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AT Artificial intelligence
ML Machine learning
DL Deep learning
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HPA High-pass algorithm
Bi-LSTM Bi-directional LSTM
MTD Medical treatment data
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RQ Research question

PD Parkinson’s disease

FMG Force-myography

TCN Temporal convolutional neural network
GCNM Graph convolutional network model
COP Center of pressure

GAN Generative adversarial network

FSR Force-sensitive resistor

UPDRS Unified parkinson disease rating scale
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ALS Amyotrophic lateral sclerosis

PD Parkinson’s disease
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NDD Neurodegenerative disease

GEI Gait energy image
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TN True negative

FP False positive

FN False negative

FOG Freezing of gait
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AUC Area under curve
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RQ Research question

PRISMA Preferred reporting items for systematic literature review and meta-analysis
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Chapter 1

Introduction

1.1 Context and Rationale

Walking is the most human common activity of daily living and, at the same time, a very complex one.
It encompasses various aspects of the nervous system, musculoskeletal apparatus, and cardiorespiratory
system. The way a person walks is significantly impacted by factors such as age, personality, mood
but also various comorbidities. Gait and balance disorders become more prevalent with aging, often
exacerbated by neurodegenerative diseases such as Parkinson’s disease (PD).

In this thesis, we focus on neurological diseases that are not necessarily age-related, such as Multiple
Sclerosis (MS) [4], traumatic brain injury (TBI), spinal cord injury (SCI), cerebral palsy (CP), and
stroke. These conditions impact gait in various ways, leading to disorders such as fatigue, weakness,
sensory loss, ataxia, and spasticity. Consequently, doctors often recommend rehabilitation therapy
alongside pharmacologic treatments for patients with these impairments. Spasticity is a symptom of
movement disorders, characterized by an increase in speed-dependent tonic stretch reflexes (muscle
tone), causing overactive stretch reflexes and exaggerated tendon jerks. This condition is a component
of upper motor neuron syndrome [5].

Their impacts on gait cover several gait disorders: fatigue, weakness, sensory loss, ataxia, and spas-
ticity. As a result, doctors frequently advise patients with these impairments to receive rehabilitation
treatment in addition to their ongoing pharmacologic care. A rise in tonic stretch reflexes (muscle
tone) that depends on speed is a symptom of the movement disorder spasticity. The stretch reflexes
become overactive, causing tendons to jerk more than usual. This is one part of the upper motor
neuron syndrome [5]. Intramuscular injections of Botulinum Toxin type-A (BTX-A) are a common
treatment for spasticity, shown to improve BTX-A both lower and upper limb functions [6], thereby
enhancing movements such as walking [7] (see Figure 1.1).

In practice, decision-making is based on a patient’s medical history, physical examination, and
Clinical Movement Analysis (CMA). CMA consists of studying movement troubles and identifying
their plausible causes based on the biomechanical interpretation of instrumental measures [§]. If
certain quality criteria are fulfilled, CMA data are sufficiently reliable for clinical interpretation [9].
CMA techniques can be used to analyze lower limb movement (e.g., walking, climbing stairs, running,
etc.). Several research studies have shown that CMA, especially CGA, helps a lot with the diagnosis
and treatment of many neurological diseases, including CP [10], MS [11], and hemiparesis after a stroke
[7].

Artificial Intelligence (AI) and Machine Learning (ML) techniques have become almost ubiquitous
in our daily lives by supporting or guiding our decisions and providing recommendations. Therefore,
it is not surprising that ML approaches are becoming increasingly popular in precision medicine and
fulfill an increasing demand for new healthcare solutions, in particular, a better understanding of
pathological processes. Among Al and ML methods, Deep Neural Network (DNN) [12] have already

11
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Figure 1.1: Example of the outcome of BTX-A treatment on gait (a) before treatment (b) after BTX-A treatment.

shown spectacular results in clinical decision-making aid [13]. DNNs require a significant amount
of data to be properly trained. However, available experimental databases are often limited in size,
which makes it impractical to construct DNNs for prediction models. Medical data is often different,
complicated, incomplete, uncertain, multimodal, and multilevel. This makes it much harder to use and
raises questions about the development of prediction models [14]. ML models need to handle different
types of data about the patient, like pictures, time series, discrete clinical data, and so on. They also
need to be able to connect this data to data about the treatment, which can be nominal, categorical
(like the type of treatment) [15], or discrete (like doses). This requires that the model be taught a
regression task between the data after and before the BTX-A treatment. Since these treatments are
often a combination of several factors (e.g., several drug injections), it is necessary to be able to model
their interactions.

Our contribution consists of proposing novel solutions for predicting the post-treatment gait tra-
jectory of patients receiving BTX-A, as well as examining the potential interactions between various
treatments. To address this regression task, we suggest a strategy to design DNNs-based and MTL-
based models. MTL is particularly effective for modeling interactions between treatments, managing
issues related to sparse data, and enhancing model robustness through knowledge sharing across dif-
ferent tasks [16]. This approach has been widely utilized in machine learning and the biomedical field
to accommodate the diversity present in the data [16].

1.2 Objectives

In this above-described context, the main goal of this work is to utilize DL and MTL techniques
to develop a system capable of predicting the post-treatment gait kinematics of adults with various
neurological disorders. This prediction will be based on pre-treatment gait analysis and a proposed
treatment. This system aims to provide a preliminary prediction of the probable treatment outcome.
This will enhance the understanding of outcomes and serve as a valuable decision-making tool for
medical professionals. The specific objects include:

e Study and investigate the current ML and DL techniques for CGA.

e Organizing a database of clinical gait data for adults with MS, SCI, TBI, CP, and stroke that
have been treated, including pre-and post-treatment CGA and Medical Treatment Data (MTD).

12



Determining the most important features among all the available data.

Designing several DL models to determine a mathematical relationship, given the MTD, between
the pre-and post-treatment CGA data.

Exploiting MTL-based models to improve post-treatment gait prediction.

e Assessing comparatively performance of all the prediction methods considered.

1.3 Thesis Outline / Organization

This document is structured into two main sections. Part I focuses on the context, state-of-the-art
developments, data description, and conditioning. Part II is dedicated to the experimental works
conducted for predicting post-treatment gait using various deep learning (DL) and multitask learning
(MTL) techniques. Below is a brief description of the content in each chapter

e Chapter 2: provides a comprehensive review of the literature on the most widely used DL
and MTL algorithms in gait analysis. This chapter discusses various methods and applications
relevant to gait analysis, evaluates the strengths and weaknesses of each study based on the latest
research, and examines the most commonly used datasets for gait analysis.

e Chapter 3: Outlines the relevant information considered for the experiments, including de-
tails on medical treatments and kinematics. It also describes the processes involved in data
preprocessing and preparation for the models.

e Chapters 4, 5, 6, and 7: Detail the experimental procedures conducted for post-treatment
gait prediction. These chapters present the results of each experiment and provide comparisons
with other related studies.

e Chapter 8: Summarizes the key findings and contributions of this research, serving as a general
conclusion. This chapter also offers recommendations for future work and constructive feedback
aimed at further enhancing the contributions already made.

1.4 List of Publications

The academic publications completed for this PhD thesis, including accepted and pending articles, are
listed in this section.

Published articles

1. Khan, A.; Hazart, A.; Galarraga, O.; Garcia-Salicetti, S.; Vigneron, V. Treatment Outcome
Prediction Using Multi-Task Learning: Application to Botulinum Toxin in Gait Rehabilitation.
Sensors 2022, 22, 8452. https://doi.org/10.3390 /522218452

2. A. Khan, O. Galarraga, S. Garcia-Salicetti and V. Vigneron, "Deep Learning for Quantified Gait
Analysis: A Systematic Literature Review," in IEEE Access, doi: 10.1109/ACCESS.2024.3434513.

3. Khan, A.; Galarraga, O.; Garcia-Salicetti, S.; Vigneron, V. Phase-Based Gait Prediction after Bo-
tulinum Toxin Treatment Using Deep Learning. Sensors 2024, 24, 5343. https://doi.org/10.3390/s24165343.

Accepted
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1. Khan, A.; Galarraga, O.; Garcia-Salicetti, S.; Vigneron, V. Post-Treatment Gait Prediction
after Botulinum Toxin Injections Using Deep Learning with an Attention Mechanism. Accepted
for presentation and publication at The 10th International Conference on Machine Learning,
Optimization, and Data Science, September, 2024

Submitted

1. Prediction of Gait Outcome and Treatment using Multitask Learning and Attention (submitted
to Applied Sciences)
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State of the art
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Over the past few years, there has been notable advancement in the field of Quantified Gait Analysis
(QGA), thanks to machine learning techniques. QGA and gait prediction are areas where DL techniques
are gaining popularity. There has been a significant amount of attention from the scientific community
on the application of gait analysis in various fields. Based on our understanding, there is a noticeable
absence of a comprehensive review and current understanding of gait analysis utilizing DL and MTL
models. Therefore, this chapter provides a comprehensive assessment of the current application of DL
algorithms for QGA. This chapter takes a systematic approach to explore this topic in depth. We
conducted a thorough search of three databases, namely Web of Science, IEEEXplore, and Scopus, to

Summary
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identify relevant papers published from 1989 to October 2023. A total of 55 papers were considered
eligible and included in this review. Approzimately 46% of the studies that were identified utilized
classification models to categorize gait phases and locomotion modes. Additionally, a significant portion
of the studies (45%) utilized regression models to estimate and predict various kinematic and kinetic
parameters, including joint angles, trajectories, moments, and torques. Interestingly, a notable 9% of
the studies employed the use of MTL techniques in the realm of DL for gait analysis. We have also
provided information on the most commonly utilized datasets for QGA.
The content of this chapter is based on the following paper:

e A. Khan, O. Galarraga, S. Garcia-Salicetti and V. Vigneron, "Deep Learning for Quantified Gait
Analysis: A Systematic Literature Review," in IEEE Access, doi: 10.1109/ACCESS.2024.3434513.

2.1 Introduction

Gait analysis is a field of study in human bio-mechanics, aiming at quantifying the elements influencing
the functionality of gross motor functions in locomotion. Measuring or estimating a variety of param-
eters is essential in gait analysis. This includes spatiotemporal parameters, electromyography (EMG)
activity, kinematic, and kinetic parameters, which are observed during walking or other locomotion
activities [17]. Applications for gait analysis are numerous, ranging from athletics to medical research.
Gait analysis is frequently used in sports to evaluate athlete performance, avoid injuries, and give a
training schedule [18, 19]. Gait analysis is used in clinical settings to describe certain gait disorders,
track the progress of recovery, and judge how well certain treatments work [20, 21, 22|. Gait anal-
ysis has further uses, such as predicting the likelihood that an elderly individual may fall [23, 24].
Gait analysis can assist in the treatment planning process for individuals suffering from a variety of
conditions, including MS [25], Stroke, TBI, CP [26], and SCIs [27].

Moreover, with the help of QGA, one can design and develop numerous wearable robotic systems,
such as exoskeletons and orthoses, to help people with gait-related issues. An electromechanical system
called an exoskeleton is made up of actuators, sensors, and controllers that work together to provide
torque to joints [28|. Another class of assistive and corrective technology is orthoses, which are occa-
sionally used interchangeably with exoskeletons. There is a distinction between the two, though. Herr
claims that, in contrast to exoskeletons, which improve human capacities in all circumstances, orthoses
are meant to help those who already have diseases [29].

The gait analysis can be carried out in several ways. The majority of clinical settings use a com-
bination of patient self-reported assessments, qualitative evaluations conducted by professionals, and
observation [30, 31]. Clinical observations, such as those made by physicians or physical therapists, can
yield quantitative information about gait characteristics, including cadence, speed, distance traveled,
and total walking time.

In a lab setting, QGA is frequently carried out utilizing gold standard measuring techniques, such
as force plate and motion capture devices together. While force plates offer dynamic elements like
ground response forces and moments, motion capture allows for accurate tracking of the spatial infor-
mation of human movements in three dimensions. It is now feasible to evaluate gait outside of the
lab using wearable sensor systems because of recent significant advancements in sensor systems and
computational techniques|32, 33].

QGA is essential for identifying postural instabilities, detecting abnormal gait patterns, and evalu-
ating clinical interventions and rehabilitation plans. The clinicians anticipate using QGA for diagnosis
and treatment decision-making.

In this context, Al methods would be useful for gait analysis. These methods can effectively han-
dle complicated, temporal, high-dimensional data [34, 35] and extract pertinent features. They create
models that automatically learn from accessible sources, generate precise predictions, and exhibit in-
telligent behavior [36, 37]. DL, a subset of ML, is widely utilized in various fields, including medical
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diagnosis [38, 39|, pattern recognition [40, 41], image processing [42, 43|, classification [44, 45|, pre-
diction analysis [46], and monitoring [45]. DL techniques have been used in various applications in
the field of QGA, for the diagnosis of gait disorders [47, 48], the prediction of early intervention for
fall-related risks associated with a disability or aging [49, 50, 23], the determination of motor recovery
tasks [51, 52|, and the planning of therapeutic or rehabilitation interventions [39].

DL approaches are used to analyze data, and images, and recognize patterns by developing al-
gorithms that assist doctors in promptly and properly diagnosing a particular disease or disorder.
Additionally, these algorithms may continuously learn, which enhances the diagnostic outcomes. How-
ever, there are situations when doctors must concurrently take into account the patient’s symptoms,
treatment options, probable side effects, another condition with similar symptomatology, past medical
history, and several other factors. In turn, DL technology offers a way to help doctors by analyzing
a very large amount of data and ensuring a comprehensive grasp of patient health records. Even DL
methods can foretell the start of disease by analyzing the vast amounts of data amassed over time
from tracking a person’s health. The development of DL approaches for disease treatment is evidenced
by the arrival of surgical robots to undertake numerous difficult operations. As a result, DL models
can speed up diagnosis, improve patient monitoring, and help clinicians choose the best course of ac-
tion, but they need computational resources at the implementation site. Additionally, early detection
can stop mobility loss [35] and can lower healthcare expenditures, which are a growing concern for
developing nations [53].

However, DL models performed well when they were provided with a sufficient amount of data.
But, as we know, in medical applications this is not true, due to the complexity and cost of acquiring
large amounts of real data from patients. On the other hand MTL can be used in QGA to cope with
the problem of few data. MTL can indeed handle sparse data issues and create a more reliable model
by utilizing information from various tasks [16]. Furthermore, MTL has been widely used in ML and
biomedical areas [16] to handle the variability of data. For all these reasons, we are also reviewing
studies that used MTL for QGA.

