to the worst-case asymptotic rate as the rate.
Our interest is to understand the impact of parameters (γ, β) in HB. For clarity, when
necessary, we denote (HB)γ,β the heavy-ball method with coefficients (γ, β), and (HB)γ,β(f)

the heavy-ball method with coefficients (γ, β) applied to the function f . We then introduce
the following two definitions.

Definition 8.1.4 (Rate ργ,β(F)). For any class F and any (γ, β) ∈ R×R, we denote ργ,β(F)

the smallest worst-case asymptotic rate of (HB)γ,β on F .

Definition 8.1.5 (Convergence region Ωcv(F)). We denote Ωcv(F) the set of parameters
(γ, β) ∈ R×R for which (HB)γ,β has a worst-case asymptotic convergence rate ργ,β(F) strictly
below 1.

In the sequel, if (γ, β) ∈ Ωcv(F), we may abusively say that (HB)γ,β converges on F
(instead of “has a worst-case asymptotic convergence rate ργ,β(F) strictly below 1”), and
conversely, that (HB)γ,β does not converge if (γ, β) /∈ Ωcv(F) (i.e., there exists f ∈ F on
which HBγ,β does not converge).

Before giving preliminary results on (HB), let us recall a few notations.

Notation. For x ∈ Rd and r > 0, B(x, r) is the Euclidean ball with center x and radius r,
and ‖x‖ the Euclidean norm of x. We denote convh(xi, i ∈ I) the convex hull of a family

8.2. Preliminary results on heavy-ball 177

of points (xi)i∈I indexed by a set I. We denote Int(A) the interior of a set A ⊆ Rd. For
vectors x, y ∈ Rd, we 〈x, y〉 = x>y is the Euclidean inner product.

We denote Id the identity matrix in dimension d. We denote SK(R) the set of symmetric
matrices in dimension K ∈ N, and S+

K(R) the set of positive semi-definite matrices. For
M,N in SK(R), we denote M 4 N if N −M ∈ S+

K(R). For a matrices M,N ∈ RK×K′ , we
denote 〈M,N〉 = Tr(M>N) the standard inner product, with Tr the trace operator. We
denote ‖M‖op the operator norm of the matrix M , and Sp(M) the spectrum of M .

We denote Ck(Rd) the set of k times continuously differentiable functions from Rd → R.
We denote f∗ the Fenchel-transform of a function f . Note that all classes of functions
considered hereafter belong to the set of closed proper convex functions, and hence satisfy
f = f∗∗.

Finally, for any integer K > 2, we denote by θK the angle 2π
K . By convention, and to

avoid unnecessary case disjunctions, for β < 0, we use the convention
√
β = NAN (Not A

Number), and min(a,NAN) = max(a,NAN) = a.

8.2 Preliminary results on heavy-ball

This section summarizes a few well-known results and open questions regarding the heavy-
ball method. We start by describing a link between convergence guarantees and the choice
of parameters (γ, β) on the class of quadratic functions Qµ,L. Those results are well-known
nowadays and date back to Polyak (1964). We leverage them in Section 8.4.

8.2.1 Known behavior of the heavy-ball method on quadratics (Qµ,L)

In this section, we consider a function fH ∈ Qµ,L parameterized by its Hessian matrix H,
i.e., such that f(x) − f? = 1

2(x − x?)
>H(x − x?) with µI 4 H 4 LI—or equivalently

Sp(H) ∈ [µ,L]. The heavy-ball update is:

xt+1 = xt − γ∇f(xt) + β(xt − xt−1) = xt − γH(xt − x?) + β(xt − xt−1). (HB-Q)

The worst-case asymptotic convergence rate (see Definition 8.1.3) of (HB-Q) is provided
by the following.

Proposition 8.2.1. (Polyak (1964)) Consider β ∈ R and γ ∈ R. The worst-case asymptotic
convergence rate ργ,β(Qµ,L) of (HB-Q)γ,β, over the class Qµ,L is:

1. Lazy region: If 0 < γ 6 min

(
2(1+β)
L+µ ,

(
1−
√
β
)2

µ

)
then ργ,β(Qµ,L) = 1+β−µγ

2 +

√(
1+β−µγ

2

)2
− β.

2. Robust region: If β > 0, and
(
1−
√
β
)2

µ 6 γ 6
(
1+
√
β
)2

L then ργ,β(Qµ,L) =
√
β.

3. Knife’s edge: If max

(
2(1+β)
L+µ ,

(
1+
√
β
)2

L

)
6 γ < 2(1+β)

L , then ργ,β(Qµ,L) = Lγ−(1+β)
2 +√(

Lγ−(1+β)
2

)2
− β.

4. No convergence: if γ
1+β >

2
L or γ 6 0 then ργ,β(Qµ,L) > 1.

Sketch of proof. The complete proof is provided in Section 8.A. In short, we rewrite (HB-Q)

8.2. Preliminary results on heavy-ball 178

(a) Schematic view of the three convergence re-
gions described by Proposition 8.2.1 together
with the asymptotic worst-case convergence rate
ργ,β(Qµ,L) as a color-scale, with respect to γ and
β.

(b) Level sets LSµ,L(ρ) of γ, β 7→ ργ,β(Qµ,L) as
orange triangles. Levels ρ correspond to ρ = 1

(- -), ρ = 1−κ
1+κ (· · ·) corresponding to the rate of

GD, then ρ = 1−2κ
1+2κ (− · −), and ρ = 1−3κ

1+3κ (—),

and finally ρ = 1−√κ
1+
√
κ

(?), i.e., ρ?(Qµ,L).

Figure 8.1: Asymptotic convergence rate ργ,β(Qµ,L) of (HB-Q), for κ = 1/20.

as a linear system and decompose it over the eigenspaces of H. Ultimately, the asymptotic

convergence rate is given by maxλ∈[µ,L] ρ̄(Pβ,λ,γ) with Pβ,λ,γ ,

(
1 + β − γλ −β

1 0

)
. The

four cases arise from the nature of the eigenvalues of Pβ,λ,γ , that can either be two complex

conjugates number with modulus
√

det(Pβ,λ,γ) =
√
β or two real numbers, and the fact

the max may be attained on either µ or L. �

Comments on Proposition 8.2.1. Figure 8.1b illustrates the asymptotic rate of the heavy-
ball method for each value of the parameters γ, β. It shows the three parameter regions
resulting in convergence, as given by Proposition 8.2.1. First, the left region, called the
lazy region where the step-size is small, thus the rate is driven by the convergence of the
iterates’ component aligned with the eigenvector of H associated with µ. Second, the right
region, called the knife’s edge where the step-size is large and the rate is driven by the
oscillations of the iterates’ component aligned with the eigenvector of H associated with L.
Third, the upper region, called the robust region where the step-size does not impact the
convergence rate.

In particular, Proposition 8.2.1 enables to define the set of parameters for which (HB-Q)
converges. Following Definition 8.1.5, we denote by Ωcv(Qµ,L) the set of parameters (γ, β)

for which (HB-Q) has a worst-case asymptotic convergence rate strictly below 1 (i.e., for
which HB converges on any function of Qµ,L). This set is naturally the union of three
regions of convergence provided by Proposition 8.2.1.

Corollary 8.2.2. By Proposition 8.2.1, we have

Ωcv(Qµ,L) =

{
(γ, β) ∈ R× R s.t. β ∈ (−1; 1), 0 < γ <

2

L
(1 + β)

}
.

Furthermore, the optimal parameter choice is achieved at the intersection of the three
regions (or equivalently at point of the robust region with the smallest β), as provided by
the following result.

8.2. Preliminary results on heavy-ball 179

Corollary 8.2.3. The optimal worst-case asymptotic rate of (HB-Q) on Qµ,L, for parameters
(γ, β) ∈ Ωcv(Qµ,L) is

ρ?(Qµ,L) , min
(γ,β)∈Ωcv(Qµ,L)

ργ,β(Qµ,L) =
√
β?(Qµ,L) =

1−
√
κ

1 +
√
κ
,

which is achieved for β?(Qµ,L) ,
(

1−
√
κ

1+
√
κ

)2
, γ?(Qµ,L) , 2

L+µ(1 + β?(Qµ,L)).

In a nutshell, on the one hand, for β 6
(

1−
√
κ

1+
√
κ

)2
, the optimal rate is achieved for a

single value of γ, such that γ = 2
L+µ(1 + β), that corresponds to the limit between the lazy

region and the knife’s edge. In this region β ∈
[
0;
(

1−
√
κ

1+
√
κ

)2
]
, the rate decreases (improves)

as β increases. On the other hand, in the robust region, i.e., when β >
(

1−
√
κ

1+
√
κ

)2
, the

asymptotic rate
√
β is achieved for any γ ∈

[(
1−
√
β
)2

µ ,

(
1+
√
β
)2

L

]
(which allows to use any

value in this set). In this region β ∈
[(

1−
√
κ

1+
√
κ

)2
; 1

]
, the rate increases (degrades) with β.

The optimal rate is thus achieved at the limit, β =
(

1−
√
κ

1+
√
κ

)2
.

This asymptotic rate matches the lower complexity bound provided by Nemirovskii
and Nesterov (1985). As κ → 0, ρ?(Qµ,L) ∼ 1 − 2

√
κ which is commonly referred to as

an accelerated convergence rate, as compared to that of the classical Gradient descent
algorithm, obtained with (γ = 2/(L + µ), β = 0), whose rate is ργ=2/(L+µ),β=0(Qµ,L) ∼
1− 2κ (as κ→ 0).

The level sets of the asymptotic convergence rate of (HB) are triangles, as stated in the
following lemma and illustrated on Figure 8.1b. This property will be used in the proof of
our main result, in Section 8.3.

Lemma 8.2.4 (Sublevel set SLSµ,L(ρ) of the heavy-ball convergence rates). Let 0 < µ 6 L.
The level sets of γ, β 7→ ργ,β(Qµ,L) are triangles. More precisely, for any ρ ∈ [ρ?(Qµ,L), 1],
the set of parameters γ, β for which (HB)γ,β has rate ρ is the union of the three segments
parametrized by:

• Segment in the Lazy Region: β ∈
[

1−κ
1+κ
−ρ

1
ρ
− 1−κ

1+κ

, ρ2

]
and γ = (1−ρ)(1−β/ρ)

µ .

• Segment in the Robust Region: γ ∈
[

(1−ρ)2

µ , (1+ρ)2

L

]
and β = ρ2.

• Segment in the Knife Edge: β ∈
[

1−κ
1+κ
−ρ

1
ρ
− 1−κ

1+κ

, ρ2

]
and γ = (1+ρ)(1+β/ρ)

L .

We denote this level set by LSµ,L(ρ) (which is a triangle), and the corresponding sublevel set
(that is extensively used in the sequel) by SLSµ,L(ρ) = ∪ρ′6ρLSµ,L(ρ′).

As a summary, this section provided a complete picture of the behavior of (HB) over
Qµ,L. As the convergence rate for β < 0 is never better than the one for β = 0, γ = 2

L+µ ,
we restrict the analysis to β > 0 in the following. Next, we move to existing results on the
class Fµ,L.

8.2. Preliminary results on heavy-ball 180

(a) κ = 0.01 (b) κ = 0.001 (c) κ = 0.0001

Figure 8.2: Illustration of Lemma 8.2.5. Region of parameters ΩGhad.(Fµ,L) and sublevel
set SLSµ,L (1− 8κ) for three values of κ: the rate of ργ,β(Qµ,L) on ΩGhad.(Fµ,L) is at best
1−4κ
1+4κ .

8.2.2 Known behaviors of the heavy-ball method on Fµ,L
Convergence of (HB) on the set of L-smooth and µ-strongly convex functions Fµ,L has
attracted a lot of attention over the last decade. First, recall that we denote Ωcv(Fµ,L)

the set of parameters (γ, β) for which (HB) has a worst-case asymptotic convergence rate
strictly below 1 on Fµ,L (see Definition 8.1.5).

Convergence results on Fµ,L

Ghadimi et al. (2015) establish that (HB) converges on Fµ,L when

γ ∈ (0, 2
L) and 0 6 β < 1

2

µγ
2

+

√(
µγ

2

)2

+ 4(1− Lγ
2)

 ,
see (Theorem.4, Ghadimi et al., 2015). For comparison purposes, we denote this set of
parameters ΩGhad.(Fµ,L) in what follows. Unfortunately, this result does not lead to an
acceleration of (HB) on Fµ,L. Indeed, the following lemma shows that the best rate for
(γ, β) ∈ ΩGhad.(Fµ,L) parameters is not accelerated, even on Qµ,L.

Lemma 8.2.5 (Optimal asymptotic rate of (HB-Q) on Qµ,L for (γ, β) ∈ ΩGhad.(Fµ,L)). The
optimal worst-case asymptotic rate of (HB-Q) on Qµ,L, for parameters (γ, β) ∈ ΩGhad.(Fµ,L)

is

ρ?Ghad.(Qµ,L) , min
(γ,β)∈ΩGhad.(Fµ,L)

ργ,β(Qµ,L) =
√
β?Ghad.(Qµ,L) =

κ→0
1− 8κ+ o(κ),

which is achieved for

√
β?Ghad.(Qµ,L) = (κ−1 − 1)1/3


√κ−1 + 26

27
+ 1

1/3

−

√κ−1 + 26

27
− 1

1/3
− 1,

γ?Ghad.(Qµ,L) =
2(1 + β?Ghad.(Qµ,L))

L+ µ
.

Sketch of proof. The result of Ghadimi et al. (2015) corresponds to using a Lyapunov
function of the form Vt = f(xt)− f? +A(f(xt−1)− f?) +B‖xt − xt−1‖2 with A,B > 0. �

In short, the set ΩGhad.(Fµ,L) of parameters covered from (Ghadimi et al., 2015) is not
large enough to guarantee acceleration of (HB): indeed for any C > 8, there exists κ0

8.2. Preliminary results on heavy-ball 181

such that for all κ < κ0, ΩGhad.(Fµ,L) does not intersect the sublevel set SLSµ,L(1 − Cκ)

given by Lemma 8.2.4. This is illustrated in Figure 8.2, with C = 8 and for 3 different κ.
Therefore, a natural question is that of properly identifying the set Ωcv(Fµ,L). There
exist a few approaches for trying to get better approximations to this set; see, e.g., the
work Taylor et al. (2018a) which provides a tool to numerically identify valid Lyapunov
functions—see Goujaud et al. (2023a) for a detailed treatment of HB with this technique.

Non-convergence results on Fµ,L

This section summarizes a few negative convergence results for HB on Fµ,L.

Non-convergence for the optimal tuning (γ?(Qµ,L), β?(Qµ,L)) on quadratics. Lessard
et al. (2016) prove that for the optimal tuning (γ?(Qµ,L), β?(Qµ,L)) on Qµ,L given by Corol-
lary 8.2.3, for κ = 1/25, there exist an L = 25-smooth and µ = 1-strongly convex function
such that if x0 is in a specific neighborhood, then the iterates generated by (HB) oscillate
between the neighborhoods of three values, and thereby never converge towards x?.

At this stage, it is important to note that this counter-example does not exclude the
existence of another tuning (γ, β) for which an accelerated convergence rate is achieved.
Indeed, there is no reason for the optimal tuning on Fµ,L to correspond to that on Qµ,L.

Non-convergence on multiple tunings. Recently, Goujaud et al. (2023a) proposed a
numerical approach to compute cyclic trajectories of various first-order methods that
include HB. For (HB), given the period K > 2 of the cycles, this technique consists in
solving the following optimization problem which can be cast and solved as an SDP:∣∣∣∣∣∣∣

minimize
d>1,f∈Fµ,L

(xt)t is generated by (HB)

‖x0 − xK‖2 + ‖x1 − xK+1‖2

subject to ‖x1 − x0‖2 > 1.

(P)

Goujaud et al. (2023a) prove that the value of the optimization problem (P) is 0 if and
only if there exists a function f ∈ Fµ,L and an initialization (x0, x1) ∈ (X)2 such that the
method (HB)(f) initialized at (x0, x1) cycles on K values, i.e. that the sequence of iterates
generated is (x0, . . . , xK−1, x0, . . . , xK−1, x0, . . .).

Although these negative results are limited to either a single κ and tuning (γ?(Qµ,L), β?(Qµ,L))

for (Lessard et al., 2016), or only numerical in (Goujaud et al., 2023a), analyzing the
parameter choices for which the worst-case uniform convergence of (HB) on Fµ,L can be
disproved by establishing the existence of a cycle appears to be a promising direction.

8.2.3 Our approach to comprehensive behaviors of heavy-ball

In this section we therefore introduce ΩCycle(Fµ,L) as the set of parameter values (γ, β) for
which (HB) cycles on a function of Fµ,L.

Definition 8.2.6 (Cycles). Let (γ, β) ∈ Ωcv(Qµ,L), and F a class of functions.

1. For K a positive integer, referred to as the period, (xt)t∈J0,K−1K 6= (x0, . . . , x0) a family of
K points not all-equal, and f a function, we say that

(HB)γ,β(f) cycles on (xt)t∈J0,K−1K

8.3. Non-acceleration of heavy-ball on Fµ,L via simple two-dimensional cycles 182

if the sequence (zt)t∈N generated by (HB) applied on f with initial points z0 = x0 and
z1 = x1 cycles on (xt)t∈J0,K−1K, i.e., verifies ∀t > 0, zt = xt (mod K).

2. Moreover, for such a K and family of K points (xt)t∈J0,K−1K 6= (x0, . . . , x0), we say that

(HB)γ,β cycles on (xt)t∈J0,K−1K on F

if there exists an f ∈ F , for which (HB)γ,β(f) cycles on (xt)t∈J0,K−1K.

3. Finally, we say that
(HB)γ,β has a cycle on F

if there exist such a period K, and cycle (xt)t∈J0,K−1K 6= (x0, . . . , x0), and f ∈ F , for which
(HB)γ,β(f) cycles on (xt)t∈J0,K−1K.

Note that we exclude the constant cycle (x0, . . . , x0), that would correspond to a
trivial cycle (x?, . . . , x?) of (HB)(f) for any function f such that x0 = x? = arg min f .
This corresponds to non-problematic situations as the algorithm already converged. We
underline the following equivalent point of view on a cycle.

Remark 8.2.7. (HB)γ,β(f) cycles on (xt)t∈J0,K−1K if and only if for any s ∈ J0,K − 1K,
xs+1 = xs − γ∇f(xs) + β(xs − xs−1), where the sequence (xt)t is extended K-periodically to
t ∈ Z as (xt)t∈Z , (xt (mod K))t∈Z (in particular as xK , x0 and x−1 , xK−1).

From Definition 8.2.6, we define the region ΩCycle(Fµ,L).

Definition 8.2.8 (Cycling region ΩCycle(Fµ,L)). For any 0 < µ 6 L, we denote:

1. ΩCycle(Fµ,L) the subset of Ωcv(Qµ,L) for which (HB) has a cycle on Fµ,L.

2. ΩCycle(Fµ,L)c the complementary of ΩCycle(Fµ,L) in Ωcv(Qµ,L).

In the following, we leverage that for any parameters (γ, β) for which (HB)γ,β has a
cycle on Fµ,L, then the method does not converge.

Fact 8.2.9. The set of parameters for which (HB) has a worst-case (asymptotic) convergence
rate (strictly below 1) on Fµ,L is included in ΩCycle(Fµ,L)c:

Ωcv(Fµ,L) ⊆ ΩCycle(Fµ,L)c

In Section 8.3, we demonstrate that (HB) cannot accelerate by focusing on a particular
cycle shape. We study the set of parameters such that there exists a function in Fµ,L that
cycles over that particular set of iterates. Section 8.4 explains why such a choice of a cycle
is in fact natural.

8.3 Non-acceleration of heavy-ball on Fµ,L via simple
two-dimensional cycles

In this section, we demonstrate the main result of the paper, which is that HB method does
not accelerate on the class Fµ,L. To obtain this result, we introduce in Subsection 8.3.1 a
simple two-dimensional cycle of length K and study the set of (γ, β) such that there exists
a function in Fµ,L that cycles over those specific iterates. Then, in Subsection 8.3.2, for
some appropriate C > 0, we show that the sublevel set of level 1− Cκ of (HB) on the set
of quadratic function is excluded from the parameters that do not have such a cycle.

8.3. Non-acceleration of heavy-ball on Fµ,L via simple two-dimensional cycles 183

8.3.1 Studying a specific type of cycling behavior

We focus on the cycles that are supported by the K-th roots of unity.

Definition 8.3.1 (Roots-of-unity cycle). For K ∈ N, and θK , 2π
K , we define the roots-of-unit

cycle as

K = (x◦0, x
◦
1, . . . , x

◦
t . . . , x

◦
K−1) ,

((
1

0

)
,

(
cos θK
sin θK

)
, . . . ,

(
cos tθK
sin tθK

)
, . . . ,

(
cos (K − 1)θK
sin (K − 1)θK

))
.

We introduce the rotation operator R =

(
cos θK − sin θK
sin θK cos θK

)
such that for any t ∈ J1;K − 1K,

x◦t = Rx◦t−1 = Rtx◦0 and RK = I.

This corresponds to a completely symmetrical cycle shape. Such a cycle is pictured in
Figure 8.3. We now introduce the set of parameters (γ, β) for which (HB) results in such a
cycle on at least one function in Fµ,L.

Definition 8.3.2 (Roots-of-unity cycling region Ω◦-Cycle(Fµ,L)). For any 0 < µ 6 L, we
define

1. for any K ∈ N, ΩK-◦-Cycle(Fµ,L) the subset of Ωcv(Qµ,L) for which (HB) cycles on K on
Fµ,L (in the sense of Definition 8.2.6, item 2).

2. Ω◦-Cycle(Fµ,L) =
∞⋃
K=2

ΩK-◦-Cycle(Fµ,L).

3. (Ω◦-Cycle(Fµ,L))c = Ωcv(Qµ,L)\Ω◦-Cycle(Fµ,L) the complementary of Ω◦-Cycle(Fµ,L) in
Ωcv(Qµ,L).

In other words, Ω◦-Cycle(Fµ,L) is a subset of ΩCycle(Fµ,L) for which we limit the cycles
to be (i) in dimension d = 2 (there was no restriction on the dimension earlier on) and
(ii) with a specific shape (cycling over the roots of unity). The fact that limiting ourselves
to Ω◦-Cycle(Fµ,L) is a reasonable restriction will be discussed in Section 8.4. For clarity,
notations of the various regions are summarized in Table 8.1. Putting things together and
leveraging Fact 8.2.9, we have the following fact.

Fact 8.3.3. For any 0, µ 6 L:

ΩGhad.(Fµ,L) ⊆ Ωcv(Fµ,L) ⊆ (ΩCycle(Fµ,L))c ⊆ (Ω◦-Cycle(Fµ,L))c ⊆ Ωcv(Qµ,L).

Table 8.1: Summary of the parameter regions for which convergence is established or
disproved.

Notation Region

Ωcv(Qµ,L) Convergence on Qµ,L.
Ωcv(Fµ,L) Convergence on Fµ,L
ΩGhad.(Fµ,L) Convergence is established by Ghadimi et al. (2015)
ΩCycle(Fµ,L) Subset of Ωcv(Qµ,L) where (HB) has a cycle on Fµ,L
Ω◦-Cycle(Fµ,L) Subset of Ωcv(Qµ,L) where (HB) has a roots-of-unity cycle.

8.3. Non-acceleration of heavy-ball on Fµ,L via simple two-dimensional cycles 184

Next, we observe that (HB)(f) cycles over K , if and only if we have a simple expres-
sion for (∇f(x◦t))t∈J0,K−1K. Indeed, given the iterates in (HB)(f), the value of the gradients
to obtain those iterates are uniquely obtained.

Lemma 8.3.4. Let K > 2 an integer and θK , 2π
K . Let (x◦t)t∈J0,K−1K = K be the roots-of-

unity cycle of length K. Let γ, β ∈ Ωcv(Qµ,L). For any differentiable function f , HBγ,β(f)

cycles on K if and only if

∀t ∈ J0,K − 1K, ∇f(x◦t) = gt ,
(1 + β)I2 −R− βR−1

γ
x◦t . (8.1)

Proof. Let f any differentiable function. By Definition 8.2.6 and Remark 8.2.7, (HB)γ,β(f)

cycles on (x◦t)t∈J0,K−1K if and only if for any t ∈ J0,K − 1K, x◦t+1 = x◦t − γ∇f(x◦t) + β(x◦t −
x◦t−1), with x◦t extended K-periodically (i.e., x◦−1 , x

◦
K−1 and x◦K , x

◦
0). Since γ 6= 0, this

system is equivalently written as, for any t ∈ J0,K − 1K,

∇f(x◦t) = gt ,
(1 + β)x◦t − x◦t+1 − βx◦t−1

γ
. (8.2)

Replacing the expressions x◦t+1 = Rx◦t and x◦t−1 = R−1x◦t , we obtain the desired result. �

The values of the gradients at points (x◦t)t∈J0,K−1K are depicted as red arrows on Figure 8.3.
We now use Lemma 8.3.4 to obtain an analytical form of Ω◦-Cycle(Fµ,L).

Figure 8.3: Cycle 7 = (x◦0, . . . , x
◦
6) of

the K = 7th-roots-of-unity. For (γ, β) ∈
Ω7-◦-Cycle(Fµ,L), the red arrows (→) corre-
spond momentum component of (HB)γ,β
and the blue arrows (→) to the gradients
of ψKγ,β,µ,L such the (HB)γ,β(ψKγ,β,µ,L) cycles
over 7. Here, L = 1, µ = 0.005, γ = 3.5

and β = 0.75.

Figure 8.4: Shape of the counter-example
function ψKγ,β,µ,L given by (8.3), for (µ,L) =

(0.005, 1) and (γ, β) = (3.3, 0.75) ∈
Ω7-◦-Cycle(Fµ,L). The function is lo-
cally quadratic, with Hessian LI2 in-
side convh {Mx◦t , t ∈ J0, 6K} (gray back-
ground), µI2 in the white-background
around 7 and quadratic with Hessian spec-
trum {µ,L} in the light gray area.

8.3. Non-acceleration of heavy-ball on Fµ,L via simple two-dimensional cycles 185

Theorem 8.3.5. (Analytical form of Roots-of-unity cycle region) For any K > 2, the
Kth-roots-of-unity cycling region is, for θK = 2π

K :

ΩK-◦-Cycle(Fµ,L) =

{
(γ, β) ∈ Ωcv(Qµ,L) |

(µγ)2 − 2 [β − cos θK + κ(1− β cos θK)] (µγ)

+ 2κ(1− cos θK)(1 + β2 − 2β cos θK) 6 0.

