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Thèse présentée et soutenue à Palaiseau, le 05 Juillet 2024, par

RIVOIRE MANON

Composition du Jury :

Jean-François COEURJOLLY
Professor, Université Grenoble Alpes (UGA) Rapporteur

Alexandre BROUSTE
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"Mathematics knows no races or geographic boundaries; for mathematics, the cultural
world is one country."

(David Hilbert, International Congress of Mathematicians, 1900.)
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Abstract

In a financial context where the temporal and spatial effects of processes are decisive
in describing many of the phenomena that occur, we are interested in studying the
most common temporal and spatial effects necessary to properly describe these phe-
nomena. We are wondering whether there exists characteristic properties related to
these temporal and spatial effects that would have consequences on the processes. Ad-
dressing such questions is the purpose of Chapter 2. Indeed, in Chapter 2, we focus
on two time transformations: the time-translation, also called time-origin change, and
the time-scaling; and on the related properties called stationarity and self-similarity.
The stationarity property is the invariance in time and space of a function or a process
by time-origin change. The self-similarity property establishes a spatial proportional-
ity relationship between the characteristics of a random function or a random process
taken at two proportional times λt and t with λ > 0, with a spatial proportionality
factor corresponding to a function of the time proportionality factor λ. We present a
new approach to study stationary and self-similar random processes. First, we prove
that the only assumptions of stationarity and self-similarity of the squared L2-norm of a
given process in Hilbert space, without any assumption of distribution, allow obtaining
the stationarity and the self-similarity of the inner product of the process, with a closed
form formula for the latter only depending on power functions of exponent γ ∈ (0, 1).
In a second time, we show that adding the Gaussian assumption allows obtaining the
stationarity and the self-similarity properties of the process not only in distribution but
also in the trajectory sense (that is, in terms of equality of processes). We provide some
examples of such processes, known as the Wiener process and the fractional Brownian
motion (fBm). Finally, we provide an extension of the stationarity and self-similarity
properties in the trajectory sense to the multidimensional Gaussian Hilbert space. We
provide as an example of multidimensional self-similar Gaussian processes with station-
ary and correlated increments, the so-called multivariate fractional Brownian motions
(mfBm). In Finance, self-similar Gaussian processes with stationary increments, called
fractional Brownian motions, are useful for describing various processes exhibiting long-
term (respectively short-term) dependence, such as volatility clustering, trajectories
of correlated logarithmic returns, or for options pricing, portfolio optimization, high-
frequency trading, or risk management, all domains in which the underlying dynamics
exhibit long-range (respectively short-range) dependence. In the classical framework,
price dynamics are usually described using a geometric Brownian motion (GBM), also
called exponential Brownian motion. In this model, logarithmic returns are distributed
as an arithmetic Brownian motion; thus they are independent of each other and do not
capture long-range (respectively short-range) dependence. We wonder how this model
can be improved to describe the distribution of logarithmic returns as realistically and as
accurately as possible, to predict risk measures with realism and precision. We wonder
how we can modify the process to capture long-range (respectively short-range) depend-
ency. In Chapter 3, we propose to describe price trajectories using fractional geometric
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Brownian motions. Logarithmic returns are then described using self-similar Gaussian
processes with stationary and correlated increments, called fractional Brownian mo-
tions (fBm). This allows adding correlations between logarithmic returns to express
long-range (respectively short-range) dependence.

In this context, we focus on predicting the most commonly used risk measure by reg-
ulators, called Value-at-Risk (VaR). We introduce a model that provides a conditional
VaR for the Gaussian approximation of the future asset portfolio variation under frac-
tional dynamics, given the past asset variations. Since this VaR is Gaussian, we show
that such a model is based on orthogonal projections in a Gaussian Hilbert space,
taking specific forms for which closed-form formulae are provided. Then, the paramet-
ers of the model are estimated under the assumptions of Gaussianity, stationarity and
self-similarity of the assets log-returns. Finally, we quantify the Gaussian approxima-
tion of VaR by providing an upper bound of the error. Backtesting experiments are
provided on simulated and market data to illustrate the theory. Gaussian framework
is the most commonly used in Finance due to its convenient properties. However, the
Gaussian distribution is thin-tailed, then it assumes that extreme events are rare, and
tends to underestimate the probability of such events occurring. Then, the modeling
of the log-returns distribution by a Gaussian distribution is not appropriate when ex-
treme events more frequently occur. We are wondering how to accurately model a
distribution in which extreme events occur more frequently than in a Gaussian distri-
bution. To address such a question, we propose to model the loss distribution thanks
to a heavy-tailed distribution like Pareto, that assigns higher probabilities to extreme
events, which is often more realistic in Finance. However, in a context in which ex-
treme events occur more frequently than in the Gaussian framework, VaR is not any
more an efficient risk measure since it is not sensitive to the tail risk, then it fails to
capture extreme events; this leads to an underestimation of the risk. Therefore, we can
wonder whether there exists a risk measure more sensitive to the tail risk. We pro-
pose to replace VaR with Expected-Shortfall (ES) that addresses such shortcomings.
We therefore ask how to estimate the ES as efficiently and accurately as possible in
the case of a heavy-tailed distribution. Addressing such a question is the purpose of
Chapter 4. Indeed, in Chapter 4, the objective is to explore robust methods for estim-
ating the ES in heavy-tailed distributions. The Expected-Shortfall being the average of
losses exceeding the VaR, an ES estimator is an estimator of the mean applied to the
distribution tail beyond the VaR. Thus, we explore robust mean estimators as an al-
ternative to simple empirical mean, in heavy-tailed distributions through the toy case of
the Pareto distribution. The Pareto distribution presents interesting properties of sta-
bility by conditioning and rescaling. We recall the theory on the Expected-Shortfall and
on the Pareto distribution, and we present the characteristic properties of the latter.
The rescaling property establishes a proportionality relationship between two Pareto
distributions with the same shape parameter but distinct scale parameters, with a pro-
portionality factor equal to the ratio between the two scale parameters. The stability
by conditioning property states that when the conditioning threshold is independent of
the underlying sample, the Pareto distribution conditional on its values being above the
given threshold is still a Pareto distribution with the same shape parameter but a scale
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parameter equal to the conditioning threshold. Combining the stability by conditioning
and rescaling properties allows establishing a proportionality relationship between the
Pareto distribution conditional on its values being above the given threshold and the
marginal Pareto distribution, with a proportionality factor equal to the ratio between
the conditioning threshold and the scale parameter of the marginal Pareto distribution.
Therefore, ES of any Pareto distribution is proportional to the expectation of the mar-
ginal distribution, with a proportionality factor equal to the theoretical Value-at-Risk
at the risk level α. Consequently, the problem of estimation of the ESα in a Pareto
distribution, when the conditioning threshold is the true VaRα, reduces to the problem
of estimation of the expectation in the marginal Pareto distribution. Moreover, owing
to the rescaling property, the problem of estimation of the expectation in any Pareto
distribution reduces to the estimation of the expectation in the standardized Pareto
distribution. Consequently, the stability by conditioning and rescaling properties are
very useful since they allow reducing the complexity of the problem of estimation of the
ES. Then, several non-asymptotic mean estimators, such as the Median-of-Means, the
Trimmed-Mean, or even the Lee-Valiant estimator, are presented with their character-
istics and compared to the classical empirical mean. We study their bias and provide
explicit formulae when possible. Moreover, we evaluate the convergence rate of the bias.
Finally, we support the theoretical analysis with some experiments, and we compare
the performance of the different estimators.

Abstract in layman’s terms

In everyday life, the temporal and spatial properties of the processes govern numerous
phenomena in various fields such as Physics, Biology, Astronomy, Telecommunications,
Music, Finance and in many others. In the first part of this thesis, we focus on two of
these properties, called stationarity and self-similarity. Stationarity advocates temporal
and spatial invariance of the characteristics of a given process through time-translation,
or time-origin change, and thus allows describing processes that repeat identically over
time as they move. We find this property notably in Music to describe certain pieces,
or in Finance to describe the asset return series. Self-similarity establishes a spatial
proportionality relationship between the characteristics of a process taken at two pro-
portional times, and the spatial proportionality coefficient is a function of the time
proportionality factor. Thus, the self-similarity property makes it possible to describe
processes whose states, taken at proportional times, reproduce proportionally with a
proportionality factor corresponding to a power function of the time proportionality
coefficient. Therefore, the self-similarity property describes long-range or short-range
event dependencies, according to the value taken by the exponent of the power function.
We find this property in nature, to describe the development of ferns, of the Romanesco
broccoli, or the Koch’s flake; in Biology to explain population growth and genealogy,
in Physics to analyze the weather phenomena; in Astronomy to describe the stellar
fragments; or in Finance to model asset return series, volatility or risk measures. In the
second part of this thesis, we apply stationary and self-similar processes in Finance, and
more precisely in the risk management field, in a well-known framework, called Gaus-
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sian. This means that the distribution of the asset returns is modeled by a Gaussian
distribution which assumes that most values taken by the processes are concentrated
around their mean, and very few values go to the extreme values. Stationary and
self-similar Gaussian processes are used to model the asset return series that present a
long-range or short-range dependence, to accurately predict the most commonly used
risk-measure by regulators, called Value-at-Risk (VaR), for the future portfolio vari-
ation conditional on the past variations of its assets. The Gaussian framework has very
interesting properties, nevertheless, it is suitable for describing smooth periods as it
does not take into account potential extreme events, such as financial crises. It tends
to underestimate the probability such events occurring, which can be very dangerous.
To address this issue, we propose replacing the Gaussian framework with a framework
more conducive to the presence of such events. In this new framework, the distribution
of asset returns is no longer modeled by a Gaussian distribution but by a distribution
capable of assigning a higher probability to extreme events, called heavy-tailed distri-
bution. A widely used heavy-tailed distribution in Finance for its convenient properties
is the Pareto distribution. However, applying VaR in this new setting would result in
a poor risk assessment. Indeed, VaR is a risk measure insensitive to extreme events.
Thus, applying VaR to a heavy-tailed distribution, in which extreme events are more
likely to occur, would result in an underestimation of risk. Therefore, we propose an
alternative to VaR, called Expected-Shortfall (ES), capable of taking extreme events
into account. In the third part of this thesis, robust methods of mean-estimation for
the ES in the Pareto distribution are proposed.



Résumé

Dans un contexte financier où les effets temporels et spatiaux des processus sont décisifs
pour décrire de nombreux phénomènes qui se produisent, nous nous intéressons à l’étude
des effets temporels et spatiaux les plus courants nécessaires pour décrire correctement
ces phénomènes. Nous nous demandons s’il existe des propriétés caractéristiques liées à
ces effets temporels et spatiaux qui auraient des conséquences sur les processus. Abor-
der de telles questions est l’objectif de Chapter 2. En effet, dans Chapter 2, nous nous
concentrons sur deux transformations temporelles : la translation temporelle, également
appelée changement d’origine temporelle, et la mise à l’échelle temporelle, ainsi que sur
les propriétés associées appelées stationnarité et auto-similarité. La stationnarité est
l’invariance dans le temps et l’espace des caractéristiques d’une fonction aléatoire ou
d’un processus aléatoire par translation temporelle. La propriété d’auto-similarité ét-
ablit une relation de proportionnalité spatiale entre les caractéristiques d’une fonction
aléatoire ou d’un processus aléatoire évalués en deux instants temporels proportionnels
λt et t avec λ > 0, avec un coefficient de proportionnalité spatiale correspondant à une
fonction du coefficient de proportionnalité temporelle λ. Nous présentons une nouvelle
approche pour étudier les processus stationnaires et auto-similaires dans l’espace de Hil-
bert. Tout d’abord, nous prouvons que les seules hypothèses de stationnarité et d’auto-
similarité du carré de la norme L2 d’un processus donné dans un espace de Hilbert,
sans aucune hypothèse de distribution, permettent d’obtenir la stationnarité et l’auto-
similarité du produit scalaire du processus, dont une formule fermée ne dépendant que de
fonctions puissances d’exposant γ ∈ (0, 1) est établie. Dans un second temps, nous mon-
trons qu’en ajoutant l’hypothèse Gaussienne, il est possible d’obtenir les propriétés de
stationnarité et d’auto-similarité du processus non seulement en distribution mais aussi
au sens des trajectoires (c’est-à-dire, en termes d’égalité des processus). Nous fournis-
sons quelques exemples de tels processus, connus sous le nom de processus de Wiener
et de mouvement Brownien fractionnaire (fBm). Enfin, nous proposons une extension
des propriétés de stationnarité et d’auto-similarité au sens des trajectoires dans l’espace
de Hilbert Gaussien multidimensionnel. Nous fournissons comme exemple de processus
multidimensionnel Gaussien auto-similaire avec des incréments stationnaires et corrélés,
le bien-connu mouvement Brownien fractionnaire multivarié (mfBm). En finance, les
processus Gaussiens auto-similaires avec des incréments stationnaires et corrélés, ap-
pelés mouvements Browniens fractionnaires, sont utiles pour décrire divers processus
présentant une dépendance à long-terme (respectivement à court-terme), tels que le
regroupement de la volatilité, les trajectoires de rendements logarithmiques corrélés, ou
pour la tarification des options, l’optimisation de portefeuille, le trading haute fréquence
ou la gestion des risques, tous des domaines dans lesquels les dynamiques sous-jacentes
présentent une dépendance à long-terme (respectivement à court-terme). Dans le cadre
classique, les dynamiques des prix sont généralement décrites à l’aide d’un mouvement
Brownien géométrique (GBM), également appelé mouvement Brownien exponentiel.
Dans ce modèle, les rendements logarithmiques sont distribués selon un mouvement



20 RESUME

Brownien arithmétique; ils sont donc indépendants les uns des autres et ne capturent
pas la dépendance à long-terme (respectivement à court-terme). Nous nous demandons
comment ce modèle peut être amélioré pour décrire la distribution des rendements logar-
ithmiques de la manière la plus réaliste et précise possible, permettant ainsi la prédiction
des mesures de risque avec réalisme et précision. Nous nous demandons comment nous
pouvons modifier le processus pour capturer la dépendance à long-terme (respective-
ment à court-terme). Dans Chapter 3, nous proposons de décrire les trajectoires de
prix en utilisant des mouvements Browniens fractionnaires géométriques. Cela permet
d’ajouter des corrélations entre les rendements logarithmiques pour exprimer la dépend-
ance de long-terme ou à court-terme. Les rendements logarithmiques sont alors décrits
à l’aide de processus Gaussiens auto-similaires avec des incréments stationnaires et cor-
rélés, appelés mouvements Browniens fractionnaires (fBm). Dans ce contexte, nous
nous concentrons sur la prédiction de la mesure de risque la plus couramment utilisée
par les régulateurs, appelée Valeur-à-Risque (VaR). Nous introduisons un modèle qui
fournit une VaR conditionnelle pour l’approximation Gaussienne de la variation future
du portefeuille d’actifs sous des dynamiques fractionnaires, étant donné les variations
passées des actifs du portefeuille. Étant donné que cette VaR est Gaussienne, nous
montrons qu’un tel modèle est basé sur des projections orthogonales dans un espace de
Hilbert Gaussien, prenant des formes spécifiques pour lesquelles des formules fermées
sont fournies. Ensuite, les paramètres du modèle sont estimés sous les hypothèses de
Gaussianité, de stationnarité et d’auto-similarité des log-rendements. Enfin, nous quan-
tifions l’approximation Gaussienne de la VaR en fournissant une borne supérieure de
l’erreur. Des expériences de backtesting sont fournies sur des données simulées et de
marché pour illustrer la théorie.

Le cadre Gaussien est le plus couramment utilisé en finance en raison de ses propriétés
pratiques. Cependant, la distribution Gaussienne a des queues fines, ce qui signifie
qu’elle suppose que les événements extrêmes sont rares et tend à sous-estimer la prob-
abilité de survenance de tels événements. Par conséquent, la modélisation de la dis-
tribution des rendements logarithmiques par une distribution Gaussienne n’est pas ap-
propriée lorsque des événements extrêmes se produisent plus fréquemment. Nous nous
demandons comment modéliser avec précision une distribution dans laquelle les événe-
ments extrêmes se produisent plus fréquemment que dans une distribution Gaussienne.
Pour répondre à une telle question, nous proposons de modéliser la distribution des
pertes grâce à une distribution à queues lourdes telle que la distribution de Pareto,
qui attribue des probabilités plus élevées aux événements extrêmes, ce qui est souvent
plus réaliste en finance. Cependant, dans un contexte où les événements extrêmes se
produisent plus fréquemment que dans le cadre Gaussien, la VaR n’est plus une mesure
de risque efficace car elle n’est pas sensible au risque de queue, et échoue donc à capturer
les événements extrêmes, ce qui conduit à une sous-estimation du risque. Nous pouvons
donc nous demander s’il existe une mesure de risque plus sensible au risque de queue.
Nous proposons de remplacer la VaR par l’Espérance-de-Perte (ES) qui répond à de
telles lacunes. Notre question est de savoir comment estimer l’ES de manière la plus
efficace et précise possible dans une distribution à queues lourdes. Aborder une telle
question est l’objectif de Chapter 4. En effet, dans Chapter 4, l’objectif est d’explorer
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des méthodes robustes pour estimer l’Espérance-de-Perte (ES) dans des distributions à
queues lourdes. L’Espérance de Perte étant la moyenne des pertes dépassant la VaR, un
estimateur de l’ES est un estimateur de la moyenne appliqué à la queue de la distribution
au-delà de la VaR. Ainsi, nous explorons des estimateurs robustes de la moyenne comme
alternative à la simple moyenne empirique, dans des distributions à queues lourdes, à
travers le cas jouet de la distribution de Pareto. La distribution de Pareto présente des
propriétés intéressantes de stabilité par conditionnement et remise à l’échelle. En effet,
la propriété de mise à l’échelle établit une relation de proportionnalité entre deux distri-
butions de Pareto dont le paramètre de forme est le même mais les paramètres d’échelle
respectifs sont distincts, avec un facteur de proportionnalité égale au ratio entre les
deux paramètres d’échelle. La propriété de stabilité par conditionnement énonce que
toute distribution de Pareto conditionnée à ses valeurs supérieures à un certain seuil in-
dépendant de l’échantillon sous-jacent, est toujours une distribution de Pareto de même
paramètre de forme mais de paramètre d’échelle égal au quotient entre le paramètre de
conditionnement et le paramètre d’échelle de la distribution de Pareto marginale. En-
fin, en combinant les propriétés de stabilité par conditionnement et de mise à l’échelle,
une relation de proportionnalité est établie entre la distribution de Pareto conditionnée
à ses valeurs étant supérieures à un certain seuil de conditionnement indépendant de
l’échantillon sous-jacent, et la distribution de Praeto marginale, avec un coefficient de
proportionnalité égale au ratio entre le paramètre de conditionnement et le paramètre
d’échelle de la distribution de Pareto marginale. Ainsi, l’ES d’une distribution de Pareto
est proportionnelle à l’espérance de la distribution de Pareto marginale, avec un facteur
de proportionnalité égal à la VaR théorique au seuil de risque α. Ainsi, les proportiétés
de stabilité par conditionnement et de mise à l’échelle sont très utiles en ce sens qu’elles
permettent de réduire la complexité du problème d’estimation de l’ES. Tout d’abord,
nous rappelons la théorie sur l’Espérance-de-Perte (ES) et sur la distribution de Pareto,
et nous présentons les propriétés caractéristiques de cette dernière. Ensuite, plusieurs es-
timateurs non-asymptotiques de la moyenne, tels que la Médiane-des-Moyennes (MoM),
la Moyenne-Tronqué (TM)e, ou même l’estimateur de Lee-Valiant (LV), sont présentés
avec leurs caractéristiques et comparés à la moyenne empirique classique. Nous étudions
leur biais et fournissons des formules explicites lorsque cela est possible. De plus, nous
évaluons le taux de convergence du biais. Enfin, nous soutenons l’analyse théorique par
des expériences et comparons les performances des différents estimateurs.

Résumé vulgarisé

Dans la vie quotidienne, les propriétés temporelles et spatiales des processus régis-
sent de nombreux phénomènes dans divers domaines tels que la Physique, la Biologie,
l’Astronomie, les Télécommunications, la Musique, la Finance, et bien d’autres. Dans
la première partie de cette thèse, nous nous concentrons sur deux de ces propriétés, ap-
pelées stationnarité et auto-similarité. La stationnarité prône l’invariance temporelle et
spatiale par translation, aussi connue sous le nom de changement d’origine temporelle,
et permet ainsi de décrire des processus qui se répètent de manière identique au fil du
temps à mesure qu’ils se déplacent. Nous retrouvons cette propriété notamment en
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Musique pour décrire certains morceaux, ou en Finance pour décrire les séries de ren-
dements des actifs. L’auto-similarité établit une relation de proportionnalité spatiale
entre les caractéristiques d’un processus évalué à deux instants temporels proportionnels
entre eux, et le coefficient de proportionnalité spatiale est une fonction du facteur de
proportionnalité temporelle. Ainsi, la propriété d’auto-similarité permet de décrire des
processus dont les états pris à deux instants temporels proportionnels se reproduisent
spatialement de manière proportionnelle avec un facteur de proportionnalité spatiale
égal à une fonction du facteur de proportionnalité temporelle. Ainsi, l’auto-similarité
décrit les dépendances à long-terme ou à court-terme des événements. Nous retrouvons
cette propriété dans la nature, pour décrire le développement des fougères, du chou
Romanesco ou du flocon de Koch; en Biologie pour expliquer la croissance des popula-
tions et la Généalogie, en Physique pour analyser les phénomènes météorologiques; en
Astronomie pour décrire les fragments stellaires; ou en Finance pour modéliser les séries
de rendements des actifs, la volatilité ou les mesures de risque.

Dans la deuxième partie de cette thèse, nous appliquons des processus stationnaires et
auto-similaires en Finance, et plus précisément au domaine de la gestion des risques,
dans un cadre bien connu, appelé Gaussien. Cela signifie que la distribution des ren-
dements des actifs est modélisée par une distribution Gaussienne qui suppose que la
plupart des valeurs prises par les processus sont concentrées autour de leur moyenne,
et très peu de valeurs atteignent les valeurs extrêmes. Les processus Gaussiens station-
naires et auto-similaires sont utilisés pour modéliser les séries de rendements des actifs
qui présentent une dépendance à long-terme, afin de prédire avec précision la mesure de
risque la plus couramment utilisée par les régulateurs, appelée Valeur-à-Risque (VaR),
pour la variation future d’un portefeuille d’actifs. Le cadre Gaussien présente des pro-
priétés très intéressantes, néanmoins, il est adapté pour décrire les périodes calmes car
il ne prend pas en compte les potentiels événements extrêmes, tels que les crises finan-
cières. Il tend à sous-estimer la probabilité que de tels événements surviennent, ce qui
peut être très dangereux. Pour résoudre ce problème, nous proposons de remplacer le
cadre Gaussien par un cadre plus propice à la présence de tels événements. Dans ce
nouveau cadre, la distribution des rendements des actifs n’est plus modélisée par une
distribution Gaussienne mais par une distribution capable d’attribuer une probabilité
plus élevée aux événements extrêmes, appelée distribution à queues lourdes. Une dis-
tribution à queues lourdes couramment utilisée en finance pour ses propriétés pratiques
est la distribution de Pareto. Cependant, appliquer la VaR dans ce nouveau contexte
entraînerait une mauvaise évaluation du risque. En effet, la VaR est une mesure de
risque insensible aux événements extrêmes. Ainsi, appliquer la VaR à une distribution
à queues lourdes, dans laquelle les événements extrêmes sont plus susceptibles de se
produire, entraînerait une sous-estimation du risque. Par conséquent, nous proposons
une alternative à la VaR, appelée l’Espérance-de-Perte (ES), capable de prendre en
compte les événements extrêmes. Dans la troisième partie de cette thèse, des méthodes
robustes d’estimation de l’ES dans la distribution de Pareto sont proposées.



Thesis outline and reading guide
Outline
This thesis is about risk measures in finance, backtesting, sensitivity and robustness. It
contains a general introduction and three chapters. The general introduction is com-
posed of an historical part, a state of the art, an overview of the contributions and the
potential perspectives of the thesis. Chapter 2 deals with the self-similar and stationary
Gaussian processes. Chapter 3 is about the prediction of conditional Value-at-Risk of
the future variation of an assets portfolio under fractional dynamics. Chapter 4 cov-
ers the robust estimation of the Expected-Shortfall in heavy-tailed distribution. The
French translation of the state of the art, of the contributions and of the perspectives
is provided at the end of the manuscript.

• Chapter 2 : Introduction to self-similar and stationary Gaussian processes
(RQ#1) In Chapter 2, we focus on two time transformations: the time-translation
and the time-scaling and on the related properties called the stationarity and the self-
similarity. The stationarity is the invariance in time and space of a function or a process
by temporal translation while the self-similarity property refers to the invariance in time
and space of a function or a process via an adequate temporal scaling. We present a
new approach to study stationary and self-similar processes. First, we prove that the
only assumptions of stationarity and self-similarity of the L2-characteristics of a given
process in Hilbert space, without any assumption of distribution, allow obtaining the
stationarity and the self-similarity of the inner product of the process, with a closed form
formula for the latter. In a second time, we show that adding the Gaussian assump-
tion allows obtaining the stationarity and the self-similarity properties of the process
not only in distribution but also in the trajectory sense (i.e. in terms of equality of
processes). We provide some examples of such processes, known as the Wiener process
and the fractional Brownian motion (fBm). Finally, we provide an extension of the sta-
tionarity and self-similarity properties in the trajectory sense, to the multidimensional
Gaussian processes, called multivariate fractional Brownian motions (mfBm).

• Chapter 3 : VaR prediction for asset portfolios under fractional dynamics
(RQ#2, RQ#3)

In Chapter 3, we propose to describe price trajectories using fractional geometric Brownian
motions. This allows adding correlations between logarithmic returns to express long-
range dependency. Logarithmic returns are then described using self-similar Gaussian
processes with stationary and correlated increments, called fractional Brownian motions
(fBm). In this context, we focus on predicting the most commonly used risk measure by
regulators, called Value-at-Risk (VaR). We introduce a model that provides a Gaussian
approximation of VaR for the asset portfolio under fractional dynamics. We show that
such a model is based on orthogonal projections in a Gaussian Hilbert space, taking
specific forms for which closed-form formulae are provided. Finally, we quantify the
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Gaussian approximation of VaR by providing an upper bound of the error. Backtesting
experiments are provided on simulated and market data to illustrate the theory.

• Chapter 4 : Mean estimation of Expected-Shortfall in heavy-tailed distributions
(RQ#4, RQ#5) In Chapter 4, the objective is to explore robust methods for estimat-
ing the Expected-Shortfall in heavy-tailed distributions. The Expected-Shortfall being
the average of losses exceeding the VaR, an ES estimator is an estimator of the mean ap-
plied to the distribution tail beyond the VaR. Thus, we explore robust estimators of the
mean as an alternative to simple empirical mean, in heavy-tailed distributions through
the toy case of the Pareto distribution. Firstly, we recall the theory on the Expected-
Shortfall and on the Pareto distribution, and we present the characteristic properties
of the latter. Then, several non-asymptotic mean estimators, such as the Median-of-
Means, the Trimmed-Mean, or even the Lee-Valiant estimator, are presented with their
characteristics and compared to the classical empirical mean. We study their bias and
provide explicit formulae when possible. Moreover, we evaluate the convergence rate of
the bias. Finally, we support the theoretical analysis with some experiments, and we
compare the performances of the different estimators.

Reading guide
The section on the history of finance has been written to set out the historical context
that led to the questions addressed in the thesis. This part can be ignored by the most
discerning readers.

Each chapter of the main part contains a small introduction which describes the ne-
cessary elements of context and is divided into several sections including the context,
the main results, the related technical proofs and the numerical experiments. Note that
each chapter can be read independently of each other.

For a quick overview of the contributions presented in this thesis, the reader is invited
to focus on the summary of contributions in Section 1.3 in Chapter 1.

"The shortest path between two truths in the real domain passes through the complex
domain."

(Jacques Hadamard, The Mathematical Intelligencer, v. 13, no. 1, Winter 1991.)
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Notation

:= Equal by definition

N,R Sets of natural and real numbers

Rd Set of d-dimensional real-valued vectors

⟨x, y⟩ Inner product of vectors x, y ∈ Rd

∥x∥p ℓp-norm of vector x ∈ Rd

Rn×d Set of real matrices of size n× d

A⊤ Transpose of matrix A

1E Indicator function of set E

B(X ) Borel σ-field on X

Ω Sample space: set of all possible outcomes

F Event set

P(·) Probability of an event

(Ω,F ,P) Complete probability space

X ∼ P Random variable (r.v.) X has distribution P

i.i.d∼ Independent and Identically Distributed

⊥ Orthogonal

E[·] Expectation of a random variable

V[·] Variance of a random variable

⟨⟨X,Y ⟩⟩ Inner product between the r.v. X and Y: E[XY ]

α ·X Scalar product between a scalar and a random vectors:
∑n

1 αiXi

Lp(P) Set of p-order integrable r.v. w.r.t. measure P:
{
X : E

[∣∣∣X∣∣∣p] < ∞
}

∥∥X∥∥
p

Lp-norm of r.v. X:
(
E
[∣∣∣X∣∣∣p]) 1

p

∥X∥2 L2-norm of r.v. X:
√

⟨⟨X,X⟩⟩

H Hilbert space

{X(θ)}θ∈J finite or infinite family of L2-r.v.

{Xh(θ)}θ∈J h-time-translated family of L2-r.v.: X(θ + h)−X(h)

{Xλ(θ)}θ∈J λ-time-scaled family of L2-r.v.: λ−
1
2X(λt); λ > 0

HX Hilbert space spanned by the family {X(θ)}θ∈J
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QX(θ) or Q(X(θ)) Quadratic norm of r.v. X: ∥X(θ)∥22 = E
[
|X(θ)|2

]
= |E[X(θ)]|2+V[X(θ)]

KX(θ, θ′) Inner kernel: ⟨⟨X(θ), X(θ′)⟩⟩

Q(α ·X) Quadratic norm of scalar product:
∑

(i,j)∈[1,n] αi αj KX(θi, θj)

N (µ,Σ) Gaussian distribution with mean µ and covariance matrix Σ

P(xm, γ) Pareto distribution of scaling parameter xm > 0 and of shape index
γ > 0

L2
d Set of d-dimensional square integrable functions L2(Rd, du) =f : R 7→ Rd s.t.

∣∣∣f∣∣∣2
L2
d

:=
∫
R |f(u)|2du < +∞


⟨f, g⟩L2

d
Scalar product in Rd:

∫
R f(u) · g(u)du

VaRα Value-at-Risk at the risk level α ∈ (0, 1)

ESα Expected-Shortfall at the risk level α ∈ (0, 1)

M̂oMn Median-of-Means (MoM) estimator

R̂TMn Right Trimmed-Mean (RTM) estimator

L̂Vn Lee-Valiant (LV) estimator

{W (t)}R Wiener process

{B(t)}R Brownian motion

{BH(t)}R fractional Brownian motion (fBm)

{BH(t)}R multivariate fractional Brownian motion (mfBm)

"Mathematics is the language in which God has written the universe."

(Galileo Galilei, The Assayer (Il Saggiatore), 1623.)
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1.1 History of finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
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This chapter is a general introduction to the thesis. The first part deals with the history
of finance from the beginnings of the financial markets to the present day, including the
financial crises that have punctuated history, the setting up of the banking regulation
and the introduction of risk management methods such as risk measurements. In the
second part, a state of the art related to each chapter is provided, followed by our
contributions and the research prospects.

1.1 History of finance

1.1.1 Origin of the financial markets and financial crisis

First financial markets

The first financial markets date back to ancient times and emerged in various regions
around the world. Here are some notable early financial markets. The first financial
markets were mostly future / forward markets where the products traded were derivat-
ives based on commodities such as wheat. This is highlighted by the famous quotation
of (Chabardès and Delclaux, 1997): "Wheat is wonderful in that it can be bought and
sold even before the flood has inundated the country and the grain has been sown".

We recall that a derivative product refers to a type of financial contract whose value
is dependent on an underlying asset, group of assets, index, rate or benchmark. A
derivative is set between two or more parties that can trade on an exchange or over-
the-counter (OTC).

These contracts can be used to trade any number of assets and carry their own risks.
Prices for derivatives derive from fluctuations in the underlying asset. These financial
securities are commonly used to access certain markets and may be traded to hedge
against risk. Derivative can be used to either mitigate risk (hedging) or assume risk
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with the expectation of commensurate reward (speculation). Derivatives can move risk
(and the accompanying rewards) from the risk-averse to the risk seekers.

Specifically, forward and futures contracts are derivatives that involve two parties who
agree to buy or sell a specific asset at a set price by a certain date in the future. Buyers
and sellers can mitigate the risks of price changes by locking them in advance.

A forward is made over the counter (OTC) and settles just once - at the end of the
contract. Both parties involved in the agreement privately negotiate the contract’s exact
term. Forwards carry a default risk since the other party might not come up with the
goods or the payment. Many hedgers use forward contracts to reduce the potential
volatility of an asset’s price. Since the terms are set when they are executed, forward
contracts don’t fluctuate in price. Since they are private agreements, there is a higher
degree of conterparty risk, which means there may be a chance that one party will
default.

Like forwards, futures contracts involve agreeing to buy and sell an asset at a specific
price at a future date. Futures contracts, meanwhile, are standardized to trade on stock
exchanges. These contracts are marked to market daily, which means that daily changes
are settled daily until the end of the contract. The futures market is generally highly
liquid, giving investors the ability to enter and exit whenever they choose to do so.
They have far less counterpart, as they guarantee payment on the agreed-upon date.

Around 2000 Before Common Era (BCE), ancient Mesopotamia (modern-day
Iraq) had rudimentary financial transactions recorded on clay tablets, suggesting early
forms of debt contracts and barter exchanges.

Greek city-states, particularly Athens, developed markets where traders could buy,
sell, and exchange goods and services. The port of Piraeus was a significant commercial
and financial center.

Rome had its own sophisticated financial system, including institutions like the State
Bank and markets where commercial transactions took place.

Starting from the 7th century, financial markets flourished in regions of the Arab
and Islamic empires, including souks (markets) where goods were exchanged and
caravanserais that facilitated long-distance trade.

The merchant cities of Venice and Genoa, located on trade routes between Europe and
Asia, were important financial centers where bills of exchange and maritime insurance
contracts were used.

The Amsterdam Stock Exchange, founded in 1602, is one of the earliest stock
exchanges in the world and was the center of trading in shares of the Dutch East India
Company. It also introduced financial innovations such as call and put options.

The London Stock Exchange, established in 1801, became a major global financial
center, trading stocks, bonds, and derivatives.

These early financial markets laid the groundwork for modern financial systems and
gradually evolved to include a wider range of financial instruments, regulations, and
technologies.
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Some important financial crisis

The "Tulip Mania" or "Tulip Craze": refers to a speculative bubble that occurred
in the Netherlands during the early 17th century, specifically in the 1630s. It was not
a crisis in the conventional sense, but rather a period of intense speculation and rapid
price escalation followed by a sudden collapse in the market for tulip bulbs. During this
time, tulip bulbs became extremely popular and were seen as a status symbol among
the Dutch elite. Prices for rare tulip bulbs skyrocketed to extraordinary levels, with
some bulbs reportedly selling for prices equivalent to houses or several years’ worth
of income. However, the bubble eventually burst in 1637, leading to a dramatic and
rapid decline in tulip bulb prices. Many investors who had purchased bulbs at inflated
prices suffered substantial financial losses, and the speculative frenzy came to an abrupt
end. The Tulip Mania is often cited as one of the earliest recorded speculative bubbles
and serves as a cautionary tale about the dangers of irrational exuberance and herd
behavior in financial markets. While it did not result in a financial crisis on the scale
of modern economic downturns, it remains a notable historical event due to its impact
on perceptions of financial markets and the psychology of investing.

Subprime crisis: The subprime crisis, also known as the subprime mortgage crisis,
was a financial crisis that emerged primarily in the United States in 2007 and had
widespread repercussions globally. At its core, it was triggered by a significant increase
in mortgage delinquencies and foreclosures, particularly among borrowers with subprime
mortgages. The process that led to this financial crisis is the following.

Subprime mortgages: Lenders began issuing mortgages to borrowers with poor credit
histories, often referred to as subprime borrowers. These mortgages typically had
higher interest rates to compensate for the increased risk of default.

Housing bubble: Housing prices soared in the early to mid-2000s, driven by factors
like low interest rates, lax lending standards, and speculation. This encouraged
more people to invest in real estate, further driving up prices.

Securitization: Mortgage lenders bundled these subprime mortgages with other types
of loans and sold them to investors as mortgage-backed securities (MBS) or col-
lateralized debt obligations (CDOs). The complex nature of these financial in-
struments made it difficult to assess their true risk.

Credit ratings agencies: Rating agencies assigned high ratings to many of these
mortgage-backed securities, leading investors to believe they were safe invest-
ments, despite the underlying riskiness of the mortgages.

Deterioration of Mortgage Quality: As housing prices started to decline and in-
terest rates rose, many subprime borrowers found themselves unable to make
their mortgage payments. This led to a surge in delinquencies and foreclosures.
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Financial institution failures: The increasing default rates on mortgages caused sig-
nificant losses for financial institutions holding these securities. Some prominent
financial institutions, such as Lehman Brothers, experienced insolvency or re-
quired government intervention to prevent collapse.

Global Financial Impact: The crisis had widespread ramifications beyond the hous-
ing market, leading to a credit crunch, stock market declines, and a severe recession
in many countries. Governments around the world implemented various measures
to stabilize financial markets and stimulate economic growth.

The subprime crisis exposed weaknesses in the financial system, including inadequate
regulation, risky lending practices, and the interconnectedness of global financial mar-
kets. It prompted significant reforms in financial regulation and oversight to prevent
similar crises in the future.

COVID-19 Pandemic: The COVID-19 recession, also known as the Great Lock-
down, was a global economic recession caused by the COVID-19 pandemic. The re-
cession began in most countries in February 2020. After a year of global economic
slowdown that saw stagnation of economic growth and consumer activity, the COVID-
19 lockdowns and other precautions taken in early 2020 drove the global economy into
crisis. Within seven months, every advanced economy had fallen to recession. The
first major sign of recession was the 2020 stock market crash, which saw major indices
drop 20 to 30% in late February and March. Recovery began in early April 2020; by
April 2022, the GDP for most major economies had either returned to or exceeded
pre-pandemic levels and many market indices recovered or even set new records by
late 2020. The recession saw unusually high and rapid increases in unemployment in
many countries. By October 2020, more than 10 million unemployment cases had been
filed in the United States, swamping state-funded unemployment insurance computer
systems and processes. The United Nations (UN) predicted in April 2020 that global
unemployment would wipe out 6.7% of working hours globally in the second quarter
of 2020—equivalent to 195 million full-time workers. In some countries, unemployment
was expected to be around 10%, with more severely affected nations from the pandemic
having higher unemployment rates. Developing countries were also affected by a drop in
remittances and exacerbating COVID-19 pandemic-related famines. The recession and
the accompanying 2020 Russia–Saudi Arabia oil price war led to a drop in oil prices; the
collapse of tourism, the hospitality industry, and the energy industry; and a downturn in
consumer activity in comparison to the previous decade. The 2021–2023 global energy
crisis was driven by a global surge in demand as the world exited the early recession
caused by the pandemic, particularly due to strong energy demand in Asia. This was
then further exacerbated by the reaction to escalations of the Russo-Ukrainian War,
culminating in the Russian invasion of Ukraine and the 2022 Russian debt default.
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1.1.2 How financial markets work ?

Financial markets are organized into two categories: the regulated and the non-regulated
markets.

Over-the-counter (OTC) markets

Definition of OTC markets: Historically, the first financial markets were the non-
regulated markets, also known as unregulated or over-the-counter (OTC) markets, oper-
ate without significant government oversight or regulation. An over-the-counter (OTC)
market is a decentralized market in which market participants trade stocks, commodit-
ies, currencies, or other instruments directly between two parties and without a central
exchange or broker. Over-the-counter markets do not have physical locations; instead,
trading is conducted electronically. This is very different from an auction market sys-
tem.

In an OTC market, dealers act as market-makers by quoting prices at which they will
buy and sell a security, currency, or other financial products. A trade can be executed
between two participants in an OTC market without others being aware of the price
at which the transaction was completed. In general, OTC markets are typically less
transparent than exchanges and are also subject to fewer regulations. Because of this,
liquidity in the OTC market may come at a premium.

Regulated markets

MIF Regulation and creation of regulated markets: Until the mid-2000s, European
markets were characterized by the existence of domestic trading platforms, each in a
quasi-monopoly situation. The directive on Markets in Financial Instruments
(known as MiF), adopted in 2004 and implemented on November 1, 2007, defined
a new organization of equity markets in Europe. This aimed to promote competition
by authorizing "alternative" modes of trading alongside traditional platforms (the "ex-
changes"). Furthermore, to ensure the quality of the price formation mechanism in a
fragmented market, the MiF directive established new rules regarding pre- and post-
trading transparency and based investor protection on the principle of "best execution,"
founded on seeking the trading system offering the best price to the client. The MiF
directive achieved two of its objectives: reducing transaction costs in the equity mar-
ket and the emergence of truly pan-European trading systems. However, its effects on
market liquidity and transparency were more uncertain. Revision work on the MiF
directive (MiF 2) began as early as the end of 2009, with the primary objective of ad-
dressing identified weaknesses in MiF but also due to the context marked by the 2008
financial crisis and the G20 "roadmap." Following a public consultation launched in
December 2010, the Commission presented its proposals in October 2011. After intense
and complex debate, the MiF 2 framework (composed of a directive and a regulation)
was adopted in May 2014 and came into effect on January 3, 2018. It aims to restore
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fair competition (level-playing-field) between regulated markets and alternative trading
modes, strengthen transparency, and improve investor protection.

MiF 2 defines a regulated market as "a multilateral system operated and/or managed by
a market operator, which ensures or facilitates the meeting - within itself and according
to its non-discretionary rules - of multiple buying and selling interests expressed by third
parties for financial instruments, in a manner that results in the conclusion of contracts
for financial instruments admitted to trading under its rules and/or systems, and which
is authorized and operates regularly in accordance with Title III [of the directive]."

A regulated market is thus characterized by non-discretionary execution of transactions:
an order placed on the order book cannot be withdrawn and must be automatically
matched with available orders in the system.

The MiF 2 framework consists of a directive (MiFID 2) and a regulation (MiFIR).
However, beyond these two so-called "level 1" texts, MiF 2 also includes over forty
"level 2" texts (delegated regulations and implementing regulations) adopted by the
Commission based on technical standards developed by the European Securities and
Markets Authority (ESMA), as well as a series of "level 3" documents (Guidelines and
Questions/Answers) published by ESMA.

MiF 2 comprises two main components: market organization and investor protection.

Market organization

Expansion of the scope of financial instruments covered (which, under MiF, was
limited to equities) to equity-like securities and so-called "non-equity" instru-
ments: bonds, derivatives, structured products, and carbon quotas.

Creation of a new category of organized trading platform (limited to non-equity
instruments trading): Organised Trading Facilities (OTFs).

Restriction of over-the-counter trading scope (requirement for trading in equit-
ies and certain derivatives), strengthening of systematic internalizer regime, pro-
hibition of order-matching systems (crossing networks).

Open Acess Establishment of a principle of non-discriminatory access ("open access")
of trading platforms to central counterparties (CCPs) and vice versa, as well as
to benchmark indices.

Strengthening of pre-trade transparency requirements (with possible exemptions
calibrated based on instrument liquidity and/or transaction size): publication of
bid and ask prices and the size of positions expressed at these prices.

Exemptions for equities are further regulated introduction of a double cap lim-
iting the proportion of transactions conducted in dark pools, without pre-trade
transparency. Strengthening of post-trade transparency requirements (possible
delays calibrated according to the same criteria as above), with the implementa-
tion of consolidated publication systems (Consolidated Tape Provider - CtP) and
approved publication mechanisms (Approved Publication Authority - APA).
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Intensification of transaction reporting to the regulator and implementation of
approved reporting mechanisms (Approved Reporting Mechanism - ARM).

Regulation of algorithmic trading and high-frequency trading to prevent mal-
function and market manipulation risks.

Regulation of commodity derivatives markets (position limits and declarations).

Investors protection

Strengthening of product governance through a more precise definition of the re-
spective responsibilities of the manufacturer (who defines the product character-
istics, target market, and distribution channels) and the distributor (who under-
stands the product characteristics, also determines the target market, and ensures
consistency between it and their own clientele).

Increased transparency for investors disclosure of costs and charges related to ser-
vices and products upstream, and possibly downstream, of the transaction.

Introduction of the concept of "independent advice" , with a requirement for
investment firms providing advice to specify whether it is independent advice or
not.

Strengthening of regulation of remuneration and inducements their receipt is
prohibited in the provision of independent advice or discretionary portfolio man-
agement; it is allowed for other services, provided that it aims to enhance the
quality of service and that the client is clearly informed of their nature, amount,
or method of calculation, prior to the provision of the service.

Implementation of a new regime for the financing of financial analysis.

Strengthening of transparency obligations under "best execution" information
on transaction execution must be more detailed and easily understandable by the
client.

In a nutshell, a regulated market is a market over which government bodies or, less
commonly, industry or labor groups, exert a level of oversight and control. Market
regulation is often controlled by the government and involves determining who can enter
the market and the prices they may charge. The government body’s primary function in
a market economy is to regulate and monitor the financial and economic system. These
regulations aim to ensure fairness, transparency, stability, and the protection of investors
and consumers. Examples of regulated markets include stock exchanges, commodity
exchanges, and financial markets where trading activities are closely monitored and
regulated by authorities.
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Alternative means of negotiation:

They can be either regulated or unregulated markets and they include Multilateral
Trading Facility (MTFs), Organized Trading Facilities (OTFs), Systematic Internalizers
(SIs), and Dark Pools.

Multilateral Trading Facility – MTF Under MiF 2, Multilateral Trading Facil-
ities (MTFs), which already existed under MiF, are defined as "a multilateral system
operated by an investment firm or a market operator, which ensures the meeting -
within itself and according to non-discretionary rules - of multiple buying and selling
interests expressed by third parties for financial instruments, in a manner that results
in the conclusion of contracts in accordance with Title II [of the directive]."

On an MTF, as on a regulated market, transactions are executed in a non-discretionary
manner. MTFs generally offer less expensive access than regulated markets, but limited
to the most liquid securities and those on which the largest volumes are traded.

A regulated market operator may also manage MTFs alongside to meet certain specific
needs of market participants. For example, Euronext also manages the Multilateral
Trading Facility (MTF) Euronext Growth (formerly Alternext), dedicated to mid-cap
securities, with listing rules tailored to SMEs and ETIs.

Organized Trading Facilities - OTF: OTFs are a new category of organized plat-
form introduced by MiF 2, which defines them as "a multilateral system, other than
a regulated market or an MTF, within which multiple buying and selling interests ex-
pressed by third parties for bonds, structured financial products, emission allowances,
or derivatives can interact in a manner that results in the conclusion of contracts in
accordance with Title II [of the directive]."

Unlike regulated markets and MTFs, the operator of an OTF has discretionary power
over how transactions are executed: they can decide to place or withdraw an order on
the OTF, or decide not to match a specific order with available orders in the system at
a given time, which can allow orders to be executed in the best interests of clients. In
return, the operator of an OTF cannot execute orders for its own account.

Systematic Internalizers - SIs: SIs, which already existed under MiF, are defined
in MiF 2 as "an investment firm that, in an organized, frequent, and systematic manner,
trades on its own account by executing client orders outside a regulated market or an
MTF."

Unlike an OTF, an SI executes client orders by committing its own capital. In return,
it is subject to strengthened prudential requirements.

Dark Pools The concept of a dark pool refers to markets (regulated markets or
MTFs) benefiting from exemptions, as provided for in the regulations, from the pre-
trade reporting obligation, thus allowing transactions to be executed without disclosing
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orders or their prices before execution. A regulated market operator may also manage a
dark pool. For instance, Euronext operates a dark pool called Euronext Block (formerly
SmartPool).

Categories of regulated markets

Regulated markets can be splitted into several categories.

Stock Exchanges: Stock exchanges are primary regulated markets where equities
(stocks) are bought and sold. Examples include the New York Stock Exchange (NYSE),
NASDAQ, London Stock Exchange (LSE), and Tokyo Stock Exchange (TSE).

Bond markets: Bond markets are regulated markets where fixed-income securities
such as government bonds, corporate bonds, and municipal bonds are traded. These
markets provide a platform for issuing, buying, and selling debt securities.

Commodity Exchanges: Commodity exchanges are regulated markets where com-
modities such as agricultural products, energy, metals, and financial derivatives based
on commodities are traded. Examples include the Chicago Mercantile Exchange (CME)
and the Intercontinental Exchange (ICE).

Derivatives Exchanges: Derivatives exchanges are regulated markets where finan-
cial instruments derived from underlying assets such as stocks, bonds, commodities,
currencies, or indices are traded. These instruments include options, futures, swaps,
and forwards. Examples include the Chicago Board Options Exchange (CBOE) and
Eurex.

Foreign Exchange (Forex) Markets: Forex markets are regulated markets where
currencies are traded.

Multilateral Trading Facilities (MTFs): MTFs are regulated markets that provide
alternative venues for trading securities outside of traditional stock exchanges. They
match buyers and sellers electronically and may offer lower trading fees and greater
anonymity.

Dark Pools: Dark pools are regulated markets that provide private venues for trading
large blocks of securities away from public exchanges. They offer increased privacy and
reduced market impact for institutional investors.

Categories of OTC markets

As the regulated markets, the OTC markets are also organized in different categories.



40
CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND

CONTRIBUTIONS

Equity OTC Markets: These markets involve the trading of stocks (equities) of
public companies that are not listed on formal exchanges such as the New York Stock
Exchange (NYSE) or NASDAQ. Instead, these stocks are traded directly between buyers
and sellers through broker-dealers or electronic communication networks (ECNs).

Bond OTC Markets: Bond OTC markets involve the trading of fixed-income se-
curities such as government bonds, corporate bonds, municipal bonds, and other debt
instruments. Participants in these markets include institutional investors, banks, and
individual traders who buy and sell bonds directly with one another or through brokers.

Forex (Foreign Exchange) OTC Markets: Forex OTC markets involve the trad-
ing of currencies, where participants buy and sell different currencies directly with each
other or through electronic trading platforms. These markets operate 24 hours a day,
five days a week, and are decentralized, with trading taking place over-the-counter
rather than on a centralized exchange.

Derivatives OTC Markets: Derivatives OTC markets involve the trading of finan-
cial instruments whose value is derived from an underlying asset, index, or reference
rate. These instruments include options, swaps, forwards, and other complex financial
products. Participants in these markets include institutional investors, hedge funds,
and banks, who trade derivatives directly with one another or through brokers.

Commodity OTC Markets: Commodity OTC markets involve the trading of phys-
ical commodities such as agricultural products, energy products, metals, and other raw
materials. Participants in these markets include producers, consumers, traders, and
speculators who buy and sell commodities directly with one another or through brokers.

Structured Product OTC Markets: Structured product OTC markets involve the
trading of complex financial products that are customized to meet specific investment
objectives. These products may include structured notes, asset-backed securities, and
other hybrid securities. Participants in these markets include institutional investors,
investment banks, and wealth managers.

1.1.3 Financial regulation

What is financial regulation ?

Financial regulation is defined to ensure that the financial markets properly work. See
for instance (Kuritzkes et al., 2003). Financial regulation refers to the set of laws and
rules that govern financial institutions, markets, and transactions to ensure stability,
transparency, and fairness within the financial system. These regulations are imple-
mented by governmental or international bodies and aim to protect investors, maintain
market integrity, prevent fraud and market manipulation, and mitigate systemic risk.
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Financial regulations typically cover various aspects of the financial industry, including
banking, securities trading, insurance, and investment and risk management. They can
range from specific requirements for capital reserves and liquidity ratios for banks to
rules governing the issuance and trading of securities on stock exchanges.

Regulation aims to maintain the stability of the financial system by preventing excessive
risk taking and speculative behavior that could lead to financial crises. Moreover, it
often includes measures to protect consumers from fraud unfair practices and fairly, pro-
moting trust among market participants. This is the goal for instance of the anti-money
laundering law. Furthermore, it seeks to ensure market integrity i.e. to ensure that
financial markets operate efficiently, transparently, and fairly, promoting trust among
market participants. Beside, regulation aims to manage systemic risk by identifying
and mitigating risks that could threaten the stability of the entire financial system,
such as the failure of large financial institutions. Regulation may also promote compet-
itions within the financial industry, preventing monopolistic practices and encouraging
innovation.

A specific area of the financial regulation is the banking regulation.

Banking regulation

Banking regulation refers to the set of rules, laws, and guidelines that govern the activ-
ities of banks and other financial institutions. These regulations are designed to ensure
the stability, integrity, and soundness of the banking system, protect depositors’ funds,
and promote the efficient functioning of financial markets. Banking regulations often
prescribe minimum levels of capital that banks must hold to cover potential losses and
protect depositors. Capital requirements help ensure that banks have enough re-
serves to absorb losses and maintain financial stability. Banks are typically required to
maintain sufficient liquid assets to meet their short-term obligations. Liquidity regu-
lation aims to prevent bank runs and ensure that banks can fulfill withdrawal requests
from depositors without facing liquidity crises. Regulation requires banks to implement
robust risk management practices to identify, measure, and mitigate various types of
risks, including credit risk, market risk, and operational risk. This may involve estab-
lishing risk management committees, conducting stress tests, and implementing internal
controls. Many countries have deposit insurance schemes that protect depositors’
funds in the event of bank failure. Banking regulations often establish and govern these
deposit insurance programs to provide confidence to depositors and maintain financial
stability. Regulatory authorities, such as central banks or banking regulators, oversee
banks’ activities to ensure compliance with regulations and assess their financial health.
Supervisory activities may include on-site examinations, off-site monitoring, and en-
forcement actions for non-compliance. Banking regulations include measures to combat
money laundering, terrorist financing, and other illicit activities. This task is called
Anti-Money Laundering (AML) and Counter-Terrorist Financing (CTF). Banks are re-
quired to implement customer due diligence procedures, report suspicious transactions,
and comply with Know Your Customer (KYC) requirements. Banking regulations often
include provisions to protect consumers from unfair or deceptive practices. These



42
CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND

CONTRIBUTIONS

may include disclosure requirements for financial products and services, restrictions on
predatory lending practices and mechanisms for handling consumer complaints.

Regulation agreements

To insure market regulation, a series of accords have been established over time. Among
these accords, we can find the Markets in Financial Instruments (MiF), the Inter-
national Financial Reporting Standards (IFRS), the Basel Agreements, as well as the
Fundamental Review of Trading Book (FRTB).

International Financial Reporting Standards (IFRS): The IFRS accords have
been implemented in 2001. These are a set of accounting standards developed by the
International Accounting Standards Board (IASB), an independent, private-sector or-
ganization based in London, United Kingdom. IFRS aims to provide a common global
language for financial reporting, ensuring that financial statements are transparent,
comparable, and understandable across different countries and industries. IFRS is used
by companies around the world to prepare their financial statements, including the bal-
ance sheet, income statement, cash flow statement, and statement of changes in equity.
These standards govern how companies should recognize, measure, present, and disclose
various elements of their financial performance and position. Key features of IFRS in-
clude principles-based accounting, which focuses on the substance of transactions rather
than their legal form, and the use of fair value measurement for certain financial in-
struments and assets. IFRS also emphasizes the importance of providing relevant and
reliable information to investors, creditors, and other stakeholders to support informed
decision-making. IFRS is increasingly becoming the global standard for financial report-
ing, with many countries adopting or converging their national accounting standards
with IFRS. While some countries, such as the United States, still use their own set
of accounting standards (Generally Accepted Accounting Principles or GAAP), efforts
are ongoing to achieve greater harmonization and convergence between IFRS and other
national standards.

Markets in Financial Instruments (MiF) As previously mentioned, the MiF dir-
ectives have been established in the early 2000s to create the first regulated markets.
These are a set of European Union regulations governing the provision of investment
services and activities within the European Economic Area (EEA). These directives aim
to harmonize regulation across EU member states, enhance investor protection, promote
competition, and increase market transparency. There have been two main iterations
of the MiF directives.

MiFID I: (Markets in Financial Instruments Directive I) Adopted in 2004 and im-
plemented in 2007, MiFID I introduced significant changes to the regulation of
investment services and trading venues within the EU. It aimed to improve in-
vestor protection, increase market efficiency, and foster competition by allowing
investment firms to operate throughout the EU under a single set of rules.
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MiFID II and MiFIR: MiFID II (Markets in Financial Instruments Directive II) and
MiFIR (Markets in Financial Instruments Regulation) are a comprehensive revi-
sion and extension of MiFID I. MiFID II, adopted in 2014 and implemented in
2018, introduced more stringent requirements for transparency, investor protec-
tion, and market structure. MiFIR, which is directly applicable in all EU member
states, complements MiFID II by specifying regulatory requirements and proced-
ures.

Together, MiFID II and MiFIR aim to address shortcomings identified in MiFID I,
enhance the functioning of financial markets, and adapt regulation to new market de-
velopments, technological advancements, and changes in market structure. They cover
a wide range of topics, including trading venues, investment firms, market transparency,
investor protection, and conduct of business rules.

Basel Agreements: The Basel Accords are a set of international banking regulations
that aim to strengthen the stability and soundness of the global banking system. They
are developed by the Basel Committee on Banking Supervision (BCBS), which
is a forum for central banks and banking regulators from around the world to collaborate
on banking supervision and regulation. The Basel Accords provide a framework of rules
and guidelines for regulating banks capital adequacy, liquidity risk, and leverage.

Basel I: introduced in 1988, established the first international framework for regu-
lating banks’ capital adequacy. It introduced the concept of minimum capital
requirements based on the riskiness of banks’ assets. Under Basel I, the capital
adequacy risk (the risk that an unexpected loss would hurt a financial institution),
categorizes the assets of financial institutions into five risk categories 0%, 10%,
20%, 50% and 100%.

Under Basel I, banks were required to hold capital equivalent to at least 8% of
their risk-weighted assets. This ensures banks hold a certain amount of capital
to meet obligations. Basel I divided the eligible regulatory capital of a bank into
two Tiers. Tier 1 capital is the most liquid and primary funding source of the
bank. Tier 2 capital includes less liquid hybrid capital instruments, loan-loss, and
revaluation reserves as well as undisclosed reserves.

The Cooke ratio is a bank solvency ratio recommended by the Basel Committee as
part of its initial recommendations to guarantee a minimum level of equity capital
to ensure the financial soundness of banks. It is an indicator specific to segment
companies, unlike companies in the agricultural sector.

The Cooke ratio sets the limit for the weighted outstanding loans granted by a
financial institution in relation to the bank’s equity capital. It is a minimum ratio
of 8% between a bank’s own funds and total assets, weighted by the risk of each
asset.

Cooke Ratio =
Regulatory capital

Credit risk
≥ 8%. (1.1)
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An amendment in 1998 allows market risk to be taken into account using two
approaches (standard and internal model).

The ratio is named after Peter Cooke, a director of the Bank of England who
was one of the first to propose the creation of the Basel Committee and was its
first chairman. The ratio is calculated on the basis of capital divided into three
main components (Tier 1, Tier 2 and Tier 3) and outstanding loans, on-balance
sheet commitments and off-balance sheet commitments weighted according to
their nature. The ratio of capital to risk-weighted assets must be at least 8%,
with a minimum of 4% for Tier 1.

Basel II: also called Revised Capital Framework, introduced in 2004 and revised in
2006 and 2009, aimed to address some of the limitations of Basel I and improve risk
management practices in banking focusing on three main areas: minimulm capital
requirements, supervisory review of an institution’s capital adequacy and internal
assessment process, and the effective use of disclosure as a lever to strengthen
market discipline and encourage sound banking practices including supervisory
review. Together, these areas of focus are known as the three pillars. Basel II
introduced a more risk-sensitive approach to capital regulation, allowing banks to
use internal models to calculate capital requirements based on their own assess-
ment of credit, market, and operational risks. It also introduced new requirements
for capital buffers, supervisory review, and market discipline. Basel II divided the
eligible regulatory capital of a bank from two into three tiers. The higher tier, the
less subordinated securities a bank is allowed to include in it. Each tier must be
of a certain minimum percentage of the total regulatory capital and is used as a
numerator in the calculation of regulatory capital ratios. The new tier 3 capital is
defined as tertiary capital, which many banks hold to support their market risk,
commodities risk, and foreign currency risk, derived from trading activities. Tier
3 capital includes a greater variety of debt than tier 1 and 2 capital but is of a
much lower quality than either of the two. Under the Basel III accords, tier 3

capital was subsequently rescinded.

The McDonough ratio replaces the Cooke ratio, which set a minimum loan-to-
equity ratio of 8%. The McDonough ratio takes its name from the current Chair-
man of the Basel Committee during the process of establishing the Accord, Wil-
liam J. McDonough. The McDonough ratio is more refined than the Cooke ratio
because it takes into account the greater or lesser risk of the various loans granted,
by dividing them into three types: credit risk, market risk and operational risk.
The banks’ level of commitment is thus limited by their own financial strength.
The McDonough ratio is defined as follows:

Bank’s own funds > 8%
(
Credit Risk(85%) + Market Risk(5%) + Operational Risk(10%)

)
.

(1.2)

Basel III: In the wake of the Lehman Brothers collapse of 2008 and the ensuing finan-
cial crisis, the BCBS decided to update and strengthen the Accords. The BCBS
considered poor governance and risk management, inappropriate incentive struc-
tures, and an over leveraged banking industry as reasons for the collapse. In
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November 2010, an agreement was reached regarding the overall design of the
capital and liquidity reform package. This agreement is now known as Basel III.

Basel III is a continuation of the three pillars along with additional requirements
and safeguards. For example, Basel III requires banks to have a minimum amount
of common equity and a minimum liquidity ratio. Basel III also includes additional
requirements for what the Accord calls "systemically important banks", or those
financial institutions that are considered "too big to fail". In doing so, it got rid
of tier 3 capital considerations.

The Basel III reforms have now been integrated into the consolidated Basel Frame-
work, which comprises all of the current and forthcoming standards of the Basel
Committee on Banking Supervision. Basel III tier 1 has now been implemented
and all but one of the 27 Committee member countries participated in the Basel
III monitoring exercise held in June 2021. The final Basel III framework includes
phase-in provisions for the output floor, which will start at 50% on January 1,
2023, rising in annual steps of 5% and be fully phased-in at the 72.5% level from
January 2028. These 2023 onward measures have been referred to as Basel 3.1 or
Basel IV.

Basel IV: is the informal name for a set of proposed banking reforms building on the
international banking accords known as Basel I, Basel II, and Basel III. Basel
IV builds upon the previous Basel III framework and aims to address perceived
shortcomings, strengthen the resilience of banks, and improve the consistency
and comparability of regulatory capital requirements across jurisdictions. Key
components of Basel IV include revisions to the calculation methodologies for
credit risk, operational risk, and market risk, as well as the introduction of the
standardized approach for measuring counterpart credit risk (SA-CCR).

FRTB: A specific component of Basel IV, called Fundamental Review of the Trad-
ing Book (FRTB), focuses on the regulation of market risk in banks’ trading
books. It was developed in response to weaknesses identified in the previous mar-
ket risk framework under Basel II and Basel III, particularly in the wake of the
2008 financial crisis. FRTB introduces more stringent requirements for the meas-
urement, management, and capitalization of market risk, with the aim of ensuring
that banks hold adequate capital reserves to cover potential trading book losses.
Key features of FRTB include the introduction of a revised standardized approach
(SA) and the internal models approach (IMA) for calculating market risk capital
charges, as well as enhanced risk governance and reporting requirements.

1.1.4 Financial risk and risk factors

What is financial risk ?

Financial risk is the possibility of losing money on an investment or business venture.
Some more common and distinct financial risks include credit risk, liquidity risk, and
operational risk. Financial risk is a type of danger that can result in the loss of capital to
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interested parties. For governments, this can mean they are unable to control monetary
policy and default on bonds or other debt issues. Corporations also face the possibility
of default on debt they undertake but may also experience failure in an undertaking the
causes a financial burden on the business.

Financial risks can be classified into diverse categories.

Different categories of risks

Financial risks for the individuals: Financial risks for individuals occur when they
make sub-optimal decisions. There are several types of Individual risk factors; pure risk,
liquidity risk, speculative risk, and currency risk.

Pure Risk

Pure Risk is a type of risk where the outcome cannot be controlled, and only has two
outcomes which are complete loss or no loss at all. An example of pure risk for an
individual would be owning an equipment, there is risk of it being stolen and there
would be a loss to the individual, however, if it weren’t stolen, there is no gain but only
no loss for the individual.

Liquidity risk

Liquidity Risk is when securities cannot be purchased or sold fast enough to cut losses
in a volatile market. An example to which an individual might experience liquidity risk
would be no one willing to purchase a security you own, and the value of your security
significantly drops.

Speculative risk

Speculative risks are made based on conscious choices, and results in an uncertain degree
of gain or loss. An example of speculative risk is purchasing stocks, the future of the
stock’s price is uncertain, and both a gain or loss could occur depending on whether if
the stock price rises or decreases.

Currency risk

Currency risk is when exchange rates changes will affect the profitability of when one
is committed to it and the time when it is carried out. An example of currency risk
would be if interest rates were higher in U.S compared to Australia, the Australian
dollar would drop in comparison to the U.S.. This is due to the increase in demand for
USD as investors take advantage of higher yields, thus exchange rate fluctuates and the
individual is exposed to risks in the foreign exchange markets.
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Financial risks for the market: Financial Risks for the market are associated with
price fluctuation and volatility. Risk factors consist of interest rates, foreign currency
exchange rates, commodity and stock prices, and through their non-stop fluctuations,
it produces a change in the price of the financial instrument.

Market Risk (systematic risk)

Market Risk is the risk an investor experiences when the value of an investment decreases
due to financial market factors. The failure of a single company or cluster of companies
could lead to the entire market crashing and the way to reduce this risk is through
diversification into assets that are not co-related to the market. An example is during
the 2007-2008 global financial crisis, when a core sector of the market suffered, the
volatile risk created effected the monetary well-being of the entire marketplace. During
this time, businesses closed, there was an estimated loss of $6 trillion to $14 trillion,
and governments were forced to rethink their economic policies. A similar situation
is observed during the COVID-19 global pandemic crisis, where a massive economic
fall-out had occurred due to the lack of economic activity. The global economy came to
a halt, aggregate demand rapidly decreased, and even oil prices plummeted to almost
negative $40, which meant producers paid buyers to take oil off their hands as storing
oil was costly.

Financial risks for business: Financial Risk for businesses rises due to the need for
funding in order to expand and grow the business, or when they sell products on credit.
There are several types of financial risks in businesses, including credit risks, specific
risks, and operational risks.

Credit risk

Credit risk are the dangers of default occurring when a creditor lends money to a
borrower. Examples of credit risks include businesses not being able to retrieve their
money when they sell products on credit and may experience a rise in costs to collect
the debt. Businesses can also experience credit risk as the borrowers, as they must
manage cash flows in order to pay back their accounts payabl.

Specific risk

Specific risks a.k.a. unsystematic risks are hazards that are unique and apply only to a
certain asset or company. An example of an unsystematic risk is if a company has poor
reputation or there are strikes among company employees, only that specific company
is affected. Unsystematic risk can be avoided through diversification where investors
invest in a wide variety of stocks.

Operational risk
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Companies face operational risks whenever it attempts to do ordinary business activities
and can also be classified as a variety of specific risk. Operational risks stem from man-
made choices, thus are the risks of business operations failing due to human error.
Examples of Operational risks would be keeping a subpar sales staff team as it has
lower wage costs, but it comes with higher operational risks as the staff are more likely
to make mistakes.

Financial risks in investing: Investing is allocating money, effort, or time into
something in hopes of generating income or profit. A common investment is investing
in stocks, purchasing them at a low price then reselling it later at a higher price to
earn the difference as profit. Stock investing comes with very high risks as every single
piece of information would cause market prices to fluctuate. Financial risks in investing
include economic risk, commodity price risk, inflationary risk and interest rate risk,
headline risk, obsolescence risk, and model risk.

Economic risk

One of the most obvious risk is economic risk, where the economy could go bad at any
given moment, causing stock prices to plummet.

Commodity price risk

Commodity price risk is the possibility of a commodity price fluctuating, potentially
causing financial losses for the buyers or producers of a commodity. As Commodity
prices are basic raw materials, it creates a domino effect, affecting all products that
require the commodity. For example, oil consumers often face commodity price risk, as
oil is a widely used necessity product currently, many producers’ profits are affected by
the fluctuation of oil price.

Inflationary risk and interest rate risk

Other risks like inflationary risk and interest rate risks usually go hand in hand, as
interest rates are increased in order to combat inflation, which in turn causes businesses
operation cost to increase, making it harder to stay in business, which then leads to a
reduction in their stock prices. Inflation on its own also destroys value of stocks and
creates recessions in the market.

Headline risk

A very transparent risk is headline risk, where any stories in the media that will damage
a company’s reputation would hurt their business and reduce their stock prices. An
example is the Fukushima nuclear crisis in 2011, which punished their stocks and caused
excessive backlash against any businesses related to the story.
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Obsolescence risk

A risk that arises due to technological advancement is obsolescence risk, where a pro-
cess, product or technology used by a company to generate profit becomes obsolete as
competitors find cheaper alternatives. An example of this are publishing companies, as
computers, phones, and devices becomes more advanced, more and more people read
news, magazines and books online instead of the printed form as it’s cheaper and more
convenient, which caused publishing companies to slowly become obsolete.

Model risk

When people rely too much on the assumptions underlying economic and business
models is model risk. When the models are inaccurate, all stakeholders that relied on
the financial model are exposed to risks as the quantitative information utilized are
made based on insufficient information. An example of this is the Long Term Capital
Management (LTCM) debacle, which caused them great financial loss because of a small
error in their computer models, which was magnified by their highly leveraged trading
strategy.

1.1.5 Classic risk management approaches

What is hedging ?

To hedge, in finance, is to take an offsetting position in an asset or investment that
reduces the price risk of an existing position. A hedge is therefore a trade that is made
with the purpose of reducing the risk of adverse price movements in another asset.
Normally, a hedge consists of taking the opposite position in a related security or in a
derivative security based on the asset to be hedged.

A hedge is a strategy that seeks to limit risk exposures in financial assets. Popular
hedging techniques involve taking offsetting positions in derivatives that correspond to
an existing position. Other types of hedges can be constructed via other means like di-
versification. An example could be investing in both cyclical and countercyclical stocks.
Besides protecting an investor from various types of risk, it is believed that hedging
makes the market run more efficiently.

Derivatives can be effective hedges against their underlying assets because the relation-
ship between the two is more or less clearly defined. Derivatives are securities that
move in correspondence to one or more underlying assets. They include options, swaps,
futures, and forward contracts. The underlying assets can be stocks, bonds, commod-
ities, currencies, indexes, or interest rates. It’s possible to use derivatives to set up a
trading strategy in which a loss for one investment is mitigated or offset by a gain in a
comparable derivative.
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Back-to-back

The aim of back to back is to net a risky position by contracting a transaction symmet-
rical to the transaction you wish to manage. An example of back-to-back is provided
as follows.

Consider a management fund offering an investment with a guaranteed floor, the nom-
inal amount, and an optional remuneration corresponding to x% of the nominal amount
each year where the CAC will have had a positive variation. This contract can be broken
down into a zero-coupon component representing the nominal amount and an optional
component (a series of digitals based on changes in the CAC) representing the optional
remuneration. The optional component can be managed on a back-to-back basis by
selling it to a bank trading floor.

Asset / Liability Management (ALM)

What is ALM ? Asset/liability management is the process of managing the use of
assets and cash flows to reduce the firm’s risk of loss from not paying a liability on
time. Well-managed assets and liabilities increase business profits. The asset/liability
management process is typically applied to bank loan portfolios and pension plans. It
also involves the economic value of equity.

The concept of asset/liability management focuses on the timing of cash flows because
company managers must plan for the payment of liabilities. The process must ensure
that assets are available to pay debts as they come due and that assets or earnings
can be converted into cash. The asset/liability management process applies to different
categories of assets on the balance sheet.

How ALM works ? ALM relies on four main components.

Asset management, that involves managing the composition, maturity, and quality of
the financial institution’s assets, which include loans, investments, securities, and other
income-generating assets. The goal is to optimize the return on assets while managing
risks such as credit risk, interest rate risk, liquidity risk, and market risk.

Liability management, that involves managing the composition, maturity, and cost
of the financial institution’s liabilities, which include deposits, borrowings, and other
funding sources. The goal is to ensure that the institution has adequate funding to
support its asset growth, manage liquidity needs, and meet regulatory requirements.

Risk management: ALM involves identifying, measuring, and managing various risks
that arise from the asset-liability structure, including interest rate risk, liquidity risk,
credit risk, and market risk. This may involve using hedging strategies, diversifica-
tion, stress testing, and scenario analysis to mitigate risks and ensure the institution’s
financial stability.



1.1. HISTORY OF FINANCE 51

Strategic planning: ALM plays a crucial role in strategic planning for financial in-
stitutions, helping them set goals, make informed decisions, and allocate resources ef-
fectively. It provides insights into the institution’s risk profile, profitability, capital
adequacy, and funding needs, guiding strategic initiatives and business decisions.

Overall, ALM is a dynamic and ongoing process that involves continuous monitoring,
analysis, and adjustment of the asset and liability mix to achieve the financial institu-
tion’s objectives, manage risks, and adapt to changing market conditions and regulatory
requirements. It is essential for ensuring the long-term viability and sustainability of
financial institutions in a competitive and evolving financial landscape.

Static hedging

What is static hedging ? Static hedging is a risk management technique used to
hedge or offset exposure to a particular risk using a predetermined set of financial
instruments or strategies. Unlike dynamic hedging, which involves continuously adjust-
ing hedge positions in response to changes in market conditions, static hedging involves
establishing a fixed hedge position and maintaining it over time without further adjust-
ments.

Static hedging process The process of static hedging includes several steps that are
described as follows.

Identification of Risk: The first step in static hedging is identifying the specific risk
or exposure that needs to be hedged. This could be a financial risk such as interest
rate risk, currency risk, commodity price risk, or equity risk.

Selection of hedge instruments: Once the risk is identified, the next step is to select
appropriate financial instruments or strategies to hedge the risk. These instru-
ments could include options, futures, forwards, swaps, or other derivative products
that are closely correlated with the underlying risk exposure.

Establishing hedge positions: Static hedging involves establishing hedge positions
using the selected instruments or strategies to offset the exposure to the identi-
fied risk. The hedge positions are typically established based on predetermined
criteria, such as the size of the exposure, the desired level of protection, and the
expected market conditions.

Maintaining hedge positions: Once the hedge positions are established, they are
maintained without further adjustments over time. Unlike dynamic hedging, there
is no active management of the hedge positions in response to changes in market
conditions. The hedge positions are held until the expiration or maturity of the
hedge instruments.

Monitoring and rebalancing: Although static hedging does not involve active ad-
justments to hedge positions, it still requires monitoring and periodic rebalancing
to ensure that the hedge remains effective and aligned with the underlying risk
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exposure. Rebalancing may be necessary if there are significant changes in market
conditions or the underlying risk profile.

Static hedging is often used when the risk exposure is relatively stable, and there is
a high degree of certainty about the future direction of the markets. It provides a
straightforward and cost-effective way to hedge against specific risks while minimizing
the need for ongoing management and monitoring. However, static hedging may not be
suitable for all situations, particularly when market conditions are volatile or uncertain.

Dynamic hedging via Greeks

What are the Greeks ? An option’s price can be influenced by a number of factors
that can either help or hurt traders depending on the positions they take. Successful
traders understand the factors that influence options pricing, which include the so-called
Greeks. They are a set of risk measures named after the Greek letters that denote
them, which indicate how sensitive an option is to time-value decay, changes in implied
volatility, and movements in the price of its underlying security. In other words, the
Greeks, are variables used to assess risk in the options market. Each Greek variable is a
result of an imperfect assumption or relationship of the option with another underlying
variable. Traders use different Greek values, such as delta, theta, and others, to assess
options risk and manage option portfolios.

Greeks encompass many variables. These include delta, theta, gamma, vega, and rho,
among others. Each one of these Greeks has a number associated with it, and that
number tells traders something about how the option moves or the risk associated with
that option. The primary Greeks (delta, vega, theta, gamma, and rho) are calculated
each as a first partial derivative of the options pricing model (for instance, the Black-
Scholes model).

The number or value associated with a Greek changes over time. Therefore, soph-
isticated options traders may calculate these values daily to assess any changes that
may affect their positions or outlook, or simply to check if their portfolio needs to be
rebalanced. Below are several of the main Greeks traders look at.

Delta: The delta represents the change in the value of an option in relation to the
movement in the market price of the underlying asset. More precisely, delta (∆) rep-
resents the rate of change between the option’s price and a $1 change in the underlying
asset’s price.

In other words, the price sensitivity of the option is relative to the underlying asset.
The delta of a call option has a range between 0 and 1, while the delta of a put option
has a range between 0 and -1. For example, assume an investor is long a call option
with a delta of 0.50. Therefore, if the underlying stock increases by $1, the option’s
price would theoretically increase by 50 cents.

What is delta-heding ?
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Delta hedging is an options trading strategy that aims to reduce, or hedge, the direc-
tional risk associated with price movements in the underlying asset. The approach uses
options to offset the risk to either a single other option holding or an entire portfolio
of holdings. The investor tries to reach a delta-neutral state and not have a directional
bias on the hedge.

The most basic type of delta hedging involves an investor who buys or sells options
and then offsets the delta risk by buying or selling an equivalent amount of stock or
exchange-traded fund (ETF) shares. Investors may want to offset their risk of moving
in the option or the underlying stock by using delta hedging strategies.

More advanced options strategies seek to trade volatility through the use of delta-neutral
trading strategies. Since delta hedging attempts to neutralize or reduce the extent of
the move in an option’s price relative to the asset’s price, it requires a constant rebal-
ancing of the hedge. Delta hedging is a complex strategy mainly used by institutional
traders and investment banks.

Let’s assume the options discussed have equities as their underlying security. Traders
want to know an option’s delta since it can tell them how much the value of the option
or the premium will rise or fall with a move in the stock’s price. The theoretical change
in premium for each basis point or $1 change in the price of the underlying is the delta,
while the relationship between the two movements is the hedge ratio.

The delta of a call option ranges between zero and one, while the delta of a put option
ranges between negative one and zero. The price of a put option with a delta of -0.50
is expected to rise by 50 cents if the underlying asset falls by $1. The opposite is true,
as well. For example, the price of a call option with a hedge ratio of 0.40 will rise 40%
of the stock-price move if the price of the underlying stock increases by $1.

Delta is dependent on if it is In-the-money or currently profitable, At-the-money at the
same price as the strike, or Out-of-the-money not currently profitable. A put option
with a delta of -0.50 is considered at-the-money meaning the strike price of the option
is equal to the underlying stock’s price. Conversely, a call option with a 0.50 delta has
a strike that’s equal to the stock’s price.

A less common usage of an option’s delta is the current probability that the option will
expire in-the-money. For instance, a 0.40 delta call option today has an implied 40%
probability of finishing in-the-money.

How reaching delta-neutral ?

An option position could be hedged with options exhibiting a delta that is opposite
to that of the current options holding to maintain a delta-neutral position. A delta-
neutral position is one in which the overall delta is zero, which minimizes the options’
price movements in relation to the underlying asset.
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For example, assume an investor holds one call option with a delta of 0.50, which
indicates the option is at-the-money and wishes to maintain a delta neutral position.
The investor could purchase an at-the-money put option with a delta of -0.50 to offset
the positive delta, which would make the position have a delta of zero.

What is the hedge-ratio ?

The hedge ratio compares the value of a position protected through the use of a hedge
with the size of the entire position itself. A hedge ratio may also be a comparison of the
value of futures contracts purchased or sold to the value of the cash commodity being
hedged.

Futures contracts are essentially investment vehicles that let the investor lock in a price
for a physical asset at some point in the future.

Imagine you are holding $10,000 in foreign equity, which exposes you to currency risk.
You could enter into a hedge to protect against losses in this position, which can be
constructed through a variety of positions to take an offsetting position to the foreign
equity investment.

If you hedge $5,000 worth of the equity with a currency position, your hedge ratio is 0.5
($5,000 / $10,000). This means that 50% of your foreign equity investment is sheltered
from currency risk.

Theta Theta (Θ) represents the rate of change between the option price and time,
or time sensitivity—sometimes known as an option’s time decay. Theta indicates the
amount an option’s price would decrease as the time to expiration decreases, all else
equal. For example, assume an investor is long an option with a theta of -0.50. The
option’s price would decrease by 50 cents every day that passes, all else being equal.

Theta increases when options are at-the-money, and decreases when options are in- and
out-of-the money. Options closer to expiration also have accelerating time decay. Long
calls and long puts will usually have negative theta; short calls and short puts will have
positive theta. By comparison, an instrument whose value is not eroded by time, such
as a stock, would have zero theta.

Gamma Gamma (Γ) represents the rate of change between an option’s delta and the
underlying asset’s price. This is called second-order (second-derivative) price sensitivity.
Gamma indicates the amount the delta would change given a $1 move in the underlying
security. For example, assume an investor is long on a call option on hypothetical stock
XYZ. The call option has a delta of 0.50 and a gamma of 0.10. Therefore, if stock XYZ
increases or decreases by $1, the call option’s delta would increase or decrease by 0.10.

Gamma is used to determine how stable an option’s delta is: Higher gamma values
indicate that delta could change dramatically in response to even small movements
in the underlying’s price. Gamma is higher for options that are at-the-money and
lower for options that are in- and out-of-the-money and accelerates in magnitude as
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expiration approaches. Gamma values are generally smaller the further away from the
date of expiration; options with longer expirations are less sensitive to delta changes. As
expiration approaches, gamma values are typically larger, as price changes have more
impact on gamma.

Options traders may opt to not only hedge delta but also gamma in order to be delta-
gamma neutral, meaning that as the underlying price moves, the delta will remain close
to zero.

Vega Vega (ν) represents the rate of change between an option’s value and the un-
derlying asset’s implied volatility. This is the option’s sensitivity to volatility. Vega
indicates the amount an option’s price changes given a 1% change in implied volatility.
For example, an option with a vega of 0.10 indicates the option’s value is expected to
change by 10 cents if the implied volatility changes by 1%.

Rho Rho (ρ) represents the rate of change between an option’s value and a 1% change
in the interest rate. This measures sensitivity to the interest rate. For example, assume
a call option has a rho of 0.05 and a price of $1.25. If interest rates rise by 1%, the value
of the call option would increase to $1.30, all else being equal. The opposite is true for
put options. Rho is greatest for at-the-money options with long times until expiration.

Minor greeks Some other Greeks, which aren’t discussed as often, are lambda,
epsilon, vomma, vera, zomma, and ultima. These Greeks are second- or third-
derivatives of the pricing model and affect things such as the change in delta with a
change in volatility and so on. They are increasingly used in options trading strategies,
as computer software can quickly compute and account for these complex and sometimes
esoteric risk factors.

Implied volatility (IV) Implied volatility is not a Greek, but it is related to them.
This value forecasts how volatile the stock underlying an option will be in the future.
Implied volatility is theoretical, meaning it shows what is expected but is not always
dependable. This value is usually reflected in the price of an option.

The term implied volatility refers to a metric that captures the market’s view of the
likelihood of future changes in a given security’s price. Investors can use implied volat-
ility to project future moves and supply and demand, and often employ it to price
options contracts. Implied volatility isn’t the same as historical volatility (also known
as realized volatility or statistical volatility), which measures past market changes and
their actual results.

Implied volatility is the market’s forecast of a likely movement in a security’s price. It
is a metric used by investors to estimate future fluctuations (volatility) of a security’s
price based on certain predictive factors. Implied volatility is denoted by the symbol σ
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(sigma). It can often be thought to be a proxy of market risk. It is commonly expressed
using percentages and standard deviations over a specified time horizon. When applied
to the stock market, implied volatility generally increases in bearish markets, when
investors believe equity prices will decline over time. IV decreases when the market
is bullish. This is when investors believe prices will rise over time. Bearish markets
are considered undesirable and riskier to most equity investors. IV doesn’t predict the
direction in which the price change will proceed. For example, high volatility means a
large price swing, but the price could swing upward (very high), downward (very low),
or fluctuate between the two directions. Low volatility means that the price likely won’t
make broad, unpredictable changes.

Implied volatility is one of the deciding factors in the pricing of options. Buying options
contracts allow the holder to buy or sell an asset at a specific price during a pre-
determined period. Implied volatility approximates the future value of the option, and
the option’s current value is also taken into consideration. Options with high implied
volatility have higher premiums and vice versa.

Stress testing

What is stress testing ? Stress testing is a computer simulation technique used
to test the resilience of institutions and investment portfolios against possible future
financial situations. Such testing is customarily used by the financial industry to help
gauge investment risk and the adequacy of assets and help evaluate internal processes
and controls. In recent years, regulators have also required financial institutions to carry
out stress tests to ensure their capital holdings and other assets are adequate.

Companies that manage assets and investments commonly use stress testing to determ-
ine portfolio risk, then set in place any hedging strategies necessary to mitigate against
possible losses. Specifically, their portfolio managers use internal proprietary stress-
testing programs to evaluate how well the assets they manage might weather certain
market occurrences and external events.

Asset and liability matching stress tests are widely used, too, by companies that want to
ensure they have the proper internal controls and procedures in place. Retirement and
insurance portfolios are also frequently stress-tested to ensure that cash flow, payout
levels, and other measures are well aligned.

Regulatory stress-testing: Following the 2008 financial crisis, regulatory reporting
for the financial industry—specifically for banks—was significantly expanded, focusing
on stress testing and capital adequacy, mainly due to the 2010 Dodd-Frank Act.

Remark: The Dodd-Frank Wall Street Reform and Consumer Protection
Act is legislation that was passed by the U.S. Congress in response to finan-
cial industry behavior that led to the financial crisis of 2007–2008. It sought
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to make the U.S. financial system safer for consumers and taxpayers.

Named for sponsors Sen. Christopher J. Dodd (D-Conn.) and Rep. Barney
Frank (D-Mass.), the act contains numerous provisions, spelled out over 848
pages, that were to be implemented over a period of several years

Following the 2008 financial crisis, regulatory reporting for the financial industry—specifically
for banks—was significantly expanded, focusing on stress testing and capital adequacy,
mainly due to the 2010 Dodd-Frank Act.

Beginning in 2011, new regulations in the United States required the submission of
Comprehensive Capital Analysis and Review (CCAR) documentation by the banking
industry. These regulations require banks to report on their internal procedures for
managing capital and carry out various stress-test scenarios.

Remark: “Too big to fail” describes a business or business sector so ingrained
in a financial system or economy that its failure would be disastrous. The
government will consider bailing out a corporate entity or a market sector,
such as Wall Street banks or U.S. carmakers, to prevent economic disaster.

In addition to CCAR reporting, banks in the United States deemed too big to fail by the
Financial Stability Board—typically those with more than $50 billion in assets—must
provide stress-test reporting on planning for a bankruptcy scenario. In the government’s
most recent reporting review of these banks in 2018, 22 international banks and eight
based in the United States were designated as too-big-to-fail.

Currently, BASEL III is also in effect for global banks. Much like the U.S. requirements,
this international regulation requires documentation of banks’ capital levels and the
administration of stress tests for various crisis scenarios.

Remark: Stress testing involves running computer simulations to identify
hidden vulnerabilities in institutions and investment portfolios to evaluate
how well they might weather adverse events and market conditions.

Different types of stress-testing: Stress testing involves running simulations to
identify hidden vulnerabilities. The literature about business strategy and corporate
governance identifies several approaches to these exercises. Among the most popular
are stylized scenarios, hypotheticals, and historical scenarios.

Historical stress-testing

In a historical scenario, the business—or asset class, portfolio, or individual invest-
ment—is run through a simulation based on a previous crisis. Examples of historical
crises include the stock market crash of October 1987, the Asian crisis of 1997, the tech
bubble that burst in 1999-2000, the subprime crisis in 2008, or even the COVID-19
pandemic in 2020.
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Hypotetical stress-testing

A hypothetical stress test is generally more specific, often focusing on how a particular
company might weather a particular crisis. For example, a firm in California might
stress-test against a hypothetical earthquake or an oil company might do so against the
outbreak of war in the Middle East.

Stylized scenarios are a little more scientific in the sense that only one or a few test
variables are adjusted at once. For example, the stress test might involve the Dow Jones
index losing 10% of its value in a week.

Simulated stress-testing

As for the methodology for stress tests, Monte Carlo simulation is one of the most widely
known. This type of stress testing can be used for modeling probabilities of various
outcomes given specific variables. Factors considered in the Monte Carlo simulation,
for example, often include various economic variables.

Companies can also turn to professionally managed risk management and software pro-
viders for various types of stress tests. Moody’s Analytics is one example of an out-
sourced stress-testing program that can be used to evaluate risk in asset portfolios.

Remarks:

(i) A Monte Carlo simulation is used to model the probability of different
outcomes in a process that cannot easily be predicted due to the intervention
of random variables. It is a technique used to understand the impact of risk
and uncertainty.

A Monte Carlo simulation is used to tackle a range of problems in many
fields, including investing, business, physics, and engineering. It is also
referred to as a multiple probability simulation.

(ii) Moody’s Analytics is a subsidiary of Moody’s Corporation that offers
tools, solutions, and best practices for measuring and managing risk. It
provides data analysis and financial intelligence products to help clients
navigate and respond to an evolving marketplace.

Advantages and Drawbacks of Stress Testing:

Advantages: Stress tests are forward-looking analytical tools that help financial in-
stitutions and banks better understand their financial position and risks. They
help managers identify what measures to take if certain events arise and what
they should do to mitigate risks. As a result, they are better able to form action
plans to thwart threats and prevent failure. For investment managers, they are
better able to assess how well managed assets might perform during economic
downturns.



1.1. HISTORY OF FINANCE 59

Drawbacks: To perform stress tests, financial institutions need to create the framework
and processes for which the tests can be performed. This restructuring is complex
and is often associated with costly mistakes. For example, it’s possible that the
test scenario does not represent the types of risks a bank may face. This may be
due to insufficient data or the test designer’s inability to create a relevant test.
In the end, the results of the test may lead to the creation of plans for events not
likely to occur. This misrepresentation can cause institutions to ignore the risks
that are possible.

Lastly, banks with unfavorable results may be barred from paying dividends to
their customers and shareholders, as well as may be penalized.

Conterparty risk management

What is counterparty risk ? Counterparty risk is the likelihood or probability
that one of those involved in a transaction might default on its contractual obligation.
Counterparty risk can exist in credit, investment, and trading transactions.

The numerical value of a borrower’s credit score reflects the level of counterparty risk
to the lender or creditor. Investors must consider the company that’s issuing the bond,
stock, or insurance policy to assess whether there’s default or counterparty risk.

Varying degrees of counterparty risk exist in all financial transactions. Counterparty
risk is also known as default risk. Default risk is the chance that companies or individu-
als will be unable to make the required payments on their debt obligations. Lenders and
investors are exposed to default risk in virtually all forms of credit extensions. Coun-
terparty risk is a risk that both parties should consider when evaluating a contract.

Management of counterparty risk

Due diligence and credit analysis: Conduct thorough due diligence and credit ana-
lysis on counterparties before entering into transactions or agreements with them.
Evaluate their financial strength, creditworthiness, reputation, and track record
to assess the likelihood of default.

In retail and commercial financial transactions, credit reports are often used by
creditors to determine the counterparty’s credit risk. Credit scores of borrowers
are analyzed and monitored to gauge the level of risk to the creditor. A credit score
is a numerical value of an individual’s or a company’s creditworthiness, which is
based on many variables.

A person’s credit score ranges from 300 to 850, and the higher the score, the more
financially trustworthy a person is considered to be to the creditor.

Remark: Numerical values of credit scores are listed as follows: Excel-
lent: 750 and above, Good: 700 to 749, Fair: 650 to 699, Poor: 550 to
649, Bad: 550 and below.
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Risk premium: If one party has a higher risk of default, a premium is usually attached
to the transaction to compensate the other party. The premium added due to
counterparty risk is called a risk premium.

Diversification: Diversify exposure to counterparties by spreading investments or
transactions across multiple counterparties. By diversifying counterparty risk,
you reduce the impact of a single counterparty defaulting on your portfolio.

Collateral and security arrangements: Require counterparties to provide collat-
eral or security for transactions to mitigate counterparty risk. Collateral can
act as a buffer against potential losses in the event of default and provide a source
of recovery.

Netting and offset arrangements: Use netting and offset arrangements to consol-
idate and offset obligations with the same counterparty. Netting allows you to
reduce the overall exposure by offsetting receivables against payables or offsetting
gains against losses.

Contractual protections: Include contractual provisions and protections in agree-
ments with counterparties to mitigate counterparty risk. These provisions may
include termination clauses, default remedies, cross-default provisions, and indem-
nification clauses.

Credit Derivatives and Insurance: Hedge or transfer counterparty risk through the
use of credit derivatives such as credit default swaps (CDS) or by purchasing
insurance policies against counterparty default. These instruments can provide
protection and enhance risk management capabilities.

Continuous Monitoring and Surveillance: Implement robust monitoring and sur-
veillance processes to monitor the financial health and performance of counter-
parties on an ongoing basis. Regularly review counterparties’ financial statements,
credit ratings, market conditions, and other relevant factors to identify potential
risks and take timely action.

Stress Testing and Scenario Analysis: Conduct stress testing and scenario ana-
lysis to assess the potential impact of counterparty default under adverse market
conditions. Identify vulnerabilities and develop contingency plans to mitigate the
impact of counterparty risk events.

1.1.6 Risk measures

History of the risk measures

The history of risk measures in finance reflects the ongoing quest to develop tools and
techniques for quantifying, managing, and understanding risk in financial markets. As
financial markets evolve and become increasingly complex, new risk measures continue
to be developed to address emerging challenges and opportunities.
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Variance: One of the earliest and most fundamental risk measures in finance is vari-
ance, which measures the dispersion of returns around the mean or expected return of
an investment. Variance was introduced by Harry Markowitz in his seminal work on
modern portfolio theory (MPT) in the 1950s. Markowitz demonstrated how variance
could be used to quantify and manage portfolio risk by diversifying investments across
assets with different risk-return profiles. See for instance (Fabozzi et al., 2002), (Francis
and Kim, 2013).

Standard deviation: Standard deviation is another measure of risk that is closely
related to variance. It measures the volatility or variability of returns and is the square
root of variance. Standard deviation provides a more intuitive measure of risk than
variance, as it represents the average deviation of returns from the mean.

Beta: Beta is a measure of systematic risk or market risk, which reflects the sensitivity
of an asset’s returns to changes in the overall market or a benchmark index. Beta was
popularized by William Sharpe in the capital asset pricing model (CAPM) in the 1960s.
Assets with betas greater than 1 are considered more volatile than the market, while
those with betas less than 1 are considered less volatile. A nice reference is (Sharpe,
1977).

Value-at-Risk (VaR): VaR is a measure of the maximum potential loss that a port-
folio or investment may incur over a specified time horizon and confidence level. VaR
gained popularity in the 1990s as a risk management tool, particularly in the banking
and financial industry. VaR provides a single, summary statistic of risk that is easy to
interpret and communicate but has limitations, particularly during periods of extreme
market volatility.

Conditional Value-at-Risk (CVaR) or Expected-Shortfall (ES): CVaR is an
extension of VaR that measures the average loss beyond VaR in the tail of the distri-
bution of losses. CVaR provides additional information about the severity of potential
losses and is often used in conjunction with VaR for risk assessment and management.

Tail Risk Measures: Tail risk measures, such as skewness and kurtosis, capture the
asymmetry and fatness of the tails of the distribution of returns. These measures are
important for capturing extreme events or tail risk, which may not be adequately cap-
tured by traditional risk measures like VaR. See for instance (Groeneveld and Meeden,
1984) for more details about skewness and kurtosis.

Skewness

We say that a distribution is symmetric, if it is equally balanced on both sides of the
mean. This means that the frequency of observations on both sides is equal.
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However, if the frequency of occurrence of observations is more in a particular direction
then the distribution is asymmetric. This asymmetry of the distribution on either side
of the mean is called skewness.

A symmetric distribution has no tail on either side. Such a distribution is not skewed
in any direction. This is the same as a normal distribution i.e. a distribution which has
zero skewness.

Suppose we are looking at a distribution of returns with a mean return of 0. If there is a
large frequency of occurrence of negative returns compared to positive returns then the
distribution displays a fat left tail or negative skewness. In case the frequency of positive
returns exceeds that of negative returns then the distribution displays a fat right tail
or positive skewness. Skewness is a measure of degree of asymmetry of a distribution.
It measures the degree to which a distribution leans towards the left or the right side.

The sample skewness is given by the following formula:

Sample Skewness =
1

nσ3n

n∑
i=1

(Xi − X̄n)
3. (1.3)

Kurtosis

Kurtosis is a measure of the "peakedness" of the distribution. Both skewness and
kurtosis are measured relative to a normal distribution. Just like a distribution can
be negatively or positively skewed, it can be Leptokurtic or Platykurtic depending on
whether the peakedness is more than or less than the normal distribution. Leptok-
urtic: The distribution is more peaked than a normal distribution. Platykurtic: The
distribution is less peaked than a normal distribution.

Risk-Adjusted Return Measures: Risk-adjusted return measures, such as the
Sharpe ratio, Treynor ratio, and information ratio, assess the return generated by an
investment relative to the risk taken. These measures provide insights into the effi-
ciency of portfolio management and help investors evaluate investment opportunities
on a risk-adjusted basis.

The sample kurtosis is given by the following formula:

Sample Kurtosis =
1

nσ4n

n∑
i=1

(Xi − X̄n)
4. (1.4)

Sharpe Ratio

The Sharpe ratio compares the return of an investment with its risk. It’s a mathematical
expression of the insight that excess returns over a period of time may signify more
volatility and risk, rather than investing skill. The Sharpe ratio’s numerator is the
difference over time between realized, or expected, returns and a benchmark such as
the risk-free rate of return or the performance of a particular investment category. Its
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denominator is the standard deviation of returns over the same period of time, a measure
of volatility and risk.

Mathematically, the Sharpe-Ratio is defined as follows:

Sharpe Ratio =
Rp −Rf

σp
(1.5)

where Rp is the portfolio’s return, Rf is the risk-free rate, and σp is the standard devi-
ation of the portfolio’s excess returns.

The Sharpe ratio is one of the most widely used methods for measuring risk-adjusted
relative returns. It compares a fund’s historical or projected returns relative to an in-
vestment benchmark with the historical or expected variability of such returns. The
risk-free rate was initially used in the formula to denote an investor’s hypothetical min-
imal borrowing costs. More generally, it represents the risk premium of an investment
versus a safe asset such as a Treasury bill or bond. The ratio is useful in determining
to what degree excess historical returns were accompanied by excess volatility. While
excess returns are measured in comparison with an investing benchmark, the standard
deviation formula gauges volatility based on the variance of returns from their mean.

Economist William F. Sharpe proposed the Sharpe ratio in 1966 as an outgrowth of
his work on the capital asset pricing model (CAPM), calling it the reward-to-variability
ratio. Sharpe won the Nobel Prize in economics for his work on CAPM in 1990. For
more details, see (Sharpe, 1998).

Remark: Generally, the higher the Sharpe ratio, the more attractive the
risk-adjusted return.

Sortino Ratio

The standard deviation in the Sharpe ratio’s formula assumes that price movements in
either direction are equally risky. In fact, the risk of an abnormally low return is very
different from the possibility of an abnormally high one for most investors and analysts.
A variation of the Sharpe called the Sortino ratio ignores the above-average returns to
focus solely on downside deviation as a better proxy for the risk of a fund of a portfolio.
The standard deviation in the denominator of a Sortino ratio measures the variance
of negative returns or those below a chosen benchmark relative to the average of such
returns. See (Rollinger and Hoffman, 2013) for more details.

Treynor Ratio

The Treynor ratio, also known as the reward-to-volatility ratio, is a performance metric
for determining how much excess return was generated for each unit of risk taken on by
a portfolio. Excess return in this sense refers to the return earned above the return that
could have been earned in a risk-free investment. Although there is no true risk-free
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investment, treasury bills are often used to represent the risk-free return in the Treynor
ratio. Risk in the Treynor ratio refers to systematic risk as measured by a portfolio’s
beta. Beta measures the tendency of a portfolio’s return to change in response to
changes in return for the overall market.

The Treynor ratio was developed by Jack Treynor, an American economist who was one
of the inventors of the Capital Asset Pricing Model (CAPM). See (Hübner, 2005).

Mathematically, the Treynor ratio is dedined by:

Treynor Ratio =
Rp −Rf

βp
(1.6)

where Rp is the portfolio’s return, Rf is the risk-free rate, and βp is the beta of the
portfolio.

In essence, the Treynor ratio is a risk-adjusted measurement of return based on sys-
tematic risk. It indicates how much return an investment, such as a portfolio of stocks,
a mutual fund, or exchange-traded fund, earned for the amount of risk the investment
assumed.

Remark: If a portfolio has a negative beta, however, the ratio result is
not meaningful. A higher ratio result is more desirable and means that a
given portfolio is likely a more suitable investment. Since the Treynor ratio
is based on historical data, however, it’s important to note this does not
necessarily indicate future performance, and one ratio should not be the
only factor relied upon for investing decisions.

Ultimately, the Treynor ratio attempts to measure how successful an investment is in
providing compensation to investors for taking on investment risk. The Treynor ratio
is reliant upon a portfolio’s beta—that is, the sensitivity of the portfolio’s returns to
movements in the market—to judge risk.

The premise behind this ratio is that investors must be compensated for the risk inherent
to the portfolio, because diversification will not remove it.

Remark:

(i) The Treynor ratio shares similarities with the Sharpe ratio, and both
measure the risk and return of a portfolio. The difference between the two
metrics is that the Treynor ratio utilizes a portfolio beta, or systematic
risk, to measure volatility instead of adjusting portfolio returns using the
portfolio’s standard deviation as done with the Sharpe ratio.

(ii) A main weakness of the Treynor ratio is its backward-looking nature.
Investments are likely to perform and behave differently in the future than
they did in the past. The accuracy of the Treynor ratio is highly dependent
on the use of appropriate benchmarks to measure beta. Additionally, there
are no dimensions upon which to rank the Treynor ratio. When comparing
similar investments, the higher Treynor ratio is better, all else equal, but
there is no definition of how much better it is than the other investments.
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Information ratio

The information ratio (IR) is a measurement of portfolio returns beyond the returns
of a benchmark, usually an index, compared to the volatility of those returns. The
benchmark used is typically an index that represents the market or a particular sector
or industry. The IR is often used as a measure of a portfolio manager’s level of skill
and ability to generate excess returns relative to a benchmark, but it also attempts
to identify the consistency of the performance by incorporating a tracking error, or
standard deviation component into the calculation. The tracking error identifies the
level of consistency in which a portfolio "tracks" the performance of an index. A low
tracking error means the portfolio is beating the index consistently over time. A high
tracking error means that the portfolio returns are more volatile over time and not as
consistent in exceeding the benchmark.

Although compared funds may be different in nature, the IR standardizes the returns
by dividing the difference in their performances, known as their expected active return,
by their tracking error. Mathematically, the Information Ratio is given by:

IR =
Rp −RB

eT
(1.7)

where Rp is the portfolio’s return, RB is the Benchmark return, and eT is the tracking
error.

The information ratio identifies how much a fund has exceeded a benchmark. Higher
information ratios indicate a desired level of consistency, whereas low information ratios
indicate the opposite. Many investors use the information ratio when selecting exchange-
traded funds (ETFs) or mutual funds based on their preferred risk profiles. Of course,
past performance is not an indicator of future results, but the IR is used to determine
whether a portfolio is exceeding a benchmark index fund.

The tracking error is often calculated by using the standard deviation of the difference
in returns between a portfolio and the benchmark index. Standard deviation helps to
measure the level of risk or volatility associated with an investment. A high standard
deviation means there is more volatility and less consistency or predictability. The in-
formation ratio helps to determine how much and how often a portfolio trades in excess
of its benchmark but factors in the risk that comes with achieving the excess returns.

Like the information ratio, the Sharpe ratio is an indicator of risk-adjusted returns.
However, the Sharpe ratio is calculated as the difference between an asset’s return and
the risk-free rate of return divided by the standard deviation of the asset’s returns.
The risk-free rate of return would be consistent with the rate of return from a risk-free
investment like a U.S. Treasury security. If a particular Treasury security paid a 3%
annual yield, the Sharpe ratio would employ 3% as the risk-free rate for comparative
purposes.

The IR, on the other hand, measures the risk-adjusted return in relation to a benchmark,
such as the Standard & Poor’s 500 Index (S&P 500), instead of a risk-free asset. The
IR also measures the consistency of an investment’s performance. However, the Sharpe
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ratio measures how much an investment portfolio outperformed the risk-free rate of
return on a risk-adjusted basis.

Both financial metrics have their usefulness but the index comparison makes the IR
more appealing to investors since index funds are typically the benchmark used in
comparing investment performance and the market return is usually higher than the
risk-free return.

Remark: comparing multiple funds against a benchmark is difficult to inter-
pret because the funds might have different securities, asset allocations for
each sector, and entry points in their investments. As with any single finan-
cial ratio, it’s best to look at additional types of ratios and other financial
metrics to make a more comprehensive and informed investment decision.

See (Gupta et al., 1999) for more details.

Mathematical definition of a risk measure

A coherent risk measure is a function ρ that satisfies properties of monotonicity, sub-
additivity, homogeneity, and translation invariance.

Consider a random outcome X viewed as an element of a linear space L of measurable
functions, defined on an appropriate probability space. A functional

ρ : L → R ∪ {+∞} (1.8)

is said to be coherent risk measure for L if it satisfies the following properties.

Normalized:

ρ(0) = 0. (1.9)

That is, the risk of holding no assets is zero.

Monotonicity:

If Z1, Z2 ∈ L and Z1 ≤ Z2 a.s. then ρ(Z1) ≥ ρ(Z2). (1.10)

That is, if portfolio Z2 always has better values than portfolio Z1 under almost all
scenarios then the risk of Z2 should be less than the risk of Z1. E.g. If Z1 is an in
the money call option (or otherwise) on a stock, and Z2 is also an in the money call
option with a lower strike price. In financial risk management, monotonicity implies a
portfolio with greater future returns has less risk.
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Sub-additivity:

If Z1, Z2 ∈ L, then ρ(Z1 + Z2) ≤ ρ(Z1) + ρ(Z2). (1.11)

Indeed, the risk of two portfolios together cannot get any worse than adding the two
risks separately : this is the diversification principle. In financial risk management, sub-
additivity implies diversification is beneficial. The sub-additivity principle is sometimes
also seen as problematic.

Positive Homogeneity:

If α ≥ 0 and Z ∈ L, then ρ(αZ) = αρ(Z). (1.12)

Loosely speaking, if you double your portfolio then you double your risk. In financial
risk management, positive homogeneity implies the risk of a position is proportional to
its size.

Translation Invariance: If A is a deterministic portfolio with guaranteed return a

and Z ∈ L then :
ρ(Z +A) = ρ(Z)− a. (1.13)

The portfolio A is just adding cash a to your portfolio Z. In particular, if a = ρ(Z)

then ρ(Z + A) = 0. In financial risk management, translation invariance implies that
the addition of a sure amount of capital reduces the risk by the same amount.

Convex risk measures: The notion of coherence has been subsequently relaxed.
Indeed, the notions of Sub-additivity and Positive Homogeneity can be replaced by the
notion of convexity:

If Z1, Z2 ∈ L and λ ∈ [0, 1] then ρ(λZ1+(1−λ)Z2)) ≤ λρ(Z1)+(1−λ)ρ(Z2). (1.14)

Nice references about coherent risk measures are (Delbaen et al., 1998), (Artzner et al.,
1999), (Artzner, 1997).

Value-at-Risk

A wide literature has been developed over the years. Among the numerous references, we
can find (Duffie and Pan, 1997), (Linsmeier and Pearson, 2000), (Jorion, 1996), (Best,
2000), (Alexander, 2009), (Jorion, 2007), (Dowd, 1998), (Penza and Bansal, 2001).

History: The problem of risk measurement is an old one in statistics, economics and
finance. Financial risk management has been a concern of regulators and financial exec-
utives for a long time as well. Retrospective analysis has found some VaR-like concepts
in this history. But VaR did not emerge as a distinct concept until the late 1980s. The
triggering event was the stock market crash of 1987. This was the first major financial
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crisis in which a lot of academically-trained quants were in high enough positions to
worry about firm-wide survival.

The crash was so unlikely given standard statistical models, that it called the entire
basis of quant finance into question. A reconsideration of history led some quants to
decide there were recurring crises, about one or two per decade, that overwhelmed
the statistical assumptions embedded in models used for trading, investment manage-
ment and derivative pricing. These affected many markets at once, including ones that
were usually not correlated, and seldom had discernible economic cause or warning (al-
though after-the-fact explanations were plentiful). Much later, they were named "Black
Swans" by Nassim Taleb and the concept extended far beyond finance. If these events
were included in quantitative analysis they dominated results and led to strategies that
did not work day to day. If these events were excluded, the profits made in between
"Black Swans" could be much smaller than the losses suffered in the crisis. Institutions
could fail as a result.

VaR was developed as a systematic way to segregate extreme events, which are stud-
ied qualitatively over long-term history and broad market events, from everyday price
movements, which are studied quantitatively using short-term data in specific markets.
It was hoped that "Black Swans" would be preceded by increases in estimated VaR
or increased frequency of VaR breaks, in at least some markets. The extent to which
this has proven to be true is controversial. Abnormal markets and trading were ex-
cluded from the VaR estimate in order to make it observable. It is not always possible
to define loss if, for example, markets are closed as after 9/11, or severely illiquid, as
happened several times in 2008. Losses can also be hard to define if the risk-bearing
institution fails or breaks up. A measure that depends on traders taking certain actions,
and avoiding other actions, can lead to self reference. This is risk management VaR.
It was well established in quantitative trading groups at several financial institutions,
notably Bankers Trust, before 1990, although neither the name nor the definition had
been standardized. There was no effort to aggregate VaRs across trading desks. This is
risk management VaR. It was well established in quantitative trading groups at several
financial institutions, notably Bankers Trust, before 1990, although neither the name
nor the definition had been standardized. There was no effort to aggregate VaRs across
trading desks. The financial events of the early 1990s found many firms in trouble
because the same underlying bet had been made at many places in the firm, in non-
obvious ways. Since many trading desks already computed risk management VaR, and
it was the only common risk measure that could be both defined for all businesses and
aggregated without strong assumptions, it was the natural choice for reporting firmwide
risk. J. P. Morgan CEO Dennis Weatherstone famously called for a "4:15 report" that
combined all firm risk on one page, available within 15 minutes of the market close.
Risk measurement VaR was developed for this purpose. Development was most
extensive at J. P. Morgan with its system RiskMetrics, which published the
methodology and gave free access to estimates of the necessary underlying parameters
in 1994. This was the first time VaR had been exposed beyond a relatively small group
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of quants. Two years later, the methodology was spun off into an independent for-profit
business now part of RiskMetrics Group (now part of MSCI). In 1997, the U.S. Securit-
ies and Exchange Commission ruled that public corporations must disclose quantitative
information about their derivatives activity. Major banks and dealers chose to imple-
ment the rule by including VaR information in the notes to their financial statements.
Worldwide adoption of the Basel II Accord, that began in 1999, gave further impetus
to the use of VaR. VaR is the preferred measure of market risk, and concepts
similar to VaR are used in other parts of the accord.

What is VaR ? VaR modeling determines the potential for loss in the entity being
assessed and the probability that the defined loss will occur. One measures VaR by
assessing the amount of potential loss, the probability of occurrence for the amount of
loss, and the time frame.

For example, a financial firm may determine an asset has a 3% one-month VaR of 2%,
representing a 3% chance of the asset declining in value by 2% during the one-month
time frame. The conversion of the 3% chance of occurrence to a daily ratio places the
odds of a 2% loss at one day per month.

Using a firm-wide VaR assessment allows for the determination of the cumulative risks
from aggregated positions held by different trading desks and departments within the
institution. Using the data provided by VaR modeling, financial institutions can de-
termine whether they have sufficient capital reserves in place to cover losses or whether
higher-than-acceptable risks require them to reduce concentrated holdings.

A mathematical definition of VaR is provided as follows. Let X be a random variable
representing the loss, as a positive quantity, i.e. we take the convention that big losses
correspond to large positive numbers, of a portfolio at some future time, with as cumu-
lative distribution function FX(x) = P(X ≤ x);∀x ∈ R. Let α ∈ (0, 1) be the risk level.
Then, the Value-at-Risk at the risk level α is defined by:

VaRα(X) := inf{x ∈ R, FX(x) ≥ α}. (1.15)

Different VaR methodologies There are three main ways of computing VaR: the
historical method, the variance-covariance method, and the Monte Carlo method.

Historical VaR

The historical method looks at one’s prior returns history, orders them from worst losses
to greatest gains and takes the α-empirical quantile—following from the premise that
past returns experience will inform future outcomes.

Variance-covariance method
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Rather than assuming that the past will inform the future, the variance-covariance
method, also called the parametric method, instead assumes that gains and losses are
normally distributed. This way, potential losses can be framed in terms of standard
deviation events from the mean.

The variance-covariance method works best for risk measurement in which the distri-
butions are known and reliably estimated. It is less reliable if the sample size is very
small.

Monte-Carlo method

A third approach to VaR is to conduct a Monte Carlo simulation. This technique
uses computational models to simulate projected returns over hundreds or thousands
of possible iterations. Then, it takes the chances that a loss will occur—say, 5% of the
time—and reveals the impact.

The Monte Carlo method can be used with a wide range of risk measurement problems
and relies upon the assumption that the probability distribution for risk factors is known.

VaR advantages: First, VaR provides a single, summary statistic of risk that is
easy to calculate, understand, and communicate. It expresses the potential loss
of a portfolio in a single number, typically in currency units or as a percentage of the
portfolio’s value, making it straightforward for investors, managers, and regulators to
interpret.

Moreover, VaR quantifies the potential loss of a portfolio over a specified time ho-
rizon and confidence level, providing a quantitative measure of risk exposure.
This allows investors and managers to compare different portfolios, assess risk-adjusted
performance, and make informed decisions about risk management and asset allocation.

Furthermore, VaR calculations can be standardized across different portfolios, asset
classes, and time horizons, allowing for consistent risk assessment and comparison.
Standardization facilitates communication and coordination among stakehold-
ers and promotes best practices in risk management.

Also, VaR can be used as a basis for scenario analysis and stress testing to
assess the impact of adverse market conditions or extreme events on portfolio risk. By
varying input parameters such as market conditions, correlations, and volatility, VaR
can help investors and managers evaluate the robustness of their portfolios and identify
potential vulnerabilities.

And, VaR serves as a key component of a broader risk management framework, comple-
menting other risk measures and techniques such as stress testing, sensitivity analysis,
and risk-adjusted performance metrics. VaR provides a concise summary of risk
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exposure that can be integrated into decision-making processes and risk mitigation
strategies.

While VaR may not fully capture the benefits of diversification, it still provides insights
into the risk profile of diversified portfolios. VaR allows investors to assess the potential
impact of diversification on risk reduction and portfolio efficiency, helping them optim-
ize asset allocation and risk-return trade-offs.

VaR presents considerable advantages with respect to Greeks. In financial risk
management, VaR has certainly represented a significative step forward with respect
to more traditional measures mostly based on sensitivities to market variables (the
"Greeks"). The strength of VaR relies in the two following points. On the one hand,
VaR applies to any financial instrument and it is expressed in the same unit of measure,
namely in "lost money". Greeks on the contrary are measure created ad hoc for specific
instruments or risk variables and are expressed in different units. The comparison of
relative riskiness between, say, an equity portfolio and a Forex portfolio is not easy with
Greeks, while it is a straight comparison knowing their VaR’s. On the other hand, VaR
includes an estimate of future events and allows one to convert in a single number the
risk of a portfolio. Greeks on the contrary essentially amount to "what if" variables.
Saying for instance that one loses 1 Euro if interest rates raise of 1 Bps, one still wonders
"how likely it is" that interest rates do indeed raise of 1 Bps. VaR on the contrary does
exactly this job.

For all theses reasons, VaR is widely used for regulatory compliance purposes in financial
institutions, including banks, investment firms, and insurance companies. Regulators
often require financial institutions to calculate and report VaR as part of their risk
management framework to ensure compliance with regulatory requirements and capital
adequacy standards.

VaR limitations: While Value at Risk (VaR) is a widely used measure of financial
risk, it has several limitations and weaknesses that should be considered when using it
for risk management and decision-making purposes.

First, Value at Risk (VaR) is not considered as a coherent risk measure because it fails
to satisfy the sub-additivity property, which is a key criterion for coherence. This means
that the VaR of a portfolio may be higher than the sum of the VaRs of its individual
components. In other words, VaR does not adequately capture the diversification bene-
fits of combining assets in a portfolio. The consequences of this lack of sub-additivity
are the following. VaR may overestimate the risk of a diversified portfolio by
ignoring the risk-reducing effects of diversification. As a result, VaR may provide a con-
servative estimate of risk, leading to inefficient risk management decisions. Since VaR
does not fully capture the benefits of diversification, it may incentivize investors to
take on more risk than necessary, especially in complex or highly correlated port-
folios where diversification is essential. Investors may misinterpret VaR as providing a
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complete and accurate measure of risk, leading to misunderstandings and misjudg-
ments about the true risk exposure of their portfolios.

Also, VaR is unable to capture tail risk. VaR focuses on the most likely outcomes
within a specified confidence level and may not adequately capture extreme or tail risk
events that fall outside the confidence interval. Extreme events, such as market crashes
or financial crises, can lead to losses beyond the estimated VaR.

Moreover, VaR is of static nature i.e. VaR provides a single-point estimate of risk
at a specific confidence level over a given time horizon and does not capture changes in
risk over time or in response to market conditions. VaR is static and does not account
for dynamic changes in portfolio composition or risk factors.

And, VaR calculations are sensitive to model assumptions, including the choice of
time horizon, confidence level, and calculation methodology. Different VaR models may
yield different results, leading to inconsistencies and uncertainties in risk assessment.