2.1.1 Related Surveys

A few surveys have been published on gait analysis, as described in Table 2.1. Only two of the five
review studies analyzed were systematic reviews. Prasanth et al. [32] systematically reviewed wearable
sensors and methods for real-time gait analysis. They focused on the most widely utilized sensors and
methods in clinical settings for pathological gaits. The limitations of this study are: (i) the authors
didn’t mention the period of works included in the paper, (ii) 19 studies out of 113 were using ML (and
fewer of them DL), (iii) commonly used datasets for gait analysis are not discussed. Kolaghassi et al. [54]
performed a systematic review of gait analysis and prediction for lower limb robotic systems using
intelligent algorithms. The limitations of this study are: (i) 3 studies out of 41 used DL, (ii) commonly
used datasets for gait analysis are not discussed. Cicirelli et al. [55] reviewed a highly consistent work
tackling gait analysis-related challenges: sensors, characteristics, and processing approaches have all
been analyzed. Their paper lists the most popular processing methods for classification and clustering
as well as feature extraction and selection. Nevertheless, this paper has some limitations: (i) it mostly
reviewed those studies that covered neurodegenerative diseases (NDDs), (ii) only 3 studies using DL for
gait analysis are reported, (iii) commonly used datasets for gait analysis are not discussed. Hutabarat
et al. [33]| provides a comprehensive overview of the latest developments in wearable sensors for gait
analysis. The review covers a range of topics, including the utilization of wearable gait analysis systems,
the types of sensor systems and their corresponding attachment locations, as well as the algorithms
employed for analysis. Most of the studies in this article use inertial measurement unit (IMU) sensors to
collect data. Finally, Khera et al. [56] aims to provide readers with an overview of the main approaches
utilizing ML techniques for gait analysis and rehabilitation. It is worth noticing that few studies in
this review discuss papers using DL for gait analysis.
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Table 2.1: A summary of related surveys

No |Ref| Year Studies |Type of survey Databases Discusse¢ Studies Studies |No. of
included datasets included included | stud-
using DL using ies
MTL
1 |[32]| 2021 Not systematic Scopus, WOS, No Less than 5% No 113
mentioned review Cochrane, and PubMed
2 |[54]| 2021 | 1989 — May systematic IEEE Explore and No Around 7% No 41
2020 review Scopus
3 |[55]] 2021 | 2011-2020 review IEEE Explore, No Less than 5% No Not
ScienceDirect, Scopus, men-
PubMed, and ACM tioned
4 |[33]| 2021 |2011 — 2020 review IEEE Explore, PubMed, No Less than 5% No 76
Scopus, and WOS
5 |[56]] 2020 | 1980 - 2019 review IEEE Explore, WOS, No Around 10% No 43
PubMed, Mendeley,
Elsevier, ScienceDirect,
Springer Link,
Cochrane, Wiley Online
Library

From these observations summarized in Tab. 2.1, we propose to conduct a systematic and compre-
hensive review of gait analysis using DL. Therefore, our study focuses on articles published between
1989 to October 2023.

The primary contributions of this chapter are outlined below:

1. A systematic map of 55 primary studies based on the Preferred Reporting Items for Systematic
literature review and Meta-Analysis (PRISMA) framework;

2. An assessment of the literature on gait analysis across four dimensions: DL approaches, datasets,
quality metrics, and the impact of MTL techniques;

3. An overview of the challenges, opportunities, and recommendations for future research in the
field.

This systematic literature review (SLR) offers a comprehensive and up-to-date examination of gait
analysis across five key research areas. The analysis is thorough and provides valuable insights into
the major challenges facing the field, as well as potential avenues for future research. To the best of
our knowledge, no existing SLR comprehensively addresses all aspects of gait analysis.

The remainder of the article is structured as follows: Section 2.2 summarizes the research design
of this SLR. The results of the systematic mapping study, along with the most pertinent publications
based on quality assessment criteria, are covered in Section 2.3.Section 2.4 lists the problems and
research gaps. Section 2.5 provides recommendations and future research topics. Finally, Section 2.6
summarizes the SLR.

2.1.2 Background Information

2.1.2.1 Quantified Gait Phases: Related Information

Gait describes how we walk.Gait analysis is the study of walking patterns, applicable not only to
humans but also to other beings [57]. Multiple parameters are observed and evaluated in QGA. These
parameters often fall within the normal ranges of healthy gait, which vary according to anthropometric
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characteristics such as age, height, and limb lengths [58]. Parameters in abnormal gait often diverge
from these ranges. Each of the parameters provided in this section has been detected, predicted, and
examined using different methodologies in QGA.

Gait Phases: Gait is a periodic activity, with each period referred to as the gait cycle. The gait

cycle, illustrated in Figure 2.1, consists of two main phases: the stance, , where the lower limb is in
ground contact, and a swing phase, where there is no contact.
There are four segments to the stance phase: (1) initial contact: which starts with a heel strike,
also known as the loading response, (2) midstance: the moment the foot is on the ground due to a
dorsiflexion moment (3) terminal stance: when the heel starts to lift off the ground; and (4) pre-swing:
the fi ground point of contact before the swing phase begins. The swing phase is divided into three
segments: (1) initial swing, (2) mid-swing, and (3) terminal swing. In total, there are seven segments
in a gait cycle, as shown in Figure 2.1. Forward movement is achieved by alternating between the right
and left feet. There are periods of single support, where only one leg is in contact with the ground,
and periods of double support, where both legs are in contact with the ground [58].

- Stance Phase - Swing Phase >

Heel strike Loading Mid-stance Terminal stance Pre-swing Toe-off Mid-swing Terminal swing
response
< Double |, Single support Double ., Single support —————————»

support support

Figure 2.1: Phases in the gait cycle. [1]

Anatomical Planes in a Human: our body moves in three anatomical planes that can be used
to explain exercise and other activities:

e The coronal (frontal) plane divides the body’s anterior and posterior halves.
e The sagittal (longitudinal) plane divides the body’s left and right halves.
e The body’s top (superior) and lower (inferior) halves are divided by the transverse (axial) plane.

Joint Angle: Every gait cycle results in a periodic change in the hip, knee, ankle, and foot joint
angles for the three planes. Most of the movement is visible in the sagittal plane [58]. Joint angles
are thought to be a kinematic part of walking [17]. Their second-time derivatives, angular acceleration
and velocity, are also often seen and recorded.

Moment (Gait Kinetic): Moments fall under the category of kinetic gait parameters. During
the gait, muscles generate moments of force across joints.

2.1.2.2 Deep Learning Algorithms

Our focus in this study is on those studies that are using DL for gait analysis. In this section, we will
describe DNNs that are commonly applied for gait analysis.
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CNN: CNN is a type of DNN that typically takes 2D images as input. The CNN uses a
kernel, smaller than the original image; which is swept across the image to perform a convolution
operation between the kernel and a piece of the image. This process results in the construction of
the network’s next layer, known as the feature map. In Artificial Neural Networks (ANNs), feature
maps are analogous to hidden layers. In contrast to hidden layers in artificial ANNs, where each node
connects to every single input, a CNN maps a group of inputs, corresponding to the kernel size, to
a single point on the feature map. This characteristic, known as sparsity of connections, is unique
to CNNs. The sparsity of connections due to convolutions reduces the number of parameters in the
model, thereby decreasing the memory storage space and computational power required. Another
distinguishing feature of CNN algorithms is parameter sharing. The same set of weights is applied
across the entire image to generate a single feature map. These weights are only modified when
creating feature maps that extract different features. In addition to convolution layers, CNNs also
include pooling layers. To generate the output, the final feature map is unrolled to a fully connected
hidden layer after numerous alternating convolution and pooling processes [59] (shown in Fig 2.2).

ojojofojojo|O
o|1|/ofo]oj1|0
ojojofojojo|0O 5
0|ojo|1]ofo]o| Convolutio Pooling Flattening
of1]o]ofof1]0 R
ofof1]1]1f0f0
ofojojojofofoO

Input Image
| 1 J

Convolutional Layer Pooling Layer

Figure 2.2: Architecture of typical CNN. [2]

RNNs: A RNN [60] is a type of ANN specifically designed to handle time series data or data
that contains sequences. Ordinary feed-forward neural networks are intended for data points that are
independent of each other. However, when dealing with sequential data where each data point depends
on the preceding one, the neural network must be adapted to account for these dependencies. RNNs
use the concept of "memory" to store the states or information of previous inputs, which helps in
generating the next output in the sequence, as illustrated in Figure 2.3. A simple RNN that allows it
to retain information across multiple time steps. This feedback loop can be unrolled over n time steps.
By unfolding the network for k time steps, it can produce the output at time step k+ 1. The unfolded
network resembles a feed-forward neural network but is capable of handling sequential dependencies.

Unfold

Figure 2.3: Architecture of typical RNN [3]

LSTM: The LSTM model [61] is a powerful recurrent neural system specifically designed to
address the exploding and vanishing gradient problems that commonly occur when learning long-
term dependencies, even with minimal time lags [62]. A standard LSTM unit consists of four main
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components: a cell, an input gate, an output gate, and a forget gate. This forget gate was not originally
part of the LSTM network, but was later introduced by Gers et al. [63] to enable the network to reset
its state. The cell in an LSTM unit serves as a memory mechanism, capable of retaining values over
arbitrary time intervals. The three gates (input, output, and forget) regulate the flow of information
associated with the cell. This structure allows LSTM networks to effectively manage and process
sequential data with long-term dependencies, making them particularly useful for tasks involving time
series or sequential information [62].

Attention Mechanism: DL approaches, such as attention models, are employed to provide
enhanced focus on specific components of input data [64]. In DL, the attention mechanism mimics
the human brain’s ability to concentrate on particular elements and recognize their importance. This
mechanism is typically implemented in one of two ways within a network’s architecture: self-attention
which focuses on maintaining and quantifying interdependent relationships between input elements
and general attention which concentrates on the relationships between input and output elements.

For instance, when observing an image, the human brain initially focuses on a specific aspect with
high resolution while perceiving the surrounding areas with lower resolution. As the brain begins to
comprehend the image, it dynamically adjusts its focal point to thoroughly understand all components.
The attention mechanism in DL models operates similarly, allowing the network to prioritize certain
parts of the input data dynamically. This approach enables the model to allocate computational
resources more efficiently and effectively, leading to improved performance on various tasks, especially
those involving complex or long-range dependencies in the data.

2.2 Research Design

In this study, we have applied systematic mapping as a research methodology for reviewing the lit-
erature [65]. This review is a ‘systematic’ way of exploring existing literature on gait analysis using
DL. This SLR consists of four essential steps: planning and searching for primary studies, collecting
studies, extracting data, and synthesizing data. The first step is to come up with research questions
and goals. The criteria for choosing studies, selecting studies, coming up with keywords for research
and search queries, and judging the quality of extracted studies are all part of the second step. In this
step, we choose a group of keywords and boolean operators to extract only the most relevant papers
from the literature. The data extraction step (third step) uses strategies for getting data from specific
studies. The quality assessment of selected studies is the last step.

This methodical approach ensures a comprehensive and unbiased review of the literature, providing
a clear overview of the current state of research in the field.

2.2.1 Research Questions

This literature review’s primary goal is to investigate various DL techniques applied in gait analysis.
Table 2.2 lists the research questions (RQs) to achieve the primary goal.

Table 2.2: Research questions for a literature review

RQ Research Questions

RQ1 Which DL techniques have been used for QGA?

RQ2 What are the major databases used in QGA?

RQ3 What are the various metrics for evaluating the performance
of different models used in QGA?

RQ4 How MTL can improve the performance of models in QGA?

21



2.2.2 Research Objectives

The research objectives of this literature review are given below:

e To investigate the existing traditional and advanced DL techniques and approaches for QGA.
e To explore the existing databases used for QGA.
e To investigate various evaluation metrics used to measure the performance of QGA.

e To investigate how MTL can help in better analysis of QGA.

2.2.3 Search strategy to retrieve primary studies

This part starts with choosing a set of keywords that reflect the topic of this literature review, along
with Boolean operators. All authors participated in selecting keywords that helped us extract all
related literature on gait analysis using DL. Table 2.3 shows the keywords we applied to databases
to extract related studies. Query 1 was used to select all studies on gait analysis that used DL, and
Query 2 was used to determine those studies that used MTL. In the end, we combine both queries
using the OR operator. Three databases, IEEE, Web of Science, and SCOPUS have been searched
for publications using the search query mentioned in Table 2.3. The search query was used to find
relevant publications from the chosen databases published in English between 1989 and October 2023.
It was applied to the article title, abstract, and keywords. We applied Query 1 and Query 2 separately;
Query 1 identified 293 studies, and Query 2 identified 75 studies. The identical studies from different
databases were removed; only distinctive copies were retained, reducing the number of papers to 203.

2.2.4 Article Screening and Selection Criteria

After duplicate records were eliminated, the remaining 203 studies were examined. The retrieved
publications were screened based on their title, abstracts, and keywords. The authors decided on
inclusion and exclusion criteria to find these studies. Articles were added or removed based on a
majority vote on all inconsistencies. A final decision was also made in the event of a tie between all the
authors. The screening of all articles using the title, abstract, and keyword-based screening method is
shown in Figure 2.4. Additionally, only 55 publications—out of a total of 145—were chosen for primary
studies; the remaining articles were disregarded.
We use the following inclusion criteria:

e The article must be published before October 2023.

e The article must be published in a journal, but concerning Query 2, we also selected conference
papers due to limited studies that are using MTL techniques.

e The article exploits DL.
e The article must use a sensor(s) to collect gait data.
e The article must use only gait data.

e The purpose of the article must be QGA.
We use the following exclusion criteria:

e The article does not use DL.
e The article’s domain is not the field of machine learning for QGA.

e The article does not use any other type of data except gait (like speech).
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Table 2.3: Selected keywords for extracting related literature

Query 1

("Deep Learning" OR "deep learning") AND (Gait prediction)

Query 2

("Multi-task learning" OR "MTL") AND ("Gait")

Search Query

Query 1 OR Query 2
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IEEE Explorer (n =37)
Scopus (n =125)
Total (n=293)
(only journal articles)

Web of Science (n = 29)
|IEEE Explorer (n = 14)
Scopus (n =32)
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Figure 2.4: Flowchart on the methodology of article selection.