}
Moreover for any K > 2, and any (γ, β) ∈ ΩK-◦-Cycle(Fµ,L),

ψKγ,β,µ,L : x 7→ L

2
‖x‖2 − L− µ

2
d(x, convh {Mx◦t , t ∈ J0,K − 1K})2 (8.3)

is a function such that (HB) γ,β(ψKγ,β,µ,L) cycles on K , with M the linear operator M ,
(1+β−µγ)I2−R−βR−1

(L−µ)γ .

For given K,µ,L, Theorem 8.3.5 provides a second-order equation on (γ, β), such
that (HB)γ,β cycles over K onFµ,L. We use this formula to plot the regions ΩK-◦-Cycle(Fµ,L)

in Figure 8.5, for increasing cycle length K, for two values of κ. Equation (8.3) gives an
explicit formula for the function that realizes the cycle: this function is a quadratic by part:
its shape is described in Figure 8.4.

Sketch of proof. By Lemma 8.3.4, (γ, β) ∈ ΩK-◦-Cycle(Fµ,L) if and only if, there exists a
function f ∈ Fµ,L such that (8.1) holds. Establishing the existence of a function in the class
Fµ,L having specific gradient values at a finite number of specific points can be cast as
verifying a finite number of simple inequalities. Those conditions, often referred to as in-
terpolation conditions (see, e.g., (Taylor et al., 2017c)) and come along with a systematic
construction of the given function as a Moreau envelope (similar in spirit with the proof
of Taylor et al. (2017c, Theorem 4)). The complete proof is given in Subsection 8.B.1. �

Theorem 8.3.5 shows that, (γ, β) is in ΩK-◦-Cycle(Fµ,L) if and only if

γ ∈ [γ−(β,K, µ, L), γ+(β,K, µ, L)] , (8.4)

with (γ−(β,K, µ, L), γ+(β,K, µ, L)) obtained as the roots of the second order polynomial
given in Theorem 8.3.5, i.e., γ 7→ (µγ)2 − 2 [β − cos θK + κ(1− β cos θK)] (µγ) + 2κ(1 −
cos θK)(1 + β2 − 2β cos θK) – and the set is empty if this polynomial is always positive.
Hence, for any β, the set of all γ such that (γ, β) ∈ Ω◦-Cycle(Fµ,L) is the union (over K > 2)
of intervals given by (8.4), that are not necessarily connected. In the proof of the next

result, we will rely on the fact that for κ 6
(

3−
√

5
4

)2
, this union actually is a unique interval

of the form [γmin(β, µ, L), 2(1+β)
L], as illustrated in Figure 8.5a. For larger values of κ, the

union is not a single interval, which can be expected as the region shrinks as κ approaches 1.
Such a behavior is illustrated in Figure 8.5b. However, large values of κ are not problematic
as for those, the difference between

√
κ and κ is not significant. This is made formal in

Theorem 8.B.4, stated in Subsection 8.B.2 is essential for the next section.

8.3.2 Non-acceleration on Fµ,L
In this section, we finally obtain the main non-acceleration result of the paper, by comparing
ΩK-◦-Cycle(Fµ,L) to the sublevel sets of the convergence rate of (HB) on Qµ,L.

8.3. Non-acceleration of heavy-ball on Fµ,L via simple two-dimensional cycles 186

(a) κ = 0.01. Typical region shape for small κ (b) κ = 0.7. Typical region shape shape for κ ' 1.

Figure 8.5: Regions ΩK-◦-Cycle(Fµ,L) for increasing values of K between 2 and 100. The
limit of the regions is obtained from the analytical formula given by Theorem 8.3.5.

Theorem 8.3.6. There exists an absolute constant C > 0 (any C > 50
3), such that for any

0 < µ < L, we have:

(Ω◦-Cycle(Fµ,L))c ∩ SLSµ,L

(
1− Cκ
1 + Cκ

)
= ∅. (8.5)

Sketch of proof. The complete proof is provided in Subsection 8.B.3. In short, we show

that, if (γ, β) ∈ (Ω◦-Cycle(Fµ,L))c, then using Theorem 8.B.4 for any κ 6
(

3−
√

5
4

)2
, neces-

sarily, µ < Cκ(1− β) for any constant C > 50
3 which is excluded from SLSµ,L

(
1−Cκ
1+Cκ

)
by

Lemma 8.2.4. For κ >
(

3−
√

5
4

)2
, we have

√
κ 6 (3 +

√
5)κ 6 Cκ for any C > 50

3 , hence the
result. �

Theorem 8.3.6 is illustrated on Figure 8.6: we represent, for three values of κ in decreasing
order, the set (Ω◦-Cycle(Fµ,L))c and the set SLSµ,L

(
1−Cκ
1+Cκ

)
. This means that for any (γ, β)

such that (HB) does not cycle over a roots-of-unity cycle on Fµ,L, the asymptotic conver-
gence rate of (HB-Q) over Qµ,L, is worse (i.e., larger) than 1−Cκ

1+Cκ . Formally, we have the
following corollary.

Corollary 8.3.7. (HB) does not accelerate over on the class (Fµ,L)0<µ<L.

More precisely, there exists a constant C such that for all 0 < µ < L, for all (γ, β) ∈ R× R
the worst-case asymptotic convergence rate (HB) over Fµ,L is lower bounded by 1−Cκ

1+Cκ :

∀0 < µ < L, ρ?(Fµ,L) , min
(γ,β)∈R×R

ργ,β(Fµ,L) > 1−Cκ
1+Cκ ,

Proof. [Corollary 8.3.7] Let (γ, β) ∈ Ωcv(Qµ,L). Possibilities are twofold:

• if (γ, β) ∈ SLSµ,L
(

1−Cκ
1+Cκ

)
, we know from Theorem 8.3.6, that (γ, β) ∈ SLSµ,L

(
1−Cκ
1+Cκ

)
⊆

Ω◦-Cycle(Fµ,L) ⊆ ΩCycle(Fµ,L) ⊆ Ωcv(Fµ,L)c, i.e. there exists a function f ∈ Fµ,L such
that (HB)γ,β(f) does not converge.

• if (γ, β) ∈ SLSµ,L
(

1−Cκ
1+Cκ

)c
, then by definition, there exists a function f ∈ Qµ,L ⊆ Fµ,L

such that (HB)γ,β(f) achieves an asymptotic rate larger that 1−Cκ
1+Cκ .

8.4. General study of cycles for stationary first-order methods 187

(a) κ = 0.01 (b) κ = 0.001 (c) κ = 0.0001

Figure 8.6: Illustration of the incompatibility result Theorem 8.3.6. For three values of κ,
we represent the sublevel set SLSµ,L

(
1−Cκ
1+Cκ

)
and the region (Ω◦-Cycle(Fµ,L))c and notice

that their intersections are empty.

�

This result concludes the first part of our study of (HB), as Corollary 8.3.7 closes a long-
standing open question on the behavior of (HB).

In the next section, we provide an in-depth analysis of the structure of the cycles,
beyond dimension 2, that supports the seemingly arbitrary choice of roots-of-unity cycles
made in this section.

8.4 General study of cycles for stationary first-order methods

In this section, we investigate the set ΩCycle(Fµ,L) of (γ, β) for which (HB)γ,β has a cycle
(in the sense of Definition 8.2.6), without specifically focusing on roots-of-unity cycles K .
We explain why this particular cycle shape, that led to the main result in Section 8.3, arises
as a natural candidate when studying cycles for stationary first-order methods. Informally,
we show that: if (HB)γ,β has a cycle, then (HB)γ,β has a symmetric cycle.

Remark 8.4.1. The arguments made in this section directly apply to any stationary first-
order method, that is, to any method whose dynamic does not change along the iterations
(see Definition 2.1, Goujaud et al., 2023a). For simplicity and coherence, we only instantiate
the construction on (HB).

Our approach is decomposed into three steps. First, in Subsection 8.4.1, we show that
the existence of a cycle can be cast as a SDP: to that end, we follow the classical performance
estimation approach (Drori and Teboulle, 2014; Taylor et al., 2017c). Second, in Subsec-
tion 8.4.2, we leverage the convexity of the problem in its SDP form and the structure of
the cycle-existence problem to obtain a solution that admits particular symmetries: first on
the space of Gram matrices in S+

K in Subsection 8.4.2, then to decompose the cycle onto
low-dimensional subspaces in Subsection 8.4.2, and ultimately, to rewrite the problem of
finding a cycle as a linear problem in Subsection 8.4.2. Finally, in Subsection 8.4.3, we
establish numerically that, for (HB), the set of parameters for which there exists a cycle in
dimension 2 is the same as the one for which there exists any cycle.

8.4.1 Casting the existence of a cycle as a convex feasibility problem

Let (γ, β) ∈ Ωcv(Qµ,L). In this section we approach cycles from an optimization point of
view, similar in spirit with Goujaud et al. (2023a), see (P). However, we here choose to

8.4. General study of cycles for stationary first-order methods 188

directly write the existence of a cycle with period K as the following feasibility problem:

∃(x0, . . . , xK−1) 6= (x̄, . . . , x̄), ∃f ∈ Fµ,L| HBγ,β(f) cycles on (xt)06t6K−1, (P ′K)

where x̄ ,
∑K−1
i=0 xi/K is used in place of x0 to avoid constant cycles, while preserving

symmetry. By Definition 8.2.6 and Definition 8.2.8, (γ, β) ∈ ΩCycle(Fµ,L) if and only if
there exists K > 2 such that (P ′K) holds.

We now fix (γ, β) ∈ Ωcv(Qµ,L), and K > 2 in the rest of the section. We denote S+
K(R)

the cone of symmetric positive semi-definite (p.s.d.) matrices. We prove the following
result.

Theorem 8.4.2 (Cycle as an SDP). The feasibility problem (P ′K) is equivalent to the following
feasibility problem:

∃G ∈ S+
K(R), G 6= 0K , G1K = 0K , ∃F ∈ RK | ∀i, j ∈ J0,K − 1K, 〈F, ei − ej〉 > 〈G,Mi,j〉

(PK−SDP)
where (ei) corresponds to the (i+ 1)th canonical vector in RK and the the matrices Mi,j are
fixed.

In words, the feasibility problem is equivalent to the existence of a p.s.d. matrix G and a
vector F satisfying a list of linear inequalities, which is usually referred to as a semi-definite
program (SDP) (Vandenberghe and Boyd, 1996). The proof, which is given below, is
decomposed into three steps. In short, first, we give a necessary and sufficient condition on
the gradients of f for (HB)γ,β(f) to cycle over a (x0, . . . xK−1). Second, we characterize
by a list of inequalities the existence of a function f in the class Fµ,L that admits those
specific gradients. Those inequalities are referred to as interpolation conditions. Third, we
rewrite the feasibility problem in terms of the p.s.d. Gram matrix of the translated iterates
(x0− x̄, . . . xK−1− x̄) and the vector of function values (f(x0), . . . f(xK−1)): all constraints
are then linear, and the problem writes as an SDP.

Remark 8.4.3 (Link with performance estimation problems (PEPs)). This approach is
essentially the one systematically used in performance estimation (see, e.g. (Drori and Teboulle,
2014; Taylor et al., 2017a,c) for details), to cast the derivation of worst-case guarantees of
first-order optimization methods as SDPs. As proposed by (Goujaud et al., 2023a), formulating
and solving (P) through SDP formulations can be done numerically with appropriate PEP
software (Goujaud et al., 2022a; Taylor et al., 2017b) and SDP software (MOSEK, 2019).

Proof. We fix (γ, β) ∈ Ωcv(Qµ,L), and K > 2 in the proof. We first observe that for any
cycle under consideration (x0, . . . , xK−1), and any function f ∈ Fµ,L, HBγ,β(f) cycles on
(xt)06t6K−1 if an only if, for any t ∈ J0;K − 1K

∇f(xt) =
(1 + β)xt − xt+1 − βxt−1

γ
, (8.6)

where the sequence (xt)t is extended to t ∈ Z in this proof by K-periodicity as xt ,
xt (mod K) (in fact, (8.6) only requires to introduce x−1 and xK). This directly follows
from inverting (HB) recursion to obtain the unique value of the gradients that result in a
particular cycle.1

1This derivation generalizes the one of (8.2) in the proof of Lemma 8.3.4 to any cycle.

8.4. General study of cycles for stationary first-order methods 189

Therefore, for (x0, . . . , xK−1) 6= (x̄, . . . , x̄) there exists a function f ∈ Fµ,L such that
(HB)γ,β(f) cycles over (x0, . . . , xK−1) if and only if there exists a function f ∈ Fµ,L verifying
(8.6). This problem is known as interpolation problem of the class Fµ,L and a necessary and
sufficient condition is given by (Taylor et al., 2017c, Theorem 4), which is recalled below.

Lemma 8.4.4. [Fµ,L-interpolation, see (Taylor et al., 2017c)] Let I a set of indices and
(xi, gi, fi)i∈I a family of triplets. There exists a function f ∈ Fµ,L verifying ∀i ∈ I, f(xi) = fi,

and ∇f(xi) = gi, if and only

∀i, j ∈ I, fi − fj > 〈gj , xi − xj〉+
1

2L
‖gi − gj‖2 +

µ

2(1− κ)
‖xi − 1

Lgi − xj + 1
Lgj‖

2.

Consequently, using (8.6) in Lemma 8.4.4, we obtain that (P ′K) is equivalent to

∃(x0, . . . , xK−1) 6= (x̄, . . . , x̄), ∃(f0, . . . , fK−1) | ∀i, j ∈ J0,K − 1K,

fi − fj >
〈

(1 + β)xj − xj+1 − βxj−1

γ
, xi − xj

〉
(ICi,j)

+
1

2L

∥∥∥∥(1 + β)xi − xi+1 − βxi−1

γ
− (1 + β)xj − xj+1 − βxj−1

γ

∥∥∥∥2

+
µ

2(1− κ)

∥∥∥∥(1 + β − Lγ)xi − xi+1 − βxi−1

Lγ
− (1 + β − Lγ)xj − xj+1 − βxj−1

Lγ

∥∥∥∥2

.

Under this form, this feasibility problem is not convex due to quadratic terms in (xt)06t6K−1.
However, all terms involving (xt)06t6K−1 are exactly quadratic. We therefore introduce the
Gram matrix G of vectors (xt − x̄)06t6K−1, and the vector F = (f0, . . . , fK−1)T :

G =
(
x0 − x̄, . . . , xK−1 − x̄

)T (
x0 − x̄, . . . , xK−1 − x̄

)
=
(
〈xi − x̄, xj − x̄〉

)
06i,j6K−1

.

The matrix G is symmetric positive semi-definite. Moreover, for any (i, j), (1) the right
hand side of (ICi,j) can be written as 〈G,Mi,j〉, that is, as a linear combination of the
coefficients of G, for a matrix Mij obtained from (ICi,j); and (2) the left hand side of
(ICi,j) can be written as 〈F, ei − ej〉, where ei denotes the (i+ 1)th vector of the canonical
basis. This method, referred to as SDP lifting thus linearizes the above problem as

∃G ∈ S+
K(R), G 6= 0K , G1K = 0K , ∃F ∈ RK | ∀i, j ∈ J0,K − 1K, 〈F, ei − ej〉 > 〈G,Mi,j〉

for some matrices (Mi,j)i,j independent of the variables of the problem (in particular
independent of the cycle itself). Note that the constraint G 6= 0K comes from the con-
dition (x0, . . . , xK−1) 6= (x̄, . . . , x̄) and the constraint G1K = 0K comes from the fact
that 1

K

∑K−1
k=0 (xk − x̄) = 0. Overall, this corresponds to the feasibility problem given as

(PK−SDP).
�

This proof also provides a slightly stronger result, that will be leveraged in the following.

Theorem 8.4.5. The feasibility problem (P ′K) is equivalent to (PK−SDP). Moreover,

1. a) For any solution (F,G) ∈ RK×S+
K(R) of (PK−SDP), there exist points (x0, . . . , xK−1)

in dimension at most K − 1 such that G is the Gram matrix of (x0, . . . , xK−1).

b) Moreover for all such (x0, . . . , xK−1), there exists a function f ∈ Fµ,L such that
(HB)γ,β(f) cycles over (x0, . . . , xK−1), F = (f(xk))k∈J0,K−1K and G is the Gram
matrix of the vectors (x0, . . . , xK−1).

8.4. General study of cycles for stationary first-order methods 190

2. For any points (x0, . . . , xK−1) and function f ∈ Fµ,L solution of (P ′K) then with F =

(f(xk))k∈J0,K−1K and G the Gram matrix of the vectors (x0, . . . , xK−1), we have that (F,G)

is a solution of (PK−SDP),

This results thus links the solution of the two problems.

8.4.2 Building a symmetric feasible point from a given feasible point

Circulant solution to (PK−SDP)

In this section, we leverage simultaneously the existence of a cycle under the SDP form
given by Theorem 8.4.2 and the initial form of the problem as the existence of a cycle for a
stationary first-order method – which is the case for (HB). We consider K, γ, β to be fixed
in what follows.

In short, the proof builds upon the intuition that all iterates within the cycle play a sym-
metric role. As a consequence, from a given cycle C0 = (x0, x1, . . . , xK−1) with G0 the Gram
matrix of (xk)k∈J0,K−1K, we have access to K − 1 other cycles C1 , (x1, x2, . . . , xK−1, x0),
. . . , Cs = (xs, xs+1 . . . , xs−1), . . . , for which the Gram matrix (Gs)s∈J0,K−1K is obtained
by applying a circular permutation to the rows and columns of G0. We then average
G0, . . . , GK−1: Ḡ = 1

K

∑K−1
s=0 Gs is a solution to the problem, and a circulant matrix.

Definition 8.4.6 (Circulant matrix). We denote

JK , (δi+1−j (mod K))16i,j6K =


0 1 0 . . . 0

0 0 1 . . . 0
...

. . .
...

0 1

1 0 0 . . . 0

.

A matrix M of dimension (K ×K) is said to be circulant if it is equal to a polynomial in JK ,
i.e. there exist (c0, c1, . . . , cd−1) such that

M = c0Id + c1J + · · ·+ cK−1J
K−1 =


c0 c1 c2 . . . cK−1

cK−1 c0 c1 cK−2

cK−2 cK−1 c0 cK−3

...
. . .

...
c1 c2 c3 . . . c0

.

As Gram matrices are also symmetric, we will have an additional constraint that
c1 = cK−1, c2 = cK−2, etc. We establish the following result describing symmetric solutions
to (PK−SDP).

Theorem 8.4.7 (Symmetries of the cycle). If (PK−SDP) admits a solution, then (PK−SDP)
admits a solution (F̄ , Ḡ) with F̄ = 0K and Ḡ a (symmetric) circulant matrix.

In short, from a solution to (PK−SDP), we build K − 1 other solutions by performing a
circular permutation of the elements of the cycle. This corresponds to applying a circular
permutation matrix to the Gram matrix of the iterates. We can then average the K solutions
of the problem: by convexity of the set of solutions of the SDP, the resulting Gram matrix is
still a solution to the problem. We make this argument precise in the following proof.

Proof. Assume there exists a solution (F0, G0) ∈ RK×S+
K(R) of (PK−SDP), i.e., that (F0, G0)

8.4. General study of cycles for stationary first-order methods 191

are such that G0 6= 0K , G1K = 0K and for all i, j ∈ J0,K − 1K, 〈F0, ei − ej〉 > 〈G0,Mi,j〉.
From Theorem 8.4.5-1 there exists a cycle C0 = (x0, . . . , xK−1) and a function f ∈ Fµ,L
such that HBγ,β(f) cycles on C0, and G0 = (〈xi, xj〉)06i,j6K−1 is the Gram matrix of the
iterates and F0 = (f(xi))06i6K−1 the vector of function values.

Furthermore, for a stationary method, cycling over C0 = (x0, . . . , xK−1) is equivalent
to cycling over Cs = (xs, xs+1 . . . , xs−1) for any s ∈ J0,K − 1K. This leads to K − 1 other
solutions to (PK−SDP):

Fs , (f(xi+s))06i6K−1, Gs , (〈xi+s, xj+s〉)06i,j6K−1.

Remarkably, the solution (Fs, Gs) is obtained from F0, G0 by cyclically permuting the
elements of F0 as well as the rows and columns of G0. Indeed, for Fs, we start with the
(s + 1)th element of F , and end with its sth element. Similarly, we start in Gs with the
(s+ 1)th row and column of G and end with the its sth row and column. Mathematically,
for all s ∈ J0,K − 1K, we have that Fs = J−sK F0 and Gs = J−sK G0J

s
K . And (Fs, Gs) is a

solution to (PK−SDP). By convexity of the set of solutions to (PK−SDP),

(F̄ , Ḡ) ,

(
1

K

K−1∑
s=0

Fs,
1

K

K−1∑
s=0

Gs

)
=

(
1

K

K−1∑
s=0

J−sK F0,
1

K

K−1∑
s=0

J−sK G0J
s
K

)

is also solution to (PK−SDP). Moreover, note that the vector F̄ is colinear with 1K and
that it only appears in (PK−SDP) via inner products with vectors orthogonal to 1K (only
differences between 2 components matters). Therefore, (0K ,

1
K

∑K−1
s=0 J−sK GJsK) is also

solution to (PK−SDP). We use the following fact to conclude.

Fact 8.4.8. A matrix M is circulant if and only if M = J−1
K MJK .

Thus Ḡ = 1
K

∑K−1
s=0 J−sK GJsK is a circulant matrix, as

J−1
K ḠJK = J−1

K

(
1

K

K−1∑
s=0

J−sK GJsK

)
JK =

1

K

K∑
s=1

J−sK GJsK =
1

K

K−1∑
s=0

J−sK GJsK = Ḡ,

thereby arriving to the desired claim. �

In the next section, we rely on the symmetries of the Gram matrix to gain insights on the
shape of a corresponding cycle (xk)k∈J0,K−1K.

From symmetries on the Gram matrix to symmetric cycle shapes

Leveraging Theorem 8.4.5, we obtain that any cycle (x0, . . . , xK−1) obtained from a cir-
culant matrix Ḡ (i.e., such that Ḡ is its Gram matrix), has multiple symmetries. This is
formalized in the following corollary.

Corollary 8.4.9. If (HB)γ,β has a cycle2 on Fµ,L then (HB)γ,β cycles on a symmetric cycle
(xi)i∈J0,K−1K on Fµ,L. A symmetric cycle is such that its Gram matrix is symmetric circulant,
i.e.:

1. for all t ∈ J0,K − 1K, ‖xt‖2 = c0, i.e. all iterates are on a sphere,

2. for all t ∈ J0,K − 1K, 〈xt, xt+1〉 = c1, i.e. the inner product between two consecutive
iterates is constant along the cycle,

2in the sense of Definition 8.2.6, items 2 and 3.

8.4. General study of cycles for stationary first-order methods 192

3. more generally, there exist (cs)s∈J0,K−1K, such that for all s, t ∈ J0,K − 1K, 〈xt, xt+s〉 =

cs, i.e. the inner product between two s-separated iterates is constant along the cycle.

Proof. If (HB)γ,β has a cycle on Fµ,L then by Theorem 8.4.2 then Theorem 8.4.7, there
exists a circulant solution to (PK−SDP). A symmetric cycle is obtained from Theorem 8.4.5-
1a on the circulant solution. �

Motivating the roots-of-unity cyclic structure. An example of such a symmetric cycle
is the roots-of-unity cycle in dimension 2 (see Definition 8.3.1), that was the focus of
Section 8.3. It corresponds to the arguably simplest solution to obtain the symmetries
mentioned above. Corollary 8.4.9 thus supports the idea of looking for simple two-
dimensional roots-of-unity cycles: the study of those particular cycles, that are sufficient
to demonstrate the main non-acceleration result Theorem 8.3.6, takes its roots in this
higher-level analysis of the cycles as an SDP and the inherent symmetries of the problem.

Example 8.4.10. A straightforward application of the symmetrization process given in the
proof of Theorem 8.4.7 is the symmetrization of the cycle provided by Lessard et al. (2016),
which is a one-dimensional cycle over the three iterates: (x0, x1, x2) = 1

1225(792,−2208, 2592).
The Gram matrix of the centered iterates (x0 − x̄, x1 − x̄, x2 − x̄) is

G0 =

(
8

49

)2
 4 −26 22

−26 169 −143
22 −143 121


After the circulation process described in the proof on Theorem 8.4.7, we obtain that Ḡ =

82

49

 2 −1 −1
−1 2 −1
−1 −1 2

. This Gram matrix is (proportional to) the one of the 3rd-roots-of-unity

cycle 3.

Although we cannot prove that in full generality, if (HB)γ,β has a cycle on Fµ,L then
(HB)γ,β cycles over a roots-of-unity cycle, the next result provides a generic decomposition,
beyond dimension 2, of the symmetric cycles.

Proposition 8.4.11. If (HB)γ,β has a cycle onFµ,L then (HB)γ,β cycles onK points (xk)k∈J0,K−1K

on Fµ,L, for which there exist ν̃1, . . . , ν̃bK/2c > 0, such that for all k ∈ J0,K − 1K

xk =



ν̃1

(
cos
(
k × 2π×1

K

)
sin
(
k × 2π×1

K

)) [block 1]

...

ν̃`

(
cos
(
k × 2π×`

K

)
sin
(
k × 2π×`

K

)) [block `]

...

ν̃bK−1
2 c

cos

(
k × 2π×bK−1

2 c
K

)
sin

(
k × 2π×bK−1

2 c
K

)
 [block bK−1

2
c]

ν̃K
2

(
(−1)k)

)
[block K

2
, only if K is even]



∈ RK−1

(Symmetric Cycle)

8.4. General study of cycles for stationary first-order methods 193

All points (xk)k∈J0,K−1K are in dimension K − 1, as mentioned in Theorem 8.4.5-1.
The points (xk)k∈J0,K−1K are decomposed over a Cartesian product of bK−1

2 c independent
two-dimensional spaces: on each block, the cycle is perfectly regular. For example, on block
1, one recognizes the roots-of-unity shape. If K − 1 is even, there are exactly (K − 1)/2

blocks of dimension 2, and if K is even there are exactly (K − 2)/2 blocks of dimension 2,
and one block of dimension 1.

Proof. First, recall that by Theorem 8.4.2 then Theorem 8.4.7, if (HB)γ,β has a cycle on
Fµ,L, then (PK−SDP) admits a solution (0, Ḡ) with Ḡ a (symmetric) circulant matrix.

Second, circulant matrices constitute a long standing object of interest in linear algebra,
and their reduction properties are well understood (Gray, 2006). We use the following
lemma.

Lemma 8.4.12. A matrix Ḡ is symmetric and circulant such that Ḡ1K = 0, if and only is there
exist non-negative ν1, . . . , νbK/2c such that Ḡ =

∑bK/2c
`=1 ν`H`, with H` ,

(
cos

(
2π`
K |i− j|

))
i,j

.

This is a classical result, whose proof is recalled for completeness in Section 8.C. For
each ` ∈ J0, bK2 cK, the matrix H` is a rank 2 matrix and is the Gram matrices of the family

of vectors

cos
(
k × 2π`

K

)
sin
(
k × 2π`

K

)
k∈J0,K−1K

that corresponds to the `th block.