For all theses reasons, Regulators and policymakers may be hesitant to rely solely on
VaR as a risk measure for regulatory compliance purposes due to its lack of coherence.
Additional risk measures, such as expected shortfall or coherent risk measures, may be
required to complement VaR for regulatory purposes.

To address the shortcomings of the VaR, another risk measure, called Expected-Shortfall
(ES), is developed.

Expected-Shortfall

What is Expected-Shortfall (ES) ? ES also known as Conditional Value at Risk
(CVaR), is a risk assessment measure that quantifies the amount of tail risk an invest-
ment portfolio has. ES is derived by taking a weighted average of the “extreme” losses
in the tail of the distribution of possible returns, beyond the value at risk (VaR) cutoff
point. ES is used in portfolio optimization for effective risk management. Generally
speaking, if an investment has shown stability over time, then the value at risk may be
sufficient for risk management in a portfolio containing that investment. However, the
less stable the investment, the greater the chance that VaR will not give a full picture
of the risks, as it is indifferent to anything beyond its own threshold.

Mathematical definition of ES Let X be a random variable representing the loss1

of a portfolio at some future time, with as cumulative distribution function FX(x) =

P(X ≤ x);∀x ∈ R. Let α ∈ (0, 1) be the risk level. Then, based on (Tasche, 2002b,

1as a positive quantity, i.e. we take the convention that big losses correspond to large positive
numbers
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Prop 3.4, Eq 3.3), the Expected-Shortfall is defined as:

ESα(X) =
1

1− α

∫ 1

α
VaRβ(X)dβ. (1.16)

where VaRβ is the Value-at-Risk given by:

VaRβ(X) := inf{x ∈ R, FX(x) ≥ β} (1.17)

as defined in (Tasche, 2002b, Def 2.1, Eq 2.1a). When the distribution is continuous,
an equivalent definition can be given (see (Sarykalin et al., 2008, Def.2, p.273)) by:

ESα(X) = E[X|X ≥ VaRα(X)]. (1.18)

Advantages of ES: First, ES guarantees a Better Tail Risk Measurement. One
of the primary advantages of Expected Shortfall is its ability to provide a more accurate
representation of tail risk. Unlike VAR, which only considers a specific quantile of the
distribution (e.g., the 1% or 5% worst outcomes), ES accounts for the entire tail of the
distribution. It takes into consideration the severity of losses beyond the chosen per-
centile. This means that ES can provide a more robust assessment of potential losses,
especially in situations with extreme market events.

Moreover, unlike VaR, ES is a coherent Risk Measure. Coherence is a mathemat-
ical property that ensures that combining risk measures of individual assets leads to a
meaningful measure for the entire portfolio. This property makes ES a more suitable
choice for diversified portfolios. In contrast, aggregating VAR values may not accurately
reflect the true risk of the portfolio.

And, ES enables mitigation of underestimation. ES addresses the key limitation
of VAR, which is its tendency to underestimate the risk of rare, extreme events. VAR
assumes that asset returns follow a normal distribution, which often doesn’t hold in
reality, particularly during turbulent times. ES, on the other hand, doesn’t rely on this
assumption and is more robust in capturing the potential losses during extreme events.

Finally, ES insures transparency and regulation. ES has gained recognition and regu-
latory support in recent years. It is considered more transparent and informative than
VAR, which is why it is favored by regulators. The Basel III banking reforms, for in-
stance, require banks to calculate and report ES. This regulatory push ensures a higher
level of risk transparency and accountability.

Expected-Shortfall drawbacks: First, calculating Expected Shortfall is more com-
plex than VAR, as it requires estimating a conditional expectation, which involves
evaluating the tail of the distribution. This complexity can be a barrier for smaller
organizations or less mathematically-inclined professionals.
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Then, ES heavily relies on historical data to estimate potential losses, making it sensit-
ive to the quality and quantity of the available data. In cases of limited historical
data, ES estimates may not be reliable.

Moreover, ES fails to universality. While ES is a coherent risk measure, its imple-
mentation can vary between different financial institutions and portfolios. This lack of
standardization can lead to inconsistencies in risk assessments.

And, while regulatory support for ES is increasing, compliance can be burdensome for
financial institutions. It may require additional infrastructure and resources to
ensure accurate calculation and reporting.

Finally, ES is not elicitable. This last point is the subject of a major debate between
VaR and ES at the level of regulators in their choice of the reference risk measure.

Value-at-Risk (VaR) versus Expected-Shortfall (ES)

As previously mentioned, VaR and ES are the two risk measures of greatest interest to
regulators. These two risk measures both present strengths and weaknesses. On the
one hand, the main weaknesses of the VaR are its lack of sensitivity to the tail risk and
its lack of coherence due to the fact that it fails to subadditivity. On the other hand,
the main weakness of the ES is its lack of elicitability. These two weaknesses have been
at the heart of the debate between VaR and ES.

Understanding the lack of sensitivity of VaR to the tail risk: This problem is
easily understandable through the paradox exhibited in (Acerbi et al., 2001):

Paradox: Consider a portfolio A (made for instance of long option positions)
of value 1000 Euro with a maximum downside level of 100 Euro and suppose
that the worst 5% cases on a fixed time horizon T are all of maximum
downside. VaR at 5% on this time horizon would then be 100 Euro. Consider
now another portfolio B again of 1000 Euro which on the other hand invests
also in strong short futures positions that allow for a potential unbounded
maximum loss. We could easily choose B in such a way that its VaR is still
100 Euro on the time horizon T. However, in portfolio A the 5% worst case
losses are all of 100 Euro. In portfolio B the 5% worst case losses range from
100 Euro to some arbitrarily high value. Which portfolio is more risky ?
According to VaR 5% they bear the same risk !

This paradox is a consequence of the fact that the VaR corresponds to the minimum
potential loss that a portfolio can suffer. VaR is not sensitive to the tail risk and ignore
extreme events that can occur beyond VaR. VaR, in other words, is a sort of “best of
worst cases scenario” and it therefore systematically underestimates the potential losses
associated with the specified level of probability.
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On way to solve such an issue is to consider the possibility of introducing the mean of
the 5% worst cases on a given time-horizon, called the Expected-Shortfall at the risk
level 5%.

Understanding the lack of coherence of VaR: The paper (Artzner et al., 1999)
face the problem of defining a complete set of axioms that have to be fulfilled by a meas-
ure of risks in a generalized sense. A measure which satisfies these axioms is defined a
“Coherent Measure of Risk”. It is then shown that whenever a portfolio is undoubtedly
riskier than another one, it will always have an higher value of risk if the measure
is coherent. On the contrary, any measure which does not satisfy some of the axioms
will produce paradoxical results of some kind giving a wrong assessment of relative risks.

Sometimes it’s useful to decouple the risks associated to different risk drivers. VaR
can be then computed “switching on” just some class of risk drivers, holding all the
remaining fixed. One then speaks in this case of partial VaR’s like “Interest Rate VaR”
(IRVaR), “Forex VaR” (FXVaR), “Equity VaR” (EQVaR), “Credit VaR” (CVaR) and so
on. In the case of complex portfolios exposed to many risk variables such as in financial
institutions, the com- putation of VaR can often be a challenging aspect is due to the
fact that the computation can not be split into separate sub–computations due to the
two–fold non–additivity of VaR:

Non–additivity by position: given a portfolio made of two subportfolios, total VaR
is not given by the sum of the two partial VaR’s, with the consequence that adding
a new instrument to a portfolio often make it necessary to recompute the VaR for
the whole portfolio.

Non–additivity by risk variable: For a portfolio depending on multiple risk vari-
ables, VaR is not the sum of partial VaR’s. So, for instance, for a convertible
bond, VaR is not simply the sum of its IRVaR and EQVaR.

In both cases, in the case of normal distributed returns of a portfolio, one it an
be proved that the “non–additivity” is actually a “sub–additivity”: total VaR is always
less or equal than the sum of partial (by position or by risk driver) VaR’s. A little
thought is enough to understand that in the Gaussian world everything is proportional
to the standard deviation which in turn is subadditive. Therefore in the Gaussian world
anything is subadditive and there’s nothing special with VaR.

Remark: Recall that the subadditivity of risk measure ρ is given for any
two random variables X and Y by:

ρ(X + Y ) ≤ ρ(X) + ρ(Y ). (1.19)

Subadditivity refers to the property that the risk measure for a portfolio
should not be greater than the sum of the risk measures for its individual
components. In other words, if you have two portfolios and you merge them
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together, the combined risk should not exceed the sum of the risks of the
individual portfolios. This is called the diversification principle.

Even if non–additivity raises serious computational difficulties, it is however the direct
sign of one of the most interesting aspects of VaR as an instrument for risk analysis,
namely its ability to exhibit better than any Greeks the advantages due to diversification
of financial instruments and risk drivers. VaR is in fact sensitive to the hedging effect of
different positions and the mutual correlation effect of risk drivers. The sub–additivity
of VaR in a Gaussian world embodies the common belief that diversifying lower risks.

However, VaR is not subadditive apart from the Gaussian and some other special cases.
Failure to account for this lack of subadditivity can result in insufficient capital reserves
being set aside to cover potential losses, which could leave financial institutions or
investors vulnerable to unexpected market movements or events.

Understanding elicitability and the impact of its absence: The elicitability
property is related to the backtesting. Numerous authors interested in this problem. the
following works are dedicated to the study of elicitability (Brehmer, 2017), (Fissler et al.,
2021), (Ziegel, 2016), (He et al., 2022), (Fissler and Ziegel, 2016), (Embrechts et al.,
2021), (Resin, 2023), (Davis, 2016). Some authors defend the thesis that elicitability is
necessary for backtesting, while others defend the thesis that elicitability is only useful
but not necessary for backtesting. Elicitability is a mathematical property, satisfied by
some risk measures, that allows for the ranking of risk models’ performance. If a risk
measure is elicitable, then there exists a scoring function for that risk measure that
can be used for comparative tests on models. Mathematically, elicitability is defined as
follows. Let P be a class of probability measures on R with the Borel sigma algebra.
We consider a functional :

ν : P −→ 2R

P 7−→ ν(P) ⊂ R

where 2R denotes the power set of R. Often, but not always, ν(P) is single valued.

Definition 1.1. A scoring function s : R×R → [0,+∞) is consistent for the functional
ν relative to the class P, if:

EPs(t, Y ) ≤ EPs(x, Y ) ∀P ∈ P, ∀t ∈ ν(P), ∀x ∈ R. (1.20)

Here, Y has distribution P. It is strictly consistent if it is consistent and equality in the
above equation implies that x ∈ ν(P).

Given a consistent scoring function s for a functional ν, an optimal forecast x⋆ for ν(P )
is given by :

x⋆ = argmin
x

EPs(x, Y ) (1.21)

Definition 1.2 (Elicitability). A functional ν is elicitable relative to the class P, if
there exists a scoring function s which is strictly consistent for ν relative to P.
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The most prominent example concerning risk management may be VaR, which is es-
sentially a quantile and as such elicitable.

Elicitability has been proven a useful property for model selection, estimation, fore-
cast comparison and forecast ranking. The main consequences of elicitability are the
following:

Transparency: Elicitability ensures that the risk measure can be expressed as a weighted
average of individual scenarios or outcomes. This transparency allows stakeholders
to understand how the risk measure is calculated and how it relates to underlying
factors and scenarios.

Interpretability: Elicitability enhances the interpretability of the risk measure. Stake-
holders can easily grasp the implications of the risk measure in terms of the
likelihood and severity of potential losses, making it easier to incorporate into
decision-making processes.

Comparability: Elicitability enables straightforward comparisons between different
risk measures and models. This comparability is essential for evaluating the effect-
iveness of risk management strategies, assessing the impact of different scenarios,
and benchmarking against industry standards.

Model validation: Elicitability facilitates the validation of risk models by providing
clear connections between model outputs and observed data or expert judgments.
This validation process helps ensure that risk models accurately capture the un-
derlying risk factors and dynamics.

Calibration: Elicitability simplifies the calibration of risk models to historical data or
expert opinions. This calibration process ensures that the risk measure accurately
reflects the desired level of risk and aligns with stakeholders’ risk preferences and
objectives.

Regulatory compliance: In some cases, regulatory requirements mandate the use of
risk measures that are elicitable and transparent. Compliance with these regu-
lations becomes easier when risk measures have clear interpretations and can be
easily explained to regulators and other stakeholders.

Therefore, the lack of elicitability of the ES leads to a reduction of the trust among
practitioners who rely on transparent and interpretable risk metrics. It also implies a
complexity in risk assessment as stakeholders may struggle to grasp the implications
of expected shortfall values and their relationship to underlying scenarios. Another
consequence is an increasing complexity in the model validation process. Moreover,
the process of calibration is more difficault leading to potential misestimation of risk.
And, decision-making is more challenging leading to suboptimal decisions or increased
uncertainty about the true level of risk. Finally, it leads to a non-alignment with the
regulatory compliance.
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1.2 Issues

In a context where the temporal and spatial effects of random processes are decisive in
describing many of the phenomena that occur, we ask the following questions:

Research Question #1

What are the most common temporal and spatial effects of the random processes
necessary to describe these phenomena properly? Are there random processes
with particular properties with respect to these temporal and spatial effects? If
such random processes exist, what are their characteristic properties? What are
the consequences of these properties on the random processes, that is, how these
properties are expressed on the random processes?

The purpose of Chapter 2 is to address these questions. Indeed, in Chapter 2, we focus
on two time transformations: time-origin change or time translation, and time-scaling;
and we are interested in the related properties called stationarity and self-similarity.
The stationarity property refers to the invariance in time and space of a function or
process by temporal translation (time-origin change), while the self-similarity property
establishes a spatial proportionality relationship between functions or processes taken
at proportional times, and the spatial proportionality factor is a function of the time
proportionality factor. The self-similarity property is sometimes seen as an invariance
in time and space of a function or process via adequate temporal scaling. We propose
a new approach for studying stationary and self-similar processes. First, we prove
that the only assumptions of stationarity and self-similarity of the quadratic norm of a
given process in Hilbert space, without any assumption of distribution, allow obtaining
the stationarity and self-similarity of the inner product of the process, with a closed
form formula for the latter. Second, we show that adding the Gaussian assumption
allows obtaining the stationarity and self-similarity properties of the process not only in
distribution but also in the trajectory sense (that is, in terms of equality of processes).
We provide examples of such processes, known as the Wiener process and fractional
Brownian motion (fBm). Finally, we provide an extension of the stationarity and self-
similarity properties in the trajectory sense, to multidimensional Gaussian processes,
called multivariate fractional Brownian motions (mfBm).

In the context of increasingly stringent banking regulations, various risk assessment
and hedging processes have been developed over time, from the creation of regulated
markets to the present day. Risk measurement, which began to flourish in the 1990s
with JP Morgan’s VaR, is part of the drive to find an effective and accurate method for
assessing risk. The goal of a risk measure is twofold: on the one hand, it is intended
to ensure that financial institutions keep aside a sufficient amount of money to cope
with the risk of default, on the other hand, it pays attention not to overcharge the cash
reserve. Two questions arise:
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Research Question #2

What is the most appropriate risk measure for assessing risk correctly? How can
a risk measure be predicted or estimated to be as accurate as possible?

In our works, we focus in a first time, on predicting the most commonly used risk meas-
ure by regulators, called Value-at-Risk (VaR). Second, we focus on Expected-Shortfall
as an alternative risk measure to VaR. Since VaR at risk level α of a given portfolio is
the α-quantile of the loss distribution associated with that portfolio, and since ES at
risk level α is the average of the losses above VaR, these two risk measures are based on
the loss distribution of the portfolio, that is, on the distribution of the negative returns.
Thus, the manner in which the loss (or returns) distribution is modeled is a determining
factor in the prediction or estimation of these risk measures.

Price dynamics are usually described by geometric Brownian motions (GBM) also called
exponential Brownian motions. A geometric Brownian motion is a continuous-time
stochastic process in which the logarithm of the randomly varying quantity follows a
Brownian motion (also called a Wiener process) with drift. A stochastic process St is
said to follow a GBM if it satisfies the following stochastic differential equation (SDE):

dSt = µStdt+ σStdWt (1.22)

where Wt is a Wiener process or Brownian motion, and µ (percentage drift) and σ (per-
centage volatility) are constants. The former parameter is used to model deterministic
trends, whereas the latter parameter is used to model unpredictable events occurring
during motion. For an arbitrary initial value S0 the SDE above has an analytic solution
under Itô’s interpretation:

St = S0e

(
µ−σ2

2

)
t+σWt

. (1.23)

The process Xt = ln St
S0

satisfying the SDE:

dXt =

(
µ− σ2

2

)
dt+ σdWt (1.24)

is an arithmetic Brownian motion.

For an arbitrary initial value X0 the SDE above has an analytic solution under Ito’s
interpretation:

Xt = X0 +

(
µ− σ2

2

)
t+ σWt.

where X0 = log(S0).

The log-price increments of size h are then given by:

δhXt := Xt+h −Xt =

(
µ− σ2

2

)
h+ σδhWt



80
CHAPTER 1. GENERAL INTRODUCTION, MOTIVATIONS AND

CONTRIBUTIONS

where δhWt =Wt+h −Wt is the increment of size h of the Wiener process.

According to this model, log-returns are distributed as an arithmetic Brownian motion
and benefit from the properties of the Gaussian framework. However, this approach
relies on strong assumptions which are sometimes unrealistic. The natural question is
as follows:

Research Question #3

How can this model be improved to describe the distribution of the log-returns
as realistically and accurately as possible, and thus to predict the risk measure
with realism and accuracy? How can we add a long-range (resp. short-range)
dependency in the processes?

In Chapter 3, we propose to describe the price trajectories with geometric fractional
Brownian motions:

∀i ∈ J1, dK, Si
t = Si

0e
cit+σiB

i,Hi
t with cit = log

(
E[Si

t ]

Si
0

)
− σ2i

2
t2Hi , (1.25)

where S0 is fixed and known, and cit is the centering parameter in the model. This allows
the addition of correlations between log-returns to express long-range dependency. The
log-returns are then described using stationary and self-similar Gaussian processes with
correlated increments, called fractional Brownian motions (fBm).

Xi
t = Xi

0 + cit + σiB
i,Hi
t . (1.26)

And for any h > 0, the log-price increments of length h are defined by:

δhX
i
t := Xi

t+h −Xi
t = δhc

i
t + σiδhB

i,Hi
t . (1.27)

Log-returns are affine functions with respect to fractional Brownian motion; as such,
they benefit from the properties of Gaussianity, self-similarity and stationarity of the
increments, while relaxing the property of independence of the increments.

We introduce a model that provides a Gaussian approximation of the VaR for asset
portfolios under fractional dynamics. We demonstrate that such a model is based on
orthogonal projections in a Gaussian Hilbert space, taking specific forms for which
closed-form formulae are provided. Finally, we quantify the Gaussian VaR approx-
imation by providing an upper bound for the deviation. Backtesting experiments are
conducted using simulated and market data to illustrate this theory.

The Gaussian framework is most commonly used in finance due to its convenient prop-
erties. However, the Gaussian distribution is thin-tailed, and it assumes that extreme
events are rare, and tends to underestimate the probability of such events occurring.
Thus, modeling of the log-return distribution by a Gaussian distribution is not appro-
priate when extreme events occur more frequently.
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Research Question #4

Thus, the following question raises: How to accurately model a distribution in
which extreme events occur more frequently than in a Gaussian distribution?

To address this question, we propose to model the loss distribution owing to a heavy-
tailed distribution, such as Pareto, which assigns higher probabilities to extreme events,
which is often more realistic in finance. Why do we choose Pareto distribution? Pareto
distribution is a power law that presents interesting scaling and stability by conditioning
properties. The cumulative distribution function is defined as follows:

FX(x) = P(X ≤ x) =

(
1−

(
xm
x

)γ
)
1{x≥xm}. (1.28)

where xm > 0 is the scaling parameter, and γ > 0 is the shape parameter (or Pareto
index). However, in a context in which extreme events occur more frequently than in the
Gaussian framework, VaR is no longer an efficient risk measure because it is not sensitive
to tail risk and, it fails to capture extreme events that leads to an underestimation of
the risk. Therefore, we can wonder whether a risk measure more sensitive to the tail
risk exists. We propose replacing VaR with Expected-Shortfall (ES) that addresses such
shortcomings. Once the risk measure has properly been chosen, we ask the following
question:

Research Question #5

How can Expected-Shortfall be estimated accurately and efficiently in a distri-
bution in which extreme events frequently occur, that is, in a heavy-tailed distri-
bution?

Chapter 4 addresses this question. Indeed, in Chapter 4, the objective is to explore
robust methods for estimating the Expected-Shortfall in heavy-tailed distributions. The
Expected-Shortfall is the average of losses exceeding the VaR, and an estimator of
the Expected-Shortfall at risk level α is a mean estimator applied to the distribution
tail beyond the VaRα. Thus, we explore robust mean estimators as an alternative
to a simple empirical mean, in heavy-tailed distributions using the toy case of the
Pareto distribution. First, we recall the theory on the Expected-Shortfall and on the
Pareto distribution, and we present the characteristic properties of the latter. Then,
several non-asymptotic mean estimators, such as the Median-of-Means, Trimmed-Mean,
or Lee-Valiant estimators, are presented with their characteristics, and compared to
the classical empirical mean. We study their bias and provide explicit formulae when
possible. Moreover, we evaluate the convergence rate of the bias. Finally, we support
the theoretical analysis with experiments, and compare the performances of the different
estimators.
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1.3 Contributions

1.3.1 Chapter 2 - Introduction to self-similar and stationary
Gaussian processes

State of the art

In finance, understanding temporal effects in processes is a major issue. Some well-
known properties called stationarity and self-similarity are related to these temporal
effects. Specifically, the property of stationarity is associated with temporal translation,
also known as a change of temporal origin and the property of self-similarity is related
to the change of time scale also called time-scaling.

The stationarity property of a process is interesting because it states that the increments
process (i.e. the time-origin changed process) and the initial process have the same
characteristics. In other words, the characteristics of a stationary process are invariant
by translation, or time-origin change, in time and space. The self-similarity property
assumes that the time-scale changed process and the initial process have the same
characteristics through an appropriate spatial scaling. The self-similarity property of a
process establishes a spatial proportionality relationship between the characteristics of
a process taken at two distinct time-scales λt and t with λ > 0, with a proportionality
coefficient depending on the time scale λ.

Moreover, a self-similar process exhibits either long-range or short-range dependence.
Depending on the assumptions made on the process, the stationarity and self-similarity
properties may concern either the L2 characteristics of the process, its distribution
(weak sense), or its trajectory (strict sense). These properties are often useful when es-
timating parameters from data since they insure stability of the estimators. Mandelbrot
and Van Ness have been the first to introduce the a self-similar Gaussian process with
stationary increments, the well-known fractional Brownian motion in 1968 (Mandelbrot
and Van Ness, 1968a). They provide an integral representation of such processes. In
(Taqqu, 1978), a time-indexed representation for a sequence of self- similar processes
whose finite-dimensional moments have been specified is provided. The representation
of stationary processes and stationary increments processes via Langevin equation and
self-similar processes has been studied in (Viitasaari, 2016). These properties are not
specific to the Gaussian framework, but are often exploited in the Gaussian framework
and are the subject of numerous studies. Self-similar processes are studied in details
in (Das and Pan, 2011, Chap. 3), (Embrechts and Maejima, 2000), (Embrechts, 2009),
(Samorodnitsky, 2006), (Chaumont, 2006). In (Lamperti, 1962), authors study proper-
ties of semi-stable processes, including self-similar processes. Stationary and self-similar
processes are used in various fields, as explained in (Pardo, 2007). Indeed, they can be
used to model many space-time scaling random phenomena that can be observed in
Finance, Physics, Biology and other fields. For instance, stellar fragments, growth and
genealogy of population, option pricing in finance, various areas of image processing,
climatology, environmental science are just some of the areas in which self-similar pro-
cesses are used. Self-similar processes appear in various parts of probability theory,
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such as Lévy processes, branching processes, statistical physics, fragmentation theory,
coalescent theory, random fields. Some well known examples are: stable Lévy process,
fractional Brownian motion, Feller branching diffusion, Bessel processes, self-similar
fragmentation (Bertoin, 2002), Brownian sheet. Self-similar processes are also used in
Telecommunications and signal processing as mentioned in (Sheluhin et al., 2007). The
construction of self-similar processes is explained in (Fan et al., 2015). Such processes
are also very interesting when adding additional assumptions such as the independence
of their increments (Sato, 1991). Assuming the stationarity property in addition to the
self-similarity of the processes, some works show that these processes can take a specific
form. Indeed, in (Samorodnitsky et al., 1996, Chap. 7) or in (Barndorff-Nielsen and
Pérez-Abreu, 1999), authors show that there is a unique self-similar Gaussian process
with stationary increments and this process corresponds to the fractional Brownian
motion. Self-similar processes with stationary increments are also studied in the chaos
theory in (Maejima and Tudor, 2012). Authors prove that Gaussian processes live in the
first Wiener chaos and the latter are expressed as single integrals, with a deterministic
integrand, with respect to the Wiener process. Then in the first Wiener chaos the only
self-similar Gaussian process with stationary increments is the fractional Brownian mo-
tion. In addition, they prove that the elements of the second Wiener chaos are double
iterated stochastic integrals with respect to the Wiener process. In the second Wiener
chaos, the self-similar processes with stationary increments are not Gaussian anymore,
then authors prove that there exists an infinity of such processes.

Gaussian self-similar and stationary processes, such as fractional Brownian motion
(fBm), have found numerous applications in finance due to their ability to model com-
plex behaviors observed in financial markets, as demonstrated in (Burnecki and Weron,
2004). One prominent application is in modeling and forecasting volatility, which is
crucial for risk management, derivative pricing, and portfolio optimization. The works
of (Fernández-Martínez et al., 2013), authors show empirically that the algorithms,
based on a geometrical approach (GM algorithms), are more accurate than the clas-
sical algorithms, especially with short length time series. The authors checked that GM
algorithms are good when working with (fractional) Brownian motions. In particular,
they prove theoretically that GM algorithms are also valid to explore long-memory in
(fractional) Lévy stable motions.

In (Lavancier et al., 2009), operator self-similar (os-s) processes are studied. In this
article, a p-variate stochastic process X = {X(t) = (X1(t), . . . , Xp(t)), t ∈ R} is said
operator self-similar (os-s) if there exists a p × p matrix H (called the exponent of X)
such that for any λ > 0, the following equality of finite-dimensional distributions (fdd)
holds:

X(λt)
fdd
= λHX(t), (1.29)

and the p×p matrix λH is defined by the power series λH = eH log(λ) =
∑∞

k=0
Hk(log(λ))k

k! .
Moreover, a random process X = {X(t), t ∈ R} has stationary increments (si) if:

{X(t+ T )−X(T ), t ∈ R} = {X(t)−X(0), t ∈ R}, for any T ∈ R. (1.30)
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Authors study Gaussian os-s process with stationary increments called operator frac-
tional Brownian motion (ofBm). They explain that for p = 1 the class of ofBm coincides
with fundamental class of fractional Brownian motions (fBm) as proved in (Samorod-
nitsky and Taqqu, 1994). They recall that a fBm with exponent H ∈ (0, 1) can be
alternatively defined as a stochastically continuous Gaussian process X = {X(t), t ∈ R}
with zero mean and covariance:

E
[
X(s)X(t)

]
=
σ2

2

(
|s|2H +

∣∣t∣∣2H −
∣∣t− s

∣∣2H) , t, s ∈ R, (1.31)

where σ2 = E
[
X2(1)

]
. According to their works, the form of covariance of general

ofBm seems to be unknown and may be quite complicated. The structure of ofBm and
stochastic integral representations are studied in (Didier and Pipiras, 2008), in (Didier
and Pipiras, 2012), (Didier and Pipiras, 2011). A particular case of os-s processes
corresponds to diagonal matrix H = diag(H1, . . . ,Hp). In this case, Equation (??)
becomes: (

X1(λt), . . . , Xp(λt)
)

fdd
=
(
λH1X1(t), . . . , λ

HpXp(t)
)
. (1.32)

A p-variate process X satisfying Equation (??) for any λ > 0 is called vector self-similar
(vs-s) and a stochastically continuous Gaussian vs-s process with stationary increments
(si) is called a vector fractional Brownian motion (vfBm). From Equation (??), each
component Xi = {Xi(t), t ∈ R}, i = 1, . . . , p of vs-s process is a (scalar) self-similar
process, the fact which is not true for general os-s processes. In (Lavancier et al., 2009),
a general form of the (cross-)covariance function of vs-s si process X with finite variance
and exponent H = diag(H1, . . . ,Hp), 0 < Hi < 1. In other words, the paper obtains
the general form of the cross-covariance function of vector fractional Brownian motion
with correlated components having different self-similarity, cross-covariance function.

Let X = {X(t), t ∈ R} be a 2nd order process with values in Rp. Assume that X
has stationary increments, zero mean, X(0) = 0, and that X is vector self-similar with
exponent H = diag(H1, . . . ,Hp), 0 < Hi < 1 (i = 1, . . . , p). Moreover, assume also that
for any i, j = 1, . . . , p, the function t 7→ E

[
Xi(t)Xj(1)

]
is continuously differentiable on

(0, 1) ∪ (1,∞). Let σ2i > 0 denote the variance of Xi(1), i = 1, . . . , p.

(i) If i = j, then for any (s, t) ∈ R2, we have:

E
[
Xi(s)Xi(t)

]
=
σ2i
2
{|s|2Hi +

∣∣t∣∣2Hi −
∣∣t− s

∣∣2Hi}. (1.33)

(ii) If i ̸= j and Hi + Hj ̸= 1, then under some regularity conditions there exists
cij , cji ∈ R such that for any (s, t) ∈ R2:

Cov
(
Xi(s), Xj(t)

)
=
σiσj
2

{cij(s) |s|Hi+Hj + cji(t)
∣∣t∣∣Hi+Hj − cij(t− s)

∣∣t− s
∣∣Hi+Hj}

(1.34)

where σ2i := V[Xi(1)] and:

cij(t) =

 cij if t > 0

cji if t > 0.
(1.35)
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(iii) If i ̸= j and Hi+Hj = 1, then there exists dij , fij ∈ R such that for any (s, t) ∈ R2,
we have:

E
[
Xi(s)Xj(t)

]
=
σiσj
2

{dij(|s|+
∣∣t∣∣− ∣∣s− t

∣∣) + fij(t log
∣∣t∣∣− s log |s|)− (t− s) log

∣∣t− s
∣∣}.

(1.36)

(iv) The matrix R = (Rij)i,j=1,...,p is positive definite, where:

Rij :=


1 if i = j,

cij + cji if i ̸= j,Hi +Hj ̸= 1,

dij if i ̸= j,Hi +Hj = 1.

(1.37)

Authors also provide a stochastic representation of vfBm and the covariance function
of vfBm. The stochastic representation of vgBm is based on (Didier and Pipiras, 2008):

X(t) =

∫
R

{(
(t− x)

H− 1
2

+ − (−x)H− 1
2

+

)
A+ +

(
(t− x)

H− 1
2

− − (−x)H− 1
2

−

)
A−

}
W (dx),

(1.38)

where H − 1
2 := diag

(
H1 − 1

2 , . . . ,Hp − 1
2

)
, x+ := max(x, 0), x− := max(−x, 0), A+,

A− are real p × p matrices and W (dx) =
(
W1(dx), . . . ,Wp(dx)

)
is a Gaussian white

noise with zero mean, independent components and covariance E
[
Wi(dx)Wj(dx)

]
=

δijdx. The covariance function of vfBm X = {X(t), t ∈ R} given by double-sided
stochastic integral representation is provided. Let a++

ij :=
∑p

k=1 a
+
ika

+
jk, a

−−
ij :=

∑p
k=1 a

−
ika

−
jk,

a+−
ij :=

∑p
k=1 a

+
ika

−
jk, a

−+
ij :=

∑p
k=1 a

−
ika

+
jk, where A+ = (a+ij), A− = (a−ij) are the p× p

matrices. Clearly, A+A
⋆
+ = (a++

ij ), A−A
⋆
− = (a−−

ij ), A+A
⋆
− = (a+−

ij ), A−A
⋆
+ = (a−+

ij ).

Authors show that the covariance of the process defined by the double-sided stochastic
integral satisfies the following properties:

(i) for any i = 1, . . . , p the variance of Xi(1) is:

σ2i =
B
(
Hi +

1
2

)
, Hi +

1
2

sin(Hiπ)
{a++

ii + a−−
ii − 2sin(Hiπ)a

+−
ii }. (1.39)

(ii) If Hi + Hj ̸= 1 then for any s, t ∈ R, the cross-covariance E
[
Xi(s)Xj(t)

]
of the

process defined by Equation (??) is given by Equation (??) with:

σiσj
2
cij :=

B
(
Hi +

1
2 , Hj +

1
2

)
sin(

(
Hi +Hj

)
π)

{
a++
ij cos(Hiπ) + a−−

ij cos(Hjπ)− a+−
ij sin(

(
Hi +Hj

)
π)

}
.

(1.40)
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(iii) If Hi + Hj = 1 then for any s, t ∈ R, the cross-covariance E
[
Xi(s)Xj(t)

]
of the

process defined by Equation (??) is given by Equation (??) with:

σiσjdij := B

(
Hi +

1

2
, Hj +

1

2

)
×
{
sin(Hiπ) + sin(Hjπ)

2

(
a++
ij + a−−

ij

)
− a+−

ij − a−+
ij

}
(1.41)

σiσjfij := (Hj −Hi)(a
++
ij − a−−

ij ). (1.42)

In, (Coeurjolly, 2000b) (Amblard and Coeurjolly, 2011b), authors propose an approach
for the identification of the multivariate fractional Brownian motion. They use a
wavelet-like filtering technique. The Hurst parameters, variances, correlation and asym-
metry coefficients are estimating by regressing over the empirical log-variances and log-
correlations coefficients. They show that the estimator converges almost surely and
satisfies a central limit theorem. The convergence is illustrated on simulation, and they
apply the estimation procedure to financial data. The irregularity’s analysis of data
modeled by an fBm, the study of its spectral behavior, and any forecasting problem
based on fbm imply the necessity to estimate the Hurst parameter. In (Coeurjolly,
2000b), authors describe the main parametric methods to estimate the self-similarity
parameter H. They distinguish four approaches: spectral methods (log-periodogram, a
variant of Lobato and Robinson’s method), Maximum likelihood (Whittle’s estimator),
Time-scale methods (wavelet decomposition of the fBm), Temporal methods (number
of level crossings, discrete variations). Article (Coeurjolly, 2001), develops a class of
consistent estimators of the parameters of a fractional Brownian motion based on the
asymptotic behavior of the k− th absolute moment of discrete variations of its sampled
paths over a discrete grid of the interval [0, 1]. Authors derive explicit convergence
rates for these types of estimators, valid through the whole range 0 < H < 1 of the self-
similarity parameter. They also establish the asymptotic normality of their estimators.
The effectiveness of their procedure is investigated in a simulation study. In (Coeur-
jolly et al., 2013), authors study the multivariate fractional Brownian motion (mfBm)
viewed through the lens of the wavelet transform. They calculate the correlation struc-
ture of the wavelet transform of the mfBm. They study the asymptotic behaviour of the
correlation, showing that if the analyzing wavelet has a sufficient number of null first or-
der moments, the decomposition eliminates any possible long-range (inter)-dependence.
The cross-spectral density is also considered. Its existence is proved ans its evaluation
is performed using a von Bahr-Essen like representation of the function sign(t)

∣∣t∣∣α.
the behavior of the cross-spectral density of the wavelet field at the zero frequency
is also developed and confirms the results provided by the asymptotic analysis of the
correlation. In (Jean-franÇois Coeurjolly and Vidakovic, 2014), authors discuss estim-
ation of a scaling parameter σ2 when a Hurst exponent is known. To estimate σ2, they
propose three approaches based on maximum likelihood estimation, moment-matching,
and concentration inequalities, respectively and discuss the theoretical characteristics
of the estimators and optimal-filtering guidelines. They justify the improvement of the
estimation of σ2 when a Hurst parameter is known. Using the three approaches and a
parametric bootstrap methodology in a simulation study, they compare the confidence
intervals of σ2 intervals of their lengths, coverage rates, and computational complexity
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and discuss empirical attributes of the tested approaches. They found that the approach
based on maximum likelihood estimation was optimal in terms of efficiency and accur-
acy, but computationally expensive. The moment-matching approach was found to be
not only comparably efficient and accurate but also computationally fast and robust to
deviations from the fractional Brownian motion model. In (Coeurjolly, 2005), authors
introduce a new class of consistent estimators of the fractal dimension of locally self-
similar Gaussian processes. These estimators are based on linear combinations of em-
pirical quantiles (L-statistics) of discrete variations of a sample path over a discrete grid
of the interval [0, 1]. They derive the almost sure convergence for these estimators and
prove the asymptotic normality. The key-ingredient is a Bahadur representation for em-
pirical quantiles of non-linear functions of Gaussian sequences with correlation function
decreasing hyperbollicaly. In (Coeurjolly et al., 2010a), authors study the covariance
structure of the multivariate fractional Gaussian noise. They evaluate several paramet-
ers of the model that allow to control the correlation structure at lag zero between all the
components of the multivariate process. Then, they specify an algorithm that allows the
exact simulation of multivariate fractional Gaussian noises and thus fractional Brownian
motions. Illustrations involve the estimation of the Hurst exponents of each of the com-
ponents. The works of (Coeurjolly et al., 2010b), are devoted to study some properties
of an extension of the well-known fractional Brownian motion to the multivariate case.
They study the covariance structure of the multivariate fractional Gaussian noise. They
evaluate several parameters of the model that allow to control the correlation structure
at lag zero between all the components of the multivariate process. They particularly
focus on two cases for which they can relate characteristic parameters of the covariance
function to parameters of the stochastic representation of the processes. These cases
are the causal case, a direct multivariate generalization of (Mandelbrot and Van Ness,
1968b) representation, and the well-balanced case which adds to the previous case and
anti-causal filtering of a Brownian motion. The characterization of the covariance func-
tion is then used to study the multivariate fractional Gaussian noise, defined as the
increment process of the multivariate fractional Brownian motion. They study the cov-
ariance structure as well as the spectral structure of this multivariate stationary process.
They exhibit the intriguing facts that two fractional Gaussian noise may be long-range
interdependent when only one is long-range dependent. They then perform a wavelet
analysis of the multivariate fractional Brownian motion, and show that the wavelet ana-
lysis may destroy the long-range interdependence if the wavelet is properly chosen. In
(Garcin, 2019), study the inverse Lamperti transform of a fractional Brownian motion
and its properties. The inverse Lamperti transform of an fbm is a stationary process.
They determine the empirical Hurst exponent of such a composite process with the
help of a regression of the log-absolute moments of its increments, at various scales, on
the corresponding log-scales. This perceived Hurst exponent underestimates the Hurst
exponent of ht underlying fBm. They encounter some time series having a perceived
Hurst exponent lower than 1

2 , but an underlying Hurst exponent higher than 1
2 . This

paves the way for short- and medium-term forecasting. Indeed, in such series, mean
reversion predominates at high scales, whereas persistence is overriding at lower scales.
They propose, a way to characterize the Hurst horizon, namely a limit scale between
these opposite behaviors. They show that the delampertized fBm, which mixes per-
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sistence and mean, is relevant for financial time series, in particular for high-frequency
foreign exchange rates. In their sample, the empirical Hurst horizon is always above
1h and 23min. In (Laha and Rohatgi, 1981), operator self similar stochastic processes
taking values in a finite dimensional Euclidean space are introduced and some of their
properties are studied. In (Hudson and Mason, 1982), a general representation for an
operator-self-similar process is obtained and its class of exponents is characterized. It
is shown that such a process is the limit in a certain sense of an operator-normed pro-
cess and any limit of an operator-normed process is operator-self-similar. The works
of (Sato, 1991) propose a study of the self-similar and operator-self-similar processes
with independent increments. They prove that under some additional conditions of
continuity on the operator-self-similar process, the operator can be chosen as a power
function with as exponent an operator that presents some special spectral properties.
In (Maejima and Mason, 1994), operator-self-similar processes are studied and several
examples of operator-self-similar and stable (in the ordinary sense or in the sense of
operator-stable) processes are constructed. Limit theorems for such processes are also
shown. In (Marinucci and Robinson, 2000), a weak convergence to a form of fractional
Brownian motion is established for a wide class of non-stationary fractionally integrated
processes. An extension of the classical fractional Brownian motion, called multifrac-
tional Brownian motion (mBm), whose Hurst exponent depends on time is studied in
(Stoev and Taqqu, 2006). The multifractional Brownian motion (mBm) processes are
locally self-similar Gaussian processes. In literature, two types of mBm processes were
introduced by using time-domain and frequency domain integral representations of the
fBm, respectively. In this paper, authors show that these two types of processes have
different correlations structures when the function H(t) is non constant. They focus on
a class of mBm processes parametrized by (a+, a−) ∈ R2, which contains the previously
introduced two types of processes as special cases. They establish the connection for
their time and frequency-domain integral representations and obtain explicit expres-
sions for their covariances. They show, that there are non-constant functions H(t) for
which the correlation structure of the mBm processes depends non-trivially on the value
of (a+, a−) and hence, even for a given function H(t), there are an infinite number of
mBm processes with essentially different distributions.

Modeling volatility: Volatility, the standard deviation of asset returns, is not con-
stant but exhibits clustering and persistence over time, known as volatility clustering.
Gaussian self-similar processes like fBm can capture this feature effectively.

By modeling volatility as a fractional Brownian motion, analysts can incorporate long-
range dependence and memory into volatility dynamics, which is observed in real fin-
ancial time series data. Large changes in prices tend to cluster together, resulting in
persistence of the amplitudes of price changes. Several works have been published on
this topic, as instance the works of (Cheong, 2010) or (Cont, 2007) that explain the
origin of this volatility clustering, by proposing agent-based models based on a feature
that allows switching between low and high activity regimes with heavy-tailed durations
of regimes. The works of (Gatheral et al., 2014), deal with estimation of volatility from
recent high frequency data by revisiting the question of the smoothness of the volatility
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process. In these works, the assumption is that the log-volatility behaves essentially as a
fractional Brownian motion with Hurst exponent H of order 0.1, at any reasonable time
scale. Such assumption enables to obtain improved forecasts of realized volatility. And
a quantitive market microstructure-based model relating the roughness of volatility to
high frequency trading and order splitting, is provided. In (Rostek, 2012), the under-
lying security dynamics are driven by a jump-diffusion process where the diffusion part
is fractional Brownian motion while jumps exhibit a double-exponential distribution.

In (Chong et al., 2022a), (Chong et al., 2022b) and (Szymanski and Takabatake, 2023),
methods of estimation of the Hurst exponent as well as convergence rates are provided.
The stationarity property that guarantees the invariance by translation of the process
allows obtaining a stability of the estimations based on the increments. Moreover, the
self-similarity property that establishes the invariance by time-scaling of the process
insures that the estimations are the same whatever the chosen time-scale.

Option pricing: Option pricing models often assume a certain stochastic process for
the underlying asset’s price dynamics. Since volatility significantly influences option
prices, accurately modeling volatility is crucial. Gaussian self-similar processes can
be employed to model volatility processes, which in turn are used in option pricing
models such as the Heston model or the stochastic volatility model. The works of
(Rostek, 2009), (Rostek and Rostek, 2009) use fractional Brownian motions for the
purpose of option pricing. In this book, the following questions are addressed: To what
extent one can draw parallels between the fractional and the classical Brownian motion
framework. More precisely, as fractional Brownian motion is an extension of Brownian
motion, is it possible to extend the respective theory of option pricing? Are the well-
developed techniques of stochastic calculus transferable to fractional Brownian motion?
Will we be faced with conceptual problems? Can we obtain closed-form solutions?
In (Rostek and Schöbel, 2006), under the assumption that the market is driven by a
fractional Brownian motion, formulae for fraction European options are derived using
the traditional idea of conditional expectation. The works of (Rostek and Schoebel,
2010), European option prices are derived when the underlying security dynamics are
driven by geometric fractional Brownian motion. Thanks to the self-similarity property
of the fractional Brownian motion, and thanks to the correlation between increments
allowed by a Hurst exponent different from 0.5, the latter is a parsimonious way to
capture serial correlation within financial time series. They discuss a model where
market participants have constant relative risk aversion and trade in discrete time.
Investor’s wealth and the underlying stock are assumed to be of fBm type and follow a
bivariate log-normal distribution. They introduce an equilibrium condition and provide
closed-form solutions for European options. The derived results are an extension of the
Black-Scholes pricing formulae and contain the latter as a special case.

Portfolio Optimization: Modern portfolio theory relies on accurate estimation of
asset returns and volatilities. Gaussian self-similar processes can improve the estimation
of these parameters by capturing their inherent characteristics, such as long memory
and self-similarity. This, in turn, leads to more robust portfolio optimization strategies
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that account for the non-linear and non-Gaussian nature of financial markets. See
for instance (Papenbrock, 2011), (Zlatniczki and Telcs, 2024), (Galloway and Nolder,
2008), (Lunga, 2006). The works of (Czichowsky et al., 2018), (Czichowsky and Schach-
ermayer, 2017) propose a reconciliation of two conflicting concepts in finance: on the
one hand, the notion of no arbitrage, and on the other hand, the consideration of non-
semimartingale price processes, like fractional Brownian motion. Imposing (arbitrary
small) proportional transaction costs and considering logarithmic utility optimisers, the
existence of semimartingale, frictionless shadow price process for an exponential frac-
tional Brownian financial market is proved. In (Jumarie, 2005), the model of optimal
portfolio first proposed by Merton is considered with the additional assumption that the
noises involved in the dynamics of the wealth are fractional Brownian motions (in the
sense of fractional derivative of Gaussian white noises) with short-range dependence,
that is to say with a Hurst parameter lower than 1/2. The works of (Sarol et al., 2007),
authors consider the classical Merton problem of finding the optimal consumption rate
and the optimal portfolio in a Black-Scholes market driven by fractional Brownian mo-
tion with Hurst parameter H > 1/2. The integrals with respect to the fBm are in the
Skorohod sense, not pathwise which is known to lead to arbitrage. An explicit form is
derived for the optimal consumption rate and the optimal portfolio in such a market
for an agent with logarithmic utility functions. A true self-financing portfolio is found
to lead to a consumption term that is always favorable to the investor. In (HU et al.,
2003), authors present a mathematical model for a Black–Scholes market driven by
fractional Brownian motion with Hurst parameter. The interpretation of the integrals
with respect to the fBm is in the sense of Itô (Skorohod–Wick), not pathwise (which
is known to lead to arbitrage). They find explicitly the optimal consumption rate and
the optimal portfolio in such a market for an agent with utility functions of power type.
In (Garcin, 2022), log-prices follow an fBm, the non-Markovian nature of the fBm is
used to forecast future states of the process and make statistical arbitrages. Some ques-
tions about optimizing trading strategies in the fBm framework are addressed. Which
lagged increments of the fBm, observed in discrete time, are to be considered? If the
predicted increment is close to zero, up to which threshold is it more profitable not to
invest? In (Bauerle and Desmettre, 2020), a fractional version of the Heston volatil-
ity model is considered. Within this model portfolio optimization problems for power
utility functions are treated.

High-frequency trading: In high-frequency trading (HFT), where decisions are
made within milliseconds, understanding and predicting market dynamics is crucial.
Gaussian self-similar processes can provide insights into short-term market behaviors
by capturing the intricate patterns and correlations present in high-frequency data. See
for instance (Evertsz, 1995), (Arroum, 2007), (Smith, 2010). Based on the observa-
tion that, in the high-frequency limit, conditionally expected increments of fractional
Brownian motion converge to a white noise, shedding their dependence on the path his-
tory and the forecasting horizon and making dynamic optimisation problems tractable,
works of (Guasoni et al., 2021) propose an explicit formula for locally mean–variance op-
timal strategies and their performance for an asset price that follows fractional Brownian
motion. The works of (Guasoni et al., 2019) consider a a market with an asset price
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described by fractional Brownian motion, which can be traded with temporary non-
linear price impact, we find asymptotically optimal strategies for the maximization of
expected terminal wealth. Exploiting the autocorrelation in increments while limiting
trading costs, these strategies generate an average terminal wealth that grows with a
power of the horizon, the exponent depending on both the Hurst and the price-impact
parameters. The resulting Sharpe ratios are bounded, insensitive to the horizon, and
asymmetric with respect to the Hurst exponent. These results extend to Gaussian pro-
cesses with long memory and to a class of self-similar processes. The works of (Lim
and Muniandy, 2002) study some Gaussian models for anomalous diffusion, which in-
clude the time-rescaled Brownian motion, two types of fractional Brownian motion, and
models associated with fractional Brownian motion based on the generalized Langevin
equation. Gaussian processes associated with these models satisfy the anomalous diffu-
sion relation which requires the mean-square displacement to vary with tα, 0 < α < 2.
However, these processes have different properties, thus indicating that the anomalous
diffusion relation with a single parameter is insufficient to characterize the underlying
mechanism. Although the two versions of fractional Brownian motion and time-rescaled
Brownian motion all have the same probability distribution function, the Slepian the-
orem can be used to compare their first passage time distributions, which are different.
Finally, in order to model anomalous diffusion with a variable exponent α(t) it is ne-
cessary to consider the multifractional extensions of these Gaussian processes.

Risk management: Understanding and managing risk is fundamental in finance.
Gaussian self-similar processes allow for more accurate risk assessment by capturing
the complex and correlated nature of financial time series data. By incorporating long-
range dependence and self-similarity into risk models, financial institutions can better
estimate Value-at-Risk (VaR) and Conditional Value-at-Risk CVaR, which are meas-
ures of potential losses under adverse market conditions. This is the topic of (Michna
et al., 1998). Indeed, in this paper, authors are interested in collective risk theory. They
observe that collective risk theory is concerned with random fluctuations of the total
assets and the risk reserve of an insurance company. They consider self-similar, con-
tinuous processes with stationary increments for the renewal model in risk theory. They
construct a risk model which shows a mechanism of long range dependence of claims.
An approximation of the risk process by a self-similar process with drift, is provided.
The ruin probability within finite time is estimated for fractional Brownian motion
with drift. A similar model is applicable in queueing systems, describing long range
dependence in on/off processes and associated fluid models. The works of (Wesselhöfft,
2021) are based on the fact that a self-similar process, which is ablle to account for
long-memory behaviour is the fractional Brownian motion, which has a possible non-
Gaussian limit under convolution of the increments. The increments of the Fractional
Brownian Motion can exhibit long memory through a parameter H, the Hurst exponent.
For the Fractional Brownian Motion this scaling (Hurst) exponent would be constant
over different orders of moments, being unifractal. But empirically, we observe vary-
ing Hölder exponents, the continuum of Hurst exponents, which implies multifractal
behavior. Authors explain the multifractal behavior through the changing alpha-stable
indices from the alpha-stable distributions over sampling frequences by applying filters
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for seasonality and time dependence (long-memory) over different sampling frequencies,
starting at high-frequencies up to one minute. By utilizing a filter for long-memory
they show, that the low-sampling frequency process, not containing the time depend-
ence component, can be governed by the alpha-stable motion. Under the alpha-stable
motion they propose a semiparameteric method called Frequency Rescaling Method-
ology (FRM), which allows to rescale the filtered high-frequency dataset to the lower
sampling frequency. The datasets for example weekly data which are obtained by res-
caling high-frequency data with the FRM are more heavy tailed than the ones observed
empirically. Authors show that using a subset of the whole dataset suffices for the FRM
to obtain a better forecast in terms of risk for the whole dataset. Specifically, the FRM
would have been able to account for tail events of the financial crisis 2008.

Different types of self-similar processes: Fractional Brownian motion is widely
used in the modeling of phenomena with power spectral density of power-law type. How-
ever, FBM has its limitation since it can only describe phenomena with monofractal
structure or a uniform degree of irregularity characterized by the constant Holder ex-
ponent. For more realistic modeling, it is necessary to take into consideration the
local variation of irregularity, with the Holder exponent allowed to vary with time or
space. In (Muniandy and Lim, 2001), an extension of the standard fBm to multifrac-
tional Brownian motion (mBm) indexed by a Holder exponent that is a function of
time, is proposed. This paper proposes an alternative generalization based on the FBM
defined by the RiemannLiouville type of fractional integral. The local properties of the
Riemann-Liouville MBM, RLMBM are studied and they are found to be similar to that
of the standard MBM. A numerical scheme to simulate the locally self-similar sample
paths of the RLMBM for various types of time-varying Holder exponents is given. The
local scaling exponents are estimated based on the local growth of the variance and
the wavelet scalogram methods. Finally, an example of the possible applications of
RLMBM in the modeling of multifractal time series is illustrated. In (Tudor, 2013),
several self-similar processes are studied: fractional, bi-fractional and sub-fractional
Brownian motions. The works of (Pagnini et al., 2012), study the Master Equation
approach to model anomalou diffusion. Anomalous diffusion in complex media can
be described as the result of a superposition mechanism reflecting inhomogeneity and
nonstationarity properties of the medium. For instance, when this superposition is ap-
plied to the time-fractional diffusion process, the resulting Master Equation emerges
to be the governing equation of the Erdelyi-Kober fractional diffusion, that describes
the evolution of the marginal distribution of the so-caled generalized grey Brownian
motion. This motion is a parametric class of stochastic processes that provides mod-
els for both fast and slow anomalous diffusion: it is made up of self-similar processes
with stationary increments and depends on two real parameters. The class includes
the fractional Brownian motion, the timefractional diffusion stochastic processes, and
the standard Brownian motion. In this framework, the M-Wright function known also
as Mainardi function emerges as a natural generalization of the Gaussian distribution,
recovering the same key role of the Gaussian density for the standard and the frac-
tional Brownian motion. In (Pang and Taqqu, 2019), the focus is paid to shot noise
processes with Poisson arrivals and nonstationary noises. The noises are conditionally
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independent given the arrival times, but the distribution of each noise does depend on
its arrival time. Authors establish scaling limits for such shot noise processes in two
situations: (a) the conditional variance functions of the noises have a power law and
(b) the conditional noise distributions are piecewise. In both cases, the limit processes
are self-similar Gaussian with nonstationary increments. Motivated by these processes,
they introduce new classes of self-similar Gaussian processes with nonstationary incre-
ments, via the time-domain integral representation, which are natural generalizations
of fractional Brownian motions.

Fractional Brownian motion and arbitrage management: Using a fractional
geometric Brownian motion to describe the price’s dynamics allows being able to manage
the long-range (resp. the short-range) dependency, however the fundamental market
assumption of non-arbitrage opportunity is not satisfied anymore. This is the purpose
of the works of (Cheridito, 2003). Authors construct arbitrage strategies for a financial
market that consists of a money market account and a stock whose discounted price
follows a fractional Brownian motion with drift or an exponential fractional Brownian
motion with drift. Then we show how arbitrage can be excluded from these models
by restricting the class of trading strategies. In (Cheridito, 2001), authors show that
the sum of a Brownian motion and a non-trivial multiple of an independent fractional
Brownian motion with Hurst exponent H ∈ (0, 1] is not a semimartingale if H ∈
(0, 1/2) ∪ (1/2, 3/4], that it is equivalent to a multiple of Brownian motion if H = 1/2

and equivalent to Brownian motion ifH ∈ (3/4, 1]. They discuss the price of a European
call option on an asset driven by a linear combination of a Brownian motion and an
independent fractional Brownian motion.

Stochastic integral with respect to the fractional Brownian motion: So far,
the stochastic integral was defined with respect to the standard Brownian motion. Some
authors have proposed extension of the notion of stochastic integral with respect to the
fractional Brownian motion for different ranges of values taken by the Hurst exponent.
In (Cheridito and Nualart, 2005), the stochastic integral with respect to the fractional
Browian motion with Hurst exponent H ∈ (0, 1/2) is defined. This extends the diver-
gence integral from Malliavin calculus. For this extended divergence integral, a Fubini
theorem is porved and versions of the Itô and Tanaka’s formula are are established for
all H ∈ (0, 1/2). The works of (Carmona et al., 2003), define a stochastic integral with
respect to fractional Brownian motion for every value of the Hurst index H ∈ (0, 1).
This is done by approximating fractional Brownian motion by semi-martingales. Then,
for H > 1/6, they establish an Itô’s change of variables formula, which is more precise
than Privault’s Ito formula (1998). Stochastic calculus for fractional Brownian motion
is also treated in (Biagini et al., 2008a). The works of (Duncan et al., 2000), a stochastic
calculus is given for the fractional Brownian motions that have the Hurst parameter in
(1/2, 1). A stochastic integral of Itô type is defined for a family of integrands so that
the integral has zero mean and an explicit expression for the second moment. This in-
tegral uses the Wick product and a derivative in the path space. Some Itô formulae (or
change of variables formulae) are given for smooth functions of a fractional Brownian
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motion or some processes related to a fractional Brownian motion. A stochastic integral
of Stratonovich type is defined and the two types of stochastic integrals are explicitly
related. A square integrable functional of a fractional Brownian motion is expressed
as an infinite series of orthogonal multiple integrals. The book (Coutin, 2007) offers
an introduction to stochastic calculus with respect to the fractional Brownian motion.
Different approaches have been introduced to construct stochastic integrals with respect
to fBm: pathwise techniques, Malliavin calculus, approximation by Riemann sums. In
(Nualart, 2006), authors describe these methods and present the corresponding change
of variable formulas. Some applications will be discussed. The works of (Decreusefond,
2003), (Decreusefond and Üstünel, 1998), present a new theoretical result on the frac-
tional Brownian motion, including different definitions (and their relationships) of the
stochastic integral with respect to this process, Girsanov theorem, Clark representation
formula, Itô formula and so on. A stohastic analysis of the fractional Brownian motion
is also provided in (Lin, 1995). Integration questions related to fractional Brownian
motion are addressed in (Pipiras and Taqqu, 2000).

Overall, Gaussian self-similar processes with stationary increments offer a powerful
framework for modeling various aspects of financial markets, ranging from volatility
dynamics to risk management and trading strategies. The invariance by time-scaling
guaranteed by the property of self-similarity as well as the ability of self-similar pro-
cesses to capture long-range or short-range dependence makes them indispensable tools
for financial analysts and researchers.

In our works, we are interested in the minimal formulation of the stationarity and the
self-similarity properties of the squared L2-norm of L2-random functions. We prove that
the combination of the minimal formulation of the stationarity and of the self-similarity
in the L2-spaces is enough to fully characterize the inner kernel only depending on
power functions of exponent γ ∈ (0, 1) and to prove the stationarity and the self-
similarity of the L2-inner kernel. Then, we introduce the Gaussian assumption and we
get the stationarity and the self-similarity properties not only in distribution but also in
trajectory. We provide some examples of stationary and self-similar Gaussian processes
called Brownian motion and fractional Brownian motion. In this part we recover the
results provided in (Taqqu, 1994), (Mandelbrot and Van Ness, 1968a), (Das and Pan,
2011, Chap. 3), (Embrechts and Maejima, 2000), (Embrechts, 2009), (Samorodnitsky,
2006), (Chaumont, 2006), (Lamperti, 1962). Finally we provide an extension to the
multivariate fractional Brownian motion (mfBm) and we recover the results stated in
(?).

Contributions

Chapter 2 focuses on the effects of time-transformations on families of random variables
and random processes in L2-spaces. The goal of this chapter is to study characteristic
properties related to these time-transformations and their consequences on the families
of random variables and random processes in L2-spaces. The two time-transformations
of interest are time-origin change or time-translation, and time-scaling, and the related
characteristic properties are stationarity and self-similarity, respectively.
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In Chapter 2, we consider the L2-subspaces spanned by families of random variables
(r.v) {X(θ), θ ∈ J}, denoted as HX . HX is the Hilbert subspace of all the finite linear
combinations α ·X(θ) =

∑n
1 αiX(θi) and their limits in L2; which is characterized by

the L2-characteristics of {X(θ)}, given by the quadratic norm of the components (that
is, the square of the norm) QX(θ) := Q(X(θ)) = ∥X(θ)∥22 = E(|X(θ)|2) and by the
inner products KX(θ, θ′) = ⟨⟨X(θ), X(θ′)⟩⟩ := E(X(θ)X(θ′)), a dependency indicator.

Random families indexed by real time {X(t), t ∈ R} (or random processes) arouse
particular interest. Their L2-characteristics QX(t) and KX(t, s) can be complex to
calculate. Therefore, additional properties are introduced to reduce their complexity.
If the properties are only true "component by component", (t by t), only the quadratic
norm family {QX(t)} is concerned, and we are discussing the QX -property.

QX and L2-Stationarity and Self-similarity of random processes The station-
arity property is related to the effects of time-origin change on the process, {Xh(t) =

X(t + h) − X(h), (h ∈ R)}. L2-stationarity expresses that the processes {Xh(t)} and
{X(t)} have the same L2-characteristics for any h, that is the same quadratic norm
Q(X(t+ h)−X(h)) = QX(t) and inner kernel ⟨⟨X(t+ h)−X(h), X(s+ h)−X(h)⟩⟩ =
KX(t, s), whereas the QX -stationarity expresses only that for any t and h, the random
variablesX(t+h)−X(h) andX(t) have the sameQX -norm, that is Q(X(t+h)−X(h)) =

QX(t). Fortunately, this weaker hypothesis is sufficient to compute the kernel KX(s, t),
and deduce the L2-stationarity.

More precisely, L2-stationarity expresses invariance by time-translation or time-origin
change of the L2-characteristics of the process.

Definition 1.3. (i) A process {X(t)} is said to be L2-stationary if for any h ∈ R, the
processes {Xh(t) = X(t + h) − X(h)} and {X(t)} have the same L2-characteristics,
quadratic norm, and inner kernel

Q[X(t+ h)−X(h)] = Q[X(t)] = QX(t), and ⟨⟨Xh(t), Xh(s)⟩⟩ = KX(t, s). (1.43)

(ii) The process {X(t)} is said to be QX-stationary if only the first condition holds:

Q(Xh(t)) = Q(X(t)) = QX(t) .

The self-similarity property is related to a time-scale change in the process such that
{Xλ(t) = λ−

1
2X(λt), (λ > 0)}. The L2-self-similarity supposes the existence of a non-

negative function (Θ(λ), λ > 0) such that the processes {X(λt)} and {Θ 1
2 (λ)X(t)} have

the same L2-characteristics, that is, the same quadratic norm QX(λt) = Θ(λ)QX(t)

and the same inner product ⟨⟨X(λt), X(λs)⟩⟩ = Θ(λ)KX(t, s). The QX -self-similarity
assumes only that for any t and λ > 0, QX(λt) = Θ(λ)QX(t). Thus, these two concepts
are not equivalent.

Definition 1.4. Let {Θ(λ), λ > 0} be a non-negative non constant function.
(i) A process {X(t)} is said to be Θ-L2-self-similar, if for all λ > 0, the processes
{X(λt)} and {Θ 1

2 (λ)X(t)} have the same L2-characteristics, that is,

QX(λt) = Θ(λ)QX(t), ⟨⟨X(λt), X(λs)⟩⟩ = Θ(λ)⟨⟨X(t), X(s)⟩⟩. (1.44)
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(ii) {X(t)} is said to be QX-(Θ) self-similar if only QX(λt) = Θ(λ)QX(t), ∀t.

More precisely, the QX -self-similarity establishes a spatial proportionality relationship,
between the quadratic norms taken at proportional times {QX(λt)} and {QX(t)} with
λ > 0, whose spatial proportionality factor is a function of the time proportionality
factor λ such that Θ(λ) > 0. The L2-self-similarity establishes a spatial proportionality
relationship, both between the quadratic norms {QX(λt)} and {QX(t)}, and between
the inner kernels ⟨⟨X(λt), X(λs)⟩⟩ and ⟨⟨X(t), X(s)⟩⟩, taken at proportional times, whose
spatial proportionality factor is a function of the time proportionality factor λ such that
Θ(λ) > 0.

With the only QX -self-similarity assumption, the form of function Θ can be determined,
and the quadratic norm is characterized.

Proposition 1.5. A family {X(t)}, with a right-continuous (rc) quadratic norm {QX(t)}
is self-similar in quadratic norm only if the function QX is a power function, with a
positive exponent γ, QX(t) = |t|2γQX(1) if t > 0, QX(t) =

∣∣t∣∣2γ QX(−1) if t < 0, and
QX(0) = 0. In other words, for all t ∈ R QX(t) =

∣∣t∣∣2γ QX(sgn(t)) where sgn(t) = 1 if
t > 0, sgn(t) = −1 if t < 0, and sgn(t) = 0 if t = 0.

It can be observed that the QX -self-similarity property cannot be extended to the inner
kernel without an additional assumption.

In Chapter 2, we place at the scale of the Hilbert spaces and prove that without
any assumption of distribution, the only assumptions of QX -stationarity and QX -self-
similarity are sufficient to fully characterize the covariance kernel and to show that
this covariance kernel is itself stationary and self-similar, that is, to obtain the L2-
stationarity and the L2-self-similarity.

Combining the self-similarity and stationarity of the quadratic norm implies restricting
the exponent γ of the power function QX(t) to the interval (0, 1), owing to QX -sub-
linearity induced by the stationarity.

Theorem 1.6. (i) A necessary and sufficient condition for an L2-rc {X(t)} to be L2-
self-similar and stationary, is the existence of a power function, with exponent 0 < γ < 1

such that the L2-characteristics are,

QX(t) = QX(−t) = QX(1)
∣∣t∣∣2γ and KX(t, s) =

QX(1)

2
(|t|2γ + |s|2γ − |t− s|2γ).

(1.45)

(ii) The condition γ = 1/2, is equivalent to the orthogonality of the increments, defined
on the disjoint intervals. In this case KX(t, s) = QX(1)(

∣∣t∣∣ ∧ |s|).

Remark: − The inner kernel is both stationary from Proposition ??, and γ-self-
similar, which is obvious in Equation (1.45).

Stationarity and self-similarity in Gaussian Hilbert space Adding the Gaus-
sian assumption to the stationarity and self-similarity properties leads to express these
properties first in distribution, then in trajectory.
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Definition 1.7. The Gaussian process {X(t)} is γ-self-similar and stationary in dis-
tribution if and only if the two Gaussian processes ({X(t)} and {Xh(t) = X(t + h) −
X(t)}, h ∈ R), respectively ({X(λt)} and {λγX(t)}, λ > 0) have the same Gaussian
distribution, that is, the same mean and inner kernel.

In this framework, we prove that the only assumptions of QX -stationarity and QX -self-
similarity allow us to obtain the stationarity and self-similarity in distribution.

A Gaussian process stationary and self-similar in distribution is obviously an L2-γ-self-
similar and stationary process. Thus, all the previous results hold true. In particular,
its quadratic norm is the power function QX(1)|t|2γ with 0 < γ < 1, and the inner
kernel is completely specified. The only unknown property concerns the mean, which,
by the stationarity property verifies mX(t+h) = mX(t)+mX(h). Therefore, the mean
is a linear function mX(t) = mX(1)t. However, based on the self-similarity property,
mX(λ) = λγmX(1). These two equations are contradictory, if γ ̸= 1. But γ ∈ (0, 1)

Subsequently, mX(t) = 0.

Theorem 1.8. A Gaussian process {X(t)} is γ-self-similar and stationary in distribu-
tion, if and only if {X(t)} is a centered process, and is γ-self-similar and stationary in
the L2-sense. The quadratic norm QX(t) is the variance VX(t) = VX(1)|t|2γ , γ ∈ (0, 1).

(ii) If γ = 1
2 , the self-similar and stationary Gaussian process {X(t)} has independent

increments and a linear variance VB(t) = VB(1)|t|. This process is called Brownian
motion or Wiener process. In the following, this is denoted as {B(t)}.
(iii) For any λ > 0 and h ∈ R, the processes {Bh(t) = B(t + h) − B(h)}, {Bλ(t) =

λ−1/2B(λt)} and {Bλ
h(t) = λ−1/2(B(λ(t+ h))−B(λh)} are also Brownian motions.

Some well-known examples We provide some well-known examples of self-similar
Gaussian processes with stationary increments: the Brownian motion whose increments
are independent, and the Path-Dependent Brownian Motion (PDBM), which is gener-
ated by a stochastic integral of a deterministic bivariate kernel against Brownian motion,
and whose increments are correlated.

Brownian motion The Gaussian process with variance |t| is known as Brownian mo-
tion (indexed by R and not R+ as usual) and is denoted {B(t)}. It is the best-known
process of the family Gss of self-similar and stationary Gaussian processes.

Theorem 1.9. Let {B(t)} be standard Brownian motion.

(i) The L2-space spanned by the Brownian motion {B(t)} is the family of Gaussian
stochastic integrals B(ϕ) :=

∫
ϕ(u)dB(u) of deterministic functions ϕ in L2(Leb), with

variance V[B(ϕ)] =
∫
|ϕ|2du.

(ii) The covariance of two stochastic integrals is Cov
(
B(ϕ), B(ψ)

)
=
∫
R ϕ(u)ψ(u)du.

Therefore, there exists an isometry between HB and L2(Leb).
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We prove the stationarity and self-similarity of Brownian motion in a trajectory sense.
This result is much stronger than the previous one because we obtain an equality of
processes instead of a result in distribution.

Because they have the same QX -norms, the processes {Bh(t) = B(t+h)−B(t), h ∈ R}
and {Bλ(t) = 1√

λ
B(λt), λ > 0}, also belonging to Gss, are Brownian motions. The

tool of stochastic integrals of deterministic functions ϕ ∈ L2(Leb), B(ϕ) =
∫
ϕ(u)dB(u)

allows describing the Gaussian space HB, but also provides a change of variable formula
for the pathwise comparison between the random variables B(ϕ), Bh(ϕ), B

λ(ϕ).

Theorem 1.10. Recall that for all λ > 0, h ∈ R and t ∈ R, {Bt}, {Bλ(t) = λ−
1
2B(λt)},

and {Bh(t) = B(t+ h)−B(h)} are Brownian motions.
For any ϕ ∈ L2(Leb), we have the following pathwise representations,∫

λ−
1
2ϕ

(
u

λ

)
dB(u) =

∫
ϕ(u)dBλ(u) and

∫
ϕ
(
u− h

)
dB(u) =

∫
ϕ(u)dBh(u).

All these variables are centered Gaussian variables with the same variance
∫
|ϕ(u)|2du.

Fractional Brownian motion (fBm)

In a second part, we are concerned with the construction of Gss-processes as stochastic
integrals of deterministic functions ϕ(u) against Brownian motion, where the determin-
istic functions ϕ(u) are replaced by bivariate kernels κ(t, u) such that

∫
|κ(t, u)|2du <∞.

The covariance kernel is defined as KXκ(t, s) =
∫
R κ(t, u)κ(s, u)du and κ(0, u) = 0.

In line with Mandelbrot and Van Ness in 1968 (Mandelbrot and Van Ness, 1968a),
a Path Dependent Brownian motion (PDBM), is defined as a Gaussian process, like
Xκ(t) =

∫
κ(t, u)dB(u).

We are interested in the time-translated and time-scaled PDBM defined for all λ > 0,
h ∈ R and almost all (t, u) ∈ R2 by: Xκ(t+ h,B)−Xκ(h,B) =

∫
(κ(t+ h, u)− κ(h, u))dB(u)

Xκ(λt,B) =
∫
κ(λt, u)dB(u).

(1.46)

The variable change formula suggests transporting the time-change initially supported
by the time variable t into a change on the integration variable u. Then, we prove
pathwise identities on the time-transformed PDBMs.

For all λ > 0, h ∈ R and t ∈ R, {Bt}, {Bh(t) = B(t + h) − B(h)}, and {Bλ(t) =

λ−
1
2B(λt)} are Brownian motions. We define the square integrable kernels for almost

all (t, u) ∈ R2 and for all h ∈ R and λ > 0 by:

κ(t, u), κh(t, u) = κ(t, u− h), κλ(t, u) = λ−1/2κ(t, u/λ). (1.47)

Theorem 1.11. Let us define the PDBMs {Y (t) = Xκ(t, B)}, {Y λ(t) = Xκ(t, Bλ)}, {Yh(t) =
Xκ(t, Bh)}.
(i) Processes {Y λ(t)} and {Yh(t)} have the same distribution as {Y (t)}.
(ii) {Y λ(t)} and {Yh(t)} satisfy the pathwise identities:

{Y λ(t) = Xκλ
(t, B)} and {Yh(t) = Xκh(t, B)}. (1.48)
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Finally, we prove the stationarity and self-similarity of PDBMs in terms of equality of
processes, that is, in a trajectory sense.

Theorem 1.12. Let {B(t)}, {Bλ(t)}, {Bh(t)}, be the transformed Brownian motions.

(i) If the time-stationarity condition of bivariate kernel κ(t, u) is satisfied,

κ(t+ h, u)− κ(h, u) = κh(t, u) = κ(t, u− h) (1.49)

then the following pathwise identity holds:

{Xκ(t+ h,B)−Xκ(h,B) = Xκ(t, Bh)} (1.50)

and the process {Xκ(t, B)} is stationary.

(ii) If the time-self-similarity condition of the bivariate kernel κ(t, u) is satisfied,

κ(λt, u) = η(λ)κ

(
t,
u

λ

)
= (

√
λη(λ))κλ(t, u) with η(λ) = λν1{λ>0}, ν ∈

(
−1

2
,
1

2

)
(1.51)

then the following pathwise identity holds:

{Xκ(λt,B) = η(λ)
√
λXκ(t, Bλ)}. (1.52)

and the process {Xκ(t, B)} is self-similar.

(iii) If both the time-stationarity (Equation (1.49)) and time-self-similarity (Equation
(1.51))) conditions are satisfied, then the following pathwise identity holds:

{Xκ(λ(t+ h), B)−Xκ(λh,B) = η(λ)
√
λXκ(t, Bλ

h)} (1.53)

and the process {Xκ(t, B)} is both stationary and self-similar with a variance-covariance
kernel defined as:

VX(t) = VX(1)
∣∣t∣∣2γ and KX(t, s) =

VX(1)

2
(|t|2γ + |s|2γ − |t− s|2γ) (1.54)

where γ ∈ (0, 1), η(λ) = λγ−
1
21{λ>0}.

For the PDBM process to be self-similar and stationary, it suffices that the kernel κ
satisfies the system: κ(t+ h, u)− κ(h, u) = κ(t, u− h)

κ(λt, λu) = η(λ)κ
(
t, u
)

with η(λ) = λν1{λ>0}, ν ∈
(
−1

2 ,
1
2

) (1.55)

The last step is to find a bivariate kernel κ(t, u), solution of the above system, and square
integrable in u. The solution proposed by Mandelbrot and Van Ness ((Mandelbrot and
Van Ness, 1968a)) is the fractional kernel κν , which is clearly a solution of the previous
system.
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Proposition 1.13. A bivariate kernel proposed by Mandelbrot and Van Ness is given
by:

κν(t, u) = (t− u)ν1{u<t} − (−u)ν1{u<0}, with ν = γ − 1

2
∈
(
−1

2
,
1

2

)
. (1.56)

(i) This kernel has some problems of definition when u→ 0, u→ t.

(ii) This kernel satisfies System (1.55).

(iii) For all ν ∈
(
−1

2 ,
1
2

)
, κ(t, u) ∼ νt(−u)(ν−1) is Lebesgue square integrable when

u→ −∞ because 2(ν − 1) < −1.

For ν < 0, when u → 0 (resp. u → t), κ(t, u) ∼ −(−u)ν (resp. κ(t, u) ∼ (t − u)ν)
which is Lebesgue square-integrable because 2ν + 1 > 0.

Then κ(t, u) is Lebesgue u-square integrable.

The square integrability verifies that:

− for any value of ν, for u in the neighborhood of −∞
∫ ∣∣∣κ(t, u)∣∣∣2 du <∞,

− for ν < 0, for u in the neighborhood of 0 and for u in the neighborhood of t,∫ ∣∣∣κ(t, u)∣∣∣2 du <∞.

Some remarks guide intuition on obtaining such a solution.

Extension to the multidimensional framework Finally, an extension to the
multidimensional framework is provided, first for the d-dimensional Brownian mo-
tion whose components are correlated Brownian motions with covariance matrix of
(ρi,j(t ∧ s))i,j∈J1,dK2 , and then for multivariate fractional Brownian motion (mfBm).

Definition 1.14. {Xκ(t, B) = (Xκ1
(t, B1), Xκ2

(t, B2), . . . , Xκd
(t, Bd))}, called d-dimensional

fractional Brownian motion, is a multidimensional Gaussian process defined as the
stochastic integral of a vector of deterministic bivariate kernels against a vector of linear
transformations of the Wiener process, such that for almost all (t, u) ∈ R2:

Xκ(t, B) =

∫
κ(t, u)⊙ dB(u) :=

(∫
κi(t, u)dBi(u)

)
i∈J1,dK

(1.57)

where ⊙ is the element-wise product, κ(t, u) = (κi(t, u))i∈J1,dK is the vector of kernels
proposed by Mandelbrot and Van Ness in Equation (1.56), B(t) = (Bi(t))i∈J1,dK and its
covariance kernel is given by:

KXκ((i, t), (j, s)) = Cov

(
Xκi

(t, Bi), Xκj
(s,Bj)

)
=

∫
κi(t, u)κj(s, u)ρi,jdu. (1.58)
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Each coordinate of vector κ(t, u) satisfies the conditions of stationarity and self-similarity
in the univariate framework given in Equation (1.55). These properties are then ob-
tained in the vector sense, that is, for all λ > 0, h ∈ R and for almost all (t, u) ∈ R2: κ(λt, λu) = η(λ)κ

(
t, u
)

with η(λ) = (λνi1{λ>0})i∈J1,dK, νi ∈
(
−1

2 ,
1
2

)
κ(t+ h, u)− κ(h, u) = κ(t, u− h).

(1.59)

We prove that mfBm is a self-similar multidimensional Gaussian process with stationary
and correlated increments.

Theorem 1.15. Let {Xκ(t, B)} be a d-dimensional fractional Brownian motion. For
all λ > 0, h ∈ R and for almost all (t, u) ∈ R2: Xκ(t+ h)−Xκ(h) =

∫
κ(t, u)⊙ dBh(u) = Xκ(t, Bh)

Xκ(λt) =
√
λη(λ)⊙

∫
κ(t, u)⊙ dBλ(u) =

√
λη(λ)⊙Xκ(t, Bλ).

(1.60)

The vector process {Xκ(t, B)} is stationary and self-similar in the trajectory sense.

Moreover, its covariance kernel is completely characterized by power functions whose
exponents depend on the spatial components.

Theorem 1.16. Let {Xκ(t, B)} be a d-dimensional fractional Brownian motion.

(i) The covariance kernel between two distinct coordinates taken at the same time t ∈
R\{0} is completely characterized by the power function of exponent γi+γj where γi, γj ∈
(0, 1):

KXκ((i, t), (j, t)) = KXκ((i, 1), (j, 1))
∣∣t∣∣γi+γj

. (1.61)

(ii) The symmetrized covariance kernel between two distinct coordinates taken at two
distinct times Xκi(t, Bi) and Xκj (s,Bj) with t, s ∈ R\{0} is completely characterized
by a linear combination of power functions of exponent γi + γj where γi, γj ∈ (0, 1):

KXκ((i, t), (j, s)) +KXκ((i, s), (j, t)) = KXκ((i, 1), (j, 1))

(∣∣t∣∣γi+γj

+ |s|γi+γj −
∣∣t− s

∣∣γi+γj
)
.

(1.62)

Change of notations: In Chapter 3, the fractional Brownian motion {Xκi
(t, Bi)} is

denoted as {BHi(t)}, the exponent γi of the power function corresponds to the Hurst
Hi exponent, and the bivariate kernel κi(t, u) is replaced by ψHi

0,t (u).

1.3.2 Chapter 3 - VaR prediction for asset portfolios under
fractional dynamics

State of the art

Value at risk (VaR) is a statistic that quantifies the extent of possible financial losses
within a firm, portfolio, or position over a specific time frame. This metric is most
commonly used by investment and commercial banks to determine the extent and prob-
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abilities of potential losses in their institutional portfolios. Risk managers use VaR to
measure and control the level of risk exposure. One can apply VaR calculations to
specific positions or whole portfolios or use them to measure firm-wide risk exposure.
Value-at-Risk (VaR) is the risk measure the most currently used by the regulators. The
VaR at the risk level α ∈ (0, 1) corresponds to the quantile at the order α of the P&L
distribution.

The literature on VaR is huge, there are more than 2700 articles referenced on Google
scholar. VaR has been studied in details in the well-known books of (Wipplinger, 2007,
Part II. p105) and (McNeil et al., 2015, Chap.2, p37). Computing the VaR is a chal-
lenging problem as it requires knowing the distribution of the portfolio P&L, which is
usually unknown. A wide range of papers were interested in the prediction of the VaR.
To name a few, see for instance (Cheung and Powell, 2012) which presents a teach-
ing study using parametric computation and Monte-Carlo simulation to compute VaR,
or (Feuerverger and Wong, 2000) that explains the computation of VaR for nonlinear
portfolios. Although VaR is not a perfect risk metrics (see (Delbaen et al., 1998)), it
is still commonly used. It is fundamental to have an accurate estimate of the VaR: in
case of under-estimation, the financial institution will take too much risk, without be-
ing prepared for this; in case of over-estimation, the amount of money to be kept aside
would be too high, preventing some banking activities. In addition, its computation
has to be efficient, because its evaluation is frequent and has to be made according to
numerous portfolios. In (Gaivoronski and Pflug, 2005), a method of calculating the port-
folio which gives the smallest V@R among those, which yield at least some specified
expected return is presented. Using this approach, the complete mean-VaR efficient
frontier may be calculated. The method is based on approximating the historic VaR by
a smoothed V@R (SVaR) which filters out local irregularities. Value-at-Risk (VaR) and
Conditional-Value-at-Risk (CVaR) are two widely-used measures in risk management.
The works of (Bardou et al., 2009) deal with the problem of estimating both VaR and
CVaR using stochastic approximation (with decreasing steps): a first Robbins-Monro
(RM) procedure based on Rockafellar-Uryasev’s identity is proposed for the CVaR. The
estimator provided by the algorithm satisfies a Gaussian Central Limit Theorem. As
a second step, in order to speed up the initial procedure, a recursive and adaptive im-
portance sampling (IS) procedure which induces a significant variance reduction of both
VaR and CVaR procedures is presented. In (Manganelli and Engle, 2001), a survey and
an evaluation of the performance of the most popular univariate VaR methodologies
is carried out paying particular attention to their underlying assumptions and to their
logical flaws. The works of (Jorion, 1996) lay out the statistical methodology for analyz-
ing estimation error in VAR and shows how to improve the accuracy of VAR estimates.
Regulators require banks to employ value-at-risk (VaR) to estimate the exposure of
their trading portfolios to market risk, in order to establish capital requirements.

However, portfolio-level VaR analysis is a high-dimensional problem and hence computa-
tionally intensive. The works of (Albanese et al., 2002) present two new portfolio-based
approaches to reducing the dimensionality of the VaR analysis. A classical approach
to predict VaR is the weighting moving average model, as presented in (Hendricks,
1996). The works of (Lucas and Zhang, 2016) present a simple methodology for model-
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ing the time variation in volatilities and other higher-order moments using a recursive
updating scheme that is similar to the familiar RiskMetrics approach. In (Gabrielsen
et al., 2015), author provide an insight to the time-varying dynamics of the shape of
the distribution of financial return series by proposing an exponential weighted moving
average model that jointly estimates volatility, skewness and kurtosis over time using
a modified form of the Gram-Charlier density in which skewness and kurtosis appear
directly in the functional form of this density. In this setting VaR can be described as a
function of the time-varying higher moments by applying the Cornish-Fisher expansion
series of the first four moments. The paper (Alexander and Dakos, 2023) discusses the
Value-at-Risk Contribution under the asset liability model using the EWMA approach.
It is assumed that asset returns and liabilities are time series data following the Ex-
ponential Weighted Moving Average (EWMA) model. Return of surplus which is the
difference between asset return and liability is analyzed using asset liability model. In
this case the risk of surplus return is measured using the Value-at-Risk model. When
investments are made on multiple assets, each asset will contribute to the establish-
ment of Value-at-Risk from the investment portfolio, which can be measured using the
Value-at-Risk Contribution model. Using Value-at-Risk Contribution, it can be seen
how much Value-at-Risk surplus investment portfolio, and what is the proportion of
Value-at-Risk contribution of each surplus of investment asset. Based on the calcula-
tion of Value-at-Risk Contribution, can be considered for investors in investing in some
assets analyzed. The works of (Sukono et al., 2018) derive a combined and dynamic
hedging model- exponentially weighted moving average-generalized autoregressive con-
ditional heteroskedasticity (GARCH)(1,1)-M applicable to the real financial markets
based on previous studies. The results in this paper turn out that the model built
is not only excellent for the pursuit for the minimum VaR but also practical for the
actual situation where the variances of financial price data are time-varying. The pa-
per (Anantafortuna and Anggono, 2019), intends to use Value at Risk as a tool for
risk assessment for trading activities based on Exponential Moving Average and Count
Back Line strategy. This paper also aims to inform the level of risk investors take with
a certain investment by calculating the maximum potential loss that occur every day
and assess whether trading activities were performed within or beyond Value at Risk
calculated. Empirical studies have shown that a large number of financial asset returns
exhibit long-range dependence. Moreover, some long-memory or long-range dependence
can also be observed as a stylized fact in market volatility, with significant impact on
pricing and forecasting of market volatility. Since risk-measures are based on underlying
asset returns dynamics, then in such cases, the classical methodology used to predict
risk measures present bad performance. To address such an issue, auto-regressive mod-
els such as ARCH or GARCH have been used to predict VaR. In (Anantafortuna and
Anggono, 2019), authors show that, on the one hand, models that accomodate long
memory hold the promise of improved long-run volatility forecast as well as accurate
pricing of long-term contracts. On the other hand, recent focus is on whether long
memory can affect the measurement of market risk in the context of Value-at-Risk
(VaR). In this paper, author evaluate the Value-at-Risk (VaR) and Expected Shortfall
(ESF) in financial markets under such conditions. Classical VaR estimation methodo-
logy such as exponential moving average (EMA) as well as extension to cases where long
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memory is an inherent characteristics of the system are investigated. In particular, two
long memory models are estimated, the Fractional Integrated Asymmetric Power-ARCH
and the Hyperbolic-GARCH with different error distribution assumptions. These mod-
els exhibit better performances in predicting VaR as the classical approaches that don’t
take into account long-range dependence. In (Aloui, 2008), the long-range memory is
explored on energy markets volatility and value-at-risk (VaR). The main question is:
can we estimate better the VaR if long memory exists? To investigate this question sev-
eral GARCH-type processes, including the FIGARCH process, have been implemented
to some main energy products’daily prices (January 1986 to July 2007). Value- at-risk
was estimated for both the short and the long trading positions and at various confid-
ence levels. Normal, Student and skewed Student distributions are suggested for divers
GARCH-type processes. The GARCH-type VaR performance is assessed by estimat-
ing the failure rate of the Kupiec test statistic. Consistent with previous studies, our
results show that energy price volatility exhibits a long-range memory. The VaR com-
puted through a skewed Student-t FIGARCH process provides the best performance
for both the short and the long trading positions. The works of (Youssef et al., 2015)
present three long-memory-models including, FIGARCH, HYGARCH and FIAPARCH
to forecast energy commodity volatility by capturing some volatility stylized fact such
as long-range memory, heteroscedasticity, asymmetry and fat-tails. The paper (Tang
and Shieh, 2006) investigate the long memory properties for closing prices of three
stock index futures markets. The FIGARCH (1, d, 1) and HYGARCH (1, d, 1) models
with normal, Student-t, and skewed Student-t distributions for S&P500, Nasdaq100,
and Dow Jones daily prices are estimated first. Then the value-at-risks are calculated
by the estimated models. The empirical results show that for the three stock index
futures, the HYGARCH (1, d, 1) models with skewed Student-t distribution perform
better based on the Kupiec LR tests. In particular, for the S&P500 and Nasdaq100
futures prices.

Contributions

Chapter 3 focuses on the construction of an accurate predictive model for the Value-at-
Risk (VaR) considering long-range dependence (respectively short-range dependence).
Auto-regressive models have already been developed to fulfill this task; however, such
models depend on a large number of parameters that have to be estimated. Our works
propose another approach capable of capturing long-range dependence (respectively
short-range dependence) owing to Gaussian self-similar processes with stationary incre-
ments, called fractional Brownian motions (fBm). We consider a setting in which the
price dynamics are described by fractional Black-Scholes models, depending on frac-
tional Brownian motions parameterized by their Hurst exponent. These models have
the advantage of capturing correlations in time and between assets. Compared to the
usual Black-Scholes model, the flexibility in the choice of the Hurst exponent allows for
a better description of price trajectories to fit reality. Thus, the predictive model for
the conditional VaR at time horizon h (that is, the VaR of P&L over the next period
of length h conditionally to the observations available at the computation time) will be
able to predict, in a more accurate way, the amount of money to be kept aside, that
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is, neither over-charge nor under-charge the regulator. The accuracy of our VaR pre-
dictions is assessed using a backtesting procedure based on (Christoffersen, 1998). The
use of fractional models in finance is not new, and has become increasingly important
in recent years. Fractional models have been widely used for different purposes; how-
ever, in the above-mentioned studies, the prediction of conditional VaR has not been
addressed.

Overall, we make the following contributions. We design a theoretical framework for
fractional models in Gaussian Hilbert space. We design a closed-form formula for the
Gaussian approximation of the conditional VaRα, at the time horizon h, of the future
portfolio variation under fractional dynamics. We then provide error quantification of
the Gaussian approximation. We use a robust methodology to estimate the parameters
of the fractional model. We perform a backtesting procedure to assess the accuracy of
our predictive approximation. We support our analysis through various experiments
that illustrate the behavior of our new model.

First, we establish a theoretical Gaussian framework without any application in the
financial field. In this part, we prove the specific form of the conditional expectation
and variance of a linear combination of future increments of several correlated fBm,
given past increments.

Theoretical framework There is no unique way to model multivariate fractional
Brownian motions: the most direct way is to give their covariance function as a mul-
tivariate Gaussian process; however, this method is quite inconvenient when dealing
with conditional in time computations, with various filtrations to account for the avail-
able observations. Therefore, we prefer working directly at the level of the Gaussian
Hilbert space indexed by functions in

L2
d := L2(Rd,du) =

{
f : R 7→ Rd s.t.

∣∣f ∣∣2L2
d
:=

∫
R
|f(u)|2du < +∞

}
(1.63)

where basic quantities are defined by Wiener integrals and, projections and conditional
expectations are made through projections of functions in L2

d.

We adopt the framework of the isonormal Gaussian process associated with the Hilbert
space L2

d, with the scalar product

⟨f, g⟩L2
d
=

∫
R
f(u) · g(u)du, (1.64)

also called Gaussian Hilbert space; here f(u) · g(u) is just the scalar product in Rd

between the vector-valued functions f and g at point u. See (Janson, 1997) for a broad
account on Gaussian Hilbert space. Namely, we consider a probability space (Ω,F ,P)
supporting a centered Gaussian family of scalar random variables

H = {I(f) : f ∈ L2
d} (1.65)

as defined in (Janson, 1997, Chapter 7, Thm.7.1), such that the isometry property is in
force

E
[
I(f)I(g)

]
= ⟨f, g⟩L2

d
. (1.66)
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One way to construct this Gaussian Hilbert space indexed by square integrable functions
f ∈ L2

d is to assume that the probability space supports a d-dimensional Brownian
motion indexed by the real line, (Wt = (W 1

t , · · · ,W d
t )

⊤ : t ∈ R), and to define I(f) by
stochastic integration

I(f) =

∫
R
f(u) · dWu =

d∑
i=1

∫
R
f i(u)dW i

u (1.67)

(a.k.a. Wiener integral). See (Janson, 1997, Chapter 7) where integrals are restricted to
R+, extension to R is immediate. As shown in Chapter 2, fractional Brownian motion
(fBm) with Hurst parameter H corresponds to a specific choice of function f : which
is the well-known time-representation of Mandelbrot and Van Ness (Mandelbrot and
Van Ness, 1968b).

Definition-Proposition 1. Let H ∈ (0, 1) and set, for any t ≥ 0,

BH
t = I((ψH

0,t(.), 0, · · · , 0)⊤) =
∫
R
ψH
0,t(u)dW

1
u with ψH

s,t(u) =
1

cH

(
(t− u)

H− 1
2

+ − (s− u)
H− 1

2
+

)
,

(1.68)
where

cH :=

√√√√ 1

2H

(
3

2
−H

)
B

(
2− 2H,H +

1

2

)
(1.69)

and B(x, y) =
∫ 1
0 u

x−1(1− u)y−1du is the Beta function.

This defines a scalar fBm BH , that is, a centered Gaussian process with covariance

Cov
(
BH

t , B
H
s

)
=

1

2
(|t|2H + |s|2H − |t− s|2H), H ∈ (0, 1). (1.70)

FBm enjoys a self-similarity property. The self-similarity property states that for any
fixed λ > 0, the process {λ−HBH

λt}t∈R is also an fBm with Hurst exponent H ∈ (0, 1).
This is equivalent to say that for any fixed λ > 0, the processes {λ−HBH

λt}t∈R and
BH

t }t∈R have the same distribution. In other words, self-similarity property establishes
a spatial proportionality relationship of factor λH , between the distributions of {BH

λt}
and {BH

t }. This leads to obtain spatial proportionality relationships of factor λ2H

between the variances, respectively the covariance kernels, of the processes {BH
λt} and

{BH
t }. This type of scaling property will play a role in the simplification of some

subsequent formulae, as it allows changes in time and space scales in the processes. The
self-similarity property is, for example, useful for calculating the covariance function of
the fBm because it allows this covariance to be expressed using only power functions of
exponent H ∈ (0, 1) (self-similarity functions), and the covariance at time 1.

We define the multivariate fractional Brownian motion (mfBm) whose components are
correlated. To allow correlations between fBms, we add correlations to the driving
Brownian motion through a linear transformation of the Wiener process W . This works
as follows: let C = (ρi,j)1≤i,j≤d be a correlation matrix, and let R be a symmetric
square root of C (which exists because C is non-negative symmetric), so that

ρi,j = R:,i ·R:,j (1.71)
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where R:,i is the i-th column of R. Now, we define a multivariate fractional Brownian
motion, with correlated components, each having its own Hurst parameter.

Definition-Proposition 2. Let H1, · · · , Hd be a sequence of Hurst exponents in (0, 1)

and set, for any t ≥ 0 and any i ∈ {1, · · · , d},

Bi,Hi
t := I(ψHi

0,tR:,i) =

∫
R
ψHi
0,t (u)R:,i · dWu, (1.72)

where R:,i is the i-th column of a matrix R ∈ Rd. Then, this defines a multivariate frac-
tional Brownian motion (mfBm) with parameter H = (Hi)i ∈ (0, 1)d whose coordinates
(Bi,Hi

t ) are fBms with Hurst exponent Hi, and are correlated in a way that:

∀s, t ∈ R, Cov(Bi,Hi
t , B

j,Hj
s ) + Cov(B

j,Hj

t , Bi,Hi
s ) (1.73)

= Cov(Bi,Hi
1 , B

j,Hj

1 )

(
|t|Hi+Hj + |s|Hi+Hj − |t− s|Hi+Hj

)
,

(1.74)

where Cov(Bi,Hi
1 , B

j,Hj

1 ) is explicitly given in Lemma 3.1. Observe that

Bi
t := R:,i ·Wt, i ∈ {1, · · · , d} (1.75)

defines a d-dimensional Brownian motion with correlation C.

In what follows, we typically need to compute the conditional expectation and variance
of some stochastic integral I(f) conditionally to the fBm increments on some time grid.
A general result on how to compute E

[
I(f) | {I(fl)}(l∈I

]
and V

[
I(f) | {I(fl)}(l∈I

]
,

where (fl)l∈I is an arbitrary family of functions in L2
d, L′ is the closed subspace of L2

d

spanned by (fl)l∈I and f⋆ ∈ L′ is the (unique) orthogonal projection of f on L′, is
provided by:

E
[
I(f) | {I(fl)}(l∈I

]
= I(f⋆) and V

[
I(f) | {I(fl)}l∈I

]
=
∣∣∣f − f⋆

∣∣∣2
L2
d

. (1.76)

Applying the above formulae to the specific framework of fractional Brownian motion,
we obtain the following result.

Theorem 1.17. Consider the index family I = {(i, l) | i ∈ J1, dK, l ∈ J1, NK} and the
set of L2

d-valued functions

f il (·) := σiR:,iψ
Hi
tl,tl+1

(·). (1.77)

Let

f(·) =
d∑

i=1

ωi
tN
ψHi
tN ,tN+1

(·) (1.78)

be an L2
d function, where each d-dimensional coefficient ωi

tN
= ωiσiS

i
tN
R:,i is measurable

with respect to {I(f il )}(i,l)∈I .
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Then, the expectation of I(f) conditional on {I(f il )}(i,l)∈I can be written as

E
[
I(f)|{I(f il )}(i,l)∈I

]
=
∑

(i,l)∈I

ailI(f
i
l ) =

d∑
i=1

N∑
l=1

ail(B
Hi
tl+1

−BHi
tl

), (1.79)

and the conditional variance is given by:

V
[
I(f) | {I(f il )}(i,l)∈I

]
=

d∑
i,j=1

(ωi
tN

· ωj
tN
)

∫
R
ψHi
tN ,tN+1

(u)ψ
Hj

tN ,tN+1
(u)du (1.80)

−
N∑

i,j=1

N∑
k,l=1

aila
j
kρij

∫
R
ψHi
tl,tl+1

(u)ψ
Hj

tk,tk+1
(u)du, (1.81)

where the projection coefficients α⋆ = (a11, · · · , a1N , a21, · · · , a2N , · · · , ad1, · · · , adN )⊤ are
equal to:

α⋆ = M+y, (1.82)

where M+ is the Moore-Penrose pseudo-inverse (see (MacAusland, 2014, Section 5.5.4))
of the matrix

M =

(
⟨f i1k1 , f

i2
k2
⟩L2

d

)
(i1−1)×N+k1,(i2−1)×N+k2

and where
y =

(
⟨f, f i2k2⟩L2

d

)
(i2−1)×N+k2

.

Among the projection coefficients involved in the conditional expectation, the coefficient
α⋆ in Equation (1.82) is the one with the minimal norm.

2) Assume that the time-discretization is uniform, that is, tl = lh for l = 1, . . . , N . The
self-similarity property allows the covariance kernel to be factorized by a power of the
time step h, and the remaining amount in the factorization represents the covariance
kernel at time 1 (independent of h) between the two given fBms:

M(i1−1)∗N+k1,(i2−1)∗N+k2 = ρi1,i2h
Hi1

+Hi2

∫
R
ψ
Hi1
0,1

(
v − k1

)
ψ
Hi2
0,1

(
v − k2

)
dv, (1.83)

y(i2−1)N+k2 =
d∑

i=1

(ωi
tN

·R:,i2)h
Hi+Hi2

∫
R
ψHi
0,1

(
v −N

)
ψ
Hi2
0,1

(
v − k2

)
dv. (1.84)

The theoretical results are then applied to the framework of risk management in finance.

Financial framework We present the model used to describe the price dynamics.
Usually, the latter are described using a standard Black-Scholes model based on standard
Brownian motion. The approach presented in this work is quite different, because the
price dynamics are described by a fractional Black-Scholes model. This choice of model
is justified by the fact that the log-price increments remain Gaussian self-similar and
stationary. Therefore, interesting and tractable properties can be exploited, on the one
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hand, to model the trajectory of the log-price increments with accuracy and realism,
by introducing correlations between them which express long-range (respectively short-
range) dependence; and on the other hand, to insure stability and coherence of the
estimators and to perform theoretical computations of variances-covariances. Moreover,
the assets that we describe, such as FX rates, present significant correlations between
the log-price increments, which can be taken into account by the fractal properties
of fBm. Such an approach has already been adopted in the works of (Garcin, 2020)
(in dimension d = 1), in which fBm is used to take into account positive correlations
between returns. Here, we propose a multivariate extension – the so-called multivariate
fractional Black-Scholes model – to model the price dynamics of a universe composed
of several assets correlated in both time and space. Assume that we have a universe
composed of d assets whose market prices at time t are denoted by

(
S1
t , . . . , S

d
t

)
and

whose market log-prices at time t are denoted by
(
X1

t , . . . , X
d
t

)
.

The price dynamics are given by the geometric fractional Brownian motion formula:

∀i ∈ J1, dK, Si
t = Si

0e
cit+σiB

i,Hi
t with cit = log

(
E[Si

t ]

Si
0

)
− σ2i

2
t2Hi , (1.85)

where S0 is fixed and known, and cit is the centering parameter in the model. We assume
that all parameters are known owing to their estimations from the market data.

Let us focus on the properties of the log-price process:

Xi
t = Xi

0 + cit + σiB
i,Hi
t . (1.86)

Log-price process is an affine function with respect to fractional Brownian motion, and
as such, it benefits from its properties related to the self-similarity and stationarity of
the increments, while relaxing the property of independence of the increments. For any
h > 0, the log-price increments of length h are defined by (see Equation (1.72)):

δhX
i
t := Xi

t+h −Xi
t = δhc

i
t + σiI(ψ

Hi
t,t+hR:,i). (1.87)

In this framework, we are interested in determining risk measures of the future portfolio
price increment at time horizon h. The portfolio and its increments of size h are defined
by:

Pt =

d∑
i=1

ωiSi
t and δhPt := Pt+h − Pt. (1.88)

The objective is to compute the conditional VaRα of the future portfolio increment
δhPtN = PtN+1−PtN , given the past observations {S1

t0 , S
1
t1 , . . . , S

1
tN
, . . . , Sd

t0 , S
d
t1 , . . . , S

d
tN
}

taken on a uniform partition of the time interval [0, t], such that the time-step is con-
stant and equal to h, t0 = 0, tN = t and for all l ∈ J0, NK, tl = lh. Because all
parameters are known, observing the prices or the log-price or the log-price increments
yields the same information, modeled by sigma-algebra

G := σ(δhX
i
tl
: (i, l) ∈ I) = σ(I(f il ) : (i, l) ∈ I) where f il (·) := σiR:,iψ

Hi
tl,tl+1

(·)
(1.89)
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and I = {(i, l) | i ∈ J1, dK, l ∈ J1, NK} is an index family allowing both the indexing of
the assets and of the time increments.

Conditional on G, δhP̂tN = I(f), where the form of the function f is defined by Equation
(1.78) of Theorem 1.17 with the specific weighting ωi

tN
= ωiσiS

i
tN
R:,i:

f(·) =
d∑

i=1

ωiσiS
i
tN
R:,iψ

Hi
tN ,tN+1

(·), (1.90)

follows a Gaussian distribution. Specifically, conditional on G, δhP̂tN has a Gaussian
distribution characterized by its conditional expectation and conditional variance.

VaR model For the purpose of the conditional VaRα of δhPtN , we need to know the
conditional distribution of the future portfolio increment, given the past observations.
However, δhPtN is a linear combination of log-normal random variables, whose marginal
and conditional distributions are not known. Therefore, we propose a Gaussian approx-
imation of the conditional VaRα of δhPtN , with the conditional VaRα of δhP̂t, whose
conditional distribution is Gaussian. The Gaussian VaR is easily determined because
it relies only on the expectation and standard deviation of the Gaussian distribution.

δhPtN = PtN+h − PtN =

d∑
i=1

ωiδhS
i
tN

≃
d∑

i=1

ωiSi
tN
δhX

i
tN

=: δhP̂tN . (1.91)

Theorem 1.18 (Conditionally Gaussian Value-at-Risk). If δhP̂tN = I(f), with f given
by Equation (??), is the future increment of the log-price portfolio, and (δhX

i
tl

=

I(f il ))(i,l)∈I , with f il given by Equation (1.77) of Theorem 1.17, are the past log-price
increments of the assets that form the universe, then the conditional Gaussian VaRα

is given by the following formula:

VaRα(δhP̂tN |G) =
√
V[δhP̂tN |G]N−1(α) + E[δhP̂tN |G] (1.92)

where E[δhP̂tN |G] and V[δhP̂tN − E[δhP̂tN |G]] are given by Theorem 1.17.

ES model The conditional Expected-Shortfall of the Gaussian approximation of the
future portfolio increment is provided in the following theorem.

Theorem 1.19 (Conditionally Gaussian Expected-Shortfall). If δhP̂tN = I(f), with f
given by Equation (??), is the future increment of the log-price portfolio, and (δhX

i
tl
=

I(f il ))(i,l)∈I , with f il given by Equation (1.77) of Theorem 1.17, are the past log-price
increments of the assets that form the universe, the conditional Gaussian ESα is given
by the following formula:

ESα(δhP̂tN | G) =

√
V[δhP̂tN |G]
1− α

n(N−1(α)) + E[δhP̂tN |G] (1.93)

where n(x) = 1√
2π
e−

x2

2 and N(x) =
∫ x
−∞ n(y)dy are respectively the standard Gaussian

probability density function and cumulative distribution function.
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Error quantification We provide an error quantification of our predictive approx-
imation. More specifically, the goal is to quantify the accuracy in the approximation of
VaRα(δhPtN | G) with VaRα(δhP̂tN | G). In other words, we want to determine the
upper bound of the following amount:∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G)

∣∣∣ .
Theorem 1.20. Consider the future portfolio increment δhPtN and its Gaussian ap-
proximation conditionally to G, given by the future portfolio log-return δhP̂tN . Thus, we
have the following upper bound:

∆ =
∥∥∥δhPtN − δhP̂tN

∥∥∥
p,G

≤ 2

d∑
i=1

∣∣∣ωi
∣∣∣Si

tN

(
σ2i h

2HiC
1/pq
2pq +M2

i

)
e(Mi)++ pr

2
σ2
i h

2Hi

(1.94)

with p > 1 and 1
q +

1
r = 1.

If we assume that ∆ is small enough, that is, |∆| < 1− α a.s., then:

(i) The quantification of the approximation of the conditional VaRα of the future port-
folio price increment δhPtN with the conditional Gaussian VaRα of the future portfolio
log-price increment δhP̂tN is given as follows:

∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G)
∣∣∣ ≤ ( 2σ(G)

1− α−∆

d∑
i=1

∣∣∣ωi
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tN
(1.95)
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(1.96)

with Mi := E
[
δhX

i
tN

| G
]
, σ(G) =

√
V[δhP̂tN |G], G ∼ N (0, 1), and C2pq := E

[
G2pq

]
.

(ii) The quantification of the approximation of the conditional ESα of the future portfolio
price increment δhPtN with the conditional Gaussian ESα of the future portfolio log-price
increment δhP̂tN is given as follows:∣∣∣ESα(δhPtN | G)−ESα(δhP̂tN | G)

∣∣∣ (1.97)
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Parameters estimation Our predictive model involves the following parameters:
σ = (σ1, . . . , σd) represents the vector of market volatility related to each asset, H =

(H1, . . . ,Hd) is the vector of Hurst exponents controlling the smoothness of the price
trajectories of each asset, and R = {ρij , i, j = 1, . . . d} refers to the matrix of correlations
between assets i and j. We consider the sequence of observations (X1

t0 , . . . , X
1
tN
, . . . , Xd

t0 , . . . , X
d
tN
)

representing the log-price trajectories of the d assets. For ease of estimation, we assume
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that the observations are uniformly spaced in time, such that tj = jτ , where τ is the
minimal time-step. VaR model is backtested first on synthetic data, then on real data.
Therefore, we estimate these parameters from synthetic data in a first time, and then
from real data. The estimation methodology is based on three key assumptions: Gaus-
sianity, stationarity and self-similarity. These assumptions are required to estimate the
parameters.

The Gaussian assumption states that for each asset, the log-prices are assimilated to an
fBm. The log-price increments exhibit the same behavior as the fBm increments. Thus,
the log-price increments form a Gaussian vector and, any linear combination of the
increments is a Gaussian variable. The approximation of the future portfolio variation
δhP̂tN with the future variation of the log-price portfolio conditionally to the past log-
price increments of the assets δhP̂tN , is a Gaussian variable. Therefore, the conditional
VaRα of δhP̂tN , given the past log-returns of the assets is the quantile of a Gaussian
distribution. More precisely, VaRα(δhP̂N | G) is an affine function of the α-quantile
of the standard Gaussian distribution, whose intercept is given by the conditional ex-
pectation µ(G) = E

[
δhP̂N | G

]
and whose slope is the square root of the conditional

variance σ(G) =
√

V[δhP̂N | G].

The stationarity assumption establishes the invariance by time-origin change, or trans-
lation, of the properties and characteristics of the families of random variables in L2.
Specifically in our case, the stationarity property establishes the invariance by time-
origin change of the expectations, variances and covariances, of the fBm increments
process and thus of the log-price increments process. The stationarity property implies
that the estimators of the expectations, variances and covariances, applied to the incre-
ments process remain the same when the time-origin of the increments process changes;
thus, estimations of the parameters performed on the increments process are stable and
reliable.

The self-similarity assumption establishes a spatial proportionality relationship between
the characteristics, especially the square expectations, variances and covariances, of the
process itself and between the characteristics of the increments process, taken at two
proportional time-scales λt and t, with as spatial proportionality factor a power function
of λ: λ2Hi , Hi ∈ (0, 1). This implies that the estimators of the square expectations,
variances and covariances applied to the increments process at two proportional time-
scales λt and t are linked by a spatial proportionality relationship of factor λ2Hi , which
allows easy adaptation of the estimators to different time-scales. The self-similarity
property allows obtaining reliable estimations, coherent with the different time-scales.

Under these assumptions, the method of parameter estimation of the mfBm consists, for
each component of the mfBm, in computing the empirical variance of the log-price incre-
ments of several lengths, following the moment-based estimator of the fBm introduced
by (Istas and Lang, 1994; Kent and Wood, 1997).



1.3. CONTRIBUTIONS 113

The quadratic variation of the increments of size mτ with m ∈ N⋆ is respectively given
for disjoint increments and for increments with overlapping, as follows:

V i
m =

1⌊
N/m

⌋
⌊
N
m

⌋
−1∑

j=0

(Xi
(j+1)mτ −Xi

jmτ )
2 and V i

m =
1

N −m+ 1

N−m∑
j=0

(Xi
(j+m)τ −Xi

jτ )
2.

(1.99)

Two alternative methods of estimation, that are almost equivalent, have been studied.
The first method based on the works of (Amblard and Coeurjolly, 2011a) consists in
the linear regression of the log-variances versus the log-time-scales. The estimation of
the Hurst exponent is given by half the slope and the volatility by the exponential of
half the intercept. Another method of estimation based on the energy levels, studied
in details in (Chong et al., 2022a, p.12), (Chong et al., 2022b), and (Szymanski and
Takabatake, 2023), is also exploited.

Backtesting We provide a backtesting procedure to assess the performance of our
model through numerical experiments.

We consider an information set It−1 = {It−1, It−2, It−3, . . . , I1} which consists of a
sequence of indicator functions, where the hit variable It at time t is a Bernoulli variable
equal to 1 if the return between times t and t + h exceeds the VaR predicted at time
t, and 0 otherwise. More precisely, we obtain the hit variables using a rolling window
approach.

For each window of size w, we predict at time t the conditional VaR at time horizon h,
given the history of the window [t− w, t], and we compare it to the log-return realized
between times t and t+ h, thus generating a hit variable equal to either 1 or 0.

Following traditional literature on VaR backtesting (Christoffersen, 1998; Davis, 2016),
a satisfying VaRα must be such that E[It|It−1] = α. Equivalently, we evaluate two
criteria on the generated VaRs: the conditional coverage and the independence of the
hit variables; namely, it has to be shown that {It} iid∼ Bern(α).
In practice, the coverage test consists of estimating the conditional expectation of the
sequence of hit variables that should correspond to the desired risk level α. This estim-
ation was performed by computing the empirical mean of the hit variables. The closer
the empirical mean is to α, the more satisfying the conditional coverage test is.

Regarding independence, we propose a method inspired by extreme value theory, which
was first proposed by (Bücher et al., 2020). Indeed, two extreme events become approx-
imately independent if they are separated by a sufficient amount of time. To measure
the degree of dependence in a time series, we use the extremal index.

The extremal index θ is an indicator that quantifies the degree of dependence in a time
sequence of random variables, by counting the number of clusters of variables above a
predetermined threshold, namely, extreme values. It is equal to one if the sequence is
independent, which means that there is no cluster of extreme values. The closer the
extremal index is to zero, the more numerous the clusters of extreme values are, and
the larger the serial dependence in the sequence is.
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In the context of VaR backtesting, we intend to apply this method to the sequence
of hit variables, considering that an extreme value corresponds to a hit equal to one.
Therefore, the extremal index quantifies the presence of clusters of VaR violations.

An estimator of the extremal index can be provided by performing either a block or a
run declustering algorithm. More precisely, given an arbitrary block size b, we partition
the sequence of n successive hit variables into k =

⌊
n
b

⌋
non-overlapping blocks (block

declustering) or n − b running windows (run declustering). In the block-declustering
approach, each block containing nonzero hit variables represents a cluster. In the run-
declustering approach, we count the number of windows without a nonzero hit starting
at the end of a cluster. With both methods, the estimator of the extremal index is
then the ratio between the estimated number of clusters and the number of nonzero
hit variables. Formally, if we note Mi,j = max{Ii+1, . . . , Ij}, the two estimators are
defined as follows:

θ̂Bn (b) =

∑k
i=1 1{M(i−1)b,ib=1}∑kb

i=1 1{Ii=1}
and θ̂Rn (b) =

∑n−b
i=1 1{Ii=1,Mi,i+b=0}∑n−b

i=1 1{Ii=1}
. (1.100)

The backtesting process allows the comparison of three VaR models: conditional VaR,
Gaussian VaR (we force H to be equal to 0.5), and empirical VaR. In most cases, the
VaR model stands out in terms of coverage rate and extremal index, followed by the
Gaussian VaR and empirical VaR. The lowest VaR is almost always the empirical VaR
but its coverage rate and extremal index are very far from the desired ones.

1.3.3 Chapter 4 - Mean Estimation of Expected-Shortfall in
Heavy-Tailed Distribution

State of the art

Gaussian framework is the most commonly used in finance due its convenient properties.
However, the Gaussian distribution is thin-tailed then it assumes that extreme events
are rare, and tends to underestimate the probability of such events occurring. On the
contrary, heavy-tailed distribution like Pareto, assign higher probabilities to extreme
events, which is often more realistic in finance. One of the shortcomings of the VaR is
that VaR is not sensitive to the tail risk then it fails to capture extreme events what
often leads to an underestimation of the risk. When the distribution of the losses is
thin-tailed, such as the Gaussian distribution, extreme events occur with a very low
probability, then VaR remains efficient despite its shortcomings. However, when the
losses are described thanks to a heavy-tailed distribution, extreme events occur more
frequently, and VaR is not relevant any more. Unlike VaR, Expected-Shortfall provides
a measure of the average loss magnitude beyond the VaR threshold, focusing on tail risk.
This is crucial for institutions to understand the potential extent of losses during extreme
events, which VaR may not fully capture. Consequently, when losses are described by
heavy-tailed distributions, such as Pareto, ES is more appropriate than VaR to provide
an accurate evaluation of the risk.
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Literature on Expected-Shortfall The literature about Expected-Shortfall as a
solution to address the shortcomings of Value-at-Risk is wide. In a context of reinforce-
ment of the banking regulation, many authors have been interested in mirroring VaR
and ES in order to compare their strengths and weaknesses, (Kellner and Rösch, 2016).
Especially, the works of (Acerbi et al., 2001), (Acerbi and Tasche, 2002b), (Artzner
et al., 1999) are nice references.

Some authors focused on the famous debate between VaR and ES. This debate comes
from the fact that VaR is not a coherent risk measure due to its lack of subadditivity but
VaR is elicitable whereas ES is a coherent risk measure but is not elicitable. On the one
hand, the lack of subadditivity in the VaR can have significant consequences, primarily
in risk management and decision-making processes within financial institutions or any
organization exposed to market risks. Subadditivity refers to the property where the
total risk of a portfolio is less than or equal to the sum of the risks of its individual
components. However, if the VAR lacks subbadditivity, it means that the combined
risk of a portfolio could be higher than the sum of its individual part’s risks, which can
lead to an underestimation of risk, inaccurate hedging strategies, inadequate capital
reserves, misguided asset allocation or even systemic risk amplification. This is the
topic of papers (Embrechts, 2000), (Tibiletti, 2008).

In (Garcia et al., 2007), some methods are proposed to tackle the lack of subadditivity
of the VaR. The works of (Daníelsson et al., 2013) show that the VaR can be subadditive
in some regions of heavy-tailed distributions. In order to deal with the conceptual prob-
lems caused by VaR, (Artzner et al., 1999), (Tasche, 2002a) present an alternative risk
measure to VaR, called ES and highlights the advantages of ES that allows addressing
the shortcomings of VaR. The article (Inui and Kijima, 2005) shows that any coherent
risk measure is given by a convex combination of expected shortfalls, and an expected
shortfall (ES) is optimal in the sense that it gives the minimum value among the class
of plausible coherent risk measures. An extrapolation method of the ES is provided.
Authors discuss properties of ES as well as its generalization to a class of coherent
risk measures which can incorporate higher moment effects. The works of (Yamai and
Yoshiba, 2005) illustrate how the tail risk of VaR can cause serious problems in certain
cases, cases in which Expected-Shortfall can serve more aptly in its place. Specifically,
they discuss two cases: concentrated credit portfolio and foreign exchange rates under
market stress. They show that Expected Shortfall requires a larger sample size than
VaR to provide the same level of accuracy. The works of (Acerbi and Tasche, 2002a),
highlight the fact that most definitions of ES lead to the same results when applied to
continuous loss distributions but differences may appear when the underlying loss dis-
tributions have discontinuities. In this case even the coherence property of ES can get
lost unless one took care of the details in its definition. Authors compare some of the
definitions of ES, pointing out that there is one which is robust in the sense of yielding a
coherent risk measure regardless of the underlying distributions. Moreover, this ES can
be estimated effectively even in cases where the usual estimators for VaR fail. Based
on the observation that portfolio risk-adjusted performance measurement involves the
calculation of the risk contribution for each asset it contains. The paper (Fan et al.,
2012) uses multivariate Copula functions to model the dependence structure among the
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assets in a portfolio, then, based on a simulation, decomposes the portfolio VaR and
Expected Shortfall. Furthermore, with this approach, the risk contribution calculated
using Expected Shortfall is more robust, and its estimation error can be reduced by
increasing the simulation sample size. An application of Expected-Shortfall to credit
risk is provided in (Fan et al., 2010).

