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Invités Ghislain Agoua Ingénieur Chercheur à EDF
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Learning neural representations for time series

Abstract

Time series analysis has become increasingly important in various fields, includ-

ing industry, finance, and climate science. The proliferation of sensors and the data

heterogeneity necessitate effective time series modeling techniques. While complex

supervised machine learning models have been developed for specific tasks, repre-

sentation learning offers a different approach by learning data representations in a

new space without explicitly focusing on solving a supervised task. The learned rep-

resentation is then reused to improve the performance of supervised tasks applied

on top of it. Recently, deep learning has transformed time series modeling, with

advanced models like convolutional and attention-based neural networks achieving

state-of-the-art performance in classification, imputation, or forecasting. The fusion

of representation learning and deep learning has given rise to the field of neural

representation learning. Neural representations have a greater ability to extract in-

tricate features and patterns compared to non-neural representations, making them

more powerful and effective in handling complex time series data. Recent advances

in the field have significantly improved the quality of time series representations,

enhancing their usefulness for various downstream tasks.

This thesis focuses on advancing the field of neural representation learning for

time series, targeting both industrial and academic needs. This research addresses

open problems in the domain, such as creating interpretable neural representa-

tions, developing continuous time series representations that handle irregular and

unaligned time series, and creating adaptable models for distribution shifts. By

tackling these challenges, the thesis aims to bridge the gap between cutting-edge

academic research and practical industrial applications.

This manuscript offers multiple contributions to tackle the previously mentioned

challenges in neural representation learning for time series. (i) Firstly, we pro-

pose an interpretable discrete neural representation model for time series based on

a vector-quantization encoder-decoder architecture, which facilitates interpretable

classification. (ii) Secondly, we design a continuous implicit neural representation

model, called TimeFlow, for time series imputation and forecasting that can handle

unaligned and irregular samples. This model leverages per-context modulations,

enabling it to adapt to new samples and unseen contexts by adjusting the represen-

tations. (iii) Lastly, we demonstrate that TimeFlow learns relevant features, making

the representation space effective for downstream tasks such as data generation.
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Apprentissage de représentations neuronales pour

les séries temporelles

Résumé

L’analyse des séries temporelles est cruciale dans divers domaines tels que l’indu-

strie, la finance et la science du climat. La prolifération des capteurs et l’hétérogénéi-

té croissante des données nécessitent des techniques efficaces de modélisation des

séries temporelles. Alors que des modèles complexes d’apprentissage automatique

supervisé ont été développés pour des tâches spécifiques, l’apprentissage de représen-

tation offre une approche différente en apprenant des représentations des données

dans un nouvel espace sans se concentrer explicitement sur une tâche supervisée. Par

la suite, les représentations extraites sont réutilisées pour améliorer les performances

des tâches supervisées en aval. Récemment, l’apprentissage profond a révolutionné

la modélisation des séries temporelles, avec des modèles tels que les réseaux de neu-

rones convolutifs et les réseaux basés sur les mécanismes d’attention. Ces modèles at-

teignent des performances à l’état de l’art pour les tâches de classification, d’imputa-

tion ou encore de prévision. La fusion de l’apprentissage de représentation et

de l’apprentissage profond a donné naissance au domaine de l’apprentissage de

représentation neuronale. Les représentations neuronales pour les séries temporelles,

comparées aux représentations non neuronales, possèdent une meilleure capacité

à extraire des caractéristiques complexes au sein d’un nouvel espace structuré.

Les progrès récents dans ce domaine ont considérablement amélioré la qualité des

représentations des séries temporelles, améliorant ainsi leurs utilités pour les tâches

en aval.

Cette thèse vise à contribuer au domaine de l’apprentissage des représentations

neuronales pour les séries temporelles, en ciblant à la fois des besoins industriels

et académiques. Ce manuscrit aborde des problèmes ouverts dans le domaine, tels

que la construction de représentations neuronales interprétables, le développement

de modèles de représentations continues capables d’apprendre à partir de séries

temporelles irrégulières et non alignées, ainsi que la création de modèles adaptés

pour les changements de distribution.

Ce manuscrit propose plusieurs contributions pour relever les défis mentionnés

ci-dessus. (i) Premièrement, nous proposons un modèle de représentation neu-

ronale discrète et interprétable pour les séries temporelles, basé sur une architecture

encoder-decoder avec un mécanisme de discrétisation. (ii) Deuxièmement, nous

concevons un modèle continu en temps de représentation neuronale implicite pour

l’imputation et la prévision des séries temporelles qui peut traiter des échantillons

non alignés et irréguliers. Ce modèle se base sur des représentations modula-

bles, ce qui lui permet de s’adapter à de nouveaux échantillons et à des contextes

inédits en ajustant les représentations. (iii) Enfin, nous démontrons que le modèle

proposé ci-dessus apprend des caractéristiques pertinentes, créant un espace de

représentation structuré et efficace pour des tâches en aval telle que la génération

de données.
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académiques ont grandement contribué à ma compréhension du machine learning
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Enfin, je tiens à remercier ma famille : Emmanuelle, Elsa, Jean, Grégory ainsi
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Symbols

The manuscript uses the following symbols throughout, with additional notations

occasionally defined within specific chapters or sections.

Domain Symbol Description

Time series x Time series

z Time series representation (sometimes referred to as code)

t Timestamp index

T Number of timestamps

L Look-back window length (forecasting)

H Horizon window length (forecasting)

T Temporal support

A Symbolic values support

c Number of input channels

y Time series label

General i, j Samples index

n Number of samples

L Loss

W, b Weights and bias of a linear layer

p(x) Probabilistic distribution

p̂θ(x) Probabilistic distribution approximation

N (.; .) Gaussian distribution

∇ Gradient

τ Sampling rate

Neural θ, θ
′

Weights of a neural network

network ϕ Encoder

ψ Decoder

hw Hypernetwork

α Learning rate

B Batch

x
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Résumé vi

Remerciements viii

Symbols x

Contents xi

List of Figures xvi

List of Tables xix

I Research Context 1

1 Introduction 2

1.1 Context and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivating neural representation for time series data . . . . . 2

1.1.2 Industrial context and objectives . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Background and Related Work 8

2.1 Machine learning for time series: an introduction . . . . . . . . . . . 9

2.1.1 Single time series analysis . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Time series datasets . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Machine learning for time series datasets . . . . . . . . . . . . 13

2.2 Learning time series representations . . . . . . . . . . . . . . . . . . . 18

2.2.1 Introduction and intuition . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Exploring popular time series representation methods . . . . . 19

2.2.3 From time series representations to time series neural repre-

sentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

xi



xii Contents

2.3 Time series neural representations . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Deep Learning mechanisms . . . . . . . . . . . . . . . . . . . 28

2.3.2 Structures of time series neural representation architecture . . 33

2.3.3 Advanced neural representation methods . . . . . . . . . . . . 35

2.3.4 Discussion and open problems . . . . . . . . . . . . . . . . . . 42

II Contributions 44

3 Interpretable Time Series Neural Representation for Classification

Purposes 45

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2 Related content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3 Requirements for an interpretable symbolic neural representation . . 51

3.4 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4.1 Proposed architecture . . . . . . . . . . . . . . . . . . . . . . 54

3.4.2 Meeting the requirements . . . . . . . . . . . . . . . . . . . . 56

3.4.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Downstream task: classification over extracted representations . . . . 59

3.5.1 Classification using a unique symbolic representation . . . . . 59

3.5.2 Classification using multiple symbolic representations . . . . . 60

3.6 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.6.1 Quantitative experiments . . . . . . . . . . . . . . . . . . . . . 61

3.6.2 Qualitative experiments . . . . . . . . . . . . . . . . . . . . . 62

3.7 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7.1 Critical hyperparameters in the proposed method . . . . . . . 66

3.7.2 Comparison with supervised neural network classifiers . . . . . 67

3.7.3 Edge effects of reconstructions on interpretability . . . . . . . 68

3.7.4 A method only tested on univariate time series . . . . . . . . . 68

3.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4 Time Series Continuous Modeling for Imputation and Forecasting

with Implicit Neural Representations 70

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 The TimeFlow framework . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.1 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.2 Key components . . . . . . . . . . . . . . . . . . . . . . . . . 74

4.3.3 TimeFlow inference . . . . . . . . . . . . . . . . . . . . . . . . 77

4.3.4 Discussion on implementation choices . . . . . . . . . . . . . . 77

4.4 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 Imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



Contents xiii

4.4.2 Forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.4.3 Challenging task: Forecast while imputing incomplete look-

back windows . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.4.4 Quantify uncertainty with TimeFlow: experiment on block

imputation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 Exploring TimeFlow Representations 93

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.2 Latent space exploration . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.2.1 Latent space interpolation between representations . . . . . . 94

5.2.2 TimeFlow sensitivity to modulations perturbation . . . . . . . 95

5.2.3 Visualization of code distributions in the latent space . . . . . 97

5.3 Unconditional generation over the latent space . . . . . . . . . . . . . 98

5.3.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.3.2 Method: a two stages approach . . . . . . . . . . . . . . . . . 99

5.3.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.4 Limitations and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 106

III Conclusion 108

6 Conclusion 109

6.1 Synthesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.2 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Bibliography 113

A WindDragon: Enhancing Wind Power Forecasting with Automated

Deep Learning 129

A.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

A.2 WindDragon: a framework for regression on wind speed maps . . . . 131

A.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

A.4 Conclusion and impact statement . . . . . . . . . . . . . . . . . . . . 135

A.5 Additional results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

A.5.1 WindDragon details . . . . . . . . . . . . . . . . . . . . . . . 136

A.5.2 Baselines details . . . . . . . . . . . . . . . . . . . . . . . . . . 137

A.5.3 Regional results . . . . . . . . . . . . . . . . . . . . . . . . . . 138

B Appendix of Chapter 3 139

B.1 Reproductiblity statement . . . . . . . . . . . . . . . . . . . . . . . . 139

B.2 How to compute receptive fields regions . . . . . . . . . . . . . . . . . 139



xiv Contents

B.3 Impact on accuracy results of the number of available centroids . . . 140

B.4 Proof of the shift equivariance property . . . . . . . . . . . . . . . . . 141

C Appendix of Chapter 4 142

C.1 Reproductiblity statement . . . . . . . . . . . . . . . . . . . . . . . . 142

C.2 Architecture details and ablation studies . . . . . . . . . . . . . . . . 142

C.2.1 Architecture details . . . . . . . . . . . . . . . . . . . . . . . . 142

C.2.2 Ablation studies . . . . . . . . . . . . . . . . . . . . . . . . . . 143

C.3 Imputation experiments . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.3.1 Baselines details . . . . . . . . . . . . . . . . . . . . . . . . . . 150

C.3.2 Details on DeepTime adaptation for imputation . . . . . . . . 151

C.4 Forecasting experiments . . . . . . . . . . . . . . . . . . . . . . . . . 152

C.4.1 Distinction between adjacent time windows and new time win-

dows during inference . . . . . . . . . . . . . . . . . . . . . . . 152

C.4.2 Plots comparison: TimeFlow vs PatchTST . . . . . . . . . . . 154

C.4.3 Baseline details . . . . . . . . . . . . . . . . . . . . . . . . . . 155

C.4.4 Sparsely observed look-back window: comparison with Patch-

TST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

C.4.5 Influence of the look-back window for forecasting . . . . . . . 158

C.4.6 Influence of the horizon length for forecasting . . . . . . . . . 158

C.5 Discussion on using frequency embedding as input to regression models159

C.5.1 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.5.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

C.6 Discussion: meta-learning optimization in time series forecasting . . . 162

D Appendix of Chapter 5 163

D.1 Noisy modulation visualization . . . . . . . . . . . . . . . . . . . . . 163

D.2 DDPM inference process. . . . . . . . . . . . . . . . . . . . . . . . . . 164

D.3 Denoiser architecture in the DDPM implementation . . . . . . . . . . 164

D.4 Principal component analysis visualization . . . . . . . . . . . . . . . 165

E Discussion on public time series datasets 166
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Chapter 1

Introduction

1.1 Context and challenges . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Motivating neural representation for time series data . . . . . 2

1.1.2 Industrial context and objectives . . . . . . . . . . . . . . . . 4

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.1 Context and challenges

This work falls within the research field of neural representation learning for time

series while also addressing industrial needs. In this section, we outline the context

that motivated this thesis.

1.1.1 Motivating neural representation for time series data

Time series analysis and modeling are crucial in diverse fields such as industry,

finance, and climate science. These data consist of sequences of measurements taken

at successive points in time and can reflect phenomena caused by human activities,

physical processes, or a combination of both. For example, in the electricity industry,

time series can represent the wind power generation of a wind farm over time.

The increasing variety, heterogeneity, and number of deployed sensors present

new challenges in dealing with real-world problems. As the volume of time series

data grows, there is a need for effective modeling of these data. Complex machine

learning models have been developed to address this need, excelling at tasks such as

forecasting future values, classifying sequences, and imputing missing values. These

models are typically task-specific and not easily reusable for other tasks or settings;

we refer to them as supervised models.

2
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In contrast, a new paradigm has emerged with representation learning models

(also known as unsupervised or self-supervised models). Time series representation

models aim to learn data representations in a new space without explicitly solving a

particular supervised task. These representations capture the essential features and

patterns in the data, projecting the time series into a new space called the represen-

tation space. In a second stage, the learned representations can be reused to solve

specific downstream tasks, see Figure 1.1 for a visualization of the representation

learning process for time series.

Operating in a two-stage manner, first learning the representation and then

solving the task, offers various benefits. For instance, the representation can be

reused for several downstream tasks, avoiding the need to retrain a new model each

time and thus saving computational costs. This approach can lead to better task

performance as the critical features are already identified during the representation

learning stage. It is particularly useful in few-shot learning scenarios. In addition,

for tasks such as anomaly detection and generation, the representation space may

be more meaningful than the original time series space.

Representation
learning
model

Original Time Series Time Series 
Representations

Forecasting

Classification

Generation

Learn Representations Downstream Tasks

Figure 1.1: Visualization of the time series representation learning pipeline. Stage 1:
Learn the time series representation through unsupervised learning. Stage 2: Train
a model using this representation to address the downstream task. This graphic is
inspired by Trirat et al. (2024).

Recently, the advent of deep learning has revolutionized time series modeling.

Powerful deep learning models, including Multi-Layers (MLPs) (Haykin, 1994),

Convolutional Neural Networks (CNNs) (LeCun et al., 1995), Recurrent Neural

Networks (RNNs) (Schuster and Paliwal, 1997), attention-based neural networks

(transformers) (Vaswani et al., 2017), have achieved state-of-the-art performance in

classification (Ismail Fawaz et al., 2020), imputation (Cao et al., 2018), and fore-

casting (Nie et al., 2022). These models capture complex temporal patterns and

dependencies, surpassing traditional machine learning approaches. Consequently,

neural representation learning for time series has emerged, leading to substantial

improvements in the quality of time series representations. These models enhance

downstream task performance (Yue et al., 2022), reduce the need for labeled data
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during training (Franceschi et al., 2019), and facilitate the transfer of learned repre-

sentations across different datasets (Nie et al., 2022). Today, neural representation

learning is an active field of research. The taxonomy of its various branches is

illustrated in Figure 1.2.

Time Series
Neural

Representations

Structures
Learning

Paradigms Mechanisms

Encoder-Decoder Encoder-only Auto-Decoding Reconstruction Contrastive Hybrid MLP RNN CNN Transformer Hybrid

Figure 1.2: Taxonomy of research branches in neural representation learning for
time series.

The primary objective of this thesis is to develop new representation learning

models for time series that meet industrial needs. This research is conducted in col-

laboration with Electricité de France (EDF), a company that collects millions of time

series annually and has significant requirements for advanced neural representation

modeling. By addressing EDF’s specific challenges, this work aims to bridge the

gap between cutting-edge academic research and practical industrial applications.

1.1.2 Industrial context and objectives

EDF is a French public energy company that operates as both a producer and sup-

plier of electricity. EDF collects and analyzes large volumes of time series data from

various sources, including: • Electricity load curves from households and businesses.

• Sensors on production sites such as wind farms, solar farms, nuclear and hydraulic

power plants.

EDF has developed strong expertise in time series modeling for tasks such as

forecasting, classification, and anomaly detection. Existing neural representation

learning models for time series can address some of EDF’s current challenges, such

as creating efficient classification algorithms with limited labeled data. However,

there are several unresolved issues that this research aims to tackle.

1. Interpretable neural representations. While deep learning methods are

highly effective, decision-makers need to understand the model’s outputs.

Therefore, it is crucial to develop interpretable neural representations of time

series, achieving high performance and providing interpretable results.

2. Adaptable models for new time series and distribution shifts. EDF

frequently encounters new time series samples, such as data from new clients
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or new sensors. Retraining a model for each new sample is impractical. There-

fore, developing models that can quickly adapt to new samples or contexts is

essential. Leveraging neural representation learning is a promising avenue to

address this challenge effectively.

3. Handling irregular and unaligned time series. EDF collects numerous

unaligned and irregular time series. For instance, household load curves will

soon be collected at 15-minute intervals instead of 30-minute intervals, and

sensors at power production sites may experience irregular sampling. The

challenge is to develop a model that can effectively capture neural represen-

tations of all this data, regardless of these irregularities. Consequently, the

irregularities would not affect downstream tasks using these representations.

1.2 Contributions

This thesis aims to address the above challenges by designing new neural represen-

tation models for time series.

(i) First, we propose a discrete interpretable neural representation architecture

for time series, which is used subsequently for interpretable classification. (ii) Then,

we design a continuous neural model for time series imputation and forecasting

that can handle unaligned and irregular samples. This model, called TimeFlow,

leverages the representation of time series data, allowing it to adapt to new samples

and unseen contexts by adjusting these representations. (iii) Finally, we show that

the representation learned by TimeFlow captures relevant features, enabling the

representation space to be effectively utilized for downstream tasks such as data

generation.

Our contributions, which will be discussed in detail in Part II, are summarized

below.

Interpretable time series neural representation for classification purposes.

Deep learning has advanced time series representation by identifying complex pat-

terns but lacks interpretability. While some traditional representation learning

methods offer interpretability, they fail to capture complex patterns. This contri-

bution introduces a set of requirements for creating interpretable neural representa-

tions of univariate time series. We propose a novel unsupervised neural architecture

that produces consistent, discrete, interpretable, and visualizable representations.

The model is task-agnostic, ensuring robustness. We demonstrate its effectiveness

through classification experiments on the University of California Riverside archive

datasets, comparing it to other interpretable and neural representation models. Our

model quantitatively outperforms other interpretable approaches, and additional

qualitative evaluations confirm its interpretability.
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Le Naour, E., Agoua, G., Baskiotis, N., and Guigue, V. Interpretable time

series neural representation for classification purposes. IEEE 10th

International Conference on Data Science and Advanced Analytics (IEEE

DSAA) 2023. Best research paper award.

Time series continuous modeling for imputation and forecasting with im-

plicit neural representations. In this contribution, we present a novel mod-

eling approach called ”TimeFlow” for time series imputation and forecasting that

addresses challenges in real-world data, such as irregular samples, missing data, and

unaligned measurements from multiple sensors. Our method utilizes a continuous-

time model of the series’ evolution dynamics and incorporates conditional, implicit

neural representations for sequential data. A modulation mechanism, driven by

meta-learning, allows adaptation to new samples and long-term extrapolation be-

yond observed time windows. This model offers a flexible and unified framework for

both imputation and forecasting tasks in diverse scenarios. It demonstrates state-

of-the-art performance on classic benchmarks and surpasses other time-continuous

models.

Le Naour, E., Serrano, L., Migus, L., Yin, Y., Agoua, G., Baskiotis, N., Gal-

linari, P., and Guigue, V. Time Series Continuous Modeling for Impu-

tation and Forecasting with Implicit Neural Representations. Trans-

actions on Machine Learning Research (TMLR) 2024.

Exploring the representation learning capabilities of TimeFlow. We then

explore TimeFlow’s representation learning capabilities, demonstrating how it effec-

tively handles irregular data and extracts semantically rich representations. Through

post-hoc experiments in latent space, we demonstrate TimeFlow’s robustness and

ability to capture the underlying structure of time series. We demonstrate the prac-

tical utility of the learned representations in downstream tasks such as time series

generation through a structured two-step approach. Experiments validate the utility

of performing generation in latent space rather than directly in time series space.

In an internal collaboration at EDF, we explored the application of implicit neural

representation learning models, combined with a regressor, to predict national wind

production from wind speed maps. Our approach was compared against purely

supervised deep learning methods and automated deep learning methods. As this

work is not based on representation learning for time series, we present the results

in Appendix A.
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Keisler, J., Le Naour, E. WindDragon: Enhancing Wind Power Fore-

casting with Automated Deep Learning. International Conference on

Learning Representations (ICLR), Tackling Climate Change with Machine

Learning Workshop, 2024.

1.3 Structure of the thesis

This thesis is organized as follows.

• Chapter 2 introduces essential concepts for the manuscript, starting with the

definition and historical treatment of time series and reviews the evolution

of models due to massive data collection. Then, the chapter examines time

series representations, their benefits, and limitations, and explores how neural

representations address these issues. It concludes by identifying open problems

in time series neural representation.

• Chapter 3 presents a novel unsupervised neural architecture that creates con-

sistent, discrete, interpretable, and visualizable representations. The model’s

robustness and effectiveness are demonstrated through classification experi-

ments.

• Chapter 4 introduces TimeFlow, a novel model for time series imputation and

forecasting. TimeFlow addresses real-world challenges like irregular samples,

missing data, and unaligned sensor measurements using a continuous-time

model through implicit neural representations.

• Chapter 5 explores TimeFlow’s ability to extract semantically rich represen-

tations from potential irregular time series. We show the practical utility of

these representations in downstream tasks, such as unconditional time series

generation using a two-step approach.

• Chapter 6 presents a global summary of the thesis and identifies some per-

spectives of future works based on the observed limitations.



Chapter 2

Background and Related Work

This chapter introduces basic concepts that are essential for understanding the rest

of the manuscript. Section 2.1 begins by defining time series, providing practical

examples of their applications, and discussing their historical treatment. We then

explore how the massive collection of data has driven the evolution of models to

adapt to time series datasets, leading to the emergence of new tasks. Next, in

Section 2.2, we discuss the motivations of time series representations compared to

traditional supervised machine learning models. We review several time series rep-

resentation methods, discuss their advantages, and highlight existing limitations. In

the final Section 2.3, we introduce deep learning mechanisms for time series and

discuss their effectiveness. We then define neural representations, discuss their ad-

vantages over non-neural representations, and present popular methods. Finally, we

conclude this section by identifying open problems in learning neural representations

for time series.

2.1 Machine learning for time series: an introduction . . . . . . . . . . . 9

2.1.1 Single time series analysis . . . . . . . . . . . . . . . . . . . . 9

2.1.2 Time series datasets . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.3 Machine learning for time series datasets . . . . . . . . . . . . 13

2.2 Learning time series representations . . . . . . . . . . . . . . . . . . . 18

2.2.1 Introduction and intuition . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Exploring popular time series representation methods . . . . . 19

2.2.3 From time series representations to time series neural repre-

sentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3 Time series neural representations . . . . . . . . . . . . . . . . . . . . 28

2.3.1 Deep Learning mechanisms . . . . . . . . . . . . . . . . . . . 28

2.3.2 Structures of time series neural representation architecture . . 33

2.3.3 Advanced neural representation methods . . . . . . . . . . . . 35

2.3.4 Discussion and open problems . . . . . . . . . . . . . . . . . . 42
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2.1 Machine learning for time series: an intro-

duction

This section introduces time series data, offers a historical overview of their analysis,

and outlines the tasks they are used for.

2.1.1 Single time series analysis

A time series is a sequential collection of observation points of a measured underlying

phenomenon recorded at successive timestamps. These observations can typically be

obtained at regular intervals, such as hourly, daily, monthly, or annually, depending

on the nature of the phenomenon being studied. Each data point in a time series is

associated with a specific timestamp or time index that reflects the temporal order

of the observations. We define a time series as below.

Definition 2.1.1 (Time Series). Consider a temporal phenomenon represented

by a continuous function of time x : t ∈ T → xt ∈ Rc where c denotes the num-

ber of input channels. Given a sequence of observed timestamps (t1, t2, . . . , tT ).

The time series x, can be defined as x = (xt1 ,xt2 , . . . ,xtT) ∈ Rc×T .

Time series data can represent various phenomena, including economic indica-

tors, weather records, stock prices, physiological signals, and more. The underlying

measured phenomena can be caused by human activities (such as national nuclear

power generation, Figure 2.1), physical phenomena (such as the measured temper-

ature at a location), or a combination of both (such as national hydraulic power

generation, Figure 2.2).
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Figure 2.1: Visualization of French national nuclear power generation time series
from February 9th, to February 19th, 2020. Data source: eCO2mix.
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Figure 2.2: Visualization of french national hydraulic power generation time series
from February 9th, to February 19th, 2020. Data source: eCO2mix.

Historically, time series analysis has predominantly been associated with fore-

casting tasks (see Definition 2.1.2). Time series data are characterized by their

sequential nature and dependence on past observations. Hence, forecasting future

values based on historical patterns is a natural task. Forecasting is paramount in

fields as diverse as economics, epidemiology, meteorology, and engineering, where

accurate predictions of future outcomes are essential for decision making and plan-

ning.

Definition 2.1.2 (Time series forecasting). Time series forecasting consists

in predicting future values of a temporal phenomenon for a horizon window of

length H (xt+1,xt+2, . . . ,xt+H) based on a sequence of past observations, the

look-back window, of length L (xt−(L−1),xt−(L−2), . . . ,xt).

As a consequence, early research and development efforts in time series analy-

sis focused on building models specifically tailored for forecasting, relying primarily

on autoregressive mechanisms. Among the early approaches, traditional statistical

models such as Exponential Smoothing (Brown, 1959; Holt, 2004) and Autoregres-

sive Integrated Moving Average (ARIMA) (Box et al., 2015) stood out. Exponential

Smoothing, introduced in the late 1950s, provides a simple and intuitive approach

by using weighted averaging of past observations to predict the future. Conversely,

ARIMA models, developed in the 1970s, incorporate differencing, autoregressive,

and moving average components to capture the temporal dependencies inherent in

the data. These methods established the foundation for time series forecasting and

are still widely used today. They are valued for their simplicity, interpretability, and

effectiveness in capturing various patterns within time series data (see Figure 2.3).
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French national hydraulic power generation ARIMA Forecast

Figure 2.3: Visualization of an ARIMA(p = 24, d = 1, q = 1) forecast on the french
national hydraulic power generation time series.

Over time, with the proliferation of data collection on an unprecedented scale,

the focus of time series analysis has shifted. While traditional statistical approaches

focused primarily on individual time series, contemporary analysis now encompasses

a broader perspective. With access to vast amounts of data, attention has increas-

ingly turned to the analysis of jointly observed time series. Rather than isolating a

single time series for analysis, researchers and practitioners now seek to understand

the collective behavior and patterns exhibited by groups of related time series. This

encourages the exploration of time series methods capable of capturing the diver-

sity of entire datasets. This development has paved the way for the emergence of

machine learning applied to time series datasets.

2.1.2 Time series datasets

A time series dataset can be defined as a collection of time series that share a similar

structure or measure similar phenomena. We define it below.

Definition 2.1.3 (Time series dataset). A time series dataset can be defined as

a collection of n time series {x(j)}nj=1 where each time series x(j) can be written

as x(j) = (x
(j)

t
(j)
1

,x
(j)

t
(j)
2

, . . . ,x
(j)

t
(j)
T

) ∈ Rc×T (j)
.

We will refer to {x(j)}nj=1 as an unsupervised dataset in contrast to a supervised

dataset {x(j), y(j)}nj=1 where y(j) can denote the label in the classification task

or the target variable in the regression task associated with the time series x(j).

Time series datasets are very common in many real-world applications. They can

range from electricity load consumption at different locations (Electricity dataset1,

see Figure 2.4) to traffic road measurement at different roads (Traffic dataset2) to

ECG signals at various periods (ECG5000 dataset3).

1https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
2https://pems.dot.ca.gov/
3https://www.timeseriesclassification.com/description.php?Dataset=ECG5000
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Figure 2.4: Visualization of six samples covering three-week intervals from the Elec-
tricity dataset.

The growing availability of time series datasets has not only improved the han-

dling of existing tasks, such as time series imputation (see Definition 2.1.4), but has

also led to the emergence of new tasks, such as classification (see Definition 2.1.5)

and, more recently, generation (see Definition 2.1.6).

Definition 2.1.4 (Time series imputation). For a time series x(j), we denote

the set of observed timestamps as T (j)
in and the dense support of timestamps as

T (j) (T (j)
in ⊂ T (j)). The observed time grids may be irregularly spaced and can

vary across different time series (T (j1)
in ̸= T (j2)

in , for j1 ̸= j2). The objective of

time series imputation is to predict the missing value x
(j)
t for any unobserved

t ∈ T (j) based on the observed values.

Definition 2.1.5 (Time series classification). Let y(j) ∈ C (C ⊂ N) denote the

label associated with the time series x(j). The objective of the classification task

is to learn a classifier f(.) that establishes a mapping between the time series and

its label. Formally, we seek to find f such that f(x(j)) = y(j) ,∀j ∈ {1, ..., n}.
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Definition 2.1.6 (Time series generation). We consider a time series dataset

{x(j)}nj=1 which are sampled from an unknown probability distribution p(x). At

training we aim to approximate the true distribution p(x) with an estimated

distribution p̂θ(x). At generation we aim to draw new time series from the

estimated distribution x(gen) ∼ p̂θ(x).

The proliferation of time series datasets has driven the development of innovative

machine learning techniques. Machine learning models such as decision trees and

support vector machines (SVM) have been applied to capture the intricate temporal

patterns and dependencies within time series datasets (Geurts, 2001; Kampouraki

et al., 2008). By harnessing the power of machine learning approaches, researchers

have gained valuable insights from time series datasets, paving the way for innovative

applications in various domains like automatic classification of heart diseases based

on ECG signal (Owis et al., 2002).

2.1.3 Machine learning for time series datasets

Machine Learning approaches aim to leverage the information between time series

to enhance the resolution of various machine learning tasks. Rather than relying

solely on autoregressive information, which is based on the observed values of each

individual series, joint modelisation seeks to harness the relationships between the

series. This section provides some intuition as to why time series datasets are valu-

able for various machine learning tasks. We start with a practical example focusing

on the imputation task and then elaborate on the classification task and the concept

of distance in time series, which are important in this manuscript.

2.1.3.1 Motivation of joint modelisation: time series imputation

While time series imputation methods can be purely autoregressive, the most ef-

fective approaches learn dependencies between time series samples. Leveraging

relationships between time series can intuitively help fill in missing values more

accurately than relying solely on autoregressive information (see Figure 2.5).

?

Figure 2.5: Time series missing values. The complete time series shows a repeating
pattern, providing insight into imputing the incomplete time series.
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Thus, numerous imputation methods for time series have been developed that

model the entire time series as a closed system, such as matrix factorization methods

(Grabocka et al., 2012; Mei et al., 2017). Explicitly modeling the relationships

between time series in a matrix allows for an effective extraction of dependencies.

In the next section, we delve into the time series classification task, introducing

concepts that will serve as recurring examples throughout the manuscript.

2.1.3.2 Introducing time series classification and distance metrics

Classification is a prevalent task in time series analysis. It finds application across

diverse fields, from ECG-based identification of myocarditis to device classification

via electrical signals. This task aims to discriminate time series based on their labels.

However, developing universal methods for time series classification is challenging

as discriminative factors can be local, global, or a mixture of both.

k-NN approaches for time series classification. A simple and widely used

approach to classification problems is the k-Nearest Neighbors (k-NN) method (Fix,

1985). This method does not require any specific parameters to be learned. The

unlabeled time series is assigned the average label of its k nearest neighbors.

• In the 1-NN setup, the unlabeled time series inherits the label of its nearest

neighbor.

• For k > 1, the method involves assigning the most frequent class among the

k-nearest neighbors. There is the possibility to give the more distant neighbors

less weight than the closest neighbors in the majority voting procedure.

This classification method raises an intriguing question: how do we determine

the distance between two time series? A straightforward answer is to compute the

Euclidean distance pointwise. We formally define the Euclidian distance between

two time series in Definition 2.1.7.

Definition 2.1.7 (Euclidian Distance (ED), univariate case). We consider two

time series x(j) and x(i) ∈ R1×T . The ED between the two time series can be

defined as:

deucl(x
(i),x(j)) =

(
T∑
t=1

(x
(i)
t − x

(j)
t )2

)1/2

. (2.1)

We note that calculating the ED between two series is suitable when dealing

with time series that share the same number of well-aligned timestamps. However,

the ED, being the sum of pointwise distances, overlooks shape similarities between

two curves. Consequently, two series exhibiting identical shapes but with a time
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shift may appear significantly distant regarding the ED. This limitation can be a

concern in many applications. For instance, consider a scenario where we aim to

determine household ownership of an electric car based on the aggregated electricity

consumption curve. In such cases, our primary interest lies in discerning the shape

of the curve rather than the timing of charging activities.

The Dynamic Time Warping (DTW) distance (Vintsyuk, 1968; Sakoe and

Chiba, 1978) addresses this problem of shape similarity. This distance is defined

in such a way that two time series with the same shapes but with a temporal mis-

alignment should have a distance of zero. We formally present the DTW distance

in Definition 2.1.8 following the notations defined in Tavenard (2021).

Definition 2.1.8 (The DTW distance, univariate case). The DTW distance

between two time series x(j) and x(i) aims to identify an optimal alignment path,

denoted as π∗ (illustrated in Figure 2.6). This path minimizes the cumulative

Euclidean distance between corresponding points of the time series along the

alignment. The formal definition of DTW is provided below:

DTW(x(j),x(i)) = min
π∈A(x(j),x(i))

( ∑
(t,τ)∈π

(x
(j)
t − x(i)τ )2

) 1
2

. (2.2)

(i) π represents an admissible alignment path, which is a sequence of index

pairs matching between x(j) and x(i).

(ii) A(x(j),x(i)) denotes the set of all admissible paths.

(iii) An admissible path π must satisfy three conditions:

• The first and last pairs of π must match the first and last time indexes

of the two time series, respectively.

• All time indexes of both time series must appear in the path π.

• The sequence of index pairs must be monotonically increasing, mean-

ing that for any given element (tk, τk) in the sequence, the possible

next elements are (tk+1, τk), (tk, τk+1), or (tk+1, τk+1).

The computation of the DTW typically involves dynamic programming, where

the cumulative distance is recursively computed based on the distances of neighbor-

ing points, and the path with the minimum cumulative distance is chosen. Most

of the time, the optimal path is searched within a warping window of size w (wich

represent the maximum distance from the anti-diagonal path).
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Figure 2.6: DTW explanation: illustration of the optimal warping path π∗.

Now that we have introduced the k-NN classification algorithm along with the

ED and DTW distances, another question arises: which distance measure is most

appropriate for classifying time series using a 1-NN approach?

Setting. We present in Figure 2.7 the classification results for the 1-NN ED, 1-NN

DTW (w=100) and 1-NN DTW (learned w) on the well know University California

Riverside (UCR) archive (Dau et al., 2019). We also compare to a naive baseline

which always predict the majority class.

Note 2.1.1 : The UCR archive

The UCR Time Series Classification Archive is a repository of 128 time series

datasets curated for the purpose of benchmarking and evaluating univariate

time series classification algorithms a. It was created to provide a standardized

platform for researchers to compare the performance of their classification

methods on various time series datasets (sensor, simulated, image, motion,

and so on). The time series datasets vary significantly in their length, number

of samples, and classes.

ahttps://www.cs.ucr.edu/%7Eeamonn/time series data 2018/
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Figure 2.7: Accuracy results of the 1-NN classification methods on the 128 datasets
of the UCR time series classification archive.The closer to one, the better.

Results. We note two phenomena in Figure 2.7:

(i) Applying a simple algorithm like 1-NN is considerably more efficient than

consistently predicting the majority class.

(ii) Opting for DTW distance over simple ED generally yields better results on

average, although this is not universally true and varies depending on the

application.

Many purely supervised classification methods have been proposed to success-

fully improve the results on the UCR archive. Based on recent comparisons (Middle-

hurst et al., 2024), state-of-the-art methods include ensemble methods that combine

multiple classifiers (Middlehurst et al., 2021) and convolution-based methods (Is-

mail Fawaz et al., 2020; Dempster et al., 2023).

Another promising approach to time series classification is representation learn-

ing, which extracts meaningful features from the series in an unsupervised manner

and then transforms them into a representation designed to capture relevant pat-

terns effectively (Lin et al., 2003; Franceschi et al., 2019; Yue et al., 2022). In a

second step, these representations are leveraged by downstream classification mod-

els, potentially improving interpretability, performance, and efficiency.

Representation learning models are widely used for downstream classification

tasks, but they can also be applied to a wide range of tasks and settings in time

series modeling. In the next section, we propose to define and explore representation

learning for time series.
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2.2 Learning time series representations

In statistics and machine learning, a representation provides an alternative view

of the original data. In the time series context, it involves projecting the original

time series into a latent space that differs from its original temporal domain. These

representations can vary widely, from simple descriptive statistics to the output of

complex functions. It is important to note the ambiguity surrounding time series

representation. (i) In the ”pure” form, these representations are entirely unsuper-

vised or self-supervised, allowing them to be reused for various downstream tasks.