Overall, considering ν1, . . . , νbK/2c that provide a decomposition Ḡ as in Lemma 8.4.12,
and defining (xk)k∈J0,K−1K by (Symmetric Cycle) with ν̃` =

√
ν`, we obtain that the Gram

matrix of (xk)k∈J0,K−1K is Ḡ. Finally, Theorem 8.4.5-1b provides the desired claim. �

Overall, this provides a complete picture of shape of all cycles of period K. There is no
apparent reason for the (Symmetric Cycle) to further reduce to dimension 2, and the proof
of such a result is left as an open question. In Subsection 8.4.3, a numerical comparison
of the cycles obtained analytically as roots-of-unity cycles in dimension 2 and the ones
obtained numerically by solving directly (PK−SDP). Before turning to this numerical study,
we underline that our analysis enables to rewrite the existence of a cycle as a linear
feasibility problem.

Casting the problem of finding cycles as a linear feasibility problem

A notable byproduct of Lemma 8.4.12 is the decomposition of any circulant matrix as
a positive linear combination of elementary matrices. This enables to reparametrize
(PK−SDP) as a linear problem:

Theorem 8.4.13. (P ′K) and (PK−SDP) are equivalent to the following linear problem:

∃ν ∈ RbK/2c>0 , ν 6= 0bK/2c, ∀i ∈ J0,K − 1K, 0 >
bK/2c∑
`=1

ν` 〈H`,Mi,j=0〉 (PK−LP)

Equivalently, introducing the matrix P =
(
〈Mi,j=0, H`〉i∈J0,K−1K,`∈J1,bK/2cK

)
∈ R(K−1)×bK/2c,

(PK−LP) writes, for Pν ∈ RK−1, as:

∃ν ∈ RbK/2c>0 , Pν 6 0.

8.4. General study of cycles for stationary first-order methods 194

(a) For K ∈ J2, 25K, comparison between
ΩK-◦-Cycle(Fµ,L) (analytically obtained in Sec-
tion 8.3), which borders are represented as
black lines, and ΩCycle(Fµ,L), represented as the
set of purple points, obtained by solving Equa-
tion (PK−SDP).

(b) Comparison between the hyper-parameter
regions ΩCycle(Fµ,L) for which we obtain cy-
cles, ΩTaylor(Fµ,L) for which a Lyapunov is found
numerically, and ΩGhad.(Fµ,L) for which a Lya-
punov is known analytically

Figure 8.7: Numerical results on the behavior of (HB) as a function of (γ, β).

Proof. We use Theorem 8.4.7 to obtain a circulant symmetric solution from (PK−SDP), then
by Lemma 8.4.12 all circulant symmetric matrices Ḡ are written as a linear combination∑bK/2c
`=1 ν`H`, with (ν`)`∈J1,bK/2cK ∈ RbK/2c>0 . We obtain (PK−LP) by parametrizing the

problem by ν, as for any (i, j),
〈
Ḡ,Mi,j

〉
=
∑bK/2c
`=1 ν` 〈H`,Mi,j〉, and by observing that for

any (i, j),
〈
Ḡ,Mi,j

〉
6 0 if and only if

〈
Ḡ,Mi−j,0

〉
6 0, as Ḡ is circulant. �

In conclusion, we observe that a cycle can either be parametrized by

1. Initially, in Definition 8.2.6 and (P ′K), by (xk)k∈J0,K−1K ∈ (Rd)K and f ∈ Fµ,L.

2. Second, by G ∈ S+
K(R) in (PK−SDP) and Theorem 8.4.2, with (K − 1)2 constraints.

3. Then, using Theorem 8.4.7, by (ck)k∈J0,K−1K the first row of the circulant matrix Ḡ . But
the constraints on c0, . . . cK−1 correspond to an SDP type constraint.

4. Finally, in Proposition 8.4.11 and (PK−LP) , by (ν̃`)`∈J0,bK/2cK, onto which only K−
linear constraints hold.

The latest parametrization, as (PK−LP), naturally provides the best numerical results, that
are given in the next section.

8.4.3 Numerical results on (HB)

In this section, we provide a comparison between the roots-of-unity cycling region Ω◦-Cycle(Fµ,L)

obtained analytically in Section 8.3 and ΩCycle(Fµ,L) obtained numerically by solving
(PK−SDP). On Figure 8.7a, we observe that the two sets appear to be identical, i.e., numer-
ically Ω◦-Cycle(Fµ,L) = ΩCycle(Fµ,L).

Secondly, we compare in Figure 8.7b the hyper-parameter regions ΩCycle(Fµ,L) for
which we obtain cycles, ΩTaylor(Fµ,L) for which a Lyapunov is found numerically in Gou-
jaud et al. (2023a) using the approach of Taylor et al. (2018a), and ΩGhad.(Fµ,L) for
which a Lyapunov is known analytically (see Lemma 8.2.5). We observe that numerically,

8.5. Robustness of the roots-of-unity cycle 195

(a) (γ, β) = (3.3, 0.75), (µ,L) = (.005, 1), K = 7 (b) (γ, β) = (3.8, 0.95), (µ,L) = (.005, 1), K = 7

Figure 8.8: Shape of the counter-example function ψKγ,β,µ,L (See Figure 8.4), locally
quadratic neighborhood (Vk)k∈J0,K−1K (white background, highlighted in orange for V0),
and ball B(x◦0, rmax).

(ΩCycle(Fµ,L))c and ΩTaylor(Fµ,L) are nearly similar, apart from some small neighborhoods
(left white on Figure 8.7b). These observations can be summarized as follows.

Fact 8.4.14. For any 0 < µ 6 L:

ΩGhad.(Fµ,L) ⊆ ΩTaylor(Fµ,L) ⊆ Ωcv(Fµ,L) ⊆ (ΩCycle(Fµ,L))c ⊆ (Ω◦-Cycle(Fµ,L))c ⊆ Ωcv(Qµ,L).

Conjecture 8.4.15. For any 0 < µ 6 L:

ΩGhad.(Fµ,L) (ΩTaylor(Fµ,L)


⊂ Ωcv(Fµ,L) =

or

= Ωcv(Fµ,L) ⊂

 (ΩCycle(Fµ,L))c = (Ω◦-Cycle(Fµ,L))c (Ωcv(Qµ,L).

Although the proof of this conjecture is left open, it is strongly supported by the
numerical experiments given above.

In the next section, we demonstrate the cycles obtained in Section 8.3 are robust to a
perturbation and to small variations of γ, β, thereby naturally strengthening our results.

8.5 Robustness of the roots-of-unity cycle

In Theorem 8.3.5 we proved that, for any K > 2, for any (γ, β) ∈ ΩK-◦-Cycle(Fµ,L),
(HB)γ,β(ψKγ,β,µ,L) cycles over K , where ψKγ,β,µ,L is defined in (8.3) as

ψKγ,β,µ,L(x) =
L

2
‖x‖2 − L− µ

2
d(x, convh {Mx◦t , t ∈ J0,K − 1K})2.

A natural concern is the robustness of this result to an initial perturbation of the starting
points, or a random or adversarial perturbations of the gradients or the hyperparameters.
In this section, building on the properties of ψKγ,β,µ,L, we establish that the cycle is indeed
robust to an initial perturbation of (x0, x1) in a neighborhood, to small (random or adver-
sarial) variations of the parameters γ and β at each iteration, and to a small (random or

8.5. Robustness of the roots-of-unity cycle 196

adversarial) noise on the gradient. We explicitly quantify neighborhoods providing such
stability.

To establish stability properties, we leverage the fact that the function ψKγ,β,µ,L is locally
quadratic around the iterates of K . In the rest of the section and the proofs, we extend
again (x◦k) to k ∈ Z by K-periodicity, as (x◦k) = (x◦k (mod K)). For k ∈ J0,K − 1K, we
introduce the neighborhood Vk of x◦k as follows.

Definition 8.5.1 (Locally quadratic neighborhood (Vk)k∈J0,K−1K). For any k ∈ J0,K − 1K,
we denote Vk the largest neighborhood of x◦k over which ψKγ,β,µ,L is quadratic with Hessian
µI2.

This neighborhood is represented on Figure 8.8 as the white area surrounding x◦k,
highlighted in orange for V0. Formally, Vk is composed of all points that have the
same projection on convh {Mx◦t , t ∈ J0,K − 1K} as x◦k. Moreover, if we define rmax =

−
〈

(I −M)x◦0,
M(x◦1−x

◦
0)

‖M(x◦1−x
◦
0)‖

〉
, as the distance between x◦0 and the light gray area, as repre-

sented in Figure 8.8, we have that for any k, B(x◦k, rmax) ⊆ Vk. Moreover, as the function
is locally quadratic, for any z ∈ Vk,

ψKγ,β,µ,L(z) =
L

2
‖z‖2 − L− µ

2
‖z −Mx◦k‖2 =

µ

2
‖z‖2 + (L− µ)〈Mx◦k, z〉 −

L− µ
2
‖Mx◦k‖2

∇ψKγ,β,µ,L(z) = Lz − (L− µ)(z −Mx◦k) = ∇ψKγ,β,µ,L(x◦k) + µ(z − x◦k). (8.7)

We first consider the case of a perturbation of the initial point, for which we prove the
following result:

Theorem 8.5.2. Consider 0 < µ < L, K > 2, the roots-of-unity cycle (x◦k)k∈J0,K−1K and
(γ, β) ∈ ΩK-◦-Cycle(Fµ,L). Let (zt)t∈N be the sequence generated by running (HB)γ,β initialized
at (z0, z1) = (x◦0 + δ0, x

◦
1 + δ1). There exists κP such that if

√
‖δ0‖2 + ‖δ1‖2 6 κP rmax, the

following properties hold:

1. for all t ∈ N, zt ∈ Vt (mod K),

2. the sequence δt , zt − x◦t follows the dynamic of (HB)γ,β(x 7→ µ
2‖x‖

2), initialized at
(δ0, δ1),

3. consequently, ‖zt − x◦t ‖ converges to 0 as t→∞, at rate ργ,β(Qµ,L=µ).

The first two points are proved simultaneously, and the third point is a consequence of
the second. In words, we show that at all iterations, the iterate zt remains in the locally
quadratic neighborhood of x◦t , and that remarkably, the dynamic of the residual (δt) is then
precisely the one of a (HB) dynamic on an isotropic (i.e., with κ = 1) quadratic function.
Indeed, if zt ∈ Vt (mod K), we have that:

zt+1
(HB)
= zt − γ∇ψKγ,β,µ,L(zt) + β(zt − zt−1).

And as (zt)t = (x◦t + δt)t, using the formula for the gradient (8.7), we get

x◦t+1 + δt+1
(8.7)
= x◦t + δt − γ∇ψKγ,β,µ,L(x◦t)− γµδt + β(x◦t − x◦t−1) + β(δt − δt−1).

Moreover, as (HB)γ,β(ψKγ,β,µ,L) cycles over K , x◦t+1=x◦t − γ∇ψKγ,β,µ,L(x◦t) + β(x◦t − x◦t−1)

thus

δt+1=δt − γµδt + β(δt − δt−1). (8.8)

8.5. Robustness of the roots-of-unity cycle 197

Which means that as long as zt ∈ Vt (mod K), δt+1 is obtained by the dynamic of (HB) on
the quadratic isotropic function x 7→ µ

2‖x‖
2. We now give the complete proof.

Proof. We introduce matrices P and D verifying PDP−1 =

(
(1 + β)I2 − µγI2 −βI2

I2 0

)
,

and such that the operator norm ρD of the matrix D, ρD = ‖D‖op is smaller than 1,
and set κP = 1

‖P‖op‖P−1‖op
6 1. The existence of such matrices is guaranteed as (γ, β) ∈

Ωcv(Qµ,L). To ensure that zt ∈ Vt (mod K) (point 1 in Theorem 8.5.2), we prove that

∀t > 1,

∥∥∥∥∥P−1

(
δt
δt−1

)∥∥∥∥∥ 6 rmax
‖P‖op

. Indeed, this is a stronger statement, as it implies that

∀t > 1,

∥∥∥∥∥
(
δt
δt−1

)∥∥∥∥∥ 6 rmax, thus zt ∈ B(x◦t (mod K), rmax) ⊆ Vt (mod K).

We prove simultaneously by induction point 2 of Theorem 8.5.2 and the condition ∀t >

1,

∥∥∥∥∥P−1

(
δt
δt−1

)∥∥∥∥∥ 6 rmax
‖P‖op

.

Initialization:

∥∥∥∥∥
(
δ1

δ0

)∥∥∥∥∥ =
√
‖δ0‖2 + ‖δ1‖2 6 κP rmax = rmax

‖P‖op‖P−1‖op
implies

∥∥∥∥∥P−1

(
δ1

δ0

)∥∥∥∥∥ 6
rmax
‖P‖op

.

Induction: By induction hypothesis zt ∈ Vt (mod K), thus by (8.8), δt+1 is obtained by (HB):(
δt+1

δt

)
=

(
(1 + β)I2 − µγI2 −βI2

I2 0

)(
δt
δt−1

)
= PDP−1

(
δt
δt−1

)

⇒
∥∥∥∥∥P−1

(
δt+1

δt

)∥∥∥∥∥ =

∥∥∥∥∥DP−1

(
δt
δt−1

)∥∥∥∥∥ ρD=‖D‖op

6 ρD

∥∥∥∥∥P−1

(
δt
δt−1

)∥∥∥∥∥ by induction
6 ρD

rmax

‖P‖op
6

rmax

‖P‖op
.

This concludes the induction and proves the first two items of Theorem 8.5.2. Finally,
Point 3 of Theorem 8.5.2 is thus a consequence of point 2 and Proposition 8.2.1.

�

We now give a more general theorem, that provides a stability result w.r.t. the initial
points and (potentially adversarial) small perturbations of γ, β at each iteration, and of
the gradient oracles. Furthermore, we give explicit neighborhoods preserving the non-
convergence property of (HB) on ψKγ,β,µ,L. As in Theorem 8.5.2, we consider that the process
starts at a perturbed point (x◦0 +δ0, x

◦
1 +δ1). Moreover, instead of applying parameters (γ, β)

at each step, we consider that step t is performed with parameters (γt, βt) = (γ+δγt , β+δβt),
and rely on perturbed (or noised) gradients ĝt(z) = ∇ψKγ,β,µ,L(z) + δgt .

Theorem 8.5.3. Consider 0 < µ < L, K > 2, the roots-of-unity cycle (x◦k)k∈J0,K−1K, and
(γ, β) ∈ ΩK-◦-Cycle(Fµ,L). Let (zt)t∈N be the sequence generated by running (HB)γt,βt , with
time varying parameters γt, βt, initialized at (z0, z1) = (x◦0 + δ0, x

◦
1 + δ1), with perturbed

gradients ĝt(z) = ∇ψKγ,β,µ,L(z) + δgt . There exist κP and ρD < 1 (made explicit in the proof)
such that if the following three conditions hold,

1.
√
‖δ0‖2 + ‖δ1‖2 6 κP rmax,

2. for all t ∈ N,
(

4
γ + µκP rmax

)
|δγt |+ (2 + 2κP rmax) |δβt | 6 1

2(1− ρD)κP rmax,

3. for all t ∈ N, 4
L‖δgt‖ 6

1
2(1− ρD)κP rmax,

8.6. No acceleration of (HB) under higher-order regularity assumptions 198

then, (zt)t>0 keeps cycling in a neighborhood of K: ‖zt − x◦t (mod K)‖ 6 rmax (and thus
zt ∈ Vt (mod K)).

The proof extends the one of Theorem 8.5.2 and is postponed to Subsection 8.D.1.
The constants κP , ρD are identical to the ones exhibited in the proof of Theorem 8.5.2.
Overall, we conclude that, as soon as rmax > 0, i.e. as soon as (γ, β) belongs to the interior
Int(Ω◦-Cycle(Fµ,L)) of Ω◦-Cycle(Fµ,L), the cycle is attractive and robust to small variations
of the initialization, parameters and gradient oracles. These robustness results ensure that
the counter-examples we provide cannot be circumvented by adding small perturbations or
stochasticity, and therefore strongly reinforce our conclusions.

In the last section, we explore a different direction, which is the question of acceleration
of (HB) if we restrict the class Fµ,L to functions that have a Lipschitz-continuous Hessian
(i.e., under higher-order regularity assumptions), or even any higher order regularity.

8.6 No acceleration of (HB) under higher-order regularity
assumptions

A natural way to tentatively extend the proof of (HB)’s acceleration beyond quadratics,
consists in assuming Hessian Lipschitz continuity (Wang et al., 2022). Indeed, for 0 <

µ < L, K > 2 and (γ, β) ∈ ΩK-◦-Cycle(Fµ,L) the counter-example function ψKγ,β,µ,L used in
Section 8.3 is quadratic by part, i.e., its hessian is constant by part. As its Hessian is not
constant everywhere, ψKγ,β,µ,L is not even 3 times differentiable, so our counter-example
approach seemingly leaves room for improvement under a restricted class of more regular
functions. We first focus on the class of Hessian-Lipschitz functions, and will extend the
argument to higher-order regularity.

Definition 8.6.1. Let Fτµ,L be the set of functions f in Fµ,L that are three times differentiable,
with τ -Lipschitz Hessian:

∀z, w, ‖∇2f(z)−∇2f(w)‖ 6 τ‖z − w‖.

For any µ,L and τ , we have Qµ,L ⊆ Fτµ,L ⊂ Fµ,L. In the rest of the section we consider
fixed 0 < µ < L, K > 2 and (γ, β) ∈ Int(ΩK-◦-Cycle(Fµ,L)). We thus omit the indices on the
notion of ψ and simply use:

ψ := ψKγ,β,µ,L.

In this section, we prove that (HB) does not accelerate on Fτµ,L.

Theorem 8.6.2. For 0 < µ < L, K > 2 and (γ, β) ∈ Int(ΩK-◦-Cycle(Fµ,L)),

1. there exists τ and a function ϕ ∈ Fτµ,L such that (HB)γ,β(ϕ) cycles over K ,

2. moreover, for any τ > 0, (HB)γ,β has a cycle on Fτµ,L.

The second point means that the set of parameters (γ, β) for which (HB)γ,β cycles
over Fτµ,L contains the interior of the set of parameters for which (HB)γ,β cycles on a
roots-of-unity cycle over Fµ,L:

∀τ > 0,ΩCycle(Fτµ,L) ⊇ Int(Ω◦-Cycle(Fµ,L)), (8.9)

8.6. No acceleration of (HB) under higher-order regularity assumptions 199

and a direct consequence is that the non-acceleration result Corollary 8.3.7 extends to Fτµ,L:
∀τ > 0,∀0 < µ < L,

ρ?(Fτµ,L) , arg min
(γ,β)∈R×R

ργ,β(Fτµ,L) > arg min
(γ,β)∈(ΩCycle(Fτµ,L))c

ργ,β(Fτµ,L) as Ωcv(Fτµ,L) ⊆ (ΩCycle(Fτµ,L))c

> arg min
(γ,β)∈(ΩCycle(Fτµ,L))c

ργ,β(Qµ,L) as Qµ,L ⊆ Fτµ,L

> arg min
(γ,β)∈(Ω◦-Cycle(Fµ,L))c

ργ,β(Qµ,L) by Equation (8.9)

>
1− Cκ
1 + Cκ

by Theorem 8.3.6,

for a constant C (in fact, any C > 50/3). The rate ρ?(Fτµ,L) is thus lower bounded,
independently of τ , by a non accelerated rate, which proves that Hessian regularity does
not help to obtain acceleration.

Interpretation. This result is surprising as a discontinuity appears in τ = 0. Indeed, for
τ = 0, Fτµ,L = Qµ,L, and acceleration is obtained. The mapping τ 7→ ρ?(Fτµ,L) is thus not
continuous in τ = 0. A significant nuance to help grasp this phenomenon is that we do
not prove that for all τ > 0, Ω◦-Cycle(Fτµ,L) ⊃ Ω◦-Cycle(Fµ,L), that is that the existence of a
roots-of-unity cycle on Fµ,L implies the existence of a roots-of-unity cycle on Fτµ,L for any
τ > 0. Such a property is in fact not true. On the other hand, Item 1 in Theorem 8.6.2
means that ∪τ>0Ω◦-Cycle(Fτµ,L) ⊃ Ω◦-Cycle(Fµ,L). To obtain this result, we show that there
exists a τ such that we can “regularize” the counter-example ψ to obtain a function in Fτµ,L
that cycles over the roots-of-unity cycle. Then Item 2 in Theorem 8.6.2 establishes that
there exist a cycle for all τ . But this cycle is not necessarily K : on the contrary, the cycle
corresponds to a dilated version of K , with a radius that diverges as τ → 0. Such a cycle
thus does not have a limit as τ → 0, which explains the discontinuity of τ 7→ ρ?(Fτµ,L).

In order to prove Theorem 8.6.2, we establish the following two lemmas, that respec-
tively result in Items 1 and 2 in Theorem 8.6.2, and are given in the next two sections.

8.6.1 Proof of Item 1 of Theorem 8.6.2

First, in order to obtain a more regular function from ψ, we use convolutions. We consider
a infinitely differentiable convolution kernel uε with bounded support B(0, ε), such that uε
is the probability density function of a zero centered random variable. For any ε > 0, let

ϕε , uε ∗ ψ.

We obtain the following lemma.

Lemma 8.6.3. Let 0 < µ < L, K > 2 and (γ, β) ∈ Int(ΩK-◦-Cycle(Fµ,L)). Then we have:

1. ϕε is infinitely differentiable and there exists τ such that ϕε ∈ Fτµ,L.

2. For any ε 6 rmax (with rmax defined in Section 8.5), the gradients of ϕε and ψ coincide
on K , that is for all k ∈ J0,K − 1K,

∇ϕε(x◦k) = ∇ψ(x◦k).

8.6. No acceleration of (HB) under higher-order regularity assumptions 200

Proof. The first point results from properties of convolution against probability density
functions, that are recalled in Lemma 8.E.5 in Section 8.E. The second point is a conse-
quence of the fact that ψ is locally quadratic (thus its gradient ∇ψ is locally linear). Since
ψ is differentiable, we have for all z ∈ R2

∇ϕε(z) = ∇ (ψ ∗ uε) (z) = ((∇ψ) ∗ uε) (z) =

∫
y∈B(0,ε)

∇ψ(z − y) uε(y) dy,

where the last step uses the fact that uε has support B(0, ε). Then, for k ∈ J0,K − 1K and
z = x◦k a point of K , we have that for any y ∈ B(0, ε), if ε 6 rmax, x◦k − y ∈ Vk and by
(8.7), ∇ψ(x◦k − y) = ∇ψ(x◦k)− µy. Thus

∇ϕε(x◦k) = ∇ψ(x◦k)− µ
∫
y∈B(0,ε)

yuε(y)dy = ∇ψ(x◦k).

�

Proof of Theorem 8.6.2 (Item 1). Item 1 of Theorem 8.6.2 is a direct consequence of
Lemma 8.6.3: we use ϕ , ϕε for any ε 6 rmax, as rmax > 0 for (γ, β) ∈ Int(ΩK-◦-Cycle(Fµ,L)).
�

8.6.2 Proof of Item 2 of Theorem 8.6.2

As for Item 2 of Theorem 8.6.2, it can be obtained from a scaling argument provided by
the following lemma.

Lemma 8.6.4. Let 0 < µ < L, K > 2 and (γ, β) ∈ Int(ΩK-◦-Cycle(Fµ,L)). Let ϕ ∈ Fτµ,L be a

function that cycles over K obtained by Theorem 8.6.2. Define ϕ(λ)
ε as

ϕ(λ)
ε (x) , λ2ϕε

(
1

λ
x

)
.

Then:

1. ϕ(λ)
ε ∈ C∞ and ϕ(λ)

ε ∈ Fτ/λµ,L .

2. (HB)γ,β(ϕ
(λ)
ε) cycles on the scaled roots of unity cycle λ× K .

The function ϕ(λ)
ε is chosen such that the gradients scale proportionally with λ, (as the

cycle λ× K), the Hessian is un-scaled, and the third-order derivative scales with 1/λ.
Proof. First, ϕε ∈ C∞, ϕ(λ)

ε ∈ C∞. Second, ϕ(λ)
ε ∈ Fµ,L as ∇2ϕ

(λ)
ε (x) = ∇2ϕε

(
1
λx
)

and

ϕε ∈ Fµ,L. Third, for any r > 3, ∇rϕ(λ)
ε (x) = 1

λr−2∇rϕε
(

1
λx
)
.

Furthermore, ∇ϕ(λ)
ε (x) = λ∇ϕε

(
1
λx
)
, hence ∇ϕ(λ)

ε (λx) = λ∇ϕε (x). Therefore,

(HB) γ,β (ϕ
(λ)
ε) cycles on λ K . Indeed, (HB) γ,β (ϕε) cycles on K , i.e. ∀t ∈ J0,K −

1K, x◦t+1 = x◦t − γ∇ϕε(x◦t) +β(x◦t −x◦t−1). Multiplying by λ, we get ∀t ∈ J0,K− 1K, λx◦t+1 =

λx◦t − γλ∇ϕε(x◦t) + β(λx◦t − λx◦t−1) = λx◦t − γ∇ϕ(λ)
ε (λx◦t) + β(λx◦t − λx◦t−1), that is

(HB) γ,β (ϕ
(λ)
ε) cycles on λ K . �

Proof of Theorem 8.6.2 (Item 2). It is a direct consequence of Lemma 8.6.4, by choosing
λ large enough, it shows that for all τ > 0, (HB)γ,β has a cycle on Fτµ,L. �

8.7. Concluding remarks 201

8.6.3 Beyond third-order regularity

As a conclusion of this section, we showed that Hessian-Lipschitz continuity does not help
to obtain acceleration of (HB). It turns out that the arguments work beyond third-order
regularity, and that no Lipschitz argument on higher-order derivative can help improving
the situation.

In short, the arguments used for controlling the third-order derivative in this section can
be extended to impose any bound on higher-order derivatives of the function. In particular,
the scaling argument made in Lemma 8.6.4 enables to arbitrarily reduce all derivatives
of order higher than 2 of the C∞ function obtained in Lemma 8.6.3, whose derivatives
are all uniformly bounded. This extension is thus for free: we choose to focus on the
third-order derivative in this section for simplicity of exposition, but the generalization
follows naturally.

8.7 Concluding remarks

As a brief summary, this work provides a definitive and negative answer to the question of
obtaining accelerated convergence rate by using the heavy-ball (HB) method on all smooth
strongly convex functions beyond quadratics. In other words, for smooth strongly convex
minimization, the complexity of HB is the same as the one of GD, up to at most a constant
50/3 ' 17. Further, we show that this result is stable to reasonable additional assumptions,
including that of Lipschitz conditions on the Hessian of the problem, or to functions in
the set C∞ ∩ Fµ,L, and also robust to perturbations to the initial conditions, as well as to
parameter and gradient noise.