However, Expected-Shortfall does not satisfy the elicitability property. Elicitability is a
concept in the field of risk measurement and decision theory, particularly in the context
of scoring rules and risk assessment. A scoring rule is a function used to assess the
accuracy of a probabilistic forecast or estimate. Elicitability refers to the property of a
scoring rule that dictates whether it can accurately evaluate the quality of probabilistic
forecasts or estimates without providing incentives for forecasters to misrepresent their
beliefs. Moreover, elicitability allows comparing different models to rank their perform-
ance thanks to the scoring rule which is convenient to backtest the models. The lack of
elicitability can lead to several consequences among which we can find the incentives for
misrepresentation, the difficulty in evaluation, the potential for systemic risk and the
loss of trust. Opinion was divided on the need for elicitability in backtesting. Accord-
ing some authors, elicitability is only useful but not necessary to backtest the models
whereas according others, elicitability is necessary and in this case it is better to use
VaR instead of ES. This debate is for instance presented in (Acerbi and Szekely, 2014).
In (Fissler et al., 2015), authors show that ES is jointly elicitable with VaR.

An important stake lies in the choice of the method of estimation of the Expected-
Shortfall. Many authors interested to this topic. In (Brazauskas et al., 2008), authors
develop statistical inferential tools for estimating and comparing conditional tail ex-
pectation (CTE) functions, which are of considerable interest in actuarial science. In
(Chen, 2008), two non-parametric Expected-Shortfall estimators for dependent finan-
cial losses are presented. One is a sample average of excessive losses larger than a VaR.
The other is a kernel smoothed version of the first estimator, hoping that more accurate
estimation can be achieved by smoothing. In (Taylor, 2008) a method of estimation of
VaR and ES thanks to expectiles is provided. A non-parameteric estimation of ES is
proposed in (Scaillet, 2004). A robust estimation method of ES is developed in (Jadhav
et al., 2009) and (Pan et al., 2019). Authors develop a tail-based normal approximation
with explicit formulae is derived by matching a specific quantile and the mean excess
square of the sample observations. To enhance the estimation accuracy, they propose
an adjusted tail-based normal approximation based on the sample’s tail weight. The
adjusted expected shortfall estimator is robust and efficient in the sense that it can be
applied to various heavy-tailed distributions, such as Student, lognormal, Gamma and
Weibull, and the errors are all small.

Literature on heavy-tailed distributions Gaussian framework is the most com-
monly used in finance due its convenient properties. However, the Gaussian distribution
is thin-tailed then it assumes that extreme events are rare, and tends to underestimate
the probability of such events occurring. On the contrary, heavy-tailed distribution like
Pareto, assign higher probabilities to extreme events, which is often more realistic in
finance. Heavy-tailed distributions are not only used in economics and finance but in
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many other fields such as in physics, biology, earth and planetary sciences, computer
science, demography and the social sciences. Numerous authors interested in studying
heavy-tailed distributions. For instance, the distributions of the sizes of cities, earth-
quakes, forest fires, solar flares, moon craters and people’s personal fortunes all appear
to follow heavy-tailed distributions. In finance, heavy-tailed distributions are dedicated
to model losses or returns distributions.

In (ZINCHENKO, 2001), authors provide a survey of the main trends in theoretical in-
vestigations and practical applications of heavy-tailed models with emphasis on subex-
ponential, Pareto-type and stable distributions. Certain problems connected with limit
theorems, approximation, estimation, numerical simulation for heavy tails are treated
as well as the connection with the risk theory. Fat-tailed distributions in economics
and finance are studied in details in (Haas and Pigorsch, 2009), (Broda and Paolella,
2011). Based on the observation that it is of great importance for those in charge of
managing risk to understand how financial asset returns are distributed. Practitioners
often assume for convenience that the distribution is normal. Since the 1960s, however,
empirical evidence has led many to reject this assumption in favor of various heavy-
tailed alternatives. In a heavy-tailed distribution the likelihood that one encounters
significant deviations from the mean is much greater than in the case of the normal
distribution. It is now commonly accepted that financial asset returns are, in fact,
heavy-tailed. In (Bradley and Taqqu, 2003) a survey to examine how these heavy tails
affect several aspects of financial portfolio theory and risk management is carried out.
Some of the methods that one can use to deal with heavy tails are presented and are
illustrated using the NASDAQ composite index. In the same way, the paper of (Guo,
2017), exhibits the fact that heavy-tailed distribution, which accurately estimates the
tail risk, would significantly improve quantitative risk management practice. In (No-
lan, 2014) an accessible introduction to stable distributions for financial modeling is
provided. There is a real need to use better models for financial returns because the
normal (or bell curve/Gaussian) model does not capture the large fluctuations seen in
real assets. Stable laws are a class of heavy-tailed probability distributions that can
model large fluctuations and allow more general dependence structures. The works
of (Peng and Qi, 2017) present methods of inference for heavy-tailed data and apply
them in the context of insurance and finance. Many insurance loss data are known
to be heavy-tailed. In the article (Ahn et al., 2012) the class of Log-phase-type (Lo-
gPH) distributions is studied as a parametric alternative in fitting heavy tailed data.
Transformed from the popular phase-type distribution class, the LogPH introduced by
Ramaswami exhibits several advantages over other parametric alternatives.

Literature on Pareto distributions The Pareto distribution is a well-known dis-
tribution that belongs to the class of the heavy-tailed distributions. The Pareto dis-
tribution is often used in the economic and financial context to model the distribution
of the losses or of the returns when extreme events occur more frequently than in the
Gaussian framework. Such a distribution present very convenient property such as the
stability by conditioning and the scaling properties that will be detailed in the sequel.
More specifically, the Pareto distribution is a power law distribution. When the prob-
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ability of measuring a particular value of some quantity varies inversely as a power of
that value, the quantity is said to follow a power law, also known variously as Zipf’s law
or the Pareto distribution. In, (Newman, 2005), authors review some of the empirical
evidence for the existence of power-law forms and the theories proposed to explain them.
A nice reference about the Pareto distribution is (Chattamvelli and Shanmugam, 2021).
Pareto distributions and related generalizations have historically been viewed as being
suitable for modeling income and wealth distributions. In this context, in (Arnold,
2014) a brief review of the history of such models, distributional properties and infer-
ence procedures are surveyed is carried out. Various related distributions, including
multivariate variants, are described. The works of (Arnold, 2008) provide a survey of
results related to these Pareto-like models including discussion of related distributional
and inferential questions. Topics include the classical Pareto models and its generaliza-
tions, stochastic income models leading to Paretian income distributions, distributional
properties of generalized Pareto distributions, related discrete distributions, inequality
measures for Paretian models, inferential issues and multivariate extensions. Most of
the times, this Paretianity is inferred from the observation of some plots, such as the
Zipf plot and the mean excess plot. If the Zipf plot looks almost linear, then everything
is ok and the parameters of the Pareto distribution are estimated. Often with OLS.
Unfortunately, these heuristic graphical tools are not reliable. This is what authors
show in (Cirillo, 2013). Indeed they show that only a combination of plots can give
some degree of confidence about the real presence of Paretianity in the data. In (Crov-
elli and Barton, 1995), Fractals and the Pareto distribution are applied to petroleum
accumulation-size distributions. In (Su and Furman, 2017), a new multivariate distri-
bution possessing arbitrarily parametrized and positively dependent univariate Pareto
margins is introduced.

Literature on estimation of the Pareto index The Pareto index manages the
heaviness or the thinness of the distribution tail. A challenge is to estimate it accurately.

In extreme value statistics, the extreme value index is a well-known parameter to meas-
ure the tail heaviness of a distribution. Pareto-type distributions, with strictly positive
extreme value index (or tail index) are considered. In (Rytgaard, 1990), different es-
timators of the Pareto parameter are proposed and compared to each others. First,
traditional estimators as the maximum likelihood estimator and the moment estimator
are deduced and their statistical properties are analyzed. It is shown that the maximum
likelihood estimator is biased but it can easily be modified to an minimum-variance un-
biased estimator. But still the coefficient of variance of this estimator is very large.
For similar portfolios containing same types of risks the estimated values are expected
to be at the same level. Therefore, credibility theory is used to obtain an alternative
estimator more stable and less sensitive to random fluctuations in the observed losses.
Finally, an estimator of the risk premium for an unlimited excess of loss cover is pro-
posed. It is shown that this estimator is a minimum-variance unbiased estimator of
the risk premium. This estimator of the risk premium is compared to the more tradi-
tional methods of calculating the risk premium. In (Crovella and Taqqu, 1999), authors
propose a method (called the "scaling estimator") based on the scaling properties of
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sums of heavy-tailed random variables. More precisely, for any random variable X, Σn

is defined as random variable that is the sum of n independent random variables each
with the same distribution as X. For heavy-tailed distributions with tail index α, limit
theorems similar as the usual central limit theorems may be formulated showing that
sums of such variables converge to a stable distributions with the same α. A distribution
is stable in the strict sense if for each n there exists constants cn > 0 such that:

Σn
d
= cnX. (1.101)

In the specific case of sum of independent strictly stable variables cn = n
1
α . This prop-

erty is the scaling property on which the method presented in this paper is based to
obtain the estimator of the heavy-tailed index α. It has the advantages of being non-
parametric, of being easy to apply, of yielding a single value, and of being relatively
accurate on synthetic datasets. Since the method relies on the scaling of sums, it meas-
ures a property that is often one of the most important effects of heavy-tailed behavior.
Most importantly, they present evidence that the scaling estimator appears to increase
in accuracy as the size of the dataset grows. It is thus particularly suited for large data-
sets. One of the most important problems involved in the estimation of Pareto indices
is the reduction of bias in case the slowly varying part of the Pareto type model disap-
pears at a very slow rate. In other cases, when the bias problem is not so severe, the
application of well-known estimators such as the Hill (1975) and the moment estimator
(Dekkers et al. (1989)) still asks for an adaptive selection of the sample fraction to be
used in such estimation procedures. In (Beirlant et al., 1996), (Beirlant et al., 1999),
(Ocran et al., 2022), a reduced-bias estimators for the estimation of the tail index of
a Pareto-type distribution. This is achieved through the use of a regularised weighted
least squares with an exponential regression model for log-spacings of top order statist-
ics. The asymptotic properties of the proposed estimators are investigated analytically
and found to be asymptotically unbiased, consistent and normally distributed. The
works of (Finkelstein et al., 2006), propose an estimator of the tail index of a Pareto
distribution based on the use of the probability integral transform. This new estimator
provides performance that is comparable to the best robust estimators, while retaining
conceptual and computational simplicity. A tuning parameter in the new estimator can
be adjusted to control the tradeoff between robustness and efficiency. A new generalized
median type estimator is introduced in (Brazauskas and Serfling, 2000) and compared
with the MLE and several well-established estimators associated with the methods of
moments, trimming, least squares, quantiles, and percentile matching. A robust estim-
ator of the tail index is proposed in (Vandewalle et al., 2007), by combining a refinement
of the Pareto approximation for the conditional distribution of relative excesses over a
large threshold with an integrated squared error approach on partial density compon-
ent estimation. The paper (Brzezinski, 2016) investigates the small-sample properties
of the most popular robust estimators for the Pareto tail index, including the optimal
B-robust estimator, the weighted maximum likelihood estimator, the generalized me-
dian estimator, the partial density component estimator, and the probability integral
transform statistic estimator (PITSE). Monte Carlo simulations show that the PITSE
offers the desired compromise between ease of use and power to protect against outliers
in the small-sample setting. In (Beirlant and Goegebeur, 2004), an approach motiv-
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ated by the fact that in some applications the threshold should be allowed to change
with the covariates due to significant effects on scale and location of the conditional
distributions, is proposed. The approach followed is based on the technique of local
polynomial maximum likelihood estimation. Using the asymptotic results they are able
to derive an expression for the asymptotic mean squared error, which can be used to
guide the selection of the bandwidth and the threshold. In (Goegebeur et al., 2008), the
relation between goodness-of-fit testing and the optimal selection of the sample fraction
for tail estimation, for instance using Hill’s estimator, is examined. Authors consider
this problem under a general kernel goodness-of-fit test statistic for assessing whether
a sample is consistent with the Pareto-type model. Two important special cases of the
kernel statistic, the Jackson and the Lewis statistic, are discussed in greater depth.

Contributions

In Chapter 4, the goal is to explore robust methods for calculating expectations in
heavy-tailed distributions, as an alternative to the simple average. We consider the
toy case of the Pareto distribution because such a distribution is often used to model
losses in finance, and presents interesting properties. We are particularly interested in
estimating the Expected-Shortfall (ES) for the Pareto distribution.

Expected-Shortfall for Pareto distribution First, we recall the theory of Expected-
Shortfall and Pareto distribution and present the characteristic properties of the latter.
We prove the useful properties of scaling and stability by conditioning of the Pareto
distribution, and we prove the form of the ES at the risk level α (ESα) based on these
properties.

Various definitions of ES exist, all of which are equivalent. The definition considered in
this chapter is the one according to which ESα is the conditional expectation of excess
losses above the VaRα. Indeed, based on (Tasche, 2002b, Prop 3.4, Eq 3.3),(Sarykalin
et al., 2008, Def.2, p.273), for a continuous distribution, the Expected-Shortfall at the
risk level α is defined as:

ESα(X) = E[X|X ≥ VaRα(X)] (1.102)

where α ∈ (0, 1) is the risk level, X ∈ Lp(F) is a random variable representing the loss
(as a positive quantity, i.e. we take the convention that big losses correspond to large
positive numbers), of a portfolio at some future time, with as cumulative distribution
function FX(x) = P(X ≤ x);∀x ∈ R.

For the sake of modeling accuracy and realism, we are interested in the estimation of
ES in heavy-tailed distributions, particularly in the Pareto distribution. The choice
of Pareto distribution is induced by the interesting properties of this distribution, as
detailed by (Arnold, 2014). There are several reasons for focusing on this distribution.

Pareto distribution plays a crucial role in extreme value theory (EVT), a branch of
statistics that deals with the statistical behavior of extreme events. EVT is particu-
larly relevant in finance, where extreme events, such as market crashes, have significant
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implications for investors and financial institutions. In finance, data often exhibit heavy-
tailed behavior, meaning that extreme events, such as large price movements or financial
crises, occur more severely than expected from a normal distribution. Tail risk refers
to the risk of extreme events occurring in the tails of a distribution. Although rare,
these events can significantly impact financial markets and portfolios. The Pareto dis-
tribution, with its ability to model heavy tails, provides a better fit to such data than
traditional distributions such as the Gaussian distribution. Because Gaussian modeling
assigns small weights to distribution tails, it ignores extreme events that can lead to
inaccurate VaR prediction. On the contrary, the Pareto distribution attributes more
weights to distribution tails, taking into account extreme events, which enables better
VaR predictions, for instance when dealing with assets or portfolios that exhibit heavy-
tailed behavior.

Mathematically, the Pareto distribution exhibits interesting properties. First, the dis-
tribution is relatively simple to understand and work with. It only has two parameters
(scale xm and shape γ parameters; the latter is also called Pareto index), making it
easier to estimate and interpret compared to more complex heavy-tailed distributions
such as the stable distribution. The probability density function and cumulative dis-
tribution function of the Pareto distribution have relatively simple analytical forms,
making it easier to perform mathematical and statistical calculations compared to some
other heavy-tailed distributions.

Definition 1.21 (Pareto distribution P(xm, γ)). If X is a random variable following
a Pareto distribution P(xm, γ), (xm > 0, γ > 0), then the probability that X is larger
than some number x, that is, the survival function, also called the tail function, is given
by:

F̄X(x) = P(X > x) = 1{x<xm} +

(
xm
x

)γ

1{x≥xm} (1.103)

where xm is the (necessarily positive) minimum possible value of X, and γ is a positive
parameter. The Pareto distribution is characterized by a scale parameter xm and a shape
parameter γ, which is known as the tail index.

The cumulative distribution function (c.d.f.) of a Pareto random variable with paramet-
ers xm and γ is:

FX(x) =

(
1−

(
xm
x

)γ
)
1{x≥xm}. (1.104)

And the probability density function (p.d.f.) is given by:

fX(x) =
γxγm
xγ+1

1{x≥xm}. (1.105)

The Pareto distribution is a power-law and is well-adapted to fit data that display
power-law behavior. Indeed, the Pareto distribution tail follows a linear function on a
log-log plot. This is supplementary evidence that extreme events occur with more severe
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intensity than those predicted by other heavy-tailed distributions. This is particularly
useful when modeling financial phenomena that follow a power-law distribution, such
as income distribution or extreme price movements.

One of the most interesting properties of Pareto distribution is its scaling property. In-
deed, it allows establishing links between two Pareto distributions with the same shape
parameter γ but different scale parameters xm. For instance, the scaling property allows
switching from the standardized Pareto distribution P(1, γ), to any non-standardized
Pareto distribution P(xm, γ), by a simple multiplication of the standardized Pareto dis-
tribution with the scaling parameter xm of the non-standardized Pareto distribution.
Conversely, the scaling property allows switching from any non-standardized Pareto
distribution P(xm, γ) to the standardized Pareto distribution P(1, γ), by a simple di-
vision of the non-standardized Pareto distribution by its scaling parameter xm. More
precisely, the scaling property establishes a proportionality relationship between the
non-standardized and the standardized Pareto distributions, with a proportionality
factor equal to the scale parameter xm of the non-standardized Pareto distribution.
Conversely, the scaling property allows switching from the non-standardized Pareto
distribution P(xm, γ) to the standardized Pareto distribution P(1, γ), by dividing the
non-standardized Pareto distribution by its scale parameter xm. Consequently, there ex-
ists a proportionality relationship between the standardized Pareto distribution P(1, γ)

and the non-standardized Pareto distribution P(xm, γ), with a proportionality factor
equal to 1

xm
. More generally, the scaling property establishes a link between any non-

standardized Pareto distributions P(x
(1)
m , γ) and P(x

(2)
m , γ) with x(1)m > 0 and x(2)m > 0.

Indeed, the Pareto distribution P(x
(1)
m , γ) is proportional to the Pareto distribution

P(x
(2)
m , γ) with a proportionality factor equal to the ratio between the two scaling para-

meters x
(1)
m

x
(2)
m

, and vice versa. The proportionality factor is a ratio whose numerator
corresponds to the scale parameter of the non-standardized Pareto distribution that
we want to reach P(x

(1)
m , γ) (the target distribution), and denominator corresponds to

the scale parameter of the initial non-standardized Pareto distribution P(x
(2)
m , γ). The

division of the non-standardized Pareto distribution P(x
(2)
m , γ) by its own scaling para-

meter x(2)m allows the standardization of the distribution, thus reaching the standardized
Pareto distribution P(1, γ). Then, the multiplication of the standardized Pareto distri-
bution by x

(1)
m allows reaching the desired Pareto distribution P(x

(1)
m , γ). Conversely,

the Pareto distribution P(x
(2)
m , γ) is proportional to the Pareto distribution P(x

(1)
m , γ)

with a proportionality factor equal to the ratio between the two scaling parameters x
(2)
m

x
(1)
m

.
The proportionality factor is a ratio whose numerator corresponds to the scale para-
meter of the non-standardized Pareto distribution that we want to reach P(x

(2)
m , γ), and

denominator corresponds to the scale parameter of the initial non-standardized Pareto
distribution P(x

(1)
m , γ). The division of the Pareto distribution P(x

(1)
m , γ) by its own

scaling parameter x(1)m allows the standardization of the distribution, thus reaching the
standardized Pareto distribution P(1, γ). Then, the multiplication of the standardized
Pareto distribution by x

(2)
m allows reaching the desired Pareto distribution P(x

(2)
m , γ).

Consequently, Pareto distribution is scale-invariant, which means that scaling a Pareto
distribution using a constant parameter does not change the shape of the distribution
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(γ remains the same). The new scaled distribution is still a Pareto distribution with
the same shape parameter γ but a new scale parameter. The new Pareto distribution is
obtained by multiplying the initial Pareto distribution by the ratio between the scaling
parameter of the target Pareto distribution and that of the initial Pareto distribution.

In addition to the scaling property, the Pareto distribution satisfies the property of
stability by conditioning. This implies that the tail of any Pareto distribution above
a certain positive threshold is still a Pareto distribution with the same shape para-
meter but a new scaling parameter. For instance, the tail of any standardized Pareto
distribution P(1, γ) above a given positive threshold s

(1)
m > 0, is still a Pareto distri-

bution with the same shape parameter γ but a new scaling parameter equal to the
conditioning parameter s(1)m : P(s

(1)
m , γ). Owing to the scaling property, there exists a

proportionality relationship linking the non-standardized Pareto distribution P(s
(1)
m , γ)

and the standardized Pareto distribution P(1, γ) with a proportionality factor equal
to s

(1)
m . Consequently, by combining both the stability by conditioning and the scal-

ing properties, a proportionality relationship is established between the standardized
Pareto distribution conditional on its values being above the threshold s(1)m and the mar-
ginal Pareto distribution P(1, γ), with a proportionality factor equal to the conditioning
parameter s(1)m . Consequently, any standardized Pareto distribution P(1, γ) conditional
on its values being above a given threshold s

(1)
m is still a Pareto distribution with the

same shape parameter γ but with a new scaling parameter equal to the conditioning
parameter s(1)m .

More generally, the tail of any non-standardized Pareto distribution P(x
(1)
m , γ) above

a given positive threshold s
(1)
m > x

(1)
m is still a Pareto distribution with the same

shape parameter γ but a new scale parameter equal to the conditioning parameter
s
(1)
m : P(s

(1)
m , γ). Owing to the scaling property, there exists a proportionality relation-

ship between the non-standardized Pareto distribution P(s
(1)
m , γ) and the standardized

Pareto distribution P(1, γ), with a proportionality factor equal to s(1)m . Moreover, the
scaling property also establishes a proportionality relationship between the two non-
standardized Pareto distributions P(s

(1)
m , γ) and P(x

(1)
m , γ), with a proportionality factor

equal to the ratio between the two scaling parameters s
(1)
m

x
(1)
m

. Consequently, by combining
the stability by conditioning and the scaling properties, a proportionality relationship
is established between the non-standardized Pareto distribution P(x

(1)
m , γ) conditional

on its values being above the threshold s
(1)
m and the standardized Pareto distribution

P(1, γ) with a proportionality factor equal to the conditioning parameter s(1)m . And,
a proportionality relationship is also established between the non-standardized Pareto
distribution P(x

(1)
m , γ) conditional on its values being above the threshold s(1)m and the

marginal distribution P(x
(1)
m , γ) with a proportionality factor equal to the ratio s

(1)
m

x
(1)
m

where the numerator is the conditioning parameter s(1)m and denominator is the scal-
ing parameter x(1)m of the marginal distribution. Consequently, any non-standardized
Pareto distribution P(x

(1)
m , γ) conditional on its values being above the threshold s

(1)
m

is still a Pareto distribution with the same shape parameter γ but with a new scaling
parameter equal to the conditioning parameter s(1)m .
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These properties are very convenient. Moreover, they are specific to the Pareto distri-
bution, that is, they are not shared by all heavy-tailed distributions. They are math-
ematically formulated in the following theorem.

Theorem 1.22 (Pareto stability by conditioning and rescaling). (i) Let X be a standard
Pareto random variable X ∼ P(1, γ), γ > 0. Let xm > 0 be a new scaling parameter.
Let Y be a non-standard Pareto random variable such that Y ∼ P(xm, γ). Then we
have:

P(X ≤ x | X ≥ xm) = P(xmX ≤ x) = P(Y ≤ x). (1.106)

Equivalently,

X | X ≥ xm
d
= xmX

d
= Y or

Y

xm

d
=
X | X ≥ xm

xm

d
= X. (1.107)

In other words, conditioning a standard Pareto random variable X from a given threshold
xm, amounts to scaling the standardized Pareto distribution, that is, the marginal dis-
tribution of X, with the conditioning parameter xm. Then, the standardized Pareto
distribution conditional on its values being above a certain threshold remains a Pareto
distribution with the same shape parameter γ but a new scaling parameter equal to the
conditioning parameter xm.

(ii) Let Z1, Z2 be two non-standard Pareto random variables such that Z1 ∼ P(x
(1)
m , γ)

and Z2 ∼ P(x
(2)
m , γ) with x(1)m > 0, x

(2)
m > 0, γ > 0. Then we have:

Z1
d
=
x
(1)
m

x
(2)
m

Z2
d
= x(1)m X or Z2

d
=
x
(2)
m

x
(1)
m

Z1
d
= x(2)m X. (1.108)

In other words, any non-standardized Pareto distribution can be expressed from any other
non-standardized Pareto distribution by dividing the initial non-standardized Pareto dis-
tribution by its own scaling parameter to reach the standardized Pareto distribution
P(1, γ), then by scaling it with the scaling parameter of the target distribution.

(iii) Let s(1)m be a conditioning parameter such that s(1)m > x
(1)
m > 0. Then, Equations

(1.107) and (1.108) lead to:

Z1 | Z1 ≥ s(1)m
d
=
s
(1)
m

x
(1)
m

Z1
d
= s(1)m X. (1.109)

In other words, conditioning any non-standardized Pareto distribution P(x
(1)
m , γ) from

a certain threshold s(1)m amounts to scaling the standardized Pareto distribution P(1, γ)

with the conditioning parameter s(1)m , or equivalently to scaling the marginal distribution
P(x

(1)
m , γ) with the ratio between the conditioning parameter and the scaling parameter

of the marginal distribution s
(1)
m

x
(1)
m

.

Furthermore, the moments of the Pareto distribution exist only for certain ranges of
shape parameter γ. Specifically, the k-th moment exists if and only if γ > k. This
means that for small values of γ, moments may not exist, which is related to the heavy-
tailed nature of the distribution. As the shape parameter γ decreases, the distribution
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becomes even more heavy-tailed, giving more weight to extreme events. This leads to
finite moments for only very small orders. This is a characteristic of heavy-tailed distri-
butions, where extreme observations have a more significant impact on higher moments
than distributions with lighter tails. For instance, the Pareto distribution has an infinite
mean for shape parameter γ ≤ 1. For γ ≤ 2, the Pareto distribution has a finite mean
but an infinite variance. For γ > 2, the variance of the Pareto distribution exists and
is finite. This means that if the shape parameter is greater than 2, the distribution is
characterized by both a finite mean and finite variance, making it more manageable in
certain statistical analyses.

The scaling property of the Pareto distribution states that any non-standardized Pareto
distribution P(xm, γ) is proportional to the standardized Pareto distribution P(1, γ)

with a proportionality factor equal to xm. This implies that all the quantities (statist-
ics) computed on the non-standardized Pareto distribution P(xm, γ) are proportional to
the ones computed on the standardized Pareto distribution P(1, γ), with a proportion-
ality factor equal to xm. Therefore, the calculus can be carried out on the standardized
Pareto distribution, and the equivalent quantities on any non-standardized Pareto dis-
tribution P(xm, γ), can be recovered by the multiplication of the standardized quantities
with the proper scaling parameter xm. For instance, the scaling property of the Pareto
distribution allows defining any k-th moment of any non-standardized Pareto distribu-
tion P(xm, γ) by a simple multiplication of the k-th moment of the standardized Pareto
distribution P(1, γ) with the scaling parameter xm raised to the power k.

These properties are mathematically formulated in the following lemma.

Lemma 1.23 (Moments of Pareto distribution). Let X ∼ P(1, γ), Y ∼ P(xm, γ) be
two Pareto random variables, with γ > k, k ∈ N⋆. Subsequently, the Pareto random
variables X and Y admit the finite first k moments.

(i) Moments of order k (γ > k):

E
[
Xk
]
=

γ

γ − k
and E

[
Y k
]
= xkmE

[
Xk
]
. (1.110)

(ii) Central moment of order k (γ > k):

E
[
(X − E[X])k

]
=

k∑
j=0

(
k

j

)
γj+1

(1− γ)j(γ + j − k)
and E

[
(Y − E[Y ])k

]
= xkmE

[
(X − E[X])k

]
.

(1.111)

These properties hold for all statistics computed on the Pareto distribution, particularly
for the VaRα and the ESα. Let X ∼ P(1, γ) be a standardized Pareto random variable
and Y ∼ P(xm, γ), Z1 ∼ P(x

(1)
m , γ) and Z2 ∼ P(x

(2)
m , γ) be non-standardized Pareto

random variables. The scaling property states that the non-standardized Pareto distri-
bution P(xm, γ) is proportional to the standardized Pareto distribution P(1, γ), with a
proportionality factor equal to xm. This implies that the VaRα of the non-standardized
Pareto distribution P(xm, γ) is proportional to the VaRα of the standardized Pareto
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distribution with a proportionality coefficient equal to the scaling parameter xm. Sim-
ilarly, the scaling property of the Pareto distribution states that the non-standardized
Pareto distribution P(x

(1)
m , γ) is proportional to the non-standardized Pareto distribu-

tion P(x2m, γ), with a proportionality factor equal to the ratio between the two scaling
parameters x

(1)
m

x
(2)
m

. This implies that the VaRα of the non-standardized Pareto distribu-

tion P(x
(1)
m , γ) is proportional to the VaRα of the non-standardized Pareto distribution

P(x
(2)
m , γ) with a proportionality coefficient equal to x

(1)
m

x
(2)
m

.

On the other hand, the property of stability by conditioning states that the standardized
Pareto distribution P(1, γ) conditional on its values being above a certain threshold, is
still a Pareto distribution with the same shape parameter γ but a new scale parameter
equal to the conditioning parameter. Moreover, the scaling property implies that the
standardized Pareto distribution P(1, γ) conditional on its values being above a certain
threshold, is proportional to the standardized Pareto distribution with a proportionality
factor equal to the conditioning threshold. The Expected-Shortfall of the standardized
Pareto distribution is the conditional expectation given that the standard Pareto ran-
dom variable X is larger than VaRα(X): ESα(X) = E

[
X | X ≥ VaRα(X)

]
(defined

by (4.3)). Combining the stability by conditioning and the scaling properties leads to a
proportionality relationship between the standardized Pareto distribution P(1, γ) con-
ditional on its values being above VaRα(X), and the marginal distribution which is
the standardized Pareto distribution P(1, γ), with a proportionality factor equal to the
conditioning threshold VaRα(X). Consequently, the Expected-Shortfall of the stand-
ardized Pareto distribution ESα(X) is proportional to its expectation E

[
X
]

with a
proportionality factor equal to VaRα(X), which is supposed to be known. Therefore,
ESα(X) can be easily recovered owing to the simple scaling by VaRα of the expectation
of the standardized Pareto distribution.

Similarly, the property of stability by conditioning states that the non-standardized
Pareto distribution Z1 ∼ P(x

(1)
m , γ) conditional on its values being above a certain

threshold, is still a Pareto distribution with the same shape parameter γ but a new
scale parameter equal to the conditioning parameter. Moreover, the scaling property
implies that the non-standardized Pareto distribution P(x

(1)
m , γ) conditional on its val-

ues being above a certain threshold, is proportional to the standardized Pareto distri-
bution P(1, γ) with a proportionality factor equal to the conditioning parameter, and is
also proportional to the marginal Pareto distribution P(x

(1)
m , γ) with a proportionality

factor equal to the ratio between the conditioning parameter and the scaling parameter
x
(1)
m . Combining the stability by conditioning and the scaling properties implies that

the Expected-Shortfall of the non-standardized Pareto distribution P(x
(1)
m , γ), which

is the expectation of the distribution P(x
(1)
m , γ) conditional on its values being above

VaRα(Z1), is proportional to the expectation of the standardized Pareto distribution
P(1, γ) with a proportionality factor equal to conditioning parameter VaRα(Z1), and
is proportional to the expectation of the marginal Pareto distribution P(x

(1)
m , γ) with a

proportionality factor equal to the ratio VaRα(Z1)

x
(1)
m

. Therefore, the Expected-Shortfall of

any non-standardized Pareto distribution P(x
(1)
m , γ) can be recovered by a simple scaling

of the expectation of the standardized Pareto distribution P(1, γ) with the conditioning
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threshold VaRα(Z1), and by a simple scaling of the expectation of the marginal Pareto
distribution P(x

(1)
m , γ) with the ratio VaRα(Z1)

x
(1)
m

.

All these properties are mathematically formulated in the following proposition.

Proposition 1.24 (Pareto VaRα and ESα). If X ∼ P(1, γ) and Y ∼ P(xm, γ),
xm > 0, γ > 0, then their respective VaRα are defined as follows:VaRα(X) = F−1

X (α) = (1− α)
− 1

γ ,

VaRα(Y ) = F−1
Y (α) = xmVaRα(X),

α ∈ (0, 1), (1.112)

and the respective ESα are given by:ESα(X) = VaRα(X)E
[
X
]
= γ

γ−1(1− α)
− 1

γ ,

ESα(Y ) = xmESα(X),
α ∈ (0, 1). (1.113)

As previously mentioned, owing to the scaling property of the Pareto distribution,
all the statistics of any non-standardized Pareto distribution are proportional to the
corresponding statistics of the standardized Pareto distribution, with a proportionality
factor equal to the scaling parameter of the target Pareto distribution. Consequently, in
the sequel, all the statistics will be computed using the standardized Pareto distribution.
A simple scaling of these standardized statistics by the proper scaling parameter of the
target Pareto distribution will allow for the recovery of the corresponding statistics of
the desired non-standardized target Pareto distribution.

As previously explained, owing to the property of stability by conditioning, the Expected-
Shortfall of the standardized Pareto distribution is proportional to its expectation, with
a proportionality factor equal to the Value-at-Risk of the standardized Pareto distribu-
tion VaRα, which is supposed to be known. Therefore, the main step in computing the
Expected-Shortfall of the standardized Pareto distribution, is to compute its expecta-
tion. The Expected-Shortfall of the standardized Pareto distribution can be recovered
thanks to a simple scaling of this expectation by the VaRα, which is supposed to be
known.

Issue We wonder how to accurately estimate the Expected-Shortfall. The presence
of extreme values with low probability in heavy-tailed distributions can influence the
estimator (empirical mean) of the expectation and lead to poor performance. In this
context, the goal is to find an estimator of ES that is more resistant to the presence
of extreme values. In this chapter, we assume that VaRα is known and focus on the
methods of estimation of the ESα. Different mean estimators are studied based on their
concentration and fluctuation properties.

Owing to the scaling property of the Pareto distribution that establishes a propor-
tionality relationship between the non-standardized Pareto distribution P(xm, γ) and
the standardized Pareto distribution P(1, γ) with a proportionality factor equal to xm,
it suffices to estimate the ES on the standardized Pareto distribution P(1, γ); then
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we can recover the estimation of the ES on the non-standardized Pareto distribution
P(xm, γ) by a simple scaling of the standardized ES with xm. In addition, owing to
the stability by conditioning and the scaling properties of the Pareto distribution that
establish a proportionality relationship between the standardized Pareto distribution
P(1, γ) conditional on its values being above a certain threshold and the standardized
Pareto distribution, with a proportionality factor equal to the conditioning threshold,
estimating the first order moment of the standardized Pareto distribution is sufficient
to obtain the estimation of the standardized ESα, because we are able to recover the
estimation of the standardized ESα by a simple scaling of the standardized first order
moment with VaRα.

Ideally, an estimator is expected to satisfy the following constraints: be robust to heavy
tailed-distribution, that is, to the presence of extreme values, and reach a high-level of
accuracy with a high-level of confidence. It is noteworthy that this criterion is non-
asymptotic.

These constraints are satisfied by sub-Gaussian estimators. Despite the advantages of
sub-Gaussian estimators, they also present some limitations. Indeed, proving that an
estimator is sub-Gaussian is not so obvious because it relies on restrictive assumptions
on the models, or it requires some tips to develop a new estimator such as Median-of-
Means (see later in this chapter). Moreover, some sub-Gaussian estimators might have
a higher computational complexity than simpler estimators. This can be a drawback
when dealing with large datasets or in real-time applications.

For these reasons, our works propose several robust mean-estimators that are not sub-
Gaussian, for which a study of their bias with the convergence rate is carried out and
concentration inequalities are developed.

Mean-estimators The attention is mainly focused on three estimators: the Median-
of-Means (MoM) estimator, the Trimmed-Mean (TM) estimator and the Lee-Valiant
(LV) estimator. The performances of these estimators are then compared with each
other and with the estimator of reference, that is, the empirical mean which reaches
sub-Gaussian performance in the asymptotic framework.

Recall that the true ESα is the average excess loss beyond the true VaRα defined as
follows:

ESα(X) = E[X|X ≥ VaRα] =
E[X1{X≥VaRα}]

P(X ≥ VaRα)
. (1.114)

An estimator of the ESα, called the empirical ESα, is the average excess loss beyond the
estimator of VaRα, which is the empirical α-quantile (qn,α), as stated in the following
definition.

Definition 1.25 (Empirical Expected-Shortfall). Let X = (X1, . . . , Xn) be a sequence
of Pareto i.i.d. random variables such that ∀i ∈ J1, nK, Xi ∼ P(1, γ), with γ > 2. Let’s
denote by X⋆ = (X⋆

1 , . . . , X
⋆
n) the order statistics related to X. The empirical α-quantile
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is given by qnα = X⋆
⌈nα⌉, and the empirical Expected-Shortfall at the risk level α is defined

as follows :

ESn
α =

1
n

∑n
i=1Xi1{Xi≥qnα}

1
n

∑n
i=1 1{Xi≥qnα}

=
1

n− ⌈nα⌉
n∑

i=1

Xi1{Xi≥qnα}. (1.115)

In our study we distinguish two frameworks for the the estimation of the ESα in the
standardized Pareto distribution P(1, γ): the first is called idealized case and the other
is called realistic case.

Idealized case: qnα = VaRα We consider n independent and identically distributed
samples X1, . . . , Xn following a standardized Pareto distribution P(1, γ). The idealized
case assumes that the empirical α-quantile qnα matches the true VaRα: although only
true in the asymptotic framework but not in practice for small sample sizes, we will use
this assumption in some parts of our study to simplify the analysis. In such a case, the
estimation of the ESα in the standardized Pareto distribution P(1, γ) corresponds to
the empirical average excess loss above the true VaRα. In other words, the estimation
of the ESα in the standardized Pareto distribution P(1, γ) corresponds to the empirical
average of the standardized Pareto distribution P(1, γ) conditional on its values being
above the true VaRα. In this case, the conditioning threshold does not depend on
the underlying sample. This implies that the samples larger than the true VaRα are
still independent and identically distributed (i.i.d.) and the stability by conditioning
and scaling properties are valid. Owing to the stability by conditioning property, the
standardized Pareto distribution tail above the true VaRα is still a Pareto distribution
with the same shape parameter γ but a new scaling parameter equal to the conditioning
threshold VaRα: P(VaRα, γ). Moreover, the scaling property establishes a proportion-
ality relationship between the non-standardized Pareto distribution P(VaRα, γ) and the
standardized Pareto distribution P(1, γ), with a proportionality factor equal to VaRα.
Therefore, there exists a proportionality relationship between the standardized Pareto
distribution conditional on its values being above the true VaRα and the marginal
distribution P(1, γ), with a proportionality factor equal to the conditioning threshold
VaRα. This implies that the expectation of the standardized Pareto distribution con-
ditional on its values being above the true VaRα (that is, the ESα) is proportional
to the expectation of the standardized Pareto distribution P(1, γ), with a proportion-
ality factor equal to VaRα. Similarly, the empirical mean of the standardized Pareto
distribution conditional on its values being above the true VaRα (that is the empir-
ical ESα) is proportional to the empirical mean of the standardized Pareto distribution
P(1, γ), with a proportionality factor equal to VaRα. Consequently, the bias between
the empirical ESα and the true ESα of the standardized Pareto distribution is propor-
tional to the bias between the expectation and the empirical mean of the standardized
Pareto distribution, with a proportionality factor equal to VaRα. Thus, in the idealized
case, it suffices to determine a closed form formula for the bias between the empirical
mean and the expectation of the standardized Pareto distribution P(1, γ). The bias
between the empirical ESα and the true ESα of the standardized Pareto distribution
can be recovered thanks to a simple scaling of the bias between the empirical mean and
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the expectation of the standardized Pareto distribution with the conditioning threshold
VaRα. The empirical α-quantile matches the true VaRα only in the asymptotic case
(that is, when the sample size is sufficiently large), but in most cases, when the sample
size is far from the asymptotic case, the empirical α-quantile does not match the true
VaRα.

Realistic case: qnα ̸= VaRα In the realistic case, the empirical α-quantile does not
match the theoretical VaRα. In this last case, the estimation of the ESα in the stand-
ardized Pareto distribution P(1, γ) corresponds to the empirical mean of the excess loss
above the empirical α-quantile. In other words, the estimation of the ESα in the stand-
ardized Pareto distribution P(1, γ) corresponds to the empirical mean of the standard-
ized Pareto distribution conditional on its values being above the empirical α-quantile.
In this case, the conditioning threshold depends on the underlying sample. This implies
that the samples larger than the empirical α-quantile are no longer independent and
identically distributed (i.i.d.) and the stability by conditioning and scaling properties
of the Pareto distribution are no longer valid. Therefore, the standardized Pareto dis-
tribution tail above the empirical α-quantile is not necessarily a Pareto distribution.
Thus, the distribution of the samples larger than the empirical α-quantile is unknown
and it is difficult to derive a closed form formula for the bias between the empirical ESα

and the true ESα. For this reason, in the realistic case, we provide an empirical study
of the bias between the empirical ESα and the true ESα, and the convergence rate. In
the realistic case, the bias between the empirical ESα and the true ESα is larger than
in the idealized case because there is an additional error term corresponding to the bias
estimation between the true VaRα and the empirical α-quantile.

In all the chapter, the estimators of the ESα are studied both in the idealized case,
in which the empirical α-quantile matches the true VaRα, and in the realistic case in
which the two quantities differ.

Because the bias of an estimator is given by the difference between the target value and
the estimator’s expectation, the challenge of computing the bias lies in the computation
of the estimator’s expectation.

Median-of-Means (MoM)

We attempted to derive a closed-form formula for the bias of the MoM estimator. This
issue is challenging, and remains an open question. In this context, we develop a meth-
odology to derive a closed-form formula for the bias of the MoM estimator, and we
prove the intermediary results in this procedure, such as the derivation of a closed form
formula for the bias of the empirical median.

The MoM estimator combines the empirical mean and median estimators. The Median-
of-Means estimator requires partitioning the data into k groups of roughly equal size,
computing the empirical mean in each group, and taking the median of the sequence
composed by the k empirical means.
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Definition 1.26 (Median-of-Means (MoM)). Let X1, . . . , Xn be n independent, identic-
ally, distributed (i.i.d.) random draws from the distribution of X. Let m, k be two pos-
itive integers. We assume that n is a multiple of k such that n = mk. The empirical
mean of each block is defined as follows:

∀j ∈ J1, kK, µ̄Bj =
1∣∣∣Bj

∣∣∣
∑
i∈Bj

Xi. (1.116)

The MoM estimator is then defined by M̂oMn =M(µ̄1, . . . , µ̄k).

Owing to the way in which the estimator is constructed, the MoM estimator can be
considered a good estimator of the mean.

First step in the construction of the MoM estimator: It consists of partition-
ing the set composed of n i.i.d. random draws into k disjoint blocks, and com-
puting the empirical mean µ̄j of each of the k blocks. For the sake of simplicity,
let us assume that the number of random draws n is a multiple of the number
of blocks k such that n = mk, with m, k, n beging positive integers. For each
of the k blocks, the empirical mean is an unbiased estimator of the expectation
of the distribution. Indeed, because the random draws Xi are i.i.d. with mean
µ = E[X], then E[µ̄j ] = µ. Moreover, because the random draws are i.i.d. with
variance V[Xi] = σ2 then, the standard deviation of the empirical means µ̄j is
given by σ√

m
. This means that, in each of the k blocks, the empirical mean does

not deviate from the expectation of the distribution by more than a few units of
σ√
m

.

Second step it consists of taking the median of the sequence composed of the k block-
wise empirical means.

Why can we say that the median of block-wise means is a good estimator of the expect-
ation of the distribution ?

Actually the empirical median does not deviate from the empirical mean by more than
the empirical standard deviation, this is the following statement.

Lemma 1.27. Let X be a scalar random variable, with standard deviation σ and median
M . Then, the following inequality holds:∣∣∣E [X]−M

∣∣∣ ≤ σ. (1.117)

Assuming that σ is sufficiently small, we can say that the median is close enough to the
expectation of the distribution to be a good estimator.

In our case, if X = (X1, . . . , Xn) is a sample composed of n independent and identically
distributed (i.i.d.) random variables, then µ̂n = 1

n

∑n
i=1Xi is the related empirical

mean. Let us denote by Bj , ∀j ∈ J1, kK the k blocks composed of m random variables.
The block-wise empirical mean µ̄Bj = 1∣∣∣Bj

∣∣∣
∑

i∈Bj
Xi is an unbiased estimator of the

expectation µ of the distribution. Moreover, because the initial random draws are i.i.d.
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and the blocks are disjoint, the block-wise means are i.i.d. random variables. The
empirical mean of the block-wise means is equal to that of the initial sample µ̂n. The
empirical variance is denoted by σ̂2n = 1

k

∑k
j=1(µ̄Bj − µ̂n)2. Then from Equation (1.117),

the following concentration inequality states :∣∣∣∣µ̂n − M̂oMn

∣∣∣∣ ≤ σ̂n. (1.118)

If the empirical standard deviation of the sample is small, we can conclude that the
Median-of-Means estimator and empirical mean estimator are close to each other, and
thus they should both estimate the true expectation. Nonetheless, in general, the
fluctuations of the MoM estimator are smaller than those of the EM estimator.

Advantages of the MoM estimator: This estimator allows the combination of two
centrality estimators: the empirical mean and empirical median. The empirical
mean is not robust to extreme values and is significantly influenced by their pres-
ence. Therefore, the k block-wise empirical means consider the extreme values;
they are unbiased with respect to the expectation of the sequence, but they have
a large standard deviation. The empirical median is robust to extreme values
because it depends only on the central values of the sequence, and the standard
deviation of the empirical median is expected to be much lower than that of the
empirical mean; however, the median may exhibit a bias with respect to the ex-
pectation of the sequence. This implies that the final estimator can be sensitive
to the data while not being too influenced by the extreme values of the distribu-
tion. Moreover, because the second layer of construction of the estimator relies
on taking the empirical median of the sequence of block-wise empirical means, a
bias is introduced with respect to the expectation of the sequence.

Concentration inequalities are provided by the works of (Lugosi and Mendelson, 2019,
Theorem 2 p.7, Theorem 4 p.9), proving that under conditions that are not so restrictive,
the MoM estimator is a good estimator for the mean.

After choosing the proper parameterization of the estimator, we quantify the bias of the
MoM estimator. Since the MoM estimator results from the combination of the empirical
mean and empirical median estimators, then we demonstrate in a first time, a closed
form-formula for the bias of the empirical median.

Theorem 1.28 (Expectation of empirical median when n is odd). (i) Let X1, . . . , X2k+1

be 2k + 1 i.i.d. random variables that follow the same distribution as X ∼ P(1, γ). Let
X⋆

1 , . . . , X
⋆
2k+1 be the related sequence of ordered statistics. The density of the empirical

median X⋆
k+1 is given by:

f
M̂

(1)
2k+1

(x) =
(2k + 1)!

k!k!

(
1− 1

xγ

)k
1

xkγ

(
γ

xγ+1

)
1{x≥1}. (1.119)

The expectation of the empirical median is defined as follows:

E[M̂ (1)
2k+1] =

(2k + 1)!

k!k!
B

(
k + 1, k + 1− 1

γ

)
(1.120)
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where B(x, y) =
∫ 1
0 (1 − t)x−1ty−1dt = Γ(x)Γ(y)

Γ(x+y) is the Beta function, and Γ(z) =∫ +∞
0 tz−1e−tdt is the Gamma function.

(ii) Let Y1, . . . , Y2k+1 be 2k + 1 i.i.d. random variables that follow the same distri-
bution as Y ∼ P(xm, γ). Then, from the scaling property of the Pareto distribution
(Theorem 1.22), we obtain the following proportionality relationship between the distri-
butions P(xm, γ) and P(1, γ):

(Y1, . . . , Y2k+1)
d
= (xmX1, . . . , xmX2k+1). (1.121)

In particular, a proportionality relationship of factor xm links the empirical median of
the non-standardized Pareto distribution P(xm, γ) and that of the standardized Pareto
distribution P(1, γ) such that M̂ (xm)

2k+1
d
= xmM̂

(1)
2k+1, as well as their expectations:

E[M̂ (xm)
2k+1] = xmE[M̂ (1)

2k+1]. (1.122)

Theorem 1.29 (Expectation of empirical median when n is even). (i) Let X1, . . . , X2k

be 2k independent and identically distributed (i.i.d.) random variables following the
same distribution as X ∼ P(1, γ). Let X⋆

1 , . . . , X
⋆
2k be the related sequence of ordered

statistics. We define

M̂2k :=
1

2
(X⋆

k +X⋆
k+1). (1.123)

The expectation of the empirical median is given by:

E
[
M̂2k

]
=

1

2

 (2k)!

(k − 1)!k!
B

(
k, k + 1− 1

γ

)
+

(2k)!

k!(k − 1)!
B

(
k + 1, k − 1

γ

) (1.124)

(ii) Let Y1, . . . , Y2k be 2k i.i.d. random variables that follow the same distribution as Y ∼
P(xm, γ). Then, from the scaling property of the Pareto distribution (Theorem 1.22),
we obtain the following proportionality relationship between the distributions P(xm, γ)

and P(1, γ):

(Y1, . . . , Y2k+1)
d
= (xmX1, . . . , xmX2k+1). (1.125)

In particular, a proportionality relationship of factor xm links the empirical median of
the non-standardized Pareto distribution P(xm, γ) and that of the standardized Pareto
distribution P(1, γ) such that M̂ (xm)

2k
d
= xmM̂

(1)
2k , as well as their expectations:

E[M̂ (xm)
2k ] = xmE[M̂ (1)

2k ]. (1.126)

Theorem 1.30. As n→ +∞,

E
[
M̂n

]
=

γ
√
2

1 +
1

2γn
+

1

2γ2n
+ o

(
1

n

) . (1.127)
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The challenge in calculating the bias of the MoM is that the density of the estimator is
required to compute the expectation of the MoM. However, this estimator is defined as
the empirical median of the block-wise means. The distribution of an order statistic is
based on the distribution of the underlying sample, that is, on the sample of block-wise
means whose distribution is unknown. To address this issue, we propose a closed-form
formula for the characteristic function of block-wise means.

Theorem 1.31 (Standard Pareto characteristic function). Let X ∼ P(1, γ) with γ > 1.
The characteristic function of X, given by ϕX(t) = E

[
eitX

]
=
∫ +∞
1

γ
xγ+1dx is a solution

of the Ordinary Differential Equation (ODE):

∂

∂t
Jγ(t)−

γ

t
Jγ(t) = −γ

t
eit, (1.128)

and takes the following form:

∀t ∈ R, ϕX(t) = γ(−it)γΓ(−γ,−it). (1.129)

where Γ(z) =
∫ +∞
0 uz−1e−udu, and satisfies the following relationship Γ(z+1) = zΓ(z).

From Equation (4.161), the characteristic function of the block-wise mean µ̄j can be
defined as follows:

ϕµ̄j (t) = γm
(
−i t
m

)mγ
(
Γ

(
−γ,−i t

m

))m

. (1.130)

Then, the density function of the block-wise mean can be recovered using the inverse
Fourier transform, as follows:

fµ̄j (x) =

∫
R

1

2π
e−itxϕµ̄j (t)dt. (1.131)

However, because the characteristic function of the block-wise mean µ̄j depends on the
Gamma function, which is already an integral, it is very complicated to determine an
explicit analytic form for the density of the block-wise mean. In this framework, it is
difficult to obtain an analytic form of the bias between the MoM estimator applied to
the standardized Pareto distribution and its expectation. This is still a work in progress.

A numerical study on the bias of the M̂oMn estimator is conducted.

The convergence rate of the bias between the MoM estimator applied to the complete
standardized Pareto distribution and its expectation seems to be dependent on the
Pareto index γ. Indeed, the convergence rate varies between 1

n0.7 and 1
n and becomes

closer to 1
n when the distribution tail becomes increasingly thinner, that is, when γ is

increasing.

Once the evolution of the bias between the MoM estimator and the expectation of
the entire standardized Pareto distribution P(1, γ), as well as its convergence speed,
have been studied, we are interested in studying the evolution of the bias between the
MoM estimator applied to the standardized Pareto distribution tail and the ESα in
two cases: an idealized case in which the conditioning threshold corresponds to the
theoretical VaRα, and a realistic case in which the conditioning threshold corresponds
to the empirical α-quantile.
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Idealized case: In the idealized case, the empirical α-quantile matches the true
VaRα, which is known. In this case, the estimator of the ESα in the standardized
Pareto distribution P(1, γ) is the empirical average of the standardized Pareto distribu-
tion conditional on its values being above the true VaRα. The conditioning threshold
is independent on the underlying sample. This implies that the samples larger than
the true VaRα are independent and identically distributed (i.i.d.) and the stability
by conditioning and scaling properties, as stated in Theorem 1.22, are still valid. The
stability by conditioning property implies that the standardized Pareto distribution
P(1, γ) conditional on its values being above VaRα is still a Pareto distribution, with
the same shape parameter γ, but a new scaling parameter equal to the conditioning
parameter VaRα. The scaling property states that this non-standardized Pareto distri-
bution P(VaRα, γ) is proportional to the marginal Pareto distribution P(1, γ), with a
proportionality factor equal to the conditioning parameter VaRα. Therefore, the stand-
ardized Pareto distribution conditional on its values being above VaRα is proportional
to the standardized Pareto distribution with a proportionality factor equal to VaRα.
This implies that the MoM estimator applied to the standardized Pareto distribution
conditional on its values being above VaRα, is proportional to the MoM estimator
applied to the entire standardized Pareto distribution, with a proportionality factor
equal to VaRα. In the same way, the ESα is proportional to the expectation of the
standardized Pareto distribution, with a proportionality factor equal to VaRα. Thus,
the bias between the MoM estimator applied to the standardized Pareto distribution
conditional on its values being above VaRα and the ESα is proportional to the bias
between the MoM estimator applied to the entire standardized Pareto distribution and
the expectation, with a proportionality factor equal to VaRα. Moreover, because the
conditioning threshold does not depend on the underlying sample, the convergence rate
of the bias between the MoM estimator applied to the standardized Pareto distribution
conditional on its values being above the true VaRα and the true ESα is the same as
that of the bias between the MoM estimator applied to the entire standardized Pareto
distribution and its expectation.

Realistic case: In the realistic case, the empirical α-quantile does not match the true
VaRα. In this case, the estimator of the ESα in the standardized Pareto distribution
P(1, γ) is the empirical average of the standardized Pareto distribution conditional on
its values being above the empirical α-quantile. The conditioning threshold is an order
statistic and depends on the underlying sample. This implies that the samples lar-
ger than the empirical α-quantile are no longer independent and identically distributed
(i.i.d.). Therefore, the distribution of the samples larger than the empirical α-quantile
is not necessarily a Pareto distribution. The stability by conditioning and scaling prop-
erties of the Pareto distribution, as stated in Theorem 1.22, are no longer valid. Thus,
the distribution of the samples larger than the empirical α-quantile is unknown and it
is difficult to establish an analytic closed-form formula for the bias between the MoM

estimator applied to the standardized Pareto distribution tail above this empirical α-
quantile and the true ESα. For this reason, we provide some experimental study to
give an insight about the convergence speed of the bias between the MoM applied to
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the Pareto distribution tail above the empirical α-quantile and the Expected-Shortfall.
The numerical study shows that the convergence rate is very close to that of the bias
in the idealized case.

Trimmed-Mean (TM)

We provide a closed-form formula for the bias of the TM estimator in both the non-
asymptotic case and asymptotic cases.

The Trimmed-Mean estimator is based on the following idea. The most natural attempt
to improve the performance of the empirical mean estimator is to remove possible out-
liers by truncating the sample. The TM estimator is defined by removing a fraction of
the sample, consisting of the ϵn largest and smallest points for some parameter ϵ ∈ (0, 1),
and then averaging over the rest.

The TM estimator is constructed as follows. We split data into two equal parts. One
half is used to determine the correct truncation level. The points from the other half
are averaged, except for the data points that fall outside the truncation region, which
are thresholded.

For convenience of notation, we assume that the data are composed of 2n independent
copies of random variable XP(1, γ), denoted by X1, . . . , Xn, Y1, . . . , Yn. We respectively
denote by X⋆

1 , . . . , X
⋆
n and Y ⋆

1 , . . . , Y
⋆
n the order statistics sequences related to samples

X1, . . . , Xn =: Xn and Y1, . . . , Yn =: Yn. The expectation of the distribution is denoted
as µ = E[X] = γ

γ−1 . Truncation on both sides of the distribution is relevant when both
tails of the distribution are unbounded and contain extreme values. However, the Pareto
distribution presents the particularity that its left tail is bounded, whereas its right tail
is not bounded. This implies that to eliminate the outliers, it is not required to threshold
the left tail of the distribution, but only the right tail.

In this specific case, the truncation function is given by:

ϕYn(x) =


Y ⋆
⌈(1−ϵ)n⌉ if x > Y ⋆

⌈(1−ϵ)n⌉,

x if x ∈
[
1, Y ⋆

⌈(1−ϵ)n⌉

]
.

(1.132)

Moreover, it is important to note that the truncation thresholds are fixed on a sample
that is independent of the sample on which the estimator is built. With this notation
in place, the estimator is defined as follows:

(i) Given the confidence level δ ≥ 8e−3n/16, set:

ϵn =
16 log(8/δ)

3n
. (1.133)

(ii) Set:

T̂M2n =
1

n

n∑
i=1

ϕYn(Xi). (1.134)
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The drawback of this estimator is that, for a high confidence level, the amount of data
required data to obtain a reasonable truncation threshold is very large.

In (Lugosi and Mendelson, 2019, p.14), a concentration inequality of the Trimmed-Mean
estimator is given to quantify the performance of the estimator.

In this context, we provide a closed-form formula for the bias of the TM estimator in
the non-asymptotic case.

We study the evolution of the bias between the Trimmed-Mean estimator applied to
the standardized Pareto distribution tail and the ESα in two different frameworks. The
first framework refers to the idealistic case where the empirical α-quantile match the
theoretical VaRα. The second framework corresponds to the realistic case where the
empirical α-quantile does not match the theoretical VaRα. To this end, we first study
the bias between the Trimmed-Mean estimator applied to the entire standardized Pareto
distribution P(1, γ) and the expectation.

(i) The bias between the Trimmed Mean estimator and the expectation of the Pareto
distribution is defined by:

Bµ(T̂M2n) = E
[
T̂M2n

]
− µ. (1.135)

Proposition 1.32 (Bias of the Trimmed-Mean estimator in the standardized Pareto
distribution). Let X1, . . . , Xn, Y1, . . . , Yn and X⋆

1 , . . . , X
⋆
n, Y

⋆
1 , . . . , Y

⋆
n , be respectively 2n

independent copies of the random variable X that follows a standardized Pareto distribu-
tion P(1, γ), and the related order statistics. Let ϵn ∈ (0, 1) be the truncation threshold
that satisfies Equation (1.133). The bias between the Trimmed-Mean estimator applied
to the entire standardized Pareto distribution P(1, γ) and the expectation is then given
as follows:

Bµ(T̂M2n) = − 1

γ − 1
E

[(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ
]
= − 1

γ − 1
κϵ,nB

(
n−

⌈
(1− ϵ)n

⌉
+ 2− 1

γ
,
⌈
(1− ϵ)n

⌉)
.

(1.136)

where κϵ,n = n!(⌈
(1−ϵ)n

⌉
−1

)
!

(
n−
⌈
(1−ϵ)n

⌉)
!
and B(x, y) =

∫ 1
0 u

x−1(1−u)y−1du = Γ(x)Γ(y)
Γ(x+y) .

We also provide a closed-form formula for the bias of the TM estimator in an asymptotic
case.

Theorem 1.33 (Asymptotic bias of the Trimmed-Mean estimator in the standardized
Pareto distribution). As n→ +∞,

Bµ(T̂M2n) = − 1

γ − 1

Γ
(⌊
Cδ

⌋
+ 2− 1

γ

)
Γ(
⌊
Cδ

⌋
+ 1)

n
1
γ
−1

+ o

(
n

1
γ
−1
)
. (1.137)

where for all x ∈ R, Γ(x) =
∫ +∞
0 ux−1e−udu is the Gamma function.

A closed-form formula for the bias between the Right-Trimmed-Mean estimator applied
to the entire standardized Pareto distribution P(1, γ) and the expectation has been
provided. Recall that the goal is to study the bias between the Right-Trimmed-Mean
estimator applied to the standardized Pareto distribution tail and the ESα.
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Idealized case: In the idealized case, the empirical α-quantile matches the true
VaRα, and the empirical ESα corresponds to the empirical average of the standard-
ized Pareto distribution conditional on its values being above the true VaRα. The
conditioning threshold is independent on the underlying sample. This implies that the
samples larger than the true VaRα are independent and identically distributed (i.i.d.)
and the stability by conditioning and scaling properties are valid. Therefore, the stand-
ardized Pareto distribution conditional on its values being above the true VaRα is still a
Pareto distribution with the same shape parameter γ but a new scale parameter equal to
the conditioning threshold VaRα: P(VaRα, γ). Moreover, the scaling property estab-
lishes a proportionality relationship between the non-standardized Pareto distribution
P(VaRα, γ) and the standardized Pareto distribution P(1, γ) with a proportionality
factor equal to the scaling parameter VaRα. Consequently, combining the stability by
conditioning and scaling properties, the standardized Pareto distribution conditional
on its values being above the true VaRα is proportional to the marginal distribution
P(1, γ) with a proportionality factor equal to VaRα.

This implies that the Right-Trimmed-Mean estimator applied to the standardized Pareto
distribution conditional on its values being above VaRα, is proportional to the Right-
Trimmed-Mean estimator applied to the entire standardized Pareto distribution, with a
proportionality factor equal to VaRα. In the same way, the ESα is proportional to the
expectation of the standardized Pareto distribution, with a proportionality factor equal
to VaRα. Thus, the bias between the Right-Trimmed-Mean estimator applied to the
standardized Pareto distribution conditional on its values being above VaRα and the
ESα is proportional to the bias between the Right-Trimmed-Mean estimator applied to
the entire standardized Pareto distribution and the expectation, with a proportionality
factor equal to VaRα. Moreover, because the conditioning threshold does not depend
on the underlying sample, the convergence rate of the bias between the Right-Trimmed-
Mean estimator applied to the standardized Pareto distribution conditional on its values
being above the true VaRα and the true ESα is the same as that of the bias between the
Right-Trimmed-Mean estimator applied to the entire standardized Pareto distribution
and its expectation. The closed-form formula of the bias provides the convergence rate
as stated in Theorem 1.33. The convergence speed varies as a function of the Pareto
index γ and satisfies the rule n

1
γ
−1, multiplied by the proper constant.

Realistic case: In the realistic case, the empirical α-quantile does not match the true
VaRα, and the empirical ESα corresponds to the empirical average of the standardized
Pareto distribution conditional on its values being above the empirical α-quantile. The
conditioning threshold is an order statistic and depends on the underlying sample. This
implies that the samples larger than the empirical α-quantile are no longer independent
and identically distributed (i.i.d.) and the stability by conditioning and scaling proper-
ties are no longer valid. Therefore, the standardized Pareto distribution conditional on
its values being above the empirical α-quantile is not necessarily a Pareto distribution.
Thus, the distribution of the samples larger than the empirical α-quantile is unknown
and a closed-form formula for the bias between the true ESα and the empirical ESα

is tricky to be established. For this reason, numerical experiments give an idea on the
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convergence speed of the bias and show whether the convergence speed of the bias in the
realistic case is far from or close to the convergence speed of the bias in the idealistic
case. The numerical study shows that the convergence rate of the bias between the
empirical ESα and the true ESα in the realistic case seems to be very close to that of
the bias between the empirical ESα and the true ESα in the idealized case.

Lee-Valiant (LV)

The Lee-Valiant estimator is an improved version of the MoM estimator, which includes
a correction term. Because a closed-form formula for the bias of the MoM estimator
is not available, it is difficult to derive a closed-form formula for the bias of the LV
estimator. For this reason, we provide an empirical study that allows us to understand
the behavior of the bias between the LV estimator applied to the standardized Pareto
distribution tail and the true ESα, and determine whether the convergence rate of the
bias depends on the Pareto index.

Definition 1.34 (Lee-Valiant estimator). For a given δ, define the Median-of-Mean
estimator M̂oMn = MoM(X1, . . . , Xn), computed on k = log

(
1
δ

)
≤ n blocks with

δ ≥ e−n, and k an integer. The Lee-Valiant estimator is then defined as

L̂V n = M̂oMn +
1

n

n∑
i=1

(Xi − M̂oMn)(1−min(α(Xi − M̂oMn)
2, 1)) (1.138)

where the parameter α is the solution of the monotonic, piecewise-linear equation

n∑
i=1

min(α(Xi − M̂oMn)
2, 1) =

1

3
log

(
1

δ

)
. (1.139)

The zero of the equation:

n∑
i=1

min(α(Xi − M̂oMn)
2, 1)− 1

3
log

(
1

δ

)
= 0 (1.140)

can be solved using a dichotomy algorithm.

In (Gobet et al., 2022, p.14, Thm. 2.5), a deviation result is provided. See (Lee and
Valiant, 2022) for more details about the Lee-Valiant estimator.

The following survey aims at studying the evolution of the bias between the Lee-Valiant
estimator applied to the standardized Pareto distribution tail and the ESα in two dif-
ferent frameworks. The first framework refers to the idealized case where the empirical
α-quantile matches the theoretical VaRα. The second framework corresponds to the
realistic case where the empirical α-quantile does not match the theoretical VaRα.

To this end, we first study the bias between the Lee-Valiant estimator applied to the
entire standardized Pareto distribution P(1, γ) and the expectation. The numerical
study shows that the convergence rate of the bias between the LV estimator applied to
the entire standardized Pareto distribution P(1, γ) and its expectation is larger than 1

n

and lower than 1√
n
.
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Once the evolution of the bias between the L̂Vn estimator and the expectation of
the entire standardized Pareto distribution P(1, γ), as well as its convergence speed,
have been studied, we are interested in studying the evolution of the bias between the
L̂Vn estimator applied to the standardized Pareto distribution tail and the ESα in
two cases: an idealized case in which the conditioning threshold corresponds to the
theoretical VaRα, and a realistic case in which the conditioning threshold corresponds
to the empirical α-quantile.

Idealized case: In the idealized case, the empirical α-quantile matches the true
VaRα, which is known. In this case, the estimator of the ESα in the standardized
Pareto distribution P(1, γ) is the empirical average of the standardized Pareto distribu-
tion conditional on its values being above the true VaRα. The conditioning threshold
is independent on the underlying sample. This implies that the samples larger than
the true VaRα are independent and identically distributed (i.i.d.) and the stability
by conditioning and scaling properties, as stated in Theorem 1.22, are still valid. The
stability by conditioning property implies that the standardized Pareto distribution
P(1, γ) conditional on its values being above VaRα is still a Pareto distribution, with
the same shape parameter γ, but a new scaling parameter equal to the conditioning
parameter VaRα. The scaling property states that this non-standardized Pareto distri-
bution P(VaRα, γ) is proportional to the marginal Pareto distribution P(1, γ), with a
proportionality factor equal to the conditioning parameter VaRα. Therefore, the stand-
ardized Pareto distribution conditional on its values being above VaRα is proportional
to the standardized Pareto distribution with a proportionality factor equal to VaRα.
This implies that the L̂Vn estimator applied to the standardized Pareto distribution
conditional on its values being above VaRα, is proportional to the L̂Vn estimator ap-
plied to the entire standardized Pareto distribution, with a proportionality factor equal
to VaRα. In the same way, the ESα is proportional to the expectation of the standard-
ized Pareto distribution, with a proportionality factor equal to VaRα. Thus, the bias
between the L̂Vn estimator applied to the standardized Pareto distribution conditional
on its values being above VaRα and the ESα is proportional to the bias between the
L̂Vn estimator applied to the entire standardized Pareto distribution and the expecta-
tion, with a proportionality factor equal to VaRα. Moreover, because the conditioning
threshold does not depend on the underlying sample, the convergence rate of the bias
between the L̂Vn estimator applied to the standardized Pareto distribution conditional
on its values being above the true VaRα and the true ESα is the same as that of the
bias between the L̂Vn estimator applied to the entire standardized Pareto distribution
and its expectation.

Realistic case: In the realistic case, the empirical α-quantile does not match the true
VaRα. In this case, the estimator of the ESα in the standardized Pareto distribution
P(1, γ) is the empirical average of the standardized Pareto distribution conditional on
its values being above the empirical α-quantile. The conditioning threshold is an order
statistic and depends on the underlying sample. This implies that the samples lar-
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ger than the empirical α-quantile are no longer independent and identically distributed
(i.i.d.). Therefore, the distribution of the samples larger than the empirical α-quantile
is not necessarily a Pareto distribution. The stability by conditioning and scaling prop-
erties of the Pareto distribution, as stated in Theorem 1.22, are no longer valid. Thus,
the distribution of the samples larger than the empirical α-quantile is unknown and it
is difficult to establish an analytic closed-form formula for the bias between the L̂Vn

estimator applied to the standardized Pareto distribution tail above this empirical α-
quantile and the true ESα. For this reason, we provide some experimental study to
give an insight about the convergence speed of the bias between the L̂Vn applied to
the Pareto distribution tail above the empirical α-quantile and the Expected-Shortfall.
The convergence rate of the bias between the L̂Vn estimator applied to the standard-
ized Pareto distribution conditional on its values begin above the empirical α-quantile
and the true ESα seems to be similar to that of the bias in the idealized case, that is
between 1

n and 1√
n
. More precisely, tests have been performed for three Pareto distri-

butions P(1, 2.5), P(1, 3.5) and P(1, 5) and the convergence rate is between 1
n0.9 and

1
n0.7 .

Comparative study Finally, we support the theoretical analysis with some experi-
ments. We also compare the performance of the different estimators.

Bias between the empirical ESα and true ESα in the realistic case (work
in progress) As previously mentioned, in the realistic case, the empirical α-quantile
does not match the true VaRα. In this case, the estimator of the ESα in the stand-
ardized Pareto distribution P(1, γ) is the empirical average of the standardized Pareto
distribution conditional on its values being above the empirical α-quantile. The con-
ditioning threshold is an order statistic and depends on the underlying sample. This
implies that the samples larger than the empirical α-quantile are no longer independent
and identically distributed (i.i.d.). Therefore, the distribution of the samples larger
than the empirical α-quantile is not necessarily a Pareto distribution. The stability
by conditioning and scaling properties of the Pareto distribution, as stated in Theorem
1.22, are no longer valid. Thus, the distribution of the samples larger than the empirical
α-quantile is unknown and it is more challenging to establish an analytic closed-form
formula for the bias between the empirical ESα and the true ESα in the standardized
Pareto distribution. We provide a work in progress about the expression of this bias.
The empirical ESα formula is given as follows:

ESn
α =

1

n− ⌈αn⌉
n∑

i=1

Xi1{Xi≥qnα}. (1.141)

In the sake of simplicity, let us denote by r = ⌈αn⌉ the rank of the empirical quantile.
Then, the empirical ES corresponds to the empirical average of the samples larger than
the order statistics of order r and can be rewritten as ESn

r = 1
n−r

∑n
i=1Xi1{Xi≥X⋆

r }.
The goal is to compute the bias between the empirical ES and the theoretical ES in
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the standardized Pareto distribution P(1, γ).

BESr [ESn
r ] = E

[
ESn

r

]
−ESr where E

[
ESn

r

]
=

1

n− r

n∑
i=1

E
[
Xi1{Xi≥X⋆

r }

]
=

n

n− r
E
[
X11{X1≥X⋆

r }

]
(1.142)

since the sample is i.i.d.. Under the uniform distribution, we prove the form of the joint
distribution:

P(X⋆
r ≤ u,Xi ≤ v) = v

n−1∑
k=r

(
n− 1

k

)
uk(1− u)n−1−k +min(u, v)

(
n− 1

r − 1

)
ur−1(1− u)n−r.

(1.143)

Proceeding to the following quantile transformation VaRα(Xi) = Yi in Equation (4.246),
we adapt the above formula for the standardized Pareto distribution:

P(X⋆
r ≤ u,Xi ≤ v) = P(Y ⋆

r ≤ VaRα(u), Yi ≤ VaRα(v)). (1.144)

1.4 Perspectives

Based on our works, diverse perspectives can be envisaged.

Perspectives of Chapter 2 In Chapter 2, stationary and self-similar processes are
studied in the framework of the L2-spaces. Especially, in Gaussian framework, we show
that the kernel proposed by (Mandelbrot and Van Ness, 1968a) satisfies the assumptions
of stationarity and self-similarity. An improvement would be to prove the uniqueness
of this kernel.

Future works could extend the stationarity and self-similarity properties to the general
framework of multidimensional L2-spaces based on the approaches of (Lavancier et al.,
2009) and (Laha and Rohatgi, 1981).

A closed-form formula for the symmetrized cross-covariance kernel of the multivariate
fractional Brownian motion has been provided. An improvement would be to provide
a closed-form formula not only for the symmetrized cross-coveriance kernel but also for
the cross-covariance itself, as in the works of (Lavancier et al., 2009) and (Laha and
Rohatgi, 1981).

The fractional models used in our works are based on constant Hurst exponents. In order
to improve the performance of the fractional models, it could be relevant to add time-
dependency or time-randomness in the Hurst exponent. See for instance (Muniandy
and Lim, 2001).

Moreover, the fractional models could be improved by introducing time-dependence or
time-randomness in the volatility to obtain for instance local volatility or stochastic
volatility to better capture the price variations. Volatility dynamics could also be de-
scribed thanks to a fractional Brownian motion as in (Gatheral et al., 2017), intro-
ducing the self-similarity property of the volatility, and thus long-range (respectively
short-range) dependence.
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Another idea would be to integrate Hawkes processes in the fractional models in order
to take into account jumps in the price dynamics. See for instance (Hainaut, 2020).

Moreover, it would be interesting to add a corrective term in the fractional Black-Scholes
models so that the fractional models might become semi-martingales and satisfy the
Absence of Opportunity of Arbitrage (AOA). See (Cheridito, 2003), (Cheridito, 2001),
and (Rostek and Schöbel, 2013).

Perspectives on Chapter 3 In Chapter 3, we propose a predictive model for the
conditional Value-at-Risk of the Gaussian approximation at the first order of the future
portfolio variation, given the past variations of the assets. The model can be extended
to the conditional Expected-Shortfall of the Gaussian approximation at the first order of
the future portfolio variation, given the past variations of the assets. The quantification
of the error of approximation can be provided based on the one of the Value-at-Risk.

A considerable improvement would be to provide a Taylor expansion instead of an
upper bound of the error of approximation. The works of (Talay and Tubaro, 1990a)
and (Talay and Tubaro, 1990b), (Frikha and Huang, 2015) are useful to fulfill this task.
In (Frikha and Huang, 2015) authors assume that:

P(Lh ≤ l)− P(L ≤ l) = c01h+ c02h
2 + . . .+O(hk)

fLh − fL = c11h+ c12h
2 + . . .+O(hk)

∂fLh − ∂fL = c21h+ c22h
2 + . . .+O(hk)

...
∂(M)fLh − ∂(M)fL = cM+1

1 h+ cM+1
2 h2 + . . .+O(hk)

(1.145)

where h represents here the error of approximation.

Based on the above system of equations, it comes that:

VaRα(L)−VaRα(L
h) = c̃1h+ c̃2h

2 + . . .+O(hk). (1.146)

A Taylor expansion of the future portfolio variation δhPtN can be provided using Ito
formula. Then, we can exploit the semi-group development as mentioned in (Bally and
Rey, 2016), and Malliavin calculus to provide an expansion of VaR. Malliavin calculus is
used to study expectation of functions that are not regular like the indicator functions.
Then, Malliavin calculus can be used in the framework of the VaR expansion to compute
the cumulative distribution function P(X ≤ x) = E

[
1{X≤x}

]
. See for instance (Bally,

2007). In the framework of the VaR expansion, we have to identify the first error
term, the results of (Huang et al., 2015) are useful. Indeed, they state that if a Taylor
expansion exist for the cumulative distribution functions and their derivatives, a Taylor
expansion of the density exists. An expansion of the density also exists in the case
of the EDS approximations (Bally and Talay, 1996). The Euler scheme provides an
expansion of the density. Moreover, the results of (Huang et al., 2015) rely on the weak
approximation on regular test functions. These methods are inspired by parametric
expansions and Euler schemes.
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Futhermore, an interesting question would be the following: How does Gaussian ap-
proximation of portfolio variation behave in the framework of option pricing ?

Also, in Chapter 3, the parameters of the VaR model H and σ are estimated thanks
to first order estimators by linear regression of the log-quadratic variations versus the
log-increment sizes. A method based on quadratic variations applied to other filtration
(wavelets, second order) could be used to estimate with efficiency the Hurst exponent
H for H > 0.75. See for instance (Coeurjolly, 2001) or (Szymanski and Takabatake,
2023), (Chong et al., 2022b), (Chong et al., 2022a).

In our works, the multivariate fractional Brownian motion (mfBm) is generated thanks
to the Cholesky method whose complexity is in O((dN)3). To improve the complexity,
an interesting method based on circulating block matrix developed in (Coeurjolly and
Philippe, 2010) could be used. This would reduce the computation cost from O((dN)3)

to O((d2N log(N))).

The VaR model provided in Chapter 3 has been backtested at horizon equal to one day
and at risk level equal to α = 0.99, on stock indices, of length equal to one year, daily
sampled. This model could be backtested in other frameworks. For instance we could
consider other assets such as FX-rates, volatility indices, stocks, bonds, commodities.
We could consider other frequency sampling for the data such as high-frequency data.
The number of assets d in the portfolio could be increased.

An interesting perspective could be to establish asymptotic properties for the predicted
VaR.

Perspectives of Chapter 4 Finally, in Chapter 4, we have studied various non-
asymptotic robust estimators to estimate Expected-Shortfall in heavy-tailed distribu-
tions. Closed-form formulae have been provided for the bias of the median and of the
Trimmed-Mean estimators. It would be interesting to develop closed-form formulae for
the bias of Median-of-Means and Lee-Valiant estimators.

Also, we could extend the study of these robust estimators to the Generalized Pareto
distribution as well as to other heavy-tailed distributions.

"Pure mathematics is, in its way, the poetry of logical ideas."

(Albert Einstein, The World As I See It, 1949.)
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This chapter addresses research question (RQ#1). In this chapter, we focus on two time-
transformations: time-translation (or time-origin change) and time-scaling, and on the
related properties called stationarity and self-similarity. Stationarity is the invariance
in the time and space of a function or process by time-origin change (or temporal
translation). Self-similarity establishes a spatial proportionality relationship between
a function or a process taken at two proportional times t and λt with λ > 0, and the
spatial proportionality factor is a function of λ. We present a new approach for studying
stationary and self-similar processes in Hilbert space. First, we prove that the only
assumptions of stationarity and self-similarity of the quadratic norm of a given process in
Hilbert space, without any assumption of distribution, allow obtaining the stationarity
and self-similarity of the inner product of the process, with a closed-form formula for
the latter. Second, we show that adding the Gaussian assumption allows obtaining the
stationarity and self-similarity properties of the process not only in distribution but also
in the trajectory sense (i.e., in terms of equality of processes). We provide examples of
such processes, known as the Wiener process and fractional Brownian motion (fBm).
Finally, we provide an extension of the stationarity and self-similarity properties in the
trajectory sense, to multidimensional Gaussian processes, called multivariate fractional
Brownian motions (mfBm).

2.1 Introduction

In this chapter, we consider the L2-subspaces spanned by families of random variables
(r.v.) {X(θ), θ ∈ J}, denoted as HX . HX is the Hilbert subspace of all the finite linear
combinations α ·X(θ) =

∑n
1 αiX(θi) and their limits in L2; which is characterized by

the L2-characteristics of {X(θ)}, given by the quadratic norm of the components (i.e.,
the square of the norm) QX(θ) := Q(X(θ)) = ∥X(θ)∥22 = E(|X(θ)|2) and by the inner
products KX(θ, θ′) = ⟨⟨X(θ), X(θ′)⟩⟩ := E(X(θ)X(θ′)), a dependency indicator.
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Random families indexed in real time {X(t), t ∈ R} (or random processes) arouse partic-
ular interest. Their L2-characteristics QX(t) and KX(t, s) can be complex. In classical
approaches, additional properties have been introduced to reduce their complexity. If
the properties are only true "component by component", (t by t), only the quadratic
norm family {QX(t)} is concerned, and we are discussing the QX -property.
The classical time-transformations applied to {X(t)} are:
translation of origin, {Xh(t) = X(t+h)−X(h), (h ∈ R)}. Then, L2-stationarity ex-
presses that the processes {Xh(t)} and {X(t)} have the same L2-characteristics for any
h, while the QX -stationarity expresses only that for any t and h, Q(X(t+h))−X(h)) =

QX(t). Fortunately, this weaker hypothesis is sufficient to compute the kernel KX(s, t),
and to deduce the L2-stationarity.
change of scale: {X(t) → X(λt), (λ > 0)}. The L2-self-similarity supposes the ex-
istence of a non-negative function (Θ(λ), λ ∈ R+) such that processes {X(λt)} and
{Θ 1

2 (λ)X(t)} have the same L2-characteristics. The QX -self-similarity only assumes
that for any t and λ > 0, QX(λt) = Θ(λ)QX(t). Thus, these two concepts are not
equivalent. The QX -self-similarity is sufficient to show that Θ(λ) is a power function
such that Θ(λ) = λγ , γ > 0, and thus to fully characterize the quadratic norm owing to
this power function but not the inner kernel.

When these two QX -properties are satisfied simultaneously, it is shown (Theorem 1 )
that the inner kernel is fully characterized as a linear combination of power functions
of exponent γ ∈ (0, 1) (in place of positive, as above) and the process {X(t)} is both
L2-stationary and self-similar.

QX(t) = QX(1)
∣∣t∣∣2γ and KX(t, s) =

QX(1)

2
(|t|2γ + |s|2γ − |t− s|2γ) with γ ∈ (0, 1).

(2.1)

When γ = 1/2, it becomes QX(t) = QX(1)
∣∣t∣∣ ,KX(t, s) = QX(1)(|t| ∧ |s|).

In the next section, L2-families {X(t)} are considered under the additional hypothesis
of a Gaussian distribution for any finite linear combination. Therefore, the Hilbert
space HX is a Gaussian space, where the Gaussian processes are now identified by their
distribution, characterized by their L2-characteristics and their expectations {mX(t) =

E(X(t))}.
Nevertheless, Gaussian processes that are simultaneously self-similar and stationary
are necessarily centered (Theorem 4 ). Therefore, the results obtained in the general
framework of the L2-spaces, can be applied without modification, (with the familiar
vocabulary of variance and covariance kernel). The case γ = 1/2 is specific, because
the disjoint increments of the processes are L2-orthogonal, and therefore independent
in the Gaussian framework.

The Gaussian process with variance |t| is known as Brownian motion (indexed by
R and not R+ as usual) and is denoted {B(t)}. It is the best-known process of
the family Gss of self-similar and stationary Gaussian processes. Because they have
the same QX -characteristics, the processes {Bh(t) = B(t + h) − B(h), h ∈ R} and
{Bλ(t) = 1√

λ
B(λt), λ > 0}, which also belong to Gss, are also Brownian motions.

The tool of stochastic integrals of deterministic functions ϕ ∈ L2(Leb), B(ϕ) =
∫
ϕ(u)dB(u)
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allows describing the Gaussian space HB, but also gives a variable change formula for
the pathwise comparison between the r.v. B(ϕ), Bh(ϕ), B

λ(ϕ), as Bh(ϕ) =
∫
ϕ(u)dBh(u) =

∫
ϕ(u− h)dB(u)

Bλ(ϕ) =
∫
ϕ(u)dBλ(u) = 1√

λ

∫
ϕ(u/λ)dB(u).

(2.2)

All these variables are Gaussian variables with the same variance
∫
|ϕ(u)|2du.

In a second part, we are concerned with the construction of Gss-processes as stochastic
integrals of deterministic functions against the Brownian motion, where the functions
ϕ(u) are replaced by bivariate kernels κ(t, u) such that

∫
|κ(t, u)|2du < ∞. In line

with Mandelbrot and Van Ness in 1968 (Mandelbrot and Van Ness, 1968b), a Path
Dependent Brownian motion (PDBM), is defined as a Gaussian process, like Xκ(t) =∫
κ(t, u)dB(u). The variable change formula suggests transporting the time-change

initially supported by variable t into a time-change on the integration variable u. For
the PDBM process to be self-similar and stationary, it suffices that the kernel κ satisfies
the system: κ(t+ h, u)− κ(h, u) = κ(t, u− h)

κ(λt, λu) = η(λ)κ
(
t, u
)

with η(λ) = λν1{λ>0}, ν ∈
(
−1

2 ,
1
2

) (2.3)

since then, Xκ(λt,B) =
√
λη(λ)Xκ(t, Bλ), Xκ

h (t, B) = Xκ(t, Bh). From Equation
(1), λη2(λ) = 2γ, which explains why ν ∈

(
−1

2 ,
1
2

)
.

The last step is to find a bivariate kernel κ(t, u), solution of System (3) and square
integrable in u. The solution proposed by Mandelbrot and Van Ness ((Mandelbrot and
Van Ness, 1968b)) is the fractional kernel κν , which is clearly a solution of the previous
system,

κν(t, u) = (t− u)ν1{u<t} − (0− u)ν1{u<0}, ν ∈
(
−1

2
,
1

2

)
. (2.4)

The square integrability verifies that:

− for any value of ν, for u in the neighborhood of −∞,
∫ ∣∣∣κ(t, u)∣∣∣2 du <∞,

− for ν < 0, for u in the neighborhood of 0 and for u in the neighborhood of t,∫ ∣∣∣κ(t, u)∣∣∣2 du <∞.

Some remarks guide the intuition for obtaining such a solution.

Finally, an extension to the multidimensional framework is provided, first for the d-
dimensional Brownian motion, whose components are correlated Brownian motions with
covariance matrix of (ρi,j(t∧s)). Multidimensional fractional Brownian motion is a self-
similar multidimensional Gaussian process with stationary and correlated increments: Xκ(t+ h)−Xκ(h) =

∫
κ(t, u)⊙ dBh(u) = Xκ(t, Bh)

Xκ(λt) =
√
λη(λ)⊙

∫
κ(t, u)⊙ dBλ(u) =

√
λη(λ)⊙Xκ(t, Bλ)

(2.5)
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of variance-covariance kernel:
KXκ((i, t), (j, t)) = KXκ((i, 1), (j, 1))

∣∣t∣∣γi+γj

.

KXκ((i, t), (j, s)) +KXκ((i, s), (j, t)) = KXκ((i, 1), (i, 1))

(∣∣t∣∣γi+γj

+ |s|γi+γj −
∣∣t− s

∣∣γi+γj
)
.

(2.6)

2.2 General background

Let us introduce the general background of the study.

2.2.1 The framework

The working framework is composed of a complete probability space (Ω,F ,P), (the P-
negligible sets belong to F), and a measured space (E, E , µ). A random variable (r.v.)
X is by definition an E-measurable application from Ω to E, such that for all B ∈ E ,
{X ∈ B} ∈ F . When E = R, E := B(R) is the Borelian σ-field and the r.v. X is called
real random variable (r.v.r.).

The distribution of X is the probability measure on (E, E) defined by µX(B) := P(X ∈
B). Note that two r.v. X and Y almost surely equal, have the same distribution.

By extension, for any non-negative measurable application ϕ : (E, E) → (R,B(R)):

E
[
ϕ(X)

]
:=

∫
Ω
ϕ(X(ω))dP(ω) =

∫
E
ϕ(x)dµX(x). (2.7)

Lp(P)-spaces.

In the real case, E = R, the convex power functions ϕp(x) = |x|p, (p ≥ 1) allow defining
the p-th-order moments of X, E

[∣∣X∣∣p] = ∫E |x|p dµX(x). The set of equivalence classes

of r.v. X such that E
[∣∣X∣∣p] < +∞, called Lp(P)-space, (Lp when there is no ambiguity)

is a Banach space for the norm
∥∥X∥∥

p
:

Lp(P) :=
{
X : E

[∣∣X∣∣p] <∞
}

equipped with
∥∥X∥∥

p

def
=

(
E
[∣∣X∣∣p]) 1

p

. (2.8)

As it is well-known, the norm function X →
∥∥X∥∥

p
is continuous in Lp.

Owing to convexity inequalities, for p ≥ 1, p 7→
∥∥X∥∥

p
is non-decreasing and L1 is

included in all Lp-spaces. Then, when a sequence (Xn) converges to X in Lp, (Xn)

converges to X in Lr, for 1 ≤ r ≤ p, and the different norms also converge.

2.2.2 The L2-space

Generalities on the L2-space
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− Special attention is given to the L2-space which is not only a Banach space, but also a
Hilbert space, that is, a normed complete vector space, equipped with the inner product
⟨⟨X,Y ⟩⟩ = E

[
X Y

]
, and the norm ∥X∥2 =

√
⟨⟨X,X⟩⟩.

− Since L1 ⊂ L2, any L2-r.v. X is integrable, with expectation mX = E
[
X
]

and

variance VX = V[X] = E
[
(X −mX)2

]
. The subset of centered r.v. (mX = 0) is

denoted L2
c , with L2-norm

√
VX . The two applications X 7→ mX and X 7→ VX are

continuous in L2.

− Generally, it is convenient to replace the variance with the quadratic norm, defined
as the square of the norm Q(X) = ∥X∥22 = E

[
|X|2

]
= |mX |2 + VX .

As in any vector space, most of the properties concern linear combinations of variables,
α · X =

∑n
1 αiXi, (with α = (αi)

n
i=1 ∈ Rn and X = (Xi)

n
i=1). Their quadratic norm,

Q(α ·X) =
∑

(i,j)∈[1,n] αi αj ⟨⟨Xi, Xj⟩⟩ is a quadratic function of α = (αi)
n
i=1 ∈ Rn.

− Orthogonality plays a central role in Hilbert spaces. As usual, the L2-orthogonality
of X and Y is defined by ⟨⟨X,Y ⟩⟩ = 0. Generally, the L2-orthogonality of two L2-sub-
Hilbert spaces H1 and H2 is defined by,

H1 ⊥ H2 if ⟨⟨X1, X2⟩⟩ = 0, ∀X1 ∈ H1, X2 ∈ H2 (2.9)

Then, if the r.v. (Xi) are orthogonal, Q(α ·X) =
∑n

1 α
2
i Q(Xi).

L2-space spanned by a family of random variables

Often, the data are a finite or infinite family of L2-r.v. {X(θ)}θ∈J , with quadratic norms
QX(θ)

def
= Q(X(θ)) = ∥X(θ)∥22. This quadratic norm family is not sufficient to know

the quadratic norms of linear combinations of such variables, and it is also convenient
to define a dependency indicator, the Inner kernel KX(θ, θ′) = ⟨⟨X(θ), X(θ′)⟩⟩. Sub-
sequently, the quadratic norm of α ·X becomes Q(α ·X) =

∑
(i,j)∈[1,n] αi αj KX(θi, θj).

Definition 2.1. The L2-subspace, HX , spanned by the family {X(θ)}θ∈J is the smallest
Hilbert space containing the family {X(θ)}. HX is the space of all the finite linear
combinations of r.v. X(θ) and their limits. The L2-characteristics of HX are the family
{QX(θ),KX(θ, θ′), θ, θ′ ∈ J}.

2.2.3 Self-similar and stationary L2- Random process

In the sequel, special attention will be given to families of L2-random variables, indexed
by real-time (t ∈ R), also called random processes. It is an infinite dimension family,
which implies a high complexity of its L2-characteristics (quadratic norm QX(t), and
inner kernel KX(s, t))). Therefore, we are interested in studying additional properties,
that would reduce their complexity. However, sometimes, properties are only formulated
on the components of the family, that is, t by t. In this case, only the quadratic norm
family {QX(t)} is considered. We are talking of QX -property.

Two main time-transformations will be at the heart of the study:
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− the time-origin change corresponding to a translation of the origin, for any (t, h),
(X(t) 7→ (Xh(t) = X(t+ h)−X(h)). Xh(t) is the increment (variation) of X on
the interval It,h = (h, t+ h),

− the timescale change corresponding to a homothety, (X(t) 7→ X(λt), λ > 0).

QX and L2-Stationarity and Self-Similarity of random processes

Classical stability assumptions are made. The simplest is the stationarity.

L2-Stationarity

The stationarity property is related to the effects of time-origin change on the process.
More precisely, it expresses invariance by the time-origin change (or time-translation)
of the characteristics of the process.

Definition 2.2. (i) A process {X(t)} is said to be L2-stationary if for any h ∈ R, the
processes {Xh(t) = X(t + h) − X(h)} and {X(t)} have the same L2-characteristics,
quadratic norm, and inner kernel

Q[X(t+ h)−X(h)] = Q[X(t)] = QX(t), and ⟨⟨Xh(t), Xh(s)⟩⟩ = KX(t, s). (2.10)

(ii) The process {X(t)} is said to be QX-stationary if only the first condition holds:

Q(Xh(t)) = Q(X(t)) = QX(t) .

The QX -stationarity implies some immediate properties of the random process:

Remark: (i) Taking t = 0 in the Equation (2.10). Since Q(0) = 0, Q(X(0)) =

QX(0) = 0 and then X(0) = 0, a.s..

(ii) The quadratic norm function is even, QX(t) = QX(−t), because Q(X(t)) =

Q(X(t+ h)−X(h)) = Q(X(h)−X(t+ h)) = Q(X(−t)).

The main result is given by the following proposition.

Proposition 2.3. Any QX-stationary process is L2-stationary and thus, the processes
{Xh(t)} are also L2-stationary with the same L2-characteristics.

The proof contains interesting results detailed in the next lemma.

Lemma 2.4. Let {X(t)} be QX-stationary, then the Inner kernel is explained by the
quadratic norm QX as, for any (t, h) ∈ R2, and more generally, the inner kernel is also
stationary, that is, for all (t, s, h) ∈ R, KX(t, s) = ⟨⟨X(t), X(s)⟩⟩ = 1

2(QX(t)−QX(t− s) +QX(s))

⟨⟨X(t+ h)−X(h), X(s+ h)−X(h)⟩⟩ = ⟨⟨X(t), X(s))⟩⟩. (2.11)
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Proof The proof is based on the elementary formula, 2xy = x2 + y2 − (x − y)2,
applied to X(t) and X(s) for the first equality, and to the QX -stationarity property
Q[X(t)−X(s)] = QX(t− s). The second equation is obtained using the same method
applied to the two variables, X(t+ h)−X(h) and X(s+ h)−X(h) whose difference is
X(t+ h)−X(s+ h) with Q[X(t+ h)−X(s+ h)] = QX(t− s).

L2- Self-similarity

The self-similarity property is related to the effects of time-scale change on the quadratic
norm function {QX(t)}. This property states that for all λ > 0, there exists a func-
tion Θ(λ) such that the processes {X(λt)} and {Θ 1

2 (λ)X(t)} have the same quadratic
norms. More precisely, the self-similarity property establishes a spatial proportionality
relationship between the quadratic norms {QX(λt)} and {QX(t)} taken at two pro-
portional times λt and t, whose spatial proportionality factor is a function of the time
proportionality factor λ such that Θ(λ) > 0.

Definition 2.5. Let {Θ(λ), λ > 0} be a non-negative non-constant function.
(i) A process {X(t)} is said to be Θ-L2-self-similar, if for all λ > 0, the processes
{X(λt)} and {Θ 1

2 (λ)X(t)} have the same L2-characteristics, that is,

QX(λt) = Θ(λ)QX(t), ⟨⟨X(λt), X(λs)⟩⟩ = Θ(λ)⟨⟨X(t), X(s)⟩⟩. (2.12)

(ii) {X(t)} is said to be QX-(Θ)-self-similar if only QX(λt) = Θ(λ)QX(t), ∀t.

It can be observed that the QX -self-similarity property cannot be extended to the inner
kernel without an additional assumption.

Remark: (i) Under the QX -self-similarity assumption, (including Θ non-
constant), X(0) = 0, a.s., because QX(λ.0) = Θ(λ)QX(0) = QX(0) = 0.

(ii) For λ = 0, Θ(0) = 0 because, for any t, QX(0) = Θ(0)QX(t).

(iii) The self-similarity function Θ(λ) corresponds to the proportionality
factor in the proportionality relationship linking the quadratic normsQX(λt)

and QX(t) taken at two proportional times λt and t for all t ∈ R. There-
fore, the function Θ(λ) can be interpreted as a normalized quadratic norm
because for all λ > 0, Θ(λ) = QX(λ)/QX(1) = QX(−λ)/QX(−1). Thus,
the function Θ is symmetrical.

Thus, Θ can be extended to negative values by symmetry, Θ(λ) = Θ(|λ|).

Therefore, for all t ∈ R, the function Θ(
∣∣t∣∣) = QX(

∣∣t∣∣)/QX(1) satisfies the multiplic-
ative relationship, Θ(λ

∣∣t∣∣) = Θ(λ)Θ(
∣∣t∣∣). Such functions are well-known, under the

additional assumption of right-continuity (rc).
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Lemma 2.6. Consider the multiplicative equation on R+, ϕ(u v) = ϕ(u)ϕ(v), ϕ(0) = 0.

Any non-negative right-continuous solution ϕ is a power function ϕ(u) = u2γ , γ ≥ 0.

Proof First, observe that ϕ(1) = 1, because ϕ(1) = ϕ(1)2. To solve the multiplicative
functional equation ϕ(uv) = ϕ(u)ϕ(v), we substitute x = ln(u) and y = ln(v). Thus,
we obtain ϕ(ex+y) = ϕ(ex)ϕ(ey). Taking the logarithm, we find that the new function
g(x) = ln(ϕ(ex)) is a solution of the additive equation g(x + y) = g(x) + g(y) on R
satisfying g(0) = 0. The assumption ϕ(0) = 0 leads to limx→−∞ g(x) = −∞ which
implies that κ > 0. The only rc-solutions are linear, for all x ∈ R, g(x) = κx and
κ = g(1). Returning to the multiplicative equation, ϕ(ex) = eκx = (ex)κ = u2γ where
2γ = κ, with κ > 0 because ϕ(0) = 0.

With the only QX -self-similarity assumption, the form of function Θ can be determined,
and the quadratic norm is characterized.

Proposition 2.7. A family {X(t)}, with a right-continuous (rc) quadratic norm {QX(t)}
is self-similar in quadratic norm only if the function QX is a power function, with a
positive exponent γ, QX(t) = |t|2γQX(1) if t > 0, QX(t) =

∣∣t∣∣2γ QX(−1) if t < 0, and
QX(0) = 0. In other words, for all t ∈ R QX(t) =

∣∣t∣∣2γ QX(sgn(t)) where sgn(t) = 1 if
t > 0, sgn(t) = −1 if t < 0, and sgn(t) = 0 if t = 0.

L2(P)-Stationarity and self-similarity

Combining the self-similarity and stationarity of the quadratic norm implies restricting
the exponent γ of the power function QX(t) to the interval (0, 1), owing to QX -sub-
linearity induced by the stationarity.

Theorem 2.8. (i) A necessary and sufficient condition for an L2-rc {X(t)} to be L2-
self-similar and stationary, is the existence of a power function, with exponent 0 < γ < 1

such that the L2-characteristics are,

QX(t) = QX(−t) = QX(1)
∣∣t∣∣2γ and KX(t, s) =

QX(1)

2
(|t|2γ + |s|2γ − |t− s|2γ).

(2.13)

(ii) The condition γ = 1/2, is equivalent to the orthogonality of the increments, defined
on the disjoint intervals. In this case KX(t, s) = QX(1)(

∣∣t∣∣ ∧ |s|).

Remark: − The Inner kernel is both stationary from Proposition ??, and γ-self-
similar, which is obvious in Equation (2.13).

Proof (i) The only property to be proved is that γ < 1.

This is due to the fact that the L2-norm
√

Q(X(t)) =
√
QX(t) is sublinear, that is

|
√
QX(t) −

√
QX(s)| ≤

√
Q(X(t)−X(s)) =

√
QX(t− s), where the last equality

comes from the stationarity assumption.

By replacing the quadratic norm function with its explicit power form (up to the mul-
tiplicative coefficient)

∣∣t∣∣2γ , the power functions must be sublinear, which is true only
if 0 < γ < 1.
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(ii) If γ = 1
2 , when t and h have the same sign, |t + h| = |t| + |h|, and ⟨⟨X(t + h) −

X(h), X(h)⟩⟩ = QX(1)
2 (|t+h|− |t|− |h|) = 0 and the disjoint increments are orthogonal.

When t > 0 > h, the intervals [h, t] and [h, 0] are not disjoint, so their increments
are not orthogonal, but [h, 0) and [0, t] are disjoint intervals, and ⟨⟨X(t), X(h)⟩⟩ =
QX(1)

2 (|t|+|h|−|t−h|) with |t|+|h|−|t−h| = t−h−(t−h) = 0 since t > 0 > h. Be careful,
having increments defined on disjoint intervals is required to get the orthogonality of
the increments.

(iii) If γ = 1
2 then KX(t, s) = QX(1)

2 (
∣∣t∣∣ + |s| −

∣∣t− s
∣∣). If t, s > 0 and t ≥ s then

KX(t, s) = QX(1)
2 (t + s − (t − s)) = QX(1)s = QX(1)(t ∧ s). If t ≥ 0 and s ≤ 0, then

KX(t, s) = QX(1)
2 (t− |s| − (t+ |s|)) = QX(1)(− |s|) = QX(1)s = QX(1)(|s| ∧ |t|).

The following formulation is another form of the self-similarity and stationarity prop-
erties, which is useful in the study of Gaussian processes.

Proposition 2.9. Let {X(t)} be a family of HX , with an rc-quadratic norm QX .
(i) For all λ > 0, h ∈ R and γ ∈ (0, 1):

− the time-scaled family is
{
Xλ,γ(t) = λ−γX(λt)

}
with λ > 0,

− the time-translated family is defined as
{
Xh(t) = X(t+ h)−X(h)

}
.

When γ = 1
2 , the parameter γ will not be mentioned in the operators Xλ.

(ii) Process {X(t)} is γ-self-similar and stationary if and only if the processes {Xh(t)}
and {Xλ,γ(t)} have the same L2-characteristics as {X(t)}, inner product KX(t, s) =
QX(1)

2 (|t|2γ + |s|2γ − |t− s|2γ), and quadratic norm QX(t) = QX(−t) = QX(1)|t|γ.

Proof All these processes have the same stationary and self-similar quadratic norms.
Thus, by a direct application of Lemma 2.4 and of Theorem 2.8, they have the same
L2-characteristics.

2.3 Gaussian spaces spanned by Gaussian families

In the general framework of the Hilbert space, results have been developed on the
L2-characteristics of the L2-random families. Now we are interested in adding an as-
sumption of distribution, and more specifically, in the Gaussian distribution, which
presents very useful properties. We want to study the properties of the elements of the
space HX spanned by Gaussian families.

2.3.1 Gaussian variables and Gaussian families

Let us define the distribution of Gaussian variables and of a Gaussian family through
their Fourier transform.

Gaussian random variables
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The distribution of any variable is characterized by its Fourier transform.

Definition 2.10. The distribution of a Gaussian variable X with mean mX and vari-
ance VX is characterized by its Fourier transform, as follows:

ϕX(u) := E
[
eiuX

]
= eiu mX− 1

2
u2VX , ∀u ∈ R. (2.14)

Recall that the quadratic norm of X is defined by QX = m2
X + VX .

The main property of the Gaussian variables is that all quantities, mean mX , variance
VX , and Fourier transform ϕX(u) are continuous operators in L2. (The first two prop-
erties have been recalled at the beginning of Section 2.2.2; the Fourier continuity results
from the Lipschitz property of the Fourier transform). Any limit in the L2-space of the
Gaussian variables is then a Gaussian variable.

The properties established in Section 2.2.2, can be generalized to the Gaussian frame-
work. In particular, we consider orthogonality between the Gaussian variables.

Theorem 2.11. Let X,Y be two Gaussian variables, such that any linear combination
αX + βY is Gaussian, with (α, β) ∈ R2. Variables X and Y are independent, if and
only if X and Y are L2-orthogonal, that is ⟨⟨X,Y ⟩⟩ = 0.

To verify the independence property between the two variables, it is sufficient to prove
that their Fourier transforms are multiplicative.

Proof Let X,Y be two Gaussian variables, such that any linear combination αX+βY

is Gaussian, with (α, β) ∈ R2.

Because αX+βY is a Gaussian variable, its Fourier transform is given by ϕαX+βY (u) =

E
[
eiu(αX+βY )

]
= eiuE[αX+βY ]−u2

2
V[αX+βY ].

From Equation (2.9), if X ⊥ Y , then ⟨⟨X,Y ⟩⟩ = 0 and V[αX+βY ] = α2V[X]+β2V[Y ].

Therefore, we get: ϕαX+βY (u) = eiuαE[X]−
u2

2
α2V[X]eiuβE[Y ]−

u2

2
α2V[Y ] = ϕαX(u)ϕβY (u).

Consequently, X and Y are independent.

Remark: Recall that for any non-negative bounded Borelian functions f, g,
the random variablesX and Y are said to be independent if: E

[
f(X)g(Y )

]
=

E
[
f(X)

]
E
[
g(Y )

]
.

Gaussian family and their Gaussian space

In this section, the notations introduced in the general framework of the L2-spaces are
reused.

Definition 2.12. Let {X(θ)}θ∈J be a L2-family. {X(θ)}θ∈J is a Gaussian family, if
any finite linear combination α ·X(θ) =

∑n
1 αiX(θi) is a Gaussian variable.

Space HX contains only Gaussian variables, and is called the Gaussian Hilbert space.
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Remark: (i) Be careful, the variables of a Gaussian family are Gaussian
variables, but the reciprocal is incorrect.

(ii) Any subfamily of a Gaussian family remains a Gaussian family,

Remark: From Theorem 2.11, if two Gaussian subspaces H1
X and H2

X are
orthogonal in the sense of the L2-orthogonality, then any linear combina-
tion of H1

X is independent of any linear combination of H2
X . Any Borelian

function of the variables of H1
X is independent of any Borelian function of

the variables of H2
X . Consequently, any σ-algebra of H1

X is independent of
any σ-algebra of H2

X .

2.3.2 Self-similar and stationary Gaussian process

The Gaussian family is now an L2-Gaussian function (or process) indexed in real time
{X(t)}t∈R for which we continue to exploit the results obtained in Section 2.2.2.
L2-random variables were identified using their quadratic norm. Here, Gaussian vari-
ables (family) are identified by their Gaussian distribution, depending on both the
covariance kernel and, the mean (expectation) of the variables. However, under self-
similarity and stationarity assumptions, the process is necessarily centered, then the
L2-properties and distributional properties coincide. To compare two Gaussian famil-
ies, we compare their L2-characteristics and their mean functions mX(t) = E(X(t)).

Definition 2.13. The Gaussian process {X(t)} is γ-self-similar and stationary in dis-
tribution if and only if the two Gaussian processes ({X(t)} and {Xh(t) = X(t + h) −
X(t)}, h ∈ R), respectively ({X(λt)} and {λγX(t)}, λ > 0) have the same Gaussian
distribution, that is, the same mean and inner kernel.

A Gaussian process stationary and self-similar in distribution is obviously an L2-γ-self-
similar and stationary process. Thus, all the previous results hold true. In particular,
its quadratic norm is the power function QX(t) = QX(1)|t|2γ with 0 < γ < 1, and
the inner kernel is completely specified as a linear combination of these power functions
KX(t, s) = QX(1)

2 (|t|2γ+|s|2γ−|t−s|2γ). The only unknown property concerns the mean,
which, by the stationarity property verifies mX(t + h) = mX(t) +mX(h). Therefore,
the mean is a linear function and takes the following form mX(t) = mX(1)t. However,
based on the self-similarity property, for all λ > 0, mX(λ) = λγmX(1). These two
equations are contradictory, if γ ̸= 1. But γ ∈ (0, 1). Subsequently, mX(t) = 0.

Theorem 2.14. A Gaussian process {X(t)} is γ-self-similar and stationary in distri-
bution, if and only if {X(t)} is a centered process, and is γ-self-similar and stationary
in the L2-sense. The quadratic norm QX(t) is the variance VX(t) = VX(1)|t|2γ , γ ∈
(0, 1).

(ii) If γ = 1
2 , the self-similar and stationary Gaussian process {X(t)} has independent

increments and a linear variance VB(t) = VB(1)|t|. This process is called Brownian
motion or Wiener process. In the following, this is denoted as {B(t)}.
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(iii) For any λ > 0 and h ∈ R, the processes {Bh(t) = B(t + h) − B(h)}, {Bλ(t) =

λ−1/2B(λt)} and {Bλ
h(t) = λ−1/2(B(λ(t+ h))−B(λh))} are also Brownian motions.

2.3.3 Wiener-Brown space and stochastic integral

The Gaussian space spanned by Brownian motion is described with the help of the
stochastic integral of deterministic functions against Brownian motion, which corres-
pond to centered Gaussian variables with variance easy to characterize.

The results regarding the self-similarity and stationarity of the Gaussian families ob-
tained in Section 2.3.2 are exploited in the framework of the stochastic integral.

L2-space HB spanned by the Brownian motion

Recall that HB is a Hilbert space containing all the finite linear combinations of
Brownian motions and their limits.

(i) For our purposes, it is more convenient to describe these linear combinations based
on the family of increments defined on disjoint intervals. Let us consider an increasing
sequence of times (t0, t1, t2, . . . , tn) such that t0 < t1 < t2, . . . , < tn. The finite linear
combination α · B =

∑n
i=1 αi(B(ti+1) − B(ti)) is a Gaussian variable with variance

V(α ·B) =
∑n

i=1 α
2
i (ti+1 − ti) because the increments B(ti+1)−B(ti) are independent.

Analogous to finite variation calculus, it is convenient to describe the random vari-
able

∑n
i=1 αi(B(ti+1) − B(ti)) as the Brownian integral of the step function ϕe(u) =∑n

i=1 αi1(ti,ti+1)(u), and its variance as the Lebesgue integral of the square of the func-
tion. Then, for ϕe(u) =

∑n
i=1 αi1(ti,ti+1)(u),

B(ϕe) :=
n∑

i=1

αi(B(ti+1)−B(ti)) =

∫
R
ϕe(u)dB(u) with variance V(B(ϕe)) =

∫
|ϕe(u)|2du.

(iii) We wonder how to interpret the limit of the finite linear combinations of the
increments of Brownian motion on disjoint intervals. Because the step functions are
dense in L2(Leb) space, if (ϕen)n∈N is a Cauchy sequence of step functions in L2(Leb)

such that limn ϕ
e
n = ϕ, then the sequence of stochastic integrals (B(ϕen)) converges in

HB to an r.v. denoted B(ϕ) =
∫
ϕ(u)dB(u) with variance

∫
R |ϕ(u)|2du.

Theorem 2.15. Let {B(t)} be the standard Brownian motion.

(i) The L2-space spanned by the Brownian motion {B(t)} is the family of Gaussian
stochastic integrals B(ϕ) :=

∫
ϕ(u)dB(u) of deterministic functions ϕ in L2(Leb), with

variance V[B(ϕ)] =
∫
|ϕ|2du.

(ii) The covariance of two stochastic integrals is Cov
(
B(ϕ), B(ψ)

)
=
∫
R ϕ(u)ψ(u)du.

Therefore, there exists an isometry between HB and L2(Leb).
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Change of Variable formula

Let us consider the stochastic integral of an affine time-changed Borelian function
against the standard Brownian motion. Owing to a variable change, we prove that
the time-change, which initially holds on the Borelian function ϕ, is transferred to the
Brownian of integration under the form of the inverse time-change.

Theorem 2.16. Recall that for all λ > 0, h ∈ R and t ∈ R, {Bt}, {Bλ(t) = λ−
1
2B(λt)},

and {Bh(t) = B(t+ h)−B(h)} are Brownian motions.
For any ϕ ∈ L2(Leb), we have the following pathwise representation,∫

λ−
1
2ϕ

(
u

λ

)
dB(u) =

∫
ϕ(u)dBλ(u) and

∫
ϕ
(
u− h

)
dB(u) =

∫
ϕ(u)dBh(u).

All these variables are Gaussian variables with the same variance
∫
|ϕ(u)|2du.

Remark: This result, (provided in Theorem 2.16), is much stronger than the
previous one because we obtain an equality of processes (that is, in trajectory)
instead of a result in distribution.

Proof Let ϕ ∈ L2(Leb). Let {B(t)} be a standard Brownian motion.

Let us prove the trajectory identity on the indicator function 1Iα(u) = 1(sα,tα)(u).
The extension to any step function and subsequently to any deterministic function is
straightforward.

(i) Let us proceed to substitution in
∫
R 1(sα,tα)

(
u
λ

)
dB(u), taking v = u

λ . The integra-
tion bounds then become λsα and λtα. Therefore, we get:∫
R 1(sα,tα)

(
u
λ

)
dB(u) =

∫
R 1(λsα,λtα) (u) dB(u) = (B(λsα)−B(λtα)). Because (B(λsα)−

B(λtα)) =
√
λ
∫
R 1(sα,tα)(v)dB

λ(v), the first equality is proved.

(ii) We proceed to a substitution in
∫
R 1(sα,tα)

(
u− h

)
dB(u), taking v = u− h. Then,

the integration bounds become sα + h and tα + h. Therefore, we obtain:∫
R 1(sα,tα)

(
u− h

)
dB(u) =

∫
R 1(sα+h,tα+h) (u) dB(u) = B(tα+h)−B(sα+h). This last

term is the increment of Bh(v) on (sα, tα) also written
∫
R 1(sα,tα)(v)dBh(v). Then,∫

R 1(sα,tα)
(
u− h

)
dB(u) =

∫
R 1(sα,tα)(v)dBh(v).

By density of the step functions in L2(Leb), this result can be extended to any square
integrable Borelian function ϕ.

2.3.4 Existence and construction of self-similar and stationary
Path-Dependent Brownian Motion (PDBM)

So far, the existence of self-similar and stationary Gaussian processes has been assumed,
but has never been proven. The question of the existence of such processes is now
addressed.
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Existence of the Wiener process

The problem of the "mathematical existence" of such process has been solved for the
first time in 1923 by Wiener, who was the first to give a mathematical construction
based on ideas from signal theory. It is known as Karhunen-Loeve construction.

Proposition 2.17 (Existence of Wiener process). Let {Zk} be an infinite sequence of
independent, normalized Gaussian random variables, used as the orthogonal basis of a

Gaussian space. Similarly, let

{
ek(t) = αk

√
2 sin

(
(2k−1)π

2 t

)}
be the Karhunen-Loeve

orthonormal basis of L2(Leb).

Then, the process B = {B(t)}, defined by the family of L2(P)-random series

B(t) =

+∞∑
k=1

ek(t) Zk (2.15)

is a stationary Gaussian process with independent increments.
It can also be shown that this process has continuous paths.

(See (Giambartolomei, 2015, Thm.5.14, p.48) for more details.)

Definition and properties of Path-Dependent Brownian Motions

Stochastic integrals of any Borel function ϕ ∈ L2(Leb) against Brownian motion allow us
to obtain Gaussian variables. The challenge is to generate Gaussian processes. For this
purpose, we generate stochastic integrals of a family of bivariate kernels {κ(t, u), (t, u) ∈
R2} against Brownian motion, where t is a fixed time parameter, u is an integration
variable and κ(t, u) is a square-integrable with respect to u. In this sense, we are in line
with the work of Mandelbrot and Van Ness in 1968 (Mandelbrot and Van Ness, 1968b).
They formally define a path-dependent generalization of Brownian motion, called the
Path-Dependent Brownian Motion (PDBM), as follows:

Xκ(t, B) :=

∫
κ(t, u)dB(u), with

∫
R

∣∣∣κ(t, u)∣∣∣2 du <∞. (2.16)

The covariance kernel is defined as KXκ(t, s) =
∫
R κ(t, u)κ(s, u)du and κ(0, u) = 0.

We are interested in the time-translated and time-scaled PDBM defined for all λ > 0,
h ∈ R and almost all (t, u) ∈ R2 by: Xκ(t+ h,B)−Xκ(h,B) =

∫
(κ(t+ h, u)− κ(h, u))dB(u)

Xκ(λt,B) =
∫
κ(λt, u)dB(u).

(2.17)

Transformations of Path-Dependent Brownian Motion

Recall that in all the sequels, λ is positive and {B(t)}, {Bh(t) = B(t+h)−B(h)}, and
{Bλ(t) = λ−

1
2B(λt)} are Brownian motions. We define the square integrable kernels
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for almost all (t, u) ∈ R2 and for all h ∈ R and λ > 0 by:

κ(t, u), κh(t, u) = κ(t, u− h), κλ(t, u) = λ−1/2κ(t, u/λ). (2.18)

Theorem 2.18. Let us define the PDBMs {Y (t) = Xκ(t, B)}, {Y λ(t) = Xκ(t, Bλ)}, {Yh(t) =
Xκ(t, Bh)}.
(i) Processes {Y λ(t)} and {Yh(t)} have the same distribution as {Y (t)}.
(ii) {Y λ(t)} and {Yh(t)} satisfy the pathwise identities:

{Y λ(t) = Xκλ
(t, B)} and {Yh(t) = Xκh(t, B)}. (2.19)

Proof This Theorem is the kernel version of the variable change formula stated in
Theorem (2.16).

(i) Because processes {B(t)}, {Bh(t)} and {Bλ(t)} are all Brownian motions, pro-
cesses {Y (t)}, {Yh(t)} and {Y λ(t)} are all stochastic integrals of the same deterministic
kernel κ(t, u) against Brownian motion. Consequently, {Y (t)}, {Yh(t)} and {Y λ(t)}
have the same Gaussian distribution, with a null expectation and a variance equal to∫
(κ(t, u))2du.