(ii) In the supervised cases, a model trained for a specific task (e.g., forecasting) may

be partially reused, with minor adaptations, for the same task but with new samples

or contexts. (iii) Additionally, there is a third scenario where the hyperparameters

of the representation are already optimized according to the downstream task. In

this case, the representation is already influenced by the task.

All these scenarios can be considered forms of time series representation. Most of

this manuscript and our contributions focus on the unsupervised approach, though

we occasionally address the other scenarios.

2.2.1 Introduction and intuition

The primary purpose of learning time series representations is to extract insight-

ful features that can be reused in subsequent machine learning tasks, known as

downstream tasks. This approach offers several advantages over building supervised

machine learning models from scratch. These benefits include enhanced perfor-

mance, reduced computation time, good performance with few examples (few-shot

learning), and improved interpretability (Bengio et al., 2013). We define time series

representation as follows.

Definition 2.2.1 (Time series representation). Given a time series x(j) ∈ Rc×T ,

we define its representation as z(j) ∈ Rd×T ′
, where z(j) = ϕ(x(j)) and ϕ is an

encoding function.

In the context of time series representation, the dimensions hold specific sig-

nificance:

• The d dimension typically refers to the latent space dimensionality, such

as the number of channels in a convolution output.

• The dimension T ′ denotes the temporal aspect of the representation. In

general, T
′ ≤ T .

If T
′
= 1 (as in the example below), it implies that temporal information has
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been lost, resulting in a representation shaped as a d-dimensional vector.

A primary example. A time series representation could be a simple descrip-

tive statistics vector. Consider a univariate time series dataset {x(j)}nj=1. For each

sample x(j), we can construct a representation vector z(j) that captures descrip-

tive statistics such as mean, variance, series minimum, series maximum, etc. (see

Figure 2.8). In a second step, these vectors can then be reused, for example, to

solve a classification task. Let us consider a dataset of time series with associated

labels {x(j), y(j)}nj=1. We can fit a classifier (e.g., an XGboost classifier) between

the constructed z(j) and the associated y(j) labels. If the extracted statistics are

discriminative between the classes, then the intermediate representation will have

been helpful, as the valuable information for classification will have been extracted

before.

Figure 2.8: Basic time series representation vector of statistic features.

The type of representation presented above has certain advantages and may be

sufficient for specific simple tasks. However, it is important to note that such repre-

sentations often involve a loss of information. For example, the temporal structure

is lost, and potential frequency information may be compromised. In the next sub-

section, Section 2.2.2, we will delve into examples of more advanced representations.

2.2.2 Exploring popular time series representation methods

This section explores two widely used time series representations in machine learning.

First, in Section 2.2.2.1, we describe the decomposition of structured time series into

trend, seasonality, and residual components, a particularly efficient technique for

downstream forecasting tasks. Second, in Section 2.2.2.2, we present the symbolic

aggregate approximation representation widely used for downstream classification

tasks.

2.2.2.1 The seasonal / trend / residual decomposition

The Seasonal / Trend / Residual (STR) decomposition (Bandara et al., 2021; Tay-

lor and Letham, 2018) is a technique used in time series analysis to decompose a

structured time series into its constituent components, namely:
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• Seasonal component. This component captures the repeating patterns in

the data. These patterns occur at fixed intervals over time, such as daily,

weekly, monthly, or yearly cycles.

• Trend component. This component represents the long-term trend of the

data. It captures the overall increasing or decreasing pattern in the data over

time.

• Residual component. Also call the ”noise”, it represents the remaining

variation in the data after removing the seasonal and trend components.

STR decomposition is useful for understanding the global underlying structure

of time series data and can help in trend analysis, forecasting, and anomaly detec-

tion. Various methods, such as additive or multiplicative decomposition, and other

approaches like empirical mode decomposition (Rilling et al., 2003), can be used for

STR decomposition depending on the characteristics of the data and the specific

objectives of the analysis. This subsection discusses the additive decomposition,

expressed mathematically in Equation (2.3).

x(ti) = g(ti) + s1(ti) + s2(ti) + · · ·+ sm(ti) + r(ti). (2.3)

where: (i) ti ∈ t1, . . . , tT represents the timestamps. (ii) g(ti) represents the

trend component. (iii) sk(ti) represents the k-th seasonal component. (iv) r(ti)

represents the residual component.

Mathematical expression of the components. The different components can

take various forms; below are some examples.

• The trend component g(.) can be polynomial:

g(ti) =
P∑
p=0

wpt
p
i .

The wp are learnable weights and P stands for the polynomial degree.

For the trend component, we note that there are many other possible forms.

• The seasonal components s(.) can be expressed using Fourier series:

s(ti) =
N∑
n=1

(an cos(
2πnti
P

) + bn sin(
2πnti
P

)).

where P represents the seasonality of interest (e.g., 24 for hourly timesteps

and daily seasonality).
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• The Residual Component represents the difference between the estimated

trend and seasonalities and the observed series.

Time series representation form in the STR additive decomposition case.

The representation z can be expressed as:

zt1:tT =


g(t1) . . . g(tT )

s1(t1) . . . s1(tT )
...

. . .
...

sm(t1) . . . sm(tT )

r(t1) . . . r(tT )

 ∈ R(m+2)×T .

In this representation, we note that the temporal dimensions do not contract

between the original time series and the representation.

Example on the French national electricity consumption curve. We as-

sume that the French national electricity consumption is composed of daily and

weekly seasonalities. We re-used this prior information to extract an additive STR

decomposition of this time series. For this purpose, we use the statsmodels package4.

We present the decomposition results in Figure 2.9 for approximately three weeks

in 2020.

Results. We observe in Figure 2.9 that the additive combination of the two cho-

sen seasonalities and the trend characterize accurately the underlined time series.

Indeed, the residual component magnitude is quite small compare to the original

time series.

Potential downstream task. The extracted representation can be re-used for

different downstream tasks. If we consider the forecasting task with a look-back

window of length L and an horizon window of length H we can use ztT−L−1:tT to

predict ztT+1:tT+H
. For example a simple forecast method would be to only forecast

the trend component, keep the seasonalities the same and set the residual term to

zero. In a second step, we compute the additive re-composition of ztT+1:tT+H
to

retrieve the forecast in the original time series domain.

In the next section, Section 2.2.2.2, we explore the symbolic aggregate approxi-

mation time series representation method, which is mainly used for downstream

classification tasks.

4https://www.statsmodels.org/dev/generated/statsmodels.tsa.seasonal.MSTL.html
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Figure 2.9: Additive STR decomposition on the french national electricity consump-
tion over three weeks in January 2020.

2.2.2.2 The symbolic aggregate approximation representation

The Symbolic Aggregate Approximation (SAX) method (Lin et al., 2003, 2007) is

a symbolic approach that discretizes a univariate time series of length T into a

sequence of symbols of length T
′
. The SAX method relies on a two-stage approach:

(i) Dimensionality reduction via piecewise aggregate approximation.

(ii) Turn the piecewise aggregate approximation representation into a symbolic

representation.

Piecewise Aggregate Approximation (PAA). PAA involves computing local

means of disjoint, side-by-side windows with a length of T
T ′ . For a regularly sampled

time series x1, ..., xT , we define the PAA as z̄1, ..., z̄T ′ , where:

z̄k =
T

′

T

T

T
′ k∑

i= T

T
′ (k−1)+1

xi. (2.4)

It is important to note that PAA is performed on z-normalized time series.
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Note 2.2.1 : z-normalization

z-normalization is a per-sample j normalization method defined as:

x(j)
norm =

x(j) −mean(x(j))

std(x(j))
. (2.5)

It’s worth noting that applying z-normalization to an entire dataset removes

the level information between the time series while retaining the variation and

pattern information.

Example of PAA on the french national hydraulic power generation time

series. In Figure 2.10 we show the PAA applied to a French national hydraulic

power generation time series using the Tslearn package (Tavenard et al., 2020).

The length of the initial time series is T = 100 and we set the length of the PAA

to T
′
= 10. While the approximation works well when the series has minimal

variations, it becomes noticeably imprecise for segments characterized by significant

internal variations.
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Some part of the french national Hydraulic power generation time series in 2020
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Figure 2.10: PAA of some part of the french national hydraulic power generation
time series in 2020.

Symbolic Aggregate Approximation (SAX) representation. After comput-

ing the PAA, the next step is to apply a discretization technique that produces

symbols with equi-probability.

(i) First, we need to select the cardinality of the support for the SAX representa-

tion, i.e., the number of possible different symbols. Let us denote the support

of possible symbols as A (the vocabulary). We denote the number of symbols

as p (Card(A) = p).

(ii) Second, since PAA operates on z-normalized time series, the density of the

time series tends to be similar to an isotropic Gaussian distribution (Larsen

and Marx, 2005). Then, choosing a vocabulary size of p necessitates defining
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a sorted list of breakpoints, β = (β1, . . . , βp−1), such that the area under the

standard normal distribution N (0, 1) equals 1
p
for each segment. Additionally,

we set β0 = −∞ and βp =∞.

(iii) Then, each segment [βi, βi+1] is assigned to a specific symbol from the vocabu-

lary A. This mapping is denoted by the function q(·) (for quantization). Thus,
each transformed value z̄k is represented by a symbol zk ∈ A, depending on

its corresponding interval.

SAX Representation Dimension and Mechanism. The SAX representation

vector z can be expressed as

zt1:tT ′ =
(
q(z̄t1) . . . q(z̄tT ′ )

)
∈ A1×T ′

.

Two important phenomena are observed:

• Because of the PAA, there is a reduction in the time dimension.

• The elements of the representation belong to a discrete, relatively small sup-

port of size p = Card(A).

On the one hand, the compression of the temporal dimension and the quantiza-

tion mechanism lead to the loss of some information within the time series. On the

other hand, the representation is ”simplified” for downstream tasks, significantly

reducing the series’ complexity. Later, we will explore how this reduction in com-

plexity allows some form of interpretability of classification tasks based on the SAX

representation.

Example of SAX representation on the French National Hydraulic Power

Generation Time Series using Tslearn. We revisit the previous example

where we computed the PAA for T ′ = 10 (see Figure 2.10). For the SAX rep-

resentation, we opt to set the vocabulary size to 4 (p = 4). The breakpoints are

defined as (β0 = −∞, β1 = −0.67, β2 = 0, β3 = 0.67, β4 =∞), corresponding to the

vocabulary A = {a, b, c, d}. The entire process is illustrated in Figure 2.11. As a

result, we obtain the following symbolic representation: z = (c d d b b d b a a c).

SAX representations with time series datasets. Above, we presented the

SAX representation for a single time series. However, the real power of SAX comes

when applied to time series datasets. Given a time series dataset {x(j)}nj=1, we can

use the SAX method to build a corresponding set of representations, denoted as

{z(j)}nj=1. Subsequently, the SAX representations can be reused to solve classifica-

tion tasks efficiently, as presented in the following paragraph.
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Figure 2.11: SAX representation of some part of the french national Hydraulic power
generation time series in 2020.

Exploring the SAX-Vector Space Model (SAX-VSM) for Classification

Tasks (Senin and Malinchik, 2013). Let us consider a dataset containing time

series paired with associated classes {x(j), y(j)}nj=1, where labels y
(j) ∈ {0, 1}. In the

SAX-VSM approach, authors propose constructing a subsequence space vector for

each class, where each element of the vector represents the frequency of occurrences

of SAX subsequences based on a Term Frequency ∗ Inverse Document Frequency

(TF∗IDF) scheme (Salton and McGill, 1984). These subsequences are obtained by

sliding a window over the original SAX representation. Consequently, discriminative

subsequences exhibit high scores for one class and near-null scores for the other.

During inference, we compute the scores vector based on symbolic subsequences for

a new SAX representation without associated labels and assign a class based on

similarity to class 0 and class 1. This procedure is briefly depicted in Figure 2.12.

Compute the likelihood of belonging to either Class 0 
or Class 1 by multiplying the frequency of the SAX 
subsequences by the TF*IDF matrix.

Class 0 Class 1 Unlabeled time series

SAX SAX SAX

acda, bcdd, aaaa, ... acca, dcdd, aaaa, ... abba, dcdd, aadd, ...

acda

bcdd

aaaa

TF*IDF

Class 0 Class 1

Figure 2.12: Visualization of the SAX-VSM classification decision. This graphic is
inspired by Senin and Malinchik (2013).
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Interpretability. The SAX-VSM method provides a form of local interpretability

for the classification decision. For example, if the SAX subsequence (b d c a) discrim-

inates between the two classes in the TF*IDF matrix, we can find and highlight the

time series subsequences that produce this symbolic subsequence. The advantage

of using this representation is that it reduces the complexity of the data, making it

easier to interpret the classification algorithms applied to the SAX representation.

SAX-based approaches in literature and limitations. In Lin et al. (2003),

SAX is presented as a versatile unsupervised method applicable to various down-

stream tasks. In practice, however, SAX representations are often paired with clas-

sifiers that are applied on top of the representation. Several methodologies exist for

classification that utilize SAX representations. We have previously discussed SAX-

VSM method (Senin and Malinchik, 2013), which relies on subsequence frequencies

within each class. Another approach, SAX-SEQL (Nguyen et al., 2017), explores

the entire subsequence space to identify the most discriminatory subsequences us-

ing logistic regression based on coordinate descent. SAX techniques have effectively

facilitated interpretable classification decisions through the symbolic representation

they construct. Nevertheless, this interpretability is limited in scope. While identi-

fying symbolic subsequences allows to highlight corresponding segments of the time

series, we cannot fully reconstruct what the model has learned, as multiple sub-

series can yield the same symbolic subsequence. Moreover, as highlighted in Lipton

(2018), excessive use of representations for classification, as seen in multi-SAX-SEQL

(Nguyen et al., 2019), can hinder the interpretation of classification results.

2.2.3 From time series representations to time series neural

representations

The two examples above are just a few of the many ways to learn time series represen-

tations. We describe below a non-exhaustive list of other time series representation

method in traditional machine learning (non deep learning):

• The Principal Component Analysis (PCA) which is a particular case of

singular value decomposition, is widely used in time series modelisation. It

can be used to compute distances between multivariate time series (Yang and

Shahabi, 2004), anomaly detection (Hyndman et al., 2015) and so on.

• The Symbolic Fourier Approximation (SFA)method (Schäfer and Högqvist,

2012) is quite related to the SAX method but operates in the frequency do-

main. First the time series is approximated with a discrete Fourier transform,

then the Fourier coefficients are mapped to a symbol. The final representation

is a sequence of symbols such as SAX. The SFA representations are mainly
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used for classification and proved to be very efficient with ensemble classifiers

(Schäfer, 2015).

• Wavelet decompositions are popular in time series (Percival and Walden,

2000) and offer an alternative to Fourier decomposition. Wavelets offer several

advantages over Fourier series in time series analysis. They provide localized

frequency information, making them more suitable for analyzing signals with

non-stationary or transient characteristics. Additionally, wavelets offer better

time-frequency resolution, allowing for precise localization of features in both

time and frequency domains. This enables wavelet analysis to capture fine

details and abrupt changes in signals. These representations are useful for

time series forecasting (Joo and Kim, 2015) or clustering (Zhang et al., 2006).

There are many other possible time series representation such as singular value

decomposition (when it not the PCA case) (Cadzow et al., 1983; Weng and Shen,

2008), random mapping such as random convolution kernels (Dempster et al., 2020)

and so on. Conversely with the rise of deep learning (LeCun et al., 2015), new

possibilities in time series representation emerge.

Traditional machine learning relies on pre-designed models and often requires

manual feature engineering, where features are selected and transformed before being

fed into the model. Deep learning, however, utilizes artificial neural networks, which

are highly flexible and can learn directly from raw data without extensive feature

engineering. These neural networks consist of multiple layers of neurons, allowing

them to capture intricate patterns and relationships within the data. This flexibility

has been mathematically studied in the seminal work on the universal approximation

theorem (Cybenko, 1989).

While traditional machine learning relies on handcrafted features and pre-defined

models, deep learning learns complex patterns directly from the data itself. In the

context of neural representation for time series, leveraging the expressive capabili-

ties of neural networks offers several advantages over traditional machine learning

representations:

• Improve the handling of downstream tasks by capturing the underlying struc-

ture of time series data more accurately.

• Build representations that can be re-used for several downstream task.

• Train a representation extractor (encoder neural network) that can be reused

across multiple datasets without retraining.

• Allow the development of tasks which where under-explored such as time series

generation.

• Build meaningful latent spaces.
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2.3 Time series neural representations

As traditional time series representation, time series neural representations provide

an alternative view of the original temporal data. The only difference is that the

projection from the original time series space to the representation space (also called

latent space) is performed by a Neural Network (NN).

Definition 2.3.1 (A simple definition of a neural network.). A neural network,

denoted as fθ, can be conceptualized as a series of interconnected layers L(.),

each adjustable through learnable parameters θ, and intersected by activation

functions σ(.).

fθ(x
(j)) = σ(K) ◦ L(K)

θ(K) ◦ . . . ◦ σ(2) ◦ L(2)

θ(2) ◦ σ(1) ◦ L(1)

θ(1) ◦ x(j). (2.6)

Here, K stands for the number of layers. The parameters to be learned,

represented as θ = {θ(1), . . . , θ(K)}, are optimized by minimizing a loss func-

tion L. For instance, in binary classification tasks, this involves minimizing

L(fθ(x(j)), y(j)), where L is a binary cross-entropy loss which computes the dis-

crepancy between predictions and ground truth labels.

The learnable layers L
(k)

θ(k) can take many forms, in the following section we will

describe popular deep learning mechanisms.

2.3.1 Deep Learning mechanisms

Note 2.3.1 : Warning about input/output spaces illustrations

In the following deep learning mechanism descriptions, we represent the time

series space as the input layer and the latent space as the output layer. It is

important to note that this is purely for illustrative purposes. In reality, the

input/output spaces may vary depending on the architecture.

Dense layers. Dense Layers (Haykin, 1994), also known as Multi-Layer Percep-

tron (MLP), illustrated in Figure 2.13, is a sequence of K linear layers interspersed

with non-linear activations. We define it below.
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Figure 2.13: Simplified illustration of dense layers.

Definition 2.3.2 (Dense layers.). Dense layers can be broken down into three

types:

• The input layer which projects the input from the input domain into an

hidden space of dimension h. For instance, if we consider the input space

to be the series space, this layer can be written as:

A(1) = σ(1)(xθ(1) + b(1)). (2.7)

Where θ(1) ∈ RT×h, b(1) ∈ Rh. σ denotes a non-linear pointwise activa-

tion, e.g. σ(u) = max(0, u).

• The hidden layers.

A(p) = σ(p)(A(p−1)θ(p) + b(p)). (2.8)

Where θ(p) ∈ Rh×h, b(p) ∈ Rh and 1 < p < K.

• The output layer projects the last hidden state to an output space. For

example, if we consider the output space to be the latent space of dimension

d, it can be written:

z = A(K) = σ(K)(A(K−1)θ(K) + b(K)). (2.9)

Where θ(K) ∈ Rh×d, b(K) ∈ Rd and z ∈ Rd is the latent representation.

MLP networks are not widely used in the time series literature. However, a

few attempts have been made to couple MLP networks with the DTW distance to

exploit the structure of time series (Iwana et al., 2016, 2020). The limited use of
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MLP networks is due to their structure. While these models can learn complex

nonlinear relationships, they do not consider the specific structure of time series,

such as the proximity between neighbors or the presence of frequencies.

Recurrent layers. Recurrent layers (Schuster and Paliwal, 1997) are specially

designed to handle sequential data. The idea is to represent the time series by a

sequence of hidden states that incorporate both past and present information. A

simplified schematic of deep recurrent models is presented in Figure 2.14.

Figure 2.14: Simplified illustration of recurrent layers.

Definition 2.3.3 (Vanilla recurrent layers.). Hidden recurrent layers can take

many forms. In the case of a vanilla RNN, the hidden state ht at time t can be

written as a combination of the previous hidden state t− 1 and the time series

input at current time t:

ht = tanh(θxx
(j)
t + θhht−1). (2.10)

Where the weight matrices θx and θh are learnable and not time dependent.

Although seemingly suitable for time series, the Equation (2.10) of the hidden

state structure in practice leads to problems during optimization. During backprop-

agation, gradients propagate poorly through the sequence: this is known as the gra-

dient vanishing problem. This phenomenon is more pronounced for long sequences

and prevents the model from learning correlations between distant timestamps. To

overcome this limitation, more complex recurrent mechanisms have been proposed

in which the hidden states allow both short-term and long-term information to pass

through the network. Such mechanisms include the Gated Recurrent Unit (GRU)

(Chung et al., 2014) and the Long Short Term Memory (LSTM) (Hochreiter and

Schmidhuber, 1997) cells.



2.3. Time series neural representations 31

Due to their sequential nature, simple RNNs were quickly applied to time series

(Hüsken and Stagge, 2003) before giving way to more complex RNNs for different

task such as classification or imputation (Dennis et al., 2019; Cao et al., 2018).

Convolutional layers. Convolutional layers (LeCun et al., 1995) are very efficient

for pattern extraction due to the weight sharing mechanism. In addition, they are

relatively easier to train than RNNs and have fewer weights. The structure of 1-

dimensional convolutional layers is illustrated in Figure 2.15 and defined below.

Figure 2.15: Simplified illustration of convolutions layers.

Definition 2.3.4 (1-dimensional convolution layers.). Let x be an entry vector

(e.g. the time series) and g be a kernel, respectively of size T and m. Then the

convolution operations at timestamp t can be written as:

(x∗g)(t) =
m∑
r=1

g(r)·x(t−r+⌈m/2⌉). Where ⌈.⌉ stands for the ceiling function.

(2.11)

• The kernel g is a learnable vector [w1, w2, ..., wm], (e.g. m = 3).

• In practice, convolution layers use not just one, but several dozen kernels,

e.g. {g1, ..., g64}, to extract different types of local relationships.

Convolutions allow to extract similar patterns along the time series, thanks to

the weight sharing of g. This local mechanism is well suited for time series with

local (neighborhood) information: for example, for a load consumption curve, we

can assume that there is a correlation between the consumption at 9 a.m. and the

consumption at 10 a.m..
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Convolutional networks are widely used in modern time series classification re-

search. Inspired by their success in computer vision, equivalent architectures have

been adapted for time series. First, a variant of ResNet for time series (Ismail Fawaz

et al., 2019) that incorporated residual connections paved the way. Later, an adapta-

tion of AlexNet (Ismail Fawaz et al., 2020) was introduced to better capture signal

frequencies by incorporating kernels of different sizes adapted to different convo-

lution channels. CNNs are also used in forecasting. The temporal convolutional

network (Wan et al., 2019), which uses causal convolution, is considered a strong

baseline. Recently, however, attention mechanisms have gained popularity, over-

shadowing convolutions for time series forecasting.

Attention layer. Transformers (Vaswani et al., 2017) have recently gained pop-

ularity in time series after their success in natural language processing. They are

capable of efficiently extracting distant correlations in sequences, thanks to the self-

attention mechanism. Self-attention layers enable the network to efficiently select

the relationships between data for a given task. We define the self-attention mech-

anism below and illustrate it in Figure 2.16.

Definition 2.3.5 (Self-attention layers.). Self-attention layers are used to cal-

culate the importance of different relationships within a sequence. The self-

attention mechanism is defined as follows:

Attention(Q,K,V ) = AV , where A := softmax

(
QKT

√
dk

)
∈ RT×T . (2.12)

Where for an input x ∈ Rd×T

• Q = xtW q and W q ∈ Rd×dk .

• K = xtW k and W k ∈ Rd×dk .

• V = xtW v and W v ∈ Rd×dv .

The weight matrices W q, W k and W v are learnable. The coefficient Aij of

the attention matrix A can be interpreted as the attention between the ith and

jth elements of the input sequence.

In time series modeling, transformer models have recently been applied to tasks

such as classification (Zerveas et al., 2021), forecasting (Zhou et al., 2021; Nie et al.,

2022), and imputation (Du et al., 2023). The first generation of transformers for

forecasting (Zhou et al., 2021; Wu et al., 2021) used pointwise attention, which

proved inefficient as simple linear models outperformed them (Zeng et al., 2022).
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Figure 2.16: Simplified illustration of an attention layer.

However, the second generation (Nie et al., 2022) used patch-wise attention (similar

to vision transformer (Dosovitskiy et al., 2020)), which is much more efficient.

Deep learning mechanisms are often mixed within the same architecture.

In deep learning, various mechanisms are frequently combined within the same ar-

chitecture to leverage their complementary strengths. For example, the well-known

VGG model (Simonyan and Zisserman, 2014), an image classifier, incorporates both

convolutional and dense layers. This combination enables the model to extract

complex features from input data, leading to more robust and accurate results.

When it comes to learning neural representations, the importance goes beyond

the choice of specific mechanisms; it encompasses the structure of the architecture

that is responsible for acquiring these representations. In the following subsection,

we explore three structural paradigms for learning time series neural representations.

2.3.2 Structures of time series neural representation archi-

tecture

The time series neural representation can be defined similarly to Definition 2.2.1

where ϕθ is a learnable neural network. Below are presented three structures of

time series neural representation architecture.

Encoder-decoder structure. The encoder-decoder structure (also called auto-

encoder) is the most popular architectures for learning representations (Kramer,

1991; Vincent et al., 2008). This architecture can be described as the composition
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of an encoder and a decoder which output an approximation of the original signal

i.e. ψθ′(ϕθ(x
(j))) = x̂(j). It can be decomposed in a two steps process:

(i) Learn the latent representation through encoding: z(j) = ϕθ(x
(j)).

(ii) Learn to approximate the signal trough decoding: x̂(j) = ψθ′(z
(j)).

a) Encoder-decoder structure b) Encoder-only structure
Figure 2.17: Time series neural representation:
encoder-decoder structure.

In the simple case, the purpose

of this architecture is to learn to re-

construct the original signal x(j) in

the presence of a bottleneck. The

presence of a bottleneck is essential

to ensure that the latent represen-

tation z(j) captures useful informa-

tion. Without a bottleneck, the in-

put signal could be perfectly recon-

structed by setting both the encoder

ϕθ(.) and the decoder ψθ′(.) to the

identity function Id(.). However, in

this case, the representation would not learn anything meaningful. In general, for

vanilla time series encoder-decoder we have T
′
< T which mean that the encoder

contracts the temporal dimension. Then, θ,θ
′
are learned by minimizing iteratively

(through gradient-descent) a pointwise reconstruction loss (e.g. ||x̂(j)−x(j)||22). This
structure is widely used in time series neural representation (Malhotra et al., 2017;

Nie et al., 2022). We will elaborate on this kind of architecture in Section 2.3.3.2.

We provide an overview of this structure in Figure 2.17.

Encoder-only structure. Encoder-only structures rely on a single projection of

the time series into the latent space (i.e. z(j) = ϕθ(x
(j)) only). There is no recon-

struction loss, most of the time θ is optimized through a contrastive loss (Chopra

et al., 2005) which gathers similar time series and spreads apart, dissimilar time

series. We will elaborate on this kind of architecture in Section 2.3.3.1. These ar-

chitectures are widely used in time series neural representation (Franceschi et al.,

2019; Yue et al., 2022). Most of the time, the obtained representations are used for

classification, anomaly detection and clustering downstream tasks. We provide an

overview of this structure in Figure 2.18a.

Auto-decoding structure. Auto-decoder structures (Park et al., 2019) are not

widely explored in time series neural representation. Similar to encoder-decoder

structures, these architectures aim to reconstruct the signal. The z(j) representation

is a vector (or matrix) of optimizable weights which are randomly initialized. The

decoder takes as input this representation and outputs an approximation of the
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ground truth signal x(j). Then, the z(j) are updated thanks to the back-propagation

(e.g. according to the reconstruction loss ||x̂(j) − x(j)||22). With this structure, the

back-propagation can be see as encoding. We will used the auto-decoding structure

later in the manuscript. We provide an overview of this structure in Figure 2.18b.

b) Encoder-only structure c) Auto-decoding structure(a) Time series neural representation:
encoder-only architecture.

b) Encoder-only structure c) Auto-decoding structure(b) Time series neural representation:
auto-decoding architecture.

Figure 2.18: Time series neural representation illustrations.

2.3.3 Advanced neural representation methods

This section explores two models from the time series neural representation learning

literature. These models are built upon the concepts previously introduced.

2.3.3.1 T-Loss: An encoder-only convolutional neural network based on

contrastive learning

The Triplet Loss (T-loss) model of Franceschi et al. (2019) is inspired by theWord2Vec

model (Mikolov et al., 2013) proposed in Natural Language Processing (NLP) for

vector representation of words. T-Loss contains three main features:

(i) An encoder-only architecture (Figure 2.20) based on dilated causal convolu-

tions, a design popularized by WaveNet (Van Den Oord et al., 2016).

(ii) The architecture is trained with a contrastive loss to produce representations

with meaningful geometric properties.

(iii) The contrastive loss employed is a triplet loss (Figure 2.19), which uses a

sampling scheme that generates anchor, positive and negative samples.

Intuition. The intuition behind contrastive loss in NLP is that the context rep-

resentation of a word should be close to the words that make it up but also distant

from random words elsewhere. Thus, the loss to be optimized is chosen so that one

pair (context, word in the context) and another pair (context, random word) are

separable in latent space.
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Triplet loss. The objective of Franceschi et al. (2019) is to apply the same prin-

ciple to time series. We consider a subsegment xref that is randomly (uniformly)

drawn from a time series x(j). On the one hand, we want the representation of xref

to be close to the representations of the xpos ( xpos ⊂ xref , see Figure 2.19). On the

other hand, we want any other subseries xneg randomly chosen from another series

x(l) or from x(j) but not include in xref to have a representation far away from

xref . In practice, to facilitate convergence, it is preferable to repeat the sampling

procedure and draw K negative subsequences {xneg
k }Kk=1.

x(i)

x(j)

x(l) xneg

xrefxpos

· · ·

· · ·

· · ·

time

Figure 2.19: Generation of the triplet (xref,xpos,xneg) in the univariate case, for the
T-loss (Franceschi et al., 2019) model.

Let ϕθ(.) be a given encoder that outputs a latent vector and σ the sigmoid

function. The loss function to be minimized is the following loss:

Lθ = − log
(
σ
(
ϕθ(x

ref )⊺ϕθ(x
pos
))
−

K∑
k=1

log
(
σ
(
−ϕθ(x

ref )⊺ϕθ(x
neg
k

))
. (2.13)

Encoder architecture. The ϕθ encoder consists of a sequence of causally dilated

convolutions (see Section 2.3.1 for convolution definition). A max-pooling mecha-

nism is then applied to the last convolution output, flattening the temporal dimen-

sion to one. This practical and efficient architecture allows arbitrary sequence sizes

to be inputs using the convolution layers and projected onto a fixed-size vector using

the max-pooling mechanism. The encoder architecture is shown in Figure 2.20.

Causal
 convolution

block 1

Causal
 convolution

block 2

Causal
 convolution

block 3

Max 
pooling

Figure 2.20: Simplified illustration of the causal CNN encoder with 3 causal convo-
lution blocks applied on a univariate time series.
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The question at hand is whether the latent space in which the {z(j)}nj=1 reside has

a more organized structure compared to the original time series space in which the

{x(j)}nj=1 reside. When we refer to a better structured space, we imply that similar

series are close in the latent space, while dissimilar ones are distant. Consequently,

tasks that rely on similarity, such as classification, clustering, or anomaly detection,

become more manageable in this latent space than in the original time series space.

We will discuss this aspect further below.

Experimental Setup. To estimate whether time series are more effectively sep-

arable in latent space than in their original domain, we perform classification ex-

periments using the FordA dataset from the UCR archive (Dau et al., 2019). This

dataset comprises 3601 training instances and 1320 test instances, with each time

series consisting of 500 measurements of engine noise recorded by an engine sensor.

The task entails automatically detecting the presence of a specific engine problem,

thus constituting a balanced binary classification task.

We employ the model from Franceschi et al. (2019) to generate representations

{z(j)}nj=1 and subsequently employ a 1-NN classifier with the Euclidean distance

(ED) metric in this latent space to label the test series based on their proximity to

the training series. In our evaluation, we compare this approach with the following

methods:

• Application of the 1-NN classifier in the original series space using the Eu-

clidean distance metric.

• Application of the 1-NN classifier in the original series space using the dynamic

time warping distance metric.

• The naive predictor that predicts the majority class in the training dataset for

all test instances.

The results are presented in Table 2.1.

Table 2.1: Comparison of the 1-NN classifier in time series space and latent space
for the FordA dataset.

1-NN ED in

latent space

1-NN ED in

time series space

1-NN DTW

(learned w) in

time series space

Majority

class

Accuracy 88.48 % 66.52 % 69.09 % 51.59 %
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Results. We observe a notable improvement in performance with the 1-NN ED

method applied in latent space compared to the two 1-NN methods operating in the

original time series space. This observation highlights the ability of the encoder to

more effectively discriminate dissimilar series in the FordA dataset compared to the

original space. To provide a visual insight into this phenomenon, we present in Fig-

ure 2.21 scatterplots where we have applied Principal Component Analysis (PCA)

to both the time series and their corresponding representations. The visualizations

clearly show that the distributions of the different classes are better separated in

the latent space.

20 15 10 5 0 5 10 15 20
PCA axe 1

20

15

10

5

0

5

10

15

20

PC
A 

ax
e 

2

Class 0
Class 1

(a) PCA applied on the initial time series.

15 10 5 0 5 10 15 20
PCA axe 1

15

10

5

0

5

10

15
PC

A 
ax

e 
2

Class 0
Class 1

(b) PCA applied on the representations.

Figure 2.21: Visualization of the PCA applied to the initial time series and their
representations learned with T-Loss on the FordA test dataset. (UCR archive).

Additional noteworthy results. Below are some advantages of the representa-

tions constructed using this model, as evidenced in the original paper:

• The representations effectively separate dissimilar series, making classifiers

based on space separators, such as Support Vector Machines (SVMs) (Cortes

and Vapnik, 1995), highly efficient.

• The geometric properties of the constructed space enable classifiers (such as

k-NN or SVMs) to perform well even with very few labels available for training.

• Once trained on a dataset, the ϕθ encoder can be reused without retraining

to build representations for other datasets.
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A method at the forefront of a new field of time series research. This

method, which learns neural representations for time series based on contrastive

loss, has initiated a rapidly growing field of research. New models have sought to:

• Improve the positive/negative sample criteria in contrastive loss (Tonekaboni

et al., 2021).

• Change the encoder architecture (Yue et al., 2022)

• Consider time domain and frequency domains (Zhang et al., 2022b).

• Apply other downstream tasks on top of the representations, such as forecast-

ing (Zheng et al., 2024).

These are just a few examples. Numerous new unsupervised neural methods

based on contrastive learning are introduced each year. For a comprehensive review

of contrastive methods, please refer to the extensive literature review by Zhang et al.

(2024).

2.3.3.2 Unsupervised PatchTST: An encoder-decoder representation learn-

ing method based on attention mechanism

Intuition. The PatchTST model (Nie et al., 2022), inspired by the Vision Trans-

former (ViT) (Dosovitskiy et al., 2020), stands out as a highly effective time series

modeling model. This model decomposes time series into a sequence of patches and

considers these patches as tokens. Then, several attention blocks are applied on top

of this sequence of patches. The author demonstrates that the patch attention is

more effective for time series than the pointwise attention. In the original paper, the

authors introduced both supervised and unsupervised variants. This section focuses

on the unsupervised version, whose training is based on patch masking (He et al.,

2022).

Model description. The forward process of the unsupervised PatchTST can be

described as follows:

(i) Segmentation of the time series into contiguous, non-overlapping patches.

(ii) Random masking of 40% of these patches.

(iii) Linear projection of patches + additive position encoding.

(iv) Application of several self-attention blocks.

(v) The output of these attention blocks is the latent representation z.
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(vi) A linear layer is then applied on top of the latent representation z to recon-

struct the masked patches.

The parameters of this architecture are optimized according to the reconstruction

loss, which is exclusively computed over the masked patches. The architecture is

illustrated in Figure 2.22.

Projection + Position Embedding

Transformer Encoder

Masking +Patching

Linear Layer

Reconstructed 
Masked patches

Figure 2.22: PatchTST unsupervised architecture.

This masked auto-encoder transformer is a powerful feature extractor, and the

representation learned just before linear projection contains valuable information

for downstream tasks. The authors also show that the unsupervised PatchTST can

serve as a reusable representation extractor. Once trained, it can be used to extract

high-quality representations for datasets not seen during training. This result is

described in the next section.

Generalization experiments from the paper. The authors evaluated the gen-

eralizability of the representation learned by unsupervised PatchTST for the down-

stream forecasting task. The experimental setup is as follows:

(i) First, unsupervised PatchTST is pre-trained on the Electricity dataset.

(ii) The pre-trained architecture is then applied to other datasets to extract a

latent representation.
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(iii) On top of the extracted representation, a simple linear layer is trained to

forecast the horizon for the considered datasets.

In their experiments, the authors compare the effectiveness of the PatchTST

representation coupled with linear layer against several supervised forecasting base-

lines: Dlinear (Zeng et al., 2022), FEDformer (Zhou et al., 2022), Autoformer (Wu

et al., 2021), and Informer (Zhou et al., 2021). This comparison is made over the

Traffic and Weather datasets. Forecasting results are presented in Table 2.2.