2.2.5 Quality Assessment

In this study, the Quality assessment criteria (QAC) were employed to evaluate the quality of 55 studies
that were selected for analysis. The QAC served as a tool for assessing the rigor and validity of the
research conducted in these studies. Through the use of these criteria, the researchers were able to
determine the overall quality of the studies and draw conclusions based on the findings. The present
study utilized the QAC to evaluate the suitability of a chosen primary investigation for meeting the
objectives of our review. To assess the consistency of the selected primary studies, the collective authors
posed a set of questions. Following are the questions to check the quality of the selected studies.

e Are the research objectives clearly stated?

e [s the proposed methodology well defined?
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Is DL model/architecture clearly defined?

Is there enough information available for the dataset?

Are evaluation metrics fully defined?

Are the results properly interpreted and discussed?

The present study evaluated the results following a thorough quality assessment of each primary study.

2.3 Systematic Mapping Study Results

In this section, we discuss 55 papers that meet our inclusion/exclusion criteria. The performance
of the models, the data used for training and validating the algorithms, the type of data used to
make predictions, and quality metrics are examined. The results are discussed in five main groups:
(1) classification studies, (2) regression studies (4) MTL studies, and (5) major datasets used in the
literature for gait analysis.

2.3.1 Classification Studies

This section reviews the studies on the classification of gait phases, detection of gait events, recognition
of gait anomalies, classification of normal and pathological gait, and fall-risk assessment (shown in
Figure 2.5). The prevalence of LSTM-CNNs in recent literature demonstrates how widely used it is
as an DL technique for classification studies. The study explores various techniques that have been
employed in the field of DL, in addition to multi-layer perceptrons (MLPs). These techniques include
ConvLSTMs, Graph CNNs, attention mechanisms, and transformers. These studies provide valuable
insights into the performance of these models and their potential applications in the gait analysis field.

PROPORTION OF DIFFERENT APPLICATIONS FROM

CLASSIFICATION STUDIES

Other Studies (age Detection of Gait
prediction, peak Phases
detection, and 11%
others)
15%

Detection of Gait
Events
15%

Detection of Gait
Events and Gait
Phases
8%

Classification of
Healthy and
Pathological Gait
31%

Prediction of FOG
12%

Figure 2.5: Applications in the literature for classification studies.
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DL TECHNIQUES USED IN CLASSIFICATION STUDIES

CNN and LSTM with Attention mechanism
CNN and LSTM

MLP

Graph CNN

CNN

LSTM

Figure 2.6: DL techniques in the literature used for classification studies.

2.3.1.1 Detection of Gait phases and Gait events

In the past, researchers have effectively utilized ML algorithms such as SVM [66], DT [67, 68|, RF [66],
and KNN [40] to detect gait phases or events|56]. IMUs and force-sensitive resistors (FSRs) were
identified as the most suitable options for data collection for these tasks. The classification accuracy
they achieved ranged from 83% to 100%. In recent years, DL has proven to be highly effective for this
purpose. CNN and LSTM have been widely utilized. Data was collected using sEMG, IMU, ground
reaction force (GRF), and FSR. Details are given in the following section.

The reviewed studies have demonstrated innovative methods for gait phase prediction and clas-
sification using diverse techniques. Morbidoni et al. [69] introduced a MLPs approach focusing on
foot-floor-contact signal prediction and gait phase categorization, employing surface sEMG data from
23 healthy adults during level ground walking. Their utilization of MLPs with varying hidden layer
configurations resulted in an impressive 94.94% accuracy, notably achieved by an MLP with 4 hidden
layers after signal normalization. Su and Gutierrez-Farewik [70] employed LSTM networks to predict
human gait trajectories and classify phases, achieving 95% accuracy in identifying gait phases, partic-
ularly excelling in detecting the swing phase. Additionally, a study by a different research group|71]
utilized a graph convolutional network model (GCMM) to effectively group walking phases for lower
limb exoskeleton control. This investigation, involving ten healthy male volunteers, exhibited remark-
able performance in gait phase classification, reaching a maximum accuracy of 97.43%, outperforming
established techniques like LSTM and DCNNs. These findings collectively indicate promising ad-
vancements in gait phase prediction, showcasing the potential of CNN, LSTM and GCMM techniques
in improving accuracy and applicability across various terrains and control mechanisms, notably in
scenarios involving exoskeletons.

In the realm of gait event detection, several studies present diverse approaches employing DL
techniques for different pathologies. Filtjens et al.[72| focused on PD and Freezing of Gait (FOG),
introducing a data-driven approach to enhance gait event detection accuracy crucial for assessing
and managing gait disorders in PD. Their study showcased that a temporal convolutional neural
network (TCN) outperformed RNNs like LSTMs, with TCN displaying F1-scores of 0.995 to 0.999
for various events in PD and FOG scenarios. Additionally, Lempereur et al.[47| proposed DeepEvent,
utilizing bi-directional LSTMs (Bi-LSTMs) to automatically detect foot strike (F'S) and foot off (FO)
events in children with gait disorders, showcasing impressive area under the curve (AUC) values of
around 0.995 to 0.997 for FS and FO events. Arshad et al.|73] explored gait event recognition in older
individuals using single waist sensors and DL models, achieving up to 99.73% accuracy with CNN-
BiGRU-Att models. Furthermore, a study by Dumphart et al.[74] introduced IntellEvent, a DL-based
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algorithm exhibiting exceptional accuracy in detecting various gait events across diverse pathologies,
surpassing state-of-the-art heuristic methods with detection rates above 99% for initial contact (IC)
events and over 95% for FO events, achieved within milliseconds. Collectively, these studies show that
DL methods can accurately find gait events in people with a variety of pathologies. They do this
quickly and with great accuracy, which is important for accurate assessment and intervention plans.
Di et al.[75]| aimed to devise a MLP architecture exclusively using knee-joint angle data from
electrogoniometers to accurately identify gait phases and events. Conducted on 23 healthy adults
without prior pathologies or orthopedic surgeries impacting leg mechanics, the study assessed average
participant characteristics: mean height (173410 cm), mass (63.3+12.4 kg), and age (23.8+1.9 years).
By using MLP architecture, their method showed high accuracy (90.6+£2.9%) in evaluating the timing
of heel-strike and toe-off, working well even for people who were not in the initial training dataset.
Meanwhile, Ling et al.[76] proposed a domain adaptive CNN (DACNN) model for gait phase and
event recognition using surface EMG data. This model was designed to pre-train on a comfortable
gait speed and adapt quickly to new gait speeds. Their study involved four healthy volunteers without
muscle conditions, with an average age between 23 and 26 years. Using different CNN-based backbone
models that had already been trained on comfortable walking speed data, the model was able to
adapt to different walking speeds using architectures such as LeNet, AlexNet, and fusion-data-CNN
(FDCNN). Their evaluation showcased promising accuracy in identifying gait phases at different speeds,
underscoring its potential application across varied gait scenarios after minimal recalibration.

2.3.1.2 Classification of Healthy and Pathological gait

In the past, IMUs have shown a high success rate of around 95% in detecting abnormalities of gait,
which accurately predict gait abnormalities with a high asymmetry score[56]. The ML models utilized
in past studies included the hierarchical clustering algorithm [77], SVM [43]|, LDA [78], KNN [79],
and Bayesian network [80]. Currently, CNNs and LSTMs have become popular choices for classifying
healthy and abnormal gait patterns. Nowadays, data is collected using IMU, ECG, EMG, and GRF.

El Maachi et al. [81] proposed a new intelligent system for detecting PD, which utilizes the 1D-
Convnet to analyze gait data. This study made use of the PhysioNet public database, consisting
of 166 participants, 93 individuals with PD, and 73 control subjects. Eight sensors were positioned
beneath each foot for every participant to measure vertical GRF. Their method also predicts PD
severity. They employed the unified Parkinson disease rating scale (UPDRS), the most common PD
assessment system [82]. The proposed algorithm achieved an accuracy of 98.7% for PD detection and
85.3% accuracy in predicting the severity of PD.

Alharthi et al. [83] proposed a 2D-DCNN model to classify PD and healthy subjects using GRF.
They used the open-access benchmark dataset, PhysioNet [84]. Four convolutional layers, an average
pooling layer, two fully connected layers, and 10 stacked layers comprise a 2D-DCNN model created for
PD severity classification. Another network (parallel DCNN) produces the best classification accuracy,
with mean performance and standard errors of 95.5% and 0.28%, respectively.

Sadeghzadehyazdi et al. [52] proposed an end-to-end CNN-LSTM model that captures spatiotem-
poral patterns for gait anomaly recognition using Kinect skeleton data. The sequence of normalized
skeletons was used in the study, with a length of 50 frames per sequence. Three different datasets
were used to evaluate the performance of the proposed model: the walking gait dataset, the MMGS
dataset, and the pathological gait dataset. On the walking dataset, the CNN-LSTM model achieved
90.57% accuracy. On the MMGS dataset, it achieved 82.71%, and on the pathological gait dataset, it
achieved 89.83% accuracy.

Zhu et al. [51] proposed a two-stream CNN for classifying healthy and pathological subjects. The
authors claimed existing work mostly applied DL on individual joint features, and they don’t consider
inter-joint features due to the complexity of smaller-scale medical datasets. So the authors proposed
an approach that explicitly takes individual and inter-joint features. One stream of CNN was used to
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Table 2.4: Detection of Gait Phases and Gait Events

Research | Purpose Model Type of Dataset Performance Results
Article [Architecture] Data Metric
Morbidoni | Gait phase | 5 MLPs [1, 2, 3, 4, sEMGS 23 Healthy Accuracy 94.9% for seen subjects and
et al. [69] prediction and 5 FCLs, signals adults 93.4% on unseen subjects
respectively.|
Su and Gait phase | LSTM-based [LUs IMU 12 healthy Accuracy 95%
Gutierrez- | prediction | and FCLs depends subjects
Farewik [70] on the number of (thighs,
future steps to shanks, feet,
predict] and pelvis)

Di et al. [75]| Gait phases | MLP [3 FCLs with |electrogoniometer,23 healthy MAE: 29.44+13.7ms for HS
and event | 512, 256, and 128 | foot-switches subjects Mean and 99.5+28.9ms for TO
detection neurons] (for foot-floor- Absolute detection, Accuracy:

contact), and Error (MAE) | 90 6%42.9% for gait phase
sEMG and Accuracy detection
Filtjens et | Gait event Temporal CNN | retro-reflective | 15 patients F1-Score For FOG-trials, F1 scores of
al. [72] detection markers with PD 0.995 and 0.992 were
obtained for IC and EC,
respectively. For functional
gait trials, F1 scores of 0.997
and 0.999 were obtained for
IC and EC, respectively.
Lempereur | Gait event | DeepEvent [3 BLs GRF 226 Time and Foot Strike: 5.5 [0.9; 10.2]
et al. [47] | detection (800 units)] pathological Confidence |and Foot Off: 10.7 [5.4; 15.9]
children Interval (ms)
Wu et Gait phase GCMM goniometers 10 Healthy Accuracy 97.34%
al. [71] prediction and FSRss subjects
Ling et Gait phases | Domain Adaptive sEMG 4 healthy MAE and Accuracy: 58.13% for
al. [76] and event CNN subjects Accuracy AlexNet, 81.56% for LeNet,
detection and 81.53% for FDCNN. The
average MAEs for gait event
identification are 48, 85, and
66 ms, respectively.
Arshad et | Gait event CNN, RNN, IMU 169 (94 Accuracy Highest accuracy were
al. [73] detection CNN-RNN with healthy and 75 99.73% for the
and without pathological) CNN-BiGRU-Att model
attention subjects
mechanism
Dumphart | Gait event | LSTM-based [3 force plates 1272 (61 MAE Detection rate for IC events
et al. [74] detection | BLs (200 units) + healthy and is above 99% and for FO
DrL + DL 1211 events is above 95%
pathological)
subjects
Note: FCL = Fully Connected Layer, BL = Bi-LSTM Layer, DrLL = Dropout Layer, and LU = LSTM units

learn the joint position, and another was responsible for learning the relative joint displacement. After
that, they implemented a mid-layer fusion module to concatenate the results of both streams for better
classification. They used a dataset of skeletons from 45 subjects, including four classes. 10 are healthy,
4 have joint problems, 18 have muscle weakness, and the rest 13 have neurological defects. The ages of
the subjects range from 61 to 91 y.o.. Five of them were male, and 40 were female. 20 main joints were
considered to form the subject’s skeleton for input to the model. 5-fold cross-validation was used for
the evaluation. Using their proposed methodology, they got an overall 95% accuracy, 92% precision,
92% recall, and 92% F1l-measure.

Kaur et al. [85] introduced a data-driven methodology for stride classification in individuals with
MS, PD, and healthy older adults (HOA). They involved 33 participants across different age groups
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and conditions, performing two walking tasks on a sensor-equipped treadmill. The study utilized
sixteen ML algorithms, including traditional supervised ML and ML models, to establish baseline
performance. Multi-Scale RNN exhibited high accuracy in distinguishing between walking conditions
but the 1D CNN model achieved the highest accuracy, scoring 79.3%.

J. Yu et al. [86] developed a real-time motion data-based Al system using RF and LSTM to predict
geriatric stroke. The data were obtained from elderly Koreans walking with affixed wearable sensors.
Shoulders and quadriceps were targeted for the placement of the sensors. After processing the data,
they got 12 motion attributes, including angles and acceleration. The proposed system achieved high
prediction accuracy: from 98.25% for the C4.5 DT model to 98.72% for RF, 96.60% for XGBoost, and
98.99% for LSTM.

Chen et al. [87] proposed a CNN model for recognizing sarcopenia disease comprising both hardware
and software. The hardware is made up of multiple sensor modules (MSM), worn behind the ear and
used to collect EMG and gait (EAG) data. Biomedical and motion sensor algorithms (Bodi algorithm)
and leg health classification net (LCNet) are the parts of the software. 21 men and 34 women between
20 and 81 y.o. participated in this study. Their weights range between 38 and 112 kg, with between 12
and 29 kg of total muscle mass. Patients with serious damage to their legs or spines were turned away.
We found that 19 successful subjects were at a high risk of sarcopenia. They used the Bodi method
to figure out the gait features that feed an LCNet model, composed of a convolutional layer and two
FC layers. LCNet has 94.41% accuracy, 91.58% precision, 95.81% specificity, and 91.58% sensitivity.