(ii) From Equation (2.18), Xκh(t, B) =
∫
κ(t, u − h)dBu. From Theorem 2.16, the

variable change v = u − h transfers the time-translation from the integration variable
u to the Brownian of integration, which becomes Bh(u). We then obtain Xκh(t, B) =∫
κ(t, v)dBh(v) = Xκ(t, Bh).

From Equation (2.18), Xκλ
(t, B) = λ−

1
2

∫
κ
(
t, uλ

)
dB(u). From Theorem 2.16, the

variable change w = u
λ transfers the time-scaling from the integration variable u to

the Brownian of integration, which becomes Bλ(w) = λ−
1
2B(λw). Then we get,

Xκλ
(t, B) =

∫
κ(t, w)dBλ(v) = Xκ(t, Bλ).

The interpretation in terms of stationarity and self-similarity of the PDBM requires the
transfer of these properties obtained in u to time t.

Theorem 2.19. Let {B(t)}, {Bλ(t)}, {Bh(t)}, be the transformed Brownian motions.

(i) If the time-stationarity condition of bivariate kernel κ(t, u) is satisfied,

κ(t+ h, u)− κ(h, u) = κh(t, u) = κ(t, u− h) (2.20)

then the following pathwise identity holds:

{Xκ(t+ h,B)−Xκ(h,B) = Xκ(t, Bh)} (2.21)

and the process {Xκ(t, B)} is stationary in the trajectory sense.

(ii) If the time-self-similarity condition of the bivariate kernel κ(t, u) is satisfied,

κ(λt, u) = η(λ)κ

(
t,
u

λ

)
= (

√
λη(λ))κλ(t, u) with η(λ) = λν1{λ>0}, ν ∈

(
−1

2
,
1

2

)
(2.22)
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then the following pathwise identity holds:

{Xκ(λt,B) = η(λ)
√
λXκ(t, Bλ)}. (2.23)

and the process {Xκ(t, B)} is self-similar in the trajectory sense.

(iii) If both the time-stationarity (Equation (2.20)) and time-self-similarity (Equation
(2.22))) conditions are satisfied, then the following pathwise identity holds:

{Xκ(λ(t+ h), B)−Xκ(λh,B) = η(λ)
√
λXκ(t, Bλ

h)} (2.24)

and the process {Xκ(t, B)} is both stationary and self-similar, in the trajectory sense,
with variance-covariance kernel:

VX(t) = VX(1)
∣∣t∣∣2γ and KX(t, s) =

VX(1)

2
(|t|2γ + |s|2γ − |t− s|2γ) (2.25)

with γ ∈ (0, 1), η(λ) = λγ−
1
21{λ>0}.

Proof (i) From Equation (2.17),Xκ(t+h,B)−Xκ(h,B) =
∫
(κ(t+h, u)−κ(h, u))dB(u).

If the time-stationarity property of the bivariate kernel κ(t, u) given in Equation (2.20)
is satisfied, then κ(t+h, u)−κ(h, u) = κ(t, u−h), and we get Xκ(t+h,B)−Xκ(h,B) =∫
κ(t, u−h)dB(u). From Theorem 2.16, the time-translation is transferred from integra-

tion variable u to the Brownian of integration, and we obtain: Xκ(t+h,B)−Xκ(h,B) =∫
κ(t, u)dBh(u) = Xκ(t, Bh). This proves that the process {Xκ(t, B)} is stationary in

the trajectory sense.

(ii) From Equation (2.17), Xκ(λt,B) =
∫
κ(λt, u)dB(u).

If the time-self-similarity property of the bivariate kernel κ(t, u) given in Equation (2.22)
is satisfied, then κ(λt, u) = η(λ)κ

(
t, uλ

)
= (

√
λη(λ))κλ(t, u) with η(λ) = λν1{λ>0}, ν ∈(

−1
2 ,

1
2

)
, and we get Xκ(λt,B) =

∫
η(λ)κ

(
t, uλ

)
dB(u). From Theorem 2.16, the time-

scaling is transferred from the integration variable u to the Brownian of integration,
and we obtain: Xκ(λt,B) =

√
λη(λ)

∫
κ
(
t, u
)
dBλ(u) =

√
λη(λ)Xκ(t, Bλ). This proves

that the process {Xκ(t, B)} is self-similar in the trajectory sense.

(iii) Gathering time-translation and time-scaling,Xκ(λ(t+h), B)−Xκ(λh,B) =
∫
(κ(λ(t+

h), u) − κ(λh, u))dB(u). If both the time-stationarity and time-self-similarity prop-
erties of the bivariate kernel κ(t, u) are satisfied, then κ(λ(t + h), u) − κ(λh, u) =

η(λ)κ
(
t, uλ − h

)
.

Then we get, Xκ(λ(t+h), B)−Xκ(λh,B) =
∫
η(λ)κ

(
t, uλ − h

)
dB(u). Applying twice

Theorem 2.16, once for the time-translation and once for the time-scaling, it allows
transferring the time-transformations from the integration variable to the Brownian of
integration, and we get: Xκ(λ(t+ h), B)−Xκ(λh,B) =

√
λη(λ)

∫
κ
(
t, u
)
dBλ

h(u).
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A reference dealing with self-similar Gaussian processes with stationary in-
crements is (Taqqu, 1994, Chap.7 - Def.7.1.7 p.314, Cor.7.2.3 p.320). Au-
thors proved that a Gaussian process is self-similar and with stationary
increments if and only if it is an fBm whose auto-covariance function is
given by Equation (2.13). In their approach, distributional assumptions are
made. Stationarity and self-similarity properties are expressed in terms of
distributions. That is what distinguishes their approach from ours. Indeed,
in our approach, we assume the stationarity and self-similarity properties of
the quadratic norm in the L2-spaces, and we prove that these assumptions
alone are sufficient to fully characterize the covariance kernel and to deduce
that the latter also satisfies the stationarity and self-similarity properties.

Kernel identification

From Theorem 2.19, now, the issue is to study the following system: κ(t+ h, u)− κ(h, u) = κ(t, u− h)

κ(λt, λu) = η(λ)κ
(
t, u
)

with η(λ) = λν1{λ>0}, ν ∈
(
−1

2 ,
1
2

)
.

(2.26)

Remarks:

(i) The above system is defined for almost all (t, u) ∈ R2 and λ > 0.

(ii) The exponent ν can take negative values when it belongs to the interval(
−1

2 , 0
)
. In this case, the kernel can encounter some problems of definition

in the neighborhood of 0.

(iii) We look for a kernel that is almost surely Lebesgue.

We highlight some useful properties induced by the self-similarity and stationarity con-
ditions of the bivariate kernel stated in Equation (2.26).

(i) On the one hand, the stationarity property of κ(t, u) establishes invariance by the
time-translation of the bivariate kernel: κ(t+ h, u)− κ(h, u) = κ(t, u− h).

(ii) On the other hand, the self-similarity condition establishes a spatial proportion-
ality relationship between two bivariate kernels whose time variables are linked by a
proportionality factor λ > 0, and the spatial proportionality factor is a function of the
time-proportionality factor λ, η(λ). Therefore, the self-similarity condition given in
Equation (2.26) can be rewritten as follows:

κ(λt, u) = η(λ)κ

(
t,
u

λ

)
with η(λ) = λν1{λ>0}, ν ∈

(
−1

2
,
1

2

)
. (2.27)

This last form is less intuitive than the form given in Equation (2.26) but is the form
used to prove the self-similarity of the PDBMs.

The self-similarity property of the bivariate kernel {κ(t, u)} with respect to the time-
component t, with scaling factor λ and self-similarity function η(λ) as stated in Equation
(2.27) is equivalent to the self-similarity property of the bivariate kernel {κ(t, u)} with
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respect to the integration variable u, with inverse scaling factor 1
λ , and inverse self-

similarity function 1
η(λ) . So that the variance of the PDBM is a power function, η(λ) is

necessarily a power function, then 1
η(λ) = η

(
1
λ

)
.

κ

(
t,
u

λ

)
=

1

η(λ)
κ

(
t

1/λ
, u

)
= η

(
1

λ

)
κ
(
λt, u

)
with η(λ) = λ−ν

1{λ>0}, ν ∈
(
−1

2
,
1

2

)
.

(2.28)

The self-similarity property of the bivariate kernel with respect to the time-variable
given by Equation (2.27), and the self-similarity property of the bivariate kernel with
respect to the integration variable given by Equation (2.28), allow going from a positive
exponent ν to a negative exponent and vice versa. These properties are useful to solve
the problem of definition of the bivariate kernel in the neighborhood of 0 when ν < 0.

(iii) The self-similarity property of the bivariate kernel {κ(t, u)} with respect to the
time-variable allows proving the symmetry property of the ratio between couples of
bivariate kernels taken at two proportional times. Indeed, the self-similarity property
of {κ(t, u)} with respect to the time-variable establishes a spatial proportionality re-
lationship between the bivariate kernels taken at two proportional times of factor λ,
and the spatial proportionality factor is a function of the time proportionality factor
η(λ). This implies that the ratio between couples of bivariate kernels taken at two
proportional times of factor λ is equal to the spatial proportionality factor η(λ) which
is constant and independent of time.

η(λ) =
κ(λt, λu)

κ(t, u)
=
κ(λt, u)

κ
(
t, uλ

) . (2.29)

Specifically, the self-similarity property of {κ(t, u)} leads to a symmetry property:

η(λ) =
κ(−λt,−λu)
κ(−t,−u) =

κ(λt, λu)

κ(t, u)
or equivalently η(λ) =

κ(−λt,−u)
κ
(
−t,−u

λ

) =
κ(λt, u)

κ
(
t, uλ

) .
(2.30)

In this context, the goal is to find a solution to System (2.26), which, in addition, is
right-continuous with respect to the time-variable t and Lebesgue square-integrable with
respect to the integration variable u. The set of these solutions is not empty because
Mandelbrot and Van Ness proposed a solution.

Remarks:

(i) The solution proposed by Mandelbrot and Van Ness in Equation (2.32)
can be rewritten as follows:

κ(t, u) = η(t− u)− η(0− u) with η(u) = uν1{u>0}. (2.31)

In other words, κ(t, u) is the increment between two times 0− u and t− u

of the power function η. This specific form of kernel has two consequences:
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− Because κ(t, u) can be expressed as the difference in a function η

taken at two distinct times, then κ(t, u) satisfies the stationarity assumption
given in Equation (2.26).

− Because η(u) = uν1{u>0} is a power function, it is multiplicative,
and since κ(t, u) is fully characterized by the function η, then κ(t, u) satisfies
the self-similarity assumption given in Equation (2.26).

(ii) We want that κ(t, u) to be square-integrable. Because the kernel is
defined on (−∞, t), the square integrability when u→ +∞ is not a problem.
In particular, we must check whether κ(t, u) is square integrable in the
neighborhood of 0, t and −∞.

Proposition 2.20. A bivariate kernel proposed by Mandelbrot and Van Ness is given
by:

κν(t, u) = (t− u)ν1{u<t} − (−u)ν1{u<0}, with ν = γ − 1

2
∈
(
−1

2
,
1

2

)
. (2.32)

(i) This kernel has some definition problems when u→ 0, u→ t.

(ii) This kernel satisfies System (2.26).

(iii) For all ν ∈
(
−1

2 ,
1
2

)
, κ(t, u) ∼ νt(−u)(ν−1) is Lebesgue square-integrable when

u→ −∞ because 2(ν − 1) < −1.

For ν < 0, when u → 0 (resp. u → t), κ(t, u) ∼ −(−u)ν (resp. κ(t, u) ∼ (t − u)ν)
which is Lebesgue square-integrable because 2ν + 1 > 0.

Then κ(t, u) is Lebesgue u-square integrable.

Proof (ii) Stationarity condition: For all h ∈ R, κ(t + h, u) − κ(h, u) = (t + h −
u)ν1{u<t+h} − (h − u)ν1{u<h}. This kernel can be rewritten as κ(t + h, u) − κ(h, u) =

(t− (u− h))ν1{u−h<t} − (−(u− h))ν1{u−h<0} = κ(t, u− h).

Self-similarity condition: For all λ > 0, κ(λt, u) = (λt − u)ν1{u<λt} − (−u)ν1{u<0}.

This kernel can be rewritten as κ(λt, u) = λν
((

t− u
λ

)ν
1{u

λ
<t} −

(
−u

λ

)ν
1{u

λ
<0}

)
=

λνκ
(
t, uλ

)
.

Consequently, the kernel proposed by Mandelbrot and Van Ness is a solution to the
System (2.26).

(iii) We study the square integrability of the path-dependent kernel.

For all ν ∈
(
−1

2 ,
1
2

)
, when u→ −∞, t

u → 0, an equivalent of κ(t, u) is given as follows:

κ(t, u) = (t−u)ν−(−u)ν = (−u)ν
((

1− t
u

)ν
− 1

)
∼ νt(−u)ν−1. Because 2ν−2 < −1,

then κ(t, u) is u-square integrable in −∞.
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For ν < 0, when u → 0 resp. u → t, the problem of u-square-integrability of the
bivariate kernel is symmetrical owing to the form of the kernel.

When u → 0 (resp. u → t), κ(t, u) ∼ −(−u)ν (resp. κ(t, u) ∼ (t − u)ν). Because
2ν + 1 > 0, then κ(t, u) is Lebesgue u-square integrable in the neighborhood of 0 resp.
in the neighborhood of t.

Remark: With additional efforts, it is possible to prove the uniqueness of
the solution proposed by Mandelbrot and Van Ness.

The variance of the process {Xκ(t, B)} is self-similar and stationary. Then from The-
orem 2.8, VX(t) = VX(1)

∣∣t∣∣2γ and KX(t, s) = VX(1)
2 (|t|2γ + |s|2γ − |t − s|2γ) with

0 < γ < 1. To completely determine the variance function and covariance kernel, it
remains to compute the variance of {Xκ(t, B)} at time 1.

Theorem 2.21. Let {Xκ(t, B)} be a PDBM with a bivariate kernel defined by κ(t, u) =(
(t− u)

γ− 1
2

+ − (−u)γ−
1
2

+

)
with γ ∈ (0, 1). The standardization constant that allows

obtaining a variance equal to 1 at time 1 is given by:

VXκ(1) =
1

2γ

(
3

2
− γ

)
B

(
2− 2γ, γ +

1

2

)
(2.33)

where B refers to the function beta and takes the form of B(α, β) =
∫ 1
0 u

α−1(1−u)β−1du.

A proof of Theorem 2.21 will be provided in Chapter 3.

2.3.5 Multidimensional framework

The definition and properties of Brownian motion and Path-Dependent Brownian Mo-
tion (PDBM) can be extended to the multidimensional framework as a generalization
of the unidimensional framework.

Multivariate Wiener process

The extension of the univariate Wiener process to the multivariate framework with
independent coordinates is called d-dimensional Wiener process.

Definition 2.22. A d-dimensional Wiener process is defined by {W(t) = (W 1(t), . . . ,W d(t))}t∈R
and satisfies the following statements:

(i) Each coordinate {W i(t)} is a univariate Wiener process,

(ii) For all (i, j) ∈ J1, dK2, the coordinates {W i(t)} and {W j(t)} are independent, that
is, Cov

(
W i(t),W j(s)

)
= 0.
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Remark: Because the coordinates of the d-dimensional Wiener process are
independent of each other, the properties satisfied by the coordinates are
extended directly to the d-dimensional process. Each coordinate W i(t) is a
univariate Wiener process thus, is Gaussian self-similar with stationary and
independent increments. Therefore, the d-dimensional Wiener process is
Gaussian self-similar with stationary and independent increments in vector
sense.

Proposition 2.23. Let
{
W(t)

}
be a d-dimensional Wiener process.

(i) For all λ > 0, {W λ(t) = λ−
1
2W (λt)} and for all h ∈ R, {W h(t) = W (t + h) −

W (h)} have the same distribution as
{
W(t)

}
.

(ii) The d-dimensional Wiener process
{
W(t)

}
is self-similar with stationary and in-

dependent increments in vector sense.

Multivariate Brownian motion

Now, we construct the correlated Brownian motion. For this purpose, as already done
in the univariate framework, we create correlated variables from independent variables.
The d-dimensional Wiener process with correlated coordinates is called d-dimensional
Brownian motion and is denoted by {B(t) = (B1(t), . . . , Bd(t))}t∈R.

For all i ∈ J1, dK, the variables Bi(t) are correlated owing to the linear transformation
of the independent variables.

Let R = (rik) ∈ Md(R) be a square matrix of dimension d where the rows are vectors
ri = (rik)k∈J1,dK. Then, RRT is a symmetrical matrix, whose coefficients (ρi,j)(i,j)∈J1,dK2

are the results of the inner products between row vectors ri and rj .

Moreover, we want the variance of each coordinate Bi(t) to be equal to t which is also
the variance of each coordinate in the d-dimensional Wiener process.

Therefore, the matrix of the coefficients of RRT might be equal to the inner product
between the row vectors of R, and so that the variance of each coordinate Bi(t) might
be equal to t, matrix R must satisfy the following conditions.

Conditions on the matrix of transformation:

(i) The diagonal coefficients are given by ρi,i =
∑

k(r
i
k)

2 = 1 for all i ∈ J1, dK,

(ii) The non-diagonal coefficients are given by ρi,j =
∑

k r
i
kr

j
k ∈ (0, 1),

(iii) For all (i, j) ∈ J1, dK2, ρi,j = ρj,i.

Let us take: {B(t) = RW(t)} where for all i ∈ J1, dK, Bi(t) =
∑d

k=1 r
i
kW

k(t).

Owing to Condition (i) , the variance of each coordinate Bi(t) is equal to t.
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Definition 2.24. {RW(t)}, where R is the matrix satisfying Conditions 2.3.5, is a d-
dimensional Brownian motion. More generally the process {B(t) = (B1(t), . . . , Bd(t))}t∈R
whose distribution is the same as {RW(t)} is a d-dimensional Brownian motion.

(i) Each coordinate {Bi(t)}t∈R is a univariate Brownian motion,

(iii) The coordinates of the d-dimensional Brownian motion are correlated through a
correlation matrix RRT = (ρi,j) ∈ Md([0, 1]) independent of time, and the covariance
kernel is provided by: KB((i, t), (j, s)) = Cov

(
Bi(t), Bj(s)

)
= ρi,j(t ∧ s).

Remark: Each coordinate Bi(t) is a linear combination of independent vari-
ables {B(t) = RW(t)} with for all i ∈ J1, dK, Bi(t) =

∑d
k=1 r

i
kW

k(t) where
the coefficients of the linear combination are constants.

Then, the properties of the independent variables are recovered at the level
of linear combination. Consequently, each coordinate Bi(t) is self-similar,
with stationary and independent increments.

Moreover, owing to Condition (i) on matrix R, the variance of each co-
ordinate is equal to t. Consequently, each coordinate Bi(t) is a Brownian
motion.

Proposition 2.25. Let {B(t)} be a d-dimensional Brownian motion. For all λ > 0,
{Bλ(t) = λ−

1
2B(λt)} and for all h ∈ R, {Bh(t) = B(t+ h)−B(h)} where R satisfies

Conditions 2.3.5.

(i) {Bλ(t)} and {Bh(t)} have the same distribution as {B(t)}.
(ii) {B(t)} is a d-dimensional self-similar Gaussian process with stationary and inde-
pendent increments.

Proof {B(t) = RW(t)} where for all i ∈ J1, dK, Bi(t) =
∑d

k=1 r
i
kW

k(t).

As R is a matrix of constant coefficients, it is sufficient to prove the properties on the
d-dimensional Wiener process.

From Proposition 2.23, for all λ > 0, {W λ(t) = λ−
1
2W (λt)} and for all h ∈ R,

{W h(t) = W (t + h) −W (h)} have the same distribution as
{
W(t)

}
. Thus, {W (t)}

is self-similar and stationary. This implies that {Bλ(t) = RW λ(t)} and {Bh(t) =

RW h(t)} have the same distribution as {RW (t) = B(t)}. Consequently, {B(t)} is
self-similar and stationary.

Multivariate fractional Brownian motion

We generate Gaussian processes as stochastic integrals of Mandelbrot’s kernels defined
in Equation (2.32) against correlated Brownian motion, such that these processes might
satisfy the desired properties, that is, self-similarity and stationarity properties.
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Definition 2.26. {Xκ(t, B) = (Xκ1
(t, B1), Xκ2

(t, B2), . . . , Xκd
(t, Bd))}, called d-dimensional

fractional Brownian motion, is a multidimensional Gaussian process defined as the
stochastic integral of a vector of deterministic bivariate kernels against a vector of linear
transformations of the Wiener process, such that for almost all (t, u) ∈ R2:

Xκ(t, B) =

∫
κ(t, u)⊙ dB(u) :=

(∫
κi(t, u)dBi(u)

)
i∈J1,dK

(2.34)

where ⊙ is the element-wise product, κ(t, u) = (κi(t, u))i∈J1,dK is the vector of bivariate
kernels proposed by Mandelbrot and Van Ness in Equation (2.32), B(t) = (Bi(t))i∈J1,dK

is the d-dimensional Brownian motion. The covariance kernel of the d-dimensional
fractional Brownian motion {Xκ(t, B)} is given by:

KXκ((i, t), (j, s)) = Cov

(
Xκi

(t, Bi), Xκj
(s,Bj)

)
=

∫
κi(t, u)κj(s, u)ρi,jdu. (2.35)

Each coordinate of the vector κ(t, u) satisfies the conditions of stationarity and self-
similarity in the univariate framework given in Equation (2.26). These properties are
then obtained in the vector sense, that is, for all λ > 0, h ∈ R and for almost all
(t, u) ∈ R2: κ(λt, λu) = η(λ)κ

(
t, u
)

with η(λ) = (λνi1{λ>0})i∈J1,dK, νi ∈
(
−1

2 ,
1
2

)
κ(t+ h, u)− κ(h, u) = κ(t, u− h).

(2.36)

Because the properties of stationarity and self-similarity of the bivariate kernel are
satisfied in the vector sense, the time-translation and time-scaling carried by the time
variable of the vector bivariate kernel are transferred to its integration variable. From
Theorem 2.16, a simple variable change allows the transfer of the time-transformations
from the integration variable to the d-dimensional Brownian of integration.

From Proposition 2.25, the d-dimensional Brownian motion satisfies the properties of
stationarity and self-similarity, and these properties still hold in the stochastic integ-
ral (because the kernel is deterministic). Therefore, multivariate fractional Brownian
motion is stationary and self-similar in the vector sense.

Theorem 2.27. Let {Xκ(t, B)} be a d-dimensional fractional Brownian motion. For
all λ > 0, h ∈ R and for almost all (t, u) ∈ R2: Xκ(t+ h)−Xκ(h) =

∫
κ(t, u)⊙ dBh(u) = Xκ(t, Bh)

Xκ(λt) =
√
λη(λ)⊙

∫
κ(t, u)⊙ dBλ(u) =

√
λη(λ)⊙Xκ(t, Bλ).

(2.37)

{Xκ(t, B)} is stationary and self-similar in the vector sense and in the trajectory sense.

Remark: Recall that, in the univariate framework, the only assumptions of
stationarity and self-similarity of the quadratic norm QXκ(t) are equival-
ent to the stationarity and self-similarity of the covariance kernel KXκ(t, s)

and then of the process itself. In the multivariate framework, the analog
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of the quadratic form is defined by the spatial covariance kernel, that is,
the covariance kernel between two distinct spatial components taken at the
same time KXκ((i, t), (j, t)) =

∫
κi(t, u)κj(t, u)ρi,jdu, and the analog of the

univariate covariance kernel KXκ(t, s) is the cross-covariance kernel, that
is, the covariance kernel between two distinct spatial components taken at
distinct times, {KXκ((i, t), (j, s)) =

∫
κi(t, u)κj(s, u)ρi,jdu}.

The stationarity and self-similarity properties allow the complete characterization of
the covariance kernel between two distinct spatial components taken at the same time,
KXκ((i, t), (j, t)), as a product between a power function and the spatial covariance-
kernel at time 1.

However, the characterization of the covariance kernel between two distinct spatial com-
ponents taken at two distinct times KXκ((i, t), (j, s)), is more challenging. Indeed, the
self-similarity property of the bivariate kernels would have to be applied to two distinct
time-components

∣∣t∣∣ and |s| and the self-similarity functions would depend on the dis-

tinct spatial exponents: κi(t, u)κj(s, u) = ηi(
∣∣t∣∣)ηj(|s|)κi(sgn(t), u

|t|

)
κj
(
sgn(s), u

|s|

)
.

As previously mentioned, the self-similarity property allows the transfer of the the scal-
ing of factor

∣∣t∣∣ (resp. |s|) from the time-variable to the integration variable in the form
of an inverse scaling 1

|t| (resp. 1
|s|). This raises two issues.

(i) On the one hand, because the self-similarity functions are not applied to the same
time-component, we cannot obtain a power function of exponent γi + γj .

(ii) On the other hand, the variable change required to transfer the time-transformation
from the integration variable to the Brownian of integration is not the same.

Consequently, we cannot directly compute the covariance kernel between two distinct
spatial components taken at two distinct times, only using the stationarity and self-
similarity properties. However, we are able to characterize the symmetrized covari-
ance kernel using the stationarity and self-similarity properties: KXκ((i, t), (j, s)) +

KXκ((i, s), (j, t)).

Theorem 2.28. Let {Xκ(t, B)} be a d-dimensional fractional Brownian motion.

(i) The covariance kernel between two distinct coordinates taken at the same time t ∈
R\{0} is completely characterized by the power function of exponent γi+γj where γi, γj ∈
(0, 1):

KXκ((i, t), (j, t)) = KXκ((i, 1), (j, 1))
∣∣t∣∣γi+γj

. (2.38)

(ii) The symmetrized covariance kernel between two distinct coordinates taken at two
distinct times Xκi(t, Bi) and Xκj (s,Bj) with t, s ∈ R\{0} is completely characterized
by a linear combination of power functions of exponent γi + γj where γi, γj ∈ (0, 1):

KXκ((i, t), (j, s)) +KXκ((i, s), (j, t)) = KXκ((i, 1), (j, 1))

(∣∣t∣∣γi+γj

+ |s|γi+γj −
∣∣t− s

∣∣γi+γj
)
.

(2.39)
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Proof (i) The self-similarity property of the bivariate kernel, given by Equation (2.26),
states that for all i ∈ J1, dK2 and for all t > 0:

κi(t, u) = ηi(t)κi
(
1,
u

t

)
where ηi(t) = tν

i
and νi ∈

(
−1

2
,
1

2

)
.

Under this assumption of self-similarity, the product between two bivariate kernels
κi(t, u)κj(t, u) becomes:

κi(t, u)κj(t, u) = tν
i+νjκi

(
1,
u

t

)
κj
(
1,
u

t

)
.

When the covariance kernel is taken between two spatial components taken at the same
time t, the variable change to use in the integral is the same for both kernels and is
given taking v = u

t :

KXκ((i, t), (j, t)) = tν
i+νj+1

∫
κi(1, v)κj(1, v)ρi,jdv = tγ

i+γj
KXκ((i, 1), (j, 1)).

If t < 0, then −t > 0, the self-simliarity property states:

κi(t, u) = ηi(−t)κi
(
−1,−u

t

)
where ηi(−t) = (−t)νi and νi ∈

(
−1

2
,
1

2

)
.

Then it comes that:

κi(t, u)κj(t, u) = (−t)νi+νjκi
(
−1,−u

t

)
κj
(
−1,−u

t

)
.

Taking v = −u
t , we get:

KXκ((i, t), (j, t)) = (−t)νi+νj+1

∫
κi(1, v)κj(1, v)ρi,jdv = (−t)γi+γj

KXκ((i,−1), (j,−1)).

Without any distinction on the sign of t, the covariance kernel can be written as follows:

KXκ((i, t), (j, t)) =
∣∣t∣∣γi+γj

KXκ((i, sgn(t)), (j, sgn(t)))

where sgn(t) = 1 if t ≥ 0 and sgn(t) = −1 i t < 0.

Now, let us simplify the expression of KXκ((i, sgn(t)), (j, sgn(t))). Using the station-
arity property of the covariance kernel, for all h ∈ R, we obtain:

Cov

(
Xκi

(t+ h,Bi)−Xκi
(t, Bi), Xκj

(s+ h,Bj)−Xκj
(h,Bj)

)
= KXκ((i, t), (j, s)).

Moreover, developing the covariance of the synchronized increments, we obtain:

Cov

(
Xκi

(t+ h,Bi)−Xκi
(t, Bi), Xκj

(s+ h,Bj)−Xκj
(h,Bj)

)
= KXκ((i, t+ h), (j, s+ h)) +KXκ((i, h), (j, h))−KXκ((i, t+ h), (j, h))−KXκ((i, h), (j, s+ h)).
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Finally, we have:

KXκ((i, t), (j, s))

= KXκ((i, t+ h), (j, s+ h)) +KXκ((i, h), (j, h))−KXκ((i, t+ h), (j, h))−KXκ((i, h), (j, s+ h)).

Taking s = t = −1 and h = 1, we obtain:

KXκ((i,−1), (j,−1)) = KXκ((i, 0), (j, 0)) +KXκ((i, 1), (j, 1))−KXκ((i, 0), (j, 1))−KXκ((i, 1), (j, 0)).

Using KXκ((i, 0), (j, 0)) = KXκ((i, 1), (j, 0)) = KXκ((i, 0), (j, 1)) = 0, we obtain the
symmetry of the covariance kernel:

KXκ((i,−1), (j,−1)) = KXκ((i, 1), (j, 1)).

More generally,KXκ((i,−1), (j,−1)) = KXκ((i, sgn(t)), (j, sgn(t))) = KXκ((i, sgn(s)), (j, sgn(s))) =

KXκ((i, 1), (j, 1)).

Finally, we obtain:

KXκ((i, t), (j, t)) =
∣∣t∣∣γi+γj

KXκ((i, 1), (j, 1)).

(ii) In the univariate framework, the covariance kernel between two distinct times is
established from the quadratic norm of the increment of the process taken at the two
given times. Similarly, in the multivariate framework, the covariance kernel between
two distinct spatial components taken at two distinct times is based on the covariance
kernel between two synchronized increments of the two distinct spatial components.
This covariance kernel depends both on the covariance kernel between the two distinct
spatial components taken at the same time and on the symmetrized covariance kernel
between the two distinct spatial components taken at two distinct times:

Cov

(
Xκi

(t, Bi)−Xκi
(s,Bi), Xκj

(t, Bj)−Xκj
(s,Bj)

)
= KXκ((i, t), (j, t)) +KXκ((i, s), (j, s))−KXκ((i, t), (j, s))−KXκ((j, t), (i, s)).

Then, the symmetrized covariance kernel is given by:

KXκ((i, t), (j, s)) +KXκ((j, t), (i, s))

= KXκ((i, t), (j, t)) +KXκ((i, s), (j, s))

− Cov

(
Xκi

(t, Bi)−Xκi
(s,Bi), Xκj

(t, Bj)−Xκj
(s,Bj)

)
.

From Theorem 2.27, {Xκ(t, B)} is stationary, then:

Cov

(
Xκi

(t, Bi)−Xκi
(s,Bi), Xκj

(t, Bj)−Xκj
(s,Bj)

)
= Cov

(
Xκi

(t− s,Bi), Xκj
(t− s,Bj)

)
.

Moreover by symmetry of the covariance kernel and from the stationarity we get:

Cov

(
Xκi

(t, Bi)−Xκi
(s,Bi), Xκj

(t, Bj)−Xκj
(s,Bj)

)
= Cov

(
Xκi

(s,Bi)−Xκi
(t, Bi), Xκj

(s,Bj)−Xκj
(t, Bj)

)
= Cov

(
Xκi

(s− t, Bi), Xκj
(s− t, Bj)

)
.
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Finally, we are able to express the symmetrized covariance kernel as the sum of three
covariance kernels between two distinct components taken at the same time (t, s, and t
- s).

KXκ((i, t), (j, s)) +KXκ((j, t), (i, s))

= KXκ((i, t), (j, t)) +KXκ((i, s), (j, s))−KXκ((i, t− s), (j, t− s)).

Thus, the self-similarity property can be applied to each of these three covariance kernels
and allows expressing each of them as a power function with an exponent depending
on the two spatial components, multiplied by a covariance kernel taken at time 1.
Therefore, the symmetrized covariance kernel can be expressed as a linear combination
of power functions with exponents depending on the two spatial components, multiplied
by the covariance kernel at time 1.

KXκ((i, t), (j, s)) +KXκ((j, t), (i, s))

=
∣∣t∣∣γi+γj KXκ((i, sgn(t)), (j, sgn(t))) +

∣∣t∣∣γi+γj KXκ((i, sgn(s)), (j, sgn(s)))

−
∣∣t− s

∣∣γi+γj KXκ((i, sgn(t− s)), (j, sgn(t− s))).

From the symmetry property of the covariance kernel at time 1 and −1, we have
KXκ((i, sgn(t)), (j, sgn(t))) = KXκ((i, sgn(s)), (j, sgn(s))) = KXκ((i, sgn(t−s)), (j, sgn(t−
s))) = KXκ((i, 1), (j, 1)).

Therefore, we obtain the following formula for the symmetrized covariance kernel:

KXκ((i, t), (j, s)) +KXκ((j, t), (i, s)) = KXκ((i, 1), (j, 1))(
∣∣t∣∣γi+γj + |s|γi+γj −

∣∣t− s
∣∣γi+γj ).

The explicit formula for the cross-covariance kernel at time 1, (KXκ((i, 1), (j, 1)))i,j∈J1,dK

is provided in the following lemma.

Lemma 2.29 (Covariance at time 1). Let γi, γj ∈ (0, 1), then:

KXκ((i, 1), (j, 1)) = ρi,j


(
γi − 1

2

)(
3
2 − γi

)
(γi + γj − 1)(γi + γj)

B

(
2− γi − γj , γj +

1

2

)
(2.40)

+

(
γj − 1

2

)(
3
2 − γj

)
(γi + γj − 1)(γi + γj)

B

(
2− γi − γj , γi +

1

2

) (2.41)

where B refers to the function beta and takes the form of B(α, β) =
∫ 1
0 u

α−1(1−u)β−1du.

A proof will be provided in Chapter 3.

With some additional efforts, we can provide a closed-form formula for the covariance
kernel between two distinct spatial components taken two distinct times, and not only
for the symmetrized covariance kernel, as in the works of (Lavancier et al., 2009). In-
deed, we can adapt to the L2-spaces framework, the works of (Lavancier et al., 2009)
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that study multidimensional processes that satisfy the operator self-similarity and sta-
tionarity properties in terms of finite dimensional distributions. In other words, we can
adapt the operator self-similarity and stationarity properties of the processes in terms
of L2-norm and inner product.

Some words about the works of (Lavancier et al., 2009): Authors deal with
the operator self-similarity (Os-s) for finite dimensional distributions. For all λ > 0,
t ∈ R:

X(λt)
fdd
= λHX(t)

where fdd
= means equality of finite-dimensional distributions, and the d× d matrix λH

is defined by the power series:

λH = eH log(λ) =
+∞∑
k=0

Hk(log(λ))k

k!
. (2.42)

In these works, a Gaussian operator self-similar process (Os-s) with stationary incre-
ments (si) is called operator fractional Brownian motion (ofBm). Authors show that
for d = 1 the class of ofBm coincides with the fundamental class of fractional Brownian
motions (fBm) as defined in (Taqqu, 1994). In other words, they show that the class
of ofBm coincides with stochastically continuous self-similar Gaussian process with sta-
tionary increments, zero mean and covariance kernel:

KX(t, s) =
VX(1)

2
(
∣∣t∣∣2H + |s|2H −

∣∣t− s
∣∣2H), t, s ∈ R. (2.43)

The form of covariance of general ofBm seems to be unknown and may be quite com-
plicated. Authors focus on a particular case of operator self-similar processes that
corresponds to diagonal matrix H = diag(H1, . . . ,Hd). In this case, the operator self-
similarity is expressed as follows:

(X1(λt), . . . , Xd(λt))
fdd
= (λH1X1(t), . . . , λ

HdXd(t)).

A d-variate process X satisfying the above property of operator self-similarity (Os-s)
with diagonal matrix is called vector self-similar (vs-s) and a stochastically continu-
ous Gaussian vs-s process with stationary increments (si) is called a vector fractional
Brownian motion (vfBm). Each component Xi = {Xi(t), t ∈ R} of a vector self-similar
process is a scalar self-similar process, the fact which is not true for general operator
self-similar process:

Xi(λt)
fdd
= λHiXi(t), λ > 0, t ∈ R, i ∈ J1, dK. (2.44)

In their works, the main result concerns the closed-form formula of the covariance kernel
of vfBm given by (Lavancier et al., 2009, Theorem 2.1., p.3.).

Theorem 2.30 ((Lavancier et al., 2009)). Let X = {X(t), t ∈ R} be a 2nd order process
with values in Rd. Assume that X has stationary increments, zero mean, X(0) =

0d, and that X is vector self-similar with exponent H = (H1, . . . ,Hd), 0 < Hi < 1,
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(i = 1, . . . , d). Moreover, assume also that for any i, j = 1, . . . , d the function t 7→
KX((i, t), (j, 1)) is continuously differentiable on (0, 1) ∪ (1,+∞). Let σ2i > 0 denote
the variance of Xi(1), i = 1, . . . , d.

(i) If i = j, then for any (s, t) ∈ R2, we have:

KX((i, s), (i, t)) =
σ2i
2
(|s|2Hi +

∣∣t∣∣2Hi −
∣∣t− s

∣∣2Hi). (2.45)

(ii) If i ̸= j and Hi +Hj ̸= 1, then there exists cij , cji ∈ R such that for any (s, t) ∈ R2,

KX((i, s), (j, t)) =
σiσj
2

(cij(s) |s|Hi+Hj + cji(t)
∣∣t∣∣Hi+Hj − cji(t− s)

∣∣t− s
∣∣Hi+Hj )

(2.46)

where:

cij(t) =

 cij if t > 0

cji if t < 0.
(2.47)

(iii) If i ̸= j and Hi+Hj = 1, then there exists dij , fij ∈ R such that for any (s, t) ∈ R2

we have:

KX((i, s), (j, t)) =
σiσj
2

(dij(|s|+
∣∣t∣∣− ∣∣s− t

∣∣) + fij(t log(
∣∣t∣∣)− s log(|s|)− (t− s) log(

∣∣t− s
∣∣))).

(2.48)

(iv) The matrix R = (Rij)i,j=1,...,d is positive definite, where:

Rij :=


1 if i = j

cij + cji if i ̸= j,Hi +Hj ̸= 1,

dij if i ̸= j,Hi +Hk = 1.

(2.49)

The notion of operator self-similarity is also formulated in the works of (Laha and
Rohatgi, 1981) in a more abstract way. In further works, we will extend their approach
of operator self-similarity of the processes to the L2-spaces in terms of quadratic norm
and inner product.

Some words about the works of (Laha and Rohatgi, 1981): In their works,
operator self-similar stochastic processes taking values in a finite dimensional Euclidean
space are introduced and some of their properties are studied. They provide a more
abstract definition of operator self-similarity.

Definition 2.31 ((Laha and Rohatgi, 1981)). An Rd-valued stochastic process {X(t), t >

0} is said to be operator self-similar if it satisfies the weak convergence condition:

X(t+ h)
d⇒ X as h→ 0, (t+ h > 0) (2.50)

for every t > 0 and for every λ > 0 there exists B(λ) > 0 (linear operator in Rd is
invertible, self-adjoint and positive) and an element c(λ) ∈ Rd such that {X(λt)} and
{B(λ)X(t) + c(λ)} have the same finite dimensional distributions. More precisely, for
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every finite set of positive real numbers t1, t2, . . . tk the random vectors (X(λt1), . . . , X(λtk))

and (B(λ)X(t1) + c(λ), . . . , B(λ)X(tk) + c(λ)) have the same probability distributions.
In this case we shall write the operator self-similarity in its strong form:

X(λ·) d
= B(λ)X(·) + c(λ) · . (2.51)

The assumption B(λ) > 0 is a natural one to make in view of the work of (Lamperti,
1962) where authors considered the case B(λ) = b(λ)I. Here b(λ) > 0 and I is the
identity operator in Rd. We note that in most of the applications of assumption (2.51)
we shall be using the weaker form:

X(λt)
d
= B(λ)X(t) + c(λ) (2.52)

where the equality is in distribution of random variables.

They prove the form of the self-similar operator B(λ) in (Laha and Rohatgi, 1981,
Theorem 2, p.78).

Theorem 2.32 ((Laha and Rohatgi, 1981)). Let {X(t), t > 0} be proper operator self-
similar. Then there exists a self-adjoint operator H ∈ M(d,R1) such that B(λ) =

λH , λ > 0, in the sense that λH = eln(λ)·H . If H = 0, then for all λ > 0, B(λ) = I,
c(λ) = (ln(λ))ω for some ω ∈ Rd and X(λ·) d

= X(·)+ ln(λ)ω. If H is invertible, then
there exists an element ω ∈ Rd such that c(λ) = (I − λH)ω for all λ > 0.

Theorem 2.33 ((Laha and Rohatgi, 1981)). With the same notations and assumptions
as in Theorem 2.32 suppose further that the self-similarity property holds also for t = 0.
Then, the following assertions hold.

(i) If H = 0, then c(λ) = 0d ∈ Rd and X(λ)
d
= X(0) for all λ ≥ 0.

(ii) If H ̸= 0, then the distribution µ0 of X(0) cannot be full. In particular, if H is
invertible, then X(0) is degenerate at some ω ∈ Rd and c(λ) = (I−λH)ω for all λ ≥ 0.

Theorem 2.34 ((Laha and Rohatgi, 1981)). An Rd-valued process {X(t), t ≥ 0} with
stationary independent increments and X(0) = 0 a.s. is proper operator self-similar if
and only if the increments have distributions which are full and proper operator stable.

Remark: In the following chapter the fractional Brownian motion {Xκi
(t, Bi)}

will be denoted as {BHi(t)}, the exponent γi of the power function will cor-
respond to the Hurst Hi exponent and the bivariate kernel κi(t, u) will be
replaced by ψHi

0,t (u).

2.4 Conclusion

This chapter provides an original approach for the theoretical study of the processes
that satisfy the properties of self-similarity and stationarity of the quadratic norm in
L2-spaces. In this chapter, we have proven that under the assumptions of square integ-
rability, QX -stationarity, QX -self-similarity, QX -right-continuity with QX(0) = 0, we
are able to:
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(i) characterize the QX -norm owing to power functions,

(i) fully characterize the inner product thanks to the QX -norm,

(ii) obtain the L2-stationarity and the L2-self-similarity,

without any assumption of regularity on the processes.

Then, we are interested in the distributions characterized by the L2-characteristics. One
of these distributions is the well-known Gaussian distribution. Adding the Gaussian as-
sumption, we have proven that the previous assumptions were sufficient to obtain the
stationarity and the self-similarity in distribution. And for well-known Gaussian pro-
cesses such as Brownian motion and fractional Brownian motion, we are able to obtain
the pathwise stationarity and self-similarity (that is, in the trajectory sense). Finally,
we extend the properties of stationarity and self-similarity in distribution and in tra-
jectory to the multivariate framework, especially to obtain the multivariate fractional
Brownian motion. We show that the multivariate fractional Brownian motion is a Gaus-
sian multidimensional self-similar process with stationary increments the vector sense
and in the trajectory sense. A closed form formula for its symmetrized covariance kernel
is provided as a linear combination of power functions. With some additional efforts, a
closed-form formula for the covariance kernel can be provided as mentioned in the works
of (Lavancier et al., 2009) and (Laha and Rohatgi, 1981). These works study operator
self-similar and stationary processes in terms of finite dimensional distributions. Based
on the works of (Lavancier et al., 2009) and (Laha and Rohatgi, 1981), further works
will adapt the operator self-similarity and stationarity properties of the processes to the
framework of the L2-spaces in terms of quadratic norm and inner kernel. However, the
link between these processes and data has not yet been addressed. This is the subject
of the following chapter.

"Clouds are not spheres, mountains are not cones, coastlines are not circles, and bark
is not smooth, nor does lightning travel in a straight line. Fractal geometry is not just a
chapter of mathematics, but one that helps every man to see the same world differently."

(Benoît Mandelbrot, The Fractal Geometry of Nature, 1982.)
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This chapter addresses research questions (RQ#2, (RQ#3)). In this chapter, we de-
scribe the price trajectories using fractional geometric Brownian motions. This allows
the addition of correlations between logarithmic returns to express long-range depend-
ency. Logarithmic returns are then described using self-similar Gaussian processes with
stationary and correlated increments, called fractional Brownian motion (fBm). In this
context, we focus on predicting the most commonly used risk measure by regulators,
called Value-at-Risk (VaR). We introduce a model that provides a Gaussian approx-
imation of the VaR for the asset portfolio under fractional dynamics. We demonstrate
that such a model is based on orthogonal projections in a Gaussian Hilbert space, tak-
ing specific forms for which closed-form formulae are provided. Finally, we quantify the
Gaussian approximation of VaR by providing an upper bound for the error. Backtesting
experiments are conducted using simulated and market data to illustrate this theory.

3.1 Introduction

In recent decades, the reinforcement of banking regulation agreements to ensure the
solvency of financial institutions, has highlighted the importance of an accurate evalu-
ation of financial risks. The goal of this regulation is twofold: on the one hand, it is
intended to ensure that financial institutions keep aside a sufficient amount of money
to cope with the risk of default, on the other hand, it pays attention not to overcharge
the cash reserve. Risk measures are dedicated to evaluating financial risks incurred
by a financial institution. Therefore, it is crucial to develop efficient and accurate
predictive models for these risk measures. In this chapter, we focus on the market
Value-at-Risk (VaR) of portfolio Profit and Loss (P&L) of a bank, as it is currently
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the most used risk measure by regulators. The VaR at risk level α ∈ (0, 1) corresponds
to the quantile at order α of the P&L distribution, which is mathematically given by
VaRα(X) := inf{x ∈ R, FX(x) ≥ α} where FX is the cumulative distribution function
related to the random variable X representing the P&L. For more details about VaR,
we refer the reader to the well-known books of (Wipplinger, 2007, Part II. p105) and
(McNeil et al., 2015, Chap.2, p37). Computing VaR is a challenging problem because
it requires knowing the distribution of the portfolio P&L, which is usually unknown.

The literature on VaR is extensive, with more than 2700 articles referenced on Google
Scholar. A wide range of papers has focused on the prediction of the VaRα. To
name a few, see for instance Cheung and Powell (2012) which presents a teaching
study using parametric computation and Monte-Carlo simulation to compute VaR,
and Feuerverger and Wong (2000) that explains the computation of VaR for nonlinear
portfolios. Although VaR is not a perfect risk metric (see Delbaen et al. (1998)), it
is still commonly used. It is fundamental to have an accurate estimate of the VaR:
in case of under-estimation, the financial institution will take too much risk, without
being prepared for this; in case of over-estimation, the amount of money to be kept aside
would be too high, preventing some banking activities. In addition, its computation
must be efficient, because its evaluation is frequent and must be performed according
to numerous portfolios.

In this work, we contribute to the development of smart models capable of computing
VaR as accurately as possible, and we provide backtesting experiments. We consider
a challenging setting in which the price dynamics are described by fractional Black-
Scholes models, depending on fractional Brownian motions parameterized by their Hurst
exponent. These models have the advantage of capturing both correlations in time and
between assets. Compared to the usual Black-Scholes model, the flexibility in the choice
of the Hurst exponent allows for a better description of price trajectories to fit reality.
Thus, the predictive model for the conditional VaR at time horizon h (i.e., the VaR of
P&L over the next period of length h conditionally to the observations available at the
computation time) will be able to predict in a more accurate way, the amount of money
to keep aside, that is, neither over-charge nor under-charge the regulator. The accuracy
of our VaR predictions is assessed using backtesting procedure based on Christoffersen
(1998).

The use of fractional models in finance is not new, it has become increasingly important
in recent years. Fractional models have been widely used for different purposes, such as
modeling and pricing in foreign exchange markets Shokrollahi et al. (2014), predicting
rough volatility Gatheral et al. (2017), and modeling stock prices Adamu (2017). For
stochastic calculus tools for fractional Brownian motions, see Biagini et al. (2008b).
However, these studies do not address, the prediction of conditional VaR.

Overall, we make the following contributions. We design a theoretical framework for
fractional models in Gaussian Hilbert space. We design a closed-form formula for the
Gaussian approximation of the conditional VaRα, at the time horizon h, of the future
portfolio’s variation under fractional dynamics. We then provide error quantification of
the Gaussian approximation. We use a robust methodology to estimate the parameters
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of the fractional model. We perform a backtesting procedure to assess the accuracy of
our predictive approximation. We support our analysis through various experiments
that illustrate the behavior of our new model.

Furthermore, we support our analysis through various experiments that illustrate the
behavior of our new algorithm. The remainder of this chapter is organized as follows.
In Section 3.2, we discuss the prerequisites for this study. This section is divided into
three parts.

First, fractional models are introduced via the Gaussian Hilbert space. Then, we define
the conditional expectation and the conditional variance of a future fBm increment,
owing to orthogonal projections in the Gaussian Hilbert space spanned by the past fBm
increments. In this theoretical framework, the market model is introduced in Subsection
3.2.3.

Section 3.3 provides a model for the conditional VaR of a Gaussian approximation
of the future portfolio increment, quantification of the approximation error via error
bounds and a proof of the error bounds.

We then present experiments that support this theory. The theoretical results related
to the algorithms used to implement the models are successively presented. In Section
3.4, the methodology used to simulate fBm and mfBm is presented. In Section 3.5, we
present the estimation method used to estimate the parameters of the VaR model. In
Section 3.6, we present the backtesting process used to assess the performance of the
VaR model. In Section 3.7, an empirical study is carried out with graphs of convergence
of the estimators, graphs of the VaR trajectories, extremal indices, and statistics tables
to assess the performance of the models. A comparative study between different models
is also presented. Finally, in Section 3.8, VaR models are applied to real market data,
and the same graphs and tables are provided to assess the performance of the models.
Again, a comparative study between the models is carried out.

3.2 Models and theoretical backgrounds

In this section, we collect fundamental notions about the fractional models required
in the sequel, and state some instrumental results. There is no unique way to model
multivariate fractional Brownian motions: the most direct way is to give their covariance
functions as a multivariate Gaussian process; however, this method is quite inconvenient
when dealing with conditional in time computations, with various filtrations to account
for the available observations. Therefore, we prefer to work directly at the level of the
Gaussian Hilbert space indexed by the functions in

L2
d := L2(Rd,du) =

{
f : R 7→ Rd s.t.

∣∣f ∣∣2L2
d
:=

∫
R
|f(u)|2du < +∞

}
(3.1)

where the basic quantities are defined by Wiener integrals, and where projections and
conditional expectations are made through projections of functions in L2

d (see Lemma
3.3 later). Here, integer d is the number of assets in the portfolio.
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3.2.1 Fractional models via Gaussian Hilbert space

We adopt the framework of the isonormal Gaussian process associated with the Hilbert
space L2

d, with the scalar product

⟨f, g⟩L2
d
=

∫
R
f(u) · g(u)du, (3.2)

also called Gaussian Hilbert space; here f(u) · g(u) is just the scalar product in Rd

between the vector-valued functions f and g at point u. See (Janson, 1997) for a broad
account on Gaussian Hilbert space. Namely, we consider a probability space (Ω,F ,P)
supporting a centered Gaussian family of scalar random variables

H = {I(f) : f ∈ L2
d} (3.3)

as defined in (Janson, 1997, Chapter 7, Thm.7.1), such that the isometry property is in
force

E
[
I(f)I(g)

]
= ⟨f, g⟩L2

d
. (3.4)

One way to realize this Gaussian Hilbert space indexed by square integrable functions
f ∈ L2

d is to assume that the probability space supports a d-dimensional Brownian
motion indexed by the real line, (Wt = (W 1

t , · · · ,W d
t )

⊤ : t ∈ R), and to define I(f) by
stochastic integration

I(f) =

∫
R
f(u) · dWu =

d∑
i=1

∫
R
f i(u)dW i

u (3.5)

(a.k.a. Wiener integral). See (Janson, 1997, Chapter 7) where integrals are restricted
to R+, extension to R is immediate. The fractional Brownian motion (fBm) with Hurst
parameter H corresponds to a specific choice of function f : this is the well-known
time-representation of Mandelbrot and Van Ness (Mandelbrot and Van Ness, 1968b).

Definition-Proposition 3. Let H ∈ (0, 1) and set, for any t ≥ 0,

BH
t = I((ψH

0,t(.), 0, · · · , 0)⊤) =
∫
R
ψH
0,t(u)dW

1
u with ψH

s,t(u) =
1

cH

(
(t− u)

H− 1
2

+ − (s− u)
H− 1

2
+

)
,

(3.6)
where

cH :=

√√√√ 1

2H

(
3

2
−H

)
B

(
2− 2H,H +

1

2

)
(3.7)

and B(x, y) =
∫ 1
0 u

x−1(1− u)y−1du is the Beta function.

This defines a scalar fBm BH , that is, a centered Gaussian process with covariance

Cov
(
BH

t , B
H
s

)
=

1

2
(|t|2H + |s|2H − |t− s|2H), H ∈ (0, 1). (3.8)
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Remarks on the integrability of kernel u 7→ ψH
0,t(u). In the above, the adopted

convention is that (−v)α+ = 0 for any value α ∈ R when v is non-negative. This ensures
ψH
0,t(u) = 0 for large positive values of u, thereby removing any integrability issues

around +∞.

In addition, a direct Taylor expansion shows that ψH
0,t(u) ∼ γtu

H− 3
2 as u → −∞ for

some constant γt, which shows that the kernel ψH
0,t(·) is square integrable at −∞ because

2H − 3 < −1.

Proof First, the fact that BH is a centered Gaussian process stems directly from the
usual properties of the Wiener integral. Second, we compute the variance of BH

1 as
follows:

V
[
BH

1

]
= E

[
(BH

1 )2
]
=

∫
R
(ψH

0,1(u))
2du =

1

c2H

∫
R

(
(1− u)

H− 1
2

+ − (−u)H− 1
2

+

)2

du = 1

(3.9)
where, at the last equality, we have used that∫

R

(
(1− u)

H− 1
2

+ − (−u)H− 1
2

+

)2

du = c2H . (3.10)

This equality is justified at the end. Third, using stationarity and self-similarity prop-
erties of Mandelbrot’s kernel, the variance of BH

t −Bh
s (for t > s) is

E

[(
BH

t −BH
s

)2]
=

1

c2H

∫
R

(
(t− u)

H− 1
2

+ − (s− u)
H− 1

2
+

)2

du (3.11)

(3.10)
=

(t− s)2H

c2H

∫
R

(
(1− z)

H− 1
2

+ − (−z)H− 1
2

+

)2

dz (3.12)

= (t− s)2H , (3.13)

using the change of variable u− s = z(t− s) at the second equality.

Last, a direct computation shows that

Cov
(
BH

s , B
H
t

)
=

1

2

(
E
[
(BH

t )2
]
+ E

[
(BH

s )2
]
− E

[
(BH

t −BH
s )2

])
, ∀s, t ≥ 0.

(3.14)

Applying the identity (3.13) with different times s and t, we get

Cov
(
BH

s , B
H
t

)
=

1

2

(
|t|2H + |s|2H − |t− s|2H

)
(3.15)

as announced in (3.8).

However, Equation (3.10) remains to be proven. Let us denote by I the integral on the
left-hand side of Equation (3.10) and let us break it down into an integral on [0, 1] and
another on ]−∞, 0]:

I =

∫ 1

0
(1− u)2H−1du+

∫ +∞

0

(
(1 + u)H− 1

2 − (u)H− 1
2

)2

du := I1 + I2. (3.16)
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Obviously, I1 = 1
2H . Making I2 explicit is more delicate. Set

ϕ(x) :=

∫ +∞

0

(
(x+ u)H− 1

2 − uH− 1
2

)2

du, x > 0. (3.17)

We proceed as in (Picard, 2011, p.55). Differentiating twice gives

ϕ′(x) =
(
2H − 1

) ∫ +∞

0
(x+ u)H− 3

2

(
(x+ u)H− 1

2 − uH− 1
2

)
du (3.18)

ϕ′′(x) = (2H − 1)(2H − 2)

∫ +∞

0
(x+ u)2H−3du− (2H − 1)

(
H − 3

2

)∫ +∞

0
(x+ u)H− 5

2uH− 1
2du

(3.19)

= −(2H − 1)x2H−2 − (2H − 1)

(
H − 3

2

)
x2H−2

∫ +∞

1
yH− 5

2 (y − 1)H− 1
2dy

(3.20)

using the change of variable u = x(y − 1) in the second integral. Setting y = 1
w yields∫ +∞

1
yH− 5

2 (y − 1)H− 1
2dy =

∫ 1

0
w1−2H(1− w)H− 1

2dw = B

(
2− 2H,H +

1

2

)
(3.21)

using the Beta function. We have established

ϕ′′(x) = (2H − 1)x2H−2

−1−
(
H − 3

2

)
B

(
2− 2H,H +

1

2

) . (3.22)

Integrate twice gives

ϕ(x) = −x
2H

2H

1 +

(
H − 3

2

)
B

(
2− 2H,H +

1

2

)+ ax+ b. (3.23)

Parameters a and b are zero because ϕ′(x) and ϕ(x) are respectively proportional to
x2H−1 and x2H . We deduce that

I2 = ϕ(1) =
1

2H

(3

2
−H

)
B

(
2− 2H,H +

1

2

)
− 1

 .

All in all, this proves that

I =
1

2H

(
3

2
−H

)
B

(
2− 2H,H +

1

2

)
. (3.24)

FBm enjoys a self-similarity property. Self-similarity property states that for any fixed
positive λ, {λ−HBH

λt}t∈R is also an fBm with Hurst exponent H ∈ (0, 1). In other words,
self-similarity property establishes a spatial proportionality relationship of factor λH ,
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between the distributions of {BH
λt} and {BH

t }. This leads to obtain spatial propor-
tionality relationships of factor λ2H between the variances, respectively the covariance
kernels, of the processes {BH

λt} and {BH
t }. This type of scaling property will play a

role in the simplification of some subsequent formulae, as it allows changes in time and
space scales in the processes. The self-similarity property is, for example, useful for
calculating the covariance function of the fBm because it allows this covariance to be
expressed using only power functions of exponent H ∈ (0, 1) (self-similarity functions),
and the covariance at time 1.

The choice of defining the above fBm BH , by choosing a function f with only the first
coordinate non-zero is arbitrary; this non-zero coordinate could be any of the other
coordinates, and at the end, this would define d fBms. Because the coordinates of
W are independent, the resulting fBms would be independent; for financial modeling
purposes, this is too restrictive.
To allow correlations between fBms, we add correlations to the driving Brownian motion
through a linear transformation of W . This works as follows: let C = (ρi,j)1≤i,j≤d be a
correlation matrix, and let R be a symmetric square root of C (which exists because C
is non-negative symmetric), so that

ρi,j = R:,i ·R:,j (3.25)

where R:,i is the i-th column of R. Now, we define a multivariate fractional Brownian
motion, with correlated components, each having its own Hurst parameter.

Definition-Proposition 4. Let H1, · · · , Hd be a sequence of Hurst exponents in (0, 1)

and set, for any t ≥ 0 and any i ∈ {1, · · · , d},

Bi,Hi
t := I(ψHi

0,tR:,i) =

∫
R
ψHi
0,t (u)R:,i · dWu, (3.26)

where R:,i is the i-th column of R. Then, this defines a multivariate fractional Brownian
motion (mfBm) with parameter H = (Hi)i ∈ (0, 1)d whose coordinates (Bi,Hi

t ) are fBms
with Hurst exponent Hi, and are correlated in a way that:

∀s, t ∈ R, Cov(Bi,Hi
t , B

j,Hj
s ) + Cov(B

j,Hj

t , Bi,Hi
s ) (3.27)

= Cov(Bi,Hi
1 , B

j,Hj

1 )

(
|t|Hi+Hj + |s|Hi+Hj − |t− s|Hi+Hj

)
,

(3.28)

where Cov(Bi,Hi
1 , B

j,Hj

1 ) is explicitly given in Lemma 3.1. Observe that

Bi
t := R:,i ·Wt, i ∈ {1, · · · , d} (3.29)

defines a d-dimensional Brownian motion with correlation C.

It is an open question whether Cov(BHi
1 , B

Hj

1 ) = ρi,j in full generality; we can only
justify the inequality |Cov(BHi

1 , B
Hj

1 )| ≤ |ρij | by using the Cauchy-Schwarz inequality
in Equation (3.33). For i ̸= j and Hi = Hj , we have Cov(BHi

1 , B
Hj

1 ) = ρi,j .
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In addition, we have not been able to derive a closed-form expression for the co-
variance Cov(Bi,Hi

t , B
j,Hj
s ) but only for a symmetrized version Cov(Bi,Hi

t , B
j,Hj
s ) +

Cov(B
j,Hj

t , Bi,Hi
s ). When Hi = Hj =: H, by invoking symmetry arguments, we ob-

tain a formula like (3.8), i.e.

Cov
(
Bi,H

t , Bj,H
s

)
=
ρi,j
2

(|t|2H + |s|2H − |t− s|2H). (3.30)

Proof The fact that each Bi,Hi is an fBm with Hurst parameter Hi directly stems
from the observation that R:,i ·W. is again a standard Brownian motion; therefore, the
results of Definition-Proposition 3 apply.

Only the correlations between these fBms must be specified. We follow the arguments
in the proof of Definition-Proposition 3. Let t > s > 0. Using Itô’s isometry combined
with Equation (3.25), self-similarity property, and the variable change u− s = v(t− s),
we obtain:

E

[(
Bi,Hi

t −Bi,Hi
s

)(
B

j,Hj

t −B
j,Hj
s

)]
(3.31)

=
ρi,j

cHicHj

∫
R

(
(t− u)

Hi− 1
2

+ − (s− u)
Hi− 1

2
+

)(
(t− u)

Hj− 1
2

+ − (s− u)
Hj− 1

2
+

)
du (3.32)

= |t− s|Hi+Hj
ρi,j

cHicHj

∫
R

(
(1− v)

Hi− 1
2

+ − (−v)Hi− 1
2

+

)(
(1− v)

Hj− 1
2

+ − (−v)Hj− 1
2

+

)
dv

(3.33)

= |t− s|Hi+HjCov(Bi,Hi
1 , B

j,Hj

1 ), (3.34)

which highlights the time-scaling property of the fBm. The explicit computation of the
covariance between the fBms at time 1 is given in Lemma (3.1) below.

To obtain the covariance (3.28), write

Cov(Bi,Hi
t , B

j,Hj
s ) + Cov(B

j,Hj

t , Bi,Hi
s ) = Cov(Bi,Hi

t , B
j,Hj

t ) + Cov(Bi,Hi
s , B

j,Hj
s )

(3.35)

− E

[(
Bi,Hi

t −Bi,Hi
s

)(
B

j,Hj

t −B
j,Hj
s

)]
(3.36)

and apply Equality (3.33) several times with (t, s) = (t, 0) and with (t, s) = (0, s). We
are done with the proof of Definition-Proposition (??).

Lemma 3.1 (Covariance at time 1). Let Hi, Hj be two Hurst exponents, as given above:

Cov(Bi,Hi
1 , B

j,Hj

1 ) =
ρi,j

cHicHj


(
Hi − 1

2

)(
3
2 −Hi

)
(Hi +Hj − 1)(Hi +Hj)

B(2−Hi −Hj , Hj +
1

2
) (3.37)

+

(
Hj − 1

2

)(
3
2 −Hj

)
(Hi +Hj − 1)(Hi +Hj)

B(2−Hi −Hj , Hi +
1

2
)


(3.38)
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where B is the beta function, ρi,j is the correlation coefficient defined in Equation (3.25),
cHi and cHj are defined in Equation (3.7) as the coefficients for variance normalization.

If Hi = Hj, then Cov(Bi,Hi
1 , B

j,Hj

1 ) = ρi,j .

Proof [Proof of Lemma 3.1] In view of Equation (3.33), we have Cov(Bi,Hi
1 , B

j,Hj

1 ) =
ρi,j

cHi
cHj

φ(1) where

φ(ζ) :=

∫
R

(
(ζ − v)

Hi− 1
2

+ − (−v)Hi− 1
2

+

)(
(ζ − v)

Hj− 1
2

+ − (−v)Hj− 1
2

+

)
dv, ζ > 0.

(3.39)

Splitting the integral on negative and positive real numbers gives

φ(ζ) =

∫ ζ

0
(ζ − v)Hi+Hj−1dv +

∫ 0

−∞

(
(ζ − v)

Hi− 1
2

+ − (−v)Hi− 1
2

+

)(
(ζ − v)

Hj− 1
2

+ − (−v)Hj− 1
2

+

)
dv

(3.40)

=
ζHi+Hj

Hi +Hj
+

∫ +∞

0

(
(ζ + w)Hi− 1

2 − wHi− 1
2

)(
(ζ + w)Hj− 1

2 − wHj− 1
2

)
dw

(3.41)

=:
ζHi+Hj

Hi +Hj
+ φ2(ζ). (3.42)

We can easily justify that one can differentiate under the integral sign, which gives

φ′
2(ζ) =

∫ +∞

0

{
(Hi +Hj − 1)(ζ + w)Hi+Hj−2 (3.43)

−
(
Hi −

1

2

)
wHj− 1

2 (ζ + w)Hi− 3
2 (3.44)

−
(
Hj −

1

2

)
wHi− 1

2 (ζ + w)Hj− 3
2

}
dw, (3.45)

then

φ′′
2(ζ) = (Hi +Hj − 1)(Hi +Hj − 2)

∫ +∞

0
(ζ + w)Hi+Hj−3dw (3.46)

−
(
Hi −

1

2

)(
Hi −

3

2

)∫ +∞

0
wHj− 1

2 (ζ + w)Hi− 5
2dw (3.47)

−
(
Hj −

1

2

)(
Hj −

3

2

)∫ +∞

0
wHi− 1

2 (ζ + w)Hj− 5
2dw. (3.48)

The variable change w = ζ( 1y − 1) gives∫ +∞

0
wHj− 1

2 (ζ + w)Hi− 5
2dw = ζHi+Hj−2

∫ 1

0
y1−Hi−Hj (1− y)Hj− 1

2dy (3.49)

= ζHi+Hj−2B

(
2−Hi −Hj , Hj +

1

2

)
. (3.50)
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We deduce that

φ′′
2(ζ) = −ζHi+Hj−2(Hi +Hj − 1)−

(
Hi −

1

2

)(
Hi −

3

2

)
ζHi+Hj−2B

(
2−Hi −Hj , Hj +

1

2

)
(3.51)

−
(
Hj −

1

2

)(
Hj −

3

2

)
ζHi+Hj−2B

(
2−Hi −Hj , Hi +

1

2

)
. (3.52)

Integrating twice gives

φ2(ζ) = ζHi+Hj

− 1

Hi +Hj
−

(
Hi − 1

2

)(
Hi − 3

2

)
(Hi +Hj − 1)(Hi +Hj)

B

(
2−Hi −Hj , Hj +

1

2

)
(3.53)

−

(
Hj − 1

2

)(
Hj − 3

2

)
(Hi +Hj − 1)(Hi +Hj)

B

(
2−Hi −Hj , Hi +

1

2

)+ affine term in ζ.

(3.54)

Assume that for a while, Hi + Hj ̸= 1. Then, the affine term must be zero because
from its definition, it follows φ2(ζ) = φ2(1)ζ

Hi+Hj (coming again from scaling argu-
ments).Overall, with Equation (3.42), we obtain

φ(ζ) = ζHi+Hj

−

(
Hi − 1

2

)(
Hi − 3

2

)
(Hi +Hj − 1)(Hi +Hj)

B(2−Hi −Hj , Hj +
1

2
) (3.55)

−

(
Hj − 1

2

)(
Hj − 3

2

)
(Hi +Hj − 1)(Hi +Hj)

B(2−Hi −Hj , Hi +
1

2
)

. (3.56)

Thus far, the formula is valid under the condition Hi + Hj ̸= 1. If Hi + Hj = 1,
it is sufficient to take a sequence of (Hn

i , H
n
j )n converging to (Hi, Hj) and such that

Hn
i +Hn

j ̸= 1: because the value φ(ζ) depends continuously on the H parameters (this
is clear from expression (3.42)), the obtained formula (3.56) is valid for Hi, Hj ∈ (0, 1).

We conclude the proof of the covariance formula in Lemma 3.1 by evaluating ϕ in ζ = 1.

The last statement of the lemma for the case Hi = Hj can be easily verified, from the
above formula and recalling formula (3.7) for cH .

Remark 3.2. In (Lavancier et al., 2009), authors study multivariate fractional Brownian
motion (mfBm) as an operator-self-similar Gaussian process with stationary increments.
An operator self-similar process is defined for any λ > 0 as:

X(λt)
fdd
= λHX(t) (3.57)
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where fdd
= means equality of finite-dimensional distributions, and the d × d matrix λH

is defined by the power series λH = eH log(λ) =
∑∞

k=0H
k log(λ)k

k! . The properties of
stationarity and self-similarity are expressed in terms of distributions. Authors show
that the multivariate fractional Brownian motion (mfBm) is a special case of operator-
self-similar Gaussian process with stationary increments, where the matrix of exponents
is diagonal. Moreover, they provide a characterization of the covariance kernel thanks
to power functions.

3.2.2 Conditional expectation and projection

In what follows, we typically need to compute the conditional expectation and vari-
ance of some stochastic integral I(f) conditionally to the increments of fBm on some
time grid. The following Lemma gives a more general result about how to compute
E
[
I(f) | {I(fl)}(l∈I)

]
and V

[
I(f) | {I(fl)}(l∈I)

]
, where (fl)l∈I is an arbitrary family

of functions in L2
d.

Lemma 3.3 (Orthogonal projections and conditional expectations on Gaussian Hilbert
spaces). Let f ∈ L2

d and (fl)l∈I be an arbitrary family of functions in L2
d. Let L′ be the

closed subspace of L2
d spanned by (fl)l∈I and define f⋆ ∈ L′ as the (unique) orthogonal

projection of f on L′. Then

E
[
I(f) | {I(fl)}(l∈I)

]
= I(f⋆), (3.58)

V
[
I(f) | {I(fl)}(l∈I)

]
=
∣∣∣f − f⋆

∣∣∣2
L2
d

. (3.59)

Proof The formula for the conditional expectation follows directly from (Janson, 1997,
Chapter 9, Thm.9.1). In addition, denote by H′ the closed subspace of H generated by
(I(fl))(l∈I), and write the orthogonal decomposition of H′ as:

H = H′ ⊕H′′. (3.60)

Obviously, the projection residual I(f)− I(f⋆) is in H′′, meaning that I(f)− I(f⋆) is
independent of {I(fl)}l∈I :

V
[
I(f) | {I(fl)}l∈I

]
= V

[
I(f)− I(f⋆)

]
. (3.61)

We conclude using the isometry property.

In the following, the conditioning is made according to the asset values observed along a
time grid, that is, according to (Si

tl
), i = 1, · · · , d, l = 1, · · ·N , or equivalently according

to (BHi
tl+1

− BHi
tl

) which corresponds to choosing f il (·) = σiR:,iψ
Hi
tl,tl+1

(·). In addition,
the function f to consider is related to the P&L of the portfolio increments. As such,
we prove (see Equation (??)) that f(·) =

∑d
i=1 ωiσiS

i
tN
R:,iψ

Hi
tN ,tN+1

(·). In the next
statement, we take a slightly more general form consistent with this future choice.
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Theorem 3.4. Consider the index family I = {(i, l) | i ∈ J1, dK, l ∈ J1, NK} and the
set of L2

d-valued functions

f il (·) := σiR:,iψ
Hi
tl,tl+1

(·). (3.62)

Let

f(·) =
d∑

i=1

ωi
tN
ψHi
tN ,tN+1

(·) (3.63)

be an L2
d function, where each d-dimensional coefficient ωi

tN
= ωiσiS

i
tN
R:,i is measurable

with respect to {I(f il )}(i,l)∈I .
Then, the expectation of I(f) conditional on {I(f il )}(i,l)∈I can be written as

E
[
I(f)|{I(f il )}(i,l)∈I

]
=
∑

(i,l)∈I

ailI(f
i
l ) =

d∑
i=1

N∑
l=1

ail(B
Hi
tl+1

−BHi
tl

), (3.64)

and the conditional variance is given by:

V
[
I(f) | {I(f il )}(i,l)∈I

]
=

d∑
i,j=1

(ωi
tN

· ωj
tN
)

∫
R
ψHi
tN ,tN+1

(u)ψ
Hj

tN ,tN+1
(u)du (3.65)

−
N∑

i,j=1

N∑
k,l=1

aila
j
kρij

∫
R
ψHi
tl,tl+1

(u)ψ
Hj

tk,tk+1
(u)du, (3.66)

where the projection coefficients α⋆ = (a11, · · · , a1N , a21, · · · , a2N , · · · , ad1, · · · , adN )⊤ are
equal to:

α⋆ = M+y, (3.67)

where M+ is the Moore-Penrose pseudo-inverse (see (MacAusland, 2014, Section 5.5.4))
of the matrix

M =

(
⟨f i1k1 , f

i2
k2
⟩L2

d

)
(i1−1)×N+k1,(i2−1)×N+k2

and where
y =

(
⟨f, f i2k2⟩L2

d

)
(i2−1)×N+k2

.

Among the projection coefficients involved in the conditional expectation, the coefficient
α⋆ in (3.67) is the one with the minimal norm.

2) Assume that the time-discretization is uniform, that is, tl = lh for l = 1, . . . , N . The
self-similarity property allows the covariance kernel to be factorized by a power of the
time step h, and the remaining amount in the factorization represents the covariance
kernel at time 1 (independent of h) between the two given fBms:

M(i1−1)∗N+k1,(i2−1)∗N+k2 = ρi1,i2h
Hi1

+Hi2

∫
R
ψ
Hi1
0,1

(
v − k1

)
ψ
Hi2
0,1

(
v − k2

)
dv, (3.68)

y(i2−1)N+k2 =

d∑
i=1

(ωi
tN

·R:,i2)h
Hi+Hi2

∫
R
ψHi
0,1

(
v −N

)
ψ
Hi2
0,1

(
v − k2

)
dv. (3.69)
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The simplification in the case of constant time-step (item 2)) has mainly a computational
interest: the formulae can be directly adapted if we change the time-step, without
recomputing all the integrals necessary to the conditional expectation and variance.

Proof 1) In view of Lemma 3.3, the goal is to minimize the following Ordinary Least
Squares (OLS) problem:

min
g∈Span(f1,··· ,fn)

∣∣f − g
∣∣
L2
d
= min

α∈Rn

∣∣∣∣∣∣f −
n∑

k=1

αkfk

∣∣∣∣∣∣
L2
d

(3.70)

where n = d×N , f(i−1)N+l := f il and α(i−1)N+l := ail for i = 1, · · · , d, l = 1, · · · , N .

If the norm is the usual Euclidean norm in Rn, it is well-known that the set of solu-
tions is an affine space, and the minimal norm element is given by the Moore-Penrose
pseudo-inverse of some matrix applied to some vector, see (MacAusland, 2014, Section
5), (Barata and Hussein, 2012), (Ben-Israel and Greville, 2006) for details. In our set-
ting of the non-Euclidean norm, the result is similar, but we have not been able to find
a ready-to-cite reference. Thus we provide main arguments below. Consider the covari-
ance matrix M (symmetric and non-negative definite), together with its diagonalized
representation:

M = (⟨fk, fl⟩L2
d
)k,l = U

DL 0

0 0

U⊤ (3.71)

where U is an orthogonal matrix and, DL is a diagonal matrix (of size L ≤ n) with
positive elements. Define n new functions in L2

d by the formula g1:n := (g1, · · · , gn)⊤ =

U⊤(f1, · · · , fn)⊤ = U⊤f1:n: it is an easy exercise to check that

(⟨gk, gl⟩L2
d
)k,l = UTMU =

DL 0

0 0

 . (3.72)

This implies that gk = 0 if k > L. Set β := U⊤α ∈ Rn: then, leveraging the above
properties, we get∣∣∣∣∣∣f −

n∑
k=1

αkfk

∣∣∣∣∣∣
L2
d

=
∣∣∣f − β⊤g1:n

∣∣∣
L2
d

=

∣∣∣∣∣∣f −
L∑

k=1

βkgk

∣∣∣∣∣∣
L2
d

. (3.73)

Hence, we can arbitrarily choose βk for k > L, without changing the minimum value of
the above quantity. Since the (gk)k=1,··· ,L are orthogonal, the (unique) minimizer β1:L
is equal to

argmin
β1:L

∣∣∣∣∣∣f −
L∑

k=1

βkgk

∣∣∣∣∣∣
L2
d

= D−1
L


⟨f, g1⟩L2

d
...

⟨f, gL⟩L2
d

 . (3.74)
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Going back to α, the optimal coefficients are given by

α⋆ = U



D−1
L


⟨f, g1⟩L2

d
...

⟨f, gL⟩L2
d


βL+1

...
βN


. (3.75)

Because the multiplication by an orthogonal matrix U does not modify the norm, the
solution with the minimal norm is obtained through the choice βL+1:N = 0. The
obtained solution can be rewritten using the Moore-Penrose pseudo-inverse of M:

α⋆ = U

D−1
L 0

0 0





⟨f, g1⟩L2
d

...
⟨f, gL⟩L2

d

⟨f, gL+1⟩L2
d

...
⟨f, gn⟩L2

d


= U

D−1
L 0

0 0

U⊤⟨f, f1:N ⟩L2
d
= M+⟨f, f1:N ⟩L2

d
.

(3.76)

We are done with the proof of (3.64) and (3.67).

To prove Equation (3.65), we use the properties of Lemma 3.3 about orthogonal pro-
jections, which gives:

V
[
I(f) | {I(f il )}(i,l)∈I

]
=
∣∣∣f − f⋆

∣∣∣2
L2
d

=
∣∣f ∣∣2L2

d
−
∣∣∣f⋆∣∣∣2

L2
d

(3.77)

=

d∑
i,j=1

(ωi
tN

· ωj
tN
)

∫
R
ψHi
tN ,tN+1

(u)ψ
Hj

tN ,tN+1
(u)du−

N∑
i,j=1

N∑
k,l=1

aila
j
kρij

∫
R
ψHi
tl,tl+1

(u)ψ
Hj

tk,tk+1
(u)du.

(3.78)

2) Under the assumption of uniform time-partition, the self-similarity of the path-
dependent kernels ψH

s,t(.) implies that they can be rewritten as a product between the
power of h and the kernel between 0 and 1 evaluated at the scaled and translated
variable u

h − k:

ψH
tk,tk+1

(u) = hH− 1
2ψH

0,1

(
u

h
− k

)
. (3.79)

Integrating the above kernel with the change of variable v = u
h , we obtain∫

R
ψHi
tk,tk+1

(u)ψ
Hj

tl,tl+1
(u)du = hHi+Hj

∫
R
ψHi
0,1(v − k)ψ

Hj

0,1(v − l)dv. (3.80)

Using the above relation, we obtain Equations (3.68) and (3.69).
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3.2.3 Market model

In this section, we present the model used to describe the price dynamics. Usually, the
latter are described using a standard Black-Scholes model based on standard Brownian
motion. The approach presented in this work is quite different, because the price dynam-
ics are described by a fractional Black-Scholes model. This choice of model is justified
by the fact that the log-price increments remain Gaussian self-similar and stationary.
Therefore, interesting and tractable properties can be exploited, on the one hand to
model the trajectory of the log-price increments with accuracy and realism by intro-
ducing correlations between them which express long-range (respectively short-range)
dependence; on the other hand, to insure stability and coherence of the estimators and
to perform theoretical computations. Moreover, the assets that we describe, such as
FX rates, present significant correlations between the log-price increments, which can
be taken into account by the fractal properties of fBm. Such an approach has already
been adopted in the works of (Garcin, 2020) (in dimension d = 1), in which fBm is
used to take into account positive correlations between returns. Here, we propose a
multivariate extension – the so-called multivariate fractional Black-Scholes model – to
model the price dynamics of a universe composed of several assets correlated in both
time and space.

Assume that we have a universe composed of d assets, whose market prices at time
t are denoted by

(
S1
t , . . . , S

d
t

)
and whose market log-prices at time t are denoted by(

X1
t , . . . , X

d
t

)
. The price dynamics are given by the fractional Geometric Brownian

motion formula:

∀i ∈ J1, dK, Si
t = Si

0e
cit+σiB

i,Hi
t with cit = log

(
E[Si

t ]

Si
0

)
− σ2i

2
t2Hi , (3.81)

where S0 is fixed and known, and cit is a centering parameter in the model. We assume
that all parameters are known; see Section 3.5 about their estimation from market data.

Let us focus on the properties of the log-price process:

Xi
t = Xi

0 + cit + σiB
i,Hi
t . (3.82)

It is affine with respect to fractional Brownian motion, and as such, it benefits from its
properties related to Gaussianity, self-similarity and stationarity of increments, while
relaxing the property of independence of increments. For any h > 0, the log-price
increments of length h are defined by (see Equation (3.26)):

δhX
i
t := Xi

t+h −Xi
t = δhc

i
t + σiI(ψ

Hi
t,t+hR:,i). (3.83)

In this framework, we are interested in determining risk measures of the future portfolio
price increment at time horizon h. The portfolio and its increments of size h are defined
by:

Pt =
d∑

i=1

ωiSi
t and δhPt := Pt+h − Pt. (3.84)
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3.3 Value-at-Risk approximation

3.3.1 Portfolio expansion and Gaussian approximation of the VaR

The objective is to compute the conditional VaRα of the future portfolio’s increment
δhPtN = PtN+1−PtN given the past observations {S1

t0 , S
1
t1 , . . . , S

1
tN
, . . . , Sd

t0 , S
d
t1 , . . . , S

d
tN
}

taken on a uniform partition of the time interval [0, t], such that the time-step is constant
and equal to h, t0 = 0 and tN = t. Because all parameters are known, observing the
prices or the log-price or the log-price increments yields the same information, modeled
by sigma-algebra

G := σ(δhX
i
tl
: (i, l) ∈ I) = σ(I(f il ) : (i, l) ∈ I) where f il (·) := σiR:,iψ

Hi
tl,tl+1

(·)
(3.85)

and I = {(i, l) | i ∈ J1, dK, l ∈ J1, NK} is an index family indexing assets and time
increments.

For the purpose of VaRα of δhPtN , we need to know the conditional distribution of
the future portfolio’s increment. However, δhPtN is a linear combination of log-normal
random variables, whose marginal and conditional distributions are not known. There-
fore, we propose a Gaussian approximation of the conditional VaRα of δhPtN with the
conditional VaRα of δhP̂t whose conditional distribution is Gaussian:

δhPtN = PtN+h − PtN =
d∑

i=1

ωiδhS
i
tN

≃
d∑

i=1

ωiSi
tN
δhX

i
tN

=: δhP̂tN . (3.86)

Let α ∈ (0, 1) be the risk level, and recall, as an immediate extension of the uncondi-
tional case, that the VaRα of a scalar random variable X conditionally to a sigma-field
G, is defined by

VaRα(X | G) := inf{x ∈ R : P
(
X ≤ x | G

)
≥ α}. (3.87)

In our study, X represents the P&L of δhPtN , and we focus on the specific case of VaRα

of the Gaussian approximation δhP̂tN . The Gaussian VaR is easily determined because
it relies only on the expectation and standard deviation of the Gaussian distribution.

Proposition 3.5 (Conditionally Gaussian Value-at-Risk (VaR)). Let α ∈ (0, 1). The
VaRα of a G-conditional Gaussian distribution N (µ(G), σ2(G)) with σ(G) > 0, is
defined by:

VaRα(X | G) = σ(G)N−1(α) + µ(G). (3.88)

In addition, conditionally to G, δhP̂tN = I(f) where the form of the function f is defined
by Equation (3.63) of Theorem 3.4, with the specific weighting ωi

tN
= ωiσiS

i
tN
R:,i:

f(·) =
d∑

i=1

ωiσiS
i
tN
R:,iψ

Hi
tN ,tN+1

(·). (3.89)
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follows a Gaussian distribution. More specifically, conditionally to G, δhP̂tN has a Gaus-
sian distribution (see Lemma 3.3), characterized by its conditional mean and conditional
variance.

Thus, we obtain the following theorem.

Theorem 3.6 (Conditionally Gaussian Value-at-Risk). If δhP̂tN = I(f), with f given
by Equation (3.89), is the future increment of the log-price portfolio, and (δhX

i
tl

=

I(f il ))(i,l)∈I , with f il given by Equation (3.62) of Theorem 3.4, are the past log-price
increments of the assets that form the universe, then the conditional Gaussian VaRα

is given by the following formula:

VaRα(δhP̂tN |G) =
√

V[δhP̂tN |G]N−1(α) + E[δhP̂tN |G] (3.90)

where E[δhP̂tN |G] and V[δhP̂tN − E[δhP̂tN |G]] are given by Theorem 3.4.

The conditional Expected-Shortfall of the Gaussian approximation of the future port-
folio increment is provided by the following theorem.

Theorem 3.7 (Conditionally Gaussian Expected-Shortfall). If δhP̂tN = I(f), with f

given by Equation (3.89), is the future increment of the log-price portfolio, and (δhX
i
tl
=

I(f il ))(i,l)∈I , with f il given by Equation (3.62) of Theorem 3.4, are the past log-price
increments of the assets that form the universe, the conditional Gaussian ESα is given
by the following formula:

ESα(δhP̂tN | G) =

√
V[δhP̂tN |G]
1− α

n(N−1(α)) + E[δhP̂tN |G] (3.91)

where n(x) = 1√
2π
e−

x2

2 and N(x) =
∫ x
−∞ n(y)dy are respectively the standard Gaussian

probability density function and cumulative distribution function.

Proof Recall that the conditional VaRα of δhP̂tN is given by:

VaRα(δhP̂tN | G) = σ(G)N−1(α) + µ(G). (3.92)

where µ(G) = E[δhP̂tN |G] and σ(G) =
√

V[δhP̂tN |G]. The conditional ESα is given by:

ESα(δhP̂tN | G) = 1

1− α

∫ 1

α
VaRa(δhP̂tN | G)da (3.93)

=
σ(G)
1− α

∫ 1

α
N−1(a)da+ µ(G). (3.94)

Let us proceed to the following substitution: x = N−1(a) then, a = N (x) da
dx =

n(x) = 1√
2π
e−

x2

2 . Moreover, when a = α then x = N−1(α) and when a = 1 then
x→ N−1(1) = +∞. Thus, it comes that:

ESα(δhP̂tN | G) = 1

1− α

∫ +∞

N−1(α)
xn(x)dx. (3.95)
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But xn(x) = −dn(x)
dx , then:

ESα(δhP̂tN | G) = σ(G)
1− α

[
−n(x)

]+∞

N−1(α)
+ µ(G) = σ(G)

1− α
n(N−1(α)) + µ(G). (3.96)

The Expected-Shortfall at risk level α can also be characterized as the solution to a min-
imization problem, as explained in the works of (Bardou et al., 2016) and (Rockafellar
et al., 2000):

ESα(X | G) = min
ξ∈L0(G)

{
ξ +

1

1− α
E
[
(X − ξ)+ | G

]}
(3.97)

= VaRα(X | G) + 1

1− α
E
[
(X −VaRα(X | G))+ | G

]
(3.98)

where L0(G) is the set of a.s. finite and G-measurable random variables.

3.3.2 Results on VaR and ES error bounds

In this section, the goal is to quantify the accuracy in the approximation of VaRα(δhPtN |
G) with VaRα(δhP̂tN | G). In other words, we want to determine an upper bound of
the following amount: ∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G)

∣∣∣ .
Our main result is the following:

Theorem 3.8. Consider the future portfolio increment δhPtN and its Gaussian approx-
imation conditionally to G, given by the future portfolio log-return δhP̂tN . Thus, we have
the following upper bound:

∆ =
∥∥∥δhPtN − δhP̂tN

∥∥∥
p,G

≤ 2
d∑

i=1

∣∣∣ωi
∣∣∣Si

tN

(
σ2i h

2HiC
1/pq
2pq +M2

i

)
e(Mi)++ pr

2
σ2
i h

2Hi

(3.99)

with p > 1 and 1
q +

1
r = 1.

If we assume that ∆ is small enough, that is, |∆| < 1− α a.s., then:

(i) The quantification of the approximation of the conditional VaRα of the future port-
folio price increment δhPtN with the conditional Gaussian VaRα of the future portfolio
log-price increment δhP̂tN is given as follows:

∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G)
∣∣∣ ≤ ( 2σ(G)

1− α−∆

d∑
i=1

∣∣∣ωi
∣∣∣Si

tN
(3.100)

×
(
σ2i h

2HiC
1/pq
2pq +M2

i

)
e(Mi)++ pr

2
σ2
i h

2Hi

)
, a.s.

(3.101)
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with Mi := E
[
δhX

i
tN

| G
]
, σ(G) =

√
V[δhP̂tN |G], G ∼ N (0, 1), and C2pq := E

[
G2pq

]
.

(ii) The quantification of the approximation of the conditional ESα of the future portfolio
price increment δhPtN with the conditional Gaussian ESα of the future portfolio log-price
increment δhP̂tN is given as follows:∣∣∣ESα(δhPtN | G)−ESα(δhP̂tN | G)

∣∣∣ (3.102)

≤

(1 + 1

1− α

)
2σ(G)

1− α−∆
+

2

1− α

 d∑
i=1

∣∣∣ωi
∣∣∣Si

tN

(
σ2i h

2HiC
1
pq

2pq +M2
i

)
e(Mi)++ pr

2
σ2
i h

2Hi .

(3.103)

3.3.3 Proof of Theorem 3.8

The analysis was conducted in three steps. The first step corresponds to the approxim-
ation of the price increment of an asset with its log-price increment, which is a Gaussian
r.v.. The second step consists of approximating the portfolio price increments, with the
portfolio log-price increments, which is a linear combination of Gaussian r.v.. The third
step relates to the error bound between the two conditional VaRα.

Lemma 3.9. The price increment δhSi
tN

and log-price increment δhXi
tN

are as follows:

δhS
i
tN

− Si
tN
δhX

i
tN

= Si
tN
(δhX

i
tN
)2
∫ 1

0
(1− v)e

vδhX
i
tN dv. (3.104)

This indicates that they are close to each other when the price increments are small.

Proof This is a consequence of the Taylor-Young expansion with integral remainder.
Let f : [a, b] 7→ R be a function of class C2. We have:

f(b) = f(a) + (b− a)f ′(a) + (b− a)2
∫ 1

0
(1− v)f ′′(a+ v(b− a))dv. (3.105)

The above formula applied with f(x) = ex, b = Xi
tN+h−Xi

tN
= δhX

i
tN

, a = Xi
tN
−Xi

tN
=

0 gives the announced formula.

Proposition 3.10. Let p ≥ 1. The conditional Lp-norm, defined by
∥∥X∥∥

p,G :=

E
[∣∣X∣∣p | G] 1

p , between δhS
i
tN

and Si
tN
δhX

i
tN

is bounded as follows:

∥∥∥δhSi
tN

− Si
tN
δhX

i
tN

∥∥∥
p,G

≤ 2Si
tN
(σ2i h

2HiC
1/pq
2pq +M2

i )e
(Mi)++ pr

2
σ2
i h

2Hi (3.106)

with Mi := E
[
δhX

i
tN

| G
]
, G ∼ N (0, 1), and C2pq := E

[
G2pq

]
.
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Proof To alleviate the notation, we set t = tN . From Lemma 3.9, and using Holder’s
inequality, we obtain:∥∥∥δhSi

t − Si
tδhX

i
t

∥∥∥
p,G

≤
∥∥∥Si

t(δhX
i
t)

2
∥∥∥
pq,G

∥∥∥∥∥
∫ 1

0
(1− v)evδhX

i
tdv

∥∥∥∥∥
pr,G

with
1

q
+

1

r
= 1.

(3.107)

Using the Minkowski inequality and because Si
t is G-measurable and positive, we obtain

the following formula:∥∥∥δhSi
t − Si

tδhX
i
t

∥∥∥
p,G

≤ Si
t

∥∥∥δhXi
t

∥∥∥2
2pq,G

sup
v∈[0,1]

∥∥∥∥evδhXi
t

∥∥∥∥
pr,G

. (3.108)

At this stage, we have to upper bound the two following amounts
∥∥∥δhXi

t

∥∥∥
2pq,G

and∥∥∥evδhXi
t

∥∥∥
pr,G

. Note that δhXi
t conditionally to G is distributed as N (Mi, v

2
i ) where

Mi := E
[
δhX

i
t | G

]
and v2i := V

[
δhX

i
t | G

]
. Thus,∥∥∥δhXi

t

∥∥∥
2pq,G

=
∥∥viG+Mi

∥∥
2pq,G ≤

∥∥viG∥∥2pq,G +
∥∥Mi

∥∥
2pq,G ≤ viC

1/2pq
2pq +

∣∣Mi

∣∣ ,
(3.109)∥∥∥δhXi

t

∥∥∥2
2pq,G

≤ 2

(
v2iC

1/pq
2pq +M2

i

)
(3.110)

where G is an independent standard Gaussian r.v..

On the other hand, regarding
∥∥∥evδhXi

t

∥∥∥
pr,G

= E
[
evprδhX

i
t | G

] 1
pr , consider the same

Gaussian decomposition as before, which readily yields∥∥∥∥evδhXi
t

∥∥∥∥
pr,G

= E
[
evpr(viG+Mi) | G

] 1
pr

= evMiE
[
evprviG | G

] 1
pr

= evMi+
v2pr
2

v2i . (3.111)

Taking the sup on v ∈ [0, 1], we get:

sup
v∈[0,1]

∥∥∥∥evδhXi
t

∥∥∥∥
pr,G

≤ e(Mi)++ pr
2
v2i . (3.112)

Consequently, gathering the two parts, we fall onto:∥∥∥δhSi
t − Si

tδhX
i
t

∥∥∥
p,G

≤ 2Si
t(v

2
iC

1/pq
2pq +M2

i )e
(Mi)++ pr

2
v2i . (3.113)

Now, it remains to provide a control on the conditional variance v2i : using Lemma 3.3
and denoting by f̃ the representative in L2

d of the stochastic integral part in δhX
i
t , we

get V
[
δhX

i
t | G

]
:

V
[
δhX

i
t | G

]
=
∣∣∣f̃ − f̃⋆

∣∣∣2
L2
d

≤
∣∣∣f̃ ∣∣∣2

L2
d

= V
[
δhX

i
t

]
. (3.114)

Finally, from Equation (3.13) we obtain V
[
δhX

i
t

]
= σ2i h

2Hi . Collecting all bounds leads
to the announced statement.
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Corollary 3.11. The conditional Lp-norm between the future portfolio price increment
and its Gaussian approximation is such that∥∥∥δhPtN − δhP̂tN

∥∥∥
p,G

≤ 2

d∑
i=1

∣∣∣ωi
∣∣∣Si

tN

(
σ2i h

2HiC
1/pq
2pq +M2

i

)
e(Mi)++ pr

2
σ2
i h

2Hi , (3.115)

with Mi := E
[
δhX

t
i | G

]
, G ∼ N (0, 1), and C2pq = E

[
G2pq

]
.

Proof Start from Equation (3.86) to write

δhPtN − δhP̂tN =

d∑
i=1

ωi
(
δhS

i
tN

− Si
tN
δhX

i
tN

)
,

and then apply the triangular inequality on conditional Lp-norm to get the expected
formula.

Lemma 3.12. Let f be the density of the standard Gaussian r.v. N (0, 1), F the related
c.d.f., and F−1 the quantile function. For any α ∈ [0.9, 1), we have:

1− α ≤ f(F−1(α)) ≤ 2(1− α)

√√√√log

(
1

8π(1− α)2

)
. (3.116)

Proof VaR error bounds

Step 1. Bounds on the Lambert W function. The Lambert W function is defined
as the inverse of the continuous and strictly increasing function R+ ∋ w 7→ wew ∈ R+:

LW(x)eLW(x) = x, ∀x ≥ 0. (3.117)

Invoking the implicit function theorem, it is easy to see that LW(.) is C∞ on R+. For a
deeper study, see Robert M. Corless, David J. Jeffrey, and Donald E. Knuth. Sequence of
series for Lambert W function. In Proceedings of the 1997 International Symposium on
Symbolic and Algebraic Computation (Kihei, HI), pages 197–204 (electronic), New York,
1997. ACM. In addition, LW(.) is strictly increasing on R+, LW(e) = 1, LW(nen) = n

for n ≥ 1.

We claim that

LW(x) ≤ log(x), ∀x ≥ e, (3.118)

log(x)− log(log(x)) ≤ LW(x), ∀x ≥ e. (3.119)

Proof Set w = log(x), then wew = x log(x) ≥ x because x ≥ e. This shows
wew ≥ LW(x)eLW(x), which implies that w ≥ LW(x) since y 7→ yey is strictly in-
creasing. Equation (3.118) is proven.
Similarly, if w = log(x) − log(log(x)), wew = [log(x) − log(log(x))] x

log(x) ≤ x because
log(log(x)) ≥ 0 for x ≥ e. Using the same arguments as before, we conclude that
w ≤ LW(x) as stated in (3.119).
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Step 2. Using Mill’s ratio bounds. They are given by:

x

x2 + 1

e−
x2

2√
2π

≤ F (−x) ≤ 1

x

e−
x2

2√
2π
, ∀x > 0. (3.120)

Note that α ≥ 0.85 implies x = F−1(α) ≥ 1. The inequality (3.120) becomes

1

F−1(α)

F−1(α)2

F−1(α)2 + 1

e−
F−1(α)2

2√
2π

≤ F (−F−1(α)) ≤ 1

F−1(α)

e−
F−1(α)2

2√
2π

, ∀α ≥ 0.85.

(3.121)

Observe that F (−F−1(α)) = 1− α and 1
2 ≤ y2

y2+1
for y ≥ 1. Therefore

1

2F−1(α)e
F−1(α)2

2

≤
√
2π(1− α) ≤ 1

F−1(α)e
F−1(α)2

2

, ∀α ≥ 0.85. (3.122)

Taking the square and the inverse gives

F−1(α)2eF
−1(α)2 ≤ (

√
2π(1− α))−2 ≤ 4F−1(α)2eF

−1(α)2 , ∀α ≥ 0.85. (3.123)

This implies

F−1(α)2 ≤ LW((
√
2π(1− α))−2) and F−1(α)2 ≥ LW((2

√
2π(1− α))−2), ∀α ≥ 0.85.

(3.124)

For α ≥ 0.9, note that (
√
2π(1−α))−2 ≥ (

√
2π× 0.1)−2) = 15.9 · · · ≥ e and (2

√
2π(1−

α))−2 ≥ 15.9 . . . /4 ≥ e. Therefore, inequalities (3.118) and (3.119) can be used: this
yields

F−1(α)2 ≤ log((
√
2π(1− α))−2) and F−1(α)2 ≥ [log(.)− log(log(.))]((2

√
2π(1− α))−2), ∀α ≥ 0.9.

(3.125)

Step 3. Final bounds. We are now in a position to bound

f(F−1(α)) =
1√
2π
e−

F−1(α)2

2 .

• Lower bound.

f(F−1(α)) ≥ 1√
2π
e−

1
2
log((

√
2π(1−α))−2) = 1− α. (3.126)

• Upper bound.

f(F−1(α)) ≤ 1√
2π
e−

1
2
log((2

√
2π(1−α))−2)+ 1

2
log(log((2

√
2π(1−α))−2)) (3.127)

≤ 2(1− α)

√
log((2

√
2π(1− α))−2)). (3.128)
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Finally, we determine the upper bounds for the Gaussian approximation of the VaRα.
δhP̂t | G is a Gaussian r.v. and δhPt | G is a linear combination of log-normal r.v..
These two r.v. have a continuous cumulative distribution function (c.d.f.). Then, for
any α ∈ (0, 1) and for any VaRα(δhPt | G) we have, from (Dominici*, 2003, p. 12):

VaRα−∆(δhP̂t | G) ≤ VaRα(δhPt | G) ≤ VaRα+∆(δhP̂t | G) (3.129)

where ∆ = dKol(δhP̂t | G, δhPt | G) is the distance of Kolmogorov between the two
distributions related to the r.v. δhP̂t | G and δhPt | G.

Then, the approximation of VaRα+∆(δhP̂t | G) with VaRα−∆(δhP̂t | G) is given as
follows:∣∣∣VaRα(δhPt | G)−VaRα(δhP̂t | G)

∣∣∣ ≤ sup
x∈[α−∆,α+∆]

|f(F−1(x))|−1∆ (3.130)

where f is the Gaussian density related to δhP̂t | G and F is its related c.d.f. δhP̂t|G ∼
N (µ(G), σ2(G)), thus ∀y ∈ R:

f(y) =
1√

2πσ(G)
e
− 1

2

(
y−µ(G)
σ(G)

)2

, F (y) =

∫ y

−∞
f(u)du. (3.131)

Proof Goal: Find an upper bound of the following quantity:∣∣∣VaRα(δhPtN |G)−VaRα(δhP̂tN |G)
∣∣∣ (3.132)

where δhPtN =
∑d

i=1 ω
iδhS

i
tN

and δhP̂tN =
∑d

i=1 ω
i
tN
δhX

i
tN

with ωi
tN

= ωiσiS
i
tN
R:i.

Assuming that the following inequality holds:

VaRα−∆(δhP̂t|G) ≤ VaRα(δhPt|G) ≤ VaRα+∆(δhP̂t|G) (3.133)

and since:

VaRα−∆(δhP̂t|G) ≤ VaRα(δhP̂t|G) ≤ VaRα+∆(δhP̂t|G) (3.134)

Hence:∣∣∣VaRα(δhPt|G)−VaRα(δhP̂t|G)
∣∣∣ ≤ ∣∣∣VaRα+∆(δhP̂t|G)−VaRα−∆(δhP̂t|G)

∣∣∣ (3.135)

Let us denote by F the cumulative distribution function of the Gaussian distribution
N (µ(G), σ2(G)) where µ(G) = E[δhP̂t|G] and σ2(G) = V[δhP̂t|G]. We can then rewrite
the inequality above as follows:∣∣∣VaRα(δhPt|G)−VaRα(δhP̂t|G)

∣∣∣ ≤ ∣∣∣F−1(α+∆)− F−1(α−∆)
∣∣∣ . (3.136)
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From the mean value theorem we get:∣∣∣F−1(α+∆)− F−1(α−∆)
∣∣∣ ≤ sup

x∈[α−∆,α+∆]

∣∣∣∣∣ ddxF−1(x)

∣∣∣∣∣ 2∆ (3.137)

≤ sup
x∈[α−∆,α+∆]

∣∣∣f(F−1(x))
∣∣∣−1

2∆ (3.138)

Consequently, we have:∣∣∣VaRα(δhPt|G)−VaRα(δhP̂t|G)
∣∣∣ ≤ 2 sup

x∈[α−∆,α+∆]

∣∣∣f(F−1(x))
∣∣∣−1

∆. (3.139)

Maximizing |x
√

− ln(2πσ2(G)x2)|−1 on [α−∆, α+∆] amounts to maximizing |x
√

− ln(2πσ2(G)x2)|−1

on [α−UB(∆), α+UB(∆)]. However ∆ is a distance thus, ∆ ≥ 0, therefore, |x
√

− ln(2πσ2(G)x2)|−1

is maximal when |x
√

− ln(2πσ2(G)x2)| is minimal. Moreover, the function x 7→ x
√

− ln(2πσ2(G)x2)
is decreasing and, its minimum is reached in α+ UB(∆).

Thus, we obtain:

sup
x∈[α−∆,α+∆]

|x
√

− ln(2πσ2(G)x2)|−1∆ = |(α+ UB(∆))
√

− ln(2πσ2(G)(α+ UB(∆))2)|∆

(3.140)

Finally we fall on:∣∣∣VaRα(δhPt | G)−VaRα(δhP̂t | G)
∣∣∣ ≤ ∣∣∣α+ UB(∆)

∣∣∣√− ln(2πσ2(G)2(α+ UB(∆))2)∆

(3.141)

with ∆ =
∥∥∥δhP̂t − δhPt

∥∥∥
p,G

and UB(∆) = 2
∑d

i=1

∣∣∣Si
tN

∣∣∣ (σ2i h2HiC
1/pq
2pq +

∣∣Mi

∣∣2) eMi+
pr
2
σ2
i h

2Hi .

Proof ES error bounds

Now, let us quantify the error of approximation of the conditional ESα of the future
variation of the true portfolio using the conditional ESα of the Gaussian approximation
of the future portfolio variation:∣∣∣ESα(δhPtN | G)−ESα(δhP̂tN | G)

∣∣∣ (3.142)

=

∣∣∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G) (3.143)

+
1

1− α

(
E
[
(δhPtN −VaRα(δhPtN | G))+ | G

]
− E

[
(δhP̂tN −VaRα(δhP̂tN | G))+ | G

]) ∣∣∣∣∣
(3.144)

=
∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G)

∣∣∣ (3.145)

+
1

1− α

∣∣∣∣E [(δhPtN −VaRα(δhPtN | G))+ | G
]
− E

[
(δhP̂tN −VaRα(δhP̂tN | G))+ | G

]∣∣∣∣ .
(3.146)
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But the function x 7→ x+ is 1-Lipschitz and VaRα(δhPtN | G) and VaRα(δhP̂tN | G)
are G-measurable, then it comes that:∣∣∣∣E [(δhPtN −VaRα(δhPtN | G))+ | G

]
− E

[
(δhP̂tN −VaRα(δhP̂tN | G))+ | G

]∣∣∣∣
(3.147)

≤
∣∣∣∣∣E
[∣∣∣δhPtN − δhP̂tN

∣∣∣ | G]∣∣∣∣∣+ ∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G)
∣∣∣ . (3.148)

But

∣∣∣∣∣E
[∣∣∣δhPtN − δhP̂tN

∣∣∣ | G]∣∣∣∣∣ = ∥∥∥δhP̂t − δhPt

∥∥∥
1,G

. Thanks to convexity inequalities,

for p ≥ 1, p 7→
∥∥X∥∥

p,G is non-decreasing so that
∥∥X∥∥

1,G ≤
∥∥X∥∥

p,G for any p ≥ 1. We
thus get∣∣∣∣E [(δhPtN −VaRα(δhPtN | G))+ | G

]
− E

[
(δhP̂tN −VaRα(δhP̂tN | G))+ | G

]∣∣∣∣
(3.149)

≤
∥∥∥δhP̂t − δhPt

∥∥∥
p,G

+
∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G)

∣∣∣ . (3.150)

Finally, we fall onto the following upper bound:∣∣∣ESα(δhPtN | G)−ESα(δhP̂tN | G)
∣∣∣ (3.151)

≤
(
1 +

1

1− α

)∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G)
∣∣∣+ 1

1− α

∥∥∥δhP̂t − δhPt

∥∥∥
p,G

for all p ≥ 1.

(3.152)

From Theorem 3.8 and the above upper-bound, we thus obtain:∣∣∣ESα(δhPtN | G)−ESα(δhP̂tN | G)
∣∣∣ (3.153)

≤

(1 + 1

1− α

)
2σ(G)

1− α−∆
+

2

1− α

 d∑
i=1

∣∣∣ωi
∣∣∣Si

tN

(
σ2i h

2HiC
1
pq

2pq +M2
i

)
e(Mi)++ pr

2
σ2
i h

2Hi .

(3.154)

3.4 Simulation of fBm and mfBm

Different simulation methods exist, and exhibit different complexities. We used the
Cholesky method in our simulations. Below, we discuss its rationale and compare it
with other well-known methods.

Let KX be the covariance kernel related to fBm. Because KX is a symmetric definite
positive matrix, it admits a Cholesky decomposition, KX = LTL, where L is a lower
triangular matrix. Thus, simulating a sample of fBm at times i

N , i = 1, . . . , N , is
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equivalent to generating a vector Z composed of N independent standard Gaussian
variables and applying the product LZ. Indeed, LZ is a centered Gaussian vector and
E[(LZ)(LZ)T ] = KX . This method exactly simulates an fBm, because there exists
a unique Gaussian process with the given theoretical expectation and variance. (See
(Bardet et al., 2003) for more details.)

Owing to the computational complexity of the order O((N)3) and the fact that KX

is ill-conditioned, it is of interest to derive methods that are computationally less de-
manding (Coeurjolly, 2000a). Some of these methods are also exact, insofar as they
reproduce the covariance of the desired process. They reach a lower complexity than
the Cholesky method because they exploit simple properties of the covariance matrix.
For instance, the Levinson method relies on the Toeplitz property of the covariance
matrix of fractional Gaussian noise (fGn) (Coeurjolly, 2000a) and has a complexity
in O(N2 log(N)). The Wood and Chan algorithm (Chan and Wood, 1999) obtains a
complexity of O(N log(N)) by embedding the covariance of an fGn in a circulant matrix.

Even if these methods are interesting from the point of view of their algorithmic com-
plexity, it is not easy to generalize them to the multivariate framework because the co-
variance matrix of an mfBm is neither Toeplitz nor circulant. In contrast, the Cholesky
method is suitable for the multivariate framework as soon as we know the corresponding
covariance matrix, including the covariance between distinct components of mfBm.

A considerable improvement is given in (Amblard et al., 2010). In this paper, authors
propose an algorithm to perfectly simulate mfBm. The approach is based on embedding
the covariance matrix G of fractional Gaussian noise, which is a Toeplitz block matrix of
size Nd×Nd in a matrix C = circ{C(j)}j=0,...,m−1 where m is a power of 2 greater than
2(N −1) which is a symmetric matrix with a nested block circulant structure composed
of m Hermitian matrices. Therefore, the computation of C1/2 is much less expensive
than the computation of the G1/2 because of the use of the Fast Fourier Transform
(FFT) as in (Maejima and Mason, 1994) which considerably reduces the cost:

O
(
d(d+ 1)

2
m log(m)

)
+O(md3) +O(dm log(m)). (3.155)

The crucial point of this algorithm is the non-negativity of the eigen-values of Hermitian
matrices.

In addition to these methods, efficient methods exist from the point of view of al-
gorithmic complexity, based on an approximation. Among these, we can cite recent
efforts in this direction based on neural networks (Allouche et al., 2022).
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3.5 Estimation

3.5.1 Relationship between the theoretical model and the
implementation

First, we recall the conditional VaRα models for which we are interested in estimating
the parameters. The filtration considered is given in Equation (3.85) by G := σ(δhX

i
tl
:

(i, l) ∈ I) = σ(I(f il ) : (i, l) ∈ I) where f il (·) := σiR:,iψ
Hi
tl,tl+1

(·).
The Gaussian approximation of the conditional VaRα corresponds to an affine function
of the α-quantile of the standard Gaussian distribution, where the intercept is the
conditional expectation of δhP̂N given the filtration G and the slope is the square root
of the conditional variance of δhP̂N given G, i.e. VaRα(δhP̂N | G) = σ(G)N−1(α)+µ(G),
as mentioned in Equation (3.88).

We recall that δhP̂N = I(f) where f(·) =∑d
i=1 ωiσiS

i
tN
R:,iψ

Hi
tN ,tN+1

(·)..

The conditional expectation of δhP̂N given G corresponds to the orthogonal projection of
δhP̂N on the Hilbert space spanned by filtration G and the conditional variance of δhP̂N

corresponds to the projection residual. These two quantities are defined in Theorem 3.4
by Equations (3.64):

µ(G) = E
[
δhP̂N | G

]
= E

[
I(f)|{I(f il )}(i,l)∈I

]
(3.156)

=
∑

(i,l)∈I

ailI(f
i
l ) =

d∑
i=1

N−1∑
l=0

ail(B
Hi
tl+1

−BHi
tl

) =
(
m1 +K12K

−1
22 (Y 2 −m2)

)
.

(3.157)

and

σ(G) =
√
V[δhP̂N | G] = V

[
I(f) | {I(f il )}(i,l)∈I

]
(3.158)

=
d∑

i,j=1

(ωi
tN

· ωj
tN
)

∫
R
ψHi
tN ,tN+1

(u)ψ
Hj

tN ,tN+1
(u)du (3.159)

−
N−1∑
i,j=0

N−1∑
k,l=0

aila
j
kρij

∫
R
ψHi
tl,tl+1

(u)ψ
Hj

tk,tk+1
(u)du (3.160)

= (K11 −K12K
−1
22K21)

1
2 . (3.161)

where:
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m1 = E
[
δhP̂N

]
=
∑d

i=1w
iE
[
Si
tN
δhX

i
tN

]
m2 = E

[(
δhX

i
tl

)T
(i,l)∈I

]
= 0N×d

K12 =
(
Cov(δhP̂tN , δhX

i
tl
)
)
(i,l)∈I

=
(∑d

j=1w
jCov(Sj

tN
δhX

j
tN
, δhX

i
tl
)
)
(i,l)∈I

K21 = KT
12

K22 =
(
Cov(δhX

i
tl
, δhX

j
tk
)
)
(i,l)×(j,k)∈I2

.

These quantities can be explicitly expressed. For all (i, j) ∈ J1, dK2 and for all (k, l) ∈
J0, N − 1K2:

Cov(δhX
i
tl
, δhX

j
tk
) =

σiσjρij
2

(∣∣∣tl+1 − tk

∣∣∣Hi+Hj

+
∣∣∣tl − tk+1

∣∣∣Hi+Hj

(3.162)

−
∣∣∣tl+1 − tk+1

∣∣∣Hi+Hj −
∣∣tl − tk

∣∣Hi+Hj

)
. (3.163)

In practice, we assume that any time tk is a multiple of the smallest time-step τ such
that tk = kτ . The covariance kernel can be simplified as follows:

Cov(δhX
i
tl
, δhX

j
tk
) =

σiσjρij |τ |Hi+Hj

2

(∣∣l − k + 1
∣∣Hi+Hj +

∣∣l − k − 1
∣∣Hi+Hj − 2

∣∣l − k
∣∣Hi+Hj

)
.

Moreover, the quantities Cov(Sj
tN
δhX

j
tN
, δhX

i
tl
) and E

[
Si
tN
δhX

i
tN

]
can be computed

using the partial derivatives of the Laplace Transform of the linear combination of

log-price increments LX(α) = E
[
e
∑d

i=1

∑N
k=0 α

i
kδhX

i
tk

]
.

3.5.2 Essential model properties for parameter estimation

It is important to recall that three assumptions are formulated on the model: Gaus-
sianity, stationarity and self-similarity. These assumptions are required to estimate the
parameters.

Gaussian Assumption

Our predictive model provides the conditional VaRα of the Gaussian approximation of
future portfolio variation given the past log-price increments of the assets.

The Gaussian assumption states that for each asset, the log-prices are assimilated to an
fBm. Then, the log-price increments exhibit the same behavior as the fBm increments.
Moreover, the log-price increments form a Gaussian vector and, any linear combination
of the increments is a Gaussian variable. The approximation of future portfolio variation
δhP̂tN is a Gaussian variable conditionally to the past log-price increments of the assets.
Therefore, the conditional VaRα of δhP̂tN given the past log-returns of the assets is
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the quantile of a Gaussian distribution. More precisely, VaRα(δhP̂N | G) is an affine
function of the α-quantile of the standard Gaussian distribution, whose intercept is given
by the conditional expectation µ(G) = E

[
δhP̂N | G

]
and whose slope is the square root

of the conditional variance σ(G) =
√
V[δhP̂N | G].

Consequently, the Gaussian assumption is very important because it allows the assimil-
ation of log-price increments to fBm increments, which results in a Gaussian VaR with
a convenient form.

Stationarity assumption

We are interested in the stationarity property of the increments of the process {Xi
t}.

An increment is characterized by two parameters, its origin and its duration, so that we
can define two types of processes based on increments: the process of the increments
with the same origin and various durations {Xi

t+m − Xi
m}t∈R and the process of the

increments with various origins and the same duration {Xi
t+m −Xi

t}t∈R.

On the one hand, because the log-price process {Xi
t} is assimilated to an fBm, Chapter 2

shows that the process {Xi
t+m −Xi

m}t∈R is stationary. The weak-sense stationarity of
this process, refers to the invariance "t by t" of the expectation and variance by time-
origin change:

E
[
Xi

t+m −Xi
m

]
= E

[
Xi

t

]
and V[Xi

t+m −Xi
m] = V[Xi

t ], (3.164)

and is enough both to completely determine the covariance kernel of the process {Xi
t},

Cov(Xi
t , X

i
s) =

1

2

(
V[Xi

t ] + V[Xi
s]− V[Xi

t−s]
)
, (3.165)

and to establish the strict-sense stationarity of the Gaussian process {Xi
t+m −Xi

m}t∈R:

Cov(Xi
t+m −Xi

m, X
i
s+m −Xi

m) = Cov(Xi
t , X

i
s). (3.166)

However, to estimate the parameters of the model, we need to obtain the stationarity of
the increments of same duration m and various origins {Xi

t+m−Xi
t}t∈R. This Gaussian

process is stationary in the strict sense because, using Equation (3.165),

Cov(Xi
t+m −Xi

t , X
i
s+m −Xi

s) (3.167)

= Cov(Xi
t+m, X

i
s+m) + Cov(Xi

t , X
i
s)− Cov(Xi

t , X
i
s+m)− Cov(Xi

t+m, X
i
s) (3.168)

=
1

2
(V[Xi

t+m] + V[Xi
s+m]− V[Xi

t−s] + V[Xi
t ] + V[Xi

s]− V[Xi
t−s] (3.169)

− V[Xi
t ]− V[Xi

s+m] + V[Xi
t−s−m]− V[Xi

t+m]− V[Xi
s] + V[Xi

t−s+m]) (3.170)

=
1

2

(
V[Xi

t−s−m] + V[Xi
t−s+m]− 2V[Xi

t−s]
)

(3.171)

= Cov(Xi
t+h+m −Xi

t+h, X
i
s+h+m −Xi

s+h). (3.172)

The covariance kernel of the increments process {Xi
t+m −Xi

t}t∈R only depends on the
duration m of the increments and on the time-gap t− s between the time-origins of the
two increments. The stationarity of the increments process {Xi

t+m −Xi
t}t∈R expresses
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the invariance by time-origin change of the characteristics of the process, especially of
its expectation and variance-covariance kernel.