Table 2.2: Forecasting experiments comparison from the original paper. Trained
linear layer on top of the PatchTST representation trained on the Electricity dataset
compare with supervised forecast baselines. H stands for the horizon. Bolds stands
for the best result and underline for the second best result.

PatchTST

unsupervised
DLinear FEDformer Autoformer Informer

H MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

Weather

96 0.163 0.216 0.176 0.237 0.238 0.314 0.249 0.329 0.354 0.405

192 0.205 0.252 0.220 0.282 0.275 0.329 0.325 0.370 0.419 0.434

336 0.253 0.289 0.265 0.319 0.339 0.377 0.351 0.391 0.583 0.543

720 0.320 0.336 0.323 0.362 0.389 0.409 0.415 0.426 0.916 0.705

Traffic

96 0.400 0.288 0.410 0.282 0.576 0.359 0.597 0.371 0.733 0.410

192 0.412 0.293 0.423 0.287 0.610 0.380 0.607 0.382 0.777 0.435

336 0.425 0.307 0.436 0.296 0.608 0.375 0.623 0.387 0.776 0.434

720 0.457 0.317 0.466 0.315 0.621 0.375 0.639 0.395 0.827 0.466

Results. Table 2.2 clearly shows that the representation extracted by PatchTST,

when combined with the linear layer, outperforms or is on par with other meth-

ods on all horizons for both datasets examined. This suggests that unsupervised

PatchTST, pre-trained on one dataset, can extract meaningful representations for

other datasets.

Encoder-decoder based on a reconstruction loss used for time series rep-

resentation learning. Many models have utilized encoder-decoder architectures

based on time series reconstruction to learn representations. Malhotra et al. (2017)

were pioneers in this approach, employing an LSTM-based architecture. Later,

masking strategies combined with transformers were introduced to enhance the ef-

fectiveness of learning time series features (Zerveas et al., 2021; Li et al., 2023).

Typically, the representations derived from these models are used for downstream

forecasting tasks, but they can also be applied to classification, anomaly detection,

and other tasks.
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2.3.4 Discussion and open problems

The two methods presented above are just a small sample of all the neural repre-

sentation learning methods for time series that have proliferated in recent years.

For example, we have presented contrastive objective and reconstruction objective

separately, but recent papers combine the two to learn neural representations for

time series (Chowdhury et al., 2023; Dong et al., 2024). Additionally, as discussed

in the introduction of Section 2.2, literature on pre-trained supervised neural net-

works for a specific task that reuse the trained architecture for another task can be

considered as neural representation learning (Ma et al., 2023). This includes all the

recent literature on foundational models for time series forecasting, more precisely

referred to as ”flexible zero-shot forecasters” (Das et al., 2023; Liang et al., 2024).

The concept of these models is to jointly train a deep learning forecasting model

on multiple datasets and then be able to make forecasts without training on a new

dataset (never seen during training). For an extensive review of neural representa-

tion learning for time series, please refer to Trirat et al. (2024).

However, despite the rise of neural representation methods for time series and the

various improvements compared to traditional representation learning, there still

remain critical open issues:

• Intepretability of the neural representation. Unsupervised representa-

tion learning approaches aim to build representation for time series by captur-

ing their underlying distribution without expert knowledge or human supervi-

sion. They have demonstrated good performances for clustering, classification,

missing values imputation or forecasting. Despite these good performances for

downstream tasks, the neural representations models in the literature lack in-

terpretability. In Bengio et al. (2013), a review of representation learning, the

authors emphasize that good representations should have the ability to ex-

tract Explanatory Factors and should guarantee Temporal Consistency. Cur-

rent neural approaches do not meet these criteria. Indeed, for most existing

approaches, the representation results from mapping signals to a latent vector

with no temporal consistency and in which values have no meaning. These rep-

resentations fail to provide interpretability when used for downstream tasks,

which is problematic for critical decision-making.

• Adaptable models for new time series and temporal distribution

shifts. One of the major open problems in learning time series representations

is the ability to create adaptive models that can effectively handle distribution

shifts. These challenges are exacerbated when new data samples or different

temporal contexts are introduced, requiring models to adapt to shifts in data

distribution without extensive retraining. Ensuring that models can dynam-

ically adapt to new and evolving data while maintaining high performance
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under varying conditions is essential. The need for robust and flexible models

that respond to temporal changes remains a critical area of research in time

series analysis.

• Capture neural representation from unaligned and irregular time

series. In time series analysis, the variety, heterogeneity, and increasing num-

ber of deployed sensors present new challenges that current methods often fail

to address. Time series data frequently originate from diverse sources, ex-

hibiting irregular sampling, containing missing values, and lacking alignment,

particularly when collected from distributed sensors. While time-dependent

continuous models can handle such data, they struggle to learn effective repre-

sentations from them. Furthermore, their performance has significantly lagged

behind models designed for regular discrete grids. This highlights the need for

advanced approaches that can effectively capture neural representations from

unaligned and irregular time series, ensuring robust performance across various

real-world scenarios.

In the contribution part of the manuscript, we propose to tackle these open

issues and design time series neural representation learning models that address

these challenges.
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Chapter 3

Interpretable Time Series Neural

Representation for Classification

Purposes

In this chapter, we address the problem of interpretability of neural representations.

Recently, deep learning has made significant progress in creating efficient represen-

tations of time series data by automatically identifying complex patterns. However,

these approaches lack interpretability because the time series is transformed into a

latent vector or matrix that is not easily interpretable. On the other hand, Symbolic

Aggregate Approximation (SAX) methods allow the creation of symbolic represen-

tations that can be interpreted, but do not effectively capture complex patterns. In

this work, we propose a set of requirements for a neural representation of univariate

time series to be interpretable. We propose a new unsupervised neural architec-

ture that satisfies these requirements. The proposed model produces consistent,

discrete, interpretable, and visualizable representations. The model is learned in

an unsupervised setting independent of any downstream tasks to ensure robustness.

To demonstrate the effectiveness of the proposed model, we propose experiments on

classification tasks using UCR archive datasets. The obtained results are extensively

compared with other interpretable models and state-of-the-art neural representation

learning models. The experiments show that the proposed model provides, on aver-

age, better results than other interpretable approaches on several datasets. We also

present qualitative experiments to evaluate the interpretability of the approach.

Le Naour, E., Agoua, G., Baskiotis, N., and Guigue, V. Interpretable time

series neural representation for classification purposes. IEEE 10th

International Conference on Data Science and Advanced Analytics (IEEE

DSAA) 2023. Best research paper award.
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3.1 Introduction

Unsupervised representation learning approaches aim to build representation for

time series by capturing their underlying distribution without expert knowledge or

human supervision. They have demonstrated good performances for clustering (Ma

et al., 2019), classification (Franceschi et al., 2019; Malhotra et al., 2017; Yue et al.,

2022), missing values imputation or forecasting (Zerveas et al., 2021). Despite these

good performances for downstream tasks, the neural representations models in the

literature lack interpretability. In Bengio et al. (2013) a review of representation

learning, the authors emphasize that good representations should have the ability

to extract Explanatory Factors and should guarantee Temporal Consistency. Cur-

rent approaches do not meet these criteria. Indeed, for most existing approaches

(Franceschi et al., 2019; Yue et al., 2022; Zhang et al., 2022a), the representation

results from mapping signals to a latent vector with no temporal consistency and

in which weights have no meaning. These representations fail to provide inter-

pretability when used for downstream tasks like classification, which is problematic

for critical decision-making.

However, interpretability is a concept that is not universally agreed upon (Lipton,

2018), with confusion arising from the different meanings of interpretability and
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explicability. For time series models, Wang (2021) offers a clear taxonomy of the

interpretability shown in Figure 3.1. Post-hoc interpretability refers to methods that

analyze the model after the training and are generally model-agnostic. It is often

related to the eXplainable Artificial Intelligence (XAI) research field. However, post-

hoc methods only explain the decision for a specific instance (or specific features),

and additional methods are required to understand the overall model.

On the other hand, in-situ interpretable models are self interpretable. The inter-

pretability arises directly from the model without any other process being applied

after the training phase (Rudin, 2019; Wang, 2021). The level of this interpretability

can be local or global. In Lipton (2018), global interpretability is defined as a model

that is easy for a human to understand and requires low computational complexity.

In contrast, local interpretability is a way to interpret a model’s decision for a par-

ticular instance. Global interpretability often implies local interpretability, but the

reverse is not true.

Interpretability

Ad-hoc interpretability 
(from data preprocessing)

Model interpretability

In-situ interpretability 
(interpretable models)

Post-hoc Interpretability 
(from explanations)

global local global local

Figure 3.1: Interpretable time series model taxonomy introduced in Wang (2021).

In this work, we focus on global in-situ interpretability rather than post-hoc

explainability, as global in-situ models are inherently interpretable and can be un-

derstood both for individual instances and the model as a whole. This paper aims

to develop a global in-situ interpretable neural method for time series representa-

tion. The first contribution of this work is to define the requirement to bridge the

gap between symbolic representation and neural representation to ensure a global

interpretable neural symbolic representation for time series data. Indeed, most suc-

cessful interpretable models come from symbolic machine learning, such as symbolic

aggregate approximation, which creates interpretable symbolic representations of

time series data. However, the information captured by these symbols is limited

and does not provide global interpretability of the representation. On the other

hand, neural representation learning methods achieve great performances but are

definitively not in-situ interpretable. Section 3.3 analyses the criteria that must be

respected to guarantee global in-situ interpretability.
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We propose a novel unsupervised neural network that fills these requirements in

Section 3.4. The neural network is based on an auto-encoder architecture and vector

quantization mechanism (Gersho and Gray, 1991; van den Oord et al., 2017; Fortuin

et al., 2019). The unsupervised setting is a crucial choice for the generalization of the

learned representation. Moreover, it allows to re-use the extracted representation

for several classification tasks.

To demonstrate the qualities of the proposed architecture, Section 3.5 presents

an application of our learned symbolic neural representation to classification tasks.

A simple linear classifier over the interpretable symbolic representations is used to

solve classification tasks efficiently. The linearity of the classifier preserves inter-

pretability in the representation, providing both global and local interpretability for

understanding the decision made by the classifier.

Our main contributions can be summarized as follows:

• We define and formalize the fundamental requirements to construct inter-

pretable symbolic neural representations for time series.

• We propose an unsupervised neural network architecture that satisfies the

above requirements.

• We use these representations for downstream classification tasks (while pre-

serving interpretability of the representation) and evaluate them through quan-

titative experiments on the UCR archive.

• We provide qualitative experiments to capture local and global interpretability.

3.2 Related content

Constructing time series representations is a fundamental challenge that can be per-

formed unsupervised or based on a specific task. This related content presents both

neural representation methods, which are not easy to interpret, and classical repre-

sentation methods, which are interpretable. In most cases, classical representation

methods are combined with a classification task.

Unsupervised neural representation learning for time series classification.

In recent works, models of neural representations of time series have emerged. These

models typically learn the representation in an unsupervised way and then use the

learned representation for a specific task in a second step. In Malhotra et al. (2017),

the authors use a deep unsupervised representation to solve a subsequent classifica-

tion task for time series. They used an architecture composed of Recurrent Neural

Networks to build a representation that would later be used for classification. In
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Franceschi et al. (2019), authors build a time series representation using a convo-

lutional encoder and a contrastive loss (Mikolov et al., 2013). The representation

space brings together series (and subseries) that are similar. Afterward, a support

vector machine (SVM) is applied on top of the representation to solve the classifica-

tion problem. Then, several papers attempted to construct vector representations

of time series using contrastive loss (Yue et al., 2022; Zhang et al., 2022a). Some

recent works (Zerveas et al., 2021) have tried to build an unsupervised representa-

tion of time series using transformers mechanisms (Vaswani et al., 2017) inside an

auto-encoder. These neural representations can capture a lot of information, and the

downstream tasks learned from them are very efficient. However, the representations

and thus the downstream tasks cannot be interpreted with these models.

Attempt to construct an interpretable neural representation for time se-

ries. Recently, progress has been made in making neural representations of time

series interpretable. In Li et al. (2022), the authors have attempted to decompose

time series into disentangled semantic factors (for both individual factors and group

segment factors) using Variational Auto-Encoder (VAE), LSTM, and a disentangle-

ment strategy. The limitation of disentangled representations is that it is difficult

to assess the disentanglement of latent factors when the initial semantic properties

of the time series are unknown. This unsupervised representation is interesting for

generation, but difficult to adapt for classification. Other work, such as Luo et al.

(2022), has attempted to obtain interpretable differential operators from multivari-

ate time series. However, they are specific to forecasting.

Although neural methods for representing time series are relatively new, non

neural interpretable methods for representing time series are widely studied.

The Symbolic Aggregate approximation (SAX). SAX methods (Lin et al.,

2003, 2007) create a symbolic representation of a time series by combining local

statistics, which are calculated by taking the average of different segments of the

time series. Each average is assigned a symbol based on its value. A sequential

symbolic representation of the original time series is formed by mapping these local

averages to symbols. Multiple SAX representations can be obtained by taking more

or less local averages. SAX symbolic elements operate in the time domain and are

interpretable, unlike the Symbolic Fourier approximation (SFA) method (Schäfer

and Högqvist, 2012), which operates in the frequency domain. In Lin et al. (2003),

the authors introduce the SAX method as a versatile unsupervised approach for

various downstream tasks, but in practice, SAX methods are typically used in com-

bination with a classifier on top of the representation. There are several methods to

classify on top of SAX representations. For example, the SAX-VSM method (Senin

and Malinchik, 2013) is based on the frequency of subsequences within each class.

The SAX-SEQL method (Nguyen et al., 2017) searches the entire space of sub-
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sequences for the most discriminating subsequences using logistic regression based

on coordinate descent. SAX methods have proven useful for making interpretable

classification decisions from the constructed symbolic representation. However, this

interpretability is only local. Indeed, when we obtain a discriminating symbolic

subsequence, we can highlight the corresponding subpart of the time series. Never-

theless, we cannot reconstruct what the model has learned because several subseries

can give the same symbolic subsequence. Additionally, as stated in Lipton (2018),

when the number of representations used for classification is excessive, such as in

the case of multi-SAX-SEQL (Nguyen et al., 2019), it becomes difficult to interpret

the classification results.

Shapelet methods. These methods aim to find the subsequences of the time

series that most discriminate between classes (Ye and Keogh, 2011). This represen-

tation method is supervised because it relies on a downstream task. In addition,

the resulting representations are partial, since only the shapelets that discriminate

between classes are extracted at the end of the process. Once the optimal shapelets

are found, if the classifier applied on top of them is interpretable (linear regression

or decision tree), the whole process is interpretable at both local and global levels.

However, the original method is costly because it is necessary to search the whole

space for possible subsequences. In Fast Shapelets (FS) (Keogh and Rakthanmanon,

2013), the authors proposed to speed up the discovery of discriminative subsequences

by using a SAX representation to discover the subparts of the series where shapelets

should be searched. Although the method speeds up the discovery of discriminative

shapelets, it remains computationally expensive and the accuracy could be better.

To avoid these problems, in Grabocka et al. (2014), authors propose the Learning

Shapelets (LTS) method. The goal is to learn the discriminating shapelets rather

than to search for them in the whole space of possibilities. This method has led to

improvements in accuracy. However, it generates a large number of shapelets that

are almost the same. This negatively affects interpretability. Afterward, methods

have been proposed to learn a limited number of shapelets and thus reinforce the in-

terpretability of the model. In Wang et al. (2020), authors propose learning a small

number of discriminating shapelets by training a Generative Adversarial Network

(GAN) and a classifier.

To the best of our knowledge, there is no unsupervised learning method capa-

ble of learning an interpretable neural representation for time series. In the next

section, we set out the requirements for constructing interpretable symbolic neural

representations. These criteria will link traditional methods of representing time

series using symbols and unsupervised neural representation methods.
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3.3 Requirements for an interpretable symbolic

neural representation

In order to ensure that a neural representation of a time series is interpretable, we

set out several requirements that we consider essential.

For this purpose, we introduce some notation for this section. We consider that

we have a dataset of n samples. For an instance i (i ∈ {1, ..., n}), the univariate time

series is denoted by the vector x(i) of length T : x(i) =
(
x
(i)
1 , . . . , x

(i)
T

)
∈ RT . Let z(i)

be the symbolic neural representation composed of T
′
elements for x(i). We denote

by A the support (alphabet) common to all these elements: z(i) = (z
(i)
1 , . . . , z

(i)

T ′ ) ∈
AT ′

. Then ϕθ is the function that maps the time series into the representation, and

ψθ′ is the function that goes from the representation to the reconstruction space of

the time series. To simplify the reading, we omit the indices i for the vectors z and

x.

Requirement n°1 - discrete symbolic representation. The purpose of a sym-

bolic neural representation method is to capture complex phenomena within the

representation (as neural representations do) while being able to interpret and vi-

sualize the representation elements (as symbolic representations tend to do). Thus,

the support A of each element must be discrete and limited (e.g. Card(A) = 32).

In addition, the support must be common to all elements of the symbolic represen-

tation. This limits the number of possible patterns. Once we obtain the symbolic

representation z, we can use the classifiers used in the dictionary methods (Schäfer,

2015; Nguyen et al., 2017, 2019) (see Section 3.5).

Requirement n°2 - temporal consistency. For a time series x of length T ,

learning a contracted representation z of length T
′
will mechanically lead to a con-

traction of the time dimension (T
′
< T ). We then define temporal consistency by

two properties. First, each element of the representation is a function of a portion

of the original time series. Thus, for each element of the representation, we must

be able to compute the pre-image of the element. Second, the representation must

preserve the original temporal order despite the contraction of the temporal dimen-

sion. To illustrate this property, consider the case where zt′1
is an element of the

representation and zt′2
is another element of the representation that occurs after zt′1

.

As shown in Figure 3.2, the temporal consistency of the representation ensures that

the pre-image of zt′1
must precede the pre-image of zt′2

in time.

Requirement n°3 - a decodable representation. Being able to visualize the

portion of the time series related to a specific element of the representation is impor-

tant, but it is also important to be able to see what the model has learned overall.
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. . ..

...

Symbolic neural 
representation

Initial Time series

Figure 3.2: Temporal consistency visualization. Coffee dataset.

As shown in Figure 3.3, ψθ′ should be able to reconstruct the entire time series, as

well as specific parts of it, while maintaining temporal consistency.

 x   x   x   x   

 x   x   x   x  x    x   x     

 .    .    .    .    .   .    

 .     .   

Figure 3.3: Visualization of how the representation is decoded for the complete
representation, as well as for half of the representation and for only the last element.
Coffee dataset.

Requirement n°4 - shift equivariance properties. We want the shift equivari-

ance property for both ϕθ and ψθ′ . The ϕθ shift equivariance means that two patterns

in the initial time series that are identical but do not occur at the same time should

be encoded with the same value but not at the same place in the representation.

The ψθ′ shift equivariance means that two elements of the representation that have

the same value but do not occur at the same time should represent the same pattern

when decoded (with a time shift). This property is essential to interpret the repre-

sentation elements and ensure that the same value in the representation, regardless

of its position, represents the same pattern. We illustrated the shift equivariance
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property for ψθ′ in Figure 3.4.

c . . .d . . . . d. c
Symbolic

representations

Initial reconstruction Shifted reconstruction

Figure 3.4: Shift equivariance of ψθ′ . The subsequence c d appear at two different
locations in the representation: ψθ′ should decode the same pattern with a shift in
time.

Let’s formally define the shift equivariance property. Let S be an element of a

sequence (a single element or a subsequence), and GT the group of discrete trans-

lations along the temporal axis. If we take τ to be any discrete translation in GT

and f to be a function equivariant by discrete translation for GT , then there exists

τ ′ ∈ GT ′ such that: f(τ(S)) = τ ′(f(S)).

Requirement n°5 - a representation adjustable to the frequency level.

Like an image that cannot be interpreted at the pixel level, a time series is difficult

to interpret at the point level. This requirement aims to control the amount of

information captured when creating the representation. For the representation to

be easily understood, it is crucial to capture the appropriate frequency levels that

define the time series. As illustrated in Figure 3.5, the depth of the representation

determines whether it focuses on lower or higher frequency features, which in turn

affects the length of the representation.

Intial time series of length 720

. ..

. . .

. .

Figure 3.5: Visualization of different reconstructions for different level of represen-
tation. We can see that the deeper the architecture, the shorter the representation
and the smoother the reconstruction. Computers dataset.
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3.4 Model

This section proposes an unsupervised model that respects the different requirements

for building an interpretable symbolic neural representation.

3.4.1 Proposed architecture

Architecture overview. The proposed unsupervised model architecture consists

of an encoder-decoder structure with a discretization mechanism within the rep-

resentation space. (i) First, the time series x is given as input to the encoder.

(ii) Second, the output of the encoder is discretized using the vector quantization

mechanism. This step allows us to obtain z after the learning process. (iii) Finally,

the discretized elements are passed to the decoder, which returns a reconstruction

of the time series x̂.

The architecture takes elements from the Vector Quantization Variationnal Auto-

Encoder (VQ-VAE) (van den Oord et al., 2017), which was the first model to es-

tablish a latent space of discrete representation within an auto-encoder. However,

we add constraints to the architecture and remove the variational part in order to

meet the requirements defined in Section 3.3. The different parts of the architecture

are described below and Figure 3.8 illustrates the global unsupervised architecture.

The components of the architecture are described below.

Encoder. The encoder can be divided into a sequence of consecutive blocks with

the same structure. As shown in Figure 3.6, a block consists in three operations: a

1D convolution layer, a downsampling operation, and a non-linear activation func-

tion.

Convolution 
1D layer 

Adaptive
polyphase

downsampling

Pointwise 
non linear 
operator

Input 
sequence

Output 
sequence

Figure 3.6: Inside an encoder block.

The convolution layer is non-strided and has a dilation factor of zero. The input

sequence is padded with a zero on each side, and the kernel size is three. Therefore,

the convolution layer’s output sequence length remains unchanged. Subsequently,

we perform a downsampling operation on the sequence. This operation aims to

reduce the sequence length by two while keeping the shift equivariance property.

For this purpose, we use the adaptive polyphase downsampling (APS-D) proposed

in Chaman and Dokmanic (2021).

To explain the APS-D operation, let us introduce s(t) the convolutions output

sequence of length T0. We can then define the two subsequences s0 and s1 such
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that s0(t) = s(2t) and s1(t) = s(2t + 1). The APS-D operation DA
2 consists in

subsampling the subsequence sl such that:

DA
2 (s) = sl where l = arg max||sj||1 (for j ∈ {0, 1})

When the downsampling process is applied to the sequence, its length is re-

duced by half. Finally, a non-linear pointwise operation is applied. In practice, this

operation is the LeakyReLU.

All blocks inside the encoder have the same structure. Consider an encoder with

B blocks and convolutions with Z channels. Then the initial time series is projected

into the representation space on a sequence of T
′
(T ′ ≈ T/2B) timestamps, where

each point of the sequence is a vector of size Z.

Decoder. Now we can define the decoder blocks symmetrically to the encoder.

The decoder is a function that projects a sequence of T ′ vectors of size Z into

a reconstructed time series x̂ of size T . If the encoder has B blocks, then the

decoder will have B blocks. However, the structure of a decoder block is slightly

different. First, an upsampling operation (adaptive polyphase upsampling) increases

the length of the sequence by two. In practice, the values of the input sequence are

re-used and 0’s are inserted between each value to double the size of the sequence.

The 0’s are inserted in an even or odd manner according to the subsequence extracted

in the corresponding encoder block during the downsampling phase (if l was 0 or

1). Next, a 1D non-strided convolutional layer with a kernel size of 3 is applied.

Finally, a nonlinear pointwise operation is applied (except in the last block).

Discretization mechanism. Now that the encoder and decoder are defined, we

need to specify the discretization method used within the representation space. After

passing the time series to the encoder and thus obtaining a sequence of vectors

(sequence of embeddings: (e1, e2, ..., eT ′)), we use the vector quantization (VQ)

mechanism (Gersho and Gray, 1991; van den Oord et al., 2017). Given a set of

K centroids {cj ∈ RZ , j ∈ 1, ..., K}, the VQ mechanism consists of assigning an

encoder output point et′ ∈ RZ to the nearest centroid:

eqt′ ← ck where k = arg min
j
||et′ − cj||22. (3.1)

In this way, the sequence of embedding vectors is transformed into a sequence of

quantized vectors (each quantized vector has only K possible values). This mecha-

nism is illustrated in the Figure 3.7. Then, the sequence of quantized vectors (eq1,

eq2, ..., e
q
T ′) is given as input to the decoder. We describe how centroids are moving

through epochs in the training section.
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Representation 
before Vector 
Quantization

Representation 
after Vector 
Quantization

Symbolic 
representation

b b b ba a

Vector 
Quantization

Figure 3.7: Visualization of the vector quantization mechanism in the context of an
auto-encoder. E and D stand respectively for Encoder and Decoder.

3.4.2 Meeting the requirements

The proposed architecture aims to meet the requirements for an interpretable neu-

ral representation. Below, we discuss how each requirement is addressed in the

architecture’s design.

Discrete symbolic representation. The VQ mechanism, also known as a self-

organizing map (Kohonen, 1990), allows the centroids to move as iterations progress.

This mechanism assigns nearby vectors to the same centroid while maintaining tem-

poral consistency. Thus, our architecture encourages similar patterns to be quan-

tized to the same vector. The symbolic representation is obtained directly from the

centroid indices used during vector quantization (see Figure 3.7). Since the index

represents the vector it characterizes, the sequence of centroid indices obtained dur-

ing the vector quantization stage is a faithful symbolic representation of the time

series.

Temporal consistency. The proposed architecture uses convolution operations

that guarantee the temporal consistency of the representation. We can easily com-

pute the input that produced a given output from a convolution sequence by deter-

mining the receptive field (see Appendix B.2 for the details). In addition, convolu-

tions are local operations that slide over the input, which allows them to preserve

the temporal order of the input. Using a pointwise VQ mechanism does not affect

the temporal consistency property of our architecture.
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A decodable representation. The symmetric and unbiased encoder-decoder de-

sign guarantees that the representation is decodable. The reconstruction criterion

ensures that the reconstruction converges towards the original time series. It en-

ables the visualization of the learned representation while maintaining temporal

consistency and enabling separate decoding of each representation component.

Shift equivariance properties. Due to the adaptive polyphase upsampling and

downsampling (Chaman and Dokmanic, 2021), both encoder and decoder are shift

equivariant. The shift equivariance properties would be lost with classical strided

convolutions (Cohen and Welling, 2016). This property is crucial for understanding

the meaning of the elements in the symbolic representation. It ensures that identical

symbolic elements always represent the same pattern (when there are no edge effects,

see Section 3.7.3), regardless of their position.

An adjustable representation. By changing the number of blocks B in the

encoder (and by the symmetry in the decoder), we can adjust the information learned

in the representation, enabling us to adapt the representation to different frequency

levels. The higher the number of blocks, the shorter the representation sequence

and the more global the information captured for an element of the representation.

Thus, we define the number of blocks as a hyperparameter of the architecture.

3.4.3 Training

The unsupervised architecture (see Figure 3.8) is trained according to Equation (3.2).

To simplify the notations, we present the loss for an instance x. The notations re-

main the same as those introduced above, except for the following. The operator sg

is the stop gradient operator whose derivative is zero during the backward compu-

tation time. The encoder is defined as ϕθ and the decoder as ψθ′ . In Section 3.3, ϕθ
characterizes the function that maps the time series to the symbolic representation.

Here ϕθ stands for the function that maps the time series to the embeddings (before

the discretization phase). On the other hand, here, ψθ′ characterizes the function

that maps the quantized vector representation to the reconstruction. The tempo-

ral vector sequence after quantization is denoted Eq ∈ RT ′×Z . The unsupervised

architecture is then optimized by solving the following optimization problem.

arg min
θ,θ′,E

||x− ψθ′ (Eq)||22 + ||sg[ϕθ(x)]−Eq||22 + β||ϕθ(x)− sg[Eq]||22. (3.2)

• The first term of the loss refers to the reconstruction ability of the model.

In practice, we consider the mean square error pointwise between the ground

truth time series and the decoder output. This part of the loss optimizes the
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decoder and the encoder. It is important to note that the arg min operator

in Equation (3.1) is not differentiable at the VQ level. In van den Oord et al.

(2017), the authors suggest passing the gradients of the quantized vectors to

their corresponding encoder vector outputs. This allows the reconstruction

loss to optimize the encoder.

• The second term in the loss updates the used centroids Eq by moving them

toward the embedding vectors ϕθ(x) assigned to them. The centroids are

initialized with a Gaussian distribution. This approach has proven to be stable

in training and allows an independent choice of solver for the rest of the loss.

In the model implementation, the Adam solver (Kingma and Ba, 2015) is used

for the other terms of the loss.

• The last part of the loss is the commitment loss and ensures that the encoder

outputs do not land too far from the used centroids. It guarantees better

training stability.

....... VQ

1 Encoding phase 3 Decoding phase2 Discretization 
phase

.......

Symbolic 
representation

....
...

Figure 3.8: Global unsupervised architecture overview. η refers the last two terms
in Equation (3.2).
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3.5 Downstream task: classification over extracted

representations

Similar to dictionary methods for time series classification (Lin et al., 2003; Schäfer

and Högqvist, 2012), the proposed representation learning process leads to an in-

terpretable sequential symbolic representation of the time series. The series is rep-

resented by the sequence of the indices of the quantized vectors (the symbolic rep-

resentation). We propose to evaluate the obtained symbolic representation with

downstream classification tasks. When classifying symbolic representations, a com-

mon practice is to extract histograms of symbolic subsequences and feed them into

a k-NN, or linear classifier (Nguyen et al., 2017, 2019). For example, in Nguyen

et al. (2017), authors propose an efficient algorithm for a logistic regression classifier

based on coordinate gradient descent to find the most relevant subsequences. In

the following, we propose a linear classifier based on the presence or absence of dis-

criminative subsequences inspired by existing methods. This classification method

preserves the interpretability provided by the representation and ensures an in-situ,

global interpretable classification decision.

3.5.1 Classification using a unique symbolic representation

In our classification process, we focus only on using subsequences of lengths one and

two to characterize the symbolic representation. This approach effectively captures

local dynamics while maintaining a low-dimensional feature space. Let ν be the

cardinal of the set of possible symbolic subsequences of length one and two, and

z(i) be a symbolic representation (extracted using our auto-encoder) for sample

i. We can extract for the representation z(i), the vector h(i) which indicates if a

subsequence (of length one or two) is present in zi. Thus, h(i) is a vector of size

ν composed of 0 and 1 elements (h(i) ∈ {0, 1}ν). The feature vectors {h(i), i ∈
{1, ..., n}} representing the training set are then used to solve the classification

problem using logistic regression as follows.

arg min
w,b

1− ρ
2
wTw + ρ∥w∥1 + λ

n∑
i=1

log
(
exp

(
−yi

(
h(i)Tw + b

))
+ 1
)
. (3.3)

with λ the regularization parameter, ρ the trade-off between the ℓ1 penalty and

the ℓ2 penalty and b the bias. Sparsity in interpretable classification models is

desirable to more easily understand the decision (Wu et al., 2018; Li et al., 2019).

In the case of multi-class classification, the usual One vs All method (Rifkin and

Klautau, 2004) is applied to provide better interpretability.

However, classification using a unique representation (e.g., a representation where
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the encoder-decoder is composed of B blocks) does not allow the use of features

of different frequencies. Therefore, it is desirable to train several representations

corresponding to different temporal dimension reductions (deeper or shallower ar-

chitectures) in order to classify using different frequency features.

3.5.2 Classification using multiple symbolic representations

According to Section 3.4.1 the depth of the architecture is directly related to the

number of blocks B in the encoder (and by symmetry in the decoder). We train

the proposed unsupervised model for D different depths (B ∈ {1, 2, ..., D}). Thus,

we get D representations of different length, which capture different features (h(i)1 ,

h(i)2 , ...,h(i)D). Then we apply the following steps:

1. A penalized logistic regression (Equation (3.3)) is performed separately on

each extracted features vector h(i).

2. For each h(i), we recover the features whose logistic regression coefficients have

non-zero values. Thus, we obtain an aggregated discriminative set of features

for the D representations.

3. We perform a final penalized logistic regression on the obtained set.

It is important to highlight two observations. • Firstly, this classification method

retains interpretability because each feature is interpretable by the construction of

the representation, making it straightforward to interpret the coefficients of the lo-

gistic regression associated with a feature. • Secondly, the number of representations

we use corresponds to the number of times the initial time series can be halved while

being greater than a threshold (T ′ should be greater than this threshold). In prac-

tice, the number of representations we use for the UCR datasets rarely exceeds five.

Keeping the number of representations small is essential for preserving interpretabil-

ity. In particular, a large number of representations has a strong negative impact

on interpretability (Lipton, 2018).

3.6 Experiments

In our experiments, the unsupervised architectures are trained using only the train-

ing set. The symbolic test representations are constructed by passing the test data

through the trained architecture. We also set the number of available centroids to 32

and the dimension of the latent space is 64. For training the unsupervised models,

we set β to 0.25 in Equation (3.2) as realized in van den Oord et al. (2017).
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3.6.1 Quantitative experiments

The quantitative experiments are performed on 25 selected datasets from the UCR

archive (Dau et al., 2019). These datasets meet specific criteria: variety of appli-

cation types (sensor, motion, image, device), a minimum of 50 training and 50 test

instances, and a maximum of seven classes. Table 3.1 presents the results of our

model compared to the interpretable in-situ methods SAX SEQL, SAX VSM, FS

and LTS presented in Section 4.2. We also compare our accuracy results to the

well-known k-NN classifier coupled with Dynamical Time Warping (DTW) distance

(Rakthanmanon et al., 2012). This classifier is sometimes presented as interpretable,

but it does not allow the extraction of localizable discriminative features. We reuse

the accuracy results from Nguyen et al. (2019) for comparison.

Table 3.1: Accuracy on 25 UCR datasets compare to in-situ interpretable methods.
The best results are in bold and the second best results are underlined.

Datasets Ours
SAX

SEQL

SAX

VSM
FS LTS

DTW

CV

Coffee 0.964 1.000 0.929 0.929 1.000 1.000

Computers 0.728 0.676 0.620 0.500 0.584 0.620

DistalPhalanxOAG 0.755 0.818 0.842 0.655 0.779 0.626

DistalPhalanxOC 0.732 0.718 0.728 0.750 0.719 0.725

DistalPhalanxTW 0.640 0.748 0.604 0.626 0.626 0.633

Earthquakes 0.734 0.789 0.748 0.705 0.741 0.727

ECG5000 0.932 0.924 0.910 0.923 0.932 0.925

FordA 0.883 0.851 0.827 0.787 0.957 0.691

GunPoint 0.940 0.987 0.987 0.947 1.000 0.913

Ham 0.705 0.705 0.810 0.648 0.667 0.600

Herring 0.656 0.578 0.625 0.531 0.625 0.531

ItalyPowerDemand 0.906 0.734 0.816 0.917 0.970 0.955

LargeKitchenApp 0.864 0.760 0.877 0.560 0.701 0.795

PhalangesOC 0.748 0.717 0.710 0.744 0.765 0.761

ProximalPhalanxOC 0.818 0.818 0.828 0.804 0.834 0.790

ProximalPhalanxOAG 0.839 0.844 0.824 0.780 0.849 0.785

ProximalPhalanxTW 0.771 0.792 0.610 0.702 0.776 0.756

RefrigerationDevices 0.533 0.541 0.653 0.333 0.515 0.440

ScreenType 0.499 0.461 0.512 0.413 0.429 0.411

ShapeletSim 0.994 0.994 0.717 1.000 0.950 0.700

SmallKitchenApp 0.795 0.776 0.579 0.333 0.664 0.672

Strawberry 0.962 0.954 0.957 0.903 0.911 0.946

Wafer 0.975 0.993 0.999 0.997 0.996 0.995

Wine 0.759 0.556 0.963 0.759 0.500 0.611

Worms 0.714 0.536 0.558 0.649 0.610 0.532

Mean 0.793 0.770 0.769 0.715 0.764 0.725
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Referring to Table 3.1, our method gives better results on average than the

other in-situ methods interpretable on these datasets. Our method results in a

minimum 2.2 percentage points increase compared to other interpretable in-situ

methods. Even if our method does not come first in all cases, the quantitative

results are very promising for two main reasons. First, only a small subpart of all

possible symbolic subsequences are used as our method aims to enforce sparsity in

order to favour interpretability. Secondly, our representations are learned without

any supervision and thus are not guided by the underlined task.

In addition, we evaluate the accuracy of logistic regression on our symbolic neural

representation against SVM on top of neural representation. This classification

framework is often used to evaluate the best unsupervised neural representation

when the neural representation is a simple vector (Yue et al., 2022; Franceschi et al.,

2019). Previous research has found that the best-unsupervised methods with this

framework are TS2Vec (Yue et al., 2022) and T-Loss (Franceschi et al., 2019). We

compare these two methods with our own on the 25 previous datasets and find

that all three perform similarly in accuracy (0.789 ± 0.15 for T-Loss and 0.807 ±
0.15 for TS2Vec compared to 0.793 ± 0.13 for our method). These results suggest

that the constraints we impose on our architecture to satisfy the interpretability

requirement do not significantly deteriorate the expressiveness of the unsupervised

representation.