D. Thakur and S. Biswas [88] proposed an attention-based DL system utilizing smartphone ac-
celerometer and gyroscope data to predict hemiplegic gait. They collected data from 28 participants,
divided into normal and hemiplegic groups. The hemiplegic individuals, who had experienced a stroke,
walked more than 15 steps on a flat surface. A novel Android smartphone application with tri-axial sen-
sors collected data at a frequency of 50 Hz. A CNN-LSTM architecture automatically learns features
from sensory data, leveraging the strengths of both CNN and LSTM for effective feature extraction and
pattern recognition. The study recommended combining automatically learned and hand-engineered
features from sensory data. An attention network adjusted the importance of the different features,
achieving an impressive accuracy rate of 86%, a precision rate of 80%, a recall rate of 100%, and an
Fl-score of 88.89% on an unseen dataset, demonstrating the model’s effectiveness.

2.3.1.3 Fall-risk Assessment

Tunca et al. [49] developed a Bi-LSTM model aimed at predicting fall risk in geriatric populations with
neurological disorders. This study involved 76 subjects, with 37 categorized as high-fall-risk due to a
history of falls within the year before data collection. They compared their model to other algorithms
like MLP, RF, hidden Markov model (HMM), and SVM. The Bi-LSTM model utilized complete data
sequences within a given window for sequence-to-label classification and achieved an accuracy of 89%,
an AUC of 94.3% on the validation set, and 92.1% accuracy and 98.7% AUC on the test set.

Savadkoohi et al. [50] explored the recognition of human balance characteristics using One-One-One
architecture to predict fall risk. Their study included 163 participants with diverse ages and health
conditions. Assessing balance involved a protocol where participants maintained a stationary balance
on a force plate for 60 seconds across various conditions. The One-One-One architecture comprises a
1D-convolutional layer, an LSTM layer, and a dense layer. The authors employed the Falls Efficacy
Scale (FES) results to categorize falling into low, moderate, and high classes. The proposed model
exhibited outstanding efficiency, showcasing precision, sensitivity, and accuracy rates of 100%, 100%,
and 99.9% respectively.
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Table 2.5: Classification of Healthy and Pathological Gait

Research| Purpose Model [Architecture] [ Data Type Dataset Performance Results
Article Metric
El Detection of PD | 1D-Convnet-based [two vertical PhysioNet: Accuracy 98.70%
Maachi et parts: the first part GRF imbalance dataset
al. [81] comprises 18 parallel 1D of 350 walks with
CNNs, while the second 70% of PD walks
part is an FCN that (healthy subjects:
operates on the 73 versus PD: 93)
concatenation of the 18
1D-CNNG|
Alharthi | Classification of | 2D-DCNN [4 CLs + GRF 166 healthy and Accuracy 95.5+0.28%
et al. [83] | PD and healthy APL + 2 FCLs| pathological
subjects subjects
Sadeghzad- Gait anomaly CNN-LSTM-based [3 skeleton Walking Gait Accuracy Accuracy on
ehyazdi recognition CLs + MPL + FCL + images dataset (9 Walking Gait
et al. [52] BL] participants), dataset: 90.75%,
MMGS dataset (27 MMGS dataset:
participants), and 83.64%, and
Pathological gait Pathological gait
dataset (10 dataset: 90.83%
participants)
Zhu et | Classification of | Two-stream CNN |[2 motion 45 subjects Accuracy, | 95% accuracy, 92%
al. [61] healthy and parallel CLs + fusion |capture suit (healthy: 10, Precision, precision, 92%
pathological network (2 CLs + MPL patient with joint Recall, and recall, and 92%
subjects + FCL)] problems: 4, Fl-score Fl-measure
muscle weakness:
18, patient with
neurological
defects: 13)
Kaur et | Classification of | Nine traditional ML two digital 33 subjects AUC 1D CNN AUC:
al. [85] strides in algorithms (LR, SVM, cameras (healthy:14, 79.3%, residual
individuals with | and RBF SVM kernels, patients with MS: network: 78.1%
MS, PD, and DT, RF, AdaBoost, 10, and patients
HOA XGBoost, GBM, and with PD: 9)
MLP) and 7 DL
algorithms (1D-CNN,
ResNet, MSResNet,
TCN, Vanilla RNN,
LSTM, and Gated
Recurrent Unit (GRU))
J. Yu et Prediction of C4.5 DT model, RF, motion, Elderly Korean Accuracy C4.5 DT model:
al. [86] | geriatric stroke | XGBoost, and LSTM ECG, subjects 98.25%, RF:
EMG, and 98.72%, XGBoost:
foot sensor 96.60%, and
LSTM: 98.99%
Chen et | Recognition of CNN-based [CL + 2 IMU and 55 Pathological Accuracy, 94.41% accuracy,
al. [87] sarcopenia FCL| EMG sensor subjects Precision, 91.58% precision,
disease Specificity, 95.81% specificity,
and and 91.58%
Sensitivity sensitivity.

D. Prediction of CNN-LSTM with an |accelerometer 28 subjects Accuracy, Accuracy: 86%,
Thakur | hemiplegia gait attention mechanism and (healthy and Precision, Precision of 80%,
and S. gyroscope pathological) Recall and recall (sensitivity)

Biswas [88 signals F1-score 100% and F1l-score
of 88.89%
Note: BL = Bi-LSTM Layer, CL = Conv Layer, FCL = Fully Connected Layer, MPL = Max Pooling Layer, and

APL = Average Pooling Layer
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Table 2.6: Prediction of fall-risk and Freezing of Gait (FOG)

Research Purpose Model Data Type Dataset performance Results
Article [Architecture] Metric
Tunca et Prediction of LSTM-based [2 IMU, 76 pathological Accuracy 92.10%
al. [49] fall-risk architectures: one |accelerometer, subjects
assessment with BL(10 units) |and gyroscope

+ FCL(10 units),
another with 2
BLs(100 and 20

units) + FCL(10

units)]
Shalin et Prediction of LSTM-based [2 plantar 11 pathological Sensitivity Mean sensitivity:
al. [89] FOG LLs(16 units)] pressure subjects and Specificity | 82.1% (SD 6.2%)

images and mean

specificity: 89.5%

(SD 3.6%)
Savadkoohi et Prediction of |One-One-One Deep| force plates | 163 pathological Accuracy, Accuracy: 99.9%,
al. [50] fall-risk Neural Networks subjects Precision, and | Precision: 100%,
assessment [ConvlD + LL + Sensitivity and Sensitivity:
FCL] 100%
El-ziaat et Prediction of | Deep Conv-LSTM | sensors (IMU | Daphnet (10 Accuracy 93.5%
al. [90] FOG [3 CLs + MPLs + and subjects) and
3 LLs| accelerometer) | Opportunity
data converted| Dataset (12
into subjects) -
spectrogram Healthy and
images pathological
subjects
Li et al. [91] Prediction of | Multimodal fusion | IMU and FSI | 32 pathological Sensitivity, Sensitivity: 0.924,
FOG strategy consisting subjects specificity, Specificity of:
ConvlD and LSTM accuracy, 0.983, Accuracy of:

AUC, EER, 96.3%, and F1
and F1 value value of 0.943.

Note: LL = LSTM Layer, BL = Bi-LSTM Layer, CL = Conv Layer, FCL = Fully Connected Layer, and MPL =
Max Pooling Layer

2.3.1.4 Prediction of Freezing of Gait

Several research projects have looked into using advanced DL methods, like LSTM models and hybrid
architectures, to find and predict FOG in people who have been diagnosed with PD. Shalin et al. [89]
conducted a study centered on LSTM utilization based on plantar pressure data. Their investigation
included 11 male volunteers, focusing on real-time wearable applications and achieving impressive
accuracy in FOG detection. The best FOG detection model achieved a mean sensitivity of 82.1%, a
mean specificity of 89.5%, and 95% identification of freeze episodes. El-ziaat et al. [90] proposed a deep
Conv-LSTM model with novel spectrogram image inputs derived from angular axes features. They
evaluated their approach on benchmark datasets (Daphnet and Opportunity datasets, see Table 2.12)
and achieved noteworthy accuracy, indicating potential advancements in FOG prediction accuracy. The
best results from DL models were 97.6% for 2D CNN and 93.5% for hybrid Conv-LSTM. Li et al [91]
adopted a multimodal fusion strategy, integrating force-sensitive insole (FSI) and IMU data from 32
individuals. Their feature-fusion-weighted model showcased excellent performance in predicting FOG
duration and frequency, emphasizing robustness in monitoring FOG occurrences. The feature-fusion-
weighted model yielded the best performance with a sensitivity of 92.4%, a specificity of 98.3%, an
accuracy of 96.3%, and an F1 value of 0.943. In conclusion, these studies show that DL-based methods
have a lot of potential for improving FOG detection and prediction. They also give us important
information that can help doctors better manage and treat people with PD.
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2.3.1.5 Other classification studies

The study [92| aimed to explore the effectiveness of a LSTM model using IMU sensor data to dif-
ferentiate between age groups and walking surfaces. Participants walked on flat and uneven surfaces
wearing athletic shoes while tethered to a safety harness in a motion-capture lab. Hu et al. classified
the data into flat or uneven surfaces and young or elderly categories. This study included seventeen
older (71.5+4.2 years, 165.749.3 cm, 67.6+12 kg) and eighteen young (27.0+4.7 years, 171.64+8.8 cm,
69.54+14.7 kg) adults. Two LSTM layers extracted information and the model predicted the most prob-
able walking surface. Evaluation metrics, including accuracy, precision, recall, and F1-score, showed
highly accurate and precise models, achieving 96.3% and 94.7% accuracy for type of surface and age
prediction, respectively. With high AUC values of 0.97 and 0.96 for surface and age, these models
demonstrate reliability for future research and applications.

Girka et al. [93| formulate the prediction of the appearance of the impact peak of GRF as a bi-
nary classification problem. They utilized kinematic data as predictors, specifically raw signals in the
sagittal plane, which were collected using the Vicon motion capture system. 135 healthy individuals
participated in the study, comprising both elite and recreational runners who underwent measurements.
In total, the dataset was comprised of 1196 trials. This study aimed to investigate the anthropomet-
ric characteristics of the participants (body weight was 71.64+11.4 kg; height was 174.849.0 cm; leg
length was 91.845.4 cm; Body-Mass Index (BMI) 23.342.3 kg/m?). They proposed three layers CNN
each subsequently followed by a spatial pooling layer. The accuracy and F-measure metrics were
81.09%+2.58% and 82.07%+2.31%, respectively.

Hernandez et al. [94] proposed a CNN architecture for detecting and predicting walking activity
and gait period utilizing wearable sensors. Twelve healthy male individuals (from 24 to 34 y.o., between
1.74 and 1.79 meters tall, and weight between 77.6 and 85 kg) without abnormal gait were selected
at the University of Leeds’ Institute of Design, Robotics, and Optimization (iDRO). The authors
gathered information from three IMU sensors mounted to the subjects’ feet, shanks, and thighs. The
IMU sensors possess nine degrees of freedom and can supply data from the accelerometer, gyroscope,
and magnetometer. CNN was used for recognizing the walking activity and gait phases. Two layers
CNN identified from these wearable sensors level ground walking, ramp ascent, and ramp descent and
recognized walking activity and gait period with 100% and 98.63% accuracy, respectively.

Yen et al. [95] aimed to develop an LSTM model to accurately identify and categorize dynamically
the data of the center of pressure (COP) and GRF to distinguish between straight walking and turns.
Furthermore, the study seeks to uncover gait traits that have the potential to substitute EEG in
forecasting walking directional intentions. Following that, the gait intention classification in the LSTM
model would involve treating GRF and COP as characteristics. A total of ten healthy individuals (age
of 24.3+1.79 years, height of 1764+3.80 cm, and mass of 72+11.78 kg) were selected for the study. The
sliding window achieved a maximum accuracy of 94.8% within a time frame of 0.7s.

2.3.2 Regression Studies

In this section, we review the studies that worked on the prediction of kinematic or kinetic sequences
and the severity prediction of NDD (shown in Figure 2.7). In this part, a total of 24 studies were con-
ducted to investigate the use of various neural network architectures in different applications. In the
past, except DL, the kernel recursive least square method, principal component analysis, and best lin-
ear unbiased estimation were used for joint torque prediction [96], joint trajectory prediction [97, 98],
generation of trajectories [99], and limb motion estimation [100]. Currently, LSTMs, CNNs, and a
combination of both are the most used models. Other studies also utilized diverse DL models, includ-
ing generative adversarial network (GAN), MLP with CNN, and LSTM with an attention mechanism
(shown in Figure 2.7).
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Table 2.7: Remaining classification studies

Research Purpose Model [Ar- | Data Type Dataset |performance Results
Article chitecture] Metric
Hu et al. [92] | Detection of surface- | LSTM-based triaxial 36 healthy Accuracy, Accuracy (96.3%,
and age-related [2 LLS + accelerometer, | subjects precision, 94.7%), precision
differences in walking FCL] gyroscope, and recall, and (96.4%, 95.2%), recall
magnetometer Fl-score (96.3%, 94.7%), and
data from an f1-score (96.3%, 94.6%)
IMU
Girka et Prediction of the CNN-based [3 GRF 135 healthy Accuracy 81.09%+2.58%
al. [93] appearance of the | CLs + MPL] subjects
impact peak of GRF
Hernandez et | Detection of walking | CNN-based [2 IMU 12 healthy Accuracy Activity
al. [94] activity and gait CLs + MPL] subjects recognition:100% and
period recognition Gait period
recognition:98.63%
Yen et al. [95] Recognition of LSTM-based IMU 10 healthy Accuracy 94.79%
walking directional subjects
intention
Note: FCL = Fully Connected Layer, CL. = Conv Layer, L. = LSTM Layer, and MPL = Max Pooling Layer

We identify four categories of regression studies that will be detailed in the next sections: future
sub-sequence forecasting based on time window input, sensor-to-sensor sequence estimation, condi-

tion/joint translation, and clinical scores prediction.

PROPORTION OF DIFFERENT TASKS FROM REGRESSION
STUDIES

Clinical scores
prediction

Future sub-
sequence
forecasting

Condition/joint
translation

¥ __Sensor-to-sensor
sequence
estimation

Figure 2.7: Applications in the literature for regression studies.

2.3.2.1 Future sub-sequence forecasting

This category includes studies that take biomechanical time series for a certain time window as input
and output future values of the same signal. A typical example of this category of DL model considers
Nwin,in vValues of a kinematic or kinetic sequence (i.e., knee flexion/extension during gait) from ¢ to ti,
and predicts the next nyinour values of the same sequence from ti, + 7§ to tin + Ts + tout. Nwin,in and
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DL TECHNIQUES USED IN REGRESSION STUDIES
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Figure 2.8: DL techniques in the literature used for regression studies.