The weak-sense stationarity assumption of increments of the same size with various
origins {Xi

t+m −Xi
t}t∈R is sufficient to obtain the strict-sense stationarity of the incre-

ments process and is required to ensure the stability of the estimators on time-origin
translated data. The weak-sense stationarity of the increments process guarantees the
invariance by time-origin change of the estimators of the expectation and variance of the
process. The strict-sense stationarity of the increments process insures the invariance
by time-origin change of the covariance of the process. Indeed, if the increments process
was not stationary, then the increments process would not be invariant by time-origin
change, thus it would not exhibit the same characteristics and properties when the data
is translated. Therefore, the estimations of the parameters computed from the data
would not be reliable because they would change with the translation of the data. Ow-
ing to the stationarity property of the increments, the characteristics and properties of
the increments process are invariant by time-origin change; thus, the estimators provide
stable and reliable estimations of the parameters computed on the increments.

Self-similarity assumption

The self-similarity property is related to a time-scaling of the process {Xi
t}, and al-

lows the establishment of a proportionality relationship between the characteristics of
the processes {Xi

λt} and {Xi
t}, for all λ > 0. Because the log-price process {Xi

t} is
assimilated to an fBm, {Xi

t} is self-similar with a self-similarity factor Θi(λ) = |λ|2Hi ,
where Hi ∈ (0, 1), as introduced in Chapter 2. The weak-sense self-similarity prop-
erty establishes a spatial proportionality relationship "t by t" between the square of
the expectations and between the variances of the processes {Xi

λt} and {Xi
t}, with as

proportionality factor a function depending on λ, Θi(λ):(
E
[
Xi

λt

])2

= Θi(λ)

(
E
[
Xi

t

])2

and V[Xi
λt] = Θi(λ)V[Xi

t ]. (3.173)

Specifically, for all t ∈ R:(
E
[
Xi

t

])2

=
∣∣t∣∣2Hi

(
E
[
Xi

1

])2

and V[Xi
t ] =

∣∣t∣∣2Hi V[Xi
1]. (3.174)

Thus, weak-sense self-similarity fully characterizes the square of the expectation and
variance of the process, based on a power function.

The weak-sense self-similarity property of the data is required to ensure the stability of
the estimators computed on the time-scaled process. Indeed, the self-similarity property
of the process allows the establishment of a spatial proportionality relationship between
the characteristics (squared expectation and variance) of the process {Xi

t} taken at pro-
portional times λt and t, with a proportionality coefficient Θi(λ). Therefore, estimators
applied to processes taken at two proportional time-scales λt and t can be linked thanks
to this spatial proportionality relationship of factor Θi(λ) which allows easy adaptation
of the estimators to different time-scales. Thus, we obtain reliable estimations, coher-
ent with the different time-scales. If the self-similarity property was not valid, it would
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not be possible to establish a relationship between the characteristics of the process
{Xi

t} taken at different scales. This would imply that there would be no relationship
between the estimators of the expectation and variance applied to the process {Xi

t}
taken at different scales, therefore estimations performed on a process at a given time-
scale could not be adapted to another time-scale and would have to be redone. The
weak-sense self-similarity property is then pivotal to obtain reliable estimations, coher-
ent with the different time-scales. However, it is important to note that the weak-sense
self-similarity property is neither sufficient to obtain the self-similarity of increments
of the same length with different time-origins, nor sufficient to obtain the strict-sense
self-similarity property. An additional assumption, called weak-sense stationarity, is re-
quired to obtain both the self-similarity of increments of the same length with different
time-origins, and the strict-sense self-similarity of the process.

Combination of stationarity and self-similarity assumptions

From Chapter 2, we proved that when weak-sense stationarity and self-similarity prop-
erties are combined under the Gaussian assumption, if the self-similarity function Θi

is not constant, then the expectation of the process is necessarily null. We then work
with centered Gaussian processes.

Combining the weak-sense stationarity of the increments process with the same origin
and various durations {Xi

t+m−Xi
m}t∈R, and the weak-sense self-similarity of the process

{Xi
t}, we can extend the property of self-similarity to the increments process {Xi

t+m −
Xi

m}t∈R. Indeed, using successively the weak-sense stationarity and weak-sense self-
similarity, we obtain the weak-sense self-similarity of the process {Xi

t+m −Xi
m}t∈R:

V[Xi
t+m −Xi

m] = V[Xi
t ] =

∣∣t∣∣2Hi V[Xi
1] =

∣∣t∣∣2Hi V[Xi
1+m −Xi

m], (3.175)

or equivalently for all λ > 0:

V[Xi
λt+m −Xi

m] = V[Xi
λt] = λ2HiV[Xi

t ] = λ2HiV[Xi
t+m −Xi

m]. (3.176)

Combining Equation (3.165), which stems from the weak-sense stationarity of {Xi
t+m−

Xi
m}t∈R, and the self-similarity of {Xi

t} leads to the full determination of the covariance
kernel of process {Xi

t}:

Cov(Xi
t , X

i
s) =

V[Xi
1]

2

(∣∣t∣∣2Hi + |s|2Hi −
∣∣t− s

∣∣2Hi

)
. (3.177)

From this equation, we can obtain the strict-sense self-similarity of the Gaussian process
{Xi

t}: Cov(Xi
λt, X

i
λs) =

∣∣λ∣∣2Hi Cov(Xi
t , X

i
s). We note that, unlike the stationarity

property, the only weak form of self-similarity is not sufficient to obtain its strict form,
and an additional assumption, namely weak-form stationarity, is required.

Moreover, the strict-sense stationarity of the increments process and strict-sense self-
similarity of the process itself allows obtaining the strict-sense self-similarity of the
increments process:

Cov(Xi
λt+m −Xi

m, X
i
λs+m −Xi

m) = Cov(Xi
λt, X

i
λs) = λ2HiCov(Xi

t , X
i
s), ∀λ > 0.

(3.178)
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The strict-sense self-similarity of the increments process establishes a spatial proportion-
ality relationship of factor Θi(λ) = λ2Hi , (λ > 0) between the characteristics, especially
the variances and covariances, of the increments process taken at two proportional
time-scales λt and t. Therefore, estimators of variances and covariances applied to the
increments process taken at two proportional time-scales λt and t are linked by a spatial
proportionality relationship of factor Θi(λ) = λ2Hi , which allows easy adaptation of the
estimators to different time-scales. Thus, we obtain reliable estimations, coherent with
the different time-scales.

As a practical application, the self-similarity property allows changing the time-scale in
the variance of the increments process {Xi

t+m − Xi
m}t∈R. Indeed, let us assume that

we have knowledge of the daily volatility of the increments process {Xi
t+1−Xi

t} (where

the time unit is the day) defined by
√
V[Xi

t+1 −Xi
t ] for all t ∈ R, and that we want to

obtain the annual volatility. Based on the assumption that the market is open 256 days
a year, the self-similarity property establishes a proportionality relationship of factor
Θi(256) = 2562Hi between the annual variance and the daily variance of the Gaussian
process {Xi

t+m −Xi
t}:

√
V[Xi

t+256 −Xi
t ] = 256Hi

√
V[Xi

t+1 −Xi
t ]. (3.179)

A reference dealing with self-similar Gaussian processes with stationary increments
is (Taqqu, 1994, Chap.7 - Def.7.1.7 p.314, Cor.7.2.3 p.320). Authors proved that a
Gaussian process is self-similar with stationary increments if and only if it is an fBm
whose auto-covariance function is given by Equation (3.177).

Consequently, the combination of weak-sense stationarity and weak-sense self-similarity
is required to ensure the stability, reliability and coherence of the estimators on both
time-origin translated and time-scaled data. Indeed, the combination of the weak-sense
stationarity of the increments process with the weak-sense self-similarity of the pro-
cess itself allows us to obtain both the strict-sense stationarity and the strict-sense
self-similarity of the increments process. Combining the weak-sense stationarity and
weak-sense self-similarity allows obtaining the invariance by time-origin change of the
characteristics of the increments process and establishing a spatial proportionality rela-
tionship between the characteristics of the increments process taken at two proportional
time-scales λt and t with a proportionality coefficient Θi(λ). Consequently, the charac-
teristics of the increments process remain the same when the time-origin of the process
changes, which insures the stability and the reliability of the estimators applied to the
increments process. Moreover, the characteristics (and estimators) of the increments
process taken at two proportional time-scales λt and t are linked by a spatial propor-
tionality relationship of factor Θi(λ) = λ2Hi , then the estimations can easily be adapted
to the time-scale and remain coherent with the time-scale.
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3.5.3 Estimation method

Our predictive model involves the following parameters: σ = (σ1, . . . , σd) represents
the vector of market volatility related to each asset, H = (H1, . . . ,Hd) is the vector of
Hurst exponents controlling the smoothness of the price trajectories of each asset, and
R = {ρij , i, j = 1, . . . d} refers to the matrix of correlations between assets i and j.

Let us consider the sequence of observations (X1
t0 , . . . , X

1
tN
, . . . , Xd

t0 , . . . , X
d
tN
) repres-

enting the log-price trajectories of the d assets. For ease of estimation, we assume that
the observations are uniformly spaced in time such that tj = jτ , where τ is the minimal
time step. We suppose that the log-price trajectories, and not the price trajectories,
follow an mfBm. Consequently, log-price increments are Gaussian, self-similar and sta-
tionary. These properties are pivotal to insure the stability, reliability and coherence
of the estimation method of mfBm parameters proposed by (Amblard and Coeurjolly,
2011a), that we apply to log-price trajectories. More precisely, we need the stationarity
of the process {Xi

t+m −Xi
t}t∈R and the self-similarity of the other increments process

{Xi
t+m −Xi

m}t∈R.

The method of parameter estimation of mfBm parameters consists of computing the
empirical variance of the log-price increments of several lengths for each component of
mfBm, following the moment-based estimator of fBm introduced by (Istas and Lang,
1994; Kent and Wood, 1997). If the increments are disjoint and of duration mτ with
m ∈ N⋆, then their variance is defined as

V i
m =

1⌊
N/m

⌋
⌊
N
m

⌋
−1∑

j=0

(Xi
(j+1)mτ −Xi

jmτ )
2 (3.180)

and if the increments are overlapping, then their variance is given by

V i
m =

1

N −m+ 1

N−m∑
j=0

(Xi
(j+m)τ −Xi

jτ )
2. (3.181)

The empirical variance of the log-price increments of duration mτ almost surely con-
verges to the variance of the related fBm increments of duration mτ (Coeurjolly, 2001,
2000a):

V i
m −→ V[δmτX

i
t ] = (mτ)2HiV[Xi

1] a.s.. (3.182)

The stationarity and self-similarity properties of the log-price process {Xi
t} are pivotal

for obtaining reliable and coherent parameter estimations. On the one hand, the sta-
tionarity property guarantees that log-price increments of the same duration might
have the same distributional properties. This is a necessary condition to guarantee
the stability of the estimators on time-origin translated data. On the other hand, the
self-similarity property enables the establishment of a link between the variance of the
increments at diverse time-scales. More precisely, the self-similarity property establishes
a spatial proportionality relationship between the characteristics of the processes {Xi

λt}
and {Xi

t} for all λ > 0, with a proportionality factor Θi(λ) = λ2Hi . Therefore, the
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self-similarity property ensures the reliability and the coherence of the estimators on
data at different time-scales. Owing to self-similarity, regardless of the considered time
scales, the estimations of the Hurst exponent and volatility remain the same, which
means that the self-similarity property guarantees the stability of the estimators. If we
consider the increments {δm1τX

i
t} and {δm2τX

i
t} of respective durations m1τ and m2τ

with m1 > m2, then the almost sure convergence of the empirical variance leads to:

V i
m1

−→ V[δm1τX
i
t ] = (m1τ)

2HiV[Xi
1] and V i

m2τ −→ V[δm2τX
i
t ] = (m2τ)

2HiV[Xi
1] a.s..

(3.183)

The self-similarity property allows us to establish the following relationship between the
variance of the increments {δm1τX

i
t} and {δm2τX

i
t}:

V[δm1τX
i
t ] =

(
m1

m2

)2Hi

V[δm2τX
i
t ]. (3.184)

Then, by the continuous mapping theorem, we have

log

(
V i
m1

V i
m2

)
−→ 2Hi log

(
m1

m2

)
a.s.. (3.185)

Finally, we get a strongly consistent estimator for the Hurst exponent:

Ĥi =
1

2 log
(
m1
m2

) log

(
V i
m1

V i
m2

)
. (3.186)

In this two-scale framework, the volatility at time-scalem1 is estimated using the square-
root of V i

m1
. Owing to the self-similarity property of the variance, annual volatility is

estimated by:

σ̂i =

(
256

m1

)Ĥi√
V i
m1
. (3.187)

This method, called the method of energy levels, is in fact a linear regression based on
only two time-scales.

Alternatively to this method based on the observation of increments at two time scales
m1τ and m2τ , we can introduce an estimator based on a higher number of scales:
m1τ < ... < mKτ , as in (Amblard and Coeurjolly, 2011a). Indeed, for each scale mkτ ,
we have, using the continuous mapping theorem:

log(V i
mk

) −→ 2Hi log(mkτ) + log(V[Xi
1]) a.s.. (3.188)

Then, we carry out a linear regression of the log-variances versus the log-time-scales.
The estimation of the Hurst exponent is given by half the slope, and volatility by the
exponential of half the intercept. The two estimation methods are almost equivalent.

Other estimators that are more robust when H > 0.75 are proposed in (Coeurjolly,
2001), a class of consistent estimators of the parameters of a fractional Brownian motion
based on the asymptotic behavior of the k−th absolute moment of discrete variations of
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its sampled paths over a discrete grid of the interval [0, 1]. They derive explicit conver-
gence rates for these types of estimators, valid through the entire range 0 < H < 1 of the
self-similarity parameter. They concluded that when the scaling coefficient of an fBm is
known, and when the sample paths are discretized on the grid {0, 1/N, . . . , N − 1/N},
they obtained estimates of the self-similarity parameter that are strongly consistent
with the asymptotic rate of the order 1/

√
N log(N) whatever the value of H is. In

(Jean-franÇois Coeurjolly and Vidakovic, 2014), the authors discussed the estimation
of a scaling parameter σ2 when the Hurst exponent is known. To estimate σ2, they pro-
posed three approaches based on maximum likelihood estimation, moment-matching,
and concentration inequalities, and discussed the theoretical characteristics of the estim-
ators and optimal-filtering guidelines. They justified the improvement in the estimation
of σ2 when the Hurst parameter is known. Using the three approaches and a parametric
bootstrap methodology in a simulation study, they compared the confidence intervals
of σ2 intervals of their lengths, coverage rates, and computational complexity and dis-
cussed the empirical attributes of the tested approaches. They found that the approach
based on maximum likelihood estimation was optimal in terms of efficiency and accur-
acy, but was computationally expensive. The moment-matching approach was found to
be not only comparably efficient and accurate, but also computationally fast and robust
to deviations from the fractional Brownian motion model.

Estimators can be derived from the wavelet decomposition. In (Coeurjolly et al., 2013),
authors study multivariate fractional Brownian motion (mfBm) viewed through the lens
of the wavelet transform. They calculated the correlation structure of the wavelet trans-
form of the mfBm. They studied the asymptotic behavior of the correlation, showing
that if the analyzing wavelet has a sufficient number of null first order moments, the de-
composition eliminates any possible long-range (inter)-dependence. The cross-spectral
density was also considered. Its existence is proven and its evaluation is performed
using a Von Bahr-Essen like representation of the function sign(t)

∣∣t∣∣α. The behavior
of the cross-spectral density of the wavelet field at zero frequency was also developed,
and the results provided by the asymptotic analysis of the correlation were confirmed.

Several studies have dealt with the estimation of the Hurst exponent. The works of
(Gatheral et al., 2022, Section 2) deal with the smoothness of the volatility process.
Based on the assumption that log-volatility behaves essentially as a fractional Brownian
motion, they estimate the Hurst exponent via a linear regression of the logarithm of the
variance of the increments versus their log-time-scale. This estimation leads to a Hurst
exponent of order 0.1 at any reasonable time-scale, and adopts the fractional stochastic
volatility model of (Comte and Renault, 1998).

In (Chong et al., 2022a, p.12), (Chong et al., 2022b), and (Szymanski and Takabatake,
2023), based on the observation that the local behavior of stochastic volatility is much
more irregular than semimartingales and resembles that of fractional Brownian motion
with Hurst parameterH < 0.5, consistent and asymptotic estimators ofH are developed
based on high-frequency price observations. Moreover, minimax lower bounds for para-
meter estimation were established. The convergence rates of the estimator were studied,
and the optimal convergence rates were determined. Results are extended to H > 1/2

so far. For H > 0.75, estimators that converge in the second order are developed.
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3.6 Method for backtesting

We consider an information set It−1 = {It−1, It−2, It−3, . . . , I1} which consists of a
sequence of indicator functions, where the hit variable It at time t is a Bernoulli variable
equal to 1 if the return between times t and t+ h exceeds the VaRα predicted at time
t, and 0 otherwise. More precisely, we obtain the hit variables using a rolling window
approach.

For each window of size w, we predict at time t the conditional VaR given the history
of the window [t − w, t], and we compare it to the log-return realized between times t
and t+ h, thus generating a hit variable equal to either 1 or 0.

Following traditional literature on VaR backtesting (Christoffersen, 1998; Davis, 2016),
a satisfying VaR must be such that E[It|It−1] = α. Equivalently, we evaluate two
criteria on the generated VaRs: the conditional coverage and the independence of the
hit variables, namely, it has to be shown that {It} iid∼ Bern(α).
In practice, the coverage test consists of estimating the conditional expectation of the
sequence of hit variables that should correspond to the risk level α. This estimation was
performed by empirically averaging the hit variables. The closer the empirical mean is
to α, the more satisfying the conditional coverage test is.

Regarding the independence, we propose a method inspired by the extreme value theory
and first put forward by (Bücher et al., 2020). Indeed, two extreme events become
approximately independent if they are separated to each other by enough time. In
order to measure the degree of dependence in a time series, we use the extremal index.

The extremal index θ is an indicator that quantifies the degree of dependence in a time
sequence of random variables, by counting the number of clusters of variables above a
predetermined threshold, namely extreme values. It is equal to one if the sequence is
independent, which means that there is no cluster of extreme values. The closer the
extremal index is to 0, the more numerous the clusters of extreme values are, and the
larger the serial dependence in the sequence.

In the context of VaR backtesting, we intend to apply this method to the sequence
of hit variables, considering that an extreme value corresponds to a hit equal to one.
Therefore, the extremal index quantifies the presence of clusters of VaR violations.

An estimator of the extremal index can be provided by performing either a block or a
run declustering algorithm. More precisely, given an arbitrary block size b, we partition
the sequence of n successive hit variables into k =

⌊
n
b

⌋
non-overlapping blocks (block

declustering) or n − b running windows (run declustering). In the block-declustering
approach, each block containing nonzero hit variables represents a cluster. In the run-
declustering approach, we count the number of windows without a nonzero hit, starting
at the end of a cluster. With both methods, the estimator of the extremal index is then
the ratio of the estimated number of clusters to the number of nonzero hit variables.
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Formally, if we note Mi,j = max{Ii+1, . . . , Ij}, the two estimators are defined as follows:

θ̂Bn (b) =

∑k
i=1 1{M(i−1)b,ib=1}∑kb

i=1 1{Ii=1}
θ̂Rn (b) =

∑n−b
i=1 1{Ii=1,Mi,i+b=0}∑n−b

i=1 1{Ii=1}
. (3.189)

3.7 Simulation study

We simulate the increments of a univariate fractional Brownian motion, for a duration
of two years, with a daily frequency (the day is assumed to be the smallest time-step).
As discussed in Section 3.4, the simulations are performed using the Cholesky method.
The trajectory is then assimilated to the trajectory of the log-price increments of a
given asset.

The trajectory was split into two subsets. The first year of data is used to estimate the
parameters H and σ of fBm, and the second year is used to run the predictive model.

3.7.1 In one dimension

Distribution of the estimated parameters

The distributions of the estimators of the Hurst exponent and volatility parameter are
studied for different values of H and σ through histograms. The distributions of the
estimated Hurst exponent (H) and volatility (σ) are shown in Figure 3.1.

The histograms representing the distributions of Ĥ and σ̂ visually confirm that the
estimators are unbiased for any parameter value and that the variance of the estimator
of the Hurst exponent is higher when H is lower.

Convergence of the estimators

Two types of graphs of convergence are provided.

To build the first type of graphs of convergence, trajectories of fBm increments with
various lengths are simulated, and the Hurst exponent is estimated for each of them.
The graph displays the estimation of the Hurst exponent as a function of trajectory
length.

To build the second type of graphs of convergence, we simulate a single trajectory of
fBm increments and split it into several trajectories of diverse lengths. Then, the Hurst
exponent is estimated for each of them. The graph displays the estimation of the Hurst
exponent as a function of subset length.

Figures 3.2 and 3.3 make it possible to appreciate the accuracy of Ĥ and σ̂ with respect
to the length of the trajectory, using the first approach. Figures 3.4 and 3.5 answer the
same question following the second approach.
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Figure 3.1: Distribution of estimated Hurst exponents (first
three histograms, in blue) for various values of H (0.2, 0.5,
and 0.7) and n = 256 observations for each of the 100 tra-
jectories, using the method of the moments of energy levels.
Distribution of estimated volatility σ̂ (last three histograms,
in green) for various values of σ (0.2, 0.5, and 0.7), H = 0.2
and n = 256 observations for each of the 100 trajectories.

The graphs of convergence of the estimators of H and σ show that the estimators both
satisfy the convergence in probability and almost-sure convergence.
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Figure 3.2: Several trajectories of different lengths (from 25
to 2500 with a step of 50), are simulated and on each of them,
the parameters H and σ are estimated thanks to the method
of moments of energy levels. Here, the true volatility is fixed
and equal to 0.2 whereas the Hurst exponent is varying (from
top to bottom : 0.3, 0.5, and 0.7).
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Figure 3.3: Several trajectories of different lengths (from 25
to 2500 with a step of 50), are simulated and on each of them,
the parameters H and σ are estimated thanks to the method
of moments of energy levels. Here, the true Hurst exponent
is fixed and equal to 0.2 whereas the volatility parameter is
varying (from top to bottom : 0.2, 0.5, and 0.7).
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Figure 3.4: A single trajectory is simulated and subsamples
of different lengths (from 25 to 5000 with a step of 50) are
extracted. On each of them, the parameters H and σ are
estimated thanks to the method of moments of energy levels.
Here, the true volatility is fixed and equal to 0.2 whereas the
Hurst exponent is varying (from top to bottom : 0.3, 0.5, and
0.7).
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Figure 3.5: A single trajectory is simulated and subsamples
of different lengths (from 25 to 5000 with a step of 50) are ex-
tracted. On each of them, the parameters H and σ are estim-
ated thanks to the method of moments of energy levels. Here,
the true Hurst exponent is fixed and equal to 0.2 whereas the
volatility parameter is varying (from top to bottom : 0.2, 0.5,
and 0.7).
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Backtesting in univariate framework

To backtest the VaR model, we proceed as follows. First, we simulate a trajectory of an
fBm increments of parameters H and σ, over two years (two times 256 business days)
with a daily frequency. Using the parameters estimated on the first year of data, we
dynamically predict, thanks to a rolling window procedure, the VaR at the risk level
α = 1% at a time horizon of h = 1 day after the end of each window.

We compare three VaR models: conditional VaR, Gaussian VaR (we force H to be
equal to 0.5), and empirical VaR. The three VaR models are calculated according to
three different cases: the first corresponds to the conditional VaR of the future incre-
ment of fBm, the second corresponds to the conditional VaR of the future true portfolio
variation, and the third corresponds to the conditional VaR of the first Gaussian ap-
proximation of the future portfolio variation introduced in Section 3.3.

The best model is that for which the coverage rate α̂ is the closest to the risk level α,
the extremal index is the closest to 1, and the average VaR is as small as possible.
Indeed, the main stake is to predict the amount of money to keep aside, as accurately
as possible, so that the financial institution might, in the meantime, be solvent and
be able to guarantee a financial activity to generate benefits. Moreover, for a given
coverage rate, we prefer a low VaR because it maximizes the financial institution’s
profit. Finally, a VaR with an extremal index close to 1 is encouraged because it
means that the clusters of hits are independent.

We start by studying the first case, namely the conditional VaR of the future fBm
increment. The results of backtesting are shown in Figure 3.6. In particular, the series
of simulated losses is compared with the three series of VaRs. Because the Gaussian
VaR is unconditional with the parameters estimated on the first half of the dataset,
it remains constant in the graphs. The other two VaRs fluctuate and seem to reflect
variations in price returns.

Beyond the visual evaluation of the three VaRs in Figure 3.6, we provide a more precise
analysis of these risk models in Table 3.1, which focuses on the coverage of each VaR,
and in Table 3.2, which gathers the independence statistics of the hit clusters. In
each Table, for each line corresponding to a particular Hurst exponent and size of the
conditioning window, we bold the most desirable values, that is, the hit probability
closest to 0.01, the lowest average VaR, and the highest extremal index.

The best coverage rate (i.e., the closest to the target risk level) is, in most cases, the
coverage rate of the VaR model, that is, the VaR based on fBm. The lowest average
VaR is almost always the average empirical VaR; however, this does not mean that the
empirical VaR is a proper VaR because its coverage rate is far from the target risk level.
However, this does not mean that empirical VaR is a bad approach. Indeed, the other
two models have few parameters and thus are adapted to conditioning windows with
small sizes, whereas the empirical VaR, as a non-parametric approach, requires a much
larger window to be relevant. Apart from the empirical VaR model, the VaR model
is on average almost always smaller than the Gaussian VaR. Moreover, independence
criteria of the clusters of hits is very bad for the empirical VaR, but very close to one for
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Figure 3.6: Backtesting of the conditional VaR of the fu-
ture fBm’s increment with a conditioning window of 25 days.
The first column represents the trajectory of several mod-
els of VaR (conditional VaR of the future fBm’s increment,
Gaussian VaR and empirical VaR) in function of time, the
second (respectively third) column represents the extremal
index obtained by run (resp. block) declustering in function
of the size of the block. The simulated trajectories have been
generated with a unique σ = 0.2, and various H. The first
row corresponds to H = 0.2, the second row corresponds to
H = 0.5, and the third row corresponds to H = 0.7.

the VaR model or for the Gaussian VaR. This demonstrates the independence of the
clusters of hits of the VaR model and Gaussian VaR. In conclusion, the VaR model
seems to be the most relevant for these simulations, according to the three evaluated
criteria. This is not surprising because the data generating process is consistent with
the VaR model.

We also study the second case cited above, namely the conditional VaR of the future
true portfolio variation. In Figure 3.7, we gather the graphs showing the portfolio
variations along with the corresponding VaRs and extremal indexes. In this figure,
the Gaussian VaR is no longer constant. Indeed, the future increment of the true
portfolio, in the univariate framework, corresponds exactly to the increment of a log-
normal random variable Si

tN+1
−Si

tN
= Si

tN
(e

δhX
i
tN −1) and depends on the past, unlike

the future increment of the standard Brownian motion.
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H w α̂m α̂G α̂e p
m/e
N p

m/G
N VaRm

α VaRG
α VaRe

α

25 0.0108 0.0078 0.0377 1.0 0.4 0.1391 0.1536 0.1214
0.2 50 0.0102 0.0107 0.0243 1.0 0.4 0.1375 0.1530 0.1397

100 0.0090 0.0051 0.0198 0.5 0.6 0.1366 0.1560 0.1330
200 0.0125 0.0125 0.0179 0.1 0.0 0.1374 0.1510 0.1490
25 0.0104 0.0108 0.0429 1.0 0.1 0.0288 0.0289 0.0228

0.5 50 0.0102 0.0102 0.0257 0.5 0.0 0.0284 0.0285 0.0247
100 0.0096 0.0103 0.0167 0.3 0.0 0.0290 0.0291 0.0277
200 0.0089 0.0071 0.0143 0.4 0.1 0.0285 0.0284 0.0263
25 0.0100 0.0069 0.0429 1.0 0.6 0.0090 0.0095 0.0072

0.7 50 0.0092 0.0087 0.0296 0.8 0.2 0.0087 0.0094 0.0078
100 0.0109 0.0147 0.0301 0.9 0.8 0.0091 0.0097 0.0084
200 0.0125 0.0125 0.0125 0.1 0.2 0.0085 0.0094 0.0083

Table 3.1: For the case of future fBm’s increment, average es-
timated hit probability for the VaR model (α̂m), the Gaus-
sian VaR (α̂G), and the empirical VaR (α̂e), on N = 10
simulated time series of length 256 where each VaR is cal-
culated for a risk level of α = 1% and with a condition-
ing window of size w. We also include the probability for
the model to be more accurate than the Gaussian VaR,
p
m/G
N = 1

N

∑N
i=1 1{|α̂m

i −α|<|α̂G
i −α|}, and than the empirical

VaR, pm/e
N = 1

N

∑N
i=1 1{|α̂m

i −α|<|α̂e
i−α|}. Finally, we add the

average VaR for each model.

Tables 3.3 and 3.4 show that, in this case, the VaR based on the fBm has better
backtesting results than the unconditional Gaussian VaR and the empirical VaR, at
least for the small conditioning windows studied.

The last case we study is the conditional VaR of the first Gaussian approximation of
the future portfolio variation. Figure 3.8 and Tables 3.5 and 3.6 display the results.
The conclusions are the same as those for the two previous cases and are thus in favor
of the VaR based on fBm, even though the violation rates for the Gaussian VaR are
very similar to those of the VaR based on fBm.

In Figure 3.8, the Gaussian VaR is one of the future increments of the standard
Brownian motion weighted by the current asset price. The product of the Gaussian
random variable with the log-normal random variable depends on the past. Therefore,
this VaR varies over time.

In Figure 3.9 and Figure 3.10, the box plots represent the distribution of the VaR
(model, Gaussian, empirical) for H = 0.2, H = 0.5, H = 0.7 and for four distinct
window’s sizes (25, 50, 100, 200). In Figure 3.9, we can observe that the empirical VaR
is, on average, smaller than those of the VaR model and Gaussian VaR, except for some
large window’s sizes in the case H = 0.2. Nevertheless, in Figure 3.10, we observe that
the coverage rate of the empirical VaR is far from the desired risk level, α. The VaR
model and Gaussian VaR exhibit similar performances, and the standard deviation of
the VaR model is lower than that of the Gaussian VaR for small rolling windows.
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H w θ̂m,R θ̂G,R θ̂e,R p
m/e,R
N p

m/G,R
N θ̂m,B θ̂G,B θ̂e,B p

m/e,B
N p

m/G,B
N

25 0.78 0.71 0.47 1.0 0.5 0.90 0.87 0.74 0.7 0.4
0.20 50 0.43 0.48 0.03 0.7 0.4 0.57 0.68 0.38 0.7 0.3

100 0.20 0.00 0.00 0.2 0.1 0.45 0.42 0.21 0.7 0.1
25 0.80 0.83 0.49 0.7 0.0 0.86 0.88 0.64 0.9 0.0

0.5 50 0.58 0.59 0.07 0.9 0.0 0.60 0.66 0.37 0.9 0.0
100 0.52 0.42 0.00 0.6 0.1 0.65 0.53 0.22 0.9 0.3
25 0.73 0.51 0.42 0.8 0.5 0.85 0.67 0.57 0.9 0.4

0.7 50 0.52 0.57 0.06 0.7 0.2 0.57 0.67 0.37 0.6 0.2
100 0.53 0.42 0.00 0.7 0.4 0.69 0.49 0.18 0.8 0.5

Table 3.2: For the case of future fBm’s increment, average
estimated extremal index obtained by run and block declus-
tering, for the conditional VaR of the future fBm’s increment
(θ̂m), the Gaussian VaR (θ̂G), and the empirical VaR (θ̂e),
on N = 10 simulated time series of length 256 where each
VaR is computed at the risk level of α = 1% and with a con-
ditioning window of size w. We also include the probability
for the model to have a higher extremal index than empirical
VaR, pm/e

N = 1
N

∑N
i=1 1{θ̂mi >θ̂ei }

, and than the Gaussian VaR,

p
m/G
N = 1

N

∑N
i=1 1{θ̂mi >θ̂Gi }.

H w α̂m α̂G α̂e p
m/e
N p

m/G
N VaRm

α VaRG
α VaRe

α

25 0.010 0.009 0.042 0.1 0.3 0.139 0.154 0.130
0.2 50 0.013 0.012 0.030 0.8 0.2 0.134 0.149 0.132

100 0.008 0.006 0.026 0.6 0.5 0.138 0.153 0.146
200 0.016 0.021 0.027 0.5 0.2 0.131 0.149 0.146
25 0.016 0.015 0.048 0.9 0.0 0.029 0.029 0.024

0.5 50 0.008 0.006 0.038 0.9 0.2 0.029 0.029 0.023
100 0.011 0.013 0.021 0.6 0.1 0.029 0.029 0.028
200 0.016 0.016 0.021 0.1 0.1 0.028 0.028 0.028
25 0.010 0.013 0.047 0.1 0.5 0.009 0.009 0.008

0.7 50 0.017 0.020 0.023 0.3 0.4 0.009 0.009 0.010
100 0.013 0.010 0.026 0.5 0.3 0.009 0.010 0.009
200 0.007 0.009 0.021 0.4 0.0 0.009 0.009 0.011

Table 3.3: For the case of future future true portfolio vari-
ation, average estimated hit probability for the VaR model
(α̂m), the Gaussian VaR and the empirical VaR (α̂e), on
N = 10 simulated time series of length 256 where each VaR
is calculated for a risk level of α = 1% estimated using
a window of size w. We also include the probability for
the model to be more accurate than the Gaussian VaR,
p
m/G
N = 1

N

∑N
i=1 1{|α̂m

i −α|<|α̂G
i −α|}, and than the empirical

VaR, pm/e
N = 1

N

∑N
i=1 1{|α̂m

i −α|<|α̂e
i−α|}. Finally, we add the

average VaR for each model.
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Figure 3.7: Backtesting of the conditional VaR of the fu-
ture true portfolio variation with a conditioning window of
25 days. The first column represents the trajectory of sev-
eral models of VaR (conditional VaR of the future fBm’s
increment, Gaussian VaR and empirical VaR) in function of
time, the second (respectively third) column represents the
extremal index obtained by run (resp. block) declustering in
function of the size of the block. The simulated trajectories
have been generated with a unique σ = 0.2, and various H.
The first row corresponds to H = 0.2, the second row corres-
ponds to H = 0.5, and the third row corresponds to H = 0.7.

In Figure 3.11, the estimated extremal index Θ̂ is represented for three VaR (model,
Gaussian and empirical) and for three different Hurst exponents H = 0.2, H = 0.5 and
H = 0.7, as a function of the window size used for backtesting. We can observe that
the extremal indices of the VaR model and Gaussian VaR are very close to each other
and very close to 1 for small window sizes, whereas they considerably decrease for large
window sizes because there are fewer historical data. This means that the VaR model
and Gaussian VaR present a small number of clusters of hits when the window size is
small. In contrast, the estimated extremal index of the empirical VaR is much smaller,
meaning that it presents numerous clusters of hits.

These results are supported by the following box plots.
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H w θ̂m,R θ̂G,R θ̂e,R p
m/e,R
N p

m/G,R
N θ̂m,B θ̂G,B θ̂e,B p

m/e,B
N p

m/G,B
N

25 0.57 0.49 0.38 0.6 0.4 0.72 0.66 0.60 0.6 0.2
0.2 50 0.63 0.58 0.10 0.9 0.4 0.64 0.74 0.35 0.8 0.1

100 0.33 0.35 0.00 0.4 0.2 0.63 0.56 0.16 1.0 0.3
25 0.94 0.92 0.41 1.0 0.1 0.91 0.89 0.64 0.9 0.1

0.5 50 0.78 0.76 0.08 0.9 0.1 0.86 0.82 0.35 0.9 0.2
100 0.20 0.20 0.00 0.3 0.0 0.47 0.47 0.21 0.8 0.0
25 0.70 0.50 0.43 0.8 0.6 0.87 0.52 0.58 0.8 0.7

0.7 50 0.33 0.27 0.10 0.4 0.2 0.43 0.38 0.35 0.6 0.3
100 0.48 0.30 0.00 0.6 0.3 0.71 0.45 0.18 1.0 0.6

Table 3.4: For the case of future future true portfolio vari-
ation, average estimated extremal index obtained by run and
block declustering, for the conditional VaR of the future true
portfolio’s increment (θ̂m), the Gaussian VaR (θ̂G), and the
empirical VaR (θ̂e), on N = 10 simulated time series of
length 256 where each VaR is computed at the risk level
of α = 1% and estimated using a window of size w. We also
include the probability for the model to be more independent
than empirical VaR, pm/e

N = 1
N

∑N
i=1 1{θ̂mi >θ̂ei }

, and than the

Gaussian VaR p
m/G
N = 1

N

∑N
i=1 1{θ̂Gi >θ̂Gi }.

H w α̂m α̂G α̂e p
m/e
N p

m/G
N VaRm

α VaRG
α VaRe

α

25 0.017 0.017 0.047 1.0 0.5 0.138 0.156 0.127
0.2 50 0.021 0.019 0.024 0.3 0.3 0.136 0.155 0.150

100 0.015 0.011 0.027 0.7 0.1 0.138 0.160 0.138
200 0.020 0.020 0.020 0.6 0.7 0.135 0.156 0.158
25 0.010 0.010 0.046 1.0 0.0 0.029 0.029 0.023

0.5 50 0.013 0.013 0.040 1.0 0.0 0.029 0.029 0.024
100 0.013 0.011 0.029 0.8 0.1 0.029 0.029 0.026
200 0.009 0.011 0.007 0.1 0.0 0.027 0.027 0.030
25 0.020 0.020 0.045 0.9 0.7 0.009 0.009 0.008

0.7 50 0.009 0.008 0.008 0.8 0.1 0.009 0.010 0.008
100 0.013 0.013 0.018 0.4 0.6 0.009 0.010 0.009
200 0.013 0.009 0.018 0.6 0.5 0.010 0.010 0.010

Table 3.5: For the case of the first Gaussian approximation
of the future portfolio variation, average estimated hit prob-
ability for the VaR model (α̂m), the Gaussian VaR and the
empirical VaR (α̂e), on N = 10 simulated time series of
length 256 where each VaR is calculated for a risk level of
α = 1% estimated using a window of size w. We also in-
clude the probability for the model to be more accurate than
the Gaussian VaR, pm/G

N = 1
N

∑N
i=1 1{|α̂m

i −α|<|α̂G
i −α|}, and

than the empirical VaR, pm/e
N = 1

N

∑N
i=1 1{|α̂m

i −α|<|α̂e
i−α|}.

Finally, we add the average VaR for each model.
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Figure 3.8: Backtesting of the conditional VaR of the first
Gaussian approximation of the future portfolio variation with
a conditioning window of 25 days. The first column rep-
resents the trajectory of several models of VaR (conditional
VaR of the future fBm’s increment, Gaussian VaR and em-
pirical VaR) in function of time, the second (respectively
third) column represents the extremal index obtained by run
(resp. block) declustering in function of the size of the block.
The simulated trajectories have been generated with a unique
σ = 0.2, and variousH. The first row corresponds toH = 0.2,
the second row corresponds to H = 0.5, and the third row
corresponds to H = 0.7.

In Figure 3.12 and in Figure 3.13, for each of the three VaRs (model, Gaussian and
empirical) and for each of the four portfolios, the box plots respectively represent the
distribution of the VaR and of the estimated coverage rate α̂, for four different window
sizes (25, 50, 100, 200). In Figure 3.12, the box plots show that the empirical VaR
is, on average, always lower than the VaR model and Gaussian VaR. However, the
empirical VaR does not present the best performance because in Figure 3.13, we can
observe that, for the first three portfolios whose Hurst exponents are homogeneous,
the empirical model always has a high coverage rate far from the desired one (0.01),
whereas the VaR model and the Gaussian VaR are more competitive. For the last
portfolio whose Hurst exponents are heterogeneous, we can observe that the best VaR
in terms of coverage rate is the Gaussian VaR because its coverage rate is the closest to
0.01, then we have the empirical VaR, whereas the VaR model reaches its limits.
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Figure 3.9: VaR distribution (100 runs)

25 50 100 200

w

0.00

0.02

0.04

0.06

0.08

0.10

α

H = 0.2

25 50 100 200

w

H = 0.5

25 50 100 200

w

H = 0.7

model gaussian empirical target

Figure 3.10: Coverage test (100 runs)
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Figure 3.11: Independence test (100 runs)

H w θ̂m,R θ̂G,R θ̂e,R p
m/e,R
N p

m/G,R
N θ̂m,B θ̂G,B θ̂e,B p

m/e,B
N p

m/G,B
N

25 0.74 0.71 0.51 0.8 0.2 0.94 0.89 0.64 1.0 0.3
0.2 50 0.45 0.51 0.05 0.6 0.2 0.51 0.65 0.39 0.7 0.3

100 0.30 0.28 0.00 0.5 0.3 0.50 0.50 0.24 0.6 0.4
25 0.66 0.66 0.41 0.6 0.0 0.69 0.69 0.60 0.7 0.0

0.5 50 0.57 0.47 0.22 0.8 0.1 0.74 0.64 0.47 0.7 0.1
100 0.56 0.41 0.00 0.7 0.2 0.52 0.49 0.19 0.8 0.2
25 0.73 0.78 0.40 0.8 0.2 0.85 0.74 0.61 0.9 0.4

0.7 50 0.63 0.45 0.19 0.8 0.4 0.72 0.62 0.38 0.8 0.3
100 0.34 0.48 0.00 0.6 0.2 0.55 0.59 0.20 0.8 0.3

Table 3.6: For the case of the first Gaussian approximation
of the future portfolio variation, average estimated extremal
index obtained by run and block declustering, for the con-
ditional VaR of the first Gaussian approximation of the fu-
ture portfolio’s increment (θ̂m), the Gaussian VaR (θ̂G), and
the empirical VaR (θ̂e), on N = 10 simulated time series of
length 256 where each VaR is computed at the risk level of
α = 1% and estimated using a window of size w. We also
include the probability for the model to be more independent
than empirical VaR, pm/e

N = 1
N

∑N
i=1 1{θ̂mi >θ̂ei }

, and than the

Gaussian VaR p
m/G
N = 1

N

∑N
i=1 1{θ̂Gi >θ̂Gi }.
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Figure 3.12: VaR distribution (20 runs)
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Figure 3.13: Coverage test (20 runs)
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Figure 3.14: Independence test (20 runs)

In Figure 3.14, for each of the three VaRs (model, Gaussian and empirical) and for each
of the four portfolios, the line plots represent the evolution of the estimated extremal
index θ̂ as a function of the window size. We can observe that for the first three
portfolios, whose Hurst exponents are homogeneous, the extremal indices are very to
close to 1 for small window sizes and becomes increasingly closer to 0 when the window
size increases. A correct window size to perform the independence test has to take into
account the size of the available data. It neither has to be too small with respect to the
size of the available data nor too large. Moreover, the VaR model is competitive with
the Gaussian VaR for the first three portfolios with an extremal index close to 1 for
window sizes between 2 and 16. The empirical VaR is less relevant since its extremal
index is closer to 0. For the last portfolio composed of heterogeneous Hurst exponents,
the VaR model badly performs whereas the Gaussian VaR presents an extremal index
very close to 1 for reasonable window sizes.

3.7.2 Backtesting in multivariate framework

To backtest the VaR model in the multivariate framework, we proceed as follows. First,
we simulate a trajectory of an mfBm increments of parameters H = (H1, . . . ,Hd), of
volatility parameters σ = (σ1, . . . , σd) and of the correlation matrix R = (ρij)(i,j)∈J1,dK2 ,
over two years (two times 256 business days) with a daily frequency. Using the para-
meters estimated on the first year of data, we dynamically predict, thanks to a rolling
window procedure, the VaR at the risk level α = 1% at a time horizon h = 1 day after
the end of each window.
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As in the univariate framework, we analyze the coverage rate, average VaR, and ex-
tremal indices.

Three VaR models are compared: the conditional VaRα of the first Gaussian approx-
imation of the future portfolio increment at time horizon h, the VaRα of the future
increment at time horizon h of the Gaussian portfolio whose Hurst exponents have been
forced to be equal to 0.5 for all the assets, and the empirical VaRα estimated on the
increment’s portfolio trajectory.

Four cases were distinguished. Indeed, we simulated mfBm with Hurst exponents either
all below 0.5, or all above, or all close to 0.5, or spread in all possible ranges of values.

We display in Figure 3.15 and in Tables 3.7, 3.8, the corresponding backtesting results.

H w α̂m α̂G α̂e p
m/e
N p

m/G
N VaRm

α VaRG
α VaRe

α

0.2 - 0.3 - 0.4 25 0.013 0.012 0.044 1.0 0.1 0.081 0.082 0.065
0.4 - 0.5 - 0.6 25 0.009 0.010 0.043 1.0 0.7 0.027 0.027 0.023
0.6 - 0.7 - 0.8 25 0.009 0.012 0.052 1.0 0.5 0.009 0.009 0.007
0.2 - 0.5 - 0.8 25 0.085 0.012 0.047 0.1 0.0 0.058 0.057 0.047

Table 3.7: Average estimated hit probability for the VaR
model (α̂m), the Gaussian VaR and the empirical VaR (α̂e),
on N = 10 simulated time series of length 256 where each
VaR is calculated for a risk level of α = 1% with a con-
ditioning window of size w. We also include the probabil-
ity for the model to be more accurate than the Gaussian
VaR, pm/G

N = 1
N

∑N
i=1 1{|α̂m

i −α|<|α̂G
i −α|}, and than the em-

pirical VaR, pm/e
N = 1

N

∑N
i=1 1{|α̂m

i −α|<|α̂e
i−α|}. Finally, we

add the average VaR for each model.

H w θ̂m,R θ̂G,R θ̂e,R p
m/G,R
N p

m/e,R
N θ̂m,B θ̂G,B θ̂e,B p

m/G,B
N p

m/G,B
N

0.2 - 0.3 - 0.4 25 0.84 0.87 0.47 0.00 0.90 0.90 0.92 0.61 0.00 0.80
0.4 - 0.5 - 0.6 25 0.77 0.72 0.57 0.2 0.7 0.88 0.80 0.72 0.2 0.7
0.6 - 0.7 - 0.8 25 0.72 0.50 0.55 0.50 0.80 0.77 0.65 0.68 0.2 0.6
0.2 - 0.5 - 0.8 25 0.15 0.84 0.57 0.00 0.00 0.048 0.97 0.76 0.00 0.20

Table 3.8: For the case of the first Gaussian approximation
of the future portfolio variation, average estimated extremal
index obtained by run and block declustering, for the con-
ditional VaR of the first Gaussian approximation of the fu-
ture portfolio’s increment (θ̂m), the Gaussian VaR (θ̂G), and
the empirical VaR (θ̂e), on N = 10 simulated time series of
length 256 where each VaR is computed at the risk level of
α = 1% and estimated using a window of size w. We also
include the probability for the model to be more independent
than empirical VaR, pm/e

N = 1
N

∑N
i=1 1{θ̂mi >θ̂ei }

, and than the

Gaussian VaR p
m/G
N = 1

N

∑N
i=1 1{θ̂Gi >θ̂Gi }.
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Figure 3.15: Backtesting of the conditional VaR in the mul-
tivariate approach. The first column represents the trajectory
of several models of VaR (conditional VaR, Gaussian VaR
and empirical VaR) in function of time, the second (respect-
ively third) column represents the evolution of the extremal
index obtained by run (resp. block) declustering in function
of the size of the block. The simulated trajectories have been
generated with a unique σ = (0.2, 0.2, 0.2), and H equal
to (0.2, 0.3, 0.4) (first row), to (0.4, 0.5, 0.6) (second row), to
(0.6, 0.7, 0.8) (third row), and to (0.2, 0.5, 0.8) (fourth row).
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When the Hurst exponents of the assets contained in the portfolio are all concentrated in
the same range of values (0.25, 0.5), or in (0.5, 0.75) or even in (0.4, 0.6), the conditional
VaR model is relevant because the coverage rate is very close to the risk level and the
average VaR is low. However, when the Hurst exponents of the assets contained in the
portfolio are very diversified and spread over different ranges of values, the conditional
VaR model is not relevant because the coverage rate is far from the target risk level
and the average VaR is high. The empirical VaR suffers from the same limitations as
in the univariate case.

The papers (Chong et al., 2022a) and (Chong et al., 2022b) deal with the estimation of
the Hurst exponent and studied the convergence rate of the estimators. In their study,
they explained that the behavior of the estimator of the Hurst exponent depends on
the range of values assumed for the true Hurst exponent. This can be explained by the
convergence rate of estimator n−1/(4H+2). When H is very low, that is, H ∈ (0, 0.25),
thus the convergence rate is high. The fact that the estimator might converge quickly
implies that it is able to properly distinguish the different values of H and provide an
accurate estimation of H. For H ∈ (0.25, 0.5), the convergence rate of the estimator is
continuously decreasing. The fact that the estimator might converge slowly implies that
the estimator is not able to distinguish the values of H that are close. For instance,
it is not possible to distinguish between values in the range (0.4, 0.6). However, it
can distinguish values that are far apart such as 0.3 and 0.7. This implies that the
estimation of the Hurst exponent in the range (0.25, 0.75) is less accurate than for small
H. Finally, when H ∈ (0.75, 1), the quadratic variation at the first order does not
converge anymore, and we develop the quadratic variation in the second order (i.e.,
for price increments at the second order). The estimator of H based on second-order
quadratic variation converges with the same convergence rate as the other ranges of
values. Thus, the estimation of H for H ∈ (0.75, 1) is even less accurate.

3.8 Application to market data

3.8.1 Univariate framework

In this section, we compare three VaR models based on fBm: the conditional VaR of
the future fBm increment, the conditional VaR of the future true portfolio increment,
and the conditional VaR of the first Gaussian approximation of the future portfolio
increment, with the Gaussian VaR based on standard Brownian motion and the em-
pirical VaR. All VaR models are computed at the risk level α = 1% and time horizon
h = 1 day. We consider historical observations of equity indices, especially the S&P
500 index, for different periods of two years (i.e., two times 256 business days) with
a daily frequency. As previously mentioned, the first year of data is used to estimate
the parameters of the model, and the second year is used to perform the predictions.
We consider the log-price increment dynamics that can be properly described thanks
to an fBm, and that present long-range memory. Indeed, some empirical studies have
especially shown the relevance of an fBm compared to non-fractional models (Garcin,
2017, 2020), (Cont, 2005), (Surgailis et al., 2008), (Lillo and Farmer, 2004).
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Beyond the visual evaluation of the performances of the VaRs in Figure 3.16, we provide
a more precise analysis of these risk models in Table 3.9, which focuses on the coverage of
each VaR, and in Table 3.10, which gathers the independence statistics of hit clusters.
In each table, for each line corresponding to a given VaR model, the estimation of
the Hurst exponent and volatility are provided, and we put in bold the most desirable
values, that is, the hit probability the closest to 0.01, the lowest average VaR, and the
highest extremal index.

Figure 3.16: Backtesting of the conditional VaRα of the first
Gaussian approximation of the future portfolio increment for
three distinct periods 2007 − 2009 (first row), 2015 − 2017
(second row) and 2020 − 2022 (third row). For each row,
the first column represents the trajectory of several models of
VaR (conditional VaR, Gaussian VaR and empirical VaR)
in function of time, the second (respectively third) column
represents the evolution of the extremal index obtained by
block (resp. run) declustering in function of the size of the
block. At each time, two years of historical data are con-
sidered. The first year of data is used to estimate the Hurst
exponent and the volatility parameter, and the second year
of data is used for the backtesting of the models.

Table 3.9 shows that the VaR model presents a coverage rate closest to the risk level.
Moreover, Table 3.10, shows that the extremal index closest to one is that of the VaR

models. However, the lowest VaR is the empirical VaR. However, the coverage rate
of the empirical VaR is far from the risk level and the extremal index is far from one.
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Period Ĥ σ̂ w α̂m α̂G α̂e VaRm
α VaRG

α VaRe
α

2007-2009 0.381 0.210 25 0.013 0.021 0.055 0.056 0.056 0.031
2015-2017 0.411 0.079 25 0.009 0.013 0.034 0.018 0.019 0.015
2020-2022 0.446 0.097 25 0.009 0.013 0.034 0.019 0.019 0.016

Table 3.9: Estimated hit probability and average VaRα for
the VaR model (conditional VaR of the first Gaussian ap-
proximation of the future portfolio’s increment) (α̂m), the
Gaussian VaR (α̂G), and the empirical VaR (α̂e), on real
data. The different VaRs are compared on three distinct
periods 2007−2009 (first row), 2015−2017 (second row) and
2020−2022. The historical data that is considered here is the
S&P index. On each period, the first year is used to estim-
ate the parameters of the model and the second yea is used
to backtest the model.

Period Ĥ σ̂ w θ̂m,R θ̂G,R θ̂e,R θ̂m,B θ̂G,B θ̂e,B

2007-2009 0.381 0.210 25 0.33 0.2 0.33 0.67 0.4 0.62
2015-2017 0.411 0.079 25 1.0 0.67 0.5 1.0 0.67 0.75
2020-2022 0.446 0.097 25 1.0 0.67 0.5 1.0 0.67 0.88

Table 3.10: Estimated extremal index obtained by run and
block declustering, for the VaR model (θ̂m,R, θ̂m,B), the
Gaussian VaR (θ̂G,R, θ̂G,B) and the empirical VaR (θ̂e,R,
θ̂e,B), on real data. The different VaRs are compared on
three distinct periods 2007 − 2009 (first row), 2015 − 2017
(second row) and 2020 − 2022. The historical data that is
considered here is the S&P index. On each period, the first
year is used to estimate the parameters of the model and the
second yea is used to backtest the model.

This does not mean that the empirical VaR is not efficient but requires a longer data
history. Concerning the Gaussian VaR, the coverage rate is better than that of the
empirical VaR, and worse than that of the VaR model. Similarly, the extremal index
is larger than that of the empirical VaR and lower than the one of the VaR model.
Finally, the average Gaussian VaR is almost equal to that of the VaR model. Overall,
the VaR model performs better than the empirical and Gaussian VaR models for the
given periods.

3.8.2 Multivariate framework

In the multivariate framework, we consider several equity indices, namely the S&P 500,
CAC 40 and DAX indices for different periods of two years, with a daily frequency. We
create a portfolio that contains these assets and compare the VaR model corresponding
to the conditional VaRα of the first Gaussian approximation of the future portfolio
increment, with the Gaussian VaR corresponding to the VaR model where all the
Hurst exponents have been forced to be equal to 0.5, and the empirical VaRα. All the
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VaRα are computed at risk level α = 1% and time horizon prediction h = 1 day.

Beyond the visual evaluation of the three VaRs for different periods in Figures 3.17, we
provide a more precise analysis of these risk models in Table 3.11 which focuses on the
coverage of each VaR. In this table, for each line corresponding to a given VaR model,
the estimation of the Hurst exponents and the volatility parameters are provided, and
we bold the most desirable values, that is, the hit probability is closest to 0.01, the
lowest average VaR, and the highest extremal index.

Figure 3.17: Backtesting of the conditional VaR for the portfolio composed of
the S&P 500, CAC 40, and DAX indices on several periods. The parameters
of the model are estimated on the first year of data and the backtesting is
performed on the second year. Each row corresponds to a period of data:
2005−2007, 2007−2009, 2015−2017, 2018−2020 (first to fourth row). The first
column represents the trajectory of several models of VaR (conditional VaR,
Gaussian VaR and empirical VaR), the second (respectively third) represents
the extremal index obtained by run (resp. block) declustering in function of
the size of the block.
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Period Ĥ σ̂ w α̂m α̂G α̂e VaRm
α VaRG

α VaRe
α

2005 - 2007 0.438 - 0.448 - 0.483 0.072 - 0.083 - 0.114 25 0.043 0.030 0.043 0.014 0.014 0.015
2007 - 2009 0.412 - 0.428 - 0.488 0.097 - 0.117 - 0.148 25 0.098 0.098 0.060 0.020 0.020 0.028
2015 - 2017 0.40 - 0.472 - 0.492 0.094 - 0.20 - 0.225 25 0.004 0.004 0.034 0.027 0.027 0.018
2018 - 2020 0.490 - 0.550 - 0.513 0.164 - 0.183 - 0.166 25 0.009 0.009 0.026 0.019 0.019 0.016

Table 3.11: Estimated hit probability and average VaRα for
the VaR model (α̂m), the Gaussian VaR (α̂G), and the em-
pirical VaR (α̂e), on real data. The historical data that is
considered here is the S&P index on two years on the follow-
ing periods 2005−2007, 2007−2009, 2015−2017, 2018−2020.
For each period, the first year is used to estimate the para-
meters of the model and the second year is used to backtest
the model.
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Figure 3.18: Evolution of the VaRα trajectories with α = 1% at time and time-horizon
h = 1 day. The portfolio is composed of the three following indices SPX 500, DAX,
CAC 40 (for which the mid value is considered); for 3 periods of 2 years (1 year for
parameters estimation, 1 year for prediction): 2007-2009 ∼ subprime crisis, 2015-2017
∼ smooth period, 2018-2020 ∼ beginning of Covid crisis.

The VaR model and the Gaussian VaR are very close in terms of coverage rate and of
average VaR. The best performance of the VaR model is on the period 2018 − 2020.
Moreover, the performance of the VaR model is not so bad on the period 2015− 2017.
However, the model does not perform well at all on the periods 2007 − 2009. The
empirical VaR performs well on the periods 2007− 2009 and 2015− 2017.

In Figure 3.18, three periods are considered: 2007-2009 ∼ subprime crisis, 2015-2017 ∼
smooth period, 2018-2020 ∼ beginning of Covid crisis, and for each of them we represent
the evolution of the portfolio returns and three VaRα, the VaRα model, the Gaussian
VaRα and the empirical VaRα. The VaRα model and the Gaussian VaRα present
good performance in terms of coverage on the period 2018− 2020.

"The essence of mathematics is not to make simple things complicated, but to make
complicated things simple."

(Stanley Gudder, A Mathematical Journey, 1976)
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This chapter addresses the research questions (RQ#4, (RQ#5)). The objective of this
chapter, is to explore robust methods for estimating the Expected-Shortfall in heavy-
tailed distributions. The Expected-Shortfall is the average of losses exceeding the VaR,
and an ES estimator is an estimator of the mean applied to the distribution tail bey-
ond the VaR. Thus, we explore robust estimators of the mean as an alternative to a
simple empirical mean, in heavy-tailed distributions using the toy case of the Pareto
distribution. First, we recall the theory on the Expected-Shortfall and on the Pareto
distribution, and we present the characteristic properties of the latter. Then, several
non-asymptotic mean estimators, such as the Median-of-Means, the Trimmed-Mean, or
even the Lee-Valiant estimator, are presented with their characteristics and compared
to the classical empirical mean. We study their bias and provide explicit formulae when
possible. Moreover, we evaluate the convergence rate of the bias. Finally, we support
the theoretical analysis with experiments, and compare the performances of the differ-
ent estimators.

The problem, we are interested in is the efficient numerical estimation of the Expected-
Shortfall in the Pareto distribution. In Section 4.1, we provide a theoretical background
on Expected-Shortfall (ES) and heavy-tailed distributions, especially the Pareto distri-
bution. In Section 4.2, a classical asymptotic estimator, namely the empirical mean,
is presented. In the other sections, the non-asymptotic estimators of the mean are
presented. In Section 4.3, we study the empirical median along with its bias and con-
vergence rate. The Median-of-Means (MoM) estimator is discussed in Section 4.4. The
Section 4.5 is dedicated to the Trimmed-Mean estimator (TM). In Section 4.6, the Lee-
Valiant estimator and its properties are discussed. Finally, a comparative study of the
performance of the different estimators is presented in Section 4.7.
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4.1 Background

In this section, we provide a theoretical background on Expected-Shortfall and heavy-
tailed distributions. Special focus is placed on the Pareto distribution and its properties.

4.1.1 Expected-Shortfall

The Expected-Shortfall (ES), is a risk assessment measure that quantifies the amount
of tail risk an investment portfolio has. It is derived by taking a weighted average of the
extreme losses in the tail of the distribution of possible returns, beyond the Value-at-Risk
(VaR), cutoff point. If an investment has shown stability over time, then VaR may be
sufficient for risk management in a portfolio containing that investment. However, the
less stable the investment, the greater the chance that VaR will not provide a full picture
of the risks, as it is indifferent to anything beyond its own threshold. ES attempts to
address the shortcomings of the VaR metric, which is a statistical technique used to
measure the level of financial risk within a firm or investment portfolio over a specific
time frame. While VaR represents a worst-case loss associated with a probability and
time horizon, ES is the expected loss if the worst-case threshold is crossed.

The Expected-Shortfall is particularly useful in risk management and is applied in sev-
eral financial risk areas. In the context of market risk, ES is used to estimate potential
losses in financial assets, portfolios and positions in adverse market conditions. This
helps investors and institutions understand the magnitude of potential losses beyond
the VaR level. The Expected Shortfall is also used to assess the credit risk of portfolios
and individual assets. For instance, in credit risk modeling, ES can provide insights into
expected losses given a default or credit event. In addition, ES is applied to evaluate
potential losses related to illiquid assets or positions under stressed market conditions.
This helps financial institutions determine the amount of capital required to address
such risks. For operational risk management, ES is used to understand the poten-
tial losses arising from operational failures beyond the VaR level, such as technology
glitches, fraud, or human errors. Concerning systemic risk, ES can be used to assess
the potential losses that a financial system or broader economy may face, in extreme
market conditions. This framework, helps regulators and policymakers identify the po-
tential vulnerabilities and causes of systemic risks. Finally, ES plays a crucial role in
stress-testing financial models and portfolios. This allows risk managers to analyze how
severe scenarios may impact the overall risk exposure and capital adequacy of financial
institutions.

Overall, ES is a valuable metric for understanding tail risks and making informed de-
cisions regarding risk management, capital allocation, and hedging strategies in various
areas of financial risk. It provides a more comprehensive and conservative measure of
risk than VaR.
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Definition 4.1 (Expected-Shortfall (ES)). Let X ∈ Lp(F) be a random variable rep-
resenting loss1 of a portfolio at some future time, with a cumulative distribution function
FX(x) = P(X ≤ x);∀x ∈ R. Let α ∈ (0, 1) be the risk level. Then, based on (Tasche,
2002b, Prop 3.4, Eq 3.3), the Expected-Shortfall is defined as:

ESα(X) =
1

1− α

∫ 1

α
VaRβ(X)dβ (4.1)

where VaRβ is the Value-at-Risk given by:

VaRβ(X) := inf{x ∈ R, FX(x) ≥ β} (4.2)

as defined in (Tasche, 2002b, Def 2.1, Eq 2.1a).

When the distribution is continuous, an equivalent definition can be given (see (Sarykalin
et al., 2008, Def.2, p.273)) by:

ESα(X) = E[X|X ≥ VaRα(X)]. (4.3)

The problem of estimating the Expected-Shortfall amounts to estimating the condi-
tional expectation of a random variable based on a sample of n independent, identically
distributed random draws Y1, . . . , Yn from the distribution of Y d

= X | X ≥ VaRα(X)

which can be approximated by the draws of X restricted to be above the empirical
VaRα. A well-known estimator of the VaRα is the empirical α-quantile of a sample.

Definition 4.2 (Empirical α-quantile). Let X1, . . . , Xn be a sample of size n, drawn
from a probability distribution F and X⋆

1 , . . . , X
⋆
n the (increasingly) ordered sample (or-

der statistic). Let α ∈]0, 1[ be the order of the quantile. The order statistic X⋆
⌈αn⌉ (where

⌈αn⌉ denotes the upper integer part of αn) is called the empirical quantile at the order
α of the sample, and is denoted by qn,α.

Remark 4.3. Let n,N be integers and α ∈ (0, 1), such that N ≤ αn < N + 1: if
αn = N then ⌈αn⌉ = N , if αn > N then ⌈αn⌉ = N + 1.

Recall that the Expected-Shortfall is defined as follows:

ESα(X) = E[X|X ≥ VaRα] =
E[X1{X≥VaRα}]

P(X ≥ VaRα)
. (4.4)

Let’s define the empirical Expected-Shortfall.

Definition 4.4 (Empirical Expected-Shortfall). Let X = (X1, . . . , Xn) be a sequence
of Pareto i.i.d. random variables such that ∀i ∈ J1, nK, Xi ∼ P(1, γ), with γ > 2. Let’s
denote by X⋆ = (X⋆

1 , . . . , X
⋆
n) the order statistics related to X. The empirical α-quantile

is given by qnα = X⋆
⌈nα⌉, and the empirical Expected-Shortfall at the risk level α is defined

as follows :

ESn
α =

1
n

∑n
i=1Xi1{Xi≥qnα}

1
n

∑n
i=1 1{Xi≥qnα}

=
1

n− ⌈nα⌉
n∑

i=1

Xi1{Xi≥qnα}. (4.5)

1as a positive quantity, i.e. we take the convention that big losses correspond to large positive
numbers
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The idealized case assumes that the empirical α-quantile qnα matches the true VaRα:
although only true in the asymptotic framework but not in practice for small sample
sizes, we will use this assumption in some parts of our study to simplify the analysis. In
such a case, the estimation of the Expected-Shortfall corresponds to the estimation of
the conditional expectation of a random variable based on a sample of n independent
and identically distributed (i.i.d.) random draws, given that these random draws are
larger than the true VaRα. This assumption simplifies the expression of the estimation
error. However, this assumption can be satisfied asymptotically (when the sample size
is sufficiently large), but in most cases, when the sample size is far from the asymptotic
case, it is not. Therefore, we are interested in the realistic case in which the empirical
α-quantile does not match the theoretical VaRα. In this last case, the estimation of
the Expected-Shortfall corresponds to the estimation of the conditional expectation of a
random variable based on a sample of n random draws, given that these random draws
are larger than the empirical α-quantile. In the realistic case, the estimation of the ESα

is more difficult because the threshold above which we want to estimate the average
excess loss is an order statistics and depends on the underlying sample. This implies
that the samples larger than the threshold are no longer i.i.d. and the distribution of
the excess loss is unknown. Moreover, the realistic case introduces, in the estimation
of the ESα, an additional error term corresponding to the bias estimation between the
true VaRα and the empirical α-quantile.

In all the sequels, the estimator of the ESα will be studied both in the idealized case,
in which the empirical α-quantile matches the true VaRα, and in the realistic case in
which the two quantities differ.

4.1.2 Heavy-tailed distributions

Heavy-tailed distributions are probability distributions whose tails are not exponentially
bounded, that is, they have heavier tails than the exponential distribution. It is often
the right tail of the distribution that is of interest, but a distribution may have a heavy
left tail, or both tails may be heavy. There are five important subclasses of heavy-tailed
distributions: fat-tailed, long-tailed, and subexponential distributions.

Definition 4.5 (Heavy-tailed distribution). The distribution of a random variable
X with distribution function FX is said to have a heavy (right) tail if the moment-
generating function of X, MX(t) is infinite for all t > 0. That means:∫ +∞

−∞
etxdFX(x) = +∞; ∀t > 0. (4.6)

This is also written in terms of the tail distribution function F̄ (x) = 1−F (x) = P(X >

x):

lim
x→+∞

etxP(X > x) = +∞; ∀t > 0. (4.7)

(i) The distribution of an r.v. X with distribution function F is said to have a fat tail
if there exists a positive exponent γ, called the tail index, such that:

F̄ (x) := P(X > x) ∼ x−γ as x→ +∞. (4.8)
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"∼" refers to an equivalent up to a constant. Alternatively, the tail part is proportional
to the power law.

The power law class is conventionally defined by the property of the survival function,
as follows. If X is a random variable belonging to the class of distributions with a power
law right tail, that is:

F̄ (x) = L(x)x−γ (4.9)

for some γ > 0, where L(x) > 0 is a slowly varying function, defined as:

lim
x→+∞

L(kx)

L(x)
= 1 (4.10)

for any k > 0. See (Haan and Ferreira, 2006, Chapter 1) for more details.

(ii) The distribution of an r.v. X with distribution function F is said to have a long-right
tail if, for all t > 0,

lim
x→+∞

P(X > x+ t|X > x) = 1 (4.11)

or equivalently, F̄ (x + t) ∼ F̄ (x) as x → +∞. This has an intuitive interpretation for
a right-tailed long-tailed distributed quantity that if the long-tailed quantity exceeds a
certain high level, the probability approaches 1 that it will exceed any other higher level.
All long-tailed distributions are heavy-tailed, but the converse is false, and heavy-tailed
distributions that are not long-tailed can be constructed.

(iii) Subexponentiality is defined in terms of the convolutions of probability distributions.
For two independent, identically distributed non-negative random variables X1, X2 with
a common distribution function F , the convolution of F with itself, written F ⋆2 and
called the convolution square, is defined using the Lebesgue-Stieltjes integration by:

P(X1 +X2 ≤ x) = F ⋆2(x) =

∫ x

0
F (x− y)dF (y), (4.12)

and the n-fold convolution F ⋆n is defined inductively by the rule:

F ⋆n(x) =

∫ x

0
F (x− y)dF ⋆n−1(y). (4.13)

A distribution F on the positive half-line is subexponential if:

F ⋆2(x) ∼ 2F̄ (x) as x→ +∞. (4.14)

This implies that, for any n ≥ 1,

F ⋆n(x) ∼ nF̄ (x) as x→ +∞. (4.15)

The probabilistic interpretation of this is that, for a sum of n independent random
variables X1, . . . , Xn with a common distribution F ,

P

 n∑
i=1

Xi > x

 ∼ P(max(X1, . . . , Xn) > x) as x→ +∞. (4.16)
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This is often known as the single big jump principle or catastrophe principle. A distri-
bution F on the entire real line is subexponential if the distribution F1[0,+∞) is. Here,
1[0,+∞) is the indicator function of the positive half-line. Alternatively, an r.v. X sup-
ported on the real line is subexponential if and only if X+ = max(0, X) is subexponential.
All subexponential distributions are long-tailed; however, examples can be constructed of
long-tailed distributions that are not subexponential.

Heavy-tailed distributions are useful for describing two main phenomena. On the one
hand, they allow modelling the fact that some severe extreme events can occur with
a non-zero probability. The further the event occurs in the distribution tail, the more
severe it is. Therefore, the longer the distribution tail, the more capable it is to describe
severe extreme events. On the other hand, heavy-tailed distributions enable the descrip-
tion of the frequency of occurrence of extreme events, that is, how frequently extreme
events occur. See (Sigman, 1999) for more details on the heavy-tailed distributions.

A well-known example of a heavy-tailed distribution is the Pareto distribution, as de-
tailed in (Arnold, 2014). There are several reasons for focusing on this distribution.

Pareto distribution plays a crucial role in extreme value theory (EVT), a branch of
statistics that deals with the statistical behavior of extreme events. EVT is particu-
larly relevant in finance, where extreme events such as market crashes, have significant
implications for investors and financial institutions. In finance, data often exhibit heavy-
tailed behavior, meaning that extreme events such as large price movements or financial
crises, occur more severely than expected from a normal distribution. Tail risk refers
to the risk of extreme events occurring in the tails of a distribution. Although rare,
these events can significantly impact financial markets and portfolios. The Pareto dis-
tribution, with its ability to model right-hand heavy tails, provides a better fit to such
data than traditional distributions such as the normal distribution. Because Gaussian
modeling assigns small weight to distribution tails, it ignores extreme events that can
lead to inaccurate VaR prediction. On the contrary, the Pareto distribution attrib-
utes more weight to the right-hand tail of the distribution, taking into account extreme
events, which enables better VaR predictions, for instance when dealing with assets or
portfolios that exhibit right heavy-tailed behavior.

Mathematically speaking, the Pareto distribution exhibits interesting properties. First,
the distribution is relatively simple to understand and work with. It only has two
parameters (scale xm > 0 and shape γ > 0 parameters), making it easier to estimate
and interpret compared to more complex heavy-tailed distributions such as the stable
distribution. The Pareto distribution is a power-law and is well-adapted to fit data that
display power-law behavior such as financial data. Indeed, the right-hand tail of the
Pareto distribution follows a linear function on a log-log plot. This is supplementary
evidence that extreme events occur with more severe intensity than those predicted
by other heavy-tailed distributions. This is particularly useful when modeling financial
phenomena that follow a power-law distribution, such as income distribution or extreme
price movements. Moreover, the Pareto distribution presents some interesting properties
of invariance and stability. On the one hand, the Pareto distribution is scale-invariant,
which means that multiplying (or scaling) all values of any Pareto random variable by a
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constant does not change the shape of the distribution, and the new scaled distribution
is still a Pareto distribution with a new scale parameter. On the other hand, the
Pareto distribution is stable by conditioning, which means that conditioning any Pareto
distribution above a certain threshold does not change the shape of the distribution, and
the conditional distribution is still a Pareto distribution with a new scale parameter.
These properties are not shared by all the heavy-tailed distributions. The moments of
the Pareto distribution exist only for certain ranges of shape parameter γ. Specifically,
the k-th moment exists if and only if γ > k. This means that for small values of γ,
moments may not exist, which is related to the heavy-tailed nature of the distribution.
As the shape parameter γ decreases, the distribution tail becomes heavier and heavier,
giving more weight to extreme events. This leads to finite moments for only very small
orders. This is a characteristic of heavy-tailed distributions, where extreme observations
have a more significant impact on higher moments than distributions with lighter tails.
For instance, the Pareto distribution has an infinite mean for shape parameter γ ≤ 1.
For γ ≥ 2, the Pareto distribution has a finite mean but an infinite variance. For
γ > 2, the variance of the Pareto distribution exists and is finite. This means that
if the shape parameter is greater than 2, the distribution is characterized by both
a finite mean and finite variance, making it more manageable in certain statistical
analyses. Finally, the probability density function and cumulative distribution function
of the Pareto distribution have relatively simple analytical forms, making it easier to
perform mathematical and statistical calculations compared to some other heavy-tailed
distributions.

Although the Pareto distribution has applications and properties that make it useful
for modeling heavy-tailed behavior, it also presents some limitations. First, the Pareto
distribution is defined only for values greater than or equal to the minimum value that
corresponds to the scale parameter xm > 0. It cannot account for data in which the
support is arbitrarily negative. Although the Pareto distribution can capture heavy-
tailed behavior, it may not always provide the best fit for real-world financial data;
indeed, its parametric form is imposed. In some cases, other heavy-tailed distributions
like the generalized Pareto distribution (GPD) or the Student’s t-distribution might
offer better fit data. In general, the sensitivity of heavy-tailed distribution parameters
to extreme values in the data can lead to significant distortions in parameter estimation
and may result in poor model fit when extreme observations are present. Estimating
the parameters of the Pareto distribution can be challenging, particularly when the
shape parameter γ is small or close to one. Small sample sizes can lead to inaccurate
parameter estimates and a poor model fit. Overall, since our study focuses on tail
behavior and because Pareto distribution captures this main feature, we use it as a toy
model. Investigations of other heavy-tailed models are postponed in future works.

Definition 4.6 (Pareto distribution P(xm, γ)). If X is a random variable following a
Pareto distribution P(xm, γ), (xm > 0, γ > 0), then the probability that X is larger than
some number x, that is, the survival function, also called the tail function, is given by:

F̄X(x) = P(X > x) = 1{x<xm} +

(
xm
x

)γ

1{x≥xm} (4.17)
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where xm is the (necessarily positive) minimum possible value of X, and γ is a positive
parameter. The Pareto distribution is characterized by a scale parameter xm and a shape
parameter γ, which is known as the tail index.

The cumulative distribution function (c.d.f.) of a Pareto random variable with paramet-
ers xm and γ is:

FX(x) =

(
1−

(
xm
x

)γ
)
1{x≥xm}. (4.18)

And the probability density function (p.d.f.) is given by:

fX(x) =
γxγm
xγ+1

1{x≥xm}. (4.19)

For a graphic representation of the density of the Pareto distribution, see Figures 4.1
and 4.2.

Figure 4.1: The first two columns represent the Pareto distribution for three different
Pareto indices γ = 2.5, 3.5, 5, xm = 1 from the heaviest to the thinnest tail, and histo-
grams based on mc = 1000 i.i.d. samples. The third column represents the Pareto’s
tail distribution above the empirical α-quantile with α = 0.975.

In Figure 4.3, we represent standardized Pareto density functions P(1, γ) for different
shape parameters γ varying from 0.5 to 10. The scale parameter of the standardized
Pareto distribution is equal to 1, this implies that the minimal value of the distribution
support is equal to 1. If the scale parameter is modified with another positive value,
then the Pareto distribution P(xm, γ) is shifted on the left if 0 < xm < 1 and on the
right if xm > 1. Changing the scale parameter of a Pareto distribution is equivalent
to proceed to a scaling operation of the initial Pareto distribution with a scaling factor
equal to the ratio between the new scale parameter and the former one. The scaling
property of the Pareto distribution establishes a proportionality relationship between
the Pareto distributions with the same shape parameter γ but different scale parameters
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(a) (b) (c)

(d) (e) (f)

Figure 4.2: The first row represents the Pareto cumulative distribution function and
the second row represents the Pareto probability distribution function for three Pareto
indices: (a-d) γ = 2.5 (b-e) γ = 3.5 (c-f) γ = 5.
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Figure 4.3: Standardized Pareto density function for different Pareto indices γ in com-
parison with the standard normal distribution.

xm, with a proportionality factor equal to the ratio between the new scale parameter
and the initial scale parameter. The lower the Pareto index, the thicker the tail of the
distribution, whereas the lower the Pareto index, the thinner the tail of the distribution
and the closer it is to the standard normal distribution.

One of the most interesting properties of Pareto distribution is its scaling property. In-
deed, it allows establishing links between two Pareto distributions with the same shape
parameter γ but different scale parameters xm. For instance, the scaling property allows
switching from the standardized Pareto distribution P(1, γ), to any non-standardized
Pareto distribution P(xm, γ), by a simple multiplication of the standardized Pareto dis-
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tribution with the scaling parameter xm of the non-standardized Pareto distribution.
Conversely, the scaling property allows switching from any non-standardized Pareto
distribution P(xm, γ) to the standardized Pareto distribution P(1, γ), by a simple di-
vision of the non-standardized Pareto distribution by its scaling parameter xm. More
precisely, the scaling property establishes a proportionality relationship between the
non-standardized and the standardized Pareto distributions, with a proportionality
factor equal to the scale parameter xm of the non-standardized Pareto distribution.
Conversely, the scaling property allows switching from the non-standardized Pareto
distribution P(xm, γ) to the standardized Pareto distribution P(1, γ), by dividing the
non-standardized Pareto distribution by its scale parameter xm. Consequently, there ex-
ists a proportionality relationship between the standardized Pareto distribution P(1, γ)

and the non-standardized Pareto distribution P(xm, γ), with a proportionality factor
equal to 1

xm
. More generally, the scaling property establishes a link between any non-

standardized Pareto distributions P(x
(1)
m , γ) and P(x

(2)
m , γ) with x(1)m > 0 and x(2)m > 0.

Indeed, the Pareto distribution P(x
(1)
m , γ) is proportional to the Pareto distribution

P(x
(2)
m , γ) with a proportionality factor equal to the ratio between the two scaling para-

meters x
(1)
m

x
(2)
m

, and vice versa. The proportionality factor is a ratio whose numerator
corresponds to the scale parameter of the non-standardized Pareto distribution that
we want to reach P(x

(1)
m , γ) (the target distribution), and denominator corresponds to

the scale parameter of the initial non-standardized Pareto distribution P(x
(2)
m , γ). The

division of the non-standardized Pareto distribution P(x
(2)
m , γ) by its own scaling para-

meter x(2)m allows the standardization of the distribution, thus reaching the standardized
Pareto distribution P(1, γ). Then, the multiplication of the standardized Pareto distri-
bution by x

(1)
m allows reaching the desired Pareto distribution P(x

(1)
m , γ). Conversely,

the Pareto distribution P(x
(2)
m , γ) is proportional to the Pareto distribution P(x

(1)
m , γ)

with a proportionality factor equal to the ratio between the two scaling parameters x
(2)
m

x
(1)
m

.
The proportionality factor is a ratio whose numerator corresponds to the scale para-
meter of the non-standardized Pareto distribution that we want to reach P(x

(2)
m , γ), and

denominator corresponds to the scale parameter of the initial non-standardized Pareto
distribution P(x

(1)
m , γ). The division of the Pareto distribution P(x

(1)
m , γ) by its own

scaling parameter x(1)m allows the standardization of the distribution, thus reaching the
standardized Pareto distribution P(1, γ). Then, the multiplication of the standardized
Pareto distribution by x

(2)
m allows reaching the desired Pareto distribution P(x

(2)
m , γ).

Consequently, Pareto distribution is scale-invariant, which means that scaling a Pareto
distribution using a constant parameter does not change the shape of the distribution
(γ remains the same). The new scaled distribution is still a Pareto distribution with
the same shape parameter γ but a new scale parameter. The new Pareto distribution is
obtained by multiplying the initial Pareto distribution by the ratio between the scaling
parameter of the target Pareto distribution and that of the initial Pareto distribution.

In addition to the scaling property, the Pareto distribution satisfies the property of
stability by conditioning. This implies that the tail of any Pareto distribution above
a certain positive threshold is still a Pareto distribution with the same shape para-
meter but a new scaling parameter. For instance, the tail of any standardized Pareto
distribution P(1, γ) above a given positive threshold s

(1)
m > 0, is still a Pareto distri-
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bution with the same shape parameter γ but a new scaling parameter equal to the
conditioning parameter s(1)m : P(s

(1)
m , γ). Owing to the scaling property, there exists a

proportionality relationship linking the non-standardized Pareto distribution P(s
(1)
m , γ)

and the standardized Pareto distribution P(1, γ) with a proportionality factor equal
to s

(1)
m . Consequently, by combining both the stability by conditioning and the scal-

ing properties, a proportionality relationship is established between the standardized
Pareto distribution conditional on its values being above the threshold s(1)m and the mar-
ginal Pareto distribution P(1, γ), with a proportionality factor equal to the conditioning
parameter s(1)m . Consequently, any standardized Pareto distribution P(1, γ) conditional
on its values being above a given threshold s

(1)
m is still a Pareto distribution with the

same shape parameter γ but with a new scaling parameter equal to the conditioning
parameter s(1)m .

More generally, the tail of any non-standardized Pareto distribution P(x
(1)
m , γ) above

a given positive threshold s
(1)
m > x

(1)
m is still a Pareto distribution with the same

shape parameter γ but a new scale parameter equal to the conditioning parameter
s
(1)
m : P(s

(1)
m , γ). Owing to the scaling property, there exists a proportionality relation-

ship between the non-standardized Pareto distribution P(s
(1)
m , γ) and the standardized

Pareto distribution P(1, γ), with a proportionality factor equal to s(1)m . Moreover, the
scaling property also establishes a proportionality relationship between the two non-
standardized Pareto distributions P(s

(1)
m , γ) and P(x

(1)
m , γ), with a proportionality factor

equal to the ratio between the two scaling parameters s
(1)
m

x
(1)
m

. Consequently, by combining
the stability by conditioning and the scaling properties, a proportionality relationship
is established between the non-standardized Pareto distribution P(x

(1)
m , γ) conditional

on its values being above the threshold s
(1)
m and the standardized Pareto distribution

P(1, γ) with a proportionality factor equal to the conditioning parameter s(1)m . And,
a proportionality relationship is also established between the non-standardized Pareto
distribution P(x

(1)
m , γ) conditional on its values being above the threshold s(1)m and the

marginal distribution P(x
(1)
m , γ) with a proportionality factor equal to the ratio s

(1)
m

x
(1)
m

where the numerator is the conditioning parameter s(1)m and denominator is the scal-
ing parameter x(1)m of the marginal distribution. Consequently, any non-standardized
Pareto distribution P(x

(1)
m , γ) conditional on its values being above the threshold s

(1)
m

is still a Pareto distribution with the same shape parameter γ but with a new scaling
parameter equal to the conditioning parameter s(1)m .

These properties are very convenient. Moreover, they are specific to the Pareto distri-
bution, that is, they are not shared by all heavy-tailed distributions. They are math-
ematically formulated in the following theorem.

Theorem 4.7 (Pareto stability by conditioning and rescaling). (i) Let X be a standard
Pareto random variable X ∼ P(1, γ), γ > 0. Let xm > 0 be a new scaling parameter.
Let Y be a non-standard Pareto random variable such that Y ∼ P(xm, γ). Then we
have:

P(X ≤ x | X ≥ xm) = P(xmX ≤ x) = P(Y ≤ x). (4.20)
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Equivalently,

X | X ≥ xm
d
= xmX

d
= Y or

Y

xm

d
=
X | X ≥ xm

xm

d
= X. (4.21)

In other words, conditioning a standard Pareto random variable X from a given threshold
xm, amounts to scaling the standardized Pareto distribution, that is, the marginal dis-
tribution of X, with the conditioning parameter xm. Then, the standardized Pareto
distribution conditional on its values being above a certain threshold remains a Pareto
distribution with the same shape parameter γ but a new scaling parameter equal to the
conditioning parameter xm.

(ii) Let Z1, Z2 be two non-standard Pareto random variables such that Z1 ∼ P(x
(1)
m , γ)

and Z2 ∼ P(x
(2)
m , γ) with x(1)m > 0, x

(2)
m > 0, γ > 0. Then we have:

Z1
d
=
x
(1)
m

x
(2)
m

Z2
d
= x(1)m X or Z2

d
=
x
(2)
m

x
(1)
m

Z1
d
= x(2)m X. (4.22)

In other words, any non-standardized Pareto distribution can be expressed from any other
non-standardized Pareto distribution by dividing the initial non-standardized Pareto dis-
tribution by its own scaling parameter to reach the standardized Pareto distribution
P(1, γ), then by scaling it with the scaling parameter of the target distribution.

(iii) Let s(1)m be a conditioning parameter such that s(1)m > x
(1)
m > 0. Then, Equations

(4.21) and (4.22) lead to:

Z1 | Z1 ≥ s(1)m
d
=
s
(1)
m

x
(1)
m

Z1
d
= s(1)m X. (4.23)

In other words, conditioning any non-standardized Pareto distribution P(x
(1)
m , γ) from

a certain threshold s(1)m amounts to scaling the standardized Pareto distribution P(1, γ)

with the conditioning parameter s(1)m , or equivalently to scaling the marginal distribution
P(x

(1)
m , γ) with the ratio between the conditioning parameter and the scaling parameter

of the marginal distribution s
(1)
m

x
(1)
m

.

Proof Let γ > 0 be a shape parameter and xm > 0 be a scaling parameter.

Let X ∼ P(1, γ) be a standardized Pareto r.v. and Y ∼ P(xm, γ) be a non-standardized
Pareto distribution. The c.d.f. of X and Y are given by FX(x) = P(X ≤ x) =(
1−

(
1
x

)γ)
1{x≥1} and FY (x) = P(Y ≤ x) =

(
1−

(
xm
x

)γ)
1{x≥xm}.

(i) Scaling the standard Pareto r.v. X with the parameter xm leads to the following

distribution: FxmX(x) = P
(
xmX ≤ x

)
= P

(
X ≤ x

xm

)
=

(
1−

(
xm
x

)γ)
1{x≥xm} =

FY (x). Then, we can deduce the following equality in distribution: xmX
d
= Y or

equivalently X d
= Y

xm
.

Consequently, the standardized Pareto distribution P(1, γ) scaled with xm is still a
Pareto distribution with shape parameter γ but scale parameter xm instead of 1:
P(xm, γ).



4.1. BACKGROUND 253

The non-standardized Pareto distribution P(xm, γ) is proportional to the standardized
Pareto distribution P(1, γ) with a proportionality factor equal to the scaling parameter
xm. Conversely, the standardized Pareto distribution P(1, γ) is proportional to the
non-standardized Pareto distribution P(xm, γ) with a proportionality factor equal to
1
xm

.

Let us compute the conditional distribution of X given that X ≥ xm: for x ≥ xm we
have:

P(X ≤ x | X ≥ xm) =
P(xm ≤ X ≤ x)

P(X ≥ xm)
=
FX(x)− FX(xm)

1− FX(xm)

=

(
1−

(
1
x

)γ)
−
(
1−

(
1
xm

)γ)
1−

(
1−

(
1
xm

)γ)

=

(
1
xm

)γ
−
(

1
x

)γ(
1
xm

)γ =

(
1−

(
xm
x

)γ
)
1{x≥xm}

= FY (x).

And, the scaling property states that FY (x) = FxmX(x), then we can write:

P(X ≤ x | X ≥ xm) = FxmX(x).

Consequently, we can write: X | X ≥ xm
d
= Y

d
= xmX. Therefore, conditioning a stand-

ard Pareto r.v. X above a given parameter xm leads to get the non-standard Pareto r.v.
Y with the same shape parameter γ and a scaling parameter equal to the conditioning
parameter xm. Therefore, the standardized Pareto distribution conditional on its values
being above a certain threshold is still a Pareto distribution with the same shape para-
meter γ but a new scaling parameter equal to the conditioning parameter. Moreover,
the scaling property states that there exists a proportionality relationship between the
non-standardized Pareto distribution P(xm, γ) and the standardized P(1, γ) with a
proportionality factor equal to xm. Consequently, the standardized Pareto distribu-
tion conditional on its values being above a certain threshold xm is proportional to the
standardized Pareto distribution with a proportionality factor equal to the condition-
ing parameter xm. Therefore, conditioning the standardized Pareto distribution from
a given threshold xm amounts to scaling the standardized Pareto distribution with the
conditioning parameter xm. Thus, the Pareto distribution is stable by conditioning.

(ii) Let Z1, Z2 be two non-standard Pareto r.v. such that Z1 ∼ P(x
(1)
m , γ) and Z2 ∼

P(x
(2)
m , γ).

Equality in distribution can be obtained between Z1 and Z2. For this purpose, in a
first time we standardize Z2 by dividing it by its own scaling parameter x(2)m so that
the distribution might start from 1. Second, we rescale the standard Pareto r.v. Z2

x
(2)
m

with the scaling parameter x(1)m of Z1, and conversely. Indeed, from Equation (4.21),
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we have:

Z1
d
= x(1)m X and X

d
=

Z2

x
(2)
m

, (4.24)

hence:

Z1
d
=
x
(1)
m

x
(2)
m

Z2 or equivalently Z2
d
=
x
(2)
m

x
(1)
m

Z1. (4.25)

The scaling property allows establishing equality in distribution between any non-
standardized Pareto distributions. Indeed, any non-standardized Pareto distribution
P(x

(1)
m , γ) can be expressed from any other non-standardized Pareto distribution P(x

(2)
m , γ)

by dividing it by its own scaling parameter x(2)m in order to obtain the standardized
Pareto distribution and by scaling the standardized Pareto distribution of Z2

x
(2)
m

with

the new scaling parameter x(1)m . Therefore, any non-standardized Pareto distribution
P(x

(1)
m , γ) is proportional to any other non-standardized Pareto distribution P(x

(2)
m , γ)

with a proportionality factor equal to the ratio of the two scaling parameters x
(1)
m

x
(2)
m

, and
vice versa.

(iii) Let us prove that a non-standard Pareto r.v. Z1 ∼ P(x
(1)
m , γ) conditional on the

event {Z1 ≥ s
(1)
m } with s

(1)
m > x

(1)
m , is still a non-standard Pareto r.v. with a scaling

parameter equal to s(1)m . Indeed,

P
(
Z1 ≤ x | Z1 ≥ s(1)m

)
=

P
(
s
(1)
m ≤ Z1 ≤ x

)
P
(
Z1 ≥ s

(1)
m

) =
FZ1(x)− FZ1(s

(1)
m )

1− FZ1(s
(1)
m )

(4.26)

=

(
1−

(
x
(1)
m
x

)γ
)

−
(
1−

(
x
(1)
m

s
(1)
m

)γ
)

(
1−

(
x
(1)
m

s
(1)
m

)γ
) =

1−

s(1)m

x

γ
1{x≥s

(1)
m }

(4.27)

= F
s
(1)
m X

(x) = F
s
(1)
m

x
(1)
m

Z1

(x). (4.28)

Consequently, the non-standardized Pareto distribution with as scaling parameter x(1)m

conditional on event {Z1 ≥ s
(1)
m } is still a Pareto distribution with a scaling parameter

equal to the conditioning parameter s(1)m . The scaling property states that the non-
standardized Pareto distribution P(s

(1)
m , γ) is proportional to the standardized Pareto

distribution with a proportionality factor equal to s
(1)
m . This leads to the following

equality in distribution:

Z1 | Z1 ≥ s(1)m
d
= s(1)m X. (4.29)

To establish the equality in distribution between the conditional distribution of Z1 |
Z1 ≥ s

(1)
m and the marginal distribution P(x

(1)
m , γ, that is the distribution of Z1, we

have to proceed as follows. On the one hand, we standardize the distribution of Z1
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by its own scaling parameter x(1)m so that the distribution might start from 1 instead
of x(1)m . On the other hand, we have to scale the standard Pareto r.v. Z1

x
(1)
m

with the

conditioning parameter s(1)m to obtain a Pareto distribution with a scaling parameter
equal to s(1)m that corresponds to the conditional distribution Z1 | Z1 ≥ s

(1)
m as proved

in the previous point.

Indeed, because X d
= Z1

x
(1)
m

, we obtain:

Z1 | Z1 ≥ s(1)m
d
=
s
(1)
m

x
(1)
m

Z1. (4.30)

Furthermore, the moments of the Pareto distribution exist only for certain ranges of
shape parameter γ. Specifically, the k-th moment exists if and only if γ > k. This
means that for small values of γ, moments may not exist, which is related to the heavy-
tailed nature of the distribution. As the shape parameter γ decreases, the distribution
becomes even more heavy-tailed, giving more weight to extreme events. This leads to
finite moments for only very small orders. This is a characteristic of heavy-tailed distri-
butions, where extreme observations have a more significant impact on higher moments
than distributions with lighter tails. For instance, the Pareto distribution has an infinite
mean for shape parameter γ ≤ 1. For γ ≤ 2, the Pareto distribution has a finite mean
but an infinite variance. For γ > 2, the variance of the Pareto distribution exists and
is finite. This means that if the shape parameter is greater than 2, the distribution is
characterized by both a finite mean and finite variance, making it more manageable in
certain statistical analyses.

The scaling property of the Pareto distribution states that any non-standardized Pareto
distribution P(xm, γ) is proportional to the standardized Pareto distribution P(1, γ)

with a proportionality factor equal to xm. This implies that all the quantities (statist-
ics) computed on the non-standardized Pareto distribution P(xm, γ) are proportional to
the ones computed on the standardized Pareto distribution P(1, γ), with a proportion-
ality factor equal to xm. Therefore, the calculus can be carried out on the standardized
Pareto distribution, and the equivalent quantities on any non-standardized Pareto dis-
tribution P(xm, γ), can be recovered by the multiplication of the standardized quantities
with the proper scaling parameter xm. For instance, the scaling property of the Pareto
distribution allows defining any k-th moment of any non-standardized Pareto distribu-
tion P(xm, γ) by a simple multiplication of the k-th moment of the standardized Pareto
distribution P(1, γ) with the scaling parameter xm raised to the power k.

These properties are mathematically formulated in the following lemma.

Lemma 4.8 (Moments of Pareto distribution). Let X ∼ P(1, γ), Y ∼ P(xm, γ) be
two Pareto random variables, with γ > k, k ∈ N⋆. Subsequently, the Pareto random
variables X and Y admit the finite first k moments.
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(i) Moments of order k (γ > k):

E
[
Xk
]
=

γ

γ − k
and E

[
Y k
]
= xkmE

[
Xk
]
. (4.31)

(ii) Central moment of order k (γ > k):

E
[
(X − E[X])k

]
=

k∑
j=0

(
k

j

)
γj+1

(1− γ)j(γ + j − k)
and E

[
(Y − E[Y ])k

]
= xkmE

[
(X − E[X])k

]
.

(4.32)

Proof In view of the scaling property of Theorem 4.7 xmX
d
= Y . This implies that

E
[
Y k
]
= E

[
(xmX)k

]
= xkmE

[
Xk
]
. Thus, it is sufficient to prove the formula for X.

Let X ∼ P(1, γ). Recall that fX(x) = γ
xγ+11{x≥1}.

(i) The first k moments of X are given by:

E[Xk] = γ

∫ +∞

1
xk−γ−1dx =

 γ
γ−k if γ > k

+∞ if γ ≤ k.

(ii) The first k central moments of X are defined as:

E[(X − E[X])k] =

k∑
j=0

(
k

j

)
E[Xk−j(−E[X])j ] =

k∑
j=0

(
k

j

)
γj+1

(1− γ)j(γ + j − k)
.

These properties hold for all statistics computed on the Pareto distribution, particularly
for the VaRα and the ESα. Let X ∼ P(1, γ) be a standardized Pareto random variable
and Y ∼ P(xm, γ), Z1 ∼ P(x

(1)
m , γ) and Z2 ∼ P(x

(2)
m , γ) be non-standardized Pareto

random variables. The scaling property states that the non-standardized Pareto distri-
bution P(xm, γ) is proportional to the standardized Pareto distribution P(1, γ), with a
proportionality factor equal to xm. This implies that the VaRα of the non-standardized
Pareto distribution P(xm, γ) is proportional to the VaRα of the standardized Pareto
distribution with a proportionality coefficient equal to the scaling parameter xm. Sim-
ilarly, the scaling property of the Pareto distribution states that the non-standardized
Pareto distribution P(x

(1)
m , γ) is proportional to the non-standardized Pareto distribu-

tion P(x2m, γ), with a proportionality factor equal to the ratio between the two scaling
parameters x

(1)
m

x
(2)
m

. This implies that the VaRα of the non-standardized Pareto distribu-

tion P(x
(1)
m , γ) is proportional to the VaRα of the non-standardized Pareto distribution

P(x
(2)
m , γ) with a proportionality coefficient equal to x

(1)
m

x
(2)
m

.

On the other hand, the property of stability by conditioning states that the standardized
Pareto distribution P(1, γ) conditional on its values being above a certain threshold, is
still a Pareto distribution with the same shape parameter γ but a new scale parameter
equal to the conditioning parameter. Moreover, the scaling property implies that the
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standardized Pareto distribution P(1, γ) conditional on its values being above a certain
threshold, is proportional to the standardized Pareto distribution with a proportionality
factor equal to the conditioning threshold. The Expected-Shortfall of the standardized
Pareto distribution is the conditional expectation given that the standard Pareto ran-
dom variable X is larger than VaRα(X): ESα(X) = E

[
X | X ≥ VaRα(X)

]
(defined

by (4.3)). Combining the stability by conditioning and the scaling properties leads to a
proportionality relationship between the standardized Pareto distribution P(1, γ) con-
ditional on its values being above VaRα(X), and the marginal distribution which is
the standardized Pareto distribution P(1, γ), with a proportionality factor equal to the
conditioning threshold VaRα(X). Consequently, the Expected-Shortfall of the stand-
ardized Pareto distribution ESα(X) is proportional to its expectation E

[
X
]

with a
proportionality factor equal to VaRα(X), which is supposed to be known. Therefore,
ESα(X) can be easily recovered owing to the simple scaling by VaRα of the expectation
of the standardized Pareto distribution.

Similarly, the property of stability by conditioning states that the non-standardized
Pareto distribution Z1 ∼ P(x

(1)
m , γ) conditional on its values being above a certain

threshold, is still a Pareto distribution with the same shape parameter γ but a new
scale parameter equal to the conditioning parameter. Moreover, the scaling property
implies that the non-standardized Pareto distribution P(x

(1)
m , γ) conditional on its val-

ues being above a certain threshold, is proportional to the standardized Pareto distri-
bution P(1, γ) with a proportionality factor equal to the conditioning parameter, and is
also proportional to the marginal Pareto distribution P(x

(1)
m , γ) with a proportionality

factor equal to the ratio between the conditioning parameter and the scaling parameter
x
(1)
m . Combining the stability by conditioning and the scaling properties implies that

the Expected-Shortfall of the non-standardized Pareto distribution P(x
(1)
m , γ), which

is the expectation of the distribution P(x
(1)
m , γ) conditional on its values being above

VaRα(Z1), is proportional to the expectation of the standardized Pareto distribution
P(1, γ) with a proportionality factor equal to conditioning parameter VaRα(Z1), and
is proportional to the expectation of the marginal Pareto distribution P(x

(1)
m , γ) with a

proportionality factor equal to the ratio VaRα(Z1)

x
(1)
m

. Therefore, the Expected-Shortfall of

any non-standardized Pareto distribution P(x
(1)
m , γ) can be recovered by a simple scaling

of the expectation of the standardized Pareto distribution P(1, γ) with the conditioning
threshold VaRα(Z1), and by a simple scaling of the expectation of the marginal Pareto
distribution P(x

(1)
m , γ) with the ratio VaRα(Z1)

x
(1)
m

.

All these properties are mathematically formulated in the following proposition.

Proposition 4.9 (Pareto VaRα and ESα). If X ∼ P(1, γ) and Y ∼ P(xm, γ), xm >

0, γ > 0, then their respective VaRα are defined as follows:

VaRα(X) = F−1
X (α) = (1− α)

− 1
γ ,

VaRα(Y ) = F−1
Y (α) = xmVaRα(X),

α ∈ (0, 1), (4.33)
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and the respective ESα are given by:ESα(X) = VaRα(X)E
[
X
]
= γ

γ−1(1− α)
− 1

γ ,

ESα(Y ) = xmESα(X),
α ∈ (0, 1). (4.34)

Proof Let X ∼ P(1, γ) and Y ∼ P(xm, γ).

(i) Recall from Definition 4.1, Equation (4.2), that VaRα(X) := inf{x ∈ R, FX(x) ≥ α}
and FX(x) =

(
1−

(
1
x

)γ)
1{x≥1}. Because the distribution of interest is the Pareto

distribution, we work with a continuous distribution. We solve the following equation:

FX(x) = α i.e. 1−
(
1

x

)γ

= α, x ≥ 1. (4.35)

This leads to:

x = (1− α)
− 1

γ . (4.36)

Consequently,

VaRα(X) = (1− α)
− 1

γ . (4.37)

(ii) From the scaling property we obtain Y d
= xmX, which leads to:

FY (x) = FxmX(x) = FX

(
x

xm

)
. (4.38)

This implies that solving the following equation:

FY (x) = α amounts to FX

(
x

xm

)
= α. (4.39)

From the previous case, we fall onto:
x

xm
= VaRα(X) i.e. x = xmVaRα(X). (4.40)

Consequently, the scaling property of the Pareto distribution establishes a proportion-
ality relationship between the VaRα(Y ) of the non-standardized Pareto distribution
P(xm, γ) and the VaRα(X) of the standardized Pareto distribution P(1, γ) with a
proportionality factor equal to the scaling parameter xm.

(iii) Recall from Definition 4.1, Equation (4.3) that: ESα(X) = E
[
X | X ≥ VaRα(X)

]
.

From the stability by conditioning and the scaling properties of the Pareto distribution
stated in Theorem 4.7, Equation (4.21), the following equality in distribution holds:

X | X ≥ VaRα(X)
d
= VaRα(X)X. (4.41)

This leads to:

E
[
X | X ≥ VaRα(X)

]
= VaRα(X)E

[
X
]
. (4.42)
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Consequently:

ESα(X) = VaRα(X)E
[
X
]
. (4.43)

From Lemma 4.8, Equation (4.31), we have E
[
X
]
= γ

γ−1 , and from Proposition 4.9,

Equation (4.33) we have VaRα(X) = (1− α)
− 1

γ , thus we obtain:

ESα(X) =
γ

γ − 1
(1− α)

− 1
γ . (4.44)

(iv) Recall that Y ∼ P(xm, γ) and ESα(Y ) = E
[
Y | Y ≥ VaRα(Y )

]
. From the stabil-

ity by conditioning and scaling properties stated in Theorem 4.7, Equation (4.23), we
can write the following equality in distribution:

Y | Y ≥ VaRα(Y )
d
=

VaRα(Y )

xm
Y

d
= VaRα(Y )X. (4.45)

This implies that:

E
[
Y | Y ≥ VaRα(Y )

]
= VaRα(Y )E

[
X
]
= xmVaRα(X)E

[
X
]
. (4.46)

Therefore:

ESα(Y ) = VaRα(Y )E
[
X
]
= xmVaRα(X)E

[
X
]
. (4.47)

Since VaRα(X) = (1− α)
− 1

γ and E
[
X
]
= γ

γ−1 , then we finally get:

ESα(Y ) = xm
γ

γ − 1
(1− α)

− 1
γ . (4.48)

As previously mentioned, owing to the scaling property of the Pareto distribution,
all the statistics of any non-standardized Pareto distribution are proportional to the
corresponding statistics of the standardized Pareto distribution, with a proportionality
factor equal to the scaling parameter of the target Pareto distribution. Consequently, in
the sequel, all the statistics will be computed using the standardized Pareto distribution.
A simple scaling of these standardized statistics by the proper scaling parameter of the
target Pareto distribution will allow for the recovery of the corresponding statistics of
the desired non-standardized target Pareto distribution.

As previously explained, owing to the property of stability by conditioning, the Expected-
Shortfall of the standardized Pareto distribution is proportional to its expectation, with
a proportionality factor equal to the Value-at-Risk of the standardized Pareto distribu-
tion VaRα, which is supposed to be known. Therefore, the main step in computing the
Expected-Shortfall of the standardized Pareto distribution, is to compute its expecta-
tion. The Expected-Shortfall of the standardized Pareto distribution can be recovered
thanks to a simple scaling of this expectation by the VaRα, which is supposed to be
known.

In addition, in Figure 4.4, we compare the evolution of the VaRα and ESα as functions
of the risk level α.
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(a) (b) (c)

Figure 4.4: VaRα and ESα as functions of α. (a) γ = 2.5 (b) γ = 3.5 (c) γ = 5.

4.1.3 Issues

The presence of extreme values with low probability in a heavy-tailed distribution, can
influence the estimator (empirical mean) of the expectation and lead to poor perform-
ance. In this context, the goal is to determine an estimator of the expectation that can
be more resistant to extreme values. For that purpose, different mean estimators will
be studied based on their concentration and fluctuation properties. An overview of this
study is shown in Figure 4.5.

Figure 4.5: Left: Distribution of the Empirical Mean estimator versus distribution
of the Median-of-Means estimator for the Expected-Shortfall. Right: Scatterplot of
the Median-of-Means estimator versus the Empirical-Mean estimator for the Expected-
Shortfall.

Definition 4.10 (Robust statistics). Robust statistics are statistics with good perform-
ance for data drawn from a wide range of probability distributions, especially for distri-
butions that are far from being normal. The goal is to produce statistical methods that
are not unduly affected by outliers, or to provide methods with good performance when
there are small departures from a parametric distribution.

(i) Strictly speaking, a robust statistic is resistant to errors in the results, produced by
deviations from assumptions (e.g., of normality). This means that if the assumptions
are only approximately met, the robust estimator will still have a reasonable efficiency,
and reasonably small bias, as well as being asymptotically unbiased (i.e., having a bias
tending towards 0 as the sample size tends towards infinity).
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(ii) Usually, the most important case is distributional robustness - robustness to breaking
assumptions about the underlying distribution of the data. Classical statistical procedures
are typically sensitive to longtailedness (e.g., when the distribution of the data has longer
tails than the assumed normal distribution). This implies that they will be strongly
affected by the presence of outliers in the data, and the estimates they produce may be
heavily distorted if there are extreme outliers in the data, compared to what they would
be if the outliers were not included in the data.

(iii) In contrast, more robust estimators that are not very sensitive to distributional dis-
tortions, such as longtailedness, are resistant to the presence of outliers. Thus, in the
context of robust statistics, distributionally robust and outlier-resistant are synonym-
ous. Some experts prefer the term resistant statistics for distributional robustness, and
reserve robustness for non-distributional robustness, such as, robustness to violation of
assumptions about the probability model or estimator, but this is a minority usage. Plain
robustness to mean distributional robustness is common. When considering how robust
an estimator is to the presence of outliers, it is useful to test what happens when an
extreme outlier is added to the dataset and to test what happens when an extreme out-
lier replaces one of the existing data points, and then to consider the effect of multiple
additions or replacements.

Ideally, an estimator is expected to satisfy the following constraints: be robust to heavy
tailed-distribution, that is, to the presence of extreme values, and reach a high-level of
accuracy with a high-level of confidence. In other words, we are interested in assessing,
for any sample size n, and confidence parameter δ ∈ (0, 1), the smallest possible value
ϵ = ϵ(n, δ) such that:

P(
∣∣µ̂n − µ

∣∣ > ϵ) ≤ δ (4.49)

where µ̂n is a mean-estimator computed on a sample of size n and µ is the true mean.
It should be noted that this criterion is non-asymptotic. These constraints are satisfied
by sub-Gaussian estimators.

A random variable is considered sub-Gaussian if its tail behavior is no worse than that
of a Gaussian random variable. In other words, it does not have heavy tails and decays
reasonably quickly, similar to a Gaussian distribution.

An estimator is said to be sub-Gaussian if the distribution of its deviation is sub-
Gaussian. Sub-Gaussian deviations are desirable because they allow for better control
and analysis of the estimation performance. Indeed, sub-Gaussian estimators enjoy con-
centration inequalities such as Hoeffding’s inequality and Bernstein’s inequality. These
inequalities provide bounds on the estimator’s deviation from its expected value with
high probability. Consequently, sub-Gaussian estimators tend to be more stable and
predictable.

Moreover, sub-Gaussian estimators are more robust to outliers and extreme observations
in data. They are less affected by extreme values, which makes them suitable for noisy
or imperfect datasets.

Finally, sub-Gaussian estimators often provide tighter error bounds, allowing for a more
precise quantification of estimation accuracy.
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Mathematically speaking, a sub-Gaussian estimator is defined as follows.

Definition 4.11 (Sub-Gaussian estimator). A mean estimator µ̂n is said to be L−sub-
Gaussian if the distribution in which the random variables are drawn admits a finite
second order moment σ2, and if there exists a constant L > 0 such that for any sample
size n with probability at least 1− δ:

∣∣µ̂n − µ
∣∣ ≤ Lσ

√
log(2/δ)√
n

. (4.50)

or equivalently,

P
(∣∣µ̂n − µ

∣∣ ≤ ϵ
)
≥ 1− 2e−

nϵ2

L2σ2 (4.51)

where ϵ quantifies the deviation.

Despite the advantages of sub-Gaussian estimators, they also present some limitations.
Indeed, proving that an estimator is sub-Gaussian is not so obvious because it relies on
restrictive assumptions on the models, or it requires some tips to develop a new estimator
such as Median-of-Means (see later in this chapter). Moreover, some sub-Gaussian
estimators might have a higher computational complexity than simpler estimators. This
can be a drawback when dealing with large datasets or in real-time applications.

In the following section, we will study different types of mean estimators with the aim of
estimating the Expected-Shortfall in the Pareto distribution. Because the stability by
conditioning and the scaling properties of the Pareto distribution establish a proportion-
ality relationship between the Expected-Shortfall and the expectation of the marginal
distribution with a proportionality factor equal to the α-quantile, we will be interested
in the two following cases. The first case consists of estimating the expectation of a
random variable on the support of the entire distribution. The second corresponds to
the estimation of the expectation of a random variable above a certain threshold, the α-
quantile. In the second case, for each estimator, two configurations will be studied. The
first configuration corresponds to the idealized case, in which the empirical α-quantile
match the true VaRα. This case is reached only in the asymptotic framework. The
second case is the realistic case and the most common one, in which the empirical α-
quantile differs from the true VaRα. In the last case, the estimation of the expectation
above the given threshold is more challenging because the threshold above which we
consider the excess loss is an order statistics and depends on the underlying sample.
This implies that the samples larger than the empirical α-quantile are no longer i.i.d.
and the distribution of the excess loss is unkown. Moreover, the realistic case intro-
duces, in the estimation of the ESα, an additional error term corresponding to the bias
estimation between the true VaRα and the empirical α-quantile.
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4.2 Empirical Mean (EM) for heavy-tailed distributions

4.2.1 Presentation and properties of the Empirical Mean

Usually, an obvious choice for the mean estimator is the empirical mean, defined by:

µ̄n =
1

n

n∑
i=1

Xi (4.52)

with a convergence speed of 1√
n
. However, this estimator does not satisfy the aforemen-

tioned constraints.

First, the empirical mean is not robust. Such an estimator is influenced by the presence
of extreme values in the distribution, which leads to poor performance.

Then, the deviation of the empirical mean estimator with respect to the expectation
of the distribution can reach a Gaussian regime, but the amount of data required to
reach this regime is so large that it can be qualified as an asymptotic regime. This is
what the Fuk-Nagaev inequality shows. Indeed, the Fuk-Nagaev inequality is a useful
concentration inequality for sums of independent heavy-tailed random variables with
only a limited number of finite moments, as it provides an upper bound on the tail
probability of the sum of random variables, based on the variance proxies of the indi-
vidual random variables. This inequality is especially powerful when dealing with large
sums of heavy-tailed random variables, as it allows us to control the tail behavior of the
sum and understand its deviation from its expected value with high probability.

From (Rio, 2017) the Fuk-Nagaev inequality is stated as follows.

Lemma 4.12 (Fuk-Nagaev inequality). If X1, . . . , Xn are n i.i.d. random variables
following the same distribution as an r.v. X that admits a finite moment of order κ > 2

(i.e., E[|X|κ] < +∞). Then, the Fuk-Nagaev inequality states that:

P

 1

n

n∑
i=1

Xi − E
[
X
]
≥ λ√

n

 ≤
(
κ+ 2

κ

)κ
E[(X − E

[
X
]
)κ+]

n
κ
2
−1λκ

+ e
− 2λ2

(κ+2)2eκV[X] (4.53)

where λ > 0 is the deviation related to the sum of the recentered random variables and
V[X] represents the variance of X.

To reach a sub-Gaussian regime, we can conserve only the second term on the right-
hand side. So that the first term might disappear, either the deviation has to be huge
what we do not want, or the amount of data has to be very large. The amount of data
required to make the first term disappear has to be so high that we can say that the
Gaussian regime is only asymptotic; consequently, the empirical mean (under heavy-tail
assumptions on X) can have large deviations for a small sample size.

The fact that the Gaussian regime is asymptotic is also aligned with the Central Limit
Theorem (CLT).
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Lemma 4.13 (Central Limit Theorem (CLT)). If X1, . . . , Xn are n i.i.d. random
variables of mean µ and finite variance σ2. Then, the mean squared error of µ̄n is equal
to σ2

n . CLT guarantees that the estimator asymptotically has Gaussian tails.

lim
n→+∞

P

(∣∣µ̄n − µ
∣∣ > σΦ−1(1− δ/2)√

n

)
= δ, (4.54)

where Φ(x) = P(G ≤ x) is the c.d.f. of the standard normal variable G.

For any x > 0, the exponential Markov inequality yields 1 − Φ(x) = P(exX ≥ ex
2
) ≤

E[exX ]e−x2
= e−

x2

2 . This implies that Φ−1(1−δ/2) ≤
√
2 log(2/δ), and the CLT asserts

that:

lim
n→+∞

P

∣∣µ̄n − µ
∣∣ > σ

√
2 log(2/δ)√

n

 ≤ δ. (4.55)

In other words, it exhibits sub-Gaussian performance but in the asymptotic case. Is it
possible to outperform the sub-Gaussian performance? (Lugosi and Mendelson, 2019,
Theorem 1) states that for any mean estimator µ̄n there always exists a distribution
(with mean µ and variance σ2 > 0) such that:

P

∣∣µ̄n − µ
∣∣ > σ

√
log(1/δ)

n

 ≥ δ (4.56)

provided that δ ∈ (2e−n/4, 1/2) and n > 5. However, from Definition 4.11, to reach
sub-Gaussian performance, we should have:

P

∣∣µ̄n − µ
∣∣ > σ

√
log(1/δ)

n

 ≤ δ. (4.57)

This implies that the sub-Gaussian bound (up to constants) is the best bound that can
be reached.

Now, let us assume that there exists an estimator that satisfies the above non-asymptotic
inequality for all n and for all δ, up to adjusting the constant in front of σ and inside
the log. Specifically, for n = 1, we obtain:

P
(∣∣X − µ

∣∣ > Lσ
√

log(1/δ)
)
≤ δ, ∀δ ∈ (0, 1), (4.58)

for some L independent of δ. This implies, from Definition 4.11, that:

P
(∣∣X − µ

∣∣ > ϵ
)
≤ e

−
(

ϵ
Lσ

)2
. (4.59)

This implies that X is sub-Gaussian and has light tails. The deviation bound is sub-
Gaussian and the distribution of the samples cannot be heavy-tailed. This implies that
an estimator built on a sample that follows a Pareto distribution cannot have a deviation
bound that is sub-Gaussian.
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Consequently, alternatives to the sample mean must be found to estimate the expecta-
tion of heavy-tailed distributions.

Our goal is to study the bias between the empirical ESα when the latter is estimated
by the empirical mean estimator applied to the standardized Pareto distribution tail
and the true ESα. This bias is studied in two frameworks: in the idealized case where
the empirical α-quantile matches the true VaRα and in the realistic case where the
empirical α-quantile does not match the true VaRα. To this end, we first study the
bias between the empirical mean estimator applied to the entire standardized Pareto
distribution P(1, γ) and the expectation.

4.2.2 Bias between the Empirical Mean estimator and the
expectation of the standardized Pareto distribution

Let X1, . . . , Xn be n independent and identically distributed (i.i.d.) random variables
following the distribution of XP(1, γ). The expectation of X is denoted by µ = E[X].

The bias between the Empirical Mean and the expectation of the distribution is defined
as follows:

Bµ(µ̄n) = E[µn]− µ =
1

n

n∑
i=1

E[Xi]− µ. (4.60)

Since (Xi)i∈J1,nK are i.i.d., then ∀i ∈ J1, nK,E[Xi] = µ. And we get:

Bµ(µ̄n) = 0. (4.61)

Consequently, the Empirical Mean is an unbiased estimator of the expectation of the
distribution, as shown in Figure 4.6.

From Central Limit Theorem (CLT), the empirical mean of a standardized Pareto dis-
tribution P(1, γ) asymptotically converges to the expectation of the given distribution,
with a convergence rate equal to 1√

n
. Then, the bias goes to 0 with a convergence rate

equal to 1√
n
.

Owing to the stability by conditioning and scaling properties of the Pareto distribu-
tion, the bias between the empirical mean and the expectation of any non-standardized
Pareto distribution P(xm, γ) is proportional to the bias between the empirical mean
and the expectation of the standardized Pareto distribution P(1, γ) with a proportion-
ality factor equal to the scaling parameter xm. Because xm does not depend on the
underlying sample, the convergence speed of the bias between the empirical mean and
the expectation of the non-standardized Pareto distribution P(xm, γ) is the same as the
convergence speed of the bias between the empirical mean and the expectation of the
standardized Pareto distribution P(1, γ).