3.6.2 Qualitative experiments

Among the 25 previous UCR datasets, not all are suitable for interpretability be-

cause a limited number of features cannot discriminate between the classes. In

most papers dealing with in-situ interpretability for time series, the commonly used

datasets are GunPoint, ShapeletSim, or Coffee datasets (Nguyen et al., 2017; Senin

and Malinchik, 2013). For the qualitative analysis, we focus on the GunPoint and

ShapeletSim datasets (Dau et al., 2019).

3.6.2.1 GunPoint dataset

The GunPoint dataset consists of two actors performing a movement with their right

hand, with two classes: Gun-Draw (class 0) and Point (class 1).

Representations. The time series are z-normalized for each instance. We train

five models with different architecture depths to capture different features in the

time series. The architecture is only trained using the train time series; then, a

simple forward pass is used to get the representation for each time series from the

test dataset. After training, we obtain five representations of different lengths. As

shows in Table 3.2, the representation generalizes easily to the test. The train and

test reconstructions for this dataset are good. It may seem surprising that the
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pointwise train MAE increases slightly with depth, but this is because the other

terms in Equation (3.2) are higher for less deep representations.

Table 3.2: Information on the different representations learned for the GunPoint
dataset.

Depth
Temporal

downscaling

Symbolic

representation

length

Pointwise

train MAE

Pointwise

test MAE

B = 1 21 = 2 75 0.044 0.045

B = 2 22 = 4 38 0.038 0.045

B = 3 23 = 8 19 0.032 0.047

B = 4 24 = 16 10 0.027 0.085

B = 5 25 = 32 5 0.023 0.085

Classification. For each trained representation zB we construct the binary vec-

tor hB (B ∈ {1, 2, 3, 4, 5}). We then fit a logistic regression for each representation

separately. For each logistic regression, ρ and λ are found by cross-validation (Pe-

dregosa et al., 2011). We encourage a strong penalty ℓ1 to set to zero the coefficients

for non-discriminating features for each representation. Table 3.3 shows for each lo-

gistic regression the initial number of features and the number of features whose

regression coefficient is different from zero.

Table 3.3: Information on logistic regression for each representation (step 1 in pro-
cess 3.5.2).

Depth hB size
Number of features actually

used to classify

B = 1 115 23

B = 2 203 26

B = 3 293 24

B = 4 328 26

B = 5 187 11

Then, we fit the final logistic regression on each extracted feature (whose regres-

sion coefficients differ from 0). The final logistic regression performs on 110 features.

After training, 89 coefficients are set to zero in this regression because of the penalty

effect. Initially, the concatenation of feature vectors is a vector of size 1126, but only

21 features are ultimately used for the classification problem.
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The test accuracy is 0.94, and the train accuracy is 1. Now that the final logistic

regression is fitted, we can look at the coefficients of this regression. Table 3.4 shows

the most critical features (whose relative importance is greater than 5 percent).

Table 3.4: Details of the most discriminative features in the final logistic regression
(step 3 in process 3.5.2), intercept is 5.13.

Depth
Symbolic

subsequence

Logistic regression

coefficients

Relative

importance

B = 1 bb - 0.92 7.0 %

B = 1 fc - 0.93 7.2 %

B = 1 hk - 1.20 9.2 %

B = 1 kg - 0.98 7.4 %

B = 1 kh - 0.76 5.8 %

B = 3 Fx 1.23 9.4 %

Our representation is interpretable and allows us to decode symbolic subse-

quences, so we can use the extracted features and logistic regression coefficients

to gain insight into the problem. We can interpret the classification decision at the

global level as well as at the local level.

Global interpretability. It consists in visualizing which feature at the model

level allows the classification of the time series correctly. With our architecture, de-

coding the discriminative symbolic subsequences suffices to understand what the un-

supervised model learned, and visualize the reconstructed subseries. Let us consider

the symbolic subsequence ’Fx’ (for depth B = 3 in Table 3.4). This subsequence

is the most discriminative subsequence for class one. When we decode this subse-

quence in Figure 3.9, we obtain a subseries that characterizes the way the finger is

raised. This subseries differs from the way the gun is raised.

Discriminative 
Symbolic subsequence

Visualization of the 
symbolic subsequence in 

the time domain

Figure 3.9: Global interpretability decision. Visualization of the most discriminative
symbolic subsequence for class 1 (Point).

Local interpretability. It consists in visualizing for an instance the regions of

the time series that make the decision. For example, take the symbolic subsequence
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’hk’ (for depth B = 1 in Table 3.4), which is the most discriminating subsequence

for class 0. Figure 3.10 presents an instance whose representation (B = 1) contains

the subsequence ’hk’. Then, we highlight in red the pre-image of this subsequence

using the receptive fields of the convolutions (see Appendix B.2 for the details).

... Symbolic
representationh k ...

Encoder preimage

Figure 3.10: Local interpretability for a class 0 (Gun) instance.

3.6.2.2 ShapeletSim dataset

The ShapeletSim dataset comprises two classes, class 0 is purely white noise, and

class 1 includes a triangle shape at a random location. The classification problem is

easily interpretable because only the presence or absence of a triangle characterizes

the difference between the two classes.

As in the previous use case, we construct the different symbolic representations

in an unsupervised manner and then extract the discriminative features. The high-

est coefficient in the final logistic regression is associated with the symbolic subse-

quence ’wjdddjw’. Using the decoder, we decoded the subsequence ’wjdddjw’ and

examined the resulting decoded shape. Figure 3.11 presents visualization for global

interpretable classification decision.

Discriminative symbolic 
subsequence

Visualization of the 
symbolic subsequence 

in the time domain

Figure 3.11: Global interpretability decision. Visualization of the most discrimina-
tive symbolic subsequence for class 1 (includes triangle).

We observed in Figure 3.11 that the decoded shape matches the vertex of the

decoded triangle. It is worth noting that this demonstration of global interpretability

does not require any specific instance for visualization.
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On the other hand, Figure 3.12 shows a visualization of the local interpretability

for the symbolic subsequence ’wjdddjw’ for a given sample. We retrieve the trian-

gular shape by computing the pre-image of the discriminating subsequence for this

given sample.

Symbolic
representation

Encoder preimage

Figure 3.12: Local interpretability for a class 1 (includes triangle) instance.

3.7 Limitations

In this section, we identify and discuss the main limitations of the proposed method.

We will cover the following points: (i) The impact of key hyperparameters on the

method’s effectiveness. (ii) A comparative analysis of the method’s performance

against supervised neural networks. (iii) A discussion of the edges effects of recon-

structions on interpretability. (iv) The application of the method to multivariate

time series.

3.7.1 Critical hyperparameters in the proposed method

The vector quantization encoder-decoder that extracts the discrete neural represen-

tation relies heavily on two hyperparameters that are difficult to tune.

• The compression level (ratio of series length to latent representation

length). Depending on the use case and the time series, finding the optimal

compression level is not straightforward. To tackle this problem, we have pro-

posed using several levels of representations with different compression levels

to capture information at various frequencies. However, considering too many

levels of representation can hinder the interpretability of the classifier built on

top of it (Lipton, 2018).

• The symbolic vocabulary size. The vocabulary size is an essential element:

the larger the vocabulary, the better the reconstruction and the less expressive

the representation (and the more computationally expensive the downstream



3.7. Limitations 67

classification method). This hyperparameter is difficult to optimize by cross-

validation, because we do not necessarily want the best reconstruction at all

costs, but the most expressive representation with the best possible recon-

struction. We propose an ablation study in Appendix B.3, which shows that

the vocabulary size is a critical hyperparameter.

In addition, classification requires optimization of the following key hyperparam-

eters.

• The ℓ1 and ℓ2 regularization hyperparameters for logistic regres-

sion. These hyperparameters can be determined through cross-validation,

using tools like scikit-learn (Pedregosa et al., 2011). However, there is a trade-

off to consider. We prefer a strong ℓ1 regularization to yield only a few dis-

criminative subsequences, even if it results in a slightly lower accuracy score.

• The length of the symbolic subsequences used to identify discrim-

inating patterns. In the extensive classification experiment on 25 UCR

datasets, we searched for discriminative symbolic subsequences of length 1 or

2 due to computational constraints. While exploring the entire subsequence

space would yield more accurate and interpretable results, it is computation-

ally prohibitive with traditional gradient descent optimization.

3.7.2 Comparison with supervised neural network classifiers

As shown in Section 3.6.1, our proposed method outperforms or matches existing

interpretable classifiers and is on part with state-of-the-art unsupervised neural rep-

resentation models paired with SVM classifiers.

However, an important question remains: How does our method compare to the

best supervised neural networks? In Table 3.5, we present a comparison of our

method with purely supervised neural networks on the 25 datasets investigated in

Table 3.1. The baseline results are derived from the works of Fawaz et al. (2018)

and Ismail Fawaz et al. (2020).

Table 3.5: Classification results on 25 UCR datasets. Comparison of our proposed
model with supervised neural networks.

Our proposed

method
ResNet AlexNet CNN MLP

Accuracy 79.3 % 82.3 % 82.0 % 72.2 % 69.5 %

In Table 3.5, the accuracy scores of ResNet and AlexNet outperform our method

by 3% and 2.7%, respectively. However, our method significantly outperforms the
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CNN and MLP models. These results indicate a small gap between our proposed

method and the state-of-the-art neural network classifiers. In Section 6.2, we sug-

gest future directions to improve the accuracy of our method while preserving its

interpretability.

3.7.3 Edge effects of reconstructions on interpretability

Due to the structure of the decoder, we note that for a given neural symbolic subse-

quence, the symbolic elements to the left and right of this subsequence can influence

its reconstruction. This neighborhood effect implies that, in practice, the recon-

struction of the same symbolic subsequence may differ at the edges between different

symbolic neural representations. Such variations may affect the global interpretabil-

ity of the visualization of discriminative subsequences. However, we found that these

effects are primarily noticeable at the edges of the extracted patterns rather than

within the patterns themselves. Future research could focus on mitigating these

edge effects.

3.7.4 A method only tested on univariate time series

This work focuses on univariate time series, but the proposed method could be

adapted to multivariate series using 1D convolutions with multiple input and out-

put channels. Regarding the discrete representation, we hypothesize that a larger

vocabulary size would be required to characterize multivariate time series accurately.

While an increase in the number of possible symbols may reduce interpretability,

we believe that future research should explore the viability of testing this approach

with a small number of input channels, such as two, which could maintain strong

performance and interpretability.

3.8 Conclusion

We first present essential requirements for building an interpretable neural repre-

sentation for time series and then present an architecture that satisfies these re-

quirements. The proposed unsupervised symbolic neural model fills a gap between

symbolic and neural representations for time series. It has the advantage of allowing

global interpretability of downstream classification tasks, while guaranteeing high

expressiveness and good performance. The constructed representation has been

evaluated both qualitatively and quantitatively on classification tasks. We show

promising accuracy results compared to both in-situ interpretable and neural meth-

ods. Additionally, the proposed interpretability provides an understanding of the

model’s classification decisions at both global and local levels for a broad range of

time series. We believe that the design of interpretable and explainable deep learning
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models will become increasingly important with the new European AI regulations,

i.e., the AI Act (Panigutti et al., 2023).

Much of our work has been devoted to building an unsupervised neural archi-

tecture that meets the interpretability requirements. For future work, the use of

coordinate descent, as described in Ifrim and Wiuf (2011), can improve the accu-

racy of these models by identifying longer symbolic subsequences that help distin-

guish between classes. In addition, it seems interesting to explore the choice of

reconstruction loss in the unsupervised architecture.



Chapter 4

Time Series Continuous Modeling

for Imputation and Forecasting
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In this chapter, we present a novel modeling approach for time series imputation and

forecasting using a continuous representation mechanism. The proposed model ad-

dresses the challenges often encountered in real-world data, such as irregular samples,

missing data, or unaligned measurements from multiple sensors. Our method relies

on a continuous-time-dependent model of the series’ evolution dynamics. It lever-

ages adaptations of conditional, implicit neural representations for sequential data.

A modulation mechanism, driven by a meta-learning algorithm, allows adaptation

to unseen samples and extrapolation beyond observed time-windows for long-term

predictions. The model provides a highly flexible and unified framework for impu-

tation and forecasting tasks across a wide range of challenging scenarios. It achieves

state-of-the-art performance on classical benchmarks and outperforms alternative

time-continuous models.
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4.1 Introduction

Time series analysis and modeling are ubiquitous in a wide range of fields, including

industry, medicine, and climate science. The variety, heterogeneity and increas-

ing number of deployed sensors, raise new challenges when dealing with real-world

problems for which current methods often fail. For example, data are frequently

irregularly sampled, contain missing values, or are unaligned when collected from

distributed sensors (Schulz and Stattegger, 1997; Clark and Bjørnstad, 2004). Re-

cent advancements in deep learning have significantly improved state-of-the-art per-

formance in both data imputation (Cao et al., 2018; Du et al., 2023) and forecasting

tasks (Zeng et al., 2022; Nie et al., 2022). Many state-of-the-art models, such as

transformers, have been primarily designed for dense and regular grids (Wu et al.,

2021; Nie et al., 2022; Du et al., 2023). They struggle to handle irregular data and

often suffer from significant performance degradation (Chen et al., 2001; Kim et al.,

2019).

Our objective is to explore alternatives to state-of-the-art (SOTA) transform-

ers able to handle, in a unified framework, imputation and forecasting tasks for

irregularly, arbitrarily sampled, and unaligned time series sources. Time-dependent

continuous models (Rasmussen and Williams, 2006; Garnelo et al., 2018; Rubanova

et al., 2019) offer such an alternative. However, until now, their performance has

lagged significantly behind that of models designed for regular discrete grids. A

few years ago, implicit neural representations (INRs) emerged as a powerful tool for

representing images as continuous functions of spatial coordinates (Sitzmann et al.,

2020; Tancik et al., 2020) with recent new applications such as image generation

(Dupont et al., 2022) or even modeling dynamical systems (Yin et al., 2023).
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In this work, we leverage the potential of conditional INR models within a meta-

learning approach to introduce TimeFlow: a unified framework designed for mod-

eling continuous time series and addressing imputation and forecasting tasks with

irregular and unaligned observations. Our key contributions are:

• We propose a novel framework that excels in modeling time series as contin-

uous functions of time, accepting arbitrary time step inputs, thus enabling

the handling of irregular and unaligned time series for both imputation and

forecasting tasks. This is one of the very first attempts to adapt INRs that

enables efficient handling of both imputation and forecasting tasks within a

unified framework. The methodology which leverages the synergy between the

model components, evidenced in the context of this application, is a pioneering

contribution to the field.

• We conducted an extensive comparison with state-of-the-art continuous and

discrete models. It demonstrates that our approach outperforms continuous

and discrete SOTA deep learning approaches for imputation. As for long-term

forecasting, it outperforms existing continuous models both on regular and

irregular samples. It is on par with SOTA discrete models on regularly sampled

time series while allowing for a much greater flexibility for irregular samplings,

allowing to cope with situations where discrete models fail. Furthermore, we

prove that our method effortlessly handles previously unseen time series and

new time windows, making it well-suited for real-world applications.

4.2 Related work

Discrete methods for time series imputation and forecasting. Recently,

Deep Learning (DL) methods have been widely used for both time series imputa-

tion and forecasting. For imputation, BRITS (Cao et al., 2018) uses a bidirectional

recurrent neural network (RNN). Alternative frameworks were later explored, e.g.,

GAN-based (Luo et al., 2018, 2019; Liu et al., 2019b), VAE-based (Fortuin et al.,

2020), diffusion-based (Tashiro et al., 2021), matrix factorization-based (TIDER,

Liu et al., 2023) and transformer-based (SAITS, Du et al., 2023) approaches. These

methods cannot handle irregular time series. In situations involving multiple sensors,

such as those placed at different locations, incorporating new sensors necessitates

retraining the entire model, thereby limiting their usability. For forecasting, most

recent DL SOTA models are based on transformers. Initial approaches apply plain

transformers directly to the series, each token being a series element (Zhou et al.,

2021; Liu et al., 2022; Wu et al., 2021; Zhou et al., 2022). These transformers may

underperform linear models as shown in (Zeng et al., 2022). PatchTST (Nie et al.,

2022) significantly improved transformers SOTA performance by considering sub-



4.2. Related work 73

series as tokens of the series. However, all these models cannot handle properly

irregularly sampled look-back windows.

Continuous methods for time series. Gaussian Processes (Rasmussen and

Williams, 2006) have been a popular family of methods for modeling time series

as continuous functions. They require choosing an appropriate kernel (Corani et al.,

2021) and may suffer limitations in large dimensions settings. Neural Processes

(NPs) (Garnelo et al., 2018; Kim et al., 2019) parameterize Gaussian processes

through an encoder-decoder architecture leading to more computationally efficient

implementations. NPs have been used to model simple signals for imputation and

forecasting tasks, but struggle with more complex signals. Bilos et al. (2023) param-

eterizes a Gaussian Process through a diffusion model, but the model has difficulty

adapting to a large number of timestamps. Other approaches such as Brouwer et al.

(2019) and Rubanova et al. (2019) model time series continuously with latent ordi-

nary differential equations. mTAN (Shukla and Marlin, 2021), a transformer model,

uses an attention mechanism to impute irregular time series. While these approaches

have shown significant progress in continuous modeling for time series, we observed

that their performances on imputation and forecasting tasks are inferior compared

to the aforementioned discrete models (Table 4.2, Table 4.5).

Implicit neural representations. The recent development of implicit neural

representations (INRs) has led to impressive results in computer vision (Sitzmann

et al., 2020; Tancik et al., 2020; Fathony et al., 2021; Mildenhall et al., 2021). INRs

can represent data as a continuous function, which can be queried at any coordinate.

While they have been applied in other fields such as physics (Yin et al., 2023) and

meteorology (Huang and Hoefler, 2023), there has been limited research on INRs for

time series analysis. Prior works (Fons et al., 2022; Jeong and Shin, 2022) focused

on time series generation for data augmentation and on time series encoding for

reconstruction but are limited by their fixed grid input requirement. DeepTime

(Woo et al., 2022) is the closest work to our contribution. DeepTime learns a set of

basis INR functions from a training set of multiple time series and combines them

using a Ridge regressor. This regressor allows it to adapt to new time series. It has

been designed for forecasting only. The original version cannot handle imputation

properly and was adapted to do so for our comparisons. In our experiments, we will

demonstrate that TimeFlow significantly outperforms DeepTime in imputation and

also in forecasting tasks when dealing with missing values in the look-back window.

TimeFlow also shows a slight advantage over DeepTime in forecasting regularly

sampled series.
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4.3 The TimeFlow framework

4.3.1 Problem setting

We aim to develop a unified framework for time series imputation and forecasting

that reduces dependency on a fixed sampling scheme for time series. We introduce

the following notations for both tasks. During training, in the imputation setting,

we have access to time series in an observed temporal grid denoted as Tin, which
is a subset of the dense temporal support T . In the forecasting setting, we observe

time series within a limited past time grid, referred to as the ’look-back window’

and denoted as Tin (a subset of T ), as well as a future grid, the ’horizon’, denoted as

Tout (also a subset of T ). At test time, in both cases, and given observed values in a

temporal grid T ∗
in included in a possibly new temporal window T ∗, our objective is to

infer the time series values within T ∗. T ∗ = T if we infer values in the training tem-

poral support (e.g. in the classical imputation scenario, see Section 4.4.1), T ∗ ̸= T if

we infer for a new temporal support(e.g. in the forecasting setting, see Section 4.4.2).

4.3.2 Key components

Our framework is articulated around three key components:

(i) INR-based time-continuous functions: a discrete time series x = (xt1 ,xt2 ,

. . . ,xtk) can be represented by an underlying time-continuous function x : t ∈
R+ → xt ∈ Rd. We want to approximate the ground-truth x by employing

implicit neural representations (INRs), which are neural networks capable of

learning a parameterized continuous function fθ from discrete data by mini-

mizing the reconstruction loss between observed data and network’s outputs.

(ii) Conditional INRs with modulations: An INR can represent only one

function, whether it’s an image or a time series. To effectively represent a

collection of time series (x(j))j using INRs, we improve their encoding by

incorporating per-sample modulations, which we denote as ψ(j). These mod-

ulations condition the parameters θ of the INRs. We use the notation fθ,ψ(j)

to refer to the conditioned INR with the modulations ψ(j).

(iii) Optimization-based encoding: the conditioning modulation parameters

ψ(j) are calculated as a function of codes z(j) that represent the individual

sample series. We acquire these codes z(j) through a meta-learning optimiza-

tion process using an auto-decoding strategy. Notably, auto-decoding has been

found to be more efficient for this purpose than set encoders (Kim et al., 2019).
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In the following sections, we will elaborate on each component of our method.

Given that the choices made for each component and the methodology developed to

enhance their synergy are essential aspects, we provide a discussion of the various

choices involved in Section 4.3.4.

INR-based time-continuous functions. We implement our INR with Fourier

features and a feed-forward network (FFN) with ReLU activations, i.e. for a time

coordinate t ∈ T , the output of the INR fθ is given by fθ(t) = FFN(γ(t)). The

Fourier Features γ(·) are a frequency embedding of the time coordinates used to

capture high-frequencies (Tancik et al., 2020; Mildenhall et al., 2021). In our case, we

chose γ(t) := (sin(πt), cos(πt), · · · , sin(2N−1πt), cos(2N−1πt)), with N the number

of fixed frequencies. For an INR with L layers, the output is computed as follows:

(i) we get the frequency embedding ϕ0 = γ(t), (ii) we update the hidden states

according to ϕl = ReLU(θlϕl−1 + bl) for l = 1, . . . , L, (iii) we project onto the

output space fθ(t) = θL+1ϕL + bL+1.

Conditional INRs with modulations. As indicated, sample conditioning of the

INR is performed through modulations of its parameters. In order to adapt rapidly

the model to new samples, the conditioning should rely only on a small number of the

INR parameters. This is achieved by modifying only the biases of the INR through

the introduction of an additional bias term ψ
(j)
l for each layer l, also known as shift

modulation. To further limit the versatility of the conditioning, we generate the

instance modulations ψ(j) from compact codes z(j) through a linear hypernetwork

h with parameters w, i.e., ψ(j) = hw(z
(j)). Consequently, the approximation of a

time series x(j), denoted globally as fθ,hw(z(j)), will depend on shared parameters

θ and w that are common among all the INRs involved in modeling the series

family and on the code z(j) specific to series x(j). The output of the l-th layer

of the modulated INR is given by ϕl = ReLU(θlϕl−1 + bl + ψ
(j)
l ), where ψ

(j)
l =

Wlz
(j), and w := (Wl)

L
l=1 are the parameters of the hypernetwork hw. This design

enables gathering information across samples into the common parameters of the

INR and hypernetwork, while the codes contain only specific information about their

respective time-series samples. The architecture is illustrated in Figure 4.1.

Optimization-based encoding. We condition the INR using the data from Tin,
and learn the shared INR and hypernetwork parameters θ and w using Tin for

both imputation and forecasting, and Tout for forecasting only. We achieve the

conditioning on Tin by optimizing the codes z(j) through gradient descent. The joint

optimization of the codes and common parameters is challenging. In TimeFlow, it

is achieved through a meta-learning approach, adapted from Dupont et al. (2022)

and Zintgraf et al. (2019). The objective is to learn shared parameters so that the

code z(j) can be adapted in just a few gradient steps for a new series x(j). For



76
Chapter 4. Time Series Continuous Modeling for Imputation and Forecasting

with Implicit Neural Representations

Figure 4.1: Overview of TimeFlow architecture. Forward pass to approximate the
time series x(j). σ stands for the ReLU activation function.

training, we perform parameter optimization at two levels: the inner-loop and the

outer-loop. The inner-loop adapts the code z(j) to condition the network on the

set T (j)
in , while the outer-loop updates the common parameters using T (j)

in and also

T (j)
out for forecasting (see Appendix C.6 for more detailed intuition.). We present

our training optimization in Algorithm 1. At each training epoch and for each

batch of data B composed of time series x(j) sampled from the training set, we first

update individually the codes z(j) in the inner loop, before updating the common

parameters in the outer loop using a loss over the whole batch. We introduce a

parameter λ to weight the importance of the loss over Tout w.r.t. the loss over Tin
for the outer-loop. In practice, when Tout exists, i.e. for forecasting, we set λ = 1

and λ = 0 otherwise. We use an MSE loss over the observations grid LT (xt, x̃t) :=

Et∼T [(xt − x̃t)2]. We denote α and η the learning rates of the inner-loop and outer-

loop. Using K = 3 steps for training and testing is sufficient for our experiments

thanks to the use of second-order meta-learning as explained in Section 4.3.4.
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Algorithm 1: TimeFlow Training

while no convergence do

Sample batch B of data (x(j))j∈B;

Set codes to zero z(j) ← 0,∀j ∈ B ;

// inner loop for encoding:

for j ∈ B and step ∈ {1, ..., K} do
z(j)← z(j) − α∇z(j)LT (j)

in
(fθ,hw(z(j)), x

(j));

end

// outer loop step:

[θ, w]←
[θ, w]− η∇[θ,w]

1
|B|
∑

j∈B[LT (j)
in

(fθ,hw(z(j)), x
(j)) + λLT (j)

out
(fθ,hw(z(j)), x

(j))] ;

end

4.3.3 TimeFlow inference

During the inference process, we aim to infer the time series value for each timestamp

in the dense grid T ∗(j) based on the partial observation grid T ∗(j)
in ⊂ T ∗(j). We can

encounter two scenarios: (i) One where we observe the same time window as during

training (T ∗(j) = T (j)) as in the imputation setting in Section 4.4.1. (ii) One,

where we are dealing with a newly observed time window (T ∗(j) ̸= T (j)), as in the

forecasting setting in Section 4.4.2. At inference, the parameters θ and w are kept

fixed to their final training values. We optimize the individual parameters z∗(j)

based on the newly observed grid T ∗(j)
in using the K inner-steps of the meta-learning

algorithm as described in Algorithm 2. We are then in position to query fθ,hw(z∗(j))(t)

for any given timestamp t ∈ T ∗(j).

Algorithm 2: TimeFlow Inference with trained θ, w

For the j-th series (x(j)), set code to zero z∗(j) ← 0;

for step ∈ {1, ..., K} do
z∗(j) ← z∗(j) − α∇z∗(j)LT ∗(j)

in
(fθ,hw(z∗(j)), xt)

end

Query fθ,hw(z∗(j))(t) for any t ∈ T ∗(j)

4.3.4 Discussion on implementation choices

As indicated before, adapting the components and enhancing their synergy for the

tasks of imputation and forecasting is not trivial and requires careful choices. We

conducted several ablation studies to provide a comprehensive examination of key

implementation choices of our framework.

Our findings can be summarized as follows.
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• Choice of INR: An FFN with Fourier Features outperformed other pop-

ular INRs for the tasks considered in this study. Unlike SIREN (Sitzmann

et al., 2020), which does not explicitly incorporate frequencies but uses sine

activation functions, the Fourier features network can more effectively capture

a wider range of frequencies, especially at low sampling rates. This is cru-

cial for accurately capturing high frequencies in sparsely observed time series.

Our experiments, detailed in Section C.2.2.1 and Table C.1, demonstrate this

superiority across various datasets.

• Choice of encoding / meta-learning: TimeFlow with a set encoder for

learning the compact conditioning codes z in place of the auto-decoding strat-

egy used here, proved much less effective on complex datasets. This is fur-

ther elaborated in Section C.2.2.4 and Table C.8. Additionally, replacing the

2nd-order meta-learning optimization for a 1st-order one, such as REPTILE

(Nichol et al., 2018), led to unstable training, as shown in Table C.7.

• Choice of modulations: Complexifying the modulation by introducing scal-

ing parameters in addition to shift parameters did not provide performance

gains. Our experiments on the Electricity dataset, detailed in Section C.2.2.5

and Table C.9, indicate that shift-only modulation is more efficient.

For TimeFlow, across all experiments, we used a code dimension of 128, an FFN

with a depth of 5 and a width of 256, and 64 Fourier features. We used 3 inner

steps and a learning rate of 0.01 for the inner-loop, and a learning rate of 5× 10−4

for the outer-loop. We performed a comprehensive analysis to understand notably

the influence of the z dimension: a latent code dimension of 128 was suitable

for our tasks; this is supported by results in Section C.2.2.2 and Table C.2 - and

the influence of the number of inner steps: using 3 inner steps for training

and inference struck a favorable balance between reconstruction capabilities and

computational efficiency, as detailed in Section C.2.2.3.

4.4 Experiments

We conducted a comprehensive evaluation of our TimeFlow framework across three

different tasks, comparing its performance to state-of-the-art continuous and discrete

baseline methods. In Section 4.4.1, we assess TimeFlow’s capabilities to impute

sparsely observed time series under various sampling rates. Section 4.4.2 focuses

on long-term forecasting, where we evaluate TimeFlow over standard long-term

forecasting horizons. In Section 4.4.3, we tackle a challenging task forecasting with

incomplete look-back windows, thus combining the challenges of imputation and

forecasting. The code for the experiments is available at this link

https://anonymous.4open.science/r/INR_TS-E510/README.md
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Datasets. We tested our framework on three extensive datasets where a single

phenomenon is measured at multiple locations over time, namely Electricity, Traffic

and Solar. The Electricity dataset comprises hourly electricity load curves of 321

customers in Portugal, spanning the years 2012 to 2014. The Traffic dataset is

composed of hourly road occupancy rates from 862 locations in San Francisco during

2015 and 2016. Lastly, the Solar dataset contains measurements of solar power

production from 137 photovoltaic plants in Alabama, recorded at 10-minute intervals

in 2006. Additionally, we have created an hourly version, SolarH, for the sake of

consistency in the forecasting section. These datasets exhibit diversity in various

characteristics: • They exhibit diverse temporal frequencies, including daily and

weekly seasonality observed in the Traffic and Electricity datasets, while the Solar

dataset possesses only daily frequency. • There is individual variability across data

samples and more pronounced trends in the Electricity dataset compared to the

Traffic and Solar datasets.

Datasets source. Electricity dataset is available here, Traffic dataset here and

Solar dataset here. Table 4.1 provides a concise overview of the main information

about the datasets used for forecasting and imputation tasks.

Table 4.1: Summary of datasets information.

Dataset name Number of samples Number of time steps Sampling frequency Location Years

Electricity 321 26 304 hourly Portugal 2012− 2014

Traffic 862 17 544 hourly San Francisco bay 2015− 2016

Solar 137 52 560 10 minutes Alabama 2006

SolarH 137 8 760 hourly Alabama 2006

TimeFlow relative improvement score. In the following experiments, the rel-

ative improvement score of TimeFlow is provided. Its purpose is to quantify the

average incremental benefit of TimeFlow over the method under consideration. It

is computed as follows:

TimeFlow improvement =
1

L

L∑
l=1

sl(baseline)− sl(TimeFlow)

sl(baseline)

• s stands for the Mean Absolute Error score of the considered method against the

ground truth at line l. • L stands for the number of line in the table.

https://archive.ics.uci.edu/dataset/321/electricityloaddiagrams20112014
https://pems.dot.ca.gov/
https://zenodo.org/record/3889974
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4.4.1 Imputation

4.4.1.1 Imputation for known time series.

We consider the classical imputation setting where n time series are partially ob-

served over a given time window. Using our approach, we can predict for each time

series the value at any timestamp t in that time window based on partial observa-

tions.

Setting. For a time series x(j), we denote the set of observed points as T (j)
in and

the ground truth set of points as T (j). The observed time grids may be irregularly

spaced and may differ across the different time series (T (j1)
in ̸= T (j2)

in ,∀j1 ̸= j2). The

model is trained for each x(j) following Algorithm 1. Then, we aim to infer for

any unobserved t ∈ T (j) the missing value x
(j)
t conditioned on T (j)

in according to

Algorithm 2.

For this imputation task, the TimeFlow training and inference procedures are

detailed in Appendix A.2 and illustrated in Figure 4.2. For comparison with the

SOTA imputation baselines, we assume that the ground truth time grid is the same

for each sample. The subsampling rate τ is define as the rate of observed values.

Training

Inference

Figure 4.2: Training and inference procedures of TimeFlow for imputation. (i) Dur-
ing training, for each time series x(j), our observations (red dots •) are restricted

to the sparsely sampled grid, denoted as T (j)
in . (ii) During inference, our objective

is to infer the values over the dense grids T (j), on the unobserved data points (such
as the blue dots • on the figure).

Baselines. We compare TimeFlow with various baselines, including discrete im-

putation methods, such as CSDI (Tashiro et al., 2021), SAITS (Du et al., 2023),

BRITS (Cao et al., 2018), and TIDER (Liu et al., 2023), and continuous ones, such

as Neural Process (NP, Garnelo et al., 2018), mTAN (Shukla and Marlin, 2021), and

DeepTime with slight adjustments (Woo et al., 2022) (details cf. Appendix C.3.2).
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Table 4.2: Mean MAE imputation results on the missing grid only. Each time series
is divided into 5 time windows onto which imputation is performed, and the perfor-
mances are averaged over the 5 windows. In the table, τ stands for the subsampling
rate, i.e. the proportion of observed points considered for each time window. Bold
results are best, underlined results are second best. TimeFlow improvement repre-
sents the overall percentage improvement achieved by TimeFlow compared to the
specific method being considered.

Continuous methods Discrete methods

τ TimeFlow DeepTime mTAN Neural Process CSDI SAITS BRITS TIDER

0.05 0.324 ± 0.013 0.379 ± 0.037 0.575 ± 0.039 0.357 ± 0.015 0.462 ± 0.021 0.384 ± 0.019 0.329 ± 0.015 0.427 ± 0.010
0.10 0.250 ± 0.010 0.333 ± 0.034 0.412 ± 0.047 0.417 ± 0.057 0.398 ± 0.072 0.308 ± 0.011 0.287 ± 0.015 0.399 ± 0.009

Electricity 0.20 0.225 ± 0.008 0.244 ± 0.013 0.342 ± 0.014 0.320 ± 0.017 0.341 ± 0.068 0.261 ± 0.008 0.245 ± 0.011 0.391 ± 0.010
0.30 0.212 ± 0.007 0.240 ± 0.014 0.335 ± 0.015 0.300 ± 0.022 0.277 ± 0.059 0.236 ± 0.008 0.221 ± 0.008 0.384 ± 0.009
0.50 0.194 ± 0.007 0.227 ± 0.012 0.340 ± 0.022 0.297 ± 0.016 0.168 ± 0.003 0.209 ± 0.008 0.193 ± 0.008 0.386 ± 0.009

0.05 0.095 ± 0.015 0.190 ± 0.020 0.241 ± 0.102 0.115 ± 0.015 0.374 ± 0.033 0.142 ± 0.016 0.165 ± 0.014 0.291 ± 0.009
0.10 0.083 ± 0.015 0.159 ± 0.013 0.251 ± 0.081 0.114 ± 0.014 0.375 ± 0.038 0.124 ± 0.018 0.132 ± 0.015 0.276 ± 0.010

Solar 0.20 0.072 ± 0.015 0.149 ± 0.020 0.314 ± 0.035 0.109 ± 0.016 0.217 ± 0.023 0.108 ± 0.014 0.109 ± 0.012 0.270 ± 0.010
0.30 0.061 ± 0.012 0.135 ± 0.014 0.338 ± 0.05 0.108 ± 0.016 0.156 ± 0.002 0.100 ± 0.015 0.098 ± 0.012 0.266 ± 0.010
0.50 0.054 ± 0.013 0.098 ± 0.013 0.315 ± 0.080 0.107 ± 0.015 0.079 ± 0.011 0.094 ± 0.013 0.088 ± 0.013 0.262 ± 0.009

0.05 0.283 ± 0.016 0.246 ± 0.010 0.406 ± 0.074 0.318 ± 0.014 0.337 ± 0.045 0.293 ± 0.007 0.261 ± 0.010 0.363 ± 0.007
0.10 0.211 ± 0.012 0.214 ± 0.007 0.319 ± 0.025 0.288 ± 0.018 0.288 ± 0.017 0.237 ± 0.006 0.245 ± 0.009 0.362 ± 0.006

Traffic 0.20 0.168 ± 0.006 0.216 ± 0.006 0.270 ± 0.012 0.271 ± 0.011 0.269 ± 0.017 0.197 ± 0.005 0.224 ± 0.008 0.361 ± 0.006
0.30 0.151 ± 0.007 0.172 ± 0.008 0.251 ± 0.006 0.259 ± 0.012 0.240 ± 0.037 0.180 ± 0.006 0.197 ± 0.007 0.355 ± 0.006
0.50 0.139 ± 0.007 0.171 ± 0.005 0.278 ± 0.040 0.240 ± 0.021 0.144 ± 0.022 0.160 ± 0.008 0.161 ± 0.060 0.354 ± 0.007

TimeFlow improvement / 24.14 % 50.53 % 31.61 % 36.12 % 20.33 % 18.90 % 53.40 %

See Appendix C.3.1.1 for the baseline training procedure and hyperparameter se-

lection. For each dataset, we divide the series into five independent time windows

(consisting of 2000 timestamps for Electricity and Traffic, and 10,000 timestamps

for Solar), perform imputation on each time window and average the performance

to obtain robust results. We evaluate the quality of the models for different subsam-

pling rates, from the easiest τ = 0.5 to the most difficult τ = 0.05. All the scores

presented in the experiments are reported as Mean Absolute Error (MAE).