Nwin,out are the number of time steps in the input and output windows, respectively; ¢ is the initial
time of the signal; tj, and .y are the duration of the input and output windows, respectively; and T
is the sampling time.

Su and Gutierrez-Farewik [70] proposed an LSTM-based network to predict the angular velocity
of the shank, foot, and thigh segments during gait. 12 healthy subjects (25-30 y.0.) were used in
the study. The authors recorded 1500 to 1700 gait cycles per participant. For a forecast of 5 and 10-
time steps (output window), the input window size was set to 10 and 30, respectively. They achieved
correlation coefficient values greater than 0.98 in trajectory predictions.

Gholami et al. [101] proposed a shoe-mounted accelerometer for predicting sagittal plane lower
extremity angles (hip, knee, and ankle) during running using a 1D-CNN. The study recorded motion
and accelerometer data from 10 healthy male participants. The data recording protocol included 15
trials of running at varying speeds. Each participant was outfitted with 25 reflective markers. A 1D-
CNN model was implemented, consisting of four convolutional layers and a max-pooling layer. In the
context of inter-participant scenarios, the Root Mean Squared Error (RMSE) were lower than 6.5° and
the average R? values for hip, knee, and ankle were 0.84, 0.93, and 0.73, respectively.

Sharma and Rombokas [102| proposed an LSTM-based to predict knee and ankle motion from the
Xsens Awinda suit for locomotion data (consisting of 17 body-worn sensors) and an eye tracker for
egocentric vision data. 23 healthy subjects were used in the study. For almost 12 hours, subjects
were recorded as they moved through public classrooms, a large atrium, and stairs. The variety
of the activities recorded made the prediction task more complex. Two parallel LSTMs were used,
one for processing the optical flow and the other for processing joint angles. After that, both were
combined using fusion layers to predict the trajectories of the knee and ankle on the sagittal plane.The
authors showed that using vision enhances the accuracy of the predicted knee and ankle trajectories,
particularly in crowded areas and when the visual environment offers information that does not simply
appear in body movements. Overall, the predictions Normalized RMSE (NRMSE) for knee and ankle
angles are 0.129+0.057 and 0.11940.052, respectively.

Kolaghassi et al. [103] implemented CNN and LSTM models for forecasting gait trajectories of
the ankle, knee, and hip up to 200ms in the future. They used the public data of children with
neurological disorders collected by Gillette Children’s Speciality Healthcare from 1994-2017. Their
ages ranged from 4 to 19 y.o. 73% children have CP and the rest have other disorders. Only one lower
limb was used for prediction. Input windows ranging from 50 to 1000ms were used to predict future
trajectories (output windows ranging from 8 to 200ms). The results show that LSTMs does better
than CNNs, and the difference gets more significant as the input and output window sizes get bigger.
The most significant difference between the CNN and LSTM networks’ MAEs was 0.91°.
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Kolaghassi et al. [104] predicted the next 200-time steps based on the walking patterns of children
in two groups: typically developing (TD) and patients with CP. The authors compared four DL
models: FCN, CNN, LSTM, and Transformer. A dataset of hip, knee, and ankle flexion-extension
angles was measured concurrently for both lower limbs. Training and validation were performed with
TD data, whereas both TD and CP data were used for testing. According to the results, Transformer
(1.17°) has the lowest MAEs for one-step-ahead TD gait prediction, whilst LSTM outperformed the
other methods in long-term predictions for both CP and TD data (MAE of 13.41° and 9.36° for 200
time-steps ahead, respectively).

Karakish et al. [105] proposed an intelligent embedded micro-controller for foot angular velocity
prediction using MLP and CNN. The input was the angular velocity and acceleration of the shank
based on IMU data. Sliding windows were used for prediction, with 5 time-frames as input and 10 time-
frames as output (about 200ms ahead). Five subjects from the human gait database (HUGaDB) were
used in the study (those with non-corrupted gyroscope data). Two experiments were performed with
and without current gait phase (CGP) information. The authors found that without CGP information,
CNN obtained better results (R? of 0.944), but both achieved equivalent performance with CGP (R?
of 0.956 and 0.952 for CNN and MLP respectively).

Kolaghassi et al. [106] investigated the efficiency of deep MLPs in accurately predicting gait angles
of the hip, knee, and ankle in the sagittal plane at different speeds. The purpose of this research is
to control exoskeletons. The online gait dataset provided by Camargo et al. [107] served as the basis
for training the deep MLPs in our study. The dataset comprises gait data obtained from 22 physically
fit individuals. Participants were recorded as they walked on a treadmill at 28 different speeds.The
data was divided into three different speed ranges for training purposes: low, medium, and high. Each
model had an identical architecture, including the number of layers and nodes per layer. Four models
were trained using gait data at different speeds to predict gait data. According to the findings, when
evaluated on the excluded speeds, the MAFE found that the low- and high-speed models both showed
a decline in performance ranging from roughly 43.7% to 90.7%. Conversely, when evaluated on the
medium speeds that were not initially considered, the low high-speed model demonstrated a 2.8%
enhancement in short-term predictions and a 9.8% improvement in long-term predictions.

Song et al. [108] suggested a way to use surface EMG and an LSTM network to predict joint angles
online. Five healthy subjects took part in the data-collection experiment. The TrignoTM Wireless
EMG System from Delsys was used in this investigation to collect sEMG signals. Simultaneous data
collection was done on the plantar pressure signals, three joint angles (hip, knee, and ankle), and eight
muscles of the right leg of five patients. For training the model, different inputs were used: sEMG
(unimodal) and sEMG combined with plantar pressure (multimodal). The input sliding window was
20points (about 16.7ms) to predict four different predicted time intervals (50, 100, 150, and 200 ms).
The range of the RMSE, MAE, and PCC obtained from the input of sSEMG data were [1.63°, 3.20°],
[1.27°, 2.36°], and|0.9747, 0.9935], respectively.

2.3.2.2 Sensor-to-sensor sequence estimation

This category includes studies that estimate kinematic or kinetic sequences from sensors based on re-
gressions where the target output is computed with other types of sensors, usually to simplify compu-
tation and experimental settings (i.e., reduce the number of sensors). A typical example is a regression
task between a kinematic signal computed with an optoelectronic system based on a biomechanical
model and raw data from other sensors (i.e., IMU or accelerometers). In this case, the purpose is not
to predict future values of the sequence but to estimate another sequence based on another one in the
same time frame.

Senanayake et al. [109] aimed to utilize GAN to accurately transform IMU data into ankle joint
angles that are comparable to those obtained through motion-capture-based inverse kinematics. The
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Table 2.8: Future sub-sequence forecasting regression studies

Research| Purpose Model Data Type Dataset performance Results
Article [Architecture] Metric
Su and | Prediction of the | LSTM-based [LUs IMU 12 healthy RMSE and RMSE: 2.440.55
Gutierrez-| angular velocity | and FCLs depends subjects correlation and correlation
Farewik [7p] of the shank, on the number of (thighs, coefficient value > 0.98
foot, and thigh future steps to shanks, feet,
segments (next 5 predict] and pelvis)
and 10
time-steps)
Gholamie | Forecasting gait | CNN-based [4 CLs IMU 10 healthy RMSE < 3.5 and 6.5 in
al. [101] | trajectories of + MPL) subjects intra- and
the ankle, knee, inter-participant
and hip up to scenarios
300ms
Sharma | Prediction of the| LSTM-based [2 |egocentric vision | 23 healthy RMSE and | RMSE of knee and
and Rom-| knee and ankle | parallel LLs + FL] | data using eye subjects pPCC ankle: 0.129+0.057
bokas motion (next 1 tracker and and 0.11940.052.
[102] gait cycle) Xsens Awinda PCC of knee and
suit, consisting ankle: 0.799+0.205
of 17 body-worn and 0.637+0.264
sensors
Kolaghass] Forecasting gait | CNN-based [4 CLs| | VICON (motion Gillette MAE 0.095-2.531 degrees
et trajectories of |and LSTM-based [4| capture system) Children’s for the LSTM and
al. [103] | the ankle, knee, | LLs(128 units)] Speciality 0.129-2.840 degrees
and hip up to Healthcare for the CNN
200ms dataset
Kolaghass] Forecasting gait LSTM-based |2 IMU 10 typically FCN and
et trajectories of | LLs(100 units) + developing | Mean Squared | qyansformer with
al. [104] | the ankle, knee, | FCL|, FCN [FCLs children (TD) | Error (MSE) MAEs for
and hip up to + sigmoid layer], and 11 CP and MAE one-step-ahead
200ms CNN [4 CLs + 2 patients predictions are
MPLs + FCL| and between
Transformer 1.17°-1.63°.
Karakish | Angular velocity | MLP-bases and IMU Five healthy | Bias, MAE, RZ of 0.956 and
et prediction up to CNN-based subjects RMSE, R?, |0.952 for CNN and
al. [105] 200ms Human Gait and PCC MLP respectively
Database
(shank and
foot)
Kolaghass] Prediction of |FCNN [5 FCLs(100 OpenSim’s 22 healthy MAE and please see the
et gait angles of the| neurons) + FCL] inverse Subjects MSE section for details
al. [106] | hip, knee, and kinematics tool
ankle in the (motion capture
sagittal plane at data)
different speeds
Song et Prediction of LSTM-based sEMG 5 healthy RMSE, MAE, | [1.63°,3.20°], [1.27°,
al. [108] | joints angles at subjects and PCC | 2.36°], and [0.9747,
four different 0.9935]
time intervals
(50, 100, 150,
and 200 ms)
Note: FCL = Fully Connected Layer, CL. = Conv Layer, L. = LSTM Layer, and MPL = Max Pooling Layer
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study recruited nine participants with no prior history of lower limb pathology. The authors trained
a GAN using gait data collected at two different walking speeds. The objective was to predict ankle
kinematics solely from IMU data for a third walking speed. The results showed that the RMSE
difference for ankle dorsiflexion was 3.8°, inversion was 2.1°, and axial rotation was 3.5°.

Rapp et al. [110] proposed a CNN and LSTM for estimating joint kinematics (hip, knee, and
ankle) using IMUs. The authors used marker-based motion capture data. After removing data with
marker-tracking errors, 420 subjects of walking trials and 580 subjects of running trials were chosen for
further analysis. Separate predictive models were developed for each joint. To predict lower extremity
kinematics on left-out subjects with a mean RMSE of less than 1.27°£0.38° in flexion/extension, less
than 2.52°£0.98° in adduction/abduction, and less than 3.34°+1.02° in internal/external rotation.

Hernandez et al. [111] proposed a DeepConvLSTM (combining convolutional layers and LSTM
modules) to estimate marker-based kinematics from IMU data during walking and running at different
speeds. A total of 27 healthy participants were recruited. For each DOF, the average r, MAE, and
mean error (M E) ranged from 0.67 (0.23) to 0.99 (0.01), 2.2 (0.9) to 5.1 (2.7), and -0.29 (2.06) to 0.85
(5.58), respectively, when all speed circumstances were taken into account. A significant connection
(r: 0.7-0.9) is seen for the hip left rotation and ankle right/left inversion, while all other DOFs showed
a significant association (r: 0.9). Moderate correlation (r: 0.4-0.7) is seen for the right hip rotation
and lumbar extension.

Hossain et al. [112] presented a DeepBBWAE-Net (ensemble technique using base learners) for
mapping joint angles using a reduced number of IMU sensors. Their study optimizes the sensor setup
to achieve accurate joint angle estimation. Ten healthy individuals participated in the study. Two
IMU sensors were utilized and placed on the participants’ shoes. Multiple trials were conducted for
each participant in different conditions: treadmill, overground, stair, and slope. They utilized the
sagittal plane angles of the hip, knee, and ankle for both lower limbs. The authors implement five
networks combining CNNs and GRU-based RNN as base learners for their framework. DeepBBWAE-
Net achieved RMSE values of 3.77°, 4.62°, and 3.22° degrees for hip, knee, and ankle joints, resp.,
during treadmill walking and RMSE values of 4.32°, 4.28°, and 3.09° for the hip, knee, and ankle
joints, resp., during overground walking.

Tan et al. [113] utilized 2 or 4 IMUs sensors for capturing data from 17 individuals with knee
osteoarthritis to forecast knee flexion/extension via stacked Bi-LSTM. A total of 28 retroreflective
markers were affixed to the pelvis and lower limbs of the participant. The performance of a single-leg
model was compared to that of a double-leg model in terms of prediction error. The results indicated
that the single-leg model exhibited significantly lower prediction error than the double-leg model. The
RMSE was found to range from 7.04 (2.6) to 11.78 (6.04), while the MAE ranged from 5.99 (2.34) to
10.37 (5.44). R? score was also calculated and ranged from 0.85 to 0.99.

Heeb et al. [114] proposed ML and DL models to measure the power of the ankle joint using force-
myography (FMG) sensors. Nine young, healthy men took part in this study and gave information that
was used in it. Before the experiment, each person was given an FMG strap with eight FSR. devices that
they wore around their waist. About 2 inches above the ankle, the FMG strap was wrapped around
the participant’s right leg. During the experiment, each person walked on the force-plate-equipped
treadmill for one minute at each of the five different speeds (0.4, 0.7, 1.0, 1.3, and 1.6 m/s). The
authors implemented LSTM, 1-D CNN, and Cat Boost Regressor (CBR) to achieve the purpose of the
study. Results showed that the LSTM model using time-domain features got a correlation coefficient
of over R = 0.91£0.07, and the CNN model using raw features got R = 0.89+0.13.

Hossain et al. [115]| introduced a new DL model called Kinetics-FM-DLR-Ensemble-Net. The
model is designed to predict the moments of the hip, knee, and ankle joints, as well as the 3-D
GRFs, using data from three IMU sensors placed on the thigh, shank, and foot. The model was
tested under various walking conditions commonly encountered in daily life, including treadmills, level
ground, stairs, and ramps. The primary component of the Kinetics-FM-DLR-Ensemble-Net model is
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the Kinetics-FM-DLR-Net model. They utilized bagging methodologies by employing Kinetics-FM-
DLR-Net to construct Kinetics-FM-DLR-Ensemble-Net. Kinetics-FM-DLR-Net is mostly made up of
two Kinetics-FM-Nets. Each model was trained using two different loss functions, and then they were
combined using a new method called Double Loss Regression (DLR). Kinetics-FM-Net is constructed
by combining Kinetics-Net with a fusion module (FM) component. Kinetics-Net is constructed by
incorporating various DL layers such as GRU, ConvlD, Conv2D, and fully connected dense layers.
This study utilized two openly accessible datasets, Dataset A [107] and Dataset B [116]. Dataset A
has data from twenty participants and it was employed to train a model. Dataset B has seventeen
participants. The proposed model achieved RMSE of 4.3240.81 and 7.4340.71 for Dataset A and
Dataset B, respectively.