Now that we have studied the bias between the empirical mean estimator applied to the
entire standardized Pareto distribution P(1, γ) and the expectation, we are interested in
studying the bias between the empirical ESα and the true ESα in two frameworks: the
idealized case where the empirical α-quantile matches the true VaRα and the realistic
case where the empirical α-quantile does not match the true VaRα.
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(a) (b)

(c)

Figure 4.6: Evolution of the bias between the empirical mean estimator and the expect-
ation of the whole Pareto distribution, for three different shape parameters versus the
sample size, with 95% CI, over 104 repetitions, (a) P(1, 2.5), (b) P(1, 3.5), (c) P(1, 5).

4.2.3 Bias between the empirical mean estimator applied to the
standardized Pareto distribution tail above the true VaRα and
the true ES (Idealized case)

Let us recall that the true ESα is defined as follows:

ESα(X) = E[X|X ≥ VaRα] = E[X1{X≥VaRα}]/P(X ≥ VaRα) = E
[
X1{X≥VaRα}

]
/(1− α).

(4.62)

In the idealized case where the empirical α-quantile matches the true VaRα, the estim-
ation of the ESα is given by the empirical mean estimator applied to the distribution
tail above the true VaRα, as follows:

ESα(X) ≈ 1

n(1− α)

n∑
i=1

Xi1{Xi≥VaRα} =: µ̄n|>VaRα
. (4.63)

The bias is defined by:

BESα(µ̄n|>VaRα
) = E

[
µ̄n|>VaRα

]
−ESα(X). (4.64)

On the one hand,

E
[
µ̄n|>VaRα

]
=

1

n(1− α)

n∑
i=1

E
[
Xi1{Xi≥VaRα}

]
=

1

n

n∑
i=1

E
[
Xi|Xi ≥ VaRα

]
. (4.65)
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But the random variables Xi are i.i.d., then E
[
Xi|Xi ≥ VaRα

]
= E

[
X|X ≥ VaRα

]
and we get:

E
[
µ̄n|>VaRα

]
=

1

n

n∑
i=1

E
[
X|X ≥ VaRα

]
= E

[
X|X ≥ VaRα

]
= ESα(X). (4.66)

Consequently, BESα(µ̄n|>VaRα
) = 0.

The empirical mean applied to the standardized Pareto distribution conditional on its
values being above the true VaRα is an unbiased estimator of the true ESα, as shown
in Figure 4.7.

Indeed, in the idealized case, the empirical α-quantile matches the true VaRα, which
is supposed to be known. In this case, the estimator of the ESα in the standardized
Pareto distribution P(1, γ) is the empirical average of the standardized Pareto distribu-
tion conditional on its values being above the true VaRα. The conditioning threshold
is independent on the underlying sample. This implies that the samples larger than the
true VaRα are independent and identically distributed (i.i.d.) and the stability by con-
ditioning and scaling properties of the Pareto distribution, as stated in Theorem 4.7, are
valid. The stability by conditioning property implies that the standardized Pareto distri-
bution P(1, γ) conditional on its values being above VaRα is still a Pareto distribution,
with the same shape parameter γ, but a new scaling parameter equal to the condition-
ing parameter VaRα. The scaling property states that this non-standardized Pareto
distribution P(VaRα, γ) is proportional to the marginal Pareto distribution P(1, γ),
with a proportionality factor equal to the conditioning parameter VaRα. Therefore,
the standardized Pareto distribution conditional on its values being above VaRα is
proportional to the standardized Pareto distribution with a proportionality factor equal
to VaRα. This implies that the empirical mean estimator applied to the standardized
Pareto distribution conditional on its values being above VaRα, is proportional to the
empirical mean estimator applied to the entire standardized Pareto distribution, with
a proportionality factor equal to VaRα. In the same way, the ESα is proportional to
the expectation of the standardized Pareto distribution, with a proportionality factor
equal to VaRα. Thus, the bias between the empirical mean estimator applied to the
standardized Pareto distribution conditional on its values being above VaRα and the
ESα is proportional to the bias between the empirical mean estimator applied to the en-
tire standardized Pareto distribution and the expectation, with a proportionality factor
equal to VaRα. Moreover, because the proportionality factor (conditioning threshold)
is independent on the underlying sample, the convergence rate of the bias between the
empirical mean estimator applied to the standardized Pareto distribution conditional on
its values being above VaRα and the true ESα is the same as that of the bias between
the empirical mean estimator applied to the entire standardized Pareto distribution and
the expectation.
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(a) (b)

(c)

Figure 4.7: Evolution of the bias between the empirical mean estimator applied to the
Pareto distribution tail above the true VaRα and the Expected-Shortfall, for three
different shape parameters versus the sample size, with 95% CI, over 104 repetitions,
(a) P(1, 2.5), (b) P(1, 3.5), (c) P(1, 5).

4.2.4 Bias between the empirical mean estimator applied to the
standardized Pareto distribution tail above the empirical
α-quantile and the true ES (Realistic case)

In the realistic case, the empirical α-quantile does not match the true VaRα. In this
case, the estimator of the ESα in the standardized Pareto distribution P(1, γ) is the
empirical average of the standardized Pareto distribution conditional on its values being
above the empirical α-quantile. The conditioning threshold is an order statistics and
depends on the underlying sample. This implies that the samples larger than the empir-
ical α-quantile are no longer independent and identically distributed (i.i.d.). Therefore,
the distribution of the samples larger than the empirical α-quantile is not necessarily a
Pareto distribution. The stability by conditioning and scaling properties of the Pareto
distribution, as stated in Theorem 4.7, are no longer valid. The distribution of the
samples larger than the empirical α-quantile is unknown and it is more challenging
to establish an analytic closed-form formula for the bias between the empirical mean
estimator applied to the standardized Pareto distribution tail above the empirical α-
quantile and the true ESα. For this reason, we provide some empirical study in order
to gain insight into the bias behavior and its convergence speed as the sample size goes
to infinity. See Figure 4.8.

From Equation (4.5), we recall that the empirical Expected-Shortfall is defined as:

µ̄n|>qn,α
=

1
n

∑n
i=1Xi1{Xi≥qnα}

1
n

∑n
i=1 1{Xi≥qnα}

=

∑n
i=1Xi1{Xi≥qnα}

n− ⌈nα⌉ . (4.67)
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(a) (b)

(c)

Figure 4.8: Evolution of the bias between the empirical mean estimator applied to
the Pareto distribution tail above the empirical α-quantile and the Expected-Shortfall,
for three different shape parameters versus the sample size, with 95% CI, over 104

repetitions, (a) P(1, 2.5), (b) P(1, 3.5), (c) P(1, 5).

4.3 Empirical median for heavy-tailed distribution

4.3.1 Presentation and properties of the Median

The median is the value separating the higher half from the lower half of a data sample,
population, or probability distribution. For a dataset, it may be thought of as "the
middle" value. The basic feature of the median in describing the data compared to
the mean (often simply described as the "average") is that it is not skewed by a small
proportion of extremely large or small values, and therefore provides a better repres-
entation of the distribution centrality. Therefore, the median is of key importance in
robust statistics.

Formally, the median of a population is any value such that at least half of the population
is less than or equal to the proposed median and at least half is greater than or equal to
the proposed median. Medians may not be unique. If each set contains more than half
of the population, then some of the population is exactly equal to the unique median.

The median is well-defined for any ordered (one-dimensional) data, and is independent
of any distance metric. Thus, the median can be applied to classes that are ranked but
not numerical, although the result might be halfway between classes if there is an even
number of cases.

On the other hand, a geometric median is defined in any number of dimensions. A
related concept, in which the outcome is forced to correspond to a member of the
sample, is medoid.
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The median is a special case of other ways of summarizing the typical values associated
with a statistical distribution: the 2nd quartile, 5th decile and 50th percentile.

The median of a sequence is defined as follows. It consists of ordering the values into
a non-decreasing sequence and choosing the value that is at the center of this ordered
sequence. For an ordered sequence composed of n elements, where n is odd, the median
belongs to the sequence and corresponds to term of order n+1

2 . For an ordered sequence
composed of n elements, where n is even, the median does not belong to the sequence and
corresponds to the arithmetical mean of the terms of orders n

2 and n
2+1. The complexity

of the algorithm that allows computing the median corresponds to the complexity of
the sorting algorithm used, that is, at best O(n log(n)).

Mathematically speaking, the Median is defined as follows.

Definition 4.14 (Median of probabilistic distributions). Let X be a real random vari-
able with as cumulative distribution function FX(x) = P(X ≤ x) and survival function
F̄X(x) = 1 − FX(x). Subsequently, the median M of the distribution satisfies the fol-
lowing equality:

M = inf

{
x ∈ R : FX(x) ≥ 1

2
and F̄X(x) ≥ 1

2

}
. (4.68)

Definition 4.15 (Empirical Median). The median of n real numbers x1, . . . , xn ∈ R is
defined as M̂n = xi where xi is such that i satisfies:

i = min

{
j ∈ J1, nK :

∣∣∣{k ∈ J1, nK : xk ≤ xj}
∣∣∣ ≥ n

2
and

∣∣∣{k ∈ J1, nK : xk ≥ xj}
∣∣∣ ≥ n

2

}
.

(4.69)

According to the above definition, whatever the parity of n, that is, whether n is even or
odd, then the median belongs to the sequence. When n is odd, the median corresponds to
the term of order n+1

2 and each subset is composed of n
2+1 samples including the median.

When n is even, then both terms of order n
2 and n

2 + 1 satisfy the above definition, but
by convention, the term with the smallest index, that is, the term of order n

2 , is retained
for the median. In this case, the lower subset contains n

2 samples, whereas the upper
subset contains n

2 + 1, including the median.

Another definition of the median, in which the median belongs to the sequence if n is
odd, and does not belong to the sequence if n is even, is given as follows:

x⋆i =


1
2

(
x⋆n

2
+ x⋆n

2
+1

)
if n ∈ 2N

x⋆n+1
2

if n /∈ 2N.
(4.70)

where x⋆1, . . . , x
⋆
n is the increasing reordering of sequence x1, . . . , xn. With this last

definition, when n is odd, the median corresponds to the term of the sequence of order
n+1
2 . In such a case, both subsets contain n

2 + 1 samples, including the median. When
n is even, the median does not belong to the sequence and corresponds to the arithmetic
mean of the terms of orders n

2 and n
2 + 1. In this case, both subsets contain n

2 samples,
excluding the median, which does not belong to the sequence.
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There are many definitions for the empirical median. We have provided two of these.
The first is the one used in (Lugosi and Mendelson, 2019), but in the sequel, we will
work with the second formulation.

From (Reiss, 2012, Lemma 3.1.1. and p.85), a deviation inequality of the empirical
median with respect to the theoretical median is derived.

Theorem 4.16 (Deviation inequality for order statistics). Let U1, . . . , Un be n i.i.d.
random variables following a uniform distribution on (0, 1) and U⋆

1 , . . . , U
⋆
n be the re-

lated sequence of ordered statistics. Let X1, . . . , Xn be n i.i.d. random variables with
a common distribution function FX , and X⋆

1 , . . . , X
⋆
n be the related sequence of ordered

statistics. Then, the kth ordered statistics X⋆
k satisfies:

P

√
n
g(α)

σ
(X⋆

k − F−1
X (α))

≤ −ϵ
≥ ϵ

 ≤ P

√
n

σ
(U⋆

k − α)
≤ h(−ϵ)
≥ h(ϵ)

 , ∀ϵ > 0,

(4.71)

where g(α) is a non-negative constant, h(x) =
√
n
σ

(
FX

(
F−1
X (α) + xσ

g(α)
√
n

)
− α

)
, and:

P

√
n

σ
(U⋆

k − α)
≤ h(−ϵ)
≥ h(ϵ)

 ≤ e

− (h(∓ϵ))2

3

(
1+

|h(∓ϵ)|
σ
√
n

)
(4.72)

with α = k
n+1 and σ2 = α(1−α). In the specific case of the empirical median, k =

⌈
n
2

⌉
.

Another key result on the order statistics is the following theorem, explained in detail
in (Reiss, 2012, Thm 1.3.2. p.21).

Theorem 4.17 (Density of order statistics). Let X⋆
k be the k-th order statistics of n

i.i.d. random variables of common distribution function FX and density fX . Then the
density of X⋆

k is given by:

fX⋆
k
(x) =

n!

(k − 1)!(n− k)!
fX(x)(FX(x))k−1(1− FX(x))n−k. (4.73)

Theorem 4.18 (Expectation of empirical median when n is odd). (i) Let X1, . . . , X2k+1

be 2k + 1 i.i.d. random variables that follow the same distribution as X ∼ P(1, γ). Let
X⋆

1 , . . . , X
⋆
2k+1 be the related sequence of ordered statistics. The density of the empirical

median X⋆
k+1 is given by:

f
M̂

(1)
2k+1

(x) =
(2k + 1)!

k!k!

(
1− 1

xγ

)k
1

xkγ

(
γ

xγ+1

)
1{x≥1}. (4.74)

The expectation of the empirical median is defined as follows:

E[M̂ (1)
2k+1] =

(2k + 1)!

k!k!
B

(
k + 1, k + 1− 1

γ

)
(4.75)
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where B(x, y) =
∫ 1
0 (1 − t)x−1ty−1dt = Γ(x)Γ(y)

Γ(x+y) is the Beta function, and Γ(z) =∫ +∞
0 tz−1e−tdt is the Gamma function.

(ii) Let Y1, . . . , Y2k+1 be 2k+1 i.i.d. random variables that follow the same distribution as
Y ∼ P(xm, γ). Then, from the scaling property of the Pareto distribution (Theorem 4.7),
we obtain the following proportionality relationship between the distributions P(xm, γ)

and P(1, γ):

(Y1, . . . , Y2k+1)
d
= (xmX1, . . . , xmX2k+1). (4.76)

In particular, a proportionality relationship of factor xm links the empirical median of
the non-standardized Pareto distribution P(xm, γ) and that of the standardized Pareto
distribution P(1, γ) such that M̂ (xm)

2k+1
d
= xmM̂

(1)
2k+1, as well as their expectations:

E[M̂ (xm)
2k+1] = xmE[M̂ (1)

2k+1]. (4.77)

Remark 4.19. When γ → +∞ (the distribution tails are lighter and lighter), X con-
verges in distribution to 1. In this asymptotic case, we expect the median expectation to
converge to 1, which is consistent with

lim
γ→+∞

E
[
M̂2k+1

]
=

(2k + 1)!

k!k!

Γ(k + 1)Γ
(
k + 1

)
Γ
(
2k + 2

) = 1

using that Γ(m+ 1) = m! for integers m.

Proof (i) Let X1, . . . , X2k+1 be 2k + 1 i.i.d. random variables that follow the same
distribution as X ∼ P(1, γ). Let X⋆

1 , . . . , X
⋆
2k+1 be the related sequence of ordered

statistics.

From Equation (4.73), the density of the empirical median of a sample of i.i.d. Pareto
r.v. is defined as follows:

f
M̂

(1)
2k+1

(x) =
(2k + 1)!

k!k!

1−
(
1

x

)γ
k(

1

x

)kγ (
γ

xγ+1

)
1{x≥1}.

Then we get: E
[
M̂

(1)
2k+1

]
=
∫
R xfM̂(1)

2k+1

(x)dx =
∫ +∞
1 x (2k+1)!

k!k!

(
1−

(
1
x

)γ)k (
1
x

)kγ (
γ

xγ+1

)
dx.

By the following substitution, y =
(

1
x

)γ
, dy = −γ 1

xγ+1dx, when x = 1 then y = 1 and
when x→ +∞ then y → 0, we obtain:

E
[
M̂

(1)
2k+1

]
=

(2k + 1)!

k!k!

∫ 1

0

(
1− y

)k
y
k− 1

γ dy =
(2k + 1)!

k!k!
B

(
k + 1, k + 1− 1

γ

)
.

(ii) The second point comes from the scaling property of the Pareto distribution which
establishes a proportionality relationship between the non-standardized Pareto distribu-
tion P(xm, γ) and the standardized Pareto distribution P(1, γ) with a proportionality
factor equal to the scaling parameter xm. This implies that the order statistics of the
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non-standardized Pareto distribution P(xm, γ) are proportional to the order statistics
of the standardized Pareto distribution P(1, γ) with a proportionality factor equal to
xm. The k-th order moment of the non-standardized Pareto distribution P(xm, γ) is
thus proportional to the k-th order moment of the standardized Pareto distribution
P(1, γ) with a proportionality factor equal to xkm. With k = 1, we find the expected
result.

Remark 4.20. Theorem 4.18 can be easily adjusted when the number of data n is not
odd.

Theorem 4.21 (Expectation of empirical median when n is even). (i) Let X1, . . . , X2k

be 2k independent and identically distributed (i.i.d.) random variables following the
same distribution as X ∼ P(1, γ). Let X⋆

1 , . . . , X
⋆
2k be the related sequence of ordered

statistics. We define

M̂2k :=
1

2
(X⋆

k +X⋆
k+1). (4.78)

The expectation of the empirical median is given by:

E
[
M̂2k

]
=

1

2

 (2k)!

(k − 1)!k!
B

(
k, k + 1− 1

γ

)
+

(2k)!

k!(k − 1)!
B

(
k + 1, k − 1

γ

) (4.79)

(ii) Let Y1, . . . , Y2k be 2k i.i.d. random variables that follow the same distribution as
Y ∼ P(xm, γ). Then, from the scaling property of the Pareto distribution (Theorem 4.7),
we obtain the following proportionality relationship between the distributions P(xm, γ)

and P(1, γ):

(Y1, . . . , Y2k+1)
d
= (xmX1, . . . , xmX2k+1). (4.80)

In particular, a proportionality relationship of factor xm links the empirical median of
the non-standardized Pareto distribution P(xm, γ) and that of the standardized Pareto
distribution P(1, γ) such that M̂ (xm)

2k
d
= xmM̂

(1)
2k , as well as their expectations:

E[M̂ (xm)
2k ] = xmE[M̂ (1)

2k ]. (4.81)

Proof (i) From Equation (4.73), we have the expression for the density of X⋆
k which

yields

E
[
X⋆

k

]
=

∫
R
xfX⋆

k
(x)dx (4.82)

=
(2k)!

(k − 1)!k!

∫ +∞

1
x

(
1− 1

xγ

)k−1
1

xγk
γ

xγ+1
dx. (4.83)

By the following substitution, y = 1
xγ , dy = −γ 1

xγ+1dx, y = 1 when x = 1, y → 0 when
x→ +∞, we get:

E
[
X⋆

k

]
=

(2k)!

(k − 1)!k!

∫ 1

0
(1− y)k−1y

k− 1
γ dy =

(2k)!

(k − 1)!k!
B

(
k, k + 1− 1

γ

)
. (4.84)
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On the other hand, let’s compute E
[
X⋆

k+1

]
:

E
[
X⋆

k+1

]
=

∫
R
xfX⋆

k+1
(x)dx (4.85)

=
(2k)!

k!(k − 1)!

∫ +∞

1
x

(
1− 1

xγ

)k
1

xγ(k−1)

γ

xγ+1
dx. (4.86)

Using the same substitution as previously, we fall onto:

E
[
X⋆

k

]
=

(2k)!

k!(k − 1)!

∫ 1

0
(1− y)ky

k−1− 1
γ dy =

(2k)!

k!(k − 1)!
B

(
k + 1, k − 1

γ

)
. (4.87)

(ii) Same proof as in the odd case.

4.3.2 Bias of the Median in the specific case of Pareto distribution

In this section, we are interested in computing the bias between the empirical and the
theoretical medians for a Pareto distribution. The scaling property of the Pareto distri-
bution establishes a proportionality relationship between any non-standardized Pareto
distribution P(xm, γ) and the standardized Pareto distribution P(1, γ) with a propor-
tionality factor equal to xm. This proportionality relationship of factor xm is still true
between the statistics (and their expectation) of the non-standardized and standard-
ized Pareto distributions. Therefore, the bias between the empirical and the theoretical
medians of the non-standardized Pareto P(xm, γ) distribution is proportional to the
bias of the standardized Pareto distribution P(1, γ) with a proportionality factor equal
to xm. This implies that it suffices to compute the bias in the case of a standardized
Pareto distribution, and then multiply the result by the scaling parameter xm. Thus,
in the following analysis, we use the unitary scale xm = 1.

(i) First, let us assume that the sample size n is odd i.e. ∃k ∈ N s.t. n = 2k+1.
According to (4.75) and (4.33), the bias between the empirical and theoretical medians
is given by:

BM (M̂2k+1) = E
[
M̂2k+1

]
−M =

(2k + 1)!

k!k!

Γ(k + 1)Γ
(
k + 1− 1

γ

)
Γ
(
2k + 2− 1

γ

) − γ
√
2. (4.88)

Our purpose is to prove the following asymptotic result for the bias of the median.

Theorem 4.22. As n→ +∞,

E
[
M̂n

]
=

γ
√
2

1 +
1

2γn
+

1

2γ2n
+ o

(
1

n

) . (4.89)



4.3. EMPIRICAL MEDIAN FOR HEAVY-TAILED DISTRIBUTION 275

The smaller γ, the heavier the tails, and the bigger the bias. The empirical median
systematically has a (asymptotically) positive bias.

Proof

(i) We start by considering sequences of odd integers n, i.e. n = 2k + 1.

The equality Γ(k + 1) = k! combined with (4.75) implies that:

E
[
M̂2k+1

]
=

(2k + 1)!

k!

Γ
(
k + 1− 1

γ

)
Γ
(
2k + 2− 1

γ

) =
Γ(2k + 2)

Γ(k + 1)

Γ
(
k + 1− 1

γ

)
Γ
(
2k + 2− 1

γ

) . (4.90)

From (Xu et al., 2016, Eq. 1.2.), the extended Stirling formula gives the expansion of
the Gamma function as follows:

Γ(z + 1) =
√
2πz

(
z

e

)z
1 +

1

12z
+ o

(
1

z

) , z → +∞. (4.91)

Let’s write the expansion of each factor in (4.90):

Γ(2k + 2) =
√

2π(2k + 1)

(
2k + 1

e

)2k+1
1 +

1

12(2k + 1)
+ o

(
1

k

) , (4.92)

Γ(k + 1) =
√
2πk

(
k

e

)k
1 +

1

12k
+ o

(
1

k

) , (4.93)

Γ

(
k + 1− 1

γ

)
=

√√√√2π

(
k − 1

γ

)k − 1
γ

e

k− 1
γ

1 +
1

12
(
k − 1

γ

) + o

(
1

k

) ,

(4.94)

Γ

(
2k + 2− 1

γ

)
=

√√√√2π

(
2k + 1− 1

γ

)2k + 1− 1
γ

e

2k+1− 1
γ

1 +
1

12
(
2k + 1− 1

γ

) + o

(
1

k

) .

(4.95)

We rewrite the expectation of the median estimator (4.90) in the following form:

E
[
M̂2k+1

]
= A×B × C (4.96)



276
CHAPTER 4. MEAN ESTIMATION OF EXPECTED-SHORTFALL IN

HEAVY-TAILED DISTRIBUTIONS

where:

A :=

√
2π(2k + 1)√

2πk

√
2π
(
k − 1

γ

)
√

2π
(
2k + 1− 1

γ

) =

√
2k + 1√
k

√
k − 1

γ√
2k + 1− 1

γ

, (4.97)

B :=

(
2k + 1

e

)2k+1(
e

k

)k
k − 1

γ

e

k− 1
γ
 e

2k + 1− 1
γ

2k+1− 1
γ

(4.98)

=

2k + 1− 1
γ

2k + 1

−(2k+1)k − 1
γ

k

k2k + 1− 1
γ

k − 1
γ

 1
γ

, (4.99)

C :=

(
1 + 1

12(2k+1) + o
(
1
k

))1 + 1

12

(
k− 1

γ

) + o
(
1
k

)
(
1 + 1

12k + o
(
1
k

))1 + 1

12

(
2k+1− 1

γ

) + o
(
1
k

)
. (4.100)

We simplify each of the above expressions. Standard successive first-order Taylor ex-
pansions give

A =

√√√√ 1− 1
kγ

1− 1
(2k+1)γ

(4.101)

=

√√√√√(1− 1

kγ

)1 +
1

(2k + 1)γ
+ o

(
1

k

) (4.102)

=

√√√√1− 1

kγ
+

1

(2k + 1)γ
+ o

(
1

k

)
(4.103)

=

√√√√1− 1

2kγ
+ o

(
1

k

)
(4.104)

= 1− 1

4γk
+ o

(
1

k

)
. (4.105)

Now, let us expand the expression of B. Notice that
2k+1− 1

γ

k− 1
γ

= 2

(
1 +

1+ 1
γ

2(k− 1
γ
)

)
, then

B =

(
1− 1

(2k + 1)γ

)−(2k+1)(
1− 1

kγ

)k
2

1 +
1 + 1

γ

2(k − 1
γ )




1
γ

(4.106)

= 2
1
γ e

−(2k+1) log

(
1− 1

(2k+1)γ

)
+k log

(
1− 1

kγ

)
+ 1

γ
log

1+
1+ 1

γ

2(k− 1
γ )


. (4.107)
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Proceed to a second order Taylor expansion to the second order of the first two logar-
ithmic terms, and to the first order of the last logarithmic term:

log

(
1− 1

(2k + 1)γ

)
= − 1

(2k + 1)γ
− 1

2(2k + 1)2γ2
+ o

(
1

k2

)
, (4.108)

log

(
1− 1

kγ

)
= − 1

kγ
− 1

2k2γ2
+ o

(
1

k2

)
, (4.109)

log

1 +
1 + 1

γ

2(k − 1
γ )

 =
1 + 1

γ

2(k − 1
γ )

+ o

(
1

k

)
. (4.110)

Substituting these expansions into (4.107) and proceeding to the standard Taylor ex-
pansions of the exponential function yields

B = 2
1
γ e

1
γ
+ 1

2(2k+1)γ2
− 1

γ
− 1

2kγ2
+

1+ 1
γ

2γ(k− 1
γ )

+o
(

1
k

)
(4.111)

= 2
1
γ

1 +
1

2(2k + 1)γ2
− 1

2kγ2
+

1 + 1
γ

2γ(k − 1
γ )

+ o

(
1

k

) (4.112)

= 2
1
γ

1 +
1

4γ2k
− 1

2γ2k
+

1 + 1
γ

2γk
+ o

(
1

k

) (4.113)

= 2
1
γ

1 +
1

4γ2k
+

1

2γk
+ o

(
1

k

) . (4.114)

Now, let us focus on C. Simple first-order expansion of 1/(1 + x) for x→ 0 gives

C =

1 +
1

12(2k + 1)
+ o

(
1

k

)1 +
1

12(k − 1
γ )

+ o

(
1

k

) (4.115)

×

1− 1

12k
+ o

(
1

k

)1− 1

12(2k + 1− 1
γ )

+ o

(
1

k

) (4.116)

= 1 +
1

24k
+

1

12k
− 1

12k
− 1

24k
+ o

(
1

k

)
= 1 + o

(
1

k

)
. (4.117)

Gathering A, B and C into (4.90), we obtain:

E
[
M̂2k+1

]
= A×B × C =

1− 1

4γk
+ o

(
1

k

) 2
1
γ

1 +
1

4γ2k
+

1

2γk
+ o

(
1

k

)1 + o

(
1

k

) .

(4.118)

Rearranging different terms achieves the proof of Theorem 4.22 along sequences of odd
integers n.



278
CHAPTER 4. MEAN ESTIMATION OF EXPECTED-SHORTFALL IN

HEAVY-TAILED DISTRIBUTIONS

(ii) Let us assume that n is even i.e. ∃k ∈ N s.t. n = 2k. From Theorem 4.21,
we obtain

E
[
M̂2k

]
=

1

2

 (2k)!

(k − 1)!k!
B

(
k, k + 1− 1

γ

)
+

(2k)!

k!(k − 1)!
B

(
k + 1, k − 1

γ

) (4.119)

=
1

2

 Γ(2k + 1)

Γ(k)Γ(k + 1)

Γ(k)Γ
(
k + 1− 1

γ

)
Γ
(
2k + 1− 1

γ

) +
Γ(2k + 1)

Γ(k + 1)Γ(k)

Γ
(
k + 1

)
Γ
(
k − 1

γ

)
Γ
(
2k + 1− 1

γ

)


(4.120)

=
1

2

Γ
(
k + 1− 1

γ

)
Γ(k + 1)

Γ(2k + 1)

Γ
(
2k + 1− 1

γ

) +
Γ
(
k − 1

γ

)
Γ
(
k
) Γ(2k + 1)

Γ
(
2k + 1− 1

γ

)
 (4.121)

=
Γ
(
k + 1− 1

γ

)
Γ(k + 1)

Γ(2k + 1)

Γ
(
2k + 1− 1

γ

) 1
2

1 + k

k − 1
γ

 =: A · 1
2
·B (4.122)

using that Γ(x + 1) = xΓ(x). To study the asymptotic behavior of E
[
M̂2k

]
, we use a

Taylor expansion at the first order of the Gamma function, (see (4.91)):

Γ(k + 1) =
√
2πk

(
k

e

)k
1 +

1

12k
+ o

(
1

k

) , (4.123)

Γ(2k + 1) =
√
4πk

(
2k

e

)2k
1 +

1

24k
+ o

(
1

k

) , (4.124)

Γ

(
k + 1− 1

γ

)
=

√√√√2π

(
k − 1

γ

)k − 1
γ

e

k− 1
γ

1 +
1

12
(
k − 1

γ

) + o

(
1

k

) ,

(4.125)

Γ

(
2k + 1− 1

γ

)
=

√√√√2π

(
2k − 1

γ

)2k − 1
γ

e

2k− 1
γ

1 +
1

12
(
2k − 1

γ

) + o

(
1

k

) .

(4.126)

Using the same method as in the odd case, we obtain the following results. Write

A =
Γ
(
k + 1− 1

γ

)
Γ(k + 1)

Γ(2k + 1)

Γ
(
2k + 1− 1

γ

) = A1 ×A2 ×A3 (4.127)
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where:

A1 =

√
2k√

2k − 1
γ

√
k − 1

γ√
k

= 1− 1

4γk
+ o

(
1

k

)
, (4.128)

A2 =

(
2k

e

)2k
2k − 1

γ

e

−
(
2k− 1

γ

)k − 1
γ

e

k− 1
γ (

k

e

)−k

= 2
1
γ

1 +
1

4γ2k
+ o

(
1

k

) ,

(4.129)

A3 =

(
1 + 1

24k + o
(
1
k

))1 + 1

12

(
k− 1

γ

)
+o
(

1
k

)


1 + 1

12

(
2k− 1

γ

) + o
(
1
k

)(1 + 1
12k + o

(
1
k

)) = 1 + o

(
1

k

)
. (4.130)

Therefore:

A = 2
1
γ

1 +
1

4γ2k
− 1

4γk
+ o

(
1

k

) (4.131)

On the other hand:

B = 1 +
k

k − 1
γ

= 2 +
1

kγ
+ o

(
1

k

)
. (4.132)

Finally, we get:

E
[
M̂2k

]
= A · 1

2
·B = 2

1
γ

1 +
1

4γ2k
− 1

4γk
+ o

(
1

k

)1 +
1

2kγ
+ o

(
1

k

)
(4.133)

= 2
1
γ

1 +
1

4γ2k
+

1

4γk
+ o

(
1

k

) . (4.134)

This completes the proof of the expansion of Theorem 4.22 when k is even.

In the graphs below, we display the evolution of the bias between the empirical and
theoretical medians of the standardized Pareto distribution as a function of the log-
sample size, both when the sample size is even and odd. See Figure 4.9.

Remark 4.23. The logarithmic scale is used only in the abscissa to better visualize the
decrease of the bias.

In addition to the evolution of the bias of the empirical median, we are interested in the
speed of convergence of this bias. Since the bias is a power function of the sample size,
the logarithm of the bias as a function of the logarithm of the sample size is a linear
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(a) (b)

(c) (d)

(e) (f)

Figure 4.9: Evolution of the bias between the empirical and theoretical medians of the
Pareto distribution P(1, 2.5) ((a) - (b)), P(1, 3.5) ((c) - (d)) and P(1, 5) ((e) - (f)) with
95% CI over 104 repetitions versus the log sample size: for even sample sizes ((a) - (c)
- (e)), for odd sample sizes ((b) - (d) - (f)).

function whose slope is the speed of convergence. Therefore, we study the log-log plot
of the bias versus the sample size.

For both γ values, the slopes of the log-log plots are approximately −1; therefore, the
speed of convergence of the bias of the empirical median is in 1

n where n is the sample
size, as shown in Figure 4.10.

Moreover, this result can be extended to any non-standardized Pareto distribution
P(xm, γ) with a scaling parameter equal to xm instead of 1. Indeed, owing to the
scaling property of the Pareto distribution, the bias between the empirical and true
medians of the non-standardized Pareto distribution P(xm, γ) is proportional to the
bias between the empirical and true medians of the standardized Pareto distribution
with a proportionality factor equal to xm.

Therefore, the bias between the empirical and true medians of the non-standardized
Pareto distribution P(xm, γ) corresponds to the bias between the empirical median
and the true median of the standardized Pareto distribution P(1, γ), scaled by the
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(a) (b)

(c) (d)

(e) (f)

Figure 4.10: Evolution of the log bias between the empirical and theoretical medians of
the Pareto distribution for P(1, 2.5) ((a) - (b)), P(1, 3.5) ((c) - (d)), and P(1, 2.5) ((e) -
(f)), with 95% CI over 104 repetitions versus the log sample size: for even sample sizes
((a) - (c) - (e)), for odd sample sizes ((b) - (d) - (f)).

parameter xm. Because xm is independent of the sample, the speed of convergence
of the bias between the empirical and true medians of the non-standardized Pareto
distribution P(xm, γ) is the same as the speed of convergence between the empirical
and true medians of the Pareto distribution P(1, γ).

The empirical median estimator is a centrality estimator of a distribution, but is not
an estimator of the expectation of the distribution. Thus, the empirical median of the
distribution tail above the VaRα is not a proper estimator of the Expected-Shortfall.
Therefore, this study will not be extended to the tail of the Pareto distribution. How-
ever, the study of the empirical median estimator has been carried out with a view to
better understand the properties of a robust mean estimator, the Median-of-Means.
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4.4 Median-of-Means (MoM) for heavy-tailed distribution

4.4.1 Presentation of the estimator

The MoM estimator combines the empirical mean and median estimators. The Median-
of-Means estimator requires partitioning the data into k groups of roughly equal size,
computing the empirical mean in each group, and taking the median of the sequence
composed by the k empirical means.

Definition 4.24 (Median-of-Means (MoM)). Let X1, . . . , Xn be n independent, identic-
ally, distributed random draws from the distribution of X. Let m, k be two positive in-
tegers. We assume that n is a multiple of k such that n = mk. The empirical mean of
each block is defined as follows:

∀j ∈ J1, kK, µ̄Bj =
1∣∣∣Bj

∣∣∣
∑
i∈Bj

Xi. (4.135)

The MoM estimator is then defined by M̂oMn =M(µ̄1, . . . , µ̄k).

Why can the MoM estimator be considered as a good estimator of the
expectation ? (i) The first step in the construction of the MoM estimator consists
of partitioning the set composed of n i.i.d. random draws into k disjoint blocks, and
computing the empirical mean µ̄j of each of the k blocks. For the sake of simplicity, let
us assume that the number of random draws n is a multiple of the number of blocks k
such that n = mk, with m, k, n being three positive integers. For each of the k blocks,
the empirical mean is an unbiased estimator of the expectation of the distribution.
Indeed, because the random draws Xi are i.i.d. with mean µ = E[X], then E[µ̄j ] = µ.
Moreover, because the random draws are i.i.d. with variance V[Xi] = σ2 then, the
standard deviation of the empirical means µ̄j is given by σ√

m
. This means that, in

each of the k blocks, the empirical mean does not deviate from the expectation of the
distribution by more than a few units of σ√

m
.

(ii) The second step consists of taking the median of the sequence composed of the k
block-wise empirical means. Why can we say that the median of the block-wise means
is a good estimator of the expectation of the distribution ?

Actually the empirical median does not deviate from the empirical mean by more than
the empirical standard deviation, this is the following statement.

Lemma 4.25. Let X be a scalar random variable, with standard deviation σ and median
M . Then, the following inequality holds:∣∣∣E [X]−M

∣∣∣ ≤ σ. (4.136)

Assuming that σ is sufficiently small, we can say that the median is close enough to the
expectation of the distribution to be a good estimator.
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Proof The triangular inequality leads to:∣∣∣E [X]−M
∣∣∣ ≤ E

[∣∣X −M
∣∣] . (4.137)

Moreover, since the median minimizes the L1-error, then we get:

E
[∣∣X −M

∣∣] ≤ E
[∣∣∣X − E

[
X
]∣∣∣] . (4.138)

The Cauchy-Schwarz inequality implies that:

E
[∣∣∣X − E

[
X
]∣∣∣] ≤

√√√√E

[∣∣∣X − E
[
X
]∣∣∣2]. (4.139)

Consequently, we have:

∣∣∣E [X]−M
∣∣∣ ≤

√√√√E

[∣∣∣X − E
[
X
]∣∣∣2]. (4.140)

In our case, if X = (X1, . . . , Xn) is a sample composed of n independent and identically
distributed random variables, then µ̂n = 1

n

∑n
i=1Xi is the related empirical mean. Let

us denote by Bj ,∀j ∈ J1, kK the k blocks composed of m random variables. The block-
wise empirical mean µ̄Bj = 1∣∣∣Bj

∣∣∣
∑

i∈Bj
Xi is an unbiased estimator of the expectation

µ of the distribution. Moreover, because the initial random draws are i.i.d. and the
blocks are disjoint, the block-wise means are i.i.d. random variables. The empirical
mean of the block-wise means is equal to the empirical mean of the initial sample µ̂n
and the empirical variance is denoted by σ̂2n = 1

k

∑k
j=1(µ̄Bj−µ̂n)2. Then, from Equation

(4.136), the following concentration inequality is obtained:∣∣∣∣µ̂n − M̂oMn

∣∣∣∣ ≤ σ̂n. (4.141)

If the empirical standard deviation of the sample is small, we can conclude that the
Median-of-Means estimator and empirical mean estimator are close to each other, and
thus they should both estimate the true expectation. Nonetheless, in general, the
fluctuations of the MoM estimator are smaller than those of empirical mean estimator,
as we will see later.

Advantages of the MoM estimator This estimator allows for the combination of
two centrality estimators: the empirical mean and empirical median. The empirical
mean is not robust to extreme values and is significantly influenced by their presence.
Therefore, the k block-wise empirical means consider the extreme values; they are un-
biased with respect to the expectation of the sequence, but they have a large standard
deviation. The empirical median is robust to extreme values because it depends only on
the central values of the sequence, and the standard deviation of the empirical median
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is expected to be much lower than that of the empirical mean; however, the median
may exhibit a bias with respect to the expectation of the sequence. This implies that
the final estimator can be sensitive to the data while not being too influenced by the
extreme values of the distribution. Moreover, because the second layer of construction
of the estimator relies on taking the empirical median of the sequence of block-wise
empirical means, a bias is introduced with respect to the expectation of the sequence.

4.4.2 Concentration inequalities

As previously mentioned, the MoM estimator is sufficiently concentrated around the
true expectation of the distribution to provide a good estimation.

Some results on the probability of deviation of the estimator provide insights into its
performance. From (Lugosi and Mendelson, 2019, Theorem 2, p.7), the following result
provides a good idea of the sub-Gaussian performance of the MoM estimator.

Theorem 4.26. Let X1, . . . , Xn be independent and, identically distributed random
variables with mean µ and variance σ2. Let m, k be positive integers, and assume that
n = mk. Then, the Median-of-Means estimator M̂oMn with k blocks satisfies:

P

(∣∣∣∣M̂oMn − µ

∣∣∣∣ > σ
√

4/m

)
≤ e−k/8. (4.142)

In particular, for any δ ∈ (0, 1), if k = ⌈8 log(1/δ)⌉, then, with probability at least 1− δ,∣∣∣∣M̂oMn − µ

∣∣∣∣ ≤ σ

√
32 log(1/δ)

n
. (4.143)

Another result with more constraints (third absolute moment condition) is stated in
(Lugosi and Mendelson, 2019, Theorem 4, p.9), as follows.

Theorem 4.27. Let X1, . . . , Xn be n independent and, identically distributed random
variables with mean µ, variance σ2, and third central moment ρ = E[

∣∣X − µ
∣∣3]. Let

m, k be positive integers, and assume that n = mk. Assume that:√
log(2/δ)

2k
+

ρ

2σ3
√
m

≤ 1

4
. (4.144)

Then, the MoM estimator with k blocks satisfies, with a probability of at least 1− δ,

∣∣µ̂n − µ
∣∣ ≤ 1

c

σ√ log(2/δ)

n
+

ρk

2σ2n

 (4.145)

where c = ϕ

(
Φ−1

(
3
4

))
denotes a constant. Here, ϕ and Φ refer to the standard normal

density and distribution function, respectively.
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Figure 4.11: Evolution of the ratio of the absolute third centered absolute moment over
the variance raised to the power 3

2 :
ρ
σ3 , as a function of the shape parameter γ of the

Pareto distribution. Graphs produced by Monte-Carlo simulation with 1000 random
draws and 105 repetitions, in the Pareto distribution of scaling parameter xm = 1 and
with shape parameter γ varying from 3.5 to 10.5.

Interpretation: The ratio between the absolute third central moment ρ and the
second central moment σ2 raised to the power 3

2 decreases as a function of γ and its
limit is equal to 2, as displayed in Figure 4.11. This implies that the larger γ is, the
smaller the ratio between the central moments, and the smaller the required size of
the blocks. This can be explained by the fact that the larger the Pareto index γ is,
the thinner the tails, that is, the fewer the extreme values, then, a small block size is
sufficient to provide a good estimation.

4.4.3 Parameterizations of the MoM estimator

With Theorem 4.26, the chosen parameterization is the following k = ⌈8 log(1/δ)⌉ and
m = ⌊n/k⌋. The advantage of this theorem is that, even with a high level of confidence,
it does not require too much data, therefore, it provides non-asymptotic results.

With Theorem 4.27, two different parameterizations are studied.

(i) The first parameterization assumes that:√
log(2/δ)

2k
≤ 1

8
and

ρ

2σ3
√
m

≤ 1

8
. (4.146)

Under these assumptions we get:

k ≥ 32 log(2/δ) and m ≥ 16
ρ2

σ6
. (4.147)

This leads to n ≥ 512 ρ2

σ6 log(2/δ).
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Assuming that δ = 0.05 and γ = 2.5, then ρ
σ3 ≃ 7.551, ρ2

σ6 ≃ 57.018 and finally, we get
n ≥ 107690 which is too large if we want to work in a non-asymptotic framework.

(ii) The second parameterization assumes that:√
log(2/δ)

2k
≤ 1

16
and

ρ

2σ3
√
m

≤ 3

16
. (4.148)

Under these assumptions we get:

k ≥ 128 log(2/δ) and m ≥ 64

9

ρ2

σ6
. (4.149)

This results in n ≥ 342 ρ2

σ6 log(2/δ). Assuming that δ = 0.05 and γ = 2.5, then ρ
σ3 ≃

7.551, ρ2

σ6 ≃ 57.018 and finally, we get n ≥ 71934 which is too large if we want to work
in a non-asymptotic framework.

Theorem 4.27 requires the existence of a finite absolute third centered moment. This
implies that, for small Pareto shape parameters, that is, for a heavy-tailed distribution,
and for a high level of confidence, a very large amount of data is required. Such a
parameterization can be similar to the asymptotic case.

In the sequel, only the parameterization of Theorem 4.26 will be retained to carry out
the experiments, because the parameterization of Theorem 4.27 requires an extremely
large number of samples with respect to the low performance improvement.

Recall that the goal of the survey is to study the bias between the empirical ESα,
when the latter is estimated by the MoM estimator applied to the standardized Pareto
distribution tail, and the true ESα in two frameworks: the idealized case where the
empirical α-quantile matches the true VaRα and the realistic case where the empirical
α-quantile does not match the true VaRα. To this end, we first study the bias between
the MoM estimator applied to the entire standardized Pareto distribution P(1, γ) and
the expectation.

4.4.4 Bias between the Median-of-Means (MoM) estimator applied
to the entire standardized Pareto distribution and the
expectation

Let X1, . . . , Xn be n i.i.d. random variables following the standardized Pareto distri-
bution P(1, γ), that is, ∀i ∈ J1, nK, Xi

d
= X with X ∼ P(1, γ). The expectation of X

is denoted by µ = E[X]. The n random variables X1, . . . , Xn are divided into k blocks
of size m = ⌊n/k⌋. The empirical mean µ̄k is computed for each of the k blocks. The
MoM estimator then corresponds to the empirical median of the k block-wise empirical
means: M̂oMn = M̂(µ̄1, . . . , µ̄k).

The bias between the MoM estimator and the expectation of the distribution is given
by the following formula:

Bµ(M̂oMn) = E
[
M̂oMn

]
− µ. (4.150)

The stake is to compute the expectation of the M̂oMn estimator.
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Sketch of the analysis

Computation of the bias of the Median-of-Means is a delicate task. The goal of this
section is to detail the approach used to establish an analytic closed-form formula for
the bias of the Median-of-Means estimator, and to point out the difficulties encountered.
First, an overview of the chosen approach is provided. Recall that the MoM estimator
corresponds to the empirical median of the k block-wise empirical means computed on
the sample composed of the n independently and identically distributed standardized
Pareto random variables X1, . . . , Xn:

M̂oMn = M̂(µ̄1, . . . , µ̄k) with ∀j ∈ J1, kK, µ̄j =
1∣∣∣Bj

∣∣∣
∑
i∈Bj

Xi and M̂ is the empirical median.

(4.151)

The bias of the MoM estimator is defined as the difference between the expectation
of the estimator and the expectation of the standardized Pareto distribution P(1, γ).
Thus, the challenge is to compute the expectation of the MoM estimator. The natural
way to reach this goal is to determine the density of the estimator and compute the first-
order moment with respect to this density. The MoM estimator is the order statistic
at the level 50% of the sequence of block-wise empirical means. As mentioned in Reiss
2012 (Reiss, 2012, p.21, Eq.1.3.5.), its density is given by:

f
M̂oMn

(x) =
k!

(j − 1)!(k − j)!
fµ̄k

(x)(Fµ̄k
(x))j−1(1− Fµ̄k

(x))k−j . (4.152)

where j = k+1
2 if k is odd, j =

⌊
k
2

⌋
if k is even, fµ̄k

and Fµ̄k
are the probability

density function and cumulative distribution function of the block-wise empirical means,
respectively.

The issue is then to determine the density and cumulative distribution function of the
block-wise empirical means. However, the probability density function of the block-wise
empirical means is the inverse Fourier transform of the characteristic function of the
block-wise empirical means:

fµ̄k
(x) =

1

2π

∫
R
e−itxϕµ̄j (t)dt (4.153)

where ϕµ̄j (t) is the characteristic function of the block-wise empirical means

ϕµ̄k
(t) = E[eitµ̄k ], (4.154)

which is supposed to be integrable for Equation (4.153) to be valid. A good reference
is Durett 2019 (Durrett, 2019, p.111, Thm.3.1.1.).

Now, let us enter in more details in each step of the approach.

Expectation of the Median-of-Means estimator

The expectation of the MoM estimator is then defined as follows:

E[M̂oMn] =

∫ +∞

−∞
xf

M̂oMn
(x)dx. (4.155)
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where f
M̂oMn

is the density of the MoM estimator.

Knowledge of the estimator density is useful for computing the expectation of the MoM
estimator. Nevertheless, the density of the MoM estimator is more complicated than it
sounds. The MoM estimator relies on two estimation layers. The first layer corresponds
to the computation of the k block-wise empirical means. The second layer consists of
taking the empirical median of the k block-wise empirical means. The median density
can be determined from Equation (4.152). However, it relies on the density and cumu-
lative distribution function of the underlying sample, on which the empirical mean is
based. In our case, the underlying sample refers to the sequence of the k block-wise
empirical means. The distribution of the k block-wise empirical means is not simple to
determine.

However, two important aspects must be considered. On the one hand, the k block-
wise empirical means are i.i.d. random variables since they are computed on disjoint
blocks. This implies that determining the distribution of one block-wise empirical mean
is sufficient. On the other hand, each of the k block-wise means is computed on m

i.i.d. standardized Pareto random variables. For the sum of i.i.d. random variables, it
is natural to compute the characteristic function, which leads to the next step.

Characteristic function of the Median-of-Means estimator

In this part, we are interested in computing the characteristic function of the k block-
wise means µ̄j , ∀j ∈ J1, kK:

µ̄j =
1∣∣∣Bj

∣∣∣
∑
l∈Bj

Xl :=
Sm
m

with Xl
i.i.d.∼ P(1, γ). (4.156)

The characteristic function related to µ̄j is given by:

ϕµ̄j (t) = E
[
eit

Sm
m

]
. (4.157)

Because random variables Xl are identically and independently distributed, the follow-
ing is obtained:

ϕµ̄j (t) = E

∏
l∈Bj

ei
t
m
Xl

 =
∏
l∈Bj

E
[
ei

t
m
Xl

]
(4.158)

=
∏
l∈Bj

ϕXl

(
t

m

)
(4.159)

=

(
ϕX

(
t

m

))m

with X ∈ P(1, γ). (4.160)

The formula of ϕX
(

t
m

)
is expressed in the following theorem.
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Theorem 4.28 (Standard Pareto characteristic function). Let X ∼ P(1, γ) with γ > 1.
The characteristic function of X, given by ϕX(t) = E

[
eitX

]
=
∫ +∞
1

γ
xγ+1dx is a solution

of the Ordinary Differential Equation (ODE):

∂

∂t
Jγ(t)−

γ

t
Jγ(t) = −γ

t
eit, (4.161)

and takes the following form:

∀t ∈ R, ϕX(t) = γ(−it)γΓ(−γ,−it). (4.162)

where Γ(z) =
∫ +∞
0 uz−1e−udu, and satisfies the following relationship Γ(z+1) = zΓ(z).

Proof ▷ Let us prove Equation (4.161), that is, let us establish the ODE for the Pareto
characteristic function. Let X ∼ P(1, γ). Let ϕX(t) = E[eitX ] =

∫ +∞
1

γ
xγ+1 e

itxdx be
the characteristic function of the standardized Pareto distribution. In the following, we
consider ϕX(t) := Jγ(t).

Let us proceed to an integration by part taking: u(x) = γ
xγ+1 , u′(x) = −γ(γ+1)

xγ+2 , v′(x) =

eitx and v(x) = eitx

it : Jγ(t) =
[

γ
xγ+1

eitx

it

]x→+∞

x=1

+
∫ +∞
1

γ(γ+1)
xγ+2

eitx

it dx.

However, the modulus of the complex number eitx is bounded to 1. Consequently,
limx→+∞

γ
xγ+1

eitx

it = 0. Then we fall onto: Jγ(t) = −γeit

it + γ
it

∫ +∞
1

γ+1
xγ+2 e

itxdx = −γeit

it +
γ
itJγ+1(t)

Moreover, Jγ(t) =
∫ +∞
1

γ
xγ+1 e

itxdx, let us differentiate once with respect to t: ∂
∂tJγ(t) =

i γ
γ−1Jγ−1(t). To justify the differentiation, we used γ > 1.

Then we get: ∂
∂tJγ+1(t) = iγ+1

γ Jγ(t), and thus: Jγ(t) = γ
i(γ+1)

∂
∂tJγ+1(t).

Therefore, we have, Jγ(t) = − γ
ite

it + γ
itJγ+1(t) and Jγ(t) = γ

i(γ+1)
∂
∂tJγ+1(t).

Then we obtain: γ
i(γ+1)

∂
∂tJγ+1(t) = − γ

ite
it + γ

itJγ+1(t) and ∂
∂tJγ+1(t) = −γ+1

t eit +
γ+1
t Jγ+1(t).

Finally, we fall onto: ∂
∂tJγ(t) = −γ

t e
it + γ

t Jγ(t).

▷ Let us now prove Equation (4.162), that is, let us determine the form of the standard-
ized Pareto characteristic function. ODE (4.161) is difficult to solve. Therefore, another
method is used to determine the explicit form of the characteristic function. Finally, a
test is performed to check whether the founded function satisfies the ODE well. The
method is explained in detail in the following proof.

LetX ∼ P(1, γ). To determine the characteristic function ofX we use complex analysis.

We define beforehand the framework of the study, which will allow us to use the theorems
of complex analysis.

Let H be an open, star-connected subset of C. This property is required for using the
theorems of complex analysis. We choose H open because we assume that the Gamma
function admits a holomorphic extension, and a holomorphic function is defined on an
open subset.
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The goal is to find an explicit form for the characteristic function of X defined by
ϕX(t) = E[eitx] =

∫ +∞
1

γ
xγ+1 e

itxdx.

(i) First, we generalize ϕX . For this purpose, we fix t and take:

h(s) =

∫ +∞

1

γ

xγ+1
esxdx. (4.163)

(ii) Let us prove that h is well-defined on an open star-connected subset H of C.

Let H =
{
s ∈ C⋆s.t. Re(s) < 0

}
be a convex part of C. To prove that h is well-defined

on H, we have to prove that the integral is converging for s ∈ C⋆ with Re(s) < 0.

∣∣∣∣ γ

xγ+1
esx
∣∣∣∣ = γ

∣∣∣∣∣ esxxγ+1

∣∣∣∣∣ = γ

∣∣∣∣∣e(Re(s)+iIm(s))x

xγ+1

∣∣∣∣∣ = γ

∣∣∣∣∣eRe(s)xeiIm(s)x

xγ+1

∣∣∣∣∣ (4.164)

However, the modulus of the complex exponential eiIm(s)x is bounded to 1. Moreover,
Re(s) < 0 then

∣∣∣eRe(s)x
∣∣∣ ≤ 1 and we get:∣∣∣∣ γ

xγ+1
esx
∣∣∣∣ ≤ ∣∣∣∣ γ

xγ+1

∣∣∣∣ . (4.165)

Let us consider g(x) = γ
xγ+1 . Since γ > 0 then

∫ +∞
1 g(x)dx is converging. Consequently,

h is well-defined on H.

(iii) Now, let us prove that h is holomorphic on H. Let us take f(s, x) = γx−(γ+1)esx

as the integrand of the function h. Function f(s, ·) is holomorphic using standard
operations on classic standard functions.

First, f(s, ·) is holomorphic on H. Then, f(s, ·) is measurable with respect to the
Borelian sigma-algebra, by the product of continuous measurable functions. Finally,∣∣∣f(s, x)∣∣∣ ≤ g(x) with g(x) ∈ L1(R).

The integrand satisfies all the conditions of the theorem of holomorphism under the
integral, then h is holomorphic on H.

(iv) In a first time, we consider s ∈ R⋆
− (R⋆

− is a subset of C⋆ with Re(s) < 0.)

If s ∈ R⋆
−, the following substitution: u = −xs, du = −sdx, when x = 1 ⇒ u = −x

and when x→ +∞ ⇒ u→ +∞, leads to:

h(s) = γ(−s)γ
∫ +∞

−s
u−γ−1e−udu = γ(−s)γΓ(−γ,−s). (4.166)

Consequently, h(s) and h̃(s) = γ(−s)γΓ(−γ,−s) match on R⋆
− that is a non-isolated

part of H.

(v) The isolated-zero principle is used to prove that h(s) = h̃(s) on the entire subset H.

We proved that h is holomorphic on H based on the theorem of holomorphism under
the integral. Moreover, function h̃ is holomorphic on H by standard operations on the
holomorphic functions on H. The function h − h̃ is worth 0 on R⋆

− since these two
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functions match on R⋆
− that is a subset of H. However, h − h̃ is holomorphic because

it is zero everywhere or on an isolated subset of H. But R⋆
− is a non-isolated part of H

then h− h̃ is zero everywhere on H. Therefore, h and h̃ match on the whole subset H.
Consequently, ∀s ∈ H, h(s) = γ(−s)γΓ(−γ,−s).
(vi) Now, we want to evaluate function h at the complex point it whose real part is
worth zero. But 0 /∈ H, then we have to go to the limit. We must prove that we can go
to the limit.

First, we have to prove that h(it) is still well-defined, that is, the integral defined for
s = it is still converging:

h(it) =

∫ +∞

1

γ

xγ+1
eitxdx. (4.167)

Since
∣∣∣eitx∣∣∣ ≤ 1, then

∣∣∣ γ
xγ+1 e

itx
∣∣∣ ≤ ∣∣∣ γ

xγ+1

∣∣∣ .
But g(x) = γ

xγ+1 ∈ L1(R) then
∫ +∞
1 g(x)dx converges. Therefore,

∫ +∞
1

γ
xγ+1 e

itxdx

converges. Consequently, h(it) is well-defined.

Now, let us prove that we can go to the limit in 0 by lower values. We want to prove
that h(it) = limr→0− h(r + it) ∈ H.

Let us take f(r + it, x) = γx−(γ+1)e(r+it)x. The limit exists at fixed t. Indeed, at fixed
t, for r < 0, we have

∣∣∣eitx∣∣∣ ≤ 1 and erx ≤ 1 then, we still have:∣∣∣f(r + it, x)
∣∣∣ = ∣∣∣γx−(γ+1)e(r+it)x

∣∣∣ ≤ ∣∣∣∣ γ

xγ+1

∣∣∣∣ ; ∀r, ∀x. (4.168)

Then,
∫ +∞
1 f(r + it, x)dx is well-defined.

The upper bound g(x) = γ
xγ+1 is a function that does not depend on r and that is

integrable with respect to x.

By dominated convergence theorem, we can swap limit and integral.∫ +∞

1
lim
r→0−

f(r + it, x)dx = lim
r→0−

∫ +∞

1
f(r + it, x)dx =

∫ +∞

1
γx−(γ+1)eitxdx = h(it).

(4.169)

Therefore, h(it) = limr→0− h(r+ it) = limr→0− h̃(r+ it) because r+ it ∈ H and h and h̃
match on H. But the function h̃ is holomorphic by standard operations on holomorphic
functions on C × C \ {(−k, 0), ∀k ∈ N} since the incomplete Γ function is not defined
when γ is a negative integer. Consequently, h and h̃ match on C×C\{(−k, 0), ∀k ∈ N}.
Finally, we conclude that ϕX(t) = h̃(it) = γ(−it)γΓ(−γ,−it).

▷ Now, let’s check that ϕX(t) = γ(−it)γΓ(−γ,−it) satisfies the ODE.

Let us consider the holomorphic function ϕX(t) = γ(−it)γΓ(−γ,−it).
(i) Let us rewrite the function ϕ owing to the complex logarithm. ∀z ∈ C, the complex
logarithm is defined up to a multiple of 2π by Log(z) = log(|z|) + i arg(z) where |z|
refers to the modulus of z and arg(z) refers to the argument of z.
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Then ϕX can be rewritten as follows: ϕX(t) = γeγLog(−it)Γ(−γ,−it) where Log(−it) =
log(

∣∣−it∣∣) + i arg(−it) = log(
∣∣t∣∣)− iπ2 .

Moreover, let us rewrite the incomplete Gamma function based on the Gamma function.
First, we recall some important points. So far, we have called the incomplete Gamma
function the upper incomplete Gamma function defined as: Γ(s, x) =

∫ +∞
x us−1e−udu.

The lower incomplete Gamma function is defined by: γ̄(s, x) =
∫ x
0 u

s−1e−udu.

The Gamma function is defined as: Γ(s) = Γ(s, 0) =
∫ +∞
0 us−1e−udu. The relation-

ship between the Gamma function and incomplete Gamma functions is Γ(−γ,−it) =

Γ(−Γ, 0)− γ̄(−γ,−it).

Then, we fall onto ϕX(t) = eγ log(|t|)−γiπ
2

(
Γ(−γ, 0)− γ̄(−γ,−it)

)
.

(ii) Let us compute the first derivative of ϕX with respect to t as follows:

ϕ′X(t) = γ
∂

∂t

(
eγ log(|t|)−γiπ

2

)(
Γ(−γ, 0)− γ̄(−γ,−it)

)
+γeγ log(|t|)−γiπ

2
∂

∂t

(
Γ(−γ, 0)− γ̄(−γ,−it)

)
.

On the one hand, ∂
∂t

(
eγ log(|t|)−γiπ

2

)
= γ

|t|(−it)
γ .

On the other hand, ∂
∂t

(
Γ(−γ, 0)− γ̄(−γ,−it)

)
= − ∂

∂t γ̄(−γ,−it) = ie−(γ+1) log(|t|)e(γ+1)iπ
2 eit.

Plugging in the formula of ϕ′X we get: ϕ′X(t) = γ

|t|
(
γ(−it)γΓ(−γ,−it)

)
− γ

|t|e
it =

γ

|t|ϕX(t)− γ

|t|e
it.

Therefore, we fall onto:

ϕ′X(t)− γ∣∣t∣∣ϕX(t) = − γ∣∣t∣∣eit. (4.170)

Consequently, ϕX(t) = γ(−it)γΓ(−γ,−it) satisfies the ODE ∂
∂tJγ(t)−

γ
t Jγ(t) = −γ

t e
it.

From Equation (4.162), the characteristic function of the block-wise mean µ̄j can be
defined as follows:

ϕµ̄j (t) = γm
(
−i t
m

)mγ
(
Γ

(
−γ,−i t

m

))m

. (4.171)

Inverse Fourier transform of the characteristic function

Let us recall that the initial motivation is to determine the density and cumulative
distribution of the block-wise mean. In this part, the objective is to derive from the
previously established characteristic function, the density function.

Recall that the density function is the inverse Fourier transform of the characteristic
function. Let us denote by F ◦ϕµ̄j (x) =

∫
R

1
2πe

−itxϕµ̄j (t)dt the inverse Fourier transform
of the characteristic function of the block-wise mean µ̄j . Then, the density function of
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the block-wise mean can be recovered using the inverse Fourier transform, as follows:

fµ̄j (x) =

∫
R

1

2π
e−itxϕµ̄j (t)dt. (4.172)

However, because the characteristic function of the block-wise mean µ̄j depends on the
Gamma function, which is already an integral, it is very complicated to determine an
explicit analytic form for the density of the block-wise mean. In this framework, it is
difficult to obtain an analytic form of the bias between the MoM estimator applied to
the standardized Pareto distribution and its expectation. This is still a work in progress.
We provide numerical experiments to have an insight about the convergence rate of the
bias of the MoM estimator applied to the standardized Pareto distribution.

The evolution of the bias between the MoM estimator applied to the entire Pareto
distribution and its expectation is shown in Figure 4.12.

(a) (b)

(c) (d)

(e)

Figure 4.12: Evolution of the bias between the MoM estimator and the expectation of
the entire standardized Pareto distribution P(1, γ) for five different shape parameters,
versus the log sample size, with 95% CI, over 104 repetitions, (a) P(1, 2.5), (b) P(1, 3.5),
(c) P(1, 5), (d) P(1, 7.5), (e) P(1, 10).

Remark 4.29. On the above graphs, the logarithmic scale is only used in the abscissa
to better visualize the evolution of the bias.
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We are interested in the convergence speed of the bias between the MoM estimator
applied to the entire standardized Pareto distribution P(1, γ) and the expectation.
Because this bias is presumably a power function of the sample size, the logarithm
of the bias is a expected to be a linear function of the logarithm of the sample size.
Therefore, we study the log-log plot of bias versus sample size.

(a) (b)

(c) (d)

(e)

Figure 4.13: Evolution of the log of the bias between the MoM estimator and the
expectation of the entire Pareto distribution for five different shape parameters versus
the log sample size, with 95% CI, over 105 repetitions, (a) P(1, 2.5), (b) P(1, 3.5), (c)
P(1, 5), (d) P(1, 7.5), (e) P(1, 10).

The convergence rate of the bias between the MoM estimator and the expectation of
the entire standardized Pareto distribution P(1, γ) seems to be dependent on the Pareto
index γ. Indeed, the convergence rate varies between 1

n and 1
n0.7 and becomes closer to

1
n when the distribution tail becomes increasingly thinner, that is, when γ is increasing.
See Figure 4.13.

Now that we have studied the bias between the MoM estimator applied to the entire
standardized Pareto distribution and the expectation, we focus on the bias between
the MoM estimator applied to the entire standardized Pareto distribution tail and
the ESα in two different frameworks. The first framework refers to the idealized case
where the empirical α-quantile matches the theoretical VaRα. The second framework
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corresponds to the realistic case where the empirical α-quantile does not match the
theoretical VaRα.

4.4.5 Bias between the MoM estimator applied to the standardized
Pareto distribution tail above the true VaRα and the true ES

(Idealized case)

In the idealized case, the empirical α-quantile matches the true VaRα, which is sup-
posed to be known. In this case, the estimator of the ESα in the standardized Pareto
distribution P(1, γ), is the empirical average of the standardized Pareto distribution
conditional on its values being above the true VaRα. The conditioning threshold is
independent on the underlying sample. This implies that the samples larger than the
true VaRα are independent and identically distributed (i.i.d.) and the stability by
conditioning and scaling properties of the Pareto distribution, as stated in Theorem
4.7, are valid. The stability by conditioning property implies that the standardized
Pareto distribution P(1, γ) conditional on its values being above the true VaRα is still
a Pareto distribution, with the same shape parameter γ, but a new scaling parameter
equal to the conditioning parameter VaRα. The scaling property states that this non-
standardized Pareto distribution P(VaRα, γ) is proportional to the marginal Pareto
distribution P(1, γ), with a proportionality factor equal to the conditioning parameter
VaRα. Therefore, the standardized Pareto distribution conditional on its values be-
ing above the true VaRα is proportional to the standardized Pareto distribution with
a proportionality factor equal to VaRα. This implies that the MoM estimator ap-
plied to the standardized Pareto distribution conditional on its values being above the
true VaRα, is proportional to the MoM estimator applied to the entire standardized
Pareto distribution, with a proportionality factor equal to VaRα. Similarly, the ESα is
proportional to the expectation of the standardized Pareto distribution, with a propor-
tionality factor equal to VaRα. Thus, the bias between the MoM estimator applied
to the standardized Pareto distribution conditional on its values being above the true
VaRα and the ESα is proportional to the bias between the MoM estimator applied to
the entire standardized Pareto distribution and the expectation, with a proportionality
factor equal to VaRα.

BESα(M̂oMn) = VaRα ×Bµ(M̂oMn). (4.173)

Because Bµ(M̂oMn) converges asymptotically to 0, the bias BESα(M̂oMn) converges
asymptotically to 0 too.

In the idealized case, we approximately recover the convergence rate of the bias between
the MoM estimator applied to the entire standardized Pareto distribution and the ex-
pectation, between 1

n and 1
n0.7 . This can be explained as follows. Owing to the stability

by conditioning and scaling properties of the Pareto distribution, the bias between the
MoM estimator applied to the standardized Pareto distribution tail above the true
VaRα and ESα is proportional to the bias between the MoM estimator applied to
the entire standardized Pareto distribution and the expectation, with a proportionality
factor equal to VaRα. Because the proportionality factor VaRα is independent on the
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(a) (b)

(c) (d)

(e)

Figure 4.14: Evolution of the bias between the MoM estimator applied to the standard-
ized Pareto distribution tail above the true VaRα and the ESα, for five different shape
parameters versus the sample size, with 95% CI, over 104 repetitions, (a) P(1, 2.5), (b)
P(1, 3.5), (c) P(1, 5), (d) P(1, 7.5), (e) P(1, 10).

underlying sample, the convergence rate of the bias between the MoM estimator ap-
plied to the standardized Pareto distribution tail above VaRα and the true ESα is the
same as that of the bias between the MoM estimator applied to the entire standardized
Pareto distribution and the expectation. See Figure 4.15.

4.4.6 Bias between the MoM estimator applied to the standardized
Pareto distribution tail above the empirical α-quantile and the
true ES (Realistic case)

In the realistic case, the empirical α-quantile does not match the true VaRα. In this
case, the estimator of the ESα in the standardized Pareto distribution P(1, γ) is the
empirical average of the standardized Pareto distribution conditional on its values be-
ing above the empirical α-quantile. The conditioning threshold is an order statistics
and depends on the underlying sample. This implies that the samples larger than the
empirical α-quantile are no longer independent and identically distributed (i.i.d.). The
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(a) (b)

(c) (d)

(e)

Figure 4.15: Log bias between the MoM estimator applied to the standardized Pareto
distribution tail above the true VaRα and the Expected-Shortfall, for five shape para-
meters, versus the log sample size, with 95% CI, over 104 repetitions, (a) P(1, 2.5), (b)
P(1, 3.5), (c) P(1, 5), (d) P(1, 7.5), (e) P(1, 10).

stability by conditioning and scaling properties of the Pareto distribution, as stated in
Theorem 4.7, are no longer valid. Therefore, the distribution of the samples larger than
the empirical α-quantile is not necessarily a Pareto distribution. The distribution of
the samples larger than the empirical α-quantile is unknown and it is more challenging
to establish an analytic closed-form formula for the bias between the MoM estimator
applied to the standardized Pareto distribution tail above this threshold and the ESα.
For this reason, we only provide simulations. See Figures 4.16 and 4.17.

It is expected that the bias between the MoM estimator applied to the standardized
Pareto distribution tail above the empirical α-quantile and the ESα, be a power function
of the sample size. Therefore, it is expected that the logarithm of the bias be a linear
function of the logarithm of the sample size. For this reason, to have an insight into the
convergence speed of the bias between the MoM applied to the standardized Pareto
distribution tail above the empirical α-quantile and the ESα, we study the log-log plot
of the bias versus the sample size. See Figure 4.17.
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(a) (b)

(c) (d)

(e)

Figure 4.16: Evolution of the bias between the MoM estimator applied to the stand-
ardized Pareto distribution tail above the empirical α-quantile and the ESα, for five
different shape parameters versus the log sample size, with 95% CI, over 105 repetitions,
(a) P(1, 2.5), (b) P(1, 3.5), (c) P(1, 5), (d) P(1, 7.5), (e) P(1, 10).

The convergence rate of the bias between the MoM estimator applied to the standard-
ized Pareto distribution tail above the empirical α-quantile and the true ESα, seems to
be the same as the convergence rate in the idealized case, and thus the same as the con-
vergence rate of the bias between the MoM estimator applied to the entire standardized
Pareto distribution and the expectation. This suggests that it would be sufficient to
study the bias between the MoM estimator applied to the entire standardized Pareto
distribution and the expectation. Deriving a closed-form formula for this bias is still a
work in progress.
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(a) (b)

(c) (d)

(e)

Figure 4.17: Log bias between the MoM estimator applied to the standardized Pareto
distribution tail above the empirical α-quantile and the ESα, for five different shape
parameters versus the log sample size, with 95% CI, over 105 repetitions, (a) P(1, 2.5),
(b) P(1, 3.5), (c) P(1, 5), (d) P(1, 7.5), (e) P(1, 10)

4.5 Trimmed-Mean (TM) Estimator for heavy-tailed
distribution

4.5.1 Presentation of the estimator

The Trimmed-Mean estimator is based on the following principle. The most natural
attempt to improve the performance of the empirical mean is to remove possible outliers
by truncating the sample. The Trimmed-Mean estimator is defined by removing a frac-
tion of the sample, representing the ϵn largest and smallest points for some parameter
ϵ ∈ (0, 1), and then averaging over the rest.

The estimator splits data into two equal parts. One half is used to determine the
correct truncation level. The points from the other half are averaged, except for the
data points that fall outside the truncation region, which are thresholded. For con-
venience of notation, we assume that the data are composed of 2n independent copies
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of random variable XP(1, γ), denoted by X1, . . . , Xn, Y1, . . . , Yn. We respectively de-
note by X⋆

1 , . . . , X
⋆
n and Y ⋆

1 , . . . , Y
⋆
n the order statistics sequences related to samples

X1, . . . , Xn =: Xn and Y1, . . . , Yn =: Yn.

Define the truncation function:

ϕYn(x) =


Y ⋆
⌈(1−ϵ)n⌉ if x > Y ⋆

⌈(1−ϵ)n⌉,

x if x ∈
[
Y ⋆
⌈ϵn⌉, Y

⋆
⌈(1−ϵ)n⌉

]
,

Y ⋆
⌈ϵn⌉ if x < Y ⋆

⌈ϵn⌉.

(4.174)

With this notation in place, the definition of the estimator is as follows:

(i) Given a confidence level δ ≥ 8e−3n/16, we set:

ϵn =
16 log(8/δ)

3n
. (4.175)

(ii) Set:

T̂M2n =
1

n

n∑
i=1

ϕYn(Xi). (4.176)

The drawback of this estimator is that, for a high confidence threshold, the amount of
data required to obtain a reasonable truncation threshold is very large.

4.5.2 Concentration inequality

From (Lugosi and Mendelson, 2019, p.14), a concentration inequality of the Trimmed-
Mean estimator is provided to quantify the performance of the estimator.

Theorem 4.30. Let X1, . . . , Xn, Y1, . . . , Yn, be independent and identically distributed
(i.i.d.) random variables with mean µ and variance σ2. Let δ ∈ (0, 1) be such that
n > 16 log(8/δ)

3 . Then, with a probability of at least 1− δ:

∣∣∣T̂M2n − µ
∣∣∣ ≤ 9σ

√
log(8/δ)

n
. (4.177)

Recall that the goal of the survey is to study the bias between the empirical ESα,
when the latter is estimated by the Trimmed-Mean estimator applied to the standard-
ized Pareto distribution tail, and the true ESα in two frameworks: the idealized case
where the empirical α-quantile matches the true VaRα and the realistic case where the
empirical α-quantile does not match the true VaRα. To this end, we first study the
bias between the Trimmed-Mean estimator applied to the entire standardized Pareto
distribution P(1, γ) and the expectation.
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4.5.3 Bias of the Trimmed-Mean applied to the entire standardized
Pareto distribution and the expectation

Let X1, . . . , Xn, Y1, . . . , Yn be 2n independent copies of the random variable X that
follows a standardized Pareto distribution P(1, γ). The expectation of the distribution
is denoted as µ = E[X] = γ

γ−1 . Truncation on both sides of the distribution is relevant
when both tails of the distribution are unbounded and contain extreme values. However,
the Pareto distribution presents the particularity that its left tail is bounded, whereas
its right tail is not bounded. This implies that to eliminate the outliers, it is not required
to threshold the left tail of the distribution, but only the right tail.

In this specific case, the truncation function is given by:

ϕYn(x) =


Y ⋆
⌈(1−ϵ)n⌉ if x > Y ⋆

⌈(1−ϵ)n⌉,

x if x ∈
[
1, Y ⋆

⌈(1−ϵ)n⌉

]
.

(4.178)

We then define the Trimmed-Mean estimator as in Equation (4.176) with the same
parameter ϵn as given in Equation (4.175).

Moreover, it is important to note that the truncation thresholds are fixed on a sample
that is independent of the sample on which the estimator is built.

The bias between the Trimmed-Mean estimator and the expectation of the standardized
Pareto distribution is defined by:

Bµ(T̂M2n) = E
[
T̂M2n

]
− µ. (4.179)

Proposition 4.31 (Bias of the Trimmed-Mean estimator in the standardized Pareto
distribution). Let X1, . . . , Xn, Y1, . . . , Yn and X⋆

1 , . . . , X
⋆
n, Y

⋆
1 , . . . , Y

⋆
n , be respectively 2n

independent copies of the random variable X that follows a standardized Pareto distribu-
tion P(1, γ), and the related order statistics. Let ϵn ∈ (0, 1) be the truncation threshold
that satisfies Equation (4.175). The bias between the Trimmed-Mean estimator applied
to the entire standardized Pareto distribution P(1, γ) and the expectation is then given
as follows:

Bµ(T̂M2n) = − 1

γ − 1
E

[(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ
]
= − 1

γ − 1
κϵ,nB

(
n−

⌈
(1− ϵ)n

⌉
+ 2− 1

γ
,
⌈
(1− ϵ)n

⌉)
.

(4.180)

where κϵ,n = n!(⌈
(1−ϵ)n

⌉
−1

)
!

(
n−
⌈
(1−ϵ)n

⌉)
!
and B(x, y) =

∫ 1
0 u

x−1(1−u)y−1du = Γ(x)Γ(y)
Γ(x+y) .
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Proof To compute the expectation of the Trimmed-Mean estimator, we have to con-
sider the conditioning with respect to the sequence of random variables Y1, . . . , Yn on
which the truncation thresholds are fixed. The tower property states that:

E
[
T̂M2n

]
= E

[
E
[
T̂M2n|Yn

]]
=

1

n

n∑
i=1

E
[
E
[
ϕYn(Xi)|Yn

]]
(4.181)

=
1

n

n∑
i=1

E

[
E
[
Y ⋆
⌈(1−ϵ)n⌉1{Xi>Y ⋆

⌈(1−ϵ)n⌉} +Xi1{1≤Xi≤Y ⋆
⌈(1−ϵ)n⌉}|Yn

]]
.

(4.182)

Since the random draws Xi are i.i.d., we get:

E
[
T̂M2n

]
= E

[
E
[
Y ⋆
⌈(1−ϵ)n⌉1{X1>Y ⋆

⌈(1−ϵ)n⌉} +X11{1≤X1≤Y ⋆
⌈(1−ϵ)n⌉}|Yn

]]
. (4.183)

First, we focus on the internal expectation. The conditioning allows fixing, in a first
time, the threshold Y ⋆

⌈(1−ϵ)n⌉ that is a random variable which is Yn-measurable. Under
conditioning, we are then able to compute the expectation with respect to X1 ∼ P(1, γ):
the first term writes

E
[
Y ⋆
⌈(1−ϵ)n⌉1{X1>Y ⋆

⌈(1−ϵ)n⌉}|Yn

]
= Y ⋆

⌈(1−ϵ)n⌉

∫ +∞

Y ⋆
⌈(1−ϵ)n⌉

fX1(x)dx =
(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ
.

(4.184)

The second term writes:

E
[
X11{1≤X1≤Y ⋆

⌈(1−ϵ)n⌉}|Yn

]
=

∫ Y ⋆
⌈(1−ϵ)n⌉

1
x

γ

xγ+1
dx =

γ

γ − 1
−
(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ γ

γ − 1
.

(4.185)

Second, let us take the external expectation with respect to Yn:

E
[
T̂M2n

]
= E

[(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ
+

γ

γ − 1
−
(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ γ

γ − 1

]
(4.186)

= µ− 1

γ − 1
E

[(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ
]
. (4.187)

We have proved that the bias of the Trimmed-Mean estimator, given by Equation
(4.185), is equal to:

Bµ(T̂M2n) = − 1

γ − 1
E

[(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ
]
. (4.188)

This bias is negative, which is consistent with the fact that the right tails are truncated.
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From Equation (4.152), and taking κϵ,n = n!

(
⌈
(1−ϵ)n

⌉
−1)!(n−

⌈
(1−ϵ)n

⌉
)!
, the density of

Y ⋆
⌈(1−ϵ)n⌉ is given by:

fY ⋆
⌈(1−ϵ)n⌉

(x) = κϵ,n

(
γ

xγ+1

)1−
(
1

x

)γ

⌈
(1−ϵ)n

⌉
−1(1

x

)γ
n−

⌈
(1−ϵ)n

⌉
1{x≥1}.

(4.189)

Recall that ε depends on n in the definition of the Trimmed-Mean estimator; however,
for the sake of simplicity, we simply write ε instead of εn. Then

E

[(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ
]
=

∫ +∞

1
x1−γfY ⋆

⌈(1−ϵ)n⌉
(x)dx (4.190)

= κϵ,n

∫ +∞

1
x1−γ

(
γ

xγ+1

)1−
(
1

x

)γ

⌈
(1−ϵ)n

⌉
−1(1

x

)γ
n−

⌈
(1−ϵ)n

⌉
dx.

(4.191)

Using the following substitution y = x−γ , dy = −γx−γ−1dx, we get:

E

[(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ
]
= κϵ,n

∫ 1

0
y
n−
⌈
(1−ϵ)n

⌉
+1− 1

γ (1− y)

⌈
(1−ϵ)n

⌉
−1

dy (4.192)

= κϵ,nB

(
n−

⌈
(1− ϵ)n

⌉
+ 2− 1

γ
,
⌈
(1− ϵ)n

⌉)
. (4.193)

Consequently,

Bµ(T̂M2n) = − 1

γ − 1
κϵ,nB

(
n−

⌈
(1− ϵ)n

⌉
+ 2− 1

γ
,
⌈
(1− ϵ)n

⌉)
. (4.194)

Theorem 4.32 (Asymptotic bias of the Trimmed-Mean estimator in the standardized
Pareto distribution). As n→ +∞,

Bµ(T̂M2n) = − 1

γ − 1

Γ
(⌊
Cδ

⌋
+ 2− 1

γ

)
Γ(
⌊
Cδ

⌋
+ 1)

n
1
γ
−1

+ o

(
n

1
γ
−1
)
. (4.195)

where for all x ∈ R, Γ(x) =
∫ +∞
0 ux−1e−udu is the Gamma function.

Proof First, let us simplify the expression
⌈
(1− ϵ)n

⌉
.

Lemma 4.33 (Integer part). Let x ∈ R+. Let ⌊x⌋ and ⌈x⌉ be respectively the lower
and upper integer parts of x, defined as the largest integer below x and smallest integer
above x.

Subsequently, for any n ∈ N and c ∈ [0,+∞) the upper integer part of n − c satisfies
the following rule:

⌈n− c⌉ = n− ⌊c⌋. (4.196)
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The proof is easy and left to the reader.

Recall that ϵ is defined by ϵ = 16 log(8/δ)
3n . At fixed δ, ϵ can be rewritten as:

ϵ =
Cδ

n
with Cδ =

16 log(8/δ)

3
. (4.197)

For δ = 0.05, Cδ ≃ 27.068. Then⌈
(1− ϵ)n

⌉
= ⌈n− ϵn⌉ =

⌈
n− Cδ

⌉
= n−

⌊
Cδ

⌋
. (4.198)

Then the bias can be rewritten as follows:

Bµ(T̂M2n) = − 1

γ − 1
κϵ,nB

(⌊
Cδ

⌋
+ 2− 1

γ
, n−

⌊
Cδ

⌋)
with κϵ,n =

n!

(n−
⌊
Cδ

⌋
− 1)!(

⌊
Cδ

⌋
)!
.

(4.199)

For any positive integer m, recall that Γ(m + 1) = m!. The bias formula can then be
simplified as follows:

Bµ(T̂M2n) = − 1

γ − 1

n!

(n−
⌊
Cδ

⌋
− 1)!(

⌊
Cδ

⌋
)!

Γ
(⌊
Cδ

⌋
+ 2− 1

γ

)
Γ(n−

⌊
Cδ

⌋
)

Γ
(
n+ 2− 1

γ

) (4.200)

= − 1

γ − 1

Γ
(⌊
Cδ

⌋
+ 2− 1

γ

)
Γ(
⌊
Cδ

⌋
+ 1)

Γ(n+ 1)

Γ
(
n+ 2− 1

γ

) . (4.201)

Similarly to the proof of Theorem ??, we use a Taylor expansion of the Gamma function
to estimate the bias of the Trimmed-Mean estimator, when n goes to infinity.

From Stirling’s expansion for the Gamma function given in Equation (4.91), we can
write the following equalities. Let us write the expansion of each factor in Equation
(4.201):

Γ(n+ 1) =
√
2πn

(
n

e

)n
1 +

1

12n
+ o

(
1

n

) , (4.202)

Γ

(
n+ 2− 1

γ

)
=

√√√√2π

(
n+ 1− 1

γ

)n+ 1− 1
γ

e

n+1− 1
γ

1 +
1

12
(
n+ 1− 1

γ

) + o

(
1

n

) .

(4.203)

The ratio between the two Gamma functions can be written under following form:

Γ(n+ 1)

Γ
(
n+ 2− 1

γ

) = A×B × C, (4.204)
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where:

A =

√
2πn√

2π
(
n+ 1− 1

γ

) =

√
n√

n+ 1− 1
γ

, (4.205)

B =

(
n

e

)n
 e

n+ 1− 1
γ

n+1− 1
γ

, (4.206)

C =

(
1 + 1

12n + o
(

1
n

))
1 + 1

12

(
n+1− 1

γ

) + o
(

1
n

)
. (4.207)

Let us simplify each of the above expressions. Regarding A, we have

A =

√√√√ 1

1 + 1
n

(
1− 1

γ

) (4.208)

=

√√√√1− 1

n

(
1− 1

γ

)
+ o

(
1

n

)
(4.209)

= 1− 1

2n

(
1− 1

γ

)
+ o

(
1

n

)
. (4.210)

Notice that B can be rewritten as follows:

B =

(
n

e

)n
 e

n+ 1− 1
γ

n+1− 1
γ

(4.211)

= e
1− 1

γ

n+ 1− 1
γ

n

−n(
n+ 1− 1

γ

) 1
γ
−1

(4.212)

= e
1− 1

γ
−n log

n+1− 1
γ

n

+

(
1
γ
−1

)
log

(
n+1− 1

γ

)
(4.213)

= e
1− 1

γ
−n log

(
1+ 1

n

(
1− 1

γ

))
+

(
1
γ
−1

)
log(n)+

(
1
γ
−1

)
log

(
1+ 1

n

(
1− 1

γ

))
. (4.214)

Providing a Taylor expansion at the first and second order of log
(
1 + 1

n

(
1− 1

γ

))
we

get:

B = e
1− 1

γ
−
(
1− 1

γ

)
+ 1

2n

(
1− 1

γ

)2
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(
1
γ
−1

)
log(n)− 1

n

(
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+o
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1
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)
(4.215)

= n
1
γ
−1
e
− 1

2n

(
1− 1

γ

)2

+o
(

1
n

)
(4.216)

= n
1
γ
−1

1− 1

2n

(
1− 1

γ

)2

+ o

(
1

n

) . (4.217)
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Finally, let us provide a Taylor expansion of C.

C =

(
1 + 1

12n + o
(

1
n

))
1 + 1

12

(
n+1− 1

γ

) + o
(

1
n

)
(4.218)

=

1 +
1

12n
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1
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)
1− 1
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(
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) (4.219)

=

1 +
1

12n
+ o

(
1

n

)1− 1
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(
1
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) (4.220)

= 1 +
1

12n
− 1

12n
+ o

(
1

n

)
= 1 + o

(
1

n

)
. (4.221)

Gathering the expressions of A,B,C we obtain:

Γ(n+ 1)

Γ
(
n+ 2− 1

γ

) = A×B × C (4.222)

=
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1− 1
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)
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1
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= n
1
γ
−1

1− 1

2n

(
2− 1

γ

)(
1− 1

γ

)
+ o

(
1

n

) . (4.224)

But we want at least that the first moment of the Pareto distribution might be finite.
Therefore, we take γ > 1, what implies that 1

γ − 1 < 0. Then we get:

Γ(n+ 1)

Γ
(
n+ 2− 1

γ

) = n
1
γ
−1

+ o

(
n

1
γ
−1
)

(4.225)

and finally, we obtain,

Bµ(T̂M2n) = − 1

γ − 1

Γ
(⌊
Cδ

⌋
+ 2− 1

γ

)
Γ(
⌊
Cδ

⌋
+ 1)

n
1
γ
−1

+ o

(
n

1
γ
−1
)
. (4.226)

A closed-form formula for the bias between the R̂TMn estimator applied to the entire
standardized Pareto distribution P(1, γ) and the expectation has been provided. Before
providing results about the bias between the R̂TMn estimator applied to the standard-
ized Pareto distribution tail and the ESα, we provide some numerical experiments to
support the theory.
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We are interested in studying the evolution of the bias between the Right-Trimmed-
Mean (RTM) estimator applied to the entire standardized Pareto distribution P(1, γ)

and the expectation of the distribution. The graph representing the evolution of this
bias, for several Pareto indices, in function of the log-sample size is provided in Figure
4.18.

(a) (b)

(c)

Figure 4.18: Evolution of the bias between the RTM estimator applied to the entire
standardized Pareto distribution P(1, γ) and its expectation for three different shape
parameters versus the lo sample size, with 95% CI, over 104 repetitions, (a) P(1, 2.5),
(b) P(1, 3.5), (c) P(1, 5).

As previously mentioned, we are also interested in determining the convergence speed
of the bias between the Right-Trimmed-Mean (RTM) estimator applied to the entire
standardized Pareto distribution P(1, γ) and the expectation. Because the bias is a
power function of the sample size, the logarithm of the bias is a linear function of the
logarithm of the sample size with the convergence speed as the slope. For this reason,
we display the log-log plot of the bias versus the sample size. See Figure 4.19.

For three standardized Pareto distributions P(1, 2.5), P(1, 3.5), P(1, 5), we obtain con-
vergence speeds equal to 1

n0.593 , 1
n0.707 and 1

n0.789 respectively. Therefore, the convergence

speed varies as a function of the Pareto index γ and satisfies the rule n
1
γ
−1, multiplied

by the proper constant. Consequently, the numerical study confirms the theoretical
results.

Moreover, these results can be extended to any non-standardized Pareto distribution
P(xm, γ), with xm > 0. Indeed, the scaling property of the Pareto distribution states
that any non-standardized Pareto distribution P(xm, γ) is proportional to the standard-
ized Pareto distribution P(1, γ) with a proportionality factor equal to the new scaling
parameter xm. This implies that the R̂TMn estimator applied to the non-standardized
Pareto distribution P(xm, γ) is proportional to the R̂TMn estimator applied to the
standardized Pareto distribution P(1, γ) with a proportionality factor equal to xm.
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(a) (b)

(c)

Figure 4.19: Logarithm of the bias between the R̂TMn estimator applied to the stand-
ardized Pareto distribution P(1, γ) and its expectation, for three different shape para-
meters, versus the log sample size, with 95% CI, over 104 repetitions, (a) P(1, 2.5), (b)
P(1, 3.5), (c) P(1, 5).

Similarly, the expectation of the non-standardized Pareto distribution P(xm, γ) is pro-
portional to the expectation of the standardized Pareto distribution P(1, γ) with a
proportionality factor equal to xm. Consequently, the bias between the R̂TMn estim-
ator applied to the non-standardized Pareto distribution P(xm, γ) and the expectation
is proportional to the bias between the R̂TMn estimator applied to the standardized
Pareto distribution P(1, γ) and the expectation, with a proportionality factor equal to
xm. Because xm is independent of the sample, the convergence speed of the bias between
the R̂TMn estimator and the expectation of the non-standardized Pareto distribution
P(xm, γ) is the same as the convergence speed of the bias between the R̂TMn estimator
and the expectation of the standardized Pareto distribution P(1, γ).

Now that we have studied the evolution of the bias between the R̂TMn estimator and
the expectation of the entire standardized Pareto distribution P(1, γ), as well as its
convergence speed, we are interested in studying the evolution of the bias between the
R̂TMn estimator applied to the standardized Pareto distribution tail and the ESα in
two cases: an idealized case in which the conditioning threshold corresponds to the
theoretical VaRα, and a realistic case in which the conditioning threshold corresponds
to the empirical α-quantile.
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4.5.4 Bias between the Trimmed-Mean estimator applied to the
standardized Pareto distribution tail above the true VaRα and
the true ES (Idealized case)

In the idealized case, the empirical α-quantile matches the true VaRα, which is supposed
to be known. In this case, the estimator of the ESα in the standardized Pareto distribu-
tion P(1, γ) is the empirical average of the standardized Pareto distribution conditional
on its values being above the true VaRα. The conditioning threshold is independent of
the underlying sample and the stability by conditioning and the scaling properties of the
Pareto distribution, as stated in Theorem 4.7, are valid. The stability by conditioning
property implies that the standardized Pareto distribution P(1, γ) conditional on its
values being above VaRα is still a Pareto distribution, with the same shape parameter
γ, but a new scaling parameter equal to the conditioning parameter VaRα. The scaling
property states that this non-standardized Pareto distribution P(VaRα, γ) is propor-
tional to the marginal Pareto distribution P(1, γ), with a proportionality factor equal
to the conditioning parameter VaRα. Therefore, the standardized Pareto distribution
conditional on its values being above VaRα is proportional to the standardized Pareto
distribution with a proportionality factor equal to VaRα. This implies that the R̂TMn

estimator applied to the standardized Pareto distribution conditional on its values being
above VaRα, is proportional to the R̂TMn estimator applied to the entire standard-
ized Pareto distribution, with a proportionality factor equal to VaRα. Similarly, the
ESα is proportional to the expectation of the standardized Pareto distribution, with a
proportionality factor equal to VaRα. Thus, the bias between the R̂TMn estimator
applied to the standardized Pareto distribution conditional on its values being above
VaRα and the ESα is proportional to the bias between the R̂TMn estimator applied
to the entire standardized Pareto distribution and the expectation, with a proportion-
ality factor equal to VaRα. Because the conditioning threshold is independent on the
underlying sample, the convergence speed of the bias between the R̂TMn estimator
applied to the standardized Pareto distribution conditional on its values being above
VaRα and the true ESα is the same as that of the bias between the R̂TMn estimator
applied to the entire standardized Pareto distribution and the expectation.

BES(R̂TMn) = VaRα ×Bµ(R̂TMn) (4.227)

=
1

1− γ
(1− α)

− 1
γ κϵ,nB

(
n− ⌊(1− ϵ)n⌋+ 2− 1

γ
, ⌊(1− ϵ)n⌋

)
. (4.228)

The graph of the evolution of the bias between the R̂TMn estimator applied to the
standardized Pareto distribution tail above the true VaRα and the true ESα is provided
in Figure 4.20.

We are interested in the convergence speed of the bias between the Right-Trimmed-
Mean estimator applied to the standardized Pareto distribution tail above the true
VaRα and the ESα. Because the bias is a power function of the sample size, then the
logarithm of the bias is a linear function of the logarithm of the sample size with the
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(a) (b)

(c)

Figure 4.20: Evolution of the bias between the R̂TMn estimator applied to the stand-
ardized Pareto distribution tail above the true VaRα and the ESα, for three differ-
ent shape parameters, versus the sample size, with 95% CI, over 104 repetitions, (a)
P(1, 2.5), (b) P(1, 3.5), (c) P(1, 5).

convergence speed as the slope. Therefore, we display the log-log plot of the bias versus
the sample size. See Figure 4.21.

(a) (b)

(c)

Figure 4.21: Evolution of the logarithm of the bias between the R̂TMn estimator
applied to the Pareto distribution tail above the true VaRα and the ESα, for three
different shape parameters, versus the log-sample size, with 95% CI, over 104 repetitions,
(a) P(1, 2.5), (b) P(1, 3.5), (c) P(1, 5).
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Because VaRα is supposed to be known and does not depend on the underlying sample,
the convergence speed of the bias between the R̂TMn estimator applied to the stand-
ardized Pareto distribution tail above VaRα and the true ESα is the same as the con-
vergence speed of the bias between the R̂TMn estimator applied to the entire Pareto
distribution and the expectation, that is, of order n

1
γ
−1.

4.5.5 Bias between the Trimmed-Mean estimator applied to the
standardized Pareto distribution tail above the empirical
α-quantile and the true ES (Realistic case)

In the realistic case, the estimator of the ESα in the standardized Pareto distribution
P(1, γ) is the empirical average of the standardized Pareto distribution conditional on
its values being above the empirical α-quantile. In this case, the conditioning threshold
is an order statistic and depends on the underlying sample. This implies that the
samples larger than the empirical α-quantile are no longer independent and identically
distributed (i.i.d.). The stability by conditioning and scaling properties, as stated in
Theorem 4.7, are no longer valid. Therefore, the distribution of the samples larger
than the empirical α-quantile is not necessarily a Pareto distribution. Consequently,
the distribution of the samples larger than the empirical α-quantile is unknown, and
it is more difficult to establish an analytic closed-form formula for the bias between
the R̂TMn estimator applied to the standardized Pareto distribution tail above the
empirical α-quantile and the ESα. For this reason, we provide some experimental
study to give an insight about the convergence speed of the bias between the R̂TMn

applied to the Pareto distribution tail above the empirical α-quantile and the true ESα.
See Figure 4.22.

It is expected that the bias between the R̂TMn estimator applied to the standardized
Pareto distribution tail above the empirical α-quantile and the ESα, be a power function
of the sample size. Therefore, it is expected that the logarithm of the bias be a linear
function of the logarithm of the sample size. For this reason, to have an insight into the
convergence speed of the bias between the R̂TMn applied to the standardized Pareto
distribution tail above the empirical α-quantile and the ESα, we study the log-log plot
of the bias versus the sample size. See Figure 4.23.

The slopes of the log-log plots are between −0.6 and −0.75, this means that the con-
vergence speed of the bias between the R̂TMn applied to the standardized Pareto
distribution tail above the empirical α-quantile and the Expected-Shortfall is larger
than 1

n0.8 and lower than 1
n0.6 . The convergence speed of the bias between the R̂TMn

applied to the standardized Pareto distribution tail above the empirical α-quantile and
the Expected-Shortfall could match the theoretical convergence speed n

1
γ
−1.

4.6 Lee-Valiant (LV) Estimator

The Lee-Valiant estimator is an improved version of the MoM estimator, which includes
a correction term.
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(a) (b)

(c)

Figure 4.22: Evolution of the bias between the R̂TMn estimator applied to the Pareto
distribution tail above the empirical α-quantile and the ESα, for three different shape
parameters, versus the sample size, with 95% CI, over 104 repetitions, (a) P(1, 2.5), (b)
P(1, 3.5), (c) P(1, 5).

(a) (b)

(c)

Figure 4.23: Log bias between the R̂TMn estimator applied to the Pareto distribution
tail above the empirical α-quantile and the ESα, for three different shape parameters,
versus the log sample size, with 95% CI, over 104 repetitions, (a) P(1, 2.5), (b) P(1, 3.5),
(c) P(1, 5).



4.6. LEE-VALIANT (LV) ESTIMATOR 313

Definition 4.34 (Lee-Valiant estimator). For a given δ, define the Median-of-Mean
estimator M̂oMn = MoM(X1, . . . , Xn), computed on k = log

(
1
δ

)
≤ n blocks with

δ ≥ e−n and k an integer. The Lee-Valiant estimator is then defined as

L̂V n = M̂oMn +
1

n

n∑
i=1

(Xi − M̂oMn)(1−min(α(Xi − M̂oMn)
2, 1)) (4.229)

where the parameter α is the solution of the monotonic, piecewise-linear equation
n∑

i=1

min(α(Xi − M̂oMn)
2, 1) =

1

3
log

(
1

δ

)
. (4.230)

The zero of the equation:
n∑

i=1

min(α(Xi − M̂oMn)
2, 1)− 1

3
log

(
1

δ

)
= 0 (4.231)

can be solved using a dichotomy algorithm.

Concentration inequality

From (Gobet et al., 2022, p.14, Thm. 2.5), a deviation results is given as follows.

Theorem 4.35. Let X1, . . . , Xn be independent and identically distributed (i.i.d.) ran-
dom variables with mean µ and variance σ2. Let δ ∈ (0, 1) be such that δ ≥ e−n and
assume that k = log

(
1
δ

)
is an integer. Then, Lee-Valiant estimator L̂V n satisfies:

P

(∣∣∣L̂V n − µ
∣∣∣ < σ(1 + o(1))

√
2 log(1/δ)

n

)
≥ 1− δ (4.232)

where o(1) term goes to zero when
(
δ, log(1/δ)n

)
→ (0, 0).

See (Lee and Valiant, 2022) for more details about the Lee-Valiant estimator.

The goal of the survey is to study the bias between the empirical ESα, when the latter is
estimated by the Lee-Valiant estimator applied to the standardized Pareto distribution
tail, and the true ESα in two frameworks: the idealized case where the empirical α-
quantile matches the true VaRα and the realistic case where the empirical α-quantile
does not match the true VaRα. To this end, we first study the bias between the Lee-
Valiant estimator applied to the entire standardized Pareto distribution P(1, γ) and the
expectation.

Bias between the Lee-Valiant (LV) estimator applied to the entire
standardized Pareto distribution and the expectation

The Lee-Valiant estimator can be seen as the corrected MoM estimator. Because the
analytic form for the bias of the MoM estimator is difficult to determine, the difficulty
persists for the bias of the L̂Vn estimator. For this reason, we provide experimental
results to gain insight into the bias and its convergence speed. See Figure 4.24.
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(a) (b)

(c)

Figure 4.24: Evolution of the bias between the LV estimator applied to the entire
standardized Pareto distribution P(1, γ) and its expectation, for three different shape
parameters versus the sample size, with 95% CI, over 104 repetitions, (a) P(1, 2.5), (b)
P(1, 3.5), (c) P(1, 5).

Moreover, we are interested in the convergence speed of the bias between the L̂Vn estim-
ator applied to the entire standardized Pareto distribution P(1, γ) and the expectation.
The bias seems to move towards a power function of the sample size. The logarithm
of a power function is a linear function of the sample size, with the convergence speed
of the bias as the slope. Therefore, we display the log-log plot of the bias versus the
sample size. See Figure 4.25.

For three standardized Pareto distributions P(1, 2.5), P(1, 3.5), P(1, 5), the slopes of
the log-log plots are between −0.9 and −0.65. This implies that the convergence speed
of the bias between the L̂Vn estimator applied to the entire standardized Pareto dis-
tribution P(1, γ) and the expectation varies as a function of the Pareto index γ. For
three standardized Pareto distributions P(1, 2.5), P(1, 3.5), and P(1, 5), the conver-
gence speed of the bias is between 1

n0.9 and 1
n0.6 , that is larger than 1

n and lower than
1√
n
. Moreover, these results can be extended to any non-standardized Pareto distribu-

tion P(xm, γ), with xm > 0. Indeed, the scaling property of the Pareto distribution
states that any non-standardized Pareto distribution P(xm, γ) is proportional to the
standardized Pareto distribution P(1, γ), with a proportionality factor equal to the
new scaling parameter xm. This implies that the L̂Vn estimator applied to the non-
standardized Pareto distribution P(xm, γ) is proportional to the L̂Vn estimator applied
to the standardized Pareto distribution P(1, γ), with a proportionality factor equal to
xm. Similarly, the expectation of the non-standardized Pareto distribution P(xm, γ) is
proportional to the expectation of the standardized Pareto distribution P(1, γ), with a
proportionality factor equal to xm. Consequently, the bias between the L̂Vn estimator
applied to the non-standardized Pareto distribution P(xm, γ) and the expectation is
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(a) (b)

(c)

Figure 4.25: Log bias between the L̂Vn estimator applied to the entire standardized
Pareto distribution P(1, γ) and its expectation, for three different shape parameters,
versus the log sample size, with 95% CI, over 104 repetitions, (a) P(1, 2.5), (b) P(1, 3.5),
(c) P(1, 5).

proportional to the bias between the L̂Vn estimator applied to the standardized Pareto
distribution P(1, γ) and the expectation, with a proportionality factor equal to xm.
Because xm is independent of the sample, the convergence speed of the bias between
the L̂Vn estimator and the expectation of the non-standardized Pareto distribution
P(xm, γ) is the same as the convergence speed of the bias between the L̂Vn estimator
and the expectation of the standardized Pareto distribution P(1, γ).

Now that we have studied the evolution of the bias between the L̂Vn estimator and
the expectation of the entire standardized Pareto distribution P(1, γ), as well as its
convergence speed, we are interested in studying the evolution of the bias between the
L̂Vn estimator applied to the standardized Pareto distribution tail and the ESα in
two cases: an idealized case in which the conditioning threshold corresponds to the
theoretical VaRα, and a realistic case in which the conditioning threshold corresponds
to the empirical α-quantile.

Bias between the Lee-Valiant (LV) estimator applied to the standardized
Pareto distribution tail above the true VaRα and the ESα (Idealized case)

In the idealized case, the empirical α-quantile matches the true VaRα, which is known.
In this case, the estimator of the ESα in the standardized Pareto distribution P(1, γ)

is the empirical average of the standardized Pareto distribution conditional on its val-
ues being above the true VaRα. The conditioning threshold is independent on the
underlying sample. This implies that the samples larger than the true VaRα are inde-
pendent and identically distributed (i.i.d.) and the stability by conditioning and scaling
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properties, as stated in Theorem 4.7, are still valid. The stability by conditioning prop-
erty implies that the standardized Pareto distribution P(1, γ) conditional on its values
being above VaRα is still a Pareto distribution, with the same shape parameter γ,
but a new scaling parameter equal to the conditioning parameter VaRα. The scaling
property states that this non-standardized Pareto distribution P(VaRα, γ) is propor-
tional to the marginal Pareto distribution P(1, γ), with a proportionality factor equal
to the conditioning parameter VaRα. Therefore, the standardized Pareto distribution
conditional on its values being above VaRα is proportional to the standardized Pareto
distribution, with a proportionality factor equal to VaRα. This implies that the L̂Vn

estimator applied to the standardized Pareto distribution conditional on its values being
above VaRα, is proportional to the L̂Vn estimator applied to the entire standardized
Pareto distribution, with a proportionality factor equal to VaRα. Similarly, the ESα

is proportional to the expectation of the standardized Pareto distribution, with a pro-
portionality factor equal to VaRα. Thus, the bias between the L̂Vn estimator applied
to the standardized Pareto distribution conditional on its values being above VaRα

and the ESα is proportional to the bias between the L̂Vn estimator applied to the en-
tire standardized Pareto distribution and the expectation, with a proportionality factor
equal to VaRα.

BES(L̂Vn) = VaRα ×Bµ(L̂Vn). (4.233)

The graph of the evolution of the bias between the L̂Vn estimator applied to the stand-
ardized Pareto distribution tail above the true VaRα and the true ESα is provided in
Figure 4.26.

(a) (b)

(c)

Figure 4.26: Evolution of the bias between the L̂Vn estimator applied to the standard-
ized Pareto distribution tail above the true VaRα and the ESα, for three different shape
parameters, versus the sample size, with 95% CI, over 1000 repetitions, (a) P(1, 2.5),
(b) P(1, 3.5), (c) P(1, 5).
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We are interested in the convergence speed of the bias between the Lee-Valiant estimator
applied to the standardized Pareto distribution tail above the true VaRα and the ESα.
Because the bias is intended to be a power function of the sample size, then the logarithm
of the bias is a linear function of the logarithm of the sample size with the convergence
speed as the slope. Therefore, we display the log-log plot of the bias versus the sample
size. See Figure 4.27.

(a) (b)

(c)

Figure 4.27: Evolution of the log bias between the L̂Vn estimator applied to the Pareto
distribution’s tail above the true VaRα and the ESα, for three different shape para-
meters, versus the log sample size, with 95% CI, over 1000 repetitions, (a) P(1, 2.5),
(b) P(1, 3.5), (c) P(1, 5).

Because VaRα is supposed to be known and does not depend on the underlying sample,
the convergence speed of the bias between the L̂Vn estimator applied to the Pareto
distribution tail above VaRα and the ESα is the same as the convergence speed of
the bias between the L̂Vn estimator applied to the entire Pareto distribution and the
expectation, that is, between 1

n0.9 and 1
n0.6 .

Bias between the Lee-Valiant (LV) estimator applied to the standardized
Pareto distribution tail above the empirical α-quantile and the ESα

(Realistic case)

In the realistic case, the empirical α-quantile does not match the true VaRα. In this
case, the estimator of the ESα in the standardized Pareto distribution P(1, γ) is the
empirical average of the standardized Pareto distribution conditional on its values be-
ing above the empirical α-quantile. The conditioning threshold is an order statistic
and depends on the underlying sample. This implies that the samples larger than the
empirical α-quantile are no longer independent and identically distributed (i.i.d.). The
stability by conditioning and scaling properties of the Pareto distribution, as stated in
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Theorem 4.7, are no longer valid. Therefore, the distribution of the samples larger than
the empirical α-quantile is not necessarily a Pareto distribution. Thus, the distribution
of the samples larger than the empirical α-quantile is unknown and it is difficult to es-
tablish an analytic closed-form formula for the bias between the L̂Vn estimator applied
to the standardized Pareto distribution tail above this empirical α-quantile and the true
ESα. For this reason, we provide some experimental study to give an insight about the
convergence speed of the bias between the L̂Vn applied to the Pareto distribution tail
above the empirical α-quantile and the Expected-Shortfall. See Figure 4.28.

(a) (b)

(c)

Figure 4.28: Evolution of the bias between the L̂Vn estimator applied to the stand-
ardized Pareto distribution tail above the empirical α-quantile and the ESα, for three
different shape parameters, versus the sample size, with 95% CI, over 1000 repetitions,
(a) P(1, 2.5), (b) P(1, 3.5), (c) P(1, 5).

It is expected that the bias between the L̂Vn estimator applied to the standardized
Pareto distribution tail above the empirical α-quantile and the ESα, be a power function
of the sample size. Therefore, it is expected that the logarithm of the bias be a linear
function of the logarithm of the sample size. For this reason, to have an insight into
the convergence speed of the bias between the L̂Vn applied to the standardized Pareto
distribution tail above the empirical α-quantile and the ESα, we study the log-log plot
of the bias versus the sample size. See Figure 4.29.

The slopes of the log-log plots are between −0.9 and −0.7, this means that the conver-
gence speed of the bias between the L̂Vn applied to the standardized Pareto distribution
tail above the empirical α-quantile and the true ESα is larger than 1

n0.9 and lower than
1

n0.6 .
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(a) (b)

(c)

Figure 4.29: Evolution of the log bias between the L̂Vn estimator applied to the stand-
ardized Pareto distribution tail above the empirical α-quantile and the ESα, for three
different shape parameters, versus the log sample size, with 95% CI, over 1000 repeti-
tions, (a) P(1, 2.5), (b) P(1, 3.5), (c) P(1, 5).

4.7 Experimental results comparing all estimators

This section is dedicated to the presentation of experiments that illustrate the theor-
etical results. The distributions of the different estimators of the Expected-Shortfall
are studied and compared. For this purpose, histograms, scatterplots and tables are
presented.

Histograms: A histogram is a graphical representation of data points organized into
user-specified ranges. Similar in appearance to a bar graph, the histogram condenses a
data series into an easily interpreted visual by taking many data points and grouping
them into logical ranges or bins. In our specific case, histograms represent the Monte-
Carlo distribution of the estimators of the ESα and highlight the bias between the
empirical mean of the Monte-Carlo distribution of these estimators and the Expected-
Shortfall at the risk level α.

Scatterplots: A scatterplot, is a type of plot or mathematical diagram using Cartesian
coordinates to display values for typically two variables for a set of data. If the points
are coded (color/shape/size), one additional variable can be displayed. The data are
displayed as a collection of points, each having the value of one variable determining
the position on the horizontal axis and the value of the other variable determining the
position on the vertical axis.
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In our specific case, these scatterplots display the distribution of one estimator versus
another estimator. This allows a comparison of the performance of one estimator with
that of the other. If the samples line up along the diagonal both estimators provide the
same performance. The samples that are above the diagonal testify to better perform-
ance for the estimator represented in ordinates when they are located in the lower left
quarter, and to a worse performance of the estimator represented in ordinates when they
are located in the upper right quarter. The samples that are below the diagonal testify
to better performance for the estimator represented in abscissa when they are located
in the lower left quarter, and to a worse performance of the estimator represented in
abscissa when they are located in the upper right quarter.

Tables: For each estimator, we summarize descriptive statistics in tables. We present
for different tail sizes, the confidence interval, the length of the confidence interval, the
empirical mean and the empirical standard deviation.

Notations: We denote the number of random draws in the Monte-Carlo trajectory
by N , the risk level at which the empirical α-quantile is computed by α, the tail size
above the empirical α-quantile by n, the shape parameter (Pareto index) by γ, the
scaling parameter of the Pareto distribution by xm, the confidence threshold by δ, and
the truncation threshold for the Trimmed-Mean estimator by ϵ.

First, a comparison of each estimator is carried out with respect to the more common
one, the empirical mean. Then, the comparison is carried out between the two best
estimators.

4.7.1 Median-of-Means (MoM) with parametrization of Theorem
4.26 versus Empirical Mean (EM) for ES

In this section, the distribution of the M̂oMn estimator for the ES is compared with
the distribution of the empirical mean estimator for the ES for three shape values of
the Pareto distribution γ = 2.5 (the heavier tailed-distribution), γ = 3.5 and γ = 5

(the thinner tailed-distribution). In both cases, the experiments are carried out on the
distribution tail above the empirical α-quantile of a standardized Pareto distribution
P(1, γ). Moreover, the estimators are computed at a confidence level of 95%, on a
number of draws equal to 10000. The risk level α is fixed at 97.5% which leads to a tail
size of 250. Finally, the Monte-Carlo distribution of the estimators is built from 1000

trajectories. See Figure 4.30.

The distribution of the empirical mean for the ES is unbiased, whereas the distribution
of the MoM estimator for the ES presents a non-negligible bias. However, the distri-
bution of the empirical mean for the ES is heavy-tailed and presents a higher variance
than the distribution of the MoM estimator for the ES. This bias decreases when the
tail of the distribution becomes increasingly thinner, that is, when the shape parameter
increases.
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(a)

(b)

(c)

Figure 4.30: Monte-Carlo distributions of the MoM estimator for the ES versus the
empirical mean estimator for the ES, for three standardized Pareto distributions P(1, γ)
of different shape parameters: (a) γ = 2.5 (b) γ = 3.5 (c) γ = 5.

Moreover, the scatterplots show that the empirical mean estimator provides a better
estimation of the ES than the MoM estimator for small values but is less accurate for
large values.

4.7.2 Right-Trimmed-Mean (RTM) versus Empirical Mean (EM) for
ES

In this section, the distribution of the RTM estimator for the ES is compared with the
empirical mean estimator for the ES, for three shape values of the standardized Pareto
distribution, γ = 2.5, γ = 3.5 and γ = 5. In both cases, the experiments are conduc-
ted on the tail distribution above the empirical α-quantile of the standardized Pareto
distribution P(1, γ). The RTM estimator for the ES is built only on one half of the
distribution tail because the other half of the tail is used to estimate the upper trunca-
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tion threshold. Therefore, the number of draws in the entire trajectories is doubled so
that the number of samples on which the RTM estimator is built remains the same as
previously mentioned. Therefore, the estimators are still computed at a confidence level
of 95% but on a number of draws equal to 20000. The risk level α is still fixed at 97.5%,
which leads to a tail size of 500. Both training and test sets are composed of 250 draws.
The truncation percentage is fixed at 10%. Finally, the Monte-Carlo distribution of the
estimators is built from 1000 trajectories. See Figure 4.31.

(a)

(b)

(c)

Figure 4.31: Monte-Carlo distributions of the RTM estimator for the ES versus the
empirical mean estimator for the ES, for three standardized Pareto distributions P(1, γ)
of different shape parameters: (a) γ = 2.5 (b) γ = 3.5 (c) γ = 5.

As previously mentioned, the distribution of the empirical mean estimator for the ES is
unbiased, whereas the distribution of the RTM estimator for the ES exhibits an import-
ant bias that decreases when the tail of the Pareto distribution becomes increasingly
thinner, that is, when the shape parameter increases. Moreover, the distribution of the
empirical mean for the ES is heavy-tailed and presents a large variance whereas the
distribution of the RTM estimator for the ES is thin-tailed; therefore, its variance is
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lower.

The scatterplots allow us to conclude about the accuracy of the estimators. In both
cases, the estimation of the ES provided by the empirical mean estimator is better than
that provided by the RTM estimator.

4.7.3 Lee-Valiant (LV) versus Empirical Mean (EM) for ES

In this section, the distribution of the LV estimator for the ES is compared with the
empirical mean estimator for the ES, for three shape values of the Pareto distribution,
γ = 2.5, γ = 3.5 and γ = 5. In both cases, the experiments are carried out on the
distribution tail above the empirical α-quantile of the standardized Pareto distribution
P(1, γ). Moreover, the estimators are computed at a confidence level of 95%, on a
number of draws equal to 1000. The risk level α is fixed at 97.5% which leads to a tail
size of 250. Finally, the Monte-Carlo distribution of the estimators is built from 1000

trajectories. See Figure 4.32.

The distributions of both the empirical mean and of the LV estimators for the ES are
unbiased. Moreover, the distribution of the empirical mean for the ES is heavy-tailed
and exhibits a large variance, whereas the distribution of the LV estimator for the ES is
thin-tailed. This means that the variance of the empirical mean estimator for the ES is
higher than that of the LV estimator for the ES. Finally, the scatterplots show that both
the performance of the empirical mean estimator for the ES and the performance of the
LV estimator for the ES are the same, in most cases. They exhibit good performance
for the values at the heart of the distribution but poor performances for very low or
very high values (extreme values).

4.7.4 Lee-Valiant (LV) versus Median-of-Means (MoM) for ES

In this section, the distribution of the LV estimator for the ES is compared with the
MoM estimator for the ES, for three shape values of the standardized Pareto distribu-
tion, γ = 2.5, γ = 3.5 and γ = 5. In both cases, the experiments are conducted on the
tail distribution above the empirical α-quantile of the standardized Pareto distribution
P(1, γ). Moreover, the estimators are computed at a confidence level of 95%, on a
number of draws equal to 1000. The risk level α is fixed at 97.5% which leads to a tail
size of 250. Finally, the Monte-Carlo distribution of the estimators is built from 1000

trajectories.

As previously mentioned, the distribution of the MoM estimator for the ES is biased,
whereas the distribution of the LV estimator for the ES is not. The tail of the LV
estimator is thinner than that of the MoM estimator, which means that the variance
of the LV estimator is lower than that of the MoM estimator.

The scatterplots show that the estimations of the ES provided by the MoM estimator
and those provided by the LV estimator are significantly different from each other. In
most cases, the LV estimator provides an estimation of the ES that is more accurate



324
CHAPTER 4. MEAN ESTIMATION OF EXPECTED-SHORTFALL IN

HEAVY-TAILED DISTRIBUTIONS

(a)

(b)

(c)

Figure 4.32: Monte-Carlo distributions of the LV estimator for the ES versus the em-
pirical mean estimator for the ES, for three standardized Pareto distribution P(1, γ) of
different shape parameters: (a) γ = 2.5 (b) γ = 3.5 (c) γ = 5.

than that provided by the MoM estimator. The LV estimator can be seen as an
improved version of the MoM estimator.

In Figure 4.34, violin plots represent for each shape parameter γ the distribution of
four estimators: empirical mean (EM), MoM, LV and RTM. These violin plots confirm
the conclusions drawn from the histograms. Indeed, the LV estimator has the same
distribution as the empirical mean (EM), and these two estimators are unbiased. The
MoM estimator has a similar distribution, but presents a bias, and the RTM estimator
has a similar distribution but presents a large bias.
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(a)

(b)

(c)

Figure 4.33: Monte-Carlo distributions of the LV estimator for the ES versus the MoM
estimator for the ES, for three standardized Pareto distributions P(1, γ) of different
shape parameters: (a) γ = 2.5 (b) γ = 3.5 (c) γ = 5.