Furthermore, we propose two constructive approaches, based on the construction of
cyclic trajectories, for disproving convergence of (stationary) optimization methods. The
first one consists in constructing a two-dimensional cycles (namely roots-of-unity cycles), and
the second one provides a linear program for testing the existence of higher-dimensional
cycles.

Future work and open questions. There remain a few open questions related to the
convergence of HB, or that are raised by our work. In particular, we highlight the following
points.

First, we now have an upper bound and a lower bound on (HB)’s convergence rate,
both in 1−Θ(κ). However, those bounds do not match perfectly, as they differ by a constant
' 17. The theoretical question of the exact rate of (HB) thus remains open.

Second, our non-acceleration result of (HB) holds in any dimension larger than or equal
to 2, as our roots-of-unity cycles and counter examples construction only hold in dimension
2 at least. The potential acceleration of (HB) in a one-dimensional space is thus left open.

Lastly, although we proved that acceleration cannot be achieved by assuming higher-
order Lipschitz-type regularity, it remains an open question to see if acceleration can be
obtained (a) on another intermediary functional class between Qµ,L and Fµ,L, (b) under
additional information on f ∈ Fµ,L – such refined information should go beyond the
knowledge of µ and L and could potentially be based on adaptive tunings (e.g., based on
online information) of the method.

8.7. Concluding remarks 202

Conjecture. Finally, we mention the following open conjecture, echoing Conjecture 8.4.15:
for any stationary first-order method, if there exists a cyclic trajectory, there exists a roots-
of-unity two-dimensional cycle on the function (8.3) (where M depends on the stationary
first-order method under consideration).

Proving such a conjecture only requires to show that the (Symmetric Cycle) shape
obtained in Proposition 8.4.11, can always be reduced to roots-of-unity cycles for any first-
order method, as this is the case numerically for HB. While open, this conjecture, if proven,
constitutes a promising direction. Indeed, a practical consequence of this conjecture is that
testing existence of a cyclic trajectory of a stationary algorithm would only require testing it
on one function of the form (8.3) for each cycle length, making the exploration of cyclical
behavior of stationary first-order algorithms straightforward.

8.A. Auxiliary proofs from Section 8.2: Proof of Proposition 8.2.1 203

This appendix is organized in six sections: Section 8.A to 8.E respectively contain comple-
mentary proof results to Section 8.2 to 8.6, and Section 8.F a summary table of convergence
rates on Qµ,L and Fµ,L for several first-order methods of interest.

8.A Auxiliary proofs from Section 8.2: Proof of
Proposition 8.2.1

In this section, we give a complete proof of the asymptotic convergence rate of (HB) on
sets of quadratic functions.

Proposition 8.2.1. (Polyak (1964)) Consider β ∈ R and γ ∈ R. The worst-case asymptotic
convergence rate ργ,β(Qµ,L) of (HB-Q)γ,β, over the class Qµ,L is:

1. Lazy region: If 0 < γ 6 min

(
2(1+β)
L+µ ,

(
1−
√
β
)2

µ

)
then ργ,β(Qµ,L) = 1+β−µγ

2 +

√(
1+β−µγ

2

)2
− β.

2. Robust region: If β > 0, and
(
1−
√
β
)2

µ 6 γ 6
(
1+
√
β
)2

L then ργ,β(Qµ,L) =
√
β.

3. Knife’s edge: If max

(
2(1+β)
L+µ ,

(
1+
√
β
)2

L

)
6 γ < 2(1+β)

L , then ργ,β(Qµ,L) = Lγ−(1+β)
2 +√(

Lγ−(1+β)
2

)2
− β.

4. No convergence: if γ
1+β >

2
L or γ 6 0 then ργ,β(Qµ,L) > 1.

Since, this recursion is of second-order, a classical and convenient trick is to consider
the variable

Xt ,

(
xt − x?
xt−1 − x?

)
∈
(
Rd
)2

. It follows the simplified recursion

Xt+1 =

(
(1 + β)I− γH −βI

I 0

)
Xt, (8.10)

that can be enrolled to obtain

XT =

(
(1 + β)I− γH −βI

I 0

)T
X0,

hence the result

‖xt − x?‖ 6 ‖Xt‖ 6

∥∥∥∥∥∥
(

(1 + β)I− γH −βI

I 0

)T ∥∥∥∥∥∥
op

‖X0‖.

Finally,

‖xt − x?‖1/T 6

∥∥∥∥∥∥
(

(1 + β)I− γH −βI

I 0

)T ∥∥∥∥∥∥
1/T

op

‖X0‖1/T −→
T→∞

ρ

(
(1 + β)I− γH −βI

I 0

)

where ρ here denotes the spectral radius of the matrix, i.e. the largest complex module of
its eigenvalues. Since H is diagonalizable (as self-adjoint operator, or symmetric matrix),
we can block-diagonalize the previous matrix as(

(1 + β)I− γH −βI

I 0

)
∼

(1 + β − γλ −β
1 0

)
λ∈Sp(H)

 ,

8.A. Auxiliary proofs from Section 8.2: Proof of Proposition 8.2.1 204

and then the worst-case asymptotic convergence rate is upper bounded by

ρ

(
(1 + β)I− γH −βI

I 0

)
= max

λ∈[µ,L]
ρ

(
1 + β − γλ −β

1 0

)
.

The first thing to notice is that the determinant of

(
1 + β − γλ −β

1 0

)
is β. Therefore,

when β > 1, at least one eigenvalue has a module larger than or equal to 1 and (HB)
provably diverges on some function of Qµ,L. Then, from now, we only consider β ∈ (−1, 1).

Note that, when β = 0, we recover (GD) and its convergence rate maxλ∈[µ,L] |1− γλ|.
As for (GD), (HB)’s asymptotic convergence rate is given by the extreme eigenvalue µ or L,
depending on the value of γ̃ , γ

1+β . Indeed,

• when γ̃ = γ
1+β 6

2
L+µ , then maxλ∈[µ,L] ρ

(
1 + β − γλ −β

1 0

)
= ρ

(
1 + β − γµ −β

1 0

)
,

• and when γ̃ = γ
1+β >

2
L+µ , then maxλ∈[µ,L] ρ

(
1 + β − γλ −β

1 0

)
= ρ

(
1 + β − γL −β

1 0

)
.

Moreover, when γ̃ = γ
1+β >

2
L , then ρ

(
1 + β − γL −β

1 0

)
> 1, which cannot guaran-

tee convergence.

Table 8.2: Classification of (HB)’s behavior in three regions, see Figure 8.1 for a graphical
description.

Region’s name Range of γ’s values Asymptotic convergence rate

Lazy region 0 < γ 6 min

(
2(1+β)
L+µ ,

(
1−
√
β
)2

µ

)
1+β−µγ

2 +

√(
1+β−µγ

2

)2
− β

Robust region
(
1−
√
β
)2

µ 6 γ 6
(
1+
√
β
)2

L

√
β

Knife’s edge max

(
2(1+β)
L+µ ,

(
1+
√
β
)2

L

)
6 γ < 2(1+β)

L
Lγ−(1+β)

2 +

√(
Lγ−(1+β)

2

)2
− β

Remark 8.A.1. This proof is based on linear algebra, relying on writing the system as
(8.10). Another classical approach to the analysis of (HB) on Qµ,L consists in exploiting
links between first-order methods and polynomials (see e.g. Fischer (2011); Nemirovskii
(1994) or d’Aspremont et al. (Chapter 2 of 2021) for a recent introduction–for more recent
exploitation of those links, see, e.g., Berthier et al. (2020); Pedregosa and Scieur (2020);
Goujaud et al. (2022b,d); Kim et al. (2022)).

8.B. Auxiliary proofs from Section 8.3 205

8.B Auxiliary proofs from Section 8.3

8.B.1 Proof of Theorem 8.3.5

Theorem 8.3.5. (Analytical form of Roots-of-unity cycle region) For any K > 2, the
Kth-roots-of-unity cycling region is, for θK = 2π

K :

ΩK-◦-Cycle(Fµ,L) =

{
(γ, β) ∈ Ωcv(Qµ,L) |

(µγ)2 − 2 [β − cos θK + κ(1− β cos θK)] (µγ)

+ 2κ(1− cos θK)(1 + β2 − 2β cos θK) 6 0.

}
Moreover for any K > 2, and any (γ, β) ∈ ΩK-◦-Cycle(Fµ,L),

ψKγ,β,µ,L : x 7→ L

2
‖x‖2 − L− µ

2
d(x, convh {Mx◦t , t ∈ J0,K − 1K})2 (8.3)

is a function such that (HB) γ,β(ψKγ,β,µ,L) cycles on K , with M the linear operator M ,
(1+β−µγ)I2−R−βR−1

(L−µ)γ .

Proof. Let (γ, β) ∈ Ωcv(Qµ,L). First we prove the expression of ΩK-◦-Cycle(Fµ,L). Then we
will prove that for all (γ, β) ∈ ΩK-◦-Cycle(Fµ,L), (HB) γ,β(ψ) cycles.

Expression of ΩK-◦-Cycle(Fµ,L): We have (γ, β) ∈ ΩK-◦-Cycle(Fµ,L)

(Lemma 8.3.4)⇐⇒ ∃f ∈ Fµ,L | ∀t ∈ J0,K − 1K,∇f(x◦t) =
(1 + β)I2 −R− βR−1

γ
x◦t ,(

f̄(x),
f(x)−

µ
2 ‖x‖

2

L−µ

)
⇐⇒ ∃f̄ ∈ F0,1 | ∀t ∈ J0,K − 1K,∇f̄(x◦t) =

(1 + β − µγ)I2 −R− βR−1

(L− µ)γ
x◦t ,

(By definition of M)⇐⇒ ∃f̄ ∈ F0,1 | ∀t ∈ J0,K − 1K,∇f̄(x◦t) = Mx◦t , (8.11)
(By properties of the Fenchel transform

(Rockafellar, 1997, Theorem 23.5))⇐⇒ ∃f̄∗ ∈ F1,∞ | ∀t ∈ J0,K − 1K,∇f̄∗(Mx◦t) = x◦t ,(
f̂(x)=f̄∗(x)−1

2‖x‖
2

)
⇐⇒ ∃f̂ ∈ F0,∞ | ∀t ∈ J0,K − 1K,∇f̂(Mx◦t) = (I −M)x◦t .

Applying the interpolation theorem (Taylor et al., 2017c, theorem 1), the latest assertion is
equivalent to

∃(f̂t)t∈J0,K−1K | ∀i 6= j ∈ J0,K − 1K, f̂i > f̂j +
〈

(I −M)x◦j ,M(x◦i − x◦j)
〉
.

Note the inner product
〈

(I −M)x◦j ,M(x◦i − x◦j)
〉

is also equal to
〈

(I −M)x◦0,M(x◦i−j − x◦0)
〉

.
Hence we can conclude (γ, β) ∈ ΩK-◦-Cycle(Fµ,L)

⇐⇒ ∃(f̂t)t∈J0,K−1K | ∀i 6= j ∈ J0,K − 1K, f̂i > f̂j +
〈

(I −M)x◦0,M(x◦i−j − x◦0)
〉
,

⇐⇒ ∃(f̂t)t∈J0,K−1K | ∀j ∈ J0,K − 1K,∀∆ ∈ J1,K − 1K, f̂j+∆ > f̂j + 〈(I −M)x◦0,M(x◦∆ − x◦0)〉 .

Summing up the latest over j implies ∀∆ ∈ J1,K − 1K, 0 > 〈(I −M)x◦0,M(x◦∆ − x◦0)〉 .

8.B. Auxiliary proofs from Section 8.3 206

Reciprocally, this assertion implies the previous one with f̂t = 0 for all t. Hence3,

(γ, β) ∈ ΩK-◦-Cycle(Fµ,L)⇐⇒ ∀∆ ∈ J1,K − 1K,
〈
MT (I −M)x◦0, x

◦
∆ − x◦0

〉
6 0. (8.12)

This can be written(
1 + β − γµ− (1 + β) cos θK

(L− µ)γ
−
(

1 + β − γµ− (1 + β) cos θK
(L− µ)γ

)2

−
(

(1− β) sin θK
(L− µ)γ

)2
)

(cos ∆θK − 1)

+
(1− β) sin θK

(L− µ)γ
sin ∆θK 6 0,

or dividing by 1− cos ∆θK ,

−
(

1 + β − γµ− (1 + β) cos θK
(L− µ)γ

−
(

1 + β − γµ− (1 + β) cos θK
(L− µ)γ

)2

−
(

(1− β) sin θK
(L− µ)γ

)2
)

+
(1− β) sin θK

(L− µ)γ

sin ∆θK
1− cos ∆θK

6 0.

This inequality must hold for any ∆ ∈ J1,K − 1K and the LHS expression is maximized for
∆ = 1. We conclude

(γ, β) ∈ ΩK-◦-Cycle(Fµ,L)⇐⇒
〈
MT (I −M)x◦0, x

◦
1 − x◦0

〉
6 0.

Or equivalently, (γ, β) ∈ ΩK-◦-Cycle(Fµ,L) if and only if(
1 + β − γµ− (1 + β) cos θK

(L− µ)γ
−
(

1 + β − γµ− (1 + β) cos θK
(L− µ)γ

)2

−
(

(1− β) sin θK
(L− µ)γ

)2
)

(cos θK − 1)

+
(1− β) sin θK

(L− µ)γ
sin θK 6 0.

After multiplying the above inequality by κ ((L−µ)γ)2

1−cos θK
and rearranging the terms, we obtain

equivalence with

(µγ)2 − 2 [β − cos θK + κ(1− β cos θK)] (µγ) + 2κ(1− cos θK)(1 + β2 − 2β cos θK) 6 0.

Cycle on ψ: Recall the function ψ is defined as

ψ : x 7→ L

2
‖x‖2 − L− µ

2
d(x, convh {Mxt, t ∈ J0,K − 1K})2.

We define ψ̄ as

ψ̄ : x 7→
ψ(x)− µ

2‖x‖
2

L− µ
=

1

2
‖x‖2 − 1

2
d(x, convh {Mxt, t ∈ J0,K − 1K})2,

3Note that this result might be surprising (no function value appears) to the readers familiar with cyclic
monotonicity (see, e.g., Rockafellar (1997)). In our case, function values naturally disappear as we can
arbitrarily set them to zero, which is different than simply not taking function values into account (see,
e.g., discussion in (Taylor et al., 2017c, Remark 1)).

8.B. Auxiliary proofs from Section 8.3 207

and then we have
∇ψ̄(x) = projconvh{Mxt,t∈J0,K−1K}(x).

Using the same normalization as (8.11), we know that (HB) γ,β (f) cycles on K if and
only if ∀t ∈ J0,K − 1K,∇ψ̄(xt) = Mxt, i.e.

∀t ∈ J0,K − 1K,projconvh{Mxt,t∈J0,K−1K}(xt) = Mxt.

The projection on a convex set projconvh{Mxt,t∈J0,K−1K}(xt) = Mxt can be characterized by
the following set of inequalities: {〈xt −Mxt,Mxs −Mxt〉 6 0, s 6= t}. We conclude with
(8.12) that

(γ, β) ∈ ΩK-◦-Cycle(Fµ,L)⇐⇒ (HB) γ,β (ψ) cycles on K

Construction of ψ: Using (8.11), we search for a function f̄ ∈ F0,1 | ∀t ∈ J0,K −
1K,∇f̄(x◦t) = Mx◦t . The functions h : x 7→ maxt∈J0,K−1K 〈Mxt, x〉 is a natural convex
function verifying ∀t ∈ J0,K − 1K,∇f̄(x◦t) = Mx◦t . However, the latter is not smooth. We
therefore compute Mh its Moreau envelope with smoothing parameter 1, defined as

Mh(x) , min
y
f(y) +

1

2
‖x− y‖2

= min
y

max
t∈J0,K−1K

〈Mxt, y〉+
1

2
‖x− y‖2

= min
y

max
(λt)t∈J0,K−1K>0 |

∑K−1

t=0
λt=1

〈
K−1∑
t=0

λtMxt, y

〉
+

1

2
‖x− y‖2

= max
(λt)t∈J0,K−1K>0 |

∑K−1

t=0
λt=1

〈
K−1∑
t=0

λtMxt, x

〉
− 1

2
‖
K−1∑
t=0

λtMxt‖2

= max
z∈convh{Mxt}

〈z, x〉 − 1

2
‖z‖2

=
1

2
‖x‖2 − 1

2
d(x, convh {Mxt})2.

This function is ψ̄ and by renormalization we obtain ψ.
�

8.B.2 Analysis of Ω◦-Cycle(Fµ,L)

In this section, we aim at proving that the roots-of-unity cycling region Ω◦-Cycle(Fµ,L) can
be written as Ω◦-Cycle(Fµ,L) = {(γ, β) ∈ Ωcv(Qµ,L) | γ > γmin(β, µ, L)} for some values of
γmin(β, µ, L) to be determined. Theorem 8.3.5 states that, for any (γ, β) ∈ Ωcv(Qµ,L),
(γ, β) ∈ ΩK-◦-Cycle(Fµ,L) if and only if

Pβ,K,µ,L(γ) 6 0 (8.13)

with

Pβ,K,µ,L : γ 7→ (µγ)2 − 2 [β − cos θK + κ(1− β cos θK)] (µγ) + 2κ(1− cos θK)(1 + β2 − 2β cos θK).

(8.14)

The polynomial Pβ,K,µ,L has two roots for β larger than a value β−(K,µ,L), we thus use
the following notations.

8.B. Auxiliary proofs from Section 8.3 208

Notation 8.B.1. For any µ,L, K > 2, we denote

β−(K,µ,L) ,
κ cos θK

2 + (1− κ)2 cos θK − κ+ (1− κ)(1− cos θK)
√

2κ(1 + cos θK)

1− 2κ+ κ2 cos θK
2 ,

For any β > β−(K,µ,L), we denote

AK(β, µ, L) , [β − cos θK + κ(1− β cos θK)] , (8.15)

BK(β, µ, L) ,
√

[β − cos θK + κ(1− β cos θK)]2 − 2κ(1− cos θK)(1 + β2 − 2β cos θK),

(8.16)

Finally, we introduce the roots (γ−(β,K, µ, L), γmax(β,K, µ, L)) of Pβ,K,µ,L:

γ−(β,K, µ, L) ,
AK(β, µ, L)−BK(β, µ, L)

µ
,

γ+(β,K, µ, L) ,
AK(β, µ, L) +BK(β, µ, L)

µ
.

We underline that we can obtain an alternative expression of β−(K,µ,L), that intuitively
provides an approximation of β−(K,µ,L) as κ→ 0

Lemma 8.B.2. For any K, µ,L, it holds that:

β−(K,µ,L)− cos θK+1 =
√
κ(1− cos θK)

(1 + cos θK)
√
κ+

√
2(1 + cos θK)

1 + κ cos θK +
√

2κ(1 + cos θK)
.

Proof. The proof consists in algebraic manipulations.

β−(K,µ,L)− cos θK =
κ cos θK

2 + (1− κ)2 cos θK − κ+ (1− κ)(1− cos θK)
√

2κ(1 + cos θK)

1− 2κ+ κ2 cos θK
2

− (1− 2κ) cos θK + κ2 cos θK
3

1− 2κ+ κ2 cos θK
2

=
κ(κ cos θK − 1)(1− cos2 θK) + (1− κ)(1− cos θK)

√
2κ(1 + cos θK)

1− 2κ+ κ2 cos θK
2

=(1− cos θK)
√
κ(1 + cos θK) ·

√
2(1− κ) + (κ cos θK − 1)

√
κ(1 + cos θK)

1− 2κ+ κ2 cos θK
2

=
√
κ(1− cos θK)

√
1 + cos θK

× (1 + κ cos θK −
√

2κ(1 + cos θK))(
√

2 +
√
κ(1 + cos θK))

(1 + κ cos θK −
√

2κ(1 + cos θK))(1 + κ cos θK +
√

2κ(1 + cos θK))

=
√
κ(1− cos θK)

(1 + cos θK)
√
κ+

√
2(1 + cos θK)

1 + κ cos θK +
√

2κ(1 + cos θK)
.

�
Using those notations, we can restate the condition (8.13) as follows.

Fact 8.B.3. Pβ,K,µ,L(γ) 6 0 if and only if β > β−(K,µ,L) and

γ−(β,K, µ, L) 6 γ 6 γ+(β,K, µ, L), (8.17)

i.e.:

Ω◦-Cycle(Fµ,L) =
{

(γ, β) ∈ Ωcv(Qµ,L) |

∃K > 3 such that β > β−(K,µ,L) and γ−(β,K, µ, L) 6 γ 6 γ+(β,K, µ, L)
}
.

(8.18)

8.B. Auxiliary proofs from Section 8.3 209

In words, for any β > 0, the set of all γ such that (γ, β) ∈ Ω◦-Cycle(Fµ,L) is a union of
intervals given by (8.18), non-necessarily connected. The next theorem states that this set
of γ is actually a single interval as soon as κ is sufficiently small.

Theorem 8.B.4 (Analytical form of Roots-of-unity cycle region). If κ 6
(

3−
√

5
4

)2
, the

roots-of-unity cycling region is:

Ω◦-Cycle(Fµ,L) =
{

(γ, β) ∈ Ωcv(Qµ,L) | ∃K > 3 such that β > β−(K,µ,L) and γ > γ−(β,K, µ, L)
}
.

This theorem means that we can ignore, the condition γ 6 γ+(β,K, µ, L) in the
parametric description of Ω◦-Cycle(Fµ,L) in (8.17). Note that ΩK-◦-Cycle(Fµ,L) 6=

{
(γ, β) ∈

Ωcv(Qµ,L) | β > β−(K,µ,L) and γ > γ−(β,K, µ, L)
}
: the theorem states that the union

(over K > 2) of those sets can be written without an upper bound on γ, not each set
individually. That is, when (γ, β) /∈ ΩK-◦-Cycle(Fµ,L) because γ > γ+(β,K, µ, L), (γ, β) ∈
ΩK′-◦-Cycle(Fµ,L) for some K ′ 6 K.

Remark 8.B.5 (K = 2). Plugging K = 2 into (8.17) leads to γ ∈
[

2(1+β)
L , 2(1+β)

µ

]
whose

intersection with Ωcv(Qµ,L) is empty. Hence, Ω2-◦-Cycle(Fµ,L) = ∅, which explains why
Theorem 8.B.4 does not consider cycles of length 2.

In order to prove Theorem 8.B.4, we first state Lemma 8.B.6.

Lemma 8.B.6. We assume κ 6
(

3−
√

5
4

)2
. For any K > 2, and any β > β−(K + 1, µ, L), we

have
γ−(β,K, µ, L) 6 γ+(β,K + 1, µ, L).

First, we show that thanks to Lemma 8.B.6, we can establish Theorem 8.B.4.

Proof. [Theorem 8.B.4] We denote Ω6K-◦-Cycle(Fµ,L) =
⋃

36K̄6K ΩK-◦-Cycle(Fµ,L) the set of
(γ, β) ∈ Ωcv(Qµ,L) such that there exists K̄ 6 K with (γ, β) ∈ ΩK-◦-Cycle(Fµ,L). We prove
by induction over K that

Ω6K-◦-Cycle(Fµ,L) =
{

(γ, β) ∈ Ωcv(Qµ,L) |

∃K̄ 6 K such that β > β−(K̄, µ, L) and γ > γ−(β, K̄, µ, L)
}
. (8.19)

Initialization (K = 3): From Lemma 8.B.6, γ+(β, 3, µ, L) > γ−(β, 2, µ, L), and from Re-
mark 8.B.5, γ−(β, 2, µ, L) = 2(1+β)

L . Thus

Ω63-◦-Cycle(Fµ,L) = Ω3-◦-Cycle(Fµ,L)

= {(γ, β) ∈ Ωcv(Qµ,L) | β > β−(3, µ, L) and µγ > µγ−(β, 3, µ, L)} .

Indeed, the additional assumption that γ 6 γ+(β, 3, µ, L) is useless as γ+(β, 3, µ, L) is
larger than 2(1+β)

L , which corresponds to the right-hand side border of Ωcv(Fµ,L).

Induction: Let us assume that (8.19) holds for some K. We prove it still holds for
K + 1. Indeed, (γ, β) ∈ Ω6K+1-◦-Cycle(Fµ,L) if and only if (γ, β) ∈ Ω6K-◦-Cycle(Fµ,L) or
(γ, β) ∈ ΩK+1-◦-Cycle(Fµ,L), i.e. if, by our induction hypothesis γ > γ−(β, K̄, µ, L) for some
K̄ 6 K, or γ−(β,K + 1, µ, L) 6 γ 6 γ+(β,K + 1, µ, L).

Then by Lemma 8.B.6, if γ > γ+(β,K + 1, µ, L), we have γ > γ−(β,K, µ, L), thus
(γ, β) ∈ Ω6K-◦-Cycle(Fµ,L). Finally, (γ, β) ∈ Ω6K+1-◦-Cycle(Fµ,L) if and only if γ > γ−(β, K̄, µ, L)

8.B. Auxiliary proofs from Section 8.3 210

for some K̄ 6 K, or γ > γ−(β,K + 1, µ, L), i.e. if and only if γ > γ−(β, K̄, µ, L) for some
K̄ 6 K + 1, which concludes the proof. �

We now prove Lemma 8.B.6.
Proof. [Lemma 8.B.6] Since for any K, γ−(β,K, µ, L) is defined as AK(β,µ,L)−BK(β,µ,L)

µ , we
show the equivalent formulation

AK(β, µ, L)−BK(β, µ, L) 6 AK+1(β, µ, L) +BK+1(β, µ, L). (8.20)

First, we rely on the following sequence of implication, that shows that proving (8.21)
hereafter is sufficient to establish (8.20).

(AK(β, µ, L)−AK+1(β, µ, L))2 6 BK(β, µ, L)2 −BK+1(β, µ, L)2 (8.21)
BK+1(β,µ,L)2>0

=⇒ (AK(β, µ, L)−AK+1(β, µ, L))2 6 BK(β, µ, L)2 (8.22)
BK(β,µ,L)>0

=⇒ AK(β, µ, L)−AK+1(β, µ, L) 6 BK(β, µ, L)

Reordering terms⇐⇒ AK(β, µ, L)−BK(β, µ, L) 6 AK+1(β, µ, L)

BK+1(β,µ,L)>0
=⇒ AK(β, µ, L)−BK(β, µ, L) 6 AK+1(β, µ, L) +BK+1(β, µ, L).