2.3.2.3 Condition/joint translation

This category is similar to the previous one, but instead of estimating from different types of sensors
for the same segment or joint movement, they estimate from another joint data (i.e., estimating knee
kinematics from foot kinematics) or another condition (i.e., estimating running kinematics from gait
kinematics) using the same type of sensors.

He et al. [117] proposed an LSTM-based model to investigate the relationship between upper and
lower limb movements. They predicted the hip and knee movements on one side of the lower limb
using the shoulder and elbow movements on the other side of the upper limb. The authors recruited
10 healthy participants. A unique Kinect-Treadmill data collection platform was created for walking
at various velocities (3.0, 3.5, 4.0, and 4.5km/h). The average RMSE of the prediction of the lower
limb for all velocities was around 2.4°4+0.55°.

Chow et al. [118] compared accelerometer and gyroscope in forecasting level-ground running kine-
matics (hip and knee flexion/extension) from treadmill running kinematics using a CNN model. The
training data for treadmill running kinematics were measured using a single IMU on the anteromedial
side of the right tibia and level-ground running kinematics were measured by four IMUs placed on the
lower extremities. Ten healthy recreational runners were included in the study.The results showed that
the R? scores ranged from 0.85 to 0.96 for intraparticipant comparisons and 0.7 to 0.92 for interpar-
ticipant comparisons. The RMSE values of running kinematics ranged from 3.2° to 7.1° and from 6.3°
to 6.8° in intraparticipant and interparticipant tests, respectively.

Sharifi Renani et al. [119] proposed a Bi-LSTM-based model to predict the three-dimensional
hip and knee kinematics during gait using either experimentally measured IMU data, synthetically
generated IMU data, or a combination of both (pelvis, left thigh, left shank, and left foot). The study
used 30 participants. Two separate neural network models were developed to predict joint angles from
the related IMU data, one for the knee and one for hip kinematics. Both architectures consist of a
Bi-LSTM layer followed by two fully connected layers. The authors concluded that using synthetic data
for training and prediction improves hip and knee results compared to measured data from subjects
(RMSE of the hip: 2.3° and knee: 2.9°). When trained using synthetic data and measurements, models
got better results than when using only IMU synthetic data (RMSE of the hip: 1.9° and knee: 1.7°).

Dey & Schilling [120] introduced an online or offline foot angle trajectory prediction network (FATP-
N), which is based on temporal convolution. They predict the sagittal foot angular locations during
natural walking (different speeds, cadences, and not necessarily in a straight line) based on the shank
angular position measured with a single wearable IMU motion tracker sensor. They also evaluated their
method with various baseline and cutting-edge data-driven methods (LSTM, GRU, LR, and GPR) for
predicting gait trajectories. Shank and foot angular positions were measured on seven healthy people.
Wireless motion tracker sensors (MTw Awinda, Xsens) were used to collect data at 100 Hz from
the subject’s shank and foot center of mass. A correlation coefficient of 0.984:0.01, an R? score of
0.9540.01, and an NRMSE of 4.740.9% were recorded by the offline-trained FATP-N. Compared to
offline forecasts, the performance of the online predictions was marginally worse.
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Table 2.9: Sensor-to-sensor sequence estimation regression studies

Research| Purpose Model Data Type Dataset performance Results
Article [Architecture] Metric
Senanayake Prediction of GAN IMU 9 healthy RMS 3.8°,2.1° and 3.5°
et ankle joint angles subjects for dorsiflexion,
al. [109] | from IMU data inversion, and axial
rotation,
respectively.
Rapp et Prediction of ConvlD and IMU 420 healthy RMSE RMSE < 1.27
al. [110] | hip, knee, and LSTM-based subjects (0.38) in
ankle joint angles flexion /extension,
from IMU data < 2.52 (0.98) in ad-
duction/abduction,
and < 3.34 (1.02)
in internal/external
rotation
Hernandez Estimation of |DeepConvLSTM [2 IMU 27 healthy MAE and R |MAE for the DOFs
et marker-based CLs + 2 LLs] subjects ranged from
al. [111] | kinematics from 2.2(0.9)° to
IMU data 5.1(2.7)° with an
average of 3.6(2.1)°.
Hossain Prediction of CNN-GRU IMU 10 healthy RMSE 6.93-29.0
et hip, knee, and subjects
al. [112] |ankle joint angles
from IMU data
Tan et | Prediction of | Bi-LSTM-based [2 IMU 17 RMSE , MAE, | RMSE, MAE, and
al. [113] knee flex- BLs + DrL + FCL] pathological | and Pearson’s | R ranged from
tion/extension subjects R 7.04(2.6) to
from IMU data 11.78(6.04),
5.99(2.34) to
10.37(5.44), and
0.85 to 0.99,
respectively.
Heeb et Prediction of LSTM-based FMG sensor 9 healthy R, RMSE , LSTM: R =
al. [114] |ankle joint power| [LL(1024 neurons) subjects and MAE 0.914+0.07 and
using FMG -+ 4 FCLs(256, 128, CNN: R =
64, and 1 0.8940.13
neurons)], and
CNN-based [3 CLs
+ 2 DrLs + 1D AP
+ 2 FCLs(128 and
1 neurons)]
Hossain Prediction of | Kinetics-FM-DLR- IMU Dataset A (20 | NRMSE and | 4.32 and 0.929 for
et joint moments Ensemble-Net healthy pPCC Dataset A. 7.43
al. [115] | and 3D GRFs | consists of GRU, subjects) and and 0.886 for
from IMU data | ConvlD, Conv2D, Dataset B(17 Dataset B
and FCLs healthy
subjects)
Note: FCL = Fully Connected Layer, CL = Conv Layer, LL = LSTM Layer, and MPL = Max Pooling Layer
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Ding et al. [121] proposed the LSTM-based model with an attention mechanism for motion predic-
tion of a subject’s limb using the motion of complementary limbs. Twenty-one subjects’ data were used
in that study for experiments. A total of six modes of walking were measured: ground-level walking,
stopped, ramp descent, ramp ascent, stair descent, stair ascent, and transition between them. Five
sensors, consisting of a gyroscope and an accelerometer, are placed on the subject’s body to extract the
data. The authors implemented four different models: two without an attention mechanism and two
with an attention mechanism. Two of them were using LSTM, and two of them were using Bi-LSTM.
The study used two joints, the left ankle, and the left hip, for motion predictions (linear accelera-
tion). Results showed that adding attention layers made 57% of the model parameters unnecessary.
At the same time, the prediction error was lower than with the LSTM model without the attention
mechanism. The NRMSE for the attention model was 9.06% for ankle acceleration and 7.64% for hip
acceleration. The MAE was 1.43m/sec? and 3.20m/sec? for the ankle and hip, respectively.

Lee and Asbeck [122]| presented a foot placement prediction method based on GRU. This method
involves analyzing data from three IMU sensors, which are attached to the pelvis and feet, sequentially.
Two DL models were developed, with the first model focused on estimating the progression of gait and
the second model dedicated to predicting the next foot placement. Both models used GRU. The IMU
data and the ground truth foot placement data are gathered using an XSens MVN Link suit. A total
of ten healthy participants (8 male and 2 female) took part in the experiment. During the study,
participants were instructed to walk naturally on a treadmill. The pre-trained, base, and fine-tuned
models achieved mean distance errors of 6.99cm, 3.32cm, and 3.22cm, respectively.

Bajpai et al. [123] implemented an ANN called "foot2hip" that can accurately record gait kinemat-
ics over an extended period. Foot2hip utilizes foot kinematics and kinetics during walking to accurately
predict the angles of the ankle, knee, and hip joints in the sagittal plane. The CNN-LSTM-DNN-based
model (foot2hip) was composed of a series of layers, including convolution, max-pooling, LSTM, and
dense layers. A locally created insole and an outsole were utilized to analyze the dynamics and move-
ments of the foot, respectively. Data was gathered from a group of seven healthy male participants.
The knee joint had an RMSE of 3.04+0.20 and a correlation coefficient of 0.9740.01. The hip joint
had an RMSE of 1.7£0.09 and a correlation coefficient of 0.954+0.01. Lastly, the ankle joint had an
RMSE of 1.3240.08 and a correlation coefficient of 0.9140.02.

2.3.2.4 Clinical scores prediction

In this category, we regroup studies that predict continuous clinical variables (i.e. pathology severity
scores) from gait data.

Berke Erdag et al. [124] introduced a method for developing a disease severity grading system
for NDDs, including amyotrophic lateral sclerosis (ALS), huntington’s disease (HD), and PD. The
proposed approach utilizes 1D and 2D CNN and gait data represented by a Quick Response code to
achieve high levels of effectiveness and reliability. The PhysioNet database was utilized to evaluate the
efficiency of the developed algorithms. The disease severity grades of Parkinson’s patients from the HY
scale, a worldwide scale, and the TFC degree of Huntington patients from the UHDRS scale, which
measures symptom severity, were estimated. Since ALS patients have no disease degree information,
the number of months since diagnosis has been estimated. They computed the R values for ALS, HD,
and PD and found them to be (0.61, 0.39, and 0.7) and (0.88, 0.83, and 0.79), respectively for 1D and
2D CNN. The study also computed the R? value for three subsets, which resulted in values of (0.37,
0.15, and 0.49) and (0.79, 0.69, and 0.62), respectively.

Eguchi et al. [125] utilized gait videos to predict the score on the PD rating scale. They obtained
737 consecutive gait videos of 74 patients with PD and their corresponding neurologist-rated UPDRS
scores retrospectively. A CNN model was used to predict the total UPDRS part III score and four
subscores related to axial symptoms, bradykinesia, rigidity, and tremor. For the entire UPDRS part
III score and the subscores of axial symptoms, bradykinesia, rigidity, and tremor in the test dataset,
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the R? values between the model-predicted and neurologist-rated values were 0.59, 0.77, 0.56, 0.46, and
0.0, respectively. They reported that the performance was relatively low for patients with significant
symptoms.

2.3.3 Gait analysis using Multi-task learning

Most of the studies using MTL are devoted to gait-based identification and authentication, not for
clinical gait analysis. We could only find 5 studies, that come under the inclusion criteria of this
review.

A study by Nait Aicha et al. [126] compared how well CNN, LSTM and a combined ConvLSTM
used raw accelerometer data to predict falls in older adults. By incorporating auxiliary tasks like
gender and age, the models showed improved performance. The dataset consisted of 296 subjects, 191
of whom had experienced at least one fall in the past six months. Their experiments involved various
data divisions at both subject and sample levels, incorporating MTL to evaluate fall risk (primary
task), and subject identification, age, gender, weight, and height prediction (auxiliary tasks). The
ConvLSTM architecture generally outperformed CNN and LSTM, with the AUC of 0.75.

Yu et al. [127] came up with a Deep Multi-source Multi-task Learning (DMML) approach that
gives a framework for assessing fall risk and PD severity based on accelerometer and gyroscope data.
The goal of MTL is to improve performance of every single task by simultaneously evaluating the fall
risk and PD severity. The authors used timed up-and-go (TUG) test data to evaluate the model. Five
IMU sensors were put on 22 PD people aged 65 or over to track how they moved during the test. The
training had a total of three stages: in stage 1, multi-layer CNN extract features that are specific to a
source. In stage 2, these networks pull out general features that are common to all sources. Finally,
the last layer is for MTL, where each task learns its features from the generic features learned in stage
2. Their model greatly outperforms the benchmark approaches, achieving an F-measure of 0.940 for
assessing fall risks and an RMSE of 0.060 for measuring PD severities.

Zhang et al. [128] proposed a multi-task CNN for age estimation using gait. They used gender
information as another task to improve age estimation. This study used a Large Population Dataset
with Age (OULP-Age) dataset consisting of gait energy image (GEI). 28,923 subjects were used for
training, 3000 for validation, and 31,923 for testing the model. The residual architecture of ConvNet
was adopted for the model, following fully connected layers of each task. They got the 5.47 MAE for
age estimation and 96.26% CCR.

Aoki et al. [129] implemented multi-task RNN (MRNN) to classify physically fatigued and non-
fatigued gait cycles. According to the authors, there are significant intra-class variations in the gait
cycle due to differences in the stance phase (which foot is swinging or supporting). One branch of
MRNN is responsible for detecting the supporting foot as an auxiliary task, and the other is for the
main task of fatigue classification. Eight healthy subjects were used for the experiments. The input
for the model was the gait cycle, represented as 3-D coordinates of body joints. The model contains
four independent RNN (IndRNN) layers, two common for both tasks, and two task-specific layers. The
overall AUC in leave-one-subject-out validation was 0.86+0.019, and in leave-one-day-out was 0.915.