4.7.5 Summary of the results

Tables summarizing the descriptive statistics and the bias of the estimators (EM, MoM,
RTM, and LV) of the ESα, with α = 0.975, for several standardized Pareto distributions
with different Pareto indices (P(1, 2.5), P(1, 3.5), and P(1, 5)), with various tail size,
are provided. For P(1, 2.5), see Table 4.1, for P(1, 3.5), see Tables 4.2, and for P(1, 5)

see Tables 4.3. Moreover, the statistics are computed from 1000 repetitions of the
experiments, and confidence intervals are created at the level 95%.

In these tables, the blue color is dedicated to the target value, that is, the value of the
true ESα, the red color is used to the estimator that exhibits the worst performance,
and the green color highlights the estimator that exhibits the best performance.

(i) The above tables show that the ESα decreases when the Pareto index decreases,
that is, when the Pareto distribution tail becomes increasingly thinner.
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True ES = 7.289 - α = 0.975 - δ = 0.05 - γ = 2.5 - xm = 1 - nruns = 1000

N, n Estimator CI (q2.5% − q97.5%) Ê ˆStd
∣∣∣q97.5% − q2.5%

∣∣∣ Bias

N = 25000, n = 626

EM 6.824 − 7.782 7.288 0.287 0.958 −0.001383
MoM - Thm2 (k = 24, m = 26, r = 1) 6.640 − 7.535 7.074 0.231 0.894 −0.215191
RTM (ϵ = 0.447) 6.277 − 6.975 6.628 0.177 0.698 −0.661202
LV 6.823 − 7.773 7.279 0.248 0.950 −0.009763

N = 50000, n = 1251

EM 6.923 − 7.656 7.277 0.190 0.733 −0.011991
MoM - Thm2 (k = 24, m = 52, r = 2) 6.780 − 7.511 7.149 0.185 0.730 −0.140317
RTM (ϵ = 0.291) 6.553 − 7.110 6.831 0.145 0.557 −0.457658
LV 6.922 − 7.645 7.274 0.183 0.723 −0.015122

N = 100000, n = 2501

EM 7.039 − 7.574 7.288 0.142 0.535 −0.000797
MoM - Thm2 (k = 24, m = 104, r = 4) 6.959 − 7.495 7.208 0.137 0.537 −0.080829
RTM (ϵ = 0.217) 6.765 − 7.234 6.988 0.120 0.469 −0.300604
LV 7.038 − 7.571 7.286 0.137 0.533 −0.003205

Table 4.1: Descriptive statistics of the estimators (EM, MoM,
RTM, LV) of the ESα, with α = 0.975, are computed on
the standardized Pareto distribution P(1, 2.5). Statistics of
these estimators are computed from 1000 repetitions with a
confidence level equal to 95%. These experiments are carried
out four three distinct sizes of the distribution tail. (N is the
trajectory size and n is the tail size)

True ES = 4.017 - α = 0.975 - δ = 0.05 - γ = 3.5 - xm = 1 - nruns = 1000

N, n Estimator CI (q2.5% − q97.5%) Ê ˆStd
∣∣∣q97.5% − q2.5%

∣∣∣ Bias

N = 25000, n = 626

EM 3.864 − 4.180 4.0127 0.082 0.316 −0.003943
MoM - Thm2 (k = 24, m = 26, r = 1) 3.806 − 4.152 3.965 0.088 0.346 −0.051934
RTM (ϵ = 0.447) 3.685 − 3.974 3.822 0.071 0.289 −0.194164
LV 3.864 − 4.177 4.012 0.081 0.313 0.004163

N = 50000, n = 1251

EM 3.906 − 4.140 4.016 0.060 0.234 −0.000273
MoM - Thm2 (k = 24, m = 52, r = 2) 3.876 − 4.115 3.989 0.063 0.239 −0.027715
RTM (ϵ = 0.291) 3.789 − 4.001 3.892 0.055 0.212 −0.124526
LV 3.906 − 4.138 4.016 0.060 0.232 −0.000412

N = 100000, n = 2501

EM 3.939 − 4.097 4.017 0.041 0.159 0.000690
MoM - Thm2 (k = 24, m = 104, r = 4) 3.916 − 4.088 4.003 0.045 0.171 −0.013946
RTM (ϵ = 0.217) 3.861 − 4.025 3.942 0.041 0.164 −0.074801
LV 3.939 − 4.097 4.017 0.041 0.159 0.000620

Table 4.2: Descriptive statistics of the estimators (EM, MoM,
RTM, LV) of the ESα, with α = 0.975, are computed on
the standardized Pareto distribution P(1, 3.5). Statistics of
these estimators are computed from 1000 repetitions with a
confidence level equal to 95%. These experiments are carried
out four three distinct sizes of the distribution tail. (N is the
trajectory size and n is the tail’s size)

True ES = 2.614 - α = 0.975 - δ = 0.05 - γ = 5 - xm = 1 - nruns = 1000

N, n Estimator CI (q2.5% − q97.5%) Ê ˆStd
∣∣∣q97.5% − q2.5%

∣∣∣ Bias

N = 25000, n = 626

EM 2.552 − 2.683 2.615 0.0337 0.132 0.000458
MoM - Thm2 (k = 24, m = 26, r = 1) 2.530 − 2.673 2.599 0.037 0.143 −0.014891
RTM (ϵ = 0.447) 2.486 − 2.612 2.547 0.032 0.126 −0.067281
LV 2.552 − 2.683 2.615 0.034 0.132 0.000429

N = 50000, n = 1251

EM 2.570 − 2.662 2.615 0.0237 0.092 0.000508
MoM - Thm2 (k = 24, m = 52, r = 2) 2.560 − 2.662 2.607 0.026 0.102 −0.007571
RTM (ϵ = 0.291) 2.524 − 2.623 2.571 0.025 0.099 −0.042827
LV 2.570 − 2.662 2.615 0.024 0.092 0.000494

N = 100000, n = 2501

EM 2.582 − 2.650 2.614 0.017 0.068 0.000047
MoM - Thm2 (k = 24, m = 104, r = 4) 2.575 − 2.650 2.610 0.019 0.076 −0.003929
RTM (ϵ = 0.217) 2.553 − 2.627 2.589 0.019 0.074 −0.025168
LV 2.582 − 2.650 2.614 0.017 0.067 0.000040

Table 4.3: Descriptive statistics of the estimators (EM, MoM,
RTM, LV) of the ESα, with α = 0.975, are computed on the
standardized Pareto distribution P(1, 5). Statistics of these
estimators are computed from 1000 repetitions with a confid-
ence level equal to 95%. These experiments are carried out
for three distinct sizes of the distribution tail. (N is the tra-
jectory size and n is the tail’s size)
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Figure 4.34: Estimators distribution (1 000 runs), whiskers: 2.5− 97.5 perc.

(ii) The estimator of the ESα with the lowest standard deviation is the RTM, however
this estimator is significantly biased.

(iii) Two estimators are very interesting: the empirical mean estimator in the asymptotic
case and the LV estimator which demonstrates very good performance both in the non-
asymptotic and in the asymptotic cases. The empirical mean estimator has a lower
bias than the LV estimator but its standard deviation is higher than that of the LV
estimator. The estimator that presents the most relevant performance in the non-
asymptotic framework with a good trade-of between the bias and the standard deviation
is LV estimator. Indeed, the LV estimator has a low bias even if it is a bit higher than
that of empirical mean, and its standard deviation is the lowest.



328
CHAPTER 4. MEAN ESTIMATION OF EXPECTED-SHORTFALL IN

HEAVY-TAILED DISTRIBUTIONS

Proof of the bias between the empirical ES and the true ES in the
realistic case (when the empirical α-quantile does not match the true

VaRα)

Proof Let us recall the formula of the empirical Expected-Shortfall, ESn
α:

ESn
α =

1

n− ⌈αn⌉
n∑

i=1

Xi1{Xi≥qnα}. (4.234)

In the sake of simplicity, let us denote by r = ⌈αn⌉ the rank of the empirical α-quantile.
Then, the empirical ES corresponds to the average of the samples larger than the order
statistics of order r and can be rewritten as ESn

r = 1
n−r

∑n
i=1Xi1{Xi≥X⋆

r }.

The goal is to compute the bias between the empirical ES and the theoretical ES for a
Pareto distribution.

BESr [ESn
r ] = E

[
ESn

r

]
−ESr. (4.235)

where:

E
[
ESn

r

]
=

1

n− r

n∑
i=1

E
[
Xi1{Xi≥X⋆

r }

]
=

n

n− r
E
[
X11{X1≥X⋆

r }

]
(4.236)

because the sample is i.i.d..

The stake is to compute the expectation E
[
X11{X1≥X⋆

r }

]
. For that purpose, the know-

ledge of the joint distribution of Xi, X
⋆
r is useful. The proof is organized into two parts.

In a first time, the proof is carried out for the uniform distribution on [0, 1], in order
to explicitly compute the joint distribution of Xi, X

⋆
r . Second, a direct application to

the standardized Pareto distribution is provided owing to a variable change, from the
uniform distribution.

(i) Random variable Xi follows a uniform distribution on [0, 1].

For all (u, v) ∈ [0, 1]2,

P(X⋆
r ≤ u,Xi ≤ v) = E

[
1{X⋆

r≤u}∩{Xi≤v}}

]
. (4.237)

The tower property leads to:

P(X⋆
r ≤ u,Xi ≤ v) = E

[
E
[
1{X⋆

r≤u}∩{Xi≤v}} | Xi

]]
. (4.238)

Thanks to the measurability, we get:

P(X⋆
r ≤ u,Xi ≤ v) = E

[
1{Xi≤v}E

[
1{X⋆

r≤u} | Xi

]]
= E

[
1{Xi≤v}P(X⋆

r ≤ u | Xi)
]
.

(4.239)

Let us now focus on the conditional probability P(X⋆
r ≤ u | Xi).
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From (Reiss, 2012, p.13, formula (1.1.7)), since there are at least r samples lower than
the order statistics of order r, then the event {X⋆

r ≤ u} can be rewritten as follows:

{X⋆
r ≤ u} =


n∑

j=1

1{Xj≤u} ≥ r

 . (4.240)

Then, the probability of the event {X⋆
r ≤ u} becomes:

P(X⋆
r ≤ u | Xi) = P

 n∑
j=1

1{Xj≤u} | Xi

 (4.241)

= 1{Xi>u}P

 n∑
j=1,j ̸=i

1{Xj≤u} ≥ r

+ 1{Xi≤u}P

 n∑
j=1,j ̸=i

1{Xj≤u} ≥ r − 1

 .

(4.242)

Because the r.v. 1{Xj≤u} are Bernoulli, the sum of these r.v. is Binomial and, we can

write on the one hand, P
(∑n

j=1,j ̸=i 1{Xj≤u} ≥ r
)
=
∑n−1

k=r

(
n−1
k

)
uk(1−u)n−1−k, and on

the other hand, P
(∑n

j=1,j ̸=i 1{Xj≤u} ≥ r − 1
)
=
∑n−1

k=r−1

(
n−1
k

)
uk(1 − u)n−1−k. Then,

we get:

P(X⋆
r ≤ u,Xi ≤ v) = E

1Xi∈(u,v]

n−1∑
k=r

(
n− 1

k

)
uk(1− u)n−1−k + 1{Xi≤v,Xi≤u}

n−1∑
k=r−1

(
n− 1

k

)
uk(1− u)n−1−k


(4.243)

= E

1{Xi≤v}

n−1∑
k=r

(
n− 1

k

)
uk(1− u)n−1−k + 1{Xi≤v,Xi≤u}

(
n− 1

r − 1

)
ur−1(1− u)n−r


(4.244)

= P(Xi ≤ v)

n−1∑
k=r

(
n− 1

k

)
uk(1− u)n−1−k + P(Xi ≤ min(u, v))

(
n− 1

r − 1

)
ur−1(1− u)n−r.

(4.245)

Under the uniform distribution, we get:

P(X⋆
r ≤ u,Xi ≤ v) = v

n−1∑
k=r

(
n− 1

k

)
uk(1− u)n−1−k +min(u, v)

(
n− 1

r − 1

)
ur−1(1− u)n−r.

(4.246)

(ii) The random variable Yi follows a standardized Pareto distribution P(1, γ).

Let Yi be a standardized Pareto random variable such that Yi ∼ P(1, γ) with γ > 2,
with FYi , as cumulative distribution function. We call the generalized inverse of FYi ,
the function F−1

Yi
defined for all y ∈]0, 1] by:

F−1
Yi

(y) = inf
{
x ∈ R | FYi(x) ≥ y

}
= VaR(y) = (1− y)

− 1
γ . (4.247)
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If Xi is a uniform random variable such that Xi ∼ U([0, 1]), then F−1
Yi

(Xi) follows the
same distribution as Yi, that is the standardized Pareto distribution P(1, γ). Moreover,
because FYi is continuous on R and fYi > 0, then FYi(Yi) follows the uniform distribution
U([0, 1]).
Therefore:

Yi = F−1
Yi

(Xi) = VaR(Xi) = (1−Xi)
− 1

γ ∼ P(1, γ). (4.248)

Proceeding to the following quantile transformation VaRα(Xi) = Yi in Equation (4.246),
we obtain:

P(X⋆
r ≤ u,Xi ≤ v) = P(Y ⋆

r ≤ VaRα(u), Yi ≤ VaRα(v)). (4.249)

We would continue with the deriving of the joint cumulative distribution function to
compute the average of the empirical ESα, and by analyzing the asymptotic bias in n.
Currently, there is no simple formula that would allow us to carry out this analysis.
This is still a work in progress.

"Mathematics is the most beautiful and most powerful creation of the human spirit."

(Stefan Banach, International Congress of Mathematicians held in Zurich,
Switzerland, 1932.)





Etat de l’art et résumé des
contributions
Motivés par les différentes questions de recherche (RQ) énoncées dans la Section 4.1.3
du Chapter 1, nous fournissons maintenant un aperçu détaillé des contributions de cette
thèse où chaque chapitre est dédié à l’une des directions de recherche.

4.8 Contributions

4.8.1 Chapter 2 - Introduction aux processus Gaussiens
self-similaires et stationnaires

Etat de l’art

En finance, comprendre les effets temporels dans les processus est un problème majeur.
Certaines propriétés bien connues appelées stationnarité et auto-similarité sont liées à
ces effets temporels. Plus précisément, la propriété de stationnarité est associée à la
translation temporelle aussi connue sous le nom de changement d’origine temporelle et
la propriété d’auto-similarité est liée au changement d’échelle de temps.

La propriété de stationnarité d’un processus est intéressante car elle énonce que le pro-
cessus des incréments (c’est-à-dire le processus translaté dans le temps) et le processus
initial ont les mêmes caractéristiques. En d’autres termes, les caractéristiques d’un pro-
cessus stationnaire sont invariantes par translation, ou par changement d’origine tem-
porelle, en temps et en espace. La propriété d’autosimilarité suppose que le processus
changé d’échelle temporelle et le processus initial conservent les mêmes caractéristiques
par un redimensionnement spatial approprié. La propriété d’autosimilarité d’un proces-
sus établit une relation de proportionnalité spatiale entre les caractéristiques d’un pro-
cessus évalués à deux échelles de temps distinctes λt et t avec λ > 0, et le coefficient de
proportionnalité spatiale dépend de l’échelle temporelle λ. De plus, un processus auto-
similaire présente une dépendance à long ou à court terme. Selon les hypothèses faites
sur le processus, les propriétés de stationnarité et d’autosimilarité peuvent concerner
les caractéristiques L2 du processus, sa distribution (au sens faible), ou sa trajectoire
(au sens strict).

Mandelbrot et Van Ness ont été les premiers à introduire un processus Gaussien auto-
similaire avec des incréments stationnaires, le célèbre mouvement Brownien fraction-
naire en 1968 (Mandelbrot and Van Ness, 1968a). Ils fournissent une représentation in-
tégrale de tels processus. Dans (Taqqu, 1978), une représentation indexée dans le temps
pour une séquence de processus auto-similaires dont les moments fini-dimensionnels ont
été spécifiés est fournie. La représentation des processus stationnaires via l’équation de
Langevin et des processus auto-similaires a été étudiée dans (Viitasaari, 2016). Les pro-
priétés de stationnarité et d’auto-similarité ne sont pas spécifiques au cadre Gaussien,
mais sont souvent exploitées dans le cadre Gaussien du fait de ses propriétés pratiques
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et font l’objet de nombreuses études. Les processus auto-similaires sont étudiés en
détail dans (Das and Pan, 2011, Chap. 3), (Embrechts and Maejima, 2000), (Em-
brechts, 2009), (Samorodnitsky, 2006), (Chaumont, 2006). Dans (Lamperti, 1962),
les auteurs étudient les propriétés des processus semi-stables, y compris les processus
auto-similaires. Les processus stationnaires et auto-similaires sont utilisés dans divers
domaines, comme expliqué dans (Pardo, 2007). En effet, ils peuvent être utilisés pour
modéliser de nombreux phénomènes aléatoires qui présentent un changement d’échelle
espace-temps et qui peuvent être observés en finance, physique, biologie et dans d’autres
domaines. Par exemple, les fragments stellaires, la croissance et la généalogie des pop-
ulations, la tarification des options en finance, divers domaines du traitement d’images,
la climatologie, les sciences de l’environnement ne sont que quelques-uns des domaines
dans lesquels les processus auto-similaires sont utilisés. Les processus auto-similaires
apparaissent dans diverses parties de la théorie des probabilités, tels que les processus
de Lévy, les processus de branchement, la physique statistique, la théorie de la frag-
mentation, la théorie de la coalescence, les champs aléatoires. Quelques exemples bien
connus sont : le processus de Lévy stable, le mouvement Brownien fractionnaire, la diffu-
sion de branchement de Feller, les processus de Bessel, la fragmentation auto-similaire
(Bertoin, 2002). Les processus auto-similaires sont également utilisés en télécommu-
nications et en traitement du signal, comme évoqué dans (Sheluhin et al., 2007). La
construction de processus auto-similaires est expliquée dans (Fan et al., 2015). De tels
processus sont également très intéressants lors de l’ajout d’hypothèses supplémentaires
telles que l’indépendance de leurs incréments (Sato, 1991). En supposant la propriété
de stationnarité en plus de l’auto-similarité des processus, certains travaux montrent
que ces processus peuvent prendre une forme spécifique. En effet, dans (Samorodnitsky
et al., 1996, Chap. 7) ou dans (Barndorff-Nielsen and Pérez-Abreu, 1999), les auteurs
montrent qu’il existe un unique processus Gaussien auto-similaire avec des incréments
stationnaires et que ce processus correspond au mouvement Brownien fractionnaire. Les
processus auto-similaires avec des incréments stationnaires sont également étudiés dans
la théorie du chaos dans (Maejima and Tudor, 2012). Les auteurs prouvent que les
processus Gaussiens vivent dans le premier chaos de Wiener et que ces derniers sont
exprimés sous forme d’intégrales simples, avec une intégrande déterministe, par rapport
au processus de Wiener. Ensuite, dans le premier chaos de Wiener, le seul processus
Gaussien auto-similaire avec des incréments stationnaires est le mouvement Brownien
fractionnaire. De plus, les auteurs prouvent que les éléments du deuxième chaos de
Wiener sont des intégrales stochastiques doublement itérées par rapport au processus
de Wiener. Dans le deuxième chaos de Wiener, les processus auto-similaires avec des
incréments stationnaires ne sont plus Gaussiens, puis les auteurs prouvent qu’il existe
une infinité de tels processus. Les processus Gaussiens auto-similaires et stationnaires,
tels que le mouvement Brownien fractionnaire (fBm), ont trouvé de nombreuses applic-
ations en finance en raison de leur capacité à modéliser des comportements complexes
observés sur les marchés financiers, comme le démontre (Burnecki and Weron, 2004).
Une application importante est la modélisation et la prévision de la volatilité, qui est
cruciale pour la gestion des risques, la tarification des dérivés et l’optimisation de porte-
feuille. Les travaux de (Fernández-Martínez et al., 2013) montrent empiriquement que
les algorithmes, basés sur une approche géométrique (algorithmes GM), sont plus pré-
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cis que les algorithmes classiques, notamment avec des séries chronologiques de courte
durée. Les auteurs ont vérifié que les algorithmes GM sont efficaces lorsqu’ils travaillent
avec des mouvements Browniens (fractionnaires). En particulier, ils prouvent théorique-
ment que les algorithmes GM sont également valides pour explorer la mémoire longue
dans les mouvements (fractionnaires) Lévy stables. Dans (Lavancier et al., 2009), les
processus auto-similaires opératoires (os-s) sont étudiés. Dans cet article, un proces-
sus stochastique p-varié X = {X(t) = (X1(t), . . . , Xp(t)), t ∈ R} est dit auto-similaire
opératoire (os-s) s’il existe une matrice p×p H (appelée l’exposant de X) telle que pour
tout λ > 0, l’égalité suivante des distributions de dimension finie (fdd) soit vérifiée :

X(λt)
fdd
= λHX(t), (4.250)

et la matrice p×p λH est définie par la série de puissances λH = eH log(λ) =
∑∞

k=0
Hk(log(λ))k

k! .
De plus, un processus aléatoire X = {X(t), t ∈ R} a des incréments stationnaires (si)
si :

{X(t+ T )−X(T ), t ∈ R} = {X(t)−X(0), t ∈ R}, pour tout T ∈ R. (4.251)

Les auteurs étudient un processus os-s gaussien avec incréments stationnaires appelé
mouvement brownien fractionnaire opératoire (ofBm). Ils expliquent que pour p = 1,
la classe de ofBm coïncide avec la classe fondamentale des mouvements browniens frac-
tionnaires (fBm) comme prouvé dans (Samorodnitsky and Taqqu, 1994). Ils rappellent
qu’un fBm avec un exposant H ∈ (0, 1) peut être défini alternativement comme un
processus gaussien stochastiquement continu X = {X(t), t ∈ R} à espérance nulle et
covariance :

E
[
X(s)X(t)

]
=
σ2

2

(
|s|2H +

∣∣t∣∣2H −
∣∣t− s

∣∣2H) , t, s ∈ R, (4.252)

où σ2 = E
[
X2(1)

]
. Selon leurs travaux, la forme de la covariance d’un ofBm général

semble inconnue et peut être assez compliquée. La structure du ofBm et les représent-
ations intégrales stochastiques sont étudiées dans (Didier and Pipiras, 2008), (Didier
and Pipiras, 2012), et (Didier and Pipiras, 2011). Un cas particulier de processus os-s
correspond à la matrice diagonale H = diag(H1, . . . ,Hp). Dans ce cas, l’Équation (??)
devient : (

X1(λt), . . . , Xp(λt)
)

fdd
=
(
λH1X1(t), . . . , λ

HpXp(t)
)
. (4.253)

Un processus p-varié X satisfaisant l’Équation (??) pour tout λ > 0 est appelé auto-
similaire vectoriel (vs-s) et un processus gaussien vs-s stochastiquement continu avec
incréments stationnaires (si) est appelé mouvement brownien fractionnaire vectoriel
(vfBm). À partir de l’Équation (??), chaque composant Xi = {Xi(t), t ∈ R}, i =

1, . . . , p d’un processus vs-s est un processus (scalaire) auto-similaire, ce qui n’est pas
vrai pour les processus os-s généraux. Dans (Lavancier et al., 2009), une forme générale
de la fonction de (croisement-)covariance d’un processus vs-s si X avec variance finie
et exposant H = diag(H1, . . . ,Hp), 0 < Hi < 1, est obtenue. En d’autres termes,
l’article obtient la forme générale de la fonction de croisement-covariance du mouvement
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brownien fractionnaire vectoriel avec des composants corrélés ayant des auto-similarités
différentes, appelée fonction de croisement-covariance.

Soit X = {X(t), t ∈ R} un processus du 2nd ordre avec des valeurs dans Rp. Supposons
que X a des incréments stationnaires, une espérance nulle, X(0) = 0, et que X est auto-
similaire vectoriel avec un exposant H = diag(H1, . . . ,Hp), 0 < Hi < 1 (i = 1, . . . , p).
De plus, supposons aussi que pour tout i, j = 1, . . . , p, la fonction t 7→ E

[
Xi(t)Xj(1)

]
est continûment différentiable sur (0, 1) ∪ (1,∞). Soit σ2i > 0 la variance de Xi(1), i =

1, . . . , p.

(i) Si i = j, alors pour tout (s, t) ∈ R2, nous avons :

E
[
Xi(s)Xi(t)

]
=
σ2i
2
{|s|2Hi +

∣∣t∣∣2Hi −
∣∣t− s

∣∣2Hi}. (4.254)

(ii) Si i ̸= j et Hi + Hj ̸= 1, alors sous certaines conditions de régularité, il existe
cij , cji ∈ R tels que pour tout (s, t) ∈ R2 :

Cov
(
Xi(s), Xj(t)

)
=
σiσj
2

{cij(s) |s|Hi+Hj + cji(t)
∣∣t∣∣Hi+Hj − cij(t− s)

∣∣t− s
∣∣Hi+Hj}

(4.255)

où σ2i := V[Xi(1)] et :

cij(t) =

 cij si t > 0

cji si t ≤ 0.
(4.256)

(iii) Si i ̸= j et Hi +Hj = 1, alors il existe dij , fij ∈ R tels que pour tout (s, t) ∈ R2,
nous avons :

E
[
Xi(s)Xj(t)

]
=
σiσj
2

{dij(|s|+
∣∣t∣∣− ∣∣s− t

∣∣) + fij(t log
∣∣t∣∣− s log |s|)− (t− s) log

∣∣t− s
∣∣}.

(4.257)

(iv) La matrice R = (Rij)i,j=1,...,p est définie positive, où :

Rij :=


1 si i = j,

cij + cji si i ̸= j,Hi +Hj ̸= 1,

dij si i ̸= j,Hi +Hj = 1.

(4.258)

Les auteurs fournissent également une représentation stochastique du vfBm et la fonc-
tion de covariance du vfBm. La représentation stochastique du vfBm est basée sur
(Didier and Pipiras, 2008) :

X(t) =

∫
R

{(
(t− x)

H− 1
2

+ − (−x)H− 1
2

+

)
A+ +

(
(t− x)

H− 1
2

− − (−x)H− 1
2

−

)
A−

}
W (dx),

(4.259)

où H − 1
2 := diag

(
H1 − 1

2 , . . . ,Hp − 1
2

)
, x+ := max(x, 0), x− := max(−x, 0), A+, A−

sont des matrices p × p réelles et W (dx) =
(
W1(dx), . . . ,Wp(dx)

)
est un bruit blanc

gaussien à espérance nulle, composants indépendants et covariance E
[
Wi(dx)Wj(dx)

]
=
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δijdx. La fonction de covariance du vfBm X = {X(t), t ∈ R} donnée par la re-
présentation intégrale stochastique bilatérale est fournie. Soit a++

ij :=
∑p

k=1 a
+
ika

+
jk,

a−−
ij :=

∑p
k=1 a

−
ika

−
jk, a

+−
ij :=

∑p
k=1 a

+
ika

−
jk, a

−+
ij :=

∑p
k=1 a

−
ika

+
jk, où A+ = (a+ij),

A− = (a−ij) sont les matrices p × p. Clairement, A+A
⋆
+ = (a++

ij ), A−A
⋆
− = (a−−

ij ),
A+A

⋆
− = (a+−

ij ), A−A
⋆
+ = (a−+

ij ).

Les auteurs montrent que la covariance du processus défini par l’intégrale stochastique
bilatérale satisfait les propriétés suivantes :

(i) Pour tout i = 1, . . . , p, la variance de Xi(1) est :

σ2i =
B
(
Hi +

1
2

)
, Hi +

1
2

sin(Hiπ)
{a++

ii + a−−
ii − 2sin(Hiπ)a

+−
ii }. (4.260)

(ii) Si Hi +Hj ̸= 1, alors pour tout s, t ∈ R, la croisement-covariance E
[
Xi(s)Xj(t)

]
du processus défini par l’Équation (??) est donnée par l’Équation (??) avec :

σiσj
2
cij :=

B
(
Hi +

1
2 , Hj +

1
2

)
sin(

(
Hi +Hj

)
π)

{
a++
ij cos(Hiπ) + a−−

ij cos(Hjπ)− a+−
ij sin(

(
Hi +Hj

)
π)

}
.

(4.261)

(iii) Si Hi +Hj = 1, alors pour tout s, t ∈ R, la croisement-covariance E
[
Xi(s)Xj(t)

]
du processus défini par l’Équation (??) est donnée par l’Équation (??) avec :

σiσjdij := B

(
Hi +

1

2
, Hj +

1

2

)
×
{
sin(Hiπ) + sin(Hjπ)

2

(
a++
ij + a−−

ij

)
− a+−

ij − a−+
ij

}
(4.262)

σiσjfij := (Hj −Hi)(a
++
ij − a−−

ij ). (4.263)

Dans (Coeurjolly, 2000b) et (Amblard and Coeurjolly, 2011b), les auteurs proposent
une approche pour l’identification du mouvement brownien fractionnaire multivarié. Ils
utilisent une technique de filtrage similaire aux ondelettes. Les paramètres de Hurst,
les variances, les coefficients de corrélation et d’asymétrie sont estimés par régression
sur les coefficients empiriques de log-variances et de log-correlations. Ils montrent que
l’estimateur converge presque sûrement et satisfait un théorème central de la limite. La
convergence est illustrée par des simulations, et ils appliquent la procédure d’estimation
à des données financières. L’analyse de l’irrégularité des données modélisées par un
fBm, l’étude de leur comportement spectral, ainsi que tout problème de prévision basé
sur le fBm, impliquent la nécessité d’estimer le paramètre de Hurst. Dans (Coeurjolly,
2000b), les auteurs décrivent les principales méthodes paramétriques pour estimer le
paramètre d’auto-similarité H. Ils distinguent quatre approches : les méthodes spec-
trales (log-périodogramme, une variante de la méthode de Lobato et Robinson), le
maximum de vraisemblance (estimateur de Whittle), les méthodes à l’échelle de temps
(décomposition en ondelettes du fBm), les méthodes temporelles (nombre de croise-
ments de niveaux, variations discrètes). L’article (Coeurjolly, 2001) développe une classe
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d’estimateurs cohérents des paramètres d’un mouvement brownien fractionnaire basés
sur le comportement asymptotique du k-ième moment absolu des variations discrètes de
ses trajectoires échantillonnées sur une grille discrète de l’intervalle [0, 1]. Les auteurs
établissent des taux de convergence explicites pour ces types d’estimateurs, valables
sur l’ensemble de l’intervalle 0 < H < 1 du paramètre d’auto-similarité. Ils établissent
également la normalité asymptotique de leurs estimateurs. L’efficacité de leur procédure
est étudiée dans une étude de simulation. Dans (Coeurjolly et al., 2013), les auteurs
étudient le mouvement brownien fractionnaire multivarié (mfBm) à travers la lentille de
la transformée en ondelettes. Ils calculent la structure de corrélation de la transformée
en ondelettes du mfBm. Ils étudient le comportement asymptotique de la corrélation,
montrant que si l’ondelette d’analyse possède un nombre suffisant de moments d’ordre
un nuls, la décomposition élimine toute dépendance (inter)-longue portée possible. La
densité croisée spectrale est également considérée. Son existence est prouvée et son
évaluation est réalisée à l’aide d’une représentation de type von Bahr-Essen de la fonc-
tion sign(t)

∣∣t∣∣α. Le comportement de la densité croisée spectrale du champ d’ondelettes
à la fréquence nulle est également développé et confirme les résultats fournis par l’analyse
asymptotique de la corrélation. En (Jean-franÇois Coeurjolly and Vidakovic, 2014), les
auteurs discutent de l’estimation d’un paramètre d’échelle σ2 lorsque l’exposant de
Hurst est connu. Pour estimer σ2, ils proposent trois approches basées respectivement
sur l’estimation du maximum de vraisemblance, l’ajustement des moments et les inégal-
ités de concentration, tout en discutant des caractéristiques théoriques des estimateurs
et des lignes directrices de filtrage optimal. Ils justifient l’amélioration de l’estimation
de σ2 lorsque le paramètre de Hurst est connu. À l’aide des trois approches et d’une
méthodologie de bootstrap paramétrique dans une étude de simulation, ils comparent
les intervalles de confiance de σ2 en termes de longueurs, de taux de couverture, de com-
plexité computationnelle et discutent des attributs empiriques des approches testées. Ils
concluent que l’approche basée sur l’estimation du maximum de vraisemblance est opti-
male en termes d’efficacité et de précision, mais qu’elle est également coûteuse en termes
de calcul. L’approche d’ajustement des moments s’est révélée non seulement efficace et
précise de manière comparable, mais aussi rapide sur le plan computationnel et robuste
aux écarts par rapport au modèle du mouvement brownien fractionnaire. Dans (Coeur-
jolly, 2005), les auteurs introduisent une nouvelle classe d’estimateurs consistants de la
dimension fractale des processus gaussiens localement auto-similaires. Ces estimateurs
sont basés sur des combinaisons linéaires de quantiles empiriques (statistiques L) des
variations discrètes d’une trajectoire échantillonnée sur une grille discrète de l’intervalle
[0, 1]. Ils démontrent la convergence presque sûre de ces estimateurs et prouvent leur
normalité asymptotique. L’ingrédient clé est une représentation de Bahadur pour les
quantiles empiriques de fonctions non linéaires de séquences gaussiennes avec une fonc-
tion de corrélation décroissant hyperboliquement. Dans (Coeurjolly et al., 2010a), les
auteurs étudient la structure de covariance du bruit gaussien fractionnaire multivarié.
Ils évaluent plusieurs paramètres du modèle permettant de contrôler la structure de
corrélation à un décalage nul entre toutes les composantes du processus multivarié. En-
suite, ils spécifient un algorithme permettant la simulation exacte du bruit gaussien
fractionnaire multivarié et donc des mouvements browniens fractionnaires. Les illus-
trations impliquent l’estimation des exposants de Hurst de chacune des composantes.
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Les travaux de (Coeurjolly et al., 2010b) sont consacrés à l’étude de certaines pro-
priétés d’une extension du célèbre mouvement brownien fractionnaire au cas multivarié.
Ils étudient la structure de covariance du bruit gaussien fractionnaire multivarié et
évaluent plusieurs paramètres du modèle permettant de contrôler la structure de cor-
rélation à un décalage nul entre toutes les composantes du processus multivarié. Ils
se concentrent particulièrement sur deux cas pour lesquels ils peuvent relier les para-
mètres caractéristiques de la fonction de covariance aux paramètres de la représentation
stochastique des processus. Ces cas comprennent le cas causal, une généralisation mul-
tivariée directe de la représentation de (Mandelbrot and Van Ness, 1968b), et le cas bien
équilibré qui ajoute au précédent cas le filtrage anti-causal d’un mouvement brownien.
La caractérisation de la fonction de covariance est ensuite utilisée pour étudier le bruit
gaussien fractionnaire multivarié, défini comme le processus d’incrément du mouvement
brownien fractionnaire multivarié. Les auteurs étudient la structure de covariance ainsi
que la structure spectrale de ce processus stationnaire multivarié. Ils exposent le fait
intrigant que deux bruits gaussiens fractionnaires peuvent être interdépendants à longue
portée alors que seulement l’un d’entre eux est dépendant à longue portée. Ensuite, ils
effectuent une analyse en ondelettes du mouvement brownien fractionnaire multivarié
et montrent que cette analyse en ondelettes peut détruire l’interdépendance à longue
portée si l’ondelette est choisie de manière appropriée. Dans (Garcin, 2019), les auteurs
étudient la transformée inverse de Lamperti d’un mouvement brownien fractionnaire
et ses propriétés. La transformée inverse de Lamperti d’un mbf est un processus sta-
tionnaire. Ils déterminent l’exposant de Hurst empirique d’un tel processus compos-
ite à l’aide d’une régression des moments absolus logarithmiques de ses incréments, à
diverses échelles, sur les échelles correspondantes. Cet exposant de Hurst perçu sous-
estime l’exposant de Hurst du mbf sous-jacent. Ils rencontrent des séries chronologiques
ayant un exposant de Hurst perçu inférieur à 1

2 , mais un exposant de Hurst sous-jacent
supérieur à 1

2 . Cela ouvre la voie à la prévision à court et moyen terme. En effet,
dans de telles séries, la réversion à la moyenne prédomine à grande échelle, tandis que
la persistance est prépondérante à des échelles plus petites. Ils proposent une manière
de caractériser l’horizon de Hurst, à savoir une échelle limite entre ces comportements
opposés. Ils montrent que le mbf délamperisé, qui mélange persistance et réversion
à la moyenne, est pertinent pour les séries chronologiques financières, en particulier
pour les taux de change à haute fréquence. Dans leur échantillon, l’horizon de Hurst
empirique est toujours supérieur à 1 heure et 23 minutes. Les travaux de (Laha and Ro-
hatgi, 1981) introduisent les processus stochastiques d’opérateurs autosimilaires prenant
des valeurs dans un espace euclidien de dimension finie et étudient certaines de leurs
propriétés. Dans (Hudson and Mason, 1982), une représentation générale pour un pro-
cessus d’opérateur autosimilaire est obtenue et sa classe d’exposants est caractérisée.
Il est montré qu’un tel processus est la limite, dans un certain sens, d’un processus
normé par l’opérateur et que toute limite d’un processus normé par l’opérateur est
d’opérateur autosimilaire. Les travaux de (Sato, 1991) proposent une étude des proces-
sus autosimilaires et d’opérateurs autosimilaires avec des incréments indépendants. Ils
démontrent que sous certaines conditions supplémentaires de continuité sur le processus
d’opérateur autosimilaire, l’opérateur peut être choisi comme une fonction de puissance
avec un exposant présentant certaines propriétés spectrales spéciales. Dans (Maejima
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and Mason, 1994), les processus d’opérateurs autosimilaires sont étudiés et plusieurs ex-
emples de processus d’opérateurs autosimilaires et stables (au sens ordinaire ou au sens
de l’opérateur) sont construits. Des théorèmes limites pour de tels processus sont égale-
ment démontrés. Dans (Marinucci and Robinson, 2000), une convergence faible vers une
forme de mouvement brownien fractionnaire est établie pour une large classe de proces-
sus fractionnellement intégrés non stationnaires. Une extension du mouvement brownien
fractionnaire classique, appelée mouvement brownien multifractionnaire (mBm), dont
l’exposant de Hurst dépend du temps, est étudiée dans (Stoev and Taqqu, 2006). Les
processus de mouvement brownien multifractionnaire (mBm) sont des processus gaussi-
ens localement autosimilaires. Dans la littérature, deux types de processus mBm ont été
introduits en utilisant respectivement les représentations intégrales de domaine temporel
et de domaine fréquentiel du mbf. Dans cet article, les auteurs montrent que ces deux
types de processus ont des structures de corrélation différentes lorsque la fonction H(t)

n’est pas constante. Ils se concentrent sur une classe de processus mBm paramétrée
par (a+, a−) ∈ R2, qui contient les deux types de processus précédemment introduits
comme cas spéciaux. Ils établissent la connexion entre leurs représentations intégrales
de domaine temporel et de domaine fréquentiel et obtiennent des expressions explicites
pour leurs covariances. Ils démontrent qu’il existe des fonctions non constantes H(t)

pour lesquelles la structure de corrélation des processus mBm dépend non trivialement
de la valeur de (a+, a−) et donc, même pour une fonction H(t) donnée, il existe un
nombre infini de processus mBm avec des distributions essentiellement différentes.

Modélisation de la volatilité : La volatilité (l’écart-type des rendements d’actifs),
n’est pas constante mais présente un regroupement (cluster) et une persistance dans
le temps, connus sous le nom de regroupement de volatilité. Les processus Gaussi-
ens auto-similaires comme le fBm peuvent capturer efficacement cette caractéristique.
En modélisant la volatilité sous la forme d’un mouvement Brownien fractionnaire, les
analystes peuvent incorporer une dépendance à long terme et une mémoire dans la
dynamique de la volatilité, ce qui est observé dans les données réelles de séries chrono-
logiques financières. Les grands changements de prix ont tendance à se regrouper, ce
qui entraîne une persistance des amplitudes des variations de prix. Plusieurs travaux
ont été publiés sur ce sujet, comme les travaux de (Cheong, 2010) ou (Cont, 2007)
qui expliquent l’origine de ce regroupement de volatilité, en proposant des modèles
basés sur des agents qui permettent de passer de régimes d’activité faible à des régimes
d’activité élevée avec des durées de régime à queue lourde. Les travaux de (Gatheral
et al., 2014) portent sur l’estimation de la volatilité à partir de données récentes à haute
fréquence en revisitant la question de la régularité du processus de volatilité. Dans ces
travaux, l’hypothèse est la suivante, la log-volatilité se comporte essentiellement comme
un mouvement Brownien fractionnaire avec un exposant de Hurst H d’ordre 0, 1, à
n’importe quelle échelle de temps raisonnable. Une telle hypothèse permet d’obtenir
des prévisions améliorées de la volatilité réalisée. Et un modèle de microstructure de
marché quantitatif reliant la rugosité de la volatilité au trading à haute fréquence et à
la division des ordres est fourni. Dans (Rostek, 2012), la dynamique du titre sous-jacent
est pilotée par un processus de diffusion à sauts où la partie diffusion est un mouvement
Brownien fractionnaire tandis que les sauts présentent une distribution double exponen-
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tielle. Dans (Chong et al., 2022a), (Chong et al., 2022b) et (Szymanski and Takabatake,
2023), des méthodes d’estimation de l’exposant de Hurst ainsi que des taux de conver-
gence sont fournis. La propriété de stationnarité qui garantit l’invariance par translation
du processus permet d’obtenir une stabilité des estimations basées sur les incréments.
De plus, la propriété d’auto-similarité qui établit l’invariance par changement d’échelle
de temps du processus assure que les estimations sont les mêmes quelle que soit l’échelle
de temps choisie.

Tarification des options : Les modèles de tarification des options supposent souvent
un certain processus stochastique pour la dynamique des prix des actifs sous-jacents.
Comme la volatilité influence significativement les prix des options, la modélisation pré-
cise de la volatilité est cruciale. Les processus Gaussiens auto-similaires peuvent être
utilisés pour modéliser les processus de volatilité, qui sont à leur tour utilisés dans des
modèles de tarification des options tels que le modèle d’Heston ou le modèle de volatilité
stochastique. Les travaux de (Rostek, 2009), (Rostek and Rostek, 2009) utilisent des
mouvements Browniens fractionnaires qui sont des processus Gaussiens auto-similaires
et stationnaires dans le but de tarifer des options. Dans ce livre, les questions suivantes
sont abordées : Dans quelle mesure peut-on établir des parallèles entre le mouvement
Brownien fractionnaire et le mouvement Brownien classique ? Plus précisément, comme
le mouvement Brownien fractionnaire est une extension du mouvement Brownien, est-
il possible d’étendre la théorie de la tarification des options ? Les techniques bien
développées du calcul stochastique sont-elles transférables au mouvement Brownien
fractionnaire ? Serons-nous confrontés à des problèmes conceptuels ? Pouvons-nous
obtenir des solutions analytiques ? Dans (Rostek and Schöbel, 2006), sous l’hypothèse
que le marché est piloté par un mouvement Brownien fractionnaire, des formules pour
les options européennes fractionnaires sont dérivées en utilisant l’idée traditionnelle de
l’espérance conditionnelle. Dans les travaux de (Rostek and Schoebel, 2010), les prix des
options européennes sont dérivés lorsque la dynamique du titre sous-jacent est pilotée
par un mouvement Brownien fractionnaire géométrique. Grâce à la propriété d’auto-
similarité du mouvement Brownien fractionnaire, et grâce à la corrélation entre les in-
créments permise par un exposant de Hurst différent de 0.5, ce dernier est une manière
parcimonieuse de capturer la corrélation au sein des séries chronologiques financières.
Ils discutent d’un modèle où les participants au marché ont une aversion au risque re-
lativement constante et échangent selon un processus de temps discret. La richesse de
l’investisseur et l’action sous-jacente sont supposés être de type fBm et suivent une dis-
tribution log-normale bivariée. Ils introduisent une condition d’équilibre et fournissent
des solutions analytiques pour les options européennes. Les résultats présentés sont
des extensions des formules de tarification de Black-Scholes et contiennent ces dernières
comme cas spécifiques.

Optimisation de portefeuille : La théorie moderne de portefeuille repose sur une
estimation précise des rendements et des volatilités des actifs. Les processus Gaussiens
auto-similaires peuvent améliorer l’estimation de ces paramètres en capturant leurs
caractéristiques intrinsèques, telles que la mémoire longue et l’auto-similarité. Cela
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conduit à des stratégies d’optimisation de portefeuille plus robustes qui tiennent compte
de la nature non linéaire et non Gaussienne des marchés financiers. Voir par exemple
(Papenbrock, 2011), (Zlatniczki and Telcs, 2024), (Galloway and Nolder, 2008), (Lunga,
2006).

Les travaux de (Czichowsky et al., 2018), et (Czichowsky and Schachermayer, 2017)
proposent une conciliation de deux concepts conflictuels en finance : d’une part, la no-
tion d’absence d’arbitrage, et d’autre part, la prise en compte de processus de prix non
semi-martingales, comme le mouvement Brownien fractionnaire. En imposant des coûts
de transaction (proportionnels) arbitrairement petits et en considérant des optimiseurs
d’utilité logarithmique, l’existence d’un processus de prix fictif semi-martingale et sans
friction pour un marché financier exponentiel avec un mouvement Brownien fraction-
naire est prouvée. Dans (Jumarie, 2005), le modèle de portefeuille optimal proposé
initialement par Merton est considéré avec l’hypothèse supplémentaire que les bruits im-
pliqués dans la dynamique de la richesse sont des mouvements Browniens fractionnaires
(au sens de la dérivée fractionnaire des bruits blancs Gaussiens) avec une dépendance
à court-terme, c’est-à-dire avec un paramètre de Hurst inférieur à 1/2. Les travaux de
(Sarol et al., 2007) considèrent le problème classique de Merton consistant à trouver
le taux de consommation optimal et le portefeuille optimal dans un marché piloté par
un mouvement Brownien fractionnaire avec un paramètre de Hurst H > 1/2. Les inté-
grales par rapport au fBm sont dans le sens de Skorohod, et non au sens trajectoriel, ce
qui est connu pour conduire à l’arbitrage. Une forme explicite est dérivée pour le taux
de consommation optimal et le portefeuille optimal dans un tel marché pour un agent
avec des fonctions d’utilité logarithmiques. Un portefeuille autofinancé réel s’avère con-
duire à un terme de consommation toujours favorable à l’investisseur. Dans (HU et al.,
2003), les auteurs présentent un modèle mathématique pour un marché piloté par un
mouvement Brownien fractionnaire avec un paramètre de Hurst. L’interprétation des
intégrales par rapport au fBm est dans le sens d’Itô (Skorohod-Wick), et non au sens
trajectoriel (ce qui est connu pour conduire à l’arbitrage). Ils trouvent explicitement
le taux de consommation optimal et le portefeuille optimal dans un tel marché pour
un agent avec des fonctions d’utilité de type puissance. Dans (Garcin, 2022), les log-
prix suivent un fBm, la nature non Markovienne du fBm est utilisée pour prévoir les
états futurs du processus et réaliser des arbitrages statistiques. Certaines questions sur
l’optimisation des stratégies de trading dans le cadre du fBm sont abordées. Quels sont
les incréments décalés du fBm, observés à temps discret, à prendre en compte ? Si
l’incrément prédit est proche de zéro, jusqu’à quel seuil est-il plus rentable de ne pas
investir ? Dans (Bauerle and Desmettre, 2020), une version fractionnaire du modèle de
volatilité de Heston est considérée. Dans ce modèle, des problèmes d’optimisation de
portefeuille pour des fonctions d’utilité de puissance sont traités.

Trading haute fréquence : Dans le Trading Haute Fréquence (HFT), où les dé-
cisions sont prises en quelques millisecondes, comprendre et prédire la dynamique du
marché est crucial. Les processus Gaussiens auto-similaires peuvent fournir des perpect-
ives sur les comportements à court terme du marché en capturant les motifs complexes et
les corrélations présentes dans les données haute fréquence. Voir par exemple (Evertsz,
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1995), (Arroum, 2007), (Smith, 2010).

Dans la limite haute fréquence, l’espérance conditionnelle des accroissements du mouvement
Brownien fractionnaire converge vers un bruit blanc, perdant ainsi sa dépendance vis-
à-vis de l’historique de la trajectoire et de l’horizon de prévision, rendant les problèmes
d’optimisation dynamique traitables. Les travaux de (Guasoni et al., 2021) proposent
une formule explicite pour les stratégies optimales de moyenne-variance locale et leur
performance pour un prix d’actif qui suit un mouvement Brownien fractionnaire. Les
travaux de (Guasoni et al., 2019) considèrent un marché avec un prix d’actif décrit par
un mouvement Brownien fractionnaire, qui peut être échangé avec un impact temporaire
non linéaire sur les prix. Ils trouvent des stratégies asymptotiquement optimales pour la
maximisation de la richesse finale espérée. En exploitant l’autocorrélation des accroisse-
ments tout en limitant les coûts de transaction, ces stratégies génèrent une richesse
finale moyenne qui croît selon une fonction puissance de l’horizon temporel, l’exposant
dépendant à la fois des paramètres de Hurst et de l’impact sur les prix. Les ratios de
Sharpe résultants sont bornés, insensibles à l’horizon de temps et asymétriques par rap-
port à l’exposant de Hurst. Ces résultats s’étendent aux processus Gaussiens à mémoire
longue et à une classe de processus auto-similaires. Les travaux de (Lim and Muniandy,
2002) étudient certains modèles Gaussiens pour la diffusion anormale, qui comprennent
le mouvement Brownien temporellement rescalé, deux types de mouvement Brownien
fractionnaires, et des modèles associés au mouvement Brownien fractionnaire basés sur
l’équation de Langevin généralisée. Les processus Gaussiens associés à ces modèles
satisfont à la relation de diffusion anormale qui exige que le déplacement quadratique
moyen varie selon la fonction puissance tα, ; 0 < α < 2. Cependant, ces processus ont
des propriétés différentes, ce qui indique que la relation de diffusion anormale avec un
seul paramètre est insuffisante pour caractériser le mécanisme sous-jacent. Bien que les
deux versions du mouvement Brownien fractionnaire et le mouvement Brownien tem-
porellement rescalé aient tous la même fonction de densité de probabilité, le théorème
de Slepian peut être utilisé pour comparer leurs distributions de temps de premier pas-
sage, qui sont différentes. Enfin, pour modéliser la diffusion anormale avec un exposant
variable α(t), il est nécessaire de considérer les extensions multifractionnaires de ces
processus Gaussiens.

Gestion des risques : Comprendre et gérer les risques est fondamental en finance.
Les processus auto-similaires Gaussiens permettent une évaluation des risques plus pré-
cise en capturant la nature complexe et corrélée des séries chronologiques financières.
En incorporant la dépendance à long terme et l’auto-similarité dans les modèles de
risque, les institutions financières peuvent mieux estimer la Valeur-à-Risque (VaR) et
la Valeur-à-Risque Conditionnelle (CVaR), qui sont des mesures des pertes potentielles
dans des conditions de marché défavorables. C’est le sujet de (Michna et al., 1998).
En effet, dans cet article, les auteurs s’intéressent à la théorie du risque collectif. Ils
observent que la théorie du risque collectif porte sur les fluctuations aléatoires des actifs
totaux et de la réserve de risque d’une compagnie d’assurance. Ils considèrent des pro-
cessus auto-similaires continus avec des accroissements stationnaires pour le modèle de
renouvellement en théorie du risque. Ils construisent un modèle de risque qui montre
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un mécanisme de dépendance à long terme des sinistres. Une approximation du pro-
cessus de risque par un processus auto-similaire avec dérive est fournie. La probabilité
de ruine dans un temps fini est estimée pour le mouvement Brownien fractionnaire avec
dérive. Un modèle similaire est applicable dans les systèmes de file d’attente, décrivant
une dépendance à long terme dans les processus de marche/arrêt et les modèles de flu-
ide associés. Les travaux de (Wesselhöfft, 2021) sont basés sur le fait qu’un processus
auto-similaire, capable de rendre compte du comportement à mémoire longue, est le
mouvement Brownien fractionnaire, qui a une limite possible non Gaussienne par con-
volution des accroissements. Les accroissements du mouvement Brownien fractionnaire
peuvent présenter une mémoire longue à travers un paramètre H, l’exposant de Hurst.
Pour le mouvement Brownien fractionnaire, cet exposant de mise à l’échelle (Hurst)
serait constant sur différents ordres de moments, étant unifractal. Mais empiriquement,
nous observons des exposants de Hölder variables, le continuum des exposants de Hurst,
ce qui implique un comportement multifractal. Les auteurs expliquent le comportement
multifractal à travers les indices alpha-stables changeants des distributions alpha-stables
sur les fréquences d’échantillonnage en appliquant des filtres pour la saisonnalité et la
dépendance temporelle (mémoire longue) sur différentes fréquences d’échantillonnage, à
partir de hautes fréquences jusqu’à une minute. En utilisant un filtre pour la mémoire
longue, ils montrent que le processus à basse fréquence d’échantillonnage, ne contenant
pas la composante de dépendance temporelle, peut être régi par le mouvement alpha-
stable. Sous le mouvement alpha-stable, ils proposent une méthode semi-paramétrique
appelée Méthodologie de Rééchantillonnage Fréquentiel (FRM), qui permet de rééchan-
tillonner l’ensemble de données à haute fréquence filtré à la fréquence d’échantillonnage
plus basse. Les ensembles de données, par exemple les données hebdomadaires ob-
tenues en rééchantillonnant les données à haute fréquence avec le FRM, sont davantage
à queue lourde que celles observées empiriquement. Les auteurs montrent qu’en utilis-
ant un sous-ensemble de l’ensemble complet de données, le FRM suffit pour obtenir une
meilleure prévision en termes de risque pour l’ensemble complet de données. En par-
ticulier, le FRM aurait pu rendre compte des événements extrêmes de la crise financière
de 2008.

Différents types de processus auto-similaires : Le mouvement Brownien frac-
tionnaire est largement utilisé dans la modélisation de phénomènes avec une densité
spectrale de type loi de puissance. Cependant, le FBM a ses limites car il ne peut décrire
que des phénomènes avec une structure monofractale ou un degré d’irrégularité uniforme
caractérisé par l’exposant de Hölder constant. Pour une modélisation plus réaliste, il est
nécessaire de prendre en compte la variation locale de l’irrégularité, l’exposant de Hölder
étant autorisé à varier dans le temps ou l’espace. Dans (Muniandy and Lim, 2001),
une extension du fBm standard au mouvement Brownien multifractionnaire (mBm)
indexé par un exposant de Hölder qui est une fonction du temps est proposée. Cet
article propose une généralisation alternative au mBm basée sur le fBm défini par le
type d’intégrale fractionnaire de Riemann-Liouville. Les propriétés locales du RLMBM,
Mouvement Brownien Multifractionnaire de Riemann-Liouville, sont étudiées et il est
constaté qu’elles sont similaires à celles du MBM standard. Un schéma numérique
pour simuler les trajectoires d’échantillon localement auto-similaires du RLMBM pour
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différents types d’exposants de Hölder variant dans le temps est donné. Les exposants
de mise à l’échelle locaux sont estimés en fonction de la croissance locale de la variance
et des méthodes de scalogramme d’ondelettes. Enfin, un exemple des applications pos-
sibles du RLMBM dans la modélisation de séries temporelles multifractales est illustré.

Dans (Tudor, 2013), plusieurs processus auto-similaires sont étudiés : mouvements
Browniens fractionnaires, bi-fractionnaires et sous-fractionnaires. Les travaux de (Pagn-
ini et al., 2012) étudient l’approche de l’équation maîtresse pour modéliser la diffusion
anormale. La diffusion anormale dans des milieux complexes peut être décrite comme
le résultat d’un mécanisme de superposition reflétant les propriétés d’inhomogénéité
et de non-stationnarité du milieu. Par exemple, lorsque cette superposition est appli-
quée au processus de diffusion temporelle fractionnaire, l’équation maîtresse résultante
s’avère être l’équation gouvernante de la diffusion fractionnaire d’Erdélyi-Kober, qui
décrit l’évolution de la distribution marginale du prétendu mouvement Brownien gris
généralisé. Ce mouvement est une classe paramétrique de processus stochastiques qui
fournit des modèles pour une diffusion anormale rapide et lente : il est composé de
processus auto-similaires avec des accroissements stationnaires et dépend de deux para-
mètres réels. La classe comprend le mouvement Brownien fractionnaire, les processus
stochastiques de diffusion temporelle fractionnaire et le mouvement Brownien stand-
ard. Dans ce cadre, la fonction M-Wright, également connue sous le nom de fonction
de Mainardi, émerge comme une généralisation naturelle de la distribution Gaussienne,
récupérant le même rôle clé que la densité Gaussienne pour les mouvements Browniens
standards et fractionnaires.

Dans (Pang and Taqqu, 2019), l’attention est portée sur les processus de bruit de tir avec
des arrivées de Poisson et des bruits non stationnaires. Les bruits sont conditionnelle-
ment indépendants étant donné les temps d’arrivée, mais la distribution de chaque bruit
dépend de son temps d’arrivée. Les auteurs établissent des limites d’échelle pour de tels
processus de bruit de tir dans deux situations : (a) les fonctions de variance condition-
nelles des bruits ont une loi de puissance et (b) les distributions conditionnelles de bruit
sont constantes par morceaux. Dans les deux cas, les processus limites sont Gaussiens
auto-similaires avec des accroissements non stationnaires. Motivés par ces processus,
ils introduisent de nouvelles classes de processus Gaussiens auto-similaires avec des ac-
croissements non stationnaires, via la représentation intégrale en domaine temporel, qui
sont des généralisations naturelles des mouvements Browniens fractionnaires.

Mouvement Brownien fractionnaire et gestion de l’arbitrage : Utiliser un
mouvement Brownien géométrique fractionnaire pour décrire la dynamique des prix per-
met de gérer la dépendance à long terme (resp. à court terme), cependant, l’hypothèse
fondamentale du marché d’absence d’opportunité d’arbitrage n’est plus satisfaite. C’est
l’objet des travaux de (Cheridito, 2003). Les auteurs construisent des stratégies d’arbitrage
pour un marché financier composé d’un compte de marché monétaire et d’une action
dont le prix actualisé suit un mouvement Brownien fractionnaire avec dérive ou un
mouvement Brownien fractionnaire exponentiel avec dérive. Ensuite, ils montrent com-
ment l’arbitrage peut être exclu de ces modèles en restreignant la classe des straté-
gies de trading. Dans (Cheridito, 2001), les auteurs montrent que la somme d’un
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mouvement Brownien et d’un multiple non trivial d’un mouvement Brownien fraction-
naire indépendant avec un exposant de Hurst H ∈ (0, 1] n’est pas une semi-martingale
si H ∈ (0, 1/2) ∪ (1/2, 3/4], qu’elle est équivalente à un multiple d’un mouvement
Brownien si H = 1/2 et qu’elle est équivalente au mouvement Brownien si H ∈ (3/4, 1].
Ils discutent du prix d’une option d’achat européenne sur un actif piloté par une com-
binaison linéaire d’un mouvement Brownien et d’un mouvement Brownien fractionnaire
indépendant.

Intégrale stochastique par rapport au mouvement Brownien fractionnaire
: Jusqu’à présent, l’intégrale stochastique était définie par rapport au mouvement
Brownien standard. Certains auteurs ont proposé une extension de la notion d’intégrale
stochastique par rapport au mouvement Brownien fractionnaire pour différentes plages
de valeurs prises par l’exposant de Hurst. Dans (Cheridito and Nualart, 2005), l’intégrale
stochastique par rapport au mouvement Brownien fractionnaire avec un exposant de
Hurst H ∈ (0, 1/2) est définie. Cela étend l’intégrale de divergence du calcul de
Malliavin. Pour cette intégrale de divergence étendue, un théorème de Fubini est prouvé
et des versions des formules d’Itô et de Tanaka sont établies pour tous les H ∈ (0, 1/2).
Les travaux de (Carmona et al., 2003) définissent une intégrale stochastique par rap-
port au mouvement Brownien fractionnaire pour chaque valeur de l’exposant de Hurst
H ∈ (0, 1). Cela est fait en approximant le mouvement Brownien fractionnaire par
des semi-martingales. Ensuite, pour H > 1/6, ils établissent une formule d’Itô de
changement de variables, qui est plus précise que la formule d’Itô de Privault (1998).
Le calcul stochastique pour le mouvement Brownien fractionnaire est également traité
dans (Biagini et al., 2008a). Les travaux de (Duncan et al., 2000) donnent un cal-
cul stochastique pour les mouvements Browniens fractionnaires ayant l’exposant de
Hurst dans (1/2, 1). Une intégrale stochastique de type Itô est définie pour une famille
d’intégrandes de sorte que l’intégrale ait une moyenne nulle et une expression explicite
pour le deuxième moment. Cette intégrale utilise le produit de Wick et une dérivée
dans l’espace des trajectoires. Quelques formules d’Itô (ou formules de changement de
variables) sont données pour les fonctions lisses d’un mouvement Brownien fraction-
naire ou certains processus liés à un mouvement Brownien fractionnaire. Une intégrale
stochastique de type Stratonovich est définie et les deux types d’intégrales stochastiques
sont explicitement liés. Une fonction de carré intégrable d’un mouvement Brownien
fractionnaire est exprimée comme une série infinie d’intégrales multiples orthogonales.
Le livre (Coutin, 2007) offre une introduction au calcul stochastique par rapport au
mouvement Brownien fractionnaire. Différentes approches ont été introduites pour con-
struire des intégrales stochastiques par rapport au fBm : techniques trajectorielles,
calcul de Malliavin, approximation par des sommes de Riemann. Dans (Nualart, 2006),
les auteurs décrivent ces méthodes et présentent les formules de changement de vari-
able correspondantes. Les travaux de (Decreusefond, 2003), (Decreusefond and Üstünel,
1998), présentent un nouveau résultat théorique sur le mouvement Brownien fraction-
naire, comprenant différentes définitions (et leurs relations) de l’intégrale stochastique
par rapport à ce processus, le théorème de Girsanov, la formule de représentation de
Clark, la formule d’Itô, etc. Une analyse stochastique du mouvement Brownien frac-
tionnaire est également fournie dans (Lin, 1995). Les questions d’intégration liées au
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mouvement Brownien fractionnaire sont abordées dans (Pipiras and Taqqu, 2000).

Dans l’ensemble, les processus auto-similaires Gaussiens avec des accroissements station-
naires offrent un cadre puissant pour modéliser divers aspects des marchés financiers,
allant de la dynamique de la volatilité à la gestion des risques et aux stratégies de trad-
ing. L’invariance en temps et en espace par translation et par changement d’échelle
de temps garantie par les propriétés de stationnarité et d’auto-similarité ainsi que la
capacité des processus auto-similaires à capturer la dépendance à long terme ou à court
terme en font des outils indispensables pour les analystes financiers et les chercheurs.

Dans nos travaux, nous nous intéressons à la formulation minimale des propriétés de sta-
tionnarité et d’autosimilarité du carré de la norme des fonctions aléatoires de l’espace L2.
Nous démontrons que la combinaison de la formulation minimale de la stationnarité et de
l’autosimilarité dans les espaces L2 suffit pour caractériser pleinement le noyau interne
dépendant uniquement des fonctions puissances d’exposant γ ∈ (0, 1), et pour prouver
la stationnarité et l’autosimilarité du noyau interne dans L2. Ensuite, nous introduisons
l’hypothèse Gaussienne et obtenons les propriétés de stationnarité et d’autosimilarité
non seulement en distribution mais aussi en trajectoire. Nous présentons quelques
exemples de processus Gaussiens stationnaires et autosimilaires, appelés mouvement
Brownien et mouvement Brownien fractionnaire. Dans cette partie, nous retrouvons les
résultats présentés dans (Taqqu, 1994), (Mandelbrot and Van Ness, 1968a), (Das and
Pan, 2011, Chap. 3), (Embrechts and Maejima, 2000), (Embrechts, 2009), (Samorodnit-
sky, 2006), (Chaumont, 2006), (Lamperti, 1962). Enfin, nous proposons une extension
au cas du mouvement Brownien fractionnaire multivarié (mfBm) et nous retrouvons les
résultats énoncés dans (?).

Contributions

Chapter 2 se concentre sur les effets qu’ont les transformations temporelles sur les
familles de variables aléatoires et les processus aléatoires dans les espaces L2. L’objectif
de ce chapitre est d’étudier les propriétés caractéristiques liées à ces transformations
temporelles et leurs conséquences sur les familles de variables aléatoires et les processus
aléatoires dans les espaces L2. Les deux transformations temporelles d’intérêt sont le
changement d’origine temporelle ou la translation temporelle, et le changement d’échelle
temporelle. Les propriétés caractéristiques associées sont respectivement la stationnarité
et l’auto-similarité.

Dans Chapter 2, nous considérons les sous-espaces de L2 engendrés par des familles
de variables aléatoires (v.a.) {X(θ), θ ∈ J}, notés HX . HX est le sous-espace de
Hilbert contenant toutes les combinaisons linéaires finies α · X(θ) =

∑n
1 αiX(θi) et

leurs limites dans L2. Il est caractérisé par les caractéristiques L2 de {X(θ)}, don-
nées par la norme quadratique des composantes (c’est-à-dire le carré de la norme)
QX(θ) := Q(X(θ)) = ∥X(θ)∥22 = E(|X(θ)|2) et les produits scalaires KX(θ, θ′) =

⟨⟨X(θ), X(θ′)⟩⟩ := E(X(θ)X(θ′)), indicateurs de dépendance.
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Les familles aléatoires indexées par le temps réel {X(t), t ∈ R} (ou processus aléatoires)
suscitent un intérêt particulier. Leurs caractéristiques L2, QX(t) et KX(t, s), peuvent
être complexes à calculer. Par conséquent, des propriétés supplémentaires sont in-
troduites pour réduire leur complexité. Si les propriétés ne sont vraies que "composante
par composante" (t par t), seule la famille des normes quadratiques {QX(t)} est con-
cernée, et nous parlons de la propriété QX .

QX et L2-Stationnarité et Auto-similarité des processus aléatoires La pro-
priété de stationnarité est liée aux effets causés par le changement d’origine temporelle
sur le processus, {Xh(t) = X(t+h)−X(h), (h ∈ R)}. La stationnarité dans L2 exprime
le fait que les processus {Xh(t)} et {X(t)} ont les mêmes caractéristiques L2, c’est-à-dire
la même norme quadratique Q(X(t+ h)−X(h)) = QX(t) et le même produit scalaire
⟨⟨X(t+h)−X(h), X(s+h)−X(h)⟩⟩ = KX(t, s), tandis que la QX -stationnarité exprime
seulement le fait que les variables aléatoires X(t+h)−X(h) et X(t) ont la même norme
quadratique QX , c’est-à-dire Q(X(t+h)−X(h)) = QX(t). Heureusement, cette hypo-
thèse plus faible est suffisante pour calculer le produit scalaire KX(s, t), et déduire la
stationnarité dans L2.

Plus précisément, la stationnarité dans L2 exprime l’invariance par translation tem-
porelle ou changement d’origine temporelle des caractéristiques L2 du processus.

Definition 4.36. (i) Un processus {X(t)} est dit L2-stationnaire si, pour tout h ∈ R,
les processus {Xh(t) = X(t+ h)−X(h)} et {X(t)} ont les mêmes caractéristiques L2,
c’est-à-dire même norme quadratique et même produit scalaire :

Q[X(t+ h)−X(h)] = Q[X(t)] = QX(t), et ⟨⟨Xh(t), Xh(s)⟩⟩ = KX(t, s). (4.264)

(ii) Le processus {X(t)} est dit QX-stationnaire si seule la première condition est sat-
isfaite :

Q(Xh(t)) = Q(X(t)) = QX(t) .

La propriété d’auto-similarité est liée à un changement d’échelle temporelle dans le pro-
cessus tel que {Xλ(t) = λ−

1
2X(λt), (λ > 0)}. La L2-auto-similarité suppose l’existence

d’une fonction strictement positive (Θ(λ), λ > 0) telle que les processus {X(λt)} et
{Θ 1

2 (λ)X(t)} aient les mêmes caractéristiques L2, c’est-à-dire la même norme quad-
ratiqueQX(λt) = Θ(λ)QX(t) et le même produit scalaire ⟨⟨X(λt), X(λs)⟩⟩ = Θ(λ)KX(t, s).
LaQX -auto-similarité suppose seulement que, pour tout t et λ > 0, QX(λt) = Θ(λ)QX(t).
Ainsi, ces deux concepts ne sont pas équivalents.

Definition 4.37. Soit {Θ(λ), λ > 0} une fonction strictement positive et non-constante.
(i) Un processus {X(t)} est dit L2-auto-similaire de fonction d’auto-similarité Θ si, pour
tout λ > 0, les processus {X(λt)} et {Θ 1

2 (λ)X(t)} ont les mêmes caractéristiques L2,
c’est-à-dire,

QX(λt) = Θ(λ)QX(t) et ⟨⟨X(λt), X(λs)⟩⟩ = Θ(λ)⟨⟨X(t), X(s)⟩⟩. (4.265)

(ii) {X(t)} est dit QX-(Θ)-auto-similaire si seule la condition sur la norme quadratique
QX(λt) = Θ(λ)QX(t),∀t, est vraie.
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Plus précisément, la QX -auto-similarité établit une relation de proportionnalité spa-
tiale entre les normes quadratiques évaluées à des instants temporels proportionnels
{QX(λt)} et {QX(t)}, dont le facteur de proportionnalité spatiale est une fonction du
facteur de proportionnalité temporelle λ, tel que Θ(λ) > 0. Autrement dit, la L2-auto-
similarité établit une relation de proportionnalité spatiale, à la fois entre les normes
quadratiques {QX(λt)} et {QX(t)}, et entre les produits scalaires ⟨⟨X(λt), X(λs)⟩⟩ et
⟨⟨X(t), X(s)⟩⟩, évalués à des instants temporels proportionnels, dont le facteur de pro-
portionnalité spatiale est une fonction du facteur de proportionnalité temporelle λ, tel
que Θ(λ) > 0.

Avec la seule hypothèse de QX -auto-similarité, la forme de la fonction Θ peut être
déterminée, et la norme quadratique est caractérisée.

Proposition 4.38. Une famille {X(t)}, avec une norme quadratique (rc) continue à
droite {QX(t)} est auto-similaire en norme quadratique uniquement si la fonction QX

est une fonction puissance, avec un exposant positif γ, QX(t) = |t|2γQX(1) si t > 0,
QX(t) =

∣∣t∣∣2γ QX(−1) si t < 0, et QX(0) = 0. En d’autres termes, pour tout t ∈ R,
QX(t) =

∣∣t∣∣2γ QX(sgn(t)) où sgn(t) = 1 si t > 0, sgn(t) = −1 si t < 0, et sgn(t) = 0

si t = 0.

Il est observé que la propriété de QX -auto-similarité ne peut être étendue au produit
scalaire sans une hypothèse supplémentaire.

Dans Chapter 2, nous nous plaçons à l’échelle des espaces de Hilbert et prouvons que,
sans aucune hypothèse de distribution, les seules hypothèses de QX -stationnarité et de
QX -auto-similarité sont suffisantes pour caractériser entièrement le noyau de covariance
et montrer que ce noyau de covariance est lui-même stationnaire et auto-similaire, c’est-
à-dire obtenir la L2-stationnarité et L2-auto-similarité.

La combinaison de la QX -auto-similarité et de la QX -stationnarité implique de re-
streindre l’exposant γ de la fonction puissance QX(t) à l’intervalle (0, 1), en raison de
la sous-linéarité de la norme quadratique QX induite par la stationnarité.

Theorem 4.39. (i) Une condition nécessaire et suffisante pour qu’un processus L2-rc
{X(t)} soit L2-auto-similaire et L2-stationnaire est l’existence d’une fonction puissance,
avec un exposant 0 < γ < 1 telle que les caractéristiques L2 soient :

QX(t) = QX(−t) = QX(1)|t|2γ et KX(t, s) =
QX(1)

2
(|t|2γ + |s|2γ − |t− s|2γ).

(4.266)

(ii) La condition γ = 1/2 est équivalente à l’orthogonalité des incréments, définie sur
les intervalles disjoints. Dans ce cas, KX(t, s) = QX(1)(|t| ∧ |s|).

Remarque : − Le produit scalaire est à la fois stationnaire d’après la Proposition
??, et γ-auto-similaire, ce qui est évident dans l’Équation (4.266).

Stationnarité et auto-similarité dans l’espace de Hilbert Gaussien L’ajout
de l’hypothèse Gaussienne aux propriétés de stationnarité et d’auto-similarité conduit
à exprimer ces propriétés d’abord en distribution, puis en trajectoire.
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Definition 4.40. Le processus Gaussien {X(t)} est γ-auto-similaire et stationnaire
en distribution si et seulement si les deux processus Gaussiens {X(t)} et {Xh(t) =

X(t + h) − X(t)}, h ∈ R, respectivement {X(λt)} et {λγX(t)}, λ > 0, ont la même
distribution Gaussienne, c’est-à-dire, la même moyenne et le même produit scalaire.

Dans ce cadre, nous prouvons que les seules hypothèses de QX -stationnarité et de QX -
auto-similarité permettent d’obtenir la stationnarité et l’auto-similarité en distribution.

Un processus Gaussien stationnaire et auto-similaire en distribution est évidemment un
processus L2-γ-auto-similaire et stationnaire. Ainsi, tous les résultats précédents restent
valables. En particulier, sa norme quadratique est la fonction puissance QX(1)|t|2γ avec
0 < γ < 1, et le produit scalaire est entièrement spécifié. La seule propriété inconnue
concerne la moyenne, qui, par la propriété de stationnarité, vérifie mX(t+h) = mX(t)+

mX(h). Ainsi, la moyenne est une fonction linéaire mX(t) = mX(1)t. Cependant,
d’après la propriété d’auto-similarité, mX(λ) = λγmX(1). Ces deux équations sont
contradictoires si γ ̸= 1. Or γ ∈ (0, 1), par conséquent, mX(t) = 0.

Theorem 4.41. Un processus Gaussien {X(t)} est γ-auto-similaire et stationnaire en
distribution si et seulement si {X(t)} est un processus centré, et est γ-auto-similaire
et stationnaire au sens de L2. La norme quadratique QX(t) est la variance VX(t) =

VX(1)|t|2γ, avec γ ∈ (0, 1).

(ii) Si γ = 1
2 , le processus Gaussien auto-similaire et stationnaire {X(t)} a des incré-

ments indépendants et une variance linéaire VB(t) = VB(1)|t|. Ce processus est appelé
mouvement Brownien ou processus de Wiener. Par la suite, il sera noté {B(t)}.
(iii) Pour tout λ > 0 et h ∈ R, les processus {Bh(t) = B(t + h) − B(h)}, {Bλ(t) =

λ−1/2B(λt)} et {Bλ
h(t) = λ−1/2(B(λ(t+h))−B(λh))} sont également des mouvements

Browniens.

Quelques exemples bien connus Nous présentons quelques exemples bien con-
nus de processus Gaussiens auto-similaires avec des accroissements stationnaires : le
mouvement Brownien, dont les accroissements sont indépendants, et le mouvement
Brownien dépendant du chemin (PDBM), qui est généré par une intégrale stochastique
d’un noyau bivarié déterministe contre un mouvement Brownien, et dont les accroisse-
ments sont corrélés.

Mouvement Brownien Le processus Gaussien de variance |t| est connu sous le nom de
mouvement Brownien (indexé par R et non par R+ comme habituellement) et est noté
{B(t)}. Il s’agit du processus le plus connu de la famille Gss des processus Gaussiens
auto-similaires et stationnaires.

Theorem 4.42. Soit {B(t)} un mouvement Brownien standard.

(i) L’espace L2 engendré par le mouvement Brownien {B(t)} est la famille des inté-
grales stochastiques Gaussiennes B(ϕ) :=

∫
ϕ(u)dB(u) de fonctions déterministes ϕ

dans L2(Leb), avec une variance V[B(ϕ)] =
∫
|ϕ|2du.

(ii) La covariance de deux intégrales stochastiques est Cov
(
B(ϕ), B(ψ)

)
=
∫
R ϕ(u)ψ(u)du.
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Par conséquent, il existe une isométrie entre HB et L2(Leb).

Nous prouvons la stationnarité et l’auto-similarité du mouvement Brownien au sens
trajectoriel. Ce résultat est bien plus fort que le précédent, car nous obtenons une
égalité de processus au lieu d’un résultat en distribution.

Comme ils possèdent les mêmes normes quadratiques QX , les processus {Bh(t) = B(t+

h) − B(t), h ∈ R} et {Bλ(t) = 1√
λ
B(λt), λ > 0}, qui appartiennent également à

Gss, sont des mouvements Browniens. L’outil des intégrales stochastiques de fonctions
déterministes ϕ ∈ L2(Leb), B(ϕ) =

∫
ϕ(u)dB(u) permet de décrire l’espace Gaussien

HB, mais fournit également une formule de changement de variable pour la comparaison
des trajectoires entre les variables aléatoires B(ϕ), Bh(ϕ), B

λ(ϕ).

Theorem 4.43. Rappelons que pour tout λ > 0, h ∈ R et t ∈ R, {Bt}, {Bλ(t) =

λ−
1
2B(λt)}, et {Bh(t) = B(t+ h)−B(h)} sont des mouvements Browniens.

Pour tout ϕ ∈ L2(Leb), nous avons les représentations trajectorielles suivantes :∫
λ−

1
2ϕ

(
u

λ

)
dB(u) =

∫
ϕ(u)dBλ(u) et

∫
ϕ
(
u− h

)
dB(u) =

∫
ϕ(u)dBh(u).

Toutes ces variables sont des variables Gaussiennes centrées ayant la même variance∫
|ϕ(u)|2du.

Mouvement Brownien fractionnaire (fBm)

Dans une deuxième partie, nous nous intéressons à la construction des processus Gss sous
forme d’intégrales stochastiques de fonctions déterministes ϕ(u), contre le mouvement
Brownien, où les fonctions déterministes ϕ(u) sont remplacées par des noyaux bivariés
κ(t, u) tels que

∫
|κ(t, u)|2du < ∞. Le noyau de covariance est défini par KXκ(t, s) =∫

R κ(t, u)κ(s, u)du et κ(0, u) = 0. En accord avec (Mandelbrot and Van Ness, 1968b),
un mouvement Brownien dépendant du chemin (PDBM), est défini comme un processus
Gaussien, tel que Xκ(t) =

∫
κ(t, u)dB(u).

Nous nous intéressons aux PDBM translatés dans le temps et changés d’échelle tem-
porelle, défini pour tout λ > 0, h ∈ R et presque tous (t, u) ∈ R2 par : Xκ(t+ h,B)−Xκ(h,B) =

∫
(κ(t+ h, u)− κ(h, u))dB(u)

Xκ(λt,B) =
∫
κ(λt, u)dB(u).

(4.267)

La formule de changement de variable suggère de transporter le changement de temps
initialement supporté par la variable temporelle t sur la variable d’intégration u. En-
suite, nous prouvons des identités trajectorielles sur les PDBMs changés de temps.

Pour tout λ > 0, h ∈ R et t ∈ R, {Bt}, {Bh(t) = B(t + h) − B(h)} et {Bλ(t) =

λ−
1
2B(λt)} sont des mouvements Browniens. Nous définissons les noyaux de carré

intégrable pour presque tous (t, u) ∈ R2 et pour tout h ∈ R et λ > 0 par :

κ(t, u), κh(t, u) = κ(t, u− h), κλ(t, u) = λ−1/2κ(t, u/λ). (4.268)
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Theorem 4.44. Définissons les PDBMs {Y (t) = Xκ(t, B)}, {Y λ(t) = Xκ(t, Bλ)}, {Yh(t) =
Xκ(t, Bh)}.
(i) Les processus {Y λ(t)} et {Yh(t)} ont la même distribution que {Y (t)}.
(ii) {Y λ(t)} et {Yh(t)} satisfont les identités trajectorielles suivantes :

{Y λ(t) = Xκλ
(t, B)} et {Yh(t) = Xκh(t, B)}. (4.269)

Enfin, nous prouvons la stationnarité et l’ auto-similarité des PDBMs en termes d’égalité
des processus, c’est-à-dire, au sens trajectoriel.

Theorem 4.45. Soient {B(t)}, {Bλ(t)}, {Bh(t)}, les mouvements Browniens trans-
formés.

(i) Si la condition de stationnarité temporelle du noyau bivarié κ(t, u) est satisfaite,

κ(t+ h, u)− κ(h, u) = κh(t, u) = κ(t, u− h) (4.270)

alors l’identité trajectorielle suivante est vérifiée :

{Xκ(t+ h,B)−Xκ(h,B) = Xκ(t, Bh)} (4.271)

et le processus {Xκ(t, B)} est stationnaire.

(ii) Si la condition d’ auto-similarité temporelle du noyau bivarié κ(t, u) est satisfaite,

κ(λt, u) = η(λ)κ

(
t,
u

λ

)
= (

√
λη(λ))κλ(t, u) avec η(λ) = λν1{λ>0}, ν ∈

(
−1

2
,
1

2

)
(4.272)

alors l’identité trajectorielle suivante est vérifiée :

{Xκ(λt,B) = η(λ)
√
λXκ(t, Bλ)}. (4.273)

et le processus {Xκ(t, B)} est auto-similaire.

(iii) Si les conditions de stationnarité temporelle (Équation (4.270)) et d’auto-similarité
temporelle (Équation (4.272))) sont simultanément satisfaites, alors l’identité trajector-
ielle suivante est vérifiée :

{Xκ(λ(t+ h), B)−Xκ(λh,B) = η(λ)
√
λXκ(t, Bλ

h)} (4.274)

et le processus {Xκ(t, B)} est à la fois stationnaire et self-similaire avec un noyau de
variance-covariance défini comme suit :

VX(t) = VX(1)
∣∣t∣∣2γ et KX(t, s) =

VX(1)

2
(|t|2γ + |s|2γ − |t− s|2γ) (4.275)

où γ ∈ (0, 1), η(λ) = λγ−
1
21{λ>0}.
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Pour que le processus PDBM soit auto-similaire et stationnaire, il suffit que le noyau κ
satisfasse le système suivant : κ(t+ h, u)− κ(h, u) = κ(t, u− h)

κ(λt, λu) = η(λ)κ
(
t, u
)

avec η(λ) = λν1{λ>0}, ν ∈
(
−1

2 ,
1
2

)
.

(4.276)

La dernière étape consiste à trouver un noyau bivarié κ(t, u), solution du système ci-
dessus, et de carré intégrable en u. La solution proposée par Mandelbrot et Van Ness
est le noyau fractionnaire κν , qui est clairement une solution du système précédent.

Proposition 4.46. Un noyau bivarié proposé par Mandelbrot et Van Ness est donné
par :

κν(t, u) = (t− u)ν1{u<t} − (−u)ν1{u<0}, avec ν = γ − 1

2
∈
(
−1

2
,
1

2

)
. (4.277)

(i) Ce noyau présente des problèmes de définition lorsque u→ 0, u→ t.

(ii) Ce noyau satisfait le Système (4.276).

(iii) Pour tout ν ∈
(
−1

2 ,
1
2

)
, κ(t, u) ∼ νt(−u)(ν−1) est intégrable au carré par rapport à

la mesure de Lebesgue lorsque u→ −∞ car 2(ν − 1) < −1.

Pour ν < 0, lorsque u → 0 (resp. u → t), κ(t, u) ∼ −(−u)ν (resp. κ(t, u) ∼ (t− u)ν),
qui est de carré intégrable par rapport à la mesure de Lebesgue car 2ν + 1 > 0.

Ainsi, κ(t, u) est de carré intégrable par rapport à u.

La carré intégrabilité vérifie que :

− pour toute valeur de ν, lorsque u→ −∞,
∫ ∣∣∣κ(t, u)∣∣∣2 du <∞,

− pour ν < 0, pour u au voisinage de 0 et pour u au voisinage de t,
∫ ∣∣∣κ(t, u)∣∣∣2 du <∞.

Quelques remarques guident l’intuition pour obtenir une telle solution.

Extension au cadre multidimensionnel Enfin, une extension au cadre multidi-
mensionnel est proposée, d’abord pour le mouvement Brownien de dimension d dont
les composantes sont des mouvements Browniens corrélés de matrice de covariance
(ρi,j(t∧s))i,j∈J1,dK2 , puis pour le mouvement Brownien fractionnaire multivarié (mfBm).

Definition 4.47. {Xκ(t, B) = (Xκ1
(t, B1), Xκ2

(t, B2), . . . , Xκd
(t, Bd))}, appelé mouvement

Brownien fractionnaire de dimension d, est un processus Gaussien multidimensionnel
défini comme l’intégrale stochastique d’un vecteur de noyaux bivariés déterministes par
rapport à un vecteur de transformations linéaires du processus de Wiener, tel que pour
presque tous (t, u) ∈ R2 :

Xκ(t, B) =

∫
κ(t, u)⊙ dB(u) :=

(∫
κi(t, u)dBi(u)

)
i∈J1,dK

(4.278)
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où ⊙ est le produit élément par élément, κ(t, u) = (κi(t, u))i∈J1,dK est le vecteur de noy-
aux proposé par Mandelbrot et Van Ness dans l’Équation (4.277), B(t) = (Bi(t))i∈J1,dK,
et son noyau de covariance est donné par :

KXκ((i, t), (j, s)) = Cov

(
Xκi

(t, Bi), Xκj
(s,Bj)

)
=

∫
κi(t, u)κj(s, u)ρi,jdu. (4.279)

Chaque coordonnée du vecteur κ(t, u) satisfait les conditions de stationnarité et d’auto-
similarité dans le cadre univarié données dans l’Équation (4.276). Ces propriétés sont
ensuite obtenues dans le sens vectoriel, c’est-à-dire pour tout λ > 0, h ∈ R et pour
presque tous (t, u) ∈ R2 : κ(λt, λu) = η(λ)κ

(
t, u
)

avec η(λ) = (λνi1{λ>0})i∈J1,dK, νi ∈
(
−1

2 ,
1
2

)
κ(t+ h, u)− κ(h, u) = κ(t, u− h).

(4.280)

Nous prouvons que le mfBm est un processus Gaussien multidimensionnel auto-similaire
avec des accroissements stationnaires et corrélés.

Theorem 4.48. Soit {Xκ(t, B)} un mouvement Brownien fractionnaire de dimension
d. Pour tout λ > 0, h ∈ R et pour presque tous (t, u) ∈ R2 : Xκ(t+ h)−Xκ(h) =

∫
κ(t, u)⊙ dBh(u) = Xκ(t, Bh)

Xκ(λt) =
√
λη(λ)⊙

∫
κ(t, u)⊙ dBλ(u) =

√
λη(λ)⊙Xκ(t, Bλ).

(4.281)

Le processus vectoriel {Xκ(t, B)} est stationnaire et auto-similaire au sens trajectoriel.

De plus, son noyau de covariance est entièrement caractérisé par des fonctions puissances
dont les exposants dépendent des composantes spatiales. Voici la traduction en français
du théorème :

Theorem 4.49. Soit {Xκ(t, B)} un mouvement Brownien fractionnaire d-dimensionnel.

(i) Le noyau de covariance entre deux coordonnées distinctes prises au même instant
t ∈ R\{0} est entièrement caractérisé par une fonction puissance d’exposant γi + γj où
γi, γj ∈ (0, 1) :

KXκ((i, t), (j, t)) = KXκ((i, 1), (j, 1))
∣∣t∣∣γi+γj

. (4.282)

(ii) Le noyau de covariance symétrisé entre deux coordonnées distinctes prises à deux
instants distincts Xκi(t, Bi) et Xκj (s,Bj) avec t, s ∈ R\{0} est entièrement caractérisé
par combinaison linéaire de fonctions puissance d’exposant γi + γj où γi, γj ∈ (0, 1) :

KXκ((i, t), (j, s)) +KXκ((i, s), (j, t)) = KXκ((i, 1), (j, 1))

(∣∣t∣∣γi+γj

+ |s|γi+γj −
∣∣t− s

∣∣γi+γj
)
.

(4.283)

Changement de notations : Dans Chapter 3, le mouvement Brownien fractionnaire
{Xκi

(t, Bi)} est noté {BHi(t)}, l’exposant γi de la fonction puissance correspond à
l’exposant de Hurst Hi, et le noyau bivarié κi(t, u) est remplacé par ψHi

0,t (u).
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4.8.2 Chapter 3 - Prédiction de la VaR pour un portefeuille d’actifs
sous des dynamiques fractionnaires

Etat de l’art

La Valeur à Risque (VaR) est une statistique qui quantifie l’ampleur des pertes finan-
cières possibles au sein d’une entreprise, d’un portefeuille ou d’une position sur une péri-
ode spécifique. Cette mesure est principalement utilisée par les banques d’investissement
et commerciales pour déterminer l’ampleur et les probabilités des pertes potentielles
dans leurs portefeuilles institutionnels. Les gestionnaires de risques utilisent la VaR
pour mesurer et contrôler le niveau d’exposition au risque. On peut appliquer les cal-
culs de la VaR à des positions spécifiques ou à des portefeuilles entiers, ou les utiliser
pour mesurer l’exposition au risque de l’entreprise dans son ensemble. La Valeur à
Risque (VaR) est la mesure du risque la plus couramment utilisée par les régulateurs.
La VaR au niveau de risque α ∈ (0, 1) correspond au quantile d’ordre α de la distri-
bution des profits et pertes (P&L). La littérature sur la VaR est vaste, avec plus de
2700 articles référencés sur Google Scholar. La VaR a été étudiée en détail dans les
ouvrages bien connus de (Wipplinger, 2007, Partie II. p105) et (McNeil et al., 2015,
Chap.2, p37). Calculer la VaR est un problème complexe car cela nécessite de connaître
la distribution du portefeuille P&L, qui est généralement inconnue. Un large éventail
d’articles se sont intéressés à la prédiction de la VaR. Pour n’en citer que quelques-
uns, voir par exemple (Cheung and Powell, 2012) qui présente une étude pédagogique
utilisant le calcul paramétrique et la simulation Monte-Carlo pour calculer la VaR, ou
(Feuerverger and Wong, 2000) qui explique le calcul de la VaR pour les portefeuilles
non linéaires. Bien que la VaR ne soit pas une mesure de risque parfaite (voir (Del-
baen et al., 1998)), elle est toujours couramment utilisée. Il est fondamental d’avoir
une estimation précise de la VaR : en cas de sous-estimation, l’institution financière
prendra trop de risques, sans être préparée à cela ; en cas de surestimation, le mont-
ant d’argent à mettre de côté serait trop élevé, ce qui empêcherait certaines activités
bancaires. De plus, son calcul doit être efficace, car son évaluation est fréquente et
doit être réalisée selon de nombreux portefeuilles. Dans (Gaivoronski and Pflug, 2005),
une méthode de calcul du portefeuille qui donne la plus petite VaR parmi ceux qui
donnent au moins un rendement attendu spécifié est présentée. En utilisant cette ap-
proche, la frontière efficace complète en moyenne-VaR peut être calculée. La méthode
est basée sur l’approximation de la VaR historique par une VaR lissée (SVaR) qui filtre
les irrégularités locales. La Valeur à Risque (VaR) et la Valeur à Risque Conditionnelle
(CVaR) sont deux mesures largement utilisées en gestion des risques. Les travaux de
(Bardou et al., 2009) traitent du problème de l’estimation à la fois de la VaR et de la
CVaR en utilisant une approximation stochastique (avec des pas décroissants) : une
première procédure Robbins-Monro (RM) basée sur l’identité de Rockafellar-Uryasev
est proposée pour la CVaR. L’estimateur fourni par l’algorithme satisfait un théorème
central limite Gaussien. En deuxième étape, afin d’accélérer la procédure initiale, une
procédure d’échantillonnage d’importance récursive et adaptative (IS) qui induit une
réduction significative de la variance des procédures de VaR et de CVaR est présentée.
Dans (Manganelli and Engle, 2001), une enquête et une évaluation des performances des
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méthodologies de VaR univariées les plus populaires sont effectuées en accordant une
attention particulière à leurs hypothèses sous-jacentes et à leurs lacunes logiques. Les
travaux de (Jorion, 1996) exposent la méthodologie statistique pour analyser l’erreur
d’estimation dans la VaR et montrent comment améliorer la précision des estimations
de VaR. Les régulateurs exigent que les banques utilisent la Valeur à Risque (VaR) pour
estimer l’exposition de leurs portefeuilles de trading au risque de marché, afin d’établir
des exigences en capital. Cependant, l’analyse de la VaR au niveau du portefeuille est
un problème de grande dimension et donc intensif en termes de calcul. Les travaux
de (Albanese et al., 2002) présentent deux nouvelles approches basées sur le porte-
feuille pour réduire la dimensionnalité de l’analyse de la VaR. Une approche classique
pour prédire la VaR est le modèle de moyenne mobile pondérée, comme présenté dans
(Hendricks, 1996). Les travaux de (Lucas and Zhang, 2016) présentent une méthodo-
logie simple pour modéliser la variation temporelle des volatilités et d’autres moments
d’ordre supérieur en utilisant un schéma de mise à jour récursive similaire à l’approche
RiskMetrics familière. Dans (Gabrielsen et al., 2015), l’auteur propose un aperçu des
dynamiques variables dans le temps de la forme de la distribution des séries de ren-
dement financier en proposant un modèle de moyenne mobile pondérée exponentielle
qui estime conjointement la volatilité, l’asymétrie et l’aplatissement au fil du temps en
utilisant une forme modifiée de la densité de Gram-Charlier dans laquelle l’asymétrie
et l’aplatissement apparaissent directement dans la forme fonctionnelle de cette dens-
ité. Dans ce cadre, la VaR peut être décrite comme une fonction des moments d’ordre
supérieur variables dans le temps en appliquant la série d’expansion de Cornish-Fisher
des quatre premiers moments. L’article (Alexander and Dakos, 2023) discute de la con-
tribution à la Valeur à Risque dans le cadre du modèle actif-passif en utilisant l’approche
EWMA. On suppose que les rendements des actifs et des passifs sont des séries chro-
nologiques suivant le modèle de moyenne mobile pondérée exponentielle (EWMA). Le
rendement excédentaire, qui est la différence entre le rendement des actifs et des pas-
sifs, est analysé en utilisant le modèle actif-passif. Dans ce cas, le risque de rendement
excédentaire est mesuré à l’aide du modèle de la Valeur à Risque. Lorsque des invest-
issements sont réalisés sur plusieurs actifs, chaque actif contribuera à l’établissement de
la Valeur à Risque du portefeuille d’investissement, qui peut être mesurée à l’aide du
modèle de contribution à la Valeur à Risque. En utilisant la contribution à la Valeur
à Risque, il est possible de voir dans quelle mesure la Valeur à Risque excédentaire du
portefeuille d’investissement est influencée, et quelle est la proportion de la contribu-
tion à la Valeur à Risque de chaque excédent de l’actif d’investissement. Sur la base
du calcul de la contribution à la Valeur à Risque, les investisseurs peuvent envisager
d’investir dans certains actifs analysés. Les travaux de (Sukono et al., 2018) dérivent un
modèle de couverture combiné et dynamique - moyenne mobile pondérée exponentielle-
autorégressif conditionnel généralisé hétéroscédasticité (GARCH)(1,1)-M applicable aux
marchés financiers réels sur la base d’études précédentes. Les résultats de cet article
montrent que le modèle construit est non seulement excellent pour rechercher la VaR
minimale mais aussi pratique pour la situation réelle où les variances des données de
prix financiers sont variables dans le temps. L’article (Anantafortuna and Anggono,
2019) vise à utiliser la Valeur à Risque comme outil d’évaluation des risques pour les
activités de trading basé sur la moyenne mobile exponentielle et la stratégie de ligne
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de rétrogradation. Cet article vise également à informer sur le niveau de risque que
prennent les investisseurs avec un certain investissement en calculant la perte potenti-
elle maximale qui se produit chaque jour et à évaluer si les activités de trading ont été
effectuées dans ou au-delà de la Valeur à Risque calculée. Des études empiriques ont
montré qu’un grand nombre de rendements d’actifs financiers présentent une dépend-
ance à long terme. De plus, une certaine mémoire à long terme ou dépendance à longue
portée peut également être observée comme un fait stylisé dans la volatilité du marché,
avec un impact significatif sur la tarification et la prévision de la volatilité du marché.
Étant donné que les mesures de risque sont basées sur la dynamique des rendements
des actifs sous-jacents, alors dans de tels cas, la méthodologie classique utilisée pour
prédire les mesures de risque présente de mauvaises performances. Pour remédier à ce
problème, des modèles autorégressifs tels que ARCH ou GARCH ont été utilisés pour
prédire la VaR. Dans (Anantafortuna and Anggono, 2019), les auteurs montrent que,
d’une part, les modèles qui prennent en compte la mémoire à long terme offrent la
promesse d’une meilleure prévision de la volatilité à long terme ainsi qu’une tarification
précise des contrats à long terme. D’autre part, l’attention récente se porte sur la ques-
tion de savoir si la mémoire à long terme peut affecter la mesure du risque de marché
dans le contexte de la valeur en risque (VaR). Dans cet article, les auteurs évaluent la
valeur en risque (VaR) et la perte attendue (ESF) sur les marchés financiers dans de
telles conditions. La méthodologie d’estimation classique de la VaR telle que la moyenne
mobile exponentielle (EMA) ainsi que l’extension aux cas où la mémoire à long terme
est une caractéristique inhérente du système sont investiguées. En particulier, deux
modèles de mémoire à long terme sont estimés, le Fractional Integrated Asymmetric
Power-ARCH et le Hyperbolic-GARCH avec différentes hypothèses de distribution des
erreurs. Ces modèles présentent de meilleures performances dans la prédiction de la
VaR que les approches classiques qui ne tiennent pas compte de la dépendance à long
terme. Dans (Aloui, 2008), la mémoire à long terme est explorée sur la volatilité des
marchés de l’énergie et la valeur en risque (VaR). La question principale est la suivante :
pouvons-nous estimer la VaR de manière plus précise si une mémoire à long terme existe
? Pour enquêter sur cette question, plusieurs processus de type GARCH, y compris le
processus FIGARCH, ont été mis en œuvre pour les prix quotidiens de certains produits
énergétiques principaux (janvier 1986 à juillet 2007). La valeur en risque a été estimée
pour les positions de trading à court et à long terme et à divers niveaux de confiance.
Les distributions normales, de Student et de Student asymétriques sont suggérées pour
divers processus GARCH. La performance de la VaR de type GARCH est évaluée en
estimant le taux d’échec de la statistique de test de Kupiec. Conformément aux études
précédentes, nos résultats montrent que la volatilité des prix de l’énergie présente une
mémoire à long terme. La VaR calculée à l’aide d’un processus FIGARCH de Student-t
asymétrique offre les meilleures performances tant pour les positions de trading à court
terme que pour les positions de trading à long terme. Les travaux de (Youssef et al.,
2015) présentent trois modèles de mémoire à long terme, y compris FIGARCH, HY-
GARCH et FIAPARCH, pour prévoir la volatilité des matières premières énergétiques
en capturant certains faits stylisés sur la volatilité tels que la mémoire à long terme,
l’hétéroscédasticité, l’asymétrie et les queues épaisses. L’article (Tang and Shieh, 2006)
examine les propriétés de mémoire à long terme pour les prix de clôture de trois marchés
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à terme sur indices boursiers. Les modèles FIGARCH (1, d, 1) et HYGARCH (1, d, 1)
avec des distributions normales, de Student-t et de Student-t asymétriques pour les prix
quotidiens du S&P500, du Nasdaq100 et du Dow Jones sont d’abord estimés. Ensuite,
les valeurs en risque sont calculées à l’aide des modèles estimés. Les résultats empiriques
montrent que, pour les trois marchés à terme sur indices boursiers, les modèles HYG-
ARCH (1, d, 1) avec distribution de Student-t asymétrique sont plus performants selon
les tests de LR de Kupiec. En particulier, pour les prix des contrats à terme sur le
S&P500 et le Nasdaq100.

4.8.3 Contributions

Chapter 3 se concentre sur la construction d’un modèle prédictif précis pour la Value-at-
Risk (VaR), capable de prendre en compte la dépendance à long-terme (respectivement
à court-terme). Des modèles autorégressifs ont déjà été développés pour accomplir cette
tâche ; cependant, ces modèles dépendent d’un grand nombre de paramètres à estimer.
Nos travaux proposent une autre approche capable de capturer la dépendance à long-
terme (respectivement à court-terme) grâce à des processus Gaussiens autosimilaires
avec des incréments stationnaires, appelés mouvements Browniens fractionnaires (fBm).
Nous considérons un cadre dans lequel la dynamique des prix est décrite par des modèles
de Black-Scholes fractionnaires, dépendant de mouvements Browniens fractionnaires
paramétrés par leur exposant de Hurst. Ces modèles présentent l’avantage de capturer
les corrélations à la fois dans le temps et entre les actifs. Comparé au modèle classique
de Black-Scholes, la flexibilité dans le choix de l’exposant de Hurst permet une meilleure
description des trajectoires des prix afin de coller à la réalité. Ainsi, le modèle prédictif
pour la VaR conditionnelle à l’horizon temporel h (c’est-à-dire, la VaR des profits et
pertes sur la prochaine période de longueur h, conditionnellement aux observations
disponibles au moment du calcul) sera en mesure de prédire de manière plus précise le
montant d’argent à mettre de côté, évitant ainsi une surcharge ou une sous-estimation
pour le régulateur. La précision de nos prédictions de VaR est évaluée à l’aide d’une
procédure de backtesting basée sur les travaux de (Christoffersen, 1998). L’utilisation
des modèles fractionnaires en finance n’est pas nouvelle et a pris de l’importance ces
dernières années. Les modèles fractionnaires ont été largement utilisés à diverses fins ;
cependant, dans les études mentionnées ci-dessus, la prédiction de la VaR conditionnelle
n’a pas été abordée.

En résumé, nous apportons les contributions suivantes. Nous concevons un cadre
théorique pour les modèles fractionnaires dans l’espace de Hilbert Gaussien. Nous
proposons une formule fermée pour l’approximation Gaussienne de la VaRα condition-
nelle, à l’horizon temporel h, de la variation future du portefeuille sous des dynamiques
fractionnaires. Nous fournissons ensuite une quantification de l’erreur d’approximation
Gaussienne. Nous utilisons une méthodologie robuste pour estimer les paramètres du
modèle fractionnaire. Nous réalisons une procédure de backtesting pour évaluer la pré-
cision de notre approximation. Nous appuyons notre analyse par diverses expériences
qui illustrent le comportement de notre nouveau modèle.
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Tout d’abord, nous établissons un cadre théorique Gaussien sans aucune application
dans le domaine financier. Dans cette partie, nous prouvons la forme spécifique de
l’espérance et de la variance conditionnelles d’une combinaison linéaire d’incréments
futurs de plusieurs fBms corrélés, étant donné les incréments passés.

Cadre théorique Il n’existe pas de méthode unique pour modéliser le mouvements
Brownien fractionnaire multivarié : la façon la plus directe est de donner leur fonction
de covariance comme un processus Gaussien multivarié ; cependant, cette méthode est
assez peu pratique lorsqu’il s’agit de calculs conditionnels dans le temps, avec diverses
filtrations à prendre en compte en fonction des observations disponibles. Par conséquent,
nous préférons travailler directement au niveau de l’espace de Hilbert Gaussien indexé
par des fonctions dans

L2
d := L2(Rd, du) =

{
f : R 7→ Rd s.t.

∣∣f ∣∣2L2
d
:=

∫
R
|f(u)|2du < +∞

}
(4.284)

où les quantités de base sont définies par des intégrales de Wiener, et les projections
et espérances conditionnelles sont réalisées par le biais de projections de fonctions dans
L2
d.

Nous adoptons le cadre du processus Gaussien isonormal associé à l’espace de Hilbert
L2
d, avec le produit scalaire

⟨f, g⟩L2
d
=

∫
R
f(u) · g(u)du, (4.285)

également appelé espace de Hilbert Gaussien ; ici f(u) · g(u) est simplement le produit
scalaire dans Rd entre les fonctions vectorielles f et g au point u. Voir (Janson, 1997)
pour un large aperçu sur l’espace de Hilbert Gaussien. En d’autres termes, nous con-
sidérons un espace de probabilité (Ω,F ,P) supportant une famille Gaussienne centrée
de variables aléatoires scalaires

H = {I(f) : f ∈ L2
d} (4.286)

telle que la propriété d’isométrie est en vigueur

E
[
I(f)I(g)

]
= ⟨f, g⟩L2

d
. (4.287)

Une façon de construire cet espace de Hilbert Gaussien indexé par des fonctions de carré
intégrable f ∈ L2

d est de supposer que l’espace de probabilité supporte un mouvement
Brownien de dimension d indexé par la droite réelle, (Wt = (W 1

t , · · · ,W d
t )

⊤ : t ∈ R), et
de définir I(f) par l’intégrale stochastique

I(f) =

∫
R
f(u) · dWu =

d∑
i=1

∫
R
f i(u)dW i

u (4.288)

(a.k.a. intégrale de Wiener). Voir (Janson, 1997, Chapter 7) où les intégrales sont
restreintes à R+, l’extension à R est immédiate. Comme montré dans Chapter 2, le
mouvement Brownien fractionnaire (fBm) d’exposant de Hurst H correspond à un choix
spécifique de fonction f , qui est la représentation dépendant temporellement de la tra-
jectoire proposée par Mandelbrot et Van Ness (Mandelbrot and Van Ness, 1968b).
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Definition-Proposition 5. Soit H ∈ (0, 1) et définissons, pour tout t ≥ 0,

BH
t = I((ψH

0,t(.), 0, · · · , 0)⊤) =
∫
R
ψH
0,t(u)dW

1
u avec ψH

s,t(u) =
1

cH

(
(t− u)

H− 1
2

+ − (s− u)
H− 1

2
+

)
,

(4.289)
où

cH :=

√√√√ 1

2H

(
3

2
−H

)
B

(
2− 2H,H +

1

2

)
(4.290)

et B(x, y) =
∫ 1
0 u

x−1(1− u)y−1du est la fonction Beta.

Cela définit un fBm scalaire BH , c’est-à-dire un processus Gaussien centré de covariance

Cov
(
BH

t , B
H
s

)
=

1

2
(|t|2H + |s|2H − |t− s|2H), H ∈ (0, 1). (4.291)

Le fBm possède une propriété d’auto-similarité. La propriété d’auto-similarité stipule
que, pour tout λ > 0 fixé, le processus {λ−HBH

λt}t∈R est également un fBm d’exposant
de Hurst H ∈ (0, 1). Cela est équivalent à dire que pour tout λ > 0, les processus
{λ−HBH

λt}t∈R et BH
t }t∈R ont la même distribution. En d’autres termes, la propriété

d’auto-similarité établit une relation de proportionnalité spatiale de facteur λH , entre
les distributions de {BH

λt} et {BH
t }. Cela conduit à obtenir des relations de propor-

tionnalité spatiale de facteur λ2H entre les variances, respectivement entre les noyaux
de covariance, des processus {BH

λt} et {BH
t }. Ce type de propriété d’échelle jouera un

rôle important dans la simplification de certaines formules ultérieures, car elle permet
des changements d’échelles temporelles et spatiales dans les processus. La propriété
d’auto-similarité est, par exemple, utile pour calculer la fonction de covariance du fBm,
car elle permet d’exprimer cette covariance uniquement à l’aide de fonctions puissance
d’exposant H ∈ (0, 1) (fonctions auto-similaires), et de la covariance au temps 1.

On définit le mouvement Brownien fractionnaire multivarié (mfBm) dont les com-
posantes sont corrélées. Pour introduire des corrélations entre les mouvements Brownien
fractionnaires (fBms), nous ajoutons des corrélations entre les composantes du mouvement
Brownien sous-jacent à travers une transformation linéaire du processus de Wiener W .
Cela fonctionne comme suit : soit C = (ρi,j)1≤i,j≤d une matrice de corrélation, et
soit R la racine carrée symétrique de C (qui existe car C est une matrice symétrique
semi-définie positive), de sorte que

ρi,j = R:,i ·R:,j (4.292)

où R:,i est la i-ème colonne de R. Nous définissons alors un mouvement Brownien frac-
tionnaire multivarié, avec des composantes corrélées, chacune ayant son propre para-
mètre de Hurst.

Definition-Proposition 6. Soit H1, · · · , Hd une séquence d’exposants de Hurst dans
(0, 1) et définissons, pour tout t ≥ 0 et tout i ∈ {1, · · · , d},

Bi,Hi
t := I(ψHi

0,tR:,i) =

∫
R
ψHi
0,t (u)R:,i · dWu, (4.293)
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où R:,i est la i-ème colonne de la matrice R. Cela définit un mouvement Brownien
fractionnaire multivarié (mfBm) de paramètres H = (Hi)i ∈ (0, 1)d dont les coordonnées
(Bi,Hi

t ) sont des fBms d’exposant de Hurst Hi, et sont corrélées de manière à ce que :

∀s, t ∈ R, Cov(Bi,Hi
t , B

j,Hj
s ) + Cov(B

j,Hj

t , Bi,Hi
s ) (4.294)

= Cov(Bi,Hi
1 , B

j,Hj

1 )

(
|t|Hi+Hj + |s|Hi+Hj − |t− s|Hi+Hj

)
,

(4.295)

où Cov(Bi,Hi
1 , B

j,Hj

1 ) est donnée explicitement dans le Lemme 3.1. On remarque que

Bi
t := R:,i ·Wt, i ∈ {1, · · · , d} (4.296)

définit un mouvement Brownien de dimension d de corrélation C.

Dans ce qui suit, nous devons généralement calculer l’espérance et la variance condi-
tionnelles d’une certaine intégrale stochastique I(f) conditionnellement aux incréments
du fBm sur une certaine grille temporelle. Un résultat général sur la façon de calculer
E
[
I(f) | {I(fl)}(l∈I

]
et V

[
I(f) | {I(fl)}(l∈I

]
, où (fl)l∈I est une famille arbitraire de

fonctions dans L2
d, L′ est le sous-espace fermé de L2

d engendré par (fl)l∈I , et f⋆ ∈ L′

est la projection orthogonale (unique) de f sur L′, est fourni par :

E
[
I(f) | {I(fl)}(l∈I

]
= I(f⋆) et V

[
I(f) | {I(fl)}l∈I

]
=
∣∣∣f − f⋆

∣∣∣2
L2
d

. (4.297)

En appliquant les formules ci-dessus au cadre spécifique du mouvement Brownien frac-
tionnaire, nous obtenons le résultat suivant.

Theorem 4.50. Considérons la famille d’indices I = {(i, l) | i ∈ J1, dK, l ∈ J1, NK} et
l’ensemble de fonctions à valeurs L2

d

f il (·) := σiR:,iψ
Hi
tl,tl+1

(·). (4.298)

Soit

f(·) =
d∑

i=1

ωi
tN
ψHi
tN ,tN+1

(·) (4.299)

une fonction de L2
d, où chaque coefficient d-dimensionnel ωi

tN
= ωiσiS

i
tN
R:,i est mesur-

able par rapport à {I(f il )}(i,l)∈I .
Alors, l’espérance de I(f) conditionnellement à {I(f il )}(i,l)∈I peut être écrite comme

E
[
I(f)|{I(f il )}(i,l)∈I

]
=
∑

(i,l)∈I

ailI(f
i
l ) =

d∑
i=1

N∑
l=1

ail(B
Hi
tl+1

−BHi
tl

), (4.300)

et la variance conditionnelle est donnée par :

V
[
I(f) | {I(f il )}(i,l)∈I

]
=

d∑
i,j=1

(ωi
tN

· ωj
tN
)

∫
R
ψHi
tN ,tN+1

(u)ψ
Hj

tN ,tN+1
(u)du (4.301)

−
N∑

i,j=1

N∑
k,l=1

aila
j
kρij

∫
R
ψHi
tl,tl+1

(u)ψ
Hj

tk,tk+1
(u)du, (4.302)
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où les coefficients de projection α⋆ = (a11, · · · , a1N , a21, · · · , a2N , · · · , ad1, · · · , adN )⊤ sont
donnés par :

α⋆ = M+y, (4.303)

où M+ est le pseudo-inverse de Moore-Penrose (voir (MacAusland, 2014, Section 5.5.4))
de la matrice

M =

(
⟨f i1k1 , f

i2
k2
⟩L2

d

)
(i1−1)×N+k1,(i2−1)×N+k2

et où

y =

(
⟨f, f i2k2⟩L2

d

)
(i2−1)×N+k2

.

Parmi les coefficients de projection intervenant dans l’espérance conditionnelle, le coef-
ficient α⋆ dans l’Équation (4.303) est celui avec la norme minimale.

2) Supposons que la discrétisation temporelle soit uniforme, c’est-à-dire, tl = lh pour l =
1, . . . , N . La propriété d’auto-similarité permet de factoriser le noyau de covariance par
une puissance du pas de temps h, et la quantité restante dans la factorisation représente
le noyau de covariance au temps 1 (indépendant de h) entre les deux fBms donnés :

M(i1−1)∗N+k1,(i2−1)∗N+k2 = ρi1,i2h
Hi1

+Hi2

∫
R
ψ
Hi1
0,1

(
v − k1

)
ψ
Hi2
0,1

(
v − k2

)
dv, (4.304)

y(i2−1)N+k2 =

d∑
i=1

(ωi
tN

·R:,i2)h
Hi+Hi2

∫
R
ψHi
0,1

(
v −N

)
ψ
Hi2
0,1

(
v − k2

)
dv. (4.305)

Les résultats théoriques sont ensuite appliqués au cadre de la gestion des risques en
finance.

Cadre financier Nous présentons le modèle utilisé pour décrire la dynamique des
prix. Habituellement, celle-ci est décrite à l’aide d’un modèle standard de Black-Scholes
basé sur un mouvement Brownien classique. L’approche présentée dans ce travail est
assez différente, car la dynamique des prix est décrite par un modèle de Black-Scholes
fractionnaire. Ce choix de modèle est justifié par le fait que les incréments des log-prix
restent Gaussiens, auto-similaires et stationnaires. Ainsi, des propriétés intéressantes
peuvent être exploitées, d’une part, pour modéliser la trajectoire des incréments des log-
prix avec précision et réalisme, en introduisant des corrélations entre eux qui expriment
une dépendance à long-terme (respectivement à court-terme) ; et d’autre part, pour
assurer la stabilité et la cohérence des estimateurs, ainsi que pour réaliser les calculs
théoriques de variances-covariances.

De plus, les actifs que nous décrivons, tels que les taux de change, présentent des
corrélations significatives entre les incréments des log-prix, qui peuvent être prises en
compte par les propriétés fractales du mouvement Brownien fractionnaire (fBm). Une
telle approche a déjà été adoptée dans les travaux de (Garcin, 2020) (en dimension
d = 1), où le fBm est utilisé pour prendre en compte les corrélations positives entre les
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rendements. Ici, nous proposons une extension multivariée – le modèle dit de Black-
Scholes fractionnaire multivarié – pour modéliser la dynamique des prix dans un univers
composé de plusieurs actifs corrélés à la fois en temps et en espace.

Supposons que nous ayons un univers composé de d actifs dont les prix de marché à
l’instant t sont notés

(
S1
t , . . . , S

d
t

)
et dont les logarithmes des prix de marché à l’instant

t sont notés
(
X1

t , . . . , X
d
t

)
.

La dynamique des prix est décrite par un mouvement Brownien fractionnaire géométrique
:

∀i ∈ J1, dK, Si
t = Si

0e
cit+σiB

i,Hi
t avec cit = log

(
E[Si

t ]

Si
0

)
− σ2i

2
t2Hi , (4.306)

où S0 est fixé et connu, et cit est le paramètre de centrage dans le modèle. Nous
supposons que tous les paramètres sont connus grâce à leurs estimations à partir des
données de marché.

Concentrons-nous sur les propriétés du processus des logarithmes des prix :

Xi
t = Xi

0 + cit + σiB
i,Hi
t . (4.307)

Le processus des log-prix est une fonction affine par rapport au mouvement Brownien
fractionnaire et, en tant que tel, il bénéficie des propriétés liées à l’auto-similarité et
à la stationnarité des incréments, tout en relaxant la propriété d’indépendance des
incréments. Pour tout h > 0, les incréments des log-prix de longueur h sont définis par
(voir Équation (4.293)) :

δhX
i
t := Xi

t+h −Xi
t = δhc

i
t + σiI(ψ

Hi
t,t+hR:,i). (4.308)

Dans ce cadre, nous nous intéressons à la détermination de mesures de risque de
l’incrément futur du prix d’un portefeuille à l’horizon temporel h. Le portefeuille et
ses incréments de taille h sont définis par :

Pt =

d∑
i=1

ωiSi
t et δhPt := Pt+h − Pt. (4.309)

L’objectif est de calculer la VaRα conditionnelle de l’incrément futur du portefeuille
δhPtN = PtN+1−PtN , étant donné les observations passées {S1

t0 , S
1
t1 , . . . , S

1
tN
, . . . , Sd

t0 , S
d
t1 , . . . , S

d
tN
}

prises sur une partition uniforme de l’intervalle de temps [0, t], de sorte que le pas de
temps soit constant et égal à h, t0 = 0, tN = t et pour tout l ∈ J0, NK, tl = lh. Comme
tous les paramètres sont connus, observer les prix, les log-prix ou les incréments des
log-prix fournit la même information, modélisée par la tribu

G := σ(δhX
i
tl
: (i, l) ∈ I) = σ(I(f il ) : (i, l) ∈ I) où f il (·) := σiR:,iψ

Hi
tl,tl+1

(·)
(4.310)

et I = {(i, l) | i ∈ J1, dK, l ∈ J1, NK} est une famille d’indices permettant à l’indexation
à la fois des actifs et des incréments temporels.
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Conditionnellement à G, δhP̂tN = I(f), où la forme de la fonction f est définie par
l’Équation (4.299) du Théorème 4.50 avec la pondération spécifique ωi

tN
= ωiσiS

i
tN
R:,i

:

f(·) =
d∑

i=1

ωiσiS
i
tN
R:,iψ

Hi
tN ,tN+1

(·), (4.311)

suit une distribution Gaussienne. Plus précisément, conditionnellement à G, δhP̂tN suit
une distribution Gaussienne caractérisée par son espérance conditionnelle et sa variance
conditionnelle.