Equation (8.22) has the advantage of isolating BK(β, µ, L) so that we get rid of the square-
root appearing in its definition. Equation (8.21) has the additional advantage of getting rid
of the terms that are independent of the cosines and of making a factor cos θK+1 − cos θK
appear on both sides of the inequality. Indeed, first we have

AK(β, µ, L)−AK+1(β, µ, L)
(8.15)

= [β − cos θK + κ(1− β cos θK)]

− [β − cos θK+1 + κ(1− β cos θK+1)]

= (1 + βκ)(cos θK+1 − cos θK)

(AK(β, µ, L)−AK+1(β, µ, L))2 = (1 + βκ)2(cos θK+1 − cos θK)2. (8.23)

Also, BK(β, µ, L)2 can be simplified, expanding and reordering terms, as

BK(β, µ, L)2 (8.16)
= [β − cos θK + κ(1− β cos θK)]2 − 2κ(1− cos θK)(1 + β2 − 2β cos θK)

= [β + κ− (1 + βκ) cos θK]2 − 2κ(1− cos θK)(1 + β2 − 2β cos θK)

=(β + κ)2 − 2(β + κ)(1 + βκ) cos θK + (1 + βκ)2 cos2 θK

− 2κ(1 + β2 − 2β cos θK − (1 + β2) cos θK + 2β cos2 θK)

=
[
(β + κ)2 − 2κ(1 + β2)

]
− 2

[
(β + κ)(1 + βκ)− κ(1 + β)2

]
cos θK

+
[
(1 + βκ)2 − 4βκ

]
cos2 θK

=
[
(β + κ)2 − 2κ(1 + β2)

]
︸ ︷︷ ︸

independent of K

−2β(1− κ)2 cos θK + (1− βκ)2 cos2 θK .

While inequality (8.22) thus writes

(1+βκ)2(cos θK+1−cos θK)2 6
[
(β + κ)2 − 2κ(1 + β2)

]
−2β(1−κ)2 cos θK+(1−βκ)2 cos2 θK ,

and is thus not easy to handle, BK(β, µ, L)2 −BK+1(β, µ, L)2 simplifies as

BK(β, µ, L)2 −BK+1(β, µ, L)2 =− 2β(1− κ)2(cos θK − cos θK+1)

+(1− βκ)2(cos2 θK − cos2 θK+1), (8.24)

8.B. Auxiliary proofs from Section 8.3 211

and using (8.23) and (8.24), inequality (8.21) thus writes

(1 + βκ)2(cos θK+1 − cos θK)2 62β(1− κ)2(cos θK+1 − cos θK)

− (1− βκ)2(cos2 θK+1 − cos2 θK)

=
[
2β(1− κ)2 − (1− βκ)2(cos θK+1 + cos θK)

]
× (cos θK+1 − cos θK).

Dividing by the positive term cos θK+1 − cos θK
4, we get that (8.21) is equivalent to

(1 + βκ)2(cos θK+1 − cos θK) 6
[
2β(1− κ)2 − (1− βκ)2(cos θK+1 + cos θK)

]
.

By ordering terms, this is also equivalent to

(1 + βκ)2(cos θK+1 − cos θK) + (1− βκ)2(cos θK+1 + cos θK) 6 2β(1− κ)2,

or again, dividing by 4βκ,

1

2

(
1

βκ
+ βκ

)
cos θK+1 6

(1− κ)2

2κ
+ cos θK . (8.25)

Note that we need this last equation to hold for all β > β−(K + 1, µ, L). Moreover, while
the RHS does not depend on β, the LHS increases or decreases with respect to β, according
to the sign of cos θK+1. We thus have to distinguish several cases.

• When K = 2, cos θK+1 = cos θ3 = −1/2 < 0. Then the LHS increases and it is sufficient
to verify (8.25) for β = 1. We have: if −1

4

(
1
κ + κ

)
6 (1−κ)2

2κ − 1, then (8.20) holds for
K = 2. A simple technical computation gives that this condition holds if and only if
κ 6 4−

√
7

3 .

• When K = 3, cos θK+1 = cos θ4 = 0. Then the LHS does not depend on β neither.
Equation (8.25) is independent of β and is written 0 6 (1−κ)2

2κ − 1
2 . We conclude that, if

κ 6 3−
√

5
2 , then (8.B.6) holds for K = 3.

• When K > 4, cos θK+1 > cos θ5 > 0, hence the LHS decreases with respect to β. It is
sufficient to verify (8.25) for β = β−(K + 1, µ, L), or even for any value smaller than
β−(K + 1, µ, L) to prove the lemma.

We use the following lower bound on β−(K + 1, µ, L), obtained from Lemma 8.B.2

β−(K + 1, µ, L)− cos θK+1
8.B.2
=
√
κ(1− cos θK+1)

(1 + cos θK+1)
√
κ+

√
2(1 + cos θK+1)

1 + κ cos θK+1 +
√

2κ(1 + cos θK+1)

>
√
κ(1− cos θK+1).

= cos θK+1(1 +
√
κξK+1),

with ξK+1 , 1
cos θK+1

− 1. Overall, for K > 4, (8.25) is valid for all β > β−(K + 1, µ, L) if
it is valid at cos θK+1(1 +

√
κξK+1). Plugging this value into (8.25) it is thus sufficient to

prove that

1

2

(
1

κ(1 +
√
κξK+1)

+ κ cos2 θK+1(1 +
√
κξK+1)

)
6

(1− κ)2

2κ
+ cos θK .

4This simplification was the motivation to prove the relaxation (8.21) instead of (8.22). Interestingly, this
relaxation is tight when BK+1(β, µ, L) = 0, i.e. for β = β−(K + 1, µ, L). As we will see later, this value of β is
the only one that actually matters (if K 6= 3).

8.B. Auxiliary proofs from Section 8.3 212

Multiplying by 2κ and reordering terms, the latter is equivalent to

1

1 +
√
κξK+1

− (1− κ)2 6 2κ cos θK − κ2 cos2 θK+1︸ ︷︷ ︸
6cos θK+1

(1 +
√
κξK+1)︸ ︷︷ ︸

61+ξK+1

. (8.26)

First, as for any τ > 0, 1
1+τ 6 1 − τ + τ2, the LHS of (8.26) is upper bounded by

1−
√
κξK+1+κξ2

K+1−(1−κ)2. Second, the RHS of (8.26) is lower bounded by 2κ cos θK−κ2.
It is thus sufficient to prove

1−
√
κξK+1 + κξ2

K+1 − (1− 2κ+ κ2) 6 2κ cos θK − κ2.

Simplifying and reordering terms, this is equivalent to

√
κξK+1 > κ(ξ2

K+1 + 2− 2 cos θK),

or again

1√
κ
>
(
ξK+1 +

2(1− cos θK)

ξK+1

)
=

(
1

cos θK+1
− 1 +

2 cos θK+1(1− cos θK)

(1− cos θK+1)

)
.

Finally,

1

cos θK+1
− 1 +

2 cos θK+1(1− cos θK)

(1− cos θK+1)

Lemma 8.B.7
6

1

cos θK+1
− 1 + 2× 1× 3

2
=

1

cos θK+1
+ 2

K>4
6

1

cos θ5
+ 2 =

1

cos 2π
5

+ 2

= 3 +
√

5.

Ultimately, κ 6
(

1
3+
√

5

)2
=
(

3−
√

5
4

)2
is a sufficient condition for Equation (8.20) to hold

for any K > 4. As a summary, we proved the following sufficient conditions so that (8.20)
holds:

• For K = 2, (8.20) holds as soon as κ 6 4−
√

7
3 .

• For K = 3, (8.20) holds as soon as κ 6 3−
√

5
2 .

• For K > 4, (8.20) holds as soon as κ 6
(

3−
√

5
4

)2
.

Among those 3 values,
(

3−
√

5
4

)2
is the smallest. Hence, we conclude that (8.20) holds for

any K > 2 if κ 6
(

3−
√

5
4

)2
.

�

8.B.3 Proof of Theorem 8.3.6

In order to prove Theorem 8.3.6, we first establish technical results in Subsection 8.B.3,
then prove the result in Subsection 8.B.3

8.B. Auxiliary proofs from Section 8.3 213

Technical lemmas

We start by proving the following technical lemmas.

Lemma 8.B.7. For any integer K > 2, 1 6 1−cos θK
1−cos θK+1

6 3
2 .

Proof. First of all, let’s note that

1− cos 2π
K

1− cos 2π
K+1

=
sin2 π

K

sin2 π
K+1

.

Since sin is positive and increasing on [0, π/2], sin2 π
K > sin2 π

K+1 , hence for all K > 2,

1 6
1−cos 2π

K

1−cos 2π
K+1

. Note moreover this bound is tight as 1−cos 2π
K

1−cos 2π
K+1

→
K→∞

1. It remains to show

that for all integer K > 2,
sin π

K
sin π

K+1
6
√

3
2 . We study the four following cases:

• for K = 2, sin π
K

sin π
K+1

= 1√
3/2

<
√

3
2 ,

• for K = 3, sin π
K

sin π
K+1

=
√

3/2√
2/2

=
√

3
2 ,

• for K = 4, sin π
K

sin π
K+1

=
√

2/2√
10−2

√
5/4

<
√

3
2 ,

• for K > 5,

sin π
K

sin π
K+1

=
sin(π

K+1 + π
K(K+1))

sin π
K+1

=
sin π

K+1 cos π
K(K+1) + cos π

K+1 sin π
K(K+1)

sin π
K+1

= cos
π

K(K + 1)
+ cotan

π

K + 1
sin

π

K(K + 1)

6 1 +
K + 1

π

π

K(K + 1)
= 1 +

1

K
6

6

5
<

√
3

2
.

This shows that

∀ integer K > 2,
1− cos 2π

K

1− cos 2π
K+1

6
3

2
.

Note furthermore that this bound is also tight as reached for K = 3.

�

Next, we establish a second technical result.

Lemma 8.B.8. For any β ∈ [0, 1], there exists K > 2 such that 2
3 6

β−cos θK
1−β 6 3

2 .

Proof. Let β ∈ [0, 1]. And let Z > 2 a real number such that β =
1+cos 2π

Z
2 . We note

that
1+cos 2π

bZc
2 6 β <

1+cos 2π
bZc+1

2 . Besides, from Lemma 8.B.7, 1 6
1−cos 2π

bZc
1−cos 2π

bZ+1c
6 3

2 , which

implies

1 6
1− cos 2π

bZc

1− cos 2π
Z

6
5

4
or 1 6

1− cos 2π
Z

1− cos 2π
bZ+1c

6
6

5
.

8.B. Auxiliary proofs from Section 8.3 214

In the first case, we define K = bZc while in the second case, we define K = bZ + 1c. In

any case, 5
6 6

1−cos 2π
K

1−cos 2π
Z

6 5
4 . Moreover, we have β−cos 2π

K
1−β = −1 + 2

1−cos 2π
K

1−cos 2π
Z

, and we conclude

2
3 6

β−cos 2π
K

1−β 6 3
2 . �

Third, we establish a final technical result.

Lemma 8.B.9. Assume that κ 6 1
16 . For any β ∈ [0, 1], for any K > 2 such that 2

3 6
β−cos θK

1−β 6 3
2 , we have β > β−(K,µ,L).

Proof. The proof consists in proving that

1− β−(K,µ,L)

1− cos θK
>

3

5
.

Then, since β−cos θK
1−β > 2

3 , we have 1−cos θK
1−β > 5

3 , and finally 1−β
1−cos θK

6 3
5 6

1−β−(K,µ,L)
1−cos θK

,
concluding that β > β−(K,µ,L).

By Lemma 8.B.2, we have

β−(K,µ,L)− cos θK
1− cos θK

=
κ+ κ cos θK +

√
2κ(1 + cos θK)

1 + κ cos θK +
√

2κ(1 + cos θK)
.

Applying the mapping x 7→ 1− x to the previous equation, we get

1− β−(K,µ,L)

1− cos θK
=

1− κ
1 + κ cos θK +

√
2κ(1 + cos θK)

.

We now need to prove that whatever θK is, 1−κ
1+κ cos θK+

√
2κ(1+cos θK)

> 3
5 . We note that the

LHS converges to 1 when κ goes to 0, hence we know that this inequality holds for κ small
enough. We make the precise computation below.

1− κ
1 + κ cos θK +

√
2κ(1 + cos θK)

>
3

5
⇐⇒ 3(1 + κ cos θK +

√
2κ(1 + cos θK)) 6 5(1− κ)

⇐⇒ 3
√

2κ(1 + cos θK) + κ(5 + 3 cos θK) 6 2

⇐= 6
√
κ+ 8κ 6 2

⇐⇒ 1− 3
√
κ− 4κ > 0

⇐⇒ (1− 4
√
κ)(1 +

√
κ) > 0

⇐⇒
√
κ 6

1

4
.

Hence, the desired result.
�

Proof of Theorem 8.3.6

Finally, we prove Theorem 8.3.6 :

Theorem 8.3.6. There exists an absolute constant C > 0 (any C > 50
3), such that for any

0 < µ < L, we have:

(Ω◦-Cycle(Fµ,L))c ∩ SLSµ,L

(
1− Cκ
1 + Cκ

)
= ∅. (8.5)

8.B. Auxiliary proofs from Section 8.3 215

Proof. First, we assume that κ 6
(

3−
√

5
4

)2
. Note that in the opposite case,

√
κ 6

(3 +
√

5)κ 6 50
3 κ, hence the result would still hold.

Let (γ, β) ∈ (Ω◦-Cycle(Fµ,L))c = (
⋃∞
K=2 ΩK-◦-Cycle(Fµ,L))c =

⋂∞
K=2(ΩK-◦-Cycle(Fµ,L))c.

By Theorem 8.B.4 (since κ 6
(

3−
√

5
4

)2
), for all K > 2, if β > β−(K,µ,L) (see Nota-

tion 8.B.1),

µγ 6 µγ−(β,K, µ, L)

= [β − cos θK + κ(1− β cos θK)]

(
1−

√
1− 2κ(1− cos θK)(1 + β2 − 2β cos θK)

[β − cos θK + κ(1− β cos θK)]2

)

6 [β − cos θK + κ(1− β cos θK)]

(
1−

(
1− 2κ(1− cos θK)(1 + β2 − 2β cos θK)

[β − cos θK + κ(1− β cos θK)]2

))

=

(
2κ(1− cos θK)(1 + β2 − 2β cos θK)

β − cos θK + κ(1− β cos θK)

)

6

(
2κ(1− cos θK)(1 + β2 − 2β cos θK)

β − cos θK

)
.

Finally,

µγ 6 min
K>2

(
2κ(1− cos θK)(1 + β2 − 2β cos θK)

β − cos θK

)
.

We introduce Cβ ,
β−cos

2π
Kβ

1−β with K chosen so that Lemma 8.B.8 holds. First we know by

Lemma 8.B.9 (since κ 6
(

3−
√

5
4

)2
6 1

16) that β > β−(Kβ, µ, L) and then that the previous
calculus is valid. Second, we have

µγ 6
(
2
(
2βCβ + 1 + 3β + 1+β

Cβ

))
κ(1− β)

6 4

(
Cβ +

1

Cβ
+ 2

)
κ(1− β)

6 4

(
3

2
+

2

3
+ 2

)
κ(1− β)

=
50

3
κ(1− β) (8.27)

which proves that µγ 6 50
3 κ(1 − β). Set C = 50/3. By contradiction, we assume that

ρ < 1−Cκ
1+Cκ , and additionally (γ, β) ∈ SLSµ,L (ρ), From Lemma 8.2.4 we know

1−κ
1+κ − ρ
1
ρ −

1−κ
1+κ

6 β 6 ρ2

µγ > (1− ρ)(1− β
ρ).

And from (8.27), we know that
µγ 6 Cκ(1− β).

Combining those inequalities, we get (1− ρ)(1− β
ρ) 6 Cκ(1− β). Rearanging the terms

leads to (
1− ρ
ρ
− Cκ

)
β > 1− ρ− Cκ.

8.C. Auxiliary proofs from Section 8.4: Proof of Lemma 8.4.12 216

Besides, 1−ρ
ρ − Cκ > 0 (since ρ < 1−Cκ

1+Cκ 6
1

1+Cκ) and moreover β ∈
[

1−κ
1+κ−ρ
1
ρ−

1−κ
1+κ

, ρ2

]
, thus

β < ρ2 we get: (
1− ρ
ρ
− Cκ

)
ρ2 > 1− ρ− Cκ.

Equivalently (1− ρ)2 6 Cκ(1− ρ2), that is ρ > 1−Cκ
1+Cκ . Which is in contradiction with our

initial assumption ρ < 1−Cκ
1+Cκ . As a conclusion,

ρHBγ,β 6 ρ =⇒ ρ > 1−Cκ
1+Cκ .

�

8.C Auxiliary proofs from Section 8.4: Proof of Lemma 8.4.12

Lemma 8.4.12. A matrix Ḡ is symmetric and circulant such that Ḡ1K = 0, if and only is there
exist non-negative ν1, . . . , νbK/2c such that Ḡ =

∑bK/2c
`=1 ν`H`, with H` ,

(
cos

(
2π`
K |i− j|

))
i,j

.

Proof. Lemma 8.4.12 The minimal polynomial of JK is XK − 1, a split polynomial with
simple roots in C. Therefore, JK diagonalizes on C with eigenvalues ω` = e2iπ`/K , ` ∈
J0,K − 1K, and G diagonalizes in the same basis with eigenvalues ν` ,

∑K−1
j=0 cjω

j`.
The sequence (ν`)`∈J0,K−1K is the discrete Fourier transform of (cj)j∈J0,K−1K. Therefore,
(cj)j∈J0,K−1K is the inverse discrete Fourier transform of (ν`)`∈J0,K−1K:

∀j ∈ J0,K − 1K, cj =
1

K

K−1∑
`=0

ν`ω
−j`. (8.28)

Moreover,

νK−` =
K−1∑
j=0

cjω
j(K−`) =

K−1∑
j=0

cjω
−j` = ν̄`,

and by symmetry of G, ν̄` = ν`. Hence, the eigenvalues almost all have an even multiplicity.
This excludes ν0 and νK/2 if K is even. We can therefore reorder and group terms in (8.28)
as

∀j ∈ J0,K − 1K, cj =
1

K

ν0 +

bK−1
2
c∑

`=1

ν`(ω
−j` + ωj`) + νK

2
ω−j

K
2


(where the last term drops if K = 1 (mod 2))

=
1

K

ν0 +

bK−1
2
c∑

`=1

2ν` cos

(
2πjl

K

)
+ νK

2
(−1)j


Finally, G is symmetric positive semi-definite and circulant if and only if there exists

8.D. Auxiliary proofs from Section 8.5 217

non-negative (νl)l∈J0,bK
2
cK such that

G =
K−1∑
j=0

1

K

ν0 +

bK−1
2
c∑

`=1

2ν` cos

(
2πjl

K

)
+ νK

2
(−1)j

 J jK
=
ν0

K

K−1∑
j=0

J jK︸ ︷︷ ︸
Matrix full of 1s

+
νK

2

K

K−1∑
j=0

(−1)jJ jK︸ ︷︷ ︸
Checkerboard

(
(−1)|i−j|

)
i,j

+

bK−1
2
c∑

`=1

2ν`
K

K−1∑
j=0

cos

(
2πjl

K

)
J jK︸ ︷︷ ︸

(cos(2π`
K
|i−j|))

i,j

.

The condition G1K = 0 implies ν0 = 0. �

8.D Auxiliary proofs from Section 8.5

8.D.1 Proof of Theorem 8.5.3

Theorem 8.5.3. Consider 0 < µ < L, K > 2, the roots-of-unity cycle (x◦k)k∈J0,K−1K, and
(γ, β) ∈ ΩK-◦-Cycle(Fµ,L). Let (zt)t∈N be the sequence generated by running (HB)γt,βt , with
time varying parameters γt, βt, initialized at (z0, z1) = (x◦0 + δ0, x

◦
1 + δ1), with perturbed

gradients ĝt(z) = ∇ψKγ,β,µ,L(z) + δgt . There exist κP and ρD < 1 (made explicit in the proof)
such that if the following three conditions hold,

1.
√
‖δ0‖2 + ‖δ1‖2 6 κP rmax,

2. for all t ∈ N,
(

4
γ + µκP rmax

)
|δγt |+ (2 + 2κP rmax) |δβt | 6 1

2(1− ρD)κP rmax,

3. for all t ∈ N, 4
L‖δgt‖ 6

1
2(1− ρD)κP rmax,

then, (zt)t>0 keeps cycling in a neighborhood of K: ‖zt − x◦t (mod K)‖ 6 rmax (and thus
zt ∈ Vt (mod K)).

Proof. We introduce matrices P and D verifying PDP−1 =

(
(1 + β)I2 − µγI2 −βI2

I2 0

)
,

and such that the operator norm ρD of the matrix D, ρD = ‖D‖op is smaller than 1, and set
κP = 1

‖P‖op‖P−1‖op
6 1. The existence of such matrices is guaranteed as (γ, β) ∈ Ωcv(Qµ,L),

and we discuss the choice of this reduction in Subsection 8.D.2.

We prove by induction that ∀t > 1,

∥∥∥∥∥P−1

(
δt
δt−1

)∥∥∥∥∥ 6 rmax
‖P‖op

. which implies that

∀t > 1,

∥∥∥∥∥
(
δt
δt−1

)∥∥∥∥∥ 6 rmax, thus the result of the theorem, i.e., zt ∈ B(x◦t (mod K), rmax) ⊆

Vt (mod K).
In the proof, we extend again (x◦k) to k ∈ N by periodicity, i.e., (x◦k) = (x◦k (mod K)).

Initialization:

∥∥∥∥∥
(
δ1

δ0

)∥∥∥∥∥ =
√
‖δ0‖2 + ‖δ1‖2 6 κP rmax = rmax

‖P‖op‖P−1‖op
implies

∥∥∥∥∥P−1

(
δ1

δ0

)∥∥∥∥∥ 6
rmax
‖P‖op

.

8.D. Auxiliary proofs from Section 8.5 218

Induction: By induction hypothesis

∥∥∥∥∥P−1

(
δt
δt−1

)∥∥∥∥∥ 6 rmax
‖P‖op

, thus zt ∈ Vt (mod K). We now

write (HB)’s (t+ 1)th step:

zt+1 = zt − γtĝt(x◦t + δt) + βt(zt − zt−1) = zt − γt(∇ψ(x◦t + δt) + δgt) + βt(zt − zt−1).

Using that for all t > 0, zt+1 = x◦t+1 + δt+1.

x◦t+1 + δt+1 = x◦t + δt + (β + δβt)(x
◦
t + δt − x◦t−1 − δt−1)− (γ + δγt)∇ψ(x◦t + δt)− γtδgt .

And as (HB)γ,β(ψ) cycles on K , we have that x◦t+1 = x◦t + β(x◦t − x◦t−1)− γ∇ψ(x◦t), thus

δt+1 = δt + δβt(x
◦
t − x◦t−1) + (β + δβt)(δt − δt−1)− (δγt)∇ψ(x◦t)− (γ + δγt)µδt − γtδgt ,

δt+1 = δt + β(δt − δt−1)− γµδt + δβt(x
◦
t − x◦t−1 + δt − δt−1)− δγt(∇ψ(x◦t) + µδt)− γtδgt .

This can be written in an augmented space as(
δt+1

δt

)
=

(
1 + β − µγ −β

1 0

)(
δt
δt−1

)
+

(
δβt(x

◦
t − x◦t−1 + δt − δt−1)− δγt(∇ψ(x◦t) + µδt)− γtδgt

0

)
.

The second and third assumptions corresponds on the perturbations enable to write that∥∥∥∥∥
(
δβt(x

◦
t − x◦t−1 + δt − δt−1)− δγt(∇ψ(x◦t) + µδt − γtδgt)

0

)∥∥∥∥∥
= ‖δβt(x◦t − x◦t−1 + δt − δt−1)− δγt(∇ψ(x◦t) + µδt)− γtδgt‖
6 |δβt |‖x◦t − x◦t−1 + δt − δt−1‖+ |δγt |‖∇ψ(x◦t) + µδt‖+ γt‖δgt‖

=

(√
(1 + β)2(1− cos(θK))2 + (1− β)2 sin(θK)2

γ
+ µκP rmax

)
|δγt |

+

(√
(1− cos(θK))2 + sin(θK)2 + 2κP rmax

)
|δβt |+

4

L
‖δgt‖

6
(

4

γ
+ µκP rmax

)
|δγt |+ (2 + 2κP rmax) |δβt |+

4

L
‖δgt‖

6
1

2
(1− ρD)κP rmax +

1

2
(1− ρD)κP rmax = (1− ρD)κP rmax.

We now have(
δt+1

δt

)
=

(
1 + β − µγ −β

1 0

)(
δt
δt−1

)
+

(
δβt(x

◦
t − x◦t−1 + δt − δt−1)− δγt(∇ψ(x◦t) + µδt)

0

)

= PDP−1

(
δt
δt−1

)
+

(
δβt(x

◦
t − x◦t−1 + δt − δt−1)− δγt(∇ψ(x◦t) + µδt)

0

)

P−1

(
δt+1

δt

)
= DP−1

(
δt
δt−1

)
+ P−1

(
δβt(x

◦
t − x◦t−1 + δt − δt−1)− δγt(∇ψ(x◦t) + µδt)

0

)
∥∥∥∥∥P−1

(
δt+1

δt

)∥∥∥∥∥ 6 ‖D‖
∥∥∥∥∥P−1

(
δt
δt−1

)∥∥∥∥∥+

∥∥∥∥∥P−1

(
δβt(x

◦
t − x◦t−1 + δt − δt−1)− δγt(∇ψ(x◦t) + µδt)

0

)∥∥∥∥∥
6 ρD

∥∥∥∥∥P−1

(
δt
δt−1

)∥∥∥∥∥+ ‖P−1‖op(1− ρD)κP rmax

by induction
6 ρD

rmax

‖P‖op
+ (1− ρD)

rmax

‖P‖op

=
rmax

‖P‖op
,

thereby reaching the desired claim. �

8.D. Auxiliary proofs from Section 8.5 219

8.D.2 Discussion about the reduction made in the proof of Theorem 8.5.3

In Theorem 8.5.3, we decompose the matrix

(
1 + β − µγ −β

1 0

)
into the form PDP−1

with ‖D‖ < 1. In this section, we discuss a possible way to do it depending on the
region in which (γ, β) lies (see Proposition 8.2.1). In the 3 possible cases, we provide a
decomposition PDP−1 and ρD = ‖D‖ < 1. To compute κP = 1

‖P‖op‖P−1‖op
, we can use the

fact that κ2
P is the ratio of the 2 eigenvalues of the matrix P TP :

κP =


Tr(PTP)

2
−
√(

Tr(PTP)
2

)2

−Det(PTP)

Tr(PTP)
2

+

√(
Tr(PTP)

2

)2

−Det(PTP)


1/2

=


(

Tr(PTP)
2

−
√(

Tr(PTP)
2

)2

−Det(PTP)

)2

Det(PTP)


1/2

=

Tr(PTP)
2

−
√(

Tr(PTP)
2

)2

−Det(P)2

|Det(P)| =
Tr(PTP)

2|Det(P)| −

√(
Tr(PTP)

2|Det(P)|

)2

− 1.