Results. We show in Table 4.2 that TimeFlow outperforms both discrete and

continuous models across almost all τ ’s for the given datasets. The relative im-

provements of TimeFlow over the baselines are significant, ranging from 15% to

50%. Especially for the lowest sampling rate τ = 0.05, TimeFlow outperforms all

discrete baselines, demonstrating the advantages of continuous modeling. Addition-

ally, it achieves lower imputation errors compared to continuous models in all but

one cases. Qualitatively, we see on example series in Figure 4.3 that our model

shows significant imputation capabilities, with a subsampling rate at τ = 0.1 on the

Electricity dataset. It captures well different frequencies and amplitudes in a chal-

lenging case (sample 35), although it underestimates the amplitude of some peaks.

In a more challenging scenario (sample 25), where the series exhibit additional trend

changes and frequency variations within the data, TimeFlow correctly imputes most

timestamps, outperforming BRITS, which is the best-performing method for the
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Electricity dataset.
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Individual 35: TimeFlow MAE : 0.316 BRITS MAE : 0.488

0.00 0.02 0.04 0.06 0.08 0.10
2

0

2
Individual 25: TimeFlow MAE : 0.404 BRITS MAE : 0.737

Ground Truth TimeFlow imputation BRITS imputation Observed points

Figure 4.3: Electricity dataset. TimeFlow imputation (blue line) and BRITS impu-
tation (gray line) with 10% of known point (red points) on the eight first days of
samples 35 (top) and 25 (bottom).

Imputation against non deep learning methods. In addition to the deep

learning methods presented in Table 4.2, we evalute TimeFlow against two classic

machine learning baselines, K-Nearest Neighbours (KNN) and linear interpolation,

which are valuable for getting an idea of the complexity of the problem.

Table 4.3: Mean MAE imputation results on the missing grid only over five different
time window. τ stands for the subsampling rate. Bold results are best, underline
results are second best.

τ TimeFlow Linear interpolation KNN (k=3)

0.05 0.324 ± 0.013 0.828 ± 0.045 0.531 ± 0.033

0.10 0.250 ± 0.010 0.716 ± 0.039 0.416 ± 0.020

Electricity 0.20 0.225 ± 0.008 0.518 ± 0.029 0.363 ± 0.019

0.30 0.212 ± 0.007 0.396 ± 0.022 0.342 ± 0.017

0.50 0.194 ± 0.007 0.275 ± 0.015 0.323 ± 0.016

0.05 0.095 ± 0.015 0.339 ± 0.031 0.151 ± 0.017

0.10 0.083 ± 0.015 0.170 ± 0.014 0.128 ± 0.017

Solar 0.20 0.072 ± 0.015 0.088 ± 0.010 0.110 ± 0.016

0.30 0.061 ± 0.012 0.063 ± 0.009 0.103 ± 0.017

0.50 0.054 ± 0.013 0.044 ± 0.008 0.096 ± 0.016

0.05 0.283 ± 0.016 0.813 ± 0.027 0.387 ± 0.014

0.10 0.211 ± 0.012 0.701 ± 0.026 0.293 ± 0.012

Traffic 0.20 0.168 ± 0.006 0.508 ± 0.022 0.249 ± 0.010

0.30 0.151 ± 0.007 0.387 ± 0.018 0.228 ± 0.009

0.50 0.139 ± 0.007 0.263 ± 0.013 0.204 ± 0.009

TimeFlow improvement / 49.06 % 35.95 %
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Results. KNN imputation uses information from other individuals and gives sat-

isfactory results at all sampling rates. On the other hand, the purely univariate

approach of linear interpolation struggles at low sampling rates but performs well at

high sampling rates. TimeFlow significantly outperforms both baselines by a large

margin.

4.4.1.2 Imputation on previously unseen time series.

In more practical scenarios, such as cases involving the installation of new sensors, we

often encounter new time series originating from the same underlying phenomenon.

In such instances, it becomes crucial to make inferences for these previously unseen

time series. Thanks to efficient adaptation in latent space, our model can easily be

applied to these new time series, contrasting with SOTA methods like SAITS and

BRITS, which require full model retraining on the whole set of time series.

Setting. In this section we analyze in details the imputations results for previously

unseen time series described in Section 4.4.1. Specifically, TimeFlow is trained on

a given set of time series within a defined time window and then used for inference

on new time series. We train TimeFlow on 50 % of the samples and consider the

remaining 50 % as the new time series. We compare in Table 4.4 observed grid fit

scores and missing grid inference scores for time series known at training and time

series unknown at training.

Table 4.4: TimeFlow MAE imputation errors results for imputation previsouly un-
seen time series.

Known time series New time series

τ Fit Inference Fit Inference

Electricity

0.05 0.060 ± 0.010 0.402 ± 0.021 0.142 ± 0.083 0.413 ± 0.026
0.10 0.046 ± 0.006 0.302 ± 0.010 0.144 ± 0.098 0.309 ± 0.016
0.20 0.067 ± 0.015 0.285 ± 0.014 0.154 ± 0.089 0.291 ± 0.022
0.30 0.093 ± 0.022 0.266 ± 0.010 0.163 ± 0.073 0.271 ± 0.017
0.50 0.108 ± 0.012 0.236 ± 0.010 0.167 ± 0.061 0.245 ± 0.017

Solar

0.05 0.014 ± 0.002 0.104 ± 0.015 0.050 ± 0.037 0.109 ± 0.016
0.10 0.017 ± 0.002 0.092 ± 0.015 0.052 ± 0.036 0.099 ± 0.017
0.20 0.028 ± 0.008 0.078 ± 0.014 0.058 ± 0.031 0.089 ± 0.017
0.30 0.038 ± 0.009 0.072 ± 0.013 0.063 ± 0.028 0.084 ± 0.018
0.50 0.045 ± 0.011 0.066 ± 0.013 0.067 ± 0.025 0.080 ± 0.019

Traffic

0.05 0.044 ± 0.003 0.291 ± 0.013 094 ± 0.051 0.291 ± 0.012
0.10 0.033 ± 0.001 0.209 ± 0.010 0.093 ± 0.060 0.216 ± 0.012
0.20 0.037 ± 0.006 0.175 ± 0.008 0.095 ± 0.058 0.186 ± 0.013
0.30 0.048 ± 0.005 0.164 ± 0.006 0.098 ± 0.051 0.175 ± 0.013
0.50 0.068 ± 0.004 0.159 ± 0.007 0.110 ± 0.042 0.169 ± 0.012

Results. The results presented in Table 4.4 indicate that the inference MAE for

missing grids shows consistency between known and new samples, regardless of the
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data or sampling rate. However, it is worth noting that there is a slight drop in

performance compared to the results in table Table 4.2. This decrease is because in

Table 4.4, the shared architecture is trained on only half the samples, affecting its

overall performance.

4.4.2 Forecasting

4.4.2.1 Forecasting for known time series

In this section, we are interested in the conventional long-term forecasting scenario.

It consists in predicting the phenomenon in a specific future period, the horizon,

based on the history of a limited past period, the look-back window. The forecaster

is trained on a set of n observed time series for a given time window (train period)

and tested on new distinct time windows.

Setting. For a given time series x(j), T (j)
in denotes the look-back window and

T (j)
out the horizon of H points. During training, at each epoch, we train fθ,hw(z(j))

following Algorithm 1 with randomly drawn pairs of look-back window and horizon

(T (j)
in ∪ T

(j)
out )j∈B within the observed train period. Then, for a distinct new time

window T ∗(j), given a look-back window T ∗(j)
in we forecast future values any t ∈ T ∗(j),

the horizon interval, following Algorithm 2. We illustrate the training and inference

of TimeFlow for the forecasting task in Figure 4.4. For further insight into the

training window and inference periods, as well as additional experiments conducted

under different inference scenarios, see Appendix C.4.1.

Baselines. To evaluate the quality of our model in long-term forecasting, we

compare it to the discrete baselines PatchTST (Nie et al., 2022), DLinear (Zeng

et al., 2022), AutoFormer (Wu et al., 2021), and Informer (Zhou et al., 2021).

We also include continuous baselines DeepTime and Neural Process (NP). See Ap-

pendix C.4.3.1 for the baseline training procedure and hyperparameter selection.

In Table 4.5, we present the forecasting results for standard horizons in long-term

forecasting: H ∈ {96, 192, 336, 720}. The look-back window length is fixed to 512.

Results. The results in Table 4.5 show that our approach ranks in the top two

across all datasets and horizons and is the overall best continuous method. Time-

Flow’s performance is comparable to the current SOTA model PatchTST, with only

2% relative difference. Moreover, TimeFlow shows consistent results across the three

datasets, whereas the other best discrete and continuous baselines, i.e. PatchTST

and DeepTime, performance drops for some datasets. We also note that, despite

the great performance of the SOTA PatchTST, other transformer-based baselines

(discrete methods in Table 4.5) perform poorly. We provide a detailed insight on
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Training

Inference

Figure 4.4: Training and inference procedure of TimeFlow for forecasting. (i) Dur-
ing training (top-figure), for each time series x(j), we observe some look-back win-
dow/horizon drawing pairs in the trained period. TimeFlow is trained with Al-
gorithm 1 to predict all observed timestamps in this drawing pairs while being
conditioned by the observed look-back window. (ii) Once TimeFlow is optimized,
the objective during inference (bottom-figure) is to infer the horizon over new time
windows (blue dots •) while being conditioned by the newly observed look-back
window (red dots •).

these results in Appendix C.4.1. Overall, although this evaluation setting favors

discrete methods because the time series are observed at evenly distributed time

steps, TimeFlow consistently performs as well as PatchTST and outperforms all the

other methods, whether discrete or continuous. It is the first time that a continuous

model has achieved the same level of performance as discrete methods within their

specific setting.

4.4.2.2 Forecasting on previously unseen time series

This section discusses how TimeFlow adapts to unseen time series, which is critical

in forecasting. Indeed, in many real-world applications, forecasters are trained on a

limited subset of available samples and applied to a wider range of samples during

inference. Informer, AutoFormer, or DLinear original architectures directly model

the relationships between time series (channel-dependence), limiting their adaptabil-

ity to new samples. In contrast, TimeFlow takes a different approach by considering

the observed series at different locations as distinct samples, similar to PatchTST,

Neural Process, and DeepTime. This independence allows TimeFlow to effectively

generalize to previously unseen time series of the same phenomenon.

Setting. In this setting, we propose to evaluate how TimeFlow performs on pre-

viously unseen time series. We compare it to the best forecaster, PatchTST. We



86
Chapter 4. Time Series Continuous Modeling for Imputation and Forecasting

with Implicit Neural Representations

Table 4.5: Mean MAE forecast results averaged over different time windows. Each
time, the model is trained on one time window and tested on the others (there
are 2 windows for SolarH and 5 for Electricity and Traffic). H stands for the
horizon. Bold results are best, and underlined results are second best. TimeFlow
improvement represents the overall percentage improvement achieved by TimeFlow
compared to the specific method being considered.

Continuous methods Discrete methods

H TimeFlow DeepTime Neural Process Patch-TST DLinear AutoFormer Informer

Electricity

96 0.228 ± 0.028 0.244 ± 0.026 0.392 ± 0.045 0.221 ± 0.023 0.241 ± 0.030 0.546 ± 0.277 0.603 ± 0.255
192 0.238 ± 0.020 0.252 ± 0.019 0.401 ± 0.046 0.229 ± 0.020 0.252 ± 0.025 0.500 ± 0.190 0.690 ± 0.291
336 0.270 ± 0.031 0.284 ± 0.034 0.434 ± 0.076 0.251 ± 0.027 0.288 ± 0.038 0.523 ± 0.188 0.736 ± 0.271
720 0.316 ± 0.055 0.359 ± 0.051 0.607 ± 0.150 0.297 ± 0.039 0.365 ± 0.059 0.631 ± 0.237 0.746 ± 0.265

SolarH

96 0.190 ± 0.013 0.190 ± 0.020 0.221 ± 0.048 0.262 ± 0.070 0.208 ± 0.014 0.245 ± 0.045 0.248 ± 0.022
192 0.202 ± 0.020 0.204 ± 0.028 0.244 ± 0.048 0.253 ± 0.051 0.217 ± 0.022 0.333 ± 0.107 0.270 ± 0.031
336 0.209 ± 0.017 0.199 ± 0.026 0.240 ± 0.006 0.259 ± 0.071 0.217 ± 0.026 0.334 ± 0.079 0.328 ± 0.048
720 0.218 ± 0.041 0.229 ± 0.024 0.403 ± 0.147 0.267 ± 0.064 0.249 ± 0.034 0.351 ± 0.055 0.337 ± 0.037

Traffic

96 0.217 ± 0.032 0.228 ± 0.032 0.283 ± 0.027 0.203 ± 0.037 0.228 ± 0.033 0.319 ± 0.059 0.372 ± 0.078
192 0.212 ± 0.028 0.220 ± 0.022 0.292 ± 0.024 0.197 ± 0.030 0.221 ± 0.023 0.368 ± 0.057 0.511 ± 0.247
336 0.238 ± 0.034 0.245 ± 0.038 0.305 ± 0.039 0.222 ± 0.039 0.250 ± 0.040 0.434 ± 0.061 0.561 ± 0.263
720 0.279 ± 0.050 0.290 ± 0.052 0.339 ± 0.038 0.269 ± 0.057 0.300 ± 0.057 0.462 ± 0.062 0.638 ± 0.067

TimeFlow improvement / 3.74 % 29.06 % 3.23 % 6.92 % 42.09 % 48.57 %

train TimeFlow and PatchTST on 50 % of the samples and consider the remaining

50 % as the new time series. The training procedure is the same as described in

Figure 4.4. In Figure 4.5, we present the results of TimeFlow and PatchTST for

both known and new samples (for periods outside the training window).

Results. The results in Figure 4.5 highlight two key observations. First, both

approaches show robust adaptability to new samples, as evidenced by the minimal

difference in mean absolute error between known and new samples at inference.

Second, TimeFlow and PatchTST exhibit comparable performance in this context,

with negligible differences across horizons and datasets.
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Figure 4.5: Mean MAE forecasting task results over different horizons in the con-
text of generalization to new time series. Comparison of TimeFlow and PatchTST
performances on the Electricity, Traffic and SolarH datasets.
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4.4.3 Challenging task: Forecast while imputing incomplete

look-back windows

In real-world scenarios, it is common to encounter missing or irregularly sampled

series when making predictions on new time windows (Cinar et al., 2018; Tang

et al., 2020). Continuous methods can handle these cases, as they are designed to

accommodate irregular sampling within the look-back window. In this section, we

formulate a task to simulate these real-world scenarios. It’s worth noting that this

task is often encountered in practice but is rarely considered in the DL literature.

Setting and baselines. This scenario is similar to the forecast setting in Sec-

tion 4.4.2 and illustrated in Figure 4.4. The difference is that during inference,

the look-back window is subsampled at a rate τ smaller than the one used for the

training phase. This simulates a situation with missing observations in the look

back window. Consequently, two distinct tasks emerge during the inference phase:

imputing missing points within the sparsely observed look-back window, and fore-

casting over the horizon with this degraded context. In Table 4.6, we compare to

the two other continuous baselines, DeepTime and NP on Electricity and Traffic for

different τ ’s and horizons.

Table 4.6: MAE results for forecasting with missing values in the look-back win-
dow. τ stands for the percentage of observed values in the look-back window. Best
results are in bold. TimeFlow improvement represents the overall percentage im-
provement (for each task) achieved by TimeFlow compared to the specific method
being considered.

TimeFlow DeepTime Neural Process

H τ Imputation error Forecast error Imputation error Forecast error Imputation error Forecast error

Electricity

96
0.5 0.151 ± 0.003 0.239 ± 0.013 0.209 ± 0.004 0.270 ± 0.019 0.460 ± 0.048 0.486 ± 0.078
0.2 0.208 ± 0.006 0.260 ± 0.015 0.249 ± 0.006 0.296 ± 0.023 0.644 ± 0.079 0.650 ± 0.095
0.1 0.272 ± 0.006 0.295 ± 0.016 0.284 ± 0.007 0.324 ± 0.026 0.740 ± 0.083 0.737 ± 0.106

192
0.5 0.149 ± 0.004 0.235 ± 0.011 0.204 ± 0.004 0.265 ± 0.018 0.461 ± 0.045 0.498 ± 0.070
0.2 0.209 ± 0.006 0.257 ± 0.013 0.244 ± 0.007 0.290 ± 0.023 0.601 ± 0.075 0.626 ± 0.101
0.1 0.274 ± 0.010 0.289 ± 0.016 0.282 ± 0.007 0.315 ± 0.025 0.461 ± 0.045 0.724 ± 0.090

Traffic

96
0.5 0.180 ± 0.016 0.219 ± 0.026 0.272 ± 0.028 0.243 ± 0.030 0.436 ± 0.025 0.444 ± 0.047
0.2 0.239 ± 0.019 0.243 ± 0.027 0.335 ± 0.026 0.293 ± 0.027 0.596 ± 0.049 0.597 ± 0.075
0.1 0.312 ± 0.020 0.290 ± 0.027 0.385 ± 0.025 0.344 ± 0.027 0.734 ± 0.102 0.731 ± 0.132

192
0.5 0.176 ± 0.014 0.217 ± 0.017 0.241 ± 0.027 0.234 ± 0.021 0.477 ± 0.042 0.476 ± 0.043
0.2 0.233 ± 0.017 0.236 ± 0.021 0.286 ± 0.027 0.276 ± 0.020 0.685 ± 0.109 0.678 ± 0.108
0.1 0.304 ± 0.019 0.277 ± 0.021 0.331 ± 0.025 0.324 ± 0.021 0.888 ± 0.178 0.877 ± 0.174

TimeFlow improvement / / 18.97 % 11.87 % 61.88 % 58.41 %

Results. In Table 4.6, the results show that TimeFlow consistently outperforms

other methods in imputation and forecasting for every scenarios. When comparing

with the complete look-back windows observations scenario from Table 4.5, one
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observes that at a 0.5 sampling rate, TimeFlow presents only a slight reduction

in performance, whereas other baseline methods experience more significant drops.

For instance, when we compare forecast results between a complete window and a

τ = 0.5 subsampled window for Electricity with a forecasting horizon of H = 96,

TimeFlow’s error increases by a mere 4.6% (from 0.228 to 0.239). In contrast,

DeepTime’s error grows by over 10% (from 0.244 to 0.270), and NP experiences a

rise of around 25% (from 0.392 to 0.486).

For lower sampling rates, TimeFlow still delivers correct predictions. Qualita-

tively, we see on the series example in Figure 4.6 that despite observing only 10%

of the look-back window, the model can correctly infer both the complete look-

back window and the horizon. Both quantitative and qualitative results show the

robustness and efficiency of TimeFlow on this particularly challenging setting.
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Figure 4.6: Traffic dataset, sample 95. In this figure, TimeFlow simultaneously
imputes and forecasts at horizon 96 with a 10% partially observed look-back window
of length 512.

4.4.4 Quantify uncertainty with TimeFlow: experiment on

block imputation

In this experimental section, we investigate TimeFlow’s ability to be trained using

the pinball loss function. This quantile loss, coupled with TimeFlow, enables the

continuous modeling of uncertainty over time, offering a more robust and compre-

hensive understanding of the temporal dynamics and variability within the time

series.

Motivations. Quantifying uncertainty is paramount for effective decision-making

in time series modeling. Time series data are often subject to various forms of

noise and anomalies. As a result, predictions based solely on point estimates can

be misleading, leading to suboptimal or even detrimental decisions. Therefore, in-

corporating uncertainty quantification into the forecasting and imputation models

allows one to better understand the range of possible outcomes, thereby making

more informed and robust decisions.

TimeFlow addresses this critical need by being able to train with loss functions

specifically designed to quantify uncertainty. A prominent approach to uncertainty
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estimation is quantile regression. Quantile regression provides a way to predict not

only the central tendency of the time series, but also its distribution, providing

insight into the probable range of values.

Methodology. To implement this, we utilize the pinball loss. The pinball loss,

also known as quantile loss, is designed to penalize overestimations and underestima-

tions asymmetrically, thereby capturing the inherent uncertainty in the predictions.

The pinball loss for a given quantile q is defined as:{
q(x− x̂) if x > x̂

(1− q)(x̂− x) if x ≤ x̂
(4.1)

Where x is the ground truth value and x̂ is the predicted value. The parameter

q (between 0 and 1) indicates the specific quantile being estimated. For example,

(q = 0.5) corresponds to the median, (q = 0.9) corresponds to the 90th percentile,

and so on. By minimizing this loss function during training (Algorithm 1), TimeFlow

learns to effectively predict different quantiles of the target distribution.

4.4.4.1 Experiments

We propose to qualitatively evaluate the uncertainty estimation for the block impu-

tation task.

Setting. We use the Electricity dataset and train TimeFlow with pinball losses to

fit time series spanning two weeks with hourly time steps (T=336). During inference,

for time series not seen during training, we fill in a missing block of two days (48

points). We estimate the 5%, 25%, 75%, and 95% quantiles. Figure 4.7 illustrates

the uncertainty estimation results for six samples.

Results. As shown in Figure 4.7, TimeFlow effectively produces fairly narrow

uncertainty bands, most of which encompass the ground truth. For more challenging

imputation cases, the uncertainty bands tend to be wider, indicating the increased

difficulty of the task. This highlights TimeFlow’s capability to adaptively quantify

uncertainty based on the complexity of the block imputation scenario.
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Figure 4.7: Quantifying uncertainty in block imputation of two missing days in the
Electricity dataset.

4.5 Limitations

While TimeFlow shows promising performance across various tasks and settings, it

is important to recognize some limitations.

General remarks. First, due to its auto-decoding process, TimeFlow tends to

be significantly slower at inference time compared to other baselines by one to two

orders of magnitude (Table C.17). Then, it should be noted that effective training

of TimeFlow requires a relatively large number of samples (typically ≥ 100) to

allow the model to distinguish between individual patterns and shared information

accurately.

Exploring drastic distribution shifts with TimeFlow. Although TimeFlow

effectively handles sets of homogeneous time series, additional mechanisms are re-

quired to handle heterogeneous time series with different frequencies effectively. The

per-context shift modulation mechanism does not allow TimeFlow to fit time series

with drastically different structures.

We performed an additional experiment where we explored its zero-shot capa-

bilities by training TimeFlow to forecast on a given dataset and then applying the

trained model to a new dataset without retraining. We present the experiment

results in Table 4.7.
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Table 4.7: Zero-shot forecasting experiments. Comparison of forecasting perfor-
mances of TimeFlow supervised, TimeFlow trained on Electricity and TimeFlow
trained on SolarH.

H Supervised TimeFlow TimeFlow trained on Electricity TimeFlow trained on SolarH

Electricity

96 0.225 / 0.576

192 0.243 / 0.681

336 0.275 / 0.852

Traffic

96 0.193 0.213 0.523

192 0.207 0.241 0.526

336 0.228 0.246 0.567

SolarH

96 0.191 0.193 /

192 0.181 0.186 /

336 0.186 0.185 /

As shown in Table 4.7, the zero-shot performance of TimeFlow, when pre-trained

on datasets with similar frequencies, is quite promising compared to the fully super-

vised approach. For example, TimeFlow trained on the Electricity dataset performs

well on the Traffic dataset. However, when TimeFlow trained on the SolarH dataset

is applied in zero-shot to the Electricity and Traffic datasets, the results degrade

significantly compared to the fully supervised model. Future research could focus

on training TimeFlow jointly on a diverse range of datasets to evaluate its zero-shot

generalization capabilities.

Incorporating context variables. So far, our experiments with TimeFlow have

been limited to univariate time series datasets of the form {x(j)}nj=1, where x
(j) ∈

RT . However, context variables are crucial for accurate time series modelisation

in industrial applications. To make TimeFlow suitable for real-world problems, we

need to develop a model variant that incorporates these additional context variables

and allows it to condition its behavior on temporal and static context factors.

4.6 Conclusion

We have introduced a unified framework for continuous time series modeling leverag-

ing conditional INR and meta-learning. Our experiments have demonstrated supe-

rior performance compared to other continuous methods, and better or comparable

results to SOTA discrete methods. One of the standout features of our framework

is its inherent continuity and the ability to modulate the INR parameters. This

unique flexibility lets TimeFlow effectively tackle a wide array of challenges, in-

cluding forecasting in the presence of missing values, accommodating irregular time

steps, and extending the trained model’s applicability to previously unseen time
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series and new time windows. Our empirical results have shown TimeFlow’s effec-

tiveness in handling homogeneous multivariate time series. As a logical next step,

extending TimeFlow’s capabilities to address heterogeneous multivariate phenomena

represents a promising direction for future research.



Chapter 5

Exploring TimeFlow

Representations

In the previous chapter, we demonstrated that TimeFlow can capture neural rep-

resentations from unaligned and irregular time series. This chapter aims to explore

the quality of TimeFlow’s learned representations and demonstrate their usefulness

for downstream tasks.
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5.1 Introduction

In Chapter 4 we introduced a model capable of extracting representations from

potentially unaligned and irregular time series. This chapter delves into the repre-

sentation learning capabilities of TimeFlow, focusing on both the structure of the

latent space and the practical utility of the learned representations.

(i) First, we explore the latent space structure between two learned codes. By

interpolating between these codes, we can visualize how intermediate repre-

sentations behave in the time series domain. This helps us understand the

93
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smoothness and structure of the latent space, providing insights into how

TimeFlow captures and encodes meaningful features of time series data.

(ii) Next, we investigate TimeFlow’s sensitivity to modulation perturbations. We

observe how these perturbations affect the decoded time series by adding Gaus-

sian noise to specific modulation dimensions for a given layer.

(iii) Furthermore, we examine the distributions of latent codes for times series

observed at different time periods. Using principal component analysis, we

visualize these distributions and analyze the impact of temporal distribution

shifts on the latent space.

(iv) In the final section, we explore the potential of unconditional time series gen-

eration using the learned latent space representations. We can generate new

samples and decode them into time series data by learning a probabilistic

distribution over the latent space.

Through these explorations, we aim to validate TimeFlow’s ability to extract

semantically rich and practically useful representations, showcasing its potential for

downstream tasks.

5.2 Latent space exploration

In this section, we explore the structure of TimeFlow’s latent space through several

post-hoc experiments.

5.2.1 Latent space interpolation between representations

Latent space

Figure 5.1: Latent space inter-
polation path (Bezier curve).

First, we aim to explore the structure of the latent

space between two encoded time series. We con-

struct an interpolation path in the latent space

between the two learned codes and examine the

resulting interpolations in the decoded time series

space.

Setting. Consider two latent codes z(1) and

z(2). We choose the interpolation path to be a

Bézier curve with a control point z(3) defined by

z(λ) = (1 − λ)2z(1) + 2λ(1 − λ)z(3) + λ2z(2), shown in Figure 5.1. We interpo-

late between the two latent codes z(1) and z(2) using regularly spaced values of

λ ∈ [0, 1]. Figure 5.2 shows a comparison between the decoded values fθ,hw(z(λ))(t)

and the Bézier interpolation between the ground truth time series x(1) and x(2) on

the Electricity dataset.
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Figure 5.2: Electricity dataset. Visualization of the decoded Bézier interpolations
between latent codes z(1) and z(2) (left plot), compared with Bézier interpolations
of ground truth time series x(1) and x(2) (right plot).

Results. In Figure 5.2, we observe that the interpolation path between two codes

yields a smooth transition in the time series domain. These transitions are similar to

the ones between the ground truth time series. This suggests that the latent space

is smooth and well-structured and that the learned representations captured mean-

ingful features of the time series, which could explain TimeFlow’s generalization

property.

5.2.2 TimeFlow sensitivity to modulations perturbation

In the previous section, we observed that the latent space is well structured. Another

question arises: can we interpret the dimension of the modulation mechanism?

Setting. In this experiment, we perturb the modulation (by adding Gaussian

noise) for only one layer and a given channel of the INR (see Appendix D.1) for

the Electricity dataset. Then we observe the difference in the time domain between

the non-perturbed and the perturbed TimeFlow. For example, in Figure 5.3, we
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add noise only for the third layer of the INR and the 50th channel.
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Figure 5.3: Small perturbation to the modulation of the third layer, 50th channel.
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Figure 5.4: Small perturbation to the modulation of the third layer, 51th channel.
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Figure 5.5: Small perturbation to the modulation of the fourth layer, 50th channel.
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Results. In Figure 5.3, we observed that adding a small perturbation added a

smooth daily frequency pattern. In Figure 5.4, we observed that adding a small

perturbation induces a bias that impacts the high frequencies but does not affect

the low frequencies. Finally, in Figure 5.5, adding a small perturbation induces a

very local and slight bias (the effect is almost null). In conclusion, the impact of the

small perturbation depends on the channel and the layer, but it is hard to interpret

each dimension independently.

5.2.3 Visualization of code distributions in the latent space

Examining the behavior of the latent space at the sample level is insightful, as it

reveals how individual time series behave within the latent space. However, ex-

ploring the latent space between two different time series distributions is another

critical aspect that provides a broader understanding of the model’s representational

capabilities.

Setting. In this experiment, we encode all samples (321 samples) from the Elec-

tricity dataset for two distinct time periods (each period is about 25 days ≈ 600

timestamps). This results in two distributions of latent codes, each representing

different temporal support. Then, we employ Principal Component Analysis (PCA)

to visualize these two latent code distributions in a two-dimensional space, as illus-

trated in Figure 5.6. This visualization allows us to observe the encoded time series

distribution for different temporal distribution shift. In Figure 5.6a, the two com-

pared time period are separated by approximately 3 months (≈ 2000 timestamps).

In Figure 5.6b, the two compared time period are separated by approximately 6

months (≈ 4000 timestamps).
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(a) The temporal shift between the two
codes distribution is 3 months.
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(b) The temporal shift between the two
codes distribution is 6 months.

Figure 5.6: Electricity dataset. Visualization of the two first PCA axes for different
temporal distributions of latent codes.
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Results. Figure 5.6a shows that when the temporal periods are not too far from

each other, the distributions of codes largely overlap in the 2D visualization from

the PCA. Conversely, as illustrated in Figure 5.6b, when the temporal periods are

far from each other, the distributions of codes between the two periods become more

distinct in the 2D visualization. This observation suggests that for the Electricity

dataset, the proximity or disparity in temporal distribution shift influences the sep-

arability of latent representations in the 2D PCA space. However, this presumed

separability in the latent space does not seem to significantly impact the general-

ization performance of TimeFlow across time, as evidenced by the results presented

in Table 4.5 and Table C.15. The results suggest that TimeFlow can preserve the

time series distribution shifts in latent space while performing well for the different

tasks.

5.3 Unconditional generation over the latent space

In the previous section, we observed that the latent space induced by TimeFlow is

well-structure and is able to capture meaningful features. In this section, we want

to explore if we can learn a probabilistic distribution over the latent space and then

generate new samples in the latent space. Afterward, we can pass the generated

codes z to TimeFlow decoder and observed the new generated time series.

5.3.1 Motivations

Synthetic time series generation has recently gained attention in the time series

community.

• In particular, there has been an increased interest in time series foundation

models, i.e., training reusable time series models (e.g. forecasters) on large

datasets from multiple sources. To build interesting/effective time series foun-

dation models, the amount of collected time series should be prominent and

these time series should be diverse. Since many time series come from the

industrial sector (e.g., wind power generation, electricity load consumption,

road traffic measurements, air quality sensors, etc.), companies cannot share

these data due to privacy or proprietary restrictions. However, they may have

an interest in sharing generated data (Emami et al., 2023).

• In addition, using synthetic time series to augment training datasets is a

promising way to improve the generalization properties of time series mod-

els (Fawaz et al., 2018).
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From a technical perspective, using a generative model over TimeFlow latent

space induce practical advantages.

(i) Training of the generative model over the latent space of TimeFlow inherits

the capability to handle unaligned/irregular time series.

(ii) The generated time series are continuous and can be queried at any timestamp,

which is very convenient for creating a large dataset with aligned timestamps.

(iii) As demonstrated in latent diffusion (Rombach et al., 2022), learning a gener-

ative model over the latent space allows for generating high-quality data by

effectively capturing complex patterns in the latent space, leading to more

realistic and diverse outputs.

5.3.2 Method: a two stages approach

Problem setting. Let us consider a time series dataset {x(j)}nj=1 which are sam-

pled from an unknown probability distribution p(x). At training we aim to approxi-

mate the true distribution p(x) with the estimated distribution p̂ν(x). At generation

we aim to draw new time series from the estimated distribution x(gen) ∼ p̂ν(x). To

achieve this, we use a two-stage approach that couples TimeFlow’s representation

capabilities with latent space generative modeling.

Model overview. At training we propose to rely on a two stages approach.

1. First, we use TimeFlow to fit the time series {x(j)}nj=1. After obtaining

good reconstruction, we can extract the corresponding representation dataset

{z(j)}nj=1 of fixed dimension (∀j ∈ {1, ..., n}, z(j) ∈ Rd).

2. Second, we learn a generative model over p(z) based on the observed codes

{z(j)}nj=1. We choose to fit a Denoising Diffusion Probabilistic Model (DDPM)

(Ho et al., 2020) regarding the impressive capabilities of these models com-

pared to Generative Adversarial Networks (GANs) (Goodfellow et al., 2020)

and Variational Auto Encoders (VAEs) (Kingma and Welling, 2013). At the

end of the training process, we have learned a distribution p̂ν(z) that approx-

imates p(z).

At inference, we can then generate z(gen) ∼ p̂ν(z), pass it through the trained

TimeFlow decoder and get x(gen) for arbitrary timestamps (include in the temporal

support). Each stage is explained in detail in the following section.
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5.3.2.1 Stage 1. Fit TimeFlow

First, we use TimeFlow (see Algorithm 1) to fit the potential unaligned/irregular

time series {x(j)}nj=1 thanks to the model fθ,hw(.). After obtaining good reconstruc-

tion, we can extract the corresponding representation dataset {z(j)}nj=1 of fixed

dimension (∀j ∈ {1, ..., n}, z(j) ∈ Rd). The procedure is depicted in Figure 5.7.

Autodecoded
modulations

Linear hypernetwork

Latent space

INR

Step 1 : Train TimeFlow 
 and get the codes

Figure 5.7: Step one. Fit TimeFlow and get codes from the latent space.

5.3.2.2 Stage 2. Fit a DDPM on TimeFlow latent space

A DDPM is a generative model used to model data distributions. The main idea

is to gradually corrupt a data point with noise over several steps and then learn

how to reverse this process to generate new data points. Below is a step-by-step,

high-level explanation.

The forward process. In the forward process, we gradually add noise to the input

code z0 over a series of K steps to produce noisy versions of the data z1, z2, . . . , zK.

At each step k, Gaussian noise is added:

q(zk|zk−1) = N (zk;
√
αkzk−1, (1− αk)I)

Here:

• N (·;µ,Σ) is the normal distribution with mean µ and variance Σ.

• αk is a positive constant, slightly less than one, that controls the amount of

noise added at step k.
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The full forward process from z0 to zK is:

q(z1:K|z0) =
K∏
k=1

q(zk|zk−1)

At the end of the forward diffusion process, we want the noisy input to follow a

standard normal distribution, q(zK|z0) close to a N (0, I).

Reverse diffusion process. The objective is to learn how to reverse the forward

noising process. The reverse process attempts to remove the noise step-by-step,

starting from zKand proceeding back to z0:

p̂ν(zk−1|zk) = N (zk−1;µν(zk, k), σ
2(k))

Here, µν represents the estimated mean of the denoising distribution, which is

estimated by a neural network. The combination of the forward process and the

reverse diffusion process in the latent space is illustrated in Figure 5.8.

Step 2 : Train a DDPM on 
the codes distribution 

Figure 5.8: Step two. train a DDPM on the latent code distributions

Evidence Lower Bound (ELBO). Similar to training the VAEs, DDPMs use

the ELBO on the data likelihood to train the model. The objective is to maximize

this bound in ν, which can be written as minimizing the following loss function:

Lν = LK +
K∑
k=2

Lk−1 + L0 (5.1)
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Where:

• Prior matching term. LK = DKL(q(zK|z0)∥p(zK)) measures how close the

final noisy distribution q(zK|z0) is to a standard Gaussian prior p(zK). DKL

stands for the Kullback–Leibler divergence which is a divergence between two

distributions.

• Consistency term. Lk−1 = DKL(q(zk−1|zk, z0)∥p̂ν(zk−1|zk)) measures how

close the reverse process is to the true posterior.

• Reconstruction term. L0 = − log p̂ν(z0|z1) measures the reconstruction

error.

Training. Instead of estimating the neural network µν(.), we estimate another

related neural network, ϵν(.), known as the denoiser. By rewriting, substituting,

and deriving appropriately the ELBO, we just have to minimize the quantity in

Equation (5.2) (we ignore the constant terms and expectations for simplicity). For

a comprehensive understanding of the mathematics and details of the DDPM, please

refer to Chan (2024).

Lν ∝
K∑
k=1

||ϵν(zk)− z0||2. (5.2)

The terms in the equation are defined as follows:

• ϵν(.): The denoiser neural network to train. Its objective is to denoise zk for

any k ∈ {1, .., K} such that the denoised signal ϵν(zk) is close to the ground

truth z0.

• zk: Sampled from the Gaussian distribution below:

zk ∼ q(zk|z0)

= N (zk|
√
ᾱkz0, (1− ᾱk)I), ᾱk =

k∑
i=1

αi

=
√
ᾱkz0 +

√
(1− ᾱk)ρ, ρ ∼ N (0, I).