Modèle de VaR Pour calculer la VaRα conditionnelle de δhPtN , nous devons con-
naître la distribution conditionnelle de l’incrément futur du portefeuille, compte tenu
des observations passées. Cependant, δhPtN est une combinaison linéaire de variables
aléatoires log-normales, dont les distributions marginales et conditionnelles sont incon-
nues. Nous proposons donc une approximation Gaussienne de la VaRα conditionnelle
de δhPtN , à l’aide de la VaRα conditionnelle de δhP̂t, dont la distribution condition-
nelle est Gaussienne. La VaRα Gaussienne est facilement déterminée, car elle repose
seulement sur l’espérance et l’écart-type de la distribution Gaussienne.

δhPtN = PtN+h − PtN =

d∑
i=1

ωiδhS
i
tN

≃
d∑

i=1

ωiSi
tN
δhX

i
tN

=: δhP̂tN . (4.312)

Theorem 4.51 (Value-at-Risk conditionnelle Gaussienne). Si δhP̂tN = I(f), avec f
donnée par l’Équation (??), représente l’incrément futur du portefeuille des log-prix,
et si (δhXi

tl
= I(f il ))(i,l)∈I , avec f il données par l’Équation (4.298) du Théorème 4.50,

sont les incréments passés des log-prix des actifs qui composent l’univers, alors la VaRα

conditionnelle Gaussienne est donnée par la formule suivante :

VaRα(δhP̂tN |G) =
√
V[δhP̂tN |G]N−1(α) + E[δhP̂tN |G] (4.313)

où E[δhP̂tN |G] et V[δhP̂tN − E[δhP̂tN |G]] sont données par le Théorème 4.50.

Modèle d’ES L’Expected-Shortfall conditionnel de l’approximation Gaussienne de
l’incrément futur du portefeuille est donnée dans le théorème suivant.

Theorem 4.52 (Expected-Shortfall conditionnel Gaussien). Si δhP̂tN = I(f), avec f
donnée par l’Équation (??), représente l’incrément futur du portefeuille des log-prix,
et si (δhXi

tl
= I(f il ))(i,l)∈I , avec f il données par l’Équation (4.298) du Théorème 4.50,

sont les incréments passés des log-prix des actifs qui forment l’univers, alors l’Expected-
Shortfall conditionnel Gaussien est donné par la formule suivante :

ESα(δhP̂tN | G) =

√
V[δhP̂tN |G]
1− α

n(N−1(α)) + E[δhP̂tN |G] (4.314)

où n(x) = 1√
2π
e−

x2

2 et N(x) =
∫ x
−∞ n(y)dy sont respectivement la fonction de densité

Gaussienne centrée réduite et la fonction de répartition.
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Quantification de l’erreur Nous fournissons une quantification de l’erreur de notre
approximation Gaussienne. Plus précisément, l’objectif est de quantifier la précision de
l’approximation de VaRα(δhPtN | G) avec VaRα(δhP̂tN | G). En d’autres termes, nous
cherchons à déterminer la borne supérieure de l’expression suivante :∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G)

∣∣∣ .
Theorem 4.53. Considérons l’incrément futur du portefeuille δhPtN et son approxim-
ation Gaussienne conditionnelle à G, donnée par le rendement logarithmique futur du
portefeuille δhP̂tN . Ainsi, nous avons la borne supérieure suivante :

∆ =
∥∥∥δhPtN − δhP̂tN

∥∥∥
p,G

≤ 2

d∑
i=1

∣∣∣ωi
∣∣∣Si

tN

(
σ2i h

2HiC
1/pq
2pq +M2

i

)
e(Mi)++ pr

2
σ2
i h

2Hi

(4.315)

avec p > 1 et 1
q +

1
r = 1.

Si nous supposons que ∆ est suffisamment petit, c’est-à-dire |∆| < 1− α p.s., alors :

(i) La quantification de l’approximation de la VaRα conditionnelle de l’incrément futur
du prix du portefeuille δhPtN par la VaRα Gaussienne conditionnelle de l’incrément
futur du portefeuille des log-prix δhP̂tN est donnée comme suit :

∣∣∣VaRα(δhPtN | G)−VaRα(δhP̂tN | G)
∣∣∣ ≤ ( 2σ(G)

1− α−∆

d∑
i=1

∣∣∣ωi
∣∣∣Si

tN
(4.316)

×
(
σ2i h

2HiC
1/pq
2pq +M2

i

)
e(Mi)++ pr

2
σ2
i h

2Hi

)
, p.s.

(4.317)

avec Mi := E
[
δhX

i
tN

| G
]
, σ(G) =

√
V[δhP̂tN |G], G ∼ N (0, 1), et C2pq := E

[
G2pq

]
.

(ii) La quantification de l’approximation de l’ESα conditionnel de l’incrément futur
du prix du portefeuille δhPtN par l’ESα Gaussien conditionnel de l’incrément futur du
portefeuille des log-prix δhP̂tN est donnée comme suit :∣∣∣ESα(δhPtN | G)−ESα(δhP̂tN | G)

∣∣∣ (4.318)

≤

(1 + 1

1− α

)
2σ(G)

1− α−∆
+

2

1− α

 d∑
i=1

∣∣∣ωi
∣∣∣Si

tN

(
σ2i h

2HiC
1
pq

2pq +M2
i

)
e(Mi)++ pr

2
σ2
i h

2Hi .

(4.319)

Estimation des paramètres Notre modèle prédictif comprend les paramètres suivants
: σ = (σ1, . . . , σd) représentant le vecteur de volatilités de marché associées à chaque
actif, H = (H1, . . . ,Hd) étant le vecteur des exposants de Hurst qui contrôlent la régu-
larité des trajectoires de prix de chaque actif, et R = {ρij , i, j = 1, . . . d} désignant la
matrice des corrélations entre les actifs i et j. Nous considérons la suite d’observations
(X1

t0 , . . . , X
1
tN
, . . . , Xd

t0 , . . . , X
d
tN
) représentant les trajectoires des log-prix des d actifs.
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Pour faciliter l’estimation, nous supposons que les observations sont uniformément es-
pacées dans le temps, de sorte que tj = jτ , où τ est le pas de temps minimal. Le
modèle de VaR est testé à posteriori, d’abord sur des données synthétiques, puis sur
des données réelles. Par conséquent, nous estimons les paramètres du modèle à partir
des données synthétiques dans un premier temps, puis à partir des données réelles. La
méthodologie d’estimation repose sur trois hypothèses clés : Gaussianité, stationnarité
et autosimilarité. Ces hypothèses sont nécessaires pour estimer les paramètres.

L’hypothèse de Gaussianité stipule que pour chaque actif, les log-prix sont assimilés à
un fBm. Ainsi, les incréments des log-prix présentent le même comportement que les
incréments du fBm. Ainsi, les incréments des log-prix forment un vecteur Gaussien et
toute combinaison linéaire des incréments est une variable Gaussienne. L’approximation
de la variation future du portefeuille des prix des actifs δhP̂tN par la variation future du
portefeuille des log-prix avec une pondération bien choisie δP̂tN , conditionnellement aux
incréments passés des log-prix, est une variable Gaussienne. Par conséquent, la VaRα

conditionnelle de δhP̂tN , étant donné les rendements passés des actifs, est le quantile
d’une distribution Gaussienne. Plus précisément, VaRα(δhP̂N | G) est une fonction
affine du quantile α de la distribution Gaussienne centrée réduite, dont l’ordonnée à
l’origine est donnée par l’espérance conditionnelle µ(G) = E

[
δhP̂N | G

]
et dont la pente

est la racine carrée de la variance conditionnelle σ(G) =
√

V[δhP̂N | G].

L’hypothèse de stationnarité établit l’invariance par changement d’origine temporelle,
ou translation, des propriétés et des caractéristiques des familles de variables aléatoires
de L2. En particulier, la propriété de stationnarité établit l’invariance par changement
d’origine temporelle des espérances, variances et covariances, du processus des incré-
ments du fBm et donc des log-prix. La propriété de stationnarité implique que les
estimateurs des espérances, variances et covariances, appliqués au processus des incré-
ments restent les mêmes lorsque l’origine temporelle du processus des incréments change
; ainsi, les estimations des paramètres effectuées sur le processus des incréments sont
stables et fiables.

L’hypothèse d’autosimilarité établit une relation de proportionnalité spatiale entre les
caractéristiques, en particulier les espérances au carré, variances et covariances, du pro-
cessus lui-même et entre les caractéristiques du processus des incréments, pris à deux
échelles temporelles proportionnelles λt et t, avec comme facteur de proportionnalité
spatiale une fonction puissance de λ : λ2Hi , Hi ∈ (0, 1). Cela implique que les es-
timateurs des espérances au carré, variances et covariances appliqués au processus des
incréments pris à deux échelles temporelles proportionnelles λt et t, sont liés par une
relation de proportionnalité spatiale de facteur λ2Hi , ce qui permet une adaptation facile
des estimateurs à différentes échelles temporelles. La propriété d’autosimilarité permet
d’obtenir des estimations fiables, cohérentes avec les différentes échelles temporelles.
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Sous ces hypothèses, la méthode d’estimation des paramètres du mfBm consiste à cal-
culer, pour chaque composante du mfBm, la variance empirique des incréments des
log-prix pour différentes tailles d’incréments, en suivant l’estimateur basé sur les mo-
ments du fBm introduit par (Istas and Lang, 1994; Kent and Wood, 1997).

La variation quadratique des incréments de taille mτ avec m ∈ N⋆ est respectivement
donnée pour les incréments disjoints et pour les incréments chevauchants, comme suit :

V i
m =

1⌊
N/m

⌋
⌊
N
m

⌋
−1∑

j=0

(Xi
(j+1)mτ −Xi

jmτ )
2 et V i

m =
1

N −m+ 1

N−m∑
j=0

(Xi
(j+m)τ −Xi

jτ )
2.

(4.320)

Deux méthodes alternatives d’estimation, quasiment équivalentes, ont été étudiées. La
première méthode, basée sur les travaux de (Amblard and Coeurjolly, 2011a), con-
siste en la régression linéaire des log-variances par rapport aux log-échelles temporelles.
L’estimation de l’exposant de Hurst est donnée par la moitié de la pente de la régression
linéaire, et celle de la volatilité par l’exponentielle de la moitié de l’ordonnée à l’origine.
Une autre méthode d’estimation basée sur les niveaux d’énergie, étudiée en détails dans
(Chong et al., 2022a, p.12), (Chong et al., 2022b), et (Szymanski and Takabatake, 2023),
est également exploitée.

Rétrotest (Backtesting) Nous proposons une procédure de rétrotest pour évaluer
la performance de notre modèle à travers des expériences numériques.

Nous considérons un ensemble d’informations It−1 = {It−1, It−2, It−3, . . . , I1} qui con-
siste en une séquence de fonctions indicatrices, où la variable de dépassement It à
l’instant t est une variable de Bernoulli égale à 1 si le rendement entre les instants t et
t+h dépasse la VaR prédite à l’instant t, et à 0 sinon. Plus précisément, nous obtenons
les variables de dépassement en utilisant une approche par fenêtres glissantes.

Pour chaque fenêtre de taille w, nous prédisons à l’instant t la VaR conditionnelle à
l’horizon h, étant donné l’historique de la fenêtre [t − w, t], et nous la comparons au
rendement logarithmique réalisé entre les instants t et t+h, générant ainsi une variable
de dépassement égale à 1 ou 0.

Selon la littérature traditionnelle sur les rétrotests de la VaR (Christoffersen, 1998;
Davis, 2016), une VaRα satisfaisante doit être telle que E[It|It−1] = α. En d’autres
termes, nous évaluons deux critères sur les VaR générées : la couverture conditionnelle
et l’indépendance des variables de dépassement ; il doit être prouvé que {It} iid∼ Bern(α).
En pratique, le test de couverture consiste à estimer l’espérance conditionnelle de
la séquence des variables de dépassement, qui doit correspondre au niveau de risque
souhaité α. Cette estimation est réalisée en calculant la moyenne empirique des vari-
ables de dépassement. Plus cette dernière est proche du niveau de risque souhaité α,
plus le test de couverture conditionnelle est satisfaisant.

Concernant l’indépendance, nous proposons une méthode inspirée de la théorie des
valeurs extrêmes, initialement proposée par (Bücher et al., 2020). En effet, deux événe-
ments extrêmes deviennent approximativement indépendants s’ils sont séparés par un
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laps de temps suffisant. Pour mesurer le degré de dépendance dans une série temporelle,
nous utilisons l’indice extrémal.

L’indice extrémal θ est un indicateur capable de quantifier le degré de dépendance dans
une série temporelle de variables aléatoires, en comptant le nombre de regroupements
de variables au-dessus d’un seuil prédéterminé, à savoir les valeurs extrêmes. Il est égal
à un si la séquence est indépendante, ce qui signifie qu’il n’y a pas de regroupement de
valeurs extrêmes. Plus l’indice extrémal se rapproche de zéro, plus les regroupements
de valeurs extrêmes sont nombreux et plus la dépendance dans la série est grande.

Dans le cadre du rétrotest de la VaR, nous appliquons cette procédure à la séquence
des variables de dépassement, en considérant qu’une valeur extrême correspond à un
dépassement égal à un. Ainsi, l’indice extrémal quantifie la présence de regroupements
de violations de la VaR.

Un estimateur de l’indice extrémal peut être fourni en utilisant soit un algorithme
de dégroupement par blocs (block declustering), soit un algorithme de dégroupement
par fenêtres glissantes (run declustering). Plus précisément, étant donné une taille de
bloc arbitraire b, nous divisons la séquence, composée de n variables de dépassement
successives, en k =

⌊
n
b

⌋
blocs disjoints (dégroupement par blocs) ou en n − b fenêtres

glissantes (dégroupement par fenêtres glissantes). Dans l’approche par dégroupement
par blocs, chaque bloc contenant des variables de dépassement non-nulles représente
un regroupement. Dans l’approche par dégroupement par fenêtres glissantes, nous
comptons le nombre de fenêtres sans variable de dépassement non-nulle à partir de
la fin d’un regroupement. Avec ces deux méthodes, l’estimateur de l’indice extrémal
est le quotient entre le nombre estimé de regroupements et le nombre de variables de
dépassement non nulles. Formellement, si nous notons Mi,j = max{Ii+1, . . . , Ij}, les
deux estimateurs sont définis comme suit :

θ̂Bn (b) =

∑k
i=1 1{M(i−1)b,ib=1}∑kb

i=1 1{Ii=1}
et θ̂Rn (b) =

∑n−b
i=1 1{Ii=1,Mi,i+b=0}∑n−b

i=1 1{Ii=1}
. (4.321)

Le processus de rétrotest permet de comparer trois modèles de VaR : la VaR condi-
tionnelle (VaR modèle), la VaR Gaussienne (nous forçons H à être égal à 0, 5), et la
VaR empirique. Dans la plupart des cas, la VaR conditionnelle se distingue en termes
de taux de couverture et d’indice extrémal, suivi par la VaR Gaussienne puis la VaR
empirique. La VaR la plus basse est presque toujours la VaR empirique, mais son taux
de couverture et son indice extrémal sont très éloignés des valeurs souhaitées.

4.8.4 Chapter 4 - Estimation de l’Expected-Shortfall pour des
distributions à queues lourdes

Etat de l’art

Le cadre Gaussien est le plus couramment utilisé en finance en raison de ses propriétés
pratiques. Cependant, la distribution gaussienne a une queue fine, ce qui suppose que les
événements extrêmes sont rares, et tend à sous-estimer la probabilité de tels événements.
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En revanche, les distributions à queue lourde comme Pareto attribuent des probabilités
plus élevées aux événements extrêmes, ce qui est souvent plus réaliste en finance. L’un
des inconvénients de la VaR est que la VaR n’est pas sensible au risque de queue, ce
qui conduit souvent à une sous-estimation du risque en ne capturant pas les événements
extrêmes. Lorsque la distribution des pertes a une queue fine, comme la distribution
gaussienne, les événements extrêmes se produisent avec une probabilité très faible, alors
la VaR reste efficace malgré ses lacunes. Cependant, lorsque les pertes sont décrites
grâce à une distribution à queue lourde, les événements extrêmes se produisent plus
fréquemment, et la VaR n’est plus pertinente. Contrairement à la VaR, le Expected-
Shortfall fournit une mesure de l’ampleur moyenne des pertes au-delà du seuil de VaR,
en se concentrant sur le risque de queue. Cela est crucial pour les institutions afin de
comprendre l’étendue potentielle des pertes lors d’événements extrêmes, que la VaR
ne capture pas pleinement. Par conséquent, lorsque les pertes sont décrites par des
distributions à queue lourde, comme Pareto, ES est plus approprié que VaR pour fournir
une évaluation précise du risque.

Littérature sur l’Expected-Shortfall La littérature sur l’Expected-Shortfall comme
solution pour remédier aux lacunes de la Value-at-Risk est vaste. Dans un contexte de
renforcement de la réglementation bancaire, de nombreux auteurs se sont intéressés à
comparer VaR et ES afin de comprendre leurs forces et faiblesses (Kellner and Rösch,
2016). En particulier, les travaux de (Acerbi et al., 2001), (Acerbi and Tasche, 2002b),
(Artzner et al., 1999) sont des références intéressantes.

Certains auteurs se sont concentrés sur le célèbre débat entre VaR et ES. Ce débat
découle du fait que la VaR n’est pas une mesure de risque cohérente en raison de son
manque de sous-additivité, mais la VaR est élicitable alors que ES est une mesure de
risque cohérente mais n’est pas élicitable. D’une part, le manque de sous-additivité
dans la VaR peut avoir des conséquences significatives, principalement dans la gestion
des risques et les processus de prise de décision au sein des institutions financières ou
de toute organisation exposée aux risques de marché. La sous-additivité fait référence
à la propriété selon laquelle le risque total d’un portefeuille est inférieur ou égal à
la somme des risques de ses composants individuels. Cependant, si la VaR manque
de sous-additivité, cela signifie que le risque combiné d’un portefeuille pourrait être
supérieur à la somme des risques de ses parties individuelles, ce qui peut conduire à
une sous-estimation du risque, des stratégies de couverture inexactes, des réserves de
capitaux inadéquates, une allocation d’actifs mal orientée, voire une amplification du
risque systémique. C’est le sujet des articles (Embrechts, 2000), (Tibiletti, 2008).

Dans (Garcia et al., 2007), des méthodes sont proposées pour résoudre le manque de
sous-additivité de la VaR. Les travaux de (Daníelsson et al., 2013) montrent que la VaR
peut être sous-additive dans certaines régions des distributions à queue lourde. Pour
résoudre les problèmes conceptuels causés par la VaR, (Artzner et al., 1999), (Tasche,
2002a) présentent une mesure de risque alternative à la VaR, appelée ES, et mettent en
évidence les avantages de ES qui permettent de pallier les lacunes de la VaR. L’article
(Inui and Kijima, 2005) montre que toute mesure de risque cohérente est donnée par
une combinaison convexe de expected shortfalls, et un expected shortfall (ES) est op-
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timal en ce sens qu’il donne la valeur minimale parmi la classe de mesures de risque
cohérentes plausibles. Une méthode d’extrapolation de l’ES est fournie. Les auteurs
discutent des propriétés de l’ES ainsi que de sa généralisation à une classe de mesures
de risque cohérentes qui peuvent incorporer des effets de moments plus élevés. Les
travaux de (Yamai and Yoshiba, 2005) illustrent comment le risque de queue de la VaR
peut poser de sérieux problèmes dans certains cas, cas dans lesquels l’Expected-Shortfall
peut servir plus adéquatement à sa place. Ils discutent spécifiquement de deux cas :
portefeuille de crédits concentré et taux de change étrangers sous stress de marché. Ils
montrent que l’Expected Shortfall nécessite une plus grande taille d’échantillon que la
VaR pour fournir le même niveau de précision. Les travaux de (Acerbi and Tasche,
2002a) mettent en évidence le fait que la plupart des définitions de ES conduisent aux
mêmes résultats lorsqu’elles sont appliquées à des distributions de pertes continues,
mais des différences peuvent apparaître lorsque les distributions de pertes sous-jacentes
présentent des discontinuités. Dans ce cas, même la propriété de cohérence de ES peut
être perdue à moins de prendre soin des détails dans sa définition. Les auteurs com-
parent certaines des définitions de ES, soulignant qu’il en existe une qui est robuste en
ce sens qu’elle produit une mesure de risque cohérente quelles que soient les distribu-
tions sous-jacentes. De plus, cet ES peut être estimé efficacement même dans les cas
où les estimateurs habituels de la VaR échouent. Basé sur l’observation que la mesure
de performance ajustée au risque du portefeuille implique le calcul de la contribution
au risque pour chaque actif qu’il contient. L’article (Fan et al., 2012) utilise des fonc-
tions de Copule multivariées pour modéliser la structure de dépendance entre les actifs
d’un portefeuille, puis, sur la base d’une simulation, décompose la VaR du portefeuille
et l’Expected Shortfall. De plus, avec cette approche, la contribution au risque cal-
culée à l’aide de l’Expected Shortfall est plus robuste, et son erreur d’estimation peut
être réduite en augmentant la taille de l’échantillon de simulation. Une application de
l’Expected-Shortfall au risque de crédit est fournie dans (Fan et al., 2010).

Cependant, l’Expected-Shortfall ne satisfait pas la propriété d’élicitabilité. L’élicitabilité
est un concept dans le domaine de la mesure du risque et de la théorie de la décision,
particulièrement dans le contexte des règles de notation et de l’évaluation des risques.
Une règle de notation est une fonction utilisée pour évaluer l’exactitude d’une prévision
probabiliste ou d’une estimation. L’élicitabilité se réfère à la propriété d’une règle de
notation qui dicte si elle peut évaluer avec précision la qualité des prévisions probab-
ilistes ou des estimations sans fournir d’incitations aux prévisionnistes pour déformer
leurs croyances. De plus, l’élicitabilité permet de comparer différents modèles pour
classer leur performance grâce à la règle de notation qui est pratique pour tester en ar-
rière les modèles. Le manque d’élicitabilité peut entraîner plusieurs conséquences parmi
lesquelles on peut trouver les incitations à la déformation, la difficulté d’évaluation, le
potentiel de risque systémique et la perte de confiance. L’opinion était partagée sur le
besoin d’élicitabilité dans les tests de rétroaction. Selon certains auteurs, l’élicitabilité
n’est utile que mais pas nécessaire pour tester en arrière les modèles tandis que selon
d’autres, l’élicitabilité est nécessaire et dans ce cas il est préférable d’utiliser VaR au
lieu de ES. Ce débat est par exemple présenté dans (Acerbi and Szekely, 2014). Dans
(Fissler et al., 2015), les auteurs montrent que ES est élicitable conjointement avec VaR.
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Un enjeu important réside dans le choix de la méthode d’estimation de l’Expected-
Shortfall. De nombreux auteurs se sont intéressés à ce sujet. Dans (Brazauskas et al.,
2008), les auteurs développent des outils d’inférence statistique pour estimer et com-
parer les fonctions de conditionnement de l’espérance de queue (CTE), qui présentent
un intérêt considérable en science actuarielle. Dans (Chen, 2008), deux estimateurs
non paramétriques de l’Expected-Shortfall pour des pertes financières dépendantes sont
présentés. L’un est une moyenne échantillonnale des pertes excessives supérieures à
une VaR. L’autre est une version lissée par noyau du premier estimateur, espérant
que l’estimation soit plus précise par le lissage. Dans (Taylor, 2008), une méthode
d’estimation de VaR et ES grâce aux expectiles est fournie. Une estimation non para-
métrique de ES est proposée dans (Scaillet, 2004). Une méthode d’estimation robuste
de ES est développée dans (Jadhav et al., 2009) et (Pan et al., 2019). Les auteurs
développent une approximation normale basée sur la queue avec des formules explicites
dérivées en faisant correspondre un quantile spécifique et le carré de l’excès moyen des
observations de l’échantillon. Pour améliorer la précision de l’estimation, ils proposent
une approximation normale basée sur la queue ajustée en fonction du poids de la queue
de l’échantillon. L’estimateur ajusté de l’Expected Shortfall est robuste et efficace en ce
sens qu’il peut être appliqué à diverses distributions à queue lourde, telles que Student,
lognormale, Gamma et Weibull, et les erreurs sont toutes faibles.

Littérature sur les distributions à queues lourdes Le cadre gaussien est le plus
couramment utilisé en finance en raison de ses propriétés pratiques. Cependant, la
distribution gaussienne a une queue fine, ce qui suppose que les événements extrêmes
sont rares, et tend à sous-estimer la probabilité de tels événements. En revanche, les
distributions à queue lourde comme Pareto attribuent des probabilités plus élevées aux
événements extrêmes, ce qui est souvent plus réaliste en finance. Les distributions à
queue lourde ne sont pas seulement utilisées en économie et en finance mais dans de
nombreux autres domaines tels que la physique, la biologie, les sciences de la Terre
et planétaires, l’informatique, la démographie et les sciences sociales. De nombreux
auteurs se sont intéressés à l’étude des distributions à queue lourde. Par exemple, les
distributions des tailles des villes, des tremblements de terre, des incendies de forêt,
des éruptions solaires, des cratères lunaires et des fortunes personnelles des individus
semblent toutes suivre des distributions à queue lourde. En finance, les distributions à
queue lourde sont dédiées à modéliser les distributions de pertes ou de rendements.

Dans (ZINCHENKO, 2001), les auteurs fournissent une synthèse des principales tend-
ances dans les investigations théoriques et les applications pratiques des modèles à queue
lourde, en mettant l’accent sur les distributions subexponentielles, de type Pareto et
stables. Certains problèmes liés aux théorèmes limites, à l’approximation, à l’estimation,
à la simulation numérique pour les queues lourdes sont également traités ainsi que la
connexion avec la théorie du risque. Les distributions à queue grasse en économie et
en finance sont étudiées en détail dans (Haas and Pigorsch, 2009), (Broda and Paolella,
2011). Basé sur l’observation qu’il est de grande importance pour ceux en charge de
la gestion des risques de comprendre comment les rendements des actifs financiers sont
distribués. Les praticiens supposent souvent par commodité que la distribution est
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normale. Depuis les années 1960, cependant, des preuves empiriques ont conduit beau-
coup à rejeter cette hypothèse en faveur de diverses alternatives à queue lourde. Dans
une distribution à queue lourde, la probabilité de rencontrer des écarts significatifs par
rapport à la moyenne est beaucoup plus grande que dans le cas de la distribution nor-
male. Il est désormais communément admis que les rendements des actifs financiers
sont, en fait, à queue lourde. Dans (Bradley and Taqqu, 2003), une enquête est menée
pour examiner comment ces queues lourdes affectent plusieurs aspects de la théorie
des portefeuilles financiers et de la gestion des risques. Certaines des méthodes que
l’on peut utiliser pour traiter les queues lourdes sont présentées et illustrées à l’aide de
l’indice composite NASDAQ. De la même manière, l’article de (Guo, 2017) montre que
la distribution à queue lourde, qui estime avec précision le risque de queue, améliorerait
considérablement la pratique de la gestion quantitative des risques. Dans (Nolan, 2014),
une introduction accessible aux distributions stables pour la modélisation financière est
fournie. Il est vraiment nécessaire d’utiliser de meilleurs modèles pour les rendements
financiers car le modèle normal (ou courbe en cloche / gaussien) ne capture pas les
grandes fluctuations observées dans les actifs réels. Les lois stables sont une classe de
distributions de probabilité à queue lourde qui peuvent modéliser de grandes fluctu-
ations et permettre des structures de dépendance plus générales. Les travaux de (Peng
and Qi, 2017) présentent des méthodes d’inférence pour les données à queue lourde et
les appliquent dans le contexte de l’assurance et de la finance. De nombreuses données
de sinistres d’assurance sont connues pour être à queue lourde. Dans l’article (Ahn
et al., 2012), la classe des distributions Log-phase-type (LogPH) est étudiée comme une
alternative paramétrique pour ajuster les données à queue lourde. Transformée de la
classe populaire de distribution de type phase, la LogPH introduite par Ramaswami
présente plusieurs avantages par rapport à d’autres alternatives paramétriques.

Littérature sur les distributions de Pareto La distribution de Pareto est une
distribution bien connue qui appartient à la classe des distributions à queue lourde.
La distribution de Pareto est souvent utilisée dans le contexte économique et financier
pour modéliser la distribution des pertes ou des rendements lorsque des événements
extrêmes se produisent plus fréquemment que dans le cadre gaussien. Une telle distri-
bution présente des propriétés très pratiques telles que la stabilité par conditionnement
et les propriétés d’échelle qui seront détaillées dans la suite. Plus spécifiquement, la dis-
tribution de Pareto est une distribution de loi de puissance. Lorsque la probabilité de
mesurer une valeur particulière d’une quantité varie de manière inverse à une puissance
de cette valeur, on dit que la quantité suit une loi de puissance, également connue sous
le nom de loi de Zipf ou de distribution de Pareto. Dans (Newman, 2005), les auteurs
passent en revue certaines des preuves empiriques de l’existence de formes de lois de
puissance et des théories proposées pour les expliquer. Une référence intéressante sur
la distribution de Pareto est (Chattamvelli and Shanmugam, 2021). Les distributions
de Pareto et les généralisations associées ont historiquement été considérées comme ad-
aptées pour modéliser les distributions de revenus et de richesse. Dans ce contexte,
dans (Arnold, 2014), une brève revue de l’histoire de ces modèles, des propriétés de dis-
tribution et des procédures d’inférence est effectuée. Diverses distributions connexes,
y compris des variantes multivariées, y sont décrites. Les travaux de (Arnold, 2008)
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fournissent une synthèse des résultats liés à ces modèles de type Pareto, y compris la
discussion de questions de distribution et d’inférence connexes. Les sujets abordés in-
cluent les modèles de Pareto classiques et leurs généralisations, les modèles de revenus
stochastiques conduisant à des distributions de revenus de type Pareto, les propriétés de
distribution des distributions de Pareto généralisées, les distributions discrètes connexes,
les mesures d’inégalité pour les modèles de Pareto, les problèmes d’inférence et les ex-
tensions multivariées. La plupart du temps, cette parétianité est inférée de l’observation
de certains graphiques, tels que le graphique de Zipf et le graphique du surplus moyen.
Si le graphique de Zipf semble presque linéaire, alors tout va bien et les paramètres de
la distribution de Pareto sont estimés. Souvent avec les MCO. Malheureusement, ces
outils graphiques heuristiques ne sont pas fiables. C’est ce que montrent les auteurs
dans (Cirillo, 2013). En effet, ils montrent que seule une combinaison de graphiques
peut donner un certain degré de confiance quant à la réelle présence de la parétianité
dans les données. Dans (Crovelli and Barton, 1995), les fractales et la distribution de
Pareto sont appliquées aux distributions de taille des accumulations pétrolières. Dans
(Su and Furman, 2017), une nouvelle distribution multivariée possédant des marges
univariées de Pareto paramétrées de manière arbitraire et positivement dépendantes est
introduite.

Littérature sur l’estimation de l’indice de Pareto L’indice de Pareto gère le
caractère lourd ou léger de la queue de la distribution. Un défi est de l’estimer avec
précision.

En statistique des valeurs extrêmes, l’indice de valeurs extrêmes est un paramètre bien
connu pour mesurer la lourdeur de la queue d’une distribution. Les distributions de type
Pareto, avec un indice de valeurs extrêmes (ou indice de queue) strictement positif, sont
considérées. Dans (Rytgaard, 1990), différents estimateurs du paramètre de Pareto sont
proposés et comparés les uns aux autres. Tout d’abord, des estimateurs traditionnels
tels que l’estimateur du maximum de vraisemblance et l’estimateur par moments sont
déduits et leurs propriétés statistiques sont analysées. Il est montré que l’estimateur du
maximum de vraisemblance est biaisé mais peut facilement être modifié en un estimateur
non biaisé de variance minimale. Mais le coefficient de variation de cet estimateur reste
très élevé. Pour des portefeuilles similaires contenant les mêmes types de risques, les
valeurs estimées sont censées être au même niveau. Par conséquent, la théorie de la
crédibilité est utilisée pour obtenir un estimateur alternatif plus stable et moins sensible
aux fluctuations aléatoires des pertes observées. Enfin, un estimateur de la prime de
risque pour une couverture de pertes illimitée est proposé. Il est démontré que cet
estimateur est un estimateur de variance minimale non biaisé de la prime de risque.
Cet estimateur de la prime de risque est comparé aux méthodes plus traditionnelles de
calcul de la prime de risque. Dans (Crovella and Taqqu, 1999), les auteurs proposent
une méthode (appelée "estimateur de mise à l’échelle") basée sur les propriétés de
mise à l’échelle des sommes de variables aléatoires à queue lourde. Plus précisément,
pour toute variable aléatoire X, Σn est définie comme une variable aléatoire qui est
la somme de n variables aléatoires indépendantes ayant chacune la même distribution
que X. Pour les distributions à queue lourde avec un indice de queue α, des théorèmes
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limites similaires aux théorèmes limites centraux usuels peuvent être formulés montrant
que les sommes de telles variables convergent vers des distributions stables avec le même
α. Une distribution est stable au sens strict si pour chaque n il existe des constantes
cn > 0 telles que :

Σn
d
= cnX. (4.322)

Dans le cas spécifique de la somme de variables stables indépendantes, cn = n
1
α .

Cette propriété est la propriété de mise à l’échelle sur laquelle la méthode présentée
dans cet article est basée pour obtenir l’estimateur de l’indice à queue lourde α. Il
présente l’avantage d’être non paramétrique, facile à appliquer, de fournir une seule
valeur et d’être relativement précis sur des ensembles de données synthétiques. Comme
la méthode repose sur la mise à l’échelle des sommes, elle mesure une propriété qui
est souvent l’un des effets les plus importants du comportement à queue lourde. Plus
important encore, ils présentent des preuves selon lesquelles l’estimateur de mise à
l’échelle semble augmenter en précision à mesure que la taille de l’ensemble de don-
nées augmente. Il est donc particulièrement adapté aux grands ensembles de données.
L’un des problèmes les plus importants dans l’estimation des indices de Pareto est la
réduction du biais en cas de disparition de la partie à variation lente du modèle de type
Pareto à un rythme très lent. Dans d’autres cas, lorsque le problème de biais n’est pas
aussi grave, l’application d’estimateurs bien connus tels que l’estimateur de Hill (1975)
et l’estimateur par moments (Dekkers et al. (1989)) demande toujours une sélection
adaptative de la fraction d’échantillon à utiliser dans de telles procédures d’estimation.
Dans (Beirlant et al., 1996), (Beirlant et al., 1999), (Ocran et al., 2022), des estimateurs
à biais réduit pour l’estimation de l’indice de queue d’une distribution de type Pareto
sont proposés. Cela est réalisé grâce à l’utilisation d’une méthode des moindres carrés
pondérés régularisée avec un modèle de régression exponentielle pour les espacements
logarithmiques des principales statistiques d’ordre. Les propriétés asymptotiques des es-
timateurs proposés sont investiguées analytiquement et trouvées être asymptotiquement
non biaisées, cohérentes et normalement distribuées. Les travaux de (Finkelstein et al.,
2006) proposent un estimateur de l’indice de queue d’une distribution de Pareto basé
sur l’utilisation de la transformation intégrale de probabilité. Cet nouvel estimateur
offre des performances comparables aux meilleurs estimateurs robustes, tout en conser-
vant une simplicité conceptuelle et computationnelle. Un paramètre de réglage dans
le nouvel estimateur peut être ajusté pour contrôler le compromis entre robustesse et
efficacité. Un nouvel estimateur de type médiane généralisé est introduit dans (Braza-
uskas and Serfling, 2000) et comparé au maximum de vraisemblance et à plusieurs
estimateurs bien établis associés aux méthodes des moments, de la suppression, des
moindres carrés, des quantiles et de l’ajustement de percentile. Un estimateur robuste
de l’indice de queue est proposé dans (Vandewalle et al., 2007), en combinant un af-
finement de l’approximation de Pareto pour la distribution conditionnelle des excès
relatifs au-dessus d’un seuil élevé avec une approche d’erreur quadratique intégrée sur
l’estimation des composantes de densité partielle. Le document (Brzezinski, 2016) ex-
amine les propriétés des petits échantillons des estimateurs robustes les plus populaires
pour l’indice de queue de Pareto, y compris l’estimateur B-robuste optimal, l’estimateur
du maximum de vraisemblance pondéré, l’estimateur médian généralisé, l’estimateur des
composantes de densité partielle et l’estimateur statistique de transformation intégrale
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de probabilité (PITSE). Des simulations Monte Carlo montrent que le PITSE offre le
compromis souhaité entre facilité d’utilisation et capacité à protéger contre les valeurs
aberrantes dans le cadre des petits échantillons. Dans (Beirlant and Goegebeur, 2004),
une approche motivée par le fait que dans certaines applications le seuil devrait être
autorisé à changer avec les covariables en raison d’effets significatifs sur l’échelle et la
localisation des distributions conditionnelles, est proposée. L’approche suivie est basée
sur la technique de l’estimation du maximum de vraisemblance polynomiale local. En
utilisant les résultats asymptotiques, ils sont en mesure de dériver une expression pour
l’erreur quadratique moyenne asymptotique, qui peut être utilisée pour guider la sélec-
tion de la largeur de bande et du seuil. Dans (Goegebeur et al., 2008), la relation entre
le test d’adéquation des ajustements et la sélection optimale de la fraction d’échantillon
pour l’estimation de queue, par exemple en utilisant l’estimateur de Hill, est examinée.
Les auteurs considèrent ce problème sous un test d’adéquation au bon d’ajustement
pour évaluer si un échantillon est cohérent avec le modèle de type Pareto. Deux cas
spéciaux importants de la statistique de test au noyau, la statistique de Jackson et la
statistique de Lewis, sont discutés plus en profondeur.

Contributions

Chapter 4 vise à explorer des méthodes robustes pour calculer les espérances dans des
distributions à queues lourdes, comme alternative à la simple moyenne. Nous con-
sidérons le cas jouet de la distribution de Pareto, car elle est souvent utilisée pour
modéliser les pertes en finance et elle présente des propriétés intéressantes. Nous nous
intéressons particulièrement à l’estimation de l’Expected-Shortfall (ES) dans la distri-
bution de Pareto.

Expected-Shortfall dans la distribution de Pareto Tout d’abord, nous rappelons
la théorie sur l’Expected-Shortfall et sur la distribution de Pareto, puis nous présentons
les propriétés caractéristiques de cette dernière. Nous démontrons les propriétés utiles
de mise à l’échelle et de stabilité par conditionnement de la distribution de Pareto, et
nous prouvons la forme de l’ES au seuil de risque α (ESα) en nous appuyant sur ces
propriétés.

Il existe plusieurs définitions de l’ES, toutes équivalentes. La définition retenue dans ce
chapitre est celle selon laquelle ESα est l’espérance conditionnelle des pertes excédant
la VaRα. En effet, d’après (Tasche, 2002b, Prop 3.4, Eq 3.3),(Sarykalin et al., 2008,
Def.2, p.273), pour une distribution continue, l’Expected-Shortfall au seuil de risque α
est défini comme suit :

ESα(X) = E[X|X ≥ VaRα(X)] (4.323)

où α ∈ (0, 1) est le niveau de risque, X ∈ Lp(F) est une variable aléatoire représentant
la perte (comme une quantité positive, c’est-à-dire que nous prenons la convention que
de grandes pertes correspondent à des nombres positifs élevés), d’un portefeuille à un
instant futur, avec comme fonction de répartition FX(x) = P(X ≤ x);∀x ∈ R.
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Pour des raisons de précision et de réalisme dans la modélisation, nous nous intéressons
à l’estimation de l’ES dans des distributions à queues lourdes, particulièrement dans la
distribution de Pareto. Le choix de la distribution de Pareto est motivé par les propriétés
intéressantes de cette distribution, comme l’explique (Arnold, 2014). Plusieurs raisons
justifient l’intérêt pour cette distribution.

La distribution de Pareto joue un rôle crucial dans la théorie des valeurs extrêmes
(EVT), une branche des statistiques qui s’intéresse au comportement statistique des
événements extrêmes. L’EVT est particulièrement pertinente en finance, où les événe-
ments extrêmes, tels que les krachs boursiers, ont des implications majeures pour les
investisseurs et les institutions financières. En finance, les données présentent souvent
un comportement à queue lourde, ce qui signifie que les événements extrêmes, tels que
les mouvements de prix importants ou les crises financières, se produisent de manière
plus sévère que ce que prédit une distribution normale. Le risque de queue fait référence
au risque d’occurrence d’événements extrêmes dans les queues d’une distribution. Bien
que rares, ces événements peuvent avoir un impact significatif sur les marchés finan-
ciers et les portefeuilles. La distribution de Pareto, avec sa capacité à modéliser des
queues lourdes, offre une meilleure adéquation à ces données que les distributions tra-
ditionnelles, comme la distribution Gaussienne. En effet, le modèle Gaussien attribue
de faibles poids aux queues de distribution, négligeant ainsi les événements extrêmes,
ce qui peut conduire à une mauvaise prévision de la VaR. En revanche, la distribution
de Pareto attribue plus de poids aux queues de distribution, prenant en compte les
événements extrêmes, ce qui permet de meilleures prédictions de la VaR, notamment
lorsqu’il s’agit d’actifs ou de portefeuilles présentant un comportement à queue lourde.

Mathématiquement, la distribution de Pareto présente des propriétés intéressantes.
Premièrement, cette distribution est relativement simple à comprendre et à manip-
uler. Elle ne comporte que deux paramètres (les paramètres d’échelle xm et de forme
γ ; ce dernier est aussi appelé index de Pareto), ce qui la rend plus facile à estimer
et à interpréter par rapport à d’autres distributions à queues lourdes plus complexes,
comme la distribution stable. La fonction de densité de probabilité et la fonction de
répartition de la distribution de Pareto ont des formes analytiques relativement simples,
ce qui facilite les calculs mathématiques et statistiques par rapport à certaines autres
distributions à queues lourdes.

Definition 4.54 (Distribution de Pareto P(xm, γ)). Si X est une variable aléatoire
suivant une distribution de Pareto P(xm, γ), avec (xm > 0, γ > 0), alors la probabilité
que X soit supérieure à un certain nombre x, c’est-à-dire la fonction de survie, également
appelée fonction de queue, est donnée par :

F̄X(x) = P(X > x) = 1{x<xm} +

(
xm
x

)γ

1{x≥xm} (4.324)

où xm est la valeur minimale (nécessairement positive) que X peut prendre, et γ est un
paramètre positif. La distribution de Pareto est caractérisée par un paramètre d’échelle
xm et un paramètre de forme γ, également appelé indice de queue.
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La fonction de répartition (c.d.f.) d’une variable aléatoire de Pareto de paramètres xm
et γ est :

FX(x) =

(
1−

(
xm
x

)γ
)
1{x≥xm}. (4.325)

Et la fonction de densité de probabilité (p.d.f.) est donnée par :

fX(x) =
γxγm
xγ+1

1{x≥xm}. (4.326)

La distribution de Pareto est une loi de puissance et est bien adaptée pour modéliser des
données présentant un comportement en loi de puissance. En effet, la queue de la distri-
bution de Pareto suit une fonction linéaire sur un graphique log-log. Cela constitue une
preuve supplémentaire que les événements extrêmes surviennent avec une intensité plus
sévère que celle prédite par d’autres distributions à queue lourde. Cela est particulière-
ment utile pour modéliser des phénomènes financiers qui suivent une distribution en loi
de puissance, comme la répartition des revenus ou les mouvements de prix extrêmes.

L’une des propriétés les plus intéressantes de la distribution de Pareto est sa **propriété
d’échelle**. En effet, elle permet d’établir des liens entre deux distributions de Pareto
ayant le même paramètre de forme γ, mais des paramètres d’échelle xm différents. Par
exemple, la propriété d’échelle permet de passer de la distribution de Pareto standardisée
P(1, γ) à n’importe quelle distribution de Pareto non-standardisée P(xm, γ) par une
simple multiplication de la distribution de Pareto standardisée par le paramètre d’échelle
xm de la distribution de Pareto non-standardisée. Inversement, cette propriété permet
de passer de n’importe quelle distribution de Pareto non-standardisée P(xm, γ) à la
distribution de Pareto standardisée P(1, γ) par une simple division de la distribution
non-standardisée par son paramètre d’échelle xm.

Plus précisément, la propriété d’échelle établit une relation de proportionnalité entre les
distributions de Pareto standardisée et non-standardisée, avec un facteur de proportion-
nalité égal au paramètre d’échelle xm de la distribution de Pareto non-standardisée. In-
versement, cette propriété permet de passer de la distribution de Pareto non-standardisée
P(xm, γ) à la distribution de Pareto standardisée P(1, γ) en divisant la distribution non
standardisée par son paramètre d’échelle xm. Par conséquent, il existe une relation de
proportionnalité entre la distribution de Pareto standardisée P(1, γ) et la distribution
de Pareto non-standardisée P(xm, γ), avec un facteur de proportionnalité égal à 1

xm
.

De manière plus générale, la propriété d’échelle établit un lien entre deux distributions
de Pareto non-standardisées P(x

(1)
m , γ) et P(x

(2)
m , γ) avec x(1)m > 0 et x(2)m > 0. En ef-

fet, la distribution de Pareto P(x
(1)
m , γ) est proportionnelle à la distribution de Pareto

P(x
(2)
m , γ), avec un facteur de proportionnalité égal au rapport entre les deux paramètres

d’échelle x
(1)
m

x
(2)
m

, et vice versa. Le facteur de proportionnalité est un ratio dont le numérat-
eur correspond au paramètre d’échelle de la distribution de Pareto non-standardisée que
l’on souhaite atteindre P(x

(1)
m , γ) (la distribution cible), et le dénominateur correspond

au paramètre d’échelle de la distribution de Pareto non-standardisée initiale P(x
(2)
m , γ).
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La division de la distribution de Pareto non-standardisée P(x
(2)
m , γ) par son propre para-

mètre d’échelle x(2)m permet de la standardiser, atteignant ainsi la distribution de Pareto
standardisée P(1, γ). Ensuite, la multiplication de la distribution standardisée par x(1)m

permet d’atteindre la distribution de Pareto désirée P(x
(1)
m , γ). Inversement, la distribu-

tion de Pareto P(x
(2)
m , γ) est proportionnelle à la distribution P(x

(1)
m , γ) avec un facteur

de proportionnalité égal au rapport des deux paramètres d’échelle x
(2)
m

x
(1)
m

. Le facteur de
proportionnalité est un ratio dont le numérateur correspond au paramètre d’échelle de
la distribution de Pareto non-standardisée que l’on souhaite atteindre P(x

(2)
m , γ), et

le dénominateur correspond au paramètre d’échelle de la distribution de Pareto non
standardisée initiale P(x

(1)
m , γ).

La division de la distribution de Pareto P(x
(1)
m , γ) par son propre paramètre d’échelle

x
(1)
m permet de la standardiser, atteignant ainsi la distribution de Pareto standard-

isée P(1, γ). Ensuite, la multiplication de la distribution standardisée par x(2)m permet
d’atteindre la distribution de Pareto désirée P(x

(2)
m , γ).

En conséquence, la distribution de Pareto est invariante par changement d’échelle, ce
qui signifie que multiplier ou diviser une distribution de Pareto par un paramètre con-
stant ne modifie pas la forme de la distribution (le paramètre γ reste inchangé). La
nouvelle distribution mise à l’échelle est toujours une distribution de Pareto avec le
même paramètre de forme γ, mais avec un nouveau paramètre d’échelle. La nouvelle
distribution de Pareto est obtenue en multipliant la distribution initiale par le rapport
entre le paramètre d’échelle de la distribution cible et celui de la distribution initiale.

En plus de la propriété d’échelle, la distribution de Pareto satisfait la propriété de
stabilité par conditionnement. Cela signifie que la queue de toute distribution de Pareto
au-delà d’un certain seuil positif reste une distribution de Pareto avec le même paramètre
de forme, mais avec un nouveau paramètre d’échelle.

Par exemple, la queue de toute distribution de Pareto standardisée P(1, γ) au-delà d’un
seuil positif donné s(1)m > 0 reste une distribution de Pareto avec le même paramètre
de forme γ mais avec un nouveau paramètre d’échelle égal au paramètre de condition-
nement s(1)m : P(s

(1)
m , γ). En raison de la propriété d’échelle, il existe une relation de

proportionnalité liant la distribution de Pareto non-standardisée P(s
(1)
m , γ) et la distri-

bution de Pareto standardisée P(1, γ) avec un facteur de proportionnalité égal à s(1)m .
Par conséquent, en combinant à la fois les propriétés de stabilité par conditionnement
et d’échelle, une relation de proportionnalité est établie entre la distribution de Pareto
standardisée conditionnée à ses valeurs supérieures au seuil s(1)m , et la distribution de
Pareto marginale P(1, γ), avec un facteur de proportionnalité égal au paramètre de
conditionnement s(1)m .

Ainsi, toute distribution de Pareto standardisée P(1, γ) conditionnée à ses valeurs au-
delà d’un seuil donné s(1)m reste une distribution de Pareto avec le même paramètre
de forme γ mais avec un nouveau paramètre d’échelle égal au paramètre de condition-
nement s(1)m .
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Plus généralement, la queue de toute distribution de Pareto non-standardisée P(x
(1)
m , γ)

au-delà d’un seuil positif donné s(1)m > x
(1)
m reste une distribution de Pareto avec le même

paramètre de forme γ, mais avec un nouveau paramètre d’échelle égal au paramètre de
conditionnement s(1)m : P(s

(1)
m , γ). En raison de la propriété d’échelle, il existe une re-

lation de proportionnalité entre la distribution de Pareto non-standardisée P(s
(1)
m , γ)

et la distribution de Pareto standardisée P(1, γ), avec un facteur de proportionnalité
égal à s(1)m . De plus, la propriété d’échelle établit également une relation de proportion-
nalité entre les deux distributions de Pareto non standardisées P(s

(1)
m , γ) et P(x

(1)
m , γ),

avec un facteur de proportionnalité égal au rapport entre les deux paramètres d’échelle
s
(1)
m

x
(1)
m

. Par conséquent, en combinant les propriétés de stabilité par conditionnement et
d’échelle, une relation de proportionnalité est établie entre la distribution de Pareto
non-standardisée P(x

(1)
m , γ) conditionnée à ses valeurs supérieures au seuil s(1)m et la

distribution de Pareto standardisée P(1, γ), avec un facteur de proportionnalité égal
au paramètre de conditionnement s(1)m . De plus, une relation de proportionnalité est
également établie entre la distribution de Pareto non-standardisée P(x

(1)
m , γ) condition-

née à ses valeurs supérieures au seuil s(1)m et la distribution marginale P(x
(1)
m , γ), avec

un facteur de proportionnalité égal au rapport s
(1)
m

x
(1)
m

, où le numérateur est le paramètre

de conditionnement s(1)m et le dénominateur est le paramètre d’échelle x(1)m de la dis-
tribution marginale. Par conséquent, toute distribution de Pareto non-standardisée
P(x

(1)
m , γ) conditionnée à ses valeurs supérieures au seuil s(1)m reste une distribution de

Pareto avec le même paramètre de forme γ, mais avec un nouveau paramètre d’échelle
égal au paramètre de conditionnement s(1)m .

Ces propriétés sont très pratiques. De plus, elles sont spécifiques à la distribution de
Pareto, c’est-à-dire qu’elles ne sont pas partagées par toutes les distributions à queues
lourdes. Elles sont formulées mathématiquement dans le théorème suivant.

Theorem 4.55 (Stabilité par conditionnement et changement d’échelle de la distribu-
tion de Pareto). (i) Soit X une variable aléatoire de Pareto standardisée X ∼ P(1, γ),
γ > 0. Soit xm > 0 un nouveau paramètre d’échelle. Soit Y une variable aléatoire de
Pareto non-standardisée telle que Y ∼ P(xm, γ). Alors, nous avons :

P(X ≤ x | X ≥ xm) = P(xmX ≤ x) = P(Y ≤ x). (4.327)

De manière équivalente,

X | X ≥ xm
d
= xmX

d
= Y ou

Y

xm

d
=
X | X ≥ xm

xm

d
= X. (4.328)

En d’autres termes, conditionner une variable aléatoire de Pareto standardisée X à
partir d’un seuil donné xm revient à multiplier la distribution de Pareto standardisée,
c’est-à-dire la distribution marginale de X, par le paramètre de conditionnement xm.
Ainsi, la distribution de Pareto standardisée conditionnée à ses valeurs au-delà d’un
certain seuil reste une distribution de Pareto avec le même paramètre de forme γ mais
avec un nouveau paramètre d’échelle égal au paramètre de conditionnement xm.
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(ii) Soient Z1 et Z2 deux variables aléatoires de Pareto non-standardisées telles que
Z1 ∼ P(x

(1)
m , γ) et Z2 ∼ P(x

(2)
m , γ) avec x(1)m > 0, x

(2)
m > 0, γ > 0. Alors, nous avons :

Z1
d
=
x
(1)
m

x
(2)
m

Z2
d
= x(1)m X ou Z2

d
=
x
(2)
m

x
(1)
m

Z1
d
= x(2)m X. (4.329)

En d’autres termes, toute distribution de Pareto non-standardisée peut être exprimée à
partir de toute autre distribution de Pareto non-standardisée en divisant la distribution
de Pareto initiale non-standardisée par son propre paramètre d’échelle pour atteindre
la distribution de Pareto standardisée P(1, γ), puis en la multipliant par le paramètre
d’échelle de la distribution cible.

(iii) Soit s(1)m un paramètre de conditionnement tel que s
(1)
m > x

(1)
m > 0. Alors, les

équations (4.328) et (4.329) conduisent à :

Z1 | Z1 ≥ s(1)m
d
=
s
(1)
m

x
(1)
m

Z1
d
= s(1)m X. (4.330)

En d’autres termes, conditionner toute distribution de Pareto non-standardisée P(x
(1)
m , γ)

à partir d’un certain seuil s(1)m revient à multiplier la distribution de Pareto standardisée
P(1, γ) par le paramètre de conditionnement s(1)m , ou de manière équivalente à multiplier
la distribution marginale P(x

(1)
m , γ) par le rapport entre le paramètre de conditionnement

et le paramètre d’échelle de la distribution marginale s
(1)
m

x
(1)
m

.

De plus, les moments de la distribution de Pareto n’existent que pour certaines plages
de valeurs du paramètre de forme γ. En particulier, le k-ième moment existe si et
seulement si γ > k. Cela signifie que pour de petites valeurs de γ, les moments peuvent
ne pas exister, ce qui est lié à la nature des distributions à queues lourdes. À mesure
que le paramètre de forme γ diminue, la queue de la distribution devient de plus en plus
lourde, accordant de plus en plus de poids aux événements extrêmes. Cela conduit à
des moments finis uniquement pour des ordres très faibles. C’est une caractéristique des
distributions à queues lourdes, où les observations extrêmes ont un impact significatif
sur les moments supérieurs, ce qui est moins marqué sur les distributions à queues plus
légères.

Par exemple, la distribution de Pareto a une moyenne infinie pour un paramètre de
forme γ ≤ 1. Pour γ ≤ 2, la distribution de Pareto a une moyenne finie mais une vari-
ance infinie. Pour γ > 2, la variance de la distribution de Pareto existe et est finie. Cela
signifie que si le paramètre de forme est supérieur à 2, la distribution est caractérisée
par à la fois une moyenne finie et une variance finie, ce qui la rend plus gérable dans
certaines analyses statistiques.

La propriété d’échelle de la distribution de Pareto stipule que toute distribution de
Pareto non-standardisée P(xm, γ) est proportionnelle à la distribution de Pareto stand-
ardisée P(1, γ) avec un facteur de proportionnalité égal à xm. Cela implique que toutes
les quantités (statistiques) calculées sur la distribution de Pareto non-standardisée
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P(xm, γ) sont proportionnelles à celles calculées sur la distribution de Pareto stand-
ardisée P(1, γ), avec un facteur de proportionnalité égal à xm.

Par conséquent, les calculs peuvent être effectués sur la distribution de Pareto stand-
ardisée, et les quantités équivalentes sur toute distribution de Pareto non standardisée
P(xm, γ) peuvent être récupérées en multipliant les quantités standardisées par le para-
mètre d’échelle adéquat xm.

Par exemple, la propriété d’échelle de la distribution de Pareto permet de définir le
k-ième moment de toute distribution de Pareto non-standardisée P(xm, γ) grâce à
une simple multiplication du k-ième moment de la distribution de Pareto standard-
isée P(1, γ) par le paramètre d’échelle xm élevé à la puissance k.

Ces propriétés sont formulées mathématiquement dans le lemme suivant.

Lemma 4.56 (Moments de la distribution de Pareto). Soient X ∼ P(1, γ) et Y ∼
P(xm, γ) deux variables aléatoires de Pareto, avec γ > k, k ∈ N⋆. Par conséquent, les
variables aléatoires de Pareto X et Y admettent des moments finis jusqu’à l’ordre k.

(i) Moments d’ordre k (γ > k):

E
[
Xk
]
=

γ

γ − k
et E

[
Y k
]
= xkmE

[
Xk
]
. (4.331)

(ii) Moments centraux d’ordre k (γ > k):

E
[
(X − E[X])k

]
=

k∑
j=0

(
k

j

)
γj+1

(1− γ)j(γ + j − k)
et E

[
(Y − E[Y ])k

]
= xkmE

[
(X − E[X])k

]
.

(4.332)

Ces propriétés s’appliquent à toutes les statistiques calculées sur la distribution de
Pareto, en particulier à la VaRα et l’ESα. Soit X ∼ P(1, γ) une variable aléatoire de
Pareto standardisée et Y ∼ P(xm, γ), Z1 ∼ P(x

(1)
m , γ) et Z2 ∼ P(x

(2)
m , γ) des variables

aléatoires de Pareto non-standardisées.

La propriété d’échelle stipule que la distribution de Pareto non-standardisée P(xm, γ)

est proportionnelle à la distribution de Pareto standardisée P(1, γ), avec un facteur de
proportionnalité égal à xm. Cela implique que la VaRα de la distribution de Pareto
non standardisée P(xm, γ) est proportionnelle à la VaRα de la distribution de Pareto
standardisée, avec un coefficient de proportionnalité égal au paramètre d’échelle xm.

De même, la propriété d’échelle de la distribution de Pareto énonce que la distribution
de Pareto non-standardisée P(x

(1)
m , γ) est proportionnelle à la distribution de Pareto

non-standardisée P(x
(2)
m , γ), avec un facteur de proportionnalité égal au rapport entre

les deux paramètres d’échelle x
(1)
m

x
(2)
m

. Cela implique que la VaRα de la distribution de

Pareto non-standardisée P(x
(1)
m , γ) est proportionnelle à la VaRα de la distribution de

Pareto non-standardisée P(x
(2)
m , γ), avec un coefficient de proportionnalité égal à x

(1)
m

x
(2)
m

.

D’autre part, la propriété de stabilité par conditionnement stipule que la distribution
de Pareto standardisée P(1, γ), conditionnée à ses valeurs supérieures à un certain seuil,
est toujours une distribution de Pareto avec le même paramètre de forme γ mais un nou-
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veau paramètre d’échelle égal au paramètre de conditionnement. De plus, la propriété
d’échelle implique que la distribution de Pareto standardisée P(1, γ), conditionnée à ses
valeurs supérieures à un certain seuil, est proportionnelle à la distribution de Pareto
standardisée avec un facteur de proportionnalité égal au seuil de conditionnement.

L’Expected-Shortfall de la distribution de Pareto standardisée P(1, γ) est l’espérance
conditionnelle étant donné que la variable aléatoire de Pareto standardiséeX est supérieure
à VaRα(X) : ESα(X) = E

[
X | X ≥ VaRα(X)

]
(définie par (4.3)).

La combinaison des propriétés de stabilité par conditionnement et d’échelle conduit à
une relation de proportionnalité entre la distribution de Pareto standardisée P(1, γ),
conditionnée à ses valeurs supérieures à VaRα(X), et la distribution marginale qui est
la distribution de Pareto standardisée P(1, γ), avec un facteur de proportionnalité égal
au seuil de conditionnement VaRα(X).

En conséquence, l’Expected-Shortfall de la distribution de Pareto standardisée ESα(X)

est proportionnel à son espérance E
[
X
]
, avec un facteur de proportionnalité égal à

VaRα(X), qui est supposé être connu. Par conséquent, ESα(X) peut être facilement
récupéré grâce à la simple multiplication par VaRα de l’espérance de la distribution de
Pareto standardisée.

De même, la propriété de stabilité par conditionnement stipule que la distribution de
Pareto non-standardisée Z1 ∼ P(x

(1)
m , γ), conditionnée à ses valeurs supérieures à un

certain seuil, est toujours une distribution de Pareto avec le même paramètre de forme
γ mais un nouveau paramètre d’échelle égal au paramètre de conditionnement. De
plus, la propriété d’échelle implique que la distribution de Pareto non-standardisée
P(x

(1)
m , γ), conditionnée à ses valeurs supérieures à un certain seuil, est proportionnelle

à la distribution de Pareto standardisée P(1, γ) avec un facteur de proportionnalité égal
au paramètre de conditionnement ; et est également proportionnelle à la distribution
marginale de Pareto P(x

(1)
m , γ) avec un facteur de proportionnalité égal au rapport entre

le paramètre de conditionnement et le paramètre d’échelle x(1)m .

La combinaison des propriétés de stabilité par conditionnement et d’échelle implique
que l’Expected-Shortfall de la distribution de Pareto non-standardisée P(x

(1)
m , γ), qui

est l’espérance de la distribution P(x
(1)
m , γ) conditionnée à ses valeurs supérieures à

VaRα(Z1), est proportionnel à l’espérance de la distribution de Pareto standardisée
P(1, γ) avec un facteur de proportionnalité égal au paramètre de conditionnement
VaRα(Z1), et est proportionnel à l’espérance de la distribution marginale de Pareto
P(x

(1)
m , γ) avec un facteur de proportionnalité égal au rapport VaRα(Z1)

x
(1)
m

.

Par conséquent, l’Expected-Shortfall de toute distribution de Pareto non-standardisée
P(x

(1)
m , γ) peut être récupéré grâce à une simple multiplication de l’espérance de la

distribution de Pareto standardisée P(1, γ) par le seuil de conditionnement VaRα(Z1),
et grâce à une simple multiplication de l’espérance de la distribution marginale de Pareto
P(x

(1)
m , γ) par le rapport VaRα(Z1)

x
(1)
m

.

Toutes ces propriétés sont formulées mathématiquement dans la proposition suivante.
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Proposition 4.57 (VaRα et ESα dans une distribution de Pareto). Si X ∼ P(1, γ) et
Y ∼ P(xm, γ), avec xm > 0 et γ > 0, alors leurs VaRα respectives sont définies comme
suit : VaRα(X) = F−1

X (α) = (1− α)
− 1

γ ,

VaRα(Y ) = F−1
Y (α) = xmVaRα(X),

α ∈ (0, 1), (4.333)

et les ESα respectifs sont donnés par :ESα(X) = VaRα(X)E
[
X
]
= γ

γ−1(1− α)
− 1

γ ,

ESα(Y ) = xmESα(X),
α ∈ (0, 1). (4.334)

Comme mentionné précédemment, en raison de la propriété d’échelle de la distribution
de Pareto, les statistiques dans toute distribution de Pareto non-standardisée sont pro-
portionnelles aux statistiques correspondantes dans la distribution de Pareto standard-
isée, avec un facteur de proportionnalité égal au paramètre d’échelle de la distribution de
Pareto cible. Par conséquent, par la suite, toutes les statistiques seront calculées dans
la distribution de Pareto standardisée. Une simple multiplication de ces statistiques
standardisées par le paramètre d’échelle approprié de la distribution de Pareto cible
permettra de récupérer les statistiques correspondantes dans la distribution de Pareto
non-standardisée souhaitée.

Comme expliqué précédemment, en raison de la propriété de stabilité par condition-
nement, l’Expected-Shortfall au seuil de risque α de la distribution de Pareto stand-
ardisée est proportionnel à son espérance, avec un facteur de proportionnalité égal
à la Value-at-Risk au seuil de risque α de la distribution de Pareto standardisée,
qui est supposée être connu. Par conséquent, l’étape principale dans le calcul de
l’Expected-Shortfall de la distribution de Pareto standardisée est de calculer son es-
pérance. L’Expected-Shortfall de la distribution de Pareto standardisée peut être
récupéré grâce à une simple multiplication de son espérance par VaRα, qui est supposée
être connue.

Problématique Nous nous interrogeons sur la manière d’estimer avec précision l’Expected-
Shortfall. La présence de valeurs extrêmes avec une faible probabilité dans les distribu-
tions à queues lourdes peut influencer l’estimateur (moyenne empirique) de l’espérance
et entraîner de mauvaises performances. Dans ce contexte, l’objectif est de trouver
un estimateur de l’ES qui soit plus robuste à la présence de valeurs extrêmes. Dans
ce chapitre, nous supposons que VaRα est connue et nous nous concentrons sur les
méthodes d’estimation de l’ESα. Différents estimateurs de moyenne sont étudiés en
fonction de leurs propriétés de concentration et de fluctuation.

En raison de la propriété d’échelle de la distribution de Pareto qui établit une relation
de proportionnalité entre la distribution de Pareto non-standardisée P(xm, γ) et la dis-
tribution de Pareto standardisée P(1, γ) avec un facteur de proportionnalité égal à xm,
il suffit d’estimer l’ES sur la distribution de Pareto standardisée P(1, γ) ; nous pouvons
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ensuite récupérer l’estimation de l’ES sur la distribution de Pareto non-standardisée
P(xm, γ) grâce à une simple multiplication de l’ES standardisé par xm.

De plus, en raison des propriétés de stabilité par conditionnement et d’échelle de la dis-
tribution de Pareto qui établissent une relation de proportionnalité entre la distribution
de Pareto standardisée P(1, γ) conditionnée à ses valeurs supérieures à un certain seuil
et la distribution de Pareto standardisée, avec un facteur de proportionnalité égal au
seuil de conditionnement, estimer l’espérance de la distribution de Pareto standardisée
est suffisant pour obtenir l’estimation de l’ESα standardisé, car nous pouvons récupérer
l’estimation de l’ESα standardisé grâce à une simple multiplication de l’estimation de
l’espérance standardisée par VaRα.

Idéalement, un estimateur est censé satisfaire les contraintes suivantes : être robuste
aux distributions à queues lourdes, c’est-à-dire à la présence de valeurs extrêmes, et
atteindre un haut niveau de précision avec un haut niveau de confiance. Il est à noter
que ce critère est non-asymptotique.

Ces contraintes sont satisfaites par des estimateurs sous-Gaussiens. Malgré les avant-
ages des estimateurs sous-Gaussiens, ils présentent également certaines limitations. En
effet, prouver qu’un estimateur est sous-Gaussien n’est pas si évident, car cela repose
sur des hypothèses restrictives sur les modèles, ou nécessite des astuces pour développer
un nouvel estimateur tel que la Médiane-des-Moyenne (voir plus loin dans ce chapitre).
De plus, certains estimateurs sous-Gaussiens peuvent avoir une complexité computa-
tionnelle plus élevée que des estimateurs plus simples. Cela peut être un inconvénient
lors de la gestion de grands ensembles de données ou dans des applications en temps
réel.

Pour ces raisons, nos travaux proposent plusieurs estimateurs de moyenne robustes
qui ne sont pas sous-Gaussiens, pour lesquels une étude de leur biais avec le taux de
convergence est réalisée et des inégalités de concentration sont développées.

Estimateurs de moyenne L’attention est principalement portée sur trois estim-
ateurs : l’estimateur des Médianes-des-Moyennes (MoM), l’estimateur des Moyennes
Tronquées (TM) et l’estimateur de Lee-Valiant (LV). Les performances de ces estim-
ateurs sont ensuite comparées entre elles et avec l’estimateur de référence, à savoir
la moyenne empirique, qui atteint des performances sous-Gaussiennes dans le cadre
asymptotique.

Rappelons que le vrai ESα est défini comme la perte excédentaire moyenne au-delà de
la VaRα théorique :

ESα(X) = E[X|X ≥ VaRα] =
E[X1{X≥VaRα}]

P(X ≥ VaRα)
. (4.335)

Un estimateur de l’ESα, appelé l’ESα empirique, est la perte excédentaire moyenne au-
delà de l’estimateur de VaRα, qui est le quantile empirique α-quantile (qn,α), comme
indiqué dans la définition suivante.
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Definition 4.58 (Expected-Shortfall empirique). Soit X = (X1, . . . , Xn) une séquence
de variables aléatoires i.i.d. de Pareto telles que ∀i ∈ J1, nK, Xi ∼ P(1, γ), avec γ > 2.
Notons X⋆ = (X⋆

1 , . . . , X
⋆
n) la séquence de statistiques d’ordre associée à X. Le quantile

empirique d’ordre α est donné par qnα = X⋆
⌈nα⌉, et l’Expected-Shortfall empirique au seuil

de risque α est défini comme suit :

ESn
α =

1
n

∑n
i=1Xi1{Xi≥qnα}

1
n

∑n
i=1 1{Xi≥qnα}

=
1

n− ⌈nα⌉
n∑

i=1

Xi1{Xi≥qnα}. (4.336)

Dans notre étude, nous distinguons deux cadres pour l’estimation de l’ESα dans la
distribution de Pareto standardisée P(1, γ) : le premier est appelé cas idéalisé et l’autre
est appelé cas réaliste.

Cas idéalisé : qnα = VaRα Nous considérons n échantillons indépendants et identique-
ment distribués (i.i.d.) X1, . . . , Xn suivant une distribution de Pareto standardisée
P(1, γ). Le cas idéalisé suppose que le quantile empirique d’ordre α noté qnα correspond
à la vraie VaRα : bien que cela ne soit vrai que dans le cadre asymptotique et non
dans la pratique pour des tailles d’échantillon réduites, nous utiliserons cette hypothèse
dans certaines parties de notre étude pour simplifier l’analyse. Dans ce cas, l’estimation
de l’ESα dans la distribution de Pareto standardisée P(1, γ) correspond à la moyenne
empirique de la perte excédentaire au-delà de la vraie VaRα. En d’autres termes,
l’estimation de l’ESα dans la distribution de Pareto standardisée P(1, γ) correspond
à la moyenne empirique de la distribution de Pareto standardisée P(1, γ) conditionnée
à ses valeurs au-delà de la vraie VaRα. Dans ce cas, le seuil de conditionnement ne
dépend pas de l’échantillon sous-jacent. Cela implique que les échantillons supérieurs
à la vraie VaRα sont toujours indépendants et identiquement distribués (i.i.d.), et que
les propriétés de stabilité par conditionnement et de mise à l’échelle sont valides. Grâce
à la propriété de stabilité par conditionnement, la queue de la distribution de Pareto
standardisée au-delà de la vraie VaRα reste une distribution de Pareto avec le même
paramètre de forme γ mais un nouveau paramètre d’échelle égal au seuil de condition-
nement VaRα : P(VaRα, γ). De plus, la propriété de mise à l’échelle établit une rela-
tion de proportionnalité entre la distribution de Pareto non-standardisée P(VaRα, γ) et
la distribution de Pareto standardisée P(1, γ), avec un facteur de proportionnalité égal
à VaRα. Par conséquent, il existe une relation de proportionnalité entre la distribution
de Pareto standardisée conditionnée à ses valeurs étant au-delà de la vraie VaRα et
la distribution marginale P(1, γ), avec un facteur de proportionnalité égal au seuil de
conditionnement VaRα. Cela implique que l’espérance de la distribution de Pareto
standardisée conditionnée à ses valeurs au-delà de la vraie VaRα (c’est-à-dire, l’ESα)
est proportionnelle à l’espérance de la distribution de Pareto standardisée P(1, γ), avec
un facteur de proportionnalité égal à VaRα. De même, la moyenne empirique de la
distribution de Pareto standardisée conditionnée à ses valeurs au-delà de la vraie VaRα

(c’est-à-dire l’ESα empirique) est proportionnelle à la moyenne empirique de la dis-
tribution de Pareto standardisée P(1, γ), avec un facteur de proportionnalité égal à
VaRα. Par conséquent, le biais entre l’ESα empirique et le vrai ESα de la distribution
de Pareto standardisée est proportionnel au biais entre l’espérance et la moyenne em-
pirique de la distribution de Pareto standardisée, avec un facteur de proportionnalité
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égal à VaRα. Ainsi, dans le cas idéalisé, il suffit de déterminer une formule-fermée pour
le biais entre la moyenne empirique et l’espérance de la distribution de Pareto stand-
ardisée P(1, γ). Le biais entre l’ESα empirique et le vrai ESα de la distribution de
Pareto standardisée peut être récupéré grâce à une simple multiplication du biais entre
la moyenne empirique et l’espérance de la distribution de Pareto standardisée par le
seuil de conditionnement VaRα. Or, le quantile empirique d’ordre α ne correspond à la
vraie VaRα que dans le cas asymptotique (c’est-à-dire lorsque la taille de l’échantillon
est suffisamment grande), mais dans la plupart des cas, lorsque la taille de l’échantillon
s’éloigne du cas asymptotique, le quantile empirique d’ordre α ne correspond pas à la
vraie VaRα.

Cas réaliste : qnα ̸= VaRα Dans le cas réaliste, le quantile empirique d’ordre α

ne correspond pas à la VaRα théorique. Dans ce cas, l’estimation de l’ESα dans
la distribution de Pareto standardisée P(1, γ) correspond à la moyenne empirique de
la perte excédentaire au-delà du quantile empirique d’ordre α. En d’autres termes,
l’estimation de l’ESα dans la distribution de Pareto standardisée P(1, γ) correspond à la
moyenne empirique de la distribution de Pareto standardisée conditionnée à ses valeurs
supérieures au quantile empirique d’ordre α. Dans ce cas, le seuil de conditionnement
dépend de l’échantillon sous-jacent. Cela implique que les échantillons supérieurs au
quantile empirique d’ordre α ne sont plus indépendants et identiquement distribués
(i.i.d.), et les propriétés de stabilité par conditionnement et de mise à l’échelle de la
distribution de Pareto ne sont plus valides. Par conséquent, la queue de la distribution
de Pareto standardisée au-delà du quantile empirique d’ordre α n’est pas nécessairement
une distribution de Pareto. Ainsi, la distribution des échantillons supérieurs au quantile
empirique d’ordre α est inconnue, et il est difficile de dériver une formule analytique
pour le biais entre l’ESα empirique et l’ESα théorique. Pour cette raison, dans le cas
réaliste, nous proposons une étude empirique du biais entre l’ESα empirique et l’ESα

théorique, ainsi que du taux de convergence. Dans le cas réaliste, le biais entre l’ESα

empirique et l’ESα théorique est plus important que dans le cas idéalisé, car il existe
un terme d’erreur supplémentaire lié à l’estimation du biais entre la vraie VaRα et le
quantile empirique d’ordre α.

Dans tout le chapitre, les estimateurs de l’ESα sont étudiés à la fois dans le cas idéalisé,
où le quantile empirique d’ordre α correspond à la vraie VaRα, et dans le cas réaliste
où les deux quantités diffèrent.

Étant donné que le biais d’un estimateur est défini par la différence entre la valeur cible
et l’espérance de l’estimateur, le défi dans le calcul du biais réside dans le calcul de
l’espérance de l’estimateur.

Médiane des Moyennes (MoM)

Nous avons tenté de dériver une formule explicite pour le biais de l’estimateur des
MoM. Ce problème est complexe et reste une question ouverte. Dans ce contexte,
nous développons une méthodologie pour dériver une formule explicite pour le biais de
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l’estimateur des MoM, et nous prouvons les résultats intermédiaires dans cette procé-
dure, tels que la dérivation d’une formule explicite pour le biais de la médiane empirique.

L’estimateur des MoM combine les estimateurs de la moyenne et de la médiane em-
piriques. L’estimateur de la Médiane des Moyennes nécessite de partitionner les don-
nées en k blocs de taille à peu près égale, de calculer la moyenne empirique dans chaque
bloc, et de prendre la médiane de la séquence composée par les k moyennes empiriques.

Definition 4.59 (Médiane des Moyennes (MoM)). Soit X1, . . . , Xn une séquence de
n tirages aléatoires indépendants et identiquement distribués (i.i.d.) provenant de la
distribution de X. Soit m et k deux entiers positifs. Nous supposons que n est un
multiple de k tel que n = mk. La moyenne empirique de chaque bloc est définie comme
suit :

∀j ∈ J1, kK, µ̄Bj =
1∣∣∣Bj

∣∣∣
∑
i∈Bj

Xi. (4.337)

L’estimateur des MoM est alors défini par M̂oMn =M(µ̄1, . . . , µ̄k).

En raison de la manière dont l’estimateur est construit, l’estimateur des MoM peut être
considéré comme un bon estimateur de la moyenne.

Première étape dans la construction de l’estimateur des MoM : Il s’agit de par-
titionner l’ensemble composé de n tirages aléatoires i.i.d. en k blocs disjoints et
de calculer la moyenne empirique µ̄j de chacun des k blocs. Pour des raisons de
simplicité, supposons que le nombre de tirages aléatoires n est un multiple du
nombre de blocs k, de sorte que n = mk, avec m, k, n étant des entiers positifs.
Pour chacun des k blocs, la moyenne empirique est un estimateur sans biais de
l’espérance de la distribution. En effet, comme les tirages aléatoires Xi sont i.i.d.
de moyenne µ = E[X], alors E[µ̄j ] = µ. De plus, puisque les tirages aléatoires
sont i.i.d. de variance V[Xi] = σ2, l’écart type des moyennes empiriques µ̄j est
donné par σ√

m
. Cela signifie que, dans chacun des k blocs, la moyenne empirique

ne s’écarte pas de l’espérance de la distribution de plus d’une quantité égale à
σ√
m

.

Deuxième étape : Il s’agit de prendre la médiane de la séquence composée des k
moyennes empiriques par bloc.

Pourquoi pouvons-nous dire que la médiane des moyennes par bloc est un bon estimateur
de l’espérance de la distribution ?

En réalité, la médiane empirique ne s’écarte pas de la moyenne empirique de plus d’une
quantité égale à l’écart type empirique, c’est ce qu’énonce le lemme suivant.

Lemma 4.60. Soit X une variable aléatoire scalaire, avec un écart type σ et une mé-
diane M . Alors, l’inégalité suivante est vérifiée :∣∣∣E [X]−M

∣∣∣ ≤ σ. (4.338)
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En supposant que σ soit suffisamment petit, nous pouvons dire que la médiane est
suffisamment proche de l’espérance de la distribution ce qui en fait un bon estimateur.

Dans notre cas, si X = (X1, . . . , Xn) est un échantillon composé de n variables aléatoires
indépendantes et identiquement distribuées (i.i.d.), alors µ̂n = 1

n

∑n
i=1Xi est la moyenne

empirique associée. Notons par Bj , pour tout j ∈ J1, kK, les k blocs composés de
m variables aléatoires. La moyenne empirique par bloc µ̄Bj = 1∣∣∣Bj

∣∣∣
∑

i∈Bj
Xi est un

estimateur sans biais de l’espérance µ de la distribution. De plus, puisque les tirages
aléatoires initiaux sont i.i.d. et que les blocs sont disjoints, les moyennes par bloc sont
des variables aléatoires i.i.d.. La moyenne empirique des moyennes par bloc est égale à
celle de l’échantillon initial µ̂n. La variance empirique est notée σ̂2n = 1

k

∑k
j=1(µ̄Bj−µ̂n)2.

Ensuite, à partir de l’Équation (4.136), l’inégalité de concentration suivante est vérifiée
: ∣∣∣∣µ̂n − M̂oMn

∣∣∣∣ ≤ σ̂n. (4.339)

Si l’écart type empirique de l’échantillon est petit, nous pouvons conclure que l’estimateur
des MoM et l’estimateur de la moyenne empirique sont proches l’un de l’autre, et donc,
ils devraient tous deux estimer l’espérance théorique. Néanmoins, en général, les fluc-
tuations de l’estimateur des MoM sont plus petites que celles de l’estimateur de la
moyenne empirique.

Avantages de l’estimateur des MoM : Cet estimateur permet de combiner deux
estimateurs de centralité : la moyenne empirique et la médiane empirique. La
moyenne empirique n’est pas robuste aux valeurs extrêmes et est significativement
influencée par leur présence. Par conséquent, les k moyennes empiriques par
bloc tiennent compte des valeurs extrêmes ; elles sont sans biais par rapport
à l’espérance de la séquence, mais elles ont un écart type élevé. La médiane
empirique est robuste aux valeurs extrêmes car elle dépend uniquement des valeurs
centrales de la séquence, et l’écart type de la médiane empirique est censé être
beaucoup plus faible que celui de la moyenne empirique ; cependant, la médiane
peut présenter un biais par rapport à l’espérance de la séquence. Cela implique que
l’estimateur final combinant moyenne et médiane empiriques peut être sensible
aux données tout en n’étant pas trop influencé par les valeurs extrêmes de la
distribution. De plus, comme la deuxième couche de construction de l’estimateur
consiste à prendre la médiane empirique de la séquence des moyennes empiriques
par bloc, un biais est introduit par rapport à l’espérance de la séquence.

Des inégalités de concentration sont fournies par les travaux de (Lugosi and Mendelson,
2019, Théorème 2 p.7, Théorème 4 p.9), et prouvent que, dans des conditions qui ne
sont pas si restrictives, l’estimateur des MoM est un bon estimateur de la moyenne.

Après avoir choisi la bonne paramétrisation de l’estimateur, nous quantifions le biais
de l’estimateur MoM. Étant donné que l’estimateur des MoM résulte de la combinaison
des estimateurs de la moyenne empirique et de la médiane empirique, nous démontrons
dans un premier temps une formule fermée pour le biais de la médiane empirique.
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Theorem 4.61 (Espérance de la médiane empirique lorsque n est impair). (i) Soit
X1, . . . , X2k+1 une séquence composée de 2k + 1 variables aléatoires i.i.d. suivant la
même distribution que X ∼ P(1, γ). Soit X⋆

1 , . . . , X
⋆
2k+1 la séquence associée des stat-

istiques d’ordre. La densité de la médiane empirique X⋆
k+1 est donnée par :

f
M̂

(1)
2k+1

(x) =
(2k + 1)!

k!k!

(
1− 1

xγ

)k
1

xkγ

(
γ

xγ+1

)
1{x≥1}. (4.340)

L’espérance de la médiane empirique est définie comme suit :

E[M̂ (1)
2k+1] =

(2k + 1)!

k!k!
B

(
k + 1, k + 1− 1

γ

)
(4.341)

où B(x, y) =
∫ 1
0 (1−t)x−1ty−1dt = Γ(x)Γ(y)

Γ(x+y) est la fonction Beta, et Γ(z) =
∫ +∞
0 tz−1e−tdt

est la fonction Gamma.

(ii) Soit Y1, . . . , Y2k+1 une séquence composée de 2k+1 variables aléatoires i.i.d. suivant
la même distribution que Y ∼ P(xm, γ). Alors, d’après la propriété d’échelle de la
distribution de Pareto (Théorème 4.55), nous obtenons la relation de proportionnalité
suivante entre les distributions non-standardisée P(xm, γ) et standardisée P(1, γ) de
Pareto :

(Y1, . . . , Y2k+1)
d
= (xmX1, . . . , xmX2k+1). (4.342)

En particulier, une relation de proportionnalité de facteur xm relie la médiane empirique
de la distribution de Pareto non-standardisée P(xm, γ) à celle de la distribution de
Pareto standardisée P(1, γ) telle que M̂ (xm)

2k+1
d
= xmM̂

(1)
2k+1, ainsi que leurs espérances :

E[M̂ (xm)
2k+1] = xmE[M̂ (1)

2k+1]. (4.343)

Theorem 4.62 (Espérance de la médiane empirique lorsque n est pair). (i) Soit
X1, . . . , X2k 2k variables aléatoires indépendantes et identiquement distribuées (i.i.d.)
suivant la même distribution que X ∼ P(1, γ). Soit X⋆

1 , . . . , X
⋆
2k la séquence associée

de statistiques ordonnées. Nous définissons

M̂2k :=
1

2
(X⋆

k +X⋆
k+1). (4.344)

L’espérance de la médiane empirique est donnée par :

E
[
M̂2k

]
=

1

2

 (2k)!

(k − 1)!k!
B

(
k, k + 1− 1

γ

)
+

(2k)!

k!(k − 1)!
B

(
k + 1, k − 1

γ

) (4.345)

(ii) Soit Y1, . . . , Y2k 2k variables aléatoires i.i.d. suivant la même distribution que Y ∼
P(xm, γ). Alors, d’après la propriété d’échelle de la distribution de Pareto (Théorème
4.55), nous obtenons la relation de proportionnalité suivante entre les distributions
P(xm, γ) et P(1, γ) :

(Y1, . . . , Y2k)
d
= (xmX1, . . . , xmX2k). (4.346)
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En particulier, une relation de proportionnalité de facteur xm relie la médiane empirique
de la distribution de Pareto non standardisée P(xm, γ) à celle de la distribution de Pareto
standardisée P(1, γ) telle que M̂ (xm)

2k
d
= xmM̂

(1)
2k , ainsi que leurs espérances :

E[M̂ (xm)
2k ] = xmE[M̂ (1)

2k ]. (4.347)

Theorem 4.63. Lorsque n→ +∞,

E
[
M̂n

]
=

γ
√
2

1 +
1

2γn
+

1

2γ2n
+ o

(
1

n

) . (4.348)

Le défi dans le calcul du biais de l’estimateur des MoM réside dans le fait que la dens-
ité de l’estimateur est nécessaire pour calculer l’espérance des MoM. Cependant, cet
estimateur est défini comme la médiane empirique des moyennes par blocs. La distribu-
tion d’une statistique d’ordre est basée sur la distribution de l’échantillon sous-jacent,
c’est-à-dire sur l’échantillon des moyennes par blocs dont la distribution est inconnue.
Pour aborder ce problème, nous proposons une formule analytique pour la fonction
caractéristique des moyennes par blocs.

Theorem 4.64 (Fonction caractéristique de la loi de Pareto standardisée). Soit X ∼
P(1, γ) avec γ > 1. La fonction caractéristique de X, définie par ϕX(t) = E

[
eitX

]
=∫ +∞

1
γ

xγ+1dx, est une solution de l’Équation Différentielle Ordinaire (EDO) :

∂

∂t
Jγ(t)−

γ

t
Jγ(t) = −γ

t
eit, (4.349)

et prend la forme suivante :

∀t ∈ R, ϕX(t) = γ(−it)γΓ(−γ,−it). (4.350)

où Γ(z) =
∫ +∞
0 uz−1e−udu, et satisfait la relation suivante Γ(z + 1) = zΓ(z).

À partir de l’Équation (??), la fonction caractéristique des moyennes par bloc µ̄j peut
être définie comme suit :

ϕµ̄j (t) = γm
(
−i t
m

)mγ
(
Γ

(
−γ,−i t

m

))m

. (4.351)

Ensuite, la fonction de densité des moyennes par bloc peut être récupérée à l’aide de la
transformée de Fourier inverse, de la manière suivante :

fµ̄j (x) =

∫
R

1

2π
e−itxϕµ̄j (t)dt. (4.352)

Cependant, comme la fonction caractéristique des moyennes par bloc µ̄j dépend de la
fonction Gamma, qui est déjà une intégrale, il est très compliqué de déterminer une
forme analytique explicite pour la densité des moyennes par bloc. Dans ce cadre, il est
difficile d’obtenir une forme analytique du biais entre l’estimateur des MoM appliqué
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à la distribution de Pareto standardisée et son espérance. C’est encore un travail en
cours.

Une étude numérique du biais de l’estimateur des M̂oMn est réalisée.

Le taux de convergence du biais entre l’estimateur des MoM appliqué à la distribution
de Pareto standardisée et son espérance semble dépendre de l’indice de Pareto γ. En
effet, le taux de convergence varie entre 1

n0.7 et 1
n et se rapproche de 1

n lorsque la queue
de la distribution devient de plus en plus fine, c’est-à-dire lorsque γ augmente.

Rappelons que l’objectif est d’étudier le biais entre l’estimateur des MoM appliqué à
la queue de la distribution de Pareto standardisée et l’ESα. Dans le cas idéalisé, le
quantile empirique d’ordre α correspond à la vraie VaRα, et l’ESα empirique corres-
pond à la moyenne empirique de la distribution de Pareto standardisée conditionnée à
ses valeurs supérieures à la vraie VaRα. Le seuil de conditionnement est indépendant
de l’échantillon sous-jacent. Cela implique que les échantillons supérieurs à la VaRα

théorique sont indépendants et identiquement distribués (i.i.d.) et que les propriétés de
stabilité par conditionnement et de mise à l’échelle sont valides. Par conséquent, la dis-
tribution de Pareto standardisée conditionnée à ses valeurs supérieures à la vraie VaRα

est toujours une distribution de Pareto avec le même paramètre de forme γ, mais un
nouveau paramètre d’échelle égal au seuil de conditionnement VaRα: P(VaRα, γ). De
plus, la propriété de mise à l’échelle établit une relation de proportionnalité entre la dis-
tribution de Pareto non-standardisée P(VaRα, γ) et la distribution de Pareto standard-
isée P(1, γ), avec un facteur de proportionnalité égal au paramètre de conditionnement
VaRα. Par conséquent, en combinant les propriétés de stabilité par conditionnement
et de mise à l’échelle, la distribution de Pareto standardisée conditionnée à ses valeurs
supérieures à la vraie VaRα est proportionnelle à la distribution marginale P(1, γ),
avec un facteur de proportionnalité égal à VaRα.

Cela implique que l’estimateur des MoM appliqué à la distribution de Pareto standard-
isée conditionnée à ses valeurs supérieures à VaRα est proportionnel à l’estimateur des
MoM appliqué à l’ensemble de la distribution de Pareto standardisée, avec un facteur
de proportionnalité égal à VaRα. De même, l’ESα est proportionnel à l’espérance de la
distribution de Pareto standardisée, avec un facteur de proportionnalité égal à VaRα.
Ainsi, le biais entre l’estimateur L̂Vn appliqué à la distribution de Pareto standard-
isée conditionnée à ses valeurs supérieures à VaRα et l’ESα est proportionnel au biais
entre l’estimateur des MoM appliqué à la distribution de Pareto standardisée complète
et l’espérance, avec un facteur de proportionnalité égal à VaRα. De plus, parce que
le seuil de conditionnement est indépendant de l’échantillon sous-jacent, la vitesse de
convergence du biais entre l’estimateur des MoM appliqué à la distribution de Pareto
standardisée conditionnée à ses valeurs supérieures à VaRα et le vrai ESα est la même
que celle du biais entre l’estimateur des MoM appliqué à l’ensemble de la distribution
de Pareto standardisée et son espérance.

Dans le cas réaliste, la quantile empirique d’ordre α ne correspond pas à la vraie VaRα,
et l’ESα empirique correspond à la moyenne empirique de la distribution de Pareto
standardisée conditionnée à ses valeurs supérieures au quantile empirique d’ordre α. Le
seuil de conditionnement est une statistique d’ordre et dépend de l’échantillon sous-
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jacent. Cela implique que les échantillons supérieurs au quantile empirique d’ordre α
ne sont plus indépendants et identiquement distribués (i.i.d.), et que les propriétés de
stabilité par conditionnement et de mise à l’échelle ne sont plus valides. Par conséquent,
la distribution de Pareto standardisée conditionnée à ses valeurs supérieures au quantile
empirique d’ordre α n’est pas nécessairement une distribution de Pareto. Ainsi, la
distribution des échantillons supérieurs au quantile empirique d’odre α est inconnue,
et il est difficile d’établir une formule fermée pour le biais entre le vrai ESα et l’ESα

empirique. Pour cette raison, les expériences numériques donnent une idée de la vitesse
de convergence du biais et montrent si la vitesse de convergence du biais dans le cas
réaliste est éloignée ou proche de la vitesse de convergence du biais dans le cas idéal.
L’étude numérique montre que le taux de convergence est très proche de celui du biais
dans le cas idéalisé.

Moyennes Tronquées (TM)

Nous fournissons une formule explicite pour le biais de l’estimateur des Moyennes Tron-
quées tant dans le cas non-asymptotique que dans le cas asymptotique.

L’estimateur des Moyennes Tronquées est basé sur l’idée suivante. L’idée la plus
naturelle pour améliorer la performance de l’estimateur de la moyenne empirique est
de supprimer d’éventuels points aberrants en tronquant l’échantillon. L’estimateur des
Moyennes Tronquées est défini en éliminant une fraction de l’échantillon ϵn des points
les plus grands et les plus petits pour un certain paramètre ϵ ∈ (0, 1), puis en moyennant
le reste.

L’estimateur des Moyennes Tronquées est construit comme suit. Nous divisons les
données en deux parties égales. Une moitié est utilisée pour déterminer le seuil de
troncature approprié. Les points de l’autre moitié sont moyennés, à l’exception des
points de données qui tombent en dehors de la région de troncature, qui sont seuillés.

Pour des raisons de commodité, nous supposons que les données sont composées de 2n

copies indépendantes de la variable aléatoireX ∼ P(1, γ), notéesX1, . . . , Xn, Y1, . . . , Yn.
Nous notons respectivement par X⋆

1 , . . . , X
⋆
n et Y ⋆

1 , . . . , Y
⋆
n les séquences de statistiques

d’ordre liées aux échantillons X1, . . . , Xn =: Xn et Y1, . . . , Yn =: Yn. L’espérance de la
distribution est notée µ = E[X] = γ

γ−1 . La troncature des deux côtés de la distribution
est pertinente lorsque les deux queues de la distribution sont non-bornées et contiennent
des valeurs extrêmes. Cependant, la distribution de Pareto présente la particularité que
sa queue gauche est bornée, tandis que sa queue droite ne l’est pas. Cela implique que,
pour éliminer les valeurs aberrantes, il n’est pas nécessaire de seuiller la queue gauche
de la distribution, mais seulement la queue droite.

Dans ce cas spécifique, la fonction de troncature est donnée par :

ϕYn(x) =


Y ⋆
⌈(1−ϵ)n⌉ si x > Y ⋆

⌈(1−ϵ)n⌉,

x si x ∈
[
1, Y ⋆

⌈(1−ϵ)n⌉

]
.

(4.353)
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De plus, il est important de noter que les seuils de troncature sont fixés sur un échantillon
qui est indépendant de l’échantillon sur lequel l’estimateur est construit. Avec cette
notation en place, l’estimateur est défini comme suit :

(i) Étant donné le niveau de confiance δ ≥ 8e−3n/16, on définit le seuil de troncature de
la manière suivante :

ϵn =
16 log(8/δ)

3n
. (4.354)

(ii) Puis, l’estimateur des Moyennes Tronquées est donné par :

T̂M2n =
1

n

n∑
i=1

ϕYn(Xi). (4.355)

L’inconvénient de cet estimateur est que, pour un niveau de confiance élevé, la quantité
de données requise pour obtenir un seuil de troncature raisonnable est très importante.

Dans (Lugosi and Mendelson, 2019, p.14), une inégalité de concentration de l’estimateur
des Moyennes Tronquées est donnée pour quantifier la performance de l’estimateur.

Dans ce contexte, nous fournissons une formule fermée pour le biais de l’estimateur des
Moyennes Tronquées dans le cas non-asymptotique.

Nous étudions l’évolution du biais entre l’estimateur des Moyennes Tronquées appliqué
à la queue de la distribution de Pareto standardisée et l’ESα dans deux cadres différents.
Le premier cadre fait référence au cas idéalisé où le quantile empirique d’ordre α cor-
respond à la VaRα théorique. Le second cadre correspond au cas réaliste où le quantile
empirique d’ordre α ne correspond pas à la VaRα théorique. Pour ce faire, nous étudions
d’abord le biais entre l’estimateur des Moyennes Tronquées appliqué à la distribution
de Pareto standardisée P(1, γ) complète et l’espérance.

(i) Le biais entre l’estimateur des Moyennes Tronquées et l’espérance de la distribution
de Pareto est défini par :

Bµ(T̂M2n) = E
[
T̂M2n

]
− µ. (4.356)

Proposition 4.65 (Biais de l’estimateur des Moyennes Tronquées dans la distribu-
tion de Pareto standardisée). Soient X1, . . . , Xn, Y1, . . . , Yn et X⋆

1 , . . . , X
⋆
n, Y

⋆
1 , . . . , Y

⋆
n ,

respectivement 2n copies indépendantes de la variable aléatoire X qui suit une distribu-
tion de Pareto standardisée P(1, γ), et les statistiques d’ordre associées. Soit ϵn ∈ (0, 1)

le seuil de troncature qui satisfait l’Équation (4.175). Le biais entre l’estimateur des
Moyennes Tronquées appliqué à la distribution de Pareto standardisée P(1, γ) complète
et l’espérance est alors donné comme suit :

Bµ(T̂M2n) = − 1

γ − 1
E

[(
Y ⋆
⌈(1−ϵ)n⌉

)1−γ
]
= − 1

γ − 1
κϵ,nB

(
n−

⌈
(1− ϵ)n

⌉
+ 2− 1

γ
,
⌈
(1− ϵ)n

⌉)
.

(4.357)

où κϵ,n = n!(⌈
(1−ϵ)n

⌉
−1

)
!

(
n−
⌈
(1−ϵ)n

⌉)
!
et B(x, y) =

∫ 1
0 u

x−1(1− u)y−1du = Γ(x)Γ(y)
Γ(x+y) .
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Theorem 4.66 (Biais asymptotique des Moyennes Tronquées dans la distribution de
Pareto standardisée). Lorsque n→ +∞,

Bµ(T̂M2n) = − 1

γ − 1

Γ
(⌊
Cδ

⌋
+ 2− 1

γ

)
Γ(
⌊
Cδ

⌋
+ 1)

n
1
γ
−1

+ o

(
n

1
γ
−1
)

(4.358)

où pour tout x ∈ R, Γ(x) =
∫ +∞
0 ux−1e−udu est la fonction Gamma.

Une formule fermée pour le biais entre l’estimateur des Moyennes Tronquées à droite
appliqué à la distribution de Pareto standardisée P(1, γ) complète et l’espérance est
fournie. Rappelons que l’objectif est d’étudier le biais entre l’estimateur des Moy-
ennes Tronquées à droite appliqué à la queue de la distribution de Pareto standardisée
et l’ESα. Dans le cas idéalisé, le quantile empirique d’ordre α correspond à la vraie
VaRα, et l’ESα empirique correspond à la moyenne empirique de la distribution de
Pareto standardisée conditionnée à ses valeurs supérieures à la vraie VaRα. Le seuil
de conditionnement est indépendant de l’échantillon sous-jacent. Cela implique que
les échantillons supérieurs à la VaRα théorique sont indépendants et identiquement
distribués (i.i.d.) et que les propriétés de stabilité par conditionnement et de mise à
l’échelle sont valides. Par conséquent, la distribution de Pareto standardisée condition-
née à ses valeurs supérieures à la vraie VaRα est toujours une distribution de Pareto
avec le même paramètre de forme γ, mais un nouveau paramètre d’échelle égal au seuil
de conditionnement VaRα: P(VaRα, γ). De plus, la propriété de mise à l’échelle ét-
ablit une relation de proportionnalité entre la distribution de Pareto non-standardisée
P(VaRα, γ) et la distribution de Pareto standardisée P(1, γ), avec un facteur de propor-
tionnalité égal au paramètre de conditionnement VaRα. Par conséquent, en combinant
les propriétés de stabilité par conditionnement et de mise à l’échelle, la distribution de
Pareto standardisée conditionnée à ses valeurs supérieures à la vraie VaRα est propor-
tionnelle à la distribution marginale P(1, γ), avec un facteur de proportionnalité égal à
VaRα.

Cela implique que l’estimateur des Moyennes Tronquées appliqué à la distribution de
Pareto standardisée conditionnée à ses valeurs supérieures à VaRα est proportionnel à
l’estimateur des Moyennes Tronquées appliqué à l’ensemble de la distribution de Pareto
standardisée, avec un facteur de proportionnalité égal à VaRα. De même, l’ESα est
proportionnel à l’espérance de la distribution de Pareto standardisée, avec un facteur de
proportionnalité égal à VaRα. Ainsi, le biais entre l’estimateur des Moyennes Tronquées
appliqué à la distribution de Pareto standardisée conditionnée à ses valeurs supérieures
à VaRα et l’ESα est proportionnel au biais entre l’estimateur des Moyennes Tronquées
appliqué à la distribution de Pareto standardisée complète et l’espérance, avec un fac-
teur de proportionnalité égal à VaRα. De plus, parce que le seuil de conditionnement
est indépendant de l’échantillon sous-jacent, la vitesse de convergence du biais entre
l’estimateur des Moyennes Tronquées appliqué à la distribution de Pareto standardisée
conditionnée à ses valeurs supérieures à VaRα et le vrai ESα est la même que celle du
biais entre l’estimateur des Moyennes Tronquées appliqué à l’ensemble de la distribution
de Pareto standardisée et son espérance. La formule fermée du biais fournit la vitesse
de convergence comme indiqué dans le Théorème ??. La vitesse de convergence varie
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en fonction de l’indice de Pareto γ et satisfait la règle n
1
γ
−1, multipliée par la constante

appropriée.

Dans le cas réaliste, la quantile empirique α ne correspond pas à la vraie VaRα, et l’ESα

empirique correspond à la moyenne empirique de la distribution de Pareto standardisée
conditionnée à ses valeurs supérieures au quantile empirique d’ordre α. Le seuil de
conditionnement est une statistique d’ordre et dépend de l’échantillon sous-jacent. Cela
implique que les échantillons supérieurs au quantile empirique d’ordre α ne sont plus
indépendants et identiquement distribués (i.i.d.), et que les propriétés de stabilité par
conditionnement et de mise à l’échelle ne sont plus valides. Par conséquent, la distribu-
tion de Pareto standardisée conditionnée à ses valeurs supérieures au quantile empirique
d’ordre α n’est pas nécessairement une distribution de Pareto. Ainsi, la distribution des
échantillons supérieurs au quantile empirique d’odre α est inconnue, et il est difficile
d’établir une formule fermée pour le biais entre le vrai ESα et l’ESα empirique. Pour
cette raison, les expériences numériques donnent une idée de la vitesse de convergence
du biais et montrent si la vitesse de convergence du biais dans le cas réaliste est éloignée
ou proche de la vitesse de convergence du biais dans le cas idéal.

L’étude numérique montre que le taux de convergence du biais entre l’ESα empirique
et le vrai ESα dans le cas réaliste semble être très proche de celui du biais entre l’ESα

empirique et le vrai ESα dans le cas idéalisé.

Lee-Valiant (LV)

L’estimateur de Lee-Valiant est une version améliorée de l’estimateur des MoM, qui
inclut un terme de correction. Etant donné qu’une formule fermée pour le biais de
l’estimateur des MoM n’est pas disponible, il est difficile d’en déduire une formule
fermée pour le biais de l’estimateur LV. Pour cette raison, nous proposons une étude
empirique qui nous permet de comprendre le comportement du biais entre l’estimateur
LV appliqué à la queue de la distribution de Pareto standardisée et le vrai ESα, et de
déterminer si le taux de convergence du biais dépend de l’indice de Pareto.

Definition 4.67 (Estimateur de Lee-Valiant). Pour un niveau de confiance δ donné, on
définit l’estimateur des MoM M̂oMn = MoM(X1, . . . , Xn), calculé sur k = log

(
1
δ

)
≤

n blocs avec δ ≥ e−n, et k un entier positif. L’estimateur de Lee-Valiant est alors défini
de la manière suivante :

L̂V n = M̂oMn +
1

n

n∑
i=1

(Xi − M̂oMn)(1−min(α(Xi − M̂oMn)
2, 1)) (4.359)

où le paramètre α est la solution de l’équation monotone, linéaire par morceaux :
n∑

i=1

min(α(Xi − M̂oMn)
2, 1) =

1

3
log

(
1

δ

)
. (4.360)

Le zéro de l’équation :
n∑

i=1

min(α(Xi − M̂oMn)
2, 1)− 1

3
log

(
1

δ

)
= 0 (4.361)
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peut être déterminé en utilisant un algorithme de dichotomie.

Dans (Gobet et al., 2022, p.14, Thm. 2.5), un résultat de déviation est fourni. Voir
(Lee and Valiant, 2022) pour plus de détails sur l’estimateur de Lee-Valiant.

La présente étude vise à analyser l’évolution du biais entre l’estimateur de Lee-Valiant
appliqué à la queue de la distribution de Pareto standardisée et l’ESα dans deux cadres
différents. Le premier cadre fait référence au cas idéalisé où la quantile empirique α
correspond à la VaRα théorique. Le second cadre correspond au cas réaliste où la
quantile empirique α ne correspond pas à la VaRα théorique.

Pour ce faire, nous étudions d’abord le biais entre l’estimateur de Lee-Valiant appli-
qué à la distribution de Pareto standardisée P(1, γ) complète et l’espérance. L’étude
numérique montre que la vitesse de convergence du biais entre l’estimateur LV appliqué
à la distribution de Pareto standardisée P(1, γ) complète et son espérance est supérieure
à 1

n et inférieure à 1√
n
.

Une fois que l’évolution du biais entre l’estimateur L̂Vn et l’espérance de la distribu-
tion de Pareto standardisée P(1, γ) complète, ainsi que sa vitesse de convergence sont
étudiées, nous nous intéressons à l’évolution du biais entre l’estimateur L̂Vn appliqué
à la queue de la distribution de Pareto standardisée et l’ESα dans deux cas : un cas
idéalisé dans lequel le seuil de conditionnement correspond à la VaRα théorique, et un
cas réaliste dans lequel le seuil de conditionnement correspond au quantile empirique
d’ordre α.

Cas idéalisé : Dans le cas idéalisé, le quantile empirique d’ordre α correspond à la
vraie VaRα, qui est supposée connue. Dans ce cas, l’estimateur de l’ESα dans la dis-
tribution de Pareto standardisée P(1, γ) est la moyenne empirique de la distribution de
Pareto standardisée conditionnée à ses valeurs supérieures à la vraie VaRα. Le seuil
de conditionnement est indépendant de l’échantillon sous-jacent. Cela implique que les
échantillons supérieurs à la vraie VaRα sont indépendants et identiquement distribués
(i.i.d.) et que les propriétés de stabilité par conditionnement et de mise à l’échelle,
comme indiqué dans le Théorème 4.55, restent valides. La propriété de stabilité par
conditionnement implique que la distribution de Pareto standardisée P(1, γ) condition-
née à ses valeurs supérieures à VaRα est toujours une distribution de Pareto, avec le
même paramètre de forme γ, mais un nouveau paramètre d’échelle égal au paramètre
de conditionnement VaRα: P(VaRα, γ). La propriété d’échelle stipule que cette dis-
tribution de Pareto non-standardisée P(VaRα, γ) est proportionnelle à la distribution
marginale de Pareto P(1, γ), avec un facteur de proportionnalité égal au paramètre de
conditionnement VaRα. Par conséquent, la distribution de Pareto standardisée condi-
tionnée à ses valeurs supérieures à VaRα est proportionnelle à la distribution de Pareto
standardisée, avec un facteur de proportionnalité égal à VaRα.

Cela implique que l’estimateur L̂Vn appliqué à la distribution de Pareto standardisée
conditionnée à ses valeurs étant supérieures à VaRα est proportionnel à l’estimateur
L̂Vn appliqué à l’ensemble de la distribution de Pareto standardisée, avec un facteur de
proportionnalité égal à VaRα. De même, l’ESα est proportionnel à l’espérance de la
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distribution de Pareto standardisée, avec un facteur de proportionnalité égal à VaRα.
Ainsi, le biais entre l’estimateur L̂Vn appliqué à la distribution de Pareto standard-
isée conditionnée à ses valeurs supérieures à VaRα et l’ESα est proportionnel au biais
entre l’estimateur L̂Vn appliqué à la distribution de Pareto standardisée complète et
l’espérance, avec un facteur de proportionnalité égal à VaRα. De plus, parce que le seuil
de conditionnement ne dépend pas de l’échantillon sous-jacent, la vitesse de convergence
du biais entre l’estimateur LV appliqué à la distribution de Pareto standardisée condi-
tionnée à ses valeurs supérieures à VaRα et le vrai ESα est la même que celle du biais
entre l’estimateur LV appliqué à l’ensemble de la distribution de Pareto standardisée et
son espérance.

Cas réaliste : Dans le cas réaliste, le quantile empirique d’ordre α ne correspond pas
à la vraie VaRα. Dans ce cas, l’estimateur de l’ESα dans la distribution de Pareto
standardisée P(1, γ) est la moyenne empirique de la distribution de Pareto standardisée
conditionnée à ses valeurs supérieures au quantile empirique d’ordre α. Le seuil de
conditionnement est une statistique d’ordre et dépend de l’échantillon sous-jacent. Cela
implique que les échantillons supérieurs au quantile empirique d’ordre α ne sont plus
indépendants et identiquement distribués (i.i.d.). Par conséquent, la distribution des
échantillons supérieurs au quantile empirique d’ordre α n’est pas nécessairement une
distribution de Pareto. Les propriétés de stabilité par conditionnement et de mise à
l’échelle de la distribution de Pareto, énoncées dans le Théorème 4.55, ne sont plus
valides. Ainsi, la distribution des échantillons supérieurs au quantile empirique α est
inconnue et il est difficile d’établir une formule analytique pour le biais entre l’estimateur
LV appliqué à la queue de la distribution de Pareto au-delà de ce quantile empirique
d’orddre α et le vrai ESα.

Pour cette raison, nous fournissons une étude expérimentale pour donner un aperçu
de la vitesse de convergence du biais entre l’estimateur LV appliqué à la queue de la
distribution de Pareto standardisée au-delà du quantile empirique d’ordre α et le vrai
ESα. La vitesse de convergence du biais entre l’estimateur LV appliqué à la distribution
de Pareto standardisée conditionnée à ses valeurs supérieures au quantile empirique
d’ordre α et le vrai ESα semble similaire à celle du biais dans le cas idéalisé, c’est-à-dire
entre 1

n et 1√
n
. Plus précisément, des tests ont été effectués pour trois distributions de

Pareto : P(1, 2.5), P(1, 3.5) et P(1, 5), et la vitesse de convergence se situe entre 1
n0.9

et 1
n0.7 .

Étude comparative Enfin, nous soutenons l’analyse théorique par des expériences.
Nous comparons également les performances des différents estimateurs.

Biais entre l’ESα empirique et le vrai ESα dans le cas réaliste (travail en
cours) Comme mentionné précédemment, dans le cas réaliste, le quantile empirique
d’ordre α ne correspond pas à la VaRα théorique. Dans ce cas, l’estimateur de l’ESα

dans la distribution de Pareto standardisée P(1, γ) est la moyenne empirique de la
distribution de Pareto standardisée conditionnée à ses valeurs supérieures au quantile
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empirique d’ordre α. Le seuil de conditionnement est une statistique d’ordre et dépend
de l’échantillon sous-jacent. Cela implique que les échantillons supérieurs au quantile
empirique d’ordre α ne sont plus indépendants et identiquement distribués (i.i.d.). Par
conséquent, la distribution des échantillons supérieurs au quantile empirique d’ordre
α n’est pas nécessairement une distribution de Pareto. Les propriétés de stabilité par
conditionnement et de mise à l’échelle de la distribution de Pareto, énoncées dans le
Théorème 4.55, ne sont plus valides. Ainsi, la distribution des échantillons supérieurs
au quantile empirique d’ordre α est inconnue et il est plus difficile d’établir une formule
analytique pour le biais entre l’ESα empirique et le vrai ESα dans la distribution de
Pareto standardisée. Nous présentons un travail en cours concernant l’expression de ce
biais.

La formule de l’ESα empirique est donnée comme suit :

ESn
α =

1

n− ⌈αn⌉
n∑

i=1

Xi1{Xi≥qnα}. (4.362)

Pour simplifier les notations, notons r = ⌈αn⌉ le rang du quantile empirique. Alors,
l’ES empirique correspond à la moyenne empirique des échantillons supérieurs à la
statistique d’ordre de rang r et peut être réécrit de la manière suivante:

ESn
r =

1

n− r

n∑
i=1

Xi1{Xi≥X⋆
r }.

L’objectif est de calculer le biais entre l’ES empirique et l’ES théorique dans la distri-
bution de Pareto standardisée P(1, γ).

BESr [ESn
r ] = E

[
ESn

r

]
−ESr où E

[
ESn

r

]
=

1

n− r

n∑
i=1

E
[
Xi1{Xi≥X⋆

r }

]
=

n

n− r
E
[
X11{X1≥X⋆

r }

]
puisque l’échantillon est i.i.d..

Sous la distribution uniforme, nous prouvons la forme de la distribution jointe :

P(X⋆
r ≤ u,Xi ≤ v) = v

n−1∑
k=r

(
n− 1

k

)
uk(1−u)n−1−k +min(u, v)

(
n− 1

r − 1

)
ur−1(1−u)n−r.

En procédant à la transformation du quantile suivante VaRα(Xi) = Yi dans l’Équation
(4.246), nous adaptons la formule ci-dessus pour la distribution de Pareto standardisée
:

P(X⋆
r ≤ u,Xi ≤ v) = P(Y ⋆

r ≤ VaRα(u), Yi ≤ VaRα(v)).

"Mathematics is the art of giving the same name to different things."

(Henri Poincaré, Science and Method, 1908.)
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Titre : Mesures de risque en finance, Rétrotest, Sensibilité et Robustesse

Mots clés : Auto-similarité, Stationnarité, Processus Gaussiens, Mouvement Brownien fractionnaire univarié
(fBm) et multivarié (mfBm), Mesures de risque, Distributions à queues lourdes

Résumé : Dans le chapitre 2, nous étudions
deux transformations temporelles des processus
aléatoires : le changement d’origine temporelle, et le
changement d’échelle de temps ainsi que les pro-
priétés associées, la stationnarité et l’auto-similarité.
Nous prouvons d’abord les propriétés de stationna-
rité et d’auto-similarité des processus dans le cadre
très général des espaces de Hilbert puis dans le
cadre plus spécifique de l’espace de Hilbert Gaussien
où les propriétés sont prouvées en distribution (au
sens faible) et en un sens trajectoriel (au sens strict).
Des exemples de tels processus comme le mouve-
ment Brownien et mouvement Brownien fractionnaire
(fBm) sont fournis, dans les cadres univariés et mul-
tivariés (mfBm). Dans le Chapitre 3, nous décrivons
les trajectoires de prix en utilisant des mouvements
Browniens géométriques fractionnaires. Cela permet
d’ajouter des corrélations entre les rendements lo-
garithmiques pour exprimer la dépendance à long-
terme. Les rendements logarithmiques sont alors
décrits par des processus Gaussiens auto-similaires
à accroissements stationnaires et corrélés, les fBm et
mfBm. Dans ce cadre, les mesures de risque basées
sur la distribution des pertes sont alors prédites avec

précision en tenant compte de la dépendance à
long-terme. Nous considérons la mesure de risque
la plus couramment utilisée par les régulateurs, la
Valeur-à-Risque (VaR). Nous introduisons un modèle
qui fournit une approximation Gaussienne de la VaR
conditionnelle pour un portefeuille d’actifs sous dyna-
miques fractionnaires (mfBm). Nous fournissons une
quantification de l’erreur d’approximation et nous ef-
fectuons un rétrotest sur des données simulées et
de marché. Dans le Chapitre 4, nous proposons de
modéliser la distribution des pertes avec une distribu-
tion à queue lourde qui prend mieux en compte les
événements extrêmes, appelée la distribution de Pa-
reto. La distribution de Pareto présente des propriétés
intéressantes de changement d’échelle et de stabi-
lité par conditionnement. Nous remplaçons la VaR
par l’Expected-Shortfall (ES), plus sensible au risque
de queue. Nous proposons des méthodes robustes
non-asymptotiques pour estimer l’ES dans des distri-
butions à queues lourdes telles que la Médiane-des-
Moyennes (MoM), les Moyennes-Élaguées (TM), et
l’estimateur de Lee-Valiant (LV) que nous comparons
à l’estimateur de moyenne empirique (asymptotique).
Nous étudions leur biais et leur taux de convergence.

Title : Risk measures in finance, Backtesting, Sensitivity and Robustness

Keywords : Self-similarity, Stationarity, Gaussian processes, univariate and multivariate fractional Brownian
motions (fBm and mfBm), risk-measures, heavy-tailed distributions

Abstract : In Chapter 2, we focus on two time trans-
formations of the random processes : the time-origin
change and the time-scaling and on the related pro-
perties called the stationarity and the self-similarity.
We prove the stationarity and self-similarity properties
of the processes first in a the very general framework
of the Hilbert spaces ; then in a the more specific fra-
mework of the the Gaussian Hilbert space where the
properties are proved in distribution (weak sense) and
in a trajectory sense (strict sense). We also provide
examples of such processes called standard Brow-
nian motion and fractional Brownian motion (fBm), in
the univariate and multivariate frameworks (mfBm). In
Chapter 3, we propose to describe price trajectories
using fractional geometric Brownian motions. This al-
lows adding correlations between logarithmic returns
to express long-range dependency. Logarithmic re-
turns are then described using self-similar Gaussian
processes with stationary and correlated increments,
the fBm and mfBm. In this framework, risk measures
that are based on the loss distribution, can be accura-

tely predicted taking into account the long-range de-
pendency. We focus on predicting the most commonly
used risk measure by regulators, called Value-at-Risk
(VaR). We introduce a model that provides a Gaus-
sian approximation of Value-at-Risk (VaR) for the as-
sets portfolio under fractional dynamics (mfBm). We
provide a quantification of the error of approximation
and we carry out backtesting experiments on simu-
lated and market data. In Chapter 4, we propose to
model the loss distribution with a heavy-tailed distribu-
tion that better takes into account the extreme events,
called the Pareto distribution that presents interesting
properties of scaling and stability by conditioning and
to replace VaR by Expected-Shortfall (ES) which is
more sensitive to the tail risk. The objective is to ex-
plore non-asymptotic robust methods for estimating
ES in heavy-tailed distributions such that the Median-
of-Means (MoM), the Trimmed-Means (TM), and the
Lee-Valiant (LV) estimators that we compare to the
empirical mean estimator (asymptotic). We study their
bias and their convergence rate.
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