Khan et al. [39] proposed a framework for patients with neurological diseases to optimize treatment
outcomes. A regression strategy was used to predict how patients’ joints would move after treatment
using a multi-task architecture with LSTM and Bi-LSTM models. Medical treatment data (MTD)
was added for context modeling, and a gating mechanism was used for model treatment interaction.
A total of 38 patients were used in the study with different neurological diseases, e.g., CP, MS, SCI,
stroke, or TBI. Data was collected using an optoelectronic Codamotion system. A total of 23 patients
were bilaterally affected, and the rest of them were unilaterally affected. Only the sagittal plane of
knee and ankle trajectories was used for the experiments. Seven models were used in the study; three
were without MTL, and four used MTL in their architecture. In all models, there were five layers of
LSTMs or Bi-LSTMs in a serial architecture (without MTL) or a parallel one (with MTL). Leave-one-
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Table 2.10: Condition/joint translation and remaining regression studies

Research Purpose Model Data Type Dataset performance Results
Article [Architecture] Metric
He et Prediction of LSTM-based Kinect sensor 10 healthy RMSE 2.4+0.55
al. [117] | lower limb using subjects
upper limbs
Chow et Prediction of CNN-based [4 CLs IMU data + 10 healthy R? and Intraparticipant
al. [118] level-ground + MPL] accelerometer subjects Normalized and
running and gyroscope RMSE interparticipant R?
kinematics (hip values: 0.85 to 0.96
and knee and 0.7 to 0.92,
flexion/extension NRMSE values:
values) by 3.6% to 10.8% and
treadmill from 7.4% to
running 10.8%, respectively.
kinematics
Sharifi | Prediction of hip | BiLSTM separate IMU 30 healthy RMSE Hip: 1.9 degrees
Renani et and knee for Hip and Knee subjects and Knee: 1.7
al. [119] | kinematics using | [BL + 2 FCLs]| degrees
measured and
synthetically
generated IMU
data
Berke Severity 1D CNN-based [1 GRF data PhysioNet (46 | R, R®, MAE, R and R? values
Erdag et prediction of CL + DrLs + converted into Healthy and Median for ALS & Control:
al. [124] NDD FCLs| and 2D QR images pathological Absolute 0.88 and 0.79, HD
CNN-based [2 CLs subjects) Error & Control: 0.83
+ MPL + FCLs]| (MedAE), and 0.69, and PD
MSE, and & Control: 0.79
RMSE and 0.62.
Dey & Prediction of | FATP-N (TCN) [3 | Wireless motion 7 healthy R?, NRMSE, R? score:
Schilling. foot angular temporal tracker sensors subjects and 0.95+0.01,
[120] locations during | CLs(kernel size: 16,| (MTw Awinda, correlation NRMSE:
natural walking 32, and 64, Xsens) coefficient 4.740.9%, and a
based on shank respectively) + correlation
angular position FCL] coefficient of
0.98+0.01.
Ding et | Prediction of the LSTM with an IMU Bath Narual Mean Hip — Ankle (MAE
al. [121] motion of attention Environment Absolute (m/sec2): 1.43 —
subject’s leg mechanism HAR dataset Percentage 3.20, NRMSE:
using (21 healthy Error 7.64% — 9.06%, and
complementary subjects) (MAPE), MAPE: 13.37% —
limbs MAE and 21.99%
NRMSE
Lee & Foot placement GRU IMU 10 healthy RMSE and please see the
As- prediction (single-layered) Subjects mean distance | section for details
beck [122] error (MDE)
Bajpai & | Prediction of the | CNN-LSTM-DNN goniometer, 7 healthy RMSE and 3.0440.20 and
Joshi [123]| ankle, knee, and based model pressure insole, subjects ( pPCC 0.97+0.01 for knee
hip joints in the | (foot2hip) [CL + | and outsole with | kinetics and joint. 1.740.09 and
sagittal plan MPL + LL + six kinematics of 0.95+0.01 for the
using foot FCLs]| Vertical-Cavity the foot) hip joint.
kinetics and Surface-Emitting 1.324+0.08 and
kimenatics Laser (VCSEL) 0.91+0.02 for ankle
sensors joint.
Eguchi et PD disease CNN-based gait video 74 patients R? the R? values for
al. [125] | rating scale score the total UPDRS
prediction part III score was
0.59.
Note: LU = LSTM unit, BL = Bi-LSTM Layer, CLL = Conv Layer, LL. = Lstm Layer, FCL = Fully Connected

Layer, MPL = Max Pooling Layer, BNL = Batch Normalization Layer, DrL. = Dropout Layer, and FL. = Fusion Layer
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Table 2.11: Gait analysis using MTL

Research Purpose Model Data Type Dataset Performance Results
Article [Architecture] Metric
Nait Prediction of falls in CNN, LSTM, and triaxial ac- Fall risk AUC (10-fold 0.75
Aicha et older adults ConvLSTM [5 CLs + | celerometer | assessment in | cross-validation)
al. [126] LL + DL older adults
(FARAO) 296
Yu et Prediction of the fall Multi-source video timed up and For fall risk, Precision: 0.925,
al. [127] | risk and severity of | Multi-task Learning go (TUG) | precision, recall, Recall: 0.958,
conditions of PD (DMML) - CNN [4 dataset and F-Measure. | FMeasure: 0.940
parallel layers (2 CLs For PD Severity | and RMSE: 0.060
-+ 2 non-linear layers RMSE (10-fold
+ 2 MPLs) + cross-validation)
DL(1000 neurons) +
2 parallel DLs (500
neurons)|
Zhang et | Age estimation using | Multi-task CNN [CL |Gait Energy| OULP-Age, MAE and MAE: 5.47 and
al. [128§] gait. + 2 parallel FCLs for Images 63,846 Correct CCR: 98.10%
each task| subjects Classification
Rate (CCR)
Aoki et Classification of Multi-task RNN kinect 8 healthy |AUC, Sensitivity,| AUC: 0.860+0.019
al. [129] physically fatigued sensor subjects and Specificity Sensitivity:
and non-fatigued gait (Leave-one- 0.763+0.045
cycles subject-out Specificity:
Cross-validation) 0.812+0.035
Khan et | Optimize treatment MTL using LSTM |optoelectronic 38 RMSE and R? lowest RMSE of
al. [39] | outcomes (predicting and Bi-LSTM Codamotion| pathological 5.60° for the knee
post-gait trajectories system patients with and 3.77° for the
of the knee and different ankle
ankle). diseases
Note: DL = Dense Layer, CL. = Conv Layer, LL. = Lstm Layer, FCL. = Fully Connected Layer, and MPL = Max

Pooling Layer

out cross-validation was used to assess the models’ performance. Results showed that MTL models
outperformed other models. The authors achieved the best results (lowest RMSE) of 5.60° for the knee
in TBI patients and 3.77° for the ankle in CP patients. In conclusion, the MTL models had the best
RMSE, ranging from 5.24° to 6.24°.

2.3.4 Major Datasets Used in Gait Analysis

The present section provides an overview of the primary publicly-available datasets utilized for DL
applied to QGA. The majority of gait datasets available for research purposes consist of healthy sub-
jects. Few databases contain both information on healthy and pathological gait. Most pathological
gait datasets are not publicly available, usually for clinical data protection issues.

Two types of data are primarily available: (1) Vision-based: Images of skeletons, gait energy, silhou-
ettes, and other objects. (2) Wearable sensor-based: IMU data, accelerometer, gyroscope, magnetome-
ter, temperature, and other sensors are included in the sensor-based dataset. It is worth noting that
only one dataset offers optoelectronic marker-based data (Rueangsirarak et al. [130]).

2.3.4.1 OULP-Age “OU-ISIR Gait Database, Large Population Dataset with Age”

OULP-Age [131] is a large population dataset of human gait for gait-based age estimation. It is an
extended version of the OULP dataset. The databases consist of 63,846 subjects, with a balanced
gender ratio of 32,753 females and 31,093 males. The ages of the participants ranged from 2 to 90 y.o..
The database is a collection of GEIs of subjects. The total length of video contained in this dataset is

42



44.3 hours. Each subject had a 2.5-s walking image sequence taken, with 640x480 pixel images and a
30 frames per second rate. More subjects belong to the age group 6-10, and fewer subjects belong to
the age group 86-90.

2.3.4.2 Bath Natural Environment HAR Data Set

Bath Natural HAR dataset was published by Sherratt in 2020 [132]. The dataset consists of a total of 22
participants. All of them were healthy subjects. Five nine-axis IMU sensors consisting of a gyroscope,
accelerometer, and magnetometer are placed onto the body: two on the legs at the ankles, two on
the torso at the hips, and one on the chest. The three axes’ linear acceleration, angular velocity, and
magnetic field were measured with each IMU sensor. The vector sum of the three linear accelerations
of the triaxial accelerometer was used to calculate the resulting acceleration. The sampling rate was
100 Hz, and 1.25 million samples were collected, corresponding to 209 minutes of data and 10,440
strides.

2.3.4.3 3d gait database

The dataset, published by Rueangsirarak et al. [130] in 2018, was collected from 45 senior Thai vol-
unteers residing in Chiang Mai retirement villages and nursing institutions. The study protocol was
approved by the Faculty of Associated Medical Sciences Ethics Council at Chiang Mai University.
Three medical professionals from the university’s College of Associated Medical Sciences evaluated
the participants and categorized their gait conditions into four groups: healthy, muscle weakness,
joint issues, and neurological defects. The participants, aged from 61 to 91, included 5 males and 40
females. The breakdown of gait conditions was as follows: 18 with muscle weakness, 13 with neurolog-
ical defects; 4 with joint problems, 10 healthy individuals. Data collection involved a motion capture
suit with reflective markers attached to the participants’ bodies [133], producing temporal 3D marker
placements. Following [134], the walking protocol consisted of four attempts along a 10-meter corridor
at the subjects’ typical gait speed, with two-minute rest periods between attempts: the first and last
trials were designated for practice and cooling down, respectively, only the second and third trials were
included in the final dataset. This comprehensive dataset provides valuable information for studying
gait patterns in older adults with various musculoskeletal and neurological conditions, contributing to
the development of automated diagnostic tools and interventions for age-related mobility issues.

2.3.4.4 Walking gait dataset

The walking gait dataset was designed by Nguyen and Meunier [135] in 2018. The dataset has nine
categories of healthy and altered gait data. They instructed the test subjects to wear soles with 5, 10,
and 15 ¢m padding, once on the right foot and once on the left. The individuals once wore a 4-kg
weight ankle on each ankle to collect various anomalies. Each participant also walks with a normal
gait. There are nine subjects in total. Each participant walks through eight abnormal and one normal
sequence, each with 1200 frames. The dataset was represented in silhouette, skeleton, and point clouds.
There were a total of 291,600 frames in the dataset.

2.3.4.5 Multi-modal gait symmetry (MMGS) dataset

The MMGS dataset was designed by Khokhlova et al. [136] in 2019. They collected the data using a
single Kinect v.2 sensor placed before the test individual. Each individual approached the camera. The
experiment involved 27 subjects, with 19 males and 8 females participating. The participants’ average
age is 30+7 y.o. The gait classes include normal walking, limping gait imitated by each participant
wearing a 7-cm padding sole, and gait with knee injury-related issues, including a prosthesis worn
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or after-fracture recovery gait. The latter category is replicated by instructing participants to walk
without bending their right knee.

2.3.4.6 Pathological gait dataset

This dataset was designed by Jun et al. [137] in 2020. A system consisting of six calibrated Kinect
sensors was used to capture the data for this set. To collect reliable data from various directions, the
sensors have been calibrated to ensure they continuously acquire the same XYZ coordinate. A total
of ten healthy participants acted out five distinct types of pathological gait, including antalgic, stiff-
legged, lurching, steppage, and Trendelenburg gait. Every subject went through each gait class twenty
times. This dataset includes six classes of normal and pseudo-pathological gait, with 120 sequences for
each subject. These classes are in addition to the normal class. This dataset has the most significant
number of frames overall, as well as the largest number of frames for each class, compared to the other
datasets for skeleton-based gait anomaly recognition (SGAR) that are publicly available.

2.3.4.7 The Daphnet dataset

The Daphnet dataset was designed by Bachlin et al. [138] in 2009. Participants were people with
idiopathic PD who had a history of FOG and could walk without help. Patients were not allowed to
participate if they had serious problems with their eyesight or hearing, dementia, or signs of other neu-
rological or orthopedic diseases. The local Human Subjects Review Committee permitted the study,
which was done per the ethical rules of the Declaration of Helsinki. Ten people with PD took part
in this study. The average age was 66.54+4.8 years. The average time of their disease was 13.74+9.67.
Participants were asked to walk in a straight line (back and forth), do random walks, and do walking
activities such as getting something to drink and entering the room. Two sessions were recorded for
said activities. 500 minutes of data were recorded, equivalent to 8 hours and 20 minutes. 237 FOG
events are identified in the dataset.

2.4 Identified Gaps

This section aims at identifying and discussing the significant gaps in gait analysis research. Specifically,
we focus on a few aspects that require further investigation and development.

e Upon conducting a thorough review of the existing literature on gait analysis datasets, it has
been determined that there is a limited number of datasets available on pathological gait (see
Table 2.12). Specifically, only one dataset has been identified that pertains to pathological gait,
and it includes only 10 subjects. The existing literature has extensively explored normal gait
patterns over the past few years. However, there is a dearth of research studies that focus on
pathological gait. Furthermore, the few studies that have been conducted in this area have
predominantly utilized subjects as their primary research participants. The absence of publicly
available datasets is a notable limitation in this area of research.

e The current body of literature on gait trajectory prediction is characterized by a lack of studies
that utilize pathological gait. The majority of research studies have exploited normal gait for
prediction purposes.

e The present study also aims to contribute to the existing literature on gait analysis by considering
the MTL approach. Specifically, we seek to build upon the limited body of research in this area, as
only five studies have been identified in the literature that have employed an MTL methodology

44



Table 2.12: Detail of Datasets

S#N Name Type Size Healthy/ Pathology Detail
Pathological
1 OULP-Age GEls 63,846 Healthy This dataset is used for
subjects age estimation.
2 Bath Natural IMU 22 subjects Healthy This dataset is used to
Environment HAR predict the motion of the
Dataset leg.
3 3D Gait Database Marker-based 45 subjects Healthy+ muscle weakness, | This dataset is used to
Pathological | joint issues, and classify healthy and
neurological pathological subjects.
defects
4 Walking gait pointcloud, 9 subjects Healthy+ The individuals This dataset is used to
dataset skeleton, and Abnormal | once wore a 4-kg classify healthy and
silhouette weight ankle on pathological subjects.
each ankle to
collect various
anomalies.
5 MMGS dataset skeleton and 27 subjects Healthy+ wearing a 7-cm This dataset is used to
silhouette Pathological padding sole, classify healthy and
and gait with pathological subjects.
knee
injury-related
issues, including
a prosthesis worn
or after-fracture
recovery gait.
6 Pathological gait skeleton 10 subjects Healthy+ five distinct This dataset is used to
dataset Pathological types of classify healthy and
pathological gait, pathological subjects.
including
antalgic,
stiff-legged,
lurching,
steppage, and
Trendelenburg
gait.
7 The Daphnet accelerometer 10 subjects | Pathological idiopathic PD This dataset is used to
dataset classify patients with FOG
problem.
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for gait analysis. In recent years, the use of MTL has gained widespread success in various
fields, including the field under consideration (see Table 2.11), as it offers a promising solution
to address diverse problems.

e The present SLR has found that the availability of a public dataset containing information on
pre-treatment gait and post-treatment gait is currently lacking. Most datasets on gait analysis
were exploited for research studies on action recognition (out of the scope of this SLR). There are
few datasets containing pathological gait data, and these are mainly employed to automatically
distinguish between healthy and pathological gait patterns.

e Most of the studies used a very limited number of subjects, usually around ten. It makes it
difficult to generalize methods used in the studies due to the huge variability in human gait.

e The present literature review has identified a single study [39] that focuses on the prediction of
treatment outcomes through the utilization of gait analysis using DL. This study stands as the
sole example of research in this area.