• z0: The ground truth code.

The loss in Equation (5.2) is more convenient for training than the one in Equa-

tion (5.1) because the denoiser can be trained without doing all the diffusion steps,

which is much less time consuming. In practice, we simply follow the procedure

described in Algorithm 3 to train the denoiser. For more details on DDPM, please

refer to Chan (2024).
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Algorithm 3: DDPM Training

while no convergence do

Sample batch B of data (z(j))j∈B;

z
(j)
0 = z(j) ∀j ∈ B ;

Pick a random diffusion step k(j) in Uniform[1, K] ∀j ∈ B;
Draw ρ(j) ∼ N (0, I) ∀j ∈ B;
z
(j)
k =

√
ᾱkz

(j)
0 +

√
(1− ᾱk)ρ(j) ∀j ∈ B;

Update ν according to ∇ν

∑
j∈B
||ϵν(z(j)k − z

(j)
0 )||2

end

5.3.2.3 Generation

Generate new codes z(gen). To generate new time series data, we start with a

sample from the standard Gaussian distribution zK ∼ N (0, I) and apply the learned

reverse process step-by-step to obtain zK−1, zK−2, . . . , z0. The generated code with

the desirable statistical property is z0. For additional details on the DDPM gener-

ation process using the trained denoiser ϵν(.), please refer to Appendix D.2.

Pass the generated codes through the TimeFlow decoder. The generated

code z(gen) can now modulate the TimeFlow architecture, which can be expressed

as fθ,hw(z(gen)). Thus, we can generate the new time series x(gen) for any timestamp

t ∈ T by querying fθ,hw(z(gen))(t). The whole procedure is illustrated in Figure 5.9.

Autodecoded
modulations

Linear hypernetwork

INR

Generation

(i) Generate
new codes

(ii) Decode 
in temporal

domain

Figure 5.9: Overview of the generation procedure.
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5.3.3 Experiments

Setting. We train the proposed model on 8,000 time series from the Electricity

dataset, each representing hourly sampled load curves over two weeks (336 times-

tamps). We reserve 2,000 time series for testing and generate an additional 2,000

time series using the procedure described in Section 5.3.2. Our goals for the gener-

ated data are twofold: they should be indistinguishable from real data and exhibit

diversity, capturing the full range of variability present in the real data. Following

the existing literature on time series generation (Yoon et al., 2019; Coletta et al.,

2024), we compute a discriminative score and conduct a qualitative evaluation of

the generated time series.

• The discriminative score measures the fidelity of the generated data. We

take 1,000 samples each from the test and generated time series to create a

”train” dataset for a 1-NN classifier. We then classify another 1,000 test and

1,000 generated time series, assigning labels based on the nearest neighbor in

the ”train” dataset. The score is the classification accuracy minus 0.5, where

a lower score indicates the generated data are indistinguishable from the test

data by the 1-NN classifier.

• Qualitatively, we analyze the distributions of the generated and test time

series in a 2-dimensional space using t-Distributed Stochastic Neighbor Em-

bedding (t-SNE) visualizations (Van der Maaten and Hinton, 2008). t-SNE

preserves local structures, making it effective for identifying clusters and pat-

terns. We aim for the generated and test time series to be indistinguishable

in this low-dimensional space, indicating good diversity.

Model implementation and baselines. • To implement our method, we couple

TimeFlow with an existing DDPM implementation1. • The architecture of the

denoiser is detailed in Appendix D.3. The first baseline we compare with, applies

the same DDPM directly to the time series. This comparison highlights the benefits

of learning generation in the latent space of TimeFlow rather than directly on the

time series. The DDPM architecture is identical to that used with TimeFlow and is

trained under the same conditions (batch size, number of epochs, hyperparameters,

etc.). • We also compare the proposed method with TimeGan (Yoon et al., 2019),

one of the most popular time series generation models.

Quantitative experiment. In Table 5.1, we showcase the discriminative score

for the three considered methods.

1https://github.com/lucidrains/denoising-diffusion-pytorch



5.3. Unconditional generation over the latent space 105

Table 5.1: Discriminative score on the Electricity dataset.

TimeFlow

+ DDPM

DDPM

only
TimeGAN

Fully separable

generation

Discriminative score 0.1388 0.1704 0.4890 0.5000

Results. Table 5.1 demonstrates that distinguishing between time series from the

test set and those generated by TimeFlow + DDPM or DDPM only is challenging.

The discriminative scores suggest that the series generated by these diffusion-based

methods closely resemble the test series. TimeFlow + DDPM slightly outperforms

DDPM alone, likely due to the enhanced generation stability in the latent space, as

seen in latent diffusion models (Rombach et al., 2022). In contrast, with TimeGAN,

it is easy to distinguish between the test and the generated series.

Qualitative experiments. We compare the three methods using t-SNE visual-

izations in 2D in Figure 5.10.
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(c) TimeGan.

Figure 5.10: t-SNE visualization comparing generated and test time series for the
three considered methods.

Results. As shown in Figure 5.10, it is nearly impossible to distinguish between

the test series and those generated by TimeFlow + DDPM on the 2D t-SNE projec-

tion. The t-SNE plots indicate that the generated series from TimeFlow + DDPM

capture a diverse range of patterns, mirroring the variability present in the test data.

For the DDPM-only method, it is also challenging to differentiate the generated se-

ries from the test series, although there are still a few regions in the 2D plots where

they do not overlap. In contrast, the TimeGAN model fails to generate data that is

convincingly similar to the test series. We also propose a 2D PCA visualization in

Appendix D.4.
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Some visual plots. Figure 5.11 shows three samples generated using the proposed

generation method alongside three test series that were not used to train the model.

We generate series of two weeks length and hourly timestamps. Visually, we show

that we can generate diverse series that respect the statics of the initial distribution

(such as the hourly and weekly seasonality).

Generated Time Series Test Time Series

Figure 5.11: Visualization of three generated and three real test time series from
the Electricity dataset.

5.4 Limitations and conclusion

Limitations. Despite the promising results, several limitations need to be ad-

dressed. First, the interpretability of individual latent dimensions remains a chal-

lenge, making it difficult to fully understand their specific contributions to TimeFlow

performance. Second, while our unconditional generation experiments were success-

ful on the Electricity dataset, further studies are needed to validate TimeFlow’s

scalability and effectiveness on different time series datasets. In addition, the cur-

rent form of TimeFlow’s latent space inherits certain limitations of TimeFlow itself.

For example, it does not support conditional generation, such as including meteo-

rological variables as a condition. Finally, while effective, the two-step generation

mechanism can be time consuming compared to direct generation approaches.

Conclusion. In this chapter, we conducted an in-depth investigation of the latent

space induced by TimeFlow and its representation learning capabilities. Our analysis

of the latent space interpolation showed that the transitions between learned codes

are smooth and well structured, capturing meaningful features of the time series

data. In addition, we showed that the latent space preserves temporal distribution

shifts of the encoded time series. Finally, we demonstrated the practical utility of
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TimeFlow’s latent space for generating realistic and diverse synthetic time series

using a DDPM.

The ability to extract meaningful representations from unaligned/irregular time

series can be useful in many real-world applications. Future work may explore

TimeFlow’s latent representations for other downstream tasks such as classification

or anomaly detection.
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Chapter 6

Conclusion

6.1 Synthesis

Neural representation learning for time series is a rapidly growing area of research.

In this thesis, we delve into the topic through the following key points.

1. Historical context and the emergence of time series neural repre-

sentation. In Chapter 2, we begin by reviewing the history of time series

modeling, highlighting the importance of representation learning in the do-

main. With the rise of deep learning, we highlight the emergence of neural

representation learning for time series and show the flexibility these repre-

sentations offer across different paradigms, such as contrastive learning and

reconstruction learning. We then identify several open challenges in represen-

tation learning for time series and highlight their relevance to EDF.

2. Interpretable neural representations. Chapter 3 focuses on achieving in-

terpretable neural representations for time series, specifically applied to down-

stream classification tasks. Despite the flexibility of neural networks, it is

critical for decision-makers to understand the decision made by the model.

We begin by establishing the requirements for an interpretable neural rep-

resentation. We identify five essential requirements for making time series

representations interpretable and propose a novel architecture that utilizes a

vector quantization mechanism in the latent space to meet these criteria. The

obtained representations are then quantitatively and qualitatively evaluated

on downstream classification tasks on the UCR archive.

3. Continuous time series modeling. Chapter 4 addresses the challenges

posed by irregular and unaligned time series through continuous time series

modeling. We introduce a new model called TimeFlow, which is based on mod-

ulated implicit neural representation (INR) and meta-learning optimization.

TimeFlow’s modulated INR architecture effectively fits irregular time series
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and captures the underlying continuity within a representation. The meta-

learning component allows TimeFlow to adapt to new samples and contexts

by modifying only the representation part of the architecture. We demonstrate

TimeFlow’s capability through imputation and forecasting experiments.

4. Evaluation of TimeFlow representations. In Chapter 5, we examine the

representations learned by TimeFlow. First, we evaluate the quality of these

representations through various post-hoc experiments, noting that the latent

space is structured, distribution shifts between time series are reflected within

the latent space, and different dimensions of the modulation have semantic

significance. Next, we assess the utility of TimeFlow for downstream tasks

by evaluating its performance in generation task. This involves generating

new representations via a generative model learned in the latent space, and

subsequently decoding these representations into the time series space. We

demonstrate that this method can efficiently generate continuous time series

from potentially irregular and non-aligned data.

From an industrial perspective. The work conducted in this thesis has not

only contributed to academic advancement, but has also addressed key needs of

EDF. Specifically:

• Improving the interpretability of model output increases the acceptance of

deep learning models by decision makers. While the models currently used in

the industry for time series classification are simple and interpretable, our first

work provides a powerful alternative by proposing an interpretable time series

neural representation.

• Our second proposed model, TimeFlow, demonstrates robustness and adapt-

ability, allowing it to be reused across different samples and time periods

without retraining, even in the presence of distribution shifts.

• Efficient modeling of large numbers of unaligned time series is crucial for many

applications in the energy sector. TimeFlow facilitates the joint and effective

handling of these complex datasets.

While this work has contributed to the field of time series neural representation,

we have outlined some limitations in our contributions that need to be addressed in

future work. We also discuss the constraint identified with the currently available

public datasets in Appendix E.

In the next section, we outline some perspectives for future work aimed at ad-

dressing these limitations.
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6.2 Perspectives

This section outlines some technical perspectives for future work to address limita-

tions identified in this thesis.

Improving classification with the symbolic sequence learning algorithm.

The main limitation for the interpretability and performance of classification in

Chapter 3 lies in the way we apply logistic regression to the learned discrete represen-

tation. Currently, we fail to explore the full space of subsequences for discriminative

patterns by using only symbolic subsequences of limited length.

A solution to this issue was proposed in Ifrim and Wiuf (2011), where the authors

introduced the Symbolic Sequence Learning (SEQL) method for classification. The

SEQL method searches the entire subsequence space for discrete symbolic sequences

using a gradient-bounded coordinate-descent algorithm. This approach efficiently

selects discriminative subsequences without exhaustively exploring the whole space

following these steps. (i) Based on the gradient of a small subsequence, they can

possibly discard all subsequences beginning with this small subsequence. (ii) After

a few branch-and-bound iterations, they investigate all candidates with the greatest

gradient magnitudes. (iii) After identifying the most discriminative subsequence,

they apply a gradient step only to the parameter corresponding to that subsequence

(coordinate descent).

This promising method has already been tested with the SAX-SEQL method

(Nguyen et al., 2017), which supports both ℓ1 and ℓ2 regularizations and offers

several advantages such as an effective search in the entire symbolic subsequence

space, performances gains, and enhance interpretability by identifying the most

discriminative subsequences.

Applying this classification method on top of our proposed neural discrete rep-

resentation appears to be a promising avenue for future research.

Exploring the transferability of our proposed neural discrete representa-

tion learning model. In preliminary experiments, we observed that the vector

quantization auto-encoder can be effectively transferred across different time series

datasets. Specifically, it can be trained on one or multiple datasets and still perform

well in reconstructing data from an unseen dataset. Additionally, the convolutional

mechanism allows our architecture to handle time series of varying lengths, posi-

tioning our model as a versatile feature extractor. This capability is particularly

advantageous for time series datasets with limited samples. We intend to further

explore this promising direction in future work.
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Develop a conditioning TimeFlow for multivariate time series and context

variables. Although TimeFlow demonstrates versatility by being applicable to

new samples, different temporal contexts, and irregularly sampled time series, one

missing component is the ability to incorporate context variables. In many real-

world scenarios, accurate characterization of time series requires external context

variables, which can be either static or temporal. In future work, we plan to develop

a version of TimeFlow that can accept both static and temporal external variables.

One way to achieve this is a modulation mechanism conditioned on context variables

as illustrated in Figure 6.1.

Figure 6.1: TimeFlow architecture conditioned on context variable.
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V. Fortuin, M. Hüser, F. Locatello, H. Strathmann, and G. Rätsch. SOM-VAE:
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séries temporelles). PhD thesis, University of Rennes 1, France, 2021.
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Achieving net zero carbon emissions by 2050 requires the integration of increas-

ing amounts of wind power into power grids. This energy source poses a challenge to

system operators due to its variability and uncertainty. Therefore, accurate forecast-

ing of wind power is critical for grid operation and system balancing. This paper

presents an innovative approach to short-term (1 to 6 hour horizon) wind power

forecasting at a national level. The method leverages Automated Deep Learning

combined with Numerical Weather Predictions wind speed maps to accurately fore-

cast wind power.
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Appendix A. WindDragon: Enhancing Wind Power Forecasting with Automated

Deep Learning

A.1 Introduction

To meet the 2050 net zero scenario envisaged by the Paris Agreement (United Na-

tions Convention on Climate Change, 2015), wind power stands out as a critical

energy source for the future. Remarkable progress has been made since 2010, when

global electricity generation from wind power was 342 TWh, rising to 2,100 TWh in

2022 (International Energy Agency (IEA), 2023). The IEA targets approximately

7,400 TWh of wind-generated electricity by 2030 to meet the zero-emissions sce-

nario. However, to realize the full potential of this intermittent energy source,

accurate forecasts of wind power generation are needed to efficiently integrate it

into the power grid.

Research in wind power forecasting has developed a wide range of methods

(Giebel and Kariniotakis, 2017; Tawn and Browell, 2022), including statistical (Ri-

ahy and Abedi, 2008), physical (Lange and Focken, 2006), hybrid (Shi et al., 2012),

and deep learning (DL) (Wang et al., 2021) approaches. These methods use a va-

riety of data sources, including historical wind power records, geospatial satellite

data, on-site camera imagery, and numerical weather prediction (NWP) forecasts.

Among these, typical NWP-based methods primarily focus on using local time se-

ries of wind speed forecasts for local wind power prediction (Piotrowski et al., 2022).

However, NWP forecasts produce richer outputs, notably spatial predictions of phys-

ical quantities such as wind speed and direction over large scale grids (e.g. national

or regional). Predicting aggregated (e.g national or regional) wind power from such

fine-grained spatial information appears promising and is largely unexplored in the

literature (Higashiyama et al., 2018). Thus, we propose to explore how wind speed

maps combined with suitable machine learning models can capture complex pat-

terns, improving large scale wind power predictions.

In this work, we propose to leverage the spatial information in NWP wind speed

maps for national wind power forecasting by exploiting the capabilities of DL mod-

els. The overall methodology is illustrated in Figure A.1. To fully exploit DL

mechanisms potential, we introduce WindDragon, an adaptation of the DRAGON1

(Keisler et al., 2023) framework. WindDragon is an Automated Deep Learning

(AutoDL) framework for short-term wind power forecasting using NWP wind speed

maps. WindDragon’s performances are benchmarked against conventional com-

puter vision models, such as Convolutional Neural Networks (CNNs) and Vision

Transformers (ViTs), as well as standard baselines in wind power forecasting. The

experimental results highlight two findings:

• The use of full NWP wind speed maps coupled with DL regressors significantly

outperforms other baselines.

1https://dragon-tutorial.readthedocs.io/en/latest/index.html

https://dragon-tutorial.readthedocs.io/en/latest/index.html
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• WindDragon demonstrates superior performance compared to traditional com-

puter vision DL models.

Predicted  wind 
speed map

Numerical Weather Predictions (NWP) 6-hours ahead

Step 2: Pass the wind 
speed maps through the 
proposed regressor 

Prediction of the regional wind 
power generation

For a given hor izon h : 

Step 1: Get wind speed 
maps predictions from 
the NWP model

Deep Learning
regressor

Figure A.1: Global scheme for wind power forecasting. Every 6 hours, the NWP
model produces hourly forecasts. Each map is processed independently by the re-
gressor which maps the grid to the wind power corresponding to the same timestamp.

A.2 WindDragon: a framework for regression on

wind speed maps

Deep Learning models have the ability to capture complex spatial patterns, which

makes them well suited for modeling non-linear relationships between meteorological

features and wind energy production. These models are especially useful when wind

farms are scattered across the map (see Figure A.3) and wind speed has significant

variance across locations.

CNNs and ViTs, both prominent in computer vision, might under-perform in the

context of wind speed map regression for global wind power forecasting. By learning

local and spatial patterns, CNNs efficiently map structured inputs to numerical

values. However, CNN’s shift-invariant property (Zhang, 2019) can hinder wind

power forecasting because identical wind speeds at different map locations do not

equate to the same power generation due to the uneven distribution of wind farms.

Conversely, ViTs excel at image classification by segmenting images into patches

and applying self-attention mechanisms, but the size of the considered datasets (less

than 20000 points for the training dataset) might limit their effectiveness. Given

these concerns, the use of AutoDL frameworks to automatically identify the most

appropriate DL architecture is a promising solution.
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Wind Map

Deep Neural Network

2D Graph

Flatten

1D Graph

MLP

Wind Generation

forecast

Figure A.2:
WindDragon’s meta
model for wind power

forecasting.

The DRAGON framework. DRAGON (Keisler et al.,

2023) is an AutoDL framework which automatically gener-

ates well-performing deep learning models for a given task.

Compare to other AutoDL frameworks (Liu et al., 2019a;

Hutter et al., 2019; Zimmer et al., 2020; Deng et al., 2022),

DRAGON provides a flexible search space, which can be

used on any task. It allows the extension of the possibilities

in terms of architectures and is adapted when the type of

architecture to use is unclear or when high performance is

sought by tuning hyperparameters. We used several tools

from the generic framework to adapt it for wind power

forecasting from wind speed maps.

WindDragon: adapting the DRAGON framework

for wind power forecasting. The neural networks in

DRAGON are represented as directed acyclic graphs, with nodes representing the

layers and edges representing the connections between them. In our case, a value

ŷt ∈ R is predicted from a 2D map Xt ∈ Rm×n. The search space is then restricted

to a specific family of constrained architectures, as represented in Figure A.2. A first

graph processes 2D data and can be composed by convolutions, pooling, normaliza-

tion, dropout, and attention layers. Then, a flatten layer and a second graph follow.

This one is composed by MLPs, self-attention, convolutions and pooling layers. A

final MLP layer is added at the end of the model to convert the latent vector to the

desired output format. We optimized the solutions from our search space using an

evolutionary algorithm, as detailed Appendix A.5.1.

A.3 Experiments

Datasets. The wind speed maps used are 100-meter high forecasts at a 9 km

resolution provided by the HRES 2 model from the European Centre for Medium-

Range Weather Forecasts (ECMWF). The maps are provided at an hourly time

step and there are 4 forecast runs per day (every 6 hours). Only the six more recent

forecasts are used here as the forecasting horizon of interest is six hours. The hourly

french regional and national wind power generation data came from the french TSO3.

Data preparation. The national forecast of wind power generation is obtained

by summing the forecasts of the 12 administrative regions of Metropolitan France.

According to our first experiments, this bottom-up technique produced better results

2https://www.ecmwf.int/en/forecasts/datasets/set-i
3https://www.rte-france.com/eco2mix

https://www.ecmwf.int/en/forecasts/datasets/set-i
https://www.rte-france.com/eco2mix
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than predicting national production directly. The division of a national map into

regions is a challenge, as shown in Figure A.3 as wind turbines are not evenly

distributed across the regions. Therefore, we selected areas around each wind farm

in the region and took the convex hull of all the considered points. The result is a

seamless map that includes local wind turbines with no gaps to disrupt the models.

Installed capacity data for each region - corresponding to the maximum wind power

a region can produce - is available and updated every three months. It was collected

and used to scale the wind power target. Years from 2018 to 2019 are used to train

the models, and data from 2020 is used to evaluate how the models perform.

Figure A.3: Data preparation for the region Auvergne-Rhône-Alpes. The wind farms
are represented in red. The first image shows the distribution of wind farms across
the administrative region.

We use the following baselines to compare hourly forecasts for an horizon h

(h ∈ {1, ..., 6}):

• Persistence. Predicts wind power generation at future time t+h as equal to

the observed generation at current time t.

• XGB on Wind Speed Mean. Forecasts wind power at t+h using a two-step

approach: (i) Compute the mean wind speed for the considered region at t+h

using NWP forecasts. (ii) Apply an XGBoost regressor (Chen and Guestrin,

2016) to predict power generation based on the computed mean wind speed.

• Convolutional Neural Networks (CNNs). Forecasts wind power at t+ h

using the NWP predicted wind speed map. CNNs can efficiently regress a

structured map on a numerical value by learning local and spatial patterns

(LeCun et al., 1995).

• Vision Transformers (ViTs). Forecasts wind power at t + h using the

NWP predicted wind speed map. The map is segmented into patches and a

self-attention mechanism is used to capture the dependencies between these

patches (Dosovitskiy et al., 2020).

• Implicit Neural Representation (INR) + XGB. Forecasts wind power

at t + h using a two-step approach: (i) Compute a representation z(j) for
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wind speed map X(j) for the considered region at t+ h using NWP forecasts.

(ii) Apply an XGBoost regressor (Chen and Guestrin, 2016) to predict power

generation based on the representation code z(j). See Appendix A.5.2 for more

details on this baseline.

The implementation details of the baselines are described in Appendix A.5.2.

We compute two scores: Mean Absolute Error (MAE) in Megawatts (MW),

showing the absolute difference between ground truth and forecast, and Normal-

ized Mean Absolute Error (NMAE), a percentage obtained by dividing the

MAE by the average wind power generation for the test year.

Results. We run experiments for each of the 12 French metropolitan regions and

then aggregate the predictions to derive national results. The national prediction

results are presented in Table A.1, while detailed regional results can be found in

Table A.2 (Appendix A.5.3).

Table A.1: National results: sum of the regional forecasts for each models. The best
results are highlighted in bold and the best second results are underlined.

WindDragon INR + XGB CNN ViT XGB on mean Persistence

MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE

France 346.7 7.7 % 358.1 7.9 % 369.0 8.1 % 385.7 8.5 % 416.7 9.2 % 779.7 17.3 %

The results in Table A.1 highlight three key findings:

(i) Improved performance with aggregated NWP statistics. Using the

average of NWP-predicted wind speed maps coupled with an XGB regressor

significantly outperforms the naive persistence baseline.

(ii) Gains from full NWP map utilization. More complex patterns can be

captured by using the full predicted wind speed map, as opposed to just the

average, thereby improving forecast accuracy. In this context, the ViT, the

CNN and the INR based regressors applied to full maps yielded gains of 31

MW (7.4%), 47 MW (12.8%) and 58 MW (16.2%) respectively, over the mean-

based XGB.

(iii) WindDragon’s superior performances. WindDragon outperforms all base-

lines, showing an improvement of 22 MW (6%) over the CNN (the second best

fully supervised method). On an annual basis, this corresponds to approxi-

mately 193 GWh, which is equivalent to the annual consumption of a French

town of 32,000 inhabitants 4. Refer to Appendix A.5.1 for WindDragon’s

architecture example.

4based on the average European per capita consumption (Statista Research Department, 2022)
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In Figure A.4, we present the aggregated national wind power forecasts using

both WindDragon and the CNN baseline during a given week. While both models

deliver highly accurate forecasts, it’s important to highlight that DRAGON demon-

strates superior accuracy, particularly in predicting high peak values.

2020-01-09 2020-01-10 2020-01-11 2020-01-12 2020-01-13 2020-01-14 2020-01-15 2020-01-16
Timestamps

2000

4000

6000

8000

10000

12000

(M
W

)

Ground Truth CNN WindDragon

Figure A.4: Wind power forecasts for a week in January 2020. The figure displays
the ground truth as dotted lines, and the forecasts from the two top-performing
models, WindDragon and the CNN.

A.4 Conclusion and impact statement

In this paper, we have presented two key findings that show great promise. First,

using NWP wind speed forecasts as a map significantly improves forecast accuracy

compared to using only aggregated values. Second, our framework, WindDragon,

shows superior performance to all other baseline models. The significant improve-

ment provided by WindDragon is particularly critical in light of the increasing re-

liance on wind energy, driven by the pursuit of the net-zero scenario.

Future work could adapt our methodology for photovoltaic (PV) systems, ap-

plying it to solar radiation maps generated by NWP models. While current deep

learning research in PV primarily focuses on short-term nowcasting (Le Guen, 2022),

our method holds promise for extending the forecasting horizon, potentially improv-

ing the efficiency and reliability of solar power predictions.
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A.5 Additional results

A.5.1 WindDragon details

Search algorithm. The DRAGON framework contains operators, namely muta-

tion and crossover, which are commonly used in meta-heuristics such as the evolu-

tionary algorithm and the simulated annealing, to optimize graphs. The mutation

operators are used to add, remove, or modify nodes and connections in the graph,

as well as to modify the operations and their hyperparameters within the nodes.

Crossover involves exchanging parts of two graphs. The mutation and crossover

operators were utilised to construct a steady-state (asynchronous) evolutionary al-

gorithm. Compare to the original algorithm, this version enhances efficiency on

HPC by producing two offsprings from the population as soon as a free process is

available, rather than waiting for the entire population to be evaluated (Liu et al.,

2018).

With the division by region, we slightly modified the generic evolutionary al-

gorithm in WindDragon to avoid having to run an optimisation by region, which

would be very costly. In this context, a deep neural network f from our search

space Ω is parametrized by its architecture α and its hyperparemeters λ. Once α

and λ have been settled, the model is trained on the data to optimize the weights θ.

We assumed that the architecture α and the hyperparameters λ would be broadly

similar across regions. Therefore, we modified our evolutionary algorithm to process

all regions at the same time. We create and evolve α and λ independently of the

region, and, to optimize the weights θ, we randomly select the region on which the

model would be train and evaluate. In order not to penalize models that have been

evaluated on regions that are difficult to predict, we use a global loss function, which

consists in dividing the loss obtained on the region ℓregion by the loss of our baseline

CNN model on that region, Lregion. During the optimisation, for each region, we

progressively save the best model evaluated on it.

Results. The outputs of WindDragon would be by region the best model found

during the optimisation and the prediction of this model. The found architectures

vary a bit from a region to another. An example of the best model for the region

Grand Est can be found Figure A.5. This architecture uses self-attention just like in

the Transformer (Vaswani et al., 2017), but without the patches that can be found

in the ViT architecture. The model is also a lot smaller than a Transformer, which

can explain why it outperforms the other baselines on this region



A.5. Additional results 137

Grand Est Convex Hull

Identity,Swish

Self-Attention,28,Swish

Self-Attention,6,Swish

AvgPool2d,4,Swish

Flatten

Identity,LeakyReLU Self-Attention,28,Sigmoid

LayerNorm1d,Sigmoid

MLP,1,Linear

Figure A.5: Dragon automatically found architecture applied on the Grand Est
region.

A.5.2 Baselines details

The baselines used in Appendix A.3 are explained in more detail below.

Convolutional Neural Network (CNN). Figure A.6 shows the architecture of

the CNN baseline that we implemented. We used a simple grid search to optimize

the hyperparameters (e.g. the number of layers, the kernel sizes, the activation

functions)
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Figure A.6: CNN architecture applied on the Grand Est region.

Vision Transformer (ViT). The Vision Transformer used in this paper is based

on SimpleViT’s (Beyer et al., 2022) architecture. We reused the implementation
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from lucidrains package 5.

XGboost on the mean of the NWP wind speed map. Figure A.7 shows the

two-steps procedure of the XGboost baseline.

Step 1 : Compute the 
wind speed  mean

inside the convex hull

Step 2 : Applied an 
XGboost regressor

Figure A.7: Visual illustration of the XGB two-steps approach on the Auvergne-
Rhône-Alpes region.

XGBoost on the INR’s representation of the NWP Wind Speed Map

This baseline follows a two-step procedure:

(i) Fit the wind speed map using a modulated INR (Dupont et al., 2022; Serrano

et al., 2024) and obtain the associated vector representation (for more details

on fitting a modulated INR, please refer to Chapter 4).

(ii) Fit an XGBoost model on top of the learned representations.

A.5.3 Regional results

Table A.2: Regional results. The best results are highlighted in bold and the second
best results are underlined.

WindDragon INR + XGB CNN ViT XGB on mean Persistence

Region MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE MAE (MW) NMAE

Auvergne-Rhône-Alpes 19.5 14.9 % 20.2 15.5 % 19.6 15.0 % 21.6 16.5 % 29.2 22.4 % 28.7 22.0 %

Bourgogne-Franche-Comté 32.9 14.8 % 33.8 15.2 % 34.1 15.4 % 37.2 16.8 % 42.3 19.1 % 58.7 26.6 %

Bretagne 36.1 14.1 % 36.4 14.2 % 38.0 14.9 % 39.9 15.6 % 47.1 18.4 % 67.2 26.3 %

Centre-Val de Loire 53.3 44.0 % 55.7 15.7 % 57.3 16.1 % 59.0 16.6 % 61.9 17.5 % 96.7 27.3 %

Grand Est 125.6 12.5 % 127.9 12.8% 130.5 13.1 % 161.0 16.1 % 148.8 14.9 % 251.2 25.1 %

Hauts-de-France 159.7 12.1 % 163.6 12.3 % 167.6 12.7 % 177.0 13.4 % 178.8 13.5 % 320.1 24.2 %

Île-de-France 6.8 22.6 % 7.4 24.8 % 7.2 23.7 % 7.4 24.3 % 7.5 24.9 % 9.5 31.5 %

Normandie 29.6 12.7 % 29.8 12.8 % 30.8 13.2 % 31.2 13.4 % 36.8 15.8 % 55.9 24.0 %

Nouvelle-Aquitaine 43.1 15.7 % 44.9 16.3 % 44.0 16.4 % 48.4 17.6 % 53.7 19.6 % 77.9 28.4 %

Occitanie 51.2 12.3 % 55.4 13.3 % 55.8 13.5 % 64.1 15.5 % 91.6 22.1 % 96.3 23.2 %

PACA 3.5 32.4 % 3.6 33.9 % 3.5 32.4 % 4.0 37.2 % 4.5 41.4 % 4.3 39.5 %

Pays de la Loire 37.1 13.6 % 38.1 14 % 39.0 14.3 % 39.9 14.7 % 41.9 15.4 % 74.9 27.5 %

5https://github.com/lucidrains/vit-pytorch

https://github.com/lucidrains/vit-pytorch
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Appendix of Chapter 3

B.1 Reproductiblity statement

Our work is entirely reproducible.

Code. The code for all our experiments is available at this link.

Data. The data are available at this link.

GPU. We used NVIDIA TITAN RTX 24Go single GPU to conduct all the exper-

iments for our method, which is coded in PyTorch (Python 3.9.2).

B.2 How to compute receptive fields regions

With our model, it is very useful to be able to calculate the receptive fields and

in particular the receptive field regions relative to an element (or a region) of the

representation. To do this, we just need to adapt the following formulas computed

in Araujo et al. (2019) to our architecture:

v0 = vL

L∏
i=1

si −
L∑
l=1

(1 + pl − kl)
l−1∏
i=1

si

u0 = uL

L∏
i=1

si −
L∑
l=1

pl

l−1∏
i=1

si

Where:

• v0 stands for the left-most coordinates of the receptive field in the intial time

series

139

https://github.com/EtienneLnr/InterpretableTSRepresentation.git
https://www.cs.ucr.edu/%7Eeamonn/time_series_data_2018/
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• u0 stands for the right-most coordinates of the receptive field in the intial time

series

• vL stands for the left-most coordinates in the representation

• uL stands for the left-right coordinates in the representation

• kl stands for the kernel size at depth l

• sl stands for the stride at depth l

• pl stands for the padding at depth l

• L stands for the depth of the network

Thanks to these operations, we can highlight the receptive fields of the elements

of the representation in Figure 3.12 and Figure 3.10.

B.3 Impact on accuracy results of the number of

available centroids

The quantitive experiments in Subsection 3.6.1 were performed for 32 centroids

available during the vector quantization (K=32). It is interesting to see how the

number of centroids affects the classification performance. Table B.1 shows the

accuracy results averaged over the 25 UCR datasets on which the experiments were

conducted.

Table B.1: Mean accuracy on the previous 25 UCR datasets for different k (k ∈
{8, 16, 32}). The best result are in bold and the second best result are underlined.

k = 8 k = 16 k = 32

Mean

accuracy
0.753 0.778 0.793

We observed that increasing the number of available centroids improves accuracy.

However, it harms the centroids’ expressiveness and, thus, the interpretability of the

representation.
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B.4 Proof of the shift equivariance property

In this appendix, we propose to describe how the adaptive polyphase downsam-

pling/upsampling mechanism preserves the shift equivariance property despite down-

sampling (or upsampling). To do so, we pick up the proof given in Chaman and

Dokmanic (2021). We first present the proof of shift equivariance for the adaptive

polyphase downsampling mechanism and then the adaptive polyphase upsampling

case is straightforward.

Definition: We define the shift equivariance property as follows. Let S be an ele-

ment of a sequence (a single element or a subsequence), and GT the group of discrete

translations along the temporal axis. If we take τ to be any discrete translation in

GT and f to be a function equivariant by discrete translation for GT , then there

exists τ ′ ∈ GT ′ such that: f(τ(S)) = τ ′(f(S)).

Case 1: Adapative polyphase downsampling (APS-D) for downsampling

by half : To explain the APS-D operation, let us introduce s(t) the convolutions

output sequence of length T0. We can then define the two sub-sequences s0 and s1
such that s0(t) = s(2t) and s1(t) = s(2t+ 1). The APS-D operation DA

2 consists in

sub-sampling the sub-sequence sl such that:

DA
2 (s) = sl where l = arg max||sj||1 (for j ∈ {0, 1})

We introduce the following notations:

• τk is a discrete translation by k

• sAPS = DA
2 (s) is the non shift sequence output

• s
(k)
APS = DA

2 (τk(s)) is the shifted sequence output

Then we have:

s
(k)
APS =

{
τ k

2
(sAPS),when k is even

τ k+2i−1
2

(sAPS),when k is odd

Case 2: Adapative polyphase usampling (APS-U) for upsampling by two:

For the APS-U, the s signal is upsampled by two. We insert 0 elements in each even

or odd position according to the phase chosen in the block of the corresponding

encoder. By construction, this operation is shift equivariant. For more details on

this operation, see the original paper (Chaman and Dokmanic, 2021).
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C.1 Reproductiblity statement

Our work is entirely reproducible, and all the references to the information in order

to reproduce it are in this section.

Code. The code for all our experiments is available at this link.

Data. A subset of the processed data is available with the code at this link.

Model. The model and the training details are presented in Appendix A.2 and

the hyperparameter selection is available in Appendix C.2.1.

GPU. We used NVIDIA TITAN RTX 24Go single GPU to conduct all the exper-

iments for our method, which is coded in PyTorch (Python 3.9.2).

C.2 Architecture details and ablation studies

C.2.1 Architecture details

For all imputation and forecasting experiments we choose the following hyperpa-

rameters :

• z dimension: 128

• Number of layers: 5

• Hidden layers dimension: 256

• γ(t) ∈ R2×64

• z code learning rate (α in Algorithm 1): 10−2
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https://github.com/EtienneLnr/TimeFlow.git
https://github.com/EtienneLnr/TimeFlow.git
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• Hypernetwork and INR learning rate: 5× 10−4

• Number of steps in inner loop: K = 3

• Number of epochs: 4× 104

• Batch size: 64

It is worth noting that the hyperparameters mentioned above remain consistent

across all experiments conducted in the paper. We chose to maintain a fixed set of

hyperparameters for our model, while other imputation and forecasting approaches

commonly fine-tune hyperparameters based on a validation dataset. The obtained

results exhibit high robustness across various settings, suggesting that the selected

hyperparameters are already effective in achieving reliable outcomes.

C.2.2 Ablation studies

C.2.2.1 Fourier features vs SIREN on imputation task

Baseline. The SIREN network differs from the Fourier features network because

it does not explicitly incorporate frequencies as input. Instead, it is a multi-layer

perceptron network that utilizes sine activation functions. An adjustable parameter,

denoted ω0, is multiplied with the input matrices of the preceding layers to capture

a broader range of frequencies. For this comparison, we adopt the same hyperpa-

rameters described in Appendix C.2.1, selecting ω0 = 30 to align with Sitzmann

et al. (2020). Furthermore, we set the learning rate of both the hypernetwork and

the INR to 5× 10−5 to enhance training stability. In Table C.1, we compare the im-

putation results obtained by the Fourier features network and the SIREN network,

specifically focusing on the first time window from the Electricity, Traffic and Solar

datasets.
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Table C.1: MAE imputation errors on the first time window of each dataset. Best
results are bold.