Lazy region (γ < (1−
√
β)2

µ). In this region,

(
1 + β − µγ −β

1 0

)
∼ D =


1+β−µγ

2 +

√(
1+β−µγ

2

)2
− β 0

0 1+β−µγ
2 −

√(
1+β−µγ

2

)2
− β



with the transition matrix P =

1+β−µγ
2 +

√(
1+β−µγ

2

)2
− β 1+β−µγ

2 −
√(

1+β−µγ
2

)2
− β

1 1

.

We then obtain ρD = ‖D‖op = 1+β−µγ
2 +

√(
1+β−µγ

2

)2
− β < 1.

Robust region (γ > (1−
√
β)2

µ). In this region,

(
1 + β − µγ −β

1 0

)
∼ D =


1+β−µγ

2 + i

√
β −

(
1+β−µγ

2

)2
0

0 1+β−µγ
2 − i

√
β −

(
1+β−µγ

2

)2



with the transition matrix P =

1+β−µγ
2 + i

√
β −

(
1+β−µγ

2

)2 1+β−µγ
2 − i

√
β −

(
1+β−µγ

2

)2

1 1

.

We then obtain ρD = ‖D‖op =
√
β < 1.

Boundary (γ =
(1−
√
β)2

µ). On the boundary between the lazy and the robust regions,(
1 + β − µγ −β

1 0

)
is not diagonalisable.

However, we can write

(
1 + β − µγ −β

1 0

)
∼ D =

√
β

(
1 ε

0 1

)
, with any ε > 0 using

the transition matrix P =

√β ε
√
β

1+β

1 − βε
1+β

. We then obtain ρD = ‖D‖ =
√
β

√
1 + ε2

2 +

√(
1 + ε2

2

)2
− 1 =

√
β

(
ε
2 +

√
1 + ε2

4

)
. Note ρD < 1 if and only if ε < 1−β√

β
.

8.E. Auxiliary proofs from Section 8.6 220

8.E Auxiliary proofs from Section 8.6

Definition 8.E.1 (Mollifier uε, ε > 0). We define, for any ε > 0.

u(x) ,
1

Z
e
− 1

1−‖x‖2 1‖x‖<1, with Z ,
∫
‖x‖61

e
− 1

1−‖x‖2 dx, uε(x) ,
1

ε2
u

(
1

ε
x

)
.

We first recall some classical properties of uε, see for example (Section 4.4 of Brézis,
2011, on mollifiers).

Lemma 8.E.2. ∀ε > 0, uε is the probability density function (pdf) of an L∞ and centered
random variable.

Lemma 8.E.3 (C∞ with compact support). For any ε > 0, uε ∈ C∞ and its support is
B(0, ε).

Lemma 8.E.4 (Bounded derivatives). For any ε > 0 and any r > 0,

M (r)
ε , sup

x∈R2

‖∇ruε(x)‖ = sup
x∈B(0,ε)

‖∇ruε(x)‖ <∞.

Let ψ ∈ Fµ,L. We consider ϕε = ψ ∗ uε. We recall the following properties of ϕε.

Lemma 8.E.5 (Higher-order derivatives are bounded). Let ψ ∈ Fµ,L and ϕε = ψ ∗ uε. Then
for any ε > 0,

1. ϕε ∈ C∞

2. for any r > 2 ‖∇r(ϕε)‖ is bounded.

3. ϕε ∈ Fµ,L.

The proof of point 1 is standard, the one of point 2 uses that ∀x, ‖∇2ψ(x)‖ 6 L and
the properties of the convolution, and finally, the proof of point 3 relies on the fact that
∀ x, µ 6 ‖∇2ψ(x)‖ 6 L and that uε is a probability density function.

8.F A summary of convergence rates on Fµ,L and Qµ,L

For completeness and reference purposes, we summarize the convergence rates of the
algorithms under consideration of this work, on the functional classes Fµ,L and Qµ,L.
Section 8.F provides the algorithms and their respective worst-case converge rates in the
sense of Definition 8.1.3 expressed uniformly over κ, and approximately as κ→ 0.

8.F. A summary of convergence rates on Fµ,L and Qµ,L 221

Table 8.3: Asymptotic convergence rates (on ‖xt − x?‖) for standard algorithms.
Optimal convergence rates (lower and upper complexity bounds) are highlighted in

boxes.

Algorithm Known convergence rate Approximate rate as κ→ 0

on Fµ,L on Qµ,L on Fµ,L on Qµ,L

GD(γ = 1/L) 1− κ
(see Nesterov
(2003))

1− κ
(see Nesterov
(2003))

1− κ 1− κ

GD(γ = 2/(L+ µ)) 1−κ
1+κ

(see Nesterov
(2003))

1−κ
1+κ

(see Nesterov
(2003))

1− 2κ 1− 2κ

Chebyshev’s method ? 1−
√
κ

1+
√
κ

(see Ne-
mirovskii
(1994))

? 1− 2
√
κ

HB(γ?(Qµ,L), β?(Qµ,L)) none (cycles)
(see Lessard
et al. (2016))

1−
√
κ

1+
√
κ

(see Ne-
mirovskii
(1994))

none (cycles) 1− 2
√
κ

HB(γ?(Fµ,L), β?(Fµ,L)) 1−Θ(κ)

(Corollary 8.3.7)
1−Θ(κ)

(Theorem 8.3.6)
1−Θ(κ) 1−Θ(κ)

NAG (γ = 1/L, β = 1−
√
κ

1+
√
κ

) (1 −
√
κ)1/2

(see Nesterov
(2003))

1−
√
κ

(see Hage-
dorn and
Jarre (2023))

1− 1
2

√
κ 1−

√
κ

Information-theoretic exact method 1−
√
κ

(see (Taylor
and Drori,
2022))

1−
√
κ

(see (Taylor
and Drori,
2022))

1−
√
κ 1−

√
κ

Triple momentum method 1−
√
κ

(see (Van Scoy
et al., 2017))

1−
√
κ

(see (Van Scoy
et al., 2017))

1−
√
κ 1−

√
κ

Lower complexity bounds 1−
√
κ

(see Drori
and Taylor
(2022))

1−
√
κ

1+
√
κ

(see Ne-
mirovskii
(1994))

1−
√
κ 1− 2

√
κ

Part III

Conclusion

222

9
Summary

224

In the ever-evolving landscape of optimization theory, which many applications such as
machine learning rely on, the thesis, "Constructive Approaches to Worst-Case Complexity
Analyses of Gradient Methods for Convex Optimization: Contributions, New Insights, and
New Results," stands as a testament to the indispensable role of the uniformization and
automation of the approaches.

Amidst the myriad optimization approaches, first-order optimization methods exhibit a
good balance between efficacy and computational efficiency of recent emerging problems.
At its core, this thesis is a quest to not merely find solution to optimization problems but
to accelerate their discoveries by constructively contribute to the theoretical foundations
of first-order optimization. The contributions of this thesis take diverse forms, from
comprehending the insights that existing approaches bring to the field and developing new
approaches, to using them to solve specific open problems. This is facilitated through the
development of the Python package PEPIT, designed to support further investigations.

The journey undertaken within these pages begins by analyzing the known link between
quadratic optimization and polynomials. We developed equioscillation theorems and used
them to design the worst-case optimal method under an empirically observed assump-
tion. This result closed the gap between theory and practice, explaining the empirical
performance of the corresponding strategy.

One of the primary contributions lies in the synthesis of many insights brought by the
Performance Estimation Framework about proof structures. By developing the supporting
Python package PEPIT, the thesis not only advances the theoretical discourse but also
provides practitioners with tangible tools for the constructive exploration of optimization
proofs. The accompanying documentation and the tutorial serve as a beacon, guiding
researchers on how to derive natural proofs in optimization.

The thesis also applies these methodologies to a large class of non necessarily smooth
functions to derive several algorithms and tight worst-case guarantees.

Finally, while existing approach guide the design of proofs of convergence, the thesis
introduces a new constructive approach to disprove convergence of first-order methods.
Moreover, this new approach can easily be embedded in the Python package PEPIT. This
not only broadens the scope of understanding first-order optimization but also enriches the
theoretical arsenal available to researchers and practitioners. The journey culminates in a
critical examination of the Heavy-ball method, challenging the conventional wisdom by
using the theoretical Performance Estimation framework to disprove its acceleration over
the class of smooth and strongly convex functions.

In summary, rather than exclusively addressing particular open problems, this thesis
introduces and examines general tools and concrete elements that underscore the signifi-
cance and effectiveness of employing uniform approaches in the exploration of optimization
methods.

10
A few open directions

226

Contents

10.1 Analysis of bilinear games via polynomials. 227
10.2 Non-quadratic PEP constraints. 228
10.3 HB on Fµ,L . 229

10.3.1 Does HB accelerate in dimension 1? 230
10.3.2 On the relationship between Ω◦-Cycle(Fµ,L)c and ΩTaylor(Fµ,L) 233
10.3.3 Optimal convergence rate . 235

10.4 An interesting class between Fµ,L and Qµ,L? 235
10.5 An adaptive strategy for HB on Fµ,L? . 237
10.6 Distributed learning . 237

10.1. Analysis of bilinear games via polynomials. 227

10.1 Analysis of bilinear games via polynomials.

The equivalence theorem between algorithms and families of polynomials can be adapted
to games.

Indeed, assume we seek to converge to the saddle point of the bilinear function of (x, y)

(x− x?)TA(y − y?), (10.1)

that is we want to find (x, y) such that A(y − y?) = 0 and AT (x− x?) = 0.
A well-known fact is that the simultaneous Gradient descent ascent method does not

converge well in this setting. Indeed, the latter consists of the following updates

xt+1 =xt − γA(yt − y?) (10.2)

yt+1 =yt + γAT (xt − x?) (10.3)

for some positive γ, and we can therefore verify

‖A(yt+1 − y?)‖2 + ‖AT (xt+1 − x?)‖2 (10.4)

=‖A(yt − y? − γAT (xt − x?))‖2 + ‖AT (xt − x? + γA(yt − y?))‖2 (10.5)

=‖A(yt − y?)‖2
((((((((((((((((

−2γ
〈
A(yt − y?), AAT (xt − x?)

〉
+ ‖AAT (xt − x?)‖2 (10.6)

+ ‖AT (xt − x?)‖2
(((((((((((((((((

+2γ
〈
AT (xt − x?), ATA(yt − y?)

〉
+ ‖ATA(yt − y?)‖2 (10.7)

> ‖A(yt − y?)‖2 + ‖AT (xt − x?)‖2. (10.8)

To overcome this issue, methods like extragradient (Korpelevich, 1976; Gidel et al.,
2018) and negative-momentum (Gidel et al., 2019) have been created. Extragradient has
recently been studied through the prism of polynomials theory (Kim et al., 2022). However,
to the best of my knowledge, there does not exist an equivalent to the conjugate gradient
method for this type of problem. We want to extend the reasoning we used in Chapter 2 to
this particular problem.

Let us consider a generic form of algorithms as

xt = x0 −
t−1∑
s=0

γ
(x)
t,s A(ys − y?) (10.9)

yt = y0 +
t−1∑
s=0

γ
(y)
t,s A

T (xt − x?) (10.10)

We can define 4 polynomials P (x,x)
t , P (x,y)

t , P (y,x)
t and P (y,y)

t such that for all t > 0,

xt − x? = P
(x,x)
t (AAT)(x0 − x?) +AP

(x,y)
t (ATA)(y0 − y?), (10.11)

yt − y? = ATP
(y,x)
t (AAT)(x0 − x?) + P

(y,y)
t (ATA)(y0 − y?). (10.12)

This way, we could try to minimize a given metric in a greedy way using properties of
orthogonal polynomials.

Challenge. The difficulty here lies in the fact the 4 polynomials are not independent
of each other, therefore the degree of freedom is limited. Considering the interlaced
polynomials P (x,x)

t (X2) +XP (x,y)(X2) and P (y,y)
t (X2) +XP (y,x)(X2) seems to be the key

to solve this issue.

10.2. Non-quadratic PEP constraints. 228

10.2 Non-quadratic PEP constraints.

An essential ingredient for PEPs to be transformed into an SDP is the homogeneity of
the different formulas. In particular, the fact that the interpolation constraints of the
studied class of functions write linearly in function values and quadratically in points and
gradients. For example, the classes of smooth, smooth convex, quadratically bounded, and
quadratically bounded convex functions verify the respective inequalities for all i, j:

fi − fj 6 〈gj , xi − xj〉+
L

2
‖xi − xj‖2,

fi − fj > 〈gj , xi − xj〉+
1

2L
‖gi − gj‖2,

fi − f? 6
L

2
‖xi − x?‖2,{

f? − fi > 〈gi, x? − xi〉+ 1
2L‖gi‖

2,

fi − fj > 〈gj , xi − xj〉 .

All the LHS are linear expressions of the function values fi and fj , while all the RHS are
quadratic expressions of the points xi and xj and the gradients gi and gj . After introducing
the Gram matrix of all x and g, all the inequalities become linear.

Note however that this excludes classes such as Holder continuous functions verifying

fi − fj 6 〈gj , xi − xj〉+
L

1 + p
‖xi − xj‖1+p (10.13)

for some p ∈ (0, 1). This also excludes the corresponding generalization of QG+(L):

fi − f? 6
L

1 + p
‖xi − x?‖1+p. (10.14)

Indeed, even after the SDP lifting step, the inequality contains some entries of the Gram
matrix elevated to the power 1+p

2 , which makes the problem non-linear when p 6= 1.
However, some tricks may sometimes exist to study classes of functions that seem to

be out of the scope of the PEP framework (see e.g., Dragomir (2021); Dragomir et al.
(2021); Dragomir and Nesterov (2023)). An promising trick consists in replacing some
scalar inequalities with linear matrix inequalities (LMI). For the sake of simplicity, let’s

define EL , fi − fj − 〈gj , xi − xj〉 or EL , fi − f? and ER ,
(

L
1+p

)1/(1+p)
‖xi − x?‖2.

EL and ER both are linear expressions of the function values and the entries of the
Gram matrix introduced during the SDP lifting step. The inequalities (10.13) and (10.14)
write as EL 6 E

(1+p)/2
R . As mentioned above, in some cases, introducing an LMI helps

overcome this issue. The simplest example corresponds to p = 0. In this case, we aim at
linearizing EL 6 E

1/2
R . Note that the latter is equivalent to ER −E2

L > 0, or equivalently

to

(
ER EL
EL 1

)
< 0. Note this trick of transforming a quadratic expression into an LMI

has been used in (De Klerk et al., 2017) to study the Gradient descent method with exact
line-search. This way, we can afford to authorize the power 1/2. Subsequently, by iterating
this trick, we can also authorize the power 3/4 and all the q/2n as well, where q and n are
positive integers with q/2n ∈ (0, 1).

Structure of the proof of worst-case guarantee. Each time we introduce a 2× 2 LMI of

the form

(
A C

C B

)
< 0, we obtain the optimal primal value P =

(
PA PC
PC PB

)
< 0, and the

10.3. HB on Fµ,L 229

optimal dual value D =

(
DA DC

DC DB

)
< 0. Writing a proof under the form (Generic proof),

the above LMI is involved linearly using only

〈(
A C

C B

)
,

(
DA DC

DC DB

)〉
> 0. Note the

KKT condition gives

〈(
PA PC
PC PB

)
,

(
DA DC

DC DB

)〉
= 0. Then, except when P = 0 (which

cannot happen in many examples like above when PB = 1), the matrix B is not full

rank. Therefore, we know that D2
C = DADB. Finally,

〈(
PA PC
PC PB

)
,

(
DA DC

DC DB

)〉
=

ADA + BDB ± 2C
√
DADB. As a conclusion, when we have access to the 2 × 2 LMI

that we can use in the proof, we actually only use one scalar inequality of the form
±C 6 1

2(XA+B/X) where X =
√
DA/DB.

Example. Considering the non-linear inequality EL 6 E
1/2
R as above, we can introduce

the LMI

(
ER EL
EL 1

)
< 0 to obtain an SDP, easily solvable numerically. On the other hand,

to reconstruct the proof, it is important to understand beforehand the kind of structure we
are seeking. Here, the proof will only use some inequality EL 6 1

2(XER + 1/X) for some
positive scalar X, which could be obtained by using Young inequality.

Generalization. Instead of considering the inequality EL 6 E
1/2
R , we can now look at

inequalities of the form EL 6 H(ER) where H is a function. A generalization of the Young
inequality applied to the function −H states ∀Z, Y, ZY 6 (−H)(Y) + (−H)∗(Z). With
Y := ER and Z := −X, we have for any X: EL 6 H(ER) 6 XER+(−H)∗(−X), allowing
to only deal with affine combinations of the usual PEP terms. In particular, this allows us
to derive certificates that hold on Holder continuous convex functions, rediscovering the
universal methods described in Nesterov (2015), but also to generalize this methodology
to other classes. In particular, in Chapter 6, we derive guarantees of first-order methods on
QG+(L) convex functions, and this can be generalized to other types of bounds on f such
as (10.14).

Challenge. Understand when this method is guaranteed to deliver optimal guarantees
and when this is not the case. In particular, when H is concave, the Young inequalities
applied on −H lead to upper bounding H by all its tangents, which perfectly characterize
H. On the other hand, when H is not concave, this method applies on H as it applies on
−(−H)∗∗ > H, that is this method does not fully characterize H. But is it possible to do
better?

10.3 HB on Fµ,L
In Chapter 8, we found the analytic expression of the region Ω◦-Cycle(Fµ,L) of parameters
for which HB admits a cycle on Fµ,L, excluding the possibility of an acceleration. Moreover,
we proved that, for each parameter of this region, we can find a cycle in a two-dimensional
space. Therefore, some questions remains open:

1. Can we find cycles in dimension one for any parameter on which HB admits a cycle?

2. What is the analytical expression of ΩTaylor(Fµ,L)?

10.3. HB on Fµ,L 230

(a) Border of Ω◦-Cycle(Fµ,L) in black lines.
ΩCycle(Fµ,L) in shades of purples.

(b) Border of Ω◦-Cycle(Fµ,L) in black lines.
ΩCycle(Fµ,L)(D = 1) in shades of purples.

Figure 10.1: Comparison of cycle regions in different dimensions.

3. What is the optimal convergence rate of HB on Fµ,L?

Those questions are discussed in the 3 following sections.

10.3.1 Does HB accelerate in dimension 1?

Here we seek the set of parameters (γ, β) such that HBγ,β cycles on a one-dimensional
function.

First note that, with the notation of Chapter 8,

ΩCycle(Fµ,L)(D = 1)

Ω◦-Cycle(Fµ,L)

}
⊆ ΩCycle(Fµ,L)(D = 2) ⊆ ΩCycle(Fµ,L). (10.15)

Conjecture 8.4.15 states

Ω◦-Cycle(Fµ,L) = ΩCycle(Fµ,L)(D = 2) = ΩCycle(Fµ,L). (10.16)

In the following, we conjecture

ΩCycle(Fµ,L)(D = 1) = ΩCycle(Fµ,L)(D = 2) = ΩCycle(Fµ,L), (10.17)

i.e. HBγ,β cycles on a function (without dimension constraint) if and only if it cycles in
dimension 1. This would imply that HBγ,β cannot accelerate, even in dimension 1.

Here is how those conjectures are supported:

• First, Theorem 8.3.5 provides analytical formulas for Ω◦-Cycle(Fµ,L).

• Second, Theorem 8.4.13 provides an efficient way to numerically obtain ΩCycle(Fµ,L)

by solving an LP. This way, we can numerically compare Ω◦-Cycle(Fµ,L) and ΩCycle(Fµ,L),
as shown in Figure 10.1a.

• Finally, in the following, we provide a way to numerically obtain ΩCycle(Fµ,L)(D = 1),
and we also compare Ω◦-Cycle(Fµ,L) and ΩCycle(Fµ,L)(D = 1) in Figure 10.1b.

10.3. HB on Fµ,L 231

Finding 1D cycles. Let K > 3. Let (x0, · · · , xK−1) ∈ RK a cycle. We note X =

(x0, · · · , xK−1)> ∈ RK . HBγ,β cycles if and only if there exists a function with gradi-
ents G = (g0, · · · , gK−1) ∈ RK verifying G = [(1+β)I−J−βJ−1]

γ X.
In dimension 1, verifying that the underlying function belongs to Fµ,L is equivalent

to verifying µ 6 g(i+1)−g(i)

x(i+1)−x(i) 6 L where the exponents sort X, i.e. there exists a permu-

tation σ such that X = σ(x(0), · · · , x(K−1))> with x(0) 6 · · · 6 x(K−1), and we define
(g(0), · · · , g(K−1))T with G = σ(g(0), · · · , g(K−1))T . Note that σ is defined as the permuta-
tion that sorts X, and it sorts also G if and only if f is convex.

Therefore, defining δk , x(k) − x(k−1) > 0 for any k ∈ J1,K − 1K, we have

X = σ


X(0)

...
X(K−1)

 = σS


δ1

...
δK−1

 , with S ,


0 0 . . . 0

1 0 . . . 0

1 1 . . . 0

1 1 . . . 1

 ∈ RK×(K−1).

Note that we simplified w.l.o.g choosing X(0) = 0, which reduces the dimension of the
problem by 1. We define the desired gradients as

G =
[(1 + β)I − J − βJ−1]

γ
X =

[(1 + β)I − J − βJ−1]

γ
σS


δ1

...
δK−1.

 ,
and


g(1) − g(0)

...
g(K−1) − g(K−2)

 = Dσ−1G, with D ,



−1 1 0 . . . 0 0

0 −1 1 . . . 0 0
...

...
.

...
...

0 0 . . . −1 1 0

0 0 . . . 0 −1 1


∈ R(K−1)×K .

Finally, 
g(1) − g(0)

...
g(K−1) − g(K−2)

 = Dσ−1 [(1 + β)I − J − βJ−1]

γ
σS


δ1

...
δK−1.

 .
And we know that f ∈ Fµ,L if and only if

g(1) − g(0)

...
g(K−1) − g(K−2)

 6 L


δ1

...
δK−1.

 ,


g(1) − g(0)

...
g(K−1) − g(K−2)

 > µ


δ1

...
δK−1.

 ,

10.3. HB on Fµ,L 232

i.e. if and only if

Dσ−1[(1 + β − Lγ)I − J − βJ−1]σS


δ1

...
δK−1.

 6 ~0,

Dσ−1[(1 + β − µγ)I − J − βJ−1]σS


δ1

...
δK−1.

 > ~0.
The cycle is parametrized by ~δ. We need ~δ > ~0 and ~δ 6= ~0. Indeed ~δ = ~0 leads to a single

point cycle and we know it corresponds to the optimizer being a fixed point.
Finally, we conclude that the existence of a cycle is equivalent to the existence of a

permutation σ and a vector ~δ such that

Dσ−1[(1 + β − Lγ)I − J − βJ−1]σS~δ 6 ~0,

Dσ−1[(1 + β − µγ)I − J − βJ−1]σS~δ > ~0,

~δ > ~0,

~1 >~δ > 1.

Note that for each permutation σ, it consists in an LP. But to find all the K-cycles,
we need to solve (K − 1)! LPs. (Number of permutations divided by number of cycling
permutations).

Remark 10.3.1 (Correct permutation). Figure 10.1b had first been drawn for K 6 6 due to
the increasing amount of problems to solve. Then, identifying a pattern, we conjectured one
good permutation (corresponding to actual cycles) could be (x0, x1, x2, · · · , xK−3, xK−2, xK−1) =

(x(1), x(3), x(5), · · · , x(4), x(2), x(0)), illustrated in Figure 10.2. This enabled drawing Fig-
ure 10.1b until K = 25. Note however, that the regions are imprecise at the end.

Figure 10.2: Seemingly right permutation.

Challenge. Assuming γ, β verifying the above LP, can we prove it verifies the LP provided
in Theorem 8.4.13?

10.3. HB on Fµ,L 233

10.3.2 On the relationship between Ω◦-Cycle(Fµ,L)c and ΩTaylor(Fµ,L)

On the one hand, we know the analytical form of Ω◦-Cycle(Fµ,L) as

Ω◦-Cycle(Fµ,L) =
⋃
K>3

ΩK-◦-Cycle(Fµ,L) (10.18)

with

ΩK-◦-Cycle(Fµ,L) =

{
(γ, β) ∈ Ωcv(Qµ,L) |

(µγ)2 − 2 [β − cos θK + κ(1− β cos θK)] (µγ)

+ 2κ(1− cos θK)(1 + β2 − 2β cos θK) 6 0.

}
,

and we know that

ΩTaylor(Fµ,L) ⊆ Ωcv(Fµ,L) ⊆ ΩCycle(Fµ,L)c ⊆ Ω◦-Cycle(Fµ,L)c. (10.19)

Figure 10.1a brings some evidence to Conjecture 8.4.15 according to which

ΩTaylor(Fµ,L) ⊆ Ωcv(Fµ,L) ⊆ ΩCycle(Fµ,L)c = Ω◦-Cycle(Fµ,L)c. (10.20)

Moreover, Figure 10.3 tends to show that ΩTaylor(Fµ,L) 6= ΩCycle(Fµ,L)c = Ω◦-Cycle(Fµ,L)c.
Indeed, some white regions appear between ΩTaylor(Fµ,L) and Ω◦-Cycle(Fµ,L).

Figure 10.3: Area of Lyapunov in green. Cycles’s borders in black.

Therefore, a question naturally arises:

Can we analytically characterize ΩTaylor(Fµ,L)?

First, we start from the expression of Ω◦-Cycle(Fµ,L). According to Theorem 3.5,
Ω◦-Cycle(Fµ,L) can be defined by the inequality

min
K>2

K integer

{
(µγ)2 − 2 [β − cos θK + κ(1− β cos θK)] (µγ) + 2κ(1− cos θK)(1 + β2 − 2β cos θK)

}
6 0.

(10.21)
Figure 10.3 not only shows that ΩTaylor(Fµ,L) and Ω◦-Cycle(Fµ,L) do not fill Ωcv(Qµ,L),

but also that ΩTaylor(Fµ,L) frontier looks smooth while Ω◦-Cycle(Fµ,L) do not due to

10.3. HB on Fµ,L 234

Figure 10.4: Area of Lyapunov in green. Cycles’s borders of length multiples of 1/4 in
black.

the countable union of smooth sets. Moreover, ΩTaylor(Fµ,L) seems tangent to each
ΩK-◦-Cycle(Fµ,L). A natural thought is to “smooth” Ω◦-Cycle(Fµ,L) by considering non-
integer K. Figure 10.4 empirically shows that the hull of all those newly created regions
fits exactly ΩTaylor(Fµ,L).