2.5 Discussion and Future Research Direction

The present study is an SLR that aims to provide an overview of DL algorithms and specifically MTL
techniques that have been utilized for gait analysis. This paper delves into the topic of gait analysis
and explores the major datasets that have been utilized in the existing literature. The present section
presents a comprehensive discussion of our research findings and identifies several research directions
on gait analysis.

2.5.1 Gait Applications

In all gait applications encountered in this SLR (see Pie charts 2.5 and 2.7), namely as phase detection,
gait events detection, prediction of FOG, classification of healthy and pathological gait, future sub-
sequence forecasting, and sensor-to-sensor sequence estimation, we note the increasing importance and
strong potential of DL for prediction purposes, in particular in healthy gait, and classification tasks as
well.

Specifically, CNN and LSTM networks have been identified as the major DL algorithms.

2.5.2 Multi-task learning

MTL has seen extensive use across a variety of scientific domains. Other gait-based applications, such
as identification, authentication, and emotion recognition, which are out of the scope of this SLR, have
also made use of this technology in the past.

All the reported studies using MTL for QGA concern classification tasks. The addition of MTL would
be of great interest for regression purposes since auxiliary tasks usually improve the performance of the
model for the principal tasks [129]. The MTL framework has two advantages: (a) it follows the divide
and conquer principle and makes triggering the model easier; (b) it helps with model explainability.
The price to pay is that the model is greedy, and the primary task’s identification must be carried out
very carefully.

2.5.3 Datasets

The majority of datasets that are publicly accessible are utilized for the classification of healthy and
pathological gait. The availability of datasets for specific applications, such as age estimation and
treatment outcome prediction, is limited.
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2.5.4 Future Recommendations

We note that a significant amount of work on gait analysis utilizing DL has been done in recent years.
After conducting an SLR, the following are some suggestions for the years to come:

e The utilization of MTL for gait analysis has been the subject of limited research studies. The
utilization of the MTL approach has been proposed as a potential solution to address the challenge
of gait analysis with increased complexity. This methodology has shown promise in its ability
to effectively handle multiple tasks simultaneously in gait analysis, in particular because of the
numerous variables to consider. By leveraging MTL, it may be possible to improve the accuracy
and efficiency of gait prediction, ultimately leading to better outcomes for patients.

e The majority of gait analysis studies have utilized normal gait data for their analyses. However,
there is a dire need for studies that examine pathological gait to better understand and address
related issues.

e The scarcity of datasets about pathological gait is a significant constraint for research in the field
of Clinical Gait Analysis. The production of a comprehensive public dataset covering pathological
gait data is a challenge for researchers in this field. Such dataset would serve as a valuable resource
for further research and analysis of gait-related disorders.

e The present study aims to address a gap in the existing literature by examining treatment
outcome prediction. The ultimate purpose of CGA is to improve the patient’s gait during reha-
bilitation. The treatment is a complex, personalized, data-driven decision process in personalized
medicine. This decision relies on the experience of medical staff. In this context, Al can be an
added value for decision aid.

Specifically, it is noteworthy that only one reported study here has been conducted on this topic to
date [39]. Therefore, the current investigation seeks to expand upon this limited body of research
and contribute to a more comprehensive understanding of treatment outcome prediction. The
current state of research in this area reveals a significant gap that requires further investigation.

e No publicly accessible dataset containing pre-treatment and post-treatment gait data has been
identified. This lack of available data poses a significant challenge for researchers seeking to
investigate the effects of treatment on gait patterns. Further exploration and potential collabo-
ration with relevant institutions may be necessary to address this issue. The production of this
particular dataset is also a crucial area of focus for researchers. Closer collaborations between
clinicians, computer scientists, and engineers would help in this progress.

Also, the use of synthetic pathological data using generative models could be a hint to overcome
this limitation.

2.6 Conclusion

In the present work, we performed a comprehensive SLR and provided a broad overview of applications,
DL methods, and datasets used in QGA. The findings of this review are divided into two major parts:
classification and regression studies. Most of the classification studies focus on the classification of
healthy and pathological gait, as well as gait event detection. On the other hand, the regression
studies span future sub-sequence forecasting, sensor-to-sensor sequence estimation, condition/joint
translations, and clinical scores prediction. CNN and LSTM have been mostly used as DL methods in
these studies.

After literature screening, it has been depicted that more than half (around 55%) of current studies
are mainly focusing on healthy gait. Most of the studies considering pathological gait use proprietary
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datasets with a relatively small number of patients and a lack of external validation. Due to ethical
constraints, most of these datasets are not publicly accessible. An effort for patient data sharing is to
be made. Researchers can also work in the direction of synthetic gait data by using generative models.

In terms of applications, treatment outcome prediction applications, which are considered the
"holy grail" in rehabilitation, are rare. In addition, whereas many QGA applications are based on
classical Machine Learning algorithms [139, 56| considerably fewer Al-based QGA applications utilize
DL approaches. Given the predictive potential of DL-based approaches, an effort should also be made
towards studying treatment outcome prediction using DL. In this context, MTL approaches should
also play a role in improving the performance of gait studies.
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Chapter 3

(Gait Analysis: from Aquisition to Data
Analysis

Contents
3.1 Dataset Description . . . . . . . . . . . i i e e 49
3.2 Kinematic Data . . . ... ... .. i e e e e e 50
3.3 Medical Treatment Data . . . ... ... ... ... ... e, 53

Summary

This chapter provides a comprehensive overview of the data used in this project and is divided into
three main sections. The first section offers a detailed description of the data, including the acquisition
process, protocols followed, the number of patients involved, and additional relevant information. The
second section focuses on kinematic data, discussing its significance in this project and the preprocessing
steps undertaken. The third section delves into the MTD given the pathological conditions of the patients
inwolved, treatment-related information was incorporated into our models to enhance results. Detailed
descriptions are provided in this section. While our research follows a specific direction, not all acquired
laboratory data were utilized. This chapter includes all pertinent details.

3.1 Dataset Description

In this retrospective study, data was collected in the Movement Analysis Laboratory of the Rehabil-
itation Centre of UGECAM Coubert in France. In this laboratory, every single patient was an adult
who was experiencing a variety of gait-related difficulties. Patients with central nervous system prob-
lems, such as CP, SCI, MS, stroke, or TBI, are included in this database. All of these patients had
previously received treatment for spasticity using BTX-A injections and are followed-up at UGECAM
Coubert. Patients who had an incomplete rehabilitation or who experienced complications throughout
their recovery were excluded from the study. For patients who use various walking aids, trials with the
same walking aid were selected for both the preoperative and postoperative phases of the study.

Concerning this study, every piece of information considered came from patients who took part
in therapeutic activities. In total, Npa = 38 patients at the start of the study were subjected to
CGA both before and after receiving treatment for spasticity with botulinum toxin. The institution’s
research ethics committee approved utilizing these data after reviewing them. Although they were
informed about the research, the patients did not object to the utilization of their data for research
purposes.
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The database is continuously expanding due to the new patients being brought into the UGECAM
Laboratory regularly. For this reason the number of patients in some trials conducted during the
three-year thesis research varied. The first experiments were conducted with 38 patients, as stated in
Chapter 4. Later, the database was extended to 43 patients, corresponding to the most recent version
of the database.

More precisely, in the first set of experiment (Experiment protocol 1 on 38 patients), a total of
Nimps = 61 lower limbs were treated, with Nyy; = 15 patients (39.47%) being affected unilaterally
(the right lower limb was impacted in 6 of them, and the left lower leg for the other 9). On the other
hand, Ny = 23 patients (60.53%) were affected bilaterally. The data sets include the CGA prior to
treatment, specifics regarding medical treatment, and the CGA of patients following treatment. At the
time of pre-treatment CGA, the average age of the patients was 46.67 years old, respectively. At the
time of injection, the average age of the patients was 46.76 years old, and at the time of post-treatment
CGA, the average age was 46.93 years old. The dataset contains individuals ranging in age from 21
to 75 years old. The comparison of the pre-treatment CGA to the post-treatment CGA took place
roughly three months after the treatment. All patient information for the experiments is included in
Table 3.1.

Table 3.1: Patient database description.

Total Patients 43

Age (Mean + SD) 46.67 £ 13.43
Males /Females 26/17
Unilaterally /Bilaterally affected 19/24
Cerebral Palsy 4

Stroke 11

Multiple Sclerosis 12
Traumatic Brain Injury 3

Spinal Cord Injury 13

The number of gait cycles per patient when the database was extended to 43 patients can be seen
in Figure 3.1. The minimum number of gait cycles for any patient was 12, and the maximum was 72.
The average number of gait cycles per patient was 29. In the first experiment, we processed the full
gait cycle, and in other experiments (Chapter 5), gait cycles were divided into two phases: the stance
phase and the swing phase. Usually, a healthy person has 60% of the stance phase and 40% proportion
of the swing phase. However, this work deals with pathological patients having different diseases, so
we have different proportions for each phase. It can be seen in Figure 3.2.

3.2 Kinematic Data

Records of all CGA examinations carried out since 2016 can be found in the Movement Analysis
Laboratory of the Rehabilitation Centre at the UGECAM. The acquisition of joint kinematics is
commonly accomplished through the utilization of optoelectronic systems [8] or IMU systems [140].
In this work, kinematic data have been acquired using a Codamotion system that consists of four CX1
cameras at a frame rate of one hundred frames per second (fps) (see Figure 3.3). The participants
walked straight, with or without technical aids (i.e., cane, rollator, tripod, etc.), through a 10-meter-
long laboratory room. Patients walked back and forth throughout the gait hallway (trials). Each
patient’s multiple trials are recorded depending on the patient’s capability. These data have been
saved in a Matlab file.

Kinematic signals are not quite regular due to the variability of biomedical data [141]. This is the
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Figure 3.1: Gait cycles per patient. The X-axis represents patients, and the y-axis represents the total number of gait
cycles.
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Figure 3.2: Proportion of stance and swing phase healthy gait (left side) and of each patient in our dataset (right side).
The X-axis represents patients, and the Y-axis represents the proportion of each phase.

case even if walking is a cyclic process, not exactly periodic. Even when the same person walks, two
separate gait cycles vary slightly in time and amplitude. This is true even if the individual walking is
the same. A computation of an average gait cycle is performed for each lower limb in order to provide
a unique representation. For this objective, kinematic signals are segmented into gait cycles, where
a lower limb cycle is defined from two consecutive initial contacts. According to the findings of this
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Figure 3.3: Clinical gait analysis. Different types of sensors are used to collect kinematic and kinetic data.

study [142], foot contacts were automatically identified by the utilization of the high pass algorithm
(HPA). Following the localization of minima of the vertical component of the heel marker, HPA applies
a high pass filter to the horizontal displacement of the forefoot marker and the heel marker in order
to ascertain both initial contacts and toe-offs, which is the beginning of the swing phase.

The gait cycle is divided into two main phases: the stance and swing phases. In a healthy individual,
the stance phase makes up around 60% of the gait cycle and can be further divided into initial contact
(heel strike), loading response, mid-stance, terminal stance, and pre-swing. Both feet firmly touch
the ground at the start and end of the stance phase. These double support periods make up around
10-12% of the gait cycle. The swing phase takes approximately 40% of the gait cycle. It is divided into
three parts: the initial swing (toe-off), the mid-swing (tibia vertical), and the terminal swing, which
concludes with the heel making contact with the ground. Figure 3.4 shows the average gait cycle of a
healthy subject with five joints: knee, ankle, foot, pelvis, and hip on all three planes.

Our dataset includes kinematic signals from 5 joints: the pelvis, hip, knee, ankle, and foot. Each
joint has three signals, resulting in a total of 15 signals. These three signals illustrate the trajectory
of each joint on different planes: sagittal, frontal, and transverse (see Figures 3.5 and 3.6). For this
study, we focused solely on the knee and ankle on the sagittal plane. This decision was made due to
the fact that the majority of treatments are typically carried out concerning these particular joints.

Subjects in our dataset were affected on one side (unilaterally) or both sides (bilaterally). Patients
are classified according to the limbs that are affected by a disease, and the categories are hemiplegia
(the right or left limb is affected), paraplegia (both lower limbs are affected), and tetraplegia (both
limbs are affected). Figure 3.7 shows kinematic signals of the knee and ankle of unilaterally affected
patients (hemiplegia). Figures 3.8 and 3.9 show the kinematic signals of bilaterally affected patients
(paraplegia and tetraplegia).

Following that, each gait cycle of selected joints was resampled to increments of 2% of the cycle,
which resulted in 51 points to each cycle, as described in [143]. The interpolation technique was used
for resampling processes [144]. The patient’s data includes several gait cycles during the pre-treatment
CGA and post-treatment CGA. Various trials were recorded for each individual. Multiple cycles of
pre-treatment CGA were extracted during the trial.

Figure 3.10 shows the process for converting trials into normalized gait phases. The sagittal plane
(flexion /extension) trajectories of the knee and ankle during a patient’s whole trial, including numerous
cycles, are depicted in Figures 3.10a and b, respectively. The cycles retrieved from the entire knee and
ankle trials are shown in Figures 3.10c and d, respectively. Figures 3.10e and f show one cycle, and
Figures 3.10(g-j) represent the segmentation of the gait cycle into stance phase and swing phases of
knee and ankle joints.

We collected and saved the cycles of all patients. We analyzed a person’s right and left cycles as
separate samples in our data. We performed the identical procedure for the data on post-treatment
CGA. Every pre-treatment cycle was linked to a desired post-treatment cycle.
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Figure 3.4: Gait kinematics of healthy subject (knee, ankle, foot, pelvis, and hip joints).

3.3 Medical Treatment Data

In this study, a total of 38 muscles have been considered for BTX-A injection. Each side has nineteen
muscles (right and left lower limbs). Following is the list of muscles: Rectus Femoris, Vastus Lateralis,
Vastus Medialis, Gracilis, Adductor Brevis, Adductor Longus, Adductor Magnus, Semitendinosus,
Semimenbranosus, Biceps Femoris, Tibialis Anterior, Extensor Hallucis <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>