τ TimeFlow TimeFlow w SIREN

Electricity

0.05 0.323 0.466

0.10 0.252 0.350

0.20 0.224 0.242

0.30 0.211 0.222

0.50 0.194 0.209

Solar

0.05 0.105 0.114

0.10 0.083 0.094

0.20 0.065 0.079

0.30 0.061 0.072

0.50 0.056 0.066

Traffic

0.05 0.292 0.333

0.10 0.220 0.252

0.20 0.168 0.191

0.30 0.152 0.163

0.50 0.141 0.154

Results According to the results presented in Table C.1, the Fourier features net-

work outperforms the SIREN network in the imputation task on these datasets.

Notably, the performance gap between the two network architectures are more pro-

nounced at low sampling rates. This disparity can be attributed to the SIREN

network’s difficulty in accurately capturing high frequencies when the time series

is sparsely observed. We hypothesize that the MLP with ReLU activations cor-

rectly learns the different frequencies of time series with multi-temporal patterns by

switching on or off the Fourier embedding frequencies.

C.2.2.2 Influence of the latent code dimension

The dimension of the latent code z is a crucial parameter in our architecture. If

it is too small, it underfits the time series. Consequently, this adversely affects the

performance of both the imputation and forecasting tasks. On the other hand, if the

dimension of z is too large, it can lead to overfitting, hindering the model’s ability

to generalize to new data points.

Baselines To investigate the impact of z dimensionality on the performance of

TimeFlow, we conducted experiments on the three considered datasets, specifically

focusing on the forecasting task. We varied the sizes of z within {32, 64, 128, 256}.
The other hyperparameters are set as presented in Appendix C.2.1. The obtained

results for each z dimension are summarized in Table C.2.

Results The results presented in Table C.2 suggest that a z dimension of 128 is a

reasonable compromise but only optimal for some settings. Moreover, even though
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Table C.2: MAE error for different z dimension.

H 32 64 128 256

Electricity

96 0.232 ± 0.016 0.222 ± 0.017 0.222 ± 0.018 0.215 ± 0.019
192 0.245 ± 0.020 0.239 ± 0.018 0.230 ± 0.026 0.233 ± 0.017
336 0.254 ± 0.029 0.244 ± 0.028 0.262 ± 0.031 0.243 ± 0.032
720 0.295 ± 0.027 0.284 ± 0.028 0.303 ± 0.041 0.283 ± 0.029

SolarH

96 0.182 ± 0.009 0.181 ± 0.012 0.179 ± 0.003 0.225 ± 0.047
192 0.195 ± 0.014 0.195 ± 0.016 0.193 ± 0.015 0.197 ± 0.029
336 0.181 ± 0.011 0.182 ± 0.011 0.189 ± 0.013 0.183 ± 0.012
720 0.201 ± 0.027 0.199 ± 0.025 0.209 ± 0.029 0.200 ± 0.030

Traffic

96 0.223 ± 0.024 0.215 ± 0.028 0.215 ± 0.037 0.210 ± 0.033
192 0.214 ± 0.018 0.217 ± 0.025 0.206 ± 0.023 0.203 ± 0.024
336 0.238 ± 0.029 0.231 ± 0.029 0.226 ± 0.030 0.229 ± 0.029
720 0.272 ± 0.040 0.269 ± 0.035 0.259 ± 0.038 0.262 ± 0.040

the choice of z dimension seems important, it doesn’t critically impact the MAE

error for the forecasting task.

C.2.2.3 Influence of the number of gradient steps

As can be seen in Table C.3, using three gradient steps at inference yield an inference

time of less than 0.2 seconds. The latter can still be reduced by doing only one

step at the cost of an increase in the forecasting error. As observed in Table C.3,

increasing the number of gradient steps above 3 steps during inference does not

improve forecasting performance.

Table C.3: Inference time (in seconds) and MAE error on the forecasting task on the
Electricity dataset for a horizon of length 720, a look-back window of length 512,
and a varying number of adaptation gradient steps. The statistics are computed
over 10 runs using an NVIDIA TITAN RTX GPU.

Gradient descent steps 1 3 10 50 500 5000

Inference time (s) 0.109 ± 0.003 0.176 ± 0.009 0.427 ± 0.031 3.547 ± 0.135 17.722 ± 0.536 189.487 ± 8.060
MAE 0.351 ± 0.038 0.303 ± 0.041 0.300 ± 0.040 0.299 ± 0.039 0.302 ± 0.038 0.308 ± 0.037

Results We conduct more extensive experiments in Table C.4, Table C.5, Ta-

ble C.6 to quantify the MAE score variation according to different number of gra-

dient steps during training and inference. The tables show that using the same

number of steps in training and inference leads to better results. This is expected

since using different gradient steps for training and inference makes the inference

model slightly different from the training model. In addition, using 3 gradient steps

instead of 1 clearly improves the performances, but using 10 instead of 3 does not.

Indeed, it usually leads to overall better results for longer horizon, but the gain is

not clear for smaller horizons. Hence using 3 gradient steps is a suitable choice.
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Table C.4: MAE error on the forecasting task using 1 inner-step during training and
a varying number of adaptation gradient steps at inference. Best results are in bold
and / symbol means that the MAE score is very high (≥ 1).

H 1 3 10 50

Electricity

96 0.244 ± 0.017 0.246 ± 0.017 0.261 ± 0.016 /
192 0.253 ± 0.024 0.253 ± 0.022 0.261 ± 0.020 0.265 ± 0.019
336 0.267 ± 0.032 0.268 ± 0.030 0.277 ± 0.028 0.281 ± 0.027
720 0.302 ± 0.030 0.306 ± 0.029 0.310 ± 0.028 0.301 ± 0.029

SolarH

96 0.192 ± 0.023 0.623 ± 0.397 / /
192 0.175 ± 0.006 0.252 ± 0.068 / /
336 0.192 ± 0.016 0.471 ± 0.029 / /
720 0.216 ± 0.034 0.465 ± 0.063 / 0.550 ± 0.187

Traffic

96 0.215 ± 0.029 0.329 ± 0.039 / /
192 0.208 ± 0.019 0.310 ± 0.033 0.312 ± 0.032 /
336 0.237 ± 0.028 0.307 ± 0.038 / /
720 0.263 ± 0.038 0.320 ± 0.040 / /

Table C.5: MAE error on the forecasting task using 10 inner-steps during training
and a varying number of adaptation gradient steps at inference. Best results are in
bold.

H 1 3 10 50

Electricity

96 0.259 ± 0.020 0.222 ± 0.018 0.222 ± 0.017 0.228 ± 0.019
192 0.269 ± 0.020 0.230 ± 0.026 0.232 ± 0.020 0.233 ± 0.026
336 0.273 ± 0.033 0.262 ± 0.031 0.264 ± 0.032 0.268 ± 0.032
720 0.351 ± 0.038 0.303 ± 0.041 0.300 ± 0.040 0.299 ± 0.039

SolarH

96 0.487 ± 0.196 0.179 ± 0.003 0.181 ± 0.003 0.186 ± 0.003
192 0.411 ± 0.088 0.193 ± 0.015 0.195 ± 0.014 0.199 ± 0.013
336 0.435 ± 0.153 0.189 ± 0.013 0.203 ± 0.006 0.223 ± 0.012
720 0.394 ± 0.173 0.209 ± 0.029 0.203 ± 0.006 0.209 ± 0.027

Traffic

96 0.320 ± 0.038 0.215 ± 0.037 0.219 ± 0.043 0.226 ± 0.046
192 0.299 ± 0.023 0.206 ± 0.023 0.209 ± 0.026 0.214 ± 0.027
336 0.345 ± 0.038 0.226 ± 0.030 0.228 ± 0.031 0.233 ± 0.032
720 0.321 ± 0.034 0.259 ± 0.038 0.260 ± 0.038 0.266 ± 0.039

Table C.6: MAE error on the forecasting task using 10 inner-steps during training
and a varying number of adaptation gradient steps at inference. Best results are in
bold.

H 1 3 10 50

Electricity

96 0.381 ± 0.030 0.249 ± 0.024 0.236 ± 0.024 0.238 ± 0.024
192 0.448 ± 0.045 0.273 ± 0.019 0.244 ± 0.014 0.244 ± 0.013
336 0.514 ± 0.053 0.283 ± 0.033 0.241 ± 0.025 0.242 ± 0.024
720 0.647 ± 0.068 0.400 ± 0.051 0.286 ± 0.023 0.287 ± 0.021

SolarH

96 0.605 ± 0.029 0.380 ± 0.018 0.188 ± 0.012 0.199 ± 0.015
192 0.382 ± 0.072 0.250 ± 0.012 0.202 ± 0.034 0.204 ± 0.035
336 0.745 ± 0.105 0.431 ± 0.221 0.201 ± 0.033 0.208 ± 0.032
720 0.745 ± 0.082 0.477 ± 0.039 0.205 ± 0.030 0.205 ± 0.029

Traffic

96 0.450 ± 0.023 0.273 ± 0.026 0.225 ± 0.028 0.230 ± 0.034
192 0.506 ± 0.028 0.318 ± 0.021 0.233 ± 0.022 0.236 ± 0.026
336 0.500 ± 0.042 0.320 ± 0.021 0.247 ± 0.028 0.249 ± 0.031
720 0.511 ± 0.035 0.323 ± 0.022 0.266 ± 0.027 0.272 ± 0.024
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C.2.2.4 TimeFlow variants with other meta-learning techniques

Baselines Before converging to the current architecture and optimization of Time-

Flow, we explored different options to condition the INR with the observations. The

first one was inspired by the neural process architecture, which uses a set encoder to

transform a set of observations (ti, xti)i∈I into a latent code z by applying a pooling

layer after a feed forward network. We observed that this encoder in combination

with the modulated fourier features network was able to achieve relatively good re-

sults on the forecasting task but suffered of underfitting on more complex datasets

such as Electricity.

This led us to consider auto-decoding methods instead, i.e. encoder-less, archi-

tectures for conditioning the weights of the coordinate-based network. We trained

TimeFlow with the REPTILE algorithm (Nichol et al., 2018), which is a first-order

meta-learning technique that adapts the code in a few steps of gradient descent. In

contrast with a second-order method, we observed that REPTILE was less costly

to train but struggled to escape sub optimal minima, which led to unstable training

and underfitting.

From an implementation point of view, the only difference between second order

and first order, is that in the latter the code is detached from the computation graph

before taking the outer-loop parameter update. When the code is not detached,

it remains a function of the common parameters z = z(θ,w), which means that

the computation graph for the outer-loop also includes the inner-loop updates to

the codes. Therefore the outer-loop gradient update involves a gradient through a

gradient and requires an additional backward pass through the INR to compute the

Hessian. Please refer to Finn et al. (2017) for more technical details.
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Table C.7: Comparison of second-order and first-order (REPTILE) meta learning
for TimeFlow on the imputation task. Mean MAE results on the missing grid over
five different time windows. τ stands for the subsampling rate. Bold results are
best.

τ TimeFlow TimeFlow w REPTILE

0.05 0.324 ± 0.013 0.363 ± 0.062

0.10 0.250 ± 0.010 0.343 ± 0.036

Electricity 0.20 0.225 ± 0.008 0.312 ± 0.043

0.30 0.212 ± 0.007 0.308 ± 0.035

0.50 0.194 ± 0.007 0.305 ± 0.046

0.05 0.095 ± 0.015 0.125 ± 0.025

0.10 0.083 ± 0.015 0.123 ± 0.032

Solar 0.20 0.072 ± 0.015 0.108 ± 0.021

0.30 0.061 ± 0.012 0.105 ± 0.027

0.50 0.054 ± 0.013 0.102 ± 0.021

0.05 0.283 ± 0.016 0.304 ± 0.026

0.10 0.211 ± 0.012 0.264 ± 0.009

Traffic 0.20 0.168 ± 0.006 0.242 ± 0.019

0.30 0.151 ± 0.007 0.218 ± 0.020

0.50 0.139 ± 0.007 0.216 ± 0.017

Results In Table C.7, we show the performance of first-order TimeFlow on the

imputation task. In low sampling regimes the difference with TimeFlow is less

perceptive, but its performance plateaus when the number of points increases. This

is not surprising. Indeed, as though the task is actually simpler when τ increases,

the optimization is made more difficult with the increased number of observations.

We provide the performance of TimeFlow with a set encoder on the Forecasting task

in Table C.8. We observed that this version failed to generalize well for complex

datasets.

Table C.8: Comparison of optimization-based and set-encoder-based meta learning
for TimeFlow on the forecasting task. Mean MAE forecast results over different
time windows. H stands for the horizon. Bold results are best.

H TimeFlow TimeFlow w set encoder

96 0.228 ± 0.026 0.362 ± 0.032

192 0.238 ± 0.020 0.360 ± 0.028

Electricity 336 0.270 ± 0.031 0.382 ± 0.038

720 0.316 ± 0.055 0.431 ± 0.059

96 0.190 ± 0.013 0.251 ± 0.071

192 0.202 ± 0.020 0.239 ± 0.058

SolarH 336 0.209 ± 0.017 0.235 ± 0.040

720 0.218 ± 0.048 0.231 ± 0.032

96 0.217 ± 0.036 0.276 ± 0.031

192 0.212 ± 0.028 0.281 ± 0.034

Traffic 336 0.238 ± 0.034 0.297 ± 0.042

720 0.279 ± 0.050 0.333 ± 0.048
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C.2.2.5 Influence of the modulation

In TimeFlow, we apply shift modulations to the parameters of the INR, i.e. for each

layer l we only modify the biases of the network with an extra bias term ϕ
(j)
l . We

generate these bias terms with a linear hypernetwork that maps the code z(j) to the

modulations. The output of the l-th layer of the modulated INR is thus given by

ϕl+1 = ReLU(θlϕl−1 + bl + ψ
(j)
l ), where ψ

(j)
l = Wlz

(j) and (Wl)
L
l=1 are parameters

of the hypernetwork. However, another common modulation is the combination of

the scale and shift modulation, which leads to the output of the l-th layer of the

modulated INR being given by ϕl+1 = ReLU((Slz
(j)) ◦ (θlϕl−1 + bl) + ψ

(j)
l ), where

ψ
(j)
l = Wlz

(j), and (Wl)
L
l=1 and (Sl)

L
l=1 are parameters of the hypernetwork and ◦ is

the Hadamard product.

In Table C.9, we conduct additional experiments on the Electricity dataset in the

forecasting setting with different time horizons. In these experiments, we compare

two scenarios: one where the INR is modulated only by a shift factor and the other

where the INR is modulated by both a shift and a scale factor. We kept the ar-

chitecture and hyperparameters consistent with those described in Appendix C.2.1.

The experiments shown in Table C.9 indicate that the INR is longer to train with

shift and scale modulations due to the increased number of parameters involved.

Furthermore, we observe that the shift and scale modulated INR performed simi-

larly or even worse than the INR with only shift modulation. These two drawbacks,

namely an increased computational time and similar or worse performances, moti-

vate modulating the INR only by a shift factor.

Table C.9: Ablation on modulations for the forecasting task on Electricity dataset
for different horizons. Models are trained on a given time window and tested on four
new time windows. Models are trained on a single NVIDIA TITAN RTX GPU.

96 192 336 720

MAE Training time MAE Training time MAE Training time MAE Training time

Shift 0.233 ± 0.014 2h30 0.245 ± 0.016 2h31 0.264 ± 0.020 2h33 0.303 ± 0.041 2h46

Shift and scale 0.257 ± 0.019 3h29 0.263 ± 0.014 3h32 0.268 ± 0.025 3h45 0.308 ± 0.037 4h14

C.2.2.6 Discussion on other hyperparameters

While the dimension of z is indeed a crucial hyperparameter, it is important to note

that other hyperparameters also play a significant role in the performance of the

INR. For example, the number of layers in the FFN directly affects the ability of the

model to fit the time series. In our experiments, we have observed that using five

or more layers yields good performance, and including additional layers can lead to

slight improvements in the generalization settings.
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Similarly, the number of frequencies used in the frequency embedding is another

important hyperparameter. Using too few frequencies can limit the network’s abil-

ity to capture patterns, while using too many frequencies can hinder its ability to

generalize accurately.

The choice of learning rate is critical for achieving stable convergence during

training. Therefore, in practice, we use a low learning rate combined with a cosine

annealing scheduler to ensure stable and effective training.

C.3 Imputation experiments

C.3.1 Baselines details

C.3.1.1 Baselines training and hyperparameters

The baselines underwent meticulous training and extensive testing, involving thor-

ough exploration of hyperparameters. We used SAITS repository (code) for BRITS

and SAITS. The adopted setting results from a hyperparameters search, which yields

marginally superior results for both methods compared to the default settings. The

marginal difference in scores underscores the robustness of BRITS and SAITS. In

addition, mTAN and TIDER did not perform optimally with the recommended con-

figurations, requiring an extensive search. Details of the parameters explored are

provided in Table C.10 and Table C.11. While the hyperparameter search led to

performance improvements, overall results remained sub-optimal. For CSDI, the

recommended settings proved inadequate for the considered datasets, prompting a

comprehensive search. Among various parameters, the number of diffusion steps

emerged as crucial, significantly enhancing performance, particularly at higher draw

ratios. However, superior performance was attained with more diffusion steps, albeit

at increased computational cost. The chosen parameters are detailed in Table C.12.

In addition, the original DeepTime implementation did not perform well on impu-

tation. Hence, we adapted the DeepTime training procedure (see Appendix C.3.2).

Lastly, the vanilla Neural Process baseline underperformed, so we customized its

architecture to conduct a fair comparison with TimeFlow. We used the INR and

hypernetwork from TimeFlow to align the Neural Process with our temporal fre-

quency bias and shift modulation technique.

C.3.1.2 Models complexity

We can see in Table C.13 that our method has 10 times less parameters than BRITS

and 20 times less than SAITS. It is mainly due to their modelisation of interaction

between samples. SAITS, which is based on transformers has the highest number

of parameters when mTAN has the lowest number of parameters.

https://github.com/WenjieDu/SAITS
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Table C.10: mTAN hyperparameter search.

Dimension size γ linear scheduler lr NumRefPoints k-iwae Target ratio

50 1 1× 10−5 32 5 0.2
100 0.95 0.0001 64 10 0.8
- 0.5 0.001 128 - -
- 0.1 0.005 - - -

Table C.11: TIDER hyperparameter search.

Dimension size λar λtrend lr Season number

50 0.1 0.01 0.0001 2
100 0.2 0.1 0.001 10
- - - 0.005 15
- - - - 20

Table C.12: CSDI chosen hyperparameters.

Epochs lr Layers Channels Nheads Embedding dimension NSteps Schedule Time embedding

5000 0.001 4 64 8 128 100 Quad 128

Table C.13: Number of parameters for each DL methods on the imputation task on
the Electricity dataset.

TimeFlow DeepTime NeuralProcess mTAN SAITS BRITS TIDER

Number of parameters 602k 1315k 248k 113k 11 137k 6 220k 1 034k

C.3.2 Details on DeepTime adaptation for imputation

As DeepTime was proposed to address the forecasting task with a deeptime-index

model, the authors did not tackle the task of imputation and left it out for future

work. Given the success of this method and the motivation of our work, we wanted

to explore its capabilities to impute time series with several subsampling rates.

Following our current framework, we first tried to train the model in a self-supervised

way, i.e. trying to reconstruct observations x(j) ∈ T (j) after the INR has been

conditioned with the Ridge Regressor on the same set of observations, but discovered

failure cases for τ ≤ 0.20. To be faithful to the original supervised training of

DeepTime, we therefore randomly mask out 50% of the observations that we use as

context for the Ridge Regressor and try to infer the other 50% (the targets) to train

the INR.
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We provide a qualitative comparison of the model’s performance with these two

different training procedures in Figure C.1. We can notice that the model that results

from the self-supervised training perfectly fits the observations but completely misses

the important patterns of the series. On the other hand, when DeepTime is trained

to infer target values based on observations, it is able to capture the general trends.

We think that in the small subsampling regime (τ ≤ 0.20), the Ridge Regressor

easily fits very well all the observations which hinders the training of the INR’s

basis.
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Figure C.1: Electricity dataset. Self supervised DeepTime imputation (blue line)
and supervised DeepTime imputation (black line) with 5% of known point (red
points) on the eight first days of samples 11 (top) and 29 (bottom).

C.4 Forecasting experiments

C.4.1 Distinction between adjacent time windows and new

time windows during inference

In Section 4.4.2, we presented the forecasting results for periods outside the training

period. These periods can be classified into two types: adjacent to or disjoint

from the training period. Figure C.2 illustrates these distinct test periods for the

Electricity dataset. The same principle applies to the Traffic and SolarH datasets,

with one notable difference: the number of test periods is smaller in these datasets

compared to Electricity dataset due to the fewer time steps available.

In Table 4.5, we presented the results indistinctly for the two types of test periods:

adjacent to and disjoint from the training window. Here, we aim to differentiate the

results for these two types of window and emphasize their significant impact on

Informer and AutoFormer results. Specifically, Table C.14 showcases the results for
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the test periods adjacent to the training window. In contrast, Table C.15 displays

the results for the test periods disjointed from the training window

Train period test horizon = 

test look-back window =

Test period n°1 Test period n°2 Test period n°3 Test period n°4 Test period n°5

Adjacent time
window

New time
windows

Figure C.2: Distinction between adjacent time windows and new time windows
during inference for the Electricity dataset.

Results TimeFlow, PatchTST, DLinear and DeepTime maintain consistent fore-

casting results whether tested on the period adjacent to the training period or on

a disjoint period. However, AutoFormer and Informer show a significant drop in

performance when tested on new disjoint periods.

Table C.14: Mean MAE forecast results for adjacent time windows. H stands for
the horizon. Bold results are best, underline results are second best.

Continuous methods Discrete methods

H TimeFlow DeepTime Neural Process Patch-TST DLinear AutoFormer Informer

Electricity

96 0.218 ± 0.017 0.240 ± 0.027 0.392 ± 0.045 0.214 ± 0.020 0.236 ± 0.035 0.310 ± 0.031 0.293 ± 0.0184

192 0.238 ± 0.012 0.251 ± 0.023 0.401 ± 0.046 0.225 ± 0.017 0.248 ± 0.032 0.322 ± 0.046 0.336 ± 0.032

336 0.265 ± 0.036 0.290 ± 0.034 0.434 ± 0.075 0.242 ± 0.024 0.284 ± 0.043 0.330 ± 0.019 0.405 ± 0.044

720 0.318 ± 0.073 0.356 ± 0.060 0.605 ± 0.149 0.291 ± 0.040 0.370 ± 0.086 0.456 ± 0.052 0.489 ± 0.072

SolarH

96 0.172 ± 0.017 0.197 ± 0.002 0.221 ± 0.048 0.232 ± 0.008 0.204 ± 0.002 0.261 ± 0.053 0.273 ± 0.023

192 0.198 ± 0.010 0.202 ± 0.014 0.244 ± 0.048 0.231 ± 0.027 0.211 ± 0.012 0.312 ± 0.085 0.256 ± 0.026

336 0.207 ± 0.019 0.200 ± 0.012 0.241 ± 0.005 0.254 ± 0.048 0.212 ± 0.019 0.341 ± 0.107 0.287 ± 0.006

720 0.215 ± 0.016 0.240 ± 0.011 0.403 ± 0.147 0.271 ± 0.036 0.246 ± 0.015 0.368 ± 0.006 0.341 ± 0.049

Traffic

96 0.216 ± 0.033 0.229 ± 0.032 0.283 ± 0.028 0.201 ± 0.031 0.225 ± 0.034 0.299 ± 0.080 0.324 ± 0.113

192 0.208 ± 0.021 0.220 ± 0.020 0.292 ± 0.023 0.195 ± 0.024 0.215 ± 0.022 0.320 ± 0.036 0.321 ± 0.052

336 0.237 ± 0.040 0.247 ± 0.033 0.305 ± 0.039 0.220 ± 0.036 0.244 ± 0.035 0.450 ± 0.127 0.394 ± 0.066

720 0.266 ± 0.048 0.290 ± 0.045 0.339 ± 0.037 0.268 ± 0.050 0.290 ± 0.047 0.630 ± 0.043 0.441 ± 0.055

TimeFlow improvement / 6.56 % 30.79 % 2.64 % 7.30 % 35.43 % 33.07 %
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Table C.15: Mean MAE forecast results for new time windows. H stands for the
horizon. Bold results are best, underline results are second best.

Continuous methods Discrete methods

H TimeFlow DeepTime Neural Process Patch-TST DLinear AutoFormer Informer

Electricity

96 0.230 ± 0.012 0.245 ± 0.026 0.392 ± 0.045 0.222 ± 0.023 0.240 ± 0.025 0.606 ± 0.281 0.605 ± 0.227

192 0.246 ± 0.025 0.252 ± 0.018 0.401 ± 0.046 0.231 ± 0.020 0.257 ± 0.027 0.545 ± 0.186 0.776 ± 0.257

336 0.271 ± 0.029 0.285 ± 0.034 0.434 ± 0.076 0.253 ± 0.027 0.298 ± 0.051 0.571 ± 0.181 0.823 ± 0.241

720 0.316 ± 0.051 0.359 ± 0.048 0.607 ± 0.15 0.299 ± 0.038 0.373 ± 0.075 0.674 ± 0.245 0.811 ± 0.257

SolarH

96 0.208 ± 0.005 0.206 ± 0.026 0.221 ± 0.048 0.293 ± 0.089 0.212 ± 0.019 0.228 ± 0.027 0.234 ± 0.011

192 0.206 ± 0.012 0.207 ± 0.037 0.244 ± 0.048 0.274 ± 0.060 0.223 ± 0.029 0.356 ± 0.122 0.280 ± 0.033

336 0.211 ± 0.005 0.199 ± 0.035 0.240 ± 0.006 0.264 ± 0.088 0.223 ± 0.032 0.327 ± 0.029 0.366 ± 0.039

720 0.222 ± 0.020 0.217 ± 0.028 0.403 ± 0.147 0.262 ± 0.083 0.251 ± 0.047 0.335 ± 0.075 0.333 ± 0.012

Traffic

96 0.218 ± 0.042 0.229 ± 0.032 0.283, 0.0275 0.204 ± 0.039 0.229 ± 0.032 0.326 ± 0.049 0.388 ± 0.055

192 0.213 ± 0.028 0.220 ± 0.023 0.292, 0.0236 0.198 ± 0.031 0.223 ± 0.023 0.575 ± 0.254 0.381 ± 0.049

336 0.239 ± 0.035 0.244 ± 0.040 0.305, 0.0392 0.223 ± 0.040 0.252 ± 0.042 0.598 ± 0.286 0.448 ± 0.055

720 0.280 ± 0.047 0.290 ± 0.055 0.339, 0.0375 0.270 ± 0.059 0.304 ± 0.061 0.641 ± 0.072 0.468 ± 0.064

TimeFlow improvement / 2.50 % 27.75 % 3.41 % 6.80 % 46.26 % 45.53 %

C.4.2 Plots comparison: TimeFlow vs PatchTST

Table 4.5 demonstrates the similar forecasting performance of TimeFlow and PatchTST

across all horizons. To visually represent their predictions, the figures below show-

case the forecasted outcomes of these methods for two samples (24 and 38) and two

horizons (96 and 192) on the Electricity, SolarH, and Traffic datasets.
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Figure C.3: Qualitative comparisons of TimeFlow vs PatchTST on the Electricity
dataset for new time windows.
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Figure C.4: Qualitative comparisons of TimeFlow vs PatchTST on the SolarH
dataset for new time windows.
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Figure C.5: Qualitative comparisons of TimeFlow vs PatchTST on the Traffic
dataset for new time windows.

Results The visual analysis of the figures above reveals that the predictions of

TimeFlow and PatchTST are remarkably similar. For instance, when examining

sample 24 and horizon 192 of the Traffic dataset, both forecasters exhibit similar

error patterns. The only noticeable distinction emerges in the SolarH dataset, where

PatchTST tends to overestimate certain peaks.

C.4.3 Baseline details

C.4.3.1 Baselines training and hyperparameters

We provide a detailed breakdown of the hyperparameters and our training approach

for the forecasting baselines. We took an in-depth approach, testing each method

under a range of configurations to ensure they were well-suited to the unique charac-

teristics of the datasets and tasks at hand. For DLinear and transformer baselines,

including PatchTST, AutoFormer, and Informer, we utilized the implementations

detailed in the PatchTST baselines (code) and adhered to the best practices rec-

ommended for our particular tasks. Notably, our implementation of PatchTST was

https://github.com/yuqinie98/PatchTST
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combined with ReVIN, enhancing the robustness of the results. Regarding Deep-

Time, we followed the recommended hyperparameters, opting for a structure with 5

layers, each 256 units wide, and using 4096 Fourier features spanning a diverse set

of scales. As for the Neural Process, the standard model did not train as expected.

So, we customized its architecture to conduct a fair comparison with TimeFlow. We

used the INR and hypernetwork from TimeFlow to align the Neural Process with

our temporal frequency bias and shift modulation technique. We also meticulously

searched for the optimal hyperparameters, like the Kullback Leibler (KL) divergence

weight and learning rate. Moreover, we extended the training duration to ensure

thorough convergence.

C.4.3.2 Models complexity

In this section, we present the parameter counts and the inference time for the main

forecasting baselines. Except for TimeFlow and DeepTime, the number of param-

eters varies with the number of samples, the look-back window, and the horizon.

Thus, we report the number of parameters for two specific configurations, including

a fixed dataset, a fixed look-back window, and a fixed horizon. In Table C.16, we

see that for PatchTST and DLinear, the larger the horizon, the more the number

of parameters increases. In Table C.17, it is shown that all methods’ computational

time increases with the horizon, which is expected. Moreover, TimeFlow is slower

than the baselines that use forward computations only. Still, on the Electricity

dataset, for example, the method can infer for 321 samples a horizon of 720 values

with a look-back window of 512 timestamps in less than 0.2s, which does not look

prohibitive for many real-world usages. This is mainly due to the small number of

gradient steps at inference.

Table C.16: The number of parameters for main baselines on the forecasting task
on the Electricity dataset for horizons 96 and 720. The look-back window size is
512.

TimeFlow DeepTime Neural Process Patch-TST DLinear Informer Autoformer

96 602k 1 315k 480k 1 194k 98k 984k 1 005k

720 602k 1 315k 480k 6 306k 739k 984k 1 005k
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Table C.17: Inference time (in seconds) for the forecasting task on the Electricity
dataset with horizons 96 and 720 and a look-back window of length 512. The
statistics are computed over 10 runs using an NVIDIA TITAN RTX GPU.

TimeFlow Patch-TST DLinear DeepTime AutoFormer Informer

96 0.147 ± 0.007 0.016 ± 0.002 0.007 ± 0.003 0.006 ± 0.002 0.027 ± 0.001 0.0191 ± 0.002

720 0.176 ± 0.009 0.020 ± 0.001 0.009 ± 0.001 0.010 ± 0.002 0.034± 0.001 0.0251 ± 0.002

C.4.4 Sparsely observed look-back window: comparison with

Patch-TST

Setting and baseline. Let’s consider a setting where at inference time, the look-

back window is sparsely observed. Models such as PatchTST must proceed in two

steps: (i) completing the look-back window on a dense regular grid using impu-

tation; (ii) apply the model on the completed window to predict the future. We

compared TimeFlow with the following two-step processing baseline: linear interpo-

lation handling the missing values within the partially observed look-back window,

and PatchTST handling the forecasting task. We conducted experiments on the

Traffic and Electricity datasets, focusing on the 96 and 192 horizons. In Table C.18,

we present the results at different sampling rates τ ∈ {0.5, 0.2, 0.1} within the look-

back window.

Table C.18: MAE results for forecasting on new samples and new period with missing
values in the look-back window. Best results are in bold.

TimeFlow Linear interpo + PatchTST

H τ Imputation error Forecast error Imputation error Forecast error

Electricity

96

1. 0.000 ± 0.000 0.228 ± 0.028 0.000 ± 0.000 0.221 ± 0.023

0.5 0.151 ± 0.003 0.239 ± 0.013 0.257 ± 0.008 0.279 ± 0.026

0.2 0.208 ± 0.006 0.260 ± 0.015 0.482 ± 0.019 0.451 ± 0.042

0.1 0.272 ± 0.006 0.295 ± 0.016 0.663 ± 0.029 0.634 ± 0.053

192

1. 0.000 ± 0.000 0.238 ± 0.020 0.000 ± 0.000 0.229 ± 0.020

0.5 0.149 ± 0.004 0.235 ± 0.011 0.258 ± 0.006 0.280 ± 0.032

0.2 0.209 ± 0.006 0.257 ± 0.013 0.481 ± 0.021 0.450 ± 0.054

0.1 0.274 ± 0.010 0.289 ± 0.016 0.669 ± 0.030 0.650 ± 0.060

Traffic

96

1. 0.000 ± 0.000 0.217 ± 0.032 0.000 ± 0.000 0.203 ± 0.037

0.5 0.219 ± 0.017 0.224 ± 0.033 0.276 ± 0.012 0.255 ± 0.041

0.2 0.278 ± 0.017 0.252 ± 0.029 0.532 ± 0.017 0.483 ± 0.040

0.1 0.418 ± 0.019 0.382 ± 0.014 0.738 ± 0.023 0.721 ± 0.073

192

1. 0.000 ± 0.000 0.212 ± 0.028 0.000 ± 0.000 0.197 ± 0.030

0.5 0.176 ± 0.014 0.217 ± 0.017 0.276 ± 0.011 0.245 ± 0.029

0.2 0.233 ± 0.017 0.236 ± 0.021 0.532 ± 0.020 0.480 ± 0.050

0.1 0.304 ± 0.019 0.277 ± 0.021 0.734 ± 0.022 0.787 ± 0.172
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Results. Although PatchTST performs slightly better with a dense look-back win-

dow, its performance significantly deteriorates as the value of τ decreases. In con-

trast, the performance of TimeFlow is only minimally affected by the reduction in

the sampling rate.

C.4.5 Influence of the look-back window for forecasting

In Figure C.6, it is shown that both excessively short and overly long look-back

windows can harm TimeFlow forecasting performance. More precisely, the perfor-

mances increases with the look-back window size up to a certain size, where the

performances then drop slowly.
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Figure C.6: MAE forecast error per look-back windows length for the Electricity
dataset (horizon window length is 336). The model is trained on a given time
window and tested on four new time windows.

C.4.6 Influence of the horizon length for forecasting

In Figure C.7, it is shown that the performances decrease with the length of the

horizon. This is to be expected, since the longer the horizon, the harder the task.
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Figure C.7: MAE forecast error per horizons length for the Electricity dataset (look-
back window length is 512). The model is trained on a given time window and tested
on four new time windows.
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C.5 Discussion on using frequency embedding as

input to regression models

C.5.1 Related work

In forecasting univariate time series, several models have explored the integration

of frequency embedding of timestamps for regression purposes. Taylor and Letham

(2018) approached the time series as a continuous function of time using a gen-

eral additive model (Hastie, 2017). They represented seasonality components as

learnable Fourier series while explicitly specifying the ground truth seasonalities

(e.g., weekly, monthly). Similarly, Hyndman and Athanasopoulos (2018) proposed

embedding the timestamp t with the ground truth frequencies and applying a re-

gression model to predict the series value at the timestamp t. Both methods rely on

the explicit specification of seasonalities and are tailored for purely univariate time

series, where information is not shared between samples.

In contrast, other models, such as TimeFlow or DeepTime (Woo et al., 2022),

based on deep learning techniques, offer more flexibility. These approaches can

autonomously learn relevant frequencies and effectively share information between

samples through backpropagation. This enables a more dynamic and adaptable

approach to time series forecasting, particularly in scenarios with complex temporal

patterns and inter-sample dependencies.

C.5.2 Experiments

Given the seasonal patterns observed in the Solar, Electricity, and Traffic datasets,

an alternative to deep learning forecasting methods is to individually regress a times-

tamp embedding on the corresponding value using a robust regressor. This approach

exploits the inherent periodicity in the data, using timestamp embeddings to capture

temporal dependencies and accurately predict the target values.

Baselines. We compare TimeFlow against two regression baselines:

• TimeFlow frequencies embedding + XGBoost: This baseline uses the

same frequency embedding as TimeFlow and applies an XGBoost regressor

(Chen and Guestrin, 2016) on top. The aim is to assess whether the XGBoost

regressor can effectively identify the correct frequencies, filter out irrelevant

ones, and establish the appropriate mapping between timestamps and values.

• XGB Explicit Seasonal encoding + XGboost: in this baseline, we give

explicitly the right frequencies of each datasets to the model. It is important

to highlight that this method uses information that other baselines
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don’t. For instance for the Traffic dataset, the Explicit Seasonal encoding

is γ(t) =
(
t, cos

(
2πt
24

)
, sin

(
2πt
24

)
, cos

(
2πt
24×7

)
, sin

(
2πt
24×7

))
. It allows to explicitly

integers trend, daily frequencies and weekly frequencies. We apply the same

type of frequencies embedding for Solar and Electricity with the appropriate

seasonalities.

Experimental Setup. For each dataset and sample, we applied the frequency

embedding individually and then trained an XGBoost regressor on each observed

timestamp (the look-back window in forecasting and the observed grid in imputa-

tion). This approach results in one model per sample. The XGBoost regressor is

configured with the following hyperparameters:

• n estimators: 500

• max depth: 4

• learning rate: 0.1

• lambda: [0.1, 1, 10]

The optimal regularization parameter lambda is determined through cross-validation.