We then consider the relaxed equation

min
K>3
Kreal

{
(µγ)2 − 2 [β − cos θK + κ(1− β cos θK)] (µγ) + 2κ(1− cos θK)(1 + β2 − 2β cos θK)

}
6 0.

(10.22)
We can show that the latter is equivalent to

1− β
(1− βκ)2

[
(1 + 3β(1− κ)− κβ2) +

√
4β(2− κ− κβ)(1 + β − 2βκ)

]
6 Lγ 6

1 + β2 + 4β

1 + βκ
.

(10.23)
This is represented on Figure 10.5

Figure 10.5: Area of Lyapunov in green. Cycle borders in black, and cycles hull border in
red.

Challenge. How could we interpret those fractionary cycles?

10.4. An interesting class between Fµ,L and Qµ,L? 235

10.3.3 Optimal convergence rate

Finally, we would like to obtain the optimal convergence rate of HB over Fµ,L. On the
one hand, we know that HB is at least as fast as GD since one possible tuning of HB is
β = 0. Then, HB’s optimal rate is at most 1−κ

1+κ . On the other hand, excluding cycle regions,

Theorem 8.3.6 and Corollary 8.3.7 show that the rate of HB cannot be better than 1−50/3κ
1+50/3κ .

We conclude that the optimal ρ verifies

1− 50κ/3

1 + 50κ/3
6 ρ? 6

1− κ
1 + κ

. (10.24)

We parametrize ρ∗ as 1−cκ
1+cκ where c is a number in [1, 50/3] and look for the largest c corre-

sponding to a convergence rate HB can reach. We numerically compute it in Figure 10.6.

(a) κ = 0.05 (b) κ = 0.01 (c) κ = 0.001

Figure 10.6: Heat map of the rate expressed with c.

The optimal rates and settings are summarized in Table 10.1.

κ Optimal c Optimal β Optimal γ

0.05 1.87 0.37 1.9

0.01 2.58 0.65 1.57

0.001 3.76 0.839 1.01

Table 10.1: Optimal setting for HB on Fµ,L

The optimal c seems to increase when κ decreases. What is the limit?

Challenge. Finding the analytical expressions of the optimal tuning and rate.

10.4 An interesting class between Fµ,L and Qµ,L?

On the one hand, a well-known result about HB is its accelerated convergence rate over
Qµ,L. On the other hand, in Chapter 8, we prove the non-acceleration of HB on Fµ,L. A
natural question therefore is “Can we find a class in between Qµ,L and Fµ,L on which HB

accelerates?” In simple words, “Can we extend the acceleration result of HB beyond the
quadratics?”

10.4. An interesting class between Fµ,L and Qµ,L? 236

As detailed in Chapter 5, a way to extend a result from a class to a larger one is to look
at the proof and discard the unused constraints. However, in this case, we know a proof
over Qµ,L, based on polynomials or matrix manipulations, not combination of inequalities.
The first step is therefore to find a proof involving interpolation constraints of the class
Qµ,L.

A class constraints-based proof. By chance, they have been recently discovered by Bous-
selmi et al. (2023). Using them, and applying the Lyapunov-search approach of (Taylor
et al., 2018a), we found the following result:

Theorem 10.4.1. Let xt be a sequence of iterates generated by (HB) γ,β on a given function
f . Set gt , ∇f(xt). Let Vt defined as Vt , ‖xt‖2 − 〈xt−1, xt+1〉. We verify that:

1. If 〈xt, gt+1〉 6 〈xt+1, gt〉 (e.g., if f is quadratic), then Vt+1 6 βVt;

2. If f ∈ Fµ,L, then Vt > 1
β

(
γ
4

(
2(1+β)
h − γ

)
− (1−β)2

4h2

)
‖gt‖2, with h = µ if γ < L+µ

2Lµ
(1−β)2

1+β

and h = L if γ > L+µ
2Lµ

(1−β)2

1+β .

The first result shows that Vt decreases exponentially fast, while the second one ensures
Vt is lower bounded. Moreover, the lower bound is non-negative in the robust region, and
only in the robust region. And it is positive in the interior of the robust region. Finally, this
proves that (HB) γ,β verifies ‖gt‖2 = O(βt) in the interior of the robust region.

Proof.

1. We start by proving the first assertion. From

〈xt, γgt+1〉 6 〈xt+1, γgt〉 ,

we use the update equation of Heavy-ball and obtain

〈xt, xt+1 − xt+2 + β(xt+1 − xt)〉 6 〈xt+1, xt − xt+1 + β(xt − xt−1)〉 .

A simple reordering of the terms leads to

〈xt, xt+1 − xt+2〉 − 〈xt+1, xt − xt+1〉 6 β 〈xt+1, xt − xt−1〉 − β 〈xt, xt+1 − xt〉 ,

that is Vt+1 6 βVt.

2. We now prove the second assertion.

βVt =β
[
‖xt‖2 − 〈xt−1, xt+1〉

]
=β

[
‖xt‖2 − 〈xt−1, xt + β(xt − xt−1)− γgt〉

]
=

(
2

L− µ

∣∣∣∣∣γ4 (1 + β)− L+ µ

2Lµ

(1− β)2

4

∣∣∣∣∣+ (1− β)2

4Lµ

)[
(L+ µ) 〈xt, gt〉 − ‖gt‖2 − Lµ‖xt‖2

]
+

(
γ

4

(
2(1 + β)

h
− γ

)
− (1− β)2

4h2

)
‖gt‖2

+
2Lµ

L− µ

∣∣∣∣∣γ4 (1 + β)− L+ µ

2Lµ

(1− β)2

4

∣∣∣∣∣ ‖xt − 1

h
gt‖2

+
1

4
‖γgt − (1 + β)xt + 2βxt−1‖2

>

(
γ

4

(
2(1 + β)

h
− γ

)
− (1− β)2

4h2

)
‖gt‖2,

10.5. An adaptive strategy for HB on Fµ,L? 237

with h = µ if γ < L+µ
2Lµ

(1−β)2

1+β and h = L if γ > L+µ
2Lµ

(1−β)2

1+β .

�

Challenge. We know the quadratic assumption is only used through the inequality
〈xt, gt+1〉 6 〈xt+1, gt〉. Can we relax the quadratic assumption, replacing it by a strictly
weaker assumption whose expression does not depend on the iterates?

10.5 An adaptive strategy for HB on Fµ,L?

While in Chapter 8 we prove the non-acceleration of HB with constant parameters on Fµ,L,
the question is still open for adaptive strategies. Barré et al. (2020) already proved that
HB with Polyak step-sizes converges with a linear rate

(
1− µ

L

)3/4, which is faster than GD

but still slower than accelerating methods like ITEM (Taylor and Drori, 2022). Another
type of adaptive strategy is the backtracking line-search. As explained in (Park and Ryu,
2021), the backtracking line-search strategy consists in forcing the inequalities used in the
proof to hold.

Challenge. Based on the previous analysis made of HB on non-quadratic objectives, can
we enforce 〈xt, γgt+1〉 6 〈xt+1, γgt〉 to hold just by modifying the parameters in an online
manner?

10.6 Distributed learning

Obtaining a worst-case guarantee in first-order optimization is a very challenging task.
The constructive approaches that we discussed constitute essential tools towards this goal.
While we focus on very classical algorithms in this thesis, the presented tools can be applied
to more complex algorithms such as stochastic methods (see Taylor and Bach (2019); Hu
et al. (2021)) and inexact gradient-based methods (see De Klerk et al. (2020); Gannot
(2021)). In particular, recent extensions of PEP/IQCs include distributed and decentralized
optimization (Sundararajan et al., 2019, 2020; Colla and Hendrickx, 2021). In this setting,
we need to deal with both a local gradient update and a communication step. Moreover,
when the communication bandwidth is limited (see e.g. Alistarh et al. (2017); Wu et al.
(2018); Mishchenko et al. (2019); Horváth et al. (2019); Li et al. (2020); Horváth and
Richtárik (2020)), or when privacy is desired (see e.g. Arora et al. (2022); Bassily et al.
(2021)), the communicated states need to be corrupted by either a compression step or a
high level of noise. The compression step is often very challenging to tackle in optimization
as it biases the estimates of the gradients. To improve over classical SGD skim with inexact
gradients, methods like Error Feedback have been proposed (see Seide et al. (2014); Stich
and Karimireddy (2020); Karimireddy et al. (2019); Richtárik et al. (2021)).

Challenges. Comparing those methods’ performance is a challenging task as, while there
exist some upper bounds, there is no known tight bound. Finding such bounds is therefore
challenging. The PEP approach described in Chapter 5 together with our software presented
in Chapter 4 will be of great help in this endeavor. Finally, applying the SSEP techniques
(see Drori and Taylor (2020)) on the dual of the PEP could help in designing a performing
method while looking for a Lyapunov functional for this method.

Bibliography

H. Abbaszadehpeivasti, E. de Klerk, and M. Zamani. The exact worst-case convergence
rate of the gradient method with fixed step lengths for L-smooth functions. Optimization
Letters, 2021.

H. Abbaszadehpeivasti, E. de Klerk, and M. Zamani. Conditions for linear convergence of the
gradient method for non-convex optimization. Optimization Letters, 17(5):1105–1125,
2023.

A. Agarwal, S. N. Negahban, and M. J. Wainwright. Fast global convergence of gradient
methods for high-dimensional statistical recovery. Annals of statistics, 40(5):2452–2482,
2012.

N. Agarwal, S. Goel, and C. Zhang. Acceleration via fractal learning rate schedules. arXiv
preprint arXiv:2103.01338, 2021.

D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic. QSGD: Communication-Efficient
SGD via Gradient Quantization and Encoding. Advances in Neural Information Processing
Systems (NIPS), 30:1709–1720, 2017.

R. Aljundi, M. Lin, B. Goujaud, and Y. Bengio. Gradient based sample selection for online
continual learning. Advances in Neural Information Processing Systems (NeurIPS), 32,
2019.

M. Anitescu. Degenerate nonlinear programming with a quadratic growth condition. SIAM
Journal on Optimization, 10(4):1116–1135, 2000.

Y. Arjevani, S. Shalev-Shwartz, and O. Shamir. On lower and upper bounds in smooth
and strongly convex optimization. The Journal of Machine Learning Research, 17(1):
4303–4353, 2016.

L. Armijo. Minimization of functions having Lipschitz continuous first partial derivatives.
Pacific Journal of mathematics, 1966.

R. Arora, R. Bassily, C. Guzmán, M. Menart, and E. Ullah. Differentially private generalized
linear models revisited. Advances in Neural Information Processing Systems (NeurIPS), 35:
22505–22517, 2022.

F. Bach. Self-concordant analysis for logistic regression. Electronic Journal of Statistics, 4:
384–414, 2010.

N. Bansal and A. Gupta. Potential-function proofs for gradient methods. Theory of Comput-
ing, 15(1):1–32, 2019.

M. Barré. Worst-case analysis of efficient first-order methods. PhD thesis, Université Paris
sciences et lettres, 2021.

M. Barré, A. Taylor, and A. d’Aspremont. Complexity guarantees for polyak steps with
momentum. In Conference on Learning Theory, 452–478. PMLR, 2020.

M. Barré, A. B. Taylor, and F. Bach. Principled analyses and design of first-order methods
with inexact proximal operators. Math. Programming, 201(1):185–230, 2023.

J. Barzilai and J. M. Borwein. Two-point step size gradient methods. IMA journal of
numerical analysis, 8(1):141–148, 1988.

R. Bassily, C. Guzmán, and M. Menart. Differentially private stochastic optimization: New
results in convex and non-convex settings. Advances in Neural Information Processing
Systems (NeurIPS), 34:9317–9329, 2021.

H. H. Bauschke, J. Bolte, and M. Teboulle. A descent lemma beyond Lipschitz gradient
continuity: first-order methods revisited and applications. Mathematics of Operations
Research, 42(2):330–348, 2017.

A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
problems. SIAM journal on imaging sciences, 2(1):183–202, 2009.

J. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl. Algorithms for hyper-parameter optimiza-
tion. Advances in Neural Information Processing Systems (NIPS), 24, 2011.

R. Berthier, F. Bach, and P. Gaillard. Accelerated gossip in networks of given dimension
using Jacobi polynomial iterations. SIAM Journal on Mathematics of Data Science, 2(1):
24–47, 2020.

D. P. Bertsekas. Nonlinear programming. Journal of the Operational Research Society, 1997.

J. Bolte, T. P. Nguyen, J. Peypouquet, and B. W. Suter. From error bounds to the complexity
of first-order descent methods for convex functions. Math. Programming, 165(2):471–
507, 2017.

J. F. Bonnans and A. Ioffe. Second-order sufficiency and quadratic growth for nonisolated
minima. Mathematics of Operations Research, 20(4):801–817, 1995.

J.-F. Bonnans, J.-C. Gilbert, C. Lemaréchal, and C. A. Sagastizábal. Numerical optimization:
theoretical and practical aspects. Springer Science & Business Media, 2006.

K.-H. Borgwardt. Untersuchungen zur Asymptotik der mittleren Schrittzahl von Simplexver-
fahren in der linearen Optimierung. PhD thesis, Universitat Kaiserslautern, 1977.

K. H. Borgwardt. The simplex method: a probabilistic analysis, Number 1 in Algorithms and
Combinatorics. Springer-Verlag, 1980.

L. Bottou and O. Bousquet. The tradeoffs of large scale learning. In Advances in Neural
Information Processing Systems (NIPS), 2007.

N. Bousselmi, J. M. Hendrickx, and F. Glineur. Interpolation conditions for linear operators
and applications to performance estimation problems. arXiv:2302.08781, 2023.

S. Boyd, L. Xiao, and A. Mutapcic. Subgradient methods. lecture notes of EE392o, Stanford
University, Autumn Quarter, 2003.

H. Brézis. Functional analysis, Sobolev spaces and partial differential equations, 2. Springer,
2011.

S. Bubeck. Convex optimization: Algorithms and complexity. Found. and Trends in Machine
Learning, 8(3-4):231–357, 2015.

A. Cauchy. Méthode générale pour la résolution des systemes d’équations simultanées.
Comp. Rend. Sci. Paris, 1847.

A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex problems with
applications to imaging. Journal of mathematical imaging and vision, 40:120–145, 2011.

A. Chambolle and T. Pock. An introduction to continuous optimization for imaging. Acta
Numerica, 25:161–319, 2016.

P. L. Chebyshev. Théorie des mécanismes connus sous le nom de parallélogrammes. Imprimerie
de l’Académie impériale des sciences, 1853.

N. H. Chieu, N. T. Q. Trang, and H. A. Tuan. Quadratic growth and strong metric subregu-
larity of the subdifferential for a class of non-prox-regular functions, 2021.

S. Colla and J. M. Hendrickx. Automated worst-case performance analysis of decentralized
gradient descent. In Proceedings of the 60th Conference on Decision and Control (CDC),
2021.

P. L. Combettes and J.-C. Pesquet. Proximal splitting methods in signal processing. Fixed-
point algorithms for inverse problems in science and engineering, 185–212, 2011.

R. Couillet and F. Benaych-Georges. Kernel spectral clustering of large dimensional data.
Electronic Journal of Statistics, 2016.

Y. Cui, C. Ding, and X. Zhao. Quadratic growth conditions for convex matrix optimization
problems associated with spectral functions, 2017.

L. Cunha, G. Gidel, F. Pedregosa, D. Scieur, and C. Paquette. Only tails matter: Average-case
universality and robustness in the convex regime. In International Conference on Machine
Learning (ICML), 2022.

S. Cyrus, B. Hu, B. Van Scoy, and L. Lessard. A robust accelerated optimization algorithm
for strongly convex functions. In 2018 Annual American Control Conference (ACC),
1376–1381. IEEE, 2018.

S. Das Gupta, B. P. Van Parys, and E. K. Ryu. Branch-and-bound performance estimation
programming: a unified methodology for constructing optimal optimization methods.
Math. Programming, 1–73, 2023.

D. Davis and W. Yin. A three-operator splitting scheme and its optimization applications.
Set-valued and variational analysis, 25:829–858, 2017.

E. De Klerk, F. Glineur, and A. B. Taylor. On the worst-case complexity of the gradient
method with exact line search for smooth strongly convex functions. Optimization Letters,
11(7):1185–1199, 2017.

E. De Klerk, F. Glineur, and A. B. Taylor. Worst-case convergence analysis of inexact gradient
and newton methods through semidefinite programming performance estimation. SIAM
Journal on Optimization, 30(3):2053–2082, 2020.

A. Defazio. A simple practical accelerated method for finite sums. In Advances in Neural
Information Processing Systems (NIPS), 2016.

S. Diamond and S. Boyd. CVXPY: A Python-embedded modeling language for convex
optimization. The Journal of Machine Learning Research (JMLR), 17(1):2909–2913, 2016.

P. Dobson, J. M. Sanz-Serna, and K. Zygalakis. On the connections between optimization
algorithms, lyapunov functions, and differential equations: theory and insights. arXiv
preprint arXiv:2305.08658, 2023.

R. D’Orazio, N. Loizou, I. Laradji, and I. Mitliagkas. Stochastic mirror descent: Convergence
analysis and adaptive variants via the mirror stochastic Polyak stepsize. Transactions on
Machine Learning Research (TMLR), 2021.

R.-A. Dragomir. Bregman Gradient Methods for Relatively-Smooth Optimization. PhD thesis,
UT1 Capitole, 2021.

R.-A. Dragomir and Y. Nesterov. Convex quartic problems: homogenized gradient method
and preconditioning. arXiv preprint arXiv:2306.17683, 2023.

R.-A. Dragomir, A. B. Taylor, A. d’Aspremont, and J. Bolte. Optimal complexity and
certification of bregman first-order methods. Math. Programming, 1–43, 2021.

Y. Drori. Contributions to the Complexity Analysis of Optimization Algorithms. PhD thesis,
Tel-Aviv University, 2014.

Y. Drori. The exact information-based complexity of smooth convex minimization. Journal
of Complexity, 39:1–16, 2017.

Y. Drori and A. Taylor. On the oracle complexity of smooth strongly convex minimization.
Journal of Complexity, 68:101590, 2022.

Y. Drori and A. B. Taylor. Efficient first-order methods for convex minimization: a construc-
tive approach. Math. Programming, 184(1):183–220, 2020.

Y. Drori and M. Teboulle. Performance of first-order methods for smooth convex minimiza-
tion: a novel approach. Math. Programming, 145(1):451–482, 2014.

Y. Drori and M. Teboulle. An optimal variant of kelley’s cutting-plane method. Math.
Programming, 160(1-2):321–351, 2016.

D. Drusvyatskiy and A. D. Ioffe. Quadratic growth and critical point stability of semi-
algebraic functions. Math. Programming, 153(2):635–653, 2015.

D. Drusvyatskiy and A. S. Lewis. Error bounds, quadratic growth, and linear convergence
of proximal methods. Mathematics of Operations Research, 43(3):919–948, 2018.

P. Dvurechensky, S. Shtern, and M. Staudigl. First-order methods for convex optimization.
EURO Journal on Computational Optimization, 9, 2021.

A. d’Aspremont, D. Scieur, and A. Taylor. Acceleration methods. Foundations and Trends R©
in Optimization, 5(1-2):1–245, 2021.

M. Fazel, H. Hindi, and S. P. Boyd. Log-det heuristic for matrix rank minimization with
applications to hankel and euclidean distance matrices. In American Control Conference
(ACC)., 3, 2156–2162. IEEE, 2003.

M. Fazlyab, A. Ribeiro, M. Morari, and V. M. Preciado. Analysis of optimization algorithms
via integral quadratic constraints: Nonstrongly convex problems. SIAM Journal on
Optimization, 28(3):2654–2689, 2018.

D. Ferbach, B. Goujaud, G. Gidel, and A. Dieuleveut. Proving linear mode connectivity of
neural networks via optimal transport. arXiv preprint arXiv:2310.19103, 2023.

B. Fischer. Polynomial based iteration methods for symmetric linear systems. SIAM, 2011.

D. A. Flanders and G. Shortley. Numerical determination of fundamental modes. Journal of
Applied Physics, 21(12):1326–1332, 1950.

O. Gannot. A frequency-domain analysis of inexact gradient methods. Math. Programming,
1–42, 2021.

E. Ghadimi, H. R. Feyzmahdavian, and M. Johansson. Global convergence of the heavy-ball
method for convex optimization. In European control conference (ECC), 310–315. IEEE,
2015.

B. Ghorbani, S. Krishnan, and Y. Xiao. An investigation into neural net optimization via
hessian eigenvalue density. In International Conference on Machine Learning (ICML),
2019.

G. Gidel, H. Berard, G. Vignoud, P. Vincent, and S. Lacoste-Julien. A variational inequality
perspective on generative adversarial networks. In International Conference on Learning
Representations, 2018.

G. Gidel, R. A. Hemmat, M. Pezeshki, R. Le Priol, G. Huang, S. Lacoste-Julien, and
I. Mitliagkas. Negative momentum for improved game dynamics. In The 22nd Interna-
tional Conference on Artificial Intelligence and Statistics, 1802–1811. PMLR, 2019.

G. Goh. Why Momentum Really Works, 2017.

G. H. Golub and R. S. Varga. Chebyshev semi-iterative methods, successive overrelax-
ation iterative methods, and second order Richardson iterative methods. Numerische
Mathematik, 3(1):157–168, 1961.

P. Gong and J. Ye. Linear convergence of variance-reduced stochastic gradient without
strong convexity. arXiv:1406.1102, 2014.

E. Gorbunov, N. Loizou, and G. Gidel. Extragradient method: O(1/k) last-iterate con-
vergence for monotone variational inequalities and connections with cocoercivity. In
International Conference on Artificial Intelligence and Statistics (AISTATS), 366–402, 2022.

https://distill.pub/2017/momentum/

B. Goujaud and F. Pedregosa. Cyclical step-sizes. http://fa.bianp.net/blog/2022/
cyclical/, 2022.

B. Goujaud, E. W. Tramel, P. Courtiol, M. Zaslavskiy, and G. Wainrib. Robust detection of
covariate-treatment interactions in clinical trials. arXiv preprint arXiv:1712.08211, 2017.

B. Goujaud, C. Moucer, F. Glineur, J. Hendrickx, A. Taylor, and A. Dieuleveut. PEPit:
computer-assisted worst-case analyses of first-order optimization methods in Python.
arXiv preprint arXiv:2201.04040, 2022a.

B. Goujaud, D. Scieur, A. Dieuleveut, A. B. Taylor, and F. Pedregosa. Super-acceleration
with cyclical step-sizes. In International Conference on Artificial Intelligence and Statistics,
3028–3065. PMLR, 2022b.

B. Goujaud, A. Taylor, and A. Dieuleveut. Optimal first-order methods for convex functions
with a quadratic upper bound. arXiv preprint arXiv:2205.15033, 2022c.

B. Goujaud, A. Taylor, and A. Dieuleveut. Quadratic minimization: from conjugate gradient
to an adaptive heavy-ball method with Polyak step-sizes. arXiv preprint arXiv:2210.06367,
2022d.

B. Goujaud, A. Dieuleveut, and A. Taylor. Counter-examples in first-order optimization: a
constructive approach. IEEE Control Systems Letters, 2023a. (See arXiv 2303 10503 for
complete version with appendices).

B. Goujaud, A. Dieuleveut, and A. Taylor. On fundamental proof structures in first-order
optimization. arXiv preprint arXiv:2310.02015, 2023b.

B. Goujaud, A. Taylor, and A. Dieuleveut. Provable non-accelerations of the heavy-ball
method. arXiv preprint arXiv:2307.11291, 2023c.

R. M. Gower, M. Blondel, N. Gazagnadou, and F. Pedregosa. Cutting some slack for SGD
with Adaptive Polyak Stepsizes. arXiv preprint arXiv:2202.12328, 2022.

D. Granziol, X. Wan, S. Albanie, and S. Roberts. Explaining the Adaptive Generalisation
Gap. arXiv preprint arXiv:2011.08181, 2020.

R. M. Gray. Toeplitz and circulant matrices: A review. Foundations and Trends R© in
Communications and Information Theory, 2(3):155–239, 2006. Original publication
1971.

G. Gu and J. Yang. Tight sublinear convergence rate of the proximal point algorithm for
maximal monotone inclusion problems. SIAM Journal on Optimization, 30(3):1905–1921,
2020.

C. Guille-Escuret, B. Goujaud, M. Girotti, and I. Mitliagkas. A study of condition numbers
for first-order optimization. In International Conference on Artificial Intelligence and
Statistics (AISTATS), 1261–1269, 2021.

C. Guille-Escuret, B. Goujaud, A. Ibrahim, and I. Mitliagkas. Gradient descent is optimal
under lower restricted secant inequality and upper error bound. 35, 24893–24904,
2022.

http://fa.bianp.net/blog/2022/cyclical/
http://fa.bianp.net/blog/2022/cyclical/
https://arxiv.org/abs/2303.10503

C. Gupta, S. Balakrishnan, and A. Ramdas. Path length bounds for gradient descent and
flow. The Journal of Machine Learning Research, 22(1):3154–3216, 2021.

S. D. Gupta, R. M. Freund, X. A. Sun, and A. Taylor. Nonlinear conjugate gradient
methods: worst-case convergence rates via computer-assisted analyses. arXiv preprint
arXiv:2301.01530, 2023.

M. Hagedorn and F. Jarre. Iteration complexity of fixed-step methods by Nesterov and
Polyak for convex quadratic functions. Journal of Optimization Theory and Applications,
1–19, 2023.

W. W. Hager and H. Zhang. A survey of nonlinear conjugate gradient methods. Pacific
journal of Optimization, 2(1):35–58, 2006.

F. Hanzely, P. Richtarik, and L. Xiao. Accelerated bregman proximal gradient methods for
relatively smooth convex optimization. Computational Optimization and Applications, 79
(2):405–440, 2021.

M. Hardt, T. Ma, and B. Recht. Gradient descent learns linear dynamical systems. Journal
of Machine Learning Research, 19, 2018.

E. Hazan and S. Kakade. Revisiting the Polyak step size. arXiv preprint arXiv:1905.00313,
2019.

E. Hazan, K. Levy, and S. Shalev-Shwartz. Beyond convexity: Stochastic quasi-convex
optimization. In C. Cortes, N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett,
editors, Advances in Neural Information Processing Systems (NIPS), 1594–1602. Curran
Associates, Inc., 2015.

S. Horváth and P. Richtárik. A Better Alternative to Error Feedback for Communication-
Efficient Distributed Learning. International Conference on Learning Representations
(ICLR)), June 2020. arXiv: 2006.11077.

S. Horváth, D. Kovalev, K. Mishchenko, S. Stich, and P. Richtárik. Stochastic Distributed
Learning with Gradient Quantization and Variance Reduction. Optimization Methods and
Software, Apr. 2019. arXiv: 1904.05115.