The imputation and forecasting results are presented in detail in Table C.19 and

Table C.20, respectively.

Table C.19: Mean MAE imputation results on the missing grid only. In the table,
τ stands for the subsampling rate, i.e. the proportion of observed points considered
for each samples. Bold results are best, underlined results are second best.

τ TimeFlow TimeFlow frequencies embedding+ XGB Explicit Seasonal encoding + XGB

0.05 0.324 ± 0.013 0.834 ± 0.092 0.365 ± 0.051

0.10 0.250 ± 0.010 0.761 ± 0.074 0.318 ± 0.049

Electricity 0.20 0.225 ± 0.008 0.632 ± 0.066 0.278 ± 0.044

0.30 0.212 ± 0.007 0.536 ± 0.041 0.259 ± 0.048

0.50 0.194 ± 0.007 0.418 ± 0.042 0.238 ± 0.022

0.05 0.095 ± 0.015 0.603 ± 0.035 0.234 ± 0.021

0.10 0.083 ± 0.015 0.478 ± 0.024 0.190 ± 0.022

Solar 0.20 0.072 ± 0.015 0.350 ± 0.022 0.150 ± 0.019

0.30 0.061 ± 0.012 0.286 ± 0.018 0.134 ± 0.011

0.50 0.054 ± 0.013 0.227 ± 0.015 0.123 ± 0.015

0.05 0.283 ± 0.016 0.739 ± 0.140 0.344 ± 0.036

0.10 0.211 ± 0.012 0.676 ± 0.129 0.290 ± 0.029

Traffic 0.20 0.168 ± 0.006 0.562 ± 0.108 0.245 ± 0.027

0.30 0.151 ± 0.007 0.487 ± 0.095 0.223 ± 0.015

0.50 0.139 ± 0.007 0.393 ± 0.083 0.198 ± 0.021

TimeFlow improvement / 69.5 % 33.7 %
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Imputation results. TimeFlow performs better than the other two methods.

Although the second baseline explicitly incorporates ground truth frequencies and

provides decent results, its inability to share information between samples leads to

the loss of valuable insights that TimeFlow effectively exploits. In addition, the

first baseline struggles to learn the correct frequencies and overfits observed data

points, resulting in excessive high-frequency noise. As a result, its performance de-

grades significantly compared to the second baseline, where frequencies are explicitly

provided. These findings underscore TimeFlow’s ability to identify the underlying

frequencies, and leverage shared information across samples to improve accuracy

during imputation.

Table C.20: Mean MAE forecast results for adjacent time windows averaged over
different time windows. Each time, the model is trained on one time window and
tested on the others (there are 2 windows for SolarH and 5 for Electricity and
Traffic). H stands for the horizon. Bold results are best, and underlined results are
second best

H TimeFlow TimeFlow frequencies embedding + XGB Explicit Seasonnal encoding + XGB

Electricity

96 0.218 ± 0.017 0.662 ± 0.102 0.282 ± 0.020

192 0.238 ± 0.012 0.750 ± 0.128 0.279 ± 0.021

336 0.265 ± 0.036 0.809 ± 0.136 0.294 ± 0.041

720 0.318 ± 0.073 0.852 ± 0.144 0.357 ± 0.092

SolarH

96 0.172 ± 0.017 0.792 ± 0.062 0.244 ± 0.023

192 0.198 ± 0.010 0.933 ± 0.055 0.236 ± 0.018

336 0.207 ± 0.019 1.033 ± 0.052 0.229 ± 0.022

720 0.215 ± 0.016 1.116 ± 0.057 0.262 ± 0.021

Traffic

96 0.216 ± 0.033 0.655 ± 0.156 0.288 ± 0.052

192 0.208 ± 0.021 0.678 ± 0.139 0.246 ± 0.033

336 0.237 ± 0.040 0.719 ± 0.143 0.262 ± 0.044

720 0.266 ± 0.048 0.741 ± 0.140 0.288 ± 0.063

TimeFlow improvement / 70.8 % 15.7 %

Forecasting results. TimeFlow also outperforms the other two baselines in fore-

casting. However, the improvement over the second baseline, where the correct fre-

quencies are explicitly provided, is more modest compared to the gains observed in

imputation. Nevertheless, the relative improvement achieved by TimeFlow remains

significant (exceeding 15 %). Similar to the imputation scenario, the XGBoost

baseline with TimeFlow timestamps encoding, which attempts to learn the correct

frequencies, fails to discern them accurately and introduces excessive high-frequency

components.
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C.6 Discussion: meta-learning optimization in time

series forecasting

The concept of inner and outer loops is to be reformulated within the broader

general framework of model-agnostic meta-learning (Finn et al., 2017), where the

authors seek to enable rapid adaptation of the model to unseen tasks. In TimeFlow,

we adapt the general idea of agnostic meta-learning to our tasks. We propose an

efficient way to achieve this goal by splitting the parameters into two parts: context

parameters (learned in the inner loop, responsible for the adaptive part of the model)

and meta-parameters (or ”parameters shared across tasks”) (learned in the outer

loop, responsible for the generic part of the model).

In the context of time series forecasting. TimeFlow aims to have a subset of

parameters that adapts to specific contextual factors (e.g., the look-back window of

a particular sample) and another subset that performs the forecasting task according

to this learned context (e.g., forecasting any point within the forecast horizon as well

as within the look-back window). To achieve this, we seek to adjust the codes z(j)

exclusively on the contexts (e.g., the look-back window) for each sample j, while

the shared parameters between samples θ and w characterize a shared function

capable of forecasting based on a given z(j). This function could be represented as

fθ,w(t, z(x
(j))). This concept entails adapting z(j) by sample j and training θ, w by

batch.
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Appendix of Chapter 5

D.1 Noisy modulation visualization

In the experiment in Section 5.2.2, we perturb the modulation (by adding Gaussian

noise) for only one layer and a given channel of the INR and observe the difference

in the time domain between the non-perturbed and the perturbed TimeFlow. We

provide in Figure D.1 a visualization of the modulation perturbation.

Figure D.1: Noisy modulation visualization.
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D.2 DDPM inference process.

In Algorithm 4 we present the procedure to generate new z(gen) from a trained ϵν(.)

denoiser.

Algorithm 4: DDPM Inference

Sample zK ∼ N (0, I);

for k ∈ {K, ..., 1} do
zk−1 ← 1−ᾱk−1

√
αk

1−ᾱk
zk +

(1−αk)
√
αk−1

1−ᾱk
ϵν(zk) + σ(k)ρ, ρ ∼ N (0, I);

end

z(gen) ← z0;

D.3 Denoiser architecture in the DDPM imple-

mentation

In this section, we provide a detailed description of the denoiser architecture used in

the DDPM-only and TimeFlow + DDPMmodels, as mentioned in Section 5.3.3. The

denoiser is based on a 1D UNet architecture, and we present a simplified overview

of the architecture in Figure D.2.
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Figure D.2: Simplified overview of the denoiser UNet 1D architecture.

For a more comprehensive understanding of the architecture, we recommend

referring to the official implementation1. It is important to note that we did not

focus on optimizing the hyperparameters of the denoiser for these experiments.

1https://github.com/lucidrains/denoising-diffusion-pytorch
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D.4 Principal component analysis visualization

In addition to the quantitative analysis proposed in Section 5.3.2.3, we propose to

visualize the generated data and the test data using principal component analysis

(PCA) for the three methods under consideration. We maintain an identical setting

as the one proposed with t-SNE visualization (Figure 5.10) to ensure consistency

and comparability. Figure D.3 shows the 2D PCA results for the three generation

methods.
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(a) TimeFlow + DDPM.

10 0 10 20 30 40
PCA axe 1

10

5

0

5

10

15

20

25

PC
A 

ax
e 

2

True Series Generated series

(b) DDPM.
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(c) TimeGan.

Figure D.3: PCA visualization comparing generated and test time series for the
three considered methods.

Results. As shown in Figure D.3, the test series and those generated by Time-

Flow + DDPM and the DPPM-only method are indistinguishable. However, while

some TimeGan-generated series overlap with the test series, the generated and test

distributions appear to differ significantly.
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Discussion on public time series

datasets

In this section, we would like to discuss the limitation identified with the currently

available public datasets for time series.

The availability of public datasets like the UCR archive (Dau et al., 2019) and

Monash archive (Godahewa et al., 2021), among others, has significantly advanced

machine learning for time series. However, several limitations have been identified

that hinder progress in deep learning. These are subjective observations:

• Datasets volume. Public time series datasets are relatively small, unlike

natural language processing or computer vision. There is no equivalent of

Wikipedia or ImageNet for time series. This limitation may hinder the per-

formance of deep learning methods for time series tasks. For example, in

the forecasting task, there are very few public datasets with a considerable

number of samples and timestamps. The largest datasets we know of are Traf-

fic and Electricity, each with several hundred samples and tens of thousands

of timestamps. These volumes are relatively small for training deep learning

models, making their advantages over traditional machine learning models less

pronounced (see Appendix C.5). Similarly, in classification, most of the time,

series classification datasets in the UCR archive are small, sometimes with only

a few dozen training examples, making it challenging to apply deep learning

models effectively.

• Multivariate time series datasets. In this manuscript, we have chosen to

define multivariate time series datasets as {x(j)}nj=1, where x
(j) ∈ Rc×T , with

n referring to the number of samples, T the number of time steps, and c the

number of sensors/channels considered. We defined a series as multivariate

when c > 1. This definition seems well-established in time series classification

but not in forecasting. Many methods, for example, consider datasets like
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SolarH, Electricity, and Traffic as multivariate datasets with samples corre-

sponding to different channels. They treat these datasets similarly to datasets

like Weather, which measures various underlying phenomena such as temper-

ature, humidity, and precipitation at a single location.

We believe that effective development of multivariate deep learning models for

time series requires access to large public datasets where multiple variables

are measured. For example, for c = 2, this could include a target variable

(such as wind power generation) and a context variable (such as measured

wind speed) at numerous locations (e.g., thousands of locations). While it

may seem idealistic to have such public datasets, this type of data is often

available in private industrial datasets. We believe that publicly sharing time

series generated from these datasets would be a great opportunity for the time

series research community.
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Résumé étendu en français

Cette annexe a pour objectif de fournir un résumé détaillé du manuscrit de thèse.

Dans une première section, Appendix F.1, nous définissons le concept de représenta-

tion de séries temporelles et présentons ses avantages par rapport aux méthodes

purement supervisées. Nous introduisons ensuite les méthodes neuronales pour

l’apprentissage de représentations, en soulignant les avancées qu’elles apportent pour

les tâches en aval. Nous concluons cette section en identifiant les problèmes ouverts

en apprentissage de représentations neuronales pour les séries temporelles. Dans

la section Appendix F.2, nous exposons succinctement nos contributions visant à

répondre aux problèmes ouverts mentionnés précédemment. Nous y discutons ap-

prentissage de représentations neuronales : (i) discrètes et interprétables, (ii) ca-

pables de gérer les changement de distributions, (iii) capables de capturer la conti-

nuité. Pour conclure, nous proposons une synthèse de nos travaux dans la section

Appendix F.3.
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F.1.1 Les séries temporelles : une introduction . . . . . . . . . . . . 169

F.1.2 L’apprentissage de représentations pour les séries temporelle . 170
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F.1 Motiver les représentations neuronales pour

les séries temporelles

F.1.1 Les séries temporelles : une introduction

Les séries temporelles sont omniprésentes dans divers domaines tels que l’industrie,

la météorologie, la finance ou encore la santé. Ces données, collectées au fil du temps,

peuvent représenter des phénomènes liés à des activités humaines, des événements

physiques ou encore des phénomènes hybrides. Historiquement, l’analyse des séries

temporelles est associée à la prévision d’une série unique de manière autoregressive,

l’objectif étant de prédire le futur à partir des tendances et motifs observés dans

le passé. Les premiers modèles développés, tels que les méthodes d’exponential

smoothing (Brown, 1959; Holt, 2004) et d’autoregressive integrate moving average

(Box et al., 2015), s’inscrivent dans ce cadre.

Avec la prolifération des données, l’attention s’est tournée vers l’analyse des

jeux de données de séries temporelles. Ces jeux de données peuvent être définis

comme une collection de séries temporelles mesurant des phénomènes similaires,

par exemple, la consommation électrique horaire sur deux semaines de plusieurs

milliers de foyers. La modélisation conjointe de ces données a permis l’essor de

nouvelles méthodes, améliorant les performances en prévision et en imputation. En

effet, dans de nombreux cas d’application, les relations entre les séries permettent de

modéliser plus finement les séries temporelles que les modèles basés uniquement sur

des informations individuelles. La prolifération des jeux de données a également fait

émerger de nouvelles tâches telles que : • la classification, qui consiste à discriminer

des séries en fonction de leur label (par exemple, classifier un électrocardiogramme

selon la présence d’une anomalie cardiaque). • La génération, qui consiste à simuler

des séries temporelles présentant des caractéristiques similaires à celles d’un jeu de

données d’entrâınement.

Contrairement aux modèles purement supervisés, un nouveau paradigme est

apparu avec les modèles d’apprentissage de représentation. Ces modèles visent

à apprendre des représentations des données dans un nouvel espace (nommé es-

pace latent) sans résoudre explicitement une tâche supervisée particulière. Ces

représentations capturent les caractéristiques sous-jacentes aux données, projetant

les séries temporelles dans un espace structuré où elles sont plus simples à manip-

uler. Par la suite, les représentations apprises peuvent être réutilisées pour résoudre

des tâches spécifiques en aval, comme illustré dans la Figure F.1.
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Modèle 
d'apprentissage 

de représentations

Séries temporelles intiales Espace des 
représentations

Prévision

Classification

Génération

Apprentissage de représentations Tâches avales

Figure F.1: Visualisation de la pipeline d’apprentissage de représentations pour les
des séries temporelles. Étape 1 : apprendre la représentation de la série temporelle
par apprentissage non supervisé. Étape 2 : application d’un modèle supervisé par
dessus la représentation apprise pour traiter une tâche en aval. Ce graphique est
inspiré de Trirat et al. (2024).

F.1.2 L’apprentissage de représentations pour les séries tem-

porelle

L’apprentissage de représentations pour les séries temporelles vise à projeter les

données originales dans un espace latent distinct de leur domaine temporel d’origine.

L’objectif principal est d’extraire des caractéristiques pertinentes pour des tâches

d’apprentissage automatique ultérieures. Cette approche peut offrir plusieurs avan-

tages, tels que : (i) des performances améliorées, notamment avec peu d’exemples,

(ii) un temps de calcul réduit, (iii) une meilleure interprétabilité, (iv) la capacité à

capturer la structure continue des données.

La représentation d’une série temporelle est définie comme le résultat d’une fonc-

tion d’encodage appliquée à la série temporelle d’origine. La dimension latente de la

représentation peut varier en fonction de la méthode d’encodage utilisée. Par exem-

ple, la dimension temporelle peut être réduite ou même complètement contractée,

entrâınant une perte de la temporalité. Un exemple simple de représentation de série

temporelle consiste à extraire des statistiques descriptives telles que la moyenne, la

variance, le minimum et le maximum de chaque série (voir Figure F.2).

Figure F.2: Vecteur de représentation d’une série temporelle composé de simples
statistiques descriptives.
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Ce vecteur de caractéristiques peut ensuite être utilisé pour des tâches de clas-

sification, de détection d’anomalies, etc. Il existe un grand nombre de méthodes

d’apprentissage de représentations pour les séries temporelles. Parmi les plus pop-

ulaires en apprentissage automatique, on trouve : (i) la décomposition saison-

nalités/tendance/résidu (STR), et (ii) la représentation d’Approximation par Agrégat

Symbolique (SAX) (Lin et al., 2003, 2007).

(i) La décomposition STR permet de décomposer une série temporelle en ses com-

posantes saisonnières, tendance et résiduelle. Cette décomposition facilite la

représentation de la structure sous-jacente des séries temporelles périodiques.

Elle est couramment employée pour des tâches en aval telles que la prévision

ou la détection d’anomalies (lorsque les données s’y prêtent).

(ii) La représentation SAX, quant à elle, discrétise une série temporelle en une

séquence de symboles de longueur réduite. Les représentations SAX sont prin-

cipalement réutilisées en aval pour des tâches de classification.

Ces deux méthodes d’apprentissage de représentation offrent différents para-

digmes pour représenter les séries temporelles selon les tâches en aval. Elles sont

très utilisées dans diverses applications de l’apprentissage automatique.

Il existe de nombreuses autres méthodes d’apprentissage de représentations de

séries temporelles, telles que l’analyse en composantes principales (PCA) (Yang and

Shahabi, 2004), l’approximation symbolique de Fourier (SFA) (Schäfer and Högqvist,

2012), et encore les décompositions en ondelettes (Percival and Walden, 2000), pour

n’en citer que quelques-unes. Cependant, avec l’essor de l’apprentissage profond,

de nouvelles possibilités de représentation de séries temporelles ont émergé. Con-

trairement à l’apprentissage automatique traditionnel, qui repose sur des modèles

préconçus et nécessite souvent un travail fastidieux de sélection et de transforma-

tion manuelle des caractéristiques, l’apprentissage profond utilise des réseaux de

neurones capables d’apprendre directement de manière efficace à partir des données

brutes. Ces réseaux de neurones peuvent capturer des motifs et relations complexes

dans les données, offrant ainsi une grande flexibilité.

Dans la prochaine section, nous nous intéresserons aux représentations neu-

ronales de séries temporelles en raison de leur capacité à capturer avec précision

la structure sous-jacente des données, leur aptitude à construire des représentations

réutilisables pour plusieurs tâches en aval, ainsi que leur flexibilité pour construire

des espaces latents structurés.
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F.1.3 L’apprentissage de représentations neuronales pour

les séries temporelles

Les représentations neuronales offrent une alternative aux représentations classiques

des séries temporelles, où la projection de l’espace temporel original vers l’espace la-

tent est effectuée par un réseau de neurones. Ces réseaux sont constitués de couches

interconnectées, chacune ajustée par des paramètres apprenables et séparées par des

fonctions d’activation. Les couches apprenables peuvent prendre différentes formes,

telles que les couches denses, récurrentes, convolutives ou encore d’attention. Leur

utilisation en séries temporelles a notamment permis de grandes avancées pour des

tâches supervisées telles que l’imputation (Cao et al., 2018), la prévision (Nie et al.,

2022) et la classification (Ismail Fawaz et al., 2020). Dans le cadre de l’apprentissage

de représentations, les mécanismes d’apprentissage profond sont souvent combinés

dans la même architecture pour tirer parti de leurs forces complémentaires. Le

choix des couches est important mais le choix de la structure de l’architecture est

également cruciale pour apprendre des représentations neuronales efficaces. On dis-

tingue plusieurs types de structures pour apprendre des représentations neuronales.

(i) Encodeur-Décodeur. Une structure avec un encodeur et un décodeur pour

apprendre une représentation latente en sortie de l’encodeur et reconstruire le

signal original à l’aide du décodeur.

(ii) Encodeur unique. Une structure avec seulement un encodeur pour projeter les

données dans l’espace latent. Ces modèles sont généralement optimisés avec

une perte contrastive.

(iii) Auto-décodeur. Une structure avec seulement un décodeur qui prend une

représentation latente apprenable initialisée aléatoirement. À l’entrâınement,

cette représentation est optimisée pour reconstruire le signal original.

Ces dernières années, l’apprentissage de représentations neuronales pour les séries

temporelles est devenu un champ de recherche actif, donnant naissance à de nom-

breuses méthodes. Parmi celles-ci, nous illustrons ci-dessous les modèles d’apprenti-

ssage de représentation avec deux modèles : T-Loss et PatchTST.

• T-Loss. Cette méthode est basée sur des réseaux de neurones convolutifs avec

une architecture composée uniquement d’un encodeur. La série temporelle

est projetée sur un vecteur de représentation latente qui compresse totale-

ment la dimension temporelle. Le modèle est entrâıné grâce à une fonction

de perte contrastive pour produire des représentations ayant des propriétés

géométriques intéressantes, rapprochant dans l’espace latent les séries tem-

porelles similaires et éloignant les séries statistiquement différentes. Ce modèle

est utilisé pour des tâches de classification (notamment avec peu de labels),
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de visualisation et de clustering. De plus, il possède de bonnes propriétés de

transfert, c’est-à-dire l’application du modèle pré-entrâıné à des nouveaux jeux

de données.

• PatchTST. Cette méthode est basée sur une architecture encodeur-décodeur

avec des mécanismes d’attention. Le modèle est entrâıné grâce à une stratégie

de masquage des patches (sous-segments) de la série en entrée, dont le but est

de les reconstruire en sortie. Une représentation latente de la série est extraite

juste avant la couche de sortie du modèle. Les auteurs ont démontré que la

représentation latente de PatchTST était utile pour la tâche de prévision, y

compris pour des jeux de données non vus pendant l’entrâınement.

Ces deux modèles ne sont qu’un échantillon des avancées rendues possibles par

les nombreuses contributions en apprentissage de représentations neuronales pour

les séries temporelles ces dernières années. Toutefois, des problèmes ouverts subsis-

tent dans ce domaine de recherche, et nous en aborderons certains dans la section

suivante.

F.1.4 Problèmes ouverts

Malgré l’essor des méthodes de représentations neuronales pour les séries tem-

porelles et les nombreuses améliorations par rapport à l’apprentissage traditionnel

de représentations, certaines questions restent en suspens. Dans cette thèse, réalisée

en collaboration avec Électricité de France (EDF), nous avons identifié plusieurs

problèmes ouverts qui représentent des enjeux de recherche ayant un fort impact

pour EDF.

• Interprétabilité des représentations neuronales. Les approches de représenta-

tions non supervisées visent à construire des représentations des séries tem-

porelles en capturant les caractéristiques sous-jacente aux données sans con-

naissance d’expert ni supervision humaine. Elles ont démontré de bonnes

performances pour le clustering, la classification, l’imputation des valeurs

manquantes et encore la prévision. Cependant, les modèles proposés dans

la littérature manquent d’interprétabilité, ce qui pose des problèmes pour la

prise de décision. Dans la revue d’apprentissage de représentations de Ben-

gio et al. (2013), il est indiqué que de bonnes représentations doivent extraire

des facteurs explicatifs et garantir une cohérence temporelle. Nous consta-

tons que, dans la pratique, les approches neuronales actuelles ne répondent

pas à ces critères. En effet, les représentations neuronales sont souvent des

vecteurs latents sans cohérence temporelle, et de surcrôıt, les valeurs de ces

représentations n’ont pas de signification interprétable.
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• Modèles adaptables pour les changements de distribution. L’un des princi-

paux problèmes ouverts dans l’apprentissage des représentations de séries tem-

porelles est la capacité à créer des modèles adaptatifs qui peuvent gérer effi-

cacement les changements de distribution. Ces défis sont présents lorsque de

nouveaux échantillons de données ou des contextes temporels différents sont

introduits, exigeant des modèles qu’ils s’adaptent aux changements de distri-

bution, sans nécessiter un ré-apprentissage approfondi. Dans ce contexte, il est

intéressant de concevoir des modèles basés sur des représentations, capables

de s’adapter dynamiquement à de nouvelles données tout en conservant des

performances élevées. Le besoin de modèles robustes et flexibles qui répondent

aux changements temporels et aux nouveaux échantillons est très présent dans

les applications industrielles.

• Capture d’une représentation neuronale à partir de séries temporelles non

alignées et irrégulières. Dans l’analyse des séries temporelles, la variété, l’hété-

rogénéité et le nombre croissant de capteurs déployés présentent de nouveaux

défis que les méthodes de représentations actuelles ne parviennent souvent pas

à relever. En effet, en industrie, les séries temporelles proviennent souvent

de sources diverses, présentant potentiellement un échantillonnage irrégulier

et pouvant contenir des valeurs manquantes. De plus, les capteurs peuvent

éventuellement ne pas être alignés entre eux. Pour résoudre cela, les modèles

existants continus en temps semblent être une solution pour traiter de telles

données. Cependant, en pratique, ils peinent à extraire des représentations

efficaces des séries temporelles. Nous observons notamment que leurs perfor-

mances sont nettement inférieures aux modèles conçus pour les grilles tem-

porelles discrètes et régulières. Il y a donc un besoin de créer des approches

neuronales capables de construire des représentations à partir de séries tem-

porelles non alignées et irrégulières tout en garantissant des performances ro-

bustes pour divers scénarios en aval.

Dans la section suivante, nous résumons les modèles que nous avons proposés

pour répondre à ces questions ouvertes.

F.2 Contributions

F.2.1 Représentations neuronales interprétables de séries

temporelles : application en classification

Qu’est ce que l’inteprétabilité ? L’interprétabilité est un concept qui ne fait

pas l’unanimité (Lipton, 2018), la confusion résultant des différentes significations de

l’interprétabilité et de l’explicabilité. Pour les modèles de séries temporelles, Wang
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(2021) propose une taxonomie claire de l’interprétabilité présentée dans la figure

F.3.

Interprétabilité

Ad-hoc interprétabilité 
(par le pré-traitement)

Inteprétabilité modèle

In-situ interprétabilité
Post-hoc interprétabilité 

(explicabilité)

global local global local

Figure F.3: Taxonomie des modèles de séries temporelles interprétables introduite
dans Wang (2021).

L’interprétabilité post-hoc fait référence aux méthodes qui analysent le modèle

après l’apprentissage et qui sont généralement indépendantes du modèle. Elle est

souvent liée au domaine de recherche en intelligence artificielle explicable (XAI).

Toutefois, les méthodes post-hoc n’expliquent la décision que pour une instance

en particulier, et des méthodes supplémentaires sont nécessaires pour comprendre

le modèle dans son ensemble. À contrario, les modèles interprétables in-situ sont

interprétables par conception. Pour ces modèles, l’interprétabilité découle directe-

ment du modèle sans qu’aucun autre processus ne soit appliqué après la phase

d’apprentissage (Rudin, 2019; Wang, 2021). Le niveau de cette interprétabilité peut

être local ou global. L’interprétabilité globale est définie comme un modèle facile

à comprendre pour un humain et nécessitant une faible complexité de calcul. En

revanche, l’interprétabilité locale est un moyen d’interpréter la décision d’un modèle

pour un cas particulier (Lipton, 2018). L’interprétabilité globale implique souvent

l’interprétabilité locale, mais l’inverse n’est pas vrai.

Contexte. Dans ce travail, nous nous concentrons sur l’interprétabilité globale in-

situ et développons une méthode neuronale interprétable discrète pour la représenta-

tion des séries temporelles. En série temporelle, les modèles issus de l’apprentissage

de représentation symbolique sont souvent décrits comme interprétables. Cepen-

dant, les informations capturées par les symboles sont limitées et ne permettent pas

une interprétation globale de la représentation. D’autre part, l’essor des méthodes

d’apprentissage de représentation neuronale permet d’atteindre des performances

impressionnantes pour les tâches en aval, mais ces méthodes ne sont pas interprétables.

Notre contribution vise à combiner le meilleur des deux approches : une représentation

neuronale interprétable.
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Définir des pré-requis pour construire une représentation neuronale in-

terprétable. La première contribution de ce travail est de définir des pré-requis

pour établir un pont entre les représentations symboliques et les représentation neu-

ronales afin de construire des représentations symboliques neuronales interprétables

pour les séries temporelles. La représentation doit : (i) Être discrète. (ii) Re-

specter la consistence temporelle. (iii) Être décodable. (iv) avoir un encodeur et

un décodeur qui respectent l’équivariance par translation. (v) Être ajustable en

fonction des fréquences.

Construction d’un modèle neuronal respectant les pré-requis. Dans un

deuxième temps, nous proposons un nouveau modèle neuronal non supervisé qui

répond aux pré-requis définis en amont. Le modèle neuronal proposé est basé sur

une architecture d’auto-encodeur avec un mécanisme de quantification vectorielle

dans l’espace latent (Gersho and Gray, 1991; van den Oord et al., 2017).

Expériences et application en classification. Pour démontrer les qualités

de l’architecture proposée, nous réalisons une tâche de classification par dessus la

représentation neuronale symbolique apprise. Nous démontrerons qu’un simple clas-

sifier linéaire par dessus les représentations permet de discriminer efficacement tout

en préservant l’interprétabilité. Nous démontrons également par des expériences

qualitatives que la décision de classification est à la fois interprétable au niveau

global et local.

Pour résumer. Nos principales contributions sont résumées ci-dessous :

• Nous définissons et formalisons les pré-requis fondamentaux pour construire

des représentations neuronales symboliques interprétables pour les séries tem-

porelles.

• Nous proposons une architecture de réseau de neurones non supervisé qui

satisfait ces pré-requis.

• Nous utilisons ces représentations pour des tâches de classification tout en

préservant l’interprétabilité de la représentation et nous nous évaluons par des

expériences quantitatives et qualitatives.

Le Naour, E., Agoua, G., Baskiotis, N., and Guigue, V. Interpretable time

series neural representation for classification purposes. IEEE 10th

International Conference on Data Science and Advanced Analytics (IEEE

DSAA) 2023.
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F.2.2 TimeFlow : Modélisation continue des séries tem-

porelles pour l’imputation et la prévision avec des

représentations neuronales implicites

Contexte. De nombreux modèles à l’état de l’art, tels que les transformers, ont

été conçus pour des grilles denses et régulières (Wu et al., 2021; Nie et al., 2022; Du

et al., 2023). Cependant, ces modèles ont du mal à gérer les données irrégulières et

souffrent souvent d’une dégradation significative des performances en leur présence

(Chen et al., 2001; Kim et al., 2019).

Motivations. Notre objectif est d’explorer des alternatives aux modèles basés

sur des grilles régulières et être capable de traiter, dans un cadre unifié, les tâches

d’imputation et de prévision pour des séries temporelles irrégulières, arbitrairement

échantillonnées et non alignées. Les modèles continus dépendants du temps (Ras-

mussen and Williams, 2006; Garnelo et al., 2018; Rubanova et al., 2019) offrent

une telle alternative. Toutefois, jusqu’à présent, leurs performances ont été nette-

ment inférieures à celles des modèles conçus pour des grilles discrètes régulières. Il

y a quelques années, les représentations neuronales implicites (INR) sont apparues

comme un outil puissant pour représenter les images en tant que fonctions continues

de coordonnées spatiales (Sitzmann et al., 2020; Tancik et al., 2020) avec de nou-

velles applications récentes pour la génération d’images (Dupont et al., 2022) ou la

modélisation de systèmes dynamiques (Yin et al., 2023).

Contributions. Dans ce travail, nous exploitons le potentiel des modèles INR

conditionnels dans le cadre d’une approche de méta-apprentissage en proposant

TimeFlow (Figure F.4). TimeFlow est modèle unifié conçu pour modéliser des séries

temporelles continues et pour traiter les tâches d’imputation et de prévision avec

des observations irrégulières et non alignées. Nos principales contributions sont les

suivantes :

(i) Nous proposons un nouveau modèle qui excelle dans la modélisation des séries

temporelles en tant que fonctions continues du temps, acceptant en entré des

pas de temps arbitraires, permettant ainsi le traitement de séries temporelles

irrégulières et non alignées pour les tâches d’imputation et de prévision. Il

s’agit de l’une des toutes premières tentatives d’adaptation des INR qui permet

de traiter efficacement les tâches d’imputation et de prévision dans un cadre

unifié.

(ii) Nous avons effectué des comparaison quantitatives approfondies avec les modèles

continus et discrets les plus récents. Nous démontrons que notre approche

est plus performante que les approches d’apprentissage profond à l’état de

l’art (SOTA) continues et discrètes pour l’imputation. En ce qui concerne
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les prévisions à long terme, TimeFlow surpasse les modèles continus existants

à la fois sur des échantillons réguliers et irréguliers. De plus, il performe de

manière similaire que les modèles discrets SOTA sur des séries temporelles

régulièrement échantillonnées tout en permettant une plus grande flexibilité

pour les échantillonnages irréguliers, ce qui lui permet de faire face à des

situations où les modèles discrets échouent. En outre, nous prouvons que

notre méthode traite sans effort de nouvelles séries temporelles et des nou-

velles fenêtres de contexte, ce qui rend TimeFlow adapté aux applications du

monde réel.

Figure F.4: Vue d’ensemble de l’architecture TimeFlow. Forward pass pour approx-
imer la série temporelle x(j) au pas de temps t. z(j) représente la représentation
apprise, σ la fonction d’activation ReLU, ϕ les couches de l’INR et les autres sym-
boles non définis sont des paramètres apprenables.

Le Naour, E., Serrano, L., Migus, L., Yin, Y., Agoua, G., Baskiotis, N., Gal-

linari, P., and Guigue, V. Time Series Continuous Modeling for Impu-

tation and Forecasting with Implicit Neural Representations. Trans-

actions on Machine Learning Research (TMLR) 2024.
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F.2.3 Exploration des capacités des représentations apprises

par TimeFlow

Contexte. Dans la contribution précédente, nous avons démontré que TimeFlow

peut capturer des représentations neuronales à partir de séries temporelles non

alignées et irrégulières.

Motivations. Cette dernière contribution vise à explorer la qualité des représentations

apprises par TimeFlow et à démontrer leur utilité pour des tâches en aval. Nous ap-

profondissons l’étude des capacités d’apprentissage de représentations de TimeFlow

en nous concentrant d’abord sur l’interprétabilité de l’espace latent, la compréhension

de sa structure et son adaptabilité aux changements de distribution. Ensuite, nous

examinons comment les représentations apprises peuvent être utiles pour des tâches

en aval, notamment pour la génération de données synthétiques.

Contributions. Les différentes contributions de ce travail sont les suivantes :

(i) Nous commençons par explorer le comportement de l’espace latent entre deux

représentations apprises. En interpolant, nous pouvons observer les transi-

tions entre les représentations en visualisant des représentations intermédiaires

dans le domaine initial des séries temporelles (à travers le décodeur). Cette

expérience nous aide à comprendre comment l’espace latent est structuré, ce

qui nous donne un aperçu de la manière dont TimeFlow capture et encode les

caractéristiques importantes des séries temporelles.

(ii) Ensuite, nous étudions la sensibilité de TimeFlow aux perturbations des repré-

sentations. Nous observons comment ces perturbations affectent les séries

temporelles décodées en ajoutant un bruit gaussien à des couches cachées de

l’INR.

(iii) Puis, nous examinons la distribution des représentations latentes pour des

séries temporelles observées à différentes périodes. En utilisant l’analyse en

composantes principales, nous visualisons ces distributions et analysons l’impact

des changements de distribution temporelle sur l’espace latent.

(iv) Dans la dernière section, nous explorons le potentiel de la génération de séries

temporelles à l’aide des représentations apprises dans l’espace latent. Pour

cela, nous utilisons un modèle génératif entrâıné sur l’espace de représentations

pour créer de nouveaux échantillons. Ces échantillons peuvent être ensuite

décodés pour n’importe quel pas de temps à travers le décodeur de TimeFlow

pour obtenir de nouvelles séries temporelles. Nous démontrons que les séries

temporelles générés sont diverses et fidèles aux ”vraies” séries.
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Grâce aux explorations menées dans ce travail, nous validons les capacités de

TimeFlow à extraire des représentations sémantiquement riches et structurées. De

plus, nous démontrons leur utilité pratique pour la génération de séries temporelles

synthétiques.

F.3 Conclusion

En conclusion, cette thèse explore en profondeur l’apprentissage de représentations

neuronales pour les séries temporelles, un domaine en plein essor. Nous avons

d’abord présenté l’émergence de ces représentations à travers divers paradigmes

tels que l’apprentissage contrastif et l’apprentissage par reconstruction. Nous avons

mis en lumière les avancées majeures permises par ces nouveaux modèles, tout en

soulignant les questions de recherche encore ouvertes.

Nos contributions sont les suivantes :

• Nous avons d’abord abordé la nécessité d’obtenir des représentations neu-

ronales interprétables, particulièrement pour la tâche de classification. À

cet effet, nous avons proposé une nouvelle architecture utilisant une quan-

tification vectorielle dans l’espace latent, répondant à cinq prérequis essentiels

pour l’interprétabilité des représentations neuronales. Les qualités de cette

représentation ont été évaluées quantitativement et qualitativement.

• Pour traiter les séries temporelles irrégulières et non alignées, nous avons intro-

duit le modèle TimeFlow, basé sur des représentations neuronales implicites

optimisées par méta-apprentissage. Ce modèle s’adapte efficacement à de nou-

veaux échantillons et contextes, démontrant sa capacité à réaliser des tâches

d’imputation et de prévision dans divers scénarios.

• Enfin, nous avons évalué les représentations apprises par TimeFlow, démontrant

une bonne structuration dans l’espace latent et leur utilité pour la génération

de séries temporelles.

D’un point de vue industriel, les travaux de cette thèse répondent à des be-

soins clés d’EDF en améliorant l’interprétabilité des modèles de deep learning, en

proposant des représentations adaptées aux séries irrégulières et en permettant de

construire des modèles adaptables dans le temps et pour de nouveaux contextes.

Toutes ces avancées répondent à des besoins pratiques dans le secteur de l’énergie.

Cependant, il est important de noter certaines limitations à ces travaux. Le principal

obstacle à l’utilisation pratique des modèles proposés est qu’ils ne sont pas encore

conçus pour accepter des séries temporelles multivariées. Ainsi, le développement

de modèles de représentations conditionnables par des variables externes constitue

une piste de recherche prometteuse pour l’avenir.
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