B. Hu, S. Wright, and L. Lessard. Dissipativity theory for accelerating stochastic variance
reduction: A unified analysis of svrg and katyusha using semidefinite programs. In
International Conference on Machine Learning (ICML), 2018.

B. Hu, P. Seiler, and L. Lessard. Analysis of biased stochastic gradient descent using
sequential semidefinite programs. Math. Programming, 187:383–408, 2021.

A. Ioffe. On sensitivity analysis of nonlinear programs in banach spaces: the approach via
composite unconstrained optimization. SIAM Journal on Optimization, 4(1):1–43, 1994.

A. Iouditski and Y. Nesterov. Primal-dual subgradient methods for minimizing uniformly
convex functions. arXiv preprint arXiv:1401.1792, 2014.

U. Jang, S. D. Gupta, and E. K. Ryu. Computer-assisted design of accelerated composite
optimization methods: Optista. arXiv preprint arXiv:2305.15704, 2023.

I. M. Johnstone. On the distribution of the largest eigenvalue in principal components
analysis. Annals of statistics, 2001.

R. E. Kalman and J. E. Bertram. Control System Analysis and Design Via the “Second
Method” of Lyapunov: I—Continuous-Time Systems. Journal of Basic Engineering, 82(2):
371–393, 06 1960a.

R. E. Kalman and J. E. Bertram. Control System Analysis and Design Via the “Second
Method” of Lyapunov: II—Discrete-time systems. Journal of Basic Engineering, 82(2):
394–400, 06 1960b.

S. P. Karimireddy, Q. Rebjock, S. Stich, and M. Jaggi. Error feedback fixes signsgd and other
gradient compression schemes. In International Conference on Machine Learning (ICML),
3252–3261. PMLR, 2019.

D. Kim. Accelerated proximal point method for maximally monotone operators. Math.
Programming, 1–31, 2021.

D. Kim and J. A. Fessler. Optimized first-order methods for smooth convex minimization.
Math. programming, 159(1):81–107, 2016.

D. Kim and J. A. Fessler. Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions. Journal of Optimization Theory and Applications,
188(1):192–219, 2021.

J. L. Kim, G. Gidel, A. Kyrillidis, and F. Pedregosa. Extragradient with positive momentum is
optimal for games with cross-shaped jacobian spectrum. arXiv preprint arXiv:2211.04659,
2022.

G. M. Korpelevich. The extragradient method for finding saddle points and other problems.
Matecon, 12:747–756, 1976.

M. Krenn, L. Buffoni, B. Coutinho, S. Eppel, J. G. Foster, A. Gritsevskiy, H. Lee, Y. Lu, J. P.
Moutinho, N. Sanjabi, et al. Predicting the future of ai with ai: High-quality link predic-
tion in an exponentially growing knowledge network. arXiv preprint arXiv:2210.00881,
2022.

K. Kurdyka. On gradients of functions definable in o-minimal structures. Annales de l’institut
Fourier, 48:769–783, 1998.

D. Lambert, J.-P. Crouzeix, V. H. Nguyen, and J.-J. Strodiot. Finite convex integration.
Journal of Convex Analysis, 11(1):131–146, 2004.

C. Lanczos. Solution of systems of linear equations by. Journal of research of the National
Bureau of Standards, 49(1):33, 1952.

Y. Le Cun, C. Cortes, and C. Burges. MNIST handwritten digit database. ATT Labs [Online],
2010.

L. Lessard. The analysis of optimization algorithms: A dissipativity approach. IEEE Control
Systems Magazine, 42(3):58–72, 2022.

L. Lessard, B. Recht, and A. Packard. Analysis and design of optimization algorithms via
integral quadratic constraints. SIAM Journal on Optimization, 26(1):57–95, 2016.

Z. Li, D. Kovalev, X. Qian, and P. Richtarik. Acceleration for Compressed Gradient Descent in
Distributed and Federated Optimization. In International Conference on Machine Learning,
5895–5904. PMLR, Nov. 2020. ISSN: 2640-3498.

F. Lieder. On the convergence rate of the Halpern-iteration. Optimization Letters, 15(2):
405–418, 2021.

J. Liu and S. J. Wright. Asynchronous stochastic coordinate descent: Parallelism and
convergence properties. SIAM Journal on Optimization, 25(1):351—376, 2015.

N. Loizou, S. Vaswani, I. H. Laradji, and S. Lacoste-Julien. Stochastic Polyak step-size
for SGD: An adaptive learning rate for fast convergence. In International Conference on
Artificial Intelligence and Statistics (AISTATS), 1306–1314. PMLR, 2021.

I. Loshchilov and F. Hutter. SGDR: stochastic gradient descent with warm restarts. In
International Conference on Learning Representations (ICLR), 2017.

H. Lu, R. M. Freund, and Y. Nesterov. Relatively-smooth convex optimization by first-order
methods, and applications. SIAM Journal on Optimization, 28(1):333–354, 2018.

Z.-Q. Luo and P. Tseng. Error bounds and convergence analysis of feasible descent methods:
a general approach. Annals of Operations Research, 46(1):157–178, 1993.

A. M. Lyapunov and A. Fuller. The general problem of the stability of motion. International
journal of control, 55(3):531–534, 1992. Original text in Russian, 1892.

Y. Malitsky and K. Mishchenko. Adaptive gradient descent without descent. In International
Conference on Machine Learning (ICML), 6702–6712. PMLR, 2020.

U. Marteau-Ferey, D. Ostrovskii, F. Bach, and A. Rudi. Beyond least-squares: Fast rates
for regularized empirical risk minimization through self-concordance. In Conference on
learning theory, 2294–2340. PMLR, 2019.

K. Mishchenko, E. Gorbunov, M. Takáč, and P. Richtárik. Distributed Learning with
Compressed Gradient Differences. arXiv:1901.09269 [cs, math, stat], June 2019. arXiv:
1901.09269.

R. D. Monteiro and B. F. Svaiter. An accelerated hybrid proximal extragradient method
for convex optimization and its implications to second-order methods. SIAM Journal on
Optimization, 23(2):1092–1125, 2013.

A. MOSEK. MOSEK Optimizer API for C 9.3.6, 2019.

G. Narkiss and M. Zibulevsky. Sequential subspace optimization method for large-scale
unconstrained problems. Technion-IIT, Department of Electrical Engineering, 2005.

I. Necoara, Y. Nesterov, and F. Glineur. Linear convergence of first order methods for
non-strongly convex optimization. Math. Programming, 175(1):69–107, 2019.

A. S. Nemirovskii. Orth-method for smooth convex optimization. Engineering Cybernetics,
20(2):937–947, 1982.

A. S. Nemirovskii. Information-based complexity of linear operator equations. Journal of
Complexity, 8(2):153–175, 1992.

A. S. Nemirovskii. Information-based complexity of convex programming. Lecture notes,
http://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf, 1994.

A. S. Nemirovskii and Y. Nesterov. Optimal methods of smooth convex minimization. USSR
Computational Mathematics and Mathematical Physics, 25(2):21–30, 1985.

A. S. Nemirovskii and D. B. Yudin. Problem complexity and method efficiency in optimiza-
tion. Willey-Interscience, New York, 1983a.

A. S. Nemirovskii and D. B. Yudin. Information-based complexity of mathematical pro-
gramming. Izvestia AN SSSR, Ser. Tekhnicheskaya Kibernetika (the journal is translated to
English as Engineering Cybernetics. Soviet J. Computer & Systems Sci.), 1, 1983b.

Y. Nesterov. A method of solving a convex programming problem with convergence rate
O(1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

Y. Nesterov. Introductory Lectures on Convex Optimization. Springer, 2003.

Y. Nesterov. Gradient methods for minimizing composite functions. Math. programming,
140(1):125–161, 2013.

Y. Nesterov. Universal gradient methods for convex optimization problems. Math. Program-
ming, 152(1-2):381–404, 2015.

J. Nocedal and S. J. Wright. Numerical optimization. Springer, 1999.

S. Oymak. Super-convergence with an unstable learning rate. arXiv preprint
arXiv:2102.10734, 2021.

B. O’Donoghue, E. Chu, N. Parikh, and S. Boyd. Conic optimization via operator splitting
and homogeneous self-dual embedding. Journal of Optimization Theory and Applications,
169(3):1042–1068, 2016.

V. Papyan. The full spectrum of deepnet hessians at scale: Dynamics with SGD training
and sample size. arXiv preprint arXiv:1811.07062, 2018.

V. Papyan. Measurements of three-level hierarchical structure in the outliers in the spectrum
of deepnet hessians. In International Conference on Machine Learning (ICML), 2019.

C. Park and E. K. Ryu. Optimal first-order algorithms as a function of inequalities.
arXiv:2110.11035, 2021.

J. Park and E. K. Ryu. Exact optimal accelerated complexity for fixed-point iterations. In
International Conference on Machine Learning (ICML), 17420–17457. PMLR, 2022.

P. Patrinos, L. Stella, and A. Bemporad. Douglas-Rachford splitting: Complexity estimates
and accelerated variants. In Proceedings of the 53rd Conference on Decision and Control
(CDC), 2014.

F. Pedregosa. On the Link Between Optimization and Polynomials, Part 1, 2020.

F. Pedregosa. On the Link Between Optimization and Polynomials, Part 3, 2021a.

F. Pedregosa. A hitchhiker’s guide to momentum. http://fa.bianp.net/blog/2021/
hitchhiker/, 2021b.

http://www2.isye.gatech.edu/~nemirovs/Lec_EMCO.pdf
http://fa.bianp.net/blog/2020/polyopt/
http://fa.bianp.net/blog/2021/hitchhiker/
http://fa.bianp.net/blog/2021/hitchhiker/
http://fa.bianp.net/blog/2021/hitchhiker/

F. Pedregosa and D. Scieur. Acceleration through spectral density estimation. In Interna-
tional Conference on Machine Learning (ICML), 2020.

W. Peng, H. Zhang, X. Zhang, and L. Cheng. Global complexity analysis of inexact successive
quadratic approximation methods for regularized optimization under mild assumptions.
Journal of Global Optimization, 78(1):69–89, 2020.

J. Pennington and P. Worah. Nonlinear random matrix theory for deep learning. In Advances
on Neural Information Processing Systems (NIPS), 2017.

B. T. Polyak. Gradient methods for the minimisation of functionals. USSR Computational
Mathematics and Mathematical Physics, 3(4):864 – 878, 1963.

B. T. Polyak. Some methods of speeding up the convergence of iteration methods. USSR
computational mathematics and mathematical physics, 4(5):1–17, 1964.

B. T. Polyak. Introduction to optimization. Optimization Software New York, 1987.

B. T. Polyak and A. B. Juditsky. Acceleration of stochastic approximation by averaging.
SIAM Journal on Control and Optimization, 30(4):838–855, 1992.

B. Recht, M. Fazel, and P. A. Parrilo. Guaranteed minimum-rank solutions of linear matrix
equations via nuclear norm minimization. SIAM review, 52(3):471–501, 2010.

P. Richtárik, I. Sokolov, and I. Fatkhullin. Ef21: A new, simpler, theoretically better, and
practically faster error feedback. Advances in Neural Information Processing Systems
(NeurIPS), 34:4384–4396, 2021.

H. Robbins and S. Monro. A stochastic approximation method. The annals of mathematical
statistics, 400–407, 1951.

R. T. Rockafellar. Monotone operators and the proximal point algorithm. SIAM journal on
control and optimization, 14(5):877–898, 1976.

R. T. Rockafellar. Convex analysis, 11. Princeton university press, 1997.

D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learning representations by back-
propagating errors. nature, 323(6088):533–536, 1986.

D. Ruppert. Efficient estimations from a slowly convergent robbins-monro process. Technical
report, Cornell University Operations Research and Industrial Engineering, 1988.

H. Rutishauser. Theory of gradient methods. In Refined iterative methods for computation of
the solution and the eigenvalues of self-adjoint boundary value problems. Springer, 1959.

E. K. Ryu, A. B. Taylor, C. Bergeling, and P. Giselsson. Operator splitting performance
estimation: Tight contraction factors and optimal parameter selection. SIAM Journal on
Optimization, 30(3):2251–2271, 2020.

L. Sagun, U. Evci, V. U. Guney, Y. Dauphin, and L. Bottou. Empirical analysis of the Hessian
of over-parametrized neural networks. arXiv preprint arXiv:1706.04454, 2017.

D. Scieur. Acceleration in optimization. PhD thesis, Université Paris sciences et lettres, 2018.

D. Scieur and F. Pedregosa. Universal Asymptotic Optimality of Polyak Momentum. In
International Conference on Machine Learning (ICML), 2020.

F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu. 1-bit stochastic gradient descent and its
application to data-parallel distributed training of speech dnns. In Fifteenth annual
conference of the international speech communication association, 2014.

M. Slater. Lagrange multipliers revisited: a contribution to nonlinear programming, 1950.

L. N. Smith. Cyclical learning rates for training neural networks. In 2017 IEEE Winter
Conference on Applications of Computer Vision (WACV). IEEE, 2017.

S. U. Stich and S. P. Karimireddy. The error-feedback framework: Better rates for sgd with
delayed gradients and compressed updates. The Journal of Machine Learning Research,
21(1):9613–9648, 2020.

A. Sundararajan, B. Van Scoy, and L. Lessard. A canonical form for first-order distributed
optimization algorithms. In 2019 American Control Conference (ACC), 4075–4080. IEEE,
2019.

A. Sundararajan, B. Van Scoy, and L. Lessard. Analysis and design of first-order distributed
optimization algorithms over time-varying graphs. IEEE Transactions on Control of
Network Systems, 7(4):1597–1608, 2020.

I. Sutskever, J. Martens, G. Dahl, and G. Hinton. On the importance of initialization and
momentum in deep learning. In International Conference on Machine Learning (ICML),
2013.

A. Taylor and F. Bach. Stochastic first-order methods: non-asymptotic and computer-aided
analyses via potential functions. In Proceedings of the 32nd Conference on Learning Theory
(COLT), 2019.

A. Taylor and Y. Drori. An optimal gradient method for smooth strongly convex minimiza-
tion. Math. Programming, 199(1-2):557–594, 2022.

A. Taylor, B. Van Scoy, and L. Lessard. Lyapunov functions for first-order methods: Tight
automated convergence guarantees. In International Conference on Machine Learning
(ICML), 2018a.

A. B. Taylor. Computer-aided analyses in optimization, 2020.

A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact worst-case performance of first-order
methods for composite convex optimization. SIAM Journal on Optimization, 27(3):
1283–1313, 2017a.

A. B. Taylor, J. M. Hendrickx, and F. Glineur. Performance estimation toolbox (PESTO):
automated worst-case analysis of first-order optimization methods. In 56th Annual
Conference on Decision and Control (CDC), 1278–1283, 2017b.

A. B. Taylor, J. M. Hendrickx, and F. Glineur. Smooth strongly convex interpolation and
exact worst-case performance of first-order methods. Math. Programming, 161(1-2):
307–345, 2017c.

https://francisbach.com/computer-aided-analyses/

A. B. Taylor, J. M. Hendrickx, and F. Glineur. Exact worst-case convergence rates of the
proximal gradient method for composite convex minimization. Journal of Optimization
Theory and Applications, 178:455–476, 2018b.

M. Upadhyaya, S. Banert, A. B. Taylor, and P. Giselsson. Automated tight lyapunov analysis
for first-order methods. arXiv preprint arXiv:2302.06713, 2023.

B. Van Scoy, R. A. Freeman, and K. M. Lynch. The fastest known globally convergent
first-order method for minimizing strongly convex functions. IEEE Control Systems Letters,
2(1):49–54, 2017.

L. Vandenberghe and S. Boyd. Semidefinite programming. SIAM review, 38(1):49–95,
1996.

J.-K. Wang, C.-H. Lin, A. Wibisono, and B. Hu. Provable acceleration of heavy ball
beyond quadratics for a class of Oolyak-Lojasiewicz functions when the non-convexity is
averaged-out. In International Conference on Machine Learning (ICML), 2022.

J. Wu, W. Huang, J. Huang, and T. Zhang. Error Compensated Quantized SGD and its
Applications to Large-scale Distributed Optimization. In International Conference on
Machine Learning, 5325–5333. PMLR, July 2018. ISSN: 2640-3498.

D. Young. On richardson’s method for solving linear systems with positive definite matrices.
Journal of Mathematics and Physics, 32(1-4):243–255, 1953.

H. Zhang. Linear convergence of the proximal incremental aggregated gradient method
under quadratic growth condition, 2017a.

H. Zhang. The restricted strong convexity revisited: analysis of equivalence to error bound
and quadratic growth. Optimization Letters, 11(4):817–833, 2017b.

H. Zhang and W. Yin. Gradient methods for convex minimization: better rates under
weaker conditions. Cam report, UCLA, 2013.

Titre : A propos des approches constructives de la théorie des algorithmes d’optimisation du premier ordre

Mots clés : Optimisation, gradient, performance

Résumé : À l’heure actuelle, caractérisée par une
croissance sans précédent des données dispo-
nibles et des capacités computationnelles, le do-
maine de l’apprentissage automatique, et plus parti-
culièrement de l’apprentissage profond, a connu une
évolution exceptionnelle. Les algorithmes d’apprentis-
sage automatique reposent largement sur des tech-
niques d’optimisation pour ajuster leurs paramètres
et améliorer leurs prédictions. Parmi les différentes
approches d’optimisation, les méthodes du premier
ordre ont émergé comme des fondements incon-
tournables, démontrant un équilibre notable entre
rapidité et précision. Il est aujourd’hui crucial de
développer une théorie solide de l’optimisation du
premier ordre pour en exploiter pleinement le po-
tentiel. Ces fondements théoriques approfondissent
notre compréhension des algorithmes d’optimisation
actuels et ouvrent la voie à la création d’algorithmes
innovants. L’efficacité démontrée du concept de mo-
mentum dans l’accélération significative de la conver-
gence de problèmes réels témoigne de l’importance
de la théorie de l’optimisation. Cette théorie a permis
la formulation du momentum, transformant des intui-

tions théoriques en un outil d’optimisation pratique,
largement adopté.
Cette thèse vise à poursuivre et accélérer les ef-
forts visant à développer une base théorique so-
lide de l’optimisation du premier ordre. Nous avons
présenté plusieurs résultats en exploitant les struc-
tures générales des certificats de preuves. (i) Le lien
entre l’optimisation quadratique et la théorie des po-
lynômes a été utilisé pour expliquer des phénomènes
observés empiriquement. (ii) Un package Python a
été mis en place pour faciliter l’utilisation du frame-
work d’estimation de performance. (iii) Un tutoriel
détaillé expliquant la dérivation de preuves naturelles
en optimisation basée sur ce cadre a été rédigé. (iv)
En utilisant notre package Python, nous avons ap-
pliqué cette méthodologie pour dériver une théorie
complète de l’optimisation du premier ordre sur une
vaste classe de fonctions. (v) Le framework théorique
d’estimation de performance a été étendu pour
réfuter la convergence d’une famille spécifique de
méthodes, démontrant finalement la non-accélération
de la célèbre méthode “Heavy-ball” sur la classe des
fonctions lisses et fortement convexes.

Title : On constructive approaches to the theory of first-order optimization methods.

Keywords : Optimization, gradient, performance

Abstract : In the current era marked by an unprece-
dented surge in available data and computational pro-
wess, the field of machine learning, and more speci-
fically deep learning, has witnessed an extraordinary
evolution. Machine learning algorithms heavily rely on
optimization techniques to tune their parameters and
enhance predictive accuracy. Among the myriad of
optimization approaches, the first-order optimization
methods have emerged as cornerstones, demons-
trating a remarkable balance between efficacy and
computational efficiency. Crucially, the development
of strong optimization theory is pivotal in unraveling
the full potential of first-order optimization. Theoreti-
cal underpinnings not only deepen our understanding
of optimization landscapes but also pave the way for
the design of novel algorithms. The momentum-based
algorithms have proven their effectiveness by signifi-
cantly accelerating training procedures. The concep-
tual foundation provided by optimization theory has
enabled the formulation of momentum, turning theore-
tical insights into a powerful and widely adopted prac-

tical optimization tool.
The role of this thesis is to pursue and accelerate
the effort to develop a strong theoretical foundation of
first-order optimization. We proved various results, ex-
ploiting the general structures of the certificate proofs.
(i) We used the link between quadratic optimization
and polynomial theory to explain empirically observed
phenomena. (ii) We implemented a Python package
to support the Performance estimation framework. (iii)
We wrote a tutorial to explain how to derive natural
proofs in optimization based on this framework. (iv)
We applied this methodology, with the help of our Py-
thon package, to derive a complete first-order optimi-
zation theory on a very large class of functions. (v)
We complemented the theoretical Performance esti-
mation framework to disprove the convergence of a
specific family of methods and applied it to the famous
Heavy-ball method to provably disprove an accele-
ration over the class of smooth and strongly convex
functions.

Institut Polytechnique de Paris
91120 Palaiseau, France

	Introduction
	Oracles et performance des algorithmes
	Optimisation quadratique de premier ordre
	Au-delà de l'optimisation quadratique
	Contributions

	Introduction
	Oracles and algorithms performance
	Quadratic first-order optimization
	Beyond quadratic optimization
	Contributions

	Tools for unconstrained quadratic optimization
	Quadratic minimization: from conjugate gradient to an adaptive Heavy-ball method with Polyak step-sizes
	Introduction
	Preliminary material
	Related works

	Main theorem
	Numerical experiments
	Concluding remarks and discussion

	Super-Acceleration with Cyclical Step-sizes
	Introduction
	Notation and Problem Setting
	Super-acceleration with Cyclical Step-sizes
	Optimal algorithm
	Comparison with Polyak Heavy-ball

	A constructive Approach: Minimax Polynomials
	First-Order Methods on Quadratics and Polynomials
	Generalization to Longer Cycles
	Cyclical Heavy-ball and (Non-)asymptotic Rates of Convergence
	Best Achievables Worst-case Guarantees on C Lambda

	Local Convergence for Non-Quadratic Functions
	Experiments
	Conclusion
	Relationship between first-order methods and polynomials
	Optimal methods for strongly convex and smooth quadratic objective
	Chebyshev semi-iterative method
	Polyak Heavy-ball method

	Minimax Polynomials and Equioscillation Property
	Cyclical step-sizes
	Derivation of optimal algorithm with K=2 alternating step-sizes
	Derivation of Heavy-ball with K step-sizes cycle
	Example: alternating step-sizes (K=2)
	Example: 3 cycling step-sizes

	Beyond quadratic objective: local convergence of cycling methods
	Experimental setup
	Comparison with Oymak (2021)

	Tools for optimization over non-parametric classes of functions
	PEPit: computer-assisted worst-case analyses of first-order optimization methods in Python
	Introduction
	PEPit on a simple example
	A performance estimation problem for the gradient method
	Code

	PEPit code structure and semidefinite formulation
	Semidefinite formulation
	Base PEPit objects
	Main PEPit simplifying abstractions and aliases
	The objective function of the PEP: performance metrics
	Formulating and solving the PEP
	Post-processing

	PEPit: general overview and content
	A few additional numerical examples
	Analysis of an accelerated gradient method
	Analysis of an accelerated Douglas-Rachford splitting
	Analysis of point-SAGA

	Conclusion

	On Fundamental Proof Structures in First-Order Optimization
	Introduction
	From explicit to implicit classes of functions
	Convex quadratic optimization
	Infinite-dimensional spaces of functions

	From explicit to implicit algorithms
	Proof structures in first-order optimization
	Obtaining proofs with PEPs
	Understanding proofs with PEPs

	Example: Gradient descent with exact line-search
	Lyapunov with PEPs
	Conclusion

	Optimal first-order methods for convex functions with a quadratic upper bound
	Introduction
	A few worst-case guarantees for minimizing QG+ convex functions
	(Sub)gradient method on QG+ convex functions
	First-order lower bound
	Two methods with optimal last iterate guarantee
	Extension-interpolation results for QG+ convex functions

	Discussion and concluding remarks
	Optimality of HB algorithm
	Adaptivity of HB line-search algorithm 11
	Leveraging our analysis to obtain convergence bounds on other classes

	(Sub)gradient method on QG+ convex functions
	Convergence of subgradient method with fixed step-size at Polyak-Rupert averaged iterate
	Convergence limitation of the subgradient method in last iterate
	A new tuning prescription

	First-order lower bound
	Proof of Theorem 6.2.3
	Lower bound proof without span assumption

	Main result: worst-case guarantee of proposed methods
	Summary of convergence results on QG+ convex and Lipschitz convex
	Interpolation results for QG+ convex functions
	Convergence bound on other classes
	Linear convergence guarantees under lower bound assumption

	Counter-examples in first-order optimization: a constructive approach
	Introduction
	Definitions and notations
	Searching for cycles
	Motivation
	Approach

	Application to four different SFOMs
	Heavy-ball
	Nesterov accelerated gradient
	Inexact gradient method
	Three-operator splitting

	Conclusions

	Provable non-accelerations of the heavy-ball method
	Introduction
	Related works
	Contributions
	Key concepts

	Preliminary results on heavy-ball
	Known behavior of the heavy-ball method on quadratics (QmL)
	Known behaviors of the heavy-ball method on Fml
	Our approach to comprehensive behaviors of heavy-ball

	Non-acceleration of heavy-ball on Fml via simple two-dimensional cycles
	Studying a specific type of cycling behavior
	Non-acceleration on Fml

	General study of cycles for stationary first-order methods
	Casting the existence of a cycle as a convex feasibility problem
	Building a symmetric feasible point from a given feasible point
	Numerical results on (HB)

	Robustness of the roots-of-unity cycle
	No acceleration of (HB) under higher-order regularity assumptions
	Proof of Item 1 of Theorem 6.2
	Proof of Item 2 of Theorem 6.2
	Beyond third-order regularity

	Concluding remarks
	Auxiliary proofs from Section 2.1: Proof of Proposition 2.1
	Auxiliary proofs from Section 3
	Proof of Theorem 3.5
	Analysis of Omega cycle Fml
	Proof of Theorem 3.6

	Auxiliary proofs from Section 4: Proof of Lemma 4.12
	Auxiliary proofs from Section 5
	Proof of Theorem 5.3
	Discussion about the reduction made in the proof of Theorem 5.3

	Auxiliary proofs from Section 6
	A summary of convergence rates on Fml and Qml

	Conclusion
	Summary
	A few open directions
	Analysis of bilinear games via polynomials.
	Non-quadratic PEP constraints.
	HB on F, L
	Does HB accelerate in dimension 1?
	On the relationship between -Cycle(F, L)c and Taylor(F, L)
	Optimal convergence rate

	An interesting class between F, L and Q, L?
	An adaptive strategy for HB on F, L?
	Distributed learning

	Bibliography

